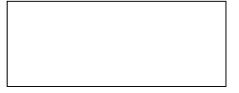


NUOVA LINEA TORINO LIONE - NOUVELLE LIGNE LYON TURIN PARTE COMUNE ITALO-FRANCESE - PARTIE COMMUNE FRANCO-ITALIENNE

LOTTO COSTRUTTIVO 1 /LOT DE CONSTRUCTION 1 CANTIERE OPERATIVO 02C/CHANTIER DE CONSTRUCTION 02C RILOCALIZZAZIONE DELL'AUTOPORTO DI SUSA DEPLACEMENT DE L'AUTOPORTO DE SUSE PROGETTO ESECUTIVO - ETUDES D'EXECUTION CUP C11J05000030001 - CIG 682325367F

OPERE D'ARTE MINORI CORDOLO CUSPIDI RAMPE DI SVINCOLO CARREGGIATA A32 SUD RELAZIONE DI CALCOLO

Indice	Date/ Data	Modifications / Modifiche	Etabli par / Concepito da	Vérifié par / Controllato da	Autorisé par / Autorizzato da
0	30/04/2017	Première diffusion / Prima emissione	N.MORDA' (DoMo Studio)	L. BARBERIS (MUSINET Eng.)	F. D'AMBRA (MUSINET Eng.)
Α	31/08/2017	Revisione a seguito commenti TELT Rèvision suite aux commentaires TELT	N.MORDA' (DoMo Studio)	L. BARBERIS (MUSINET Eng.)	F. D'AMBRA (MUSINET Eng.)
В	30/04/2018	Recepimento istruttoria validazione RINA Check	P.LESCE (MUSINET Eng.)	P.D'ALOISIO (MUSINET Eng.)	L. BARBERIS (MUSINET Eng.)


1	0	2	С	C	1	6	1	6	7	0	С	Α	0	W	G
Lot Cos. Lot.Con.		itiere opera er de const			Contratto/Contrat				Opera	Oeuvre/		Tratto Tronçon	Parte Partie		

Е	G	С	R	Е	0	8	3	8	В
Fase Phase		cumento e de ment		getto oject			locumento e document		Indice Index

INTEGRAZIONE PRESTAZIONI SPECIALISTIC	HE/
/INTÉGRATION SPÉCIALISTE	

Dott. Ing. Piero D'ALOISIO Albo di Torino N° 5193 S

SCALA / ÉCHELLE

IL PROGETTISTA/LE DESIGNER

Dott. Arch. Corrado GIOVANNETTI Albo di Torino N° 2736 L'APPALTATORE/L'ENTREPRENEUR

IL DIRETTORE DEI LAVORI/LE MAÎTRE D'ŒUVRE

TILT sas - Saxos Tochroice - Bibmert Hember - 13 alike du Lac de Comstono CS 90281 - 73075 Le Bourget du Lac cedex (France) Til: -33 (c) 479 68 65 50 Fax -33 (c) 479 68 65 75 RCS Chambery 439 566 952 - TVA FR 0343956962 Procedé Til Tilous debutes (Response Tilous) Till i durbs responsi

SOMMAIRE / INDICE

1.	PREMESSA	4
2.	NORMATIVA DI RIFERIMENTO	4
3.	CARATTERISTICHE DEI MATERIALI	5
	1.1 Conglomerato di classe di resistenza C28/35	5
	1.2 Acciaio da c.a. tipo B450C saldabile	5
4.	DESCRIZIONE DELLE OPERE	6
5.	. CARATTERIZZAZIONE MECCANICA DEI TERRENI	10
6.	. CARATTERIZZAZIONE SISMICA DEI TERRENI	10
7	SCHEMATIZZAZIONE DELLE STRUTTURE	11
, .	7.1 Geometria di calcolo	
	7.2 Analisi dei carichi	
	7.2.1 Carichi permanenti strutturali	
	7.2.2 Carichi permanenti	
	7.2.3 Altri carichi permanenti	
	7.2.4 Carichi variabili da traffico	
	7.2.5 Urto di un veicolo in svio (azione eccezionale)	14
	7.3 Combinazioni di carichi SLU	
8.	CRITERI DI CALCOLO GEOTECNICO E STRUTTURALE	16
9.	. VERIFICHE AGLI STATI LIMITE ULTIMI E DI ESERCIZIO	21
	9.1 Muro tipo A/G	
	9.1.1 Verifica di equilibrio di corpo rigido EQU	
	9.1.2 Verifica scorrimento piano di posa GEO	
	9.1.3 Verifica collasso carico limite fondazione –terreno GEO	
	9.1.4 Verifica del muro	
	9.1.4.1 Verifiche a stato limite ultimo	27
	9.1.5 Verifica a SLE elevazione	36
	9.1.6 Verifica di resistenza della fondazione	37
	9.1.7 Verifica a SLE fondazione	45
	9.2 Muro tipo B	
	Le azioni agenti sono:	46
	Verifiche flessione orizzontale	48
	Verifiche taglio orizzontale	50
	Verifiche a torsione	51
	9.3 Muro tipo C	
	9.3.1 Verifica di equilibrio di corpo rigido EQU	52
	9.3.2 Verifica scorrimento piano di posa GEO	
	9.3.3 Verifica collasso carico limite fondazione –terreno GEO	
	9.3.4 Verifica del muro	57
	9.3.4.1 Verifiche a stato limite ultimo	57
	9.3.5 Verifica a SLE elevazione	

9.3.6	Verifica di resistenza della fondazione	66
9.3.7	Verifica a SLE fondazione	74
9.4	Muro tipo F	75
9.4.1	Verifica di equilibrio di corpo rigido EQU	75
9.4.2	Verifica scorrimento piano di posa GEO	77
9.4.3	Verifica collasso carico limite fondazione –terreno GEO	78
9.4.4	Verifica del muro	81
9.	4.4.1 Verifiche a stato limite ultimo	81
9.4.5	Verifica SLE elevazione	
9.4.6	Verifica di resistenza della fondazione	90
9.5	Verifiche cordolo tratto D	98
10.	CONCLUSIONI	102
ALLEGA	ATO 1: AZIONE DEL CARICO TANDEM A TERGO	102
	LISTE DES FIGURES / INDICE DELLE FIGURE	
Figura 1	– Pianta scavi e sviluppata muro SV2	6
	– Pianta scavi e sviluppata muro SV1	
	- Sezione muro SV2 - TRATTO A e B	
_	-Sezione muro SV2 - TRATTO C	
_	– Sezione muro SV1 - TRATTO D e E	
_	- Sezione muro SV1 - TRATTO F e G	
_	- Sezione muro	
	– Sezioni di verifica del muro	
	– Azioni sulla fondazione	
•	0 – Meccanismo mensola tozza	
_	1 – Sezioni di verifica	
_	2 – Modello Fem tratto B	
_	3 – Sezioni di verifica del muro	
_	4 – Azioni sulla fondazione	
O	5 – Meccanismo mensola tozza	
	6 – Sezioni di verifica	
_	7 – Sezioni di verifica del muro	
_	8 – Azioni sulla fondazione	
_	9 – Meccanismo mensola tozza	
_	0 – Sezioni di verifica	
Figura 2	1– Sezione Cordolo testa muro	98

1. Premessa

Il presente elaborato è parte integrante del Progetto di Delocalizzazione dell'Autoporto e dell'area di servizio dall'attuale sito ubicato nel comune di Susa (TO). L'area individuata per la realizzazione del nuovo Autoporto ricade all'interno del territorio comunale di San Didero (TO).

In particolare, in questo elaborato sono illustrate le scelte progettuali e le verifiche di sicurezza relative ai muri di sostegno delimitanti situati nelle zone dei sovrapassi SV1 e SV2 in progetto.

Il documento è stato redatto in osservanza delle Norme Tecniche per le Costruzioni di cui al DM 14/01/2008, utilizzando la metodologia di verifica agli Stati Limite.

2. Normativa di riferimento

Nella stesura della presente relazione si sono seguite le indicazioni contenute nella normativa vigente. In particolare sono state considerate le seguenti normative:

- Legge 5 Novembre 1971 n. 1086 "Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica";
- Circolare LL.PP. 14 Febbraio 1974 n. 11951 "Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica Istruzioni per l'applicazione";
- D.M. LL.PP. 14 Gennaio 2008 "Norme tecniche per le costruzioni";
- Circolare LL.PP. 2 Febbraio 2009 n. 617- Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008.

3. Caratteristiche dei materiali

1.1 Conglomerato di classe di resistenza C28/35

(per i muri prefabbricati e cordolo testa muro)

Modulo elastico	$E_{c} = 32588$	MPa
Coefficiente di Poisson	v = 0.20	
Coefficiente di dilatazione termica	$\alpha = 10 \times 10^{-6}$	°C-1
Coefficiente parziale di sicurezza	$\gamma_c = 1.5$	
Resistenza caratt. cubica a compressione	$R_{ck} = 35$	MPa
Resistenza caratt. cilindrica a compressione	$f_{\rm ck} = 29.05$	MPa
Resistenza media cilindrica a compressione	$f_{\rm cm} = 37.05$	MPa
Resistenza media a trazione semplice	$f_{\rm ctm} = 2.83$	MPa
Resistenza caratteristica a trazione semplice	$f_{\rm ctk} = 1.98$	MPa
Resistenza media a trazione per flessione	$f_{\rm cfm} = 3.40$	MPa
Resistenza di calcolo a compressione	$f_{\rm cd} = 16.46$	MPa
Resistenza di calcolo a trazione	$f_{\rm ctd} = 1.32$	MPa
Resistenza tang. caratteristica di aderenza	$f_{\rm bk} = 4.46$	MPa
Resistenza tang. di aderenza di calcolo	$f_{\rm bd} = 2.97$	MPa

1.2 Acciaio da c.a. tipo B450C saldabile

(per barre e reti di diametro 6.0mm $\leq \emptyset \leq 40.0$ mm)

Coefficiente parziale di sicurezza	$\gamma_s = 1.15$	
Tensione caratteristica di snervamento	$f_{\rm yk} \ge 450$	MPa
Tensione caratteristica di rottura	$f_{\rm tk} \ge 540$	MPa
Allungamento	$A_{gt\ k} \ge 7.5\ \%$	
Resistenza di calcolo	$f_{\rm yd} = 391$	MPa

4. Descrizione delle opere

I tratti di muro in oggetto hanno altezze variabili lungo le sviluppate e sono pertanto realizzati con diverse sezioni tipo, distinte con le lettere A, B, C, D, E, F, G. In particolare i tratti A, B, C delimitano il sovrapasso SV2 mentre i restanti il sovrapasso SV1.

I muri sono gettati in opera costituiti da una suola in c.a. e da un paramento sempre in c.a di spessore 40cm. In sommità, presentano un ringrosso su cui vengono ancorate le barriere di sicurezza.

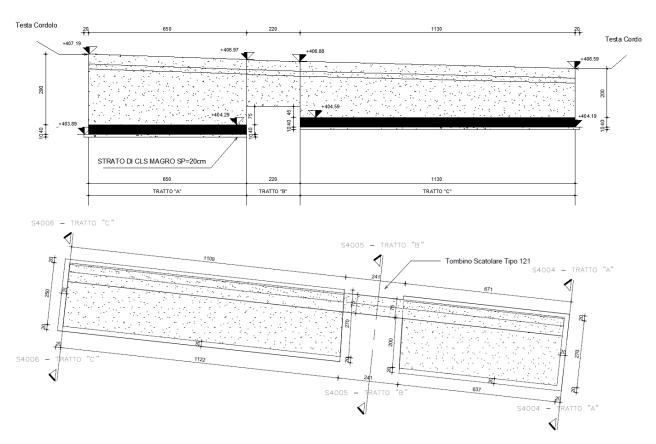


Figura 1 – Pianta scavi e sviluppata muro SV2

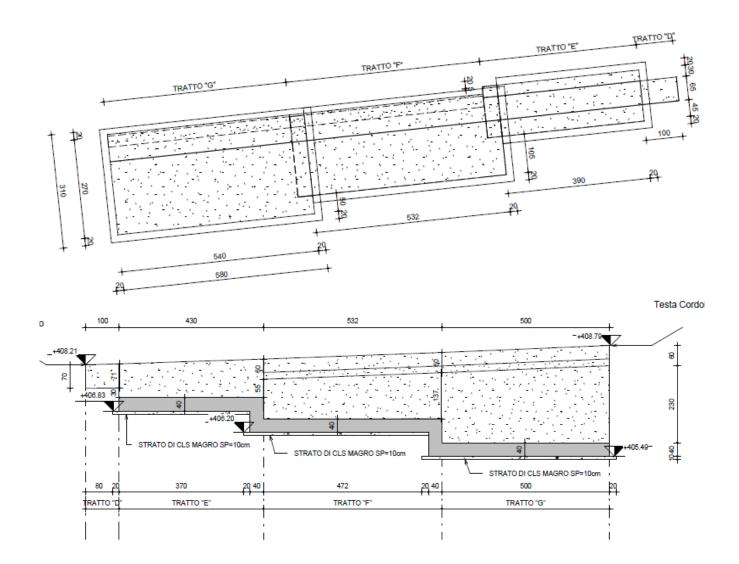


Figura 2 – Pianta scavi e sviluppata muro SV1

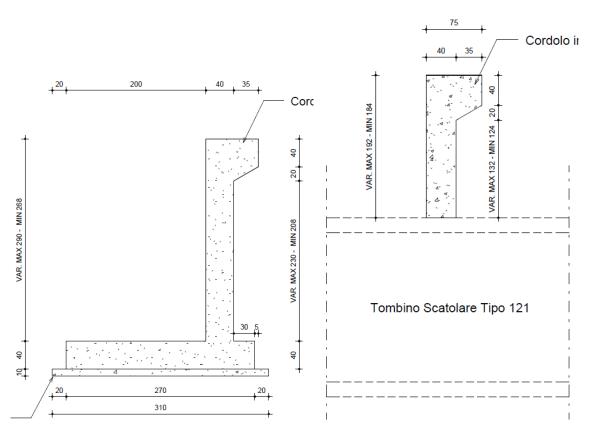


Figura 3 – Sezione muro SV2 - TRATTO A e B

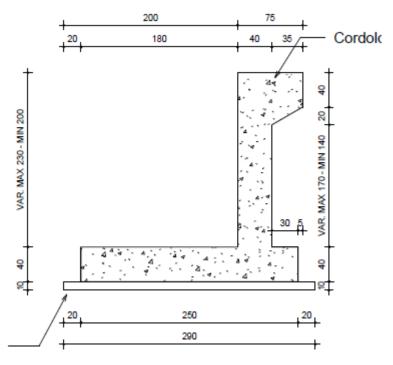


Figura 4 –Sezione muro SV2 - TRATTO C

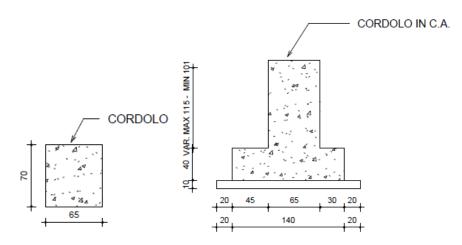


Figura 5 – Sezione muro SVI - TRATTO D e E

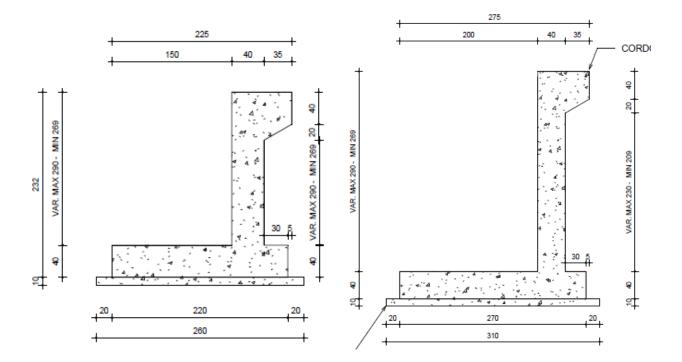


Figura 6 – Sezione muro SV1 - TRATTO F e G

5. Caratterizzazione meccanica dei terreni

Tutti i muri trattati sostengono dei nuovi rilevati. Pertanto il terrapieno a tergo di essi è stato caratterizzato con i seguenti parametri geotecnici:

Rilevato:

peso per unità di volume $\gamma = 20 \text{ kN/m}^3$ angolo di attrito di calcolo $\phi' = 35^\circ$ coesione c' = 0 kPa

Le fondazioni insistono su un terreno di riporto avente i seguenti parametri geotecnici:

Riporto

peso per unità di volume $\gamma = 19 \text{ kN/m}^3$ angolo di attrito di calcolo $\phi' = 28^\circ$ coesione c' = 0 kPa

6. Caratterizzazione sismica dei terreni

Con riferimento al sottosuolo nell'area di progetto, la caratterizzazione ai fini della valutazione della risposta sismica locale è stata effettuata in fase di progettazione mediante indagini geofisiche in grado di stimare la distribuzione delle onde di taglio nei primi 30 m. In particolare, come ampiamente descritto nella Relazione geologico-geotecnica, sono state effettuate indagini di tipo Tomografiche elettriche, Down-hole e MASW che hanno permesso di classificare il sottosuolo come di categoria B, ossia "Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 360 m/s e 800 m/s (ovvero $N_{SPT,30} > 50$ nei terreni a grana grossa e $c_{u,30} > 250$ kPa nei terreni a grana fina)"

Dato l'andamento clivometrico, la zona si classifica come categoria topografica T1, caratteristica per superficie pianeggiante e rilievi isolati con inclinazione media $i \le 15^{\circ}$.

Per le opere non provvisorie in progetto è stata fissata una vita utile $V_N = 100$ anni e la Classe d'Uso IV ($C_U = 2$). Il periodo di riferimento per l'azione sismica risulta dunque essere:

 $V_R = V_N \times C_U = 200 \text{ anni}$

Le opere in progetto ricadono nel comune di San Didero (TO), cui competono i seguenti parametri sismici:

	_		_	
SLATO	T_R	a_{g}	Fo	Tc
LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.077	2.426	0.242
SLD	201	0.096	2.427	0.250
SLV	1898	0.200	2.524	0.279
SLC	2475	0.216	2.539	0.282

Da questi parametri e dalla categoria di sottosuolo, è possibile ricavare il coefficiente di amplificazione stratigrafica Ss con la formula riportata nella tabella 3.2.V delle NTC 2008. Dalla categoria topografica si ricava invece il coefficiente di amplificazione topografica S_T. I valori dei due coefficienti vengono di seguito riassunti per lo Stato Limite di Danno (SLD) e lo Stato Limite di Salvaguardia della Vita (SLV).

	S_{S}	S_{T}
SLD	1.200	1.000
SLV	1.198	1.000

7. Schematizzazione delle strutture

L'analisi delle opere è stata eseguita con modelli semplificati avvalendosi di fogli di calcolo, considerando le azioni derivanti dai pesi propri di muro e terreno di riempimento e dai sovraccarichi accidentali.

In condizioni sismiche, l'analisi è stata eseguita mediante metodo pseudo-statico, ipotizzando il cuneo di terreno a tergo del paramento dell'opera in equilibrio limite attivo, così come specificato al paragrafo 7.11.6.2.1 delle NTC 2008.

IL calcolo è condotto utilizzado, per le usuali verifiche dei muri, fogli elettronici specificamente implementati; per verifiche integrative di dettaglio il codice MIDAS-GEN 2017

7.1 Geometria di calcolo

Le tipologia dei muri sono le seguenti

- *Muro tipo A-G*: suola 2.00x0.40m, altezza muro 2.90/2.68 m.
- *Muro tipo B* situato sopra il tombino : di altezza 1.92/1.84 m.
- *Muro tipo C*: suola 1.80x.0.40m, altezza muro 2.30/2.00 m.
- *Muro tipo E* :suola 1.40x.0.40m, altezza muro 1.15/1.00 m.
- *Muro tipo F:* suola 1.50x.0.40m, altezza muro 2.00/1.78 m.

IL tratto D è costituito da un cordolo rettangolare di dimensioni 65x70 cm.

7.2 Analisi dei carichi

7.2.1 Carichi permanenti strutturali

I carichi permanenti strutturali sono rappresentati dal peso del muro avente peso per unità di volume $\gamma=25~kN/m^3$. Il terreno di riempimento a tergo del muro, avente peso per unità di volume $\gamma=20~kN/m^3$ viene considerato alla stregua di un permanente strutturale.

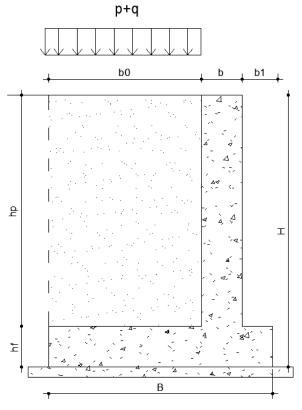


Figura 7 – Sezione muro

Le varie verifiche sono state condotte considerando le sollecitazioni agenti sul muro.

7.2.2 Carichi permanenti

• Le spinte statiche del terreno a monte sono state valutate coerentemente con la caratterizzazione mostrata al paragrafo 5.

Il coefficiente di spinta attiva è stato valutato utilizzando la teoria del cuneo di rottura di Coulomb, che tiene conto, oltre alle ipotesi base della teoria di Rankine, anche della presenza dell'attrito fra terra e muro δ e della superficie interna del paramento del muro comunque inclinata di un angolo ψ . Lo sviluppo analitico della teoria di Coulomb è stato definito da Muller-Breslau, i quali valutano il coefficiente di spinta attiva in condizione statica come:

$$k_a = \frac{sen^2(\psi + \varphi)}{sen^2(\psi) \cdot sen(\psi - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \beta)}{sen(\psi - \delta) \cdot sen(\psi + \beta)}}\right]^2}$$

dove.

 φ è l'angolo di resistenza a taglio del terreno;

 δ è l'angolo di attrito terra-muro.

 ε è l'inclinazione rispetto all'orizzontale della superficie del terreno;

 β è l'inclinazione rispetto alla verticale della parete interna del muro.

Per il calcolo della spinta del terreno a favore di sicurezza il muro è stato considerato verticale rispetto al terreno.

7.2.3 Altri carichi permanenti

Per tenere conto della barriera di sicurezza ancorata sul cordolo, si è considerata una forza verticale in testa pari a 1 kN/m.

7.2.4 Carichi variabili da traffico

I coronamenti dei muri in esame costituiscono i cordoli delle sovrastanti carreggiate stradali. La maggior parte di essi inoltre è in adiacenza ai sovrappassi di ingresso e di uscita. Per la valutazione dei carichi verticali da traffico, pertanto, si è fatto riferimento a quanto indicato al par. C5.1.3.3.7.1 delle Istruzioni: ossia si è considerato applicato sul terrapieno lo schema di carico 1 per i ponti.

I calcolo di dettaglio sono svolti in allegato 1, e portano a poter considerare il seguente valore del carico variabile: q = 41.23 kN/mq

7.2.5 Urto di un veicolo in svio (azione eccezionale)

Noto il momento di plasticizzazione e la geometria dei profili costituenti la barriera guard-rail in testa al muro, sono state determinate le massime azioni che essa è in grado di trasmettere al muro.

$$M_{pl} = W_{pl} f_u = 83013 \times 430 \times 10^{-6} = 35.7 \text{ kNm}$$

$$F_{pl} = M_{pl}/h = 35.7/1 = 35.7 \text{ kN}$$

Si ipotizza che in caso d'urto si abbia la plasticizzazione di 3 montanti distanti l'uno dall'altro 1.5m.

Il carico verticale concomitante è stato determinato in accordo con quanto prescritto dal par. 5.1.3.3 delle NTC 2008.

Azione sismica

L'analisi sismica dei muri è stata eseguita con il metodo pseudo-statico. I coefficienti sismici orizzontale k_h e verticale k_v sono valutati con le relazioni:

$$k_h = \beta_m \frac{a_{max}}{g}$$

$$k_v = \pm 0.5 \cdot k_h$$

dove.

 β_m è un coefficiente dipendente dal valore dell'accelerazione orizzontale a_g e dalla tipologia di sottosuolo. Nel caso in esame, essendo il sottosuolo di categoria B e $a_g(g)$ compresa tra 0.1 e 0.2, si assume β_m =0.24;

kh è il coefficiente sismico in direzione orizzontale;

k_v è il coefficiente sismico in direzione verticale:

L'accelerazione massima viene valutata come:

$$\frac{a_{\max}}{g} = S_S \cdot S_T \cdot \frac{a_g}{g}$$

dove:

 $S_s = 1.198$ tiene conto dell'amplificazione stratigrafica;

 $S_t = 1.000$ tiene conto dell'amplificazione topografica;

 $\frac{a_g}{g} = 0.200$ è l'accelerazione orizzontale massima attesa al sito per lo SLV.

La valutazione della spinta in condizioni dinamiche viene effettuata con il metodo di Mononobe e Okabe:

per
$$\beta \le \varphi - \theta$$

$$k_{a,s} = \frac{sen^2(\psi + \varphi - \theta)}{cos(\theta) \cdot sen^2(\psi - \theta - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \beta - \theta)}{sen(\psi - \theta - \delta) \cdot sen(\psi + \beta)}}\right]^2}$$

per
$$\beta > \varphi - \theta$$

$$k_{a,s} = \frac{sen^{2}(\psi + \varphi - \theta)}{cos(\theta) \cdot sen^{2}(\psi) \cdot sen(\psi - \theta - \delta)}$$

dove:

$$\theta$$
 è l'angolo tale che $tan\theta = \frac{k_h}{1 \pm k_v}$;

Sono state altresì considerate le forze di inerzia dovute al peso del muro e del terreno gravante sulla zattera di monte, valutate come:

$$F_i = k_h \cdot W_i$$

In fase sismica è stato considerato inoltre un sovraccarico accidentale pari a circa il 20% di quello considerato in condizioni statiche.

7.3 Combinazioni di carichi SLU

Tutte le condizioni di carico elementari di carico possono essere raggruppate nei seguenti quattro gruppi di condizioni:

- G_k : azioni dovute ai carichi permanenti ovvero al peso proprio, sovraccarichi permanenti;
- P_k: azioni dovute ai carichi di precompressione;
- Q_{ik}: azioni dovute ai sovraccarichi variabili;
- A: azioni eccezionali;

E : azioni dovute ai carichi simici orizzontali e verticali.

Secondo quanto previsto dalle NTC 2008, si considerano tutte le combinazioni non sismiche del tipo:

$$F_d = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_p \cdot P_k + \gamma_q \left[Q_{1k} + \sum_i (\Psi_{0i} \cdot Q_{ik}) \right]$$

essendo:

	Coef.		Condizione	
Carichi	γ _F (γ _E)	EQU	STR (A1)	GEO (A2)
Permanenti	γ _{G,1}	0,9÷1,1	1,0÷1,3	1,0÷1,0
Perm.non strutturali	γ _{G,2}	0,0÷1,5	0,0÷1,5	0,0÷1,3
Variabili	γ _{Q,i}	0,0÷1,5	0,0÷1,5	0,0÷1,3

Coefficienti parziali per le azioni favorevoli-sfavorevoli

 $\gamma_p = 1.00$ (precompressione)

 $\Psi_{0i} = 0 \div 1.00$ (coefficiente di combinazione allo SLU per tutte le condizioni di carico elementari variabili per tipologia e categoria Q_{ik})

Si è anche studiata una *combinazione eccezionale* (con γ_{Gi} e γ_{Qi} tutti pari a 1 in accordo con la 2.5.6 delle NTC) per tenere conto degli effetti dell'urto per svio di un veicolo:

$$F_d = G_1 + G_2 + P_k + \left[A + \sum (\Psi_{2i} \cdot Q_{ik}) \right]$$

Le combinazioni sismiche considerate sono:

$$F_d = G_1 + G_2 + P_k + E + \left[\sum (\Psi_{2i} \cdot Q_{ik}) \right]$$

8. Criteri di calcolo geotecnico e strutturale

In generale, per ogni stato limite deve essere verificata la condizione:

$$E_d \le R_d$$

dove E_d rappresenta l'insieme amplificato delle azioni agenti, ed R_d l'insieme delle resistenze, queste ultime corrette in funzione della tipologia del metodo di approccio al calcolo eseguito, della geometria del sistema e delle proprietà meccaniche dei materiali e dei terreni in uso.

A seconda dell'approccio perseguito, sarà necessario applicare dei coefficienti di sicurezza o amplificativi, a secondo si tratti del calcolo delle caratteristiche di resistenza o delle azioni agenti.

In particolare, in funzione del tipo di verifica da eseguire, avremo, per le azioni derivanti da carichi gravitazionali, i seguenti coefficienti parziali:

Carichi	Coefficiente parziale γ _F (ο γ _E)	EQU	(A1) STR	(A2) GEO
Permanenti	$\gamma_{ m G1}$	0.9÷1.1	1.0÷1.3	1.0
Perm. non strutturali	$\gamma_{ m G2}$	0.0÷1.5	0.0÷1.5	0.0÷1.3
Variabili	$\gamma_{\mathrm{Q,i}}$	0.0÷1.5	0.0÷1.5	0.0÷1.3

Coefficienti parziali per le azioni favorevoli-sfavorevoli

Ai fini delle resistenze, in funzione del tipo di verifica da eseguire, il valore di progetto può ricavarsi in base alle indicazioni sotto riportate.

Parametro	Parametro di riferimento	Coefficiente parziale γ _M	M1	M2
Tangente dell'angolo di resistenza φ'	tan γ ' _K	γ_{arphi} ,	1.00	1.25
Coesione efficace	c' _K	γ _c ,	1.00	1.25
Resistenza non drenata	C_{uk}	γcu	1.00	1.40
Peso dell'unità di volume	γ	γ_{γ}	1.00	1.00

Coefficienti parziali per i parametri geotecnici del terreno

Partendo da questi coefficienti, è possibile definire le caratteristiche meccaniche dei terreni in funzione del tipo di approccio. In particolare avremo:

Le verifiche vengono effettuate con l'Approccio 2, che prevede una sola combinazione di coefficienti sia per le verifiche GEO che per quelle SLU:

Combinazione (A1+M1+R3)

I coefficienti parziali di sicurezza R3 sono pari a:

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	γ_R = 1.1

Lo stato limite di ribaltamento non prevede la mobilitazione della resistenza del terreno di fondazione e deve essere trattato come uno stato limite di equilibrio come corpo rigido (EQU), adoperando coefficienti parziali del gruppo M2 per il calcolo delle spinte ed il fattore parziale di sicurezza R_2 =1.0.

Nelle verifiche finalizzate al dimensionamento strutturale, il coefficiente γ_R non deve essere portato in conto.

Per quanto riguarda le verifiche in condizioni sismiche, esse verranno effettuate considerando, per i diversi stati limite, i coefficienti amplificativi delle azioni (A) di valore unitario, come indicato al punto C7.11.6.2 delle *Istruzioni per l'applicazione delle NTC 2008*.

Ricapitolando, le verifiche riportate nel seguito della presente saranno effettuate nei confronti dei seguenti stati limite e con gli approcci metodologici di fianco riportati.

SLU di tipo geotecnico (GEO) – Approccio 2

Collasso per carico limite dell'insieme fondazione – terreno A1+M1+R3

Scorrimento sul piano di posa A1+M1+R3

SLU di tipo strutturale (STR) - Approccio 2

Raggiungimento della resistenza negli elementi strutturali A1+M1+R3

SLU di equilibrio di corpo rigido (EQU)

Ribaltamento EQU+M2+R2

• Criterio di verifica a capacita portante della fondazione (GEO)

La verifica a carico limite della fondazione dei muri è stata eseguita facendo riferimento alla nota formula trinomia di Brich-Hansen (1970).

$$q_{\lim} = i_q \cdot N_q \cdot \gamma_1 \cdot D + i_c \cdot N_c \cdot c + i_\gamma \cdot N_\gamma \cdot \gamma_2 \cdot \frac{B}{2}$$

in cui:

- γ₁ è il peso dell'unità di volume del terreno presente al di sopra del piano di posa della fondazione;
- γ_2 è il peso dell'unità di volume del terreno presente al di sotto del piano di posa della fondazione;
- D è la profondità del piano di posa della fondazione;
- B è la larghezza della fondazione;
- N_q, N_c, N_γ sono coefficienti funzione dell'angolo di attrito del terreno presente al di sotto del piano di posa (Vesic);
- iq, ic, iγ sono i coefficienti correttivi di inclinazione del carico; essi dipendono dalla lunghezza L e dalla larghezza B della fondazione, dall'entità dei carichi verticale ed orizzontale agenti, dalla coesione e dall'angolo di attrito del terreno presente al di sotto del piano di posa.

In particolare, per la determinazione del carico verticale di esercizio, si pone:

$$q_{es} = \frac{N}{L! \cdot R!}$$

dove:

- N è la risultante delle azioni verticali agenti sulla fondazione nella condizione di carico considerata, comprensivi del peso della platea;
- L' è la lunghezza ridotta della fondazione;
- B' è la larghezza della fondazione.

La verifica è condotta considerando la fondazione infinitamente lunga.

Per tener conto dell'eccentricità del carico viene considerata, ai fini del calcolo, un larghezza di dimensioni ridotta pari a:

$$B' = B - 2e_R$$

con e_B eccentricità del carico.

• Criterio di verifica a scorrimento sul piano di posa (GEO)

La verifica allo scorrimento del muro consiste nell'assicurare la stabilità dell'opera nei confronti di un meccanismo di collasso tale per cui l'intera opera di sostegno va a scorrere sul piano di contatto con il terreno di fondazione. Pertanto essa risulta soddisfatta se la componente delle forze agenti nella direzione parallela al piano di scorrimento risulta

inferiore alla forza di attrito che si genera al contatto tra opera e terreno di fondazione. Tale forza risulta proporzionale al peso del muro ed è espressa dalla relazione (per terreni caratterizzati da $\varphi' \neq 0$ e c' = 0)

$$R = N \cdot tan\varphi'_d$$

dove:

R è la forza resistente allo scorrimento;

N è la risultante delle azioni verticali agenti sul piano di fondazione;

 φ 'd è l'angolo di resistenza a taglio del terreno di fondazione relativamente all'approccio di progetto.

• Criterio di verifica a ribaltamento (EQU)

Il meccanismo di collasso per ribaltamento per i muri di sostegno prevede la rotazione intorno all'estremità di valle del muro, che diventa il centro di rotazione dell'opera. La verifica risulta soddisfatta se:

$$\frac{M_S}{M_T} \ge R_2 = 1.00$$

dove:

 M_s è il momento stabilizzante rispetto al centro di rotazione dovuto al peso del muro; M_r è il momento ribaltante rispetto al centro di rotazione dovuto alla spinta del terrapieno e di eventuali sovraccarichi.

Nelle verifiche condotte per azioni sismiche, la spinta del terrapieno è stata valutata secondo il metodo pseudo-statico, come illustrato nel seguito; è stata altresì tenuto in conto il contributo instabilizzante svolto dalla forza di inerzia dovuta al peso del paramento.

• Criteri di verifica a presso(tenso) flessione delle sezioni in cemento armato (STR)

La verifica a flessione, condotta per la platea di fondazione, consiste nell'assicurare che in ogni sezione il momento resistente risulti superiore o uguale al momento flettente di calcolo.

Con riferimento alle sezioni presso-inflesse del paramento e semplicemente inflesse della zattera, le verifiche di resistenza (SLU) si eseguono controllando che:

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove:

 M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed} ;

 M_{Ed} è il valore di calcolo della componente flettente dell'azione.

Le verifiche di tutti gli elementi sono state effettuate in base a semplici schemi noti della Scienza delle Costruzioni.

• Criteri di verifica a taglio delle sezioni in cemento armato (STR)

Per elementi sprovvisti di armature trasversali resistenti a taglio, la resistenza a taglio V_{Rd} viene valutata sulla base della resistenza a trazione del calcestruzzo.

La verifica di resistenza si pone con:

$$V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{\frac{1}{3}}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge (v_{\min} + 0.15 \cdot \sigma_{cp}) \cdot b_w \cdot d$$

con:
$$k = 1 + \left(\frac{200}{d}\right)^{\frac{1}{2}} \le 2$$
 e $v_{\min} = 0.035 \cdot k^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}}$;

dove:

d è l'altezza utile della sezione;

 $\rho_l = \frac{A_{sl}}{(b_w \cdot d)}$ è il rapporto geometrico di armatura longitudinale di trazione;

 $\sigma_{cp} = \frac{N_{Ed}}{A_c}$ è la tensione media di compressione della sezione;

 b_w è la larghezza minima della sezione (in mm).

 f_{ck} è la resistenza a compressione cilindrica del calcestruzzo; $\gamma_c = 1.5$.

• Criteri di verifica a torsione (STR)

La verifica di resistenza consiste nel controllare che

$$T_{rd} = \min(T_{Rcd}, T_{Rsd}; T_{Rld}) \ge T_{Ed}$$

I tre contributi di resistenza sono

$$T_{R,cd} = 2 \cdot A \cdot t \cdot f_{cd}^{'} \cdot \frac{(ctg\,\theta)}{(1 + ctg^2\,\theta)}$$

$$T_{R,sd} = 2 \cdot A \cdot \frac{A_s}{s} \cdot f_{yd} \cdot ctg\theta$$

$$T_{R,ld} = 2 \cdot A \cdot \frac{\sum A_l}{u_m} \cdot f_{yd} / ctg\theta$$

dove

A è l'area racchiusa dalla fibra media del profilo

As è l'area delle staffe

um è il perimetro medio del nucleo resistente

s passo delle staffe

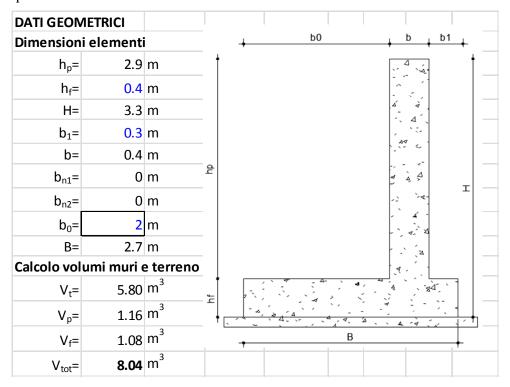
∑ A₁ è l'area complessiva delle barre longitudinali

9. Verifiche agli Stati Limite Ultimi e di Esercizio

Nel seguito vengono riportate le verifiche delle sezioni dove varia l'altezza. Per ogni tratto viene considerata l'altezza massima.

Quindi sono analizzati i muri

- Tipo A/G: altezza massima muro 2.9m
- Tipo B: altezza 1.9m
- Tipo C: altezza massima muro 2.3m
- Tipo F: altezza massima muro 2.0m


E' riportata anche la verifica del tratto ternimale dello sviluppo su SV1, costituito da un cordolo.

La verifica del tratto E è trattata nella relazione NV05 W 4 E CL OC 0713 0.

9.1 Muro tipo A/G

9.1.1 Verifica di equilibrio di corpo rigido EQU

La verifica a ribaltamento è condotta solo in condizioni statiche e sismiche in quanto in condizioni eccezionali si suppone la collaborazione di una serie di muri all'azione d'urto e quindi non riesce ad instaurarsi il ribaltamento del muro.

EQU+M2

DATIGEC	JIECNICI	_	EQU+I	IVI2					
$\gamma_{\rm t1}$ =	20	kN/m³							
φ' ₁ =	35	5 °							
SOVRACO	CARICHI								
	q= 41.23	 3 kN/m²	sovracca	rico stradale					
	p= () kN/m ²	sovracca	rico permanent	te				
1	N= 1	ı kN/ml	scarico v	erticale testa m	nuro				
CALCOLO	SPINTE SU N	/IURO							
9	S _t = 37.40) kN	sp.static	a terrapieno					
S	S _p = 0.00) kN	sp. sovra	accarico permar	nente				
S	_Q = 46.73	3 kN	sp. sovra	accarico variabil	e				
SPINTA S	ISMICA SU N	IURO							
Terreno									
S	_{AE} = 42.33	3 kN	spinta s	ismica					
ΔΡ	_{AE} = 4.93	3 kN	increme	ento della spini	ta risultante dovut	o all'azione si	smica		
INERZIE I	MURO E TERF	RAPIENO							
W	_m = 29.00) kN	massa m	nuro					
	•	5 kN	peso ter	reno sulla fonda	azione a monte				
F_{w}	h= 8.34	1 kN	sp. Dovu	ta alle inerzie d	el muro e terra				
S _{∆Pae+Fv}	_{vt} = 13.27	= 7 kN							
VEDIEICA	DID 4 I T 4 8 4 F 8 1	TO.	FOLL: N42						
VERIFICA $\gamma_{t1} =$	RIBALTAMEN ⁻ 20 _{kN/m}		EQU+M2						
γ_{t2} =	0 _{kN/m}								
γ_{cls} =	25 kN/m								
Contributi	stabilizzanti					EQU-	·M2	A1-M1	L-R3
PESI		DISTANZE		MOMENTI		C.STATIC	C.SISMICA	C.STATICA	C.SISMICA
$W_t =$	116 kN	d_t =	1.70 m	M_t =	197.20 kNm	177.48	197.20	256.36	197.20
$W_p =$	29.00 kN		0.50 m	$M_p=$	14.50 kNm	13.05	14.50	18.85	14.50
$W_f =$	27 kN	•	1.35 m	$M_0=$	36.45 kNm	32.81	36.45	47.39	36.45
$W_p =$	0.02 kN		1.70 m	M _p =	0.03 kNm	0.03	0.03	0.04	0.03
W _N =	1 kN		0.50 m	M _p =	0.50 kNm	0.45	0.50	0.65	0.50
$W_q =$	82.46 kN	q ^d =	1.70 m	M _q =	140.18 kNm	189.25	5.61	189.25	5.61
				M _{ST} =	388.87 kNm	413.06	254.29 kNm	512.53	254.29 kNm
Contributi	ribaltanti								
S _t =	37.40 kN	d _{St} =	1.10 m	M _{St} =	41.14 kNm	45.25	41.14	42.20	32.46
S _P =	0.01 kN	d _{SP} =	1.65 m	M _p =	0.02 kNm	0.02	0.02	0.02	0.01
S _q =	46.73 kN	d _{Sq} =	1.65 m	M _q =	77.10 kNm	104.09	15.42	82.13	12.17
S _e =	13.27 kN	d _{Se} =	1.65 m	M _e =	21.90 kNm		21.90		20.80

149.36

78.48 kNm

124.35

2.77 statica3.24 sismica

DATI GEOTECNICI

65.44 kNm

9.1.2 Verifica scorrimento piano di posa GEO

VERIFIC	A SCORRII	MENTO		A1-M1-R3
φ' ₁ =	28	0	0.489	rad
$\phi'_{1d}=$	28.00	0	0.489	rad
R*=	1.00			
δ=	28.00	•	0.489	rad
tgδ=	0.532			
۱۸/ –	172.00	LNI		
$W_{t+cls}=$	172.00			
$W_P =$	0.02	kN		
$W_F =$	1	kN		
$W_q =$	82.46	kN		
$W_{mv} =$	4.17	kN		
	STATICA			
Rd=	162.53			
Hd=	88.15			
nu-	SISMICA		ψ ₂ =	0.2
Rd=	106.75	ĿΝ	/ 2	0.2
Hd=	49.50			
iiu-	79.30	VIA.		
Fs=	1.84	statica		
	2.16	statica sismica		

9.1.3 Verifica collasso carico limite fondazione –terreno GEO

CALCOLO CAPACITA' PORTANTE FONDAZIONE DATI RELATIVI AL TERRENO DI FONDAZIONE

A1-M1-R3-statica

Peso specifico del terreno	$g_t =$

19.00 kN/m³ Angolo di attrito del terreno $f_d =$ 28.00° 0.00 kN/m^2 Coesione del terreno $c_d =$ 0.00 ° Angolo di inclinazione del piano campagna w =

c =	0	kN/m²
f=	28.00	0
g _f =	1.00	SLU
g _c =	1.00	SLU
g _R =	1.40	SLU

DATI RELATIVI ALLA GEOMETRIA DELLA FONDAZIONE

D = Profondita' di imposta della fondazione 0.50 m Angolo di inclinazione piano di fondazione (<=f) 0.00° a =

1.40 kN/m² c_u = SLU $g_{cu} =$ 1.00 kN/m² $c_{ud} =$

Larghezza fondazione B = 2.90 m Lunghezza fondazione L = 6.50 m

Eccentricità carico verticale in direzione B E(B)= 0.192 m Eccentricità carico verticale in direzione L E(L)= 0.00 m

Larghezza equivalente fondazione per carichi eccentrici 2.52 m B(EQ)=6.5 m Lunghezza equivalente fondazione per carichi eccentrici L(EQ)=

DATI RELATIVI AI CARICHI

1.18 kg/cm² 118.35 kN/m² = Tensione media normale alla fondazione $p_n =$ Tensione media tangenziale alla fondazione $p_h =$ $38.52 \text{ kN/m}^2 =$ 0.39 kg/cm² Carico normale alla fondazione 2230.8 kN = 223085 kg N = Carico tangenziale alla fondazione T =726 kN =72617.4 kg 0.10 kg/cm² Sovraccarico sul piano campagna Q = 9.50 kN/m²

VALORI DEI COEFFICIENTI DELLA FORMULA

Coefficienti di Brinch-Hansen			q	С
Fattori principali (kN/m²)	F	23.91	19.00	0.00
Fattori di capacità portante	N	10.94	14.72	25.80
Fattori di forma fondazione	s	1.11	1.11	1.21
Fattori di profondità del piano di fondazione	d	1.00	1.06	1.06
Fattori di inclinaz. del carico	i	0.34	0.51	0.50
Fattori di inclinaz. del piano di fondazione	b	1.00	1.00	1.00
Fattori di inclinaz. del piano di campagna	g	1.00	1.00	1.00
Prodotto totale	FNsdibq	99	166.60	0.00

1.90 kg/cm² $190 \text{ kN/m}^2 =$ Pressione limite totale normale al piano di fondazione $q_{lim} =$ Carico limite totale normale al piano di fondazione 3106 kN = N_{lim}= 310621 kg

Coefficiente di sicurezza FS= 1.39

CALCOLO CAPACITA' PORTANTE FONDA	ZIONE	A1-M1-R	3-statica					
DATI RELATIVI AL TERRENO DI FONDAZIONI	E							
Peso specifico del terreno			g _t =	19.00	kN/m ³	c =	0	kN/m ²
Angolo di attrito del terreno			f _d =	28.00	۰	f=	28.00	0
Coesione del terreno			c _d =	0.00	kN/m ²	g _f =	1.00	SLU
Angolo di inclinazione del piano campagna	a		w =	0.00	0	g _c =	1.00	SLU
						g _R =	1.40	SLU
DATI RELATIVI ALLA GEOMETRIA DELLA FO	NDAZIONE							
								1. 1.172
Profondita' di imposta della fondazione			D =	0.50		c _u =		kN/m ²
Angolo di inclinazione piano di fondazione	(<=f)		a =	0.00	0	g _{cu} =		SLU
						c _{ud} =	1.00	kN/m ²
Larghezza fondazione			B =	2.90	m			
Lunghezza fondazione			L =	6.50	m			
Eccentricità carico verticale in direzione B	1		E(B)=	0.187	m			
Eccentricità carico verticale in direzione L			E(L)=	0.00	m			
Larghezza equivalente fondazione per cari	chi eccentri	ci	B(EQ)=	2.53	m			
Lunghezza equivalente fondazione per car	ichi eccentri	ici	L(EQ)=	6.5	m			
DATI RELATIVI AI CARICHI								
Tensione media normale alla fondazione			p _n =		$kN/m^2 =$		kg/cm ²	
Tensione media tangenziale alla fondazior	ne		p _h =	36.89	$kN/m^2 =$	0.37	kg/cm ²	
Carico normale alla fondazione			N =	2176.5	kN =	217653	kg	
Carico tangenziale alla fondazione			T =	695	kN =	69539.5	kg	
Sovraccarico sul piano campagna			Q =	9.50	kN/m²	0.10	kg/cm ²	
VALORI DEI COEFFICIENTI DELLA FORMULA								
Coefficienti di Brinch-Hanser	n	g	q	С				
Fattori principali (kN/m²)	F	24.00	19.00	0.00				
Fattori di capacità portante	N	10.94	14.72	25.80				
Fattori di forma fondazione	S	1.11	1.11	1.22				
Fattori di profondità del piano di fondazione	d	1.00	1.06	1.06				
Fattori di inclinaz. del carico	i	0.35	0.52	0.51				
Fattori di inclinaz. del piano di fondazione	b	1.00	1.00	1.00				
Fattori di inclinaz. del piano di campagna	g	1.00	1.00	1.00				
Prodotto totale	FNsdib	q 102	169.24	0.00				
Pressione limite totale normale al piano di	i fondazione		q _{lim} =	194	$kN/m^2 =$	1.94	kg/cm ²	
Carico limite totale normale al piano di fon	ndazione		N _{lim} =	3183	kN =	318324	kg	
Coefficiente di sicurezza			FS=	1.46				

CALCOLO CAPACITA' PORTANTE FONDAZIONE DATI RELATIVI AL TERRENO DI FONDAZIONE

A1-M1-R3-sismica

Peso specifico del terreno	g _t =	19.00 kN/m ³
Angolo di attrito del terreno	$f_d =$	28.00 °
Coesione del terreno	$c_d =$	0.00 kN/m^2
Angolo di inclinazione del piano campagna	w =	0.00°

c =	0	kN/m²
f=	28.00	0
g _f =	1.00	SLU
g _c =	1.00	SLU
g _R =	1.40	SLU

DATI RELATIVI ALLA GEOMETRIA DELLA FONDAZIONE

Profondita' di imposta della fondazione	D =	0.50 m
Angolo di inclinazione piano di fondazione (<=f)	a =	0.00 °

c _u =	1.40	kN/m ²
g _{cu} =		SLU
c _{ud} =	1.00	kN/m²

Larghezza fondazione B = 2.90 mLunghezza fondazione L = 6.50 m

Eccentricità carico verticale in direzione B E(B)=0.341 mEccentricità carico verticale in direzione L E(L)=0.00 m

Larghezza equivalente fondazione per carichi eccentrici B(EQ)=2.22 mLunghezza equivalente fondazione per carichi eccentrici L(EQ)=6.5 m

DATI RELATIVI AI CARICHI

Tensione media normale alla fondazione	$p_n =$	67.75 kN/m ² =	0.68 kg/cm ²
Tensione media tangenziale alla fondazione	$p_h =$	16.12 kN/m ² =	0.16 kg/cm ²
Carico normale alla fondazione	N =	1277.1 kN =	127707 kg
Carico tangenziale alla fondazione	T =	304 kN =	30392.57 kg
Sovraccarico sul piano campagna	Q =	9.50 kN/m ²	0.10 kg/cm ²

VALORI DEI COEFFICIENTI DELLA FORMULA

Coefficienti di Brinch-Hansen		g	q	С
Fattori principali (kN/m²)	F	21.07	19.00	0.00
Fattori di capacità portante	N	10.94	14.72	25.80
Fattori di forma fondazione	S	1.09	1.09	1.19
Fattori di profondità del piano di fondazione	d	1.00	1.07	1.07
Fattori di inclinaz. del carico	i	0.47	0.62	0.61
Fattori di inclinaz. del piano di fondazione	b	1.00	1.00	1.00
Fattori di inclinaz. del piano di campagna	g	1.00	1.00	1.00
Prodotto totale	FNsdibq	120	203.33	0.00

Pressione limite totale normale al piano di fondazione q_{lim} = 231 kN/m² = 2.31 kg/cm² Carico limite totale normale al piano di fondazione N_{lim} = 3326 kN = 332613 kg

Coefficiente di sicurezza FS= 2.60

9.1.4 Verifica del muro

La verifica dei muri viene effettuata sempre mediante l'approccio 2 A1-M1-R3, previsto dal DM 14.01.08 par 6.5.3.1.1.

Le verifiche strutturali sono state svolte nelle sezioni 1 all'attacco con la fondazione.

9.1.4.1 Verifiche a stato limite ultimo

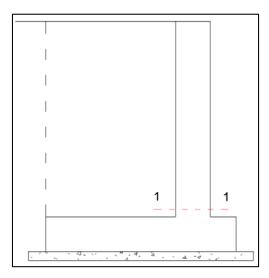
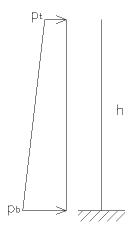



Figura 8 – Sezioni di verifica del muro

• Combinazione fondamentale e sismica

La sezione 1-1 è alla base del muro. Lo schema statico adottato per la verifica è quello di una mensola incastrata alla base e soggetta a una spinta orizzontale data dal terreno e dal sovraccarico nel caso statico.

$$\begin{split} p_t &= \gamma_q \cdot k_A \cdot h & \text{pressione sommita'} \\ p_b &= p_t + \gamma_g \cdot \gamma \cdot k_A \cdot h & \text{pressione base} \\ \text{In condizioni dinamiche si aggiunge l'incremento di spinta sismica.} \\ p_t &= \gamma_q \cdot k_A \cdot h \ + \Delta p_e \end{split}$$

Note le pressioni orizzontali sul muro, si esegue il calcolo del momento alla base del medesimo e si procede quindi al calcolo dell'armatura.

CALCOLO SPINTA TERRA

Geometria muro		Coeff. Spinta	
$H_n =$	2.9 m	a riposo	0
s =	0 m	attiva	1
$H_f =$	0 m		
$H_0 =$	2.9 m		

Parametri geotecnici caratteristici del terreno a tergo

γ' =	2.00 t/m ³	terreno saturo
φ' =	35 °	angolo resistenza al taglio
c' =	0 kg/cmq	coesione drenata
$\gamma_w =$	<mark>0.0</mark> t/m³	peso acqua

Fattori parziali di sicurezza SL

Approce	io 2	A1+M1+R3	3	SLU STR
$\gamma_{\phi} =$	1.0	f.s. su tan(φ')		
γ _C =	1.0	f.s. su coesio	ne drenata	
γ _R =	1.0			
				coeff. Sp. di calcolo
f.p.s.	favorevole	sfavorevole		K = 0.2710
γ _{G1} =	1.0	1.30		coeff. spinta
γ _{G2} =	0.0	1.50		$K_0 = 0.4264$
γ _Q =	0.0	1.35		$K_a = 0.2710$
Parame	tri geotecnio	ci di calcolo	del terrer	no a tergo
φ' _d =	35	0	angolo resi	stenza al taglio di calcolo
c' _d =	0	kg/cmq	coesione d	renata di calcolo

Approcc	io 2	A1+M1+R3	3	SLU SISM
$\gamma_{\phi} =$	1.0	f.s. su $tan(\phi')$		
γ _C =	1.0	f.s. su coesio	ne drenata	
$\gamma_R =$	1.0			
				coeff. Sp. di calcolo
f.p.s.	favorevole	sfavorevole		K = 0.2710
γ _{G1} =	1.0	1.0		coeff. spinta
γ _{G2} =	0.0	1.0		$K_0 = 0.4264$
$\gamma_Q =$	0.0	1.0		$K_a = 0.2710$
Paramet	Parametri geotecnici di calcolo del terreno a tergo			
$\phi'_d =$	35	0	angolo resi	stenza al taglio di calcolo
c' _d =	0	kg/cmq	coesione d	renata di calcolo

Carichi	
$q_p =$	1 kg/m²
$q_1 =$	4123 kg/m ²
$q_2 =$	0 kg/m²

Fase 1 perm $p_t = 0 \text{ kg/m}^2$ $p_b = 2044 \text{ kg/m}^2$

Fase 2 perm+var $p_t = 1509 \text{ kg/m}^2$ $p_b = 3552 \text{ kg/m}^2$

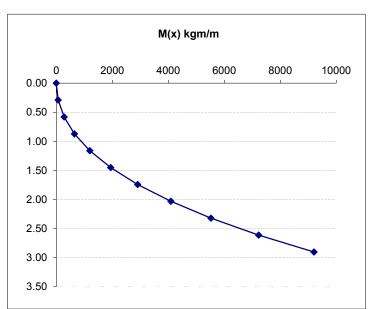
Carichi	
$q_p =$	1 kg/m²
$q_1 =$	825 kg/m ²
q ₂ =	0 kg/m²

Fase 1 perm p _t =	0	kg/m²
$p_b =$	1572	kg/m²
Fase 2 perm-	+var+:	sisma

$p_t =$	625 kg/m ²
$p_b =$	2197 kg/m²

CALCOLO INCREMENTO SPINTA IN CONDIZIONI SISMICHE

γ [kgf/m³]	2000 peso specifico del terreno sopra falda
φ ['] [°]	35 angolo di resistenza al taglio
ψ [°]	90 angolo di inclinazione rispetto all'orizzontale della parete del muro rivolta a monte (se verticale =90°)
β [°]	angolo di inclinazione rispetto all'orizzontale della superficie del terrapieno (se orizzontale =0°)
δ [°]	
0[]	U angolo di resistenza a taglio tra terreno e muro
S [-]	1.198
a _g [g]	0.2
β_{m}	0.24
Falda	N Y/N N.B.: Y = falda a p.c.; N = falda sotto lo scavo lato valle
$\gamma_{\rm H20}$ [kgf/m ³]	0
k _h [g]	0.058
k _v [g]	0.029
I ru . c / 31	2000
γ^{I} [kgf/m ³]	2000 peso specifico efficace
θ _A [°]	3.2 inclinazione del campo gravitazionale per effetto dell'accelerazione sismica
θ _B [°]	3.4 inclinazione del campo gravitazionale per effetto dell'accelerazione sismica
g _A [g]	1.030 come da definizione, ma validi per procedura alternativa semplificata (inclinazione campo gravitazionale)
g _B [g]	0.973 come da definizione, ma validi per procedura alternativa semplificata (inclinazione campo gravitazionale)
g _{A*} [g]	1.029 corretti per un'applicazione da procedura esaustiva, ed usati nel seguito 0.971 corretti per un'applicazione da procedura esaustiva, ed usati nel seguito
g _{B*} [g] φ ^I -θ _A [°]	31.8
$\phi^{I} - \theta_{B}$ [°]	31.6
^Λ ΩΒ[]	31.0
K _{a,A} [-]	0.302 con sisma, secondo Mononobe e Okabe
K _{a,B} [-]	0.303 con sisma, secondo Mononobe e Okabe
K _a [-]	0.271 senza sisma, secondo Mononobe e Okabe
$K_{a,A} / K_a * g_{A*}$	1.145 incremento percentuale della spinta risultante dovuto all'azione sismica
$K_{a,B} / K_a * g_{B*}$	1.087 incremento percentuale della spinta risultante dovuto all'azione sismica
H [m]	2.9 altezza libera del muro
E _{non sismico}	pinta risultante sull'altezza libera del muro in assenza di sisma (escluso il contributo dell'acqua)
E _{d,A} [kgf/m]	2609 accelerazione verso il basso
E _{d,B} [kgf/m]	2478 accelerazione verso l'alto
A.E (1 - (7 - 2	220
$\Delta E_{d,A}$ [kgf/m]	330 incremento della spinta risultante dovuto all'azione sismica
$\Delta E_{d,B}$ [kgf/m]	199 incremento della spinta risultante dovuto all'azione sismica

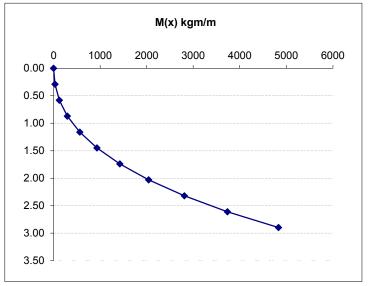

L'andamento del momento flettente al metro lineare in condizioni statiche e sismiche, lungo lo sviluppo del muro è il seguente.

STATICA

Schema 2 : perm + var

$p_1 =$	1509 kg/mq
p ₂ =	3552 kg/mq
$p_0 =$	2043 kg/mq
=	2.9 m

Х	M [kgm]	V [kg]
0.00	0	0
0.29	66	467
0.58	277	994
0.87	648	1579
1.16	1198	2224
1.45	1944	2928
1.74	2902	3692
2.03	4091	4514
2.32	5527	5396
2.61	7227	6338
2.90	9208	7338


 $M_{max} = 9208 \text{ kgm/m}$

SISMICA

Schema 2 : perm + var

$p_1 =$	625 kg/mq
p ₂ =	2197 kg/mq
$p_0 =$	1572 kg/mq
l =	29 m

Х	M [kgm]	V [kg]
0.00	0	0
0.29	28	204
0.58	123	454
0.87	296	749
1.16	561	1090
1.45	932	1476
1.74	1422	1908
2.03	2043	2385
2.32	2810	2908
2.61	3734	3477
2.90	4831	4091

 M_{max} = 4831 kgm/m

Il momento massimo è raggiunto in condizioni statiche. Trascurando il contributo stabilizzante dei carichi verticali (peso proprio e permamenti) è stato calcolato il momento resistente della sezione di base considerando solo l'armatura tesa e una sezione di larghezza 1m:

 $1\Phi16/20$ e $2\Phi18/40$ di spezzoni di infittimento (si estendono per una lunghezza di 1 m dall'innesto in fondazione).

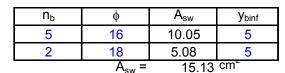
Condizione statica

Verifica a flessione DM08

Sezione 1-1

Calcestruzzo	
R _{ck} =	350 kg/cm ⁻
f _{ck} =	291 kg/cm ⁻
f _{ctm} =	28.3 kg/cm ⁻
f _{ctk} =	19.8 kg/cm ⁻
γ_c =	1
α_{cc} =	1

Acciaio


f _{yk} =	4500 kg/cm ²	
γ _s =	1	
f _{yd} =	4500 kg/cm ⁻	
f _{cd} =	291 kg/cm ⁻	
f' _{cd} =	145 kg/cm ⁻	
f _{ctd} =	19.8 kg/cm ⁻	

5.0 cm

Dati sezione

$p_w =$	100 cm	
h =	40 cm	
c =	5 cm	copriferro
d =	35 cm	altezza utile

Armatura tesa disposta

Momento resistente

q = 0.0670 percentuale meccanica d'armatura $M_{Rd} = 2300987 \text{ kg*cm}$ momento resistente $M_{Rd} = 23010 \text{ kgm}$

M_{Sd1} = **9208** kg*m momento agente FS = 2.50 VER SI

 $c_{med} =$

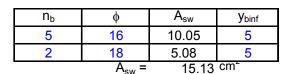
Condizione sismica

Verifica a flessione DM08

Sezione 1-1

Calcestruzzo		
$R_{ck} =$	350 kg/cm ²	
f _{ck} =	291 kg/cm ²	
$f_{ctm} =$	28.3 kg/cm ²	
f _{ctk} =	19.8 kg/cm ²	
$\gamma_{\rm c}$ =	1	
α_{cc} =	1	

Acciaio


f _{yk} =	4500	kg/cm ⁻
γ _s =	1	
$f_{yd} =$		kg/cm ⁻
f _{cd} =		kg/cm ⁻
f' _{cd} =		kg/cm ⁻
f _{ctd} =	19.8	kg/cm ⁻

5.0 cm

Dati sezione

$p_w =$	100 cm	
h =	40 cm	
c =	5 cm	copriferro
d =	35 cm	altezza utile

Armatura tesa disposta

Momento resistente

 $q = 0.0670 \qquad \qquad \text{percentuale meccanica d'armatura}$ $M_{Rd} = 2300987 \text{ kg*cm} \qquad \qquad \text{momento resistente}$ $M_{Rd} = 23010 \text{ kgm}$

M_{Sd1} = 4831 kg*m momento agente FS = 4.76 VER SI

 $c_{med} =$

• Combinazione eccezionale

L'azione dell'urto di un veicolo si traduce in uno stato di sollecitazioni in testa al muro. Il momento d'urto e la relativa azione orizzontale agenti sulla singola barriera sono:

$$M_u=M_{pl,barr}=35.70 \text{ kN su } 1.5 \text{m di interasse}$$

 $V_u=M_{pl}/1=35.7 \text{ kN}$

Tale azione coinvolge 3 montanti posizionati ad un interasse di 1.5m. Le sollecitazioni al metro lineare quindi risultano

$$V_u = 3*35.70/4.5 = 23.80 \text{ kN/ml}$$

Alla base il contributo dell'effetto urto sul muro è

$$M_{du}=M_u+V_u*H$$

$$V_{du}\!\!=V_u$$

Si calcola il contributo della spinta terra, quello del sovraccarico permamente e il sovraccarico variabile.

CALCOLO SPINTA TERRA

Geometria mu	<u>ro</u>	Coeff. Spinta	
$H_n =$	2.9 m	a riposo	0
s =	0 m	attiva	1
$H_f =$	0 m		
H ₀ =	2.9 m		

Parametri geotecnici caratteristici del terreno a tergo

γ' =	2.00 t/m ³	terreno saturo
φ' =	35 °	angolo resistenza al taglio
C' =	0 kg/cmq	coesione drenata
$\gamma_w =$	o t/m³	peso acqua

Fattori parziali di sicurezza SI

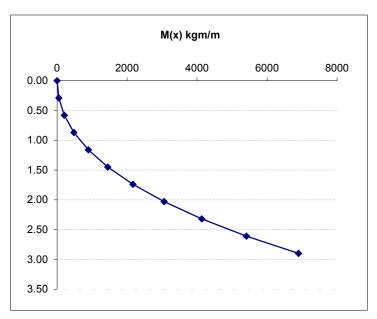
<u>ı attori parziali di Sicurezza SE</u>				
Approccio 1- Da 1 A1+M1+R3		A1+M1+R3	COMB. ECCEZ.	
$\gamma_{\phi} =$	1.0	f.s. su tan(ϕ ')		
γ _C =	1.0	f.s. su coesione drenata		
γ _R =	1.0			
			coeff. Sp. di calcolo	
f.p.s.	favorevole	sfavorevole	K = 0.2710	
γ _{G1} =	1.0	1.0	coeff. spinta	
γ _{G2} =	0.0	1.0	$K_0 = 0.4264$	
γ _Q =	0.0	1.0	$K_a = 0.2710$	
χ2 =		1.0		
Parametri geotecnici di calcolo del terreno a tergo				
φ' _d =	35	0	angolo resistenza al taglio di calcolo	
c' _d =	0	kg/cmq	coesione drenata di calcolo	

Carichi

 $q_1 = 1 \text{ kg/mq}$ $q_2 = 4123 \text{ kg/mq}$

Fase 1 perm

 $p_t = 0 \text{ kg/mq}$ $p_b = 1572 \text{ kg/mq}$


Fase 2 perm+var

 $p_t = 1118 \text{ kg/mq}$ $p_b = 2689 \text{ kg/mq}$

Schema 2 : perm + var

$p_1 =$	1118 kg/mq
p ₂ =	2689 kg/mq
$p_0 =$	1572 kg/mq
l =	2.9 m

Х	M [kgm/m]	V [kg/m]
0.00	0	0
0.29	49	347
0.58	206	739
0.87	482	1177
1.16	893	1661
1.45	1450	2190
1.74	2168	2765
2.03	3058	3385
2.32	4136	4051
2.61	5413	4763
2.90	6902	5520

$$M_{max} = 6902 \text{ kgm/ml}$$
 $L = 1 \text{ m}$
 $M_1 = 6902 \text{ kg m}$
 $V_1 = 5520 \text{ kg}$

Le sollecitazioni complessive agenti alla base del muro, sommando i vari contribute risultano: *Sezione 1-1-base*

z=	2.90	m
$M_{sd,tot} =$	16262	kgm
$N_{sd,tot} =$	3000	kg

E' riportato il tabulato della verifica a flessione nella sezione di attacco 1-1 e nella sezione dove non sono più presenti i ferri di infittimento.

Sezione 2-2- elevazione

z=	1.90	m
h=	40.00	m
$M_{sd,tot} =$	9597	kgm
$N_{sd,tot} =$	0	kg

Verifica a flessione DM08

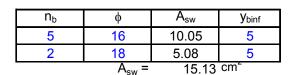
Sezione 1-1

Calcestruzzo

$R_{ck} =$	350 kg/cm ⁻
$f_{ck} =$	291 kg/cm ⁻
$f_{ctm} =$	28.3 kg/cm ⁻
$f_{ctk} =$	19.8 kg/cm ⁻
γ_c =	1
α_{cc} =	1

Acciaio

f _{yk} =	4500	kg/cm ⁻
γ_s =	1	
f _{yd} =		kg/cm ⁻
f _{cd} =		kg/cm ⁻
f' _{cd} =		kg/cm ⁻
f _{ctd} =	19.8	kg/cm ⁻


5.0 cm

5.0 cm

Dati sezione

$D_{w} =$	100 cm	
h =	40 cm	
c =	5 cm	copriferro
d =	35 cm	altezza utile

Armatura tesa disposta

Momento resistente

q = 0.0670

$M_{Rd} = 2300987 \text{ kg*cm}$ $M_{Rd} = 23010 \text{ kgm}$	momento resistente		
M _{Sd1} = 16262 kg*m	momento agente	FS =	1.41 VER SI

percentuale meccanica d'armatura

 $c_{med} =$

Sezione 2-2 Dati sezione

$$b_w = 100 \text{ cm}$$

 $h = 40 \text{ cm}$

c = 5 cm copriferro d = 35 cm altezza utile

Armatura tesa disposta

Πb	φ	A_{sw}	y binf
5	16	10.05	5
0	0	0.00	5

 $A_{sw} = 10.05 \text{ cm}^2$

Momento resistente

q =	0.0445	percentuale meccanica d'armatura		
M _{Rd} =	15467 kgm			
M _{Sd1} =	9597 kg*m	momento agente	FS =	1.61 VER SI

 $c_{med} =$

9.1.5 Verifica a SLE elevazione

Le la verifica a SLE si assume un momento di calcolo, a favore di sicurezza, pari a:

$$M_E = M_{sd} / \gamma_G = 92.08 / 1.3 = 70.83 \text{ kNm}$$

Il controllo delle condizioni di esercizio è svolto al successivo foglio di calcolo:

Verifica a fessurazione DM08

Calcestruzzo R_{ck} =

$R_{ck} =$	350 kg/cm ⁻
f _{ck} =	290.5 kg/cm ²
f _{ctk} =	20.2 kg/cm ²
$\sigma_{c,car}$ =	174.3 kg/cm ²
$\sigma_{c,qp}$ =	130.7 kg/cm ²

Acciaio

$$E_S = 2100000 \text{ kg/cmq}$$

 $n = 15$
 $f_{yk} = 4500 \text{ kg/cm}^2$
 $\sigma_{S,car} = 3600 \text{ kg/cm}^2$

f _{ctm} =		kg/cm ²
f _{cfm} =		kg/cm ²
f _{cteff} =		kg/cm ²
E _{cm} =	325881	kg/cm ²
Parametri	"k"per cald	olo
k _t =	0.6	
k ₁ =	0.8	
k ₂ =	0.5	
k ₃ =	3.4	
k ₄ =	0.425	

Sollecitazioni agenti

Condizione	M _{Sd}	σ_{s}	
Condizione	kg*cm	kg/cmq	
SLU	920800	-	
CAR	708308	2207	
FREQ.	0	0	
Q.P.	0	0	

	Condizione caratteristica Condizio		ndizione q	.p. Tensioni imposte per fessur.					
I	$M_{Sd} =$	708308 kg*(cm	M _{Sd} =	0	kg*cm	$\sigma_{s,QP} =$	2207	kg/cmq
ſ	N _{Sd} =	0 kg		N _{Sd} =	0	kg	$\sigma_{s,FRQ}$ =	2207	kg/cmq

Dati sezione

$b_w =$	100 cm	base trave
h =	40 cm	altezza totale trave
C =	5 cm	copriferro armatura tesa
d =	35 cm	h. utile
$A_{eff} =$	1054.20 cmq	area efficace in trazione
$x_n =$	8.37 cm	asse neutro da l.s.

Armatura sezione (y_i dal lembo teso)

Strato	n. ferri	ф _ь [mm]	y _i [cm]	A _{si}	
1-t	5	16	5	10.05	tesa
2-t	0	0	5	0.00	tesa
3-c	0	0	0	0.00	com
4-c	5	16	35	10.05	Com

SLE - Tensioni materiali comb. CAR (rara) / QP

$\sigma_{c,CAR} =$	-46 kg/cmq	max compressione cls
$\sigma_{c,QP}$ =	0 kg/cmq	max compressione cls
$\sigma_{s,CAR}$ =	2207 kg/cmq	trazione massima ferri
$\sigma_{s,CAR}$ =	-280 kg/cmq	max compr. ferri

VI	₽R	IM	FS
CAR	SI	0.27	3.77
QP	SI	0.00	-
CAR	SI	0.61	1.63
CAR	SI	0.08	12.87

SLE - Calcolo ampiezza fessure comb. Q.P.

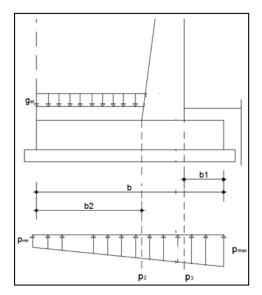
y _{ao} =	5.00 cm	baricentro arm. tesa
$\phi_{eq} =$	16.0 mm	diametro equivalente
$A_{st} =$	10.05 cm ²	area ferro tesa
ρ_{eff} =	0.0095	% area tesa
$\sigma_{s,QP}$ =	2207 kg/cmq	tensione acciaio teso (Q.P.)
$\sigma_{s,FRQ}$ =	2207 kg/cmq	tensione acciaio teso (FREQ)

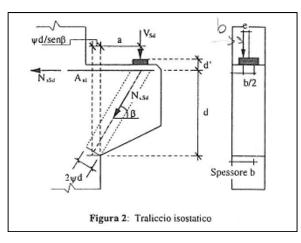
cr = 907198 kg*cm momento di prima fessurazione Sez, interam.reagente; calcolo non pertinente

s _{rmax} =	455	mm	distanza fessure
$\epsilon_{\rm sm}$ - $\epsilon_{\rm cm}$ =	0.000149	0.000149	deformazione acciaio tra due fess.
$W_{d,QP} =$	0.07	mm	ampiezza massima fessure
Wd ERO =	0.07	mm	ampiezza massima lessure

9.1.6 Verifica di resistenza della fondazione

La fondazione del muro è verificata considerandola incastrata all'attacco del muro e soggetta alla seguente distribuzione dei carichi: il peso proprio (g_0) , il peso della terra (g_t) e dei sovraccarichi $(p \ e \ q)$ saranno diretti verso il basso. La ciabatta però sarà anche soggetta a una spinta p diretta dal basso verso l'alto determinata a partire dalle sollecitazioni di calcolo N_{sd} e M_{sd} .




Figura 9 – Azioni sulla fondazione

$$M_{sd} = M_{st} - M_{rib} - \sum W_i \cdot z_i$$

$$N_{sd} = \sum G$$

Il tratto di fondazione più corto è stato verificato con l'utilizzo delle metodologie illustrate nella circ. 617/2009 delle NTC 2008 Cap.4.1.2.1.5 "Resistenza di elementi tozzi, nelle zone diffusive dei nodi". La mensola sarà soggetta alla differenza di distribuzione di carico indicato in figura (il peso del pietrame gp e del peso proprio g0 diretti verso il basso e la pressione del terreno diretta verso l'alto.

Le verifiche delle mensole tozze viene effettuata facendo riferimento al norma CNR 10025/98, di cui si riporta un estratto in quanto segue.

$$\begin{split} N_{cSd} &= \frac{V_{Sd}}{sen\beta} \\ N_{sSd} &= \frac{V_{Sd}}{tg\beta} \\ v_{g} &= \frac{1}{\lambda_v + \psi/sen\beta} = \frac{\lambda_v - \sqrt{\lambda_v^2 - \left(\lambda_v^2 - \psi^2\right) \cdot \left(1 - \psi^2\right)}}{\left(\lambda_v^2 - \psi^2\right)} \\ N_{cRd} &= 2 \cdot \psi \cdot \frac{v}{v} \cdot b \cdot d \cdot 0.85 \cdot f_{cd} = 2 \cdot k \cdot \psi \cdot b \cdot d \cdot f_{cd} \\ N_{sRd} &= A_{sl} \cdot f_{yd} \\ \psi &\leq 0.176 \end{split}$$

Si riportano in questo paragrafo le verifiche dei due tratti di fondazione dove si innesco il muro.

Le sollecitazioni agenti in condizioni statiche sono indicate nel seguente tabulato.

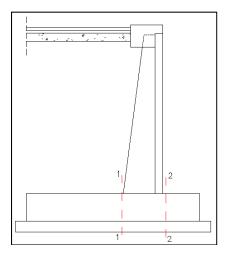


Figura 11 – Sezioni di verifica

b = 2.7

m

AZIONI A1-M1-R3 -STATICA

Carichi su parte a monte diretti verso il basso

$g_0 =$	13.00 kN/m	peso proprio
$g_t =$	75.4 kN/m	peso terreno
$g_p =$	0.0 kN/m	peso sovraccarico permanente
$q_{tr} =$	55.66 kN/m	peso sovraccarico stradale
g _{sd,tot} =	144.1 kN/m	

Carichi su p	arte a valle diretti vei	rso il basso	h=	0 m
$g_0 =$	13.0 kN/m	peso proprio		
g _t =	0.0 kN/m	terreno valle		
$g_p =$	0.1 kN/m	peso sovraccario	co permane	nte
$q_{tr} =$	371.1 kN/m	peso sovraccario	co stradale	
$g_{sd,tot} =$	384.2 kN/m			

Pressioni rivolte verso l'alto
$$p_{max} = 165 \text{ kN/ml}$$

$$p_{min} = 71 \text{ kN/ml}$$

$$\triangle p = 94 \text{ kN/ml}$$

$$p_{2} = 141 \text{ kN/ml}$$

155 kN/ml

 $p_3 =$

AZIONI A1-M1-R3 -SISMICA

Carichi su	parte a	monte	diretti	verso i	1	basso
------------	---------	-------	---------	---------	---	-------

 g_0 = 10.00 kN/m peso proprio g_t = 58.0 kN/m peso terreno

 g_p = 0.0 kN/m peso sovraccarico permanente

 q_{tr} = 8.25 kN/m peso sovraccarico stradale

 $g_{sd,tot} =$ **76.3** kN/m

Carichi su parte a valle diretti verso il basso h= 0 m

 g_0 = 10.0 kN/m peso proprio g_t = 0.0 kN/m peso terreno

 g_p = 0.1 kN/m peso sovraccarico permanente

 q_{tr} = 55.0 kN/m peso sovraccarico stradale

 $g_{sd,tot}$ = **65.0** kN/m

Pressioni rivolte verso l'alto b= 2.7 m

 p_{max} = 116 kN/ml

 p_{min} = 20 kN/ml

 $\triangle p = 96 \text{ kN/ml}$

 p_2 = 91 kN/ml

 $p_3 = 105 \text{ kN/ml}$

AZIONI A1-M1-R3 -ECCEZIONALE

Carichi su parte a monte diretti verso il basso

 g_0 = 10.00 kN/m peso proprio g_t = 58.0 kN/m peso terreno

 g_p = 0.0 kN/m peso sovraccarico permanente

 q_{tr} = 41.23 kN/m peso sovraccarico stradale

 $g_{sd,tot} = 109.2 \text{ kN/m}$

Carichi su parte a valle diretti verso il basso h= 0 m

 g_0 = 10.0 kN/m peso proprio g_t = 0.0 kN/m terreno valle

 g_p = 0.1 kN/m peso sovraccarico permanente

 q_{tr} = 274.9 kN/m peso sovraccarico stradale

 $g_{sd.tot} = 284.9 \text{ kN/m}$

Pressioni rivolte verso l'alto b= 2.7 m

 p_{max} = 201 kN/ml

 p_{min} = 0 kN/ml

 p_2 = 147 kN/ml

 $p_3 = 178 \text{ kN/ml}$

L'armatura presente in fondazione è:

5 ₱ 16 superiori A_s=10cm²

5⊕16 inferiori

Verifica a flessione SEZIONE 1-1

L=	2	m
g _{sd,tot} =	144.1	kN,

Combin. Statica

Calcolo momento su incastro mensola di monte

l/m costante p₂= 141 kN/m su incastro 71 kN/m p_{min}=

 $M_g =$ 288.15 kN*m $M_p =$ -189.21 kN*m $M_{sd1} =$ 98.94 kN*m

0.000 m

I=

 M_{sd1} = 98.94 kNm 989383 kg cm

989383 kg cm/ml

Calcestruzzo

R _{ck} =	350 kg/cm ²
f _{ck} =	291 kg/cm ²
f _{ctm} =	28.3 kg/cm ²
$f_{ctk} =$	19.8 kg/cm ²
$\gamma_c =$	1.5

0.85

Acciaio

$f_{yk} =$	4500	kg/cm ²
$\gamma_s =$	1.15	
$f_{yd} =$	3913	kg/cm ²
$f_{cd} =$	165	kg/cm ²
f' _{cd} =	82	kg/cm ²
f _{ctd} =	13.2	kg/cm ²

Dati sezione h... =

 α_{cc} =

b _w =	100 cm	
h =	40 cm	
c =	5 cm	copriferro
d =	35 cm	altezza utile

Armatura tesa disposta

5.0 cm $c_{med} =$

n _b	ф	A _{sw}	y _{binf}
5	16	10.05	5
0	0	0.00	5

A_{sw} = 10.05 cm²

Momento resistente

percentuale meccanica d'armatura

 $M_{Rd} = 1328128 \text{ kg*cm}$ $M_{Rd} =$ 132.81 kNm

momento resistente Verificato

1.34 FS=

Combin. Sismica

0.000 m **I**=

L=	2 m	ı	
$g_{sd,tot} =$	76.3 kM	N/m c	ostante
p ₂ =	91 kN	N/m s	u incastro
p _{min} =	20 kl	N/m	
M_{sd1} =	65.40 kl	Nm	

Calcolo momento su incastro mensola di monte		
$M_g =$	152.51 kN*m	
$M_p =$	-87.11 kN*m	
$M_{sd1} =$	65.40 kN*m	

653<u>993</u> kg cm 653993 kg cm/ml

Calcestruzzo

R _{ck} =	350 kg/cm ²
f _{ck} =	291 kg/cm ²
f _{ctm} =	28.3 kg/cm ²
f _{ctk} =	19.8 kg/cm ²

1.5

t _{yk} =	4500	kg/cm ⁻
$\gamma_s =$	1.15	
f _{yd} =	3913	kg/cm ²
f _{cd} =	194	kg/cm ²
f' _{cd} =	97	kg/cm ²
f _{ctd} =	13.2	kg/cm ²

α_{cc} =

Dati sezione

 $\gamma_c =$

$D_{w} =$	100 cm	
h =	40 cm	
c =	5 cm	copriferro
d =	35 cm	altezza utile

Armatura tesa disposta

5.0	cm

Acciaio

n _b	ф	A_{sw}	y _{binf}
5	16	10.05	5
0	0	0.00	5

$$A_{sw} = 10.05 \text{ cm}^2$$

Momento resistente

q = 0.0580 percentuale meccanica d'armatura

 $M_{Rd} = 1335369 \text{ kg*cm}$ momento resistente 133.54 kNm

Verificato FS= 2.04

Combin. Eccezionale

 $p_2 =$

|= 1.9 m

L= 2 m

109.2 kN/m $g_{sd,tot} =$ 147 kN/m

costante

su incastro

 $p_{min}=$ 0 kN/m M_{sd1} = 120.28 kNm

1202783 kg cm 1202783 kg cm/ml Calcolo momento su incastro mensola di monte

 $M_g =$ 218.48 kN*m

 $M_p =$ -98.20 kN*m

 $M_{sd1} =$ 120.28 kN*m

Calcestruzzo

350 kg/cm² R_{ck} = 291 kg/cm² $f_{ck} =$

28.3 kg/cm² $f_{ctm} =$ 19.8 kg/cm² $f_{ctk} =$

 $\gamma_c =$ α_{cc} =

1

Acciaio

$$f_{yk} = 4500 \text{ kg/cm}^2$$

γ _s –	1	
f _{yd} =	4500	kg/cm ²
f _{cd} =	291	kg/cm ²
f' _{cd} =	145	kg/cm ²
f _{ctd} =	19.8	kg/cm ²

Dati sezione

 $b_w =$ 100 cm

h = 40 cm

5 cm c = copriferro d = 35 cm altezza utile

Armatura tesa disposta

5.0 cm $c_{\text{med}} =$

n _b	ф	A _{sw}	y _{binf}
5	16	10.05	5
0	0	0.00	5

10.05 cm²

Momento resistente

q = 0.0445 percentuale meccanica d'armatura

FS=

1.29

 $M_{Rd} = 1546700 \text{ kg*cm}$

momento resistente

 $M_{Rd} = 154.67 \text{ kNm}$ Verificato

Verifica a flessione SEZIONE 2-2 VERIFICA MENSOLA VERT. CNR 10025-98 Combin. Statica **SOLLECITAZIONI DI CARICO** $b_1 =$ 0.3 m 384.2 kN/m costante $g_{sd,tot} =$ $p_3 =$ 155 kN/m su incastro 165 kN/m $p_{max}=$ $F_{sd} =$ 67 kN diretta verso il basso 67234.4 N/m al metro di larghezza $H_{sd}=$ **GEOMETRIA DELLA MENSOLA** | = 300 [mm] aggetto della mensola 150 [mm] distanza punto di applicazione del carico da filo pilastro 300 [mm] h= altezza della mensola b= 1000 [mm] larghezza della mensola d'= 50 [mm] copriferro 250 [mm] d= altezza utile **CARATTERISTICHE DEI MATERIALI** CLS 35 [N/mm²] $R_{ck} =$ 29.05 [N/mm²] f_{ck}= resistenza carat. a compressione cilindrica 1.5 [-] coeff. di sicurezza sul cls 16.46 [N/mm²] $f_{cd} =$ resistenza di calcolo a compressione **ACCIAIO** $f_{yk} =$ 450 [N/mm²] 391 [N/mm²] $f_{vd} =$ snervamento di calcolo armature a taglio 0.555 (deve essere >=0.5) $\nu =$ 0.55 k= 0.73671 0.016 $v_{sd} =$

Taglio Resistente

 $tg\beta =$

c=	1.2 [-]	coeff. che tiene conto dell'attrito	getto unico
γn	1 [-]	coeff. che tiene conto natura sforzi	altro
Av=	143 [mm²]		

Verificato

1.6253 (con β =angolazione del puntone compresso)

0.600 snellezza della mensola

Armature

AsI=	1.06 [cm ²]
As2=	0.00 [cm ²]
Av=	1.43 [cm ²]

Arm. di Calcolo tirante RICHIESTA		
A _t =	1.06 [cm ²]	
A _s =	7.70 [cm ²]	VE

 ψ_{min} = 0.01302 (<=0.176)

Verifica a flessione SEZIONE 2-2 VERIFICA MENSOLA VERT. CNR 10025-98 Combin. Sismica **SOLLECITAZIONI DI CARICO** $b_1 =$ 0.3 m 65.0 kN/m costante $g_{sd,tot} =$ $p_3 =$ 105 kN/m su incastro 116 kN/m $p_{max}=$ $F_{sd} =$ -14 kN diretta verso l'alto 13558.1 N/m al metro di larghezza 0 N $H_{sd}=$ **GEOMETRIA DELLA MENSOLA** | = 300 [mm] aggetto della mensola a= 150 [mm] distanza punto di applicazione del carico da filo pilastro h= 300 [mm] altezza della mensola 1000 [mm] b= larghezza della mensola d'= 50 [mm] copriferro d= 250 [mm] altezza utile **CARATTERISTICHE DEI MATERIALI** CLS 35 [N/mm²] $R_{ck} =$ 29.05 [N/mm²] f_{ck}= resistenza carat. a compressione cilindrica 1.5 [-] coeff. di sicurezza sul cls 16.46 [N/mm²] $f_{cd} =$ resistenza di calcolo a compressione **ACCIAIO** 450 [N/mm²] $f_{vk} =$ 391 [N/mm²] $f_{vd} =$ snervamento di calcolo armature a taglio 0.555 (deve essere >= 0.5) $\nu =$ 0.55 k= 0.73671 $v_{sd} =$ 0.003 $0.600\,$ snellezza della mensola $1.6582 \ (\text{con } \beta \text{-angolazione del puntone compresso})$ ψ_{min} = 0.00261 (<=0.176) **Verificato Taglio Resistente** c= 1.2 [-] coeff. che tiene conto dell'attrito getto unico 1 [-] γn coeff. che tiene conto natura sforzi altro Av= 29 [mm²] **Armature** $0.21 [cm^2]$ AsI= $0.00 \text{ [cm}^2\text{]}$ As2= $0.29 \text{ [cm}^2\text{]}$ Av= Arm. di Calcolo tirante RICHIESTA

 $A_t =$

0.21 [cm²]

7.7 [cm²]

9.1.7 Verifica a SLE fondazione

Le la verifica a SLE si assume un momento di calcolo, a favore di sicurezza, pari a:

 $M_E = M_{sd} / \gamma_G = 98.94 / 1.3 = 76.11 \text{ kNm}$

Il controllo delle condizioni di esercizio è svolto al successivo foglio di calcolo:

Verifica a fessurazione DM08

$\begin{tabular}{lllll} \textbf{Calcestruzzo} & & & & & & & & & & \\ R_{ck} = & & & & & & & & & & \\ f_{ck} = & & & & & & & & & \\ f_{ctk} = & & & & & & & & & \\ \sigma_{c,car} = & & & & & & & & & \\ \hline \end{tabular} \textbf{Calcestruzzo} & & & & & & & \\ \textbf{Solution} & & & & & & & \\ \textbf{Solution} & & & & & & & \\ \textbf{Solution} & & & & & & & \\ \textbf{Solution} & & \\ \textbf{Solution} & & & \\ \textbf{Solution} & & & \\ \textbf{Solution} & & \\ \textbf{Solution} & & & \\ \textbf{Solution} & & \\ \textbf{Solution} & & & \\ \textbf{Solution} & & & \\ \textbf{Solution} & & \\ \textbf{Solut$

$\sigma_{c,qp} = 130.7 \text{ kg/cm}^2$

Acciaio

$E_S =$	2100000 kg/cmq
n =	15
$f_{yk} =$	4500 kg/cm ²
σ _{s.car} =	3600 kg/cm ²

f _{ctm} =		kg/cm ²
f _{cfm} =		kg/cm ²
f _{cteff} =		kg/cm ²
E _{cm} =	325881	kg/cm ²
Parametri	"k"per calc	colo
k _t =	0.6	
k ₁ =	0.8	
k ₂ =	0.5	
k ₃ =	3.4	
k ₄ =	0.425	

Sollecitazioni agenti

Condizione	M _{Sd}	σ_{s}	FS
Condizione	kg*cm	kg/cmq	13
SLU	989400	-	1.34
CAR	761077	2371	1.52
FREQ.	0	0	-
Q.P.	0	0	-

	Condizione caratteristica			Co	ndizione q	.p.	Tensioni imposte per fessur.		
	$M_{Sd} =$	761077	kg*cm	M _{Sd} =	0	kg*cm	$\sigma_{s,QP}$ =	2371	kg/cmq
ĺ	N _{Sd} =	0	kg	N _{Sd} =	0	kg	$\sigma_{s,FRQ}$ =	2371	kg/cmq

Dati sezione

$b_w =$	100	cm	base trave
h =	40	cm	altezza totale trave
c =	5	cm	copriferro armatura tesa
d =	35	cm	h. utile
$A_{eff} =$	1054.20	cmq	area efficace in trazione
x. =	8 37	cm	asse neutro da Ls

Armatura sezione (y_i dal lembo teso)

Strato	n. ferri	ф _b [mm]	y _i [cm]	A _{si}	
1-t	5	16	5	10.05	tesa
2-t	0	0	5	0.00	tesa
3-c	0	0	0	0.00	comp
4-c	5	16	35	10.05	comp

SLE - Tensioni materiali comb. CAR (rara) / QP

$\sigma_{c,CAR}$ =	-50 kg/cmq	max compressione cls
$\sigma_{c,QP}$ =	0 kg/cmq	max compressione cls
$\sigma_{s,CAR}$ =	2371 kg/cmq	trazione massima ferri
$\sigma_{s,CAR}$ =	-300 kg/cmq	max compr. ferri

VER		IM	FS
CAR	SI	0.29	3.51
QP	SI	0.00	-
CAR	SI	0.66	1.52
CAR	SI	0.08	11.98

SLE - Calcolo ampiezza fessure comb. Q.P.

		·
y _{ao} =	5.00 cm	baricentro arm. tesa
$\phi_{eq} =$	16.0 mm	diametro equivalente
$A_{st} =$	10.05 cm ²	area ferro tesa
ρ_{eff} =	0.0095	% area tesa
$\sigma_{s,QP}$ =	2371 kg/cmq	tensione acciaio teso (Q.P.)
$\sigma_{s,FRQ}$ =	2371 kg/cmq	tensione acciaio teso (FREQ)

 $M_{cr} = 907198 \text{ kg*cm}$ momento di prima fessurazione Sez, interam.reagente; calcolo non pertinente

.__

s _{rmax} =	455	mm	distanza fessure
$\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}$ =	0.000227	0.000227	deformazione acciaio tra due fess.
	0.40		

 $W_{d,QP} = 0.10$ mm ampiezza massima fessure $W_{d,FRQ} = 0.10$ mm

9.2 Muro tipo B

Il muro di questo tratto si trova al di sopra del tombino 121.

Le verifiche condotte considerano il muro incastrato lateralmente ai muri. Risulta soggetto a flessione orizzontale, taglio e torsione. La torsione deriva dall'azione d'urto.

Le azioni agenti sono:

- spinta terra in combinazione statica e accidentale.
- azione d'urto

Per la valutazione delle sollecitazioni, è stato utilizzato il codice di calcolo Midas GEN.

E' stato condotto un modello locale della parete modellata con elementi "shell", vincolata alle estremità e soggetta ai carichi sopra citati e nel seguito dettagliati.

Il muro risulta spesso 40cm. L'altezza di verifica è 1.9m.

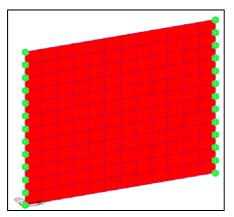


Figura 12 – Modello Fem tratto B

Si ipotizza che in questo tratto vengano coinvolti due montanti. Il carico applicato in testa al muro distribuito sulla sua lunghezza risulta:

 F_u = 35.7 kN a montante

$$q_u = 35.7*2/2.4 = 30kN/ml$$

Si calcola il contributo della spinta terra, quello del sovraccarico permanente e il sovraccarico dovuto al peso della ruota.

CALCO	LO SPINTA	A TERRA			
Geomet	tria muro			Coeff. Spi	nta
H _n =	1.9	m		a riposo	0
s =	0	m		attiva	1
H _f =	0	m			
H ₀ =	1.9	m			
Parame	tri geotecni	ci caratteris	stici del te	erreno a ter	<u>go</u>
γ' =	2.00	t/m ³	terreno sa	turo	
φ' =	35	0	angolo res	istenza al tag	lio
c' =		kg/cmq	coesione o	Irenata	
γ _w =	0.0	t/m ³	peso acqu	а	

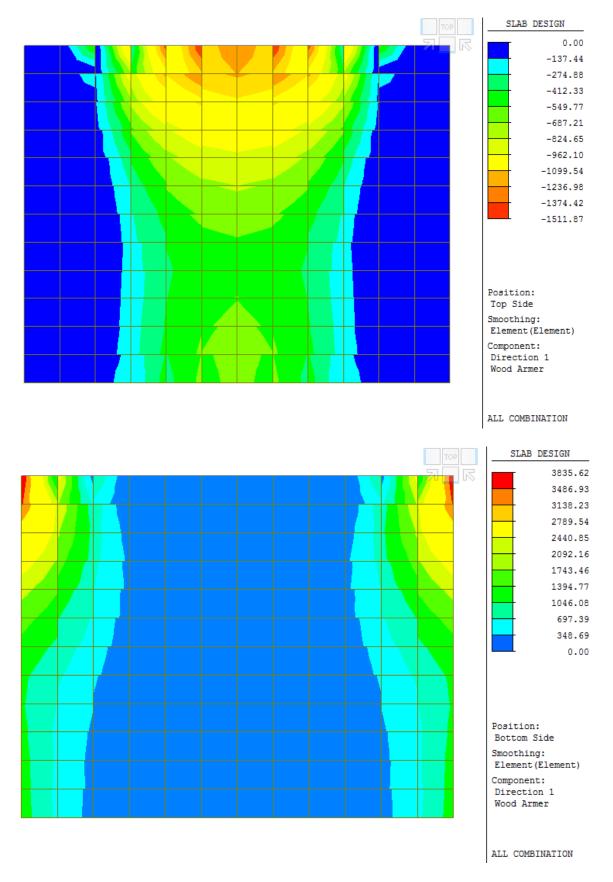
Fattori p	parziali di s	icurezza SI	=					
Approco	io 2	A1+M1+R	3	SLU STR		Carichi		
$\gamma_{\phi} =$	1.0	f.s. su tan(φ')			q _p =	500	kg/m ²
γc =	1.0	f.s. su coesi	one drenata	a		q ₁ =	3333	kg/m²
γ _R =	1.0					q ₂ =	0	kg/m ²
				coeff. Sp. o	di calcolo			
f.p.s.	favorevole	sfavorevole		K =	0.2710	Fase 1	perm	
γ _{G1} =	1.0	1.30		coeff. spint	ta	p _t =	176	kg/m ²
γ _{G2} =	0.0	1.50		K ₀ =	0.4264	p _b =	1515	kg/m ²
γ _Q =	0.0	1.35		K _a =	0.2710			
						Fase 2	perm+var	
Parame	tri geotecni	ci di calcol	o del terre	eno a tergo		p _t =	1395	kg/m ²
φ' _d =	35	0	angolo res	istenza al tag	lio di calcolo	p _b =	2734	kg/m ²
c' _d =	0	kg/cmq	coesione o	drenata di cal	colo			

Fattori para	ziali di sicu	rezza SL							
Approccio	1- Da 1	A1+M1+R	3	COMB. EC	CCEZ.	Carich	ni		
$\gamma_{\phi} =$	1.0	f.s. su tan(φ')				q ₁ =	500	kg/mq
γ _C =	1.0	f.s. su coesi	one drenata				q ₂ =	3333	kg/mq
γ _R =	1.0								
				coeff. Sp.	di calcolo	Fase '	1	perm	
f.p.s.	favorevole	sfavorevole		K =	0.2710		p _t =	135	kg/mq
γ _{G1} =	1.0	1.0		coeff. spin	ta		p _b =	1165	kg/mq
γ _{G2} =	0.0	1.0		K ₀ =	0.4264				
γ _Q =	0.0	1.0		K _a =	0.2710	Fase 2	2	perm+var	
χ2 =		1.0					p _t =	1039	kg/mq
Parametri (geotecnici	di calcolo d	el terreno a	tergo			p _b =	2068	kg/mq
φ' _d =	35	0	angolo resis	tenza al taglio	di calcolo				
c' _d =	0	kg/cmq	coesione dre	enata di calco	lo				

L'armatura impiegata è la seguente.

- Armatura orizzontale . correnti $(1+1)\Phi14/20$ (N°10 per lato) (che assorbiranno flessione e torsione)
- Armatura verticale 1St. $1\Phi14/20$ (che assorbiranno taglio e torsione)

Per ogni sollecitazione si considerano i quantitativi di armatura minima richiesta per il soddisfacimento delle verifiche:


• Flessione orizzontale : correnti 10⊕10

• Taglio orizzontale : St. 1⊕10/20

• Torsione: St. $1 \oplus 8/20 + \text{Long}$. $(10+10) \oplus 8$

• Verifiche flessione orizzontale

Si riportano le mappe delle sollecitazioni flessionali di piastra M_{xx} (kg m/ml) dei due lati.

erifica a	flessione	orizz. DM	08 - cor	nbinazio	ne eccezio	<u>nale</u>
alcestruz	zzo			Acciaio		
R _{ck} =	350	kg/cm ²		f _{yk} =	4500	kg/cm ²
f _{ck} =	291	kg/cm ²		γ _s =	1	
f _{ctm} =		kg/cm ²		f _{yd} =	4500	kg/cm ²
f _{ctk} =	19.8	kg/cm ²		f _{cd} =		kg/cm ²
γ _c =	1			f' _{cd} =		kg/cm ²
α _{cc} =	1			f _{ctd} =	19.8	kg/cm ²
ati sezio						
b _w =	100	cm				
h =	40	cm				
c =	5	cm	copriferr	0		
d =	35	cm	altezza u	tile		
armatura	tesa disp	osta	C _{med} =	5.0	cm	
n _b	ф	A _{sw}	y _{binf}			
5	10	3.92	5			
0	0	0.00	5			
	A _{sw} =	3.92	cm ²			
/lomento	resistente)				
q =	0.0173		percentu	ale meccan	ica d'armatura	
M _{Rd} =	611896	kg*cm	momento	resistente		
M _{Rd} =	61.19	_				
M _{sd,z} =		kNm	Fs=	1.57	Verificato	

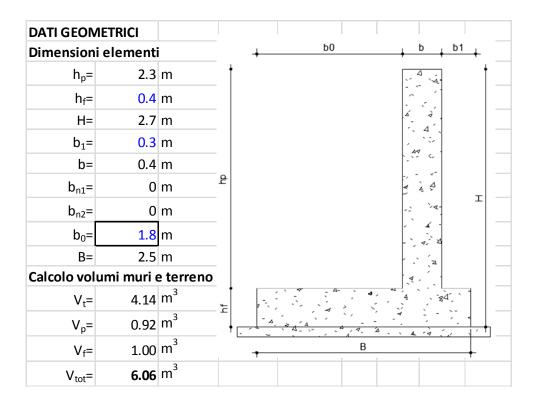
• Verifiche taglio orizzontale

Le sollecitazioni taglianti alle estremità sono ricavate dal modello.

V_{sd}=7143 kN

V _{sd} -/143 Verifica a		M08 - c	ombii	nazione	eccezio	nale		
0.1								
Calcestruz		1 - 1 2		Acciaio		1 - 1 2		
R _{ck} =		kg/cm ²		f _{yk} =		kg/cm ²		
f _{ck} =		kg/cm ²		γ _s =	1	2		
f _{ctk} =		kg/cm ²		f _{yd} =		kg/cm ²		
γ _c =	1			f _{cd} =		kg/cm ²		
αcc =	1			f'cd =		kg/cm ²		
				f _{ctd} =	20.2	kg/cm ²		
Azioni ag								
V _{Sd,y} =	7143	_		N _{Sd+} =		kg		
N _{Sd} =	0	kg		N _{Sd-} =	0	kg		
Dati sezio								
b _w =	184							
h =	40	cm						
c =	5	cm	coprif	erro				
d =	35	cm						
σ _{cp} =	0.0	kg/cm ²		α _c =	1.00			
Ocp(+) =	0.0	kg/cm ²		$\alpha_{c(+)} =$	1.00			
σ _{cp(-)} =	0.0	kg/cm ²		α _{c(-)} =	1.00			
Armature	disposte	•						
<u>Staffe</u>	$\theta =$	45	•		Diag.	$\theta =$	45	•
	α =	90	0					
nb	ф	Asw			nb	ф	Asw	
2	10	1.57			0	0	0.00	
0	12	0.00			0	0	0.00	
	A _{sw} =	1.57	cm ²			A _{sp} =	0.00	cm ²
	s =		cm			s =		cm
Capacità _I	portante	a taglio)	V _{Rd} =	11127	kg		
				FS=	1.56		Verificato	
a) Taglio c	•							
V _{Rcd} =	420935	kg						
V _{Rcd(+)} =	420935	kg						
V _{Rcd(-)} =	420935	kg						
b) Crisi arr	natura di	parete						
V _{Rsd} =	11127	kg						

• Verifiche a torsione


Il momento torcente alle estremita risulta M_x = 70.20 kNm (si è tenuto in conto dell'eccecntricità del carico).

erifica a	torsione i	<u> </u>						
Calcestruz	zo			Acciaio				
R _{ck} =	350	kg/cm ²		f _{yk} =	4500	kg/cm ²		
f _{ck} =		kg/cm ²		γ _s =	1	,		
f _{ctk} =		kg/cm ²		f _{yd} =	4500	kg/cm ²		
γ _c =	1	NB/ CITT		f _{cd} =	791	kg/cm ²		
$\alpha_{cc} =$	1			f'cd =		kg/cm ²		
ucc –	•			f _{ctd} =		kg/cm ²		
zioni age	ente			Tota –	20.2	NB/ CITI		
T _{Sd} =		kg*cm =						
i Su	70.2							
	70.2	KIN III						
ati sezio	ne							
b =	40	cm	base					
h =	184		altezza					
d' =	5	cm	copriferro					
A _c =	7360	cmq	area sezione	e di figura				
u =	448	-	perimetro se	z. di figura				
t ₁ =	16.4	cm	spessore pa	rete sez. a	nulare			
t ₂ =	10.0	cm						
t=	16.4							
A =	3950		area raccolta	a dalla linea	media			
u _m =	382		perimetro da	lla linea med	dia			
Armature	disposte		ν=	0.5				
Staffe Staffe	θ =	45	0		Longitudina	ali		
nb	ф	A _{sw}			nb	ф	Asw	
1	8	0.50			10	8	5.02	
0	8	0.00			10	8	5.02	
	A _{sw} =	0.50	cm ²		20	A _{sp} =	10.04	cm ²
	s =	20	cm			Smed =	19	cm
	A _{sw1} =	2.50	cmq/m					
Yamaalii k				- -	00.07	Irklan		
Capacità p	orianie a	101210116		T _{Rd} =		Verificato		
a) Compres	ssione bie	lle		13-	1.27	· crinicato		
T _{Red} =	175628		1756.28	kNm		T _{sd/} T _{Rcd} =	0.040	
o) Crisi arn		3	1,50.20	4111		Sui Nou	2.2.0	
taffe								
T _{Rsd} =	8887	kg*m =	88.87	kNm				
orrenti long.	223.	J	30.07					

9.3 Muro tipo C

9.3.1 Verifica di equilibrio di corpo rigido EQU

La verifica a ribaltamento è condotta solo in condizioni statiche e sismiche in quanto in condizioni eccezionali si suppone la collaborazione di una serie di muri all'azione d'urto e quindi non riesce ad instaurarsi il ribaltamento del muro.

DATI GEOTEC	NICI	EQU+M2
γ_{t1} =	20 kN/m ³	
ф'1=	35 °	
SOVRACCARIO	СНІ	
q=	41.23 kN/m ²	sovraccarico stradale
p=	0.01 kN/m^2	sovraccarico permanente
N=	1 kN/ml	scarico verticale testa muro
CALCOLO SPIN	NTE SU MURO	_
S _t =	25.04 kN	sp.statica terrapieno
S _p =	0.01 kN	sp. sovraccarico permanente
S _Q =	38.23 kN	sp. sovraccarico variabile
SPINTA SISMI	CA SU MURO	
Terreno		_
S _{AE} =	28.34 kN	spinta sismica
$\Delta P_{AE} =$	3.30 kN	incremento della spinta risultante dovuto all'azione sismica
INERZIE MUR	O E TERRAPIENO	
W _m =	23.00 kN	massa muro
W_t =	82.8 kN	peso terreno sulla fondazione a monte
F _{wh} =	6.08 kN	sp. Dovuta alle inerzie del muro e terra
S _{∆Pae+Fwt} =	9.39 kN	

/ERIFICA RIE	BALTAMENTO	EQU+M2

 20 kN/m^3 $\gamma_{\rm t1}\!\!=\!$

 $\gamma_{\rm t2}$ = 0 kN/m³ 25 kN/m³ $\gamma_{\rm cls} =$

Contributi	stabilizzanti					EQU-	M2	A1-M1	-R3
PESI	000000000000000000000000000000000000000	DISTANZ	'F	MOMENTI	1	C.STATIC		C.STATICA C	_
W ₊ =	82.8 kN	d _t =	1.60 m	M _t =	132.48 kNm	119.23	132.48	172.22	132.48
W _p =	23.00 kN	d _n =	0.50 m	M _p =	11.50 kNm	10.35	11.50	14.95	11.50
W _f =	25 kN	$d_0 =$	1.25 m	$M_0^r =$	31.25 kNm	28.13	31.25	40.63	31.25
W _p =	0.018 kN	-	1.60 m	M _p =	0.03 kNm	0.03	0.03	0.04	0.03
W _N =	1 kN	d _F =	0.50 m	M _n =	0.50 kNm	0.45	0.50	0.65	0.50
W _a =	74.21 kN	d _a =	1.60 m	M _a =	118.74 kNm	160.30	4.75	160.30	4.75
7		7		M _{ST} =	294.50 kNm	318.49	180.51 kNm	388.79	180.51 kNm
Contributi	ribaltanti								
S _t =	25.04 kN	d _{St} =	0.90 m	M _{St} =	22.53 kNm	24.79	22.53	23.11	17.78
S _P =	0.01 kN	d _{SP} =	1.35 m	$M_p =$	0.01 kNm	0.01	0.01	0.01	0.01
S _q =	38.23 kN	d _{Sa} =	1.35 m	M _a =	51.61 kNm	69.68	10.32	54.98	8.15
S _e =	9.39 kN	d _{Se} =	1.35 m	M _e =	12.67 kNm		12.67		12.07
•		Je .		C		94.48	45.54 kNm	78.11	38.00 kNm
Fs=	3.37 statio	a				20			30.00
-	3.96 sismi								
·									

9.3.2 Verifica scorrimento piano di posa GEO

VERIFIC	A SCORRII	MENTO		A1-M1-R3
φ' ₁ =	28	0	0.489	rad
φ' _{1d} =	28.00	0	0.489	rad
R*=	1.00			
δ=	28.00	•	0.489	rad
tgδ=	0.532			
W _{t+cls} =	130.80	kN		
$W_P =$	0.018	kN		
W _F =	1	kN		
$W_q =$	74.214	kN		
$W_{mv} =$	3.04	kN		
	STATICA			
Rd=	131.26			
Hd=	66.42			
	SISMICA		ψ_{2} =	0.2
Rd=	83.79	kN		
Hd=	34.74	kN		
Fs=	1.98 2.41	statica sismica		

9.3.3 Verifica collasso carico limite fondazione -terreno GEO

CALCOLO CAPACITA' PORTANTE FONDAZIONE DATI RELATIVI AL TERRENO DI FONDAZIONE

A1-M1-R3-statica

Peso specifico del terreno	g _t =	19.00 kN/m³
Angolo di attrito del terreno	$f_d =$	28.00 °

Coesione del terreno $c_d = 0.00 \text{ kN/m}$ Angolo di inclinazione del piano campagna $w = 0.00 \text{ }^{\circ}$

28.00°	f=	28.00	0
0.00 kN/m^2	g _f =	1.00	SL
0.00 °	g _c =	1.00	SL
	g _R =	1.40	SL

c =

DATI RELATIVI ALLA GEOMETRIA DELLA FONDAZIONE

Profondita' di imposta della fondazione D = 0.50 m Angolo di inclinazione piano di fondazione (<=f) a = 0.00 $^{\circ}$

 $c_u = 1.40 \text{ kN/m}^2$ $g_{cu} = 1.40 \text{ SLU}$ $c_{ud} = 1.00 \text{ kN/m}^2$

0 kN/m²

Larghezza fondazione B = 2.70 mLunghezza fondazione L = 11.00 m

Eccentricità carico verticale in direzione B E(B)=0.103 m Eccentricità carico verticale in direzione L E(L)=0.00 m

Larghezza equivalente fondazione per carichi eccentrici B(EQ)=2.49 mLunghezza equivalente fondazione per carichi eccentrici L(EQ)=11 m

DATI RELATIVI AI CARICHI

102.97 kN/m2 = 1.03 kg/cm² Tensione media normale alla fondazione $p_n =$ 31.18 $kN/m^2 =$ 0.31 kg/cm² Tensione media tangenziale alla fondazione $p_h =$ Carico normale alla fondazione 3058.4 kN = 305836 kg N =926 kN = 92591 kg Carico tangenziale alla fondazione T = 9.50 kN/m² 0.10 kg/cm² Sovraccarico sul piano campagna Q =

VALORI DEI COEFFICIENTI DELLA FORMULA

Coefficienti di Brinch-Hansen			q	С
Fattori principali (kN/m²)	F	23.68	19.00	0.00
Fattori di capacità portante	N	10.94	14.72	25.80
Fattori di forma fondazione	s	1.06	1.06	1.13
Fattori di profondità del piano di fondazione	d	1.00	1.06	1.06
Fattori di inclinaz. del carico	i	0.36	0.52	0.51
Fattori di inclinaz. del piano di fondazione	b	1.00	1.00	1.00
Fattori di inclinaz. del piano di campagna	g	1.00	1.00	1.00
Prodotto totale	FNsdibq	100	163.73	0.00

Pressione limite totale normale al piano di fondazione q_{lim} = 188 kN/m² = 1.88 kg/cm² Carico limite totale normale al piano di fondazione N_{lim} = 5162 kN = 516234 kg

Coefficiente di sicurezza FS= 1.69

CALCOLO CAPACITA' PORTANTE FONDAZIONE DATI RELATIVI AL TERRENO DI FONDAZIONE

A1-M1-R3-sismica

Peso specifico del terreno	g _t =	19.00 kN/m ³
Angolo di attrito del terreno	$f_d =$	28.00°
Coesione del terreno	$c_d =$	0.00 kN/m^2
Angolo di inclinazione del piano campagna	w =	0.00 °

C =	0	kN/m²
f=	28.00	0
g _f =	1.00	SLU
g _c =	1.00	SLU
g _R =	1.40	SLU

DATI RELATIVI ALLA GEOMETRIA DELLA FONDAZIONE

Profondita' di imposta della fondazione	D =	0.50 m
Angolo di inclinazione piano di fondazione (<=f)	a =	0.00 °

c _u =	1.40	kN/m²
g _{cu} =	1.40	SLU
c _{ud} =	1.00	kN/m²

Larghezza fondazione B = 2.70 mLunghezza fondazione L = 11.00 m

Larghezza equivalente fondazione per carichi eccentrici B(EQ)=2.17 mLunghezza equivalente fondazione per carichi eccentrici L(EQ)=11 m

DATI RELATIVI AI CARICHI

Tensione media normale alla fondazione	$p_n =$	56.72 kN/m ² =	0.57 kg/cm ²
Tensione media tangenziale alla fondazione	$p_h =$	12.11 kN/m ² =	0.12 kg/cm ²
Carico normale alla fondazione	N =	1684.5 kN =	168455 kg
Carico tangenziale alla fondazione	T =	360 kN =	35961.89 kg
Sovraccarico sul piano campagna	Q =	9.50 kN/m ²	0.10 kg/cm ²

VALORI DEI COEFFICIENTI DELLA FORMULA

Coefficienti di Brinch-Hansen		g	q	С
Fattori principali (kN/m²)	F	20.59	19.00	0.00
Fattori di capacità portante	N	10.94	14.72	25.80
Fattori di forma fondazione	s	1.05	1.05	1.11
Fattori di profondità del piano di fondazione	d	1.00	1.07	1.07
Fattori di inclinaz. del carico	i	0.51	0.64	0.64
Fattori di inclinaz. del piano di fondazione	b	1.00	1.00	1.00
Fattori di inclinaz. del piano di campagna	g	1.00	1.00	1.00
Prodotto totale	FNsdibq	120	202.92	0.00

Pressione limite totale normale al piano di fondazione q_{lim} = 231 kN/m² = 2.31 kg/cm² Carico limite totale normale al piano di fondazione N_{lim} = 5502 kN = 550180 kg

Coefficiente di sicurezza FS= 3.27

9.3.4 Verifica del muro

La verifica dei muri viene effettuata sempre mediante l'approccio 2 A1-M1-R3, previsto dal DM 14.01.08 par 6.5.3.1.1.

Le verifiche strutturali sono state svolte nelle sezioni 1 all'attacco con la fondazione.

9.3.4.1 Verifiche a stato limite ultimo

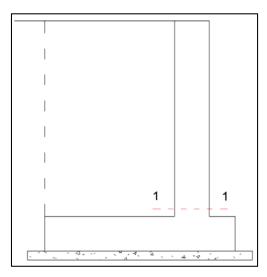
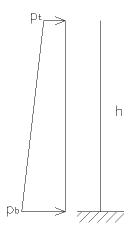



Figura 13 – Sezioni di verifica del muro

• Combinazione fondamentale e sismica

La sezione 1-1 è alla base del muro. Lo schema statico adottato per la verifica è quello di una mensola incastrata alla base e soggetta a una spinta orizzontale data dal terreno e dal sovraccarico nel caso statico.

$$\begin{split} p_t &= \gamma_{q} \cdot k_A \cdot h & \text{pressione sommita'} \\ p_b &= p_t + \gamma_g \cdot \gamma \cdot k_A \cdot h & \text{pressione base} \\ \text{In condizioni dinamiche si aggiunge l'incremento di spinta sismica.} \\ p_t &= \gamma_q \cdot k_A \cdot h + \Delta p_e \end{split}$$

Note le pressioni orizzontali sul muro, si esegue il calcolo del momento alla base del medesimo e si procede quindi al calcolo dell'armatura.

CALCOLO SPINTA TERRA

Geometria .	<u>muro</u>	Coeff. Spinta	
$H_n =$	2.3 m	a riposo	0
s =	0 m	attiva	1
$H_f =$	0 m		
$H_0 =$	2.3 m		

Parametri geotecnici caratteristici del terreno a tergo

γ' =	2.00 t/m ³	terreno saturo
φ' =	35 °	angolo resistenza al taglio
C, =	0 kg/cmq	coesione drenata
$\gamma_w =$	0.0 t/m³	peso acqua

Fattori parziali di sicurezza SL

<u>Approcc</u>	io 2	A1+M1+R3	3	SLU STR	
$\gamma_{\phi} =$	1.0	f.s. su tan(φ')			
γ _C =	1.0	f.s. su coesio	ne drenata		
γ _R =	1.0				
			_	coeff. Sp. di calcolo	
f.p.s.	favorevole	sfavorevole		K = 0.2710	
γ _{G1} =	1.0	1.30		coeff. spinta	
γ _{G2} =	0.0	1.50		$K_0 = 0.4264$	
γ _Q =	0.0	1.35		$K_a = 0.2710$	
Parame	Parametri geotecnici di calcolo del terreno a tergo				
	in geolecini	or di calcolo	uei ieiiei	io a tergo	
φ' _d =	35	0	angolo resi	stenza al taglio di calcolo	
c' _d =	0	kg/cmq	coesione d	renata di calcolo	

		44 144 56		01.11.01014	
<u>Approcc</u>	<u>10 2</u>	A1+M1+R3	3	SLU SISM	
γ_{ϕ} =	1.0	f.s. su tan(φ')			
γ _C =	1.0	f.s. su coesione drenata			
γ _R =	1.0				
			_	coeff. Sp. di calcolo	
f.p.s.	favorevole	sfavorevole		K = 0.2710	
γ _{G1} =	1.0	1.0		coeff. spinta	
γ _{G2} =	0.0	1.0		$K_0 = 0.4264$	
$\gamma_Q =$	0.0	1.0		$K_a = 0.2710$	
Paramet	Parametri geotecnici di calcolo del terreno a tergo				
φ' _d =	35	<u> </u>			
c' _d =	0	kg/cmq coesione drenata di calcolo			

Carichi	
$q_p =$	1 kg/m²
$q_1 =$	4123 kg/m ²
q ₂ =	0 kg/m ²
Fase 1 perm	
n, =	n ka/m²

$p_t = 0 \text{ kg/m}$ $p_b = 1621 \text{ kg/m}^2$

Fase 2 perm+var $p_t = 1509 \text{ kg/m}^2$ $p_b = 3129 \text{ kg/m}^2$

Carichi	
$q_p =$	1 kg/m²
$q_1 =$	825 kg/m ²
$q_2 =$	0 kg/m²

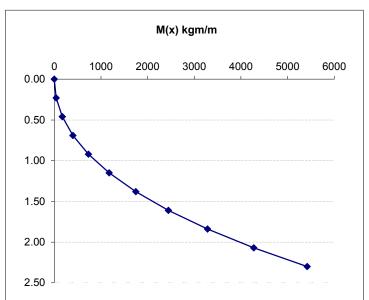
ase 1 p _t = p _b =	(_	kg/m² kg/m²
ase 2	perm+var-		sisma ka/m²

F

$p_t =$	578 kg/m²
$p_b =$	1825 kg/m²

CALCOLO INCREMENTO SPINTA IN CONDIZIONI SISMICHE

γ [kgf/m³]	2000	peso specifico del terreno sopra falda
φ ['] [°]		angolo di resistenza al taglio
ψ [°]		angolo di inclinazione rispetto all'orizzontale della parete del muro rivolta a monte (se verticale =90°)
β [°]		angolo di inclinazione rispetto all'orizzontale della superficie del terrapieno (se orizzontale =0°)
δ [°]		angolo di resistenza a taglio tra terreno e muro
*11		angolo di resistenza a tagno tra terreno e mulo
S [-]	1.198	
a _g [g]	0.2	
β_{m}	0.24	
Falda	N	Y/N N.B.: Y = falda a p.c.; N = falda sotto lo scavo lato valle
$\gamma_{\rm H20}$ [kgf/m ³]	0	
	,	
k _h [g]	0.058	
k _v [g]	0.029	
114/31	2000	l
γ^{I} [kgf/m ³] θ_{A} [°]	2000	peso specifico efficace
θ _B [°]		inclinazione del campo gravitazionale per effetto dell'accelerazione sismica inclinazione del campo gravitazionale per effetto dell'accelerazione sismica
g _A [g]	1.030	come da definizione, ma validi per procedura alternativa semplificata (inclinazione campo gravitazionale)
g _B [g]		come da definizione, ma validi per procedura alternativa semplificata (inclinazione campo gravitazionale)
g _{A*} [g]		corretti per un'applicazione da procedura esaustiva, ed usati nel seguito
g _{B*} [g]	0.971	corretti per un'applicazione da procedura esaustiva, ed usati nel seguito
$\phi^{I}-\theta_{A}$ [°]	31.8	
$\phi^{I}-\theta_{B}$ [°]	31.6	
K _{a,A} [-]	0.302	con sisma, secondo Mononobe e Okabe
K _{a,B} [-]	0.303	con sisma, secondo Mononobe e Okabe
K _a [-]	0.271	senza sisma, secondo Mononobe e Okabe
$K_{a,A} / K_a * g_{A*}$	1.145	incremento percentuale della spinta risultante dovuto all'azione sismica
$K_{a,B} / K_a * g_{B*}$	1.087	incremento percentuale della spinta risultante dovuto all'azione sismica
		1
H [m]		altezza libera del muro
E _{non sismico} E _{d,A} [kgf/m]		spinta risultante sull'altezza libera del muro in assenza di sisma (escluso il contributo dell'acqua)
E _{d,B} [kgf/m]	1641	accelerazione verso il basso
-d,B [NSI/III]	1559	accelerazione verso l'alto
$\Delta E_{d,A}$ [kgf/m]	207	incremento della spinta risultante dovuto all'azione sismica
$\Delta E_{d,B}$ [kgf/m]	125	incremento della spinta risultante dovuto all'azione sismica
→=a,B ["\ 6 "/ ""]	123	moremente dena spirita risultante devate an azione sistinoa

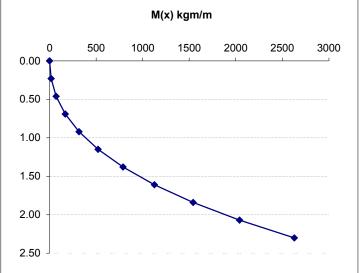

L'andamento del momento flettente al metro lineare in condizioni statiche e sismiche, lungo lo sviluppo del muro è il seguente.

STATICA

Schema 2 : perm + var

$p_1 =$	1509 kg/mq
p ₂ =	3129 kg/mq
$p_0 =$	1621 kg/mq
l =	2.3 m

Х	M [kgm]	V [kg]
0.00	0	0
0.23	41	366
0.46	171	769
0.69	398	1209
0.92	730	1686
1.15	1176	2201
1.38	1745	2753
1.61	2445	3342
1.84	3285	3969
2.07	4274	4633
2.30	5419	5334


 $M_{max} =$ 5419 kgm/m

SISMICA

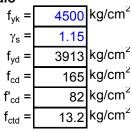
Schema 2 : perm + var

$p_1 =$	578 kg/mq
p ₂ =	1825 kg/mq
$p_0 =$	1247 kg/mq
=	2.3 m

Х	M [kgm]	V [kg]
0.00	0	0
0.23	16	147
0.46	70	323
0.69	167	528
0.92	315	761
1.15	520	1024
1.38	788	1314
1.61	1127	1634
1.84	1542	1982
2.07	2040	2358
2.30	2629	2764

 $M_{max} = 2629 \text{ kgm/m}$

Il momento massimo è raggiunto in condizioni statiche. Trascurando il contributo stabilizzante dei carichi verticali (peso proprio e permanenti) è stato calcolato il momento resistente della sezione di base considerando solo l'armatura tesa e una sezione di larghezza 1m:


 $1\Phi16/20$ e $2\Phi14/40$ di spezzoni di infittimento (si estendono per una lunghezza di 1.m dall'innesto in fondazione).

Verifica a flessione piano verticale-combinazione statica e sismica

Sezione 1-1

Calcestruzzo kg/cm² 350 R_{ck} = 291 kg/cm² $f_{ck} =$ 28.3 kg/cm² $f_{ctm} =$ 19.8 kg/cm² $f_{ctk} =$ 1.5 $\gamma_c =$ 0.85 α_{cc} =

Acciaio

Dati sezione

b =	100	cm	
h =	40	cm	
c =	5.0	cm	copriferro
d =	35.00	cm	altezza util

Armatura tesa disposta

n_b	ф	A_{sw}	y _{binf}
5	16	10.05	5
2.5	14	3.84	7.5

$$A_{sw} = 13.89 \text{ cm}^2$$

Momento resistente

$$q = 0.0943$$
 pe $M_{Rd} = 18101 kg*m$

percentuale meccanica d'armatura

FS = 3.34 VER SI

Momento di calcolo: massimo tra le due condizioni.

• Combinazione eccezionale

L'azione dell'urto di un veicolo si traduce in uno stato di sollecitazioni in testa al muro. Il momento d'urto e la relativa azione orizzontale agenti sulla singola barriera sono:

$$M_u=M_{pl,barr}=35.70 \text{ kN su } 1.5 \text{m di interasse}$$

 $V_u=M_{pl}/1=35.7 \text{ kN}$

Tale azione coinvolge 3 montanti posizionati ad un interasse di 1.5m. Le sollecitazioni al metro lineare quindi risultano

$$M_u = 3*35.70/4.5 = 23.80 \text{ kNm/ml}$$

$$V_u = 3*35.70/4.5 = 23.80 \text{ kN/ml}$$

Alla base il contributo dell'effetto urto sul muro è

$$M_{du}=M_u+V_u*H$$

$$V_{du} = V_u$$

Si calcola il contributo della spinta terra, quello del sovraccarico permamente e il sovraccarico variabile.

CALCOLO SPINTA TERRA

Geometria mu	<u>ro</u>	Coeff. Spinta	
$H_n =$	2.3 m	a riposo	0
s =	0 m	attiva	1
$H_f =$	0 m		
$H_0 =$	2.3 m		

Parametri geotecnici caratteristici del terreno a tergo

γ' =	2.00 t/m ³	terreno saturo
φ' =	35 °	angolo resistenza al taglio
c' =	0 kg/cmq	coesione drenata
$\gamma_w =$	o t/m ³	peso acqua

Fattori parziali di sicurezza SL

<u>. a </u>			
Approccio '	1- Da 1	A1+M1+R3	COMB. ECCEZ.
$\gamma_{\phi} =$	1.0	f.s. su $tan(\phi')$	
γ _C =	1.0	f.s. su coesion	ne drenata
γ_R =	1.0		
			coeff. Sp. di calcolo
f.p.s.	favorevole	sfavorevole	K = 0.2710
γ _{G1} =	1.0	1.0	coeff. spinta
γ _{G2} =	0.0	1.0	$K_0 = 0.4264$
γ _Q =	0.0	1.0	$K_a = 0.2710$
χ ₂ =		1.0	
Parametri geotecnici di calcolo del terreno a tergo			
φ' _d =	35	0	angolo resistenza al taglio di calcolo
c' _d =	0	kg/cmq	coesione drenata di calcolo

Carichi

 $q_1 = 1 \text{ kg/mq}$ $q_2 = 4123 \text{ kg/mq}$

Fase 1 perm

 $p_{t} = 0 \text{ kg/mq}$ $p_{b} = 1247 \text{ kg/mq}$

Fase 2 perm+var

 $p_t = 1118 \text{ kg/mq}$ $p_b = 2364 \text{ kg/mq}$

Schema 2 : perm + var

$p_1 =$	1118 kg/mq
p ₂ =	2364 kg/mq
$p_0 =$	1247 kg/mq
=	2.3 m

Х	M [kgm/m]	V [kg/m]
0.00	0	0
0.23	31	271
0.46	127	571
0.69	296	900
0.92	543	1258
1.15	876	1644
1.38	1302	2058
1.61	1825	2502
1.84	2455	2974
2.07	3196	3475
2.30	4055	4004

$M_{max} =$	4055	kgm/ml
L=	1	m
$M_1 =$	4055	kg m
V ₁ =	4004	kg

Le sollecitazioni complessive agenti alla base del muro, sommando i vari contribute risultano: *Sezione 1-1-base*

z=	2.30	m
$M_{sd,tot} =$	11975	kgm
$N_{sd,tot} =$	2400	kg

E' riportato il tabulato della verifica a flessione nella sezione di attacco 1-1 e nella sezione dove non sono più presenti i ferri di infittimento. E' stato considerato il ramo incrudente dell'acciaio.

Sezione 2-2- elevazione

z=	1.30	
h=	40.00	m
$M_{sd,tot} =$	6663	kgm
$N_{sd,tot} =$	0	kg

Verifica a flessione DM08

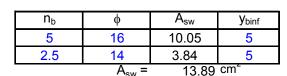
Sezione 1-1

Calcestruzzo

R _{ck} =	350 kg/cm ⁻
f _{ck} =	291 kg/cm ⁻
f _{ctm} =	28.3 kg/cm ²
f _{ctk} =	19.8 kg/cm ⁻
γ_c =	1
$\alpha_{cc} =$	1

Acciaio

$f_{yk} = $ $\gamma = $	4500 1	kg/cm ⁻
$\gamma_s = f_{yd} = f_{yd}$		kg/cm ⁻
f _{cd} =		kg/cm ⁻
f' _{cd} =	145	kg/cm ⁻
f _{ctd} =	19.8	kg/cm ⁻


5.0 cm

1.77 VER SI

Dati sezione

	100 cm	$D_{w} =$
	40 cm	h =
copriferro	5 cm	c =
altazza util	35 cm	d =

Armatura tesa disposta

Momento resistente

q =	0.0615	percentuale meccanica d'a	rmatura
M _{Rd} = [2118575 kg*cm 21186 kgm	momento resistente	
M _{Sd1} =[zione 2-2		momento agente	FS =

 $c_{med} =$

Sezione 2-2 Dati sezione

$b_w =$	100 cm	
h =	40 cm	
C =	5 cm	copriferro
d =	35 cm	altezza utile

Armatura tesa disposta

n _b	ф	A _{sw}	y binf
5	16	10.05	5
0	0	0.00	5
	A _{sw} =	10.05	cm ²

Momento resistente

q =	0.0445	percentuale meccanica d'armatura			
M _{Rd} =	15467 kgm				
M _{Sd1} =	6663 kg*m	momento agente	FS =	2.32 VER SI	

c_{med} =

5.0 cm

28.3 kg/cm⁴

34.0 kg/cm²

28.3 kg/cm²

9.3.5 Verifica a SLE elevazione

Le la verifica a SLE si assume un momento di calcolo, a favore di sicurezza, pari a:

 $M_E = M_{sd} / \gamma_G = 54.19 / 1.3 = 47.11 \text{ kNm}$

Il controllo delle condizioni di esercizio è svolto al successivo foglio di calcolo:

 $f_{ctm} =$

f_{cfm} =

f_{cteff}:

Verifica a fessurazione DM08

Calcestruzzo $R_{ck} =$

350 kg/cm² 290.5 kg/cm² $f_{ck} =$ $f_{ctk} =$ 20.2 kg/cm² 174.3 kg/cm² $\sigma_{c,car} =$

130.7 kg/cm² $\sigma_{c,qp} =$

Acciaio

 $E_S =$ 2100000 kg/cmq n = 15 4500 kg/cm² $f_{yk} =$ 3600 kg/cm2 $\sigma_{s,car}$ =

E _{cm} =	325881	kg/cm ²
Parametri	"k"per calc	olo
k _t =	0.6	
k ₁ =	0.8	
k ₂ =	0.5	
k ₃ =	3.4	

0.425

Sollecitazioni agenti

Condizione	M _{Sd}	σ_{s}
Condizione	kg*cm	kg/cmq
SLU	541900	-
CAR	416846	949
FREQ.	0	0
Q.P.	0	0

Condizi	one caratteristica	Co	ndizione q.p.	Tension	ni imposte per fessur.
$M_{Sd} =$	416846 kg*cm	$M_{Sd} =$	0 kg*cm	$\sigma_{s,QP}$ =	949 kg/cmq
N _{Sd} =	0 kg	N _{Sd} =	0 kg	$\sigma_{s,FRQ} =$	949 kg/cmq

 $k_4 =$

Dati sezione

 $b_w =$ 100 cm base trave h = 40 cm altezza totale trave c = 5 cm copriferro armatura tesa d = 35 cm h. utile A_{eff} = 994.17 cmq area efficace in trazione 10.18 cm $\chi_n =$ asse neutro da I.s.

(y_i dal lembo teso) Armatura sezione

Strato	n. ferri	ф _ь [mm]	y _i [cm]	A _{si}	
1-t	5	16	5	10.05	tesa
2-t	2.5	14	5	3.85	tesa
3-c	0	0	0	0.00	comp.
4-c	0	16	35	0.00	comp.

SLE - Tensioni materiali comb. CAR (rara) / QP

-26 kg/cmq $\sigma_{c,CAR}$ = max compressione cls $\sigma_{c,QP}$ = 0 kg/cmq max compressione cls $\sigma_{s,CAR}$ = 949 kg/cmq trazione massima ferri 0 kg/cmq $\sigma_{s,CAR}$ = max compr. ferri

VER		IM	FS
CAR	SI	0.15	6.72
QP	SI	0.00	1
CAR	SI	0.26	3.79
CAR	SI	0.00	-

SLE - Calcolo ampiezza fessure comb. Q.P.

y_{ao} = 5.00 cm baricentro arm. tesa $\phi_{eq} =$ 15.4 mm diametro equivalente $A_{st} =$ 13.90 cm² area ferro tesa ρ_{eff} = 0.0140

 $\sigma_{s,QP} =$ 949 kg/cmq tensione acciaio teso (Q.P.) 949 kg/cmq $\sigma_{s,FRQ} =$ tensione acciaio teso (FREQ)

 $M_{cr} =$ 907198 kg*cm momento di prima fessurazione

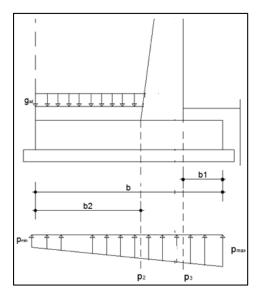
Sez, interam.reagente; calcolo non pertinente

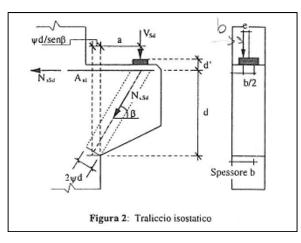
357 mm S_{rmax} = distanza fessure -0.00018 -0.00018 deformazione acciaio tra due fess. $\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}$ =

-0.06 $W_{d,QP} =$ mm ampiezza massima fessure -0.06 $W_{d,FRQ} =$ mm

9.3.6 Verifica di resistenza della fondazione

La fondazione del muro è verificata considerandola incastrata all'attacco del muro e soggetta alla seguente distribuzione dei carichi: il peso proprio (g_0) , il peso della terra (g_t) e dei sovraccarichi $(p\ e\ q)$ saranno diretti verso il basso. La ciabatta però sarà anche soggetta a una spinta p diretta dal basso verso l'alto determinata a partire dalle sollecitazioni di calcolo N_{sd} e M_{sd} .




Figura 14 – Azioni sulla fondazione

$$M_{sd} = M_{st} - M_{rib} - \sum W_i \cdot z_i$$

$$N_{sd} = \sum G$$

Il tratto di fondazione più corto è stato verificato con l'utilizzo delle metodologie illustrate nella circ. 617/2009 delle NTC 2008 Cap.4.1.2.1.5 "Resistenza di elementi tozzi, nelle zone diffusive dei nodi". La mensola sarà soggetta alla differenza di distribuzione di carico indicato in figura (il peso del pietrame gp e del peso proprio g0 diretti verso il basso e la pressione del terreno diretta verso l'alto.

Le verifiche delle mensole tozze viene effettuata facendo riferimento al norma CNR 10025/98, di cui si riporta un estratto in quanto segue.

$$\begin{split} N_{cSd} &= \frac{V_{Sd}}{sen\beta} \\ N_{sSd} &= \frac{V_{Sd}}{tg\beta} \\ v_{g} &= \frac{1}{\lambda_v + \psi/sen\beta} = \frac{\lambda_v - \sqrt{\lambda_v^2 - \left(\lambda_v^2 - \psi^2\right) \cdot \left(1 - \psi^2\right)}}{\left(\lambda_v^2 - \psi^2\right)} \\ N_{cRd} &= 2 \cdot \psi \cdot \frac{v}{v} \cdot b \cdot d \cdot 0.85 \cdot f_{cd} = 2 \cdot k \cdot \psi \cdot b \cdot d \cdot f_{cd} \\ N_{sRd} &= A_{sl} \cdot f_{yd} \\ \psi &\leq 0.176 \end{split}$$

Si riportano in questo paragrafo le verifiche dei due tratti di fondazione dove si innesco il muro.

Le sollecitazioni agenti in condizioni statiche sono indicate nel seguente tabulato.

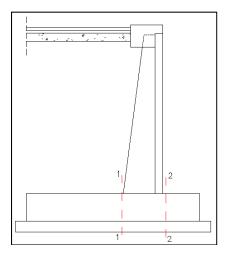


Figura 16 – Sezioni di verifica

AZIONI A1-M1-R3 -STATICA

Carichi su parte a monte diretti verso il basso

$g_{sd,tot}=$	128.5 kN/m	
q _{tr} =	55.66 kN/m	peso sovraccarico stradale
$g_p =$	0.0 kN/m	peso sovraccarico permanente
$g_t =$	59.8 kN/m	peso terreno
$g_0 =$	13.00 kN/m	peso proprio

Carichi su parte a valle diretti verso il basso h= 0 m 13.0 kN/m $g_0 =$ peso proprio 0.0 kN/m g_t= terreno valle 0.1 kN/m g_p= peso sovraccarico permanente $q_{tr} =$ 334.0 kN/m peso sovraccarico stradale **347.0** kN/m $g_{sd,tot}=$

Pressioni rivolte verso l'alto b= 2.5 m

 p_{max} = 127 kN/ml p_{min} = 79 kN/ml $\triangle p$ = 47 kN/ml p_2 = 113 kN/ml p_3 = 121 kN/ml

AZIONI A1-M1-R3 -SISMICA

Carichi su parte a monte diretti verso il basso

 g_0 = 10.00 kN/m peso proprio g_t = 46.0 kN/m peso terreno g_p = 0.0 kN/m peso sovraccarico permanente

 q_{tr} = 8.25 kN/m peso sovraccarico stradale

 $g_{sd,tot} = 64.3 \text{ kN/m}$

Carichi su parte a valle diretti verso il basso h= 0 m

 g_0 = 10.0 kN/m peso proprio g_t = 0.0 kN/m peso terreno

 g_p = 0.1 kN/m peso sovraccarico permanente

 q_{tr} = 49.5 kN/m peso sovraccarico stradale

 $g_{sd,tot}$ = **59.5** kN/m

Pressioni rivolte verso l'alto b= 2.5 m

 p_{max} = 90 kN/ml

 p_{min} = 23 kN/ml

 $\triangle p = 67 \text{ kN/ml}$

 $p_2 = 72 \text{ kN/ml}$

 p_3 = 82 kN/ml

AZIONI A1-M1-R3 -ECCEZIONALE

Carichi su parte a monte diretti verso il basso

 g_0 = 10.00 kN/m peso proprio g_t = 46.0 kN/m peso terreno g_p = 0.0 kN/m peso sovraccarico permanente

 q_{tr} = 41.23 kN/m peso sovraccarico stradale

 $g_{sd,tot} = 97.2 \text{ kN/m}$

Carichi su parte a valle diretti verso il basso h= 0 m

 g_0 = 10.0 kN/m peso proprio g_t = 0.0 kN/m terreno valle

 g_p = 0.1 kN/m peso sovraccarico permanente

 q_{tr} = 247.4 kN/m peso sovraccarico stradale

g_{sd.tot}= **257.4** kN/m

Pressioni rivolte verso l'alto b= 2.5 m

 p_{max} = 171 kN/ml p_{min} = 0 kN/ml p_2 = 123 kN/ml p_3 = 150 kN/ml

L'armatura presente in fondazione è:

5Φ14 superiori $A_s=7.7$ cm²

5⊕14 inferiori

Combin. Statica

0.000 m **I**=

L= 1.8 m $g_{sd,tot} =$ 128.5 kN/m costante 113 kN/m $p_2=$ su incastro

Calcolo momento su incastro mensola di monte $M_g =$ 208.13 kN*m $M_p =$ -146.88 kN*m $M_{sd1} =$ 61.25 kN*m

79 kN/m p_{min} = M_{sd1} = 61.25 kNm 612460 kg cm 612460 kg cm/ml

Calcestruzzo

$R_{ck} =$	350 kg/cm²
$f_{ck} =$	291 kg/cm ²
f _{ctm} =	28.3 kg/cm ²
$f_{ctk} =$	19.8 kg/cm ²

1.5

0.85

 $\gamma_s =$ 1.15 3913 kg/cm² $f_{yd} =$ f_{cd} = 165 kg/cm² f'_{cd} = 82 kg/cm² f_{ctd} = 13.2 kg/cm²

4500 kg/cm²

Dati sezione

 $\gamma_c =$

 α_{cc} =

$$\begin{array}{lll} b_w = & 100 \text{ cm} \\ h = & 40 \text{ cm} \\ c = & 5 \text{ cm} & \text{copriferro} \\ d = & 35 \text{ cm} & \text{altezza utile} \end{array}$$

Armatura tesa disposta

med	=	5.0	cm

Acciaio

 $f_{yk} =$

n _b	ф	A _{sw}	y _{binf}
5	14	7.69	5
0	0	0.00	5

7.69 cm²

Momento resistente

q = 0.0522 percentuale meccanica d'armatura

 $M_{Rd} = 1024923 \text{ kg*cm}$ 102.49 kNm $M_{Rd} =$ Verificato

momento resistente

1.67

Combin. Sismica

I= 0.000 m

1.8 m L=

64.3 kN/m $g_{sd,tot} =$ costante

 $p_2=$ 72 kN/m su incastro p_{min}= 23 kN/m

 M_{sd1} = 40.51 kNm 405134 kg cm 405134 kg cm/ml Calcolo momento su incastro mensola di monte

 M_g = 104.09 kN*m $M_p =$ -63.58 kN*m

 $M_{sd1} =$ 40.51 kN*m

Calcestruzzo

350 kg/cm² R_{ck} = 291 kg/cm² $f_{ck} =$ 28.3 kg/cm² $f_{ctm} =$ 19.8 kg/cm² $f_{ctk} =$ 1.5 $\gamma_c =$

Acciaio

$f_{yk} =$	4500	kg/cm ²
$\gamma_s =$	1.15	
$f_{yd} =$	3913	kg/cm ²
f _{cd} =		kg/cm ²
f' _{cd} =		kg/cm ²
f _{ctd} =	13.2	kg/cm ²

Dati sezione $b_w =$

 α_{cc} =

b _w =	100 cm	
h =	40 cm	
c =	5 cm	copriferro
d =	35 cm	altezza utile

Armatura tesa disposta

5.0 cm

n _b	ф	A _{sw}	y _{binf}
5	14	7.69	5
0	0	0.00	5
	۸ _	7.00	cm ²

7.69 cm²

Momento resistente

q = 0.0444 percentuale meccanica d'armatura

 $M_{Rd} = 1029162 \text{ kg*cm}$ momento resistente

M_{Rd} = Verificato 2.54 102.92 kNm

Combin. Eccezionale

l= 1.8 m

L= 1.8 m

 $g_{sd,tot}$ = 97.2 kN/m costante

Calcolo momento su incastro mensola di monte M_g = 157.53 kN*m

 p_2 = 123 kN/m p_{min} = 0 kN/m

 $M_p = -66.23 \text{ kN*m}$

M_{sd1}= 91.30 kNm

 $M_{sd1} = 91.30 \text{ kN*m}$

913022 kg cm 913022 kg cm/ml

Calcestruzzo

Acciaio

su incastro

R _{ck} =	350 kg/cm²
f _{ck} =	291 kg/cm ²
f _{ctm} =	28.3 kg/cm ²

$$f_{yk} = 4500 \text{ kg/cm}^2$$

 $\gamma_s = 1$

 $f_{ctk} = 19.8 \text{ kg/cm}^2$ $\gamma_c = 1$ $f_{yd} = 4500 \text{ kg/cm}^2$ $f_{cd} = 291 \text{ kg/cm}^2$ $f'_{cd} = 145 \text{ kg/cm}^2$

 $f_{ctd} =$

19.8 kg/cm²

 $\gamma_c = 1$ $\alpha_{cc} = 1$

Dati sezione

 $b_w = 100 \text{ cm}$

h = 40 cm

c = 5 cm copriferro d = 35 cm altezza utile

Armatura tesa disposta

5.0 cm

n _b	ф	A _{sw}	y _{binf}
5	14	7.69	5
0	0	0.00	5
	A _{sw} =	7.69	cm ²

Momento resistente

percentuale meccanica d'armatura

 $M_{Rd} = 1189995 \text{ kg*cm}$

momento resistente

M_{Rd} = 119.00 kNm Verificato

FS= 1.30

Verifica a flessione SEZIONE 2-2 VERIFICA MENSOLA VERT. CNR 10025-98 Combin. Statica **SOLLECITAZIONI DI CARICO** $b_1 =$ 0.3 m 347.0 kN/m costante $g_{sd,tot} =$ $p_3 =$ 121 kN/m su incastro 127 kN/m $p_{max}=$ $F_{sd} =$ 67 kN diretta verso il basso 66971.3 N/m al metro di larghezza $H_{sd}=$ **GEOMETRIA DELLA MENSOLA** |= 300 [mm] aggetto della mensola a= 150 [mm] distanza punto di applicazione del carico da filo pilastro h= 300 [mm] altezza della mensola 1000 [mm] b= larghezza della mensola d'= 50 [mm] copriferro d= 250 [mm] altezza utile CARATTERISTICHE DEI MATERIALI CLS 35 [N/mm²] $R_{ck} =$ 29.05 [N/mm²] f_{ck}= resistenza carat. a compressione cilindrica 1.5 [-] coeff. di sicurezza sul cls 16.46 [N/mm²] $f_{cd} =$ resistenza di calcolo a compressione **ACCIAIO** 450 [N/mm²] $f_{vk} =$ 391 [N/mm²] $f_{vd} =$ snervamento di calcolo armature a taglio 0.555 (deve essere >=0.5) $\nu =$ 0.55 k= 0.73671 $v_{sd} =$ 0.016 $0.600\,$ snellezza della mensola 1.6254 (con β =angolazione del puntone compresso) ψ_{min} = 0.01297 (<=0.176) **Verificato Taglio Resistente** c= 1.2 [-] coeff. che tiene conto dell'attrito getto unico 1 [-] γn coeff. che tiene conto natura sforzi altro Av= 143 [mm²] **Armature** 1.05 [cm²] AsI= $0.00 \text{ [cm}^2\text{]}$ As2=

Av=

 $A_t =$

1.43 [cm²]

1.05 [cm²]

7.70 [cm²]

Arm. di Calcolo tirante RICHIESTA

Verifica a flessione SEZIONE 2-2 VERIFICA MENSOLA VERT. CNR 10025-98 Combin. Sismica **SOLLECITAZIONI DI CARICO** $b_1 =$ 0.3 m 59.5 kN/m costante $g_{sd,tot} =$ $p_3 =$ 82 kN/m su incastro 90 kN/m $p_{max}=$ $F_{sd} =$ -8 kN diretta verso l'alto 8024.79 N/m al metro di larghezza 0 N $H_{sd}=$ **GEOMETRIA DELLA MENSOLA** | = 300 [mm] aggetto della mensola a= 150 [mm] distanza punto di applicazione del carico da filo pilastro h= 300 [mm] altezza della mensola 1000 [mm] b= larghezza della mensola d'= 50 [mm] copriferro d= 250 [mm] altezza utile **CARATTERISTICHE DEI MATERIALI** CLS 35 [N/mm²] $R_{ck} =$ 29.05 [N/mm²] f_{ck}= resistenza carat. a compressione cilindrica 1.5 [-] coeff. di sicurezza sul cls 16.46 [N/mm²] $f_{cd} =$ resistenza di calcolo a compressione **ACCIAIO** 450 [N/mm²] $f_{vk} =$ 391 [N/mm²] $f_{vd} =$ snervamento di calcolo armature a taglio 0.555 (deve essere >=0.5) $\nu =$ 0.55 k= 0.73671 $v_{sd} =$ 0.002 $0.600\,$ snellezza della mensola 1.6617 (con β =angolazione del puntone compresso) ψ_{min} = 0.00154 (<=0.176) **Verificato Taglio Resistente** c= 1.2 [-] coeff. che tiene conto dell'attrito getto unico 1 [-] γn coeff. che tiene conto natura sforzi altro Av= 17 [mm²] **Armature** $0.12 [cm^2]$ AsI= $0.00 \text{ [cm}^2\text{]}$ As2= 0.17 [cm²] Av= Arm. di Calcolo tirante RICHIESTA 0.12 [cm²]

7.7 [cm²]

 $A_t =$

9.3.7 Verifica a SLE fondazione

Le la verifica a SLE si assume un momento di calcolo, a favore di sicurezza, pari a:

 $M_E = M_{sd} / \gamma_G = 61.25 / 1.3 = 47.11 \text{ kNm}$

Il controllo delle condizioni di esercizio è svolto al successivo foglio di calcolo:

Verifica a fessurazione DM08

Calcestruzzo

R _{ck} =	350 kg/cm ²
f _{ck} =	290.5 kg/cm ²
f _{ctk} =	20.2 kg/cm ²
$\sigma_{c,car}$ =	174.3 kg/cm ²
$\sigma_{c,qp}$ =	130.7 kg/cm ²

Acciaio

$E_S =$	2100000 kg/cmq
n =	15
$f_{yk} =$	4500 kg/cm ²
7 =	3600 kg/cm²

f _{ctm} =		kg/cm ²
f _{cfm} =		kg/cm ²
f _{cteff} =		kg/cm ²
E _{cm} =	325881	kg/cm ²
Parametri	"k"per calc	olo
k _t =	0.6	
k ₁ =	0.8	
k ₂ =	0.5	
k ₃ =	3.4	
k ₄ =	0.425	
•		

Sollecitazioni agenti

Condizione	M _{Sd}
Condizione	kg*cm
SLU	612500
CAR	471154
FREQ.	0
Q.P.	0

Condiz	ione caratt	eristica	Condizione q.p.		Tensioni imposte per fessur.		
$M_{Sd} =$	471154	kg*cm	$M_{Sd} =$	0 kg*cm	$\sigma_{s,QP}$ =	2371	kg/cmq
N _{Sd} =	0	kg	N _{Sd} =	0 kg	$\sigma_{s,FRQ} =$	2371	kg/cmq

Dati sezione

$b_w =$	100 cm	base trave
h =	40 cm	altezza totale trave
c =	5 cm	copriferro armatura tesa
d =	35 cm	h. utile
$A_{eff} =$	1080.83 cm	q area efficace in trazione
$\chi_n =$	7.57 cm	asse neutro da l.s.

Armatura sezione (y_i dal lembo teso)

Strato	n. ferri	ф _b [mm]	y _i [cm]	A _{si}	
1-t	5	14	5	7.70	tesa
2-t	0	0	5	0.00	tesa
3-c	0	0	0	0.00	comp
4-c	5	14	35	7.70	comp

SLE - Tensioni materiali comb. CAR (rara) / QP

$\sigma_{c,CAR}$ =	-35 kg/cmq	max compressione cls
$\sigma_{c,QP}$ =	0 kg/cmq	max compressione cls
$\sigma_{s,CAR}$ =	1899 kg/cmq	trazione massima ferri
$\sigma_{s,CAR}$ =	-178 kg/cmq	max compr. ferri

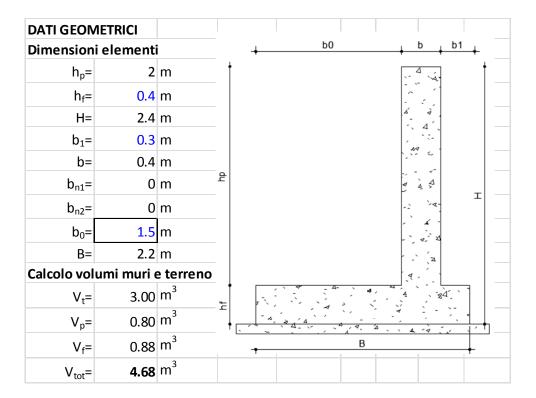
VI	ĒR.	IM	FS
CAR	SI	0.20	4.99
QP	SI	0.00	-
CAR	SI	0.53	1.90
CAR	SI	0.05	20.20

SLE - Calcolo ampiezza fessure comb. Q.P.

907198 kg*cm

	•	
y _{ao} =	5.00 cm	baricentro arm. tesa
$\phi_{eq} =$	14.0 mm	diametro equivalente
$A_{st} =$	7.70 cm ²	area ferro tesa
ρ_{eff} =	0.0071	% area tesa
$\sigma_{s,QP}$ =	2371 kg/cmq	tensione acciaio teso (Q.P.)
$\sigma_{s,FRQ}$ =	2371 kg/cmq	tensione acciaio teso (FREQ)

Sez, interam.reagente; calcolo non pertinente


s _{rmax} =	504	mm	distanza fessure
ϵ_{sm} - ϵ_{cm} =	-6.06E-05	-6.1E-05	deformazione acciaio tra due fess.
$w_{d,QP} =$	-0.03	mm	ampiezza massima fessure
$W_{d,FRQ} =$	-0.03	mm	ampiezza massima ressure

momento di prima fessurazione

9.4 Muro tipo F

9.4.1 Verifica di equilibrio di corpo rigido EQU

La verifica a ribaltamento è condotta solo in condizioni statiche e sismiche in quanto in condizioni eccezionali si suppone la collaborazione di una serie di muri all'azione d'urto e quindi non riesce ad instaurarsi il ribaltamento del muro.

DATI GEOTECNICI		EQU+M2								
γ_{t1} =		20	kN/	m³						
φ' ₁ =		35	•							
	CCARICHI									
		41.23	kN/	m²	sovraccarico stra	adale				
	p=	0.01	kN/	m ²	sovraccarico per	rmanente				
	N=		kN/		scarico verticale					
CALCOL	O SPINTE									
		19.78			• sp.statica terrap	ieno				
	S _p =	0.01	kN		sp. sovraccarico	permanente				
	S _Q =	33.98	kN		sp. sovraccarico	variabile				
SPINTA	SISMICA	SU M	URO)						
Terrenc)				-					
:	S _{AE} =	22.39	kN		spinta sismica					
ΔΙ	$\Delta P_{AE} = 2.61 \text{ kN}$			incremento della spinta risultante dovuto all'azione sismica						
INERZIE	MURO E	TERR	APIE	ENO						
V	V _m =	20.00	kN		massa muro					
	W _t =	60	kN		peso terreno sul	lla fondazione a	monte			
F	_{wh} =	4.60	kN		sp. Dovuta alle inerzie del muro e terra					
S _{∧Pae+}	 Fwt ⁼	7.21	kN							
VERIFICA	RIBALTAM	ENTO		EQU+M2	2					
$\gamma_{\rm t1}$ =	20 _{kN}									
γ_{t2} =	⁰ kN	/m³								
γ_{cls} =	25 _{kN}	/m³								
Contribut	i stabilizzan	<u>ti</u>					EQU-	M2	A1-M1	L-R3
PESI		DIS	TANZ	'E	MOMENTI		C.STATIC	C.SISMICA	C.STATICA	C.SISMICA
$W_t =$	60 kN		•	1.45 m	-	87.00 kNm	78.30	87.00	113.10	87.00
W _p =	20.00 kN		-	0.50 m	F	10.00 kNm	9.00	10.00	13.00	10.00
W _f =	22 kN			1.10 m		24.20 kNm	21.78	24.20	31.46	24.20
W _p =	0.015 kN			1.45 m	•	0.02 kNm	0.02	0.02	0.03	0.02
W _N =	1 kN			0.50 m	r	0.50 kNm	0.45	0.50	0.65	0.50
$W_q =$	61.85 kN		a _q =	1.45 m	M _q = M_{sT}=	89.68 kNm 211.40 kNm	121.06 230.61	3.59 125.31 kNm	121.06 279.30	3.59 125.31 k ľ
					.					
	<u>i ribaltanti</u>									
c –	10 70 LN	4 -		0 0 0 m	N/I —	1E 02 kNm	17 /1	1 0 0 0	16 22	12 40

Fs= 3.18 statica 3.84 sismica

19.78 kN

0.01 kN

33.98 kN

7.21 kN

 $d_{St}=$

 $d_{SP}=$

 $d_{Sq}=$

 $d_{Se}=$

0.80 m

1.20 m

1.20 m

1.20 m

 M_{St} =

 $M_p =$

 M_q =

 M_e =

15.83 kNm

0.01 kNm

40.78 kNm

8.65 kNm

17.41

0.01

55.05

72.47

15.83

0.01

8.16

8.65

32.64 kNm

16.23

0.01

43.44

59.68

 $S_t =$

 $S_P =$

S_q=

kNm

12.49 0.01

6.44

8.23 **27.16 kNm**

9.4.2 Verifica scorrimento piano di posa GEO

VERIFIC	A SCORRII	MENTO		A1-M1-R3
ф'1=	28	0	0.489	rad
φ' _{1d} =	28.00	0	0.489	rad
R*=	1.00			
δ=	28.00	•	0.489	rad
tgδ=	0.532			
$W_{t+cls}=$	102.00	kN		
	0.015			
W _F =		kN		
$W_q =$	61.845	kN		
$W_{mv}=$	2.30	kN		
	STATICA			
Rd=	105.09			
Hd=	56.50			
	SISMICA		ψ_{2} =	0.2
Rd=	66.40	kN		
Hd=	27.84	kN		
Fs=		statica sismica		

9.4.3 Verifica collasso carico limite fondazione -terreno GEO

PRESSIONI			A1-M1-R3			
<u>Combinazi</u> T _{sd} =	<u>71.61</u>	_			Contributo n	aagrone
			D/C	0.27		24 kN/m ³
B= N _{sd}	2.20 217.41		B/6=	0.37 m	g= h _m =	24 KN/M 0.1 m
xg=						2.40 m
_	239.15					5.76 kN
	279.30				""	
	59.68					
Δ M	219.62					
Sollecitazion		KINIII				
		kNm	lato schiad	cciato su cia	ıbatta corta	M_{G} -DM
	223.17	_				$N_{sd}+P_{m}$
e=	0.09					Su III
u=	0.00		z=	0.0 m		
Tensioni nor	mali					
B _{adott} =	2.40	m				
p _{max} =	113.34	kN/m ²	sez. reage	nte		
$p_{min}=$	72.64	kN/m ²				
p _{n,m} =	92.99	kN/m ²	valore medio			
Tensioni tan	genziali					
p _h =	29.84	kN/m ²				
Combinani			2/1 -	0.3	Caratella et a ca	
<u>Combinazi</u>			ψ_{2} =	0.2	Contributo n	
T _{sd} =	26.59	kN			g=	24 kN/m3
T _{sd} = B=	26.59 2.20	kN m		0.2 0.37 m	g= h _m =	24 kN/m3 0.1 m
T _{sd} = B=	26.59	kN m			g= h _m = B _m =	24 kN/m3 0.1 m 2.40 m
T _{sd} = B=	26.59 2.20	kN m kN			g= h _m = B _m =	24 kN/m3 0.1 m
$T_{sd} = B = N_{sd}$ $xg = $	26.59 2.20 115.38	kN m kN m			g= h _m = B _m =	24 kN/m3 0.1 m 2.40 m
T_{sd} = B = N_{sd} xg = M_{G}	26.59 2.20 115.38 1.10	kN m kN m kNm			g= h _m = B _m =	24 kN/m3 0.1 m 2.40 m
T_{sd} = B = N_{sd} xg = M_{G}	26.59 2.20 115.38 1.10 126.92	kN m kN m kNm kNm			g= h _m = B _m =	24 kN/m3 0.1 m 2.40 m
$T_{sd} = B = N_{sd}$ $xg = M_{G}$ $M_{STAB} = M_{STAB}$	26.59 2.20 115.38 1.10 126.92 125.31	kN m kN m kNm kNm			g= h _m = B _m =	24 kN/m3 0.1 m 2.40 m
$T_{sd} = B = N_{sd}$ $xg = M_{G}$ $M_{STAB} = M_{RIB} = M_{RIB}$	26.59 2.20 115.38 1.10 126.92 125.31 27.16 98.15	kN m kN m kNm kNm			g= h _m = B _m =	24 kN/m3 0.1 m 2.40 m
$T_{sd} = B = N_{sd}$ $xg = M_{G}$ $M_{STAB} = M_{RIB} = \Delta M$	26.59 2.20 115.38 1.10 126.92 125.31 27.16 98.15	kN m kN m kNm kNm kNm	B/6=	0.37 m	g= h _m = B _m =	24 kN/m3 0.1 m 2.40 m
T_{sd} = B = N_{sd} xg = M_{G} M_{STAB} = M_{RIB} = ΔM Sollecitazion	26.59 2.20 115.38 1.10 126.92 125.31 27.16 98.15 ni di calcolo	kN m kN m kNm kNm kNm kNm	B/6=	0.37 m	g= h _m = B _m = P _m =	24 kN/m3 0.1 m 2.40 m
T_{sd} = B = N_{sd} xg = M_{G} M_{STAB} = M_{RIB} = ΔM Sollecitazion M_{sd} =	26.59 2.20 115.38 1.10 126.92 125.31 27.16 98.15 ai di calcolo 28.77	kN m kN m kNm kNm kNm kNm	B/6=	0.37 m	g= h _m = B _m = P _m =	24 kN/m3 0.1 m 2.40 m
T_{sd} = B = N_{sd} xg = M_{G} M_{STAB} = M_{RIB} = ΔM Sollecitazion M_{sd} = $N_{sd,tot}$ = e = u =	26.59 2.20 115.38 1.10 126.92 125.31 27.16 98.15 oi di calcolo 28.77 121.14 0.24 0.00	kN m kN m kNm kNm kNm kNm kNm	B/6=	0.37 m	g= h _m = B _m = P _m =	24 kN/m3 0.1 m 2.40 m
T_{sd} = B = N_{sd} xg = M_{G} M_{STAB} = M_{RIB} = ΔM Sollecitazion M_{sd} = $N_{sd,tot}$ = e = u = Tensioni non	26.59 2.20 115.38 1.10 126.92 125.31 27.16 98.15 ai di calcolo 28.77 121.14 0.24 0.00	kN m kN m kNm kNm kNm kNm m m	B/6=	0.37 m	g= h _m = B _m = P _m =	24 kN/m3 0.1 m 2.40 m
T_{sd} = B = N_{sd} xg = M_{G} M_{STAB} = M_{RIB} = ΔM Sollecitazion M_{sd} = $N_{sd,tot}$ = e = u = Tensioni non B_{adott} =	26.59 2.20 115.38 1.10 126.92 125.31 27.16 98.15 ai di calcolo 28.77 121.14 0.24 0.00 rmali 2.40	kN m kN m kNm kNm kNm kNm m m	B/6= lato schiad z=	0.37 m	g= h _m = B _m = P _m =	24 kN/m3 0.1 m 2.40 m
T_{sd} = B = N_{sd} xg = M_{G} M_{STAB} = M_{RIB} = ΔM Sollecitazion M_{sd} = $N_{sd,tot}$ = e = u = Tensioni non B_{adott} = p_{max} =	26.59 2.20 115.38 1.10 126.92 125.31 27.16 98.15 ai di calcolo 28.77 121.14 0.24 0.00 rmali 2.40 80.45	kN m kN m kNm kNm kNm kNm m kN m m m	B/6= lato schiad z=	0.37 m	g= h _m = B _m = P _m =	24 kN/m3 0.1 m 2.40 m
$T_{sd} = B = B = N_{sd}$ $xg = M_{G}$ $M_{STAB} = M_{RIB} = \Delta M$ $Sollecitazion$ $M_{sd} = e = u = D$ $Sollecitazion$ $M_{sd} = D$ $Sollecitazion$ D	26.59 2.20 115.38 1.10 126.92 125.31 27.16 98.15 ai di calcolo 28.77 121.14 0.24 0.00 rmali 2.40 80.45 20.50	kN m kN m kNm kNm kNm kNm m m kN/m² kN/m²	B/6= lato schiad z= sez. reage	0.37 m	g= h _m = B _m = P _m =	24 kN/m3 0.1 m 2.40 m
$T_{sd} = B = N_{sd}$ $xg = M_{G}$ $M_{STAB} = M_{RIB} = \Delta M$ Sollecitazion $M_{sd} = e = u = Tensioni non$ $B_{adott} = p_{max} = p_{min} = p_{n,m} = 0$	26.59 2.20 115.38 1.10 126.92 125.31 27.16 98.15 ni di calcolo 28.77 121.14 0.24 0.00 rmali 2.40 80.45 20.50 50.48	kN m kN m kNm kNm kNm kNm m kN m m m	B/6= lato schiad z=	0.37 m	g= h _m = B _m = P _m =	24 kN/m3 0.1 m 2.40 m
$T_{sd} = B = B = N_{sd}$ $xg = M_{G}$ $M_{STAB} = M_{RIB} = \Delta M$ $Sollecitazion$ $M_{sd} = e = u = D$ $Sollecitazion$ $M_{sd} = D$ $Sollecitazion$ D	26.59 2.20 115.38 1.10 126.92 125.31 27.16 98.15 ai di calcolo 28.77 121.14 0.24 0.00 rmali 2.40 80.45 20.50 50.48 genziali	kN m kN m kNm kNm kNm kNm m m kN/m² kN/m²	B/6= lato schiad z= sez. reage	0.37 m	g= h _m = B _m = P _m =	24 kN/m3 0.1 m 2.40 m

CALCOLO CAPACITA' PORTANTE FONDAZIONE DATI RELATIVI AL TERRENO DI FONDAZIONE

A1-M1-R3-statica

Peso specifico del terreno	g _t =	19.00 kN/m ³
Angolo di attrito del terreno	f_d =	28.00 °
		I.NI/Z

0.00 kN/m² Coesione del terreno

Angolo di inclinazione del piano campagna 0.00 °

c =	0	kN/m²
f=	28.00	٥
g _f =	1.00	SLU
g _c =	1.00	SLU
g _R =	1.40	SLU

DATI RELATIVI ALLA GEOMETRIA DELLA FONDAZIONE

Profondita' di imposta della fondazione 0.50 m D= 0.00° Angolo di inclinazione piano di fondazione (<=f)

1.40 kN/m2 c_u = SLU 1.40 g_{cu} = 1.00 kN/m² c_{ud} =

Larghezza fondazione B = 2.40 m Lunghezza fondazione L = 5.00 m

Eccentricità carico verticale in direzione B E(B)=0.088 m Eccentricità carico verticale in direzione L E(L)=0.00 m

Larghezza equivalente fondazione per carichi eccentrici B(EQ)= 2.22 m Lunghezza equivalente fondazione per carichi eccentrici L(EQ)= 5 m

DATI RELATIVI AI CARICHI

92.99 $kN/m^2 =$ 0.93 kg/cm² Tensione media normale alla fondazione $p_n =$ 0.30 kg/cm² Tensione media tangenziale alla fondazione 29.84 kN/m² = $p_h =$ N = 1115.9 kN = 111585 kg Carico normale alla fondazione Carico tangenziale alla fondazione T = 358 kN = 35803.2 kg Sovraccarico sul piano campagna 0.00 kN/m^2 0.00 kg/cm² Q =

VALORI DEI COEFFICIENTI DELLA FORMULA

Coefficienti di Brinch-Hansen			q	С
Fattori principali (kN/m²)	F	21.14	9.50	0.00
Fattori di capacità portante	N	10.94	14.72	25.80
Fattori di forma fondazione	s	1.12	1.12	1.25
Fattori di profondità del piano di fondazione	d	1.00	1.07	1.07
Fattori di inclinaz. del carico	i	0.35	0.52	0.51
Fattori di inclinaz. del piano di fondazione	b	1.00	1.00	1.00
Fattori di inclinaz. del piano di campagna	g	1.00	1.00	1.00
Prodotto totale	FNsdibq	92	87.11	0.00

 $128 \text{ kN/m}^2 =$ 1.28 kg/cm² Pressione limite totale normale al piano di fondazione $q_{lim} =$ Carico limite totale normale al piano di fondazione $N_{lim} =$ 1421 kN 142064 kg

Coefficiente di sicurezza FS= 1.27

CALCOLO CAPACITA' PORTANTE FONDAZIONE DATI RELATIVI AL TERRENO DI FONDAZIONE

Angolo di inclinazione del piano campagna

A1-M1-R3-sismica

w =

0.00°

Peso specifico del terreno	g _t =	19.00 kN/m
Angolo di attrito del terreno	$f_d =$	28.00 °
Coesione del terreno	$c_d =$	0.00 kN/m ²

c =	0	kN/m²
f=	28.00	0
g _f =	1.00	SLU
g _c =	1.00	SLU
an =	1 40	SLU

DATI RELATIVI ALLA GEOMETRIA DELLA FONDAZIONE

Profondita' di imposta della fondazione	D =	0.50 m
Angolo di inclinazione piano di fondazione (<=f)	a =	0.00 °

c _u =	1.40	kN/m²
g _{cu} =		
c _{ud} =	1.00	kN/m²

Larghezza fondazione B = 2.40 mLunghezza fondazione L = 5.00 m

Eccentricità carico verticale in direzione B E(B)=0.238 m Eccentricità carico verticale in direzione L E(L)=0.00 m

Larghezza equivalente fondazione per carichi eccentrici B(EQ)=1.92 mLunghezza equivalente fondazione per carichi eccentrici L(EQ)=5 m

DATI RELATIVI AI CARICHI

Tensione media normale alla fondazione	$p_n =$	50.48 kN/m ² =	0.50 kg/cm ²
Tensione media tangenziale alla fondazione	$p_h =$	11.08 kN/m ² =	0.11 kg/cm ²
Carico normale alla fondazione	N =	605.7 kN =	60572 kg
Carico tangenziale alla fondazione	T =	133 kN =	13293.67 kg
Sovraccarico sul piano campagna	Q =	0.00 kN/m^2	0.00 kg/cm ²

VALORI DEI COEFFICIENTI DELLA FORMULA

Coefficienti di Brinch-Hansen			q	С
Fattori principali (kN/m²)	F	18.29	9.50	0.00
Fattori di capacità portante	N	10.94	14.72	25.80
Fattori di forma fondazione	S	1.11	1.11	1.21
Fattori di profondità del piano di fondazione	d	1.00	1.08	1.08
Fattori di inclinaz. del carico	i	0.51	0.65	0.65
Fattori di inclinaz. del piano di fondazione	b	1.00	1.00	1.00
Fattori di inclinaz. del piano di campagna	g	1.00	1.00	1.00
Prodotto totale	FNsdibq	113	108.85	0.00

Pressione limite totale normale al piano di fondazione q_{lim} = 158 kN/m² = 1.58 kg/cm² Carico limite totale normale al piano di fondazione N_{lim} = 1524 kN = 152393 kg

Coefficiente di sicurezza FS= 2.52

9.4.4 Verifica del muro

La verifica dei muri viene effettuata sempre mediante l'approccio 2 A1-M1-R3, previsto dal DM 14.01.08 par 6.5.3.1.1.

Le verifiche strutturali sono state svolte nelle sezioni 1 all'attacco con la fondazione.

9.4.4.1 Verifiche a stato limite ultimo

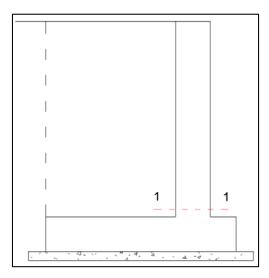
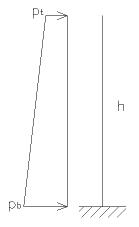



Figura 17 – Sezioni di verifica del muro

• Combinazione fondamentale e sismica

La sezione 1-1 è alla base del muro. Lo schema statico adottato per la verifica è quello di una mensola incastrata alla base e soggetta a una spinta orizzontale data dal terreno e dal sovraccarico nel caso statico.

$$\begin{split} p_t &= \gamma_{q} \cdot k_A \cdot h & \text{pressione sommita'} \\ p_b &= p_t + \gamma_g \cdot \gamma \cdot k_A \cdot h & \text{pressione base} \\ \text{In condizioni dinamiche si aggiunge l'incremento di spinta sismica.} \\ p_t &= \gamma_q \cdot k_A \cdot h \ + \Delta p_e \end{split}$$

Note le pressioni orizzontali sul muro, si esegue il calcolo del momento alla base del medesimo e si procede quindi al calcolo dell'armatura.

CALCOLO SPINTA TERRA

Geometria n	<u>nuro</u>	Coeff. Spinta	
$H_n =$	2 m	a riposo	0
s =	0 m	attiva	1
$H_f =$	0 m		
$H_0 =$	2 m		

Parametri geotecnici caratteristici del terreno a tergo

γ' =	2.00 t/m ³	terreno saturo
φ' =	35 °	angolo resistenza al taglio
c' =	0 kg/cmq	coesione drenata
$\gamma_w =$	0.0 t/m³	peso acqua

Fattori parziali di sicurezza SL

Approccio 2		A1+M1+R3	3	SLU STR
$\gamma_{\phi} =$	1.0	f.s. su tan(φ')		
γ _C =	1.0	f.s. su coesio	ne drenata	
γ _R =	1.0			
			_	coeff. Sp. di calcolo
f.p.s.	favorevole	sfavorevole		K = 0.2710
γ _{G1} =	1.0	1.30		coeff. spinta
γ _{G2} =	0.0	1.50		$K_0 = 0.4264$
$\gamma_Q =$	0.0	1.35		$K_a = 0.2710$
Paramet	Parametri geotecnici di calcolo del terreno a tergo			
φ' _d =	35	0	angolo resi	stenza al taglio di calcolo
c' _d =	0	kg/cmq	coesione d	renata di calcolo

Approccio 2		A1+M1+R3		SLU SISM
$\gamma_{\phi} =$	1.0	f.s. su $tan(\phi')$		
γ _C =	1.0	f.s. su coesio	ne drenata	
γ _R =	1.0			
				coeff. Sp. di calcolo
f.p.s.	favorevole	sfavorevole		K = 0.2710
γ _{G1} =	1.0	1.0		coeff. spinta
γ _{G2} =	0.0	1.0		$K_0 = 0.4264$
$\gamma_Q =$	0.0	1.0		$K_a = 0.2710$
Paramet	Parametri geotecnici di calcolo del terreno a tergo			
$\phi'_d =$	35	5 ° angolo resistenza al taglio di calcolo		
c' _d =	0	kg/cmq coesione drenata di calcolo		

Carichi	
$q_p =$	1 kg/m²
$q_1 =$	4123 kg/m ²
q ₂ =	0 kg/m²

Fase 1 perm $p_t = 0 \text{ kg/m}^2$ $p_b = 1410 \text{ kg/m}^2$

Fase 2 perm+var $p_t = 1509 \text{ kg/m}^2$ $p_b = 2918 \text{ kg/m}^2$

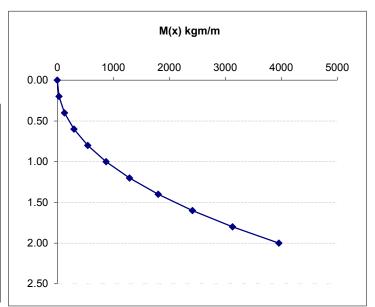
Carichi	
$q_p =$	1 kg/m²
$q_1 =$	825 kg/m ²
$q_2 =$	0 kg/m²

Fase 1 perm $p_t = p_b = p_b$	0 kg/m² 1084 kg/m²
Fase 2 perm	n+var+sisma

$p_t =$	532 kg/m²
$p_b =$	1616 kg/m²

CALCOLO INCREMENTO SPINTA IN CONDIZIONI SISMICHE

γ [kgf/m³]	2000	peso specifico del terreno sopra falda
φ ['] [°]		angolo di resistenza al taglio
ψ [°]		angolo di inclinazione rispetto all'orizzontale della parete del muro rivolta a monte (se verticale =90°)
β [°]	0	angolo di inclinazione rispetto all'orizzontale della superficie del terrapieno (se orizzontale =0°)
δ [°]	0	angolo di resistenza a taglio tra terreno e muro
		1 3
S [-]	1.198	
a _g [g]	0.2	
β_{m}	0.24	
Falda	N	' '
$\gamma_{\rm H20}$ [kgf/m ³]	0	
k [a]	0.050	1
k _h [g]	0.058	
k _v [g]	0.029	
γ^{I} [kgf/m ³]	2000	peso specifico efficace
θ_{A} [°]		inclinazione del campo gravitazionale per effetto dell'accelerazione sismica
θ _B [°]		inclinazione del campo gravitazionale per effetto dell'accelerazione sismica
g _A [g]		come da definizione, ma validi per procedura alternativa semplificata (inclinazione campo gravitazionale)
g _B [g]		come da definizione, ma validi per procedura alternativa semplificata (inclinazione campo gravitazionale)
g _{A*} [g]		corretti per un'applicazione da procedura esaustiva, ed usati nel seguito
g _{B*} [g]	0.971	corretti per un'applicazione da procedura esaustiva, ed usati nel seguito
ϕ^{I} - θ_{A} [°]	31.8	
$\phi^{I}-\theta_{B}$ [°]	31.6	
		1
K _{a,A} [-]	0.302	con sisma, secondo Mononobe e Okabe
K _{a,B} [-]	0.303	con sisma, secondo Mononobe e Okabe
K _a [-]	0.271	senza sisma, secondo Mononobe e Okabe
V / V *	4 4 4 5	1
$K_{a,A} / K_a * g_{A*}$		incremento percentuale della spinta risultante dovuto all'azione sismica
$K_{a,B} / K_a * g_{B*}$	1.087	incremento percentuale della spinta risultante dovuto all'azione sismica
H [m]	2	altezza libera del muro
E _{non sismico}		spinta risultante sull'altezza libera del muro in assenza di sisma (escluso il contributo dell'acqua)
E _{d,A} [kgf/m]		accelerazione verso il basso
E _{d,B} [kgf/m]		accelerazione verso l'alto
-, 3		
ΔE _{d,A} [kgf/m]	157	incremento della spinta risultante dovuto all'azione sismica
$\Delta E_{d,B}$ [kgf/m]	95	incremento della spinta risultante dovuto all'azione sismica

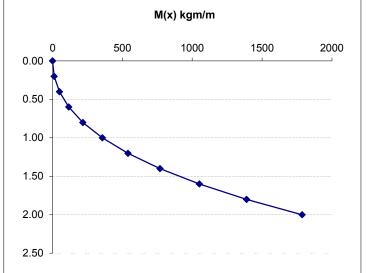

L'andamento del momento flettente al metro lineare in condizioni statiche e sismiche, lungo lo sviluppo del muro è il seguente.

STATICA

Schema 2 : perm + var

$p_1 =$	1509 kg/mq
p ₂ =	2918 kg/mq
$p_0 =$	1409 kg/mq
1 -	2 m

Х	M [kgm]	V [kg]
0.00	0	0
0.20	31	316
0.40	128	660
0.60	297	1032
0.80	543	1432
1.00	872	1861
1.20	1289	2318
1.40	1801	2803
1.60	2412	3316
1.80	3129	3857
2.00	3957	4427


 M_{max} = 3957 kgm/m

SISMICA

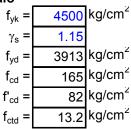
Schema 2 : perm + var

$p_1 =$	532 kg/mq
p ₂ =	1616 kg/mq
$p_0 =$	1084 kg/mq
=	2 m

X	M [kgm]	V [kg]
0.00	0	0
0.20	11	117
0.40	48	256
0.60	115	417
0.80	217	599
1.00	356	803
1.20	539	1029
1.40	769	1276
1.60	1051	1545
1.80	1389	1836
2.00	1787	2148

 $M_{max} = 1787 \text{ kgm/m}$

Il momento massimo è raggiunto in condizioni statiche. Trascurando il contributo stabilizzante dei carichi verticali (peso proprio e permanenti) è stato calcolato il momento resistente della sezione di base considerando solo l'armatura tesa e una sezione di larghezza 1m: $1\Phi16/20$.


Verifica a flessione piano verticale-combinazione statica e sismica

Sezione 1-1

Calcestruzzo

CCSLI	<u>uzzo</u>	
R _{ck} =		kg/cm ²
$f_{ck} =$		kg/cm ²
f _{ctm} =		kg/cm ²
$f_{ctk} =$	19.8	kg/cm ²
γ_{c} =	1.5	
α_{cc} =	0.85	

Acciaio

Dati sezione

362	Olic		
b =	100	cm	
h =	40	cm	
c =	5.0	cm	copriferro
d =	35.00	cm	altezza util

Armatura tesa disposta

 $c_{med} =$

5.0 cm

n_b	ф	A_{sw}	y _{binf}
5	16	10.05	5
0	0	0.00	7.5

$$A_{sw} = 10.05 \text{ cm}^2$$

Momento resistente

$$q = 0.0683$$

 $M_{Rd} = 13281 kg*m$

percentuale meccanica d'armatura

$$M_{Sd1} = 3957 \text{ kg*m}$$

momento agente

FS = 3.36 VER SI

• Combinazione eccezionale

L'azione dell'urto di un veicolo si traduce in uno stato di sollecitazioni in testa al muro. Il momento d'urto e la relativa azione orizzontale agenti sulla singola barriera sono:

$$M_u=M_{pl,barr}=35.70 \text{ kN su } 1.5 \text{m di interasse}$$

 $V_u=M_{pl}/1=35.7 \text{ kN}$

Tale azione coinvolge 3 montanti posizionati ad un interasse di 1.5m. Le sollecitazioni al metro lineare quindi risultano

$$V_u = 3*35.70/4.5 = 23.80 \text{ kN/ml}$$

Alla base il contributo dell'effetto urto sul muro è

$$M_{du}=M_u+V_u*H$$

$$V_{du}\!\!=V_u$$

Si calcola il contributo della spinta terra, quello del sovraccarico permamente e il sovraccarico variabile.

CALCOLO SPINTA TERRA

Geometria muro		Coeff. Spinta	
$H_n =$	2 m	a riposo	0
s =	0 m	attiva	1
H _f =	0 m		
$H_0 =$	2 m		

Parametri geotecnici caratteristici del terreno a tergo

γ' =	2.00 t/m ³	terreno saturo
φ' =	35 °	angolo resistenza al taglio
c' =	0 kg/cmq	coesione drenata
$\gamma_w =$	០ t/m³	peso acqua

Fattori parziali di sicurezza SL

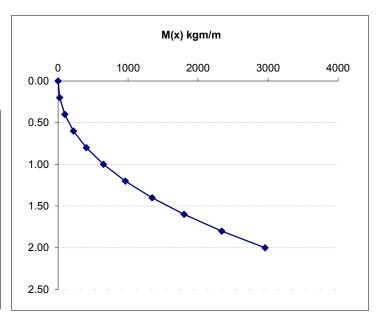
Approccio	1- Da 1	A1+M1+R3	COMB. ECCEZ.
$\gamma_{\phi} =$	1.0	f.s. su $tan(\phi')$	
γ _C =	1.0	f.s. su coesion	ne drenata
γ _R =	1.0		
			coeff. Sp. di calcolo
f.p.s.	favorevole	sfavorevole	K = 0.2710
γ _{G1} =	1.0	1.0	coeff. spinta
γ _{G2} =	0.0	1.0	$K_0 = 0.4264$
$\gamma_Q =$	0.0	1.0	$K_a = 0.2710$
χ ₂ =		1.0	
Parametri geotecnici di calcolo del terreno a tergo			
φ' _d =	35	0	angolo resistenza al taglio di calcolo
c' _d =	0	kg/cmq	coesione drenata di calcolo

Carichi

$q_1 =$	1 kg/mq
$q_2 =$	4123 kg/mq

Fase 1 perm

$p_t =$	0 kg/mq
$p_b =$	1084 kg/mq


Fase 2 perm+var

$$p_t = 1118 \text{ kg/mq}$$

 $p_b = 2202 \text{ kg/mq}$

Schema 2 : perm + var

$p_1 =$	1118 kg/mq
p ₂ =	2202 kg/mq
$p_0 =$	1084 kg/mq
=	2 m

Х	M [kgm/m]	V [kg/m]
0.00	0	0
0.20	23	234
0.40	95	490
0.60	221	768
0.80	404	1067
1.00	649	1389
1.20	961	1731
1.40	1343	2096
1.60	1800	2482
1.80	2337	2890
2.00	2958	3319

$M_{max} =$	2958 kgm/ml
L=	<u> </u>
M ₁ =	2958 kg m
V ₁ =	3319 kg

Le sollecitazioni complessive agenti alla base del muro, sommando i vari contribute risultano: *Sezione 1-1-base*

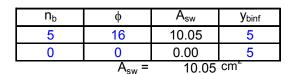
z=	2.00	m
$M_{sd,tot} =$	10158	kgm
$N_{sd,tot} =$	2100	kg

E' riportato il tabulato della verifica a flessione nella sezione di attacco 1-1.

Verifica a flessione DM08

Sezione 1-1

Calcestruzzo		
$R_{ck} =$		kg/cm ⁻
f _{ck} =	291	kg/cm ⁻
f _{ctm} =	28.3	kg/cm ⁻
$f_{ctk} =$	19.8	kg/cm ⁻
γ_{c} =	1	



5.0 cm

Dati sezione

$b_w =$	100 cm	
h =	40 cm	
c =	5 cm	copriferro
d =	35 cm	altezza utile

Armatura tesa disposta

Momento resistente

q =	0.0445	percentuale meccanica d'armatura			
M _{Rd} = M _{Rd} =	1546700 kg*cm 15467 kgm	momento resistente			
M _{Sd1} =	10158 kg*m	momento agente	FS =	1.52 VER SI	

 $c_{med} =$

9.4.5 Verifica SLE elevazione

Le la verifica a SLE si assume un momento di calcolo, a favore di sicurezza, pari a:

$$M_E = M_{sd} / \gamma_G = 39.57 / 1.3 = 30.44 \text{ kNm}$$

Il controllo delle condizioni di esercizio è svolto al successivo foglio di calcolo:

Verifica a fessurazione DM08

Calcestruzzo

R _{ck} =	350 kg/cm ²
f _{ck} =	290.5 kg/cm ²
f _{ctk} =	20.2 kg/cm ²
σ _{c,car} =	174.3 kg/cm ²
$\sigma_{c,qp} =$	130.7 kg/cm ²

Acciaio

E _s =	2100000 kg/cmq
n =	15
$f_{yk} =$	4500 kg/cm ²
$\sigma_{s,car}$ =	3600 kg/cm ²

f _{ctm} =		kg/cm²
f _{cfm} =		kg/cm²
f _{cteff} =		kg/cm ²
E _{cm} =	325881	kg/cm ²
Parametri "k"per calcolo		
k _t =	0.6	
k ₁ =	0.8	
k ₂ =	0.5	
k ₃ =	3.4	
k ₄ =	0.425	

Sollecitazioni agenti

Condizione	M_{Sd}	σ_{s}
Condizione	kg*cm	kg/cmq
SLU	395683	-
CAR	304371	945
FREQ.	0	0
Q.P.	0	0

I	Condizi	one caratteristica	Cor	ndizione q.p.	Tensior	ni imposte per fessur.
I	$M_{Sd} =$	304371 kg*cm	$M_{Sd} =$	0 kg*cm	$\sigma_{s,QP}$ =	945 kg/cmq
ſ	N _{Sd} =	0 kg	N _{Sd} =	0 kg	$\sigma_{s,FRQ}$ =	945 kg/cmq

Dati sezione

$b_w =$	100 cm	base trave
h =	40 cm	altezza totale trave
c =	5 cm	copriferro armatura tesa
d =	35 cm	h. utile
$A_{eff} =$	1037.46 cmq	area efficace in trazione
$x_n =$	8.88 cm	asse neutro da l.s.

Armatura sezione (y_i dal lembo teso)

Strato	n. ferri	ф _b [mm]	y _i [cm]	A _{si}	
1-t	5	16	5	10.05	tesa
2-t	0	0	5	0.00	tesa
3-c	0	0	0	0.00	comp.
4-c	0	16	35	0.00	comp.

SLE - Tensioni materiali comb. CAR (rara) / QP

$\sigma_{c,CAR}$ =	-21 kg/cmq	max compressione cls
$\sigma_{c,QP}$ =	0 kg/cmq	max compressione cls
$\sigma_{s,CAR}$ =	945 kg/cmq	trazione massima ferri
$\sigma_{s,CAR}$ =	0 kg/cmq	max compr. ferri

VE	₽R	IM	FS
CAR	SI	0.12	8.14
QP	SI	0.00	-
CAR	SI	0.26	3.81
CAR	SI	0.00	-

SLE - Calcolo ampiezza fessure comb. Q.P.

5.00 cm	baricentro arm. tesa
16.0 mm	diametro equivalente
10.05 cm ²	area ferro tesa
0.0097	% area tesa
	16.0 mm 10.05 cm ²

$$\begin{split} &\sigma_{\text{s,QP}} = & 945 \text{ kg/cmq} & \text{tensione acciaio teso (Q.P.)} \\ &\sigma_{\text{s,FRQ}} = & 945 \text{ kg/cmq} & \text{tensione acciaio teso (FREQ)} \end{split}$$

 M_{cr} = 907198 kg*cm momento di prima fessurazione

Sez, interam.reagente; calcolo non pertinente

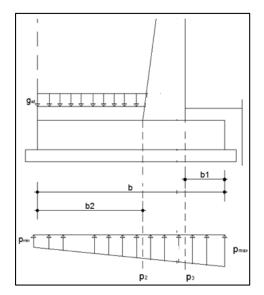
 s_{rmax} = 451 mm distanza fessure

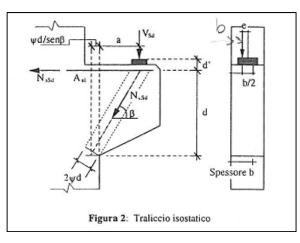
 ϵ_{sm} - $\epsilon_{\text{cm}}\text{=}~$ -0.000438 ~ -0.00044 deformazione acciaio tra due fess.

 $w_{d,QP}$ = -0.20 mm ampiezza massima fessure $w_{d,FRQ}$ = -0.20 mm

9.4.6 Verifica di resistenza della fondazione

La fondazione del muro è verificata considerandola incastrata all'attacco del muro e soggetta alla seguente distribuzione dei carichi: il peso proprio (g_0) , il peso della terra (g_t) e dei sovraccarichi $(p \ e \ q)$ saranno diretti verso il basso. La ciabatta però sarà anche soggetta a una spinta p diretta dal basso verso l'alto determinata a partire dalle sollecitazioni di calcolo N_{sd} e M_{sd} .




Figura 18 – Azioni sulla fondazione

$$M_{sd} = M_{st} - M_{rib} - \sum W_i \cdot z_i$$

$$N_{sd} = \sum G$$

Il tratto di fondazione più corto è stato verificato con l'utilizzo delle metodologie illustrate nella circ. 617/2009 delle NTC 2008 Cap.4.1.2.1.5 "Resistenza di elementi tozzi, nelle zone diffusive dei nodi". La mensola sarà soggetta alla differenza di distribuzione di carico indicato in figura (il peso del pietrame gp e del peso proprio g0 diretti verso il basso e la pressione del terreno diretta verso l'alto.

Le verifiche delle mensole tozze viene effettuata facendo riferimento al norma CNR 10025/98, di cui si riporta un estratto in quanto segue.

$$\begin{split} N_{cSd} &= \frac{V_{Sd}}{sen\beta} \\ N_{sSd} &= \frac{V_{Sd}}{tg\beta} \\ tg\beta &= \frac{1}{\lambda_v + \psi/sen\beta} = \frac{\lambda_v - \sqrt{\lambda_v^2 - \left(\lambda_v^2 - \psi^2\right) \cdot \left(1 - \psi^2\right)}}{\left(\lambda_v^2 - \psi^2\right)} \\ N_{cRd} &= 2 \cdot \psi \cdot \frac{v}{v} \cdot b \cdot d \cdot 0.85 \cdot f_{cd} = 2 \cdot k \cdot \psi \cdot b \cdot d \cdot f_{cd} \\ N_{sRd} &= A_{s1} \cdot f_{yd} \\ \psi &\leq 0.176 \end{split}$$

Si riportano in questo paragrafo le verifiche dei due tratti di fondazione dove si innesco il muro. Le sollecitazioni agenti in condizioni statiche sono indicate nel seguente tabulato.

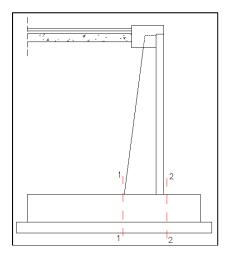


Figura 20 – Sezioni di verifica

AZIONI A1-M1-R3-STATICA

Carichi su part	e a monte diretti	verso il basso
$\sigma_{o}=$	13 00 kN/m	neco proprio

$g_{sd,tot} =$	120.7 kN/m	
$q_{tr} =$	55.66 kN/m	peso sovraccarico stradale
$g_p =$	0.0 kN/m	peso sovraccarico permanente
$g_t =$	52.0 kN/m	peso terreno
80-	13.00 KN/III	peso proprio

Carichi su parte a valle diretti verso il basso h= 0 m

$g_0 =$	13.0	kN/m	peso proprio
$g_t =$	0.0	kN/m	terreno valle
$g_p =$	0.1	kN/m	peso sovraccarico permanente
$q_{tr} =$	278.3	kN/m	peso sovraccarico stradale
g _{sd,tot} =	291.4	kN/m	

Pressioni rivolte verso l'alto b= 2.2 m

o _{max} =	113 kN/ml
p _{min} =	73 kN/ml
∆ p =	41 kN/ml
p ₂ =	100 kN/ml
p ₂ =	108 kN/ml

AZIONI A1-M1-R3 -SISMICA

Carichi su	parte a	monte	diretti	verso i	l basso
------------	---------	-------	---------	---------	---------

$g_0 =$	10.00 kN/m	peso proprio
$g_t =$	40.0 kN/m	peso terreno
g _p =	0.0 kN/m	peso sovraccarico permanente
q _{tr} =	8.25 kN/m	peso sovraccarico stradale
g _{sd,tot} =	58.3 kN/m	

Carichi su parte a valle diretti verso il basso h= 0 m

$g_0 =$	10.0 kN/m	peso proprio
g _t =	0.0 kN/m	peso terreno
$g_p =$	0.1 kN/m	peso sovraccarico permanente
$q_{tr} =$	41.2 kN/m	peso sovraccarico stradale
g _{sd,tot} =	51.3 kN/m	

Pressioni rivolte verso l'alto b= 2.2 m

sioni rivolte	verso l'alto	
p_{max} =	80 kN/ml	
$p_{min}=$	21 kN/ml	
△ p =	60 kN/ml	
p ₂ =	61 kN/ml	
p ₃ =	72 kN/ml	

AZIONI	A1-M1-R3	-ECCEZIO	NALE				
Carichi su	parte a mo	nte dirett	i verso i	lbass	o		
$g_0 =$	10.00	kN/m	peso pr	oprio			
g _t =	40.0	kN/m	peso te	rreno			
g _p =	5.0	kN/m	pesoso	vra cca	rico pe	ermane	nte
q _{tr} =	33.33	kN/m	pesoso	vra cca	rico st	radale	
g _{sd,tot} =	88.3	kN/m					
Carichi su	parte a val	lle diretti v	erso il b	asso	h=	0	m
$g_0 =$	10.0	kN/m	peso pr	oprio			
g _t =	0.0	kN/m	terreno	valle			
g _p =	25.0	kN/m	peso so	vra cca	rico pe	ermane	nte
q _{tr} =	166.7	kN/m	pesoso	vra cca	rico st	ra da le	
g _{sd,tot} =	201.7	kN/m					
Pressioni ı	rivolte vers	o l'alto			b=	2.2	m
p _{max} =	177	kN/ml					
p _{min} =	0	kN/ml					
p ₂ =	111	kN/ml					
p ₃ =	149	kN/ml					

L'armatura presente in fondazione è:

5 Ф 14 superiori A_s=7.7cm²

5⊕14 inferiori

Verifica a flessione SEZIONE 1-1

Combin. Sto	atica_		
L=	1.5 r	m	
$g_{sd,tot} =$	120.7 k	k N/ m	costante
p ₂ =	100 l	kN/m	su incastro
p _{min} =	73 l	kN/m	
M_{sd1} =	43.63 l	kNm	
	436337 l	kg cm	

436337 kg cm/ml

0.000 m

Calcolo	momento su incastro mensola di monte
$M_g =$	135.76 kN*m
$M_p =$	-92.12 kN*m
$M_{sd1} =$	43.63 kN*m

Calcestruzzo

R _{ck} =	350 kg/cm ²
f _{ck} =	291 kg/cm ²
$f_{ctm} =$	28.3 kg/cm ²
f _{ctk} =	19.8 kg/cm ²
$\gamma_c =$	1.5
α_{cc} =	0.85

Acciaio

$\gamma_s =$	1.15	
f _{yd} =		kg/cm ²
$f_{cd} =$	165	kg/cm ²
f' _{cd} =	82	kg/cm ²
f _{ctd} =	13.2	kg/cm ²

5.0 cm

4500 kg/cm²

2.35

Dati sezione

	100 cm	$b_w =$
	40 cm	h =
copriferro	5 cm	c =
altezza utile	35 cm	d =

Armatura tesa disposta

ф	A_{sw}	y _{binf}
14	7.69	5

n_b	ф	A _{sw}	y _{binf}
5	14	7.69	5
0	0	0.00	5
	A =	7 69	cm ²

Momento resistente

percentuale meccanica d'armatura

 $c_{med} =$

$$M_{Rd} = 1024923 \text{ kg*cm}$$
 momento resistente $M_{Rd} = 102.49 \text{ kNm}$ **Verificato** FS=

Verifica a flessione SEZIONE 1-1

Combin. Sismica

 $p_2=$

I= 0.000 m

27.14 kN*m

1.5 m L=

58.3 kN/m $g_{sd,tot} =$ costante 61 kN/m

Calcolo momento su incastro mensola di monte $M_g =$ 65.54 kN*m $M_p =$ -38.39 kN*m

 $M_{sd1} =$

p_{min}= 21 kN/m

 M_{sd1} = 27.14 kNm

271437 kg cm 271437 kg cm/ml

Calcestruzzo

Acciaio

 $f_{ctd} =$

su incastro

350 kg/cm² $R_{ck} =$ 291 kg/cm² $f_{ck} =$

28.3 kg/cm² $f_{ctm} =$ 19.8 kg/cm² $f_{ctk} =$

1.5 $\gamma_c =$ α_{cc} = 1

4500 kg/cm² $f_{yk} =$ $\gamma_s =$ 1.15 $f_{yd} =$ 3913 kg/cm² $f_{cd} =$ 194 kg/cm f'cd = 97 kg/cm²

13.2

kg/cm²

Dati sezione

 $b_w =$ 100 cm

h = 40 cm

5 cm c = copriferro d = 35 cm altezza utile

Armatura tesa disposta

c_{med} = 5.0 cm

n _b	ф	A_{sw}	y_{binf}
5	14	7.69	5
0	0	0.00	5

7.69 cm²

Momento resistente

q = 0.0444 percentuale meccanica d'armatura

 $M_{Rd} = 1029162 \text{ kg*cm}$ momento resistente

Verificato 3.79 $M_{Rd} =$ 102.92 kNm FS=

Verifica a flessione SEZIONE 1-1

Combin. Eccezionale

|= 1.2 m

L= 1.5 m

91.2 kN/m $g_{sd,tot} =$

costante su incastro

Calcolo momento su incastro mensola di monte

 $p_2=$ 113 kN/m M_g =

102.65 kN*m

 $p_{min}=$ 0 kN/m $M_p =$

-42.46 kN*m

 M_{sd1} = 60.18 kNm $M_{sd1} =$

60.18 kN*m

601842 kg cm 601842 kg cm/ml

Calcestruzzo

 $f_{ctm} =$

 α_{cc} =

Acciaio

$$R_{ck} = 350 \text{ kg/cm}^2$$

$$f_{ck} = 350 \text{ kg/cm}^2$$

$$f_{ctk} = 19.8 \text{ kg/cm}^2$$

 $\gamma_c = 1$

$f_{yk} =$	4500	kg/cm²

19.8

γ _s –		
$f_{yd} =$	4500	kg/cm ²
$f_{cd} =$	291	kg/cm ²
f', =	145	kg/cm ²

Dati sezione

$$b_w = 100 \text{ cm}$$

$$c = 5 \text{ cm}$$
 copriferro $d = 35 \text{ cm}$ altezza utile

d =

f_{ctd} =

Armatura tesa disposta

$$c_{\text{med}} =$$

n _b	ф	A_{sw}	y_{binf}
5	14	7.69	5
0	0	0.00	5
	A _{sw} =	7.69	cm ²

Momento resistente

percentuale meccanica d'armatura

$$M_{Rd} = 1189995 \text{ kg*cm}$$

 $M_{Rd} = 119.00 \text{ kNm}$

momento resistente

119.00 kNm

Verificato

FS= 1.98

Verifica a flessione SEZIONE 2-2 VERIFICA MENSOLA VERT. CNR 10025-98 Combin. Statica **SOLLECITAZIONI DI CARICO** $b_1 =$ 0.3 m 291.4 kN/m costante $g_{sd,tot} =$ $p_3 =$ 108 kN/m su incastro 113 kN/m $p_{max}=$ $F_{sd} =$ 54 kN diretta verso il basso 54241.7 N/m al metro di larghezza $H_{sd}=$ **GEOMETRIA DELLA MENSOLA** | = 300 [mm] aggetto della mensola a= 150 [mm] distanza punto di applicazione del carico da filo pilastro 300 [mm] h= altezza della mensola b= 1000 [mm] larghezza della mensola d'= 50 [mm] copriferro 250 [mm] d= altezza utile **CARATTERISTICHE DEI MATERIALI** CLS 35 [N/mm²] $R_{ck} =$ 29.05 [N/mm²] f_{ck}= resistenza carat. a compressione cilindrica 1.5 [-] $\gamma =$ coeff. di sicurezza sul cls 16.46 [N/mm²] $f_{cd} =$ resistenza di calcolo a compressione **ACCIAIO** $f_{yk} =$ 450 [N/mm²] 391 [N/mm²] $f_{vd} =$ snervamento di calcolo armature a taglio 0.555 (deve essere >=0.5) $\nu =$ 0.55 k= 0.73671 0.013 $v_{sd} =$ 0.600 snellezza della mensola $tg\beta =$ 1.6332 (con β =angolazione del puntone compresso) ψ_{min} = 0.01049 (<=0.176) **Verificato**

Taglio Resistente

C=	1.2 [-]	coeff. che tiene conto dell'attrito	getto unico
γn	1 [-]	coeff. che tiene conto natura sforzi	altro
Av=	116 [mm²]		

Armature

AsI=	0.85 [cm ²]
As2=	0.00 [cm ²]
Av=	1.16 [cm ²]

Arm. di Calcolo tirante RICHIESTA		
A _t =	0.85 [cm ²]	
A _s =	7.70 [cm ²]	VE

Verifica a flessione SEZIONE 2-2 VERIFICA MENSOLA VERT. CNR 10025-98 Combin. Sismica **SOLLECITAZIONI DI CARICO** $b_1 =$ 0.3 m 51.3 kN/m $g_{sd,tot} =$ costante $p_3 =$ 72 kN/m su incastro 80 kN/m $p_{max}=$ $F_{sd} =$ -8 kN diretta verso l'alto 7524.49 N/m al metro di larghezza $H_{sd}=$ 0 N **GEOMETRIA DELLA MENSOLA** | = 300 [mm] aggetto della mensola a= 150 [mm] distanza punto di applicazione del carico da filo pilastro 300 [mm] h= altezza della mensola b= 1000 [mm] larghezza della mensola d'= 50 [mm] copriferro 250 [mm] d= altezza utile **CARATTERISTICHE DEI MATERIALI** CLS 35 [N/mm²] $R_{ck}=$ 29.05 [N/mm²] f_{ck}= resistenza carat. a compressione cilindrica 1.5 [-] coeff. di sicurezza sul cls 16.46 [N/mm²] $f_{cd} =$ resistenza di calcolo a compressione **ACCIAIO** $f_{yk} =$ 450 [N/mm²] 391 [N/mm²] $f_{vd} =$ snervamento di calcolo armature a taglio 0.555 (deve essere >= 0.5) $\nu =$ 0.55 k= 0.73671 0.002 $v_{sd} =$ 0.600 snellezza della mensola $tg\beta =$ 1.6620 (con β =angolazione del puntone compresso) ψ_{min} = 0.00145 (<=0.176) **Verificato Taglio Resistente**

C=	1.2 [-]	coeff. che tiene conto dell'attrito	getto unico
γn	1 [-]	coeff. che tiene conto natura sforzi	altro
Av=	16 [mm²]		

Armature

AsI=	0.12 [cm ²]
As2=	0.00 [cm ²]
Av=	$0.16 [cm^2]$

Arm. di Calc	olo tirante RICHIESTA	
A _t =	0.12 ^[cm²]	
A _s =	7.7 [cm ²]	VEI

9.5 Verifiche cordolo tratto D

Il tratto D, lungo 1m è costituito da cordolo rettangolare di dimensioni 65x70cm.

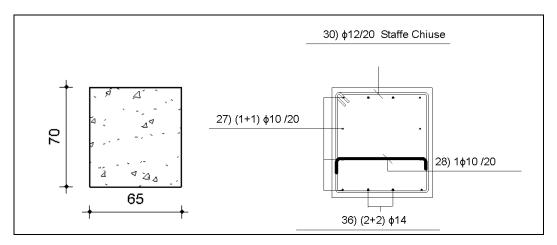


Figura 21 – Sezione Cordolo testa muro

Si considera il caso in cui l'impatto avvenga nella parte terminale dello sviluppo del muro. Le verifiche condotte sono le seguenti:

- a torsione e taglio
- a flessione orizzontale

nella sezione di incastro dove si hanno le sollecitazioni più elevate.

La sezione sarà soggetta a

$$T_{sd} = M_{pl} = 35.70 \text{ kN m}$$

 $V_{y,sd} = V_{pl} = 35.70 \text{ kN}$
 $M_{z,sd} = V_{pl} * 1 = 35.70 \text{ kNm}$

Le armature longitudinali sono

Si assume che i $(4+4)\Phi 10$ assorbano la flessione orizzontale. I restanti contribuiscono all'assorbimento del momento torcente.

Verifica a	flessione	orizzonta	leDM08			
Calcestru	zzo			Acciaio		
R _{ck} =	350	kg/cm ²		f _{yk} =	4500	kg/cm ²
f _{ck} =	291	kg/cm ²		γ _s =	1	
f _{ctm} =		kg/cm ²		f _{yd} =	4500	kg/cm ²
f _{ctk} =	19.8	kg/cm ²		f _{cd} =	291	kg/cm ²
γ _c =	1			f'cd =		kg/cm ²
α _{cc} =	1			f _{ctd} =	19.8	kg/cm ²
Dati sezio	ne					
b _w =	70	cm				
h =	65	cm				
c =			copriferr	0		
d =	60	cm	altezza u	tile		
Armatura	tesa disp	osta	C _{med} =	5.0	cm	
n _b	ф	Asw	y _{binf}			
4	10	3.14	5			
0	0	0.00	5			
	A _{sw} =	3.14	cm ²			
Momento	resistente)				
q =	0.0116		percentu	ale meccan	ica d'armatura	
M _{Rd} =	842755	kg*cm	momento	resistente		
M _{Rd} =	84.28					
M _{sd,z} =	35.7	kNm	Fs=	2.36	Verificato	

Si usano le seguenti armature trasversali:

- St1 ⊕ 12/20
- Leg. 1 Ф 10/20

una parte assorbirà la torsione e la restante parte il taglio orizzontale.

Nelle verifiche sono riportate le armature minime per il rispetto delle verifiche.

	torsione l							
Calcestruz	zo			Acciaio				
R _{ck} =		kg/cm ²		f _{yk} =	4500	kg/cm ²		
f _{ck} =		kg/cm ²		γ _s =	1	Or -		
f _{ctk} =		kg/cm ²		fyd =	4500	kg/cm ²		
γ _c =	1	KB/ CITI		f _{cd} =		kg/cm ²		
	1			f'cd =		kg/cm ²		
α _{cc} =	'					kg/cm ²		
				f _{ctd} =	20.2	Kg/CIII		
Azioni age	ente							
M _{Sd,x} =		kg*cm =						
1110u,x	35.7							
	33.7	KIV III						
Dati sezio	ne							
b =	65	cm	base					
h =	70	cm	altezza					
d' =	5	cm	copriferro					
A _c =	4550	cmq	area sezione	di figura				
u =	270	cm	perimetro se	z. di figura				
t ₁ =	16.9	cm	spessore pa	rete sez. a	nulare			
t ₂ =	10.0	cm						
t=	16.9	cm						
A =	2559	cmq	area raccolta	a dalla linea	media			
u _m =	203	-	perimetro da	lla linea med				
Armature	disposte		ν=	0.5				
Staffe	$\theta =$	45	0		Longitudina	<u>ali</u>		
nb	ф	A_{sw}			nb	ф	A_{sw}	
1	12	1.13			4	14	6.15	
0	8	0.00			0	14	0.00	
	A _{sw} =	1.13	cm ²		4	0	6.15	cm ²
	s =	20	cm			Smed =	51	cm
	A _{sw1} =	5.65	cmq/m					
Capacità _I	oortante a	torsione		T _{Rd} =	69.91	kNm		
				FS=	1.96		Verificato	
a) Compres								
T _{Rcd} =	111372	kg*m =	1113.72	kNm		$T_{sd}/T_{Rcd} =$	0.032	
b) Crisi arr	nature							
staffe								
T _{Rsd} =	13012	kg*m =	130.12	kNm				
correnti long.			230.12					
T _{Rid} =	6001	kg*m =	69.91	LALIS				

Verifica a	taglio D	<u>80M</u> 0						
Calcestru	770			Acciaio				
R _{ck} =		kg/cm ²		f _{yk} =		kg/cm ²		
f _{ck} =	200 5	kg/cm ²			1	Kg/ CITI		
		kg/cm ²		γ _S =		ka lam²		
f _{ctk} =		ку/стп		f _{yd} =		kg/cm ²		
γ _c =	1			f _{cd} =		kg/cm ²		
α _{cc} =	1			f'cd =		kg/cm ²		
				f _{ctd} =	20.2	kg/cm ²		
Azioni ag	ente							
V _{Sd,y} =	3570	kg		N _{Sd+} =	0	kg		
N _{Sd} =	0	kg		N _{Sd-} =	0	kg		
Dati sezio	200							
b _w =		cm						
h =		cm	-					
C =		cm	coprif	erro				
d =		cm	СОРІП	eno				
u –	60	CIII						
σ _{cp} =	0.0	kg/cm ²		α _c =	1.00			
σ _{cp(+)} =	0.0	kg/cm ²		$\alpha_{c(+)} =$	1.00			
σ _{cp(-)} =	0.0	kg/cm ²		α _{c(-)} =	1.00			
Armature	disposte							
Staffe_	$\theta =$	45	0		Diag.	$\theta =$	45	۰
	α =	90	۰					
nb	ф	Asw			nb	ф	Asw	
1	10	0.78			0	5	0.00	
0	10	0.00			0	10	0.00	
	A _{sw} =	0.78				A _{sp} =	0.00	
	s =	20	cm			s =	20	cm
0		- 41:		\/ -	0.477			
Capacità	portante	a tagiit	,	V _{Rd} =	9477 2.65	ĸy	Verificato	
a) Taglio c	ompress	ione		, 5-				
V _{Rcd} =	274523	kg						
V _{Rcd(+)} =	274523	kg						
V _{Rcd(-)} =								
b) Crisi arr	natura di	parete						
V _{Rsd} =	9477	kg						

10.Conclusioni

Il progetto è stato redatto in conformità dell'art.17 della Legge 2.2.74 n°64 e dei decreti ministeriali emanati ai sensi degli artt.1 e 3 della medesima legge, ed in particolare delle nuove "*Norme tecniche per le costruzioni*" di cui al D.M. 14 gennaio 2008.

Le analisi condotte confermano che tutte le verifiche prescritte dalla normativa vigente risultano soddisfatte. Le strutture soddisfano, pertanto, i requisiti di sicurezza prescritti dalle vigenti Leggi.

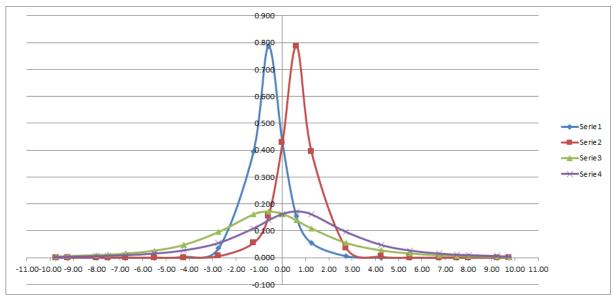
Allegato 1: Azione del carico tandem a tergo

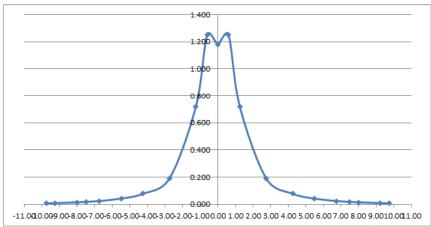
L'azione del tandem a tergo si valuta con le formule del Terzaghi (cfr. Lancellotta-Calavera §4.5.7).

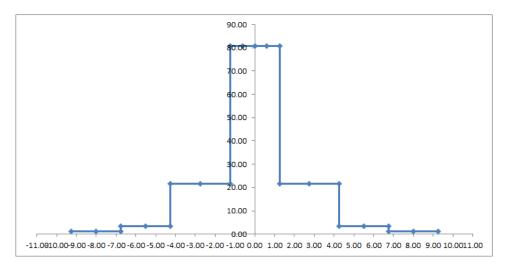
Tali formule sono implementate in uno specifico foglio elettronico, ed i risultati sono di seguito riportati:

Dati di ca	lcolo										
B =	15	m	larghezza d	li indagine							
H=	2.74	m	altezza par	ete							
2a =	1.2	m	distanza as	si tandem ne	el sens	o di marcia					
c =	2	m	distanza tr	sversale ruote	e asse						
X _s =	0.75	m	distanza ta	ndem dalla p	arete		q =	0.00	kN/mq		
Q=	150	kN	singolo car	ico ruota			q _T =	80.86	kN/mq		60.0
Ruota	Yo	Xo	m	k*J		punti di null	ام طمالم جنب	rtiziono	astinai ana i	n asse cario	
1 1 11	-0.6						-5.8				.0
1		0.75		0.7875		4.6 5.8	-5.8 -4.6		5.2		
3	0.6 -0.6	0.75 2.75	0.274 1.004	0.7875		18.5	-4.6 -19.7		5.2 19.1		
4	0.6	2.75	1.004	0.1723 0.1723		19.7	-19.7		19.1		
-	0.0	2.75	1.004	0.1723		15.7	-10.5	111	15.1	111	
k*J =	0.7875	0.7875	0.1723	0.1723		Q/H =	54.7	kN/m			
Y (m)	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	Area	r _{med}
-7.50	0.000	0.000	0.066	0.041		0.000	0.0000	0.0114	0.0070	0.018	0.014
-9.75	0.000	0.000	0.027	0.016		0.000	0.0000	0.0046	0.0028	0.007	
-9.25	0.000	0.000	0.033	0.020		0.000	0.0000	0.0056	0.0035	0.009	0.016
-8.00	0.000	0.000	0.054	0.033		0.000	0.0000	0.0093	0.0057	0.015	
-6.75	0.000	0.000	0.090	0.055		0.000	0.0000	0.0156	0.0095	0.025	0.047
-5.50	0.000	0.000	0.156	0.092		0.000	0.0000	0.0268	0.0159	0.043	
-4.25	0.004	0.000	0.276	0.159		0.003	0.0001	0.0476	0.0274	0.079	0.295
-2.75	0.044	0.007	0.555	0.318		0.035	0.0057	0.0957	0.0548	0.191	
-1.25	0.500	0.069	0.936	0.632		0.394	0.0547	0.1613	0.1090	0.719	
-0.60	1.000	0.195	1.000	0.809		0.788	0.1536	0.1723	0.1394	1.253	
0.00	0.543	0.543	0.945	0.945		0.428	0.4277	0.1629	0.1629	1.181	1.097
0.60	0.195	1.000	0.809	1.000		0.154	0.7875	0.1394	0.1723	1.253	
1.25	0.069	0.500	0.632	0.936		0.055	0.3937	0.1090	0.1613	0.719	0.295
2.75	0.007	0.044	0.318	0.555		0.006	0.0349	0.0548	0.0957	0.191	
4.25	0.000	0.004	0.159	0.276		0.000	0.0034	0.0274	0.0476	0.079	0.047
5.50	0.000	0.000	0.092	0.156		0.000	0.0001	0.0159	0.0268	0.043	
6.75	0.000	0.000	0.055	0.090		0.000	0.0000	0.0095	0.0156	0.025	0.016
8.00	0.000	0.000	0.033	0.054		0.000	0.0000	0.0057	0.0093	0.015	
9.25	0.000	0.000	0.020	0.033		0.000	0.0000	0.0035	0.0056	0.009	0.014
9.75	0.000	0.000	0.016	0.027		0.000	0.0000	0.0028	0.0046	0.007	
7.50	0.000	0.000	0.041	0.066		0.000	0.0000	0.0070	0.0114	0.018	

Diagramm	a scalettat	o pression	i				
Y (m)	r _{med}	P _h	$q_{\rm eq}$	p _h	Dati terrer	10	
m	i	kN/m	kN/mq	kN/mq	$\phi =$	35	•
-7.50	0.014	0.8	1.05	0.28	K _a =	0.271	1
-9.75	0.014	0.8	1.05	0.28	K ₀ =	0.426	0
-9.25	0.014	0.8	1.05	0.28	K =	0.271	
-9.25	0.016	0.9	1.18	0.32			
-8.00	0.016	0.9	1.18	0.32			
-6.75	0.016	0.9	1.18	0.32			
-6.75	0.047	2.6	3.49	0.95			
-5.50	0.047	2.6	3.49	0.95			
-4.25	0.047	2.6	3.49	0.95			
-4.25	0.295	16.1	21.74	5.89			
-2.75	0.295	16.1	21.74	5.89			
-1.25	0.295	16.1	21.74	5.89			
-1.25	1.097	60.0	80.86	21.91			
-0.60	1.097	60.0	80.86	21.91			
0.00	1.097	60.0	80.86	21.91			
0.60	1.097	60.0	80.86	21.91			
1.25	1.097	60.0	80.86	21.91			
1.25	0.295	16.1	21.74	5.89			
2.75	0.295	16.1	21.74	5.89			
4.25	0.295	16.1	21.74	5.89			
4.25	0.047	2.6	3.49	0.95			
5.50	0.047	2.6	3.49	0.95			
6.75	0.047	2.6	3.49	0.95			
6.75	0.016	0.9	1.18	0.32			
8.00	0.016	0.9	1.18	0.32			
9.25	0.016	0.9	1.18	0.32			
9.25	0.014	0.8	1.05	0.28			
9.75	0.014	0.8	1.05	0.28			
7.50	0.014	0.8	1.05	0.28			


Il carico tandem può essere simulato come un carico ripartito, per fasce, a tergo del muro la cui entità è riportata nel preceente tabulato.


Vista la larghezza della zona di estinsone degli effetti del tandem (~5m in asse) il carico complessivo si considera distribuito sul manufatto costituito dai muri dello sviluppo SV1, quindi su una lunghezza di 10.32m, per effetto della continuità dello stesso.


In tal senso il carico per ml di muro sarà:

$$q = (80.86*2.5+2*21.74*3)/10.32 +9 = 41.23 \text{ kN/mg}$$

Tale valore è assunto nei calcoli precedenti, anche per il tratto dello sviluppo SV2, con lunghezza del tratto interessato in realtà maggiore, per cui il valore utilizzato è cautelativo.

