COMMITTENTE: E FERROVIARIA ITALIANA RUPPO FERROVIE DELLO STATO ITALIANE DIREZIONE LAVORI: RROVIE DELLO STATO ITALIANE APPALTATORE: Ghella ITINERA **DIRETTORE DELLA** PROGETTISTA: PROGETTAZIONE: **PROGETTAZIONE** RAGGRUPPAMENTO TEMPORANEO PROGETTISTI Ing. FEDERICO DURASTANTI Ing. PIETRO MAZZOLI Responsabile integrazione fra le varie PIZZAROTTI Sintagma INTEGRA prestazioni specialistiche PROGETTO ESECUTIVO ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI **FERMATE** Recinzioni, parapetti e strutture secondarie: relazione di calcolo **APPALTATORE** SCALA: Consorzio CFT IL DIRETTORE TECNICO Geom. C. BIANCHI 13-09-2018 COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. 2 0 Ε 0 0 0 0 0 Data Data Data Redatto Verificato Approvato Autorizzato Data Rev. Descrizione P.Castraberte 13-09-2018 F.Durastanti 13-09-2018 P. Mazzoli 13-09-2018 L.Dinelli Rev. Istruttoria ITF 29/08/18 Α

File: IF1N.0.1.E.ZZ.CL.OC0.0.0.0.002.A.doc

13-09-2018

n. Elab.:

itinera

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA

DOCUMENTO

REV.

FOGLIO

01 E ZZ CL FV0220 002 A 2 di 195

Indice

1	PRE	MESSA	6
2	DOC	CUMENTI DI RIFERIMENTO	7
2	.1	DOCUMENTI REFERENZIATI	7
_	045	ATTERIOTICHE DEL MATERIAL I	0
3		RATTERISTICHE DEI MATERIALI	
	3.1.1	ACCIAIO CARPENTERIA METALLICACALCESTRUZZO	
		ACCIAIO D'ARMATURA IN BARRE TONDE AD ADERENZA MIGLIORATA	_
		COPRIFERRO	
1		IFICA PARAPETTO TIPO C4	
		ANALISI DEI CARICHI	
4		PESO PROPRIO DELLA STRUTTURA	
		CARICO VARIABILE ORIZZONTALE LINEARE	
4		COMBINAZIONI DI CARICO	
		VERIFICA DI RESISTENZA:	
		VERIFICA DI DEFORMABILITÀ	
-		VERIFICA DELLA PIASTRA DI BASE	_
4		VERIFICA DELLA PIASTRA DI BASE VERIFICA SEZIONE DI CONTATTO	
	4.5.1		-
		VERIFICA ANCORAGGIO	
4		VERIFICA DEL CORRIMANO	
-		VERIFICA DI RESISTENZA	
		VERIFICA DI DEFORMABILITÀ	
5	VFR	IFICA PARAPETTO TIPO C7	30
_		ANALISI DEI CARICHI	
3	. ı 5.1.1		
	•	CARICO VARIABILE ORIZZONTALE LINEARE	
5		COMBINAZIONI DI CARICO	
		VERIFICA DI RESISTENZA:	
	_	VERIFICA DI DEFORMABILITÀ	_
5		VERIFICA DELLA PIASTRA DI BASE	
	5.5.1 5.5.2	VERIFICA SEZIONE DI CONTATTO	
	5.5.2		
	0.0.0		
6	PAN	NELLO DI PROTEZIONE-CANCELLO (PART. 8-9)	45

Ghella

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA

IF1N

LOTTO

CODIFICA

DOCUMENTO

REV.

FOGLIO

01 E ZZ CL FV0220 002 A 3 di 195

6.1	ANALISI DEI CARICHI	16
6.1.1		
6.1.2		
6.1.3		
	4 AZIONE DEL VENTO	
6.2	COMBINAZIONI DI CARICO	
6.3	VERIFICA DI RESISTENZA:	
6.3.1		
6.3.2		
6.3.3		
6.3.4		
	5 VERIFICA ELEMENTO VERTICALE A T 100x60x6	
6.4	VERIFICA DI DEFORMABILITÀ	
6.5	VERIFICA DELLA PIASTRA DI BASE	
6.5.1		
6.5.2		
6.5.3		_
6.5.4		
6.5.5	5 VERIFICA DI RESISTENZA PIASTRA TIPO 8B	75
6.5.6	6 VERIFICA ANCORAGGIO PIASTRA TIPO 8B	75
6.6	VERIFICA CORDOLO DI FONDAZIONE	81
6.6.1	1 VERIFICHE GEOTECNICHE	81
6.6.2	2 VERIFICA DI RESISTENZA	88
7 CAI	NCELLO MOBILE (PART. 7)	96
	ANALISI DEI CARICHI	
7.1 7.1.1		
	2 CARICO PERMANENTE	
	3 AZIONE DEL VENTO	
7.1.	COMBINAZIONI DI CARICO	
	VERIFICA DI RESISTENZA:	
7.3 7.3.1		
7.3.1		
7.3.2		
7.3.4		
	5 VERIFICA ELEMENTO VERTICALE A T 100x60x6	
7.4	VERIFICA DI DEFORMABILITÀ	
7. 4 7.5	VERIFICA DELLA PIASTRA DI BASE	
7.5.1		
	2 VERIFICA DI RESISTENZA PIASTRA TIPO 7A	
	3 VERIFICA ANCORAGGIO PIASTRA TIPO 7A	

Ghella

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO

01 E ZZ

IF1N

CODIFICA CL

DOCUMENTO FV0220 002

REV.

Α

FOGLIO 4 di 195

i calcolo		
	V	

7.5	5.4 VERIFICA SEZIONE DI CONTATTO PIASTRA TIPO 7B	123
7.5	5.5 VERIFICA DI RESISTENZA PIASTRA TIPO 7B	125
7.5	5.6 VERIFICA ANCORAGGIO PIASTRA TIPO 7B	125
7.6	VERIFICA CORDOLO DI FONDAZIONE	131
7.6	6.1 VERIFICHE GEOTECNICHE	131
7.6	6.2 VERIFICA DI RESISTENZA	138
		4.44
	TRUTTURA IN ACCIAIO PER RIVESTIMENTI	
8.1	ANALISI DEI CARICHI	
• • • • • • • • • • • • • • • • • • • •	1.1 PESO PROPRIO DELLA STRUTTURA	
	1.2 CARICO PERMANENTE	
	1.3 AZIONE DEL VENTO	
8.2	COMBINAZIONI DI CARICO	149
8.3	VERIFICA DI RESISTENZA:	150
	3.1 VERIFICA PILASTRINO HEB500	
8.3	3.2 VERIFICA TRAVE UPN 200	156
8.4	VERIFICA DI DEFORMABILITÀ	158
8.5	VERIFICA UNIONE BULLONATA UPN200-HEB500	160
8.6	VERIFICA UNIONE SALDATA PIASTRA500X200X10 - HEB500	162
8.7	VERIFICA UNIONE SALDATA PIASTRA75X200X10 - UPN200	
8.8	VERIFICA DELLA PIASTRA DI BASE	
	8.1 VERIFICA SEZIONE DI CONTATTO PIASTRA	
	8.2 VERIFICA ANCORAGGIO PIASTRA	
0 DE	FOINTIONE METALLIOA FIOCA	470
	ECINZIONE METALLICA FISSA	
9.1	ANALISI DEI CARICHI	
	1.1 PESO PROPRIO DELLA STRUTTURA	
	1.2 CARICO PERMANENTE	
	1.3 CARICO VARIABILE ORIZZONTALE LINEARE	
	1.4 AZIONE DEL VENTO	
9.2	COMBINAZIONI DI CARICO	
9.3	VERIFICA DI RESISTENZA:	
	3.1 VERIFICA MONTANTE SCATOLARE 90X90X8	
	3.2 VERIFICA LONGHERONE SCATOLARE 60X60X5	
	3.3 VERIFICA LONGHERONE SCATOLARE 50x50x6.3	
9.4	VERIFICA DI DEFORMABILITÀ	185
9.5	VERIFICA DELLA PIASTRA DI BASE	186
9.5	5.1 VERIFICA SEZIONE DI CONTATTO PIASTRA	188
	5.2 VERIFICA DI RESISTENZA PIASTRA	
9.5	5.3 VERIFICA ANCORAGGIO PIASTRA	190

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FOGLIO

5 di 195

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A

1 PREMESSA

Nella seguente relazione di calcolo si riporta il dimensionamento e le verifiche dei parapetti, dei pannelli di recinzione/protezione e delle strutture secondarie presenti all'intermo delle fermate Valle Maddaloni (FV01) e Dugenta (FV02) facente parte delle opere dell'itinerario Napoli-Bari raddoppio tratta Cancello-Benevento I lotto funzionale Cancello-Frasso Telesino e variante alla linea Roma Napoli via Cassino nel comune di Maddaloni

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 7 di 195

2 DOCUMENTI DI RIFERIMENTO

2.1 DOCUMENTI REFERENZIATI

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Rif. [1] "Istruzione per la progettazione e l'esecuzione dei ponti ferroviari" (rif. RFI-DTC-ICI-PO-SP-INF-001-A);
- Rif. [2] Approvazione delle nuove norme tecniche per le costruzioni D.M. 14-01-08 (NTC-2008);
- Rif. [3] Circolare n. 617 del 2 febbraio 2009 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008;
- Rif. [4] Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20/03/2003. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica;
- Rif. [5] Decreto del Presidente del Consiglio dei Ministri del 21/10/2003;
- Rif. [6] Eurocodice 2: Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- Rif. [7] UNI ENV 1992-1-1 Parte 1-1:Regole generali e regole per gli edifici;
- Rif. [8] UNI EN 206-1/2001 Calcestruzzo. Specificazioni, prestazioni, produzione e conformità;
- Rif. [9] UNI EN 1998-5 Fondazioni ed opere di sostegno.
- Rif. [10] REGOLAMENTO (UE) N. 1299/2014 DELLA COMMISSIONE del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea
- Rif. [11] Eurocodice 3 "Progettazione delle strutture in acciaio" ENV 1993-1-1.

3 CARATTERISTICHE DEI MATERIALI

3.1.1 ACCIAIO CARPENTERIA METALLICA

A) ACCIAIO PROFILATI METALLICI S275 JR

Composizione chimica S275JR (%)

C max		Mn	Р	S	Si	Cu	N	
< 16 mm	> 16 ≤ 40 mm	> 40 mm	max	max	max	max	max	max
0,21	0,21	0,22	1,50	0,035	0,035	-	0,55	0,012

Caratteristiche meccaniche S275JR

			Laminato a caldo (Ø del provino in mm)								
		≤ 3	> 3 ≤ 16	> 16 ≤ 40	> 40 ≤ 63	> 63 ≤ 80	> 80 ≤ 100	> 100 ≤ 150	> 150 ≤ 200	> 200 ≤ 250	> 250 ≤ 400
Limite di Snervamento, Reh (MPa) min		275	275	265	255	245	235	225	215	205	-
Resistenza a Trazione	min	430	410	410	410	410	410	400	380	380	380
Rm (MPa)	max	580	560	560	560	560	560	540	540	540	540
Allungamento A (%) min		23	23	23	22	21	21	19	18	18	18
Resilienza Kv +20°C (J) min		27	27	27	27	27	27	27	27	27	27
Durezza HB	min	-	-	-	-	-	-	-	-	-	-
Dulezza FID	max	-	-	-	-	-	-	-	-	-	-

B) ACCIAIO BULLONI E DADI

Acciaio ad alta resistenza secondo

UNI 3740

Vite Classe 8.8 Dado Classe 8G

C) SALDATURE

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

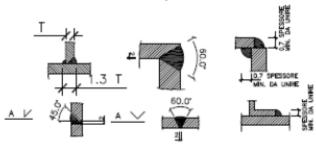
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 9 di 195


Procedimenti di saldatura omologati e qualificati (tipo automatico ad arco sommerso o altri che verranno concordati e accettati dall'ente appaltante) conformi a DM 09/01/1996 e CNR 10011/1997

ACCIAIO PER CARPENTERIA METALLICA

TIPO: Elementi strutturali (UNI EN 10025) S275J2

- Saldature a cordone d'angolo

Saldature continue e a totale ripristino della sezione dove non diversamente indicato.

- Tutte le saldature devono essere eseguite nel rispetto dell'istruzione FS44S

TIRAFONDI

- Barre interamente filettate con filettatura metrica ISO a passo grosso, di caratteristiche meccaniche equivalenti alla classe 8.8 secondo UNI EN ISO 898 parte I
- dadi con caratteristiche meccaniche equivalenti alla classe 8 secondo UNI EN 20898 parte II conformi per le caratteristiche dimensionali alla UNI 14399-4
- rosette C50 EN 10083 (HRC32+40)
- Eventuale Resina inghisaggio tirafondi: tipo HILTI HIT RE 500

BULLONERIA AD ALTA RESISTENZA:

COMPOSIZIONE: 1 DADO + 2 RONDELLE + 1 VITE

- Viti classe 8.8 UNI EN ISO 898-1, UNI EN 14399-4
- Dadi classe 8 UNI EN 20898-2, UNI EN 14399-4
- Controdadí classe 8 UNI EN 20898-2, UNI EN 14399-4
- Rosette Accigio C 50 UNI EN 10083-2, temperato e rinvenuto HRC 32:40, UNI EN 14399-6
- Piastrine Acciaio C 50 UNI EN 10083-2, temperato e rinvenuto HRC 32;40, UNI EN 14399-6

TRATTAMENTO PROTETTIVO SUPERFICIALE:

- ZINCATURA A CALDO SECONDO UNI EN ISO 1461-99
- Specifica tecnica Italferr DI TC/AR ST PO 005 (Istruzione 44V)

Cicli di verniciatura per la protezione dalla corrosione di opere metalliche nuove in acciaio zincato in ambiente misto.

- Coppia di serraggio bulloni: M20-274 Nm, M16-141 Nm, M12-56.6 Nm
- F NORMA DI RIFERIMENTO:

Linee guida relative alla costruzione e al collaudo delle carpenterie metalliche per pensiline, capannoni e fabbricati (XXXX 00 0 IF PF IG.00.00 001 B)

- Tutte le strutture metalliche devono essere adequatamente messe a terra

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL FV0220 002 A 10 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

3.1.2 CALCESTRUZZO

Per cordoli di fondazioni cancelli, pannelli di protezione e parapetti classe C25/30

3.1.3 ACCIAIO D'ARMATURA IN BARRE TONDE AD ADERENZA MIGLIORATA

Si adotta acciaio tipo B450C come previsto al punto 11.3.2.1 delle NTC2008, per il quale si possono assumere le seguenti caratteristiche:

Resistenza a trazione – compressione:

 f_{tk} = 540 N/mm² = Resistenza caratteristica di rottura

 f_{vk} = 450 N/mm² = Resistenza caratteristica a snervamento

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = 391.3 \text{ N/mm}^2 = \text{Resistenza di calcolo}$$

dove

 y_s = 1.15 = Coefficiente parziale di sicurezza relativo all'acciaio.

3.1.4 COPRIFERRO

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 2.2.2009, riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

		barre o	barre da c.a.		barre da c.a.		cavi da c.a.p		cavi da c.a.p	
		elementi a piastra		altri elementi		elementi a piastra		altri elementi		
Cmin	Со	ambiente	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<>	C≥Co	Cmin≤C <co< td=""></co<>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Ai valori riportati nella tabella vanno aggiunte le tolleranze di posa, pari a 10 mm. Si riportano di seguito i copriferri adottati, determinati in funzione della classe del cls e delle condizioni ambientali.

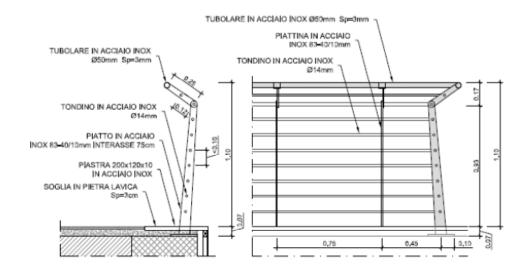
	Ambiente	Copriferro minimo	Tolleranza di posa	Copriferro nominale
Struttura ir elevazione	Ordinario	25	10	35
Lastre predalles	Ordinario	20	0	20
Fondazioni	Ordinario	25	10	35

In definitiva si prescrive che in fondazione e in elevazione tranne che per le lastre predalles il copriferro netto non deve essere inferiore a 40mm.

Prove sui materiali

La costruzione delle strutture dovrà essere eseguita nel rispetto delle specifiche d'istruzione tecnica FS 44/M - REV. A DEL 10/04/00.

4 VERIFICA PARAPETTO TIPO C4


Si riporta di seguito la verifica dei montanti che sostengono il parapetto in acciaio tipo C4 disposto all'interno delle banchine e dei corpi scala di entrambe le fermate. I montanti del parapetto sono costituiti da piatti trapezoidali di dimensioni 83x40 mm e spessore 10 mm realizzati in acciaio S275 JR

Si effettua di seguito la verifica dei montanti considerando l'interasse massimo di 0.75 m.

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La struttura viene discretizzata con un modello bidimensionale in elementi tipo trave.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite secondo NTC 2008. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Di seguito si riporta lil dettaglio del parapetto

4.1 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

4.1.1 PESO PROPRIO DELLA STRUTTURA

Le sollecitazioni indotte dal peso della struttura sono valutate automaticamente dal programma

4.1.2 CARICO VARIABILE ORIZZONTALE LINEARE

In base a quanto prescritto nella normativa NTC 2008 (3.1.4.1), per verifiche locali di elementi verticali bidimensionali (tramezzi, pareti, tamponamenti esterni con esclusione di divisori mobili) si considera un carico pari a 3 KN/m (Cat. C3) applicato alla quota di 1,20 m dal rispettivo piano di calpestio per pareti ed alla quota di bordo superiore per parapetti o mancorrenti. I carichi variabili orizzontali devono essere utilizzati per verifiche locali e non si sommano ai carichi utilizzati nelle vdrifiche dell'edificio o struttura nel suo insieme.

Tale carico sarà applicato solo alla parte di struttura fissa.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 12 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

4.2 COMBINAZIONI DI CARICO

FERMATE

Ai fini delle verifiche degli stati limite si riportano per comodità le combinazioni delle azioni riportate nella normativa alla quale è possibile fare riferimento per la simbologia adottata:

-Combinazione fondamentale. generalmente impiegata per gli stati limite ultimi (SLU):

 γ G1 · G1 + γ G2 · G2 + γ P · P + γ Q1 · Qk1 + γ Q2 · ϕ 02 · Qk2 + γ Q3 · ϕ 03 · Qk3 + ...

-Combinazione caratteristica (rara). generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

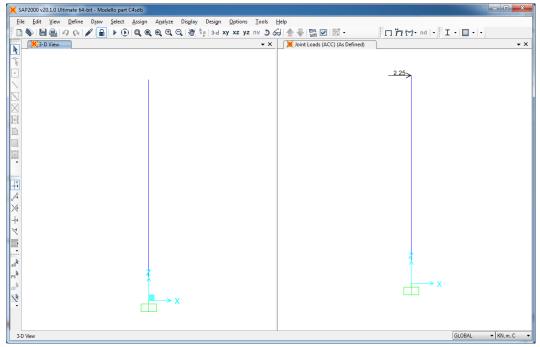
Tabella 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente γF	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ ₆₂	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	ΥQi	0,0 1,5	0,0 1,5	0,0

(¹⁰Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.

4.3 VERIFICA DI RESISTENZA:

Lo schema statico del montante è quello di una colonna incastrata al piede e libera in testa.


Interasse dei montanti i = 0.75 m

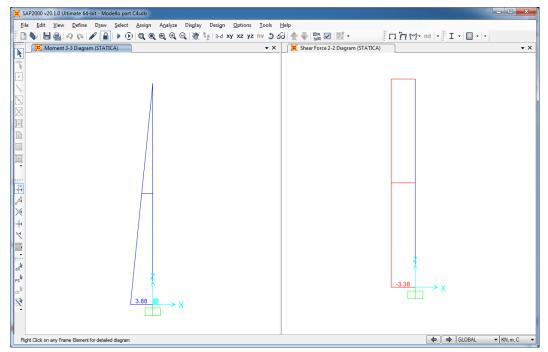
Altezza montante I = 1.15 m

Sovraccarico accidentale concentrato F = 3*0.75 = 2.25 KN

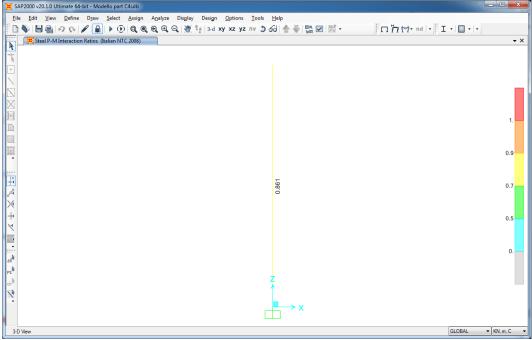
quota di applicazione di F: h = 1.15 m

Combinazione di carico statica = 1.3 G+1.5 F

Modello di calcolo - Carico lineare


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

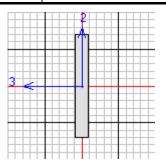

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 14 di 195

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Sollecitazioni di progetto combo STATICA

Verifica di resisstenza -Tasso di sfruttamento



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO CODIFICA DOCUMENTO RFV FOGLIO 01 E ZZ FV0220 002 15 di 195 IF1N CL Α

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

Combo: STATICA X Mid: 0.000 Frame : 55 Design Type: Column

Length: 1.150 Y Mid: 0.000 Shape: piatto Frame Type: Non Dissipative

Loc : 1.150 Z Mid: 0.575 Class: Class 2 Rolled : No

Interaction=Method B MultiResponse=Envelopes P-Delta Done? No

GammaM0=1.05 GammaM1=1.05 GammaM2=1.25 PLLF=0.750 An/Ag=1.00 RLLF=1.000

D/C Lim=0.950

Aeff=8.300E-04 eNy=0.000eNz=0.000A=8.300E-04 Iyy=0.000 iyy=0.024

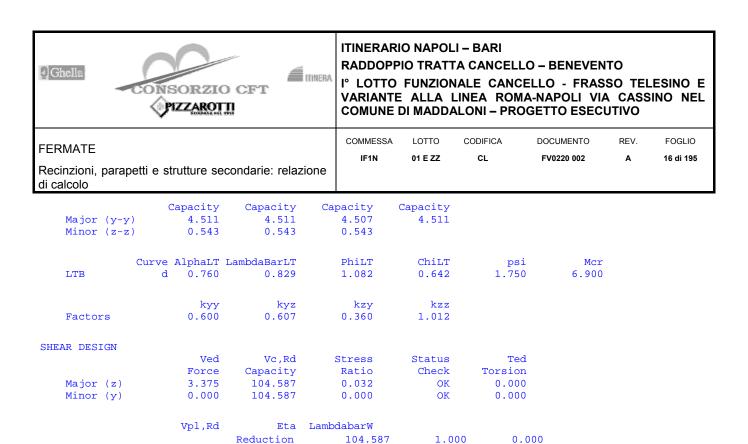
Wel,yy=1.148E-05 Weff,yy=1.148E-05 It=0.000 Izz=0.000izz=0.003 Wel,zz=1.383E-06 Weff, zz=1.383E-06Av,y=6.917E-04 Iyz=0.000 Wpl,yy=1.722E-05 Tw = 0.000h=0.083E=210000000.0 fu=430000.000 fy=275000.000 Wpl,zz=2.075E-06Av, z=6.917E-04

STRESS CHECK FORCES & MOMENTS

Location Ned Med, yy Med,zz Ved,z Ved,y 1.150 -0.096 3.881 0.000 -3.375 0.000 0.000

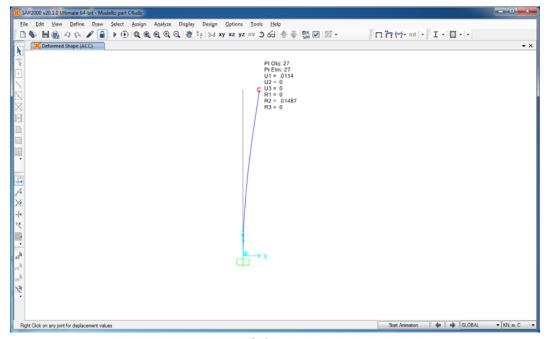
PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.1(7)) D/C Ratio: 0.861 = 0.000 + 0.860 + 0.000 < 0 950

OK = (NEd/NRd) + (My,Ed/My,Rd) + (Mz,Ed/Mz,Rd) (EC3 6.2.1(7))


AXIAL FORCE DESIGN

		Ned	Nc,Rd	Nt,Rd			
		Force	Capacity	Capacity			
Axial		-0.096	217.381	217.381			
		Npl,Rd	Nu,Rd	Ncr,T	Ncr,TF	An/Ag	
		217.381	256.968	3545.577	7.528	1.000	
Cui	rve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
Major (y-y)	C	0.490	518.578	0.663	0.834	0.747	162.423
MajorB(y-y)	C	0.490	518.578	0.663	0.834	0.747	162.423
Minor $(z-z)$	C	0.490	7.528	5.507	16.961	0.030	6.587
MinorB(z-z)	C	0.490	7.528	5.507	16.961	0.030	6.587
Torsional TF	C	0.490	7.528	5.507	16.961	0.030	6.587

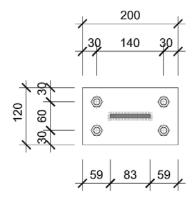
MOMENT DESIGN


	Med	Med,span	Mm, Ed	Meq,Ed
	Moment	Moment	Moment	Moment
Major (y-y)	3.881	3.881	1.941	2.329
Minor (z-z)	0.000	0.000	0.000	0.000

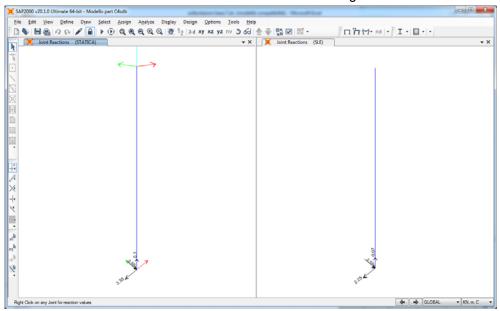
Mv,Rd Mc,Rd Mn,Rd Mb, Rd

4.4 VERIFICA DI DEFORMABILITÀ

Per la verifica a deformazione del parapetto si considera quanto riportato sulla normativa UNI EN 14122-3: Freccia massima elastica fmax < 30 mm applicando una forza orizzontale F_{max} = 300 N/m x lunghezza in metri tra i montanti. A favore di sicurezza si riporta la freccia massima orizzontale dovuta al carico variabile di 3 KN/m*interasse montanti e si confronta con il valore limite indicato precedentemente.


Deformata

Come si può vedere la deformata elastica presenta un valore di 11.4 mm < 30 mm per cui la verifica risulta soddisfatta



4.5 VERIFICA DELLA PIASTRA DI BASE

La piastra di fondazione ha una dimensione di 120x200 mm, spessore 10 mm, è dotata di quattro tasselli chimici M12 ed è realizzata in acciaio S275.

Dal modello di calcolo del montante si ricavano le sollecitazioni massime agenti alla base:

Reazioni alla base

Sollecitazioni di progetto:

	TABLE: Joint Reactions											
Joint	OutputCase	F1	F3	M2								
Text	Text	KN	KN	KN-m								
33	STATICA	-3.38	0.10	-3.88								
33	SLE	-2.25	0.07	-2.59								

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 18 di 195

4.5.1 VERIFICA SEZIONE DI CONTATTO

Si effettua la verifica della sezione di contatto in campo elastico considerando le sollecitazioni della combinazione

DATI GENERALI SEZIONE IN C.A.

NOME SEZIONE: piastra C4

Descrizione Sezione:

Metodo di calcolo resistenza:

Tipologia sezione:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

Posizione sezione nell'asta:

Tensioni Ammissibili
Sezione generica
Assi x,y principali d'inerzia
Zona non sismica
In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO	_	Classe:	C25/30

Tensione Normale Ammiss. Sc : 97.50 daN/cm²
Tensione Tangenz.Amm. TauC0 : 6.00 daN/cm²
Tensione Tangenz.Amm. TauC1 : 18.28 daN/cm²
Coeff. N di omogeneizzazione : 15.0
Modulo Elastico Normale Ec : 314750 daN/cm²
Coeff. di Poisson : 0.20
Resis. media a trazione fctm: 26.00 daN/cm²

ACCIAIO - Tipo: B450C

Resist. caratt. rottura ftk: 5400.0 daN/cm²
Tensione Ammissibile Sf: 2550.0 daN/cm²
Modulo Elastico Ef: 2000000 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C25/30

N.vertice	Ascissa X, cm	Ordinata Y, cm
1	6.00	0.00
7	-6.00 -6.00	0.00 20.00
2	6.00	20.00
4	6.00	0.00
-	0.00	0.00

DATI BARRE ISOLATE

N.Barra Numero assegnato alle singole barre isolate e nei vertici dei domini
Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Diam. Diametro in mm della barra

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	-3.00	3.00	10.34
2	-3.00	17.00	10.34
3	3.00	17.00	10.34
4	3.00	3.00	10.34

TENS.AMMISS. - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb.	N	Mx	My	Vy	Vx

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

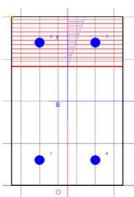
Recinzioni, parapetti e strutture secondarie: relazione

CODIFICA CL

DOCUMENTO FV0220 002

REV.

Α


FOGLIO 19 di 195

259

0 0 0

LOTTO

01 E ZZ

COMMESSA

IF1N

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 2.5 cm Interferro netto minimo barre longitudinali: 5.0 cm

METODO DELLE TENSIONI AMMISSIBILI - MASSIME E MINIME TENSIONI NORMALI

	Ver		S = co	mbinazi	one ver	ificata /	N = co	mbin. n	on verific	cata		
	Sc max		Massim	a tensi	one [in	daN/cm²]	nel co	nglomer	ato (posit	iva se d	i compr	ess.)
	Xc max		Asciss	a [in	cm] cor	rispond.	al punt	o di ma	ssima comp	ressione		
	Yc max		Ordina	ta [in	cm] cor	rispond.	al punt	o di ma	ssima comp	ressione		
	Sc min		Minima	tensi	one [in	daN/cm²]	nel co	nglomer	ato (posit	iva se d	i compr	ess.)
	Xc min		Asciss	a [in	cm] cor	rispond.	al punt	o di mi	nima compi	ressione		
	Yc min		Ordina	ta [in	cm] cor	rispond.	al punt	o di mi	nima compı	ressione		
	Sf min		Minima	tensi	one [in	daN/cm²]	nell'a	cciaio	(negativa	se di tr	azione)	
	Yf min		Ordina	ta [in	cm] cor	rispond.	alla ba	rra di 1	minima ter	nsione		
							_					
N.	.Comb.	Ver	Sc max	Xcmax	Ycmax	Sc min	Xcmin	Ycmin	Sc med	Sf min	Xfmin	Yfmin
			26.0		00.0			0 0		1040	2 0	2 0
	1	S	46 X	-h ()	Z() ()	() ()	() ()	() ()		-1042	٠ ()	× ()

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a	Coeff.	a nell'eq.	dell'asse n	neutro	aX+bY+c=0	nel	rif.	X,Y,O 9	gen.
b	Coeff.	b nell'eq.	dell'asse n	neutro	aX+bY+c=0	nel	rif.	X,Y,O 9	gen.
С	Coeff.	c nell'eq.	dell'asse n	neutro	aX+bY+c=0	nel	rif.	X,Y,O 9	gen.

N.Comb.	a	b	C
1	0.00000000	0.000046900	-0.000661746

4.5.2 VERIFICA DI RESISTENZA PIASTRA

Si effettua la verifica della piastra come una mensola incastrata in corrispondenza del montante caricata con la forza di trazione massima agente sui tasselli allo SLU pari a $F_{traz} = (\sigma_b \cdot A_{res} \cdot n) \cdot \gamma_q$.

Di seguito si riporta il foglio di calcolo utilizzato per la verifica.

			1
Bulloni			
Barra M	12		
Acciaio	5.8		
A =	1.13	cmq	
Ares =	0.84	cmq	
Фeq =	10.34	mm	
n =	2		
Piastra			
a=	20	cm	
b=	12	cm	
sp=	1	cm	
Acciaio	S275		
fyk=	275	MPa	
fyd=	250	MPa	
σb=	1042.0	Kg/cmq	
Wel=	2.00	cm^3	
Wpl=	3.00	cm^3	
e=	2.85	cm	
F_traz =	2625.8	Kg	
Sollecitazioni d	i progetto		
Msd=	7483.6	Kgcm	
Mrd =	7500.0	Kgcm	
Msd	<	Mrd	verificato

4.5.3 VERIFICA ANCORAGGIO

Il fissaggio della piastra alla struttura sottostante avviene tramite quattro barre filettate M12 in acciaio classe 5.8 con ancorante chimico ad iniezione tipo HILTY HIT-RE 500 V3 o similare.

La verifica viene effettuata considerando le sollecitazione massime alla base allo SLU nella combinazione di calcolo STATICA utilizzando il codice di calcolo PROFIS Anchor 2.7.8 prodotto dalla HILTI di cui se ne riporta il report di verifica.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA

DOCUMENTO

REV. FOGLIO

FV0220 002 A 21 di 195

Profis Anchor 2.7.8

www.hilti.it

Impresa: Progettista: Indirizzo:

Indinzzo:
Telefono I Fax: |
E-mail:

Pagina: Progetto: Contratto N°:

ta:

11/09/2018

Commenti del progettista:

1 Dati da inserire

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M12

Hilti Seismic set o altro sistema per il riempimento dello spazio aulare tra piastra e ancou...

Profondità di posa effettiva: het,act = 150 mm (het,limit = - mm)

 Materiale:
 5.8

 Certificazione No.:
 ETA 16/0143

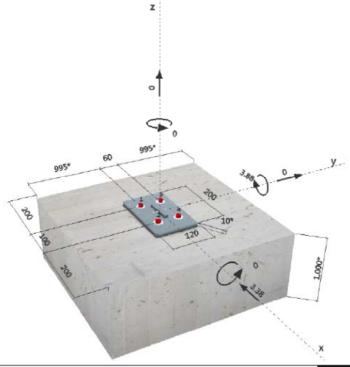
 Emesso I Valido:
 12/07/2017 |

Prova: Metodo di calcolo SOFA + fib (07/2011) – dopo prove ETAG BOND

Fissaggio distanziato: e_b = 0 mm (Senza distanziamento); t = 10 mm

Piastra d'ancoraggio: I_x x I_y x t = 200 mm x 120 mm x 10 mm; (Spessore della piastra raccomandato: non calcolato

Profilo: Barra liscia; (L x W x T) = 75 mm x 10 mm x 0 mm


Materiale base: non fessurato calcestruzzo, C25/30, f_{c,ogl} = 25.00 N/mm²; h = 1,000 mm, Temp. Breve/Lungo: 0/0 °C

Installazione: Foro eseguito con perforatore, Condizioni di installazione: asciutto

Armatura: interasse delle armature < 150 mm (qualunque Ø) o < 100 mm (Ø <= 10 mm)

senza armatura di bordo longitudinale

Geometria [mm] & Carichi [kN, kNm]

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

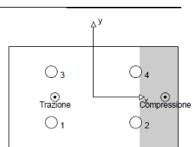
FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ CL FV0220 002 22 di 195 Α

www.hilti.it Profis Anchor 2.7.8 Impresa: Progettista: Pagina: Progetto:

Indirizzo: Telefono I Fax: Contratto N°: Data: 11/09/2018 E-mail:


2 Condizione di carico/Carichi risultanti sull'ancorante

Condizione di carico: Carichi di progetto

Carichi sull'ancorante [kN] Trazione: (+ Trazione, - Compressione)

Ancorante	Trazione	Taglio	Taglio in dir. x	Taglio in dir. y
1	14.214	0.845	-0.845	0.000
2	0.641	0.845	-0.845	0.000
3	14.214	0.845	-0.845	0.000
4	0.641	0.845	-0.845	0.000

Compressione max. nel calcestruzzo: Max. sforzo di compressione nel calcestruzzo: risultante delle forze di trazione nel (x/y)=(-46/0): risultante delle forze di compressione (x/y)=(85/0): 0.36 [‰] 10.94 [N/mm²] 29.711 [kN] 29.711 [kN]

3 Carico di trazione SOFA (fib (07/2011), paragrafo 16.2.1)

	Carico [kN]	Resistenza [kN]	Utilizzo β _N [%]	Stato
Rottura dell'acciaio*	14.214	28.100	51	OK
Rottura combinata conica del calcestruzzo e per sfilamento**	29.711	79.455	38	OK
Rottura conica del calcestruzzo**	29.711	68.158	44	OK
Fessurazione**	N/A	N/A	N/A	N/A

*ancorante più sollecitato **gruppo di ancoranti (ancoranti sollecitati)

3.1 Rottura dell'acciaio

	N _{Rk,s} [kN]	YM,s	N _{Rd,s} [kN]	N _{Sd} [kN]	
_	42.1ED	1 500	20 100	14 214	_

3.2 Rottura combinata conica del calcestruzzo e per sfilamento

A _{p,N} [mm ²]	A _{p,N} [mm ²]	Ψ _{A,Np}	τ _{Rk,ucr,25} [N/mm²]	s _{cr,Np} [mm]	c _{cr,Np} [mm]	c _{min} [mm]
194,373	130,560	1.489	17.00	361	181	200
Ψε	τ _{Rk,ucr} [N/mm²]	max τ _{Rk,ucr} [N/mm²]	Ψ g,Np	Ψg,Np		
1.018	17.31	17.87	1.046	1.024		
e _{c1,N} [mm]	Ψ ec1,Np	e _{c2,N} [mm]	Ψ ec2,Np	Ψs,Np	Ψ re,Np	
46	0.798	0	1.000	1.000	1.000	
$N_{Rk,p}^0$ [kN]	N _{Rk,p} [kN]	γм,	N _{Rd,p} [kN]	N _{Sd} [kN]	_	
97.902	119.183	1.500	79.455	29.711		

3.3 Rottura conica del calcestruzzo

A _{c,N} [mm ²]	A _{c,N} [mm ²]	ΨAN	c _{cr,N} [mm]	s _{cr,N} [mm]	
255,000	202,500	1.259	225	450	
e _{c1,N} [mm]	Ψ ec1,N	e _{c2,N} [mm]	Ψ ec2,N	Ψs,N	Ψ re,N
46	0.831	0	1.000	0.967	1.000
k ₁	N _{Rk,c} [kN]	YM,c	N _{Rd,c} [kN]	N _{Sd} [kN]	
11.000	101.041	1.500	68.158	29.711	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 23 di 195

www.hilti.it Profis Anchor 2.7.8

Impresa: Pagina:
Progettista: Progetto:
Indin/azo: Contratto N*:
Posterior - P

Telefono I Fax: | Data: 11/09/2018 E-mail:

4 Carico di taglio SOFA (fib (07/2011), paragrafo 16.2.2)

	Carico [kN]	Resistenza [kN]	Utilizzo β _V [%]	Stato
Rottura dell'acciaio (senza braccio di leva)*	0.845	16.860	6	OK
Rottura dell'acciaio (con braccio di leva)*	N/A	N/A	N/A	N/A
Rottura per pryout**	3.380	163.995	3	OK
Rottura del bordo del calcestruzzo in direzione x-**	1.690	34.192	5	OK

*ancorante più sollecitato **gruppo di ancoranti (ancoranti specifici)

4.1 Rottura dell'acciaio (senza braccio di leva)

$V_{Rk,s}$ [kN]	YM.s	V _{Rd,s} [kN]	V _{sd} [kN]
21.075	1.250	16.860	0.845

4.2 Rottura per pryout (cono del calcestruzzo)

	A _{c,N} [mm ²]	A _{c,N} [mm ²]	VAN	c _{cr,N} [mm]	s _{cr,N} [mm]	k ₄
_	255,000	202,500	1.259	225	450	2.000
	e _{c1,V} [mm]	Ψ ec1,N	e _{c2,V} [mm]	Ψ ec2,N	Ψs,N	Ψ re,N
	0	1.000	0	1.000	0.967	1.000
	N _{Rk,c} [kN]	Yм,с.р	V _{Rd,cp} [kN]	V _{Sd} [kN]		
_	101 041	1 500	163 995	3 380		

4.3 Rottura del bordo del calcestruzzo in direzione x-

I _r [mm]	d _{nom} [mm]	k _v	α	β		
144	12.0	2.400	0.069	0.053		
c ₁ [mm]	A _{c,V} [mm ²]	A _{c,v} [mm ²]	ΨAV			
300	432,000	405,000	1.067			
Ψs,v	₩ h,v	Ψ _{α.} ∨	e _{c,V} [mm]	Ψ ec.V	Ψ re,V	₩ 90*,V
1.000	1.000	1.000	0	1.000	1.000	2.000
V ⁰ _{Rk,c} [kN]	n ₁	YM,c	V _{Rd,c} [kN]	V _{Sd} [kN]		
96,164	2	1.500	34.192	1.690		

Nota: resistenza limite in accordo a fib (07/2011), equazione governante (10.2-6).

5 Carichi combinati di trazione e di taglio SOFA (fib (07/2011), paragrafo 10.3)

	β _N	β_V	α	Utilizzo B _{N,V} [%]	Stato
acciaio	0.506	0.050	2.000	26	OK
Calcestruzzo	0.436	0.049	1.500	30	OK
$\beta_N^{\alpha} + \beta_V^{\alpha} \le 1$					

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 24 di 195

 www.hilti.it
 Profis Anchor 2.7.8

 Impresa:
 Pagina:
 4

 Progettista:
 Progetto:
 Indirazzo:

 Indirazzo:
 Contratto N°:
 11/09/2018

 E-mail:
 Data:
 11/09/2018

6 Spostamenti (ancorante più sollecitato)

Carichi a breve termine:

Nek = 10.529 [kN] = 0.093 [mm] δN = 1.252 [kN] = 0.063 [mm] V_{Sk} δ_V δ_{NV} = 0.112 [mm] Carichi a lungo termine: = 10.529 [kN] = 0.223 [mm] N_{Sk} δN = 1.252 [kN] = 0.100 [mm] Ver δν

Commenti: Gli spostamenti a trazione risultano validi con metà del valore della coppia di serraggio richiesta per non fessurato calcestruzzo!
Gli spostamenti a taglio sono validi trascurando l'attrito tra il calcestruzzo e la piastra d'ancoraggio! Lo spazio derivante dal foro eseguito con perforatore e dalle tolleranze dei fori non viene considerato in questo calcolo!

0.245 [mm]

Gli spostamenti ammissibili dell'ancorante dipendono dalla struttura fissata e devono essere definiti dal progettista!

δην

7 Attenzione

- Fenomeni di ridistribuzione dei carichi sugli ancoranti derivanti da eventuali deformazioni elastiche della piastra non sono presi in considerazione. Si assume una piastra di ancoraggio sufficientemente rigida in modo che non risulti deformabile sotto l'azione di carichi!
- La lista accessori inclusa in questo report di calcolo è da ritenersi solo come informativa dell'utente. In ogni caso, le istruzioni d'uso fomite
 con il prodotto dovranno essere rispettate per garantire una corretta installazione.
- L'adesione chimica caratteristica dipende dalle temperature di breve e di lungo periodo.
- · Contattare Hilti per verificare la fornitura delle barre HIT-V
- Il metodo Fib (07/2011) assume l'assenza di spazi anulari tra gli ancoranti e la piastra di ancoraggio. Questo può essere ottenuto mediante il riempimento con resina di sufficiente resistenza a compressione (p.e. usando il sistema Hilti Seismic/Filling set) o attraverso altri mezzi idonei.
- · L'utente è responsabile della conformità alle norme correnti (e.g. EC3)
- La verifica del trasferimento dei carichi nel materiale base è necessaria in accordo a fib (07/2011)!

L'ancoraggio risulta verificato!

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ FV0220 002 25 di 195 CL

www.hilti.it Impresa: Pagina:

Progetto: Contratto N°: Progettista:

Indirizzo: Telefono I Fax: 11/09/2018

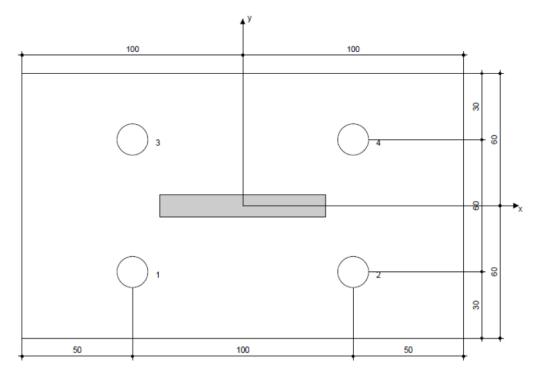
ITINERA

8 Dati relativi all'installazione

Piastra d'ancoraggio, acciaio: -Profilo: Barra liscia; 75 x 10 x 0 mm Diametro del foro nella piastra: d_r = 14 mm Spessore della piastra (input): 10 mm
Spessore della piastra (input): 10 mm
Spessore della piastra raccomandato: non calcolato
Metodo di perforazione: Foro con perforazione a roto-percussione
Pulizia: E' necessaria una pulizia accurata del foro (Premium cleaning) Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M12

Coppia di serraggio: 0.040 kNm Diametro del foro nel materiale base: 14 mm Profondità del foro nel materiale base: 150 mm Spessore minimo del materiale base: 180 mm

8.1 Accessori richiesti


Perforazione Idoneo per rotopercussione

- Dimensione appropriata della punta del trapano

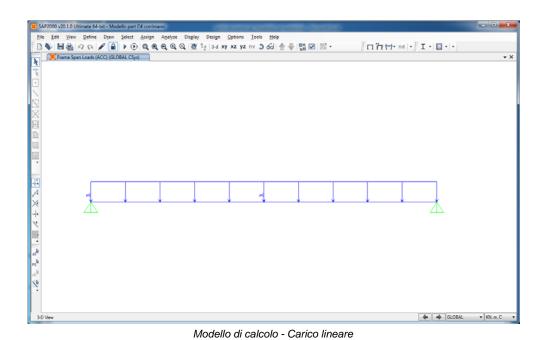
Pulizia

- Aria compressa con i relativi accessori necessari per soffiare a partire dal fondo
- Diametro appropriato dello scovolino

- · Il dispenser include il portacartucce e il
- miscelatore
 Seismic/Filling set
- · Chiave dinamometrica

Coordinate dell'ancorante [mm]

Ancorante	X	У	C.x	C+x	C.y	C _{*y}
1	-50	-30	200	300	995	1,055
2	50	-30	300	200	995	1,055
3	-50	30	200	300	1,055	995
4	50	30	300	200	1,055	995



4.6 VERIFICA DEL CORRIMANO

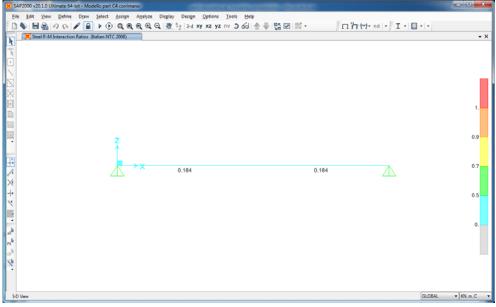
Il corrimano è costituito da un tubolare di diametro Φ =50 mm sp= 3 mm. Lo schema statico adottato per il corrimano è quello di trave semplicemente appoggiata con carico distribuito.

- Carico orizzontale sul corrimano Hk= 3 kN/m

ht Click on any Frame Bement for detailed diagra

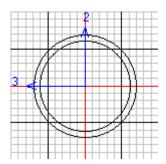
Sollecitazioni di progetto combo STATICA

(da) GLOBAL ▼ KN, m, C


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 27 di 195


FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Verifica di resisstenza -Tasso di sfruttamento

4.6.1 VERIFICA DI RESISTENZA

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

Frame : 4 Length: 0.375	X Mid: 0.563 Y Mid: 0.000	Combo: STATICA Shape: corrimano	21	Non Dissipative
Loc : 0.000	Z Mid: 0.000	Class: Class 1	Rolled : No	
Interaction=Meth	od B	MultiResponse=Er	nvelopes	P-Delta Done? No
GammaM0=1.05	GammaM1=1.05	GammaM2=1.25		
An/Ag=1.00	RLLF=1.000	PLLF=0.750	D/C Lim=0.950	
Aeff=4.430E-04	eNy=0.000	eNz=0.000		
A=4.430E-04	Iyy=0.000	iyy=0.017	Wel,yy=4.912E-06	Weff, $yy=4.912E-06$
It=0.000	Izz=0.000	izz=0.017	Wel,zz=4.912E-06	Weff, $zz=4.912E-06$
Iw = 0.000	Iyz=0.000	h=0.050	Wp1,yy=6.636E-06	Av, y=2.820E-04
E=210000000.0	fy=275000.000	fu=430000.000	Wpl,zz=6.636E-06	Av,z=2.820E-04

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Torsional TF c 0.490

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 28 di 195

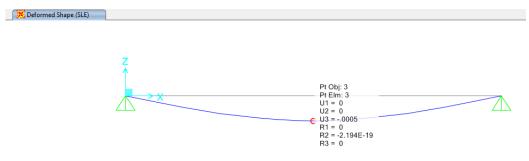
STRESS CHECK FORCE Location 0.000	ES &	MOMENTS Ned 0.000	Med,yy 0.320	Med,zz 0.000	Ved,z	Ved,y 0.000	Ted 0.000
PMM DEMAND/CAPACI							
D/C Ratio:	0.18					0.950	OK
		= (NEd/	NRd) + sqrt	[(My,Ed/My,Rd)^2 + (Mz,Ed/I	Mz,Rd)^2]	(EC3 6.2.1(7))
AXIAL FORCE DESIG	N						
		Ned	Nc,Rd	Nt,Rd			
		Force	Capacity	Capacity			
Axial		0.000	116.015	116.015			
		Npl,Rd	Nu,Rd	Ncr,T	Ncr,TF	An/Ag	
		116.015	137.142	35777.907	452.519	1.000	
Cu	rve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
Major (y-y)	C	0.490	452.519	0.519	0.713	0.832	96.570
MajorB(y-y)	С	0.490	452.519	0.519	0.713	0.832	96.570
Minor (z-z)	C	0.490	452.519	0.519	0.713	0.832	96.570
MinorB(z-z)	C	0.490	452.519	0.519	0.713	0.832	96.570

0.519

0.713

0.832

96.570


452.519

4.6.2 VERIFICA DI DEFORMABILITÀ

Per la verifica a deformazione del corrimano si considera quanto riportato sulla normativa NTC 2008 Tab 4.2.X Solai in generale :

- δ max/L≤1/250 : spostamento dovuto al carico totale (G+Q)
- δ 2/L≤1/300 : spostamento dovuto al carichi variabili (Q)

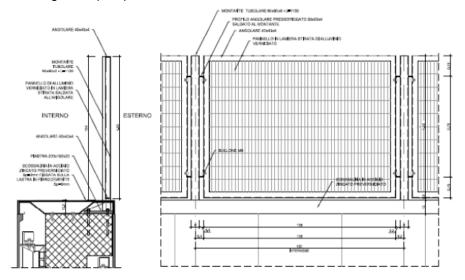
Deformata carichi totali (m)

Come si può vedere la deformata elastica presenta un valore di 0.5 mm < 3 mm per cui la verifica risulta soddisfatta

Deformata carico variabile (m)

Come si può vedere la deformata elastica presenta un valore di 0.5 mm < 2.5 mm per cui la verifica risulta soddisfatta

5 VERIFICA PARAPETTO TIPO C7


Si riporta di seguito la verifica dei montanti che sostengono il parapetto in acciaio tipo C7 disposto all'interno delle banchine e dei corpi scala di entrambe le fermate. I montanti del parapetto sono costituiti profili scatolari di dimensioni 60x60x8 mm realizzati in acciaio S275 JR

Si effettua di seguito la verifica dei montanti considerando l'interasse massimo di 1.50 m.

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La struttura viene discretizzata con un modello bidimensionale in elementi tipo trave.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite secondo NTC 2008. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Di seguito si riporta il dettaglio del parapetto

5.1 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

5.1.1 PESO PROPRIO DELLA STRUTTURA

Le sollecitazioni indotte dal peso della struttura sono valutate automaticamente dal programma

5.1.2 CARICO VARIABILE ORIZZONTALE LINEARE

In base a quanto prescritto nella normativa NTC 2008 (3.1.4.1), per verifiche locali di elementi verticali bidimensionali (tramezzi, pareti, tamponamenti esterni con esclusione di divisori mobili) si considera un carico pari a 3 KN/m (Cat. C3) applicato alla quota di 1,20 m dal rispettivo piano di calpestio per pareti ed alla quota di bordo superiore per parapetti o mancorrenti. I carichi variabili orizzontali devono essere utilizzati per verifiche locali e non si sommano ai carichi utilizzati nelle vdrifiche dell'edificio o struttura nel suo insieme.

FERMATE

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 31 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

5.2 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si riportano per comodità le combinazioni delle azioni riportate nella normativa alla quale è possibile fare riferimento per la simbologia adottata:

-Combinazione fondamentale. generalmente impiegata per gli stati limite ultimi (SLU):

 $\gamma \text{ G1} \cdot \text{G1} + \gamma \text{ G2} \cdot \text{G2} + \gamma \text{ P} \cdot \text{P} + \gamma \text{ Q1} \cdot \text{Qk1} + \gamma \text{ Q2} \cdot \phi \text{ 02} \cdot \text{Qk2} + \gamma \text{ Q3} \cdot \phi \text{ 03} \cdot \text{Qk3} + \dots$

-Combinazione caratteristica (rara). generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

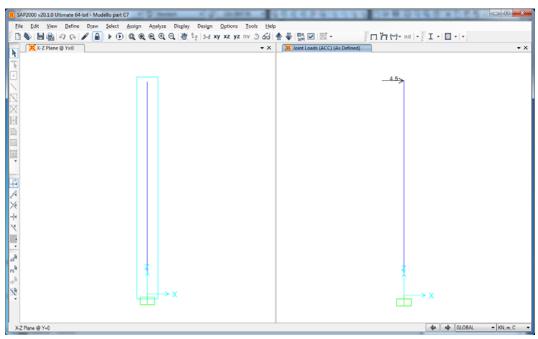
 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

Tabella 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente γF	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ ₆₂	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γQi	0,0 1,5	0,0 1,5	0,0 1,3

(1)Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.

5.3 VERIFICA DI RESISTENZA:


Lo schema statico del montante è quello di una colonna incastrata al piede e libera in testa.

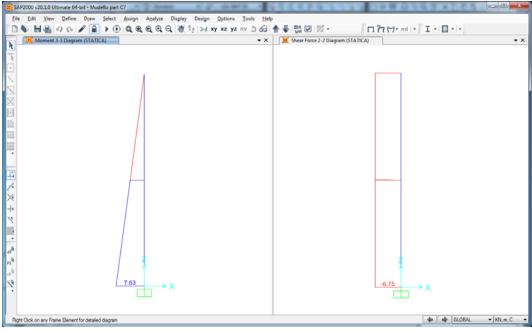
Interasse dei montanti i = 1.50 m

Altezza montante I = 1.13 m

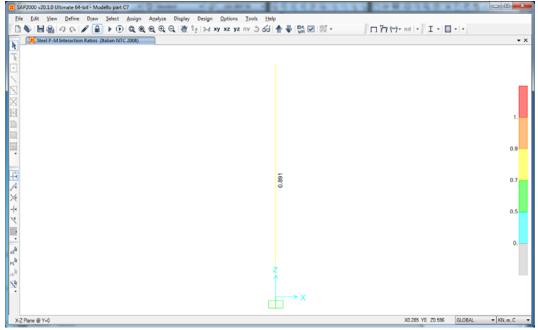
Sovraccarico accidentale concentrato F = 3*1.50 = 4.50 KN

quota di applicazione di F : h = 1.13 m Combinazione statica = 1.3 G+1.5 F

Modello di calcolo - Carico lineare


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 33 di 195

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Sollecitazioni di progetto combo STATICA

Verifica di resisstenza -Tasso di sfruttamento

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

IF1N 01 E ZZ

LOTTO

Wel,yy=2.559E-05

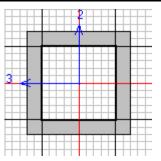
0.894

0.708

308.457

COMMESSA

CODIFICA CL


DOCUMENTO FV0220 002

Weff,yy=2.559E-05

REV. FOGLIO

Α

34 di 195

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units $\,$: KN, $\mathfrak{m}_{},$ C

Frame : 55 X Mid: 0.000 Combo: STATICA Design Type: Column

Length: 1.130 Y Mid: 0.000 Shape: MONTANTE Frame Type: Non Dissipative

Loc : 1.130 Z Mid: 0.565 Class: Class 1 Rolled: No

Interaction=Method B MultiResponse=Envelopes P-Delta Done? No

GammaM0=1.05 GammaM1=1.05 GammaM2=1.25 An/Ag=1.00 RLLF=1.000 PLLF=0.750

An/Ag=1.00 RLLF=1.000 PLLF=0.750 D/C Lim=0.950

Aeff=0.002 eNy=0.000 eNz=0.000 A=0.002 Iyy=0.000 iyy=0.021 It=1.125E-06 Izz=0.000 izz=0.021

STRESS CHECK FORCES & MOMENTS

Location Ned Med,yy Med,zz Ved,z Ved,y Ted 1.130 -0.188 7.628 0.000 -6.750 0.000 0.000

Nt,Rd

0.727

PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.9.1(6y)) D/C Ratio: 0.891 = 0.891 < 0.950 OK

Ned

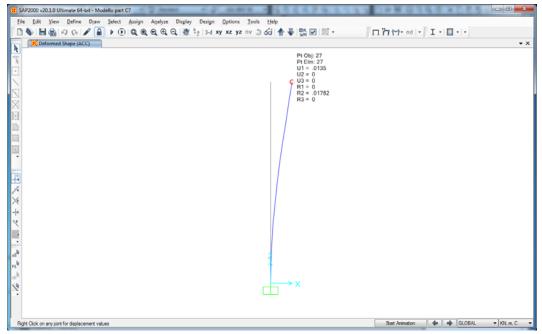
0.490

= (My, Ed/Mn, y, Rd) (EC3 6.2.9.1(6y))

Nc,Rd

865.302

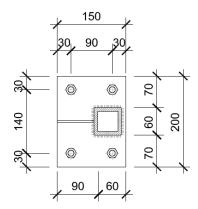
AXIAL FORCE DESIGN


Torsional TF c

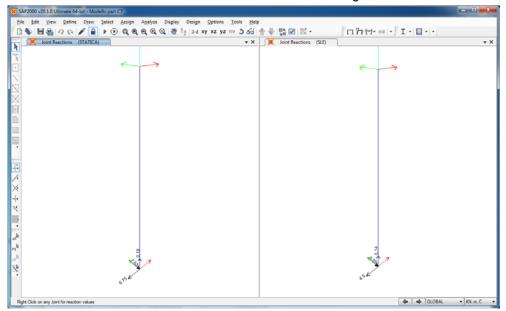
Axial		Force -0.188	Capacity 435.810	Capacity 435.810			
		Npl,Rd	Nu,Rd 515.174	Ncr,T	Ncr,TF	An/Ag	
		435.810	515.1/4	98469.364	865.302	1.000	
C	urve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
Major (y-y)	C	0.490	865.302	0.727	0.894	0.708	308.457
MajorB(y-y)	C	0.490	865.302	0.727	0.894	0.708	308.457
Minor (z-z)	C	0.490	865.302	0.727	0.894	0.708	308.457
MinorB(z-z)	C	0.490	865.302	0.727	0.894	0.708	308.457

5.4 VERIFICA DI DEFORMABILITÀ

Per la verifica a deformazione del parapetto si considera quanto riportato sulla normativa UNI EN 14122-3: Freccia massima elastica fmax < 30 mm applicando una forza orizzontale F_{max} = 300 N/m x lunghezza in metri tra i montanti. A favore di sicurezza si riporta la freccia massima orizzontale dovuta al carico variabile di 3 KN/m*interasse montanti e si confronta con il valore limite indicato precedentemente.


Deformata

Come si può vedere la deformata elastica presenta un valore di 13.5 mm < 30 mm per cui la verifica risulta soddisfatta



5.5 VERIFICA DELLA PIASTRA DI BASE

La piastra di fondazione ha una dimensione di 150x200 mm, spessore 20 mm, è dotata di quattro tasselli chimici M16 ed è realizzata in acciaio S275.

Dal modello di calcolo del montante si ricavano le sollecitazioni massime agenti alla base:

Reazioni alla base

Sollecitazioni di progetto:

TABLE: Joint Reactions				
Joint	OutputCase	F1	F3	M2
Text	Text	KN	KN	KN-m
33	STATICA	-6.75	0.19	-7.63
33	SLE	-4.5	0.15	-5.09

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** 37 di 195 IF1N 01 E ZZ CL FV0220 002 Α

5.5.1 VERIFICA SEZIONE DI CONTATTO

Si effettua la verifica della sezione di contatto in campo elastico considerando le sollecitazioni della combinazione

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: piastra C7

Descrizione Sezione:

Metodo di calcolo resistenza: Tensioni Ammissibili Tipologia sezione: Sezione generica Assi x,y principali d'inerzia Riferimento Sforzi assegnati: Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -Classe: C25/30

Tensione Normale Ammiss. Sc : 97.50 daN/cm² Tensione Tangenz.Amm. TauC0 :
Tensione Tangenz.Amm. TauC1 : 6.00 daN/cm² 18.28 daN/cm² Coeff. N di omogeneizzazione : 15.0 Modulo Elastico Normale Ec : 314750 daN/cm² Coeff. di Poisson 0.20 Resis. media a trazione fctm: 26.00 daN/cm²

ACCIAIO Tipo: B450C

Resist. caratt. rottura ftk: 5400.0 daN/cm² Tensione Ammissibile Sf : Ef : 2550.0 daN/cm² 2000000 daN/cm² Modulo Elastico

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C25/30

N.vertice	Ascissa X, cm	Ordinata Y, cm
1	-10.00	0.00
2	-10.00	15.00
3	10.00	15.00
4	10.00	0.00

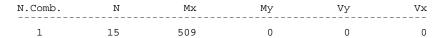
DATI BARRE ISOLATE

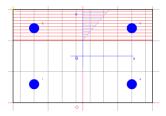
Numero assegnato alle singole barre isolate e nei vertici dei domini N.Barra Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Diametro in mm della barra Diam.

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	-7.00	3.00	14.14
2	-7.00	12.00	14.14
3	7.00	12.00	14.14
4	7.00	3.00	14.14

TENS.AMMISS. - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x




I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0220 002	Α	38 di 195

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 2.3 cm Interferro netto minimo barre longitudinali: 7.6 cm

METODO DELLE TENSIONI AMMISSIBILI - MASSIME E MINIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione [in daN/cm²] nel conglomerato (positiva se di compress.)
Xc max	Ascissa [in cm] corrispond. al punto di massima compressione
Yc max	Ordinata [in cm] corrispond. al punto di massima compressione
Sc min	Minima tensione [in daN/cm²] nel conglomerato (positiva se di compress.)
Xc min	Ascissa [in cm] corrispond. al punto di minima compressione
Yc min	Ordinata [in cm] corrispond. al punto di minima compressione
Sf min	Minima tensione [in daN/cm²] nell'acciaio (negativa se di trazione)
Yf min	Ordinata [in cm] corrispond. alla barra di minima tensione
N.Comb. Ver	Sc max Xcmax Ycmax Sc min Xcmin Ycmin Sc med Sf min Xfmin Yfmin
1 S	75.3 -10.0 15.0 0.0 0.0 0.0 -1620 -7.0 3.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a	Coeff. a ne	ll'eq. dell'a	asse neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.
b	Coeff. b ne	ll'eq. dell'a	asse neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.
C	Coeff. c ne	ll'eq. dell'a	asse neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.
N.Comb.	a	b		С				
1	0.00000000	0.000114585	-0.0011538	323				

5.5.2 VERIFICA DI RESISTENZA PIASTRA

Si effettua la verifica della piastra come una mensola incastrata in corrispondenza del montante caricata con la forza di trazione massima agente sui tasselli allo SLU pari a $F_{traz} = (\sigma_b \cdot A_{res} \cdot n) \cdot \gamma_q$.

Di seguito si riporta il foglio di calcolo utilizzato per la verifica.

Bulloni			
Barra M	16		
Acciaio	5.8		
A =	2.01	cmq	
Ares =	1.57	cmq	
Фeq =	14.14	mm	
n =	2		
Piastra			
a=	15	cm	
b=	20	cm	
sp=	2	cm	
Acciaio	S275		
fyk=	275	MPa	
fyd=	250	MPa	
σb=	1620.0	Kg/cmq	
Wel=	13.33	cm^3	
Wpl=	20.00	cm^3	
e=	5	cm	
F_traz =	7630.2	Kg	
Sollecitazion	ni di progetto		
Msd=	38151.0	Kgcm	
Mrd =	50000.0	Kgcm	
Msd	<	Mrd	verificato

5.5.3 VERIFICA ANCORAGGIO

Il fissaggio della piastra alla struttura sottostante avviene tramite quattro barre filettate M16 in acciaio classe 5.8 con ancorante chimico ad iniezione tipo HILTY HIT-RE 500 V3 o similare.

La verifica viene effettuata considerando le sollecitazione massime alla base allo SLU nella combinazione di calcolo STATICA utilizzando il codice di calcolo PROFIS Anchor 2.7.8 prodotto dalla HILTI di cui se ne riporta il report di verifica.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

E-mail:

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO

01 E ZZ

IITINERA

CODIFICA CL

DOCUMENTO

RFV **FOGLIO**

FV0220 002 40 di 195 Α

www.hilti.it Impresa: Progettista: Pagina: Progetto:

Indirizzo: Contratto N°: Telefono I Fax:

IF1N

11/09/2018

Commenti del progettista:

1 Dati da inserire

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M16

Hilti Seismic set o altro sistema per il riempimento dello spazio aulare tra piastra e anco.

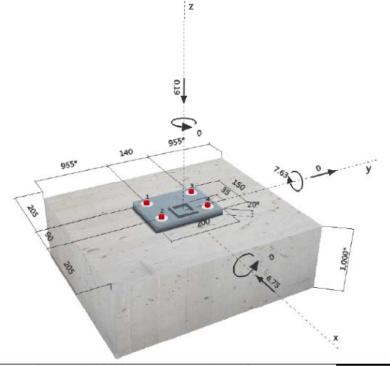
 $h_{ef,act} = 150 \text{ mm } (h_{ef,limit} = - \text{ mm})$ Profondità di posa effettiva:

Materiale: 5.8 ETA 16/0143 Certificazione No.: Emesso I Valido: 12/07/2017 | -

Metodo di calcolo SOFA + fib (07/2011) - dopo prove ETAG BOND Prova:

Fissaggio distanziato: e_b = 0 mm (Senza distanziamento); t = 20 mm

I_x x I_y x t = 150 mm x 200 mm x 20 mm; (Spessore della piastra raccomandato: non calcolato Piastra d'ancoraggio:


Profilo: Profilo quadrato cavo; (L x W x T) = 60 mm x 60 mm x 8 mm

Materiale base: non fessurato calcestruzzo, C25/30, $f_{c,ojl}$ = 25.00 N/mm²; h = 1,000 mm, Temp. Breve/Lungo: 0/0 °C

Installazione: Foro eseguito con perforatore, Condizioni di installazione: asciutto interasse delle armature < 150 mm (qualunque Ø) o < 100 mm (Ø <= 10 mm) Armatura:

senza armatura di bordo longitudinale

Geometria [mm] & Carichi [kN, kNm]

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

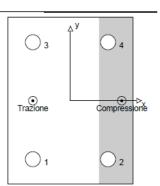
COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ FV0220 002 41 di 195 CL Α

www.hilti.it Impresa: Progettista:

Pagina: Progetto: Contratto N°: Indirizzo: Telefono I Fax:

11/09/2018 ı Data:

2 Condizione di carico/Carichi risultanti sull'ancorante


Condizione di carico: Carichi di progetto

Carichi sull'ancorante [kN]

Trazione: (+ Trazione, - Compressione)

Ancorante	Trazione	Taglio	Taglio in dir. x	Taglio in dir. y
1	35.830	1.688	-1.688	0.000
2	0.000	1.688	-1.688	0.000
3	35.830	1.688	-1.688	0.000
4	0.000	1 688	-1 688	0.000

0.59 [‰] 17.62 [N/mm²] 71.659 [kN] Compressione max. nel calcestruzzo: Max. sforzo di compressione nel calcestruzzo: risultante delle forze di trazione nel (x/y)=(-45/0): risultante delle forze di compressione (x/y)=(61/0): 71.849 [kN]

3 Carico di trazione SOFA (fib (07/2011), paragrafo 16.2.1)

	Carico [kN]	Resistenza [kN]	Utilizzo β _N [%]	Stato
Rottura dell'acciaio*	35.830	52.333	69	OK
Rottura combinata conica del calcestruzzo e per sfilamento**	71.659	99.877	72	OK
Rottura conica del calcestruzzo**	71.659	82.142	88	OK
Fessurazione**	N/A	N/A	N/A	N/A

*ancorante più sollecitato **gruppo di ancoranti (ancoranti sollecitati)

3.1 Rottura dell'acciaio

N _{Rk,s} [kN]	γ _{M,s}	N _{Rd,s} [kN]	N _{Sd} [kN]	
78 500	1 500	52 333	35.830	_

3.2 Rottura combinata conica del calcestruzzo e per sfilamento

A _{p,N} [mm ²]	$A_{p,N}^0$ [mm ²]	Ψ A,Np	$\tau_{Rk,ucr,25}$ [N/mm ²]	s _{cr,Np} [mm]	c _{or,Np} [mm]	c _{min} [mm]
253,700	202,500	1.253	16.00	450	225	205
Ψс	τ _{Rk,ucr} [N/mm²]	max τ _{Rk,ucr} [N/mm²]	Ψg.Np	Ψ д.Νр		
1.018	16.29	13.40	1.000	1.000		
e _{c1,N} [mm]	Ψ ec1,Np	e _{c2,N} [mm]	Ψ ec2,Np	Ψs,Np	Ψ re,Np	
0	1.000	0	1.000	0.973	1.000	
$N_{Rk,p}^{0}$ [kN]	$N_{Rk,p}$ [kN]	ү м,р	N _{Rd,p} [kN]	N _{Sd} [kN]		
122.857	149.815	1.500	99.877	71.659		

3.3 Rottura conica del calcestruzzo

A _{c,N} [mm ²]	A _{G,N} [mm ²]	ΨAN	c _{cr,N} [mm]	s _{cr,N} [mm]	
253,700	202,500	1.253	225	450	
e _{c1,N} [mm]	Ψ ec1,N	e _{c2,N} [mm]	Ψ ec2,N	Ψs,N	Ψ re,N
0	1.000	0	1.000	0.973	1.000
k ₁	N ⁰ _{Rk,c} [kN]	Ум,с	N _{Rd,c} [kN]	N _{Sd} [kN]	
11.000	101.041	1.500	82.142	71.659	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL FV0220 002 A 42 di 195

 www.hilti.it
 Profis Anchor 2.7.8

 Impresa:
 Pagina:
 3

 Progettista:
 Progetto:
 Indirizzo:

 Indirizzo:
 Contratto N°:
 11/09/2018

4 Carico di taglio SOFA (fib (07/2011), paragrafo 16.2.2)

	Carico [kN]	Resistenza [kN]	Utilizzo β _V [%]	Stato
Rottura dell'acciaio (senza braccio di leva)*	1.688	31.400	6	OK
Rottura dell'acciaio (con braccio di leva)*	N/A	N/A	N/A	N/A
Rottura per pryout**	6.750	191.028	4	OK
Rottura del bordo del calcestruzzo in direzione x-**	3.375	37.838	9	ок

^{*}ancorante più sollecitato **gruppo di ancoranti (ancoranti specifici)

4.1 Rottura dell'acciaio (senza braccio di leva)

	V _{Rk,s} [kN]	ΥM,s	V _{Rd,s} [kN]	V _{Sd} [kN]	
_	39.250	1.250	31.400	1.688	_

4.2 Rottura per pryout (cono del calcestruzzo)

	A _{c,N} [mm ²]	$A_{c,N}^0$ [mm ²]	VAN	c _{cr,N} [mm]	s _{cr,N} [mm]	k ₄
_	295,000	202,500	1.457	225	450	2.000
	e _{c1,V} [mm]	Ψ ec1,N	e _{c2,V} [mm]	Ψ ec2,N	Ψs,N	Ψ re,N
	0	1.000	0	1.000	0.973	1.000
	N _{Rk,c} [kN]	Ум,с,р	V _{Rd,cp} [kN]	V _{Sd} [kN]		
	101 041	1 500	191 028	6.750		

4.3 Rottura del bordo del calcestruzzo in direzione x-

I _f [mm]	d _{nom} [mm]	k _V	α	β		
150	16.0	2.400	0.071	0.056		
c ₁ [mm]	A _{c,V} [mm ²]	A _{c,V} [mm ²]	ΨAV			
295	453,563	391,613	1.158			
Ψ s,v	Ψh,v	Ψ _α ν	e _{c,V} [mm]	Ψ ec,V	Ψ re,V	Ψ 90°,V
1.000	1.000	1.000	0	1.000	1.000	2.000
V ⁰ _{Rk,c} [kN]	n ₁	YM.c	V _{Rd,c} [kN]	V _{Sd} [kN]		
	***	IW/C	- rou,u u	- 00 5		

Nota: resistenza limite in accordo a fib (07/2011), equazione governante (10.2-6).

5 Carichi combinati di trazione e di taglio SOFA (fib (07/2011), paragrafo 10.3)

	β_N	β_V	α	Utilizzo β _{N,V} [%]	Stato	
acciaio	0.685	0.054	2.000	48	OK	_
Calcestruzzo	0.872	0.089	1.500	85	OK	
$\beta_N^{\alpha} + \beta_V^{\alpha} \le 1$						

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA

CL

DOCUMENTO

REV. FOGLIO

FV0220 002 A 43 di 195

 www.hilti.it
 Profis Anchor 2.7.8

 Impresa:
 Pagina:
 4

 Progettista:
 Progetto:
 Indirezo:

 Indirezo:
 Contratto N*:
 Telefono I Fax:
 11/09/2018

 E-mail:
 Data:
 11/09/2018

6 Spostamenti (ancorante più sollecitato)

Carichi a breve termine:

 $s_{NV} = 0.482 \text{ [mm]}$

Commenti: Gli spostamenti a trazione risultano validi con metà del valore della coppia di serraggio richiesta per non fessurato calcestruzzo!
Gli spostamenti a taglio sono validi trascurando l'attrito tra il calcestruzzo e la piastra d'ancoraggio! Lo spazio derivante dal foro eseguito con perforatore e dalle tolleranze dei fori non viene considerato in questo calcolo!

Gli spostamenti ammissibili dell'ancorante dipendono dalla struttura fissata e devono essere definiti dal progettista!

7 Attenzione

- Fenomeni di ridistribuzione dei carichi sugli ancoranti derivanti da eventuali deformazioni elastiche della piastra non sono presi in considerazione. Si assume una piastra di ancoraggio sufficientemente rigida in modo che non risulti deformabile sotto l'azione di carichi!
- La lista accessori inclusa in questo report di calcolo è da ritenersi solo come informativa dell'utente. In ogni caso, le istruzioni d'uso fomite con il prodotto dovranno essere rispettate per garantire una corretta installazione.
- · L'adesione chimica caratteristica dipende dalle temperature di breve e di lungo periodo.
- Contattare Hilti per verificare la fornitura delle barre HIT-V.
- Il metodo Fib (07/2011) assume l'assenza di spazi anulari tra gli ancoranti e la piastra di ancoraggio. Questo può essere ottenuto mediante il riempimento con resina di sufficiente resistenza a compressione (p.e. usando il sistema Hilti Seismic/Filling set) o attraverso attri mezzi idonei.
- · L'utente è responsabile della conformità alle norme correnti (e.g. EC3)
- La verifica del trasferimento dei carichi nel materiale base è necessaria in accordo a fib (07/2011)!

L'ancoraggio risulta verificato!

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO

REV. F

FOGLIO

FV0220 002 A 44 di 195

 www.hilti.it
 Profis Anchor 2.7.8

 Impresa:
 Pagina:
 5

 Progettista:
 Progetto:
 Indirizzo:

 Indirizzo:
 Contratto N*:
 Telefono I Fax:
 I 11/09/2018

 E-mail:
 E-mail:
 Data:
 11/09/2018

ITINERA

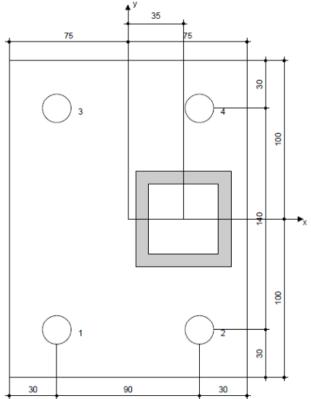
8 Dati relativi all'installazione

Piastra d'ancoraggio, acciaio: Profilio: Profilio quadrato cavo; 60 x 60 x 8 mm
Diametro del foro nella piastra: d_r = 18 mm
Spessore della piastra (input): 20 mm
Spessore della piastra raccomandato: non calcolato
Metodo di perforazione: Foro con perforazione a roto-percussione
Pulizia: E' necessaria una pulizia accurata del foro (Premium cleaning)

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M16 Coppia di serraggio: 0.080 kNm Diametro del foro nel materiale base: 18 mm Profondità del foro nel materiale base: 150 mm Spessore minimo del materiale base: 186 mm

8.1 Accessori richiesti

Perforazione


- Idoneo per rotopercussione
- Dimensione appropriata della punta del trapano

Pulizia

- Aria compressa con i relativi accessori necessari per soffiare a partire dal fondo del foro.
- · Diametro appropriato dello scovolino

Posa

- Il dispenser include il portacartucce e il
- miscelatore
 Seismic/Filling set
- Chiave dinamometrica

Coordinate dell'ancorante [mm]

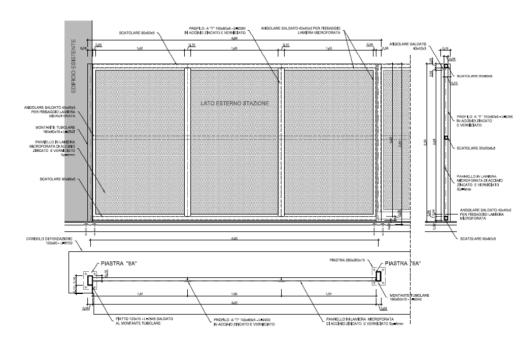
Ancorante	X	У	C.x	C+x	C.y	C.y
1	-45	-70	205	295	955	1,095
2	45	-70	295	205	955	1,095
3	-45	70	205	295	1,095	955
4	45	70	295	205	1.095	955

6 PANNELLO DI PROTEZIONE-CANCELLO (PART. 8-9)

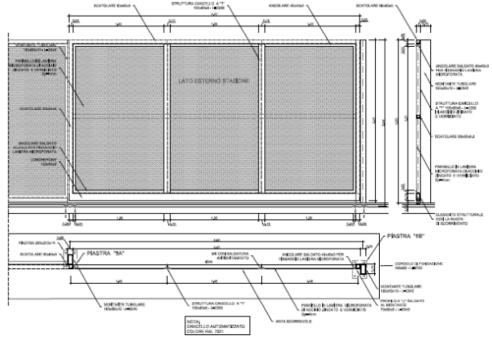
Si riporta di seguito la verifica della struttura del cancello metallio scorrevole e della protezione fissa in acciaio disposti a chiusura della fermata Dugenta (FV02).

La struttura del cancello realizzata in acciaio S275 JR è costituita da:

- montanti verticali realizzati con profili scatolari di dimensioni 180x80x10
- longherone orizzontale superiore realizzato con profili scatolari di dimensioni 60x60x5
- longherone orizzontale intermedio realizzato con profili scatolari di dimensioni 50x50x6.3
- longherone orizzontale inferiore realizzato con profili scatolari di dimensioni 120x60x5
- elementi verticali intermedi realizzati con profili a T di dimensioni 100x60x6
- pannello in lamiera microforata di acciaio zincato e verniciato sp=4mm


La struttura della protezione fissa realizzata in acciaio S275 JR è costituita da:

- montanti verticali realizzati con profili scatolari di dimensioni 180x80x10
- longherone orizzontale superiore ed inferiore realizzato con profili scatolari di dimensioni 60x60x5
- longherone orizzontale intermedio realizzato con profili scatolari di dimensioni 50x50x6.3
- elementi verticali intermedi realizzati con profili a T di dimensioni 100x60x6
- pannello in lamiera microforata di acciaio zincato e verniciato sp=4mm


L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La struttura viene discretizzata con un modello bidimensionale in elementi tipo trave.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite secondo NTC 2008. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Di seguito si riporta il dettaglio.

6.1 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

6.1.1 PESO PROPRIO DELLA STRUTTURA

Le sollecitazioni indotte dal peso della struttura sono valutate automaticamente dal programma

6.1.2 CARICO PERMANENTE

Il carico permanente è costituito dal peso dei pannelli in lamiera microforata di acciaio zincato e verniciato sp=4mm P= 0.40 KN/mq

6.1.3 CARICO VARIABILE ORIZZONTALE LINEARE

In base a quanto prescritto nella normativa NTC 2008 (3.1.4.1), per verifiche locali di elementi verticali bidimensionali (tramezzi, pareti, tamponamenti esterni con esclusione di divisori mobili) si considera un carico pari a 3 KN/m (Cat. C3) applicato alla quota di 1,20 m dal rispettivo piano di calpestio per pareti ed alla quota di bordo superiore per parapetti o mancorrenti. I carichi variabili orizzontali devono essere utilizzati per verifiche locali e non si sommano ai carichi utilizzati nelle vdrifiche dell'edificio o struttura nel suo insieme.

ITINERARIO NAPOLI - BARI

01 E ZZ

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

LOTTO COMMESSA IF1N

CODIFICA CL

DOCUMENTO FV0220 002

RFV

Α

FOGLIO 47 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

AZIONE DEL VENTO 6.1.4

CALCOLO DELL'AZIONE DEL VENTO

3) Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

ITINERA

Zona	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]
3	27	500	0.02

a _s (altitudine sul livello del mare [m])	56
--	----

$$v_b = v_{b,0}$$
 per $a_s \le a_0$
 $v_b = v_{b,0} + k_a (a_s - a_0)$ per $a_0 < a_s \le 1500$ m

p (pressione del vento [N/mq]) = $q_b \cdot c_e \cdot c_p \cdot c_d$ q_b (pressione cinetica di riferimento [N/mq])

c_e (coefficiente di esposizione)

c_p (coefficiente di forma)

c_d (coefficiente dinamico)

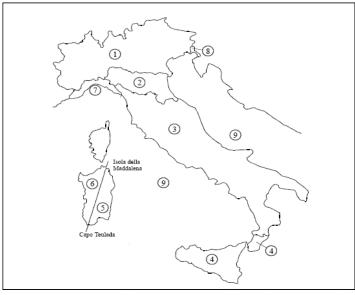


Figura 3.3.1 - Mappa delle zone in cui è suddiviso il territorio italian

Pressione cinetica di riferimento

$q_b = 1/2 \cdot \rho \cdot v_b^2$ $(\rho = 1.25 \text{ kg/mc})$

q _b [N/mq]	455.63

Coefficiente di forma

E' il coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

Coefficiente dinamico

Esso può essere assunto autelativamente pari ad 1 nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità

Coefficiente di esposizione

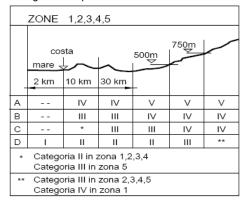
Classe di rugosità del terreno

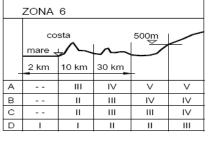
D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,....)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

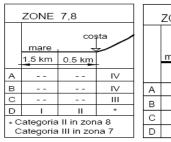
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

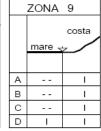

FERMATE


Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 48 di 195


Categoria di esposizione


z _{altezza edif.}[m]

2.5

Classe di rugosità

D

a_s [m]

56

$c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) \left[7 + c_t \cdot \ln(z/z_0) \right]$	per z≥z _{min}
$c_{e}(z) = c_{e}(z_{min})$	per z < z _{min}

Cat. Esposiz.	k _r	z ₀ [m]	z _{min} [m]	Ct
II	0.19	0.05	4	1

Ce	1.80

La pressione del vento a meno del coefficiente di forma vale:

820.37 N/mq (0.8203 kN/mq)

Zona

TRAVI ISOLATE AD ANIMA PIENA

cp 1.40

La pressione del vento vale $q_p = 1148.52$ N/mq \Rightarrow **1.15** KN/mq

6.2 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si riportano per comodità le combinazioni delle azioni riportate nella normativa alla quale è possibile fare riferimento per la simbologia adottata:

-Combinazione fondamentale. generalmente impiegata per gli stati limite ultimi (SLU):

 $\gamma \text{ G1} \cdot \text{G1} + \gamma \text{ G2} \cdot \text{G2} + \gamma \text{ P} \cdot \text{P} + \gamma \text{ Q1} \cdot \text{Qk1} + \gamma \text{ Q2} \cdot \phi \text{ 02} \cdot \text{Qk2} + \gamma \text{ Q3} \cdot \phi \text{ 03} \cdot \text{Qk3} + \dots$

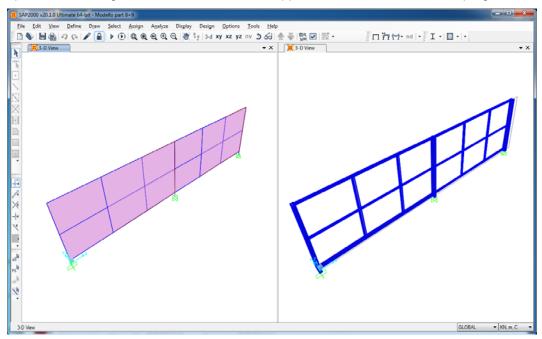
-Combinazione caratteristica (rara). generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

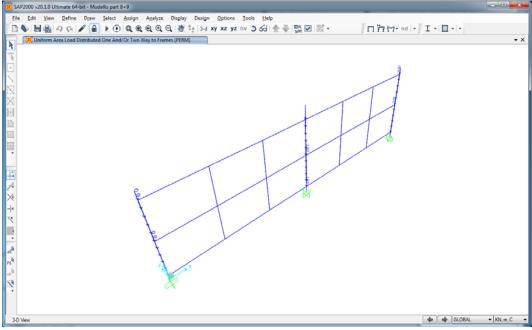
 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

Tabella 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente γF	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ ₆₂	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γQi	0,0 1,5	0,0 1,5	0,0 1,3

(1)Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.


TABLE: Combination Definitions						
ComboName	CaseName	ScaleFactor				
Text	Text	Unitless				
	DEAD	1.3				
STATICA 1	PERM	1.5				
	ACC	1.5				
	DEAD	1.3				
STATICA 2	PERM	1.5				
	VENTO Y	1.5				
	DEAD	1				
SLE 1	PERM	1				
	ACC	1				
	DEAD	1				
SLE 2	PERM	1				
	VENTO Y	1				


6.3 VERIFICA DI RESISTENZA:

Per la verifica della struttura si utilizza un modello di calcolo agli elementi finiti bidimensionale che rappresenta l'esatta geometria della struttura nella condizione peggiore quando il cancello mobile è chiuso.

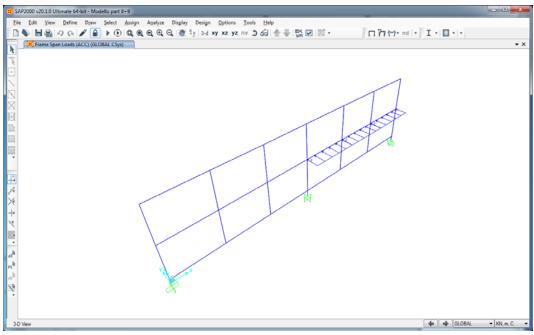
Di seguito si riportano le immagini del modello, dei carichi applicati e delle sollecitazioni di progetto.

Modello di calcolo

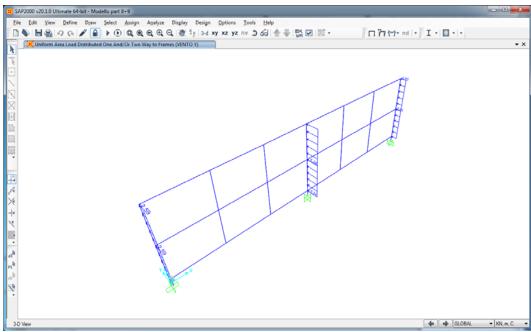
Carico permanente

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

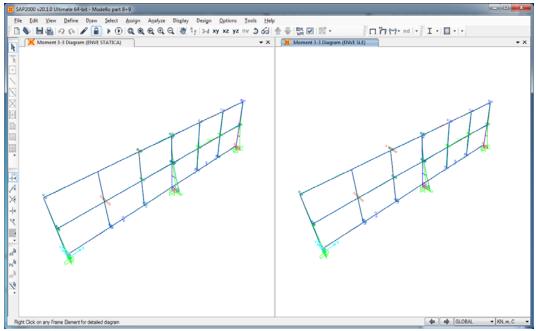

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

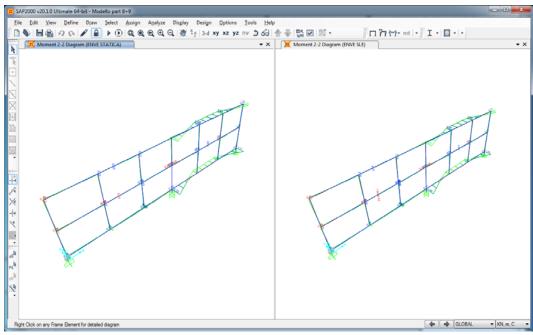
 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 51 di 195

Carico variabile

Carico vento


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

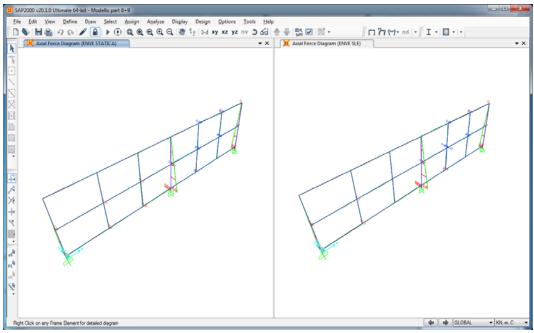

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 52 di 195

FERMATE

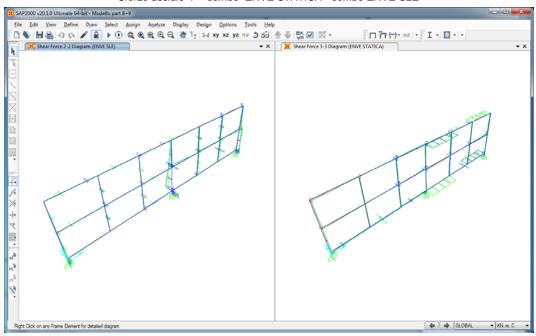
Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Momento flettente M33 - combo ENVE STATICA - combo ENVE SLE

Momento flettente M22 - combo ENVE STATICA - combo ENVE SLE


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

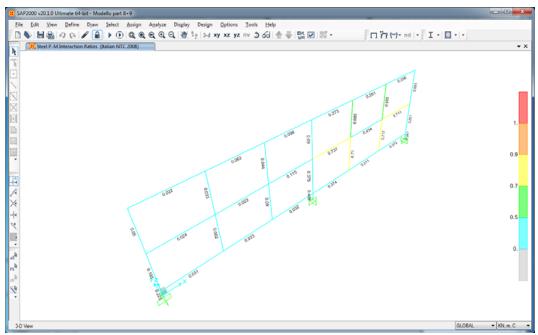

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 53 di 195

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Sforzo assiale P - combo ENVE STATICA - combo ENVE SLE

Taglio V22 e V33 - combo ENVE STATICA

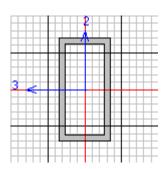

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 54 di 195



Verifica di resisstenza -Tasso di sfruttamento

In base ai risultati sopra evidenziati si effettua di seguito la verifica dei profili più sollecitati.

ITINERA

6.3.1 VERIFICA MONTANTE SCATOLARE 160X80X10

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

Frame: 72 Length: 1.190 Loc: 0.000	X Mid: 4.500 Y Mid: 0.000 Z Mid: 0.745	Combo: STATICA 2 Shape: MONTANTE Class: Class 1	J 11	Column Non Dissipative
Interaction=Metho	od B	MultiResponse=Er	nvelopes	P-Delta Done? No
GammaM0=1.05 An/Ag=1.00	GammaM1=1.05 RLLF=1.000	GammaM2=1.25 PLLF=0.750	D/C Lim=0.950	
Aeff=0.004 A=0.004 It=1.002E-05 Iw=0.000 E=210000000.0	eNy=0.000 Iyy=1.359E-05 Izz=4.307E-06 Iyz=0.000 fv=275000.000	eNz=0.000 iyy=0.056 izz=0.031 h=0.160 fu=430000.000	Wel,yy=1.698E-04 Wel,zz=1.077E-04 Wpl,yy=2.180E-04 Wpl,zz=1.300E-04	Weff,yy=1.698E-04 Weff,zz=1.077E-04 Av,y=0.002 Av,z=0.003

CL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

LOTTO CODIFICA COMMESSA IF1N 01 E ZZ

DOCUMENTO FV0220 002

REV. FOGLIO Α 55 di 195

di calcolo		

STRESS CHECK FORC	ES & MOMENTS	 				
Location	Ned	Med,yy	Med,zz	Ved,z	Ved,y	Ted
0.000	-8.620	21.424	-0.065	18.431	-0.056	0.041
PMM DEMAND/CAPACI	TY RATIO (Governing Ea	uation EC3 6.	2.9.1(6v))		
	0.375 = 0.37		0.950	OK		
_,		Ed/Mn,y,Rd)		2.9.1(6y))		
		727 27	, , , , , , , , , , , , , , , , , , , ,	(· · · · · · · · · · · · · · · · · · ·		
AVIAL BODGE DEGLO	INT.					
AXIAL FORCE DESIG	Ned	Nc,Rd	Nt,Rd			
	Force	Capacity	Capacity			
Axial	-8.620	1152.381	1152.381			
AXIUI	0.020	1132.301	1132.301			
	Npl,Rd	Nu,Rd	Ncr,T	Ncr,TF	An/Ag	
	1152.381	1362.240	199064.255	4377.275	1.000	
	rve Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
Major (y-y)	c 0.490	13809.422	0.296	0.567	0.951	1096.126
MajorB(y-y)	c 0.490	13809.422	0.296	0.567	0.951	1096.126
Minor (z-z)	c 0.490	4377.275	0.526	0.718	0.828	954.717
MinorB(z-z)	c 0.490	4377.275	0.526	0.718	0.828	954.717
Torsional TF	c 0.490	4377.275	0.526	0.718	0.828	954.717
MOMENT DESIGN						
	Med	Med, span	Mm, Ed	Meq,Ed		
	Moment	Moment	Moment	Moment		
Major (y-y)	21.424	21.424	21.424	21.424		
Minor $(z-z)$	-0.065	-0.065	-0.032	-0.039		
	Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
	Capacity	Capacity	Capacity	Capacity		
Major (y-y)	57.095	57.095	57.095	57.095		
Minor (z-z)	34.048	34.048	34.048			
Cu	rve AlphaLT	Lambda Bart.T	PhiLT	ChiLT	psi	Mcr
LTB	d 0.760	0.145	0.489	1.000	1.520	2860.768
шь	a 0.700	0.113	0.105	1.000	1.320	2000.700
	kyy	kyz	kzy	kzz		
Factors	0.643	0.359	0.386	0.598		
SHEAR DESIGN						
	Ved	Vc,Rd	Stress	Status	Ted	
	Force	Capacity	Ratio	Check	Torsion	
Major (z)	18.431	423.390	0.044	OK	0.041	
Minor (y)	0.056	241.937	0.000	OK	0.041	
	Vpl,Rd	Eta	LambdabarW			
Reduction	423.390	1.000	0.168			

TITINERA

RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

MMMESSA LOTTO CODIEICA DOCUMENTO DEV. E

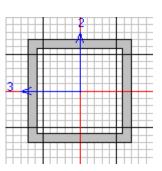
FERMATE

Major (y-y)

-0.258

-0.258

-0.258


-0.258

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

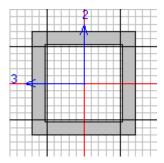
 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 56 di 195

6.3.2 VERIFICA LONGHERONE SCATOLARE 60X60X5

ITINERARIO NAPOLI - BARI

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C X Mid: 5.275 Combo: STATICA 1 Frame: 98 Design Type: Beam Y Mid: 0.000 Shape: 60x60x5 Frame Type: Non Dissipative Length: 1.550 Loc : 1.550 Z Mid: 0.150 Class: Class 1 Rolled : No Interaction=Method B MultiResponse=Envelopes P-Delta Done? No GammaM0=1.05 GammaM1=1.05 GammaM2=1.25 RLLF=1.000 PLLF=0.750 An/Ag=1.00 D/C Lim=0.950 Aeff=0.001 eNv = 0.000eNz = 0.000A = 0.001Iyy=0.000 iyy=0.023Wel,yy=1.864E-05Weff,yy=1.864E-05 It=0.000 Izz=0.000izz=0.023Wel,zz=1.864E-05Weff,zz=1.864E-05 1w = 0.000Iyz=0.000 h=0.060 Wpl,yy=2.275E-05 Av, y=6.000E-04Av, z=5.000E-04E=210000000.0 fy=275000.000 fu=430000.000 Wpl,zz=2.275E-05 STRESS CHECK FORCES & MOMENTS Location Ned Med, yy Med,zz Ved,z Ved.v Ted 1.550 -0.048 -0.258 2.226 0.354 -2.214 -0.751 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.9.1(6z)) D/C Ratio: 0.374 = 0.374 <0.950 OK = (Mz,Ed/Mn,z,Rd) (EC3 6.2.9.1(6z)) AXIAL FORCE DESIGN Nc,Rd Nt,Rd Ned Force Capacity Capacity Axial -0.048 288.095 288.095 Npl,Rd Ncr.T Ncr.TF An/Aq Nu . Rd 288.095 340.560 66088.430 482.392 1.000 Curve Alpha Ncr LambdaBar Phi Chi Nb,Rd 482.392 192.232 Major (y-y) 0.490 0.792 0.959 0.667 C MajorB(y-y) 0.490 482.392 0.792 0.959 0.667 192,232 C 0.792 Minor (z-z)C 0.490 482.392 0.959 0.667 192,232 MinorB(z-z) C 0.490 482.392 0.792 0.959 0.667 192.232 Torsional TF 0.490 482.392 0.792 0.959 0.667 192.232 MOMENT DESIGN Mm.Ed Meq,Ed Med Med.span Moment Moment Moment Moment

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO


FERMATE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FERIVIATE	IF1N	01 E ZZ	CL	FV0220 002	Α	57 di 195
Recinzioni, parapetti e strutture secondarie: relazione						
di calcolo						

Minor (z-z)	2.226	2.226	0.511	0.891		
	Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
	Capacity	Capacity	Capacity	Capacity		
Major (y-y)	5.958	5.958	5.958	5.958		
Minor (z-z)	5.958	5.958	5.958			
	Curve AlphaLT	LambdaBartT	PhiLT	ChiLT	psi	Mcr
LTB	d 0.760		0.477	1.000	2.413	434.372
шь	u 0.700	0.120	0.477	1.000	2.413	434.372
	kyy	kyz	kzy	kzz		
Factors	0.400		0.240	0.400		
raccors	0.100	0.210	0.210	0.100		
SHEAR DESIGN						
	Ved	Vc,Rd	Stress	Status	Ted	
	Force	Capacity	Ratio	Check	Torsion	
Major (z)	0.354	75.605	0.005	OK	0.751	
Minor (y)	2.214	90.726	0.024	OK	0.751	
	Vpl,Rd	Eta	LambdabarW			
Reduction	75.605	1.000	0.124			

CONNECTION SHEAR FORCES FOR BEAMS

	VMajor	VMajor
	Left	Right
Major (V2)	0.183	0.354

6.3.3 VERIFICA LONGHERONE SCATOLARE 50X50X6.3

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station)

Units : KN, m, C

Frame: 91 X Mid: 5.275 Combo: STATICA 1 Design Type: Beam
Length: 1.550 Y Mid: 0.000 Shape: 50x50x6.3 Frame Type: Non Dissipative
Loc: 0.000 Z Mid: 1.340 Class: Class 1 Rolled: No

Interaction=Method B MultiResponse=Envelopes P-Delta Done? No

.431E-05
.431E-05
DE-04
•

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

CODIFICA COMMESSA LOTTO IF1N 01 E ZZ CL

DOCUMENTO FV0220 002

REV. FOGLIO

Α

58 di 195

E=210000000.0 fy=275000.000 fu=430000.000 Wpl,zz=1.817E-05 Av,z=4.712E-0	E=210000000.0	fy=275000.000	fu=430000.000	Wp1,zz=1.817E-05	Av, z=4.712E-04
--	---------------	---------------	---------------	------------------	-----------------

STR	ESS CHECK FO	RCES &	MOMENTS	3				
0 110	Location		Ned		Med,zz	Ved,z	Ved,y	Ted
	0.000		0.144	3.508	-0.190	6.254	-0.299	-0.070
PMM	DEMAND/CAPAOD/C Ratio:				quation EC3 6	.2.9.1(6y)) OK		
	D/C Racio:	0.72		,Ed/Mn,y,Rd)				
			(2	, , , _ , , , , , , , , , , , , , ,	(
λVΤ	AL FORCE DES	TCN						
AAI	AL FORCE DES.	IGN	Ned	Nc,Rd	Nt,Rd			
			Force		Capacity			
	Axial		0.144	288.420	288.420			
			Npl,Rd	Nu , Rd	Ncr,T	Ncr,TF	An/Ag	
			288.420	•	•	214.349	1.000	
			200.420	340.944	03331.433	214.349	1.000	
		_				_, ,		
		Curve	-		LambdaBar	Phi	Chi	Nb,Rd
	Major (y-y)		0.490		1.189	1.449	0.439	126.683
	MajorB(y-y) Minor (z-z)		0.490	214.349 214.349	1.189 1.189	1.449 1.449	0.439 0.439	126.683 126.683
	MinorB(z-z)		0.490	214.349	1.189	1.449	0.439	126.683
	Torsional T			214.349	1.189	1.449	0.439	126.683
	TOISIONAL II	r c	0.400	214.349	1.109	1.449	0.435	120.005
MON	IDAM DEGLESI							
MOM	ENT DESIGN		25-3	26 - 3	Mar. 19.4	M 77-3		
			Med Moment		Mm,Ed Moment	Meq,Ed Moment		
	Major (y-y)		3.508	3.508	3.508	3.508		
	Major (y-y) Minor (z-z)		-0.190	-0.190	-0.190	-0.190		
	MINOI (Z-Z)		-0.100	-0.190	-0.150	-0.190		
			1					
			Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
	74-d	(Capacity		Capacity	Capacity		
	Major (y-y)		4.759	4.759	4.759	4.759		
	Minor (z-z)		4.759	4.759	4.759			
			_	LambdaBarLT	PhiLT	ChiLT	psi	Mcr
	LTB	d	0.760	0.139	0.487	1.000	2.700	257.597
			kyy	kyz	kzy	kzz		
	Factors		0.400	0.240	0.240	0.400		
SHE	AR DESIGN							
			Ved	Vc,Rd	Stress	Status	Ted	
			Force	Capacity	Ratio	Check	Torsion	
	Major (z)		6.254	71.257	0.088	OK	0.070	
	Minor (y)		0.299	95.263	0.003	OK	0.070	
			Vpl,Rd	Eta	LambdabarW			
	Reduction		71.257	1.000	0.074			

CONNECTION SHEAR FORCES FOR BEAMS

VMajor VMajor Left Right Major (V2) 6.254 0.721

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

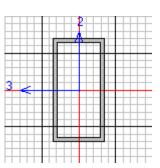
FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

-0.547

Major (y-y)

-0.547


-0.547

-0.547

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 59 di 195

6.3.4 VERIFICA LONGHERONE SCATOLARE 120X60X5

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C X Mid: 3.765 Y Mid: 0.000 Frame : 66 Combo: STATICA 2 Design Type: Beam Shape: LONGHERONE Frame Type: Non Dissipative Length: 1.470 Loc : 1.470 Z Mid: 0.150 Class: Class 1 Rolled : No Interaction=Method B MultiResponse=Envelopes P-Delta Done? No GammaM0=1.05 GammaM1=1.05 GammaM2=1.25 RLLF=1.000 PLLF=0.750 An/Ag=1.00 D/C Lim=0.950 Aeff=0.002 eNv = 0.000eNz = 0.000A = 0.002Iyy=3.094E-06 iyy=0.043Wel,yy=5.157E-05Weff, yy=5.157E-05It=2.353E-06 Izz=1.014E-06 izz=0.024Wel,zz=3.381E-05Weff,zz=3.381E-051w = 0.000Iyz=0.000 h=0.120 Wpl,yy=6.475E-05Av, y=6.000E-04fy=275000.000 E=210000000.0 fu=430000.000 Wpl,zz=3.925E-05 Av, z=0.001STRESS CHECK FORCES & MOMENTS Location Ned Med, yy Med,zz Ved, z Ved.v Ted 1.470 -0.425 -0.547 -0.059 0.684 0.064 0.136 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.9.1(6y)) D/C Ratio: 0.032 = 0.032 <0.950 OK = (My,Ed/Mn,y,Rd) (EC3 6.2.9.1(6y)) AXIAL FORCE DESIGN Nc,Rd Nt,Rd Ned Force Capacity Capacity Axial -0.425 445.238 445,238 Npl,Rd Nu .Rd Ncr.T Ncr.TF An/Aq 445.238 526.320 78650.472 675.478 1.000 Curve Alpha Ncr LambdaBar Phi Chi Nb,Rd Major (y-y) 0.490 2060.848 0.476 0.681 0.856 381.193 C MajorB(y-y) 0.490 2060.848 0.476 0.681 0.856 381.193 C Minor (z-z)C 0.490 675.478 0.832 1.001 0.642 285.898 MinorB(z-z) C 0.490 675.478 0.832 1.001 0.642 285.898 Torsional TF 0.490 675.478 0.832 1.001 0.642 285.898 MOMENT DESIGN Mm,Ed Meq,Ed Med Med.span Moment Moment Moment Moment

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

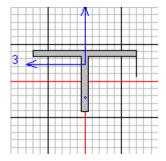
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFIN 01 E ZZ CL FV0220 002 A 60 di 195

Recipzioni parapetti e strutture secondarie: relazione

Recinzioni, parapetti e strutture secondarie: relazione

Minor (z-z)	-0.059	-0.059	-0.012	-0.024		
Major (y-y) Minor (z-z)		Mv,Rd Capacity 16.958 10.280	Mn,Rd Capacity 16.958 10.280	Mb,Rd Capacity 16.958		
LTB	Curve AlphaLT d 0.760	LambdaBarLT 0.147	PhiLT 0.491	ChiLT 1.000	psi 2.293	Mcr 821.691
Factors	kyy 0.400	kyz 0.240	kzy 0.240	kzz 0.400		
SHEAR DESIGN						
	Ved	Vc,Rd	Stress	Status	Ted	
	Force	Capacity	Ratio	Check	Torsion	
Major (z)	0.684	166.332	0.004	OK	0.136	
Minor (y)	0.064	90.726	0.001	OK	0.136	
	Vpl,Rd	Eta	LambdabarW			
Reduction	166.332	1.000	0.268			


CONNECTION SHEAR FORCES FOR BEAMS

 VMajor
 VMajor

 Left
 Right

 Major (V2)
 0.434
 0.684

6.3.5 VERIFICA ELEMENTO VERTICALE A T 100X60X6

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

Frame: 100 X Mid: 7.560 Combo: STATICA 1 Design Type: Column
Length: 1.190 Y Mid: 0.000 Shape: TRAVERSO VERTICALFrame Type: Non Dissipative
Loc: 0.000 Z Mid: 0.745 Class: Class 2 Rolled: No

Interaction=Method B MultiResponse=Envelopes P-Delta Done? No

GammaM0=1.05 GammaM1=1.05 GammaM2=1.25 RLLF=1.000 PLLF=0.750 D/C Lim=0.950 An/Ag=1.00eNy=0.000 Aeff=9.240E-04 eNz=0.000A=9.240E-04 Iyy=0.000 Wel,yy=5.806E-06Weff,yy=5.806E-06 iyy=0.017It=0.000 Izz=0.000izz=0.023Wel,zz=1.002E-05Weff,zz=1.002E-05 Iw = 0.000Iyz=0.000 h=0.060 Wpl,yy=1.036E-05 Av,y=6.000E-04 E=210000000.0 fy=275000.000 fu=430000.000 Wpl,zz=1.549E-05 Av, z=2.916E-04

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

LOTTO CODIFICA DOCUMENTO COMMESSA REV. **FOGLIO** IF1N 01 E ZZ CL FV0220 002 Α 61 di 195

Iyz=0.000 Imax=0.000 imax=0.023 Wel,zz,maj=1.002E-05Rot= 90 deg Imin=0.000 imin=0.017 Wel,zz,min=5.806E-06

STRESS CHECK FORCES & MOMENTS

Reduction

44.093

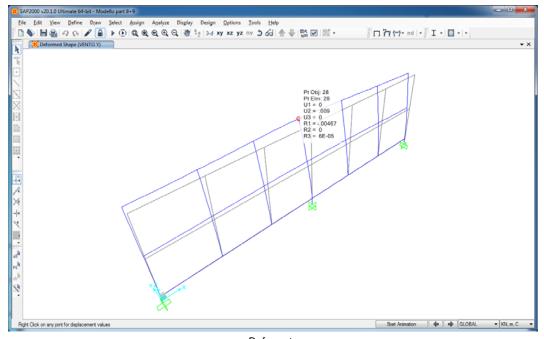
1.000

0.111

Ned Med,yy Med,zz Ved,z Ved,y Location Ted 0.017 -0.006 0.000 -1.892 -0.079 -2.232 -0.171

PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.1(7).Top-Right)

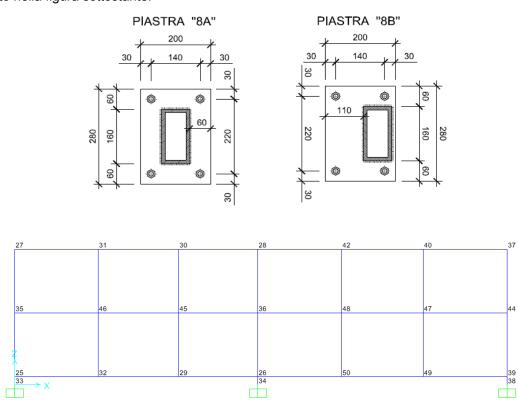
7),Top-Right)


PMM DEMAND/CAR D/C Ratio:				ruation EC3 6. 08 + 0.020] <	.2.1(7),Top-R 0.950		K
_,				(My,Ed/My,Rd)			(EC3 6.2.1(7
AXIAL FORCE DE	ESIGN						
		Ned	Nc,Rd	Nt,Rd			
		Force	Capacity	Capacity			
Axial		0.017	242.000	242.000			
		Npl,Rd	Nu,Rd	Ncr,T	Ncr,TF	An/Ag	
	2	242.000	286.070	929.496	369.796	1.000	
	Curve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
Major (y-y	7) C	0.490	395.003	0.802	0.969	0.661	159.930
MajorB(y-y	7) C	0.490	395.003	0.802	0.969	0.661	159.930
Minor (z-z	z) c	0.490	398.409	0.799	0.966	0.663	160.452
MinorB(z-z	z) c	0.490	1237.796	0.453	0.665	0.869	210.264
Torsional	TF C	0.490	369.796	0.829	0.998	0.644	155.847
MOMENT DESIGN							
		Med	Med, span	Mm, Ed	Meq, Ed		
		Moment	Moment	Moment	Moment		
Major (y-y	7)	-1.892	-1.892	-0.564	-0.830		
Minor (z-z	z)	-0.079	-0.079	0.023	-0.050		
		Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
	Ca	pacity	Capacity	Capacity	Capacity		
Major (y-y		2.713	2.713	2.713	2.713		
Minor (z-z	z)	4.056	4.056	4.056			
	Curve A	lphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr
LTB	d	0.760	0.262	0.558	1.000	2.223	41.580
		kyy	kyz	kzy	kzz		
Factors		0.439	0.240	1.000	0.400		
SHEAR DESIGN							
2222111 2222011		Ved	Vc,Rd	Stress	Status	Ted	
		Force	Capacity	Ratio	Check	Torsion	
Major (z)		2.232	44.093	0.051	OK	0.006	
Minor (y)		0.171	90.726	0.002	OK	0.006	
		Vpl,Rd	Eta	LambdabarW			

6.4 VERIFICA DI DEFORMABILITÀ

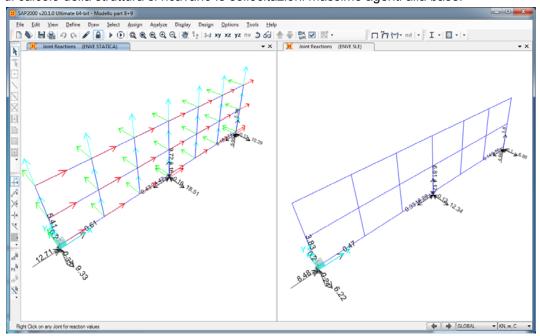
Per la verifica a deformazione si ipotizza la protezione come una parete verticale e si considerano i limiti agli spostamenti orizzontali sotto l'azione del vento riportati nella tabella 4.2.XI al capitolo 4.2.4.2.2 dell' NTC2008 che fissa un valore limite pari a Δ_{lim} = 2L/300.

Per L = 2.53 m Δ_{lim} = 16.87 mm


Deformata

Come si può vedere lo spostamento orizzontale massimo sotto l'azione del vento presenta un valore di $9.0 \text{ mm} < \Delta_{\text{lim}}$ per cui la verifica risulta soddisfatta

6.5 VERIFICA DELLA PIASTRA DI BASE


La piastra di fondazione ha una dimensione di 200x280 mm spessore 20 mm, è dotata di quattro tasselli chimici M16 ed è realizzata in acciaio S275. Per necessità geometriche si distinguono due diverse tipologie di piastre come riportato nella figura sottostante.

Piastra tipo 8A vale per i nodi 34 -38 Piastra tipo 8B vale per il nodo 33.

Dal modello di calcolo della struttura si ricavano le sollecitazioni massime agenti alla base:

Reazioni alla base

Sollecitazioni massime SLU STATICA

NODO	F1	F2	F3	M1	M2
33	KN	KN	KN	KN-m	KN-m
	0.60	9.34	5.41	12.74	0.25

NODO	F1	F2	F3	M1	M2
38	KN	KN	KN	KN-m	KN-m
	0.19	10.27	5.38	13.70	0.10

NODO	F1	F2	F3	M1	M2
34	KN	KN	KN	KN-m	KN-m
	0.41	18.50	9.72	24.37	0.16

ITINERARIO NAPOLI – BARI

IITINERA

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 65 di 195

Recinzioni, parapetti e strutture secondarie: relazione

Sollecitazioni massime SLE

NODO	F1	F2	F3	M1	M2
33	KN	KN	KN	KN-m	KN-m
	0.46	6.23	3.83	8.49	0.19

NODO	F1	F2	F3	M1	M2
38	KN	KN	KN	KN-m	KN-m
	0.15	6.85	3.80	9.14	0.08

NODO	F1	F2	F3	M1	M2
34	KN	KN	KN	KN-m	KN-m
	0.32	12.33	6.81	16.25	0.12

6.5.1 VERIFICA SEZIONE DI CONTATTO PIASTRA TIPO 8A

Si effettua la verifica della sezione di contatto in campo elastico considerando le sollecitazioni della combinazione SLE.

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: piastra 34-38

Descrizione Sezione:

Metodo di calcolo resistenza:

Tipologia sezione:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

Posizione sezione nell'asta:

Tensioni Ammissibili
Sezione generica
Assi x,y principali d'inerzia
Zona non sismica
In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C25/30

Tensione Normale Ammiss. Sc : 97.50 daN/cm²
Tensione Normale media Amm. : 68.25 daN/cm²
Tensione Tangenz.Amm. TauC0 : 6.00 daN/cm²
Tensione Tangenz.Amm. TauC1 : 18.28 daN/cm²
Coeff. N di omogeneizzazione : 15.0
Modulo Elastico Normale Ec : 314750 daN/cm²
Coeff. di Poisson : 0.20
Resis. media a trazione fctm: 26.00 daN/cm²

ACCIAIO - Tipo: B450C

Resist. caratt. rottura ftk: 5400.0 daN/cm²
Tensione Ammissibile Sf : 2550.0 daN/cm²
Modulo Elastico Ef : 2000000 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C25/30

N.vertice	Ascissa X, cm	ordinata Y, cm
1	-10.00	0.00
2	-10.00	28.00
3	10.00	28.00
4	10.00	0.00

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

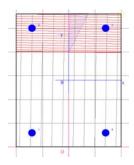
FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 66 di 195

DATI BARRE ISOLATE


N.Barra Ascissa X Ordinata Y Diam. Numero assegnato alle singole barre isolate e nei vertici dei domini Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Diametro in mm della barra

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	-7.00	3.00	14.14
2	-7.00	25.00	14.14
3	7.00	25.00	14.14
4	7.00	3.00	14.14

TENS.AMMISS. - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
_	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb.	N	Mx	My	Vy	Vx
1	681	1625	12	0	0
2	380	914	8	0	0

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 2.3 cm Interferro netto minimo barre longitudinali: 12.6 cm

METODO DELLE TENSIONI AMMISSIBILI - MASSIME E MINIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione [in daN/cm²] nel conglomerato (positiva se di compress.)
Xc max	Ascissa [in cm] corrispond. al punto di massima compressione
Yc max	Ordinata [in cm] corrispond. al punto di massima compressione
Sc min	Minima tensione [in daN/cm²] nel conglomerato (positiva se di compress.)
Xc min	Ascissa [in cm] corrispond. al punto di minima compressione
Yc min	Ordinata [in cm] corrispond. al punto di minima compressione
Sc med	Tensione media [in daN/cm²] nel congl. in presenza di sf. normale
Sf min	Minima tensione [in daN/cm²] nell'acciaio (negativa se di trazione)
Yf min	Ordinata [in cm] corrispond. alla barra di minima tensione
N.Comb. Ver	Sc max Xcmax Ycmax Sc min Xcmin Ycmin Sc med Sf min Xfmin Yfmin
1 S	70.9 10.0 28.0 0.0 0.0 0.0 1.0 -2230 -7.0 3.0
2 S	40.0 10.0 28.0 0.0 0.0 0.0 0.6 -1256 -7.0 3.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

- a Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
- b Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

C	Coeff.	c nell'eq.	dell'asse	neutro	aX+bY+c=0	nel rif.	X,Y,O gen.

N.Comb.	a	b	С
1	0.000000904		-0.001304219
2	0.000000603		-0.000733827

6.5.2 VERIFICA DI RESISTENZA PIASTRA TIPO 8A

Si effettua la verifica della piastra come una mensola incastrata in corrispondenza del montante caricata con la forza di trazione massima agente sui tasselli allo SLU pari a $F_{traz} = (\sigma_b \cdot A_{res} \cdot n) \cdot \gamma_g$.

Di seguito si riporta il foglio di calcolo utilizzato per la verifica.

Bulloni			
Barra M	16		
Acciaio	5.8		
A =	2.01	cmq	
Ares =	1.57	cmq	
Фeq =	14.14	mm	
n =	2		
Piastra			
a=	28	cm	
b=	20	cm	
sp=	2	cm	
Acciaio	S275		
fyk=	275	MPa	
fyd=	250	MPa	
σb=	2230.0	Kg/cmq	
Wel=	13.33	cm^3	
Wpl=	20.00	cm^3	
e=	3	cm	
F_traz =	10503.3	Kg	
Sollecitazioni	di progetto		
Msd=	31509.9	Kgcm	
Mrd =	50000.0	Kgcm	
Msd	<	Mrd	verificato

6.5.3 VERIFICA ANCORAGGIO PIASTRA TIPO 8A

Il fissaggio della piastra alla struttura sottostante avviene tramite quattro barre filettate M16 in acciaio classe 5.8 con ancorante chimico ad iniezione tipo HILTY HIT-RE 500 V3 o similare.

La verifica viene effettuata considerando le sollecitazione massime alla base allo SLU nella combinazione di calcolo STATICA utilizzando il codice di calcolo PROFIS Anchor 2.7.8 prodotto dalla HILTI di cui se ne riporta il report di verifica.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO

01 E ZZ

IF1N

CODIFICA

DOCUMENTO

RFV **FOGLIO**

FV0220 002 68 di 195 CL Α

Profis Anchor 2.

www.hilti.it Impresa: Progettista: Pagina: Progetto:

Indirizzo: Contratto N°:

Telefono I Fax: 11/09/2018 F-mail:

Commenti del progettista:

1 Dati da inserire

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M16

Hilti Seismic set o altro sistema per il riempimento dello spazio aulare tra piastra e anco:..

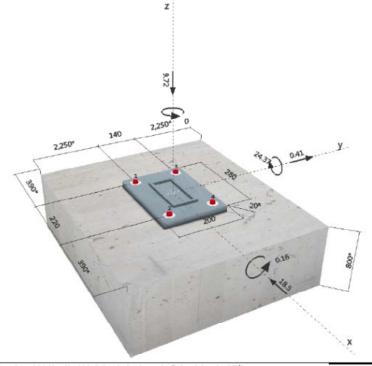
Profondità di posa effettiva: hetact = 200 mm (hetamt = - mm)

Materiale 5.8 Certificazione No.: ETA 16/0143 Emesso I Valido: 12/07/2017 | -

Metodo di calcolo SOFA + fib (07/2011) - dopo prove ETAG BOND

Fissaggio distanziato: e_b = 0 mm (Senza distanziamento); t = 20 mm

I_x x I_y x t = 280 mm x 200 mm x 20 mm; (Spessore della piastra raccomandato: non calcolato Piastra d'ancoraggio:


Profilo cavo allungato; (L x W x T) = 160 mm x 80 mm x 10 mm

Materiale base: non fessurato calcestruzzo, C25/30, f_{c.cvl} = 25.00 N/mm²; h = 800 mm, Temp. Breve/Lungo: 0/0 °C

Foro eseguito con perforatore, Condizioni di installazione: asciutto Installazione: Armatura: interasse delle armature < 150 mm (qualunque Ø) o < 100 mm (Ø <= 10 mm)

senza armatura di bordo longitudinale

Geometria [mm] & Carichi [kN, kNm]

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

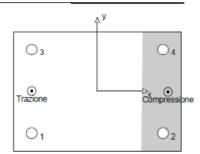
Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ FV0220 002 69 di 195 CL Α

Profis Anchor 2.7.8

www.hilti.it Impresa: Pagina: Progetto: Contratto N°: Progettista:

Indirizzo: Telefono I Fax: 11/09/2018 Data:


2 Condizione di carico/Carichi risultanti sull'ancorante

Condizione di carico: Carichi di progetto

Carichi sull'ancorante [kN] Trazione: (+ Trazione, - Compressione)

Ancorante	Trazione	Taglio	Taglio in dir. x	Taglio in dir. y
1	50.638	4.626	-4.625	0.103
2	0.000	4.626	-4.625	0.103
3	51.075	4.626	-4.625	0.103
4	0.000	4.626	-4.625	0.103

Compressione max. nel calcestruzzo: Max. sforzo di compressione nel calcestruzzo: risultante delle forze di trazione nel (x/y)=(-110/0): risultante delle forze di compressione (x/y)=(118/-1): 0.58 [%] 17.41 [N/mm²] 101.713 [kN] 111.433 [kN]

3 Carico di trazione SOFA (fib (07/2011), paragrafo 16.2.1)

	Carico [kN]	Resistenza [kN]	Utilizzo β _N [%]	Stato
Rottura dell'acciaio*	51.075	52.333	98	OK
Rottura combinata conica del calcestruzzo e per sfilamento**	101.713	141.735	72	OK
Rottura conica del calcestruzzo**	101.713	127.780	80	OK
Fessurazione**	N/A	N/A	N/A	N/A
*ancorante più sollecitato **gruppo di an	coranti (ancoranti sollecitat	i)		

3.1 Rottura dell'acciaio

	N _{Rk,s} [kN]	YM,s	N _{Rd,s} [kN]	N _{Sd} [kN]	
_	78 500	1 500	52 333	51 075	

3.2 Rottura combinata conica del calcestruzzo e per sfilamento

A _{p,N} [mm ²]	$A_{p,N}^0$ [mm ²]	Ψ A,Np	τ _{Rk,ucr,25} [N/mm²]	s _{a,Np} [mm]	c _{or,Np} [mm]	c _{min} [mm]
283,888	218,453	1.300	16.00	467	234	390
Ψε	τ _{Rk,ucr} [N/mm²]	max τ _{Rk,ucr} [N/mm²]	Ψ g.Np	ΨgNp		
1.018	16.29	15.47	1.000	1.000		
e _{c1,N} [mm]	Ψ ec1,Np	e _{c2,N} [mm]	Ψ ec2,Np	Ψ s,Np	Ψ re,Np	
0	1.000	0	0.999	1.000	1.000	
N‰,p [kN]	N _{Rk,p} [kN]	YMρ	N _{Rd,p} [kN]	N _{Sd} [kN]		
163.809	212.602	1.500	141.735	101.713		

3.3 Rottura conica del calcestruzzo

A _{c,N} [mm ²]	A _{0,N} [mm ²]	VAN	c _{cr,N} [mm]	s _{cr,N} [mm]	
444,000	360,000	1.233	300	600	
e _{c1,N} [mm]	Ψ ec1,N	e _{c2,N} [mm]	₩ ec2,N	Ψs,N	Ψ re,N
0	1.000	0	0.999	1.000	1.000
k ₁	N _{Rk,c} [kN]	γм,с	N _{Rd,c} [kN]	N _{Sd} [kN]	
11.000	155.563	1.500	127.780	101.713	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF1N 01 E ZZ CL FV0220 002 70 di 195 Α

Profis Anchor 2.7.8 www.hilti.it Impresa: Progettista: Pagina: Progetto: Contratto N°:

Indirizzo:

Telefono I Fax: 11/09/2018 E-mail:

4 Carico di taglio SOFA (fib (07/2011), paragrafo 16.2.2)

	Carico [kN]	Resistenza [kN]	Utilizzo β _V [%]	Stato
Rottura dell'acciaio (senza braccio di leva)*	4.626	31.400	15	OK
Rottura dell'acciaio (con braccio di leva)*	N/A	N/A	N/A	N/A
Rottura per pryout**	18.505	349.615	6	OK
Rottura del bordo del calcestruzzo in direzione y+**	9.252	79.824	12	ок

*ancorante più sollecitato **gruppo di ancoranti (ancoranti specifici)

4.1 Rottura dell'acciaio (senza braccio di leva)

V _{Rk,s} [kN]	γ _{M,s}	V _{Rd,s} [kN]	V _{Sd} [kN]
39.250	1.250	31.400	4.626

4.2 Rottura per pryout (cono del calcestruzzo)

	A _{c,N} [mm ²]	A _{c,N} [mm ²]	ΨAN	C _{cr,N} [mm]	s _{cr,N} [mm]	k ₄
	606,800	360,000	1.686	300	600	2.000
	e _{c1,V} [mm]	Ψ ec1,N	e _{c2,V} [mm]	Ψ ec2,N	Ψ s,N	Ψ re,N
	0	1.000	0	1.000	1.000	1.000
	N _{Rk,c} [kN]	Ум,с,р	V _{Rd,cp} [kN]	V _{Sd} [kN]		
-	155.563	1.500	349.615	18.505		

4.3 Rottura del bordo del calcestruzzo in direzione y+

	I _r [mm]	d _{nom} [mm]	k _v	α	β		
_	192	16.0	2.400	0.060	0.050		
	c ₁ [mm]	c ₁ [mm]	A _{c,V} [mm ²]	A ⁰ _{c,V} [mm ²]	ΨAV		
	2,390	533	800,000	1,280,000	0.625		
	Ψ s,v	₩ h,V	Ψ _a v	e _{o,V} [mm]	Ψ ec,V	Ψ re,V	¥ 90*,∨
	0.846	1.000	1.999	0	1.000	1.000	2.000
_	V ⁰ Rk,c [kN]	n ₁	ΥM,c	V _{Rd,c} [kN]	V _{Sd} [kN]		
	226.550	2	1.500	79.824	9.252		

Nota: resistenza limite in accordo a fib (07/2011), equazione governante (10.2-6).

5 Carichi combinati di trazione e di taglio SOFA (fib (07/2011), paragrafo 10.3)

	β _N	β_V	α	Utilizzo β _{N,V} [%]	Stato
acciaio	0.976	0.147	2.000	98	OK
Calcestruzzo	0.796	0.116	1.500	75	OK
$\beta_N^{\alpha} + \beta_V^{\alpha} \le 1$					

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 71 di 195

Profis Anchor 2.7.8

 www.hilti.it
 Profis Anchor 2.7.3

 Impresa:
 Pagina:
 4

 Progettista:
 Progetto:
 Indirazzo:

 Indirazzo:
 Contratto N*:
 11/09/2018

 E-mail:
 Data:
 11/09/2018

6 Spostamenti (ancorante più sollecitato)

Carichi a breve termine

Commenti: Gli spostamenti a trazione risultano validi con metà del valore della coppia di serraggio richiesta per non fessurato calcestruzzo!
Gli spostamenti a taglio sono validi trascurando l'attrito tra il calcestruzzo e la piastra d'ancoraggio! Lo spazio derivante dal foro eseguito con perforatore e dalle tolleranze dei fori non viene considerato in questo calcolo!

Gli spostamenti ammissibili dell'ancorante dipendono dalla struttura fissata e devono essere definiti dal progettista!

7 Attenzione

- Fenomeni di ridistribuzione dei carichi sugli ancoranti derivanti da eventuali deformazioni elastiche della piastra non sono presi in considerazione. Si assume una piastra di ancoraggio sufficientemente rigida in modo che non risulti deformabile sotto l'azione di carichi!
- La lista accessori inclusa in questo report di calcolo è da ritenersi solo come informativa dell'utente. In ogni caso, le istruzioni d'uso fomite con il prodotto dovranno essere rispettate per garantire una corretta installazione.
- · L'adesione chimica caratteristica dipende dalle temperature di breve e di lungo periodo.
- Contattare Hilti per verificare la fornitura delle barre HIT-V.
- Il metodo Fib (07/2011) assume l'assenza di spazi anulari tra gli ancoranti e la piastra di ancoraggio. Questo può essere ottenuto mediante il riempimento con resina di sufficiente resistenza a compressione (p.e. usando il sistema Hilti Seismic/Filling set) o attraverso altri mezzi idonoi.
- · L'utente è responsabile della conformità alle norme correnti (e.g. EC3)
- · La verifica del trasferimento dei carichi nel materiale base è necessaria in accordo a fib (07/2011)!

L'ancoraggio risulta verificato!

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO

01 E ZZ

IF1N

CODIFICA

DOCUMENTO FV0220 002

REV.

FOGLIO

A 72 di 195

 www.hilti.it
 Profis Anchor 2.7.8

 Impresa:
 Pagina:
 5

 Progettista:
 Progetto:
 Indirezo:

 Indirezo:
 Contratto N*:
 Telefono I Fax:
 11/09/2018

 E-mail:
 E-mail:
 11/09/2018

8 Dati relativi all'installazione

Piastra d'ancoraggio, acciaio: Profilo: Profilo cavo allungato; 160 x 80 x 10 mm
Diametro del foro nella piastra: d, = 18 mm
Spessore della piastra (input): 20 mm
Spessore della piastra raccomandato: non calcolato
Metodo di perforazione: Foro con perforazione a roto-pi

Spessore della piastra raccomandato: non calcolato Metodo di perforazione: Foro con perforazione a roto-percussione Pulizia: E' necessaria una pulizia accurata del foro (Premium cleaning) Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M16 Coppia di serraggio: 0.080 kNm

30

Diametro del foro nel materiale base: 18 mm Profondità del foro nel materiale base: 200 mm Spessore minimo del materiale base: 236 mm

8.1 Accessori richiesti

Perforazione Pulizia · Aria compressa con i relativi accessori Il dispenser include il portacartucce e il Idoneo per rotopercussione necessari per soffiare a partire dal fondo miscelatore Dimensione appropriata della punta del del foro. Seismic/Filling set · Diametro appropriato dello scovolino · Chiave dinamometrica 140 140 30 00 8 30

220

Coordinate dell'ancorante [mm]

Ancorante	X	У	C-x	C+x	C.y	C _{+y}
1	-110	-70	390	610	2,250	2,390
2	110	-70	610	390	2,250	2,390
3	-110	70	390	610	2,390	2,250
4	110	70	610	390	2,390	2,250

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 73 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

6.5.4 VERIFICA SEZIONE DI CONTATTO PIASTRA TIPO 8B

ITINERA

Si effettua la verifica della sezione di contatto in campo elastico considerando le sollecitazioni della combinazione SLE. Poiche il montante è decentrato rispetto alla piastra si incrementa il momento M22 con il momento di trasporto pari a :

M2trasp	е	M2*
KN-m	m	KN-m
0.19	0.05	0.38

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: piastra 33

(Percorso File: D:\Commesse\BPK-CANCELLO-FRASSO\FV-PARAPETTI E PROTEZIONI\part 8-9\piastra 33.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Tensioni Ammissibili Tipologia sezione: Sezione generica Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C25/30

Tensione Normale Ammiss. Sc: 97.50 daN/cm²
Tensione Normale media Amm.: 68.25 daN/cm²
Tensione Tangenz.Amm. TauC0: 6.00 daN/cm²
Tensione Tangenz.Amm. TauC1: 18.28 daN/cm²
Coeff. N di omogeneizzazione: 15.0
Modulo Elastico Normale Ec: 314750 daN/cm²
Coeff. di Poisson: 0.20
Resis. media a trazione fctm: 26.00 daN/cm²

ACCIAIO - Tipo: B450C

Resist. caratt. rottura ftk: 5400.0 daN/cm²
Tensione Ammissibile Sf : 2550.0 daN/cm²
Modulo Elastico Ef : 2000000 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C25/30

N.vertice	Ascissa X, cm	n Ordinata Y, cm
1	-10.00	0.00
2	-10.00	28.00
3	10.00	28.00
4	10.00	0.00

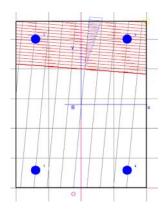
DATI BARRE ISOLATE

N.Barra Numero assegnato alle singole barre isolate e nei vertici dei domini
Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Diam. Diametro in mm della barra

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	-7.00	3.00	14.14
2	-7.00	25.00	14.14
3	7.00	25.00	14.14
4	7.00	3.00	14.14

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE


Recinzioni, parapetti e strutture secondarie: relazione

CODIFICA DOCUMENTO COMMESSA LOTTO REV. **FOGLIO** IF1N 01 E ZZ CL FV0220 002 Α 74 di 195

TENS.AMMISS. - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb.	N	Mx	My	Vy	Vx
1	383	849	38	0	0

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 2.3 cm Interferro netto minimo barre longitudinali: 12.6 cm

METODO DELLE TENSIONI AMMISSIBILI - MASSIME E MINIME TENSIONI NORMALI

Ver Sc max					rificata / n daN/cm²]					i gamma	0.000
							_			_	ess.)
Xc max					rrispond.	_		_			
Yc max		Ordina	ta [in	cm] co	rrispond.	al punt	o di ma	ssima comp	ressione		
Sc min		Minima	tensi	one [i	n daN/cm²]	nel co	nglomer	ato (posit	iva se d	i compr	ess.)
Xc min		Asciss	a [in	cm] co	rrispond.	al punt	o di mi	nima compr	ressione		
Yc min		Ordina	ta [in	cm] co	rrispond.	al punt	o di mi	nima compr	ressione		
Sc med		Tensio	ne medi	a [i	n daN/cm²]	nel co	ngl. in	presenza	di sf. n	ormale	
Sf min		Minima	tensi	one [i	n daN/cm²]	nell'a	cciaio	(negativa	se di tr	azione)	
Yf min Ordinata [in cm]				cm] co	rrispond.	alla ba	rra di	minima ter	sione		
N.Comb.	Ver	Sc max	Xcmax	Ycmax	Sc min	Xcmin	Ycmin	Sc med	Sf min	Xfmin	Yfmin
1	S	40.2	10.0	28.0	0.0	0.0	0.0	0.6	-1195	-7.0	3.0

40.2 10.0 28.0 0.0 0.0 0.0 0.6 -1195 -7.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a	Coeff.	а	nell'eq.	dell'asse	neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.
b	Coeff.	b	nell'eq.	dell'asse	neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.
C	Coeff.	С	nell'eq.	dell'asse	neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.

N.Comb.	a	b	С
1	0 000002859	0 000034025	-0.000679504

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 75 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

FERMATE

6.5.5 VERIFICA DI RESISTENZA PIASTRA TIPO 8B

Si effettua la verifica della piastra come una mensola incastrata in corrispondenza del montante caricata con la forza di trazione massima agente sui tasselli allo SLU pari a $F_{traz} = (\sigma_b \cdot A_{res} \cdot n) \cdot \gamma_q$.

Di seguito si riporta il foglio di calcolo utilizzato per la verifica.

Bulloni			
Barra M	16		
Acciaio	5.8		
A =	2.01	cmq	
Ares =	1.57	cmq	
Феq =	14.14	mm	
n =	2		
Piastra			
a=	28	cm	
b=	20	cm	
sp=	2	cm	
Acciaio	S275		
fyk=	275	MPa	
fyd=	250	MPa	
σb=	1195.0	Kg/cmq	
Wel=	13.33	cm^3	
Wpl=	20.00	cm^3	
e=	3	cm	
F_traz =	5628.5	Kg	
Sollecitazioni	i di progetto		
Msd=	16885.4	Kgcm	
Mrd =	50000.0	Kgcm	
Msd	<	Mrd	verificato

6.5.6 VERIFICA ANCORAGGIO PIASTRA TIPO 8B

Il fissaggio della piastra alla struttura sottostante avviene tramite quattro barre filettate M16 in acciaio classe 5.8 con ancorante chimico ad iniezione tipo HILTY HIT-RE 500 V3 o similare.

La verifica viene effettuata considerando le sollecitazione massime alla base allo SLU nella combinazione di calcolo STATICA utilizzando il codice di calcolo PROFIS Anchor 2.7.8 prodotto dalla HILTI di cui se ne riporta il report di verifica.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA LOTTO

01 E ZZ

IF1N

CODIFICA CL

DOCUMENTO

REV. FOGLIO

76 di 195

FV0220 002 A

Profis Anchor 2.7.8

www.hilti.it
Impresa: Pagina:

Progettista: Progetto: Indirizzo: Progetto: Contratto N°:

Telefono I Fax: Data: 11/09/2018
E-mail:

Commenti del progettista:

1 Dati da inserire

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M16

Hilti Seismic set o altro sistema per il riempimento dello spazio aulare tra piastra e ancol.

Profondità di posa effettiva: hef,act = 200 mm (hef,limit = - mm)

Materiale: 5.8
Certificazione No.: ETA 16/0143

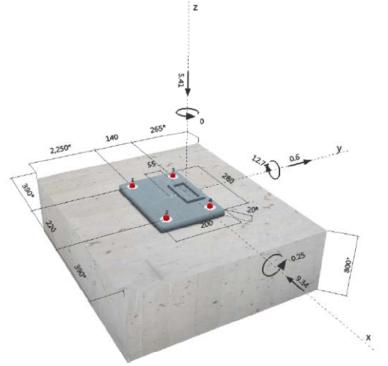
Certificazione No.: ETA 16/0143
Emesso I Valido: 12/07/2017 | -

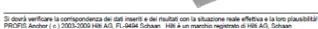
Prova: Metodo di calcolo SOFA + fib (07/2011) – dopo prove ETAG BOND

Fissaggio distanziato: e_b = 0 mm (Senza distanziamento); t = 20 mm

Piastra d'ancoraggio: $l_x \times l_y \times t = 280 \text{ mm} \times 200 \text{ mm} \times 20 \text{ mm}$; (Spessore della piastra raccomandato: non calcolato

Profilo: Profilo cavo allungato; (L x W x T) = 120 mm x 60 mm x 11 mm


Materiale base: non fessurato calcestruzzo, C25/30, f_{c,oyl} = 25.00 N/mm²; h = 800 mm, Temp. Breve/Lungo: 0/0 °C


Installazione: Foro eseguito con perforatore, Condizioni di installazione: asciutto

Armatura: interasse delle armature < 150 mm (qualunque Ø) o < 100 mm (Ø <= 10 mm)

senza armatura di bordo longitudinale

Geometria [mm] & Carichi [kN, kNm]

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

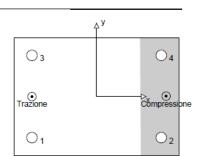
Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ FV0220 002 77 di 195 CL Α

Profis Anchor 2.7.8 www.hilti.it Impresa: Pagina:

Progettista: Indirizzo: Telefono I Fax: Progetto: Contratto N°:

11/09/2018 Data:


2 Condizione di carico/Carichi risultanti sull'ancorante

Condizione di carico: Carichi di progetto

Carichi sull'ancorante [kN] Trazione: (+ Trazione, - Compressione)

Ancorante	Trazione	Taglio	Taglio in dir. x	Taglio in dir. y
1	26.573	1.930	-1.806	-0.681
2	0.000	2.055	-1.806	0.981
3	26.443	2.944	-2.864	-0.681
4	0.000	3.027	-2 864	0.981

Compressione max. nel calcestruzzo: 0.30 [‰] Max. sforzo di compressione nel calcestruzzo: risultante delle forze di trazione nel (x/y)=(-110/0): 9.04 [N/mm²] 53.016 [kN] risultante delle forze di compressione (x/y)=(118/1): 58.426 [kN]

3 Carico di trazione SOFA (fib (07/2011), paragrafo 16.2.1)

	Carico [kN]	Resistenza [kN]	Utilizzo β _N [%]	Stato
Rottura dell'acciaio*	26.573	52.333	51	OK
Rottura combinata conica del calcestruzzo e per sfilamento**	53.016	141.813	38	OK
Rottura conica del calcestruzzo**	53.016	117.526	46	OK
Fessurazione**	N/A	N/A	N/A	N/A

*ancorante più sollecitato **gruppo di ancoranti (ancoranti sollecitati)

3.1 Rottura dell'acciaio

N _{Rk,s} [kN]	γ _{M,s}	N _{Rd,s} [kN]	N _{Sd} [kN]	
78 500	1 500	52 333	26 573	

3.2 Rottura combinata conica del calcestruzzo e per sfilamento

A _{p,N} [mm ²]	$A_{p,N}^0$ [mm ²]	Ψ A,Np	τ _{Rk,ucr,25} [N/mm²]	s _{cr,Np} [mm]	c _{cr,Np} [mm]	c _{min} [mm]
283,888	218,453	1.300	16.00	467	234	265
Ψα	τ _{Rk,ucr} [N/mm²]	max τ _{Rk,ucr} [N/mm²]	Ψ ⁰ g.Np	Ψ д.Νρ		
1.018	16.29	15.47	1.000	1.000		
e _{c1,N} [mm]	Ψ ec1,Np	e _{c2,N} [mm]	Ψ ec2,Np	Ψ s,Np	Ψ re,Np	
0	1.000	0	0.999	1.000	1.000	
N _{Rk,p} [kN]	N _{Rk,p} [kN]	γм _. р	N _{Rd,p} [kN]	N _{Sd} [kN]	_	
163.809	212.720	1.500	141.813	53.016		

3.3 Rottura conica del calcestruzzo

A _{c,N} [mm ²]	A _{C,N} [mm ²]	ΨΑΝ	c _{cr,N} [mm]	s _{cr,N} [mm]	
423,000	360,000	1.175	300	600	
e _{c1,N} [mm]	Ψ ec1,N	e _{c2,N} [mm]	Ψ ec2,N	Ψs,N	Ψ ге,N
0	1.000	0	0.999	0.965	1.000
k ₁	N ⁰ _{Rk,c} [kN]	Ум ,с	N _{Rd,c} [kN]	N _{Sd} [kN]	
11.000	155.563	1.500	117.526	53.016	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

www.hilti.it

E-mail:

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 78 di 195

Profis Anchor 2.7.8

Impresa:
Progettista:
Indirizzo:
Telefono I Fax:

Pagina: Progetto: Contratto N*:

11/09/2018

4 Carico di taglio SOFA (fib (07/2011), paragrafo 16.2.2)

	Carico [kN]	Resistenza [kN]	Utilizzo β _V [%]	Stato
Rottura dell'acciaio (senza braccio di leva)*	3.027	31.400	10	OK
Rottura dell'acciaio (con braccio di leva)*	N/A	N/A	N/A	N/A
Rottura per pryout**	9.359	268.645	4	OK
Rottura del bordo del calcestruzzo in	4.865	50.321	10	OK

^{*}ancorante più sollecitato **gruppo di ancoranti (ancoranti specifici)

4.1 Rottura dell'acciaio (senza braccio di leva)

V _{Rk,s} [kN]	ΥM,s	V _{Rd,s} [kN]	V _{Sd} [kN]	
39 250	1 250	31.400	3.027	

4.2 Rottura per pryout (cono del calcestruzzo)

A _{c,N} [mm ²]	A _{0,N} [mm ²]	VAN	c _{cr,N} [mm]	s _{cr,N} [mm]	k ₄
578,100	360,000	1.606	300	600	2.000
e _{c1,V} [mm]	Ψ ec1,N	e _{c2,V} [mm]	Ψ ec2,N	Ψs,N	Ψ re,N
4	0.988	55	0.846	0.965	1.000
N _{Rk,c} [kN]	Ум,с,р	V _{Rd,cp} [kN]	V _{Sd} [kN]		
155.563	1.500	268.645	9.359	•	

4.3 Rottura del bordo del calcestruzzo in direzione x-

l₁ [mm]	d _{nom} [mm]	k _V	α	β		
192	16.0	2.400	0.056	0.048		
c ₁ [mm]	A _{c,v} [mm ²]	A _{0,V} [mm ²]	WAV			
610	1,056,000	1,674,450	0.631	,		
Ψ s,V	Ψh,V	Ψ∝ν	e _{c,V} [mm]	Ψ ec,V	Ψ re,V	Ψ 90°,V
0.787	1.069	1.062	15	0.984	1.000	2.000
V ⁰ _{Rk,c} [kN]	n ₁	γM,c	V _{Rd,c} [kN]	V _{sd} [kN]		
272.249	2	1.500	50.321	4.865		

Nota: resistenza limite in accordo a fib (07/2011), equazione governante (10.2-6).

5 Carichi combinati di trazione e di taglio SOFA (fib (07/2011), paragrafo 10.3)

	β _N	β_V	α	Utilizzo β _{N,V} [%]	Stato
acciaio	0.508	0.096	2.000	27	OK
Calcestruzzo	0.451	0.097	1.500	34	OK
$a^{\alpha} + a^{\alpha} \le 1$					

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 79 di 195

 www.hilti.it
 Profis Anchor 2.7.8

 Impresa:
 Pagina:
 4

 Progettista:
 Progetto:
 4

 Indinzzo:
 Contratto N°:
 11/09/2018

 Telefono I Fax:
 |
 Data:
 11/09/2018

6 Spostamenti (ancorante più sollecitato)

Carichi a breve termine:

N_{Sk} = 19.684 [kN] = 0.117 [mm] = 3.535 [kN] = 0.141 [mm] V_{Sk} δν = 0.184 [mm] δων Carichi a lungo termine: N_{Sk} = 19.684 [kN] = 0.255 [mm] δΝ = 3.535 [kN] = 0.212 [mm] Vsk δν δην 0.331 [mm]

Commenti: Gli spostamenti a trazione risultano validi con metà del valore della coppia di serraggio richiesta per non fessurato calcestruzzo!
Gli spostamenti a taglio sono validi trascurando l'attrito tra il calcestruzzo e la piastra d'ancoraggio! Lo spazio derivante dal foro eseguito con perforatore e dalle tolleranze dei fori non viene considerato in questo calcolo!

Gli spostamenti ammissibili dell'ancorante dipendono dalla struttura fissata e devono essere definiti dal progettista!

7 Attenzione

- Fenomeni di ridistribuzione dei carichi sugli ancoranti derivanti da eventuali deformazioni elastiche della piastra non sono presi in considerazione. Si assume una piastra di ancoraggio sufficientemente rigida in modo che non risulti deformabile sotto l'azione di carichi!
- La lista accessori inclusa in questo report di calcolo è da ritenersi solo come informativa dell'utente. In ogni caso, le istruzioni d'uso fomite
 con il prodotto dovranno essere rispettate per garantire una corretta installazione.
- L'adesione chimica caratteristica dipende dalle temperature di breve e di lungo periodo.
- Contattare Hilti per verificare la fornitura delle barre HIT-V.
- Il metodo Fib (07/2011) assume l'assenza di spazi anulari tra gli ancoranti e la piastra di ancoraggio. Questo può essere ottenuto mediante il riempimento con resina di sufficiente resistenza a compressione (p.e. usando il sistema Hilti Seismic/Filling set) o attraverso altri mezzi idonai.
- L'utente è responsabile della conformità alle norme correnti (e.g. EC3)
- La verifica del trasferimento dei carichi nel materiale base è necessaria in accordo a fib (07/2011)!

L'ancoraggio risulta verificato!

LOTTO

IF1N

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA

CODIFICA

DOCUMENTO

RFV **FOGLIO**

80 di 195

01 E ZZ FV0220 002 CL Α

FERMATE

E-mail:

Recinzioni, parapetti e strutture secondarie: relazione

Profis Anchor 2.7.8

www.hilti.it Impresa: Progettista: Pagina:

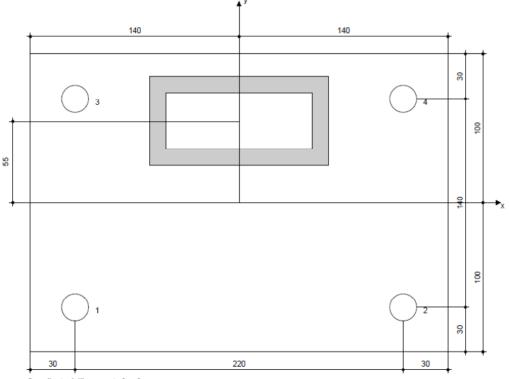
Progetto: Contratto N°: Data: Indirizzo: Telefono I Fax:

11/09/2018

8 Dati relativi all'installazione

Piastra d'ancoraggio, acciaio: -Profilo: Profilo cavo allungato; 120 x 60 x 11 mm Diametro del foro nella piastra: d_f = 18 mm Spessore della piastra (input): 20 mm Spessore della piastra raccomandato: non calcolato Metodo di perforazione: Foro con perforazione a roto-percussione Pulizia: E' necessaria una pulizia accurata del foro (Premium cleaning)

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M16 Coppia di serraggio: 0.080 kNm Diametro del foro nel materiale base: 18 mm Profondità del foro nel materiale base: 200 mm Spessore minimo del materiale base: 236 mm


8.1 Accessori richiesti

Perforazione Idoneo per rotopercussione

 Dimensione appropriata della punta del trapano

 Aria compressa con i relativi accessori necessari per soffiare a partire dal fondo del foro.

- Il dispenser include il portacartucce e il
- miscelatore Seismic/Filling set
- Diametro appropriato dello scovolino Chiave dinamometrica

Coordinate dell'ancorante [mm]

Ancorant	e x	У	C.x	C+x	C.y	C _{+y}
1	-110	-70	390	610	2,250	405
2	110	-70	610	390	2,250	405
3	-110	70	390	610	2,390	265
4	110	70	610	390	2,390	265

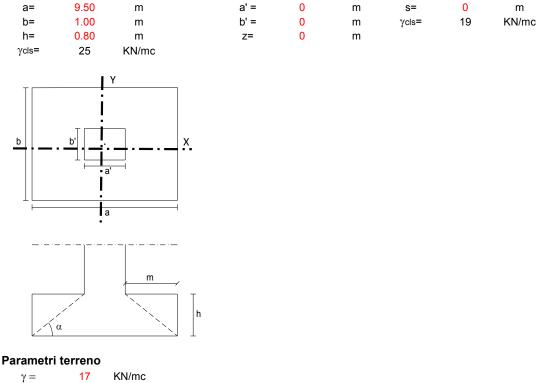
6.6 VERIFICA CORDOLO DI FONDAZIONE

La struttura del cancello e della protezione si fonda su un cordolo continua in c.a. di dimensioni 80x100 cm L=9.70 m.

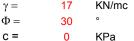
Il cordolo di fondazione interessa i limi sabbiosi caratterizzati da un angolo d'attrito Φ =30°, γ =17 kN/m³ e Eo = 6÷10 MPa.

La costante di sottofondo K_S è stata assunta pari a K_s = 15000 kN/m³

Si effettua di seguito la verifica del cordolo di fondazione con le sollecitazioni massime ottenute dal modello di calcolo analizzato precedentemente.


Rinterro

Massime sollecitazioni agenti sul cordolo


F1	F2	F3	M1	M2
KN	KN	KN	KN-m	KN-m
1.20	38.11	20.51	50.82	0.51

6.6.1 VERIFICHE GEOTECNICHE

Caratteristiche plinto

Baggiolo

Peso plinto + peso rinterro P = 190 KN
ey= 0.09 m
Me_x= 1.85 KNm

ITINERARIO NAPOLI - BARI

LOTTO

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

COMMESSA

IF1N

CODIFICA

DOCUMENTO

REV.

FOGLIO

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

01 E ZZ

CL

FV0220 002 Α 82 di 195

Sollecitazioni di progetto SLU-STATICHE alla base della colonna

Mx =	50.82	KNm
Mx =	52.67	KNm
My =	0.51	KNm
Tx =	1.20	KN
Ty =	38.11	KN
N =	20.51	KN

Sollecitazioni di progetto SLU-SISMICHE alla base della colonna

Mx =	0.00	KNn
My =	0.00	KNn
Tx =	0.00	KN
Ty =	0.00	KN
N =	0.00	KN

VERIFICA A RIBALTAMENTO IN CONDIZIONI STATICHE

Approccio EQU:

coefficiente azioni permanenti	γg=	0.90
coefficiente azioni variabili	γs=	1.50

Sollecitazioni di progetto :

N	Ту	Mx	Tx	My
KN	KN	KN*m	KN	KN*m
18.46	38.11	52.67	1.2	0.51

Sollecitazioni finali sul plinto:

Ntot	Ту	$Mtot_x$	Tx	Mtot_y	
KN	KN	KN*m	KN	KN*m	
189.5	38.11	83.15	1.20	1.47	

INTORNO X

Momento ribaltante	Mr =	83.15	KN m
Momento stabilizzante	Ms =	94.73	KN m

FS = Ms/MR =1.14 ≥ verifica soddisfatta

INTORNO Y

Momento ribaltante	M _R =	1.47	KN m
Momento stabilizzante	Ms =	899.93	KN m

ITINERARIO NAPOLI – BARI

LOTTO

01 E ZZ

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

zione

COMMESSA

IF1N

CODIFICA CL DOCUMENTO FV0220 002

REV.

Α

FOGLIO 83 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

<u>VERIFICA A SCORRIMENTO E CAPACITA' PORTANTE IN CONDIZIONI STATICHE</u>

Approccio 2 A1+M1+R3:

coefficiente azioni permanenti	γg=	1.00
coefficiente azioni variabili	γs=	1.50
coefficiente M1 parametri geotecnici	γф=	1.00
coefficiente R3 scorrimento	γR=	1.10
coefficiente R3 capacità portante	γ _R =	2.30

Sollecitazioni di progetto :

N	Ту	Mx	Tx	My
KN	KŇ	KN*m	KN	KN*m
20.51	38.11	52.67	1.20	0.51

Sollecitazioni finali sul plinto :

Ntot	Ty	$Mtot_x$	Tx	Mtot_y
KN	KN	KN*m	KN	KN*m
210.51	38.11	83.15	1.20	1.47

$qlim = c'*Nc* sc*dc*ic*bc*gc + q*Nq*sq*dq*iq*bq*gq + 0,5*\gamma*B*N\gamma*s\gamma*d\gamma*i\gamma*b\gamma*g\gamma$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			az	ioni	proprietà del terreno	
Metodo di calcolo			permanenti	temporanee variabili	tan φ'	c'
Stato limite ultimo	0		1.00	1.30	1.25	1.25
Tensioni ammissibili	\circ		1.00	1.00	1.00	1.00
definiti dall'utente	•		1.00	1.00	1.00	1.00

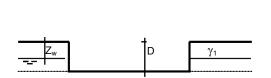
ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

CL

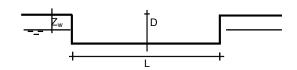
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

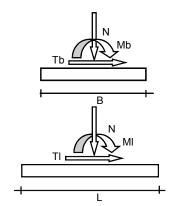
FERMATE


Recinzioni, parapetti e strutture secondarie: relazione

CODIFICA COMMESSA LOTTO IF1N 01 E ZZ

DOCUMENTO FV0220 002

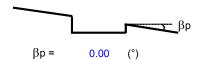

REV. FOGLIO


Α 84 di 195

В

γ, c', φ'

(Per fondazione nastriforme L = 100 m)


1.00

(m) 9.50 (m)

D 0.80

AZIONI

	valori	di input	Valori di
	permanenti	temporanee	calcolo
N [kN]	210.51	0.00	210.51
Mb [kNm]	83.15	0.00	83.15
MI [kNm]	1.47	0.00	1.47
Tb [kN]	38.11	0.00	38.11
TI [kN]	1.20	0.00	1.20
H [kN]	38.13	0.00	38.13

ITINERARIO NAPOLI - BARI

Valori di progetto

0.00

30.00

c'

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

REV.

Α

FOGLIO

85 di 195

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

LOTTO CODIFICA DOCUMENTO COMMESSA IF1N 01 E ZZ CL FV0220 002

(kN/mq)

(°)

Peso unità di volume del terreno

γ_1	=	17.00	(kN/mc)
γ	=	17.00	(kN/mc)

Valori caratteristici di resistenza del terreno

c'	=	0.00	(kN/mq)	
φ'	=	30.00	(°)	
			` '	
Prof	ondità d	della falda		
Zw	=	10.00	(m)	

$$e_B = 0.40$$
 (m) $B^* = 0.21$ (m) $e_L = 0.01$ (m) $L^* = 9.49$ (m)

q : sovraccarico alla profondità D

$$q = 13.60 (kN/mq)$$

y : peso di volume del terreno di fondazione

$$\gamma = 17.00 \, (kN/mc)$$

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$\tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

Nq = 18.40

$$Nc = (Nq - 1)/tan\phi'$$

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 22.40$$

s_c, s_q, s_γ : <u>fattori di forma</u>

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.01$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1.01$$

$$s_{\gamma} = 1 - 0.4*B* / L*$$

$$s_{y} = 0.99$$

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

LOTTO COMMESSA

CODIFICA DOCUMENTO CL

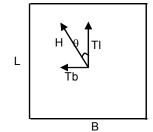
RFV

FOGLIO

IF1N 01 E ZZ FV0220 002

86 di 195 Α

i_c, i_q, i_y : fattori di inclinazione del carico


$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

1.98
$$\theta = \operatorname{arctg}(\mathsf{Tb}/\mathsf{TI}) =$$

1.98

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

 $i_q = (1 - H/(N + B*L* c' \cot g\phi'))^m$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.65$$

$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

$$i_{v} = 0.55$$

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan ϕ ' (1 - sen ϕ ')² / B*
per D/B*> 1; d_q = 1 +(2 tan ϕ ' (1 - sen ϕ ')²) * arctan (D / B*)

$$d_q = 1.38$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$$

$$d_c = 1.40$$

$$d_{v} = 1$$

$$d_{v} = 1.00$$

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \phi')^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_0 = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi')$$

$$b_c = 1.00$$

$$b_{\gamma} = b_{q}$$

$$b_{y} = 1.00$$

ITINERA

ITINERARIO NAPOLI - BARI

LOTTO

01 E ZZ

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA IF1N

CODIFICA CL

DOCUMENTO FV0220 002

REV.

Α

FOGLIO 87 di 195

g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_q = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_{\gamma} = g_{q}$$

$$g_{y} = 1.00$$

Carico limite unitario

$$q_{lim} = 257.35$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$

(kN/m²)

1.06

Coefficiente di sicurezza

$$Fs = q_{lim}/q =$$

1

verifica soddisfatta

VERIFICA A SCORRIMENTO

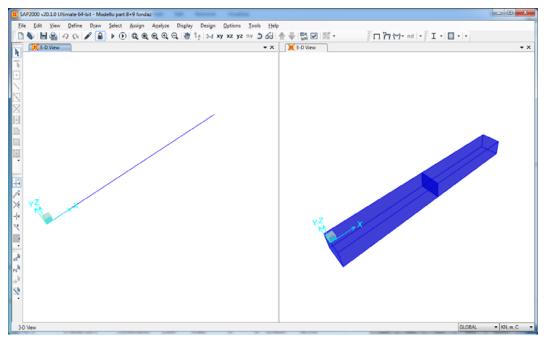
(kN)

$$Sd = N * tan(\phi') + c' B* L*$$

(kN)

Coefficiente di sicurezza allo scorrimento

Fscorr = 2.90

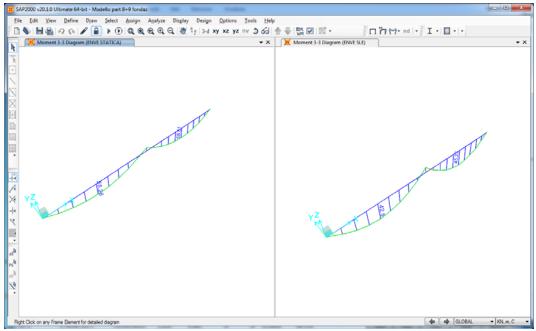

verifica soddisfatta

6.6.2 VERIFICA DI RESISTENZA

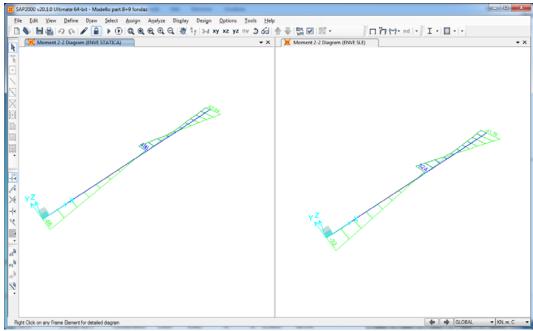
Le sollecitazioni agenti sul cordolo di fondazione sono state determinate con l'ausilio del codice di calcolo automatico SAP 2000 utilizzando un modello di calcolo implementato a partire da quello utilizzato per il dimensionamento e la verifica della struttura in elevazione. In particolare sono stati rimossi gli incastri al di sotto dei montanti ed è stato modellato, utilizzando un elemento frame, il cordolo di fondazione vincolato con delle molle verticali per simulare il terreno alle Winkler.

Di seguito si riportano le immagini del modello delle sollecitazioni di progetto.

Modello di calcolo


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 89 di 195

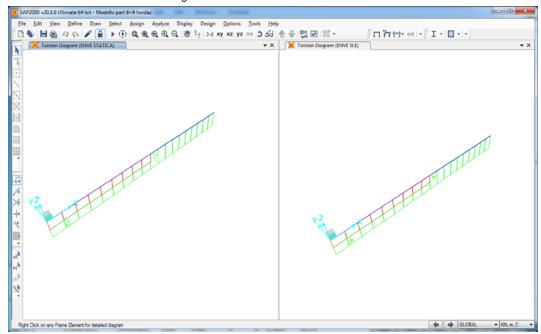
FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Momento flettente M33 - combo ENVE STATICA - combo ENVE SLE

Momento flettente M22 - combo ENVE STATICA - combo ENVE SLE

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 90 di 195

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Taglio V22 e V33 - combo ENVE STATICA

Torsione - combo ENVE STATICA - combo ENVE SLE

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

COMMESSA LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

IF1N 01 E ZZ CL FV0220 002 A 91 di 195

Di seguito si riportano le sollecitazioni agenti sul cordolo. Si effettua la verifica con le sollecitazioni massime

		Frame	OutputCase	Р	V2	V3	Т	M2	M3
		Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
maxP	KN	1	STATICA 1	4.61	-54.81	-12.00	-6.00	-48.00	-2.38
minP	KN	2	STATICA 1	3.43	-63.49	-6.00	-12.00	0.00	-18.48
maxV2	KN	1	STATICA 1	4.61	62.16	-12.00	-6.00	6.00	-18.91
minV2	KN	2	STATICA 1	3.43	-63.49	-6.00	-12.00	0.00	-18.48
maxV3	KN	2	STATICA 2	3.43	-63.49	24.00	0.00	48.00	-18.48
minV3	KN	1	STATICA 1	4.61	-54.81	-12.00	-6.00	-48.00	-2.38
maxT	KN-m	2	STATICA 2	3.43	-63.49	24.00	0.00	48.00	-18.48
minT	KN-m	1	STATICA 2	4.61	-54.81	0.00	-12.00	0.00	-2.38
maxM2	KN-m	2	STATICA 2	3.43	-63.49	24.00	0.00	48.00	-18.48
minM2	KN-m	2	STATICA 2	3.43	56.33	24.00	0.00	-62.64	-1.99
maxM3	KN-m	2	STATICA 1	3.43	-3.58	-6.00	-12.00	13.83	58.81
minM3	KN-m	1	STATICA 1	4.61	62.16	-12.00	-6.00	6.00	-18.91

		Frame	OutputCase	Р	V2	V3	Т	M2	M3
		Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
maxP	KN	1	SLE 1	3.55	-42.16	-8.00	-4.00	-32.00	-1.83
minP	KN	2	SLE 1	2.64	-48.84	-4.00	-8.00	0.00	-14.23
maxV2	KN	1	SLE 1	3.55	47.82	-8.00	-4.00	4.00	-14.56
minV2	KN	2	SLE 1	2.64	-48.84	-4.00	-8.00	0.00	-14.23
maxV3	KN	2	SLE 2	2.64	-48.84	16.00	0.00	32.00	-14.23
minV3	KN	1	SLE 1	3.55	-42.16	-8.00	-4.00	-32.00	-1.83
maxT	KN-m	2	SLE 2	2.64	-48.84	16.00	0.00	32.00	-14.23
minT	KN-m	1	SLE 2	3.55	-42.16	0.00	-8.00	0.00	-1.83
maxM2	KN-m	2	SLE 2	2.64	-48.84	16.00	0.00	32.00	-14.23
minM2	KN-m	2	SLE 2	2.64	43.33	16.00	0.00	-41.76	-1.53
maxM3	KN-m	2	SLE 1	2.64	-2.76	-4.00	-8.00	9.22	45.23
minM3	KN-m	1	SLE 1	3.55	47.82	-8.00	-4.00	4.00	-14.56

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: cordolo 100x80

Descrizione Sezione: Stati Limite Ultimi Metodo di calcolo resistenza: Tipologia sezione: Sezione generica Normativa di riferimento: N.T.C. Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C25/30

Resis. compr. di calcolo fcd : 141.60 daN/cm²
Resis. compr. ridotta fcd': 70.80 daN/cm²

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FOGLIO

92 di 195

FERMATE

COMMESSA LOTTO CODIFICA DOCUMENTO RFV IF1N 01 E ZZ CL FV0220 002 Α

Recinzioni, parapetti e strutture secondarie: relazione

Def.unit. max resistenza ec2 : 0.0020 Def.unit. ultima 0.0035 ecu :

Diagramma tensione-deformaz. : Parabola-Rettangolo Modulo Elastico Normale Ec : 314750 daN/cm²

Coeff. di Poisson 0.20

Resis. media a trazione fctm: 26.00 daN/cm² 15.0

Coeff. Omogen. S.L.E. : Combinazioni Rare in Esercizio (Tens.Limite):

Sc Limite: 150.00 daN/cm²

Apert.Fess.Limite: Non prevista

ACCIAIO Tipo: B450C

Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: 4500.0 daN/cm² 5400.0 daN/cm² Resist. snerv. di calcolo fyd: 3913.0 daN/cm² Resist. ultima di calcolo ftd: 4500.0 daN/cm² Deform. ultima di calcolo Epu: 0.068 Modulo Elastico Ef : Diagramma tensione-deformaz.: 2000000 daN/cm²

Bilineare finito Coeff. Aderenza ist. \$1*\$2:
Coeff. Aderenza diff. \$1*\$2: 1.00 daN/cm² 0.50 daN/cm² Sf Limite : 3600.0 daN/cm² Comb.Rare

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C25/30

N.vertice	Ascissa X, cm	Ordinata Y, cm
1	-50.00	0.00
2	-50.00	80.00
3	50.00	80.00
4	50.00	0.00

DATI BARRE ISOLATE

Numero assegnato alle singole barre isolate e nei vertici dei domini Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, OAscissa X Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Ordinata Y Diametro in mm della barra Diam.

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	-43.80	6.20	16
2	-43.80	73.80	16
3	43.80	73.80	16
4	43.80	6.20	16

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre N.Barra In. Numero della barra iniziale cui si riferisce la gener. N.Barra Fin. Numero della barra finale cui si riferisce la gener.

N.Barre Numero di barre generate equidist. inserite tra la barra iniz. e fin.

Diametro in mm della singola barra generata

N.Gen.	N.Barra In.	N.Barra Fin.	N.Barre	Diam.Ø,mm
1	1	4	4	16
2	2	3	4	16

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

zione

COMMESSA

IF1N

CODIFICA

LOTTO

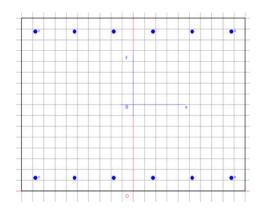
01 E ZZ

DOCUMENTO FV0220 002 REV. FOGLIO

A 93 di 195

con verso positivo se tale o

con verso positivo se tale da comprimere il lembo destro della sez.


Vy Componente del Taglio [daN] parall. all'asse princ.d'inerzia y

Vx Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N. Comb. N Mx My Vy Vx Mt 1 0 5881 -6264 6349 2400 1200

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo superiore della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 5.4 cm Interferro netto minimo barre longitudinali: 15.9 cm Copriferro netto minimo staffe: 4.0 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Sforzo normale assegnato [in daN] (positivo se di compressione) N Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia Mx Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia Му N ult Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.) Mx ult Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia My ult Mis Sic. Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My) Verifica positiva se tale rapporto risulta >=1.000

N.Comb. Ver N Mx My Nult Mx ult My ult Mis.Sic.

1 S 0 5881 -6264 0 31306 -33319 5.321

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xf min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xf max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO CODIFICA DOCUMENTO RFV FOGLIO 01 E ZZ 94 di 195 IF1N CL FV0220 002 Α

N.Comb.	ec max	ec 3/7	Xc max	Yc max	ef min	Xf min	Yf min	ef max	Xf max	Yf max
1	0.00350	-0.00403	-50.0	80.0	0.00226	-43.8	73.8	-0.01283	43.8	6.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a	Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
b	Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
C	Coeff. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N.Comb.	a	b	С	x/d	C.Rid.
1	-0.000077372	0.000122954	-0.010204958	0.214	0.708

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

Diametro staffe: 14 mm

Passo staffe: 20.4 cm [Passo massimo di normativa = 20.5] N.Bracci staffe:
Area staffe/m: 2 $15.1 \text{ cm}^2/\text{m}$ [Area Staffe Minima normativa = 15.0]

Barre long. tors.: 2016 (4.0 cm²)

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO-TORSIONE

Ver	S = comb.verificata a taglio-tors./ N = comb. non verificata
Vsdu	Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)
Vrd	Taglio resistente [daN] in assenza di staffe
Vcd	Taglio compressione resistente [daN] lato conglomerato
Vwd	Taglio trazione resistente [daN] assorbito dalle staffe
Tsdu	Momento torcente assegnato nella combinazione corrente [daNm]
Trdu	Momento torcente resistente ultimo [daNm] (lato conglomerato)
Mis.Sic.	Misura sicur. = Vsdu/Vcd + Tsdu/Trdu. Verifica OK se Mis.Sic <=1
bw	Larghezza minima [cm] sezione misurata parallelam. all'asse neutro
Teta	Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato
Acw	Coefficiente maggiorativo della resistenza a taglio per compressione
Afst	Area staffe/metro strettamente necessaria per taglio e torsione [cm²/m]

N.Comb.	Ver	Vsdu	Vru	Vcd	Vwd	Tsdu	Trdu	Mis.Sic	bw	Teta	Acw	Afst
1		6349	24216	188102	76675	1200	56562	0.055	100.0	26.57	1.000	1.2

RISULTATI DEL SOLO CALCOLO A TORSIONE

Area Nucl.	. Area del nucleo della sezione tubolare resistente [cm²]
Per.Nucl.	Perimetro del nucleo della sezione tubolare resistente [cm]
Sp.Nucl.	Spessore del nucleo della sezione tubolare resistente [cm]
Afst	Area calcolata delle staffe al metro per sola torsione [cm²/m]
Af long.	Area dei ferri longitudinali calcolati per sola torsione [cm²]

Tsdu Momento torcente assegnato nella combinazione corrente [daNm] Trsd ${\tt Momento\ torc.\ resist.\ reso\ dall'area\ staffe\ riservata\ alla\ torsione\ [daNm]}$ Trld Momento torc. resist. reso da apposite barre longitudinali(compresa una

aliquota delle barre longitudinali soggette a flessione)

N.Comb.	Area Nucl.	Per.Nucl.	Sp.Nucl.	Afst	Af long.	Tsdu	Trsd	Trld
1	4494	271	22.2	0.2	1.9	1200	1200	3142

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

zione

6.9 -50.0 80.0 -88 43.8 6.2

CODIFICA CL

LOTTO

01 E ZZ

DOCUMENTO FV0220 002

REV. FOGLIO

Α

0.000

95 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

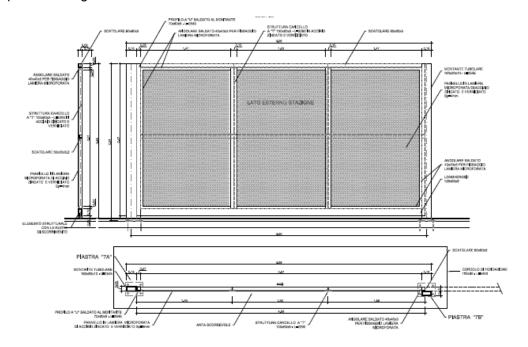
Ver	S = combinazione verificata / N = combin. non verificata				
Sc max	Massima tensione positiva di compressione nel conglomerato [daN/cm²]				
Xc max	Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)				
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)				
Sf min	Minima tensione negativa di trazione nell'acciaio [daN/cm²]				
Xf min	Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)				
Yf min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)				
Ac eff.	Area di conglomerato [cm²] in zona tesa considerata aderente alle barre				
D fess.	Distanza calcolata tra le fessure espressa in mm				
K3	Coeff. di normativa dipendente dalla forma del diagramma delle tensioni				
Ap.fess.	Apertura calcolata delle fessure espressa in mm				
.Comb. Ver	Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.				

COMMESSA

IF1N

7 CANCELLO MOBILE (PART. 7)

Si riporta di seguito la verifica della struttura del cancello metallio scorrevole in acciaio disposto a chiusura della fermata Dugenta (FV02).


La struttura del cancello realizzata in acciaio S275 JR è costituita da:

- montanti verticali realizzati con profili scatolari di dimensioni 180x80x10
- longherone orizzontale superiore realizzato con profili scatolari di dimensioni 60x60x5
- longherone orizzontale intermedio realizzato con profili scatolari di dimensioni 50x50x6.3
- longherone orizzontale inferiore realizzato con profili scatolari di dimensioni 120x60x5
- elementi verticali intermedi realizzati con profili a T di dimensioni 100x60x6
- pannello in lamiera microforata di acciaio zincato e verniciato sp=4mm

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La struttura viene discretizzata con un modello bidimensionale in elementi tipo trave.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite secondo NTC 2008. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Di seguito si riporta il dettaglio

7.1 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

7.1.1 PESO PROPRIO DELLA STRUTTURA

Le sollecitazioni indotte dal peso della struttura sono valutate automaticamente dal programma

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 97 di 195

7.1.2 CARICO PERMANENTE

Il carico permanente è costituito dal peso dei pannelli in lamiera microforata di acciaio zincato e verniciato sp=4mm P= 0.40 KN/mg

7.1.3 AZIONE DEL VENTO

CALCOLO DELL'AZIONE DEL VENTO

3) Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

Zona	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]
3	27	500	0.02

a _s (altitudine sul livello del mare [m])	56

$$v_b = v_{b,0}$$
 per $a_s \le a_0$
 $v_b = v_{b,0} + k_a (a_s - a_0)$ per $a_0 < a_s \le 1500$ m

v _b (velocità di riferimento [m/s])	27

p (pressione del vento [N/mq]) = $q_b.c_e.c_p.c_d$ q_b (pressione cinetica di riferimento [N/mq])

c_e (coefficiente di esposizione)

c_p (coefficiente di forma)

c_d (coefficiente dinamico)

Figura 3.3.1 – Mappa delle zone in cui è suddiviso il territorio italian

Pressione cinetica di riferimento

$q_b = 1/2 \cdot \rho \cdot v_b^2$ ($\rho = 1,25 \text{ kg/mc}$)

Coefficiente di forma

E' il coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

Coefficiente dinamico

Esso può essere assunto autelativamente pari ad 1 nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità.

Coefficiente di esposizione

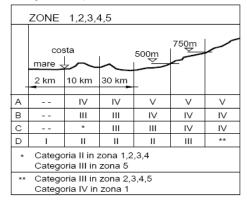
Classe di rugosità del terreno

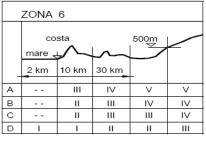
D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,....)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

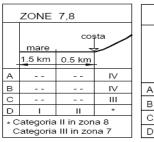
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

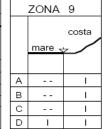

FERMATE


Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 98 di 195


Categoria di esposizione


z _{altezza edif.}[m]

2.5

Classe di rugosità

D

a_s [m]

56

$c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) \left[7 + c_t \cdot \ln(z/z_0) \right]$	per z≥z _{min}
$c_{e}(z) = c_{e}(z_{min})$	per z < z _{min}

Cat. Esposiz.	k _r	z ₀ [m]	z _{min} [m]	C _t
II	0.19	0.05	4	1

Ce	1.80

La pressione del vento a meno del coefficiente di forma vale:

820.37 N/mq (0.8203 kN/mq)

Zona

TRAVI ISOLATE AD ANIMA PIENA

cp 1.40

La pressione del vento vale $q_p = 1148.52$ N/mq \Rightarrow **1.15** KN/mq

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0220 002	Α	99 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

7.2 COMBINAZIONI DI CARICO

FERMATE

Ai fini delle verifiche degli stati limite si riportano per comodità le combinazioni delle azioni riportate nella normativa alla quale è possibile fare riferimento per la simbologia adottata:

-Combinazione fondamentale. generalmente impiegata per gli stati limite ultimi (SLU):

 $\gamma \text{ G1} \cdot \text{G1} + \gamma \text{ G2} \cdot \text{G2} + \gamma \text{ P} \cdot \text{P} + \gamma \text{ Q1} \cdot \text{Qk1} + \gamma \text{ Q2} \cdot \phi \text{ 02} \cdot \text{Qk2} + \gamma \text{ Q3} \cdot \phi \text{ 03} \cdot \text{Qk3} + \dots$

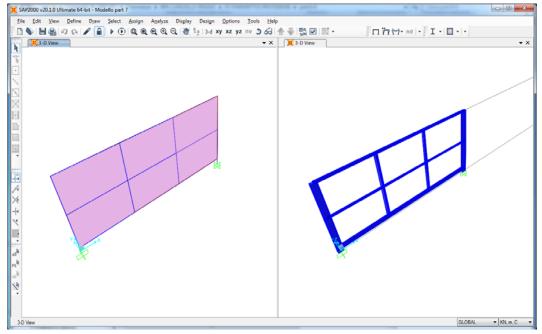
-Combinazione caratteristica (rara). generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

 $G_1 + G_2 + P + Q_{k1} + \phi_{02} \cdot Q_{k2} + \phi_{03} \cdot Q_{k3} + \dots$

Tabella 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente γF	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ ₆₂	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	YQi	0,0 1,5	0,0 1,5	0,0

(1)Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.


TABLE: Combination Definitions						
ComboName	CaseName	ScaleFactor				
Text	Text	Unitless				
	DEAD	1.3				
STATICA	PERM	1.5				
	VENTO Y	1.5				
	DEAD	1				
SLE	PERM	1				
	VENTO Y	1				


7.3 VERIFICA DI RESISTENZA:

Per la verifica della struttura si utilizza un modello di calcolo agli elementi finiti bidimensionale che rappresenta l'esatta geometria della struttura nella condizione peggiore quando il cancello mobile è chiuso.

Di seguito si riportano le immagini del modello, dei carichi applicati e delle sollecitazioni di progetto.

Modello di calcolo

Carico permanente

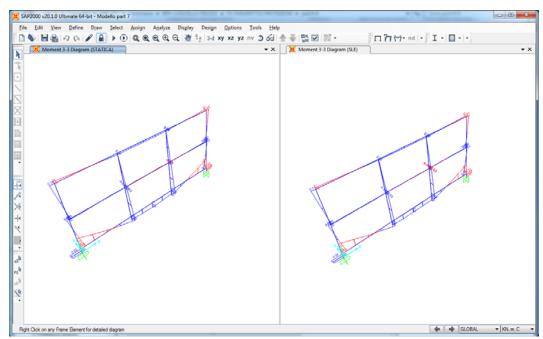
ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

Recipzioni, parapetti e strutture secondarie: relazione

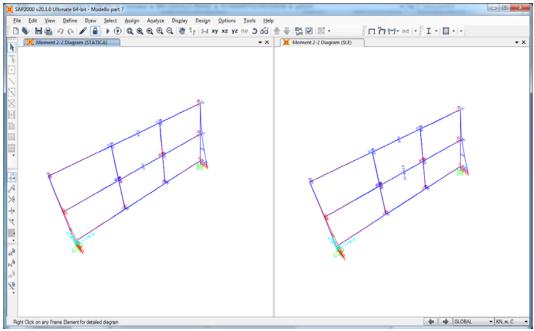

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

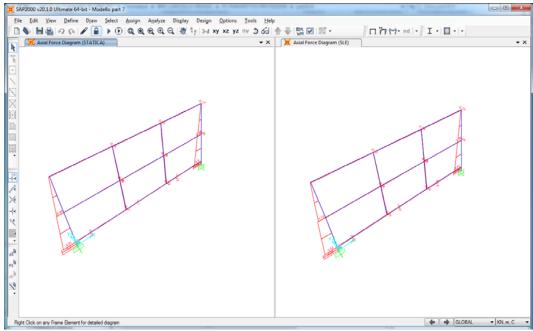
 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 101 di 195

Carico vento

Momento flettente M33 - combo STATICA - combo SLE

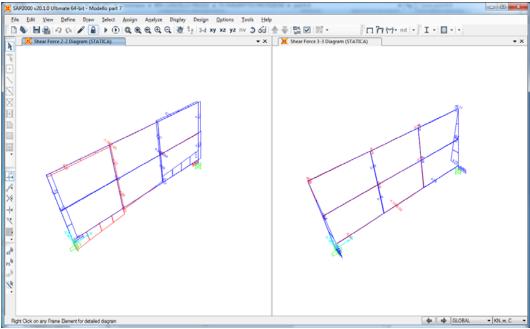

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

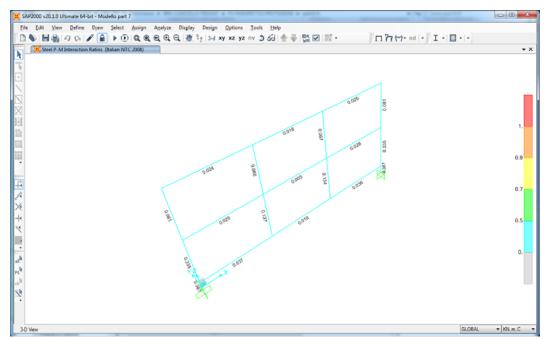

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 102 di 195

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione



Momento flettente M22 - combo STATICA - combo SLE



Sforzo assiale P - combo STATICA - combo SLE

Taglio V22 e V33 - combo STATICA

Verifica di resisstenza -Tasso di sfruttamento

In base ai risultati sopra evidenziati si effettua di seguito la verifica dei profili più sollecitati.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

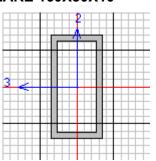
FERMATE

Minor (z-z)

-11.404

-11.404

-11.404


-11.404

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

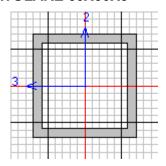
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 104 di 195

7.3.1 VERIFICA MONTANTE SCATOLARE 160X80X10

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame : 71 X Mid: 0.000 Combo: STATICA Design Type: Column Frame Type: Non Dissipative Length: 1.190 Y Mid: 0.000 Shape: MONTANTE Loc : 1.190 Z Mid: 0.745 Class: Class 1 Rolled: No Interaction=Method B MultiResponse=Envelopes P-Delta Done? No GammaM0=1.05 GammaM1=1.05 GammaM2=1.25 An/Ag=1.00RLLF=1.000 PLLF=0.750 D/C Lim=0.950 Aeff=0.004 eNy=0.000 eNz=0.000Iyy=1.359E-05 A = 0.004iyy = 0.056Wel,yy=1.698E-04 Weff, yy=1.698E-04It=1.002E-05 Izz=4.307E-06izz=0.031Wel,zz=1.077E-04Weff, zz=1.077E-04Iyz=0.000 Wpl,yy=2.180E-04 1w = 0.000h=0.160 Av, y=0.002E=210000000.0 fy=275000.000 fu=430000.000 Wpl,zz=1.300E-04 Av, z=0.003STRESS CHECK FORCES & MOMENTS Ved,y Location Ned Med, yy Med,zz Ved.z Ted 1.190 -4.905 -0.176 -11.404 0.214 9.742 -0.079 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.9.1(6z)) D/C Ratio: 0.335 = 0.335 < 0.950 OK = (Mz,Ed/Mn,z,Rd) (EC3 6.2.9.1(6z)) AXIAL FORCE DESIGN Ned Nc,Rd Nt,Rd Force Capacity Capacity 1152.381 1152.381 Axial -4.905Npl,Rd Nu . Rd Nor.T Ncr, TF An/Aa 1362.240 199064.255 4377.275 1152.381 1.000 Alpha LambdaBar Phi Chi Nb,Rd 0.490 13809.422 0.296 0.567 0.951 1096.126 Major (y-y) C MajorB(y-y) C 0.490 13809.422 0.296 0.567 0.951 1096.126 4377.275 0.828 Minor (z-z) 0.490 0.718 0.526 954.717 С 4377.275 MinorB(z-z) C 0.490 0.526 0.718 0.828 954.717 Torsional TF 0.490 4377.275 0.526 0.718 0.828 954.717 MOMENT DESIGN Med, span Med Mm . Ed Meq,Ed Moment Moment Moment. Moment. Major (y-y) -0.176 -0.176 -0.049 -0.074

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO


FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0220 002	Α	105 di 195

Major (y-y) Minor (z-z)		Capacity 57.095	Mn,Rd Capacity 57.095 34.048	Mb,Rd Capacity 57.095		
	Curve AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr
LTB	d 0.760	0.118	0.476	1.000	2.281	4293.219
	le	leven	kzy	kzz		
Factors	kyy 0.421	kyz 0.387	0.253	0.646		
SHEAR DESIGN						
	Ved	Vc,Rd	Stress	Status	Ted	
	Force	Capacity	Ratio	Check	Torsion	
Major (z)	0.214	423.390	0.001	OK	0.079	
Minor (y)	9.742	241.937	0.040	OK	0.079	
	Vpl,Rd	Eta	LambdabarW			
Reduction	423.390	1.000	0.168			

7.3.2 VERIFICA LONGHERONE SCATOLARE 60X60X5

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

Frame : 69	X Mid: 3.965	Combo: STATICA	Design Type: Beam
Length: 1.650	Y Mid: 0.000	Shape: 60x60x5	Frame Type: Non Dissipative
Loc: 1.650	Z Mid: 2.530	Class: Class 1	Rolled : No

Interaction=Method	В	MultiResponse=Envelopes	P-Delta	Done?	No
--------------------	---	-------------------------	---------	-------	----

GammaM0=1.05 An/Ag=1.00	GammaM1=1.05 RLLF=1.000	GammaM2=1.25 PLLF=0.750	D/C Lim=0.950	
Aeff=0.001 A=0.001 It=0.000 Iw=0.000 E=210000000.0	eNy=0.000 Iyy=0.000 Izz=0.000 Iyz=0.000 fy=275000.000	eNz=0.000 iyy=0.023 izz=0.023 h=0.060 fu=430000.000	Wel,yy=1.864E-05 Wel,zz=1.864E-05 Wpl,yy=2.275E-05 Wpl,zz=2.275E-05	Weff,yy=1.864E-05 Weff,zz=1.864E-05 Av,y=6.000E-04 Av,z=5.000E-04

STRESS CHECK FORCE	ES & MOMENTS					
Location	Ned	Med, yy	Med,zz	Ved,z	Ved,y	Ted
1.650	-0.166	-0.108	-0.147	0.112	0.225	-0.020

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

CONNECTION SHEAR FORCES FOR BEAMS

Major (V2)

VMajor Left

0.112

VMajor

Right

0.112

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 106 di 195

	D/C Ratio:	0.025 = 0.0	25 <	0.950	OK		
		= (Mz	,Ed/Mn,z,Rd)	(EC3 6.	.2.9.1(6z))		
AXI	AL FORCE DESIG	3N Ned	Nc,Rd	Nt,Rd			
		Force	•	Capacity			
	Axial	-0.166		288.095			
	IMICI	0.100	200:000	200.000			
		Npl,Rd	Nu,Rd	Ncr,T	Ncr,TF	An/Ag	
		288.095		66088.430	295.605	1.000	
	Cı	ırve Alpha	Nor	LambdaBar	Phi	Chi	Nb,Rd
	Major (y-y)	c 0.490	295.605	1.012	1.211	0.533	153.624
	MajorB(y-y)	c 0.490	295.605	1.012	1.211	0.533	153.624
	Minor $(z-z)$	c 0.490	295.605	1.012	1.211	0.533	153.624
	MinorB(z-z)	c 0.490	295.605	1.012	1.211	0.533	153.624
	Torsional TF	c 0.490	295.605	1.012	1.211	0.533	153.624
MOM	ENT DESIGN	26- 4	35-3	Maria Trad	M 714		
		Med		Mm, Ed	Meq,Ed		
	' '	Moment		Moment	Moment		
	Major (y-y)	-0.108		-0.016	-0.043		
	Minor (z-z)	-0.147	-0.147	-0.147	-0.147		
		Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
		Capacity		Capacity	Capacity		
	Major (y-y)	5.958		5.958	5.958		
	Minor $(z-z)$	5.958		5.958	3.750		
	1111101 (2 2)	3.330	3.733	3.730			
	Cı	urve AlphaLT	' LambdaBarLT	PhiLT	ChiLT	psi	Mcr
	LTB	d 0.760		0.482	1.000	2.646	372.975
		kyy	kyz	kzy	kzz		
	Factors	0.400	0.240	0.240	0.400		
SHE	AR DESIGN						
		Ved	Vc,Rd	Stress	Status	Ted	
		Force		Ratio	Check	Torsion	
	Major (z)	0.112		0.001	OK	0.020	
	Minor (y)	0.225	90.726	0.002	OK	0.020	
		2 = 2	-	manufactura and			
	De desert	Vpl,Rd		LambdabarW			
	Reduction	75.605	1.000	0.124			

ITINERARIO NAPOLI – BARI

ITINERA

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

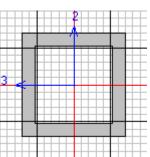
FERMATE

Minor (z-z)

-0.122

-0.122

-0.122


-0.122

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 107 di 195

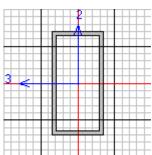
7.3.3 VERIFICA LONGHERONE SCATOLARE 50X50X6.3

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame : 80 X Mid: 3.965 Combo: STATICA Design Type: Beam Length: 1.650 Y Mid: 0.000 Shape: 50x50x6.3 Frame Type: Non Dissipative Loc : 1.650 Z Mid: 1.340 Class: Class 1 Rolled: No Interaction=Method B MultiResponse=Envelopes P-Delta Done? No GammaM0=1.05 GammaM1=1.05 GammaM2=1.25 An/Ag=1.00RLLF=1.000 PLLF=0.750 D/C Lim=0.950 eNz=0.000 Aeff=0.001 eNy=0.000 Iyy=0.000 A = 0.001iyy=0.018Wel,yy=1.431E-05 Weff, yy=1.431E-05It=0.000 Izz=0.000izz=0.018Wel,zz=1.431E-05 Weff, zz=1.431E-05h=0.050 Wpl,yy=1.817E-05 Av, y=6.300E-041w = 0.000Iyz=0.000 E=210000000.0 fy=275000.000 fu=430000.000 Wpl,zz=1.817E-05 Av, z=4.712E-04STRESS CHECK FORCES & MOMENTS Ved,y Location Ned Med, yy Med,zz Ved.z Ted 1.650 -0.059 0.030 -0.122 -0.024 0.208 -0.030 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.9.1(6z)) D/C Ratio: 0.026 = 0.026 < 0.950 OK = (Mz,Ed/Mn,z,Rd) (EC3 6.2.9.1(6z)) AXIAL FORCE DESIGN Ned Nc,Rd Nt,Rd Force Capacity Capacity 288.420 288.420 Axial -0.059Npl,Rd Nu .Rd Nor.T Ncr, TF An/Aa 65351.499 288,420 340.944 189.147 1.000 Alpha LambdaBar Phi Chi Nb,Rd Ncr 189.147 1.265 1.562 0.404 116.457 Major (y-y) 0.490 C MajorB(y-y) C 0.490 189.147 1.265 1.562 0.404 116.457 Minor (z-z) 0.490 189.147 1.265 1.562 0.404 116.457 С MinorB(z-z) C 0.490 189.147 1.265 1.562 0.404 116.457 Torsional TF 0.490 189.147 1.265 1.562 0.404 116.457 MOMENT DESIGN Med Med.span Mm . Ed Meq,Ed Moment Moment. Moment Moment. Major (y-y) 0.030 0.030 0.010 0.014

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0220 002	Α	108 di 195

Major (y-y Minor (z-z		Capacity 4.759	Mn,Rd Capacity 4.759 4.759	Mb,Rd Capacity 4.759		
	Curve AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr
LTB	d 0.760	0.161	0.498	1.000	2.162	193.739
Factors	kyy 0.458		kzy 0.275	kzz 0.400		
SHEAR DESIGN						
	Ved	Vc,Rd	Stress	Status	Ted	
	Force	Capacity	Ratio	Check	Torsion	
Major (z)	0.024	71.257	0.000	OK	0.030	
Minor (y)	0.208	95.263	0.002	OK	0.030	
Reduction	Vpl,Rd 71.257		LambdabarW 0.074			

CONNECTION SHEAR FORCES FOR BEAMS

 $\begin{array}{ccc} & & VMajor & VMajor \\ & Left & Right \\ Major (V2) & 0.024 & 0.024 \end{array}$

7.3.4 VERIFICA LONGHERONE SCATOLARE 120X60X5

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

Frame: 64 X Mid: 0.790 Combo: STATICA Design Type: Beam
Length: 1.580 Y Mid: 0.000 Shape: LONGHERONE Frame Type: Non Dissipative
Loc: 0.000 Z Mid: 0.150 Class: Class 1 Rolled: No

Interaction=Method B MultiResponse=Envelopes P-Delta Done? No

GammaM0=1.05 GammaM2=1.25 GammaM1=1.05 An/Ag=1.00RLLF=1.000 PLLF=0.750 D/C Lim=0.950 Aeff=0.002 eNy=0.000 eNz=0.000 A=0.002 Wel,yy=5.157E-05 Weff,yy=5.157E-05 Iyy=3.094E-06 iyy=0.043It=2.353E-06 Izz=1.014E-06 izz=0.024Wel,zz=3.381E-05Weff,zz=3.381E-05Iw = 0.000Iyz=0.000 h=0.120 Wpl,yy=6.475E-05 Av,y=6.000E-04 Wpl,zz=3.925E-05 E=210000000.0 fy=275000.000 fu=430000.000 Av, z=0.001

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

LOTTO COMMESSA IF1N

CODIFICA

DOCUMENTO

REV. FOGLIO

01 E ZZ CL FV0220 002 Α 109 di 195

STRESS CHECK FORCES &	MOMENTS					
Location	Ned	Med,yy	Med,zz	Ved,z	Ved,y	Ted
0.000	-0.239	-0.621	-0.096	-0.726	-0.091	-0.297
PMM DEMAND/CAPACITY R	ATIO (C	Governing Eq	uation EC3 6.	2.9.1(6y))		
D/C Ratio: 0.03	37 = 0.03		0.950	OK		
	= (My,I	Ed/Mn,y,Rd)	(EC3 6.	2.9.1(6y))		
AXIAL FORCE DESIGN	57 - J	27 - D.4	775 D.4			
	Ned	Nc,Rd	Nt,Rd			
7-4-1	Force	Capacity	Capacity			
Axial	-0.239	445.238	445.238			
	Mal Dd	Nu,Rd	Ncr,T	Nor TE	7n /7a	
	Npl,Rd 445.238	526.320	78650.472	Ncr,TF 584.752	An/Ag 1.000	
	445.230	520.320	76650.472	564.752	1.000	
Curve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
	0.490	1784.047	0.512	0.707	0.836	372.358
Major (y-y) c MajorB(y-y) c	0.490	1784.047	0.512	0.707	0.836	372.358
Minor (z-z) c		584.752	0.894	1.070	0.603	268.673
MinorB(z-z) c		584.752	0.894	1.070	0.603	268.673
Torsional TF c		584.752	0.894	1.070	0.603	268.673
TOTSTORIAL IF C	0.490	504.752	0.094	1.070	0.603	200.073
MOMENT DESIGN						
HOMENT DEBIGN	Med	Med, span	Mm, Ed	Meg, Ed		
	Moment	Moment	Moment	Moment		
Major (y-y)	-0.621	-0.621	-0.621	-0.621		
Minor (z-z)	-0.096	-0.096	-0.024	-0.039		
111101 (2 2)	0.050	0.050	0.021	0.000		
	Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
C	apacity	Capacity	Capacity	Capacity		
Major (y-y)	16.958	16.958	16.958	16.958		
Minor (z-z)	10.280	10.280	10.280			
,						
Curve	AlphaLT 1	LambdaBarLT	PhiLT	ChiLT	psi	Mcr
LTB d	0.760	0.152	0.493	1.000	2.312	770.866
	kyy	kyz	kzy	kzz		
Factors	0.400	0.241	0.240	0.402		
SHEAR DESIGN						
	Ved	Vc,Rd	Stress	Status	Ted	
	Force	Capacity	Ratio	Check	Torsion	
Major (z)	0.726	166.332	0.004	OK	0.297	
Minor (y)	0.091	90.726	0.001	OK	0.297	
•						
	Vpl,Rd	Eta	LambdabarW			
Reduction	166.332	1.000	0.268			
11000001011		1.000	3.230			

CONNECTION SHEAR FORCES FOR BEAMS

VMajor VMajor Left 0.726 Right 0.457 Major (V2)

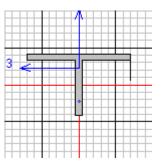
RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA LOTTO 01 E ZZ IF1N


CODIFICA CL

DOCUMENTO FV0220 002

RFV **FOGLIO** Α

110 di 195

7.3.5 VERIFICA ELEMENTO VERTICALE A T 100X60X6

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station)

Units : KN, m, C

Frame : 77 X Mid: 1.580 Combo: STATICA Design Type: Column

Shape: TRAVERSO VERTICALFrame Type: Non Dissipative Length: 1.190 Y Mid: 0.000

Loc : 1.190 Z Mid: 0.745 Class: Class 1 Rolled: No

Interaction=Method B MultiResponse=Envelopes P-Delta Done? No

GammaM0=1.05 GammaM1=1.05 GammaM2=1.25 An/Ag=1.00RLLF=1.000 PLLF=0.750 D/C Lim=0.950

eNz=0.000 Aeff=9.240E-04 eNy=0.000 Iyy=0.000 A=9.240E-04iyy=0.017Wel,yy=5.806E-06Weff, yy=5.806E-06It=0.000 Izz=0.000izz=0.023Wel,zz=1.002E-05 Weff,zz=1.002E-05 Iyz=0.000 Wpl,yy=1.036E-05 Av, y=6.000E-041w = 0.000h=0.060 E=210000000.0 fy=275000.000 fu=430000.000 Wpl,zz=1.549E-05 Av,z=2.916E-04

imax=0.023Wel,zz,maj=1.002E-05Ivz=0.000Imax = 0.000Rot= 90 deg Imin=0.000 imin=0.017 Wel,zz,min=5.806E-06

STRESS CHECK FORCES & MOMENTS

Med, yy Med,zz Ved,z Ved,y Location Ned 1.190 -0.310 0.294 -0.110 -0.090 0.142 -5.698E-05

(Governing Equation EC3 6.2.1(7), Top-Left) PMM DEMAND/CAPACITY RATIO

D/C Ratio: 0.137 = abs[(-0.001) + (-0.108) + (-0.027)] < 0.950= abs[(NEd/NRd) + (My, Ed/My, Rd) + (Mz, Ed/Mz, Rd)]OK (EC3 6.2.1(7), Top-Left)

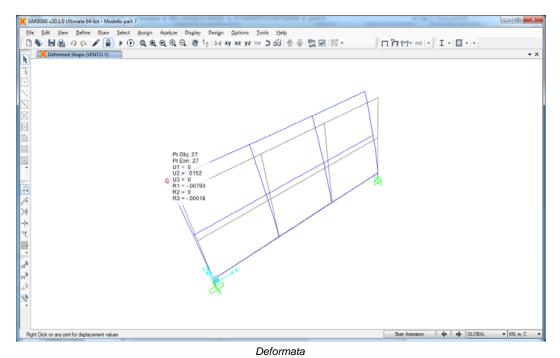
AXIAL FORCE DESIGN

	Ned	Nc,Rd	Nt,Rd			
	Force	Capacity	Capacity			
	-0.310	242.000	242.000			
	Npl,Rd	Nu,Rd	Ncr,T	Ncr,TF	An/Ag	
	242.000	286.070	929.496	457.315	1.000	
rve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
C	0.490	274.307	0.962	1.150	0.562	136.006
C	0.490	274.307	0.962	1.150	0.562	136.006
C	0.490	509.186	0.706	0.874	0.721	174.412
C	0.490	509.186	0.706	0.874	0.721	174.412
C	0.490	457.315	0.745	0.911	0.696	168.531
	C C C	Force -0.310 Npl,Rd 242.000 rve Alpha c 0.490 c 0.490 c 0.490 c 0.490	Force Capacity -0.310 242.000 Npl,Rd Nu,Rd 242.000 286.070 rve Alpha Ncr c 0.490 274.307 c 0.490 274.307 c 0.490 509.186 c 0.490 509.186	Force Capacity Capacity -0.310 242.000 242.000 Npl,Rd Nu,Rd Ncr,T 242.000 286.070 929.496 rve Alpha Ncr LambdaBar c 0.490 274.307 0.962 c 0.490 274.307 0.962 c 0.490 509.186 0.706 c 0.490 509.186 0.706	Force Capacity Capacity -0.310 242.000 242.000 Npl,Rd Nu,Rd Ncr,T Ncr,TF 242.000 286.070 929.496 457.315 rve Alpha Ncr LambdaBar Phi c 0.490 274.307 0.962 1.150 c 0.490 274.307 0.962 1.150 c 0.490 509.186 0.706 0.874 c 0.490 509.186 0.706 0.874	Force Capacity Capacity -0.310 242.000 242.000 Npl,Rd Nu,Rd Ncr,T Ncr,TF An/Ag 242.000 286.070 929.496 457.315 1.000 rve Alpha Ncr LambdaBar Phi Chi c 0.490 274.307 0.962 1.150 0.562 c 0.490 274.307 0.962 1.150 0.562 c 0.490 509.186 0.706 0.874 0.721 c 0.490 509.186 0.706 0.874 0.721

MOMENT DESIGN

Med Med, span Mm, Ed Meq,Ed

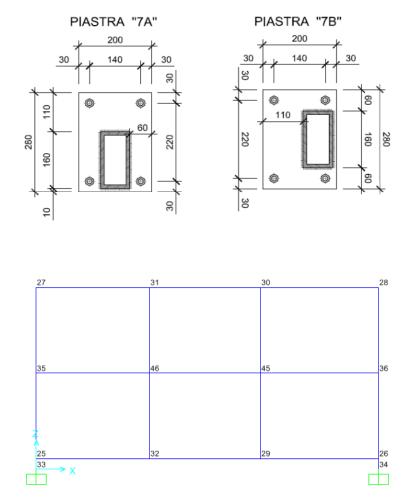
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO


di calcolo						
Major (y-y)	Moment 0.294	Moment 0.294	Moment 0.240	Moment 0.251		
Minor (z-z)	-0.110	-0.110	-0.026	-0.044		
	Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
	Capacity	Capacity	Capacity	Capacity		
Major (y-y)	2.713	2.713	2.713	2.512		
Minor (z-z)	4.056	4.056	4.056			
	Curve AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr
LTB	d 0.760	0.334	0.607	0.926	1.204	25.463
	kyy	kyz	kzy	kzz		
Factors	0.856	0.240	1.000	0.400		
SHEAR DESIGN						
	Ved	Vc,Rd	Stress	Status	Ted	
	Force	Capacity	Ratio	Check	Torsion	
Major (z)	0.090	44.093	0.002	OK	5.698E-05	
Minor (y)	0.142	90.726	0.002	OK	5.698E-05	
	Vpl,Rd	T+a	LambdabarW			
Reduction	44.093					
Reduceron	11.000	1.000				

7.4 VERIFICA DI DEFORMABILITÀ

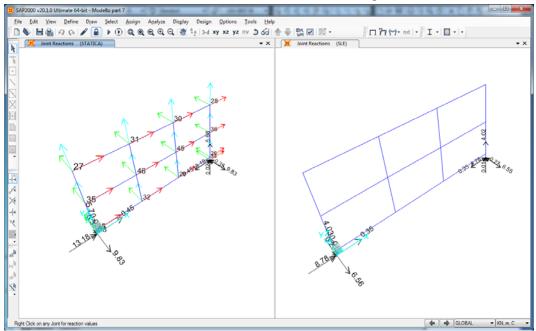
Per la verifica a deformazione si ipotizza la protezione come una parete verticale e si considerano i limiti agli spostamenti orizzontali sotto l'azione del vento riportati nella tabella 4.2.XI al capitolo 4.2.4.2.2 dell' NTC2008 che fissa un valore limite pari a Δ_{lim} = 2L/300.

Per L = 2.53 m Δ_{lim} = 16.87 mm



Come si può vedere lo spostamento orizzontale massimo sotto l'azione del vento presenta un valore di 15.2 mm < Δ_{lim} per cui la verifica risulta soddisfatta

7.5 VERIFICA DELLA PIASTRA DI BASE


La piastra di fondazione ha una dimensione di 200x280 mm spessore 20 mm, è dotata di quattro tasselli chimici M16 ed è realizzata in acciaio S275. Per necessità geometriche si distinguono due diverse tipologie di piastre come riportato nella figura sottostante.

Piastra tipo 7A vale per il nodo 33 Piastra tipo 7B vale per il nodo 34.

Dal modello di calcolo della struttura si ricavano le sollecitazioni massime agenti alla base:

Reazioni alla base

Sollecitazioni massime SLU STATICA

NODO	F1	F2	F3	M1	M2
33	KN	KN	KN	KN-m	KN-m
	0.45	-9.83	5.70	13.18	-0.34

NODO	F1	F2	F3	M1	M2
34	KN	KN	KN	KN-m	KN-m
	-0.45	-9.83	5.68	13.18	0.32

Sollecitazioni massime SLE

NODO	F1	F2	F3	M1	M2
33	KN	KN	KN	KN-m	KN-m
	0.35	-6.56	4.03	8.78	-0.26

NODO	F1	F2	F3	M1	M2
34	KN	KN	KN	KN-m	KN-m
	-0.35	-6.56	4.02	8.78	0.25

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 115 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

7.5.1 VERIFICA SEZIONE DI CONTATTO PIASTRA TIPO 7A

ITINERA

Si effettua la verifica della sezione di contatto in campo elastico considerando le sollecitazioni della combinazione SLE. Poiche il montante è decentrato rispetto alla piastra si incrementa il momento M22 con il momento di trasporto pari a :

M2trasp	е	M2*	
KN-m	m	KN-m	
0.20	0.05	0.46	

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: piastra 33 -7

Descrizione Sezione:

Metodo di calcolo resistenza:

Tensioni Ammissibili
Tipologia sezione:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

Posizione sezione nell'asta:

Tensioni Ammissibili
Sezione generica
Assi x,y principali d'inerzia
Zona non sismica
In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -	Classe: C25/30			
	Tensione Normale Ammiss.	. Sc :	97.50	daN/cm²
	Tensione Normale media A	Amm. :	68.25	daN/cm²
	Tensione Tangenz.Amm.	FauC0 :	6.00	daN/cm²
	Tensione Tangenz.Amm. 7	ΓauCl :	18.28	daN/cm²
	Coeff. N di omogeneizzaz	zione :	15.0	
	Modulo Elastico Normale	Ec :	314750	daN/cm²
	Coeff. di Poisson	:	0.20	
	Resis. media a trazione	fctm:	26.00	daN/cm²
ACCIAIO -	Tipo: B450C			
	Resist. caratt. rottura	ftk:	5400.0	daN/cm²
	Tensione Ammissibile	Sf :	2550.0	daN/cm²
	Modulo Elastico	Ef :	2000000	daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C25/30

N.vertice	Ascissa X, cm	Ordinata Y, cm
1	-14.00	0.00
2	-14.00	20.00
3	14.00	20.00
4	14.00	0.00

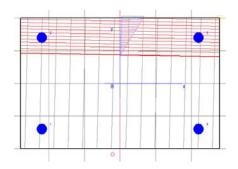
DATI BARRE ISOLATE

N.Barra Numero assegnato alle singole barre isolate e nei vertici dei domini
Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Diam. Diametro in mm della barra

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	-11.00	3.00	14.14
2	-11.00	17.00	14.14
3	11.00	17.00	14.14
4	11.00	3.00	14.14

TENS.AMMISS. - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**


FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0220 002	Α	116 di 195

Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb.	N	Mx	My	Vy	Vx
1	403	878	46	0	0

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 2.3 cm Interferro netto minimo barre longitudinali: 12.6 cm

METODO DELLE TENSIONI AMMISSIBILI - MASSIME E MINIME TENSIONI NORMALI

Ver		S = co	S = combinazione verificata / N = combin. non verificata								
Sc max		Massim	Massima tensione [in daN/cm²] nel conglomerato (positiva se di compress.)								ess.)
Xc max		Asciss	a [in	cm] coi	rrispond.	al punt	o di ma	ssima comp	pressione		
Yc max		Ordina	ta [in	cm] coi	rrispond.	al punt	o di ma	ssima comp	pressione		
Sc min		Minima	tensi	one [ir	n daN/cm²]	nel co	nglomer	ato (posit	iva se d	i compr	ess.)
Xc min		Asciss	a [in	cm] coi	rrispond.	al punt	o di mi	nima compr	ressione		
Yc min		Ordina	ta [in	cm] coi	rrispond.	al punt	o di mi	nima compr	ressione		
Sc med		Tensio	ne medi	a [ir	n daN/cm²]	nel co	ngl. in	presenza	di sf. n	ormale	
Sf min		Minima	tensi	one [ir	n daN/cm²]	nell'a	cciaio	(negativa	se di tr	azione)	
Yf min		Ordina	ta [in	cm] coi	rrispond.	alla ba	rra di	minima ter	nsione		
N.Comb.	Ver	Sc max	Xcmax	Ycmax	Sc min	Xcmin	Ycmin	Sc med	Sf min	Xfmin	Yfmin
1	S	63.1	14.0	20.0	0.0	0.0	0.0	0.6	-1847	-11.0	3.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

а	L	Coeff.	а	nell'eq.	dell'asse	neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.
þ)	Coeff.	b	nell'eq.	dell'asse	neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.
С	!	Coeff.	С	nell'eq.	dell'asse	neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.

N.Comb.	a	b	С
1	0.000001587	0.000079840	-0.001145568

7.5.2 VERIFICA DI RESISTENZA PIASTRA TIPO 7A

Si effettua la verifica della piastra come una mensola incastrata in corrispondenza del montante caricata con la forza di trazione massima agente sui tasselli allo SLU pari a $F_{traz} = (\sigma_b \cdot A_{res} \cdot n) \cdot \gamma_q$.

Di seguito si riporta il foglio di calcolo utilizzato per la verifica.

D. Hand			
Bulloni			
Barra M	16		
Acciaio	5.8		
A =	2.01	cmq	
Ares =	1.57	cmq	
Фeq =	14.14	mm	
n =	2		
Piastra			
a=	20	cm	
b=	28	cm	
sp=	2	cm	
Acciaio	S275		
fyk=	275	MPa	
fyd=	250	MPa	
σb=	1847.0	Kg/cmq	
Wel=	18.67	cm^3	
Wpl=	28.00	cm^3	
e=	3	cm	
F_traz =	8699.4	Kg	
Sollecitazioni	di progetto		
Msd=	26098.1	Kgcm	
Mrd =	70000.0	Kgcm	
Msd	<	Mrd	verificato

7.5.3 VERIFICA ANCORAGGIO PIASTRA TIPO 7A

Il fissaggio della piastra alla struttura sottostante avviene tramite quattro barre filettate M16 in acciaio classe 5.8 con ancorante chimico ad iniezione tipo HILTY HIT-RE 500 V3 o similare.

La verifica viene effettuata considerando le sollecitazione massime alla base allo SLU nella combinazione di calcolo STATICA utilizzando il codice di calcolo PROFIS Anchor 2.7.8 prodotto dalla HILTI di cui se ne riporta il report di verifica.

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO

01 E ZZ

IF1N

CODIFICA

DOCUMENTO FV0220 002

REV. F

Α

FOGLIO 118 di 195

11/09/2018

www.hilti.it Profis Anchor 2.7.8

Impresa: Progettist: Progettis: 1

Profis Anchor 2.7.8

ITINERA

 Progettista:
 Progetto:

 Indirizzo:
 Contratto N°:

 Telefono I Fax:
 |

 Data:
 |

Telefono I Fax: Data:

Commenti del progettista:

1 Dati da inserire

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M16

Hilti Seismic set o altro sistema per il riempimento dello spazio aulare tra piastra e ancol.

Profondità di posa effettiva: $h_{ef,act} = 200 \text{ mm } (h_{ef,limit} = - \text{ mm})$

 Materiale:
 5.8

 Certificazione No.:
 ETA 16/0143

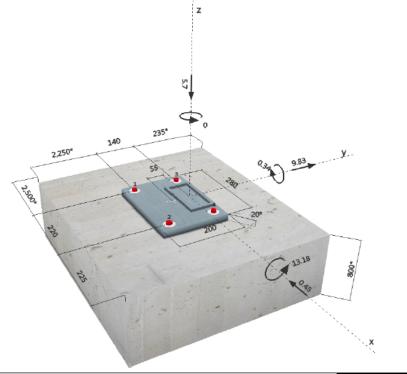
 Emesso I Valido:
 12/07/2017 |

Prova: Metodo di calcolo SOFA + fib (07/2011) – dopo prove ETAG BOND

Fissaggio distanziato: e_b = 0 mm (Senza distanziamento); t = 20 mm

Piastra d'ancoraggio: I_x x I_y x t = 280 mm x 200 mm x 20 mm; (Spessore della piastra raccomandato: non calcolato

Profilo: Profilo cavo allungato; (L x W x T) = 160 mm x 80 mm x 10 mm


Materiale base: non fessurato calcestruzzo, C25/30, f_{c,orl} = 25.00 N/mm², h = 800 mm, Temp. Breve/Lungo: 0/0 °C

Installazione: Foro eseguito con perforatore, Condizioni di installazione: asciutto

Armatura: interasse delle armature < 150 mm (qualunque Ø) o < 100 mm (Ø <= 10 mm)

senza armatura di bordo longitudinale

Geometria [mm] & Carichi [kN, kNm]

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

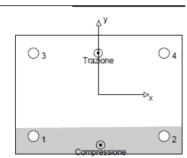
FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 119 di 195

2 Condizione di carico/Carichi risultanti sull'ancorante


Condizione di carico: Carichi di progetto

Carichi sull'ancorante [kN]

Trazione: (+ Trazione, - Compressione)

Ancorante	Trazione	Taglio	Taglio in dir. x	Taglio in dir. y
1	0.000	2.419	-0.087	2.417
2	0.000	2.499	-0.087	2.498
3	40.290	2.421	-0.138	2.417
4	39.560	2.501	-0.138	2.498

Compressione max. nel calcestruzzo: Max. sforzo di compressione nel calcestruzzo: risultante delle forze di trazione nel (x/y)=(-1/70): risultante delle forze di compressione (x/y)=(3/-85): 0.47 [%] 14.08 [N/mm²] 79.850 [kN] 85.550 [kN]

3 Carico di trazione SOFA (fib (07/2011), paragrafo 16.2.1)

	Carico [kN]	Resistenza [kN]	Utilizzo β _N [%]	Stato
Rottura dell'acciaio*	40.290	52.333	77	OK
Rottura combinata conica del calcestruzzo e per sfilamento**	79.850	156.136	52	OK
Rottura conica del calcestruzzo**	79.850	105.855	76	OK
Fessurazione**	79.850	276.874	29	OK
*ancorante più sollecitato **gruppo di an	coranti (ancoranti sollecitati	i)		

3.1 Rottura dell'acciaio

	N _{Rk,s} [kN]	Ϋ́м,s	N _{Rd,s} [kN]	N _{Sd} [kN]
_	78 500	1 500	52 222	40.290

3.2 Rottura combinata conica del calcestruzzo e per sfilamento

A _{p,N} [mm ²]	$A_{p,N}^0$ [mm ²]	₩ A.Np	$\tau_{\text{Rk,ucr,25}} [\text{N/mm}^2]$	s _{or,Np} [mm]	c _{cr,Np} [mm]	c _{min} [mm]
317,215	218,453	1.452	16.00	467	234	225
Ψο	τ _{Rik,ucr} [N/mm²]	max τ Rk,ucr [N/mm²]	Ψ ⁰ g.Np	Ψg.Np		
1.018	16.29	15.47	1.000	1.000		
e _{c1,N} [mm]	Ψ ect,Np	e _{c2,N} [mm]	Ψ ec2,Np	Ψ s,Np	Ψ re,Np	
1	0.996	0	1.000	0.989	1.000	
$N_{RK,p}^{0}$ [kN]	N _{RK,p} [kN]	γM.p	N _{Rd,p} [kN]	N _{Sa} [kN]		
163.809	234.204	1.500	156.136	79.850		
3 Rottura conica d	el calcestruzzo					
A _{c,N} [mm ²]	A _{0,N} [mm ²]	ΨAN	c _{cr,N} [mm]	s _{cr,N} [mm]		

A _{c,N} [mm ²]	A ⁰ _{0,N} [mm ²]	ΨAN	c _{cr,N} [mm]	s _{cr,N} [mm]	
398,575	360,000	1.107	300	600	
e _{c1,N} [mm]	Ψ ec1,N	e _{c2,N} [mm]	Ψ ec2,N	Ψs,N	Ψ re,N
1	0.997	0	1.000	0.925	1.000
k ₁	N _{Rk,c} [kN]	γм.ο	N _{Rd,c} [kN]	N _{Sd} [kN]	
11.000	155.563	1.500	105.855	79.850	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA LOTTO CODIFICA

IF1N 01 E ZZ CL

DIFICA DO

FV0220 002

REV. FOGLIO

A 120 di 195

					_	
www.hilti.it						Profis Anchor 2.7.8
Impresa: Progettista: Indirizzo:				Pagina: Progetto: Contratto N°:		3
Telefono I Fax: E-mail:	I			Data:		11/09/2018
3.4 Fessurazione						
A _{c,N} [mm ²]	A _{0,N} [mm ²]	ΨAN	c _{cr,sp} [mm]	s _{cr,sp} [mm]	₩ h.sp	
248,000	160,000	1.550	200	400	1.731	
e _{c1,N} [mm]	Ψ ec1,N	e _{c2,N} [mm]	Ψ ec2,N	ΨsN	Ψ re,N	k ₁
1	0.995	0	1.000	1.000	1.000	11.000
N _{Rk.c} [kN]	ΥM.sp	N _{Rd,sp} [kN]	N _{sd} [kN]			
155.563	1.500	276.874	79.850			

www.hilti.it

Impresa:
Progettista:
Indirizzo:
Telefono I Fax:
E-mail:

Pagina: Progetto: Contratto N°:

11/09/2018

4 Carico di taglio SOFA (fib (07/2011), paragrafo 16.2.2)

	Carico [kN]	Resistenza [kN]	Utilizzo β _V [%]	Stato
Rottura dell'acciaio (senza braccio di leva)*	2.501	31.400	8	OK
Rottura dell'acciaio (con braccio di leva)*	N/A	N/A	N/A	N/A
Rottura per pryout**	9.840	265.679	4	OK
Rottura del bordo del calcestruzzo in direzione y+**	4.923	34.316	15	OK

*ancorante più sollecitato **gruppo di ancoranti (ancoranti specifici)

4.1 Rottura dell'acciaio (senza braccio di leva)

V _{Rk,s} [kN]	YM,s	V _{Rd,s} [kN]	V _{Sd} [kN]
39.250	1.250	31.400	2.501

4.2 Rottura per pryout (cono del calcestruzzo)

	A _{o,N} [mm ²]	A _{0,N} [mm ²]	WAN	c _{cr,N} [mm]	s _{cr,N} [mm]	k ₄
_	502,875	360,000	1.397	300	600	2.000
	e _{c1,V} [mm]	Ψ ec1,N	e _{c2,V} [mm]	₩ ec2,N	Ψs,N	Ψ re,N
_	3	0.992	0	1.000	0.925	1.000
	N ⁰ _{Rk,c} [kN]	Ум.с.р	V _{Rd,cp} [kN]	V _{sd} [kN]		
	155 563	1 500	265 679	9.840		

4.3 Rottura del bordo del calcestruzzo in direzione y+

I _f [mm]	d _{nom} [mm]	k _V	α	β		
192	16.0	2.400	0.072	0.053		
c ₁ [mm]	A _{c,V} [mm ²]	A _{c,V} [mm ²]	Ψ Aν			
375	566,719	632,813	0.896			
Ψ ε,ν	Ψ n,v	Ψ _α , V	e _{c,V} [mm]	Ψ ec,V	¥ re,V	¥ 90°,∨
Ψ ε,ν 0.820	Ψ n,v 1.000	Ψ _α ν 1.000	e _{c,V} [mm]	Ψ ec,v 0.997	Ψ re,ν 1.000	¥ 90°,∨ 2.000
			e _{c,V} [mm] 2 V _{Rd,c} [kN]			

Nota: resistenza limite in accordo a fib (07/2011), equazione governante (10.2-6).

5 Carichi combinati di trazione e di taglio SOFA (fib (07/2011), paragrafo 10.3)

	βN	β_V	α	Utilizzo β _{N,V} [%]	Stato
acciaio	0.770	0.080	2.000	60	OK
Calcestruzzo	0.754	0.143	1.500	71	OK
$\beta_{ii}^{\alpha} + \beta_{ii}^{\alpha} \le 1$					

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 121 di 195

Profis Anchor 2.7.8

 www.hilti.it
 Profis Anchor 2.7.

 Impresa:
 Pagina:
 5

 Progettista:
 Progetto:
 Indirazo:

 Indirazo:
 Contratto N°:
 11/09/2018

 E-mail:
 Data:
 11/09/2018

6 Spostamenti (ancorante più sollecitato)

Carichi a breve termine:

= 29.844 [kN] = 0.178 [mm] Nsk = 3.641 [kN] = 0.146 [mm] V_{Sk} δγ = 0.230 [mm] Carichi a lungo termine: = 29.844 [kN] Nsk δN = 0.386 [mm] Vsk = 3.641 [kN] = 0.218 [mm] δν = 0.443 [mm] δην

Commenti: Gli spostamenti a trazione risultano validi con metà del valore della coppia di serraggio richiesta per non fessurato calcestruzzol Gli spostamenti a taglio sono validi trascurando l'attrito tra il calcestruzzo e la piastra d'ancoraggio! Lo spazio derivante dal foro eseguito con perforatore e dalle tolleranze dei fori non viene considerato in questo calcolo!

Gli spostamenti ammissibili dell'ancorante dipendono dalla struttura fissata e devono essere definiti dal progettista!

7 Attenzione

- Fenomeni di ridistribuzione dei carichi sugli ancoranti derivanti da eventuali deformazioni elastiche della piastra non sono presi in considerazione. Si assume una piastra di ancoraggio sufficientemente rigida in modo che non risulti deformabile sotto l'azione di carichi!
- La lista accessori inclusa in questo report di calcolo è da ritenersi solo come informativa dell'utente. In ogni caso, le istruzioni d'uso fomite
 con il prodotto dovranno essere rispettate per garantire una corretta installazione.
- · L'adesione chimica caratteristica dipende dalle temperature di breve e di lungo periodo.
- · Contattare Hilti per verificare la fornitura delle barre HIT-V.
- Il metodo Fib (07/2011) assume l'assenza di spazi anulari tra gli ancoranti e la piastra di ancoraggio. Questo può essere ottenuto mediante il riempimento con resina di sufficiente resistenza a compressione (p.e. usando il sistema Hilti Seismic/Filling set) o attraverso altri mezzi idonei.
- L'utente è responsabile della conformità alle norme correnti (e.g. EC3)
- · La verifica del trasferimento dei carichi nel materiale base è necessaria in accordo a fib (07/2011)!

L'ancoraggio risulta verificato!

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO

REV. **FOGLIO**

FV0220 002 122 di 195 Α

Profis Anchor 2.7.8 www.hilti.it Impresa: Progettista: Pagina: Progetto: Contratto N°: Indirizzo: Telefono I Fax: Data: 11/09/2018

8 Dati relativi all'installazione

Piastra d'ancoraggio, acciaio: Profilo: Profilo cavo allungato; 160 x 80 x 10 mm
Diametro del foro nella piastra: d, = 18 mm
Spessore della piastra (input): 20 mm
Spessore della piastra raccomandato: non calcolato
Metodo di perforazione: Foro con perforazione a roto-percussione
Pulizia: E' necessaria una pulizia accurata del foro (Premium cleaning)

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M16 Coppia di serraggio: 0.080 kNm Diametro del foro nel materiale base: 18 mm Profondità del foro nel materiale base: 200 mm Spessore minimo del materiale base: 236 mm

8.1 Accessori richiesti

	8.1 Accessori richiesti			
	Perforazione Idoneo per rotopercussione Dimensione appropriata della punta (trapano	Pulizia • Aria compressa con i relativi accessori necessari per soffiare a partire dal fondo del foro. • Diametro appropriato dello scovolino	Posa Il dispenser include il portacartucce e il miscelatore Seismic/Filling set Chiave dinamometrica	_
	140		140	
	3		8	
55			001	
+			5	×
			001	
	1		2 8	
	30	220	30	
	Coordinate dell'ancorante [mm] Ancorante x y c _x 1 -110 -70 2,500 2 110 -70 2,720 3 -110 70 2,500	C _{*X} C _{*y} C _{*y} 445 2,250 375 225 2,250 375 445 2,390 235 235 3,200 235 236 326 236 237 328 238 238 238 238 238 238 238 238 238 238 238 238 238 238		

2,720

110

70

2,390

235

LOTTO

01 E ZZ

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

zione

ITINERA

CL

DOCUMENTO FV0220 002

REV. FOGLIO

Α

123 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

7.5.4 VERIFICA SEZIONE DI CONTATTO PIASTRA TIPO 7B

Si effettua la verifica della sezione di contatto in campo elastico considerando le sollecitazioni della combinazione SLE. Poiche il montante è decentrato rispetto alla piastra si incrementa il momento M1 con il momento di trasporto pari a :

COMMESSA

IF1N

M1trasp	е	M1*
KN-m	m	KN-m
0.20	0.05	8.98

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: piastra 34 -7

Descrizione Sezione:

Metodo di calcolo resistenza: Tipologia sezione: Riferimento Sforzi assegnati: Riferimento alla sismicità: Posizione sezione nell'asta: Tensioni Ammissibili Sezione generica Assi x,y principali d'inerzia Zona non sismica In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -	Classe: C25/30		
	Tensione Normale Ammiss. Sc	: 97.50	daN/cm²
	Tensione Normale media Amm.	: 68.25	daN/cm²
	Tensione Tangenz.Amm. TauC0	: 6.00	daN/cm²
	Tensione Tangenz.Amm. TauCl	: 18.28	daN/cm²
	Coeff. N di omogeneizzazione	: 15.0	
	Modulo Elastico Normale Ec	: 314750	daN/cm²
	Coeff. di Poisson	: 0.20	
	Resis. media a trazione fctm	: 26.00	daN/cm²
ACCIAIO -	Tipo: B450C		
	Resist. caratt. rottura ftk	: 5400.0	daN/cm ²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C25/30

Modulo Elastico

N.vertice	Ascissa X, cm	n Ordinata Y, cm
1	-14.00	0.00
2	-14.00	20.00
3	14.00	20.00
4	14.00	0.00

Tensione Ammissibile

DATI BARRE ISOLATE

N.Barra Numero assegnato alle singole barre isolate e nei vertici dei domini
Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Diam. Diametro in mm della barra

Sf :

Ef :

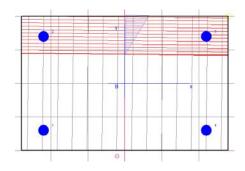
2550.0 daN/cm²

2000000 daN/cm²

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	-11.00	3.00	14.14
2	-11.00	17.00	14.14
3	11.00	17.00	14.14
4	11.00	3.00	14.14

TENS.AMMISS. - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**


FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0220 002	Α	124 di 195

Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb.	N	Mx	My	Vy	Vx
1	402	898	25	0	0

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 2.3 cm Interferro netto minimo barre longitudinali: 12.6 cm

METODO DELLE TENSIONI AMMISSIBILI - MASSIME E MINIME TENSIONI NORMALI

Ver		S = co	mbinazi	one ver	ificata ,	/ N = cc	mbin. no	n verific	cata		
Sc max		Massim	a tensi	one [in	daN/cm²] nel co	nglomera	to (posit	iva se d	li compr	ess.)
Xc max		Asciss	a [in	cm] cor	rispond.	al punt	o di mas	sima comp	ressione	2	
Yc max		Ordina	ta [in	cm] cor	rispond.	al punt	o di mas	sima comp	ressione	:	
Sc min		Minima	tensi	one [in	daN/cm²] nel co	nglomera	to (posit	iva se d	li compr	ess.)
Xc min		Asciss	a [in	cm] cor	rispond.	al punt	o di min	ima compr	ressione		
Yc min		Ordina	ta [in	cm] cor	rispond.	al punt	o di min	ima compr	ressione		
Sc med		Tensio	ne medi	a [in	daN/cm²] nel co	ngl. in	presenza	di sf. n	ormale	
Sf min		Minima	tensi	one [in	daN/cm²] nell'a	cciaio (negativa	se di tr	azione)	
Yf min		Ordina	ta [in	cm] cor	rispond.	alla ba	ırra di m	inima ten	sione		
N.Comb.	Ver	Sc max	Xcmax	Ycmax	Sc min	Xcmin	Ycmin	Sc med	Sf min	Xfmin	Yfmir

N.Comb.	Ver	Sc max	Xcmax	Ycmax	Sc min	Xcmin	Ycmin	Sc med	Sf min	Xfmin	Yfmin
1	s	63.1	14.0	20.0	0.0	0.0	0.0	0.6	-1874	-11.0	3.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a	Coeff.	а	nell'eq.	dell'asse	neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.
b	Coeff.	b	nell'eq.	dell'asse	neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.
C	Coeff.	C	nell'eq.	dell'asse	neut.ro	aX+bY+c=0	nel	rif.	X.Y.O	gen.

N.Comb.	a	d	C
1	0.000000863	0.000081701	-0.001172492

7.5.5 VERIFICA DI RESISTENZA PIASTRA TIPO 7B

Si effettua la verifica della piastra come una mensola incastrata in corrispondenza del montante caricata con la forza di trazione massima agente sui tasselli allo SLU pari a $F_{traz} = (\sigma_b \cdot A_{res} \cdot n) \cdot \gamma_q$.

Di seguito si riporta il foglio di calcolo utilizzato per la verifica.

Bulloni			
Barra M	16		
Acciaio	5.8		
A =	2.01	cmq	
Ares =	1.57	cmq	
Фeq =	14.14	mm	
n =	2		
Piastra			
a=	20	cm	
b=	28	cm	
sp=	2	cm	
Acciaio	S275		
fyk=	275	MPa	
fyd=	250	MPa	
σb=	1874.0	Kg/cmq	
Wel=	18.67	cm^3	
Wpl=	28.00	cm^3	
e=	7	cm	
F_traz =	8826.5	Kg	
Sollecitazion	ni di progetto		
Msd=	61785.8	Kgcm	
Mrd =	70000.0	Kgcm	
Msd	<	Mrd	verificato

7.5.6 VERIFICA ANCORAGGIO PIASTRA TIPO 7B

Il fissaggio della piastra alla struttura sottostante avviene tramite quattro barre filettate M16 in acciaio classe 5.8 con ancorante chimico ad iniezione tipo HILTY HIT-RE 500 V3 o similare.

La verifica viene effettuata considerando le sollecitazione massime alla base allo SLU nella combinazione di calcolo STATICA utilizzando il codice di calcolo PROFIS Anchor 2.7.8 prodotto dalla HILTI di cui se ne riporta il report di verifica.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO CODIFICA

DOCUMENTO

RFV **FOGLIO**

IF1N 01 E ZZ CL FV0220 002

126 di 195

Α

www.hilti.it Impresa: Pagina:

Progettista: Indirizzo: Progetto:

Contratto N°: Telefono I Fax:

11/09/2018 E-mail:

Commenti del progettista:

1 Dati da inserire

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M16

Hilti Seismic set o altro sistema per il riempimento dello spazio aulare tra piastra e anco:

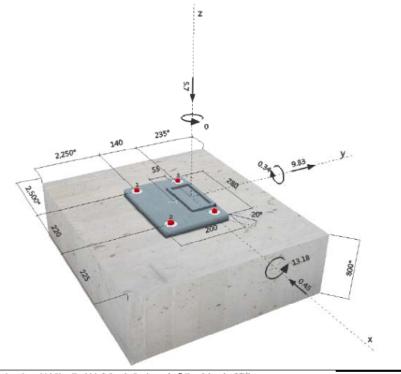
Profondità di posa effettiva: $h_{ef,act} = 200 \text{ mm (}h_{ef,limit} = - \text{ mm)}$

5.8 Materiale: Certificazione No.: ETA 16/0143 Emesso I Valido: 12/07/2017 | -

Metodo di calcolo SOFA + fib (07/2011) - dopo prove ETAG BOND Prova:

Fissaggio distanziato: e_b = 0 mm (Senza distanziamento); t = 20 mm

Piastra d'ancoraggio: I_x x I_y x t = 280 mm x 200 mm x 20 mm; (Spessore della piastra raccomandato: non calcolato


Profilo: Profilo cavo allungato; (L x W x T) = 160 mm x 80 mm x 10 mm

Materiale base: non fessurato calcestruzzo, C25/30, f_{c,oyl} = 25.00 N/mm²; h = 800 mm, Temp. Breve/Lungo: 0/0 °C

Installazione: Foro eseguito con perforatore, Condizioni di installazione: asciutto Armatura: interasse delle armature < 150 mm (qualunque Ø) o < 100 mm (Ø <= 10 mm)

senza armatura di bordo longitudinale

Geometria [mm] & Carichi [kN, kNm]

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 127 di 195

 www.hilti.it
 Profis Anchor 2.7.8

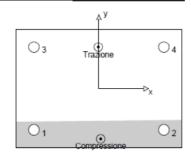
 Impresa:
 Pagina:
 2

 Progettista:
 Progetto:
 Indirizzo:

 Indirizzo:
 Contratto N*:
 11/09/2018

 E-mail:
 Data:
 11/09/2018

2 Condizione di carico/Carichi risultanti sull'ancorante


Condizione di carico: Carichi di progetto

Carichi sull'ancorante [kN]

Trazione: (+ Trazione, - Compressione)

Ancorante	Trazione	Taglio	Taglio in dir. x	Taglio in dir. y
1	0.000	2.419	-0.087	2.417
2	0.000	2.499	-0.087	2.498
3	40.290	2.421	-0.138	2.417
4	39.560	2 501	-0.138	2 498

Compressione max. nel calcestruzzo: Max. sforzo di compressione nel calcestruzzo: risultante delle forze di trazione nel (x/y)=(-1/70): risultante delle forze di compressione (x/y)=(3/-85): 0.47 [‰] 14.08 [N/mm²] 79.850 [kN] 85.550 [kN]

3 Carico di trazione SOFA (fib (07/2011), paragrafo 16.2.1)

	Carico [kN]	Resistenza [kN]	Utilizzo β _N [%]	Stato
Rottura dell'acciaio*	40.290	52.333	77	OK
Rottura combinata conica del calcestruzzo e per sfilamento**	79.850	156.136	52	OK
Rottura conica del calcestruzzo**	79.850	105.855	76	OK
Fessurazione**	79.850	276.874	29	OK

*ancorante più sollecitato **gruppo di ancoranti (ancoranti sollecitati)

3.1 Rottura dell'acciaio

N _{Rk,s} [kN]	ΥM.s	N _{Rd,s} [kN]	N _{Sd} [kN]	
78 500	1 500	52 333	40 290	_

3.2 Rottura combinata conica del calcestruzzo e per sfilamento

A _{p,N} [mm ²]	$A_{p,N}^0$ [mm ²]	₩ A.Np	τ _{Rk,ucr,25} [N/mm²]	s _{or,Np} [mm]	c _{or,Np} [mm]	c _{min} [mm]
317,215	218,453	1.452	16.00	467	234	225
Ψο	τ _{Rk,ucr} [N/mm²]	max τ Rk,ucr [N/mm²]	Ψ ⁰ _{0,Np}	Ψg,Np		
1.018	16.29	15.47	1.000	1.000		
e _{c1,N} [mm]	Ψ ec1,Np	e _{c2,N} [mm]	Ψ ec2,Np	Ψ s,Np	Ψ re,Np	
1	0.996	0	1.000	0.989	1.000	
N _{Rk,p} [kN]	N _{Rk,p} [kN]	YM.ρ	N _{Rd,p} [kN]	N _{Sd} [kN]		
163.809	234.204	1.500	156.136	79.850		

3.3 Rottura conica del calcestruzzo

$A_{c,N}$ [mm ²]	A _{c,N} [mm ²]	VAN	c _{cr,N} [mm]	s _{cr,N} [mm]	
398,575	360,000	1.107	300	600	
e _{c1,N} [mm]	Ψ ec1,N	e _{c2,N} [mm]	₩ ec2,N	Ψs,N	Ψ re,N
1	0.997	0	1.000	0.925	1.000
k ₁	N _{Rk,c} [kN]	YM,c	N _{Rd,c} [kN]	N _{Sd} [kN]	
11.000	155.563	1.500	105.855	79.850	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 128 di 195

www.hilti.it						Profis Anchor 2.7.8
Impresa: Progettista:				Pagina: Progetto:		3
Indirizzo: Telefono I Fax: E-mail:	1			Contratto N°: Data:		11/09/2018
3.4 Fessurazione						
A _{c,N} [mm ²]	A _{c,N} [mm ²]	₩ A.N	c _{cr,sp} [mm]	s _{cr,sp} [mm]	Ψ h.so	
248,000	160,000	1.550	200	400	1.731	
e _{c1,N} [mm]	₩ ec1,N	e _{c2,N} [mm]	W ec2,N	W s.N	Ψ re.N	k ₁
1	0.995	0	1.000	1.000	1.000	11.000
N _{Rk.c} [kN]	YM.sp	N _{Rd.sp} [kN]	N _{Sd} [kN]			
155.563	1.500	276.874	79.850	-		

4 Carico di taglio SOFA (fib (07/2011), paragrafo 16.2.2)

	Carico [kN]	Resistenza [kN]	Utilizzo β _V [%]	Stato
Rottura dell'acciaio (senza braccio di leva)*	2.501	31.400	8	OK
Rottura dell'acciaio (con braccio di leva)*	N/A	N/A	N/A	N/A
Rottura per pryout**	9.840	265.679	4	OK
Rottura del bordo del calcestruzzo in direzione y+**	4.923	34.316	15	OK

*ancorante più sollecitato **gruppo di ancoranti (ancoranti specifici)

4.1 Rottura dell'acciaio (senza braccio di leva)

V _{Rk,s} [kN]	YM,s	V _{Rd,s} [kN]	V _{Sd} [kN]
39.250	1.250	31.400	2.501

4.2 Rottura per pryout (cono del calcestruzzo)

	A _{c,N} [mm ²]	A _{c,N} [mm ²]	₩ A.N	c _{cr,N} [mm]	s _{cr,N} [mm]	K ₄
	502,875	360,000	1.397	300	600	2.000
	e _{c1,V} [mm]	Ψ ec1,N	e _{c2,V} [mm]	Ψ ec2,N	Ψs,N	Ψ re,N
_	3	0.992	0	1.000	0.925	1.000
	N _{Rk,c} [kN]	Yм,с.р	V _{Rd,cp} [kN]	V _{sd} [kN]		
_	155 563	1 500	265 679	9.840	-	

4.3 Rottura del bordo del calcestruzzo in direzione y+

I ₇ [mm]	d _{nom} [mm]	k _v	α	β		
1	92	16.0	2.400	0.072	0.053		
		A _{c,V} [mm ²]	A _{0,V} [mm ²]	ΨAV			
3	375	566,719	632,813	0.896			
ч	J s,V	Ψn,v	Ψων	e _{s,V} [mm]	Ψ ec,V	Ψ re,V	Ψ 90*,ν
0.	820	1.000	1.000	2	0.997	1.000	2.000
V _{Rk}	,c [kN]	n ₁	УМ, с	V _{Rd,c} [kN]	V _{Sd} [kN]		
140	0.569	2	1.500	34.316	4.923		

Nota: resistenza limite in accordo a fib (07/2011), equazione governante (10.2-6).

5 Carichi combinati di trazione e di taglio SOFA (fib (07/2011), paragrafo 10.3)

	β_N	β_V	α	Utilizzo β _{N,V} [%]	Stato
acciaio	0.770	0.080	2.000	60	OK
Calcestruzzo	0.754	0.143	1.500	71	OK
$\beta_N^{\alpha} + \beta_V^{\alpha} \le 1$					

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 129 di 195

 www.hilti.it
 Profis Anchor 2.7.8

 Impresa:
 Pagina:
 5

 Progettista:
 Progetto:
 1

 Indirizzo:
 Contratto N°:
 Telefono I Fax:
 1

 Telefoni:
 Data:
 11/09/2018

6 Spostamenti (ancorante più sollecitato)

Carichi a breve termine:

= 29.844 [kN] Nsk = 0.178 [mm] δN = 3.641 [kN] = 0.146 [mm] V_{Sk} δ_V = 0.230 [mm] δ_{NV} Carichi a lungo termine: = 29.844 [kN] = 0.386 [mm] Nsk δN = 3.641 [kN] = 0.218 [mm] V_{Sk} δv = 0.443 [mm] δην

Commenti: Gli spostamenti a trazione risultano validi con metà del valore della coppia di serraggio richiesta per non fessurato calcestruzzo!
Gli spostamenti a taglio sono validi trascurando l'attrito tra il calcestruzzo e la piastra d'ancoraggio! Lo spazio derivante dal foro eseguito con perforatore e dalle tolleranze dei fori non viene considerato in questo calcolo!

Gli spostamenti ammissibili dell'ancorante dipendono dalla struttura fissata e devono essere definiti dal progettista!

7 Attenzione

- Fenomeni di ridistribuzione dei carichi sugli ancoranti derivanti da eventuali deformazioni elastiche della piastra non sono presi in considerazione. Si assume una piastra di ancoraggio sufficientemente rigida in modo che non risulti deformabile sotto l'azione di carichi!
- La lista accessori inclusa in questo report di calcolo è da ritenersi solo come informativa dell'utente. In ogni caso, le istruzioni d'uso fomite con il prodotto dovranno essere rispettate per garantire una corretta installazione.
- · L'adesione chimica caratteristica dipende dalle temperature di breve e di lungo periodo.
- · Contattare Hilti per verificare la fornitura delle barre HIT-V.
- Il metodo Fib (07/2011) assume l'assenza di spazi anulari tra gli ancoranti e la piastra di ancoraggio. Questo può essere ottenuto mediante il riempimento con resina di sufficiente resistenza a compressione (p.e. usando il sistema Hilti Seismic/Filling set) o attraverso altri mezzi idonei.
- · L'utente è responsabile della conformità alle norme correnti (e.g. EC3)
- · La verifica del trasferimento dei carichi nel materiale base è necessaria in accordo a fib (07/2011)!

L'ancoraggio risulta verificato!

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 130 di 195

 www.hilti.it
 Profis Anchor 2.7.8

 Impresa:
 Pagina:
 6

 Progettista:
 Progetto:
 6

 Indir2zo:
 Contratto N*:
 11/09/2018

 Telefono I Fax:
 I
 Data:
 11/09/2018

8 Dati relativi all'installazione

Piastra d'ancoraggio, acciaio: Profilio: Profilio cavo allungato; 160 x 80 x 10 mm
Diametro del foro nella piastra: d= 18 mm
Spessore della piastra (input): 20 mm
Spessore della piastra raccomandato: non calcolato
Metodo di plarforazione: Foro con perforazione a roto-percussione
Pulizia: E' necessaria una pulizia accurata del foro (Premium cleaning)

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M16 Coppia di serraggio: 0.080 kNm Diametro del foro nel materiale base: 18 mm Profondità del foro nel materiale base: 200 mm Spessore minimo del materiale base: 236 mm

8.1 Accessori richiesti

Perforazione Pulizia Aria compressa con i relativi accessori necessari per soffiare a partire dal fondo Idoneo per rotopercussione Il dispenser include il portacartucce e il miscelatore Seismic/Filling set · Dimensione appropriata della punta del del foro. · Diametro appropriato dello scovolino · Chiave dinamometrica 140 140 30 00 55 100 30 30 220 30 Coordinate dell'ancorante [mm] Ancorante с_{•у} 375 2,500 2,720 2,500 2,250 2,390 2,390 -70 70 70 225 445 375 110 -110 2,720 225 110

7.6 VERIFICA CORDOLO DI FONDAZIONE

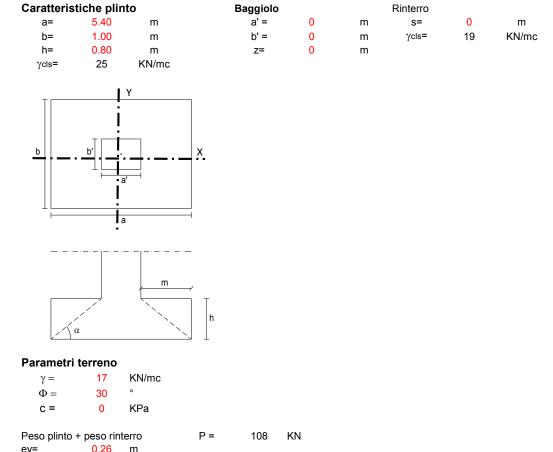
La struttura del cancello e della protezione si fonda su un cordolo continua in c.a. di dimensioni 80x100 cm L=5.40 m

Il cordolo di fondazione interessa i limi sabbiosi caratterizzati da un angolo d'attrito $Φ=30^\circ$, γ=17 kN/m³ e Eo = 6÷10 MPa.

La costante di sottofondo K_S è stata assunta pari a K_s = 15000 kN/m³

Si effettua di seguito la verifica del cordolo di fondazione con le sollecitazioni massime ottenute dal modello di calcolo analizzato precedentemente.

Massime sollecitazioni agenti sul cordolo


СОМВО	F1	F2	F3	M1	M2
	KN	KN	KN	KN-m	KN-m
STATICA	0.90	19.67	11.38	26.35	0.67

7.6.1 VERIFICHE GEOTECNICHE

Me_x=

2.96

KNm

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

CODIFICA

DOCUMENTO

FOGLIO

di calcolo

COMMESSA LOTTO REV. IF1N 01 E ZZ CL FV0220 002 Α 132 di 195

Sollecitazioni di progetto SLU-STATICHE alla base della colonna

Mx =	26.35	KNm
Mx =	29.31	KNm
My =	0.67	KNm
Tx =	0.90	KN
Ty =	19.67	KN
N =	11.38	KN

Sollecitazioni di progetto SLU-SISMICHE alla base della colonna

Mx =	0.00	KNn
My =	0.00	KNn
Tx =	0.00	KN
Ty =	0.00	KN
N =	0.00	KN

VERIFICA A RIBALTAMENTO IN CONDIZIONI STATICHE

Approccio EQU:

coefficiente azioni permanenti	γg=	0.90
coefficiente azioni variabili	γs=	1.50

Sollecitazioni di progetto :

N	Ту	Mx	Tx	My
KN	KŇ	KN*m	KN	KN*m
10.24	19.67	29.31	0.9	0.67

Sollecitazioni finali sul plinto :

Ntot	Ty	$Mtot_x$	Tx	Mtot_y
KN	KŇ	KN*m	KN	KN*m
107.4	19.67	45.04	0.90	1.39

INTORNO X

Momento ribaltante	Mr =	45.04	KN m
Momento stabilizzante	Ms =	53.72	KN m

FS = Ms/Mr = verifica soddisfatta 1.19 ≥

INTORNO Y

Momento ribaltante	MR =	1.39	KN m
Momento stabilizzante	Ms =	290.09	KN m

FS = Ms/Mr = 208.70 verifica soddisfatta ≥

LOTTO

01 E ZZ

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

CODIFICA CL

DOCUMENTO

FOGLIO

REV.

Α

di calcolo

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA

IF1N

FV0220 002

133 di 195

VERIFICA A SCORRIMENTO E CAPACITA' PORTANTE IN CONDIZIONI STATICHE

Approccio 2 A1+M1+R3:

coefficiente azioni permanenti	γg=	1.00
coefficiente azioni variabili	γs=	1.50
coefficiente M1 parametri geotecnici	γφ=	1.00
coefficiente R3 scorrimento	γR=	1.10
coefficiente R3 capacità portante	γR=	2.30

Sollecitazioni di progetto :

N	Ту	Mx	Tx	My
KN	KN	KN*m	KN	KN*m
11.38	19.67	29.31	0.90	0.67

Sollecitazioni finali sul plinto :

Ntot	Ту	$Mtot_x$	Tx	Mtot_y
KN	KN	KN*m	KN	KN*m
119.38	19.67	45.04	0.90	1.39

LOTTO

01 E ZZ

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

COMMESSA

IF1N

CODIFICA

CL

DOCUMENTO FV0220 002

REV. **FOGLIO**

Α

134 di 195

Recinzioni, parapetti e strutture secondarie: relazione

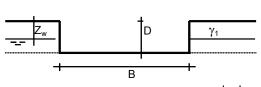
 $qlim = c'*Nc* sc*dc*ic*bc*gc + q*Nq*sq*dq*iq*bq*gq + 0,5*\gamma*B*N\gamma*s\gamma*d\gamma*i\gamma*b\gamma*g\gamma$

D = Profondità del piano di appoggio

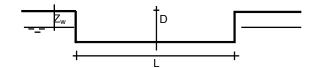
e_B = Eccentricità in direzione B (e_B = Mb/N)

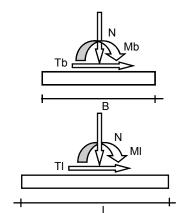
 e_L = Eccentricità in direzione L (e_L = MI/N)

(per fondazione nastriforme $e_L = 0$; $L^* = L$)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)


coefficienti parziali

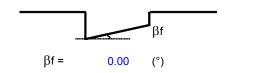
			az	ioni	proprietà del terreno	
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	
Stato limite ultimo	0		1.00	1.30	1.25	1.25
Tensioni ammissibili	0		1.00	1.00	1.00	1.00
definiti dall'utente	•		1.00	1.00	1.00	1.00

(Per fondazione nastriforme L = 100 m)

1.00

(m) 5.40 (m)

D 0.80 (m)


RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

LOTTO CODIFICA DOCUMENTO REV. FOGLIO COMMESSA IF1N 01 E ZZ CL FV0220 002 135 di 195 Α

AZIONI

	valori	Valori di	
	permanenti	temporanee	calcolo
N [kN]	119.38	0.00	119.38
Mb [kNm]	45.04	0.00	45.04
MI [kNm]	1.39	0.00	1.39
Tb [kN]	19.67	0.00	19.67
TI [kN]	0.90	0.00	0.90
H [kN]	19.69	0.00	19.69

Peso unità di volume del terreno

17.00 γ1 (kN/mc) 17.00 (kN/mc)

Valori caratteristici di resistenza del terreno

Valori caratteristici di resistenza del terreno			Valor	i di pro	getto		
c'	=	0.00	(kN/mq)	c'	=	0.00	(kN/mq)
φ'	=	30.00	(°)	φ'	=	30.00	(°)

Profondità della falda

$$Zw = 10.00$$
 (m)

$$e_B = 0.38$$
 (m) $B^* = 0.25$ (m) $e_L = 0.01$ (m) $L^* = 5.38$ (m)

q : sovraccarico alla profondità D

$$q = 13.60 (kN/mq)$$

γ: peso di volume del terreno di fondazione

γ = 17.00 (kN/mc)

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

$$Nc = (Nq - 1)/tan\phi'$$

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 22.40$$

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE Recinzioni, parapetti e strutture secondarie: relazione

LOTTO COMMESSA IF1N 01 E ZZ

CODIFICA DOCUMENTO CL FV0220 002

REV. **FOGLIO** Α

136 di 195

s_c, s_q, s_γ : <u>fattori di forma</u>

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.03$$

$$s_0 = 1 + B*tan\phi' / L*$$

$$s_q = 1.03$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{\gamma} = 0.98$$

i_c , i_q , i_γ : fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

 $m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$ 1.04

$$i_0 = (1 - H/(N + B*L* c' \cot q\phi'))^m$$

$$i_q = 0.70$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.69$$

$$i_{v} = (1 - H/(N + B*L*c' \cot g_{\phi}))^{(m+1)}$$

$$i_{v} = 0.59$$

d_c, d_q, d_v : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan φ ' (1 - sen φ ')² / B*
per D/B*> 1; d_q = 1 +(2 tan φ ' (1 - sen φ ')²) * arctan (D / B*)

$$d_q = 1.37$$

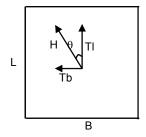
$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$$

$$d_c = 1.39$$

 $d_{v} = 1$

$$d_{y} = 1.00$$

 $\theta = arctg(Tb/TI) =$


1.96

87.38

(°) (-)

m = 1.95

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO FV0220 002

FOGLIO

137 di 195

REV.

Α

di calcolo

b_c, b_q, b_γ : <u>fattori di inclinazione base della fondazione</u>

$$b_{q} = (1 - \beta_{f} \tan \varphi')^{2}$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi')$$

$$b_{v} = b_{q}$$

$$b_{y} = 1.00$$

g_c, g_g, g_y : <u>fattori di inclinazione piano di campagna</u>

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f$$
 + β_p < 45°

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_c = 1.00$$

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 273.89$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$

$$(kN/m^2)$$

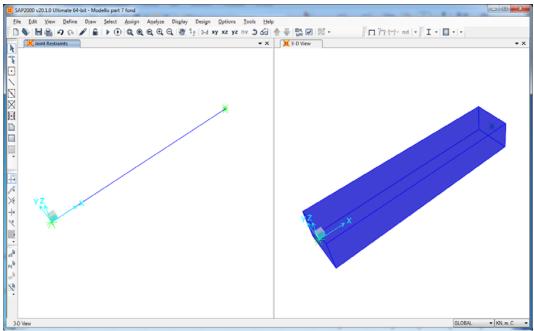
Coefficiente di sicurezza

$$Fs = q_{lim}/q =$$

verifica soddisfatta

VERIFICA A SCORRIMENTO

$$Sd = N * tan(\phi') + c' B* L*$$


Coefficiente di sicurezza allo scorrimento

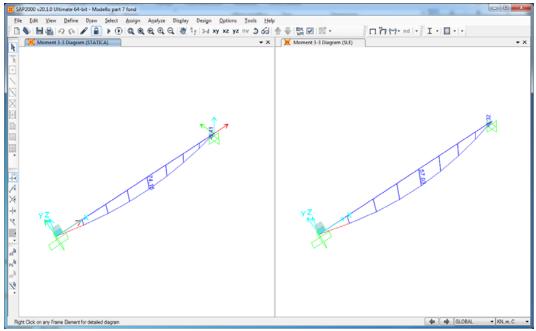
7.6.2 VERIFICA DI RESISTENZA

Le sollecitazioni agenti sul cordolo di fondazione sono state determinate con l'ausilio del codice di calcolo automatico SAP 2000 utilizzando un modello di calcolo implementato a partire da quello utilizzato per il dimensionamento e la verifica della struttura in elevazione. In particolare sono stati rimossi gli incastri al di sotto dei montanti ed è stato modellato, utilizzando un elemento frame, il cordolo di fondazione vincolato con delle molle verticali per simulare il terreno alle Winkler.

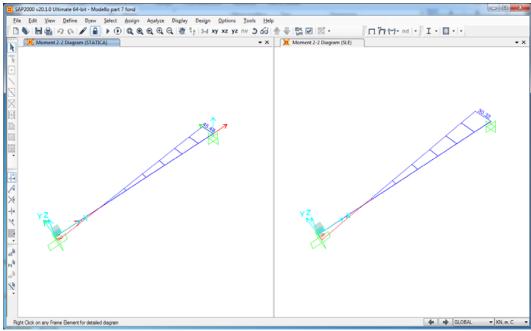
Di seguito si riportano le immagini del modello delle sollecitazioni di progetto.

Modello di calcolo

RADDOPPIO TRATTA CANCELLO – BENEVENTO


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

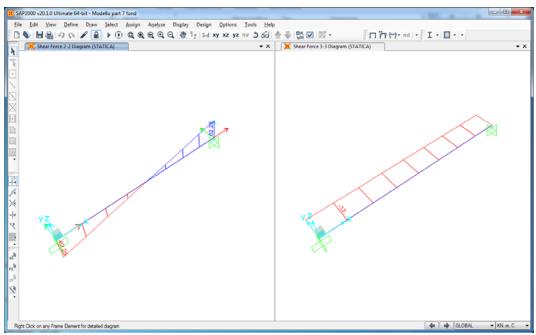

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 139 di 195

FERMATE

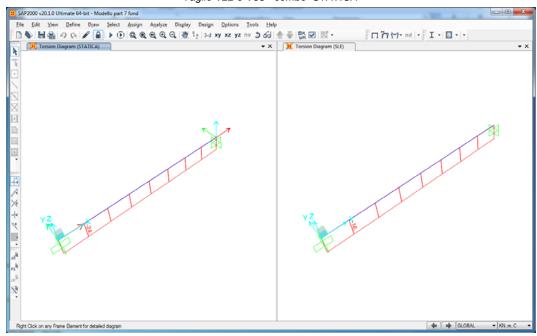
Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Momento flettente M33 - combo STATICA - combo LE

Momento flettente M22 - combo STATICA - combo SLE


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 140 di 195

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Taglio V22 e V33 - combo STATICA

Torsione - combo STATICA - combo SLE

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

COMMESSA LOTTO 01 E ZZ IF1N

CODIFICA CL

DOCUMENTO FV0220 002

RFV

Α

FOGLIO 141 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Di seguito si riportano le sollecitazioni agenti sul cordolo. Si effettua la verifica con le sollecitazioni massime

		Frame	OutputCase	Р	V2	V3	T	M2	М3
		Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
maxP	KN	1	STATICA	2.30	-62.25	-12.00	-24.00	-12.00	-0.39
minP	KN	1	STATICA	2.30	-62.25	-12.00	-24.00	-12.00	-0.39
maxV2	KN	1	STATICA	2.30	62.26	-12.00	-24.00	45.48	-0.41
minV2	KN	1	STATICA	2.30	-62.25	-12.00	-24.00	-12.00	-0.39
maxV3	KN	1	STATICA	2.30	-62.25	-12.00	-24.00	-12.00	-0.39
minV3	KN	1	STATICA	2.30	-62.25	-12.00	-24.00	-12.00	-0.39
maxT	KN-m	1	STATICA	2.30	-62.25	-12.00	-24.00	-12.00	-0.39
minT	KN-m	1	STATICA	2.30	-62.25	-12.00	-24.00	-12.00	-0.39
maxM2	KN-m	1	STATICA	2.30	62.26	-12.00	-24.00	45.48	-0.41
minM2	KN-m	1	STATICA	2.30	-62.25	-12.00	-24.00	-12.00	-0.39
maxM3	KN-m	1	STATICA	2.30	0.00	-12.00	-24.00	16.74	74.15
minM3	KN-m	1	STATICA	2.30	62.26	-12.00	-24.00	45.48	-0.41

		Frame	OutputCase	Р	V2	V3	T	M2	М3
		Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
maxP	KN	1	SLE	1.77	-47.88	-8.00	-16.00	-8.00	-0.30
minP	KN	1	SLE	1.77	-47.88	-8.00	-16.00	-8.00	-0.30
maxV2	KN	1	SLE	1.77	47.89	-8.00	-16.00	30.32	-0.32
minV2	KN	1	SLE	1.77	-47.88	-8.00	-16.00	-8.00	-0.30
maxV3	KN	1	SLE	1.77	-47.88	-8.00	-16.00	-8.00	-0.30
minV3	KN	1	SLE	1.77	-47.88	-8.00	-16.00	-8.00	-0.30
maxT	KN-m	1	SLE	1.77	-47.88	-8.00	-16.00	-8.00	-0.30
minT	KN-m	1	SLE	1.77	-47.88	-8.00	-16.00	-8.00	-0.30
maxM2	KN-m	1	SLE	1.77	47.89	-8.00	-16.00	30.32	-0.32
minM2	KN-m	1	SLE	1.77	-47.88	-8.00	-16.00	-8.00	-0.30
maxM3	KN-m	1	SLE	1.77	0.00	-8.00	-16.00	11.16	57.03
minM3	KN-m	1	SLE	1.77	47.89	-8.00	-16.00	30.32	-0.32

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: cordolo 100x80 Descrizione Sezione:

Metodo di calcolo resistenza: Tipologia sezione:

Stati Limite Ultimi Sezione generica Normativa di riferimento: N.T.C. A Sforzo Norm. costante Percorso sollecitazione: Condizioni Ambientali: Poco aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -Classe: C25/30

Resis. compr. di calcolo fcd : 141.60 daN/cm² Resis. compr. ridotta fcd': 70.80 daN/cm²

Def.unit. max resistenza ec2 : 0.0020 Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz. : Parabola-Rettangolo

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 142 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Modulo Elastico Normale Ec : 314750 daN/cm²
Coeff. di Poisson : 0.20
Resis media a trazione fctm: 26 00 daN/cm²

Resis. media a trazione fctm: 26.00 daN/cm² Coeff. Omogen. S.L.E. : 15.0

Combinazioni Rare in Esercizio (Tens.Limite):

Sc Limite : 150.00 daN/cm²
Apert.Fess.Limite : Non prevista

ACCIAIO - Tipo: B450C

4500.0 daN/cm² Resist. caratt. snervam. fyk: 5400.0 daN/cm² Resist. caratt. rottura ftk: Resist. snerv. di calcolo fyd: 3913.0 daN/cm² 4500.0 daN/cm² Resist. ultima di calcolo ftd: Deform. ultima di calcolo Epu: 0.068 Modulo Elastico Ef : Diagramma tensione-deformaz.: 2000000 daN/cm² Bilineare finito Coeff. Aderenza ist. £1*£2: 1.00 daN/cm² Coeff. Aderenza diff. £1*£2: 0.50 daN/cm² Sf Limite : 3600.0 daN/cm² Comb.Rare

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C25/30

N.vertice	Ascissa X, c	m Ordinata Y, cm
1	-50.00	0.00
2	-50.00	80.00
3	50.00	80.00
4	50.00	0.00

DATI BARRE ISOLATE

N.Barra Numero assegnato alle singole barre isolate e nei vertici dei domini
Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Diam. Diametro in mm della barra

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	-43.80	6.20	16
2	-43.80	73.80	16
3	43.80	73.80	16
4	43.80	6.20	16

DATI GENERAZIONI LINEARI DI BARRE

N.Gen. Numero assegnato alla singola generazione lineare di barre N.Barra In. Numero della barra iniziale cui si riferisce la gener. N.Barra Fin. Numero della barra finale cui si riferisce la gener.

N.Barre Numero di barre generate equidist. inserite tra la barra iniz. e fin.

Diam. Diametro in mm della singola barra generata

N.Gen.	N.Barra In.	N.Barra Fin.	N.Barre	Diam.Ø,mm
1	1	4	4	16
2	2	3	4	16

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

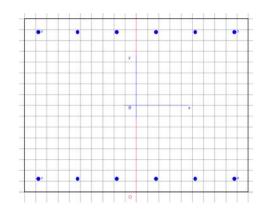
N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 143 di 195

N.Comb. N Mx My Vy Vx MT 1 0 7415 4548 6226 1200 2400

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo superiore della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb.	N	Mx	My	
1	Λ	5703	3032	

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: $5.4~\rm cm$ Interferro netto minimo barre longitudinali: $15.9~\rm cm$ Copriferro netto minimo staffe: $4.0~\rm cm$

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Ver N Sforzo normale assegnato [in daN] (positivo se di compressione) Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia Mx Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia Му N ult Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.) Mx ult Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia My ult Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My) Verifica positiva se tale rapporto risulta >=1.000

N.Comb. Ver N Mx My Nult Mx ult My ult Mis.Sic.

1 S 0 7415 4548 0 34642 21143 4.666

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xf min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xf max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FFRMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ CL FV0220 002 Α 144 di 195

N.Comb. ec max ec 3/7 Xc max Yc max ef min Xf min Yf min ef max Xf max Yf max 0.00350 -0.00794 50.0 80.0 0.00149 43.8 73.8 -0.02118 -43.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a	Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
b	Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
С	Coeff. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N.Comb. x/d C.Rid.

0.000038219 0.000285804 -0.021275298 0.142 0.700

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

Diametro staffe: 14 mm

[Passo massimo di normativa = 20.5] Passo staffe: 20.4 cmN.Bracci staffe: 2 Area staffe/m : $15.1 \text{ cm}^2/\text{m}$ [Area Staffe Minima normativa = 15.0]

Barre long. tors.: 2016 (4.0 cm²)

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO-TORSIONE

 ${\tt S}$ = comb.verificata a taglio-tors./ ${\tt N}$ = comb. non verificata Ver Vsdu Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta) Taglio resistente [daN] in assenza di staffe Vrd Vcd Taglio compressione resistente [daN] lato conglomerato Taglio trazione resistente [daN] assorbito dalle staffe DwV Tsdu Momento torcente assegnato nella combinazione corrente [daNm] Momento torcente resistente ultimo [daNm] (lato conglomerato) Trdu Misura sicur. = Vsdu/Vcd + Tsdu/Trdu. Verifica OK se Mis.Sic <=1 Mis.Sic. Larghezza minima [cm] sezione misurata parallelam. all'asse neutro bw Teta Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato Acw Coefficiente maggiorativo della resistenza a taglio per compressione Afst Area staffe/metro strettamente necessaria per taglio e torsione [cm²/m]

N.Comb. Ver Vsdu Vru Vcd Vwd Tsdu Trdu Mis.Sic. bw Teta Acw Afst S 6226 24216 188102 74901 2400 56562 0.076 100.0 26.57 1.000

RISULTATI DEL SOLO CALCOLO A TORSIONE

Area Nucl. Area del nucleo della sezione tubolare resistente [cm²] Per.Nucl. Perimetro del nucleo della sezione tubolare resistente [cm] Sp.Nucl. Spessore del nucleo della sezione tubolare resistente [cm] Area calcolata delle staffe al metro per sola torsione $[cm^2/m]$ Area dei ferri longitudinali calcolati per sola torsione [cm²] Af long. Tsdu Momento torcente assegnato nella combinazione corrente [daNm]

Trsd Momento torc. resist. reso dall'area staffe riservata alla torsione [daNm] Trld Momento torc. resist. reso da apposite barre longitudinali(compresa una

aliquota delle barre longitudinali soggette a flessione)

N.Comb.	Area Nucl.	Per.Nucl.	Sp.Nucl.	Afst	Af long.	Tsdu	Trsd	Trld
1	4494	271	22.2	0.3	3.7	2400	2400	3675

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

zione

7.0 50.0 80.0 -90 -43.8 6.2

CODIFICA CL

DOCUMENTO FV0220 002

REV.

0.000

FOGLIO **145 di 195**

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione positiva di compressione nel conglomerato [daN/cm²]
Xc max	Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sf min	Minima tensione negativa di trazione nell'acciaio [daN/cm²]
Xf min	Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Yf min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.	Area di conglomerato [cm²] in zona tesa considerata aderente alle barre
D fess.	Distanza calcolata tra le fessure espressa in mm
К3	Coeff. di normativa dipendente dalla forma del diagramma delle tensioni
Ap.fess.	Apertura calcolata delle fessure espressa in mm
N.Comb. Ver	Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.

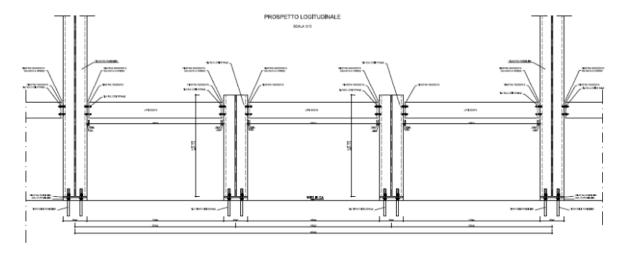
COMMESSA LOTTO

01 E ZZ

IF1N

8 STRUTTURA IN ACCIAIO PER RIVESTIMENTI

Si riporta di seguito la verifica della struttura in acciaio a sotegno dei rivestimenti in GRC ed in lastre di fibrocemento disposti sulle pareti dei corpi scala della fermate Valle Maddaloni (FV01) e Dugenta (FV02). Tale struttura viene attaccata al muro in c.a. dei corpi scala e posta tra le colonne delle pensiline di copertura.


La struttura è realizzata in acciaio S275 JR ed è costituita da:

- pilastrini verticali realizzati con profili HEB500
- trave superiore realizzata con profili UPN200

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La struttura viene discretizzata con un modello bidimensionale in elementi tipo trave.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite secondo NTC 2008. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Di seguito si riporta il dettaglio.

8.1 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

8.1.1 PESO PROPRIO DELLA STRUTTURA

Le sollecitazioni indotte dal peso della struttura sono valutate automaticamente dal programma

8.1.2 CARICO PERMANENTE

Il carico permanente è costituito dal peso del rivestimento in GRC (0.25 KN/mq) o delle lastre di fibrocemento (0.15 KN/mq) e dal peso della sottostruttura di sostegno in acciaio zincato. Complessivemente si considera un carico pari a : P= 1.50 KN/mq

Poichè i pannelli del rivestimento hanno dimensioni che vanno da 1.20x3.0 m a 1.20x5.0 m ed ogni pannello presenta 4 attacchi, due superiori alla struttura in acciao e due inferiori alla parete in c.a., si considera il caso peggiore per cui il peso che la struttura in acciaio dovrà sostenere risulta pari a $P = 1.50 \times (5/2) = 3.75 \text{ KN/m}$

ITINERARIO NAPOLI - BARI

LOTTO

01 E ZZ

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

COMMESSA

IF1N

CODIFICA CL

DOCUMENTO FV0220 002

RFV

Α

FOGLIO 147 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

AZIONE DEL VENTO 8.1.3

CALCOLO DELL'AZIONE DEL VENTO

3) Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

Zona	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]
3	27	500	0.02

$$v_b = v_{b,0}$$
 per $a_s \le a_0$
 $v_b = v_{b,0} + k_a (a_s - a_0)$ per $a_0 < a_s \le 1500$ m

p (pressione del vento [N/mq]) = $q_b \cdot c_e \cdot c_p \cdot c_d$

q_b (pressione cinetica di riferimento [N/mq])

ce (coefficiente di esposizione)

c_p (coefficiente di forma)

c_d (coefficiente dinamico)

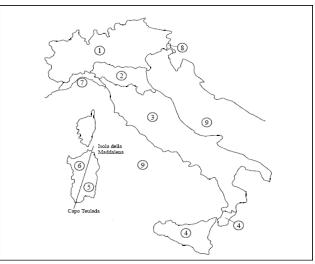


Figura 3.3.1 - Mappa delle zone in cui è suddiviso il territorio italian

Pressione cinetica di riferimento

$q_b = 1/2 \cdot \rho \cdot v_b^2$ ($\rho = 1,25 \text{ kg/mc}$)

q _b [N/mq]	455.63
-----------------------	--------

Coefficiente di forma

E' il coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

Coefficiente dinamico

Esso può essere assunto autelativamente pari ad 1 nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità.

Coefficiente di esposizione

Classe di rugosità del terreno

D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare,

ITINERARIO NAPOLI - BARI ITINERA

RADDOPPIO TRATTA CANCELLO – BENEVENTO

CL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

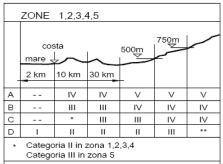
FERMATE

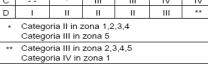
Recinzioni, parapetti e strutture secondarie: relazione

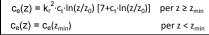
COMMESSA LOTTO IF1N 01 E ZZ

Zona

3


CODIFICA DOCUMENTO


FV0220 002


REV. **FOGLIO**

148 di 195 Α

Categoria di esposizione

$C_{e}(Z) = K_{r} \cdot C_{t} \cdot \ln(Z/Z_{0}) \left[/ + C_{t} \cdot \ln(Z/Z_{0}) \right]$	per z ≥ z _{min}
$C_e(z) = C_e(z_{min})$	$per z < z_{min}$

$c_{e}(z) = k_{r}^{2} \cdot c_{t} \cdot \ln(z/z_{0}) \left[7 + c_{t} \cdot \ln(z/z_{0})\right]$	per z ≥ z _{min}
$C_{-}(z) = C_{-}(z, \cdot)$	ner 7 < 7 .

	ZONA	6			
	co	sta	^	500m	
_	2 km	10 km	30 km		
Α		III	IV	V	V
В		Ш	III	IV	IV
С		П	III	III	IV
D	I	I	Ш	П	III

z _{altezza edif.}[m]

5

	ZONE	7,8			
	mare	cos	ata		
_	1.5 km	0.5 km	=		
Α			IV		
В			IV		
С			III		
D	I	II	*		
⋆ Categoria II in zona 8 Categoria III in zona 7					

Classe di rugosità

D

		ZONA	9
1			costa
		mare s	_/
+			
4			
4	Α		I
$\frac{1}{2}$	В	-	I
1	С		I
	D	ı	I

a_s [m]

56

Cat. Esposiz.	k _r	z ₀ [m]	z _{min} [m]	Ct
II	0.19	0.05	4	1

|--|

La pressione del vento a meno del coefficiente di forma vale: 879.05 N/mq (0.879 kN/mq)

0.80

La pressione del vento vale $q_p = 703.24$ N/mq 0.70 KN/mq

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 149 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

8.2 COMBINAZIONI DI CARICO

FERMATE

Ai fini delle verifiche degli stati limite si riportano per comodità le combinazioni delle azioni riportate nella normativa alla quale è possibile fare riferimento per la simbologia adottata:

-Combinazione fondamentale. generalmente impiegata per gli stati limite ultimi (SLU):

 $\gamma \text{ G1} \cdot \text{G1} + \gamma \text{ G2} \cdot \text{G2} + \gamma \text{ P} \cdot \text{P} + \gamma \text{ Q1} \cdot \text{Qk1} + \gamma \text{ Q2} \cdot \phi \text{ 02} \cdot \text{Qk2} + \gamma \text{ Q3} \cdot \phi \text{ 03} \cdot \text{Qk3} + \dots$

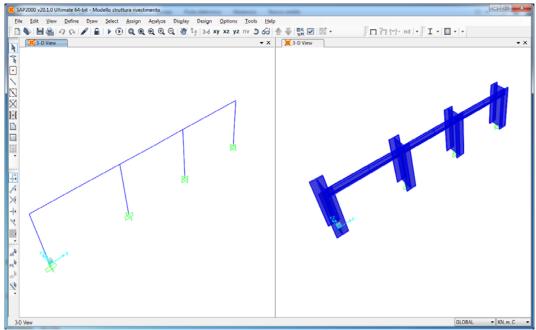
-Combinazione caratteristica (rara). generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

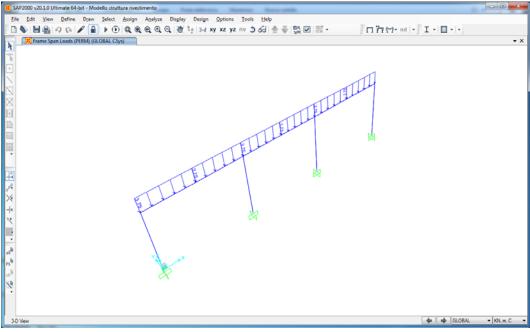
 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

Tabella 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente γ _F	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ ₆₂	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	YQi	0,0 1,5	0,0 1,5	0,0

(1)Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.


TABLE: Combination Definitions					
ComboName	CaseName	ScaleFactor			
Text	Text	Unitless			
	DEAD	1.3			
STATICA	PERM	1.5			
	VENTO Y	1.5			
	DEAD	1			
SLE	PERM	1			
	VENTO Y	1			

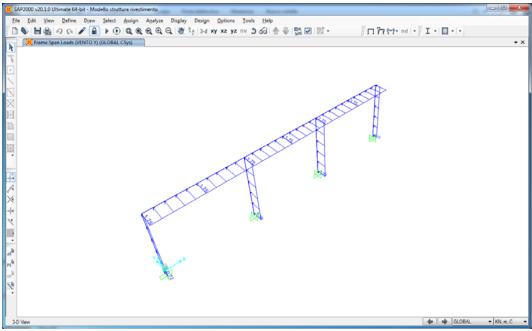

8.3 VERIFICA DI RESISTENZA:

Per la verifica della struttura si utilizza un modello di calcolo agli elementi finiti bidimensionale che rappresenta l'esatta geometria della struttura.

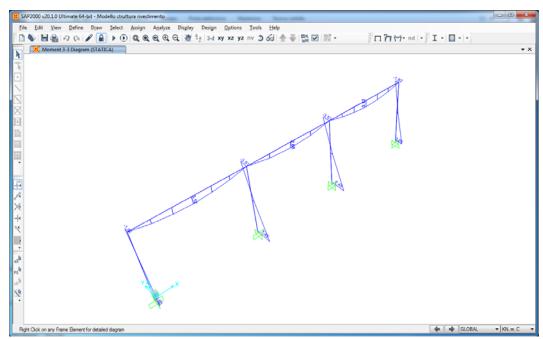
Di seguito si riportano le immagini del modello, dei carichi applicati e delle sollecitazioni di progetto.

Modello di calcolo

Carico permanente


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

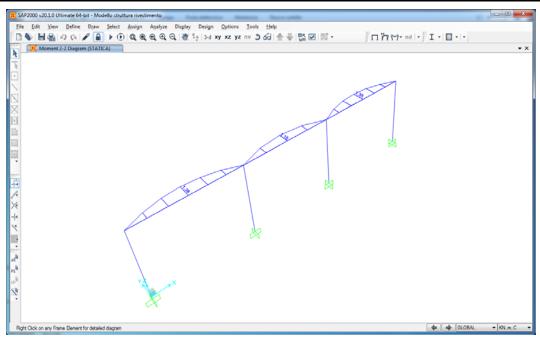

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

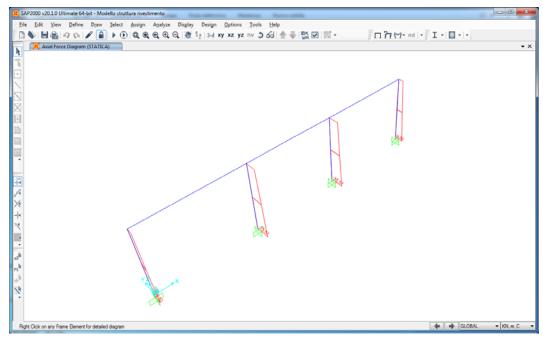
 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 151 di 195

Carico vento

Momento flettente M33 - combo STATICA


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

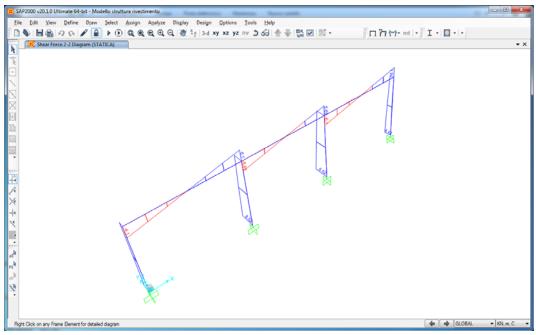

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

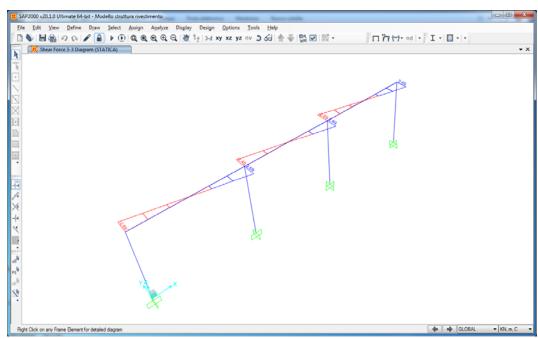
 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 152 di 195

Momento flettente M22 - combo STATICA

Sforzo assiale P - combo STATICA


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

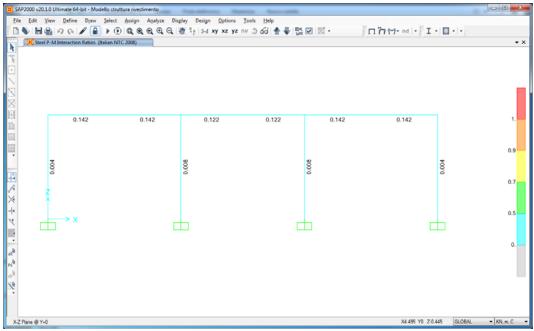

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 153 di 195

Taglio V22

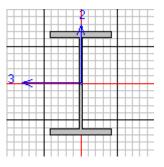
Taglio V33



RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

CODIFICA DOCUMENTO RFV **FOGLIO** 01 E ZZ 154 di 195 IF1N CL FV0220 002 Α


Recinzioni, parapetti e strutture secondarie: relazione

Verifica di resisstenza -Tasso di sfruttamento

In base ai risultati sopra evidenziati si effettua di seguito la verifica dei profili più sollecitati.

8.3.1 VERIFICA PILASTRINO HEB500


```
Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station)
Units : KN, m, C
Frame : 10
                  X Mid: 3.950
                                    Combo: STATICA
                                                            Design Type: Column
Length: 1.600
                 Y Mid: 0.000
                                    Shape: HE500B
                                                            Frame Type: Non Dissipative
    : 0.000
                  Z Mid: 0.800
                                    Class: Class 1
                                                            Rolled : Yes
Interaction=Method B
                                    MultiResponse=Envelopes
                                                                          P-Delta Done? No
GammaM0=1.05
                  GammaM1=1.05
                                    GammaM2=1.25
                                    PLLF=0.750
                  RLLF=1.000
                                                      D/C Lim=0.950
An/Ag=1.00
                  eNy=0.000
Aeff=0.024
                                    eNz=0.000
                                                                          Weff,yy=0.004
A=0.024
                  Iyy=0.001
                                    iyy=0.212
                                                      Wel,yy=0.004
It=5.480E-06
                  Izz=1.262E-04
                                    izz=0.073
                                                      Wel,zz=8.413E-04
                                                                          Weff, zz=8.413E-04
```


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 155 di 195

ui o	aicoio							
_	7 0007 06	÷	0.000	1- O E	.00	T7-1 0 00E	7	- 0 017
	7.029E-06	-	=0.000	h=0.5		Wpl,yy=0.005		z=0.017
E=2	210000000.0	fy=2	275000.0	00 fu=43	30000.000	Wpl,zz=0.001	Av,	z=0.009
STR	RESS CHECK FORC	ES &	MOMENTS					
	Location		Ned	Med,yy	Med,zz	Ved,z	Ved,y	Ted
	0.000	_	-15.572	7.451	0.000	8.520	0.000	0.000
	0.000		13.372	7.131	0.000	0.520	0.000	0.000
PMM	I DEMAND/CAPACI	TY RA	ATIO (Governing Eq	quation NTC E	q C4.2.38)		
	D/C Ratio:	0.008	8 = 0.00	3 + 0.005 +	0.000 <	0.950	OK	
			= NEd/	(Chi z NRk/G	ammaM1) + kz	v (Mv.Ed+NEd e	eNv)/(Chi L]	Γ My,Rk/GammaM1)
					<pre>JEd eNz)/(Mz,</pre>		_	C4.2.38)
			•	1122 (112,100.11	ind civa), (ina)	ror, cannarir,	(IVIC D	1 01.2.30)
AXI	AL FORCE DESIG	N						
			Ned	Nc,Rd	Nt,Rd			
			Force	Capacity	Capacity			
	Axial	_	-15.572	6259.524	6259.524			
	AXIGI		13.372	0239.324	0239.324			
			Npl,Rd	Nu,Rd	Ncr,T	Ncr, TF	An/Ag	
		63	259.524	7399.440		122337.855	1.000	
		٠.		,333.110	1223371033	122337.033	1.000	
	Cu	rve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
	Major (y-y)	a	0.210	867908.337	0.087	0.492	1.000	6259.524
	MajorB(y-y)	a	0.210	867908.337	0.087	0.492	1.000	6259.524
	Minor (z-z)		0.340	102173.537	0.254	0.541	0.981	6140.031
	MinorB(z-z)		0.340	102173.537	0.254	0.541	0.981	6140.031
	Torsional TF	b	0.340		0.232		0.989	
	Torsional if	D	0.340	122337.855	0.232	0.532	0.989	6188.890
MOM	MENT DESIGN							
			Med	Med, span	Mm, Ed	Meq,Ed		
			Moment	Moment	Moment	Moment		
	Major (y-y)		7.451	7.451	7.451	7.451		
	Major (y-y) Minor (z-z)							
	Minor (z-z)		0.000	0.000	0.000	0.000		
			Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
		C.	apacity	Capacity		Capacity		
	Modern (rr rr)					1261.071		
	Major (y-y)		261.071	1261.071	1261.071	1201.071		
	Minor (z-z)	-	338.381	338.381	338.381			
	Cu	rve 1	AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr
	LTB	b	0.340	0.151	0.466	1.000	2.312	57881.690
	шъ	D	0.340	0.131	0.400	1.000	2.312	37001.090
			kyy	kyz	kzy	kzz		
	Factors		0.400	0.600	0.854	1.000		
	1400015		0.100	0.000	0.001	1.000		
SHE	AR DESIGN							
			Ved	Vc,Rd	Stress	Status	Ted	
			Force	Capacity	Ratio	Check	Torsion	
	Major (z)		8.520	1363.618	0.006	OK	0.000	
	Minor (y)		0.000	2640.441	0.000	OK	0.000	
			Vpl,Rd	Eta	LambdabarW			
	Reduction	1.1	363.618	1.000	0.349			
	REGUCCION	1.	.UIO	1.000	0.349			

MOMENT DESIGN

Major (y-y)

Med

Moment

3.124

Med.span

Moment

3.124

Mm.Ed

Moment

3.124

Meg, Ed

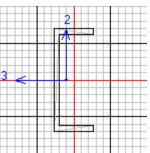
Moment

3.124

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 156 di 195

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

8.3.2 VERIFICA TRAVE UPN 200

ITINERA

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame: 16 X Mid: 4.463 Combo: STATICA Design Type: Beam Y Mid: 0.000 Frame Type: Non Dissipative Shape: UPN200 Length: 1.025 Loc : 1.025 Z Mid: 1.600 Class: Class 1 Rolled : Yes Interaction=Method B MultiResponse=Envelopes P-Delta Done? No GammaM0=1.05 GammaM1=1.05 GammaM2=1.25 RLLF=1.000 PLLF=0.750 An/Ag=1.00 D/C Lim=0.950 Aeff=0.003 eNv = 0.000eNz = 0.000A=0.003Iyy=1.911E-05 iyy=0.077Wel,yy=1.911E-04 Weff,yy=1.911E-04 It=0.000 Izz=1.483E-06 izz=0.021 Wel,zz=2.700E-05Weff,zz=2.700E-051w = 0.000Iyz=0.000 h=0.200 Wpl,yy=2.335E-04Av, y=0.002E=210000000.0 fy=275000.000 fu=430000.000 Wpl,zz=5.804E-05 Av, z=0.002STRESS CHECK FORCES & MOMENTS Location Ned Med, yy Med,zz Ved,z Ved.v Ted 1.025 0.000 3.124 1.379 0.000 0.000 2.308E-05 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.1(7)) D/C Ratio: 0.142 = 0.000 + 0.051 + 0.091 < 0.950 OK = (NEd/NRd) + (My,Ed/My,Rd) + (Mz,Ed/Mz,Rd) (EC3 6.2.1(7)) AXIAL FORCE DESIGN Nc,Rd Nt,Rd Ned Force Capacity Capacity Axial 0.000 843.071 843.071 Npl,Rd Nu . Rd Ncr.T Ncr.TF An/Aq 843.071 996.602 3537.321 3159.669 1.000 Curve Alpha Ncr LambdaBar Phi Chi Nb,Rd 9424.706 Major (y-y) 0.490 0.306 0.573 0.946 797.413 C MajorB(y-y) 797.413 0.490 9424.706 0.306 0.573 0.946 C Minor (z-z)C 0.490 2925.555 0.550 0.737 0.815 686.738 MinorB(z-z) C 0.490 2925.555 0.550 0.737 0.815 686.738 Torsional TF 0.490 3159.669 0.529 0.721 0.826 696.765

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
PERMATE	IF1N	01 E ZZ	CL	FV0220 002	Α	157 di 195
Recinzioni, parapetti e strutture secondarie: relazione	ĺ					

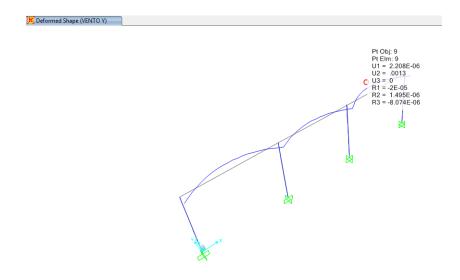
calcolo						
Minor (z-z)	1.379	1.379	1.379	1.379		
	Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
	Capacity	Capacity	Capacity	Capacity		
Major (y-y)	61.155	61.155	61.155	53.454		
Minor (z-z)	15.201	15.201	15.201			
Cu:	rve AlphaLT I	LambdaBarLT	PhiLT	ChiLT	psi	Mcı
LTB	d 0.760	0.405	0.660	0.874	1.331	392.16
	kyy	kyz	kzy	kzz		
Factors	0.778	0.467	1.000	0.778		
EAR DESIGN						
	Ved	Vc,Rd	Stress	Status	Ted	
	Force	Capacity	Ratio	Check	Torsion	
Major (z)	0.000	260.687	0.000	OK	2.308E-05	
Minor (y)	0.000	259.251	0.000	OK	2.308E-05	
		Eta	LambdabarW			
	Vpl,Rd	ьtа	Lallibuabarw			

CONNECTION SHEAR FORCES FOR BEAMS

	VMajor	VMajor
	Left	Right
Major (V2)	6.096	0.000

8.4 VERIFICA DI DEFORMABILITÀ

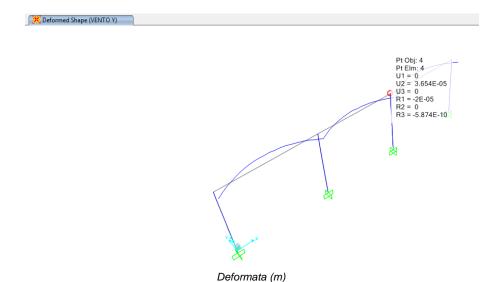
Per la verifica a deformazione della trave UPN200 si considera quanto riportato sulla normativa NTC 2008 Tab 4.2.X_Solai in generale :


- δ max/L≤1/250 : spostamento dovuto al carico totale (G+Q)
- δ 2/L≤1/300 : spostamento dovuto al carichi variabili (Q)

Considerando una lude dell'UPN200 pari a L = 2.05 m $\Rightarrow \delta$ max = 8.2 mm e δ 2 = 6.83 mm

Deformata carichi totali (m)

Come si può vedere la deformata elastica presenta un valore di 3.2 mm < 8.2 mm per cui la verifica risulta soddisfatta


Deformata carichi variabili (m)

Come si può vedere la deformata elastica presenta un valore di 1.3 mm < 6.8 mm per cui la verifica risulta soddisfatta

Per la verifica a deformazione del pilastrino HEB500 si ipotizza la struttura come una parete verticale e si considerano i limiti agli spostamenti orizzontali sotto l'azione del vento riportati nella tabella 4.2.XI al capitolo 4.2.4.2.2 dell' NTC2008 che fissa un valore limite pari a Δ_{lim} = 2L/300.

Per L = 1.60 m Δ_{lim} = 10.66 mm

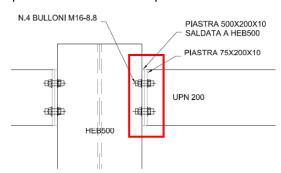
Come si può vedere lo spostamento orizzontale massimo sotto l'azione del vento $\,$ presenta un valore di 0.0365 mm $\,$ $\,$ $\,$ Δ_{lim} per cui la verifica risulta soddisfatta

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.


 IF1N
 01 E ZZ
 CL
 FV0220 002
 A

002 A 160 di 195

FOGLIO

8.5 VERIFICA UNIONE BULLONATA UPN200-HEB500

La trave UPN200 viene giuntata al profilo HEB500 tramite quattro bulloni M16 classe 8.8

Dalla modellazione si desume che le sollecitazioni massime di progetto sul'unione valgono:

$$V2 = 6.10 KN$$

V3 = 2.69 KN

La forza di taglio risultante è pari a :
$$V = \sqrt{(V2)^2 + (V3)^2} = 6.67 \ KN$$

La forza di taglio sul singolo bullone vale :
$$V_b = \frac{V}{n} = \frac{6.67}{2} = 3.335 \, KN$$

Sollec	itazioni
F _{v,Ed} (N)	3335
F _{t,Ed} (N)	0

Bul	loni
Classe	8.8
d (mm)	16
γм2	1.25
f _{yb} (N/mm ²)	640
f _{tb} (N/mm ²)	800
A _n (mm ²)	201
A _{res} (mm ²)	157

Piastra di co	Piastra di collegamento	
Acciaio	S275	
t (mm)	10	
γм2	1.25	
d ₀ (mm)	17	
f _{tk} (N/mm ²)	430	

Caratteri	Caratteristiche resistenti bulloni		
Classe	f _{yb} (N/mm ²)	f _{tb} (N/mm ²)	
4.6	240	400	
5.6	300	500	
6.8	480	600	
8.8	640	800	
10.9	900	1000	

Caratterist	Caratteristiche geometriche bulloni		
d (mm)	$A_n (mm^2)$	A _{res} (mm ²)	
12	113	84	
14	153	115	
16	201	157	
18	254	192	
20	314	245	
22	380	303	
24	452	353	
27	572	459	
30	706	561	

Caratteristiche piastra		
Acciaio	f _{tk} (N/mm ²)	
S235	360	
S275	430	
S355	510	
S450	550	
S235 N/NL	390	
S355 N/NL	490	
S420 N/NL	520	
S460 N/NL	540	
S235 M/ML	370	
S355 M/ML	470	
S420 M/ML	520	
S460 M/ML	540	
S235 W	360	
S355 W	510	

Verifica di resistenza con formula 4.2.65

$$\frac{F_{v,Ed}}{F_{v,Rd}} + \frac{F_{t,Ed}}{1.4F_{t,Rd}} \leq 1 \text{ con } \quad \frac{F_{t,Ed}}{F_{t,Rd}} \leq 1$$

F _{v,Rd} (N)	60288
F _{t Rd} (N)	90432

$F_{v,Ed}$ $F_{t,Ed}$	0.055
$\overline{F_{v,Rd}}$ $\overline{1.4F_{t,Rd}}$	0.033

$\frac{F_{t,Ed}}{F_{t,Rd}}$	0.000

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 161 di 195

Verifica a rifollamento con formula 4.2.61

$$\frac{F_{v,Ed}}{F_{b,Rd}} \leq 1 \text{ con } F_{b,Rd} = \frac{k \cdot \alpha \cdot f_{tk} \cdot d \cdot t}{\gamma_{M2}}$$

Tipo di unione			
 Esposta a fenomeni corrosivi o ambientali 			
Non esposta a fenomeni corrosivi o ambientali			
0	Elementi resistenti alla corrosione (EN10025-5)		

e ₁ (mm)	23.5
e ₂ (mm)	50
p ₁ (mm)	51.5
p ₂ (mm)	100

20.4	≤	e_1	≤	80
20.4	≤	e_2	≤	80
37.4	≤	p_1	≤	140
40.8	≤	p_2	≤	140

 α = min {e_1/(3d_0) ; f_tb/f_tk ; 1} per bulloni di bordo // al carico applicato

 α = min {p₁/(3d₀)-0,25 ; f_{tb}/f_{tk} ; 1} per bulloni interni // al carico applicato

 $k = min \{2.8e_2/d_0-1.7; 2.5\}$ per bulloni di bordo _|_ al carico applicato

 $k = min \{1,4p_2/d_0-1,7; 2,5\}$ per bulloni interni _|_ al carico applicato

α _{MIN}	0.461
k _{MIN}	2.500

$F_{b,Rd}(N)$	63404

F _{v, Ed}	
F _{b, Rd}	0.053

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO CODIFICA IF1N 01 E ZZ CL

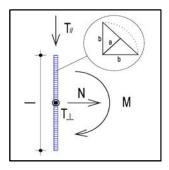
DOCUMENTO FV0220 002

REV. **FOGLIO**

Α

162 di 195

8.6 VERIFICA UNIONE SALDATA PIASTRA500X200X10 - HEB500


La piastra 500x200x10 viene saldata a parziale penetrazione sulle ali del profilo HEB500 in officina. In favore di sicurezza si effettua la verifica della saldatura come se fosse a cordone d'angolo. Dalla modellazione si desume che le sollecitazioni massime di progetto sul'unione saldata valgono:

 $V2 = T_{//} = 6.10 \text{ KN}$

 $V3 = T_{\perp} = 2.69 \text{ KN}$

Sollecitazioni		
N (N) 0		
T _{//} (N)	6100	
T_ _ (N)	2690	
M (Nmm)	0	

Dati saldatura		
Acciaio S275		
b (mm)	7	
I (mm)	200	
n° cordoni	1	
γм2	1.25	
a (mm)	4.95	

f _{yk} (N/mm ²)	275
f _{tk} (N/mm ²)	430

Acciaio	$f_{yk}(N/mm^2)$	f _{tk} (N/mm ²)	β_{w}	β_1	β_2
S235	235	360	0.8	0.85	1
S275	275	430	0.85	0.7	0.85
S355	355	510	0.9	0.7	0.85
S450	440	550			
S235 N/NL	275	390			
S355 N/NL	355	490	0.9		
S420 N/NL	420	520	1	0.62	0.75
S460 N/NL	460	540	1	0.62	0.75
S235 M/ML	275	370			
S355 M/ML	355	470	0.9		
S420 M/ML	420	520	1		
S460 M/ML	460	540	1		
S235 W	235	360	0.8		
S355 W	355	510	0.9		

Verifica con formula 4.2.76

 $\mathsf{F}_{\mathsf{w},\mathsf{Ed}}/\mathsf{F}_{\mathsf{w},\mathsf{Rd}} \leq 1 \ \mathsf{con} \ \mathsf{F}_{\mathsf{w},\mathsf{Rd}} = a {\cdot} \mathsf{f}_{\mathsf{tk}}/(\sqrt{3}{\cdot}\beta{\cdot}\gamma_{\mathsf{M2}})$

β_{w}	0.85
f _{vw,d} (N/mm ²)	233.657
F _{T//} (N/mm)	30.500
F _{T_l_} (N/mm)	13.450

F _{T TOT} (N/mm)	33.334
F _{_l_ N} (N/mm)	0.000
F _{_L M} (N/mm)	0.000
F_L_TOT (N/mm)	0.000

F _{w,Ed} (N/mm)	33.334
F _{w,Rd} (N/mm)	1156.543

S/R	OK
0.029	OK

Verifica con formula 4.2.78 e 4.2.79

 $\sqrt{(n_{\perp}^2 + t_{\perp}^2 + t_{\parallel}^2)} \le \beta_1 f_{yk}$

 $|n_{\perp}| + |t_{\perp}| \le \beta_2.f_{vk}$

11-11 1-11 - 1-2-yk	
β_1	0.7
β_2	0.85
t _{//} (N/mm ²)	6.1619
t (N/mm²)	2.7173

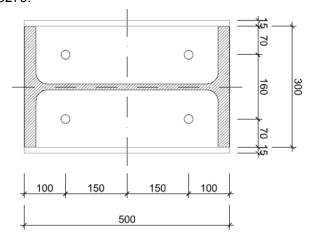
β_2	0.85	$n_{\perp L N} (N/mm^2)$	0.000
t _{//} (N/mm ²)	6.1619	n _{_l_M} (N/mm ²)	0.000
t_L (N/mm²)	2.7173	$n_{\perp} (N/mm^2)$	0.000

$\sqrt{(n_{\perp}^2 + t_{\perp}^2 + t_{//}^2)}$	6.7345		
$\beta_1.f_{yk}$	192.5000		

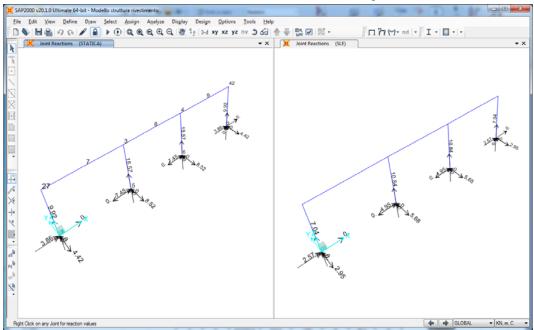
n + t	2.7173
$\beta_2.f_{vk}$	233.7500

S/R	OK
0.03	OK .

S/R	OK
0.01	UK



8.7 VERIFICA UNIONE SALDATA PIASTRA75X200X10 - UPN200


La piastra 75x200x10 viene saldata a parziale penetrazione in officina su tutto il perimetro.al profilo UPN. Poichè le sollecitazioi massime di progetto sul'unione saldata sono le stesse della precedente unione le altezze delle due piastre sono uguali la verifica si ritiene automaticamente soddisfatta.

8.8 VERIFICA DELLA PIASTRA DI BASE

La piastra di fondazione ha una dimensione di 500x300 mm spessore 20 mm, è dotata di quattro tasselli chimici M20 ed è realizzata in acciaio S275.

Dal modello di calcolo della struttura si ricavano le sollecitazioni massime agenti alla base:

Reazioni alla base

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 164 di 195

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Sollecitazioni massime SLU STATICA

NODO	F1	F2	F3	M1	M2	
5	KN	KN KN KN-m		KN-m	KN-m	
	0.00	-8.52	15.57	7.45	0.00	

Sollecitazioni massime SLE

NODO	F1	F2	F3	M1	M2	
5	KN	KN	KN	KN-m	KN-m	
	0.00	-5.68	10.84	4.95	0.00	

8.8.1 VERIFICA SEZIONE DI CONTATTO PIASTRA

Si effettua la verifica della sezione di contatto in campo elastico considerando le sollecitazioni della combinazione

DATI GENERALI SEZIONE IN C.A.

NOME SEZIONE: piastra strutt.rivest

Descrizione Sezione:

Metodo di calcolo resistenza:

Tipologia sezione:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

Posizione sezione nell'asta:

Tensioni Ammissibili

Sezione generica

Assi x,y principali d'inerzia

Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO	-	Cla	Classe:		30
					_

Tensione Normale Ammiss. Sc : 97.50 daN/cm²
Tensione Normale media Amm. : 68.25 daN/cm²
Tensione Tangenz.Amm. TauC0 : 6.00 daN/cm²
Tensione Tangenz.Amm. TauC1 : 18.28 daN/cm²
Coeff. N di omogeneizzazione : 15.0
Modulo Elastico Normale Ec : 314750 daN/cm²
Coeff. di Poisson : 0.20
Resis. media a trazione fctm: 26.00 daN/cm²

ACCIAIO - Tipo: B450C

Resist. caratt. rottura ftk: 5400.0 daN/cm²
Tensione Ammissibile Sf : 2550.0 daN/cm²
Modulo Elastico Ef : 2000000 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C25/30

N.vertice	Ascissa X, c	m Ordinata Y, cm
1	-15.00	0.00
2	-15.00	50.00
3	15.00	50.00
4	15.00	0.00

DATI BARRE ISOLATE

N.Barra Numero assegnato alle singole barre isolate e nei vertici dei domini Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O

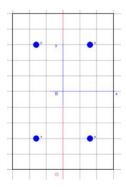
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 165 di 195


Diam. Diametro in mm della barra

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	-8.00	10.00	17.66
2	-8.00	40.00	17.66
3	8.00	40.00	17.66
4	8.00	10.00	17.66

TENS.AMMISS. - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb.	N	Mx	My	Vy	Vx
1	1084	495	0	0	0

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 6.1 cm Interferro netto minimo barre longitudinali: 14.2 cm

METODO DELLE TENSIONI AMMISSIBILI - MASSIME E MINIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione [in daN/cm²] nel conglomerato (positiva se di compress.)
Xc max	Ascissa [in cm] corrispond. al punto di massima compressione
Yc max	Ordinata [in cm] corrispond. al punto di massima compressione
Sc min	Minima tensione [in daN/cm²] nel conglomerato (positiva se di compress.)
Xc min	Ascissa [in cm] corrispond. al punto di minima compressione
Yc min	Ordinata [in cm] corrispond. al punto di minima compressione
Sc med	Tensione media [in daN/cm²] nel congl. in presenza di sf. normale
Sf min	Minima tensione [in daN/cm²] nell'acciaio (negativa se di trazione)
Yf min	Ordinata [in cm] corrispond. alla barra di minima tensione

N.Comb. Ver Sc max Xcmax Ycmax Sc min Xcmin Ycmin Sc med Sf min Xfmin Yfmin

1 S 7.3 15.0 50.0 0.0 0.0 0.0 0.7 -170 8.0 10.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a	Coeff.	a nell'eq.	dell'asse neutro	aX+bY+c=0 nel	rif. X,Y,O gen.
b	Coeff.	b nell'eq.	dell'asse neutro	aX+bY+c=0 nel	rif. X,Y,O gen.
C	Coeff.	c nell'eq.	dell'asse neutro	aX+bY+c=0 nel	rif. X,Y,O gen.

N.Comb.	a	b	C
1	0.000000000	0.000003501	-0.000120129

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL FV0220 002 A 166 di 195

Recinzioni, parapetti e strutture secondarie: relazione

8.8.2 VERIFICA ANCORAGGIO PIASTRA

Il fissaggio della piastra alla struttura sottostante avviene tramite quattro barre filettate M20 in acciaio classe 5.8 con ancorante chimico ad iniezione tipo HILTY HIT-RE 500 V3 o similare.

La verifica viene effettuata considerando le sollecitazione massime alla base allo SLU nella combinazione di calcolo STATICA utilizzando il codice di calcolo PROFIS Anchor 2.7.8 prodotto dalla HILTI di cui se ne riporta il report di verifica.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO

01 E ZZ

CODIFICA

DOCUMENTO

REV.

FOGLIO

FV0220 002 A 167 di 195

www.hilti.it

Impresa: Progettista: Indirizzo: Telefono I Fax:

E-mail:

Pagina: Progetto: Contratto N*:

IF1N

Contratto N°: Data:

12/09/2018

Commenti del progettista:

1 Dati da inserire

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M20

Hilti Seismic set o altro sistema per il riempimento dello spazio aulare tra piastra e anco.

Profondità di posa effettiva: het,act = 200 mm (het,limit = - mm)

 Materiale:
 5.8

 Certificazione No.:
 ETA 16/0143

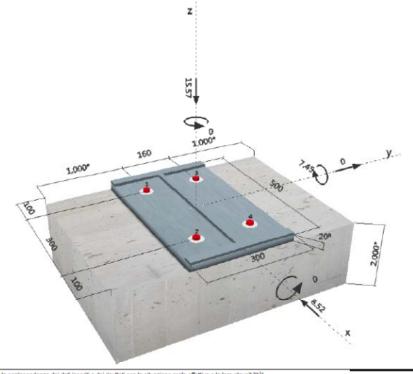
 Emesso I Valido:
 12/07/2017 |

Prova: Metodo di calcolo SOFA + fib (07/2011) – dopo prove ETAG BOND

Fissaggio distanziato: e_b = 0 mm (Senza distanziamento); t = 20 mm

Piastra d'ancoraggio: I_x x I_y x t = 500 mm x 300 mm x 20 mm; (Spessore della piastra raccomandato: non calcolato

Profilo: IPB / HEB; (L x W x T x FT) = 500 mm x 300 mm x 15 mm x 28 mm


Materiale base: non fessurato calcestruzzo, C25/30, f_{0,091} = 25.00 N/mm²; h = 2,000 mm, Temp. Breve/Lungo: 0/0 °C

Installazione: Foro eseguito con perforatore, Condizioni di installazione: asciutto

Armatura: interasse delle armature < 150 mm (qualunque Ø) o < 100 mm (Ø <= 10 mm)

senza armatura di bordo longitudinale

Geometria [mm] & Carichi [kN, kNm]

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 168 di 195

 www.hilti.it
 Profis Anchor 2.7.8

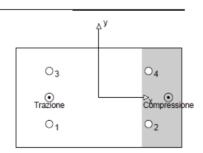
 Impresa:
 Pagina:
 2

 Progettista:
 Progetto:
 Indirizzo:

 Indirizzo:
 Contratto N°:
 12/09/2018

 E-mail:
 Data:
 12/09/2018

2 Condizione di carico/Carichi risultanti sull'ancorante


Condizione di carico: Carichi di progetto

Carichi sull'ancorante [kN] Trazione: (+ Trazione, - Compressione)

Ancorante	Trazione	Taglio	Taglio in dir. x	Taglio in dir. y
1	5.801	2.130	-2.130	0.000
2	0.000	2.130	-2.130	0.000
3	5.801	2.130	-2.130	0.000
4	0.000	2.130	-2.130	0.000

Compressione max. nel calcestruzzo:
Max. sforzo di compressione nel calcestruzzo:
risultante delle forze di trazione nel (x/y)=(-150/0):
risultante delle forze di compressione (x/y)=(210/0):

0.05 [‰] 1.51 [N/mm²] 11.602 [kN] 27.172 [kN]

3 Carico di trazione SOFA (fib (07/2011), paragrafo 16.2.1)

	Carico [kN]	Resistenza [kN]	Utilizzo β _N [%]	Stato
Rottura dell'acciaio*	5.801	81.667	8	OK
Rottura combinata conica del calcestruzzo e per sfilamento**	11.602	89.561	13	OK
Rottura conica del calcestruzzo**	11.602	70.061	17	OK
Fessurazione**	11.602	117.727	10	OK

*ancorante più sollecitato **gruppo di ancoranti (ancoranti sollecitati)

3.1 Rottura dell'acciaio

	N _{Rk,s} [kN]	YM,s	N _{Rd,s} [kN]	N _{Sd} [kN]	
_	122.500	1.500	81.667	5.801	

3.2 Rottura combinata conica del calcestruzzo e per sfilamento

A _{p,N} [mm ²]	A _{p,N} [mm ²]	₩ A.Np	τ _{Rk,ucr,25} [N/mm²]	s _{cr,Np} [mm]	c _{cr,Np} [mm]	c _{min} [mm]
277,823	320,000	0.868	15.00	566	283	100
Ψο	τ _{Rk,ucr} [N/mm²]	max τ _{Rk,ucr} [N/mm²]	Ψ ⁰ g.Np	Ψg,Np		
1.018	15.28	12.38	1.000	1.000		
e _{c1,N} [mm]	Ψ ec1,Np	e _{c2,N} [mm]	Ψ ec2,Np	Ψ s,Np	Ψ re,Np	
0	1.000	0	1.000	0.806	1.000	
N _{Rk,p} [kN]	N _{Rk,p} [kN]	γм,ρ	N _{Rd,p} [kN]	N _{Sd} [kN]		
191.964	134.341	1.500	89.561	11.602		

3.3 Rottura conica del calcestruzzo

A _{c,N} [mm ²]	$A_{c,N}^{0}$ [mm ²]	VAN	c _{cr,N} [mm]	s _{cr,N} [mm]	
304,000	360,000	0.844	300	600	
e _{c1,N} [mm]	Ψ ec1,N	e _{c2,N} [mm]	Ψ ec2,N	Ψs,N	Ψ re,N
0	1.000	0	1.000	0.800	1.000
k ₁	N ⁰ _{Rk,c} [kN]	YMLo	N _{Rd,c} [kN]	N _{sd} [kN]	
11.000	155.563	1.500	70.061	11.602	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 169 di 195

 www.hilti.it
 Profis Anchor 2.7.8

 Impresa:
 Pagina:
 3

 Progettista:
 Progetto:
 Contratto N°:

 Indirazzo:
 Contratto N°:
 12/09/2018

 E-mail:
 3.4 Fessurazione
 3.4 Fessurazione

•	.4 i essurazione							
	A _{c,N} [mm ²]	A ⁰ _{0,N} [mm ²]	ΨΑΝ	c _{cr,sp} [mm]	s _{cr,sp} [mm]	Ψ h,sp		
	168,000	160,000	1.050	200	400	1.272	_	
	e _{c1,N} [mm]	Ψ ec1,N	e _{c2,N} [mm]	Ψ ec2,N	Ψs,N	Ψ re,N	k ₁	
	0	1.000	0	1.000	0.850	1.000	11.000	
	N _{Rk,c} [kN]	Yм,sp	N _{Rd,sp} [kN]	N _{Sd} [kN]				
	155.563	1.500	117.727	11.602				

www.hilti.it
Impresa: Pagina:

Progettisa: Progetto:
Indirizzo: Contratto N*:
Telefono I Fax: Data:

Telefono | Fax: | Data: 12/09/2018 E-mail:

4 Carico di taglio SOFA (fib (07/2011), paragrafo 16.2.2)

	Carico [kN]	Resistenza [kN]	Utilizzo β _V [%]	Stato
Rottura dell'acciaio (senza braccio di leva)*	2.130	49.000	5	OK
Rottura dell'acciaio (con braccio di leva)*	N/A	N/A	N/A	N/A
Rottura per pryout**	8.520	175.153	5	OK
Rottura del bordo del calcestruzzo in direzione x-**	4.260	27.510	16	OK

*ancorante più sollecitato **gruppo di ancoranti (ancoranti specifici)

4.1 Rottura dell'acciaio (senza braccio di leva)

	V _{Rk,s} [kN]	YM,s	V _{Rd,s} [kN]	V _{Sd} [kN]	
_	61.250	1.250	49.000	2.130	

4.2 Rottura per pryout (cono del calcestruzzo)

	A _{c,N} [mm ²]	A _{0,N} [mm ²]	V AN	c _{cr,N} [mm]	s _{cr,N} [mm]	k ₄
	380,000	360,000	1.056	300	600	2.000
	e _{c1,V} [mm]	Ψ ec1,N	e _{c2,V} [mm]	Ψ ec2,N	Ψs,N	₩ re,N
_	0	1.000	0	1.000	0.800	1.000
	N _{Rk,c} [kN]	Ум.с.р	V _{Rd,cp} [kN]	V _{Sd} [kN]		
_	155 563	1 500	175 153	8 520		

4.3 Rottura del bordo del calcestruzzo in direzione x-

I _f [mm]	d _{nom} [mm]	k _V	α	β		
200	20.0	2.400	0.141	0.072		
c ₁ [mm]	A _{c,V} [mm ²]	A ⁰ _{c.V} [mm ²]	ΨAV			
100	69,000	45,000	1.533			
Ψ s,V	Ψh,V	ΨαV	e _{c,V} [mm]	Ψ ec,V	Ψ re,V	Ψ 90°,V
Ψ s,v 1.000	Ψ h,V 1.000	Ψ _{α.} ν 1.000	e _{c,V} [mm]	Ψ ec,v 1.000	Ψ re,V 1.000	Ψ _{90*,V} 2.000

5 Carichi combinati di trazione e di taglio SOFA (fib (07/2011), paragrafo 10.3)

	β _N	β_V	α	Utilizzo β _{N,V} [%]	Stato
acciaio	0.071	0.043	2.000	1	OK
Calcestruzzo	0.166	0.155	1.500	13	ОК

 $\beta_N^{\alpha} + \beta_V^{\alpha} \le 1$

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 170 di 195

 www.hilti.it
 Profis Anchor 2.7.8

 Impresa:
 Pagina:
 5

 Progettista:
 Progetto:
 Indirizzo:

 Indirizzo:
 Contratto N*:
 12/09/2018

 E-mail:
 Data:
 12/09/2018

6 Spostamenti (ancorante più sollecitato)

Carichi a breve termine:

 $N_{\text{DK}} = 4.297 \, [\text{RN}]$ $s_{\text{N}} = 0.051 \, [\text{mm}]$ $V_{\text{DK}} = 3.156 \, [\text{RN}]$ $s_{\text{V}} = 0.189 \, [\text{mm}]$ $s_{\text{NV}} = 0.196 \, [\text{mm}]$

Commenti: Gli spostamenti a trazione risultano validi con metà del valore della coppia di serraggio richiesta per non fessurato calcestruzzo! Gli spostamenti a taglio sono validi trascurando l'attrito tra il calcestruzzo e la piastra d'ancoraggio! Lo spazio derivante dal foro eseguito con perforatore e dalle tolleranze dei fori non viene considerato in questo calcolo!

Gli spostamenti ammissibili dell'ancorante dipendono dalla struttura fissata e devono essere definiti dal progettista!

7 Attenzione

- Fenomeni di ridistribuzione dei carichi sugli ancoranti derivanti da eventuali deformazioni elastiche della piastra non sono presi in considerazione. Si assume una piastra di ancoraggio sufficientemente rigida in modo che non risulti deformabile sotto l'azione di carichi!
- La lista accessori inclusa in questo report di calcolo è da ritenersi solo come informativa dell'utente. In ogni caso, le istruzioni d'uso fomite
 con il prodotto dovranno essere rispettate per garantire una corretta installazione.
- L'adesione chimica caratteristica dipende dalle temperature di breve e di lungo periodo.
- Contattare Hilti per verificare la fornitura delle barre HIT-V.
- Il metodo Fib (07/2011) assume l'assenza di spazi anulari tra gli ancoranti e la piastra di ancoraggio. Questo può essere ottenuto mediante il riempimento con resina di sufficiente resistenza a compressione (p.e. usando il sistema Hilti Seismic/Filling set) o attraverso attri mezzi idonei.
- · L'utente è responsabile della conformità alle norme correnti (e.g. EC3)
- · La verifica del trasferimento dei carichi nel materiale base è necessaria in accordo a fib (07/2011)!

L'ancoraggio risulta verificato!

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO

01 E ZZ

IF1N

CODIFICA CL

DOCUMENTO FV0220 002

RFV **FOGLIO**

171 di 195

www.hilti.it Pagina: Progetto: Contratto N°: Data: Impresa: Progettista:

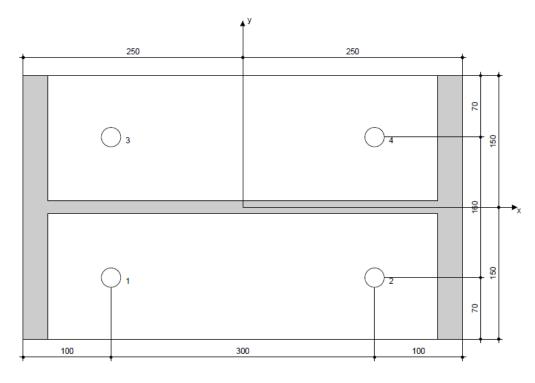
Indirizzo: Telefono I Fax:

12/09/2018 E-mail:

8 Dati relativi all'installazione

Piastra d'ancoraggio, acciaio: -Profilo: IPB / HEB; 500 x 300 x 15 x 28 mm Diametro del foro nella piastra: d_f = 22 mm Spessore della piastra (input): 20 mm Spessore della piastra raccomandato: non calcolato Metodo di perforazione: Foro con perforazione a roto-percussione Pulizia: E' necessaria una pulizia accurata del foro (Premium cleaning) Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M20 Coppia di serraggio: $0.150 \ \text{kNm}$ Diametro del foro nel materiale base: 22 mm Profondità del foro nel materiale base: 200 mm Spessore minimo del materiale base: 244 mm

8.1 Accessori richiesti


Perforazione

Idoneo per rotopercussione

- · Dimensione appropriata della punta del trapano
- Pulizia
- · Aria compressa con i relativi accessori necessari per soffiare a partire dal fondo del foro.
- · Diametro appropriato dello scovolino

Posa

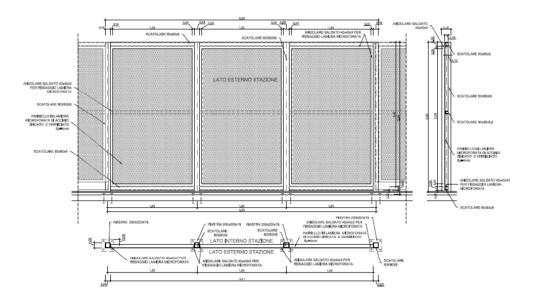
- · Il dispenser include il portacartucce e il
- miscelatore Seismic/Filling set
- · Chiave dinamometrica

Coordinate dell'ancorante [mm]

Ancorant	e x	у	C.x	C+x	C.y	C _{+y}
1	-150	-80	100	400	1,000	1,160
2	150	-80	400	100	1,000	1,160
3	-150	80	100	400	1,160	1,000
4	150	80	400	100	1.160	1.000

9 RECINZIONE METALLICA FISSA

Si riporta di seguito la verifica della struttura della recinzione fissa in acciaio disposta a chiusura delle fermate Valle Maddaloni (FV01) e Dugenta (FV02).


La struttura della protezione fissa realizzata in acciaio S275 JR è costituita da:

- montanti verticali realizzati con profili scatolari di dimensioni 90x90x8
- longherone orizzontale superiore ed inferiore realizzato con profili scatolari di dimensioni 60x60x5
- longherone orizzontale intermedio realizzato con profili scatolari di dimensioni 50x50x6.3
- pannello in lamiera microforata di acciaio zincato e verniciato sp=4mm

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La struttura viene discretizzata con un modello bidimensionale in elementi tipo trave.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite secondo NTC 2008. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Di seguito si riporta il dettaglio.

9.1 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

9.1.1 PESO PROPRIO DELLA STRUTTURA

Le sollecitazioni indotte dal peso della struttura sono valutate automaticamente dal programma

9.1.2 CARICO PERMANENTE

Il carico permanente è costituito dal peso dei pannelli in lamiera microforata di acciaio zincato e verniciato sp=4mm P= 0.40 KN/mq

LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0220 002	Α	173 di 195

9.1.3 CARICO VARIABILE ORIZZONTALE LINEARE

In base a quanto prescritto nella normativa NTC 2008 (3.1.4.1), per verifiche locali di elementi verticali bidimensionali (tramezzi, pareti, tamponamenti esterni con esclusione di divisori mobili) si considera un carico pari a 3 KN/m (Cat. C3) applicato alla quota di 1,20 m dal rispettivo piano di calpestio per pareti ed alla quota di bordo superiore per parapetti o mancorrenti. I carichi variabili orizzontali devono essere utilizzati per verifiche locali e non si sommano ai carichi utilizzati nelle vdrifiche dell'edificio o struttura nel suo insieme.

AZIONE DEL VENTO 9.1.4

CALCOLO DELL'AZIONE DEL VENTO

3) Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

Zona	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]
3	27	500	0.02

a _s (altitudine sul livello del mare [m])	56
3 (

$$v_b = v_{b,0}$$
 per $a_s \le a_0$
 $v_b = v_{b,0} + k_a (a_s - a_0)$ per $a_0 < a_s \le 1500$ m

v _b (velocità di riferimento [m/s])	27
--	----

p (pressione del vento [N/mq]) = $q_b \cdot c_e \cdot c_p \cdot c_d$ q_b (pressione cinetica di riferimento [N/mq]) c_e (coefficiente di esposizione)

c_p (coefficiente di forma)

c_d (coefficiente dinamico)

Figura 3.3.1 - Mappa delle zone in cui è suddiviso il territorio italian

Pressione cinetica di riferimento

$q_b = 1/2 \cdot \rho \cdot v_b^2$ ($\rho = 1,25 \text{ kg/mc}$)

q _b [N/mq]	455.63

Coefficiente di forma

E' il coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

Coefficiente dinamico

Esso può essere assunto autelativamente pari ad 1 nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità

Coefficiente di esposizione

Classe di rugosità del terreno

D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,....)

ITINERARIO NAPOLI – BARI

LOTTO

01 E ZZ

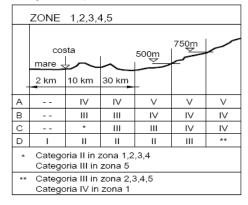
RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

azione

CODIFICA CL DOCUMENTO FV0220 002


REV. FOGLIO

Α

174 di 195

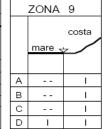
Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Categoria di esposizione

ZONA 6					
	costa			500m	
	mare 5	10 km	30 km	$\overline{}$	
-	Z KIII	TO KITI	30 KIII	_	
Α		III	IV	V	V
В		П	III	IV	IV
С		П	III	III	IV
D	I	I	П	II	III

z altezza edif.[m]

2.5


COMMESSA

IF1N

Classe di rugosità

D

a_s [m]

56

$c_{e}(z) = k_{r}^{2} \cdot c_{t} \cdot \ln(z/z_{0}) \left[7 + c_{t} \cdot \ln(z/z_{0})\right]$	per z≥z _{min}
$c_{e}(z) = c_{e}(z_{min})$	per z < z _{min}

Cat. Esposiz.	k _r	z ₀ [m]	z _{min} [m]	Ct
II	0.19	0.05	4	1

Ce	1.80

La pressione del vento a meno del coefficiente di forma vale:

820.37 N/mq (0.8203 kN/mq)

Zona

3

TRAVI ISOLATE AD ANIMA PIENA

cp 1.40

La pressione del vento vale $q_p = 1148.52$ N/mq \Rightarrow **1.15** KN/mq

9.2 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si riportano per comodità le combinazioni delle azioni riportate nella normativa alla quale è possibile fare riferimento per la simbologia adottata:

-Combinazione fondamentale. generalmente impiegata per gli stati limite ultimi (SLU):

 $\gamma \text{ G1} \cdot \text{G1} + \gamma \text{ G2} \cdot \text{G2} + \gamma \text{ P} \cdot \text{P} + \gamma \text{ Q1} \cdot \text{Qk1} + \gamma \text{ Q2} \cdot \phi \text{ 02} \cdot \text{Qk2} + \gamma \text{ Q3} \cdot \phi \text{ 03} \cdot \text{Qk3} + \dots$

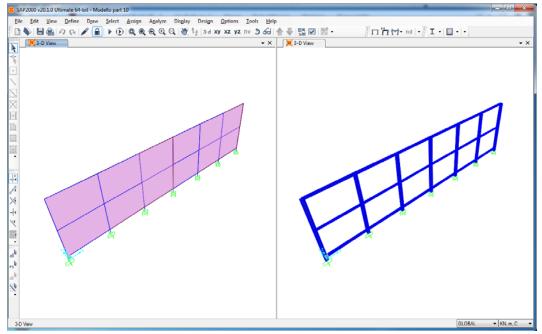
-Combinazione caratteristica (rara). generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

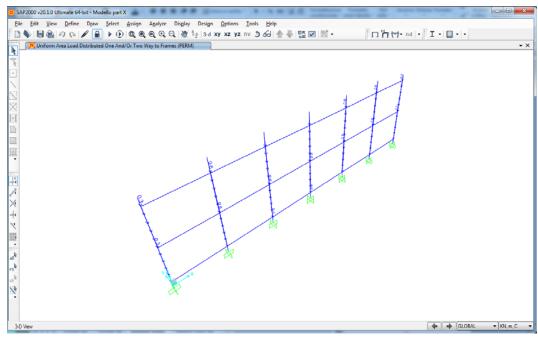
 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

Tabella 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente γ _F	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ ₆₂	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	YQi	0,0 1,5	0,0 1,5	0,0

(I)Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.


TABLE: Combination Definitions				
ComboName	CaseName	ScaleFactor		
Text	Text	Unitless		
	DEAD	1.3		
STATICA 1	PERM	1.5		
	ACC	1.5		
	DEAD	1.3		
STATICA 2	PERM	1.5		
	VENTO Y	1.5		
	DEAD	1		
SLE 1	PERM	1		
	ACC	1		
	DEAD	1		
SLE 2	PERM	1		
	VENTO Y	1		


9.3 VERIFICA DI RESISTENZA:

Per la verifica della struttura si utilizza un modello di calcolo agli elementi finiti bidimensionale che rappresenta l'esatta geometria della struttura nella condizione peggiore quando il cancello mobile è chiuso.

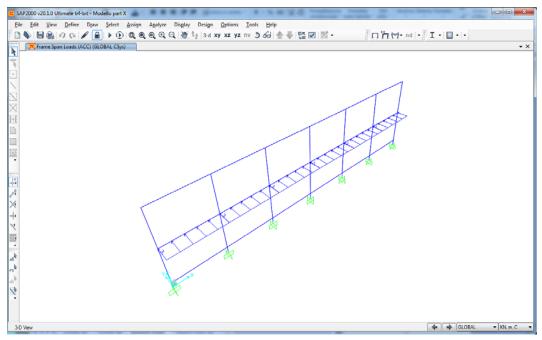
Di seguito si riportano le immagini del modello, dei carichi applicati e delle sollecitazioni di progetto.

Modello di calcolo

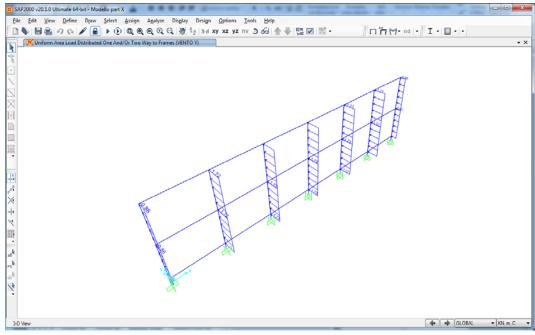
Carico permanente

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE

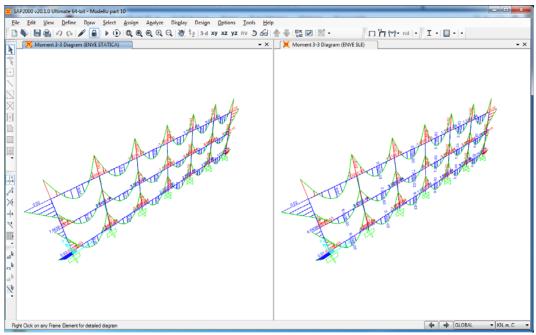

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

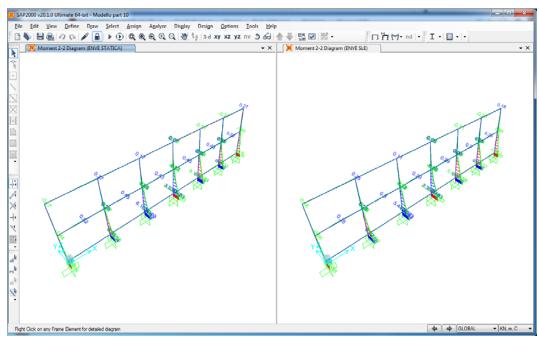
 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 177 di 195

Carico variabile

Carico vento


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FERMATE IFIN 01 E ZZ CO

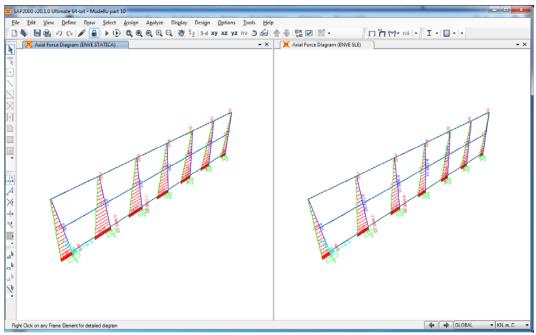

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

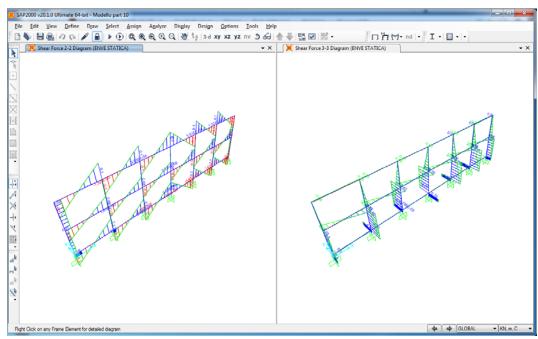
 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 178 di 195

Momento flettente M33 - combo ENVE STATICA - combo ENVE SLE

Momento flettente M22 - combo ENVE STATICA - combo ENVE SLE


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

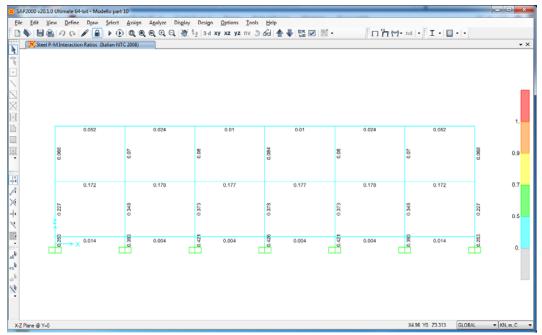

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 179 di 195

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Sforzo assiale P - combo ENVE STATICA - combo ENVE SLE

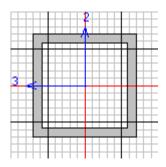
Taglio V22 e V33 - combo ENVE STATICA


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 180 di 195

FERMATE


Recinzioni, parapetti e strutture secondarie: relazione di calcolo

Verifica di resisstenza -Tasso di sfruttamento

In base ai risultati sopra evidenziati si effettua di seguito la verifica dei profili più sollecitati.

9.3.1 VERIFICA MONTANTE SCATOLARE 90X90X8


```
Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station)
Units : KN, m, C
Frame : 56
                  X Mid: 4.500
                                    Combo: STATICA 1
                                                             Design Type: Column
Length: 0.150
                  Y Mid: 0.000
                                    Shape: MONTANTE
                                                             Frame Type: Non Dissipative
                  Z Mid: 0.075
                                    Class: Class 1
                                                            Rolled : No
     : 0.150
Interaction=Method B
                                    MultiResponse=Envelopes
                                                                          P-Delta Done? No
GammaM0=1.05
                  GammaM1=1.05
                                    GammaM2=1.25
An/Ag=1.00
                  RLLF=1.000
                                    PLLF=0.750
                                                      D/C Lim=0.950
Aeff=0.003
                  eNy=0.000
                                    eNz=0.000
                  Iyy=2.969E-06
                                    iyy=0.034
A=0.003
                                                      Wel,yy=6.597E-05
                                                                           Weff, yy=6.597E-05
It=4.411E-06
                  Izz=2.969E-06
                                    izz=0.034
                                                      Wel,zz=6.597E-05
                                                                           Weff,zz=6.597E-05
```


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

CODIFICA DOCUMENTO REV. FOGLIO COMMESSA LOTTO IF1N 01 E ZZ CL FV0220 002 Α 181 di 195

di calcolo						
Iw=0.000	Iyz=0.000	h=0.0	19.0	Wpl,yy=8.094E	_05 757	x=0 001
E=210000000.0	fy=275000.0	100 fu=43	0000.000	Wp1,zz=8.094E	-05 AV,	z=0.001
STRESS CHECK FORC						_
Location	Ned	Med,yy	Med,zz		Ved,y	Ted
0.150	-3.378	1.259E-06	-9.032	-4.308E-06	6.786	-1.878E-05
DMM DEMAND/GADAGI	יייע האיידי /	Corrowning Es	mation Ed2 6	2 0 1 (6-1)		
PMM DEMAND/CAPACI						
D/C Ratio:	0.426 = 0.42		0.950	OK		
	= (MZ,	Ed/Mn,z,Rd)	(EC3 6	5.2.9.1(6z))		
AXIAL FORCE DESIG	N.					
111111111111111111111111111111111111111	Ned	Nc,Rd	Nt,Rd			
	Force	Capacity				
Arri o l		687.238	687.238			
Axial	-3.378	087.238	087.238			
	Npl,Rd	Nu,Rd	Ncr,T	Ncr,TF	An/Ag	
	687.238	812.390		157455.165	1.000	
	007.230	012.370	137133.103	137133.103	1.000	
Cu	ırve Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
Major (y-y)	c 0.490	189901.785	0.062	0.468	1.000	687.238
MajorB(y-y)	c 0.490	189901.785	0.062	0.468	1.000	687.238
Minor (z-z)	c 0.490	189901.785	0.062	0.468	1.000	687.238
MinorB(z-z)	c 0.490		0.062	0.468	1.000	687.238
Torsional TF			0.068	0.470	1.000	687.238
TOTSTORAL IT	0.150	137133.103	0.000	0.170	1.000	007.230
MOMENT DESIGN						
	Med	Med, span	Mm, Ed	Meq,Ed		
	Moment	Moment	Moment	Moment		
Major (y-y)	1.259E-06	1.259E-06	0.000			
Minor (z-z)	-9.032	-9.032	-8.523	-8.625		
1111101 (2 2)	3.032	3.032	0.525	0.023		
	Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
	Capacity	Capacity	Capacity	Capacity		
Major (y-y)	21.200	21.200	21.200	21.200		
Minor $(z-z)$	21.200	21.200	21.200			
	rve AlphaLT		PhiLT	ChiLT	psi	Mcr
LTB	d 0.760	0.045	0.442	1.000	1.310	10775.640
	lever	levee	kzy	kzz		
Eagtong	kyy 0.794	kyz 0.573	0.476	0.954		
Factors	0.794	0.573	0.476	0.954		
SHEAR DESIGN						
	Ved	Vc,Rd	Stress	Status	Ted	
	Force	Capacity	Ratio	Check	Torsion	
Major (z)	4.308E-06	179.033	0.000		1.878E-05	
Minor (y)	6.786	217.743	0.031		1.878E-05	
MITHOT (A)	0.700	211.143	0.031	OK .	T.0/0E-05	
	Vpl,Rd	Eta	LambdabarW			
Reduction	179.033	1.000	0.099			

IITINERA

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

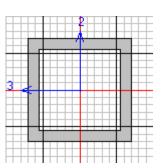
FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 182 di 195

9.3.2 VERIFICA LONGHERONE SCATOLARE 60X60X5


-0.026

Major (y-y)

-0.026

-0.026

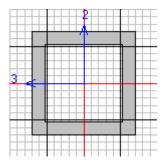
-0.026

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame: 67 x Mid: 0.750 Combo: STATICA 1 Design Type: Beam Length: 1.500 Y Mid: 0.000 Shape: 60x60x5 Frame Type: Non Dissipative Loc : 1.500 Z Mid: 2.530 Class: Class 1 Rolled : No Interaction=Method B MultiResponse=Envelopes P-Delta Done? No GammaM0=1.05 GammaM1=1.05 GammaM2=1.25 RLLF=1.000 PLLF=0.750 An/Ag=1.00 D/C Lim=0.950 Aeff=0.001 eNv = 0.000eNz = 0.000A=0.001Iyy=0.000 iyy=0.022Wel,yy=2.198E-05 Weff, yy=2.198E-05It=0.000 Izz=0.000izz=0.022Wel,zz=2.198E-05Weff,zz=2.198E-05 1w = 0.000Iyz=0.000 h=0.060 Wpl,yy=2.738E-05Av, y=7.560E-04Wpl,zz=2.738E-05 Av,z=5.972E-04 E=210000000.0 fy=275000.000 fu=430000.000 STRESS CHECK FORCES & MOMENTS Location Ned Med, yy Med,zz Ved,z Ved.v Ted 1.500 -0.030 -0.026 0.372 0.104 -0.322 -0.074 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.9.1(6z)) D/C Ratio: 0.052 = 0.052 <0.950 OK = (Mz,Ed/Mn,z,Rd) (EC3 6.2.9.1(6z)) AXIAL FORCE DESIGN Nc,Rd Nt,Rd Ned Force Capacity Capacity Axial -0.030 354,420 354,420 Npl,Rd Ncr.T Ncr,TF Nu . Rd An/Aq 354.420 418.963 80862.160 421.798 1.000 Curve Alpha Ncr LambdaBar Phi Chi Nb,Rd 421.798 204.108 Major (y-y) 0.490 0.939 1.122 0.576 C MajorB(y-y) 0.939 0.490 421.798 1.122 0.576 204.108 C 0.576 Minor (z-z)C 0.490 421.798 0.939 1.122 204.108 MinorB(z-z) С 0.490 421.798 0.939 1.122 0.576 204.108 Torsional TF 0.490 421.798 0.939 1.122 0.576 204.108 MOMENT DESIGN Meq,Ed Med Med.span Mm.Ed Moment Moment Moment Moment

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
		IF1N	01 E ZZ	CL	FV0220 002	Α	183 di 195
Recinzio	ni, parapetti e strutture secondarie: relazione						
di calcolo							

ai baloolo						
Minor (z-z)	0.372	0.372	0.130	0.179		
	Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
	Capacity	Capacity	Capacity	Capacity		
Major (y-y)	7.170	7.170	7.170	7.170		
Minor (z-z)		7.170	7.170			
	Curve AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr
LTB	d 0.760	0.135	0.485	1.000	2.251	410.352
110	u 0.700	0.133	0.103	1.000	2.231	110.332
	kyy	_	kzy	kzz		
Factors	0.519	0.288	0.311	0.480		
SHEAR DESIGN						
	Ved	Vc,Rd	Stress	Status	Ted	
	Force	Capacity	Ratio	Check	Torsion	
Major (z)	0.104	90.309	0.001	OK	0.074	
Minor (y)	0.322	114.315	0.003	OK	0.074	
	Vpl,Rd	Eta	LambdabarW			
Reduction	90.309	1.000	0.093			


CONNECTION SHEAR FORCES FOR BEAMS

Iw = 0.000

	VMajor	VMajor
	Left	Right
Major (V2)	0.099	0.104

Iyz=0.000

9.3.3 VERIFICA LONGHERONE SCATOLARE 50X50X6.3

Wpl,yy=1.817E-05

Av, y=6.300E-04

Italian NTC 2008 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

,,				
Frame: 79 Length: 1.500 Loc: 1.500	X Mid: 2.250 Y Mid: 0.000 Z Mid: 1.340	Combo: STATICA Shape: 50x50x6 Class: Class 1	3 11	Beam Non Dissipative
Interaction=Met	hod B	MultiResponse=H	Invelopes	P-Delta Done? No
GammaM0=1.05 An/Ag=1.00	GammaM1=1.05 RLLF=1.000	GammaM2=1.25 PLLF=0.750	D/C Lim=0.950	
Aeff=0.001 A=0.001 It=0.000	eNy=0.000 Iyy=0.000 Izz=0.000	eNz=0.000 iyy=0.018 izz=0.018 h=0.050	Wel,yy=1.431E-05 Wel,zz=1.431E-05 Wpl,yy=1.817E-05	Weff,yy=1.431E-05 Weff,zz=1.431E-05

h=0.050

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

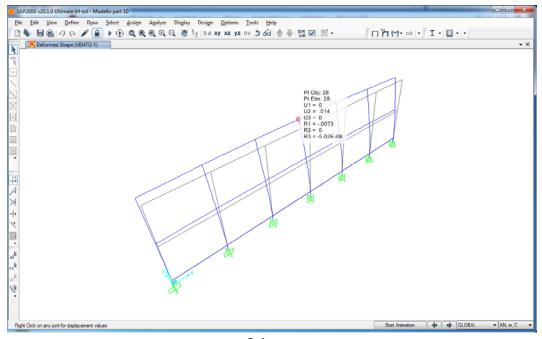
 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 184 di 195

E=210000000.0	fy=	275000.0	000 fu=40	30000.000	Wpl,zz=1.817E-05	Av,	z=4.712E-04
STRESS CHECK FOR	CEC C	. M∩MENTS	2				
Location	CEO &	Ned		Med,zz	Ved,z	Ved,y	Ted
		0.013	-0.021				
1.500		0.013	-0.021	-0.849	0.083	3.424	-0.025
PMM DEMAND/CAPAC	ITY R	ATIO	(Governing E	guation EC3 6	.2.9.1(6z))		
D/C Ratio:				0.950	OK		
2, 3 114323	0.1.			(EC3 6			
AXIAL FORCE DESI	GN						
		Ned	Nc,Rd	Nt,Rd			
		Force	Capacity	Capacity			
Axial		0.013	288.420	288.420			
		March 1974	Mr. Da	Mara III	Mars III	7 /7	
		Npl,Rd			Ncr,TF	An/Ag	
		288.420	340.944	65351.499	228.866	1.000	
	urve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
Major (y-y)	C		228.866	1.150	1.394	0.458	132.144
							132.144
MajorB(y-y)		0.490	228.866		1.394	0.458	
Minor (z-z)		0.490	228.866	1.150	1.394	0.458	132.144
MinorB(z-z)		0.490	228.866		1.394	0.458	132.144
Torsional TF	C	0.490	228.866	1.150	1.394	0.458	132.144
MOMENT DESIGN							
		Med	Med, span	Mm, Ed	Meq,Ed		
		Moment			Moment		
Major (y-y)		-0.021			-0.021		
Minor (z-z)		-0.849	-0.849	-0.849	-0.849		
MINOI (Z-Z)		-0.049	-0.049	-0.049	-0.049		
		Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
	C	apacity			Capacity		
Major (y-y)	Ŭ	4.759			4.759		
Minor (z-z)		4.759	4.759	4.759	1.735		
MINOI (Z-Z)		4.759	4.739	4.739			
C	urve	AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr
LTB	d	_	0.146	0.490	1.000	2.381	234.708
шь	ū	0.700	0.110	0.150	1.000	2.301	231.700
		kyy	kyz	kzy	kzz		
Factors		0.500	_		0.528		
SHEAR DESIGN							
		Ved	Vc,Rd	Stress	Status	Ted	
		Force	Capacity	Ratio		orsion	
Major (z)		0.083	71.257	0.001	OK	0.025	
Minor (y)		3.424	95.263	0.036	OK	0.025	
PILITOT (Y)		3.424	22.203	0.030	OK .	0.025	
		Vpl,Rd	Eta	LambdabarW			
Reduction		71.257	1.000	0.074			
Reduction		11.231	1.000	0.074			

CONNECTION SHEAR FORCES FOR BEAMS

 VMajor
 VMajor

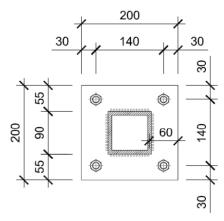
 Left
 Right

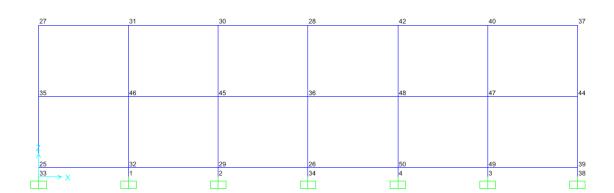

 Major (V2)
 0.083
 0.083

9.4 VERIFICA DI DEFORMABILITÀ

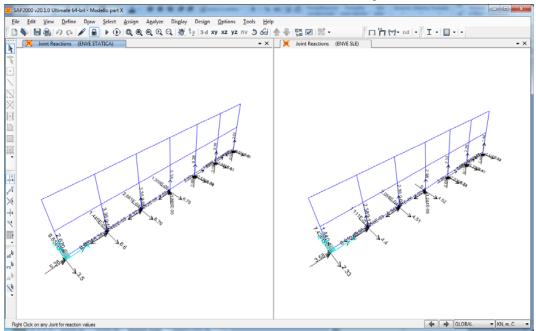
Per la verifica a deformazione si ipotizza la protezione come una parete verticale e si considerano i limiti agli spostamenti orizzontali sotto l'azione del vento riportati nella tabella 4.2.XI al capitolo 4.2.4.2.2 dell' NTC2008 che fissa un valore limite pari a Δ_{lim} = 2L/300.

Per L = 2.53 m Δ_{lim} = 16.87 mm


Deformata


Come si può vedere lo spostamento orizzontale massimo sotto l'azione del vento $\,$ presenta un valore di 14 mm < $\,$ Δ_{lim} per cui la verifica risulta soddisfatta

9.5 VERIFICA DELLA PIASTRA DI BASE


La piastra di fondazione ha una dimensione di 200x200 mm spessore 15 mm, è dotata di quattro tasselli chimici M16 ed è realizzata in acciaio S275. Per necessità geometriche si distinguono due diverse tipologie di piastre come riportato nella figura sottostante.

Dal modello di calcolo della struttura si ricavano le sollecitazioni massime agenti alla base:

Reazioni alla base

Sollecitazioni massime SLU STATICA

NODO	F1	F2	F3	M1	M2
34	KN	KN	KN	KN-m	KN-m
	0.04	6.79	3.38	9.03	0.00

Sollecitazioni massime SLE

NODO	F1	F2	F3	M1	M2
34	KN	KN	KN	KN-m	KN-m
	0.03	4.52	2.38	6.02	0.00

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** 01 E ZZ 188 di 195 IF1N CL FV0220 002 Α

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

9.5.1 VERIFICA SEZIONE DI CONTATTO PIASTRA

Si effettua la verifica della sezione di contatto in campo elastico considerando le sollecitazioni della combinazione

ITINERA

DATI GENERALI SEZIONE IN C.A.

NOME SEZIONE: piastra

Descrizione Sezione:

Metodo di calcolo resistenza: Tensioni Ammissibili Tipologia sezione: Sezione generica Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -	Classe: C25/30				
	Tensione Normale Ammiss.	Sc	:	97.50	daN/cm ²
	Tensione Normale media A	.mm .	:	68.25	daN/cm2
	Tensione Tangenz.Amm. T	auC0	:	6.00	daN/cm ²
	Tensione Tangenz.Amm. T	auC1	:	18.28	daN/cm ²
	Coeff. N di omogeneizzaz	ione	:	15.0	
	Modulo Elastico Normale	Ec	:	314750	daN/cm ²
	Coeff. di Poisson		:	0.20	
	Resis. media a trazione	fctm	:	26.00	daN/cm²
ACCIAIO -	Tipo: B450C				
	Resist. caratt. rottura	ftk	:	5400.0	daN/cm²
	Tensione Ammissibile	Sf	:	2550.0	daN/cm²
	Modulo Elastico	Ef	:	2000000	

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C25/30

N.vertice	Ascissa X, c	m Ordinata Y, cn
1	-10.00	0.00
2	-10.00	20.00
3	10.00	20.00
4	10.00	0.00

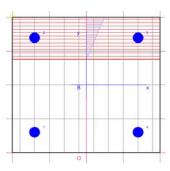
DATI BARRE ISOLATE

Numero assegnato alle singole barre isolate e nei vertici dei domini Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Ascissa X Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Ordinata Y Diametro in mm della barra Diam

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	-7.00	3.00	14.14
2	-7.00	17.00	14.14
3	7.00	17.00	14.14
4	7 00	3 00	14 14

TENS.AMMISS. - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

3.7	Cforms manuals in 1-M and inches and Province (comparisons)
N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0220 002	Α	189 di 195

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 2.3 cm Interferro netto minimo barre longitudinali: 12.6 cm $\,$

METODO DELLE TENSIONI AMMISSIBILI - MASSIME E MINIME TENSIONI NORMALI

Ver		S = co	mbinazi	one ve	erificata ,	/ N = cc	mbin. no	on verific	cata		
Sc max		Massim	a tensi	one [:	in daN/cm²] nel co	nglomera	ato (posit	iva se d	i compr	ess.)
Xc max		Asciss	a [in	cm] c	orrispond.	al punt	o di ma	ssima comp	ressione		
Yc max		Ordina	ta [in	cm] c	orrispond.	al punt	o di ma	ssima comp	ressione		
Sc min		Minima	tensi	one [:	in daN/cm²] nel co	nglomer	ato (posit	iva se d	i compr	ess.)
Xc min		Asciss	a [in	cm] c	orrispond.	al punt	o di mi	nima compr	ressione		
Yc min		Ordina	ta [in	cm] c	orrispond.	al punt	o di mi	nima compr	ressione		
Sc med		Tensio	ne medi	a [:	in daN/cm²] nel co	ngl. in	presenza	di sf. n	ormale	
Sf min		Minima	tensi	one [:	in daN/cm²] nell'a	cciaio	(negativa	se di tr	azione)	
Yf min		Ordina	ta [in	cm] c	orrispond.	alla ba	ırra di 1	minima ter	nsione		
N.Comb.	Ver	Sc max	Xcmax	Ycmax	x Sc min	Xcmin	Ycmin	Sc med	Sf min	Xfmin	Yfmin
1	S	48.7	-10.0	20.0	0.0	0.0	0.0	0.5	-1267	7.0	3.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

а	Coeff.	а	nell'eq.	dell'asse	neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.	
b	Coeff.	b	nell'eq.	dell'asse	neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.	
C	Coeff.	С	nell'eq.	dell'asse	neutro	aX+bY+c=0	nel	rif.	X,Y,O	gen.	
	_			_							

N.Comb.	a	b	С
1	0.00000000	0.000058774	-0.000809998

9.5.2 VERIFICA DI RESISTENZA PIASTRA

Si effettua la verifica della piastra come una mensola incastrata in corrispondenza del montante caricata con la forza di trazione massima agente sui tasselli allo SLU pari a $F_{traz} = (\sigma_b \cdot A_{res} \cdot n) \cdot \gamma_q$.

Di seguito si riporta il foglio di calcolo utilizzato per la verifica.

Bulloni			
Barra M	16		
Acciaio	5.8		
A =	2.01	cmq	
Ares =	1.57	cmq	
Фeq =	14.14	mm	
n =	2		
Piastra			
a=	20	cm	
b=	20	cm	
sp=	1.5	cm	
Acciaio	S275		
fyk=	275	MPa	
fyd=	250	MPa	
σb=	1267.0	Kg/cmq	
Wel=	7.50	cm^3	
Wpl=	11.25	cm^3	
e=	2.5	cm	
F_traz =	5967.6	Kg	
Sollecitazioni	di progetto		
Msd=	14918.9	Kgcm	
Mrd =	28125.0	Kgcm	
Msd	<	Mrd	verificato

9.5.3 VERIFICA ANCORAGGIO PIASTRA

Il fissaggio della piastra alla struttura sottostante avviene tramite quattro barre filettate M16 in acciaio classe 5.8 con ancorante chimico ad iniezione tipo HILTY HIT-RE 500 V3 o similare.

La verifica viene effettuata considerando le sollecitazione massime alla base allo SLU nella combinazione di calcolo STATICA utilizzando il codice di calcolo PROFIS Anchor 2.7.8 prodotto dalla HILTI di cui se ne riporta il report di verifica.

ITINERARIO NAPOLI - BARI ITINERA

RADDOPPIO TRATTA CANCELLO – BENEVENTO

CL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO CODIFICA 01 E ZZ

DOCUMENTO

RFV

FOGLIO

FV0220 002 191 di 195 Α

www.hilti.it

Impresa: Progettista: Indirizzo: Telefono I Fax: Pagina: Progetto Contratto N°:

IF1N

12/09/2018

E-mail: Commenti del progettista:

1 Dati da inserire

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M16

Hilti Seismic set o altro sistema per il riempimento dello spazio aulare tra piastra e anco.

Profondità di posa effettiva: h_{et,act} = 150 mm (h_{et,limit} = - mm)

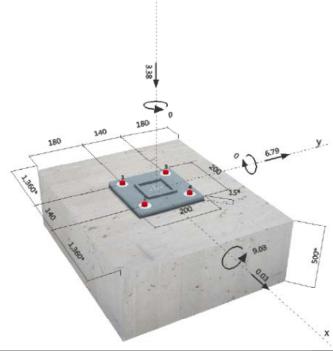
Materiale: 5.8 Certificazione No.: ETA 16/0143

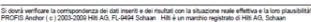
Emesso I Valido: 12/07/2017 | -Prova: Metodo di calcolo SOFA + fib (07/2011) - dopo prove ETAG BOND

Fissaggio distanziato: e_b = 0 mm (Senza distanziamento); t = 15 mm

Piastra d'ancoraggio: I_x x I_y x t = 200 mm x 200 mm x 15 mm; (Spessore della piastra raccomandato: non calcolato

z


Profilo: Profilo quadrato cavo; (L x W x T) = 90 mm x 90 mm x 8 mm


Materiale base: non fessurato calcestruzzo, C25/30, f_{c,cpl} = 25.00 N/mm², h = 500 mm, Temp. Breve/Lungo: 0/0 °C

Installazione: Foro eseguito con perforatore, Condizioni di installazione: asciutto Armatura: interasse delle armature < 150 mm (qualunque Ø) o < 100 mm (Ø <= 10 mm)

senza armatura di bordo longitudinale

Geometria [mm] & Carichi [kN, kNm]

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 192 di 195

www.hilti.it Profis Anchor 2.7.8

 Impresa:
 Pagina:
 2

 Progettista:
 Progetto:

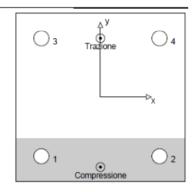
 Indirizzo:
 Contratto N°:

 Teledino I Fax:
 Data:
 12/09/2018

2 Condizione di carico/Carichi risultanti sull'ancorante

Condizione di carico: Carichi di progetto

Carichi sull'ancorante [kN]


Trazione: (+ Trazione, - Compressione)

Ancorante	Trazione	Taglio	Taglio in dir. x	Taglio in dir. y
1	0.000	1.698	0.008	1.698
2	0.000	1.698	0.008	1.698
3	28.613	1.698	0.008	1.698
4	28.613	1,698	0.008	1.698

Compressione max. nel calcestruzzo:

Max. sforzo di compressione nel calcestruzzo:
risultante delle forze di trazione nel (x/y)=(0/70):
risultante delle forze di compressione (x/y)=(0/-83):

0.39 [‰] 11.81 [N/mm²] 57.226 [kN] 60.606 [kN]

3 Carico di trazione SOFA (fib (07/2011), paragrafo 16.2.1)

	Carico [kN]	Resistenza [kN]	Utilizzo β _N [%]	Stato
Rottura dell'acciaio*	28.613	52.333	55	OK
Rottura combinata conica del calcestruzzo e per sfilamento**	57.226	90.849	63	OK
Rottura conica del calcestruzzo**	57.226	74.717	77	OK
Fessurazione**	N/A	N/A	N/A	N/A
*ancorante più sollecitato **gruppo di an	coranti (ancoranti sollecitat	i)		

3.1 Rottura dell'acciaio

N _{Rk,s} [kN]	ΥMs	N _{Rd,6} [kN]	N _{Sd} [kN]	
78 500	1.500	E2 222	20 612	

3.2 Rottura combinata conica del calcestruzzo e per sfilamento

	A _{p,N} [mm ²]	$A_{p,N}^0$ [mm ²]	₩ A.Np	τ _{Rk,ucr,25} [N/mm²]	s _{or,Np} [mm]	c _{or,Np} [mm]	c _{min} [mm]
_	238,950	202,500	1.180	16.00	450	225	180
	Ψο	τ _{Rk,ucr} [N/mm²]	max τ _{Rk,ucr} [N/mm²]	Ψ ^Q _Q Np	Ψg.Np		
_	1.018	16.29	13.40	1.000	1.000		
	e _{c1,N} [mm]	Ψ ec1,Np	e _{c2,N} [mm]	Ψ ec2,Np	₩ s,Np	₩ re,Np	
	0	1.000	0	1.000	0.940	1.000	
	N _{Rk,p} [kN]	N _{Rk,p} [kN]	YM.p	N _{Rd,p} [kN]	N _{Sd} [kN]		
	122.857	136.273	1.500	90.849	57.226		

3.3 Rottura conica del calcestruzzo

$A_{c,N}$ [mm ²]	A _{0,N} [mm ²]	WAN	C _{cr,N} [mm]	S _{cr,N} [mm]	
238,950	202,500	1.180	225	450	
e _{c1,N} [mm]	Ψ ec1,N	e _{c2,N} [mm]	Ψ ec2,N	Ψs,N	Ψ re,N
0	1.000	0	1.000	0.940	1.000
k ₁	N _{Rk,c} [kN]	ΥM.c	N _{Rd,c} [kN]	N _{Sd} [kN]	
11.000	101.041	1.500	74.717	57.226	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF1N 01 E ZZ CL FV0220 002 193 di 195 Α

Profis Anchor 2.7.8 www.hilti.it

Pagina: Progetto: Contratto N°: Data: Impresa: Progettista: Indirizzo: Telefono I Fax:

12/09/2018

4 Carico di taglio SOFA (fib (07/2011), paragrafo 16.2.2)

	Carico [kN]	Resistenza [kN]	Utilizzo β _V [%]	Stato
Rottura dell'acciaio (senza braccio di leva)*	1.698	31.400	6	OK
Rottura dell'acciaio (con braccio di leva)*	N/A	N/A	N/A	N/A
Rottura per pryout**	6.790	184.486	4	OK
Rottura del bordo del calcestruzzo in direzione x+**	3.395	31.125	11	OK

^{*}ancorante più sollecitato **gruppo di ancoranti (ancoranti specifici)

4.1 Rottura dell'acciaio (senza braccio di leva)

V _{Rk,s} [kN]	ΥM,s	V _{Rd,s} [kN]	V _{Sd} [kN]
39.250	1.250	31.400	1.698

4.2 Rottura per pryout (cono del calcestruzzo)

A _{c,N} [mm ²]	$A_{c,N}^0$ [mm ²]	ΨAN	c _{cr,N} [mm]	s _{cr,N} [mm]	k ₄
295,000	202,500	1.457	225	450	2.000
e _{c1,V} [mm]	Ψ ec1,N	e _{c2,V} [mm]	Ψ ec2,N	Ψs,N	Ψ re,N
0	1.000	0	1.000	0.940	1.000
N ⁰ _{Rk,c} [kN]	Υм,с,p	V _{Rd,cp} [kN]	V _{Sd} [kN]		
101.041	1.500	184.486	6.790		

4.3 Rottura del bordo del calcestruzzo in direzione x+

I _f [mm]	d _{nom} [mm]	k _v	α	β		
150	16.0	2.400	0.067	0.054		
c ₁ [mm]	c ₁ [mm]	A _{c,V} [mm ²]	A _{c,V} [mm ²]	ΨΑν		
1,500	333	250,000	500,000	0.500		
Ψ s,v	Ψh,v	Ψ∝ν	e _{c,V} [mm]	Ψ ec,V	Ψ re,V	Ψ 90*,ν
0.808	1.000	2.000	0	1.000	1.000	2.000
V ⁰ _{Rk,c} [kN]	n ₁	Ум ,с	V _{Rd,c} [kN]	V _{Sd} [kN]		
115.566	2	1.500	31.125	3.395		

Nota: resistenza limite in accordo a fib (07/2011), equazione governante (10.2-6).

5 Carichi combinati di trazione e di taglio SOFA (fib (07/2011), paragrafo 10.3)

	β_N	β_V	α	Utilizzo β _{N,V} [%]	Stato
acciaio	0.547	0.054	2.000	31	OK
Calcestruzzo	0.766	0.109	1.500	71	OK
$\beta_N^{\alpha} + \beta_V^{\alpha} \le 1$					

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0220 002
 A
 194 di 195

www.hilti.it			Profis Anchor 2.7.8
Impresa:		Pagina:	4
Progettista:		Progetto:	
Indirizzo:		Contratto N°:	
Telefono I Fax:	1	Data:	12/09/2018
E-mail:			

6 Spostamenti (ancorante più sollecitato)

Carichi a breve termine:

Nsk = 21.195 [kN] = 0.169 [mm] = 1.257 [kN] = 0.050 [mm] δ_V = 0.176 [mm] δ_{NV} Carichi a lungo termine: = 21.195 [kN] = 0.365 [mm] N_{sk} δN = 1.257 [kN] = 0.075 [mm] V_{Sk} δγ

Commenti: Gli spostamenti a trazione risultano validi con metà del valore della coppia di serraggio richiesta per non fessurato calcestruzzol Gli spostamenti a taglio sono validi trascurando l'attrito tra il calcestruzzo e la piastra d'ancoraggio! Lo spazio derivante dal foro eseguito con perforatore e dalle tolleranze dei fori non viene considerato in questo calcolo!

Gli spostamenti ammissibili dell'ancorante dipendono dalla struttura fissata e devono essere definiti dal progettista!

 δ_{NV}

= 0.373 [mm]

7 Attenzione

- Fenomeni di ridistribuzione dei carichi sugli ancoranti derivanti da eventuali deformazioni elastiche della piastra non sono presi in considerazione. Si assume una piastra di ancoraggio sufficientemente rigida in modo che non risulti deformabile sotto l'azione di carichil
- La lista accessori inclusa in questo report di calcolo è da ritenersi solo come informativa dell'utente. In ogni caso, le istruzioni d'uso fomite con il prodotto dovranno essere rispettate per garantire una corretta installazione.
- · L'adesione chimica caratteristica dipende dalle temperature di breve e di lungo periodo.
- · Contattare Hilti per verificare la fornitura delle barre HIT-V.
- Il metodo Fib (07/2011) assume l'assenza di spazi anulari tra gli ancoranti e la piastra di ancoraggio. Questo può essere ottenuto mediante il riempimento con resina di sufficiente resistenza a compressione (p.e. usando il sistema Hilti Seismic/Filling set) o attraverso altri mezzi idonei.
- L'utente è responsabile della conformità alle norme correnti (e.g. EC3)
- La verifica del trasferimento dei carichi nel materiale base è necessaria in accordo a fib (07/2011)!

L'ancoraggio risulta verificato!

ITINERA

ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO**

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

FOGLIO

FERMATE

Recinzioni, parapetti e strutture secondarie: relazione

COMMESSA LOTTO CODIFICA DOCUMENTO RFV IF1N 01 E ZZ FV0220 002 195 di 195 CL Α

12/09/2018

Profis Anchor 2.7.8 www.hilti.it Impresa: Progettista: Pagina: Progetto:

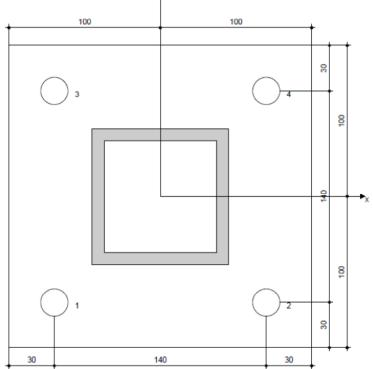
Indirizzo: Telefono I Fax: Contratto N°: Data: E-mail:

8 Dati relativi all'installazione

Piastra d'ancoraggio, acciaio: -Profilo: Profilo quadrato cavo; 90 x 90 x 8 mm Diametro del foro nella piastra: d, = 18 mm Spessore della piastra (input): 15 mm Spessore della piastra raccomandato: non calcolato Metodo di perforazione: Foro con perforazione a roto-percussione

Pulizia: E' necessaria una pulizia accurata del foro (Premium cleaning)

Tipo e dimensione dell'ancorante: HIT-RE 500 V3 + HIT-V(5.8) M16 Coppia di serraggio: 0.080 kNm Diametro del foro nel materiale base: 18 mm Profondità del foro nel materiale base: 150 mm Spessore minimo del materiale base: 186 mm


8.1 Accessori richiesti

Perforazione

Idoneo per rotopercussione Pulizia

• Aria compressa con i relativi accessori Posa

• Il dispenser include il portacartucce e il necessari per soffiare a partire dal fondo del foro. miscelatore
• Seismic/Filling set · Dimensione appropriata della punta del trapano · Diametro appropriato dello scovolino · Chiave dinamometrica 100

Coordinate dell'ancorante [mm]

Ancorante	X	У	C.x	C.x	C.y	C.y
1	-70	-70	1,360	1,500	180	320
2	70	-70	1,500	1,360	180	320
3	-70	70	1,360	1,500	320	180
4	70	70	1,500	1,360	320	180