COMMITTENTE:

PROGETTAZIONE:

DIREZIONE TECNICA U.O. COORDINAMENTO NO CAPTIVE E INGEGNERIA DI SISTEMA

PROGETTO DEFINITIVO

VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI - OLBIA

VARIANTE DI BAULADU

Locale Vasca antincendio imbocchi GN01

										SCALA:
Relazion	e di cal	colo								-
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPER	A/DISCIPLI	NA P	ROGR.	REV.	
RR0H	0 1	D	1 3	CL	FA	0 0 0	0 0	0 2	A	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Pata
Α	Emissione Esecutiva	A Ciguarella	15 Marzo 2018	M. Villani/	15 Marzó 2018	Tagletti	15 Marzo 2018	LBerardi (Marzo 2018 50
File: RR	0H01D13CLFA0000002	Adoc						n. Elab:

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO - SASSARI - OLBIA **VARIANTE DI BAULADU**

CL

Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo

COMMESSA LOTTO CODIFICA RR0H 01 D 13

DOCUMENTO FA000 0002

REV. FOGLIO Α 2 di 105

INDICE

1.	GENERALITA'	4
1.1	DESCRIZIONE DELL'OPERA	4
1.2	Unità di misura	6
2.	NORMATIVA DI RIFERIMENTO	7
2.1	Elaborati di riferimento	7
3.	CARATTERISTICHE MATERIALI	8
3.1	CEMENTO ARMATO	8
	3.1.1 Calcestruzzo	8
	3.1.2 Acciaio d'armatura in barre tonde ad aderenza migliorata	10
	3.1.3 Copriferro	11
4.	PARAMETRI GEOTECNICI	12
5.	CARATTERIZZAZIONE SISMICA DEL SITO	13
5.1	VITA NOMINALE E CLASSE D'USO	13
5.2	PARAMETRI DI PERICOLOSITÀ SISMICA	13
5.3	CATEGORIA DI SOTTOSUOLO E CATEGORIA TOPOGRAFICA	14
6.	ANALISI DEI CARICHI	14
6.1	PESO PROPRIO STRUTTURE	15
	6.1.1 Solaio di copertura	15
	6.1.2 Solaio piano terra	
	6.1.3 Struttura principale in c.a.	15
6.2	CARICHI PERMANENTI NON STRUTTURALI	16
6.3	SOVRACCARICO ACCIDENTALE	16
6.4	CARICO DELLA NEVE SULLA COPERTURA	17
6.5	AZIONE DEL VENTO	18
6.6	EFFETTI AERODINAMICI ASSOCIATI AL PASSAGGIO DEI CONVOGLI	21

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU

Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo

COMMESSA LOTTO
RR0H 01 D 13

CODIFICA DOCUMENTO
CL FA000 0002

REV. FOGLIO
A 3 di 105

6.7	VARIAZIONI TERMICHE	. 22
6.8	AZIONE SISMICA	. 22
6.9	SPINTA TERRENO	. 23
7.	MODELLO STRUTTURALE E COMBINAZIONI DI CARICO	.24
7.1	CONSIDERAZIONI GENERALI SUL MODELLO DI CALCOLO	. 24
7.2	COMBINAZIONI DELLE AZIONI	. 24
8.	VERIFICHE STRUTTURALI	.28
8.1	SOLAIO DI COPERTURA	.28
8.2	Travi trasversali (30x40)	. 39
8.3	Trave longitudinale (30x40)	.61
8.4	Pilastri (40x30)	. 83
8.5	VERIFICA DEGLI ELEMENTI STRUTTURALI IN TERMINI DI CONTENIMENTO DEL DANNO AGLI ELEMENTI NON STRUTTURA (SLO)	
9.	VERIFICA STRUTTURA INTERRATA	l 00
9.1	PARETI	100
9.2	FONDAZIONI	102
03	Verifica di Caracità portante fondazione	104

1. GENERALITA'

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo della Velocizzazione della Linea San Gavino - Sassari – Olbia, Variante di Bauladu .

Le Analisi e Verifiche nel seguito esposte fanno in particolare riferimento al Fabbricato vasca previsto in corrispondenza degli imbocchi della galleria di progetto con WBS GN01.

1.1 Descrizione dell'opera

La struttura in pianta del fabbricato ha forma rettangolare avente le seguenti dimensioni 6.30 m x 9.90 m, in aggiunta è previsto un rivestimento con pannellature prefabbricate di spessore pari a 20 cm.

Il sistema strutturale è caratterizzato da un telaio spaziale ed una struttura scatolare a pareti piene in c.a adibita a locale vasca e stazione di pompaggio. Il telaio spaziale presenta una copertura piana costituita da una campata in direzione trasversale di luce 6.30 m circa mentre, parallelamente al lato lungo, è suddiviso in 2 campate di luce pari rispettivamente a 3.35m e 6.55 m.

La struttura relativa alla parte in elevazione è costituita da travi e pilastri in cemento armato. Il solaio di copertura è del tipo semiprefabbricato a prédalles, con getto in opera dei travetti e della caldana superiore. Lo spessore totale del solaio di copertura è di 20 cm e comprende 4 cm di prédalles, 12 cm di nervature e 4 cm di caldana superiore. Il solaio al piano terra è invece costituito da un solaio a vespaio areato si spessore pari a circa 0.50m comprensivo di rivestimento.

Le lastre in c.a.p. sono larghe 120 cm e presentano tre tralicci metallici di irrigidimento ed elementi di alleggerimento delimitanti le nervature intermedie. Il solaio è ordito secondo la direzione longitudinale del fabbricato in modo da essere poggiato direttamente sui telai trasversali disposti come descritto in precedenza.

I pilastri hanno dimensione in pianta di 40x30 cm, le travi perimetrali (longitudinali e trasversali) hanno dimensioni 30x40 cm, così come le travi trasversali interne.

La struttura di fondazione è costituita da una platea in c.a di 0.40m. Il rivestimento esterno è ottenuto mediante pannelli di tamponamento prefabbricati.

Di seguitosi riportano alcune immagini rappresentative della soluzione progettuale adottata. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento:

Sezione A-A

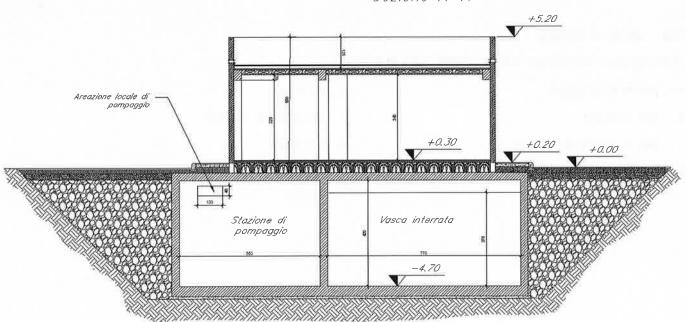


Figura 1 – Sezione Longitudinale

Sezione C-C

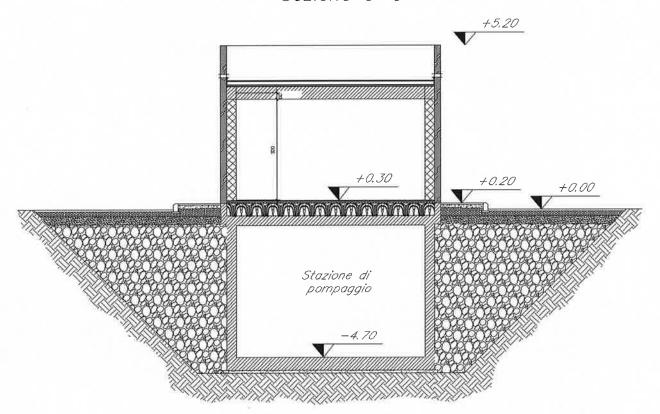


Figura 2 - Sezione Trasversale

1.2 Unità di misura

Nel seguito si adotteranno le seguenti unità di misura:

per le lunghezze

 \Rightarrow m, mm

• per i carichi

 \Rightarrow kN, kN/m2, kN/m3

per le azioni di calcolo

 \Rightarrow kN, kNm

• per le tensioni

⇒ MPa

2. NORMATIVA DI RIFERIMENTO

Di seguito si riporta l'elenco generale delle Normative Nazionali ed internazionali vigenti alla data di redazione del presente documento, quale riferimento per la redazione degli elaborati tecnici e/o di calcolo dell'intero progetto nell'ambito della quale si inserisce l'opera oggetto della presente relazione:

- Rif. [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Nuove Norme Tecniche per le Costruzioni»
- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Rif. [3] Manuale di Progettazione delle Opere Civili: PARTE I / Aspetti Generali (RFI DTC SI MA IFS 001 A)
- Rif. [4] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 1 / Ambiente e Geologia (RFI DTC SI AG MA IFS 001 A rev 30/12/2016)
- Rif. [5] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 2 / Ponti e Strutture (RFI DTC SI PS MA IFS 001 A– rev 30/12/2016)
- Rif. [6] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 3 / Corpo Stradale (RFI DTC SI CS MA IFS 001 A– rev 30/12/2016)
- Rif. [7] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 4 / Gallerie (RFI DTC SI GA MA IFS 001 A– rev 30/12/2016)
- Rif. [8] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 5 / Prescrizioni per i Marciapiedi e le Pensiline delle Stazioni Ferroviarie a servizio dei Viaggiatori (RFI DTC SI CS MA IFS 002 A– rev 30/12/2016)
- Rif. [9] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 6 / Sagome e Profilo minimo degli ostacoli (RFI DTC SI CS MA IFS 003 A– rev 30/12/2016)
- Rif. [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Rif. [11] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif. [12] UNI 11104: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

2.1 Elaborati di riferimento

Costituiscono parte integrante di quanto esposto nel presente documento, l'insieme degli elaborati di progetto specifici relativi all'opera in esame e riportati in elenco elaborati.

3. CARATTERISTICHE MATERIALI

Di seguito si riportano le caratteristiche dei materiali previsti per la realizzazione delle strutture oggetto di calcolo nell'ambito del presente documento:

3.1 Cemento armato

3.1.1 Calcestruzzo

Si riportano di seguito due tabelle riepilogative del tipo e delle caratteristiche del calcestruzzo adottato per i diversi elementi strutturali:

	Solaio in lastre predalles	Struttura in elevazione	Fondazioni
Classe di resistenza	C28/35	C28/35	C25/30
Classe di esposizione	XC3	XC3	XC2
Condizioni ambientali	ordinarie	ordinarie	ordinarie
Rapporto acqua/cemento		0,55	0,60

		Solaio in lastre predalles	Struttura in elevazione	Fondazioni
Rck	(N/mm ²)	35	35	30
f _{ck}	(N/mm ²)	28	28	25
f _{cm}	(N/mm ²)	36	36	33
ασ	(-)	0,85	0,85	0,85
γc	(-)	1,5	1,5	1,5
f _{cd}	(N/mm ²)	15,87	15,87	14.17
f _{ctm}	(N/mm ²)	2,77	2,77	2,56
f _{ctk}	(N/mm ²)	1,94	1,94	1,79
f _{ctd}	(N/mm ²)	1,29	1,29	1.19
f _{cfm}	(N/mm ²)	3,32	3,32	3,07
f _{cfk}	(N/mm ²)	2,324	2,324	2,15
Ec	(N/mm ²)	32308	32308	31476

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE	ZIONE LI	NEA SAN GAV	/INO — SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	9 di 105

Dove:

R_{ck} = Resistenza cubica caratteristica a compressione

f_{ck} = 0.83·R_{ck} = Resistenza cilindrica caratteristica

 $f_{cm} = f_{ck} + 8 (N/mm^2) = Resistenza cilindrica media a compressione$

 α_{cc} = Coefficiente per effetti a lungo termine e sfavorevoli: α_{cc} (t > 28gg) = 0.85

 γ_c = 1.5; viene ridotto a 1.4 per produzioni continuative di elementi o strutture soggette a controllo continuativo del calcestruzzo dal quale risulti un coefficiente di variazione (rapporto tra

scarto quadratico medio e valore medio della resistenza) non superiore al 10%. $f_{cd} = \frac{\alpha_{cc} \cdot f_{ck}}{\gamma_c} = \frac{\alpha_{cc} \cdot f_{ck}}{\gamma_c}$

Resistenza di calcolo a compressione

 $f_{ctm} = 0.3 \cdot (f_{ck})^{2/3}$ [per classi $\leq C50/60$] = Resistenza cilindrica media a trazione

f_{ctk} = 0.7· f_{ctm} = Resistenza cilindrica caratteristica a trazione

 $f_{ctd} = \frac{f_{ctk}}{\gamma_c}$ = Resistenza di calcolo a trazione

 f_{cfm} = 1.2· f_{ctm} = Resistenza media a trazione per flessione

 $f_{cfk} = 0.7 \cdot f_{cfm}$ = Resistenza cilindrica caratteristica a trazione

$$E_{cm} = 22000 \cdot \left(\frac{f_{cm}}{10}\right)^{0.3} = Modulo Elastico$$

Coefficiente di Poisson:

Secondo quanto prescritto al punto 11.2.10.4 della NTC2008, per il coefficiente di Poisson può adottarsi, a seconda dello stato di sollecitazione, un valore compreso tra 0 (calcestruzzo fessurato) e 0.2 (calcestruzzo non fessurato).

Coefficiente di dilatazione termica:

In sede di progettazione, o in mancanza di una determinazione sperimentale diretta, per il coefficiente di dilatazione termica del calcestruzzo può assumersi un valore medio pari a 10 x 10⁻⁶ °C-1 (NTC2008 – 11.2.10.5).

3.1.2 Acciaio d'armatura in barre tonde ad aderenza migliorata

Si adotta acciaio tipo B450C come previsto al punto 11.3.2.1 delle NTC2008, per il quale si possono assumere le seguenti caratteristiche:

Resistenza a trazione - compressione:

f_{tk} = 540 N/mm² = Resistenza caratteristica di rottura

 f_{vk} = 450 N/mm² = Resistenza caratteristica a snervamento

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = 391.3 \text{ N/mm}^2 = \text{Resistenza di calcolo}$$

dove:

 γ_s = 1.15 = Coefficiente parziale di sicurezza relativo all'acciaio.

Modulo Elastico:

 $Es = 210000 \text{ N/mm}^2$

Tensione tangenziale di aderenza acciaio-calcestruzzo:

		Solaio in lastre predalles	Struttura in elevazione	Fondazioni
f _{bk}	(N/mm ²)	4.36	4,36	4,36
f _{bd}	(N/mm ²)	2.90	2,90	2,90

dove:

f_{bk} = 2.25·η·f_{ctk} = Resistenza tangenziale caratteristica di aderenza

 $f_{bd} = \frac{f_{bk}}{\gamma_c}$ = Resistenza tangenziale di aderenza di calcolo

 $\eta = 1.0$ – per barre di diametro $\Phi \le 32$ mm;

γ_c = 1.5 – Coefficiente parziale di sicurezza relativo al calcestruzzo.

3.1.3 Copriferro

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 2.2.2009, riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

			barre d	da c.a. nti a piastra	barre o	da c.a. ementi	cavi da	a c.a.p nti a piastra	cavi da c.a.p		
Cmin	Со	ambiente	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<>	C≥Co	Cmin≤C <co< td=""></co<>	
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35	
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	45	
C35/45	C45/55	molto ag.	35	40	40 45		45	50	50	50	

Ai valori riportati nella tabella vanno aggiunte le tolleranze di posa, pari a 10 mm. Si riportano di seguito i copriferri adottati, determinati in funzione della classe del cls e delle condizioni ambientali.

	Ambiente	Copriferro minimo	Tolleranza di posa	Copriferro nominale
Struttura in elevazione	Ordinario	25	10	35
Lastre predalles	Ordinario	20	0	20
Fondazioni	Ordinario	25	10	35

In definitiva si prescrive che in fondazione e in elevazione tranne che per le lastre predalles il copriferro netto non deve essere inferiore a 40mm.

Prove sui materiali

La costruzione delle strutture dovrà essere eseguita nel rispetto delle specifiche d'istruzione tecnica FS 44/M - REV. A DEL 10/04/00.

4. PARAMETRI GEOTECNICI

Essendo il fabbricato ubicato in una area interessata sia da scavi, sia dalla formazione di riporti, si assumono a favore di sicurezza i seguenti valori dei parametri meccanici, attribuibili ad un' rinterro costituito da un misto di cava:

 $\gamma = 18 \text{ kN/m}^3$

peso di volume naturale

 ϕ ' = 28°-30°

angolo di resistenza al taglio

c' = 0 kPa

coesione drenata.

5. CARATTERIZZAZIONE SISMICA DEL SITO

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

Nella fattispecie, l'opera ricade tra i comuni di Sassari e Oristano. Nei riguardi della valutazione delle azioni sismiche di progetto, si è fatto riferimento ai parametri di pericolosità sismica della regione Sardegna.

5.1 Vita nominale e classe d'uso

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (VN), intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (CU)

Per l'opera in oggetto si considera una vita nominale: VN = 75 anni (categoria 2: "Altre opere nuove a velocità V<250 Km/h"). Riguardo invece la Classe d'Uso, all' opera in oggetto corrisponde una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II): C_u = 1.5.

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso V_R Cu, ovvero:

$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni

5.2 Parametri di pericolosità sismica

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 14-01-2008, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / VR) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

In accordo a quanto riportato in Allegato B delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene per il sito in esame:

	T _R =30		T _R =50		9	T _R =72		T _R =101		T _R =140		T _R =201		T _R =475			T _R =975			T _R =2475							
Isole	ag	F.	Tc'	a,	F.	T _c '	a,	F.	Tc'	a _o	F.	Tc'	a	F.	Tc'	ao	F.	Tc'	a	F.	T _c '	a	F.	Tc.	a	F.	Tc'
Arcipelago Toscano, Isole Egadi, Pantelleria, Sardegna, Lampedusa, Linosa, Ponza, Palmarola, Zannone	0,186	2,61	0,273	0,235	2,67	0,296	0,274	2,70	0,303	0,314	2,73	0,307	0,351	2,78	0,313	0,393	2,82	0,322	0,500	2,88	0,340	0,603	2,98	0,372	0,747	3,09	0.401

Tabella di riepilogo Parametri di pericolosità sismica

5.3 Categoria di sottosuolo e categoria topografica

Le Categoria di Sottosuolo e le Condizioni Topografiche sono valutate come descritte al punto 3.2.2 del DM 14.01.08. Per il caso in esame, risulta una <u>categoria di sottosuolo di tipo C</u> e una <u>classe Topografica T1</u>.

6. ANALISI DEI CARICHI

Come prescritto dalle NTC2008, sono state considerate agenti sulla struttura le seguenti condizioni di carico elementari, combinate tra loro in modo da determinare gli effetti più sfavorevoli ai fini delle verifiche dei singoli elementi strutturali:

- peso proprio strutture;
- carichi permanenti non strutturali;
- sovraccarico variabile:
- azione sismica;
- azione del vento;
- effetti aerodinamici associati al passaggio dei convogli.
- azione della neve;
- variazioni termiche:
- Spinta terreno
- Spinta idrostatica vasca (non considerata a vantaggio di sicurezza)

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

6.1 Peso proprio strutture

6.1.1 Solaio di copertura

È realizzato con lastre predalles in cemento armato di altezza 20 cm alleggerite con polistirene espanso.

Solaio in lastre Predalles (H =4+12+4=22cm) lastra larga 1,20 m.

Predalles (s = 4cm) 25x0,04x1,20=1,2 kN;

Nervatura centrale (h=12 cm, s=14 cm) 25x0,12x0,14= 0,42 kN;

Nervature laterali (h=12 cm, s=13 cm) 2x25x0,12x0,13= 0,78 kN;

Soletta superiore (s=4 cm) 25x0,04x1,20= 1,2 kN;

Alleggerimento in polistirene espanso (h=12 cm, s=40 cm) 2x0,15x0,4x0,12=0,0144 kN.

Peso totale di una lastra larga 1,20 m: G=1,2+0,42+0,78+1,2+0,014 = 3,61 kN

Peso totale a metro quadrato = 3,61/1,20 = 3,00 kN/m²

6.1.2 Solaio piano terra

È realizzato con una soletta piena in c.a di spessore pari a 0.30m il cui peso è computato in automatico dal programma di calcolo, e da un vespaio areato ad igloo il cui peso è stato assunto cautelativamente pari a 0.5 kN/m².

6.1.3 Struttura principale in c.a.

Il peso proprio delle travi e dei pilastri, viene calcolato automaticamente dal programma considerando il peso specifico del cemento armato pari a :

 $y_{c.a.} = 25 \text{ kN/m}^3$

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE I	ZIONE LI	NEA SAN GAV	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LОТТО	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	16 dl 105

6.2 Carichi permanenti non strutturali

Tamponamenti esterni

Il rivestimento esterno è ottenuto mediante pannelli di tamponamento prefabbricati in calcestruzzo di spessore pari a 22 cm (pannello a taglio termico) il cui peso è pari a 3,60 kN/m².

Il peso per unità di superficie moltiplicato per l'altezza totale del singolo pannello h=5,00 m, trascurando le eventuali aperture, è pari a 18 kN/m, che è il peso a metro lineare del pannello.

Considerando che il pannello viene fissato alle travi di elevazione e al cordolo in c.a. posto al di sopra della trave rovescia, il peso da applicare alle travi perimetrali di elevazione e a quelle di fondazione è pari a **9 kN/m**.

Carichi permanenti non strutturali agenti in copertura

Incidenza zone piene solaio	0,20	kN/m²
Massetto delle pendenze	0,60	kN/m²
Strato coibente	0,10	kN/m²
Guaina di impermeabilizzazione	0,10	kN/m²
Malta di allettamento (2 cm)	0,40	kN/m²
Pavimento	0,50	kN/m²
Intonaco intradosso	0,30	kN/m²
Incidenza impianti	0,30	kN/m²
Controsoffitto	0,10	kN/m²
Totale carico:	2.60	kN/m²

· Carichi permanenti non strutturali agenti su solaio a piano terra

Si assume cautelativamente un peso di 1.5 kN/m².

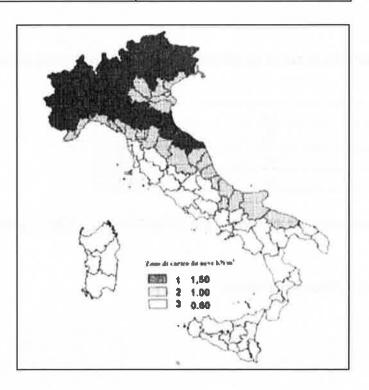
6.3 Sovraccarico accidentale

Il sovraccarico assunto per la copertura è pari a 0,50 kN/m².

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU					
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	17 di 105

6.4 Carico della neve sulla copertura

¢.	Zona I - Alpina Aosta, Belluno, Bergamo, Biella, Bolzano, Brescia, Como, Cuneo, Lecco, Pordenone, Sondrio, Torino, Trento, Udine, Verbania, Vercelli, Vicenza.	$q_{rk} = 1,50 \text{ kN/mq}$ $a_r \le 200 \text{ m}$ $q_{rk} = 1,39 [1+(a_r/728)^2] \text{ kN/mq}$ $a_r > 200 \text{ m}$
¢	Zona I - Mediterranea Alessandria, Ancona, Asti, Bologna, Cremona, Forlì-Cesena, Lodi, Milano, Modena, Novara, Parma, Pavia, Pesaro e Urbino, Piacenza, Ravenna, Reggio Emilia, Rimini, Treviso, Varese.	q _{rk} = 1,50 kN/mq a,≤200 m q _{rk} = 1,35 [1+(a,/602)²] kN/mq a, > 200 m
¢	Zona II Arezzo, Ascoli Piceno, Bari, Campobasso, Chieti, Ferrara, Firenze, Foggia, Genova, Gorizia, Imperia, Isernia, La Spezia, Lucca, Macerata, Mantova, Massa Carrara, Padova, Perugia, Pescara, Pistoia, Prato, Rovigo, Savona, Teramo, Trieste, Venezia, Verona.	q _{rk} = 1,00 kN/mq a,≤200 m q _{rk} = 0,85 [1+(a,/481)²] kN/mq a, > 200 m
@	Zona III Agrigento, Avellino, Benevento, Brindisi, Cagliari, Caltanisetta, Carbonia-Iglesias, Caserta, Catania, Catanzaro, Cosenza, Crotone, Enna, Frosinone, Grosseto, L'Aquila, Latina, Lecce, Livorno, Matera, Medio Campidano, Messina, Napoli, Nuoro, Ogliastra, Olbia Tempio, Oristano, Palermo, Pisa, Potenza, Ragusa, Reggio Calabria, Rieti, Roma, Salerno, Sassari, Siena, Siracusa, Taranto, Terni, Trapani, Vibo Valentia, Viterbo.	q, k = 0,60 kN/mq a,≤200 m q, k = 0,51[1+(a,/481²] kN/mq a,>200 m


 $\begin{aligned} \mathbf{q}_{\mathbf{s}} \text{ (carico neve sulla copertura {N/mq})} &= \mu_{\mathbf{t}} \mathbf{q}_{\mathbf{s}\mathbf{k}} C_{\mathbf{s}} C_{\mathbf{t}} \\ &= \mu_{\mathbf{t}} \text{ (coefficiente di forma)} \\ &\mathbf{q}_{\mathbf{s}\mathbf{k}} \text{ (valore caratteristico della neve al suolo {kN/mq})} \\ &= C_{\mathbf{s}} \text{ (coefficiente di esposizione)} \\ &= C_{\mathbf{t}} \text{ (coefficiente termico)} \end{aligned}$

Valore carratteristicio della neve al suolo

a _s (altitudine sul livello del mare [m])	180
q _{sk} (val. caratt. della neve al suolo (kN/mq))	0.60

Coefficiente termico

Il coefficiente termico può essere utilizzato per tener conto della riduzione del carico neve a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente tiene conto delle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio, deve essere utilizzato Ct = 1.

Coefficiente di esposizione

Topografia	Descrizione	C _E
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi.	1

VARIANTE	DI BAULAI	DU			
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
		COMMESSA LOTTO		COMMESSA LOTTO CODIFICA DOCUMENTO	COMMESSA LOTTO CODIFICA DOCUMENTO REV.

Valore del carico della neve al suolo

q₅ (cari	co della neve a	ıl suolo (kN/m	q])	0.60			
lore del ca	arico della neve	al suolo					
q _s (carico	della neve al suo	lo (kN/mg))	0.60				
efficiente	di forma (cope	rtura ad una fa	alda)				
α (inclinazi	one fakta [*])	0		0.48 kN/mq	Will hat I	μ	Sally all a
ш	0.8						

Pertanto le azioni sui singoli elementi della copertura sono pari a:

C _E	1
C _t	1
μ	0.8
q _{sk}	0.6

 q_s (carico neve sulla copertura) = $\mu_i \cdot q_{sk} \cdot C_E \cdot C_t = 0.48 \text{ kN/m}^2$

6.5 Azione del vento

Zona: 6

vb,0 = 28 m/s

 $a_0 = 500 \text{ m}$

ka [1/s] = 0.020

a_s (altitudine sul livello del mare) = 180 m

 T_R (tempo di ritorno, anni) = 50

 $v_b = v_{b,0}$ per $a_s \le a_0$

p (pressione del vento (N/mq)) = $q_p \cdot c_e \cdot c_p \cdot c_d$

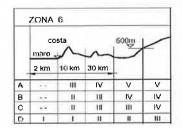
q_b (pressione cinetica di riferimento [N/mq])

ce (coefficiente di esposizione)

co (coefficiente di forma)

c_d (coefficiente dinamico)

Pressione cinetica di riferimento

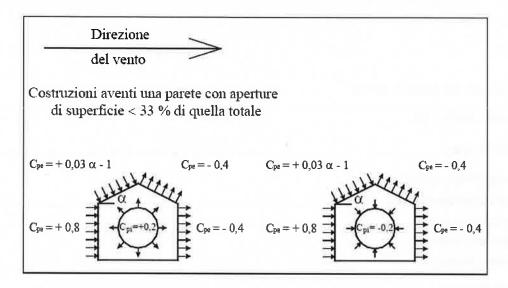

$$q_b = 1/2 \cdot \rho \cdot v_b^2 \quad (\rho = 1.25 \text{ kg/mc})$$

 $q_b = 490 \text{ N/mq}$

Coefficiente di esposizione

Classe di rugosità del terreno

D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,....)


$c_e(z) = k_r^2 \cdot c_c \ln(z/z_0) [7 + c_c \ln(z/z_0)]$	perz≥z _{min}
$C_{e}(Z) = C_{e}(z_{min})$	perz<2 _{min}

12	Cat. Esposiz.	k,	z _o [m]	z _{mn} (m)	Ct
	li li	0.19	0.05	4	1

Coefficiente di forma (o aerodinamico):

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE	ZIONE LII	NEA SAN GAN	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV,	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	20 di 105

Per la determinazione del coefficiente di forma si fa riferimento a quanto riportato nel paragrafo 3.3.10.1 della Circolare del 2/02/2009 in relazione a quanto riassunto nella figura seguente:

Per il carico sopravento si assume $c_p = + 0.8$;

per il carico sottovento si assume $c_p = -0.4$;

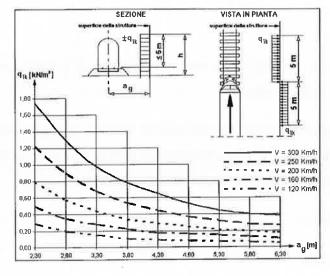
in copertura si assume $c_p = -0.4$;

per costruzioni che hanno una parete con aperture di superficie minore di 1/3 di quella totale, la pressione interna si assumerà $c_{pi} = \pm 0.2$.

q_b	0.490	kN/m ²
c_d	1	
$c_{\rm e}(z)$	1.93	
c _{p1} (Copertura)	- 0.20	
c _{p2} (Elementi Verticali - Sopravento)	+ 1.00	
c _{p3} (Elementi Verticali – Sottovento)	- 0.20	
p ₁ (Pressione vento in copertura)	-0,189	kN/m ²
p_2 (Pressione vento elementi verticali - Sopravento)	+ 0.95	kN/m ²
p_3 (Pressione vento elementi verticali - Sottovento)	-0,189	kN/m ²

6.6 Effetti aerodinamici associati al passaggio dei convogli

In accordo con quanto previsto nelle "Istruzioni per la progettazione e l'esecuzione dei ponti ferroviari" (Documento RFI n° RFIDTCICIPOSPINF001A) si considera l'effetto aerodinamico associato al passaggio dei treni. Tali prescrizioni si riscontrano anche al punto 5.2 della NTC2008 relativo ai ponti ferroviari. Le azioni possono essere schematizzate mediante carichi equivalenti agenti nelle zone prossime alla testa ed alla coda del treno, il cui valore viene determinato con riferimento alla seguente situazione:


Superfici verticali parallele al binario (5.2.2.7.1 – NTC2008):

il valore caratteristico dell'azione $\pm q_{1k}$ agente ortogonalmente alla superficie verticale di facciata del fabbricato viene valutato in funzione della distanza a_g dall'asse del binario più vicino. Supponendo che la distanza minima da garantire da ostacolo fisso, quale può essere un fabbricato, in assenza di organi respingenti è:

$$a_a = 5.00 \text{ m}$$
;

a tale valore di a_g corrisponde il seguente valore dell'azione q_{1k} prodotta dal passaggio del convoglio, calcolata secondo quanto riportato nella figura successiva in base alla velocità V = 300 km/h e con riferimento a treni con forme aerodinamiche sfavorevoli (a vantaggio di sicurezza):

$$q_{1k} = 0.70 \text{ kN/m}^2$$

Si considerano pertanto le condizioni di carico elementari:

AerodA) pressione dovuta al passaggio dei treni in arrivo (per una fascia di 5 m);

AerodB) pressione (fascia di 5 m) e depressione (fascia di 5 m) dovuti al passaggio dei treni in avanzamento.

6.7 Variazioni termiche

Nel caso in cui la temperatura non costituisca azione fondamentale per la sicurezza o per la efficienza funzionale della struttura è consentito tener conto, per gli edifici, della sola componente ΔT_u , ricavandola direttamente dalla Tab. 3.5.II delle NTC 2008 che viene riportata nel seguito.

Nel caso in cui la temperatura costituisca, invece, azione fondamentale per la sicurezza o per la efficienza funzionale della struttura, l'andamento della temperatura T nelle sezioni degli elementi strutturali deve essere valutato più approfonditamente studiando il problema della trasmissione del calore.

Tabella 3.5.II - Valori di ΔT_u per gli edifici

Tipo di struttura	ΔT_{u}
Strutture in c.a. e c.a.p. esposte	± 15 °C
Strutture in c.a. e c.a.p. protette	± 10 °C
Strutture in acciaio esposte	± 25 ℃
Strutture in acciaio protette	± 15 °C

Nel caso in esame, si tiene conto della sola componente ΔT_u e in particolare si assume ΔT_u = ±15 °C per tutta la struttura.

6.8 Azione sismica

Sulla base di quanto riportato al paragrafo 5 si riporta nel seguito lo spettro elastico e di progetto allo SLV utilizzato per condurre l'analisi dinamica lineare della struttura.

Il valore del fattore di struttura q da utilizzare per ciascuna direzione dell'azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale. Esso può essere calcolato mediante la seguente espressione:

$$q = q_0 \cdot K_R$$

dove:

qo è il valore massimo del fattore di struttura

 K_R è un fattore che dipende dalle caratteristiche di regolarità in altezza della costruzione.

Un problema importante è la scelta del valore base del coefficiente di comportamento q_0 , che risulta legato alla tipologia strutturale ed al livello di duttilità attesa. Osservando le tipologie strutturali riportate al punto 7.4.3.1 – NTC2008 si evince che l'edificio in esame può essere riconducibile ad un sistema a telaio.

Per quanto riguarda il livello di duttilità attesa, si stabilisce di progettare il fabbricato in accordo con un comportamento strutturale dissipativo caratterizzato da Classe di Duttilità bassa (CD"B").

Pertanto, in base alla tabella 7.4.I delle NTC 2008, il coefficiente di comportamento q₀ può essere valutato come segue:

$$q_0 = 3.0 \cdot \frac{\alpha_u}{\alpha_1}$$

Trattandosi di una struttura a telaio ad un solo piano ed una sola campata in direzione trasversale, in accordo con il paragrafo 7.4.3.2 delle NTC 2008, si assume:

$$\alpha_u / \alpha_1 = 1.1$$

Tuttavia la costruzione risulta NON regolare in pianta in quanto NON soddisfa il requisito b) riportato nel paragrafo 7.2.2 delle NTC 2008.

Essendo, poi, la struttura anche regolare in altezza si può assumere K_R=1.

Pertanto il fattore di struttura al quale si farà riferimento per la definizione dello spettro di progetto è q = 3,15.

Poiché il fabbricato è dotato di solai che presentano luce inferiore a 8 m, non è stata considerata la componente verticale dell'azione sismica, come stabilito al punto 7.2.1 delle NTC2008.

6.9 Spinta terreno

La spinta del terreno è valutata in condizioni di spinta a riposo e quindi con coefficiente di spinta K_0 =1-sen ϕ .

7. MODELLO STRUTTURALE E COMBINAZIONI DI CARICO

7.1 Considerazioni generali sul modello di calcolo

Il sistema costruttivo che caratterizza il fabbricato tecnologico in c.a. è costituito, in elevazione, da un telaio spaziale realizzato mediante la rigida connessione di travi e pilastri, e in fondazione, da travi rovesce.

Lo step del lavoro relativo al calcolo computazionale e alla definizione dell'output, in termini di caratteristiche di sollecitazione e deformazioni per i vari elementi strutturali, prevede un approccio preliminare basato sulla modellazione della struttura attraverso un processo di discretizzazione agli elementi finiti facendo riferimento ad un modello elastico. Il modello è stato realizzato ed analizzato con l'ausilio del programma di calcolo MIDAS CIVIL. Gli elementi strutturali, travi e pilastri in elevazione e graticcio, sono stati schematizzati mediante elementi monodimensionali tipo frame. Essi presentano caratteristiche geometriche e meccaniche in accordo con le proprietà reali dei materiali e delle sezioni che li rappresentano. Ciascuna asta è stata posizionata in corrispondenza dell'asse baricentrico degli elementi strutturali. La struttura interrata è stata invece modellata con elementi di tipo shell. L'interazione tra terreno e struttura è stata studiata ipotizzando un comportamento elastico del terreno. L'intera struttura è poggiata a terra su un letto di molle alla Winkler la cui rigidezza viene assegnata per unità di lunghezza di elemento. Il coefficiente di fondazione (Winkler) adottato nel modello è pari a K = 15000 kN/m³. L'analisi degli effetti dovuti all'azione sismica prevede la definizione delle masse strutturali partecipanti all'eccitazione dinamica dovuta al terremoto. Pertanto nel modello le masse strutturali coincidono con i carichi caratteristici permanenti strutturali e non strutturali e con il 30% dei carichi di esercizio. La presenza del solaio di copertura è stata modellata mediante un vincolo di diaframma al livello di copertura, oltre che con l'assegnazione dei carichi alle travi. L'assegnazione dei carichi alle travi è stata effettuata sulla base della tessitura dei solai secondo il criterio della larghezza d'influenza. Agli elementi in elevazione è stato assegnato un carico termico, pari a quello riportato nell'analisi dei carichi.

7.2 Combinazioni delle azioni

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni (2.5.3 – NTC2008).

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

PROGETTO DEFINITIVO
VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA
VARIANTE DI BAULADU

Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RR0H
 01 D 13
 CL
 FA000 0002
 A
 25 di 105

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (frequente), generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (quasi permanente), generalmente impiegata per gli effetti a lungo termine (SLE):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Dove:

- 1. Azioni Permanenti (G);
- 2. Azioni Variabili (Q);
- 3. Azioni di Precompressione (P);
- 4. Azioni Eccezionali (A);
- 5. Azioni Sismiche (E);

Le combinazioni delle azioni che sono state adottate per lo SLU sono riportate nelle tabelle seguenti, indicando nella casella, corrispondente all'azione coinvolta, il moltiplicatore dei carichi in funzione della combinazione considerata. Per quanto riguarda le azioni aerodinamiche generate dal transito dei convogli, sono stati utilizzati coefficienti di combinazione Ψ riportati nella tabella 5.2.VI delle NTC2008.

Si precisa che, data la simmetria della struttura, si sono individuate le combinazioni delle azioni tali da risultare maggiormente gravose e sbilancianti per la costruzione in esame.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU							
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	26 di 105		

Per quanto concerne la combinazione delle altre azioni con l'azione sismica è necessario garantire il rispetto degli stati limite, quali definiti al punto 3.2.1 – NTC2008, effettuando opportune verifiche di sicurezza. Ciascuna di esse garantisce, per ogni stato limite, quindi per il corrispettivo livello di azione sismica, il raggiungimento di una data prestazione da parte della costruzione nel suo complesso. Le verifiche di sicurezza da effettuare sono riepilogate in funzione della classe d'uso nella tabella C7.1.I – Circolare2009. A riguardo, si evidenzia che le verifiche allo stato limite di collasso (SLC) devono essere eseguite necessariamente sulle sole costruzioni provviste di isolamento sismico.

Gruppo	Tipo	γ	Ψ_0	Ψ_1	Ψ_2
Perm-Strutt	Permanente	1.35			
Perm-NON-Strutt	Permanente	1.5			
Spinta terreno	Permanente	1.35			
temp	Accidentale	1.5	0.6	0.6	0.5
Neve (<100mslm)	Accidentale	1.5	0.5	0.2	0
Vento+eff.Aerod*	Accidentale/mobile	1.5	0.7	0.7	0
Variabili-copertura (cat.E)	Accidentale	1.5	0	0	0
Folla/macchinari vasche	Accidentale	1.5	1	0.9	0.8
Sisma	Sismico	1			

^{*}Si assumono valori di Ψ medi tra quelli applicabili per il vento e per gli effetti aerod. Presi singolarmente

20

SISMA 8

1

1

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU

CL

Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo

COMMESSA LOTTO RR0H 01 D 13

CODIFICA DOCUMENTO

FA000 0002

REV. Α

FOGLIO 27 di 105

	COMBINAZIONI	Perm- Strutt	Perm NON- Strutt	Spinta terreno	Temp	Neve	Vento+ef f.Aerod	Variabili- copertur a	Folla/ma cchinari vasche	Sisma x	Sisma y
1	1_SLU	1.35	1.5	1.35	1.5	0.75	1.05	0	1		54
į	2_SLU	1.35	1.5	1.35	0.9	1.5	1.05	0	1		648
	3_SLU	1.35	1.5	1.35	0.9	0.75	1.5	0	1	- T	- 12
Ì	4_SLU	1.35	1.5	1.35	0.9	0.75	1.05	1.5	1		1.5
Ì	1_SLE (RARA)	1	1	1	1	0.5	0.7	0	1	199	: . .
,	2_SLE (RARA)	1	1	1	0.6	1	0.7	0	1	3	.
	3_SLE (RARA)	1	1	1	0.6	0.5	1	0	1	\@:	5 4 5
	4_SLE (RARA)	1	1	1	0.6	0.5	0.7	1	1	3	爱
)	1_SLE (FREQ.)	1	1	1	0.6	0	0	0	0.9	1	35
- 8											

8 9 10 2_SLE (FREQ.) 0.9 0.2 0 0 0.5 1 0.9 3_SLE (FREQ.) 1 1 0.5 0 0 0 11 12 1 0 0 0 1 SLE (Q.P.) 1 1 0.5 8.0

1 0 0 0 8.0 SISMA 1 1 1 0.5 1 0.3 13 1 14 SISMA 2 1 1 0.5 0 0 0 8.0 -1 0.3 1 0 0 0 15 SISMA 3 1 1 0.5 8.0 1 -0.3 1 16 SISMA 4 1 1 0.5 0 0 0 8.0 ±1 -0.3 1 0 0 0 8.0 0.3 17 SISMA 5 1 1 0.5 1 18 1 1 1 0 0 0 8.0 -0.3 1 SISMA 6 0.5 1 0.5 0 0 0 0.3 19 SISMA 7 1 1 8.0 -1

0

0

0

8.0

-0.3

-1

0.5

1

8. VERIFICHE STRUTTURALI

Di seguito si riportano le verifiche relative agli elementi strutturali principali della struttura.

8.1 Solaio di copertura

Il solaio si considera, a vantaggio di sicurezza, come une trave semplicemente appoggiata, con campata di luce pari a L = 6.55 m. Con riferimento all'analisi dei carichi, di seguito si riportano le caratteristiche di sollecitazioni significative. La verifica viene condotta in riferimento al singolo travetto (interasse i = 0.54 m).

Si considera agente il peso proprio dell'intero solaio, il carico della neve, il carico del vento ed il sovraccarico variabile. Lo schema è quello di trave semplicemente appoggiata per il dimensionamento della sezione in campata e di trave doppiamente incastrata per le sezioni di appoggio.

Carichi Permanenti: G: 5.6 = 6.73

Carico Neve: QN: 0.5 = 0.58

Carico Totale SLU: 9.6 1,3 G + 1,5 QN

Carico Totale SLE rara: 7.3 G + QNCarico Totale SLE frequente: 6.8 $G + 0.2 \times ON$

Carico Totale SLE frequente: $6.8 G + 0.2 \times QN$ Carico Totale SLE quasi permanente: $6.7 G + 0.0 \times QN$

G e Q sono amplificati di 1.2

L= 6.55

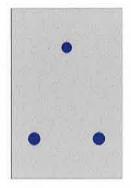
сомв.	Sollecitazioni	Campata	Appoggio
SLU	Mmax [kNm]	51.58	34.39
020	Tmax [kN]	0	31.50
SLE rara	Mmax [kNm]	39.20	26.14
SLE rara	Tmax [kN]	0	23.94
SI E frog	Mmax [kNm]	36.73	24.49
SLE freq	Tmax [kN]	0	22.43
SLE QP	Mmax [kNm]	36.12	24.08
OLL WI	Tmax [kN]	0	22.06

COMB.	Sollecitazioni (singolo travetto)	Campata	Appoggio
0111	Mmax [kNm]	17.19	11.46
SLU	Tmax [kN]	0.00	10.50
01 5	Mmax [kNm]	13.07	8.71
SLE rara	Tmax [kN]	0.00	7.98
SI E frog	Mmax [kNm]	12.24	8.16
SLE freq	Tmax [kN]	0.00	7.48
SLE QP	Mmax [kNm]	12.04	8.03
JLL QI	Tmax [kN]	0.00	7.35

Di seguito si riportano la verifiche del singolo travetto. La verifica a flessione è stata condotta mediante il software PresFLE, per la sezione di appoggio e quella di campata, allo SLU.

Verifica di SLU a flessione

Sezione di appoggio



Il momento resistente del travetto è pari a:

 $M_{xRd} = 18,05 \text{ kNm} > M_{Ed} = 11,46 \text{ kNm}.$

La verifica risulta soddisfatta.

Sezione di campata

Si considera la larghezza del travetto trascurando il contributo della soletta.

$$M_{xRd} = 18,05 \text{ kNm} > M_{Ed} = 17.19 \text{ kNm}$$

La verifica risulta soddisfatta.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU							
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	30 di 105		

Verifica di SLU a taglio

La verifica a taglio si effettua considerando la larghezza effettiva del travetto centrale b_w=13cm.

La verifica di resistenza (SLU) si pone con

$$V_{Rd} \ge V_{Ed} \tag{4.1.13}$$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con

$$V_{\text{Rd}} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{\text{cd}})^{1/3} / \gamma_{\alpha} + 0.15 \cdot \sigma_{\text{ep}} \right\} \cdot b_w \cdot d \geq \left(v_{\text{term}} + 0.15 \cdot \sigma_{\text{tp}} \right) \cdot b_w d - \left(4.1.14 \right) \cdot \left(4.1.14$$

con

$$k = 1 + (200/d)^{1/2} \le 2$$

 $v_{min} = 0.035k^{3/2}f_{ck}^{-1/2}$

e dove

d è l'altezza utile della sezione (in mm);

 $\rho_1 = A_{ai}/(b_w \cdot d)$ è il rapporto geometrico di armatura longitudinale (≤ 0.02);

 $\sigma_{ep} = N_{Ed}/A_e$ è la tensione media di compressione nella sezione ($\leq 0.2 f_{ed}$);

b_w è la larghezza minima della sezione(in mm).

Resistenza al taglio di elementi senza armatura trasversale (eq. 4.1.14 NTC 2008)

h 200,000 mm

b_w 130,000 mm

c 50,000 mm

d 150,000 mm

A_{sl} 307,720 mm²

I strato d'armatura

A_s 153,860 mm²

ф 14,000 mm

n 2,000

f_{ck} 28,000 N/mm²

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU							
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	31 di 105		

f_{ctm}	2,766	$f_{ctm} = 0.3 \cdot (f_{ck})^{2/3}$	
f _{ctk}	1,936 N/mm ²	$f_{ctk} = 0.7 \cdot f_{ctm}$	
Yc	1,500		
ρ_{l}	0,016		
k	2,000		
V min	0,524		
V_{Rd}	16,545 kN >	V_{Ed}	

La verifica risulta soddisfatta

In particolare, in corrispondenza degli appoggi, le armature longitudinali devono assorbire uno sforzo pari al taglio sull'appoggio.

 $VEd = 10.50 \text{ kN} < T = As \text{ fyd} = 3,14*6^2*450/1,15 = 44233 \text{ N} = 44,23 \text{ kN}.$

Verifica di fessurazione (SLE frequente)

Sollecitazioni

Momento flettente	М	12.24	kN m
Sforzo normale	N	0	kN

Materiali

Res. caratteristica cubica cls	R_{ck}	35	N/mm²
Res. caratteristica cilindrica cls	f_{ck}	29,1	N/mm²
Res. media a trazione cls	f _{ctm}	2,8	N/mm²
Res. caratteristica a trazione cls	f _{ctk}	2,0	N/mm²
Coefficiente omog. acciaio-cls	n	15	

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU							
Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo	COMMESSA RR0H	LOTTO 01 D 13	CODIFICA CL	DOCUMENTO FA000 0002	REV,	FOGLIO 32 di 105		

Caratteristiche geometriche

Altezza sezione	Н	20	cm						
Larghezza sezione	В	13	cm						
Armatura compressa (1° strato)	As ₁ '	1,13	cm²	1	Ø	12	c _{s1} =	5	cm
Armatura compressa (2° strato)	As ₂ '	0,00	cm²		Ø		c _{s2} =		cm
Armatura tesa (2° strato)	As ₂	0,00	cm²		Ø		c _{i2} =	F	cm
Armatura tesa (1° strato)	As ₁	3,08	cm²	2	Ø	14	_c _{i1} =	5	cm

Tensioni nei materiali

				1		
Compressione max nel cls.	σc	10,6	N/mm²			
Trazione nell'acciaio (1° strato)	σs	182,8	N/mm²			
Eccentricità	e (M)	00	cm	>	H/6	Sez. parzializzata
	u (M)	00	cm			
Posizione asse neutro	y (M)	7,1	cm			
Area ideale (sez. int. reagente)	A_{id}	319	cm²			
Mom. di inerzia ideale (sez. int. reag.)	J_{Id}	10245,3	cm ⁴			
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} •	4507,93	cm ⁴			

Verifica a fessurazione

Momento di fessurazione (f _{ctk})	M _{fess} *	2	kN m	La sezione è fessurata
Fattore che tiene conto della durata del carico	k_{t}	0,4		
Altezza efficace	d_{eff}	4,3	cm	
Area efficace	Ac _{eff}	55,8571	cm²	
Armatura nell'area efficace	As	3,1	cm²	
	$ ho ho_{, m eff}$	0,05512		
Resistenza cilindrica media	f_{cm}	37,1	N/mm²	
Modulo elastico del cis	E _{cm}	32.588	N/mm²	
	α_{E}	6,4		
Deform. media dell'arm quella del cls	esm - ecm	0,00055		

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE I	ZIONE LII	NEA SAN GAN	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo	COMMESSA RROH	LOTTO 01 D 13	CODIFICA CL	DOCUMENTO FA000 0002	REV.	FOGLIO 33 dl 105

Ampiezza delle fessure	wd = wk	0,18	mm
Distanza massima tra le fessure	S _{r,max}	18,9	cm
Diematro equivalente delle barre	$oldsymbol{arnothing}_{ ext{eq}}$	14,0	mm
Copriferro netto	c'	4,3	cm
	k ₄	0,425	
	k ₃	3,4	
	k ₂	0,5	
	k ₁	8,0	

Tipo di armatura

Poco sensibile

Condizioni ambientali

Ordinarie

Stato limite

Frequente

Valore limite di apertura delle fessure

w3=0.4 mm

Verifica di fessurazione (SLE quasi permanente)

Sollecitazioni

Momento flettente	М	12.04	kN m
Sforzo normale	N	0	kN

Materiali

Res. caratteristica cubica cls	R _{ck}	35	N/mm²
Res. caratteristica cilindrica cls	f_{ck}	29,1	N/mm²
Res. media a trazione cls	f_{ctm}	2,8	N/mm²
Res. caratteristica a trazione cls	f _{ctk}	2,0	N/mm²
Coefficiente omog. acciaio-cls	n	15	

Caratteristiche geometriche

Altezza sezione	Н	20	cm						
Larghezza sezione	В	13	cm						
Armatura compressa (1º strato)	As ₁	1,13	cm²	1	Ø	12	c _{s1} =	5	cm
Armatura compressa (2º strato)	As ₂ *	0,00	cm²		Ø		c _{s2} =		cm
Armatura tesa (2º strato)	As ₂	0,00	cm²		Ø		c _{i2} =		cm
Armatura tesa (1º strato)	As ₁	3,08	cm ²	2	Ø	14	c _{l1} =	5	cm

Tensioni nei materiali

				4		
Compressione max nel cls.	σς	7,8	N/mm²			
Trazione nell'acciaio (1° strato)	σs	129,4	N/mm²			
Eccentricità	e (M)	œ	cm	>	H/6	Sez. parzializzata
	u (M)	∞	cm		.,.	,
Posizione asse neutro	y (M)	7,1	cm			
Area ideale (sez. int. reagente)	A_{ld}	319	cm ²			
Mom. di inerzia ideale (sez. int. reag.)	J_{ld}	10245,3	cm ⁴			
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} ∗	4507,93	cm⁴			

Verifica a fessurazione

Momento di fessurazione (f _{ctk})	M _{fess} *	2	kN m	La sezione è fessurata
Fattore che tiene conto della durata del carico	k _t	0,4		
Altezza efficace	d_{eff}	4,3	cm	
Area efficace	Ac _{eff}	55,8571	cm ²	
Armatura nell'area efficace	As	3,1	cm ²	
	ρp,eff	0,05512		
Resistenza cilindrica media	f _{cm}	37,1	N/mm²	*
Modulo elastico del cis	E _{cm}	32.588	N/mm²	
	Q_{E}	6,4		
Deform. media dell'arm quella del cls	εsm - εcm	0,00048		

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE I	ZIONE LI	NEA SAN GAV	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV,	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	35 di 105

Ampiezza delle fessure	wd = wk	0,18	mm
Distanza massima tra le fessure	S _{r,max}	18,9	cm
Diematro equivalente delle barre	$oldsymbol{arphi}_{ m eq}$	14,0	mm
Copriferro netto	C,	4,3	cm
	k ₄	0,425	
	k ₃	3,4	
	k_2	0,5	
	k ₁	0,8	

Tipo di armatura	Poco sensibile
Condizioni ambientali	Ordinarie
Stato limite	Quasi permanente
Valore limite di apertura delle fessure	w2=0.3 mm

Verifica delle tensioni in esercizio

Si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

La massima tensione di compressione del calcestruzzo σ_{c} , deve rispettare la limitazione seguente:

 σ_c < 0,60 f_{ck} = 16,80 N/mm² per combinazione caratteristica (rara);

 $\sigma_c \! < 0,\! 45 \; f_{ck}$ = 12,60 N/mm² $\;$ per combinazione quasi permanente.

Per l'acciaio la tensione massima, σ_s , per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

$$\sigma_s$$
 < 0,8 f_{yk} = 360,00 N/mm².

SLE rara:

$$\sigma_c$$
 = 11,80 N/mm² < 0,60 f_{ck} = 12,60 N/mm²

$$\sigma_s = 195,60 \text{ N/mm}^2 < 0.8 \text{ f}_{yk} = 360,00 \text{ N/mm}^2.$$

SLE quasi permanente:

 $\sigma_c = 7,80 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 12,60 \text{ N/mm}^2$

La verifica risulta soddisfatta.

Verifica di deformabilità

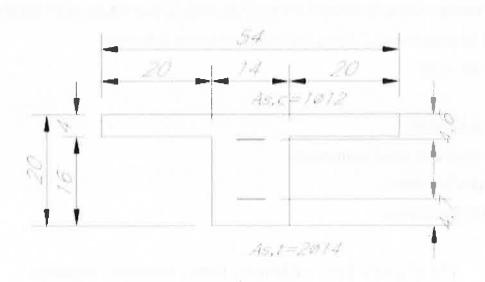
Il calcolo della deformazione flessionale di solai e travi si effettua in genere mediante integrazione delle curvature tenendo conto della viscosità del calcestruzzo e, se del caso, degli effetti del ritiro.

Per il calcolo delle deformazioni flessionali si considera lo stato non fessurato (sezione interamente reagente) per tutte le parti della struttura per le quali, nelle condizioni di carico considerate, le tensioni di trazione nel calcestruzzo non superano la sua resistenza media fctm a trazione. Per le altre parti si fa riferimento allo stato fessurato, potendosi considerare l'effetto irrigidente del calcestruzzo teso fra le fessure.

Al riguardo detto pf il valore assunto dal parametro di deformazione nella membratura interamente fessurata e p il valore assunto da detto parametro nella membratura interamente reagente, il valore di calcolo p* del parametro è dato da

$$p^* = \zeta * p_f + (1 - \zeta) * p$$

in cui:


$$\zeta = 1 - c\beta^2$$
.

Nell'equazione precedente il fattore β è il rapporto tra il momento di fessurazione M_f e il momento flettente effettivo, $\beta = M_f$ /M, o il rapporto tra la forza normale di fessurazione N_f e la forza normale effettiva, $\beta = N_f$ / N , a seconda che la membratura sia soggetta a flessione o a trazione, e il coefficiente c assume il valore 1, nel caso di applicazione di un singolo carico di breve durata, o il valore 0,50 nel caso di carichi permanenti o per cicli di carico ripetuti.

Per quanto riguarda la salvaguardia dell'aspetto e della funzionalità dell'opera, le frecce a lungo termine di travi e solai, calcolate sotto la condizione quasi permanente dei carichi, non dovrebbero superare il limite di 1/250 della luce.

Si procede al calcolo considerando in favore di sicurezza il travetto centrale della predalle tipo, la cui rappresentazione grafica è riportata qui di seguito:

J^I = momento di inerzia sezione interamente reagente =

 $= (2*200*4^3/12+2*200*40*[(200-129)-20]^2+200^3*140/12+200*140*[(200-129)-100]^2=160630666,66 \text{ mm}^4$

yc¹ = asse neutro sezione interamente reagente =

= 200 - [2*40*200*(20+160)+140*200*100]/(2*40*200+140*200) = 200 - 129 = 71 mm

b=540mm;

 $b_s=140$ mm;

s=40mm;

A_{s.t}= area armatura tesa = 2Ø14 =308 mm²;

 $A_{s,c}$ = area armatura compressa = 1Ø12 = 113 mm²;

As= $A_{s,t}$ + $A_{s,c}$ = area totale armature;

d_G = distanza dal lembo compresso del baricentro delle armature =

 $d_G = \Sigma A_{si}^* d_i / \Sigma A_{si} = [308*(200-47)+113*46]=124,3mm;$

A_{se} = area della soletta collaborante omogeneizzata ad acciaio concentrata a s/2 dal lembo compresso=

 $A_{se} = (b_s-b)*s/n=(540-140)*40/15=1066,66 \text{ mm}^2;$

 $d_t = (d_G^*A_s + d_e^*A_{se})/A_t = 34,82 \text{ mm};$

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE	ZIONE LII	NEA SAN GAV	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	A	38 di 105

n= coefficiente di omogeneizzazione = 15;

 $A_t = A_{se} + A_{s,t} + A_{s,c} = 1488 \text{ mm}^2;$

 yc^{II} = asse neutro sezione fessurata = $n^*A_t/b [(1+2^*b^*d_t/n/A_t)^{1/2}-1] = 34,82 \text{ mm};$

 $J^{II} = momento d'inerzia sezione fessurata = 1/3*[b_sy_c^3 - (b_s-b)*(y_c-s)^3] + n* \Sigma A_{si}*(y_c-d_i)^2 = 119353773,6 \text{ mm}^4;$

 M_f = momento di fessurazione= $f_{ctm}*J^I/(h-y_c)$ =2562867,85 Nmm= 2,56 kNm;

 $\beta = M_f/M_d = 2,56/4,93 = 0,52;$

c=0,50;

 $\zeta = 1 - c\beta^2 = 1 - 0.5*0.52^2 = 0.86;$

q=6,72 kN/m = carico SLE quasi permanente;

 $p_f = (5/384) * q * L^4/(E*J^{II}) = 7,06mm;$

 $p=(5/384)*q*L^4/(E*J^1)=5,25mm;$

$$p^* = \zeta * p_f + (1 - \zeta) * p = 6,80 \text{ mm} < L/250 = 6550/250 = 26,20 \text{mm}$$

La verifica risulta soddisfatta.

8.2 Travi trasversali (30x40)

Si riportano di seguito le verifiche strutturali delle travi secondarie aventi sezione rettangolare di dimensioni 30x40 cm. Le verifiche saranno condotte per i differenti stati limite ed in corrispondenza delle sezioni maggiormente sollecitate dell'elemento per effetto della combinazione di carico più gravose.

	TRAVI TRASVERSALI										
comb	comb Axial (kN) Shear-y (kN) S		Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)					
env SLU(all)	-10.22	-2.15	-41.11	-0.28	-26.29	-6.76					
env SLU(all)	-10.22	-2.15	1.99	-0.28	37.04	0.03					
env SLU(all)	-10.22	-2.15	44.51	-0.28	-36.21	6.81					
env SLU(all)	-2.33	-1.18	6.2	-0.04	22.03	-3.73					
env SLU(all)	-2.33	-1.18	6.2	-0.04	2.48	-0.02					
env SLU(all)	-2.33	-1.18	6.2	-0.04	-17.07	3.69					
env SLU(all)	-8.75	0.48	-37.52	-0.16	-15.56	1.49					
env SLU(all)	-8.75	0.48	7.17	-0.16	36.5	-0.02					
env SLU(all)	-8.75	0.48	49.7	-0.16	-53.08	-1.52					

Verifica di resistenza allo SLU

Si riportano di seguito le sollecitazioni di calcolo, per l'elemento maggiormente sollecitato, in corrispondenza della sezione d'appoggio e della sezione di campata (convenzione sui segni: compressione negativa (-), momento flettente che tende le fibre superiori negativo (-)).

In funzione delle sollecitazioni si è dimensionata opportunamente l'armatura longitudinale della trave perimetrale tipo:

1) Zone d'appoggio:

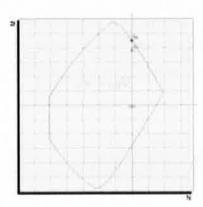
Armatura superiore 5 Φ 20

Armatura inferiore 3 Φ 20

2) Campata:

- Armatura superiore 3 Φ 20
- Armatura inferiore 5 Φ 20

In aggiunta, fuori calcolo, andranno disposti 2 Φ 12 come ferri di parete.



a) Verifica a flessione semplice:

Le verifiche di resistenza a flessione allo SLU (NTC2008 – 4.1.2.1.2.4) per le sezioni di appoggio e di campata sono state condotte con il supporto del software PresFLE considerando le sollecitazioni riportate nei prospetti precedenti.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE I	ZIONE LII	NEA SAN GAV	/INO – SASSARI	– OLBIA	The
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	41 di 105

SEZIONE A - APPOGGIO

Il momento flettente massimo nella sezione considerata tende le fibre superiori. Dalla verifica si evince che il momento massimo di calcolo (M_{3min}) è inferiore al valore ultimo, pertanto la verifica risulta soddisfatta.

$$M_{Ed} = M_3 = 54 \text{ kNm} < M_{Rd} = 179,84 \text{ kNm}$$

SEZIONE B - CAMPATA:

Il momento flettente massimo nella sezione considerata tende le fibre inferiori.

Dato che l'armatura in campata è speculare, rispetto all'asse baricentrico orizzontale della sezione, all'armatura in appoggio dalla verifica precedente si evince che il momento massimo di calcolo $(M_{3 \text{ max}})$ è inferiore al valore ultimo, pertanto la verifica risulta soddisfatta.

$$M_{Ed} = M_3 = 37 \text{ kNm} < M_{Rd} = 179,84 \text{ kNm}$$

b) Verifica a taglio:

Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di taglio di calcolo V_{Ed} si ottengono sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata agli estremi, alle sollecitazioni di taglio corrispondenti alla formazione di cerniere plastiche nella trave e prodotte dai momenti resistenti (ultimi) delle due sezioni di

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE I	ZIONE LIN	NEA SAN GAV	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo	COMMESSA RROH	LOTTO 01 D 13	CODIFICA CL	DOCUMENTO FA000 0002	REV.	FOGLIO 42 di 105

plasticizzazione (generalmente quelle di estremità) amplificati del fattore di sovra resistenza □_{Rd} assunto pari a 1.0 per CDB.

Deve risultare (NTC2008 - 4.1.2.1.3.2):

$$V_{Rd} > V_d$$

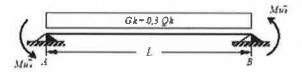
dove:

V_d = Valore di calcolo del taglio agente;

 $V_{Rd} = min (V_{Rsd}, V_{Rcd})$

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" si calcola con:

$$V_{\text{Rsd}} = 0.9 \cdot d \cdot \frac{A_{\text{sw}}}{s} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin \alpha$$

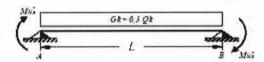

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola con:

$$V_{Red} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{ed} \cdot (ctg \alpha + ctg \theta) / (1 + ctg^2 \theta)$$

dove:

- α: Angolo d'inclinazione dell'armatura trasversale rispetto all'asse dell'elemento;
- θ : Angolo d'inclinazione dei puntoni in calcestruzzo rispetto all'asse dell'elemento.

• 1° Schema:


Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_A = \gamma_{Rd} \frac{Mu^+_A + Mu^+_B}{l_{trave}} + \frac{(G_k + 0.3Q_k) \cdot l_{trave}}{2}$$

$$V_{B} = \gamma_{Rd} \frac{Mu^{+}_{A} + Mu^{+}_{B}}{l_{trave}} - \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

• 2° Schema:

Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_{A} = \gamma_{Rd} \frac{Mu^{-}_{A} + Mu^{-}_{B}}{l_{trave}} + \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

$$V_{B} = \gamma_{Rd} \frac{Mu_{A}^{-} + Mu_{B}^{-}}{l_{trave}} - \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

Si riporta di seguito un prospetto riepilogativo con i valori delle sollecitazioni taglianti ottenute seguendo la metodologia descritta e riportata negli schemi precedenti:

eterminazione taglio di calco	<u>lo</u>					
Base	0,30	m	M _{uA} ⁽⁺⁾ (kNm)	M _{uB} ⁽⁻⁾ (kNm)	M _{uA} ⁽⁻⁾ (kNm)	M _{uB} ⁽⁺⁾ (kNm)
Altezza	0,40	m	111,56	179,84	179,84	111,56
L _{trave}	6,30	m				
L _{influenza}	4,20	m	1° Schema		2° So	hema
Peso proprio trave	3,00	kN/m	V _A (kN)	V _B (kN)	V _A (kN)	V _B (kN)
Carico solaio	3,00	kN/m²	118,95	-48,12	140,63	-26,45
Carico perm. non strutt.	2,60	kN/m²				

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE	ZIONE LII	NEA SAN GAY	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	44 di 105

G_k	26,52	kN/m	V _{2 (output)} =	166,08	kN
γ α	0,30	[-]	V _{Ed} =	166,08	kN
Q_k	0,00	kN/m			
YRd	1,00	[-]			

Poiché il valore del taglio determinato mediante la procedura sopra riportata è maggiore del taglio di calcolo ottenuto a valle dell'analisi strutturale mediante il SAP2000 (V₂=166,08 kN) si procede alla verifica di resistenza considerando il seguente valore del taglio massimo:

 $V_{Ed-max} = 166,08kN$

Verifica a taglio

Base (m)	0,30
Altezza (m)	0,40
Copriferro (m)	0,06
Alt. Utile (m)	0,34
A_{sw} (m ²)	0,00016
Ø (mm)	10,00
s (V _{Ed-max}) (m)	0,11
V _{Ed-max} (kN)	168,33
f_{yd} (kN/m ²)	391304,35
f_{cd} (kN/m ²)	15866,67

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE	ZIONE LII	NEA SAN GAN	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	45 dl 105

$f_{cd}' (kN/m^2)$	7933,33
s (progetto) (m)	0,08
V _{Rcd} (kN)	364,14
V _{Rsd} (kN)	234,99
$V_{Rd} = min(V_{Rcd}; V_{Rsd}) \ge V_{Ed-max}$	

 V_{Rd} (kN) 234,99

La verifica risulta soddisfatta.

Si adotteranno nelle zone d'appoggio, per un tratto pari ad 80cm dal filo esterno del pilastro, staffe Φ10 / 8 cm, per il rispetto dei limiti normativi, mentre nelle zone centrali di campata staffe Φ10 / 15 cm.

c) Verifica a torsione:

La verifica di resistenza nei confronti della torsione (SLU) (NTC2008 – 4.1.2.1.4) consiste nel controllare che:

$$T_{Rd} \ge T_{Ed}$$

dove T_{Ed} è il valore di calcolo del momento torcente.

Per elementi prismatici sottoposti a torsione semplice o combinata con altre sollecitazioni, che abbiano sezione piena o cava, lo schema resistente è costituito da un traliccio periferico in cui gli sforzi di trazione sono affidati alle armature longitudinali e trasversali ivi contenute e gli sforzi di compressione sono affidati alle bielle di calcestruzzo.

Con riferimento al calcestruzzo la resistenza si calcola con:

$$T_{Rcd} = 2 \cdot A \cdot \tau \cdot \phi'_{cd} \cdot ctg\theta/(1 + ctg \theta)$$

dove t è lo spessore della sezione cava; per sezioni piene $t = A_c/u$ dove A_c è l'area della sezione ed u è il suo perimetro; t deve essere assunta comunque ≥ 2 volte la distanza fra il bordo e il centro dell'armatura longitudinale.

Le armature longitudinali e trasversali del traliccio resistente devono essere poste entro lo spessore t del profilo periferico. Le barre longitudinali possono essere distribuite lungo detto profilo, ma comunque una barra deve essere presente su tutti i suoi spigoli.

Con riferimento alle staffe trasversali la resistenza si calcola con:

$$T_{Rsd} = 2 \cdot A \cdot (A_s/s) \cdot f_{vd} \cdot ctg\theta$$

Con riferimento all'armatura longitudinale la resistenza si calcola con:

$$T_{Rsd} = 2 \cdot A \cdot (\Sigma A_l / u_m) \cdot f_{yd} \cdot ctg\theta$$

dove si è posto:

A area racchiusa dalla fibra media del profilo periferico;

As area delle staffe;

u_m perimetro medio del nucleo resistente;

s passo delle staffe;

ΣA_I area complessiva delle barre longitudinali.

L'inclinazione θ delle bielle compresse di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti

 $0.4 \le \text{ctg } \theta \le 2.5$

Entro questi limiti, nel caso di torsione pura, può porsi ctg θ = $(a/a_s)^{\frac{1}{2}}$

con: $a_1 = \sum A_1 / u_m$

 $a_s = A_s / s$

La resistenza alla torsione della trave è la minore delle tre sopra definite:

Calcestruzzo	2.	Staffe Trasv	ersali	Armatura Long	<u>itudinale</u>
B (m)	0,30	B (m)	0,30	B (m)	0,30
H (m)	0,40	H (m)	0,40	H (m)	0,40
A_c (m^2)	0,12	A_c (m^2)	0,12	A_{c} (m^{2})	0,12
u (m)	1,4	u (m)	1,40	u (m)	1,4
t (m)	0,09	t (m)	0,09	t (m)	0,09
A (m ²)	0,07	$A_s (m^2)$	0,0002	u _m (m)	1,06
f' _{cd} (kN/m²)	7933,333	A (m ²)	0,07	ΣA_{l} (m ²)	0,000226
cotgθ (-)	0,33	s _(prog.) (m)	0,08	A (m ²)	0,07
a ₁	0,0002	f _{yd} (kN/m²)	391304,35	f_{yd} (kN/m ²)	391304,3
a_s	0,0020	cotgθ (-)	0,33	cotgθ (-)	0,33
T _{Rcd} (kNm)	22,73	T _{Rsd} (kNm)	34,15	T _{Rsd} (kNm)	34,15
T _{Ed} (kNm)			1,00		
T _{Rd} (kNm) = ı	min (T _{Rcd} ;T _{Rsd} ; T _{Rsd})=		22,73		

Per quanto riguarda la crisi lato calcestruzzo, la resistenza massima di una membratura soggetta a torsione e taglio è limitata dalla resistenza delle bielle compresse di calcestruzzo. Per non eccedere tale resistenza deve essere soddisfatta la seguente condizione:

 $T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}<1$

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE	ZIONE LII	NEA SAN GAV	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	48 di 105

 $T_{Ed}/T_{Rcd} = 0,04$

 $V_{Ed}/V_{Rcd} = 0,46$

0,51 La verifica risulta soddisfatta.

I ferri longitudinali con cui si è calcolata la resistenza T_{Rsd} sono i ferri di parete, non contemplati nelle verifiche a flessione.

d) Verifica limitazioni armatura:

In ogni sezione della trave, il rapporto geometrico ρ relativo all'armatura tesa, indipendentemente dal fatto che l'armatura tesa sia quella al lembo superiore della sezione A_s o quella al lembo inferiore della sezione A_i , deve essere compreso entro i seguenti limiti:

$$\frac{1,4}{f_{yk}} < \rho < \rho_{comp} + \frac{3,5}{f_{yk}}$$

dove:

ρ=A_s/(bh) Rapporto geometrico relativo all'armatura tesa

 ρ_{comp} = A_s '/(bh) Rapporto geometrico relativo all'armatura compressa

In campata:

Armatura tesa Dimensioni sezione

5 Ø 20 mm b = 300 mm

h = 400 mm

 $A_s = 1570 \text{ mm}^2$ c= 60 mm

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU

Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo

COMMESSA RROH CODIFICA

LOTTO

01 D 13

DOCUMENTO FA000 0002 REV. FOGLIO A 49 di 105

 $\rho = A_s/(bh) =$

0,013083

Armatura compressa

3 Ø

20 mm

A_s'=

942 mm²

 $\rho_{comp} = A_s'/(bh) =$

0,00785

 $1,4/f_{vk} =$

0,003111

 ρ_{comp} +3,5/ f_{yk} =

0,015628

La verifica risulta soddisfatta.

Agli appoggi:

Armatura tesa

Dimensioni sezione

5 Ø

20 mm

b = 3

300 mm

h =

400 mm

A_s=

1570 mm²

C=

60 mm

 $\rho = A_s/(bh) =$

0,013083

Armatura compressa

3 Ø

20 mm

A_s'=

942 mm²

 $\rho_{comp} = A_s'/(bh) =$

0,00785

 $1,4/f_{vk} =$

0,003111

PROGETTO DEFINITIVO
VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA
VARIANTE DI BAULADU

Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RR0H
 01 D 13
 CL
 FA000 0002
 A
 50 di 105

 ρ_{comp} +3,5/ f_{yk} =

0,015628

La verifica risulta soddisfatta.

L'armatura compressa non deve mai essere inferiore a un quarto di quella tesa:

 $\rho_{comp} \ge 0,25\rho$

nel caso specifico risulta:

 $\rho_{comp} = A_s'/(bh) =$

0,00785

 $0,25\rho =$

0,003271

La verifica risulta soddisfatta.

Nelle zone critiche (agli appoggi) l'armatura compressa non deve mai essere inferiore a metà di quella tesa:

 $\rho_{comp} \geq 0.50 \rho$

nel caso specifico risulta:

 $\rho_{comp} = A_s'/(bh) =$

0,00785

0.50p =

0,006542

La verifica risulta soddisfatta.

Le zone critiche si estendono, per CD"B", per una lunghezza pari a 1,5 volte l'altezza della sezione della trave, misurata a partire dalla faccia del nodo trave-pilastro o da entrambi i lati a partire dalla sezione di prima plasticizzazione.

Nelle zone critiche devono essere previste staffe di contenimento. La prima staffa di contenimento deve distare non più di 5 cm dalla sezione a filo pilastro; le successive devono essere disposte ad un passo non superiore alla minore tra le grandezze seguenti:

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE	ZIONE LII	NEA SAN GAY	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	51 di 105

- un quarto dell'altezza utile della sezione trasversale;
- 225 mm (per CD"B");
- 8 volte il diametro minimo delle barre longitudinali considerate ai fini delle verifiche (per CD"B")
- 24 volte il diametro delle armature trasversali.

$$d/4=$$
 85 mm s= 80,00 mm < 225 mm $8\varnothing_{1\,min}=$ 160 mm $24\varnothing_{st}=$ 240 mm

Devono inoltre essere rispettati i limiti previsti per le travi in calcestruzzo in zona non sismica (punto 4.1.6.1.1 delle NTC2008).

L'area dell'armatura longitudinale in zona tesa non deve essere inferiore a:

$$A_{s,\min} = 0.26 \frac{f_{ctm}}{f_{yk}} b_t \cdot d$$

e comunque non minore di 0.0013 b_t d

f _{ctm} =	2,77	MPa	valore medio della resistenza a trazione assiale
f _{yk} =	450,00	MPa	resistenza caratteristica a trazione dell'armatura
b _t =	300,00	mm	larghezza media della zona tesa
A _{smin} =	163,03	mm²	a s
A _s =	1570,00	mm^2	La verifica risulta soddisfatta.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE	ZIONE LI	NEA SAN GAV	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	52 di 105

Negli appoggi di estremità all'intradosso deve essere disposta un'armatura efficacemente ancorata, calcolata per uno sforzo di trazione pari al taglio:

$$A_s = 942,00 \text{ mm}^2$$

$$f_{yk} = 450,00 \text{ MPa}$$

$$\gamma_{s} = 1,15$$

$$V_{Rd} = A_s \times f_{yd} = 368,61 \text{ kN}$$

La verifica risulta soddisfatta.

Al di fuori delle zone di sovrapposizione, l'area di armatura tesa o compressa non deve superare individualmente $A_{s,max}$ = 0,04 A_c , essendo A_c l'area della sezione trasversale di calcestruzzo.

Nel caso in esame risulta:

$$A_s = 1570,00 \text{ mm}^2$$

La verifica risulta soddisfatta.

$$A_s' = 942,00 \text{ mm}^2$$

La verifica risulta soddisfatta.

$$0.04A_c = 4800.00 \text{ mm}^2$$

Le travi devono prevedere armatura trasversale costituita da staffe con sezione complessiva non inferiore ad $A_{st} = 1,5$ b mm²/m essendo b lo spessore minimo dell'anima in millimetri, con un minimo di tre staffe al metro e comunque passo non superiore a 0,8 volte l'altezza utile della sezione;

$$A_{st,min}$$
=1,5 b = 450,00 mm²/mm

 $A_{sw} = 157,00 \text{ mm}^2$

s = 0.15 m

 $A_{st}=A_{sw}/s=1046,67 \text{ mm}^2/\text{mm}$ La verifica risulta soddisfatta.

0,8d= 272,00 mm La verifica risulta soddisfatta.

In ogni caso almeno il 50% dell'armatura necessaria per il taglio deve essere costituita da staffe.

Per gli elementi in esame l'armatura trasversale è costituita solo da staffe.

Verifiche agli stati limite di esercizio - SLE

Le verifiche nei confronti degli stati limite di esercizio degli elementi strutturali si effettuano in termini di:

- verifica di fessurazione;
- verifica delle tensioni di esercizio.

Nel caso in esame è necessario effettuare le verifiche degli elementi strutturali in termini di resistenza (punto 7.3.7.1 delle NTC2008) dato che il fabbricato tecnologico in esame ricade in classe d'uso IV. Tale verifica si ritiene implicitamente soddisfatta avendo verificato allo SLU anche le combinazioni allo SLD. Di seguito si riportano le sollecitazioni massime e minime allo SLE rara, frequente e quasi permanente.

	TRAVI TRASVERSALI							
comb	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)		
SLE (QP) 1	-6.33	-0.02	-28.3	-0.06	-19.67	-0.04		
SLE (QP) 1	-6.33	-0.02	0.05	-0.06	24.83	0.02		
SLE (QP) 1	-6.33	-0.02	28.4	-0.06	-19.98	0.09		
SLE (QP) 1	-1.6	-0.05	0.01	0.04	1.62	-0.17		
SLE (QP) 1	-1.6	-0.05	0.01	0.04	1.6	-0.01		
SLE (QP) 1	-1.6	-0.05	0.01	0.04	1.58	0.14		
SLE (QP) 1	-5.66	-0.04	-28.37	0.03	-20.38	-0.13		
SLE (QP) 1	-5.66	-0.04	-0.02	0.03	24.34	0		
SLE (QP) 1	-5.66	-0.04	28.33	0.03	-20.24	0.12		

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU

Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RR0H
 01 D 13
 CL
 FA000 0002
 A
 54 dI 105

TRAVI TRASVERSALI									
comb	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)			
env SLE (rara)(all)	-6.82	-1.44	-27.41	-0.19	-17.53	-4.51			
env SLE (rara)(all)	-6.82	-1.44	1.32	-0.19	24.7	0.02			
env SLE (rara)(all)	-6.82	-1.44	29.67	-0.19	-24.13	4.55			
env SLE (rara)(all)	-1.55	-0.79	4.13	-0.03	14.68	-2.5			
env SLE (rara)(all)	-1.55	-0.79	4.13	-0.03	1.65	-0.01			
env SLE (rara)(all)	-1.55	-0.79	4.13	-0.03	-11.38	2.47			
env SLE (rara)(all)	-5.86	0.32	-25.01	-0.1	-10.4	0.99			
env SLE (rara)(all)	-5.86	0.32	4.78	-0.1	24.32	-0.01			
env SLE (rara)(all)	-5.86	0.32	33.13	-0.1	-35.4	-1.01			

TRAVI TRASVERSALI								
comb	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)		
env SLE (FREQ)(all)	-6.44	-0.02	-28.3	-0.06	-19.83	-0.05		
env SLE (FREQ)(all)	-6.44	-0.02	0.05	-0.06	24.82	0.02		
env SLE (FREQ)(all)	-6.44	-0.02	28.4	-0.06	-20.11	0.1		
env SLE (FREQ)(all)	-1.7	-0.05	0	0.04	1.61	-0.17		
env SLE (FREQ)(all)	-1.7	-0.05	0	0.04	1.59	-0.01		
env SLE (FREQ)(all)	-1.7	-0.05	0	0.04	1.58	0.15		
env SLE (FREQ)(all)	-5.8	-0.04	-28.37	0.03	-20.54	-0.13		
env SLE (FREQ)(all)	-5.8	-0.04	-0.02	0.03	24.32	-0.01		
env SLE (FREQ)(all)	-5.8	-0.04	28.33	0.03	-20.4	0.12		

a) Verifiche di fessurazione:

Avendo adottato acciai ordinari si rientra nel gruppo di armature poco sensibili alla corrosione. Pertanto sulla base della tabella 4.1.IV – NTC2008 è possibile definire lo stato limite di fessurazione in funzione delle condizioni ambientali (ordinarie) e dell'armatura (poco sensibile), prendendo in considerazione le combinazioni quasi permanenti e frequenti. Nel caso in esame lo stato limite di fessurazione da considerare è lo stato limite di apertura delle fessure. La verifica consiste nell'accertarsi che il valore di calcolo di apertura delle fessure (w_d) non supera il valore limite fissato per la combinazione considerata. In particolare:

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE I	ZIONE LIN	NEA SAN GAV	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo	COMMESSA RROH	LOTTO 01 D 13	CODIFICA	DOCUMENTO FA000 0002	REV.	FOGLIO 55 di 105

- per la combinazione di carico frequente bisogna accertarsi che risulti: $w_d < w_3 = 0.4$ mm;
- per la combinazione di carico quasi permanente bisogna accertarsi che risulti: $w_d < w_2 = 0.3$ mm.
- Combinazione delle azioni FREQUENTE (SLE):

Sollecitazioni

Momento flettente	М	25	kN m
Sforzo normale	N	0	kN

Materiali

Res. caratteristica cubica cls	R _{ck}	35	N/mm²
Res. caratteristica cilindrica cls	f_{ck}	29,1	N/mm²
Res. media a trazione cls	f _{ctm}	2,8	N/mm²
Res. caratteristica a trazione cls	f _{ctk}	2,0	N/mm²
Coefficiente omog. acciaio-cls	n	15	

Caratteristiche geometriche

Altezza sezione	Н	40	cm						-1
Larghezza sezione	В	30	cm						
Armatura compressa (1° strato)	As ₁ *	9,42	cm²	3	Ø	20	c _{s1} =	6	cm
Armatura compressa (2° strato)	As ₂ '	0,00	cm²		Ø		c _{s2} =		cm
Armatura tesa (2° strato)	As ₂	0,00	- cm²		Ø		c _{i2} =		cm
Armatura tesa (1° strato)	As ₁	15,71	cm²	5	Ø	20	c _{i1} =	6	cm

Tensioni nei materiali

Compressione max nel cls.	σς	4,9	N/mm²			
Trazione nell'acciaio (1° strato)	σs	142,5	N/mm²			
Eccentricità	e (M)	∞	cm	>	H/6	Sez. parzializzata
	u (M)	00	cm			
Posizione asse neutro	y (M)	14,8	cm			
Area ideale (sez. int. reagente)	A_{id}	1552	cm²			
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	233890	cm⁴			
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	130224	cm⁴			

Verifica a fessurazione

Momento di fessurazione (f _{ctk})	M _{fess} *	23	kN m	La sezione è fessurata
Fattore che tiene conto della durata del carico	\mathbf{k}_{t}	0,4		
Altezza efficace	d_{eff}	8,4	cm	
Area efficace	Aceff	252,07	cm²	
Armatura nell'area efficace	As	15,7	cm²	
	ρp _{,eff}	0,06232		
Resistenza cilindrica media	f _{cm}	37,1	N/mm²	
Modulo elastico del cls	E _{cm}	32.588	N/mm²	
	α_{E}	6,4		
Deform. media dell'arm quella del cls	esm - ecm	0,0008		
	k ₁	0,8		
*	k ₂	0,5		

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU								
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	L ОТТО	CODIFICA	DOCUMENTO	REV.	FOGLIO			
calcolo	RR0H	01 D 13	CL	FA000 0002	A	57 dl 105			

	k ₃	3,4	
	k ₄	0,425	
Copriferro netto	c'	5,0	cm
Diematro equivalente delle barre	$arnothing_{ m eq}$	20,0	mm
Distanza massima tra le fessure	S _{r,max}	22,5	cm
Ampiezza delle fessure	wd = wk	0,09	mm

Tipo di armatura Poco sensibile

Condizioni ambientali Ordinarie

Stato limite Frequente

Valore limite di apertura delle fessure w3=0.4 mm

Combinazione delle azioni QUASI PERMANENTE (SLE):

Sollecitazioni

Momento flettente	М	25	kN m
Sforzo normale	N	0	kN

Materiali

Res. caratteristica cubica cls	R_{ck}	35	N/mm²
Res. caratteristica cilindrica cls	f _{ck}	29,1	N/mm²
Res. media a trazione cls	f _{ctm}	2,8	N/mm²
Res. caratteristica a trazione cls	f _{ctk}	2,0	N/mm²
Coefficiente omog. acciaio-cls	n	15	

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU							
Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo	COMMESSA RROH	LOTTO 01 D 13	CODIFICA CL	DOCUMENTO FA000 0002	REV.	FOGLIO 58 di 105		

Caratteristiche geometriche

<u> </u>									
Altezza sezione	н	40	cm						
Larghezza sezione	В	30	cm						
Armatura compressa (1° strato)	As ₁ '	9,42	cm²	3	Ø	20	c _{s1} =	6	cm
Armatura compressa (2° strato)	As ₂ '	0,00	cm²		Ø		c _{s2} =		cm
Armatura tesa (2° strato)	As ₂	0,00	cm²		Ø		c _{i2} =		cm
Armatura tesa (1° strato)	As ₁	15,71	cm²	5	Ø	20	c _{i1} =	6	cm

Tensioni nei materiali

Compressione max nel cls.	σς	4,1	N/mm²			
Trazione nell'acciaio (1° strato)	σs	118,0	N/mm²	20		
Eccentricità	e (M)	∞	cm	>	H/6	Sez. parzializzata
	u (M)	∞	cm			
Posizione asse neutro	y (M)	14,8	cm			
Area ideale (sez. int. reagente)	A_{id}	1552	cm²			
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	233890	cm ⁴			
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	130224	cm⁴			

Verifica a fessurazione

Momento di fessurazione (f _{ctk})	M _{fess} *	23	kN m	La sezione è fessurata	
Fattore che tiene conto della durata del carico	k _t	0,4			
Altezza efficace	d _{eff}	8,4	cm		

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU

Locale Vasca antincendio imbocchi GN01 - Relazione di catcolo

COMMESSA LOTTO CODIFICA

RR0H 01 D 13 CL

DOCUMENTO FA000 0002 REV. FOGLIO **A** 59 di 105

Area efficace	Aceff	252,07	cm²	
Armatura nell'area efficace	As	15,7	cm²	
	ρp,eff	0,06232		
Resistenza cilindrica media	f _{cm}	37,1	N/mm²	
Modulo elastico del cls	E _{cm}	32.588	N/mm²	
	αΕ	6,4		
Deform. media dell'arm quella del cls	εsm - εcm	0,00072		
	k ₁	0,8		
	k ₂	0,5		
	k ₃	3,4		
	k ₄	0,425		
Copriferro netto	c'	5,0	cm	
Diematro equivalente delle barre	$oldsymbol{arrho}_{ m eq}$	20,0	mm	
Distanza massima tra le fessure	S _{r,max}	22,5	cm	
Ampiezza delle fessure	wd = wk	0,09	mm	

Tipo di armatura

Poco sensibile

Condizioni ambientali

Ordinarie

Stato limite

Quasi permanente

Valore limite di apertura delle fessure

w2=0.3 mm

b) Verifiche delle tensioni di esercizio:

Per completare il quadro delle verifiche agli stati limite di esercizio (SLE) è necessario controllare le tensioni di esercizio, in accordo con quanto riportato al punto 4.1.2.2.5 delle NTC2008. In particolare bisogna verificare che:

Per il calcestruzzo compresso:

 $\sigma_c < 0.60 f_{ck} = 16.8 \text{ MPa}$ (per combinazione caratteristica rara);

 σ_c < 0.45 f_{ck} = 12,6 MPa (per combinazione quasi permanente);

Per l'acciaio:

 σ_s < 0.80 f_{vk} = 360 MPa (per combinazione caratteristica rara).

Di seguito si riportano le tensioni di esercizio determinate in corrispondenza della combinazione che produce il valore di tensione più gravoso distinguendo tra combinazioni rare e quasi permanenti. Dalle tabelle seguenti, nelle quali accanto a ciascun valore di tensione viene indicato il corrispondente valore limite, si evince che le verifiche delle tensioni di esercizio risultano soddisfatte.

Tensioni nei materiali SLE RARA

Compressione max nel cls.	σς	9,1	N/mm²
Trazione nell'acciaio (1° strato)	σs	185,4	N/mm²

Tensioni nei materiali SLE QUASI PERMANENTE

Compressione max nel cls.	σο	9,1	N/mm²
Trazione nell'acciaio (1° strato)	σs	127,0	N/mm²

8.3 Trave longitudinale (30x40)

Si riportano di seguito le verifiche strutturali delle travi trasversali aventi sezione rettangolare di dimensioni 30x40 cm. Le verifiche saranno condotte per i differenti stati limite ed in corrispondenza delle sezioni maggiormente sollecitate dell'elemento per effetto delle combinazioni di carico più gravose.

Verifica di resistenza allo SLU

Si riportano di seguito le sollecitazioni di calcolo, per l'elemento maggiormente sollecitato, in corrispondenza della sezione d'appoggio e della sezione di campata (convenzione sui segni: compressione negativa (-), momento flettente che tende le fibre superiori negativo (-)).

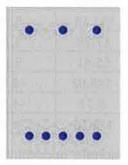
	TRAVI LONGITUDINALI										
comb	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)					
env SLU(all)	-6.72	-1.97	-32	-6.03	-20.06	-1.64					
env SLU(all)	-6.72	-1.97	16.83	-6.03	-5.62	1.66					
env SLU(all)	-6.72	-1.97	64.96	-6.03	-74.13	4.92					
env SLU(all)	-36.86	2.85	-147.2	2.23	-152.54	9.69					
env SLU(all)	-36.86	2.85	-9.43	2.23	99.83	0.49					
env SLU(all)	-36.86	2.85	128.58	2.23	-92.5	-8.72					
env SLU(all)	-5.31	-1.94	-31.13	5.26	-18.94	-1.6					
env SLU(all)	-5.31	-1.94	17.28	5.26	-5.32	1.66					
env SLU(all)	-5.31	-1.94	65.41	5.26	-74.56	4.89					
env SLU(all)	-36.23	2.87	-146.62	-4.18	-151.09	9.77					
env SLU(all)	-36.23	2.87	-8.73	-4.18	99.41	0.53					
env SLU(all)	-36.23	2.87	129.16	-4.18	-94.79	-8.72					

In funzione delle sollecitazioni si è dimensionata opportunamente l'armatura longitudinale della trave tipo.

1) Zone d'appoggio:

Armatura superiore 5 Φ 20

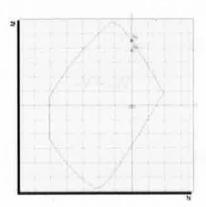
Armatura inferiore 3 Φ 20



2) Campata:

- Armatura superiore 3 Φ 20
- Armatura inferiore 5 Φ 20

In aggiunta, fuori calcolo, andranno disposti 2 Φ 12 come ferri di parete.



e) Verifica a flessione semplice:

Le verifiche di resistenza a flessione allo SLU (NTC2008 – 4.1.2.1.2.4) per le sezioni di appoggio e di campata sono state condotte con il supporto del software PresFLE considerando le sollecitazioni riportate nei prospetti precedenti.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU				– OLBIA		
Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo	COMMESSA RROH	LOTTO 01 D 13	CODIFICA CL	DOCUMENTO FA000 0002	REV.	FOGLIO 63 di 105	

SEZIONE A - APPOGGIO

Il momento flettente massimo nella sezione considerata tende le fibre superiori. Dalla verifica si evince che il momento massimo di calcolo (M_{3min}) è inferiore al valore ultimo, pertanto la verifica risulta soddisfatta.

$$M_{Ed} = M_3 = 152.5 \text{ kNm} < M_{Rd} = 179,84 \text{ kNm}$$

SEZIONE B - CAMPATA:

Il momento flettente massimo nella sezione considerata tende le fibre inferiori.

Dato che l'armatura in campata è speculare, rispetto all'asse baricentrico orizzontale della sezione, all'armatura in appoggio dalla verifica precedente si evince che il momento massimo di calcolo (M_{3 max}) è inferiore al valore ultimo, pertanto la verifica risulta soddisfatta.

$$M_{Ed} = M_3 = 99.8 \text{ kNm} < M_{Rd} = 179,84 \text{ kNm}$$

f) Verifica a taglio:

Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di taglio di calcolo V_{Ed} si ottengono sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata agli estremi, alle sollecitazioni di taglio corrispondenti alla formazione di cerniere plastiche nella trave e prodotte dai momenti resistenti (ultimi) delle due sezioni di

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU							
Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo	COMMESSA	LOTTO 01 D 13	CODIFICA	DOCUMENTO FA000 0002	REV.	FOGLIO 64 di 105		

plasticizzazione (generalmente quelle di estremità) amplificati del fattore di sovra resistenza \square_{Rd} assunto pari a 1.0 per CDB.

Deve risultare (NTC2008 - 4.1.2.1.3.2):

$$V_{Rd} > V_d$$

dove:

V_d = Valore di calcolo del taglio agente;

$$V_{Rd} = min (V_{Rsd}, V_{Rcd})$$

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" si calcola con:

$$V_{\text{Rsd}} = 0.9 \cdot d \cdot \frac{A_{\text{sw}}}{\text{s}} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin \alpha$$

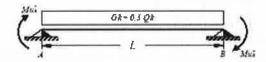
Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola con:

$$V_{\text{Red}} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{\text{cd}} \cdot (\text{ctg} \alpha + \text{ctg} \theta) / (1 + \text{ctg}^2 \theta)$$

dove:

- α: Angolo d'inclinazione dell'armatura trasversale rispetto all'asse dell'elemento;
- θ : Angolo d'inclinazione dei puntoni in calcestruzzo rispetto all'asse dell'elemento.

• 1° Schema:


Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_A = \gamma_{Rd} \frac{Mu^+_A + Mu^+_B}{l_{trave}} + \frac{(G_k + 0.3Q_k) \cdot l_{trave}}{2}$$

$$V_{B} = \gamma_{Rd} \frac{Mu_{A}^{+} + Mu_{B}^{+}}{l_{trave}} - \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

2° Schema:

Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_{A} = \gamma_{Rd} \frac{Mu^{-}_{A} + Mu^{-}_{B}}{l_{trave}} + \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

$$V_{B} = \gamma_{Rd} \frac{Mu_{A}^{-} + Mu_{B}^{-}}{l_{trave}} - \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

Si riporta di seguito un prospetto riepilogativo con i valori delle sollecitazioni taglianti ottenute seguendo la metodologia descritta e riportata negli schemi precedenti:

eterminazione taglio di calco	<u>lo</u>					
Base	0,30	m	M _{uA} ⁽⁺⁾ (kNm)	M _{uB} ⁽⁻⁾ (kNm)	M _{uA} ⁽⁻⁾ (kNm)	M _{uB} ⁽⁺⁾ (kNm)
Altezza	0,40	m	111,56	179,84	179,84	111,56
L _{trave}	6,30	m				
L _{influenza}	4,20	m	1° Sc	hema	2° Sc	hema
Peso proprio trave	3,00	kN/m	V _A (kN)	V _B (kN)	V _A (kN)	V _B (kN)
Carico solaio	3,00	kN/m²	118,95	-48,12	140,63	-26,45
Carico perm. non strutt.	2,60	kN/m²				

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU							
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LОТТО	CODIFICA	DOCUMENTO	REV.	FOGLIO		
calcolo	RROH	01 D 13	CL	FA000 0002	Α	66 di 105		

G_k	26,52	kN/m	V _{2 (output)} =	166,08	kN
Y α	0,30	[-]	V _{Ed} =	166,08	kN
Q_k	0,00	kN/m			
YRd	1,00	[-]			

Poiché il valore del taglio determinato mediante la procedura sopra riportata è maggiore del taglio di calcolo ottenuto a valle dell'analisi strutturale mediante il SAP2000 (V₂=166,08 kN) si procede alla verifica di resistenza considerando il seguente valore del taglio massimo:

V_{Ed-max}= 166,08**kN**

Verifica a taglio

Base (m)	0,30
Altezza (m)	0,40
Copriferro (m)	0,06
Alt. Utile (m)	0,34
A_{sw} (m ²)	0,00016
Ø (mm)	10,00
s (V _{Ed-max}) (m)	0,11
V _{Ed-max} (kN)	168,33
f_{yd} (kN/m ²)	391304,35
f_{cd} (kN/m 2)	15866,67

GRUPPO FERROVIE DELLO STATO ITALIANE	VELOCIZZA	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU						
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
calcolo	RROH	01 D 13	CL	FA000 0002	Α	67 di 105		

 f_{cd} (kN/m²)
 7933,33

 s (progetto) (m)
 0,08

 V_{Rcd} (kN)
 364,14

 V_{Rsd} (kN)
 234,99

 V_{Rd} =min(V_{Rcd} ; V_{Rsd}) $\geq V_{Ed-max}$

La verifica risulta soddisfatta.

 V_{Rd} (kN)

Si adotteranno nelle zone d'appoggio, per un tratto pari ad 80cm dal filo esterno del pilastro, staffe Φ10 / 8 cm, per il rispetto dei limiti normativi, mentre nelle zone centrali di campata staffe Φ10 / 15 cm.

234,99

g) Verifica a torsione:

La verifica di resistenza nei confronti della torsione (SLU) (NTC2008 – 4.1.2.1.4) consiste nel controllare che:

$$T_{Rd} \ge T_{Ed}$$

dove T_{Ed} è il valore di calcolo del momento torcente.

Per elementi prismatici sottoposti a torsione semplice o combinata con altre sollecitazioni, che abbiano sezione piena o cava, lo schema resistente è costituito da un traliccio periferico in cui gli sforzi di trazione sono affidati alle armature longitudinali e trasversali ivi contenute e gli sforzi di compressione sono affidati alle bielle di calcestruzzo.

Con riferimento al calcestruzzo la resistenza si calcola con:

$$T_{Rcd} = 2 \cdot A \cdot \tau \cdot \phi '_{cd} \cdot ctg\theta / (1 + ctg \theta)$$

dove t è lo spessore della sezione cava; per sezioni piene $t = A_c/u$ dove A_c è l'area della sezione ed u è il suo perimetro; t deve essere assunta comunque ≥ 2 volte la distanza fra il bordo e il centro dell'armatura longitudinale.

Le armature longitudinali e trasversali del traliccio resistente devono essere poste entro lo spessore t del profilo periferico. Le barre longitudinali possono essere distribuite lungo detto profilo, ma comunque una barra deve essere presente su tutti i suoi spigoli.

Con riferimento alle staffe trasversali la resistenza si calcola con:

$$T_{Rsd} = 2 \cdot A \cdot (A_s/s) \cdot f_{vd} \cdot ctg\theta$$

Con riferimento all'armatura longitudinale la resistenza si calcola con:

$$T_{Rsd} = 2 \cdot A \cdot (\Sigma A_l / u_m) \cdot f_{yd} \cdot ctg\theta$$

dove si è posto:

A area racchiusa dalla fibra media del profilo periferico;

As area delle staffe;

u_m perimetro medio del nucleo resistente;

s passo delle staffe;

 ΣA_I area complessiva delle barre longitudinali.

L'inclinazione θ delle bielle compresse di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti

 $0.4 \le \text{ctg } \theta \le 2.5$

Entro questi limiti, nel caso di torsione pura, può porsi ctg θ = $(a_i/a_s)^{1/2}$

con: $a_1 = \sum A_1 / u_m$

 $a_s = A_s / s$

La resistenza alla torsione della trave è la minore delle tre sopra definite:

Calcestruzzo		Staffe Trasv	ersali	Armatura Long	gitudinale
B (m)	0,30	B (m)	0,30	B (m)	0,30
H (m)	0,40	H (m)	0,40	H (m)	0,40
A_c (m^2)	0,12	A_c (m^2)	0,12	A_c (m^2)	0,12
u (m)	1,4	u (m)	1,40	u (m)	1,4
t (m)	0,09	t (m)	0,09	t (m)	0,09
A (m ²)	0,07	$A_s (m^2)$	0,0002	u _m (m)	1,06
f' _{cd} (kN/m²)	7933,333	A (m ²)	0,07	$\Box A_{l}(m^{2})$	0,000226
cotgθ (-)	0,33	s _(prog.) (m)	0,08	A (m ²)	0,07
a ₁	0,0002	f_{yd} (kN/m ²)	391304,35	f_{yd} (kN/m ²)	391304,3
a _s	0,0020	cotgθ (-)	0,33	cotgθ (-)	0,33
T _{Rcd} (kNm)	22,73	T _{Rsd} (kNm)	34,15	T _{Rsd} (kNm)	34,15
T _{Ed} (kNm)			1,00		
T _{Rd} (kNm) = r	nin (T _{Rcd} ;T _{Rsd} ; T _{Rsd})=		22,73		

Per quanto riguarda la crisi lato calcestruzzo, la resistenza massima di una membratura soggetta a torsione e taglio è limitata dalla resistenza delle bielle compresse di calcestruzzo. Per non eccedere tale resistenza deve essere soddisfatta la seguente condizione:

 $T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}<1$

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU							
Locale Vasca antincendio imboochi GN01 - Relazione di	COMMESSA	ьотто	CODIFICA	DOCUMENTO	REV.	FOGLIO		
calcolo	RROH	01 D 13	CL	FA000 0002	A	70 di 105		

 $T_{Ed}/T_{Rcd} = 0,04$

 $V_{Ed}/V_{Rcd} = 0,46$

0,51 La verifica risulta soddisfatta.

I ferri longitudinali con cui si è calcolata la resistenza T_{Rsd} sono i ferri di parete, non contemplati nelle verifiche a flessione.

h) Verifica limitazioni armatura:

In ogni sezione della trave, il rapporto geometrico ρ relativo all'armatura tesa, indipendentemente dal fatto che l'armatura tesa sia quella al lembo superiore della sezione A_s o quella al lembo inferiore della sezione A_i , deve essere compreso entro i seguenti limiti:

$$\frac{1,4}{f_{yk}} < \rho < \rho_{comp} + \frac{3,5}{f_{yk}}$$

dove:

ρ=A_s/(bh) Rapporto geometrico relativo all'armatura tesa

ρ_{comp}=A_s'/(bh) Rapporto geometrico relativo all'armatura compressa

In campata:

Armatura tesa Dimensioni sezione

5 Ø 20 mm b = 300 mm

h = 400 mm

 $A_s = 1570 \text{ mm}^2$ c= 60 mm

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU

Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo

COMMESSA LOTTO RR0H 01 D 13

CODIFICA

DOCUMENTO FA000 0002 REV. FOGLIO
A 71 di 105

 $\rho = A_s/(bh) =$

0,013083

Armatura compressa

3 Ø

20 mm

A_s'=

942 mm²

 $\rho_{comp} = A_s'/(bh) = 0,00785$

 $1,4/f_{yk} =$

0,003111

 ρ_{comp} +3,5/ f_{yk} =

0,015628

La verifica risulta soddisfatta.

Agli appoggi:

Armatura tesa

Dimensioni sezione

5 Ø

20 mm

b =

300 mm

h =

400 mm

A_s=

1570 mm²

c=

60 mm

 $\rho = A_s/(bh) =$

0,013083

Armatura compressa

3 Ø

20 mm

A_s'=

942 mm²

 $\rho_{comp} = A_s'/(bh) =$

0,00785

 $1,4/f_{vk} =$

0,003111

 ρ_{comp} +3,5/ f_{yk} =

0,015628

La verifica risulta soddisfatta.

L'armatura compressa non deve mai essere inferiore a un quarto di quella tesa:

ρ_{comp}≥0,25ρ

 $0,25\rho =$

nel caso specifico risulta:

 $\rho_{comp} = A_s'/(bh) = 0.00785$

0,003271

La verifica risulta soddisfatta.

Nelle zone critiche (agli appoggi) l'armatura compressa non deve mai essere inferiore a metà di quella tesa:

 $\rho_{comp} \ge 0.50 \rho$

nel caso specifico risulta:

 $\rho_{comp} = A_s'/(bh) = 0.00785$

0,50p =

0,006542

La verifica risulta soddisfatta.

Le zone critiche si estendono, per CD"B", per una lunghezza pari a 1,5 volte l'altezza della sezione della trave, misurata a partire dalla faccia del nodo trave-pilastro o da entrambi i lati a partire dalla sezione di prima plasticizzazione.

Nelle zone critiche devono essere previste staffe di contenimento. La prima staffa di contenimento deve distare non più di 5 cm dalla sezione a filo pilastro; le successive devono essere disposte ad un passo non superiore alla minore tra le grandezze seguenti:

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE I	ZIONE LI	NEA SAN GAV	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	73 di 105

- un quarto dell'altezza utile della sezione trasversale;
- 225 mm (per CD"B");
- 8 volte il diametro minimo delle barre longitudinali considerate ai fini delle verifiche (per CD"B")
- 24 volte il diametro delle armature trasversali.

$$d/4=$$
 85 mm s= 80,00 mm < 225 mm $8\varnothing_{1\,min}=$ 160 mm $24\varnothing_{st}=$ 240 mm

Devono inoltre essere rispettati i limiti previsti per le travi in calcestruzzo in zona non sismica (punto 4.1.6.1.1 delle NTC2008).

L'area dell'armatura longitudinale in zona tesa non deve essere inferiore a:

$$A_{s,\min} = 0.26 \frac{f_{ctm}}{f_{yk}} b_t \cdot d$$

e comunque non minore di 0.0013 b_t d

f _{ctm} =	2,77	MPa	valore medio della resistenza a trazione assiale
f _{yk} =	450,00	MPa	resistenza caratteristica a trazione dell'armatura
b _t =	300,00	mm	larghezza media della zona tesa
A _{smin} =	163,03	mm²	
A _s =	1570,00	mm^2	La verifica risulta soddisfatta.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE	ZIONE LII	NEA SAN GAV	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	74 di 105

Negli appoggi di estremità all'intradosso deve essere disposta un'armatura efficacemente ancorata, calcolata per uno sforzo di trazione pari al taglio:

$$A_s = 942,00 \text{ mm}^2$$

$$V_{Ed} = 168,33 \text{ kN}$$

$$f_{yk}$$
= 450,00 MPa

$$\gamma_{s} = 1,15$$

$$f_{yd}$$
= 391,30 MPa

$$V_{Rd} = A_s \times f_{vd} = 368,61 \text{ kN}$$

La verifica risulta soddisfatta.

Al di fuori delle zone di sovrapposizione, l'area di armatura tesa o compressa non deve superare individualmente $A_{s,max} = 0.04 A_c$, essendo A_c l'area della sezione trasversale di calcestruzzo.

Nel caso in esame risulta:

$$A_s = 1570,00 \text{ mm}^2$$

La verifica risulta soddisfatta.

$$A_s' = 942,00 \text{ mm}^2$$

La verifica risulta soddisfatta.

$$0.04A_c = 4800.00 \text{ mm}^2$$

Le travi devono prevedere armatura trasversale costituita da staffe con sezione complessiva non inferiore ad $A_{st} = 1,5$ b mm²/m essendo b lo spessore minimo dell'anima in millimetri, con un minimo di tre staffe al metro e comunque passo non superiore a 0,8 volte l'altezza utile della sezione;

$$A_{st,min}$$
=1,5 b = 450,00 mm²/mm

 $A_{sw} = 157,00 \text{ mm}^2$

s = 0,15 m

 $A_{st}=A_{sw}/s = 1046,67 \text{ mm}^2/\text{mm}$ La verifica risulta soddisfatta.

0,8d= 272,00 mm La verifica risulta soddisfatta.

In ogni caso almeno il 50% dell'armatura necessaria per il taglio deve essere costituita da staffe.

Per gli elementi in esame l'armatura trasversale è costituita solo da staffe.

Verifiche agli stati limite di esercizio - SLE

Le verifiche nei confronti degli stati limite di esercizio degli elementi strutturali si effettuano in termini di:

- verifica di fessurazione;
- verifica delle tensioni di esercizio.

			TRAVI LO	NGITUDINAL	Į.	
comb	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)
SLE (QP) 1	-4.07	0.05	-17.57	-3.73	-7.1	0.09
SLE (QP) 1	-4.07	0.05	13.26	-3.73	-3.49	0.02
SLE (QP) 1	-4.07	0.05	44.1	-3.73	-51.53	-0.06
SLE (QP) 1	-20.67	0.02	-92.51	2.05	-94.14	0.04
SLE (QP) 1	-20.67	0.02	-5.11	2.05	63.28	-0.03
SLE (QP) 1	-20.67	0.02	82.28	2.05	-61.15	-0.1
SLE (QP) 1	-4.54	0.04	-18.01	3.75	-7.79	0.07
SLE (QP) 1	-4.54	0.04	12.83	3.75	-3.44	0
SLE (QP) 1	-4.54	0.04	43.66	3.75	-50.75	-0.07
SLE (QP) 1	-21.64	0.02	-92.4	-2.08	-93.97	0.07
SLE (QP) 1	-21.64	0.02	-5	-2.08	63.09	0
SLE (QP) 1	-21.64	0.02	82.4	-2.08	-61.71	-0.07

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU

Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RR0H
 01 D 13
 CL
 FA000 0002
 A
 76 di 105

		T	RAVILONG	ITUDINALI		
comb	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)
env SLE (rara)(all)	-4.59	-1.31	-21.7	-4.02	-13.52	-1.09
env SLE (rara)(all)	-4.59	-1.31	11.7	-4.02	-3.98	1.11
env SLE (rara)(all)	-4.59	-1.31	44.63	-4.02	-51.16	3.28
env SLE (rara)(all)	-25.29	1.91	-101.44	1.49	-105.02	6.47
env SLE (rara)(all)	-25.29	1.91	-6.47	1.49	68.86	0.32
env SLE (rara)(all)	-25.29	1.91	88.67	1.49	-63.82	-5.82
env SLE (rara)(all)	-3.66	-1.29	-21.13	3.5	-12.79	-1.06
env SLE (rara)(all)	-3.66	-1.29	11.98	3.5	-3.78	1.11
env SLE (rara)(all)	-3.66	-1.29	44.91	3.5	-51.42	3.26
env SLE (rara)(all)	-24.9	1.91	-101.05	-2.79	-104.05	6.52
env SLE (rara)(all)	-24.9	1.91	-6	-2.79	68.57	0.35
env SLE (rara)(all)	-24.9	1.91	89.06	-2.79	-65.37	-5.82

11-		TI	RAVI LONG	ITUDINALI		
comb	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)
env SLE (FREQ)(all)	-4.33	0.05	-17.78	-3.72	-7.54	0.1
env SLE (FREQ)(all)	-4.33	0.05	13.41	-3.72	-3.58	0.02
env SLE (FREQ)(all)	-4.33	0.05	44.52	-3.72	-52.07	-0.06
env SLE (FREQ)(all)	-20.96	0.02	-93.57	2.05	-95.2	0.05
env SLE (FREQ)(all)	-20.96	0.02	-5.17	2.05	64.02	-0.03
env SLE (FREQ)(all)	-20.96	0.02	83.23	2.05	-61.85	-0.11
env SLE (FREQ)(all)	-4.8	0.04	-18.22	3.74	-8.23	0.07
env SLE (FREQ)(all)	-4.8	0.04	12.98	3.74	-3.54	0
env SLE (FREQ)(all)	-4.8	0.04	44.08	3.74	-51.3	-0.07
env SLE (FREQ)(all)	-21.94	0.03	-93.46	-2.08	-95.04	0.08
env SLE (FREQ)(all)	-21.94	0.03	-5.06	-2.08	63.82	0
env SLE (FREQ)(all)	-21.94	0.03	83.34	-2.08	-62.4	-0.08

c) Verifiche di fessurazione:

Avendo adottato acciai ordinari si rientra nel gruppo di armature poco sensibili alla corrosione. Pertanto sulla base della tabella 4.1.IV – NTC2008 è possibile definire lo stato limite di fessurazione in funzione delle condizioni ambientali (ordinarie) e dell'armatura (poco sensibile), prendendo in considerazione le

VELOCIZZA	ZIONE LII	NEA SAN GAV	/INO – SASSARI	– OLBIA	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO 77 di 105
	VELOCIZZA VARIANTE I	VELOCIZZAZIONE LII VARIANTE DI BAULA COMMESSA LOTTO	VARIANTE DI BAULADU COMMESSA LOTTO CODIFICA	VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI VARIANTE DI BAULADU COMMESSA LOTTO CODIFICA DOCUMENTO	VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU COMMESSA LOTTO CODIFICA DOCUMENTO REV.

combinazioni quasi permanenti e frequenti. Nel caso in esame lo stato limite di fessurazione da considerare è lo stato limite di apertura delle fessure. La verifica consiste nell'accertarsi che il valore di calcolo di apertura delle fessure (w_d) non supera il valore limite fissato per la combinazione considerata. In particolare:

- per la combinazione di carico frequente bisogna accertarsi che risulti: w_d < w₃ = 0.4 mm;
- per la combinazione di carico quasi permanente bisogna accertarsi che risulti: $w_d < w_2 = 0.3$ mm.
- Combinazione delle azioni FREQUENTE (SLE):

Sollecitazioni

Momento flettente	M	95	k N m
Sforzo normale	N	0	kN

Materiali

P			
Res. caratteristica cubica cls	R _{ck}	35	N/mm²
Res. caratteristica cilindrica cls	f _{ck}	29,1	N/mm²
Res. media a trazione cls	f _{ctm}	2,8	N/mm²
Res. caratteristica a trazione cls	f_{ctk}	2,0	N/mm²
Coefficiente omog. acciaio-cls	n	15	

Caratteristiche geometriche

Altezza sezione	Н	40	cm						
Larghezza sezione	В	30	cm						
Armatura compressa (1° strato)	As ₁ '	9,42	cm²	3	Ø	20	_{Cs1} =	6	cm
Armatura compressa (2° strato)	As ₂ '	0,00	cm²		Ø		c _{s2} =		cm
Armatura tesa (2° strato)	As ₂	0,00	cm²		Ø		c _{i2} =		cm

Armatura tesa (1° strato)	As ₁	15,71 cm²	5	Ø	20	c _{i1} =	6	cm

Tensioni nei materiali

				417		
Compressione max nel cls.	σς	5,9	N/mm²			
Trazione nell'acciaio (1° strato)	σs	187,5	N/mm²			
Eccentricità	e (M)	∞	cm	>	H/6	Sez. parzializzata
	u (M)	00	cm			
Posizione asse neutro	y (M)	14,8	cm			
Area ideale (sez. int. reagente)	A_{id}	1552	cm²			
Mom. di inerzia ideale (sez. int. reag.)	${\sf J}_{\sf id}$	233890	cm ⁴			
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} *	130224	cm ⁴			

Verifica a fessurazione

Momento di fessurazione (f _{ctk})	M_{fess}^{\star}	23	k N m	La sezione è fessurata
Fattore che tiene conto della durata del carico	\mathbf{k}_{t}	0,4		
Altezza efficace	d_{eff}	8,4	cm	
Area efficace	Aceff	252,07	cm²	
Armatura nell'area efficace	As	15,7	cm²	
	ρp _{,eff}	0,06232		
Resistenza cilindrica media	$f_{\rm cm}$	37,1	N/mm²	
Modulo elastico del cls	E _{cm}	32.588	N/mm²	
	α_{E}	6,4		

Ampiezza delle fessure	wd = wk	0,12	mm
Distanza massima tra le fessure	S _{r,max}	22,5	cm
Diematro equivalente delle barre	$oldsymbol{arrho}_{eq}$	20,0	mm
Copriferro netto	c'	5,0	cm
	K ₄	0,425	
	k ₃	3,4	
	k ₂	0,5	
	k ₁	0,8	
Deform. media dell'arm quella del cls	εsm - εcm	0,0008	
Deform. media dell'arm quella del cls			

Tipo di armatura Poco sensibile

Condizioni ambientali Ordinarie

Stato limite Frequente

Valore limite di apertura delle fessure w3=0.4 mm

Combinazione delle azioni QUASI PERMANENTE (SLE):

Sollecitazioni

Momento flettente	М	94	kN m
Sforzo normale	N	0	kN

Materiali

Res. caratteristica cubica cls	R _{ck}	35	N/mm²
Res. caratteristica cilindrica cls	f _{ck}	29,1	N/mm²

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU					
Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo	COMMESSA	LOTTO 01 D 13	CODIFICA	DOCUMENTO FA000 0002	REV.	FOGLIO 80 di 105

Res. media a trazione cls	f _{ctm}	2,8 N/mm²	2
Res. caratteristica a trazione cls	f_{ctk}	2,0 N/mm ²	2
Coefficiente omog. acciaio-cls	n	15	

Caratteristiche geometriche

r									
Altezza sezione	Н	40	cm						
Larghezza sezione	В	30	cm						
Armatura compressa (1° strato)	As ₁ '	9,42	cm²	3	Ø	20	c _{s1} =	6	cm
Armatura compressa (2° strato)	As ₂ '	0,00	cm²		Ø		c _{s2} =		cm
Armatura tesa (2° strato)	As ₂	0,00	cm²		Ø		c _{i2} =		cm
Armatura tesa (1° strato)	As ₁	15,71	cm²	5	Ø	20	c _{i1} =	6	cm

Tensioni nei materiali

Compressione max nel cls.	σc	5,9	N/mm²			
Trazione nell'acciaio (1° strato)	σs	187,5	N/mm²			
Eccentricità	e (M)	∞	cm	>	H/6	Sez. parzializzata
	u (M)	00	cm			
Posizione asse neutro	y (M)	14,8	cm			
Area ideale (sez. int. reagente)	A_{id}	1552	cm²			
Mom. di inerzia ideale (sez. int. reag.)	${\sf J}_{\sf id}$	233890	cm ⁴			
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} ∗	130224	cm⁴			

Verifica a fessurazione

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU

Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 RR0H
 01 D 13
 CL
 FA000 0002
 A

FOGLIO

81 di 105

Momento di fessurazione (f _{ctk})	M _{fess} *	23	kN m	La sezione è fessurata
Fattore che tiene conto della durata del carico	k _t	0,4		
Altezza efficace	d_{eff}	8,4	cm	
Area efficace	Aceff	252,07	cm²	
Armatura nell'area efficace	As	15,7	cm²	
	ρp _{,eff}	0,06232		
Resistenza cilindrica media	f _{em}	37,1	N/mm²	
Modulo elastico del cls	Ест	32.588	N/mm²	
	αΕ	6,4		
Deform. media dell'arm quella del cls	εsm - εcm	0,00072		
	k ₁	0,8		
	k ₂	0,5		
	k ₃	3,4		
	K ₄	0,425		
Copriferro netto	c'	5,0	cm	
Diematro equivalente delle barre	$ oldsymbol{\emptyset}_{eq} $	20,0	mm	
Distanza massima tra le fessure	S _{r,max}	22,5	cm	
Ampiezza delle fessure	wd = wk	0,12	mm	

Tipo di armatura

Poco sensibile

Condizioni ambientali

Ordinarie

Stato limite

Quasi permanente

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU					
Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo	COMMESSA	LOTTO 01 D 13	CODIFICA	DOCUMENTO FA000 0002	REV.	FOGLIO 82 di 105

Valore limite di apertura delle fessure

w2=0.3 mm

d) Verifiche delle tensioni di esercizio:

Per completare il quadro delle verifiche agli stati limite di esercizio (SLE) è necessario controllare le tensioni di esercizio, in accordo con quanto riportato al punto 4.1.2.2.5 delle NTC2008. In particolare bisogna verificare che:

Per il calcestruzzo compresso:

 $\sigma_c < 0.60 f_{ck} = 16.8 \text{ MPa}$ (per combinazione caratteristica rara);

 σ_c < 0.45 f_{ck} = 12,6 MPa (per combinazione quasi permanente);

Per l'acciaio:

 σ_s < 0.80 f_{yk} = 360 MPa (per combinazione caratteristica rara).

Di seguito si riportano le tensioni di esercizio determinate in corrispondenza della combinazione che produce il valore di tensione più gravoso distinguendo tra combinazioni rare e quasi permanenti. Dalle tabelle seguenti, nelle quali accanto a ciascun valore di tensione viene indicato il corrispondente valore limite, si evince che le verifiche delle tensioni di esercizio risultano soddisfatte.

Tensioni nei materiali SLE RARA

Compressione max nel cls.	σс	9,4	N/mm²
Trazione nell'acciaio (1° strato)	σs	192,3	N/mm²

Tensioni nei materiali SLE QUASI PERMANENTE

Compressione max nel cls.	σс	9,4	N/mm²
Trazione nell'acciaio (1° strato)	σs	187,0	N/mm²

8.4 Pilastri (40x30)

Si riportano di seguito le verifiche strutturali dei pilastri aventi sezione rettangolare di dimensioni 30x40 cm. Le verifiche saranno condotte per i differenti stati limite ed in corrispondenza delle sezioni maggiormente sollecitate dell'elemento per effetto delle combinazioni di carico più gravose.

Preliminarmente alla verifica di resistenza dei pilastri allo SLU è necessario valutare la stabilità degli elementi snelli. Tali verifiche devono essere condotte attraverso un'analisi del secondo ordine che tenga conto degli effetti flessionali delle azioni assiali sulla configurazione deformata degli elementi stessi. In via approssimativa gli effetti del secondo ordine in pilastri singoli possono essere trascurati se la snellezza λ non supera il valore limite (4.1.2.1.7-NTC2008):

$$\lambda_{\text{lim}} = 15.4 \cdot \frac{C}{\sqrt{v}}$$

dove:

 $v = N_{Ed} / (A_c \cdot f_{cd})$ è l'azione assiale adimensionale;

 $C = 1,7 - r_m$ dipende dalla distribuzione dei momenti del primo ordine;

 $r_m = M_{01} / M_{02}$ è il rapporto tra i momenti flettenti del primo ordine alle due estremità del pilastro (con $M_{02} \ge M_{01}$).

E' stata valutata la snellezza λ del pilastro:

 $\lambda = L_0 / i = 3850/115,5 = 33,33$

dove:

 $L_0 = \beta L = 3,85 \text{ m}$ lunghezza di libera inflessione

β = 1 coefficiente di vincolo per asta incastrata al piede

L = 3.85 m luce netta del pilastro

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO VELOCIZZA VARIANTE	ZIONE LII	NEA SAN GAV	/INO – SASSARI	– OLBIA	
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	Α	84 di 105

 $i = (I/A)^{0.5} = [(h^{3*}b)/(12*b*h)]^{0.5} = [400^{3*}300/(12*400*300)]^{0.5} = 115,5 \text{mm}$ raggio giratore d'inerzia (asse debole);

Per il calcolo si riferimento alla combinazione di carico che massimizza lo sforzo assiale massimo, di seguito riportato.

 $N_{Ed} = -266439 N;$

 $f_{cd} = 15,87 \text{ N/mm}^2$;

 $A_c = 300*400 = 120000 \text{ mm}^2$;

v = 0,140;

 $M_{02} = 116,43 \text{ kNm};$

 $M_{01} = -61,10 \text{ kNm};$

 $r_{\rm m} = 0.52;$

C = 1,7+0,52 = 2,22

 $\lambda_{lim} = 91,37 > \lambda = 33,33.$

Per quanto concerne le non linearità geometriche sono prese in conto, quando necessario, attraverso il fattore θ di seguito definito. In particolare, per le costruzioni civili ed industriali esse possono essere trascurate nel caso in cui risulti:

$$\theta = \frac{P \cdot d_r}{V \cdot h} \le 0.1$$

dove:

Pè il carico verticale totale agente;

d_r è lo spostamento orizzontale medio d'interpiano;

V è la forza orizzontale totale agente;

h è l'altezza dell'elemento.

Si riporta di seguito la verifica delle non linearità geometriche facendo riferimento alle combinazioni di carico che producono lo spostamento orizzontale maggiore COMB1_SLD_X.

TABLE: Joint Displacements										
сомв	StepType	U1	U2	U3	R1	R2	R3			
Text	Text	m	m	m	Radians	Radians	Radians			
COMB1_SLDX	Max	0,010493	0,004015	-0,001417	0,000219	0,004062	-0,000339			
COMB1_SLDX	Min	-0,010493	-0,001879	-0,002427	-0,000417	0,000765	-0,000339			
COMB1_SLDX	Max	0,010493	0,001879	-0,001417	0,000417	-0,000765	-0,000339			
COMB1_SLDX	Min	-0,010493	-0,004015	-0,002427	-0,000219	-0,004062	-0,000339			
COMB1_SLDX	Max	0,00912	0,004015	-0,001437	0,000042	0,003496	-0,000339			
COMB1_SLDX	Min	-0,011866	-0,001879	-0,003019	-0,000712	-0,000734	-0,000339			
COMB1_SLDX	Max	0,00912	0,001879	-0,001421	0,000264	0,000218	-0,000339			
COMB1_SLDX	Min	-0,011866	-0,004015	-0,003003	-0,00049	-0,004012	-0,000339			
COMB1_SLDX	Max	0,011866	0,004015	-0,001421	0,00049	0,004012	-0,000339			
COMB1_SLDX	Min	-0,00912	-0,001879	-0,003003	-0,000264	-0,000218	-0,000339			
COMB1_SLDX	Max	0,011866	0,001879	-0,001437	0,000712	0,000734	-0,000339			
COMB1_SLDX	Min	-0,00912	-0,004015	-0,003019	-0,000042	-0,003496	-0,000339			
Spostamento m	edio assoluto	0,010493								

 $d_r=0.0105 m$;

h=3,85 m;

Per la combinazione massima si ha che:

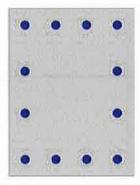
P = -2547,49 kN

V = 743,20 kN

 $\theta = 2547,49*0,0105/(3,85*743,20)=0,0093$

TABLE: Element Forces - Frames										
СОМВ	StepType	Р	V2	V3	T	M2	M3			
Text	Text	KN	KN	KN	KN-m	KN-m	KN-m			
COMB1_SLDX	Min	-132,005	-31,582	-14,773	-1,7719	-28,8154	-100,7899			
COMB1_SLDX	Min	-126,23	-31,582	-14,773	-1,7719	-0,3784	-40,0665			
COMB1_SLDX	Min	-120,455	-31,582	-14,773	-1,7719	-7,0118	-124,7757			
COMB1_SLDX	Min	-177,884	-25,18	-48,899	-1,7719	-85,4956	-52,2046			
COMB1_SLDX	Min	-172,109	-25,18	-48,899	-1,7719	8,6347	-3,7324			

COMB1_SLDX	Min	-166,334	-25,18	-48,899	-1,7719	0,5011	-19,4227
COMB1_SLDX	Min	-132,005	-63,451	-5,361	-1,7719	-13,6299	-119,5845
COMB1_SLDX	Min	-126,23	-63,451	-5,361	-1,7719	-3,3096	2,486
COMB1_SLDX	Min	-120,455	-63,451	-5,361	-1,7719	-28,0598	-20,8762
COMB1_SLDX	Min	-132,018	-17,664	-13,246	-1,7719	-30,0834	-68,8742
COMB1_SLDX	Min	-126,243	-17,664	-13,246	-1,7719	-4,5852	-34,9429
COMB1_SLDX	Min	-120,468	-17,664	-13,246	-1,7719	-14,1573	-146,4442
COMB1_SLDX	Min	-132,018	-77,369	-6,888	-1,7719	-12,3618	-151,5002
COMB1_SLDX	Min	-126,243	-77,369	-6,888	-1,7719	0,8972	-2,6376
COMB1_SLDX	Min	-120,468	-77,369	-6,888	-1,7719	-20,9143	0,7923
COMB1_SLDX	Min	-177,884	-10,974	-11,813	-1,7719	-45,9822	-22,8266
COMB1_SLDX	Min	-172,109	-10,974	-11,813	-1,7719	-23,2416	-1,702
COMB1_SLDX	Min	-166,334	-10,974	-11,813	-1,7719	-102,7649	-44,74
		-2547,49	-678,66	-302,94	$V=(V_2^2+V_3^2)^{0.5}=$	743,2039	kN


• <u>Verifica di resistenza allo SLU</u>

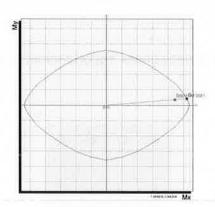
Si riportano di seguito le sollecitazioni più gravose.

PILASTRI									
comb	Axial (kN)	Shear-y (kN)	-y (kN) Shear-z (kN) Torsion (kN*m) I		Moment-y (kN*m)	Moment-z (kN*m)			
env SLU(all)	-69.19	24.72	23.82	-0.16	36.58	36.25			
env SLU(all)	-69.19	14.49	8.91	-0.16	5.69	-1.98			
env SLU(all)	-69.19	6.4	-7.41	-0.16	9.67	-20.24			
env SLU(all)	-207.75	33.23	6.24	1.01	-14.13	79.18			
env SLU(all)	-207.75	33.23	-16.29	1.01	-4.33	15.51			
env SLU(all)	-207.75	33.23	-38.81	1.01	49.38	-50.43			
env SLU(all)	-169.61	-35.34	8.1	1.96	24.06	-92.28			
env SLU(all)	-169.61	-28.17	8.1	1.96	8.72	-30.35			
env SLU(all)	-169.61	-21.01	8.1	1.96	-7.55	20.08			
env SLU(all)	-80.76	23.32	43.27	-0.09	55.74	33.07			
env SLU(all)	-80.76	13.08	26.59	-0.09	-12.37	-2.41			
env SLU(all)	-80.76	5.62	10.1	-0.09	-47.97	-18.85			
env SLU(all)	-216.37	31.64	3.41	1.17	-26.35	76.52			
env SLU(all)	-216.37	31.64	-21.74	1.17	-8.48	15.4			
env SLU(all)	-216.37	31.64	-46.9	1.17	58.45	-47.42			

In funzione delle sollecitazioni si è dimensionata opportunamente l'armatura longitudinale del pilastro tipo:

1) Lato corto:

- Armatura superiore 4 Φ 20
- Armatura inferiore 4 Φ 20


2) Lato lungo:

- Armatura superiore 2 Φ 20
- Armatura inferiore 2 Φ 20

a) Verifica a presso-flessione:

Le verifiche di resistenza a flessione e pressoflessione allo SLU (NTC2008 – 4.1.2.1.2.4; - 7.4.4.2) per le sezioni di base dei pilastri sono state condotte con il supporto del software PresFLE considerando le sollecitazioni, riportate nei prospetti precedenti, che massimizza il momento M3, e minimizza lo sforzo assiale P.

La verifica risulta soddisfatta.

b) Verifica a taglio:

Al fine di escludere la formazione di meccanismi inelastici o fragili dovuti al taglio, per quanto concerne la verifica a taglio del pilastro si utilizza il valore massimo tra il taglio di calcolo dedotto dall'output del modello di calcolo e quello che si ottiene dalla condizione di equilibrio del pilastro soggetto all'azione dei momenti resistenti nelle sezioni di estremità superiore M^s_{C.Rd} ed inferiore Mⁱ_{C.Rd} secondo l'espressione:

$$V_{\rm Ed} = \gamma_{Rd} \cdot \frac{M^s_{C,Rd} + M^i_{C,Rd}}{l_p}$$

dove:

 γ_{Rd} = 1.10 per strutture in CD"B";

 $M^{s}_{C,Rd} = M^{l}_{C,Rd} = 210,89$ kNm lungo l'asse forte

 $I_{\rm p}$ = 3,85 m

V_{Ed} = 120,51 kN lungo l'asse forte

I valori massimi delle sollecitazioni derivati dal modello di calcolo sono riportati qui di seguito.

Poiché il valore del taglio determinato mediante la procedura sopra riportata è maggiore del taglio di calcolo ottenuto a valle dell'analisi strutturale mediante il SAP2000, si procede alla verifica di resistenza considerando il seguente valore del taglio massimo:

120,51

Verifica a taglio	
Base (m)	0,30
Altezza (m)	0,40
Copriferro (m)	0,06
Alt. Utile (m)	0,34
A_{sw} (m 2)	0,00016
Ø (mm)	10.00

Ø (mm)	10,00
s (V _{Ed-max}) (m)	0,15

f_{yd} (kN/m ²)	391304,35
f_{cd} (kN/m ²)	15866,67
f _{cd} (kN/m²)	7933,33
s (progetto) (m)	0,08

V _{Rcd} (kN)	
V _{Rcd} (kN)	364,14
V _{Rsd} (kN)	234,99

 $V_{Rd} = min(V_{Rcd}; V_{Rsd}) \ge V_{Ed-max}$

V_{Ed-max} (kN)

V_{Rd} (kN) 234,99

La verifica risulta soddisfatta.

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU							
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
		COMMESSA LOTTO	COMMESSA LOTTO CODIFICA	COMMESSA LOTTO CODIFICA DOCUMENTO	COMMESSA LOTTO CODIFICA DOCUMENTO REV.		

Si adotteranno staffe Φ 10 / 10 cm alle estremità superiore e inferiore (lunghezza 1 m) del pilastro e staffe Φ 10 / 15 cm per la zona centrale del pilastro, rispettando ampiamente le prescrizioni relative ai dettagli costruttivi degli elementi in c.a. proposti dalle NTC-2008 al punto 4.1.6.

c) Verifica a torsione:

<u>Calcestruzz</u>	<u>.o</u>	Staffe Trasv	<u>ersali</u>	Armatura Longitudinal	<u>e</u>
B (m)	0,30	B (m)	0,30	B (m)	0,30
H (m)	0,40	H (m)	0,40	H (m)	0,40
A_c (m^2)	0,12	A_c (m^2)	0,12	A_c (m^2)	0,12
u (m)	1,4	u (m)	1,40	u (m)	1,4
t (m)	0,09	t (m)	0,09	t (m)	0,09
A (m ²)	0,07	$A_s (m^2)$	0,0002	u _m (m)	1,06
f' _{cd} (kN/m ²)	7933,333	A (m ²)	0,07	$\Box A_{l}(m^{2})$	0,000628
cotgθ (-)	0,55	s _(prog.) (m)	0,08	A (m ²)	0,07
a ₁	0,0006	f _{yd} (kN/m ²) 3	91304,35	f_{yd} (kN/m ²)	391304,3
a _s	0,0020	cotgθ (-)	0,55	cotgθ (-)	0,55
T _{Rod} (kNm)	32,51	T _{Rsd} (kNm)	56,91	T _{Rsd} (kNm)	56,91
T _{Ed} (kNm)			2,00		
T _{Rd} (kNm) =	min (T _{Rcd} ;T _{Rsd} ; T _{Rs}	d)=	32,51		

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU							
Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
calcolo	RR0H	01 D 13	CL	FA000 0002	A	91 dl 105		

Per quanto riguarda la crisi lato calcestruzzo, la resistenza massima di una membratura soggetta a torsione e taglio è limitata dalla resistenza delle bielle compresse di calcestruzzo. Per non eccedere tale resistenza deve essere soddisfatta la seguente condizione:

$$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}<1$$

$$T_{Ed}/T_{Rcd}= 0,06$$

$$V_{Ed}/V_{Rcd}= 0,34$$

$$= 0,40 La verifica risulta soddisfatta.$$

d) Verifica limitazioni armatura:

Resta da verificare che l'armatura determinata in funzione delle sollecitazioni agenti rispetti le limitazioni riportate nel punto 7.4.6.2.2 delle NTC2008:

- Per tutta la lunghezza del pilastro l'interasse tra le barre non deve essere superiore a 25 cm;
- Nella sezione corrente del pilastro, la percentuale geometrica ρ di armatura longitudinale, con ρ rapporto tra l'area dell'armatura longitudinale e l'area della sezione del pilastro, deve essere compresa entro i seguenti limiti:

$$1\% < \rho < 4\%$$

$$\rho = Al/(bH) = 37,68/(40 \cdot 30) = 3,14\%$$

- Nelle zone critiche devono essere rispettate le condizioni seguenti: le barre disposte sugli angoli
 della sezione devono essere contenute dalle staffe; almeno una barra ogni due, di quelle disposte
 sui lati, deve essere trattenuta da staffe interne o legature; le barre non fissate si devono trovare a
 meno di 20 cm da una barra fissata per CDB.
- Il diametro delle staffe di contenimento e legature deve essere non inferiore a 6 mm ed il loro passo deve essere non superiore alla più piccola delle quantità seguenti:

- 1/2 del lato minore della sezione trasversale per CDB;
- 175 mm (per CD"B");
- 8 volte il diametro minimo delle barre longitudinali che collegano (per CD"B")

Nel caso specifico risulta:

$$d = 100mm \le \begin{cases} \frac{b}{2} = 400/2 = 200mm \\ 175mm \\ 8 \cdot 20 = 160mm \end{cases}$$

Si devono disporre staffe in un quantitativo minimo non inferiore a:

$$\frac{A_{st}}{s} = 0.08 \frac{f_{cd} \cdot b_{st}}{f_{vd}}$$

Nel caso specifico risulta:

$$\frac{A_{st}}{s} = \frac{157}{150} = 1.04 > 0.08 \frac{f_{cd} \cdot b_{st}}{f_{vd}} = 0.08 \frac{15.87 \cdot 220}{450} = 0.62$$

Le staffe orizzontali presenti lungo l'altezza del nodo devono verificare la seguente condizione

$$\frac{n_{st} \cdot A_{st}}{i \cdot b_j} \ge 0.05 \frac{f_{ck}}{f_{yk}}$$

Nella quale n_{st} e A_{st} sono rispettivamente il numero di bracci e l'area della sezione trasversale della barra della singola staffa orizzontale, i è l'interasse, e b_j è la larghezza utile del nodo determinata come segue:

- se la trave ha una larghezza b_w superiore a quella del pilastro b_c, allora b_j è il valore minimo fra b_w e b_c + h_c/2, essendo h_c la dimensione della sezione della colonna parallela alla trave;
- se la trave ha una larghezza b_w inferiore a quella del pilastro b_c , allora b_j è il valore minimo fra b_c e b_w + h_c/2.

Con:

COMMESSA LOTTO CODIFICA
RR0H 01 D 13 CL

DOCUMENTO FA000 0002 REV. FOGLIO

A 93 di 105

$$n_{st} = 2$$

$$A_{st} = 78,50 \text{ mm}^2$$

i =10 mm

 $b_c = 300 \text{ mm} - 400 \text{ mm}$

 $b_w = 400 \text{ mm} - 300 \text{ mm}$

 $h_c = 400 \text{ mm}$

 $b_i = 300 \text{ mm}$

$$\frac{n_{st} \cdot A_{st}}{i \cdot b_j} = \frac{2 \cdot 78,50}{100 \cdot 300} = 0,00523 \ge 0.05 \frac{f_{ck}}{f_{yk}} = 0.05 \frac{28}{450} = 0,0031.$$

Devono inoltre essere rispettati i limiti riportati al punto 4.1.6.1.2 delle NTC2008:

• Nel caso di elementi sottoposti a prevalente sforzo normale, le barre parallele all'asse devono avere diametro maggiore od uguale a 12 mm. Inoltre la loro area non deve essere inferiore a :

$$A_{s,\text{min}} = (0.10 \cdot \frac{N_{Ed}}{f_{yd}})$$

e comunque non minore di 0.003 Ac;

dove:

N_{Ed} rappresenta lo sforzo di compressione assiale di calcolo;

Ac è l'area di calcestruzzo;

f_{yd} è il valore della resistenza di calcolo dell'armatura.

Nel caso in esame risulta:

$$A_s = 3770mm^2 > \begin{cases} A_{s,\text{min}} = 0.10 \frac{263210}{391.3} = 67,26mm^2 \\ 0.003 \cdot 300 \cdot 400 = 360mm^2 \end{cases}$$

Si riscontra, pertanto, che l'armatura dei pilastri rispetta i limiti prescritti dalle NTC2008.

· Verifiche agli stati limite di esercizio - SLE

Le verifiche nei confronti degli stati limite di esercizio degli elementi strutturali si effettuano in termini di:

- verifica di fessurazione;
- verifica delle tensioni di esercizio.

Nel caso in esame è necessario effettuare le verifiche degli elementi strutturali in termini di resistenza (punto 7.3.7.1 delle NTC2008) dato che il fabbricato tecnologico in esame ricade in classe d'uso IV, dunque, per rapidità di calcolo, le combinazioni SLD saranno inserite nell'inviluppo delle combinazioni SLU e, pertanto, verificate nel paragrafo precedente.

			PILASTRI			
comb	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)
SLE (QP) 1	-45.91	4.11	-5.71	-0.04	-5.63	8.98
SLE (QP) 1	-45.91	4.11	-5.71	-0.04	5.51	0.96
SLE (QP) 1	-45.91	4.11	-5.71	-0.04	16.65	-7.06
SLE (QP) 1	-136.51	16.65	1.6	-0.07	4.16	42.57
SLE (QP) 1	-136.51	16.65	1.6	-0.07	1.04	10.11
SLE (QP) 1	-136.51	16.65	1.6	-0.07	-2.08	-22.35
SLE (QP) 1	-110.5	-20.65	6.23	0.06	17.62	-61.1
SLE (QP) 1	-110.5	-20.65	6.23	0.06	5.48	-20.83
SLE (QP) 1	-110.5	-20.65	6.23	0.06	-6.67	19.43
SLE (QP) 1	-46.34	4.5	5.63	-0.05	5.46	9.73
SLE (QP) 1	-46.34	4.5	5.63	-0.05	-5.52	0.96
SLE (QP) 1	-46.34	4.5	5.63	-0.05	-16.49	-7.82
SLE (QP) 1	-136.07	17.05	-1.64	0	-4.24	43.26
SLE (QP) 1	-136.07	17.05	-1.64	0	-1.05	10.02
SLE (QP) 1	-136.07	17.05	-1.64	0	2.15	-23.23
env SLE (rara)(all)	-46.49	16.59	15.85	-0.11	24.29	24.45
env SLE (rara)(all)	-46.49	9.77	5.91	-0.11	3.76	-1.25
env SLE (rara)(all)	-46.49	4.38	-4.97	-0.11	6.47	-13.64
env SLE (rara)(all)	-143.13	22.77	4.16	0.67	-9.42	54.37
env SLE (rara)(all)	-143.13	22.77	-10.86	0.67	-2.89	10.73
env SLE (rara)(all)	-143.13	22.77	-25.87	0.67	32.91	-34.43
env SLE (rara)(all)	-116.01	-24.28	5.4	1.31	16.04	-63.67
env SLE (rara)(all)	-116.01	-19.5	5.4	1.31	5.83	-20.99
env SLE (rara)(all)	-116.01	-14.72	5.4	1.31	-5.01	14.03
env SLE (rara)(all)	-54.22	15.66	28.87	-0.06	37.25	22.34
env SLE (rara)(all)	-54.22	8.84	17.76	-0.06	-8.22	-1.54

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU

Locale Vasca antincendio imbocchi GN01 - Relazione di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo	RR0H	01 D 13	CL	FA000 0002	A	95 di 105

env SLE (rara)(all)	-54.22	3.86	6.76	-0.06	-32	-12.73
env SLE (rara)(all)	-148.86	21.72	2.28	0.78	-17.56	52.62
env SLE (rara)(all)	-148.86	21.72	-14.49	0.78	-5.65	10.65
env SLE (rara)(all)	-148.86	21.72	-31.26	0.78	38.97	-32.45
env SLE (FREQ)(all)	-46.12	4.37	-5.85	-0.04	-6.01	9.55
env SLE (FREQ)(all)	-46.12	4.37	-5.85	-0.04	5.46	1.02
env SLE (FREQ)(all)	-46.12	4.37	-5.85	-0.04	16.82	-7.5
env SLE (FREQ)(all)	-137.98	16.85	1.7	-0.07	4.3	43.09
env SLE (FREQ)(all)	-137.98	16.85	1.7	-0.07	1.03	10.23
env SLE (FREQ)(all)	-137.98	16.85	1.7	-0.07	-2.35	-22.62
env SLE (FREQ)(all)	-111.45	-20.94	6.34	0.06	17.78	-61.79
env SLE (FREQ)(all)	-111.45	-20.94	6.34	0.06	5.47	-21.06
env SLE (FREQ)(all)	-111.45	-20.94	6.34	0.06	-6.94	20.13
env SLE (FREQ)(all)	-46.55	4.76	5.76	-0.05	5.83	10.3
env SLE (FREQ)(all)	-46.55	4.76	5.76	-0.05	-5.46	1.02
env SLE (FREQ)(all)	-46.55	4.76	5.76	-0.05	-16.65	-8.26
env SLE (FREQ)(all)	-137.54	17.25	-1.74	0	-4.37	43.78
env SLE (FREQ)(all)	-137.54	17.25	-1.74	0	-1.04	10.14
env SLE (FREQ)(all)	-137.54	17.25	-1.74	0	2.41	-23.5

a) Verifiche di fessurazione:

In particolare:

- per la combinazione di carico frequente bisogna accertarsi che risulti: $w_d < w_3 = 0.4$ mm;
- per la combinazione di carico quasi permanente bisogna accertarsi che risulti: $w_d < w_2 = 0.3$ mm.

Per rapidità di calcolo e comunque in favore di sicurezza si verifica la sezione nella combinazione SLE rara con i limiti per la combinazione quasi permanente.

La combinazione di calcolo verificata è quella più gravosa quindi quella che massimizza il momento M3.

Sollecitazioni

Momento flettente	М	39	kN m
Sforzo normale	N	148	kN

Materiali

Res. caratteristica cubica cls	R_{ck}	35	N/mm²
Res. caratteristica cilindrica cls	f_{ck}	29,1	N/mm²
Res. media a trazione cls	f_{ctm}	2,8	N/mm²
Res. caratteristica a trazione cls	f_{ctk}	2,0	N/mm²
Coefficiente omog. acciaio-cls	n	15	

Caratteristiche geometriche

 									
Altezza sezione	Н	40	cm						
Larghezza sezione	В	30	cm						
Armatura compressa (1º strato)	As ₁ '	12,57	cm²	4	Ø	20	c _{s1} =	6	cm
Armatura compressa (2º strato)	As ₂ '	6,28	cm²	2	Ø	20	c _{s2} =	15	cm
Armatura tesa (2º strato)	As ₂	6,28	cm²	2	Ø	20	c _{i2} =	15	cm
Armatura tesa (1º strato)	As ₁	12,57	cm²	4	Ø	20	c _{i1} =	6	cm

Tensioni nei materiali

Compressione max nel cls.	σc	12,7	N/mm²			
Trazione nell'acciaio (1º strato)	σs	150,1	N/mm²			
Eccentricità	e (M)	89,2	cm	>	H/6	Sez. parzializzata
	u (M)	69,2	cm			
Posizione asse neutro	y (M)	15,9	cm			
Area ideale (sez. int. reagente)	\mathbf{A}_{id}	1728	cm²			
Mom. di inerzia ideale (sez. int. reag.)	\mathbf{J}_{id}	238603	cm ⁴			
Mom. di inerzia ideale (sez. parz. N=0)	J _{ld*}	128406	cm ⁴			

Verifica a fessurazione

Momento di fessurazione (f _{ctk})	M _{fess} *	32	kN m	La sezione è fessurata
Fattore che tiene conto della durata del carico	k_{t}	0,4		

Ampiezza delle fessure	wd = wk	0,14	mm
Distanza massima tra le fessure	S _{r,max}	21,3	cm
Diematro equivalente delle barre	$oldsymbol{arrho}_{eq}$	20,0	mm
Copriferro netto	C'	5,0	cm
	k ₄	0,425	
	k ₃	3,4	
	k ₂	0,5	
	k_1	0,8	
Deform. media dell'arm quella del cls	esm - ecm	0,00092	
	a_{E}	6,4	
Modulo elastico del cls	E _{cm}	32.588	N/mm²
Resistenza cilindrica media	f_{cm}	37,1	N/mm²
	ρp _{,eff}	0,07832	
Armatura nell'area efficace	As	18,8	cm²
Area efficace	Ac _{eff}	240,662	cm²
Altezza efficace	d_{eff}	8,0	cm

Tipo di armatura Poco sensibile

Condizioni ambientali Ordinarie

Stato limite Quasi permanente

Valore limite di apertura delle fessure w2=0.3 mm

La verifica risulta soddisfatta in quanto: $w_k = 0.20 \text{ mm} < w_3 = 0.3 \text{ mm}$.

b) Verifiche delle tensioni di esercizio:

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU					
Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo	COMMESSA RROH	LOTTO 01 D 13	CODIFICA	DOCUMENTO FA000 0002	REV.	FOGLIO 98 di 105

Per completare il quadro delle verifiche agli stati limite di esercizio (SLE) è necessario controllare le tensioni di esercizio, in accordo con quanto riportato al punto 4.1.2.2.5 delle NTC2008. In particolare bisogna verificare che:

Per il calcestruzzo compresso:

 σ_c < 0.60 f_{ck} = 16,80 N/mm² (per combinazione caratteristica rara);

 σ_c < 0.45 f_{ck} = 12,60 N/mm² (per combinazione quasi permanente);

Per l'acciaio:

 $\sigma_s < 0.80 \; f_{yk} = 360 \; N/mm^2 \; \;$ (per combinazione caratteristica rara).

Tensioni nei materiali SLE rara

Compressione max nel cls.	σς	12,7 N/mm²
Trazione nell'acciaio (1° strato)	σs	215,5 N/mm²

Tensioni nei materiali SLE quasi permanente

Compressione max net cls.	σς	7,5 N/mm²
Trazione nell'acciaio (1° strato)	σs	120,6 N/mm²

La verifica risulta soddisfatta.

8.5 Verifica degli elementi strutturali in termini di contenimento del danno agli elementi non strutturali (SLO)

Per le costruzioni ricadenti in classe d'uso I e II si deve verificare che l'azione sismica di progetto non produca agli elementi costruttivi senza funzione strutturale danni tali da rendere la costruzione temporaneamente inagibile.

Nel caso delle costruzioni civili e industriali, qualora la temporanea inagibilità sia dovuta a spostamenti eccessivi d'interpiano, questa condizione si può ritenere soddisfatta quando gli spostamenti d'interpiano ottenuti dall'analisi in presenza di dell'azione sismica di progetto relativa allo SLD siano inferiori a:

$$d_r \leq 0.01h$$

per tamponamenti progettati in modo da non subire danni a seguito di spostamenti d'interpiano, per effetto della loro deformabilità intrinseca ovvero dei collegamenti alla struttura.

Considerando h altezza d'interpiano che vale 3,85 m si ottiene che deve essere:

$$d_r < 0.0385 \text{ m}$$
.

Per le costruzioni ricadenti in classe d'uso III e IV si deve verificare che l'azione sismica di progetto non produca danni agli elementi costruttivi senza funzione strutturale tali da rendere temporaneamente non operativa la costruzione.

Nel caso delle costruzioni civili e industriali questa condizione si può ritenere soddisfatta quando gli spostamenti interpiano ottenuti dall'analisi in presenza dell'azione sismica di progetto relativa allo SLO siano inferiori ai 2/3 dei limiti in precedenza indicati.

 $U1 = d_r = 0.01349 \text{ m} < 2*0.01*h /3=0.0385*2/3=0.0256 \text{ m}.$

9. VERIFICA STRUTTURA INTERRATA

La struttura interrata è costituita da pareti perimetrali in c.a e da una platea di fondazione in c.a di spessore pari a 40cm. Di seguito si riportano le verifiche strutturali di tali elementi.

9.1 Pareti

Le pareti devono resistere ai carichi gravitazionali trasmessi dalla sovrastruttura ed alla spinta del terreno. Le verifiche saranno condotte con riferimento alle condizioni di carico più gravose.

VERIFICHE SLU

Le verifiche sono condotte con riferimento ad una sezione di base unitaria ed altezza pari allo spessore delle pareti,, ovvero 0.30m.

As sup: 5 φ 18

As inf: 5 φ 18

Staffe: Spilli $\phi 8/40x40cm$

ВхН	M_{xx}	$\mathbf{M}_{\mathbf{Rd,y}}$	S.F.	M _{YY}	M _{Rd,X}	S.F.
[m]	[kNm/m]	[kNm/m]	[-]	[kNm/m]	[kNm/m]	[-]
1.0 x 0.30	60	111	1.85	50	111	2.22

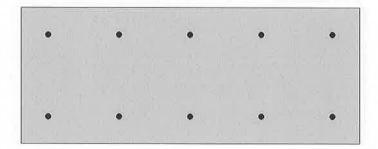
Le verifiche a taglio sono condotte con riferimento ad una sezione non armata a taglio. Si prevede in ogni caso una armatura minima costituita da spilli $\phi 8/40x40cm$.

В	Н	$V_{Rd,C}$	$V_{ed,x}$	$V_{Rd,x}$	S.F.	$V_{ed,y}$	${ m V}_{ m Rd,y}$	S.F.
[m]	[m]	[kN/m]	[kN/m]	[kN/m]	[-]	[kN/m]	[kN/m]	[-]
1.0	0.30	125	100	· 	1.25	85	-	1.47

VERIFICHE SLE

сомв	SECTION		M _{Ed}	W _{k,max}	W _{lim}	Cracking	
	B [m]	H [m]	[kNm]	[mm]	[mm]	S.F.	
Env SLE (RARA)	1.00	0.30	40	0.110	0.2	1.82	

9.2 Fondazioni


Le fondazioni sono di tipo diretto e sono costituite da una platea in c.a di spessore pari a 40 cm. Al di sotto delle fondazioni è previsto uno strato di magrone di spessore 0.15 m debordante l'impronta delle fondazioni di 0.15 m.

Nelle verifiche agli stati limite ultimi finalizzate al dimensionamento strutturale (STR), si considerano gli stati limite ultimi per raggiungimento della resistenza negli elementi che costituiscono la fondazione. Le azioni trasmesse in fondazione derivano dall'analisi del comportamento dell'intera opera alla quale sono applicate le azioni statiche e sismiche.

Inoltre sono state eseguite le verifiche a fessurazione e delle tensioni di esercizio per le combinazioni relative allo SLE.

Verifica di resistenza allo SLU

Le verifiche sono condotte con riferimento ad una sezione di base unitaria ed altezza pari allo spessore delle pareti,, ovvero 0.40m.

As sup: 5 φ 18

As inf: 5 φ 18

Staffe: Spilli $\phi 8/40x40cm$

ВхН	M _{xx}	$ m M_{Rd,y}$	S.F.	M _{YY}	M _{Rd,X}	S.F.
[m]	[kNm/m]	[kNm/m] [-]		[kNm/m] [kNm/m]		[-]
1.0 x 0.40	140	370	2.6	90	370	4.1

Le verifiche a taglio sono condotte con riferimento ad una sezione non armata a taglio. Si prevede in ogni caso una armatura minima costituita da spilli $\phi 8/40x40cm$.

PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU

Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo

COMMESSA LOTTO CODIFICA
RR0H 01 D 13 CL

DOCUMENTO FA000 0002 REV. FOGLIO

A 103 di 105

В	Н	$V_{Rd,C}$	$\mathbf{V}_{\mathrm{ed,x}}$	$V_{Rd,x}$	S.F.	V _{ed,y}	V _{Rd,y}	S.F.
[m]	[m]	[kN/m]	[kN/m]	[kN/m]	[-]	[kN/m]	[kN/m]	[-]
1.0	0.30	136	130	-	1.01	100	•	1.36

VERIFICHE SLE

СОМВ	SEC	SECTION		W _{k,max}	W _{lim}	Cracking	
	B [m]	H [m]	[kNm]	[mm]	[mm]	S.F.	
Env SLE (RARA)	1.00	0.40	90	0.18	0.2	1.11	

9.3 Verifica di capacità portante fondazione

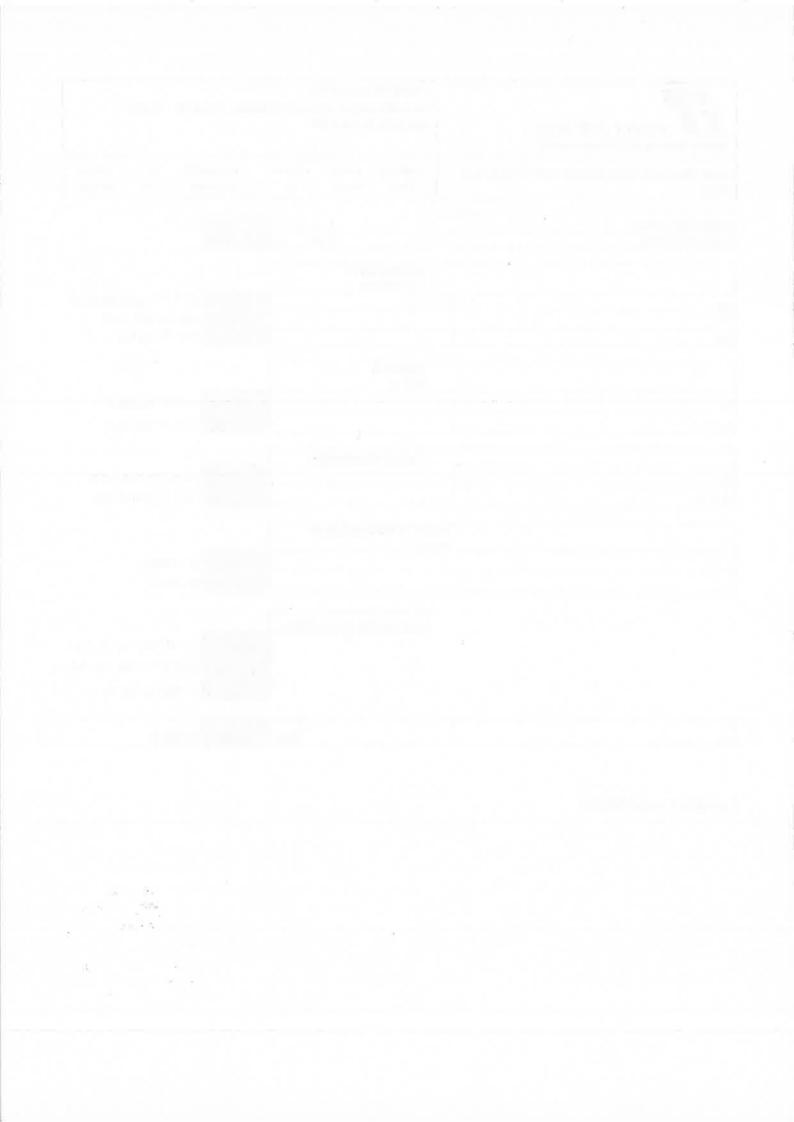
Si riportano qui di seguito si riportano le reazioni delle molle alla Winkler ottenute dal modello di calcolo, nelle combinazioni SLV, SLU e SLD (per le verifiche a breve termine) in quanto trattandosi di terreno incoerente la verifica di capacità portante sarà condotta solo in termini di tensioni efficaci.

Si utilizza l'approccio 2 (A1+M1+R3)

VERIFICA	COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
	PARZIALE	PARZIALE	PARZIALE
	(R1)	(R2)	(R3)
Capacità portante	$\gamma_{\rm R}=1.0$	$\gamma_{\rm R} = 1.8$	$\gamma_{\rm R}=2.3$
Scorrimento	$\gamma_{\rm R}=1.0$	$\gamma_{\rm R}=1.1$	$\gamma_{R} = 1,1$

Quindi si ha:

P_{media} ≈ 30 kPa


 $P_{\text{max}} \approx 45 \text{ kpa}$

	Parametri geotecnici del terreno			
Peso dell'unità di volume terreno di fondazione		(γ)	t/mc	2.00
Angolo di attrito interno		(φ)	۰	30.00
Coesione		(c')	t/m ²	0.00
Кр				3.00000
Peso dell'unità di volume terreno di riporto		(γ_i)	t/mc	2.00

	Caratteristiche geometriche della fondazione					
Larghezza fondazione		В	m	6.60		
Lunghezza fondazione		L	m	12.70		
Eccentricità larghezza		e _x	m	0.00		
Approfondimento		D	m	4.50		

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO VELOCIZZAZIONE LINEA SAN GAVINO – SASSARI – OLBIA VARIANTE DI BAULADU						
Locale Vasca antincendio imbocchi GN01 - Relazione di calcolo		LOTTO 01 D 13	CODIFIC	A DOCUMENTO	REV.	FOGLIO 105 dl 105	
Inclinazione carico			i I ·	0.00		-	
Larghezza ridotta			B' m	and the second			
	Coefficenti fondazione]			
Nq				18.4011 e ^{(τ}			
Nγ				15.6680 (N			
Nc				30.1396 (N	q - 1) ctg (ç	ρ)	
	Fattori di forma						
Sc				1.3118 1+	0,2 * Kp (E	3/L)	
$s_q = s_\gamma$				1.1559 1+	0,1 * Kp (E	3/L)	
	Fattori di p	rofondi	tà				
d _c				1.2362 1	0,2 Kp^1/	2 * D/B	
$d_q = d_{\gamma}$				1.1181 1+	0,1 Kp^1/2	2 * D/B	
	attori di inclina arico	azione (del				
i _q = i _c				1.0000 (1	- i°/90)²		
lγ				1.0000 (1	- i°/ $arphi$) 2		
	Calcolo de	l carico	limite				
				214.0361 γr			
				133.6469 0,5	5 * Β' * γ *	N_{γ} * s_{γ} * d_{γ} * i	
				0.0000 c'	* Nc * s _c * c	l _c * i _c	
a.			t/m²	2 462 543 TO	TALE		

La verifica è soddisfatta

