COMMITTENTE:

ALTA SORVEGLIANZA:

CUP: F81H91000000008

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA A.V. /A.C. TORINO – VENEZIA Tratta MILANO – VERONA Lotto funzionale Brescia-Verona

PROGETTO ESECUTIVO

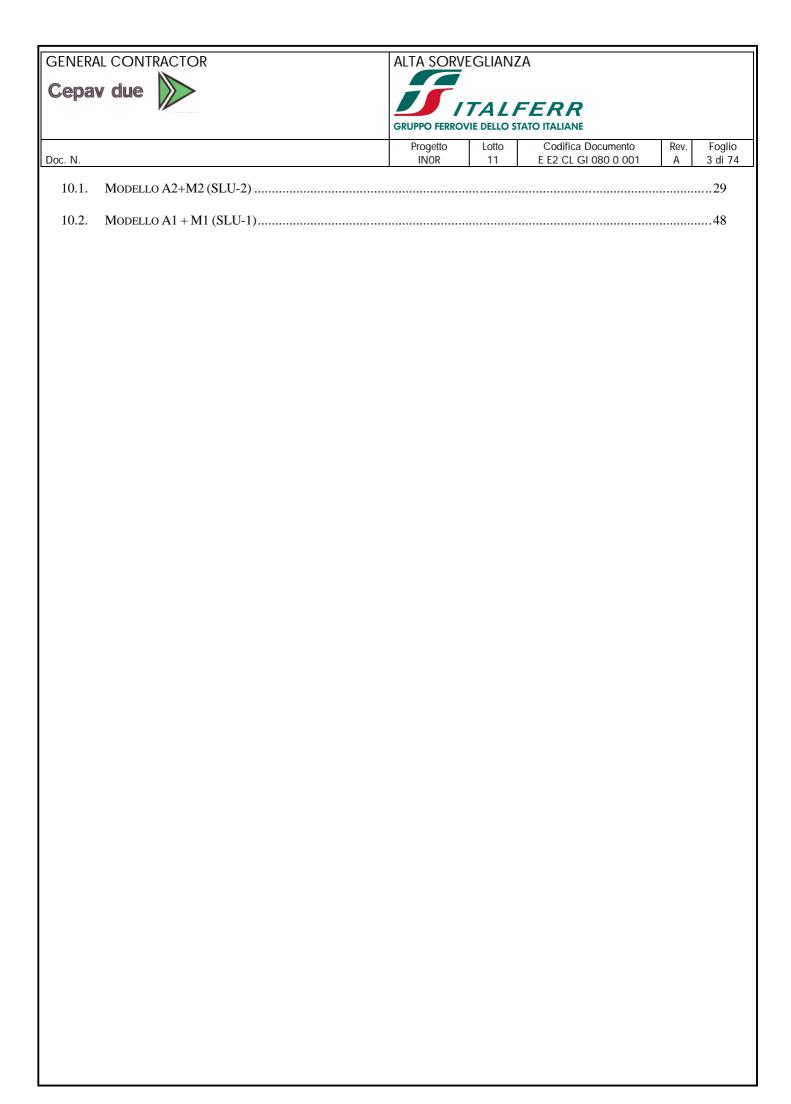
Progetto cofinanziato dalla Unione Europea

GALLERIA NATURALE SAN GIORGIO IN SALICI IMBOCCO LATO MILANO (GI08)

Pk 140+502.85

Relazione di calcolo opere provvisionali

GENERAL CONTRA	CTOR			DIR	DIRETTORE LAVORI					
Consorzio Cepav due	e (Consorzio Direttore c (Ing.J.)	Cepaw du Iel(Consor Tarànta)	Vali ZİO	Valido per costruzione					
Data:				Data	a:					
COMMESSA	LOTTO	FASE EN	TE TPO	DOC	OPERA/DISCIPLINA	PROGR	REV			
I N 0 R	1 1	EE	2 C	L	G I 0 8 0 0	0 0 1	Α			
PROGETTAZION	Ē						IL PROGETTIŞTA			
Rev. De:	scrizione	Redatto	Data	Verificato	Data Antegrato	N Data V	A A A			
A En	nissione	REGE	10/07/18	MERLINI	10/070% ITOMMA	A 20/07/18				
В					TAR MYT	A				
С					Jindustriale dell'Informazi	one	Data: 10/07/18			
CIG. 751447334	IA		· · · · · · · · · · · · · · · · · · ·		10.	R11FE2CLGI080	00001A 04 doc			


GENERAL CONTRACTOR

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL GI 080 0 001 A 2 di 74

INDICE	
1. INTRODUZIONE	4
1.1. OGGETTO E SCOPO	4
1.2. Breve descrizione del progetto	4
2. DOCUMENTI DI RIFERIMENTO	5
2.1. Elaborati di Progetto Esecutivo	5
2.2. NORMATIVE E RACCOMANDAZIONI	5
2.3. SPECIFICHE TECNICHE DI RIFERIMENTO	6
3. DESCRIZIONE DELLE OPERE E FASI ESECUTIVE	7
3.1. Fasi realizzative	9
4. INQUADRAMENTO GEOLOGICO	10
5. MODELLO GEOTECNICO DI RIFERIMENTO	12
5.1.1. Definizione della stratigrafia di riferimento	12
5.1.2. Andamento della falda	13
5.1.3. Valori caratteristici e di progetto dei parametri geotecnici	13
6. CARATTERISTICHE DEI MATERIALI STRUTTURALI	14
7. SOFTWARE DI CALCOLO	15
8. STATI LIMITE	16
8.1. Azioni	16
8.2. DIMENSIONAMENTO DELLE OPERE DI SOSTEGNO	16
9. OPERE DI SOSTEGNO	19
9.1. RISULTATI DELLE ANALISI E VERIFICHE GEOTECNICHE	22
9.1.1. Verifica del complesso opera-terreno	22
9.1.2. Verifica di stabilità globale	23
9.2. RISULTATI DELLE ANALISI E VERIFICHE STRUTTURALI	24
9.2.1. A1+M1 (SLU-1)	24
9.2.2. $A_k + M1 (EQK STR)$	26
10. ALLEGATI NUMERICI	29

1. INTRODUZIONE

1.1. Oggetto e scopo

Nella presente relazione si riportano le analisi e le verifiche delle opere di sostegno provvisorie che si rendono necessarie in corrispondenza dell'imbocco lato Milano (GI08) della galleria naturale San Giorgio in Salici prevista nell'ambito del progetto della linea A.V. – A.C. Torino – Venezia lungo la tratta Milano – Verona.

In corrispondenza di tale imbocco dovranno essere realizzate delle opere provvisionali per sostenere gli scavi, la tipologia di intervento previsto è la realizzazione di un paratia ad arco in jet grouting armata con tubi metallici.

1.2. Breve descrizione del progetto

La galleria San Giorgio in Salici è suddivisa in tre opere distinte (WBS):

- SAN GIORGIO IN SALICI OVEST, corrispondente ad una galleria artificiale monocanna, a doppio binario, con sezione policentrica (GA16);
- SAN GIORGIO IN SALICI, corrispondente ad una galleria naturale monocanna, a doppio binario (GN04);
- SAN GIORGIO IN SALICI EST, corrispondente ad una galleria artificiale monocanna, a doppio binario a sezione policentrica (GA17);

le quali sono ubicate poco a sud dell'omonimo abitato, posto nel Comune di Sona, in provincia di Verona tra le località di Castelnuovo del Garda e Sommacampagna; il tracciato ferroviario interferisce nel suo primo tratto (nel verso delle progressive crescenti) con l'Autostrada A4 Milano – Venezia, per poi svilupparsi leggermente a Nord della stessa.

In particolare le opere dell'imbocco lato Milano alla progressiva 140+502.85, costituiscono il sostegno degli scavi relativi alla parte terminale della galleria artificiale GA16, dalla progressiva 140+462.85 e fino in corrispondenza dell'imbocco della galleria naturale, per una lunghezza di circa 40 m. Le opere di sostegno provvisionale consistono in una paratia ad arco in jet-grouting composta da tre fila di colonne disposte a quinconce, con le due esterne armate con tubi metallici.

2. DOCUMENTI DI RIFERIMENTO

Nella stesura della relazione si è fatto riferimento a quanto di seguito elencato.

2.1. Elaborati di Progetto Esecutivo

Nel seguito si riporta l'elenco elaborati della WBS GI08, di cui la presente relazione costituisce parte integrante.

l .				_							, , , ,
		(CODIC	E D	ocu	IMEN	ITO				DESCRIZIONE
INOR	11	Ε	E2	С	L	GI	08	0	0	001	GALLERIA NATURALE SAN GIORGIO IN SALICI IMBOCCO LATO MILANO (GI08) - Pk 140+502.85 - Relazione di calcolo opere provvisionali
INOR	11	E	E2	P	Z	GI	08	0	0	001	GALLERIA NATURALE SAN GIORGIO IN SALICI IMBOCCO LATO MILANO (GI08) - Pk 140+502.85 - Opere provvisionali - Paratia in Jet Grouting - Pianta
INOR	11	E	E2	В	Z	GI	08	0	0	001	GALLERIA NATURALE SAN GIORGIO IN SALICI IMBOCCO LATO MILANO (GI08) - Pk 140+502.85 - Opere provvisionali - Paratia in Jet Grouting - Prospetto, sezioni e particolari
INOR	11	Ε	E2	В	В	GI	08	0	0	001	GALLERIA NATURALE SAN GIORGIO IN SALICI IMBOCCO LATO MILANO (GI08) - Pk 140+502.85 - Concio d'attacco - Dima, scavo e consolidamento
INOR	11	Ε	E2	В	Z	GI	08	0	0	002	GALLERIA NATURALE SAN GIORGIO IN SALICI IMBOCCO LATO MILANO (GI08) - Pk 140+502.85 - Concio d'attacco - Carpenteria centina e dettagli costruttivi - Dima
INOR	11	Ε	E2	В	Z	GI	08	0	0	003	GALLERIA NATURALE SAN GIORGIO IN SALICI IMBOCCO LATO MILANO (GI08) - Pk 140+502.85 - Concio d'attacco - Carpenteria centina e dettagli costruttivi - Sezione d'attacco
INOR	11	Ε	E2	В	Z	GI	08	0	0	005	GALLERIA NATURALE SAN GIORGIO IN SALICI IMBOCCO LATO MILANO (GI08) - Pk 140+502.85 - Concio d'attacco - Carpenteria rivestimento definitivo
INOR	11	E	E2	В	Z	GI	08	0	0	004	GALLERIA NATURALE SAN GIORGIO IN SALICI IMBOCCO LATO MILANO (GI08) - Pk 140+502.85 - Concio d'attacco - Armatura
INOR	11	Ε	E2	R	0	GI	08	0	0	001	GALLERIA NATURALE SAN GIORGIO IN SALICI IMBOCCO LATO MILANO (GI08) - Pk 140+502.85 - Relazione di confronto PD/PE
INOR	11	E	E2	4	Т	GI	08	0	0	001	GALLERIA NATURALE SAN GIORGIO IN SALICI IMBOCCO LATO MILANO (GI08) - Pk 140+502.85 - Tabella materiali

2.2. Normative e raccomandazioni

- **D. M. Infrastrutture 14 gennaio 2008** (NTC 2008) "Nuove Norme tecniche per le costruzioni"
- **CIRCOLARE 2 febbraio 2009, n. 617** "Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008"
- Legge 05.11.1971 n. 1086 "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica"
- UNI EN 1992-1-1 novembre 2005 (*EC2*) "Progettazione delle strutture di calcestruzzo Parte 1: Regole generali e regole per edifici"
- UNI EN 1998-5 gennaio 2005 (*EC8*) "Progettazione delle strutture per la resistenza sismica— Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici"
- Regolamento U.E. nr. 1299/2014 della commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea. Pubblicato su Gazzetta Ufficiale anno 156° n°10 del 5 febbraio 2015.

• Regolamento U.E. nr. 1303/2014 della commissione del 18 novembre 2014 relativo alla specifica tecnica di interoperabilità concernente la «sicurezza nelle gallerie ferroviarie» del sistema ferroviario dell'Unione europea (norma STI)

AICAP-AGI (2012). Ancoraggi nei terreni e nelle rocce. Raccomandazioni

2.3. Specifiche Tecniche di Riferimento

La presente fase progettuale, fa riferimento al nuovo Manuale di Progettazione RFI.

- Manuale di Progettazione delle Opere Civili. Parte II Sezione 4 Gallerie (RFI DTC SI GA MA IFS 001 A).
 Emissione 30/12/2016;
- Manuale di Progettazione delle Opere Civili. Parte II Sezione 3 Corpo Stradale (RFI DTC SI CS MA IFS 001 A). Emissione 30/12/2016;
- Manuale di Progettazione delle Opere Civili. Parte II Sezione 6 Sagome e Profilo minimo degli ostacoli (RFI DTC SI CS MA IFS 003 A). Emissione 30/12/2016;
- Manuale di Progettazione delle Opere Civili. Parte II Sezione 2 Ponti e strutture (RFI DTC SI PS MA IFS 001 A). Emissione 30/12/2016;
- Specifica funzionale per il sistema di protezione e controllo accessi delle Gallerie Ferroviarie (RFI DPO PA LG A). Emissione 5/5/2008;
- Sovraccarichi per il calcolo dei Ponti Ferroviari: Istruzioni per la progettazione, l'esecuzione e il collaudo (Istruzioni FS: I/SC/PS-OM/2298). Emissione 13/01/1997;

GENERAL CONTRACTOR Cepav due	ALTA SORVE	TALI	FERR		
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	E E2 CL GI 080 0 001	Α	7 di 74

3. DESCRIZIONE DELLE OPERE E FASI ESECUTIVE

Per la paratia dell'imbocco lato Milano della galleria San Giorgio in Salici si è scelto di adottare la tecnologia del jetgrouting per creare un setto di terreno consolidato a forma di arco attorno all'imbocco stesso. In Figura 3.1 è riportata una vista in pianta degli interventi previsti, mentre in Figura 3.2 sono riportate delle sezioni trasversali e longitudinali.

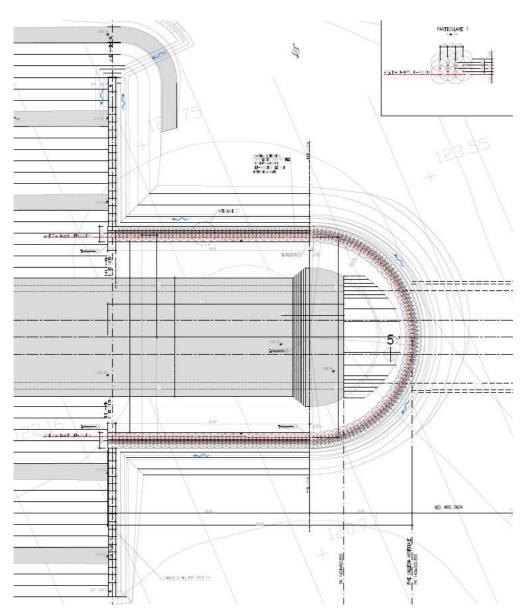


Figura 3.1 – Vista in pianta della paratia in jet grouting all'imbocco lato Milano GI08.

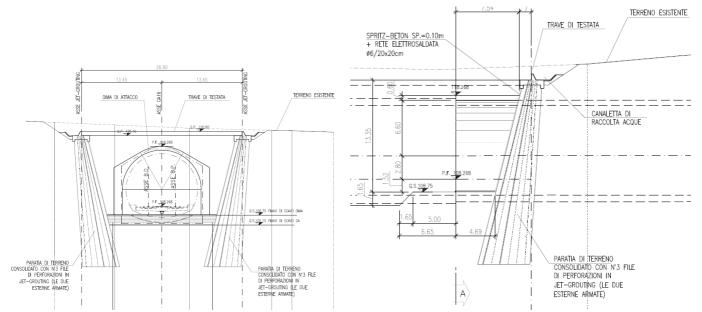


Figura 3.2 - Sezione trasversale e longitudinale della paratia in jet grouting all'imbocco lato Milano GI08.

La tecnologia del jet-grouting consiste nell'effettuare nel terreno in sito delle iniezioni ad alta pressione di miscele cementizie allo scopo di ottenere delle colonne di terreno consolidato e con proprietà geomeccaniche migliorate. In base alla geometria di esecuzione delle perforazioni, necessarie per realizzare le colonne di jet-grouting, vengono quindi ottenuti dei volumi di terreno consolidato delle forme e dimensioni volute.

La paratia si sviluppa tra le progressive 140+462.85 fino all'imbocco della galleria naturale alla progressiva 140+502.85 per una lunghezza di circa 40 m. La paratia in jet –grouting si raccorda in questo modo alle due paratie laterali di pali di grosso diametro presenti alla progressiva 140+462.85, e andando a collaborare assieme, le due opere garantiscono continuità all'intervento, prima del tratto scavato a cielo aperto.

Le perforazioni eseguite per il jet-grouting sono disposte su tre file a quinconce con passo longitudinale di 0.5 m e trasversale di 0.4 m e inclinazione variabile rispetto alla verticale tra 5° della fila di monte, 10° della fila centrale e 15° della fila di valle.

Le due colonne più esterne di ogni fila sono inoltre armate con un tubo metallico del diametro di 88.9 mm e spessore di 10 mm. Le colonne in jet-grouting vengono poi collegate in testa da un cordolo in c.a. per solidarizzarle e irrigidire la struttura.

L'intervento è completato con la realizzazione di uno strato di calcestruzzo proiettato dello spessore di 10 cm armato con rete elettrosaldata del diametro di 6 mm e maglia 20 x 20 cm, da effettuarsi a seguito di ciascun ribasso dello scavo, e l'esecuzione dei barbacani suborizzontali, disposti su 2 file e di lunghezza pari a 5.0-8.0 m.

Per quanto riguarda in dettaglio la geometria della paratia ed i particolari costruttivi si rimanda agli elaborati grafici relativi.

3.1. Fasi realizzative

FASE 1: realizzazione del piano di lavoro ed esecuzione delle colonne di jet-grouting

- Dalla quota attuale del piano campagna, è previsto un pre-sbancamento per realizzare un piano di lavoro alle quote indicate negli elaborati grafici.
- Tracciamento di tutti gli assi sulla base delle geometrie note ed esecuzione del consolidamento in jet-grouting: si realizzano tre file di perforazioni, inclinate tra circa il 4° e 14° rispetto alla verticale, disposte a quinconce con passo 0.5 m in direzione longitudinale valutato sull'asse della paratia e 0.40 m in direzione trasversale alla paratia. L'interasse è stato calcolato per avere almeno la tangenza al piede delle colonne della paratia. L'assunzione è cautelativa in quanto va tenuto conto anche dell'errore di verticalità che aumenta all'aumentare dell'inclinazione delle perforazioni.

Si osserveranno le seguenti modalità costruttive:

- perforazione secondo la geometria di progetto con $\emptyset \ge 100$ mm;
- iniezione, durante la risalita della batteria di perforazione, di miscele acqua e cemento in pressione per costituire la colonna di terreno consolidato prevista secondo le modalità operative da tarare in un apposito campo prova;
- inserimento nelle perforazioni dei tubi di armatura in acciaio del diametro di 88.9 mm, spessore 10 mm tipo S 355 JR o superiore che dovranno uscire per almeno 50 cm dalla testa delle singole perforazioni.

Il consolidamento dovrà raggiungere una resistenza media a rottura a compressione monoassiale a 28 gg. pari ad almeno 5 MPa.

FASE 2: esecuzione del cordolo di collegamento di testa

- si realizza un primo piano di scavo alla quota d'imposta della trave di coronamento della paratia, che avrà una forma "a cappuccio" per collegare ed irrigidire la paratia in jet-grouting, come riportato nell'elaborato grafico. La testa del consolidamento in jet-grouting lasciato scoperto viene scapitozzato per almeno 50 cm fino ad arrivare alla quota d'imposta della trave di testata. Le teste dei tubi dell'armatura vanno regolarizzate.
- si posa in opera l'armatura della trave e si procede al getto della trave di coronamento.

FASE 3: realizzazione degli scavi

- la realizzazione dello scavo all'interno della paratia dovrà avvenire per fasi di abbassamento successive, ognuna delle quali di profondità massima di 3.00÷4.00 m. Immediatamente dopo la realizzazione di una tappa di scavo, su tutta la superficie di paratia scavata, dovrà essere eseguito uno strato di calcestruzzo proiettato dello spessore di 10 cm armato con rete elettrosaldata del diametro di 6 mm con maglia 20x20 cm.
- al termine di ognuna fase di scavo, vanno infine realizzati i barbacani costituiti da tubi finestrati in PVC Ø ≥ 110 mm, aventi lunghezza e disposizione indicata negli appositi elaborati grafici.

Una volta completati gli scavi relativi alla paratia, potranno essere eseguite tutte le lavorazioni per la realizzazione del concio di attacco e della dima della galleria naturale e della galleria artificiale nel tratto interessato.

4. INQUADRAMENTO GEOLOGICO

L'imbocco occidentale della Galleria San Giorgio è situato sul terrazzo fluviale in sponda sinistra del Fiume Tione: esso delimita i depositi che costituiscono l'alveo attuale di questo corso d'acqua, caratterizzati dalla presenza di ghiaie a supporto di abbondante matrice sabbiosa o limosa, se dovuta al rimaneggiamento di sedimenti antichi molto alterati. L'opera attraversa quindi i rilievi collinari di origine glaciale del Pleistocene medio (corrispondenti ai cordoni morenici del Riss descritti da Venzo nel 1965), costituiti da diamicton massivo a supporto di matrice sabbioso-limosa, talora debolmente cementato, con clasti eterometrici aventi dimensioni massime sino a 2 m (massi erratici), da angolosi a subarrotondati, poligenici.

La Galleria San Giorgio attraversa inoltre i depositi fluvioglaciali dell'Allogruppo di Lonato e San Giorgio, rinvenibili nelle piane intermoreniche e costituiti da ghiaie da grossolane a molto grossolane a supporto di clasti con matrice sabbioso-limosa. L'unità è caratterizzata da un profilo di alterazione medio con la presenza di un suolo di colore bruno rossastro e spesso al massimo 1 m in cui si possono distinguere in essa le seguenti facies deposizionali:

• Depositi glaciali (mR)

Sono costituiti da diamicton massivi a supporto di matrice sabbioso limosa, talora debolmente cementati. I clasti sono eterometrici con dimensioni massime sino a 2 m (massi erratici), da angolosi a subarrotondati, poligenici. L'alterazione colpisce circa il 50% dei clasti con litologie carbonatiche da decarbonatate ad argillificate e litologie cristalline da fragili ad arenizzate.

• Depositi fluvioglaciali (fgR3, fgR2, fgR1)

Sono costituiti da ghiaie da grossolane a molto grossolane a supporto di clasti con matrice sabbioso-limosa. I clasti sono arrotondati e poligenici. L'alterazione colpisce circa il 50% dei clasti con litologie carbonatiche da decarbonatate ad argillificate e litologie cristalline da fragili ad arenizzate.

Nell'area occupata dai depositi alluvionali (Olocene) del fiume Tione non sono stati eseguiti sondaggi, tuttavia, alla pk 139+609, nei pressi del Fiume Tionello che scorre più ad Est, si evince che le piane fluviali sono costituite da sabbia fine da limosa ad argillosa con resti vegetali negli strati più superficiali e da ghiaia eterometrica.

La galleria attraversa quindi una collina (da pk 140+130 a pk 140+708), caratterizzata da depositi glaciali s.s., costituiti prevalentemente da ciottoli e ghiaia eterometrica subangolare in matrice sabbioso-limosa, sabbia medio-fine localmente limosa con ghiaia eterometrica e subordinati livelli di limo sabbioso.

Procedendo verso Est, intercalati ai depositi sopra descritti, sono presenti sedimenti di origine fluvioglaciale, costituiti da ghiaia e sabbia con ghiaia. Fino alla fine del tratto in naturale (pk 142+233), la Galleria San Giorgio attraversa altri rilievi di origine glaciale nei quali prevalgono limi argilloso-sabbiosi con ghiaia eterometrica epoligenica e ciottoli in abbondante matrice limoso-sabbiosa. In particolare alla pk 141+314 sono presenti lenti di argilla sabbiosa con ghiaia e dalla pk ca. 141+530 aumenta la percentuale di depositi sabbiosi e limosi interessati dallo scavo della galleria.

Le piane fluvioglaciali, che intersecano le suddette colline sono caratterizzate dalla presenza di terreni costituiti prevalentemente da sabbia con ghiaia eterometrica localmente limosa. Dalla progressiva 142+308 la galleria artificiale attraversa un'area (per ca. 600m) con sedimenti fluvioglaciali costituiti da sabbia ghiaiosa talora debolmente limosa, con clasti eterometrici e poligenici, da angolosi ad arrotondati, e ghiaia sabbiosa. Tra le pk 142+920 e 143+600 la galleria attraversa un corpo morenico caratterizzato da depositi glaciali s.s., costituiti da ghiaia con sabbia limosa e ciottoli, con clasti eterometrici, poligenici, da subangolosi a subarrotondati, e sabbia talora limosa con ghiaia eterometrica subangolosa.

Inoltre nell'area della galleria San Giorgio sono frequenti i massi erratici, rilevati in superficie, con dimensioni anche superiori a 2 m, spesso rimossi dalla loro posizione originaria. I sondaggi geognostici eseguiti durante le campagne

	GRUPPO FERROVIE DELLO STATO ITALIANE
Doc. N.	Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL GI 080 0 001 A 11 di 74
d'indagine (1992-1994, 2001-2002, 2004 e 2005), in reasimili, non indicano la presenza significativa di trovanti.	altà, a differenza di quanto riscontrato in contesti geologici

5. MODELLO GEOTECNICO DI RIFERIMENTO

In questa tratta, per la definizione della stratigrafia di progetto e delle proprietà geotecniche dei materiali si sono utilizzati i dati relativi ai sondaggi riportati nella seguente Tabella 5.1:

Ι.									
	Denominazione Sondaggio	Campagna	PK [km]	Quota Boccaforo [m s.l.m.]	Lunghezza Sondaggio [m]	Distanza Asse [m]	Direzione [Nord/Sud]	Prove / strumentazione installata	Piezometro [m. da p.c.]
	ES119	1992-1994	140+179,91	125,40	25	465,0	S	Sondaggio, SPT	
	4SN033	2004	140+187,84	118,99	60	3,7	N	Sondaggio con piezometro a tubo aperto, SPT, Lefranc, pocket penetrometer	30,00-50,00
	S30-XA202B170	2002	140+252,41	103,00	30,0	656,8	S	Sondaggio con piezometro a tubo aperto, SPT, Lefranc, Menard, pocket penetrometer, vane test	11,00-14,00
П	ES009	1992-1994	140+319,91	105,94	25	550,0	S	Sondaggio, SPT	
П	AV-SO-CH-01 A	2017-2018	140+477,28	121,58	29	0,4	N	Sondaggio, SPT, cross-hole	
	S31-XA202G171	2002	140+477,49	117,50	25,0	600,7	N	Sondaggi con piezometro Casagrande, SPT, Lefranc, Menard, pocket penetrometer, vane test	21,5
П	AV-SO-CH-01 B	2017-2018	140+479,20	121,43	29	3,2	S	Sondaggio, SPT, cross-hole	
	4SS034	2005	140+465,00	123,27	40	100,3	N	Sondaggio,con piezometro a tubo aperto SPT, cross-hole	0÷40
	4SA034	2005	140+465,00	123,21	30	100,3	N	Sondaggio, SPT, cross-hole	
	4SB034	2005	140+465,00	123,25	30	100,3	N	Sondaggio, SPT, cross-hole	
	ES120	1992-1994	140+519,91	116,896	40	550,0	S	Sondaggio con piezometro a tubo aperto, SPT	

Tabella 5.1 - Indagini geognostiche considerate nella caratterizzazione geotecnica.

Nonostante il numero di verticali eseguite nell'area, il più rappresentativo ed adatto a descrivere le condizioni stratigrafiche in corrispondenza dell'imbocco lato Milano è il sondaggio AV-SO-CH-01 posto proprio in prossimità dell'imbocco stesso della galleria naturale. Per quanto riguarda le elaborazioni geotecniche e maggiori dettagli sulle analisi eseguite, fare riferimento alla relativa Relazione Geotecnica INOR11EE2RBGN0400001.

5.1.1. Definizione della stratigrafia di riferimento

Il sondaggio AV-SO-CH-01 raggiunge una profondità di 30 m dal piano campagna.

Lungo la verticale AV-SO-CH-01 oltre allo strato coltivo si riconoscono uno strato di sabbia limosa alternato ad uno strato di sabbia ghiaiosa entrambi intercalati da livelli limosi fino a 14 m circa da p.c. Al di sotto di tale quota si ha uno strato di limo argilloso sabbioso.

Nelle Tabella 5.2 è riassunta la stratigrafia di progetto considerata nel tratto relativo all'imbocco GI08.

Profondità da p.c. [m]	Descrizione stratigrafica
da 0 a 1.5	Terreno di riporto/vegetale
da 1.5 a 14	Sabbia limosa/sabbia ghiaiosa con livelli di limo
da 14 a 30	Limo sabbioso con ghiaia

Tabella 5.2 – Stratigrafia di progetto per le opere dell'imbocco lato Milano della galleria San Giorgio in Salici.

5.1.2. Andamento della falda

La Figura 5.1 riassume l'andamento della falda nel tratto di interesse.

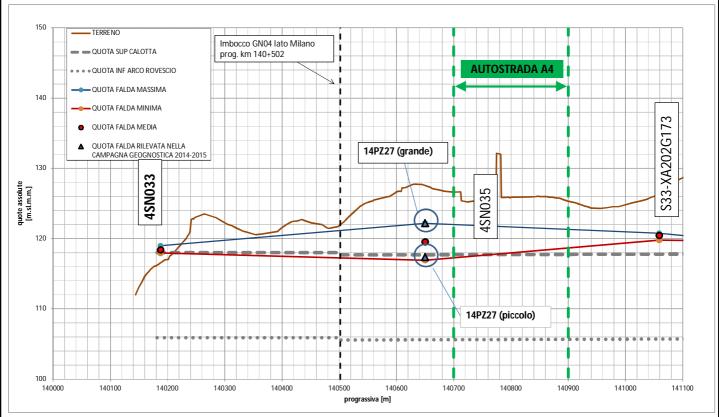


Figura 5.1 – Andamento della falda nel tratto della galleria artificiale ovest e del sottoattraversamento autostradale.

Per via sia del sistema di abbattimento della falda, che verrà predisposto durante le fasi di scavo e realizzazione delle opere, sia della realizzazione dei barbacani in corrispondenza della paratia, lo scavo viene considerato fuori falda durante tutte le fasi realizzative.

5.1.3. Valori caratteristici e di progetto dei parametri geotecnici

In conclusione, sulla base dei valori riassunti nei precedenti paragrafi, e di quanto esposto nella Relazione Geotecnica INOR11EE2RBGN0400001 della galleria San Giorgio in Salici, nella seguente Tabella 5.3 sono riportati i parametri geotecnici che saranno adottati per la Progettazione Esecutiva delle opere provvisionali in corrispondenza dell'imbocco lato Milano GI08.

STRATIGRAFIA	Da (m)	A (m)	e (-)	γ_d (kN/m ³)	w (%)	γ (kN/m³)	w _{sat} (%)	γ _{sat} (kN/m³)	OCR (-)	K ₀ (-)	c' _k (kPa)	φ' _k (°)	E _{vc} (MPa)	E _{UR} (MPa)	ν (-)
Terreno di riporto/vegetale	p.c.	1.5	1.00	13.3	26.9	16.8	38.5	18.3	1	0.50	5	23	20	32	0.35
Sabbia limosa/sabbia ghiaiosa con livelli di limo	1.5	5	0.40	18.9	10.6	20.9	15.1	21.8	2	0.76	10	37	60	150	0.30
Sabbia limosa/sabbia ghiaiosa con livelli di limo	5	10	0.35	19.6	9.2	21.4	13.2	22.2	2	0.76	20	37	75	188	0.30
Sabbia limosa/sabbia ghiaiosa con livelli di limo	10	14	0.35	19.6	9.2	21.4	13.2	22.2	2	0.75	30	36	100	250	0.30
Limo sabbioso con ghiaia	14	20	0.60	16.6	15.8	19.2	22.6	20.3	2	0.75	30	36	100	250	0.30
Limo sabbioso con ghiaia	20	30	0.60	16.6	15.8	19.2	22.6	20.3	2	0.75	50	36	112	280	0.30
Limo sabbioso con ghiaia	>	30	0.60	16.6	15.8	19.2	22.6	20.3	2	0.75	120	36	150	375	0.30

Tabella 5.3 – Galleria San Giorgio, imbocco lato Milano, parametri geotecnici per la progettazione esecutiva delle opere.

Cepav due	GRUPPO FERRON	TALF	FERR		
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	E E2 CL GI 080 0 001	Α	14 di 74

6. CARATTERISTICHE DEI MATERIALI STRUTTURALI

Si riportano di seguito le principali caratteristiche dei diversi materiali impiegati nelle opere in progetto, con l'indicazione dei valori di resistenza e deformabilità adottati nelle verifiche, nel rispetto delle indicazioni del DM 14/01/2008.

Strutture di sostegno provvisionali

Calcestruzzo	
Classe di resistenza	C25/30
Resistenza di progetto a compressione a 28 giorni	$f_{cd} = 0.85 f_{ck}/1.5 = 14.167 MPa$
Modulo elastico a 28 giorni	$E_{cm} = 22000(f_{cm}/10)^{0.3} \text{ MPa} = 31476 \text{ Mpa}$

Acciaio per armatura	
Tipo	B450C
Tensione di snervamento caratteristica	$f_{yk} \ge 450 \text{ MPa}$
Tensione di snervamento di progetto	$f_{yd} = f_{yk}/1.15 = 391.3 \text{ MPa}$
Modulo Elastico	E = 210000 Mpa

Acciaio per tubi e profilati							
Tipo	S355JR						
Tensione di snervamento caratteristica	$f_{yk} \ge 355 \text{ MPa}$						
Tensione di rottura caratteristica	$f_{tk} \ge 510 \text{ MPa}$						

Tabella 6.1 - Caratteristiche materiali da costruzione.

7. SOFTWARE DI CALCOLO

Le analisi numeriche sono state effettuate utilizzando il programma di calcolo RS2 nella versione 9.028. Il programma è prodotto dalla Rocscience Inc., software house canadese con sede a Toronto (Canada).

RS2 è un programma di calcolo agli elementi finiti bidimensionale per applicazioni geotecniche che permette di modellare le varie fasi realizzative di un'opera. I modelli di resistenza dei materiali coprono sia il campo elastico che quello plastico e permettono lo studio del comportamento tenso-deformativo del terreno e delle opere geotecniche di sostegno.

Il software si compone della suite di modellazione, del solver, nel quale è possibile controllare la convergenza del modello durante i vari stage di calcolo previsti, e dell'ambiente di interpretazione dei risultati numerici. Il controllo della qualità dei risultati è condotto tramite la valutazione dell'energia interna non bilanciata nel modello a ogni stage di calcolo, la convergenza si considera raggiunta quando tale quantità risulta inferiore ad un valore limite impostato.

RS2 permette inoltre di eseguire delle analisi di stabilità utilizzando il metodo "Shear strength reduction" che consiste nel valutare il fattore di sicurezza dell'opera andando a considerare di volta in volta dei parametri ridotti delle proprietà meccaniche dei geomateriali (angolo di attrito e coesione).

L'affidabilità del codice di calcolo è garantita dall'esistenza di un'ampia documentazione di supporto e dalle esperienze pregresse.

8. STATI LIMITE

Di seguito viene presentato l'elenco delle diverse analisi effettuate per il dimensionamento e la verifica delle opere oggetto di tale documento nello spirito del metodo semiprobabilistico agli stati limite, in accordo alle disposizioni del DM 14.01.2008 e al manuale di progettazione delle opere civili.

8.1. Azioni

Le azioni considerate per la verifica delle strutture di sostegno sono le seguenti:

- azioni permanenti strutturali: peso proprio degli elementi strutturali, spinta del terreno a monte e a valle dell'opera.
- azioni variabili: carico variabile sul piano campagna a monte della struttura di sostegno, Q_{1M}, atto a schematizzare nella fase costruttiva l'eventuale presenza di sovraccarichi di varia natura connessi alla realizzazione delle opere.
- azione sismica

Sulla base della definizione dei carichi di cui sopra, in accordo a quanto prescritto dal DM 14/01/2008, sono state individuate le combinazioni di carico per le verifiche di stati limite ultimi e di esercizio in condizioni statiche e in condizioni sismiche.

8.2. Dimensionamento delle opere di sostegno

Le verifiche delle strutture di sostegno sono state condotte nei riguardi dei seguenti stati limite ultimi (SLU):

- collasso del complesso opera-terreno;
- instabilità globale dell'insieme terreno-opera;
- sfilamento di uno o più ancoraggi;
- raggiungimento della resistenza in uno o più ancoraggi,
- raggiungimento della resistenza degli elementi strutturali.
- raggiungimento della resistenza in uno o più puntoni o di sistemi di contrasto;

Come prescritto dal DM 14/01/2008 per le strutture di sostegno flessibili, è stato adottato l'Approccio Progettuale 1 con le due combinazioni di coefficienti parziali (tabelle 6.2.I, 6.2.II e 6.5.I del DM 14/01/2008):

- Combinazione 1: A1 + M1 + R1
- Combinazione 2: A2 + M2 + R1.

Il dimensionamento geotecnico dell'opera è stato condotto con la verifica di stati limite ultimi GEO, applicando la Combinazione 2 (A2+M2+R1) e verificando che la resistenza mobilitata fosse sempre inferiore a quella disponibile.

Il corretto dimensionamento nei confronti degli SLU assicura che gli spostamenti dell'opera siano compatibili con le esigenze di funzionalità della stessa.

Per le analisi relative alla paratia armata in jet grouting, sono stati presi in considerazione i seguenti stati limite di progetto:

- Stato Limite Ultimo Combinazione A1+M1 (SLU-1): le analisi sono condotte considerando i valori di progetto delle azioni esterne A1, ottenute amplificando per 1.5/1.3 = 1.154 i valori caratteristici, mentre ai parametri geotecnici si assegnano valori caratteristici. Le sollecitazioni così calcolate sono successivamente state amplificate per 1.3.
- Stato Limite Ultimo Combinazione A2+M2 (SLU-2): le analisi sono svolte considerando i valori di progetto delle azioni esterne A2 (ottenuti amplificando per 1.3 i valori caratteristici, A2=γ2·Ak), le proprietà geotecniche sono ridotte dividendo i parametri caratteristici Mk per 1.25.
- Stato Limite Ultimo con sisma Combinazione $A_k + M1$ (EQK STR): secondo le indicazioni della normativa (par. 7.11.6.3 NTC2008), le analisi sono svolte considerando coefficienti parziali unitari sia per le azioni esterne (A_k) che per i parametri geotecnici $(M_1=M_k)$.
- Stato Limite Ultimo con sisma Combinazione A_k + M2 (EQK GEO): secondo le indicazioni della normativa (par. 7.11.1 NTC2008), le analisi sono svolte considerando coefficienti parziali unitari per le azioni esterne (A_k) e riducendo i parametri geotecnici caratteristici M_k di 1.25. Il sisma è valutato per lo stato limite di salvaguardia della vita (SLV).

Si sottolinea che per la combinazione A1+M1+R1 i coefficienti parziali sono applicati sugli effetti delle azioni, in accordo a quanto previsto nel § 6.2.3.1 "Verifiche nei confronti degli stati limite ultimi (SLU)" del D.M. 2008.

Nelle seguenti tabelle sono riportati i coefficienti parziali prescritti dalla normativa per gli Stati Limite Ultimi.

CARICHI	coeff. parziale	(A1) STR	(A2) GEO
Permanente sfavorevole		1.3	1.0
Permanente favorevole	coeff. parziale γ _G γ _Q	1.0	1.0
Variabile sfavorevole		1.5	1.3
Variabile favorevole	γο	0	0

Tabella 8.1 - Coefficienti parziali per le azioni o per l'effetto delle azioni

PARAMETRO	parametro al quale applicare il coeff.	coeff. parziale γm				
	parziale	M1	M2			
Tangente dell'angolo di resistenza al taglio	tan ¢ ' _k	γ_{ϕ} -1.00	γ_{ϕ} =1.25			
Coesione efficace	c' _k	γ _c '=1.00	γc'=1.25			
Resistenza non drenata	cu_k	$\gamma_{\text{Cu}} = 1.00$	$\gamma_{\text{Cu}}=1.40$			
Peso dell'unità di volume	γ	$\gamma_{\gamma} \!\!=\! \! 1.00$	$\gamma_{\gamma} = 1.00$			

Tabella 8.2 - Coefficienti parziali per i parametri geotecnici del terreno

VERIFICA	COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE
	R1	R2
Resistenza del terreno di valle	$\gamma_R=1.00$	γ_R =1.00

Tabella 8.3 – Coefficienti parziali delle resistenze

Per la determinazione dell'azione sismica si è fatto riferimento al comune di Sona nel quale ricade la GA16 e l'imbocco lato Milano della galleria naturale GN04.

Vista la tipologia d'opera in esame e visti i tempi di scavo della galleria naturale la durata stimata delle opere provvisorie è sicuramente superiore a 2 anni pertanto le opere provvisorie sono state dimensionate considerando anche l'azione sismica con una vita nominale pari a 35 anni

Si sono pertanto assunti i seguenti parametri:

- vita nominale della struttura (par. 2.4.1 NTC): $V_N = 35$ anni;
- coefficiente d'amplificazione topografica (tab. 3.2.VI): $S_T = 1.0$;
- coefficiente d'amplificazione stratigrafico (tab. 3.2.VI): $S_S = 1.2$ (cat. Suolo B);

Nella tabella si riportano i parametri relativi alla azione sismica:

Analisi	${ m a_g/g}$	$\mathbf{S_{s}}$	$\mathbf{S}_{\mathbf{T}}$
SLV	0.1371	1.2	1.0

Tabella 8.4 – Parametri per la definizione dell'accelerazione sismica in fase provvisionale

La spinta sismica viene valutata eseguendo un'analisi pesudostatica.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL GI 080 0 001 A 19 di 74

9. OPERE DI SOSTEGNO

Per l'opera in esame è stata condotta una verifica considerando una sezione trasversale della paratia, e senza tener quindi conto degli effetti a favore di sicurezza dovuti alla conformazione ad arco della paratia stessa.

La profondità di scavo massima da piano campagna risulta essere di circa 15 m, e data la geometria del problema, trave di coronamento ed effetto arco 3D, la possibilità di ribaltamento viene esclusa. Non è stata inoltre considerata la presenza della falda per via sia del sistema di abbattimento con i pozzi drenanti sia della messa in opera dei barbacani in seguito al completamento di ogni fase di scavo.

Sono di seguito descritte le principali caratteristiche della struttura e del modello geotecnico per le analisi di verifica.

Tipologia struttura di sostegno	Setto in Jet Grouting - 3 file inclinate di circa 5°, 10°, 15° passo 0.5 m longitudinale e 0.4 m trasversale
Altezza totale paratia	H _{tot} = 22 m (dalla testa della trave)
Altezza libera paratia	H = 15 m circa
Ordini di tiranti (n°)	-
Passo orizzontale tiranti	-
Passo verticale dei tiranti	-
Inclinazione del piano campagna a monte	5°
Inclinazione del piano campagna a valle	-
Sovraccarichi permanenti a monte	-
Sovraccarichi permanenti a valle	-
Sovraccarichi variabili a monte	q = 20 kPa
Sovraccarichi variabili a valle	-

Tabella 9.1 – Caratteristiche geometriche della sezione di calcolo.

STRATIGRAFIA	Da (m)	A (m)	e (-)	γ _d (kN/m³)	w (%)	γ (kN/m³)	w _{sat} (%)	γ _{sat} (kN/m³)	OCR (-)	K ₀ (-)	c' _k (kPa)	φ' _k (°)	E _{vc} (MPa)	E _{UR} (MPa)	ν (-)
Terreno di riporto/vegetale	p.c.	1.5	1.00	13.3	26.9	16.8	38.5	18.3	1	0.50	5	23	20	32	0.35
Sabbia limosa/sabbia ghiaiosa con livelli di limo	1.5	5	0.40	18.9	10.6	20.9	15.1	21.8	2	0.76	10	37	60	150	0.30
Sabbia limosa/sabbia ghiaiosa con livelli di limo	5	10	0.35	19.6	9.2	21.4	13.2	22.2	2	0.76	20	37	75	188	0.30
Sabbia limosa/sabbia ghiaiosa con livelli di limo	10	14	0.35	19.6	9.2	21.4	13.2	22.2	2	0.75	30	36	100	250	0.30
Limo sabbioso con ghiaia	14	20	0.60	16.6	15.8	19.2	22.6	20.3	2	0.75	30	36	100	250	0.30
Limo sabbioso con ghiaia	20	30	0.60	16.6	15.8	19.2	22.6	20.3	2	0.75	50	36	112	280	0.30
Limo sabbioso con ghiaia	>	30	0.60	16.6	15.8	19.2	22.6	20.3	2	0.75	120	36	150	375	0.30

Tabella 9.2 – Parametri geotecnici per la progettazione esecutiva delle opere.

$\gamma (kN/m^3)$	c' _k (kPa)	c' _d (kPa)	φ' _k (°)	φ' _d (°)	E _{op} (MPa)
22	750	600	37	31.1	800

Tabella 9.3 – parametri geotecnici per il terreno trattato con jet-grouting.

γ (kN/m ³)	(kN/m³) D (mm)		E (GPa)	interasse (m)		
75	88.9	10	210	0.5		

Tabella 9.4 – Parametri degli elementi strutturali.

Di seguito si illustrano le fasi di calcolo considerate nel modello:

- Fase 1 Inizializzazione geostatica;
- Fase 2 Scavo fino alla quota di realizzazione delle colonne di jet-grouting;
- Fase 3 Realizzazione delle colonne di jet-grouting e messa in opera degli infilaggi in acciaio;
- Fase 4 Applicazione del carico accidentale in superficie;
- Fase 5 Scavo fino a quota di imposta della galleria artificiale;
- Fase 6 Applicazione del carico sismico;

Nelle seguenti figure sono riportate le configurazioni relative alle varie fasi del modello di calcolo considerato.

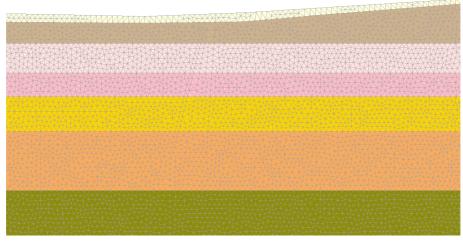


Figura 9.1 – Fase 1 Inizializzazione litostatica.

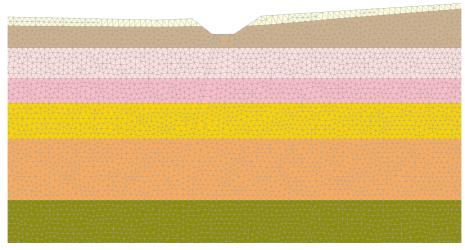


Figura 9.2 – Fase 2 Scavo fino alla quota di realizzazione delle colonne di jet-grouting.

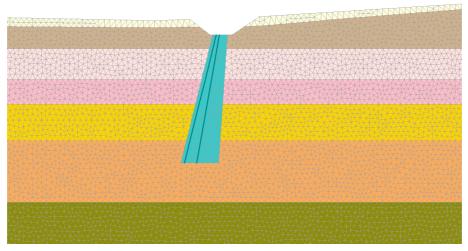


Figura 9.3 – Fase 3 Realizzazione delle colonne di jet-grouting e messa in opera delle armature in acciaio.

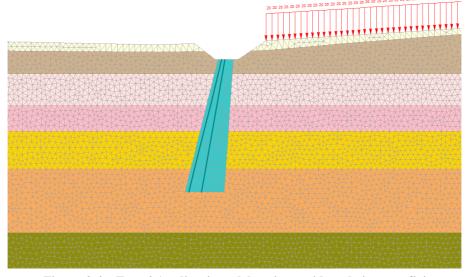


Figura 9.4 – Fase 4 Applicazione del carico accidentale in superficie.

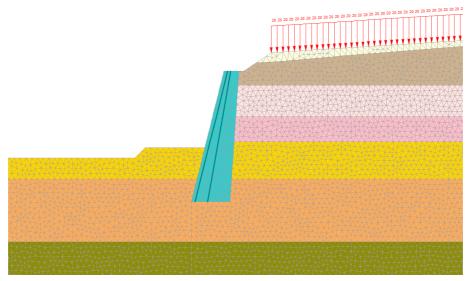


Figura 9.5 – Fase 5 Scavo fino alla quota di imposta della galleria artificiale.

9.1. Risultati delle analisi e verifiche geotecniche

9.1.1. Verifica del complesso opera-terreno

La verifica del complesso opera-terreno è garantita dal completamento delle analisi sia per il modello A2+M2 (SLU-2) che per il modello A_k +M2 (EQK GEO).

In Figura 9.6 si riportano gli spostamenti orizzontali e i punti di plasticizzazione valutati per le due combinazioni al termine della fase di scavo.

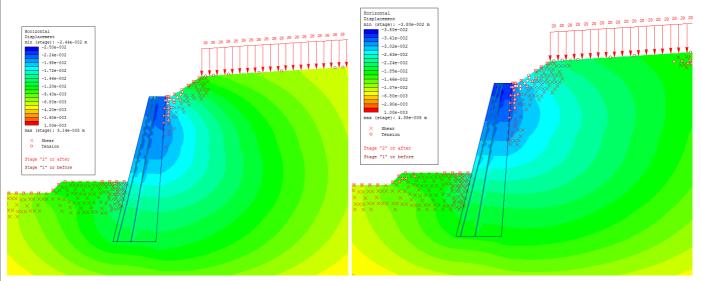


Figura 9.6 – Spostamenti orizzontali e punti di plasticizzazione per la combinazione A2+M2 (SLU-2) e A_k +M2 (EQK GEO).

GENERAL CONTRACTOR Cepav due	ALTA SORVE GRUPPO FERROV	TALI	FERR		
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	E E2 CL GI 080 0 001	Α	23 di 74

Gli spostamenti massimi in queste condizioni di stato limite ultimo sono risultati pari a circa 2.5 e 3.8 cm in testa alla paratia.

9.1.2. Verifica di stabilità globale

La verifica di stabilità globale è stata eseguita attraverso un'analisi del tipo "Strength Reduction Factor" (SRF) nella configurazione finale di scavo. Attraverso questo tipo di analisi i parametri di resistenza dei terreni, angolo di attrito e coesione, vengono ridotti di un determinato fattore fino a raggiungere l'instabilità del modello. Il coefficiente di riduzione dei parametri di resistenza che porta al collasso il sistema deve essere superiore a 1.1 secondo l'Approccio A2+M2+R2 GEO SLU-2.

In Figura 9.5 si riportano, per la combinazione A2+M2 (SLU-2), gli elementi di terreno plasticizzati in corrispondenza del SRF critico, valutato in 1.76 e il vettore degli spostamenti nel terreno.

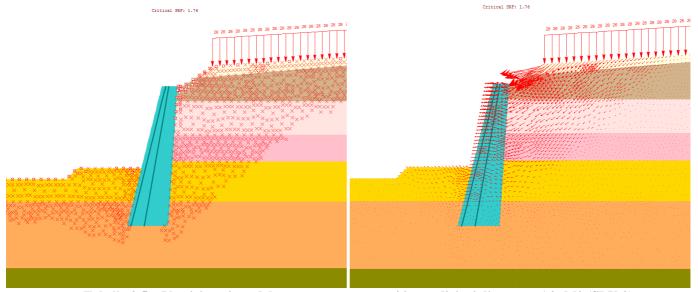


Tabella 9.5 - Plasticizzazione del terreno e spostamenti in condizioni di rottura A2+M2 (SLU-2).

In Figura 9.7 si riportano, per la combinazione A_k+M2 (EQK GEO), gli elementi di terreno plasticizzati in corrispondenza del SRF critico, valutato in 1.69 e il vettore degli spostamenti nel terreno.

GENERAL CONTRACTOR Cepav due	ALTA SORVE	TALF	FERR		
Doc. N.	Progetto INOR	Lotto	Codifica Documento E E2 CL GI 080 0 001	Rev.	Foglio 24 di 74

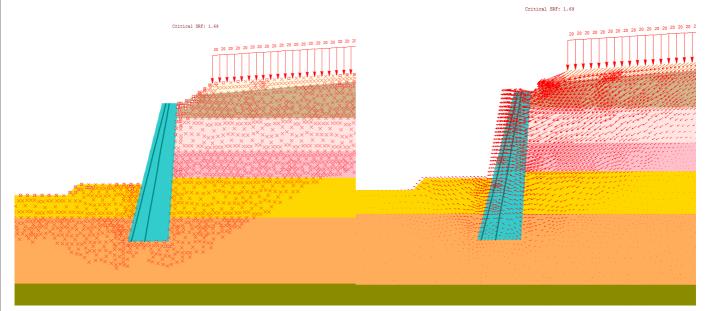


Figura 9.7 – Plasticizzazione del terreno e spostamenti in condizioni di rottura A_k+M2 (EQK GEO).

Le verifiche di stabilità globale risultano quindi soddisfatte in quanto il fattore di sicurezza risulta sempre maggiore di 1.1.

9.2. Risultati delle analisi e verifiche strutturali

Di seguito si riportano i risultati delle analisi strutturali con le combinazioni A1+M1 (SLU-1) e $A_k + M1$ (EQK STR).

9.2.1. A1+M1 (SLU-1)

Per la verifica tensionale all'interno della paratia di jet-grouting, si è ricavato dal modello lo stato tensionale in una serie di punti all'interno della paratia. Questi sono quindi stati rappresentati nel piano s-t (s = $(\sigma_1 + \sigma_3)/2$; t = $(\sigma_1 - \sigma_3)/2$) e confrontati con il criterio di rottura di Mohr-Coulomb del materiale consolidato con jet-grouting.

In Figura 9.8 è riportato lo stato tensionale agente nella paratia calcolato con il modello numerico. I valori estratti per una serie di punti all'interno della paratia, e moltiplicati per 1.3, sono riportati in Figura 9.9 e confrontati con il criterio di rottura di Mohr-Coulomb del terreno consolidato con jet grouting.

Dalla Figura 9.9 si nota come lo stato tensionale all'interno della paratia non superi mai il criterio di rottura.



Figura 9.8 – Tensioni principali all'interno della paratia in jet grouting.

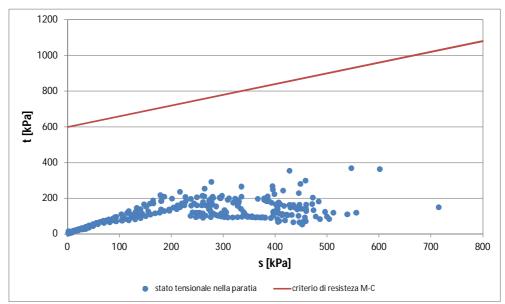


Figura 9.9 – Stato tensionale nella paratia di jet grouting e criterio di rottura di M-C.

In Figura 9.10 sono riportate le sollecitazioni nei tubi di armatura all'interno delle due colonne più esterne di jet grouting. Le sollecitazioni ricavate dal modello numerico sono state moltiplicate per 1.3.

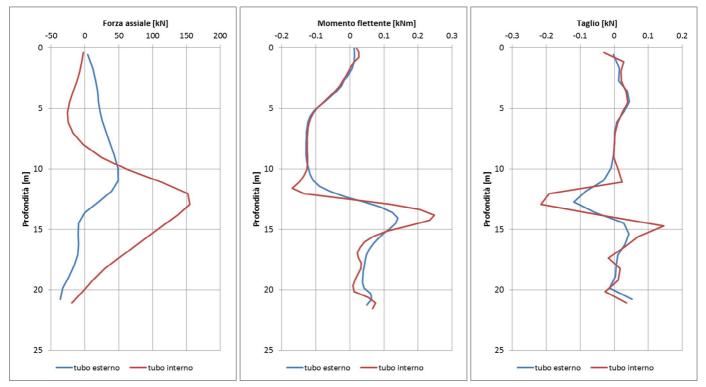


Figura 9.10 – Sollecitazioni nei tubi di armatura all'interno delle colonne di jet grouting.

In Tabella 9.6 si riportano le verifiche degli elementi strutturali, dove le tensioni agenti:

$$\begin{split} \sigma &= N/A + M/W \\ \tau &= V/(2*A/\pi) \\ \sigma_{id} &= \left(\sigma^2 + 3*\tau^2\right)^{0.5} \end{split}$$

vanno confrontate con le tensioni di snervamento:

$$\sigma_{yd} = 335/1.05 = 338.1 \text{ MPa}$$

$$\tau_{yd} = 335/(1.05*3^{0.5}) = 195.2 \text{ MPa}$$

N [kN]	M [kNm]	V [kN]	σ [MPa]	τ [MPa]	σ_{id} [MPa]	τ_{yd} [MPa]	σ_{yd} [MPa]
155.10	0.25	0.22	68.22	0.14	68.22	195.20	338.10

Tabella 9.6 – Verifiche degli elementi strutturali tubolari metallici.

9.2.2. $A_k + M1$ (EQK STR)

Le verifiche sono state condotte come descritto al paragrafo precedente.

In Figura 9.11 è riportato lo stato tensionale agente nella paratia calcolato con il modello numerico. I valori estratti per una serie di punti all'interno della paratia sono riportati in fig. e confrontati con il criterio di rottura di Mohr-Coulomb del terreno consolidato con jet grouting.

GENERAL CONTRACTOR Cepav due	GRUPPO FERRON	TALI	FERR		
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	E E2 CL GI 080 0 001	Α	27 di 74

Dalla Figura 9.12 si nota come lo stato tensionale all'interno della paratia non superi mai il criterio di rottura.

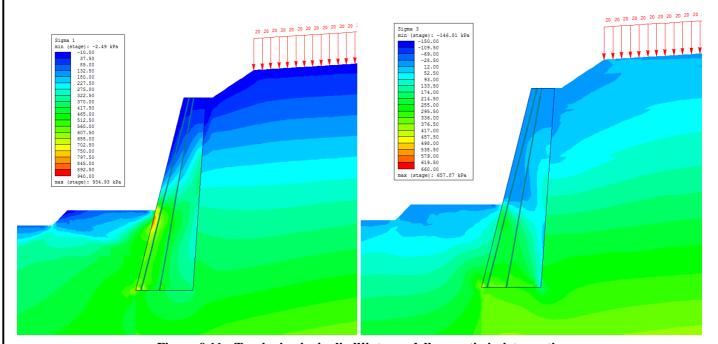


Figura 9.11 - Tensioni principali all'interno della paratia in jet grouting.

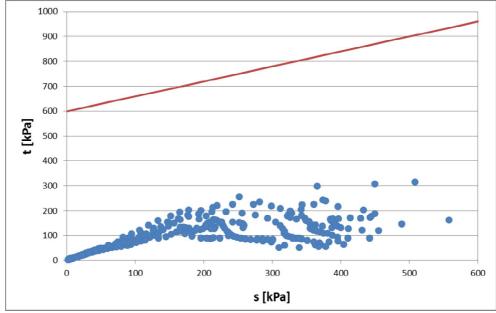


Figura 9.12 - Stato tensionale nella paratia di jet grouting e criterio di rottura di M-C.

In Figura 9.13 sono riportate le sollecitazioni ricavate dal modello numerico nei tubi di armatura all'interno delle due colonne più esterne di jet grouting.

Cepav due	ALTA SORVE	TALI	FERR		
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	E E2 CL GI 080 0 001	Α	28 di 74

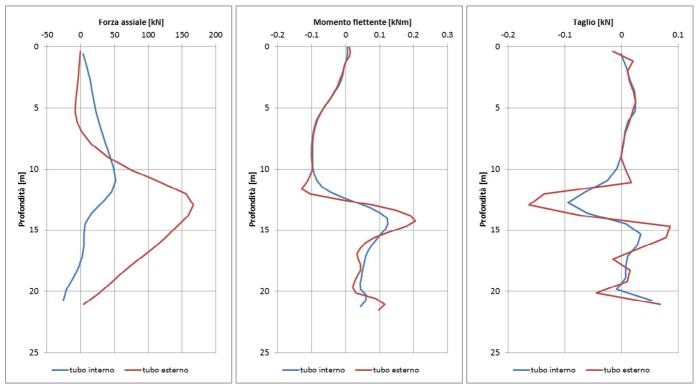


Figura 9.13 – Sollecitazioni nei tubi di armatura all'interno delle colonne di jet grouting.

In Tabella 9.7 si riportano le verifiche degli elementi strutturali eseguite come nel paragrafo precedente. Le tensioni agenti vanno confrontate con le tensioni di snervamento.

N [kN]	M [kNm]	V [kN]	σ [MPa]	τ [MPa]	σ_{id} [MPa]	τ_{yd} [MPa]	$\sigma_{ ext{yd}}$ [MPa]
166.99	0.21	0.16	72.02	0.10	72.02	195.20	338.10

Tabella 9.7 - Verifiche degli elementi strutturali tubolari metallici.

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due *ITALFERR* **GRUPPO FERROVIE DELLO STATO ITALIANE** Codifica Documento Foglio Progetto Lotto Rev. Doc. N. 29 di 74 INOR 11 E E2 CL GI 080 0 001 Α

10. ALLEGATI NUMERICI

10.1. Modello A2+M2 (SLU-2)

Phase2 Analysis Information Project1

Project Summary

File Name: GEO.fez

Last saved with Phase2

version:

9.028

Project Title: Project

General Settings

Number of

Stages:

Plane Strain

Analysis Type:

Gaussian

Solver Type:

Elimination

Units:

Metric, stress as kPa

Permeability

Units:

meters/second

Time Units: seconds

Analysis Options

Maximum Number of

500

Iterations: Tolerance:

0.001

Number of Load Steps:

Automatic

Convergence Type:

Absolute Energy

Tensile Failure:

Reduces Shear Strength

Joint tension reduces joint stiffness by a factor of 0.01

Groundwater Analysis

GENERAL CONTRACTOR

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. INOR E E2 CL GI 080 0 001 30 di 74 11 Α

Piezometric Method:

Lines

Pore Fluid Unit

Weight:

9.81 kN/m3

Probability None

Field Stress

Gravit Field stress: У

Using actual ground surface

Total stress ratio (horizontal/vertical in-plane): 0.75

Total stress ratio (horizontal/vertical out-of-0.75

plane):

Locked-in horizontal stress (in-plane): 0 Locked-in horizontal stress (out-of-plane): 0

Mesh

Mesh

type:

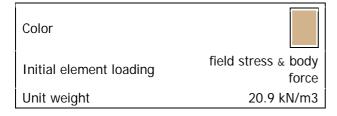
Graded

Element 6 Noded triangles type:

# of Elements	# of Nodes
6004	12327
5973	12270
5973	12270
5973	12270
5906	12133
5773	11864
5504	11325
5317	10950
5203	10722
	6004 5973 5973 5973 5973 5906 5773 5504

Mesh Quality

• All elements are of good quality


Poor quality elements defined as:

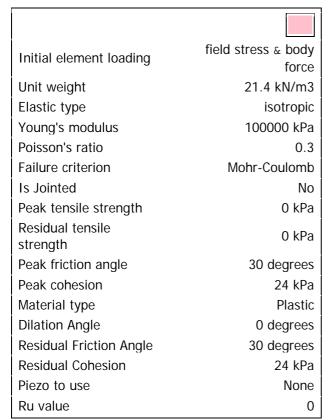
- Side length ratio (maximum / minimum) > 30.00
- Minimum interior angle < 2.0 degrees
- Maximum interior angle > 175.0 degrees

Material Properties

Material: Material 1

Color	
Initial element loading	field stress & body
Tilitial element loading	force
Unit weight	16.8 kN/m3
Elastic type	isotropic
Young's modulus	20000 kPa
Poisson's ratio	0.35
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile	0 kPa
strength	O Ki u
Peak friction angle	19 degrees
Peak cohesion	4 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	19 degrees
Residual Cohesion	4 kPa
Piezo to use	None
Ru value	0

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL GI 080 0 001 A 32 di 74


Elastic type	isotropic
Young's modulus	60000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	31 degrees
Peak cohesion	8 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	31 degrees
Residual Cohesion	8 kPa
Piezo to use	None
Ru value	0

Material: Material 3

Color	
Initial element loading	field stress & body
	force
Unit weight	21.4 kN/m3
Elastic type	isotropic
Young's modulus	75000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile	0 kPa
strength	O KI G
Peak friction angle	31 degrees
Peak cohesion	16 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	31 degrees
Residual Cohesion	16 kPa
Piezo to use	None
Ru value	0

Color

Color	
Initial element loading	field stress & body
Trittal element loading	force
Unit weight	19.2 kN/m3
Elastic type	isotropic
Young's modulus	100000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile	0 kPa
strength	5 G
Peak friction angle	30 degrees
Peak cohesion	24 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	30 degrees
Residual Cohesion	24 kPa
Piezo to use	None
Ru value	0

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL GI 080 0 001 A 34 di 74

Material: Material 6

Color	
Initial element loading	field stress & body
	force
Unit weight	19.2 kN/m3
Elastic type	isotropic
Young's modulus	112000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile	0 kPa
strength	O KI d
Peak friction angle	30 degrees
Peak cohesion	40 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	30 degrees
Residual Cohesion	40 kPa
Piezo to use	None
Ru value	0

Color	
Initial element loading	field stress & body
lg	force
Unit weight	19.2 kN/m3
Elastic type	isotropic
Young's modulus	150000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	30 degrees
Peak cohesion	96 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	30 degrees

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL GI 080 0 001 A 35 di 74

Residual Cohesion	96 kPa
Piezo to use	None
Ru value	0

Material: jet

Color	
Initial element loading	field stress & body
Trittal cicinent loading	force
Unit weight	22 kN/m3
Elastic type	isotropic
Young's modulus	1.3e+006 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	10 kPa
Peak friction angle	31 degrees
Peak cohesion	600 kPa
Material type	Elastic
Piezo to use	None
Ru value	0

Color	
Initial element loading	field stress & body force
Unit weight	16.8 kN/m3
Elastic type	isotropic
Young's modulus	50000 kPa
Poisson's ratio	0.35
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	19 degrees
Peak cohesion	4 kPa
Material type	Plastic
Dilation Angle	0 degrees

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL GI 080 0 001 A 36 di 74

Residual Friction Angle	19 degrees
Residual Cohesion	4 kPa
Piezo to use	None
Ru value	0

Material: Material 10

Color	
Initial element loading	field stress & body
-	force
Unit weight	20.9 kN/m3
Elastic type	isotropic
Young's modulus	150000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	31 degrees
Peak cohesion	8 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	31 degrees
Residual Cohesion	8 kPa
Piezo to use	None
Ru value	0

Color	
Initial element loading	field stress & body force
Unit weight	21.4 kN/m3
Elastic type	isotropic
Young's modulus	188000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa

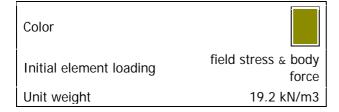
GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL GI 080 0 001 A 37 di 74

Peak friction angle	31 degrees
Peak cohesion	16 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	31 degrees
Residual Cohesion	16 kPa
Piezo to use	None
Ru value	0

Material: Material 12

Color	
Initial element loading	field stress & body force
Unit weight	21.4 kN/m3
Elastic type	isotropic
Young's modulus	250000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	30 degrees
Peak cohesion	24 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	30 degrees
Residual Cohesion	24 kPa
Piezo to use	None
Ru value	0

Material: Material 13


Color	
Initial element loading	field stress & body force
Unit weight	19.2 kN/m3
Elastic type	isotropic
Young's modulus	250000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL GI 080 0 001 A 38 di 74

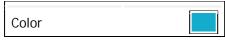
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	30 degrees
Peak cohesion	24 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	30 degrees
Residual Cohesion	24 kPa
Piezo to use	None
Ru value	0
·	·

Material: Material 14

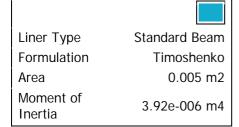
Color	
Initial element loading	field stress & body force
Unit weight	19.2 kN/m3
Elastic type	isotropic
Young's modulus	280000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	30 degrees
Peak cohesion	40 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	30 degrees
Residual Cohesion	40 kPa
Piezo to use	None
Ru value	0

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL GI 080 0 001 A 39 di 74

Elastic type	isotropic
Young's modulus	375000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	30 degrees
Peak cohesion	96 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	30 degrees
Residual Cohesion	96 kPa
Piezo to use	None
Ru value	0


Joint Properties

Joint: Joint 1


Color Normal stiffness 1e+007 kPa/m Shear stiffness 1e+006 kPa/m Initial joint deformation not allowed Pressure from Groundwater Not Included **Analysis** Additional Pressure Inside Joint Not Included Slip Criterion Mohr-Coulomb 0 kPa (tension Tensile strength positive) Residual Tensile strength 0 kPa Cohesion 600 kPa **Residual Cohesion** 600 kPa Friction angle 31 degrees Residual Friction angle 31 degrees

Liner Properties

Liner: pile

Elastic Properties

Young's	2.1e+008
modulus	kPa
Poisson's ratio	0.2

Structural Interface Properties

Structural Interface: Structural 1
Joint (positive side): Joint 1
Liner: pile

Joint (negative Joint 1

side):

List of All Coordinates

External boundary

X	Υ
75	60
113.29 5	60
170	60
170	90.003 7
170	100.00 4
170	106.00 4
170	110.00 4
170	115.00 4
170	121.5
170	122.28 8
170	123
126.11	120.23

GENERAL CONTRACTOR Cepav due	ALTA SORVE	TALI	FERR		
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	E E2 CL GI 080 0 001	Α	41 di 74

1	8
124.66	120.17
2	2
114.78	119.80
5	7
109	119.59
00 001	4
80.001 2	120.17 4
75	120
75 75	119.71
73	118.75
75	7
7.5	115.00
75	4
75	110.00
73	4
75	106.00
	4
75	103.36 4
	100.00
75	4
	90.003
75	7

X	Υ
114.78	119.80
5	7
116.39	118.55
3	9
118.06	117.26 4
118.50	117.26
9	4
119.10	117.26
9	4
119.58	117.26
9	4
120.90	117.26
9	4
121.15	117.26 4
121.65	117.26 4
123.74	118.66

4	
126.11	120.23
1	8

Х	Υ
170	110.00 4
120.41	110.00
8	4
118.30	110.00
7	4
117.29	110.00
9	4
116.69	110.00
8	4
75	110.00 4

Material boundary

X	Υ
170	100.00 4
119.74	100.00
1	4
116.54	100.00
1	4
114.80	100.00
6	4
114.20	100.00
3	4
75	100.00 4

Material boundary

X	Υ
170	90.003 7
113.29 5	90.003 7
75	90.003 7

X	Υ
75	103.36 4
104.25	103.36 4
105.9	105.01 4
115.45 3	105.01 4

X	Υ
170	115.00 4
120.75 6	115.00 4
119.19	115.00 4
118.54 6	115.00 4
117.94 5	115.00 4
75	115.00 4

X	Υ
75	118.75 7
79.973	118.67
9	4
109.01	118.45
2	7
116.39	118.55
3	9
123.74 4	118.66
124.72	118.67
4	4
126.79	118.76 7
138.06	119.76
8	9
170	122.28 8

X	Υ
170	106.00 4
120.14 7	106.00 4
117.60 1	106.00 4
116.30 2	106.00 4
115.7	106.00 4
75	106.00 4

Material boundary

X	Υ
113.29	96.363
5	5
113.89	96.363
8	5
115.89	96.363
8	6
119.49	96.363
5	6

Material boundary

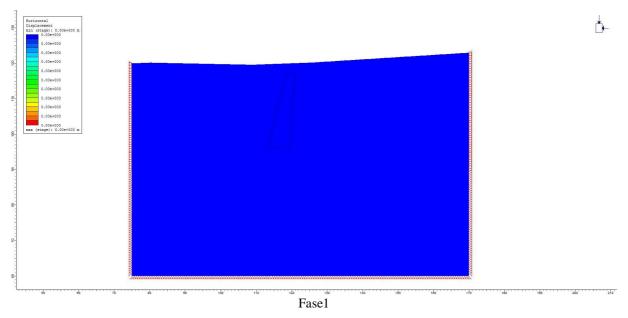
Х	Υ
118.50	117.26
9	4
117.94	115.00
5	4
116.69	110.00
8	4
115.7	106.00 4
115.45	105.01
3	4
114.20	100.00
3	4
113.29	96.363
5	5

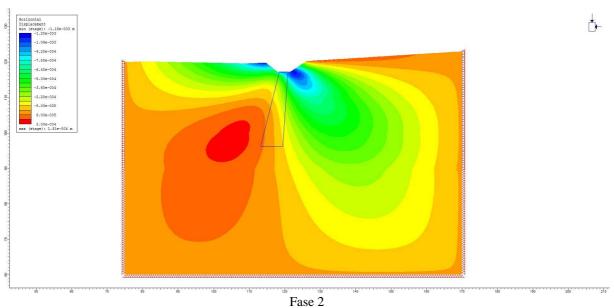
X	Υ
113.29 5	96.363 5
113.29 5	90.003 7
113.29 5	60

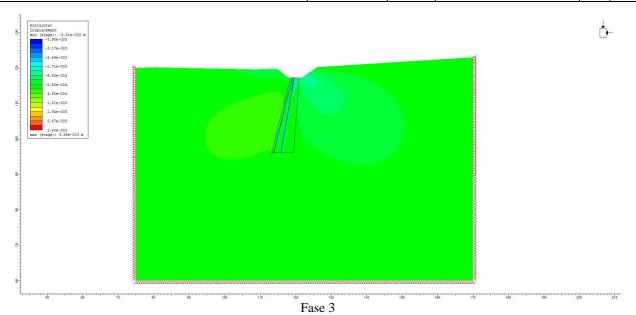
X	Υ
120.90	117.26
9	4
120.75	115.00
6	4
120.41	110.00
8	4
120.14	106.00
7	4
119.74	100.00
1	4
119.49	96.363
5	6

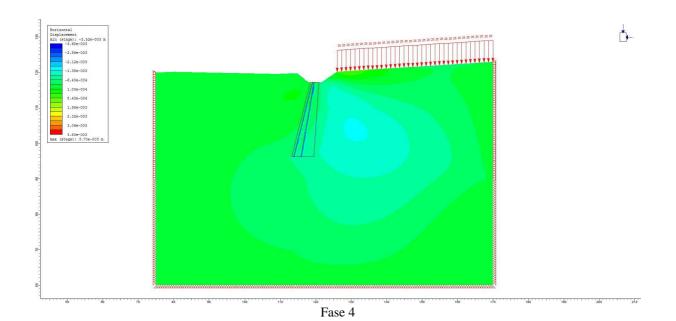
Structural interface

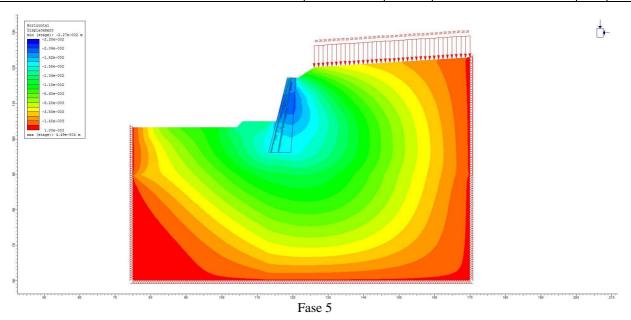
X	Υ
119.58	117.26
9	4
119.19	115.00 4
118.30	110.00
7	4
117.60	106.00
1	4
116.54	100.00
1	4
115.89	96.363
8	6


Structural interface


X	Υ
119.10 9	117.26 4
118.54 6	115.00 4
117.29	110.00


9	4
116.30	106.00
2	4
114.80	100.00
6	4
113.89	96.363
8	5


Spostamenti orizzontali



10.2. Modello A1 + M1 (SLU-1)

Phase2 Analysis Information Project1

Project Summary

File Name: STR.fez

Last saved with Phase2 9.028

version:

Project Title: Project

General Settings

Number of

Stages:

9

Analysis Type: Plane Strain
Solver Type: Gaussian
Elimination

Units: Metric, stress as kPa

Permeability

Units:

meters/second

Time Units: seconds

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due *TALFERR* **GRUPPO FERROVIE DELLO STATO ITALIANE** Lotto Codifica Documento Rev. Foglio Progetto Doc. N. <u>IN</u>OR 49 di 74 11 E E2 CL GI 080 0 001 Α

Analysis Options

Maximum Number of

500

Iterations: Tolerance:

0.001

Number of Load Steps:

Automatic

Convergence Type:

Absolute Energy

Tensile Failure: Reduces Shear Strength Joint tension reduces joint stiffness by a factor of 0.01

Groundwater Analysis

Method:

Piezometric

Lines

Weight:

Pore Fluid Unit

9.81 kN/m3

Probability

None

Field Stress

Gravit Field stress: У

Using actual ground surface

Total stress ratio (horizontal/vertical in-plane): 0.75

Total stress ratio (horizontal/vertical out-of-

0.75

plane):

Locked-in horizontal stress (in-plane): 0

Locked-in horizontal stress (out-of-plane): 0

Mesh

Mesh

Graded

type:

6 Noded

Element type:

triangles

Stage Name	# of Elements	# of Nodes
Stage 1	6796	13975
Stage 2	6761	13910
Stage 3	6761	13910
Stage 4	6761	13910
Stage 5	6679	13744
Stage 6	6521	13424
Stage 7	6210	12801
Stage 8	5981	12342
Stage 9	5844	12067

Mesh Quality

• All elements are of good quality

Poor quality elements defined as:

- Side length ratio (maximum / minimum) > 30.00
- Minimum interior angle < 2.0 degrees
- Maximum interior angle > 175.0 degrees

Material Properties

Color	
Initial element loading	field stress & body force
Unit weight	16.8 kN/m3
Elastic type	isotropic
Young's modulus	20000 kPa
Poisson's ratio	0.35
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	23 degrees
Peak cohesion	5 kPa

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL GI 080 0 001 A 51 di 74

Plastic
0 degrees
23 degrees
5 kPa
None
0

Material: Material 2

Color	
Initial element loading	field stress & body force
	. 5. 55
Unit weight	20.9 kN/m3
Elastic type	isotropic
Young's modulus	60000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	37 degrees
Peak cohesion	10 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	37 degrees
Residual Cohesion	10 kPa
Piezo to use	None
Ru value	0

Color	
Initial element loading	field stress & body force
Unit weight	21.4 kN/m3
Elastic type	isotropic
Young's modulus	75000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL GI 080 0 001 A 52 di 74

Residual tensile strength	0 kPa
Peak friction angle	37 degrees
Peak cohesion	20 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	37 degrees
Residual Cohesion	20 kPa
Piezo to use	None
Ru value	0

Material: Material 4

Color	
Initial element loading	field stress & body
mittal element loading	force
Unit weight	21.4 kN/m3
Elastic type	isotropic
Young's modulus	100000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile	0 kPa
strength	UKFA
Peak friction angle	36 degrees
Peak cohesion	30 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	36 degrees
Residual Cohesion	30 kPa
Piezo to use	None
Ru value	0

Color	
Initial element loading	field stress & body
Trittal element loading	force
Unit weight	19.2 kN/m3
Elastic type	isotropic
Young's modulus	100000 kPa

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL GI 080 0 001 A 53 di 74

Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	36 degrees
Peak cohesion	30 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	36 degrees
Residual Cohesion	30 kPa
Piezo to use	None
Ru value	0

Material: Material 6

Color	
Initial alamont loading	field stress & body
Initial element loading	force
Unit weight	19.2 kN/m3
Elastic type	isotropic
Young's modulus	112000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile	0 kPa
strength	ORIA
Peak friction angle	36 degrees
Peak cohesion	50 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	36 degrees
Residual Cohesion	50 kPa
Piezo to use	None
Ru value	0

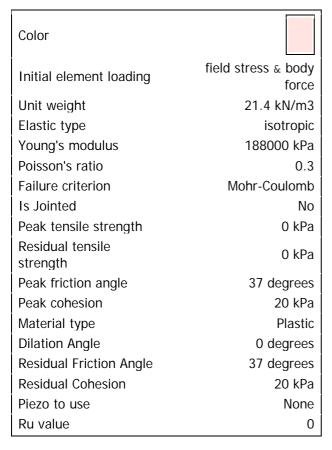
GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL GI 080 0 001 A 54 di 74

	force
Unit weight	19.2 kN/m3
Elastic type	isotropic
Young's modulus	150000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	36 degrees
Peak cohesion	120 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	36 degrees
Residual Cohesion	120 kPa
Piezo to use	None
Ru value	0

Material: jet

Color	
Initial element loading	field stress & body
······································	force
Unit weight	22 kN/m3
Elastic type	isotropic
Young's modulus	1.3e+006 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile	10 kPa
strength	TO KI U
Peak friction angle	37 degrees
Peak cohesion	750 kPa
Material type	Elastic
Piezo to use	None
Ru value	0

Color	
-------	--


GENERAL CONTRACTOR Cepav due	ALTA SORVE	TALI	FERR		
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	E E2 CL GI 080 0 001	Α	55 di 74

Initial element loading	field stress & body
	force
Unit weight	16.8 kN/m3
Elastic type	isotropic
Young's modulus	50000 kPa
Poisson's ratio	0.35
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile	0 kPa
strength	UKPA
Peak friction angle	23 degrees
Peak cohesion	5 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	23 degrees
Residual Cohesion	5 kPa
Piezo to use	None
Ru value	0

Color			
Initial element loading	field stress & body		
	force		
Unit weight	20.9 kN/m3		
Elastic type	isotropic		
Young's modulus	150000 kPa		
Poisson's ratio	0.3		
Failure criterion	Mohr-Coulomb		
Is Jointed	No		
Peak tensile strength	0 kPa		
Residual tensile strength	0 kPa		
Peak friction angle	37 degrees		
Peak cohesion	10 kPa		
Material type	Plastic		
Dilation Angle	0 degrees		
Residual Friction Angle	37 degrees		
Residual Cohesion	10 kPa		
Piezo to use	None		
Ru value	0		

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL GI 080 0 001 A 56 di 74

Material: Material 11

Color	
Initial element loading	field stress & body
3	force
Unit weight	21.4 kN/m3
Elastic type	isotropic
Young's modulus	250000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile	0 kPa
strength	
Peak friction angle	36 degrees
Peak cohesion	30 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	36 degrees
Residual Cohesion	30 kPa

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL GI 080 0 001 A 57 di 74

Piezo to use	None
Ru value	0

Material: Material 13

Color	
Initial element loading	field stress & body
Tilitial clement loading	force
Unit weight	19.2 kN/m3
Elastic type	isotropic
Young's modulus	250000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile	0 kPa
strength	
Peak friction angle	36 degrees
Peak cohesion	30 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	36 degrees
Residual Cohesion	30 kPa
Piezo to use	None
Ru value	0

Color	
Initial element loading	field stress & body
	force
Unit weight	19.2 kN/m3
Elastic type	isotropic
Young's modulus	280000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile	0 kPa
strength	O KI a
Peak friction angle	36 degrees
Peak cohesion	50 kPa

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL GI 080 0 001 A 58 di 74

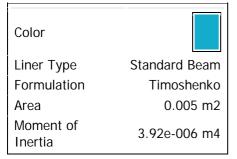
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	36 degrees
Residual Cohesion	50 kPa
Piezo to use	None
Ru value	0

Material: Material 15

Color	
Initial element loading	field stress & body
ÿ	force
Unit weight	19.2 kN/m3
Elastic type	isotropic
Young's modulus	375000 kPa
Poisson's ratio	0.3
Failure criterion	Mohr-Coulomb
Is Jointed	No
Peak tensile strength	0 kPa
Residual tensile strength	0 kPa
Peak friction angle	36 degrees
Peak cohesion	120 kPa
Material type	Plastic
Dilation Angle	0 degrees
Residual Friction Angle	36 degrees
Residual Cohesion	120 kPa
Piezo to use	None
Ru value	0

Joint Properties

Joint: Joint 1


Color	
Normal stiffness	1e+007 kPa/m
Shear stiffness	1e+006 kPa/m
Initial joint deformation	not allowed
Pressure from Groundwater Analysis	Not Included
Additional Pressure Inside Joint	Not Included
Slip Criterion	Mohr-Coulomb

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL GI 080 0 001 A 59 di 74

Tensile strength	0 kPa (tension positive)
Residual Tensile strength	0 kPa
Cohesion	600 kPa
Residual Cohesion	600 kPa
Friction angle	31 degrees
Residual Friction angle	31 degrees

Liner Properties

Liner: pile

Elastic Properties

Young's	2.1e+008
modulus	kPa
Poisson's ratio	0.2

Structural Interface Properties

Structural Interface: Structural 1
Joint (positive side): Joint 1
Liner: pile
Joint (negative

side): Joint 1

List of All Coordinates

External boundary

X	Υ
75	60
113.29 5	60
170	60
170	90.003

	7
	100.00
170	4
170	106.00
170	4
170	110.00
	4
170	115.00 4
170	121.5
170	122.28
170	8
170	123
126.11	120.23
1	8
124.66	120.17
2	2
114.78	119.80
5	7
109	119.59 4
80.001	120.17
2	4
75	120
75	119.71
75	118.75
-	7
75	115.00 4
	110.00
75	4
75	106.00
/5	4
75	103.36
. 0	4
75	100.00
	90.003
75	70.003

X	Υ
114.78	119.80
5	7
116.39	118.55
3	9

118.06	117.26 4
118.50	117.26
9	4
119.10	117.26
9	4
119.58	117.26
9	4
120.90	117.26
9	4
121.15	117.26 4
121.65	117.26 4
123.74 4	118.66
126.11	120.23
1	8

X	Υ
170	110.00 4
120.41	110.00
8	4
118.30	110.00
7	4
117.29	110.00
9	4
116.69	110.00
8	4
75	110.00 4

X	Υ
170	100.00 4
119.74	100.00
1	4
116.54	100.00
1	4
114.80	100.00
6	4
114.20	100.00
3	4

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL GI 080 0 001 A 62 di 74

75	100.00
75	4

Material boundary

X	Υ
170	90.003 7
113.29 5	90.003 7
75	90.003 7

Material boundary

X	Υ
75	103.36 4
104.25	103.36 4
105.9	105.01 4
115.45 3	105.01 4

Material boundary

X	Υ
170	115.00 4
120.75 6	115.00 4
119.19	115.00 4
118.54 6	115.00 4
117.94 5	115.00 4
75	115.00 4

X	Υ
75	118.75 7
79.973 9	118.67 4

109.01	118.45
2	7
116.39	118.55
3	9
123.74 4	118.66
124.72	118.67
4	4
126.79	118.76 7
138.06	119.76
8	9
170	122.28 8

X	Υ
170	106.00 4
120.14 7	106.00 4
117.60 1	106.00 4
116.30 2	106.00 4
115.7	106.00 4
75	106.00 4

Material boundary

X	Υ
113.29	96.363
5	5
113.89	96.363
8	5
115.89	96.363
8	6
119.49	96.363
5	6

X	Υ
118.50	117.26
9	4

117.94	115.00
5	4
116.69	110.00
8	4
115.7	106.00 4
115.45	105.01
3	4
114.20	100.00
3	4
113.29	96.363
5	5

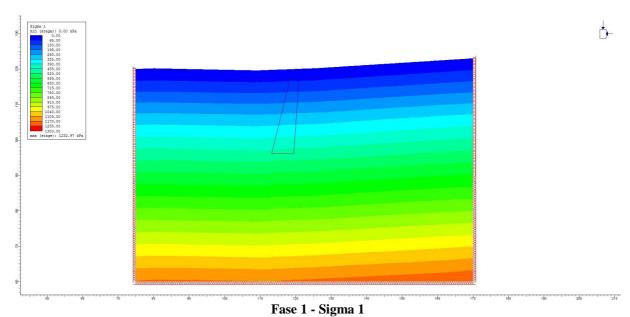
X	Υ
113.29 5	96.363 5
113.29 5	90.003
113.29 5	60

Material boundary

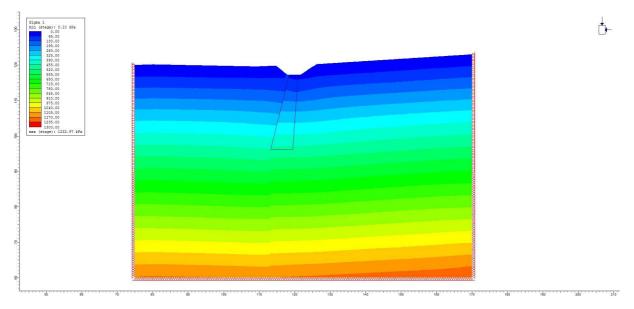
X	Υ
120.90	117.26
9	4
120.75	115.00
6	4
120.41	110.00
8	4
120.14	106.00
7	4
119.74	100.00
1	4
119.49	96.363
5	6

Structural interface

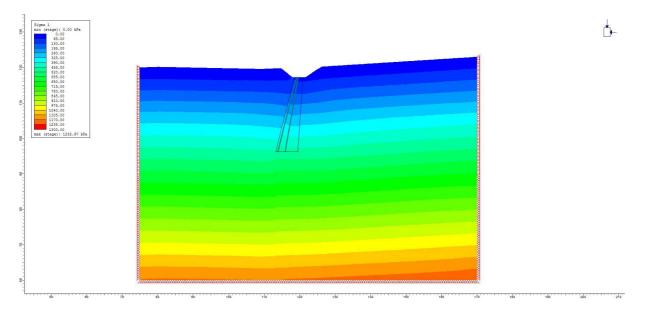
X	Υ
119.58	117.26
9	4
119.19	115.00 4
118.30	110.00
7	4

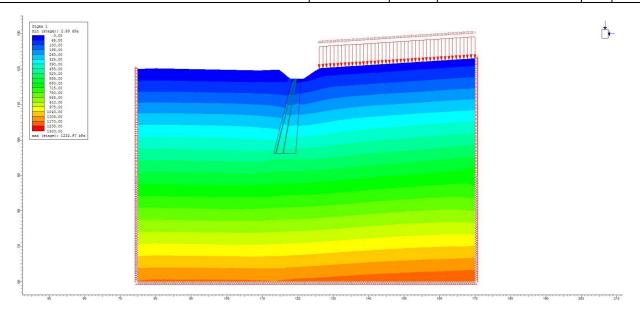


117.60	106.00
1	4
116.54	100.00
115.00	4
115.89 8	96.363 6

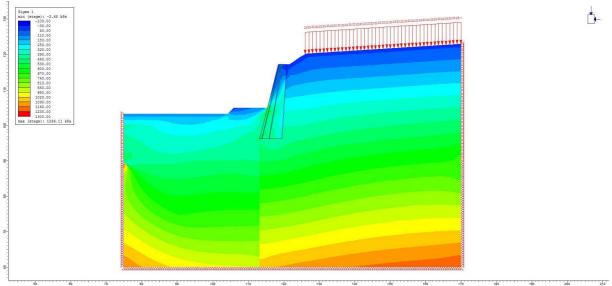

Structural interface

Х	Υ
119.10	117.26
9	4
118.54	115.00
6	4
117.29	110.00
9	4
116.30	106.00
2	4
114.80	100.00
6	4
113.89	96.363
8	5

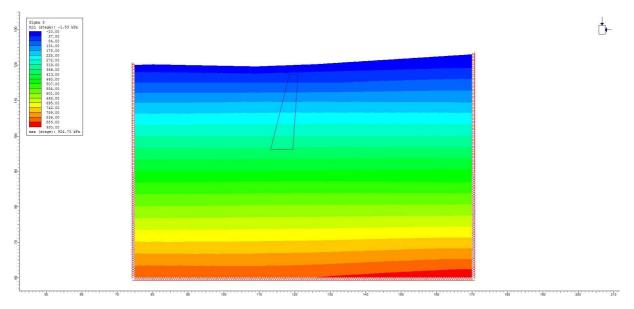

Tensioni principali



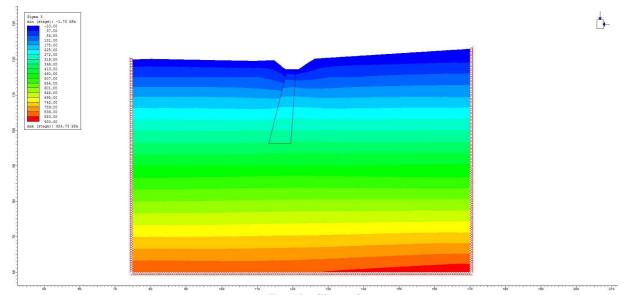
Fase 2 - Sigma 1



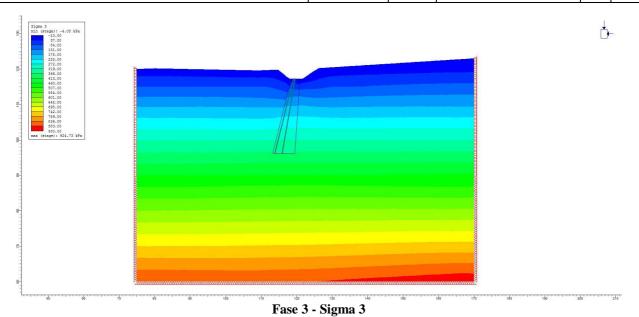
Fase 3 - Sigma 1

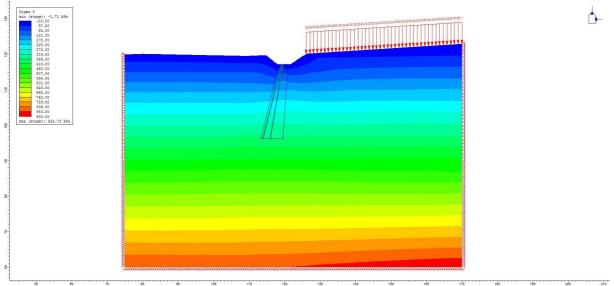


Fase 4 - Sigma 1

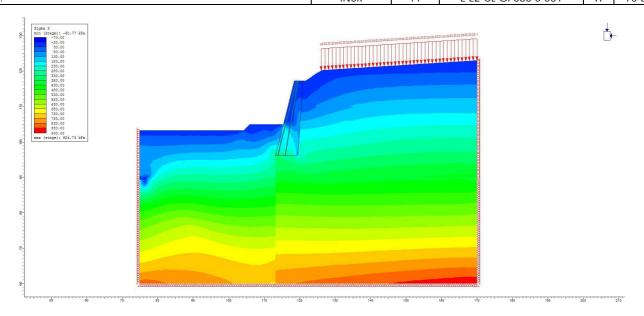


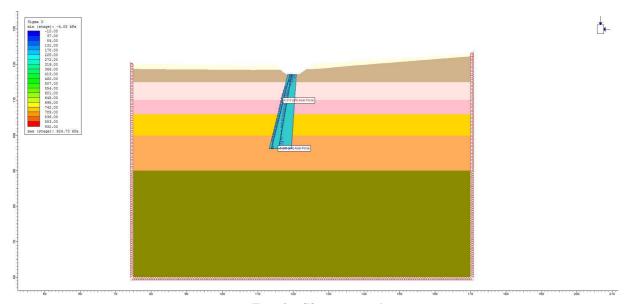
Fase 5 - Sigma 1

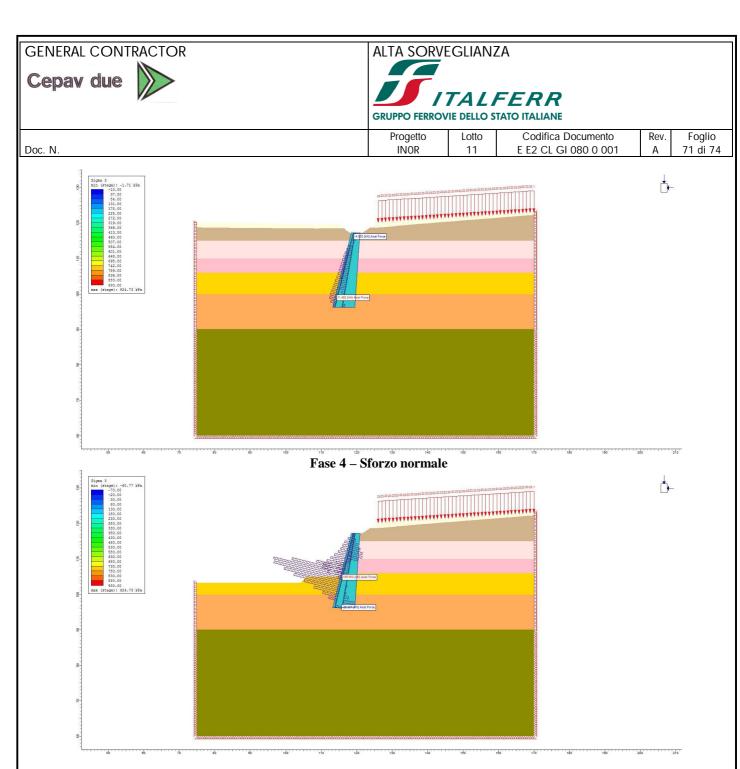



Fase 1 - Sigma 3

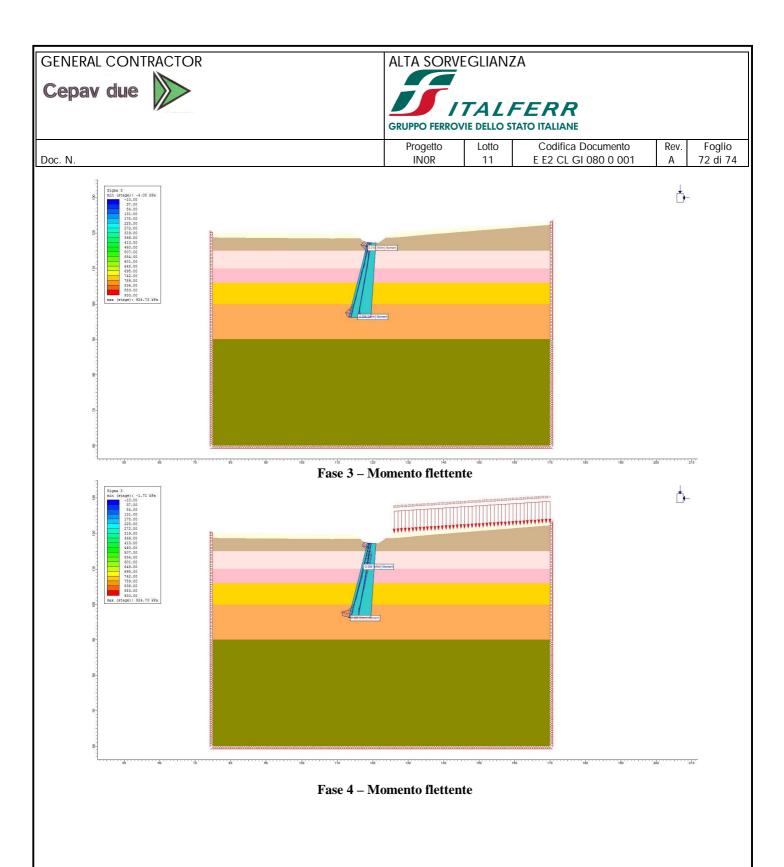
Fase 2 - Sigma 3

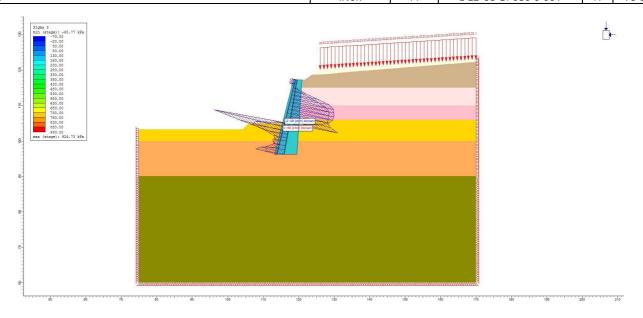


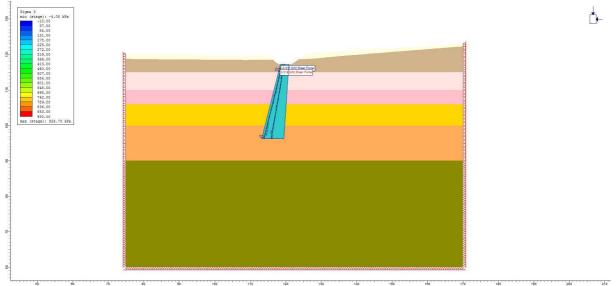

Fase 4 - Sigma 3

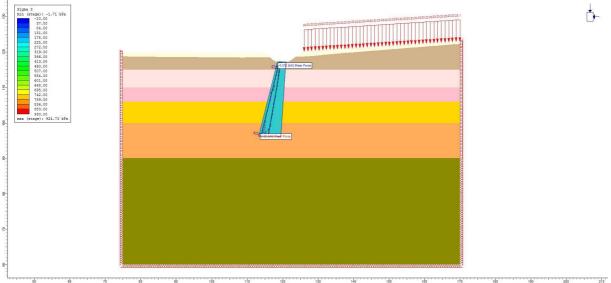


Fase 5 - Sigma 3

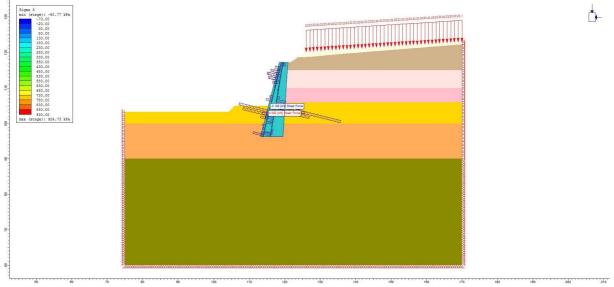

Sollecitazioni negli elementi strutturali


Fase 3 – Sforzo normale


Fase 5 – Sforzo normale



Fase 5 – Momento flettente



Fase 3 – Taglio

Fase 4 – Taglio

Fase 5 - Taglio