COMMITTENTE

DIREZIONE INVESTIMENTI

PROGETTAZIONE:

SCALA:

n. Elab.:

DIREZIONE TECNICA U.O. COORDINAMENTO NO CAPTIVE E INGEGNERIA DI SISTEMA

PROGETTO DEFINITIVO

VELOCIZZAZIONE LINEA SAN GAVINO - SASSARI - OLBIA VARIANTE DI BONORVA - TORRALBA

VIADOTTO VI03 IN C.A.P

File: RR0H04D13CLVI0305001B.docx

Relazione di Calcolo delle Pile e Fondazioni

RR	MESSA LOTTO FASE	1 3	TIPO DOC	VI	DISCIPLIN	5 0 0	1 B	
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
В	Emissione a seguito parere CSLLPP	P.Tortolini	Novembre 2018	A. Ciavarella	Novembre 2018	T.Paoletti	Novembre 2018	L. Berardi
A	Emissione Esecutiva	P.Tortolini	Marzo 2018	A. Ciavarella	Marzo 2018	T.Paoletti	Marzo 2018	Novembre 2018
						/		*
								Jul 1100

VI03 - Viadotto in c.a.p Relazione di calcolo pile e fondazioni COMMESSA LOTTO
RR0H 04

CODIFICA

DOCUMENTO

REV.

FOGLIO 2 di 57

04 D13CL VI0305001 B

INDICE

1		INTR	ODUZIONE	4
2		NOR	MATIVA DI RIFERIMENTO	7
3		MAT	ERIALI	8
	3.1		Calcestruzzo	8
	3.2		Acciaio da armatura ordinaria	9
	3.3		Acciaio armonico stabilizzato per trefoli	9
4		CARA	ATTERISTICHE DEL TERRENO DI FONDAZIONE	10
5		ANAI	LISI DEI CARICHI	11
	5.1		Carichi da impalcato	11
		5.1.1	Pesi strutturali impalcato (G1)	11
		5.1.2	Carichi permanenti portati impalcato (G2)	11
		5.1.3	Azioni variabili da traffico ferroviario	12
		5.1.4	Vento impalcato	16
		5.1.5	Resistenze parassite appoggi impalcato (RES)	17
	5.2		Pesi propri delle sottostrutture (G1)	18
	5.1		Vento su pila	18
	5.2		Azione sismica (E)	18
6		CALC	COLO DELLE SOLLECITAZIONI E VERIFICHE DEL FUSTO PILA	21
	6.1		Calcolo dell'azione sismica.	21
	6.2	!	Sollecitazioni elementari da impalcato	23
	6.3		Sollecitazioni elementari base pila	24
	6.4		Combinazioni dei carichi	24
	6.5	;	Sollecitazioni combinate base pila	26

VI03 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo pile e fondazioniRR0H04D13CLVI0305001B3 di 57

	6.6	Verifiche strutturali del fusto pila	. 27
	6.6.1	Calcolo dell'armatura minima	. 27
	6.6.2	Verifica a flessione SLU e SLV	. 29
	6.6.3	Verifica a taglio SLU e SLV	. 32
	6.7	Verifica a fessurazione	. 34
7	VERI	FICHE DELLE FONDAZIONI	. 35
	7.1	Sollecitazioni elementari intradosso fondazione	. 35
	7.2	Combinazioni di carico	. 36
	7.3	Sollecitazioni combinate intradosso fondazione	. 38
	7.4	Verifiche strutturali del plinto	. 39
	7.5	Verifiche geotecniche	. 50
	7.5.1	Verifica nei confronti del carico limite	. 51
	7.5.2	Verifica nei confronti dello scorrimento del piano di posa	. 53
	7.6	Verifica a ribaltamento	. 54
Ŗ	INCII	DENZA ARMATURE	. 57

1 INTRODUZIONE

La presente relazione riporta le analisi e verifiche che hanno condotto al dimensionamento delle pile del viadotto VI03 della variante di Bonorva - Torralba nell'ambito del progetto definitivo relativo alla "Velocizzazione linea San Gavino - Sassari - Olbia".

L'opera è funzionale ad una linea ferroviaria di categoria D4, con velocità di progetto di 140 Km/h.

Il viadotto è realizzato con travi poggiate in c.a.p. di luce 25m e presenta 6 pile con fondazione diretta, essendo il sottosuolo caratterizzato da una matrice rocciosa ad elevate caratteristiche geomeccaniche. Le pile dell'opera sono omogenee di altezza leggermente inferiore a 6m; sono caratterizzate da una sezione scatolare cava, con geometria pseudorettangolare di dimensione esterne pari a 6x3.2m, lo spessore delle pareti è pari a 0.40m. Le fondazioni hanno dimensioni in pianta di 6.5x7.5 m e spessore 1.8m.

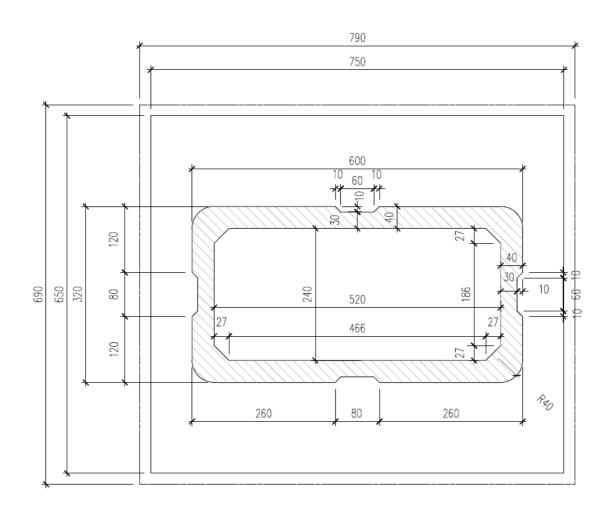


Figura 1: Pianta fondazioni ed elevazione pila.

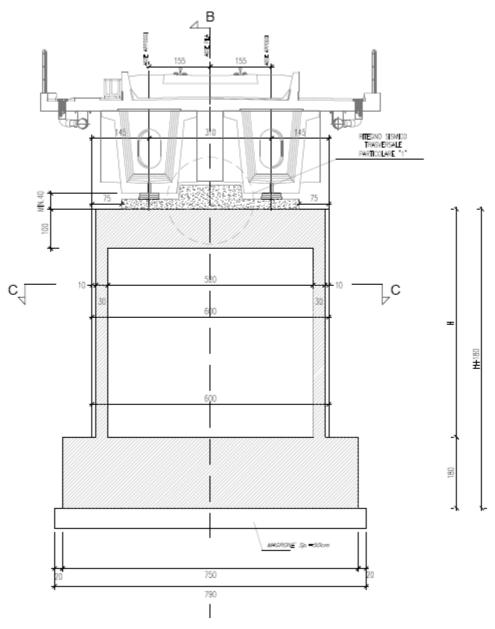


Figura 2: Sezione trasversale pila.

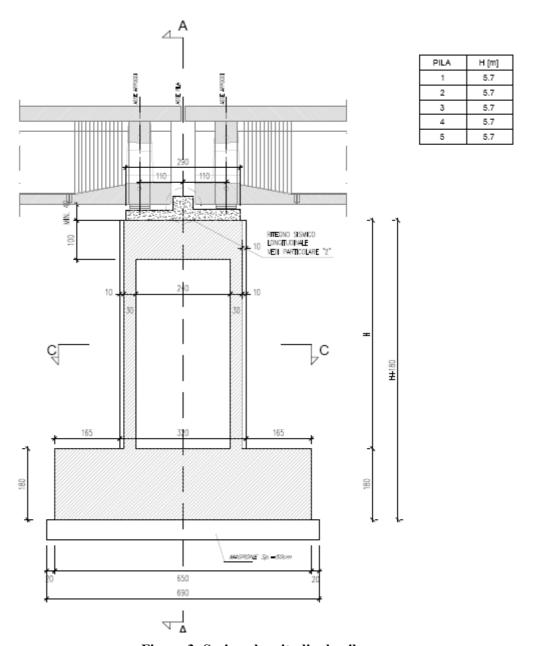


Figura 3: Sezione longitudinale pila.

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	_
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	7 di 57	

2 NORMATIVA DI RIFERIMENTO

- Legge 5 novembre 1971 n. 1086: Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica.
- D.P.R. n. 380/2001 Testo unico delle disposizioni legislative e regolamentari in materia edilizia;
- D.M. del 14.01.2008 "Approvazione delle nuove norme tecniche per le costruzioni" (G.U. n.29 del 04.02.2008);
- Circolare del 02.02.2009 contenente le istruzioni per le l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. del 14.01.2008 (G.U. n.47 del 26.02.2009).
- RFI DTC SI PS MA IFS 001 A: "Manuale di progettazione delle opere civili Parte II sez.2 : Ponti e strutture " del 30/12/2016.
- RFI DTC SI CS MA IFS 001 A: Manuale di progettazione delle opere civili Parte II sez.3. : Corpo stradale" del 30/12/2016.
- Regolamento (UE) N.1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.
- EN 1991-2 "Eurocodice I Azioni sulle strutture Parte 2 : carichi da traffico sui ponti"
- EN 1992-1 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 1-1 : Regole generali e regole per edifici"
- EN 1992-1 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 2: ponti di calcestruzzo Progettazione e dettagli costruttivi."
- EN 1993-1 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1 : Regole generali e regole per edifici"
- EN 1993-1-8 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti"
- EN 1993-1-9 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Fatica"
- EN 1993-2 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 2 : Ponti di acciaio"
- EN 1994-2 "Eurocodice 4 Progettazione delle strutture composte acciaio- calcestruzzo Parte 2 : Ponti"
- EN 1997-1 "Eurocodice 7 Progettazione geotecnica- Parte 1 : Regole generali."
- UNI EN 1337 Appoggi strutturali.

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	8 di 57

3 MATERIALI

3.1 Calcestruzzo

• Travi prefabbricate

Classe C45/55

Resistenza a compressione di progetto $f_{cd} = 0.85 f_{ck} / 1.5 = 25.5 Mpa$

Modulo elastico Ecm = $22000 (f_{cm}/10)^{0.3} = 36 Gpa$

Classe di esposizione = XC3

Classe di consistenza min = S4

Rapporto $a/c_{max} = 0.45$

Copriferro minimo armatura ordinaria = 35 mm

Copriferro minimo armatura pretesa = 50 mm

• Soletta d'impalcato

Classe C32/40

Resistenza a compressione di progetto $f_{cd} = 0.85 \ f_{ck} \ / \ 1.5 = 18.1 \ Mpa$

Modulo elastico Ecm = $22000 (f_{cm}/10)^{0.3} = 33 \text{ Gpa}$

Classe di esposizione = XC3

Classe di consistenza min = S4

Rapporto $a/c_{max} = 0.55$

Copriferro minimo armatura ordinaria = 40 mm

• Getti in elevazione di pile e spalle (compresi baggioli e ritegni)

Classe C32/40

Resistenza a compressione di progetto $f_{cd} = 0.85 f_{ck} / 1.5 = 18.1 Mpa$

Modulo elastico Ecm = $22000 (f_{cm}/10)^{0.3} = 33 \text{ Gpa}$

Classe di esposizione = XC4

FOGLIO 9 di 57

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В

Classe di consistenza min = S3

Rapporto $a/c_{max} = 0.50$

Copriferro minimo armatura ordinaria = 40 mm

• Getti di fondazione

Classe C25/30

Resistenza a compressione di progetto $f_{cd} = 0.85 f_{ck} / 1.5 = 14.2 \text{ Mpa}$

Modulo elastico Ecm = $22000 (f_{cm}/10)^{0.3} = 31 \text{ Gpa}$

Classe di esposizione = XC2

Classe di consistenza min = S3

Rapporto $a/c_{max} = 0.60$

Copriferro minimo armatura ordinaria = 40 mm

• Magrone

Classe C12/15

Classe di esposizione = X0

3.2 Acciaio da armatura ordinaria

Acciaio tipo B450 C ($f_{yk} = 450 \text{ MPa}$)

Tensione di snervamento di calcolo $f_{yd} = f_{yk}/1.15 = 391 \text{ Mpa}$

Modulo elastico Es = 200 Gpa

3.3 Acciaio armonico stabilizzato per trefoli

Tensione caratteristica di rottura $f_{ptk} = 1860 \text{ Mpa}$

Tensione di snervamento di calcolo $f_{p(1)k} = 1670 \text{ Mpa}$

Modulo elastico Es = 195 Gpa

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	10 di 57

4 CARATTERISTICHE DEL TERRENO DI FONDAZIONE

Con riferimento alla specifica relazione geotecnica che accompagna il presente progetto, sono state assunti i seguenti parametri di calcolo relativi allo strato di terreno su cui sono state intestate le fondazioni delle sottostrutture.

Tratta Geotecnica 6

Strato: Basalto alterato (BSTalt)

 γ = 25 KN/m3

 $\varphi' = 62^{\circ}$

c' = 170 Kpa

Em = 7200 Mpa

Ai fini delle verifiche geotecniche, a vantaggio di sicurezza, il contributo della coesione del terreno di fondazione viene trascurato.

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	11 di 57

5 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le corrispondenti verifiche degli elementi strutturali dell'opera.

Sono stati adottati i seguenti pesi specifici dei materiali da costruzione:

Cemento armato : $\gamma c = 25.00 \text{ KN/m}3$

Acciaio strutturale : $\gamma s = 78.50 \text{ KN/m}3$

5.1 Carichi da impalcato

5.1.1 Pesi strutturali impalcato (G1)

Il peso proprio strutturale delle opere è valutato sulla base dei pesi per unità di volume dei diversi materiali da costruzione.

Cemento armato : $\gamma c = 25.00 \text{ KN/m}3$

Considerata la geometria dell'impalcato in oggetto per la singola campata si hanno i seguenti carichi strutturali:

Travi cap (30 kN/m/trave*) =

2*30 KN/m = 60.00 KN/m

Soletta in ca (spessore medio 28 cm) =

0.28 m * 8.60 m * 25 KN/m = 60.20 KN/m

120.20 KN/m

Il peso totale G1 per l'impalcato da 25m è dunque 3005 KN.

5.1.2 Carichi permanenti portati impalcato (G2)

Il peso proprio della sovrastruttura ferroviaria (armamento, ballast, impermeabilizzazione, etc..) viene valutato tramite un peso di volume a pari a $20~kN/m^3$ (ponte in curva) applicato ad un'altezza convenzionale di 0.8m.

Sovrastruttura ferroviaria

0.8 m * 3.7 m * 20 KN/m = 59.2 KN/m

Muretti per marciapiedi FFP

2* 0.3 m * 1.4 m * 25 KN/m = 21 KN/m

Grigliato marciapiede FFP (50 kg/m2 compresi i profili di supporto)

2* 2.0 m * 0.5 KN/m2 = 2.0 KN/m

Barriere parapetto

2* 2.5 KN/m = 5.0 KN/m

^{*} compresi i trasversi di collegamento delle travi in cap

Canalette portacavi (2.0 KN/m)

2.0 KN/m

89.20 KN/m

Il peso totale G2 per l'impalcato da 25m è dunque 2230 KN.

5.1.3 Azioni variabili da traffico ferroviario

Ai fini del calcolo delle sollecitazioni più sfavorevoli prodotte dalle azioni variabili da traffico per le sottostrutture sono state prese in considerazioni due configurazioni di carico delle campate afferenti la pila.

Schema 1: Carichi da traffico presenti su entrambe le campate

Schema 2 : Carichi da traffico presenti solo sulla campata lato appoggio fisso

Di seguito sono illustrati i modelli di traffico adottati per il calcolo delle sollecitazioni.

Traffico normale: Treno LM71

Questo treno di carico schematizza gli effetti statici prodotti dal traffico ferroviario normale e risulta articolato come da figura seguente:

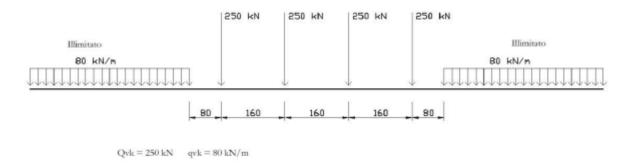


Figura 5.2.1 - Treno di carico LM71

Per questo modello è prevista un'eccentricità di applicazione del carico rispetto all'asse teorico del binario pari a s/18 (s = 1435 mm, scartamento):

 $e_{LM71} = 80 \text{ mm}$

 $\Phi 3 = 1.20$

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	13 di 57

I valori caratteristici del carco LM71 summenzionati devono essere incrementati per il coefficiente di adattamento α = 1.1

Traffico pesante: Treno SW/2

Questo treno di carico schematizza gli effetti statici prodotti dal traffico ferroviario pesante e risulta articolato come da figura seguente:

Fig. 5.2.2 Treno di carico SW

	Qwk (KN/m)	A (m)	C(m)
SW/2	150	25.00	7.00

Traffico scarico

Il "treno scarico" è rappresentato da un carico uniformemente distribuito pari a 10 KN/m.

Effetti dinamici

Si considera una linea con manutenzione standard

$$\Phi_{\rm a} = \frac{2.16}{\sqrt{L_{\Phi}} - 0.2} + 0.73$$
 con la limitazione $1.0 \le \Phi_{\rm 3} \le 2.0$

con la lunghezza Lø valutata secondo la Tabella 2.5.1.4.2.5.3-1 del manuale di progettazione Ponti RFI

• Travi principali - campata da
$$25 \text{m L}_{\Phi} = \text{L}_{c} = 22.8 \text{ m}$$

• Soletta impalcato - luce netta 1.5m
$$L_{\Phi} = L_{c} = 1.5$$
 m $\Phi 3 = 2.84$

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	14 di 57

Frenatura/ avviamento

I valori caratteristici considerati sono calcolati secondo:

Avviamento Q1a,k = 33 KN/m * L \leq 1000 KN (modelli LM71 SW/0 SW/2)

Frenatura Q1b,k = $20 \text{ KN/m} * \text{L} \le 6000 \text{ KN}$ (modelli LM71 SW/0)

Frenatura Q1b,k = 35 KN/m * L (modelli SW/2)

I valori caratteristici devono essere moltiplicati al coefficiente α .

• LM71 (α=1.1):

Campata [m]	Avviamento Q1a,k [KN]	Frenatura Q1b,k [KN]
25	908	550

• SW/2 (α =1.0):

Campata (m)	Avviamento Q1a,k [KN]	Frenatura Q1b,k [KN]
25	825	700

Serpeggio

Si considera una forza orizzontale concentrata agente sulla sommità della rotaia più alta di intensità pari a Qsk=100KN. A tale carico si applica il coefficiente di adattamento α , menzionato in precedenza.

[KN]	LM71 (α=1.1)	SW2 (α=1.0)
Azione serpeggio	110	100

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	15 di 57

Forza centrifuga

Il valore caratteristico della forza centrifuga è valutato secondo le seguenti espressioni:

$$Q_{tk} = \frac{v^{2}}{g \cdot r} (f \cdot Q_{vk}) = \frac{V^{2}}{127 \cdot r} (f \cdot Q_{vk})$$
 (5.2.9.a)

$$q_{tk} = \frac{v^2}{g \cdot r} (f \cdot q_{vk}) = \frac{V^2}{127 \cdot r} (f \cdot q_{vk})$$
 (5.2.9.b)

dove:

 Q_{tk} - q_{tk} = valore caratteristico della forza centrifuga [kN - kN/m];

 Q_{vk} - q_{vk} = valore caratteristico dei carichi verticali [kN - kN/m];

v = velocità di progetto espressa in m/s;

V = velocità di progetto espressa in km/h;

f = fattore di riduzione (definito in seguito);

g = accelerazione di gravità in m/s²;

r = è il raggio di curvatura in m.

$$f = \left[1 - \frac{V - 120}{1000} \left(\frac{814}{V} + 1,75\right) \cdot \left(1 - \sqrt{\frac{2,88}{L_f}}\right)\right]$$
 (5.2.10)

Raggio di curvatura r = 2200 m

Velocità di progetto V = 140 km/h (LM71)

V = 100 km/h (SW/2)

Calcolo del coefficiente V²/ 127r

• LM71: 0.07

• SW/2: 0.04

In definitiva, dunque, la forza centrifuga ha intensità pari a (f = 1):

7% del carico verticale LM71

4% del carico verticale SW/2 (tale valore si assume anche per il "treno scarico")

Essa si considera agente verso l'esterno della curva, applicata alla quota di 1.8m dal piano del ferro.

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	16 di 57

Ai fini della massimizzazione degli effetti dei carichi ferroviari sulle strutture oggetto di studio, sono stati presi in esame i seguenti gruppi di carico:

	Carco verticale	Frenatura/avviamento*	Forza centrifuga	Serpeggio
LM71 gr1	1	0.5	1	1
LM71 gr3	1	1	0.5	0.5
SW/2 gr1	1	0.5	1	1
SW/2 gr3	1	1	0.5	0.5
treno scarico gr2	1	0	1	1

^{*} Si considera l'azione (frenatura/avviamento) con intensità più alta.

5.1.4 Vento impalcato

L'azione del vento è schematizzata come una pressione statica la cui intensità è data da:

$$p = qb *ce *cp * cd$$

dove

qb pressione cinetica di riferimento

ce coefficiente di esposizione

cp coefficiente di forma (1.4 prima trave 0.2 travi successive)

cd coefficiente dinamico (=1)

Per l'opera in studio si ha:

• Velocità di riferimento del vento:

vb = 28 m/s (Sardegna orientale con altitudine <750 m slm)

• Pressione cinetica di riferimento (ρ = 1.25kg/m3):

$$qb = 0.5*\rho*vb^2 = 490 \text{ N/m2} = 0.49 \text{ KN/m2}$$

• Coefficiente di esposizione:

$$ce = kr^2 * ct * ln (z/zo)*[7+ct ln (z/zo)] = 2.21$$

kr = 0.19 e zo= 0.05m (II cat. esposizione del sito, Zona 6, Rugosità D)

ct = 1 (coefficiente di topografia)

z = 8 m (quota media impalcato dal pc)

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	17 di 57

In definitiva la pressione del vento vale:

$$p = 0.49 \text{ KN/m2} * 2.21 * 1.4 * 1 = 1.53 \text{ KN/m2}$$
 (trave direttamente investita)

$$p = 0.49 \text{ KN/m2} * 2.21 * 0.2 * 1 = 0.22 \text{ KN/m2}$$
 (travi successive)

La pressione del vento si applica ad una superficie convenzionale del treno caratterizzata da un'altezza di 4m a partire dal piano del ferro oltre alla superficie dell'impalcato direttamente investita.

Nel caso in esame si ha:

H impalcato	3.18 m
H treno	4 m
H trave	2.1 m

La forza orizzontale al metro lineare applicata sull'impalcato è dunque pari a :

$$F_{vento} = 1.53 \text{ KN/m*} (4+3.18)\text{m} + 0.22 \text{ KN/m*} 2.1\text{m} = 11.42 \text{ KN/m}$$
 Ponte carico

$$F_{vento*} = 1.53 \text{ KN/m*} 3.18 \text{ m} + 0.22 \text{ KN/m} * 2.8 \text{m} = 5.45 \text{ KN/m}$$
 Ponte scarico

Si fa notare che nel calcolo delle sollecitazioni sull'impalcato si tiene conto del fatto che è presente un'eccentricità verticale tra il centro di applicazione della forza orizzontale dovuta al vento e l'impalcato, pertanto nel modello di calcolo all'azione orizzontale viene associato un momento torcente corrispondente alla summenzionata eccentricità.

5.1.5 Resistenze parassite appoggi impalcato (RES)

L'entità di tale forza (Fa), diretta secondo l'asse del viadotto, vale per travi in semplice appoggio:

Spalle
$$Fa = f(Vg + Vq)$$

Pile Fa =
$$f(0.2*Vg + Vq)$$

dove

Vg Reazione verticale massima associata ai carichi permanenti,

Vq Reazione verticale massima associata ai carichi mobili dinamicizzati.

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	18 di 57

5.2 Pesi propri delle sottostrutture (G1)

Per la pila oggetto del presente studio (H=10.6m) si hanno i seguenti pesi strutturali:

Pulvino (sp=1m) = 18.8m2 * 1m * 25 KN/m3 = 470 KN

Fusto pila = 6.45 m2 * 4.7 m * 25 KN/m3 = 1548 KN

Fondazione = (8.6m * 8.6m * 2.3 m - 1.7m*1m * 8.6m) * 25 KN/m3 4257 KN

5.1 Vento su pila

Con riferimento alla pressione cinetica del vento del sito calcolata nell'analisi dell'impalcato (qb = 0.49KN/m²) :

Coefficiente di esposizione :

 $ce = kr^2 * ct * ln (z/zo)*[7+ct ln (z/zo)] = 1.62$

kr = 0.19 e zo= 0.05m (II cat. esposizione del sito, Zona 6, Rugosità D)

ct = 1 (coefficiente di topografia)

z = 2.9 m (quota baricentro pila)

p = qb *ce *cp * cd = 0.49 * 1.62 * 1 * 1.2 = 0.95 KN/m²

Vento longitudinale pila = $0.95 \text{ KN/m}^2 * 5.7 \text{ m} * 6 \text{ m} = 32.6 \text{ KN}$

Vento trasversale pila = $0.95 \text{ KN/m}^2 * 5.7 \text{ m} * 3.2 \text{ m} = 17.3 \text{ KN}$

5.2 Azione sismica (E)

La regione Sardegna ricade in zona sismica di IV categoria, i dati definenti lo spetto sismico sono riportati nella tabella 2 relativa alla pericolosità sismica del territorio nazionale contenuta nelle NTC2008.

 $\textbf{TABELLA 2:} \ \ \text{Valori di a}_{g}, F_{0}, T_{C}^{*} \ \ \text{per le isole, con l'esclusione della Sicilia, Ischia, Procida e Capri.}$

	Т	R=30		1	Γ _R =50)	1	T _R =72	2	Т	R=10	1	Т	_R =14	0	Т	_R =20	1	Т	_R =47	5	Т	R=97	5	Т	_R =24	75
Isole	ag	F.	T _C *	ag	F.	T _C *	ag	F.	T _c *	ag	F.	T_c^*	a _g	F.	T _C *	ag	F.	T _C *	ag	F.	T _C *	ag	F.	T _c *	ag	F.	T _C *
Arcipelago Toscano, Isole Egadi, Pantelleria, Sardegna, Lampedusa, Linosa, Ponza, Palmarola, Zannone	0,186	2,61	0,273	0,235	2,67	0,296	0,274	2,70	0,303	0,314	2,73	0,307	0,351	2,78	0,313	0,393	2,82	0,322	0,500	2,88	0,340	0,603	2,98	0,372	0,747	3,09	0,401

Per i viadotti in esame si assumono le seguenti caratteristiche dell'opera:

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	19 di 57

Vita utile Vu = 75 anni

Classe d'uso II (Cu = 1.0)

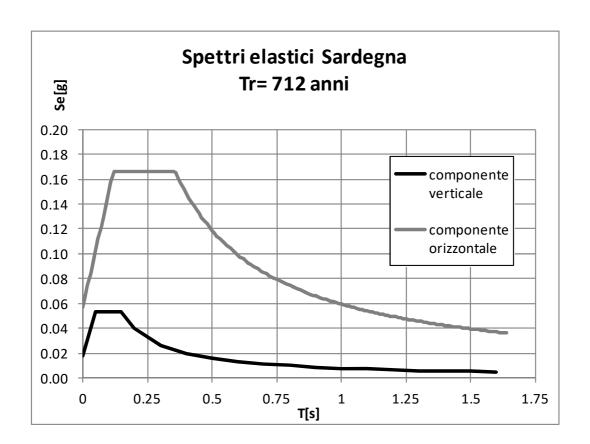
Pertanto l'azione sismica allo stato limite ultimo (salvaguardia della vita SLV) è caratterizzata da un tempo di ritorno di Tr = 712 anni.

I parametri ottenuti per interpolazione da quelli della tabella 2 sono i seguenti:

SLV	Tr = 712 anni
ag [g]	0.057
Fo	2.936
T*c [s]	0.358

Considerate le caratteristiche dei terreni di fondazione (vedasi relazione geotecnica) e quelle topografiche si assume una categoria di sottosuolo "A" ($S_S = 1.0$) ed un coefficiente topografico T1 ($S_T = 1.0$).

In definitiva dunque le due componenti degli spettri sismici per lo SLV sono i seguenti :


SLV	componente Orizz.	Componente Vert.				
ag [g]	0.057	0.018				
Fo,v	2.936	0.943				
Tb [s]	0.119	0.05				
Tc [s]	0.358	0.15				
Td [s]	10.827	1.00				
η	1	1				

VI03 - Viadotto in c.a.p
Relazione di calcolo pile e fondazioni

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RR0H
 04
 D13CL
 VI0305001
 B
 20 di 57

	i						
VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	21 di 57	

6 CALCOLO DELLE SOLLECITAZIONI E VERIFICHE DEL FUSTO PILA

6.1 Calcolo dell'azione sismica

Considerata la bassa pericolosità sismica del territorio in cui il ponte verrà realizzato, si adotta quale spettro di progetto quello elastico (q=1).

L'azione sismica trasmessa dall'impalcato alla sottostruttura nonché l'azione sismica della pila stessa viene valutata impiegando uno schema di calcolo ad 1GL (mensola), secondo l'analisi statica lineare.

Considerato che in direzione longitudinale ciascuna campata è collegata rigidamente ad un'unica pila, mentre trasversalmente ciascun appoggio dell'impalcato è fisso, ciascuna pila sopporta la medesima massa sismica dell'impalcato pari ad un unica campata.

Per la pila in esame la massa efficace che determina l'azione sismica è data da :

 $M ext{ sismica} = (M ext{ impalcato} + M ext{ pulvino} + 0.5 M ext{ pulvino}) = 621 ext{ ton}$

Ai fini del calcolo dei periodi propri e delle relative forze sismiche della pila si distinguono le due direzioni di applicazione dell'azione sismica.

• <u>DIREZIONE LONGITUDINALE</u>

H long= Hpila + H appoggi = 5.7 m + 0.4 m = 6.10 m

J long = 10.4 m4

Ec = $22000 * (fcm/10)^0.3 = 33.3$ Gpa (cls C32/40, si assume una rigidezza del cls non fessurata)

Da cui discende la seguente rigidezza orizzontale della pila:

 $K long = 3 Ec * J long / H long ^ 3 = 4.58 E6 kN/m$

Dunque il periodo longitudinale del sistema pila + impalcato vale:

T long = 2π (M sismica / K long)^{0.5} = 0.073 s

che risulta un periodo minore di T_B (inizio tratto ad accelerazione costante dello spettro), tuttavia a favore di sicurezza si adotta il valore massimo dello spettro :

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	22 di 57

Se (plateau) = 0.166 g

L'azione sismica che agisce in testa alla pila vale dunque:

 $F_{SLV long} = 627 \text{ Ton } * 0.166 * 9.81 \text{ m/s} 2 = 1021 \text{ KN}$

• DIREZIONE TRASVERSALE

H tra= Hpila + H appoggi + Yg impalcato = 5.7 m+0.4 m + 1.8 m = 7.9 m

J tra = 29.5 m4

 $Ec = 22000 * (fcm/10)^0.3 = 33.3 Gpa (cls C32/40, si assume una rigidezza del cls non fessurata)$

Da cui discende la seguente rigidezza orizzontale della pila:

K tra = 3 Ec * J tra / H tra 3 = 5.98 E6 kN/m

Dunque il periodo trasversale del sistema pila + impalcato vale:

T tra = 2π (M sismica / K tra)^{0.5} = 0.064 s

che risulta un periodo minore di T_B (inizio tratto ad accelerazione costante dello spettro), tuttavia a favore di sicurezza si adotta il valore massimo dello spettro :

Se (plateau) = 0.166 g

L'azione sismica che agisce in testa alla pila vale dunque:

 $F_{SLV tra} = 627 Ton * 0.166 * 9.81 m/s2 = 1021 KN$

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	23 di 57

6.2 Sollecitazioni elementari da impalcato

Le tabelle seguenti riportano le sollecitazioni elementari trasmesse dagli appoggi dell'impalcato riportate alla base del fusto pila.

		APPOGGI FISSI (1-2)										
	N [kN]	MI [kNm]	Mt [kNm]	FI [kN]	Ft [kN]							
G1	1505	1655	0	0	0							
G2	1114	1226	-1	0	0							
Vento	0	0	794	0	184							
LM 71	1866	2053	-143	0	0							
SW/2	2018	2220	0	0	0							
serpeggio LM71	0	0	-510	0	-55							
serpeggio SW/2	0	0	-464	0	-50							
centrifuga LM71	0	0	-965	0	-87							
centrifuga SW/2	0	0	-551	0	-50							
frenatura LM71	0	5539	0	908	0							
frenatura SW2	0	5033	0	825	0							

		APP	OGGI MOBILI	(3-4)	
	N [kN]	MI [kNm]	Mt [kNm]	FI [kN]	Ft [kN]
G1	1505	-1655	0	0	0
G2	1114	-1226	-1	0	0
Vento	0	0	794	0	184
LM 71	1866	-2053	-143	0	0
SW/2	2018	-2220	0	0	0
serpeggio LM71	0	0	-510	0	-55
serpeggio SW/2	0	0	-464	0	-50
centrifuga LM71	0	0	-965	0	-87
centrifuga SW/2	0	0	-551	0	-50
frenatura LM71	0	0	0	0	0
frenatura SW2	0	0	0	0	0

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	24 di 57

6.3 Sollecitazioni elementari base pila

La tabella seguente riporta le sollecitazioni elementari alla base della pila di tutte le azioni considerate nel calcolo della pila.

		SOLL	ECITAZIONI BA	SE PILA	
	N [kN]	MI [kNm]	Mt [kNm]	FI [kN]	Ft [kN]
Peso pila + pulvino	1227	0	0	0	0
Sisma pila + impalcato long	0	6164	0	1011	0
Sisma pila + impalcato tra	0	0	-7984	0	-1011
Sisma pila + impalcato vert*	111	0	0	0	0
Azioni da impalcato					
G1	3010	0	0	0	0
G2	2229	0	0	0	0
Vento impalcato	0	0	-1588	0	-368
Traffico schema 1					
LM71 GR.1	3732	2769	-3236	454	-284
LM71 GR.3	3732	5539	-1760	908	-142
SW/2 GR.1	4036	2516	-2031	413	-200
SW/2 GR.3	4036	5033	-1015	825	-100
treno scarico GR. 2	250	0	-1032	0	-110
Res. parassite vincoli	0	1861	0	305	0
Traffico schema 2					
LM71 GR.1	1866	4822	-1618	454	-142
LM71 GR.3	1866	7591	-880	908	-71
SW/2 GR.1	2018	4736	-1015	413	-100
SW/2 GR.3	2018	7252	-508	825	-50
treno scarico GR. 2	125	0	-516	0	-55
Res. parassite vincoli	0	1122	0	184	0

^{*} L'azione sismica verticale è stat ottenuta moltiplicando la accelerazione spettrale di ancoraggio (PGAv) per la massa del sistema impalcato-pila.

6.4 Combinazioni dei carichi

Ai fini delle verifiche strutturali sono stati presi in esame i seguenti gruppi di combinazioni.

VI03 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo pile e fondazioniRR0H04D13CLVI0305001B25 di 57

												AZI(PALC	ATO												
										TRAF	FICO	SCHE	MA 1			TF	RAFFI	CO SC	HEMA	١2						
		Peso pila + pulvino	Sisma pila + impalcato long	Sisma pila + impalcato tra	Sisma pila + impalcato vert	G1	62	Vento impalcato	Traffico schema 1	LM71 GR.1	LM71 GR.3	SW/2 GR.1	SW/2 GR.3	treno scarico GR. 2	Res. parassite vincoli	LM71 GR.1	LM71 GR.3	SW/2 GR.1	SW/2 GR.3	treno scarico GR. 2	Res. parassite vincoli					
SLE RARA	SLE1	1.00	0.00	0.00	0.00	1.00	1.00	0.60	1.00	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00					
	SLE2	1.00	0.00	0.00	0.00	1.00	1.00	0.60	1.00	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00					
	SLE3	1.00	0.00	0.00	0.00	1.00	1.00	0.60	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00					
	SLE4	1.00	0.00	0.00	0.00	1.00	1.00	0.60	1.00	0.00	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00					
	SLE5	1.00	0.00	0.00	0.00	1.00	1.00	0.60	1.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00					
	SLE6	1.00	0.00	0.00	0.00	1.00	1.00	0.60	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00					
	SLE7	1.00	0.00	0.00	0.00	1.00	1.00	0.60	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00					
	SLE8	1.00	0.00	0.00	0.00	1.00	1.00	0.60	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.00					
	SLE9	1.00	0.00	0.00	0.00	1.00	1.00	0.60	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00					
	SLE10	1.00	0.00	0.00	0.00	1.00	1.00	0.60	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00					

												AZI(PALC	CATO							
										TRAF	FICO	SCHE	MA 1			TF	RAFFI	CO SC	HEMA	. 2	
		Peso pila + pulvino	Sisma pila + impalcato long	Sisma pila + impalcato tra	Sisma pila + impalcato vert	G1	G2	Vento impalcato	Traffico schema 1	LM71 GR.1	LM71 GR.3	SW/2 GR.1	SW/2 GR.3	treno scarico GR. 2	Res. parassite vincoli	LM71 GR.1	LM71 GR.3	SW/2 GR.1	SW/2 GR.3	treno scarico GR. 2	Res. parassite vincoli
SLU A1	SLU1	1.35	0.00	0.00	0.00	1.35	1.50	0.90	1.00	1.45	0.00	0.00	0.00	0.00	1.20	0.00	0.00	0.00	0.00	0.00	0.00
	SLU2	1.35	0.00	0.00	0.00	1.35	1.50	0.90	1.00	0.00	1.45	0.00	0.00	0.00	1.20	0.00	0.00	0.00	0.00	0.00	0.00
	SLU3	1.35	0.00	0.00	0.00	1.35	1.50	0.90	1.00	0.00	0.00	1.45	0.00	0.00	1.20	0.00	0.00	0.00	0.00	0.00	0.00
	SLU4	1.35	0.00	0.00	0.00	1.35	1.50	0.90	1.00	0.00	0.00	0.00	1.45	0.00	1.20	0.00	0.00	0.00	0.00	0.00	0.00
	SLU5	1.00	0.00	0.00	0.00	1.00	1.00	0.90	1.00	0.00	0.00	0.00	0.00	1.45	1.20	0.00	0.00	0.00	0.00	0.00	0.00
	SLU6	1.35	0.00	0.00	0.00	1.35	1.50	0.90	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	0.00	0.00	1.20
	SLU7	1.35	0.00	0.00	0.00	1.35	1.50	0.90	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	0.00	1.20
	SLU8	1.35	0.00	0.00	0.00	1.35	1.50	0.90	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	1.20
	SLU9	1.35	0.00	0.00	0.00	1.35	1.50	0.90	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	1.20
	SLU10	1.00	0.00	0.00	0.00	1.00	1.00	0.90	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	1.20

VI03 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo pile e fondazioniRR0H04D13CLVI0305001B26 di 57

							AZIONI IMPALCATO															
									1	TRΔF	FICO			IFALU.	AIO	TE	2ΔFFI	AFFICO SCHEMA 2				
		Peso pila + pulvino	Sisma pila + impalcato long	Sisma pila + impalcato tra	Sisma pila + impalcato vert	G1	G2	Vento impalcato	Traffico schema 1	LM71 GR.1	LM71 GR.3	SW/2 GR.1	SW/2 GR.3	treno scarico GR. 2	Res. parassite vincoli	LM71 GR.1	LM71 GR.3	SW/2 GR.1	SW/2 GR.3	treno scarico GR. 2	Res. parassite vincoli	
SISMA SLV	SLV1	1.00	1.00	0.30	0.3	1.00	1.00	0.00	1.00	0.00	0.20	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	
	SLV2	1.00	1.00	0.30	-0.3	1.00											0.00	0.00	1.00			
	SLV3	1.00	0.30	1.00	0.3	1.00	1.00	0.00	1.00	0.20	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	
	SLV4	1.00	0.30	1.00	-0.3	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	1.00	

6.5 Sollecitazioni combinate base pila

		N	MI	Mt	FI	Ft
		[kN]	[kNm]	[kNm]	[kN]	[kN]
SLE RARA	SLE1	10197	4630	-4190	759	-505
	SLE2	10197	7399	-2714	1213	-363
	SLE3	10501	4377	-2985	718	-420
	SLE4	10501	6893	-1969	1130	-321
	SLE5	6715	1861	-1986	305	-331
	SLE6	8331	5944	-2572	638	-363
	SLE7	8331	8713	-1834	1092	-292
	SLE8	8483	5858	-1969	596	-321
	SLE9	8483	8374	-1462	1009	-271
	SLE10	6590	1122	-1470	184	-276
SLU	SLU1	14474	6248	-6123	1024	-743
	SLU2	14474	10264	-3984	1683	-537
	SLU3	14915	5881	-4375	964	-621
	SLU4	14915	9530	-2903	1562	-476
	SLU5	6828	2233	-2926	366	-491
	SLU6	11768	8338	-3777	879	-537
	SLU7	11768	12354	-2707	1537	-434
	SLU8	11988	8214	-2903	819	-476
	SLU9	11988	11862	-2167	1417	-404
	SLU10	6646	1346	-2178	221	-411
SISMA SLV	SLV1	7245	9133	-2749	1497	-332
	SLV2	6805	8805	-2573	1376	-317
	SLV3	7245	4264	-8632	699	-1067
	SLV4	6805	3936	-8309	578	-1039

VELOCIZZAZIONE LINEA S	AN GAVINO	- SASSARI -	OLBIA
VARIANTE DI BONORVA -	TORRAL BA		

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	27 di 57

6.6 Verifiche strutturali del fusto pila

Di seguito si riportano le verifiche strutturali del fusto della pila; i domini di resistenza sono stati calcolati con il programma VcaSLU by Prof. Piero Gelfi.

6.6.1 Calcolo dell'armatura minima

• Armatura verticale

L'armatura verticale minima da disporre è pari a 0.6% dell'area della sezione (cfr. Manuale Progettazione Opere Civili RFI).

Area sezione di base Ac=6.4 m2

Area minima Al,min = 0.6% * Ac = 384 cm2

Si dispone un'armatura articolata come segue:

Strato esterno: \$\phi20\$ passo 20 cm

Strato interno: \$\phi20\$ passo 20 cm

Complessivamente si contano 161 ferri \$\phi 20\$ per un'area di armatura complessiva di 505 cm2 > Al,min.

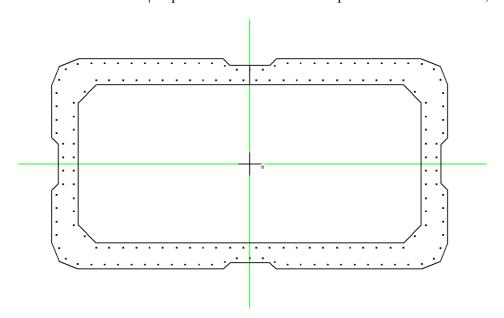


Figura 4: Armatura pila

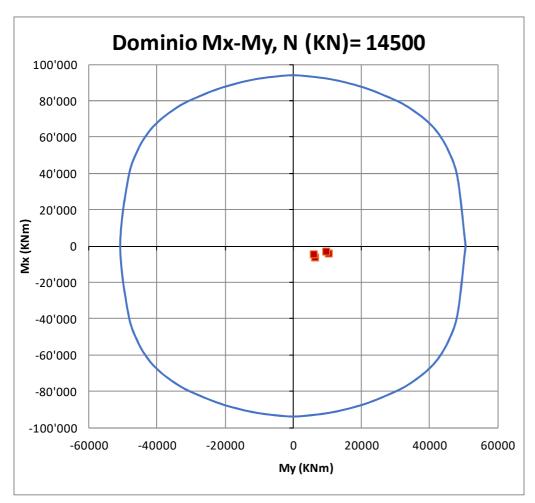
VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	28 di 57

• Armatura di confinamento

Essendo stato impiegato un fattore di struttura "q" < 1,5, l'armatura di confinamento deve soddisfare la seguente limitazione:

$$\omega_{wd,r} = \frac{A_{sw}}{s \cdot b} \cdot \frac{f_{yd}}{f_{cd}} \ge \zeta$$

dove $\zeta=0.03$, in quanto l'accelerazione sismica $(a_{g\,SLV})$ del sito è minore di 0.15g.

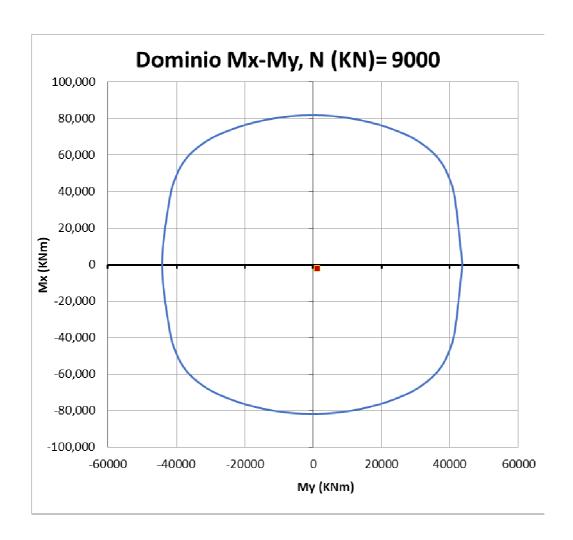

Su ogni parete della pila si dispongono spille \$\phi14\$ nel numero di 9 al mq (13.85 cm2 /m2), pertanto:

$$\omega_{wd,r}$$
 = 13.851 E-4 * 391Mpa / 18.1Mpa = 0.03

6.6.2 Verifica a flessione SLU e SLV

Si riportano i diagrammi resistenti Mx-My della sezione di base pila, confrontati con le rispettive sollecitazioni agenti.

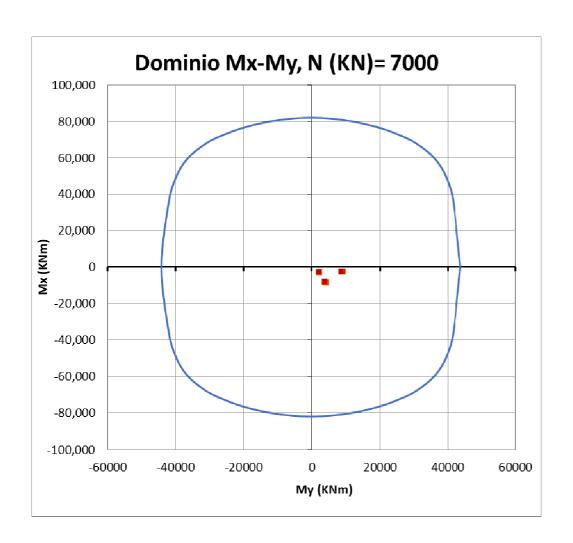
	NEd (KN)	MEd,x (KNm)	MEd,y (KNm)
SLU1	14474	6248	-6123
SLU2	14474	10264	-3984
SLU3	14915	5881	-4375
SLU4	14915	9530	-2903


Tutti le sollecitazioni risultano interne al dominio di rottura, pertanto la verifica è soddisfatta.

VI03 - Viadotto in c.a.p
Relazione di calcolo pile e fondazioni

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RR0H
 04
 D13CL
 VI0305001
 B
 30 di 57


	NEd (KN)	MEd,x (KNm)	MEd,y (KNm)
SLU6	11768	8338	-3777
SLU7	11768	12354	-2707
SLU8	11988	8214	-2903
SLU9	11988	11862	-2167

Tutti le sollecitazioni risultano interne al dominio di rottura, pertanto la verifica è soddisfatta.

VI03 - Viadotto in c.a.p Relazione di calcolo pile e fondazioni

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RR0H	04	D13CL	VI0305001	В	31 di 57	

	NEd (KN)	MEd,x (KNm)	MEd,y (KNm)
SLV1	7245	9133	-2749
SLV2	6805	8805	-2573
SLV3	7245	4264	-8632
SLV4	6805	3936	-8309
SLU5	6828	2233	-2926
SLU10	6646	1346	-2178

Tutti le sollecitazioni risultano interne al dominio di rottura, pertanto la verifica è soddisfatta.

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	32 di 57

6.6.3 Verifica a taglio SLU e SLV

Direzione longitudinale:

Il massimo taglio longitudinale è pari a:

VEd,x = 1683 KN (SLU2)

Si considerano resistenti al taglio le due pareti laterali assimilate ad una sezione rettangolare di dimensioni:

BxH = 80x320cm

Ciascuna parete ospita barre orizzontali pari a ferri \$14 passo 20 cm a 2 braccia.

Resistenza dell'armatura:

$$VRds = Asw/s * fyd * 0.9d cotg \theta = 4 * 153 mm2 / 200mm * 391 MPa * (0.9 * 3140 mm) = 3381 KN$$

con

 $\cot \theta = 1$

Resistenza della biella compressa:

$$VRdc = 0.9 d * bw * \alpha c * f'cd * (cotg \alpha + ctg \theta) / (1 + cotg^2 \theta) = 0.9 * 3140mm * 800mm * (0.5 * 18.1 MPa) * 1 = 0.9 d * bw * \text{cot} \text{ (cotg } \text{ (cotg }$$

20460 KN

con

 $\alpha c = 1$ (assunzione a favore di sicurezza)

 $\cot \alpha = 1$

 $\cot \theta = 1$

VRd,x = min (VRds; VRdc) = 3381 > VEd,x

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	33 di 57

Direzione trasversale:

Il massimo taglio trasversale è pari a:

VEd,y = 1067 KN (SLV3)

Si considerano resistenti al taglio le due pareti laterali assimilate ad una sezione rettangolare di dimensioni :

BxH = 80x600cm

Ciascuna parete ospita barre orizzontali pari a ferri \$\phi14\$ passo 20 cm a 2 braccia.

Resistenza dell'armatura:

$$VRds = Asw/\ s * fyd * 0.9d\ cotg\ \theta = 4 * 153\ mm2\ /\ 200mm * 391\ MPa * (0.9*5940\ mm) = 6396\ KN$$

con

 $\cot \theta = 1$

Resistenza della biella compressa:

$$VRdc = 0.9 \; d \; * \; bw \; * \; \alpha c \; * \; f \; cd \; * \; (octg \; a + cotg \; \; \theta) \; / (1 + cotg^2 \; \theta) = 0.9 * \; 5940 mm \; * \; 800 mm \; * \; (0.5 * 18.1 MPa) \; * \; 1 = 0.9 * \; 1 = 0.9$$

38705 KN

con

 $\alpha c = 1$ (assunzione a favore di sicurezza)

 $\cot \alpha = 1$

 $\cot \theta = 1$

VRd,y = min (VRds; VRdc) = 6396 > VEd,y

6.7 Verifica a fessurazione

Per le opere sotto binario deve risultare in combinazione di carico SLE rara che l'ampiezza massima delle fessure sia inferiore a (strutture a contatto con il terreno):

w1 = 0.20 mm.

Si procede al calcolo dell'apertura delle fessure prendendo in esame la combinazione SLE che fornisce la massima tensione di trazione sull'armatura:

(secondo circ. n.617 §C.4.1.2.2.4)

0.425 -

 $\sigma s = 4 \text{ MPa (SLE 7)}$

INPUT Commenti interasse barre interasse 200 mm diametro medio barre Φ (barre) 20 mm baricentro della barra dal lembo sezione **x barra** 70 mm altezza efficace hc,eff 175 classe cls Cls C 32 MPa 4 MPa tensione max barra σs (0.6 carichi brevi; 0.4 lunga durata) kt 0.6 -(0.8 barre ad. migliorata; 1.6 liscie) k1 0.8 -(0.5 per flessione; 1 trazione) k20.5 -(fisso) k3 3.4 -

(fisso) k4

OUTPUT							
diff. def. armature-cls							
ε sm -ε cm	1.17E-05 -						
distanza max fessure							
s r, max	5.83E+02 mm						
ampiezza fes	sure:						
wk	0.01 mm						
w_LIMITE	0.20 mm						
Se	z. verificata						

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	35 di 57

7 VERIFICHE DELLE FONDAZIONI

7.1 Sollecitazioni elementari intradosso fondazione

La tabella seguente riassume le sollecitazioni elementari agenti sul piano di posa delle fondazioni.

	N [KN]	MI [KNm]	Mt [KNm]	FI [KN]	Ft [KN]
Peso Fondazione	2194	0	0	0	0
Inerzia Fondazione long	0	112	0	124	0
Inerzia Fondazione tra	0	0	-112	0	-124
Inerzia Fondazione vert	40	0	0	0	0
Peso pila + pulvino	1227	0	0	0	0
Sisma pila + impalcato long	0	7984	0	1011	0
Sisma pila + impalcato tra	0	0	-9803	0	-1011
Sisma pila + impalcato vert	111	0	0	0	0
Azioni da impalcato					
G1	3010	0	0	0	0
G2	2229	0	-1	0	0
Vento impalcato	0	0	-2250	0	-368
Traffico schema 1					
LM71 GR.1	3732	3587	-3747	454	-284
LM71 GR.3	3732	7173	-2016	908	-142
SW/2 GR.1	4036	3259	-2390	413	-200
SW/2 GR.3	4036	6518	-1195	825	-100
treno scarico GR. 2	250	0	-1230	0	-110
Res. parassite vincoli	0	2410	0	305	0
Traffico schema 2					
LM71 GR.1	1866	5639	-1874	454	-142
LM71 GR.3	1866	9226	-1008	908	-71
SW/2 GR.1	2018	5479	-1195	413	-100
SW/2 GR.3	2018	8737	-597	825	-50
treno scarico GR. 2	125	0	-615	0	-55
Res. parassite vincoli	0	1453	0	184	0

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	36 di 57

7.2 Combinazioni di carico

Ai fini delle verifiche condotte sull'opera sono state prese in considerazione le seguenti combinazioni di carico:

		Peso Fondazione	Inerzia Fondazione long	Inerzia Fondazione tra	Inerzia Fondazione vert	Peso pila + pulvino	Sisma pila + impalcato long	Sisma pila + impalcato tra	Sisma pila + impalcato vert	G1 impalcato	G2 I impalcato	Vento impalcato
SLE	SLE1	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.60
rara	SLE2	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.60
	SLE3	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.60
	SLE4	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.60
	SLE5	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.60
	SLE6	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.60
	SLE7	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.60
	SLE8	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.60
	SLE9	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.60
	SLE10	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.60
SLU	SLU1	1.35	0.00	0.00	0.00	1.35	0.00	0.00	0.00	1.35	1.50	0.90
A1	SLU2	1.35	0.00	0.00	0.00	1.35	0.00	0.00	0.00	1.35	1.50	0.90
	SLU3	1.35	0.00	0.00	0.00	1.35	0.00	0.00	0.00	1.35	1.50	0.90
	SLU4	1.35	0.00	0.00	0.00	1.35	0.00	0.00	0.00	1.35	1.50	0.90
	SLU5	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.90
	SLU6	1.35	0.00	0.00	0.00	1.35	0.00	0.00	0.00	1.35	1.50	0.90
	SLU7	1.35	0.00	0.00	0.00	1.35	0.00	0.00	0.00	1.35	1.50	0.90
	SLU8	1.35	0.00	0.00	0.00	1.35	0.00	0.00	0.00	1.35	1.50	0.90
	SLU9	1.35	0.00	0.00	0.00	1.35	0.00	0.00	0.00	1.35	1.50	0.90
	SLU10	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.90
SISMA	SLV1	1.00	1.00	0.30	0.30	1.00	1.00	0.30	0.30	0.00	0.20	0.00
	SLV2	1.00	1.00	0.30	-0.30	1.00	1.00	0.30	-0.30	0.00	0.20	0.00
	SLV3	1.00	0.30	1.00	0.30	1.00	0.30	1.00	0.30	0.00	0.20	0.00
	SLV4	1.00	0.30	1.00	-0.30	1.00	0.30	1.00	-0.30	0.00	0.20	0.00

VI03 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo pile e fondazioniRR0H04D13CLVI0305001B37 di 57

					TRAFFICO SCHEMA 1					IK.	AFFICO	SCHEM	A Z	
		LM71 GR.1	LM71 GR.1	LM71 GR.3	SW/2 GR.1	SW/2 GR.3	treno scarico GR. 2	Res. parassite vincoli	LM71 GR.1	LM71 GR.3	SW/2 GR.1	SW/2 GR.3	treno scarico GR. 2	Res. parassite vincoli
SLE SL	E1	1.00	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
rara SL	E2	0.00	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
SL	.E3	0.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
SL	E4	0.00	0.00	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
SL	.E5	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
SL	_E6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
SL	.E7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00
l ——	_E8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.00
	_E9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00
	E10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00
l	_U1	1.45	1.45	0.00	0.00	0.00	0.00	1.20	0.00	0.00	0.00	0.00	0.00	0.00
	U2	0.00	0.00	1.45	0.00	0.00	0.00	1.20	0.00	0.00	0.00	0.00	0.00	0.00
	LU3	0.00	0.00	0.00	1.45	0.00	0.00	1.20	0.00	0.00	0.00	0.00	0.00	0.00
l	_U4	0.00	0.00	0.00	0.00	1.45	0.00	1.20	0.00	0.00	0.00	0.00	0.00	0.00
l ——	.U5	0.00	0.00	0.00	0.00	0.00	1.45	1.20	0.00	0.00	0.00	0.00	0.00	0.00
l ——	.U6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	0.00	0.00	1.20
	_U7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	0.00	1.20
l	_U8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	1.20
	.U9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	1.20
	U10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	1.20
l ——	_V1 _V2	0.00	0.00	0.20	0.00	0.00	0.00	1.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 1.00
	_vz _v3	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.20	0.00	0.00	0.00	0.00
l ——	_V3 _V4	0.20	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	38 di 57

7.3 Sollecitazioni combinate intradosso fondazione

La tabella seguente riporta i carichi combinati agenti sul piano di fondazione.

		N [KN]	MI [KNm]	Mt [KNm]	FI [KN]	Ft [KN]
SLE rara	SLE1	12391	5996	-5099	759	-505
JEE Tala	SLE2	12391	9583	-3368	1213	-363
	SLE3	12695	5668	-3741	718	-420
	SLE4	12695	8927	-2546	1130	-321
	SLE5	8909	2410	-2581	305	-331
	SLE6	10525	7092	-3225	638	-363
	SLE7	10525	10679	-2360	1092	-292
	SLE8	10525	6932	-2546	596	-321
	SLE9	10677	10190	-1949	1009	-271
	SLE10	8784	1453	-1966	184	-276
SLU A1	SLU1	17435	8092	-7461	1024	-743
SLO AT	SLU2	17435	13293	-4951	1683	-537
	SLU3	17433	7617	-5492	964	-621
	SLU4	17876	12342	-3760	1562	-476
	SLU5	9021	2892	-3809	366	-491
	SLU3	14730	9921	-4744	879	-537
	SLU7	14730	15121	-3489	1537	-434
	SLU7 SLU8	14750	9688	-3760	819	-434 -476
	SLU9	14950	14413	-2893	1417	-470 -404
	SLU10	8840	1744	-2093	221	-404 -411
SISMICA	SLV1	9451	11940	-3379	1621	-369
SISIVIICA	SLV1 SLV2	8987	11394	-3379 -3177	1500	-369 -355
	SLV3	9451	5556	-10665	736	-1192
	SLV4	8987	5010	-10291	615	-1163

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	39 di 57

7.4 Verifiche strutturali del plinto

Nelle tabelle seguenti sono riportate le pressioni del terreno esercitate dal plinto di fondazione nelle combinazioni prese in esame (SLE rara, SLU e SLV), riportate separatamente per le due direzioni principali.

Si indicano i seguenti termini:

$$s_{long} = \frac{M_{long}}{N}$$

Se
$$e_{long} < B_{long} / 6$$

$$q_{max} = \frac{N}{B_{long} * B_{trasv} * \left(1 + \frac{6 * e_{long}}{B_{long}}\right)}$$

$$q_{min} = \frac{N}{B_{long} * B_{trasv} * \left(1 - \frac{6 * e_{long}}{B_{long}}\right)}$$

Se
$$e_{long} \ge B_{long} / 6$$

$$q_{min} = \frac{2*N}{3*u*B_{trasv}}$$

$$q_{min} = \mathbf{0}$$

$$u = \frac{B_{long}}{2} - e_{long}$$

VI03 - Viadotto in c.a.p Relazione di calcolo pile e fondazioni
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RR0H
 04
 D13CL
 VI0305001
 B
 40 di 57

		e_lon	qmax	qmin
		[m]	[KPa]	[Kpa]
SLE rara	SLE1	0.48	368	141
	SLE2	0.77	436	73
	SLE3	0.45	368	153
	SLE4	0.70	429	91
	SLE5	0.27	228	137
	SLE6	0.67	350	82
	SLE7	1.01	418	14
	SLE8	0.65	350	88
	SLE9	0.95	412	26
	SLE10	0.17	208	153
SLU A1	SLU1	0.46	511	204
	SLU2	0.76	609	106
	SLU3	0.43	511	222
	SLU4	0.69	600	133
	SLU5	0.32	240	130
	SLU6	0.67	490	114
	SLU7	1.03	588	16
	SLU8	0.65	490	123
	SLU9	0.96	580	34
	SLU10	0.14	283	217
SISMICA	SLV1	1.26	423	0
	SLV2	1.27	403	0
	SLV3	0.59	299	89
	SLV4	0.56	279	89

REV.

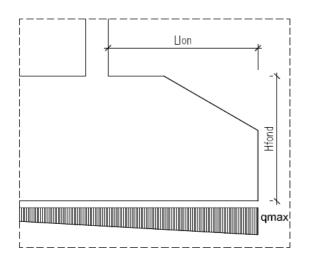
В

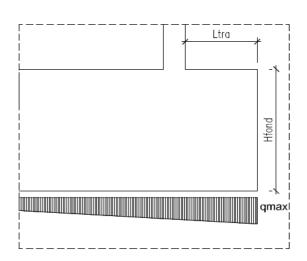
FOGLIO

41 di 57

 VI03 - Viadotto in c.a.p
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 Relazione di calcolo pile e fondazioni
 RR0H
 04
 D13CL
 VI0305001


		e_tra	qmax	qmin
		[m]	[KPa]	[Kpa]
SLE rara	SLE1	0.41	353	171
	SLE2	0.27	411	199
	SLE3	0.29	353	199
	SLE4	0.20	407	219
	SLE5	0.29	222	140
	SLE6	0.31	332	163
	SLE7	0.22	391	177
	SLE8	0.24	333	177
	SLE9	0.18	386	187
	SLE10	0.22	204	148
SLU A1	SLU1	0.43	490	235
	SLU2	0.28	576	276
	SLU3	0.31	492	277
	SLU4	0.21	569	305
	SLU5	0.42	233	123
	SLU6	0.32	465	224
	SLU7	0.24	550	245
	SLU8	0.25	466	245
	SLU9	0.19	543	259
	SLU10	0.24	279	202
SISMICA	SLV1	0.36	390	138
	SLV2	0.35	371	132
	SLV3	1.13	370	0
	SLV4	1.15	354	0


Il plinto viene armato con una maglia inferiore costituita da barre φ26 passo 15cm (longitudinale) e barre φ26 passo 20cm (trasversale); mentre la maglia superiore è costituita da barre φ 20 passo 20cm in entrambe le direzioni.

Si procede alla verifica dell'armatura inferiore del plinto seguendo uno schema statico di mensola come mostrato nelle figure seguenti.

All'azione della pressione del terreno si sottrae quella legata al peso della fondazione, ignorando, a vantaggio di sicurezza, il contributo del peso del terreno di ricoprimento.

• <u>Direzione Longitudinale</u>

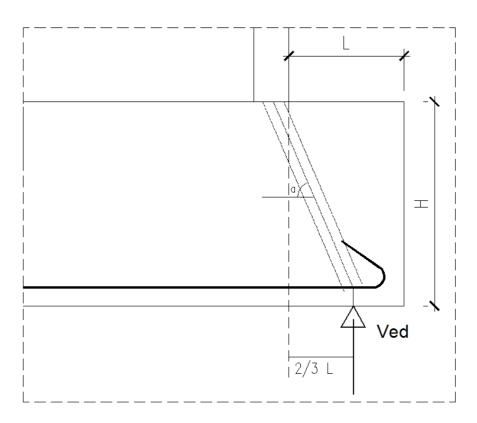
Considerato che la lunghezza di carico è L long = 1.65 m, ricaviamo le massime sollecitazioni nella sezione d'incastro del plinto con il fusto pila.

FOGLIO

43 di 57

		Med_lon [KNm/m]	VEd, lon [KN/m]
SLE rara	SLE1	465	485
	SLE2	574	569
	SLE3	464	488
	SLE4	562	564
	SLE5	260	283
	SLE6	446	447
	SLE7	554	531
	SLE8	446	449
	SLE9	544	525
	SLE10	228	257
SLU A1	SLU1	669	705
	SLU2	826	826
	SLU3	667	708
	SLU4	810	819
	SLU5	278	299
	SLU6	649	656
	SLU7	806	777
	SLU8	648	658
	SLU9	791	768
	SLU10	332	379
SISMICA	SLV1	674	334
	SLV2	640	314
	SLV3	370	375
	SLV4	341	347

I valori massimi risultano:


max	M ed [kNm/m]	V ed [KN]
SLE	574	569
SLU-SLV	826	826

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	44 di 57

Verifica a flessione SLU - SLE

Essendo la mensola molto tozza (luce / spessore <1), si procede alla verifica dell'armatura di flessione mediante un modello tirante puntone, schematizzando la forza sollecitante applicata a 2/3 della lunghezza della mensola del plinto.

$$tg \ a = (Hfond - c)/(2/3Ltra + sp/2) = 1.72 / (2/3*1.65+0.4/2) = 1.24$$

a = 51.2 ° (angolo di inclinazione puntone compresso)

• Verifica dell'armatura tesa

Il tiro sull'armatura vale:

Tslu = Ved, slu / tga = 664 KN/m

Tsle = Ved, sle / tga = 457 KN/m

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	45 di 57

La tensione massima sull'armatura è (barre \phi 26 /15cm):

 $\sigma slu = Tslu / Asl = 188 Mpa$

 σ sle = Tsle / Asl = 129 Mpa

La tensione sulla barra allo SLU è minore di quella di calcolo dell'acciaio (fyd= 391 MPa), pertanto la verifica è soddisfatta; allo SLE si procede alla verifica a fessurazione :

(secondo circ. n.617 §C.4.1.2.2.4)

	(Secondo circ	n.oi / gc	.4.1.2.2.4)
Commenti:		INPUT	
interasse barre	interasse	150	mm
diametro medio barre	Φ (barre)	26	mm
baricentro della barra dal lembo sezione	x barra	70	mm
altezza efficace	hc,eff	175	-
classe cls	cls C	25	MPa
tensione max barra	σs	129	MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6	-
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8	-
(0.5 per flessione; 1 trazione)	k2	0.5	-
(fisso)	k3	3.4	-
(fisso)	k4	0.425	-

	OUTPUT			
diff. def. a	diff. def. armature-cls			
ε sm -ε cm	3.76E-04 -			
distanza max fessure				
s r, max 4.12E+02 mm				
ampiezza f	essure:			
wk 0.15 mm				
w_LIMITE	0.20 mm			
Sez. verificata				

• Verifica del puntone di calcestruzzo

Lo sforzo nella biella compressa vale:

P slu= Ved, slu / sen a = 1060 KN/m

La resistenza della biella compressa vale

Prd = 0.4 b d fcd = 0.4 * 1000 mm * 1720 mm * (14.1 MPa) = 9701 KN/m > Pslu

La verifica è soddisfatta.

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	46 di 57

Verifica a taglio SLU

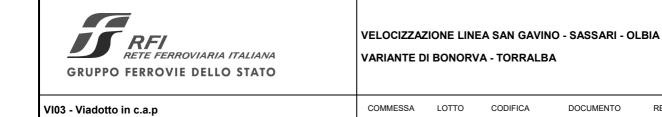
L'armatura a taglio del plinto è costituita da spille/cavallotti chiusi \(\phi \) 16 passo 20x50cm \(. \)

Resistenza dell'armatura:

$$VRds = Asw/\ s\ *\ fyd\ *\ 0.9d\ cotg\ \theta = 2\ *\ 200\ mm2\ /\ 200mm\ *\ 391\ MPa\ *\ (0.9\ *1720\ mm)\ =\ 1217\ KN/m$$
 con
$$cotg\ \theta = 1$$

Resistenza della biella compressa:

$$VRdc = 0.9 \text{ d*bw*} \alpha c*f'cd*(cotg a + cotg \theta) / (1 + cotg^2 \theta) = 0.9*2220mm*1000mm*(0.5*14.2MPa)*1 = 10965 \text{ KN/m}$$


con

 $\alpha c = 1$

 $cotg \; \alpha = 1$

 $\cot \theta = 1$

VRd = min (VRds; VRdc) = 1217 KN/m > VEd

Direzione Trasversale

Relazione di calcolo pile e fondazioni

Considerato che la lunghezza di carico è L tra = 0.75 m, ricaviamo le massime sollecitazioni nella sezione d'incastro del plinto con il fusto pila.

RR0H

04

D13CL

DOCUMENTO

VI0305001

REV.

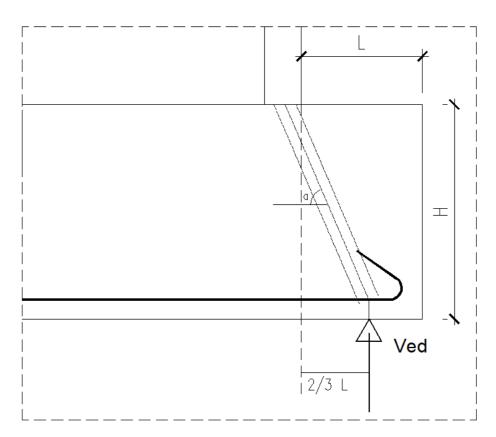
В

FOGLIO

47 di 57

		Med_tra [KNm/m]	VEd, tra [KN/m]
SLE rara	SLE1	88	224
	SLE2	105	267
	SLE3	88	226
	SLE4	104	264
	SLE5	51	130
	SLE6	82	209
	SLE7	99	252
	SLE8	82	210
	SLE9	98	248
	SLE10	45	117
SLU A1	SLU1	128	325
	SLU2	152	387
	SLU3	128	327
	SLU4	150	383
	SLU5	54	137
	SLU6	120	306
	SLU7	145	368
	SLU8	120	307
	SLU9	143	363
	SLU10	67	173
SISMICA	SLV1	99	249
	SLV2	94	236
	SLV3	101	204
	SLV4	96	193

I valori massimi risultano:


max	M ed [kNm/m]	V ed [KN]
SLE	105	267
SLU-SLV	152	387

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	48 di 57

Verifica a flessione SLU - SLE

Essendo la mensola molto tozza (luce / spessore <1), si procede alla verifica dell'armatura di flessione mediante un modello tirante puntone, schematizzando la forza sollecitante applicata a 2/3 della lunghezza della mensola del plinto.

tg a = (Hfond - c) /
$$(2/3$$
Ltra + sp/2) = 1.72 m / $(2/3*0.75+0.4/2) = 2.46$

a = 67.8 $^{\circ}$ (angolo di inclinazione puntone compresso)

• Verifica dell'armatura tesa

Il tiro sull'armatura vale:

$$Tslu = Ved, slu / tg a = 158 KN/m$$

$$Tsle = Ved, sle / tg a = 109 KN/m$$

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	49 di 57

La tensione massima sull'armatura è (barre \phi 26 /20cm):

$$\sigma slu = Tslu / Asl = 257 \text{ KN/m} / (5*5.3\text{E-4})\text{m2} = 97 \text{ Mpa}$$

$$\sigma sle = Tsle / Asl = 174 \text{ KN/m} / (5* 5.3E-4)m2 = 66 \text{ Mpa}$$

La tensione sulla barra allo SLU è minore di quella di calcolo dell'acciaio pertanto la verifica è soddisfatta; allo SLE si procede alla verifica a fessurazione :

(secondo circ. n.617 §C.4.1.2.2.4)

<u>-</u>	(Secondo elle. 11.017 ge.4.1.2.2.4)				
Commenti:	INPUT				
interasse barre	interasse	200 mm			
diametro medio barre	Φ (barre)	26 mm			
baricentro della barra dal lembo sezione	x barra	80 mm			
altezza efficace	hc,eff	200 -			
classe cls	cls C	25 MPa			
tensione max barra	σs	66 MPa			
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6 -			
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8 -			
(0.5 per flessione; 1 trazione)	k2	0.5 -			
(fisso)	k3	3.4 -			
(fisso)	k4	0.425 -			

	OUTPUT			
diff. def. a	rmature-cls			
ε sm -ε cm	1.92E-04 -			
distanza max fessure				
s r, max	5.61E+02 mm			
ampiezza fessure:				
wk	0.11 mm			
w_LIMITE	0.20 mm			
Sez. verificata				

• Verifica del puntone di calcestruzzo

Lo sforzo nella biella compressa vale:

P slu= Ved, slu / sen a =
$$418 \text{ KN/m}$$

La resistenza della biella compressa vale

$$Prd = 0.4 \text{ b d fcd} = 0.4 * 1000 \text{mm} * 1720 \text{mm} * (14.1 \text{MPa}) = 9701 \text{ KN/m} > P \text{ slu}$$

La verifica è soddisfatta.

Verifica a taglio SLU

Si rimanda alla verifica effettuata per la direzione longitudinale essendo l'armatura la medesima e la sollecitazione inferiore.

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	50 di 57

7.5 Verifiche geotecniche

Sono stati presi in esame i seguenti criteri di collasso:

- Collasso per carico limite dell'insieme fondazione terreno.
- Collasso per scorrimento sul piano di posa.

Le verifiche sono state condotte secondo l'approccio 2 (A1-M1-R3), a cui corrispondono i seguenti fattori di sicurezza sulle resistenze e sulle caratteristiche del terreno di fondazione:

(R3)	Capacità portante	Scorrimento
γr	2.3	1.1

Parametri geotecnici (M1)					
c (MPa)	0				
φ (°)	62				

La tabella seguente riassume le sollecitazioni combinate all'intradosso della fondazione e le dimensioni "efficaci" della fondazione.

	N [kN]	MI [kNm]	Mt [kNm]	FI [kN]	Ft [kN]	B' [m]	L' [m]
SLU1	17435	8092	-7461	1024	-743	5,57	6,64
SLU2	17435	13293	-4951	1683	-537	4,98	6,93
SLU3	17876	7617	-5492	964	-621	5,65	6,89
SLU4	17876	12342	-3760	1562	-476	5,12	7,08
SLU5	9021	2892	-3809	366	-491	5,86	6,66
SLU6	14730	9921	-4744	879	-537	5,15	6,86
SLU7	14730	15121	-3489	1537	-434	4,45	7,03
SLU8	14950	9688	-3760	819	-476	5,20	7,00
SLU9	14950	14413	-2893	1417	-404	4,57	7,11
SLU10	8840	1744	-2918	221	-411	6,11	6,84
SLV1	9451	11940	-3379	1621	-369	3,97	6,78
SLV2	8987	11394	-3177	1500	-355	3,96	6,79
SLV3	9451	5556	-10665	736	-1192	5,32	5,24
SLV4	8987	5010	-10291	615	-1163	5,39	5,21

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	51 di 57	

7.5.1 Verifica nei confronti del carico limite

La verifica a capacità portante è definita dalla relazione:

$$q_{Rd} = q_{lim}/\gamma_r \ge q_{es}$$

Il valore del carico limite del terreno di fondazione è stato determinato con la formula di Terzaghi, opportunamente modificata tramite fattori correttivi:

$$q_{lim} = c \ N_c s_c i_c d_c b_c g_c z_c + q \ N_q s_q i_q d_q b_q g_q z_q + N_\gamma \gamma \left(B'/2\right) s_\gamma i_\gamma d_\gamma b_\gamma g_\gamma z_\gamma$$

c' = coesione efficace;

 γ = peso per unità di volume del terreno di fondazione;

B' = larghezza fondazione equivalente con carico centrato;

 $N_c N_q N_\gamma = Fattori di capacità portante;$

 $s_c s_q s_\gamma = fattori di forma;$

 $i_c i_q i_\gamma$ = fattori di inclinazione del carico;

 $d_c d_q d_\gamma$ = fattori di profondità del piano d'appoggio;

 $b_c b_q b_{\gamma}$ = fattori di inclinazione base della fondazione;

 $g_c g_q g_y$ = fattori di inclinazione del piano di campagna;

 $z_c z_q z_{\gamma}$ = fattori in fase sismica (Paolucci-Pecker 1977).

La pressione massima agente è stata determinata come segue:

$$q_{Ed} = N_{Ed}/B'L'$$

 N_{Ed} = carico verticale di calcolo

B', L' = dimensioni della fondazione equivalente con carico centrato.

La tabella seguente esplicita i parametri impiegati per il calcolo della capacità portante della fondazione.

VI03 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo pile e fondazioniRR0H04D13CLVI0305001B52 di 57

	q [kPa]	Nq [kPa]	s q	i q	d q	b q	g q	γ [kN/m3]	N γ [kPa]	sγ	iγ	dγ	bγ	дγ
SLU1	27.00	5922	2.35	0.89	1.02	1.00	1.00	25.00	22280	2.35	27.00	1.00	1.00	1.00
SLU2	27.00	5922	2.15	0.85	1.02	1.00	1.00	25.00	22280	2.15	27.00	1.00	1.00	1.00
SLU3	27.00	5922	2.32	0.90	1.02	1.00	1.00	25.00	22280	2.32	27.00	1.00	1.00	1.00
SLU4	27.00	5922	2.16	0.86	1.02	1.00	1.00	25.00	22280	2.16	27.00	1.00	1.00	1.00
SLU5	27.00	5922	2.42	0.90	1.02	1.00	1.00	25.00	22280	2.42	27.00	1.00	1.00	1.00
SLU6	27.00	5922	2.21	0.89	1.02	1.00	1.00	25.00	22280	2.21	27.00	1.00	1.00	1.00
SLU7	27.00	5922	2.02	0.83	1.02	1.00	1.00	25.00	22280	2.02	27.00	1.00	1.00	1.00
SLU8	27.00	5922	2.20	0.90	1.02	1.00	1.00	25.00	22280	2.20	27.00	1.00	1.00	1.00
SLU9	27.00	5922	2.03	0.85	1.02	1.00	1.00	25.00	22280	2.03	27.00	1.00	1.00	1.00
SLU10	27.00	5922	2.42	0.94	1.01	1.00	1.00	25.00	22280	2.42	27.00	1.00	1.00	1.00
SLV1	27.00	5922	1.94	0.73	1.02	1.00	1.00	25.00	22280	1.94	27.00	1.00	1.00	1.00
SLV2	27.00	5922	1.94	0.74	1.02	1.00	1.00	25.00	22280	1.94	27.00	1.00	1.00	1.00
SLV3	27.00	5922	2.58	0.79	1.02	1.00	1.00	25.00	22280	2.58	27.00	1.00	1.00	1.00
SLV4	27.00	5922	2.56	0.79	1.02	1.00	1.00	25.00	22280	2.56	27.00	1.00	1.00	1.00

A vantaggio di sicurezza si trascura il contributo del terreno di ricoprimento, l'affondamento della fondazione è dunque pari al suo spessore.

Non risulta la presenza di falda.

La tabella riassume i risultati delle verifiche:

		capacità portante								
	q Rd [kPa]	q Ed [kPa]	FS >1							
SLU1	934898	471	>100							
SLU2	721064	506	>100							
SLU3	953472	460	>100							
SLU4	760911	493	>100							
SLU5	1016949	231	>100							
SLU6	828182	417	>100							
SLU7	603215	471	>100							
SLU8	843946	411	>100							
SLU9	638556	460	>100							
SLU10	1102978	212	>100							
SLV1	438785	351	>100							
SLV2	442942	334	>100							
SLV3	803022	339	>100							
SLV4	794536	320	>100							

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	53 di 57

7.5.2 Verifica nei confronti dello scorrimento del piano di posa

La verifica a scorrimento è definita dalla relazione:

$$S_{Rd} = S_d/\gamma_r \, \geq SE_d$$

L'azione resistente è stata calcolata tramite la relazione:

$$S_d = N_{Ed} \tan (\varphi') + c' B' L'$$

N_{Ed} = carico verticale di calcolo agente sulla fondazione

c' = coesione efficace;

 φ ' = angolo d'attrito efficace del terreno;

B', L' = dimensioni della fondazione equivalente con carico centrato

S_{Ed} = Forza di scorrimento di calcolo agente sulla fondazione;

I risultati delle verifiche sono riportati nella tabella seguente:

	Scorrimento								
	q Rd [kPa]	q Ed [kPa]	F\$ >1						
SLU1	29810	1266	23,6						
SLU2	29810	1766	16,9						
SLU3	30564	1147	26,7						
SLU4	30564	1633	18,7						
SLU5	15424	612	25,2						
SLU6	25184	1030	24,4						
SLU7	25184	1597	15,8						
SLU8	25561	947	27,0						
SLU9	25561	1473	17,3						
SLU10	15115	466	32,4						
SLV1	16158	1663	9,7						
SLV2	15365	1542	10,0						
SLV3	16158	1401	11,5						
SLV4	15365	1316	11,7						

VI03 - Viadotto in c.a.p	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo pile e fondazioni	RR0H	04	D13CL	VI0305001	В	54 di 57

7.6 Verifica a ribaltamento

Considerato che si è in presenza di fondazione diretta si procede alla verifica del sistema pila-fondazione nei confronti del ribaltamento.

Sono stati prese in esame le seguenti combinazioni dei carichi (statica e sismica):

		Peso Fondazione	Inerzia Fondazione long	Inerzia Fondazione tra	Inerzia Fondazione vert	Peso pila + pulvino	Sisma pila + impalcato long	Sisma pila + impalcato tra	Sisma pila + impalcato vert	G1 impalcato	G2 I impalcato	Vento impalcato
EQU_statica	EQU1	0.90	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.90	0.90	0.60
	EQU2	0.90	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.90	0.90	0.60
	EQU3	0.90	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.90	0.90	0.60
	EQU4	0.90	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.90	0.90	0.60
	EQU5	0.90	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.90	0.90	0.60
	EQU6	0.90	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.90	0.90	0.60
	EQU7	0.90	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.90	0.90	0.60
	EQU8	0.90	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.90	0.90	0.60
	EQU9	0.90	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.90	0.90	0.60
	EQU10	0.90	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.90	0.90	0.60
EQU_sismica	EQU11	1.00	1.00	0.30	-0.30	1.00	1.00	0.30	-0.30	1.00	1.00	0.00
	EQU12	1.00	1.00	0.30	-0.30	1.00	1.00	0.30	-0.30	1.00	1.00	0.00
	EQU13	1.00	0.30	1.00	-0.30	1.00	0.30	1.00	-0.30	1.00	1.00	0.00
	EQU14	1.00	0.30	1.00	-0.30	1.00	0.30	1.00	-0.30	1.00	1.00	0.00

VI03 - Viadotto in c.a.p
Relazione di calcolo pile e fondazioni

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RR0H
 04
 D13CL
 VI0305001
 B
 55 di 57

		TRAFFICO SCHEMA 1							TRAFFICO SCHEMA 2				
		LM71 GR.1	LM71 GR.3	SW/2 GR.1	SW/2 GR.3	treno scarico GR. 2	Res. parassite vincoli	LM71 GR.1	LM71 GR.3	SW/2 GR.1	SW/2 GR.3	treno scarico GR. 2	Res. parassite vincoli
EQU_statica	EQU1	1.45	0.00	0.00	0.00	0.00	1.10	0.00	0.00	0.00	0.00	0.00	0.00
	EQU2	0.00	1.45	0.00	0.00	0.00	1.10	0.00	0.00	0.00	0.00	0.00	0.00
	EQU3	0.00	0.00	1.45	0.00	0.00	1.10	0.00	0.00	0.00	0.00	0.00	0.00
	EQU4	0.00	0.00	0.00	1.45	0.00	1.10	0.00	0.00	0.00	0.00	0.00	0.00
	EQU5	0.00	0.00	0.00	0.00	1.45	1.10	0.00	0.00	0.00	0.00	0.00	0.00
	EQU6	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	0.00	0.00	1.10
	EQU7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	0.00	1.10
	EQU8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	1.10
	EQU9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	1.10
	EQU10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	1.10
EQU_sismica	EQU11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	1.00
	EQU12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	1.00
	EQU13	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	1.00
	EQU14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	1.00

Le tabelle seguenti riepilogano le verifiche a ribaltamento condotte, riportando momento stabilizzante e momento ribaltante calcolati rispetto alle estremità delle fondazioni separatamente per le due direzioni principali.

VI03 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo pile e fondazioniRR0H04D13CLVI0305001B56 di 57

	DIREZIONE LONGITUDINALE								
	Mstab [KNm]	Mdest [KNm]	FS= Mstab/Mdest [-]						
EQU1	85829	-7851	10.93						
EQU2	85829	-13052	6.58						
EQU3	88694	-7376	12.02						
EQU4	88694	-12101	7.33						
EQU5	53011	-2651	20.00						
EQU6	68242	-9775	6.98						
EQU7	68242	-14976	4.56						
EQU8	69675	-9542	7.30						
EQU9	69675	-14268	4.88						
EQU10	51833	-1598	32.43						
EQU11	58415	-11394	5.13						
EQU12	56152	-9548	5.88						
EQU13	58415	-5010	11.66						
EQU14	56152	-3882	14.47						
		MIN	4.56						

	DIREZIONE TRASVERSALE							
	Mstab [KNm]	Mdest [KNm]	FS= Mstab/Mdest [-]					
EQU1	99034	-6785	14.60					
EQU2	99034	-4275	23.17					
EQU3	102340	-4817	21.25					
EQU4	102340	-3084	33.19					
EQU5	61167	-3134	19.52					
EQU6	78741	-4068	19.36					
EQU7	78741	-2813	27.99					
EQU8	80394	-3084	26.07					
EQU9	80394	-2218	36.25					
EQU10	59807	-2243	26.67					
EQU11	67402	-3177	21.21					
EQU12	64791	-3099	20.91					
EQU13	67402	-10291	6.55					
EQU14	64791	-10039	6.45					
		MIN	6.45					

VI03 - Viadotto in c.a.pCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo pile e fondazioniRR0H04D13CLVI0305001B57 di 57

8 INCIDENZA ARMATURE

• Elevazione pila: 150 Kg/m3

Plinto di fondazione: 100 Kg/m3