COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

PROGETTAZIONE:	PROGETTISTA:	DIRETTORE DELLA PROGETTAZIONE
RAGGRUPPAMENTO TEMPORANEO PROGETTISTI	Ing. FEDERICO	Ing. PIETRO MAZZOLI
PIZZAROTTI VSintagma I INTEBRA	DURASTANTI	Responsabile integrazione fra le varie prestazioni specialistiche

PROGETTO ESECUTIVO

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

RI00 – LINEA CANCELO – FRASSO TELESINO

Ope	Opere di sostegno dal km dal km 0+901 al km 1+033 BP LS – Relazione di calcolo							
	APPALTATORE							SCALA:
	Consorzio CFT IL DIRETTORE TECNICO Geom. C. BIANCHI 10-07-2018							-
	COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. I F 1 N 0 1 E Z Z C L R I 0 0 0 5 0 0 5 A							
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	E.Sellari	10-07-2018	F.Durastanti	10-07-2018	P. Mazzoli	10-07-2018	F.Durastanti

Α	Emissione					
						10-07-2018
E32. IE	4N 0 4 E 77 OL DI 00 0 E 00	25 A do-	i			- Clab
File: IF	1N.0.1.E.ZZ.CL.RI.00.0.5.00	J5.A.00C				n. Elab.:

TIMERA

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 2 di 90

Indice

1	PRE	EMESSA	4
2		TERIALI	
:		CALCESTRUZZI	
		CALCESTRUZZO MAGRONE DI SOTTOFONDAZIONE	
	2.1.2	2 CARATTERISTICHE CALCESTRUZZI PER USI STRUTTURALI	
3	INQ	UADRAMENTO GEOTECNICO	7
4	CRI	TERI PROGETTUALI	9
	4.1	VITA NOMINALE	9
	4.2	CLASSE D'USO	9
	4.3	PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA	9
5	ANA	ALISI DEI CARICHI	10
,	5.1	PESO PROPRIO MURO	10
,	5.2	PESO PROPRIO PARAPETTO	10
,	5.3	AZIONE DEL VENTO	10
	5.4	PERMANENTI PORTATI A TERGO DEL MURO	10
;	5.5	AZIONE DEL SOVRACCARICO A TERGO DEL MURO	10
,	5.6	AZIONE SISMICA	11
6	VEF	RIFICHE AGLI STATI LIMITE	15
7		TODO DI CALCOLO	
-			
	7.1	CONDIZIONI DI SPINTA SUL MURO IN CONDIZIONI STATICHE CONDIZIONI DI SPINTA SUL MURO IN CONDIZIONI SISMICHE	
	7.2	VERIFICHE GEOTECNICHE	
	7.3		
	7.4	VERIFICHE STRUTTURALI	22
8	SOI	FTWARE DI CALCOLO	22
9	MU	RO TIPO CONCI 5 E 6	23
9	9.1	VERIFICHE GEOTECNICHE	25
		VERIFICA SLD	
	9.1.2	2 VERIFICA STABILITÀ GLOBALE	35
	9.2	VERIFICHE STRUTTURALI	37

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 3 di 90

9.2.1 VERIFICHE SLU A PRESSO-FLESSIONE E TAGLIO	
9.2.2 VERIFICHE A FESSURAZIONE	40
9.2.3 VERIFICHE TENSIONALI	43
10 MURO TIPO CONCIO 4	46
10.1 VERIFICHE GEOTECNICHE	48
10.1.1 VERIFICA SLD	56
10.1.2 VERIFICA STABILITÀ GLOBALE	57
10.2 VERIFICHE STRUTTURALI	59
10.2.1 VERIFICHE SLU A PRESSO-FLESSIONE E TAGLIO	
10.2.2 VERIFICHE A FESSURAZIONE	62
10.2.3 VERIFICHE TENSIONALI	65
11 MURO TIPO CONCI 1, 2 E 3	68
11.1 VERIFICHE GEOTECNICHE	70
11.1.1 VERIFICA SLD	
11.1.2 VERIFICA STABILITÀ GLOBALE	
11.2 VERIFICHE STRUTTURALI	81
11.2.1 VERIFICHE SLU A PRESSO-FLESSIONE E TAGLIO	81
11.2.2 VERIFICHE A FESSURAZIONE	84
11.2.3 VERIFICHE TENSIONALI	87
42 INCIDENZE	00

1 PREMESSA

Nella presente relazione sono illustrate le verifiche e i calcoli agli Stati Limite dell'opera di sostegno dal km 0+919 al km 1+031.726, nell'ambito dell'itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Cancello – Benevento - 1° Lotto Funzionale Cancello – Frasso Telesino e Variante alla Linea Storica Roma – Napoli via Cassino nel Comune di Maddaloni (compreso il Collegamento Merci con lo scalo di Marcianise – Collegamento Benevento – Marcianise) oggetto della Progettazione Esecutiva in esame.

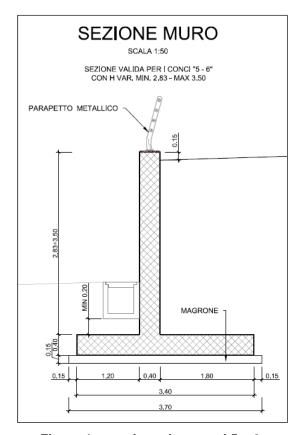


Figura 1 -- sezione tipo conci 5 e 6.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 5 di 90

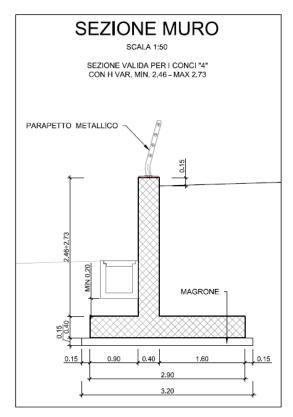


Figura 2 -sezione tipo concio 4.

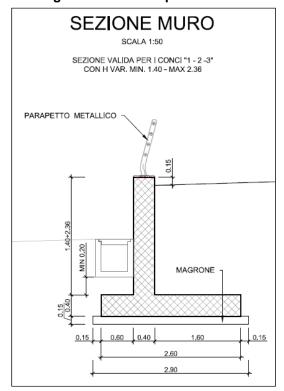


Figura 3 -sezione tipo conci 1, 2 e 3.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 6 di 90

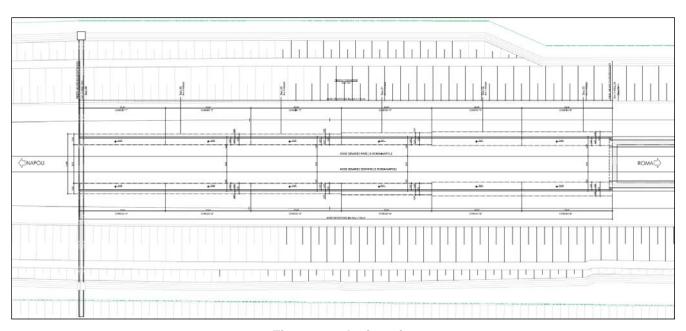


Figura 4 – planimetria.

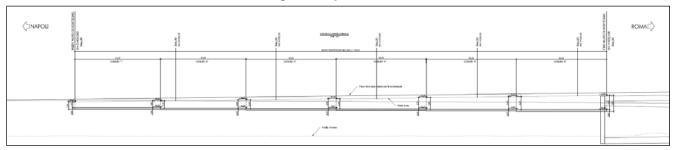


Figura 5 – profilo longitudinale..

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

IF1N	01 E ZZ	CL	RI0005 005	Α	7 di 90
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

2 MATERIALI

In riferimento ai materiali costituenti le strutture in progetto, si riportano nel seguito le principali caratteristiche meccaniche assunte nei calcoli (rif. punti 4.1.2.1.1, 11.2.10 e 11.3.2 delle NTC08).

2.1 CALCESTRUZZI

2.1.1 CALCESTRUZZO MAGRONE DI SOTTOFONDAZIONE

- Classe di resistenza C12/15
- Contenuto minimo di cemento 150 kg/m³

2.1.2 CARATTERISTICHE CALCESTRUZZI PER USI STRUTTURALI

Elemento strutturale: muro gettato in opera

Classe di resistenza = C28/35

 γ_c = peso specifico = 25.00 kN/m³

 R_{ck} = resistenza cubica = 35.00 N/mm²

f_{ck} = resistenza cilindrica caratteristica = 0.83·R_{ck} = 29.1 N/mm²

 f_{cm} = resistenza cilindrica media = f_{ck} + 8 = 37.05 N/mm²

 f_{ctm} = resistenza a trazione media = 0.30· $f_{ck}^{2/3}$ = 2.83 N/mm²

 f_{cfm} = resistenza a traz. per flessione media = 1.20· f_{ctm} = 3.40 N/mm²

 f_{cfk} = resistenza a traz. per flessione caratt. = $0.70 \cdot f_{cfm}$ = 1.98 N/mm^2

 E_{cm} = modulo elastico tra 0 e 0.40· f_{cm} = 22000· $(f_{cm}/10)^{0.3}$ = 32588 N/mm²

2.1.3 ACCIAIO PER ARMATURE LENTE IN BARRE

Tipo = B 450 C

 γ_a = peso specifico = 78,50 kN/m³;

 $f_{y \text{ nom}}$ = tensione nominale di snervamento = 450 N/mm²;

 $f_{t,nom}$ = tensione nominale di rottura = 540 N/mm²;

 $f_{yk min}$ = minima tensione caratteristica di snervamento = 450 N/mm²;

f_{tk min} = minima tensione caratteristica di rottura = 540 N/mm²;

3 INQUADRAMENTO GEOTECNICO

Il modello geotecnico di calcolo è stato definito sulla base di quanto riportato nella relazione geologica preliminare. In base ai dati a disposizione sono stati scelti dei valori cautelativi per i parametri di calcolo. Le caratteristiche di resistenza e deformabilità assunte nel modello di calcolo sono riportate in Tab. 1. I sondaggi di riferimento sono: S203, S202, S201, S114 e P8.

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 8 di 90

Strato	Profondità da (m da p.c.)	Profondità a (m da p.c.)	Descrizione	N _{SPT} (colpi/30cm)
1	0.0	2.0 ÷ 3.0	Sabbie limose	-
2	2.0 ÷ 3.0	8.0÷10.0	Tufo litoide giallastro	40 – 100
3	8.0÷10.0	40.0	Tufo grigio alterato	10 – 30
	ı	I	I	I

Profondità della falda: 10÷12 m da p.c.

Parametri	Strato 1	Strato 2	Strato 3
γ _t (kN/m³)	17	13.5 – 14.5	13.5 – 14.5
GSI	-	35	-
σ _c (MPa)	-	2	-
σ _t (MPa)	-	-	-
m _i (-)	-	13	-
φ' (°)	33	30	33
c' (kPa)	0	20	0
c _u (kPa)	-	-	-
V _s (m/s)	100 – 120 ^(*)	400 – 500 ^(*)	180 – 250 ^(*)
G ₀ (MPa)	15 – 25 ^(*)	-	60 – 120 ^(*)
E _{op} (MPa)	7 – 10 ^(*)	35 – 40 ^(*)	25 – 50 ^(*)
v' (-)	0.25	0.2	0.25
k (m/s)	5 x 10 ⁻⁵	5 x 10 ⁻⁷ – 1 x 10 ⁻⁶	1 x 10 ⁻⁶ – 5 x 10 ⁻⁵

Tab. 1 – Caratteristiche meccaniche delle unità geotecniche

Nota: (*) crescente con la profondità

Per le caratteristiche meccaniche dei rilevati ferroviari, cautelativamente, si assumono i seguenti parametri:

peso di volume $\gamma = 20 \text{ kN/m}^3$;

angolo d'attrito $\phi' = 38^{\circ}$; coesione efficace c' = 0.0 kPa.

Per il terrapieno, quindi, sono stati considerati i seguenti parametri caratteristici:

 $\gamma_k = 20,00 \text{ kN/m}^3$ peso dell'unità di volume;

 ϕ'_k = 38.0° angolo di resistenza al taglio;

 δ_k = 22.8° angolo di attrito tra paramento verticale muro e terreno in condizioni statiche;

 δ_k = 0° angolo di attrito tra paramento verticale muro e terreno in condizioni sismiche.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	9 di 90

4 CRITERI PROGETTUALI

4.1 VITA NOMINALE

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

Nel presente caso l'opera viene inserita nella seguente tipologia di costruzione:

2) Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale.

La cui vita nominale è pari a :75 anni.

4.2 CLASSE D'USO

In presenza di azioni sismiche, con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso:

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Il coefficiente d'uso è pari a : 1.50.

4.3 PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione al periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale VN per il coefficiente d'uso Cu.

Pertanto $V_R = 75.1.5 = 112.5$ anni

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 10 di 90

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

5 ANALISI DEI CARICHI

5.1 PESO PROPRIO MURO

Il peso proprio del muro viene calcolato in automatico dal foglio di calcolo elettronico.

5.2 PESO PROPRIO PARAPETTO

In testa muro è presente un parapetto metallico di altezza 1.10 m. Si considera, a favore di sicurezza, un carico pari a 1.50 kN/m.

5.3 AZIONE DEL VENTO

Il parapetto metallico presenta una superficie non contrinua, pertanto si trascurano le sollecitazioni connesse all'azione del vento.

5.4 PERMANENTI PORTATI A TERGO DEL MURO

A tergo del muro si considera, agente a livello della testa come carico uniformemente distribuito, il carico del ballast di spessore pari a 0.8 m e di peso pari a 18 kN/mc.

 $q = 18*0.8 = 14.40 \text{ kN/m}^2$

5.5 AZIONE DEL SOVRACCARICO A TERGO DEL MURO

I carichi verticali sono definiti per mezzo di modelli di carico, in particolare sono forniti due treni di carico distinti: il primo rappresentativo del traffico normale LM71, il secondo rappresentativo del traffico pesante SW/2.

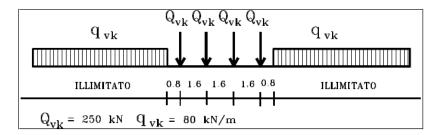
Coefficiente di adattamento α

I valori dei suddetti carichi relativi alla configurazione LM71 e SW2 dovranno essere moltiplicati per un coefficiente di adattamento, variabile in ragione della tipologia dell'Infrastruttura (ferrovia ordinaria, ferrovia leggera metropolitane), viene di seguito riportata la tabella con la variabilità del coefficiente in base al tipo di linea o categoria di linea.

Tipi di linea o categorie di linea STI	Valore minimo del fattore alfa (α)		
IV	1.1		
V	1.0		
VI	1.1		
VII-P	0.83		
VII-F, VII-M	0.91		

Per completezza di informazioni viene di seguito riportata la tabella attinente alla categorie di linea STI per il sottosistema Infrastruttura del sistema ferroviario convenzionale:

ITINERARIO NAPOLI – BARI


RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	11 di 90

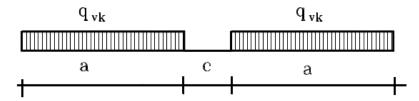
			Tipo di traffico			
Categorie di linea STI		Traffico passeggeri (P)	Traffico merci (F)	Traffico misto (M)		
Tipo di linea	Nuova linea TEN fondamentale (IV)	IV-P	IV-F	IV-M		
	Linea TEN fondamentale ristrutturata (V)	V-P	V-F	V-M		
	Altra nuova linea TEN (VI)	VI-P	VI-F	VI-M		
	Altra linea TEN ristrutturata (VII)	VII-P	VII-F	VII-M		

Treno di carico LM71

E' stato applicato un carico distribuito equivalente dei 4 assi 250 kN ad interasse 1.60 m.

 $q_{equivalente} = 4x250/6.40 = 156.25 \text{ KN/m}.$

Larghezza di diffusione in direzione trasversale è pari a 3.00 m


 $Q_{vk} = 4 \times 250 / (6.40 \times 3.00) = 52.08 \text{ kN/m}^2$

 $q = q_{equivalente} x \alpha x \phi = 52.80 x 1.10 = 57.28 kN/m²$

 $q_{vk} = 80 / 3.00 = 26.66 \text{ kN/m}^2$

 $q = q_{equivalente} x \alpha x \phi = 26.66 x 1.10 = 29.33 kN/m²$

Treno di carico SW2

 $q_{equivalente} = 150/3.00 = 50.00 \text{ kN/m}^2$.

 $q = q_{equivalente} x \alpha x \phi = 50.00 \text{ kN/m}^2 x 1.10 x 1.00 = 55.00 \text{ kN/m}^2$.

Ai fini del dimensionamento del muro di sostegno si considera il treno LM71 in quanto presenta un valore maggiore del carico verticale rispetto al treno SW/2.

5.6 AZIONE SISMICA

Il periodo di riferimento, come indicato nel § 5, è pari a **112.5 anni** in quanto è stata considerata una vita nominale dell'opere in esame pari a 75 anni ed un coefficiente d'uso pari a 1.5.

Nel calcolo dell'azione sismica sono state considerate le coordinate geografiche del sito:

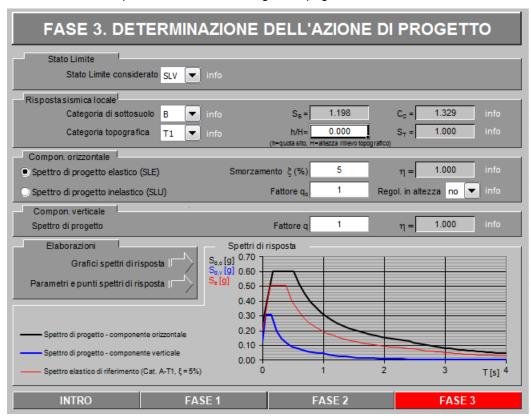
Longitudine (ED50) 14.41178 Latitudine (ED50) 41.01565

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione. La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa ag, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente, con riferimento a prefissata probabilità di eccedenza P_{VR} nel periodo di riferimento V_R (3.2 – NTC2008).

La normativa NTC2008 definisce le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- a_o Accelerazione orizzontale massima al sito;
- F₀ Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_C Periodo d'inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Nei confronti delle azioni sismiche si definiscono due stati limite di esercizio e due ultimi, che sono individuati riferendosi alle prestazioni della costruzione nel suo complesso (3.2.1 – NTC2008), ai quali corrispondono i seguenti valori dei parametri precedentemente definiti:

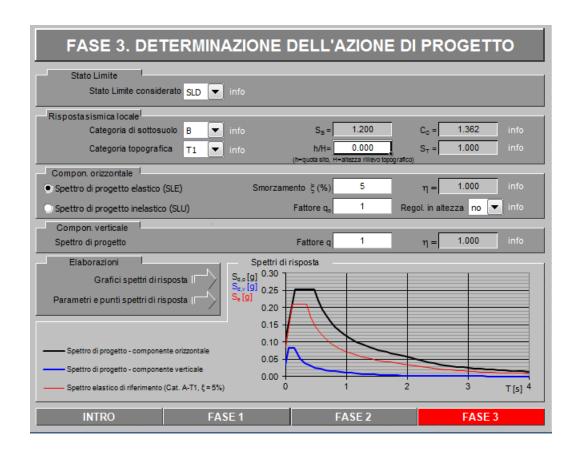

Valori dei parametri a_g, F_o, T_C* per i periodi di ritorno T_R

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.068	2.382	0.329
SLD	113	0.083	2.419	0.347
SLV	1068	0.185	2.506	0.418
SLC	2193	0.228	2.557	0.436

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale mediante specifiche analisi. In assenza di tali analisi, per la definizione dell'azione sismica si può far riferimento a un approccio semplificato, che si basa sull'individuazione di categorie di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III – NTC2008).

Il terreno su cui insiste la costruzione è stato assimilato ad un sottosuolo di categoria C.

La nuova normativa tecnica ripone particolare attenzione anche nei confronti delle condizioni topografiche del sito in esame. Per condizioni topografiche complesse è necessario predisporre specifiche analisi di risposta sismica locale. Per configurazioni superficiali si può far riferimento alla classificazione proposta dalla norma (Tab. 3.2.IV – NTC2008). Nel caso in esame si può assumere una categoria topografica **T1**.



ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 14 di 90

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 15 di 90

6 VERIFICHE AGLI STATI LIMITE

Le combinazioni di carico prese in considerazione nelle verifiche sono state definite in base a quanto prescritto dalle NTC08 al par.2.5.3:

Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \ldots;$$

Combinazione caratteristica rara, impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche delle tensioni d'esercizio:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} \dots;$$

Combinazione caratteristica frequente, impiegata per gli stati limite di esercizio (SLE) reversibili, da utilizzarsi nelle verifiche a fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} \dots;$$

Combinazione quasi permanente, impiegata per gli effetti a lungo termine, da utilizzarsi nelle verifiche a fessurazione:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} \dots;$$

Combinazione sismica, generalmente impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

I valori dei coefficienti parziali di sicurezza γ_F , γ_M e γ_R (relativi alle resistenze dei pali soggetti a carichi assiali), nonché i coefficienti di combinazione ψ delle azioni sono dati dalle tabelle NTC2008 5.2.V, 5.2.VI, 6.2.II e 6.4.II che vengono riportate nel seguito.

L'analisi mira a garantire la sicurezza e le prestazioni attese attraverso il conseguimento dei seguenti requisiti:

sicurezza nei confronti degli Stati Limite di Esercizio;

sicurezza nei confronti degli Stati Limite Ultimi.

Tali verifiche sono state effettuate applicando il primo approccio progettuale (Approccio 1) che prevede le due seguenti combinazioni di coefficienti:

Combinazione 1: A1+M1+R1 (STR);

Combinazione 2: A2+M2+R2 (GEO).

Considerando i coefficienti parziali riportati nelle seguente tabelle.

Nelle condizioni di esercizio gli spostamenti dell'opera sono stati valutati per verificarne la compatibilità con la funzionalità dell'opera e con la sicurezza delle opere adiacenti.

In particolare in condizioni sismiche devono essere condotte verifiche nei confronti dello stato limite di danno. Gli spostamenti permanenti indotti dal sisma devono essere compatibili con la funzionalità dell'opera e con quella di eventuali strutture o infrastrutture interagenti con essa.

Lo spostamento orizzontale massimo ammissibile in testa ad un opera di sostegno di contenimento della sede ferroviaria può essere assunto, in condizioni sismiche, pari a 2 cm.

In particolare sono stati verificati i seguenti stati limiti ultimi:

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 16 di 90

Verifica del muro di sostegno

SLU di tipo geotecnico (GEO) e di equilbrio di corpo rigido (EQU)

- stabilità globale del complesso opera di sostegno-terreno;
- scorrimento sul piano di posa;
- collasso per carico limite dell'insieme fondazione-terreno;
- ribaltamento.

SLU di tipo strutturale (STR)

raggiungimento della resistenza negli elementi strutturali;

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo l'approccio 1:

Combinazione 2: A2+M2+R2

Lo stato limite di ribaltamento non prevede la mobilitazione della resistenza del terreno di fondazione e deve essere trattato come uno stato limite di equilibrio come corpo rigido (EQU), utilizzando i coefficienti parziali sulle azioni della tabella 2.6.I e adoperando coefficienti parziali del gruppo (M2) per il calcolo delle spinte.

Le rimanenti verifiche devono essere effettuate applicando il primo approccio progettuale (Approccio 1) che prevede le due seguenti combinazioni di coefficienti:

Combinazione 1: A1+M1+R1;

Combinazione 2: A2+M2+R2.

Inoltre nella verifica a scorrimento e a ribaltamento dei muri di sostegno viene trascurata la resistenza passiva antistante il muro.

Tabella 5.2.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γP	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00	1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
(3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

^{(7) 1,20} per effetti locali

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 17 di 90

Tabella 5.2.VI - Coefficienti di combinazione y delle azioni.

Azioni		Ψο	ψ_1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80 ⁽²⁾	0,80	0,0
Gruppi di	gr ₂	0,80 ⁽²⁾	0,80(1)	-
carico	gr ₃	0,80 ⁽²⁾	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tabella 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

ocine oracia coopposition pu	Constitution of the control of the c						
PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)			
	APPLICARE IL	PARZIALE					
	COEFFICIENTE PARZIALE	γ _M					
Tangente dell'angolo di resistenza al taglio	tan φ′ _k	$\gamma_{\phi'}$	1,0	1,25			
Coesione efficace	c′k	γe′	1,0	1,25			
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4			
Peso dell'unità di volume	γ	Ϋ́γ	1,0	1,0			

Tabella 6.5.I - Coefficienti parziali 🎢 per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno.

VERIFICA	COEFFICIENTE PARZIALE (R1)	COEFFICIENTE PARZIALE (R2)	COEFFICIENTE PARZIALE (R3)
Capacità portante della fondazione	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_R = 1.4$
Scorrimento	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1,1$
Resistenza del terreno a valle	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.4$

7 METODO DI CALCOLO

L'analisi strutturale del muro di sostegno a fondazione diretta è stata condotta attraverso modelli di calcolo a mensola con incastro nella platea di fondazione (analisi del paramento) e con incastro nel paramento (analisi della fondazione lato valle e lato monte). Vista la geometria dell'opera a prevalente sviluppo longitudinale e le condizioni al contorno, le analisi e verifiche sono state effettuate prendendo in considerazione una porzione di muro corrispondente ad una larghezza unitaria.

Si riporta inoltre di seguito una breve sintesi della procedura proposta per il calcolo delle spinte orizzontali agenti sulla parete dell'opera di sostegno e delle azioni verticali agenti sulla zattera di fondazione.

7.1 CONDIZIONI DI SPINTA SUL MURO IN CONDIZIONI STATICHE

Considerato un terrapieno con peso per unità di volume γ , sovraccarico uniforme su terrapieno q, condizioni drenate ed assenza di falda, si assume in genere la distribuzione di pressioni riportata nella Figura 6. Alla generica quota z dal piano campagna risulta:

$$\sigma_a = \gamma k_a z + q k_a - 2c' \sqrt{k_a}$$

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	18 di 90

$$\sigma_p = \gamma k_p z + q k_p - 2c' \sqrt{k_p}$$

Il problema si riconduce quindi al calcolo dei coefficienti di spinta attiva ka o passiva kp.

Con riferimento allo schema di Figura 7, in condizioni statiche il coefficiente di spinta attiva e quello di spinta passiva sono valutati attraverso le espressioni di Muller-Breslau (1924):

$$k_{a} = \frac{sen^{2}(\psi + \varphi)}{sen^{2}\psi \cdot sen(\psi - \delta) \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \varepsilon)}{sen(\psi - \delta) \cdot sen(\psi + \varepsilon)}}\right]^{2}}$$

$$k_{p} = \frac{sen^{2}(\psi - \varphi)}{sen^{2}\psi \cdot sen(\psi + \delta) \left[1 - \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi + \varepsilon)}{sen(\psi + \delta) \cdot sen(\psi + \varepsilon)}}\right]^{2}}$$

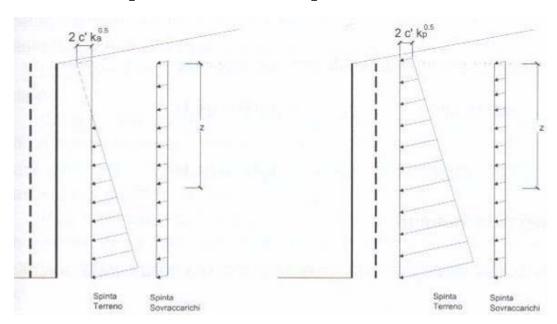


Figura 6 - Spinte orizzontali in condizioni statiche

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	19 di 90

Figura 7 - Parametri geometrici per la valutazione dei coefficienti di spinta

Il coefficiente di spinta passiva ove necessario può essere valutato con l'espressione di Caquot-Kerisel (1948) attraverso la quale si tiene in conto l'effetto sulla spinta della creazione in rottura passiva di superfici di scorrimento non piane. Non considerare tale effetto significherebbe sovrastimare considerevolmente la pressione passiva.

La distribuzione delle pressioni è da prassi considerata triangolare, mentre quella dei sovraccarichi è considerata costante con la profondità (rettangolare), per cui il punto di applicazione della spinta delle terre è posto a 1/3 dell'altezza del muro, mentre quella dei sovraccarichi è da considerarsi a metà dell'altezza del muro.

7.2 CONDIZIONI DI SPINTA SUL MURO IN CONDIZIONI SISMICHE

L'analisi delle spinte sull'opera di sostegno in condizioni sismiche è eseguita attraverso metodi pseudo-statici. Nell'ipotesi di muro libero di muoversi in testa il metodo più appropriato è quello di Mononobe-Okabe il quale rappresenta un'estensione del criterio di Coulomb in cui il cuneo di rottura si muove come un corpo rigido soggetto ad accelerazioni verticali ed orizzontali. Tali accelerazioni sono espresse in funzione di opportuni coefficienti di intensità sismica kv e kh, menzionati anche dalle norme vigenti. Nel metodo considerato le condizioni di equilibrio limite sono espresse ancora da coefficienti di spinta attiva e passiva definiti a partire dalla geometria del sistema e dalle condizioni sismiche di calcolo.

Con riferimento allo schema di Figura 6, considerando un terreno in assenza di falda, si definisce:

$$\theta = \arctan \frac{k_h}{1 \pm k_v} \tag{0.1}$$

ed i coefficienti di spinta sono definiti da:

LS - Relazione di calcolo

Opere di sostegno dal km 0+901 al km 1+033 BP

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	20 di 90

(0.3)

$$\ker \left\{ s \leq \phi' - \theta \right\} \\
k_a = \frac{sen^2 \left(\psi + \phi - \theta \right)}{\cos \theta \cdot sen^2 \psi \cdot sen \left(\psi - \delta - \theta \right) \left[1 + \sqrt{\frac{sen \left(\phi + \delta \right) \cdot sen \left(\phi - \varepsilon - \theta \right)}{sen \left(\psi - \delta - \theta \right) \cdot sen \left(\psi + \varepsilon \right)}} \right]^2} \tag{0.2}$$

$$\text{per } \varepsilon \ge \phi' - \theta$$

$$k_a = \frac{\text{sen}^2 (\psi + \phi - \theta)}{\cos \theta \cdot \text{sen}^2 \psi \cdot \text{sen}(\psi - \delta - \theta)}$$

$$k_{p} = \frac{sen^{2}(\psi + \varphi - \Theta)}{\cos\Theta \cdot sen^{2}\psi \cdot sen(\psi + \Theta) \left[1 - \sqrt{\frac{sen\varphi \cdot sen(\varphi + \varepsilon - \Theta)}{sen(\psi + \Theta) \cdot sen(\psi + \varepsilon)}}\right]^{2}}$$

La spinta del terreno in condizioni sismiche vale perciò:

$$S_a = \frac{1}{2} \gamma \left(1 \pm k_v \right) k_a H^2$$

$$S_{p} = \frac{1}{2} \gamma \left(1 \pm k_{v} \right) k_{p} H^{2}$$

con inclinazione del piano di rottura valutabile attraverso l'espressione:

$$\alpha = \phi - \theta + \arctan \left[\sqrt{\frac{P \cdot (P+Q) \cdot (1+Q \cdot R) - P}{1+R \cdot (P+Q)}} \right]$$

essendo:

$$P = \tan(\phi - \theta - \varepsilon)$$

$$Q = cotan(\phi - \theta - \beta)$$

$$R = \tan(\theta + \beta + \delta)$$

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	21 di 90

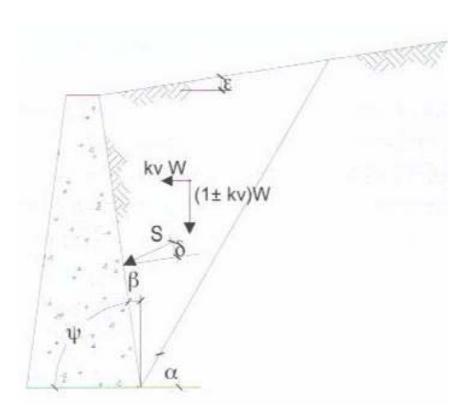


Figura 8- Azioni sismiche pseudo-statiche

Nel caso di terreno con presenza di falda e permeabilità inferiore a 5x10-4m/sec si trascurano gli effetti idrodinamici dell'acqua maggiorando l'angolo θ \Box secondo l'espressione:

$$\theta = \arctan\left(\frac{\gamma_{sat}}{\gamma_{sat} - \gamma_{w}} \frac{k_h}{1 \pm k_v}\right)$$

e la spinta agente sulla parete si definisce solo a mezzo di effetti statici:

$$S_a = \frac{1}{2} \gamma' (1 + k_v) k_a H^2 + \frac{1}{2} \gamma_w H^2$$

Nel caso di valori maggiori di permeabilità va considerato anche l'effetto dinamico valutabile con l'espressione:

$$E_{wd} = \frac{7}{2} k_h \gamma_w H^2$$

L'azione è applicata ad un'altezza pari ad 0,4·H dalla base del muro.

7.3 VERIFICHE GEOTECNICHE

Sono state condotte, in accordo con la normativa vigente le seguenti verifiche globali di carattere geotecnico:

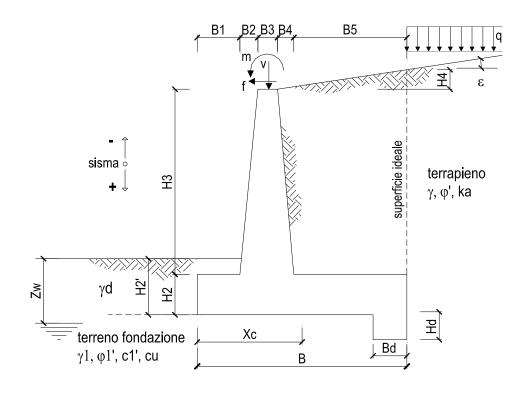
- verifica al ribaltamento
- verifica allo scorrimento, trascurando il contributo stabilizzante dovuto alla spinta passiva del terreno anteriore.
- verifica al carico limite dell'insieme fondazione-terreno utilizzando l'espressione della portanza unitaria limite secondo la teoria di Meyerhof.

7.4 VERIFICHE STRUTTURALI

Sono state condotte, infine, le verifiche locali degli elementi che costituiscono l'opera di sostegno, valutando in corrispondenza delle sezioni caratteristiche le sollecitazioni esterne e i corrispondenti stati tensionali. Le sezioni di riferimento sono indicate nei report di calcolo. Le azioni sul paramento sono valutate considerando quest'ultimo incastrato nella soletta di fondazione. Le azioni sulla soletta di fondo (monte e valle) sono valutate col metodo del trapezio delle tensioni considerando questa incastrata al paramento.

8 SOFTWARE DI CALCOLO

Le verifiche geotecniche e strutturali dell'opera di sostegno sono state eseguite mediante apposito foglio di calcolo.



ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	23 di 90

9 MURO TIPO CONCI 5 E 6

OPERA Esempio

DATI DI PROGETTO:

Geometria d	<u>del Muro</u>
-------------	-----------------

Ccomedia acrimare			
Elevazione	H3 =	3.35	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.40	(m)
Aggetto monte	B4 =	0.00	(m)

Geometria della Fondazione

Larghezza Fondazione	B =	3.40	(m)
Spessore Fondazione	H2 =	0.40	(m)
Suola Lato Valle	B1 =	1.20	(m)
Suola Lato Monte	B5 =	1.80	(m)
Altezza dente	Hd =	0.00	(m)
Larghezza dente	Bd =	0.00	(m)
Mezzeria Sezione	Xc =	1.70	(m)

Peso Specifico del Calcestruzzo	γcls =	25.00	(kN/m³)

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

BP

LOTTO **01 E ZZ**

CODIFICA CL

DOCUMENTO RI0005 005

REV.

FOGLIO **24 di 90**

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

				valori caratteristici	valori di p	orogetto
<u>Carichi</u>	<u>Agenti</u>	SLE - sisma	STR/GEO	EQU		
	Sovraccarico permanente	(kN/m^2)	qp	14.40	19.44	21.60
ent ei	Sovraccarico su zattera di monte					
Carichi	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
Carichi permanenti	Forza Verticale in Testa permanente	(kN/m)	νp	1.50	1.50	1.35
	Momento in Testa permanente (kNm/m) mp		mp	1.00	1.35	1.10
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	57.30	83.09	83.09
io je	Forza Orizzontale in Testa accidentale in condizioni statich		f	0.00	0.00	0.00
Condizioni Statiche	Forza Verticale in Testa accidentale in condizioni statiche (F		٧	0.00	0.00	0.00
St	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione rara Ψ1	·	1.00	condizione quasi perma	anente Ψ2	0.00
. <u>=</u> Ф	Sovraccarico Accidentale in condizioni sismiche (kN/m²) c		qs	11.46		
Condizioni Sismiche	Forza Orizzontale in Testa accidentale in condizioni sismicl (kN/m)		fs	0.00		
ond	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
ပ်ဖ	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

COMMESSA IF1N

CARATTERISTICHE DEI MATERIALI STRUTTURALI

Calcestruzzo			<u>Acciaio</u>
classe cls	•		tipo di acciaio B450C ▼
Rck	35	(MPa)	
fck	28	(MPa)	fyk = 450 (MPa)
fcm	36	(MPa)	
Ec	32308	(MPa)	γ s = 1.15
αcc	0.85		
γс	1.50		fyd = fyk / γ s / γ E = 391.30 (MPa)
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$	15.87	(MPa)	Es = 210000 (MPa)
$f_{ctm} = 0.30*f_{ck}^{2/3}$	2.77	(MPa)	ε_{ys} = 0.19%
_	1.2 Mpa 37.5 Mpa		coefficiente omogeneizzazione acciaio n = 15
condizioni sismiche			<u>Copriferro</u> (distanza asse armatura-bordo)
σc	11 Mpa		c = 6.20 (cm)
$\sigma_{\!f}$	260 Mpa		
			<u>Copriferro minimo di normativa</u> (ricoprimento armatura)
			$c_{min} = 4.00 (cm)$
Valore limite di apertui	ra delle fessure		Interferro tra <u>I e II</u> strato
Frequente	w1	0.2 mm	i _{I-II} 5.00 (cm)
Quasi Permanente	w1	0.2 mm	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 25 di 90

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

9.1 VERIFICHE GEOTECNICHE

Combinazioni coefficienti parziali di verifica

	Approccio 2 comb. 1 comb. 2	I EOII.M2		\circ	
2				A2+M2+R2	1 ●
S		ਲ comb. 2	EQU+M2	』	
		A1+M1+R3	0		
	Approceio 2		EQU+M2	∐ ઁ Ⅱ	
SLE (DM88)					
altro			0		

Coefficienti di sicurezza

	<u>Scorrimento</u>	<u>Ribaltamento</u>	<u>Carico limite</u>
Statico	1.20	2.20	2.66
Sismico	1.18	2.43	2.69

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 26 di 90

FORZE VERTICALI

- Peso del Mur	o (Pm)		SLE	STR/GEO	EQU
Pm1 =	(B2*H3* _γ cls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*γcls)	(kN/m)	33.50	33.50	30.15
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm4 =	(B*H2*γcls)	(kN/m)	34.00	34.00	30.60
Pm5 =	(Bd*Hd [*] γcls)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	67.50	67.50	60.75
- Peso del terre Pt1 = Pt2 = Pt3 = Sovr = Pt =	eno e sovr. perm. sulla scarpa di monte del muro (Pt) (B5*H3* γ) (0,5*(B4+B5)*H4* γ) (B4*H3* γ)/2 qp * (B4+B5) Pt1 + Pt2 + Pt3 + Sovr	(kN/m) (kN/m) (kN/m) (kN/m) (kN/m)	120.60 0.00 0.00 0.00 120.60	120.60 0.00 0.00 0.00 120.60	108.54 0.00 0.00 0.00 0.00 108.54
- Sowraccarico accidentale sulla scarpa di monte del muro Sovr acc. Stat q * (B4+B5)				0	ı

	4- (- :)	()	-				
MOMENTI D	MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO						
- Muro (Mm)			SLE	STR/GEO	EQU		
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00		
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	46.90	46.90	42.21		
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00	0.00	0.00		
Mm4 =	Pm4*(B/2)	(kNm/m)	57.80	57.80	52.02		
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00		
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	104.70	104.70	94.23		
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro						
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	301.50	301.50	271.35		
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00		
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00		
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00		
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	301.50	301.50	271.35		
- Sovraccarico	o accidentale sulla scarpa di monte del muro						
	t *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0	0			
	m *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0				
	L MURO E DEL TERRAPIENO ontale e verticale del muro (Ps)						
Ps h=	Pm*kh	(kN/m)		5.11			
Ps v=	Pm*kv	(kN/m)		2.56			
Inoraio oriaa	ontale e verticale del terrapieno a tergo del muro (Pts)						
				9.14			
Ptsh = Ptsv =	Pt*kh Pt*kv	(kN/m) (kN/m)		4.57			
- Incremento (MPs1 h=	orizzontale di momento dovuto all'inerzia del muro (MF kh*Pm1*(H2+H3/3)	's h) (kNm/m)		0.00			
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)		5.27			
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)		0.00			
MPs4 h=	* *	(kNm/m)		0.52			
	kh*Pm4*(H2/2)	. ,					
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)		0.00			
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		5.78			
Ingramanta	porticolo di momento dovuto all'inorzio del muro (MDe v	. A					
	verticale di momento dovuto all'inerzia del muro (MPs			0.00			
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)		0.00			
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)		1.78			
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)		0.00			
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)		2.19			
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)		0.00			
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		3.97			
		(145)					
- Incremento (MPts1 h=	orizzontale di momento dovuto all'inerzia del terrapieno	, ,		18.96			
	kh*Pt1*(H2 + H3/2)	(kNm/m)					
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)		0.00			
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)		0.00			
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)		18.96			
	verticale di momento dovuto all'inerzia del terrapieno (M	,					
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)		11.42			
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)		0.00			
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)		0.00			
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)		11.42			

LS - Relazione di calcolo

Opere di sostegno dal km 0+901 al km 1+033 BP

Fs ribaltamento

Ms/Mr

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA IF1N CODIFICA

LOTTO

DOCUMENTO

REV. FOGLIO

27 di 90

01 E ZZ CL RI0005 005 A

2.20 >

1

Spinta totalo	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU
St =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	30.46	38.79	42.67
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	11.70	14.90	22.34
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	46.54	74.09	85.95
Componente	orizzontale condizione statica				
Sth =	St*cos8	(kN/m)	28.08	36.63	40.30
Sgh perm =	Sq perm*cosδ	(kN/m)	10.78	14.07	21.10
Sqh acc =	Sq acc* $\cos\delta$	(kN/m)	42.90	69.97	81.17
Componente	verticale condizione statica				
Stv =	St*senδ	(kN/m)	11.80	12.76	14.04
Sqv perm=	Sq perm*senδ	(kN/m)	4.53	4.90	7.35
		` '			
Sqvacc =	Sq acc*sen _δ	(kN/m)	18.03	24.37	28.27
- Spinta passiv					
3p=½*g1'*Hd2	*\ ½*γ ₁ '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} +γ1'*kp*H2')*Hd	(kN/m)	0.00	0.00	0.00
MOMENTI DE	ELLA SPINTA DEL TERRENO E DEL SOVRACO	CARICO	SLE	STR/GEO	EQU
MS+1 -	Stp*//H3+H3+H4+H4//3 H4 /	(kNm/m)	35.10	45.79	
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd) Stv*B	(kNm/m)			50.37 47.72
MSt2 =		(kNm/m)	40.13	43.38	
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	20.22	26.38	39.56
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	80.44	131.20	152.19
MSq2 perm=	Sqv perm*B	(kNm/m)	15.41	16.66	24.99
MSq2 acc =	Sqv acc*B	(kNm/m)	61.32	82.86	96.12
$MSp = \gamma 1'*$	$Hd^{3*}kp/3+(2*c1'*kp^{0.5}+_{\gamma}1'*kp*H2')*Hd^{2}/2$	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	OVUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	1.00	1.00	1.10
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	2.10	2.10	1.89
VERIFICA A	LLO SCORRIMENTO (STR/GEO)				
Risultante forz	e verticali (N)				
N =	Pm + Pt + v + Stv + Sqv perm + Sqv acc		231.63	(kN/m)	
Risultante forz	e orizzontali (T)				
T =	Sth + Sqh + f		120.67	(kN/m)	
Coefficiente di	attrito alla base (f)				
f =	$tg_{\phi 1}$ '		0.63	(-)	
	(N*f + Sp) / T		1.20	>	
Fs scorr.					
	_ RIBALTAMENTO (EQU)				
VERIFICA A					
			536.31	(kNm/m)	
VERIFICA A	ilizzante (Ms) Mm + Mt + Mfext3		536.31	(kNm/m)	

TIMERA

ITINERARIO NAPOLI – BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO**

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

2.82

2.82

(m)

Opere di sostegno dal km 0+901 al km 1+033 BP	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LS – Relazione di calcolo	IF1N	01 E ZZ	CL	RI0005 005	Α	28 di 90

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)					
Risultante forz N =	e verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc)	Nmin 234.67	Nmax 234.67	(kN/m)	
Risultante forze orizzontali (T) T = Sth + Sqh + f - Sp 57.05 57.05 (kN/m					
Risultante dei momenti rispetto al piede di valle (MM) $ MM = \sum M $ 330.31 (kNm/					
Momento rispe M =	etto al baricentro della fondazione (M) Xc*N - MM	45.15	45.15	(kNm/m)	
Formula Gen	erale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1	970)			
Fondazione Na	astriforme				
qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ					
c1' φΙ΄ γι	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	2.00 26.56 10.88		(kPa) (°) (kN/m³)	
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	9.90		(kN/m^2)	
e = M / N	eccentricità	0.19	0.19	(m)	

I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)

larghezza equivalente

Nq = $tg^2(45 + \rho'/2)^*e^{(\pi^*tg(\rho'))}$	(1 in cond. nd)	12.59 (-)
$Nc = (Nq - 1)/tg(\varphi')$	$(2+_{\pi}$ in cond. nd)	23.18 (-)
$N_{\gamma} = 2^*(Nq + 1)^*tg(\varphi')$	(0 in cond. nd)	13.58 (-)

I valori di ic, iq e i $_{\gamma}$ sono stati valutati con le espressioni suggerite da Vesic (1975)

$iq = (1 - T/(N + B*c'cotg_0'))^m$	(1 in cond. nd)	0.59	0.59	(-)
ic = iq - (1 - iq)/(Nq - 1)		0.55	0.55	(-)
$i_{\gamma} = (1 - T/(N + B*c'cotg_{\phi}'))^{m+1}$		0.45	0.45	(-)

(fondazione nastriforme m = 2)

B*= B - 2e

qlim (carico limite unitario)	193.41	193.41	(kN/m^2)
-------------------------------	--------	--------	------------

FS carico limite	F = glim*B*/ N	Nmin	2.32	>	1
	. – q – 7.11	Nmax	2.32	>	•

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	29 di 90

2.66

Nmax

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risultante forze verticali (N)		e verticali (N)	Nmin	Nmax	
N	=	Pm + Pt + v + Stv + Sqv (+ Sovr acc)	231.63	231.63	(kN/m)
Risult	ante forze	e orizzontali (T)			
T	=	Sth + Sqh + f - Sp	120.67	120.67	(kN/m)
Risult	ante dei r	momenti rispetto al piede di valle (MM)			
MM	=	Σ M	346.84	346.84	(kNm/m)
Mome	ento rispe	tto al baricentro della fondazione (M)			
M	=	Xc*N - MM	46.93	46.93	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

$qlim = c'Nc*ic + q_0*Nq*iq + 0,5*\gamma1*B*N\gamma*i\gamma$

FS carico li	mite F = qlim*B*/ N	Nmin	2.66	>	1	
qlim	(carico limite unitario)		206.01	206.01	(kN/m²)	
(fondazione nastriforme m = 2)						
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + iq))$	/(Nq - 1)		0.23 0.19 0.11	0.23 0.19 0.11	(-) (-) (-)	
I valori di ic, iq	e i $_{\gamma}$ sono stati valutati con le espressioni suggerite d	a Vesic (1975)				
$Nq = tg^{2}(45 + q)$ $Nc = (Nq - 1)/tq$ $N_{\gamma} = 2*(Nq + 1)$	$g(\varphi')$ (2+ π in cond. nd)		23.19 35.51 30.24		(-) (-) (-)	
l valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerit	e da Vesic (193	75)			
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.20 2.99	0.20 2.99	(m) (m)	
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		20.00		(kN/m ²)	
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		0.00 32.01 20.00		(kPa) (°) (kN/m³)	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 30 di 90

CONDIZION	IE SISMICA +				
SPINTE DEL - - Spinta condiz	TERRENO E DEL SOVRACCARICO	ſ	SLE	STR/GEO	EQU
•	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	33.45	43.20	43.20
	0,5*v'*(1+kv)*(H2+H3+H4+Hd)²*kas*-Sst1 stat	(kN/m)	6.79	7.93	7.93
Ssq1 perm=	gp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	14.89	18.92	18.92
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	11.85	15.05	15.05
554.555	4- (·= ···· ··· ··· ··· ··· ··· ··· ··· ··	(,			
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	33.45	43.20	43.20
	Sst1 sism* $\cos\delta$	(kN/m)	6.79	7.93	7.93
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	14.89	18.92	18.92
Ssq1h acc=	Ssq1 acc*cos _δ	(kN/m)	11.85	15.05	15.05
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0.00	0.00	0.00
	Sst1 sism*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiv					
$Sp = \frac{1}{2} *_{\gamma_1} (1 + kv)$	Hd ² *kps ⁺ +(2*c ₁ '*kps ^{+0.5} + _γ 1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0.00	0.00	0.00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARI	со [CI E	STRICEO	FOLL
- Condizione si	smica +		SLE	STR/GEO	EQU
MC-44 -4-4 -	Cat4b atat * //10.110.114.bd//2.bd/	(Ishles (es.)	44.00	54.00	54.00
MSst1 stat = MSst1 sism=	Sst1h stat * ((H2+H3+H4+hd)/3-hd) Sst1h sism* ((H2+H3+H4+Hd)/2-Hd)	(kNm/m) (kNm/m)	41.82 12.74	54.00 14.87	54.00 14.87
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	50.14	63.70	63.70
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ_1 *Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	WHEN ALL E FORTE FOTERNE				
Mfext1 =	VUTI ALLE FORZE ESTERNE mp+ms	(kNm/m)		1.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		2.10	
	(1)	(,			
VERIFICA AL	LO SCORRIMENTO				
Risultante forze	e verticali (N)				
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		196.73	(kN/m)	
Risultante forze	e orizzontali (T)				
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		99.35	(kN/m)	
0 65 - 1 1	-Matter-United to 10				
	attrito alla base (f)		0.00	()	
f =	tg _{φ1} '		0.63	(-)	
Fs =	(N*f + Sp) / T		1.24	>	1
VERIFICA AL	. RIBALTAMENTO				
Momento stabi	lizzante (Ms)				
Ms =	Mm + Mt + Mfext3		408.30	(kNm/m)	
				. ,	
Momento ribalt			,	/ I N / `	
Mr =	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts		142.91	(kNm/m)	
Fr =	Ms / Mr		2.86	>	1
	110 / 1111		2.50		

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

FS carico limite

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	31 di 90

1

2.92

Nmax

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

FS carico li	mite F = alim*B*/ N	Nmin	2.92	>	1
qlim	(carico limite unitario)		212.62	212.62	(kN/m ²)
(fondazione na	striforme m = 2)				
iq = (1 - T/(N + ic) = iq - (1 - iq) $i\gamma = (1 - T/(N + iq))$	- 1		0.25 0.21 0.12	0.25 0.21 0.12	(-) (-)
	e iγ sono stati valutati con le espressioni suggerite	da Vesic (1975)	0.25	0.05	()
Nc = $(Nq - 1)/t$ N _{\gamma} = 2* $(Nq + 1)$	O(1)		35.51 30.24		(-) (-)
$Nq = tg^2(45 + t)$			23.19		(-)
I valori di Nc, N	iq e Ng sono stati valutati con le espressioni sugge	rite da Vesic (1975)		. ,
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.35 2.70	0.35 2.70	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		20.00		(kN/m^2)
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		32.01 20.00		(kN/mq) (°) (kN/m³)
	: + q ₀ *Nq*iq + 0,5*γ1*B*Nγ*iγ		0.00		(1.11/
Fondazione Na					
	erale per il Calcolo del Carico Limite Unitrario	(Brinch-Hansen,	1970)		
Momento rispe M =	etto al baricentro della fondazione (M) Xc*N - MM		69.05	69.05	(kNm/m)
Risultante dei MM =	momenti rispetto al piede di valle (MM) $\Sigma { m M}$		265.39	265.39	(kNm/m)
Risultante forz T =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp		99.35		(kN/m)
Risultante forz	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	+ (Sovr acc)	Nmin 196.73	Nmax 196.73	(kN/m)

F = qlim*B*/N

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA

IF1N

10TTO **01 E ZZ**

CODIFICA CL

DOCUMENTO RI0005 005

(kN/m)

REV.

FOGLIO 32 di 90

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

CONDIZIONE SISMICA-

SPINTE DEL	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
•	0,5*√'*(H2+H3+H4+Hd)²*ka	(kN/m)	33.45	43.20	43.20
Sst1 sism =	0,5*γ'*(1-kv)*(H2+H3+H4+Hd)²*kas -Sst1 stat	(kN/m)	4.29	4.69	4.69
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	15.06	19.11	19.11
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	11.99	15.21	15.21
- Componente	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	33.45	43.20	43.20
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	4.29	4.69	4.69
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	15.06	19.11	19.11
Ssq1h acc=	Ssq1 acc*cos _δ	(kN/m)	11.99	15.21	15.21
- Componente	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0.00	0.00	0.00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen _δ	(kN/m)	0.00	0.00	0.00
- Spinta passiv	a sul dente				
$Sp=\frac{1}{2}*_{\gamma_1}'(1-kv)$	Hd ² *kps ⁻ +(2*c ₁ '*kps ^{-0.5} + _γ 1' (1-kv) kps ⁻ *H2')*Hd	(kN/m)	0.00	0.00	0.00

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica -		SLE	STR/GEO	EQU	
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	41.82	54.00	54.00
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	8.04	8.80	8.80
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	50.72	64.36	64.36
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ_1 ^{1*} Hd ^{3*} kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00

MOMENTI DOVUTI ALLE FORZE ESTERNE

Mfext1 =	mp+ms	(kNm/m)	1.00
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)	0.00
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)	2.10

VERIFICA ALLO SCORRIMENTO

Risultante forze verticali (N)

I = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv 182.47

Risultante forze orizzontali (T)

T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh 96.46 (kN/m)

Coefficiente di attrito alla base (f)

= $tg_{\phi 1}$ ' 0.63 (-)

Fs = (N*f + Sp)/T 1.18 >

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 408.30 (kNm/m)

Momento ribaltante (Mr)

Mr = MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 168.28 (kNm/m)

Fr = Ms/Mr 2.43 > 1

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

FS carico limite

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 33 di 90

1

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

FS carico li	imite F = glim*B*/N	2.69	>	1								
qlim	(carico limite unitario)	186.40	186.40	(kN/m ²)								
(fondazione na	(fondazione nastriforme m = 2)											
iq = (1 - T/(N + ic = iq - (1 - iq) + ig) ig = (1 - T/(N + ig) + ig)	-100	0.22 0.19 0.10	0.22 0.19 0.10	(-) (-)								
I valori di ic, iq e i _γ sono stati valutati con le espressioni suggerite da Vesic (1975)												
Nc = $(Nq - 1)/t$ N _{\gamma} = $2*(Nq + 1)$		35.51 30.24		(-) (-)								
$Nq = tg^2(45 + t)$, ,	23.19		(-)								
	lq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)		· /								
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.38 2.63	0.38 2.63	(m) (m)								
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	20.00		(kN/m^2)								
c1' φ1 <i>'</i> γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	0.00 32.01 20.00		(kN/mq) (°) (kN/m³)								
	: + q ₀ *Nq*iq + 0,5*γ1*B*Nγ*iγ											
Fondazione Nastriforme												
Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)												
Momento rispe M =	etto al baricentro della fondazione (M) Xc*N - MM	70.18	70.18	(kNm/m)								
Risultante dei MM =	momenti rispetto al piede di valle (MM) $\Sigma \mathrm{M}$	240.02	240.02	(kNm/m)								
Risultante forz T =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	96.46		(kN/m)								
Risultante forz	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 182.47	Nmax 182.47	(kN/m)								

F = qlim*B*/N

Nmax

2.69

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	34 di 90

9.1.1 VERIFICA SLD

Le verifiche allo stato limite di danno (SLD) da effettuare sull'opera in esame, vengono condotte valutando gli spostamenti indotti sull'opera da un sisma con tempo di ritorno T_R = 112.5 anni, corrispondente alla probabilità di superamento del 63% nella vita di riferimento dell'opera V_R = 112.5 anni.

La stima degli spostamenti indotti dal sisma viene effettuata attraverso la formula di Rampello:

$$d = (S_S \cdot S_T \cdot B) \cdot e^{A(a_{c/}/a_{\max})}$$

essendo:

B e A due coefficienti che sono funzione del valore di ag (accelerazione massima orizzontale attesa al sito) e della categoria di sottosuolo sul quale l'opera poggia (RFI DTC INC CS SP IFS 001 A par. 4.4):

Sottosuolo	Cat. A		Cat, B		Cat. C, D, E		
$a_{\rm max}/{\rm g}$	A	В	A	В	A	В	
0.3 - 0.4	-7.5	1.21	-7.9	1.06	-7.4	0.56	
0.2 - 0.3	-7.42	1.28	-7.79	1.11	-7.54	0.58	
0.1 - 0.2	-7.48	0.65	-7.86	0.73	-8.05	0.86	
≤ 0.1	-7.87	0.28	-7.86	0.3	-8.07	0.44	

 a_c il valore dell'accelerazione critica, ossia quel valore dell'accelerazione del suolo in corrispondenza del quale si manifestano i primi spostamenti relativi permanenti tra terreno e muro Si determina imponendo pari all'unità il rapporto R_d/E_d nella verifica a scorrimento.

Nel caso in esame si ha:

Muro tipo conci 5 e 6:

H = 3.35 m; A = -8.05; B = 0.86;
$$a_c$$
 = 0.43g; a_{max} = 0.106g (SLD) δ = 6·10⁻¹⁵ mm

Essendo δ minore del valore massimo (20 mm) ammesso dalla specifica RFI DTC INC CS SP IFS 001 A, la verifica risulta soddisfatta.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	35 di 90

9.1.2 VERIFICA STABILITÀ GLOBALE

	γ [kN/m³]	ф [°]	c [kPa]	Descrizione
materiale 1	20	32.01	0	terrapieno
materiale 2	20	32.01	0	fondazione
materiale 3	0	0	0	
materiale 4	0	0	0	

peso specifico acqua 10

azioni sismiche a_g/g 0.204 (-) S_s 1.2 k_h 0.0685 (-)

[kN/m³]

 β_s 0.28 S_T 1 k_v 0.0343 (-)

x muro 100 (m) **y muro** 100 (m)

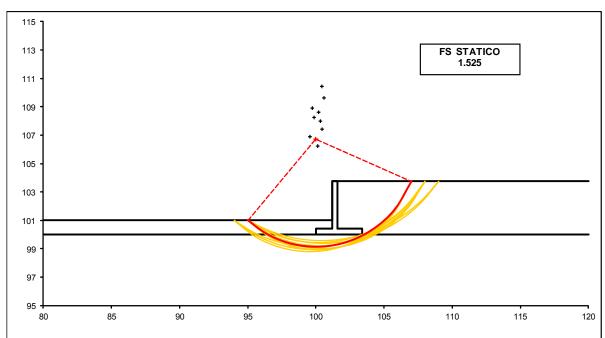
	p.c. va	lle		p.c. mo	nte	superficie 1			superficie 2		superficie 3		ie 3				
		materiale 1				materiale 2			□ mater	riale 4		□ mate	riale 2		√ falda		
	х	у		х	у		х	у		х	у		Х	у		х	у
0	100.000	101.000	0	102.000	103.750	0	80.000	100.000	0			0			0	80.000	90.000
1	80.000	101.000	1	108.000	103.750	1	120.000	100.000	1			1			1	120.000	90.000
2			2	120.000	103.750	2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

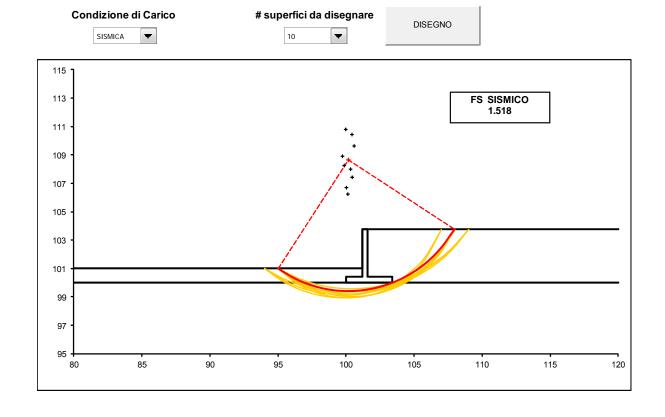
Sovraccarichi

		Xin	q _{in}	Xfin	q _{fin}	% sisma
sovraccarico 1	~	103.4	14.4	120	14.4	100%
sovraccarico 2	~	103.4	71.625	120	71.625	20%

Limiti ricerca superfici

Xa	80	Х	С	105	alfa min	40]	# superfici	
Xb	95	Х	d	120	alfa max	7 0			2816
n1	15	n	2	15	n alfa	10		massimo	


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 36 di 90

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

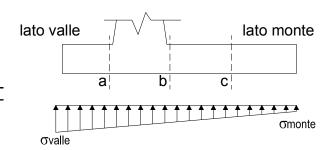
 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 37 di 90

9.2 VERIFICHE STRUTTURALI

9.2.1 VERIFICHE SLU A PRESSO-FLESSIONE E TAGLIO

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

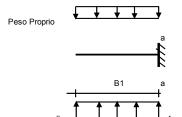

ovalle = N / A + M / Wgg

omonte = N / A - M / Wgg

 $A = 1.0^*B$ = 3.40 (m²)

 $Wgg = 1.0*B^2/6 = 1.93$ (m³)

0000	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m²]	[kN/m ²]
statico	237.80	24.74	82.78	57.10
Statico	237.80	24.74	82.78	57.10
sisma+	220.91	-14.30	57.55	72.39
SiSilia	220.91	-14.30	57.55	72.39
sisma-	205.91	-9.82	55.47	65.66
5151118-	205.91	-9.82	55.47	65.66



Mensola Lato Valle

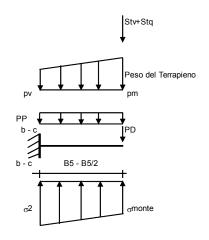
Peso Proprio. PP = 10.00 (kN/m)

 $\begin{aligned} \text{Ma} &= \ _{G}1^{*}\text{B}1^{2}/2 + (_{G}\text{valle} - _{G}1)^{*}\text{B}1^{2}/3 - PP^{*}\text{B}1^{2}/2^{*}(1\pm kv) \\ \text{Va} &= \ _{G}1^{*}\text{B}1 + (_{G}\text{valle} - _{G}1)^{*}\text{B}1/2 - PP^{*}\text{B}1^{*}(1\pm kv) \end{aligned}$

caso	σvalle	σ1	Ma	Va
Caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	82.78	73.72	50.23	81.90
Statico	82.78	73.72	50.23	81.90
sisma+	57.55	62.79	35.22	60.28
SISIIIaT	57.55	62.79	35.50	60.28
aiama	55.47	59.06	33.87	56.62
sisma-	55.47	59.06	33.60	56.62

Mensola Lato Monte PP = 10.00 (kN/m²) peso proprio soletta fondazione PD = 0.00 (kN/m) peso proprio dente

		Nmin	N max stat	N max sism	
pm	=	67.00	150.09	78.46	(kN/m^2)
pvb	=	67.00	150.09	78.46	(kN/m^2)
pvc	=	67.00	150.09	78.46	(kN/m ²)


$$\label{eq:mbetav} \begin{split} Mb &= (\sigma_{monte} - (pvb + PP)^*(1\pm kv))^*B5^2/2 + (\sigma_2 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1\pm kv)^*B5^2/3 + (Stv + Sqv)^*B5 - PD^*(1\pm kv)^*(B5 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{split}$$

$$\label{eq:monter} \begin{split} \text{Mc} &= (\sigma_{monter}(pvc+PP)^*(1\pm kv))^*(B5/2)^2/2 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1\pm kv)^*(B5/2)^2/3 + (Stv+Sqv)^*(B5/2)-PD^*(1\pm kv)^*(B5/2-Bd/2)-PD^*kh^*(Hd+H2/2)+Msp+Sp^*H2/2 \end{split}$$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma_2 b - \sigma_{monte})^*B5/2 - (pm - pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - ($

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma_2 c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv) + (D^*(1 \pm kv))^*(B5/2)/2 - (D^*$

0000	σmonte	σ2b	Mb	Vb	σ 2c	Мс	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m²]	[kNm]	[kN]
statico	57.10	70.70	-111.66	-71.78	63.90	-50.52	-63.05
Statico	57.10	70.70	-246.26	-221.34	63.90	-84.17	-137.83
aiama I	72.39	64.54	-59.96	-44.80	68.47	-25.34	-32.72
sisma+	72.39	64.54	-79.23	-66.21	68.47	-30.16	-43.43
sisma-	65.66	60.26	-58.75	-43.46	62.96	-24.87	-32.23
	65.66	60.26	-76.61	-63.31	62.96	-29.34	-42.16

TIHERA

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

BP

COMMESSA

IF1N

LOTTO **01 E ZZ** CODIFICA

DOCUMENTO RI0005 005

REV.

FOGLIO 38 di 90

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

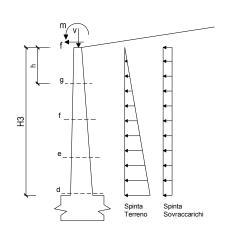
Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm kv)^* h^{2*} h/3$

 $\label{eq:Mt_sism} \text{Mt sism} = \frac{1}{2} *_{\gamma} *(\text{Kas}_{\text{orizz.}} * (1 \pm k \text{v}) - \text{Ka}_{\text{orizz.}}) * h^2 * h/2 \quad \text{o *h/3}$

 $\begin{array}{ll} Mq & = \frac{1}{2} \ Ka_{orizz} *q *h^2 \\ M_{ext} & = m + f *h \\ M_{inerzia} & = \sum Pm_i *b_i *kh \end{array}$

 $N_{ext} = v$


N _{pp+inerzia}= $\sum Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv)-Ka_{orizz.})*h^2$

 $Vq = Ka_{orizz}^*q^*h$

 V_{ext} = f $V_{inerzia}$ = ΣPm_i^*kh

condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.35	33.78	114.87	1.35	149.99	1.50	33.50	35.00
e-e	2.51	14.25	64.61	1.35	80.21	1.50	25.13	26.63
f-f	1.68	4.22	28.72	1.35	34.29	1.50	16.75	18.25
g-g	0.84	0.53	7.18	1.35	9.06	1.50	8.38	9.88

sezione	h	Vt	Vq	$V_{\rm ext}$	V_{tot}
30210110	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.35	30.25	68.58	0.00	98.83
e-e	2.51	17.02	51.43	0.00	68.45
f-f	1.68	7.56	34.29	0.00	41.85
g-g	0.84	1.89	17.14	0.00	19.03

condizione sismica +

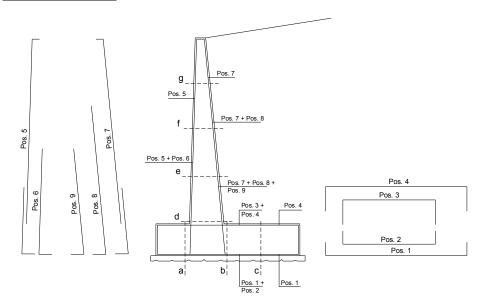
sezione	h	Mt stat	Mt sism	Mq	$M_{\rm ext}$	M _{inerzia}	M_{tot}	N _{ext}	$N_{pp+inerzia}$	N_{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.35	25.02	9.41	34.37	1.00	4.25	74.05	1.50	34.77	36.27
e-e	2.51	10.56	3.97	19.33	1.00	2.39	37.25	1.50	26.08	27.58
f-f	1.68	3.13	1.18	8.59	1.00	1.06	14.96	1.50	17.38	18.88
g-g	0.84	0.39	0.15	2.15	1.00	0.27	3.95	1.50	8.69	10.19

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.35	22.41	5.62	20.52	0.00	2.54	51.08
e-e	2.51	12.60	3.16	15.39	0.00	1.90	33.06
f-f	1.68	5.60	1.40	10.26	0.00	1.27	18.53
g-g	0.84	1.40	0.35	5.13	0.00	0.63	7.52

condizione sismica -

sezione	h	Mt stat	Mt _{sism}	Mq	M _{ext}	M _{inerzia}	M_{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.35	25.02	6.38	34.83	1.00	4.25	71.48	1.50	32.23	33.73
e-e	2.51	10.56	2.69	19.59	1.00	2.39	36.23	1.50	24.17	25.67
f-f	1.68	3.13	0.80	8.71	1.00	1.06	14.70	1.50	16.12	17.62
g-g	0.84	0.39	0.10	2.18	1.00	0.27	3.93	1.50	8.06	9.56

sezione	h Vt _{stat}		Vt _{sism} Vq		V _{ext}	V _{inerzia}	V_{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.35	22.41	3.81	20.79	0.00	2.54	49.55
e-e	2.51	12.60	2.14	15.60	0.00	1.90	32.25
f-f	1.68	5.60	0.95	10.40	0.00	1.27	18.22
g-g	0.84	1.40	0.24	5.20	0.00	0.63	7.47


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 39 di 90

SCHEMA DELLE ARMATURE

ARMATURE

ı	pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato	_
	1 2 3 4	10.0 0.0 0.0 10.0	20 0 0 20	Н	5 6 7 8 9	10.0 0.0 10.0 0.0 0.0	20 0 20 0	П	Calcola
	<u>VERIFICH</u>	<u>iE</u> [-	-		A'f Af]		a-a b-b c-c d-d e-e f-f g-g	pos 1-2-3-4 pos 1-2-3-4 pos 1-4 pos 5-6-7-8-9 pos 5-6-7-8-9 pos 5-7-8 pos 5-7
		'		b = 1,0 m		•			

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)
a - a	50.23	0.00	0.40	31.42	31.42	364.51
b - b	-246.26	0.00	0.40	31.42	31.42	364.51
C - C	-84.17	0.00	0.40	31.42	31.42	364.51
d - d	149.99	35.00	0.40	31.42	31.42	369.33
e -e	80.21	26.63	0.40	31.42	31.42	368.18
f - f	34.29	18.25	0.40	31.42	31.42	367.03
g - g	9.06	9.88	0.40	31.42	31.42	365.87

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	\mathbf{V}_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	-
a - a	81.90	0.40	212.66	10	20	20	21.8	584.31	Armatura a taglio nor
b - b	221.34	0.40	212.66	10	20	20	21.8	584.31	Sezione verificata
C - C	137.83	0.40	212.66	10	20	20	21.8	584.31	Armatura a taglio nor
d - d	98.83	0.40	217.09	10	20	20	21.8	584.31	Armatura a taglio nor
e -e	68.45	0.40	216.03	10	20	20	21.8	584.31	Armatura a taglio nor
f - f	41.85	0.40	214.97	10	20	20	21.8	584.31	Armatura a taglio nor
g - g	19.03	0.40	213.91	10	20	20	21.8	584.31	Armatura a taglio nor

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

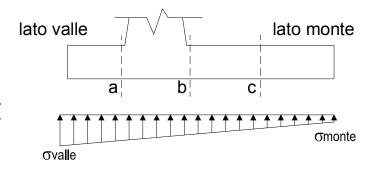
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	40 di 90

9.2.2 VERIFICHE A FESSURAZIONE

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

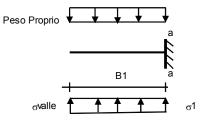

 σ valle = N / A + M / Wgg

omonte = N / A - M / Wgg

 $A = 1.0^*B$ = 3.40 (m²)

 $Wgg = 1.0*B^2/6 = 1.93 (m^3)$

		N	M	σvalle	σmonte
	caso	[kN]	[kNm]	[kN/m²]	[kN/m ²]
		223.97	-7.65	61.90	69.85
	Freq.	223.97	-7.65	61.90	69.85
	0.0	205.94	-57.44	30.76	90.38
Q.P.		205.94	-57.44	30.76	90.38

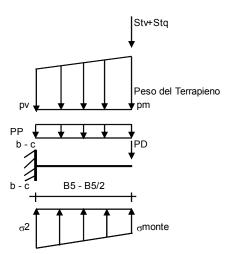


Mensola Lato Valle

Peso Proprio. PP = 10.00 (kN/m)

Ma = $\sigma^{1*B1^2/2}$ + ($\sigma^{1*B1^2/3}$ - PP*B1²/2*(1±kv)

σvalle	σ1	Ма
[kN/m ²]	[kN/m ²]	[kNm]
61.90	64.71	38.04
61.90	64.71	38.04
30.76	51.80	20.00
30.76	51.80	20.00
	[kN/m ²] 61.90 61.90 30.76	[kN/m²] [kN/m²] 61.90 64.71 61.90 64.71 30.76 51.80


Mensola Lato Monte

Nmin N max Freq N max QP pm = 67.00 124.30 67.00 (kN/m^2) 67.00 124.30 67.00 (kN/m^2) pvb 67.00 124.30 67.00 (kN/m^2) pvc

 $\begin{aligned} \text{Mb=} & (\sigma_{\text{monte}}(\text{pvb+PP}))^* \text{B5}^2 / 2 + (\sigma_2 \text{b} - \sigma_{\text{monte}})^* \text{B5}^2 / 6 - (\text{pm-pvb}))^* \text{B5}^2 / 3 + \\ & - (\text{Stv+Sqv})^* \text{B5-PD}^* (\text{B5-Bd} / 2) + \text{Msp+Sp*H2} / 2 \end{aligned}$

 $\begin{aligned} &\text{Mc} = (_{\text{Omonte}}\text{-}(\text{pvc}+\text{PP}))^*(\text{B5/2})^2/2 + (_{\text{G}}2\text{c}-_{\text{omonte}})^*(\text{B5/2})^2/6 - (\text{pm-pvc})^*(\text{B5/2})^2/3 + \\ &-(\text{Stv}+\text{Sqv})^*(\text{B5/2})\text{-}\text{PD}^*(\text{B5/2}\text{-}\text{Bd/2}) + \text{Msp}+\text{Sp}^*\text{H2/2} \end{aligned}$

caso	σmonte	σ2b	Mb	_σ 2c	Мс
Caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m²]	[kNm]
Fron	69.85	65.64	-75.73	67.74	-34.11
Freq.	69.85	65.64	-168.55	67.74	-57.32
Q.P.	90.38	58.82	-24.77	74.60	-11.41
Q.P.	90.38	58.82	-24.77	74.60	-11.41

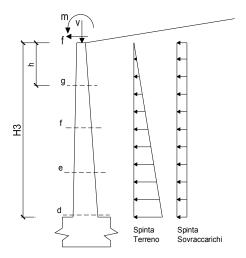
ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 41 di 90


CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt = $\frac{1}{2} \text{ Ka}_{\text{orizz.}}^* \gamma^* h^{2*} h/3$

Mq = $\frac{1}{2}$ Ka_{orizz}*q*h²

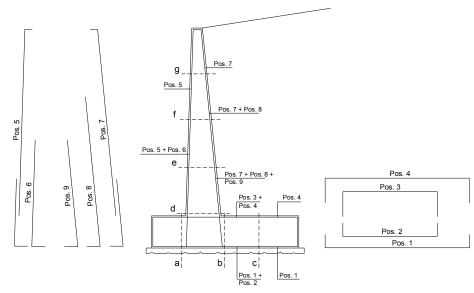
 $M_{ext} = m+f^*h$ $N_{ext} = v$

condizione Frequente

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}		
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]		
d-d	3.35	25.02	80.33	1.00	106.35	1.50	33.50	35.00		
e-e	2.51	10.56	45.19	1.00	56.74	1.50	25.13	26.63		
f-f	1.68	3.13	20.08	1.00	24.21	1.50	16.75	18.25		
g-g	0.84	0.39	5.02	1.00	6.41	1.50	8.38	9.88		

condizione Quasi Permanente

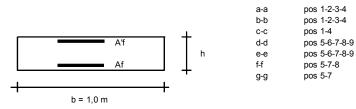
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
SCEIGHE	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.35	25.02	16.13	1.00	42.15	1.50	33.50	35.00
e-e	2.51	10.56	9.07	1.00	20.63	1.50	25.13	26.63
f-f	1.68	3.13	4.03	1.00	8.16	1.50	16.75	18.25
g-g	0.84	0.39	1.01	1.00	2.40	1.50	8.38	9.88


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 42 di 90

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo


SCHEMA DELLE ARMATURE

ARMATURE

	II strato	ф	n°/ml	pos	II strato	ф	n°/ml	pos
		20	10.0	5		20	10.0	1
Calcala	□ l	0	0.0	6	u	0	0.0	2
Calcola		20	10.0	7	ΙŪ	0	0.0	3
	Ш	0	0.0	8		20	10.0	4
	Ш	0	0.0	9				

condizione Frequente

Sez.	М	N	h	Af	A'f	σc	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	38.04	0.00	0.40	31.42	31.42	1.56	41.53	0.033	0.200
b - b	-168.55	0.00	0.40	31.42	31.42	6.89	184.02	0.190	0.200
C - C	-57.32	0.00	0.40	31.42	31.42	2.34	62.58	0.050	0.200
d - d	106.35	35.00	0.40	31.42	31.42	4.40	110.70	0.094	0.200
e -e	56.74	26.63	0.40	31.42	31.42	2.36	57.85	0.045	0.200
f - f	24.21	18.25	0.40	31.42	31.42	1.01	23.63	0.018	0.200
g - g	6.41	9.88	0.40	31.42	31.42	0.27	5.51	0.004	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	М	N	h	Af	A'f	$\sigma^{\rm C}$	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	20.00	0.00	0.40	31.42	31.42	0.82	21.83	0.017	0.200
b - b	-24.77	0.00	0.40	31.42	31.42	1.01	27.04	0.021	0.200
C - C	-11.41	0.00	0.40	31.42	31.42	0.47	12.46	0.010	0.200
d - d	42.15	35.00	0.40	31.42	31.42	1.77	40.68	0.032	0.200
е -е	20.63	26.63	0.40	31.42	31.42	0.88	18.48	0.014	0.200
f - f	8.16	18.25	0.40	31.42	31.42	0.35	6.19	0.005	0.200
g - g	2.40	9.88	0.40	31.42	31.42	0.11	1.22	0.001	0.200

ITINERARIO NAPOLI – BARI

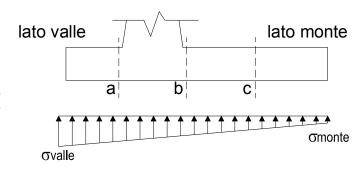
RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	43 di 90

9.2.3 VERIFICHE TENSIONALI

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

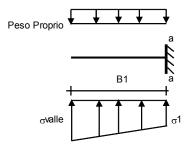

Reazione del terreno

 $_{\text{G}}$ valle = N / A + M / Wgg $_{\text{G}}$ monte = N / A - M / Wgg

 $A = 1.0^*B$ = 3.40 (m²)

 $Wgg = 1.0*B^2/6 = 1.93 (m^3)$

	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m²]	[kN/m ²]
statico	223.97	-7.65	61.90	69.85
Statico	223.97	-7.65	61.90	69.85
sisma+	220.91	-14.30	57.55	72.39
sisma+	220.91	-14.30	57.55	72.39
sisma-	205.91	-9.82	55.47	65.66
	205.91	-9.82	55.47	65.66



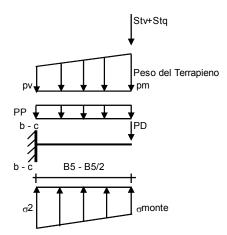
Mensola Lato Valle

Peso Proprio. PP = 10.00 (kN/m)

Ma = $_{\sigma}$ 1*B1²/2 + ($_{\sigma}$ valle - $_{\sigma}$ 1)*B1²/3 - PP*B1²/2*(1±kv)

caso	σvalle	σ1	Ma
caso	[kN/m ²]	[kN/m ²]	[kNm]
atation	61.90	64.71	38.04
statico	61.90	64.71	38.04
sisma+	57.55	62.79	35.22
	57.55	62.79	35.22
sisma-	55.47	59.06	33.87
	55.47	59.06	33.87

Mensola Lato Monte


PP	=	10.00	(kN/m^2)	peso proprio soletta fondazione
PD	=	0.00	(kN/m)	peso proprio dente
			_	_

Nmin N max stat N max sism 67.00 124.30 78.46 (kN/m^2) mg 67.00 124.30 78.46 (kN/m^2) pvb 78.46 (kN/m^2) 67.00 124.30 pvc

$$\begin{split} \text{Mb=} &(_{\text{Omonte}}\text{-}(\text{pvb+PP})^*(1\pm kv))^*\text{B5}^2/2 + (_{\text{O}}2b_{\text{-}\text{Omonte}})^*\text{B5}^2/6 - (\text{pm-pvb}))^*(1\pm kv)^*\text{B5}^2/3 + \\ &-(\text{Stv+Sqv})^*\text{B5-PD}^*(1\pm kv)^*(\text{B5-Bd/2})\text{-PD}^*kh^*(\text{Hd+H2/2}) + \text{Msp+Sp}^*\text{H2/2} \end{split}$$

 $\begin{aligned} \text{Mc} = & (\sigma_{\text{monte}} - (\text{pvc} + \text{PP})^* (1 \pm \text{kv}))^* (\text{B5/2})^2 / 2 + (\sigma_2 \text{c} - \sigma_{\text{monte}})^* (\text{B5/2})^2 / 6 - (\text{pm-pvc})^* (1 \pm \text{kv})^* (\text{B5/2})^2 / 3 + \\ & - (\text{Stv} + \text{Sqv})^* (\text{B5/2}) - \text{PD}^* (1 \pm \text{kv})^* (\text{B5/2} - \text{Bd/2}) - \text{PD}^* \text{kh}^* (\text{Hd} + \text{H2/2}) + \text{Msp} + \text{Sp}^* + \text{H2/2} \end{aligned}$

caso	σmonte	σ2b	Mb	σ2 c	Мс
caso	[kN/m²]	[kN/m ²]	[kNm]	[kN/m²]	[kNm]
atation	69.85	65.64	-75.73	67.74	-34.11
statico	69.85	65.64	-168.55	67.74	-57.32
sisma+	72.39	64.54	-59.96	68.47	-25.34
	72.39	64.54	-79.23	68.47	-30.16
	65.66	60.26	-58.75	62.96	-24.87
sisma-	65.66	60.26	-76.61	62.96	-29.34

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 44 di 90

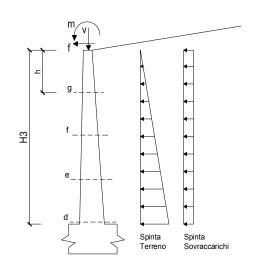
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²*h/3

Mt sism = $\frac{1}{2}$ * γ *(Kas_{orizz.}*(1±kv)-Ka_{orizz.})*h²*h/2

Mq = $\frac{1}{2}$ Ka_{orizz}*q*h²


 $M_{ext} = m+f*h$

 $M_{inerzia} = \sum Pm_i^*b_i^*kh$

(solo con sis

 $N_{ext} = v$

N _{pp+inerzia}= $\sum Pm_i^*(1\pm kv)$

condizione statica

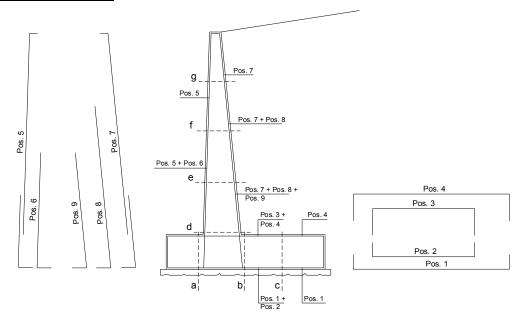
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.35	25.02	80.33	1.00	106.35	1.50	33.50	35.00
e-e	2.51	10.56	45.19	1.00	56.74	1.50	25.13	26.63
f-f	1.68	3.13	20.08	1.00	24.21	1.50	16.75	18.25
g-g	0.84	0.39	5.02	1.00	6.41	1.50	8.38	9.88

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.35	25.02	9.41	34.37	1.00	4.25	74.05	1.50	34.77	36.27
e-e	2.51	10.56	3.97	19.33	1.00	2.39	37.25	1.50	26.08	27.58
f-f	1.68	3.13	1.18	8.59	1.00	1.06	14.96	1.50	17.38	18.88
g-g	0.84	0.39	0.15	2.15	1.00	0.27	3.95	1.50	8.69	10.19

condizione sismica -

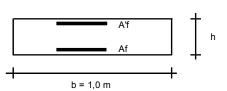
sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N_{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.35	25.02	6.38	34.83	1.00	4.25	71.48	1.50	32.23	33.73
e-e	2.51	10.56	2.69	19.59	1.00	2.39	36.23	1.50	24.17	25.67
f-f	1.68	3.13	0.80	8.71	1.00	1.06	14.70	1.50	16.12	17.62
g-g	0.84	0.39	0.10	2.18	1.00	0.27	3.93	1.50	8.06	9.56


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 45 di 90

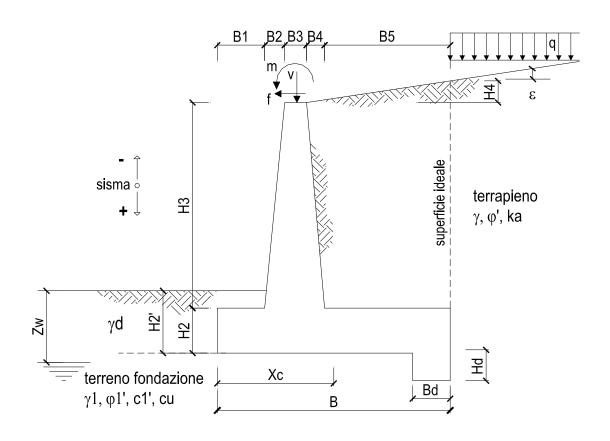

SCHEMA DELLE ARMATURE

ARMATURE

	II strato	ф	n°/ml	pos	II strato	ф	n°/ml	pos
		20	10.0	5		20	10.0	1
	Ш	0	0.0	6	ш	0	0.0	2
_		20	10.0	7	Ш	0	0.0	3
	Ш	0	0.0	8		20	10.0	4
	1.1	0	0.0	9				

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-6-7-8-9
e-e	pos 5-6-7-8-9
f-f	pos 5-7-8
g-g	pos 5-7

Condizione Statica


	COMMIZION	ic otatica						
_	Sez.	М	N	h	Af	A'f	$\sigma^{_{\mathbb{C}}}$	σf
	(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
	a - a	38.04	0.00	0.40	31.42	31.42	1.56	41.53
	b - b	-168.55	0.00	0.40	31.42	31.42	6.89	184.02
	C - C	-57.32	0.00	0.40	31.42	31.42	2.34	62.58
	d - d	106.35	35.00	0.40	31.42	31.42	4.40	110.70
	е -е	56.74	26.63	0.40	31.42	31.42	2.36	57.85
	f - f	24.21	18.25	0.40	31.42	31.42	1.01	23.63
	g - g	6.41	9.88	0.40	31.42	31.42	0.27	5.51

Condizione Sismica

Condizion	ie Sisilica						
Sez.	М	N	h	Af	A'f	$\sigma^{\scriptscriptstyle extsf{C}}$	σ ^f
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	35.22	0.00	0.40	31.42	31.42	1.44	38.45
b - b	-79.23	0.00	0.40	31.42	31.42	3.24	86.50
C - C	-30.16	0.00	0.40	31.42	31.42	1.23	32.93
d - d	74.05	33.73	0.40	31.42	31.42	3.07	75.65
е -е	37.25	25.67	0.40	31.42	31.42	1.56	36.73
f - f	14.96	17.62	0.40	31.42	31.42	0.63	13.65
a - a	3 95	9.56	0.40	31 42	31 42	0.17	2 90

10 MURO TIPO CONCIO 4

OPERA Esempio

DATI DI PROGETTO:

Geometria del Muro

Elevazione	H3 =	2.58	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.40	(m)
Aggetto monte	B4 =	0.00	(m)

Geometria della Fondazione

Larghezza Fondazione	B =	2.90	(m)
Spessore Fondazione	H2 =	0.40	(m)
Suola Lato Valle	B1 =	0.90	(m)
Suola Lato Monte	B5 =	1.60	(m)
Altezza dente	Hd =	0.00	(m)
Larghezza dente	Bd =	0.00	(m)
Mezzeria Sezione	Xc =	1.45	(m)

Peso Specifico del Calcestruzzo	γcls =	25.00	(kN/m³)

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 47 di 90

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

			Ī	valori caratteristici	valori di j	orogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi oermanenti	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m ²)	qp	14.40	19.44	21.60
Carichi	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
S E	Forza Verticale in Testa permanente	(kN/m)	vp	1.50	1.50	1.35
ū	Momento in Testa permanente	(kNm/m)	mp	1.00	1.35	1.10
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	57.30	83.09	83.09
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
ondizior	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	٧	0.00	0.00	0.00
Cor	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione rara Ψ1		1.00	condizione quasi perma	anente Ψ2	0.00
.⊑ o	Sovraccarico Accidentale in condizioni sismiche	(kN/m^2)	qs	11.46		
izio	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
ပတ	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

CARATTERISTICHE DEI MATERIALI STRUTTURALI

Calcestruzzo			<u>Acciaio</u>	
classe cls			tipo di acciaio	
Rck	35	(MPa)		
fck	28	(MPa)	fyk = 450 (MPa)	
fcm	36	(MPa)		
Ec	32308	(MPa)	γ s = 1.15	
ασσ	0.85			
γC	1.50		fyd = fyk / γ s / γ E = 391.30 (MPa)	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$	15.87	(MPa)	Es = 210000 (MPa)	
$f_{ctm} = 0.30*f_{ck}^{2/3}$	2.77	(MPa)	ε_{ys} = 0.19%	
σ_{c} 11.2 σ_{f} 337.5	Мра Мра		coefficiente omogeneizzazione acciaio n = 15	
condizioni sismiche			<u>Copriferro</u> (distanza asse armatura-bordo)	
σ _c 11	Мра		c = 6.20 (cm)	
σ _f 260	Мра			
			Copriferro minimo di normativa (ricoprimento arma	ıtura)
			$c_{min} = 4.00 (cm)$	
Valore limite di apertura de	lle fessure		Interferro tra <u>I e II strato</u>	
Frequente	v1 🔻	0.2 mm	i _{I-II} 5.00 (cm)	
Quasi Permanente	v1 🔻	0.2 mm		

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 48 di 90

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

10.1 VERIFICHE GEOTECNICHE

Combinazioni coefficienti parziali di verifica

			A1+M1+R1		
Approccio 1		comb. 1	EQU+M2		
	comb 2	A2+M2+R2	•		
	comb. 2	EQU+M2	▮ਁ▮		
	Approce		A1+M1+R3	0	
	740100	JOIO 2	EQU+M2	`	
SLE (DM88)			0		
altro			0		

Coefficienti di sicurezza

	<u>Scorrimento</u>	<u>corrimento</u> <u>Ribaltamento</u>	
Statico	1.18	2.23	2.68
Sismico	1.23	2.54	3.20

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Opere di sostegno dal km 0+901 al km 1+033 BP LS - Relazione di calcolo

LOTTO CODIFICA DOCUMENTO REV. COMMESSA **FOGLIO** IF1N 01 E ZZ CL RI0005 005 49 di 90

FORZE VERTICALI

- Peso del Mur	ro (Pm)		SLE	STR/GEO	EQU
Pm1 =	(B2*H3* _γ cls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3* _γ cls)	(kN/m)	25.80	25.80	23.22
Pm3 =	(B4*H3* _γ cls)/2	(kN/m)	0.00	0.00	0.00
Pm4 =	(B*H2*γcls)	(kN/m)	29.00	29.00	26.10
Pm5 =	(Bd*Hd [*] γcls)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	54.80	54.80	49.32
- Peso del terro	eno e sovr. perm. sulla scarpa di monte del muro (Pt)				
Pt1 =	(B5*H3*γ')	(kN/m)	82.56	82.56	74.30
Pt2 =	(0,5*(B4+B5)*H4*γ')	(kN/m)	0.00	0.00	0.00
Pt3 =	(B4*H3*γ')/2	(kN/m)	0.00	0.00	0.00
Sovr =	qp * (B4+B5)	(kN/m)	0.00	0.00	0.00
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	82.56	82.56	74.30
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	q * (B4+B5)	(kN/m)	0	0	•
Sovr acc. Sisn	n qs * (B4+B5)	(kN/m)	0	•	

Sovr acc. Sisr	n qs - (B4+B5)	(KN/m)	U		
MOMENTI DI	ELLE FORZE VERT. RISPETTO AL PIEDE DI VALL	E DEL MURO			
- Muro (Mm)			SLE	STR/GEO	EQU
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	28.38	28.38	25.54
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00	0.00	0.00
Mm4 =	Pm4*(B/2)	(kNm/m)	42.05	42.05	37.85
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	70.43	70.43	63.39
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	173.38	173.38	156.04
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	173.38	173.38	156.04
	accidentale sulla scarpa di monte del muro *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0	0	
	n *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0	U	
SOVI ACC. SISI	II (B1+B2+B3+1/2 (B4+B3))	(KINIII/III)	U		
INEDZIA DEL	MUDO E DEL TERRADIENO				
	. MURO E DEL TERRAPIENO ontale e verticale del muro (Ps)				
Ps h =	Pm*kh	(kN/m)		4.15	
Ps v=	Pm*kv	(kN/m)		2.08	
13 V-	1 III KV	(KIVIII)		2.00	
- Inerzia orizzo	ontale e verticale del terrapieno a tergo del muro (Pts))			
Ptsh =	Pt*kh	(kN/m)		6.25	
Ptsv =	Pt*kv	(kN/m)		3.13	
Incremento o	orizzontale di momento dovuto all'inerzia del muro (MF	De h)			
MPs1 h=	kh*Pm1*(H2+H3/3)			0.00	
		(kNm/m)		3.30	
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)			
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)		0.00	
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)		0.44	
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)		0.00	
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		3.74	
- Incremento v	erticale di momento dovuto all'inerzia del muro (MPs	v)			
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)		0.00	
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)		1.08	
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)		0.00	
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)		1.59	
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)		0.00	
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		2.67	
- Incremento c	orizzontale di momento dovuto all'inerzia del terrapieno	n (MPte h)			
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)		10.57	
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)		0.00	
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)		0.00	
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)		10.57	
WII 13 11=	W. CO WIL CO WIL CO.	(1514111/111)		10.57	
- Incremento v	erticale di momento dovuto all'inerzia del terrapieno (I	MPts v)			
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)		6.57	
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)		0.00	
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)		0.00	
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)		6.57	
		. ,			

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 50 di 90

CONDIZION	NE STATICA				
	TERRENO E DEL SOVRACCARICO	Γ	SLE	STR/GEO	EQU
St =	condizione statica 0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	19.23	24.50	26.95
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	9.29	11.84	17.76
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	36.98	58.88	68.30
04 400	q (112-110-114-11d) Ka	(((((((((((((((((((((((((((((((((((((((00.00	00.00	00.00
- Componente	orizzontale condizione statica				
Sth =	St*cosδ	(kN/m)	17.73	23.13	25.45
Sqh perm =	Sq perm*cosδ	(kN/m)	8.57	11.18	16.77
Sqh acc =	Sq acc*cosδ	(kN/m)	34.09	55.60	64.50
•	verticale condizione statica				
Stv =	St*senδ	(kN/m)	7.45	8.06	8.86
Sqv perm=	Sq perm*senδ	(kN/m)	3.60	3.89	5.84
Sqv acc =	Sq acc*sen δ	(kN/m)	14.33	19.37	22.47
Cointa nassi	n out donto				
- Spinta passiv		(1.11/)	0.00	0.00	0.00
$Sp = \frac{1}{2} g^{1*} H d^{2} \frac{1}{2} \frac{1}{2} h d^{2*} kp + (2 c_{1} kp^{0.5} + \gamma^{1*} kp^{*} H^{2}) H d $ (kN/m)		0.00	0.00	0.00	
MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO			SLE	STR/GEO	EQU
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	17.61	22.98	25.28
MSt2 =	Stv*B	(kNm/m)	21.61	23.37	25.71
MSq1 perm=	Sgh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	12.77	16.66	24.99
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	50.80	82.85	96.11
MSq2 perm=	Sqv perm*B	(kNm/m)	10.44	11.29	16.94
MSq2 acc =	Sqv acc*B	(kNm/m)	41.56	56.17	65.15
$MSp = _{\gamma}1'*$	Hd ³ *kp/3+(2*c1'*kp ^{0.5} + ₇ 1'*kp*H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
. ,	, . ,	,			
MOMENTI DO	OVUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	1.00	1.00	1.10
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	1.65	1.65	1.49
VERIFICA A	LO SCORRIMENTO (STR/GEO) e verticali (N)				
N =	Pm + Pt + v + Stv + Sqv perm + Sqv acc		170.18	(kN/m)	
Risultante forz	e orizzontali (T) Sth + Sqh + f		89.92	(kN/m)	
Coefficiente di f =	attrito alla base (f) tgφ1'		0.63	(-)	
Fs scorr.	(N*f + Sp) / T		1.18	>	1
VERIFICA AL	_RIBALTAMENTO (EQU)				
Momento stab	ilizzante (Ms) Mm + Mt + Mfext3		328.71	(kNm/m)	
1710 -	THE PROOF		020.71	(10.411/111)	
Momento ribali Mr =	tante (Mr) MSt + MSq + Mfext1+ Mfext2 + MSp		147.47	(kNm/m)	
Fs ribaltar	mento Ms / Mr		2.23	>	1

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

0.00

(kPa)

FOGLIO

51 di 90

CODIFICA DOCUMENTO REV. COMMESSA LOTTO IF1N 01 E ZZ CL RI0005 005 Α

Opere di sostegno dal km 0+901 al km 1+033 BP LS - Relazione di calcolo

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risultante forze verticali (N) N = Pm + Pt + v + Stv + Sqv (+ Sovr acc)	Nmin 170.18	Nmax 170.18	(kN/m)			
Risultante forze orizzontali (T) T = Sth + Sqh + f - Sp	89.92	89.92	(kN/m)			
Risultante dei momenti rispetto al piede di valle (MM) ${\rm MM} = \Sigma {\rm M}$	212.80	212.80	(kNm/m)			
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	33.96	33.96	(kNm/m)			
Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)						
Fondazione Nastriforme						

Fondazione Nastriforme

c1'

$qlim = c'Nc*ic + q_0*Nq*iq + 0,5*\gamma1*B*N\gamma*i\gamma$

coesione terreno di fondaz.

FS carico li	mite F = qlim*B*/N	Nmin	2.68	>	1
qlim	(carico limite unitario)		182.54	182.54	(kN/m ²)
(fondazione nas	striforme m = 2)				
$i\gamma = (1 - T/(N +$	` ' '		0.10	0.10	(-)
iq = (1 - T/(N + ic = iq - (1 - iq))	,		0.22 0.19	0.22 0.19	(-) (-)
I valori di ic, iq	e i $_{\gamma}$ sono stati valutati con le espressioni suggerite (da Vesic (1975)			
$N_{\gamma} = 2*(Nq + 1)$			30.24		(-)
Nq = $tg^2(45 + q)$ Nc = $(Nq - 1)/tc$	$5/2$)* $e^{(\pi^* t g(\phi^*))}$ (1 in cond. nd) $g(\phi^*)$ (2+ π in cond. nd)		23.19 35.51		(-) (-)
	q e Ng sono stati valutati con le espressioni sugger	ite da Vesic (19	75)		
B*= B - 2e	larghezza equivalente		2.50	2.50	(m)
e = M / N	eccentricità		0.20	0.20	(m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		20.00		(kN/m ²)
γ1	peso unità di volume terreno fondaz.		20.00		(kN/m ³)
φ1′	angolo di attrito terreno di fondaz.		32.01		(°)

Nmax

2.68

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 52 di 90

SPINTE DEL Spinta condiz	TERRENO E DEL SOVRACCARICO	Γ	SLE	STR/GEO	EQU
-	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	21.12	27.28	27.28
	0,5*γ'*(1+kv)*(H2+H3+H4+Hd)**kas*-Sst1 stat	(kN/m)	4.29	5.01	5.01
Ssq1 perm=	gp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	11.83	15.03	15.03
Ssq1 acc =	gs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	9.42	11.96	11.96
0341 acc =	43 (11211101114111d) Kd3	(KIV/III)	3.42	11.50	11.30
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	21.12	27.28	27.28
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	4.29	5.01	5.01
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	11.83	15.03	15.03
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	9.42	11.96	11.96
- Componente	verticale condizione sismica +				
•	Sst1 stat*sen _δ	(kN/m)	0.00	0.00	0.00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*sen δ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0.00	0.00	0.00
Cninta nagaiy	a aul donto				
- Spinta passiv	a sui dente ι Hd ² *kps ⁺ +(2*c ₁ '*kps ^{+0.5} + _γ 1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0.00	0.00	0.00
3p-72 γ ₁ (1+κν)	τηα κρε τ(2 c ₁ κρε τγι (1τκν) κρε π2) πα	(kN/m)	0.00	0.00	0.00
MOMENTI DE - Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI	co [SLE	STR/GEO	EQU
- Condizione 31	Silica i	L			I
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	20.98	27.10	27.10
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	6.39	7.46	7.46
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	31.66	40.22	40.22
MSsq2 =	Ssq1v* B	(kNm/m)	0.00	0.00	0.00
MSp =	$_{\gamma_1}$ '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + $_{\gamma_1}$ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		1.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	$(vp+vs)^*(B1 +B2 + B3/2)$	(kNm/m)		1.65	
VERIFICA AL	LO SCORRIMENTO				
District 6	- variation II (A))				
Risultante forze N =	e verticali (N) Pm+ Pt + vp + vs + Sst1v+ Ssq1v+ Ps v+ Ptsv		144.06	(kN/m)	
· · · · ·				,	
Risultante forze	e orizzontali (1) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		69.69	(kN/m)	
1 -	35(111 + 354111 + 1p + 15 + F 5 11 + F (511		09.09	(kN/m)	
	attrito alla base (f)				
f =	tg _{ϕ1} '		0.63	(-)	
Fs =	(N*f + Sp) / T		1.29	>	1
VEDIEICA AI	DIRALTAMENTO				
VEINI ICA AL	RIBALTAMENTO				
Momento stabi	lizzante (Ms)				
Ms =	Mm + Mt + Mfext3		245.46	(kNm/m)	
Momento ribalt	ante (Mr)				
Mr =	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts		80.86	(kNm/m)	
	NA. 4NA.		2.04		
Fr =	Ms / Mr		3.04	>	1

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

FS carico limite

IF1N	01 E ZZ	CL	RI0005 005	Α	53 di 90	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

1

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forz N =	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	Nmin 144.06	Nmax 144.06	(kN/m)									
Risultante forz T =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	69.69		(kN/m)									
Risultante dei MM =	momenti rispetto al piede di valle (MM) ΣM	164.60	164.60	(kNm/m)									
Momento rispe M =	etto al baricentro della fondazione (M) Xc*N - MM	44.30	44.30	(kNm/m)									
Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)													
Fondazione Na	Fondazione Nastriforme												
qlim = c'Nc*ic + q_0 *Nq*iq + 0.5 * γ 1*B*N γ *i γ													
c1' φ1' ^{γ1}	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	0.00 32.01 20.00		(kN/mq) (°) (kN/m³)									
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	20.00		(kN/m^2)									
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.31 2.29	0.31 2.29	(m) (m)									
I valori di Nc, N	Iq e Ng sono stati valutati con le espressioni suggerite da Vesic	(1975)											
$Nq = tg^{2}(45 + t)$ $Nc = (Nq - 1)/t$ $N_{\gamma} = 2*(Nq + 1)$	$g(\varphi')$ (2+ π in cond. nd)	23.19 35.51 30.24		(-) (-) (-)									
I valori di ic, iq	e i γ sono stati valutati con le espressioni suggerite da Vesic (19	75)											
$\begin{array}{lll} iq = (1 - T/(N + B*c'cotg_{\phi}'))^m & (1 \text{ in cond. nd}) & 0.27 & 0.27 \\ ic = iq - (1 - iq)/(Nq - 1) & 0.23 & 0.23 \\ i_{\gamma} = (1 - T/(N + B*c'cotg_{\phi}'))^{m+1} & 0.14 & 0.14 \end{array}$													
(fondazione na	striforme m = 2)												
qlim	(carico limite unitario)	218.73	218.73	(kN/m²)									
FS carico li	imite F = alim*B*/N	3.47	>	1									

F = qlim*B*/N

Nmax

3.47

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

IF1N	01 E ZZ	CL	RI0005 005	Α	54 di 90
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

CONDIZIONE SISMICA -

SPINTE DEL Spinta condiz	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
•	0,5*γ*(H2+H3+H4+Hd)²*ka	(kN/m)	21.12	27.28	27.28
	0,5*γ'*(1-kv)*(H2+H3+H4+Hd)²*kas -Sst1 stat	(kN/m)	2.71	2.96	2.96
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas	(kN/m)	11.97	15.19	15.19
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	9.53	12.09	12.09
•	orizzontale condizione sismica -	(1.81/)	04.40	07.00	07.00
Sst1h stat =	Sst1 stat*cos8	(kN/m)	21.12 2.71	27.28 2.96	27.28 2.96
Ssq1h perm=	Sst1 sism*cosδ Ssg1 perm*cosδ	(kN/m) (kN/m)	11.97	15.19	15.19
Ssq1h acc=	Ssq1 acc*cos8	(kN/m)	9.53	12.09	12.09
•					
•	verticale condizione sismica -	# * 1/	2.22		
Sst1v stat =	•	(kN/m)	0.00	0.00	0.00
	Sst1 sism*sen8	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*sen8	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen _δ	(kN/m)	0.00	0.00	0.00
- Spinta passiv	a sul dente				
$Sp=\frac{1}{2}*_{\gamma_1}'(1-kv)$	Hd ² *kps¯+(2*c ₁ '*kps ^{-0.5} + _γ 1' (1-kv) kps¯*H2')*Hd	(kN/m)	0.00	0.00	0.00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARI	co E			
- Condizione si		L	SLE	STR/GEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	20.98	27.10	27.10
MSst1 sism=	, ,	(kNm/m)	4.03	4.41	4.41
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	32.03	40.64	40.64
MSsq2 =	Ssq1v*B	(kNm/m)	0.00	0.00	0.00
MSp =	γ_1 ^{1*} Hd ^{3*} kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ_1 1*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		1.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		1.65	
VERIFICA AL	LO SCORRIMENTO				
Risultante forze	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssg1v + Ps v + Ptsv		133.66	(kN/m)	
IN -	riii ri + vp + vs + Ostiv + Osqiv + r s v + risv		133.00	(KIW/III)	
Risultante forze T =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		67.92	(kN/m)	
Coefficiente di a	attrito alla base (f)				
f =	$tg_{\phi 1}$ '		0.63	(-)	
Fs =	(N*f + Sp) / T		1.23	>	1
VERIFICA AL	. RIBALTAMENTO				
Mamonto atali	li-route (Ma)				
Momento stabi	nzzanie (IVIS)		_		

Fr	=	Ms / Mr	2.54	>	
	nento ribal =	tante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	96.70 [*]	(kNm/m)	
Mon Ms		oilizzante (Ms) Mm + Mt + Mfext3	245.46	(kNm/m)	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

FS carico limite

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	55 di 90

1

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

(canco infine unitario)	102.20		(10.0111)										
(carico limito unitario)	192 29	192.29	(kN/m ²)										
triforme m = 2)													
(Nq - 1)	0.21 0.12	0.21	(-) (-)										
B*c'cotg _@ ')) ^m (1 in cond. nd)	0.24	0.24	(-)										
$\mathbf{e}_{i\gamma}$ sono stati valutati con le espressioni suggerite da Vesic (1975	5)												
(φ') (2+ π in cond. nd)	23.19 35.51 30.24		(-) (-) (-)										
	·												
eccentricità larghezza equivalente	0.34 2.23	0.34 2.23	(m) (m)										
sovraccarico stabilizzante	20.00		(kN/m ²)										
peso unità di volume terreno fondaz.	20.00		(kN/m³)										
coesione terreno di fondaz.	0.00 32.01		(kN/mq) (°)										
+ q_0 *Nq*iq + 0.5 * γ 1*B*N γ *i γ													
Fondazione Nastriforme													
Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)													
to al baricentro della fondazione (M) Xc*N - MM	45.05	45.05	(kNm/m)										
nomenti rispetto al piede di valle (MM) $\Sigma { m M}$	148.76	148.76	(kNm/m)										
orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	67.92		(kN/m)										
verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 133.66	Nmax 133.66	(kN/m)										
	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp nomenti rispetto al piede di valle (MM) ΣM Ito al baricentro della fondazione (M) $Xc^*N - MM$ erale per il Calcolo del Carico Limite Unitrario (Brinch-Hansstriforme $+ q_0^*Nq^*iq + 0.5^*\gamma 1^*B^*N\gamma^*i\gamma$ coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz. sovraccarico stabilizzante $= \text{eccentricità} \\ \text{larghezza equivalente} \\ \text{q e Ng sono stati valutati con le espressioni suggerite da Vesic (^{(7/2)}e^{(\pi^*tg(\phi))} (1 in cond. nd) ^{(6/0)}(2^+\pi_0^*\text{in cond. nd}) ^{(6/0)}(2^+\pi_0^*\text{in cond. nd}) ^{(8/2)}e^{(\pi^*tg(\phi))} (1 in cond. nd) ^{(8/2)}e^{(\pi^*tg(\phi))} (2 in cond. nd) ^{(8/2)}e^{(\pi^*tg(\phi))} (1 in cond. nd)$	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv 133.66 corizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp 67.92 momenti rispetto al piede di valle (MM) $\sum M 148.76$ Ito al baricentro della fondazione (M) $Xc^*N - MM 45.05$ crale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970) striforme $+ q_0^*Nq^*iq + 0.5^*\gamma1^*B^*N\gamma^*i\gamma$ coesione terreno di fondaz. 0.00 angolo di attrito terreno di fondaz. 32.01 peso unità di volume terreno fondaz. 20.00 sovraccarico stabilizzante 20.00 eccentricità 0.34 larghezza equivalente 2.23 $q e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)$ $A(2)^*e^{(\pi^*tg(\phi)^*)} (1 in cond. nd) 35.51$ $A(2)^*e^{(\pi^*tg(\phi)^*)} (0 in cond. nd) 30.24$ $e^*i\gamma sono stati valutati con le espressioni suggerite da Vesic (1975) B*c'cotg\phi^*))m (1 in cond. nd) 0.24 A(Nq - 1) 0.21 B*c'cotg\phi^*))m (1 in cond. nd) 0.24$	Pm+ Pt+ vp + vs + Sst1v+ Ssq1v+ Ps v+ Ptsv 133.66 133.66 133.66 or orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp 67.92 or										

F = qlim*B*/N

Nmax

3.20

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 56 di 90

10.1.1 VERIFICA SLD

Le verifiche allo stato limite di danno (SLD) da effettuare sull'opera in esame, vengono condotte valutando gli spostamenti indotti sull'opera da un sisma con tempo di ritorno T_R = 112.5 anni, corrispondente alla probabilità di superamento del 63% nella vita di riferimento dell'opera V_R = 112.5 anni.

La stima degli spostamenti indotti dal sisma viene effettuata attraverso la formula di Rampello:

ITINERA

$$d = (S_S \cdot S_T \cdot B) \cdot e^{A(a_{c/}/a_{\max})}$$

essendo:

B e A due coefficienti che sono funzione del valore di ag (accelerazione massima orizzontale attesa al sito) e della categoria di sottosuolo sul quale l'opera poggia (RFI DTC INC CS SP IFS 001 A par. 4.4):

Sottosuolo	Cat. A		Cat, B		Cat. C, D, E		
$a_{\rm max}/{\rm g}$	A	В	A	В	A	В	
0.3 - 0.4	-7.5	1.21	-7.9	1.06	-7.4	0.56	
0.2 - 0.3	-7.42	1.28	-7.79	1.11	-7.54	0.58	
0.1 - 0.2	-7.48	0.65	-7.86	0.73	-8.05	0.86	
≤ 0.1	-7.87	0.28	-7.86	0.3	-8.07	0.44	

 a_c il valore dell'accelerazione critica, ossia quel valore dell'accelerazione del suolo in corrispondenza del quale si manifestano i primi spostamenti relativi permanenti tra terreno e muro Si determina imponendo pari all'unità il rapporto R_d/E_d nella verifica a scorrimento.

Nel caso in esame si ha:

Muro tipo concio 4:

H = 2.53 m; A = -8.05; B = 0.86;
$$a_c$$
 = 0.41g; a_{max} = 0.106g (SLD) δ = 2.8·10⁻¹⁴ mm

Essendo δ minore del valore massimo (20 mm) ammesso dalla specifica RFI DTC INC CS SP IFS 001 A, la verifica risulta soddisfatta.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	57 di 90

10.1.2 VERIFICA STABILITÀ GLOBALE

	γ [kN/m³]	ф [°]	c [kPa]	Descrizione
materiale 1	20	32.01	0	terrapieno
materiale 2	20	32.01	0	fondazione
materiale 3	0	0	0	
materiale 4	0	0	0	

TIMERA

peso specifico acqua 10

azioni sismiche a_g/g 0.204 (-) S_s 1.2 k_h 0.0685 (-)

[kN/m³]

 β_s 0.28 S_T 1 k_v 0.0343 (-)

x muro 100 (m) **y muro** 100 (m)

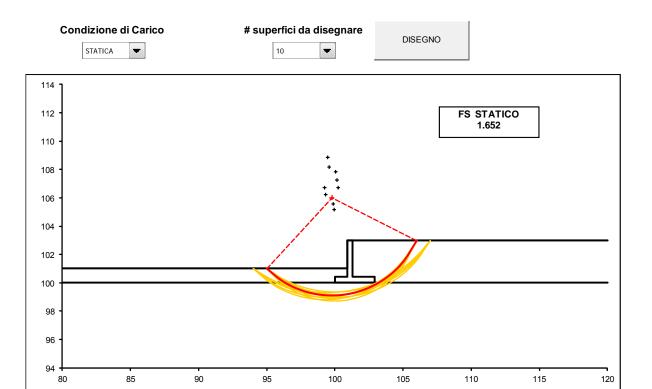
	p.c. valle p.c. monte			superficie 1			superficie 2			superfic	ie 3						
		materiale 1				mater		iale 2		□ mate	riale 4		□ mate	riale 2	I	falda	
	х	у		х	у		х	у		Х	у		Х	у		х	у
0	100.000	101.000	0	102.000	102.980	0	80.000	100.000	0			0			0	80.000	90.000
1	80.000	101.000	1	120.000	102.980	1	120.000	100.000	1			1			1	120.000	90.000
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

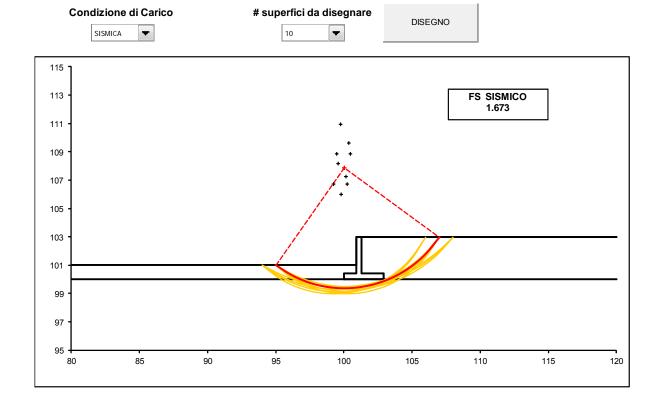
Sovraccarichi

		X _{in}	q _{in}	Xfin	q _{fin}	% sisma
sovraccarico 1	~	102.9	14.4	120	14.4	100%
sovraccarico 2	~	102.9	71.625	120	71.625	20%

Limiti ricerca superfici

Xa	80	Х	С	105	alfa min	40]	# superfici	
Xb	95	Х	d	120	alfa max	7 0			2816
n1	15	n	2	15	n alfa	10		massimo	


ITINERARIO NAPOLI – BARI


RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 58 di 90

ITINERARIO NAPOLI – BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO**

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

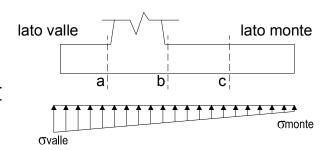
CODIFICA COMMESSA LOTTO DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ RI0005 005 59 di 90 CL

10.2 VERIFICHE STRUTTURALI

10.2.1 VERIFICHE SLU A PRESSO-FLESSIONE E TAGLIO

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno


 $_{\text{o}}$ valle = N / A + M / Wgg

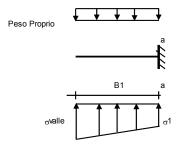
omonte = N / A - M / Wgg

(m²)A = 1.0*B2.90

 $Wgg = 1.0*B^2/6$ 1.40

0000	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m²]	[kN/m ²]
statico	174.57	20.14	74.56	45.83
Statico	174.57	20.14	74.56	45.83
sisma+	160.91	-4.00	52.63	58.34
sisina+	160.91	-4.00	52.63	58.34
sisma-	150.05	-1.57	50.63	52.86
	150.05	-1.57	50.63	52.86

Mensola Lato Valle


Peso Proprio.

PP = 10.00 (kN/m)

Ma = $\sigma^{1*B1^2/2} + (\sigma^{1*B1^2/3} - PP^*B1^2/2^*(1\pm kv))$

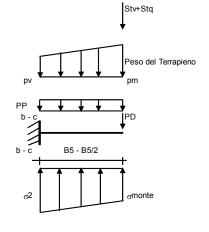
 $Va = \sigma^{1*}B1 + (\sigma^{1}B1/2 - PP^{*}B1/2 -$

caso	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	74.56	65.64	24.94	54.09
Statico	74.56	65.64	24.94	54.09
	52.63	54.40	17.35	38.74
sisma+	52.63	54.40	17.51	38.74
	50.63	51.32	16.70	36.50
sisma-	50.63	51.32	16.55	36.50

Mensola Lato Monte

PP	=	10.00	(kN/m ²)	peso proprio soletta fondazione
PD	=	0.00	(kN/m)	peso proprio dente

			7	7	
		Nmin	N max stat	N max sism	
pm	=	51.60	134.69	63.06	(kN/m^2)
pvb	=	51.60	134.69	63.06	(kN/m^2)
nvc.	=	51 60	134 69	63.06	(kN/m ²)


 $Mb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma_2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma_2b - \sigma_{monte})^*B5^2/3 + (\sigma_2b - \sigma_$ -(Stv+Sqv)*B5-PD*(1±kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

$$\label{eq:monter} \begin{split} \text{Mc} &= (\sigma_{monter} (pvc + PP)^* (1\pm kv))^* (B5/2)^2 / 2 + (\sigma 2c - \sigma_{monte})^* (B5/2)^2 / 6 - (pm - pvc)^* (1\pm kv)^* (B5/2)^2 / 3 + (Stv + Sqv)^* (B5/2) - PD^* (1\pm kv)^* (B5/2 - Bd/2) - PD^* kh^* (Hd + H2/2) + Msp + Sp^* H2/2 \end{split}$$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma_{2}b - \sigma_{monte})^*B5/2 - (pm-pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)^*B5/2 - (Stv + Sqv)^*B5/2 - (Stv + Sqv)^*B5/2 - (Stv + Sqv)^*B5/2 - (Stv + Sqv)^*B5/2 - (Stv +$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma_2 c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

	σmonte	σ2b	Mb	Vb	_σ 2c	Мс	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	45.83	61.68	-70.55	-48.26	53.75	-32.77	-45.15
	45.83	61.68	-176.90	-181.19	53.75	-59.35	-111.62
sisma+	58.34	55.19	-35.46	-28.32	56.77	-15.44	-21.95
SISIIIaT	58.34	55.19	-50.68	-47.35	56.77	-19.24	-31.47
	52.86	51.63	-34.96	-27.63	52.24	-15.23	-21.77
sisma-	52.86	51.63	-49.07	-45.28	52.24	-18.76	-30.59

RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

ITINERARIO NAPOLI – BARI

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 60 di 90

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

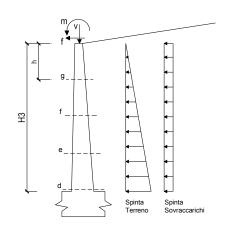
Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm kv)^* h^{2*} h/3$

Mt sism = $\frac{1}{2}$ * γ *(Kas_{orizz}*(1±kv)-Ka_{orizz})*h²*h/2 o *h/3

 $\begin{array}{ll} Mq & = \frac{1}{2} \; Ka_{orizz} *q *h^2 \\ M_{ext} & = m + f *h \\ M_{inerzia} & = \sum Pm_i *b_i *kh \end{array}$

 $N_{ext} = v$


N _{pp+inerzia}= $\sum Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv)-Ka_{orizz.})*h^2$

 $Vq = Ka_{orizz}*q*h$

 V_{ext} = f $V_{inerzia}$ = $\sum Pm_i^*kh$

condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
SCZIONC	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.58	15.43	68.13	1.35	84.91	1.50	25.80	27.30
e-e	1.94	6.51	38.32	1.35	46.18	1.50	19.35	20.85
f-f	1.29	1.93	17.03	1.35	20.31	1.50	12.90	14.40
g-g	0.65	0.24	4.26	1.35	5.85	1.50	6.45	7.95

sezione	h	Vt	Vq	$V_{\rm ext}$	V_{tot}
30210110	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.58	17.94	52.81	0.00	70.76
e-e	1.94	10.09	39.61	0.00	49.70
f-f	1.29	4.49	26.41	0.00	30.89
g-g	0.65	1.12	13.20	0.00	14.32

condizione sismica +

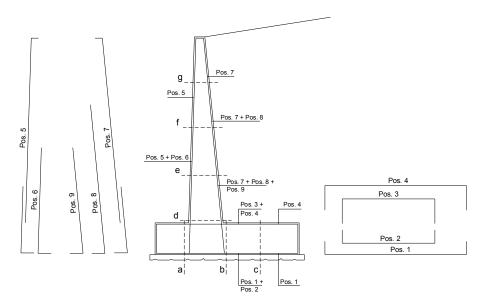
sezione	h	Mt stat	Mt _{sism}	Mq	$M_{\rm ext}$	M _{inerzia}	M_{tot}	N _{ext}	$N_{pp+inerzia}$	N_{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.58	11.43	4.30	20.39	1.00	2.52	39.64	1.50	26.78	28.28
e-e	1.94	4.82	1.81	11.47	1.00	1.42	20.52	1.50	20.08	21.58
f-f	1.29	1.43	0.54	5.10	1.00	0.63	8.69	1.50	13.39	14.89
g-g	0.65	0.18	0.07	1.27	1.00	0.16	2.68	1.50	6.69	8.19

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.58	13.29	3.33	15.80	0.00	1.95	34.38
e-e	1.94	7.48	1.87	11.85	0.00	1.47	22.67
f-f	1.29	3.32	0.83	7.90	0.00	0.98	13.03
g-g	0.65	0.83	0.21	3.95	0.00	0.49	5.48

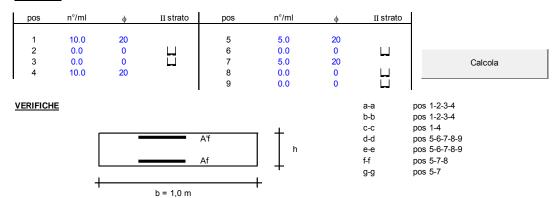
condizione sismica -

sezione	h	Mt stat	Mt _{sism}	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.58	11.43	2.91	20.66	1.00	2.52	38.52	1.50	24.82	26.32
e-e	1.94	4.82	1.23	11.62	1.00	1.42	20.09	1.50	18.62	20.12
f-f	1.29	1.43	0.36	5.16	1.00	0.63	8.59	1.50	12.41	13.91
g-g	0.65	0.18	0.05	1.29	1.00	0.16	2.67	1.50	6.21	7.71

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.58	13.29	2.26	16.02	0.00	1.95	33.52
e-e	1.94	7.48	1.27	12.01	0.00	1.47	22.22
f-f	1.29	3.32	0.56	8.01	0.00	0.98	12.87
g-g	0.65	0.83	0.14	4.00	0.00	0.49	5.46


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 61 di 90

SCHEMA DELLE ARMATURE

ARMATURE

Sez.	М	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)
a - a	24.94	0.00	0.40	31.42	31.42	364.51
b - b	-176.90	0.00	0.40	31.42	31.42	364.51
C - C	-59.35	0.00	0.40	31.42	31.42	364.51
d - d	84.91	27.30	0.40	15.71	15.71	197.79
e -e	46.18	20.85	0.40	15.71	15.71	196.87
f - f	20.31	14.40	0.40	15.71	15.71	195.95
g - g	5.85	7.95	0.40	15.71	15.71	195.03

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	\mathbf{V}_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a - a	54.09	0.40	212.66	10	20	20	21.8	584.31	Armatura a taglio non necessaria
b - b	181.19	0.40	212.66	10	20	20	21.8	584.31	Armatura a taglio non necessaria
C - C	111.62	0.40	212.66	10	20	20	21.8	584.31	Armatura a taglio non necessaria
d - d	70.76	0.40	172.25	10	20	20	21.8	584.31	Armatura a taglio non necessaria
e -e	49.70	0.40	171.43	10	20	20	21.8	584.31	Armatura a taglio non necessaria
f - f	30.89	0.40	170.61	10	20	20	21.8	584.31	Armatura a taglio non necessaria
g - g	14.32	0.40	169.79	10	20	20	21.8	584.31	Armatura a taglio non necessaria

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

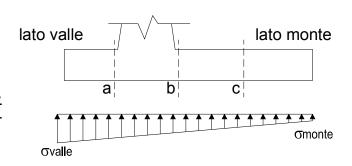
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 62 di 90

10.2.2 VERIFICHE A FESSURAZIONE

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

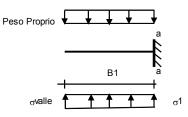

ovalle = N / A + M / Wgg

 $_{o}$ monte = N / A - M / Wgg

 $A = 1.0*B = 2.90 (m^2)$

 $Wgg = 1.0*B^2/6 = 1.40 (m^3)$

	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
Freq.	164.25	1.26	57.53	55.74
	164.25	1.26	57.53	55.74
Q.P.	149.92	-28.76	31.18	72.21
	149.92	-28.76	31.18	72.21

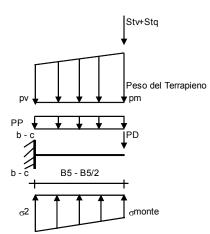


Mensola Lato Valle

Peso Proprio. PP = 10.00 (kN/m)

Ma = $_{\sigma}1*B1^{2}/2 + (_{\sigma}valle - _{\sigma}1)*B1^{2}/3 - PP*B1^{2}/2*(1\pm kv)$

caso	σvalle	σ1	Ma
caso	[kN/m ²]	[kN/m²]	[kNm]
Eroa	57.53	56.98	19.18
Freq.	57.53	56.98	19.18
0.0	31.18	43.91	10.30
Q.P.	31.18	43.91	10.30


Mensola Lato Monte

Nmin N max Freq N max QP 51.60 108.90 51.60 (kN/m^2) mg 51.60 108.90 51.60 (kN/m^2) pvb рус 51.60 108.90 51.60 (kN/m^2)

 $Mb = (G_{monte} - (pvb + PP))^*B5^2/2 + (G_2b - G_{monte})^*B5^2/6 - (pm - pvb))^*B5^2/3 + (Stv + Sqv)^*B5 - PD^*(B5 - Bd/2) + Msp + Sp^*H2/2$

 $\begin{aligned} \text{Mc} = & (\sigma_{\text{monte}}(\text{pvc+PP}))^*(\text{B5/2})^2/2 + (\sigma^2\text{Cc-}\sigma_{\text{monte}})^*(\text{B5/2})^2/6 + (\text{pm-pvc})^*(\text{B5/2})^2/3 + \\ & - (\text{Stv+Sqv})^*(\text{B5/2}) - \text{PD}^*(\text{B5/2-Bd/2}) + \text{Msp+Sp*H2/2} \end{aligned}$

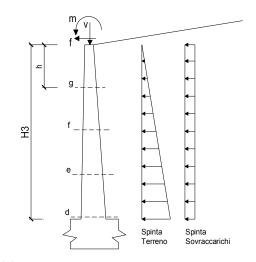
caso	σmonte	σ2b	Mb	_σ 2c	Мс
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m²]	[kNm]
	55.74	56.73	-47.70	56.23	-22.13
Freq.	55.74	56.73	-121.04	56.23	-40.47
O D	72.21	49.57	-13.76	60.89	-6.66
Q.P.	72.21	49.57	-13.76	60.89	-6.66

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 63 di 90


CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt = $\frac{1}{2}$ Ka_{orizz.}* γ *h²*h/3

Mq = $\frac{1}{2}$ Ka_{orizz}*q*h²

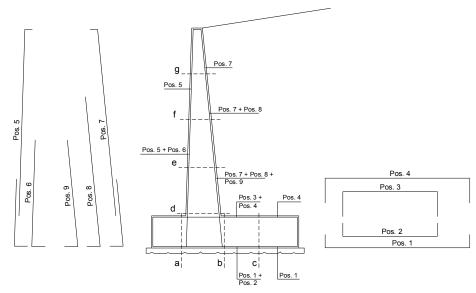
 M_{ext} = m+f*h N_{ext} = v

condizione Frequente

sezione h		Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}	
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	2.58	11.43	47.65	1.00	60.08	1.50	25.80	27.30	
e-e	1.94	4.82	26.80	1.00	32.62	1.50	19.35	20.85	
f-f	1.29	1.43	11.91	1.00	14.34	1.50	12.90	14.40	
g-g	0.65	0.18	2.98	1.00	4.16	1.50	6.45	7.95	

condizione Quasi Permanente

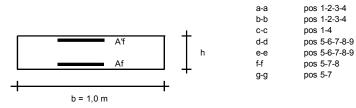
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.58	11.43	9.57	1.00	22.00	1.50	25.80	27.30
e-e	1.94	4.82	5.38	1.00	11.20	1.50	19.35	20.85
f-f	1.29	1.43	2.39	1.00	4.82	1.50	12.90	14.40
g-g	0.65	0.18	0.60	1.00	1.78	1.50	6.45	7.95


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 64 di 90


SCHEMA DELLE ARMATURE

ARMATURE

	II strato	ф	n°/ml	pos	∏ strato	ф	n°/ml	pos
		20	5.0	5		20	10.0	1
Calcola	Ш	0	0.0	6	I	0	0.0	2
Calcola		20	5.0	7	LJ	0	0.0	3
	Ш	0	0.0	8		20	10.0	4
		0	0.0	9				

condizione Frequente

Sez.	М	N	h	Af	A'f	σc	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	19.18	0.00	0.40	31.42	31.42	0.78	20.94	0.017	0.200
b - b	-121.04	0.00	0.40	31.42	31.42	4.95	132.15	0.122	0.200
C - C	-40.47	0.00	0.40	31.42	31.42	1.65	44.18	0.035	0.200
d - d	60.08	27.30	0.40	15.71	15.71	3.49	118.44	0.132	0.200
e -e	32.62	20.85	0.40	15.71	15.71	1.90	62.42	0.069	0.200
f - f	14.34	14.40	0.40	15.71	15.71	0.84	25.81	0.028	0.200
g - g	4.16	7.95	0.40	15.71	15.71	0.24	6.33	0.007	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	м	N	h	Af	A'f	$\sigma^{\rm C}$	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	10.30	0.00	0.40	31.42	31.42	0.42	11.24	0.009	0.200
b - b	-13.76	0.00	0.40	31.42	31.42	0.56	15.03	0.012	0.200
C - C	-6.66	0.00	0.40	31.42	31.42	0.27	7.27	0.006	0.200
d - d	22.00	27.30	0.40	15.71	15.71	1.29	37.99	0.042	0.200
e -e	11.20	20.85	0.40	15.71	15.71	0.66	17.25	0.019	0.200
f - f	4.82	14.40	0.40	15.71	15.71	0.28	5.86	0.006	0.200
q-q	1.78	7.95	0.40	15.71	15.71	0.10	1.47	0.001	0.200

ITINERARIO NAPOLI – BARI

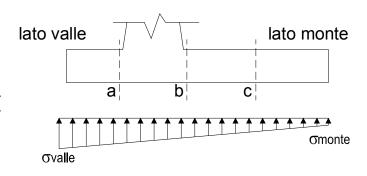
RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	65 di 90

10.2.3 VERIFICHE TENSIONALI

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

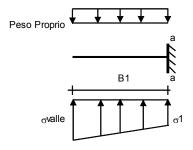

Reazione del terreno

 $_{\text{o}}$ valle = N / A + M / Wgg $_{\text{o}}$ monte = N / A - M / Wgg

A = 1.0*B = 2.90 (m²)

 $Wgg = 1.0*B^2/6 = 1.40 (m^3)$

caso	N	М	σvalle	σmonte
Caso	[kN]	[kNm]	[kN/m²]	[kN/m ²]
statico	164.25	1.26	57.53	55.74
	164.25	1.26	57.53	55.74
sisma+	160.91	-4.00	52.63	58.34
SiSiliaT	160.91	-4.00	52.63	58.34
	150.05	-1.57	50.63	52.86
sisma-	150.05	-1.57	50.63	52.86

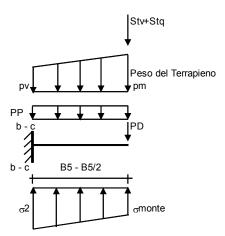


Mensola Lato Valle

Peso Proprio. PP = 10.00 (kN/m)

Ma = $\sigma^{1*B1^2/2}$ + ($\sigma^{1*B1^2/3}$ - PP*B1²/2*(1±kv)

caso	σvalle	σ1	Ma
Caso	[kN/m ²]	[kN/m ²]	[kNm]
statico	57.53	56.98	19.18
Statico	57.53	56.98	19.18
sisma+	52.63	54.40	17.35
Sisilia+	52.63	54.40	17.35
-:	50.63	51.32	16.70
sisma-	50.63	51.32	16.70


Mensola Lato Monte

PP PD	=		(kN/m²) (kN/m)	peso proprio soletta fondazione peso proprio dente
		Nmin	N max stat N	N max sism

$$\label{eq:mb} \begin{split} Mb &= (\sigma_{monte} - (pvb + PP)^*(1\pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1\pm kv)^*B5^2/3 + \\ &- (Stv + Sqv)^*B5 - PD^*(1\pm kv)^*(B5 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{split}$$

 $\begin{aligned} \text{Mc} = & (\sigma_{\text{monte}} - (\text{pvc} + \text{PP})^* (1 \pm \text{kv}))^* (\text{B5/2})^2 / 2 + (\sigma_{\text{CC}} - \sigma_{\text{monte}})^* (\text{B5/2})^2 / 6 - (\text{pm-pvc})^* (1 \pm \text{kv})^* (\text{B5/2})^2 / 3 + (\text{Stv} + \text{Sqv})^* (\text{B5/2}) - \text{PD}^* (1 \pm \text{kv})^* (\text{B5/2} - \text{Bd/2}) - \text{PD}^* \text{kh}^* (\text{Hd} + \text{H2/2}) + \text{Msp} + \text{Sp}^* \text{H2/2} \end{aligned}$

caso	σmonte	σ2b	Mb	σ 2c	Mc
Caso	[kN/m²]	[kN/m ²]	[kNm]	[kN/m²]	[kNm]
statico	55.74	56.73	-47.70	56.23	-22.13
Statico	55.74	56.73	-121.04	56.23	-40.47
sisma+	58.34	55.19	-35.46	56.77	-15.44
Sisilia+	58.34	55.19	-50.68	56.77	-19.24
	52.86	51.63	-34.96	52.24	-15.23
sisma-	52.86	51.63	-49.07	52.24	-18.76

TIMERA

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 66 di 90

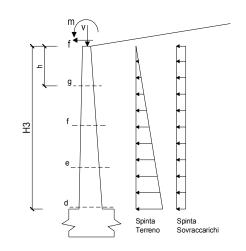
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²*h/3

Mt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv)-Ka_{orizz.})*h^2*h/2$

Mq = $\frac{1}{2}$ Ka_{orizz}*q*h²


 $M_{ext} = m+f^*h$

 $M_{inerzia} = \sum Pm_i^*b_i^*kh$

(solo con si:

 $N_{ext} = v$

N _{pp+inerzia}= $\sum Pm_i^*(1\pm kv)$

condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.58	11.43	47.65	1.00	60.08	1.50	25.80	27.30
e-e	1.94	4.82	26.80	1.00	32.62	1.50	19.35	20.85
f-f	1.29	1.43	11.91	1.00	14.34	1.50	12.90	14.40
g-g	0.65	0.18	2.98	1.00	4.16	1.50	6.45	7.95

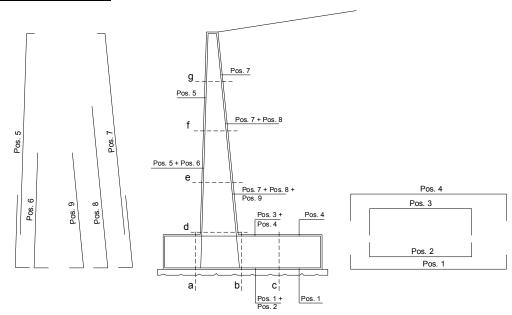
condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}			
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]			
d-d	2.58	11.43	4.30	20.39	1.00	2.52	39.64	1.50	26.78	28.28			
e-e	1.94	4.82	1.81	11.47	1.00	1.42	20.52	1.50	20.08	21.58			
f-f	1.29	1.43	0.54	5.10	1.00	0.63	8.69	1.50	13.39	14.89			
g-g	0.65	0.18	0.07	1.27	1.00	0.16	2.68	1.50	6.69	8.19			

condizione sismica -

	Condizione sistinca -											
sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}		
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]		
d-d	2.58	11.43	2.91	20.66	1.00	2.52	38.52	1.50	24.82	26.32		
e-e	1.94	4.82	1.23	11.62	1.00	1.42	20.09	1.50	18.62	20.12		
f-f	1.29	1.43	0.36	5.16	1.00	0.63	8.59	1.50	12.41	13.91		
g-g	0.65	0.18	0.05	1.29	1.00	0.16	2.67	1.50	6.21	7.71		

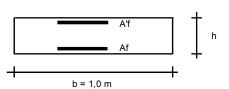
ITINERA


Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

ITINERARIO NAPOLI – BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO**

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

LOTTO CODIFICA DOCUMENTO COMMESSA REV. FOGLIO IF1N 01 E ZZ CL RI0005 005 67 di 90


SCHEMA DELLE ARMATURE

ARMATURE

1	II strato	ф	n°/ml	pos	II strato	ф	n°/ml	pos
		20	5.0	5		20	10.0	1
		0	0.0	6	ш	0	0.0	2
		20	5.0	7	Ш	0	0.0	3
	Ш	0	0.0	8		20	10.0	4
	1.1	0	0.0	9				

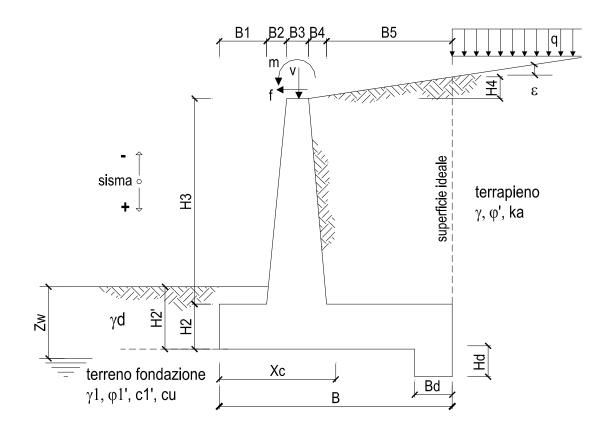
pos 1-2-3-4 а-а pos 1-2-3-4 b-b pos 1-4 C-C pos 5-6-7-8-9 d-d pos 5-6-7-8-9 е-е f-f pos 5-7-8 pos 5-7 g-g

Condizione Statica

COMMIZION	ic otatica						
Sez.	М	N	h	Af	A'f	σc	σ^{f}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	19.18	0.00	0.40	31.42	31.42	0.78	20.94
b - b	-121.04	0.00	0.40	31.42	31.42	4.95	132.15
C - C	-40.47	0.00	0.40	31.42	31.42	1.65	44.18
d - d	60.08	27.30	0.40	15.71	15.71	3.49	118.44
е -е	32.62	20.85	0.40	15.71	15.71	1.90	62.42
f - f	14.34	14.40	0.40	15.71	15.71	0.84	25.81
g - g	4.16	7.95	0.40	15.71	15.71	0.24	6.33

Condizione Sismica

Condizion	ie Sismica						
Sez.	М	N	h	Af	A'f	$\sigma^{\scriptscriptstyle \mathbb{C}}$	σ ^f
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	17.35	0.00	0.40	31.42	31.42	0.71	18.94
b - b	-50.68	0.00	0.40	31.42	31.42	2.07	55.33
C - C	-19.24	0.00	0.40	31.42	31.42	0.79	21.01
d - d	39.64	26.32	0.40	15.71	15.71	2.31	75.53
е -е	20.52	20.12	0.40	15.71	15.71	1.20	37.08
f - f	8.69	13.91	0.40	15.71	15.71	0.51	14.06
g - g	2.68	7.71	0.40	15.71	15.71	0.16	3.33
g - g	2.68	7.71	0.40	15.71	15.71	0.16	3.33


RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	68 di 90

11 MURO TIPO CONCI 1, 2 E 3

LS - Relazione di calcolo

OPERA Esempio

DATI DI PROGETTO:

Geometria del Muro

Elevazione	H3 =	2.21	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.40	(m)
Aggetto monte	B4 =	0.00	(m)

Geometria della Fondazione

Larghezza Fondazione	B =	2.60	(m)
Spessore Fondazione	H2 =	0.40	(m)
Suola Lato Valle	B1 =	0.60	(m)
Suola Lato Monte	B5 =	1.60	(m)
Altezza dente	Hd =	0.00	(m)
Larghezza dente	Bd =	0.00	(m)
Mezzeria Sezione	Xc =	1.30	(m)

Peso Specifico del Calcestruzzo	γcls =	25.00	(kN/m³)

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO – FRASSO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	69 di 90

				valori caratteristici	valori di j	orogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi oermanenti	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m ²)	qp	14.40	19.44	21.60
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
S E	Forza Verticale in Testa permanente	(kN/m)	vp	1.50	1.50	1.35
<u></u>	Momento in Testa permanente	(kNm/m)	mp	1.00	1.35	1.10
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	57.30	83.09	83.09
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
ondizior Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
Cor	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione rara Ψ1		1.00	condizione quasi perma	anente Ψ2	0.00
.⊑ o	Sovraccarico Accidentale in condizioni sismiche	(kN/m^2)	qs	11.46		
izio	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
ပ ဖ	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

CARATTERISTICHE DEI MATERIALI STRUTTURALI

Calcestruzzo				<u>Acciaio</u>
classe cls	C28/35			tipo di acciaio ■B450C ■
Rck		35	(MPa)	
fck		28	(MPa)	fyk = 450 (MPa)
fcm		36	(MPa)	
Ec		32308	(MPa)	γ s = 1.15
α_{cc}		0.85		
γС		1.50		fyd = fyk / γ s / γ E = 391.30 (MPa)
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$		15.87	(MPa)	Es = 210000 (MPa)
$f_{ctm} = 0.30*f_{ck}^{2/3}$		2.77	(MPa)	ε_{ys} = 0.19%
σ _c σ _f	11.2 337.5	Mpa Mpa		coefficiente omogeneizzazione acciaio n = 15
condizioni sismic	he			<u>Copriferro</u> (distanza asse armatura-bordo)
σ _c	11	Мра		c = 6.20 (cm)
σ _f	260	Мра		
				<u>Copriferro minimo di normativa</u> (ricoprimento armatura)
				$c_{\min} = 4.00 (cm)$
Valore limite di	apertura dell	e fessure		Interferro tra <u>I e II</u> strato
Frequente	w	1	0.2 mm	i _{I-II} 5.00 (cm)
Quasi Permanent	e w	1	0.2 mm	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF1N 01 E ZZ CL RI0005 005 70 di 90 Α

Opere di sostegno dal km 0+901 al km 1+033 BP LS - Relazione di calcolo

11.1 VERIFICHE GEOTECNICHE

Combinazioni coefficienti parziali di verifica

SFN		comb. 1 A1+M1+R1 EQU+M2		0	
	Approccio 1		A2+M2+R2	•	
	con	comb. 2	EQU+M2		
	Approccio 2	rcio 2	A1+M1+R3	0	
	Арргоссіо 2		EQU+M2	~	
SLE (DM88)			0		
altro				0	

Coefficienti di sicurezza

	<u>Scorrimento</u>	<u>Ribaltamento</u>	<u>Carico limite</u>
Statico	1.20	2.20	2.59
Sismico	1.29	2.53	3.27

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 71 di 90

FORZE VERTICALI

- Peso del Mu	ro (Pm)		SLE	STR/GEO	EQU	
Pm1 =	(B2*H3* _γ cls)/2	(kN/m)	0.00	0.00	0.00	
Pm2 =	(B3*H3* _γ cls)	(kN/m)	22.10	22.10	19.89	
Pm3 =	(B4*H3* _γ cls)/2	(kN/m)	0.00	0.00	0.00	
Pm4 =	(B*H2* _γ cls)	(kN/m)	26.00	26.00	23.40	
Pm5 =	(Bd*Hd* _γ cls)	(kN/m)	0.00	0.00	0.00	
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	48.10	48.10	43.29	
- Peso del terreno e sovr. perm. sulla scarpa di monte del muro (Pt)						
Pt1 =	(B5*H3*γ')	(kN/m)	70.72	70.72	63.65	
Pt2 =	(0,5*(B4+B5)*H4*γ')	(kN/m)	0.00	0.00	0.00	
Pt3 =	(B4*H3*γ')/2	(kN/m)	0.00	0.00	0.00	
Sovr =	qp * (B4+B5)	(kN/m)	0.00	0.00	0.00	
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	70.72	70.72	63.65	
- Sovraccarico accidentale sulla scarpa di monte del muro						
·		(kN/m)	0	0	•	
Sovr acc. Sism qs * (B4+B5) (kl			0	•		

Muro (Mm)			SLE	STR/GEO	EQU
1m1 = ` ´	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
/lm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	17.68	17.68	15.91
/lm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00	0.00	0.00
/lm4 =	Pm4*(B/2)	(kNm/m)	33.80	33.80	30.42
/lm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
/lm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	51.48	51.48	46.33
Terrapieno e	e sovr. perm. sulla scarpa di monte del muro				
∕It1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	127.30	127.30	114.5
Лt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Лt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Λt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	127.30	127.30	114.5
Sovraccaric	o accidentale sulla scarpa di monte del muro				
ovr acc. Sta	at *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0	0	
	:m *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0		
INERZIA DE	L MURO E DEL TERRAPIENO				
	zontale e verticale del muro (Ps)	# * 1			
Ps h=	Pm*kh	(kN/m)		3.64	
s v=	Pm*kv	(kN/m)		1.82	
Inerzia orizz	contale e verticale del terrapieno a tergo del muro (Pts)			
tsh =	Pt*kh	(kN/m)		5.36	
tsv =	Pt*kv	(kN/m)		2.68	
Incremento	orizzontale di momento dovuto all'inerzia del muro (M	Ps h)			
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)		0.00	
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)		2.52	
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)		0.00	
	,	. ,			
/IPs4 h=	kh*Pm4*(H2/2)	(kNm/m)		0.39	
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)		0.00	
/IPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		2.91	
Incremento	verticale di momento dovuto all'inerzia del muro (MPs	v)			
1Ps1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)		0.00	
11Ps2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)		0.67	
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)		0.00	
	,	,			
1Ps4 v=	kv*Pm4*(B/2)	(kNm/m)		1.28	
1Ps5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)		0.00	
1Ps v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		1.95	
Incremento	orizzontale di momento dovuto all'inerzia del terrapien	o (MPte h)			
#Pts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)		8.06	
MPts1 n=	,	,			
	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)		0.00	
1Pts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)		0.00	
/IPts h=	MPts1 + MPts2 + MPts3	(kNm/m)		8.06	
	verticale di momento dovuto all'inerzia del terrapieno (,			
/IPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)		4.82	
/IPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)		0.00	
/IPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)		0.00	

fithera

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 72 di 90

CONDIZION	NE STATICA				
	TERRENO E DEL SOVRACCARICO condizione statica	Γ	SLE	STR/GEO	EQU
St =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	14.75	18.79	20.67
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	8.14	10.75	15.55
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	32.39	51.57	59.82
oq acc =	q (112111011141110) ka	(KIWIII)	32.33	31.37	33.02
- Componente	orizzontale condizione statica				
Sth =	St*cosô	(kN/m)	13.60	17.75	19.52
Sqh perm =	Sq perm*cosδ	(kN/m)	7.50	9.79	14.69
Sqh acc =	Sq acc*cosδ	(kN/m)	29.86	48.70	56.49
Sqri acc =	Sq acc coso	(KIN/III)	29.00	46.70	50.49
Componente	verticale condizione statica				
Stv =	St*sen8	(kN/m)	5.72	6.18	6.80
		, ,	3.15	3.41	5.12
Sqv perm=	Sq perm*senδ	(kN/m)			
Sqv acc =	Sq acc*senδ	(kN/m)	12.55	16.96	19.68
Cninta nassiy	n aul donto				
- Spinta passiv		(1.11/)	0.00	0.00	0.00
Sp=½*g1"Hd2	* ½* _{γ1} '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} + _γ 1'*kp*H2')*Hd	(kN/m)	0.00	0.00	0.00
MOMENTI DE	ELLA SPINTA DEL TERRENO E DEL SOVRACCARI	со Г	SLE	STR/GEO	EQU
14014	011 *//10 . 110 . 114 . 11 1//0 1	,,,, , ,L			
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	11.83	15.44	16.98
MSt2 =	Stv*B	(kNm/m)	14.87	16.07	17.68
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	9.79	12.78	19.17
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	38.97	63.55	73.72
MSq2 perm=	Sqv perm*B	(kNm/m)	8.20	8.87	13.30
MSq2 acc =	Sqv acc*B	(kNm/m)	32.64	44.10	51.16
$MSp = \gamma 1'' $	Hd ³ *kp/3+(2*c1'*kp ^{0.5} + _γ 1'*kp*H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	OVUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	1.00	1.00	1.10
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	$(vp+v)^*(B1 + B2 + B3/2)$	(kNm/m)	1.20	1.20	1.08
VERIFICA AL	LO SCORRIMENTO (STR/GEO)				
Risultante forze	• /				
N =	Pm + Pt + v + Stv + Sqv perm + Sqv acc		146.87	(kN/m)	
	e orizzontali (T)				
T =	Sth + Sqh + f		76.24	(kN/m)	
	attrito alla base (f)				
f =	tg_{p1} '		0.63	(-)	
Fs scorr.	(N*f + Sp) / T		1.20	>	1
VERIFICA AL	_RIBALTAMENTO (EQU)				
Momento stabi	ilizzante (Ms)				
Ms =	Mm + Mt + Mfext3		244.12	(kNm/m)	
				, ,	
Momento ribalt	ante (Mr)				
Mr =	MSt + MSq + Mfext1+ Mfext2 + MSp		110.97	(kNm/m)	
	,			,	
Fs ribaltar	mento Ms / Mr		2.20	>	1
i 3 Tibaliai	incinco instini		2.20		•

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	73 di 90

2.59

2.59

1

Nmin

Nmax

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risultante forze verticali (N)	Nmin	Nmax	
N = Pm + Pt + v + Stv + Sqv (+ Sovr acc)	146.87	146.87	(kN/m)
Risultante forze orizzontali (T)			
T = Sth + Sqh + f - Sp	76.24	76.24	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM)			
$MM = \sum M$	156.25	156.25	(kNm/m)
Momento rispetto al baricentro della fondazione (M)			
$M = Xc^*N - MM$	34.69	34.69	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

F = qlim*B*/N

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

c1' φ 1' γ 1 $q_0 = \gamma d*H2'$	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz. sovraccarico stabilizzante	0.00 32.01 20.00		(kPa) (°) (kN/m³) (kN/m²)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.24 2.13	0.24 2.13	(m) (m)		
I valori di Nc, N	lq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)					
	$p'/2$)* $e^{(\pi^* tg(\phi'))}$ (1 in cond. nd) $g(\phi')$ (2+ π in cond. nd))* $tg(\phi')$ (0 in cond. nd)	23.19 35.51 30.24		(-) (-) (-)		
I valori di ic, iq	e i $_{\gamma}$ sono stati valutati con le espressioni suggerite da Vesic (1975)					
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + ic = iq))$	0.23 0.20 0.11	0.23 0.20 0.11	(-) (-) (-)			
(fondazione nastriforme m = 2)						
qlim	(carico limite unitario)	178.88	178.88	(kN/m ²)		

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 74 di 90

CONDIZION	IE SISMICA +				
SPINTE DEL - - Spinta condiz	TERRENO E DEL SOVRACCARICO	ſ	SLE	STR/GEO	EQU
•	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	16.20	20.93	20.93
	0,5*γ'*(1+kv)*(H2+H3+H4+Hd)²*kas*-Sst1 stat	(kN/m)	3.29	3.84	3.84
Ssq1 perm=	gp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	10.36	13.17	13.17
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	8.25	10.48	10.48
004. 000	40 (()	0.20		
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	16.20	20.93	20.93
	Sst1 sism* $\cos\delta$	(kN/m)	3.29	3.84	3.84
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	10.36	13.17	13.17
Ssq1h acc=	Ssq1 acc*cos _δ	(kN/m)	8.25	10.48	10.48
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0.00	0.00	0.00
	Sst1 sism*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiv					
$Sp = \frac{1}{2} *_{\gamma_1} (1 + kv)$	$1 \text{Hd}^{2} \text{kps}^{+} + (2 \text{c}_{1} \text{''kps}^{+0.5} + _{\gamma} 1' (1 + \text{kv}) \text{kps}^{+} \text{H2'}) \text{'Hd}$	(kN/m)	0.00	0.00	0.00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARI	со Г			
- Condizione si		•	SLE	STR/GEO	EQU
		_			
MSst1 stat =	* * *	(kNm/m)	14.10	18.20	18.20
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	4.30	5.01	5.01
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00 30.85
MSsq1 = MSsq2 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd) Ssg1v * B	(kNm/m) (kNm/m)	24.29 0.00	30.85 0.00	0.00
MSp =	γ_1 "*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
WSP -	γι τια κρο /3 (2 ετ κρο τη κρο τι2) τια /2	(KINIII/III)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE mp+ms	(kNm/m)		1.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		1.20	
Mickey	(IP 10) (B1 1B2 1B0/2)	(10.011111111)		1.20	
VERIFICA AL	LO SCORRIMENTO				
Risultante forze	e verticali (N)				
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		124.82	(kN/m)	
	·			,	
	e orizzontali (T)		F7 44	(1.01/)	
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		57.41	(kN/m)	
Coefficiente di	attrito alla base (f)				
f =	$tg_{\phi 1}$ '		0.63	(-)	
			4.00		
Fs =	(N*f + Sp) / T		1.36	>	1
VERIFICA AL	RIBALTAMENTO				
Momento stabi	lizzante (Ms)				
Ms =	Mm + Mt + Mfext3		179.98	(kNm/m)	
				•	
Momento ribalt			FO 00	(lcNlmc/ \	
Mr =	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts		59.28	(kNm/m)	
Fr =	Ms / Mr		3.04	>	1
				-	•

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

FS carico limite

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	75 di 90

1

3.52

Nmax

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forz	re verticali (N) Pm+ Pt + vp + vs + Sst1v+ Ssq1v+ Ps v+ Ptsv+ (Sovr acc)	Nmin 124.82	Nmax 124.82	(kN/m)		
Risultante forz	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	57.41		(kN/m)		
Risultante dei MM =	momenti rispetto al piede di valle (MM) ΣM	120.70	120.70	(kNm/m)		
Momento rispo	etto al baricentro della fondazione (M) Xc*N - MM	41.57	41.57	(kNm/m)		
Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)						
Fondazione N	astriforme					
qlim = c'Nc*i	$c + q_0*Nq*iq + 0,5*\gamma1*B*N\gamma*i\gamma$					
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	0.00 32.01 20.00		(kN/mq) (°) (kN/m³)		
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	20.00		(kN/m ²)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.33 1.93	0.33 1.93	(m) (m)		
I valori di Nc, I	Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975))				
$Nq = tg^{2}(45 + Nc) = (Nq - 1)/t$ $N_{\gamma} = 2*(Nq + 1)/t$	$g(\varphi')$ (2+ π in cond. nd)	23.19 35.51 30.24		(-) (-) (-)		
I valori di ic, iq	e i $_{\gamma}$ sono stati valutati con le espressioni suggerite da Vesic (1975)					
iq = (1 - T/(N + ic)) ic = iq - (1 - iq) $i\gamma = (1 - T/(N + iq))$	•	0.29 0.26 0.16	0.29 0.26 0.16	(-) (-) (-)		
(fondazione na	astriforme m = 2)					
qlim	(carico limite unitario)	227.41	227.41	(kN/m²)		
FS carico I	imite F = alim*B*/N	3.52	>	1		

F = qlim*B*/N

TIMERA

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	76 di 90

CONDIZIONE SISMICA -

SPINTE DEL	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
•	0,5*γ ^{t*} (H2+H3+H4+Hd) ^{2*} ka	(kN/m)	16.20	20.93	20.93
Sst1 sism =	0,5*γ'*(1-kv)*(H2+H3+H4+Hd)²*kas ⁻ -Sst1 stat	(kN/m)	2.08	2.27	2.27
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas	(kN/m)	10.48	13.30	13.30
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas	(kN/m)	8.34	10.59	10.59
0	and the state of the state of the state of				
•	orizzontale condizione sismica -	(lcN1/m)	16.00	20.02	20.02
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	16.20 2.08	20.93 2.27	20.93 2.27
Sst in sisin = Ssq1h perm=	Sst1 sism*cosδ Ssq1 perm*cosδ	(kN/m)	10.48	13.30	13.30
Ssq1h acc=	Ssq1 acc*cos8	(kN/m) (kN/m)	8.34	10.59	10.59
·	,	, ,			
•	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0.00	0.00	0.00
	Sst1 sism*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen _δ	(kN/m)	0.00	0.00	0.00
- Spinta passiv					
$Sp=\frac{1}{2}*_{\gamma_1}'(1-kv)$	$Hd^{2*}kps^{-}+(2*c_{1}'*kps^{-0.5}+\gamma 1' (1-kv) kps^{-*}H2')*Hd$	(kN/m)	0.00	0.00	0.00
MOMENTI DE - Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica -	co	SLE	STR/GEO	EQU
		L		-	
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	14.10	18.20	18.20
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	2.71	2.97	2.97
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	24.57	31.18	31.18
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ⁺ *H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	OVUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		1.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		1.20	
VERIFICA AL	LO SCORRIMENTO				
Risultante forze	e verticali (N)				
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		115.82	(kN/m)	
Risultante forze	e orizzontali (T)				
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		56.09	(kN/m)	
Coefficiente di	attrito alla base (f)				

VERIFICA AL RIBALTAMENTO

Fs =

tg_{φ1}'

(N*f + Sp)/T

Mom Ms		oilizzante (Ms) Mm + Mt + Mfext3	179.98	(kNm/m)	
	nento ribal =	tante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	71.10 [*]	(kNm/m)	
Fr	=	Ms / Mr	2.53	>	1

0.63

1.29

(-)

1

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Opere di sostegno dai km 0+901	ai km 1+033 BP
LS – Relazione di calcolo	

FS carico limite

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	77 di 90

1

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forz N =	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 115.82	Nmax 115.82	(kN/m)			
Risultante forz T =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	56.09		(kN/m)			
Risultante dei MM =	momenti rispetto al piede di valle (MM) ΣM	108.88	108.88	(kNm/m)			
Momento rispe M =	etto al baricentro della fondazione (M) Xc*N - MM	41.68	41.68	(kNm/m)			
Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)							
Fondazione Na	astriforme						
qlim = c'Nc*io	; + q₀*Nq*iq + 0,5*γ1*B*Nγ*iγ						
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	0.00 32.01 20.00		(kN/mq) (°) (kN/m³)			
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	20.00		(kN/m^2)			
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.36 1.88	0.36 1.88	(m) (m)			
I valori di Nc, N	lq e Ng sono stati valutati con le espressioni suggerite da V	esic (1975)					
$Nq = tg^{2}(45 + t)$ $Nc = (Nq - 1)/t$ $N_{\gamma} = 2*(Nq + 1)$	$g(\varphi')$ (2+ π in cond. nd)	23.19 35.51 30.24		(-) (-) (-)			
I valori di ic, iq	e i γ sono stati valutati con le espressioni suggerite da Vesid	c (1975)					
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + iq))$		0.27 0.23 0.14	0.27 0.23 0.14	(-) (-) (-)			
(fondazione nastriforme m = 2)							
qlim	(carico limite unitario)	201.38	201.38	(kN/m ²)			
FS carico li	imite F = alim*B*/N	in 3.27	>	1			

F = qlim*B*/N

Nmax

3.27

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 78 di 90

11.1.1 VERIFICA SLD

Le verifiche allo stato limite di danno (SLD) da effettuare sull'opera in esame, vengono condotte valutando gli spostamenti indotti sull'opera da un sisma con tempo di ritorno T_R = 112.5 anni, corrispondente alla probabilità di superamento del 63% nella vita di riferimento dell'opera V_R = 112.5 anni.

La stima degli spostamenti indotti dal sisma viene effettuata attraverso la formula di Rampello:

ITINERA

$$d = (S_S \cdot S_T \cdot B) \cdot e^{A(a_{c/}/a_{\max})}$$

essendo:

B e A due coefficienti che sono funzione del valore di ag (accelerazione massima orizzontale attesa al sito) e della categoria di sottosuolo sul guale l'opera poggia (RFI DTC INC CS SP IFS 001 A par. 4.4):

Sottosuolo	Cat. A		Cat, B		Cat. C, D, E	
a _{max} /g	A	В	A	В	A	В
0.3 - 0.4	-7.5	1.21	-7.9	1.06	-7.4	0.56
0.2 - 0.3	-7.42	1.28	-7.79	1.11	-7.54	0.58
0.1 - 0.2	-7.48	0.65	-7.86	0.73	-8.05	0.86
≤ 0.1	-7.87	0.28	-7.86	0.3	-8.07	0.44

 a_c il valore dell'accelerazione critica, ossia quel valore dell'accelerazione del suolo in corrispondenza del quale si manifestano i primi spostamenti relativi permanenti tra terreno e muro Si determina imponendo pari all'unità il rapporto R_d/E_d nella verifica a scorrimento.

Nel caso in esame si ha:

Muro tipo conci 1, 2 e 3:

H = 2.21 m; A = -8.05; B = 0.86;
$$a_c$$
 = 0.44g; a_{max} = 0.106g (SLD) δ = 2.8·10⁻¹⁴ mm

Essendo δ minore del valore massimo (20 mm) ammesso dalla specifica RFI DTC INC CS SP IFS 001 A, la verifica risulta soddisfatta.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	79 di 90

11.1.2 VERIFICA STABILITÀ GLOBALE

	γ [kN/m³]	ф [°]	c [kPa]	Descrizione
materiale 1	20	32.01	0	terrapieno
materiale 2	20	32.01	0	fondazione
materiale 3	0	0	0	
materiale 4	0	0	0	

peso specifico acqua

 $10 \qquad [kN/m^3]$

azioni sismiche

a_g/g

0.204 (-)

S_s 1.2

k_h 0.0685

(-)

 β_{s}

0.28

(m)

S_T 1

100

k_v 0.0343

(-)

x muro

100

y muro

(m)

	p.c. va	lle		p.c. mo	nte		superfic	ie 1		superfic	ie 2		superfic	cie 3			
		materiale 1					mater	riale 2		□ mate	riale 4		□ mate	riale 2	J	falda	
	х	у		х	у		х	у		х	у		Х	у		х	у
0	100.000	101.000	0	102.000	102.610	0	80.000	100.000	0			0			0	80.000	90.000
1	80.000	101.000	1	120.000	102.610	1	120.000	100.000	1			1			1	120.000	90.000
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

sovraccarico 1 sovraccarico 2

x_{in}
102

102

 x_{in}
 q_{in}

 102.6
 14.4

 102.6
 71.625

x_{fin} q_{fin}
120 14.4
120 71.625

% sisma 100% 20%

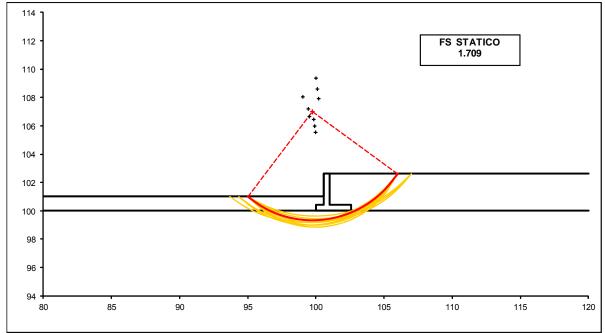
Limiti ricerca superfici

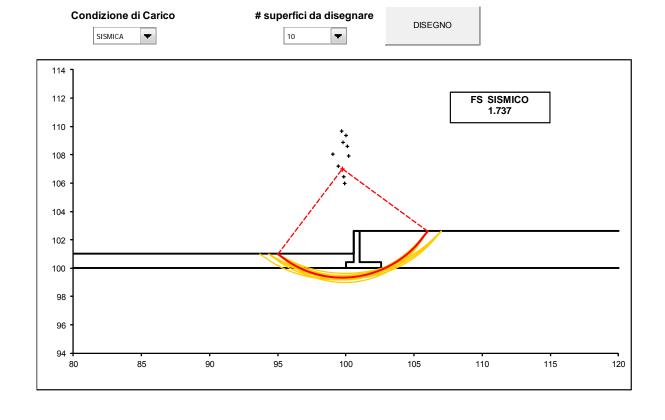
Xa	85
Xb	95
n1	15

Хc	105
Xd	120
n2	15

alfa min	40
alfa max	70
n alfa	10

superfici massimo 2816




ITINERARIO NAPOLI – BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO**

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

DOCUMENTO CODIFICA COMMESSA LOTTO REV. FOGLIO IF1N 01 E ZZ CL RI0005 005 80 di 90 Α

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

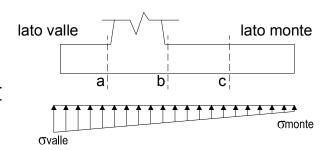
CODIFICA COMMESSA LOTTO DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ RI0005 005 81 di 90 CL

11.2 VERIFICHE STRUTTURALI

11.2.1 VERIFICHE SLU A PRESSO-FLESSIONE E TAGLIO

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

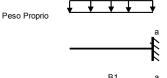

ovalle = N / A + M / Wgg

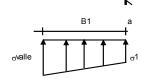
omonte = N / A - M / Wgg

(m²)A = 1.0*B2.60

 $Wgg = 1.0*B^2/6$ 1.13

0000	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m²]	[kN/m ²]
statico	150.50	24.26	79.41	36.35
Statico	150.50	24.26	79.41	36.35
oiomo+	138.58	6.41	58.99	47.61
sisma+	138.58	6.41	58.99	47.61
sisma-	129.24	7.64	56.49	42.92
อเอกาส-	129.24	7.64	56.49	42.92


Mensola Lato Valle


Peso Proprio. PP = 10.00 (kN/m)

Ma = $\sigma^{1*B1^2/2} + (\sigma^{1*B1^2/3} - PP^*B1^2/2^*(1\pm kv))$

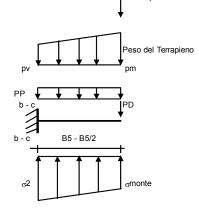
 $Va = \sigma^{1*}B1 + (\sigma^{1}B1/2 - PP^{*}B1/2 -$

caso	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	79.41	69.48	11.90	38.67
	79.41	69.48	11.90	38.67
sisma+	58.99	56.36	8.59	28.90
Sisilia+	58.99	56.36	8.66	28.90
sisma-	56.49	53.36	8.25	27.36
	56.49	53.36	8.18	27.36

Mensola Lato Monte

PP	=	10.00	(kN/m^2)	peso proprio soletta fondazione
PD	=	0.00	(kN/m)	peso proprio dente

			-	-	
		Nmin	N max stat	N max sism	
pm	=	44.20	127.29	55.66	(kN/m^2)
pvb	=	44.20	127.29	55.66	(kN/m^2)
pvc	=	44.20	127.29	55.66	(kN/m ²)


 $Mb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma_2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma_2b - \sigma_{monte})^*B5^2/3 + (\sigma_2b - \sigma_{$ -(Stv+Sqv)*B5-PD*(1±kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

$$\label{eq:monter} \begin{split} \text{Mc} &= (\sigma_{monter} (pvc + PP)^* (1\pm kv))^* (B5/2)^2 / 2 + (\sigma 2c - \sigma_{monte})^* (B5/2)^2 / 6 - (pm - pvc)^* (1\pm kv)^* (B5/2)^2 / 3 + (Stv + Sqv)^* (B5/2) - PD^* (1\pm kv)^* (B5/2 - Bd/2) - PD^* kh^* (Hd + H2/2) + Msp + Sp^* H2/2 \end{split}$$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma_{2}b - \sigma_{monte})^*B5/2 - (pm-pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)^*B5/2 - (Stv + Sqv)^*B5/2 - (Stv + Sqv)^*B5/2 - (Stv + Sqv)^*B5/2 - (Stv + Sqv)^*B5/2 - (Stv +$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma_2 c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

caso	σmonte	σ2b	Mb	Vb	_σ 2c	Мс	Vc
	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	36.35	62.85	-59.82	-37.53	49.60	-28.44	-39.16
	36.35	62.85	-166.17	-170.47	49.60	-55.03	-105.62
aiama.	47.61	54.61	-30.09	-21.98	51.11	-13.40	-19.27
sisma+	47.61	54.61	-45.31	-41.01	51.11	-17.21	-28.79
sisma-	42.92	51.27	-29.72	-21.50	47.10	-13.24	-19.13
	42.92	51.27	-43.83	-39.14	47.10	-16.77	-27.95

Stv+Stq

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

LOTTO

COMMESSA

CODIFICA

DOCUMENTO

RFV

FOGLIO

Opere di sostegno dal km 0+901 al km 1+033 BP LS - Relazione di calcolo

IF1N 01 E ZZ RI0005 005 82 di 90

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

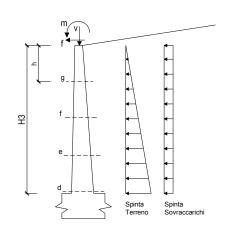
Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm kv)^* h^{2*} h/3$

 $\label{eq:Mt_sism} \text{Mt sism} = \frac{1}{2} *_{\gamma} *(\text{Kas}_{\text{orizz.}} * (1 \pm k \text{v}) - \text{Ka}_{\text{orizz.}}) * h^2 * h/2 \quad \text{o *h/3}$

= $\frac{1}{2}$ Ka_{orizz}*q*h² = m+f*h M_{ext} $M_{inerzia} = \sum Pm_i^*b_i^*kh$

 N_{ext}


N _{pp+inerzia}= $\sum Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv)-Ka_{orizz.})*h^2$

= Ka_{orizz}*q*h

 V_{ext} = f $V_{inerzia} = \sum Pm_i^*kh$

condizione statica

sezione h	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.21	9.70	49.99	1.35	61.04	1.50	22.10	23.60
e-e	1.66	4.09	28.12	1.35	33.56	1.50	16.58	18.08
f-f	1.11	1.21	12.50	1.35	15.06	1.50	11.05	12.55
g-g	0.55	0.15	3.12	1.35	4.63	1.50	5.53	7.03

sezione	h	Vt	Vq	$V_{\rm ext}$	V_{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.21	13.16	45.24	0.00	58.40
e-e	1.66	7.41	33.93	0.00	41.34
f-f	1.11	3.29	22.62	0.00	25.91
g-g	0.55	0.82	11.31	0.00	12.13

condizione sismica +

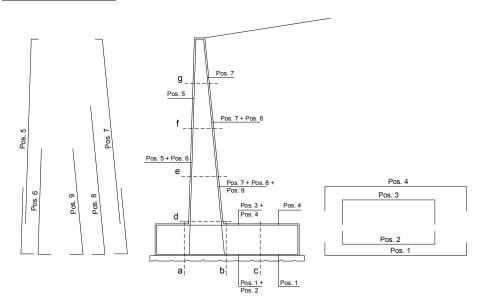
sezione	h	Mt stat	Mt _{sism}	Mq	$M_{\rm ext}$	M _{inerzia}	M _{tot}	N _{ext}	$N_{pp+inerzia}$	N_{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.21	7.18	2.70	14.96	1.00	1.85	27.69	1.50	22.94	24.44
e-e	1.66	3.03	1.14	8.41	1.00	1.04	14.62	1.50	17.20	18.70
f-f	1.11	0.90	0.34	3.74	1.00	0.46	6.44	1.50	11.47	12.97
g-g	0.55	0.11	0.04	0.93	1.00	0.12	2.20	1.50	5.73	7.23

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.21	9.75	2.45	13.54	0.00	1.67	27.41
e-e	1.66	5.49	1.38	10.15	0.00	1.26	18.27
f-f	1.11	2.44	0.61	6.77	0.00	0.84	10.65
g-g	0.55	0.61	0.15	3.38	0.00	0.42	4.56

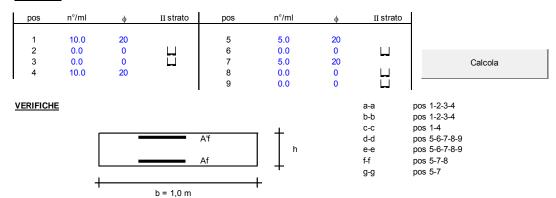
condizione sismica -

sezione	h	Mt stat	Mt _{sism}	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.21	7.18	1.83	15.16	1.00	1.85	27.02	1.50	21.26	22.76
e-e	1.66	3.03	0.77	8.53	1.00	1.04	14.37	1.50	15.95	17.45
f-f	1.11	0.90	0.23	3.79	1.00	0.46	6.38	1.50	10.63	12.13
g-g	0.55	0.11	0.03	0.95	1.00	0.12	2.20	1.50	5.32	6.82

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V_{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.21	9.75	1.66	13.72	0.00	1.67	26.80
e-e	1.66	5.49	0.93	10.29	0.00	1.26	17.96
f-f	1.11	2.44	0.41	6.86	0.00	0.84	10.55
g-g	0.55	0.61	0.10	3.43	0.00	0.42	4.56


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 83 di 90

SCHEMA DELLE ARMATURE

ARMATURE

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)
a - a	11.90	0.00	0.40	31.42	31.42	364.51
b - b	-166.17	0.00	0.40	31.42	31.42	364.51
C - C	-55.03	0.00	0.40	31.42	31.42	364.51
d - d	61.04	23.60	0.40	15.71	15.71	197.26
e -e	33.56	18.08	0.40	15.71	15.71	196.47
f - f	15.06	12.55	0.40	15.71	15.71	195.69
g - g	4.63	7.03	0.40	15.71	15.71	194.90

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	\mathbf{V}_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	_ _
a - a	38.67	0.40	212.66	10	20	20	21.8	584.31	Armatura a taglio non necessaria
b - b	170.47	0.40	212.66	10	20	20	21.8	584.31	Armatura a taglio non necessaria
C - C	105.62	0.40	212.66	10	20	20	21.8	584.31	Armatura a taglio non necessaria
d - d	58.40	0.40	171.78	10	20	20	21.8	584.31	Armatura a taglio non necessaria
e -e	41.34	0.40	171.08	10	20	20	21.8	584.31	Armatura a taglio non necessaria
f - f	25.91	0.40	170.38	10	20	20	21.8	584.31	Armatura a taglio non necessaria
g - g	12.13	0.40	169.68	10	20	20	21.8	584.31	Armatura a taglio non necessaria

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

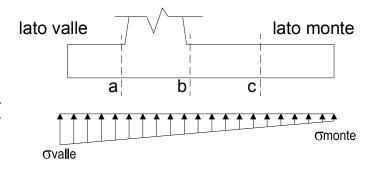
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	84 di 90

11.2.2 VERIFICHE A FESSURAZIONE

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

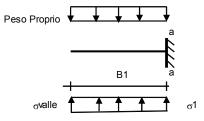

 σ valle = N / A + M / Wgg

omonte = N / A - M / Wgg

 $A = 1.0^*B$ = 2.60 (m²)

 $Wgg = 1.0*B^2/6 = 1.13 (m^3)$

N	M	σvalle	σmonte
[kN]	[kNm]	[kN/m²]	[kN/m ²]
141.74	10.18	63.55	45.48
141.74	10.18	63.55	45.48
129.19	-12.47	38.62	60.75
129.19	-12.47	38.62	60.75
	[kN] 141.74 141.74 129.19	[kN] [kNm] 141.74 10.18 141.74 10.18 129.19 -12.47	[kN] [kNm] [kN/m²] 141.74 10.18 63.55 141.74 10.18 63.55 129.19 -12.47 38.62

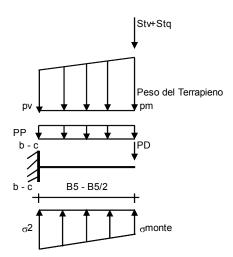


Mensola Lato Valle

Peso Proprio. PP = 10.00 (kN/m)

Ma = $\sigma^{1*B1^2/2}$ + ($\sigma^{1*B1^2/3}$ - PP*B1²/2*(1±kv)

0000	σvalle	σ1	Ма
caso	[kN/m ²]	[kN/m ²]	[kNm]
Eroa	63.55	59.38	9.39
Freq.	63.55	59.38	9.39
Q.P.	38.62	43.73	5.46
Q.P.	38.62	43.73	5.46


Mensola Lato Monte

Nmin N max Freq N max QP pm 44.20 101.50 44.20 (kN/m^2) 44.20 101.50 44.20 (kN/m^2) pvb 44.20 101.50 44.20 (kN/m^2) pvc

 $\begin{aligned} \text{Mb=} & (\sigma_{\text{monte}}(\text{pvb+PP}))^* \text{B5}^2 / 2 + (\sigma_2 \text{b} - \sigma_{\text{monte}})^* \text{B5}^2 / 6 - (\text{pm-pvb}))^* \text{B5}^2 / 3 + \\ & - (\text{Stv+Sqv})^* \text{B5-PD}^* (\text{B5-Bd} / 2) + \text{Msp+Sp*H2} / 2 \end{aligned}$

 $\begin{aligned} &\text{Mc} = (_{\text{Omonte}}\text{-}(\text{pvc}+\text{PP}))^*(\text{B5/2})^2/2 + (_{\text{G}}2\text{c}-_{\text{omonte}})^*(\text{B5/2})^2/6 - (\text{pm-pvc})^*(\text{B5/2})^2/3 + \\ &-(\text{Stv+Sqv})^*(\text{B5/2})\text{-}\text{PD}^*(\text{B5/2}\text{-Bd/2}) + \text{Msp+Sp}^*\text{H2/2} \end{aligned}$

caso	σmonte	σ2b	Mb	_σ 2c	Мс
Caso	[kN/m ²]	[kN/m²]	[kNm]	[kN/m ²]	[kNm]
Freq.	45.48	56.60	-40.70	51.04	-19.34
	45.48	56.60	-114.04	51.04	-37.67
Q.P.	60.75	47.14	-11.62	53.95	-5.73
	60.75	47.14	-11.62	53.95	-5.73

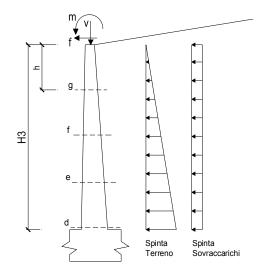
ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 85 di 90

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO


Azioni sulla parete e Sezioni di Calcolo

Mt = $\frac{1}{2}$ Ka_{orizz.}* γ *h²*h/3

Mq = $\frac{1}{2}$ Ka_{orizz}*q*h²

 $M_{ext} = m+f^*h$

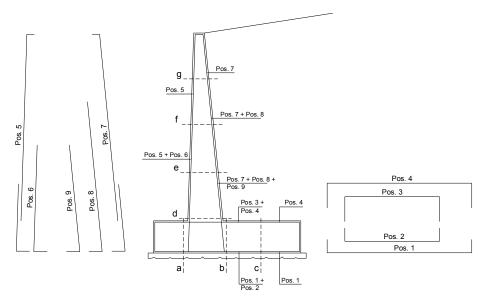
 N_{ext} = v

condizione Frequente

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.21	7.18	34.96	1.00	43.14	1.50	22.10	23.60
e-e	1.66	3.03	19.67	1.00	23.70	1.50	16.58	18.08
f-f	1.11	0.90	8.74	1.00	10.64	1.50	11.05	12.55
g-g	0.55	0.11	2.19	1.00	3.30	1.50	5.53	7.03

condizione Quasi Permanente

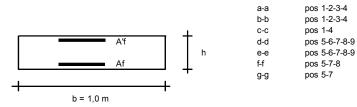
	condizione Quasi i cimanente										
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}			
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]			
d-d	2.21	7.18	7.02	1.00	15.21	1.50	22.10	23.60			
e-e	1.66	3.03	3.95	1.00	7.98	1.50	16.58	18.08			
f-f	1.11	0.90	1.76	1.00	3.65	1.50	11.05	12.55			
g-g	0.55	0.11	0.44	1.00	1.55	1.50	5.53	7.03			


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 86 di 90

Opere di sostegno dal km 0+901 al km 1+033 BP LS – Relazione di calcolo


SCHEMA DELLE ARMATURE

ARMATURE

	II strato	ф	n°/ml	pos	II strato	ф	n°/ml	pos
		20	5.0	5		20	10.0	1
Calaala	⊔ l	0	0.0	6	ш	0	0.0	2
Calcola		20	5.0	7	ū	0	0.0	3
	\sqcup	0	0.0	8		20	10.0	4
	I	0	0.0	9				

condizione Frequente

Sez.	М	N	h	Af	A'f	σc	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	9.39	0.00	0.40	31.42	31.42	0.38	10.25	0.008	0.200
b - b	-114.04	0.00	0.40	31.42	31.42	4.66	124.50	0.112	0.200
C - C	-37.67	0.00	0.40	31.42	31.42	1.54	41.13	0.033	0.200
d - d	43.14	23.60	0.40	15.71	15.71	2.51	83.80	0.093	0.200
e -e	23.70	18.08	0.40	15.71	15.71	1.38	44.42	0.049	0.200
f - f	10.64	12.55	0.40	15.71	15.71	0.62	18.57	0.020	0.200
g - g	3.30	7.03	0.40	15.71	15.71	0.19	4.81	0.005	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	М	N	h	Af	A'f	$\sigma^{\rm C}$	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	5.46	0.00	0.40	31.42	31.42	0.22	5.96	0.005	0.200
b - b	-11.62	0.00	0.40	31.42	31.42	0.47	12.68	0.010	0.200
C - C	-5.73	0.00	0.40	31.42	31.42	0.23	6.25	0.005	0.200
d - d	15.21	23.60	0.40	15.71	15.71	0.89	24.82	0.027	0.200
е -е	7.98	18.08	0.40	15.71	15.71	0.47	11.33	0.012	0.200
f - f	3.65	12.55	0.40	15.71	15.71	0.21	3.99	0.004	0.200
q-q	1.55	7.03	0.40	15.71	15.71	0.09	1.27	0.001	0.200

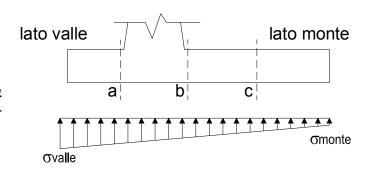
ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	RI0005 005	Α	87 di 90

11.2.3 VERIFICHE TENSIONALI

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

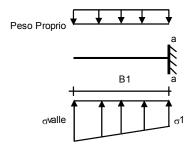

Reazione del terreno

 $_{\text{o}}$ valle = N / A + M / Wgg $_{\text{o}}$ monte = N / A - M / Wgg

 $A = 1.0*B = 2.60 (m^2)$

 $Wgg = 1.0*B^2/6 = 1.13 (m^3)$

	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
etation	141.74	10.18	63.55	45.48
statico	141.74	10.18	63.55	45.48
	138.58	6.41	58.99	47.61
sisma+	138.58	6.41	58.99	47.61
oiomo	129.24	7.64	56.49	42.92
sisma-	129.24	7.64	56.49	42.92



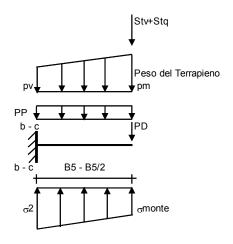
Mensola Lato Valle

Peso Proprio. PP = 10.00 (kN/m)

Ma = $\sigma^{1*B1^2/2}$ + ($\sigma^{1*B1^2/3}$ - PP*B1²/2*(1±kv)

caso	σvalle	σ1	Ma
Caso	[kN/m ²]	[kN/m ²]	[kNm]
statico	63.55	59.38	9.39
Statico	63.55	59.38	9.39
sisma+	58.99	56.36	8.59
Sisilia+	58.99	56.36	8.59
-1	56.49	53.36	8.25
sisma-	56.49	53.36	8.25

Mensola Lato Monte


PP PD	= =	(kN/m²) (kN/m)	peso proprio soletta fondazione peso proprio dente
		_	_

Nmin N max stat N max sism 44.20 101.50 55.66 (kN/m^2) pm 44.20 101.50 55.66 (kN/m^2) pvb 101.50 55.66 (kN/m^2) рус 44.20

$$\begin{split} Mb = & (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma_2 b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + \\ & - (Stv + Sqv)^*B5 - PD^*(1 \pm kv)^*(B5 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{split}$$

 $\begin{aligned} \text{Mc} = & (\sigma_{\text{monte}} - (\text{pvc} + \text{PP})^* (1 \pm \text{kv}))^* (\text{B5/2})^2 / 2 + (\sigma_{\text{CC}} - \sigma_{\text{monte}})^* (\text{B5/2})^2 / 6 - (\text{pm-pvc})^* (1 \pm \text{kv})^* (\text{B5/2})^2 / 3 + (\text{Stv} + \text{Sqv})^* (\text{B5/2}) - \text{PD}^* (1 \pm \text{kv})^* (\text{B5/2} - \text{Bd/2}) - \text{PD}^* \text{kh}^* (\text{Hd} + \text{H2/2}) + \text{Msp} + \text{Sp}^* \text{H2/2} \end{aligned}$

caso	σ monte	σ2b	Mb	_σ 2c	Мс
caso	[kN/m²]	[kN/m ²]	[kNm]	[kN/m²]	[kNm]
otation	45.48	56.60	-40.70	51.04	-19.34
statico	45.48	56.60	-114.04	51.04	-37.67
	47.61	54.61	-30.09	51.11	-13.40
sisma+	47.61	54.61	-45.31	51.11	-17.21
	42.92	51.27	-29.72	47.10	-13.24
sisma-	42 92	51 27	-43 83	47 10	-16 77

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 88 di 90

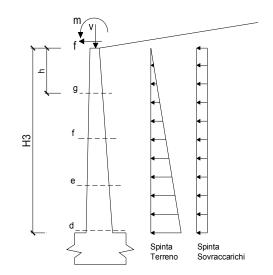
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm k v)^* h^{2*} h/3$

Mt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv)-Ka_{orizz.}) * h^2*h/2$

Mq = $\frac{1}{2}$ Ka_{orizz}*q*h²


 $M_{ext} = m+f^*h$

 $M_{inerzia} = \sum Pm_i^*b_i^*kh$

(solo con sis

 $N_{ext} = v$

N _{pp+inerzia}= $\Sigma Pm_i^*(1\pm kv)$

condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
002.00	[m] [kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	2.21	7.18	34.96	1.00	43.14	1.50	22.10	23.60
e-e	1.66	3.03	19.67	1.00	23.70	1.50	16.58	18.08
f-f	1.11	0.90	8.74	1.00	10.64	1.50	11.05	12.55
g-g	0.55	0.11	2.19	1.00	3.30	1.50	5.53	7.03

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.21	7.18	2.70	14.96	1.00	1.85	27.69	1.50	22.94	24.44
e-e	1.66	3.03	1.14	8.41	1.00	1.04	14.62	1.50	17.20	18.70
f-f	1.11	0.90	0.34	3.74	1.00	0.46	6.44	1.50	11.47	12.97
g-g	0.55	0.11	0.04	0.93	1.00	0.12	2.20	1.50	5.73	7.23

condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.21	7.18	1.83	15.16	1.00	1.85	27.02	1.50	21.26	22.76
e-e	1.66	3.03	0.77	8.53	1.00	1.04	14.37	1.50	15.95	17.45
f-f	1.11	0.90	0.23	3.79	1.00	0.46	6.38	1.50	10.63	12.13
g-g	0.55	0.11	0.03	0.95	1.00	0.12	2.20	1.50	5.32	6.82

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 89 di 90

pos 1-2-3-4

pos 1-2-3-4

pos 5-6-7-8-9

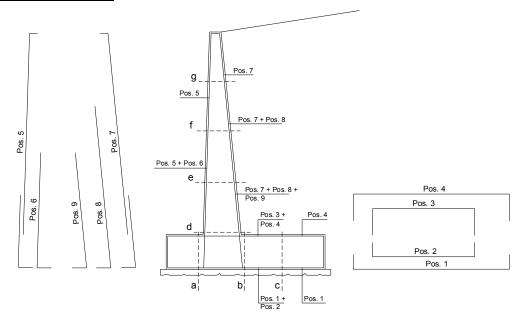
pos 5-6-7-8-9

pos 5-7-8 pos 5-7

pos 1-4

а-а

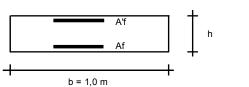
b-b


C-C

d-d

e-e f-f

g-g


SCHEMA DELLE ARMATURE

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato
1	10.0	20		5	5.0	20	
2	0.0	0	\sqcup	6	0.0	0	Ш
3	0.0	0	ш	7	5.0	20	
4	10.0	20		8	0.0	0	Ш
				9	0.0	0	\Box

Condizion	ie Statica						
Sez.	М	N	h	Af	A'f	$\sigma^{_{\mathbb{C}}}$	σ^{f}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	9.39	0.00	0.40	31.42	31.42	0.38	10.25
b - b	-114.04	0.00	0.40	31.42	31.42	4.66	124.50
C - C	-37.67	0.00	0.40	31.42	31.42	1.54	41.13
d - d	43.14	23.60	0.40	15.71	15.71	2.51	83.80
e -e	23.70	18.08	0.40	15.71	15.71	1.38	44.42
f - f	10.64	12.55	0.40	15.71	15.71	0.62	18.57
g - g	3.30	7.03	0.40	15.71	15.71	0.19	4.81

Condizione Sismica

ie Sismica						
М	N	h	Af	A'f	$\sigma^{\scriptscriptstyle \mathbb{C}}$	σf
(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
8.59	0.00	0.40	31.42	31.42	0.35	9.38
-45.31	0.00	0.40	31.42	31.42	1.85	49.47
-17.21	0.00	0.40	31.42	31.42	0.70	18.78
27.69	22.76	0.40	15.71	15.71	1.61	51.41
14.62	17.45	0.40	15.71	15.71	0.85	25.47
6.44	12.13	0.40	15.71	15.71	0.38	9.87
2.20	6.82	0.40	15.71	15.71	0.13	2.61
	M (kNm) 8.59 -45.31 -17.21 27.69 14.62 6.44	M N (kNm) (kN) 8.59 0.00 -45.31 0.00 -17.21 0.00 27.69 22.76 14.62 17.45 6.44 12.13	M N h (kNm) (kN) (m) 8.59 0.00 0.40 -45.31 0.00 0.40 -17.21 0.00 0.40 27.69 22.76 0.40 14.62 17.45 0.40 6.44 12.13 0.40	M N h Af (kNm) (kN) (m) (cm²) 8.59 0.00 0.40 31.42 -45.31 0.00 0.40 31.42 -17.21 0.00 0.40 31.42 27.69 22.76 0.40 15.71 14.62 17.45 0.40 15.71 6.44 12.13 0.40 15.71	M N h Af A'f (kNm) (kN) (m) (cm²) (cm²) 8.59 0.00 0.40 31.42 31.42 -45.31 0.00 0.40 31.42 31.42 -17.21 0.00 0.40 31.42 31.42 27.69 22.76 0.40 15.71 15.71 14.62 17.45 0.40 15.71 15.71 6.44 12.13 0.40 15.71 15.71	M N h Af A'f oc (kNm) (kN) (m) (cm²) (cm²) (N/mm²) 8.59 0.00 0.40 31.42 31.42 0.35 -45.31 0.00 0.40 31.42 31.42 1.85 -17.21 0.00 0.40 31.42 31.42 0.70 27.69 22.76 0.40 15.71 15.71 1.61 14.62 17.45 0.40 15.71 15.71 0.85 6.44 12.13 0.40 15.71 15.71 0.38

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 RI0005 005
 A
 90 di 90

12 INCIDENZE

Le incidenze dei muri di sostegno sono le seguenti:

Muro tipo conci 5 e 6 fondazione 175 kg/m³;

paramento 175 kg/m³.

Muro tipo concio 4 fondazione 175 kg/m³;

paramento 100 kg/m³.

Muro tipo conci 1, 2 e 3 fondazione 175 kg/m³;

paramento 100 kg/m³.