COMMITTENTE:)EI			
	RE		ARIA ITALIANA		
DIREZIONE LAVORI:	GRUPPO FERR	DAIE DEFFO 2	TATO ITALIANE		
			GRU		ALFERR DELLO STATO ITALIANE
APPALTATORE:	hella	PIZZARO FORBATA	OCFT	TINERA	
PROGETTAZIO	ONE:	F	PROGETTISTA:		ETTORE DELLA OGETTAZIONE
RAGGRUPPAMENTO TEMPORA	ANEO PROGETTISTI	- II	ng. GAETANO USAI		PIETRO MAZZOLI
PIZZAROTTI	INTEGRA	INGENERIA GEOTECNICA			oile integrazione fra le varie tazioni specialistiche
I° LOTTO FUNZIONAL ALLA LINEA ROMA-N CAVALCAFERROVIA Impalcato in c.a.p. L=25m	LE CANCEL NAPOLI VIA al km 2+114	LO-FRAS CASSIN	SSO TELES O NEL COM		
			ui Calcolo		
APPALTATORE			ui Calcolo		SCALA:
Consorzio CFT IL DIRETTORE TECNICO Geom. C Bianchi			ui Calcolo		SCALA:
Consorzio CFT IL DIRETTORE TECNICO Geom. C Bianchi 11/07/2018	ENTE TIPO DOG			OGR. RE	-
Consorzio CFT IL DIRETTORE TECNICO Geom. C Bianchi 11/07/2018 COMMESSA LOTTO FASE	ENTE TIPO DOC			ogr. re	-
Consorzio CFT IL DIRETTORE TECNICO Geom. C Bianchi 11/07/2018 COMMESSA LOTTO FASE I F I N 0 1 E		I V O	ISCIPLINA PR	0 2 A	-
Consorzio CFT IL DIRETTORE TECNICO Geom. C Bianchi 11/07/2018 COMMESSA LOTTO FASE I F 1 N 0 1 E	ZZCL	I V 0	ISCIPLINA PR	0 2 A	v.
Consorzio CFT IL DIRETTORE TECNICO Geom. C Bianchi 11/07/2018 COMMESSA LOTTO FASE I F 1 N 0 1 E Rev. Descrizione Rec	Z Z C L	I V 0	ISCIPLINA PR 2 0 7 0	0 2 A	V. Autorizzato Data
Consorzio CFT IL DIRETTORE TECNICO Geom. C Bianchi 11/07/2018 COMMESSA LOTTO FASE I F 1 N 0 1 E Rev. Descrizione Rec	Z Z C L	I V 0	ISCIPLINA PR 2 0 7 0	0 2 A	V. Autorizzato Data
Consorzio CFT IL DIRETTORE TECNICO Geom. C Bianchi 11/07/2018 COMMESSA LOTTO FASE I F 1 N 0 1 E Rev. Descrizione Rec	Z Z C L	I V 0	ISCIPLINA PR 2 0 7 0	0 2 A	V. Autorizzato Data
Consorzio CFT IL DIRETTORE TECNICO Geom. C Bianchi 11/07/2018 COMMESSA LOTTO FASE I F 1 N 0 1 E	Z Z C L latto Data Lardani	I V 0	ISCIPLINA PR 2 0 7 0	0 2 A	V. Autorizzato Data

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA LOTTO

01

CODIFICA E ZZ CL

DOCUMENTO

IV 02 07 002

REV.

FOGLIO 2 di 114

INDICE

IF1N

1	PREM	IESSA	6
2	NORM	MATIVA E DOCUMENTI DI RIFERIMENTO	7
	2.1 N	IORMATIVE	7
	2.2 E	LABORATI DI RIFERIMENTO	8
3	MATE	RIALI	9
	3.1 C	CALCESTRUZZO PER SOLETTA E GETTI IN OPERA	9
	3.2 C	CALCESTRUZZO PER TRAVI PREFABBRICATE PRECOMPRESSE	10
	3.3 A	CCIAIO PER BARRE DI ARMATURA	11
	3.4 A	CCIAIO PER TREFOLI	11
4	DESC	RIZIONE DELL'OPERA	12
5	EFFE ⁻	TTI GLOBALI - IMPALCATO	14
	5.1 D	DESCRIZIONE DEL MODELLO DI CALCOLO	14
	5.1.1	MODELLO AGLI E.F	17
	5.1.2	MODELLO 0-1, FASE 0	17
	5.1.3	MODELLO 0-2, FASI 0-2 E 1	18
	5.1.4	MODELLO A GRATICCIO, FASI 2 E 3	19
	5.1.5	CARATTERISTICHE GEOMETRICHE TRAVI	20
	5.1.6	MASCHERA DI PRECOMPRESSIONE	23
	5.2 A	NALISI DEI CARICHI	25
	5.2.1	PRECOMPRESSIONE A PERDITE IMMEDIATE AVVENUTE (P-∆P0)	25
	5.2.2	PERMANENTI STRUTTURALI (G1)	26
	5.2.3	PERMANENTI NON STRUTTURALI (G2)	28

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA LOTTO CODIFICA

DOCUMENTO

REV.

FOGLIO

alcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo	IF1N	01	E ZZ CL	IV 02 07 002	Α	3 di 114
			,			

	5.2.4	CADUTE LENTE DI TENSIONE - EFFETTI DEL RITIRO, VISCOSITÀ E RILASSAMENTO (ΔP1)	32
	5.2.5	CARICHI DA TRAFFICO (Q1, Q2)	37
	5.2.6	AZIONI DEL VENTO (Q3)	39
	5.2.7	VARIAZIONI TERMICHE (Q4)	44
	5.2.8	AZIONI DI FRENATURA E ACCELERAZIONE (Q2)	44
	5.2.9	AZIONI SISMICHE (E)	45
	5.3 C	COMBINAZIONI DI CARICO	48
	5.4 R	RIEPILOGO SOLLECITAZIONI	52
	5.4.1	FASE 0-1, CONDIZIONE A VUOTO	52
	5.4.2	FASE 0-2, TRASPORTO	52
	5.4.3	FASE 1, GETTO SOLETTA	52
	5.4.4	FASE 2, CARICHI PERMANENTI	53
	5.4.5	FASE 3, CONDIZIONE DI SERVIZIO	53
6	EFFE.	TTI GLOBALI SU IMPALCATO – VERIFICHE TENSIONALI AGLI SLE	54
	6.1 V	ERIFICHE TENSIONALI	55
	6.1.1	CARATTERISTICHE DELLE SEZIONI	57
	6.1.2	FASE 0-1	57
	6.1.3	FASE 0-2, TRASPORTO	59
	6.1.4	FASE 1	61
	6.1.5	FASE 2	64
	6.1.6	FASE 3	69
	6.2 V	ERIFICHE A FESSURAZIONE	71
7	EFFE	TTI GLOBALI SU IMPALCATO – VERIFICHE AGLI SLU	72
	7.1 S	OLLECITAZIONI A PRESSOFLESSIONE	72
	7.2 V	ERIFICHE DI RESISTENZA	73

E ZZ CL

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI - PROGETTO ESECUTIVO**

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA LOTTO CODIFICA 01

DOCUMENTO IV 02 07 002

REV. FOGLIO

Α

4 di 114

	7.2.	. 1	VERIFICA A PRESSOFLESSIONE	73
-	7.3	S	OLLECITAZIONI A TAGLIO	75
-	7.4	S	OLLECITAZIONI DI TORSIONE	76
-	7.5	VI	ERIFICHE DI RESISTENZA	76
	7.5.	.1	VERIFICA A TAGLIO	76
	7.5.	.2	VERIFICA A TORSIONE	77
	7.5.	.3	VERIFICA A TAGLIO-TORSIONE	78
8	VEF	RIF	ICHE DEI TRASVERSI	79
8	3.1	VI	ERIFICHE TENSIONALI A SLE	79
8	3.2	VI	ERIFICHE SLE A FESSURAZIONE	85
9	VEF	RIF	ICHE SLE DEGLI SPOSTAMENTI	86
10	EFF	FET	TI LOCALI SULL'IMPALCATO – MODELLO TRASVERSALE	87
	10.1	D	ESCRIZIONE DEL MODELLO DI CALCOLO	87
	10.2	Al	NALISI DEI CARICHI	88
	10.2	2.1	PESO PROPRIO (G1)	88
	10.2	2.2	PERMANENTI NON STRUTTURALI (G2)	88
	10.2	2.3	CARICHI DA TRAFFICO	89
	10.2	2.4	AZIONI DA URTO (Q4)	95
	10.2	2.5	AZIONI DEL VENTO (Q5)	96
	10.2	2.6	VARIAZIONI TERMICHE (Q6)	97
	10.3	C	OMBINAZIONI DI CARICO	98
	10.4	R	IEPILOGO SOLLECITAZIONI	100
	10.4	4.1	SOLLECITAZIONI ELEMENTARI	100
	10.4	4.2	SOLLECITAZIONI COMBINATE	102
	10.5	VI	ERIFICHE SOLETTA	104

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 5 di 114

	10.5.1 VERIFICA A FLESSIONE SLU	.104
	10.5.2 VERIFICA A TAGLIO SLU	.107
	10.5.3 VERIFICHE A FESSURAZIONE SLE	.108
11	AZIONI SUGLI APPOGGI	.110
	11.1.1 TABELLA RIASSUNTIVA	.113
12	INCIDENZE	.114

ITINERARIO NAPOLI-BARI
RADDOPPIO TRATTA CANCELLO-BENEVENTO
I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 6 di 114

1 PREMESSA

Nell'ambito dell'Itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Cancello – Benevento - 1° Lotto Funzionale Cancello-Frasso Telesino e Variante alla Linea Roma-Napoli Via Cassino nel Comune di Maddaloni (compreso il Collegamento Merci con lo scalo di Marcianise - Collegamento Benevento-Marcianise) ed Interconnessioni Nord su LS Roma-Napoli via Cassino oggetto di progettazione esecutiva.

Oggetto della presente relazione è il dimensionamento dell'impalcato delle campate adiacenti a quella di scavalco del *Cavalcaferrovia al km* 2+114 di Via Appia_IV02 di luce pari a 25,00m (portata teorica 23,40m).

Nel seguito si procede al calcolo dello stato di sollecitazione ed alle verifiche dei vari elementi costituenti l'impalcato, nei confronti degli *Stati Limite Ultimi* strutturali di flessione e taglio e gli *Stati limite di Esercizio* tensionale e di fessurazione.

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 7 di 114

2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 NORMATIVE

Sono state prese a riferimento le seguenti Normative nazionali ed internazionali vigenti alla data di redazione del presente documento:

- [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- [3] Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- [4] Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- [5] Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- [6] Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- [7] Istruzione RFI DTC INC PO SP IFS 004 Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- [8] Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- [9] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- [10] Eurocodice 2 Progettazione delle strutture di calcestruzzo, Parte 1-1: Regole generali e regole per gli edifici (UNI EN 1992-1-1)
- [11] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

2.2 ELABORATI DI RIFERIMENTO

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 9 di 114

3 MATERIALI

Si riportano di seguito i materiali previsti per la realizzazione delle strutture, suddivisi per elemento costruttivo.

3.1 CALCESTRUZZO PER SOLETTA E GETTI IN OPERA

Classe C32/40		
Rck =	40,00 MPa	Resistenza caratteristica cubica
fck = 0,83 Rck =	33,20 MPa	Resistenza caratteristica cilindrica
fcm = fck +8 =	41,20 MPa	Valore medio resistenza cilindrica
acc =	0,85	Coeff. rid. per carichi di lunga durata
γM =	1,50 -	Coefficiente parziale di sicurezza SLU
$fcd = acc fck/\gamma M =$	18,81 MPa	Resistenza di progetto
$fctm = 0,3 fck^{(2/3)} =$	3,10 MPa	Resistenza media a trazione semplice
fcfm = 1,2 fctm =	3,72 MPa	Resistenza media a trazione per flessione
fctk = 0,7 fctm =	2,17 MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma c = 0,60 \text{ fck} =$	19,92 MPa	Tensione limite in esercizio in comb. rara (rif. §4.1.2.2.5.1 [1])
σc = 0,45 fck =	14,94 MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §4.1.2.2.5.1 [1])
σt = fctm/1,2 =	2,58 MPa	Tensione limite di trazione per formazione delle fessure (rif. §4.1.2.2.4.1 [1])
Ecm = 22000 (fcm/10) ^(0,3) =	33643,00 MPa	Modulo elastico di progetto
v =	0,20	Coefficiente di Poisson
Gc = Ecm /(2(1+v))=	14018,00 MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Debolmente a	ggressive
Classe di esposizione =	XC4	
C =	4,00 cm	Copriferro minimo
W =	0,20 mm	Apertura massima fessure in esercizio in comb. frequente (rif. §2.2.2 [5])

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA LOTTO CODIFICA

IF1N 01 E ZZ CL

DOCUMENTO

IV 02 07 002

REV. FOGLIO

A 10 di 114

3.2 CALCESTRUZZO PER TRAVI PREFABBRICATE PRECOMPRESSE

ITINERA

Classe C45/55			
Rck =	55,00	MPa	Resistenza caratteristica cubica
fck = 0,83 Rck =	45,65	MPa	Resistenza caratteristica cilindrica
fcm = fck +8 =	53,65	MPa	Valore medio resistenza cilindrica
acc =	0,85		Coeff. rid. per carichi di lunga durata
γM =	1,50	-	Coefficiente parziale di sicurezza SLU
$fcd = acc fck/\gamma M =$	25,87	MPa	Resistenza di progetto
fctm = 0,3 fck $^{(2/3)}$ =	3,83	MPa	Resistenza media a trazione semplice
fcfm = 1,2 fctm =	4,60	MPa	Resistenza media a trazione per flessione
fctk = 0,7 fctm =	2,68	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
σcc = 0,60 fck =	27,39	MPa	Tensione limite in esercizio in comb. rara (rif. §4.1.2.2.5.1 [1])
σcc = 0,45 fck =	20,54	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §4.1.2.2.5.1 [1])
σct = 0,35 fctk =	0,94	MPa	Tensione limite di trazione in esercizio in comb. rara (rif. §2.2.1 [5])
σct = 0,045 fck =	2,05	MPa	Tens. principale di traz. nella fibra baric. in esercizio in comb. rara (rif. §2.2.1 [5])
fcmj = βcc fcm =	38,60	MPa	Valore medio res. cilindrica al tempo j
fckj = fcmj - 8 =	30,60	MPa	Valore caratteristico res. cilindrica al tempo j
fctmj = 0,3 fckj $^{(2/3)}$ =	2,94	MPa	Resistenza media a trazione semplice al tempo j
fctkj = 0,7 fctmj =	2,05	MPa	Valore caratteristico res. a trazione (frattile 5%) al tempo j
σ cc,iniz = 0,70 fckj =	21,42	MPa	Tensione limite iniziale (rif. §4.1.8.1.4 [1]) al tempo j
σ ct,iniz = 0,35 fctkj =	0,72	MPa	Tensione limite di trazione (rif. §2.2.1 [5]) al tempo j
Ecm = $22000 \text{ (fcm/10)}^{(0,3)}$	36416,00	MPa	Modulo elastico di progetto
v =	0,20		Coefficiente di Poisson
Gc = Ecm /(2(1+ v)=	15173,00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =			Debolmente aggressive
Classe di esposizione =			XC4
C =	3,50	cm	Copriferro minimo

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESIN

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 11 di 114

3.3 ACCIAIO PER BARRE DI ARMATURA

B450C	

fyk ≥	450,00 MPa	Tensione caratteristica di snervamento
ftk ≥	540,00 MPa	Tensione caratteristica di rottura
(ft/fy) _k ≥	1,15	
$(ft/fy)_k <$	1,35	
γs=	1,15 -	Coefficiente parziale di sicurezza SLU
$fyd = fyk/\gamma s =$	391,30 MPa	Tensione caratteristica di snervamento
Es =	210000,00 MPa	Modulo elastico di progetto
εyd =	0,20 %	Deformazione di progetto a snervamento
$\epsilon uk = (Agt)_k$	7,50 %	Deformazione caratteristica ultima
σ s = 0,75 fyk =	337,50 MPa	Tensione limite in esercizio, comb. rara (rif. §1.8.3.2.1 [3])

3.4 ACCIAIO PER TREFOLI

|--|

fptk ≥	1860,00 MPa	Tensione caratteristica di rottura
fp(1)k ≥	1670,00 MPa	Tensione caratteristica all'1% di deformazione totale
fyk = fp(1)k =	1670,00 -	Tensione caratteristica di snervamento
γs=	1,15 -	Coefficiente parziale di sicurezza SLU
fpyd = fyk/γs=	1452,00 MPa	Tensione caratteristica di snervamento
Es =	195000,00 MPa	Modulo elastico di progetto
εyd =	0,74 %	Deformazione di progetto a snervamento
ϵ uk =(Agt) _k	3,50 %	Deformazione caratteristica ultima
σ s = 0,80 fyk =	1336,00 MPa	Tensione limite in esercizio, comb. rara (rif. §4.1.2.2.5.1 [1])
σs1 = 0,90 fp(1)k =	1503,00 MPa	Tensione limite al tiro (rif. §4.1.8.1.5 [1])
σ s2 = 0,80 fptk =	1488,00 MPa	Tensione limite al tiro (rif. §4.1.8.1.5 [1])
σ s,iniz = min(σ s1; σ s2) =	1488,00 MPa	Tensione limite al tiro (rif. §4.1.8.1.5 [1])

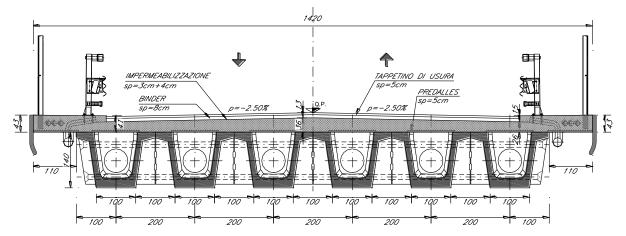
I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 12 di 114

4 DESCRIZIONE DELL'OPERA

Il *Cavalcaferrovia al km 2+113,408*, progettato per consentire a *via Appia* di sovrappassare la linea ferroviaria, è realizzato con tre campate isostatiche, con luce della campata di scavalco pari a 37m e luce delle campate adiacenti pari a 25,00 m, per uno sviluppo complessivo di 87 m.


La larghezza degli impalcati è pari a 14,20 m, tale da consentire la disposizione di due corsie di marcia da 3,75 m, banchine laterali da 1,50 m, per una larghezza bitumata totale di 10,50 m e due marciapiedi da 1,85 m.

La prima tipologia di impalcato è realizzata con 6 cassoncini accostati in c.a.p. e soletta gettata in opera, solidarizzate mediante traversi post-tesi. La luce è pari a 25,00 m misurata in asse ai giunti. La lunghezza complessiva delle travi prefabbricate è pari a 24,40 m e la luce tra gli appoggi è pari a 23,40 m.

La seconda tipologia di impalcato è realizzata con 6 travi in acciaio solidarizzate mediante traversi metallici e soletta gettata in opera. La luce è pari a 37 m misurata in asse ai giunti. La luce tra gli appoggi è pari a 34,70 m.

Le pile sono realizzate in c.a.o. gettato in opera e hanno altezze fusto pari a 6,80m. Presentano un fusto a sezione rettangolare di dimensioni esterne 2,30mx7,00m con raccordi di raggio pari ad 1m. Le fondazioni sono realizzate con pali trivellati del diametro Φ 1500 mm.

Oggetto della presente relazione è il dimensionamento dell'impalcato della campata adiacente a quella di scavalco, di luce in asse ai giunti pari a 25,00m.

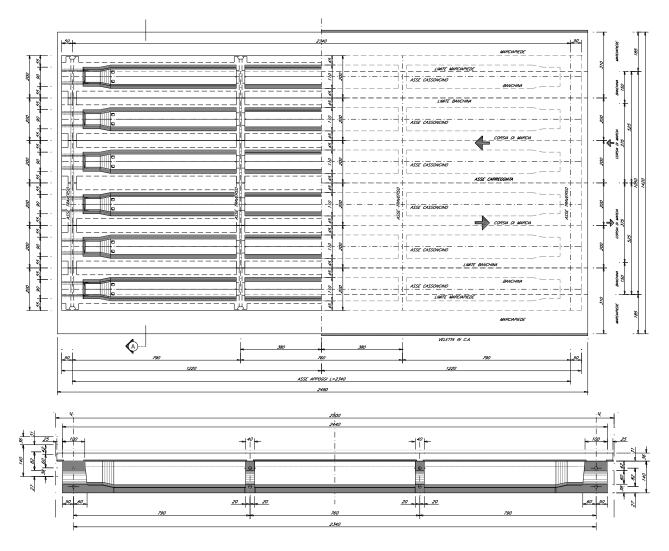


Figura 1 – Sezione, pianta e vista dell'impalcato del Cavalcaferrovia

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 14 di 114

5 EFFETTI GLOBALI - IMPALCATO

5.1 DESCRIZIONE DEL MODELLO DI CALCOLO

Per il calcolo delle sollecitazioni sui vari elementi costituenti l'impalcato si considerano diverse fasi dell'opera, a ciascuna delle quali corrispondono diversi carichi agenti, schemi statici di calcolo e sezioni resistenti, i quali vengono riassunti di seguito:

Fase 0-1: Taglio trefoli

In questa fase si verifica la condizione della trave prefabbricata in stabilimento al momento del taglio dei trefoli, secondo le seguenti ipotesi:

- ✓ carichi agenti:
 - azione di precompressione alla tesatura, scontata delle perdite immediate di tensione per accorciamento elastico del calcestruzzo (P-ΔP0);
 - peso proprio della trave prefabbricata (G1-01);
- ✓ schema di calcolo: trave appoggiata sui lembi estremi della trave (luce di calcolo Lc = lunghezza trave);
- ✓ sezione resistente: sola trave prefabbricata.

Fase 0-2: Trasporto

In questa fase si verifica la condizione della trave prefabbricata durante il trasporto, secondo le seguenti ipotesi:

- ✓ carichi agenti:
 - azione di precompressione alla tesatura, scontata delle perdite immediate di tensione per accorciamento elastico del calcestruzzo (P-ΔP0);
 - peso proprio della trave prefabbricata comprensiva di effetti dinamici, valutati come una variazione del 15% del peso (G1-02);
- ✓ schema di calcolo: trave appoggiata in corrispondenza dei punti di sollevamento (luce di calcolo Lc = interasse appoggi);
- ✓ sezione resistente: sola trave prefabbricata.

Fase 0-3: Posa in opera

In questa fase si verifica la condizione della trave prefabbricata appoggiata sui gli appoggi definitivi, secondo le seguenti ipotesi:

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 15 di 114

- ✓ carichi agenti:
 - azione di precompressione alla tesatura, scontata delle perdite immediate di tensione per accorciamento elastico del calcestruzzo (P-ΔP0);
 - peso proprio della trave prefabbricata (G1-1);
- ✓ schema di calcolo: trave appoggiata in corrispondenza degli appoggi definitivi (luce di calcolo Lc = interasse appoggi);
- ✓ sezione resistente: sola trave prefabbricata.

Fase 1: Getto della soletta

In questa fase si verifica la condizione della trave prefabbricata al getto in opera della soletta di impalcato, secondo le ipotesi elencate di seguito. Lo stato tensionale così calcolato si somma allo stato tensionale preesistente nella precedente *Fase 0-3*.

- ✓ carichi agenti:
 - peso proprio della soletta gettata in opera (G1-2);
- ✓ schema di calcolo: trave appoggiata in corrispondenza degli appoggi definitivi (luce di calcolo Lc = interasse appoggi);
- ✓ sezione resistente: sola trave prefabbricata;

A vantaggio di sicurezza, in questa fase si considerano le travi prefabbricate non solidarizzate. L'entità del carico spettante alla trave di bordo risulta quindi stimato cautelativamente con il criterio delle aree di influenza e non considerando invece una ripartizione uniforme del carico tra tutte le travi.

Fase 2: Condizione di servizio (a breve termine)

In questa fase si verifica la condizione delle travi prefabbricate solidarizzate dai trasversi e dalla soletta gettata in opera, soggette all'effetto dei carichi permanenti non strutturali e accidentali, secondo le ipotesi elencate di seguito. Lo stato tensionale così calcolato si somma allo stato tensionale pre-esistente nella precedente <u>Fase 1</u>.

- ✓ carichi agenti:
 - permanenti non strutturali (G2);
 - cadute lente per rilassamento ritiro e viscosità completamente scontate (ΔP1);
 - carichi accidentali da traffico (Q1, Q2), da vento (Q3) e da variazioni termiche (Q4);
- ✓ schema di calcolo: schema a graticcio, calcolato mediante modello agli E.F.;
- ✓ sezione resistente: sezione mista c.a.p. c.a. costituita da trave prefabbricata con soletta collaborante, con caratteristiche a breve termine (E cls soletta = E(t=0));

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 16 di 114

Fase 3: Condizione a lungo termine

In questa fase si verifica la condizione delle travi prefabbricate solidarizzate dai trasversi e dalla soletta gettata in opera soggette agli effetti lenti di ritiro differenziale e viscosità, secondo le ipotesi elencate di seguito. Lo stato tensionale così calcolato si somma allo stato tensionale pre-esistente nella precedente <u>Fase</u> <u>2</u>.

- ✓ carichi agenti:
 - effetti lenti di ritiro differenziale e viscosità (Q5);
- ✓ schema di calcolo: trave appoggiata in corrispondenza degli appoggi definitivi (luce di calcolo Lc = interasse appoggi); data l'isostaticità del sistema gli effetti del ritiro e viscosità non producono sollecitazioni esterne sugli elementi, ma si traducono esclusivamente in una redistribuzione di tensioni tra trave e soletta.
- ✓ sezione resistente: sezione mista c.a.p. c.a. costituita da trave prefabbricata con soletta collaborante, con caratteristiche a lungo termine (E cls soletta = E ridotto per effetti viscosi E/(1+φ));

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 17 di 114

5.1.1 MODELLO AGLI E.F.

Il calcolo delle sollecitazioni sui vari elementi della struttura nelle condizioni di esercizio viene eseguito su un modello a graticcio, realizzato mediante l'ausilio del programma di calcolo agli elementi finiti *SAP2000* (*CSI*, versione v15.1.0).

Il modello agli elementi finiti è costituito da elementi di tipo *frame* che modellano le travi con sezione composta (trave in c.a.p. più soletta in c.a. collaborante omogeneizzata), i trasversi, la soletta nella sua funzione di ripartizione trasversale, discretizzata in strisce di 1,98m. Le caratteristiche geometriche e meccaniche assegnate a ciascun elemento sono state definite sulla base delle reali dimensioni e dei materiali che compongono l'elemento stesso.

Il modello è inoltre costituito da *frame* che modellano le "corsie convenzionali" dello *schema di carico 1*,così come definite dal §5.1.3.3.5 del DM2008 (rif.[1]). Tali frame sono posizionati in asse a ciascuna delle corsie individuate, posizionate nella configurazione atta a massimizzare le sollecitazioni sui diversi elementi oggetto di verifica, e sono necessari a definire il *load case* relativo i carichi viaggianti.

Il modello è inoltre costituito da *nodi* posizionati in corrispondenza di ciascuno degli apparecchi d'appoggio, vincolati in modo tale da riprodurre l'effettivo grado di vincolo offerto da ciascun dispositivo.

Il sistema di riferimento è definito secondo nel seguente modo:

✓ asse X: asse longitudinale;

✓ asse Y: asse trasversale;

✓ asse Z: asse verticale.

Le compressioni sono assunte con segno negativo.

5.1.2 MODELLO 0-1, FASE 0

Il modello replica la trave prefabbricata, di lunghezza pari a 24.4m, appoggiato alle estremità della trave stessa.

I carichi sono relativi al peso proprio della singola trave (applicato come carico distribuito, differenziando tra sezione ringrossata, sezione di transizione e sezione corrente della trave) e dei trasversi (applicati come carichi concentrati alle progressive corrispondenti al loro reale posizionamento).

Di seguito si riporta una vista del modello di calcolo e dei carichi applicati.

Figura 2 - modello di calcolo f.e.m. fase 0 - carico distribuito dovuto al peso proprio della trave

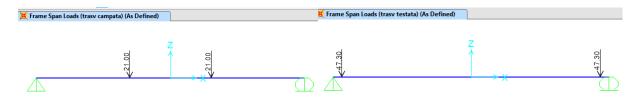


Figura 3 - modello di calcolo f.e.m. fase 0 - carichi concentrati dovuti al peso dei trasversi

5.1.3 MODELLO 0-2, FASI 0-2 E 1

Il modello replica la trave prefabbricata, di lunghezza pari a 24.4m, appoggiato in corrispondenza degli appoggi previsti per l'impalcato (L=23.4m).

Oltre al peso proprio degli elementi prefabbricati, viene applicato il carico relativo al getto della soletta come carico uniforme. La valutazione del peso della soletta è effettuata secondo il criterio di area di influenza. Per semplicità, viene valutato solamente l'elemento trave di bordo, che è quello maggiormente sollecitato.

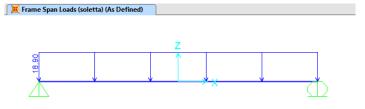


Figura 4 - modello di calcolo f.e.m. fase 1 - carico distribuito dovuto al peso proprio della soletta

5.1.4 MODELLO A GRATICCIO, FASI 2 E 3

Il modello replica l'impalcato, comprensivo di travi, traversi e soletta, appoggiato in corrispondenza degli appoggi previsti per l'impalcato. I carichi applicati sono quelli relativi ai sovraccarichi permanenti portati e ai carichi di servizio (vento, termica e traffico), valutati in coerenza con quanto definito nell'analisi dei carichi.

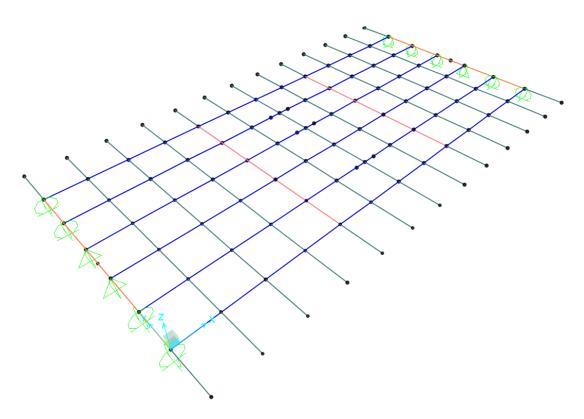


Figura 5 - Vista del modello 3D agli elementi finiti

5.1.5 CARATTERISTICHE GEOMETRICHE TRAVI

Di seguito si riepilogano le caratteristiche geometriche delle travi utilizzate nel paragrafi successivi per la determinazione delle azioni, delle sollecitazioni e dello stato tensionale delle travi stesse.

CARATTERISTICHE GEOMETRICHE CASSONCINO

		u.m.	Sezione Testata	Sezione Transizione	Sezione Corrente
Nome sezione	SEZ	-	SEZ_1	SEZ_2	SEZ_3
Altezza sezione	ht	mm	1400	1400	1400
Spessore anima	s anima	mm	140	140	240
Perimetro esposto	р	mm	8267	0	0
Area di calcestruzzo	Ac	mm2	1.00E+06	7.00E+05	7.00E+05
Ordinata baricentrica	уд	mm	665	647	647
Momento di inerzia	Jc	mm4	2.51E+11	2.06E+11	2.06E+11
Modulo resistente estradosso	Ws	mm3	-3.41E+08	-2.74E+08	-2.74E+08
Modulo resistente intradosso	Wi	mm3	3.77E+08	3.18E+08	3.18E+08
Modulo resistente trefolo intrad.	Wp	mm3	8.63E+08	7.55E+08	5.65E+08

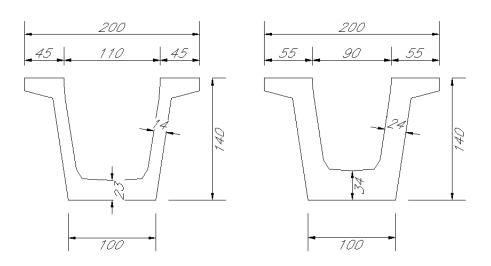
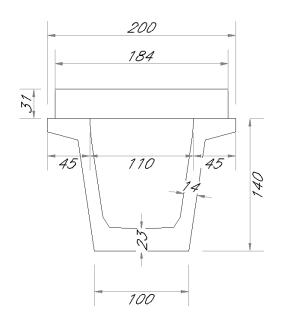



Figura 6 - Sezioni in Fase 1 (cassoncino): sezione corrente e sezione di transizione - sezione di testata

CARATTERISTICHE GEOMETRICHE SEZIONE COMPOSTA - BREVE TERMINE

		u.m.	Sezione Testata	Sezione Transizione	Sezione Corrente
Nome sezione	SEZ	-	SEZ_1	SEZ_2	SEZ_3
Altezza sezione	ht	mm	1400	1400	1400
Altezza media soletta gettata	hs	mm	260	260	260
Altezza predalle	h predalla	mm	50	50	50
Spessore anime cassone	s anima	mm	140	140	240
Area di calcestruzzo	Ac	mm2	1.50E+06	1.20E+06	1.22E+06
Ordinata baricentrica	уд	mm	951	1012	1002
Momento di inerzia	Jc	mm4	5.61E+11	4.95E+11	4.77E+11
Modulo res. estradosso soletta	Wss	mm3	-7.40E+08	-7.09E+08	-6.73E+08
Modulo res. intradosso soletta	Wsi	mm3	-1.13E+09	-1.13E+09	-1.06E+09
Modulo res. estradosso trave	Wts	mm3	-1.25E+09	-1.27E+09	-1.20E+09
Modulo res. intradosso trave	Wti	mm3	5.90E+08	4.89E+08	4.76E+08
Modulo resistente trefolo intrad.	Wp	mm3	9.73E+08	7.76E+08	6.63E+08

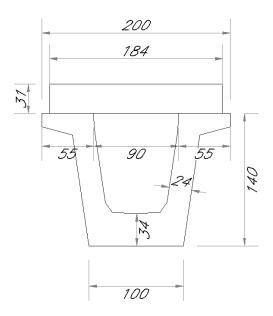


Figura 7 – Sezioni in Fase 2 (cassoncino con soletta omogeneizzata a b.t.): sezione corrente e sezione di transizione - sezione di testata

CARATTERISTICHE GEOMETRICHE SEZIONE COMPOSTA - LUNGO TERMINE

		u.m.	Sezione Testata	Sezione Transizione	Sezione Corrente
Nome sezione	SEZ	-	SEZ_1	SEZ_2	SEZ_3
Altezza sezione	ht	mm	1400	1400	1400
Altezza media soletta gettata	hs	mm	260	260	260
Altezza predalle	h predalla	mm	50	50	50
Spessore anime cassone	s anima	mm	140	140	240
Area di calcestruzzo	Ac	mm2	1.20E+06	9.04E+05	9.17E+05
Ordinata baricentrica	уд	mm	794	823	813
Momento di inerzia	Jc	mm4	4.12E+11	3.64E+11	3.42E+11
Modulo res. estradosso soletta	Wss	mm3	-4.50E+08	-4.11E+08	-3.81E+08
Modulo res. intradosso soletta	Wsi	mm3	-6.28E+08	-5.82E+08	-5.37E+08
Modulo res. estradosso trave	Ws	mm3	-6.80E+08	-6.32E+08	-5.83E+08
Modulo res. intradosso trave	Wi	mm3	5.18E+08	4.43E+08	4.21E+08
Modulo resistente trefolo intrad.	Wp	mm3	9.80E+08	8.11E+08	6.45E+08

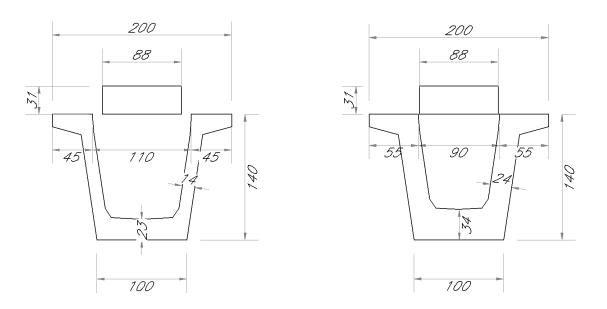


Figura 8 – Sezioni in Fase 3 (cassoncino con soletta omogeneizzata a l.t.): sezione corrente e sezione di transizione - sezione di testata

5.1.6 MASCHERA DI PRECOMPRESSIONE

5.1.6.1 SEZIONE 1 – APPOGGIO (X = 0.5)

		Atr(0.6")	1.39	cm2	
strato	n.tr	у	Ар	S	Nprec
1	2	130.0	2.78	361.4	-389.2
2	2	94.0	2.78	261.32	-389.2
3	2	88.0	2.78	244.64	-389.2
4	2	82.0	2.78	227.96	-389.2
5	2	76.0	2.78	211.28	-389.2
6	2	40.0	2.78	111.2	-389.2
7	8	16.0	11.12	177.92	-1556.8
8	8	11.0	11.12	122.32	-1556.8
9	6	6.0	8.34	50.04	-1167.6
nr trefoli	3	4			
Sx	1768.0	8 cm3		1768.1	-6616.4
Ар	47.2	6 cm2			
ур	37.4	1 cm			

5.1.6.2 SEZIONE 2 - TRANSIZIONE (X = 1.8)

		Atr(0.6")	1.39	cm2	
strato	n.tr	у	Ар	S	Nprec
1	2	130.0	2.78	361.4	-389.2
2	2	94.0	2.78	261.32	-389.2
3	2	88.0	2.78	244.64	-389.2
4	2	82.0	2.78	227.96	-389.2
5	2	76.0	2.78	211.28	-389.2
6	2	40.0	2.78	111.2	-389.2
7	8	16.0	11.12	177.92	-1556.8
8	8	11.0	11.12	122.32	-1556.8
9	6	6.0	8.34	50.04	-1167.6
nr trefoli	3	4			
Sx	1768.0	8 cm3		1768.1	-6616.4
Ар	47.2	6 cm2			
ур	37.4	1 cm			

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 24 di 114

5.1.6.3 SEZIONE 3 - MEZZERIA (X = 11.7)

		Atr(0.6")	1.39	cm2	
strato	n.tr	у	Ар	S	Nprec
1	2	130.0	2.78	361.4	-389.2
2	2	94.0	2.78	261.32	-389.2
3	2	88.0	2.78	244.64	-389.2
4	2	82.0	2.78	227.96	-389.2
5	2	76.0	2.78	211.28	-389.2
6	2	40.0	2.78	111.2	-389.2
7	14	16.0	19.46	311.36	-2724.4
8	14	11.0	19.46	214.06	-2724.4
9	12	6.0	16.68	100.08	-2335.2
nr trefoli	5	2			
Sx	2043.	3 cm3		2043.3	-10119.2
Ар	72.2	8 cm2			
ур	28.2	7 cm			

5.2 ANALISI DEI CARICHI

Di seguito si riporta l'analisi dei carichi agenti sull'impalcato nelle diverse fasi analizzate.

5.2.1 Precompressione a perdite immediate avvenute (P-∆P0)

Le azioni di precompressione, insieme alle perdite immediate per accorciamento elastico negli elementi precompressi a cavi pretesi, si manifestano al momento del taglio dei trefoli.

Le perdite immediate per accorciamento elastico vengono valutate mediante la seguente espressione (Leonardth - libro V §16.1.3, (16.12)):

$$V_o = V^{(o)} [1 - n \cdot \mu_i - \frac{n A_z y_{iz}^2}{J_i}]$$

Dove:

Vo = forza di precompressione attiva

Az = area dei trefoli

An = sezione netta calcestruzzo

y_{jz} = distanza tra baricentro della sezione in cls e baricentro del cavo risultante

$$A_i = A_n + n \cdot A_z;$$

$$\mu_{\rm n} = \frac{A_{\rm z}}{A_{\rm n}}$$
 e $\mu_{\rm i} = \frac{A_{\rm z}}{A_{\rm i}} = \frac{\mu_{\rm n}}{1 + n \mu_{\rm n}}$

PRETENSIONE TREFOLI		u.m.	Sezione 3 Corrente	Sezione 2 Transizione	Sezione 1 Testata
Tensione al tiro trefoli	σp0	MPa	1400	1400	1400
Sforzo normale al tiro trefoli	N0	kN	-10119	-6616	-6616
PERDITE IMMEDIATE PER ACC	ORCIAMENTO				
Coeff. Omogeneizzazione	np	-	5,37	5,37	5,37
Perdite elastiche di tensione	Δσρ0	MPa	-104,3	-44.8	-44.8
Variaz. sforzo normale	Δ NO	kN	-754	-212	-212

5.2.2 Permanenti strutturali (G1)

I carichi permanenti strutturali sono costituiti dal peso proprio delle travi, della soletta e dei trasversi e vengono calcolati considerando il peso unitario del calcestruzzo armato pari a 25 kN/m3 e le caratteristiche geometriche di ciascun elemento. I carichi così calcolati vengono applicati su uno schema di trave semplicemente appoggiata.

5.2.2.1 PESO PROPRIO TRAVE - TAGLIO TREFOLI (G1-01)

Il peso proprio entra in carico al momento del taglio trefoli, nel momento in cui la trave si deforma per effetto delle azioni della precompressione. La luce di calcolo in questa fase si assume pari alla lunghezza della trave.

TRAVE			
Area sez. corrente	A =	0,70	m2
Area sez. ringrossata	Aringr =	1,00	m2
Peso unitario del cls	γcls =	25,00	kN/m3
Peso linearmente distribuito su ciascuna trave	p =	17,50	kN/m
Lunghezza campata di calcolo	L =	25,00	m
TRASVERSI CAMPATA			
Volume trasverso (singola trave)	V1c =	0,840	m3
Peso unitario del cls	γcls =	25,00	kN/m3
Peso trasverso	P =	21,00	kN
Ascissa di applicazione del carico	x =	8,70	m
TRASVERSI DI APPOGGIO			
Volume trasverso (singola trave)	V1a =	1,891	m3
Peso unitario del cls	γcls =	25,00	kN/m3
Peso trasverso	P =	47,28	kN
Ascissa di applicazione del carico	x =	0,80	m

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 27 di 114

5.2.2.2 Peso proprio trave - trasporto (G1-02)

Per le fasi di trasporto si assume una variazione nel peso proprio dovuta agli effetti dinamici pari al ±15%. La luce di calcolo in questa fase si assume pari alla distanza dei punti di sollevamento (nel caso in questione pari all'interasse appoggi).

TRAVE			
Area sez. corrente	A =	0,700	m2
Peso unitario del cls	γcls =	25,00	kN/m3
Peso linearmente distribuito su ciascuna trave	p =	14,87	kN/m
Lunghezza campata di calcolo	L =	23,40	m
TRASVERSI DI CAMPATA			
Volume trasverso (singola trave)	V1c =	0,840	m3
Peso unitario del cls	γcls =	25,00	kN/m3
Peso trasverso	P =	17,85	kN
Ascissa di applicazione del carico	x =	7,90	m
TRASVERSI DI APPOGGIO			
Volume trasverso (singola trave)	V1a =	1,891	m3
Peso unitario del cls	γcls =	25,00	kN/m3
Peso trasverso	P =	40,19	kN
Ascissa di applicazione del carico	x =	0,00	m

5.2.2.3 PESO PROPRIO TRAVE - POSA IN OPERA (G1-1)

La luce di calcolo in questa fase si assume pari all'interasse appoggi.

TRAVE		
Area sez. corrente	A =	0,700 m2
Area sez. ringrossata	Aringr =	1,00 m2
Peso unitario del cls	γcls =	25,00 kN/m3
Peso linearmente distribuito su ciascuna trave	p =	17,50 kN/m
Lunghezza campata di calcolo	L =	23,40 m

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 28 di 114

TRASVERSI DI CAMPATA

Volume trasverso (singola trave)	V1c =	0,840 m3
Peso unitario del cls	γcls =	25,00 kN/m3
Peso trasverso	P =	21,00 kN
Ascissa di applicazione del carico	x =	7.90 m

TRASVERSI DI APPOGGIO

TRASVERSI DI APPOGGIO		
Volume trasverso (singola trave)	V1a =	1,891 m3
Peso unitario del cls	γcls =	25,00 kN/m3
Peso trasverso	P =	47,28 kN
Ascissa di applicazione del carico	x =	0,00 m

5.2.2.4 PESO PROPRIO GETTI IN OPERA (G1-2)

La luce di calcolo in questa fase si assume pari all'interasse appoggi.

SOLETTA

Area soletta (comprensiva di predalle)	A =	4,842	m2
Peso unitario del cls	γcls =	25,00	kN/m3
Peso linearmente distribuito su ciascun elemento trasversale	p =	18,90	kN/m
Lunghezza campata di calcolo	L =	23,40	m

5.2.3 PERMANENTI NON STRUTTURALI (G2)

I carichi permanenti non strutturali sono costituiti dal peso dei cordoli, delle velette, della pavimentazione, delle barriere di sicurezza, delle reti di protezione, degli impianti.

Tali permanenti non strutturali si considerano agenti in Fase 2 sul modello con soletta e trasversi collaboranti, dunque vengono applicati al modello a graticcio, secondo i criteri esposti nel §5.1.

CORDOLI

Peso unitario	γ =	25,00	kN/m3
Spessore	s =	0,16	m

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

IF1N	01	E ZZ CL	IV 02 07 002	Δ	29 di 114
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Peso distribuito su ogni sbalzo trasversale Interasse frame trasversali soletta	p = i =	7,90 1,975	kN/m2 m
PAVIMENTAZIONE			
Peso unitario	γ =	20,00	kN/m3
Larghezza trasversale pavimentazione	b =	10,50	m
Spessore	s =	0,13	m
Interasse frame trasversali soletta	i =	1,975	m
Peso distribuito ogni elemento frame trasversale	p =	5,10	kN/m
VELETTA Peso unitario Area sezione Peso distribuito sui frame fittizi velette	γ = A = p =	25,00 0,1 2,25	kN/m3 m2 kN/m
BARRIERE DI SICUREZZA, RETI E IMPIANTI Peso linearmente distribuito sui frame fittizi barriere Peso linearmente distribuito sui frame fittizi reti Peso linearmente distribuito sui frame fittizi impanti	p = p = p =	2,00 2,50 1,00	kN/m kN/m kN/m

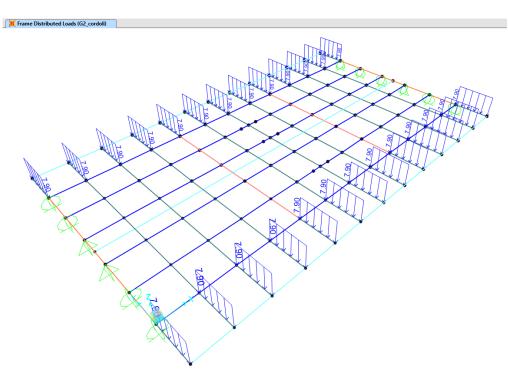


Figura 9 – Applicazione al modello agli EF dei carichi permanenti non strutturali G2_cordoli

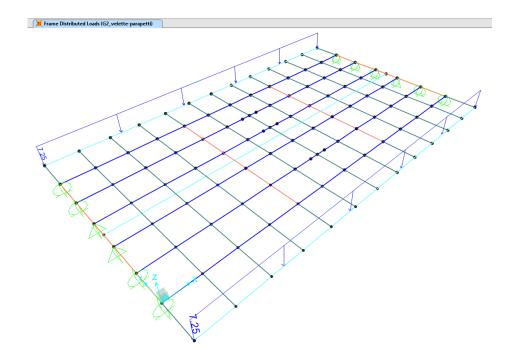


Figura 10 – Applicazione al modello agli EF dei carichi permanenti non strutturali G2_velette, parapetti, impianti

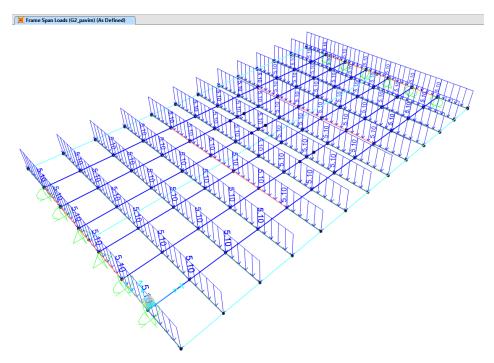


Figura 11- Applicazione al modello agli EF dei carichi permanenti non strutturali G2_pavimentazione

5.2.4 CADUTE LENTE DI TENSIONE - EFFETTI DEL RITIRO, VISCOSITÀ E RILASSAMENTO (\triangle P1)

Le cadute lente di tensione sono prodotte dagli effetti combinati di viscosità, ritiro e rilassamento. Per il calcolo dell'entità della caduta di tensione nei trefoli si utilizza l'espressione del §5.10.6 dell'EC2-1-1 (rif.[10]) che prevede una formulazione che tiene conto dell'interazione reciproca dei fenomeni lenti.

$$\Delta P_{\text{c+s+r}} = A_{\text{p}} \Delta \sigma_{\text{p,c+s+r}} = A_{\text{p}} \frac{\varepsilon_{\text{cs}} E_{\text{p}} + 0.8 \Delta \sigma_{\text{pr}} + \frac{E_{\text{p}}}{E_{\text{cm}}} \varphi(t, t_0) \cdot \sigma_{\text{c,Qp}}}{1 + \frac{E_{\text{p}}}{E_{\text{cm}}} \frac{A_{\text{p}}}{A_{\text{c}}} \left(1 + \frac{A_{\text{c}}}{I_{\text{c}}} z_{\text{cp}}^2\right) [1 + 0.8 \varphi(t, t_0)]}$$

Figura 12 - Formulazione per gli effetti lenti combinati (espressione 5.46 dell'EC2-1-1 (rif.[10]))

dove:	
Δσp,c+s+r	è il valore assoluto della variazione di tensione nelle armature dovuta a viscosità, ritiro e
	rilassamento alla posizione x, all'istante t;
εcs	è la deformazione per ritiro in valore assoluto;
Δσpr	è il valore assoluto della variazione di tensione nelle armature alla posizione x, al tempo t, per
	effetto del rilassamento dell'acciaio da precompressione. Esso è determinato per una
	tensione pari a quella dovuta alla precompressione iniziale e alle azioni quasi-permanenti;
φ (t,t0)	è il coefficiente di viscosità all'istante t con applicazione del carico all'istante t0;
σcQP	è la tensione nel calcestruzzo adiacente alle armature, dovuta a peso proprio,
	precompressione iniziale e ad altre azioni quasi-permanenti a seconda della fase costruttiva
	in esame;
Ic	è il momento d'inerzia della sezione di calcestruzzo;
zcp	è la distanza tra il baricentro della sezione di calcestruzzo e le armature.

5.2.4.1 RITIRO

Di seguito si valutano le deformazioni da ritiro della trave, sulla base della sua geometria, nell'ipotesi di una umidità relativa pari al 75%. Per la valutazione del ritiro è stata considerata la geometria della sezione corrente ed è stato considerato cautelativamente come istante iniziale il giorno del getto delle travi (t=0).

Ritiro della trave in C.A.P.

Ritiro (EN19	92-1-1 §3.1.4)		
ε _{cs}	3.24E-04	-	Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$
Ritiro da ess			
Classe	C45/55		Classe del calcestruzzo
R _{ck} =	55	MPa	resistenza caratteristica cubica
f _{ck} =	45	MPa	resistenza caratteristica cilindrica
f _{cm} =	53	MPa	Valor medio resistenza cilindrica
f _{cm,0} =	10	MPa	
Cem.Tipo	N	-	CEM 32,5 R, CEM 42,5 N
$\alpha_{ds1} =$	4		
$\alpha_{ds2} =$	0.12		
RH =	75	%	Umidità Relativa
$RH_0 =$	100	%	
β _{RH} =	0.90		Coeff. per umidità relativa
$\epsilon_{\rm cd,0} =$	2.66E-04	-	Deformazione da ritiro per essiccamento non contrastato
A _c =	700000	mmq	Area sez trasversale
u =	8267	mm .	Perimetro a contatto con l'atmosfera
h _{0 =}	169	mm	Dimensione fittizia dell'elemento
k _{h=}	0.90		Coeff. per dimensione fittizia
t =	10000	gg	Età del calcestruzzo, al momento considrato
t s =	0	gg	Età del calcestruzzo, all'inizio del ritiro per essiccamento
$\beta_{ds}(t,t_s)$	0.991		·
$\varepsilon_{\rm cd} =$	2.36E-04		Deformazione da ritiro per essiccamento
Ritiro autoge	eno		
$\varepsilon_{\rm ca}(?) =$	0.0000875	_	Deformazione da ritiro autogeno per t=?
t =	10000	gg	Delormatione de Helo delogeno per t
$\beta_{as}(t) =$	1.00	-	
$\varepsilon_{ca}(t) =$	8.75E-05	_	Deformazione da ritiro autogeno

Ritiro della soletta gettata

Ritiro (EN199	2-1-1 §3.1.4)		
E cs €	2.63E-04	-	Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$
Ritiro da essi	iccamento		
Classe	C32/40		Classe del calcestruzzo
R _{ck} =	40	MPa	resistenza caratteristica cubica
f _{ck} =	32	MPa	resistenza caratteristica cilindrica
f _{crn} =	40	MPa	Valor medio resistenza cilindrica
f _{crn,0} =	10	MPa	
Cem.Tipo	N	_	CEM 32,5 R, CEM 42,5 N
$\alpha_{ds1} =$	4		
$\alpha_{ds2} =$	0.12		
RH =	75	%	Umidità Relativa
$RH_0 =$	100	%	
β _{RH} =	0.90		Coeff. per umidità relativa
ε _{cd,0} =	3.11E-04	-	Deformazione da ritiro per essiccamento non contrastato
$A_c =$	3692000	mmq	Area sez trasversale
u =	14700	mm	Perimetro a contatto con l'atmosfera
$h_{0} =$	502	mm	Dimensione fittizia dell'elemento
$k_{h=}$	0.7		Coeff. per dimensione fittizia
t =	10000	9 9	Età del calcestruzzo, al momento considrato
t s =	0	gg	Età del calcestruzzo, all'inizio del ritiro per essiccamento
$\beta_{ds}(t,t_s)$	0.957		
ε _{cd} =	2.08E-04		Deformazione da ritiro per essiccamento
Ritiro autoge	·no		
$\varepsilon_{ca}(?) =$	0.000055	_	Deformazione da ritiro autogeno per t=?
t=	10000	99	Described and their anticognity per to :
β _{as} (t) =	1.00	_	
$\varepsilon_{ca}(t) =$	5.50E-05	_	Deformazione da ritiro autogeno

5.2.4.2 VISCOSITÀ

Gli effetti conseguenti alla viscosità del calcestruzzo per azioni di lunga durata (sovraccarichi permanenti, ritiro, ecc.) possono essere valutati assumendo nel calcolo delle caratteristiche geometriche della sezione composta un valore fittizio del modulo di elasticità del calcestruzzo Ec* fornito dall'espressione:

 $E_c^* = E_c / (1+\phi)$

modulo di elasticità ridotto

Ghella CONSORZIO CFT PIZZAROTTI FORBATA NEL 1316	I° LOTTO	PIO TRA D FUNZ E ALLA	TTA CANCE	ELLO-BENEVEN NCELLO-FRAS IMA-NAPOLI V ROGETTO ESE	SSO TE	
Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo	COMMESSA IF1N	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO IV 02 07 002	REV.	FOGLIO 35 di 114

Di seguito è riportata la valutazione del coefficiente di viscosità ridotto utilizzato per la valutazione degli effetti della viscosità sulle perdite di precompressione.

Viscosità per valutazione perdite di precompressione

Viscosità (El	N1992-1-1 §3.1.4)		
Classe	C45/55		Classe del calcestruzzo
$R_{ck} =$	55	MPa	resistenza caratteristica cubica
$f_{ck} =$	45	MPa	resistenza caratteristica cilindrica
f _{cm} =	53	MPa	valor medio resistenza cilindrica
E _{cm} =	36283	MPa	Modulo elastico di progetto
E _c =	38097	MPa	Modulo elastico tangente
Cem.Tipo	N	-	CEM 32,5 R, CEM 42,5 N
t_0	7	gg	età di applicazione del carico
t ₀ *	7	gg	età di applicazione del carico modif. tipo cem. (S, N o R)
t	10000	gg	
A_c	700000	mmq	area sez trasversale
u	8267	mm	perimetro a contatto con l'atmosfera
h_0	169	mm	dimensione fittizia dell'elemento
RH	75	%	Umidità Relativa
β(f _{cm})	2.31	_	influenza della resistenza del cls
β(t ₀)	0.63	_	influenza del momento di applicazione del carico
Фкн	1.312	_	coeff.influenza dell'umidità relativa
α ₁	0.75	_	coeff.influenza della resistenza del cls
α_2	0.92	_	coeff.influenza della resistenza del cls
α_3	0.81	_	coeff.influenza della resistenza del cls
Φ0	1.92	_	coeff. nominale di viscosità
βн	495	-	coeff. per RH e h ₀
$\beta_c(t^*,t_0)$	0.99	-	
φ(t*,t ₀)	1.89	-	Coeff. di viscosità
$E_{c,R} =$	12541	MPa	Modulo elastico Ridotto
E* _{c,R} =	13168	MPa	Modulo elastico Ridotto Modificato

Ghella CONSORZIO CFT PIZZAROTTI FONDATA REL 1915	I° LOTTO	PIO TRA D FUNZ E ALLA	ITTA CANCE	ELLO-BENEVEN NCELLO-FRAS NMA-NAPOLI V ROGETTO ESE	SSO TEI	
Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo	COMMESSA IF1N	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO	REV.	FOGLIO

Viscosità per valutazione caratteristiche sezione composta a t = inf.

Viscosità (El	N1992-1-1 §3.1.4)		
Classe	C32/40		Classe del calcestruzzo
R _{ck} =	40	MPa	resistenza caratteristica cubica
f _{ck} =	32	MPa	resistenza caratteristica cilindrica
f _{cm} =	40	MPa	valor medio resistenza cilindrica
E _{cm} =	33346	MPa	Modulo elastico di progetto
E _c =	35013	MPa	Modulo elastico tangente
Cem.Tipo	N	-	CEM 32,5 R, CEM 42,5 N
t_0	7	9 9	età di applicazione del carico
t ₀ *	7	gg	età di applicazione del carico modif. tipo cem. (S, N o R)
t	10000	9 9	
Ac	3692000	mmq	area sez trasversale
u	14700	mm	perimetro a contatto con l'atmosfera
h_0	502	mm	dimensione fittizia dell'elemento
RH	75	%	Umidità Relativa
0/5 \	2.00		:- 0
β(f _{cm})	2.66	-	influenza della resistenza del cls
β(t ₀)	0.63	-	influenza del momento di applicazione del carico
Фкн	1.279	-	coeff.influenza dell'umidità relativa
α ₁	0.91	-	coeff.influenza della resistenza del cls
$\mathbf{\alpha}_2$	0.97	-	coeff.influenza della resistenza del cls
α_3	0.94	-	coeff.influenza della resistenza del cls
Φο	2.16	-	coeff. nominale di viscosità
βн	1100	-	coeff. per RH e h ₀
β _c (t*,t ₀)	0.97	-	
$\varphi(t^*,t_0)$	2.09	•	Coeff. di viscosità
.	40704	MD	M. I. I. F. Dilli
E _{c,R} =	10791	MPa	Modulo elastico Ridotto
E* _{c,R} =	11330	MPa	Modulo elastico Ridotto Modificato

5.2.4.3 PERDITE PER RILASSAMENTO

Per le sezioni oggetto di analisi tali parametri assumono i seguenti valori:

Perdite rilassamento trefoli (NTC2008 §11.3.3.3)				
p1000	2.5	%	% perdita per rilassamento a 1000 ore	
t inf	5.00E+05	ore	tempo infinito	
μ=σspi/ftk	0.8	-	rapporto tensione al taglio e ultima	
ΔNp,ril	-669	KN	perdite per rilassamento	
% Δσp,ril	6.6%	-	ESPRESSIONE NTC 11.3.17 [1]	
Δσp,ril	92.6	MPa		

5.2.5 Carichi da traffico (Q1, Q2)

Le azioni verticali associate al traffico sono definite dagli *Schemi di Carico* descritti nel §5.1.3.3.3 del DM2008 (rif.[1]), disposti sulle Corsie Convenzionali. Data la larghezza di carreggiata pari a 10.5m, si individuano tre corsie convenzionali ciascuna di larghezza pari a 3m ed una parte rimanente di larghezza pari a 1,5m. La disposizione delle corsie, atta a massimizzare le sollecitazioni sulle travi di bordo, è la seguente:

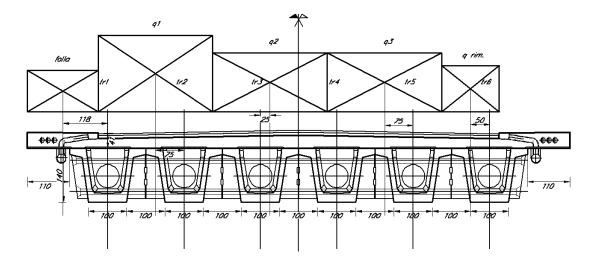


Figura 13 - Disposizione corsie convenzionali

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 38 di 114

Gli schemi di carico considerati sono lo *Schema 1* e lo *Schema 5* (quest'ultimo solo sui marciapiedi) in quanto risultano gli schemi dimensionanti per gli elementi oggetto di verifica. I valori caratteristici sono comprensivi degli effetti dinamici.

Schema 1:

✓ Corsia 1: Q1k: 2 assi da 300 kN posti a distanza di 1,20 m

q1k: carico uniforme ripartito di 9,00 kN/m2

✓ Corsia 2: Q2k: 2 assi da 200 kN posti a distanza di 1,20 m

q2k: carico uniforme ripartito di 2,50 kN/m2

Corsia 2: Q2k: 2 assi da 100 kN posti a distanza di 1,20 m

q2k: carico uniforme ripartito di 2,50 kN/m2

✓ Parte rimanente: qik: carico uniforme ripartito di 2,50 kN/m²

Schema 5:

Folla compatta di 5,00 kN/m2. Valore di combinazione pari a 2,50 kN/m2.

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	IV 02 07 002	Α	39 di 114

5.2.6 Azioni del vento (Q3)

L'azione del vento viene ricondotta ad un'azione statica equivalente costituita da pressioni e depressioni agenti normalmente alle superfici.

La pressione del vento è data dalla seguente espressione:

$$b = d_p \cdot c_e \cdot c_b \cdot c_q$$

dove

pressione cinetica di riferimento

ce coefficiente di esposizione

cp coefficiente di forma

cd coefficiente dinamico, posto generalmente pari a 1

Di seguito si riporta il dettaglio del calcolo di tali fattori per l'opera in oggetto.

5.2.6.1 Pressione cinetica di riferimento

La pressione cinetica di riferimento si determina mediante l'espressione:

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2$$
 (in N/m²)

dove

vb velocità di riferimento

ρ densità dell'aria, convenzionalmente posta pari a 1,25 kg/m³

Di seguito si determina la pressione di riferimento sulla base dei parametri caratteristici del sito e il tempo di ritorno dell'opera in oggetto:

PARAMETRI DIPENDENTI DAL SITO

Zona =	3	
vb,0 =	27,00	m/s
a0 =	500,00	m
ka =	0,02	1/s
ALTITUDINE DEL SITO		
as =	80,00	m s.l.m.
vb =	27,00	m/s
TEMPO DI RITORNO		
TR	75	anni
α(TR)	1,04	
vb(TR)=	28,06	m/s
PRESSIONE DI RIFERIMENTO		
qb =	492	N/m2

Ghella

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 40 di 114

5.2.6.2 COEFFICIENTE DI ESPOSIZIONE

Il coefficiente di esposizione c_e dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito e si determina mediante l'espressione:

$$\begin{split} c_e(z) &= k_r \cdot c_t \cdot In(z/z_0) \left[7 + c_t \cdot In(z/z_0) \right] & \text{per } z \geq z_{min} \\ c_e(z) &= c_e(z_{min}) & \text{per } z < z_{min} \end{split}$$

dove k_r , z_0 , z_{min} sono parametri che dipendono dalla categoria di esposizione del sito; c_t è il coefficiente di topografia, posto generalmente pari a 1

Di seguito si determina il coefficiente di esposizione sulla base della classe d'esposizione e l'altezza z del punto considerato, posta pari alla massima quota del complesso impalcato, barriere, sagoma del veicolo. A tal proposito il §5.1.3.7 [1] impone di considerare il veicolo transitante come una superficie piana continua convenzionalmente alta 3,00 m sul p.r..

CATEGORIA DI ESPOSIZIONE

Classe di rugosità =	D
Distanza dalla costa =	< 30 km
Categoria di esposizione =	II
kr =	0,19
z0 =	0,05 m
zmin =	4,00 m
QUOTA DI RIFERIMENTO Z	
z di riferimento (media dal p.c)=	11,63 m
COEFFICIENTE DI ESPOSIZIONE	
ce =	2,45

5.2.6.3 COEFFICIENTE DI FORMA DELL'IMPALCATO

Il coefficiente di forma dell'impalcato e l'area di riferimento per il calcolo della forza risultante si determinano in base ai criteri enunciati nel §8.3.1 [9].

A tal proposito si riconduce il coefficiente di forma c_p al coefficiente di forza $c_{fx,0}$. Il coefficiente di forza $c_{fx,0}$ si determina in base al rapporto tra larghezza b e altezza totale dell'impalcato d_{tot} .

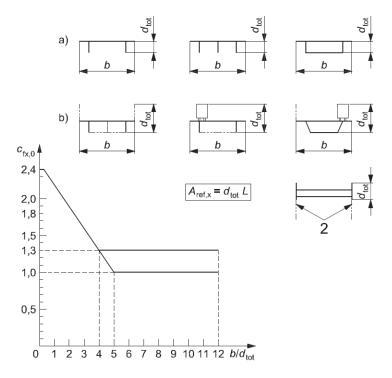
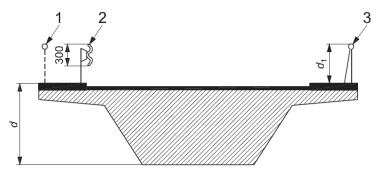



Figura 14 - Correlazione tra il rapporto b/d e coefficiente di forma cfx0 (figura 8.3 EC1-4)

Legenda

- 1 Parapetti aperti
- 2 Barriere di sicurezza aperte
- 3 Parapetti, barriere antirumore o barriere di sicurezza a parete piena

Dimensioni in millimetri

Altezza d_{tot} da impiegarsi per il calcolo di $A_{\text{ref,x}}$

Sistema di ritenuta	su un lato	su entrambi i lati
Parapetto aperto o barriera di sicurezza aperta	d+0,3 m	d+ 0,6 m
Parapetto a parete piena o barriera di sicurezza a parete piena	<i>d</i> + <i>d</i> ₁	d+2 d ₁
Parapetto aperto e barriera di sicurezza aperta	d+0,6 m	d+ 1,2 m

Figura 15 – Criteri per la determinazione dell'area di riferimento (figura 8.5 EC1-4)

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	IV 02 07 002	Α	42 di 114

L'area da considerare per il calcolo della risultante di forza si definisce come la somma di tutte le superfici proiettate dall'impalcato nel piano longitudinale, comprese le barriere e la sagoma dei veicoli.

Per il caso in esame si ha:

COEFFICIENTE DI FORMA AREA DIRETTAMENTE INVESTITA

b =	14,20	m
H impalcato da intrad. a p.s. =	1,83	m
H veicolo su p.s. =	3,00	m
d =	4,83	m
b/d =	2,90	
cp =	1,48	

COEFFICIENTE DI FORMA AREA INDIRETTAMENTE INVESTITA

b =	14,20	m
H barriera/parapetto =	2,00	m
d =	2.00	m
b/d =	7.10	
cp =	1,00	

5.2.6.4 AZIONE DEL VENTO SULL'IMPALCATO

Di seguito si procede al calcolo dell'azione del vento sull'impalcato in relazione ai parametri determinati nei paragrafi precedenti.

Si fa notare che nel calcolo delle sollecitazioni sull'impalcato si tiene conto del fatto che è presente un'eccentricità verticale tra il centro di applicazione della forza orizzontale dovuta al vento e l'impalcato, pertanto nel modello di calcolo all'azione orizzontale viene associato un momento torcente corrispondente alla summenzionata eccentricità.

PRESSIONE DEL VENTO AREA DIRETTAMENTE INVESTITA

	qb =	492	N/m2
	ce =	2,45	
	cp =	1,48	
	cd =	1,00	
	$pv = qb \cdot ce \cdot cp \cdot cd =$	1.78	kN/m2
FO	RZA DEL VENTO		
	Forza distribuita sulle travi =	8,60	kN/m

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 43 di 114

Momento distribuito=

32,8 kNm/m

PRESSIONE DEL VENTO AREA INDIRETTAMENTE INVESTITA

qb =	492	N/m2
ce =	2,45	
cp =	1,00	
cd =	1,00	
$pv = qb \cdot ce \cdot cp \cdot cd =$	1.20	kN/m2
FORZA DEL VENTO		
Forza distribuita sulle travi =	2,40	kN/m
Momento distribuito =	2,37	kNm/m

5.2.7 Variazioni termiche (Q4)

In accordo con quanto indicato al §3.5.5 del DM2008 (rif.[1]) per strutture in c.a. e c.a.p. esposte, si considera una variazione termica uniforme pari a ±15°C. Data l'isostaticità dello schema statico, la variazione uniforme di temperatura non comporta la nascita di sollecitazioni nell'impalcato, ma si considera soltanto nella determinazione dell'escursione del giunto.

Come azione termica si considera invece un gradiente di temperatura di 5 °C fra intradosso ed estradosso impalcato.

Tale azione si considera applicata alle diverse sezioni oggetto di analisi nelle condizioni di Fase 2.

Si considera l'eccentricità tra il baricentro della soletta e il baricentro della trave, punto in cui viene applicata l'azione sul modello FEM.

Variazione di temperatura	$\Delta T =$	-5,00	°C
Coefficiente di dilatazione termica cls	α =	1,0E-05	1/°C
Deformazione termica	εc =	-0,050	‰
Variazione di sforzo normale agente su ogni trave	$\Delta N =$	-831	kN
Variazione di momento flettente agente su ogni trave	ΔM =	-152	kN

5.2.8 Azioni di frenatura e accelerazione (Q2)

La azioni di frenatura e accelerazione sono costituite da forze uniformemente distribuite agenti sulla corsia convenzionale 1.

La forza totale si determina con la relazione:

$$180 \text{ kN} \le q = 0.6 \cdot (2 \cdot \text{Q1k}) + 0.10 \cdot \text{q1k} \cdot \text{w} \cdot \text{L} \le 900 \text{ kN}$$

con L lunghezza della zona caricata. La forza è assunta uniformemente distribuita e include gli effetti di interazione. Per il caso in esame si ha che la forza totale di frenatura e accelerazione assume il valore:

Fh =
$$0.6 \cdot 2 \cdot 300 + 0.10 \cdot 9 \cdot 3 \cdot 25 = 427.5 \text{ kN}$$

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 45 di 114

5.2.9 Azioni sismiche (E)

L'azione sismica di progetto è rappresentata da spettri di risposta definiti in base alla pericolosità sismica di base del sito ove sorge l'opera in oggetto, la vita di riferimento e le caratteristiche del sottosuolo.

Di seguito si riportano i parametri di input utilizzati per la definizione degli spettri di progetto orizzontali e verticali e i grafici degli stessi. Gli spettri di progetto così definiti vengono utilizzati nel modello di calcolo per la definizione di casi di analisi di tipo "dinamica lineare con spettro di risposta".

I valori del fattore di struttura q, adottati per la definizione delle azioni sismiche e per il dimensionamento degli elementi secondo i criteri della gerarchia delle resistenze, sono stati definiti in base ai criteri di seguito esplicitati.

Il valore del fattore di struttura q assunto per il dimensionamento degli apparecchi d'appoggio è pari a 1.

5.2.9.1 SPETTRI DI PROGETTO ALLO SLV

Coordinate geografiche del sito

Lat. =	41,02928	
Long. =	14,40407	
Vita nominale VN =	100	anni
Coefficiente d'uso cu =	2	
Vita di riferimento VR =	200	anni
Categoria di sottosuolo =	С	
Categoria topografica =	T1	
Fattore di struttura q =	1,00	
Smorzamento ξ =	5,00	%

Parametri sismici

		PVR	TR	ag [g]	F0	TC* [s]
SLE	SLO	81%	120	0,089	2,409	0,347
	SLD	63%	201	0,109	2,436	0,359
SLU	SLV	10%	1898	0,233	2,507	0,417
	SLC	5%	2475	0,252	2,519	0,426

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO

IF1N 01 E ZZ CL IV 02 07 002

REV. FOGLIO **A** 46 di 114

Parametri per la definizione dello spettro orizzontale

ag =	0,233 g
F0 =	2,507
TC* =	0,417 s
SS =	1,349
CC =	1,401
ST =	1,000
S =	1,349
η =	1
TB =	0,195 s
TC =	0,584 s
TD =	2,534 s

Parametri per la definizione dello spettro verticale

agv =	0,152	g
SS =	1,000	
ST =	1,000	
S =	1,000	
η =	1,000	
TB =	0,050	s
TC =	0,150	s
TD =	1,000	s

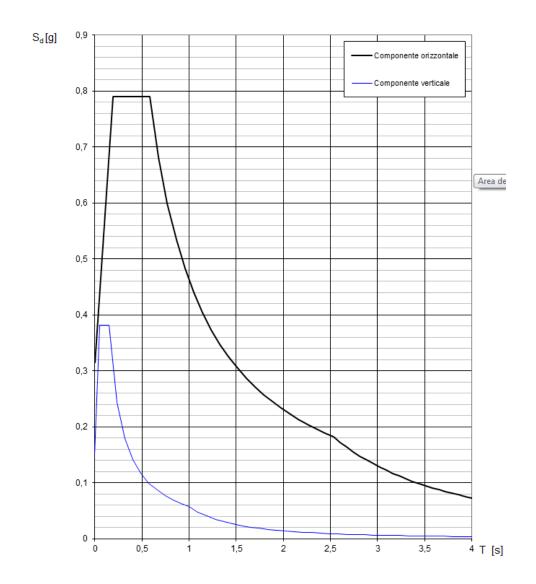


Figura 16 - Spettro di progetto allo SLV - componente orizzontale e verticale

5.3 COMBINAZIONI DI CARICO

Di seguito viene riportata la tabella che riepiloga le condizioni di carico elementari (C.C.E.) considerate.

	C.C.E.	Descrizione			
D. Drocompressions	P-∆P0	Precompressione a perdite immediate avvenute			
P - Precompressione	∆P1	Cadute lente			
	G1-01	Peso proprio trave - taglio trefoli			
	G1-02	Peso proprio trave - trasporto			
G - Permanenti	G1-1	Peso proprio trave - posa in opera			
	G1-2	Peso proprio getti in opera			
	G2	Permanenti non strutturali			
Q - Variabili da traffico	Q1	Tandem Schema di carico 1			
Q - Variabili da traffico	Q2	Distribuiti Schemi di carico 1 e 5			
Q - Variabili	Q3	Vento			
Q - Deformazioni impresse	Q4	Variazioni termiche			
Q - Deloimazioni impresse	Q5	Ritiro differenziale soletta			
	E1	Sisma x			
E - Azioni sismiche	E2	Sisma y			
	E3	Sisma z			

Le azioni sismiche vengono considerate solo per la determinazione degli scarichi elementari sugli appoggi. Non vengono infatti definite combinazioni sismiche per la verifica degli elementi costituenti l'impalcato. Le combinazioni di calcolo sono state definite sulla base dei criteri enunciati nel §5.1.3.12 del DM2008 (rif.[1]), di cui si riportano di seguito alcuni stralci.

ITINERARIO NAPOLI-BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO**

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI - PROGETTO ESECUTIVO**

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA LOTTO REV. FOGLIO CODIFICA DOCUMENTO 01 E ZZ CL IV 02 07 002 49 di 114 Α

		Carichi su marciapiedi e piste ciclabili				
	Carichi verticali	richi verticali		Carichi orizz	ontali	Carichi verticali
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				
(*) Ponti di :	siderare solo se richies	to dal particolar	re progetto (ad es	s ponti in zona	urbana)	

Tabella 1 – Definizione del valore caratteristico del carico da traffico (Tab.5.1.IV rif[1])

^(***) Da considerare solo se si considerano veicoli speciali

Ghella

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 50 di 114

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ _{ε1}	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2},\gamma_{\epsilon 3},\gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 2 - Coefficienti parziali di sicurezza per le combinazioni agli SLU

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente Ψ ₁ (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
	SLU e SLE	0,6	0,2	0,0
Vento q₅	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Mana a	SLU e SLE	0,0	0,0	0,0
Neve q_5	esecuzione	0,8	0,6	0,5
Temperatura	T _k	0,6	0,6	0,5

Tabella 3 – Coefficienti di combinazione ψ delle azioni

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

REV.

Α

FOGLIO

51 di 114

COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO

O IF1N 01 E ZZ CL IV 02 07 002

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

Le combinazioni di carico (C.C.C.) definite e considerate nelle verifiche globali sono le seguenti:

num. comb.	nome comb.	dascri7		G1-01 - PESO PROPRIO TRAVE - TAGLIO TREFOLI	G1-02 - PESO PROPRIO TRAVE - TRASPORTO		G1-2 - SOLETTA	G2 - PERMANENTI NON STRUTTURALI	∆P1 - CADUTE LENTE	Q1 - TRAFFICO - TANDEM	Q2 - TRAFFICO - DISTRIBUITI	Q3 - VENTO	Q4 - VARIAZIONI TERMICHE	Q5 - RITIRO DIFFERENZIALE SOLETTA
1	SLU-STR-001	FASE 0-1	1	1,35	0	0	0	0	0	0	0	0	0	0
2	SLU-STR-002	FASE 0-2	1	0	1,35	0	0	0	0	0	0	0	0	0
3	SLU-STR-003	FASE 0-3	1	0	0	1,35	0	0	0	0	0	0	0	0
4	SLU-STR-004	FASE 1	1	0	0	1,35	1,35	0	0	0	0	0	0	0
5	SLU-STR-005	FASE 2-1	1	0	0	1,35	1,35	1,5	0	0	0	0	0	0
6	SLU-STR-006	FASE 2-2	1	0	0	1,35	1,35	1,5	1	0	0	0	0	0
7	SLU-STR-007	FASE 2-3	1	0	0	1,35	1,35	1,5	1	1,35	1,35	0	0	0
8	SLU-STR-008	FASE 2-4	1	0	0	1,35	1,35	1,5	1	1,35	1,35	0,9	0	0
9	SLU-STR-009	FASE 2-4	1	0	0	1,35	1,35	1,5	1	1,35	1,35	0,9	0,72	0
10	SLU-STR-010	FASE 3-1	1	0	0	1,35	1,35	1,5	1	0	0	0	0	1,2
11	SLU-STR-011	FASE 3-2	1	0	0	1,35	1,35	1,5	1	1,35	1,35	0,9	0,72	0,72
12	SLE-RAR-001	FASE 0-1	1	1	0	0	0	0	0	0	0	0	0	0
13	SLE-RAR-002	FASE 0-2	1	0	1	0	0	0	0	0	0	0	0	0
14	SLE-RAR-003	FASE 0-3	1	0	0	1	0	0	0	0	0	0	0	0
15	SLE-RAR-004	FASE 1	1	0	0	1	1	0	0	0	0	0	0	0
16	SLE-RAR-005	FASE 2-1	1	0	0	1	1	1	0	0	0	0	0	0
17	SLE-RAR-006	FASE 2-2	1	0	0	1	1	1	1	0	0	0	0	0
18	SLE-RAR-007	FASE 2-3	1	0	0	1	1	1	1	1	1	0	0	0
19	SLE-RAR-008	FASE 2-4	1	0	0	1	1	1	1	1	1	0,6	0	0
20	SLE-RAR-009	FASE 2-4	1	0	0	1	1	1	1	1	1	0,6	0,6	0
21	SLE-RAR-010	FASE 3-1	1	0	0	1	1	1	1	0	0	0	0	1
22	SLE-RAR-011	FASE 3-2	1	0	0	1	1	1	1	1	1	0,6	0,6	0,6
23	SLE-RAR-012	FASE 3-2	1	0	0	1	1	1	1	0,75	0,4	0,6	0,6	1
24	SLE-QPE-001	FASE 0-1	1	1	0	0	0	0	0	0	0	0	0	0
25	SLE-QPE-002	FASE 0-2	1	0	1	0	0	0	0	0	0	0	0	0
26	SLE-QPE-003	FASE 0-3	1	0	0	1	0	0	0	0	0	0	0	0
27	SLE-QPE-004	FASE 1	1	0	0	1	1	0	0	0	0	0	0	0
28	SLE-QPE-005	FASE 2-1	1	0	0	1	1	1	0	0	0	0	0	0
29	SLE-QPE-006	FASE 2-2	1	0	0	1	1	1	1	0	0	0	0	0
30	SLE-QPE-007	FASE 2-3	1	0	0	1	1	1	1	0	0	0	0,5	0
31	SLE-QPE-008	FASE 2-4	1	0	0	1	1	1	1	0	0	0	0,5	0,5

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 52 di 114

5.4 RIEPILOGO SOLLECITAZIONI

Di seguito si riepilogano le sollecitazioni calcolate nei paragrafi precedenti e quelle ottenute dal modello agli E.F. per ciascuna delle sezioni considerate.

5.4.1 Fase 0-1, condizione a vuoto

	Х	num tref	М рр	V pp
	m	-	kNm	kN
sez 1	0.5	48	141	278
sez 2	2.6	48	602	194
sez 3	11.7	70	1588	0

5.4.2 Fase 0-2, trasporto

	Х	num tref	М рр	V pp
	m	-	kNm	kN
sez 1	0.5	48	0	250
sez 2	1.8	48	606	207
sez 3	11.7	70	1568	0

5.4.3 Fase 1, getto soletta

	Х	num tref	М рр	V pp	M sol	V sol
	m	-	kNm	kN	kNm	kN
sez 1	0.5	48	0	226	0	221
sez 2	1.8	48	378	194	367	187
sez 3	11.7	70	1364	0	1294	0

Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 01 E ZZ CL IV 02 07 002 53 di 114 Α

5.4.4 Fase 2, carichi permanenti

	Х	num tref	M perm	V perm
	m	-	kNm	kN
sez 1	0.5	48	-63	145
sez 2	1.8	48	187	145
sez 3	11.7	70	740	17

5.4.5 Fase 3, condizione di servizio

	Х	x num tref		V 3fase
	m	-	kNm	kN
sez 1	0.5	48	-238	272
sez 2	1.8	48	693	226
sez 3	11.7	70	2367	28

6 EFFETTI GLOBALI SU IMPALCATO – VERIFICHE TENSIONALI AGLI SLE

Per ogni fase sono verificate le tensioni ai lembi superiore ed inferiore della trave e, una volta che la soletta diventa collaborante, anche la tensione ai lembi superiore ed inferiore della soletta stessa. I limiti tensionali per l'acciaio da precompressione e per il calcestruzzo nelle varie fasi, sono definiti nel D.M. 14 Gennaio 2008 al §4.1.8.1 e nella Istruzione RFI DTC SI PS MA IFS 001 "Manuale di progettazione delle opere civili".

I limiti tensionali considerati, tengono conto del livello di maturazione del cls, secondo quanto di seguito definito.

Fase 0 e 1:

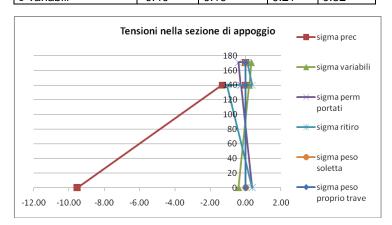
- test cls sup.: si verifica che la tensione di trazione al lembo superiore della sezione non sia superiore al limite 0.35 * f_{ctk};
- test cls inf.: si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.7 * f_{ck};
- test precompr.: si verifica che la tensione di trazione nell'armatura di precompressione non sia superiore al limite 0.80 * f_{ptk}.

Fase 2 e 3:

- test cls sup.soletta: si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.60 * fck per combinazioni rare, 0.45 * fck per combinazioni quasi permanenti.
- test cls inf.soletta: si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.60 * fck per combinazioni rare, 0.45 * fck per combinazioni quasi permanenti.
- test cls sup.: si verifica che la tensione di compressione al lembo superiore della sezione non sia superiore al limite 0.6 * f_{ck} per combinazioni rare, 0.45 * f_{ck} per combinazioni quasi permanenti.
- test cls inf.compr.: si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.6 * fck per combinazioni rare, 0.45 * fck per combinazioni quasi permanenti.
- test cls inf.trazione.: si verifica che la tensione di trazione al lembo inferiore della sezione non sia in superiore al limite 0.35*f_{ctk} per combinazioni rare.
- test precompr.: si verifica che la tensione di trazione nell'armatura di precompressione non sia superiore al limite 0.80 * f_{ptk}.

Tali verifiche sono state effettuate in corrispondenza delle sezioni di seguito descritte.

Sezione 1: sezione ringrossata all'appoggio (x=0.5 m), 48 trefoli


- Sezione 2: sezione corrente posta alla fine del tratto a sez. variabile (x=1.8 m), 48 trefoli
- Sezione 3: sezione corrente in mezzeria (x=11.7 m), 70 trefoli

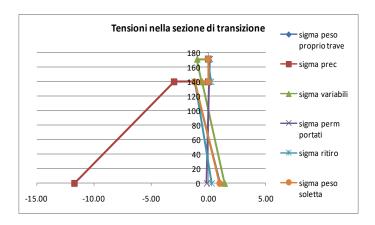
Oltre che per la geometria della sezione in c.a., le sezioni considerate differiscono anche per la precompressione agente.

6.1 VERIFICHE TENSIONALI

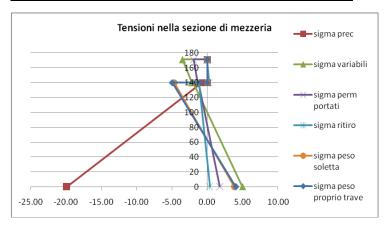
Di seguito si riportano le tensioni dovute alle sollecitazioni elementari e le verifiche tensionali previste per gli SLE.

Sezione 1 - appoggio	σ inf trave	σ sup trave	σ inf sol	σ sup sol
σ precompressione	-9.56	-1.33	0.00	0.00
σ peso proprio trave	0.00	0.00	0.00	0.00
σ peso soletta	0.00	0.00	0.00	0.00
σ ritiro	0.36	-1.06	0.35	0.09
σ perm portati	0.36	-0.27	-0.30	-0.42
σ variabili	-0.40	0.19	0.21	0.32

Sezione 2 - transizione	σ inf trave	σ sup trave	σ inf sol	σ sup sol
σ precompressione	-11.68	-2.96	0.00	0.00
σ peso proprio trave	1.02	-1.22	0.00	0.00
σ peso soletta	0.99	-1.18	0.00	0.00
σ ritiro	0.30	-1.16	0.25	-0.02
σ perm portati	-0.14	0.10	0.11	0.15
σ variabili	1.42	-0.54	-0.61	-0.98



ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO


I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

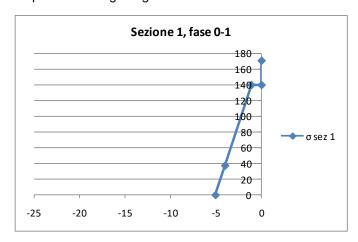
Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

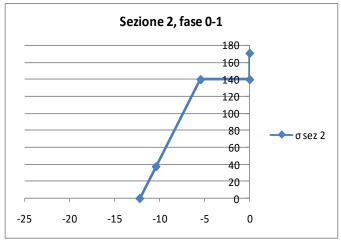
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	IV 02 07 002	Α	56 di 114

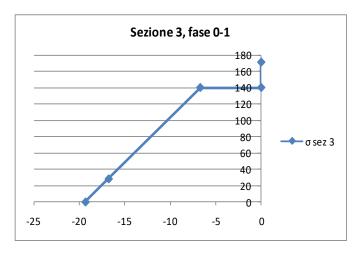
Sezione 3 - mezzeria	σ inf trave	σ sup trave	σ inf sol	σ sup sol
σ precompressione	-19.94	-0.75	0.00	0.00
σ peso proprio trave	4.06	-4.99	0.00	0.00
σ peso soletta	3.85	-4.74	0.00	0.00
σ ritiro	0.36	-1.18	0.22	-0.06
σ perm portati	1.76	-1.27	-1.38	-1.94
σ variabili	4.97	-1.98	-2.23	-3.52

6.1.1 Caratteristiche delle sezioni

Sezione	-	1	2	3	
ascissa x	[m]	0.5	2.6	11.7	
Precompr.	-	Tipo 2	Tipo 2	Tipo 1	
n		5.4	5.4	5.4	Coeff. di omogeneizzazione acciaio da precompressione
A _{cls} =	mmq	1000000	700000	700000	Area lorda sezione CLS
A _P =	mmq	4726	4726	7228	Area armatura di precompressione
A* =	mmq	1025399	725399	738846	Area omogeneizzata (si considera la presenza di armatura lenta)
y _{G,cls} =	mm	665	647	647	Baricentro sezione cls
y _{G,P} =	mm	374	374	283	Baricentro armatura precompressione
y*G,cls =	mm	658	637	628	Baricentro sezione cls omogeneizzata
I _{cls} =	mm4	2.51E+11	2.06E+11	2.06E+11	Inerzia sezione cls
I* _{cls} =	mm4	2.82E+11	2.36E+11	2.11E+11	Inerzia sezione cls omogeneizzata
H _{sez} =	mm	1400	1400	1400	Altezza sezione
y _{sup} =	mm	742	763	772	distanza del lembo sup. da y*G,cls
y _{inf} =	mm	658	637	628	distanza del lembo inf. da y*G,cls
е	mm	284	263	345	Eccentricità cavo risultante
W* _{sup} =	mmc	-3.79E+08	-3.10E+08	-2.73E+08	Modulo di res. Lembo sup.
W* _{inf} =	mmc	4.28E+08	3.71E+08	3.36E+08	Modulo di res. Lembo inf.


6.1.2 Fase 0-1


Sezione	-	1	2	3	
ascissa x	[m]	0.5	2.6	11.7	
N _{prec}	[kN]	-6616	-6616	-10119	Precompressione alla tesatura
M _{prec}	[kN-m]	-1877	-1742	-3493	Momento di Precompressione alla tesatura
c - trasferim.	-	0.5	1	1	coefficiente di trasferimento precompressione
N*prec	[kN]	-3308	-6616	-10119	Parte di Precompressione trasferita alla tesatura
M*prec	[kN-m]	-938	-1742	-3493	Parte di Momento di Precompressione trasferito alla tesatura
M* _{pp}	[kN-m]	141	602	1588	Momento dovuto al peso proprio - L=L _{trave}
$\sigma^*_{c,sup} =$	MPa	-1.12	-5.44	-6.72	Tensione nel cls al lembo superiore della sezione

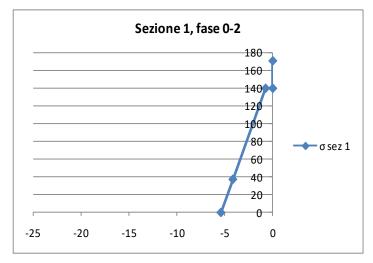

Sezione	-	1	2	3	
ascissa x	[m]	0.5	2.6	11.7	
$\sigma^*_{c,inf} =$	MPa	-5.09	-12.20	-19.37	Tensione nel cls al lembo inferiore della sezione
$\sigma^*_{c,yGp} =$	MPa	-4.03	-10.39	-16.81	Tensione nel cls fibra cavo risultante
$\Delta\sigma_{p0}$ =	MPa	0	0	0	Perdite immediate per rientro ancoraggi
$\Delta\sigma_{p0,elast.}$ =	MPa	44.84	59.46	104.33	Perdite immediate per deformazione elastica
$\sigma^*_{pi} =$	MPa	-678.34	-1344.15	-1309.64	Tensione nel cavo a perdite iniziali avvenute
test cls sup.	-	ОК	ОК	ОК	$\sigma^*_{c,sup} > 0$?
test cls inf.	-	ОК	ОК	ОК	$\sigma^*_{c,inf} < 0.6 \text{ x } f_{ck}$?
test precompr.	-	ОК	ОК	ОК	$\sigma^*_{pi} < \sigma_{p0,max}$?

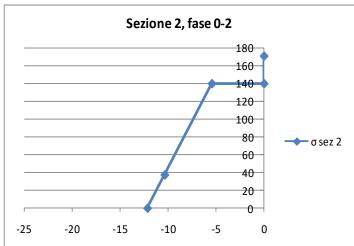
Si riportano di seguito gli andamenti delle tensioni al termine della fase 0-1.

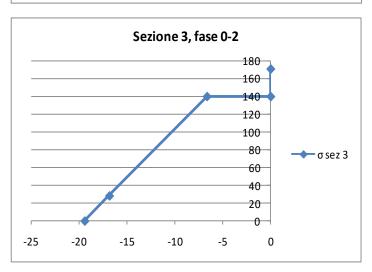
6.1.3 Fase 0-2, trasporto

Sezione	-	1	2	3]
ascissa x	[m]	0.5	2.6	11.7	
N _{prec}	[kN]	-6616	-6616	-10119	Precompressione alla tesatura
M _{prec}	[kN-m]	-1877	-1742	-3493	Momento di Precompressione alla tesatura
c - trasferim.	-	0.5	1	1	coefficiente di trasferimento precompressione
N*prec	[kN]	-3308	-6616	-10119	Parte di Precompressione trasferita alla tesatura
M*prec	[kN-m]	-938	-1742	-3493	Parte di Momento di Precompressione trasferito alla tesatura
M* _{pp}	[kN-m]	0	606	1568	Momento dovuto al peso proprio - L=L _{trave}
$\sigma^*_{c,sup} =$	MPa	-0.75	-5.45	-6.65	Tensione nel cls al lembo superiore della sezione
$\sigma^*_{c,inf} =$	MPa	-5.42	-12.19	-19.43	Tensione nel cls al lembo inferiore della sezione
σ* _{c,yGp} =	MPa	-4.17	-10.39	-16.85	Tensione nel cls fibra cavo risultante
$\Delta\sigma_{p0}$ =	MPa	0	0	0	Perdite immediate per rientro ancoraggi
$\Delta\sigma_{p0,elast.}$ =	MPa	44.84	59.46	104.33	Perdite immediate per deformazione elastica
σ* _{pi} =	MPa	-677.58	-1340.54	-1295.67	Tensione nel cavo a perdite iniziali avvenute
test cls sup.	-	ОК	ОК	ОК	σ* _{c,sup} >0 ?
test cls inf.	-	ОК	ОК	ОК	$\sigma^*_{c,inf}$ < 0,6 x f _{ck} ?
test precompr.	-	ОК	ОК	ОК	$\sigma_{pi}^* < \sigma_{p0,max}$?

Si riportano di seguito gli andamenti delle tensioni al termine della fase 0-2.




ITINERARIO NAPOLI-BARI
RADDOPPIO TRATTA CANCELLO-BENEVENTO
I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI - PROGETTO ESECUTIVO


Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 60 di 114

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 IF1N
 01
 E ZZ CL
 IV 02 07 002

DOCUMENTO REV. FOGLIO

IV 02 07 002 A 61 di 114

6.1.4 Fase 1

Sezione	-	1	2	3	
ascissa x	[m]	0.5	2.6	11.7	
$\Delta\sigma_{pr}$	МРа	93	93	93	Perdita per rilassamento al tempo t = 500,000h
ε _{cs,1} =	-	0.000324	0.000324	0.000324	Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$
E _p =	МРа	195000	195000	195000	Modulo elastico di progetto acciaio da prec.
E _{cm} =	МРа	36283	36283	36283	Modulo elastico di progetto cls travi
φ1(t*,t ₀)	-	1.89	1.89	1.89	Coeff. di viscosità fase 1 (tave prefabbricata)
Ap =	mmq	4726	4726	7228	Area armatura di precompressione
Ac =	mmq	1000000	700000	700000	Area lorda sezione CLS
Ic =	mm4	2.51E+11	2.06E+11	2.06E+11	Inerzia sezione cls
I*cls =	mm4	2.82E+11	2.36E+11	2.11E+11	Inerzia sezione cls omogeneizzata
Z _{CP} =	mm	284	263	345	Eccentricità cavo risultante
ncls =	-	1.088	1.088	1.088	Area omogeneizzata
ssoletta =	mm	310	310	310	Baricentro sezione cls
bsol, coll. =	mm	2000	2000	2000	Baricentro armatura precompressione
n		5.4	5.4	5.4	Baricentro sezione cls omogeneizzata
Acls =	mmq	1000000	700000	700000	Inerzia sezione cls omogeneizzata
AP =	mmq	4726	4726	7228	Altezza sezione trave + soletta
A* =	mmq	1503301	1203301	1216748	distanza del lembo sup. della soletta da y*G,cls
yG,cls =	mm	665	647	647	distanza del lembo inf. della soletta da y*G,cls
yG,P =	mm	374	374	283	distanza del lembo sup. della trave da y*G,cls
y*G,cls =	mm	951	1012	1002	distanza del lembo inf. della trave da y*G,cls
I*cls+sol =	mm4	5.61E+11	4.949E+11	4.767E+11	eccentricità cavo risultante
Hsez,tr+sol=	mm	1710	1710	1710	Modulo di res. Lembo sup. soletta
ysup, sol =	mm	759	698	708	Modulo di res. Lembo inf. soletta
yinf, sol =	mm	449	-1012	-1002	Modulo di res. Lembo sup. trave
ysup,trave =	mm	449	-1012	-1002	Modulo di res. Lembo inf. trave
yinf,trave =	mm	951	1012	1002	Modulo elastico di progetto acciaio da prec.
е	mm	577	638	719	Area omogeneizzata

Ghella

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

E ZZ CL

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI - PROGETTO ESECUTIVO**

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

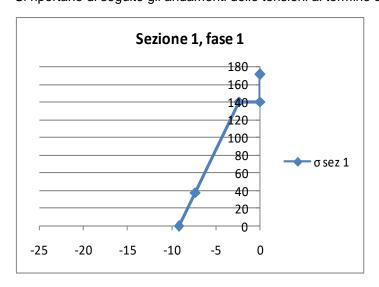
COMMESSA LOTTO 01

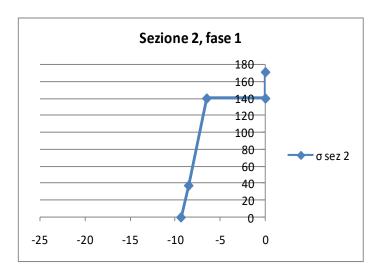
IF1N

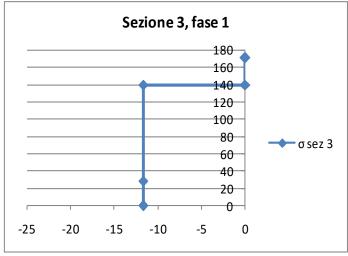
CODIFICA DOCUMENTO

IV 02 07 002

REV. Α


FOGLIO 62 di 114


	1	1	1		₹
Sezione	-	1	2	3	
ascissa x	[m]	0.5	2.6	11.7	
W*sup,sol =	mmc	-7.40E+08	-7.09E+08	-6.73E+08	Baricentro sezione cls
W*inf,sol =	mmc	-1.13E+09	-1.13E+09	-1.06E+09	Baricentro armatura precompressione
W*sup,trave =	mmc	-1.25E+09	-1.27E+09	-1.20E+09	Baricentro sezione cls omogeneizzata
W*inf,trave =	mmc	5.90E+08	489156807	4.76E+08	Inerzia sezione cls omogeneizzata
Ep =	MPa	195000	195000	195000	Altezza sezione trave + soletta
					T
Ritiro trave fa	ise 1			_	
Ecs =	-	1.46E-04	1.46E-04	1.46E-04	Residuo Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$ nella trave ancora da scontare
ε _{cs,soletta} =		2.63E-04	2.63E-04	2.63E-04	Deformazione totale da ritiro $\epsilon_{cs} = \epsilon_{cd} + \epsilon_{ca}$ nella soleltta
$\Delta \epsilon_{\text{cs,soletta}} =$		0.000117	0.000117	0.000117	Ritiro differenziale Soletta-Trave
E _{cm} =	MPa	36283	36283	36283	Modulo elastico di progetto cls travi
E _{cm,soletta} =	MPa	33346	33346	33346	Modulo elastico di progetto cls soletta
n _{cls} =	-	1.088	1.088	1.088	Coeff. omogeneizzazione tra cls soletta e CAP
E'cm,soletta =	MPa	12480	12480	12480	Modulo elastico di progetto cls soletta (eff.viscosi)
$\sigma_{c,soletta} =$	MPa	1.4626	1.4626	1.4626	Tensioni fittizia da ritiro nella soletta
NRitiro differenziale	[kN]	-907	-907	-907	Sforzo assiale da ritiro differenziale Soletta-Trave
M _{Ritiro}	[kN-m]	570	515	524	Momento dovuto al ritiro differenziale Soletta-Trave
$\Delta\sigma_{c,sup,\;Sol} =$	MPa	-1.37	-1.48	-1.52	Variazione di tensione Lembo sup. soletta
$\Delta\sigma_{c,inf,\;Sol} =$	MPa	-1.11	-1.21	-1.24	Variazione di tensione Lembo inf. soletta
$\Delta\sigma_{c,sup,\;Trave} =$	MPa	-1.06	-1.16	-1.18	Variazione di tensione Lembo sup. trave
$\Delta\sigma_{c,inf,\;Trave} =$	MPa	0.36	0.30	0.36	Variazione di tensione Lembo inf. trave
$\Delta\sigma_{c,yGp} =$	MPa	-0.02	-0.09	0.05	Variazione di tensione fibra corrisp. al cavo
$\Delta\sigma_{pi,rit} =$	MPa	0.09	0.48	-0.25	Variazione di tensione nel cavo
Sollecitazioni	i di fase 1				
Ψ2	-	0.00	0.00	0.00	Coeff. di combinazione carico variabile
M_{Q}	[kN-m]	0	0	0	Momento dovuto ai carichi variabili - L=L _{appoggi}
Мрр	[kN-m]	0	378	1364	Momento dovuto al peso proprio - L=L _{appoggi}
M _{soletta}	[kN-m]	0	367	1294	Momento dovuto al getto della soletta
$\sigma_{p,i}$	MPa	-1400	-1400	-1400	σ_{p} - $\Delta\sigma_{p0}$ (tens. Alla tesatura-perdite per rientro ancoraggi)



Sezione	-	1	2	3	
ascissa x	[m]	0.5	2.6	11.7	
N _{prec}	[kN]	-6616	-6616	-10119	Precompressione iniziale
M _{prec}	[kN-m]	-1877	-1742	-3493	Momento di precompressione iniziale
$\sigma_{c,QP} =$	MPa	-7.36	-8.52	-11.72	Tensione nel cls in corrisp. del cavo
$\Delta\sigma_{p,c+s+r}$	MPa	165.49	216.45	241.40	Perdite per rit. visc. e rilassamento
ΔN_{prec}	[kN]	782	1023	1745	Riduzione precompressione
σ _{c,sup} =	MPa	-2.39	-6.52	-11.66	Tensione nel cls al lembo superiore della sezione
$\sigma_{c,inf}$ =	MPa	-9.19	-9.38	-11.67	Tensione nel cls al lembo inferiore della sezione
σ _{c,yGp} =	MPa	-7.36	-8.52	-11.72	Tensione nel cls fibra cavo risultante
σ_{pi} =	MPa	-677.58	-1345.00	-1319.04	Tensione nel cavo
test cls sup.	-	ОК	ОК	ОК	σ* _{c,sup} >0 ?
test cls inf.	-	ОК	ОК	ОК	$\sigma^*_{c,inf} < 0.6 \text{ x f}_{ck}$?
test precompr.	-	ОК	ОК	ОК	$\sigma^*_{pi} < \sigma_{p0,max}$?

Si riportano di seguito gli andamenti delle tensioni al termine della fase 1.

6.1.5 Fase 2

Si considerano le perdite da viscosità, ritiro e rilassamento attraverso la formula di interdipendenza, riportata di seguito, ed applicate interamente alla sola trave.

$$\Delta P_{\text{c+s+r}} = A_{\text{p}} \Delta \sigma_{\text{p,c+s+r}} = A_{\text{p}} \frac{\varepsilon_{\text{cs}} E_{\text{p}} + 0.8 \Delta \sigma_{\text{pr}} + \frac{E_{\text{p}}}{E_{\text{cm}}} \varphi(t, t_0) \cdot \sigma_{\text{c,Qp}}}{1 + \frac{E_{\text{p}}}{E_{\text{cm}} A_{\text{c}}} \left(1 + \frac{A_{\text{c}}}{I_{\text{c}}} Z_{\text{cp}}^2\right) \left[1 + 0.8 \varphi(t, t_0)\right]}$$

L'effetto di viscosità relativo al calcestruzzo della soletta viene computato considerando un coefficiente di omogeneizzazione differente, secondo la relazione seguente:

$$n'_{cls} = n_{cls} * (1+0.8 * \phi(t^*,t_0))$$

Ghella

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA LOTTO

CODIFICA DOCUMENTO

REV.

FOGLIO

01 E ZZ CL IV 02 07 002 A 65 di 114

	ni di fase	· -			
Sezione	-	1	2	3	
ascissa x	[m]	0.50	2.60	11.70	
\square_2	-	0.00	0.00	0.00	Coeff. di combinazione carico variabile
MQ	[kN-m]	0	0	0	Momento dovuto ai carichi variabili - L=L _{appoggi}
M _{Permanenti}	[kN-m]	187	-63	740	Momento dovuto ai carichi permanenti portati
$\Delta\sigma_{c,sup, Sol}$ =	MPa	0.36	0.15	-1.94	Variazione di tensione Lembo sup. soletta
$\Delta\sigma_{c,inf, Sol}$ =	MPa	-0.30	0.11	-1.38	Variazione di tensione Lembo inf. soletta
$\Delta \sigma_{c,sup, Trave}$	MPa	-0.27	0.10	-1.27	Variazione di tensione Lembo sup. trave
$\Delta\sigma_{c,inf, Trave} =$	MPa	0.36	-0.14	1.76	Variazione di tensione Lembo inf. trave
$\Delta \sigma_{c,yGp} =$	MPa	0.19	-0.08	1.15	Variazione di tensione fibra corrisp. al cavo
$\Delta \sigma_{pi} =$	MPa	-1.03	0.42	-6.17	Variazione di tensione nel cavo
Rilassament	0				
$\Delta\sigma_{pr}$	MPa	0	0	0	Perdita per rilassamento residua (inserire 0, se già scontata nella fase precedente)
		<u> </u>	10	10	(modified of, do gla docinata nona face procedente)
Ritiro differe	nziale tr	ave soletta			
ε _{cs =}	-	0.000146	0.000146	0.000146	Residuo Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$ nella trave ancora da scontare
ε _{cs,soletta} =		0.000263	0.000263	0.000263	Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$ nella soleltta
$\Delta \epsilon_{\text{cs,soletta}} =$		0.000117	0.000117	0.000117	Ritiro differenziale Soletta-Trave
E _{cm} =	MPa	36283	36283		Madula alastica di propetto ala travi
_				1 3h2X3	Modulo elastico di progetto cls travi
E _{cm,soletta} =	MPa			36283	Modulo elastico di progetto cis travi
	MPa -	33346	33346	33346	
n _{cls} =	MPa - MPa	33346 1.088	33346 1.088	33346 1.088	Modulo elastico di progetto cls soletta
n _{cls} = E' _{cm,soletta} =	-	33346 1.088 12480	33346 1.088 12480	33346 1.088 12480	Modulo elastico di progetto cls soletta Coeff. omogeneizzazione tra cls soletta e CAP
$n_{cls} =$ $E'_{cm,soletta} =$ $\sigma_{c,soletta} =$	- MPa	33346 1.088 12480 1.4626	33346 1.088 12480 1.4626	33346 1.088 12480 1.4626	Modulo elastico di progetto cls soletta Coeff. omogeneizzazione tra cls soletta e CAP Modulo elastico di progetto cls soletta (eff.viscosi)
n_{cls} = $E'_{cm,soletta}$ = $\sigma_{c,soletta}$ = $\Delta\sigma_{c,sup,\ Sol}$ =	- MPa MPa	33346 1.088 12480 1.4626 1.46	33346 1.088 12480 1.4626 1.46	33346 1.088 12480 1.4626 1.46	Modulo elastico di progetto cls soletta Coeff. omogeneizzazione tra cls soletta e CAP Modulo elastico di progetto cls soletta (eff.viscosi) Tensioni fittizia da ritiro nella soletta
$\begin{aligned} &n_{\text{cls}} = \\ &E'_{\text{cm,soletta}} = \\ &\sigma_{\text{c,soletta}} = \\ &\Delta\sigma_{\text{c,sup, Sol}} = \\ &\Delta\sigma_{\text{c,inf, Sol}} = \end{aligned}$	- MPa MPa	33346 1.088 12480 1.4626 1.46	33346 1.088 12480 1.4626 1.46	33346 1.088 12480 1.4626 1.46	Modulo elastico di progetto cls soletta Coeff. omogeneizzazione tra cls soletta e CAP Modulo elastico di progetto cls soletta (eff.viscosi) Tensioni fittizia da ritiro nella soletta Variazione di tensione Lembo sup. soletta
$\begin{split} &n_{\text{cls}} = \\ &E'_{\text{cm,soletta}} = \\ &\sigma_{c,\text{soletta}} = \\ &\Delta\sigma_{c,\text{sup, Sol}} = \\ &\Delta\sigma_{c,\text{inf, Sol}} = \\ &\Delta\sigma_{c,\text{sup, Trave}} = \\ &= \\ &= \\ &= \\ \end{split}$	- MPa MPa MPa MPa	33346 1.088 12480 1.4626 1.46 1.46	33346 1.088 12480 1.4626 1.46 1.46	33346 1.088 12480 1.4626 1.46 1.46	Modulo elastico di progetto cls soletta Coeff. omogeneizzazione tra cls soletta e CAP Modulo elastico di progetto cls soletta (eff.viscosi) Tensioni fittizia da ritiro nella soletta Variazione di tensione Lembo sup. soletta Variazione di tensione Lembo inf. soletta
$\begin{split} E_{cm,soletta} &= \\ n_{cls} &= \\ E'_{cm,soletta} &= \\ \sigma_{c,soletta} &= \\ \Delta\sigma_{c,sup, \ Sol} &= \\ \Delta\sigma_{c,inf, \ Sol} &= \\ \Delta\sigma_{c,sup, \ Trave} &= \\ \Delta\sigma_{c,inf, \ Trave} &= \\ \Delta\sigma_{c,inf, \ Trave} &= \\ \Delta\sigma_{c,yGp} &= \\ \end{split}$	MPa MPa MPa MPa	33346 1.088 12480 1.4626 1.46	33346 1.088 12480 1.4626 1.46	33346 1.088 12480 1.4626 1.46	Modulo elastico di progetto cls soletta Coeff. omogeneizzazione tra cls soletta e CAP Modulo elastico di progetto cls soletta (eff.viscosi) Tensioni fittizia da ritiro nella soletta Variazione di tensione Lembo sup. soletta Variazione di tensione Lembo inf. soletta Variazione di tensione Lembo sup. trave

Ghella

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

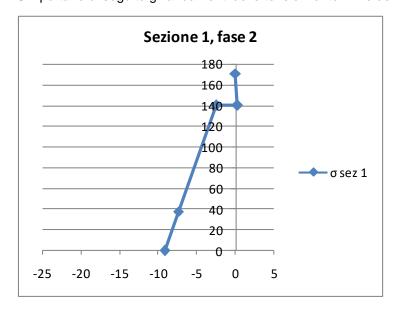
Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA LOTTO

CODIFICA DO

DOCUMENTO R

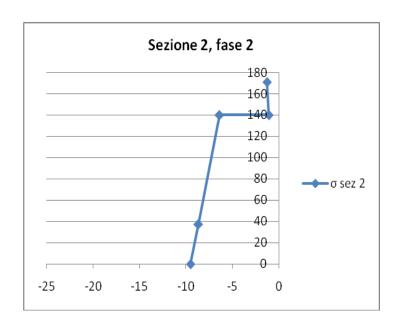
REV. FOGLIO

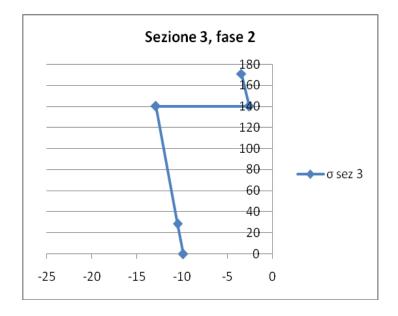

IN 01 E ZZ CL IV 02 07 002 A 66 di 114

Viscosità					
□(t*,t₀)	-	2.09	2.09	2.09	Coeff. di viscosità fase 2 (soletta)
n _{cls} =		1.088	1.088	1.088	Coeff. omogeneizzazione tra cls soletta e CAP
n' _{cls} =	-	2.91	2.91	2.91	$n_{cls} \times (1+0.8 \times \Box(t^*,t_0))$
S _{soletta} =	mm	310	310	310	Spessore soletta
b _{soletta, collab.} =	mm	2000	2000	2000	Larghezza collaborante soletta
n	-	5.4	5.4	5.4	Coeff. di omogeneizzazione acciaio da precompressione
A _{cls} =	mmq	1000000	700000	700000	Area lorda sezione CLS
A _{cls,soletta} =	mmq	6200000	6200000	6200000	Area lorda sezione CLS soletta (comprensiva della predalle, sp. 5cm)
A _P =	mmq	4726	4726	7228	Area armatura di precompressione
A* =	mmq	1204255	904255	917702	Area omogeneizzata
y _{G,P} =	mm	374	374	283	Baricentro armatura precompressione
y* _{G,cls} =	mm	795	824	813	Baricentro sezione cls omogeneizzata
I* _{cls+sol} =	mm4	4.121E+11	3.648E+11	3.424E+11	Inerzia sezione cls omogeneizzata
H _{sez,tr+sol} =	mm	1710	1710	1710	Altezza sezione trave + soletta
y _{sup, sol} =	mm	915	886	897	distanza del lembo sup. della soletta da y*G,cls
y _{inf, sol} =	mm	605	576	587	distanza del lembo inf. della soletta da y*G,cls
y _{sup,trave} =	mm	605	576	587	distanza del lembo sup. della trave da y*G,cls
y _{inf,trave} =	mm	795	824	813	distanza del lembo inf. della trave da y*G,cls
е	mm	421	450	531	eccentricità cavo risultante
W* _{sup,sol} =	mmc	-4.50E+08	-4.12E+08	-3.82E+08	Modulo di res. Lembo sup. soletta
W* _{inf,sol} =	mmc	-6.29E+08	-5.83E+08	-5.38E+08	Modulo di res. Lembo inf. soletta
W* _{sup,trave} =	mmc	-6.81E+08	-6.33E+08	-5.84E+08	Modulo di res. Lembo sup. trave
W* _{inf,trave} =	mmc	5.18E+08	4.43E+08	4.21E+08	Modulo di res. Lembo inf. trave
E _p =	MPa	195000	195000	195000	Modulo elastico di progetto acciaio da prec.
Tensioni totali di fase 2 a cadute avvenute					
$\Delta\sigma_{c,sup,\;Sol} =$	MPa	1.05	1.62	-0.48	Variazione di tensione Lembo sup. soletta
$\Delta\sigma_{c,inf,\;Sol} =$	MPa	1.16	1.57	0.09	Variazione di tensione Lembo inf. soletta
$\Delta \sigma_{c,sup,}$ Trave	MPa	-0.27	-0.27	-0.27	Variazione di tensione Lembo sup. trave
$\Delta\sigma_{c,inf,\;Trave} =$	MPa	0.36	-0.14	1.76	Variazione di tensione Lembo inf. trave
$\Delta\sigma_{c,yGp}$ =	MPa	0.19	-0.08	1.15	Variazione di tensione fibra corrisp. al cavo

$\Delta\sigma_{\text{pi,v}}$ =	MPa	-1.03	0.42	-6.17	Variazione di tensione nel cavo
Tensioni tot	ali a cad	lute avvenute	<u> </u> 		
$\sigma_{c,sup,\;Sol} =$	MPa	-0.33	-1.33	-3.46	tensione Lembo sup. soletta
$\sigma_{c,inf, \; Sol} \! = \!$	MPa	0.05	-1.10	-2.61	tensione Lembo inf. soletta
$\sigma_{c,sup, Trave} =$	MPa	-2.66	-6.42	-12.93	tensione Lembo sup. trave
σ _{c,inf, Trave} =	МРа	-8.83	-9.52	-9.91	tensione Lembo inf. trave
$\sigma_{c,yGp}$ =	МРа	-7.18	-8.69	-10.52	tensione fibra corrisp. al cavo
σ_p =	MPa	-678.51	-1344.10	-1325.46	tensione nel cavo
test cls sup.soletta	-	ОК	ОК	ОК	$\sigma^*_{c} < 0.4 \text{ x f}_{ck}$?
test cls inf.soletta	-	ОК	ОК	ОК	$\sigma^*_{c} < 0.4 \text{ x f}_{ck}$?
test cls sup.	-	ОК	ОК	ОК	$\sigma^*_{c} < 0.4 \text{ x f}_{ck}$?
test cls inf.compr.	-	ОК	ОК	ок	$\sigma^*_{c} < 0.4 \text{ x f}_{ck}$?
test cls inf.trazione	-	ОК	ОК	ок	σ* _{c,} >0?
test precompr.	-	ОК	ОК	ОК	$\sigma^*_p < \sigma_{p0,max}$?

Si riportano di seguito gli andamenti delle tensioni al termine della fase 2.





Cavalcaferrovia al km 2+114
Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL IV 02 07 002 A 68 di 114

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

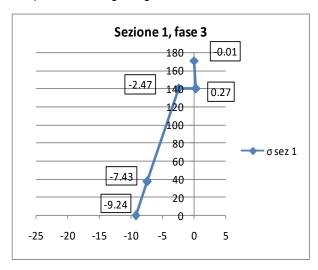
COMMESSA LOTTO CODIFICA

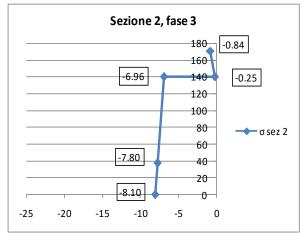
IF1N 01 E ZZ CL

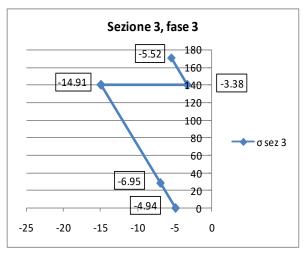
DOCUMENTO

IV 02 07 002

REV.


FOGLIO **69 di 114**


6.1.6 Fase 3


Sezione	-	1	2	3			
ascissa x	[m]	0.75	2.55	8.35			
Sollecitazioni di fase 3							
\square_2	-	1.00	1.00	1.00	Coeff. di combinazione carico variabile		
MQ	[kN-m]	-238	693	2367	Momento dovuto ai carichi variabili - L=L _{appoggi}		
M _{Permanenti}	[kN-m]	0	0	0	Momento dovuto ai carichi permanenti		
Tensioni totali di Fase 3							
$\Delta\sigma_{c,sup, Sol} =$	MPa	0.32	-0.98	-3.52	Variazione di tensione Lembo sup. soletta		
$\Delta\sigma_{c,inf, Sol} =$	MPa	0.21	-0.61	-2.23	Variazione di tensione Lembo inf. soletta		
$\Delta\sigma_{c,sup, Trave} =$	MPa	0.19	-0.54	-1.98	Variazione di tensione Lembo sup. trave		
$\Delta\sigma_{c,inf, Trave} =$	MPa	-0.40	1.42	4.97	Variazione di tensione Lembo inf. trave		
$\Delta\sigma_{c,yGp}$ =	MPa	-0.24	0.89	3.57	Variazione di tensione fibra corrisp. al cavo		
$\Delta\sigma_p =$	MPa	1.31	-4.80	-19.19	Variazione di tensione nel cavo		
Tensioni tota	ali						
$\sigma_{c,sup, Sol} =$	MPa	-0.01	-0.84	-5.52	tensione Lembo sup. soletta		
$\sigma_{c,inf, Sol}$ =	MPa	0.27	-0.25	-3.38	tensione Lembo inf. soletta		
σ _{c,sup, Trave} =	MPa	-2.47	-6.96	-14.91	tensione Lembo sup. trave		
σ _{c,inf, Trave} =	MPa	-9.24	-8.10	-4.94	tensione Lembo inf. trave		
$\sigma_{c,yGp}$ =	MPa	-7.43	-7.80	-6.95	tensione fibra corrisp. al cavo		
σ_p =	MPa	-677.20	-1348.90	-1344.65	tensione nel cavo		
test cls sup.soletta	-	ок	ок	ОК	$\sigma_{c}^{\star} < 0.4 \text{ x f}_{ck}$?		
test cls inf.soletta	-	ок	ок	ОК	$\sigma_{c}^{*} < 0.4 \text{ x f}_{ck}$?		
test cls sup.	-	ок	ок	ОК	σ^*_{c} < 0,4 x f _{ck} ?		
test cls inf.compr.	-	ок	ок	ОК	$\sigma_{c}^{*} < 0.4 \text{ x f}_{ck}$?		
test cls inf.trazione	-	ок	ок	ОК	σ* _{c,} >0?		
test precompr.	-	ок	ОК	ОК	$\sigma_p^* < \sigma_{p0,max}$?		

Si riportano di seguito gli andamenti delle tensioni al termine della fase 3.

6.2 VERIFICHE A FESSURAZIONE

Per la verifica della trave in c.a.p., data la classe di esposizione XC4 a cui corrispondono condizioni ambientali "aggressive", e il tipo di armatura "sensibile" (per le travi in c.a.p.), secondo i criteri esposti al §4.1.2.2.4.5 delle NTC2008 (rif.[1]), lo stato limite di fessurazione si ritiene verificato se si rispettano le seguenti condizioni:

- √ per la combinazione frequente viene rispettato il limite di apertura delle fessure w1=0,2mm
- ✓ per la combinazione quasi permanente viene rispettato il limite di decompressione.

Secondo il §4.1.2.2.4.1 delle Norme Tecniche lo stato limite di formazione delle fessure si ha quando la tensioni massima di trazione della sezione supera:

$$\frac{f_{ctm}}{1.2} = 3.2 \text{ MPa, per la trave in cap}$$

$$\frac{f_{\text{ctm}}}{1.2} = 2.5 \text{ MPa}, \text{ per la soletta in ca}$$

Le tensioni relative alla trave in cap non sono mai di trazione.

La tensione massima di trazione per la soletta (al lembo inferiore) vale σc , inf, sol = 0.27 MPa sezione di appoggio (x=0.50m)

Si ha quindi che le combinazioni frequenti non portano mai alla formazione di fessure in quanto già nelle combinazioni rare la tensione massima non supera il valore sopra riportato.

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

" LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E

VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 72 di 114

7 EFFETTI GLOBALI SU IMPALCATO – VERIFICHE AGLI SLU

Si riporta di seguito la verifica allo SLU per presso-flessione retta della sezione 3 (mezzeria) della trave composta di bordo, che è risultata la più sollecitata.

Si riporta inoltre la verifica a taglio con le sollecitazioni di taglio massime (zona di appoggio) dedotta dai modelli di calcolo. A vantaggio di sicurezza è stata considerata comunque la sezione resistente corrispondente alla sezione corrente.

7.1 SOLLECITAZIONI A PRESSOFLESSIONE

Si riportano di seguito le sollecitazioni riscontrate nella sezione di verifica, dovute ai carichi elementari precedentemente descritti.

Fase 1 - peso proprio e getto della soletta

$$M = (M_{pp} + M_{soletta}) * \gamma = 2657 \text{ kNm} * 1.35 = 3587 \text{ kNm}$$

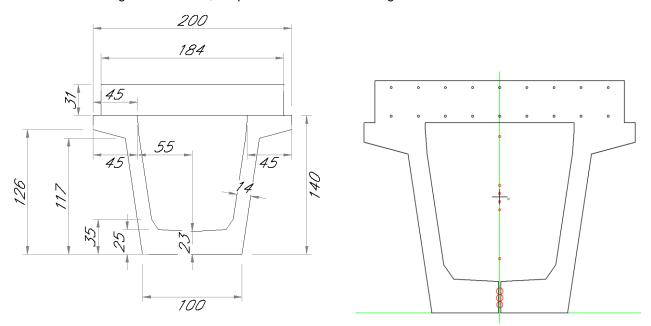
$$N = 0$$

$$Con \gamma = 1.35$$

Fase 2 e 3 – carichi permanenti portati e di esercizio

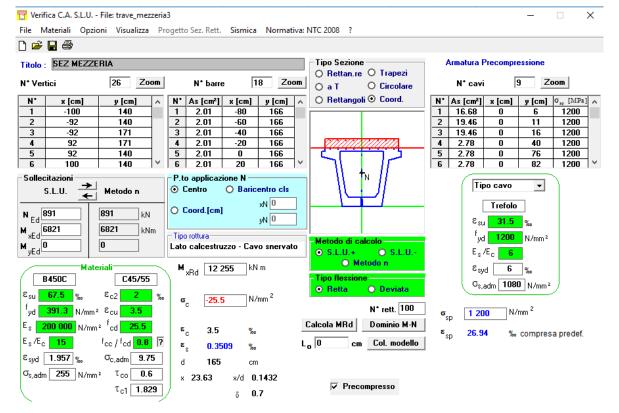
Di seguito si valutano momento e sforzo assiale complessivo nella condizione più gravosa:

$$M_{E,d} = 3587 + 3233 = 6821$$
 kNm (somma delle 3 fasi)
 $N_{Ed\ max} = -891$ kN (somma delle 3 fasi); $N_{Ed\ min} = -2088$ kN (somma delle 3 fasi)

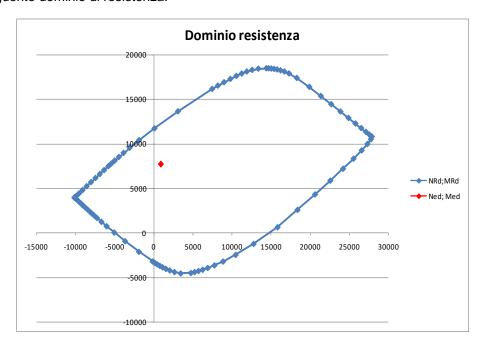

7.2 VERIFICHE DI RESISTENZA

In una trave in c.a.p raggiunto lo stato limite ultimo, le armature di precompressione raggiungono il loro limite di snervamento oltre il quale si perde l'effetto della precompressione in quanto la tensione non cambia più al variare della deformazione. In tal caso la sezione della trave si comporta come una sezione in c.a. ordinario con l'armatura di precompressione che si comporta come armatura ordinaria. Occorre solamente tener conto del fatto che l'armatura di precompressione all'atto del tiro subisce una deformazione iniziale che va aggiunta alla deformazione provocata dai carichi esterni. Nella verifica, a favore di sicurezza, si trascura il contributo dell'armatura lenta della trave (si considera l'armatura lenta della soletta) e si assume come armatura resistente quella costituita dai soli trefoli.

I cavi di precompressione presenti nella sezione di verifica, a cadute lente esaurite, sono soggetti ad una deformazione media ϵ p0 che risultata pari a 5.9‰, a fronte di una ϵ di snervamento che, essendo la E dell'acciaio 195000 MPa e la fptk / 1.15 = 1617 MPa, è uguale all' 8.3‰.


7.2.1 VERIFICA A PRESSOFLESSIONE

In riferimento al seguente schema, si riportano le caratteristiche geometriche della sezione.



Nella verifica si è tenuto conto anche della presenza di armatura lenta, in riferimento allo schema sopra riportato.

Si ottiene il seguente dominio di resistenza:

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 75 di 114

Come si osserva dal grafico sopra riportato, le sollecitazioni ricadono all'interno del dominio di resistenza, quindi la verifica è soddisfatta.

La deformazione dei trefoli è pari a 2.69%, inferiore al limite ultimo εsu = 3.15%, per cui anche questa ulteriore verifica risulta soddisfatta.

7.3 SOLLECITAZIONI A TAGLIO

Si riportano di seguito le sollecitazioni riscontrate nella sezione di verifica, dovute ai carichi elementari precedentemente descritti.

Fase 1 – peso proprio e getto della soletta

$$V = (V_{pp} + V_{soletta}) * \gamma = 603 \text{ kN}$$

$$N = 0$$

Con $\gamma = 1.35$

Fase 2 e 3 – carichi permanenti portati e di esercizio

$$\begin{split} V_{\text{es,SLU}} &= V_{\text{traffico}}^* \ \gamma_{\text{traffico}} + V_{\text{vento}}^* \ \gamma_{\text{vento}} + V_{\text{termica}} \ ^* \ \gamma_{\text{termica}} = \\ &= 272 \ ^* \ 1.35 + 0.3 \ ^* \ 0.9 + 0 = 367 \ kN \\ V &= V_{\text{perm}} \ ^* \ \gamma_{\text{perm}} + V_{\text{es,SLU}} = 145 \ ^* \ 1.35 + 367 = 563 \ kN \end{split}$$

Il taglio complessivo nella condizione più gravosa è pari a:

$$V_{Ed SLU} = 603 + 563 = 1166 \text{ kN}$$

La tensione di compressione presente è pari a σ_{cp} = 7.104 MPa

7.4 **SOLLECITAZIONI DI TORSIONE**

Di seguito si riportano le sollecitazioni di torsione agenti sulla trave di bordo, considerata nella verifica di taglio/torsione.

T_{Ed_SLU} = T_{perm} * Y_{perm} + T_{traffico}* Y_{traffico}+ T_{vento}* Y_{vento}+ T_{termica} * Y_{termica} = 433 kN

7.5 **VERIFICHE DI RESISTENZA**

Si riportano di seguito le verifiche previste per gli SLU.

7.5.1 **VERIFICA A TAGLIO**

tteristica	fck	45	N/mm2
	fcd	26	N/mm ²
tente a V	bw	280	mm
tente a V	Н	1710	mm
opriferro	С	50	mm
ezza utile	d	1660	mm
a sezione	Ac	464800	mm2
ressione	σср	7.104	N/mm ²
	αc	1.25	
o B450C	fyk	450	N/mm ²
ne limite	fyd	391	N/mm ²
fe (spille)	øw	16	mm
fa (spilla)	Aøw	201	mm ²
0.9 d	z	1494	mm
fe (spille)	sw	150	mm
	n° bracci	4	
linazione	θ	45	•
ra 1 e 2.5	cot(θ)	1.00	
rmatura	α	90	•
	cot(a)	0.00	
	Asw / sw	5.36	mm²/mm
trazione"	\/Dcd	2124	kN
			kN
ressione" Isd, VRcd	VKCa Vrd	3333 3134	kN kN
isu, vrca	VIQ	3134	KIN
llecitante	Ved	1166	kN
	tente a V tente a V opriferro ezza utile a sezione oressione oressione fe (spille) fa (spilla) 0.9 d fe (spille) linazione ra 1 e 2.5 rmatura	fcd tente a V tente a V tente a V opriferro c ezza utile d sezione Ac oressione ocp ac o B450C fyk ne limite fyd fe (spille) fe (spille) fe (spille) sw n° bracci linazione ra 1 e 2.5 rmatura cot(a) Asw / sw trazione" VRsd vRcd	fcd 26

La verifica risulta pertanto soddisfatta.

7.5.2 **VERIFICA A TORSIONE**

Resist. Caratteristica	fck	45	N/mm ²
	fcd	26	N/mm ²
altezza membratura resistente a T	Н	1710	mm
copriferro	С	50	mm
altezza utile	d	1660	mm
area racchiusa perimetro medio	Α	1578000	mm ²
spessore minimo parete sezione cava	t	140	mm
perimetro medio sezione cava	um	5025	mm
tensione di compressione da precompressione	σср	7.104	N/mm ²
	αc	1.25	•
Acciaio B450C	fyk	450	N/mm ²
	fyd	391	N/mm ²
diametro barre long	øl	10	mm
numero barre long	nl	50	
area armatura long	Al	3925	mmq
diametro staffe (spille)	øw	16	mm
Area staffa (spilla)	Aøw	201	mm^2
0.9 d	Z	1494	mm
passo delle staffe (spille)	sw	150	mm
	n° bracci	2	
angolo di indinazione	θ	45	۰
deve essere compreso tra 1 e 2.5	$cot(\theta)$	1.00	
angolo di inclinazione armatura	α	90	•
	cot(α)	0.00	
	Asw/sw	2.68	mm²/mm
Torsione resistente per "taglio compressione"	TRcd	2817	kNm
Torsione resistente per "taglio trazione armatura trasv"	TRsd	3311	kNm
Torsione resistente per "taglio trazione armatura long"	TRId	965	kNm
Torsione resistente minimo tra Trsd, Trcd, Trld	Trd	965	kN
Torsione sollecitante	Ted	433	kN
	T-4		т_J
	Ted	<	Trd

verifica soddisfatta

La verifica risulta pertanto soddisfatta.

7.5.3 Verifica a taglio-torsione

In riferimento alle sollecitazione e alle resistenze precedentemente calcolate, si riporta la verifica a tagliotorsione prevista dalla normativa (punto b del par. 4.1.2.1.4 del D.M. 14/01/2008).

$$\frac{T_{Ed}}{T_{Rcd}} + \frac{V_{Ed}}{V_{Rcd}} = \frac{1166}{3333} + \frac{433}{2817} = 0.504 \le 1$$

La verifica è soddisfatta.

8 VERIFICHE DEI TRASVERSI

8.1 VERIFICHE TENSIONALI A SLE

Si riportano di seguito le verifiche di resistenza per i trasversi. Si considerano le sollecitazioni dovute ai carichi agenti nelle varie fasi.

Si riportano di seguito le caratteristiche principali del traverso:

Altezza: 1.31 m

Spessore soletta: 0.31 m

Spessore trasverso: 0.40 m

Precompressione superiore: 1 cavo da 7 trefoli da 0.6"

Distanza cavo superiore da lembo inferiore del traverso: 0.18 m

Precompressione inferiore: 1 cavo da 7 trefoli da 0.6"

Distanza cavo inferiore da estradosso traverso: 1.0 m

Si effettuano le verifiche relative alle fasi T=0, $T=\infty$ e in condizioni di esercizio. Nelle fasi T=0 e $T=\infty$ si considera la sola porzione del trasverso composta dal prefabbricato. In esercizio si considera anche il contributo della soletta.

Nella figura seguente è riportata la geometria della sezione considerata in fase di esercizio.

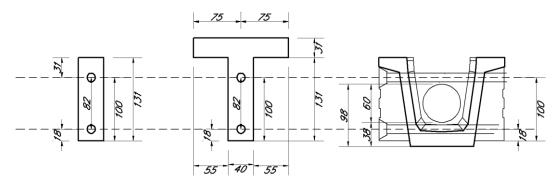


Figura 17 – Sezione rettangolare trasverso a T=0 e T=infinito, sezione a T in condizione di esercizio

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 80 di 114

Si adottano i seguenti limiti:

- Limite di compressione per T=0 (comb. Quasi permanente): 0.45*fck = -20.25 MPa;
- Limite di compressione per T=∞ e in condizione di esercizio (comb. rara) per cap: 0.6*fck = -27 MPa;
- Limite di trazione per il cap (trasverso) = 0.35*fctk = 0.93 MPa;
- Limite di trazione per il ca (soletta)= fctm/1.2 = 2.5 MPa (limite di apertura delle fessure).

VERIFICA TRASVERSO T=0

Geometria - sezione rettangolare

sp. traverso	400	mm	spessore trasverso
h rettangolo	1310	mm	altezza sezione rettangolare (T=0)
h totale	1620	mm	altezza sezione a T (T=infinito)
sp. soletta	310	mm	spessore soletta
L sol	1500	mm	larghezza soletta

Caratteristiche inerziali

A _{sez.piena}	524000	mmq	area sezione piena
J _{sez.piena}	7.49E+10	mm^4	momento d'inerzia sezione piena
yG sez.piena	655	mm	baricentro sezione piena
W_{sup}	- 1.14E+08	mme	modulo di resistenza superiore
v v sup	1.146+00	mmc	modulo di resistenza superiore
W_{inf}	1.14E+08	mmc	modulo di resistenza inferiore

Precompressione

σ_{p0}	1300	MPa	tensione cavi
Atrefoli	139	mmq	area trefolo
Ntrefoli,sup	7	-	numero trefoli cavo sup
Ntrefoli,inf	7	-	numero trefoli cavo inf
A _{cavo,sup}	973	mmq	Area cavo sup
A _{cavo,inf}	973	mmq	Area cavo inf
$N_{\text{cavo,sup}}$	-1264.9	kN	tiro cavo sup
$N_{\text{cavo,inf}}$	-1264.9	kN	tiro cavo inf
y cavo,sup	1000	mm	quota cavo sup
y cavo,inf	180	mm	quota cavo inf
ecavo,sup	-410	mm	eccentricità cavo sup (<0)
e cavo,inf	410	mm	eccentricità cavo inf (>0)

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 81 di 114

y cavo	590	mm	baricentro cavo risultante
N	-2530	kN	N di precompressione totale
M	-1037	kNm	M di precompressione totale
Sollecitazioni	a T=0		
N-ΔN Pelast M-ΔM Pelast	-2479 0	kN kNm	N di precompressione scontato delle perdite elastiche
M_{est}	21	kNm	M esterno (pp trasverso)
Tensioni a T=	0		
sezione piena			
$\sigma_{\text{co,sup}}$	-4.91	MPa	tensione lembo sup.
$\sigma_{\text{co,inf}}$	-4.55	MPa	tensione lembo inf.

Le perdite elastiche considerate sono le seguenti:

PERDITE ELASTICHE TREFOLI

N prec	2530	kN
EP	195000	MPa
Ecap	36283	MPa
Ap	1946	mmq
np	5.4	
μί	0.00364	
yi	63.7	mm
NP0	2479	kN
ΔN P elast	51	kN
Δσ P elast	26	MPa

Nelle successive fasi si considerano le seguenti perdite di precompressione dei trefoli:

PERDITE PER RITIRO

ε rit	2.83E-04	
ΔN rit [kN]	107.4	KN
Δσp,rit [MPa]	55	MPa

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 82 di 114

PERDITE VISCOSE

σ qperm 7.09 [MPa] 7.09 φ εsp 4.28E-04 ΔNp,visc 162.3 KN Δσp,visc 83 MPa	φ visc	2.19	
Δ Np,visc 162.3 KN	•••	7.09	
• •	φ εsp	4.28E-04	
Δσp,visc 83 MPa	$\Delta Np, visc$	162.3	KN
	$\Delta\sigma p, visc$	83	MPa

PERDITE PER RILASSAMENTO

σ_{p0}	1300	MPa
fptk	1860	MPa
p1000	2.5	%
t inf	5.00E+05	ore
μ=σspi/ftk	0.7	-
ΔNp,ril	150	KN
% Δσp,ril	5.9%	-
Δσp,ril	77.0	MPa

PERDITE TOTALI

perdite tot 242 MPa sigma finale 1058 MPa

VERIFICA TRASVERSO T=inf

Geometria - sezione a rettangolare

sp.			
traverso	400	mm	spessore trasverso
h			
rettangolo	1310	mm	altezza sezione rettangolare (T=0)
h totale	1620	mm	altezza sezione a T (T=infinito)
sp. soletta	310	mm	spessore soletta
L sol	1500	mm	larghezza soletta

Caratteristiche inerziali

Asez.piena	524000	mmq	area sezione piena
J _{sez.piena}	74936366667	mm^4	momento d'inerzia sezione piena
yG sez.piena	655	mm	baricentro sezione piena
W_{sup}	-114406666.7	mmc	modulo di resistenza superiore

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI - PROGETTO ESECUTIVO**

REV.

Α

FOGLIO

83 di 114

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO 01 E ZZ CL IV 02 07 002

W_{inf}	114406666.7	mmc	modulo di resistenza inferiore
Precompre	essione		
σ_{p0}	1058	MPa	tensione cavi depurata dalle perdite a lungo termine
Atrefoli	139	mmq	area trefolo
N _{trefoli,sup}	7	-	numero trefoli cavo sup
N trefoli,inf	7	-	numero trefoli cavo inf
$A_{\text{cavo},\text{sup}}$	973	mmq	Area cavo sup
$A_{\text{cavo,inf}}$	973	mmq	Area cavo inf
$N_{\text{cavo},\text{sup}}$	-1030	kN	tiro cavo sup
$N_{\text{cavo},\text{inf}}$	-1030	kN	tiro cavo inf
y cavo,sup	1000	mm	quota cavo sup
y cavo,inf	180	mm	quota cavo inf
e _{cavo,sup}	-410	mm	eccentricità cavo sup (>0)
e _{cavo,inf}	410	mm	eccentricità cavo inf (<0)
y cavo	590	mm	baricentro cavo risultante
Sollecitazi	oni a T–inf		
N-ΔN	on a 1-m		
Pelast M-ΔM	-2060	kN	N di precompressione a perdite avvenute
Pelast	0	kNm	M di precompressione a perdite avvenute
Mest	-423	kNm	M esterno (G1+G2)
Tensioni a			
sezione pie			
$\sigma_{\text{co,sup}}$	-0.23	MPa	tensione lembo sup.
$\sigma_{\text{co,inf}}$	-7.63	MPa	tensione lembo inf.

In condizioni di esercizio si considera la soletta collaborante con il trasverso.

VERIFICA TRASVERSO M est

Geometria - sezione a T

sp. traverso	400	mm	spessore trasverso altezza sezione rettangolare
h rettangolo	1310	mm	(T=0)
h totale	1620	mm	altezza sezione a T (T=infinito)

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI - PROGETTO ESECUTIVO**

FOGLIO

84 di 114

Α

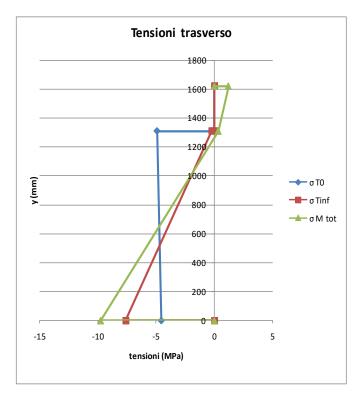
COMMESSA LOTTO CODIFICA DOCUMENTO REV. Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo IF1N 01 E ZZ CL IV 02 07 002

sp. soletta	310	mm	spessore soletta
L sol	1500	mm	larghezza soletta
arm sol omog	20936	mmq	armatura lenta soletta omogen al cls di cap armatura prec omogen al cls di
arm prec omog	10459	mmq	cap
yG arm lenta	1465	mm	baricentro armatura lenta baricentro armatura
yG arm prec	850	mm	precompress
Caratteristiche inerziali			
Asez.piena cls	989000	mmq	area sezione piena
Asez.tot omog	1020395	mmq	
J _{sez.piena}	2.40E+1 1	mm^4	momento d'inerzia sezione piena
yG sez.piena	1036	mm	baricentro sezione piena
	4040.74		baricentro sezione piena
yG omog	1042.74	mm	omogen
	4.16E+0		
Wsup soletta	8	mmc	
	- 8.99E+0		
W_{sup}	8	mmc	modulo di resistenza superiore
•	2.30E+0		·
W_{inf}	8	mmc	modulo di resistenza inferiore
Sollecitazioni di esercizio			

M _{G1+G2}	-423	kNm	M esterno G1+G2
M _{SLE,rara}	-499	kNm	M esterno G1+G2+variabili SLE

Tensioni condizione di esercizio

$\sigma_{ ext{co,sup,sol}}$	1.20	MPa		
$\sigma_{\text{co,sup}}$	0.55	MPa	tensione lembo sup.	N/A+M/W
$\sigma_{\text{co,inf}}$	-2.17	MPa	tensione lembo inf.	


Le tensioni totali sono le seguenti:

	T=0	T=infinito	M est	M tot SLE
σ co,sup,soletta	-	-	1.20	1.20
σ _{co,sup,trasverso}	-4.91	-0.23	0.55	0.32
σ co,inf,trasverso	-4.55	-7.63	-2.17	-9.79

Le verifiche risultano soddisfatte.

Di seguito si riporta l'andamentodelle tensioni sulla sezione del trasverso.

8.2 VERIFICHE SLE A FESSURAZIONE

Come si evince dalle tabelle riportate nelle verifiche tensionali il valore della tensione di trazione nel calcestruzzo sia della soletta che del trasverso non superano mai il valore di tensione associato alla "formazione delle fessure" (rif. §4.1.2.2.4.1 DM2008 (rif.[1])):

- Soletta:

$$\sigma$$
max = 1.2 MPa σ t_fess,lim_soletta = fctm/1.2 = 3.0 MPa /1.2 = 2.5 MPa

Trasverso:

$$\sigma$$
max = 0.32 MPa σ t_fess,lim_cap = fctm/1.2 = 3.8 MPa /1.2 = 3.2 MPa

Le verifiche a fessurazione risultano dunque soddisfatte.

9 VERIFICHE SLE DEGLI SPOSTAMENTI

Secondo le indicazioni del §2.2.3 della specifica RFI sui cavalcaferrovia (rif.[5]) la deformazione sotto l'azione dei carichi verticali in combinazione rara deve rispettare la seguente limitazione:

$$f \le L/700 = 23.4 \text{m}/700 = 0.0334 \text{ m}$$

Il massimo valore dello spostamento verticale ottenuto dal modello agli E.F. risulta pari a 0.0075m. La verifica risulta pertanto soddisfatta.

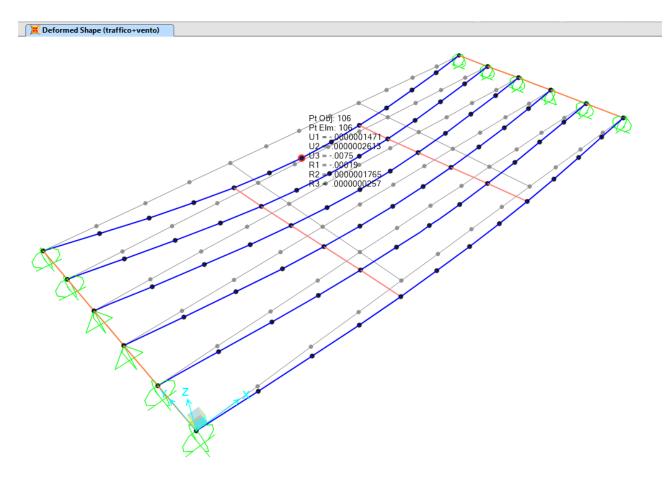


Figura 18 – Deformata dell'impalcato sotto l'effetto dei carichi accidentali (traffico e vento)

10 EFFETTI LOCALI SULL'IMPALCATO – MODELLO TRASVERSALE

10.1 DESCRIZIONE DEL MODELLO DI CALCOLO

La determinazione delle sollecitazioni sulla soletta gettata in opera viene effettuata mediante l'ausilio di un modello piano agli E.F. che schematizza una striscia di 1 m della sezione corrente di impalcato, realizzato mediante l'ausilio del programma di calcolo agli elementi finiti SAP2000 (CSI, versione v16).

Il modello agli elementi finiti è costituito da elementi di tipo frame che modellano la soletta, le anime e l'ala inferiore dei cassoncini. Il modello riproduce la geometria e la rigidezza degli elementi che costituiscono l'impalcato nella sua sezione corrente.

Il sistema di riferimento è definito secondo nel seguente modo:

✓ asse Y : asse trasversale;

✓ asse Z : asse verticale.

Di seguito si riporta una vista del modello di calcolo.

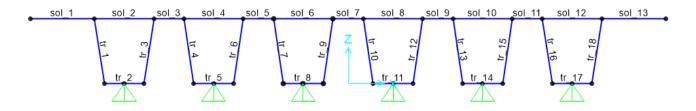


Figura 19 - Modello 2D agli E.F.

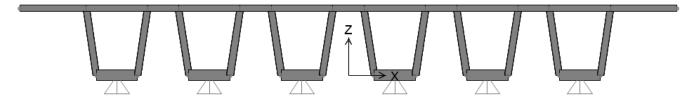
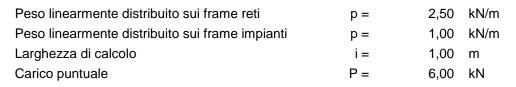


Figura 20 - Modello 2D agli E.F. vista estrusa

10.2 ANALISI DEI CARICHI

Di seguito si riporta l'analisi delle azioni considerate e applicate al modello di calcolo per l'analisi degli effetti locali trasversali sull'impalcato, in riferimento a quanto descritto al capitolo 5.2 della presente relazione.

10.2.1 Peso proprio (G1)


Il peso proprio delle strutture viene considerato automaticamente dal software di calcolo utilizzato. Il carico delle strutture in c.a. e c.a.p. viene valutato considerando un peso di volume pari a 25 kN/mc.

10.2.2 Permanenti non strutturali (G2)

I carichi permanenti non strutturali sono costituiti dal peso dei cordoli, delle velette, della pavimentazione, delle barriere di sicurezza, delle reti di protezione, degli impianti.

CORDOLI			
Peso unitario	γ =	25,00	kN/m3
Spessore	s =	0,17	m
Peso distribuito	p =	4,25	kN/m2
Larghezza di calcolo	i =	1,00	m
Carico linearmente distribuito sui frame	p =	4,25	kN/m
PAVIMENTAZIONE			
Peso unitario	γ =	20,00	kN/m3
Spessore	s =	0,13	m
Peso distribuito	p =	2,60	kN/m2
Larghezza di calcolo	i =	1,00	m
Carico linearmente distribuito sui frame	p =	2,60	kN/m
VELETTA			
Peso unitario	γ =	25,00	kN/m3
Area sezione	A =	0,1	m2
Peso distribuito	p =	2,50	kN/m
Larghezza di calcolo	i =	1,00	m
Carico puntuale	P =	2,50	kN
BARRIERE DI SICUREZZA, RETI E IMPIANTI			
Peso linearmente distribuito sui frame barriere	p =	2,50	kN/m

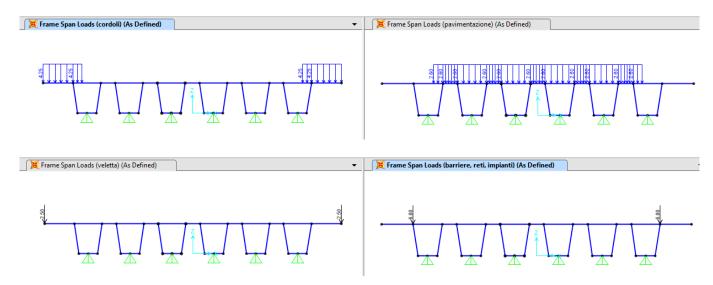


Figura 21 – Applicazione dei carichi permanenti non strutturali (G2) sul modello agli E.F.

10.2.3 Carichi da traffico

Le azioni verticali associate al traffico sono definite dagli *Schemi di Carico* descritti nel §5.1.3.3.3 del DM2008 (rif.[1]).

Gli schemi di carico considerati sono lo *Schema 1*, lo *Schema 2 e lo Schema 5* (quest'ultimo solo sui marciapiedi) in quanto risultano gli schemi dimensionanti per gli elementi oggetto di verifica. I valori caratteristici sono comprensivi degli effetti dinamici.

Schema 1

✓	Corsia 1:	Q1k: 2 assi da 300 kN posti a distanza di 1,20 m
		q1k: carico uniforme ripartito di 9,00 kN/m2
✓	Corsia 2:	Q2k: 2 assi da 200 kN posti a distanza di 1,20 m
		q2k: carico uniforme ripartito di 2,50 kN/m2
✓	Corsia 3:	Q2k: 2 assi da 100 kN posti a distanza di 1,20 m
		q2k: carico uniforme ripartito di 2,50 kN/m2
✓	Parte rimanente:	gik: carico uniforme ripartito di 2.50 kN/m2

Schema 2

È costituito da un singolo asse da 400 kN applicato su specifiche impronte di pneumatico di forma rettangolare, di larghezza 0,60 m ed altezza 0,35 m.

Schema 5

Folla compatta di 5,00 kN/m2. Valore di combinazione pari a 2,50 kN/m2.

Nell'assegnazione dei carichi verticali da traffico al modello agli E.F. si distingue tra carichi *tandem* e carichi *distribuiti*.

10.2.3.1 SCHEMA DI CARICO 1 - DISPOSIZIONE 1 - CARICHI TANDEM (Q1-1-1) E DISTRIBUITI (Q1-1-2)

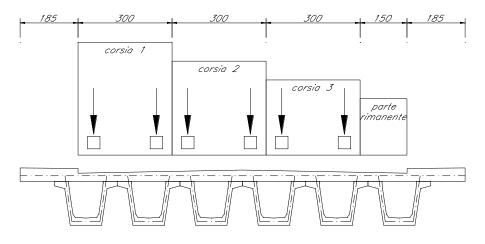


Figura 22 - Schema 1 - Disposizione 1

Spessore pavimentazione: 0,13 m

Semi-spessore (medio) soletta = 0,13 m

L'impronta diffusa: $0,40 \text{ m} + 2 \cdot (0,13 \text{ m} + 0,13 \text{ m}) = 0,92 \text{ m}$

Carico singola impronta asse corsia 1 = 150 kN/(0,92 m · 0,92 m) = 177 kN/m

Carico singola impronta asse corsia 2 = 100 kN/(0,92 m · 0,92 m) = 118 kN/m

Carico singola impronta asse corsia 3 = 50 kN/(0,92 m · 0,92 m) = 60 kN/m

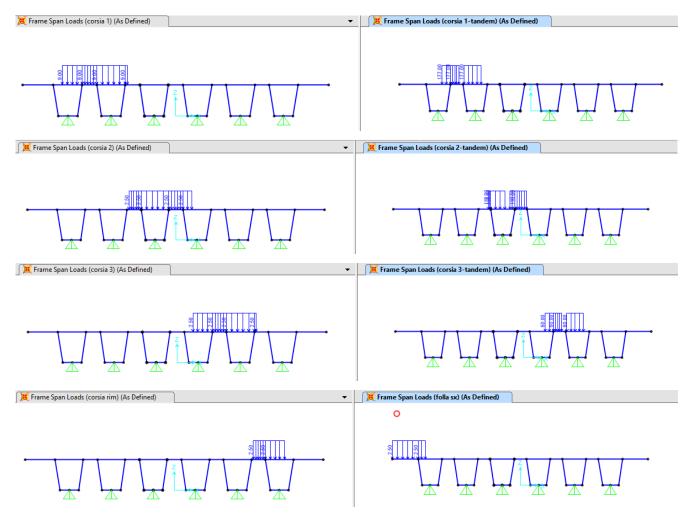


Figura 23 – Assegnazione carichi su modello agli E.F. - Schema 1 - Disposizione 1

10.2.3.2 SCHEMA DI CARICO 1 - DISPOSIZIONE 2 - CARICHI TANDEM (Q1-2-1) E DISTRIBUITI (Q1-2-2)

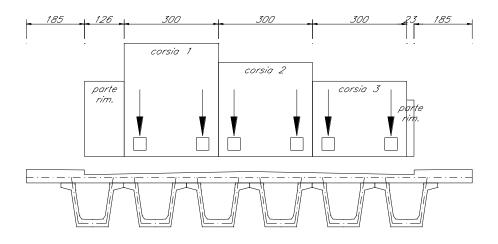
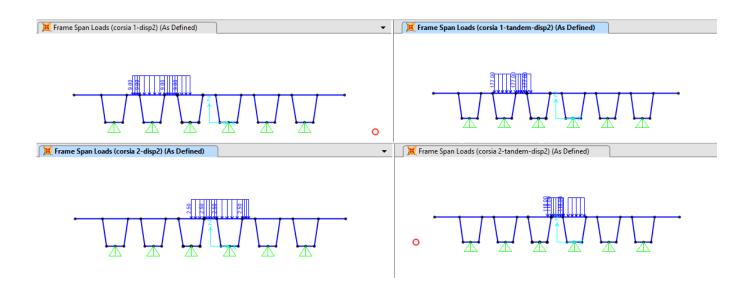


Figura 24 - Schema 1 - Disposizione 1

Spessore pavimentazione: 0,13 m


Semi-spessore (medio) soletta = 0,13 m

L impronta diffusa: $0,40 \text{ m} + 2 \cdot (0,13 \text{ m} + 0,13 \text{ m}) = 0,92 \text{ m}$

Carico singola impronta asse corsia 1 = 150 kN/(0,92 m · 0,92 m) = 177 kN/m

Carico singola impronta asse corsia 2 = 100 kN/(0,92 m · 0,92 m) = 118 kN/m

Carico singola impronta asse corsia 3 = 50 kN/(0,92 m · 0,92 m) = 60 kN/m

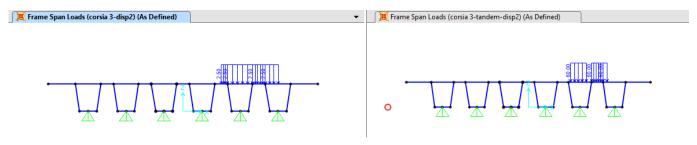


Figura 25 - Assegnazione carichi su modello agli E.F. - Schema 1 - Disposizione 2

10.2.3.3 SCHEMA DI CARICO 2 - DISPOSIZIONE 1 (Q2-1)

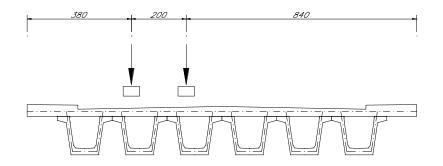


Figura 26 - Schema 2 - Disposizione 1

Spessore pavimentazione: 0,13 m Semi-spessore (medio) soletta = 0,13 m

L1 impronta diffusa: $0,60 \text{ m} + 2 \cdot (0,13 \text{ m} + 0,13 \text{ m}) = 1,12 \text{ m}$ L2 impronta diffusa: $0,35 \text{ m} + 2 \cdot (0,13 \text{ m} + 0,13 \text{ m}) = 0,87 \text{ m}$

Carico singola impronta asse = 200 kN/(1,12 m · 0,87 m) = 206 kN

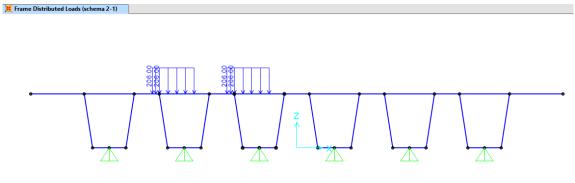


Figura 27 – Assegnazione carichi su modello agli E.F. - Schema 2 - Disposizione 1 (Q2-1)

10.2.3.4 SCHEMA DI CARICO 2 - DISPOSIZIONE 2 (Q2-2)

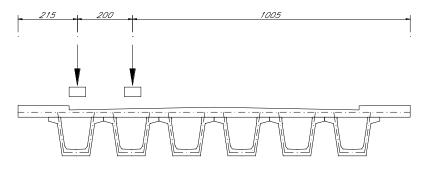


Figura 28 - Schema 2 - Disposizione 2

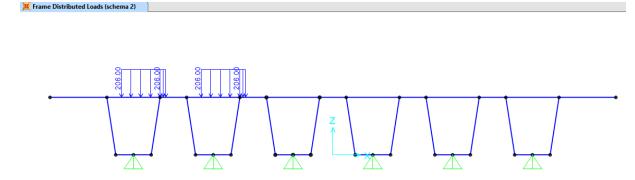


Figura 29 - Assegnazione carichi su modello agli E.F. - Schema 2 - Disposizione 2 (Q2-2)

10.2.3.5 SCHEMA DI CARICO 5 - FOLLA SUI MARCIAPIEDI (Q3)

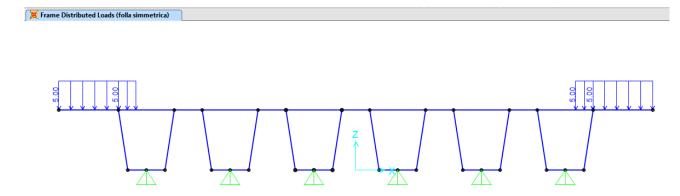


Figura 30 - Assegnazione carichi su modello agli E.F. - Schema 5 (Q3)

10.2.4 Azioni da urto (Q4)

L'azione dell'urto del veicolo in svio si schematizza come una forza orizzontale di 100 kN applicata ad 1,00 m di altezza dal piano viario, a cui viene associato un carico verticale isolato, corrispondente allo Schema di carico 2 (nel caso in esame si associa alle impronte definite per il carico Q2-2).

La forza orizzontale si considera distribuita su un tratto pari a 0,50 m, ed ipotizzando la presenza di un montante ogni 1,50 m, si ottiene:

Fh =
$$100kN/1,50m \cdot 1,0m = 67 kN$$

M = $67 kN \cdot (1,00 m + 0,13 m + 0,13 m) = 84 kNm$

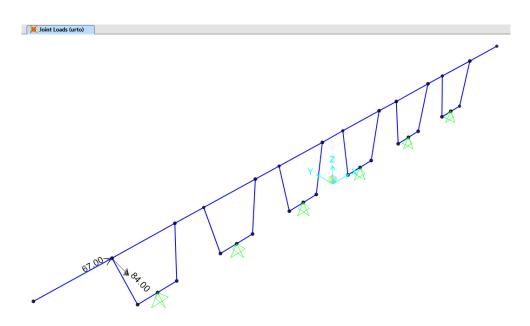


Figura 31 - Assegnazione carichi su modello agli E.F. - Urto (Q4)

10.2.5 Azioni del vento (Q5)

L'azione del vento sull'impalcato è rappresentata da una pressione agente in direzione trasversale pari a (rif. §5.2.6):

PRESSIONE DEL VENTO		
qb =	492,08	N/m2
ce =	2,60	
cp =	1,63	
cd =	1,00	
$qb = qb \cdot ce \cdot cp \cdot cd =$	2,09	kN/m2
FORZA DEL VENTO		
Larghezza di calcolo =	1,00	m
Forza distribuita sulle travi =	2,10	kN/m
Altezza sagoma veicolo =	3,00	m
Forza al livello del p.s.=	6,30	kN
Momento distribuito al livello del p.s.=	11,10	kNm

Krame Span Loads (vento) (As Defined)

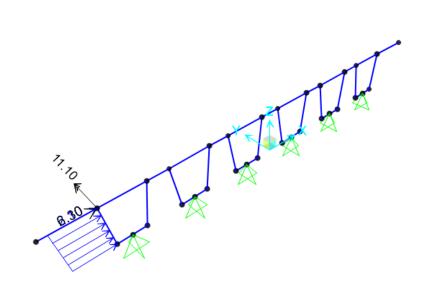


Figura 32 – Assegnazione carichi su modello agli E.F. - Vento (Q5)

10.2.6 Variazioni termiche (Q6)

Per la definizioni delle azioni termiche si rimanda al §5.2.7.

Date le condizioni di vincolo della struttura in esame, le variazioni termiche non inducono effetti significativi in direzione trasversale nella soletta d'impalcato.

10.3 COMBINAZIONI DI CARICO

Di seguito viene riportata la tabella che riepiloga le condizioni di carico elementari considerate.

	C.C.E.	Descrizione
G - Permanenti	G2	Permanenti non strutturali
	Q1-1-1	Schema 1 -Disposizione 1 - Tandem
	Q1-1-2	Schema 1 -Disposizione 1 - Distribuiti
	Q1-2-1	Schema 1 -Disposizione 2 - Tandem
Q - Variabili da traffico	Q1-2-2	Schema 1 -Disposizione 2 - Distribuiti
	Q2-1	Schema 2 -Disposizione 1
	Q2-2	Schema 2 -Disposizione 2
	Q3	Folla su marciapiedi
Q - Eccezionale	Q4	Urto
Q - Variabili	Q5	Vento trasversale

Le combinazioni di calcolo sono state definite sulla base dei criteri enunciati nel §5.1.3.12 del DM2008 (rif.[1]) e per i quali si rimanda al §5.3 della presente relazione.

Di seguito si riportano le combinazioni peggiori definite per le verifiche della soletta.

			traffico sch.1	traffico sch.1	traffico sch.2	traffico sch.2			
	dead	G2	- disp 1	- disp 2	- disp 1	- disp 2	folla	urto	vento
SLU -vento+disp1	1.35	1.35	1.35	0	0	0	0.675	0	-0.6
SLU -vento+disp2	1.35	1.35	0	1.35	0	0	0.675	0	-0.6
SLU +vento+disp1	1.35	1.35	1.35	0	0	0	0.675	0	0.6
SLU +vento+disp2	1.35	1.35	0	1.35	0	0	0.675	0	0.6

Ghella

ITINERARIO NAPOLI-BARI

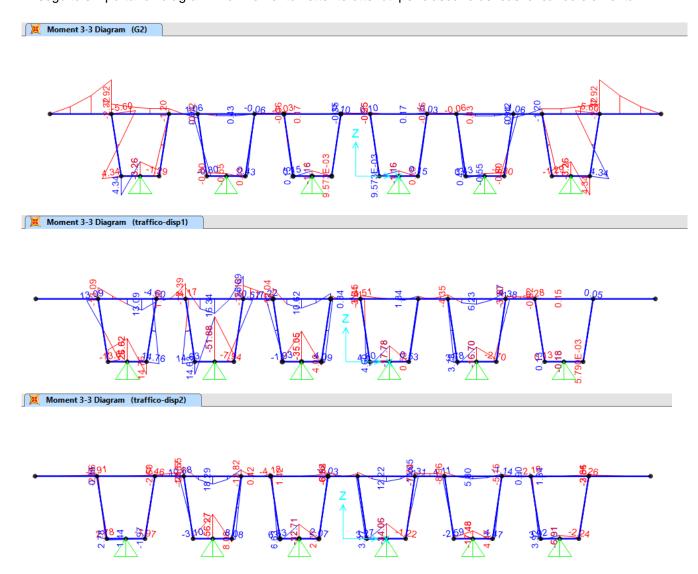
RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 99 di 114


SLU_solo folla +vento	1 35	1.35	0	0	0	0	1	0	0.6
SLU_solo folla							,		
-vento	1.35	1.35	0	0	0	0	1	0	-0.6
Eccezionale_urto	1	1	0	0	1	1	0	1	0
SLE rara +vento_disp1	1	1	1	0	0	0	0.5	0	0.6
SLE rara +vento_disp2	1	1	0	1	0	0	0.5	0	0.6
SLE rara -vento_disp1	1	1	1	0	0	0	0.5	0	-0.6
SLE rara -vento_disp2	1	1	0	1	0	0	0.5	0	-0.6
SLE freq _disp1	1	1	0.75	0	0	0	0.375	0	0
SLE freq _disp2	1	1	0	0.75	0	0	0.375	0	0

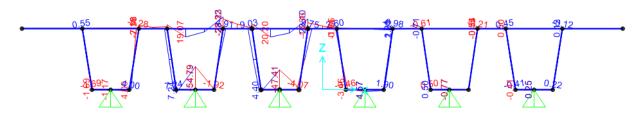
10.4 RIEPILOGO SOLLECITAZIONI

10.4.1 SOLLECITAZIONI ELEMENTARI

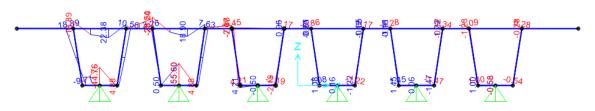
Di seguito si riportano i diagrammi di momento flettente ottenuti per ciascuno dei casi di carico elementari.

ITINERARIO NAPOLI-BARI

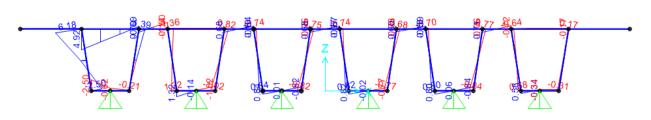
RADDOPPIO TRATTA CANCELLO-BENEVENTO

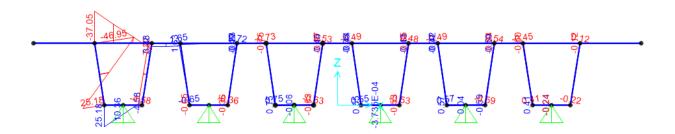

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 101 di 114




Moment 3-3 Diagram (schema 2-2)

Moment 3-3 Diagram (vento)

Moment 3-3 Diagram (urto)

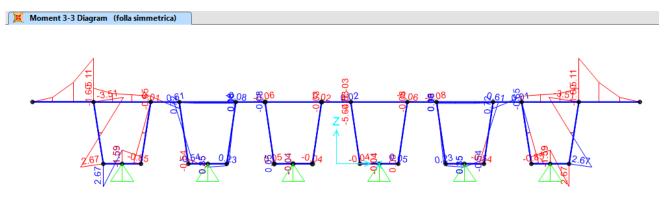


Figura 33 – Momento flettente per i carichi elementari applicati

10.4.2 SOLLECITAZIONI COMBINATE

Le massime sollecitazioni ottenute per le diverse combinazioni definite sono le seguenti:

	Frame	Station	OutputCase	Р	V2	V3	Т	M2	М3	
	sol_2	0	eccezionale	-6	-118	0	0	0	-60	M max negativo
sbalzo	sol_2	0	SLU+vento+disp1	-8	-45	0	0	0	-20	P min
SLU	sol_2	0	SLU solo folla - vento	37	-14	0	0	0	-11	P max
	sol_2	0	eccezionale	-6	-118	0	0	0	-60	V max
	sol_2	0	SLE rara_disp1	8	-37	0	0	0	-20	M max negativo, V max
sbalzo	sol_1	1	SLE rara_disp2	0	17	0	0	0	-14	P min, Mmax
SLE	sol_2	0	SLE rara_disp2	27	-7	0	0	0	-6	P max
	sol_2	0	SLE rara_disp1	8	-37	0	0	0	-20	V max, M max negativo
	sol_4	1	SLU-vento+disp2	46	0	0	0	0	26	M max positivo
campata	sol_3	0	SLU+vento+disp1	-45	36	0	0	0	-2	P min
SLU	sol_4	1	SLU-vento+disp2	46	0	0	0	0	26	P max
	sol_2	1	eccezionale	-6	-51	0	0	0	7	V max
	sol_4	1	SLE rara_disp2	35	0	0	0	0	19	M max positivo
campata	sol_3	1	SLE rara_disp1	-21	51	0	0	0	-16	P min
SLE	sol_4	1	SLE rara_disp2	35	75	0	0	0	-15	P max
	sol_4	0	SLE rara_disp2	35	-108	0	0	0	-22	V max

Si riportano di seguito i diagrammi di inviluppo delle sollecitazioni:

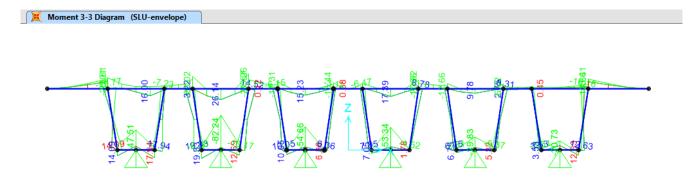


Figura 34 - Momento flettente - Combinazione SLU-STR e SLU-ECC

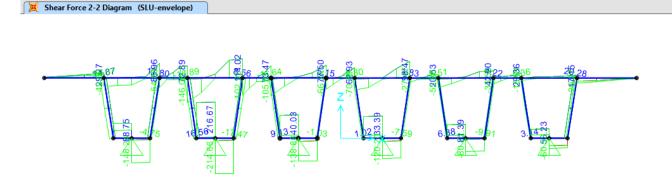


Figura 35 – Taglio - Combinazione di inviluppo SLU-STR e SLU-ECC

Moment 3-3 Diagram (SLE-envelope) X

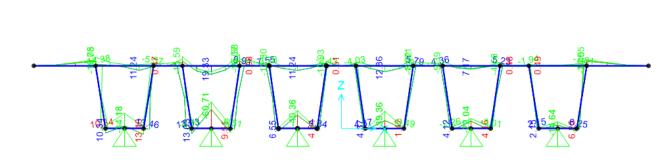


Figura 36 - Momento flettente - Combinazione di inviluppo SLE-Frequente e SLE_Rara

10.5 VERIFICHE SOLETTA

Si effettuano le verifiche allo SLU flessionale e agli SLE (di fessurazione e tensionale) facendo riferimento alla sola sezione gettata in opera, con altezza minima (sezione in prossimità del cordolo) pari a 20cm. Le sollecitazioni considerate nelle verifiche si riferiscono all'inviluppo delle massime sollecitazioni corrispondenti alle combinazione di carico previste.

Le sezioni di verifica sono le seguenti:

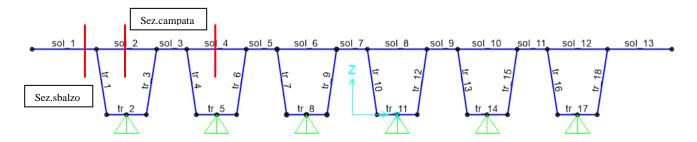
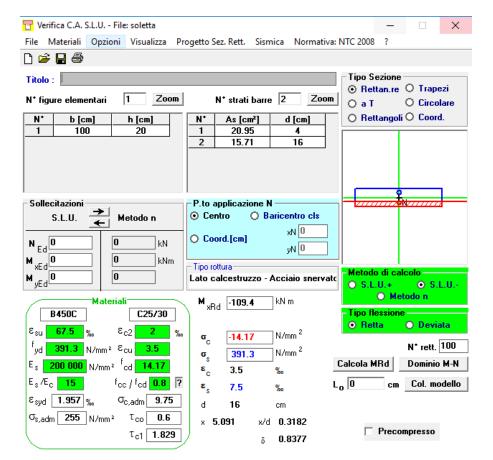


Figura 37 - Sezioni di verifica ("sbalzo" e "campata")

10.5.1 Verifica a flessione SLU

Si riporta di seguito la verifica a pressoflessione retta delle sezioni più significative della soletta superiore. Si considera la seguente armatura trasversale.


- Sezione di sbalzo, con momento negativo

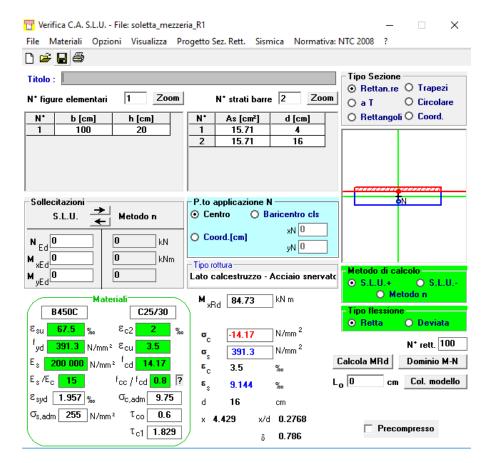
Si dispongono le seguenti armature: Ø20/15 disposti superiormente Ø20/20 disposti inferiormente

M_{Edmin} = -60 kNm

 $M_{Rd} = -109.4 \text{ kNm}$

La verifica risulta soddisfatta.

- Sezione di campata, con momento positivo


Si dispongono le seguenti armature:

Ø20/20 disposti superiormente

Ø20/20 disposti inferiormente

 $M_{\text{Edmin}} = 26 \text{ kNm}$ $M_{\text{Rd}} = 84.73 \text{ kNm}$

La verifica risulta soddisfatta.

10.5.2 Verifica a Taglio SLU

Sezione di sbalzo

Verifca a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

classe cls	Rck	32	N/mm2
resist. Caratteristica cilindrica	fck	27	N/mm2
	fcd	15	
coeff. parziale	yc	1.5	
larghezza membratura resistente a V	bw	1000	mm
altezza membratura resistente a V	H	170	mm
altezza utile	d	153	mm
area della sezione	Asez	153000	mm2
diametro ferro longitudinale teso	φl	20	mm
area armatura	Asl	314.2	mm^2
	strato	1	
	passo	150	mm
	nø/strato	7	
area armatura totale	Af tot	2094.4	mm ²
percentuale di armatura	ρl	0.0137	
sforzo assiale dovuto ai carichi o precompressione	N	0	N
	σер	0.00	N/mm ²
	k	2.00	
	vmin	0.51	
taglio resistente	Vrd1	122	kN
	Vrd2	78	kN

taglio sollecitante	Ved	118	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γ_{Rd}	1	
	Vrd	122	kN
	Ved	<	Vrd

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 108 di 114

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

Sezione di campata

Verifca a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

classe cls	Rck	32	N/mm2
resist. Caratteristica cilindrica	fck	27	N/mm2
	fcd	15	
coeff. parziale	yc	1.5	
larghezza membratura resistente a V	bw	1000	mm
altezza membratura resistente a V	H	170	mm
altezza utile	d	153	mm
area della sezione	Asez	153000	mm2
diametro ferro longitudinale teso	φI	20	mm
area armatura	Asl	314.2	mm^2
	strato	1	
	passo	200	mm
	nø/strato	5	
area armatura totale	Af tot	1570.8	mm ²
percentuale di armatura	ρΙ	0.0103	
sforzo assiale dovuto ai carichi o precompressione	N	0	N
	σер	0.00	N/mm ²
	k	2.00	
	vmin	0.51	
taglio resistente	Vrd1	111	kN
	Vrd2	78	kN

taglio sollecitante	Ved	51	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	$\gamma_{ m Rd}$	1	
	Vrd	111	kN
	Ved	<	Vrd
		verifica	

10.5.3 Verifiche a fessurazione SLE

La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite.

Apertura limite: $w_{lim} = w_1 = 0.20$ mm (rif. §2.2.2 specifica RFI per i cavalcaferrovia)

Il massimo valore di apertura delle fessure ottenuto per le combinazioni considerate è il seguente:

 $w \max = 0.0551 \text{ mm}$ $\leq 0.20 \text{ mm}$

La verifica SLE a fessurazione risulta pertanto soddisfatta.

Di seguito si riportano le verifiche per esteso.

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 109 di 114

Sezione di sbalzo

ll e	NPUT	
B sez	1000	mm
h sez	200	mm
y ferro	50	mm
Φ (barre)	20	mm
n.barre	6.67	-
cls C	32	MPa
x AN	67.3	mm
σs	75	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

OUTPUT						
diff. def. armature-cls						
ε sm -ε cm 2.18E-04 -						
distanza max fessure						
s r, max 2.08E+02 mm						
ampiezza fessure:						
wk	0.0454 mm					
LIMITE	0.20 mm					
Sez. verificata						

Sezione di campata

11	INPUT							
B sez	1000	mm						
h sez	200	mm						
y ferro	50	mm						
Φ (barre)	20	mm						
n.barre	5	-						
cls C	32	MPa						
x AN	60.8	mm						
σs	80	MPa						
kt	0.6	-						
k1	0.8	-						
k2	0.5	-						
k3	3.4	-						
k4	0.425	-						

OUTPUT							
diff. def. armature-cls							
ε sm -ε cm	2.33E-04 -						
distanza ma	x fessure						
s r, max	2.36E+02 mm						
ampiezza fe	ssure:						
wk	0.0551 mm						
LIMITE	0.20 mm						
Se	ez. verificata						

11 AZIONI SUGLI APPOGGI

Di seguito si riportano gli scarichi sugli apparecchi d'appoggio, determinati sulla base dell'analisi dei carichi riportata nei paragrafi precedenti e dei risultati ottenuti dal modello agli E.F.

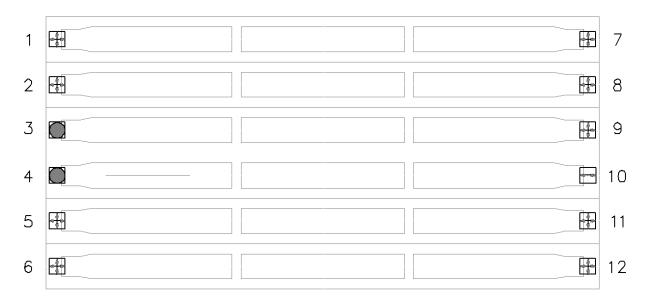


Figura 38 - Schema appoggi

Si riportano di seguito le reazioni su ogni appoggio dovute ai carichi elementari:

			G1 G2 vento			G2				
		V	H trasv	H long	V	H trasv	H long	V	H trasv	H long
1	multi	581	0	0	252	0	0	2	0	0
2	multi	462	0	0	38	0	0	29	0	0
3	fisso	493	0	0	80	0	0	109	64	1
4	fisso	493	0	0	80	0	0	-109	64	-1
5	multi	492	0	0	35	0	0	-29	0	0
6	multi	581	0	0	258	0	0	-2	0	0
7	multi	581	0	0	252	0	0	2	0	0
8	multi	462	0	0	38	0	0	29	0	0
9	multi	493	0	0	80	0	0	109	0	0
10	uni	493	0	0	80	0	0	-109	128	0
11	multi	492	0	0	35	0	0	-29	0	0
12	multi	581	0	0	258	0	0	-2	0	0

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 111 di 114

	traffico centrato + folla			traffico eccentrico + folla			traffico appoggio + folla			
		Vmax	H trasv	H long	V	H trasv	H long	V	H trasv	H long
1	multi	394	0	0	342	0	0	323	0	0
2	multi	251	0	0	644	0	0	661	0	0
3	fisso	190	0	0	342	0	0	359	0	0
4	fisso	176	0	0	81	0	0	145	0	0
5	multi	200	0	0	59	0	0	278	0	0
6	multi	-20	0	0	-57	0	0	-38	0	0
7	multi	393	0	0	230	0	0	217	0	0
8	multi	251	0	0	142	0	0	158	0	0
9	multi	190	0	0	76	0	0	91	0	0
10	uni	176	0	0	52	0	0	79	0	0
11	multi	200	0	0	56	0	0	104	0	0
12	multi	-20	0	0	-51	0	0	-37	0	0

		frenatura					
		V	H trasv	H long			
1	multi	0	0	0			
2	multi	0	0	0			
3	fisso	0	0	214			
4	fisso	0	0	214			
5	multi	0	0	0			
6	multi	0	0	0			
7	multi	0	0	0			
8	multi	0	0	0			
9	multi	0	0	0			
10	uni	0	0	0			
11	multi	0	0	0			
12	multi	0	0	0			

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FOGLIO

112 di 114

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A

Si riportano le tabelle riassuntive degli scarichi degli appoggi per ogni tipologia (per quanto riguarda le azioni trasmesse agli appoggi in fase sismica, si rimanda alle apposite relazioni di calcolo delle pile).

Tabella riassuntiva scarichi appoggi _ APPOGGIO FISSO				
	Rz [kN]	R trasv [kN]	R long [kN]	
G1	493	0	0	
G2	80	0	0	
ritiro	0	0	0	
temperatura	0	0	0	
vento	109	64	0	
traffico max + folla	359	0	0	
centrifuga	0	0	0	
frenatura	0	0	214	
SISMA	245	3034	3034	

Tabella riassuntiva scarichi appoggi _ APPOGGIO UNIDIREZIONALE				
	Rz [kN]	R trasv [kN]	R long [kN]	
G1	493	0	0	
G2	80	0	0	
ritiro	0	0	0	
temperatura	0	0	0	
vento	109	128	0	
traffico max + folla	176	0	0	
centrifuga	0	0	0	
frenatura	0	0	0	
SISMA	245	3034	0	

Tabella riassuntiva scarichi appoggi _ APPOGGIO MULTIDIREZIONALE				
	Rz [kN]	R trasv [kN]	R long [kN]	
G1	581	0	0	
G2	258	0	0	
ritiro	0	0	0	
temperatura	0	0	0	
vento	109	0	0	
traffico max + folla	644	0	0	
centrifuga	0	0	0	
frenatura	0	0	0	
SISMA	245	0	0	

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 113 di 114

TABELLA RIASSUNTIVA SCARICHI FILA SINISTRA APPOGGI				
	Rz	R trasv	R long	
G1	3102	0	0	
G2	743	0	0	
ritiro	0	0	0	
temperatura	0	0	0	
vento	0	128	0	
traffico max + folla	1728	0	0	
centrifuga	0	0	0	
frenatura	0	0	428	
SISMA	1469	6067	6067	

TABELLA RIASSUNTIVA SCARICHI FILA DESTRA APPOGGI				
	Rz	R trasv	R long	
G1	3102	0	0	
G2	743	0	0	
ritiro	0	0	0	
temperatura	0	0	0	
vento	0	128	0	
traffico max + folla	1190	0	0	
centrifuga	0	0	0	
frenatura	0	0	0	
SISMA	1469	0	0	

11.1.1 TABELLA RIASSUNTIVA

Infine si riporta la tabella riassuntiva degli scarichi, in combinazione SLU, per tipologia di appoggio (i valori sono stati opportunamente arrotondati):

		SLU max			SLV max	
	٧	H trasv	H long	V	H trasv	H long
fisso	1360	100	290	820	3040	3040
uni	1110	200	0	820	3040	0
multi	2110	0	0	1090	0	0

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Cavalcaferrovia al km 2+114 Impalcato in c.a.p. L=25m (Lc=23,40m): Relazione di Calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 IV 02 07 002
 A
 114 di 114

12 INCIDENZE

Incidenza travi: trefoli 60 kg/ml Incidenza soletta e getti in opera: 160 kg/m³