COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

PROGETTAZIONE: RAGGRUPPAMENTO TEMPORANEO PROGETTISTI

PIZZAROTTI VSintagma

PROGETTISTA:

DIRETTORE DELLA **PROGETTAZIONE**

ite integrazione fra le varie , Dott. Ing. Pietro Mazzoli

IMPRESA PIZZAROTTI & C. S.p.A. Iscritto ordine Ingegnori di Parma n. 821/A

PROGETTO ESECUTIVO

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

OPERE D'ARTE DI LINEA E PUNTUALI – VIABILITA'

SOTTOVIA al km 15+150

Opere di sostegno delle rampe: Relazione di calcolo

APPALTATORE	
Consorzio CFT IL DIRETTORE TECNICO Geom C Bianchi 11/07/2015	CONSORZIO CANCELLO-FRASSO TELESINO Il Direttore Tecnico Corrado Bianchi

SCALA:

COMMESSA

LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA

PROGR.

REV.

1 N 0 1 Ε

0 0 2

B

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	A. Tagliaferri	11/05/2018	G Usai	11/05/2018	P Maziloli	11/05/2018	G. Usai
В	Recepimento istruttoria	A. Tagliaferri	11/07/2018	G. Usai	11/07/2018	P. Marzioli	11/07/2018	ORDINE
		74						100 A 100 A
								11/07/2018

File: IF1N.0.1.E.ZZ.CL.SL.07.0.0.002.B.doc

n. Elab.:

ITINERA

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA IF1N

LOTTO

CODIFICA

DOCUMENTO

REV.

В

FOGLIO

Opere di sostegno delle rampe: Relazione di calcolo

01 E ZZ

CL

SL0700 002

2 di 168

Indice

1	PREI	MESSA	4
2	NOR	MATIVA DI RIFERIMENTO	7
3	CAR	ATTERISTICHE DEI MATERIALI	8
4	UNIT	'A' DI MISURA	11
5	CAR	ATTERIZZAZIONE GEOTECNICA	12
6	OPE	RE DI SOSTEGNO TRA DIAFRAMMI	16
	6.1 C	CRITERI PROGETTUALI	16
	6.1.1	CLASSE D'USO	16
	6.1.2	PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA	16
	6.2 A	NALISI DEI CARICHI	17
	6.2.1	AZIONE DEL SOVRACCARICO A TERGO DEL MURO	17
	6.2.2	VALUTAZIONE DELL'AZIONE SISMICA	17
	6.3 N	MODELLO DI CALCOLO	22
	6.3.1	DESCRIZIONE DEL MODELLO DI CALCOLO	22
	6.4 R	RISULTATI DELLE ANALISI	43
		MODELLO DI CALCOLO 1	
	6.4.2	MODELLO DI CALCOLO 2	63
	6.4.3	MODELLO DI CALCOLO 3	78
	6.5 V	ERIFICA DEL TAPPO DI FONDO IN JET GROUTING	106
7	MUR	O AD "U" - RAMPA OVEST	109
	7.1 S	SEZIONE DI CALCOLO 1	109
	7.1.1	ANALISI DEI CARICHI	110
	7.1.2	DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI	113
	7.1.3	COMBINAZIONI DI CARICO	114
	7.1.4	ANALISI DELLE SOLLECITAZIONI	115
	7.2 S	SEZIONE DI CALCOLO 2	124
	7.2.1	ANALISI DEI CARICHI	125

8

9

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA

IF1N

LOTTO **01 E ZZ**

CODIFICA CL

DOCUMENTO SL0700 002

REV.

FOGLIO 3 di 168

Opere di sostegno	delle	rampe:	Relazione	dı
calcolo				

7.2.2	DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI	128
7.2.3	COMBINAZIONI DI CARICO	129
7.2.4	ANALISI DELLE SOLLECITAZIONI	129
INCI	DENZE ARMATURE	139
APP	ENDICE – DIAGRAMMI DI OUTPUT	140
9.1 N	10DELLO DI CALCOLO 1	140
9.1.1	DIAFRAMMI	140
9.1.2	FODERA INTERNA	144
9.1.3	SOLETTONE DI FONDO	147
9.1.4	PUNTONE PROVVISORIO	149
9.2 N	10DELLO DI CALCOLO 2	150
9.2.1	DIAFRAMMI	150
9.2.2	FODERA INTERNA	154
9.2.3	SOLETTONE DI FONDO	157
9.3 N	MODELLO DI CALCOLO 3	159
9.3.1	DIAFRAMMI	159
9.3.2	FODERA INTERNA	163
9.3.3	SOLETTONE DI FONDO	166

9.3.4 SOLETTONE DI COPERTURA......167

1 PREMESSA

Nell'ambito dell'Itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Cancello – Benevento - 1° Lotto Funzionale Cancello-Frasso Telesino e Variante alla Linea Roma-Napoli Via Cassino nel Comune di Maddaloni (compreso il Collegamento Merci con lo scalo di Marcianise - Collegamento Benevento-Marcianise) oggetto della Progettazione Esecutiva in esame.

Nella seguente relazione sono state analizzate le opere di sostegno costituite da diaframmi a sbalzo o con soletta di copertura, di dimensioni 250x120 cm ed il muro ad "U" presente in fase definitiva lungo la rampa lato ovest.

In particolare per le opere di sostegno con diaframmi sono state prese in esame le seguenti sezioni di calcolo:

- **Modello di calcolo 1**: Sezione di calcolo alla pk 140.30, altezza scavo 9.25 m, con diaframmi a sbalzo L=25 m e puntoni provvisori in fase di scavo.
- **Modello di calcolo 2**: Sezione di calcolo alla pk 213.90, altezza scavo 5.60 m, con diaframmi a sbalzo L=20 m e puntoni provvisori in fase di scavo.
- **Modello di calcolo 3**: Sezione di calcolo pk 109.50, altezza scavo 10.75 m, con diaframmi L=22 m e soletta di copertura di spessore 1.20 m.

Per il muro ad "U" definitivo, sono state considerate 2 sezioni tipologiche:

- Sezione di calcolo 1: sezione di calcolo alla pk 25.50, con altezza del parameto verticale pari a 2.50 m.
- Sezione di calcolo 2: sezione di calcolo alla pk 31.90, con altezza del parameto verticale massima pari a 6.0 m.

Vengono di seguito fornite le principali indicazioni inerenti il calcolo e le verifiche geotecniche dell'opera e le verifiche strutturali dei vari elementi.

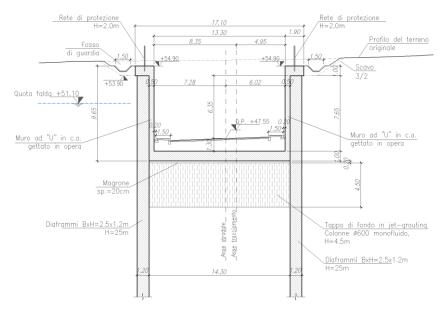


Fig. 1 – Opere di sostegno tra diaframmi: Sezione trasversale paratia alla pk 140.30

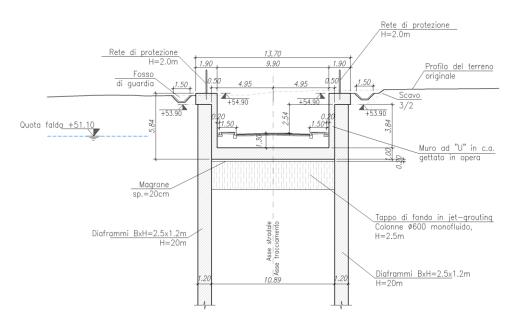


Fig. 2 – Opere di sostegno tra diaframmi: Sezione trasversale paratia alla pk 213.90

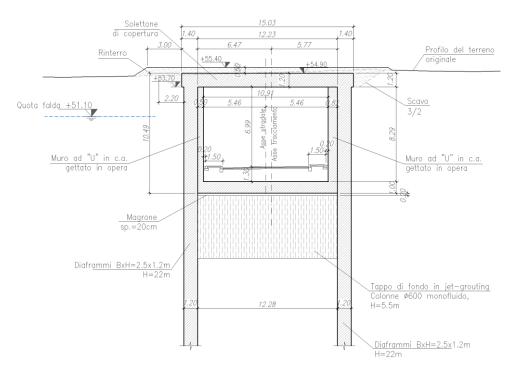


Fig. 3 – Opere di sostegno tra diaframmi: Sezione trasversale paratia alla pk 109.50

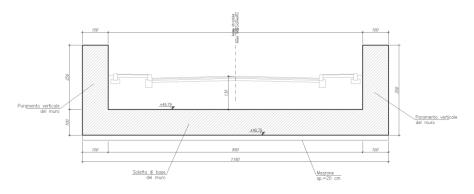


Fig. 4 – Muro ad "U" lato ovest: Sezione trasversale alla pk 25.50

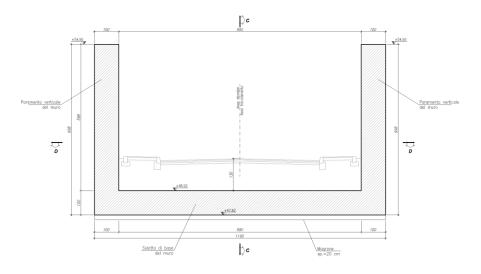


Fig. 5 – Muro ad "U" lato ovest: Sezione trasversale alla pk 31.90

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 7 di 168

2 NORMATIVA DI RIFERIMENTO

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- Decreto Ministeriale del 06 maggio 2008, «Integrazione al DM 14 gennaio 2008 di approvazione delle Nuove Norme Tecniche per le Costruzioni»
- Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- Istruzione RFI DTC INC PO SP IFS 004 Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- UNI EN 1991-1-1:2004 Azioni sulle strutture Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici
- UNI EN 1992-1-1: EUROCODICE 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1997-1:2005 Progettazione geotecnica Parte 1: Regole generali
- UNI EN 1998-1:2005 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici
- UNI EN 1998-5:2005 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici

3 CARATTERISTICHE DEI MATERIALI

Le caratteristiche dei materiali sono ricavate con riferimento alle indicazioni contenute nei capitoli 4 e 11 del D.M. 14 gennaio 2008. Nelle tabelle che seguono sono indicate le principali caratteristiche e i riferimenti dei paragrafi del D.M. citato.

Diaframmi e cordolo di coronamento

Calcestruzzo			
Classe	C25/30	▼	
R _{ck} =	30	Мра	Resistenza caratteristica cubica
$f_{ck} = 0.83 \cdot R_{ck} =$	24.9	Мра	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	32.9	Мра	Valore medio resistenza cilindrica
α_{cc} =	0.85	-	Coeff. Rid. Per carichi di lunga durata
γ _M =	1.5	-	Coeff. parziale di sicurezza allo SLU
$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_M =$	14.11	Мра	Resistenza di progetto
$f_{ctm} = 0.3 \cdot f_{ck}^{2/3} =$	2.56	Мра	Resistenza media a trazione semplice
$f_{cfm} = 1.2 \cdot f_{ctm} =$	3.07	Мра	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 \cdot f_{ctm} =$	1.79	Мра	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0.6 \cdot f_{ck} =$	14.94	Мра	Tenzione max in esercizio in comb. rara (rif. §4.1.2.2.5.1 [1])
$\sigma_c = 0.45 \cdot f_{ck} =$	11.21	Мра	Tenzione max in esercizio in comb. quasi perm. (rif. §4.1.2.2.5.1 [1])
$E_{cm} = 22000 \cdot (f_{cm}/10)^{0.3} =$	31447	Мра	Modulo elastico di progetto
ν =	0.2	-	Coefficiente di Poisson
$G_c = E_{cm}/(2(1+v)) =$	13103	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Aggressive	-	
Classe di esposizione =	XC2 ▼		
c =	6.00	cm	Copriferro minimo
w =	0.20	mm	Apertura massima fessure in esercizio comb. frequente (rif. §2.2.2 [5])

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 9 di 168

Rifodera interna diaframmi, solettoni e Muro ad "U" lato ovest

Calcestruzzo			
Classe	C32/40	▼	
R _{ck} =	40	Мра	Resistenza caratteristica cubica
$f_{ck} = 0.83 \cdot R_{ck} =$	33.2	Мра	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	41.2	Мра	Valore medio resistenza cilindrica
α_{cc} =	0.85	-	Coeff. Rid. Per carichi di lunga durata
γ _M =	1.5	-	Coeff. parziale di sicurezza allo SLU
$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_M =$	18.81	Мра	Resistenza di progetto
$f_{ctm} = 0.3 \cdot f_{ck}^{2/3} =$	3.10	Мра	Resistenza media a trazione semplice
$f_{cfm} = 1.2 \cdot f_{ctm} =$	3.72	Мра	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 \cdot f_{ctm} =$	2.17	Мра	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0.6 \cdot f_{ck} =$	19.92	Мра	Tenzione max in esercizio in comb. rara (rif. §4.1.2.2.5.1 [1])
$\sigma_c = 0.45 \cdot f_{ck} =$	14.94	Мра	Tenzione max in esercizio in comb. quasi perm. (rif. §4.1.2.2.5.1 [1])
$E_{cm} = 22000 \cdot (f_{cm}/10)^{0.3} =$	33643	Мра	Modulo elastico di progetto
ν =	0.2	-	Coefficiente di Poisson
$G_c = E_{cm}/(2(1+v)) =$	14018	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Aggressive	-	
Classe di esposizione =	XC4 ▼		
c =	4.00	cm	Copriferro minimo
w =	0.20	mm	Apertura massima fessure in esercizio comb. frequente (rif. §2.2.2 [5])

Acciaio ordinario per calcestruzzo armato

Acciaio			
B450C			
f _{yk} ≥	450	Мра	Tensione caratteristica di snervamento
$f_{tk} \ge$	540	Мра	Tensione caratteristica di rottura
$(f_t/f_y)_k \ge$	1.15	-	
$(f_t/f_y)_k <$	1.35	-	
$\gamma_s =$	1.15	-	Coeff. Parziale di sicurezza allo SLU
$f_{yd} = f_{yk}/\gamma_s =$	391.3	Мра	Tensione caratteristica di snervamento
E _s =	210000	Мра	Modulo elastico di progetto
$\varepsilon_{\rm yd}$ =	0.20%		Deformazione di progetto a snervamento
$\varepsilon_{uk} = (A_{gt})_k =$	7.50%		Deformazione caratteristica ultima
$\sigma_s = 0.80 \cdot f_{yk} =$	360	Мра	Tensione in esercizio in comb. rara (rif. §4.1.2.2.5.2 [1])

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	10 di 168

Acciaio per tubi e profilati metallici

Acciaio da carpeteri	ia metallica			
S275				
f _{yk} ≥	275	Мра	Tensione caratteristica di snervamento	
$\gamma_s =$	1.05	-	Coeff. Parziale di sicurezza allo SLU	
$f_{yd} = f_{yk}/\gamma_s =$	261.9	Мра	Tensione caratteristica di snervamento	
E _s =	210000	Мра	Modulo elastico di progetto	

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 11 di 168

4 UNITA' DI MISURA

Si utilizza il Sistema Internazionale (SI):

unità di misura principali

N (Newton) unità di forza

m (metro) unità di lunghezza

kg (kilogrammo-massa) unità di massa

s (secondo) unità di tempo

unità di misura derivate

kN (kiloNewton) 10³ N

MN (megaNewton) 10⁶ N

kgf (kilogrammo-forza) 1 kgf = 9.81 N

cm (centimetro) 10⁻² m

mm (millimetro) 10⁻³ m

Pa (Pascal) 1 N/m2

kPa (kiloPascal) 103 N/m²

MPa (megaPascal) 106 N/m²

N/m3 (peso specifico)

g (accelerazione di gravità) ~9.81 m/s²

corrispondenze notevoli

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

1 MPa ~ 10 kgf/cm²

 $1 \text{ kN/m3} \sim 100 \text{ kgf/m}^3$

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

 γ peso dell'unità di volume (kN/m³)

 σ tensione normale (N/mm²)

 τ tensione tangenziale (N/mm²)

ε deformazione (m/m - adimensionale)

φ angolo di resistenza (° sessagesimali)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 12 di 168

5 CARATTERIZZAZIONE GEOTECNICA

I sondaggi di riferimento sono il P25 (attrezzato con piezometro) della precedente campagna di indagini allegata al PD e il sondaggio PE-S34 eseguito nella campagna di indagini integrative per il Progetto Esecutivo. Quest'ultimo sondaggio, attrezzato con piezometro, ha previsto prove SPT in foro, prove geotecniche di laboratorio e prove di permeabilità in foro.

Uno stralcio della planimetria con ubicazione delle indagini è riportata nella figura 1 seguente.

I risultati dell'indagine integrativa non hanno modificato sostanzialmente i modelli geologici e geotecnici utilizzati nel PD, in termini di stratigrafia e parametri geotecnici.

Alcune differenze sono emerse dalle misure piezometriche i cui risultati sono commentati di seguito.

Nella tabella seguente si riassume la stratigrafia presa come riferimento per la progettazione.

Strato	Profondità Da (m da p.c.)	Profondità a (m da p.c.)	Descrizione	N _{SPT} (colpi/30cm)				
1	0.0	3.0	Limi sabbiosi	-				
2	2 3.0 25.0		Sabbie limose piroclastiche (tufo grigio campano in facies sciolta)	20 - 40				
Profondità d	Profondità della falda: 3 ÷ 5 m da p.c. (vedi tabella misure piezometriche)							

Nella tabella seguente si riassumono i parametri geotecnici come desunti dalla caratterizzazione geotecnica generale.

Danamatri	Strato 1	Strato 2
Parametri	L(S)	S(L)
γ _t (kN/m³)	17	17
GSI	-	-
σ _c (MPa)	-	-
σ _t (MPa)	-	-
m _i (-)	-	-
φ' (°)	30	32
c' (kPa)	0	0
c _u (kPa)	-	-
V _s (m/s)	80 – 120(*)	170 - 200 (*)
G₀ (MPa)	12 – 25 ^(*)	70 - 90 ^(*)
E _{op} (MPa)	6 – 10(*)	30 - 40(*)
v' (-)	0.25	0.25
k (m/s)	5 x 10 ⁻⁵	5 x 10 ⁻⁵

Nota: (*) crescente con la profondità

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	13 di 168

Si fa presente che il piano di posa dello scatolare è costituito da materiale trattato con jet-grouting. Tuttavia, ai fini delle verifiche geotecniche dello scatolare, si farà riferimento, in via cautelativa, ai parametri di resistenza dei terreni in posto costituiti da sabbie limose (SL), elencati in precedenza.

Per i parametri geotecnici dei rilevati ferroviari si assumono invece i seguenti valori:

peso volume γ=20 kN/m³
 angolo d'attrito φ'=38°
 coesione efficace c'=0 kPa

La classe di suolo, stabilita sulla base delle prove SPT e in analogia a quanto indicato nel PD, è stata assunta pari alla C.

Per quanto riguarda le condizioni idrogeologiche, la tabella seguente riassume i risultati delle misure piezometriche eseguite nei due piezometri disponibili, il piezometro P25 del progetto definitivo e il piezometro PE-S34 del progetto esecutivo. Per il P25 si hanno a disposizione le misure del periodo compreso tra settembre 2014 e aprile 2015 e poi quelle più recenti della campagna di indagini del PE (marzo e aprile 2018). Per il PE-S34 si dispone finora dell'unica misure eseguita nell'aprile 2018. Il piano di indagini prevede di continuare il monitoraggio.

MISURE PIEZOMETRICHE

Piezometro (q. m s.l.m.)	18-19/09/2014		5-6/12/2014		16-17/01/2015	
	m(da p.c.)	m (s.l.m)	m(da p.c.)	m (s.l.m)	m(da p.c.)	m (s.l.m)
P25 (54.80)	5.08	49.72	4.41	50.39	4.96	49.84

Piezometro (q. m s.l.m.)	14/02/2015		13/03/2015		17/04/2015	
	m(da p.c.)	m (s.l.m)	m(da p.c.)	m (s.l.m)	m(da p.c.)	m (s.l.m)
P25 (54.80)	3.05	51.75	3.35	51.45	4.15	50.65

Piezometro (q. m s.l.m.)	29/03/2018		5/04/2018		10/04/2018	
	m(da p.c.)	m (s.l.m)	m(da p.c.)	m (s.l.m)	m(da p.c.)	m (s.l.m)
P25 (54.80)	3.10	51.70				
PE-S34 (54.00)			4.10	49.90	4.10	49.90

Piezometro (q. m s.l.m.)	29/03/2018		5/04/2018		10/04/2018	
	m(da p.c.)	m (s.l.m)	m(da p.c.)	m (s.l.m)	m(da p.c.)	m (s.l.m)
P25 (54.80)	3.10	51.70				
PE-S34 (54.00)			4.10	49.90	4.10	49.90

Piezometro (q. m s.l.m.)	16/04/2018		19/04/2018			
	m(da p.c.)	m (s.l.m)	m(da p.c.)	m (s.l.m)	m(da p.c.)	m (s.l.m)
P25 (54.80)	4.10	50.70				
PE-S34 (54.00)			4.10	49.90		

Per una maggiore comprensione delle letture piezometriche si riporta nella figura seguente uno stralcio della planimetria con ubicazione dei piezometri.

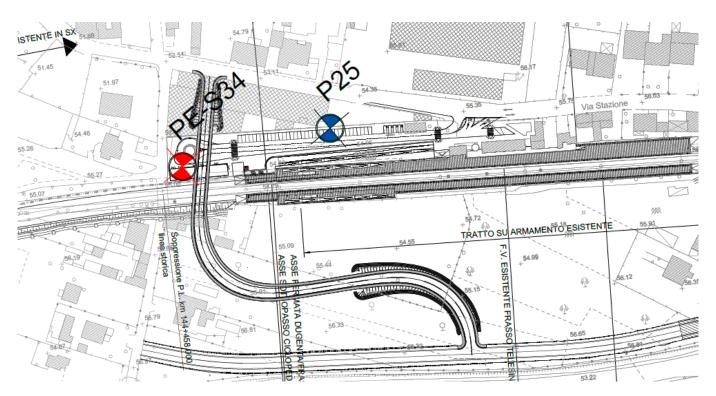


Figura 1 – Stralcio della planimetria con ubicazione delle indagini (fuori scala)

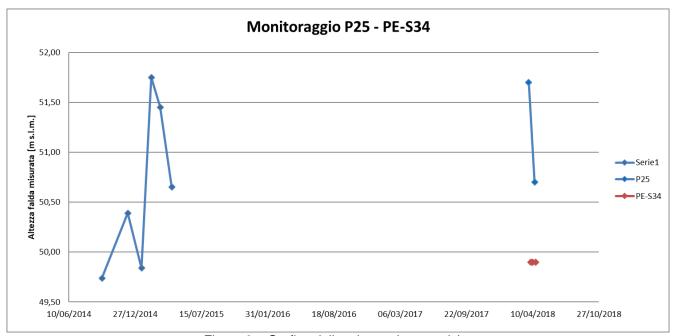


Figura 2 – Grafico delle misure piezometriche

Dai dati finora disponibili emerge che l'andamento dei livelli piezometrici è congruente con i regimi tipici dell'idrogeologia delle falde freatiche superficiali. Si evidenzia, infatti, un minimo piezometrico alla fine dell'estate (quota di falda a 49.72 m s.l.m. nel settembre 2014), una risalita invernale con il picco tra febbraio e marzo (51.75

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	15 di 168

m s.l.m. nel febbraio 2015) e una tendenza alla discesa nella primavera. Questo trend sembra confermato dalle misure eseguite recentemente che hanno evidenziato una quota di picco (51.70 m s.l.m. nel marzo 2018) sostanzialmente analogo a quello del febbraio 2015 e un inizio di abbassamento a partire da aprile.

ITINERA

Le misure di aprile 2018 nel PE-S34 (in corrispondenza del sottopasso) sono sostanzialmente analoghe (in termini di profondità) a quella dello stesso periodo del P25 (poco a nord del sottopasso), ma la quota del PE-S34 è inferiore di 80 cm rispetto a quella del P25. Purtroppo non si dispone di una misura del PE-S34 nel marzo 2018 quindi non si può stabilire con sicurezza se durante il picco di marzo si verifichi o meno lo stesso dislivello tra i due piezometri. Allo stato attuale delle conoscenze si può supporre che esista una lieve cadente della falda verso sud e cioè verso la valle del torrente San Giorgio (dal P25 verso il PE-S34, vedi figura precedente).

Pur essendo consapevoli che per una corretta analisi del regime idrogeologico di una falda sarebbero necessarie misure estese su vari cicli stagionali e disponendo di una rete piezometrica sicuramente più fitta di quella considerata, i dati finora acquisiti possono indicare che il picco raggiunto nel marzo 2015 (e poi nel 2018) non costituisca, con molte probabilità, un evento isolato, ma che invece rappresenti un normale trend della falda. Non si può stabilire se questo picco rappresenti il massimo assoluto raggiunto in passato (e raggiungibile in futuro) dalla falda, ma è verosimile che esso sia un valore prossimo al massimo. Si hanno invece poche informazioni sulle quote della falda nel periodo estivo, che però hanno influenze relativamente meno importanti sugli aspetti progettuali.

Poiché non è possibile stimare l'esatto periodo delle lavorazioni e considerato che il progetto prevede di mantenere per lunghi periodi gli scavi aperti e sotto falda (per la realizzazione e la spinta del monolite), è lecito assumere che la falda possa raggiungere, durante i lavori, la quota 51.75 m s.l.m nella zona poco a nord del sottopasso. Assumendo la stessa cadente piezometrica verificata durante le ultime letture, si assume come **quota di falda di progetto** in corrispondenza del sottopasso e delle relative trincee di imbocco (per le analisi in fase di costruzione e poi di esercizio) una quota massima leggermente inferiore, pari a **+51.10 m s.l.m**..

Il dimensionamento (verifica al sollevamento) del tappo di fondo e delle opere di sostegno è stato quindi effettuato con la suddetta quota della falda di progetto (+51.10 m s.l.m.).

La stessa quota di falda (+51.10 m s.l.m.) è stata considerata per la definizione della geometria dello schermo laterale in jet-grouting da eseguire al di sotto dei binari e che serve per la tenuta idraulica dello scavo in fase di spinta del monolite.

L'estensione del tappo di fondo nei tratti di raccordo della trincea di imbocco al sottopasso è stato definito basandosi sulla quota di falda di progetto, in modo da evitare interferenze dello scavo (in fase di costruzione e di esercizio) con la falda idrica. Per garantire la tenuta idraulica della viabilità in esercizio, nella trincea di imbocco lato Dugenta è stato previsto un muro a U. Sul lato opposto la tenuta è garantita dai diaframmi e dalla struttura di rivestimento.

All'inizio della trincea di imbocco lato Dugenta, per evitare rischi che su lunghi periodi ci possa essere una risalita della falda che provochi un travaso delle acque sotterranee all'interno della trincea, è stato previsto un setto di sbarramento al di sotto dei muri a U, associato ad un sistema di drenaggio che possa raccogliere le acque eventualmente traboccanti al di sopra del setto, convogliandole nella camera di sollevamento. I dettagli del sistema di smaltimento delle acque sono contenuti nell'elaborato IF1N.0.1.E.ZZ.P8.IF.21.0.5.004.A.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 16 di 168

6 OPERE DI SOSTEGNO TRA DIAFRAMMI

6.1 CRITERI PROGETTUALI

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

Nel presente caso l'opera viene inserita nella seguente tipologia di costruzione :

2) Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale,

la cui vita nominale è pari a: 75 anni.

6.1.1 CLASSE D'USO

In presenza di azioni sismiche, con riferimento alle conseguenze di un' interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso:

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarire extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Il coefficiente d'uso C∪ è pari a: 1.50.

6.1.2 PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione al periodo di riferimento V_R ricavato, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U .

Pertanto $V_R = 75 \times 1.5 = 112.5 \text{ anni}$

6.2 ANALISI DEI CARICHI

6.2.1 AZIONE DEL SOVRACCARICO A TERGO DEL MURO

In fase di scavo provvisorio e di esercizio dell'opera, si adotta un sovraccarico accidentale pari a 10 kPa dovuto ai mezzi di cantiere (in fase provvisoria) e a carichi accidentali (in fase di esercizio).

La sovraccarico viene annullato durante la fase di applicazione dell'azione sismica.

6.2.2 VALUTAZIONE DELL'AZIONE SISMICA

L'opera in oggetto viene progettata per una vita nominale $V_N = 75$ anni ed una classe d'uso III a cui corrisponde un coefficiente d'uso $C_U = 1.5$.

L'azione sismica di progetto è definita per lo Stato Limite di Salvaguardia della Vita (SLV). Il periodo di ritorno di quest'ultima - in funzione della vita utile, della classe d'uso, del tipo di costruzione e dello stato limite di riferimento (prima definiti) - è di 1068 anni.

Essa, conformemente a quanto prescritto dalle Nuove Norme Tecniche, è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste. Tale pericolosità sismica è descritta, in termini geografici e temporali:

- attraverso i valori di accelerazione orizzontale di picco ag (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione S_e(T)
- in corrispondenza del punto del reticolo che individua la posizione geografica dell'opera Coordinate del sito

Longitudine: 14.45874 Latitudine: 41.13540

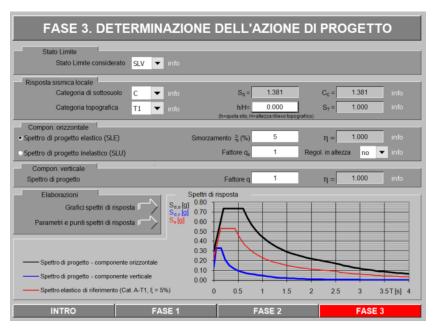
- (*) La schermata precedente fa riferimento alle coordinate mentre la ricerca per Comune è disattivata
- con riferimento a prefissate probabilità di eccedenza PvR.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	18 di 168

calcolo


In particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

- ag, accelerazione orizzontale massima del terreno
- F₀, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- T_C*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

SLATO	T _R	a_g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.072	2.406	0.328
SLD	113	0.089	2.438	0.346
SLV	1068	0.213	2.495	0.436
SLC	2193	0.276	2.497	0.449

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici. Si assume come spettro di progetto quello elastico allo SLV e SLD.

La categoria di sottosuolo è di tipo C; la categoria topografica è di tipo T1.

STATO LIMITE	SLV
a _n	0.213 g
F	2.495
T _C ⁺	0.436 s
Ss	1.381
C _C	1.381
S _T	1.000
a	1.000

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 19 di 168

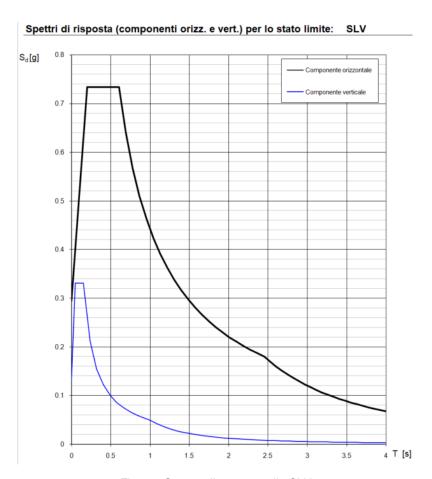
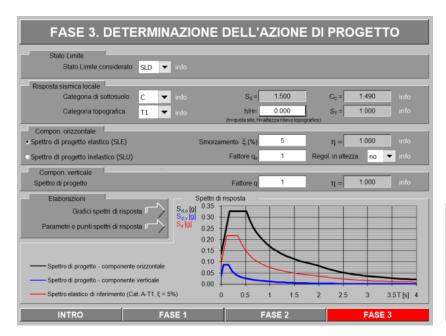


Fig. 6 – Spettro di progetto allo SLV



ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	20 di 168

STATO LIMITE	SLD
a _o	0.089 g
F ₀	2.438
T _C [*]	0.346 s
Ss	1.500
C _C	1.490
S _⊤	1.000
q	1.000

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLD

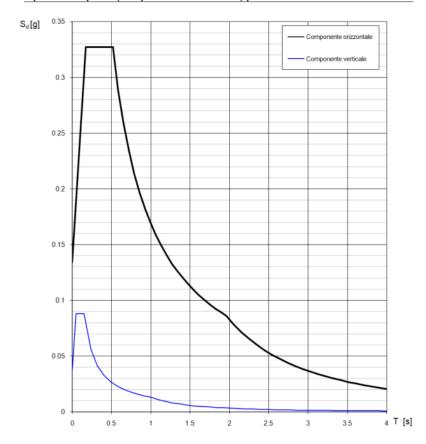


Fig. 7 - Spettro di progetto allo SLD

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 21 di 168

L'incremento di spinta del terreno in fase sismica viene valutata come segue:

- per le sezioni di verifica relative ai diaframmi a sbalzo (modello di calcolo 1 e 2), sarà stimato a partire dalla relazione di Mononobe-Okabe, relativa a opere di sostegno flessibili, e applicato lungo tutta l'altezza dei diaframmi come carico uniformemente distribuito;
- per la sezione di verifica in corrispondenza dei diaframmi con solettone di copertura (modello di calcolo 3), sarà stimato secondo la teoria di Wood, relativa a opere rigide puntonate su più livelli, e applicato, anche in questo caso, come carico uniformemente distribuito lungo tutta l'altezza dei diaframmi.

ITINERARIO NAPOLI – BARI

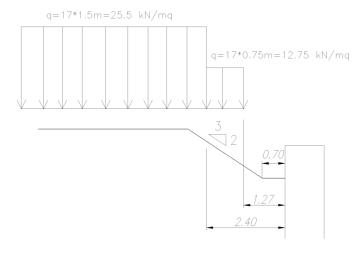
RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 22 di 168

6.3 MODELLO DI CALCOLO


6.3.1 DESCRIZIONE DEL MODELLO DI CALCOLO

6.3.1.1 MODELLO DI CALCOLO 1:

I diaframmi, di spessore pari 1.20m, hanno lunghezza complessiva pari a 25m, a cui va sommato il cordolo di coronamento di spessore 1.0 m.

Lo scavo massimo risulta pari a 10.25 m. Per limitare gli spostamenti orizzontali in testa, prima del getto della fodera interna, si utilizzano puntoni in acciaio costituiti da profili tubolari ø600mm sp.=15mm posti ad interasse 5.0 m. E' presente, alla base dello scavo, un solettone di fondo in cls armato gettato su un tappo di fondo in jet-grouting con spessore pari a 4.5 m realizzato preliminarmente allo scavo.

A monte si considera un sovraccarico permanente dovuto al terreno presente secondo lo schema che segue:

 $q_{1_terr} = (17 \text{ kN/m}^3 \cdot 0.75 \text{ mq}) = 12.75 \text{ kN/mq}$

 $q_{2_{\text{terr}}} = (17 \text{ kN/m}^3 \cdot 1.50 \text{ mq}) = 25.50 \text{ kN/mq}$

Inoltre, durante tutti gli step di calcolo, si considera a monte un sovraccarico accidentale pari a 10 kPa.

00000

La fasi di calcolo risultano:

- STEP 0): Realizzazione diaframmi e cordolo di coronamento. Il piano campagna è posto ad una quota di +53.9 m s.l.m. (testa diaframmi); a monte si considera un sovraccarico accidentale pari a 10 kPa, ed i sovraccarichi permanenti dovuti al rinterro (12.75 kPa e 25.50 kPa); la quota della falda è pari a +51.10 m s.l.m..
- STEP 1): Scavo fino alla profondità di esecuzione del jet-grouting (+51.60 m s.l.m.); medesimi sovraccarichi permanenti e accidentali della fase precedente.
- STEP 2): Realizzazione tappo di fondo in jet grouting da quota +44.65 a quota +40.15 m s.l.m. (spessore totale pari a 4.5 m); medesimi sovraccarichi permanenti e accidentali della fase precedente.

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	23 di 168

- STEP 3): Realizzazione puntone in acciaio in testa; medesimi sovraccarichi permanenti e accidentali della fase precedente.
- STEP 4): Scavo fino alla profondità massima pari a 10.25 m dalla testa del cordolo (+44.65 m s.l.m.); medesimi sovraccarichi permanenti e accidentali della fase precedente.
- STEP 5): Realizzazione del solettone di fondo con spessore 1.0m; medesimi sovraccarichi permanenti e accidentali della fase precedente.
- STEP 6): Realizzazione della fodera interna in cls; medesimi sovraccarichi permanenti e accidentali della fase precedente.
- STEP 7): Eliminazione del puntone in testa (condizioni di esercizio in fase statica); sovraccarico accidentale a monte asimmetrico pari a 10 kPa; medesimo sovraccarico permanente della fase precedente. Il livello piezometrico si pone alla quota di intradosso del solettone di fondo (+44.65 m s.l.m.) per simulare eventuali venute d'acqua a lungo termine (mentre all'esterno della paratia si mantiene la falda a g. +51.10 m s.l.m..
- STEP 8): Applicazione dell'azione sismica; sovraccarico accidentale in testa nullo con le stesse ipotesi circa le quote di falda della fase precedente.

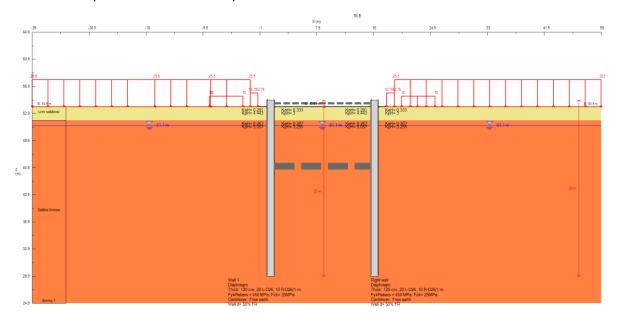


Fig. 8 – Modello di calcolo 1: STEP 0

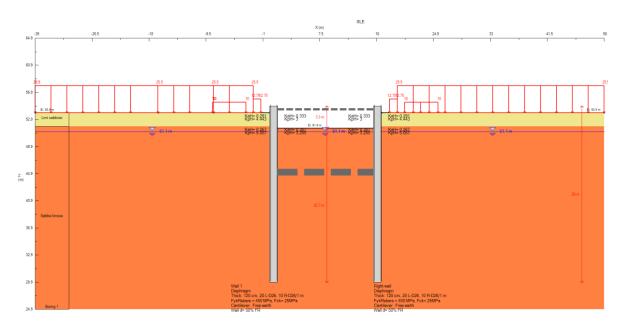


Fig. 9 - Modello di calcolo 1: STEP 1

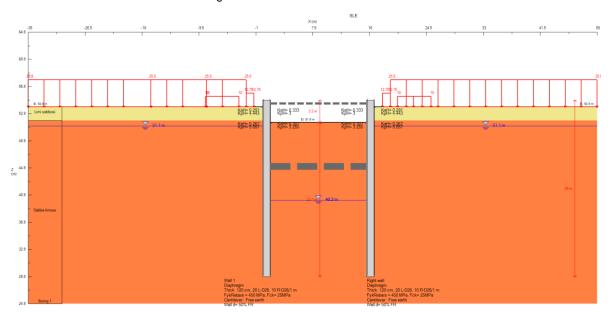


Fig. 10 – Modello di calcolo 1: STEP 2

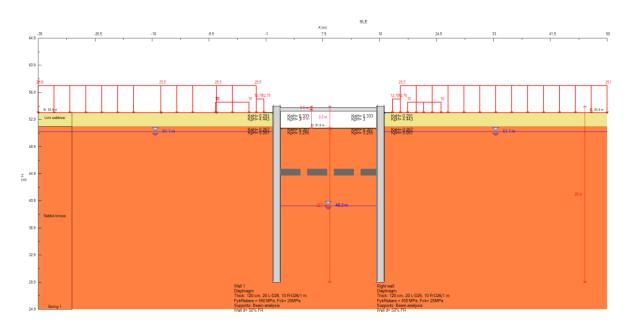


Fig. 11 - Modello di calcolo 1: STEP 3

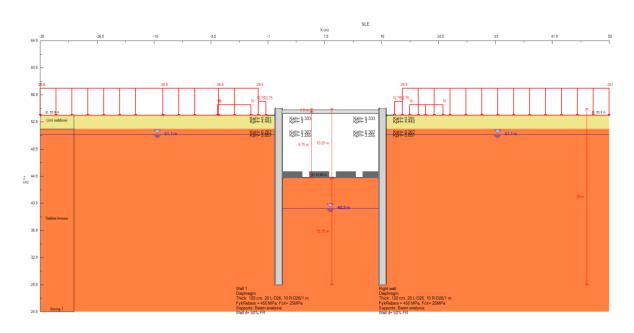


Fig. 12 - Modello di calcolo 1: STEP 4

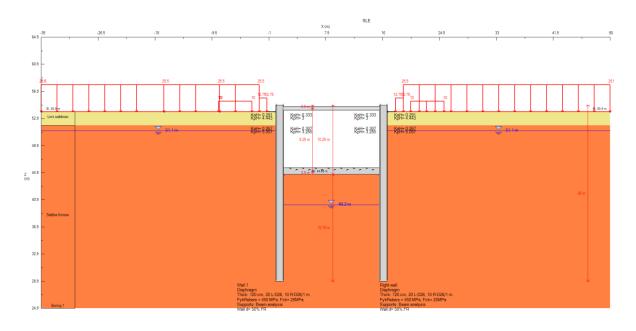


Fig. 13 - Modello di calcolo 1: STEP 5

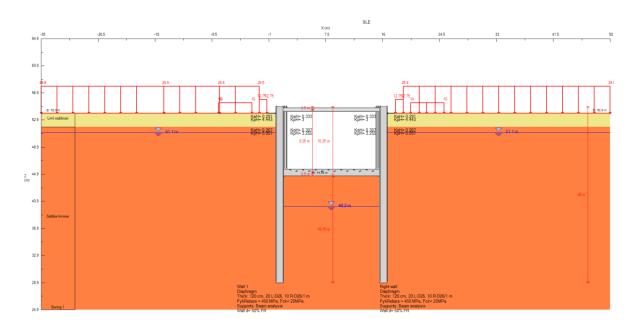


Fig. 14 - Modello di calcolo 1: STEP 6

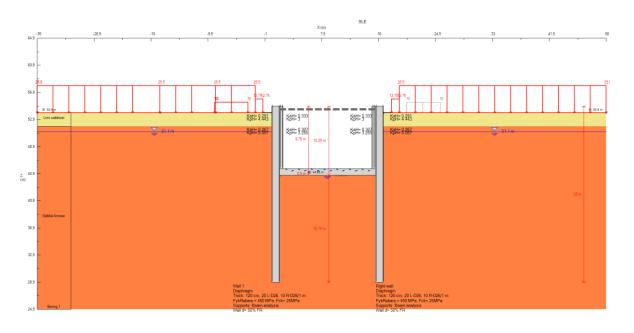


Fig. 15 – Modello di calcolo 1: STEP 7

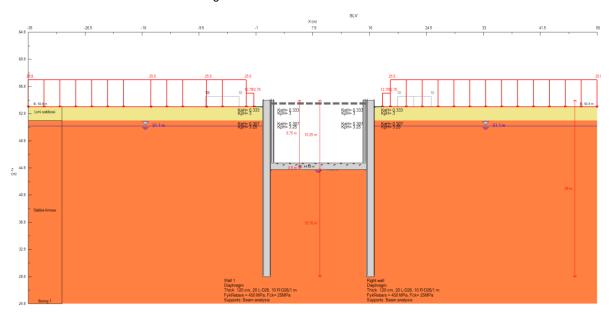


Fig. 16 – Modello di calcolo 1: STEP 8

L'applicazione dell'incremento di spinta del terreno in fase sismica viene considerata in accordo alla teoria di Mononobe-Okabe.

Ai sensi del DM 14/01/2008 §7.11.6.3.1, si considera un coefficiente sismico valutato come segue:

$$a_h = k_h \cdot g = \alpha \cdot \beta \cdot a_{max}$$

con:

- k_h coefficiente sismico in direzione orizzontale:
- α coefficiente per deformabilità dei terreni interagenti con l'opera;
- β coefficiente funzione della capacità dell'opera di subire spostamenti senza cadute di resistenza;

a_{max}=S_S·S_T·a_g accelerazione di picco;

- S_S coefficiente di amplificazione stratigrafica;
- S_T coefficiente di amplificazione tipografica.

Inoltre, per le paratie, è possibile porre:

 $a_v = 0$ coefficiente sismico verticale.

Il coefficiente α può essere ricavato a partire dall'altezza complessiva H della paratia e dalla categoria di sottosuolo mediante il diagramma che segue [§7.11.6.3.1 DM 14/01/2008]. Nella valutazione di H, si è preso in conto la lunghezza del diaframma sommata all'altezza del cordolo di coronamento (25 m + 1 m = 26 m).

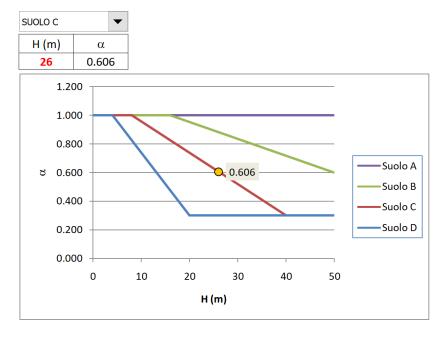


Fig. 17 – Modello di calcolo 1: Diagramma per la valutazione del coefficiente di deformabilità α

Il coefficiente β può essere ricavato in funzione del massimo spostamento u_s che l'opera può tollerare senza riduzioni di resistenza [§7.11.6.3.1 DM 14/01/2008]. Dovendo risultare:

 $u_s \le 0.005 \cdot H$

nel calcolo del coefficiente β è stato considerato cautelativamente uno spostamento massimo pari a u_s=(0.005·H)/2, la metà quindi di quello massimo assumibile. Risulta dunque:

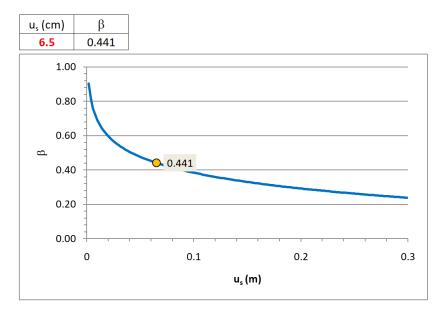


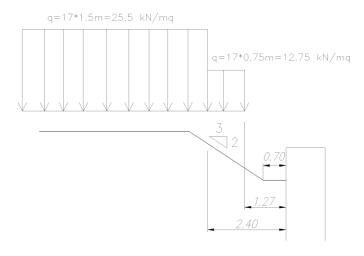
Fig. 18 – Modello di calcolo 1: Diagramma per la valutazione del coefficiente di spostamento β

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 30 di 168

6.3.1.2 MODELLO DI CALCOLO 2

I diaframmi, di spessore pari 1.20m, hanno lunghezza complessiva pari a 20m, a cui va sommato il cordolo di coronamento di spessore 1.0 m.

Lo scavo massimo risulta pari a 6.6 m dalla testa del cordolo di coronamento. Per limitare gli spostamenti orizzontali in testa, prima del getto della fodera interna, si utilizzano puntoni in acciaio costituiti da profili tubolari ø600mm sp.=15mm posti ad interasse 5.0 m. E' presente, alla base dello scavo, un solettone di fondo in cls armato al di sotto del guale si prevede la realizzazione di un tappo di fondo in jet-grouting con spessore pari a 2.0 m.

A monte si considera un sovraccarico permanente dovuto al terreno presente secondo lo schema che segue:

 $q_{1_{terr}} = (17 \text{ kN/m}^3 \cdot 0.75 \text{ mq}) = 12.75 \text{ kN/mq}$

 $q_{2_{terr}} = (17 \text{ kN/m}^3 \cdot 1.50 \text{ mg}) = 25.50 \text{ kN/mg}$

Inoltre, durante tutti gli step di calcolo, si considera a monte un sovraccarico accidentale pari a 10 kPa.

00000

La fasi di calcolo risultano:

- STEP 0): Realizzazione diaframmi e cordolo di coronamento. Il piano campagna è posto ad una quota di +53.9 m s.l.m. (testa diaframmi); a monte si considera un sovraccarico accidentale pari a 10 kPa, ed i sovraccarichi permanenti dovuti al rinterro (12.75 kPa e 25.50 kPa); la quota della falda è pari a +51.10 m s.l.m..
- STEP 1): Scavo fino alla profondità di esecuzione del jet-grouting (+51.60 m s.l.m.); medesimi sovraccarichi permanenti e accidentali della fase precedente.
- STEP 2): Realizzazione tappo di fondo in jet grouting da quota +48.30 a quota +46.30 m s.l.m. (spessore totale pari a 2.0 m); medesimi sovraccarichi permanenti e accidentali della fase precedente.
- STEP 3): Scavo fino alla profondità massima pari a 6.60 m dalla testa del cordolo +48.30 m s.l.m.); medesimi sovraccarichi permanenti e accidentali della fase precedente.
- STEP 4): Realizzazione del solettone di fondo con spessore 1.0m; medesimi sovraccarichi permanenti e accidentali della fase precedente.
- STEP 5): Realizzazione della fodera interna in cls; medesimi sovraccarichi permanenti e accidentali della fase precedente.

STEP 6): Eliminazione del puntone in testa (condizioni di esercizio in fase statica); sovraccarico accidentale a monte asimmetrico pari a 10 kPa; medesimo sovraccarico permanente della fase precedente. Il livello piezometrico si pone alla quota di intradosso del solettone di fondo (+48.30 m s.l.m.) per simulare eventuali venute d'acqua a lungo termine (mentre all'esterno della paratia si mantiene la falda a q. +51.10 m s.l.m..

STEP 7): Applicazione dell'azione sismica; sovraccarico accidentale in testa nullo con le stesse ipotesi circa le quote di falda della fase precedente.

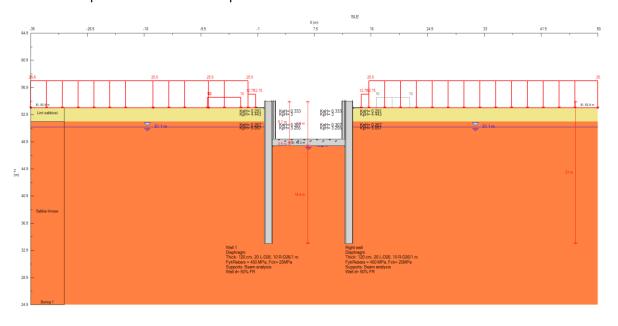


Fig. 19 - Modello di calcolo 2: STEP 0

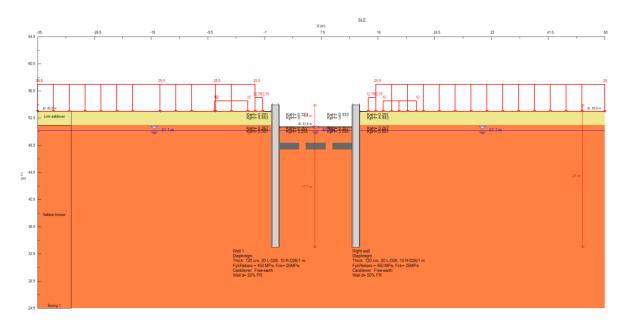


Fig. 20 - Modello di calcolo 2: STEP 1

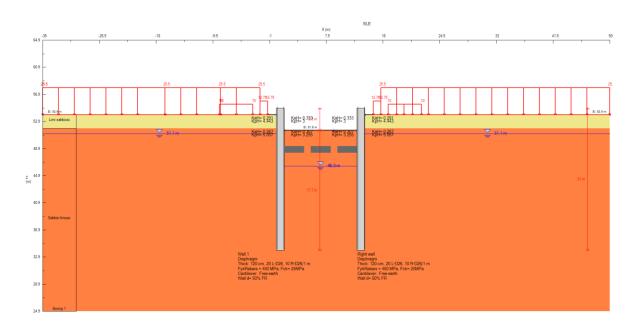


Fig. 21 – Modello di calcolo 2: STEP 2

Fig. 22 - Modello di calcolo 2: STEP 3

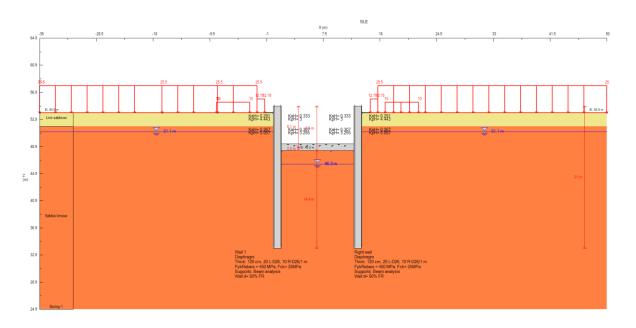


Fig. 23 - Modello di calcolo 2: STEP 4

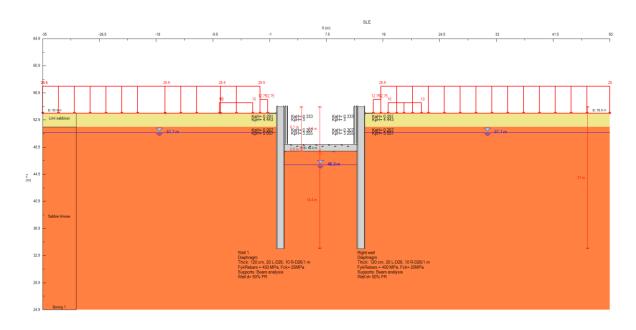


Fig. 24 – Modello di calcolo 2: STEP 5

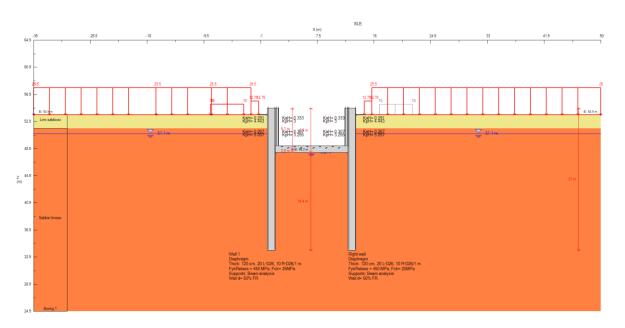


Fig. 25 - Modello di calcolo 2: STEP 6

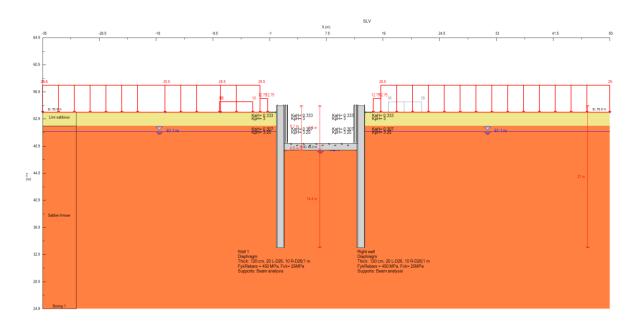


Fig. 26 - Modello di calcolo 2: STEP 7

L'applicazione dell'incremento di spinta del terreno in fase sismica viene considerata in accordo alla teoria di Mononobe-Okabe.

Ai sensi del DM 14/01/2008 §7.11.6.3.1, si considera un coefficiente sismico valutato come segue:

$$a_{\text{h}} = k_{\text{h}} {\boldsymbol \cdot} g = \alpha {\boldsymbol \cdot} \beta {\boldsymbol \cdot} a_{\text{max}}$$

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	35 di 168

con:

- k_h coefficiente sismico in direzione orizzontale:
- α coefficiente per deformabilità dei terreni interagenti con l'opera;
- β coefficiente funzione della capacità dell'opera di subire spostamenti senza cadute di resistenza;

 $a_{max}=S_S \cdot S_T \cdot a_g$ accelerazione di picco;

- S_S coefficiente di amplificazione stratigrafica;
- S_T coefficiente di amplificazione tipografica.

Inoltre, per le paratie, è possibile porre:

 $a_v = 0$ coefficiente sismico verticale.

Il coefficiente α può essere ricavato a partire dall'altezza complessiva H della paratia e dalla categoria di sottosuolo mediante il diagramma che segue [§7.11.6.3.1 DM 14/01/2008]. Nella valutazione di H, si è preso in conto la lunghezza del diaframma sommata all'altezza del cordolo di coronamento (20 m + 1 m = 21 m).

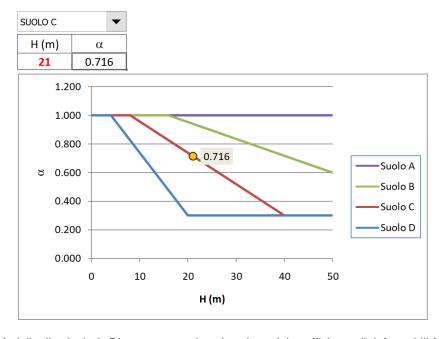


Fig. 27 – Modello di calcolo 2: Diagramma per la valutazione del coefficiente di deformabilità α

Il coefficiente β può essere ricavato in funzione del massimo spostamento u_s che l'opera può tollerare senza riduzioni di resistenza [§7.11.6.3.1 DM 14/01/2008]. Dovendo risultare:

 $u_s \le 0.005 \cdot H$

nel calcolo del coefficiente β è stato considerato cautelativamente uno spostamento massimo pari a u_s=(0.005·H)/2 la metà quindi di quello massimo assumibile. Risulta dunque:

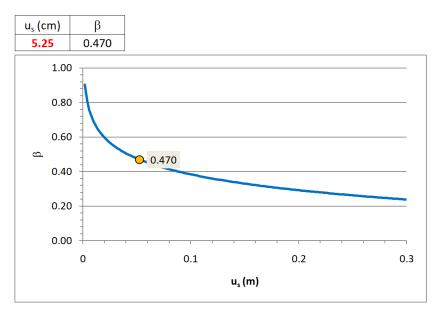
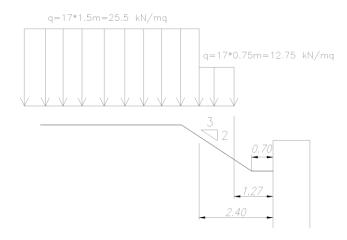


Fig. 28 – Modello di calcolo 2: Diagramma per la valutazione del coefficiente di spostamento β

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	37 di 168

6.3.1.3 MODELLO DI CALCOLO 3

I diaframmi, di spessore pari 1.20m, hanno lunghezza complessiva pari a 22m, a cui va sommato il cordolo di coronamento di spessore 1.0 m.

Lo scavo massimo risulta pari a 10.55 m dalla testa del cordolo di coronamento. In testa ai diaframmi è previsto un solettone di copertura in c.a., di spessore pari a 1.2m, da realizzare prima dello scavo. Inoltre è presente, alla base dello scavo, un solettone di fondo in cls armato al di sotto del quale si prevede la realizzazione di un tappo di fondo in jet-grouting con spessore pari a 5.5 m.

In fase di costruzione si considera a monte un sovraccarico permanente dovuto al terreno presente ai lati del prescavo valutato secondo lo schema che segue:

$$q_{1_{terr}} = (17 \text{ kN/m}^3 \cdot 0.75 \text{ mq}) = 12.75 \text{ kN/mq}$$

$$q_{2_{terr}} = (17 \text{ kN/m}^3 \cdot 1.50 \text{ mg}) = 25.50 \text{ kN/mg}$$

In fase di eseecizio si considera, invece, un rinterro fino alla quota del p.c. (\pm 54.90 m s.l.m.) ed un carico uniformemente distribuito ai lati dell'opera e sulla soletta di copertura dovuto al ritombamento di 0.5 m, duqnue pari a q=17 kN/m³ * 0.5 m = 8.25 kN/m².

Inoltre, durante tutti gli step di calcolo in fase statica, si considera a monte un sovraccarico accidentale pari a 10 kPa, che viene annullato in fase sismica.

00000

La fasi di calcolo risultano:

- STEP 0): Realizzazione diaframmi e cordolo di coronamento. Il piano campagna è posto ad una quota di +53.7 m s.l.m. (testa diaframmi); a monte si considera un sovraccarico accidentale pari a 10 kPa, ed i sovraccarichi permanenti dovuti al rinterro (12.75 kPa e 25.50 kPa); la quota della falda è pari a +51.10 m s.l.m..
- STEP 1): Realizzazione tappo di fondo in jet grouting da quota +44.15 a quota +38.65 m s.l.m. (spessore totale pari a 5.5 m); medesimi sovraccarichi permanenti e accidentali della fase precedente.
- STEP 2): Realizzazione solettone di copertura; ai medesimi sovraccarichi permanenti e accidentali della fase precedente si aggiunge un carico accidentale di 10 kPa sul solettone di copertura.
- STEP 3): Scavo fino alla profondità massima pari a 10.75 m dalla testa del solettone di copertura (+44.15 m s.l.m.); medesimi sovraccarichi permanenti e accidentali della fase precedente.

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 38 di 168

- STEP 4): Realizzazione del solettone di fondo con spessore 1.0m; medesimi sovraccarichi permanenti e accidentali della fase precedente.
- STEP 5): Realizzazione della fodera interna in cls; medesimi sovraccarichi permanenti e accidentali della fase precedente.
- STEP 6): Condizioni di esercizio in fase statica; rinterro fino a quota p.c. (+54.90 m s.l.m.), sovraccarico permanente dovuto al ritombamento pari a 8.5 kN/m² e sovraccarico accidentale a monte e sulla soletta di copertura pari a 10 kPa. Il livello piezometrico si pone alla quota di intradosso del solettone di fondo (+44.15 m s.l.m.) per simulare eventuali venute d'acqua a lungo termine (mentre all'esterno della paratia si mantiene la falda a q. +51.10 m s.l.m..
- STEP 8): Applicazione dell'azione sismica; medesimi sovraccarichi permanenti a monte dei diaframmi e sulla soletta di copertura e sovraccarichi accidentali nulli; stesse ipotesi di falda della fase precedente.

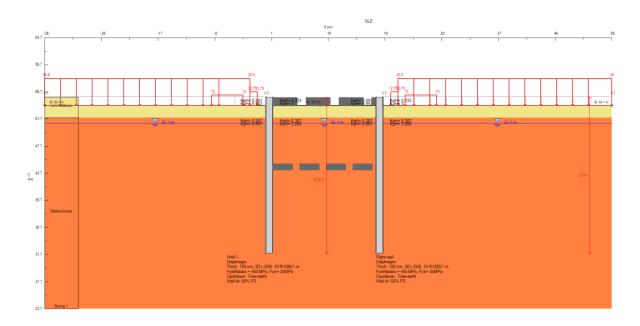


Fig. 29 - Modello di calcolo 3: STEP 0

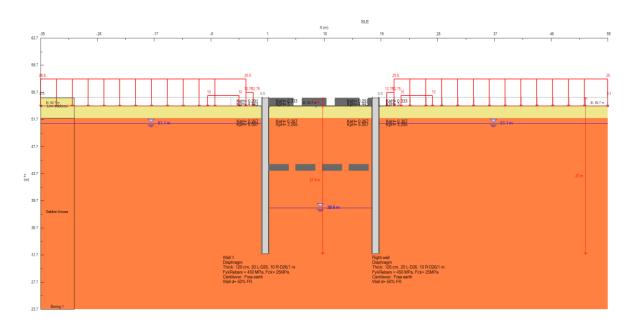


Fig. 30 - Modello di calcolo 3: STEP 1

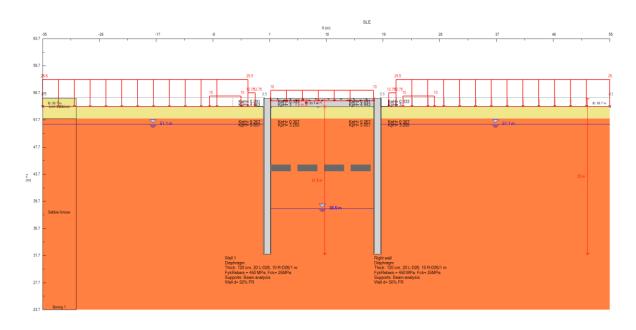


Fig. 31 - Modello di calcolo 3: STEP 2

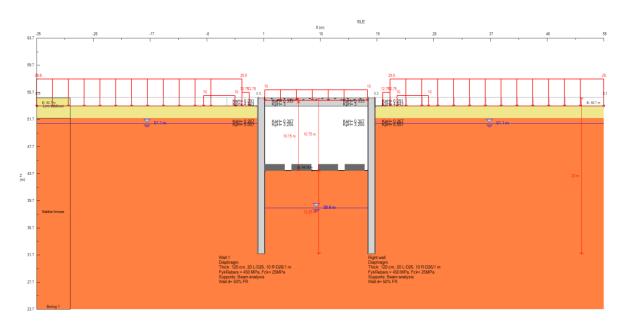


Fig. 32 - Modello di calcolo 3: STEP 3

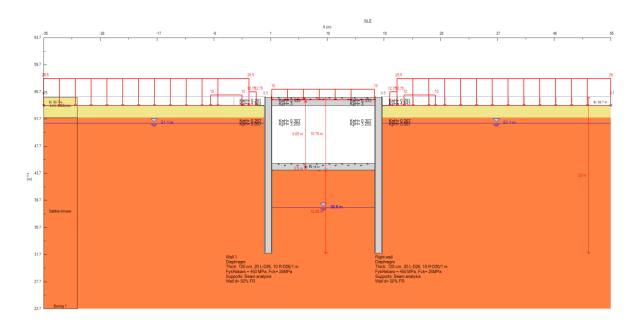


Fig. 33 - Modello di calcolo 3: STEP 4

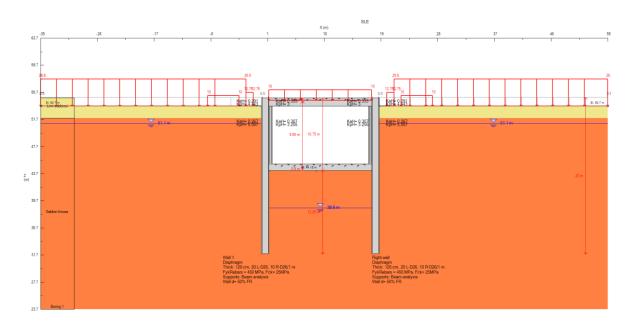


Fig. 34 - Modello di calcolo 3: STEP 5

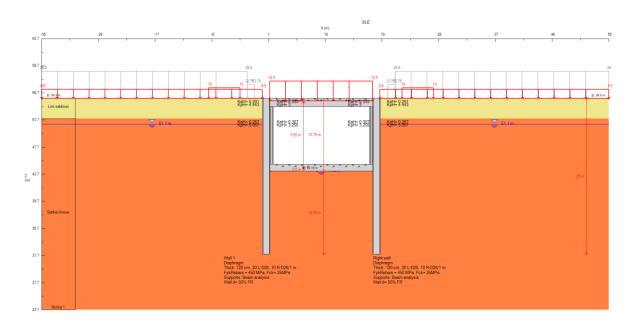


Fig. 35 - Modello di calcolo 3: STEP 6

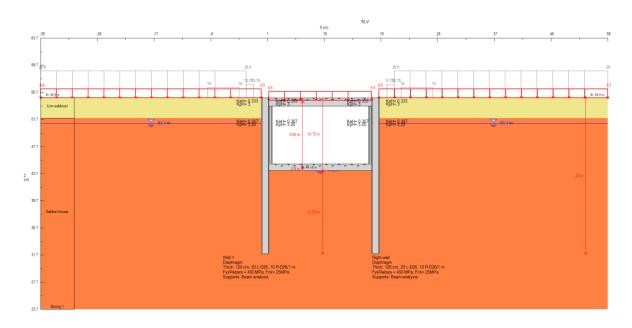


Fig. 36 - Modello di calcolo 3: STEP 7

L'applicazione dell'incremento di spinta del terreno in fase sismica viene considerata in accordo alla teoria di Wood per strutture rigide.

Ai sensi del EN 1998-5 §7.3.2, si considera un incremento di spinta valutato come segue:

$$\Delta P_d = a_{max} \cdot \gamma \cdot H^2$$

con:

H Altezza totale del diaframma;

γ Peso di volume del terreno;

a_{max}=S_S·S_T·a_g accelerazione di picco;

Ss coefficiente di amplificazione stratigrafica;

S_T coefficiente di amplificazione tipografica.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 43 di 168

6.4 RISULTATI DELLE ANALISI

6.4.1 MODELLO DI CALCOLO 1

6.4.1.1 VERIFICHE STRUTTURALI

Nelle tabelle che seguono si sintetizzano i risultati ottenuti nell'analisi in termini di sollecitazioni per i vari elementi strutturali che compongono l'opera. Nelle figure sono mostrati i relativi diagrammi.

DIAFRAMMI	STEP di calcolo	M(+) (kNm/m) (*)	STEP di calcolo	M(-) (kNm/m) (*)	STEP di calcolo	T (kN/m)
SLE	7	817	5	-1503	7	394
SLU (A1+M1+R1)	7	1064	5	-1957	7	513
SLV (EQK+M1+R1)	8	1880	5	-1503	8	634

^(*) momento positivo che tende l'armatura controterra del diaframma

FODERA INTERNA	STEP di calcolo	M (kNm/m) (*)	STEP di calcolo	T (kN/m)
SLE	7	146	7	17
SLU (A1+M1+R1)	7	190	7	22
SLV (EQK+M1+R1)	8	209	8	32

^(*) momento positivo che tende l'armatura controterra del diaframma

SOLETTONE DI FONDO	STEP di calcolo	R (kN/m)
SLE	7	724
SLU (A1+M1+R1)	7	942
SLV (EQK+M1+R1)	8	1224

PUNTONE PROVVISORIO	STEP di calcolo	R (kN/m)	R* (kN)
SLE	6	247	1235
SLU (A1+M1+R1)	6	320	1600

con:

M = sollecitazione di momento flettente;

T = sollecitazione di taglio;

R = sollecitazione di compressione sul puntone al metro lineare di paratia ;

R* = sollecitazione di compressione sul singolo puntone (interasse puntoni=5.0 m).

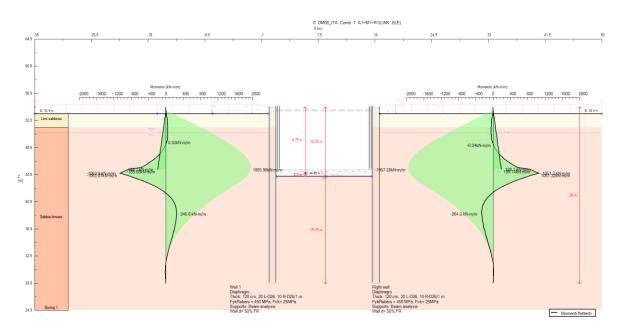


Fig. 37 – Modello di calcolo 1: Diagramma del momento allo SLU (A1+M1+R1)

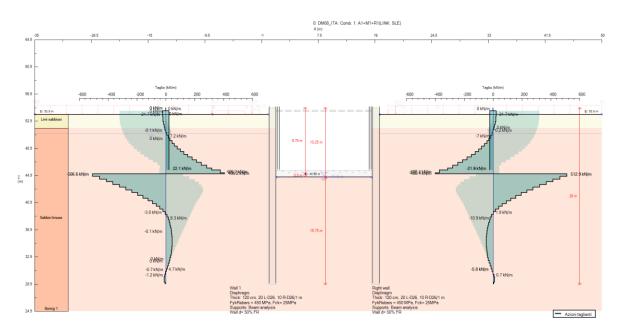


Fig. 38 – Modello di calcolo 1: Diagramma del taglio allo SLU (A1+M1+R1)

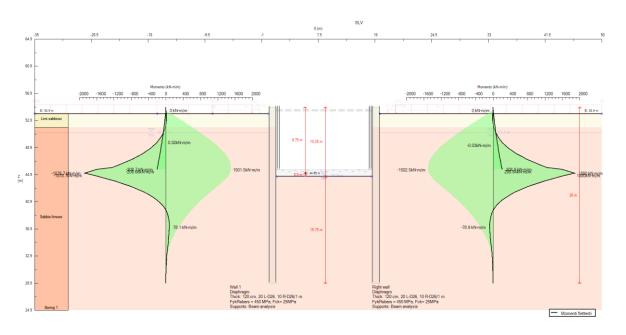


Fig. 39 – Modello di calcolo 1: Diagramma del momento allo SLV (EQK+M1+R1)

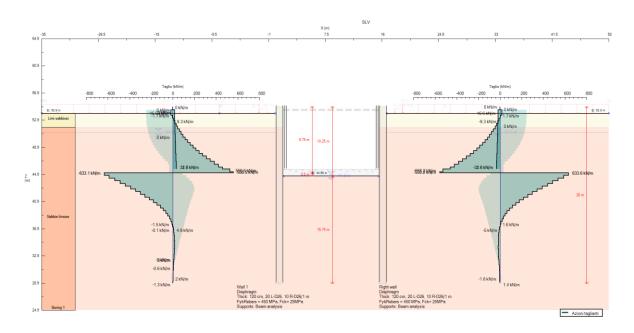


Fig. 40 – Modello di calcolo 1: Diagramma del taglio allo SLV (EQK+M1+R1)

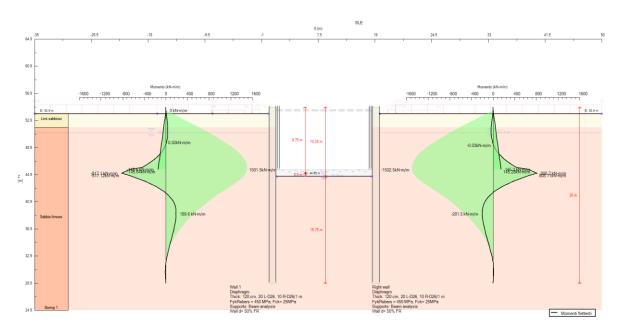


Fig. 41 – Modello di calcolo 1: Diagramma del momento allo SLE (comb. rara)

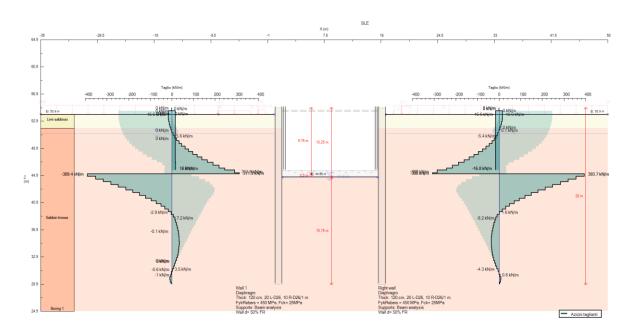


Fig. 42 – Modello di calcolo 1: Diagramma del taglio allo SLE (comb. rara)

DIAFRAMMI

La sezione trasversale del diaframma presenta dimensioni BxH=2.5x1.2m.

L'armatura longitudinale è costituita da barre:

• ø26/10 + ø26/10 (lato contro terra);

ø26/10 + ø26/10 (lato libero).

L'armatura trasversale è costituita da staffe chiuse:

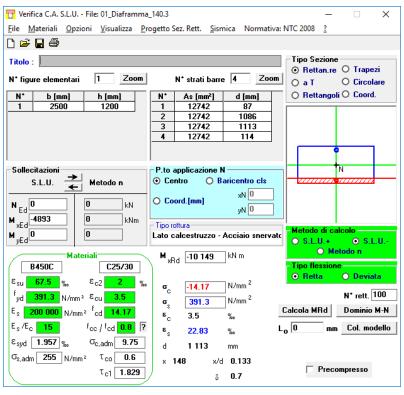
ø14/15 a 5 bracci.

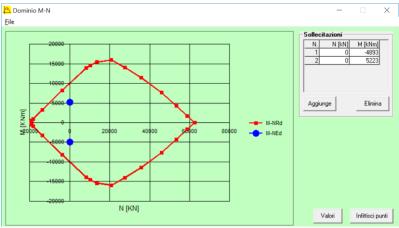
In via cautelativa non si considera collaborante la fodera interna in c.a. per gli step di calcolo in cui entrambi gli elementi strutturali risultati presenti. Dunque, nelle verifiche a pressoflessione e taglio del diaframma, in cui risulta dimensionante la fase sismica, le sollecitazioni di verifica sui diaframmi saranno ottenute come somma di quelle relative ai diaframmi stessi e di quelle relative alla fodera ricavte dal modello di calcolo.

Verifica a pressoflessione

STEP 8: [SLV] $M(+)^* = M_{diaframma} + M_{fodera} = (1880 \text{ kNm/m} + 209 \text{ kNm/m}) \cdot 2.5 \text{ m} = 5223 \text{ kNm}$

<u>STEP 5</u>: $[SLU] M(-) = M_{diaframma} = (-1957 \text{ kNm/m}) \cdot 2.5 \text{ m} = -4893 \text{ kNm}$





ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 48 di 168

 $M_{Ed}(+) = 5223 \text{ kNm} < M_{Rd}(+) = 10149 \text{ kNm}.$

 $FS = M_{Rd}/M_{Ed} = 1.94$

 $M_{Ed}(-) = -4893 \text{ kNm} < M_{Rd}(-) = -10149 \text{ kNm}.$

 $FS = M_{Rd}/M_{Ed} = 2.07$

Ghella

Opere di sostegno delle rampe: Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

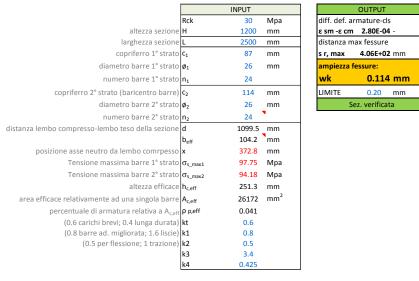
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 \$\$L0700 002\$
 B
 49 di 168

Verifica a taglio

<u>STEP 8:</u> [SLV] $T^* = T_{diaframma} + T_{fodera} = (634 \text{ kN/m} + 32 \text{ kN/m}) \cdot 2.5 \text{ m} = 1665 \text{ kN}$

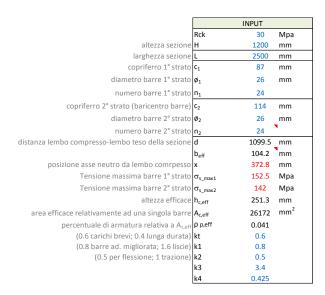
fica a taglio per sezioni rettangolari armate a tagl	lio (D.M. 1	4/01/2008)	
	_		
classe cls	R_{ck}	30	N/mm²
resist. Caratteristica cilindrica	f _{ck}	25	N/mm²
	f _{cd}	14	
coeff. parziale	Уc	1.5	
larghezza membratura resistente a V	b_w	2500	mm
altezza membratura resistente a V	Н	1200	mm
altezza utile	d	1080	mm
area della sezione	A_{TOT}	2700000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm
	$lpha_{ t c}$	1.00	
Acciaio	f _{yk}	450	N/mm
Feb44k	f_{yd}	391	N/mm
diametro staffe (spille)	Ø _w	14	mm
Area staffa (spilla)	Aø _w	154	mm ²
0.9 d	Z	972	mm
passo delle staffe (spille)	S _w	150	mm
·	n° bracci	5	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	cot(\alpha)	0.00	
	As _w / s _w	5.13	mm²/m
	- W W		
Taglio resistente per "taglio trazione"	V_{Rsd}	1952	kN
Taglio resistente per "taglio compressione"	V _{Rcd}	8572	kN
	Rcu		
taglio sollecitante	V_{Ed}	1665	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V _{Rd}	1952	kN
	V _{Ed}	<	V_{Rd}
FS =	1.17	verifica	1,0

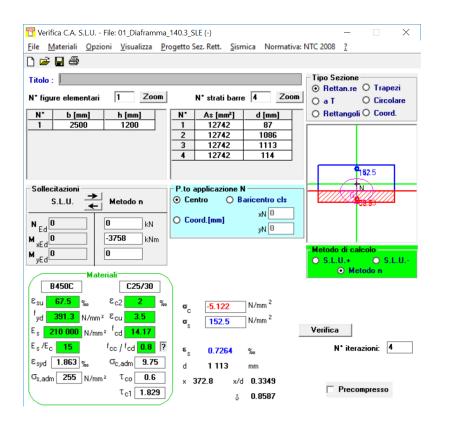


Verifica a fessurazione

Si riportano le sollecitazioni massime allo SLE (comb. rara) relative allo step 7 (corrispondente alla fase di massimo scavo) e allo step 7 (con diaframma e fodera gettata in opera collaborante).

La verifica a fessurazione sarà condotta quindi per entrambe le situazioni.


STEP 7: $M(+)^* = M_{diaframma} + M_{fodera} = (817 \text{ kNm/m} + 146 \text{ kN/m}) \cdot 2.5 \text{ m} = 2408 \text{ kNm}$



ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO** Ghella ITINERA I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E NSORZIO CFT VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL PIZZAROTTI **COMUNE DI MADDALONI – PROGETTO ESECUTIVO** Opere di sostegno delle rampe: Relazione di COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** calcolo IF1N 01 E ZZ CL SL0700 002 В 51 di 168

<u>STEP 5:</u> $M(-) = M_{diaframma} = (-1503 \text{ kNm/m}) \cdot 2.5 \text{ m} = -3758 \text{ kNm}$

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 52 di 168

FODERA INTERNA

La fodera interna in c.a. presenta uno spessore di 50 cm. La sezione di verifica risulta di dimensioni pari a BxH=1.0x0.5m.

L'armatura longitudinale è costituita da barre:

• ø24/10 (armatura lato controterra);

• ø20/10 (armatura lato libero).

L'armatura trasversale è costituita da staffe chiuse:

ø12/20 a 4 bracci.

La verifica strutturale della fodera si effettua sommando alle sollecitazioni del modello di calcolo, quelle provenienti dalla spinta dell'acqua. Queste ultime vengono valutate ipotizzando uno schema di trave con vincolo d'incastro ad una estremità (in corrispondenza della soletta di base) e un vincolo di appoggio nell'altra estremità (in corrispondenza del cordolo di sommità), di luce pari a 8.25 m sollecitata da un carico triangolare agente su una lunghezza pari alla differenza di quota tra la sezione di incastro della fodera con la soletta di base e la quota della falda (+51.1 m s.l.m. – 45.65 m s.l.m. = 5.45 m).

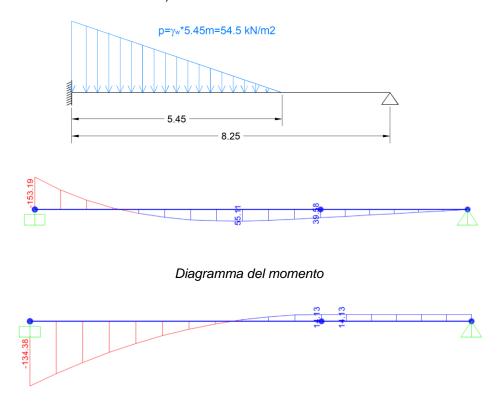
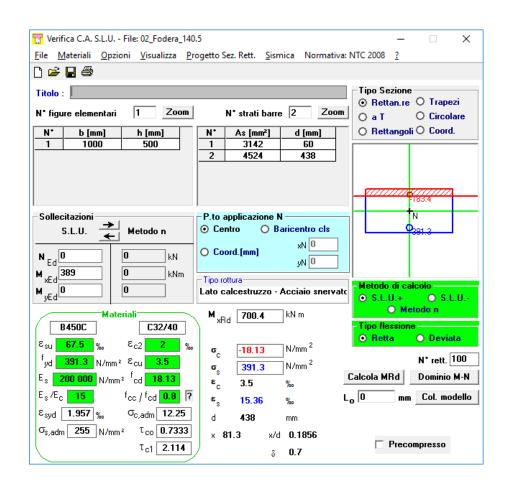


Diagramma del taglio

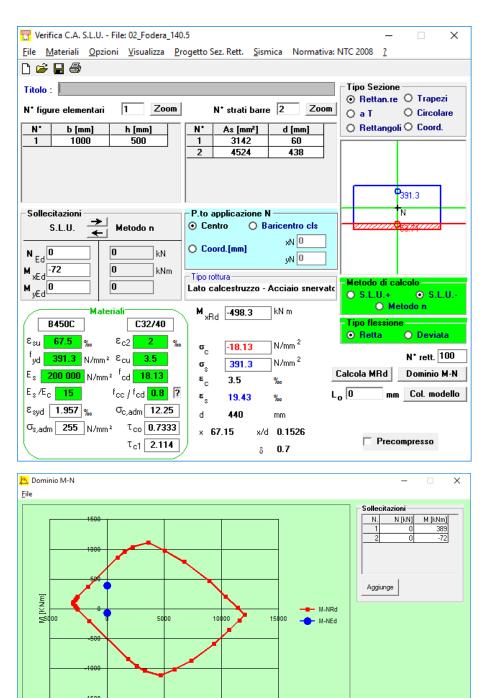
Mw (+) = 153 kNm/m

Mw(-) = -55 kNm/m

Tw = 134 kN/m


(*) il momento positivo tende l'armatura controterra

Verifica a pressoflessione


<u>STEP 7 (SLU):</u> M_{fodera} (+) = 190 kNm/m + 1.3*153 kNm/m = 389 kNm/m

 M_{fodera} (-) = 1.3*(-55.1 kNm/m) = -72 kNm/m

STEP 8 (SLV): M_{fodera} (+) = 209 kNm/m + 153 kNm/m = 362 kNm/m

 M_{Ed} (+) = 389 kNm/m < M_{Rd} = 700 kNm/m.

N [KN]

 $FS = M_{Rd}/M_{Ed} = 1.80$

Infittisci punti

 M_{Ed} (-) = -72 kNm/m < M_{Rd} = -498 kNm/m.

 $FS = M_{Rd}/M_{Ed} = >> 1$

Ghella

Opere di sostegno delle rampe: Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

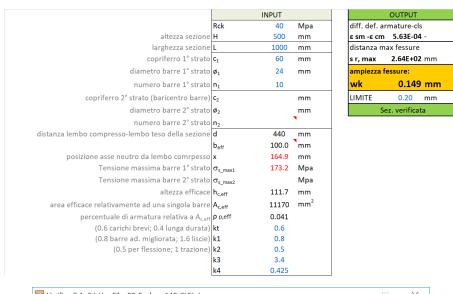
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

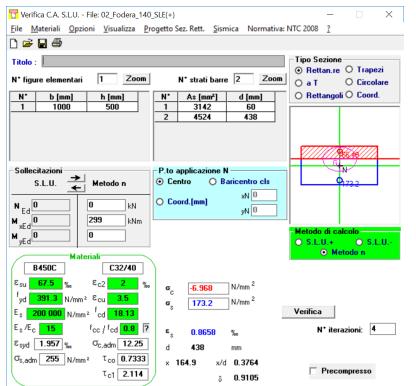
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 55 di 168

Verifica a taglio

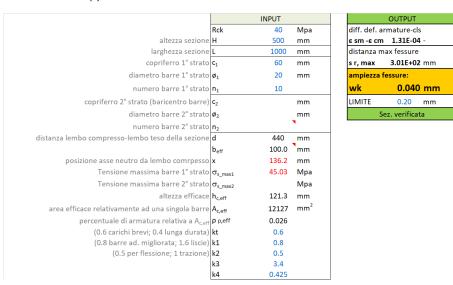
<u>STEP 7 (SLU):</u> $T_{fodera} = 22 \text{ kN/m} + 1.3*134 \text{ kN/m} = 196 \text{ kN/m}$

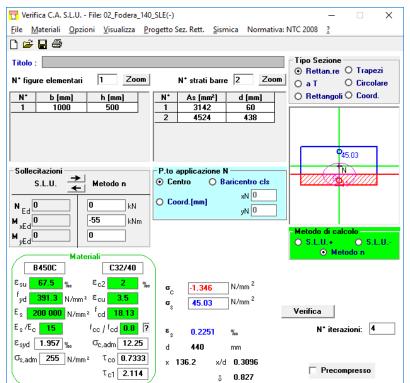

STEP 8 (SLV): T_{fodera} = 32 kN/m + 134 kN/m = 166 kN/m


torifica a tablica and a single survey to the survey to th	(D. 14	4.4/0.4/0.000	
/erifica a taglio per sezioni rettangolari armate a tag	по (D.M. 1	14/01/2008)	
classe cls	R _{ck}	40	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	33	N/mm ²
	f _{cd}	19	
coeff. parziale	Уc	1.5	
larghezza membratura resistene a V	b _w	1000	mm
altezza membratura resistene a V	Н	500	mm
altezza utille	d	450	mm
area della sezione	A _{TOT}	450000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm ²
	$\alpha_{\rm c}$	1.00	
Acciaio	f _{vk}	450	N/mm ²
Feb44k	f _{vd}	391	N/mm ²
diametro staffe (spille)	ø _w	12	mm
Area staffa (spilla)	Aø _w	113	mm ²
0.9 d	Z	405	mm
passo delle staffe (spille)	S _w	200	mm
	n° bracci	4	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	$cot(\alpha)$	0.00	
	As _w / s _w	2.26	mm ² /mn
Taglio resistente per "taglio trazione"	V _{Rsd}	358	kN
Taglio resistente per "taglio compressione"	V _{Rsd}	1905	kN
	* KCa		
taglio sollecitante	V_{Ed}	196	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γ_{Rd}	1	
taglio resistente	V_{Rd}	358	kN
	V_{Ed}	<	V_{Rd}
FS =	1.83	verifica	

Verifica a fessurazione

Si riportano le sollecitazioni massime allo SLE (comb. rara).


<u>STEP 7</u> M_{fodera} (+) = 146 kNm/m + 153 kNm/m = 299 kNm/m

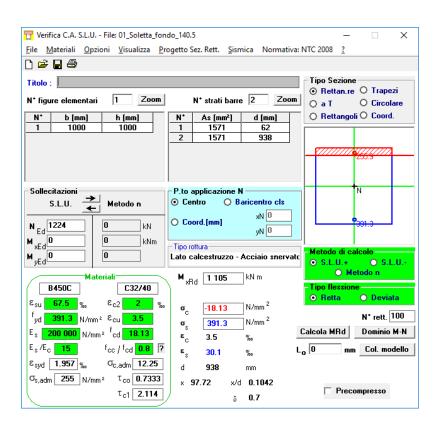


ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO** Ghella ITINERA I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E SORZIO CFT VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL PIZZAROTTI **COMUNE DI MADDALONI – PROGETTO ESECUTIVO** Opere di sostegno delle rampe: Relazione di COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ CL SL0700 002 В 57 di 168

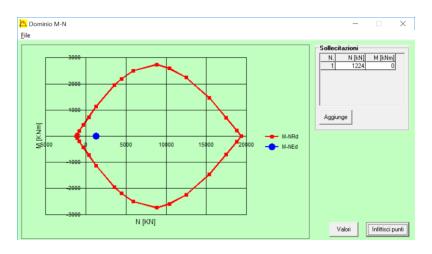
 M_{fodera} (-) = -55 kNm/m

SOLETTA DI FONDO

Le verifiche saranno condotte considerando le sollecitazioni al metro lineare di soletta; le dimensioni geometriche della sezione di verifica risultano pari a BxH=1.0x1.0m.

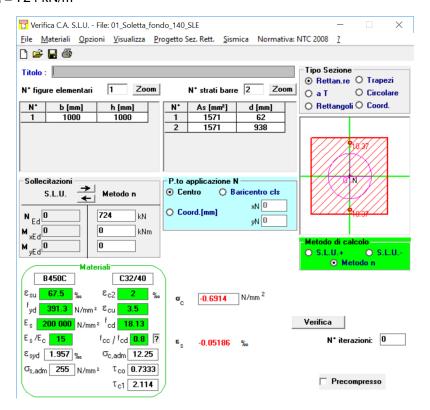

L'armatura longitudinale è costituita da barre:

ø20/20 (armatura superiore);


ø20/20 (armatura inferiore).

Verifica a compressione - SLU

STEP 8: $R_{Ed} = 1224 \text{ kN/m}$ $\sigma_{c_Ed} = 1.22 \text{ MPa}$



 $\sigma_{c_Ed} = 1.22 \text{ MPa} < f_{cd}$

Verifica a compressione - SLE

STEP 7: $R_{Ed} = 724 \text{ kN/m}$

PUNTONI PROVVISORI

I puntoni provvisori sono costituiti da profili tubolari in acciaio ø600mm sp.=15mm.

Verifica a compressione - SLU

 $R^* = 1600 \text{ kN}$ <u>STEP 5:</u>

Calcolo delle caratteristiche meccaniche dei profili tubolari e verifica secondo DM 2008

Diametro esterno nominale	D	600.00 [mm]
Spessore nominale	t	15.00 [mm]
Diametro interno nominale	d	570.00 [mm]
CARATTERISTICHE MECCANICHE		
Area della sezione trasversale	Α	275.7 [cm ²]
Momento d'inerzia	I I	118006 [cm ⁴]
Raggio d'inerzia	i	20.69 [cm]
Modulo di resistenza elastico	$\mathbf{W}_{el,yy}$	3934 [cm ³]
Modulo di resistenza plastico attorno all'asse forte	$\mathbf{W}_{pl,yy}$	5135 [cm³]
Momento d'inerzia torsionale	l _t	236012 [cm ⁴]
Modulo di torsione	C_t	7867 [cm³]
CLASSIFICAZIONE DELLA SEZIONE		
Valore di snervamento dell'acciaio	f_{yk}	275 [MPa]
Coefficiente e	ε	0.92 [-]
Classificazione		
Diametro	d	600.00 [mm]
Spessore	t	15.00 [mm]
Rapporto tra diametro e spessore	d/t	40.00 [-]
Classificazione della sezione		CLASSE 1
VERIFICA DI RESISTENZA ALLO SLU - COMPRESSIONE/TRAZIONE		
N _{Ed} 1600 [kN]		
N _{c Rd} 7220 [kN] Resistenza a compressione/trazione	e del tubo	

N _{Ed}	1600	[kN]	U - COMPRESSIONE/TRAZIONE
N _{c,Rd}	7220	[kN]	Resistenza a compressione/trazione del tubo
[DELLE MEN		

STABILITA	' DELLE MEM	IBRATURE		
N _{Ed}	1600	[kN]		
N _{b,Rd}	5679	[kN]	FS 3.55	
χ	0.79		Φ	0.90
A	275.7	[cm ²]	α	0.21
f_{yk}	275	[MPa]	λ	0.82
γ _{м1}	1.05	[-]		
L	14.30	[m]		
N _{cr}	11391	[kN]		
0.04 N _{cr}	456	[kN]		

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	61 di 168

Verifica a compressione - SLE

<u>STEP 5:</u> R* = 1235 kN

VERIFICHE	TENSIONALI	- SLE				
V_{SLE}	0.0	[kN]	τ	0	[MPa]	
M _{SLE}	0.0	[kNm]	σ_{M}	0	[MPa]	
N _{SLE}	1235	[kN]	$\sigma_{\scriptscriptstyle{N}}$	45	[MPa]	
			σ_{tot}	45	[MPa]	ok

6.4.1.2 VERIFICHE GEOTECNICHE ALLO SLU/SLV

In merito alle verifiche di carattere geotecnico (GEO), nella tabella che segue si sintetizzano i coefficienti di sicurezza ottenuti dall'analisi nelle combinazioni specifiche in fase statica e sismica.

	SLU (statica)	SLV (sismica)
	(A2+M2+R1) Step 7	(EQK+M2+R1) Step 8
Spinta passiva massima mobilizzabile	1952	1953
Spinta passiva mobilitata	1347	1579
FS % passiva mobilitata	1.45	1.237

Avendo posto:

• FS % passiva mobilitata: rapporto tra la spinta passiva e la spinta effettivamente mobilitata a valle.

Per la verifica al sollevamento del tappo di fondo in jet-grouting, si rimanda al paragrafo 6.7

6.4.1.3 VERIFICHE GEOTECNICHE ALLO SLE

Nelle figure che seguono si riportano gli spostamenti orizzontali dell'opera allo SLE.

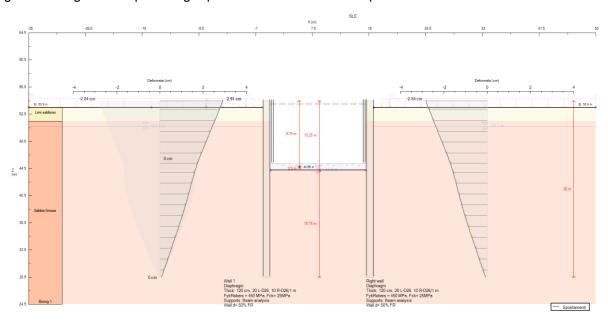


Fig. 43 – Modello di calcolo 1: Spostamenti orizzontali allo SLE

	SLE
Spostamento orizzontale massimo δh _{max} (cm)	2.9

Gli spostamenti orizzontali massimi risultano compatibili con la funzionalità dell'opera.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 63 di 168

6.4.2 MODELLO DI CALCOLO 2

6.4.2.1 VERIFICHE STRUTTURALI

Nelle tabelle che seguono si sintetizzano i risultati ottenuti nell'analisi in termini di sollecitazioni per i vari elementi strutturali che compongono l'opera. Nelle figure sono mostrati i relativi diagrammi.

DIAFRAMMI	STEP	M(+)	STEP	M(-)	STEP	T (kN/m)
DIAFRAMIMI	di calcolo	(kNm/m) (*)	di calcolo	(kNm/m) (*)	di calcolo	i (KIN/III)
SLE	3	585	2	-17	6	114
SLU (A1+M1+R1)	3	762	2	-23	6	148
SLV (EQK+M1+R1)	7	593	2	-17	7	273

^(*) momento positivo che tende l'armatura controterra del diaframma

FODERA INTERNA	STEP di calcolo	M (kNm/m) (*)	STEP di calcolo	T (kN/m)
SLE	6	1	6	0.5
SLU (A1+M1+R1)	6	1	6	0.5
SLV (EQK+M1+R1)	7	25	7	11

SOLETTONE DI FONDO	STEP di calcolo	R (kN/m)
SLE	6	75
SLU (A1+M1+R1)	6	98
SLV (EQK+M1+R1)	7	494

con:

M = sollecitazione di momento flettente;

T = sollecitazione di taglio;

R = sollecitazione di compressione sul puntone al metro lineare di paratia.

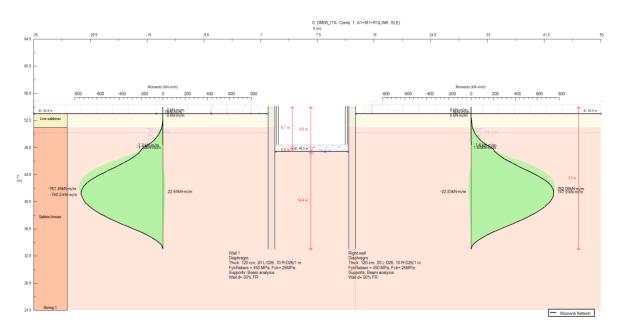


Fig. 44 – Modello di calcolo 2: Diagramma del momento allo SLU (A1+M1+R1)

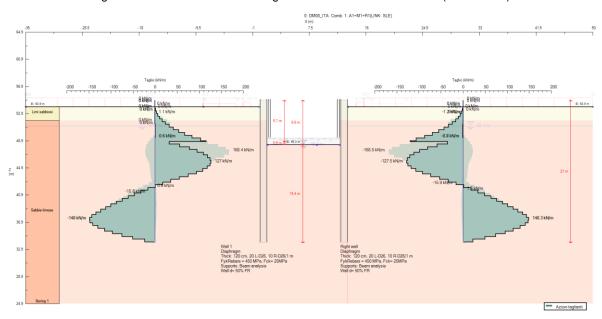


Fig. 45 – Modello di calcolo 2: Diagramma del taglio allo SLU (A1+M1+R1)

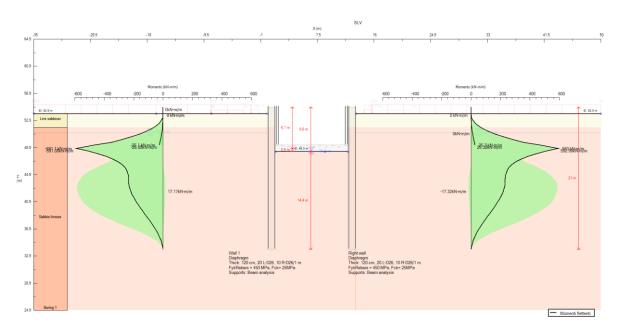


Fig. 46 – Modello di calcolo 2: Diagramma del momento allo SLV (EQK+M1+R1)

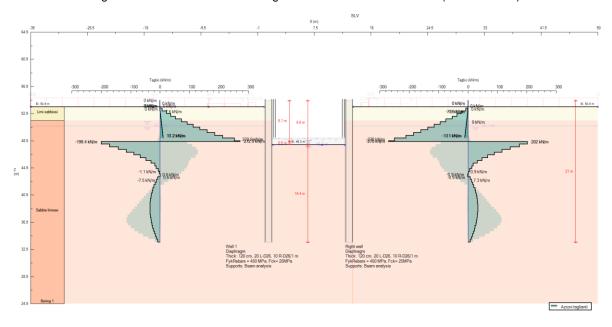


Fig. 47 – Modello di calcolo 2: Diagramma del taglio allo SLV (EQK+M1+R1)

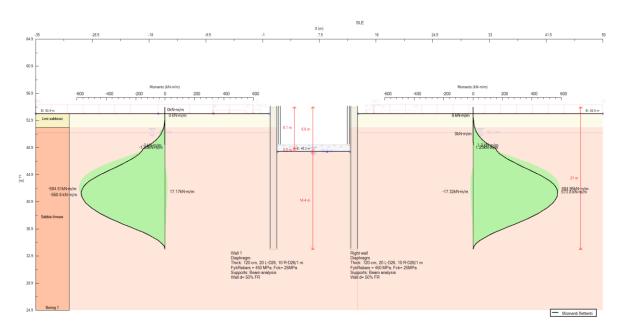


Fig. 48 – Modello di calcolo 2: Diagramma del momento allo SLE (comb. rara)

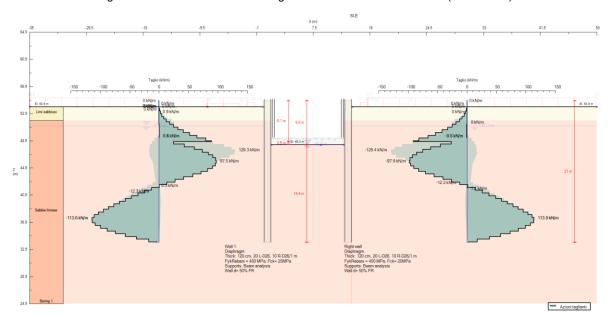


Fig. 49 – Modello di calcolo 2: Diagramma del taglio allo SLE (comb. rara)

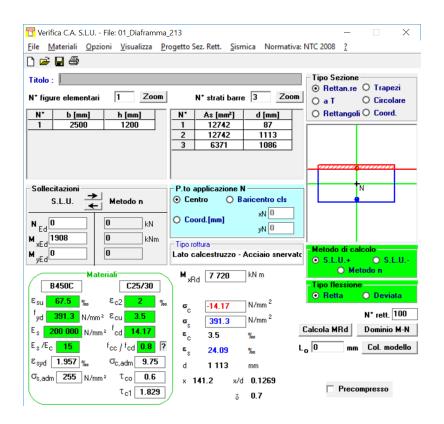
DIAFRAMMI

La sezione trasversale del diaframma presenta dimensioni BxH=2.5x1.2m.

L'armatura longitudinale è costituita da barre:

• ø26/10 + ø26/20 (lato contro terra);

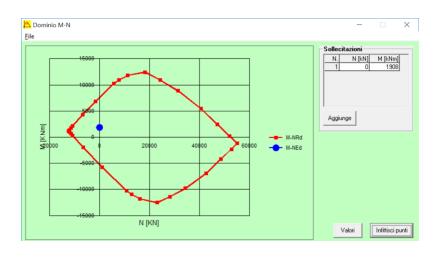
• ø26/10 (lato libero).


L'armatura trasversale è costituita da staffe chiuse:

ø14/20 a 5 bracci.

In via cautelativa non si considera collaborante la fodera interna in c.a. per gli step di calcolo in cui entrambi gli elementi strutturali risultati presenti. Dunque, nelle verifiche a pressoflessione e taglio del diaframma, in cui risulta dimensionante la fase sismica, le sollecitazioni di verifica saranno ottenute come somma di quelle relative ai diaframmi stessi e di quelle relative alla fodera risultanti dal modello di calcolo.

Verifica a pressoflessione


STEP 6: $[SLU] M(+)^* = M_{diaframma} + M_{fodera} = (762 \text{ kNm/m} + 1 \text{ kNm/m}) \cdot 2.5 \text{ m} = 1908 \text{ kNm}$

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	68 di 168

 $M_{Ed}(+) = 1908 \text{ kNm} < M_{Rd}(+) = 7720 \text{ kNm}.$

 $FS = M_{Rd}/M_{Ed} = 4.05$

Ghella

Opere di sostegno delle rampe: Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

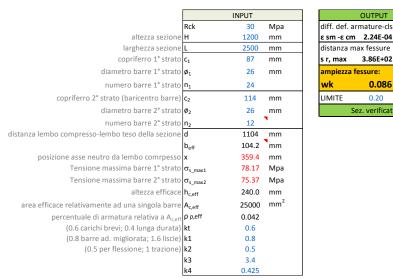
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FOGLIO

DOCUMENTO CODIFICA REV. COMMESSA LOTTO SL0700 002 69 di 168 IF1N 01 E ZZ CL В

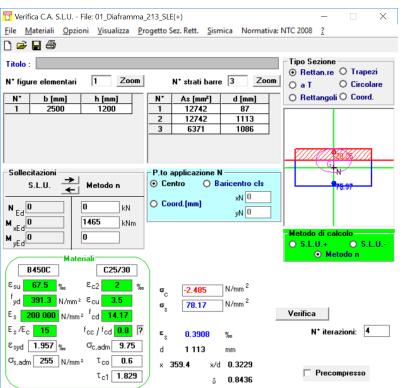
Verifica a taglio

STEP 7: [SLV] $T^* = T_{diaframma} + T_{fodera} = (273 \text{ kN/m} + 11 \text{ kN/m}) \cdot 2.5 \text{ m} = 710 \text{ kN}$


erifica a taglio per sezioni rettangolari armate a tagl	lio (D.M. 1	4/01/2008)	
<u> </u>	•		
classe cls	R _{ck}	30	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	25	N/mm ²
	f _{cd}	14	
coeff. parziale	Уc	1.5	
larghezza membratura resistene a V	b_w	2500	mm
altezza membratura resistene a V	Н	1200	mm
altezza utille	d	1080	mm
area della sezione	A _{TOT}	2700000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm ²
	$\alpha_{\rm c}$	1.00	
Acciaio	f _{vk}	450	N/mm ²
Feb44k	f _{vd}	391	N/mm²
diametro staffe (spille)	Ø _w	14	mm
Area staffa (spilla)	Aø _w	154	mm ²
0.9 d	Z	972	mm
passo delle staffe (spille)	S _w	200	mm
	n° bracci	5	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	cot(a)	0.00	
	As _w / s _w	3.85	mm²/mn
	17		
Taglio resistente per "taglio trazione"	V _{Rsd}	1464	kN
Taglio resistente per "taglio compressione"	V _{Rcd}	8572	kN
taglio sollecitante	$V_{\sf Ed}$	710	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γ _{Rd}	1	
taglio resistente	V _{Rd}	1464	kN
-	V _{Ed}	<	V_{Rd}
FS =	2.06	verifica	

Verifica a fessurazione

Si riportano le sollecitazioni massime allo SLE (comb. rara).


$M(+)^* = M_{diaframma} + M_{fodera} = (585 \text{ kNm/m} + 1 \text{ kN/m}) \cdot 2.5 \text{ m} = 1465 \text{ kNm}$ STEP 3:

3.86E+02 mm

0.086 mm

0.20 mm

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 71 di 168

FODERA INTERNA

La fodera interna in c.a. presenta uno spessore di 50 cm. La sezione di verifica risulta di dimensioni pari a BxH=1.0x0.5m.

L'armatura longitudinale è costituita da barre:

ø20/20 (armatura superiore);

• ø16/20 (armatura inferiore).

L'armatura trasversale è costituita da staffe chiuse:

ø12/20 a 2 bracci.

La verifica strutturale della fodera si effettua sommando alle sollecitazioni del modello di calcolo, quelle provenienti dalla spinta dell'acqua. Queste ultime vengono valutate ipotizzando uno schema di trave con vincolo d'incastro ad una estremità (in corrispondenza della soletta di base) e un vincolo di appoggio nell'altra estremità (in corrispondenza del cordolo di sommità), di luce pari a 4.60 m sollecitata da un carico triangolare agente su una lunghezza pari alla differenza di quota tra la sezione di incastro della fodera con la soletta di base e la quota della falda (+51.1 m s.l.m. – 49.3 m s.l.m. = 1.80 m).

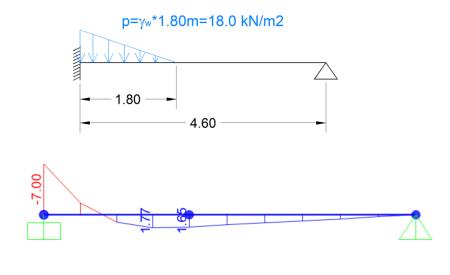


Diagramma del momento

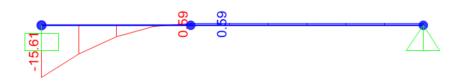
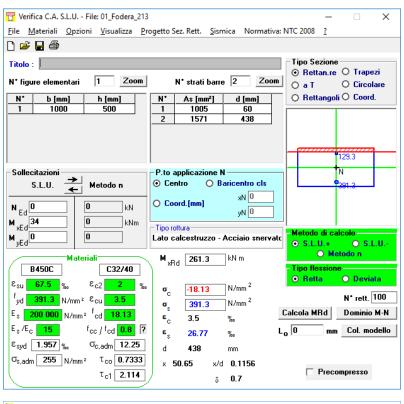
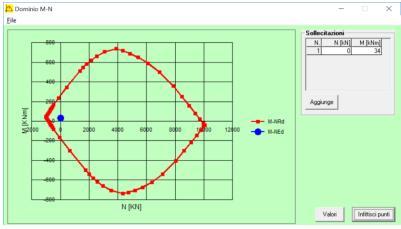


Diagramma del taglio


Mw (+) = 7.0 kNm/m


Mw(-) = -2 kNm/m

Tw = 16 kN/m

Verifica a pressoflessione

STEP 7: $M_{fodera} = 25 \text{ kNm/m} + 1.3*7 \text{ kNm/m} = 34 \text{ kNm/m}$

 $M_{Ed} = 34 \text{ kNm/m} < M_{Rd} = 261 \text{ kNm/m}.$

 $FS = M_{Rd}/M_{Ed} = \gg 1$

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 73 di 168

Verifica a taglio

STEP 7: $T_{fodera} = 11 \text{ kN/m} + 16 \text{ kN/m} = 27 \text{ kN/m}$

rifica a taglio per sezioni rettangolari armate a tag	lio (D.M. 1	14/01/2008)	
classe cls	R_{ck}	40	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	33	N/mm ²
	f _{cd}	19	
coeff. parziale	Уc	1.5	
larghezza membratura resistene a V	b _w	1000	mm
altezza membratura resistene a V	H	500	mm
altezza utille	d	450	mm
area della sezione	A _{TOT}	450000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm
	$\alpha_{\rm c}$	1.00	
Acciaio	f _{vk}	450	N/mm
Feb44k	f _{vd}	391	N/mm
diametro staffe (spille)	ø _w	12	mm
Area staffa (spilla)	Aø _w	113	mm ²
0.9 d	z	405	mm
passo delle staffe (spille)	S _w	200	mm
	n° bracci	2	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	cot(α)	0.00	
	As _w / s _w	1.13	mm ² /m
	** **		
Taglio resistente per "taglio trazione"	V_{Rsd}	179	kN
Taglio resistente per "taglio compressione"	V _{Rcd}	1905	kN
	red		
taglio sollecitante	V_{Ed}	27	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γ _{Rd}	1	
taglio resistente	V _{Rd}	179	kN
	V _{Ed}	<	V_{Rd}
FS =	6.64	verifica	1.40

La verifica risulta soddisfatta.

Verifica a fessurazione

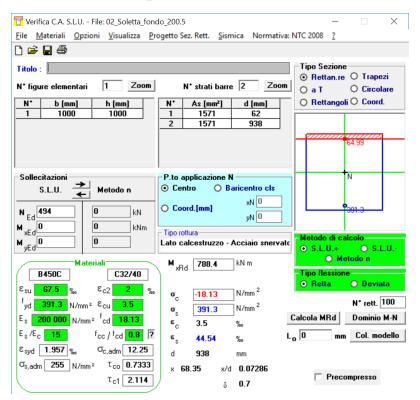
 $\underline{STEP \ 7:} \qquad \qquad M_{fodera} = 1 \ kNm/m + 7 \ kN/m = 8 \ kN/m$

La sollecitazione flettente risulta trascurabile e duqnue la verifica a fessurazione si ritiene soddisfatta.

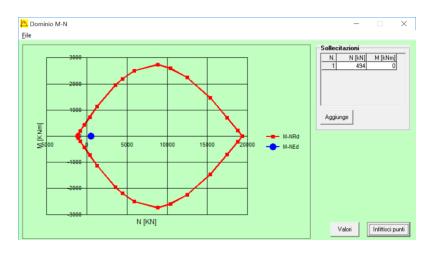
SOLETTA DI FONDO

Le verifiche saranno condotte considerando le sollecitazioni al metro lineare di soletta; le dimensioni geometriche della sezione di verifica risultano pari a BxH=1.0x1.0m.

L'armatura longitudinale è costituita da barre:

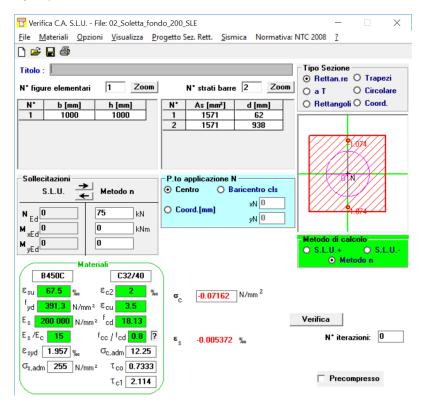

ø20/20 (armatura superiore);

ø20/20 (armatura inferiore).


Verifica a compressione - SLU

STEP 8: $R_{Ed} = 494 \text{ kN/m}$

 $\sigma_{c_Ed} = 0.49 \text{ MPa}$



 $\sigma_{c_Ed} = 0.49 \text{ MPa} < f_{cd}$

Verifica a compressione - SLE

STEP 7: $R_{Ed} = 75 \text{ kN/m}$

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	76 di 168

6.4.2.2 VERIFICHE GEOTECNICHE ALLO SLU/SLV

In merito alle verifiche di carattere geotecnico (GEO), nella tabella che segue si sintetizzano i coefficienti di sicurezza ottenuti dall'analisi nelle combinazioni specifiche in fase statica e sismica.

	SLU (statica)	SLV (sismica)
	(A2+M2+R1)	(EQK+M2+R1)
Spinta passiva massima mobilizzabile	1659	1660
Spinta passiva mobilitata	970	1229
FS % passiva mobilitata	1.71	1.35

Avendo posto:

• FS % passiva mobilitata: rapporto tra la spinta passiva e la spinta effettivamente mobilitata a valle.

Per la verifica al sollevamento del tappo di fondo in jet-grouting, si rimanda al paragrafo 6.7.

6.4.2.3 VERIFICHE GEOTECNICHE ALLO SLE

Nelle figure che seguono si riportano gli spostamenti orizzontali dell'opera allo SLE.

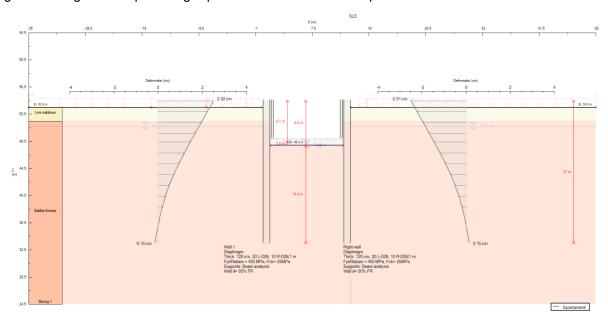


Fig. 50 – Modello di calcolo 2: Spostamenti orizzontali allo SLE

	SLE
Spostamento orizzontale massimo δ _{hmax} (cm)	2.5

Gli spostamenti orizzontali massimi risultano compatibili con la funzionalità dell'opera.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	78 di 168

6.4.3 MODELLO DI CALCOLO 3

6.4.3.1 VERIFICHE STRUTTURALI

Nelle tabelle che seguono si sintetizzano i risultati ottenuti nell'analisi in termini di sollecitazioni per i vari elementi strutturali che compongono l'opera. Nelle figure sono mostrati i relativi diagrammi.

DIAFRAMMI	STEP	M(+)	STEP	M(-)	STEP	T (kN/m)
DIAFRAIVIIVII	di calcolo	(kNm/m) (*)	di calcolo	(kNm/m) (*)	di calcolo	i (KIN/III)
SLE	6	1268	4	-818	6	368
SLU (A1+M1+R1)	6	1650	4	-1065	6	478
SLV (EQK+M1+R1)	7	2120	4	-818	7	950

^(*) momento positivo che tende l'armatura controterra del diaframma

FODERA INTERNA	STEP di calcolo	M(+) (kNm/m) (*)	M(-) (kNm/m) (*)	STEP di calcolo	T (kN/m)
SLE	6	10	-3	6	5
SLU (A1+M1+R1)	6	13	-4	6	6
SLV (EQK+M1+R1)	7	167	-29	7	60

^(*) momento positivo che tende l'armatura controterra del diaframma

SOLETTONE DI FONDO	STEP di calcolo	R (kN/m)
SLE	6	24
SLU (A1+M1+R1)	6	31
SLV (EQK+M1+R1)	7	1673

SOLETTONE DI COPERTURA (**)	STEP di calcolo	R _{max} (kN/m)	STEP di calcolo	R _{min} (kN/m)
SLE	6	373	3	283
SLU (A1+M1+R1)	6	486	3	368
SLV (EQK+M1+R1)	7	719	3	283

^(**) Per le sollecitazioni di taglio e momento sulla soletta di copertura, si rimanda allo specifico paragrafo di verifica.

con:

M = sollecitazione di momento flettente;

T = sollecitazione di taglio;

R = sollecitazione di sforzo assiale.

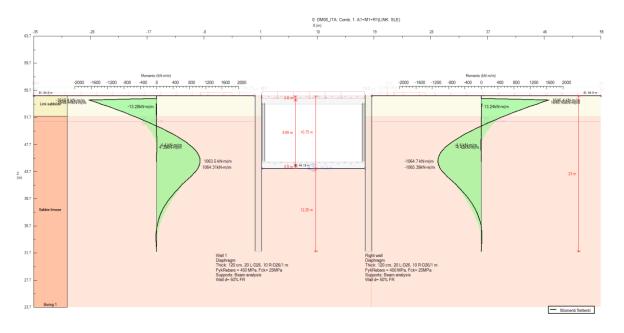


Fig. 51 – Modello di calcolo 3: Diagramma del momento allo SLU (A1+M1+R1)

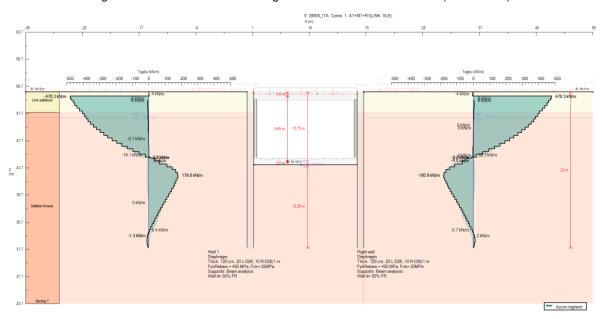


Fig. 52 – Modello di calcolo 3: Diagramma del taglio allo SLU (A1+M1+R1)

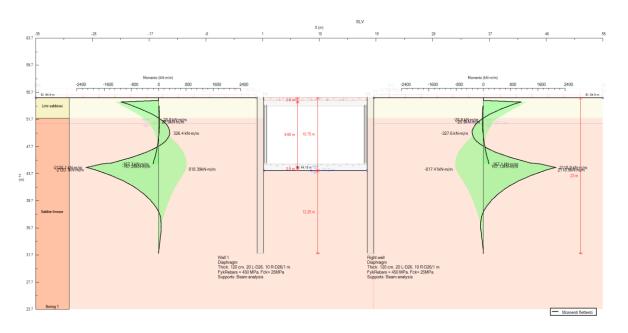


Fig. 53 – Modello di calcolo 3: Diagramma del momento allo SLV (EQK+M1+R1)

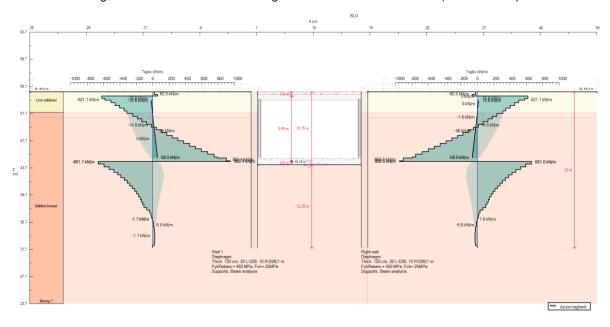


Fig. 54 – Modello di calcolo 3: Diagramma del taglio allo SLV (EQK+M1+R1)

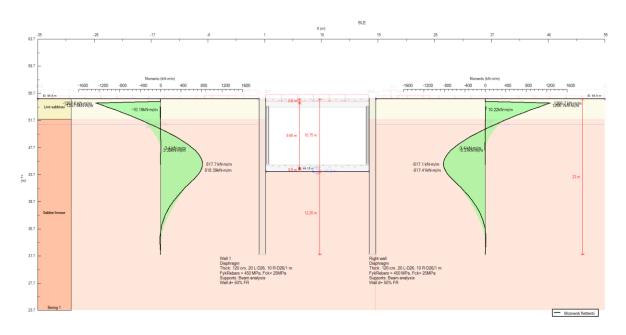


Fig. 55 – Modello di calcolo 3: Diagramma del momento allo SLE (comb. rara)

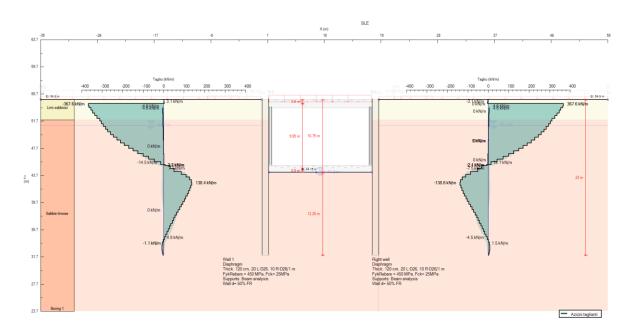


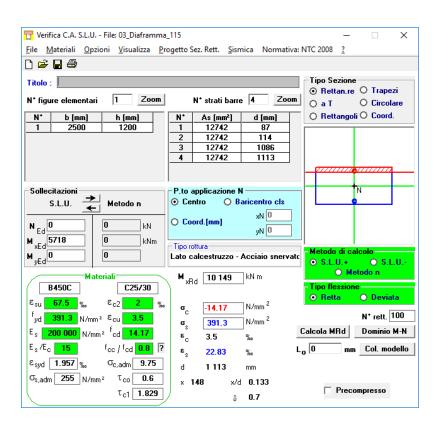
Fig. 56 – Modello di calcolo 3: Diagramma del taglio allo SLE (comb. rara)

DIAFRAMMI

La sezione trasversale del diaframma presenta dimensioni BxH=2.5x1.2m.

L'armatura longitudinale è costituita da barre:

- ø26/10 + ø26/10 (lato contro terra);
- ø26/10 + ø26/10 (lato libero).

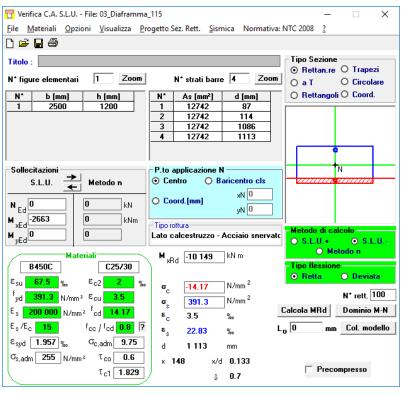

L'armatura trasversale è costituita da staffe chiuse:

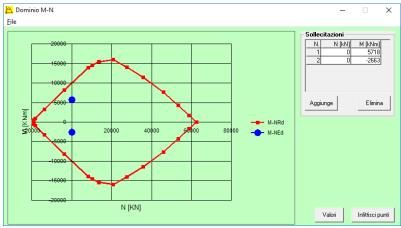
ø16/15 a 5 bracci.

Verifica a pressoflessione

STEP 7: [SLV] $M(+)^* = M_{diaframma} + M_{fodera} = (2120 \text{ kNm/m} + 167 \text{ kNm/m}) \cdot 2.5 \text{ m} = 5718 \text{ kNm/m}$

<u>STEP 4</u>: [SLU] $M(-) = M_{diaframma} = (-1065 \text{ kNm/m}) \cdot 2.5 \text{ m} = -2663 \text{ kNm}$

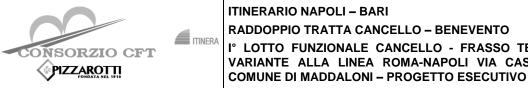



ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 83 di 168


 $M_{Ed}(+) = 5718 \text{ kNm} < M_{Rd}(+) = 10149 \text{ kNm}.$

 $FS = M_{Rd}/M_{Ed} = 1.77$

 $M_{Ed}(-) = -2663 \text{ kNm} < M_{Rd}(-) = -10149 \text{ kNm}.$

 $FS = M_{Rd}/M_{Ed} = 3.81$

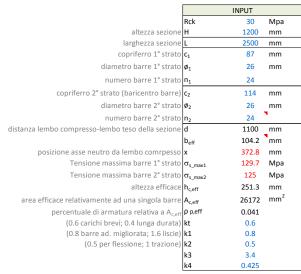
Ghella

Opere di sostegno delle rampe: Relazione di calcolo

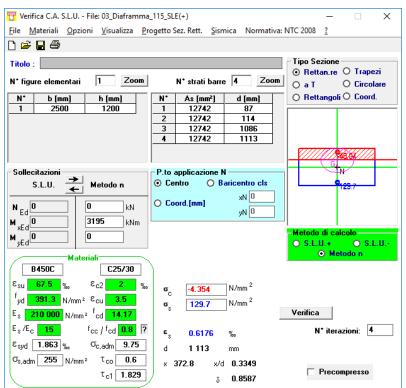
ITINERARIO NAPOLI – BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO** I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

CODIFICA DOCUMENTO REV. FOGLIO COMMESSA LOTTO SL0700 002 84 di 168 IF1N 01 E ZZ CL В

Verifica a taglio

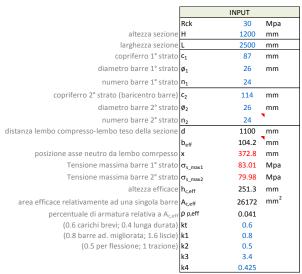

STEP 7: [SLV] $T^* = T_{diaframma} + T_{fodera} = (950 \text{ kN/m} + 60 \text{ kN/m}) \cdot 2.5 \text{ m} = 2525 \text{ kN}$

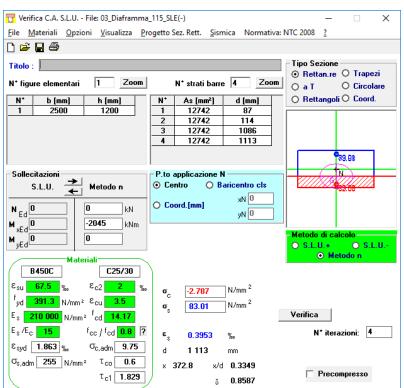
erifica a taglio per sezioni rettangolari armate a tagl	lio (D.M. 1	4/01/2008)	
<u> </u>			
classe cls	R _{ck}	30	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	25	N/mm ²
	f _{cd}	14	
coeff. parziale	Уc	1.5	
larghezza membratura resistene a V	b _w	2500	mm
altezza membratura resistene a V	Н	1200	mm
altezza utille	d	1080	mm
area della sezione	A _{TOT}	2700000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm ²
	$\alpha_{\rm c}$	1.00	
Acciaio	f _{vk}	450	N/mm ²
Feb44k	f _{vd}	391	N/mm ²
diametro staffe (spille)	Ø _w	16	mm
Area staffa (spilla)	Aø _w	201	mm ²
0.9 d	z	972	mm
passo delle staffe (spille)	S _w	150	mm
·	n° bracci	5	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	cot(a)	0.00	
	As _w / s _w	6.70	mm²/mr
	** **		
Taglio resistente per "taglio trazione"	V_{Rsd}	2549	kN
Taglio resistente per "taglio compressione"	V _{Rcd}	8572	kN
taglio sollecitante	V_{Ed}	2525	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γ _{Rd}	1	
taglio resistente	V _{Rd}	2549	kN
3	V _{Ed}	<	V_{Rd}
FS =	1.01	verifica	


Verifica a fessurazione

Si riportano le sollecitazioni massime allo SLE (comb. rara).

STEP 6: $M(+)^* = M_{diaframma} + M_{fodera} = (1268 + 10 \text{ kNm/m}) \cdot 2.5 \text{ m} = 3195 \text{ kNm}$





ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO** Ghella ITINERA I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E NSORZIO CFT VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL PIZZAROTTI **COMUNE DI MADDALONI – PROGETTO ESECUTIVO** Opere di sostegno delle rampe: Relazione di FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO RFV calcolo IF1N 01 E ZZ CL SL0700 002 В 86 di 168

STEP 6: $M(-) = M_{diaframma} = (-818 \text{ kNm/m}) \cdot 2.5 \text{ m} = -2045 \text{ kNm}$

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 87 di 168

FODERA INTERNA

La fodera interna in c.a. presenta uno spessore di 50 cm. La sezione di verifica risulta di dimensioni pari a BxH=1.0x0.5m.

L'armatura longitudinale è costituita da barre:

• ø24/10 (armatura lato controterra);

• ø20/10 (armatura lato libero).

L'armatura trasversale è costituita da staffe chiuse:

ø12/20 a 4 bracci.

La verifica strutturale della fodera si effettua sommando alle sollecitazioni del modello di calcolo, quelle provenienti dalla spinta dell'acqua. Queste ultime vengono valutate ipotizzando uno schema di trave con vincolo d'incastro ad una estremità (in corrispondenza della soletta di base) e un vincolo di appoggio nell'altra estremità (in corrispondenza del cordolo di sommità), di luce pari a 8.55 m sollecitata da un carico tringolare agente su una lunghezza pari alla differenza di quota tra la sezione di incastro della fodera con la soletta di base e la quota della falda (+51.1 m s.l.m. – 45.15 m s.l.m. = 5.95 m).

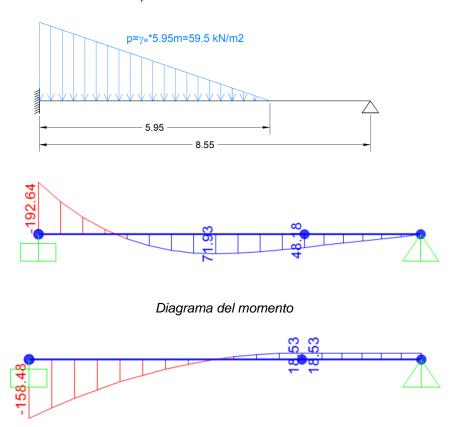


Diagramma del taglio

Mw (+) = 193 kNm/m

Mw(-) = -72 kNm/m

Tw = 158 kN/m

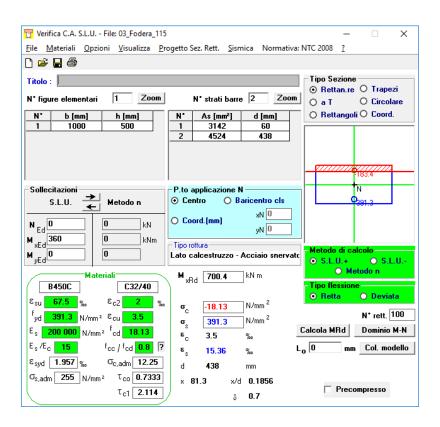
ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 88 di 168

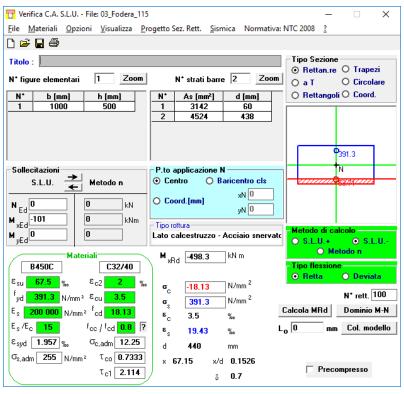

Verifica a pressoflessione

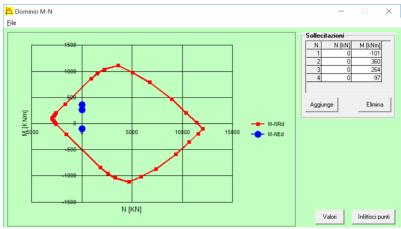
STEP 6 (SLU): M_{fodera} (+) = 13 kNm/m + 1.3*193 kNm/m = 264 kNm/m

 M_{fodera} (-) = (-3 kNm/m) + 1.3*(-72 kNm/m) = -97 kNm/m

STEP 7 (SLV): M_{fodera} (+) = 167 kNm/m + 193 kNm/m = 360 kNm/m

 M_{fodera} (-) = (-29 kNm/m) + (-72 kNm/m) = -101 kNm/m




RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 \$\$L0700 002\$
 B
 89 di 168

 M_{Ed} (+) = 360 kNm/m < M_{Rd} = 700 kNm/m.

 $FS = M_{Rd}/M_{Ed} = 1.94$

 M_{Ed} (-) = -101 kNm/m < M_{Rd} = -498 kNm/m.

 $FS = M_{Rd}/M_{Ed} = 4.93$

Ghella

Opere di sostegno delle rampe: Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

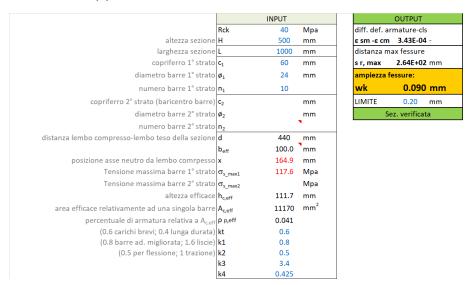
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

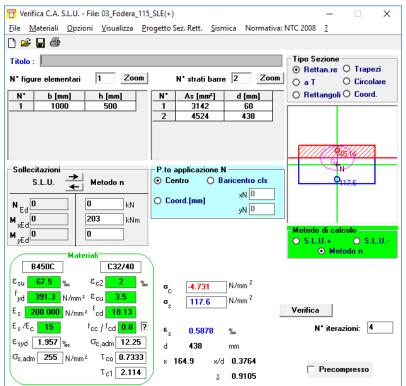
 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 90 di 168

Verifica a taglio

<u>STEP 6 (SLU):</u> $T_{fodera} = 6 \text{ kN/m} + 1.3*158 \text{ kN/m} = 211 \text{ kN/m}$

<u>STEP 7 (SLV):</u> $T_{fodera} = 60 \text{ kN/m} + 158 \text{ kN/m} = 218 \text{ kN/m}$


rifica a taglio per sezioni rettangolari armate a tag.	lio (D.M. s	14/04/2009)	
mica a tagno per sezioni rettangorari armate a tagi	IIO (D.IVI.	14/01/2006)	
classe cls	R _{ck}	40	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	33	N/mm ²
	f _{cd}	19	
coeff. parziale	Уc	1.5	
larghezza membratura resistene a V	b _w	1000	mm
altezza membratura resistene a V	Н	500	mm
altezza utille	d	450	mm
area della sezione	A _{TOT}	450000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm²
	α_{c}	1.00	
Acciaio	f_{yk}	450	N/mm ²
Feb44k	f_{yd}	391	N/mm ²
diametro staffe (spille)	ø _w	12	mm
Area staffa (spilla)	$Aø_w$	113	mm ²
0.9 d	Z	405	mm
passo delle staffe (spille)	S _w	200	mm
	n° bracci	4	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	$\cot(\alpha)$	0.00	
	As_w / s_w	2.26	mm ² /m
Taglio resistente per "taglio trazione"	V _{Rsd}	358	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	1905	kN
taglio sollecitante	V_{Ed}	218	kN
fattore di sicurezza per GR <i>(par. 7.9.5.2.2)</i>	γRd	1	
taglio resistente	V _{Rd}	358	kN
J	V _{Ed}	<	V_{Rd}
FS =	1.64	verifica	130

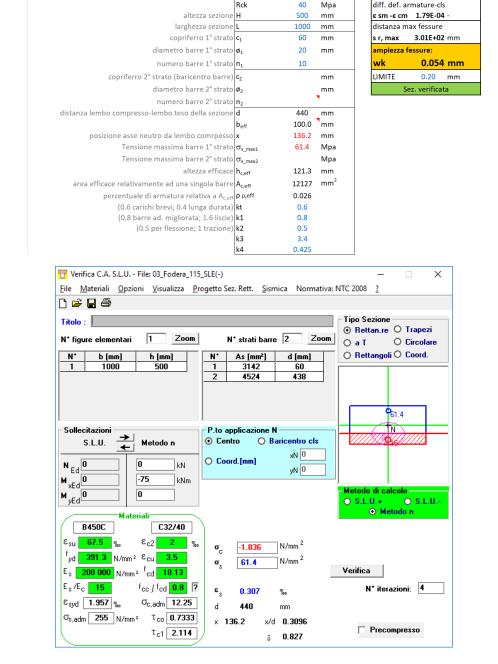


Verifica a fessurazione

STEP 6

 M_{fodera} (+) = 10 kNm/m + 193 kNm/m = 203 kNm/m

ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO** Ghella ITINERA I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E SORZIO CFT VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL PIZZAROTTI **COMUNE DI MADDALONI – PROGETTO ESECUTIVO** Opere di sostegno delle rampe: Relazione di COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** calcolo IF1N 01 E ZZ CL SL0700 002 В 92 di 168


Rck

INPUT

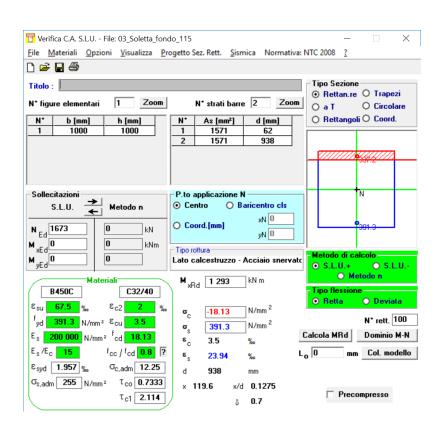
40

diff, def, armature-cls

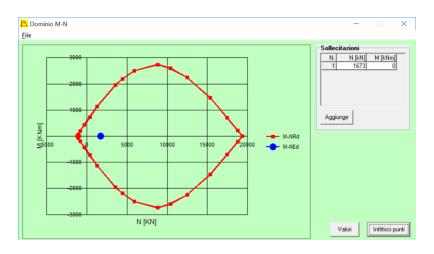
 M_{fodera} (-) = (-3) kNm/m + -72 kNm/m = -75 kNm/m

SOLETTA DI FONDO

Le verifiche saranno condotte considerando le sollecitazioni al metro lineare di soletta; le dimensioni geometriche della sezione di verifica risultano pari a BxH=1.0x1.0m.

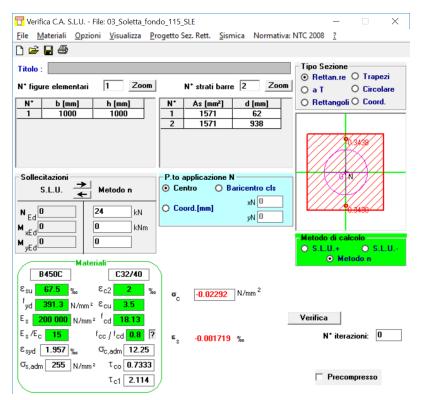

L'armatura longitudinale è costituita da barre:

ø20/20 (armatura superiore);


ø20/20 (armatura inferiore).

Verifica a compressione - SLU

STEP 7: $R_{Ed} = 1673 \text{ kN/m}$ $\sigma_{c_Ed} = 1.67 \text{ MPa}$



 σ_c Ed = 1.67 MPa < f_{cd}

Verifica a compressione - SLE

STEP 6: $R_{Ed} = 24 \text{ kN/m}$

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 95 di 168

SOLETTONE DI COPERTURA

Le verifiche saranno condotte considerando le sollecitazioni al metro lineare di soletta; le dimensioni geometriche della sezione di verifica risultano pari a BxH=1.0x1.2m.

Le rezioni massime e minime al metro lineare sono riportate §10.3.2 per gli stati limite considerati.

Per la determinazione delle sollecitazioni di momento flettente nella sezione in mezzeria si è fatto riferimento allo schema di calcolo di trave semplicemente appoggiata; per le sollecitazioni alle estremità, si considerano i valori del momento flettente e taglio agenti in testa ai diaframmi.

Il peso proprio del solettone risulta pari a 30 kN/m²; inoltre si ipotizza agire un carico permanente di 8.5 kN/m² dovuto al ritombamento in fase di esercizio ed un sovraccarico accidentale pari a 10 kPa.

La lunghezza della luce di calcolo è pari a 17.0 m (sezione in corrispondenza del locale pompe).

Sezione in mezzeria

 $M_{peso proprio} = 30 \text{ kN/m}^2 \cdot (17.0 \text{ m})^2 / 8 = 1084 \text{ kNm/m}$

 $M_{rinterrro} = 8.5 \text{ kN/m}^2 \cdot (17.0 \text{ m})^2 / 8 = 307 \text{ kNm/m}$

 $M_{accidentali} = 10 \text{ kN/m}^2 \cdot (17.0 \text{ m})^2 / 8 = 361 \text{ kNm/m}$

M_{mezzeria_Rmax_SLE} = 1084+307+361 = 1762 kNm/m

 $M_{mezzeria_Rmin_SLE} = 1084+361 = 1445 \text{ kNm/m}$

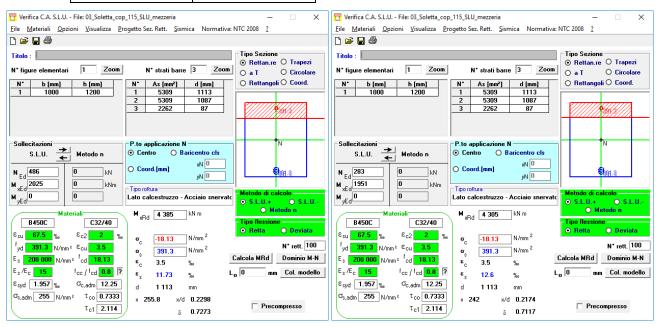
 $M_{mezzeria_Rmax_SLU} = (1084+307)\cdot 1.3+361\cdot 1.5 = 2025 \text{ kNm/m}$

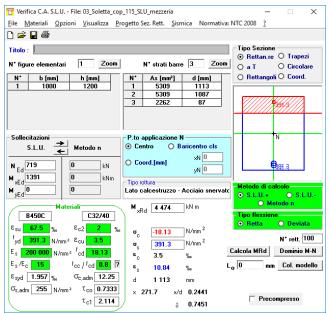
 $M_{mezzeria_Rmin_SLU} = 1084 \cdot 1.3 + 361 \cdot 1.5 = 1951 \text{ kNm/m}$

M_{mezzeria} SLV = 1391 kNm/m

In mezzeria è presente la seguente armatura:

ø26/10 + ø26/10 (armatura inferiore);

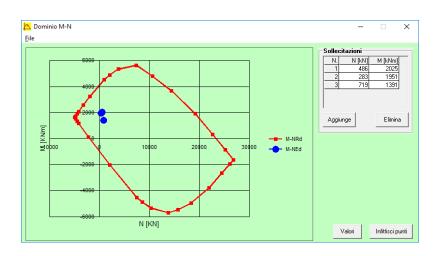

ø24/20 (armatura superiore).



Verifica a pressioflessione - SLU/SLV

R_{max_SLU}	M _{mezzeria_Rmax_} SLU	R_{min_SLU}	M _{mezzeria_Rmin_} SLU
486 kN/m	2025 kN/m	283 kN/m	1951 kN/m

R _{max_SLV}	M _{mezzeria_} SLV
719	1391



ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	97 di 168

 $M_{Ed_SLU_Rmax} = 2025 \text{ kNm/m} < M_{Rd} = 4385 \text{ kNm/m}.$

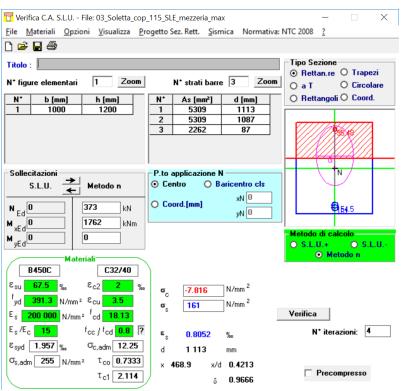
 M_{Ed} SLU $R_{min} = 1951$ kNm/m $< M_{Rd} = 4305$ kNm/m.

 $M_{Ed_SLV} = 1391 \text{ kNm/m} < M_{Rd} = 4474 \text{ kNm/m}.$

 $FS = M_{Rd}/M_{Ed} = 2.16$

 $FS = M_{Rd}/M_{Ed} = 2.21$

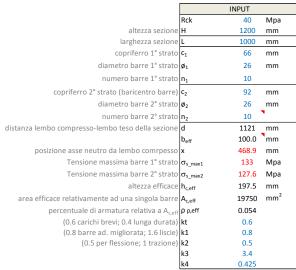
 $FS = M_{Rd}/M_{Ed} = 3.22$



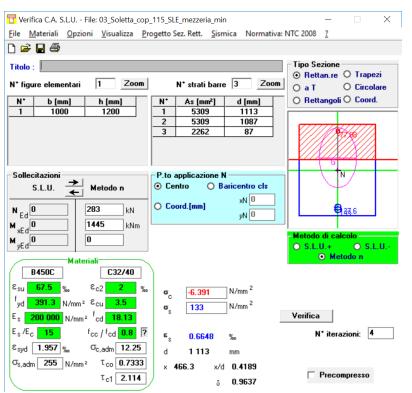
Verifica a fessurazione - SLE

R _{max_SLE}	M _{mezzeria_max_} SLE
373 kN/m	1762 kN/m

calcolo


ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ CL SL0700 002 В 99 di 168

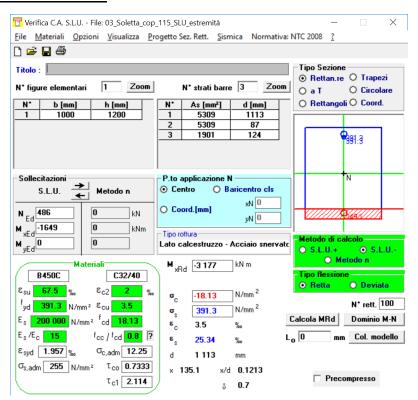
R _{min_SLE}	M _{mezzeria_min_} SLE
283 kN/m	1445 kN/m

Sezioni di estremità

Si riportano le coppie di valori (N, M) agenti all'estremità della soletta per gli stati limite considerati.

	STEP di calcolo	R (kN/m)	M (kNm/m)	T (kNm/m)
	3	368	-1383	368
CLLL (A4 · M4 · D4)	4	378	-1393	378
SLU (A1+M1+R1)	5	378	-1394	378
	6	486	-1649	478
SLV (EQK+M1+R1)	7	719	-1268	621

^(*) il momento negativo tende l'armatura superiore

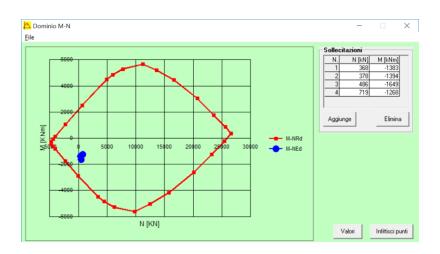

Alle estremità della soletta di copertura è presente la seguante armatura longitudinale:

• ø26/10 (armatura inferiore);

ø26/10 + ø22/20 (armatura superiore).

L'armatura trasversale è costituita da staffe ø14/15.

Verifica a pressioflessione - SLU/SLV


ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 101 di 168

 $M_{Ed} = -1383 \text{ kNm/m} < M_{Rd} = -3118 \text{ kNm/m}.$ FS = $M_{Rd}/M_{Ed} = 2.25$

 $M_{Ed} = -1394 \text{ kNm/m} < M_{Rd} = -3123 \text{ kNm/m}.$ FS = $M_{Rd}/M_{Ed} = 2.24$

 $M_{Ed} = -1649 \text{ kNm/m} < M_{Rd} = -3177 \text{ kNm/m}.$ FS = $M_{Rd}/M_{Ed} = 1.93$

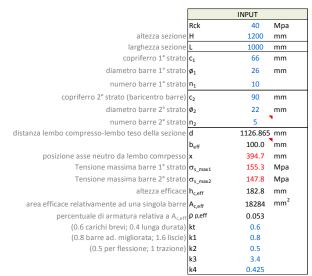
 $M_{Ed} = -1268 \; kNm/m < M_{Rd} = -3294 \; kNm/m. \qquad \qquad FS = M_{Rd}/M_{Ed} = 2.60 \; kNm/m.$

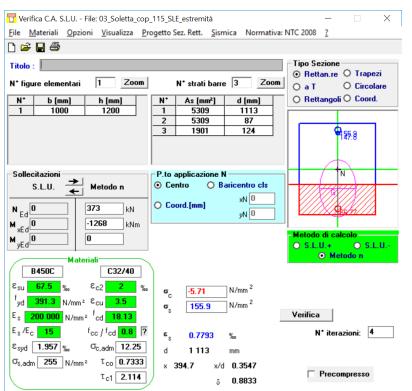
ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 102 di 168

Verifica a taglio


erifica a taglio per sezioni rettangolari armate a tagl	lio (D.M. 1	4/01/2008)	
classe cls	R_{ck}	40	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	33	N/mm ²
	f_{cd}	19	
coeff. parziale	Уc	1.5	
larghezza membratura resistene a V	b _w	1000	mm
altezza membratura resistene a V	Н	1200	mm
altezza utille	d	1080	mm
area della sezione	A_{TOT}	1080000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm²
	$\alpha_{\rm c}$	1.00	
Acciaio	f _{vk}	450	N/mm²
Feb44k	f _{vd}	391	N/mm ²
diametro staffe (spille)	Ø _w	14	mm
Area staffa (spilla)	Aø _w	154	mm ²
0.9 d	z	972	mm
passo delle staffe (spille)	S _w	150	mm
	n° bracci	2	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	cot(a)	0.00	
	As _w / s _w	2.05	mm²/m
	**		
Taglio resistente per "taglio trazione"	V_{Rsd}	781	kN
Taglio resistente per "taglio compressione"	V _{Rcd}	4572	kN
	1100		
taglio sollecitante	V_{Ed}	621	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γ _{Rd}	1	
taglio resistente	V _{Rd}	781	kN
<u> </u>	V _{Ed}	<	V_{Rd}
FS =	1.26	verifica	Nu


Verifica a fessurazione - SLE

	STEP di calcolo	R (kN/m)	M (kNm/m)
	3	283	-1063
SLE	4	291	-1071
	5	291	-1071
	6	373	-1268

(*) il momento negativo tende l'armatura superiore

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	104 di 168

6.4.3.2 VERIFICHE GEOTECNICHE ALLO SLU/SLV

In merito alle verifiche di carattere geotecnico (GEO), nella tabella che segue si sintetizzano i coefficienti di sicurezza ottenuti dall'analisi nelle combinazioni specifiche in fase statica e sismica.

	SLU (statica)	SLV (sismica)
	(A2+M2+R1)	(EQK+M2+R1)
Spinta passiva massima mobilizzabile	2458	1737
Spinta passiva mobilitata	1426	1731.7
FS % passiva mobilitata	1.367	1.003

Avendo posto:

• FS % passiva mobilitata: rapporto tra la spinta passiva e la spinta effettivamente mobilitata a valle.

Per la verifica al sollevamento del tappo di fondo in jet-grouting, si rimanda al paragrafo 6.7.

6.4.3.3 VERIFICHE GEOTECNICHE ALLO SLE/SLD

Nelle figure che seguono si riportano gli spostamenti orizzontali dell'opera allo SLE.

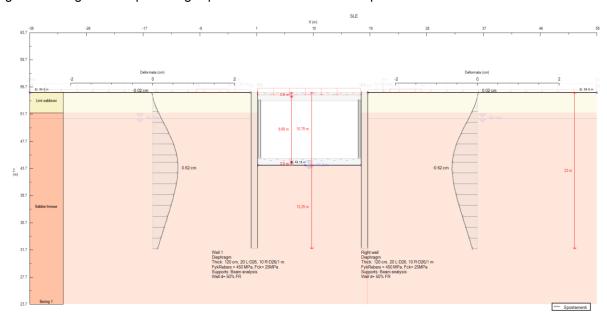


Fig. 57 – Modello di calcolo 2: Spostamenti orizzontali allo SLE

	SLE
Spostamento orizzontale massimo δh _{max} (cm)	0.6

Gli spostamenti orizzontali massimi risultano compatibili con la funzionalità dell'opera.

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 106 di 168

6.5 VERIFICA DEL TAPPO DI FONDO IN JET GROUTING

Si riporta di seguito la verifica al sollevamento del tappo di fondo in jet-grouting nei confronti degli stati limite di sollevamento (UPL) per la rampa di accesso al sottovia lato est.

Per i motivi commentati in precedenza, la quota di falda di progetto assunta nel calcolo è pari a +51.10 m s.l.m..

Nel considerare le forze resistenti al sollevamento, è stato preso in conto il contributo del peso proprio del tappo in jet-grouting (assumendo un peso per unità del volume $\gamma_{\text{jet-grouting}}$ =18 kN/m³) e dell'adesione laterale diaframma-tappo di fondo. Quest'ultimo contributo è stato valutato sulla base delle indicazioni contenute all'interno delle Raccomandazioni AGI sui pali di fondazione (1984), attraverso la relazione

$$q_s = \mu \cdot k \cdot \sigma'_v$$

In cui:

q_s = adesione laterale

 μ = coefficiente di attrito

k = coefficiente adimensionale che esprime il rapporto fra tensione normale che agisce alla profondità z sulla superficie laterale e la tensione verticale alla stessa profondità

Generalmente per pali di grande diametro/diaframmi trivellati il valore di k=1-sen(ϕ ') e comunque compreso tra 0.4÷0.7; nel presente caso sarà utilizzato il valore minimo di 0.4 in quanto 1-sen(ϕ ')=1-sen(32°)=0.47. Per ciò che riguarda invece il coefficiente μ , le Raccomandazioni AGI indicano per pali/diaframmi trivellati un valore pari alla tan(ϕ '); nel presente caso, cautelativamente si assumerà un valore di μ = tan(ϕ ')=0.625.

Nel calcolo del contributo di adesione, inoltre, è stato applicato il coefficiente parziale γ_c '=1.6 (relativamente alle resistenze che si oppongono a forze di trazione) e ξ =1.65 (in funzione delle due verticali indagate – Tab. 6.4.IV del DM 14/01/2008) come previsto dal DM 14/01/2008.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno delle rampe: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 107 di 168

Verifica sollevamento tappo di fondo

	• •	
γ_{terr} (peso di volume del terreno)	17	kN/m³
φ' (angolo d'attrito)	32	0
γ_t (peso di volume del tappo di fondo)	18	kN/m³
γ_w (peso di volume dell'acqua)	10	kN/m³
p.c. (quota piano campagna)	54.1	m s.l.m.
z _w (quota falda)	51.1	m s.l.m.

Coeff. Parziale al sollevamento	favorevole	0.9
(DM 2008 §6.2.3.2)	sfavorevole	1.1
Coeff. Parziale sui terreni (M2)	sfavorevole	1.6
Coeff. parziale su verticali indagate	-	1.65

k	0.400	0.4
μ	0.625	

	pk	Quota f.s.	H _{tf}	Quota f.jet	ΔН	Adesione lat.	Az. stab.	Az. destab.	FS
		(m s.l.m.)	(m)	(m s.l.m.)	(m)	(kN/m²)	(kN/m)	(kN/m)	(-)
rampa est	87.50	44.45	4.50	39.95	11.15	28.32	159.79	122.65	1.30
rampa est	90.00	44.39	4.50	39.89	11.21	28.42	160.11	123.31	1.30
rampa est	92.50	44.33	4.50	39.83	11.27	28.53	160.43	123.97	1.29
rampa est	95.00	44.28	4.50	39.78	11.32	28.62	160.70	124.52	1.29
rampa est	97.50	44.24	4.50	39.74	11.36	28.69	160.92	124.96	1.29
rampa est	100.00	44.21	5.50	38.71	12.39	29.61	200.15	136.29	1.47
rampa est	102.50	44.18	5.50	38.68	12.42	29.67	200.35	136.62	1.47
rampa est	105.00	44.16	5.50	38.66	12.44	29.70	200.48	136.84	1.47
rampa est	107.50	44.14	5.50	38.64	12.46	29.74	200.61	137.06	1.46
rampa est	110.00	44.14	5.50	38.64	12.46	29.74	200.61	137.06	1.46
rampa est	112.50	44.14	5.50	38.64	12.46	29.74	200.61	137.06	1.46
rampa est	115.00	44.15	5.50	38.65	12.45	29.72	200.55	136.95	1.46
rampa est	117.50	44.17	5.50	38.67	12.43	29.68	200.41	136.73	1.47
rampa est	120.00	44.19	5.50	38.69	12.41	29.65	200.28	136.51	1.47
rampa est	122.50	44.22	5.50	38.72	12.38	29.60	200.09	136.18	1.47
rampa est	125.00	44.26	5.50	38.76	12.34	29.53	199.82	135.74	1.47
rampa est	127.50	44.30	5.50	38.8	12.30	29.46	199.56	135.30	1.47
rampa est	130.00	44.36	5.50	38.86	12.24	29.35	199.17	134.64	1.48
rampa est	132.50	44.42	5.50	38.92	12.18	29.25	198.77	133.98	1.48
rampa est	135.00	44.48	5.50	38.98	12.12	29.14	198.38	133.32	1.49
rampa est	137.50	44.56	5.50	39.06	12.04	29.00	197.86	132.44	1.49
rampa est	140.00	44.64	4.50	40.14	10.96	27.99	158.77	120.56	1.32
rampa est	142.50	44.73	4.50	40.23	10.87	27.83	158.28	119.57	1.32
rampa est	145.00	44.83	4.50	40.33	10.77	27.65	157.75	118.47	1.33
rampa est	147.50	44.93	4.50	40.43	10.67	27.48	157.21	117.37	1.34
rampa est	150.00	45.04	4.50	40.54	10.56	27.29	156.62	116.16	1.35
rampa est	152.50	45.16	4.50	40.66	10.44	27.08	155.98	114.84	1.36
rampa est	155.00	45.29	4.50	40.79	10.31	26.85	155.28	113.41	1.37
rampa est	157.50	45.42	4.50	40.92	10.18	26.62	154.58	111.98	1.38
rampa est	160.00	45.54	4.50	41.04	10.06	26.41	153.94	110.66	1.39
rampa est	162.50	45.67	3.50	42.17	8.93	25.31	117.10	98.23	1.19
rampa est	165.00	45.80	3.50	42.3	8.80	25.08	116.56	96.80	1.20
rampa est	167.50	45.93	3.50	42.43	8.67	24.85	116.01	95.37	1.22
rampa est	170.00	46.05	3.50	42.55	8.55	24.64	115.51	94.05	1.23
rampa est	172.50	46.18	3.50	42.68	8.42	24.42	114.97	92.62	1.24
rampa est	175.00	46.31	3.50	42.81	8.29	24.19	114.43	91.19	1.25
rampa est	177.50	46.44	3.50	42.94	8.16	23.96	113.88	89.76	1.27
rampa est	180.00	46.56	3.50	43.06	8.04	23.75	113.38	88.44	1.28
rampa est	182.50	46.69	3.00	43.69	7.41	23.09	95.82	81.51	1.18
rampa est	185.00	46.82	3.00	43.82	7.28	22.86	95.36	80.08	1.19
rampa est	187.50	46.95	3.00	43.95	7.15	22.63	94.89	78.65	1.21
rampa est	190.00	47.07	3.00	44.07	7.03	22.42	94.46	77.33	1.22
rampa est	192.50	47.20	3.00	44.2	6.90	22.20	94.00	75.90	1.24
rampa est	195.00	47.33	3.00	44.33	6.77	21.97	93.53	74.47	1.26
rampa est	197.50	47.46	3.00	44.46	6.64	21.74	93.07	73.04	1.27
rampa est	200.00	47.58	3.00	44.58	6.52	21.53	92.64	71.72	1.29

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 108 di 168

rampa est	202.50	47.71	2.50	45.21	5.89	20.87	76.07	64.79	1.17
rampa est	205.00	47.84	2.50	45.34	5.76	20.64	75.68	63.36	1.19
rampa est	207.50	47.97	2.50	45.47	5.63	20.41	75.29	61.93	1.22
rampa est	210.00	48.09	2.50	45.59	5.51	20.20	74.93	60.61	1.24
rampa est	212.50	48.22	2.50	45.72	5.38	19.97	74.55	59.18	1.26
rampa est	215.00	48.35	2.50	45.85	5.25	19.75	74.16	57.75	1.28
rampa est	217.50	48.48	2.50	45.98	5.12	19.52	73.77	56.32	1.31
rampa est	220.00	48.60	2.50	46.1	5.00	19.31	73.41	55.00	1.33
rampa est	222.50	48.73	2.50	46.23	4.87	19.08	73.02	53.57	1.36
rampa est	225.00	48.86	2.50	46.36	4.74	18.85	72.64	52.14	1.39
rampa est	227.50	48.99	2.00	46.99	4.11	18.19	57.20	45.21	1.27
rampa est	230.00	49.11	2.00	47.11	3.99	17.98	56.92	43.89	1.30
rampa est	232.50	49.24	2.00	47.24	3.86	17.75	56.61	42.46	1.33
rampa est	235.00	49.37	2.00	47.37	3.73	17.52	56.30	41.03	1.37
rampa est	237.50	49.50	2.00	47.5	3.60	17.30	55.99	39.60	1.41
rampa est	240.00	49.62	2.00	47.62	3.48	17.09	55.70	38.28	1.46

con:

Quota f.s.: quota in m s.l.m. del fondo scavo

H_{tf}: spessore di progetto del tappo di fondo in jet-grouting

Quota f.jet: quota di fondo del tappo in jet-grouting espresso in m s.l.m.

 ΔH : battente idraulico

Adesione lat. tappo: adesione laterale diaframma-tappo (ridotta del coeff. parziale γ_c '=1.60)

Az. Stab.: risultante delle azioni stabilizzanti (moltiplicate per il coeff. parziale γ_{G1}=0.9)

Az. destab.: risultante delle azioni destabilizzanti (moltiplicate per il coeff. parziale γ_{G1} =1.1)

FS = (Az. Stab.)/(Az. Destab.) coefficiente di sicurezza

7 MURO AD "U" - RAMPA OVEST

7.1 SEZIONE DI CALCOLO 1

La prima parte del muro ad "U" presente soletta di base di spessore pari a 1.0 m e piedritti di spessore 1.0 m con altezza variabile da un minimo di 2.0 m a un massimo di 2.5 m.

La sezione di calcolo 1 fa riferimento ad un'altezza dei piedritti di 2.5 m. La falda è posta ad una quota assoluta di +51.10 m s.l.m., così come risulta dallo schema geotecnico considerato.

Si riporta di seguito la sezione trasversale tipo.

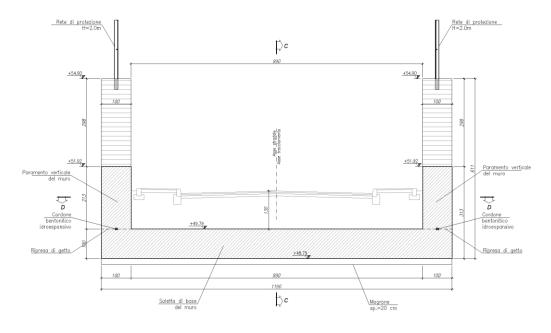


Fig. 58 - Muro ad "U" lato ovest: sezione di calcolo 1

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 110 di 168

7.1.1 ANALISI DEI CARICHI

I carichi agenti sulla struttura, per metro di manufatto, sono i seguenti:

Peso proprio

Tutti gli elementi portanti sono realizzati in calcestruzzo armato, con peso specifico pari a: $\gamma_{cls} = 25 \text{ kN/m}^3$.

Carichi permanenti portati

Il carico verticale dovuto al peso della pavimentazione stradale e al sottostante strato di riempimento è:

riempimento (terreno compattato):

$$\gamma = 20 \text{ kN/m}^3$$

spessore = 1.13m

peso = $20 \text{ kN/m}^3 \cdot 1.13 \text{ m} = 22.6 \text{ kN/m}$

pavimentazione:

$$\gamma = 20 \text{ kN/m}^3$$

spessore = 0.17m

peso = $20 \text{ kN/m}^3 \cdot 0.17 \text{ m} = 3.4 \text{ kN/m}$

Ne risulta un carico verticale totale, per metro lineare di manufatto, di 26.0 kN/m.

Spinta delle terre

Per la determinazione della spinta del terreno a tergo del muro si fanno le seguenti considerazioni:

- √ lo scavo è sostenuto inizialmente da palancole sulle quali, grazie alla loro deformabilità, agira la spinta del terreno;
- ✓ una volta realizzato il muro ad U saranno sfilate le palancole e la spinta del terreno sarà trasferita all'opera di sostegno definitiva.

Per il terreno si assumono i seguenti parametri:

$$y = 17 \text{ kN/m}^3$$

 $\varphi' = 30^{\circ}$ (angolo di attrito medio)

Si considera uno stato di spinta a riposo, il cui coefficiente di spinta k₀ è stato calcolato secondo la relazione

$$k_0 = 1\text{-sen}(\phi') = 0.5$$

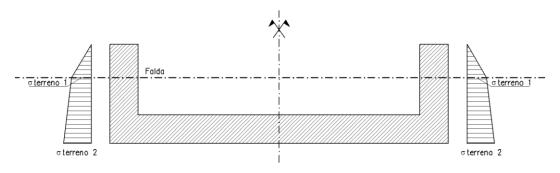


Fig. 59 - Muro ad "U" lato ovest: sezione di calcolo 1 - spinta del terreno

La tensione orizzontale alla quota della falda, per metro lineare di manufatto, risulta:

$$\sigma_{h_terreno_1} = \gamma_t \cdot h_{sup} \cdot k_0 = 17 \ kN/m^3 \cdot 0.82m \cdot 0.5 = 7.0 \ kN/m.$$

La tensione orizzontale massima (alla base della fondazione), per metro lineare di manufatto, risulta:

$$\sigma_{h_terreno_2} = (\gamma_t - \gamma_w) \cdot h_{inf} \cdot k_0 + \sigma_{h_terreno_1} = (17-10) \text{ kN/m}^3 \cdot 2.78 \text{ m} \cdot 0.5 + 7.0 \text{ kN/m} = 16.4 \text{ kN/m}.$$

Spinta dell'acqua

Essendo il livello della falda (+51.10 m.s.l.m.) più elevato del piano di posa del manufatto, questo, supponendo che in condizioni di lungo termine l'acqua riesca a filtrare all'interno dello strato di jet grouting, riceverà una spinta orizzontale ed una verticale diretta verso l'alto come illustrato in figura.

Fig. 60 – Muro ad "U" lato ovest: sezione di calcolo 1 - spinta dell'acqua

Avremo pertanto, con i simboli adottati in figura, le seguenti spinte (per metro lineare di manufatto):

$$U_v = U_h = h_w \cdot \gamma_w = 2.68 \text{ m} \cdot 10 \text{kN/m}^3 = 26.8 \text{ kN/m}$$

Sovraccarico accidentale

Verrà considerato, esternamente allo scavo, un carico accidentale uniformemente distribuito pari a 10 kN/m^2 allo scopo di rappresentare il peso di macchinari durante la realizzazione dell'opera; tale carico, in virtù del coefficiente di spinta $K_0 = 0.5$, produrrà una spinta orizzontale, per metro lineare di manufatto, uniformemente distribuita sui piedritti pari a:

 $q_{sovr_acc} = q_{acc} \cdot k_0 = 10 \text{ kN/m}^2 \cdot 0.5 = 5.0 \text{ kN/m}$

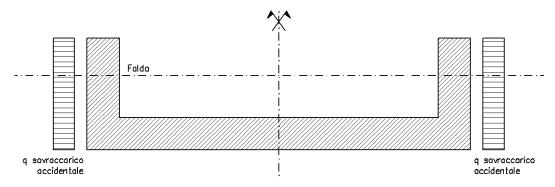


Fig. 61 – Muro ad "U" lato ovest: sezione di calcolo 1 - spintasovraccarico accidentale

Sovraccarico permanente

A monte dei piedritti è presente una scarpata di altezza pari a circa 2.0 m; si considera sovraccarico permanente che produrrà una spinta orizzontale (per metro lineare di manufatto) uniformemente distribuita su tutta l'altezza dei piedritti, pari a:

 $q_{sovr_perm} = h_{terr} \cdot \gamma_t \cdot k_0 = 2.0 \text{ m} \cdot 17 \text{ kN/m}^3 \cdot 0.5 = 17 \text{ kN/m}$

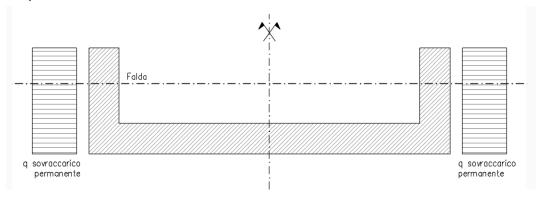


Fig. 62 - Muro ad "U" lato ovest: sezione di calcolo 1 - spintasovraccarico permanente

Spinta del terreno in fase sismica

Secondo la teoria di Wood, si considera un incremento di spinta sismica del terreno ΔS costante su tutta l'altezza dei piedritti (per metro lineare di manufatto):

$$a_g = 0.213g$$

$$S_T = 1.381$$

Ghella

Opere di sostegno delle rampe: Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 113 di 168

 $S_S = 1$

 $k_h = S_S \cdot S_T \cdot a_g/g = 0.2942$

 $\Delta S = k_h \cdot \gamma_t \cdot H = 0.2942 \cdot 17 \; KN/m^3 \cdot 3.5 \; m = 17.5 \; kN/m$

Forze sismiche dovute alle masse inerziali

Si considerano delle forze orizzontali dovute alle masse inerziali dei piedritti, della fondazione del manufatto e del compattato+pavimentazione, applicate ai baricentri di ogni elemento, calcolate nel seguente modo:

Fmuro = kh · V_{muro} · γ_{cls} = 0.2942 · 3m³ · 25 kN/m³ = 22.1 kN (per ogni piedritto)

Ffondazione = kh · $V_{fondazione}$ · γ_{cls} = 0.2942 · 12m³ · 25 kN/m³ = 87.5 kN

Fcomp+pavim = kh · $V_{compattato}$ +pavim · γ_{cls} = 0.2942 · 12.9 m^3 · 20 kN/ m^3 = 75.7 kN

Mcomp+pavim = $F_{comp+pavim} \cdot b = 75.7 \text{ kN} \cdot 1.15 \text{m} = 87.1 \text{ kNm}$

Sovraspinta idraulica

Ai sensi dell'EN 1998 – parte 5, si considera il seguente incremento della spinta idraulica, in fase sismica:

$$q = \pm 7/8 * k_h * \gamma_w * \sqrt{(h_w * z)}$$

Alla base della fondazione si ha una pressione q = ±6.90 kN/m

7.1.2 DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI

La struttura è stata analizzata mediante apposito modello matematico agli elementi finiti (E.F.).

Il calcolo è stato effettuato, per ragioni di semplicità ed in favore di sicurezza, considerando una striscia di 1m del manufatto e schematizzandola come un telaio piano: la soletta e i piedritti sono stati modellati con elementi trave, posti lungo la linea media ed aventi lunghezza rispettivamente 10.90 m e 3 m e spessore 1 m.

Per quanto riguarda i vincoli esterni, si sono utilizzate delle molle (springs) applicate sotto la soletta di fondazione per riprodurre l'interazione con il terreno. La costante di Winkler in direzione verticale è stata assunta pari a 10000 kN/m³

La figura di seguito mostra la modellazione del manufatto e la discretizzazione della soletta per l'applicazione delle molle:

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	114 di 168

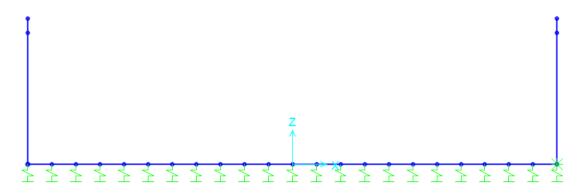


Fig. 63 - Muro ad "U" lato ovest: sezione di calcolo 1 - modello agli E.F.

Le molle sono state posizionate con interasse di 0.5 m, perciò, considerando una fascia di manufatto di profondità 1m, la rigidezza assegnata nel modello è pari a 5000 kN/m.

Il riferimento globale del modello è una terna cartesiana destrorsa con l'asse Z verticale e l'asse X nel piano del modello.

Le analisi delle sollecitazioni eseguite sono state condotte mediante apposito modello matematico agli elementi finiti (E.F.). Tale modello è stato realizzato ed analizzato con l'ausilio del programma SAP2000© della CSi® Inc., con successiva elaborazione dei dati di output mediante l'utilizzo del foglio elettronico EXCEL© della Microsoft.

Tra i diversi elementi finiti disponibili nel programma di calcolo per analisi FEM, sono stati utilizzati elementi finiti tipo "frame", in quanto i più adatti per schematizzare questo tipo di struttura ed eseguire l'analisi in oggetto.

7.1.3 COMBINAZIONI DI CARICO

Le combinazioni delle sollecitazioni agenti, riassunte nella tabella successiva, sono state effettuate utilizzando la sequente formula:

$$F_d = \gamma_G \cdot G_k + \gamma_Q \cdot \left(Q_{1k} + \sum \psi_i \cdot Q_{ik} \right)_k$$

	G1	G2	S_terr	S_perm	S_acc	S_idr	inerzie sism	S_terr_sism	S_idr_sism
Coeff. comb. SLU	1.30	1.30	1.30	1.30	1.50	1.30	0.00	0.0	0.0
Coeff. comb. SLV	1	1	1	1	0.2	1	1	1	1
Coeff. comb. SLE	1	1	1	1	1	1	0	0	0

Dove sono stati indicati:

S terr = spinta terreno (statica)

S_perm = sovraccarico permanente (statico)

S acc = sovraccarico accidentale (statico)

S_idr = spinta idraulica (statico) (considerata come azione permanente)

S_terr_sism = spinta terreno (sismica)

S_idr_sism = spinta idraulica (sismica)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	115 di 168

7.1.4 ANALISI DELLE SOLLECITAZIONI

Si riportano di seguito le caratteristiche geometriche principali dell'opera utilizzate nei calcoli.

Soletta inferiore :

sezione 100 x 100 cm²

copriferro estradosso 4 cm

copriferro intradosso 4 cm

Piedritti :

sezione 100 x 100 cm²

copriferro etradosso 4 cm

copriferro intradosso 4 cm

Prima di analizzare le tensioni nelle sezioni significative della struttura, è stata effettuata una verifica di equilibrio globale dell'opera; è stato cioè verificato che la sottospinta idraulica non producesse il sollevamento dell'opera quando questa fosse soggetta all'unico carico verticale del peso proprio.

Peso Proprio: PPmanufatto = $16.9 \text{ m}^2 \cdot 1\text{m} \cdot 25 \text{ kN/m}^3 = 422.5 \text{ kN}$

Sottospinta idraulica: SW = $2.68m * 10 \text{ kN/m}^3 * 10.9m * 1 \text{ m} = 292.1 \text{ kN}$

Si verifica che 0.9 * PPmanufatto = 380.25 kN > 1.1*SW = 321.3 kN

La verifica risulta soddisfatta con un coefficiente di sicurezza F=1.18.

Di seguito si riporta la distribuzione di Momento e Taglio sulla struttura (in combinazione SLU, SLE e SLV), la deformata e le relative verifiche nelle sezioni di interesse.

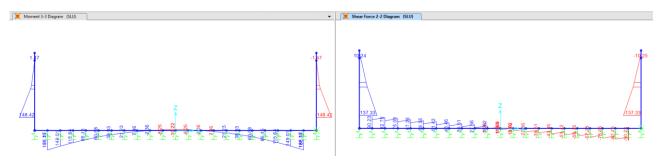


Fig. 64 - Muro ad "U" lato ovest: sezione di calcolo 1 - Momento (kNm) e Taglio (kN) allo SLU

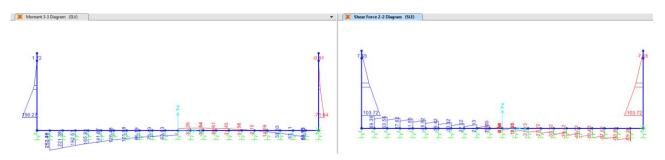


Fig. 65 - Muro ad "U" lato ovest: sezione di calcolo 1 - Momento (kNm) e Taglio (kN) allo SLV

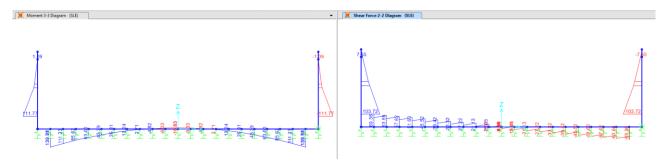


Fig. 66 - Muro ad "U" lato ovest: sezione di calcolo 1 - Momento (kNm) e Taglio (kN) allo SLE

Le sezioni di verifica sono le seguenti:

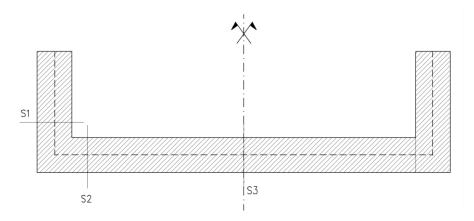


Fig. 67 - Muro ad "U" lato ovest: sezione di calcolo 1 - Sezioni di verifica

Di seguito si riporta la tabella con le sollecitazioni elementari nelle 3 sezioni di verifica del manufatto.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 117 di 168

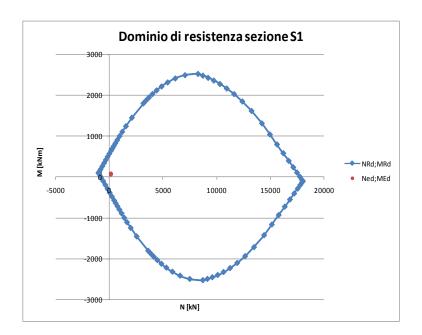
	sez base muro – S1			sez esterna fondazione - S2				sez mezzeria fondazione – S3				
	N compr	N compr			N compr	N compr			N compr	N compr		
	max	min	٧	M	max	min	٧	M	max	min	٧	M
dead	-63	-	0	0	0	0	67	-30	0	0	8.5	-157
pavimentazione	0	-	0	0	0	0	-11	3	0	0	6	15
spinta terreno												
statica	0	-	25	25	-32	-32	2	39	-32	-32	0	34
sovraccarico permanente												
statica	0	-	43	53	-51	-51	3	76	-51	-51	0	66
sovraccarico accidentale												
statica	0	-	13	16	-15	-15	0	22	-15	-15	0	19
spinta idraulica												
statica	0	-	24	18	-37	-37	0	30	-37	-37	6	13
inerzie sismiche	0	-	12	1	-185	-22	-1	38	-185	-22	-8	44
incremento spinta terreno												
sismica	0	-	43	51	-54	-54	2	80	-54	-54	9	35
pressione idrodinamica												
sismica	0	-	8	7	-12	-12	0	12	-12	-12	1	5

Le sollecitazioni combinate risultano essere le seguenti:

	s	ez base mur	o – \$1		sez est	erna fonda	zione – S	52	sez me	zzeria fond	azione -	- S3
	N compr	N compr			N compr	N compr			N compr	N compr		
	max	min	٧	М	max	min	٧	М	max	min	V	М
comb statica SLU	-81	-	137	148	-178	-179	78	186	-178	-179	27	-10
comb sismica SLV	-63	-	156	158	-374	-211	61	252	-374	-211	23	58
comb SLE	-63	-	104	112	-135	-135	60	140	-135	-135	21	-11

7.1.4.1 VERIFICHE STRUTTURALI ALLO SLU

SEZIONE S1 - Verifica a pressoflessione


La sezione è armata con barre \$20/passo 20cm in zona tesa e \$16/passo 20cm in zona compressa.

Si riporta il dominio di resistenza della sezione:

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IF1N	01 E ZZ	CL	SL0700 002	В	118 di 168	

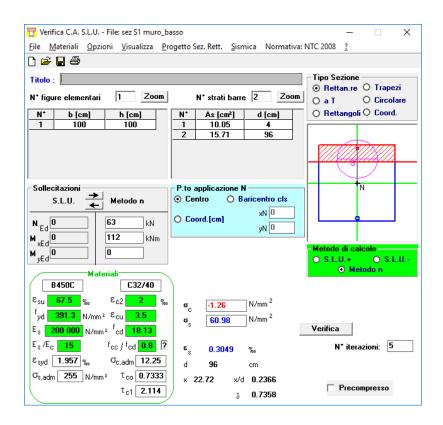
SEZIONE S1 - Verifica a taglio

Non è necessaria l'armatura a taglio.

Verifca a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

classe cls	Rck	30	N/mm2
resist. Caratteristica cilindrica	fck	25	N/mm2
	fed	14	
coeff. parziale	yc	1.5	
larghezza membratura resistene a V	bw	1000	mm
altezza membratura resistene a V	H	950	mm
altezza utille	d	855	mm
area della sezione	Asez	855000	mm2
diametro ferro longitudinale teso	фІ	20	mm
area armatura	Asl	314.2	mm ²
	strato	1	
	passo	200	mm
·	nd/strato	5	
area armatura totale	Af tot	1570.8	mm ²
percentuale di armatura	ρl	0.0018	
sforzo assiale dovuto ai carichi o precompressione	N	62500	N
	оср	0.07	N/mm ²
	k	1.48	
	vmin	0.32	
taglio resistente	Vrd1	261	kN
	Vrd2	278	kN

taglio sollecitante	Ved	156	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	$\gamma_{ m Rd}$	1	
	Vrd	278	kN
	Ved	<	Vrd
		verifica	

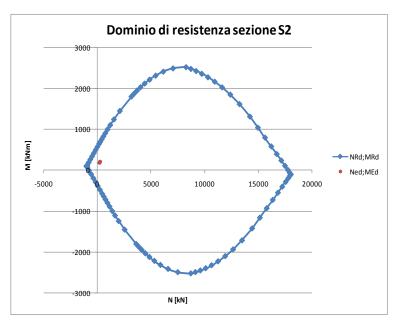


SEZIONE S1 - Verifica a fessurazione

Si riportano le sollecitazioni massime allo SLE (comb. rara).

II	NPUT	
B sez	1000	mm
h sez	950	mm
y ferro	72	mm
Φ (barre)	20	mm
n.barre	5	-
cls C	30	MPa
x AN	227	mm
σs	61	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

	OUTPUT				
diff. def. arr	nature-cls				
ε sm -ε cm	1.78E-04 -				
distanza ma	x fessure				
s r, max	6.01E+02 mm				
ampiezza fe	ssure:				
wk	0.1067 mm				
LIMITE	0.20 mm				
Sez. verificata					



SEZIONE S2 - Verifica a pressoflessione

La sezione è armata con barre \$\phi20/passo 20cm in zona tesa e \$\phi16/passo 20cm in zona compressa.

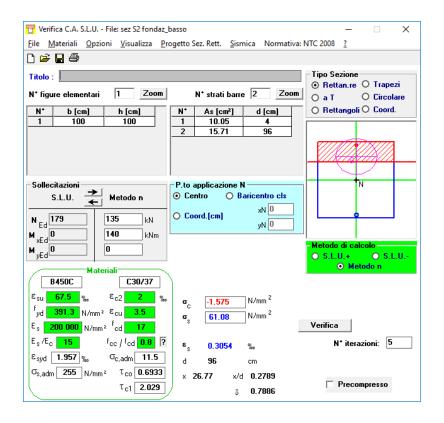
Si riporta il dominio di resistenza della sezione:

SEZIONE S2 - Verifica a taglio

Non è necessaria l'armatura a taglio.

Verifca a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

classe cls	Rck	37	N/mm2
resist. Caratteristica cilindrica	fck	31	N/mm2
	fed	17	
coeff. parziale	yc	1.5	
larghezza membratura resistene a V	bw	1000	mm
altezza membratura resistene a V	H	950	mm
altezza utille	d	855	mm
area della sezione	Asez	855000	mm2
diametro ferro longitudinale teso	фІ	20	mm
area armatura	Asl	314.2	mm ²
	strato	1	
	passo	200	mm
'	nd/strato	5	
area armatura totale	Af tot	1570.8	mm ²
percentuale di armatura	pl	0.0018	
sforzo assiale dovuto ai carichi o precompressione	N	177850	N
	оср	0.19	N/mm²
	k	1.48	14/11111
	vmin	0.35	
taglio resistente	Vrd1	295	kN
ingho residine	Vrd2	324	kN
	7.02	524	AL1
taglio sollecitante	Ved	78	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γ_{Rd}	1	
	Vrd	324	lkN
	Ved		Vrd
	4 G U	verifica	410
		ACTURCA	

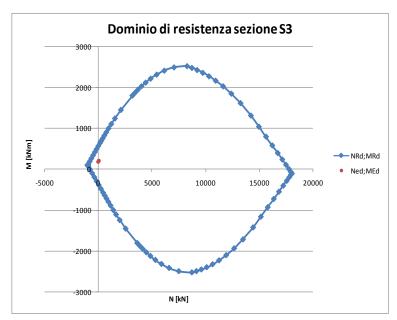


SEZIONE S2 - Verifica a fessurazione

Si riportano le sollecitazioni massime allo SLE (comb. rara).

- II	NPUT	
B sez	1000	mm
h sez	950	mm
y ferro	72	mm
Φ (barre)	20	mm
n.barre	5	-
cls C	30	MPa
x AN	268	mm
σs	61	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

	OUTPUT				
diff. def. arr	nature-cls				
ε sm -ε cm	1.78E-04 -				
distanza ma	x fessure				
s r, max 6.01E+02 mm					
ampiezza fe	ssure:				
wk	0.1067 mm				
LIMITE	0.20 mm				
Sez. verificata					



SEZIONE S3 - Verifica a pressoflessione

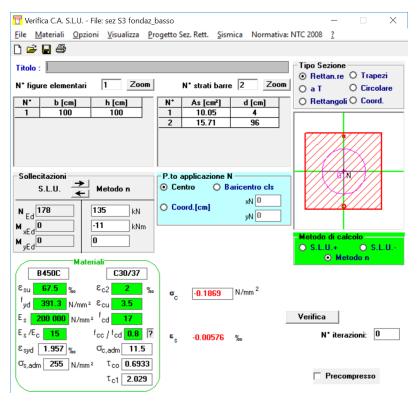
La sezione è armata con barre \$\phi20/passo 20cm in zona tesa e \$\phi16/passo 20cm in zona compressa.

Si riporta il dominio di resistenza della sezione:

SEZIONE S3 - Verifica a taglio

Non è necessaria l'armatura a taglio.

Verifca a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)


classe ds	Rck	37	N/mm2
resist. Caratteristica cilindrica	fck	31	N/mm2
	fed	17	
coeff. parziale	yc	1.5	
larghezza membratura resistene a V	bw	1000	mm
altezza membratura resistene a V	H	950	mm
altezza utille	d	855	mm
area della sezione	Asez	855000	mm2
diametro ferro longitudinale teso	φl	20	mm
area armatura	Asl	314.2	mm²
	strato	1	
	passo	200	mm
	nop√strato	5	
area armatura totale	Af tot	1570.8	mm ²
percentuale di armatura	ρl	0.0018	
sforzo assiale dovuto ai carichi o precompressione	N	177850	N
	оср	0.19	N/mm ²
	k	1.48	
	vmin	0.35	
taglio resistente	Vrd1	295	kN
	Vrd2	324	kN
taglio sollecitante	Ved	27	kN
		1	
fattore di sicurezza per GR (par. 7.9.5.2.2)	$\gamma_{ m Rd}$		
fattore di sicurezza per GR (par. 7.9.5.2.2)	γ _{Rd} Vrd	324	kN

verifica

SEZIONE S3 - Verifica a fessurazione

Si riportano le sollecitazioni massime allo SLE (comb. rara).

La sezione risulta sempre comrpessa e dunque la verifica soddisfatta.

7.2 SEZIONE DI CALCOLO 2

La seconda parte del muro ad "U" presenta soletta di base di spessore pari a 1.0 m e piedritti di spessore 1.0 m con altezza variabile da un minimo di 2.5 m a un massimo di 6.0 m.

La sezione di calcolo 2 fa riferimento ad un'altezza dei piedritti di 6.0 m. La falda è posta ad una quota assoluta di +51.10 m s.l.m., così come risulta dallo schema geotecnico considerato.

Si riporta di seguito la sezione trasversale tipo.

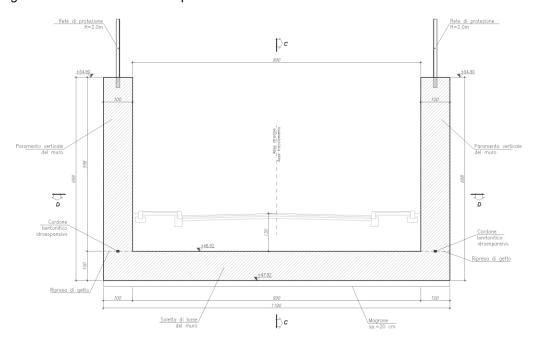


Fig. 68 - Muro ad "U" lato ovest: sezione di calcolo 2

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 125 di 168

7.2.1 ANALISI DEI CARICHI

I carichi agenti sulla struttura, per metro di manufatto, sono i seguenti:

Peso proprio

Tutti gli elementi portanti sono realizzati in calcestruzzo armato, con peso specifico pari a: γcls = 25 kN/m³.

Carichi permanenti portati

Il carico verticale dovuto al peso della pavimentazione stradale e al sottostante strato di riempimento è:

riempimento (terreno compattato):

$$\gamma = 20 \text{ kN/m}^3$$

$$\text{spessore} = 1.13\text{m}$$

$$\text{peso} = 20 \text{ kN/m}^3 \cdot 1.13 \text{ m} = 22.6 \text{ kN/m}$$

$$\text{pavimentazione:}$$

$$\gamma = 20 \text{ kN/m}^3$$

$$\text{spessore} = 0.17\text{m}$$

peso = $20 \text{ kN/m}^3 \cdot 0.17 \text{ m} = 3.4 \text{ kN/m}$

Ne risulta un carico verticale totale, per metro lineare di manufatto, di 26.0 kN/m.

Spinta delle terre

Per la determinazione della spinta del terreno a tergo del muro si fanno le seguenti considerazioni:

- √ lo scavo è sostenuto inizialmente da palancole sulle quali, grazie alla loro deformabilità, agira la spinta del terreno:
- ✓ una volta realizzato il muro ad U saranno sfilate le palancole e la spinta del terreno sarà trasferita all'opera di sostegno definitiva.

Per il terreno si assumono i seguenti parametri:

$$\gamma = 17 \text{ kN/m}^3$$

$$\phi' = 30^\circ \text{ (angolo di attrito medio)}$$

Si considera uno stato di spinta a riposo, il cui coefficiente di spinta k₀ è stato calcolato secondo la relazione

$$k_0 = 1-sen(\phi') = 0.5$$

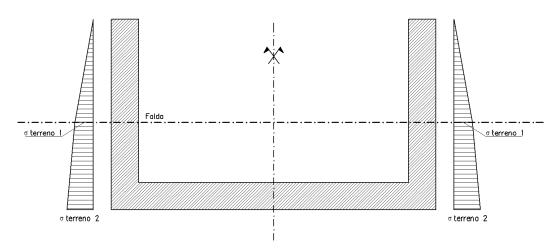


Fig. 69 – Muro ad "U" lato ovest: sezione di calcolo 2 - spinta del terreno

La tensione orizzontale alla quota della falda, per metro lineare di manufatto, risulta:

 $\sigma_{h_terreno_1} = \gamma_t \cdot h_{sup} \cdot k_0 = 17 \text{ kN/m}^3 \cdot 3.8 \text{m} \cdot 0.5 = 32.3 \text{ kN/m}.$

La tensione orizzontale massima (alla base della fondazione), per metro lineare di manufatto, risulta:

 $\sigma_{h_terreno_2} = (\gamma_t - \gamma_w) \cdot h_{inf} \cdot k_0 + \sigma_{h_terreno_1} = (17-10) \ kN/m^3 \cdot 3.2 \ m \cdot 0.5 + 32.3 \ kN/m = 43.5 \ kN/m.$

Spinta dell'acqua

Essendo il livello della falda (+51.10 m.s.l.m.) più elevato del piano di posa del manufatto, questo, supponendo che in condizioni di lungo termine l'acqua riesca a filtrare all'interno dello strato di jet grouting, riceverà una spinta orizzontale ed una verticale diretta verso l'alto come illustrato in figura.

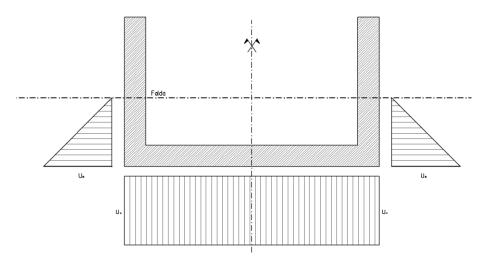


Fig. 70 - Muro ad "U" lato ovest: sezione di calcolo 2 - spinta dell'acqua

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I OTTO FUNZIONALE CANCELLO - FRASSO TELESIN

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	127 di 168

Avremo pertanto, con i simboli adottati in figura, le seguenti spinte (per metro lineare di manufatto):

$$U_v = U_h = h_w \cdot \gamma_w = 3.2 \text{m} \cdot 10 \text{kN/m}^3 = 32.0 \text{ kN/m}$$

Sovraccarico accidentale

Verrà considerato, esternamente allo scavo, un carico accidentale uniformemente distribuito pari a 10 kN/m^2 allo scopo di rappresentare il peso di macchinari durante la realizzazione dell'opera; tale carico, in virtù del coefficiente di spinta $K_0 = 0.5$, produrrà una spinta orizzontale, per metro lineare di manufatto, uniformemente distribuita sui piedritti pari a:

$$q_{sovr_acc} = q_{acc} \cdot k_0 = 10 \text{ kN/m}^2 \cdot 0.5 = 5.0 \text{ kN/m}$$

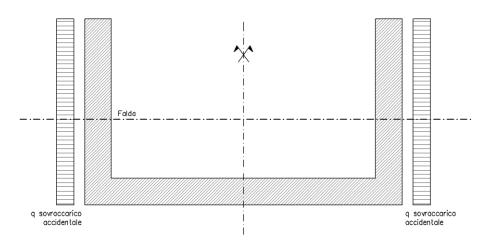


Fig. 71 – Muro ad "U" lato ovest: sezione di calcolo 2 - spintasovraccarico accidentale

Spinta del terreno in fase sismica

Secondo la teoria di Wood, si considera un incremento di spinta sismica del terreno ΔS costante su tutta l'altezza dei piedritti (per metro lineare di manufatto):

$$a_g = 0.213g$$

$$S_T = 1.381$$

$$S_S = 1$$

$$k_h = S_S \cdot S_T \cdot a_g/g = 0.2942$$

$$\Delta S = k_h \cdot \gamma_t \cdot H = 0.2942 \cdot 17 \text{ KN/m}^3 \cdot 7 \text{ m} = 35.0 \text{ kN/m}$$

Forze sismiche dovute alle masse inerziali

Si considerano delle forze orizzontali dovute alle masse inerziali dei piedritti, della fondazione del manufatto e del compattato+pavimentazione, applicate ai baricentri di ogni elemento, calcolate nel seguente modo:

Fmuro = kh ·
$$V_{muro}$$
 · γ_{cls} = 0.2942 · 6 m³ · 25 kN/m³ = 44.1 kN (per ogni piedritto)

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	128 di 168

Ffondazione = kh · $V_{fondazione}$ · γ_{cls} = 0.2942 · 12m³ · 25 kN/m³ = 87.5 kN

Fcomp+pavim = kh · V_{compattato}+pavim · γ_{cls} = 0.2942 · 12.9m³ · 20 kN/m³ = 75.7 kN

Mcomp+pavim = $F_{comp+pavim} \cdot b = 75.7 \text{ kN} * 1.15 \text{m} = 87.1 \text{ kNm}$

Sovraspinta idraulica

Ai sensi dell'EN 1998 – parte 5, si considera il seguente incremento della spinta idraulica, in fase sismica:

$$q = \pm 7/8 * k_h * \gamma_w * \sqrt{(h_w * z)}$$

Alla base della fondazione si ha una pressione q = ±8.24 kN/m

7.2.2 DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI

La struttura è stata analizzata mediante apposito modello matematico agli elementi finiti (E.F.).

Il calcolo è stato effettuato, per ragioni di semplicità ed in favore di sicurezza, considerando una striscia di 1m del manufatto e schematizzandola come un telaio piano: la soletta e i piedritti sono stati modellati con elementi trave, posti lungo la linea media ed aventi lunghezza rispettivamente 10.90 m e 6.5 m e spessore 1 m.

Per quanto riguarda i vincoli esterni, si sono utilizzate delle molle (springs) applicate sotto la soletta di fondazione per riprodurre l'interazione con il terreno. La costante di Winkler in direzione verticale è stata assunta pari a 10000 kN/m³.

La figura di seguito mostra la modellazione del manufatto e la discretizzazione della soletta per l'applicazione delle molle:

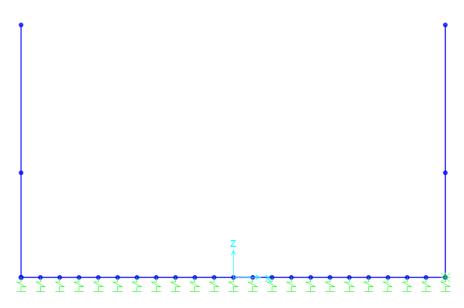


Fig. 72 – Muro ad "U" lato ovest: sezione di calcolo 2 – modello agli E.F.

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 129 di 168

Le molle sono state posizionate con interasse di 0.5 m, perciò, considerando una fascia di manufatto di profondità 1m, la rigidezza assegnata nel modello è pari a 5000 kN/m.

Il riferimento globale del modello è una terna cartesiana destrorsa con l'asse Z verticale e l'asse X nel piano del modello.

Le analisi delle sollecitazioni eseguite sono state condotte mediante apposito modello matematico agli elementi finiti (E.F.). Tale modello è stato realizzato ed analizzato con l'ausilio del programma SAP2000© della CSi® Inc., con successiva elaborazione dei dati di output mediante l'utilizzo del foglio elettronico EXCEL© della Microsoft.

Tra i diversi elementi finiti disponibili nel programma di calcolo per analisi FEM, sono stati utilizzati elementi finiti tipo "frame", in quanto i più adatti per schematizzare questo tipo di struttura ed eseguire l'analisi in oggetto.

7.2.3 COMBINAZIONI DI CARICO

Le combinazioni delle sollecitazioni agenti, riassunte nella tabella successiva, sono state effettuate utilizzando la seguente formula:

$$F_d = \gamma_G \cdot G_k + \gamma_O \cdot \left(Q_{1k} + \sum \psi_i \cdot Q_{ik} \right)_k$$

	G1	G2	S_terr	S_perm	S_acc	S_idr	inerzie sism	S_terr_sism	S_idr_sism
Coeff. comb. SLU	1.30	1.30	1.30	1.30	1.50	1.30	0.00	0.0	0.0
Coeff. comb. SLV	1	1	1	1	0.2	1	1	1	1
Coeff. comb. SLE	1	1	1	1	1	1	0	0	0

Dove sono stati indicati:

S_terr = spinta terreno (statica)

S perm = sovraccarico permanente (statico)

S acc = sovraccarico accidentale (statico)

S_idr = spinta idraulica (statico) (considerata come azione permanente)

S terr sism = spinta terreno (sismica)

S_idr_sism = spinta idraulica (sismica)

7.2.4 ANALISI DELLE SOLLECITAZIONI

Si riportano di seguito le caratteristiche geometriche principali dell'opera utilizzate nei calcoli.

Soletta inferiore :

sezione 100 x 100 cm²

copriferro estradosso 4 cm

copriferro intradosso 4 cm

<u>Piedritti :</u>

sezione 100 x 100 cm²

copriferro etradosso 4 cm

copriferro intradosso 4 cm

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	130 di 168

Prima di analizzare le tensioni nelle sezioni significative della struttura, è stata effettuata una verifica di equilibrio globale dell'opera; è stato cioè verificato che la sottospinta idraulica non producesse il sollevamento dell'opera quando questa fosse soggetta all'unico carico verticale del peso proprio.

Peso Proprio: PPmanufatto = $23.9 \text{ m}^2 *1 \text{ m} * 25 \text{ kN/m}^3 = 597.5 \text{ kN}$

Sottospinta idraulica: $S_W = 3.2 \text{m} * 10 \text{ kN/m}^3 * 10.9 \text{m} * 1 \text{ m} = 348.8 \text{ kN}$

Si verifica che 0.9 * PPmanufatto = 537.75 kN > 1.1*Sw = 383.7 kN

La verifica risulta soddisfatta con un coefficiente di sicurezza F=1.40.

00000

Di seguito si riporta la distribuzione di Momento e Taglio sulla struttura (in combinazione SLU, SLE e SLV), la deformata e le relative verifiche nelle sezioni di interesse.

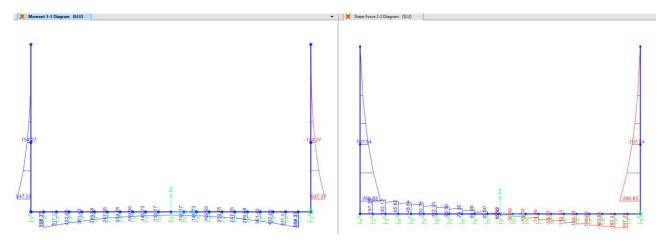


Fig. 73 – Muro ad "U" lato ovest: sezione di calcolo 2 - Momento (kNm) e Taglio (kN) allo SLU

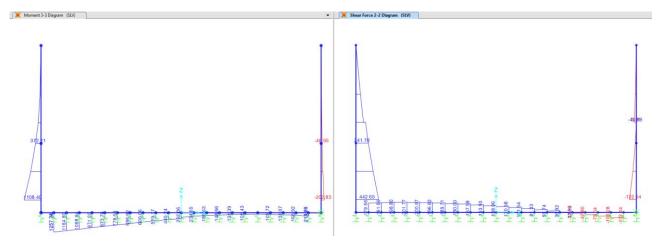


Fig. 74 - Muro ad "U" lato ovest: sezione di calcolo 2 - Momento (kNm) e Taglio (kN) allo SLV

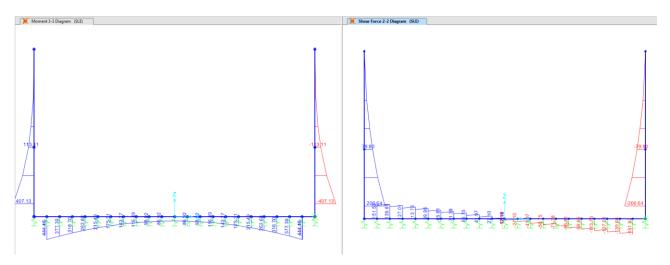


Fig. 75 - Muro ad "U" lato ovest: sezione di calcolo 2 - Momento (kNm) e Taglio (kN) allo SLE

Le sezioni di verifica sono le seguenti:

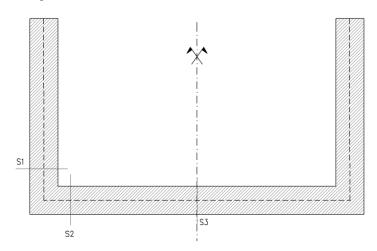


Fig. 76 - Muro ad "U" lato ovest: sezione di calcolo 2 - Sezioni di verifica

Di seguito si riporta la tabella con le sollecitazioni elementari nelle 3 sezioni di verifica del manufatto.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 132 di 168

	sez l	pase muro	- S1		sez este	sez esterna fondazione - S2				sez mezzeria fondazione – S3			
	N compr	N compr			N compr	N compr			N compr	N compr			
	max	min	٧	М	max	min	V	М	max	min	V	М	
dead	-150	-	0	0	0	0	144	-68.2	0	0	11.4	-357	
pavimentazione	0	-	0	0	0	0	11	3	0	0	6	15	
spinta terreno													
statica	0	-	142	296	-163	-163	14	370	-163	-163	1.6	319	
sovraccarico permanente													
statica	0	-	30	90	-33	-33	4	105	-33	-33	0	90	
sovraccarico accidentale													
statica	0	-	29	21	-43	-43	15	35	-43	-43	8	15	
spinta idraulica													
statica	0	-	44	132	-207	-44	6	152	-207	-44	28	44	
inerzie sismiche	0	-	209	631	-228	64	23	728	-228	-228	96	317	
incremento spinta terreno													
sismica	0	-	12	11	-16	-16	1	18	-16	-16	2	8	
pressione idrodinamica													
sismica	-150	-	0	0	0	0	144	-68.2	0	0	11.4	-357	

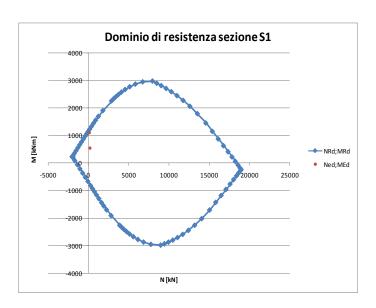
Le sollecitazioni combinate risultano essere le seguenti:

	sez base muro – S1			sez esterna fondazione – S2				sez mezzeria fondazione – S3				
	N compr	N compr			N compr	N compr			N compr	N compr		
	max	min	٧	М	max	min	٧	М	max	min	٧	М
comb statica SLU	-195	-	267	548	-317	-317	245	598	-317	-317	35	125
comb sismica SLV	-150	-	441	1110	-664	-209	214	1258	-664	-501	153	379
comb SLE	-150	-	201	407	-239	-239	188	444	-239	-239	27	82

7.2.4.1 VERIFICHE STRUTTURALI ALLO SLU

SEZIONE S1 - Verifica a pressoflessione

La sezione è armata con barre φ26/passo 15cm in zona tesa e φ20/passo 15cm in zona compressa.


Si riporta il dominio di resistenza della sezione:

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 133 di 168

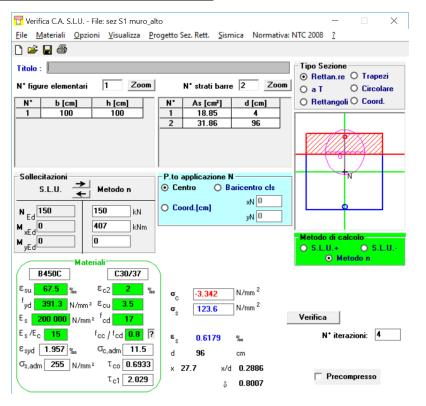
SEZIONE S1 - Verifica a taglio

Non è necessaria l'armatura a taglio.

Verifca a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

classe ds	Rck	30	N/mm2
			l .
resist. Caratteristica cilindrica	fck	25	N/mm2
	fed	14	
coeff. parziale	ye	1.5	
larghezza membratura resistene a V	bw	1000	mm
altezza membratura resistene a V	H	950	mm
altezza utille	d	855	mm
area della sezione	Asez	855000	mm2
diametro ferro longitudinale teso	фІ	26	mm
area armatura	Asl	530.9	mm ²
	strato	1	
	passo	150	mm
	nd/strato	7	
area armatura totale	Af tot	3539.5	mm ²
percentuale di armatura	ρl	0.0041	
sforzo assiale dovuto ai carichi o precompressione	N	149960	N
	оср	0.16	N/mm ²
	k	1.48	
	vmin	0.32	
taglio resistente	Vrd1	352	kN
	Vrd2	290	kN

taglio sollecitante	Ved	245	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γ_{Rd}	1	
	Vrd	352	kN
	Ved	<	Vrd
		verifica	

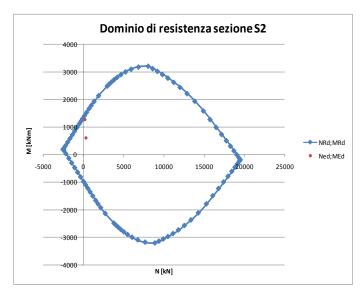


SEZIONE S1 - Verifica a fessurazione

Si riportano le sollecitazioni massime allo SLE (comb. rara).

ll e	NPUT	
B sez	1000	mm
h sez	950	mm
y ferro	78	mm
Φ (barre)	26	mm
n.barre	6.67	-
cls C	30	MPa
x AN	277	mm
σs	123.6	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

	OUTPUT				
diff. def. arr	nature-ds				
ε sm -ε cm	3.60E-04 -				
distanza ma	x fessure				
s r, max 4.65E+02 mm					
ampiezza fe	ssure:				
wk	0.1672 mm				
LIMITE	0.20 mm				
Se	Sez. verificata				



SEZIONE S2 - Verifica a pressoflessione

La sezione è armata con barre \$\phi26/passo 15cm in zona tesa e \$\phi22/passo 15cm in zona compressa.

Si riporta il dominio di resistenza della sezione:

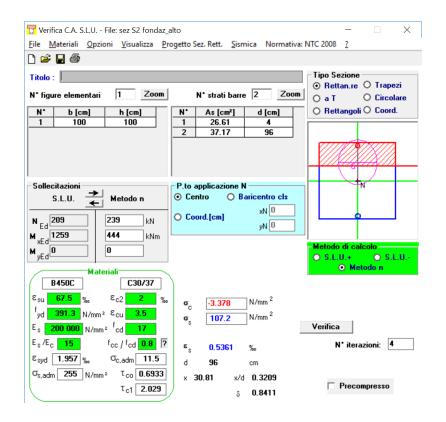
SEZIONE S2 - Verifica a taglio

Non è necessaria l'armatura a taglio.

Verifica a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

classe cls	Rck	37	N/mm2
resist. Caratteristica cilindrica	fck	31	N/mm2
	fed	17	
coeff. parziale	yc	1.5	
larghezza membratura resistene a V	bw	1000	mm
altezza membratura resistene a V	H	950	mm
altezza utille	d	855	mm
area della sezione	Asez	855000	mm2
diametro ferro longitudinale teso	φl	26	mm
area armatura	Asl	530.9	mm^2
	strato	1	
	passo	150	mm
	ndy/strato	7	
area armatura totale	Af tot	3539.5	mm ²
percentuale di armatura	ρl	0.0041	
sforzo assiale dovuto ai carichi o precompressione	N	317330	N
	оср	0.33	N/mm ²
	k	1.48	
	vmin	0.35	
taglio resistente	Vrd1	398	kN
	Vrd2	343	kN

taglio sollecitante	Ved	245	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γ_{Rd}	1	
	Vrd	398	kN
	Ved	<	Vrd
		verifica	

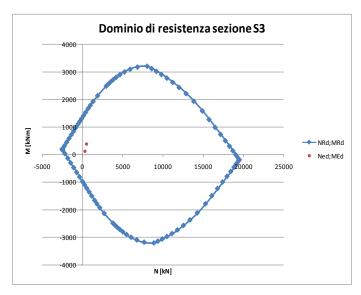


SEZIONE S2 - Verifica a fessurazione

Si riportano le sollecitazioni massime allo SLE (comb. rara).

INPUT		
B sez	1000	mm
h sez	950	mm
y ferro	78	mm
Φ (barre)	26	mm
n.barre	6.67	-
cls C	30	MPa
x AN	308	mm
σs	107	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

	OUTPUT		
diff. def. arn	diff. def. armature-ds		
ε sm -ε cm	3.12E-04 -		
distanza ma	x fessure		
s r, max	4.65E+02 mm		
ampiezza fessure:			
wk	0.1448 mm		
LIMITE	0.20 mm		
Sez. verificata			



SEZIONE S3 - Verifica a pressoflessione

La sezione è armata con barre \$\phi24/passo\$ 15cm in zona tesa e \$\phi22/passo\$ 15cm in zona compressa.

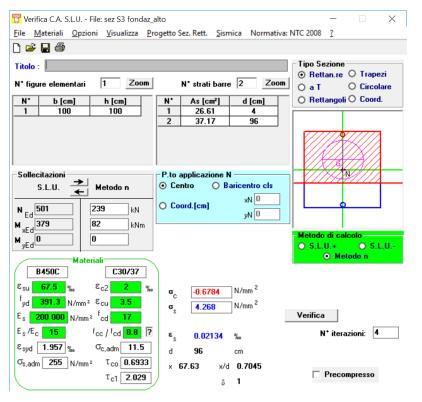
Si riporta il dominio di resistenza della sezione:

SEZIONE S3 - Verifica a taglio

Non è necessaria l'armatura a taglio.

Verifca a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

classe ds	Rck	37	N/mm2
resist. Caratteristica cilindrica	fck	31	N/mm2
	fcd	17	
coeff. parziale	yc	1.5	
larghezza membratura resistene a V	bw	1000	mm
altezza membratura resistene a V	H	950	mm
altezza utille	d	855	mm
area della sezione	Asez	855000	mm2
diametro ferro longitudinale teso	фІ	26	mm
area armatura	Asl	530.9	mm ²
	strato	1	
	passo	150	mm
	nd/strato	7	
area armatura totale	Af tot	3539.5	mm ²
percentuale di armatura	pl	0.0041	
sforzo assiale dovuto ai carichi o precompressione	N	500600	N
	оср	0.53	N/mm²
	k	1.48	14711111
	vmin	0.35	
taglio resistente	Vrd1	423	kN
tagno teasiene	Vrd2	367	kN
	7102	201	AL1
taglio sollecitante	Ved	153	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)		1	- A11
in the part of the	γ _{Rd} Vrd	423	kN
	Ved	423 <	Vrd
	vea		VIG
		verifica	



SEZIONE S3 - Verifica a fessurazione

Si riportano le sollecitazioni massime allo SLE (comb. rara).

II.	NPUT	
B sez	1000	mm
h sez	950	mm
y ferro	76	mm
Φ (barre)	24	mm
n.barre	6.67	-
cls C	30	MPa
x AN	676	mm
σs	4	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

	OUTPUT		
diff. def. arr	diff. def. armature-ds		
ε sm -ε cm	1.17E-05 -		
distanza max fessure			
s r, max	3.41E+02 mm		
ampiezza fessure:			
wk	0.0040 mm		
LIMITE	0.20 mm		
Sez. verificata			

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

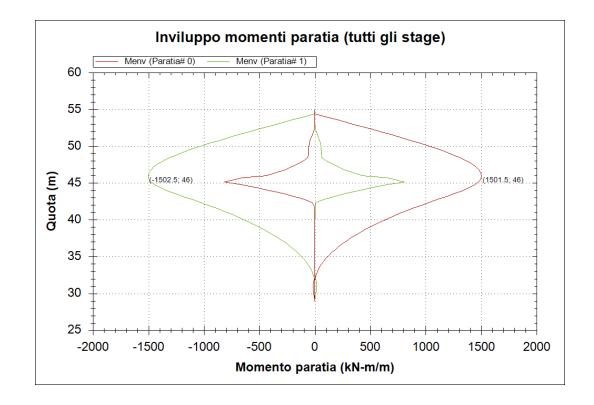
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 139 di 168

8 INCIDENZE ARMATURE

Di seguito si riportano le incidenze di armatura per gli elementi strutturali che compongo l'opera.

Elemento strutturale	Incidenza
Diaframmi	190 kg/mc
Cordolo diaframmi	100 kg/mc
Soletta superiore	160 kg/mc
Muro ad "U" interno ai diaframmi (soletta inferiore e fodera)	150 kg/mc
Muro ad "U" lato ovest	150 kg/mc

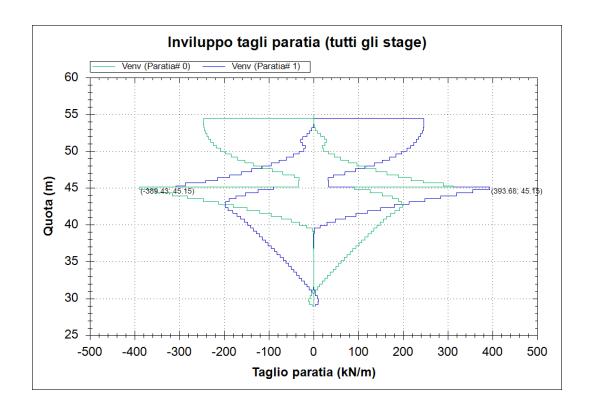


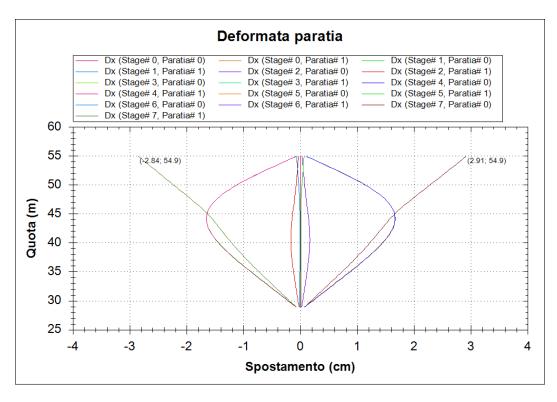
9 APPENDICE - DIAGRAMMI DI OUTPUT

9.1 MODELLO DI CALCOLO 1

9.1.1 DIAFRAMMI

SLE

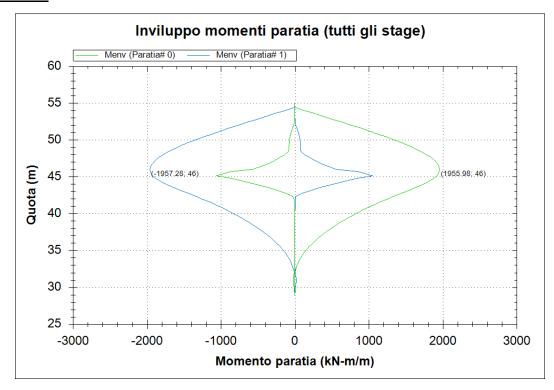


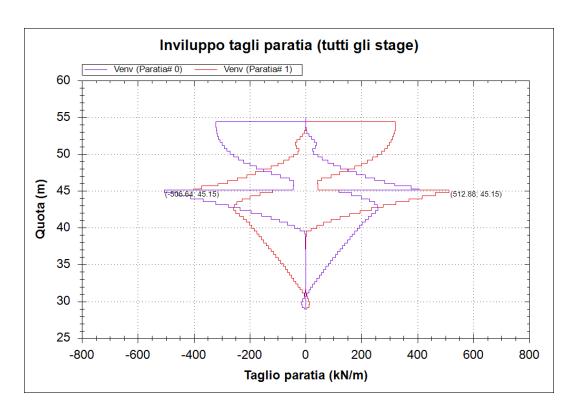

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 141 di 168

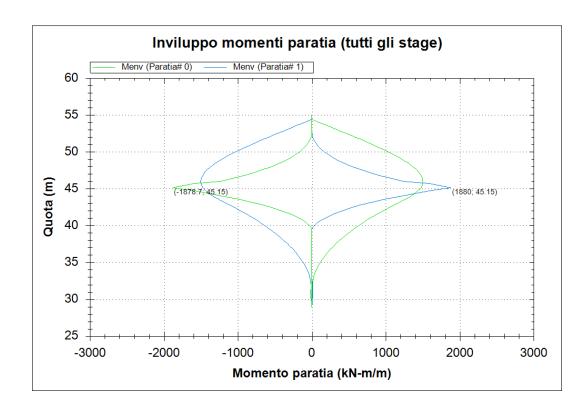


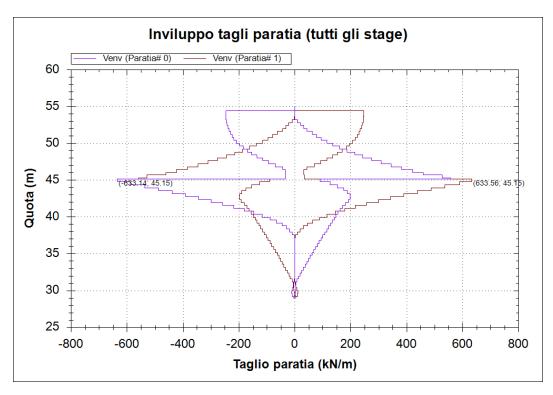

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 142 di 168

SLU - A1+M1+R1

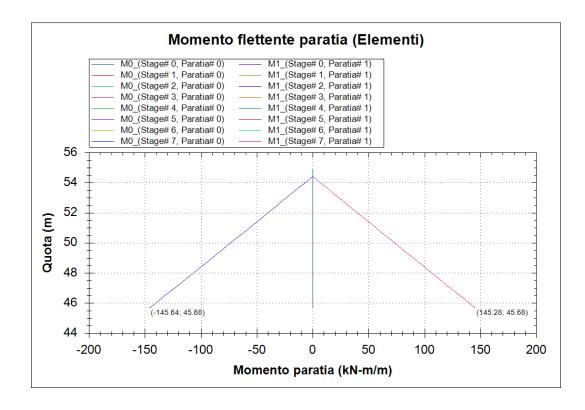


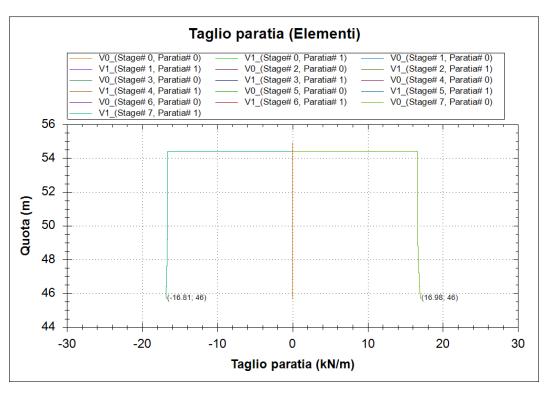

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 143 di 168

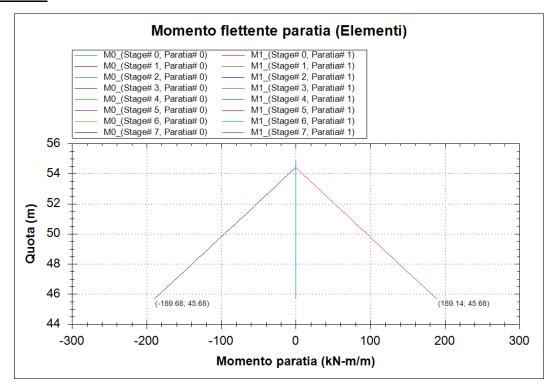
<u>SLV</u>

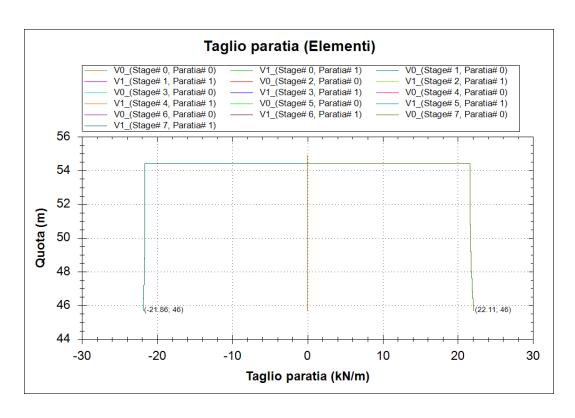




9.1.2 FODERA INTERNA

SLE

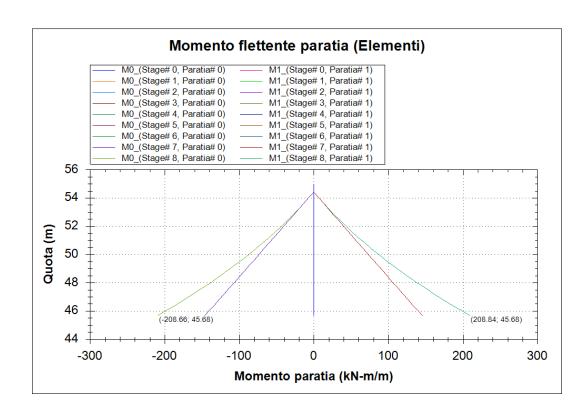


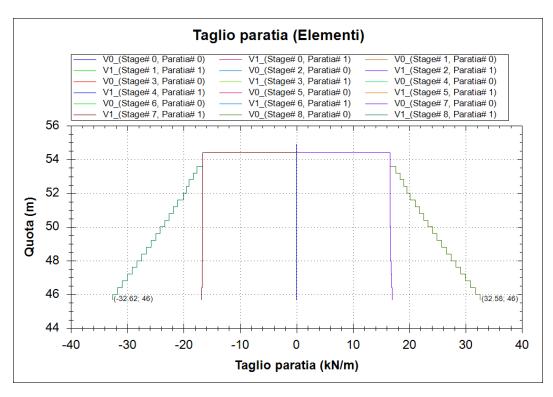


ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 \$\$L0700 002\$
 B
 145 di 168

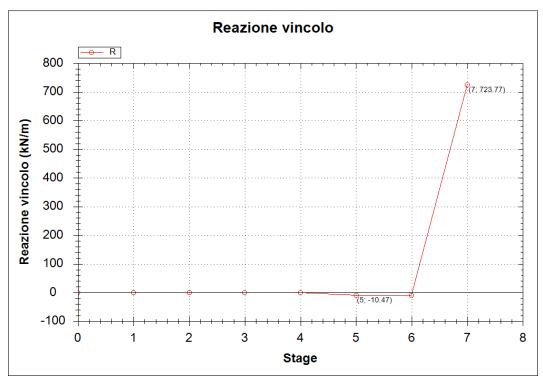


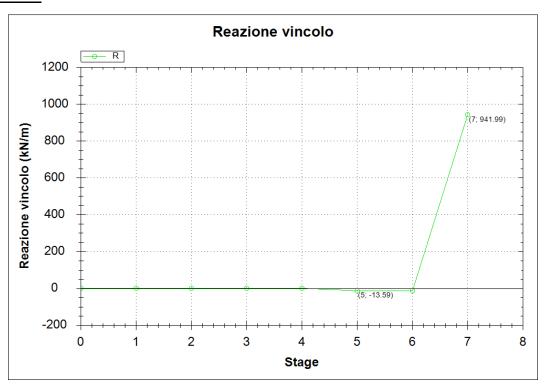

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 146 di 168

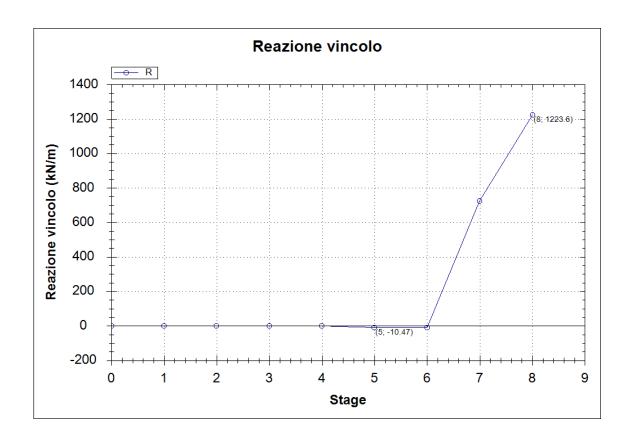
SLV





9.1.3 SOLETTONE DI FONDO

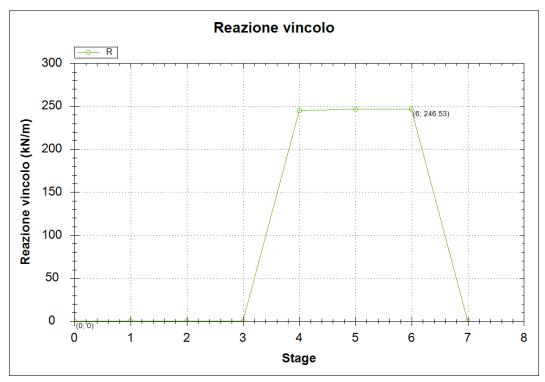
<u>SLE</u>

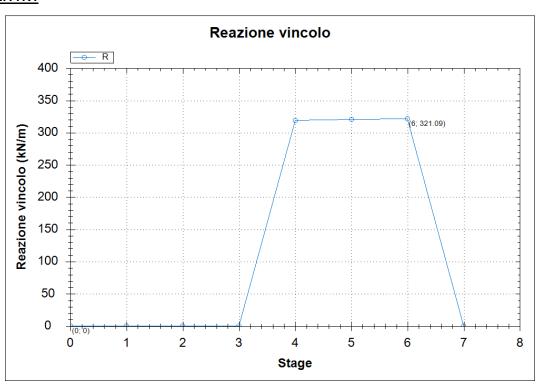


ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

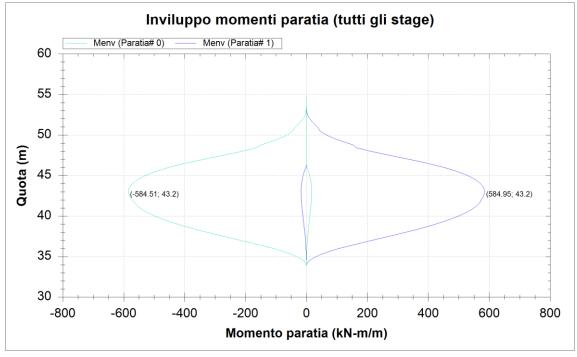
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

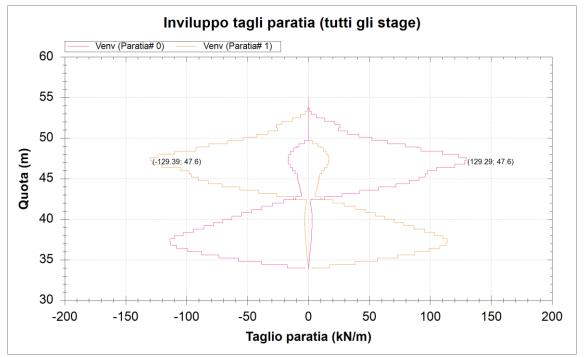

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 148 di 168



9.1.4 PUNTONE PROVVISORIO

<u>SLE</u>

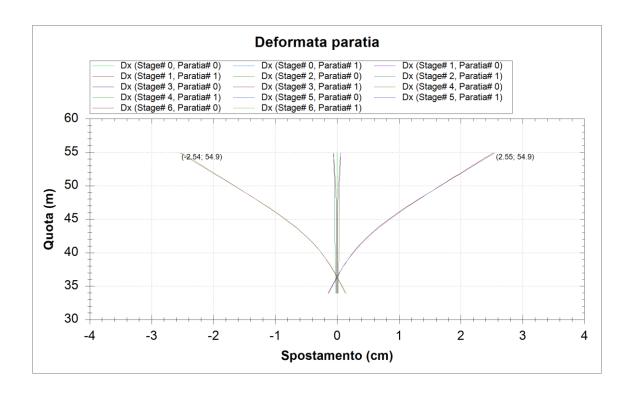




9.2 MODELLO DI CALCOLO 2

9.2.1 DIAFRAMMI

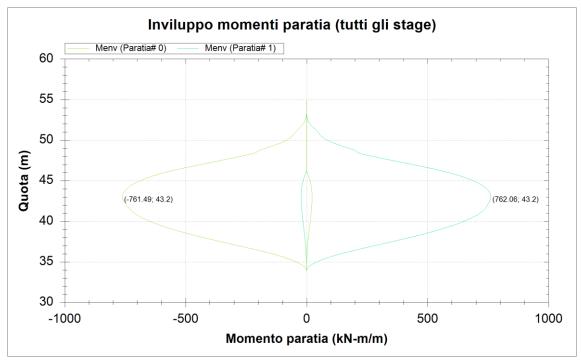
<u>SLE</u>

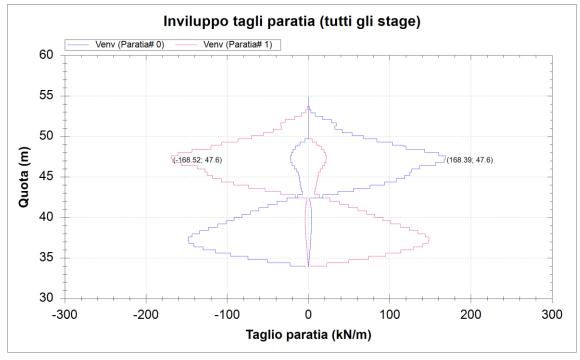


ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 151 di 168

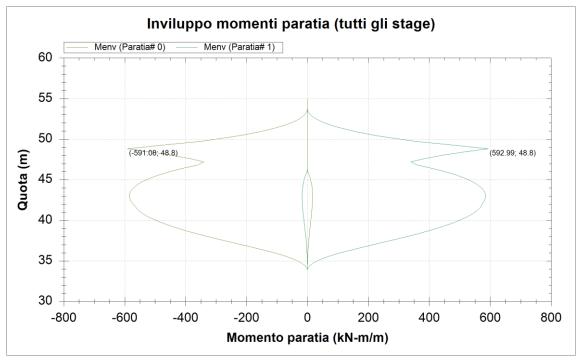


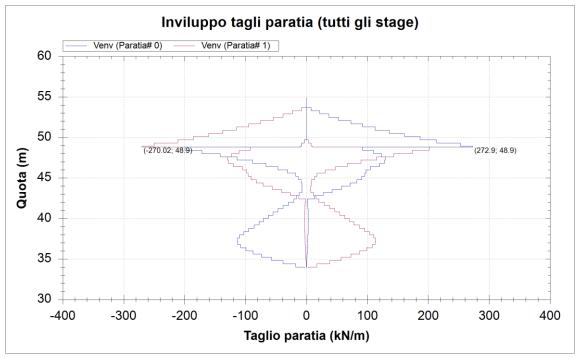


ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 152 di 168

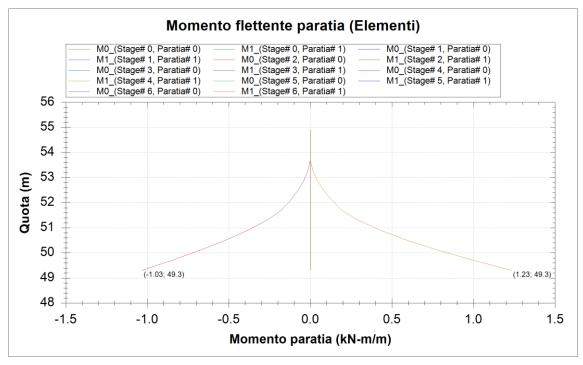


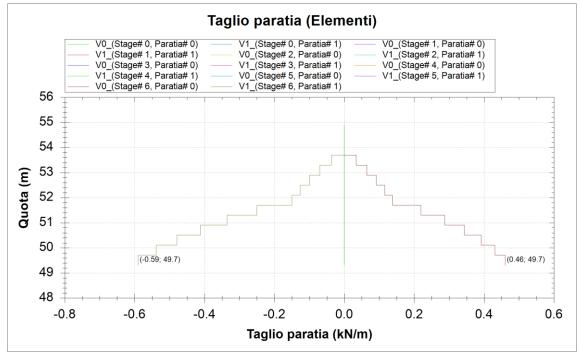

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 153 di 168

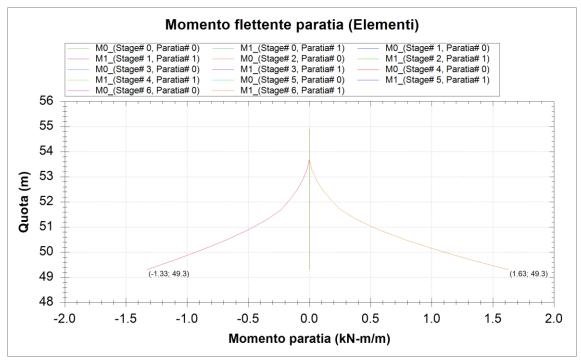
<u>SLV</u>

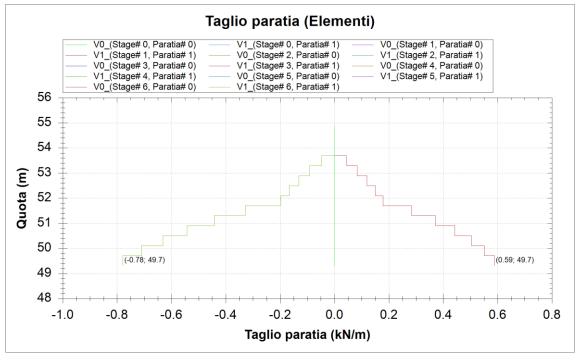




9.2.2 FODERA INTERNA

SLE


ITINERARIO NAPOLI – BARI

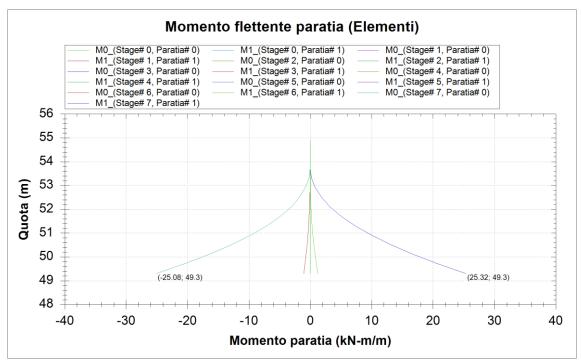

RADDOPPIO TRATTA CANCELLO – BENEVENTO

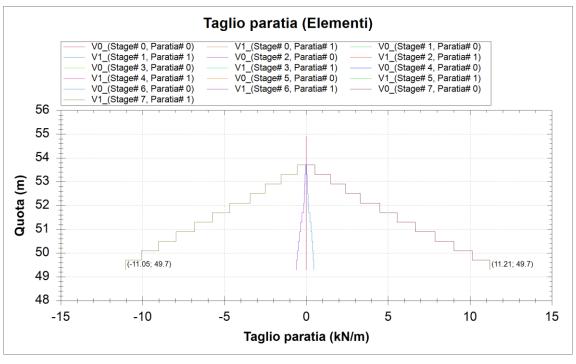
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 155 di 168

ITINERARIO NAPOLI – BARI

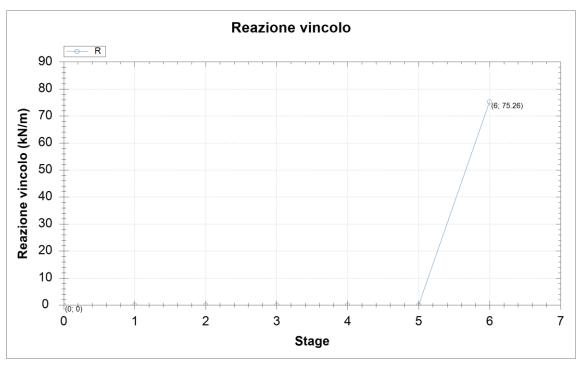

RADDOPPIO TRATTA CANCELLO - BENEVENTO

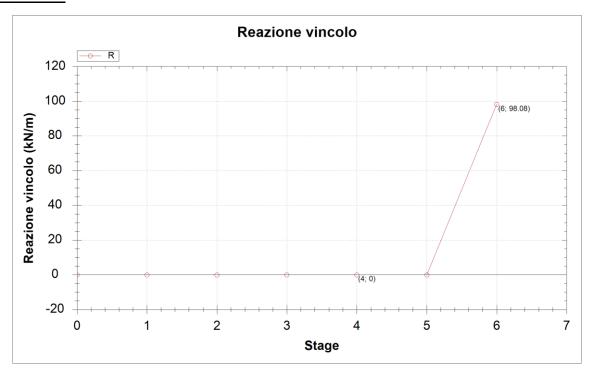

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 156 di 168

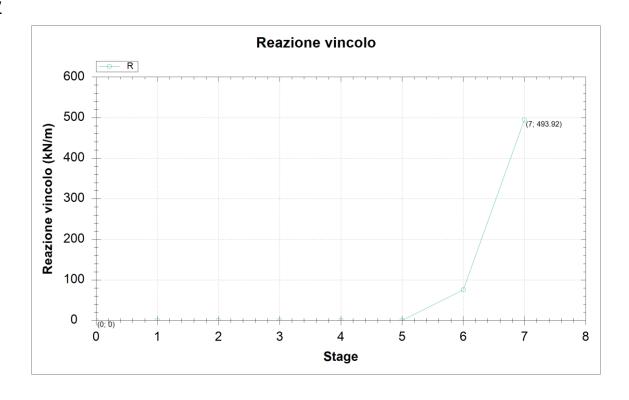
SLV





9.2.3 SOLETTONE DI FONDO

<u>SLE</u>

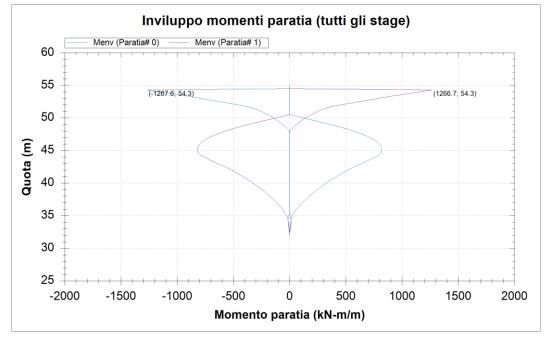


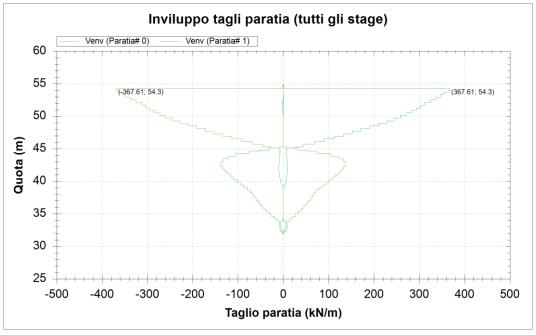
ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 158 di 168

SLV

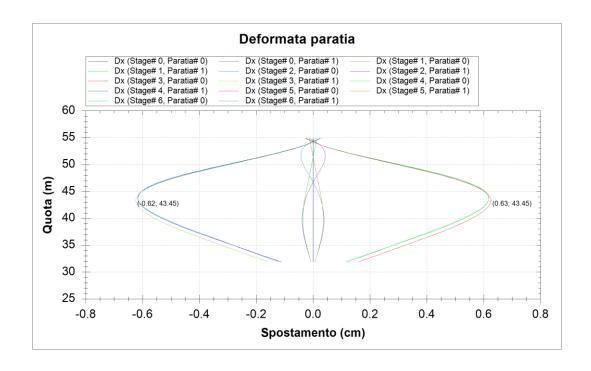




9.3 MODELLO DI CALCOLO 3

9.3.1 DIAFRAMMI

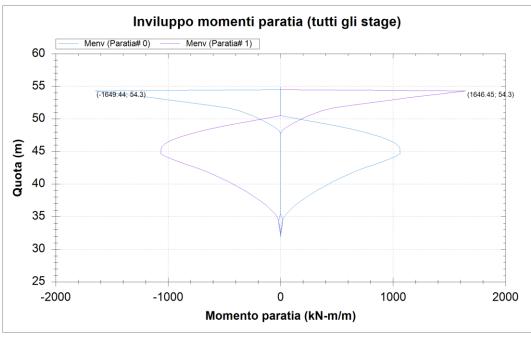
<u>SLE</u>

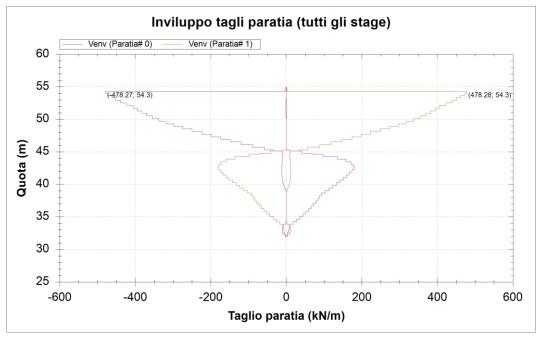


ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 160 di 168

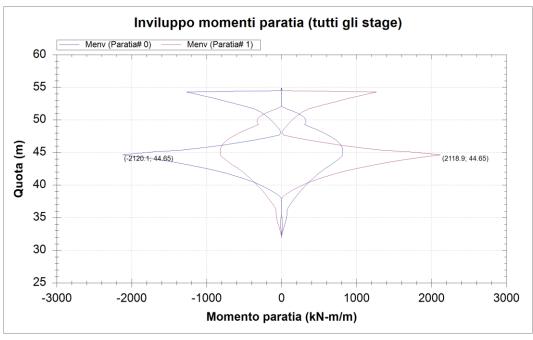


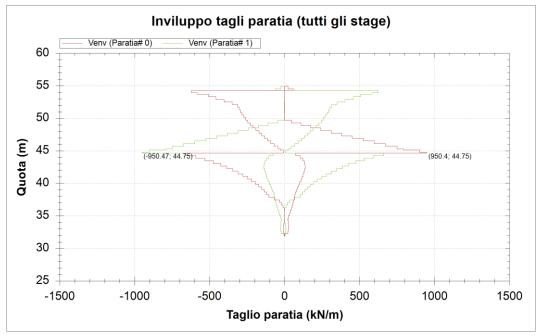


ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 161 di 168

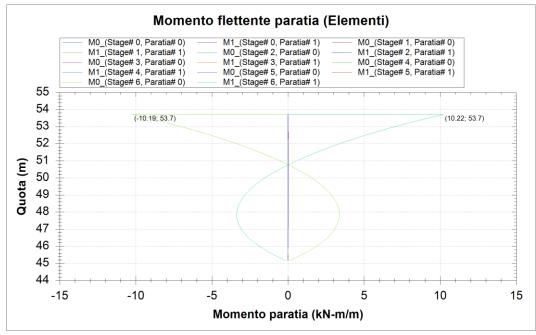


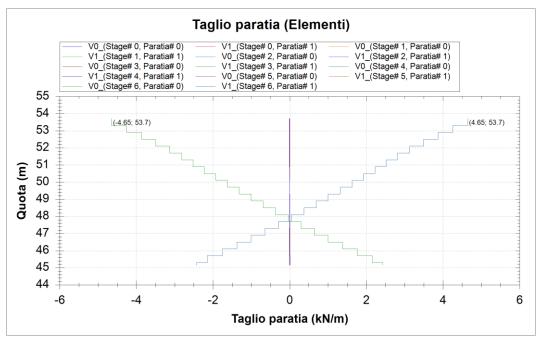


ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	162 di 168

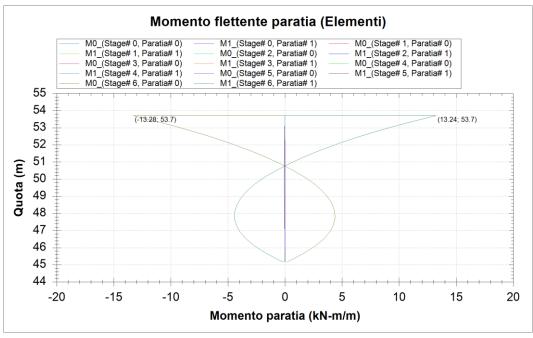
<u>SLV</u>

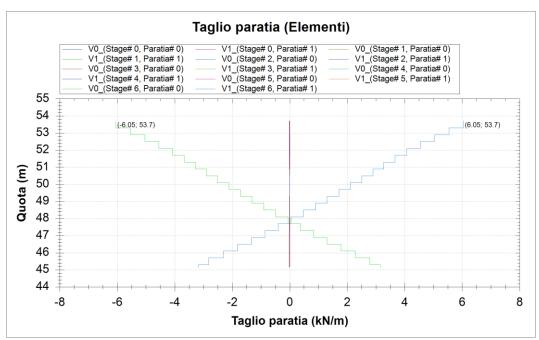




9.3.2 FODERA INTERNA

<u>SLE</u>

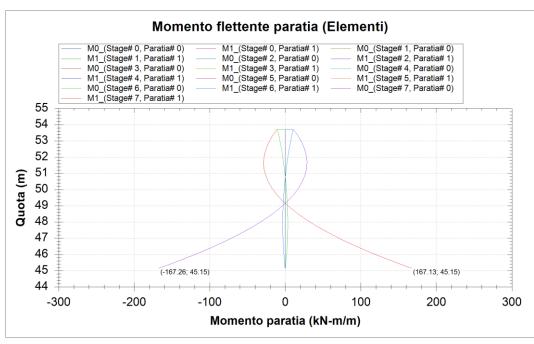


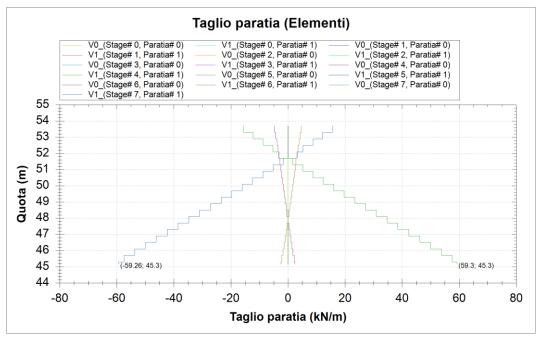


ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	SL0700 002	В	164 di 168

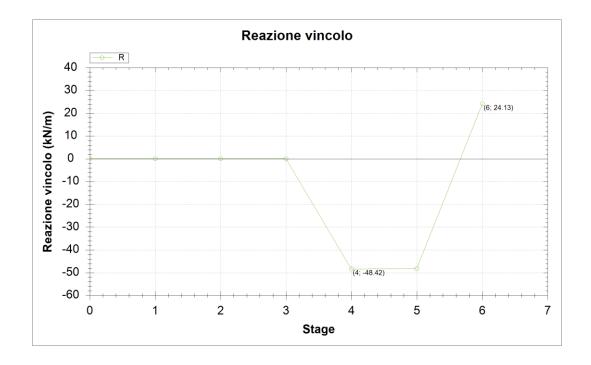


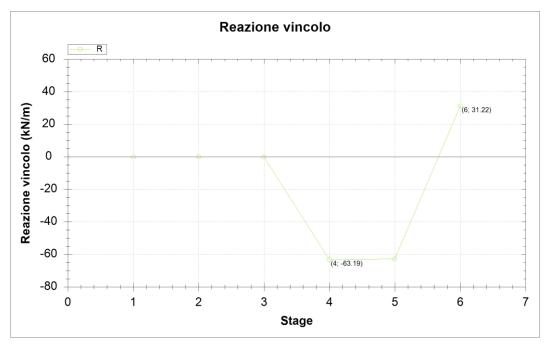

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 165 di 168

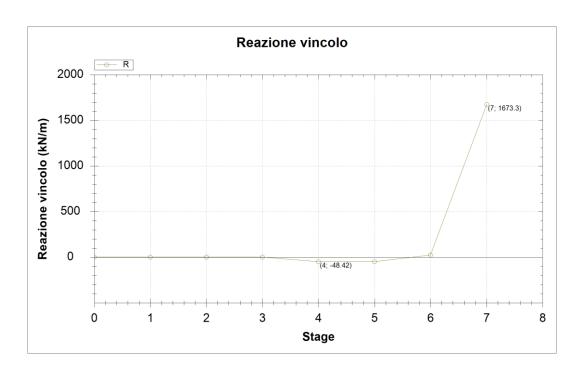
SLV





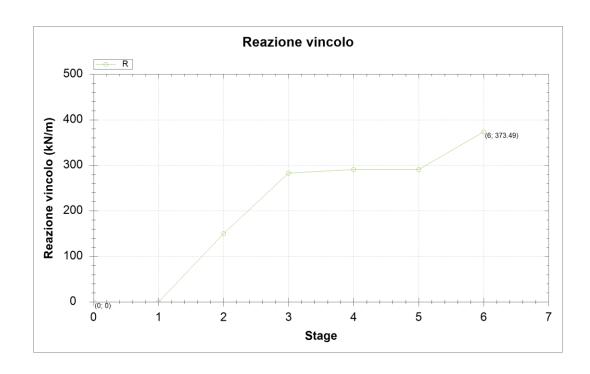
9.3.3 SOLETTONE DI FONDO

<u>SLE</u>



ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

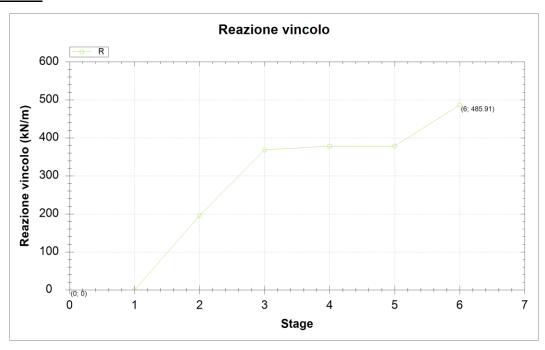
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 167 di 168

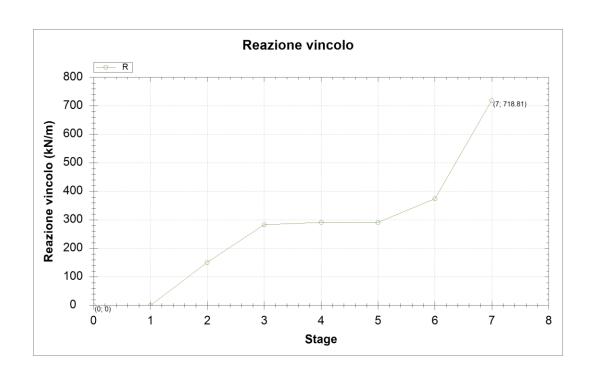
<u>SLV</u>

9.3.4 SOLETTONE DI COPERTURA

<u>SLE</u>



ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 SL0700 002
 B
 168 di 168

SLU - A1+M1+R1

<u>SLV</u>

