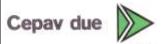
COMMITTENTE:

ALTA SORVEGLIANZA:

CUP: F81H91000000008

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

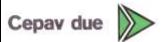

LINEA A.V. /A.C. TORINO – VENEZIA Tratta MILANO – VERONA Lotto funzionale Brescia-Verona

PROGETTO ESECUTIVO

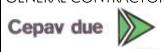
Progetto cofinanziato dalla Unione Europea

SLZ1 - SOTTOVIA S.C. VIA RAMPA PK 149+888,702
RELAZIONE DI CALCOLO SIFONE CANALE DI SOMMACAMPAGNA

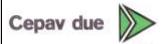
GENERAL CONTRACTOR				DI	DIRETTORE LAVORI			
Consorzio Cepaw due Consorzio Cepaw due Il Direttore de Consorzio (Ing. T. Taranta)				Poav due Fonsorz Ponta)	io	Valido per costruzione Data:		
C	COMMESSA	LOTTO	FASE EN	TE TIPO	DOC	OPERA/DISOPLINA PROGR REV		
1	N 0 R	1 1	E E	2 C	L	S L Z 1 F 0 0 1 A		
PRO	GETTAZIONE					TL PROGETISTA		
Rev.	Descriz	zione	Redatto	Data	Verificate	ato Data GEGNEBATIGA Data		
Α	Emiss	ione	GUILARTE	30/11/18	AIELLO	Odo Data CGPHENTISE Data Odo 30/16/8 Independent A 20/11/18 TOMMASO 30/11/18		
В			N.A.			TAR OTO ALBO PROVINCIALE INCECONER VERON ALBO PROVINCIAL INCEC		
С						(Industriale dell'Informazione Data: 30/11/18		
CIG.	751447334A					MAINORT 1EE2CLSLZ1F0001A_01.docx		



 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio


 Doc. N.
 INOR
 11
 E E2 CL SLZ1 F0 001
 A
 2 di 169

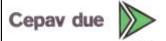
INDICE		
1. INT	TRODUZIONE	11
2. NO	RMATIVA DI RIFERIMENTO	12
3. CR	ITERI DI CALCOLO	13
3.1.	CRITERI E DEFINIZIONE DELL'AZIONE SISMICA	13
3.2.	COMBINAZIONI DI CARICO	14
3.2.	1. Combinazioni per la verifica allo SLU	14
3.2.	2. Combinazioni per la verifica allo SLE	15
4. CA	RATTERISTICHE DEI MATERIALI	16
4.1.	CALCESTRUZZO PER MAGRONE	16
4.1.	1. Calcestruzzo	16
4.2.	ACCIAIO PER CEMENTO ARMATO	16
4.3.	DURABILITÀ E PRESCRIZIONI SUI MATERIALI	17
4.4.	COPRIFERRO MINIMO E COPRIFERRO NOMINALE	17
5. PAI	RAMETRI SISMICI	18
6. PAI	RAMETRI GEOTECNICI	19
7. GE	OMETRIA DELLA STRUTTURA	20
8. MC	DELLAZIONE STRUTTURALE	21
8.1.	CODICE DI CALCOLO	21
8.2.	MODELLAZIONE ADOTTATA	21
8.3.	MODELLAZIONE SCATOLARE – CONCIO 1	22
8.1.	MODELLAZIONE SCATOLARE – CONCIO 2	23
8.1.	MODELLAZIONE SCATOLARE – CONCIO 3	24
9. AN	ALISI DEI CARICHI – CONCIO 1	26
9.1.	PESO PROPRIO STRUTTURE (LOAD1)	26
9.2.	CARICHI PERMANENTI PORTATI (LOAD2)	26
9.3.	SPINTA DEL TERRENO (LOAD3 E LOAD4)	26
9.4	AZIONI TERMICHE E RITIRO (I OAD $5 \div 8$)	27



Doc. N.		INOR	11	E E2 CL SLZ1 F0 001	A A	3 di 16
9.5.	CARICHI MOBILI VERTICALI SULLA SOLETTA SUPERIOR	E (LOAD 9 ÷ I	.oad 11)			28
9.6.	SPINTA DEL SOVRACCARICO SUL RILEVATO (LOAD 12)					28
9.7.	FRENATURA (LOAD 13)					28
9.8.	SOVRACCARICHI ACCIDENTALI SULLA SOLETTA DI FON	NDAZIONE				28
9.9.	FORZA CENTRIFUGA					28
9.10.	AZIONE SISMICA (LOAD 14÷17)					29
9.11.	RIEPILOGO DEI CARICHI SOLLECITANTI					30
10. ANA	ALISI DEI CARICHI – CONCIO 2					31
10.1.	PESO PROPRIO STRUTTURE (LOAD1)					31
10.2.	CARICHI PERMANENTI PORTATI (LOAD2)					31
10.3.	SPINTA DEL TERRENO (LOAD3 E LOAD4)					31
10.4.	AZIONI TERMICHE E RITIRO (LOAD $5 \div 8$)					32
10.5.	CARICHI MOBILI VERTICALI SULLA SOLETTA SUPERIOR	E (LOAD 9 ÷ I	OAD 11)			33
10.6.	SPINTA DEL SOVRACCARICO SUL RILEVATO (LOAD 12)					35
10.7.	FRENATURA (LOAD 13)					35
10.8.	SOVRACCARICHI ACCIDENTALI SULLA SOLETTA DI FON	NDAZIONE				35
10.9.	FORZA CENTRIFUGA					36
10.10.	AZIONE SISMICA (LOAD 14÷17)					36
10.11.	RIEPILOGO DEI CARICHI SOLLECITANTI					37
11. AN	ALISI DEI CARICHI – CONCIO 3					38
11.1.	PESO PROPRIO STRUTTURE (LOAD1)					38
11.2.	CARICHI PERMANENTI PORTATI (LOAD2)					38
11.3.	SPINTA DEL TERRENO (LOAD3 E LOAD4)					38
11.4.	AZIONI TERMICHE E RITIRO (LOAD $5 \div 8$)					39
11.5.	CARICHI MOBILI VERTICALI SULLA SOLETTA SUPERIOR	E (LOAD 9 ÷ I	OAD 11)			40
11.6.	SPINTA DEL SOVRACCARICO SUL RILEVATO (LOAD 12)					40
11.7.	FRENATURA (LOAD 13)					40
11.8.	SOVRACCARICHI ACCIDENTALI SULLA SOLETTA DI FON	NDAZIONE				40



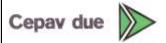
Doc. N.	Progetto INOR	Lotto 11	Codifica Documento E E2 CL SLZ1 F0 001	Rev. A	Foglio 4 di 169
11.9. FORZA CENTRIFUGA					41
11.10. AZIONE SISMICA (LOAD 14÷17)					41
11.11. RIEPILOGO DEI CARICHI SOLLECITAN	TI				42
12. CALCOLO DELLE SOLLECITAZIONI					43
12.1. CONDIZIONI E COMBINAZIONI DI CAR	ICO ADOTTATE				43
12.1.1. Combinazioni SLU di tipo STR					44
12.1.2. Combinazioni SLU di tipo GEO					46
12.1.3. Combinazioni SLV					47
12.1.4. Combinazioni SLE – Quasi Perma	anente – Caratteristica				47
12.2. DIAGRAMMI DI INVILUPPO – CONCIO	1				49
12.2.1. Inviluppo momento flettente SLU/	/SLV – STR				49
12.2.2. Inviluppo taglio SLU/SLV – STR					49
12.2.3. Inviluppo momento flettente SLE -	– Quasi Permanente				50
12.2.4. Inviluppo momento flettente SLE -	– Caratteristico				50
12.3. DIAGRAMMI DI INVILUPPO – CONCIO	2				51
12.3.1. Inviluppo momento flettente SLU/	/SLV – STR				51
12.3.2. Inviluppo taglio SLU/SLV – STR					52
12.3.3. Inviluppo momento flettente SLE -	– Quasi Permanente				52
12.3.4. Inviluppo momento flettente SLE -	– Caratteristico				52
12.4. DIAGRAMMI DI INVILUPPO – CONCIO	3				53
12.4.1. Inviluppo momento flettente SLU/	/SLV – STR				53
12.4.2. Inviluppo taglio SLU/SLV – STR					
12.4.3. Inviluppo momento flettente SLE -					
12.4.4. Inviluppo momento flettente SLE -					
13. VERIFICHE DI RESISTENZA ULTIMA					
13.1. SOLETTA INFERIORE					
1.1.1 Soletta inferiore – sezione di inca.					
v	no per flessione				
	no per taglio				



Doc. N.		INOR	11	E E2 CL SLZ1 F0 001	A A	5 di 16
13.1.1.3.	Verifiche allo stato limite di esercizio					60
1.1.2 Sole	etta inferiore – sezione di mezzeria					61
13.1.1.4.	Verifiche allo stato limite ultimo per flessione					61
13.1.1.5.	Verifiche allo stato limite di esercizio					62
13.2. PIEDR	ITTO					63
1.1.3 Pied	dritto – sezione di incastro					64
13.2.1.1.	Verifiche allo stato limite ultimo per flessione					64
13.2.1.2.	Verifiche allo stato limite ultimo per taglio					65
13.2.1.3.	Verifiche allo stato limite di esercizio					66
1.1.4 Pied	dritto – sezione di mezzeria					67
13.2.1.4.	Verifiche allo stato limite ultimo per flessione					67
13.2.1.5.	Verifiche allo stato limite di esercizio					68
13.3. SOLET	TA SUPERIORE					69
1.1.5 Sole	etta superiore – sezione di incastro					70
13.3.1.1.	Verifiche allo stato limite ultimo per flessione					70
13.3.1.2.	Verifiche allo stato limite ultimo per taglio					71
13.3.1.3.	Verifiche allo stato limite di esercizio					72
1.1.6 Sole	etta superiore – sezione di mezzeria					73
13.3.1.4.	Verifiche allo stato limite ultimo per flessione					73
13.3.1.5.	Verifiche allo stato limite di esercizio					74
14. VERIFICHI	E DI RESISTENZA ULTIMA E DI ESERCIZ	IO – CONCIO	2			75
14.1. SOLET	TA INFERIORE					75
1.1.7 Sole	etta inferiore – sezione di incastro					77
14.1.1.1.	Verifiche allo stato limite ultimo per flessione					77
14.1.1.2.	Verifiche allo stato limite ultimo per taglio					78
14.1.1.3.	Verifiche allo stato limite di esercizio					<i>79</i>
1.1.8 Sole	etta inferiore – sezione di mezzeria					80
14.1.1.4.	Verifiche allo stato limite ultimo per flessione					80
14.1.1.5.	Verifiche allo stato limite di esercizio					81
14.2. PIEDRI	ITTO					82
14.2.1.1.	Verifiche allo stato limite ultimo per flessione					82
14.2.1.2.	Verifiche allo stato limite ultimo per taglio					83
14.2.1.3.	Verifiche allo stato limite di esercizio					84
14.3. Solet	TA SUPERIORE					85

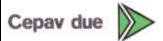
Doc. N.		Progetto INOR	Lotto 11	Codifica Documento E E2 CL SLZ1 F0 001	Rev. A	Foglio 6 di 169
1.1.9 So	letta superiore – sezione di incastro					86
14.3.1.1.	Verifiche allo stato limite ultimo per flessione					86
14.3.1.2.	Verifiche allo stato limite ultimo per taglio					87
14.3.1.3.	Verifiche allo stato limite di esercizio					88
1.1.10 So	letta superiore – sezione di mezzeria					89
14.3.1.4.	Verifiche allo stato limite ultimo per flessione					89
14.3.1.5.	Verifiche allo stato limite di esercizio					90
15. VERIFICH	HE DI RESISTENZA ULTIMA E DI ESERCIZ	IO – CONCIC	3			91
15.1. SOLE	TTA INFERIORE					91
1.1.11 So	letta inferiore – sezione di incastro					92
15.1.1.1.	Verifiche allo stato limite ultimo per flessione					92
15.1.1.2.	Verifiche allo stato limite ultimo per taglio					93
15.1.1.3.	Verifiche allo stato limite di esercizio					94
1.1.12 So	letta inferiore – sezione di mezzeria					95
15.1.1.4.	Verifiche allo stato limite ultimo per flessione					95
15.1.1.5.	Verifiche allo stato limite di esercizio					96
15.2. PIEDI	RITTO					97
1.1.13 Pi	edritto – sezione di incastro					98
15.2.1.1.	Verifiche allo stato limite ultimo per flessione					98
15.2.1.2.	Verifiche allo stato limite ultimo per taglio					99
15.2.1.3.	Verifiche allo stato limite di esercizio					100
1.1.14 Pie	edritto – sezione di mezzeria					101
15.2.1.4.	Verifiche allo stato limite ultimo per flessione					101
15.2.1.5.	Verifiche allo stato limite di esercizio					102
15.3. Sole	TTA SUPERIORE				•••••	103
1.1.15 So	letta superiore – sezione di incastro					104
15.3.1.1.	Verifiche allo stato limite ultimo per flessione					104
15.3.1.2.	Verifiche allo stato limite ultimo per taglio					105
15.3.1.3.	Verifiche allo stato limite di esercizio					106
1.1.16 So	letta superiore – sezione di mezzeria					107
15.3.1.4.	Verifiche allo stato limite ultimo per flessione					107
15.3.1.5.	Verifiche allo stato limite di esercizio					108
16. VERIFICA	A EFFETTI LONGITUDINALI DA RITIRO					109
16.1. Coaz	ZIONI INTERNE DOVUTE AI FENOMENI DI RITIRO					109

Lotto

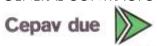

Codifica Documento

Foglio

Rev


Progetto

Doc. N. INOR E E2 CL SLZ1 F0 001 7 di 169 11 16.2. 17.1. CALCOLO DELLE SOLLECITAZIONI 118 19.2. 19.3. 19.4. 20.1. 20.2. 20.3. 20.4. 20.6.



Doc. N.			Progetto INOR	Lotto 11	Codifica Documento E E2 CL SLZ1 F0 001	Rev. A	Foglio 8 di 169
20.0	6.1. Piedritti						126
20.0	5.2. Soletta						127
20.7.	DIAGRAMMI DI INVILUPPO S	SLE					128
20	7.1. Piedritti						
20.	7.2. Soletta		•••••	•••••		•••••	128
20.8.	VERIFICHE DI RESISTENZA U	LTIMA E DI ESERCIZIO	•••••			•••••	129
20.	3.1. Soletta						
	-	imite ultimo per flessione					
	-	imite ultimo per taglio					
2	0.8.1.3. Verifiche allo stato l	imite di esercizio					132
20.	3.2. Piedritto					•••••	133
2	0.8.2.1. Verifiche allo stato l	imite ultimo per flessione					134
	· ·	imite ultimo per taglio					
2	0.8.2.3. Verifiche allo stato l	imite di esercizio					136
21. MU	RO A U TIPO 2						137
21.1.	GEOMETRIA DELLA STRUTTI	URA					137
21.2.	PRESSIONI SUL PIEDRITTO D	OVUTE AI CARICHI FONDA	MENTALI				138
21.3.	RIASSUNTO DELLE SOLLECT	ΓAZIONI ALLA BASE DEL P	IEDRITTO (IN AS	SSE SOLET	ГА)		139
21.4.	RIASSUNTO SOLLECITAZION	I MASSIME PIEDRITTO					140
21.	4.1. Combinazioni SLU – SLV	V				•••••	140
21.	1.2. Combinazioni SLE						140
21.5.	RIASSUNTO MASSIME SOLLE	ECITAZIONI SOLETTA					141
21	5.1. Combinazioni SLU - SLV	/					141
21	5.2. Combinazioni SLE						141
21.6.	DIAGRAMMI DI INVILUPPO S	SLU-SLV					142
21.0	5.1. Piedritti					•••••	142
21.0	5.2. Soletta						143
21.7.	DIAGRAMMI DI INVILUPPO S	SLE					144
21.3	7.1. Piedritti						
	7.2. Soletta						
21.							

Doc. N.		Progetto INOR	Lotto 11	Codifica Documento E E2 CL SLZ1 F0 001	Rev. A	Foglio 9 di 169
21.8. VERI	FICHE DI RESISTENZA ULTIMA E DI ESERCIZIO					145
21.8.1. So	letta					145
21.8.1.1.	Verifiche allo stato limite ultimo per flessione					146
21.8.1.2.	Verifiche allo stato limite ultimo per taglio					147
21.8.1.3.	Verifiche allo stato limite di esercizio					148
21.8.2. Pie	edritto					149
21.8.2.1.	Verifiche allo stato limite ultimo per flessione					150
21.8.2.2.	Verifiche allo stato limite ultimo per taglio					151
21.8.2.3.	Verifiche allo stato limite di esercizio					152
22. MURO A	U TIPO 3					153
22.1. Geom	METRIA DELLA STRUTTURA					153
22.2. Press	SIONI SUL PIEDRITTO DOVUTE AI CARICHI FONDA	AMENTALI				154
22.3. RIASS	SUNTO DELLE SOLLECITAZIONI ALLA BASE DEL I	PIEDRITTO (IN A	SSE SOLET	TA)		155
22.4. RIASS	SUNTO SOLLECITAZIONI MASSIME PIEDRITTO					156
22.4.1. Co	mbinazioni SLU – SLV					156
22.4.2. Co	mbinazioni SLE					156
22.5. RIASS	SUNTO MASSIME SOLLECITAZIONI SOLETTA					157
22.5.1. Co	ombinazioni SLU - SLV					157
22.5.2. Co	mbinazioni SLE					157
22.6. DIAG	RAMMI DI INVILUPPO SLU-SLV					158
22.6.1. Pie	edritti					158
22.6.2. So	letta					159
22.7. DIAG	RAMMI DI INVILUPPO SLE					160
22.7.1. Pie	edritti					160
22.7.2. So	letta					160
22.8. VERI	FICHE DI RESISTENZA ULTIMA E DI ESERCIZIO					161
22.8.1 50	letta					161
22.8.1.1.	Verifiche allo stato limite ultimo per flessione					
22.8.1.2.	Verifiche allo stato limite ultimo per taglio					
22.8.1.3.	Verifiche allo stato limite di esercizio					
22.8.2. Pie	edritto					165

			Progetto	Lotto	Codifica Documento	Rev.	Foglio	
Doc. N.			INOR		E E2 CL SLZ1 F0 001	Α	10 di 169	
22	2.8.2.1.	Verifiche allo stato limite ultimo per flessione					166	
22	2.8.2.2.	Verifiche allo stato limite ultimo per taglio167						
22	2.8.2.3.	Verifiche allo stato limite di esercizio					168	
23. RIFE	ERIMEN	ТІ					169	
23.1.	DOCUM	ENTI REFERENZIATI					169	
23.2.	DOCUM	ENTI CORRELATI					169	
23.3.	DOCUM	ENTI SUPERATI					169	

GENERAL CONTRACTOR Cepav due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL SLZ1 F0 001 A 11 di 169

1. INTRODUZIONE

La presente relazione è relativa al calcolo del sifone facente parte dell'opera denominata "SLZ1 - SOTTOVIA S.C. VIA RAMPA PK 149+888,702 - SIFONE CANALE DI SOMMACAMPAGNA", prevista nell'ambito dei lavori inerenti la linea A.V./A.C. TORINO – VENEZIA, tratta MILANO – VERONA, lotto funzionale Brescia – Verona, ubicata al km 149+888,702 della linea ferroviaria.

Nella presente relazione si riportano i calcoli relativi a:

- scatolare concio 1: dimensioni interne pari a 6.00x4.20m e spessori pari a 60cm;
- scatolare concio 2: dimensioni interne pari a 6.00x2.00m, spessore di soletta superiore e piedritti pari a 60cm e spessore di fondazione pari a 70cm, altezza di ricoprimento pari a 1.20m;
- scatolare concio 3: dimensioni interne pari a 6.00x5.95m, spessore di soletta superiore e piedritti pari a 70cm e spessore di fondazione pari a 80cm, altezza di ricoprimento pari a 0.30m.

L'analisi strutturale viene effettuata su un modello piano che descrive una striscia larga 1.00m, secondo i criteri di calcolo descritti nei paragrafi seguenti. L'analisi viene svolta con un programma agli elementi finiti schematizzando i vari setti con elementi "beam" mutuamente incastrati e facendo riferimento ad una larghezza unitaria di struttura che viene pertanto risolta come struttura piana.

MURI AD U

(b=larghezza interna, L=lunghezza, h=altezza piedritto, S_p =spessore base piedritto, S_s =spessore fondazione)

	b [m]	L [m]	h _{max} [m]	S _p [m]	S _s [m]
Concio 4	6.00	7.00	6.85	0.90	1.00
Concio 5	6.00	7.00	5.46	0.80	0.90
Concio 6	6.00	7.00	5.01	0.80	0.90
Concio 7	6.00	9.10	4.57	0.70	0.80

Le analisi strutturali vengono effettuate su strutture piane che descrivono una striscia larga 1.00m, secondo i criteri di calcolo di seguito descritti, ed individuando le sezioni di calcolo maggiormente significative per ciascuna tipologia di concio, denominate come segue:

- Muro ad U tipo 1 sp. fondazione Ss = 1.00m, h = 6.39m, rappresentativa del Concio 4;
- Muro ad U tipo 2 sp. fondazione Ss = 0.90m, h = 5.31m, rappresentativa dei Conci 5 e 6;
- Muro ad U tipo 3 sp. fondazione Ss = 0.80m, h = 4.10m, rappresentativa del Concio 7.

Tutte le strutture sono realizzata in c.a. mediante getto in opera.

Le azioni considerate nel calcolo sono quelle tipiche di una struttura interrata con le aggiunte delle azioni di tipo stradale, con applicazione della Normativa sui ponti stradali D. M. Min. II. TT. del 14 gennaio 2008 – Norme tecniche per le costruzioni.

L'opera, ubicata nel Comune di Sommacampagna (VR), ricade in zona sismica: verranno pertanto considerate anche le azioni derivanti dall'analisi sismica, secondo quanto previsto dal D.M. 14/01/08.

2. NORMATIVA DI RIFERIMENTO

- UNI EN 197-1 giugno 2001 "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni";
- UNI EN 11104 luglio 2016 "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206-1;
- UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità".
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2005: "Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici";
- UNI EN 1992-1-1 (Eurocodice 2) Novembre 2005: "Progettazione delle strutture di calcestruzzo Parte 1:Regole generali e regole per edifici";
- D. M. Min. II. TT. del 14 gennaio 2008 Norme tecniche per le costruzioni;
- CIRCOLARE 2 febbraio 2009, n.617 Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008;
- Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici Servizio Tecnico Centrale;
- RFI DTC SI MA IFS 001 A Manuale di Progettazione delle Opere Civili;
- RFI DTC SI SP IFS 001 A Capitolato Generale Tecnico di Appalto delle Opere Civili.

3. CRITERI DI CALCOLO

In ottemperanza al D.M. del 14.01.2008 (Norme tecniche per le costruzioni), i calcoli sono condotti con il metodo semiprobabilistico agli stati limite.

3.1. Criteri e definizione dell'azione sismica

L'effetto dell'azione sismica di progetto sull'opera nel suo complesso, includendo il volume significativo di terreno, la struttura di fondazione, gli elementi strutturali e non strutturali, nonché gli impianti, deve rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, i cui requisiti di sicurezza sono indicati nel § 7.1 della norma.

Per Stato Limite di salvaguardia della Vita (SLV) si intende che l'opera a seguito del terremoto subisce rotture e crolli dei componenti non strutturali e impiantistici e significativi danni di componenti strutturali, cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali (creazione di cerniere plastiche secondo il criterio della gerarchia delle resistenze), mantenendo ancora un margine di sicurezza (resistenza e rigidezza) nei confronti delle azioni verticali.

In merito alle opere scatolari di cui trattasi, nel rispetto del punto § 7.9.2., assimilando l'opera scatolare alla categoria delle spalle da ponte, rientrando tra le opere che si muovono con il terreno (§ 7.9.2.1), si può ritenere che la struttura debba mantenere sotto l'azione sismica un comportamento elastico; queste categorie di opere che si muovono con il terreno non subiscono le amplificazioni dell'accelerazione del suolo.

Per la definizione dell'azione sismica occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato.

La vita nominale (V_N) dell'opera è stata assunta pari a 100 anni.

La classe d'uso assunta è la III.

Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso, vale:

$$V_R = V_N \cdot C_u = 150 \text{ anni}$$

Il valore di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente, è:

 $P_{VR}(SLV)=10\%$

Il periodo di ritorno dell'azione sismica T_R espresso in anni vale:

$$T_R(SLV) = -\frac{Vr}{\ln(1 - Pvr)} = 1424$$
 anni

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di a_g, F₀, T*_c.

 $a_g \rightarrow$ accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;

 $F_0 \rightarrow$ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

 $T^*_c \rightarrow \text{periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;}$

 $S \rightarrow$ coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St).

Il calcolo viene eseguito con il metodo <u>pseudostatico</u> (N.T. par. 7.11.6). In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Le spinte delle terre, considerando lo scatolare una struttura rigida e priva di spostamenti (NT par. 7.11.6.2.1 e EC8-5 par.7.3.2.1), sono calcolate in regime di spinta a riposo, condizione che comporta il calcolo delle spinte in condizione sismica con l'incremento dinamico di spinta del terreno calcolato secondo la formula di Wood:

$$\Delta P_d = S \cdot a_g / g \cdot \gamma \cdot h_{tot}^2$$

La spinta si considera come un carico uniformemente distribuito su htot.

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per le accelerazioni sismiche massime attese al suolo, considerando la componente verticale agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli.

3.2. Combinazioni di carico

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto al cap. 2 delle N.T.C..

3.2.1. Combinazioni per la verifica allo SLU

Gli stati limite ultimi delle opere interrate si riferiscono allo sviluppo di meccanismi di collasso, determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono l'opera.

Le verifiche agli stati limite ultimi devono essere eseguiti in riferimento ai seguenti stati limite:

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU), collasso per carico limite dell'insieme fondazione-terreno;
- SLU di tipo strutturale (STR), raggiungimento della resistenza negli elementi strutturali.

Le verifiche vengono condotte secondo l'approccio progettuale "Approccio 1" e le relative combinazione previste:

- combinazione $1 \rightarrow (A1+M1+R1) \rightarrow STR$
- combinazione $2 \rightarrow$ (A2+M2+R2) \rightarrow GEO

Le combinazioni di carico di tipo A1 STR e A2 GEO vengono effettuate adottando i gruppi di azioni indicati in tabella 5.1.IV delle N.T.C. con i coefficienti parziali di sicurezza stradali indicati in tabella 5.1.V delle N.T.C. e i coefficienti di combinazione dei carichi stradali della tabella 5.1.VI delle N.T.C. presenti al capitolo 5.1.3.12 della norma.

Per quanto riguarda i coefficienti parziali per i parametri geotecnici del terreno (γ_M), si fa riferimento alla tabella 6.2.II delle N.T.C., mentre per quanto riguarda i coefficienti parziali per le verifiche agli stati limiti ultimi (γ_R) si fa riferimento alla tabella 6.5.I delle N.T.C..

Ai fini delle verifiche degli stati limiti ultimi si definiscono le seguenti combinazioni delle azioni:

• Combinazione fondamentale, impiegata per gli stati limiti ultimi SLU:

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{O1} \cdot Q_{k1} + \sum_i \gamma_{Oi} \cdot \psi_{Oi} \cdot Q_{ki} \implies (\Phi_d' = \Phi_k')$$

• Combinazione sismica, impiegata per gli stati limiti ultimi connessi all'azione sismica E:

$$E + G_1 + G_2 + \sum_i \psi_{2i} \cdot Q_{ki} \Longrightarrow (\Phi_d' = \Phi_k')$$

• Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 {+} G_2 {+} \textstyle \sum_i \! \psi_{2i} {\cdot} Q_{ki}$$

3.2.2. Combinazioni per la verifica allo SLE

Le combinazioni di carico allo SLE vengono effettuate adottando i gruppi di azioni indicati in tabella 5.1.IV delle N.T.C. con i coefficienti di combinazione dei carichi stradali della tabella 5.1.VI delle N.T.C. presenti al capitolo 5.1.3.12 della norma.

Ai fini delle verifiche degli stati limiti di esercizio si definiscono le seguenti combinazioni delle azioni:

- Quasi permanente \Rightarrow $G_1 + G_2 + \psi_{21} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki} \Rightarrow (\Phi_d' = \Phi_k')$

- Frequente \Rightarrow $G_1 + G_2 + \psi_{11} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki} \Rightarrow (\Phi_d' = \Phi_k')$

- Rara \Rightarrow $G_1 + G_2 + Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki}$ $\Rightarrow (\Phi_d' = \Phi_k')$

4. CARATTERISTICHE DEI MATERIALI

Per la realizzazione dell'opera è previsto l'impiego dei sottoelencati materiali:

4.1. Calcestruzzo per magrone

Per il magrone di sottofondazione si prevede l'utilizzo di calcestruzzo di classe Rck 15.

4.1.1. Calcestruzzo

Per la realizzazione delle strutture, si prevede l'utilizzo di calcestruzzo avente classe di resistenza C32/40 (Rck \geq 40 N/mm²) che presenta le seguenti caratteristiche:

IIIII) che presenta le seguenti caratteristiche:	
•	Resistenza caratteristica a compressione (cilindrica)	${\rightarrow} f_{ck} = 0.83 \times R_{ck} = 33.20 \ N/mm^2$
•	Resistenza media a compressione	$\rightarrow f_{cm} = f_{ck} + 8 = 41.20 \text{ N/mm}^2$
•	Modulo elastico	$\rightarrow E_{cm} = 22000 \times (f_{cm}/10)^{0.3} = 33643 \text{ N/mm}^2$
•	Resistenza di calcolo a compressione	$\rightarrow f_{cd} = \alpha_{cc} \times f_{ck}/\gamma_c = 0.85 * f_{ck}/1.5 = 18.81 \ N/mm^2$
•	Resistenza a trazione media	$\!$
•	Resistenza a trazione	$\rightarrow f_{ctk} = 0.7 \times f_{ctm} = 2.169 \ N/mm^2$
•	Resistenza a trazione di calcolo	$\rightarrow f_{ctd} = f_{ctk} / \gamma_c = 1.446 N/mm^2$
•	Resistenza a compressione (comb. Rara)	${\rightarrow} \sigma_c = 0.55 \times f_{ck} = 18.26 \text{ N/mm}^2$
•	Resistenza a compressione (comb. Quasi permanente)	$\rightarrow \sigma_c = 0.40 \times f_{ck} = 13.28 \text{ N/mm}^2$

4.2. Acciaio per cemento armato

Per le armature metalliche si adottano tondini in acciaio del tipo B450C saldabile, controllato in stabilimento e che presentano le seguenti caratteristiche:

Proprietà	Requisito
Limite di snervamento f _y	≥450 MPa
Limite di rottura f _t	≥540 MPa
Allungamento totale al carico massimo Agt	≥7.5%
Rapporto f _t /f _y	$1,15 \le R_{\rm m}/R_{\rm e} \le 1,35$
Rapporto f _{y misurato} / f _{y nom}	≤ 1,25

•	Tensione di snervamento caratteristica	$\rightarrow f_{yk} \ge 450 \text{ N/mm}^2$
•	Tensione caratteristica a rottura	$\rightarrow f_{tk} \ge 540 \text{ N/mm}^2$
•	Tensione in condizione di esercizio (comb. Rara)	$\rightarrow \sigma_s = 0.80 * f_{yk} = 360.00 \text{ N/mm}^2$
•	Fattore di sicurezza acciaio	$\rightarrow \gamma_s = 1.15$
•	Resistenza a trazione di calcolo	$\rightarrow f_{yd} = f_{yk} / \gamma_s = 391.30 \text{ N/mm}^2$

4.3. Durabilità e prescrizioni sui materiali

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Al fine di ottenere la prestazione richiesta in funzione delle condizioni ambientali, nonché per la definizione della relativa classe, si fa riferimento alle indicazioni contenute nelle Linee Guida sul calcestruzzo strutturale edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici ovvero alle norme UNI EN 206-1:2006 ed UNI 11104:2004.

Per le opere della presente relazione si adotta quanto segue:

Fondazione/ Elevazione CLASSE DI ESPOSIZIONE XC4 + XF1

4.4. Copriferro minimo e copriferro nominale

Al fine di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro nominale c_{nom} è somma di due contributi, il copriferro minimo c_{min} e la tolleranza di posizionamento h. Vale pertanto: $c_{nom} = c_{min} + h$. Considerate le condizioni ambientali dell'opera e le classi di resistenza del calcestruzzo, si adotta un copriferro nominale pari a $c_{nom} = 50$ mm.

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL SLZ1 F0 001 A 18 di 169

5. PARAMETRI SISMICI

L'opera ricade nel comune di Sommacampagna in provincia di Verona.

I corrispondenti valori delle caratteristiche sismiche per lo SLV (TR=1424 anni) sono i seguenti:

 $a_g = 0.237g$

 $a_{gv} = 0.155 g;$

 $F_0 = 2.432;$

 $T*_{c} = 0.283 \text{ s};$

Per quanto riguarda il sottosuolo su cui insiste l'opera, si assume che ricada in categoria sismica "B" e categoria topografica "T1". Il coefficiente di amplificazione stratigrafica e topografica risultano quindi:

 $S_S = 1.170$

 $S_T = 1.0$

L'accelerazione massima orizzontale viene valutata pari a:

$$a_{max} \; (SLV) = S \; a_g = 1.170 \times 1.00 \times 0.237 \; g = 0.277 \; g$$

In base al valore dell'accelerazione ed alla categoria sismica del sottosuolo, il valore del parametro β_m è pari a:

 $\beta_{\rm m} = 1.00$ per muri ad "U"

 $\beta_m = 0.31$ per muri a mensola.

Per muri ad "U" si ottiene quindi:

 $k_{\text{h}}=0.277\,$

 $k_v = 0.139$

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL SLZ1 F0 001 A 19 di 169

6. PARAMETRI GEOTECNICI

I parametri geotecnici caratteristici impiegati per caratterizzare i materiali da rilevato, sono:

$$-\Phi'_{k} = 35^{\circ}$$

$$- \gamma_m = 20 \text{ kN/m}^3$$

$$- \quad \gamma' = 10 \text{ kN/m}^3$$

$$- \quad \gamma_w = 10 \text{ kN/m}^3$$

I parametri geotecnici caratteristici impiegati per caratterizzare i materiali da rinterri, sono:

$$-\Phi'_{k} = 30^{\circ}$$

$$- \quad \gamma_m = 20 \text{ kN/m}^3$$

$$- \gamma' = 10 \text{ kN/m}^3$$

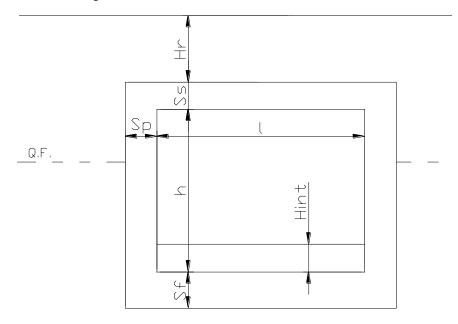
$$-\gamma_w = 10 \text{ kN/m}^3$$

Per quanto riguarda il terreno di fondazione, in base alle caratteristiche geotecniche riportate nello specifico documento Rif. [1], si assumono i seguenti parametri:

$$-\Phi'_{k} = 35^{\circ}$$

$$-\gamma_m = 19 \text{ kN/m}^3$$

$$\gamma' = 9 \text{ kN/m}^3$$


$$- \quad \gamma_w = 10 \; kN/m^3$$

$$- k_w = 5000 \text{ kN/m}^3$$

7. GEOMETRIA DELLA STRUTTURA

Si riportano di seguito le dimensioni geometriche della struttura:

Dimensioni geometriche (sezione in retto)

	l [m]	h [m]	Ss [m]	Sf [m]	Sp [m]	Hr [m]
Concio 1	6.00	4.20	0.60	0.60	0.60	-
Concio 2	6.00	2.00	0.60	0.70	0.60	1.20
Concio 3	6.00	5.95	0.70	0.80	0.70	0.30

La falda risulta posizionata al di sotto del piano di fondazione dello scatolare e pertanto non influenza il dimensionamento dell'opera.

8. MODELLAZIONE STRUTTURALE

8.1. Codice di calcolo

L'analisi della struttura scatolare è stata condotta con un programma agli elementi finiti (SAP2000) schematizzando i vari setti con elementi "beam" mutuamente incastrati e facendo riferimento ad una larghezza unitaria di struttura che viene pertanto risolta come struttura piana.

8.2. Modellazione adottata

La struttura viene schematizzata attraverso un modello analitico agli elementi finiti, assumendo uno schema statico di telaio chiuso.

L'analisi strutturale viene condotta con il metodo degli spostamenti per la valutazione dello stato tenso-deformativo indotto da carichi statici.

Il suolo viene modellato facendo ricorso all'usuale artificio delle molle elastiche alla Winkler.

La caratteristica elastica della generica molla viene calcolata nel seguente modo:

- K_s = costante di sottofondo $[F/L^3]$
- b_t = interasse trasversale di competenza della generica molla
- b₁ = interasse longitudinale di competenza della generica molla (= 1.00 m)
- $W_s = K_s/(b_t \times b_t) = caratteristica elastica della generica molla$

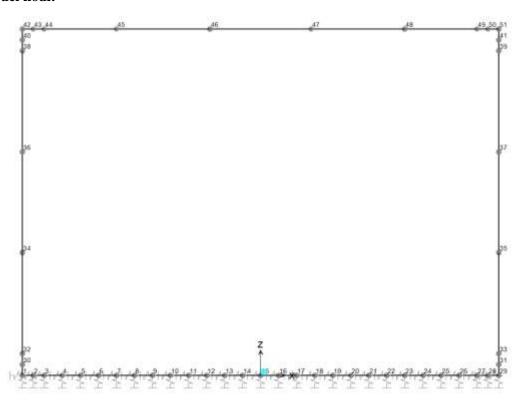
La costante di sottofondo adottata per la modellazione, funzione del tipo di terreno presente in sito, è pari a:

$$K_s = 5000 \text{ kN/m}^3$$

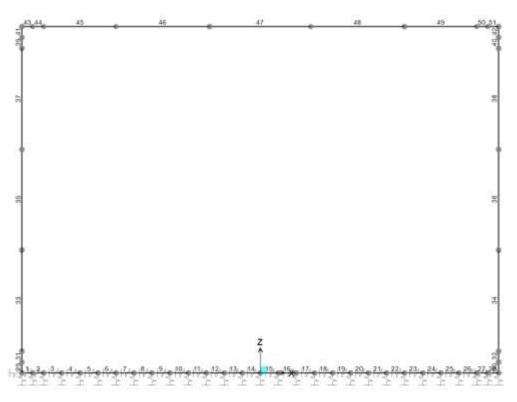
Per le caratteristiche geometriche delle varie aste si è quindi assunto:

- una sezione rettangolare b x $h = 100 x S_s$ cm per la soletta superiore
- una sezione rettangolare b x $h = 100 x S_f$ cm per la soletta di fondazione
- una sezione rettangolare b x $h = 100 x S_p$ cm per i piedritti.

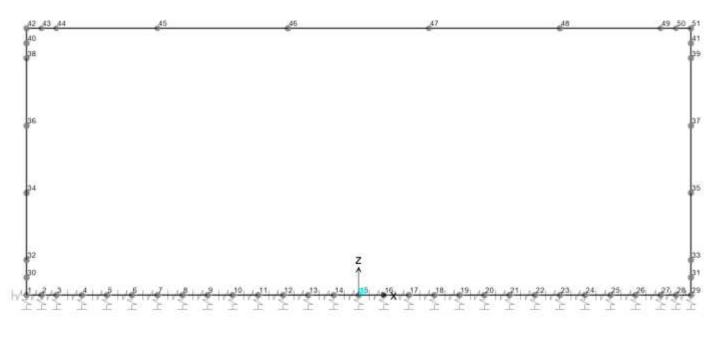
Per quanto riguarda la rigidezza delle aste del reticolo si è assunto:


- E_c = 33643 N/mm² (Per cls Rck 40);

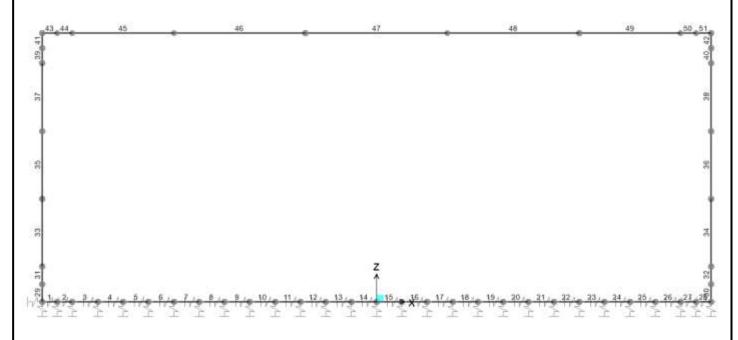
Lo schema statico della struttura e la relativa numerazione dei nodi e delle aste sono riportati nelle seguenti figure.


8.3. Modellazione scatolare – concio 1

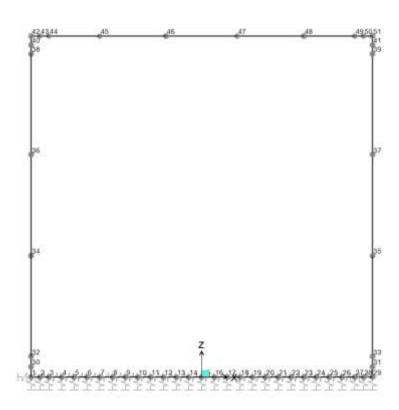
Numerazione dei nodi:

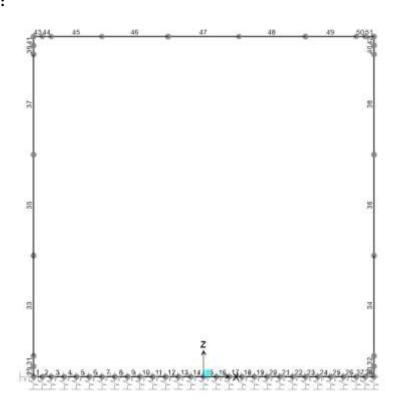


Numerazione delle aste:


8.1. Modellazione scatolare – concio 2

Numerazione dei nodi:


Numerazione delle aste:


8.1. Modellazione scatolare – concio 3

Numerazione dei nodi:

Numerazione delle aste:

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA

GRUPPO FERROVIE DELLO STATO ITALIANE

ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.INOR11E E2 CL SLZ1 F0 001A26 di 169

9. ANALISI DEI CARICHI – CONCIO 1

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche di resistenza in esercizio ed in presenza dell'evento sismico.

Vengono prese in considerazione le condizioni elementari di carico di seguito determinate.

Tali Combinazioni Elementari saranno opportunamente combinate secondo quanto previsto dalla normativa vigente.

Per i materiali si assumono i seguenti pesi specifici:

- calcestruzzo armato: $\gamma_{c.a.} = 25 \text{ kN/m}^3$

- rilevato: $\gamma_{ril} = 20 \quad kN/m^3$

- sovrastruttura stradale: $\gamma_{ric} = 20 \text{ kN/m}^3$

9.1. Peso proprio strutture (Load1)

- soletta superiore $S_s \times \gamma_{c.a.} = 0.60 \text{ x } 25.00 = 15.00 \text{ kN/m}^2$

- piedritti $S_p \times \gamma_{c.a.} = 0.60 \text{ x } 25.00 = 15.00 \text{ kN/m}^2$

- soletta inferiore $S_s \times \gamma_{c.a.} = 0.60 \text{ x } 25.00 = 15.00 \text{ kN/m}^2$

9.2. Carichi permanenti portati (Load2)

Sul concio 1 non è previsto ricoprimento.

9.3. Spinta del terreno (Load3 e Load4)

Per il rinterro a ridosso dello scatolare si assumono cautelativamente i seguenti parametri:

 $\gamma_t = 20 \text{ kN/m}^3$

 $\gamma_w = 10 \text{ kN/m}^3$

 $\phi'_k = 30^\circ$

 $k_{0,k} = 0.50$ $k_{0,M1} = 0.50$ $k_{0,M2} = 0.581$

 $k_{a,k} = 0.33$ $k_{a,M1} = 0.33$ $k_{a,M2} = 0.409$

Si riporta di seguito il calcolo delle pressioni agenti sulla struttura, eseguito sia per la Combinazione 1 (A1+M1+R1) che per la Combinazione 2 (A2+M2+R2), ed indicando con Load 4 le spinte a riposo sul piedritto sinistro e con Load 5 quelle sul piedritto destro.

Approccio 1 – Combinazione 1

• Pressione in asse soletta superiore:

 $P_1 (h_1 = 0.30m) = k_{0,M1} \times h_1 \times \gamma_t =$

 $= 0.50 \times 0.60 \times 20 = 3.00 \text{ kN/m}^2$

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due TAIFEDD

		~~	/ A	. / . / .
PPO	FERROVIE	DELLO	STATO	ITALIANE

Rev Foalio

Doc. N.

Progetto Codifica Documento Lotto INOR 11 E E2 CL SLZ1 F0 001 27 di 169

Pressione in asse soletta inferiore:

$$\begin{split} &P_2 \; (h_2 = 5.10 m) = P_1 + k_{0,M1} \times (h_2 \text{-} h_1) \times \gamma_t = \\ &= 3.00 + 0.5 \; x \; (5.10 - 0.30) \; x \; 20 = \textbf{51.00 kN/m}^2 \end{split}$$

Approccio 1 – Combinazione 2

Pressione in asse soletta superiore:

$$\begin{split} P_1 \; (h_1 = 0.30 m) &= k_{0,M2} \times h_1 \times \gamma_t = \\ &= 0.581 \times 0.30 \times 20 = \textbf{3.49 kN/m}^2 \end{split}$$

Pressione in asse soletta inferiore:

$$\begin{split} &P_2 \ (h_2 = 5.10m) = P_1 + k_{0,M2} \times (h_2 \text{-} h_1) \times \gamma_t = \\ &= 3.49 + 0.581 \ x \ (5.10 - 0.30) \ x \ 20 = \textbf{59.26 kN/m}^2 \end{split}$$

Azioni termiche e ritiro (Load 5 ÷ 8)

Sono stati considerati gli effetti dovuti alle variazioni termiche. In particolare, è stata considerata una variazione termica uniforme di ±15° C sulla soletta superiore (Load 5 e Load 6), ed un salto termico di 5°C (analizzando i due casi di intradosso più caldo dell'estradosso e viceversa), con andamento lineare nello spessore della soletta superiore (Load 7 e Load 8).

Il valore applicato della variazione termica uniforme viene ridotto di 1/3 per considerare gli effetti viscosi del calcestruzzo, ed è quindi pari a $\pm 5^{\circ}$ C.

Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 * 10^{-6} = 0.00001 \, ^{\circ}\text{C}^{-1}$$

Ritiro

Gli effetti del ritiro vanno valutati a "lungo termine" attraverso il calcolo dei coefficienti di ritiro finale ε_{cs} (t,t₀) e di viscosità φ (t, t₀), come definiti nell'EC 2- UNI EN 1992-1-1 Novembre 2005 e D. M.14-01-2008.

L'analisi delle sollecitazioni viene svolta per una striscia di larghezza unitaria della sola soletta superiore, assumendo la dimensione convenzionale h_0 pari a $2 \times A/u = 2 \times H = 120$ cm, ed un calcestruzzo C32/40 classe N.

Caratteristiche della sezione:

B = 100 cm

H = 60 cm

Deformazione da ritiro:

$$U.R. = 75\%$$

$$\epsilon_{ca} \ (t = \infty) = 2.5 \times (f_{ck} \ \text{-}10) \times 10^{\text{-}6} = 2.5 \times (0.83 \times 40 \ \text{-}10) \times 10^{\text{-}6} = 0.058 \ \text{\%}$$

$$\varepsilon_{cd}(t=\infty) = k_h \times \varepsilon_{cd,0} = 0.7 \times 0.32$$
 ‰ = 0.22 ‰ (per h₀>500mm, calcestruzzo C32/40 classe N, U.R.=75%)

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

		1 1			
Doc. N.	INOR	11	E E2 CL SLZ1 F0 001	Δ	28 di 169
	riogeno	LONG	Codifica Docomerilo	ivev.	i oglio

$$\epsilon_r = \epsilon_{ca} + \epsilon_{cd} = 0.278 \%$$

Effetto viscosità:

Il modulo viscoso a tempo infinito, in considerazione del valore di h_0 , della resistenza del calcestruzzo e della U.R., può cautelativamente essere assunto pari a ϕ ($t = \infty$) = 2.5.

Il ritiro viene considerato nel calcolo delle sollecitazioni come un'azione termica applicata alla soletta superiore di intensità pari a:

$$\alpha \times \Delta T \times E_c = -\epsilon_r \times E_c / (1 + \phi)$$

$$\Delta T = -\varepsilon_r / [\alpha \times (1 + \phi)] = -0.278 \% / [10 \times 10^{-6} \times (1 + 2.5)] = -7.94 \cong -10 \text{ °C}.$$

L'azione termica viene combinata con le altre azioni solamente quando il suo contributo incrementa le sollecitazioni. Per semplicità di calcolo, essa si considera sommata all'azione termica uniforme negativa (**Load 7**), considerando quindi un'azione pari a:

$$\Delta T^{(-)} = -5 - 10 = -15 \, ^{\circ}C.$$

9.5. Carichi mobili verticali sulla soletta superiore (Load 9 ÷ Load 11)

Sul concio 1 non sono previsti sovraccarichi accidentali.

9.6. Spinta del sovraccarico sul rilevato (Load 12)

La spinta orizzontale dovuta al sovraccarico accidentale è calcolata come

$$p_q = k_0 \times q$$

con q sovraccarico accidentale.

Approccio 1 – Combinazione 1

$$q_h = 20 \times 0.50 = 10.00 \text{ kN/m}^2$$

<u> Approccio 1 – Combinazione 2</u>

$$q_h = 20 \times 0.581 = 11.62 \text{ kN/m}^2$$

La spinta è applicata sul solo piedritto sinistro per massimizzare gli effetti di sbilanciamento della struttura.

9.7. Frenatura (Load 13)

Sulla struttura non agisce alcuna forza di frenatura.

9.8. Sovraccarichi accidentali sulla soletta di fondazione

A favore di sicurezza si trascurano i carichi presenti sulla soletta di fondazione.

9.9. Forza centrifuga

L'asse stradale in corrispondenza del sottopasso è in retto e quindi sulla struttura non agisce alcuna forza centrifuga.

GENERAL CONTRACTOR Cepav due

Codifica Documento Progetto Lotto Rev Foalio INOR 11 E E2 CL SLZ1 F0 001 29 di 169

Azione sismica (Load 14÷17) 9.10.

La risultante delle forze inerziali orizzontali indotte dal sisma viene valutata con la seguente espressione:

$$F_h = P \times a_{gh};$$

Doc. N.

$$F_v = P \times a_{gv}$$
;

P = peso proprio;

 a_g = accelerazioni sismiche al suolo.

 $a_{gh} = 0.277$ g, accelerazione orizzontale;

 $a_{gy} = 0.155$ g, accelerazione verticale.

Per tener conto dell'incremento di spinta del terreno dovuta al sisma si fa riferimento all'EC8-5, appendice E – "Analisi semplificata per le strutture di contenimento", punto 9 – "Forze causate dalla spinta del terreno per strutture rigide", in cui l'incremento di spinta sismica ΔP per la condizione a riposo viene valutato come:

$$\Delta P_d = S \cdot a_g / g \cdot \gamma \cdot h_{tot}^2$$

La risultante di tale incremento di spinta (Load 14) viene considerata uniformemente distribuita su tutta l'altezza della sezione verticale rigida di riferimento h_{tot}:

$$\Delta p_d = S \cdot a_g / g \cdot \gamma \cdot h_{tot} = 0.277 \times 20.0 \times 5.40 = 29.92 \text{ kN/m}^2$$
.

Per tenere in conto della metà dello spessore della soletta superiore che non è modellata che subisce la forza sismica, il carico applicato alla struttura risulta pari a:

$$\Delta p_{d,incr} = \Delta p_d \times (H_{interna} + S_s + S_i) / (H_{interna} + S_s/2 + S_i) = 29.92 \times 5.10 / 4.80 = 31.79 \text{ kN/m}^2$$

Ai fini del calcolo delle azioni sismiche orizzontali dovute all'inerzia degli elementi strutturali si considera sulla soletta superiore anche l'inerzia dovuta alla presenza del rilevato (Load 15):

 $= 4.16 \text{ kN/m}^2$ $\Delta p_{p,h} = \gamma_{c.a.} \times S_p \times a_{gh} = 25 \times 0.60 \times 0.277$ Piedritti:

 $= 4.16 \text{ kN/m}^2$ Soletta: $\Delta p_{s,h} = \gamma_{c.a.} \times S_s \times a_{gh} = 25 \times 0.60 \times 0.277$

Ai fini del calcolo delle azioni sismiche verticali dovute all'inerzia degli elementi strutturali si considera sulla soletta superiore anche l'inerzia dovuta alla presenza del rilevato. Le azioni verticali si considerano alternativamente agenti verso l'alto o verso il basso (Load 16, Load 17):

Piedritti: $\Delta p_{p,v} = \pm \gamma_{c.a.} \times S_p \times a_{gv} = \pm 25 \times 0.60 \times 0.155$ $= \pm 2.33 \text{ kN/m}^2$

Soletta: $\Delta p_{s,v} = \pm \gamma_{c.a.} \times S_s \times a_{gv} = \pm 25 \times 0.60 \times 0.155$ $= \pm 2.33 \text{ kN/m}^2$

9.11. Riepilogo dei carichi sollecitanti

Nella seguente tabella vengono riportati i valori delle sollecitazioni per i singoli casi di carico, determinati come sopra riportato.

	Soletta superiore	15,00	kN/m ²
Load 1	Piedritti	15,00	kN/m ²
	Soletta inferiore	15,00	kN/m ²
Load 2	Sovraccarico permanente	-	kN/m ²
I 12 I 14 (M1)	P1	3,00	kN/m ²
Load 3, Load 4 (con M1)	P2	51,00	kN/m ²
I 1 2 I 1 4 (M2)	P1	3.49	kN/m ²
Load 3, Load 4 (con M2)	P2	59,26	kN/m ²
Load 5	Т	5	°C
Load 6	T + ritiro	-15	°C
Load 7	ΔΤ	8,33	°C/m
Load 8	ΔΤ	-8,33	°C/m
1 - 10 1 - 110 1 - 111	$Q_{1k} + q_{1k}$	-	kN/m ²
Load 9, Load 10, Load 11	q _{1k}	-	kN/m ²
Load 12 (con M1)	pık	10,00	kN/m ²
Load 12 (con M2)	pık	11,62	kN/m ²
Load 13	qß	-	kN/m ²
Load 14	$\Delta p_{d, inc}$	31,79	kN/m ²
Load 15	$\Delta p_{ m p,h}$	4,16	kN/m ²
Loau 15	$\Delta p_{s,h}$	4,16	kN/m ²
Load 16	$\Delta p_{p,v+}$	2,33	kN/m ²
Load 10	$\Delta p_{s,v+}$	2,33	kN/m ²
Load 17	$\Delta p_{ m p,v}$	-2,33	kN/m ²
Loau 17	$\Delta p_{s,v}$	-2,33	kN/m ²

GENERAL CONTRACTOR alta sorveglianza Cepav due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev Foalio Doc. N. INOR

11

E E2 CL SLZ1 F0 001

31 di 169

10. ANALISI DEI CARICHI – CONCIO 2

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche di resistenza in esercizio ed in presenza dell'evento sismico.

Vengono prese in considerazione le condizioni elementari di carico di seguito determinate.

Tali Combinazioni Elementari saranno opportunamente combinate secondo quanto previsto dalla normativa vigente.

Per i materiali si assumono i seguenti pesi specifici:

- calcestruzzo armato: kN/m^3 = 25

= 20 kN/m^3 - rilevato: γ_{ril}

 kN/m^3 - sovrastruttura stradale: = 20 γ_{ric}

10.1. Peso proprio strutture (Load1)

> $S_s \times \gamma_{c.a.} = 0.60 \text{ x } 25.00 = 15.00 \text{ kN/m}^2$ - soletta superiore

> $S_p \times \gamma_{c.a.} = 0.60 \text{ x } 25.00 = 15.00 \text{ kN/m}^2$ - piedritti

> $S_i \times \gamma_{c.a.} = 0.70 \text{ x } 25.00 = 17.50 \text{ kN/m}^2$ - soletta inferiore

10.2. Carichi permanenti portati (Load2)

Si considera un ricoprimento di spessore medio pari a 1.20 m:

 $= 1.20 \times 20.00$ $= 24.00 \text{ kN/m}^2$ peso ricoprimento $H_r \times \gamma_{ric}$

10.3. Spinta del terreno (Load3 e Load4)

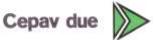
Il reinterro a ridosso dello scatolare verrà realizzato tramite materiale arido di buone caratteristiche meccaniche. Secondo quanto riportato in precedenza per il reinterro si assumono i seguenti parametri:

 $\gamma_t \, = 20 \; kN/m^3$

 $\gamma_w = 10 \text{ kN/m}^3$

 $\phi'_k = 35^\circ$

 $k_{0,k} = 0.4264$


 $k_{0,M1} = 0.4264$ $k_{0,M2} = 0.5113$

 $k_{a,k} = 0.2710$

 $k_{a.M1} = 0.2710$

 $k_{a,M2} = 0.3434$

Si riporta di seguito il calcolo delle pressioni agenti sulla struttura, eseguito sia per la Combinazione 1 (A1+M1+R1) che per la Combinazione 2 (A2+M2+R2), ed indicando con Load 4 le spinte a riposo sul piedritto sinistro e con Load 5 quelle sul piedritto destro.

ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.INOR11E E2 CL SLZ1 F0 001A32 di 169

Approccio 1 – Combinazione 1

• Pressione in asse soletta superiore:

$$\begin{split} P_1 \; (h_1 = 1.50 m) &= k_{0,M1} \times [H_{ric} \times \gamma_{ric} + (h_1 \text{-} H_{ric}) \times \gamma_t \;) = \\ &= 0.4264 \times [(1.20 \times 20 + (1.50 \text{-} 1.20) \times 20 \;] = \textbf{12.79 kN/m}^2 \end{split}$$

• Pressione in asse soletta inferiore:

$$\begin{split} &P_2\;(h_2=4.15m)=P_1+k_{0,M1}\times(h_2\text{-}h_1)\times\gamma_t=\\ &=12.79+0.4264\;x\;(4.15-1.50)\;x\;20=\textbf{35.39}\;\textbf{kN/m^2} \end{split}$$

Approccio 1 – Combinazione 2

• Pressione in asse soletta superiore:

$$\begin{aligned} P_1 \ (h_1 = 1.50 \text{m}) &= k_{0,\text{M2}} \times [H_{\text{ric}} \times \gamma_{\text{ric}} + (h_1 - H_{\text{ric}}) \times \gamma_t) = \\ &= 0.5113 \times [(1.20 \times 20 + (1.50 - 1.20) \times 20] = \textbf{15.34 kN/m}^2 \end{aligned}$$

• Pressione in asse soletta inferiore:

$$\begin{split} &P_2\;(h_2=4.15m)=P_1+k_{0,M2}\times(h_2\text{-}h_1)\times\gamma_t=\\ &=15.34+0.5113\;x\;(4.15-1.50)\;x\;20=\textbf{42.44}\;\textbf{kN/m^2} \end{split}$$

10.4. Azioni termiche e ritiro (Load $5 \div 8$)

Sono stati considerati gli effetti dovuti alle variazioni termiche. In particolare, è stata considerata una variazione termica uniforme di ±15° C sulla soletta superiore (Load 5 e Load 6), ed un salto termico di 5°C (analizzando i due casi di intradosso più caldo dell'estradosso e viceversa), con andamento lineare nello spessore della soletta superiore (Load 7 e Load 8).

Il valore applicato della variazione termica uniforme viene ridotto di 1/3 per considerare gli effetti viscosi del calcestruzzo, ed è quindi pari a $\pm 5^{\circ}$ C.

Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 * 10^{-6} = 0.00001 \, ^{\circ}\text{C}^{-1}$$

Ritiro

Gli effetti del ritiro vanno valutati a "lungo termine" attraverso il calcolo dei coefficienti di ritiro finale ε_{cs} (t,t₀) e di viscosità ϕ (t, t₀), come definiti nell'EC 2- UNI EN 1992-1-1 Novembre 2005 e D. M.14-01-2008.

L'analisi delle sollecitazioni viene svolta per una striscia di larghezza unitaria della sola soletta superiore, assumendo la dimensione convenzionale h_0 pari a $2 \times A/u = 2 \times H = 120$ cm, ed un calcestruzzo C32/40 classe N.

Caratteristiche della sezione:

B = 100 cm

H = 60 cm

Deformazione da ritiro:

$$U.R. = 75\%$$

$$\epsilon_{ca} \ (t=\infty) = 2.5 \times (f_{ck} \ \text{-} 10) \times 10^{\text{-}6} = 2.5 \times (0.83 \times 40 \ \text{-} 10) \times 10^{\text{-}6} = 0.058 \ \text{\%o}$$

$$\varepsilon_{cd}(t = \infty) = k_h \times \varepsilon_{cd,0} = 0.7 \times 0.32 \% = 0.22 \%$$
 (per $h_0 > 500$ mm, calcestruzzo C32/40 classe N, U.R.=75%)

$$\epsilon_r = \epsilon_{ca} + \epsilon_{cd} = 0.278 \%$$

Effetto viscosità:

Il modulo viscoso a tempo infinito, in considerazione del valore di h_0 , della resistenza del calcestruzzo e della U.R., può cautelativamente essere assunto pari a ϕ (t = ∞) = 2.5.

Il ritiro viene considerato nel calcolo delle sollecitazioni come un'azione termica applicata alla soletta superiore di intensità pari a:

$$\alpha \times \Delta T \times E_c = -\epsilon_r \times E_c / (1 + \phi)$$

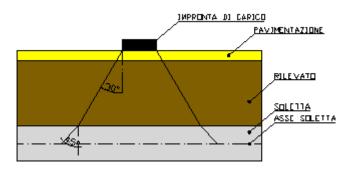
$$\Delta T = - \; \epsilon_r \; / \; [\alpha \times (1 + \phi)] = -0.278 \; \% \; / \; [10 \times 10^{-6} \times (1 + 2.5)] = -7.94 \; \cong -10 \; ^{\circ}C.$$

L'azione termica viene combinata con le altre azioni solamente quando il suo contributo incrementa le sollecitazioni. Per semplicità di calcolo, essa si considera sommata all'azione termica uniforme negativa (Load 7), considerando quindi un'azione pari a:

$$\Delta T^{(-)} = -5 - 10 = -15$$
 °C.

10.5. Carichi mobili verticali sulla soletta superiore (Load 9 ÷ Load 11)

Le azioni variabili da traffico gravanti sulla soletta superiore sono definite dallo schema di carico 1. Lo schema di carico normativo prevede un mezzo convenzionale da 600kN a due assi da 300kN ognuno (carico tandem), con interasse di 1.20m lungo il senso di marcia e di larghezza 2.40m (comprese le dimensioni delle impronte) e un carico ripartito $q_{1,k}$ da 9 kN/m².



Schema di carico 1 (dimensioni in [m])

Tale carico viene posizionato parallelamente all'asse stradale e ripartito, sia in direzione longitudinale che trasversale, con un angolo di diffusione di 30° attraverso il rilevato stradale, e di 45° sino al piano medio della soletta superiore.

 $L_d = H_r \times tan \ 30^\circ + S_s/2 = 1.20 \times tan \ 30 + 0.60/2 = 0.99 \ m$

La sovrapposizione delle impronte dovute a ciascuna corsia in asse soletta è inferiore a 2 m ($L_d < 1.30$ m); in questo caso considerare un carico dato dalla somma di quello delle corsie n.1 e n.2 risulterebbe eccessivamente gravoso, oltre che poco realistico, in quanto si trascurerebbe la capacità della struttura di lavorare a piastra e quindi di diffondere gli effetti dovuti a carichi concentrati su una superficie così ridotta.

In questo caso l'effetto della sovrapposizione viene tenuto in considerazione riducendo la larghezza di diffusione dei carichi. Nel caso in cui le corsie siano caricate tutte allo stesso modo sarebbe lecito utilizzare come larghezza massima quella della corsia di carico; essendo invece le corsie caricate in maniera differente, l'effetto legato al carico della corsia n.1 risulta preponderante rispetto agli altri e quindi si presta ad una maggior diffusione nelle parti di struttura meno caricate poste al di sotto delle corsie adiacenti. Poiché la risultante del carico Q_{1k} equivale a quella ottenuta dalla somma $Q_{2k}+Q_{3k}$ si ritiene lecito adottare come larghezza di calcolo quella della corsia incrementata del 50% della parte di impronta ad essa eccedente:

$$L_{trasv,3} = 3.00 + (2.40 + 2 \times L_d - 3.00) \times 0.50 = 3.00 + 1.20 + L_d - 1.50 = 2.70 + L_d$$

Le larghezze di diffusione trasversale e longitudinale del carico tandem risultano pari a:

- $L_{trasy} = 2.70 + L_d = 2.70 + 1.20 = 3.90 \text{ m}$
- $L_{long} = 1.60 + 2 \times L_d = 1.60 + 2 \times 1.20 = 4.00 \text{ m}.$

La pressione indotta dal carico tandem sulla soletta superiore risulta quindi pari a:

$$q_{Q1k,1} = 2 \times Q_{1k} / (L_{trasv} \times L_{long}) = 2 \times 300 / (3.90 \times 4.00) = 38.46 \text{ kN/m}^2$$

Su tutta la soletta superiore si considera inoltre la presenza del carico distribuito $q_{1k} = 9.00 \text{ kN/m}^2$

La lunghezza di diffusione L_{long} è inferiore alla luce di calcolo della soletta; l'analisi delle sollecitazioni sarà effettuata disponendo il carico tandem in 3 differenti posizioni:

- q_{O1k} centrato sulla mezzeria (Load 9);
- q_{O1k} disposto in corrispondenza del piedritto destro (Load 10);
- q_{Q1k} disposto in corrispondenza del piedritto sinistro (Load 11).

GENERAL CONTRACTOR Cepav due GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL SLZ1 F0 001 A 35 di 169

10.6. Spinta del sovraccarico sul rilevato (Load 12)

In accordo con quanto riportato nella circolare n°617 al §5.1.3.3.7.1, il sovraccarico da considerare sul terrapieno adiacente la parete dello scatolare, è quello generato dallo schema di carico 1, dove il carico tandem è sostituito da un carico uniformemente distribuito su un'impronta di larghezza 3 ×2.20 m. Si tiene conto della larghezza di diffusione dell'impronta fino alla mezzeria della soletta superiore. L'incremento di larghezza dovuto alla diffusione è pari a:

$$L_d = (H_r + S_s/2) \times tan \ 30^\circ = (1.20 + 0.60/2) \times tan \ 30^\circ = 0.866 \ m$$

La dimensione dell'impronta di carico in asse soletta risultano quindi essere pari a:

•
$$L_{trasv} = 3 + 2 \times L_d = 3.00 + 2 \times 0.866 = 4.732 \text{ m}$$

•
$$L_{long} = 2.2 + L_d = 2.20 + 0.866 = 3.066 \text{ m}$$

Il carico accidentale totale in asse soletta è pari a:

$$q = 2 \times Q_{1k} \ / \ (L_{trasv} \times L_{long}) = 2 \times 300 \ / \ (4.732 \times 3.066) = 41.36 \ kN/m^2$$

Il carico uniformemente distribuito sulla corsia di carco $q_{ik} = 9 \text{ kN/m}^2$, viene sommato al carico tandem uniformemente distribuito. Si considera su tutta l'altezza del piedritto un carico uniformemente distribuito pari a: $q_h = (q + q_{1k}) \times k_0$.

Approccio 1 – Combinazione 1

$$q_h = (41.36 + 9.00) \times 0.4264 = 21.47 \text{ kN/m}^2$$

<u> Approccio 1 – Combinazione 2</u>

$$q_h = (41.36 + 9.00) \times 0.5113 = 25.75 \text{ kN/m}^2$$

La spinta è applicata sul solo piedritto sinistro per massimizzare gli effetti di sbilanciamento della struttura.

10.7. Frenatura (Load 13)

Il carico frenante di normativa (q_3) è funzione del carico verticale totale agente sulla corsia convenzionale n.1. Tale carico viene considerato ripartito sulla larghezza della corsia n.1 nella direzione trasversale (L_{trasv}) e sulla larghezza dello scatolare nella direzione longitudinale. Quest'assunzione è sicuramente a favore di sicurezza vista l'elevata rigidezza della soletta nel suo piano. Si considera inoltre il carico distribuito q_{1k} .

Il carico frenante totale per ponti di 1^a categoria è pari a:

$$Q_3 = 0.60 \times (2 \ Q_{1k}) + 0.10 \times (q_{1k} \times w_1 \times L_{scat}) = 0.60 \times 2 \times 300 + 0.10 \times 9.0 \times 3.00 \times 7.20 = 379.44 \ kN_{scat} \times 10^{-1} \ km_{scat} \times 10$$

valore che rispetta le limitazioni $180 \text{kN} \le Q_3 \le 900 \text{ kN}$

Il carico frenante uniformemente distribuito applicato alla luce di calcolo viene determinato come segue:

$$q_3 = Q_3 / (L_{trasv} \times L_{calcolo}) = 379.44 / (3.00 \times 6.60) = 19.16 \text{ kN/m}^2$$

10.8. Sovraccarichi accidentali sulla soletta di fondazione

A favore di sicurezza si trascurano i carichi presenti sulla soletta di fondazione.

GENERAL CONTRACTOR Cepav due

				•	
Doc. N.	INOR	11	E E2 CL SLZ1 F0 001	Α	36 di 169
	rrogello	LOHO	Codilica Documento	rev.	i ogilo

10.9. Forza centrifuga

L'asse stradale in corrispondenza del sottopasso è in retto e quindi sulla struttura non agisce alcuna forza centrifuga.

10.10. Azione sismica (Load 14÷17)

La risultante delle forze inerziali orizzontali indotte dal sisma viene valutata con la seguente espressione:

$$F_h = P \times a_{gh}$$
;

$$F_v = P \times a_{gv}$$
;

P = peso proprio;

 a_g = accelerazioni sismiche al suolo.

 $a_{gh} = 0.277$ g, accelerazione orizzontale;

 $a_{gv} = 0.155$ g, accelerazione verticale.

Per tener conto dell'incremento di spinta del terreno dovuta al sisma si fa riferimento all'EC8-5, appendice E – "Analisi semplificata per le strutture di contenimento", punto 9 – "Forze causate dalla spinta del terreno per strutture rigide", in cui l'incremento di spinta sismica ΔP per la condizione a riposo viene valutato come:

$$\Delta P_d = S \cdot a_g / g \cdot \gamma \cdot h_{tot}^2$$

La risultante di tale incremento di spinta (Load 14) viene considerata uniformemente distribuita su tutta l'altezza della sezione verticale rigida di riferimento htot:

$$\Delta p_d = S \cdot a_g / g \cdot \gamma \cdot h_{tot} = 0.277 \times 20.0 \times 4.50 = 24.93 \text{ kN/m}^2.$$

Per tenere in conto della metà dello spessore della soletta superiore che non è modellata che subisce la forza sismica, il carico applicato alla struttura risulta pari a:

$$\Delta p_{d,incr} = \Delta p_d \times (H_{interna} + S_s + S_i) / (H_{interna} + S_s/2 + S_i) = 24.93 \times 3.30 / 3.00 = 27.42 \text{ kN/m}^2$$

Ai fini del calcolo delle azioni sismiche orizzontali dovute all'inerzia degli elementi strutturali si considera sulla soletta superiore anche l'inerzia dovuta alla presenza del rilevato (**Load 15**):

Piedritti:
$$\Delta p_{p,h} = \gamma_{c.a.} \times S_p \times a_{gh} = 25 \times 0.60 \times 0.277$$
 = **4.16 kN/m²**

Soletta:
$$\Delta p_{s,h} = (\gamma_{c.a.} \times S_s + G_{sovracc}) \times a_{gh} = (25 \times 0.60 + 24.00) \times 0.277 = 10.80 \text{ kN/m}^2$$

Ai fini del calcolo delle azioni sismiche verticali dovute all'inerzia degli elementi strutturali si considera sulla soletta superiore anche l'inerzia dovuta alla presenza del rilevato. Le azioni verticali si considerano alternativamente agenti verso l'alto o verso il basso (Load 16, Load 17):

Piedritti:
$$\Delta p_{p,v} = \pm \gamma_{c.a.} \times S_p \times a_{gv} = \pm 25 \times 0.60 \times 0.155$$
 $= \pm 2.33 \text{ kN/m}^2$

Soletta:
$$\Delta p_{s,v} = \pm (\gamma_{c.a.} \times S_s + G_{sovracc}) \times a_{gv} = \pm (25 \times 0.60 + 24.00) \times 0.155 = \pm 6.05 \text{ kN/m}^2$$

10.11. Riepilogo dei carichi sollecitanti

Nella seguente tabella vengono riportati i valori delle sollecitazioni per i singoli casi di carico, determinati come sopra riportato.

	Soletta superiore	15,00	kN/m ²
Load 1	Piedritti	15,00	kN/m ²
	Soletta inferiore	17,50	kN/m ²
Load 2	Sovraccarico permanente	24,00	kN/m ²
I - 12 I - 14(M1)	P1	12,79	kN/m ²
Load 3, Load 4 (con M1)	P2	35,39	kN/m ²
I - 12 I - 14(M2)	P1	15,34	kN/m ²
Load 3, Load 4 (con M2)	P2	42,44	kN/m ²
Load 5	T	5	°C
Load 6	T + ritiro	-15	°C
Load 7	ΔΤ	8,33	°C/m
Load 8	ΔΤ	-8,33	°C/m
110 1110 1111	$Q_{1k} + q_{1k}$	47,46	kN/m ²
Load 9, Load 10, Load 11	q _{1k}	9,00	kN/m ²
Load 12 (con M1)	pık	21,47	kN/m ²
Load 12 (con M2)	pık	25,75	kN/m ²
Load 13	qß	19,16	kN/m ²
Load 14	$\Delta p_{ m d,inc}$	27,42	kN/m ²
Load 15	$\Delta p_{p,h}$	4,16	kN/m ²
Load 15	$\Delta p_{s,h}$	10,80	kN/m ²
111/	$\Delta p_{p,v+}$	2,33	kN/m ²
Load 16	$\Delta p_{s,v+}$	6,05	kN/m ²
1 1 17	$\Delta p_{p,v}$	-2,33	kN/m ²
Load 17	$\Delta p_{s,v}$	-6,05	kN/m ²

GENERAL CONTRACTOR Cepav due Cepav due GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 E E2 CL SLZ1 F0 001 A 38 di 169

11. ANALISI DEI CARICHI – CONCIO 3

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche di resistenza in esercizio ed in presenza dell'evento sismico.

Vengono prese in considerazione le condizioni elementari di carico di seguito determinate.

Tali Combinazioni Elementari saranno opportunamente combinate secondo quanto previsto dalla normativa vigente.

Per i materiali si assumono i seguenti pesi specifici:

- calcestruzzo armato: $\gamma_{c.a.} = 25 \text{ kN/m}^3$

- rilevato: $\gamma_{ril} = 20 \text{ kN/m}^3$

- sovrastruttura stradale: $\gamma_{ric} = 20 \text{ kN/m}^3$

11.1. Peso proprio strutture (Load1)

- soletta superiore $S_s \times \gamma_{c.a.} = 0.70 \text{ x } 25.00 = 17.50 \text{ kN/m}^2$

- piedritti $S_p \times \gamma_{c.a.} = 0.70 \text{ x } 25.00 = 17.50 \text{ kN/m}^2$

- soletta inferiore $S_i \times \gamma_{c.a.} = 0.80 \text{ x } 25.00 = 20.00 \text{ kN/m}^2$

11.2. Carichi permanenti portati (Load2)

Si considera un ricoprimento di spessore medio pari a 0.30 m:

peso ricoprimento $H_r \times \gamma_{ric} = 0.30 \times 20.00 = 6.00 \text{ kN/m}^2$

11.3. Spinta del terreno (Load3 e Load4)

Il reinterro a ridosso dello scatolare verrà realizzato tramite materiale arido di buone caratteristiche meccaniche. Secondo quanto riportato in precedenza per il reinterro si assumono i seguenti parametri:

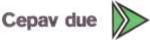
 $\gamma_t \, = 20 \; kN/m^3$

 $\gamma_w = 10 \ kN/m^3$

 $\phi'_k = 35^\circ$

 $k_{0,k} = 0.4264$ $k_{0,M1}$

 $k_{0,M1} = 0.4264$


 $k_{0,M2} = 0.5113$

 $k_{a,k} = 0.2710$

 $k_{a.M1} = 0.2710$

 $k_{a,M2} = 0.3434 \,$

Si riporta di seguito il calcolo delle pressioni agenti sulla struttura, eseguito sia per la Combinazione 1 (A1+M1+R1) che per la Combinazione 2 (A2+M2+R2), ed indicando con Load 4 le spinte a riposo sul piedritto sinistro e con Load 5 quelle sul piedritto destro.

ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.11E E2 CL SLZ1 F0 001A39 di 169

Approccio 1 – Combinazione 1

• Pressione in asse soletta superiore:

$$P_1 \; (h_1 = 0.65m) = k_{0,M1} \times h_1 \times \gamma_t =$$

$$= 0.4264 \times 0.65 \times 20 = 5.54 \text{ kN/m}^2$$

• Pressione in asse soletta inferiore:

$$\begin{split} &P_2 \; (h_2 = 7.35 \text{m}) = P_1 + k_{0,M1} \times (h_2 - h_1) \times \gamma_t = \\ &= 5.54 + 0.4264 \; \text{x} \; (7.35 - 0.65) \; \text{x} \; 20 = \textbf{62.68 kN/m}^2 \end{split}$$

Approccio 1 – Combinazione 2

• Pressione in asse soletta superiore:

$$P_1 \; (h_1=0.65m) = k_{0,M2}\times h_1\times \gamma_t =$$

$$= 0.5113 \times 0.65 \times 20 = 6.65 \text{ kN/m}^2$$

Pressione in asse soletta inferiore:

$$\begin{split} &P_2 \; (h_2 = 7.35 m) = P_1 + k_{0,M2} \times (h_2 \text{-} h_1) \times \gamma_t = \\ &= 6.65 + 0.5113 \; x \; (7.35 - 0.65) \; x \; 20 = \textbf{75.16 kN/m}^2 \end{split}$$

11.4. Azioni termiche e ritiro (Load $5 \div 8$)

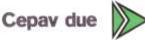
Sono stati considerati gli effetti dovuti alle variazioni termiche. In particolare, è stata considerata una variazione termica uniforme di $\pm 15^{\circ}$ C sulla soletta superiore (Load 5 e Load 6), ed un salto termico di 5° C (analizzando i due casi di intradosso più caldo dell'estradosso e viceversa), con andamento lineare nello spessore della soletta superiore (Load 7 e Load 8).

Il valore applicato della variazione termica uniforme viene ridotto di 1/3 per considerare gli effetti viscosi del calcestruzzo, ed è quindi pari a $\pm 5^{\circ}$ C.

Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 * 10^{-6} = 0.00001 \, ^{\circ}\text{C}^{-1}$$

Ritiro


Gli effetti del ritiro vanno valutati a "lungo termine" attraverso il calcolo dei coefficienti di ritiro finale ε_{cs} (t,t₀) e di viscosità ϕ (t, t₀), come definiti nell'EC 2- UNI EN 1992-1-1 Novembre 2005 e D. M.14-01-2008.

L'analisi delle sollecitazioni viene svolta per una striscia di larghezza unitaria della sola soletta superiore, assumendo la dimensione convenzionale h_0 pari a $2 \times A/u = 2 \times H = 120$ cm, ed un calcestruzzo C32/40 classe N.

Caratteristiche della sezione:

B = 100 cm

H = 60 cm

	Progetto	LOTTO	Codifica Documento	rev.	rogiio
Doc. N.	INOR	11	E E2 CL SLZ1 F0 001	Α	40 di 169

Deformazione da ritiro:

$$U.R. = 75\%$$

$$\epsilon_{ca} \ (t = \infty) = 2.5 \times (f_{ck} \ \text{-}10) \times 10^{\text{-}6} = 2.5 \times (0.83 \times 40 \ \text{-}10) \times 10^{\text{-}6} = 0.058 \ \text{\%}$$

$$\varepsilon_{cd}(t = \infty) = k_h \times \varepsilon_{cd,0} = 0.7 \times 0.32 \% = 0.22 \%$$
 (per $h_0 > 500$ mm, calcestruzzo C32/40 classe N, U.R.=75%)

$$\epsilon_r = \epsilon_{ca} + \epsilon_{cd} = 0.278~\% o$$

Effetto viscosità:

Il modulo viscoso a tempo infinito, in considerazione del valore di h_0 , della resistenza del calcestruzzo e della U.R., può cautelativamente essere assunto pari a ϕ ($t = \infty$) = 2.5.

Il ritiro viene considerato nel calcolo delle sollecitazioni come un'azione termica applicata alla soletta superiore di intensità pari a:

$$\alpha \times \Delta T \times E_c = -\epsilon_r \times E_c / (1 + \phi)$$

$$\Delta T = - \; \epsilon_r \; / \; [\alpha \times (1 + \phi)] = -0.278 \; \% \; / \; [10 \times 10^{-6} \times (1 + 2.5)] = -7.94 \; \cong -10 \; ^{\circ}C.$$

L'azione termica viene combinata con le altre azioni solamente quando il suo contributo incrementa le sollecitazioni. Per semplicità di calcolo, essa si considera sommata all'azione termica uniforme negativa (**Load 7**), considerando quindi un'azione pari a:

$$\Delta T^{(-)} = -5 - 10 = -15$$
 °C.

11.5. Carichi mobili verticali sulla soletta superiore (Load 9 ÷ Load 11)

Su tutta la soletta superiore si considera la presenza del carico distribuito $q_{1k} = 20.00 \text{ kN/m}^2$

11.6. Spinta del sovraccarico sul rilevato (Load 12)

La spinta orizzontale dovuta al sovraccarico accidentale è calcolata come

$$p_q = k_0 \times q$$

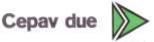
con q sovraccarico accidentale.

Approccio 1 – Combinazione 1

$$q_h = 20 \times 0.4264 = 8.53 \text{ kN/m}^2$$

Approccio 1 – Combinazione 2

$$q_h = 20 \times 0.5113 = 10.23 \text{ kN/m}^2$$


La spinta è applicata sul solo piedritto sinistro per massimizzare gli effetti di sbilanciamento della struttura.

11.7. Frenatura (Load 13)

Sulla struttura non agisce alcuna forza di frenatura.

11.8. Sovraccarichi accidentali sulla soletta di fondazione

A favore di sicurezza si trascurano i carichi presenti sulla soletta di fondazione.

ALTA SORVEGLIANZA
ITALFERR
GRUPPO FERROVIE DELLO STATO ITALIANE

Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL SLZ1 FO 001 A 41 di 169

11.9. Forza centrifuga

L'asse stradale in corrispondenza del sottopasso è in retto e quindi sulla struttura non agisce alcuna forza centrifuga.

11.10. Azione sismica (Load 14÷17)

La risultante delle forze inerziali orizzontali indotte dal sisma viene valutata con la seguente espressione:

$$F_h = P \times a_{gh};$$

Doc. N.

$$F_v = P \times a_{gv}$$
;

P = peso proprio;

 a_g = accelerazioni sismiche al suolo.

 $a_{gh} = 0.277$ g, accelerazione orizzontale;

 $a_{gv} = 0.155$ g, accelerazione verticale.

Per tener conto dell'incremento di spinta del terreno dovuta al sisma si fa riferimento all'EC8-5, appendice E - "Analisi semplificata per le strutture di contenimento", punto 9 – "Forze causate dalla spinta del terreno per strutture rigide", in cui l'incremento di spinta sismica ΔP per la condizione a riposo viene valutato come:

$$\Delta P_d = S \cdot a_g / g \cdot \gamma \cdot h_{tot}^2$$

La risultante di tale incremento di spinta (**Load 14**) viene considerata uniformemente distribuita su tutta l'altezza della sezione verticale rigida di riferimento h_{tot}:

$$\Delta p_d = S \cdot a_g / g \cdot \gamma \cdot h_{tot} = 0.277 \times 20.0 \times 7.75 = 42.94 \text{ kN/m}^2.$$

Per tenere in conto della metà dello spessore della soletta superiore che non è modellata che subisce la forza sismica, il carico applicato alla struttura risulta pari a:

$$\Delta p_{d,incr} = \Delta p_{d} \times (H_{interna} + S_{s} + S_{i}) / (H_{interna} + S_{s}/2 + S_{i}) = 42.94 \times 7.05 / 6.80 = 44.52 \text{ kN/m}^{2}$$

Ai fini del calcolo delle azioni sismiche orizzontali dovute all'inerzia degli elementi strutturali si considera sulla soletta superiore anche l'inerzia dovuta alla presenza del rilevato (**Load 15**):

Piedritti:
$$\Delta p_{p,h} = \gamma_{c,a} \times S_p \times a_{gh} = 25 \times 0.70 \times 0.277$$
 = 4.85 kN/m²

Soletta:
$$\Delta p_{s,h} = (\gamma_{c.a.} \times S_s + G_{sovracc}) \times a_{gh} = (25 \times 0.70 + 6.00) \times 0.277$$
 = **6.51 kN/m²**

Ai fini del calcolo delle azioni sismiche verticali dovute all'inerzia degli elementi strutturali si considera sulla soletta superiore anche l'inerzia dovuta alla presenza del rilevato. Le azioni verticali si considerano alternativamente agenti verso l'alto o verso il basso (**Load 16**, **Load 17**):

Piedritti:
$$\Delta p_{p,v} = \pm \gamma_{c.a.} \times S_p \times a_{gv} = \pm 25 \times 0.70 \times 0.155$$
 $= \pm 2.71 \text{ kN/m}^2$

Soletta:
$$\Delta p_{s,v} = \pm (\gamma_{c.a.} \times S_s + G_{sovracc}) \times a_{gv} = \pm (25 \times 0.70 + 6.00) \times 0.155$$
 = $\pm 3.64 \text{ kN/m}^2$

11.11. Riepilogo dei carichi sollecitanti

Nella seguente tabella vengono riportati i valori delle sollecitazioni per i singoli casi di carico, determinati come sopra riportato.

	Soletta superiore	17,50	kN/m ²
Load 1	Piedritti	17,50	kN/m ²
	Soletta inferiore	20,00	kN/m ²
Load 2	Sovraccarico permanente	6,00	kN/m ²
Lord 2 Lord A (con MI)	P1	5,54	kN/m ²
Load 3, Load 4 (con M1)	P2	62,68	kN/m ²
I 12 I 14 (M2)	P1	6,65	kN/m ²
Load 3, Load 4 (con M2)	P2	75,16	kN/m ²
Load 5	Т	5	°C
Load 6	T + ritiro	-15	°C
Load 7	ΔΤ	7,14	°C/m
Load 8	ΔΤ	-7,14	°C/m
I 10 I 110 I 111	$Q_{1k} + q_{1k}$	-	kN/m ²
Load 9, Load 10, Load 11	qık	20,00	kN/m ²
Load 12 (con M1)	pık	8,33	kN/m ²
Load 12 (con M2)	p _{1k}	10,23	kN/m ²
Load 13	qß	-	kN/m ²
Load 14	$\Delta p_{d,inc}$	44,52	kN/m ²
Load 15	$\Delta p_{\mathrm{p,h}}$	4,85	kN/m ²
Load 15	$\Delta p_{s,h}$	6,51	kN/m ²
Lord 16	$\Delta p_{p,v+}$	2,71	kN/m ²
Load 16	$\Delta p_{s,v+}$	3,64	kN/m ²
Load 17	$\Delta p_{ m p,v}$	-2,71	kN/m ²
Load 17	$\Delta p_{s,v}$	-3,64	kN/m ²

12. CALCOLO DELLE SOLLECITAZIONI

Gli effetti dei carichi verticali dovuti alla presenza dei veicoli vanno sempre combinati con le altre azioni derivanti dal traffico stradale, adottando i coefficienti indicati in Tab. 5.1.IV (NTC).

	Carichi verticali (Q1k e q1k)	Frenatura (q3)
Gruppo 1	Valore caratteristico	-
Gruppo 2a	Valore frequente	Valore caratteristico

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali di Tab. 5.1.V delle N.T.C. e i coefficienti di combinazione Ψ di Tab. 5.1.VI delle N.T.C.. Per le verifiche agli stati limite d'esercizio si adottano i valori dei coefficienti parziali in Tab. 5.1.VI (NTC).

12.1. Condizioni e combinazioni di carico adottate

Le condizioni elementari di carico considerate sono di seguito riassunte:

Load	Tipo	Carico
1	$G_{g,k}$	Peso proprio della struttura
2	G_k	Peso rilevato
3	G_k	Spinta terre da sinistra
4	G_k	Spinta terre da destra
5	Qk	Carico termico positivo uniforme
6	Qk	Carico termico negativo uniforme
7	Qk	Carico termico variabile +/-
8	Qk	Carico termico variabile -/+
9	Qk	Q _{ik} centrale
10	Qk	Q _{ik} su piedritto DX
11	Qk	Q _{ik} su piedritto SX
12	Qk	Spinta Q _{ik} su piedritto sx
13	Qk	Frenatura
14	Qk	Incremento dinamico terreno
15	Qk	Azioni sismiche inerziali orizzontali da permanenti
16	Qk	Azioni sismiche inerziali verso alto da permanenti
17	$\mathbf{Q}_{\mathbf{k}}$	Azioni sismiche inerziali verso basso da permanenti

Le sollecitazioni di progetto sono ricavate attraverso combinazioni dei carichi caratteristici sopra elencati

I valori numerici riportati nelle colonne delle seguenti tabelle di combinazione indicano il coefficiente moltiplicativo con il quale la condizione elementare è considerata. Tali valori sono il risultato dei prodotti tra coefficienti parziali operanti sulle azioni.

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 Codifica Documento E E2 CL SIZ1 F0 001 A 44 di 169

12.1.1. Combinazioni SLU di tipo STR

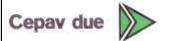
	99 ° ⊑	P.P	Rilevato	Terra sx	Terra dx	T+ unif	T- unif	- TO	DT -	Q _{1k} - mezzeria	Q _{1k} - DX	Q _{1k} - SX	Carichi acc. su rilevato	Frenatura
		1	2	3	4	5	6	7	8	9	10	11	12	13
1	Term	1,35	1,35	1	1	1,2		1,2	1.0					
2 3	Term Term	1,35 1,35	1,35 1,35	1 1	1	1,2	1,2	1,2	1,2					
4	Term	1,35	1,35	1	1		1,2	1,2	1,2					
5	Term	1,35	1,35	1,35	1	1,2	.,_	1,2	.,_					
6	Term	1,35	1,35	1,35	1	1,2			1,2					
7 8	Term	1,35	1,35	1,35	1		1,2 1,2	1,2	4.0					
9	Term Ril	1,35 1,35	1,35 1,35	1,35 1	1	0,72	1,2	0,72	1,2				1,35	
10	Ril	1,35	1,35	1	1	0,72		0,12	0,72				1,35	
11	Ril	1,35	1,35	1,35	1	0,72		0,72					1,35	
12	Ril	1,35	1,35	1,35	1	0,72	0.70	0.70	0,72				1,35	
13 14	Ril Ril	1,35 1,35	1,35 1,35	1 1	1		0,72 0,72	0,72	0,72				1,35 1,35	
15	Ril	1,35	1,35	1,35	1		0,72	0,72	0,72				1,35	
16	Ril	1,35	1,35	1,35	1		0,72		0,72				1,35	
17	Acc - gr1	1,35	1,35	1	1	0,72		0,72		1,35			4.05	
18 19	Acc - gr1 Acc - gr2a	1,35 1,35	1,35 1,35	1	1	0,72 0,72		0,72 0,72		1,35 1,0125			1,35	1,35
20	Acc - gr2a	1,35	1,35	1	1	0,72		0,72		1,0125			1,0125	1,35
21	Acc - gr1	1,35	1,35	1	1	0,72		0,72			1,35			
22	Acc - gr1	1,35	1,35	1	1	0,72		0,72			1,35		1,35	4.05
23 24	Acc - gr2a Acc - gr2a	1,35 1,35	1,35 1,35	1	1	0,72 0,72		0,72 0,72			1,0125 1,0125		1,0125	1,35 1,35
25	Acc - gr1	1,35	1,35	1	1	0,72		0,72			1,0120	1,35	1,0120	1,00
26	Acc - gr1	1,35	1,35	1	1	0,72		0,72				1,35	1,35	
27 28	Acc - gr2a Acc - gr2a	1,35 1,35	1,35 1,35	1 1	1	0,72 0,72		0,72 0,72				1,0125 1,0125	1,0125	1,35 1,35
29	Acc - gr1	1,35	1,35	1,35	1	0,72		0,72		1,35		1,0123	1,0123	1,55
30	Acc - gr1	1,35	1,35	1,35	1	0,72		0,72		1,35			1,35	
31	Acc - gr2a	1,35	1,35	1,35	1	0,72		0,72		1,0125			4.0405	1,35
32 33	Acc - gr2a Acc - gr1	1,35 1,35	1,35 1,35	1,35 1,35	1	0,72 0,72		0,72 0,72		1,0125	1,35		1,0125	1,35
34	Acc - gr1	1,35	1,35	1,35	1	0,72		0,72			1,35		1,35	
35	Acc - gr2a	1,35	1,35	1,35	1	0,72		0,72			1,0125			1,35
36 37	Acc - gr2a Acc - gr1	1,35 1,35	1,35 1,35	1,35 1,35	1	0,72 0,72		0,72 0,72			1,0125	1,35	1,0125	1,35
38	Acc - gr1	1,35	1,35	1,35	1	0,72		0,72				1,35	1,35	
39	Acc - gr2a	1,35	1,35	1,35	1	0,72		0,72				1,0125	1	1,35
40	Acc - gr2a	1,35	1,35	1,35	1	0,72		0,72	0.70	4.05		1,0125	1,0125	1,35
41 42	Acc - gr1 Acc - gr1	1,35 1,35	1,35 1,35	1 1	1	0,72 0,72			0,72 0,72	1,35 1,35			1,35	
43	Acc - gr2a	1,35	1,35	1	1	0,72			0,72	1,0125			1,00	1,35
44	Acc - gr2a	1,35	1,35	1	1	0,72			0,72	1,0125			1,0125	1,35
45 46	Acc - gr1 Acc - gr1	1,35	1,35 1,35	1 1	1	0,72 0,72			0,72 0,72		1,35 1,35		1,35	
47	Acc - gr1	1,35 1,35	1,35	1	1	0,72			0,72		1,0125		1,33	1,35
48	Acc - gr2a	1,35	1,35	1	1	0,72			0,72		1,0125		1,0125	1,35
49	Acc - gr1	1,35	1,35	1	1	0,72			0,72			1,35		
50 51	Acc - gr1 Acc - gr2a	1,35 1,35	1,35 1,35	1 1	1	0,72 0,72			0,72 0,72			1,35 1,0125	1,35	1,35
52	Acc - gr2a	1,35	1,35	1	1	0,72			0,72			1,0125	1,0125	1,35
53	Acc - gr1	1,35	1,35	1,35	1	0,72			0,72	1,35				
54	Acc - gr1	1,35	1,35	1,35	1	0,72			0,72	1,35			1,35	1.05
55 56	Acc - gr2a Acc - gr2a	1,35 1,35	1,35 1,35	1,35 1,35	1	0,72 0,72			0,72 0,72	1,0125 1,0125			1,0125	1,35 1,35
57	Acc - gr1	1,35	1,35	1,35	1	0,72			0,72	.,0.20	1,35		.,0.20	.,00
58	Acc - gr1	1,35	1,35	1,35	1	0,72			0,72		1,35		1,35	
59 60	Acc - gr2a	1,35	1,35	1,35	1	0,72			0,72		1,0125		1.0125	1,35
60 61	Acc - gr2a Acc - gr1	1,35 1,35	1,35 1,35	1,35 1,35	1	0,72 0,72			0,72 0,72		1,0125	1,35	1,0125	1,35
62	Acc - gr1	1,35	1,35	1,35	1	0,72			0,72			1,35	1,35	
63	Acc - gr2a	1,35	1,35	1,35	1	0,72			0,72			1,0125		1,35
64 65	Acc - gr2a	1,35 1,35	1,35 1,35	1,35 1	1	0,72	0,72	0,72	0,72	1,35		1,0125	1,0125	1,35
00	Acc - gr1 Acc - gr1	1,35	1,35	1	1		0,72	0,72		1,35	l	1	1,35	

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL SLZ1 F0 001 A 45 di 169

			ı	ı	1	ı	ı	ı	ı	1	ı	1	1	1
	ວ	P.P	Rilevato	Terra sx	Terra dx	T+ unif	T- unif	DT +	DT -	Q _{1k} - mezzeria	Q _{1k} - DX	Q _{1k} - SX	Carichi acc. su rilevato	Frenatura
		1	2	3	4	5	6	7	8	9	10	11	12	13
67	Acc - gr2a	1,35	1,35	1	1		0,72	0,72		1,0125				1,35
68	Acc - gr2a	1,35	1,35	1	1		0,72	0,72		1,0125			1,0125	1,35
69	Acc - gr1	1,35	1,35	1	1		0,72	0,72			1,35			
70	Acc - gr1	1,35	1,35	1	1		0,72	0,72			1,35		1,35	
71	Acc - gr2a	1,35	1,35	1	1		0,72	0,72			1,0125			1,35
72	Acc - gr2a	1,35	1,35	1	1		0,72	0,72			1,0125		1,0125	1,35
73	Acc - gr1	1,35	1,35	1	1		0,72	0,72				1,35		
74	Acc - gr1	1,35	1,35	1	1		0,72	0,72				1,35	1,35	
75	Acc - gr2a	1,35	1,35	1	1		0,72	0,72				1,0125		1,35
76	Acc - gr2a	1,35	1,35	1	1		0,72	0,72				1,0125	1,0125	1,35
77	Acc - gr1	1,35	1,35	1,35	1		0,72	0,72		1,35				
78	Acc - gr1	1,35	1,35	1,35	1		0,72	0,72		1,35			1,35	4.05
79	Acc - gr2a	1,35	1,35	1,35	1		0,72	0,72		1,0125			4 0 4 0 5	1,35
80	Acc - gr2a	1,35	1,35	1,35	1		0,72	0,72		1,0125	4.05		1,0125	1,35
81	Acc - gr1	1,35	1,35	1,35	1		0,72	0,72			1,35		4.05	
82	Acc - gr1	1,35	1,35	1,35	1		0,72	0,72			1,35		1,35	4.05
83	Acc - gr2a	1,35	1,35	1,35	1		0,72	0,72			1,0125		4 0405	1,35
84 85	Acc - gr2a	1,35	1,35 1,35	1,35 1,35	1		0,72	0,72			1,0125	4.05	1,0125	1,35
86	Acc - gr1 Acc - gr1	1,35 1,35	1,35	1,35	1		0,72 0,72	0,72 0,72				1,35 1,35	1,35	
87	Acc - gr1 Acc - gr2a	1,35	1,35	1,35	1		0,72	0,72				1,0125	1,33	1,35
88	Acc - gr2a	1,35	1,35	1,35	1		0,72	0,72				1,0125	1,0125	1,35
89	Acc - gr1	1,35	1,35	1,33	1		0,72	0,72	0,72	1,35		1,0123	1,0123	1,33
90	Acc - gr1	1,35	1,35	1	1		0,72		0,72	1,35			1,35	
91	Acc - gr2a	1,35	1,35	1	1		0,72		0,72	1,0125			1,55	1,35
92	Acc - gr2a	1,35	1,35	1	1		0,72		0,72	1,0125			1,0125	1,35
93	Acc - gr1	1,35	1,35	1	1		0,72		0,72	1,0120	1,35		1,0120	1,00
94	Acc - gr1	1,35	1,35	1	1		0,72		0,72		1,35		1,35	
95	Acc - gr2a	1,35	1,35	1	1		0,72		0,72		1,0125		,	1,35
96	Acc - gr2a	1,35	1,35	1	1		0,72		0,72		1,0125		1,0125	1,35
97	Acc - gr1	1,35	1,35	1	1		0,72		0,72			1,35		
98	Acc - gr1	1,35	1,35	1	1		0,72		0,72			1,35	1,35	
99	Acc - gr2a	1,35	1,35	1	1		0,72		0,72			1,0125		1,35
100	Acc - gr2a	1,35	1,35	1	1		0,72		0,72			1,0125	1,0125	1,35
101	Acc - gr1	1,35	1,35	1,35	1		0,72		0,72	1,35				
102	Acc - gr1	1,35	1,35	1,35	1		0,72		0,72	1,35			1,35	
103	Acc - gr2a	1,35	1,35	1,35	1		0,72		0,72	1,0125				1,35
104	Acc - gr2a	1,35	1,35	1,35	1		0,72		0,72	1,0125			1,0125	1,35
105	Acc - gr1	1,35	1,35	1,35	1		0,72		0,72		1,35			
106	Acc - gr1	1,35	1,35	1,35	1		0,72		0,72		1,35		1,35	
107	Acc - gr2a	1,35	1,35	1,35	1		0,72		0,72		1,0125			1,35
108	Acc - gr2a	1,35	1,35	1,35	1		0,72		0,72		1,0125		1,0125	1,35
109	Acc - gr1	1,35	1,35	1,35	1		0,72		0,72			1,35		
110	Acc - gr1	1,35	1,35	1,35	1		0,72		0,72			1,35	1,35	4.05
111	Acc - gr2a	1,35	1,35	1,35	1		0,72		0,72			1,0125	4 0405	1,35
112	Acc - gr2a	1,35	1,35	1,35	1	<u> </u>	0,72	<u> </u>	0,72	<u> </u>	L	1,0125	1,0125	1,35

12.1.2. Combinazioni SLU di tipo GEO

3	n cc	P.P	Rilevato	Terra sx	Terra dx	T+ unif	T- unif	DT +	DT -	Q _{1k} - mezzeria	Q _{1k} - DX	Q _{1k} - SX	Carichi acc. su rilevato	Frenatura
		1	2	3	4	5	6	7	8	9	10	11	12	13
1	Term	1	1	1	1	1		1						
2	Term	1	1	1	1	1			1					
3	Term	1	1	1	1		1	1						
4	Term	1	1	1	1	0.0	1	0.0	1				4.45	
5	Ril	1	1	1	1	0,6		0,6	0.0				1,15	
6 7	Ril Ril	1	1	1 1	1	0,6	0,6	0,6	0,6				1,15 1,15	
8	Ril	1	1	1	1		0,6	0,6	0,6				1,15	
9	Acc - gr1	1	1	1	1	0,6	0,0	0,6	0,0	1,15			1,13	
10	Acc - gr1	1	1	1	1	0,6		0,6		1,15			1,15	
11	Acc - gr2a	1	1	1	1	0,6		0,6		0,8625			.,.0	1,15
12	Acc - gr2a	1	1	1	1	0,6		0,6		0,8625			0,8625	1,15
13	Acc - gr1	1	1	1	1	0,6		0,6			1,15			
14	Acc - gr1	1	1	1	1	0,6		0,6			1,15		1,15	
15	Acc - gr2a	1	1	1	1	0,6		0,6			0,8625			1,15
16	Acc - gr2a	1	1	1	1	0,6		0,6			0,8625		0,8625	1,15
17	Acc - gr1	1	1	1	1	0,6		0,6				1,15		
18	Acc - gr1	1	1	1	1	0,6		0,6				1,15	1,15	
19	Acc - gr2a	1	1	1	1	0,6		0,6				0,8625		1,15
20	Acc - gr2a	1	1	1	1	0,6		0,6	0.0	4.45		0,8625	0,8625	1,15
21 22	Acc - gr1 Acc - gr1	1	1	1 1	1 1	0,6 0,6			0,6 0,6	1,15 1,15			1,15	
23	Acc - gr1 Acc - gr2a	1	1	1	1	0,6			0,6	0,8625			1,13	1,15
24	Acc - gr2a	1	1	1	1	0,6			0,6	0,8625			0,8625	1,15
25	Acc - gr1	1	1	1	1	0,6			0,6	0,0020	1,15		0,0020	1,10
26	Acc - gr1	1	1	1	1	0,6			0,6		1,15		1,15	
27	Acc - gr2a	1	1	1	1	0,6			0,6		0,8625			1,15
28	Acc - gr2a	1	1	1	1	0,6			0,6		0,8625		0,8625	1,15
29	Acc - gr1	1	1	1	1	0,6			0,6			1,15		
30	Acc - gr1	1	1	1	1	0,6			0,6			1,15	1,15	
31	Acc - gr2a	1	1	1	1	0,6			0,6			0,8625		1,15
32	Acc - gr2a	1	1	1	1	0,6			0,6			0,8625	0,8625	1,15
33	Acc - gr1	1	1	1	1		0,6	0,6		1,15			4.45	
34 35	Acc - gr1	1	1	1 1	1		0,6 0,6	0,6		1,15			1,15	1,15
36	Acc - gr2a Acc - gr2a	1	1	1	1		0,6	0,6 0,6		0,8625 0,8625			0,8625	1,15
37	Acc - gr2a Acc - gr1	1	1	1	1		0,6	0,6		0,0023	1,15		0,0023	1,10
38	Acc - gr1	1	1	1	1		0,6	0,6			1,15		1,15	
39	Acc - gr2a	1	1	1	1		0,6	0,6			0,8625		, -	1,15
40	Acc - gr2a	1	1	1	1		0,6	0,6			0,8625		0,8625	1,15
41	Acc - gr1	1	1	1	1		0,6	0,6				1,15		
42	Acc - gr1	1	1	1	1		0,6	0,6				1,15	1,15	
43	Acc - gr2a	1	1	1	1		0,6	0,6				0,8625		1,15
44	Acc - gr2a	1	1	1	1		0,6	0,6				0,8625	0,8625	1,15
45	Acc - gr1	1	1	1	1		0,6		0,6	1,15				
46	Acc - gr1	1	1	1	1		0,6		0,6	1,15			1,15	1.15
47	Acc - gr2a	1	1	1	1		0,6		0,6	0,8625 0,8625			0.8635	1,15
48 49	Acc - gr2a Acc - gr1	1	1	1 1	1 1		0,6 0,6		0,6 0,6	0,0025	1,15		0,8625	1,15
50	Acc - gr1	1	1	1	1		0,6		0,6		1,15		1,15	
51	Acc - gr2a	1	1	1	1		0,6		0,6		0,8625		.,,,,	1,15
52	Acc - gr2a	1	1	1	1		0,6		0,6		0,8625		0,8625	1,15
53	Acc - gr1	1	1	1	1		0,6		0,6			1,15		
54	Acc - gr1	1	1	1	1		0,6		0,6			1,15	1,15	
55	Acc - gr2a	1	1	1	1		0,6		0,6			0,8625		1,15
56	Acc - gr2a	1	1	1	1		0,6		0,6			0,8625	0,8625	1,15

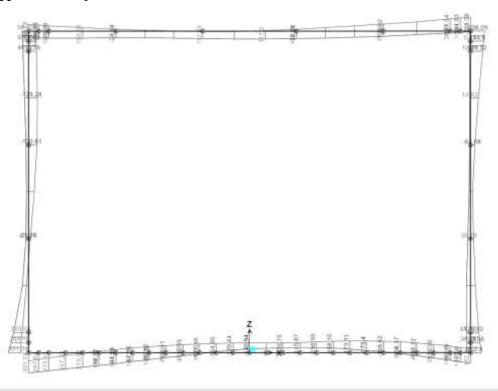

12.1.3. Combinazioni SLV

:	n° GC	P.P	Rilevato	Terra sx	Terra dx	T+ unif	T- unif	- DT +	DT.	Mezzo pesante centrale	Mezzo pesante a DX	Mezzo pesante a SX	Carichi acc. su rilevato	Frenatura	Incremento dinamico terreno	Azioni sismiche orizzontali	Azioni sismiche verticali verso l'alto	Azioni sismiche verticali verso il basso
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	Sisma_orizz	1	1	1	1	0,5		0,5							1	1	0,3	
2	Sisma_orizz	1	1	1	1	0,5		0,5							1	1		0,3
3	Sisma_orizz	1	1	1	1	0,5			0,5						1	1	0,3	
4	Sisma_orizz	1	1	1	1	0,5			0,5						1	1		0,3
5	Sisma_orizz	1	1	1	1		0,5	0,5							1	1	0,3	
6	Sisma_orizz	1	1	1	1		0,5	0,5							1	1		0,3
7	Sisma_orizz	1	1	1	1		0,5		0,5						1	1	0,3	
8	Sisma_orizz	1	1	1	1		0,5		0,5						1	1		0,3
9	Sisma_vert	1	1	1	1	0,5		0,5							0,3	0,3	1	
10	Sisma_vert	1	1	1	1	0,5		0,5							0,3	0,3		1
11	Sisma_vert	1	1	1	1	0,5			0,5						0,3	0,3	1	
12	Sisma_vert	1	1	1	1	0,5			0,5						0,3	0,3		1
13	Sisma_vert	1	1	1	1		0,5	0,5							0,3	0,3	1	
14	Sisma_vert	1	1	1	1		0,5	0,5							0,3	0,3		1
15	Sisma_vert	1	1	1	1		0,5		0,5						0,3	0,3	1	
16	Sisma_vert	1	1	1	1		0,5		0,5						0,3	0,3		1

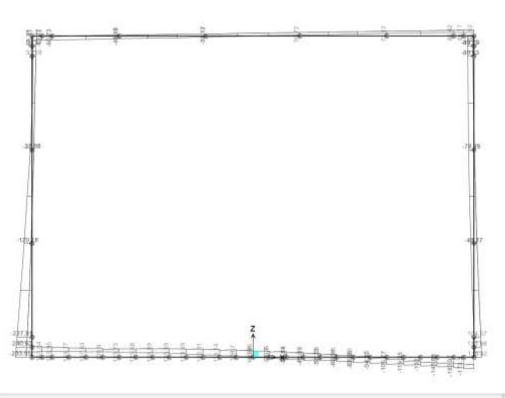
I coefficienti di combinazione SLV applicati ai singoli Load Case sono i medesimi sia per l'Approccio 1-Combinazione 1 che per l'Approccio 1-Combinazione 2.

12.1.4. Combinazioni SLE – Quasi Permanente – Caratteristica

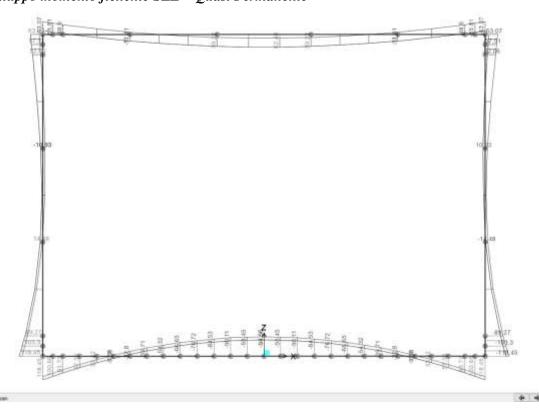
ڊ ڏ	-	P.P	Rilevato	Terra sx	Тегга dx	T+ unif	T- unif	- TO	DT.	Mezzo pesante centrale	Mezzo pesante a DX	Mezzo pesante a SX	Carichi acc. su rilevato	Frenatura
		1	2	3	4	5	6	7	8	9	10	11	12	13
QP1		1	1	1	1	0,5		0,5						
QP2		1	1	1	1	0,5			0,5					
QP3		1	1	1	1		0,5	0,5						
QP4		1	1	1	1		0,5		0,5					
CAR1	Term	1	1	1	1	1		1						
CAR2	Term	1	1	1	1	1			1					
CAR3	Term	1	1	1	1		1	1						
CAR4	Term	1	1	1	1		1		1					
CAR5	Acc-gr1	1	1	1	1	0,6		0,6		1				
CAR6	Acc-gr1	1	1	1	1	0,6		0,6		1			1	
CAR7	Acc-gr2a	1	1	1	1	0,6		0,6		0,75				1
CAR8	Acc-gr2a	1	1	1	1	0,6		0,6		0,75			0,75	1
CAR9	Acc-gr1	1	1	1	1	0,6		0,6			1			
CAR10	Acc-gr1	1	1	1	1	0,6		0,6			1		1	
CAR11	Acc-gr2a	1	1	1	1	0,6		0,6			0,75			1
CAR12	Acc-gr2a	1	1	1	1	0,6		0,6			0,75		0,75	1
CAR13	Acc-gr1	1	1	1	1	0,6		0,6				1		
CAR14	Acc-gr1	1	1	1	1	0,6		0,6				1	1	
CAR15	Acc-gr2a	1	1	1	1	0,6		0,6				0,75		1
CAR16	Acc-gr2a	1	1	1	1	0,6		0,6				0,75	0,75	1
CAR17	Acc-gr1	1	1	1	1	0,6			0,6	1				
CAR18	Acc-gr1	1	1	1	1	0,6			0,6	1			1	
CAR19	Acc-gr2a	1	1	1	1	0,6			0,6	0,75				1
CAR20	Acc-gr2a	1	1	1	1	0,6			0,6	0,75			0,75	1
CAR21	Acc-gr1	1	1	1	1	0,6			0,6		1			
CAR22	Acc-gr1	1	1	1	1	0,6			0,6		1		1	
CAR23	Acc-gr2a	1	1	1	1	0,6			0,6		0,75			1

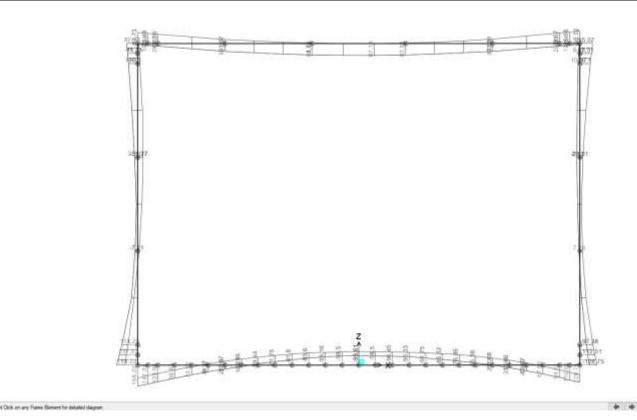

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL SLZ1 F0 001 A 48 di 169

ر ژ	} =	q.q	Rilevato	Terra sx	Terra dx	T+ unif	T- unif	+10	DT.	Mezzo pesante centrale	Mezzo pesante a DX	Mezzo pesante a SX	Carichi acc. su rilevato	Frenatura
		1	2	3	4	5	6	7	8	9	10	11	12	13
CAR24	Acc-gr2a	1	1	1	1	0,6			0,6		0,75		0,75	1
CAR25	Acc-gr1	1	1	1	1	0,6			0,6			1		
CAR26	Acc-gr1	1	1	1	1	0,6			0,6			1	1	
CAR27	Acc-gr2a	1	1	1	1	0,6			0,6			0,75		1
CAR28	Acc-gr2a	1	1	1	1	0,6			0,6			0,75	0,75	1
CAR29	Acc-gr1	1	1	1	1		0,6	0,6		1				
CAR30	Acc-gr1	1	1	1	1		0,6	0,6		1			1	
CAR31	Acc-gr2a	1	1	1	1		0,6	0,6		0,75				1
CAR32	Acc-gr2a	1	1	1	1		0,6	0,6		0,75			0,75	1
CAR33	Acc-gr1	1	1	1	1		0,6	0,6			1			
CAR34	Acc-gr1	1	1	1	1		0,6	0,6			1		1	
CAR35	Acc-gr2a	1	1	1	1		0,6	0,6			0,75			1
CAR36	Acc-gr2a	1	1	1	1		0,6	0,6			0,75		0,75	1
CAR37	Acc-gr1	1	1	1	1		0,6	0,6				1		
CAR38	Acc-gr1	1	1	1	1		0,6	0,6				1	1	
CAR39	Acc-gr2a	1	1	1	1		0,6	0,6				0,75		1
CAR40	Acc-gr2a	1	1	1	1		0,6	0,6				0,75	0,75	1
CAR41	Acc-gr1	1	1	1	1		0,6		0,6	1				
CAR42	Acc-gr1	1	1	1	1		0,6		0,6	1			1	1
CAR43	Acc-gr2a	1	1	1	1		0,6		0,6	0,75				1
CAR44	Acc-gr2a	1	1	1	1		0,6		0,6	0,75			0,75	1
CAR45	Acc-gr1	1	1	1	1		0,6		0,6		1			
CAR46	Acc-gr1	1	1	1	1		0,6		0,6		1		1	
CAR47	Acc-gr2a	1	1	1	1		0,6		0,6		0,75			1
CAR48	Acc-gr2a	1	1	1	1		0,6		0,6		0,75		0,75	1
CAR49	Acc-gr1	1	1	1	1		0,6		0,6			1		
CAR50	Acc-gr1	1	1	1	1		0,6		0,6			1	1	
CAR51	Acc-gr2a	1	1	1	1		0,6		0,6			0,75		1
CAR52	Acc-gr2a	1	1	1	1		0,6		0,6			0,75	0,75	1

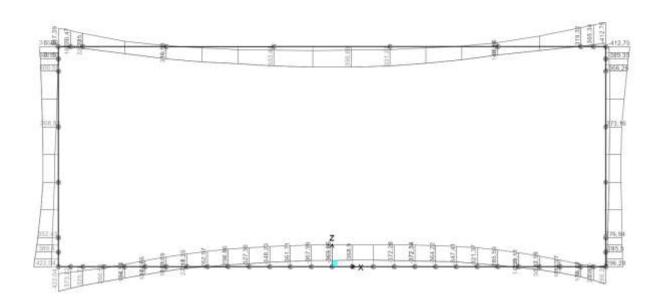

12.2. Diagrammi di inviluppo – concio 1

12.2.1. Inviluppo momento flettente SLU/SLV – STR

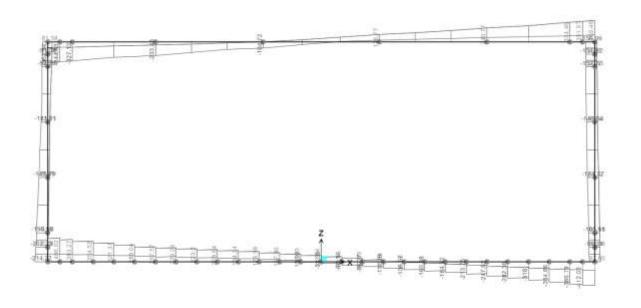

12.2.2. Inviluppo taglio SLU/SLV – STR

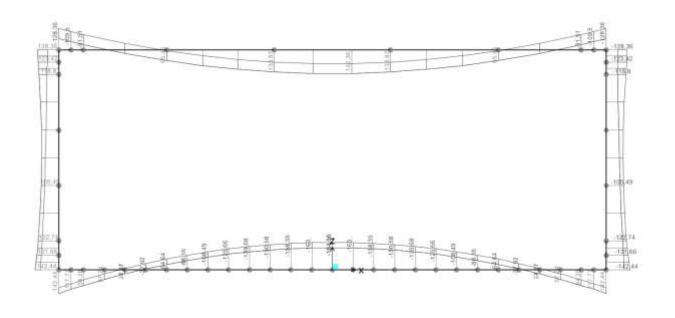

12.2.3. Inviluppo momento flettente SLE – Quasi Permanente

It Ock on any Frane Denest for detailed diagram

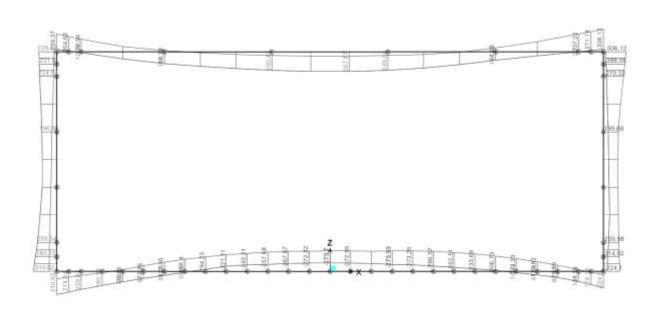

12.2.4. Inviluppo momento flettente SLE – Caratteristico

12.3. Diagrammi di inviluppo – concio 2


12.3.1. Inviluppo momento flettente SLU/SLV – STR

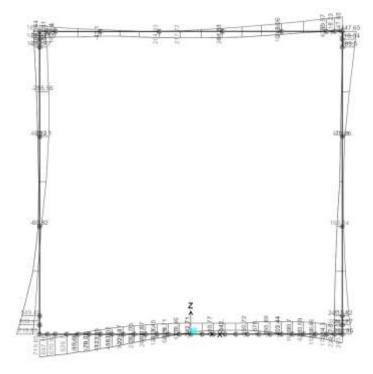

H. Ock on any Frame Secret for detailed diagram.

12.3.2. Inviluppo taglio SLU/SLV – STR


12.3.3. Inviluppo momento flettente SLE – Quasi Permanente

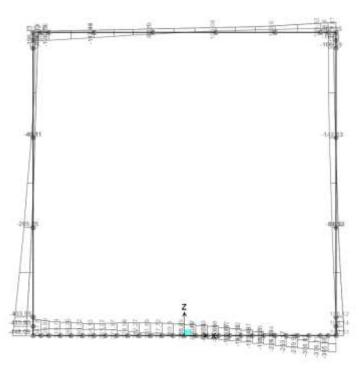
12.3.4. Inviluppo momento flettente SLE – Caratteristico

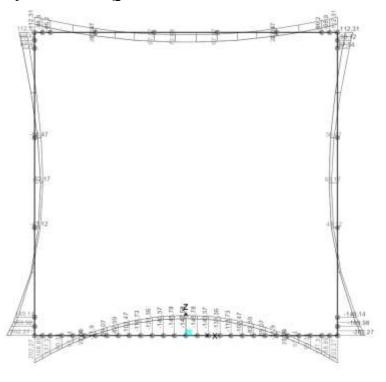
H Ock or are from Element for statist stagram



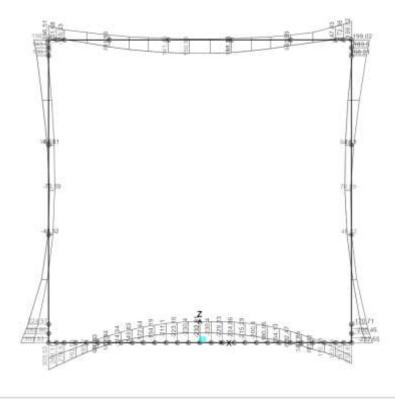
or Ock-or any frame Stement for chitalated diagram

12.4. Diagrammi di inviluppo – concio 3


12.4.1. Inviluppo momento flettente SLU/SLV – STR

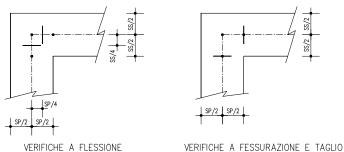

H Ook on any frame Element for detailed slegren.

12.4.2. Inviluppo taglio SLU/SLV – STR



12.4.3. Inviluppo momento flettente SLE – Quasi Permanente

12.4.4. Inviluppo momento flettente SLE – Caratteristico


13. VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO – CONCIO 1

Di seguito si riportano le verifiche delle sezioni per le aste più significative e per le Combinazioni di carico risultate più critiche.

Le verifiche a flessione sono effettuate rispettivamente:

- nella sezione ubicata a metà fra asse piedritto e sezione d'attacco piedritto-soletta nel caso delle verifiche della soletta;
- nella sezione ubicata a metà fra asse soletta e sezione d'attacco del piedritto nel caso delle verifiche del piedritto.

Le verifiche a fessurazione e a taglio sono eseguite nelle sezioni di attacco soletta-piedritto.

TENTIONE AT ESSIONE TO THE AT ESSIONE E MOSIO

I calcoli di verifica sono effettuati con il metodo degli Stati Limite, applicando il combinato D. M.14.01.2008 con l'UNI EN 1992 (Eurocodice 2).

Le verifiche a taglio sono svolte considerando il puntone in calcestruzzo inclinato di 45° e staffe verticali.

<u>Verifica di formazione delle fessure</u>: la verifica si esegue per la sezione interamente reagente determinando il momento di prima fessurazione e confrontandolo con quello sollecitante; se risulta $M_{cr} < M_{Ed}$ la verifica si considera soddisfatta, altrimenti si procede alla verifica di apertura delle fessure.

<u>Verifica di apertura delle fessure</u>: l'apertura convenzionale delle fessure è calcolata con le modalità indicate nell'Eurocodice 2-1, come indicato dal D. M. Min. II. TT. del 14 gennaio 2008, e valutata con le sollecitazioni relative alla Combinazioni Rara della normativa vigente. Le massime aperture ammissibili sono:

- condizioni ambientali aggressive e molto aggressive: w_k≤w₃=0.20mm

- condizioni ambientali ordinarie: w_k≤w₃=0.30mm

<u>Verifica delle tensioni di esercizio</u>: si verifica che le tensioni di lavoro presenti nel calcestruzzo siano inferiori ai seguenti limiti:

- combinazione QP $\sigma_c \!\!< 0.40 \; f_{ck};$

- combinazione Rara $\sigma_c < 0.55 f_{ck}$

e che le tensioni di lavoro presenti nell'acciaio siano $\sigma_s < 0.75 f_{yk}$.

13.1. Soletta inferiore

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due *ITALFERR* GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Codifica Documento Lotto Rev Doc. N. INOR E E2 CL SLZ1 F0 001 11 Α CARATTERISTICHE MATERIALI Calcestruzzo: Classe C32/40 40,00 N/mm² 35 33,20 N/mm² 30 25 41,20 N/mm² f_{cm} 3,10 N/mm² 20 f_{ctm} $f_{ctk,0.05}$ 2,17 N/mm² 15 4,03 N/mm² 10 $f_{ctk,0.95}$ 3,72 N/mm² 5 cfm 33642,78 N/mm² 0 0,05 0,1 0,2 0,3 0,35 0,4 0,200 % 0,175 % 0,070 % 0,350 % 2,000 tipo cemento Ν Acciaio: Classe B450C 600 Tipologia comportamer EL-PL 400 $k = (f_t/f_y)_k$ 1 450 N/mm² 200 540 N/mm² ې -200 -10 200000 N/mm² 7,500 % -400 -600 Coefficiente di omogenizzazione: n,breve termine 5,66 =Es/Ec umidità relativa 75 % 15 giorni giorno app. carico 50 anni periodo lungo termine coefficiente di viscosità 1,97 n,lungo termine= 11,17 =Es/Ecm n,verifiche QP 15,0 =Es/Ecm lungo termine n,verifiche CAR 15,0 =Es/Ecm breve termine CARATTERISTICHE SEZIONE Sezione: 1000 mm Armature: 50 100 150 200 Pos. п° ø уi As mm² barre mm mm 20 76 1570,7963 250 300 350 400 450 2 1570,7963 3 0 4 0 500 550 5 0 0 6 650 700 750 800 850 900 0 8 0 9 0 10 0 950 1000 Armatura di ripartizione Pos. п° ø yi As

mm²

1005,3096

1005,3096

58

542

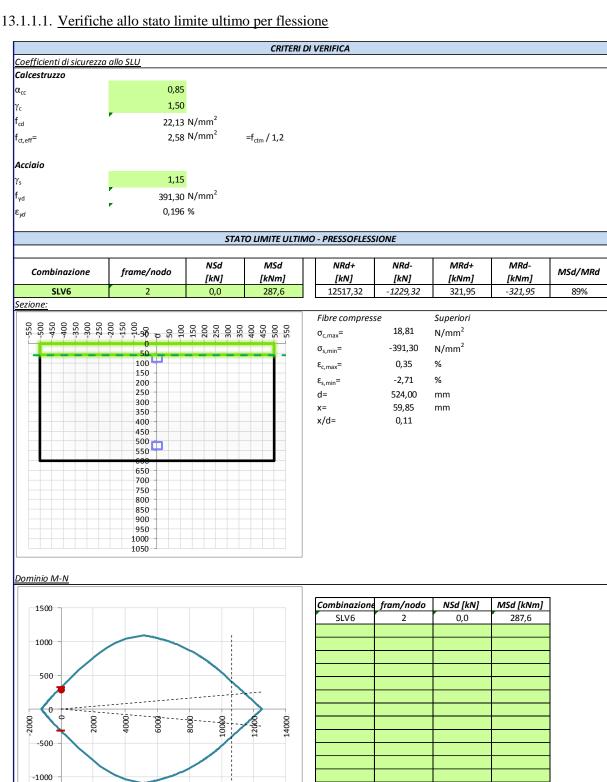
mm

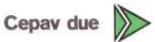
16

16

superiore

inferiore


Foglio


57 di 169

1.1.1 Soletta inferiore – sezione di incastro

-1500

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL SLZ1 F0 001 A 59 di 169

13.1.1.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO						
Calsse calcestruzzo		C32/40				
Resistenza cubica caratteristica	Rck	40,00 Mpa				
Resistenza cilindrica caratteristica	f_{ck}	33,2 Mpa				

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	Υc	1,50
Coefficiente riduttivo per resistenze di lunga durata	α_{cc}	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

	GEOMETRIA SEZIONE C.A.							
Base	b	b 1000 mm						
Altezza	h		600	mm				
Barre tese		numero barre	diametro barre [mm]	copriferro in asse barra [mm]	Area barre [mm2]			
strato1		5	20	76	1571			
strato2		0	0	0	0			
strato3		0	0	0	0			
strato4		0	0	0	0			
strato5		0	0	0	0			
Area barre tese	A_s		1571	mm2				
Posizione della barra equivalente	c*		76	mm				

SOLLECITAZIONI							
Load Case		SLU15					
Frame		27					
Azione assiale (+ di compressione)	N_{Ed}	0	kN				
Taglio	V_{Ed}	160,97	kN				

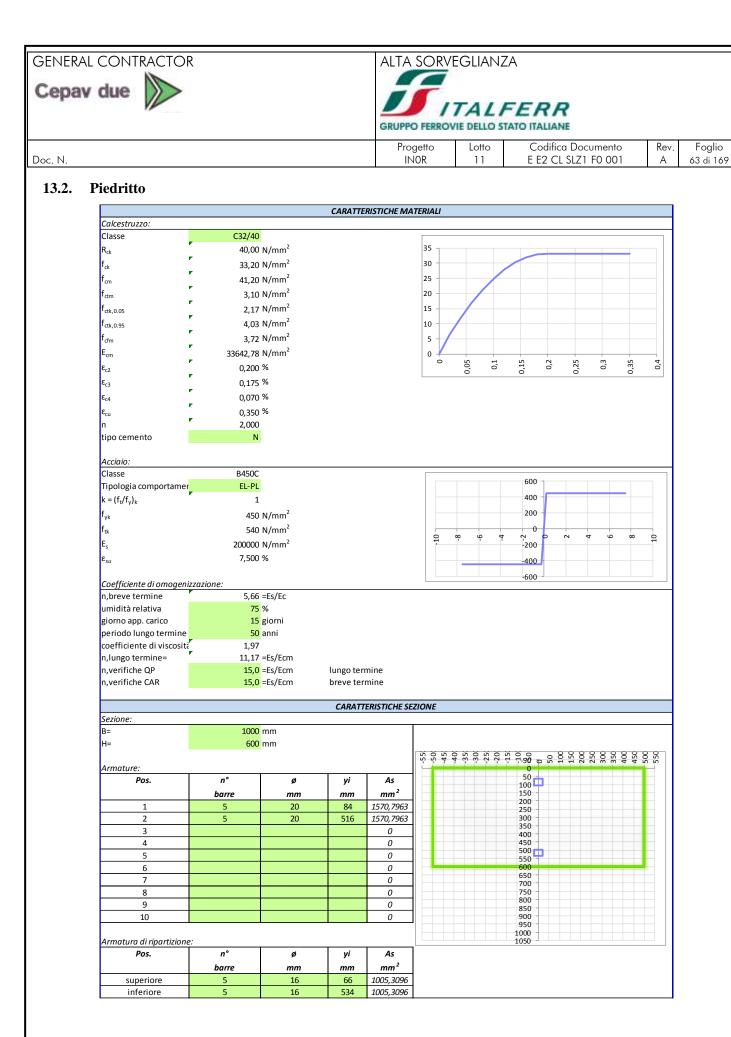
VER	VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO							
Altezza utile della sezione	d	524 mm						
Coefficiente	k	1,62						
Rapporto di armatura longitudinale	ρl	0,30%						
Tensione assiale media	$\sigma_{ m cp}$	0,00 N/mm2						
	0.2 x f _{cd}	3,76 N/mm2						
	ν_{min}	0,41 N/mm2						
Resistenza al taglio minima	$V_{rd,min}$	217,45 kN						
Resistenza al taglio senza armatura	V_{rd}	218,82 kN						
Verifica		0,74 <u>Verifica soddisfatta</u>						

13.1.1.3. Verifiche allo stato limite di esercizio

			DAAACTC	EDIELCA ESC		DAZIONE			
		PA	KAIVIETRI V	ERIFICA FESS	SU	RAZIONE			
kt=	0,40		(0,6 = azio	ni di breve dı	ıra	ıta; 0,4 = az	ioni di lung	ga durata)	
k ₁ =	0,80		(0,8=barre	ad aderenzo	n r	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato)				
			CRITI	RI DI VERIFI	CA				
Fessurazione									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	2	
Aggressive									
Armature:	2		1-Sensibili;	2-Poco sens	ibi	li			
Poco sensibilie									
Tensioni in esercizio									
TETISIOTI III ESEI CIZIO	1221		σ _{c.max}	$\sigma_{s,max}$					
	Limite	Limite		_					
Combinazione	σ _c / fck	σ _s / fyk	[N/mm²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	DLLECITAZIONI SLI	E (N+ di con	npressione -	- 1	Л+ tende le	fibre infer	iori)	
Fessurazione			•				, , .	<u> </u>	
			N	М		w _d	w _{lim}	M0 - Mf	
Combinazione	n. combinazione	frame/nodo	[kN]	[kNm]		[mm]	[mm]	[kNm]	
Cartteristica	CAR30	3	0,0	125,0		Msd <mf< td=""><td>0,200</td><td>175,30</td><td>-</td></mf<>	0,200	175,30	-
	•		•						•
Tensioni in esercizio			,			,			T
Combinazione	n. combinazione	nodo	N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	nouo	[kN]	[kNm]		[N/mm ²]	[N/mm²]	[N/mm ²]	
Quasi permanente	QP3	2	0,0	100,7		-2,88	134,30	-17,45	Sezione parzializzata
Cartteristica	CAR30	2	0,0	141,3		-4,04	188,58	-24,50	Sezione parzializzata

1.1.2 Soletta inferiore – sezione di mezzeria

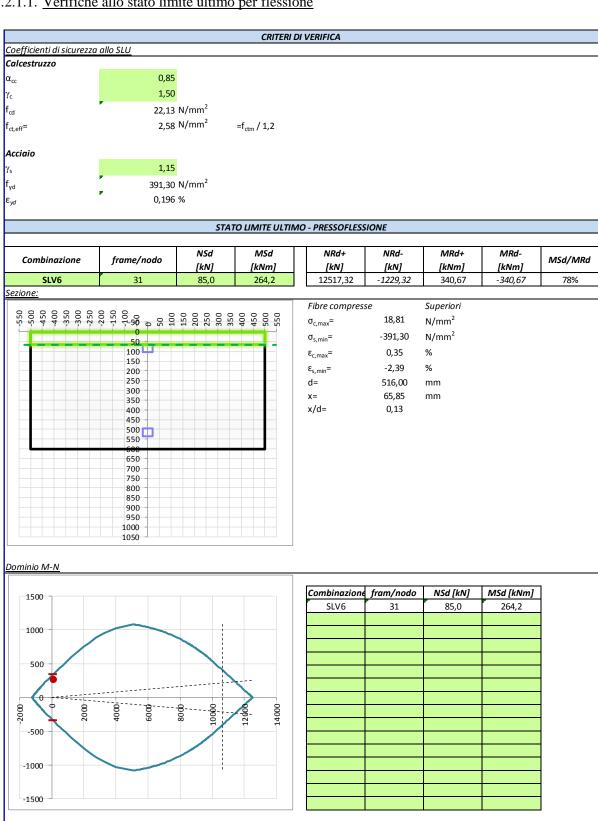
13.1.1.5. Verifiche allo stato limite di esercizio

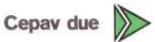

Cartteristica

		PA	RAMETRI V	ERIFICA FES.	SUI	RAZIONE			
kt=	0,40		(0,6 = azio	ni di breve d	ura	ta; 0,4 = az	ioni di lung	a durata)	
k ₁ =	0,80		(0,8=barre	ad aderenz	a m	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato)				
•									
			CRITI	ERI DI VERIFI	CA				
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	2	
	Aggressive								
Armature:	2		1-Sensibili;	2-Poco sens	ibi	li			
	Poco sensibilie								
Tensioni in esercizio									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	$\sigma_{\rm c}$ / fck	$\sigma_{\rm s}$ / fyk	[N/mm²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	DLLECITAZIONI SLI	F (N+ di com	npressione -	- A	Λ+ tende le	fibre infer	iori)	
Fessurazione							,	,	
			N	М		w _d	W _{lim}	M0 - Mf	
Combinazione	n. combinazione	frame/nodo	[kN]	[kNm]		[mm]	[mm]	[kNm]	
Cartteristica	CAR2	14	0,0	-99,6		Msd <mf< td=""><td>0,200</td><td>-175,30</td><td>-</td></mf<>	0,200	-175,30	-
Tensioni in esercizio					-			•	
			N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	nodo	[kN]	[kNm]		[N/mm ²]	[N/mm ²]	[N/mm ²]	
	1	14	0,0	-94,6	_	-2,70	126,16		Sezione parzializzata

132,90

-17,26 Sezione parzializzata


-2,85



1.1.3 Piedritto – sezione di incastro

13.2.1.1. Verifiche allo stato limite ultimo per flessione

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL SLZ1 F0 001 A 65 di 169

13.2.1.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO					
Calsse calcestruzzo		C32/40			
Resistenza cubica caratteristica	Rck	40,00 Mpa			
Resistenza cilindrica caratteristica	f _{ck}	33,2 Mpa			

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	$\gamma_{\rm c}$	1,50
Coefficiente riduttivo per resistenze di lunga durata	$lpha_{ m cc}$	0,85
Coefficiente di sicurezza per l'acciaio	Ϋ́s	1,15

	GEOMETRIA SEZIONE C.A.							
Base	b		1000	1000 mm				
Altezza	h		600	600 mm				
Barre tese		numero barre	diametro barre [mm]	copriferro in asse barra [mm]	Area barre [mm2]			
strato1		5	20	84	1571			
strato2		0	0	0	0			
strato3		0	0	0	0			
strato4		0	0	0	0			
strato5		0	0	0	0			
Area barre tese	A_s		1571	mm2				
Posizione della barra equivalente	c*		84	mm				

SOLLECITAZIONI				
Load Case		SLV6		
Frame		33		
Azione assiale (+ di compressione)	N_{Ed}	82,69	kN	
Taglio	V_{Ed}	227,82	kN	

VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO					
Altezza utile della sezione	d	516 mm			
Coefficiente	k	1,62			
Rapporto di armatura longitudinale	ρl	0,30%			
Tensione assiale media	$\sigma_{ m cp}$	0,14 N/mm2			
	$0.2 \times f_{cd}$	3,76 N/mm2			
	v_{\min}	0,42 N/mm2			
Resistenza al taglio minima	$V_{rd,min}$	225,74 kN			
Resistenza al taglio senza armatura	V_{rd}	227,89 kN			
Verifica		1,00 <u>Verifica soddisfatta</u>			

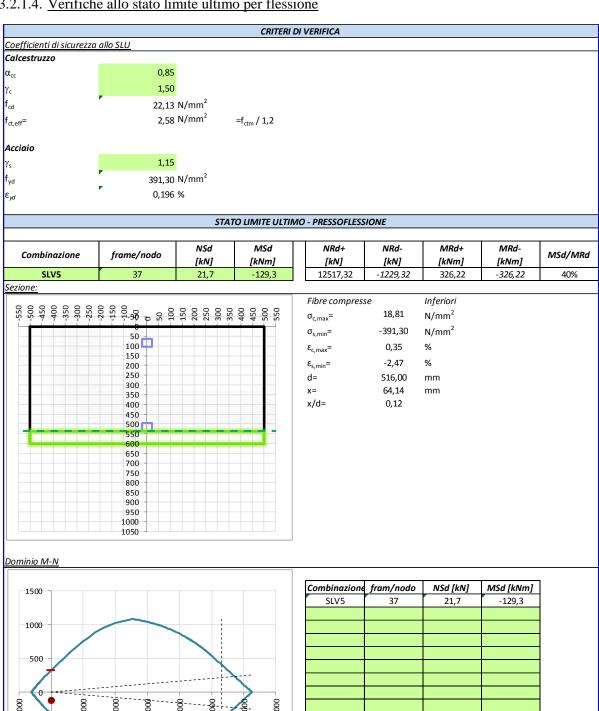
GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Lotto Codifica Documento Rev. Foglio

E E2 CL SLZ1 F0 001

66 di 169

11

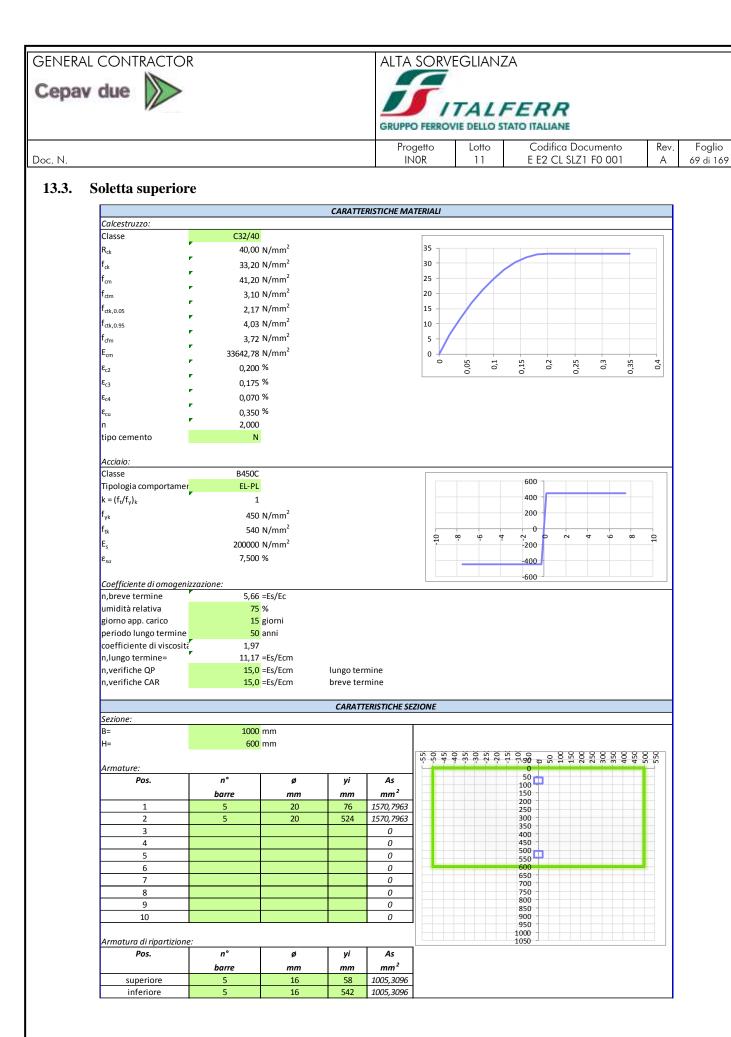
13 2 1 3 Varificha allo stato limita di asarcizio


Doc. N.

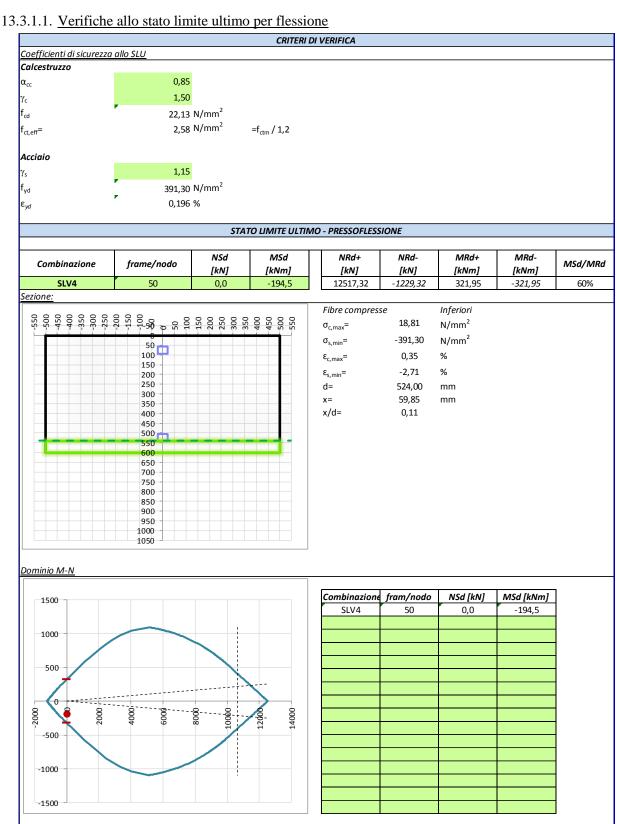
13.2.1.3. <u>Verifiche allo stato limite di esercizio</u>									
		PA	RAMETRI V	ERIFICA FESS	SURAZ	ZIONE			
kt=	0,40	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)							
k ₁ =	0,80		(0,8=barre	ad aderenzo	a migl	liorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato)				
CRITERI DI VERIFICA									
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	sive; 3	3- Molto	aggressive	2	
Armature:	Aggressive 2 1-Sensibili; 2-Poco sensibili Poco sensibilie								
Tensioni in esercizio									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	σ _c / fck	σ _s / fyk	[N/mm²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	sc	DLLECITAZIONI SLI	E (N+ di con	pressione -	- M+	tende le	fibre infer	iori)	
<u>Fessurazione</u>									
Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]		w _d [mm]	w _{lim} [mm]	M0 - Mf [kNm]	
Cartteristica	CAR30	33	109,7	118,3	N	1sd <mf< td=""><td>0,200</td><td>185,29</td><td>u u</td></mf<>	0,200	185,29	u u
<u>Tensioni in esercizio</u>									
Combinazione	n. combinazione	nodo	N [kN]	M [kNm]		σ _{c,min} l/mm²]	$\sigma_{s,max}$ [N/mm ²]	σ _{s,min} [N/mm²]	
Quasi permanente	QP3	31	119,2	103,3		-3,09	103,12	-21,97	Sezione parzializzata
Cartteristica	CAR30	31	112,0	137,6		-4,12	151,59	-27,04	Sezione parzializzata

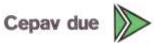
1.1.4 Piedritto – sezione di mezzeria

13.2.1.4. Verifiche allo stato limite ultimo per flessione


1500					
500					
7,000	2000	4000,	0009	10000	12000
-500	20	40	009	100	120
-1000		_			

Combinazione	jruin, nouc	NOU [KN]	Wisa [Kiviii]
SLV5	37	21,7	-129,3


13.2.1.5. Verifiche allo stato limite di esercizio


		P.A	RAMETRI V	ERIFICA FESS	UF	RAZIONE			
kt=	0,40	(0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)							
k ₁ =	0,80		(0,8=barre	ad aderenza	ı m	nigliorata; 1	.,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	comandato)					
k ₄ =	0,425		(valore rad	comandato)					
			CRITI	RI DI VERIFI	CA				
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres:	siv	e; 3- Molto	aggressive	?	
	Aggressive								
Armature:	2		1-Sensibili;	2-Poco sens	ibil	li			
	Poco sensibilie								
Tensioni in esercizio									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	σ_c / fck	σ¸ / fyk	[N/mm ²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	OLLECITAZIONI SL	E (N+ di con	pressione	. /	1+ tende le	fibre infer	iori)	
<u>Fessurazione</u>	ı		1	1		1		I	T
Combinazione	n. combinazione	frame/nodo	N	M		w _d	W _{lim}	M0 - Mf	
•	21.500	2 -	[kN]	[kNm]		[mm]	[mm]	[kNm]	
Cartteristica	CAR30	35	67,7	-39,3		Msd <mf< td=""><td>0,200</td><td>-180,92</td><td>-</td></mf<>	0,200	-180,92	-
Tensioni in esercizio									
Combinazione	n. combinazione	nodo	N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Compinazione	n. combinazione	nouo	[kN]	[kNm]		[N/mm ²]	[N/mm ²]	[N/mm ²]	
Quasi permanente	QP3	35	75,0	-10,9		-0,29	0,27	-3,56	Sezione parzializzata
		35	67,7					-9,28	Sezione parzializzata

1.1.5 Soletta superiore – sezione di incastro

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL SLZ1 F0 001 A 71 di 169

13.3.1.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO					
Calsse calcestruzzo		C32/40			
Resistenza cubica caratteristica	Rck	40,00 Mpa			
Resistenza cilindrica caratteristica	f _{ck}	33,2 Mpa			

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	$\gamma_{\rm c}$	1,50
Coefficiente riduttivo per resistenze di lunga durata	$lpha_{ m cc}$	0,85
Coefficiente di sicurezza per l'acciaio	Ϋ́s	1,15

GEOMETRIA SEZIONE C.A.					
Base	b		1000	mm	
Altezza	h		600	mm	
Barre tese		numero barre	diametro barre [mm]	copriferro in asse barra [mm]	Area barre [mm2]
strato1		5	20	76	1571
strato2		0	0	0	0
strato3		0	0	0	0
strato4		0	0	0	0
strato5		0	0	0	0
Area barre tese	A_s		1571	mm2	
Posizione della barra equivalente	c*		76	mm	

SOLLECITAZIONI				
Load Case		SLV2		
Frame		49		
Azione assiale (+ di compressione)	N _{Ed}	0	kN	
Taglio	V_{Ed}	86,82	kN	

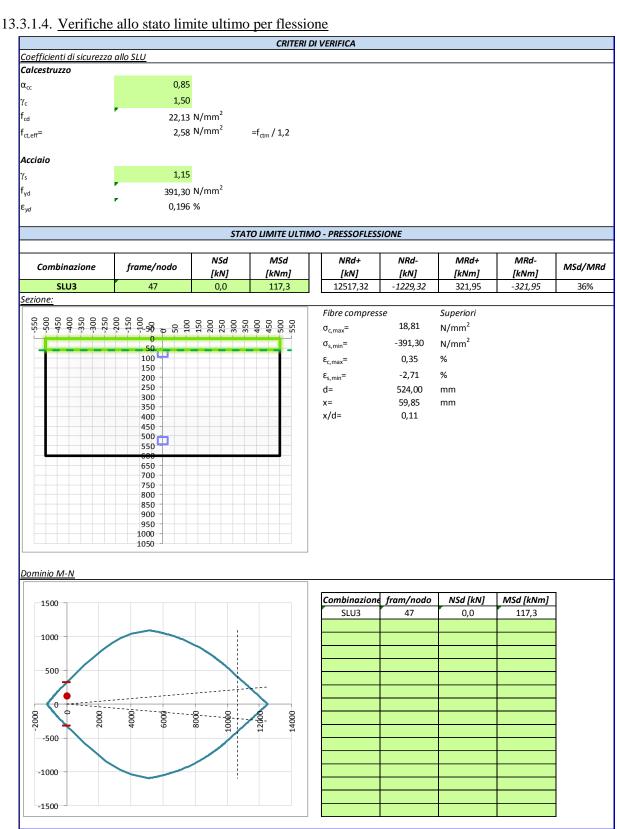
VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO					
Altezza utile della sezione	d	524 mm			
Coefficiente	k	1,62			
Rapporto di armatura longitudinale	ρl	0,30%			
Tensione assiale media	$\sigma_{ m cp}$	0,00 N/mm2			
	0.2 x f _{cd}	3,76 N/mm2			
	ν_{min}	0,41 N/mm2			
Resistenza al taglio minima	$V_{rd,min}$	217,45 kN			
Resistenza al taglio senza armatura	V_{rd}	218,82 kN			
Verifica		0,40 <u>Verifica soddisfatta</u>			

13.3.1.3. Verifiche allo stato limite di esercizio

CAR18

Cartteristica

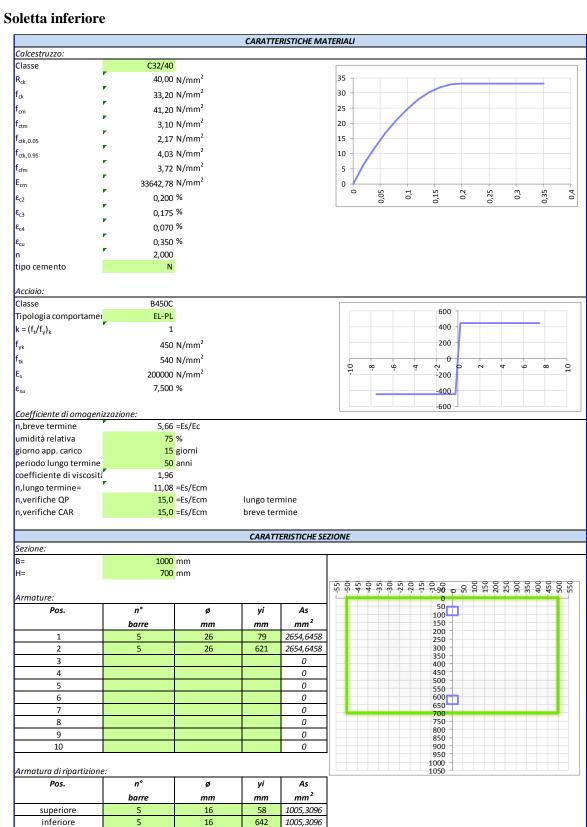
		PA	RAMETRI V	ERIFICA FES.	SUI	RAZIONE				
kt=	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)									
k ₁ =	0,80	, <mark>80</mark> (0,8=barre ad aderenza migliorata; 1,6= barre liscie e trefoli)								
k ₃ =	3,40	(valore raccomandato)								
k ₄ =	0,425	25 (valore raccomandato)								
			CRITI	ERI DI VERIFI	CA					
<u>Fessurazione</u>										
Condiz. Ambientali:	2 1- Ordinarie; 2- Aggressive; 3- Molto aggressive									
	Aggressive									
Armature:	2		1-Sensibili;	1-Sensibili; 2-Poco sensibili						
	Poco sensibilie									
Tensioni in esercizio										
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$						
Combinazione	$\sigma_{\rm c}$ / fck	σ _s / fyk	[N/mm ²]	[N/mm ²]						
Quasi Permanente	0,40	0,75	13,28	337,50						
Caratteristica	0,55	0,75	18,26	337,50						
	SC	OLLECITAZIONI SLI	E (N+ di con	npressione -	- A	Л+ tende le	fibre infer	iori)		
Fessurazione			•				, , .	<u> </u>		
Combinazione	n. combinazione	frame/nodo	N	М		w _d	W _{lim}	M0 - Mf		
			[kN]	[kNm]		[mm]	[mm]	[kNm]		
Cartteristica	CAR18	49	0,0	-78,7		Msd <mf< td=""><td>0,200</td><td>-175,30</td><td>-</td></mf<>	0,200	-175,30	-	
Tensioni in esercizio										
Combinazione	n. combinazione	nodo	N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$		
			[kN]	[kNm]		[N/mm ²]	[N/mm ²]	[N/mm ²]		
Quasi permanente	QP2	44	0,0	-55,8		-1,60	74,46		Sezione parzializzata	

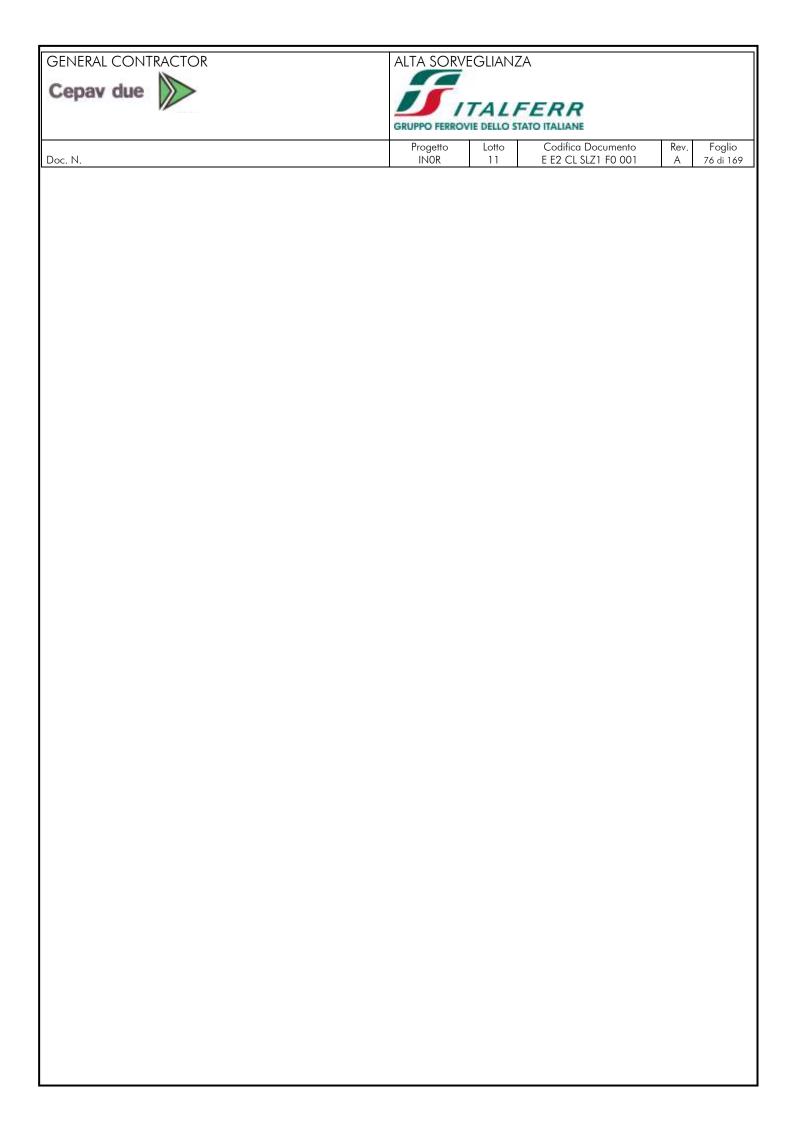

0,0

-2,48 115,65

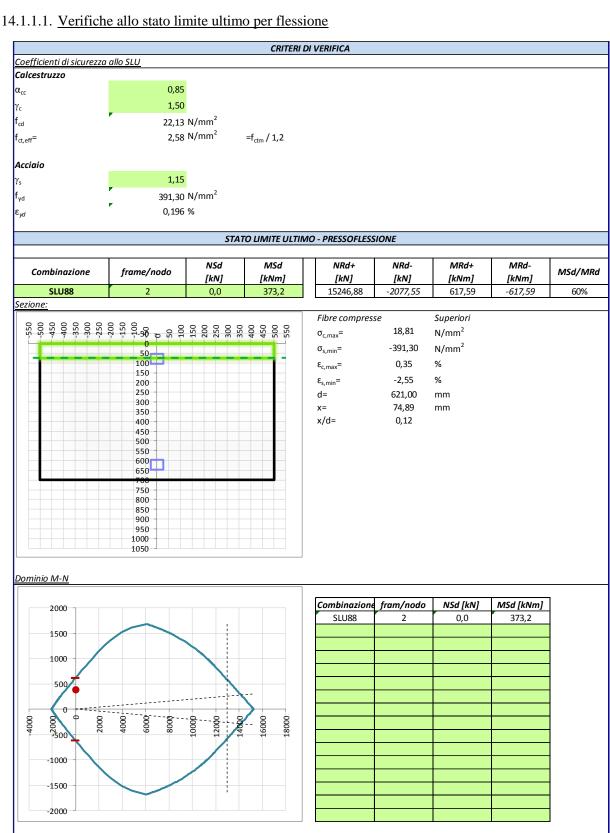
-15,02 Sezione parzializzata

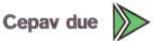
1.1.6 Soletta superiore – sezione di mezzeria


13.3.1.5. Verifiche allo stato limite di esercizio


		PA	RAMETRI V	ERIFICA FESS	URAZIONE				
kt=	0,40	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)							
k ₁ =	0,80	0,80 (0,8=barre ad aderenza migliorata; 1,6= barre liscie e trefoli)							
k ₃ =	3,40		(valore rad	ccomandato)					
k ₄ =	0,425		· (valore rac	(comandato					
N4- (valore raccomandato)									
			CRITI	ERI DI VERIFIC	CA				
Fessurazione									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggress	sive; 3- Molto	aggressive	e		
	Aggressive								
Armature:	2		1-Sensibili,	2-Poco sens	ibili				
Poco sensibilie									
<u>Tensioni in esercizio</u>									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	$\sigma_{\rm c}$ / fck	σ _s / fyk	[N/mm ²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
		NA ECITA ZIONII CI	F /Al. di		No. tour de la	films info	da udl		
	30	LLECITAZIONI SLI	E (IN+ al con	ipressione	ivi+ tenae ie	jibre injer	iori)		
<u>Fessurazione</u>			1			1	1	T	
Combinazione	n. combinazione	frame/nodo	N	M	w _d	W _{lim}	M0 - Mf		
		<u> </u>	[kN]	[kNm]	[mm]	[mm]	[kNm]		
Cartteristica	CAR3	47	0,0	87,1	Msd <mf< td=""><td>0,200</td><td>175,30</td><td>-</td></mf<>	0,200	175,30	-	
<u>Tensioni in esercizio</u>									
Combinazione	n. combinazione	nodo	N	М	$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$		
Combinazione	n. combinazione	noao	[kN]	[kNm]	[N/mm ²]	[N/mm ²]	[N/mm ²]		
Quasi permanente	QP3	47	0,0	62,5	-1,79	83,36	-10,83	Sezione parzializzata	
Cartteristica	CAR3	47	0,0	87,1	-2,49	116,25	-15,10	Sezione parzializzata	

14. VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO - CONCIO 2


14.1.



1.1.7 Soletta inferiore – sezione di incastro

GENERAL CONTRACTOR

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL SLZ1 F0 001 A 78 di 169

14.1.1.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO								
Calsse calcestruzzo		C32/40						
Resistenza cubica caratteristica	Rck	40,00 Mpa						
Resistenza cilindrica caratteristica	f _{ck}	33,2 Mpa						

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γς	1,50
Coefficiente riduttivo per resistenze di lunga durata	α_{cc}	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

GEOMETRIA SEZIONE C.A.								
Base	b		1000 mm					
Altezza			700 mm					
Barre tese		numero	diametro barre	copriferro in	Area barre			
		barre	[mm]	asse barra [mm]	[mm2]			
strato1		5	26	79	2655			
strato2		0	0	0	0			
strato3		0	0	0	0			
strato4		0	0	0	0			
strato5		0	0	0	0			
Area barre tese	A_s		2655	mm2				
Posizione della barra equivalente	c*		79	mm				

SOLLECITAZIONI							
Load Case		SLU82					
Frame		26					
Azione assiale (+ di compressione)	N _{Ed}	0	kN				
Taglio	V_{Ed}	386,78	kN				

VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO							
Altezza utile della sezione	d	621 mm					
Coefficiente	k	1,57					
Rapporto di armatura longitudinale	ρl	0,43%					
Tensione assiale media	$\sigma_{ m cp}$	0,00 N/mm2					
	$0.2 \times f_{cd}$	3,76 N/mm2					
	$ u_{\min}$	0,40 N/mm2					
Resistenza al taglio minima	$V_{rd,min}$	245,78 kN					
Resistenza al taglio senza armatura	V_{rd}	282,81 kN					
Verifica		1,37 E' necessario prevedere armatura a taglio					

ARMATURA A TAGLIO							
Diametro staffe	ф	12	mm				
Numero braccia	n	3,33					
Passo staffe	S	200	mm				
Inclinazione staffe (rispetto all'orizzontale)	α	90	•				
Inclinazione del puntone in calcestruzzo	θ	45	•				
Valore minimo di inclinazione del puntone in calcestruzzo	θ_{min}	21,80	•				

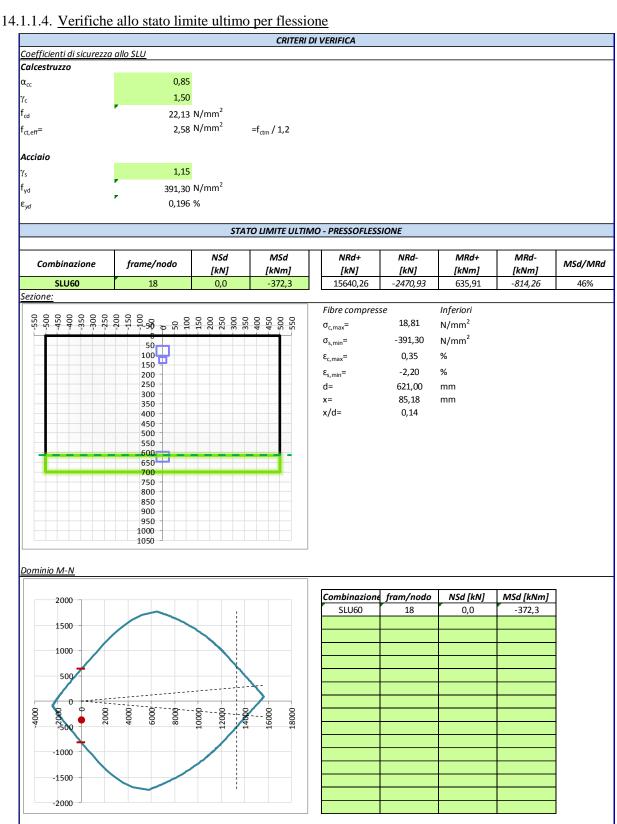
VERIFICA RESISTENZA SEZIONE CON ARMATURA A TAGLIO								
Coefficiente di riduzione per fessurazione	ν_1	0,5						
Resistenza cilindrica di progetto	f _{cd}	18,81333333 N/mm2						
Area armatura a taglio	A_{st}	376,61 mm2						
	σ_{cp}/f_{cd}	0						
Coefficiente di interazione	α_{cw}	1						
Resistenza a tagio per rottura delle armature	V_{rds}	411,83 kN						
Resistenza a taglio per rottura del puntone in calcestruzzo	V_{rcd}	2628,69 kN						
Resistenza al taglio	V_{rd}	411,83 kN						
Verifica		0,94 <u>Verifica soddisfatta</u>						

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Lotto Codifica Documento Rev. Foglio

E E2 CL SLZ1 F0 001

Α

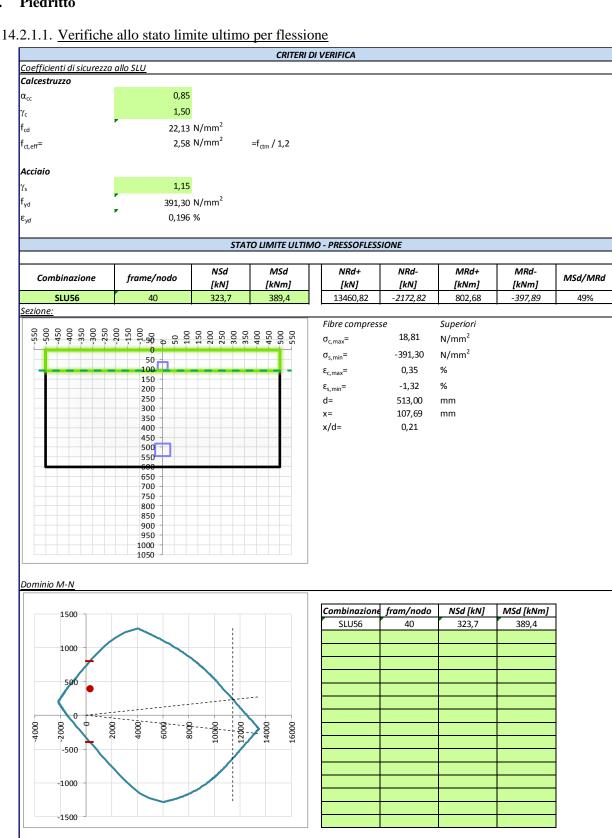
79 di 169


11

Doc. N.

14.1.1.3. <u>veri</u>	fiche allo stato	limite di ese	rc1Z10					
		PA	RAMETRI V	ERIFICA FESS	URAZIONE			
kt=	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)							
k ₁ =	0,80		(0,8=barre	ad aderenzo	n migliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato))			
k ₄ =	0,425		(valore rad	ccomandato))			
			CRITE	ERI DI VERIFI	CA			
<u>Fessurazione</u>								
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	sive; 3- Molto	aggressive	2	
Armature:	Aggressive ure: 2 1-Sensibili; 2-Poco sensibili Poco sensibilie							
Tensioni in esercizio								
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$				
Combinazione	$\sigma_{\rm c}$ / fck	$\sigma_{\rm s}$ / fyk	[N/mm ²]	[N/mm²]				
Quasi Permanente	0,40	0,75	13,28	337,50				
Caratteristica	0,55	0,75	18,26	337,50				
	sc	OLLECITAZIONI SLI	E (N+ di com	pressione	· M+ tende le	fibre infer	iori)	
<u>Fessurazione</u>								
Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]	w _d [mm]	w _{lim} [mm]	M0 - Mf [kNm]	
Cartteristica	CAR40	3	0,0	239,1	Msd <mf< td=""><td>0,200</td><td>254,06</td><td>-</td></mf<>	0,200	254,06	-
Tensioni in esercizio	·							
Combinazione	n. combinazione	nodo	N [kN]	M [kNm]	σ _{c,min} [N/mm²]	σ _{s,max} [N/mm²]	σ _{s,min} [N/mm²]	
Quasi permanente	QP3	2	0,0	117,8	-1,98	79,22	-15,89	Sezione parzializzata
Cartteristica	CAR40	2	0,0	274,3	-4,62	184,55	-37,01	Sezione parzializzata

1.1.8 Soletta inferiore – sezione di mezzeria



14.1.1.5. Verifiche allo stato limite di esercizio

		PA	RAMETRI V	ERIFICA FESS	UI	RAZIONE			
kt=	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)								
k ₁ =	0,80		(0,8=barre	ad aderenzo	m	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato,					
k ₄ =	0,425		(valore rad	ccomandato,					
			CRITI	ERI DI VERIFI	CA				
Fessurazione									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	2	
	Aggressive								
Armature:	2		1-Sensibili;	: 2-Poco sens	ibi	li			
	Poco sensibilie								
<u>Tensioni in esercizio</u>									
	Limite	Limite	$\sigma_{\text{c,max}}$	$\sigma_{\text{s,max}}$					
Combinazione	$\sigma_{\rm c}$ / fck	σ _s / fyk	[N/mm ²]	[N/mm²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	S/	DLLECITAZIONI SLI	F (N+ di com	nressione -	Λ.	/⊥ tondo lo	fihre infer	iori)	
<u>Fessurazione</u>		ALLECT FALIOTOT SE	- (ivi ai con	ipressione -		in tende ie	Jibre injer	1011)	
Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]		w _d [mm]	w _{lim} [mm]	M0 - Mf [kNm]	
Cartteristica	CAR24	17	0,0	-273,9		0,170	0,200	-256,42	-
<u>Tensioni in esercizio</u>									
Combinazione	n. combinazione	nodo	N [kN]	M [kNm]		$\sigma_{c,min}$ [N/mm ²]	σ _{s,max} [N/mm²]	σ _{s,min} [N/mm²]	
Quasi permanente	QP2	14	0,0	-164,6		-2,54	85,48	-22,44	Sezione parzializzata
Cartteristica	CAR24	17	0,0	-273,9		-4,24	142,30	-37,35	Sezione parzializzata

14.2. **Piedritto**

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Foglio 83 di 169 Lotto Codifica Documento Rev.

14.2.1.2. Verifiche allo stato limite ultimo per taglio

Doc. N.

CALCESTRUZZO							
Calsse calcestruzzo		C32/40					
Resistenza cubica caratteristica	Rck	40,00 Mpa					
Resistenza cilindrica caratteristica	f_{ck}	33,2 Mpa					

E E2 CL SLZ1 F0 001

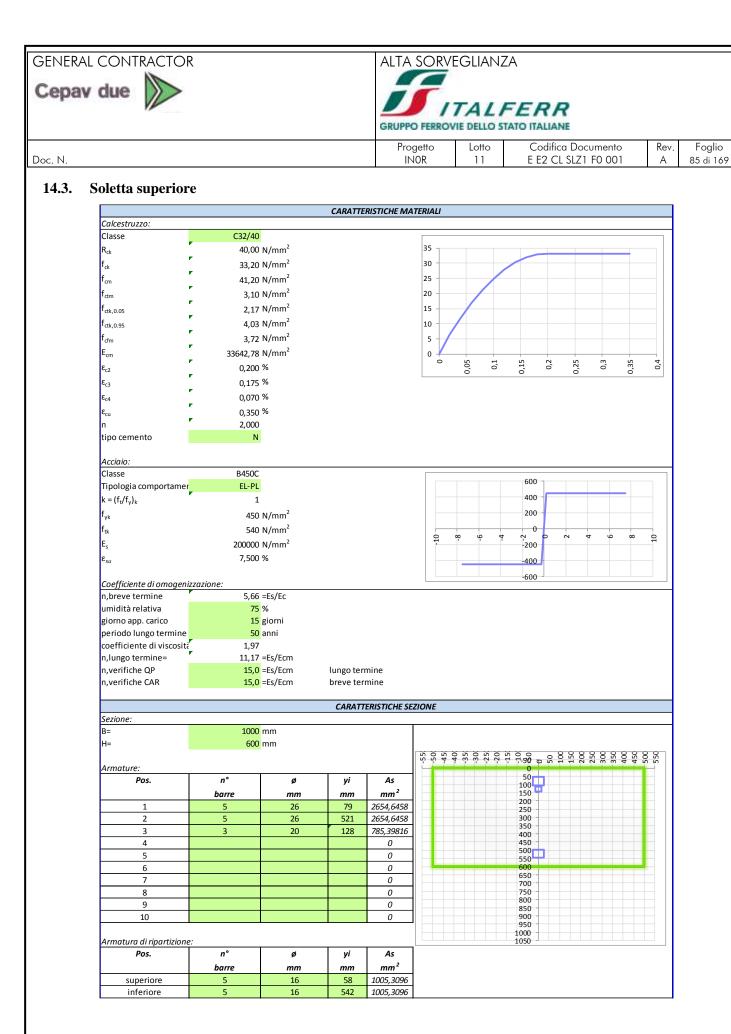
11

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γ _c	1,50
Coefficiente riduttivo per resistenze di lunga durata	α_{cc}	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

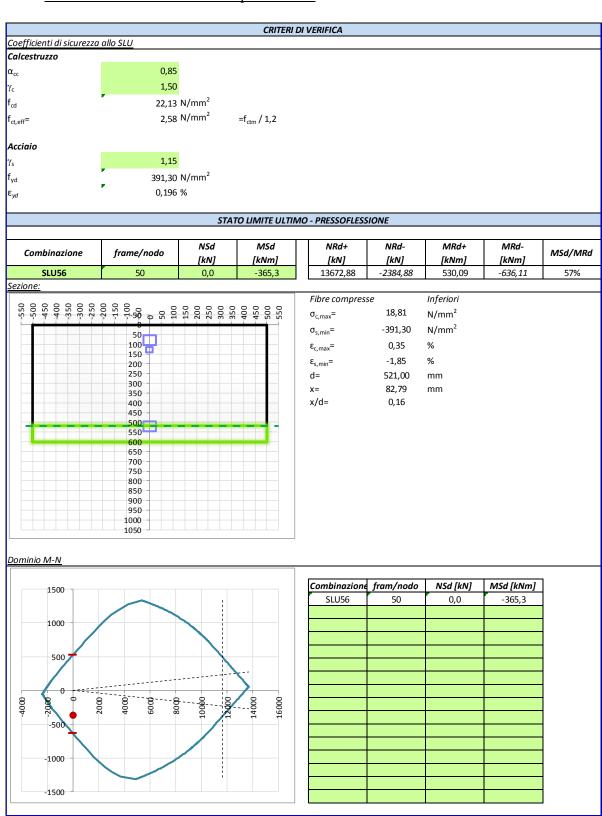
GEOMETRIA SEZIONE C.A.						
Base	b		1000			
Altezza	h		600	mm		
Barre tese		numero barre	diametro barre [mm]	copriferro in asse barra [mm]	Area barre [mm2]	
strato1		5	26	87	2655	
strato2		0	0	0	0	
strato3		0	0	0	0	
strato4		0	0	0	0	
strato5		0	0	0	0	
Area barre tese	A_s		2655	mm2		
Posizione della barra equivalente	c*		87	mm		

SOLLECITAZIONI				
Load Case		SLU84		
Frame		33		
Azione assiale (+ di compressione)	N _{Ed}	255,86	kN	
Taglio	V_{Ed}	190,59	kN	


VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO						
Altezza utile della sezione	d	513 mm				
Coefficiente	k	1,62				
Rapporto di armatura longitudinale	ρl	0,52%				
Tensione assiale media	$\sigma_{ m cp}$	0,43 N/mm2				
	0.2 x f _{cd}	3,76 N/mm2				
	ν_{min}	0,42 N/mm2				
Resistenza al taglio minima	$V_{rd,min}$	247,00 kN				
Resistenza al taglio senza armatura	\mathbf{V}_{rd}	290,84 kN				
Verifica		0,66 <u>Verifica soddisfatta</u>				

Non è necessaria armatura a taglio.

14.2.1.3. Verifiche allo stato limite di esercizio


		PA	RAMETRI V	ERIFICA FESS	U	RAZIONE			
kt=	0,40		(0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)						
k ₁ =	0,80		(0,8=barre	ad aderenzo	ın	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato					
k ₄ =	0,425		(valore rad	ccomandato					
			CRITI	ERI DI VERIFI	CA.				
Fessurazione			· · · · · ·						
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	?	
	Aggressive			. 33			55		
Armature:	2		1-Sensibili;	2-Poco sens	ibi	li			
	Poco sensibilie								
<u>Tensioni in esercizio</u>									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{\text{s,max}}$					
Combinazione	σ _c / fck	$\sigma_{\rm s}$ / fyk	[N/mm ²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	DLLECITAZIONI SLI	E (N+ di com	npressione -	Λ	Л+ tende le	fibre infer	iori)	
Fessurazione			•	•			•		
Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]		w _d [mm]	w _{lim}	M0 - Mf [kNm]	
Cartteristica	CAR20	38	241,0	270,3		0,150	0,200	220,77	-
Tensioni in esercizio									
Combinazione	n. combinazione	nodo	N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
COMMINGENINE	combinazione	11000	[kN]	[kNm]		[N/mm ²]	[N/mm ²]	[N/mm ²]	
Quasi permanente	QP2	40	130,9	123,4		-2,75	53,92	-25,64	Sezione parzializzata
Cartteristica	CAR20	40	238,8	288,1		-6,35	133,37	-57,84	Sezione parzializzata

1.1.9 Soletta superiore – sezione di incastro

14.3.1.1. Verifiche allo stato limite ultimo per flessione

14.3.1.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO					
Calsse calcestruzzo		C32/40			
Resistenza cubica caratteristica	Rck	40,00 Mpa			
Resistenza cilindrica caratteristica	f_{ck}	33,2 Mpa			

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MAT	RIALE	
Coefficiente di sicurezza per il calcestruzzo	γ_c	1,50	
Coefficiente riduttivo per resistenze di lunga durata	α_{cc}	0,85	
Coefficiente di sicurezza per l'acciaio	γ_{s}	1,15	

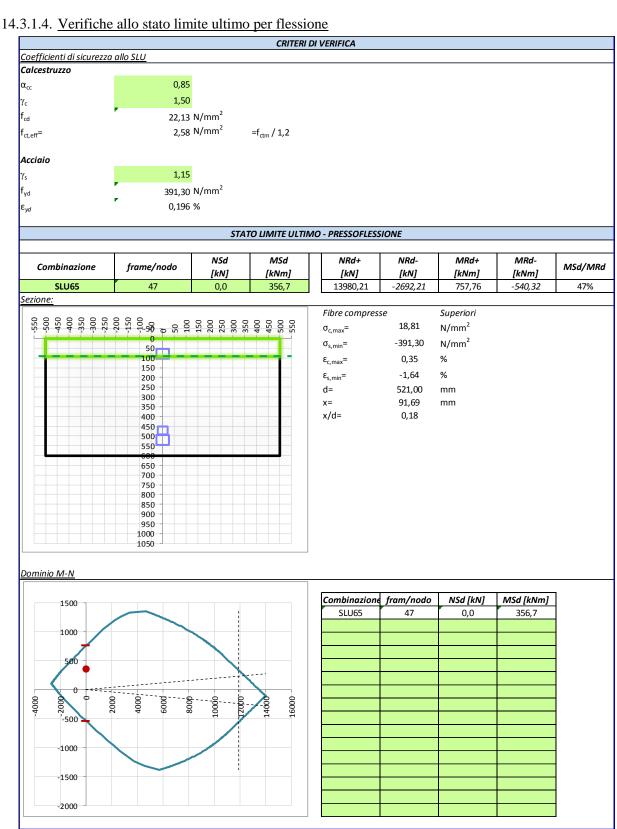
	GEO	METRIA SEZION	E C.A.			
Base	b		1000	1000 mm		
Altezza	h		600	mm		
Barre tese		numero barre	diametro barre [mm]	copriferro in asse barra [mm]	Area barre [mm2]	
strato1		5	26	79	2655	
strato2		0	0	0	0	
strato3		0	0	0	0	
strato4		0	0	0	0	
strato5		0	0	0	0	
Area barre tese	A_s		2655	mm2		
Posizione della barra equivalente	c*		79	mm		

SOLLECITAZIONI				
Load Case		SLU34		
Frame		49		
Azione assiale (+ di compressione)	N_{Ed}	0	kN	
Taglio	V_{Ed}	334,46	kN	

VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO					
Altezza utile della sezione	d	521 mm			
Coefficiente	k	1,62			
Rapporto di armatura longitudinale	ρl	0,51%			
Tensione assiale media	$\sigma_{ m cp}$	0,00 N/mm2			
	$0.2 \times f_{cd}$	3,76 N/mm2			
	v_{\min}	0,42 N/mm2			
Resistenza al taglio minima	$V_{rd,min}$	216,56 kN			
Resistenza al taglio senza armatura	V_{rd}	259,93 kN			
Verifica		1 29 F' necessario prevedere armatura a taglio			

ARMATURA A TAGLIO				
Diametro staffe	ф	12	mm	
Numero braccia	n	3,33		
Passo staffe	S	200	mm	
Inclinazione staffe (rispetto all'orizzontale)	α	90	•	
Inclinazione del puntone in calcestruzzo	θ	45	•	
Valore minimo di inclinazione del puntone in calcestruzzo	θ_{min}	21,80	•	

VERIFICA RESISTENZA SEZIONE CON ARMATURA A TAGLIO				
Coefficiente di riduzione per fessurazione	ν ₁	0,5		
Resistenza cilindrica di progetto	f _{cd}	18,81333333 N/mm2		
Area armatura a taglio	A _{st}	376,61 mm2		
-	σ_{cp}/f_{cd}	0		
Coefficiente di interazione	α_{cw}	1		
Resistenza a tagio per rottura delle armature	V_{rds}	345,51 kN		
Resistenza a taglio per rottura del puntone in calcestruzzo	V_{rcd}	2205,39 kN		
Resistenza al taglio	V_{rd}	345,51 kN		
Verifica		0,97 <u>Verifica soddisfatta</u>		



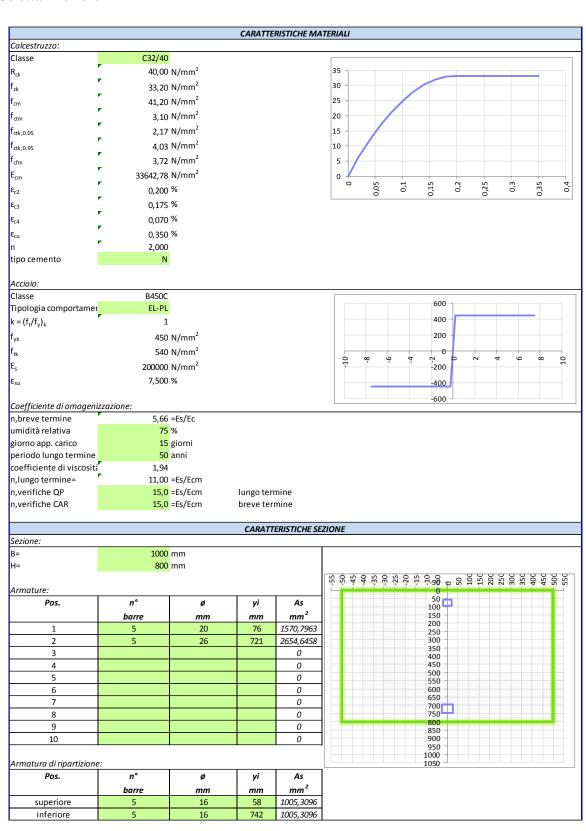
14.3.1.3. Verifiche allo stato limite di esercizio

			ZI CIZIO						
		PA	RAMETRI V	ERIFICA FES	SU	RAZIONE			
kt=	0,40		(0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)						
< ₁ =	0,80		(0,8=barre ad aderenza migliorata; 1,6= barre liscie e trefoli)						
k ₃ =	3,40		(valore rad	comandato)				
k ₄ =	0,425		(valore rad	comandato)				
			CRITE	RI DI VERIFI	CA				
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	2	<u> </u>
	Aggressive								
Armature:	2		1-Sensibili;	2-Poco sens	sibi	li			
	Poco sensibilie								
Tensioni in esercizio									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	$\sigma_{\rm c}$ / fck	$\sigma_{\rm s}$ / fyk	[N/mm²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	DLLECITAZIONI SLI	(N+ di com	pressione -	- 1	Л+ tende le	fibre infer	iori)	
<u>Fessurazione</u>									
Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]		w _d [mm]	w _{lim} [mm]	M0 - Mf [kNm]	
Cartteristica	CAR20	49	0,0	-237,2		0,196	0,200	-189,53	-
Tensioni in esercizio									
Combinazione	n. combinazione	nodo	N [kN]	M [kNm]		σ _{c,min} [N/mm²]	σ _{s,max} [N/mm²]	σ _{s,min} [N/mm²]	
Quasi permanente	QP2	44	0,0	-109,5		-2,31	72,98	-18,38	Sezione parzializzata
Cartteristica	CAR20	50	0,0	-271,2		-5,73	180,72	-45,52	Sezione parzializzata

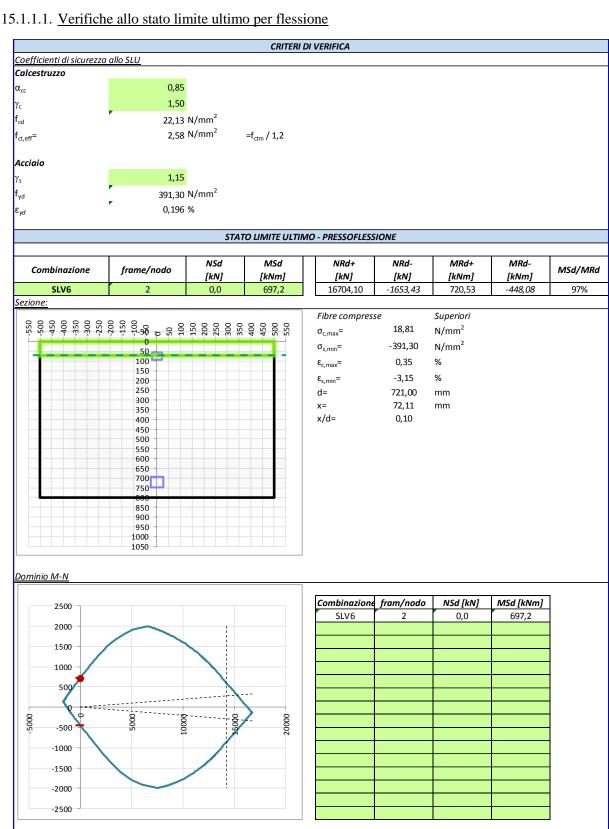
1.1.10 Soletta superiore – sezione di mezzeria

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Foglio 90 di 169 Lotto Codifica Documento Rev. E E2 CL SLZ1 F0 001 Doc. N.

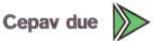
11


Α

14.3.1.5. <u>Verii</u>	fiche allo stato	limite di esei	rc1z10						
		PA	RAMETRI V	ERIFICA FES	SURAZION	E			
kt=	0,40		(0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)						
< ₁ =	0,80		(0,8=barre	ad aderenze	a migliorat	a; 1,6:	i= barre li	iscie e trefo	oli)
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato)				
			CDITI	ERI DI VERIFI	.CA				
			CKIII	KI DI VEKIFI	CA				
F <u>essurazione</u>	2		4.0.1						
Condiz. Ambientali:	Aggressive.		1- Orainar	ie; 2- Aggres	isive; 3- IVIO	nto ag	ggressive	2	
Armature:	Aggressive		1_Sonsihili	: 2-Poco sens	sihili				
Aimature.	Poco sensibilie		1-3611310111,	2-1 000 30113	SIDIII				
Tensioni in esercizio									
	Limite	Limite	$\sigma_{\text{c,max}}$	$\sigma_{\text{s,max}}$					
Combinazione	$\sigma_{\rm c}$ / fck	$\sigma_{\rm s}$ / fyk	[N/mm ²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	DLLECITAZIONI SLE	- (N+ di com	nressione -	- M+ tend	o le fik	hre infer	iori)	
Fessurazione		ZEEGI MEIOITI GEE	(111 01 0011	pressione	iiii tenat		ore mjen	,	
			N	М	w _d		w _{lim}	M0 - Mf	
Combinazione	n. combinazione	frame/nodo	[kN]	[kNm]	[mm	,	[mm]	[kNm]	
Cartteristica	CAR29	47	0,0	267,9	0,185		0,200	198,03	-
Tensioni in esercizio									
TETISIOTII III ESETCIZIO	1		N	М	σ _{c.mir}	1	σ _{s.max}	$\sigma_{\rm s.min}$	
Combinazione	n. combinazione	nodo	[kN]	[kNm]	[N/mr		N/mm ²]	[N/mm ²]	
Quasi permanente	QP3	47	0,0	142,4	-2,86		80,81	-24,19	Sezione parzializzata
Cartteristica	CAR29	47	0,0	267,9	-5,39) :	152,05	-45,52	Sezione parzializzata


15. VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO – CONCIO 3

15.1. Soletta inferiore



1.1.11 Soletta inferiore – sezione di incastro

GENERAL CONTRACTOR

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL SLZ1 F0 001 A 93 di 169

15.1.1.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO				
Calsse calcestruzzo C32/40				
Resistenza cubica caratteristica	Rck	40,00 Mpa		
Resistenza cilindrica caratteristica	f _{ck}	33,2 Mpa		

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γς	1,50
Coefficiente riduttivo per resistenze di lunga durata	α_{cc}	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

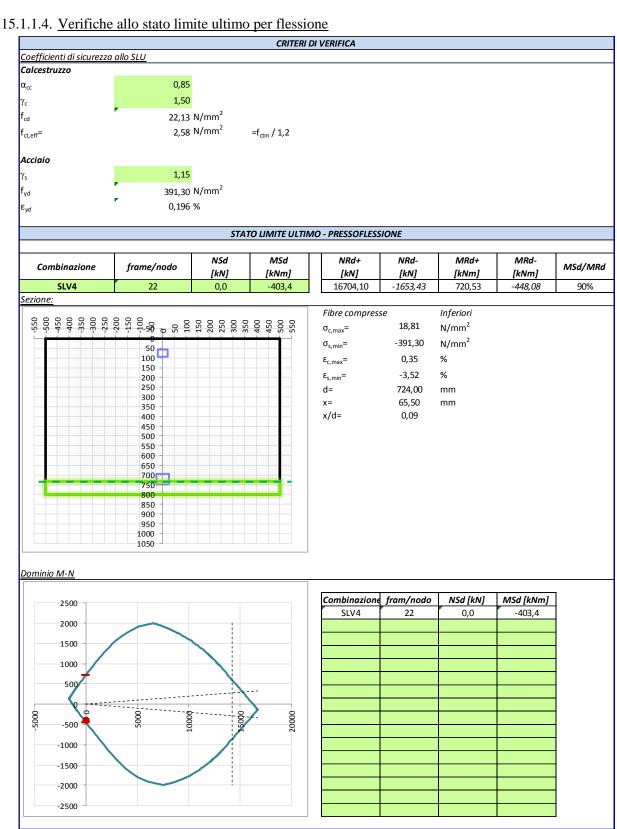
	GEOMETRIA SEZIONE C.A.				
Base	b		1000	mm	
Altezza	h		800	mm	
Barre tese		numero	diametro barre	copriferro in	Area barre
		barre	[mm]	asse barra [mm]	[mm2]
strato1		5	20	76	1571
strato2		0	0	0	0
strato3		0	0	0	0
strato4		0	0	0	0
strato5		0	0	0	0
Area barre tese	A_s		1571	mm2	
Posizione della barra equivalente	c*		76	mm	

SOLLECITAZIONI				
Load Case		SLU65		
Frame		27		
Azione assiale (+ di compressione)	N_{Ed}	0	kN	
Taglio	V_{Ed}	336,71	kN	

VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO				
Altezza utile della sezione	d	724 mm		
Coefficiente	k	1,53		
Rapporto di armatura longitudinale	ρl	0,22%		
Tensione assiale media	$\sigma_{ m cp}$	0,00 N/mm2		
	0.2 x f _{cd}	3,76 N/mm2		
	v_{\min}	0,38 N/mm2		
Resistenza al taglio minima	$V_{rd,min}$	275,13 kN		
Resistenza al taglio senza armatura	V_{rd}	275,13 kN		
Verifica		1,22 E' necessario prevedere armatura a taglio		

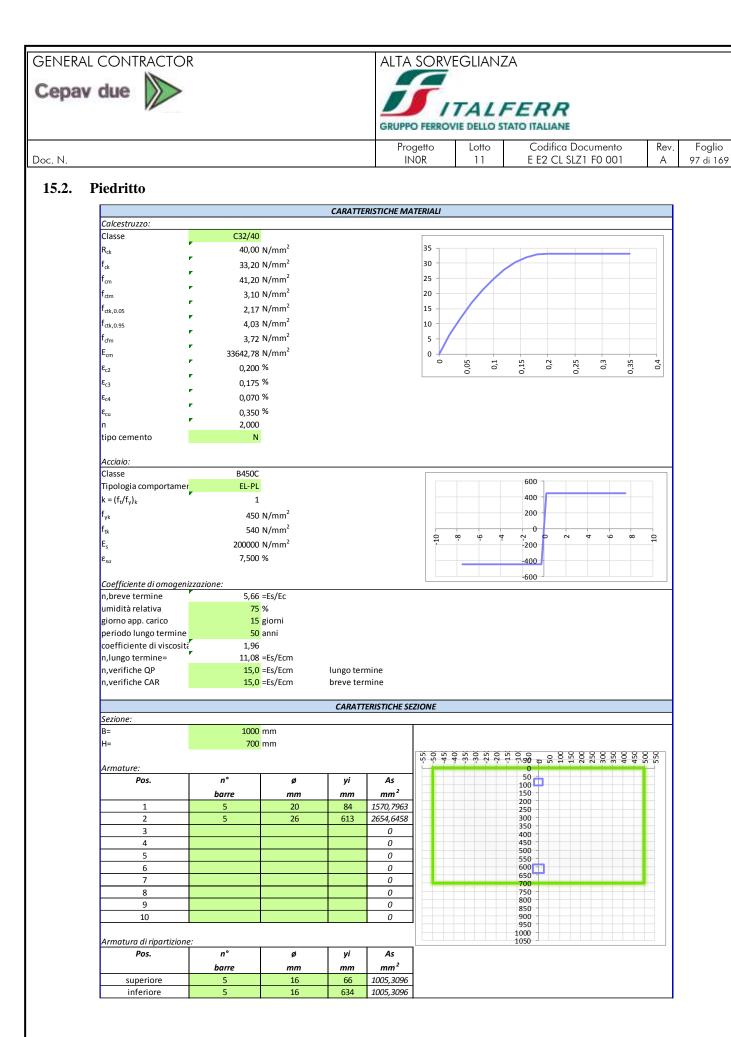
ARMATURA A TAGLIO				
Diametro staffe	ф	12	mm	
Numero braccia	n	3,33		
Passo staffe	S	200	mm	
Inclinazione staffe (rispetto all'orizzontale)	α	90	•	
Inclinazione del puntone in calcestruzzo	θ	45	•	
Valore minimo di inclinazione del puntone in calcestruzzo	θ_{min}	21,80	•	

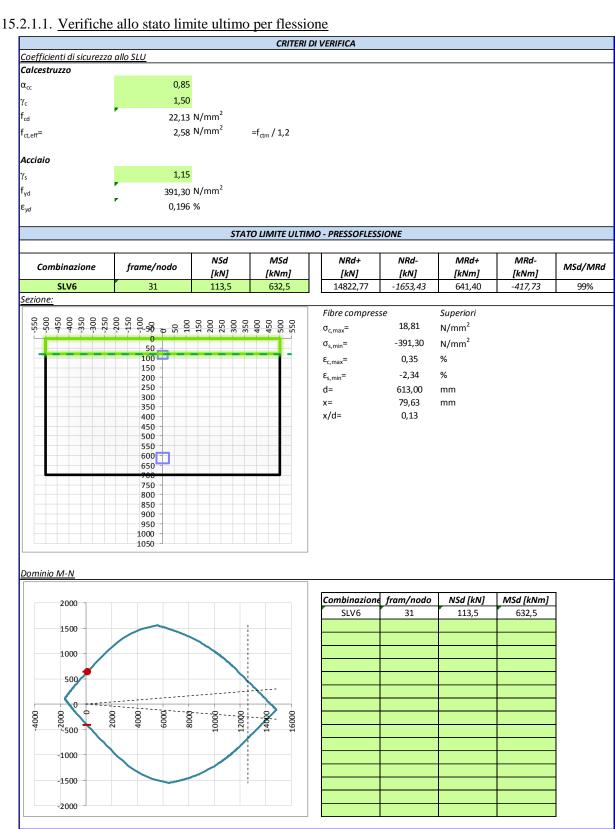
VERIFICA RESISTENZA SEZIONE CON ARMATURA A TAGLIO				
Coefficiente di riduzione per fessurazione	ν_1	0,5		
Resistenza cilindrica di progetto	f _{cd}	18,81333333 N/mm2		
Area armatura a taglio	A_{st}	376,61 mm2		
	σ_{cp}/f_{cd}	0		
Coefficiente di interazione	α_{cw}	1		
Resistenza a tagio per rottura delle armature	V_{rds}	480,13 kN		
Resistenza a taglio per rottura del puntone in calcestruzzo	V_{rcd}	3064,69 kN		
Resistenza al taglio	V_{rd}	480,13 kN		
Verifica		0,70 <u>Verifica soddisfatta</u>		



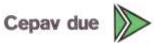
15.1.1.3. Verifiche allo stato limite di esercizio

		PA	RAMETRI V	ERIFICA FESS	UI	RAZIONE			
kt=	0,40		(0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)						
k ₁ =	0,80		(0,8=barre	ad aderenzo	m	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	comandato,					
k ₄ =	0,425		(valore rad	comandato,					
			CRITI	RI DI VERIFI	CA				
Fessurazione									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive		
	Aggressive								
Armature:	2		1-Sensibili;	2-Poco sens	ibi	li			
	Poco sensibilie								
<u>Tensioni in esercizio</u>									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{\text{s,max}}$					
Combinazione	$\sigma_{\rm c}$ / fck	$\sigma_{\rm s}$ / fyk	[N/mm²]	$[N/mm^2]$					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	DLLECITAZIONI SLI	E (N+ di com	pressione	٨	Л+ tende le	fibre infer	iori)	
Fessurazione			•	•				•	
Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]		w _d [mm]	w _{lim} [mm]	M0 - Mf [kNm]	
Cartteristica	CAR30	3	0,0	218,5		Msd <mf< td=""><td>0,200</td><td>322,53</td><td>-</td></mf<>	0,200	322,53	-
<u>Tensioni in esercizio</u>								•	
Combinazione	n. combinazione	nodo	N [kN]	M [kNm]		σ _{c,min}	σ _{s,max} [N/mm²]	σ _{s,min} [N/mm²]	
Quasi permanente	QP3	2	0,0	168,9		-2,34	97,05	-21,19	Sezione parzializzata
Cartteristica	CAR30	2	0,0	260,2		-3,61	149,50	-32,65	Sezione parzializzata


1.1.12 Soletta inferiore – sezione di mezzeria


15.1.1.5. Verifiche allo stato limite di esercizio

	mene ano state								
		PA	RAMETRI V	ERIFICA FESS	U	RAZIONE			
kt=	0,40		(0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)						
k ₁ =	0,80		(0,8=barre	ad aderenzo	m	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	comandato)					
k ₄ =	0,425		(valore rad	ccomandato)					
			CRITI	ERI DI VERIFI	CA				
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres:	siv	e; 3- Molto	aggressive	?	
	Aggressive								
Armature:	2		1-Sensibili;	2-Poco sens	ibil	li			
	Poco sensibilie								
<u>Tensioni in esercizio</u>									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	$\sigma_{\rm c}$ / fck	$\sigma_{\rm s}$ / fyk	[N/mm²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	OLLECITAZIONI SLI	E (N+ di com	pressione	٨	Л+ tende le	fibre infer	iori)	
<u>Fessurazione</u>									
Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]		w _d [mm]	w _{lim} [mm]	M0 - Mf [kNm]	
Cartteristica	CAR17	14	0,0	-232,8		Msd <mf< td=""><td>0,200</td><td>-322,53</td><td>-</td></mf<>	0,200	-322,53	-
<u>Tensioni in esercizio</u>									
Combinazione	n. combinazione	nodo	N [kN]	M [kNm]		σ _{c,min} [N/mm²]	σ _{s,max} [N/mm ²]	$\sigma_{s,min}$ [N/mm ²]	
Quasi permanente	QP2	14	0,0	-147,6		-2,39	140,46	-16,66	Sezione parzializzata
Cartteristica	CAR17	14	0,0	-232,8		-3,78	221,58	-26,28	Sezione parzializzata



1.1.13 Piedritto – sezione di incastro

GENERAL CONTRACTOR

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 CL SLZ1 F0 001
 A
 99 di 169

15.2.1.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO								
Calsse calcestruzzo		C32/40						
Resistenza cubica caratteristica	Rck	40,00 Mpa						
Resistenza cilindrica caratteristica	f _{ck}	33,2 Mpa						

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γς	1,50
Coefficiente riduttivo per resistenze di lunga durata	α_{cc}	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

GEOMETRIA SEZIONE C.A.								
Base	b		1000	mm				
Altezza	h		700	mm				
Barre tese		numero	diametro barre	copriferro in	Area barre			
		barre	[mm]	asse barra [mm]	[mm2]			
strato1		5	26	87	2655			
strato2		0	0	0	0			
strato3		0	0	0	0			
strato4		0	0	0	0			
strato5		0	0	0	0			
Area barre tese	A_s		2655	mm2				
Posizione della barra equivalente	c*		87 mm					

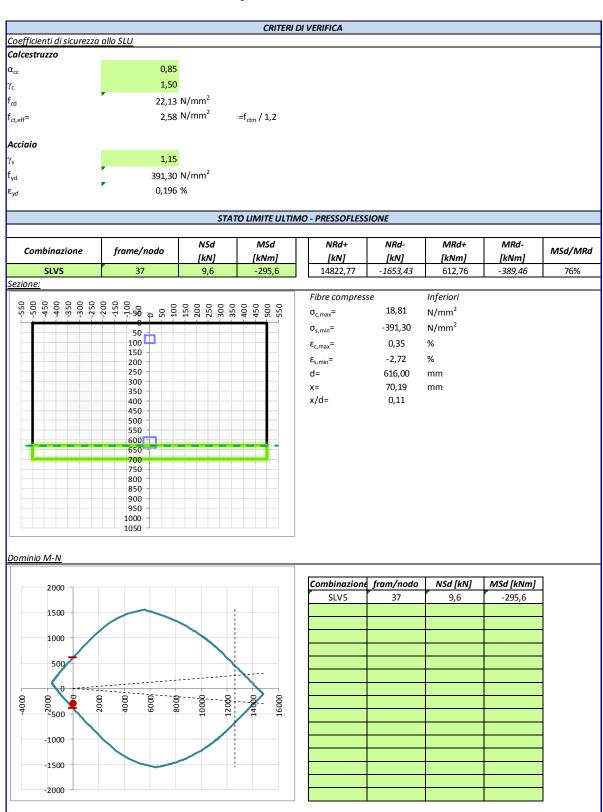
SOLLECITAZIONI								
Load Case		SLV6						
Frame		33						
Azione assiale (+ di compressione)	N_{Ed}	109,84	kN					
Taglio	V_{Ed}	403,95	kN					

VFRI	VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO								
Altezza utile della sezione	d	613 mm							
Coefficiente	k	1,57							
Rapporto di armatura longitudinale	ρl	0,43%							
Tensione assiale media	$\sigma_{ m cp}$	0,16 N/mm2							
	0.2 x f _{cd}	3,76 N/mm2							
	$ u_{\min}$	0,40 N/mm2							
Resistenza al taglio minima	V _{rd.min}	257,90 kN							
Resistenza al taglio senza armatura	V _{rd}	295,47 kN							
Verifica		1,37 E' necessario prevedere armatura a taglio							

ARMATURA A TAGLIO								
Diametro staffe	ф	12	mm					
Numero braccia	n	3,33						
Passo staffe	S	200	mm					
Inclinazione staffe (rispetto all'orizzontale)	α	90	•					
Inclinazione del puntone in calcestruzzo	θ	45	•					
Valore minimo di inclinazione del puntone in calcestruzzo	θ_{min}	21,80	•					

VERIFICA RESISTENZA SEZIONE CON ARMATURA A TAGLIO								
Coefficiente di riduzione per fessurazione	ν_1	0,5						
Resistenza cilindrica di progetto	f _{cd}	18,81333333 N/mm2						
Area armatura a taglio	A _{st}	376,61 mm2						
	σ_{cp}/f_{cd}	0,008340589						
Coefficiente di interazione	α_{cw}	1,008340589						
Resistenza a tagio per rottura delle armature	V_{rds}	406,52 kN						
Resistenza a taglio per rottura del puntone in calcestruzzo	V_{rcd}	2616,47 kN						
Resistenza al taglio	V_{rd}	406,52 kN						
Verifica		0,99 <u>Verifica soddisfatta</u>						

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 Codifica Documento E E2 CL SLZ1 F0 001 A 100 di 169


15.2.1.3. Verifiche allo stato limite di esercizio

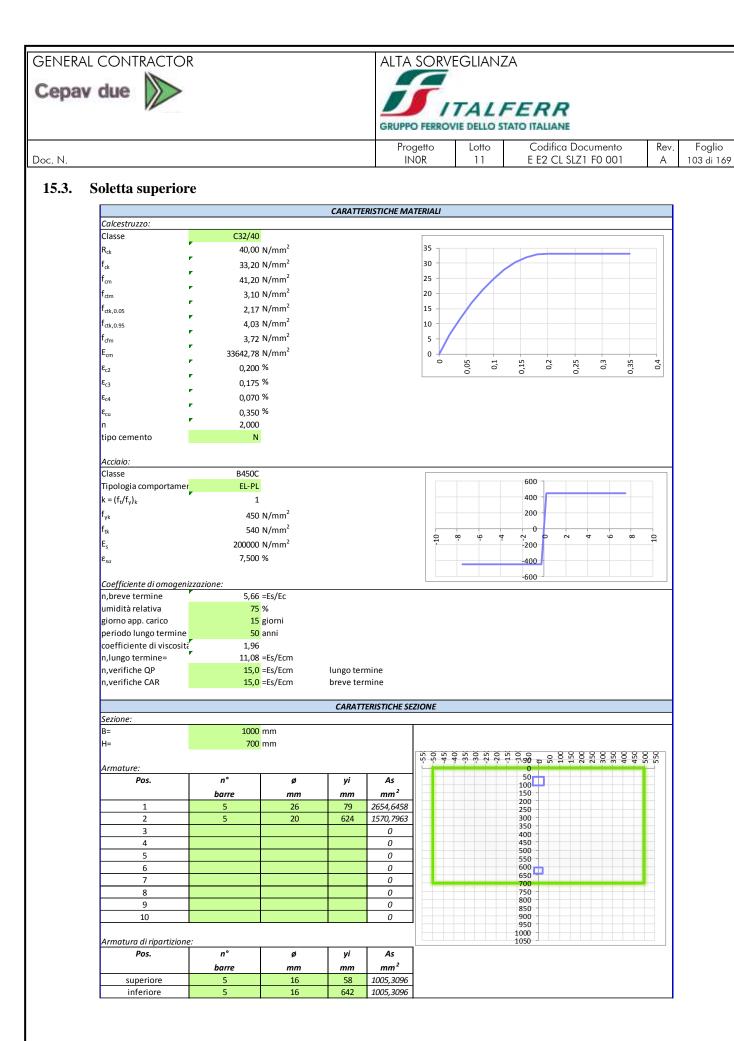
15.2.1.3. <u>Veri</u>	fiche allo stato	limite di ese	rcizio						
		PA	RAMETRI V	ERIFICA FESS	SU	RAZIONE			
kt=	0,40	0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)							
k ₁ =	0,80		(0,8=barre	ad aderenzo	a n	nigliorata; 1	1,6= barre I	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato)				
			CRITI	ERI DI VERIFI	CA				
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	2	
	Aggressive								
Armature:	2		1-Sensibili;	2-Poco sens	ibi	li			
	Poco sensibilie								
<u>Tensioni in esercizio</u>									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	$\sigma_{\rm c}$ / fck	$\sigma_{\rm s}$ / fyk	[N/mm²]	[N/mm²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	DLLECITAZIONI SLI	E (N+ di con	pressione -	- 1	Л+ tende le	fibre infer	iori)	
<u>Fessurazione</u>									
Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]		w _d [mm]	w _{lim} [mm]	M0 - Mf [kNm]	
Cartteristica	CAR30	33	245,5	225,0		Msd <mf< td=""><td>0,200</td><td>278,03</td><td>-</td></mf<>	0,200	278,03	-
<u>Tensioni in esercizio</u>									
Combinazione	n. combinazione	nodo	N [kN]	M [kNm]		σ _{c,min} [N/mm²]	σ _{s,max} [N/mm²]	σ _{s,min} [N/mm²]	
Quasi permanente	QP3	31	192,4	170,0		-3,21	82,37	-30,30	Sezione parzializzata
Cartteristica	CAR30	31	249,0	262,9		-4,95	135,55	-45,53	Sezione parzializzata

1.1.14 Piedritto – sezione di mezzeria

15.2.1.4. Verifiche allo stato limite ultimo per flessione

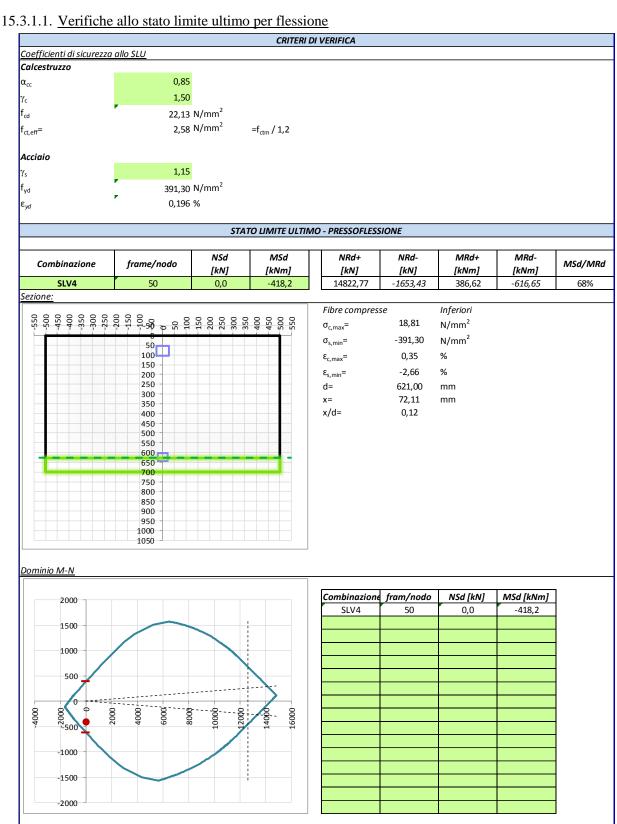
15.2.1.5. Verifiche allo stato limite di esercizio

Cartteristica

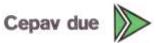

		PA	RAMETRI V	ERIFICA FES.	SU	RAZIONE			
kt=	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)								
k ₁ =	0,80		(0,8=barre	ad aderenz	a n	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato)				
			CDITI	ERI DI VERIFI	CA				
Fessurazione			Chiri	INI DI VENITI	-				
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e: 3- Molto	agaressive	<u> </u>	
	Aggressive			,		-,		-	
Armature:	2		1-Sensibili,	: 2-Poco sens	sibi	li			
	Poco sensibilie								
Tensioni in esercizio									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	$\sigma_{\rm c}$ / fck	σ _s / fyk	[N/mm ²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	OLLECITAZIONI SLI	E (N+ di con	npressione -	- 1	Л+ tende le	fibre infer	iori)	
<u>Fessurazione</u>									
Combinazione	n. combinazione	frame/nodo	N	М		w _d	w _{lim}	M0 - Mf	
Combinazione	n. combinazione	jrume/nouo	[kN]	[kNm]		[mm]	[mm]	[kNm]	
Cartteristica	CAR1	35	136,9	-70,6		Msd <mf< td=""><td>0,200</td><td>-264,41</td><td>-</td></mf<>	0,200	-264,41	-
Tensioni in esercizio									
			N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	nodo	[kN]	[kNm]		[N/mm²]	[N/mm²]	[N/mm ²]	
Quasi permanente	QP1	35	136,9	-62,2		-1,27	30,14	-12,14	Sezione parzializzata

136,9

-1,47


39,08

-13,38 Sezione parzializzata



1.1.15 Soletta superiore – sezione di incastro

GENERAL CONTRACTOR

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 CL SLZ1 F0 001 A 105 di 169

15.3.1.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO							
Calsse calcestruzzo C32/40							
Resistenza cubica caratteristica	Rck	40,00 Mpa					
Resistenza cilindrica caratteristica	f _{ck}	33,2 Mpa					

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE				
Coefficiente di sicurezza per il calcestruzzo	$\gamma_{\rm c}$	1,50			
Coefficiente riduttivo per resistenze di lunga durata	$lpha_{ m cc}$	0,85			
Coefficiente di sicurezza per l'acciaio	Ϋ́s	1,15			

GEOMETRIA SEZIONE C.A.								
Base	b		mm					
Altezza	h		700					
Barre tese		numero barre	diametro barre [mm]	copriferro in asse barra [mm]	Area barre [mm2]			
strato1		5	26	76	2655			
strato2		0	0	0	0			
strato3		0	0	0	0			
strato4		0	0	0	0			
strato5		0	0	0	0			
Area barre tese	A_s		2655	mm2				
Posizione della barra equivalente	c*		76 mm					

SOLLECITAZIONI							
Load Case		SLU30					
Frame		49					
Azione assiale (+ di compressione)	N_{Ed}	0	kN				
Taglio	V_{Ed}	199,32	kN				

VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO								
Altezza utile della sezione	d	624 mm						
Coefficiente	k	1,57						
Rapporto di armatura longitudinale	ρl	0,43%						
Tensione assiale media	$\sigma_{ m cp}$	0,00 N/mm2						
	$0.2 \times f_{cd}$	3,76 N/mm2						
	ν_{min}	0,40 N/mm2						
Resistenza al taglio minima	$V_{rd,min}$	246,64 kN						
Resistenza al taglio senza armatura	V_{rd}	283,48 kN						
Verifica		0,70 <u>Verifica soddisfatta</u>						

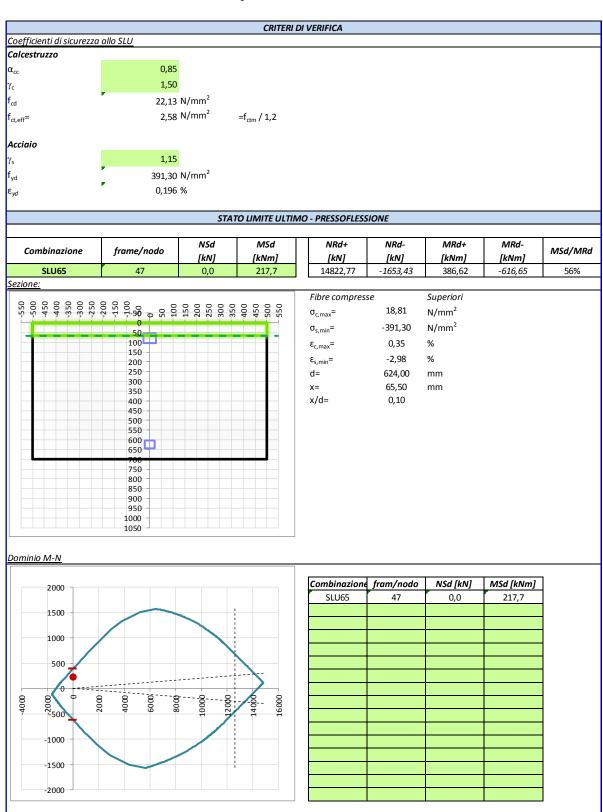
15.3.1.3. Verifiche allo stato limite di esercizio

CAR18

Cartteristica

		PA	RAMETRI V	ERIFICA FES.	SUI	RAZIONE			
kt=	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)								
k ₁ =	0,80		(0,8=barre	ad aderenz	a m	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato)				
			CRITI	ERI DI VERIFI	CA				
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	2	
	Aggressive								
Armature:	2		1-Sensibili;	2-Poco sens	ibi	li			
	Poco sensibilie								
<u>Tensioni in esercizio</u>									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{\text{s,max}}$					
Combinazione	$\sigma_{\rm c}$ / fck	$\sigma_{\rm s}$ / fyk	[N/mm ²]	[N/mm²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	sc	OLLECITAZIONI SLI	F (N+ di com	nressione -	- A	/1+ tende le	fihre infer	iori)	
Fessurazione		LLECTIALION SLI	- (ivi ai coii	ipressione -		in tende ie	Jibre Injen	1011)	
			N	М		w _d	W _{lim}	M0 - Mf	
Combinazione	n. combinazione	frame/nodo	[kN]	[kNm]		[mm]	[mm]	[kNm]	
Cartteristica	CAR18	49	0,0	-147,0		Msd <mf< td=""><td>0,200</td><td>-241,43</td><td>-</td></mf<>	0,200	-241,43	-
Tensioni in esercizio					-			•	
			N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	nodo	[kN]	[kNm]		[N/mm ²]		[N/mm ²]	
Quasi permanente	QP2	44	0,0	-98,9		-1,75	66,50		Sezione parzializzata

-172,4


-3,04 115,90

-25,88 Sezione parzializzata

1.1.16 Soletta superiore – sezione di mezzeria

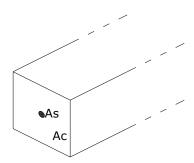
15.3.1.4. Verifiche allo stato limite ultimo per flessione

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Foglio 108 di 169 Lotto Codifica Documento Rev. E E2 CL SLZ1 F0 001 Doc. N.

11

15 3 1 5 Varificha allo stato limita di asarcizio

15.3.1.5. <u>Veri</u>	fiche allo stato	limite di ese	rc1Z10						
		PA	RAMETRI V	ERIFICA FESS	SURAZIO	ONE			
kt=	0,40	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)							
k ₁ =	0,80		(0,8=barre	ad aderenzo	a miglioi	rata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato)				
	CRITERI DI VERIFICA								
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	sive; 3- i	Molto	aggressive	2	
	Aggressive				•				
Armature:	2		1-Sensibili;	2-Poco sens	sibili				
	Poco sensibilie								
Tensioni in esercizio									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	σ_c / fck	σ _s / fyk	[N/mm ²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
			F (A)		0.0.1.		<i>(1)</i>		
	30	DLLECITAZIONI SLI	E (IN+ al con	pressione -	- IVI+ tei	nae ie	jibre injer	iori)	
<u>Fessurazione</u>			1		I I		I	1	T
Combinazione	n. combinazione	frame/nodo	N	M ((-N)		v _d	w _{lim}	MO-Mf	
Cartteristica	CAR29	47	[kN] 0,0	[kNm] 150,9		nm] d <mf< td=""><td>[mm] 0,200</td><td>[kNm] 241,43</td><td>_</td></mf<>	[mm] 0,200	[kNm] 241,43	_
Carticiistica	CAILES	7/	0,0	130,3	14130	a *1V11	0,200	271,73	<u> </u>
Tensioni in esercizio									
Combinazione	n. combinazione	nodo	N	М	σ	,min	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	nouo	[kN]	[kNm]	[N/r	nm²]	[N/mm ²]	[N/mm²]	
Quasi permanente	QP3	47	0,0	72,7	-1	,50	80,88	-9,43	Sezione parzializzata
Cartteristica	CAR29	47	0,0	150,9	-3	,12	167,96	-19,58	Sezione parzializzata



16. VERIFICA EFFETTI LONGITUDINALI DA RITIRO

Vengono discussi brevemente gli effetti dovuti al ritiro nel calcestruzzo che provocano stati interni di coazione con l'armatura. Scopo della trattazione è quello di verificare l'armatura minima longitudinale nella soletta superiore dello scatolare.

16.1. Coazioni interne dovute ai fenomeni di ritiro

Per il calcolo delle coazioni interne dovute ai fenomeni di ritiro si consideri una sezione di area unitaria A_c con un'unica barra di armatura di area A_s come rappresentato nell'immagine sottostante:

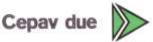
Si assumono le seguenti ipotesi:

- perfetta aderenza tra calcestruzzo ed acciaio;
- deformata piana della sezione in calcestruzzo;
- comportamento del calcestruzzo e dell'acciaio elastico e lineare.

Le equazioni di equilibrio, congruenza e legame dell'insieme calcestruzzo + acciaio che governano il fenomeno sono:

- $N_c + N_s = 0$ (equazione di equilibrio)
- $\varepsilon_r = \varepsilon_s \varepsilon_c$ (equazione di congruenza)
- $N_c = A_c \sigma_c = A_c E_c \varepsilon_c$ (equazione legame costitutivo del calcestruzzo)
- $N_s = A_s \sigma_s = A_s E_s \varepsilon_s$ (equazione legame costitutivo dell'acciaio)

Sostituendo le equazioni di legame in quella di equilibrio ed esprimendo la deformazione del calcestruzzo in funzione di quella dell'acciaio si ha:


$$N_s = -N_c = A_s E_s A_c E_c \epsilon_r / (A_s E_s + A_c E_c)$$

Il comportamento viscoso del calcestruzzo viene considerato attraverso l'abbattimento del modulo elastico, pertanto è necessario sostituire il valore di E_c con E_c^* . La tensione sull'acciaio e sul calcestruzzo risultano quindi pari a:

$$\sigma_s = A_c E_c^* E_s \varepsilon_r / (A_s E_s + A_c E_c^*)$$

$$\sigma_c = -A_s E_c^* E_s \varepsilon_r / (A_s E_s + A_c E_c^*)$$

GENERAL CONTRACTOR

ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.INOR11E E2 CL SLZ1 FO 001A110 di 169

16.2. Calcolo delle sollecitazioni longitudinali dovute ai fenomeni di ritiro

L'analisi delle sollecitazioni viene svolta per una striscia di larghezza unitaria, assumendo la dimensione convenzionale h_0 pari a $2 \times A/u = 2 \times H = 120$ cm, ed un calcestruzzo C32/40 classe N.

Caratteristiche della sezione:

B = 100 cm

H = 60 cm

 $A_{s,long} = 1 + 1 \emptyset 16/20 = 2011 \text{ mm}^2$

 $E_s = 210\ 000\ N/mm^2$

 $E_c = 33643 \text{ N/mm}^2$

Deformazione da ritiro:

U.R. = 75%

$$\epsilon_{ca} (t=\infty) = 2.5 \times (f_{ck} - 10) \times 10^{-6} = 2.5 \times (0.83 \times 40 - 10) \times 10^{-6} = 0.058 \%$$

$$\varepsilon_{cd}$$
 (t= ∞) = $k_h \times \varepsilon_{cd,0} = 0.7 \times 0.30$ ‰ = 0.21 ‰ (per h_0 >500mm, calcestruzzo C32/40 classe N, U.R.=75%)

$$\varepsilon_r = \varepsilon_{ca} + \varepsilon_{cd} = 0.268 \%$$

A favore di sicurezza, si assume comunque una deformazione $\varepsilon_r = 0.400 \%$

Effetto viscosità:

Il modulo viscoso a tempo infinito, in considerazione del valore di h_0 , della resistenza del calcestruzzo e della U.R., può cautelativamente essere assunto pari a ϕ ($t=\infty$) = 2.5. Il modulo elastico ridotto del calcestruzzo risulta quindi pari a:

 $E_c^* = E_c / (1+\phi) = 9612 \text{ N/mm}^2$.

Tensioni nei materiali:

$$\sigma_s = (1000 \times 600) \times 9612 \times 210000 \times 0.00040 / (2011 \times 210000 + 1000 \times 600 \times 9612) = 78.27 \text{ N/mm}^2$$

$$\sigma_c = -2011 \times 9612 \times 210000 \times 0.00040 / (2011 \times 210000 + 1000 \times 600 \times 9612) = -0.26 \text{ N/mm}^2$$

La sollecitazione sul calcestruzzo risulta molto inferiore rispetto alla resistenza a trazione e quindi non porta a fessurazione il calcestruzzo; la sollecitazione sull'acciaio risulta modesta ed accettabile per le normali condizioni di esercizio della struttura.

17. MODELLAZIONE STRUTTURALE – MURI A U

L'analisi della struttura è stata condotta attraverso la procedura analitica con riferimento ad una porzione di lunghezza unitaria.

Il suolo viene modellato facendo ricorso all'usuale artificio delle molle elastiche alla Winkler come precedentemente illustrato nella presente relazione, con costante di sottofondo pari a $K_s = 5000 \text{ kN/m}^3$. Per quanto riguarda la rigidezza degli elementi strutturali si adottano i seguenti moduli elastici:

Ec = 33643 N/mm2 (Per cls Rck 40);

17.1. Calcolo delle sollecitazioni nella soletta di fondazione

Le sollecitazioni nella soletta di base sono dovute alle azioni scaricate al piede dei piedritti, costituite da:

- azione assiale;
- momento alla base dei piedritti.

La trave presenta una lunghezza L finita ed è vincolata solamente attraverso il suolo elastico.

Il calcolo delle sollecitazioni viene effettuato per sovrapposizione degli effetti dovuti alle sollecitazioni gravanti da entrambi i piedritti.

17.1.1. Modello di Winkler

Il modello di Winkler schematizza il suolo con una relazione lineare fra il cedimento in un punto della superficie limite e la pressione agente nello stesso punto, indipendentemente da altri carichi applicati in punti diversi. Si assume, cioè:

$$p = k_{\rm w}$$

dove k [FL-3] è detta "costante di sottofondo".

L'equazione differenziale che descrive il problema della trave di rigidezza E_fJ su suolo elastico e assoggettata ad un carico distribuito q(x) è:

$$E_f J \frac{d^4 w}{dx^4} + kBw(x) = q(x)$$

La soluzione si ottiene sommando l'integrale generale dell'omogenea associata $\{q(x)=0\}$ con l'integrale particolare relativo al carico q(x). L'equazione omogenea associata si scrive:

$$E_f J \frac{d^4 w}{dx^4} + kBw(x) = 0$$

ed è nota come equazione "della trave elastica su suolo elastico".

La soluzione dell'equazione particolare viene tralasciata in quanto una trave alla Winkler soggetta ad un carico distribuito (come il peso proprio) presenta uno spostamento costante lungo il suo asse e non è soggetta a sollecitazioni di momento o taglio.

L'integrale generale della soluzione omogenea ha l'espressione:

$$w = e^{\frac{x}{\lambda}} \Bigg(A \cos \frac{x}{\lambda} + B sen \frac{x}{\lambda} \Bigg) + e^{-\frac{x}{\lambda}} \Bigg(C \cos \frac{x}{\lambda} + D sen \frac{x}{\lambda} \Bigg)$$

Nella quale

$$\lambda = \sqrt[4]{\frac{4E_f J}{kB}}$$

ha le dimensioni di una lunghezza ed è detta lunghezza caratteristica o lunghezza d'onda della trave, ed A, B, C e D sono costanti che vengono determinate imponendo le opportune condizioni al contorno.

Dall'equazione differenziale è possibile determinare l'andamento del momento e del taglio come:

$$M = -E_f J \frac{d^2 w}{dx^2}$$
; $V = -E_f J \frac{d^3 w}{dx^3}$

17.1.2. Soluzione per carico verticale all'estremità

La risoluzione della trave alla Winkler di lunghezza L, soggetta ad una sua estremità ad un carico verticale P perpendicolare al suo asse è stata effettuata imponendo le seguenti condizioni al contorno

$$M(0) = -E_f J \frac{d^2 w}{dx^2} \bigg|_{x=0} = 0$$

$$M(L) = -E_f J \frac{d^2 w}{dx^2} \bigg|_{x=1} = 0$$

$$V(0) = -E_f J \frac{d^3 w}{dx^3} \bigg|_{x=0} = -P$$

$$V(L) = -E_f J \frac{d^3 w}{dx^3} \bigg|_{x=1} = 0$$

La soluzione è stata ricavata in forma chiusa e non viene riportata per brevità. Il calcolo delle sollecitazioni viene effettuato ai quarti dello spessore dei piedritti e al loro filo interno; inoltre, l'andamento delle sollecitazioni nella soletta, viene valutato in 50 punti equamente distribuiti sulla larghezza compresa tra i due piedritti.

17.1.3. Soluzione per momento flettente all'estremità

La risoluzione della trave alla Winkler di lunghezza L, soggetta ad una sua estremità ad un momento flettente M (quindi, nel piano verticale che contiene la trave) è stata effettuata imponendo le seguenti condizioni al contorno

$$M(0) = -E_f J \frac{d^2 w}{dx^2} \bigg|_{x=0} = M$$
 $M(L) = -E_f J \frac{d^2 w}{dx^2} \bigg|_{x=1} = 0$

$$V(0) = -E_f J \frac{d^3 w}{dx^3} \bigg|_{x=0} = 0$$
 $V(L) = -E_f J \frac{d^3 w}{dx^3} \bigg|_{x=0} = 0$

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 E E2 CL SIZ1 F0 001 A 113 di 169

La soluzione è stata ricavata in forma chiusa e non viene riportata per brevità. Il calcolo delle sollecitazioni viene effettuato ai quarti dello spessore dei piedritti e al loro filo interno; inoltre, l'andamento delle sollecitazioni nella soletta, viene valutato in 50 punti equamente distribuiti sulla larghezza compresa tra i due piedritti.

18. ANALISI DEI CARICHI – MURI A U

Nel seguente paragrafo si descrivono i carichi elementari assunti per le verifiche di resistenza in esercizio ed in presenza dell'evento sismico.

Le condizioni elementari di carico di seguito determinate saranno opportunamente combinate secondo quanto previsto dalla normativa vigente.

Per i materiali si assumono i seguenti pesi specifici:

• calcestruzzo armato: $\gamma_{c.a.} = 25 \text{ kN/m}^3$

• rilevato: $\gamma_t = 20 \text{ kN/m}^3$

• ricoprimento: $\gamma_{ric} = 20 \text{ kN/m}^3$

18.1.1. Peso proprio strutture (Load 1)

• parete $s_s \times \gamma_{c.a.}$

• soletta $s_s \times \gamma_{c.a.}$

18.1.2. Spinta del terreno (Load 2)

Il reinterro a ridosso della parete verrà realizzato tramite materiale arido di buone caratteristiche meccaniche.

Secondo quanto riportato in precedenza per il reinterro si assumono i seguenti parametri geotecnici:

 $\gamma_t = 20 \text{ kN/m}^3$

 $\gamma_{\rm w} = 10 \text{ kN/m}^3$

 $\phi'_k = 30^\circ$

 $\phi'_{dM1} = 30^{\circ}$

 $\phi'_{dM2} = artg(tg30^{\circ}/1.25) = 24.791^{\circ}$

	Coeff. M1 - $\gamma_{m,\phi}$ =1	Coeff. M2 - $\gamma_{m,\phi}$ =1.25
Spinta a riposo	0,5000	0,5807
Spinta attiva	0,3333	0,4091

La spinta orizzontale delle terre sui piedritti, in condizioni statiche, ad una generica profondità z da piano campagna è calcolata come:

$$\sigma_t(z) = k_0 [\gamma_t z - u(z)]$$

dove u(z) è la pressione dell'acqua alla profondità z da piano campagna.

GENERAL CONTRACTOR

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 CL SLZ1 F0 001
 A
 114 di 169

18.1.3. Spinta dell'acqua (Load 3)

Nel caso in cui la falda interessi i piedritti dei muri, la pressione orizzontale alla generica profondità z da piano campagna è calcolata come:

$$u(z) = 0 (per z \le z_1)$$

$$u(z) = \gamma_w(z - z_1)$$
 ((per z > z₁)

con z₁ profondità della falda da piano campagna.

Per i casi in esame non si considera la presenza della falda.

18.1.4. Sovraccarico accidentale in condizioni statiche e sismiche (Load 4)

La spinta orizzontale dovuta al sovraccarico accidentale è calcolata come

$$p_q = k_0 \times q$$

con q sovraccarico accidentale.

In condizioni statiche, tale sovraccarico è assunto pari a 20 kN/m².

Il sovraccarico accidentale in condizioni sismiche è assunto nullo.

18.1.5. Azioni sismiche (Load 5,6,7,8)

Per tener conto dell'incremento di spinta del terreno dovuta al sisma si fa riferimento all'EC8-5, appendice E – "analisi semplificata per le strutture di contenimento" come esplicitato al capitolo 4 "Criteri di definizione dell'azione sismica". In considerazione dei valori dei coefficienti sismici orizzontali e verticali precedentemente determinati, l'angolo θ assume i seguenti valori:

Dati i seguenti parametri:

- $\Phi'_{dM1} = 30^{\circ}$
- $\Phi'_{dM2} = artg(tg30^{\circ}/1.25) = 24.791^{\circ}$
- $\Psi = 90^{\circ}$;
- $\beta = 0^{\circ}$;
- $\delta_d = 0$;

L'angolo θ ed il relativo coefficiente di spinta del terreno (statico + dinamico) valgono:

θ1	θ_2	K (θ ₁) - <i>M1</i>	K (θ ₁) – <i>M</i> 2	K (θ ₂) - <i>M1</i>	K (θ ₂) – <i>M</i> 2	
(sisma verso basso)	(sisma verso alto)	K (01) - WH	K (01) - IVIZ	K (02) - WH	K (02) – IVIZ	
13.6866	17.8446	0.5122	0.6146	0.5939	0.7179	

L'azione sismica totale sulla parete, dovuta alla spinta del terreno risulta pari a:

$$E_d = \frac{1}{2} \gamma^* (1 \pm k_v) K(\theta) H^2 + E_{ws} + E_{wd}$$

con γ^* definito in precedenza in funzione della presenza della falda e del tipo di terreno, E_{ws} e E_{wd} rispettivamente pressione statica e sovrappressione idrodinamica dovuta alla presenza della falda.

La spinta complessiva E_d è composta da tre termini, ciascuno dei quali presenta un diverso punto di applicazione:

• Componente associata allo scheletro solido (Load 5):

la spinta sismica totale dello scheletro solido $(S_{A,E})$ è data dalla somma della spinta attiva in condizioni statiche $(S_{A,S})$ e l'incremento di spinta sismico (ΔS_A) calcolabile come $\Delta S_A = S_{A,E}$ - $S_{A,S}$. Nel caso dei muri ad "U" per i quali la parete non è in grado di compiere grandi rotazioni alla base, il sovraccarico sismico si considera applicato uniformemente sull'altezza della parete (Load 5).

- Componente idrostatica:
 - applicata analogamente al caso statico.
- Componente idrodinamica (Load 6):
 - è applicata alla parete con la seguente distribuzione di pressioni: $q_{wd}(z) = \pm 7/8 k_h \gamma_w (H' x z)^{0.5}$ con H' altezza della falda da asse soletta e z è la coordinata verticale diretta verso il basso, con origine al pelo libero dell'acqua. L'azione idrodinamica, se presente, è applicata con segno positivo sul piedritto di sinistra e con segno negativo su quello di destra.

Il punto di applicazione della forza dovuta alla spinta dinamica del terreno deve essere preso a metà altezza del muro, in assenza di uno studio più dettagliato che prenda in considerazione la relativa rigidezza, il tipo di movimenti, e la massa relativa della struttura di contenimento.

Nel caso di muri che sono liberi di ruotare intorno al loro piede si può assumere che la forza dinamica agisca nello stesso punto di quella statica.

Il coefficiente di spinta del terreno viene calcolato con la formula di Mononobe e Okabe:

$$K = \frac{Sin^{2}\left(\psi + {\varphi'}_{d} - \theta\right)}{Cos\theta \cdot Sin^{2}\psi \cdot Sin\left(\psi - \theta - \delta_{d}\right) \Bigg[1 + \sqrt{\frac{Sin\left({\varphi'}_{d} + \delta_{d}\right) \cdot Sin\left({\varphi'}_{d} - \beta - \theta\right)}{Sin\left(\psi - \theta - \delta_{d}\right) \cdot Sin\left(\psi + \beta\right)}}\Bigg]^{2}}$$

valida per stati attivi con $\beta \le \phi'_d - \theta$, oppure:

$$K = \frac{\sin^{2}(\psi + \phi'_{d} - \theta)}{\cos\theta \cdot \sin^{2}\psi \cdot \sin(\psi - \theta - \delta_{d})}$$

valida per stati attivi con $\beta > \phi'_d - \theta$,

dove:

φ'_d = valore di progetto dell'angolo di resistenza a taglio del terreno;

 ψ e β = angoli di inclinazione rispetto all'orizzontale, rispettivamente della parete del muro rivolta a monte e della superficie del terrapieno;

 δ_d = valore di progetto dell'angolo di attrito terreno-muro.

L'angolo θ e la pressione idrodinamica E_{ws} sono definiti in funzione del livello di falda e della natura dei terreni; si distinguono i seguenti 4 casi:

• Rilevato asciutto

$$\gamma^* = \gamma_d$$

$$\mbox{Tan } \theta = \frac{k_h}{1 \pm k_v} \label{eq:tau_def}$$

$$E_{wd} = 0 \,$$

	Progetto	Lotto	Coditica Documento	Rev.	Foglio
Doc. N.	INOR	11	E E2 CL SLZ1 F0 001	Α	116 di 169

• Rilevato saturo a grana fine

$$\gamma^* = \gamma_d \text{'}$$

$$\text{Tan } \theta = \frac{\gamma^*}{\gamma_d \text{'}} \frac{k_{\mathrm{h}}}{1 \pm k_{\mathrm{v}}}$$

$$E_{wd} = 0$$

• Rilevato saturo a grana grossa

$$\gamma^* = \gamma_d'$$

$$Tan \ \theta = \frac{\gamma_d}{\gamma_d} \frac{k_h}{1 \pm k_h}$$

 $E_{wd} = 7/12 \times k_h \gamma_w H^2$ con H = altezza della freatica dal piede del muro.

• Rilevato parzialmente immerso

$$\gamma_{V}^{*} = \gamma' \left(\frac{h_{w}}{h}\right)^{2} + \gamma_{d} \left[1 - \left(\frac{h_{w}}{h}\right)^{2}\right] \gamma_{H}^{*} = \begin{cases} \gamma_{d} & \text{se terreno a grana fine} \\ \gamma_{sat} \left(\frac{h_{w}}{h}\right)^{2} + \gamma_{d} \left[1 - \left(\frac{h_{w}}{h}\right)^{2}\right] & \text{se terreno a grana grossa} \end{cases}$$

Tan
$$\theta = \frac{\gamma_H^*}{\gamma_V^*} \frac{k_h}{1 \pm k_v}$$

E_{wd} associato al tipo di terreno presente a tergo del muro.

La componente idrodinamica è considerata con la seguente distribuzione di pressione:

$$q_{wd}(z) = \pm 7/8 \ k_h \ \gamma_w \ (H'z)^{0.5}$$

La risultante delle forze inerziali orizzontali indotte dal sisma viene valutata con la seguente espressione:

- $f_h = p \times k_h \text{ (Load 7)}$
- $f_v = p \times k_v$ (Load 8)

con "p" peso proprio degli elementi strutturali.

I valori dei coefficienti sismici orizzontali kh e verticali kv possono essere valutati mediante le seguenti espressioni:

$$k_{h} = \beta_{m} \frac{a_{max}}{g} \; ; \; k_{v} = \pm 0.5 \cdot k_{h} \label{eq:khamma}$$

dove : $a_{max} = S \times a_g = S_S \times S_T \times a_g$ (accelerazione massima attesa al sito);

g = accelerazione di gravità;

 S_T = coefficiente di amplificazione topografica;

 S_S = coefficiente di amplificazione stratigrafica;

a_g = accelerazione orizzontale massima attesa al sito di riferimento rigido.

Per muri in grado di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume i valori sotto riportati:

	Categoria di sottosuolo				
	A B,C,D,E				
	βա	βա			
$0.2 < a_g(g) \le 0.4$	0.31	0.31			
$0.1 < a_g(g) \le 0.2$	0.29	0.24			
$a_g(g) \le 0.1$	0.20	0.18			

Per muri che non sono in grado di subire spostamenti relativi rispetto al terreno in quanto vincolati orizzontalmente come ad esempio i muri ad "U", si assume $\beta_m = 1$.

L'azione sismica è quindi rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per le accelerazioni sismiche massime attese al suolo, ottenute combinando alternativamente la componente verticale agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli.

Per la determinazione di tali azioni si farà di regola riferimento alle sole masse corrispondenti ai pesi propri ed ai sovraccarichi permanenti, considerando nullo il valore quasi permanente delle masse corrispondenti ai sovraccarichi da traffico.

19. CALCOLO DELLE SOLLECITAZIONI – MURI A U

Le combinazioni di carico sono effettuate combinando tra loro i singoli casi di carico come indicato dalla normativa. Per massimizzare lo sbilanciamento tra i due piedritti, i sovraccarichi accidentali e quelli sismici sono applicati solamente al piedritto sinistro.

19.1. Calcolo delle sollecitazioni

Il calcolo delle sollecitazioni nel piedritto e nella soletta viene effettuato per i seguenti 8 carichi fondamentali dai quali è possibile ricavare tutti gli altri casi di carico per rapporto diretto:

N.	Carico	Descrizione
1	PP	Peso proprio
2	$S_{A,S,k0,M1}$	Spinta delle terre $-k_0 - M1$
3	E_{ws}	Spinta della falda
4	$S_{q,st,k0,M1}$	Sovracc. accidentale statico – k ₀ – M1
5	$\Delta S_{A,M1,+}$	Sovraspinta sismica – $M1 - k_v(+)$
6	E_{wd}	Spinta idrodinamica
7	F_{v}	Effetti inerziali verticali (+ verso il basso)
8	Fh	Effetti inerziali orizzontali

Le sollecitazioni per ciascun caso di carico sono calcolate come segue:

N.	Carico	Descrizione	Calcolo
1	PP	Peso proprio	-
2	$S_{A,S,k0,M1}$	Spinta delle terre $-\mathbf{k}_0 - \mathbf{M}1$	-
2a	$S_{A,S,k0,M2}$	Spinta delle terre – k ₀ – M2	$E[S_{A,S,k0,M1}] \times k_{0,M2} / k_{0,M1}$
2b	$S_{A,S,ka,M1}$	Spinta delle terre – k _a – M1	$E[S_{A,S,k0,M1}] \times k_{a,M1} / k_{0,M1}$
2c	$S_{A,S,ka,M2}$	Spinta delle terre – k _a – M2	$E[S_{A,S,k0,M1}] \times k_{a,M2} / k_{0,M1}$
3	$\mathbf{E}_{\mathbf{ws}}$	Spinta della falda	-
4	$S_{q,st,k0,M1}$	Sovracc. accidentale statico – k_0 – $M1$	-
4a	$S_{q,st,k0,M2}$	Sovracc. accidentale statico $-k_0 - M2$	$E[S_{q,st,k0,M1}] \times k_{0,M2} / k_{0,M1}$
4b	$S_{q,sis,ka,M1}$	Sovracc. accidentale sismico – k _a – M1	$E[S_{q,st,k0,M1}] \times (k_{a,M1} / k_{0,M1}) \times (q_{sis} / q_{st})$
4c	$S_{q,sis,ka,M2} \\$	Sovrace. accidentale sismico $-k_a - M2$	$E[S_{q,st,k0,M1}] \times (k_{a,M2} / k_{0,M1}) \times (q_{sis} / q_{st})$
5	$\Delta S_{A,M1,+}$	Sovraspinta sismica – $M1 - k_v(+)$	-
5a	$\Delta S_{A,M2,+}$	Sovraspinta sismica – $M2 - k_v(+)$	$E[\Delta S_{A,M1,+}] \times (\Delta S_{A,M2,+} / \Delta S_{A,M1,+})$
5b	$\Delta S_{A,M1,\text{-}}$	Sovraspinta sismica – M1 – k _v (-)	$E[\Delta S_{A,M1,+}] \times (\Delta S_{A,M1,-} / \Delta S_{A,M1,+})$
5c	$\Delta S_{A,M2,\text{-}}$	Sovraspinta sismica – M2 – k _v (-)	$E[\Delta S_{A,M1,+}] \times (\Delta S_{A,M2,-} / \Delta S_{A,M1,+})$
6	$\mathbf{E}_{\mathbf{wd}}$	Spinta idrodinamica	-
7	$\mathbf{F_h}$	Effetti inerziali orizzontali	-
8	$\mathbf{F_v}$	Effetti inerziali verticali (+verso il basso)	-

Dove con E[A] si intende la generica sollecitazione E dovuta al carico sollecitante A.

19.2. Combinazioni SLU

C.C.	PP	STERRE k0_M1_SX	STERRE k0_M2_SX	STERRE k0_M1_DX	STERRE k0_M2_DX	FALDA_SX	FALDA_DX	SOVR. STAT. k0_M1_SX	SOVR. STAT. k0_M2_SX
LOAD	1	2	2a	2_dx	2a_dx	3	3_dx	4	4a
1_STR	1.3	1.3		1		1.3	1	1.5	
2_STR	1	1.3		1		1.3	1	1.5	
3_STR	1.3	1		1		1	1	0	
4_STR	1	1		1		1	1	0	
1_GEO	1		1		1	1	1		1.3
2_GEO	1		1		1	1	1		0

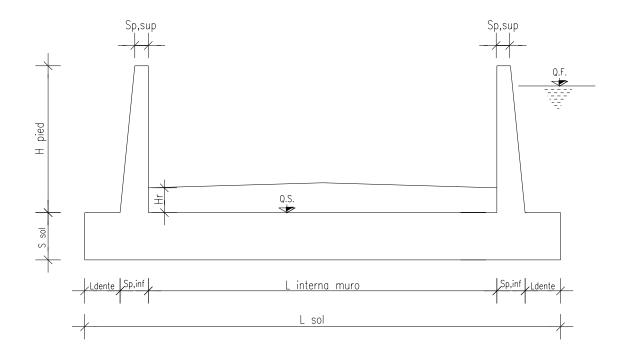
Dove si indicano con "dx" le azioni agenti sul piedritto destro.

19.3. Combinazioni SLV

c.c.	PP	STERRE ka_M1_SX	STERRE ka_M2_SX	STERRE ka_M1_DX	STERRE ka_M2_DX	FALDA_SX	FALDA_DX	SOVR. SISMICO ka_M1_SX	SOVR. SISMICO ka_M2_SX	INCR. SISMICO BASSO_M1	INCR. SISMICO BASSO_M2	INCR. SISMICO ALTO_M1	INCR. SISMICO ALTO_M2	INCR. IDRODINAMICO	INERZIA ORIZZONTALE	INERZIA VERT (BASSO)
LOAD	1	2 b	2 c	2b_dx	2c_dx	3	3_dx	4 b	4c	5	5a	5b	5c	6	7	8
																4
1_STR	1	1		1		1	1	0		1				1	1	1
1_STR 2_STR	1	1		1		1	1	1		1				1	1	1
												1				
2_STR	1	1		1		1	1	1				1 1		1	1	1
2_STR 3_STR	1	1	1	1	1	1	1	1 0	0		1			1	1	1 -1
2_STR 3_STR 4_STR	1 1 1	1	1 1	1	1 1	1 1 1	1 1 1	1 0	0		1 1			1 1 1	1 1 1	1 -1 -1

Dove si indicano con "dx" le azioni agenti sul piedritto destro.

19.4. Combinazioni SLE


C.C.	PP	STERRE k0_M1_SX	STERRE k0_M1_DX	FALDA_SX	FALDA_DX	SOVR. STAT. k0_M1_SX
LOAD	1	2	2_dx	3	3_dx	4
1_QP	1	1	1	1	1	0
1_FR	1	1	1	1	1	0
2_FR	1	1	1	1	1	0.75
1_CAR	1	1	1	1	1	0
2_CAR	1	1	1	1	1	1

Dove si indicano con "dx" le azioni agenti sul piedritto destro.

20. MURO A U TIPO 1

20.1. Geometria della struttura

<u>Dimensioni geometriche trasversali</u>:

•	$L_{ m sol}$	=	7.80	m
•	S_{sol}	=	1.00	m

$$\bullet \quad L_{int,muro} \qquad \qquad = \qquad \quad 6.00 \quad \ m$$

$$\bullet$$
 L_{dente} = 0.00 m

•
$$H_{pied}$$
 = 6.39 m

$$\bullet$$
 S_{p,sup} = 0.90 m

$$\bullet \quad S_{p,inf} \qquad \qquad = \qquad \quad 0.90 \quad \ \, m$$

La falda si trova al di sotto del piano di fondazione dei muri e pertanto non interessa la struttura.

20.2. Pressioni sul piedritto dovute ai carichi fondamentali

Si riportano di seguito le pressioni statiche e sismiche esercitate sui piedritti dal terreno, dalla falda e dall'azione sismica, per i casi di carico fondamentali.

Z	$\sigma_{\rm v}$	σ'_{v}	σ' _{h,k0,M1}	σ_{w}	$\sigma_{q,st,h,k0,M1}$	$\Delta\sigma_{Ed,M1,(+)}$	$\Delta\sigma_{idr}$	f_h	f_{v}
[m]	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$
0,000	0,000	0,000	0,000	0,000	10,000	17,217	0,000	6,239	3,120
0,320	6,390	6,390	3,195	0,000	10,000	17,217	0,000	6,239	3,120
0,639	12,780	12,780	6,390	0,000	10,000	17,217	0,000	6,239	3,120
0,959	19,170	19,170	9,585	0,000	10,000	17,217	0,000	6,239	3,120
1,278	25,560	25,560	12,780	0,000	10,000	17,217	0,000	6,239	3,120
1,598	31,950	31,950	15,975	0,000	10,000	17,217	0,000	6,239	3,120
1,917	38,340	38,340	19,170	0,000	10,000	17,217	0,000	6,239	3,120
2,237	44,730	44,730	22,365	0,000	10,000	17,217	0,000	6,239	3,120
2,556	51,120	51,120	25,560	0,000	10,000	17,217	0,000	6,239	3,120
2,876	57,510	57,510	28,755	0,000	10,000	17,217	0,000	6,239	3,120
3,195	63,900	63,900	31,950	0,000	10,000	17,217	0,000	6,239	3,120
3,515	70,290	70,290	35,145	0,000	10,000	17,217	0,000	6,239	3,120
3,834	76,680	76,680	38,340	0,000	10,000	17,217	0,000	6,239	3,120
4,154	83,070	83,070	41,535	0,000	10,000	17,217	0,000	6,239	3,120
4,473	89,460	89,460	44,730	0,000	10,000	17,217	0,000	6,239	3,120
4,793	95,850	95,850	47,925	0,000	10,000	17,217	0,000	6,239	3,120
5,112	102,240	102,240	51,120	0,000	10,000	17,217	0,000	6,239	3,120
5,432	108,630	108,630	54,315	0,000	10,000	17,217	0,000	6,239	3,120
5,751	115,020	115,020	57,510	0,000	10,000	17,217	0,000	6,239	3,120
6,071	121,410	121,410	60,705	0,000	10,000	17,217	0,000	6,239	3,120
6,390	127,800	127,800	63,900	0,000	10,000	17,217	0,000	6,239	3,120
6,640	132,800	132,800	66,400	0,000	10,000	17,217	0,000	6,239	3,120
6,890	137,800	137,800	68,900	0,000	10,000	17,217	0,000	6,239	3,120

Dove la coordinata verticale z è positiva verso il basso con l'origine posta in sommità al piedritto.

20.3. Riassunto delle sollecitazioni alla base del piedritto (in asse soletta)

Si riportano di seguito le sollecitazioni calcolate alla base del piedritto, in asse soletta, per tutti i casi di carico:

n.	LOAD CASE	N[kN]	M[kNm]	V[kN]
1	PP	155,03		
2	STERRE k0_M1		545,14	237,36
2a	STERRE K0_M2		633,11	275,66
2b	STERRE ka_M1		363,43	158,24
2c	STERRE ka_M2		446,07	194,22
3	FALDA		0,00	0,00
4	SOVR. STATICO k0_M1		237,36	68,90
4a	SOVR. STATICO k0_M2		275,66	80,02
4b	SOVR. SISMICO ka_M1		0,00	0,00
4c	SOVR. SISMICO ka_M2		0,00	0,00
5	INCR. SISMICO BASSO_M1		408,67	118,63
5a	INCR. SISMICO BASSO_M2		475,31	137,97
5b	INCR. SISMICO ALTO_M1		291,54	84,63
5c	INCR. SISMICO ALTO_M2		342,12	99,31
6	INCR. IDRODINAMICO		0,00	0,00
7	INERZIA ORIZZONTALE		148,09	42,99
8	INERZIA VERT (BASSO)	21,49		

20.4. Riassunto sollecitazioni massime piedritto

Si riportano di seguito le massime sollecitazioni calcolate per il piedritto ed adottate per le verifiche strutturali.

20.4.1. Combinazioni SLU - SLV

	CC	N [kN]	M[kNm]	V[kN]
Filo soletta _V_max	2_SLU_STR	143,78	871,56	361,26
1/4 spessore soletta_M_max	2_SLU_STR	149,40	964,97	386,18
Asse soletta_M_max	2_SLU_STR	155,03	1064,72	411,92

20.4.2. Combinazioni SLE

1/4 soletta _FR

1/4 soletta _CAR

	CC	N [kN]	M[kNm]
Filo soletta _QP	1_QP	143,78	434,86
Filo soletta _FR	2_FR	143,78	587,98
Filo soletta _CAR	2_CAR	143,78	639,02
1/4 soletta _QP	1_QP	149,40	487,92

2_FR

2_CAR

149,40

149,40

653,26

708,37

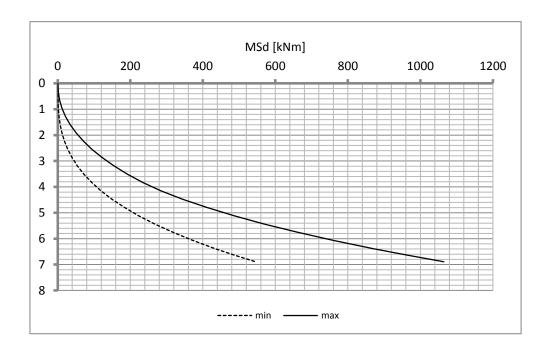
20.5. Riassunto massime sollecitazioni soletta

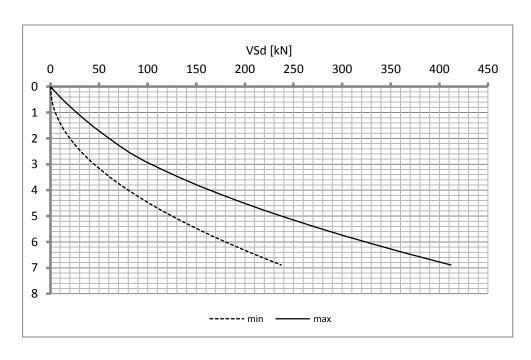
Si riportano di seguito le massime sollecitazioni calcolate nella soletta di fondazione ed adottate per le verifiche strutturali.

20.5.1. Combinazioni SLU - SLV

	CC	x[m]	M[kNm]	V[kN]
Filo piedritto SX_V_max	1_SLU_STR	0,450	973,243	204,263
Filo piedritto DX_V_max	3_SLU_STR	6,450	460,200	-175,910
1/4 spessore piedritto_M_max	2_SLU_STR	0,225	1029,247	160,095
Asse piedritto_M_max	2_SLU_STR	0,000	1064,720	155,025
Mezzeria_M_min	2_SLV_STR	5,490	92,448	-35,543

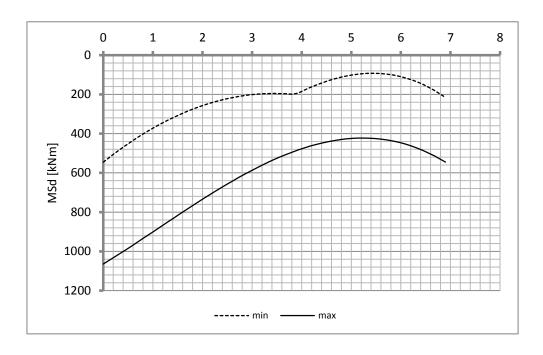
20.5.2. Combinazioni SLE

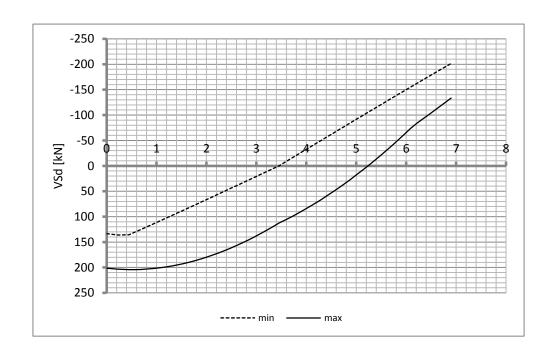

	CC	x[m]	M[kNm]
Filo piedritto _QP	1_QP	0,450	479,72
Filo piedritto _FR	2_FR	0,450	655,50
Filo piedritto _CAR	2_CAR	0,450	714,10
1/4 piedritto _QP	1_QP	0,225	511,34
1/4 piedritto _FR	2_FR	0,225	688,79
1/4 piedritto _CAR	2_CAR	0,225	747,94
Mezzeria _QP	1_QP	3,450	274,45
Mezzeria _FR	1_FR	3,450	274,45
Mezzeria_CAR	1_CAR	3,450	274,45


20.6. Diagrammi di inviluppo SLU-SLV

20.6.1. Piedritti

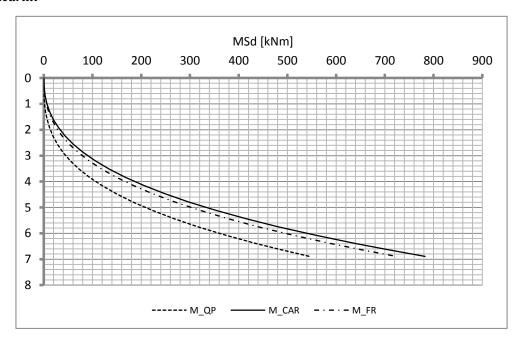
<u>Momento</u>


Taglio



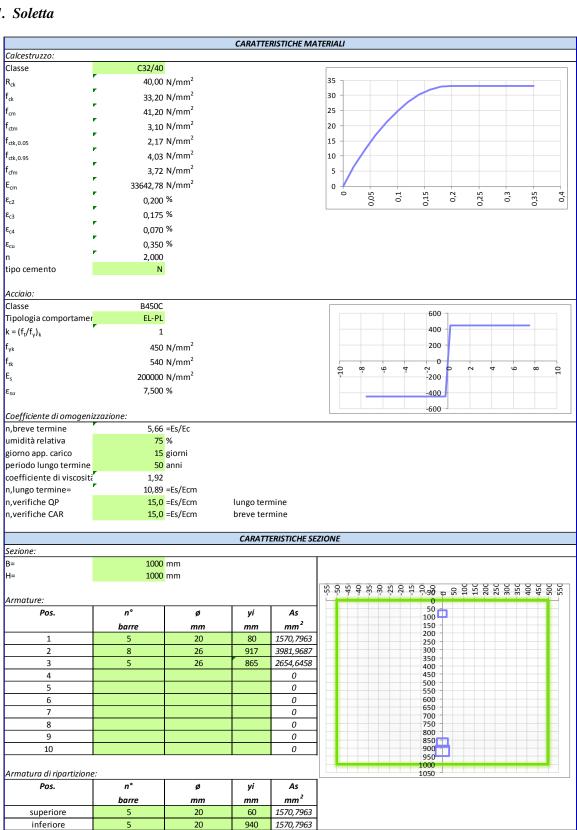
20.6.2. Soletta

Momento

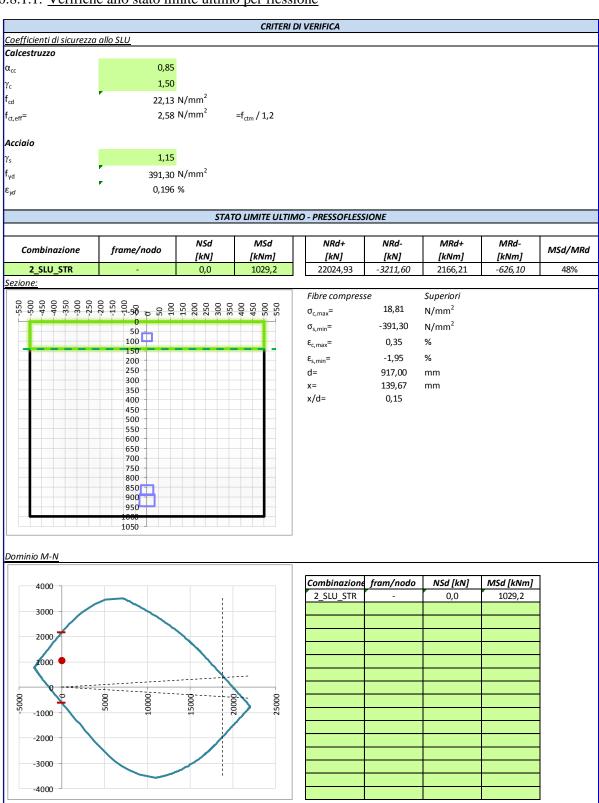

<u>Taglio</u>

20.7. Diagrammi di inviluppo SLE

20.7.1. Piedritti


20.7.2. Soletta

Verifiche di resistenza ultima e di esercizio 20.8.


20.8.1. Soletta

Viene svolta solamente la verifica della sezione di attacco al piedritto in quanto il momento tende sempre le fibre inferiori su tutta la larghezza della soletta.

20.8.1.1. Verifiche allo stato limite ultimo per flessione

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 Codifica Documento E E2 CL SIZ1 F0 001 A 131 di 169

20.8.1.2. Verifiche allo stato limite ultimo per taglio

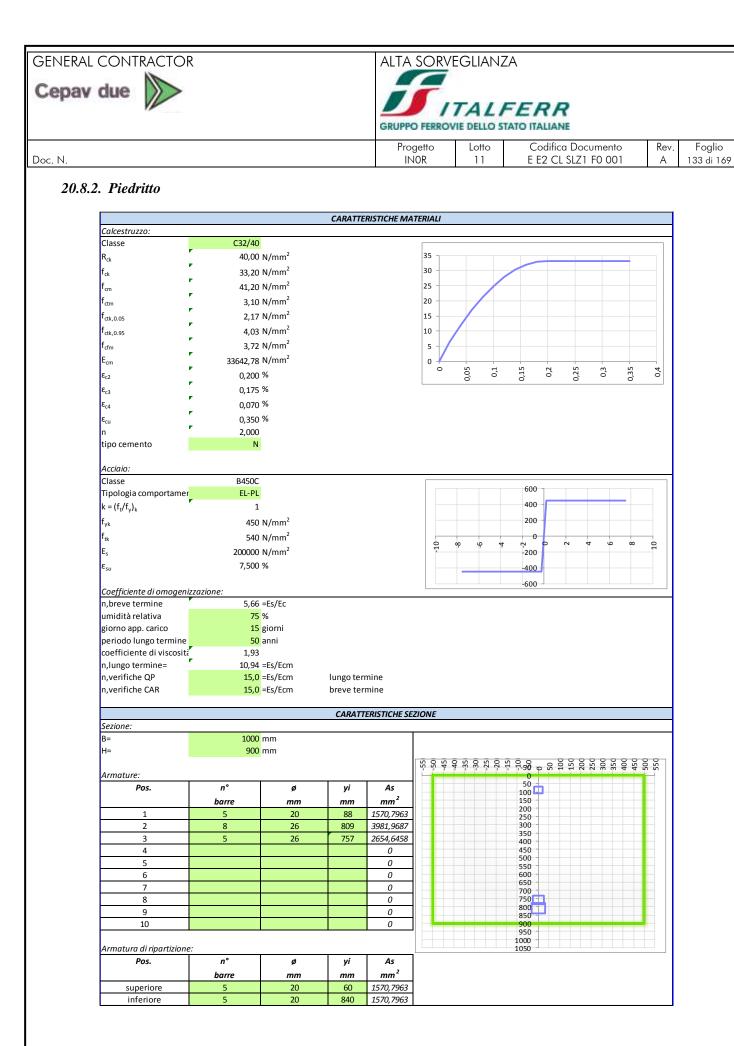
CALCESTRUZZO							
Calsse calcestruzzo		C32/40					
Resistenza cubica caratteristica	Rck	40,00 Mpa					
Resistenza cilindrica caratteristica	f_{ck}	33,2 Mpa					

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

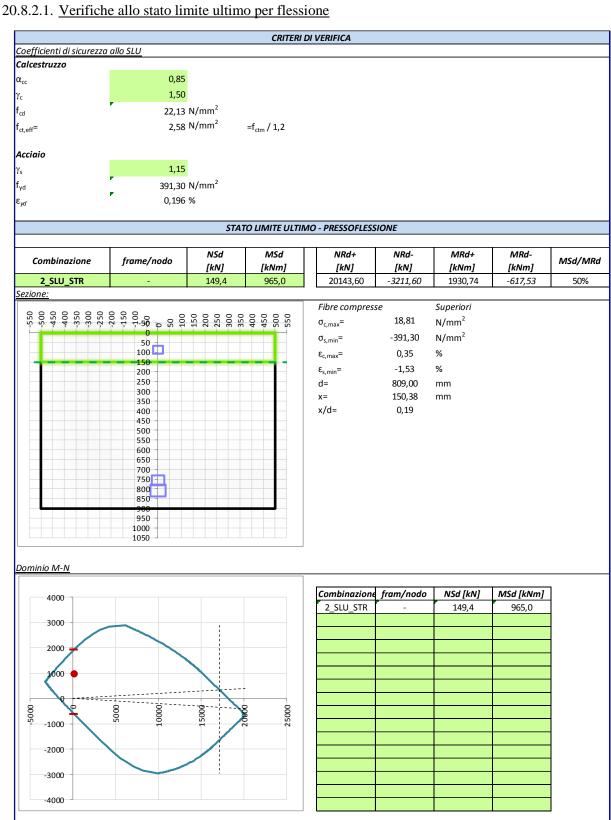
	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γс	1,50
Coefficiente riduttivo per resistenze di lunga durata	$lpha_{cc}$	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

GEOMETRIA SEZIONE C.A.							
Base	b	b 1000 mm					
Altezza	h						
Barre tese		numero barre	diametro barre [mm]	copriferro in asse barra [mm]	Area barre [mm2]		
strato1		5	20	80	1571		
strato2		0	0	0	0		
strato3		0	0	0	0		
strato4		0	0	0	0		
strato5		0	0	0	0		
Area barre tese	A_s		1571	mm2			
Posizione della barra equivalente	c*		80	mm			

SOLLECITAZIONI						
Load Case		1_SLU_STR				
Frame		-				
Azione assiale (+ di compressione)	N_{Ed}	0	kN			
Taglio	V_{Ed}	204,263	kN			


VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO					
Altezza utile della sezione	d	920 mm			
Coefficiente	k	1,47			
Rapporto di armatura longitudinale	ρl	0,17%			
Tensione assiale media	$\sigma_{ m cp}$	0,00 N/mm2			
	$0.2 \times f_{cd}$	3,76 N/mm2			
	v_{min}	0,36 N/mm2			
Resistenza al taglio minima	$V_{rd,min}$	329,41 kN			
Resistenza al taglio senza armatura	V_{rd}	329,41 kN			
Verifica		0,62 <u>Verifica soddisfatta</u>			

Non è necessario prevedere armatura a taglio.



20.8.1.3. Verifiche allo stato limite di esercizio

	inene ano state								
		PA	RAMETRI V	ERIFICA FESS	U	RAZIONE			
kt=	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)								
k ₁ =	0,80		(0,8=barre	ad aderenzo	n	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato)				
			CRITI	ERI DI VERIFI	CA				
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	?	
	Aggressive								
Armature:	2		1-Sensibili;	: 2-Poco sens	ibi	li			
	Poco sensibilie								
<u>Tensioni in esercizio</u>									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	$\sigma_{\rm c}$ / fck	$\sigma_{\rm s}$ / fyk	[N/mm ²]	[N/mm²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	OLLECITAZIONI SLI	E (N+ di con	npressione -	٠ ٨	Л+ tende le	fibre infer	iori)	
<u>Fessurazione</u>									
Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]		w _d [mm]	w _{lim} [mm]	M0 - Mf [kNm]	
Cartteristica	2_CAR	-	0,0	714,1		0,177	0,200	558,28	-
<u>Tensioni in esercizio</u>									
Combinazione	n. combinazione	nodo	N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	nouo	[kN]	[kNm]		[N/mm ²]	[N/mm ²]	[N/mm ²]	
Quasi permanente	1_QP	-	0,0	511,3		-3,62	100,68	-40,74	Sezione parzializzata
Cartteristica	2_CAR	-	0,0	747,9		-5,29	147,26	-59,60	Sezione parzializzata

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 Codifica Documento E E2 CL SIZ1 F0 001 A 135 di 169

20.8.2.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO						
Calsse calcestruzzo		C32/40				
Resistenza cubica caratteristica	Rck	40,00 Mpa				
Resistenza cilindrica caratteristica	f _{ck}	33,2 Mpa				

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γc	1,50
Coefficiente riduttivo per resistenze di lunga durata	$lpha_{cc}$	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

	GEO	METRIA SEZION	E C.A.		
Base	b		1000	mm	
Altezza	h	h 900 mm			
Barre tese		numero	diametro barre	copriferro in	Area barre
		barre	[mm]	asse barra [mm]	[mm2]
strato1		5	26	91	2655
strato2		0	0	0	0
strato3		0	0	0	0
strato4		0	0	0	0
strato5		0	0	0	0
Area barre tese	A_s		2655	mm2	
Posizione della barra equivalente	c*		91	mm	

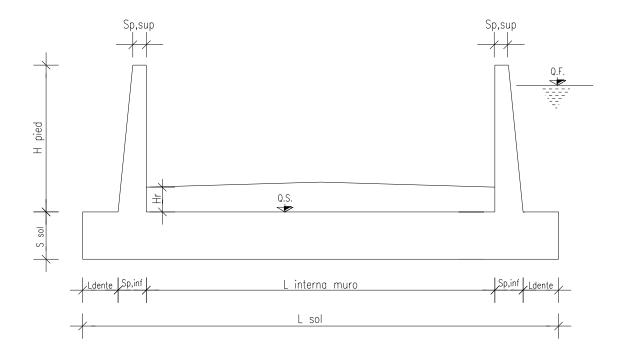
SOLLECITAZIONI						
Load Case		2_SLU_STR				
Frame		-				
Azione assiale (+ di compressione)	N _{Ed}	143,78	kN			
Taglio	V_{Ed}	361,26	kN			

VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO						
Altezza utile della sezione	d	809 mm				
Coefficiente	k	1,50				
Rapporto di armatura longitudinale	ρl	0,33%				
Tensione assiale media	$\sigma_{ m cp}$	0,16 N/mm2				
	$0.2 \times f_{cd}$	3,76 N/mm2				
	$ u_{\min}$	0,37 N/mm2				
Resistenza al taglio minima	$V_{rd,min}$	318,28 kN				
Resistenza al taglio senza armatura	V_{rd}	341,60 kN				
Verifica		1,06 E' necessario prevedere armatura a taglio				

ARMATURA A TAGLIO						
Diametro staffe	ф	10	mm			
Numero braccia	n	3,33				
Passo staffe	S	200	mm			
Inclinazione staffe (rispetto all'orizzontale)	α	90	0			
Inclinazione del puntone in calcestruzzo	θ	45	ō			
Valore minimo di inclinazione del puntone in calcestruzzo	θ_{min}	21,80	•			

VERIFICA RESISTENZA SEZIONE CON ARMATURA A TAGLIO							
Coefficiente di riduzione per fessurazione	ν_1	0,5					
Resistenza cilindrica di progetto	f_{cd}	18,81333333 N/mm2					
Area armatura a taglio	A _{st}	261,54 mm2					
	σ_{cp}/f_{cd}	0,008491614					
Coefficiente di interazione	α_{cw}	1,008491614					
Resistenza a tagio per rottura delle armature	V_{rds}	372,57 kN					
Resistenza a taglio per rottura del puntone in calcestruzzo	V_{rcd}	3453,58 kN					
Resistenza al taglio	V_{rd}	372,57 kN					
Verifica		0,97 <u>Verifica soddisfatta</u>					

Non è necessario prevedere armatura a taglio.


20.8.2.3. Verifiche allo stato limite di esercizio

		PA	RAMETRI V	ERIFICA FESS	UI	RAZIONE			
kt=	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)								
k ₁ =	0,80		(0,8=barre	ad aderenza	m	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	comandato)					
k ₄ =	0,425		(valore rad	comandato)					
			CRITI	RI DI VERIFIC	CA.				
Fessurazione									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggress	iv	e; 3- Molto	aggressive	2	
	Aggressive								
Armature:	2		1-Sensibili;	2-Poco sens	ibi	li			
	Poco sensibilie								
Tensioni in esercizio									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	σ _c / fck	$\sigma_{\rm s}$ / fyk	[N/mm ²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	DLLECITAZIONI SLI	E (N+ di con	pressione	٨	Л+ tende le	fibre infer	iori)	
<u>Fessurazione</u>									
Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]		w _d [mm]	w _{lim} [mm]	M0 - Mf [kNm]	
Cartteristica	2_CAR	-	143,8	639,0		0,180	0,200	477,94	-
Tensioni in esercizio									
Combinazione	n. combinazione	nodo	N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	nouo	[kN]	[kNm]		[N/mm ²]	[N/mm ²]	[N/mm ²]	
Quasi permanente	1_QP	-	149,4	487,9		-4,42	100,41	-48,20	Sezione parzializzata
Cartteristica	2_CAR	-	149,4	708,4		-6,36	150,41	-68,63	Sezione parzializzata

21. MURO A U TIPO 2

21.1. Geometria della struttura

<u>Dimensioni geometriche trasversali</u>:

	T .		7 (0	
•	L_{sol}	=	7.60	m
	-301		,	

$$\bullet$$
 S_{sol} = 0.90 m

$$\bullet \quad L_{int,muro} \qquad \qquad = \qquad \quad 6.00 \quad \ m$$

•
$$L_{dente}$$
 = 0.00 m

•
$$H_{pied}$$
 = 5.31 m

$$\bullet$$
 $S_{p,sup}$ = 0.80 m

$$\bullet \quad S_{p,inf} \qquad \qquad = \qquad \quad 0.80 \quad \ m$$

La falda si trova al di sotto del piano di fondazione dei muri e pertanto non interessa la struttura.

21.2. Pressioni sul piedritto dovute ai carichi fondamentali

Si riportano di seguito le pressioni statiche e sismiche esercitate sui piedritti dal terreno, dalla falda e dall'azione sismica, per i casi di carico fondamentali.

Z	$\sigma_{\rm v}$	σ'_{v}	$\sigma'_{h,k0,M1}$	σ_{w}	$\sigma_{q,st,h,k0,M1}$	$\Delta\sigma_{Ed,M1,(+)}$	$\Delta\sigma_{idr}$	f_h	f_{v}
[m]	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$
0,000	0,000	0,000	0,000	0,000	10,000	14,394	0,000	5,546	2,773
0,266	5,310	5,310	2,655	0,000	10,000	14,394	0,000	5,546	2,773
0,531	10,620	10,620	5,310	0,000	10,000	14,394	0,000	5,546	2,773
0,797	15,930	15,930	7,965	0,000	10,000	14,394	0,000	5,546	2,773
1,062	21,240	21,240	10,620	0,000	10,000	14,394	0,000	5,546	2,773
1,328	26,550	26,550	13,275	0,000	10,000	14,394	0,000	5,546	2,773
1,593	31,860	31,860	15,930	0,000	10,000	14,394	0,000	5,546	2,773
1,859	37,170	37,170	18,585	0,000	10,000	14,394	0,000	5,546	2,773
2,124	42,480	42,480	21,240	0,000	10,000	14,394	0,000	5,546	2,773
2,390	47,790	47,790	23,895	0,000	10,000	14,394	0,000	5,546	2,773
2,655	53,100	53,100	26,550	0,000	10,000	14,394	0,000	5,546	2,773
2,921	58,410	58,410	29,205	0,000	10,000	14,394	0,000	5,546	2,773
3,186	63,720	63,720	31,860	0,000	10,000	14,394	0,000	5,546	2,773
3,452	69,030	69,030	34,515	0,000	10,000	14,394	0,000	5,546	2,773
3,717	74,340	74,340	37,170	0,000	10,000	14,394	0,000	5,546	2,773
3,983	79,650	79,650	39,825	0,000	10,000	14,394	0,000	5,546	2,773
4,248	84,960	84,960	42,480	0,000	10,000	14,394	0,000	5,546	2,773
4,514	90,270	90,270	45,135	0,000	10,000	14,394	0,000	5,546	2,773
4,779	95,580	95,580	47,790	0,000	10,000	14,394	0,000	5,546	2,773
5,045	100,890	100,890	50,445	0,000	10,000	14,394	0,000	5,546	2,773
5,310	106,200	106,200	53,100	0,000	10,000	14,394	0,000	5,546	2,773
5,535	110,700	110,700	55,350	0,000	10,000	14,394	0,000	5,546	2,773
5,760	115,200	115,200	57,600	0,000	10,000	14,394	0,000	5,546	2,773

Dove la coordinata verticale z è positiva verso il basso con l'origine posta in sommità al piedritto.

21.3. Riassunto delle sollecitazioni alla base del piedritto (in asse soletta)

Si riportano di seguito le sollecitazioni calcolate alla base del piedritto, in asse soletta, per tutti i casi di carico:

n.	LOAD CASE	N[kN]	M[kNm]	V[kN]
1	PP	115,20		
2	STERRE k0_M1		318,50	165,89
2a	STERRE K0_M2		369,90	192,66
2b	STERRE ka_M1		212,34	110,59
2c	STERRE ka_M2		260,62	135,74
3	FALDA		0,00	0,00
4	SOVR. STATICO k0_M1		165,89	57,60
4a	SOVR. STATICO k0_M2		192,66	66,90
4b	SOVR. SISMICO ka_M1		0,00	0,00
4c	SOVR. SISMICO ka_M2		0,00	0,00
5	INCR. SISMICO BASSO_M1		238,77	82,91
5a	INCR. SISMICO BASSO_M2		277,71	96,43
5b	INCR. SISMICO ALTO_M1		170,34	59,14
5c	INCR. SISMICO ALTO_M2		199,89	69,41
6	INCR. IDRODINAMICO		0,00	0,00
7	INERZIA ORIZZONTALE		92,00	31,94
8	INERZIA VERT (BASSO)	15,97		

21.4. Riassunto sollecitazioni massime piedritto

Si riportano di seguito le massime sollecitazioni calcolate per il piedritto ed adottate per le verifiche strutturali.

21.4.1. Combinazioni SLU – SLV

	CC	N [kN]	M[kNm]	V[kN]
Filo soletta _V_max	2_SLU_STR	106,20	535,87	262,92
1/4 spessore soletta_M_max	2_SLU_STR	110,70	597,18	282,16
Asse soletta_M_max	2_SLU_STR	115,20	662,89	302,05

21.4.2. Combinazioni SLE

1/4 soletta _FR

1/4 soletta _CAR

	CC	N [kN]	M[kNm]
Filo soletta _QP	1_QP	106,20	249,54
Filo soletta _FR	2_FR	106,20	355,27
Filo soletta _CAR	2_CAR	106,20	390,52
1/4 soletta _QP	1_QP	110,70	282,62

2_FR

2_CAR

110,70

110,70

397,51

435,80

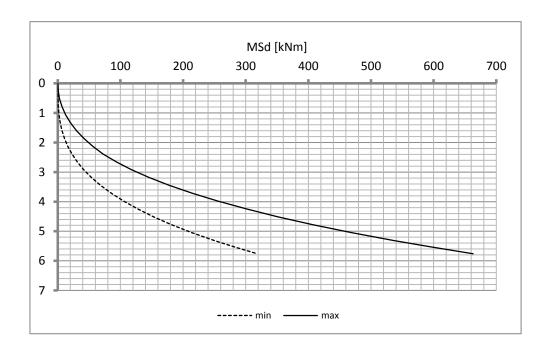
21.5. Riassunto massime sollecitazioni soletta

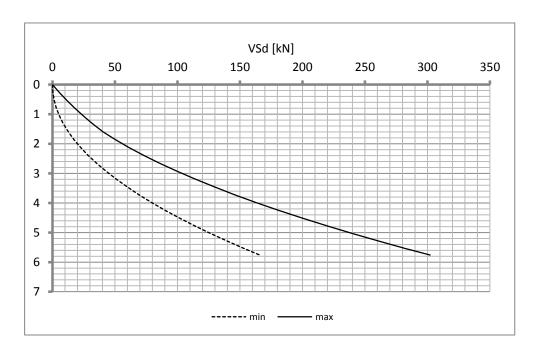
Si riportano di seguito le massime sollecitazioni calcolate nella soletta di fondazione ed adottate per le verifiche strutturali.

21.5.1. Combinazioni SLU - SLV

	CC	x[m]	M[kNm]	V[kN]
Filo piedritto SX_V_max	1_SLU_STR	0,400	602,860	149,953
Filo piedritto DX_V_max	3_SLU_STR	6,400	262,051	-132,480
1/4 spessore piedritto_M_max	2_SLU_STR	0,200	639,584	117,734
Asse piedritto_M_max	2_SLU_STR	0,000	662,888	115,200
Mezzeria_M_min	2_SLV_STR	5,200	18,263	-25,846

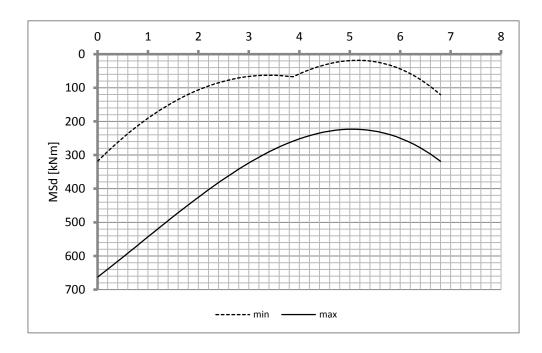
21.5.2. Combinazioni SLE

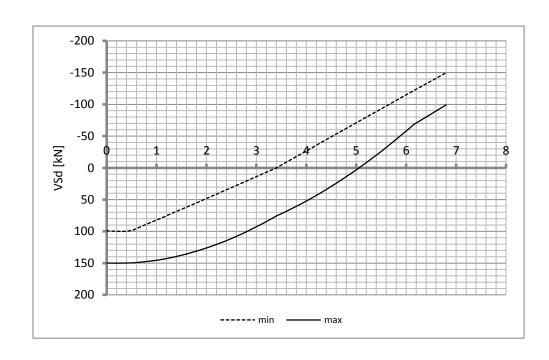

	CC	x[m]	M[kNm] 275,03	
Filo piedritto _QP	1_QP	0,400		
Filo piedritto _FR	2_FR	0,400	398,15	
Filo piedritto _CAR	2_CAR	0,400	439,20	
1/4 piedritto _QP	1_QP	0,200	296,11	
1/4 piedritto _FR	2_FR	0,200	420,20	
1/4 piedritto _CAR	2_CAR	0,200	461,56	
Mezzeria _QP	1_QP	3,400	120,66	
Mezzeria _FR	1_FR	3,400	120,66	
Mezzeria_CAR	1_CAR	3,400	120,66	


21.6. Diagrammi di inviluppo SLU-SLV

21.6.1. Piedritti

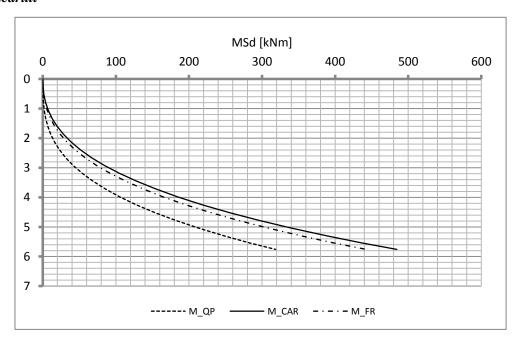
<u>Momento</u>

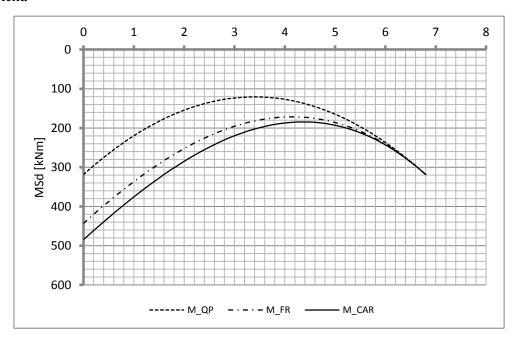

Taglio



21.6.2. Soletta

Momento


<u>Taglio</u>

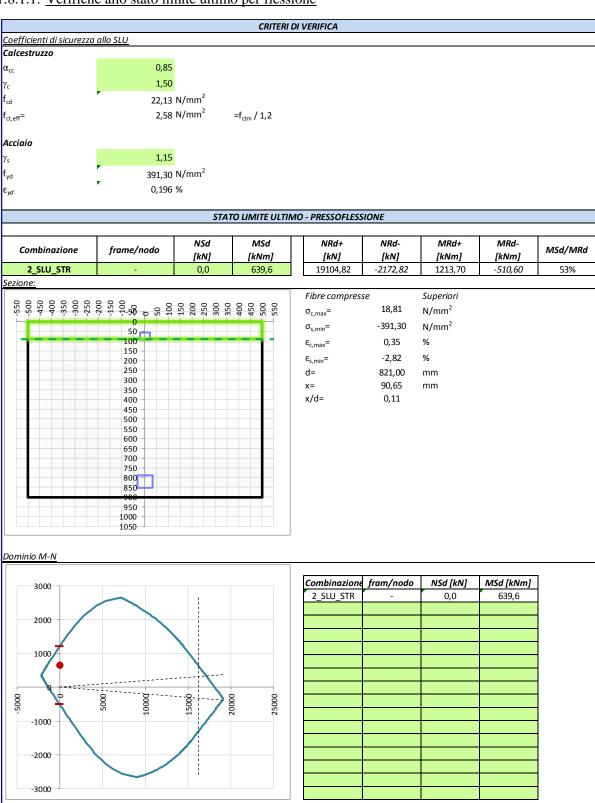


21.7. Diagrammi di inviluppo SLE

21.7.1. Piedritti

21.7.2. Soletta

Verifiche di resistenza ultima e di esercizio 21.8.


21.8.1. Soletta

Viene svolta solamente la verifica della sezione di attacco al piedritto in quanto il momento tende sempre le fibre inferiori su tutta la larghezza della soletta.

21.8.1.1. Verifiche allo stato limite ultimo per flessione

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 Codifica Documento E E2 CL SIZ1 F0 001 A 147 di 169

21.8.1.2. Verifiche allo stato limite ultimo per taglio

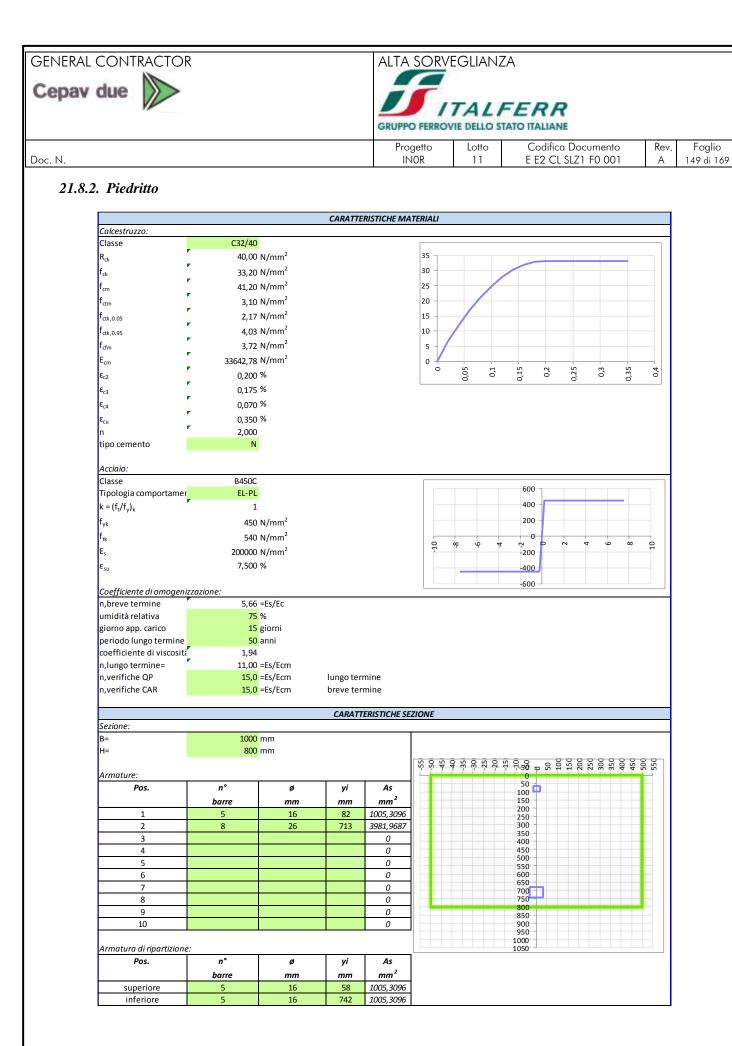
CALCESTRUZZO						
Calsse calcestruzzo		C32/40				
Resistenza cubica caratteristica	Rck	40,00 Mpa				
Resistenza cilindrica caratteristica	f_{ck}	33,2 Mpa				

ACCIAIO ACCIAIO				
Tipologia	B450C			
Reisitenza caratteristica allo snervamento	450 Mpa			

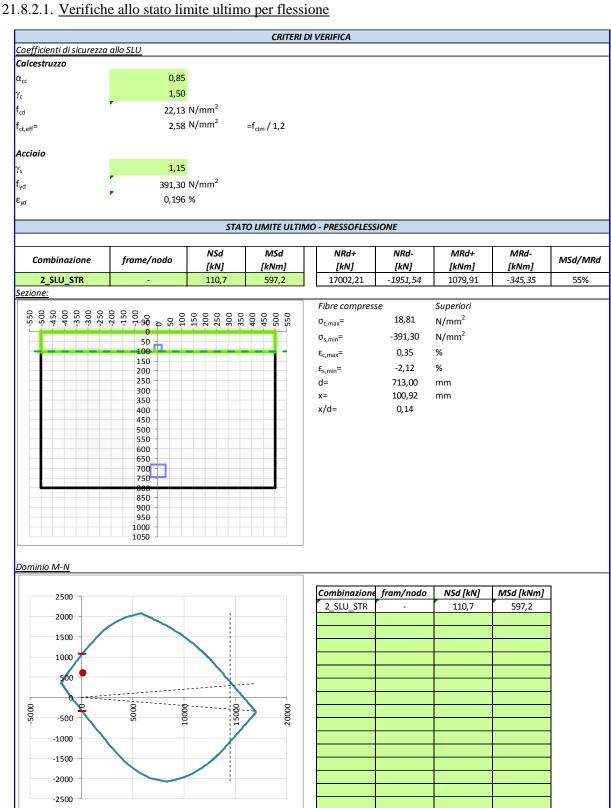
	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γс	1,50
Coefficiente riduttivo per resistenze di lunga durata	$lpha_{ m cc}$	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

GEOMETRIA SEZIONE C.A.						
Base	b	b 1000 mm				
Altezza	h	h 900 n		h 900 mm		
Barre tese		numero barre	diametro barre [mm]	copriferro in asse barra [mm]	Area barre [mm2]	
strato1		5	20	76	1571	
strato2		0	0	0	0	
strato3		0	0	0	0	
strato4		0	0	0	0	
strato5		0	0	0	0	
Area barre tese	A_s		1571	mm2		
Posizione della barra equivalente	c*		76 mm			

SOLLECITAZIONI						
Load Case		1_SLU_STR				
Frame		-				
Azione assiale (+ di compressione)	N_{Ed}	0	kN			
Taglio	V_{Ed}	149,95	kN			


VER	VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO						
Altezza utile della sezione	d	824 mm					
Coefficiente	k	1,49					
Rapporto di armatura longitudinale	ρl	0,19%					
Tensione assiale media	$\sigma_{ m cp}$	0,00 N/mm2					
	$0.2 \times f_{cd}$	3,76 N/mm2					
	v_{min}	0,37 N/mm2					
Resistenza al taglio minima	$V_{rd,min}$	303,05 kN					
Resistenza al taglio senza armatura	V_{rd}	303,05 kN					
Verifica		0,49 <u>Verifica soddisfatta</u>					

Non è necessario prevedere armatura a taglio.



21.8.1.3. Verifiche allo stato limite di esercizio

21.0.1.3. <u>vci</u>	inche ano state	minte di esc	<u>ZICIZIO</u>						
		PA	RAMETRI V	ERIFICA FESS	SU	RAZIONE			
kt=	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)								
k ₁ =	0,80		(0,8=barre	ad aderenzo	n n	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato,)				
			CRITI	ERI DI VERIFI	CA				
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	2	
	Aggressive								
Armature:	2		1-Sensibili,	: 2-Poco sens	ibi	ili			
	Poco sensibilie								
<u>Tensioni in esercizio</u>									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{\text{s,max}}$					
Combinazione	$\sigma_{\rm c}$ / fck	$\sigma_{\rm s}$ / fyk	[N/mm ²]	[N/mm²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
SOLLECITAZIONI SLE (N+ di compressione M+ tende le fibre inferiori)									
	30	JLLECITAZIONI SLI	(IV+ al con	ipressione	- /\	vi+ tenae ie	jibre injer	юпј	
<u>Fessurazione</u>	1			44					
Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]		W _d	W _{lim}	MO-Mf	
Cartteristica	2 CAR		0,0	439,2		[mm] 0,198	[mm] 0,200	[kNm] 426,55	
Cartieristica	Z_CAN	-	0,0	433,2	_	0,190	0,200	420,33	-
<u>Tensioni in esercizio</u>									
Combinazione	n. combinazione	nodo	N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	noao	[kN]	[kNm]		[N/mm²]	[N/mm²]	[N/mm²]	
Quasi permanente	1_QP	-	0,0	296,1		-2,87	100,54	-29,78	Sezione parzializzata
Cartteristica	2_CAR	-	0,0	461,6		-4,48	156,72	-46,42	Sezione parzializzata

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto | Lotto | Codifica Documento | Rev. | Foglio | INOR | 11 | E E2 CL SLZ1 F0 001 | A | 151 di 169

21.8.2.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO						
Calsse calcestruzzo		C32/40				
Resistenza cubica caratteristica	Rck	40,00 Mpa				
Resistenza cilindrica caratteristica	f _{ck}	33,2 Mpa				

ACCIAIO				
Tipologia	B450C			
Reisitenza caratteristica allo snervamento	450 Mpa			

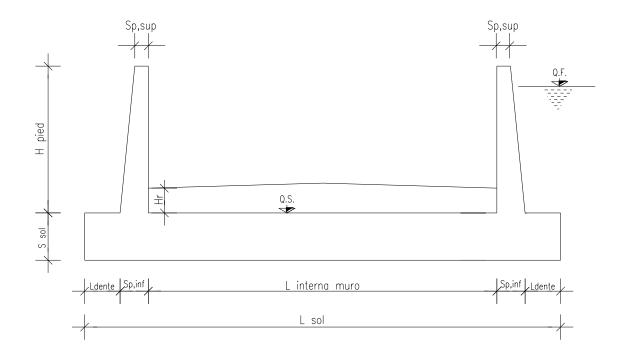
	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γс	1,50
Coefficiente riduttivo per resistenze di lunga durata	$lpha_{ m cc}$	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

GEOMETRIA SEZIONE C.A.						
Base	b	b 1000 mm				
Altezza	h		800	mm		
Barre tese		numero barre	diametro barre [mm]	copriferro in asse barra [mm]	Area barre [mm2]	
strato1		5	26	87	2655	
strato2		0	0	0	0	
strato3		0	0	0	0	
strato4		0	0	0	0	
strato5		0	0	0	0	
Area barre tese	A_s		2655	mm2		
Posizione della barra equivalente	c*		87 mm			

SOLLECITAZIONI						
Load Case		2_SLU_STR				
Frame		-				
Azione assiale (+ di compressione)	N _{Ed}	106,2	kN			
Taglio	V_{Ed}	262,92	kN			

VERI	VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO				
Altezza utile della sezione	d	713 mm			
Coefficiente	k	1,53			
Rapporto di armatura longitudinale	ρl	0,37%			
Tensione assiale media	$\sigma_{ m cp}$	0,13 N/mm2			
	$0.2 \times f_{cd}$	3,76 N/mm2			
	ν_{min}	0,38 N/mm2			
Resistenza al taglio minima	$V_{rd,min}$	286,22 kN			
Resistenza al taglio senza armatura	V_{rd}	316,80 kN			
Verifica		0,83 <u>Verifica soddisfatta</u>			

Non è necessario prevedere armatura a taglio.


21.8.2.3. Verifiche allo stato limite di esercizio

		minic di est							
		PA	RAMETRI V	ERIFICA FESS	Uŀ	RAZIONE			
kt=	0,40	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)							
k ₁ =	0,80		(0,8=barre ad aderenza migliorata; 1,6= barre liscie e trefoli)						
k ₃ =	3,40		(valore rad	ccomandato)					
k ₄ =	0,425		(valore rad	ccomandato)					
			CRITE	RI DI VERIFIC	Ά				
Fessurazione									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggress	iv	e; 3- Molto	aggressive	?	
	Aggressive								
Armature:	2		1-Sensibili;	2-Poco sensi	bil	li			
	Poco sensibilie								
Tensioni in esercizio									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	$\sigma_{\rm c}$ / fck	$\sigma_{\rm s}$ / fyk	[N/mm ²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	DLLECITAZIONI SLI	(N+ di com	pressione	٨	1+ tende le	fibre infer	iori)	
<u>Fessurazione</u>									
Combinazione	n. combinazione	frame/nodo	N	М		w _d	w _{lim}	M0 - Mf	
		<i>J. a </i>	[kN]	[kNm]		[mm]	[mm]	[kNm]	
Cartteristica	2_CAR	-	106,2	390,5		0,194	0,200	350,71	-
Tensioni in esercizio									
Combinazione	n. combinazione	nodo	N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	nouo	[kN]	[kNm]		[N/mm ²]	[N/mm ²]	[N/mm ²]	
Quasi permanente	1_QP	-	110,7	282,6		-3,67	99,01	-37,33	Sezione parzializzata
Cartteristica	2 CAR	-	110,7	435,8		-5,60	159,44	-56,03	Sezione parzializzata

22. MURO A U TIPO 3

22.1. Geometria della struttura

Dimensioni geometriche trasversali:

 $\bullet \quad L_{sol} \qquad \qquad = \qquad \quad 7.40 \quad \ m$

 \bullet S_{sol} = 0.80 m

 $\bullet \quad L_{int,muro} \qquad \qquad = \qquad \quad 6.00 \quad \ m$

 \bullet L_{dente} = 0.00 m

 $\bullet \quad H_{pied} \qquad \qquad = \qquad \quad 4.10 \quad m$

 $\bullet \quad S_{p,sup} \qquad = \qquad 0.70 \quad m$

 $\bullet \quad S_{p,inf} \qquad \qquad = \qquad \quad 0.70 \quad \ \, m$

La falda si trova al di sotto del piano di fondazione dei muri e pertanto non interessa la struttura.

22.2. Pressioni sul piedritto dovute ai carichi fondamentali

Si riportano di seguito le pressioni statiche e sismiche esercitate sui piedritti dal terreno, dalla falda e dall'azione sismica, per i casi di carico fondamentali.

z	$\sigma_{\rm v}$	σ'_{v}	σ' _{h,k0,M1}	σ_{w}	$\sigma_{q,st,h,k0,M1}$	$\Delta\sigma_{Ed,M1,(+)}$	$\Delta\sigma_{idr}$	f_h	f_{v}
[m]	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$
0,000	0,000	0,000	0,000	0,000	10,000	11,245	0,000	4,853	2,426
0,205	4,100	4,100	2,050	0,000	10,000	11,245	0,000	4,853	2,426
0,410	8,200	8,200	4,100	0,000	10,000	11,245	0,000	4,853	2,426
0,615	12,300	12,300	6,150	0,000	10,000	11,245	0,000	4,853	2,426
0,820	16,400	16,400	8,200	0,000	10,000	11,245	0,000	4,853	2,426
1,025	20,500	20,500	10,250	0,000	10,000	11,245	0,000	4,853	2,426
1,230	24,600	24,600	12,300	0,000	10,000	11,245	0,000	4,853	2,426
1,435	28,700	28,700	14,350	0,000	10,000	11,245	0,000	4,853	2,426
1,640	32,800	32,800	16,400	0,000	10,000	11,245	0,000	4,853	2,426
1,845	36,900	36,900	18,450	0,000	10,000	11,245	0,000	4,853	2,426
2,050	41,000	41,000	20,500	0,000	10,000	11,245	0,000	4,853	2,426
2,255	45,100	45,100	22,550	0,000	10,000	11,245	0,000	4,853	2,426
2,460	49,200	49,200	24,600	0,000	10,000	11,245	0,000	4,853	2,426
2,665	53,300	53,300	26,650	0,000	10,000	11,245	0,000	4,853	2,426
2,870	57,400	57,400	28,700	0,000	10,000	11,245	0,000	4,853	2,426
3,075	61,500	61,500	30,750	0,000	10,000	11,245	0,000	4,853	2,426
3,280	65,600	65,600	32,800	0,000	10,000	11,245	0,000	4,853	2,426
3,485	69,700	69,700	34,850	0,000	10,000	11,245	0,000	4,853	2,426
3,690	73,800	73,800	36,900	0,000	10,000	11,245	0,000	4,853	2,426
3,895	77,900	77,900	38,950	0,000	10,000	11,245	0,000	4,853	2,426
4,100	82,000	82,000	41,000	0,000	10,000	11,245	0,000	4,853	2,426
4,300	86,000	86,000	43,000	0,000	10,000	11,245	0,000	4,853	2,426
4,500	90,000	90,000	45,000	0,000	10,000	11,245	0,000	4,853	2,426

Dove la coordinata verticale z è positiva verso il basso con l'origine posta in sommità al piedritto.

22.3. Riassunto delle sollecitazioni alla base del piedritto (in asse soletta)

Si riportano di seguito le sollecitazioni calcolate alla base del piedritto, in asse soletta, per tutti i casi di carico:

n.	LOAD CASE	N[kN]	M[kNm]	V[kN]
1	PP	78,75		
2	STERRE k0_M1		151,88	101,25
2a	STERRE K0_M2		176,38	117,59
2b	STERRE ka_M1		101,25	67,50
2c	STERRE ka_M2		124,27	82,85
3	FALDA		0,00	0,00
4	SOVR. STATICO k0_M1		101,25	45,00
4a	SOVR. STATICO k0_M2		117,59	52,26
4b	SOVR. SISMICO ka_M1		0,00	0,00
4c	SOVR. SISMICO ka_M2		0,00	0,00
5	INCR. SISMICO BASSO_M1		113,86	50,60
5a	INCR. SISMICO BASSO_M2		132,42	58,85
5b	INCR. SISMICO ALTO_M1		81,22	36,10
5c	INCR. SISMICO ALTO_M2		95,32	42,36
6	INCR. IDRODINAMICO		0,00	0,00
7	INERZIA ORIZZONTALE		49,13	21,84
8	INERZIA VERT (BASSO)	10,92		

22.4. Riassunto sollecitazioni massime piedritto

Si riportano di seguito le massime sollecitazioni calcolate per il piedritto ed adottate per le verifiche strutturali.

22.4.1. Combinazioni SLU - SLV

	CC	N [kN]	M[kNm]	V[kN]
Filo soletta _V_max	2_SLU_STR	71,75	275,40	170,77
1/4 spessore soletta_M_max	2_SLU_STR	75,25	310,94	184,69
Asse soletta_M_max	2_SLU_STR	78,75	349,31	199,13

22.4.2. Combinazioni SLE

1/4 soletta _CAR

	CC	N [kN]	M[kNm]
Filo soletta _QP	1_QP	71,75	114,87
Filo soletta _FR	2_FR	71,75	177,91
Filo soletta _CAR	2_CAR	71,75	198,92
1/4 soletta _QP	1_QP	75,25	132,51
1/4 soletta _FR	2_FR	75,25	201,85

2_CAR

224,96

75,25

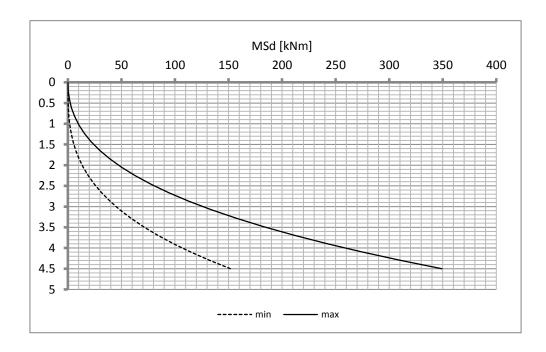
22.5. Riassunto massime sollecitazioni soletta

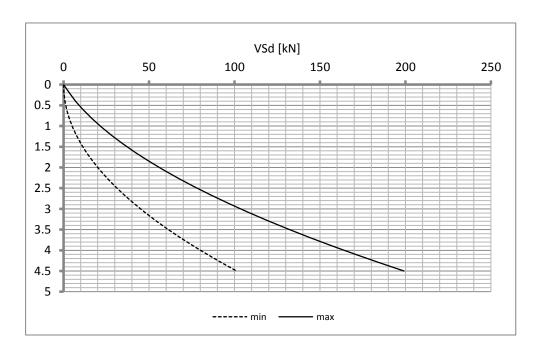
Si riportano di seguito le massime sollecitazioni calcolate nella soletta di fondazione ed adottate per le verifiche strutturali.

22.5.1. Combinazioni SLU - SLV

	CC	x[m]	M[kNm]	V[kN]
Filo piedritto SX_V_max	1_SLU_STR	0,350	313,698	100,937
Filo piedritto DX_V_max	3_SLU_STR	6,350	117,907	-91,723
1/4 spessore piedritto_M_max	2_SLU_STR	0,175	335,463	79,482
Asse piedritto_M_max	2_SLU_STR	0,000	349,313	78,750
Mezzeria_M_min	2_SLV_STR	4,790	-28,647	-16,193

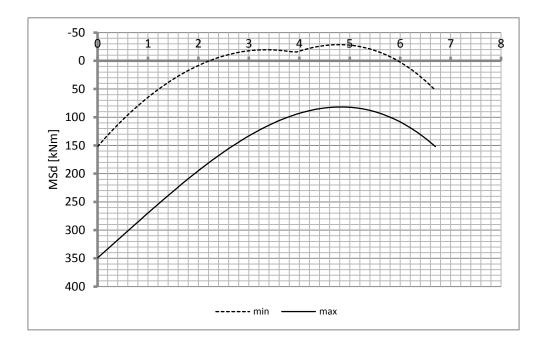
22.5.2. Combinazioni SLE

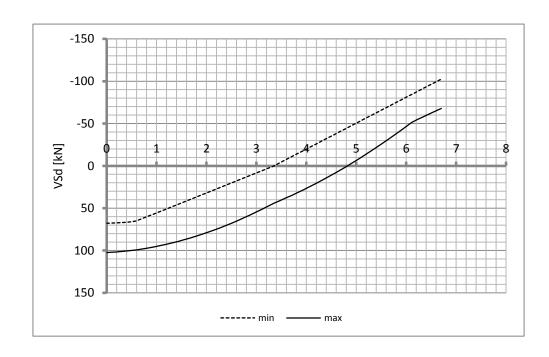

	CC	x[m]	M[kNm]
Filo piedritto _QP	1_QP	0,350	125,72
Filo piedritto _FR	2_FR	0,350	201,02
Filo piedritto _CAR	2_CAR	0,350	226,13
1/4 piedritto _QP	1_QP	0,175	138,45
1/4 piedritto _FR	2_FR	0,175	214,22
1/4 piedritto _CAR	2_CAR	0,175	239,48
Mezzeria _QP	1_QP	3,350	19,29
Mezzeria _FR	1_FR	3,350	19,29
Mezzeria_CAR	1_CAR	3,350	19,29


22.6. Diagrammi di inviluppo SLU-SLV

22.6.1. Piedritti

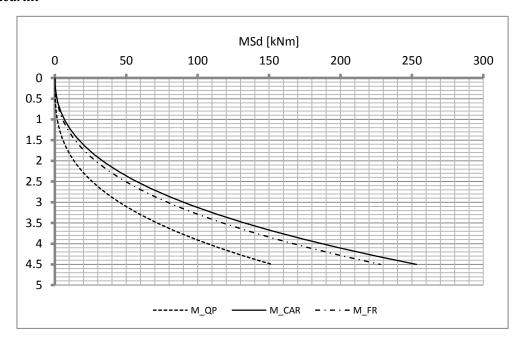
<u>Momento</u>

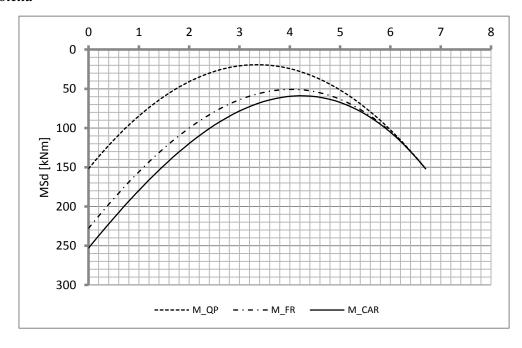

Taglio



22.6.2. Soletta

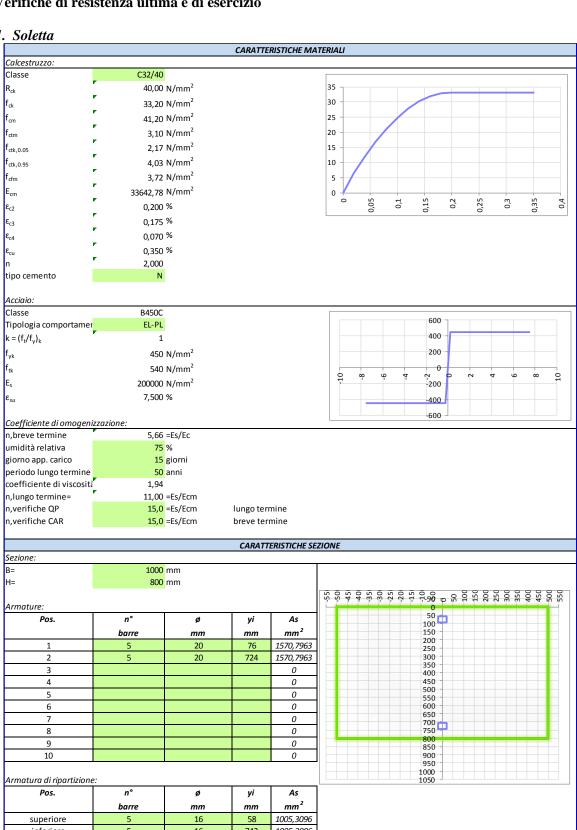
Momento


<u>Taglio</u>

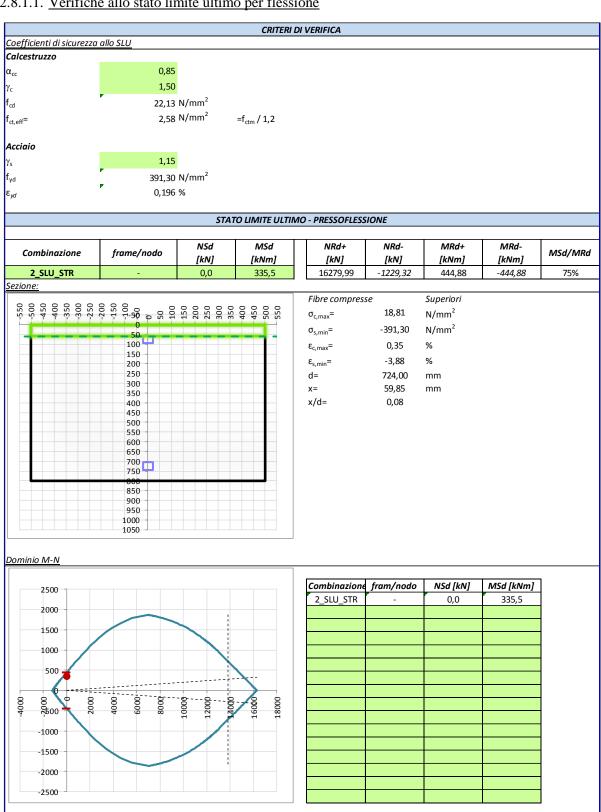


22.7. Diagrammi di inviluppo SLE

22.7.1. Piedritti



22.7.2. Soletta


22.8.1. Soletta

Pos.	n°	ø	yi	As
	barre	mm	mm	mm²
superiore	5	16	58	1005,3096
inferiore	5	16	742	1005,3096

22.8.1.1. Verifiche allo stato limite ultimo per flessione

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 Codifica Documento E E2 CL SIZ1 F0 001 A 163 di 169

22.8.1.2. Verifiche allo stato limite ultimo per taglio

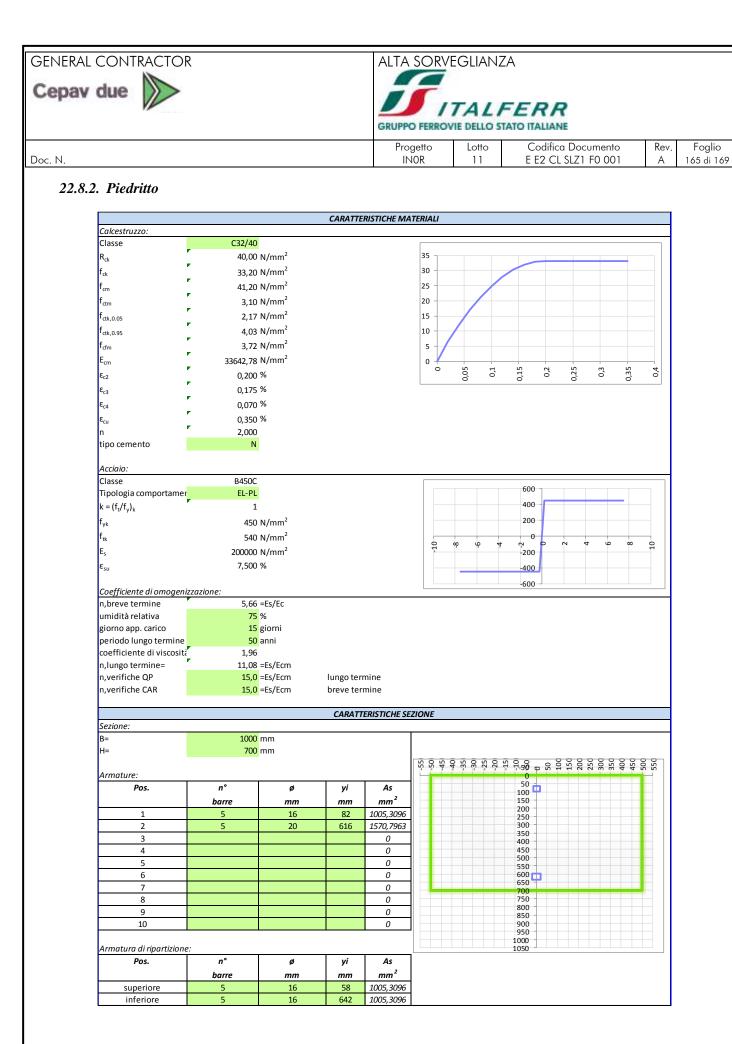
CALCESTRUZZO				
Calsse calcestruzzo		C32/40		
Resistenza cubica caratteristica	Rck	40,00 Mpa		
Resistenza cilindrica caratteristica	f_{ck}	33,2 Mpa		

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

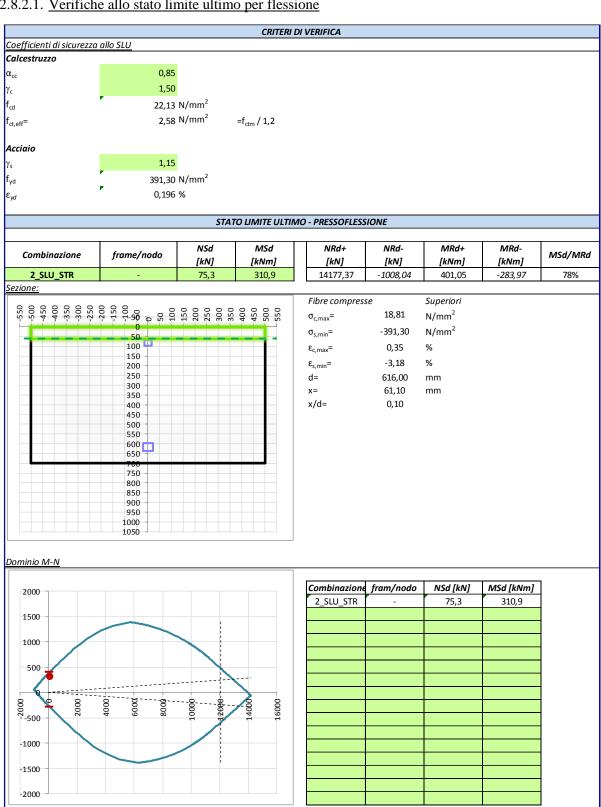
	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γс	1,50
Coefficiente riduttivo per resistenze di lunga durata	$lpha_{ m cc}$	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

	GEOMETRIA SEZIONE C.A.							
Base	b							
Altezza	h		800	mm				
Barre tese		numero barre	diametro barre [mm]	copriferro in asse barra [mm]	Area barre [mm2]			
strato1		5	20	76	1571			
strato2		0	0	0	0			
strato3		0	0	0	0			
strato4		0	0	0	0			
strato5		0	0	0	0			
Area barre tese	A_s		1571	mm2				
Posizione della barra equivalente	c*		76 mm					

SOLLECITAZIONI							
Load Case		1_SLU_STR					
Frame		-					
Azione assiale (+ di compressione)	N_{Ed}	0	kN				
Taglio	V_{Ed}	100,94	kN				


VER	VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO								
Altezza utile della sezione	d	724 mm							
Coefficiente	k	1,53							
Rapporto di armatura longitudinale	ρl	0,22%							
Tensione assiale media	$\sigma_{ m cp}$	0,00 N/mm2							
	0.2 x f _{cd}	3,76 N/mm2							
	ν_{min}	0,38 N/mm2							
Resistenza al taglio minima	$V_{\sf rd,min}$	275,13 kN							
Resistenza al taglio senza armatura	V_{rd}	275,13 kN							
Verifica		0,37 <u>Verifica soddisfatta</u>							

Non è necessario prevedere armatura a taglio.


22.8.1.3. Verifiche allo stato limite di esercizio

	mene ano state								
		PA	RAMETRI V	ERIFICA FESS	UF	RAZIONE			
kt=	0,40		(0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)						
k ₁ =	0,80		(0,8=barre	ad aderenza	m	igliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato)					
k ₄ =	0,425		(valore rad	ccomandato)					
			CRITI	ERI DI VERIFIC	CA.				
Fessurazione									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggress	ive	e; 3- Molto	aggressive		
	Aggressive			, 33		,	Jg 311		
Armature:	2		1-Sensibili;	: 2-Poco sens	ibil	li .			
	Poco sensibilie								
<u>Tensioni in esercizio</u>									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	σ _c / fck	$\sigma_{\rm s}$ / fyk	[N/mm ²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	DLLECITAZIONI SLI	E (N+ di con	npressione	N	1+ tende le	fibre infer	iori)	
Fessurazione			•	•			-	•	
Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]		w _d	W _{lim}	MO-Mf	
Cartteristica	2 CAR	_	0,0	226,1		[mm] Msd <mf< td=""><td>[mm] 0,200</td><td>[kNm] 307,40</td><td>-</td></mf<>	[mm] 0,200	[kNm] 307,40	-
Tensioni in esercizio	2_0/11		0,0	220,1	!		0,200	307,10	
			N	М		σ _{c.min}	$\sigma_{s,max}$	$\sigma_{\rm s.min}$	
Combinazione	n. combinazione	nodo	[kN]	[kNm]		[N/mm²]	[N/mm ²]	[N/mm ²]	
Quasi permanente	1_QP	-	0,0	138,5		-2,34	131,60	-17,66	Sezione parzializzata
Cartteristica	2_CAR	-	0,0	239,5		-4,06	227,64	-30,55	Sezione parzializzata

22.8.2.1. Verifiche allo stato limite ultimo per flessione

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 11 Codifica Documento E E2 CL SIZ1 F0 001 A 167 di 169

22.8.2.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO							
Calsse calcestruzzo C32/40							
Resistenza cubica caratteristica	Rck	40,00 Mpa					
Resistenza cilindrica caratteristica	f_{ck}	33,2 Mpa					

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γс	1,50
Coefficiente riduttivo per resistenze di lunga durata	$lpha_{ m cc}$	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

	GEOMETRIA SEZIONE C.A.								
Base	b		1000						
Altezza	h		700						
Barre tese		numero barre	diametro barre [mm]	copriferro in asse barra [mm]	Area barre [mm2]				
strato1		5	20	84	1571				
strato2		0	0	0	0				
strato3		0	0	0	0				
strato4		0	0	0	0				
strato5		0	0	0	0				
Area barre tese	A_s		1571	mm2					
Posizione della barra equivalente	c*		84	mm					

SOLLECITAZIONI							
Load Case		2_SLU_STR					
Frame		-					
Azione assiale (+ di compressione)	N_{Ed}	71,75	kN				
Taglio	V_{Ed}	170,77	kN				

VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO							
Altezza utile della sezione	d	616 mm					
Coefficiente	k	1,57					
Rapporto di armatura longitudinale	ρl	0,25%					
Tensione assiale media	$\sigma_{ m cp}$	0,10 N/mm2					
	0.2 x f _{cd}	3,76 N/mm2					
	v_{\min}	0,40 N/mm2					
Resistenza al taglio minima	$V_{rd,min}$	253,81 kN					
Resistenza al taglio senza armatura	$V_{\rm rd}$	253,81 kN					
Verifica		0,67 Verifica soddisfatta					

Non è necessario prevedere armatura a taglio.

22.8.2.3. Verifiche allo stato limite di esercizio

2_CAR

Cartteristica

		PA	RAMETRI V	ERIFICA FES.	SUI	RAZIONE			
kt=	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)								
k ₁ =	0,80		(0,8=barre ad aderenza migliorata; 1,6= barre liscie e trefoli)						
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato)				
			CRITI	ERI DI VERIFI	CA				
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	2	
	Aggressive								
Armature:	2	1-Sensibili; 2-Poco sensibili							
	Poco sensibilie								
Tensioni in esercizio									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	$\sigma_{\rm c}$ / fck	σ _s / fyk	[N/mm ²]	[N/mm ²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	SC	OLLECITAZIONI SLI	E (N+ di con	npressione -	- A	Л+ tende le	fibre infer	iori)	
Fessurazione			•				, , .	•	
			N	М		w _d	W _{lim}	M0 - Mf	
Combinazione	n. combinazione	frame/nodo	[kN]	[kNm]		[mm]	[mm]	[kNm]	
Cartteristica	2_CAR	-	71,8	198,9		Msd <mf< td=""><td>0,200</td><td>241,92</td><td>-</td></mf<>	0,200	241,92	-
Tensioni in esercizio								•	
			N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	nodo	[kN]	[kNm]		[N/mm ²]	[N/mm ²]	[N/mm ²]	
Quasi permanente	1 QP	_	75,3	132,5		-3,05	125,80		Sezione parzializzata

225,0

-5,15

229,71

-36,42 Sezione parzializzata

23. RIFERIMENTI

23.1. Documenti referenziati

- Rif. [1] Cepav due, documento n° INOR 11 E E2 RB SLZ1 00 001, intitolato "RELAZIONE GEOTECNICA SLZ1 SOTTOVIA S.C. VIA RAMPA PK 149+888,702 SIFONE CANALE DI SOMMACAMPAGNA".
- Rif. [2] Cepav due, documento n° INOR 11 E E2 CL SLZ1 F0 002, intitolato "SLZ1 SOTTOVIA S.C. VIA RAMPA PK 149+888,702 ALLEGATO ALLA RELAZIONE DI CALCOLO SIFONE CANALE DI SOMMACAMPAGNA TABULATI DI CALCOLO".

23.2. Documenti correlati

Non sono presenti documenti correlati.

23.3. Documenti superati

Non sono presenti documenti superati.