COMMITTENTE:

PROGETTAZIONE:

APPALTATORE:

PROGETTAZIONE:	PROGETTISTA:	DIRETTORE DELLA PROGETTAZIONE
RAGGRUPPAMENTO TEMPORANEO PROGETTISTI	Ing. GAETANO USAI	Ing. PIETRO MAZZOLI
PIZZAROTTI // Sintagma Integra		Responsabile integrazione fra le varie prestazioni specialistiche

PROGETTO ESECUTIVO

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

CAVALCAFERROVIA al km 13+285 Spalle: Relazione di Calcolo

APPA	LTATORE						SCALA:
IL DIRETT Geom	orzio CFT ORE TECNICO . C Bianchi 09/2018						-
COMMESSA	LOTTO FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV	<i>'</i> .
I F 1 N	0 1 E	ZZ	CL	I V 0 4 0 4	0 0 1	Α	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	I. Lardani	11/07/2018	G. Usai	11/07/2018	P.Mazzoli	11/07/2018	G. Usai
	LIIII33IOHE							
В	Rev. Istruttoria ITF 07/09/18	I. Lardani	22/09/2018	G. Usai	22/09/2018	P.Mazzoli	22/09/2018	
	ivev. istruttoria i i i or/os/10							
								22/09/2018

File: IF1N.0.1.E.ZZ.CL.IV.04.0.4.001.B.doc	n. Elab.:

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

COMMESSA

LOTTO

01 E ZZ

CODIFICA CL

DOCUMENTO
IV 04 04 001

REV.

FOGLIO 2 di 74

•

INDICE

1		PRE	MESSA	5
2	I	NOF	RMATIVA E DOCUMENTI DI RIFERIMENTO	6
	2.1		NORMATIVE	6
	2.2	2	ELABORATI DI RIFERIMENTO	6
3	I	MAT	FERIALI	7
4	(CAR	RATTERIZZAZIONE GEOTECNICA	9
5	I	DES	SCRIZIONE DELLA STRUTTURA	10
6	ſ	MOI	DELLO DI CALCOLO	13
7	,	ANA	ALISI DEI CARICHI	14
	7.1		CARICHI PERMANENTI STRUTTURALI E NON STRUTTURALI	14
	7.2	2	SOVRACCARICO ACCIDENTALE	14
	7.3	3	CARICHI PROVENIENTI DALL'IMPALCATO	14
		7.3.	1 CARICHI PERMANENTI PORTATI STRUTTURALI E NON STRUTTURALI	14
		7.3.2	2 CARICHI DA TRAFFICO	15
		7.3.	3 AZIONI ORIZZONTALI DA TRAFFICO (FRENATURA/ACCELERAZIONE)	15
		7.3.4	4 ATTRITO SUGLI APPOGGI	15
		7.3.	5 VENTO TRASVERSALE IMPALCATO	16
	7.4	ļ	AZIONE SISMICA	16
		7.4.	1 FORZE SISMICHE INERZIALI DERIVANTI DALL'IMPALCATO	19
8	(CON	MBINAZIONE DEI CARICHI	21
9	(SOL	LECITAZIONI COMBINATE	32
	9.1		SOLLECITAZIONI GLOBALI	32
	9.2	2	SOLLECITAZIONI SUI MURI VERTICALI E SULLA SOLETTA SUPERIORE DELLA SPALLA	34

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL IV 04 04 001 B 3 di 74

9.3	SOLLECITAZIONI IN FONDAZIONE	37
10 VE	ERIFICHE DI RESISTENZA DEL MURO FRONTALE	38
10.1	VERIFICA PRESSOFLESSIONE ARMATURA VERTICALE	38
10.2	VERIFICA PRESSOFLESSIONE ARMATURA ORIZZONTALE	39
10.3	VERIFICHE A TAGLIO MURO FRONTALE	40
10.4	VERIFICHE A FESSURAZIONE MURO FRONTALE	41
11 VE	ERIFICHE DI RESISTENZA MURO PARAGHIAIA	42
11.1	VERIFICA PRESSOFLESSIONE ARMATURA VERTICALE	42
11.2	VERIFICA PRESSOFLESSIONE ARMATURA ORIZZONTALE	43
11.3	VERIFICA TAGLIO MURO PARAGHIAIA	44
11.4	VERIFICA A FESSURAZIONE MURO PARAGHIAIA	45
12 VE	ERIFICHE DI RESISTENZA MURI ANDATORI	47
12.1	VERIFICA PRESSOFLESSIONE ARMATURA VERTICALE	47
12.2	VERIFICA PRESSOFLESSIONE ARMATURA ORIZZONTALE	48
12.3	VERIFICA TAGLIO MURO ANDATORE	49
12.4	VERIFICA A FESSURAZIONE MURO ANDATORE	50
13 VE	ERIFICHE DI RESISTENZA SOLETTA SUPERIORE	52
13.1	VERIFICA FLESSIONE ARMATURA LONGITUDINALE	52
13.2	VERIFICA FLESSIONE ARMATURA TRASVERSALE	53
13.3	VERIFICA A TAGLIO SOLETTA SUPERIORE	54
13.4	VERIFICA A FESSURAZIONE SOLETTA SUPERIORE	55
14 VE	ERIFICHE DI RESISTENZA PLATEA DI FONDAZIONE	58
14.1	SEZIONE DI VALLE PLATEA DI FONDAZIONE	58
14	1.1.1 VERIFICA A FLESSIONE SEZIONE DI VALLE PLATEA DI FONDAZIONE	58
14	1.1.2 VERIFICA A FESSURAZIONE SEZIONE DI VALLE PLATEA DI FONDAZIONE	60

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

| COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO | IF1N 01 E ZZ CL IV 04 04 001 B 4 di 74

14.2	SEZIONE DI MONTE PLATEA DI FONDAZIONE	62
14.	.2.1 VERIFICA A FLESSIONE SEZIONE DI MONTE PLATEA DI FONDAZIONE	62
14.	.2.2 VERIFICA FESSURAZIONE SEZIONE DI MONTE PLATEA DI FONDAZIONE	63
14.3	VERIFICA A TAGLIO PLATEA DI FONDAZIONE	65
15 PA	LI DI FONDAZIONE	67
15.1	SOLLECITAZIONI DEL SINGOLO PALO	67
15.2	ARMATURA MINIMA DEL PALO	68
15.3	VERIFICA A PRESSOFLESSIONE DEL PALO	70
15.4	VERIFICA A TAGLIO DEL PALO	71
15.5	VERIFICA SLE DEL PALO	72
15.	.5.1 VERIFICA TENSIONALE SLE	72
15.	.5.2 VERIFICA A FESSURAZIONE	73
15.6	VERIFICHE GEOTECNICHE	73
16 INC	OIDENZE	7.1

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL IV 04 04 001 B 5 di 74

1 PREMESSA

Spalle: Relazione di calcolo

Nell'ambito dell'Itinerario Napoli-Bari si inserisce il *Raddoppio della Tratta Cancello - Benevento - 1° Lotto Funzionale Cancello-Frasso Telesino e Variante alla Linea Roma-Napoli Via Cassino* nel Comune di Maddaloni (compreso il Collegamento Merci con lo scalo di Marcianise - Collegamento Benevento-Marcianise) ed *Interconnessioni Nord* su *LS Roma-Napoli via Cassino* oggetto di progettazione esecutiva.

Oggetto della presente relazione è il dimensionamento degli elementi in elevazione ed in fondazione delle Spalle del Cavalcaferrovia IV04 al km 13+286.

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 IV 04 04 001
 B
 6 di 74

Spalle: Relazione di calcolo

2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 NORMATIVE

Sono state prese a riferimento le seguenti Normative nazionali ed internazionali vigenti alla data di redazione del presente documento:

- ✓ Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- ✓ Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- ✓ Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- ✓ Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- ✓ Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- ✓ Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- ✓ Istruzione RFI DTC INC PO SP IFS 004 Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- ✓ Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- ✓ Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- ✓ Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

2.2 ELABORATI DI RIFERIMENTO

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

| COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO | IF1N 01 E ZZ CL IV 04 04 001 B 7 di 74

3 MATERIALI

Le caratteristiche dei materiali sono ricavate con riferimento alle indicazioni contenute nei capitoli 4 e 11 del D.M. 14 gennaio 2008. Nelle tabelle che seguono sono indicate le principali caratteristiche e i riferimenti dei paragrafi del D.M. citato:

ACCIAIO CLS

TIPO B450 C Mpa Tipo di acciaio

 f_{yk} = 450 Mpa Tensione Caratteristica di Snervamento f_{tk} = 540 Mpa Tensione Caratteristica di Rottura

Verifiche agli SLU

 γ_s = 1.15 Coefficiente parziale di sicurezza dell'acciaio f_{yd} = 391.30 Mpa Resistenza di calcolo a Trazione dell'Acciaio

Verifiche agli SLE

 σ_s = 360 Mpa Massima tensione nel l'acciaio in Esercizio

Calcestruzzo elevazione spalle

R _{ck} =	40	Мра	Valore caratteristico della resistenza a compressione cubica del calcestruzzo a 28 gg
f _{ck} =	33	Мра	Valore caratteristico della resistenza a compressione cilindrica del calcestruzzo a 28 gg
f _{cm} =	41	Мра	Valore medio della resistenza a compressione cilindrica del calcestruzzo
f _{ctm} =	3.1	Мра	Valore medio della resistenza a trazione assiale del calcestruzzo
f _{cfm} =	3.7		Valore medio della resistenza a trazione per flessione del calcestruzzo
f _{ctk,0,05} =	2.17	Мра	Valore caratteristico della resistenza a trazione assiale del calcestruzzo (frattile del 5%)
f _{ctk,0,95} =	4.0	Мра	Valore caratteristico della resistenza a trazione assiale del calcestruzzo (frattile del 95%)
E _{cm,t0} =	33642.78	Мра	Modulo di elasticità secante del calcestruzzo
E _{cm,t∞} =	10384	Мра	Modulo di elasticità secante del calcestruzzo atempo infinito
ε _{c1} =	2.2	‰	Deformazione di contrazione del calcestruzzo alla tensione di picco
ε _{cu1} =	3.5	‰	Deformazione ultima di contrazione del calcestruzzo
ε _{c2} =	2.0	‰	Deformazione di contrazione del calcestruzzo alla tensione di picco
ε _{cu2} =	3.5	‰	Deformazione ultima di contrazione del calcestruzzo
n=	2.00		
ε _{c3} =	1.8	‰	Deformazione di contrazione del calcestruzzo alla tensione di picco
ε _{cu3} =	3.5	‰	Deformazione ultima di contrazione del calcestruzzo

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Calcestruzzo plinto di fondazione

R _{ck} =	35	Мра	Valore caratteristico della resistenza a compressione cubica del calcestruzzo a 28 gg
f _{ck} =	29	Мра	Valore caratteristico della resistenza a compressione cilindrica del calcestruzzo a 28 gg
f _{cm} =	37	Мра	Valore medio della resistenza a compressione cilindrica del calcestruzzo
f _{ctm} =	2.8	Мра	Valore medio della resistenza a trazione assiale del calcestruzzo
f _{cfm} =	3.4		Valore medio della resistenza a trazione per flessione del calcestruzzo
f _{ctk,0,05} =	1.98	Мра	Valore caratteristico della resistenza a trazione assiale del calcestruzzo (frattile del 5%)
$f_{ctk,0,95} =$	3.7	Мра	Valore caratteristico della resistenza a trazione assiale del calcestruzzo (frattile del 95%)
E _{cm,t0} =	32588.11	Мра	Modulo di elasticità secante del calcestruzzo
E _{cm,t∞} =	10058	Мра	Modulo di elasticità secante del calcestruzzo atempo infinito
ε _{c1} =	2.1	‰	Deformazione di contrazione del calcestruzzo alla tensione di picco
ε _{cu1} =	3.5	‰	Deformazione ultima di contrazione del calcestruzzo
ε _{c2} =	2.0	‰	Deformazione di contrazione del calcestruzzo alla tensione di picco
ε _{cu2} =	3.5	‰	Deformazione ultima di contrazione del calcestruzzo
n=	2.00		
ε _{c3} =	1.8	‰	Deformazione di contrazione del calcestruzzo alla tensione di picco
ε _{cu3} =	3.5	‰	Deformazione ultima di contrazione del calcestruzzo

Calcestruzzo pali di fondazione

R _{ck} =	30	Мра	Valore caratteristico della resistenza a compressione cubica del calcestruzzo a 28 gg
f _{ck} =	25	Мра	Valore caratteristico della resistenza a compressione cilindrica del calcestruzzo a 28 gg
f _{cm} =	33	Мра	Valore medio della resistenza a compressione cilindrica del calcestruzzo
f _{ctm} =	2.6	Мра	Valore medio della resistenza a trazione assiale del calcestruzzo
f _{cfm} =	3.1		Valore medio della resistenza a trazione per flessione del calcestruzzo
f _{ctk,0,05} =	1.79	Мра	Valore caratteristico della resistenza a trazione assiale del calcestruzzo (frattile del 5%)
f _{ctk,0,95} =	3.3	Мра	Valore caratteristico della resistenza a trazione assiale del calcestruzzo (frattile del 95%)
E _{cm,t0} =	31447.16	Мра	Modulo di elasticità secante del calcestruzzo
E _{cm,t∞} =	9706	Мра	Modulo di elasticità secante del calcestruzzo atempo infinito
ε _{c1} =	2.1	%0	Deformazione di contrazione del calcestruzzo alla tensione di picco
ε _{cu1} =	3.5	‰	Deformazione ultima di contrazione del calcestruzzo
ε _{c2} =	2.0	‰	Deformazione di contrazione del calcestruzzo alla tensione di picco
ε _{cu2} =	3.5	‰	Deformazione ultima di contrazione del calcestruzzo
n=	2.00		
ε _{c3} =	1.8	‰	Deformazione di contrazione del calcestruzzo alla tensione di picco
ε _{cu3} =	3.5	‰	Deformazione ultima di contrazione del calcestruzzo

4 CARATTERIZZAZIONE GEOTECNICA

Per la caratterizzazione geotecnica e gli schemi di calcolo, si rimanda al documento:

Relazione geotecnica di calcolo delle fondazioni (elaborato IF1N.0.1.E.ZZ.CL.IV.04.0.3.002.A).

Spalle: Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 IV 04 04 001
 B
 10 di 74

5 DESCRIZIONE DELLA STRUTTURA

Di reguito si riportano i dati relativi alle dimensioni di ciascun elemento, con riferimento all'effettiva carpenteria delle spalle (spalla A fissa, spalla B mobile) come definita negli elaborati grafici.

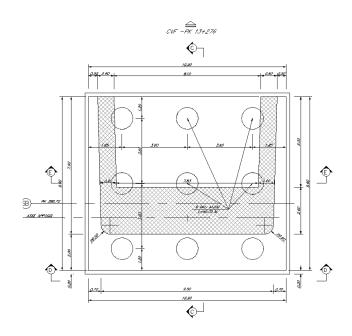
		spalla A	spalla B
h tot spalla	m	9.35	11.85
numero pali	m	9	9
interasse pali long	m	3.6	3.6
interasse pali trasv	m	3.6	3.6
FONDAZIONE			
h fondazione	m	2	2
B fondazione	m	9.6	9.6
L fondazione	m	10.9	10.9
L anteriore fondaz	m	2	2
L posteriore fondaz	m	5	5
MURO FRONTALE			
h muro front	m	5.2	7.7
b muro front	m	9.7	9.60
sp muro front	m	2.6	2.6
MURO ANDATORE			
h muro andatore	m	6.3	8.75
b muro andatore	m	5	5
sp sup muro andatore	m	0.9	0.9
sp inf muro andatore	m	-	-
h inf muro andatore	m	-	-
L orecchia	m	-	-
h max orecchia	m	-	-
h min orecchia	m	-	-
MURO PARAGHIAIA			
h muro paragh	m	2.15	2.15
b muro paragh	m	9.7	9.60
sp muro paragh	m	0.6	0.6
SOLETTA SUPERIORE			
sp soletta sup	m	0.9	0.9

RADDOPPIO TRATTA CANCELLO – BENEVENTO

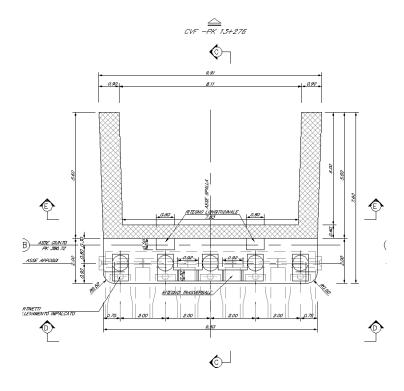
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

LOTTO **01 E ZZ** CODIFICA

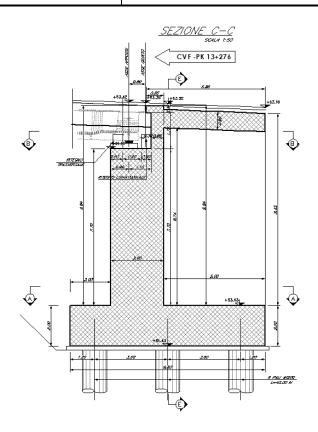

DOCUMENTO

IV 04 04 001

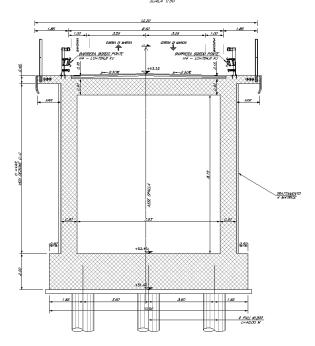

REV.

FOGLIO 11 di 74

SEZIONE A-


RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO


Spalle: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL IV 04 04 001 B 12 di 74

SEZIONE E—E SCALA 1:50

6 MODELLO DI CALCOLO

Per il calcolo delle sollecitazioni sui vari elementi costituenti la spalla si considera un modello tridimensionale, realizzato mediante l'ausilio del programma di calcolo agli elementi finiti SAP2000 (CSI, versione v15.1.0). Il modello agli elementi finiti è costituito da elementi di tipo *shell* che modellano il muro frontale, il muro paraghiaia, i muri andatori e la fondazione.

Il sistema di riferimento è definito secondo nel seguente modo:

asse X: asse longitudinale;

asse Y: asse trasversale;

baricentro dell'intradosso della fondazione stessa.

asse Z: asse verticale.

Per collegare la fondazione ai muri veritcali, senza avere sovrapposizioni, sono stati utilizzati *link* rigidi.

Ulteriori *link* sono stati impiegati per collegare i nodi corripondenti agli appoggi dell'impalcato ai rispettivi nodi del

muro frontale, in modo da considerarne la corretta eccentricità ripetto all'asse del muro frontale.

Al fine di ottenere le sollecitazioni globali all'intradosso della fondazione, è stato inserito un vincolo di incastro nel

Le sollecitazioni nel vincolo di incastro sono stati utilizzate rigidamente distribuite per ottenere le sollecitazioni in testa ai singoli pali.

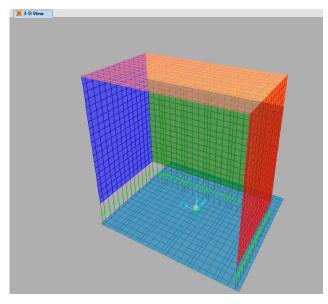


Figura 1: modello f.e.m. della spalla

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

IF1N	01 E ZZ	CL	IV 04 04 001	В	14 di 74
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

7 ANALISI DEI CARICHI

Spalle: Relazione di calcolo

Come indicato in precedenza, le spalle sono di seguito calcolate considerando gli scarichi dell'impalcato riportati nella specifica relazione di calcolo impalcato, al quale si rimanda per dettagli.

7.1 CARICHI PERMANENTI STRUTTURALI E NON STRUTTURALI

Nei carichi permanenti strutturali è compreso il peso proprio della spalla (calcolato considerando un peso specifico del calcestruzzo di 25 kN/mc).

Peso permanente poratato dalla spalla (G2)

<u>Carico</u>	q [kN/m3]	q [kN/ml]	b [m]	h [m]	L [m]	Q [kN]
Pavimentazione	20	-	8	0.13	5	104
Barriere, reti, imp.	-	5.5	-	-	5	28

somma 132 kN

pressione su fondaizone 3.0 kN/m2

7.2 SOVRACCARICO ACCIDENTALE

Per considerare la presenza di un sovraccarico da traffico gravante sulla spalla e a tergo di essa, si considera un carico uniformemente distribuito di lunghezza indefinita con valore pari a q = 20 kPa. Questo carico grava direttamente sulla soletta superiore della spalla.

7.3 CARICHI PROVENIENTI DALL'IMPALCATO

7.3.1 CARICHI PERMANENTI PORTATI STRUTTURALI E NON STRUTTURALI

Il totale dei carichi permanenti strutturali trasmesso al piano appoggi del muro frontale dall'impalcato (travi, trasversi, soletta, marciapiedi) è pari a:

N G1 impalcato = 2733 kN

Il totale dei carichi permanenti non strutturali trasmessi dall'impalcato (impianti, parapetti, sicurvia, pavimentazione) è pari a:

 $N_{G2_impalcato} = 637 \text{ kN}$

7.3.2 CARICHI DA TRAFFICO

La spalla è stata progettata considerando le massime sollecitazioni dovute al carico del traffico trasmesse dall'impalcato, ipotizzando la contemporaneità della massima risultante verticale ed il massimo momento trasversale risultante sul piano appoggi.

Per la descrizione dei carichi da traffico, in relazione alle disposizioni trasversali e longitudinali dei carichi lungo l'impalcato si veda l'elaborato di calcolo dell'impalcato riguardante la verifica delle strutture costituenti l'impalcato stesso.

Traffico + folla			
Fz	1538	kN	scarico su una fila di appoggi
num appoggi	5		., 55
R1	319.0	kN	azioni su appoggio 1
R2	667.0	kN	azioni su appoggio 2
R3	360.0	kN	azioni su appoggio 3
R4	135.0	kN	azioni su appoggio 4
R5	57.0	kN	azioni su appoggio 5

7.3.3 AZIONI ORIZZONTALI DA TRAFFICO (FRENATURA/ACCELERAZIONE)

Per le verifiche globali della spalla e per le verifiche del muro di testata l'azione orizzontale offerta dalla frenatura e dell'avviamento è stata considerata utilizzando le formule contenute nelle NTC08 al paragrafo 5.2.2.4.3.

Frenatura/Acce	<u>lerazione</u>		
L	25	m	
Lc	22.8	m	
e vert	1.4	m	Eccentricità verticale rispetto all'intradosso della trave
Q1a	427.5	kN	
F_orizz	214	kN	Forza orizzontale per ogni fila di appoggi
N_vert	5	kN	Forza verticale dovuta all'eccentricità verticale

7.3.4 ATTRITO SUGLI APPOGGI

Per la spalla mobile, per la valutazione delle coazioni generate all'atto dello scorrimento dei vincoli, è stato considerato un coefficiente d'attrito pari al 4% applicato alle azioni verticali agenti sugli apparecchi d'appoggio.

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF1N	01 E ZZ	CL	IV 04 04 001	В	16 di 74

coeff attrito	0.04		
G1	2733	kN	
G2	637	kN	
LM71	1538	kN	
F attrito (G1+G2)	27	kN	su ogni apparecchio appoggio
F attrito (LM71)	12	kN	su ogni apparecchio appoggio

7.3.5 VENTO TRASVERSALE IMPALCATO

Le forze risultanti dovute all'azione del vento trasversale agente sull'impalcato, e trasmesso da quest'ultimo al piano appoggi in sommità del muro di testata sono pari a:

F trasv 150 kN eccentricità 1.4 m

F vento trasv 75 kN Su ogni appoggio fisso M attorno asse x -105 kNm Su ogni appoggio fisso

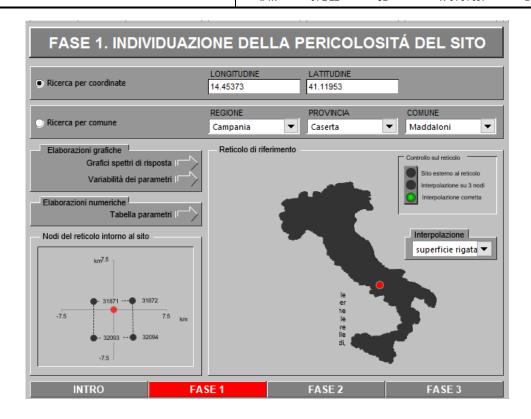
7.4 AZIONE SISMICA

L'opera in oggetto viene progettata per una vita nominale $V_N = 75$ anni ed una classe d'uso III a cui corrisponde un coefficiente d'uso $C_U = 1.5$.

L'azione sismica di progetto è definita per lo Stato Limite di Salvaguardia della Vita (SLV). Il periodo di ritorno di quest'ultima - in funzione della vita utile, della classe d'uso, del tipo di costruzione e dello stato limite di riferimento (prima definiti) - è di 1898 anni.

Essa, conformemente a quanto prescritto dalle Nuove Norme Tecniche, è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste. Tale pericolosità sismica è descritta, in termini geografici e temporali:

- attraverso i valori di accelerazione orizzontale di picco ag (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione S_e(T);
- in corrispondenza del punto del reticolo che individua la posizione geografica dell'opera;
- con riferimento a prefissate probabilità di eccedenza PvR.



RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

| COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO | IF1N 01 E ZZ CL IV 04 04 001 B 17 di 74

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

In particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

- ag, accelerazione orizzontale massima del terreno,
- F₀, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale,
- T_C*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

SLATO	T _R	a g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.071	2.399	0.328
SLD	113	0.088	2.433	0.347
SLV	1068	0.205	2.511	0.436
SLC	2193	0.262	2.536	0.450

Categoria di suolo: C

Azioni sismiche

<u>orizzontale</u>		<u>verticale</u>	
ag	0.205 g	ag	0.125 g
S	1.391	S	1

In fase sismica si devono considerare le azioni orizzontali e verticali agenti sulla spalla dovute all'inerzia delle parti in calcestruzzo.

Le risultanti orizzontali e verticali sono rispettivamente pari ad $F_h=k_h\cdot W$ e $F_v=k_v\cdot W$, dove i coefficienti kh e kv sono calcolati come segue (paragrafo 7.11.6 delle NTC08):

$$K_h = \beta_m * a_g * S = 0.205 g * 1.391 = 0.285 g$$

$$K_v = \pm 0.5 * K_h = \pm 0.143 g$$

 β m = 1, non essendo la spalla libera di traslare rispetto al terreno

01 E ZZ

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

COMMESSA LOTTO

IF1N

CODIFICA

CL

DOCUMENTO

IV 04 04 001

REV.

FOGLIO 19 di 74

7.4.1 FORZE SISMICHE INERZIALI DERIVANTI DALL'IMPALCATO

F sism inerziale peso impalcato

W impalcato 5466 kN Fv_impalcato 390 kN

Azione longitudinale

eccentricità vert 1.4 m distanza baricentro impalcato - piano appoggio su paraghiaia

Lc 22.8 m

Fh_long_impalcatoF v_long_impalcatoTylong_imp

Azione trasversale

Fh_trasv_impalcato 390 kN su un apparecchio fisso M_trasv_imaplcato 546 kNm su un apparecchio fisso

Azione verticale

Fh_vert_impalcato 78 kN su un apparecchio fisso

F sism inerziale sovraccarichi permanenti

W sovr perm 1274 kN (G2 impalcato)

Fh_sovracc 363 kN Fv_sovracc 91 kN

Azione longitudinale

Fh_long_sovr 182 kN su un apparecchio fisso
Fv_long_sovr 4 kN su un apparecchio fisso

Azione trasversale

Fh_trasv_sovr 91 kN su un apparecchio fisso M_trasv_sovr 127 kNm su un apparecchio fisso

Azione verticale

Fh_vert_sovr 18 kN su un apparecchio fisso

F sism inerziale orizzontali e verticali indotte dal traffico (20%)

W traffico 615 kN Fh_traffico 175 kN

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

| COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO | IF1N 01 E ZZ CL IV 04 04 001 B 20 di 74

Fv_traffico 44 kN

Azione longitudinale

Fh_long_traffico 88 kN su un apparecchio fisso Fv_long_traffico 2 kN su un apparecchio fisso

Azione trasversale

Fh_trasv_trafficoM_trasv_traffico61 kNmsu un apparecchio fissosu un apparecchio fisso

Azione verticale

F_vert_traffico 9 kN su un apparecchio fisso

In totale si ottengono i seguenti valori per le forze sismiche da impalcato:

<u>Longitudinale</u>		<u>Trasversale</u>		<u>Verticale</u>	
Fh_long	1049 kN	Fh_trasv	524 kN	F_vert	105 kN
Fv_long	26 kN	M_trasv	734 kN		

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 IV 04 04 001
 B
 21 di 74

Spalle: Relazione di calcolo

8 COMBINAZIONE DEI CARICHI

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC08, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12.

Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ G2	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

LOTTO

01 E ZZ

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

COMMESSA IF1N CODIFICA

DOCUMENTO

IV 04 04 001

REV.

FOGLIO 22 di 74

Tabella 5.1.VI - Coefficienti y per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente \(\psi_0\) di combinazione	Coefficiente \psi_1 (valori frequenti)	Coefficiente ψ 2 (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
77	SLU e SLE	0,6	0,2	0,0
Vento q ₅	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Neve q ₅	SLU e SLE	0,0	0,0	0,0
rieve q ₅	esecuzione	0,8	0,6	0,5
Temperatura	Tk	0,6	0,6	0,5

Per le verifiche geotecniche dei pali di fondazione sono state utilizzate le combinaizoni di tipo GEO. Mentre per le verifiche strutturali dei pali e di tutti gli elementi della spalla sono state utilizzate le combinazioni di tipo STR. Di seguito si riportano le tabelle di riepilogo in cui si mostrano le combinazioni di carico utilizzate (SLU-str, SLV-str, SLE) e (SLU-geo, SLV-geo).

	1	2	3	4	5	6	7	8
	SLU q1.1	SLU q1.2	SLU q1.3	SLU q1.4	SLU q1.5	SLU q1.6	SLU q1.7	SLU q1.8
g1-impalc	1.35	1.35	1	1	1.35	1.35	1	1
g1-sp (DEAD)	1.35	1.35	1	1	1.35	1.35	1	1
g2-impalc	1.5	1.5	0	0	1.5	1.5	0	0
g2-sp (perman portato spalla)	1.5	1.5	0	0	1.5	1.5	0	0
g2-sp (spinta perm portato spalla)	1.5	1.5	0	0	1.5	1.5	0	0
g2-sp (peso rilevato su platea spalla)	1.5	1.5	0	0	1.5	1.5	0	0
g1-sp (spinta terreno su pareti spalla)	1.35	1.35	1	1	1.35	1.35	1	1
e2-imp (ritiro)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
e3-imp (delta T)	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72	-0.72
q1.1-imp (traffico impalcato caso1)	1.35	1.35	1.35	1.35	0	0	0	0
q1.2-imp (traffico impalcato caso2)	0	0	0	0	1.35	1.35	1.35	1.35

Ghella

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

q1t-sp (traffico su rilevato)	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
q1t-sp (spinta sovraccarico traffico)	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
q3-imp (frenatura/accelerazione)	0	0	0	0	0	0	0	0
q4-imp (centrifuga)	0	0	0	0	0	0	0	0
q5-imp (vento)	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
q6.1x-imp (F_h long)	0	0	0	0	0	0	0	0
q6.1x-imp (F_v long)	0	0	0	0	0	0	0	0
q6.1y-imp (F_h trasv)	0	0	0	0	0	0	0	0
q6.1y-imp (M_trasv)	0	0	0	0	0	0	0	0
q6.1z-imp (F_vert)	0	0	0	0	0	0	0	0
q6.1x-sp (F_long_rilev)	0	0	0	0	0	0	0	0
q6.2x-sp (incremento spinta sismica)	0	0	0	0	0	0	0	0
q6.2y-sp (F_trasv_rilev)	0	0	0	0	0	0	0	0
q6.2z-sp (F_vert_rilev)	0	0	0	0	0	0	0	0
q6.1x-sp (inerzia x)	0	0	0	0	0	0	0	0
q6.2y-sp (inerzia y)	0	0	0	0	0	0	0	0
q6.2z-sp (inerzia z)	0	0	0	0	0	0	0	0
q7-imp (attrito vincoli)	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

	9	10	11	12	13	14	15	16
	SLU q3.1	SLU q3.2	SLU q3.3	SLU q3.4	SLU q4.1	SLU q4.2	SLU q4.3	SLU q4.4
g1-impalc	1.35	1.35	1	1	1.35	1.35	1	1
g1-sp (DEAD)	1.35	1.35	1	1	1.35	1.35	1	1
g2-impalc	1.5	1.5	0	0	1.5	1.5	0	0
g2-sp (perman portato spalla)	1.5	1.5	0	0	1.5	1.5	0	0
g2-sp (spinta perm portato spalla)	1.5	1.5	0	0	1.5	1.5	0	0
g2-sp (peso rilevato su platea spalla)	1.5	1.5	0	0	1.5	1.5	0	0
g1-sp (spinta terreno su pareti spalla)	1.35	1.35	1	1	1.35	1.35	1	1
e2-imp (ritiro)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
e3-imp (delta T)	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72
q1.1-imp (traffico impalcato caso1)	1.25	0	1.25	0	1.25	0	1.25	0
q1.2-imp (traffico impalcato caso2)	0	1.25	0	1.25	0	1.25	0	1.25
q1t-sp (traffico su rilevato)	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
q1t-sp (spinta sovraccarico traffico)	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
q3-imp (frenatura/accelerazione)	1.35	1.35	1.35	1.35	0	0	0	0
q4-imp (centrifuga)	0	0	0	0	1.35	1.35	1.35	1.35
q5-imp (vento)	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
q6.1x-imp (F_h long)	0	0	0	0	0	0	0	0

Ghella

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

Spalle: Relazione di calcolo			COMMESSA IF1N	LOTTO 01 E ZZ	CODIFICA CL	DOCUMENTO IV 04 04 001	REV.	FOGLIO 24 di 74
q6.1x-imp (F_v long)	0	0	0	0	0	0	0	0
q6.1y-imp (F_h trasv)	0	0	0	0	0	0	0	0
q6.1y-imp (M_trasv)	0	0	0	0	0	0	0	0
q6.1z-imp (F_vert)	0	0	0	0	0	0	0	0
q6.1x-sp (F_long_rilev)	0	0	0	0	0	0	0	0
q6.2x-sp (incremento spinta sismica)	0	0	0	0	0	0	0	0
q6.2y-sp (F_trasv_rilev)	0	0	0	0	0	0	0	0
q6.2z-sp (F_vert_rilev)	0	0	0	0	0	0	0	0
q6.1x-sp (inerzia x)	0	0	0	0	0	0	0	0
q6.2y-sp (inerzia y)	0	0	0	0	0	0	0	0
q6.2z-sp (inerzia z)	0	0	0	0	0	0	0	0
q7-imp (attrito vincoli)	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

	17	18	19	20	21	22	23	24
	SLU e2.1	SLU e2.2	SLU e2.3	SLU e2.4	SLU e2.5	SLU e2.6	SLU e2.7	SLU e2.8
g1-impalc	1.35	1.35	1	1	1.35	1.35	1	1
g1-sp (DEAD)	1.35	1.35	1	1	1.35	1.35	1	1
g2-impalc	1.5	1.5	0	0	1.5	1.5	0	0
g2-sp (perman portato spalla)	1.5	1.5	0	0	1.5	1.5	0	0
g2-sp (spinta perm portato spalla)	1.5	1.5	0	0	1.5	1.5	0	0
g2-sp (peso rilevato su platea spalla)	1.5	1.5	0	0	1.5	1.5	0	0
g1-sp (spinta terreno su pareti spalla)	1.35	1.35	1	1	1.35	1.35	1	1
e2-imp (ritiro)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
e3-imp (delta T)	1.2	-1.2	1.2	-1.2	1.2	-1.2	1.2	-1.2
q1.1-imp (traffico impalcato caso1)	1.25	1.25	1.25	1.25	0	0	0	0
q1.2-imp (traffico impalcato caso2)	0	0	0	0	1.25	1.25	1.25	1.25
q1t-sp (traffico su rilevato)	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
q1t-sp (spinta sovraccarico traffico)	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
q3-imp (frenatura/accelerazione)	0	0	0	0	0	0	0	0
q4-imp (centrifuga)	0	0	0	0	0	0	0	0
q5-imp (vento)	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
q6.1x-imp (F_h long)	0	0	0	0	0	0	0	0
q6.1x-imp (F_v long)	0	0	0	0	0	0	0	0
q6.1y-imp (F_h trasv)	0	0	0	0	0	0	0	0
q6.1y-imp (M_trasv)	0	0	0	0	0	0	0	0
q6.1z-imp (F_vert)	0	0	0	0	0	0	0	0
q6.1x-sp (F_long_rilev)	0	0	0	0	0	0	0	0
q6.2x-sp (incremento spinta sismica)	0	0	0	0	0	0	0	0

Ghella

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

Spalle: Relazione di calcolo			COMMESSA IF1N	LOTTO 01 E ZZ	CODIFICA CL	DOCUMENTO IV 04 04 001	REV.	FOGLIO 25 di 74
q6.2y-sp (F_trasv_rilev)	0	0	0	0	0	0	0	0
q6.2z-sp (F_vert_rilev)	0	0	0	0	0	0	0	0
q6.1x-sp (inerzia x)	0	0	0	0	0	0	0	0
q6.2y-sp (inerzia y)	0	0	0	0	0	0	0	0
q6.2z-sp (inerzia z)	0	0	0	0	0	0	0	0
q7-imp (attrito vincoli)	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

	25	26	27	28	29	30	31	32
	SLU q5.1	SLU q5.2	SLU q5.3	SLU q5.4	SLU q5.5	SLU q5.6	SLU q5.7	SLU q5.8
g1-impalc	1.35	1.35	1	1	1.35	1.35	1	1
g1-sp (DEAD)	1.35	1.35	1	1	1.35	1.35	1	1
g2-impalc	1.5	1.5	0	0	1.5	1.5	0	0
g2-sp (perman portato spalla)	1.5	1.5	0	0	1.5	1.5	0	0
g2-sp (spinta perm portato spalla)	1.5	1.5	0	0	1.5	1.5	0	0
g2-sp (peso rilevato su platea spalla)	1.5	1.5	0	0	1.5	1.5	0	0
g1-sp (spinta terreno su pareti spalla)	1.35	1.35	1	1	1.35	1.35	1	1
e2-imp (ritiro)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
e3-imp (delta T)	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72	-0.72
q1.1-imp (traffico impalcato caso1)	1.25	1.25	1.25	1.25	0	0	0	0
q1.2-imp (traffico impalcato caso2)	0	0	0	0	1.25	1.25	1.25	1.25
q1t-sp (traffico su rilevato)	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
q1t-sp (spinta sovraccarico traffico)	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
q3-imp (frenatura/accelerazione)	0	0	0	0	0	0	0	0
q4-imp (centrifuga)	0	0	0	0	0	0	0	0
q5-imp (vento)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
q6.1x-imp (F_h long)	0	0	0	0	0	0	0	0
q6.1x-imp (F_v long)	0	0	0	0	0	0	0	0
q6.1y-imp (F_h trasv)	0	0	0	0	0	0	0	0
q6.1y-imp (M_trasv)	0	0	0	0	0	0	0	0
q6.1z-imp (F_vert)	0	0	0	0	0	0	0	0
q6.1x-sp (F_long_rilev)	0	0	0	0	0	0	0	0
q6.2x-sp (incremento spinta sismica)	0	0	0	0	0	0	0	0
q6.2y-sp (F_trasv_rilev)	0	0	0	0	0	0	0	0
q6.2z-sp (F_vert_rilev)	0	0	0	0	0	0	0	0
q6.1x-sp (inerzia x)	0	0	0	0	0	0	0	0
q6.2y-sp (inerzia y)	0	0	0	0	0	0	0	0
q6.2z-sp (inerzia z)	0	0	0	0	0	0	0	0
q7-imp (attrito vincoli)	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

LOTTO

01 E ZZ

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

COMMESSA

CODIFICA

CL

DOCUMENTO
IV 04 04 001

REV.

FOGLIO **26 di 74**

	33	34	35	36	37	38	39	40
	SL Ex.1	SL Ex.2	SL Ex.3	SL Ex.4	SL Ex.5	SL Ex.6	SL Ex.7	SL Ex.8
g1-impalc	1	1	1	1	1	1	1	1
g1-sp (DEAD)	1	1	1	1	1	1	1	1
g2-impalc	1	1	1	1	1	1	1	1
g2-sp (perman portato spalla)	1	1	1	1	1	1	1	1
g2-sp (spinta perm portato spalla)	1	1	1	1	1	1	1	1
g2-sp (peso rilevato su platea spalla)	1	1	1	1	1	1	1	1
g1-sp (spinta terreno su pareti spalla)	1	1	1	1	1	1	1	1
e2-imp (ritiro)	1	1	1	1	1	1	1	1
e3-imp (delta T)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
q1.1-imp (traffico impalcato caso1)	0	0	0	0	0	0	0	0
q1.2-imp (traffico impalcato caso2)	0	0	0	0	0	0	0	0
q1t-sp (traffico su rilevato)	0	0	0	0	0	0	0	0
q1t-sp (spinta sovraccarico traffico)	0	0	0	0	0	0	0	0
q3-imp (frenatura/accelerazione)	0	0	0	0	0	0	0	0
q4-imp (centrifuga)	0	0	0	0	0	0	0	0
q5-imp (vento)	0	0	0	0	0	0	0	0
q6.1x-imp (F_h long)	1	1	1	1	-1	-1	-1	-1
q6.1x-imp (F_v long)	1	1	1	1	-1	-1	-1	-1
q6.1y-imp (F_h trasv)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.1y-imp (M_trasv)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.1z-imp (F_vert)	0.3	0.3	-0.3	-0.3	0.3	0.3	-0.3	-0.3
q6.1x-sp (F_long_rilev)	1	1	1	1	-1	-1	-1	-1
q6.2x-sp (incremento spinta sismica)	1	1	1	1	-1	-1	-1	-1
q6.2y-sp (F_trasv_rilev)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.2z-sp (F_vert_rilev)	0.3	0.3	-0.3	-0.3	0.3	0.3	-0.3	-0.3
q6.1x-sp (inerzia x)	1	1	1	1	-1	-1	-1	-1
q6.2y-sp (inerzia y)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.2z-sp (inerzia z)	0.3	0.3	-0.3	-0.3	0.3	0.3	-0.3	-0.3
q7-imp (attrito vincoli)	0	0	0	0	0	0	0	0

	41	42	43	44	45	46	47	48
	SL Ey.1	SL Ey.2	SL Ey.3	SL Ey.4	SL Ey.5	SL Ey.6	SL Ey.7	SL Ey.8
g1-impalc	1	1	1	1	1	1	1	1
g1-sp (DEAD)	1	1	1	1	1	1	1	1
g2-impalc	1	1	1	1	1	1	1	1

RADDOPPIO TRATTA CANCELLO – BENEVENTO

Spalle: Relazione di calcolo			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
opune. Relazione ai calcolo			IF1N	01 E ZZ	CL	IV 04 04 001	В	27 di 74
g2-sp (perman portato spalla)	1	1	1	1	1	1	1	1
g2-sp (spinta perm portato spalla)	1	1	1	1	1	1	1	1
g2-sp (peso rilevato su platea spalla)	1	1	1	1	1	1	1	1
g1-sp (spinta terreno su pareti spalla)	1	1	1	1	1	1	1	1
e2-imp (ritiro)	1	1	1	1	1	1	1	1
e3-imp (delta T)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
q1.1-imp (traffico impalcato caso1)	0	0	0	0	0	0	0	0
q1.2-imp (traffico impalcato caso2)	0	0	0	0	0	0	0	0
q1t-sp (traffico su rilevato)	0	0	0	0	0	0	0	0
q1t-sp (spinta sovraccarico traffico)	0	0	0	0	0	0	0	0
q3-imp (frenatura/accelerazione)	0	0	0	0	0	0	0	0
q4-imp (centrifuga)	0	0	0	0	0	0	0	0
q5-imp (vento)	0	0	0	0	0	0	0	0
q6.1x-imp (F_h long)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.1x-imp (F_v long)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.1y-imp (F_h trasv)	1	1	1	1	-1	-1	-1	-1
q6.1y-imp (M_trasv)	1	1	1	1	-1	-1	-1	-1
q6.1z-imp (F_vert)	0.3	0.3	-0.3	-0.3	0.3	0.3	-0.3	-0.3
q6.1x-sp (F_long_rilev)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.2x-sp (incremento spinta sismica)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.2y-sp (F_trasv_rilev)	1	1	1	1	-1	-1	-1	-1
q6.2z-sp (F_vert_rilev)	0.3	0.3	-0.3	-0.3	0.3	0.3	-0.3	-0.3
q6.1x-sp (inerzia x)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.2y-sp (inerzia y)	1	1	1	1	-1	-1	-1	-1
q6.2z-sp (inerzia z)	0.3	0.3	-0.3	-0.3	0.3	0.3	-0.3	-0.3
q7-imp (attrito vincoli)	0	0	0	0	0	0	0	0

	49	50	51	52	53	54	55	56
	SL Ez.1	SL Ez.2	SL Ez.3	SL Ez.4	SL Ez.5	SL Ez.6	SL Ez.7	SL Ez.8
g1-impalc	1	1	1	1	1	1	1	1
g1-sp (DEAD)	1	1	1	1	1	1	1	1
g2-impalc	1	1	1	1	1	1	1	1
g2-sp (perman portato spalla)	1	1	1	1	1	1	1	1
g2-sp (spinta perm portato spalla)	1	1	1	1	1	1	1	1
g2-sp (peso rilevato su platea spalla)	1	1	1	1	1	1	1	1
g1-sp (spinta terreno su pareti spalla)	1	1	1	1	1	1	1	1
e2-imp (ritiro)	1	1	1	1	1	1	1	1
e3-imp (delta T)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6

RADDOPPIO TRATTA CANCELLO – BENEVENTO

Spalle: Relazione di calcolo			COMMESSA IF1N	LOTTO 01 E ZZ	CODIFICA CL	DOCUMENTO IV 04 04 001	REV.	FOGLIO 28 di 74
q1.1-imp (traffico impalcato caso1)	0	0	0	0	0	0	0	0
q1.2-imp (traffico impalcato caso2)	0	0	0	0	0	0	0	0
q1t-sp (traffico su rilevato)	0	0	0	0	0	0	0	0
q1t-sp (spinta sovraccarico traffico)	0	0	0	0	0	0	0	0
q3-imp (frenatura/accelerazione)	0	0	0	0	0	0	0	0
q4-imp (centrifuga)	0	0	0	0	0	0	0	0
q5-imp (vento)	0	0	0	0	0	0	0	0
q6.1x-imp (F_h long)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.1x-imp (F_v long)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.1y-imp (F_h trasv)	0.3	0.3	-0.3	-0.3	0.3	0.3	-0.3	-0.3
q6.1y-imp (M_trasv)	0.3	0.3	-0.3	-0.3	0.3	0.3	-0.3	-0.3
q6.1z-imp (F_vert)	1	1	1	1	-1	-1	-1	-1
q6.1x-sp (F_long_rilev)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.2x-sp (incremento spinta sismica)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.2y-sp (F_trasv_rilev)	0.3	0.3	-0.3	-0.3	0.3	0.3	-0.3	-0.3
q6.2z-sp (F_vert_rilev)	1	1	1	1	-1	-1	-1	-1
q6.1x-sp (inerzia x)	0.3	-0.3	0.3	-0.3	0.3	-0.3	0.3	-0.3
q6.2y-sp (inerzia y)	0.3	0.3	-0.3	-0.3	0.3	0.3	-0.3	-0.3
q6.2z-sp (inerzia z)	1	1	1	1	-1	-1	-1	-1
q7-imp (attrito vincoli)	0	0	0	0	0	0	0	0

	57	58	59	60	61	62	63
	SLE fr1	SLE fr2	SLE qp	SLE c1	SLE c2	SLE c3	SLE c4
g1-impalc	1	1	1	1	1	1	1
g1-sp (DEAD)	1	1	1	1	1	1	1
g2-impalc	1	1	1	1	1	1	1
g2-sp (perman portato spalla)	1	1	1	1	1	1	1
g2-sp (spinta perm portato spalla)	1	1	1	1	1	1	1
g2-sp (peso rilevato su platea spalla)	1	1	1	1	1	1	1
g1-sp (spinta terreno su pareti spalla)	1	1	1	1	1	1	1
e2-imp (ritiro)	1	1	1	1	1	1	1
e3-imp (delta T)	0.6	0.6	0.5	0.6	0.6	0.6	0.6
q1.1-imp (traffico impalcato caso1)	0.75	0	0	1	0.75	0	0
q1.2-imp (traffico impalcato caso2)	0	0	0	0	0	0.75	0.75
q1t-sp (traffico su rilevato)	0.75	0	0	1	0.75	0.75	0.75
q1t-sp (spinta sovraccarico traffico)	0.75	0	0	1	0.75	0.75	0.75
q3-imp (frenatura/accelerazione)	0	0	0	0	1	0	0
q4-imp (centrifuga)	0	0	0	0	0	1	0

RADDOPPIO TRATTA CANCELLO – BENEVENTO

Spalle: Relazione di calcolo		COMMESSA LOTTO CODIFICA DOCUMENTO REV. IF1N 01 E ZZ CL IV 04 04 001 B		FOGLIO 29 di 74			
q5-imp (vento)	0	0.2	0	0.6	0.6	0.6	1
q6.1x-imp (F_h long)	0	0	0	0	0	0	0
q6.1x-imp (F_v long)	0	0	0	0	0	0	0
q6.1y-imp (F_h trasv)	0	0	0	0	0	0	0
q6.1y-imp (M_trasv)	0	0	0	0	0	0	0
q6.1z-imp (F_vert)	0	0	0	0	0	0	0
q6.1x-sp (F_long_rilev)	0	0	0	0	0	0	0
q6.2x-sp (incremento spinta sismica)	0	0	0	0	0	0	0
q6.2y-sp (F_trasv_rilev)	0	0	0	0	0	0	0
q6.2z-sp (F_vert_rilev)	0	0	0	0	0	0	0
q6.1x-sp (inerzia x)	0	0	0	0	0	0	0
q6.2y-sp (inerzia y)	0	0	0	0	0	0	0
q6.2z-sp (inerzia z)	0	0	0	0	0	0	0
q7-imp (attrito vincoli)	0.6	0.6	0	0.6	0.6	0.6	0.6

	64	65	66	67	68	69	70
	SLU GEO 1	SLU GEO 2	SLU GEO 3	SLU GEO 4	SLU GEO 5	SLU GEO 6	SLU GEO 8
g1-impalc	1	1	1	1	1	1	1
g1-sp (DEAD)	1	1	1	1	1	1	1
g2-impalc	1	1	0	0	1	1	0
g2-sp (perman portato spalla)	1.3	1.3	0	0	1.3	1.3	0
g2-sp (spinta perm portato spalla)	1.3	1.3	0	0	1.3	1.3	0
g2-sp (peso rilevato su platea spalla)	1.3	1.3	0	0	1.3	1.3	0
g1-sp (spinta terreno su pareti spalla)	1	1	1	1	1	1	1
e2-imp (ritiro)	1	1	1	1	1	1	1
e3-imp (delta T)	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72
q1.1-imp (traffico impalcato caso1)	1.15	1.15	1.15	1.15	0	0	0
q1.2-imp (traffico impalcato caso2)	0	0	0	0	1.15	1.15	1.15
q1t-sp (traffico su rilevato)	1.15	1.15	1.15	1.15	1.15	1.15	1.15
q1t-sp (spinta sovraccarico traffico)	1.15	1.15	1.15	1.15	1.15	1.15	1.15
q3-imp (frenatura/accelerazione)	1.15	1.15	1.15	1.15	0	0	0
q4-imp (centrifuga)	0	0	0	0	0	0	0
q5-imp (vento)	0.78	0.78	0.78	0.78	0.78	0.78	0.78
q6.1x-imp (F_h long)	0	0	0	0	0	0	0
q6.1x-imp (F_v long)	0	0	0	0	0	0	0
q6.1y-imp (F_h trasv)	0	0	0	0	0	0	0
q6.1y-imp (M_trasv)	0	0	0	0	0	0	0
q6.1z-imp (F_vert)	0	0	0	0	0	0	0

RADDOPPIO TRATTA CANCELLO – BENEVENTO

Spalle: Relazione di calcolo			COMMESSA IF1N	LOTTO 01 E Z		A DOCUME		FOGLIO 30 di 74
q6.1x-sp (F_long_rilev)	0	0	0		0	0	0	0
q6.2x-sp (incremento spinta sismica)	0	0	0		0	0	0	0
q6.2y-sp (F_trasv_rilev)	0	0	0		0	0	0	0
q6.2z-sp (F_vert_rilev)	0	0	0		0	0	0	0
q6.1x-sp (inerzia x)	0	0	0		0	0	0	0
q6.2y-sp (inerzia y)	0	0	0		0	0	0	0
q6.2z-sp (inerzia z)	0	0	0		0	0	0	0
q7-imp (attrito vincoli)	1.15	1.15	1.15		1.15	1.15	1.15	1.15

	71	72	73	74
	SLU GEO 9	SLU GEO 10	SLU GEO 11	SLU GEO 12
g1-impalc	1	1	1	1
g1-sp (DEAD)	1	1	1	1
g2-impalc	0	1	1	0
g2-sp (perman portato spalla)	0	1.3	1.3	0
g2-sp (spinta perm portato spalla)	0	1.3	1.3	0
g2-sp (peso rilevato su platea spalla)	0	1.3	1.3	0
g1-sp (spinta terreno su pareti spalla)	1	1	1	1
e2-imp (ritiro)	1	1	1	1
e3-imp (delta T)	-0.72	-0.72	-0.72	-0.72
q1.1-imp (traffico impalcato caso1)	0	1.15	0	1.15
q1.2-imp (traffico impalcato caso2)	1.15	0	1.15	0
q1t-sp (traffico su rilevato)	1.15	1.15	1.15	1.15
q1t-sp (spinta sovraccarico traffico)	1.15	1.15	1.15	1.15
q3-imp (frenatura/accelerazione)	0	1.15	1.15	0
q4-imp (centrifuga)	0	0	0	0
q5-imp (vento)	0.78	0.78	0.78	0.78
q6.1x-imp (F_h long)	0	0	0	0
q6.1x-imp (F_v long)	0	0	0	0
q6.1y-imp (F_h trasv)	0	0	0	0
q6.1y-imp (M_trasv)	0	0	0	0
q6.1z-imp (F_vert)	0	0	0	0
q6.1x-sp (F_long_rilev)	0	0	0	0
q6.2x-sp (incremento spinta sismica)	0	0	0	0
q6.2y-sp (F_trasv_rilev)	0	0	0	0
q6.2z-sp (F_vert_rilev)	0	0	0	0
q6.1x-sp (inerzia x)	0	0	0	0
q6.2y-sp (inerzia y)	0	0	0	0

RADDOPPIO TRATTA CANCELLO – BENEVENTO

Spalle: Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
opane. Relazione di calcolo	IF1N	01 E ZZ	CL	IV 04 04 001	В	31 di 74

q6.2z-sp (inerzia z)	0	0	0	0
q7-imp (attrito vincoli)	1.15	1.15	1.15	1.15

	75	76	77	78	79
	SLU GEO 13	SLU GEO 14	SLU GEO 15	SLU GEO 16	SLU GEO 17
g1-impalc	1	1	1	1	1
g1-sp (DEAD)	1	1	1	1	1
g2-impalc	0	1	1	0	0
g2-sp (perman portato spalla)	0	1.3	1.3	0	0
g2-sp (spinta perm portato spalla)	0	1.3	1.3	0	0
g2-sp (peso rilevato su platea spalla)	0	1.3	1.3	0	0
g1-sp (spinta terreno su pareti spalla)	1	1	1	1	1
e2-imp (ritiro)	1	1	1	1	1
e3-imp (delta T)	-0.72	0.72	-0.72	0.72	-0.72
q1.1-imp (traffico impalcato caso1)	0	1	1	1	1
q1.2-imp (traffico impalcato caso2)	1.15	0	0	0	0
q1t-sp (traffico su rilevato)	1.15	1	1	1	1
q1t-sp (spinta sovraccarico traffico)	1.15	1	1	1	1
q3-imp (frenatura/accelerazione)	0	1	1	1	1
q4-imp (centrifuga)	0	0	0	0	0
q5-imp (vento)	0.78	1.3	1.3	1.3	1.3
q6.1x-imp (F_h long)	0	0	0	0	0
q6.1x-imp (F_v long)	0	0	0	0	0
q6.1y-imp (F_h trasv)	0	0	0	0	0
q6.1y-imp (M_trasv)	0	0	0	0	0
q6.1z-imp (F_vert)	0	0	0	0	0
q6.1x-sp (F_long_rilev)	0	0	0	0	0
q6.2x-sp (incremento spinta sismica)	0	0	0	0	0
q6.2y-sp (F_trasv_rilev)	0	0	0	0	0
q6.2z-sp (F_vert_rilev)	0	0	0	0	0
q6.1x-sp (inerzia x)	0	0	0	0	0
q6.2y-sp (inerzia y)	0	0	0	0	0
q6.2z-sp (inerzia z)	0	0	0	0	0
q7-imp (attrito vincoli)	1.15	1.15	1.15	1.15	1.15

Spalle: Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 IV 04 04 001
 B
 32 di 74

9 SOLLECITAZIONI COMBINATE

9.1 SOLLECITAZIONI GLOBALI

Di seguito si riportano le sollecitazioni nel baricentro della fondazione, ottenute dal modello di calcolo globale, per ogni carico elementare applicato.

Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	М3
Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
768	DEAD	LinStatic	0	0	14891	0	-1251	0
768	peso rilevato su platea	LinStatic	0	0	0	0	0	0
768	spinta terreno su pareti spalla	LinStatic	0	0	0	0	0	0
768	perm portato dalla spalla	LinStatic	0	0	198	0	327	0
769	spinta perm portato dalla spalla	LinStatic	0	0	0	0	0	0
768	spinta sovraccarico traffico	LinStatic	0	0	0	0	0	0
768	traffico su rilevato	LinStatic	0	0	1323	0	2183	0
768	G1 impalc	LinStatic	0	0	2735	0	-5197	0
768	G2 impalc	LinStatic	0	0	635	0	-1207	0
768	traffico impalcato	LinStatic	0	0	1538	2112	-2922	0
768	Frenatura/Accelerazione	LinStatic	-214	0	-6	0	-2022	0
768	vento	LinStatic	0	-150	0	1635	0	-285
768	F_long_sism_rilevato	LinStatic	0	0	0	0	0	0
768	F_trasv_sism_rilevato	LinStatic	0	0	0	0	0	0
768	F_vert_sism_rilevato	LinStatic	0	0	0	0	0	0
768	F_h_long_sism_impalc	LinStatic	-1794	0	0	0	-17041	0
768	F_v_long_sism_impalc	LinStatic	0	0	-44	0	84	0
768	F_h_trasv_sism_impalc	LinStatic	0	-896	0	8512	0	-1702
768	M_trasv_sism_impalc	LinStatic	0	0	0	1255	0	0
768	F_vert_sism_impalc	LinStatic	0	0	-449	0	853	0
768	increm spinta sism_long	LinStatic	0	0	0	0	0	0
768	inerzia X	LinStatic	-3629	0	0	0	-16574	0
768	inerzia Y	LinStatic	0	-3629	0	16574	0	-305
768	inerzia Z	LinStatic	0	0	-1821	0	153	0

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 IV 04 04 001
 B
 33 di 74

Spalle: Relazione di calcolo

Dove:

- F1 = azione in direzione longitudinale;
- F2 = azione in direzione trasversale;
- F3 = azione in direzione verticale;
- M1 = momento trasversale;
- M2 = momento longitudinale.

Combinando le sollecitazioni sopra riportate si ottengono i seguenti valori più gravosi:

	N	Mlong	Mtrasv	Flong	Ftrasv
SL Ex.3	19096	41158	-7902	5422	1357
SL Ey.3	19127	17687	-26341	1627	4525
SL Ez.5	20716	18391	-7902	1627	1357
SL Ex.1	17734	40555	-7902	5422	1357
SL Ey.1	17765	17084	-26341	1627	4525
SL Ez.1	16177	16380	-7902	1627	1357
SLU q1.1	28899	13749	-4323	289	135
SLU q1.3	21480	10174	-4323	289	135
SLU q5.1	27936	12817	-4591	217	225
SLU q5.3	21884	11841	-4591	217	225
SLU GEO 1	21993	10765	-3704	246	117
SLU GEO 3	20909	9622	-3704	246	117
SLU GEO 14	21564	10351	-4238	214	195
SLU GEO 16	20481	9208	-4238	214	195
SLE c1	21314	10087	-3093	214	90
SLE c4	20601	9397	-3219	161	150
SLE qp	18459	7326	0	0	0

9.2 SOLLECITAZIONI SUI MURI VERTICALI E SULLA SOLETTA SUPERIORE DELLA SPALLA

Le immagini riportate di seguito rappresentano l'inviluppo delle sollecitazioni SLU e SLV dei muri frontale, paraghiaia e andatori della spalla.

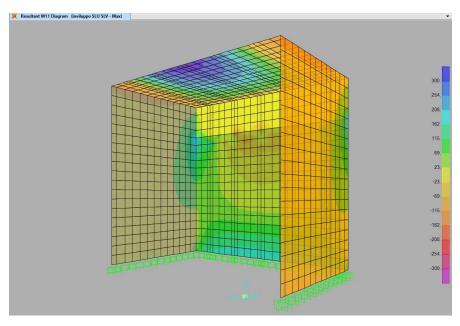


Figura 2: inviluppo delle sollecitazioni M11 per SLU e SLV

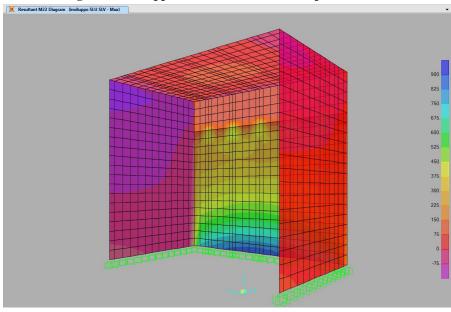


Figura 3: inviluppo delle sollecitazioni M22 per SLU e SLV

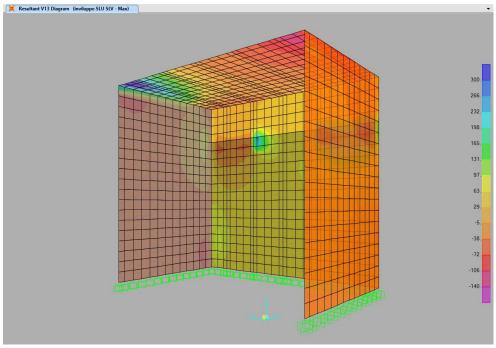


Figura 4: inviluppo delle sollecitazioni V13 per SLU e SLV

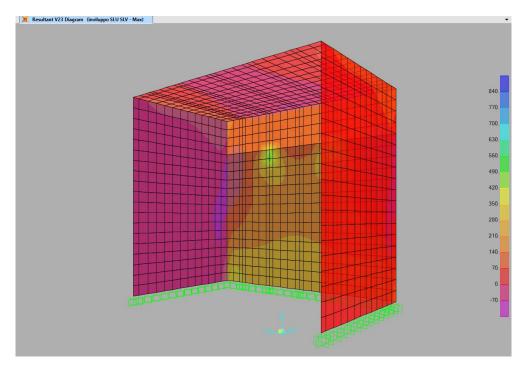


Figura 5: inviluppo delle sollecitazioni V23 per SLU e SLV

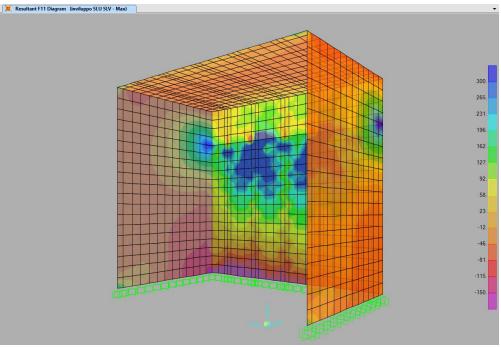


Figura 6: inviluppo delle sollecitazioni F11 per SLU e SLV

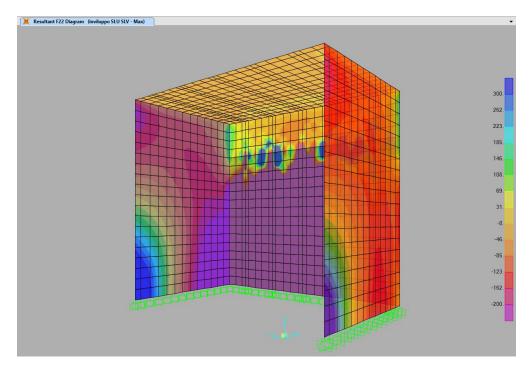
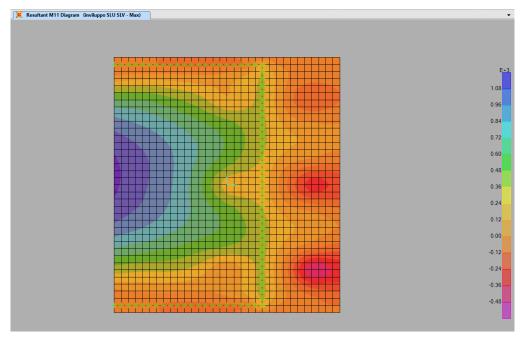



Figura 7: inviluppo delle sollecitazioni F22 per SLU e SLV

9.3 **SOLLECITAZIONI IN FONDAZIONE**

Le immagini riportate di seguito rappresentano l'inviluppo delle sollecitazioni SLU e SLV del plinto di fondazione della spalla.

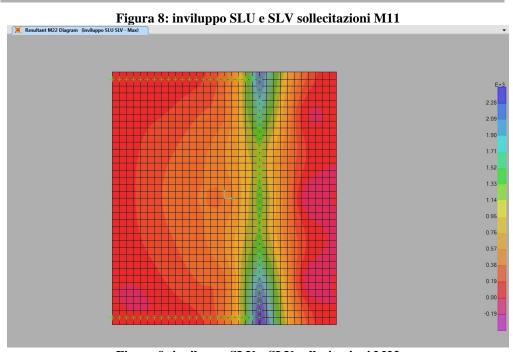


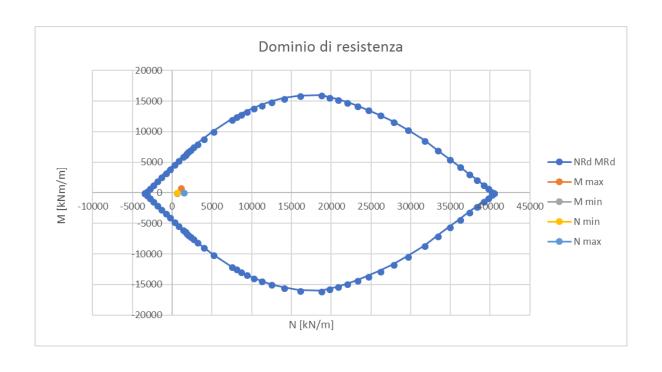
Figura 9: inviluppo SLU e SLV sollecitazioni M22

10 VERIFICHE DI RESISTENZA DEL MURO FRONTALE

10.1 VERIFICA PRESSOFLESSIONE ARMATURA VERTICALE

Si hanno le seguenti dimensioni delle sezioni e delle armature:

B=100 cm larghezza


H=260 cm altezza

c=c'=6.2 cm copriferro

Af=45.24 cm2/m armatura in trazione Φ24/10

Af=45.24 cm2/m armatura in compressione Φ24/10

My	N
kNm/m	kN/m
922	1000
90	536
113	486
144	1379

10.2 VERIFICA PRESSOFLESSIONE ARMATURA ORIZZONTALE

Si hanno le seguenti dimensioni delle sezioni e delle armature:

B=100 cm larghezza

H=180 cm altezza

c=c'=8.8 cm copriferro

Af=38.01 cm2/m armatura in trazione Φ22/10

Af=38.01 cm2/m armatura in compressione Φ22/10

Mz	N
kNm/m	kN/m
239	-202
167	-112
239	-202
25	-204

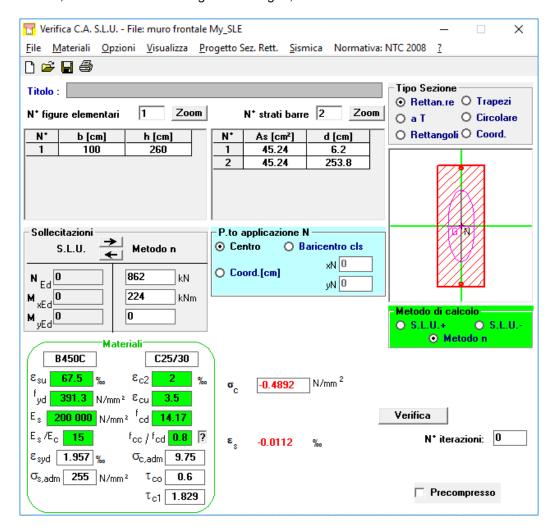
10.3 VERIFICHE A TAGLIO MURO FRONTALE

Lo sforzo tagliante per elementi con armatura resistente a taglio è il minimo tra i seguenti valori:

$$V_{\text{Rsd}} = 0.9 \cdot d \cdot \frac{A_{\text{sw}}}{\text{s}} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin\alpha \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$$

S Red 5,5 d W	c a c		
classe cls	Rck	40	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	33	N/mm²
	f_{cd}	19	
coeff. parziale	Уc	1.5	
larghezza membratura resistene a V	b _w	1000	mm
altezza membratura resistene a V	Н	2600	mm
altezza utille	d	2538	mm
area della sezione	A_{TOT}	2538000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
	$\sigma_{\sf cp}$	0.00	N/mm ²
	α_{c}	1.00	
Acciaio	f_{yk}	450	N/mm ²
Feb44k	\mathbf{f}_{yd}	391	N/mm ²
diametro ferro longitudinale	øl	24	mm
area armatura	Asl	452.4	mm²
diametro staffe (spille)	Øw	12	mm
Area staffa (spilla)	$Aø_w$	113	mm²
0.9 d	Z	2284	mm
passo delle staffe (spille)	S_{W}	400	mm
	n° bracci	2.5	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	$\cot(\theta)$	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	$\cot(\alpha)$	0.00	
	Asw/sw	0.71	mm²/mm
Taglio resistente per "taglio trazione"	V_{Rsd}	632	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	10743	kN
taglio sollecitante	V_{Ed}	262	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V_{Rd}	632	kN
	V_{Ed}	<	V_{Rd}
		verifies	

verifica


10.4 VERIFICHE A FESSURAZIONE MURO FRONTALE

In combinazione SLE rara si hanno le seguenti sollecitazion massime:

SLE My 224 kNm/m

N compressione 862 kN/m

Queste sollecitazioni, come mostrato nella figura che segue, determinano che la sezione sia totalmente compressa.

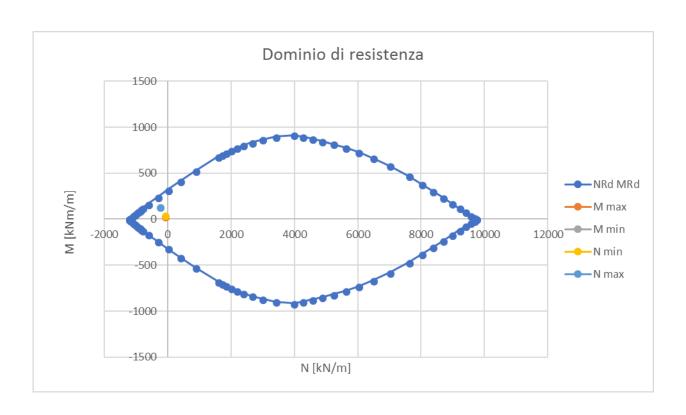
Dal momento che la sezione risulta tutta compressa non si esegue la verifica per l'apertura delle fessure.

11 VERIFICHE DI RESISTENZA MURO PARAGHIAIA

11.1 VERIFICA PRESSOFLESSIONE ARMATURA VERTICALE

Si hanno le seguenti dimensioni delle sezioni e delle armature:

B=100 cm larghezza


H=60 cm altezza

c=c'=6.0 cm copriferro

Af=15.71 cm2/m armatura in trazione Φ20/20

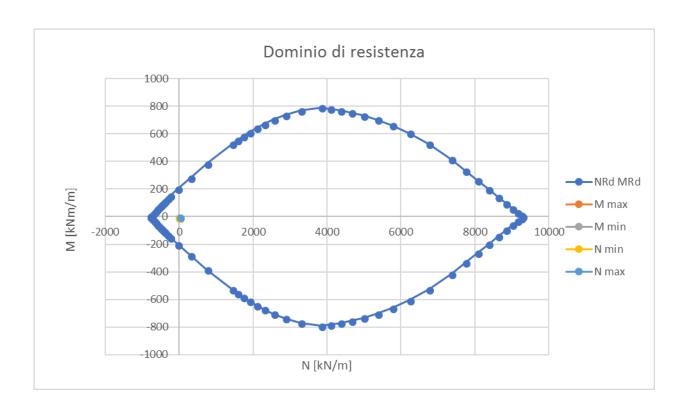
Af=15.71 cm2/m armatura in compressione Φ20/20

My	N
kNm/m	kN/m
30	-103
138	-263
47	-96
138	-263

11.2 VERIFICA PRESSOFLESSIONE ARMATURA ORIZZONTALE

Si hanno le seguenti dimensioni delle sezioni e delle armature:

B=100 cm larghezza


H=35 cm altezza

c=c'=7.8 cm copriferro

Af=20.11 cm2/m armatura in trazione Φ16/20

Af=20.11 cm2/m armatura in compressione Φ16/20

Mz	N
kNm/m	kN/m
-6	12
-5	-26

11.3 VERIFICA TAGLIO MURO PARAGHIAIA

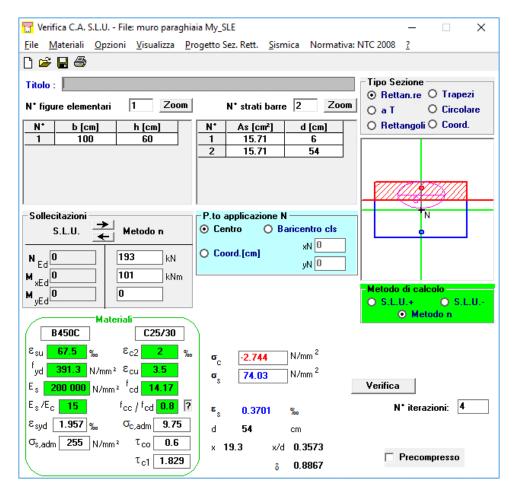
Lo sforzo tagliante per elementi con armatura resistente a taglio è il minimo tra i seguenti valori:

$$V_{\text{Rsd}} = 0.9 \cdot d \cdot \frac{A_{\text{sw}}}{\text{S}} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin\alpha \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta) \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta) \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta) \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta) \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta) \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta) \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta) \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta) \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta) \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta) \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta) \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot f'_{\text{$$

			-
classe cls	Rck	40	N/mm ²
resist. Caratteristica cilindrica	f_{ck}	33	N/mm ²
	f_{cd}	19	
coeff. parziale	Уc	1.5	
larghezza membratura resistene a V	bw	1000	mm
altezza membratura resistene a V	Н	600	mm
altezza utille	d	539	mm
area della sezione	Атот	539000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm²
	α_{c}	1.00	
Acciaio	f_{yk}	450	N/mm²
Feb44k	\mathbf{f}_{yd}	391	N/mm²
diametro staffe (spille)	Øw	12	mm
Area staffa (spilla)	$Aø_w$	113	mm ²
0.9 d	Z	485	mm
passo delle staffe (spille)	Sw	400	mm
	n° bracci	2.5	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	$\cot(\theta)$	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	۰
	$\cot(\alpha)$	0.00	-
	Asw/sw	0.71	mm²/mm

Taglio resistente per "taglio trazione"	V_{Rsd}	134	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	2282	kN

taglio sollecitante	V_{Ed}	54	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V_{Rd}	134	kN
	VEd		V_{Rd}
	V Ed	<	v Ra


11.4 VERIFICA A FESSURAZIONE MURO PARAGHIAIA

In combinazione SLE rara si hanno le seguenti sollecitazion massime:

SLE My 101 kNm/m

N compress 193 kN/m

Da cui, come mostrato nella figura che segue, si ottengono le seguenti tensioni di trazione nelle barre di armatura: $\sigma s = 74.03 \text{ Mpa}$.

Si verifica che non l'apertura delle fessure non superi il limite imposta da normativa: w < 0.20.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

MESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	IV 04 04 001	В	46 di 74

INPUT		
B sez	1000	mm
h sez	600	mm
y ferro	60	mm
Φ (barre)	20	mm
n.barre	5	-
Rck	40	MPa
x AN	193	mm
σs	74.03	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

·	OUTPUT	
diff. def. armature-cls		
ε sm -ε cm	2.16E-04 -	
distanza max f	essure	
s r, max	4.64E+02 mm	
ampiezza fessure:		
wk	0.1000 mm	
LIMITE	0.20 mm	
Sez. verificata		

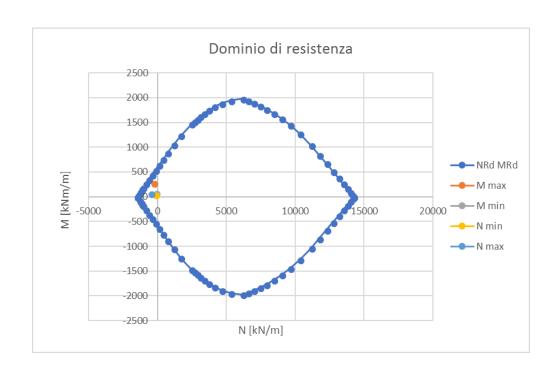
La verifica risulta soddisfatta.

12 VERIFICHE DI RESISTENZA MURI ANDATORI

12.1 VERIFICA PRESSOFLESSIONE ARMATURA VERTICALE

Si hanno le seguenti dimensioni delle sezioni e delle armature:

B=100 cm larghezza


H=90 cm altezza

c=c'=6.1 cm copriferro

Af=19.01 cm2/m armatura in trazione Φ22/20

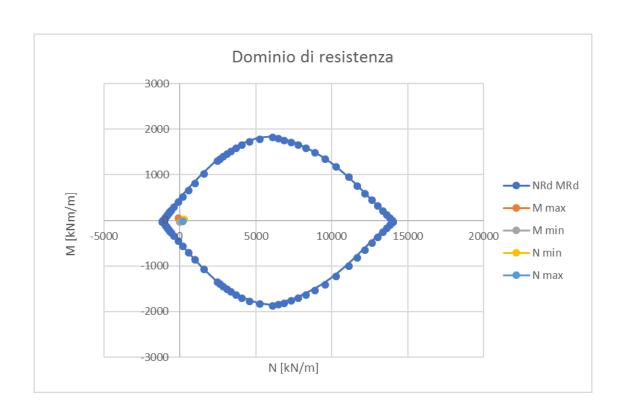
Af=19.01 cm2/m armatura in compressione Φ22/20

Mx	N
kNm/m	kN/m
282	-303
81	-137
37	-152
70	-508

12.2 VERIFICA PRESSOFLESSIONE ARMATURA ORIZZONTALE

Si hanno le seguenti dimensioni delle sezioni e delle armature:

B=100 cm larghezza


H=90 cm altezza

c=c'=8.2 cm copriferro

Af=15.71 cm2/m armatura in trazione Φ20/20

Af=15.71 cm2/m armatura in compressione Φ20/20

Mz	N
kNm/m	kN/m
73	-171
0	-77
52	198
3	113

12.3 VERIFICA TAGLIO MURO ANDATORE

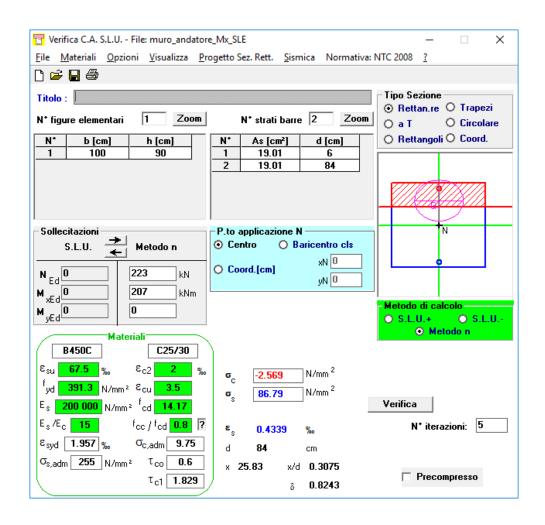
Lo sforzo tagliante per elementi con armatura resistente a taglio è il minimo tra i seguenti valori:

$$V_{\text{Rsd}} = 0.9 \cdot d \cdot \frac{A_{\text{sw}}}{\text{S}} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin\alpha \\ V_{\text{Rcd}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f \cdot_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$$

classe cls	Rck	40	N/mm²
resist. Caratteristica cilindrica	f _{ck}	33	N/mm²
		19	
coeff. parziale	У с	1.5	
larghezza membratura resistene a V	b _w	1000	mm
altezza membratura resistene a V	Н	900	mm
altezza utille	d	837	mm
area della sezione	A_{TOT}	837000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	σср	0.00	N/mm²
	ας	1.00	
Acciaio	f_{yk}	450	N/mm ²
Feb44k	f_{yd}	391	N/mm²
diametro staffe (spille)	\emptyset_{W}	12	mm
Area staffa (spilla)	$Aø_w$	113	mm²
0.9 d	Z	753	mm
passo delle staffe (spille)	S_{W}	400	mm
	n° bracci	2.5	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	$\cot(\theta)$	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	$\cot(\alpha)$	0.00	
	Asw/sw	0.71	mm²/mm

Taglio resistente per "taglio trazione"	V_{Rsd}	208	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	3543	kN

taglio sollecitante	V_{Ed}	99	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V_{Rd}	208	kN
	V_{Ed}	<	V_{Rd}


12.4 VERIFICA A FESSURAZIONE MURO ANDATORE

In combinazione SLE rara si hanno le seguenti sollecitazion massime:

SLE Mx 207 kNm/m

N compressione -223 kN/m

Da cui, come mostrato nella figura che segue, si ottengono le seguenti tensioni di trazione nelle barre di armatura: σs = 86.79 Mpa

Si verifica che non l'apertura delle fessure non superi il limite imposta da normativa: w < 0.20.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

IV 04 04 001

REV.

FOGLIO **51 di 74**

INPUT		
B sez	1000	mm
h sez	900	mm
y ferro	63	mm
Φ (barre)	26	mm
n.barre	10	-
Rck	40	MPa
x AN	231.6	mm
σs	141.2	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

	OUTPUT	
diff. def. arma	ture-cls	
ε sm -ε cm	4.11E-04 -	
distanza max f	essure	
s r, max	3.01E+02 mm	
ampiezza fessure:		
wk	0.1239 mm	
LIMITE	0.20 mm	
Se	z. verificata	

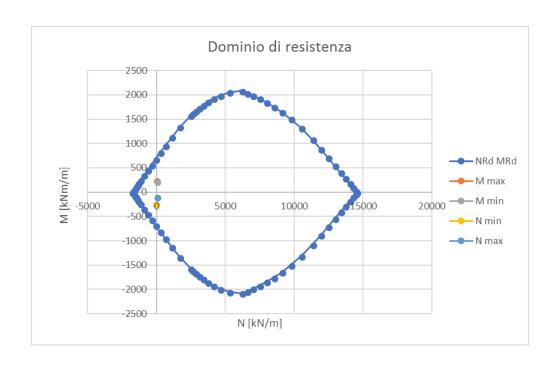
Le verifiche risultano soddisfatte.

13 VERIFICHE DI RESISTENZA SOLETTA SUPERIORE

13.1 VERIFICA FLESSIONE ARMATURA LONGITUDINALE

Si hanno le seguenti dimensioni delle sezioni e delle armature:

B=100 cm larghezza


H=90 cm altezza

c=c'=6.2 cm copriferro

Af=22.62 cm2/m armatura in trazione Φ24/20

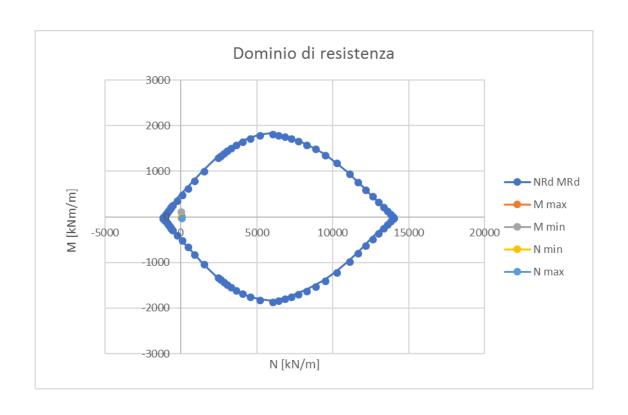
Af=22.62 cm2/m armatura in compressione Φ24/20

My	N
kNm/m	kN/m
239	-48
213	24
-239	-82
-97	22

13.2 VERIFICA FLESSIONE ARMATURA TRASVERSALE

Si hanno le seguenti dimensioni delle sezioni e delle armature:

B=100 cm larghezza


H=90 cm altezza

c=c'=8.4 cm copriferro

Af=15.70 cm2/m armatura in trazione Φ20/20

Af=15.70 cm2/m armatura in compressione Φ20/20

My	N
kNm/m	kN/m
35	-1
134	-59
2	-59
0	-29

13.3 VERIFICA A TAGLIO SOLETTA SUPERIORE

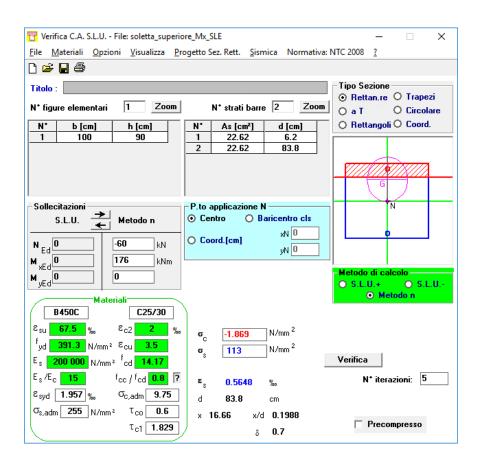
Lo sforzo tagliante per elementi con armatura resistente a taglio è il minimo tra i seguenti valori:

$$V_{\text{Rsd}} = 0.9 \cdot d \cdot \frac{A_{\text{sw}}}{\text{s}} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin\alpha \\ V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$$

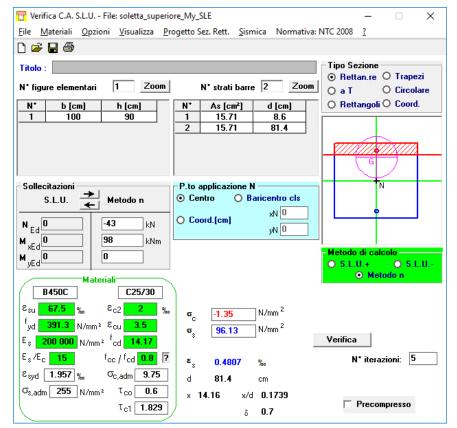
classe cls	Rck	40	N/mm²
resist. Caratteristica cilindrica	f _{ck}	33	N/mm²
	f_{cd}	19	
coeff. parziale	Уc	1.5	
larghezza membratura resistene a V	bw	1000	mm
altezza membratura resistene a V	Н	900	mm
altezza utille	d	870	mm
area della sezione	Атот	870000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm ²
	$\alpha_{ extsf{c}}$	1.00	
Acciaio	f_{yk}	450	N/mm ²
Feb44k	\mathbf{f}_{yd}	391	N/mm ²
diametro staffe (spille)	Øw	14	mm
Area staffa (spilla)	$Aø_w$	154	$\rm mm^2$
0.9 d	Z	783	mm
passo delle staffe (spille)	Sw	400	mm
	n° bracci	2.5	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	$\cot(\theta)$	1.00	_
angolo di inclinazione armatura rispetto asse palo	α	90	0
	$\cot(\alpha)$	0.00	
	Asw/sw	0.96	mm²/mm

Taglio resistente per "taglio trazione"	V_{Rsd}	295	kN
Taglio resistente per "taglio compressione"		3683	kN
taglio sollecitante	VEd	270	kN

fattore di sicurezza per GR (par.~7.9.5.2.2) γ_{Rd} 1 taglio resistente V_{Rd} 295 kN V_{Ed} < V_{Rd} verifica


13.4 VERIFICA A FESSURAZIONE SOLETTA SUPERIORE

In combinazione SLE rara si hanno le seguenti sollecitazion massime:


Da cui, come mostrato nella figura che segue, si ottengono le seguenti tensioni di trazione nelle barre di armatura:

$$\sigma s (Mx) = 83.8 \text{ Mpa}$$

$$\sigma s (My) = 96.13 \text{ Mpa}$$

Si verifica che non l'apertura delle fessure non superi il limite imposta da normativa: w < 0.20. Longitudinale:

INPUT		
B sez	1000	mm
h sez	900	mm
y ferro	62	mm
Ф (barre)	24	mm
n.barre	5	-
Rck	40	MPa
x AN	166.6	mm
σs	113	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

·	OUTPUT	
diff. def. armat	ture-cls	
ε sm -ε cm	3.29E-04 -	
distanza max fe	essure	
s r, max	4.50E+02 mm	
ampiezza fessure:		
wk	0.1480 mm	
LIMITE	0.20 mm	
Sea	z. verificata	

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 IV 04 04 001
 B
 57 di 74

Trasversale:

INPUT		
B sez	1000	mm
h sez	900	mm
y ferro	84	mm
Φ (barre)	20	mm
n.barre	5	-
Rck	40	MPa
x AN	141.6	mm
σs	96.13	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

Spalle: Relazione di calcolo

	OUTPUT	
diff. def. armat	ture-cls	
ε sm -ε cm	2.80E-04 -	
distanza max fe	essure I	
s r, max	7.06E+02 mm	
ampiezza fessure:		
wk	0.1978 mm	
LIMITE	0.20 mm	
Sez. verificata		

Le verifiche risultano soddisfatte.

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA IF1N

LOTTO **01 E ZZ** CODIFICA CL

DOCUMENTO

IV 04 04 001

REV.

FOGLIO **58 di 74**

Spalle: Relazione di calcolo

14 VERIFICHE DI RESISTENZA PLATEA DI FONDAZIONE

14.1 SEZIONE DI VALLE PLATEA DI FONDAZIONE

14.1.1 VERIFICA A FLESSIONE SEZIONE DI VALLE PLATEA DI FONDAZIONE

Si hanno le seguenti dimensioni della sezione di verifica:

B=100 cm

larghezza

H=200 cm

altezza

Nella sezione di verifica di valle si dispongono le seguenti armature

Longitudinale:

c=c'=6.2 cm copriferro

Af=45.24 cm2/m armatura in trazione Φ 24/20 + Φ 24/20 (doppio strato)

Af=22.62 cm2/m armatura in compressione Φ24/20 (singolo strato)

Trasversale:

c=c'=8.6 cm copriferro

Af=22.62 cm2/m armatura in trazione Φ24/20 (singolo strato)

kNm/m

Af=22.62 cm2/m armatura in compressione Φ24/20 (singolo strato)

Si esegue la verifica a flessione per la condizione SLU e SLV peggiore:

M long Ed 1610 MRd 3322

3322 kNm/m

FS

2.06

M trasv Ed 119 kNm/m

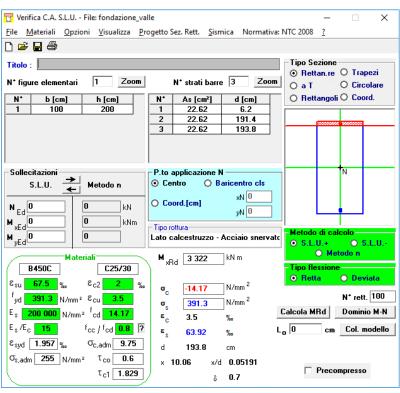
MRd 1685

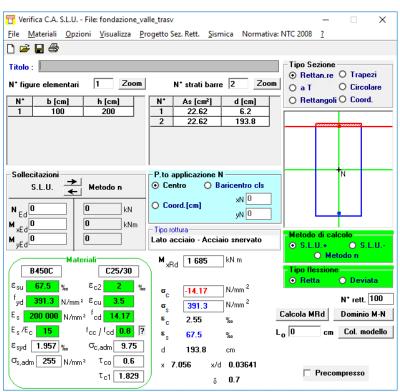
kNm/m

FS

14.14

ITINERARIO NAPOLI - BARI

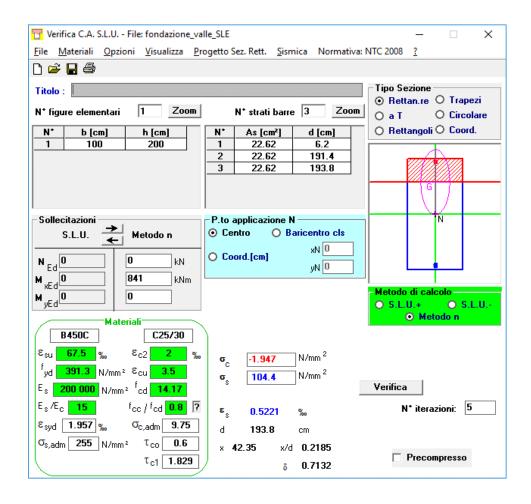

RADDOPPIO TRATTA CANCELLO – BENEVENTO


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL IV 04 04 001 B 59 di 74



14.1.2 VERIFICA A FESSURAZIONE SEZIONE DI VALLE PLATEA DI FONDAZIONE

In combinazione SLE rara si hanno le seguenti sollecitazion massime:

SLE M 1681 kNm/m

Da cui, come mostrato nella figura che segue, si ottengono le seguenti tensioni di trazione nelle barre di armatura: σs = 104.4 Mpa

Si verifica che non l'apertura delle fessure non superi il limite imposta da normativa: w < 0.20.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO
IV 04 04 001

REV.

FOGLIO **61 di 74**

INPUT		
B sez	1000	mm
h sez	2000	mm
y ferro	74	mm
Φ (barre) 1	24	mm
n.barre 1	5	-
Φ (barre) 2	24	mm
n.barre 2	5	_
Фeq	24	mm
n.barre tot	10	-
Rck	40	MPa
x AN	423.5	mm
σs	104.4	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

	OUTPUT	
diff. def. arma	ature-cls	
ε sm -ε cm	3.04E-04 -	
distanza max	fessure	
s r, max	3.78E+02 mm	
ampiezza fessure:		
wk	0.1149 mm	
LIMITE	0.20 mm	
Sez. verificata		

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA IF1N LOTTO **01 E ZZ**

CODIFICA CL

DOCUMENTO

IV 04 04 001

REV.

FOGLIO 62 di 74

Spalle: Relazione di calcolo

14.2 SEZIONE DI MONTE PLATEA DI FONDAZIONE

14.2.1 VERIFICA A FLESSIONE SEZIONE DI MONTE PLATEA DI FONDAZIONE

Si hanno le seguenti dimensioni della sezione di verifica:

B=100 cm

larghezza

H=200 cm

altezza

Nella sezione di verifica di valle si dispongono le seguenti armature

Longitudinale:

c=c'=6.2 cm copriferro

Af=45.24 cm2/m armatura in trazione Φ24/20 + Φ24/20 (doppio strato)

Af=22.62 cm2/m armatura in compressione Φ24/20 (singolo strato)

Trasversale:

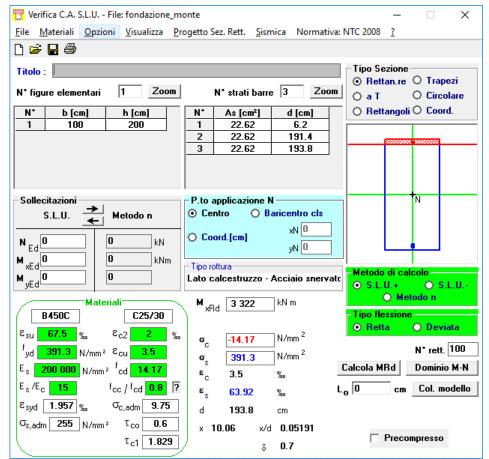
c=c'=8.6 cm copriferro

Af=45.24 cm2/m armatura in trazione Φ24/20 + Φ24/20 (doppio strato)

Af=22.62 cm2/m armatura in compressione Φ24/20 (singolo strato)

Si esegue la verifica a flessione per la condizione SLU e SLV peggiore:

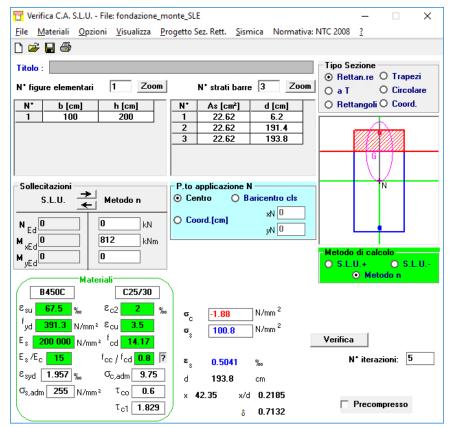
M long Ed	1681	kNm/m
MRd	3322	kNm/m


FS 1.98

 M trasv Ed
 964
 kNm/m

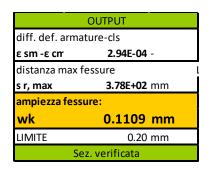
 MRd
 3322
 kNm/m

FS 3.45


14.2.2 VERIFICA FESSURAZIONE SEZIONE DI MONTE PLATEA DI FONDAZIONE

In combinazione SLE rara si hanno le seguenti sollecitazion massime:

SLE M 812 kNm/m


Da cui, come mostrato nella figura che segue, si ottengono le seguenti tensioni di trazione nelle barre di armatura: $\sigma s = 100.8 \text{ Mpa}$

Si verifica che non l'apertura delle fessure non superi il limite imposta da normativa: w < 0.20.

INPUT		
B sez	1000	mm
h sez	2000	mm
y ferro	74	mm
Φ (barre) 1	24	mm
n.barre 1	5	-
Φ (barre) 2	24	mm
n.barre 2	5	-
Феq	24	mm
n.barre tot	10	-
Rck	40	MPa
x AN	423.5	mm
σs	100.8	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

14.3 VERIFICA A TAGLIO PLATEA DI FONDAZIONE

Lo sforzo tagliante per elementi con armatura resistente a taglio è il minimo tra i seguenti valori:

$$V_{\text{Rsd}} = 0,9 \cdot d \cdot \frac{A_{\text{sw}}}{s} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin\alpha$$

$$V_{\text{Red}} = 0,9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta)/(1 + \text{ctg}^2\theta)$$

 $V_{Ed max sezione valle} = 1004 kNm/m$

V_{Ed max sezione monte} = 1404 kNm/m

Si esegue la verifica a taglio per la sollecitazione maggiore tra la sezione di valle e quella di monte.

classe cls	Rck	40	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	33	N/mm ²
	f_{cd}	19	
coeff. parziale	уc	1.5	
larghezza membratura resistene a V	bw	1000	mm
altezza membratura resistene a V	H	2000	mm
altezza utille	d	1970	mm
area della sezione	Атот	1970000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm ²
	$\alpha_{ extsf{c}}$	1.00	
Acciaio	f_{yk}	450	N/mm ²
Feb44k	f_{yd}	391	N/mm ²
diametro staffe (spille)	Øw	12	mm
Area staffa (spilla)	$Aø_w$	113	mm ²
0.9 d	Z	1773	mm
passo delle staffe (spille)	Sw	200	mm
	n° bracci	5	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	$\cot(\theta)$	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	o
	$\cot(\alpha)$	0.00	
	Asw/sw	2.83	mm²/mm

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Taglio resistente per "taglio trazione"	V_{Rsd}	1962	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	8339	kN

taglio sollecitante	V_{Ed}	1404	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V_{Rd}	1962	kN
	V _{Ed}	<	V _{Rd}

verifica

15 PALI DI FONDAZIONE

La fondazione della spalla poggia su 9 pali di diametro 1200 mm e lunghezza 35 m, disposti come mostra la tabella seguente.

num.	X (trasv)	Y (long)
	m	m
P1	-3.60	3.60
P2	0.00	3.60
P3	3.60	3.60
P4	-3.60	0.00
P5	0.00	0.00
P6	3.60	0.00
P7	-3.60	-3.60
P8	0.00	-3.60
P9	3.60	-3.60

15.1 SOLLECITAZIONI DEL SINGOLO PALO

Si riportano gli sforzi massimi sui pali, in base alle combinazioni più gravose ottenute.

Il taglio sul singolo palo è stato ottenuto dividendo l'azione risultante per il numero dei pali e combinando le azioni taglianti nelle due direzioni (T_{media}). Per tener conto dell'effetto gruppo la sollecitazione così ottenuta è stata moltiplicata per 1.1 (T_{media_gruppo}).

		N _{max}	N _{min}
		[kN]	[kN]
	SLU q1.1	4048	2374
SLU-STR	SLU q1.3	3058	1716
	SLU q5.1	3910	2298
	SLU q5.3	3192	1671
	SL Ex.3	4393	-150
	SL Ey.3	4164	87
SLV	SL Ez.5	3519	1084
3 23	SL Ex.1	4214	-273
	SL Ey.1	3984	-36
	SL Ez.1	2922	673

T _{media}	T _{media_gruppo}	M _{max}
[kN]	[kN]	[kNm]
35	39	105
35	39	105
35	38	103
35	38	103
621	683	1847
534	588	1589
235	259	700
621	683	1847
534	588	1589
235	259	700

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Spalle: Relazione di calcolo

| COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO | IF1N 01 E ZZ CL IV 04 04 001 B 68 di 74

ITINERA

I valori massimi sono i seguenti:

 $T_{max} = 683 \text{ kN (SLU_SISM)}$

 $N_{\text{max}} = 4393 \text{ kN (SLU_STR)}$

 $N_{min} = -273 \text{ kN (SLU_SISM)}$

 $M_{max} = 1847 \text{ kN (SLU_SISM)}$

15.2 ARMATURA MINIMA DEL PALO

GEOMETRIA DELLA SEZIONE		
Diametro del palo =	1200	mm
Copriferro netto c =	60	mm
Classe di resistenza calcestruzzo =	C25/30	Мра
Classe di resistenza delle barre =	B450C	MPa

ARMATURA PER I PRIMI 10 ø			
1° strato di armatura longitudinale			
Numero barre long.	18	-	
Diametro barre long.	22	mm	
Copriferro baricentrico arm. long. c' =	83	mm	
2° strato di armatura longitudinale			
Numero barre long.	18	-	
Diametro barre long.	22	mm	
Copriferro baricentrico arm. long. c' =	130	mm	
Armatura trasversale			
Diametro barre trasv.	12	mm	
Passo arm. trasv.	200	mm	
Diametro corona esterna =	1068	mm	
VERIFICA ARMATURA MINIMA LONG.			
ρ_{min} =	1.00%	1.00%	
A _c =	1130973	mm²	

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

A _{s,min} =	11310	mm²
Armatura long. tot $A_{sd,tot} =$	13685	mm²
ρι =	1.21%	
	ok	

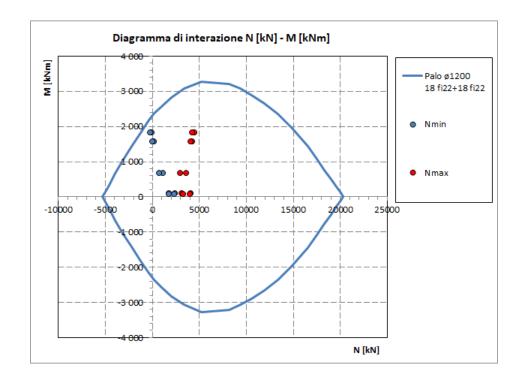
ARMATURA PER LA LUNGHEZZA RESTANTE		
1° strato di armatura longitudinale		
Numero barre long.	18	-
Diametro barre long.	20	mm
Copriferro baricentrico arm. long. c' =	82	mm
Armatura trasversale		
Diametro barre trasv.	12	mm
Passo arm. trasv.	200	mm
Diametro corona esterna =	1368	mm
VERIFICA ARMATURA MINIMA LONG.		
ρ_{min} =	0.40%	
$A_c =$	1130973	mm^2
As,min =	4524	$\mathrm{mm^2}$
Armatura long. tot A _{sd,tot} =	5655	$\mathrm{mm^2}$
$\rho_t =$	0.50%	
	ok	

15.3 VERIFICA A PRESSOFLESSIONE DEL PALO

Per ogni palo (diametro 1500 mm) si dispongono due file di armatura, come di seguito specificato.

Primo strato:

Armatura 15 ϕ 22, Af = 6842 mm2


Copriferro = 83 mm

Secondo strato:

Armatura 15 ϕ 30, Af = 6842 mm2

Copriferro = 130 mmm

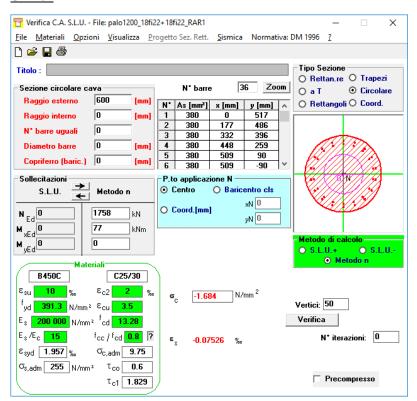
Si riporta il dominio di resistenza della sezione.

15.4 VERIFICA A TAGLIO DEL PALO

classe cls	Rck	30	N/mm²
resist. Caratteristica cilindrica	f_{ck}	25	N/mm²
	f _{cd}	14	N/mm²
diametro	Φ	1200	mm
Area sezione	Α	1130973	$\rm mm^2$
copriferro	С	80	mm
Area sezione rettangolare equivalente	A_{eq}	941544	$\rm mm^2$
altezza utile equivalente	d	931	mm
larghezza equivalente	b_{w}	1011	mm
altezza equivalente	h _{eq}	1118	mm
sforzo assiale dovuto ai carichi o precompressione	N		N
	σ_{cp}	0.000	N/mm ²
	α_{cp}	1.00	
Acciaio	f _{yk}	450	N/mm ²
B450C	f_{yd}	391	N/mm ²
diametro staffe (spille)	\emptyset_{W}	12	mm
Area staffa (spilla)	$A \varnothing_w$	113	$\rm mm^2$
0.9 d	Z	838	mm
passo spirale	Sw	200	mm
	n° bracci	2	
angolo di inclinazione biella compressa	θ	21.8	0
deve essere compreso tra 1 e 2.5	$\cot(\theta)$	2.50	
angolo di inclinazione armatura rispetto asse palo	α	90	•
	$\cot(\alpha)$	0.00	
	As_w / s_w	1.13	mm²/mm
Taglio resistente per "taglio trazione"	V_{Rsd}	927	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	2061	kN
taglio sollecitante	V _{Ed}	683	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V_{Rd}	927	kN
	V _{Ed}	<	V_{Rd}

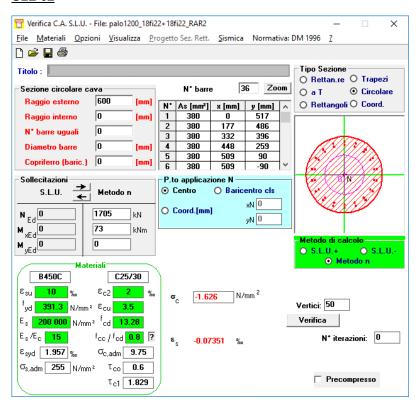
verifica

15.5 VERIFICA SLE DEL PALO


Per la combinazione SLE rara più gravosa si ottengono i seguenti valori di sollecitazione:

	Nmax	Nmin	Mmax
	[kN]	[kN]	[kNm]
SLE c1	2978	1758	77
SLE c4	2873	1705	73

15.5.1 VERIFICA TENSIONALE SLE


Per le due combinazioni SLE rara si ottengono i seguenti valori di tensioni.

SLE c1

SLE c2

15.5.2 VERIFICA A FESSURAZIONE

La verifica è soddisfatta in quanto la sezione è totalmente compressa.

15.6 VERIFICHE GEOTECNICHE

Per le verifiche geotecniche dei pali si rimanda all'apposito elaborato "Relazione geotecnica di calcolo delle fondazioni" IF1N.0.1.E.ZZ.CL.IV.04.0.3.002.A.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FOGLIO

74 di 74

ITINERA

16 INCIDENZE

Muro frontale: 65 kg/m³

• Muro paraghiaia: 105 kg/m³

• Muro andatore: 70 kg/m³

Soletta superiore: 100 kg/m³

• Platea di fondazione: 80 kg/m³

• Pali di fondazione: 115 kg/m³