COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA A.V. /A.C. TORINO – VENEZIA Tratta MILANO – VERONA Lotto funzionale Brescia-Verona

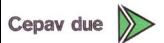
PROGETTO ESECUTIVO

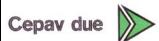
GALLERIA NATURALE SAN GIORGIO IN SALICI – USCITA DI SICUREZZA (GA65)

Pk 141+021.64

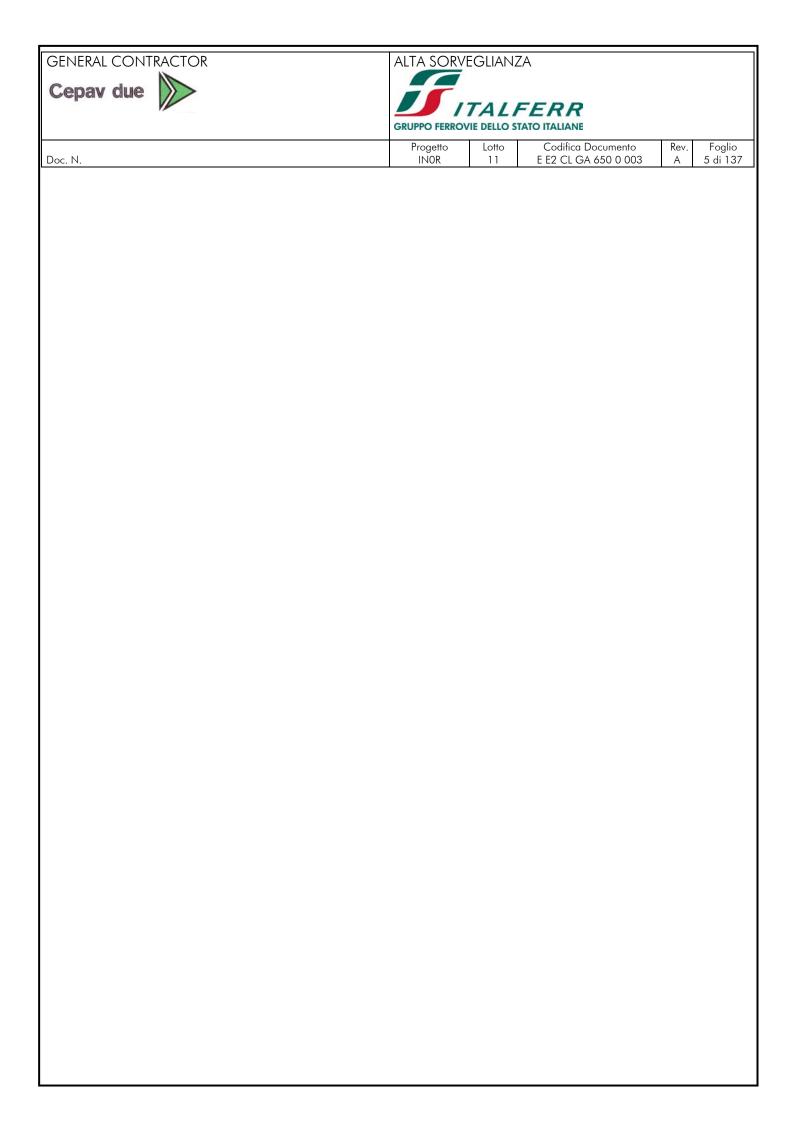
Relazione di calcolo strutture interne

GENER	AL CONTRACT	OR			[DIRETTORE LAVOI	रा			
	Consorzio Cepaw due II Direttore del Gensorzio (Ing. T. Taranta)			\	/alido per costruz	cione				
Data: _						Data:				
CC	OMMESSA	LOTTO	FASE EN	TE TIPO	DDCC	OPERA/DISC	OPLINA	PROGR	REV	
I	N 0 R	1 1	ЕЕ	2 C	L	G A 6	5 0 0	0 0 3	Α	
PROG	SETTAZIONE						1501		H PROGET	TASTA
Rev.	Descr	izione	Redatto	Data	Verifico	ito Data	Antegratore	Data	TIM	
Α	Emis	sione	PAGLINI	05/11/18	MERLI	05/1/13/18	TOMNASO	105/11/18		
В						E DE	TARANTA	_ ≤ \	XIIII CX	iicia /
С							Industriale dell'Informazion		Data:05/11/18	//
CIG.	CIG. 751447334A MIR: MORI-1EE2CLGA6500003A_03.docx									


CUP: F81H91000000008


ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.INOR11E E2 CL GA 650 0 003A2 di 137

IN	DICE		
1.	INT	RODUZIONE	6
2.	ELA	ABORATI DI RIFERIMENTO	6
3.	NOI	RMATIVE E SPECIFICHE TECNICHE	6
3	3.1	NORMATIVE	6
2	3.2	SPECIFICHE TECNICHE	7
4.	MA	TERIALI STRUTTURALI	8
2	4.1	CALCESTRUZZO	8
4	1.2	ACCIAIO PER CEMENTO ARMATO	8
4	1.3	Prescrizioni di Durabilità	9
5.	CAF	RATTERIZZAZIONE SISMICA	. 10
:	5.1	CARATTERIZZAZIONE SISMICA DEL SITO	. 10
	5.2	CARATTERIZZAZIONE DELL'AZIONE SISMICA	. 10
:	5.3	CALCOLO DELL'ACCELERAZIONE MASSIMA ORIZZONTALE	. 11
6.	CAF	RATTERIZZAZIONE GEOTECNICA E LIVELLI DI FALDA	. 12
(5.1	MATERIALE NATURALE	. 12
	6.1.	l Parametri geotecnici	12
(5.2	MODULO DI SOTTOFONDO	. 12
(5.3	LIVELLI DI RITOMBAMENTO	. 13
(5.4	Livelli di falda	. 14
7.	GEO	OMETRIA DELLA STRUTTURA	. 15
8.	MO	DELLAZIONE STRUTTURALE	. 18
9.	ANA	ALISI DEI CARICHI	. 23
Ģ	9.1	PESO PROPRIO STRUTTURALE	. 23
ģ	9.2	AZIONE INDIRETTA – RITIRO E VISCOSITÀ	. 23
ģ	9.3	AZIONI PERMANENTI	. 25
	9.3.	l Pesi portati	25
ģ	9.4	AZIONI DOVUTE AL TERRENO: SPINTE STATICHE	. 27



Doc. N.		Progetto INOR	Lotto 11	Codifica Documento E E2 CL GA 650 0 003	Rev. A	Foglio 3 di 137
9.4.1	Condizione di falda minima					27
9.4.2	Condizione di falda massima					27
9.5 Az	IONI VARIABILI					30
9.5.1	Sovraccarico folla					30
9.5.2	Sovraccarico di cantiere a piano campagna					31
9.5.3	Carichi in copertura					32
9.5.3.1	I Sovraccarico copertura					32
9.5.3.1	l Carico neve					33
9.5.4	Azione termica					34
9.5.5	Azione del vento				•••••	36
9.6 Az	IONI SISMICHE					39
9.6.1	Azione Sismica della struttura					39
9.6.2	Azione Sismica del terreno e della falda: ricoprim	ento e spinte d	inamiche			41
10. COMBI	NAZIONI DI CARICO					46
10.1 Co	DEFFICIENTI DI COMBINAZIONE					46
10.1.1	Coefficienti di combinazione Approccio 1 Combin	azione 1 (A1) .	STR		•••••	46
10.1.2	Coefficienti di combinazione Sismiche				•••••	46
10.1.3	Coefficienti di combinazione Approccio 1 Combin	azione 2 (A2)	GEO		•••••	47
10.1.4	Coefficienti di combinazione UPL				•••••	48
10.2 Co	MBINAZIONI DI CARICO - GENERALITÀ					49
10.2 Co	OMBINAZIONI DI CARICO - STATI LIMITE ULTIMI					50
10.2.1	Approccio 1 Combinazioni 1 (A1) STR				•••••	50
10.2.1	Combinazioni sismiche SLV					51
10.3 Co	ombinazioni di carico - Stati Limite di Esercizi	Ю				52
10.3.1	Combinazioni SLE caratteristiche (rare)					52
10.3.2	Combinazioni SLE sismiche SLD					53
10.3.3	Combinazioni SLE frequenti					53
10.3.4	Combinazioni SLE quasi permanenti					54
11. RISULT	'ATI DELL'ANALISI STRUTTURALE					55

Doc.	N.	Progetto INOR	Lotto 11	Codifica Documento E E2 CL GA 650 0 003	Rev. A	Foglio 4 di 137
1	1.1 AZIONI INTERNE					55
	11.1.1 Struttura definitiva					55
	11.1.1.1 GA65: INV_SLU_SLV					
	11.1.1.2 GA65: INV_SLE_R_SLD					58
	11.1.1.3 GA65: INV_SLE_R					61
	11.1.1.3 GA65: INV_SLE_QP					63
12.	VERIFICHE DELLE SEZIONI					66
1	2.1 SEZIONI PRINCIPALI DI VERIFICA					66
1	2.2 VERIFICHE AGLI SLU ED AGLI SLE					68
	12.2.1 Fondazione – lato corto					69
	12.2.2 Fondazione – lato lungo					73
	12.2.3 Muri – lato lungo (direzione verticale)					77
	12.2.4 Muri – lato corto (direzione verticale)					84
	12.2.5 Muri – lato lungo (direzione orizzontale)					88
	12.2.6 Muri – lato corto (direzione orizzontale)					92
	12.2.7 Setto centrale (direzione verticale)					96
	12.2.8 Setto centrale (direzione orizzontale)					100
	12.2.9 Rampe					104
	12.2.10 Pianerottoli – lato lungo					107
	12.2.11 Pianerottoli – lato corto					110
	12.2.12 Pianerottolo al p.c. – lato lungo (dir. x)					113
	12.2.13 Pianerottolo al p.c. – lato corto (dir. y)					116
	12.2.14 Muri fabbricato (direzione verticale)					
	12.2.15 Muri fabbricato (direzione orizzontale)					122
	12.2.16 Copertura fabbricato – lato lungo					
	12.2.17 Copertura fabbricato – lato corto					
13.						
	4.1 VERIFICHE AGLI STATI LIMITE ULTIMI DI TIPO GEOTI					
1.	4.2 VERIFICHE AGLI STATI LIMITE ULTIMI IDRAULICI			• • • • • • • • • • • • • • • • • • • •	•••••	137

1. INTRODUZIONE

Nella presente relazione si riporta il calcolo delle strutture che ospitano le uscite di emergenza ed il sistema di movimentazione verticale pedonale per l'esodo a piano campagna alla Pk 141+021.64 della galleria naturale San Giorgio in Salici prevista nel progetto della linea A.V. – A.C. Torino – Venezia lungo la tratta Milano – Verona.

Nel seguito si riporta una descrizione generale dell'opera, delle fasi esecutive principali, nonché geometria e dimensionamento dei rivestimenti interni definitivi dell'uscita di emergenza.

2. ELABORATI DI RIFERIMENTO

Nel seguito si riporta l'elenco elaborati della WBS GA65, di cui la presente relazione costituisce parte integrante.

Codifica documento	GALLERIA NATURALE SAN GIORGIO IN SALICI (GA65)
IN0R11EE2ROGA6500002	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Relazione generale
IN0R11EE2CLGA6500001	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Relazione di calcolo opere provvisionali e cunicolo di collegamento
IN0R11EE2CLGA6500002	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Relazione di calcolo opere provvisionali e cunicolo di collegamento - Allegati numerici
IN0R11EE2CLGA6500003	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Relazione di calcolo strutture interne
INOR11EE2CLGA6500004	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Relazione di calcolo strutture interne - Allegati numerici
IN0R11EE2PZGA6501001	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Opere provvisionali di scavo - Planimetria, sezioni e sviluppate
IN0R11EE2WBGA6501001	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Sezioni di scavo - Cunicolo di collegamento
INOR11EE2BZGA6500001	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Carpenteria centina - Cunicolo di collegamento
IN0R11EE2BZGA6500002	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Carpenteria metallica - Telaio di contrasto
IN0R11EE2BZGA6500003	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Carpenteria - Tav. 1/2
INOR11EE2BZGA6500004	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Carpenteria - Tav. 2/2
INOR11EE2BBGA6500001	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Carpenteria - Prospetti
INOR11EE2BZGA6500005	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Armatura - Pali
INOR11EE2BBGA6500003	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Armature - Tav. 1/2
INOR11EE2BBGA6500004	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Armature - Tav. 2/2
INOR11EE2BBGA6500002	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Armatura - Cunicolo di collegamento
IN0R11EE2ROGA6500001	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Relazione di confronto PD/PE
IN0R11EE24TGA6500001	GALLERIA NATURALE SAN GIORGIO IN SALICI USCITA DI SICUREZZA (GA65) - Pk 141+021.64 - Tabella materiali

3. NORMATIVE E SPECIFICHE TECNICHE

3.1 Normative

- Legge 05.11.1971 n. 1086 "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica"
- **D.P.R. n. 380/2001** e s.m.i. "Testo unico delle disposizioni legislative e regolamentari in materia edilizia"
- D. M. Infrastrutture 14 gennaio 2008 (NTC 2008) "Nuove Norme tecniche per le costruzioni"
- CIRCOLARE 2 febbraio 2009, n. 617 "Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008"
- **UNI EN 1992-1-1 novembre 2005** (*EC2*) "Progettazione delle strutture di calcestruzzo Parte 1: Regole generali e regole per edifici"
- **UNI EN 1992-1-2 aprile 2005** (*EC2 "Progettazione strutturale contro l'incendio"*) "Progettazione delle strutture di calcestruzzo Parte 1-2: Regole generali Progettazione strutturale contro l'incendio"

- **UNI EN 1998-5 gennaio 2005** (*EC8*) "Progettazione delle strutture per la resistenza sismica— Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici"
- Regolamento U.E. nr. 1303/2014 della commissione del 18 novembre 2014 relativo alla specifica tecnica di interoperabilità concernente la «sicurezza nelle gallerie ferroviarie» del sistema ferroviario dell'Unione europea (norma STI)

3.2 Specifiche Tecniche

- **RFI DTC SI MA IFS 001 A -** Manuale di Progettazione delle Opere Civili (*MdP*)
- **RFI DTC SI SP IFS 001 A -** Capitolato Generale Tecnico di Appalto delle Opere Civili
- "Criteri per il dimensionamento e verifiche delle gallerie artificiali D.M. 2008" rev. 01 del 26.01.2017 ITALFERR U.O. Gallerie

GENERAL CONTRACTOR Cepav due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
Doc N	Progetto Lotto Codifica Documento Rev. Foglio

4. MATERIALI STRUTTURALI

4.1 Calcestruzzo

Classe di resistenza per struttura uscita di sicurezza		C30/37		
Coefficiente parziale di sicurezza calcestruzzo	γc		1.5	
Resistenza caratteristica a compressione (cilindrica)	fck	0.83× Rck =	30.71	N/mm²
Resistenza media a compressione	fcm	fck + 8 =	38.71	N/mm²
Modulo elastico	Ecm	22 000 × (fcm/10) ^{0.3} =	33 019	N/mm²
Resistenza di calcolo a compressione	fcd	$acc \times fck/\gamma c = 0.85* fck/1.$.5 = 17.40	N/mm²
Resistenza a trazione media	fctm	$0.30 \times fck^{2/3} =$	2.945	N/mm²
Resistenza a trazione caratteristica	fctk	$0.7 \times \text{fctm} =$	2.062	N/mm²
Resistenza a trazione di calcolo	fctd	fctk / γc =	1.375	N/mm²
Resistenza a compressione (comb. Rara) (*)	σε	0.55 × fck=	16.89	N/mm²
Resistenza a compressione (comb. Quasi perm.) (*)	σс	0.40 × fck =	12.28	N/mm²

4.2 Acciaio per cemento armato

Acciaio per cemento armato tipo	B450C		
Tensione di snervamento caratteristica	fyk	450	N/mm²
Tensione caratteristica a rottura	ftk	540	N/mm²
Tensione in condizione di esercizio (comb. Rara) (*)	$\sigma c = 0.75$ * fyk	337.50	N/mm²
Coefficiente parziale di sicurezza relativo all'acciaio	γs	1.15	N/mm²
Resistenza a trazione di calcolo	fyd = fyk / γs	391.30	N/mm²
Tipologia per reazione al fuoco	Laminato a caldo	Classe N	

(*) in accordo a "Criteri per il dimensionamento e verifiche delle gallerie artificiali D.M. 2008" rev. 01 del 26.01.2017 – ITALFERR U.O. Gallerie

GENERAL CONTRACTOR Cepav due	ALTA SORVI	TALI	FERR		
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	E E2 CL GA 650 0 003	Α	9 di 137

4.3 Prescrizioni di Durabilità

Classe di esposizione	Struttura interna	XC2	NTC Tabella 4.1.III
Copriferro minimo	Struttura interna c _{nom}	40 mm	Circolare n.617/2009 § C4.1.6.1.3

Si considera infatti che, ai sensi del documento RFI DTC SI MA IFS 001 A - Manuale di Progettazione delle Opere Civili – Parte II sezione 6 pag. 21 di 155, essendo il manufatto impermeabilizzato, la classe di esposizione è la XC2.

Ai sensi della Circolare n.617/2009 § C4.1.6.1.3 il valore del copriferro minimo è dunque il seguente:

- Barre da c.a.
- Elementi piastra
- Classe di esposizione *ordinaria*
- Classe di calcestruzzo C30/37, compreso tra classe minima (C25/30) e classe C₀ (C35/45)

Copriferro minimo:
 Per tolleranze di posa:
 Per vita nominale pari a 100 anni (cfr. § 5.2 della presente relazione di calcolo):
 Copriferro totale = 20 +10 +10
 20 mm
 + 10 mm
 Copriferro totale = 20 +10 +10

5. CARATTERIZZAZIONE SISMICA

5.1 Caratterizzazione sismica del sito

Per quanto riguarda la caratterizzazione sismica del sito si rimanda al documento "Galleria San Giorgio in Salici - Relazione Geotecnica" (IN0R11EE2RBGN0400001).

L'opera ricade nel Comune di S. Giorgio in Salici, limitrofo al Comune di Sona in provincia di Brescia.

Sulla base dell'andamento dei valori della velocità delle onde di taglio ricavati dai risultati delle prove "cross – hole" effettuate nei primi 30 m dal p.c., si ottiene un valore $V_{s,30} = 466$ m/s, corrispondente alla categoria di sottosuolo B.

5.2 Caratterizzazione dell'azione sismica

Sulla base delle indicazioni delle NTC2008 si assumono i seguenti valori per determinare l'azione sismica di riferimento:

				NTC 2008
vita nominale	V_N	100	anni	Tab. 2.4.I
Classe d'uso		III	classe	§ 2.4.2
coefficiente d'uso	C_{U}	1.5		Tab. 2.4.II
periodo di riferimento	$V_R = V_N \ x \ C_U$	150	anni	(2.4.1)
categoria di sottosuolo	В			Tab. 3.2.II
categoria topografica	T_1			Tab. 3.2.VI

Sulla base del documento "Criteri per il dimensionamento e verifiche delle gallerie artificiali D.M. 2008" rev. 01 del 26.01.2017 – ITALFERR U.O. Gallerie, si considerano i seguenti Stati Limite:

verifiche sismiche SLU	SLV	Stato limite di salvaguardia della vita
verifiche sismiche SLE	SLD	Stato limite di danno

stato limite ultimo di salvaguardia della vita SLV							
probabilità di superamento associata	P_{VR}	10	%	Tab. 3.2.I			
periodo di ritorno	$T_{R} = -V_{R} / ln (1 - P_{VR})$	1424	anni				

GENERAL CONTRACTOR		alta sorve	GLIAN	1ZA			
Cepav due		GRUPPO FERROVI			ERR		
Doc. N.		Progetto INOR	Lotto 11	T		Documento A 650 0 003	Rev A
stato limite ultimo di salvaguardia della vita S	LV						
accelerazione orizzontale	a_{g}		0.	237	g		
Fattore massimo di amplificazione spettrale in accelerazione orizzontale	F_0		2.	432			
Periodo inizio tratto a velocità costante dello spettro in accelerazione orizzontale	${T_c}^*$		0.	283	S	§ 3.2	
stato limite ultimo di salvaguardia della vita S	LD						
probabilità di superamento associata	P_{VR}			63	%	Tab. 3.2	2.I
periodo di ritorno	$T_R = -V_R/1$	n (1 – P _{VR})		151	anni		
accelerazione orizzontale	ag		0.	099	g		
Fattore massimo di amplificazione spettrale in accelerazione orizzontale	F_0		2.	415			
Periodo inizio tratto a velocità costante dello spettro in accelerazione orizzontale	${\mathsf T_{\mathsf c}}^*$		0.	265	S	§ 3.2	
5.3 Calcolo dell'accelerazione massima	orizzontale						
stato limite ultimo di salvaguardia della vita S	LV						
Coefficiente di amplificazione stratigrafica	S_{S}	1.	169		Tab. 3.2	2.V	
Coefficiente di amplificazione topografica	S_{T}		1.0		Tab. 3.2	2.VI	
Coefficiente S	$S = S_S S_T$	1.	169		(3.2.5)		
Accelerazione massima orizzontale SLV	$a \max = S$	ag 0.	277	g	(7.11.5))	
stato limite ultimo di salvaguardia della vita S	LD						
Coefficiente di amplificazione stratigrafica	S_{S}		1.20		Tab. 3.2	2.V	
Coefficiente di amplificazione topografica	S_{T}		1.0		Tab. 3.2	2.VI	
Coefficiente S	$S = S_S S_T$: 1	1.20		(3.2.5)		

6. CARATTERIZZAZIONE GEOTECNICA E LIVELLI DI FALDA

6.1 Materiale naturale

Per quanto riguarda l'inquadramento generale dei terreni interessati dall'opera in oggetto, il quadro delle indagini geotecniche eseguite e la stratigrafia di progetto, si rimanda al documento "Galleria San Giorgio in Salici - Relazione Geotecnica" (IN0R11EE2RBGN0400001).

6.1.1 Parametri geotecnici

Si riporta nella seguente tabella la stratigrafia assunta per il dimensionamento della struttura interna dell'uscita di emergenza GA65:

STRATIGRAFIA	Da m	A m	γ _d kN/m³	γ _{sat} kN/m³	c' _k kPa	φ' _k	K ₀ (-)	E _{VC} MPa	E _{UR} MPa	v (-)
Sabbia limosa 1 (sabbia/ghiaia)	p.c.	3	18.5	20.5	10	34	0.441	20	40	0.30
Sabbia limosa 2 (sabbia/ghiaia)	3	5	18.5	20.5	10	34	0.441	40	80	0.30
Limo 1 (sabbia/ghiaia)	5	15	19.6	21.4	15	35	0.426	70	140	0.30
Limo 2 (sabbia/ghiaia)	> 15		19.6	21.4	15	33	0.455	120	240	0.30

Il coefficiente di spinta a riposo viene valutato secondo la seguente formula:

$$K_0 = (1 - sen \, \emptyset'_k)$$

6.2 Modulo di sottofondo

Sulla base del documento "Criteri per il dimensionamento e verifiche delle gallerie artificiali D.M. 2008" rev. 01 del 26.01.2017 – ITALFERR U.O. Gallerie, si considera la seguente metodologia per il calcolo dei valori del Modulo di sottofondo:

- per tratti curvilinei dell'arco di calotta
$$k = \frac{E'}{R_{eq}(1+v)} i$$

- per tratti rettilinei dell'arco di calotta
$$k = \frac{E'}{B(1-v^2)} i$$

– per l'arco rovescio
$$k = \frac{E'}{B(1-v^2)c_t} i$$

con:

 R_{eq} = raggio di curvatura del tratto di carpenteria curvilinea considerata

B = lunghezza del tratto rettilineo di carpenteria. Per l'arco rovescio è pari alla dimensione trasversale totale, trascurandone la curvatura

Progetto Codifica Documento Foglio Lotto Rev Doc. N. INOR 13 di 137 11 E E2 CL GA 650 0 003

= interasse tra le bielle i

= coefficiente di Poisson v

E'= modulo elastico del mezzo di contorno

= coefficiente di forma della fondazione; relazioni cfr. Bowles (1960), con L = lato maggiore della c_t

fondazione

 $c_t = 0.853 + 0.534 \ln(\frac{L}{B})$ $c_t = 2 + 0.0089 \frac{L}{B}$ Fondazione rettangolare con $L/B \le 10$

Fondazione rettangolare con L/B> 10

Per il modulo di sottofondo in corrispondenza dei muri interrati della struttura, si adotta un valore medio per tener conto della differenziazione stratigrafica esistente.

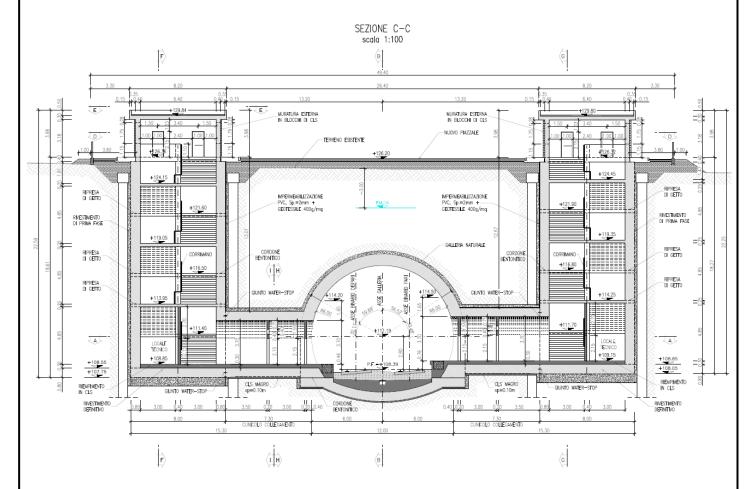
La platea di fondazione della struttura interna definitiva si trova a circa 18 m dal piano compagna; si considerano i parametri dello strato alla profondità maggiore di 15 m costituito da Limo 2, con valore di modulo elastico $E_{UR} = 240000 \text{ kPa}.$

		Muri interrati - uscita di sicurezza				
Zona	B (m)	E kN/m²	L/B ct	Ks kN/m³	Ks adottato kN/m³	
Sabbia limosa 1	8	20000		2747		
Sabbia limosa 2	8	40000		5495		
Limo 1	8	70000		9615	8500	
Limo 2	8	120000		16484		

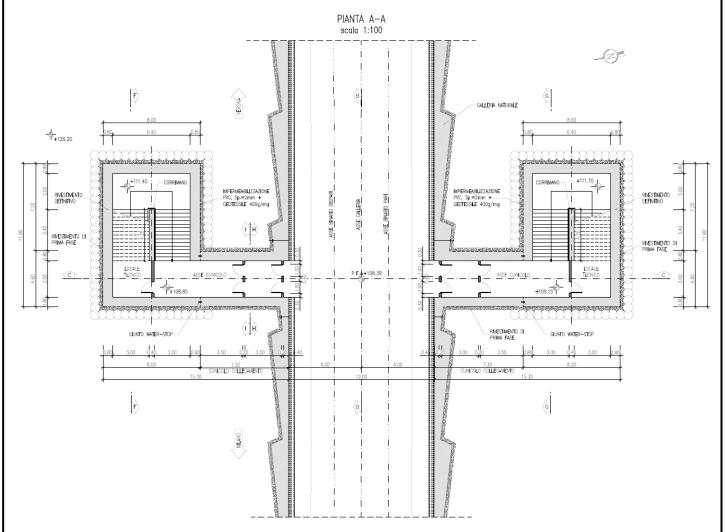
		Fondazione - uscita di sicurezza				
Zona	B (m)	E kN/m²	L/B ct	Ks kN/m³	Ks adottato kN/m³	
Limo 2	8	240000	1.475 1.061	31085	31000	

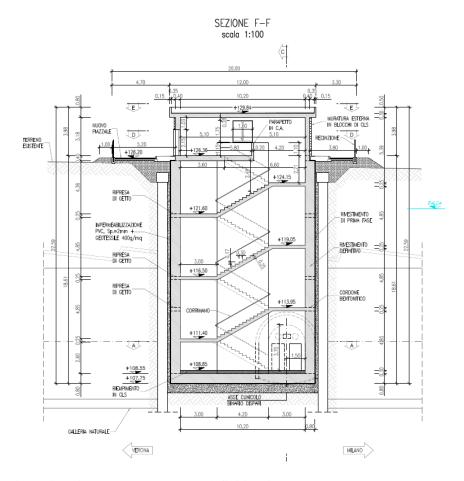
6.3 Livelli di ritombamento

La struttura in esame non presenta ritombamento.



	GRUPPO FERROVIE DELLO STATO ITALIANE					
Doc. N.	Progetto INOR	Lotto 11	Codifica Documento E E2 CL GA 650 0 003	Rev. Foglio A 14 di 137		
6.4 Livelli di falda						
La Relazione geotecnica riporta, in corrispondenza dell piano campagna.	a Pk 141+021	1.64, un 1	livello di falda massin	no a 3.0 m dal		




7. GEOMETRIA DELLA STRUTTURA

Si indicano le dimensioni principali della sezione oggetto di studio, il livello definitivo del terreno e la quota della falda.

L'interno del pozzo viene rivestito con una struttura definitiva in cemento armato con spessore dei muri interrati e della platea di fondazione pari a 80 cm, del setto centrale di 40 cm e delle solette interpiano di 25 cm. La soletta a quota piano campagna ha spessore pari a 40 cm. La struttura scatolare interrata definitiva ha altezza totale rispettivamente pari a 18.61 m (uscita lato binario dispari) e 18.27 m (uscita lato binario pari). L'ingombro totale in pianta è pari a 8.0x11.80m.

L'uscita di sicurezza è una struttura di per sé indipendente dal cunicolo di collegamento alla galleria; la continuità strutturale è difatti impedita attraverso la realizzazione di un apposito giunto di costruzione tra i rivestimenti definitivi delle due strutture.

Il vano scale è composto da 6 pianerottoli intermedi e rampe di larghezza utile pari a 3.0 m. Le rampe scala hanno spessore di 25 cm.

In superficie viene realizzato un fabbricato a pianta rettangolare in cemento armato a protezione dell'uscita di sicurezza, con muri di spessore pari a 40 cm e tetto di copertura ad una falda di spessore pari a 30 cm. Il piano campagna coincide con l'estradosso della soletta di testa da 40 cm.

8. MODELLAZIONE STRUTTURALE

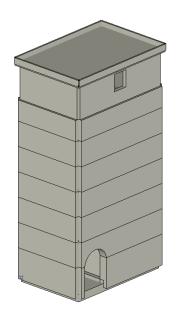
L'analisi strutturale è stata svolta con il programma di calcolo AXIS VM della InterCAD. AXIS VM è un software agli elementi finiti per l'analisi strutturale che permette di eseguire analisi lineari e non lineari di strutture bidimensionali e tridimensionali.

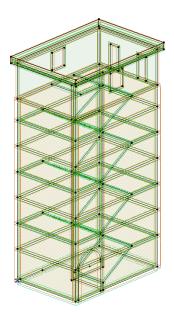
Il software prevede 6 fasi per il calcolo delle strutture, definizione della geometria, definizione delle caratteristiche degli elementi strutturali, applicazione dei carichi, generazione della mesh, esecuzione dell'analisi ed infine la rappresentazione dei risultati

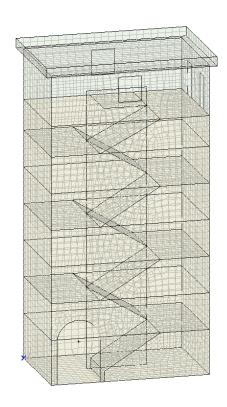
Viene analizzata la discenderia di profondità maggiore (lato binario dispari). L'analisi strutturale è analogamente applicabile all'uscita sud.

La struttura viene simulata secondo un <u>modello ad elementi finiti tridimensionale</u> costituito da <u>elementi</u> guscio, definiti sulla linea d'asse della carpenteria di rivestimento, di spessore pari allo spessore corrente nella sezione.

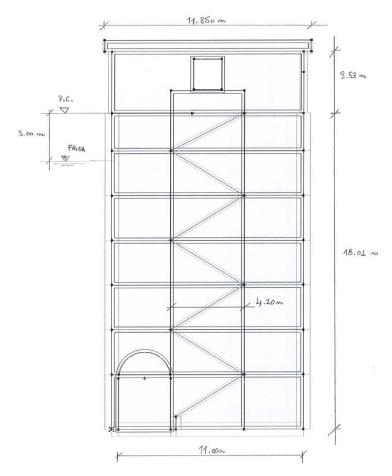
La <u>discretizzazione</u> utilizzata comporta elementi di lunghezza approssimativamente 0.5 m in accordo alle linee guida Italferr "Criteri di dimensionamento e verifiche delle gallerie artificiali D.M. 2008".

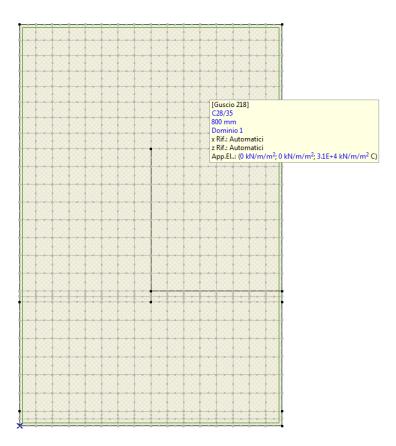

Per la <u>modellazione del terreno</u> si utilizzano molle non lineari reagenti a sola compressione, applicate agli elementi guscio, lungo tutto il perimetro dei muri interrati ed in fondazione, di modulo di rigidezza pari a quanto indicato al § 6.2 della presente relazione di calcolo.


Il <u>sistema di riferimento globale</u> del modello viene assunto con origine degli assi in corrispondenza di uno spigolo della fondazione al livello mediano della stessa. L'asse Z è positivo verso l'alto e l'asse X positivo verso destra e parallelo alla dimensione minore della discenderia.


Il sistema di riferimento locale degli elementi guscio ha asse-z sempre rivolto:

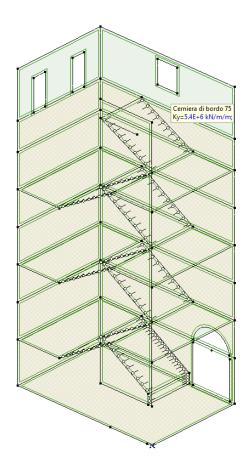
- Per i muri interrati, verso l'interno della struttura;
- Per la fondazione, verso l'interno della struttura;
- Per solette, pianerottoli e rampe scale, verso l'alto;
- Per il setto centrale ed i muri in elevazione non vi è necessità di orientamento preferenziale.





Gli spessori strutturali degli elementi guscio sono i seguenti:

ELEMENTO	SPESSORE [mm]
FONDAZIONE	800
MURI INTERRATI	800
SETTO CENTRALE	400
MURI IN ELEVAZIONE	400
CORDOLO COPERTURA	150
PIANEROTTOLI	250
SOLAIO PIANO CAMPAGNA	400
SOLETTA DI COPERTURA	300
RAMPE INCLINATE	250



Le <u>molle non lineari</u>, reagenti solo a compressione, sono applicate normalmente alla superficie degli elementi guscio (fondazione e muri interrati). A titolo indicativo, si mostra il valore applicato ad un elemento.

Le rampe scale vengono "svincolate" in corrispondenza dei muri perimetrali e del setto centrale mediante l'utilizzo di un elemento cerniera. Tale elemento permette il solo trasferimento dello sforzo assiale lungo tali bordi, in funzione della rigidezza assiale della rampa pari a $EA/L = 5.4 \times 10^6 \text{ kN/m}$.

9. ANALISI DEI CARICHI

Il nome dei casi di carico come denominati nella modellazione, vengono indicati di volta in volta. I valori dei carichi indicati corrispondono ai <u>valori caratteristici</u>.

9.1 Peso proprio strutturale

Caso di carico: G1_SW

Il peso proprio strutturale viene calcolato automaticamente dal programma secondo il seguente valore del peso specifico del materiale:

$$\gamma = 25 \, kN/m^3$$

9.2 Azione indiretta – Ritiro e viscosità

Caso di carico: G1_ritiro

Il carico viene applicato alla sola copertura che, gettata in una seconda fase rispetto alla parte inferiore dell'edificio, avendo deformazione impedita dai muri, è soggetta a coazioni di trazione dovute al ritiro.

Il fenomeno viene modellato attraverso l'applicazione di un carico termico negativo uniforme che fornisce il medesimo stato di coazione dovuto al fenomeno di ritiro. Si applica quindi un carico termico equivalente pari a:

$$\Delta T_{eq} = \frac{\varepsilon_{cs}}{\alpha_T}$$

con: $\varepsilon_{cs}(t, t_0) = \varepsilon_{cd} + \varepsilon_{ca}$ = deformazione da ritiro finale, ovvero autogeno e di essiccamento (a lungo termine)

 α_T = coefficiente di dilatazione termica del calcestruzzo = 1.0 * 10⁻⁵

Secondo quanto indicato nel §4.1.1.1 delle NTC 2008, per la determinazione degli effetti del ritiro e delle azioni termiche si considerano rigidezze ridotte per tener conto in modo approssimato della fessurazione. In particolare, per gli SLU si assume che la rigidezza della sezione fessurata sia il 50% di quella interamente reagente; per gli SLE, una rigidezza pari al 75% di quella piena.


Conviene ridurre la rigidezza in modo equivalente applicando il coefficiente riduttivo sopra indicato al delta termico invece che al modulo elastico, in quanto il comportamento è lineare. Ciò nel seguito viene implementato tramite i coefficienti di combinazione.

L'analisi delle sollecitazioni viene svolta per una striscia di larghezza unitaria assumendo:

	Sezione	
В	1000	mm
Н	300	mm
$h_0 = 2 \times A/u = 2 \times H = 2 (1000 \text{ x } 300) / (2 \text{ x } 1000)$	300	mm

dove h₀ rappresenta la dimensione fittizia ai fini della valutazione.

Deformazione da ritiro:

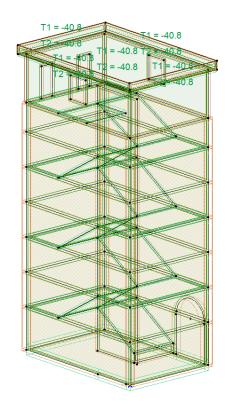
 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 CL GA 650 0 003
 A
 24 di 137

calcestruzzo: C30/37

umidità relativa: U.R. = 50%, a favore di sicurezza

 $k_h=0.75$


$$\varepsilon_{cd}(t = \infty) = k_h * \varepsilon_{cd,0} = 0.75 \times 0.478 \% = 0.358 \%$$

$$\varepsilon_{ca}(t=\infty) = 2.5 \, (f_{ck}-10) * 10^{-6} = 2.5 \times (0.83 \times 37 \, \text{-} 10) \times 10^{-6} = 0.05 \, \%$$

$$\varepsilon_{cs} = \varepsilon_{ca} + \varepsilon_{cd} = 0.408 \%$$

Il ritiro viene considerato nel calcolo delle sollecitazioni come un'azione termica applicata alla soletta superiore di intensità pari a:

$$\Delta T = -\varepsilon_{cs}/\alpha_{T} = -0.408 \% / [10 \times 10^{-6}] = -40.8 \text{ °C}$$

9.3 Azioni Permanenti

9.3.1 Pesi portati

Caso di carico: G2_pesi portati

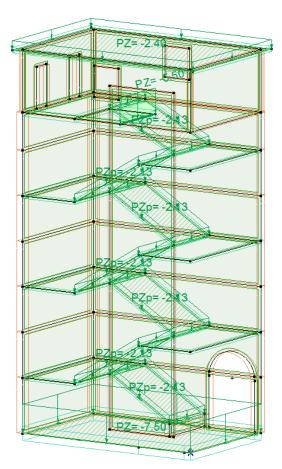
Si considerano i seguenti carichi permanenti ai vari piani:

> copertura: a favore di sicurezza si considera lo spessore massimo del massetto (circa 10 cm) spalmato sull'intera copertura a falda unica:

descrizione	calcolo	Valore unitario [kN/m²]
Massetto sp. 10cm	0.10 x 24	2.40

> piano terra:

descrizione	calcolo	Valore unitario [kN/m²]
Riempimento in calcestruzzo al di sopra della platea di fondazione	0.3 x 25	7.50


> soletta al piano campagna:

descrizione	calcolo	Valore unitario [kN/m]
Peso lineare del cordolo di protezione in cls	0.20 x 1.10 x 25	5.50

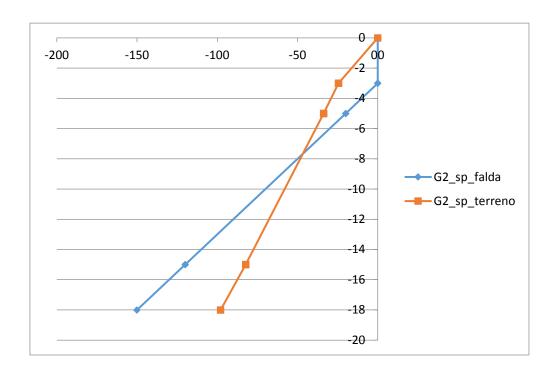
rampe scale:

descrizione	calcolo	Valore per b = 0.30 m [kN/m]	Valore unitario [kN/m²]
Peso dei gradini	(0.17 x 0.30 /2) x 25	0.64	0.64 / 0.30 = 2.13

9.4 Azioni dovute al terreno: spinte statiche

9.4.1 Condizione di falda minima

Ai fini del calcolo il caso con livello di falda minima è meno gravoso del caso con livello di falda massima e non viene quindi implementato.

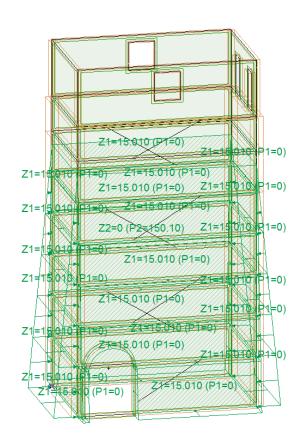

9.4.2 Condizione di falda massima

<u>Casi di carico</u>: G2_sp_falda = spinta idrostatica con livello massimo di falda

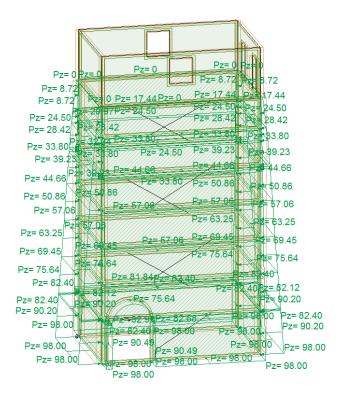
G2_sp_terreno = spinta del solo terreno

G2_sp_uplift = sotto-spinta al di sotto della fondazione

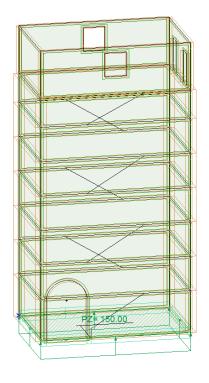
	Terreno	d.p.c. (m)	γdry (kN/m3)	γsat (kN/m3)	Ф'	Ко	γw (kN/m3)	G2_sp_falda (kN/m2)	γ' (kN/m3)	G2_sp_terreno (kN/m2)
<u>falda</u>	Sabbia limosa 1	0	18.5	20.5	34	0.441	0.0	0.0	20.5	0
		-3	18.5	20.5	34	0.441	0.0	0.0	20.5	-24.5
	Sabbia limosa 2	-3	18.5	20.5	34	0.441	10.0	0.0	10.5	-24.5
		-5	18.5	20.5	34	0.441	10.0	-20.0	10.5	-33.7
	Limo 1	-5	19.6	21.4	35	0.426	10.0	-20.0	11.4	-33.7
		-15	19.6	21.4	35	0.426	10.0	-120.0	11.4	-82.3
	Limo 2	-15	19.6	21.4	33	0.455	10.0	-120.0	11.4	-82.3
		- 18.01	19.6	21.4	33	0.455	10.0	-150.1	11.4	-98.0
		10.01	19.0	Z1.4	33	0.455	10.0	-130.1	11.4	-96.0



La spinta idrostatica e del terreno vengono applicate perpendicolarmente agli elementi bidimensionali verticali costituenti le pareti interrate della discenderia, come rappresentato nelle figure seguenti.


Nella modellazione il piano campagna viene fatto coincidere con il livello dell'asse baricentrico del pianerottolo del fabbricato.

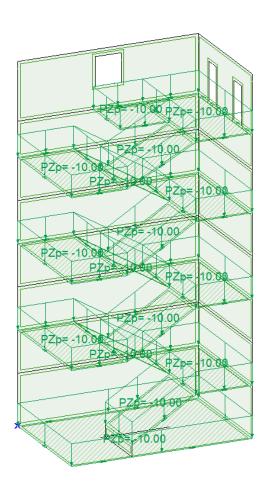
G2_sp_falda:



G2_sp_terreno:

La sotto-spinta risulta pari a: $U = \gamma_w \left(z_f - z_{fond} \right) = 10 \text{ x } (3 - 18) = -150 \text{ kN/m}^2$

La pressione uniforme viene applicata sull'elemento fondazione secondo la direzione globale Z come riportato in figura:


9.5 Azioni variabili

9.5.1 Sovraccarico folla

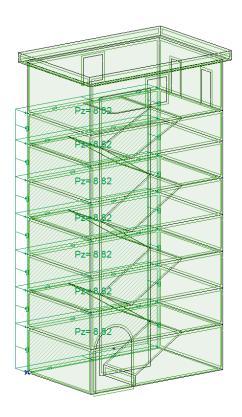
Caso di carico: Q1_folla

Si fa riferimento alle NTC 2008 § 5.2.2.3.2. A favore di sicurezza, il sovraccarico sulle rampe ed ai piani viene assunto pari al carico sul marciapiede ferroviario della galleria, pari a 10 kN/m².

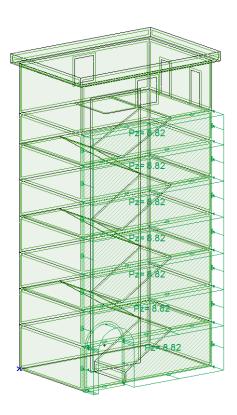
Il carico viene applicato secondo la componente –Z globale degli elementi bidimensionali fondazione, pianerottoli, soletta al piano campagna e rampe scale.

9.5.2 Sovraccarico di cantiere a piano campagna

In accordo a "Criteri per il dimensionamento e verifiche delle gallerie artificiali D.M. 2008" rev. 01 del 26.01.2017 – ITALFERR U.O. Gallerie, si considera la presenza di un carico distribuito di intensità q_k =20 kPa al livello del piano campagna.

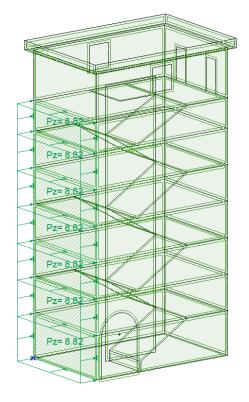

 K_0 0.441 - coeff.spinta a riposo

qk 20.00 kN/m² sovraccarico di cantiere


qk,h 8.82 kN/m² spinta orizzontale sul muro interrato

La pressione orizzontale viene applicata perpendicolarmente agli elementi bidimensionali costituenti i muri interrati.

Si considerano i seguenti quattro casi di carico rispetto alla struttura definitiva:

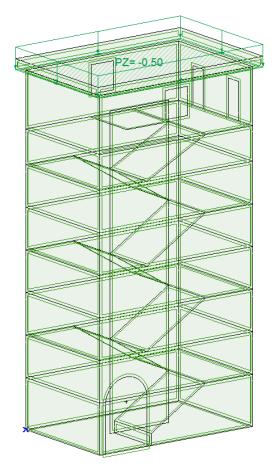


Caso di carico: Q4_sovr_X+

Caso di carico: Q4_sovr_X-

Caso di carico: Q4_sovr_Y+

Caso di carico: Q4_sovr_Y-


9.5.3 Carichi in copertura

9.5.3.1 Sovraccarico copertura

Caso di carico: Q3_copertura

Si fa riferimento alle NTC 2008 – Tabella 3.1.II – Cat. H1 = copertura accessibile per sola manutenzione = si assume $q = 0.50 \text{ kN/m}^2$.

9.5.3.1 Carico neve

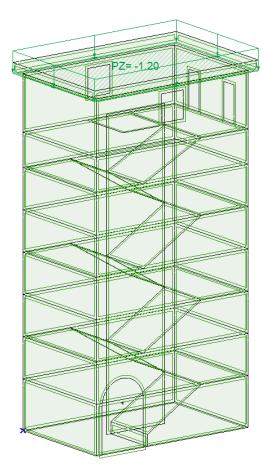
Caso di carico: Q2_neve

Si fa riferimento alle NTC 2008 – § 3.4 "Azione della neve".

Si assume a favore di sicurezza il valore caratteristico di riferimento del carico neve al suolo corrispondente alla Zona I – Alpina, secondo classificazione NTC 2008.

 μi 0.8 - coeff.forma copertura - Tabella 3.4.II

Ce 1.00 - esposizione al vento normale

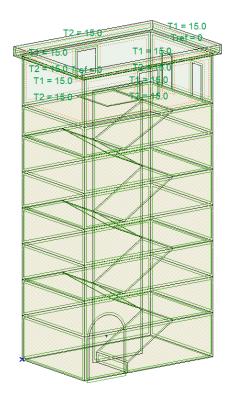

Ct 1.00 - coefficiente termico

as 126 m quota del suolo sul livello del mare nel sito di realizzazione

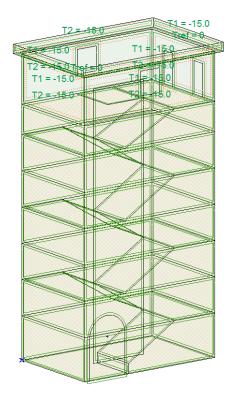
qsk 1.50 kN/m2 valore caratteristico di riferimento del carico neve al suolo per un periodo di ritorno T=50 anni

qk 1.20 kN/m2 val.caratteristico carico neve

9.5.4 Azione termica


Casi di carico: Q5_temp+

 $Q5_temp$ -


Si fa riferimento alle NTC $2008 - \S 3.5.5$ "Azioni termiche sugli edifici". Si tiene conto della sola componente uniforme dell'azione termica, ricavata dalla Tab. 3.5.II.

Per quanto riguarda la variazione stagionale, si considera un carico termico uniforme $T=\pm 15^{\circ}C$. Il carico viene applicato al fabbricato in elevazione.

Caso di carico: Q5_temp+

Caso di carico: Q5_temp-

9.5.5 Azione del vento

L'azione dovuta al vento è applicabile alla struttura in oggetto per la sola parte non interrata (fabbricato in elevazione).

L'altezza massima della parte fuori terra è pari a circa 4.0 m.

Si fa riferimento alle NTC 2008 – § 3.3 "Azioni del vento". La costruzione sorge in Zona 1 secondo Tab.3.3.I. Alla velocità di riferimento si applica il fattore di correzione per tempo di ritorno T=100 anni, secondo Eurocodice EN 1991-1-4:2005, pari a:

```
K 0.2

n 0.5

T 100 c_{\text{prob}} = \left(\frac{1 - K \cdot \ln(-\ln(1-p))}{1 - K \cdot \ln(-\ln(0.98))}\right)^n

c_{\text{prob}} 1.038
```

Il coefficiente di esposizione Ce viene valutato secondo le NTC 2008 - § 3.3.7, per una classe di rugosità del terreno di tipo D (Tab. 3.3.III) ed una categoria di esposizione del sito II (Tab. 3.3.II).

```
126 m
                      altitudine sul livello del mare del sito ove sorge la costruzione
as
                     Tabella 3.3.I - Zona 1
       1000 m
a0
vb0
         25 m/s
                      Tabella 3.3.I - Zona 1
      25.96 m/s
                      velocità di riferimento corretta per tempo di ritorno T=100 anni
vh
       1.25 kg/m3 densità dell'aria
ρ
     421.26 N/m2
                     pressione cinetica di riferimento
ab
Ce
      1.801 -
                      coefficiente di esposizione
Cd
       1.00 -
                      coefficiente dinamico
       0.76 kN/m2 pressione del vento caratteristica
р
```

Per la determinazione dei coefficienti di forma (o coefficienti aerodinamici) Cp, si fa riferimento alle indicazioni da Eurocodice EN 1991-1-4:2005 - § 7.2. I coefficienti di forma sono funzione della geometria del fabbricato, della superficie esposta all'azione del vento e alla direzione di provenienza dell'azione. Porte e finestre del fabbricato vengono considerate chiuse in condizioni di esercizio.

Per quanto riguarda le pressioni dovute al vento sui muri in elevazione del fabbricato, si distinguono quattro casi di carico distinti: due casi di carico con vento agente perpendicolarmente al lato lungo del fabbricato e due casi di carico con vento agente perpendicolarmente al lato corto del fabbricato.

La superficie verticale del fabbricato viene suddivisa in zone secondo la Figura 7.5 e Tabella 7.1 dell' Eurocodice EN 1991-1-4:2005; per ciascuna zona la pressione caratteristica del vento risulta pari a:

1.vento perpendicolare al lato lungo del fabbricato

Cpe,10:

Zona A -1.20 $w_e = -0.91 \text{ kN/m}^2$

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Doc. N. Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL GA 650 0 003 A 37 di 137

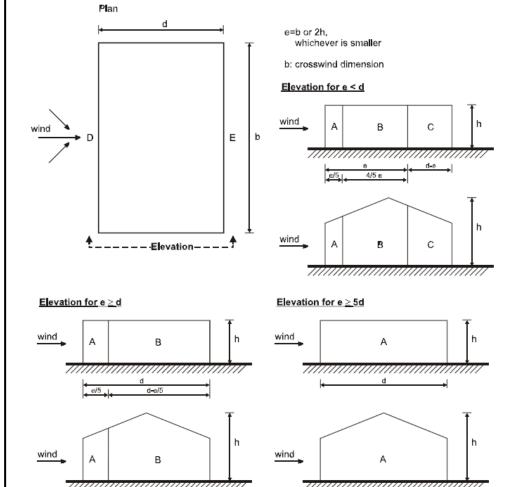
Zona B	-0.80	$w_e =$	-0.61	kN/m^2
Zona D	0.75	w _e =	0.57	kN/m²
Zona E	-0.40	w _e =	-0.30	kN/m²

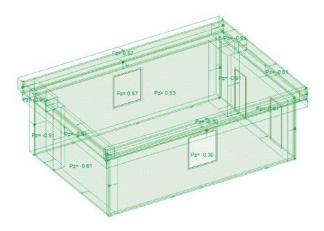
2.vento perpendicolare al lato corto del fabbricato

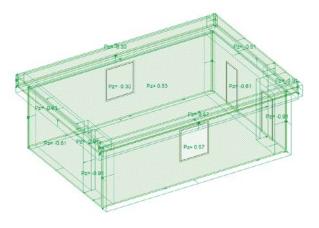
Cpe,10:

Zona A	-1.20	$w_e = -0.91 \text{ kN/m}^2$
Zona B	-0.80	$w_e = -0.61 \text{ kN/m}^2$
Zona C	-0.50	$w_e = -0.38 \text{ kN/m}^2$
Zona D	0.75	$w_e = 0.57 \text{ kN/m}^2$
Zona E	-0.40	$w_e = -0.30 \text{ kN/m}^2$

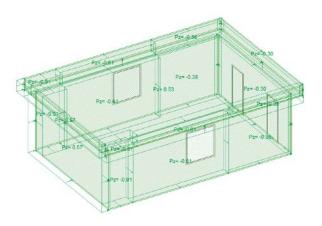
EN 1991-1-4:2005 (E)

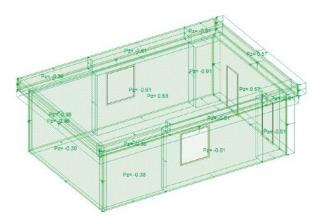



Figure 7.5 — Key for vertical walls


Per quanto riguarda l'azione del vento sul tetto (Eurocodice EN 1991-1-4:2005 - § 7.2.3), si adopera un calcolo semplificato del coefficiente di forma Cpe valido per l'intera superficie della copertura e pari al valore della zona H da Tabella 7.2:

Cpe,10:


Zona H $-0.70 \text{ w}_e = -0.53 \text{ kN/m}^2$


Caso di carico: Q6_vento_X+

Caso di carico: Q6_vento_X-

Caso di carico: Q6_vento_Y+

Caso di carico: Q6_vento_Y-

GENERAL CONTRACTOR

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 11
 E E2 CL GA 650 0 003
 A
 39 di 137

9.6 Azioni sismiche

9.6.1 Azione Sismica della struttura

<u>Caso di carico</u>: Ex_str_SLV = sisma strutturale direzione X - SLV

<u>Caso di carico</u>: Ey_str_SLV = sisma strutturale direzione Y - SLV

<u>Caso di carico:</u> Ez_str_SLV = sisma strutturale direzione Z - SLV

<u>Caso di carico</u>: Ex_str_SLD = sisma strutturale direzione X - SLD

<u>Caso di carico</u>: Ey_str_SLD = sisma strutturale direzione Y - SLD

<u>Caso di carico</u>: Ez_str_SLD = sisma strutturale direzione Z - SLD

L'azione sismica della struttura interrata viene sviluppata secondo la procedura descritta nel documento "Criteri per il dimensionamento e verifiche delle gallerie artificiali D.M. 2008" rev. 01 del 26.01.2017 – ITALFERR U.O. Gallerie.

Agli elementi guscio della struttura interrata si applica un carico proporzionale al peso dell'elemento secondo i coefficienti sismici (orizzontale e verticale) definiti dal § 7.11.6.2.1 delle NTC 2008:

$$k_h = \beta_m \cdot \frac{a_{max}}{g}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$

dove:

 $\beta_m = 1$ non essendo la struttura in grado di subire spostamenti relativi rispetto al terreno

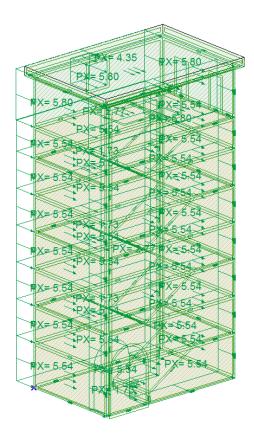
 $a_{\text{max}} = S a_g$ S coefficiente di amplificazione (topografica e stratigrafica)

ag accelerazione orizzontale massima attesa sul sito di riferimento rigido

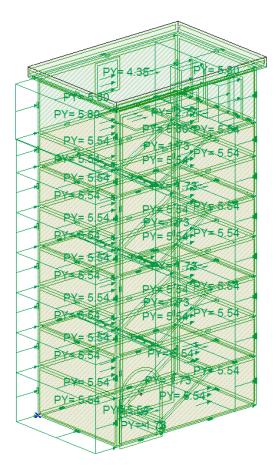
Per il fabbricato fuori terra, si fa riferimento alle NTC 2008 - \S 7.3.3.2, applicando una forza statica equivalente alla forza di inerzia indotta dall'azione sismica, la cui entità si ottiene dall'ordinata dello spettro di progetto corrispondente al periodo T_1 della struttura:

$$T_1 = C_1 \cdot H^{\frac{3}{4}} = 0.075 \cdot 4^{\frac{3}{4}} = 0.21s$$

$$F_h = S_d(T_1) \cdot W \cdot \lambda/g$$

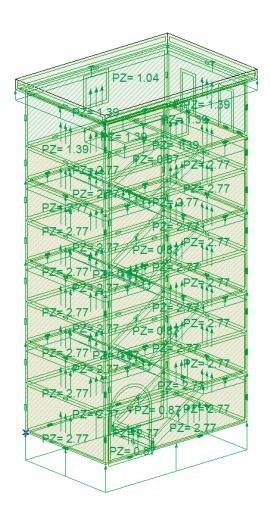

dove:

 $S_d(T_1) \cong 0.58g$ (SLV spettro orizzontale)



W: peso della struttura

 λ =1.0



Caso di carico: Ex_str_SLV

Caso di carico: Ey_str_SLV

Caso di carico: Ez_str_SLV

9.6.2 Azione Sismica del terreno e della falda: ricoprimento e spinte dinamiche

Azione sismica dovuta al terreno

L'effetto del sisma sulla struttura interrata si calcola in analogia con le opere di sostegno, mediante un approccio pseudo-statico (NTC 2008, § 7.11.6.2 – EC8 § E.9).

L'azione sismica dovuta al terreno è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

$$k_h = \beta_m \, \frac{a_{max}}{g} \qquad k_v = \pm 0.5 \, k_h$$

dove:

 $\beta_m = 1$ non essendo la struttura in grado di subire spostamenti relativi rispetto al terreno

GENERAL CONTRACTOR

ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.11E E2 CL GA 650 0 003A42 di 137

 $a_{\text{max}} = S \, a_g$ S coefficiente di amplificazione (topografica e stratigrafica) ag accelerazione orizzontale massima attesa sul sito di riferimento rigido

La spinta dinamica viene calcolata secondo la teoria di Wood:

$$\Delta S_h = k_h \gamma H^2$$

$$\Delta s_{v} = \pm k_{v} \gamma A$$

dove A è da intendersi come volume di terreno al di sopra della struttura ed H l'altezza totale della sezione. Nel caso in esame, non essendoci ritombamento, la componente verticale dell'incremento di spinta sismica viene trascurato.

Risulta quindi, per il caso SLV:

$$k_h = 1 \times 0.277 \times \frac{a_g}{a_g} = 0.277$$

Azione sismica dovuta alla falda

L'effetto del sisma si calcola in analogia con le opere di sostegno, mediante un approccio pseudo-statico (EC8 § E.8).

$$q(z) = \pm \frac{7}{8} k_h \gamma_w \sqrt{h z}$$

con

h = quota del pelo libero dell'acqua

z = coordinata verticale diretta verso il basso, con origine al pelo libero dell'acqua

Casi di carico

<u>Caso di carico</u>: Ex_ter_SLV_X+ = sisma direzione +X idrodinamica e terreno con falda massima - SLV

Caso di carico: Ex_ter_SLV_X- = sisma direzione -X idrodinamica e terreno con falda massima - SLV

<u>Caso di carico</u>: Ey_ter_SLV_Y+ = sisma direzione +Y idrodinamica e terreno con falda massima - SLV

<u>Caso di carico</u>: Ey_ter_SLV_Y- = sisma direzione -Y idrodinamica e terreno con falda massima - SLV

<u>Caso di carico</u>: Ex_ter_SLD_X+ = sisma direzione +X idrodinamica e terreno con falda massima - SLD

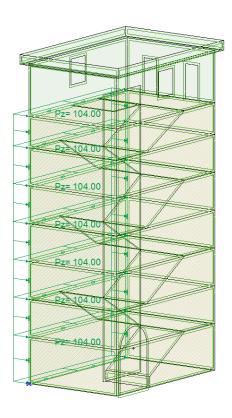
<u>Caso di carico</u>: Ex_ter_SLD_X- = sisma direzione -X idrodinamica e terreno con falda massima - SLD

<u>Caso di carico</u>: Ey_ter_SLD_Y+ = sisma direzione +Y idrodinamica e terreno con falda massima - SLD

<u>Caso di carico</u>: Ey_ter_SLD_Y- = sisma direzione -Y idrodinamica e terreno con falda massima - SLD

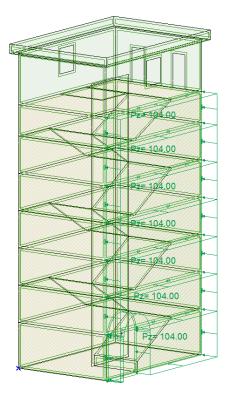
L'incremento di spinta totale (idrodinamica e terreno), per il caso SLV, risulta pari a:

$$\Delta S(z) = k_h \left[\gamma_{d1} \left(z_{pc} - z_f \right) + \gamma_2' \left(z_f - z_2 \right) + \gamma_3' (z_2 - z_3) \right] + \frac{7}{8} k_h \left[\gamma_w \sqrt{z_f \cdot z_f} \right] =$$

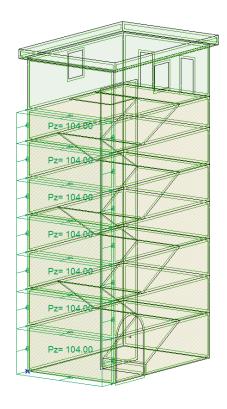


= 0.277 [18.5 (18-15) + 10.5 (15 - 13) + 11.4 (13 - 0)] +
$$\frac{7}{8}$$
 0.277 x 10.0 $\sqrt{15 \cdot 15}$ = 98.6 kN/m²

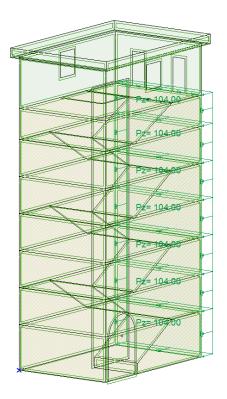
dove i pedici 'i' corrispondono alle caratteristiche stratigrafiche illustrate al capitolo 6 della presente relazione, all'aumentare della profondità.


A favore di sicurezza, si applica il valore massimo del carico a tutta altezza, considerando il valore della pressione statica fattorizzato per l'accelerazione massima:

$$\Delta S(z) = k_h \left[\gamma_{d1} \left(z_{pc} - z_f \right) + \gamma_{sat2} \left(z_f - z_2 \right) + \gamma_{sat3} \left(z_2 - z_3 \right) \right] = 0.277 \left[18.5 \left(18 - 15 \right) + 20.5 \left(15 - 13 \right) + 21.4 \left(13 - 10 \right) \right] = 103.8 \text{ kN/m}^2$$



Caso di carico: Ex_ter_SLV_X+



Caso di carico: Ex_ter_SLV_X-

Caso di carico: Ey_ter_SLV_Y+

Caso di carico: Ey_ter_SLV_Y-

10. COMBINAZIONI DI CARICO

10.1 Coefficienti di combinazione

10.1.1 Coefficienti di combinazione Approccio 1 Combinazione 1 (A1) STR

Coefficienti di combinazione - Approccio 1 Combinazione 1 (A1) STR													
	(NTC 2008	3)											
Caso di carico		ficiente di sicurezza		Coefficienti di combinazione									
	γ fav	γ sfav	ψο	ψ1	ψ2								
G1_SW	1.0	1.3	-	-	-								
G1_ritiro	0.0	0.6	-	-	-								
G2_pesi portati	1.0	1.3	-	-	-								
G2_sp_falda	1.0	1.3	-	-	-								
G2_sp_uplift	1.0	1.3	-	-	-								
G2_sp_terreno	1.0	1.3	-	-	-								
Q1_folla	0.0	1.5	0.7	0.7	0.6								
Q2_neve	0.0	1.5	0.5	0.2	0								
Q3_copertura	0.0	1.5	0	0	0								
Q4_sovr	0.0	1.5	0.75	0.75	0								
Q5_temp	0.0	1.5	0.6	0.5	0								
Q6_vento	0.0	1.5	0.6	0.2	0								

10.1.2 Coefficienti di combinazione Sismiche

Coefficienti	di combina:	zione - Sismi	са
	(NTC 2008	3)	
Caso di carico		nte parziale urezza	Coefficienti di combinazione
	γ fav	γ sfav	ψ2
G1_SW	1.0	1.0	-
G1_ritiro	0.5	0.5	-
G2_pesi portati	1.0	1.0	-
G2_sp_falda	1.0	1.0	-
G2_sp_uplift	1.0	1.0	-
G2_sp_terreno	1.0	1.0	-
Q1_folla	-	-	0.2
Q2_neve	-	-	0

Coefficienti d	di combina	zione - Sismi	са
	(NTC 2008	3)	
Caso di carico		nte parziale urezza	Coefficienti di combinazione
	γ fav	γ sfav	ψ2
Q3_copertura	-	-	0
Q4_sovr	-	-	0.2
Q5_temp	-	-	0
Q6_vento	-	-	0
Ex_str	1.0	1.0	
Ey_str	1.0	1.0	
Ez_str	1.0	1.0	
Ex_ter_X+	1.0	1.0	
Ex_ter_X-	1.0	1.0	
Ey_ter_Y+	1.0	1.0	
Ey_ter_Y-	1.0	1.0	

10.1.3 Coefficienti di combinazione Approccio 1 Combinazione 2 (A2) GEO

Coefficienti di combinazione - Approccio 1 Combinazione 2 (A2) GEO														
(NTC 2008)														
Caso di carico	Coefficiente Coefficienti combinazion													
	γ fav	γ sfav	ψο	ψ1	ψ2									
G1_SW	1.0	1.0	-	-	-									
G1_ritiro	0.0	0.5	-	-	-									
G2_pesi portati	1.0	1.0	-	-	-									
G2_sp_falda	1.0	1.0	-	-	-									
G2_sp_uplift	1.0	1.0	-	-	-									
G2_sp_terreno	1.0	1.0	-	-	-									
Q1_folla	0.0	1.3	0.7	0.7	0.6									
Q2_neve	0.0	1.3	0.5	0.2	0									
Q3_copertura	0.0	1.3	0	0	0									
Q4_sovr	0.0	1.3	0.75	0.75	0									
Q5_temp	0.0	1.3	0.6	0.5	0									
Q6_vento	0.0	1.3	0.6	0.2	0									

10.1.4 Coefficienti di combinazione UPL

Coefficienti di combinazione UPL	- Solleva	amento
(NTC 2008)		
Caso di carico	parz	iciente iale di rezza
	γ fav	γ sfav
G1_SW	0.9	1.1
G2_pesi portati	0.9	1.1
G2_sp_uplift	0.9	1.1

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL GA 650 0 003 A 49 di 137

10.2 Combinazioni di carico - generalità

Le combinazioni di carico utili alle verifiche agli Stati Limite Ultimi ed agli Stati Limite di Esercizio sono mostrate nel seguito.

In particolare vengono elencate le seguenti:

> Combinazioni di carico utili alle verifiche agli Stati Limite Ultimi di tipo strutturale (STR)

- Combinazioni di carico fondamentali: SLU

Combinazioni di carico sismiche stato limite di salvaguardia della vita:
 SLV

Combinazioni di carico utili alle verifiche agli Stati Limite di Esercizio

Combinazioni di carico caratteristiche (rare):
 SLE_R

Combinazioni di carico sismiche stato limite di danno:
 SLD

Combinazioni di carico frequenti:
 SLE_F

Combinazioni di carico quasi permanenti: SLE_QP

Ai fini delle verifiche della struttura si implementano anche le seguenti combinazioni di inviluppo:

> INV_SLU_SLV: inviluppo delle combinazioni non lineari del tipo SLU, SLV

utili alle verifiche agli Stati Limite Ultimi

► INV_SLE_R_SLD: inviluppo delle combinazioni non lineari del tipo SLE_R, SLD

utili alle verifiche tensionali agli Stati Limite di Esercizio

> INV_SLE_R: inviluppo delle combinazioni non lineari del tipo SLE_R

utili alle verifiche di fessurazione agli Stati Limite di Esercizio

➤ INV_SLE_QP: inviluppo delle combinazioni non lineari del tipo SLE_QP

utili alle verifiche tensionali agli Stati Limite di Esercizio

Le combinazioni SLE_F, comunque implementate, non vengono utilizzate in alcuna verifica in quanto, ai sensi del MdP § 4.1.2.2.4.1, le verifiche a fessurazione vengono richieste per le combinazioni rare, assai più severe di quelle frequenti.

Le combinazioni di carico utili alle verifiche nei confronti degli stati limite ultimi di tipo geotecnico (GEO) e idraulici (Sollevamento) sono nel seguito omesse e vengono trattate direttamente al capitolo 14 della presente relazione.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL GA 650 0 003 A 50 di 137

10.2 Combinazioni di carico - Stati Limite Ultimi

10.2.1 Approccio 1 Combinazioni 1 (A1) STR

Nome	G1SW	G1ritiro	G2Pesi portati	G2spfalda	G2spuplift	G2spterreno	Q1folla	Q2neve	Q3copertura	Q4sovrX+	Q4sovrX-	Q4sovrY+	Q4sovrY-	Q5temp+	Q5temp-	Q6ventoX+	Q6ventoX-	Q6ventoY+	Q6ventoY-
SLU 001	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	0	0	0	0	0	0	0	0	0	0
SLU 002	1	0.6	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
SLU 003	1.3	0.6	1.3	1.3	1.3	1.3	1.5	0	0	0	0	0	0	0	0	0	0	0	0
 SLU_004	1	0.6	1	1	1	1	1.5	0	0	0	0	0	0	0	0	0	0	0	0
SLU 005	1.3	0.6	1.3	1.3	1.3	1.3	0	1.5	0	0	0	0	0	0.9	0	0	0	0	0
SLU 006	1.3	0.6	1.3	1.3	1.3	1.3	0	0	1.5	0	0	0	0	0.9	0	0	0	0	0
SLU 007	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	1.5	0	0	0	0	0	0	0	0	0
SLU 008	1	0.6	1	1	1	1	0	0	0	1.5	0	0	0	0	0	0	0	0	0
SLU_009	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	0	1.5	0	0	0	0	0	0	0	0
SLU_010	1	0.6	1	1	1	1	0	0	0	0	1.5	0	0	0	0	0	0	0	0
SLU_011	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	0	0	1.5	0	0	0	0	0	0	0
SLU_012	1	0.6	1	1	1	1	0	0	0	0	0	1.5	0	0	0	0	0	0	0
SLU_013	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	0	0	0	1.5	0	0	0	0	0	0
SLU_014	1	0.6	1	1	1	1	0	0	0	0	0	0	1.5	0	0	0	0	0	0
SLU_015	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	1.5	0	1.5	0	0	0	0	0	0	0
SLU_016	1	0.6	1	1	1	1	0	0	0	1.5	0	1.5	0	0	0	0	0	0	0
SLU_017	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	0	1.5	0	1.5	0	0	0	0	0	0
SLU_018	1	0.6	1	1	1	1	0	0	0	0	1.5	0	1.5	0	0	0	0	0	0
SLU_019	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	1.5	1.5	1.5	1.5	0	0	0	0	0	0
SLU_020	1	0.6	1	1	1	1	0	0	0	1.5	1.5	1.5	1.5	0	0	0	0	0	0
SLU_021	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	0	0	0	0	1.5	0	0	0	0	0
SLU_022	1	0.6	1	1	1	1	0	0	0	0	0	0	0	1.5	0	0	0	0	0
SLU_023	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	0	0	0	0	0	1.5	0	0	0	0
SLU_024	1	0.6	1	1	1	1	0	0	0	0	0	0	0	0	1.5	0	0	0	0
SLU_025	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	0	0	0	0	0	0	1.5	0	0	0
SLU_026	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	0	0	0	0	0	0	0	1.5	0	0
SLU_027	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	0	0	0	0	0	0	0	0	1.5	0
SLU_028	1.3	0.6	1.3	1.3	1.3	1.3	0	0	0	0	0	0	0	0	0	0	0	0	1.5
SLU_029	1.3	0.6	1.3	1.3	1.3	1.3	1.5	0	0	1.13	0	0	0	0	0	0	0	0	0
SLU_030	1	0.6	1	1	1	1	1.5	0	0	1.13	0	0	0	0	0	0	0	0	0
SLU_031	1.3	0.6	1.3	1.3	1.3	1.3	1.5	0	0	0	1.13	0	0	0	0	0	0	0	0
SLU_032	1	0.6	1	1	1	1	1.5	0	0	0	1.13	0	0	0	0	0	0	0	0
SLU_033	1.3	0.6	1.3	1.3	1.3	1.3	1.5	0	0	0	0	1.13	0	0	0	0	0	0	0
SLU_034	1	0.6	1	1	1	1	1.5	0		0	0	1.13	0	0	0	0	0	0	_
SLU_035	1.3	0.6	1.3	1.3	1.3	1.3	1.5	0	0	0	0	0	1.13	0	0	0	0	0	0
SLU_036 SLU 037	1.3	0.6	1.3	1.3	1.3	1.3	1.5	0	0	1.13	0	1.13	1.13	0	0	0	0	0	0
SLU_037 SLU_038	1.3	0.6	1.3	1.3	1.3	1.3	1.5	0	0	1.13	0	1.13	0	0	0	0	0	0	0
SLU_038	1.3	0.6	1.3	1.3	1.3	1.3	1.5	0	0	0	1.13	0	1.13	0	0	0	0	0	0
SLU_039	1.5	0.6	1.5	1.5	1.5	1.5	1.5	0	0	0	1.13	0	1.13	0	0	0	0	0	0
SLU 041	1.3	0.6	1.3	1.3	1.3	1.3	1.5	0	0	1.13	1.13	1.13	1.13	0	0	0	0	0	0
SLU_042	1.3	0.6	1.3	1.3	1.3	1.3	1.5	0	0	1.13	1.13	1.13	1.13	0	0	0	0	0	0
SLU 043	1.3	0.6	1.3	1.3	1.3	1.3	1.05	0	0	1.15	0	0	0	0	0	0	0	0	0
320_043	1.5	0.0	1.5	1.5	1.5	1.5	1.00		J	1.5	J	J	J		J		<u> </u>	J	

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA ITALFERR

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 E E2 CL GA 650 0 003 A 51 di 137

GRUPPO FERROVIE DELLO STATO ITALIANE

Nome	G1SW	G1ritiro	G2Pesi portati	G2spfalda	G2spuplift	G2spterreno	Q1folla	Q2neve	Q3copertura	Q4sovrX+	Q4sovrX-	Q4sovrY+	Q4sovrY-	Q5temp+	Q5temp-	Q6ventoX+	Q6ventoX-	Q6ventoY+	Q6ventoY-
SLU_044	1	0.6	1	1	1	1	1.05	0	0	1.5	0	0	0	0	0	0	0	0	0
SLU_045	1.3	0.6	1.3	1.3	1.3	1.3	1.05	0	0	0	1.5	0	0	0	0	0	0	0	0
SLU_046	1	0.6	1	1	1	1	1.05	0	0	0	1.5	0	0	0	0	0	0	0	0
SLU_047	1.3	0.6	1.3	1.3	1.3	1.3	1.05	0	0	0	0	1.5	0	0	0	0	0	0	0
SLU_048	1	0.6	1	1	1	1	1.05	0	0	0	0	1.5	0	0	0	0	0	0	0
SLU_049	1.3	0.6	1.3	1.3	1.3	1.3	1.05	0	0	0	0	0	1.5	0	0	0	0	0	0
SLU_050	1	0.6	1	1	1	1	1.05	0	0	0	0	0	1.5	0	0	0	0	0	0
SLU_051	1.3	0.6	1.3	1.3	1.3	1.3	1.05	0	0	1.5	0	1.5	0	0	0	0	0	0	0
SLU_052	1	0.6	1	1	1	1	1.05	0	0	1.5	0	1.5	0	0	0	0	0	0	0
SLU_053	1.3	0.6	1.3	1.3	1.3	1.3	1.05	0	0	0	1.5	0	1.5	0	0	0	0	0	0
SLU_054	1	0.6	1	1	1	1	1.05	0	0	0	1.5	0	1.5	0	0	0	0	0	0
SLU_055	1.3	0.6	1.3	1.3	1.3	1.3	1.05	0	0	1.5	1.5	1.5	1.5	0	0	0	0	0	0
SLU_056	1	0.6	1	1	1	1	1.05	0	0	1.5	1.5	1.5	1.5	0	0	0	0	0	0
SLU_057	1.3	0.6	1.3	1.3	1.3	1.3	0	1.5	0	0	0	0	0	0	0.9	0	0	0	0
SLU_058	1.3	0.6	1.3	1.3	1.3	1.3	0	0	1.5	0	0	0	0	0	0.9	0	0	0	0

10.2.1 Combinazioni sismiche SLV

Nome	G1SW	G1ritiro	G2Pesi portati	G2spfalda	G2spuplift	G2spterreno	Q1folla	Q4sovrX+	Q4sovrX-	Q4sovrY+	Q4sovrY-	ExterSLVX+	ExterSLVX-	EyterSLVY+	EyterSLVY-	ExstrSLV	EystrSLV	EzstrSLV
SLV_001	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	1	0	0.3	0	1	0.3	0.3
SLV_002	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	1	0.3	0	-1	0.3	0.3
SLV_003	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	1	0	0	0.3	1	-0.3	0.3
SLV_004	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	1	0	0.3	-1	-0.3	0.3
SLV_005	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	1	0	0.3	0	1	0.3	-0.3
SLV_006	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	1	0.3	0	-1	0.3	-0.3
SLV_007	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	1	0	0	0.3	1	-0.3	-0.3
SLV_008	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	1	0	0.3	-1	-0.3	-0.3
SLV_009	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	1	0	0.3	1	0.3
SLV_010	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	1	0	-0.3	1	0.3
SLV_011	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	0	1	0.3	-1	0.3
SLV_012	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	0	1	-0.3	-1	0.3
SLV_013	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	1	0	0.3	1	-0.3
SLV_014	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	1	0	-0.3	1	-0.3
SLV_015	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	0	1	0.3	-1	-0.3
SLV_016	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	0	1	-0.3	-1	-0.3
SLV_017	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	0.3	0	0.3	0.3	1
SLV_018	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	0.3	0	-0.3	0.3	1
SLV_019	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	0	0.3	0.3	-0.3	1
SLV_020	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	0	0.3	-0.3	-0.3	1
SLV_021	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	0.3	0	0.3	0.3	-1
SLV_022	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	0.3	0	-0.3	0.3	-1
SLV_023	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	0	0.3	0.3	-0.3	-1

Nome	MS15	G1ritiro	G2Pesi portati	G2spfalda	G2spuplift	G2spterreno	Q1folla	Q4sovrX+	Q4sovrX-	Q4sovrY+	Q4sovrY-	ExterSLVX+	ExterSLVX-	EyterSLVY+	EyterSLVY-	ExstrSLV	EystrSLV	EzstrSLV
SLV_024	1	0.5	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	0	0.3	-0.3	-0.3	-1

10.3 Combinazioni di carico - Stati Limite di Esercizio

10.3.1 Combinazioni SLE caratteristiche (rare)

Nome	G1SW	G1ritiro	G2Pesi portati	G2spfalda	G2spuplift	G2spterreno	Q1folla	Q2neve	Q3copertura	Q4sovrX+	Q4sovrX-	Q4sovrY+	Q4sovrY-	Q5temp+	Q5temp-	Q6ventoX+	Q6ventoX-	Q6ventoY+	Q6ventoY-
SLE_R_001	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
SLE_R_002	1	0.75	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
SLE_R_003	1	0.75	1	1	1	1	0	1	0	0	0	0	0	0.6	0	0	0	0	0
SLE_R_004	1	0.75	1	1	1	1	0	0	1	0	0	0	0	0.6	0	0	0	0	0
SLE_R_005	1	0.75	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0
SLE_R_006	1	0.75	1	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0
SLE_R_007	1	0.75	1	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
SLE_R_008	1	0.75	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0
SLE_R_009	1	0.75	1	1	1	1	0	0	0	1	0	1	0	0	0	0	0	0	0
SLE_R_010	1	0.75	1	1	1	1	0	0	0	0	1	0	1	0	0	0	0	0	0
SLE_R_011	1	0.75	1	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0	0
SLE_R_012	1	0.75	1	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0
SLE_R_013	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0
SLE_R_014	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0	0	1	0	0	0
SLE_R_015	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0
SLE_R_016	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0
SLE_R_017	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1
SLE_R_018	1	0.75	1	1	1	1	1	0	0	0.75	0	0	0	0	0	0	0	0	0
SLE_R_019	1	0.75	1	1	1	1	1	0	0	0	0.75	0	0	0	0	0	0	0	0
SLE_R_020	1	0.75	1	1	1	1	1	0	0	0	0	0.75	0	0	0	0	0	0	0
SLE_R_021	1	0.75	1	1	1	1	1	0	0	0	0	0	0.75	0	0	0	0	0	0
SLE_R_022	1	0.75	1	1	1	1	1	0	0	0.75	0	0.75	0	0	0	0	0	0	0
SLE_R_023	1	0.75	1	1	1	1	1	0	0	0	0.75	0	0.75	0	0	0	0	0	0
SLE_R_024	1	0.75	1	1	1	1	1	0	0	0.75	0.75	0.75	0.75	0	0	0	0	0	0
SLE_R_025	1	0.75	1	1	1	1	0.7	0	0	1	0	0	0	0	0	0	0	0	0
SLE_R_026	1	0.75	1	1	1	1	0.7	0	0	0	1	0	0	0	0	0	0	0	0
SLE_R_027	1	0.75	1	1	1	1	0.7	0	0	0	0	1	0	0	0	0	0	0	0
SLE_R_028	1	0.75	1	1	1	1	0.7	0	0	0	0	0	1	0	0	0	0	0	0
SLE_R_029	1	0.75	1	1	1	1	0.7	0	0	1	0	1	0	0	0	0	0	0	0
SLE_R_030	1	0.75	1	1	1	1	0.7	0	0	0	1	0	1	0	0	0	0	0	0
SLE_R_031	1	0.75	1	1	1	1	0.7	0	0	1	1	1	1	0	0	0	0	0	0
SLE_R_032	1	0.75	1	1	1	1	0	1	0	0	0	0	0	0	0.6	0	0	0	0
SLE_R_033	1	0.75	1	1	1	1	0	0	1	0	0	0	0	0	0.6	0	0	0	0

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL GA 650 0 003 A 53 di 137

10.3.2 Combinazioni SLE sismiche SLD

Nome	G1SW	G1ritiro	G2Pesi portati	G2spfalda	G2spuplift	G2spterreno	Q1folla	Q4sovrX+	Q4sovrX-	Q4sovrY+	Q4sovrY-	ExterSLDX+	ExterSLDX-	EyterSLDY+	EyterSLDY-	ExstrSLD	EystrSLD	EzstrSLD
SLD_001	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	1	0	0.3	0	1	0.3	0.3
SLD_002	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	1	0.3	0	-1	0.3	0.3
SLD_003	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	1	0	0	0.3	1	-0.3	0.3
SLD_004	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	1	0	0.3	-1	-0.3	0.3
SLD_005	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	1	0	0.3	0	1	0.3	-0.3
SLD_006	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	1	0.3	0	-1	0.3	-0.3
SLD_007	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	1	0	0	0.3	1	-0.3	-0.3
SLD_008	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	1	0	0.3	-1	-0.3	-0.3
SLD_009	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	1	0	0.3	1	0.3
SLD_010	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	1	0	-0.3	1	0.3
SLD_011	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	0	1	0.3	-1	0.3
SLD_012	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	0	1	-0.3	-1	0.3
SLD_013	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	1	0	0.3	1	-0.3
SLD_014	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	1	0	-0.3	1	-0.3
SLD_015	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	0	1	0.3	-1	-0.3
SLD_016	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	0	1	-0.3	-1	-0.3
SLD_017	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	0.3	0	0.3	0.3	1
SLD_018	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	0.3	0	-0.3	0.3	1
SLD_019	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	0	0.3	0.3	-0.3	1
SLD_020	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	0	0.3	-0.3	-0.3	1
SLD_021	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	0.3	0	0.3	0.3	-1
SLD_022	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	0.3	0	-0.3	0.3	-1
SLD_023	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0.3	0	0	0.3	0.3	-0.3	-1
SLD_024	1	0.75	1	1	1	1	0.2	0.2	0.2	0.2	0.2	0	0.3	0	0.3	-0.3	-0.3	-1

10.3.3 Combinazioni SLE frequenti

Nome	G1SW	G1ritiro	G2Pesi portati	G2spfalda	G2spuplift	G2spterreno	Q1folla	Q2neve	Q3copertura	Q4sovrX+	Q4sovrX-	Q4sovrY+	Q4sovrY-	Q5temp+	Q5temp-	Q6ventoX+	Q6ventoX-	Q6ventoY+	Q6ventoY-
SLE_F_001	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
SLE_F_002	1	0.75	1	1	1	1	0.7	0	0	0	0	0	0	0	0	0	0	0	0
SLE_F_003	1	0.75	1	1	1	1	0	0.2	0	0	0	0	0	0	0	0	0	0	0
SLE_F_004	1	0.75	1	1	1	1	0	0	0	0.75	0	0	0	0	0	0	0	0	0
SLE_F_005	1	0.75	1	1	1	1	0	0	0	0	0.75	0	0	0	0	0	0	0	0
SLE_F_006	1	0.75	1	1	1	1	0	0	0	0	0	0.75	0	0	0	0	0	0	0
SLE_F_007	1	0.75	1	1	1	1	0	0	0	0	0	0	0.75	0	0	0	0	0	0
SLE_F_008	1	0.75	1	1	1	1	0	0	0	0.75	0	0.75	0	0	0	0	0	0	0
SLE_F_009	1	0.75	1	1	1	1	0	0	0	0	0.75	0	0.75	0	0	0	0	0	0
SLE_F_010	1	0.75	1	1	1	1	0	0	0	0.75	0.75	0.75	0.75	0	0	0	0	0	0

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due **ITALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Foglio 54 di 137 Lotto Codifica Documento Rev.

E E2 CL GA 650 0 003

11

Nome	G1SW	G1ritiro	G2Pesi portati	G2spfalda	G2spuplift	G2spterreno	Q1folla	Q2neve	Q3copertura	Q4sovrX+	Q4sovrX-	Q4sovrY+	Q4sovrY-	Q5temp+	Q5temp-	Q6ventoX+	Q6ventoX-	Q6ventoY+	Q6ventoY-
SLE_F_011	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0.5	0	0	0	0	0
SLE_F_012	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0	0.5	0	0	0	0
SLE_F_013	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0	0	0.2	0	0	0
SLE_F_014	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0.2	0	0
SLE_F_015	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0.2	0
SLE_F_016	1	0.75	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.2
SLE_F_017	1	0.75	1	1	1	1	0.6	0	0	0.75	0	0	0	0	0	0	0	0	0
SLE_F_018	1	0.75	1	1	1	1	0.6	0	0	0	0.75	0	0	0	0	0	0	0	0
SLE_F_019	1	0.75	1	1	1	1	0.6	0	0	0	0	0.75	0	0	0	0	0	0	0
SLE_F_020	1	0.75	1	1	1	1	0.6	0	0	0	0	0	0.75	0	0	0	0	0	0
SLE_F_021	1	0.75	1	1	1	1	0.6	0	0	0.75	0	0.75	0	0	0	0	0	0	0
SLE_F_022	1	0.75	1	1	1	1	0.6	0	0	0	0.75	0	0.75	0	0	0	0	0	0
SLE_F_023	1	0.75	1	1	1	1	0.6	0	0	0.75	0.75	0.75	0.75	0	0	0	0	0	0

10.3.4 Combinazioni SLE quasi permanenti

Doc. N.

Nome	G1SW	G1ritiro	G2Pesi portati	G2spfalda	G2spuplift	G2spterreno	Q1folla
SLE_QP_001	1	0.75	1	1	1	1	0
SLE_QP_002	1	0.75	1	1	1	1	0.6

11. RISULTATI DELL'ANALISI STRUTTURALE

11.1 Azioni interne

Per i valori delle azioni interne si rimanda al documento "Relazione di calcolo strutture interne - Allegati numerici" (IN0R11EE2CLGA6500004). Nel paragrafo successivo vengono mostrati i diagrammi degli inviluppi delle azioni interne:

- Momenti flettenti
- Azioni taglianti

Per semplicità, nella modalità di visualizzazione vengono attivati solamente tre lati della struttura ed il setto centrale viene 'nascosto'.

Le convenzioni di segno sono le seguenti, sulla base delle convenzioni del codice di calcolo e dell'orientamento degli elementi stessi:

- Positive le trazioni
- Positivi i momenti che tendono:

o Per i muri interrati: le fibre interne (lato vano scale)

Per i pianerottoli, le rampe scale e la soletta di copertura: le fibre superiori

o Per i muri in elevazione e il setto centrale: elementi armati in modo simmetrico

11.1.1 Struttura definitiva

11.1.1.1 GA65: INV_SLU_SLV

I valori sono espressi in kN, kNm

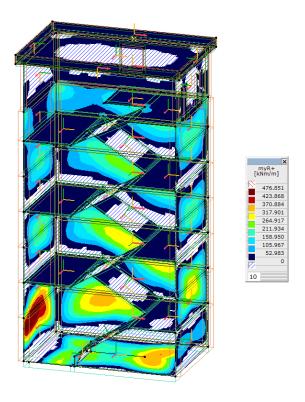


Fig. 1 – INV_SLU_SLV: My max

Fig. 2 – INV_SLU_SLV: My min

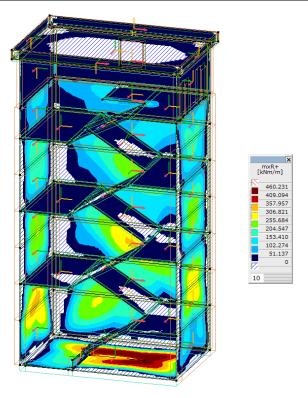


Fig. 3 – INV_SLU_SLV: Mx max

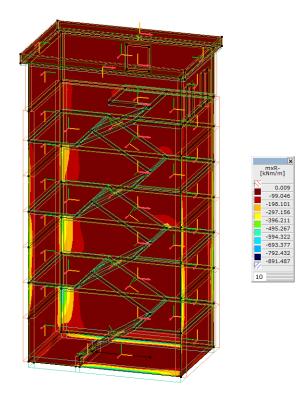


Fig. 4 – INV_SLU_SLV: Mx min

Azione Tagliante

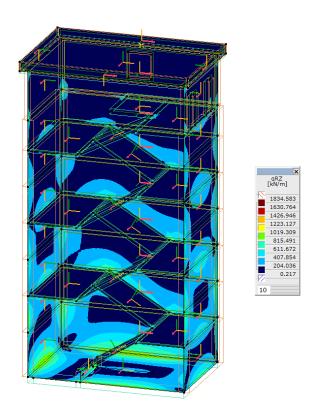


Fig. 5 – INV_SLU_SLV: q_{RZ} max (sforzo di taglio specifico risultante)

11.1.1.2 GA65: INV_SLE_R_SLD

I valori sono espressi in kN, kNm



Fig. 6 – INV_SLE_R_SLD: My max

Fig. 7 – INV_SLE_R_SLD: My min

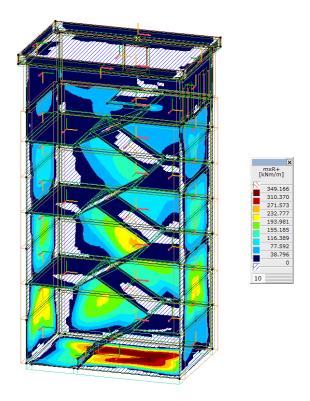


Fig. 8 – INV_SLE_R_SLD: Mx max



Fig. 9 – INV_SLE_R_SLD: Mx min

11.1.1.3 GA65: INV_SLE_R

I valori sono espressi in kN, kNm

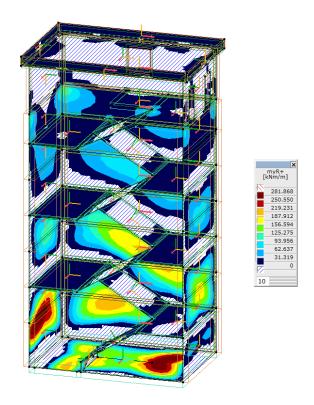


Fig. 10 – INV_SLE_R: My max

GENERAL CONTRACTOR Cepav due	GRUPPO FERRON	TALI	FERR		
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	1 11	E E2 CL GA 650 0 003	I A	62 di 137

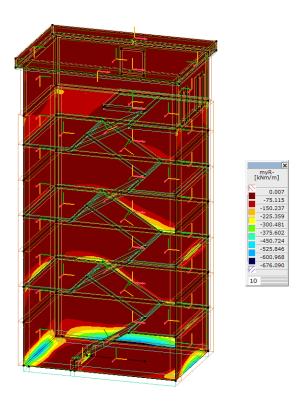


Fig. $11 - INV_SLE_R$: My min

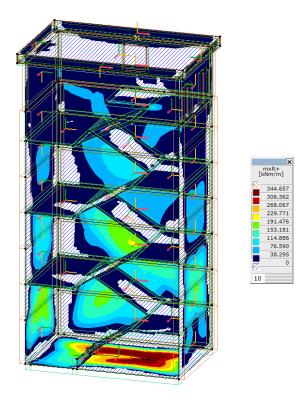


Fig. $12 - INV_SLE_R$: Mx max

Fig. 13 – INV_SLE_R: Mx min

11.1.1.3 GA65: INV_SLE_QP

I valori sono espressi in kN, kNm

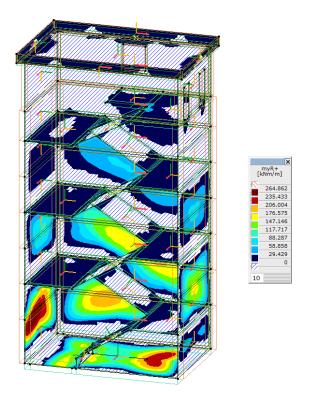


Fig. 14 – INV_SLE_QP: My max

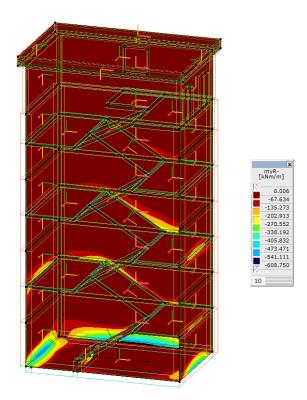


Fig. 15 – INV_SLE_QP: My min

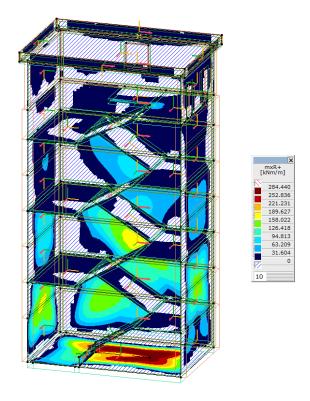


Fig. 16 – INV_SLE_QP: Mx max

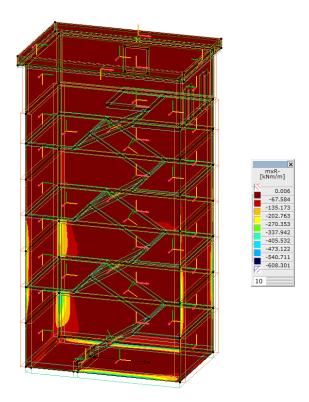
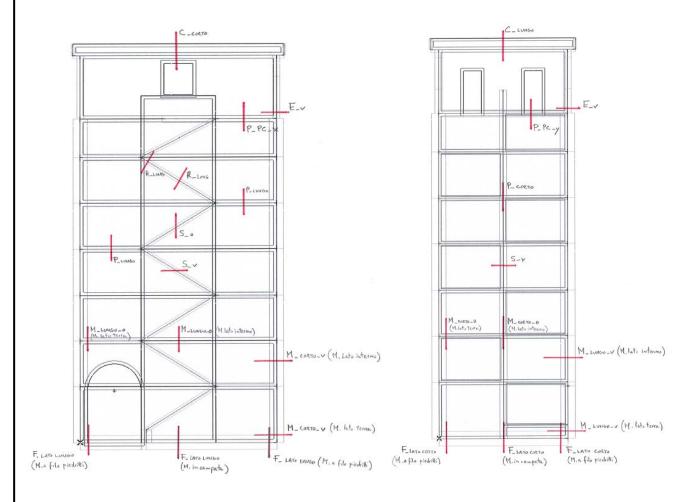


Fig. 17 – INV_SLE_QP: Mx min

12. VERIFICHE DELLE SEZIONI

Le verifiche vengono effettuate utilizzando programmi di utilità opportunamente testati. In particolare, per le verifiche dello stato limite di apertura delle fessure si utilizza il software di calcolo Fagus-7 della Cubus AG.


12.1 Sezioni principali di verifica

Le sezioni principali oggetto di verifica sono riassunte nella seguente tabella. Le immagini riportano la posizione indicativa di ciascuna sezione di calcolo nella struttura interna.

Sezione	Elemento	Posizione verifiche critiche
	Fondazione – direzione dimensione maggiore	Momento a filo piedritti
F_lato lungo		Momento in campata
		Taglio massimo a filo elevazioni
	Fondazione – direzione dimensione minore	Momento a filo piedritti
F_lato corto		Momento in campata
		Taglio massimo a filo elevazioni
	Muri interrati lato maggiore – direzione	Momento d'incastro (trazione lato terra)
M_lungo_v	verticale	Momento in campata (trazione lato interno)
		Taglio massimo
	Muri interrati lato maggiore – direzione	Momento d'incastro (trazione lato terra)
M_lungo_o	orizzontale	Momento in campata (trazione lato interno)
		Taglio massimo
	Muri interrati lato minore – direzione	Momento d'incastro (trazione lato terra)
M_corto_v	verticale	Momento in campata (trazione lato interno)
		Taglio massimo
	Muri interrati lato minore – direzione	Momento d'incastro (trazione lato terra)
M_corto_o	orizzontale	Momento in campata (trazione lato interno)
		Taglio massimo
_	Setto centrale – direzione verticale	Momento max/min
S_v		Taglio massimo
6	Setto centrale – direzione orizzontale	Momento max/min
S_o		Taglio massimo
	Rampe scale – direzione longitudinale	Momento d'incastro al pianerottolo
R_long		Momento in campata
		Taglio massimo
	Pianerottoli intermedi – direzione dimensione	Momento d'incastro alle elevazioni
P_lungo	maggiore	Momento in campata
		Taglio massimo a filo elevazioni
	Pianerottoli intermedi – direzione dimensione	Momento d'incastro alle elevazioni
P_corto	minore	Momento in campata
		Taglio massimo a filo elevazioni
	Pianerottolo al p.c. – direzione x-locale	Momento d'incastro alle elevazioni
P_PC_x		Momento in campata
_		Taglio massimo
	Pianerottolo al p.c. – direzione y-locale	Momento d'incastro alle elevazioni
P_PC_y		Momento in campata
		Taglio massimo
_	Muri fabbricato – direzione verticale	Momento negativo (trazione lato esterno)
E_v		Momento positivo (trazione lato interno)

		Taglio massimo
	Muri fabbricato – direzione orizzontale	Momento negativo (trazione lato esterno)
E_o		Momento positivo (trazione lato interno)
		Taglio massimo
	Soletta copertura fabbricato – direzione	Momento d'incastro alle elevazioni
C_lungo	dimensione maggiore	Momento in campata
		Taglio massimo
	Soletta copertura fabbricato – direzione	Momento d'incastro alle elevazioni
C_corto	dimensione minore	Momento in campata
		Taglio massimo

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL GA 650 0 003 A 68 di 137

12.2 Verifiche agli SLU ed agli SLE

Nelle verifiche si utilizzano le seguenti convenzioni di segno:

- > nel dominio M-N (presso-flessione):
 - * positive le compressioni
- nelle verifiche tensionali agli SLE:
 - * negative le compressioni del calcestruzzo
 - * positive le trazioni dell'acciaio

Nei disegni esecutivi le armature derivanti dalle verifiche di calcolo, vengono integrate laddove necessario per coprire i minimi normativi.

Le verifiche di resistenza a sforzo normale e flessione sono condotte secondo le NTC 2008 § 4.1.2.1.2.

Le verifiche di resistenza nei confronti delle sollecitazioni taglianti sono condotte secondo le NTC 2008 § 4.1.2.1.3.

Per quanto riguarda le verifiche tensionali agli SLE, si rispettano i seguenti limiti secondo le linee guida Italferr "Criteri di dimensionamento e verifiche delle gallerie artificiali D.M. 2008":

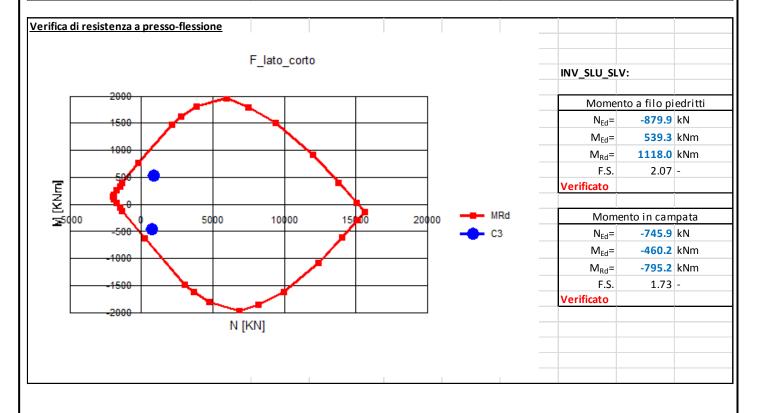
- tensioni di compressione del calcestruzzo
 - o per combinazione di carico caratteristica (rara) o SLD: $\sigma_{c,max} = 0.55 f_{ck}$
 - o per combinazione di carico quasi permanente: $\sigma_{c,max} = 0.40 f_{ck}$
- tensioni di trazione nell'acciaio
 - o per combinazione di carico caratteristica (rara) o SLD: $\sigma_{s,max} = 0.75 f_{yk}$

Per quanto riguarda lo stato limite di apertura delle fessure, le verifiche sono condotte nei riguardi della combinazione di carico caratteristica (rara), ponendo il limite $w_{lim} = 0.20$ mm.

Le verifiche delle sezioni sono mostrate di seguito.

12.2.1 Fondazione – lato corto

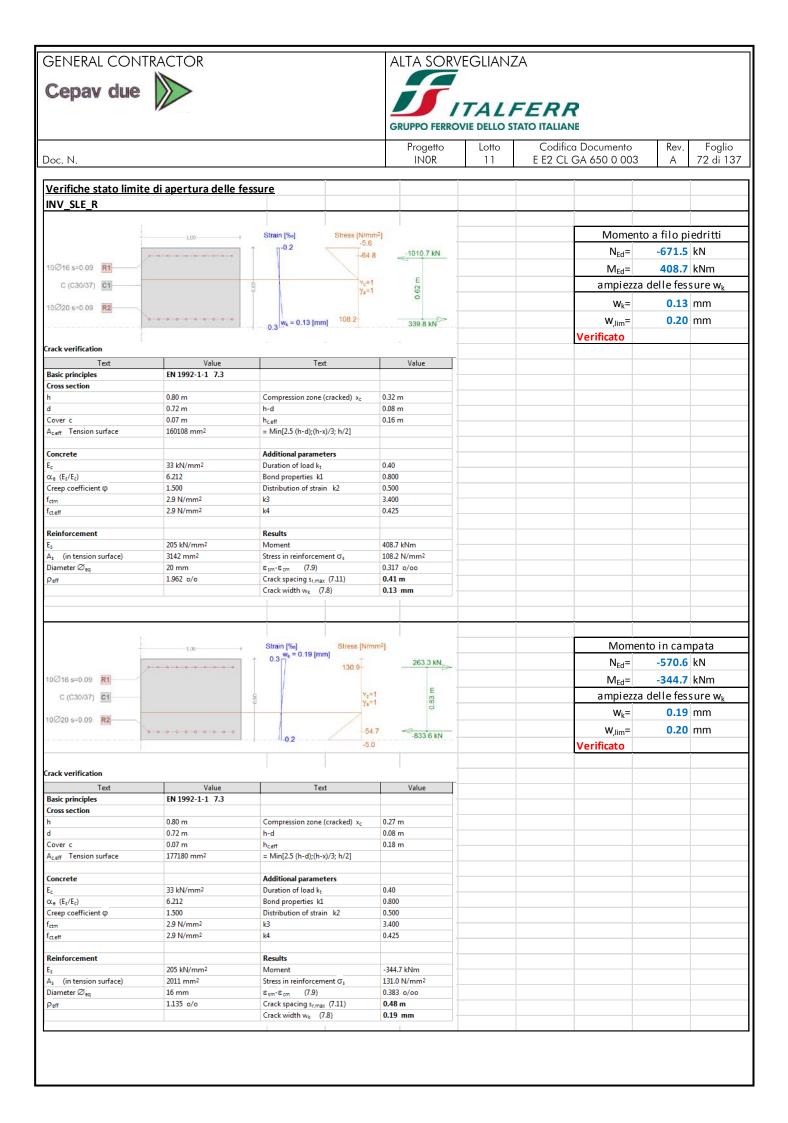
Sezione di calcolo:	F, lato co	<u>rto</u>		
Geometria della sezione				
Base	b	1000		mm
Altezza	h	800		mm
Altezza utile	d	718		mm
Area	Ac	800000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	82		mm
Distanza asse barra-bordo sup	c2	80		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γс	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Ф	20		mm
<u>Armatura inferiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Φ	20	0	
Diametro equivalente	Φ	20		
Area strato	As	3141	.6	mm ²
Rapporto di armatura	ρ	0.43	8	%
<u>Armatura superiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Φ	16	0	
Diametro equivalente	Φ	16		
Area strato	As	2010	.6	mm ²
Rapporto di armatura	ρ	0.28	0	%
Armatura a taglio				
Numero bracci	nb	5		-
Diametro staffe	Ф	12		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	As w/s	2.827		mm2/mm



 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 CL GA 650 0 003
 A
 70 di 137

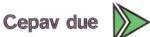
Azioni interne di verifica	N _{Ed}	V_{Ed}						
INV_SLU_SLV	kN	kN						
vxz min	-453.7	791.0						
vxz max	-842.1	899.4						
Verifica di resistenza a taglio (senza		vxz m	in			VXZ	mav	
armature trasversali)		VAZII				۷۸۷	liux	
Coefficiente k	k	1.53	-		k	1.53	-	
Resistenza a taglio unitaria minima del cls	vmin	0.362009379		MPa	vmin	0.362009		MPa
Tensione media di compressione	σср	0.567125		MPa	σср	1.052625		MPa
Rapporto geometrico di armatura longitudin	ρΙ	0.0044			ρΙ	0.0044		
Resistenza a taglio del solo cls	Vrd,c	371.6		kN	Vrd,c	423.9		kN
Resistenza minima	Vrd,c,min	321.0		kN	Vrd,c,min	373.3		kN
Resistenza al taglio	V_{Rd}	371.6		kN	Vrd	423.9		kN
Sforzo di taglio agente	V_{Ed}	791.0		kN	V_{Ed}	899.4		kN
	E' richiesta	armatura trasv	ersale a tagl	io	E' richiesta	armatura tr	asversale a	taglio
Verifica di resistenza a taglio (con armature								
trasversali)								
Inclinazione armatura a taglio	cotα	0.0			cotα	0.0		
Inclinazione bielle compresse	θ	35	0.61	rad	θ	35	0.61	rad
Inclinazione bielle compresse	cotθ	1.43			cotθ	1.43		
Tensione caratteristica di snervamento	fyk	450		MPa	fyk	450		MPa
Coeff. parziale di sicurezza acciaio	γs	1.15		-	γs	1.15		-
Resistenza di calcolo acciaio	fyd	391.3		MPa	fyd	391.3		MPa
Resistenza a compressione ridotta cls	f'cd	8.5		MPa	f'cd	8.5		MPa
	σcp/fcd	0.03		-	σcp/fcd	0.06		-
Coefficiente maggiorativo	αc	1.03		-	αc	1.06		-
Resistenza di calcolo a 'taglio trazione' dell'	V_{Rsd}	1021.1		kN	V_{Rsd}	1021.1		kN
Resistenza di calcolo a 'taglio compressione	V_{Rcd}	2666.8		kN	V_{Rcd}	2740.5		kN
Resistenza al taglio di progetto	V_{Rd}	1021.1		kN	V_{Rd}	1021.1		kN
Sforzo di taglio agente	V_{Ed}	791.0		kN	V_{Ed}	899.4		kN
	Verificato		F.S.	1.29	Verificato		F.S.	1.14



Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 71 di 137

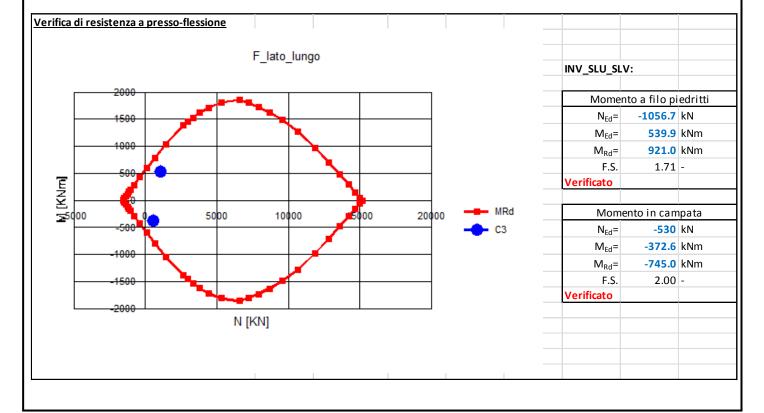
Varificha st	ato tension				
INV_SLE_R		aic			
VJEEI_	<u>JED.</u>				
		Momento a	filo piedritti		
N _{Ed} =	-765.5		•		
M _{Ed} =	427.3	kNm			
tensioni	di compress	sione nel			-
	calcestruzzo)	tensioni d	i trazione n	ell'acciaio
$\sigma_{c,max}$ =	-5.85	N/mm ²	σ_s =	104.7	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}=$	337.5	N/mm ²
Verificato			Verificato		
		Momento i	n campata		
N _{Ed} =	-581.3	kN			
M _{Ed} =	-349.2	kNm			
tensioni	di compress	sione nel	tensioni d	i trazione n	ell'acciaio
$\sigma_{c,max}$ =	-5.11	N/mm ²	σ_s =	131.2	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}=$	337.5	N/mm ²
Verificato			Verificato		

Verifiche st	ato tension	ale					
INV_SLE_QI							
Mome	nto a filo pi	edritti					
N _{Ed} =	-640.3	kN					
M _{Ed} =	371.3	kNm					
tensioni	di compress	sione nel					
(calcestruzzo)					
$\sigma_{c,max}$ =	-5.09	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							
Mom	ento in cam	pata					
N _{Ed} =	-554.7	kN					
M _{Ed} =	-284.4	kNm					
tensioni	di compress	sione nel					
calcestruzzo							
$\sigma_{c,max}$ =	-4.11	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							



12.2.2 Fondazione – lato lungo

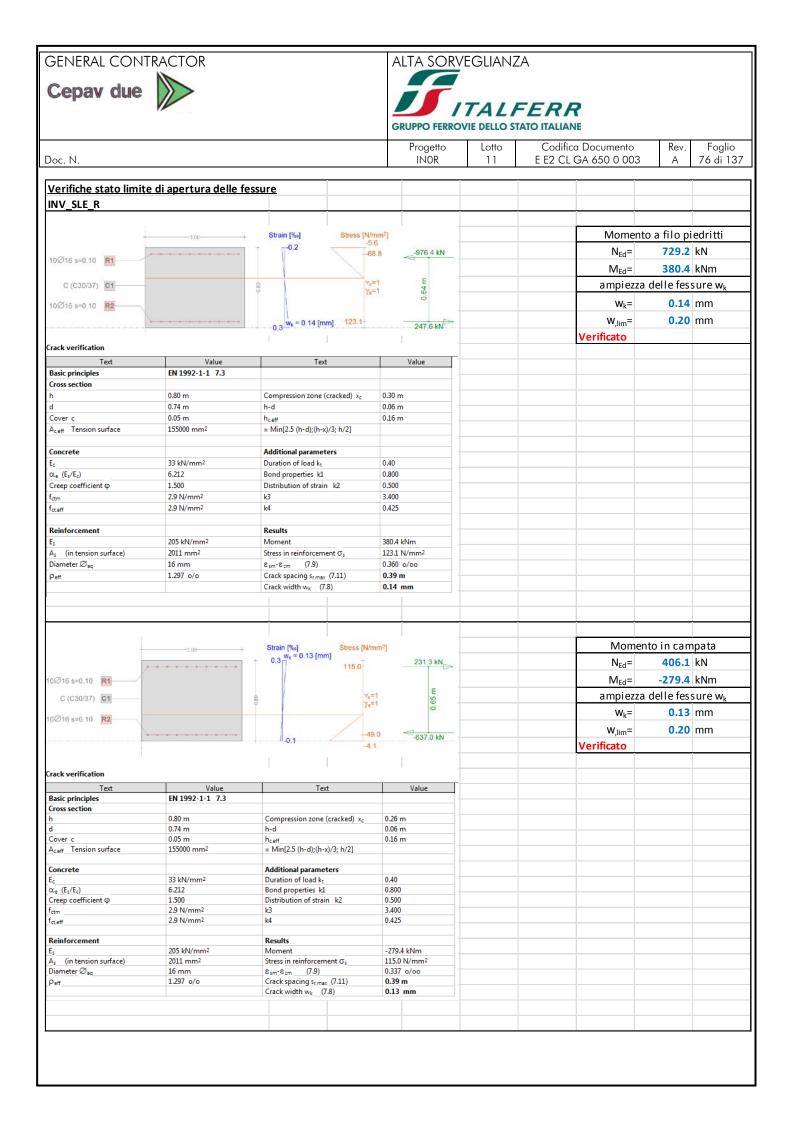
zione di calcolo: F, lato lungo				
Competicia della coriona				
<u>Geometria della sezione</u> Base	b	1000		mm
	h			mm
Alterza		800		mm
Altezza utile	d	740		mm
Area	Ac	800000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	60		mm
Distanza asse barra-bordo sup	c2	60		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γс	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Φ	0		mm
<u>Armatura inferiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Φ	16	0	
Diametro equivalente	Φ	16		
Area strato	As	2010	.6	mm ²
Rapporto di armatura	ρ	0.27	2	%
<u>Armatura superiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	16	0	
Diametro equivalente	Φ	16		
Area strato	As	2010.6		mm ²
Rapporto di armatura	ρ	0.272		%
Armatura a taglio				
Numero bracci	nb	5		-
Diametro staffe	Ф	12		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	Asw/s	2.827		mm2/mm



 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 CL GA 650 0 003
 A
 74 di 137

Azioni interne di verifica	N _{Ed}	V _{Ed}						
INV_SLU_SLV	kN	kN						
vyz min	-686.9	782.6						
vyz max	-909.9	749.2						
Verifica di resistenza a taglio (senza		vyz m	in			VVZ I	mav	
armature trasversali)		V y Z 111				۷۷۷۱	IIUX	
Coefficiente k	k	1.52	-		k	1.52	-	
Resistenza a taglio unitaria minima del cls	vmin	0.35920352		MPa	vmin	0.359204		MPa
Tensione media di compressione	σср	0.858625		MPa	σср	1.137375		MPa
Rapporto geometrico di armatura longitudin	ρΙ	0.0027			ρΙ	0.0027		
Resistenza a taglio del solo cls	Vrd,c	366.9		kN	Vrd,c	397.9		kN
Resistenza minima	Vrd,c,min	361.1		kN	Vrd,c,min	392.1		kN
Resistenza al taglio	V_{Rd}	366.9		kN	Vrd	397.9		kN
Sforzo di taglio agente	V_{Ed}	782.6		kN	V_{Ed}	749.2		kN
	E' richiesta	armatura trasv	ersale a tagl	io	E' richiesta	armatura tra	asversale a	taglio
Verifica di resistenza a taglio (con armature								
trasversali)								
Inclinazione armatura a taglio	cotα	0.0			cotα	0.0		
Inclinazione bielle compresse	θ	35	0.61	rad	θ	35	0.61	rad
Inclinazione bielle compresse	cotθ	1.43			cotθ	1.43		
Tensione caratteristica di snervamento	fyk	450		MPa	fyk	450		MPa
Coeff. parziale di sicurezza acciaio	γs	1.15		-	γs	1.15		-
Resistenza di calcolo acciaio	fyd	391.3		MPa	fyd	391.3		MPa
Resistenza a compressione ridotta cls	f'cd	8.5		MPa	f'cd	8.5		MPa
	σcp/fcd	0.05		-	σcp/fcd	0.07		-
Coefficiente maggiorativo	αc	1.05		-	αc	1.07		-
Resistenza di calcolo a 'taglio trazione' dell'	V_{Rsd}	1052.3		kN	V_{Rsd}	1052.3		kN
Resistenza di calcolo a 'taglio compressione	V_{Rcd}	2794.1		kN	V_{Rcd}	2837.8		kN
Resistenza al taglio di progetto	V_{Rd}	1052.3		kN	V_{Rd}	1052.3		kN
Sforzo di taglio agente	V_{Ed}	782.6		kN	V_{Ed}	749.2		kN
	Verificato		F.S.	1.34	Verificato		F.S.	1.40



Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 E E2 CL GA 650 0 003 A 75 di 137

Verifiche stato tensionale								
INV SLE R SLD:								
		Momento a	filo piedritti	İ				
N _{Ed} =	-837.9	kN						
M _{Ed} =	429.6	kNm						
tensioni	di compress	sione nel		·				
	calcestruzzo)	tensioni d	i trazione n	ell'acciaio			
$\sigma_{c,max}$ =	-6.29	N/mm ²	σ_s =	134.9	N/mm ²			
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}=$	337.5	N/mm ²			
Verificato			Verificato					
		Momento i	n campata					
N _{Ed} =	-396.2	kN						
M _{Ed} =	-282.1	kNm						
tensioni di compressione nel		tensioni d	i trazione n	ell'acciaio				
$\sigma_{c,max}$ =	-4.18	N/mm ²	σ_s =	117.8	N/mm ²			
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²			
Verificato			Verificato					

Verifiche stato tensionale							
INV_SLE_QI	P:						
Mome	nto a filo pi	edritti					
N _{Ed} =	-664.6	kN					
M _{Ed} =	347.3	kNm					
tensioni	di compress	sione nel					
	calcestruzzo)					
$\sigma_{c,max}$ =	-5.09	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							
Mom	ento in cam	pata					
N _{Ed} =	-398.2	kN					
M _{Ed} =	-232.7	kNm					
tensioni	di compress	sione nel					
calcestruzzo							
$\sigma_{c,max}$ =	-3.43	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due **ITALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Foglio 77 di 137 Lotto Codifica Documento Rev.

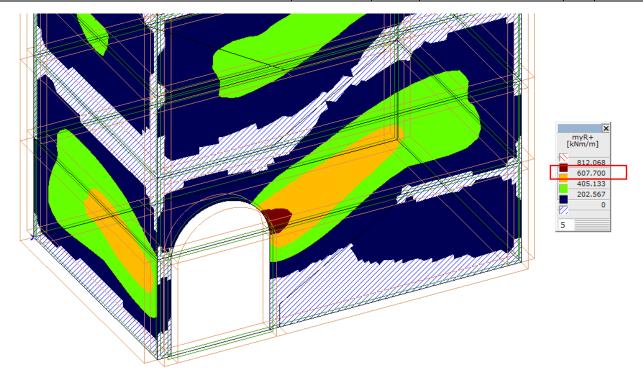
E E2 CL GA 650 0 003

11

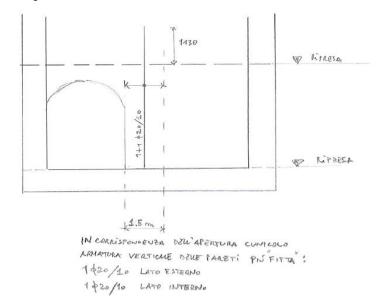
12.2.3 Muri – lato lungo (direzione verticale)

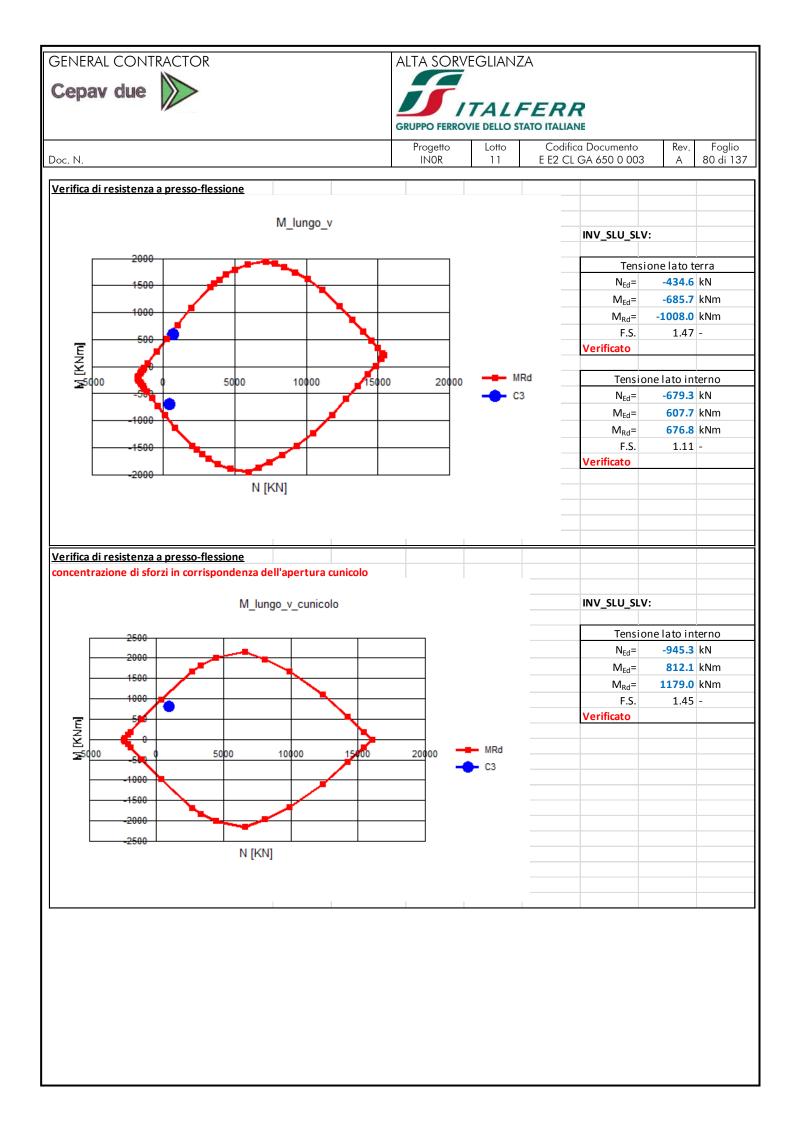
Doc. N.

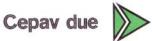
Sezione di calcolo:	M, lato lu	ıngo, verticali		
Geometria della sezione				
Base	b	1000		mm
Altezza	h	800		mm
Altezza utile	d	738		mm
Area	Ac	800000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	62		mm
Distanza asse barra-bordo sup	c2	62		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γс	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Φ	0		mm
Armatura inferiore		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	20	0	
Diametro equivalente	Ф	20		
Area strato	As	3141	6	mm ²
Rapporto di armatura	ρ	0.42	6	%
<u>Armatura superiore</u>		1°strato	2°strato	
Numero barre	n.	5	0	
Diametro barre	Ф	20	0	
Diametro equivalente	Φ	20		
Area strato	As	1570.8		mm ²
Rapporto di armatura	ρ	0.213		%
Armatura a taglio				
Numero bracci	nb	5		-
Diametro staffe	Ф	12		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	As w/s	2.827		mm2/mm


GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

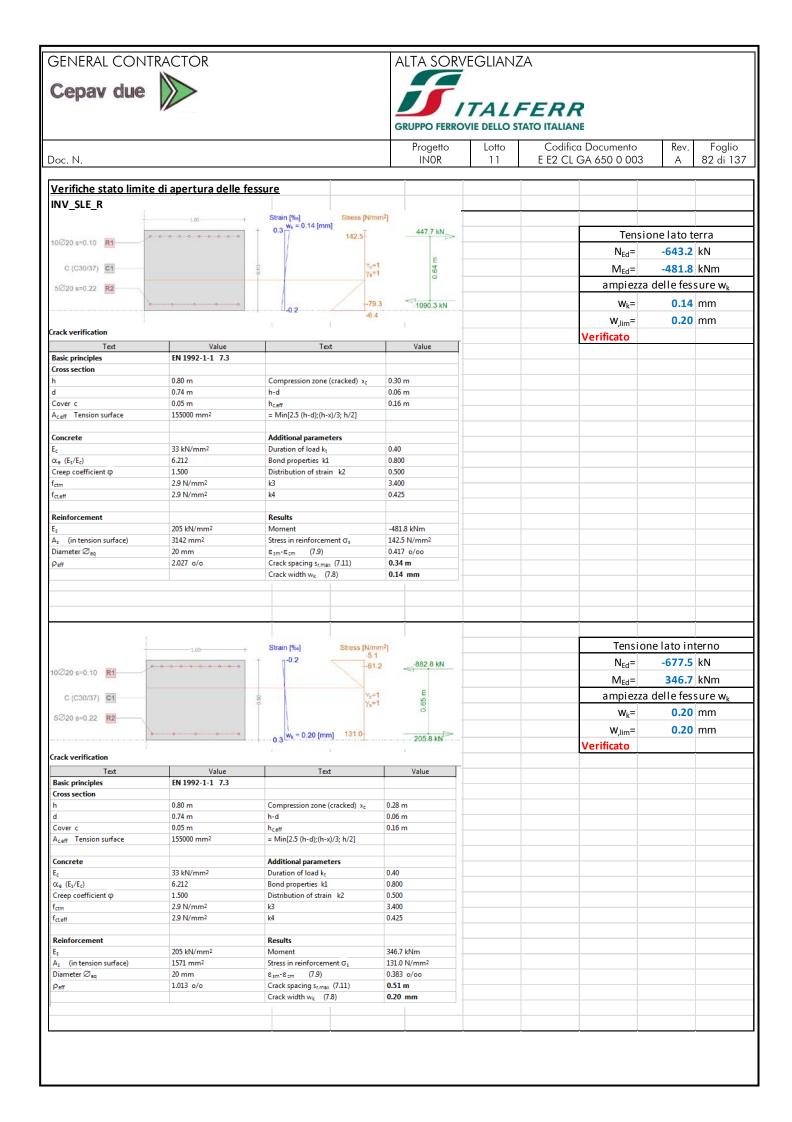
Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 78 di 137


Azioni interne di verifica	N _{Ed}	V_{Ed}						
INV_SLU_SLV	kN	kN						
vyz min	-903.8	1340.1						
vyz max	211.0	1455.6						
Verifica di resistenza a taglio (senza		vyz m	in			VYZ I	mav	
armature trasversali)		V y 2 11	111			۷۷۷۱	IIdx	
Coefficiente k	k	1.52	-		k	1.52	-	
Resistenza a taglio unitaria minima del cls	vmin	0.359453108		MPa	vmin	0.359453		MPa
Tensione media di compressione	σср	1.12975		MPa	σср	0		MPa
Rapporto geometrico di armatura longitudin	ρΙ	0.0043			ρΙ	0.0043		
Resistenza a taglio del solo cls	Vrd,c	439.8		kN	Vrd,c	314.8		kN
Resistenza minima	Vrd,c,min	390.3		kN	Vrd,c,min	265.3		kN
Resistenza al taglio	V_{Rd}	439.8		kN	Vrd	314.8		kN
Sforzo di taglio agente	V_{Ed}	1340.1		kN	V_{Ed}	1455.6		kN
	E' richiesta	armatura trasv	ersale a tagl	io	E' richiesta armatura trasversale a taglio			
Verifica di resistenza a taglio (con armature								
trasversali)								
Inclinazione armatura a taglio	cotα	0.0			cotα	0.0		
Inclinazione bielle compresse	θ	21.8	0.38	rad	θ	21.8	0.38	rad
Inclinazione bielle compresse	cotθ	2.50			cotθ	2.50		
Tensione caratteristica di snervamento	fyk	450		MPa	fyk	450		MPa
Coeff. parziale di sicurezza acciaio	γs	1.15		-	γs	1.15		-
Resistenza di calcolo acciaio	fyd	391.3		MPa	fyd	391.3		MPa
Resistenza a compressione ridotta cls	f'cd	8.5		MPa	f'cd	8.5		MPa
	σcp/fcd	0.07		-	σcp/fcd	0.00		-
Coefficiente maggiorativo	αc	1.07		-	αc	1.00		-
Resistenza di calcolo a 'taglio trazione' dell'	V_{Rsd}	1837.3		kN	V_{Rsd}	1837.3		kN
Resistenza di calcolo a 'taglio compressione	V_{Rcd}	2076.1		kN	V_{Rcd}	1946.7		kN
Resistenza al taglio di progetto	V_{Rd}	1837.3		kN	V_{Rd}	1837.3		kN
Sforzo di taglio agente	V_{Ed}	1340.1		kN	V_{Ed}	1455.6		kN
<u> </u>	Verificato		F.S.	1.37	Verificato		F.S.	1.20


In corrispondenza dell'apertura del cunicolo di collegamento, si registra una concentrazione di momento flettente che tende le fibre sul lato interno del vano scale, come identificato nell'immagine seguente:



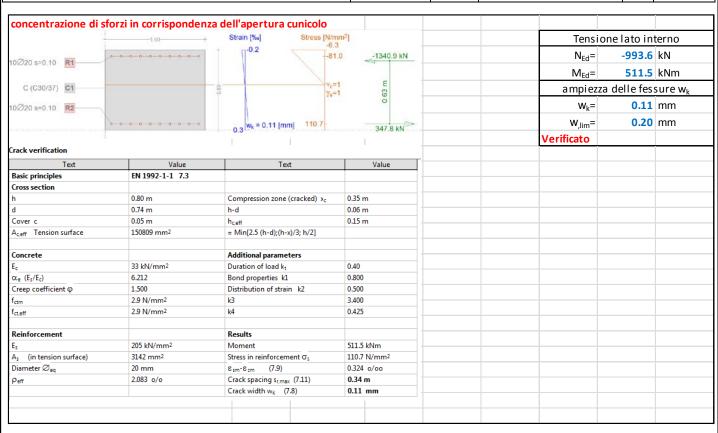
Come misura si prevede di 'infittire' i ferri verticali sul lato interno per una regione di estensione pari a circa 1.5m dall'apertura.



Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 81 di 137

Verifiche stato tensionale							
INV_SLE_R_SLD:							
		Tensione	lato terra				
N _{Ed} =	-469.6	kN					
M _{Ed} =	-536.5	kNm					
tensioni di compressione nel calcestruzzo			tensioni d	i trazione n	ell'acciaio		
$\sigma_{c,max}$ =	-7.08	N/mm ²	σ_s =	189.5	N/mm ²		
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²		
Verificato			Verificato				
		Tensione I	ato interno				
N _{Ed} =	-600.4	kN					
M _{Ed} =	429.0	kNm					
tensioni di compressione nel calcestruzzo			tensioni di trazione nell'acciaio				
$\sigma_{c,max}$ =	-6.48	N/mm ²	σ_s =	221.7	N/mm ²		
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²		
Verificato			Verificato				

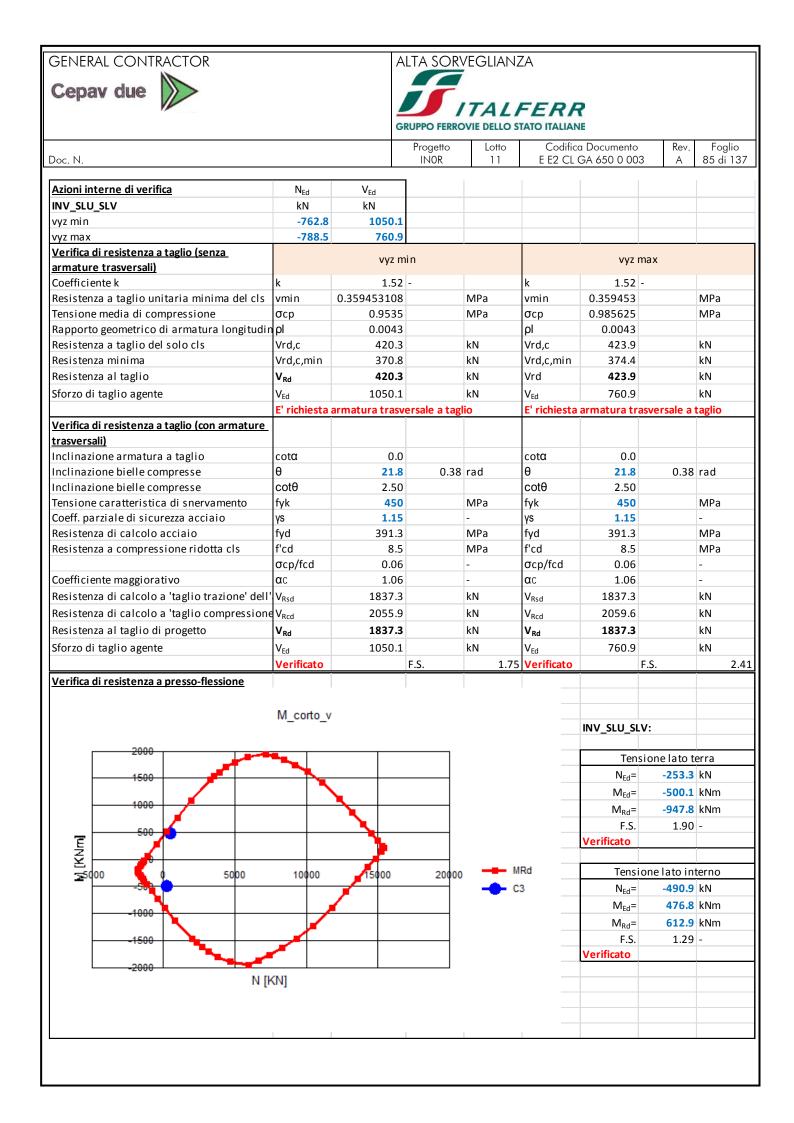
Verifiche stato tensionale							
INV_SLE_QP:							
Tens	sione lato te	erra					
N _{Ed} =	-460.8	kN					
M _{Ed} =	-409.3	kNm					
tensioni	di compress	sione nel					
(calcestruzzo)					
$\sigma_{c,max}$ =	-5.45	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							
Tensi	one lato int	terno					
N _{Ed} =	-582	kN					
M _{Ed} =	332.1	kNm					
tensioni	di compress	sione nel					
calcestruzzo							
$\sigma_{c,max}$ =	-4.94	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							



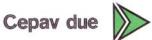
 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 CL GA 650 0 003
 A
 83 di 137

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due **ITALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Foglio 84 di 137 Lotto Codifica Documento Rev.

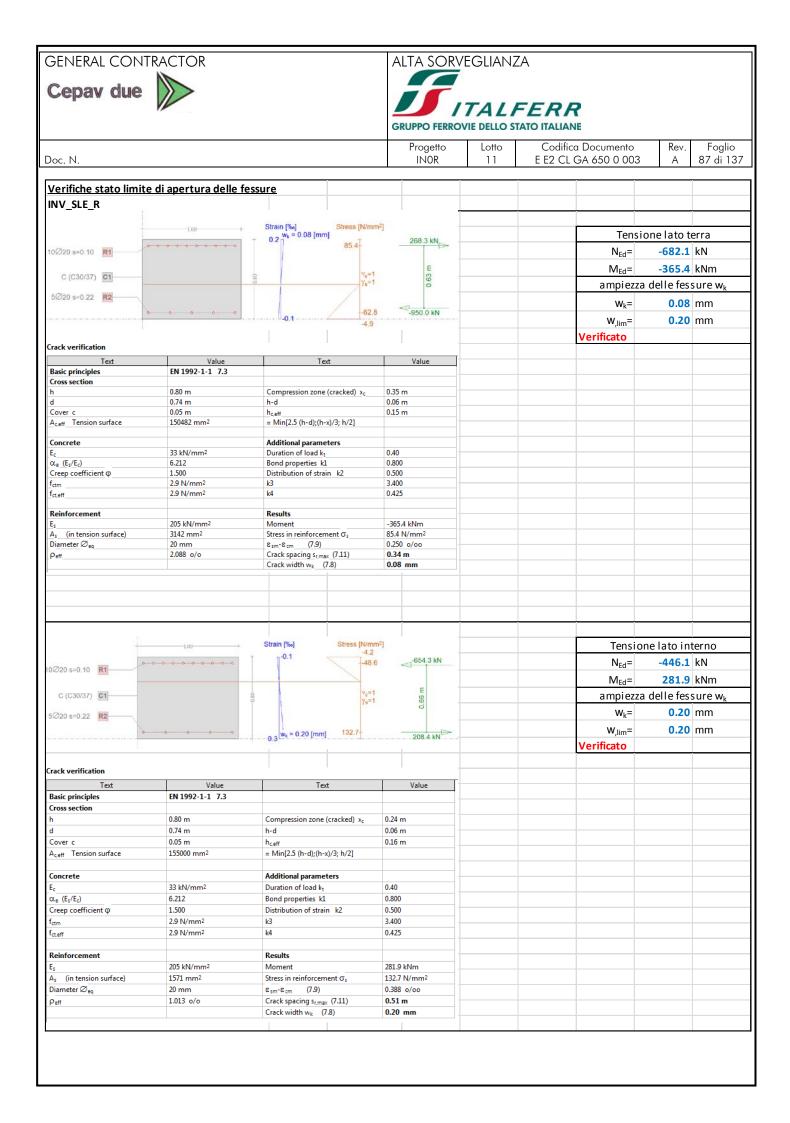

E E2 CL GA 650 0 003

11


12.2.4 Muri – lato corto (direzione verticale)

Doc. N.

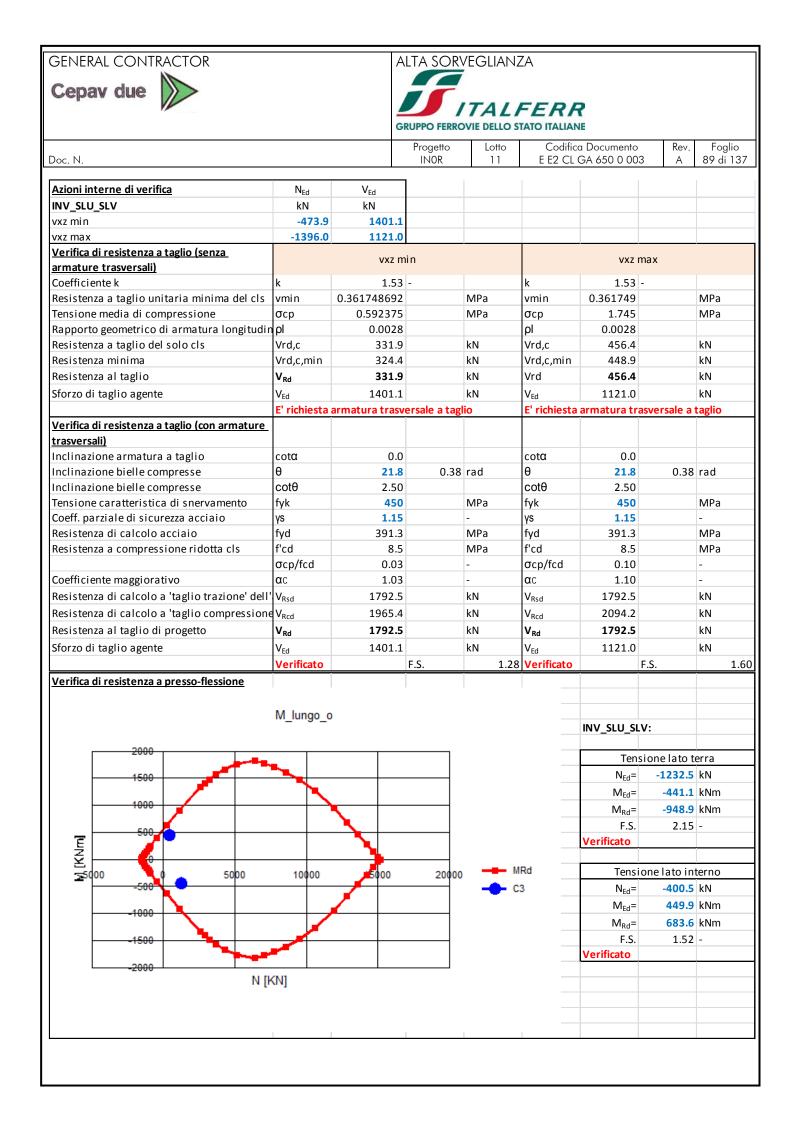
Sezione di calcolo:	di calcolo: M, lato corto, verticali			
Geometria della sezione				
Base	b	1000		mm
Altezza	h	800		mm
Altezza utile	d	738		mm
Area	Ac	800000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	62		mm
Distanza asse barra-bordo sup	c2	62		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γс	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Ф	0		mm
<u>Armatura inferiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Φ	20	0	
Diametro equivalente	Φ	20		
Area strato	As	3141	6	mm ²
Rapporto di armatura	ρ	0.42	6	%
Armatura superiore		1°strato	2°strato	
Numero barre	n.	5	0	
Diametro barre	Ф	20	0	
Diametro equivalente	Φ	20		
Area strato	As	1570.8		mm ²
Rapporto di armatura	ρ	0.213		%
Armatura a taglio				
Numero bracci	nb	5		-
Diametro staffe	Ф	12		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	Asw/s	2.827		mm2/mm



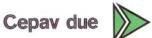
Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 86 di 137

Verifiche stato tensionale								
INV_SLE_R_								
	Tensione lato terra							
N _{Ed} =	-731.6	kN						
M _{Ed} =	-404	kNm						
	di compres		tensioni d	i trazione n	ell'acciaio			
-	calcestruzzo							
$\sigma_{c,max}$ =	-5.47	N/mm ²	σ_s =	96.17	N/mm ²			
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²			
Verificato			Verificato					
		Tensione la	ato interno					
N _{Ed} =	-436.5	kN						
M _{Ed} =	351.1	kNm						
tensioni	di compress	sione nel	tancioni d	i trazione n	ell'acciaio			
	calcestruzzo)	tensioni u	i ii azione ni	cii acciai0			
$\sigma_{c,max}$ =	-5.32	N/mm ²	σ_s =	196.5	N/mm ²			
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}=$	337.5	N/mm ²			
Verificato			Verificato					

Verifiche stato tensionale							
INV_SLE_QP:							
Ten	sione lato t	erra					
N _{Ed} =	-596.7	kN					
M _{Ed} =	-326.5	kNm					
tensioni	di compres	sione nel					
	calcestruzzo)					
$\sigma_{c,max}$ =	-4.42	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							
Tens	ione lato in	terno					
N _{Ed} =	-402.1	kN					
M _{Ed} =	264.9	kNm					
tensioni	di compres	sione nel					
calcestruzzo							
$\sigma_{c,max}$ =	-3.98	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							

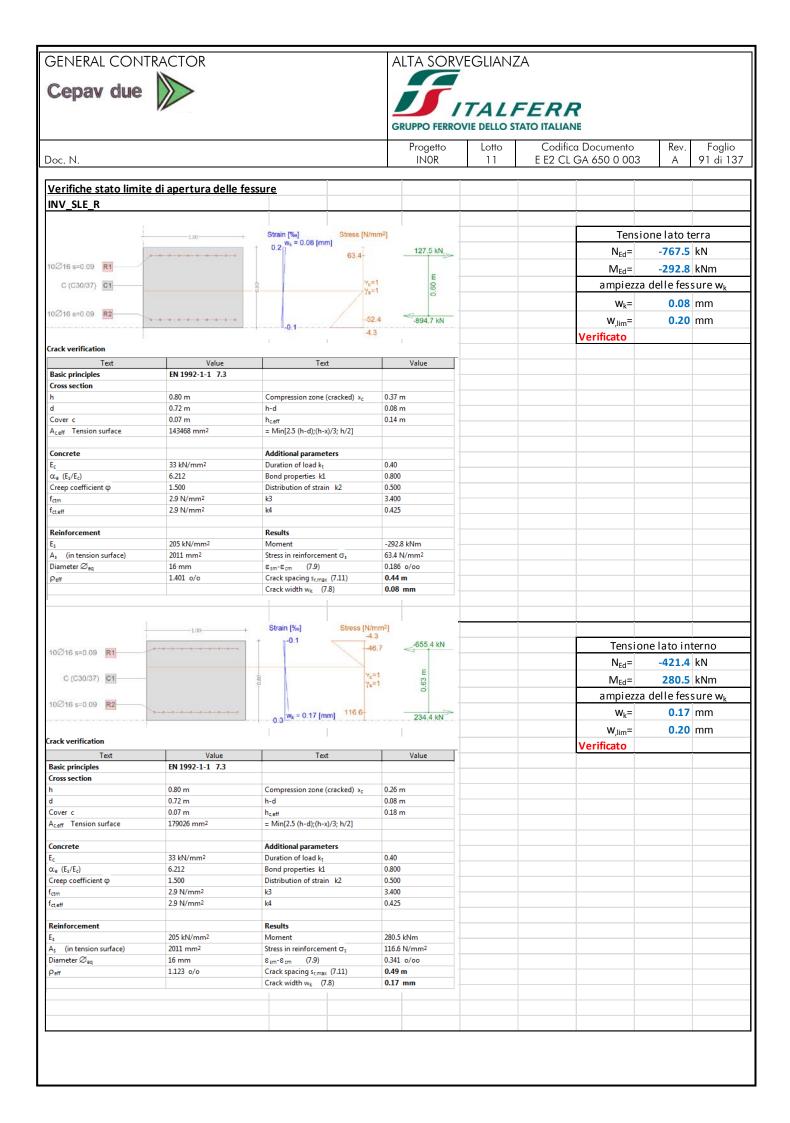


GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA Frogetto Lotto Codifica Documento Rev. Foglio


Progetto Lotto Codifica Documento Rev. Foglio Doc. N. 11 E E2 CL GA 650 0 003 A 88 di 137

12.2.5 Muri – lato lungo (direzione orizzontale)

Sezione di calcolo:	M, lato lungo, orizzontali			
Geometria della sezione				
Base	b	1000		mm
Altezza	h	800		mm
Altezza utile	d	720		mm
Area	Ac	800000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	80		mm
Distanza asse barra-bordo sup	c2	80		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γс	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Ф	20		mm
<u>Armatura inferiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	16	0	
Diametro equivalente	Φ	16		
Area strato	As	2010	0.6	mm ²
Rapporto di armatura	ρ	0.27	9	%
Armatura superiore		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	16	0	
Diametro equivalente	Ф	16		
Area strato	As	2010	2010.6	
Rapporto di armatura	ρ	0.279		%
<u>Armatura a taglio</u>				
Numero bracci	nb	5		-
Diametro staffe	φ	12		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	Asw/s	2.827		mm2/mm

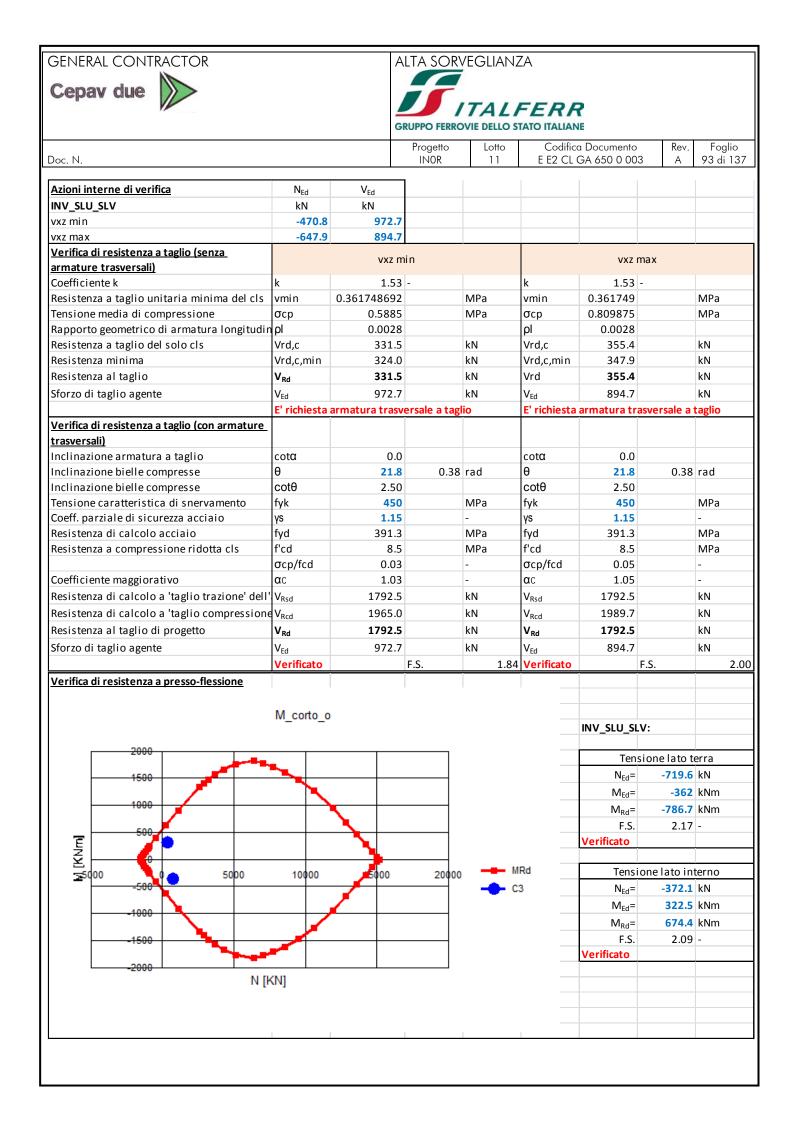


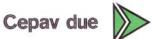
Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 E E2 CL GA 650 0 003 A 90 di 137

Verifiche st	ato tension				
INV_SLE_R_SLD:					
		Tensione	lato terra		
N _{Ed} =	-925.2	kN			
M _{Ed} =	-345.9	kNm			
tensioni di compressione nel calcestruzzo			tensioni d	i trazione n	ell'acciaio
$\sigma_{c,max}$ =	-5.09	N/mm ²	σ_s =	71.24	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		
		Tensione I	ato interno		
N _{Ed} =	-409.6	kN			
M _{Ed} =	345.6	kNm			
tensioni di compressione nel calcestruzzo			tensioni di trazione nell'acciaio		
$\sigma_{c,max}$ =	-5.39	N/mm ²	σ_s =	166	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		

Verifiche stato tensionale						
INV_SLE_QF						
Tens	sione lato te	erra				
N _{Ed} =	-727.4	kN				
M _{Ed} =	-278.1	kNm				
tensioni	di compress	sione nel				
(calcestruzzo)				
$\sigma_{c,max}$ =	-4.11	N/mm ²				
$\sigma_{c,lim}$ =	-12	N/mm ²				
Verificato						
Tensi	one lato int	terno				
N _{Ed} =	-422.7	kN				
M _{Ed} =	266.6	kNm				
tensioni	di compress	sione nel				
calcestruzzo						
$\sigma_{c,max}$ =	-4.13	N/mm ²				
$\sigma_{c,lim}$ =	-12	N/mm ²				
Verificato						

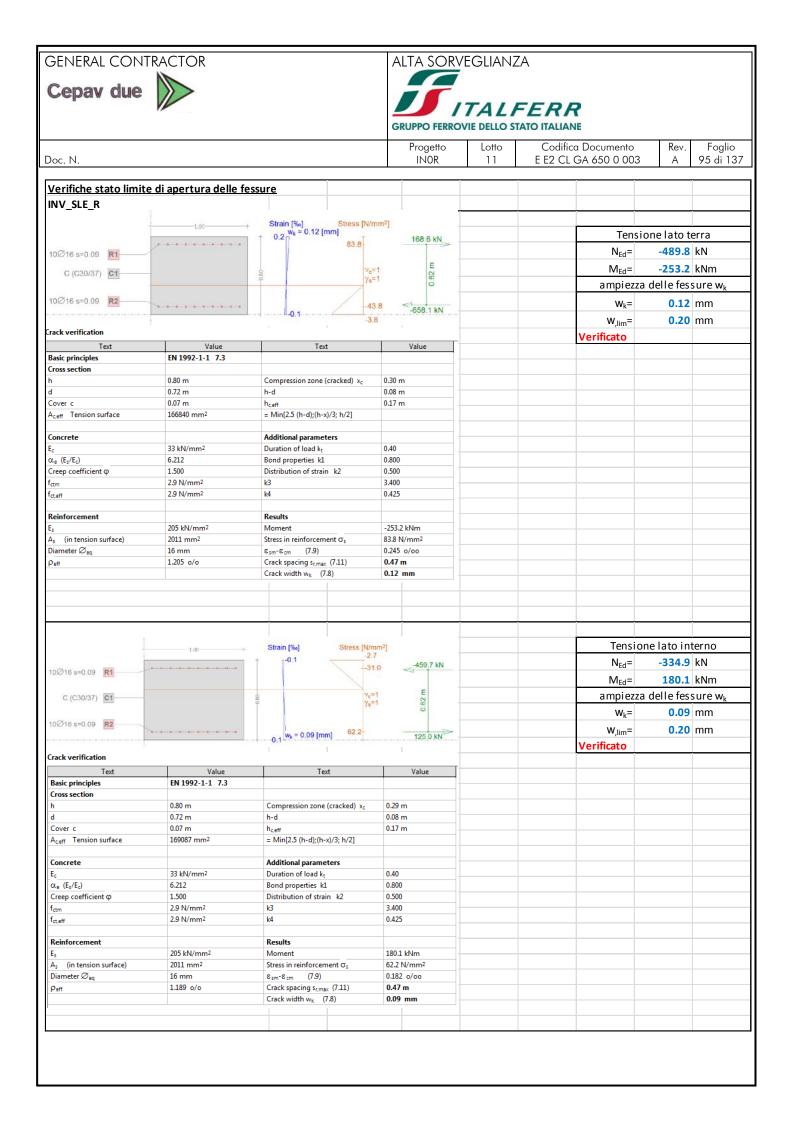
GENERAL CONTRACTOR




Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 92 di 137

12.2.6 Muri – lato corto (direzione orizzontale)

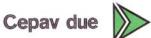
Sezione di calcolo:	M, lato co	orto, orizzontali		
Geometria della sezione				
Base	b	1000		mm
Altezza	h	800		mm
Altezza utile	d	720		mm
Area	Ac	800000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	80		mm
Distanza asse barra-bordo sup	c2	80		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γс	1.5		-
Coeff. riduttivo resistenze di lunga durata	α cc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Ф	20		mm
<u>Armatura inferiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	16	0	
Diametro equivalente	Φ	16		
Area strato	As	2010	.6	mm ²
Rapporto di armatura	ρ	0.27	9	%
Armatura superiore		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	16	0	
Diametro equivalente	Φ	16		
Area strato	As	2010	.6	mm ²
Rapporto di armatura	ρ	0.27	0.279	
<u>Armatura a taglio</u>				
Numero bracci	nb	5		-
Diametro staffe	Ф	12		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	Asw/s	2.827		mm2/mm



Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 E E2 CL GA 650 0 003 A 94 di 137

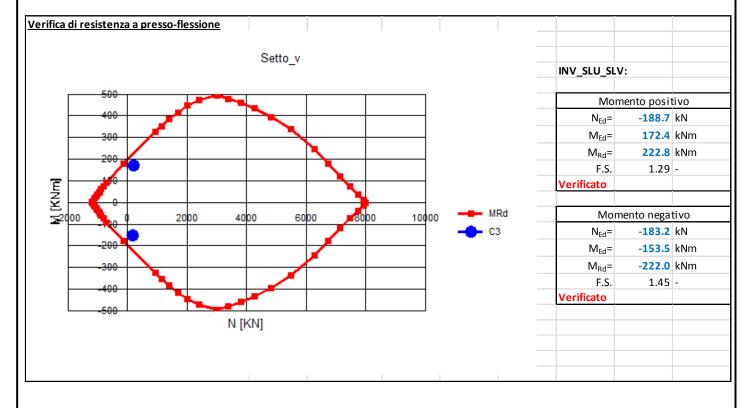
Verifiche stato tensionale						
INV_SLE_R_SLD:						
		Tensione	lato terra			
N _{Ed} =	-570.2	kN				
M _{Ed} =	-292.7	kNm				
tensioni di compressione nel calcestruzzo			tensioni d	i trazione n	ell'acciaio	
$\sigma_{c,max}$ =	-4.47	N/mm ²	σ_s =	95.45	N/mm ²	
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²	
Verificato			Verificato			
		Tensione I	ato interno			
N _{Ed} =	-331.5	kN				
M _{Ed} =	231.8	kNm				
tensioni di compressione nel calcestruzzo			tensioni di trazione nell'acciaio			
$\sigma_{c,max}$ =	-3.6	N/mm ²	σ_s =	99.3	N/mm ²	
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}=$	337.5	N/mm ²	
Verificato			Verificato			

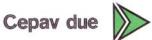
Verifiche stato tensionale						
INV_SLE_QF						
Tens	sione lato te	erra				
N _{Ed} =	-467.4	kN				
M _{Ed} =	-240.3	kNm				
tensioni	di compress	sione nel				
Ç	calcestruzzo)				
$\sigma_{c,max}$ =	-3.67	N/mm ²				
$\sigma_{c,lim}$ =	-12	N/mm ²				
Verificato						
Tensi	one lato int	terno				
N _{Ed} =	-297.7	kN				
M _{Ed} =	164.1	kNm				
tensioni	di compress	sione nel				
(calcestruzzo)				
$\sigma_{c,max}$ =	-2.52	N/mm ²				
$\sigma_{c,lim}$ =	-12	N/mm ²				
Verificato						



12.2.7 Setto centrale (direzione verticale)

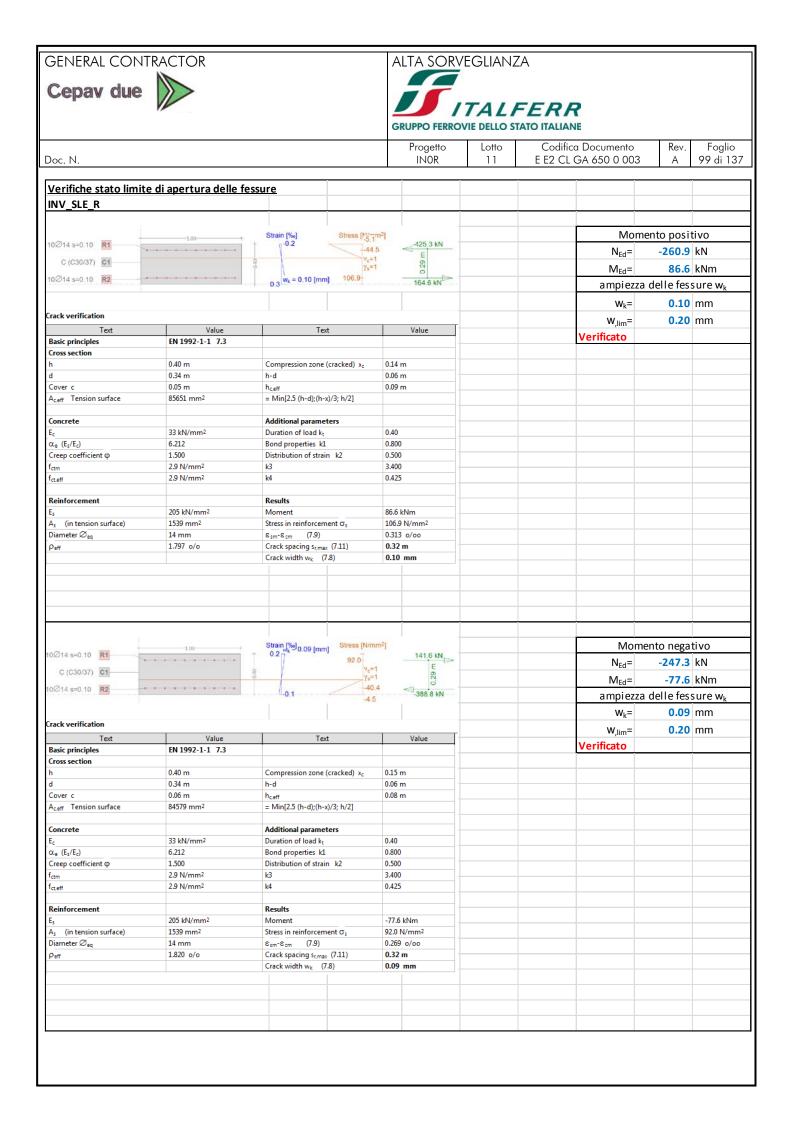
Sezione di calcolo:	Setto, ve	<u>rticali</u>		
Geometria della sezione				
Base	b	1000		mm
Altezza	h	400		mm
Altezza utile	d	341		mm
Area	Ac	400000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	59		mm
Distanza asse barra-bordo sup	c2	59		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γс	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Ф	0		mm
<u>Armatura inferiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	14	0	
Diametro equivalente	Φ	14		
Area strato	As	1539	.4	mm ²
Rapporto di armatura	ρ	0.45	1	%
<u>Armatura superiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	14	0	
Diametro equivalente	Φ	14		
Area strato	As	1539	.4	mm ²
Rapporto di armatura	ρ	0.45	1	%
Armatura a taglio				
Numero bracci	nb	5		-
Diametro staffe	Φ	12		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	As w/s	2.827		mm2/mm





ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.INOR11E E2 CL GA 650 0 003A97 di 137

Azioni interne di verifica	N _{Ed}	V_{Ed}						
INV_SLU_SLV	kN	kN						
vyz min	-28.9	702.1						
vyz max	-400.1	650.3						
Verifica di resistenza a taglio (senza		vyz m	in			VYZ I	mav	
armature trasversali)		V y 2 11				۷۷۷۱	IIUX	
Coefficiente k	k	1.77	-		k	1.77	-	
Resistenza a taglio unitaria minima del cls	vmin	0.449837382		MPa	vmin	0.449837		MPa
Tensione media di compressione	σср	0.07225		MPa	σср	1.00025		MPa
Rapporto geometrico di armatura longitudin		0.0045			ρΙ	0.0045		
Resistenza a taglio del solo cls	Vrd,c	175.9		kN	Vrd,c	223.4		kN
Resistenza minima	Vrd,c,min	157.1		kN	Vrd,c,min	204.6		kN
Resistenza al taglio	V_{Rd}	175.9		kN	Vrd	223.4		kN
Sforzo di taglio agente	V_{Ed}	702.1		kN	V_{Ed}	650.3		kN
	E' richiesta	armatura trasv	ersale a taglio E' richiesta armatura		armatura tr	asversale a	taglio	
Verifica di resistenza a taglio (con armature								
trasversali)								
Inclinazione armatura a taglio	cotα	0.0			cotα	0.0		
Inclinazione bielle compresse	θ	21.8	0.38	rad	θ	21.8	0.38	rad
Inclinazione bielle compresse	cotθ	2.50			cotθ	2.50		
Tensione caratteristica di snervamento	fyk	450		MPa	fyk	450		MPa
Coeff. parziale di sicurezza acciaio	γs	1.15		-	γs	1.15		-
Resistenza di calcolo acciaio	fyd	391.3		MPa	fyd	391.3		MPa
Resistenza a compressione ridotta cls	f'cd	8.5		MPa	f'cd	8.5		MPa
	σcp/fcd	0.00		-	σcp/fcd	0.06		-
Coefficiente maggiorativo	αc	1.00		-	αc	1.06		-
Resistenza di calcolo a 'taglio trazione' dell'		848.9		kN	V_{Rsd}	848.9		kN
Resistenza di calcolo a 'taglio compressione	V_{Rcd}	903.3		kN	V_{Rcd}	952.4		kN
Resistenza al taglio di progetto	V_{Rd}	848.9		kN	V_{Rd}	848.9		kN
Sforzo di taglio agente	V_{Ed}	702.1		kN	V_{Ed}	650.3		kN
	Verificato		F.S.	1.21	Verificato		F.S.	1.31



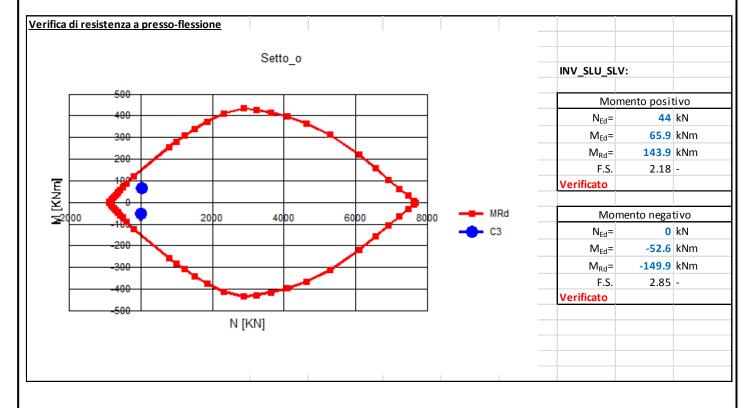
Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 E E2 CL GA 650 0 003 A 98 di 137

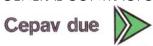
Verifiche stato tensionale						
INV_SLE_R_SLD:						
		Momento	positivo			
N _{Ed} =	-214.9	kN				
M _{Ed} =	120.2	kNm				
tensioni di compressione nel calcestruzzo			tensioni d	i trazione n	ell'acciaio	
$\sigma_{c,max}$ =	-7.1	N/mm ²	σ_s =	191.2	N/mm ²	
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²	
Verificato			Verificato			
		Momento	negativo			
N _{Ed} =	-241.7	kN				
M _{Ed} =	-104.0	kNm				
tensioni di compressione nel calcestruzzo			tensioni di trazione nell'acciaio			
$\sigma_{c,max}$ =	-6.14	N/mm ²	σ_s =	148.7	N/mm ²	
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²	
Verificato			Verificato			

Verifiche stato tensionale						
INV_SLE_QF):					
Moi	mento posit	tivo				
N _{Ed} =	-221.6	kN				
$M_{Ed}=$	79.1	kNm				
tensioni	di compress	sione nel				
C	calcestruzzo)				
$\sigma_{c,max}$ =	-4.66	N/mm ²				
$\sigma_{c,lim}$ =	-12	N/mm ²				
Verificato						
Mor	mento nega	tivo				
N _{Ed} =	-249.1	kN				
M _{Ed} =	-71.4	kNm				
tensioni	di compress	sione nel				
calcestruzzo						
$\sigma_{c,max}$ =	-4.17	N/mm ²				
$\sigma_{c,lim}$ =	-12	N/mm ²				
Verificato						

12.2.8 Setto centrale (direzione orizzontale)

Sezione di calcolo:	calcolo: <u>Setto, orizzontali</u>			
Geometria della sezione				
Base	b	1000		mm
Altezza	h	400		mm
Altezza utile	d	328		mm
Area	Ac	400000		mm ²
Copriferro	C	400000		mm
Distanza asse barra-bordo inf	c1	72		mm
Distanza asse barra-bordo sup	c2	72		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	ус	1.5		-
Coeff. riduttivo resistenze di lunga durata	αςς	0.85		_
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Ф	14		mm
Armatura inferiore	T	1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Φ	12	0	
Diametro equivalente	ф	12		
Area strato	As	1131	.0	mm ²
Rapporto di armatura	ρ	0.34	5	%
Armatura superiore		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	12	0	
Diametro equivalente	Ф	12		
Area strato	As	1131	.0	mm ²
Rapporto di armatura	ρ	0.34	5	%
Armatura a taglio				
Numero bracci	nb	5		-
Diametro staffe	Ф	12		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	Asw/s	2.827		mm2/mm




 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 CL GA 650 0 003
 A
 101 di 137

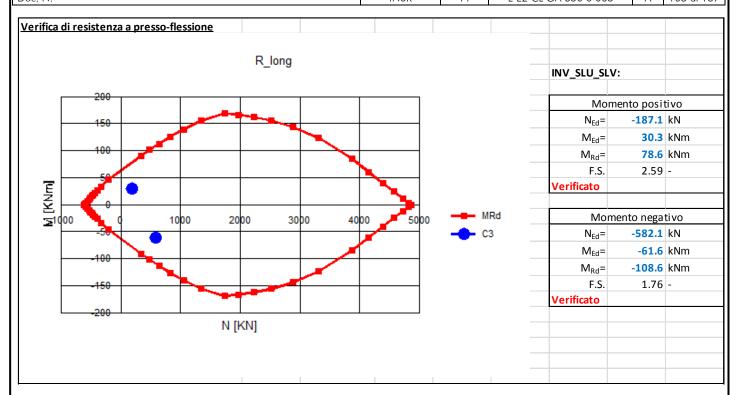
Azioni interne di verifica	N _{Ed}	V_{Ed}						
INV_SLU_SLV	kN	kN						
vxz min	28.0	285.9						
vxz max	0.0	154.6						
Verifica di resistenza a taglio (senza		vxz m	in			1 ZXV	mav	
armature trasversali)		VAZIII	111			۷۸۷۱	IIUX	
Coefficiente k	k	1.78	-		k	1.78	-	
Resistenza a taglio unitaria minima del cls	vmin	0.455592497		MPa	vmin	0.455592		MPa
Tensione media di compressione	σср	0		MPa	σср	0		MPa
Rapporto geometrico di armatura longitudin	ρΙ	0.0034			ρΙ	0.0034		
Resistenza a taglio del solo cls	Vrd,c	152.7		kN	Vrd,c	152.7		kN
Resistenza minima	Vrd,c,min	149.4		kN	Vrd,c,min	149.4		kN
Resistenza al taglio	V_{Rd}	152.7		kN	Vrd	152.7		kN
Sforzo di taglio agente	V_{Ed}	285.9		kN	V_{Ed}	154.6		kN
	E' richiesta	armatura trasv	ersale a tagl	a taglio E' richiesta armatura t		armatura tra	asversale a	taglio
Verifica di resistenza a taglio (con armature								
trasversali)								
Inclinazione armatura a taglio	cotα	0.0			cotα	0.0		
Inclinazione bielle compresse	θ	21.8	0.38	rad	θ	21.8	0.38	rad
Inclinazione bielle compresse	cotθ	2.50			cotθ	2.50		
Tensione caratteristica di snervamento	fyk	450		MPa	fyk	450		MPa
Coeff. parziale di sicurezza acciaio	γs	1.15		-	γs	1.15		-
Resistenza di calcolo acciaio	fyd	391.3		MPa	fyd	391.3		MPa
Resistenza a compressione ridotta cls	f'cd	8.5		MPa	f'cd	8.5		MPa
	σcp/fcd	0.00		-	σcp/fcd	0.00		-
Coefficiente maggiorativo	αc	1.00		-	αc	1.00		-
Resistenza di calcolo a 'taglio trazione' dell'	V_{Rsd}	816.6		kN	V_{Rsd}	816.6		kN
Resistenza di calcolo a 'taglio compressione	V_{Rcd}	865.2		kN	V_{Rcd}	865.2		kN
Resistenza al taglio di progetto	V_{Rd}	816.6		kN	V_{Rd}	816.6		kN
Sforzo di taglio agente	V_{Ed}	285.9		kN	V_{Ed}	154.6		kN
	Verificato		F.S.	2.86	Verificato		F.S.	5.28

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 102 di 137

Verifiche st	ato tension	ale_			
INV_SLE_R_SLD:					
		Momento	positivo		
N _{Ed} =	49.2	kN			
M _{Ed} =	47.3	kNm			
tensioni di compressione nel calcestruzzo			tensioni d	i trazione n	ell'acciaio
$\sigma_{c,max}$ =		N/mm ²	σ_s =	166	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		
		Momento	negativo		
N _{Ed} =	0	kN			
M _{Ed} =	-35.5	kNm			
tensioni di compressione nel calcestruzzo		tensioni di trazione nell'acciaio			
$\sigma_{c,max}$ =	-2.64	N/mm ²	σ_s =	107.3	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		

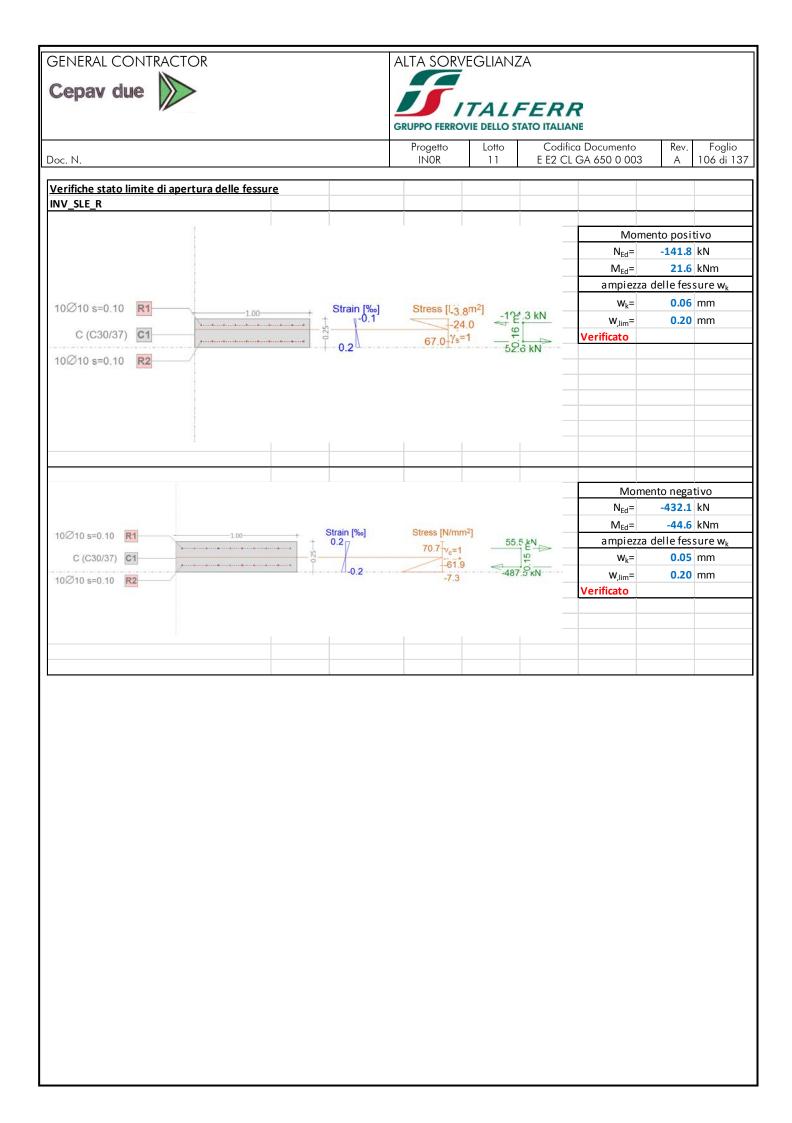
Verifiche stato tensionale							
INV_SLE_QI	P:						
Mo	mento posi	tivo					
N _{Ed} =	51.7	kN					
M _{Ed} =	32.4	kNm					
tensioni	di compres	sione nel					
	calcestruzzo)					
$\sigma_{c,max}$ =	-2.39	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							
Мо	mento nega	tivo					
N _{Ed} =	7	kN					
M _{Ed} =	-23.4	kNm					
tensioni	di compres	sione nel					
	calcestruzzo)					
$\sigma_{c,max}$ =	-1.74	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							

GENERAL CONTRACTOR


Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 104 di 137

12.2.9 Rampe

Sezione di calcolo:	Rampe, le	ongitudinale		
Geometria della sezione				
Base	b	1000		mm
Altezza	h	250		mm
Altezza utile	d	195		mm
	-			
Area	Ac	250000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	55		mm
Distanza asse barra-bordo sup	c2	55		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γс	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Ф	10		mm
<u>Armatura inferiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Φ	10	0	
Diametro equivalente	Φ	10		
Area strato	As	785.	4	mm ²
Rapporto di armatura	ρ	0.40	3	%
<u>Armatura superiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	10	0	
Diametro equivalente	Ф	10		
Area strato	As	785.	4	mm ²
Rapporto di armatura	ρ	0.40	3	%
Armatura a taglio				
Numero bracci	nb	0		-
Diametro staffe	Ф	0		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	Asw/s	0.000		mm2/mm


Azioni interne di verifica	N _{Ed}	V_{Ed}						
INV_SLU_SLV	kN	kN						
vyz min	-582.9	64.7						
vyz max	-153.9	50.1						
Verifica di resistenza a taglio (senza		10/7 PC	nin			1/1/7 1	may	
armature trasversali)	vyz min				vyz max			
Coefficiente k	k	2.00	-		k	2.00	-	
Resistenza a taglio unitaria minima del cls	vmin	0.542217668		MPa	vmin	0.542218		MPa
Tensione media di compressione	σср	2.3316		MPa	σcp	0.6156		MPa
Rapporto geometrico di armatura longitudin	ρΙ	0.0040			ρΙ	0.0040		
Resistenza a taglio del solo cls	Vrd,c	175.6		kN	Vrd,c	125.4		kN
Resistenza minima	Vrd,c,min	173.9		kN	Vrd,c,min	123.7		kN
Resistenza al taglio	V_{Rd}	175.6		kN	Vrd	125.4		kN
Sforzo di taglio agente	V_{Ed}	64.7		kN	V_{Ed}	50.1		kN
	Non è nece	Non è necessario armare a taglio			Non è necessario armare a taglio			

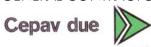
Verifiche st	ato tension	<u>ale</u>			
INV_SLE_R_	SLD:				
		Momento	positivo		
N _{Ed} =	-141.8	kN			
M _{Ed} =	21.6	kNm			
tensioni	di compress	sione nel	tansioni d	i trazione ne	all'acciaio
(calcestruzzo)	tensioni u	i trazione ne	en acciaio
$\sigma_{c,max}$ =	-3.88	N/mm ²	σ_s =	66.63	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		
		Momento	negativo		
N _{Ed} =	-432.1	kN			
M _{Ed} =	-44.6	kNm			
tensioni	di compress	sione nel	tensioni d	i trazione ne	all'acciaio
	calcestruzzo)	terisioni u	i trazione n	acciaio
$\sigma_{c,max}$ =	-7.37	N/mm ²	σ_s =	69.84	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		

Verifiche stato tensionale						
INV_SLE_QI	P:					
Mo	mento posi	tivo				
N _{Ed} =	-136.7	kN				
M _{Ed} =	10.6	kNm				
tensioni	di compres:	sione nel				
(calcestruzzo)				
$\sigma_{c,max}$ =	-1.65	N/mm ²				
$\sigma_{c,lim}$ =	-12	N/mm ²				
Verificato						
Mo	mento nega	tivo				
N _{Ed} =	-330.5	kN				
M _{Ed} =	-26.3	kNm				
tensioni	di compres	sione nel				
(calcestruzzo)				
$\sigma_{c,max}$ =	-4.1	N/mm ²				
$\sigma_{c,lim}$ =	-12	N/mm ²				
Verificato						

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Foglio 107 di 137 Lotto Codifica Documento Rev.

11

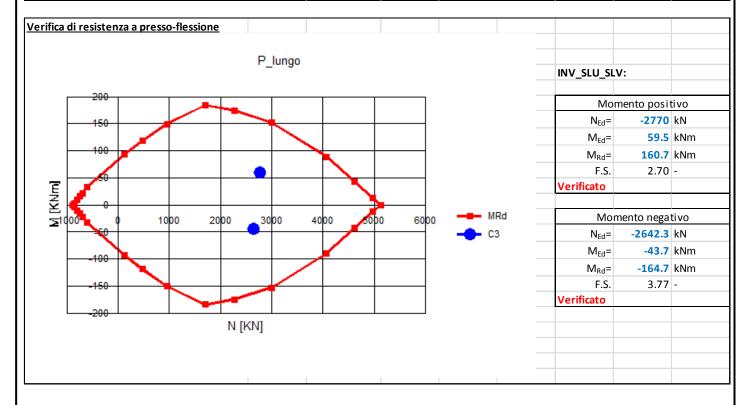
E E2 CL GA 650 0 003


12.2.10 Pianerottoli – lato lungo

Doc. N.

Sezione di calcolo:	<u>Pianerot</u>	tolo, lato lungo		
Geometria della sezione				
Base	b	1000		mm
Altezza	h	250		mm
Altezza utile	d	192		mm
Area	Ac	250000		mm ²
Copriferro	C	40		mm
Distanza asse barra-bordo inf	c1	58		mm
Distanza asse barra-bordo sup	c2	58		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	ус	1.5		_
Coeff. riduttivo resistenze di lunga durata	αςς	0.85		_
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Ф	12		mm
Armatura inferiore	1	1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	12	0	
Diametro equivalente	Ф	12		
Area strato	As	1131	.0	mm ²
Rapporto di armatura	ρ	0.58		%
Armatura superiore		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	12	0	
Diametro equivalente	Ф	12		
Area strato	As	1131	.0	mm ²
Rapporto di armatura	ρ	0.58	9	%
Armatura a taglio				
Numero bracci	nb	0		-
Diametro staffe	Ф	0		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	Asw/s	0.000		mm2/mm

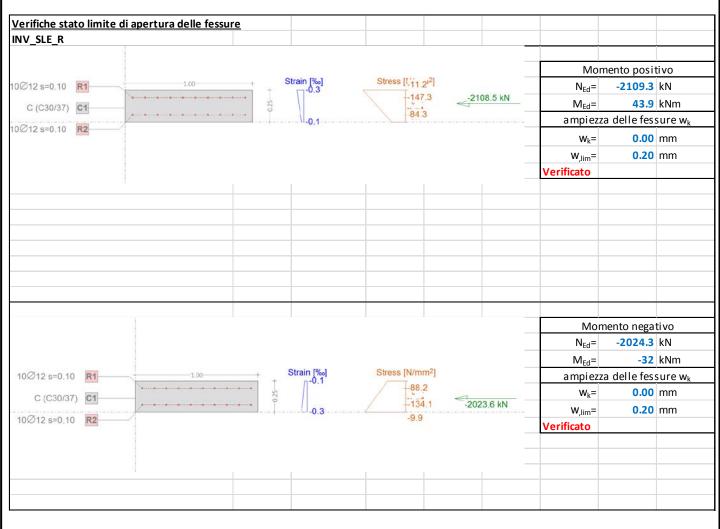
La verifica a taglio viene svolta alla distanza 'd' dall'incastro pianerottolo-setto centrale ed in corrispondenza del filo interno dei muri del vano scala.



 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 CL GA 650 0 003
 A 108 di 137

Verifica di resistenza a taglio (senza	vxz min		VX7	max		
vxz max	-1095.4	209.4				
vxz min	-1216.8	206.7				
INV_SLU_SLV	kN	kN				
Azioni interne di verifica	N _{Ed}	V_{Ed}				

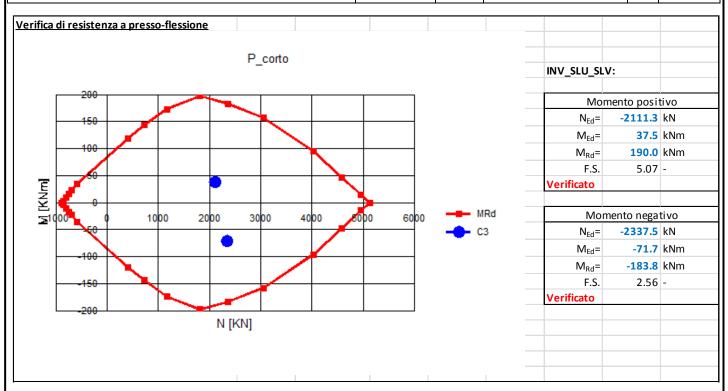

Verifica di resistenza a taglio (senza armature trasversali)	vxz min			vxz max				
Coefficiente k	k	2.00	-		k	2.00	-	
Resistenza a taglio unitaria minima del cls	vmin	0.542217668		MPa	vmin	0.542218		MPa
Tensione media di compressione	σср	4.8672		MPa	σср	4.3816		MPa
Rapporto geometrico di armatura longitudin	ρΙ	0.0059			ρΙ	0.0059		
Resistenza a taglio del solo cls	Vrd,c	260.2		kN	Vrd,c	246.2		kN
Resistenza minima	Vrd,c,min	244.3		kN	Vrd,c,min	230.3		kN
Resistenza al taglio	V_{Rd}	260.2		kN	Vrd	246.2		kN
Sforzo di taglio agente	V_{Ed}	206.7		kN	V_{Ed}	209.4		kN
	Non è nece	ssario armare a	taglio		Non è necessario armare a taglio			

Verifiche st	Verifiche stato tensionale							
INV_SLE_R								
	-							
	Momento positivo							
N _{Ed} =	-2109.3	kN						
M _{Ed} =	43.9	kNm						
tensioni di compressione nel calcestruzzo			tensioni d	i trazione n	ell'acciaio			
$\sigma_{c,max}$ =	-11.2	N/mm ²	σ_s =	-81.1	N/mm ²			
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²			
Verificato			Verificato					
		Momento	negativo					
N _{Ed} =	-2024.3	kN						
M _{Ed} =	-32.0	kNm						
	tensioni di compressione nel calcestruzzo		tensioni di trazione nell'acciaio					
$\sigma_{c,max}$ =	-9.88	N/mm ²	σ_s =	-84.83	N/mm ²			
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}=$	337.5	N/mm ²			
Verificato			Verificato					

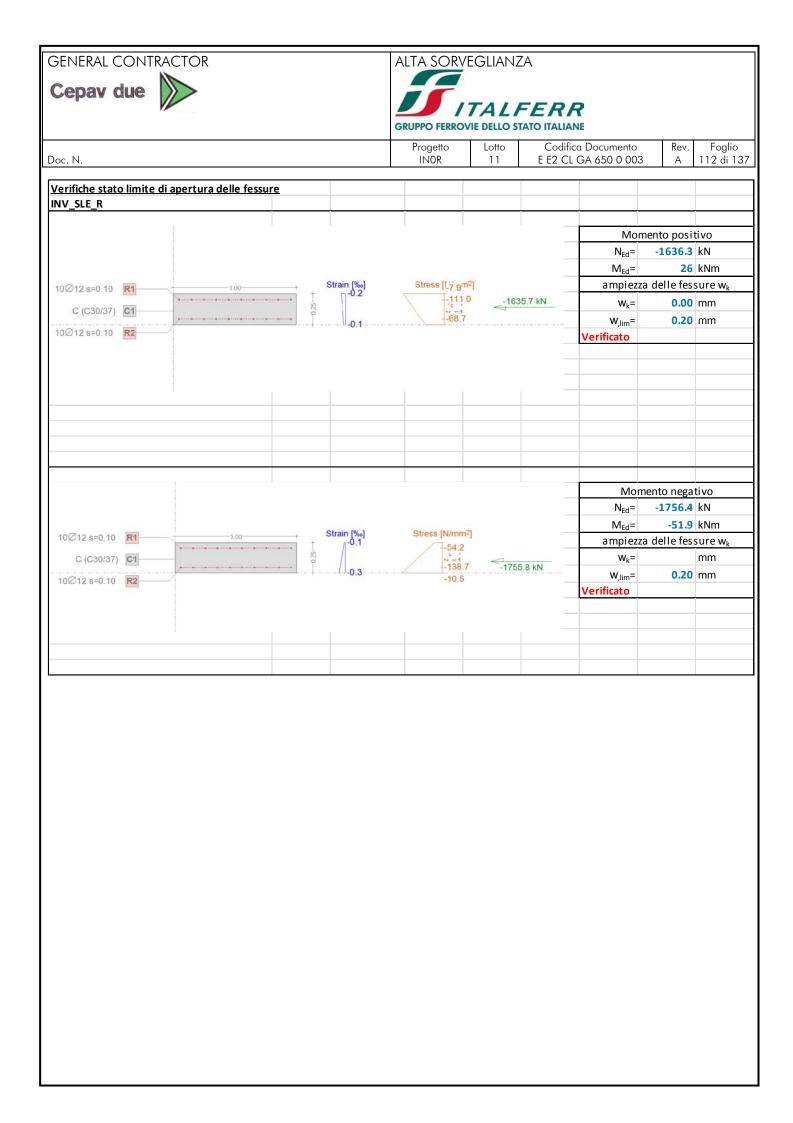
Verifiche stato tensionale						
INV_SLE_QI	P:					
Мо	mento posi	tivo				
N _{Ed} =	-1979.4	kN				
M _{Ed} =	32.6	kNm				
tensioni	di compres	sione nel				
	calcestruzzo)				
$\sigma_{c,max}$ =	-9.77	N/mm ²				
$\sigma_{c,lim}$ =	-12	N/mm ²				
Verificato						
Мо	mento nega	tivo				
N _{Ed} =	-1979.4	kN				
M _{Ed} =	-21.7	kNm				
tensioni	di compres	sione nel				
	calcestruzzo)				
$\sigma_{c,max}$ =	-8.84	N/mm ²				
$\sigma_{c,lim}$ =	-12	N/mm ²				
Verificato						

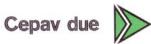
Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 110 di 137

12.2.11 Pianerottoli – lato corto


Sezione di calcolo:	<u>Pianerot</u>	tolo, lato corto		
Geometria della sezione				
Base	b	1000		mm
Altezza	h	250		mm
Altezza utile	d	204		mm
Area	Ac	250000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	46		mm
Distanza asse barra-bordo sup	c2	46		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γс	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	ф	0		mm
Armatura inferiore		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	12	0	
Diametro equivalente	Ф	12		
Area strato	As	1131	.0	mm ²
Rapporto di armatura	ρ	0.55	4	%
Armatura superiore		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	12	0	
Diametro equivalente	Ф	12		
Area strato	As	1131	.0	mm ²
Rapporto di armatura	ρ	0.55	4	%
Armatura a taglio				
Numero bracci	nb	0		-
Diametro staffe	Ф	0		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	As w/s	0.000		mm2/mm

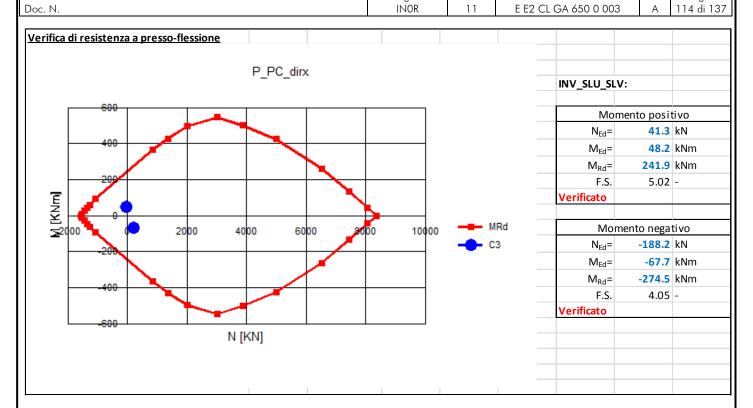
Azioni interne di verifica	N _{Ed}	V _{Ed}							
INV_SLU_SLV	kN	kN							
vyz min	-874.5	35.4							
vyz max	-403.1	51.6							
Verifica di resistenza a taglio (senza		\0.17 W	ni n						
armature trasversali)		vyz m	1111			vyz max			
Coefficiente k	k	1.99	-		k	1.99	-		
Resistenza a taglio unitaria minima del cls	vmin	0.538215975		MPa	vmin	0.538216		MPa	
Tensione media di compressione	σср	3.498		MPa	σср	1.6124		MPa	
Rapporto geometrico di armatura longitudin	ρΙ	0.0055			ρΙ	0.0055			
Resistenza a taglio del solo cls	Vrd,c	231.4		kN	Vrd,c	173.7		kN	
Resistenza minima	Vrd,c,min	216.8		kN	Vrd,c,min	159.1		kN	
Resistenza al taglio	V_{Rd}	231.4		kN	Vrd	173.7		kN	
Sforzo di taglio agente	V_{Ed}	35.4		kN	V_{Ed}	51.6		kN	
	Non è nece	ssario armare a	a taglio		Non è nece	ssario armai	e a taglio		


 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio


 Doc. N.
 INOR
 11
 E E2 CL GA 650 0 003
 A
 111 di 137

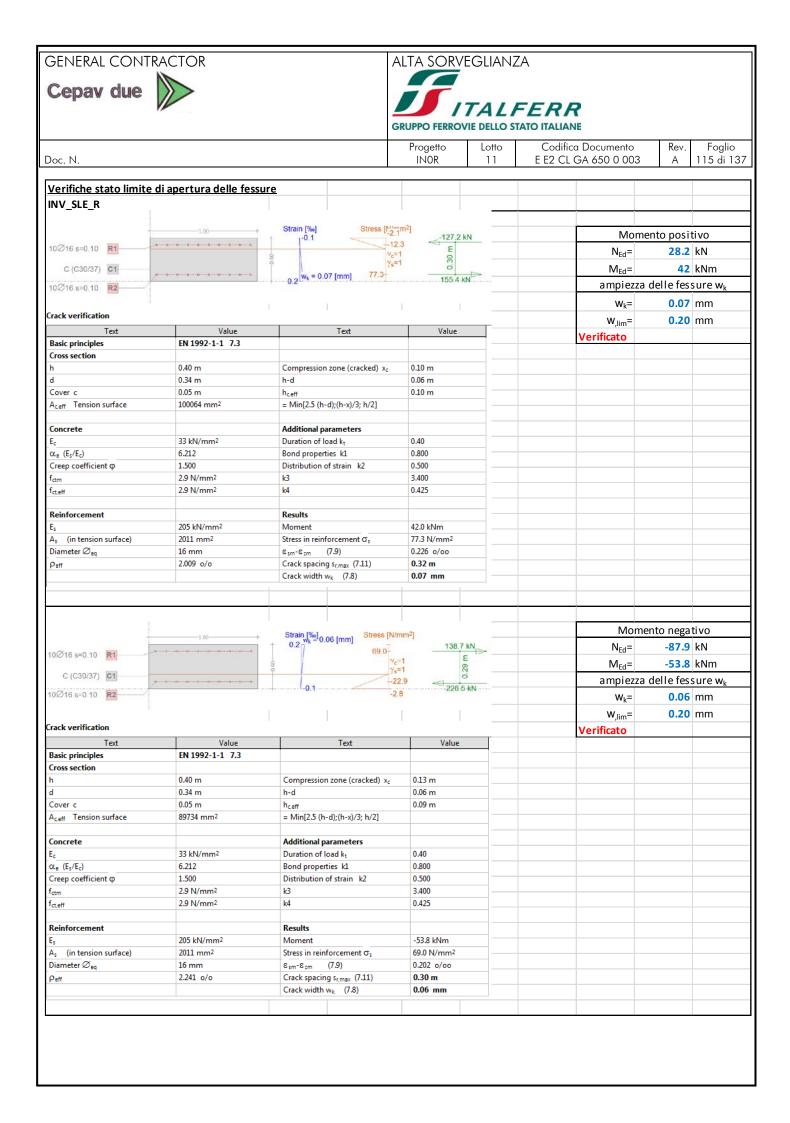
Verifiche st	ato tension	<u>ale</u>			
INV_SLE_R_	SLD:				
		Momento	positivo		
N _{Ed} =	-1792.8	kN			
M _{Ed} =	29.7	kNm			
tensioni	di compress	sione nel	tensioni d	i trazione n	ell'acciaio
	calcestruzzo)	tension a		
$\sigma_{c,max}$ =	-8.77	N/mm ²	σ_s =	-71.47	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		
		Momento	negativo		
N _{Ed} =	-1756.4	kN			
M _{Ed} =	-51.9	kNm			
tensioni	di compress	sione nel	tansioni d	i trazione n	all'acciaio
	calcestruzzo		terisioni u	i trazione in	en acciaio
$\sigma_{c,max}$ =	-10.47	N/mm ²	σ_s =	-52.16	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		

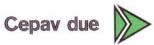
Verifiche stato tensionale							
INV_SLE_QP:							
Mon	nento posit	tivo					
N _{Ed} =	-1506.4	kN					
M _{Ed} =	23.6	kNm					
tensioni d	di compress	sione nel					
C	alcestruzzo)					
$\sigma_{c,max}$ =	-7.25	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							
Mon	nento nega	tivo					
N _{Ed} =	-1506.4	kN					
M _{Ed} =	-30.6	kNm					
tensioni d	di compress	sione nel					
C	alcestruzzo)					
$\sigma_{c,max}$ =	-7.83	N/mm ²					
$\sigma_{c,lim}=$	-12	N/mm ²					
Verificato							


Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 113 di 137

12.2.12 Pianerottolo al p.c. – lato lungo (dir. x)

Sezione di calcolo:	<u>Pianerot</u>	tolo al p.c., direzio	ne x	
Geometria della sezione		4000		
Base	b	1000		mm
Altezza	h	400		mm
Altezza utile	d	338		mm
Area	Ac	400000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	62		mm
Distanza asse barra-bordo sup	c2	62		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γс	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Φ	14		mm
<u>Armatura inferiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Φ	16	0	
Diametro equivalente	Ф	16		
Area strato	As	2010	.6	mm ²
Rapporto di armatura	ρ	0.59	5	%
<u>Armatura superiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Φ	16	0	
Diametro equivalente	Φ	16		
Area strato	As	2010	.6	mm ²
Rapporto di armatura	ρ	0.59	5	%
Armatura a taglio				
Numero bracci	nb	0		-
Diametro staffe	Ф	0		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	Asw/s	0.000		mm2/mm

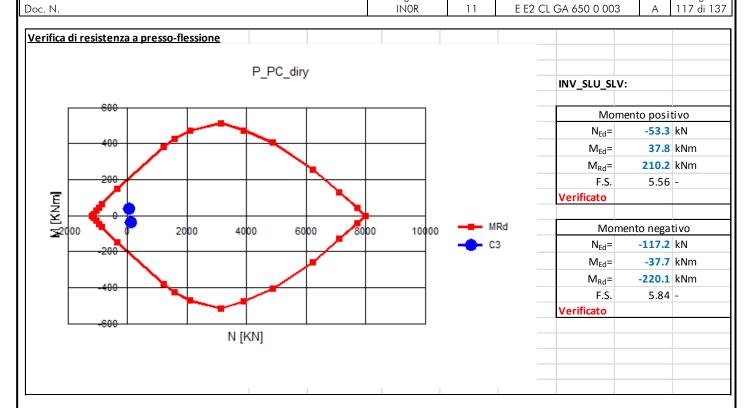

Azioni interne di verifica	N _{Ed}	V_{Ed}						
INV_SLU_SLV	kN	kN						
vxz min	-143.2	52.3						
vxz max	-81.4	68.6						
Verifica di resistenza a taglio (senza		vxz m	in			vxz n	22.4	
armature trasversali)		VXZIII	1111			VXZII	lax	
Coefficiente k	k	1.77	-		k	1.77 -	-	
Resistenza a taglio unitaria minima del cls	vmin	0.451133832		MPa	vmin	0.451134		MPa
Tensione media di compressione	σср	0.358		MPa	σср	0.2035		MPa
Rapporto geometrico di armatura longitudin	ρΙ	0.0059			ρΙ	0.0059		
Resistenza a taglio del solo cls	Vrd,c	205.7		kN	Vrd,c	197.8		kN
Resistenza minima	Vrd,c,min	170.6		kN	Vrd,c,min	162.8		kN
Resistenza al taglio	V_{Rd}	205.7		kN	Vrd	197.8		kN
Sforzo di taglio agente	V_{Ed}	52.3		kN	V_{Ed}	68.6		kN
	Non è nece	ssario armare a	taglio		Non è nece	ssario armar	e a taglio	



Verifiche stato tensionale					
INV_SLE_R_	SLD:				
		Momento	positivo		
N _{Ed} =	28.2	kN			
M _{Ed} =	42	kNm			
tensioni di compressione nel calcestruzzo			tensioni d	i trazione n	ell'acciaio
$\sigma_{c,max}$ =	-2.11	N/mm ²	σ_s =	77.22	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		
		Momento	negativo		
N _{Ed} =	-131.5	kN			
M _{Ed} =	-54.8	kNm			
	di compress		tensioni d	i trazione n	ell'acciaio
$\sigma_{c,max}$ =	-2.89	N/mm ²	σ_s =	60.54	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}=$	337.5	N/mm ²
Verificato			Verificato		

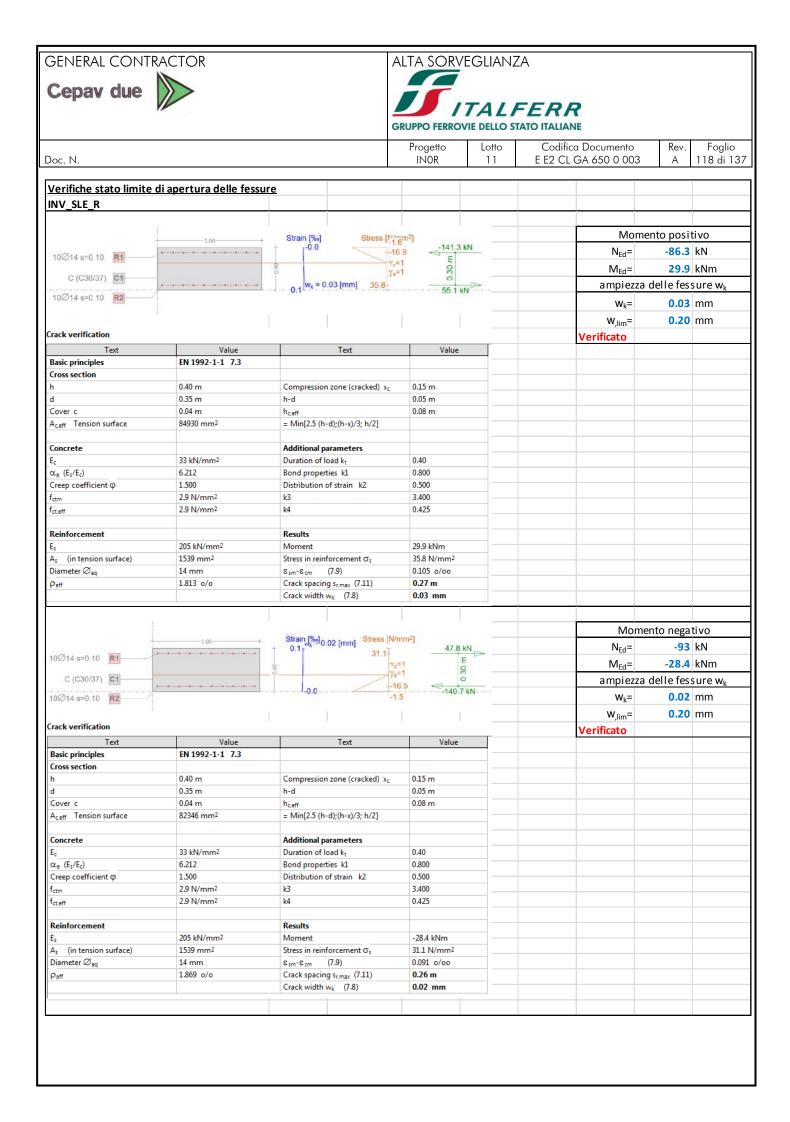
Verifiche stato tensionale							
INV_SLE_QI	P:						
Мо	mento posit	tivo					
N _{Ed} =	-11.8	kN					
M _{Ed} =	34.1	kNm					
tensioni	di compress	sione nel					
	calcestruzzo)					
$\sigma_{c,max}$ =	-1.76	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							
Мо	mento nega	tivo					
N _{Ed} =	-70.6	kN					
M _{Ed} =	-42.8	kNm					
tensioni	di compress	sione nel					
	calcestruzzo)					
$\sigma_{c,max}$ =	-2.25	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							

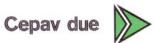
 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio


 Doc. N.
 INOR
 11
 E E2 CL GA 650 0 003
 A
 116 di 137

12.2.13 Pianerottolo al p.c. – lato corto (dir. y)

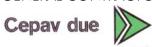
Sezione di calcolo:	<u>Pianerot</u>	tolo al p.c., direzio	ne y	
Companie delle soriere				
Geometria della sezione	L	1000		
Base	b	1000		mm
Altezza	h	400		mm
Altezza utile	d	353		mm
Area	Ac	400000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	47		mm
Distanza asse barra-bordo sup	c2	47		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γс	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Ф	0		mm
<u>Armatura inferiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	14	0	
Diametro equivalente	Φ	14		
Area strato	As	1539	.4	mm ²
Rapporto di armatura	ρ	0.43	6	%
<u>Armatura superiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	14	0	
Diametro equivalente	Ф	14		
Area strato	As	1539	.4	mm ²
Rapporto di armatura	ρ	0.43	6	%
Armatura a taglio				
Numero bracci	nb	0		-
Diametro staffe	Ф	0		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	Asw/s	0.000		mm2/mm


Azioni interne di verifica	N _{Ed}	V_{Ed}						
INV_SLU_SLV	kN	kN						
vyz min	-156.3	45.7						
vyz max	-857.4	78.5						
Verifica di resistenza a taglio (senza		vyz m	in			\0.47 m	12 V	
armature trasversali)		VyZIII	1111			vyz m	iax	
Coefficiente k	k	1.75	-		k	1.75 -		
Resistenza a taglio unitaria minima del cls	vmin	0.44483		MPa	vmin	0.44483		MPa
Tensione media di compressione	σср	0.39075		MPa	σср	2.1435		MPa
Rapporto geometrico di armatura longitudin	ρΙ	0.0044			ρΙ	0.0044		
Resistenza a taglio del solo cls	Vrd,c	195.6		kN	Vrd,c	288.4		kN
Resistenza minima	Vrd,c,min	177.7		kN	Vrd,c,min	270.5		kN
Resistenza al taglio	V_{Rd}	195.6		kN	Vrd	288.4		kN
Sforzo di taglio agente	V_{Ed}	45.7		kN	V_{Ed}	78.5		kN
	Non è nece	ssario armare a	taglio		Non è necessario armare a taglio			



Verifiche stato tensionale					
INV_SLE_R_SLD:					
		Momento	positivo		
N _{Ed} =	-86.3	kN			
M _{Ed} =	29.9	kNm			
tensioni di compressione nel calcestruzzo			tensioni d	i trazione n	ell'acciaio
$\sigma_{c,max}$ =	-1.62	N/mm ²	σ_s =	35.63	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		
		Momento	negativo		
N _{Ed} =	-93	kN			
M _{Ed} =	-28.4	kNm			
tensioni di compressione nel calcestruzzo			tensioni d	i trazione n	ell'acciaio
$\sigma_{c,max}$ =	-1.54	N/mm ²	σ_s =	30.91	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}=$	337.5	N/mm ²
Verificato			Verificato		

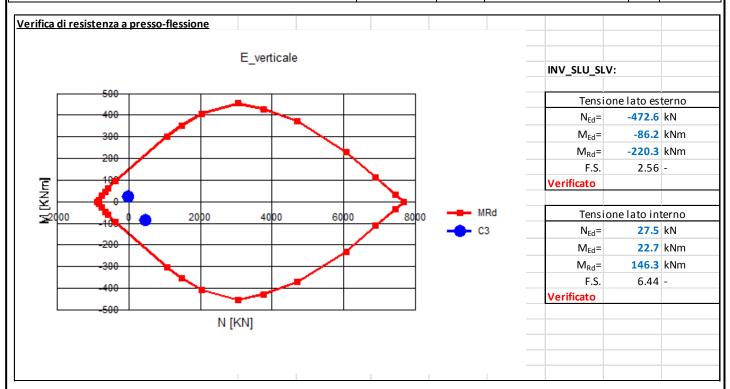
Verifiche st	Verifiche stato tensionale							
INV_SLE_QI	INV_SLE_QP:							
Мо	mento posit	tivo						
N _{Ed} =	-15.3	kN						
M _{Ed} =	21.6	kNm						
tensioni	di compress	sione nel						
	calcestruzzo)						
$\sigma_{c,max}$ =	-1.14	N/mm ²						
$\sigma_{c,lim}$ =	-12	N/mm ²						
Verificato								
Mo	mento nega	tivo						
N _{Ed} =	-57.9	kN						
M _{Ed} =	-17.6	kNm						
tensioni	di compress	sione nel						
	calcestruzzo)						
$\sigma_{c,max}$ =	-0.95	N/mm ²						
$\sigma_{c,lim}$ =	-12	N/mm ²						
Verificato								

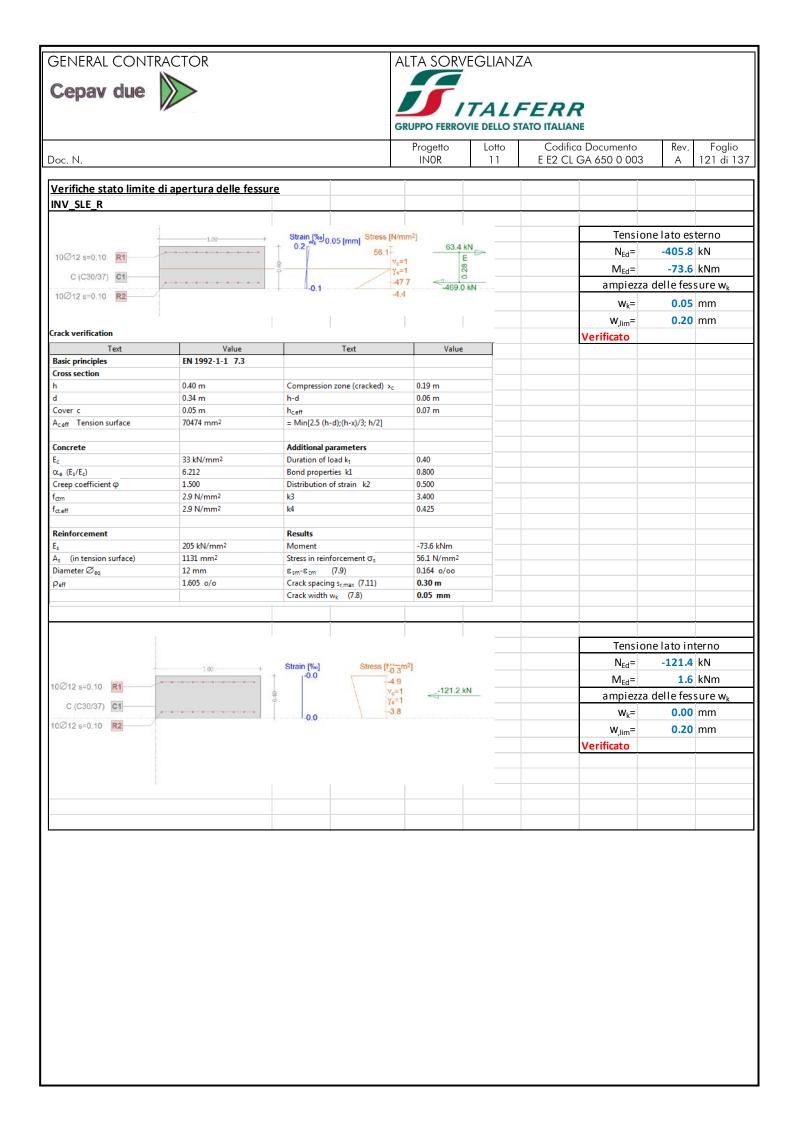

	Progetto	Lotto	Coditica Documento	Rev.	Foglio
Doc. N.	INOR	11	E E2 CL GA 650 0 003	Α	119 di 137

12.2.14 Muri fabbricato (direzione verticale)

Sezione di calcolo:	E, verticale			
Geometria della sezione				
Base	b	1000		mm
Altezza	h	400		mm
Altezza utile	d	342		mm
Area	Ac	400000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	58		mm
Distanza asse barra-bordo sup	c2	58		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γc	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Φ	12		mm
Armatura inferiore		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	12	0	
Diametro equivalente	Φ	12		
Area strato	As	1131	.0	mm ²
Rapporto di armatura	ρ	0.33	1	%
<u>Armatura superiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	12	0	
Diametro equivalente	Ф	12		
Area strato	As	1131	.0	mm ²
Rapporto di armatura	ρ	0.33	1	%
Armatura a taglio				
Numero bracci	nb	0		-
Diametro staffe	Φ	0		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	Asw/s	0.000		mm2/mm

Azioni interne di verifica	N _{Ed}	V _{Ed}						
INV_SLU_SLV	kN	kN						
vyz min	-188.6	38.8						
vyz max	-353.9	34.6						
Verifica di resistenza a taglio (senza		10/7 8	ni n			10/7	may	
armature trasversali)		vyz m	1111		vyz max			
Coefficiente k	k	1.76	-		k	1.76	-	
Resistenza a taglio unitaria minima del cls	vmin	0.4494093		MPa	vmin	0.449409		MPa
Tensione media di compressione	σср	0.4715		MPa	σср	0.88475		MPa
Rapporto geometrico di armatura longitudin	ρΙ	0.0033			ρΙ	0.0033		
Resistenza a taglio del solo cls	Vrd,c	179.8		kN	Vrd,c	201.0		kN
Resistenza minima	Vrd,c,min	177.9		kN	Vrd,c,min	199.1		kN
Resistenza al taglio	V_{Rd}	179.8		kN	Vrd	201.0		kN
Sforzo di taglio agente	V_{Ed}	38.8		kN	V_{Ed}	34.6		kN
	Non è nece	ssario armare a	a taglio		Non è nece	ssario armai	re a taglio	

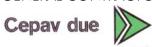



 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 CL GA 650 0 003
 A
 120 di 137

Verifiche st	ato tension	ale_			
INV_SLE_R_	SLD:				
		Tensione I	ato esterno		
N _{Ed} =	-405.8	kN			
M _{Ed} =	-73.6	kNm			
tensioni di compressione nel calcestruzzo			tensioni d	i trazione n	ell'acciaio
$\sigma_{c,max}$ =	-4.45	N/mm ²	σ_s =	55.36	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		
		Tensione I	ato interno		
N _{Ed} =	-121.4	kN			
M _{Ed} =	1.6	kNm			
tensioni di compressione nel calcestruzzo			tensioni d	i trazione n	ell'acciaio
$\sigma_{c,max}$ =	-0.33	N/mm ²	σ_s =	-3.63	N/mm ²
σ _{c,lim} =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		

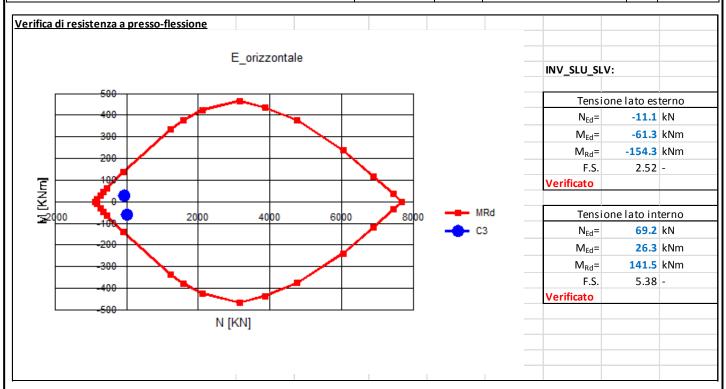
Verifiche stato tensionale							
INV_SLE_QI	P:						
Tens	ione lato es	terno					
N _{Ed} =	-425.9	kN					
$M_{Ed}=$	-47.2	kNm					
tensioni di compressione nel							
(calcestruzzo)					
$\sigma_{c,max}$ =	-2.72	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							
		,					
Tens	ione lato int	terno					
N _{Ed} =	-458.3	kN					
M _{Ed} =	0	kNm					
tensioni	di compress	sione nel					
	calcestruzzo)					
$\sigma_{c,max}$ =	-1.06	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							

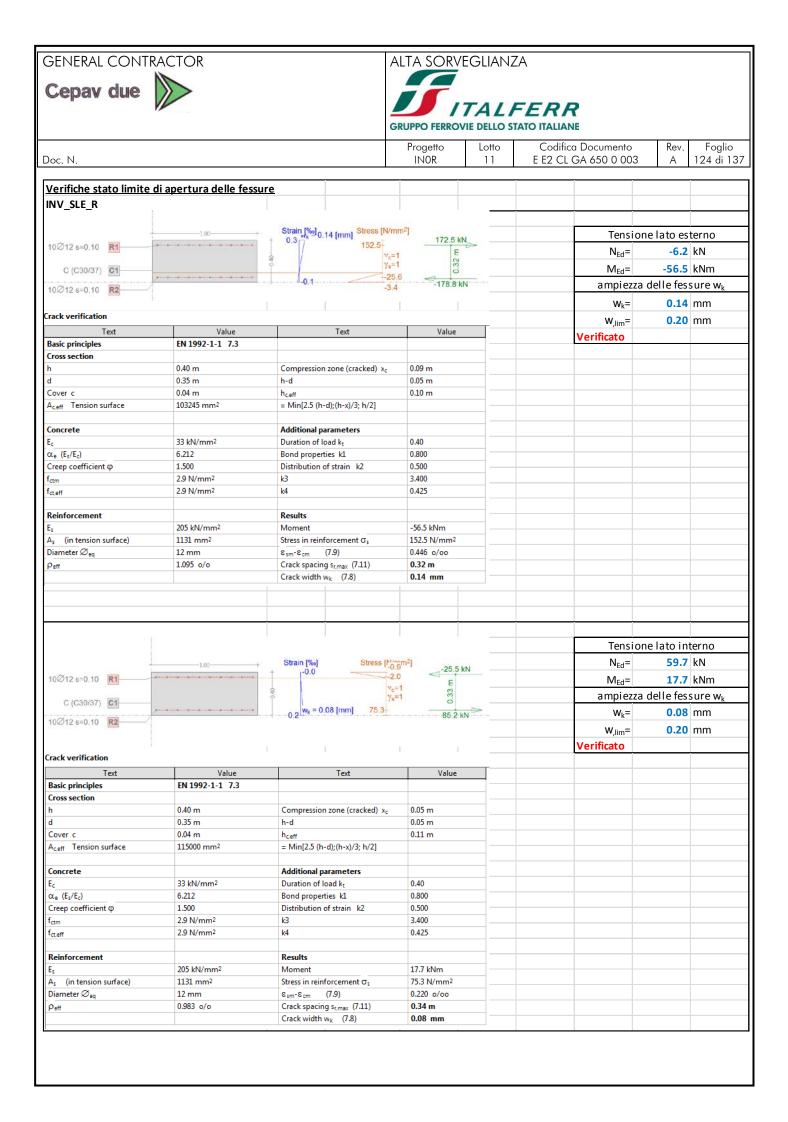

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 122 di 137

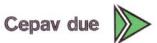
12.2.15 Muri fabbricato (direzione orizzontale)

Sezione di calcolo:	E, orizzor	<u>ntale</u>		
Geometria della sezione				
Base	b	1000		mm
Altezza	h	400		mm
Altezza utile	d	354		mm
Area	Ac	400000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	46		mm
Distanza asse barra-bordo sup	c2	46		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γc	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		_
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Ф	0		mm
<u>Armatura inferiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	12	0	
Diametro equivalente	Ф	12		
Area strato	As	1131	.0	mm ²
Rapporto di armatura	ρ	0.31	9	%
<u>Armatura superiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	12	0	
Diametro equivalente	Ф	12		
Area strato	As	1131	.0	mm ²
Rapporto di armatura	ρ	0.31	9	%
Armatura a taglio				
Numero bracci	nb	0		-
Diametro staffe	Φ	0		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	Asw/s	0.000		mm2/mm

Azioni interne di verifica	N _{Ed}	V_{Ed}						
INV_SLU_SLV	kN	kN						
vxz min	1603.0	76.7						
vxz max	-154.3	72.5						
Verifica di resistenza a taglio (senza		vxz m	ni n			10/7	may	
armature trasversali)		VXZ II	1111		vxz max			
Coefficiente k	k	1.75	-		k	1.75	-	
Resistenza a taglio unitaria minima del cls	vmin	0.444424707		MPa	vmin	0.444425		MPa
Tensione media di compressione	σср	0		MPa	σср	0.38575		MPa
Rapporto geometrico di armatura longitudin	ρΙ	0.0032			ρΙ	0.0032		
Resistenza a taglio del solo cls	Vrd,c	158.1		kN	Vrd,c	178.5		kN
Resistenza minima	Vrd,c,min	157.3		kN	Vrd,c,min	177.8		kN
Resistenza al taglio	V_{Rd}	158.1		kN	Vrd	178.5		kN
Sforzo di taglio agente	V_{Ed}	76.7		kN	V_{Ed}	72.5		kN
	Non è nece	ssario armare a	a taglio		Non è nece	ssario armai	e a taglio	

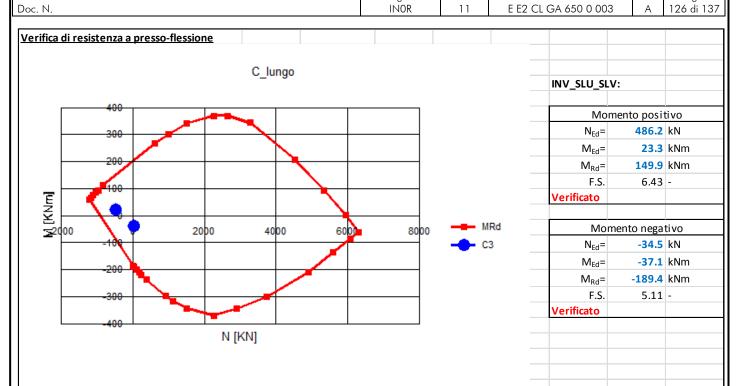



 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio


 Doc. N.
 INOR
 11
 E E2 CL GA 650 0 003
 A
 123 di 137

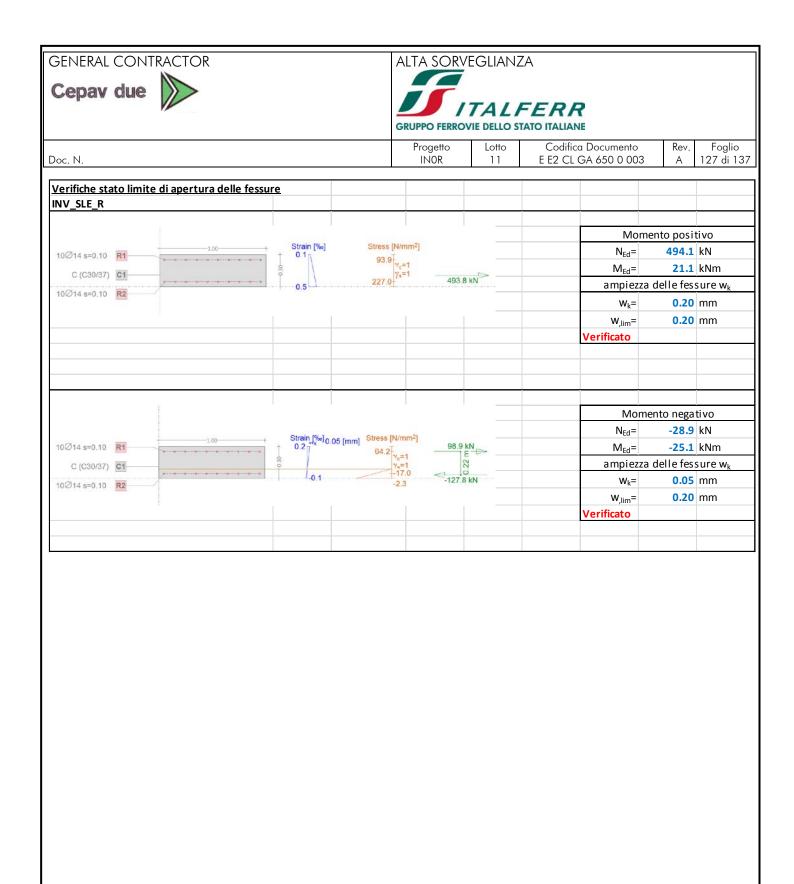
Verifiche st	ato tension	ale_							
INV_SLE_R_	SLD:								
	Tensione lato esterno								
N _{Ed} =	-6.2	kN							
M _{Ed} =	-56.5	kNm							
tensioni di compressione nel			tensioni d	i trazione ne	ell'acciaio				
	calcestruzzo)							
$\sigma_{c,max}$ =	-3.39	N/mm ²	σ_s =	152.3	N/mm ²				
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²				
Verificato			Verificato						
		Tensione I	ato interno						
N _{Ed} =	59.7	kN							
M _{Ed} =	17.7	kNm							
tensioni	di compress	sione nel	tensioni d	i trazione ne	all'acciaio				
	calcestruzzo)	terisioni u	i trazione ne	en acciaio				
$\sigma_{c,max}$ =	-0.88	N/mm ²	σ_s =	75.3	N/mm ²				
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²				
Verificato			Verificato						

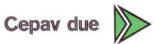
Verifiche stato tensionale							
INV_SLE_QI	P:						
Tens	ione lato es	terno					
N _{Ed} =	-3.7	kN					
M _{Ed} =	-36.9	kNm					
tensioni di compressione nel							
	calcestruzzo)					
$\sigma_{c,max}$ =	-2.22	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							
Tens	ione lato in	terno					
N _{Ed} =	39.1	kN					
M _{Ed} =	8	kNm					
tensioni	di compres	sione nel					
	calcestruzzo)					
$\sigma_{c,max}$ =	-0.33	N/mm ²					
$\sigma_{c,lim}$ =	-12	N/mm ²					
Verificato							


Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 125 di 137

12.2.16 Copertura fabbricato – lato lungo

Sezione di calcolo:	Soletta c	<u>opertura, lato lun</u>		
Geometria della sezione				
Base	b	1000		mm
Altezza	h	300		
Altezza utile	d	253		mm
	-			mm
Area	Ac	300000		mm ²
Copriferro	С	40		mm
Distanza asse barra-bordo inf	c1	47		mm
Distanza asse barra-bordo sup	c2	47		mm
Resistenza cilindrica caratteristica	fck	30		MPa
Coefficiente parziale di sicurezza cls	γс	1.5		-
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-
Resistenza di calcolo a compressione	fcd	17.0		MPa
Diametro barre secondarie	Ф	0		mm
<u>Armatura inferiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Φ	14	0	
Diametro equivalente	Φ	14		
Area strato	As	1539	.4	mm ²
Rapporto di armatura	ρ	0.60	8	%
<u>Armatura superiore</u>		1°strato	2°strato	
Numero barre	n.	10	0	
Diametro barre	Ф	14	0	
Diametro equivalente	Ф	14		
Area strato	As	1539	1539.4	
Rapporto di armatura	ρ	0.60	1539.4 0.608	
Armatura a taglio				
Numero bracci	nb	0		-
Diametro staffe	Ф	0		mm
Passo longitudinale	S	200		mm
inclinazione	α	90	1.571	rad
Area staffe/mm	Asw/s	0.000		mm2/mm


Azioni interne di verifica	N _{Ed} V _{Ed}							
INV_SLU_SLV	kN	kN						
vyz min	-34.5	56.1						
vyz max	-21.1	54.8						
Verifica di resistenza a taglio (senza		vyz m	in			V//7 P	12 V	
armature trasversali)		VyZ III	111			vyz n	IdX	
Coefficiente k	k	1.89	-		k	1.89	-	
Resistenza a taglio unitaria minima del cls	vmin	0.497753139		MPa	vmin	0.497753		MPa
Tensione media di compressione	σср	0.115		MPa	σср	0.070333		MPa
Rapporto geometrico di armatura longitudin	ρΙ	0.0061			ρΙ	0.0061		
Resistenza a taglio del solo cls	Vrd,c	155.4		kN	Vrd,c	153.7		kN
Resistenza minima	Vrd,c,min	130.3		kN	Vrd,c,min	128.6		kN
Resistenza al taglio	V_{Rd}	155.4		kN	Vrd	153.7		kN
Sforzo di taglio agente	V_{Ed}	56.1		kN	V_{Ed}	54.8		kN
	Non è nece	ssario armare a	taglio		Non è nece	ssario armar	e a taglio	

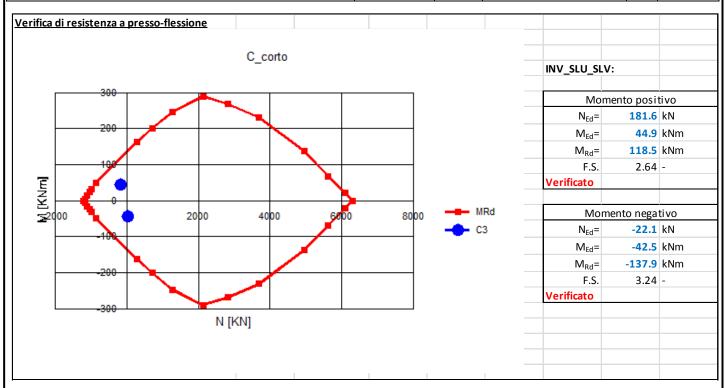


Verifiche stato tensionale					
INV_SLE_R_	SLD:				
		Momento	positivo		
N _{Ed} =	494.1	kN			
M _{Ed} =	21.1	kNm			
	di compress		tensioni d	i trazione n	ell'acciaio
	calcestruzzo)			
$\sigma_{c,max}$ =	0	N/mm ²	σ_s =	227.1	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		
		Momento	negativo		
N _{Ed} =	-18.1	kN			
M _{Ed} =	-25.5	kNm			
tensioni	di compress	sione nel	tancioni d	i trazione n	all'acciaio
calcestruzzo			terisioni u	i trazione in	en acciaio
$\sigma_{c,max}$ =	-2.33	N/mm ²	σ_s =	68.73	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		

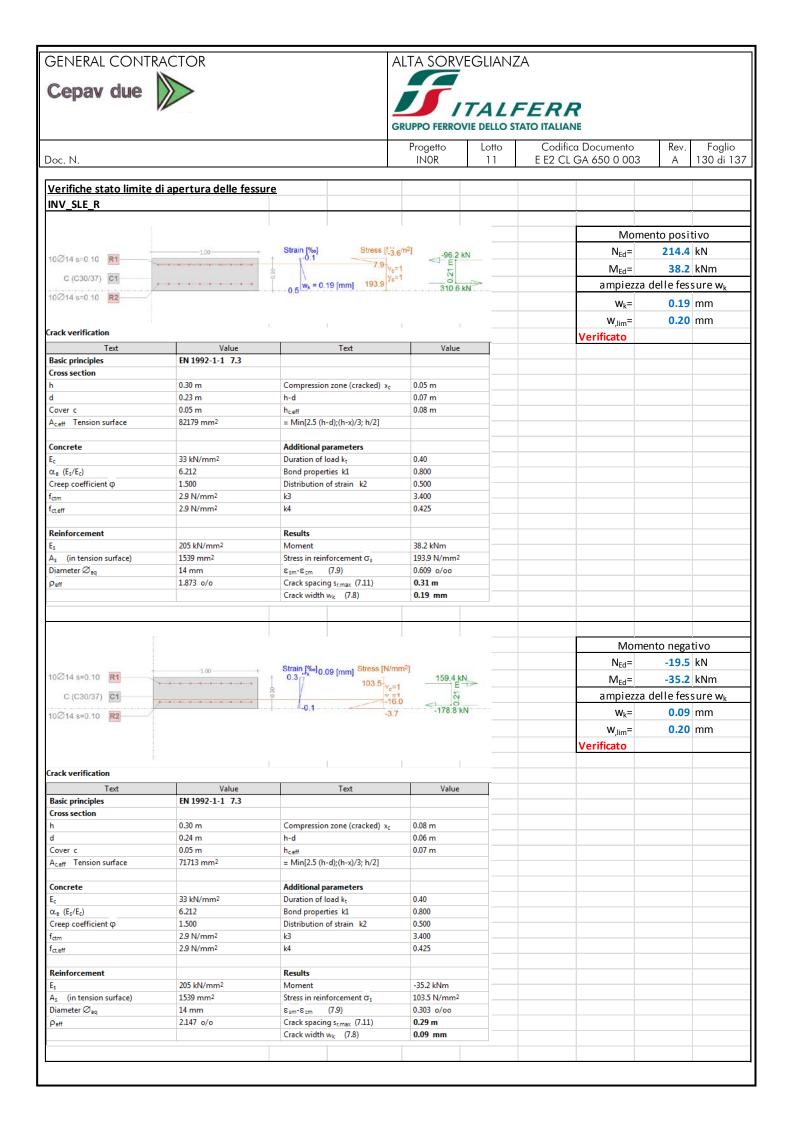
Verifiche stato tensionale				
INV_SLE_QP:				
		,		
Mon	nento posit	tivo		
N _{Ed} =	482.3	kN		
M _{Ed} =	18.3	kNm		
tensioni d	i compress	sione nel		
ca	alcestruzzo)		
$\sigma_{c,max}$ =	0	N/mm ²		
$\sigma_{c,lim}$ =	-12	N/mm ²		
Verificato				
		,		
Mom	nento nega	tivo		
N _{Ed} =	-19.9	kN		
M _{Ed} =	-19.1	kNm		
tensioni d	i compress	sione nel		
calcestruzzo				
$\sigma_{c,max}$ =	-1.76	N/mm ²		
$\sigma_{c,lim}$ =	-12	N/mm ²		
Verificato				

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 128 di 137

12.2.17 Copertura fabbricato – lato corto


Sezione di calcolo:	Soletta copertura, lato corto				
Geometria della sezione					
Base	b	1000		mm	
Altezza	h	300		mm	
Altezza utile	d	239		mm	
	-			mm ²	
Area	Ac	300000			
Copriferro	С	40		mm	
Distanza asse barra-bordo inf	c1	61		mm	
Distanza asse barra-bordo sup	c2	61		mm	
Resistenza cilindrica caratteristica	fck	30		MPa	
Coefficiente parziale di sicurezza cls	γс	1.5		-	
Coeff. riduttivo resistenze di lunga durata	αcc	0.85		-	
Resistenza di calcolo a compressione	fcd	17.0		MPa	
Diametro barre secondarie	Ф	14		mm	
<u>Armatura inferiore</u>		1°strato	2°strato		
Numero barre	n.	10	0		
Diametro barre	Ф	14	0		
Diametro equivalente	Ф	14			
Area strato	As	1539	.4	mm ²	
Rapporto di armatura	ρ	0.64	4	%	
<u>Armatura superiore</u>		1°strato	2°strato		
Numero barre	n.	10	0		
Diametro barre	Φ	14	0		
Diametro equivalente	Φ	14			
Area strato	As	1539	.4	mm ²	
Rapporto di armatura	ρ	0.64	4	%	
Armatura a taglio					
Numero bracci	nb	0		-	
Diametro staffe	Ф	0		mm	
Passo longitudinale	S	200		mm	
inclinazione	α	90	1.571	rad	
Area staffe/mm	Asw/s	0.000		mm2/mm	

Azioni interne di verifica	N_{Ed} V_{Ed}						
INV_SLU_SLV	kN	kN					
vxz min	-12.3	64.9					
vxz max	-12.9	66.6					
Verifica di resistenza a taglio (senza	vxz min					vxz max	
armature trasversali)		VXZII				VAZIIIdX	
Coefficiente k	k	1.91	-		k	1.91 -	
Resistenza a taglio unitaria minima del cls	vmin	0.507933148		MPa	vmin	0.507933	MPa
Tensione media di compressione	σср	0.041		MPa	σср	0.043	MPa
Rapporto geometrico di armatura longitudin	ρΙ	0.0064			ρΙ	0.0064	
Resistenza a taglio del solo cls	Vrd,c	148.8		kN	Vrd,c	148.9	kN
Resistenza minima	Vrd,c,min	122.9		kN	Vrd,c,min	122.9	kN
Resistenza al taglio	V_{Rd}	148.8		kN	Vrd	148.9	kN
Sforzo di taglio agente	V_{Ed}	64.9		kN	V_{Ed}	66.6	kN
	Non è nece	ssario armare a	a taglio		Non è nece	ssario armare a taglio	


 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 CL GA 650 0 003
 A
 129 di 137

Verifiche stato tensionale					
INV_SLE_R_S	SLD:				
		Momente	o positivo		
N _{Ed} =	214.4	kN			
M _{Ed} =	38.2	kNm			
tensioni d	li compress	sione nel	tensioni d	i trazione ne	all'acciaio
C	alcestruzzo)	tensioni u	i trazione ne	
$\sigma_{c,max}$ =	-3.67	N/mm ²	σ_s =	193.8	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		
		Momento	negativo		
N _{Ed} =	-19.5	kN			
M _{Ed} =	-35.2	kNm			
tensioni d	li compress	sione nel	toncioni d	i trazione ne	all'acciaio
calcestruzzo			tensioni u	i trazione n	en acciaio
$\sigma_{c,max}$ =	-3.71	N/mm ²	σ_s =	103.4	N/mm ²
$\sigma_{c,lim}$ =	-16.5	N/mm ²	$\sigma_{s,lim}$ =	337.5	N/mm ²
Verificato			Verificato		

Verifiche stato tensionale				
INV_SLE_Q	P:			
Mo	mento posi	tivo		
N _{Ed} =	196.2	kN		
$M_{Ed}=$	33.4	kNm		
tensioni	di compres	sione nel		
(calcestruzzo)		
$\sigma_{c,max}$ =	-3.18	N/mm ²		
$\sigma_{c,lim}$ =	-12	N/mm ²		
Verificato				
Мо	mento nega	tivo		
N _{Ed} =	-10.2	kN		
M _{Ed} =	-28.1	kNm		
tensioni	di compres	sione nel		
calcestruzzo				
$\sigma_{c,max}$ =	-2.96	N/mm ²		
$\sigma_{c,lim}$ =	-12	N/mm ²		
Verificato				

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 11
 E E2 CL GA 650 0 003
 A
 131 di 137

13. RESISTENZA AL FUOCO

Trattandosi di una via di esodo, si verifica con metodo tabellare la resistenza al fuoco ai sensi del D.M. 16/02/2007 – Tabella D.5 e Tabella D.6.3.

D.5 Solette piene e solai alleggeriti

D.5.1 La tabella seguente riporta i valori minimi (mm) dello spessore totale H di solette e solai, della distanza a dall'asse delle armature alla superficie esposta sufficienti a garantire il requisito R per le classi indicate.

Classe	30	60	90	120	180	240
Solette piene con armatura monodirezionale	H = 80 / a = 10	120/ 20	120 / 30	160 / 40	200 / 55	240 / 65
Solai misti di lamiera di acciaio con riempimento di calcestruzzo (1)	H = 80 / a = 10	120 / 20	120 / 30	160 / 40	200 / 55	240 / 65
Solai a travetti con alleggerimento (²)	H = 160 / a = 15	200 / 30	240 / 35	240 / 45	300 / 60	300 / 75
Solai a lastra con alleggerimento (3)	H = 160 / a = 15	200 / 30	240 / 35	240 / 45	300 / 60	300 / 75

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di H e a ne devono tenere conto nella seguente maniera: 10 mm di intonaco normale (definizione in D.4.1) equivale ad 10 mm di calcestruzzo; 10 mm di intonaco protettivo antincendio (definizione in D.4.1) equivale a 20 mm di calcestruzzo. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

- In caso di lamiera grecata H rappresenta lo spessore medio della soletta. Il valore di a non comprende lo spessore della lamiera. La lamiera ha unicamente funzione di cassero. In caso contrario la lamiera va protetta secondo quanto indicato in D.7.1
- (2) Deve essere sempre presente uno strato di intonaco normale di spessore non inferiore a 20 mm ovvero uno strato di intonaco isolante di spessore non inferiore a 10 mm.
- (3) In caso di alleggerimento in polistirene o materiali affini prevedere opportuni sfoghi delle sovrapressioni.

Tabella D.5:

solette piene con armatura monodirezionale – R120

spessore minimo: 250 mm > 160 mm verificato

distanza minima asse barra dalla superficie del getto: (40 + 5) = 45 mm > 40 mm verificato

D.6.3 La tabella seguente riporta i valori minimi (mm) dello spessore s e della distanza a dall'asse delle armature alla superficie esposta sufficienti a garantire il requisito REI per le classi indicate di pareti portanti esposte su uno o due lati che rispettano le seguenti limitazioni:

- altezza effettiva della parete (da nodo a nodo) ≤ 6 m (per pareti di piani intermedi) ovvero ≤ 4,5 m (per pareti dell'ultimo piano);

Classe	Esposto su un lato	Esposto su due lati
30	s = 120 / a = 10	120 / 10
60	60 s = 130 / a = 10 14	
90	s = 140 / a = 25	170 / 25
120	s = 160 / a = 35	220 / 35
180	s = 210 / a = 50	270 / 55
240	s = 270 / a = 60	350 / 60

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di a ne possono tenere conto nella maniera indicata nella tabella D.5.1. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

Tabella D.6.3:

pareti esposte su un lato - R120

spessore minimo: 800 mm > 160 mm **verificato**

distanza asse barra dalla superficie del getto: (40 + 6) = 46 mm > 35 mm verificato

GENERAL CONTRACTOR Cepav due	ALTA SORVI	TALI	FERR		
Doc. N.	Progetto	Lotto	Codifica Documento	Rev.	Foglio
	INOR	11	E E2 CL GA 650 0 003	A	133 di 137

14. VERIFICHE GEOTECNICHE DI SICUREZZA

14.1 Verifiche agli stati limite ultimi di tipo geotecnico

L'Eurocodice 7 e le NTC (2008) richiedono che per le fondazioni dirette vengano soddisfatte le verifiche di sicurezza nei confronti degli stati limite ultimi indotti dallo sviluppo di meccanismi di collasso dovuti sia alla mobilitazione della resistenza del terreno (SLU-GEO) sia al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa (SLU-STR).

Nel presente capitolo sono presi in esame gli stati limite ultimi di tipo geotecnico relativamente alla verifica della capacità portante dell'insieme fondazione – terreno. La verifica allo scorrimento sul piano di posa è considerata automaticamente soddisfatta in quanto struttura interrata.

La verifiche sono state condotte adottando sia il primo approccio progettuale (DA1), relativamente alla seconda combinazione (DA1-C2), più severa nei riguardi del dimensionamento geotecnico, sia il secondo approccio progettuale (DA2) che prevede un'unica combinazione di gruppi di coefficienti di sicurezza parziali.

Nelle tabelle 1 e 2 sono riportati i risultati delle verifiche di sicurezza relativamente all'uscita di sicurezza. Le verifiche risultano ampiamente soddisfatte. Si osserva che il margine di sicurezza è ulteriormente elevato avendo considerato l'eccentricità del carico dovuto alle spinte generate dai carichi di cantiere in superficie (Q4_sovr = 8.82kPa), i quali sono in realtà controbilanciati dalla spinta del terreno sulle pareti opposte, e avendo trascurato la sottospinta dell'acqua.

Tabella 1 – Uscita di sicurezza (GA65) - Approccio progettuale 1 – combinazione 2: risultati della verifica di capacità portante.

Elemento:	GA65		
Verifica capacità portante	Appro	ccio 1 C	Combinazione 2
Elemento / simbolo	Valore	Unità	Note / Commenti
Sollecitazione sul piano di posa			
В	8	m	Larghezza della fondazione
L	11.8	m	Lunghezza della fondazione
A.tot	94.4	m^2	Sezione nominale
N _{Ed}	24400	kN	Risultante verticale in fondazione
Direz. X			
$M_{y,Ed}$	21920	kNm	Momento risultante in fondazione attorno all'asse y
ев	0.90	m	Eccentricità della risultante dei carichi lungo la larghezza B
B'	6.20	m	Dimensione efficace asse x
Direz. Y			
$M_{x,Ed}$	14860	kNm	Momento risultante in fondazione attorno all'asse x
eL	0.61	m	Eccentricità della risultante dei carichi lungo la lunghezza L
L'	10.58	m	Dimensione efficace asse y
A'	65.6	m^2	Sezione ridotta
q, _{Ed}	372	kN/m²	Pressione risultante sull'area effettiva equivalente B' x L'
$V_{x,Ed}$	0	kN	Risultante orizzontale in fondazione
εR	0.0	0	inclinazione della risultante rispetto al piano di posa
Resistenza ultima terreno			

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA ITALFERR

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 E E2 CL GA 650 0 003 A 134 di 137

GRUPPO FERROVIE DELLO STATO ITALIANE

Elemento:	3A65		
Verifica capacità portante	Approd	cio 1 C	Combinazione 2
Elemento / simbolo	/alore	Unità	Note / Commenti
фк	33.0	0	angolo di res.al taglio terreno di fondazione (val.caratteristico)
φk (radianti)	0.58	rad	
ү тф	1.25	-	M2
•	27.45		angolo di res.al taglio terreno di fondazione (val.calcolo)
c'k	15.00	kPa	coesione efficace (val.caratteristico)
γm,C'k	1.25		M2
c'd	12.0		valore di progetto coesione
	24.76 13.86		fattore di capacità portante per coesione
	12.03		fattore di capacità portante per il sovraccarico fattore di capacità portante per peso proprio
'			
Yek1			peso terreno ricoprimento (val.caratteristico)
Υ mγ	1.00		M2
Yed1			peso terreno ricoprimento (val.calcolo) profondità piano di posa
			sovraccarico
qd yed x D + qd		kN/m ²	Soviaccanco
			nece terrana cottostante il nione di nece (val corettoriotica)
Yek2			peso terreno sottostante il piano di posa (val.caratteristico)
Yed2 ~	20 0	kN/m³	peso terreno sottostante il piano di posa (val.calcolo)
α fattori di forma s	U		inclinazione piano di posa rispetto all'orizzontale
sc sc	1.33	_	
sq	1.30		
sγ	0.77	-	
fattori profondità del piano di posa			
dc	1.50		
dq dγ	1.37 1.00		
fattori inclinazione del carico i	1.00	-	
ic	1.00	-	
iq	1.00		
iγ	1.00		
fattori inclinazione del piano camp	_	_	
gc	1.00 1.00		piano campagna orizzontale
gq gy	1.00		piano campagna orizzontale piano campagna orizzontale
91 fattori inclinazione base fondazion			pano sampagna snezonalo
b'c	1.00	-	
b'q	1.00		
b'γ	1.00		
p1, c		kPa	componente coesione
p2, q	8953 571		componente sovraccarico agente sul piano di posa componente dello sliding body
ρ3, γ	10115		
'`			carico limite fondazione
Ϋ́R	1.80		R2
q, _{Rd}	5619	кРа	resistenza di progetto

GENERAL CONTRACTOR Cepav due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Doc. N.	Progetto	Lotto	Codifica Documento	Rev.	Foglio	
	INOR	11	E E2 CL GA 650 0 003	A	135 di 137	

Elemento:	GA65
Verifica capacità portante	Approccio 1 Combinazione 2
Elemento / simbolo	Valore Unità Note / Commenti
n	15.1 - fattore di sicurezza

 $Tabella\ 2-Uscita\ di\ sicurezza\ (GA65)\ -\ Approccio\ progettuale\ 2:\ risultati\ della\ verifica\ di\ capacit\`a\ portante.$

Elemento:	GA65	!- O	
Verifica capacità portante Elemento / simbolo	Approo		Note / Commenti
Sollecitazione sul piano di posa	valuie	Ullita	Note / Comment
B	8	m	Larghezza della fondazione
L	11.8		Lunghezza della fondazione
A.tot	94.4	m^2	Sezione nominale
N _{Ed}	31120	kN	Risultante verticale in fondazione
Direz. X			
$M_{y,Ed}$	25300	kNm	Momento risultante in fondazione attorno all'asse y
ев	0.81	m	Eccentricità della risultante dei carichi lungo la larghezza B
B'	6.37	m	Dimensione efficace asse x
Direz. Y			
$M_{x,\text{Ed}}$	17150	kNm	Momento risultante in fondazione attorno all'asse x
eL	0.55	m	Eccentricità della risultante dei carichi lungo la lunghezza L
L'	10.70		Dimensione efficace asse y
Α'	68.2	m ²	Sezione ridotta
q ,Ed	456	kN/m²	Pressione risultante sull'area effettiva equivalente B' x L'
$V_{x,Ed}$		kN	Risultante orizzontale in fondazione
εR	0.0	0	inclinazione della risultante rispetto al piano di posa
Resistenza ultima terreno			
φ _k	33.0		angolo di res.al taglio terreno di fondazione (val.caratteristico
φk (radianti)	0.58		
Υ mφ	1.00		M1
φ _d	33.00		angolo di res.al taglio terreno di fondazione (val.calcolo)
c'k	15.00		coesione efficace (val.caratteristico)
Y m,C'k	1.00		M1
c'd		kPa	valore di progetto coesione
Nc Nq	38.64 26.09		fattore di capacità portante per coesione fattore di capacità portante per il sovraccarico
Νγ	29.33		fattore di capacità portante per il soviaccanco
Vek1			peso terreno ricoprimento (val.caratteristico)
y eκτ y mγ	1.00		M1
			peso terreno ricoprimento (val.calcolo)
γ _{ed1}	18.00		profondità piano di posa
qd			sovraccarico
yed x D + qd		kN/m ²	
Vek2			peso terreno sottostante il piano di posa (val.caratteristico)
•			peso terreno sottostante il piano di posa (val.calcolo)
Yed2	20	VIN/III.	peso terreno sottostante il piano di posa (val.calcolo)

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GA 650 0 003 A 136 di 137

Elemento:	GA65	
Verifica capacità portante	Approccio	2
Elemento / simbolo	Valore Un	tà Note / Commenti
α	0 °	inclinazione piano di posa rispetto all'orizzontale
fattori di forma s		
sc	1.40 -	
sq	1.39 -	
sγ	0.76 -	
fattori profondità del piano di po	sa d	
dc	1.49 -	
dq	1.33 -	
dγ	1.00 -	
fattori inclinazione del carico i		
ic	1.00 -	
iq	1.00 -	
ίγ	1.00 -	
fattori inclinazione del piano can	npagna g	
gc	1.00 -	piano campagna orizzontale
gq	1.00 -	piano campagna orizzontale
gy	1.00 -	piano campagna orizzontale
fattori inclinazione base fondazione	one b'	
b'c	1.00 -	
b'q	1.00 -	
b'γ	1.00 -	
p1, c	1214 kPa	·
p2, q	17356 kPa	a componente sovraccarico agente sul piano di posa
р3, ү	1424 kPa	a componente dello sliding body
q ,ult	19994 kPa	a carico limite fondazione
Ϋ́R	2.30 -	R3
q ,Rd	8693 kPa	a resistenza di progetto
n	19.0 -	fattore di sicurezza

14.2 Verifiche agli stati limite ultimi idraulici

In accordo alle indicazioni riportate al paragrafo 6.2.3.2 delle NTC (2008), l'opera geotecnica corrispondente alla struttura definitiva dell'uscita di sicurezza viene verificata nei confronti del possibile stato limite di sollevamento (UPL).

Per questa verifica l'azione instabilizzante di progetto $V_{inst,d}$ corrisponde alla sottospinta idraulica in fondazione, funzione del livello di falda alla progressiva in oggetto. A lungo termine, il tampone in jet-grouting non viene considerato. L'azione stabilizzante $G_{stb,d}$ su cui contare corrisponde al peso proprio della struttura del pozzo.

I coefficienti parziali sulle azioni sono indicati nella Tab. 6.2.III delle NTC (2008).

				γ		
<u>Carichi stabilizzanti</u>	B (m)	L (m)	h (m)	(kN/m3)	no.	P (kN)
Peso della struttura						
platea	8	11.8	0.8	25	1	1888
riempimento in cls	6.4	10.2	0.3	25	1	489.6
muro lato 1	0.8	11.8	17.41	25	1	4108.76
muro lato 2	0.8	6.4	17.41	25	1	2228.48
muro lato 3	0.8	11.8	17.41	25	1	4108.76
muro lato 4	0.8	6.4	17.41	25	1	2228.48
muro interno scale	0.4	4.2	18.91	25	1	794.22
pianerottoli	6.4	3	0.25	25	6	720
scale	3	4.9	0.25	25	7	643.125
apertura cunicolo	0.8	3	3.7	-25	1	-222
soletta al p.c. (pianerottolo)	6.4	3	0.4	25	1	192
soletta al p.c. (sbalzo)	3	3	0.4	25	1	90
fabbricato - muri lato lungo	0.4	11	3.58	25	2	787.6
fabbricato - muri lato lungo	0.4	6.4	3.58	25	2	458.24
fabbricato - finestre	0.4	1.6	1.75	-25	2	-56
fabbricato - porte	0.4	1	2.15	-25	2	-43
fabbricato - copertura	8.2	12	0.3	25	1	738
fabbricato - cordoli copertura	0.15	40.4	0.5	25	1	75.75
					Tot.	19230

	Zfalda			γ		
Carichi instabilizzanti	(m)	Z p.f. (m) DZ		A (m2)	(kN/m3)	Spinta (kN)
Sottospinta	122.75	107.75	15	94.4	10	14160

Verifica al sollevamento (UPL)	γF	Utot (kN)	Gtot (kN)	Verifica
Vinst,d	1.3	1416	0	15576
Gstb,d	0.9	€	19230	17307
Vinst,d < Gstb,d ?				SI
F.S.				1.11

Tabella 3 - Risultati verifiche allo stato limite idraulico di sollevamento