COMMITTENTE:						
		RF/				
	GRUPPO FERR	_	ARIA ITALIA STATO ITALIA			
DIREZIONE LAVORI:						
					F IT	ALFERR
				GRUPF	O FERROVIE	DELLO STATO ITALIANE
APPALTATORE:						
	Ghella	NSORZ PIZZARO FONDATA	IO CFT	ITIN	ERA	
PROGETTA	AZIONE:		PROGETTIS	STA:		ETTORE DELLA OGETTAZIONE
RAGGRUPPAMENTO TEMP	PORANEO PROGETTISTI		Prof. Ing. MAR PETRANGE		Ing.	PIETRO MAZZOLI
PIZZAROTTI	Ma I INTEGRA	AR	PETRANGE	LI	-	oile integrazione fra le varie tazioni specialistiche
		.O-BENE	EVENTO)		
PONTI E VIADOTTI DI Impalcato in c.a.p. L=2	TA CANCELL NALE CANCI A-NAPOLI VIA LINEA	ELLO-FF CASSIN	RASSO IO NEL	TELES	INE DI	MADDALONI o
RADDOPPIO TRAT I° LOTTO FUNZIO ALLA LINEA ROMA PONTI E VIADOTTI DI	TA CANCELL NALE CANCI A-NAPOLI VIA LINEA	ELLO-FF CASSIN	RASSO IO NEL	TELES	INE DI	MADDALONI
RADDOPPIO TRAT I° LOTTO FUNZIO ALLA LINEA ROMA PONTI E VIADOTTI DI Impalcato in c.a.p. L=28 APPALTATORE	TA CANCELL NALE CANCI A-NAPOLI VIA LINEA	ELLO-FF CASSIN	RASSO IO NEL	TELES	INE DI	MADDALONI o
RADDOPPIO TRAT I° LOTTO FUNZIO ALLA LINEA ROMA PONTI E VIADOTTI DI Impalcato in c.a.p. L=28 APPALTATORE	TA CANCELL NALE CANCI A-NAPOLI VIA LINEA 5m (Lc=22.80m)	ELLO-FF CASSIN doppio bir	RASSO IO NEL nario: Rela	TELES COMU	INE DI	MADDALONI o SCALA:
RADDOPPIO TRAT I° LOTTO FUNZIO ALLA LINEA ROMA PONTI E VIADOTTI DI Impalcato in c.a.p. L=28 APPALTATORE	TA CANCELL NALE CANCI A-NAPOLI VIA LINEA 5m (Lc=22.80m)	C. OPERA/E	RASSO IO NEL	TELES COMU	INE DI	MADDALONI O SCALA: - V.
RADDOPPIO TRAT I° LOTTO FUNZIO ALLA LINEA ROMA PONTI E VIADOTTI DI Impalcato in c.a.p. L=28 APPALTATORE 11/07/2018 COMMESSA LOTTO FASE	TA CANCELL NALE CANCI A-NAPOLI VIA LINEA 5m (Lc=22.80m)	C. OPERA/E	RASSO IO NEL hario: Rela	PROOF	INE DI	MADDALONI O SCALA: - V.
RADDOPPIO TRAT I° LOTTO FUNZIO ALLA LINEA ROMA PONTI E VIADOTTI DI Impalcato in c.a.p. L=28 APPALTATORE 11/07/2018 COMMESSA LOTTO FASE I F 1 N 0 1 E	TA CANCELL NALE CANCI A-NAPOLI VIA LINEA 5m (Lc=22.80m) E ENTE TIPO DOC ZZZ CL	CASSIN doppio bir	RASSO IO NEL hario: Rela	PROG	di Calcol	MADDALONI O SCALA: - V.
RADDOPPIO TRAT I° LOTTO FUNZIO ALLA LINEA ROMA PONTI E VIADOTTI DI Impalcato in c.a.p. L=28 APPALTATORE 11/07/2018 COMMESSA LOTTO FASE I F 1 N 0 1 E Rev. Descrizione	TA CANCELL NALE CANCI A-NAPOLI VIA LINEA 5m (Lc=22.80m) E ENTE TIPO DOC ZZZ CL Redatto Data	CASSIN doppio bir	RASSO IO NEL hario: Rela	PROC Approvato	di Calcol	MADDALONI O SCALA: - V. Autorizzato Data
RADDOPPIO TRAT I° LOTTO FUNZIO ALLA LINEA ROMA PONTI E VIADOTTI DI Impalcato in c.a.p. L=28 APPALTATORE 11/07/2018 COMMESSA LOTTO FASE I F 1 N 0 1 E Rev. Descrizione	TA CANCELL NALE CANCI A-NAPOLI VIA LINEA 5m (Lc=22.80m) E ENTE TIPO DOC ZZZ CL Redatto Data	CASSIN doppio bir	RASSO IO NEL hario: Rela	PROC Approvato	di Calcol	MADDALONI O SCALA: - V. Autorizzato Data
RADDOPPIO TRAT I° LOTTO FUNZIO ALLA LINEA ROMA PONTI E VIADOTTI DI Impalcato in c.a.p. L=28 APPALTATORE 11/07/2018 COMMESSA LOTTO FASE I F 1 N 0 1 E Rev. Descrizione	TA CANCELL NALE CANCI A-NAPOLI VIA LINEA 5m (Lc=22.80m) E ENTE TIPO DOC ZZZ CL Redatto Data	CASSIN doppio bir	RASSO IO NEL nario: Rela	PROC Approvato	di Calcol	MADDALONI O SCALA: - V. Autorizzato Data
RADDOPPIO TRAT I° LOTTO FUNZIO ALLA LINEA ROMA PONTI E VIADOTTI DI Impalcato in c.a.p. L=28 APPALTATORE 11/07/2018 COMMESSA LOTTO FASE I F 1 N 0 1 E Rev. Descrizione	TA CANCELL NALE CANCI A-NAPOLI VIA LINEA 5m (Lc=22.80m) E ENTE TIPO DOC ZZZ CL Redatto Data	CASSIN doppio bir	RASSO IO NEL nario: Rela	PROC Approvato	di Calcol	MADDALONI O SCALA: - V. Autorizzato Data

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 001
 A
 2 di 128

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

INDICE

1	PRE	EMESSA	7
2	SC	OPO DEL DOCUMENTO	7
3	NOI	PRMATIVA E DOCUMENTI DI RIFERIMENTO	8
	3.1	Normative	8
	3.2	ELABORATI DI RIFERIMENTO	8
4	MA	TERIALI	9
	4.1	CALCESTRUZZO PER TRAVI IN C.A.P. E TRAVERSI	9
	4.2	CALCESTRUZZO PER GETTI IN OPERA IMPALCATO E PREDALLES	9
	4.3	ACCIAO PER C.A.	10
	4.4	ACCIAO PER C.A.P.	10
5	DES	SCRIZIONE DELL'OPERA	11
6	ANA	IALISI DEI CARICHI	13
	6.1	PESO PROPRIO (G1)	13
	6.2	PERMANENTI PORTATI (G2)	13
	6.2.	2.1 Massicciata, armamento e impermeabilizzazione	13
	6.2.	2.2 Barriere antirumore	14
	6.2.	2.3 Canalette impianti e impianti	14
	6.2.	2.4 Velette	14
	6.2.	2.5 Altre azioni permanenti	14
	6.3	AZIONI VARIABILI	14
	6.3.	3.1 Treni di carico	14
	6.3.	3.2 Carichi sui marciapiedi	19

Ponti e Viadotti di Linea

Relazione di Calcolo

Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario:

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

DOCUMENTO LOTTO CODIFICA COMMESSA REV. FOGLIO IF1N 01 E ZZ CL VI 00 07 001 3 di 128 Α

	6.3.	3	Forza centrifuga	.19
	6.3.	4	Serpeggio	.20
	6.3.	5	Avviamento e frenatura	.21
	6.4	Az	ZIONI DINAMICHE	.21
	6.5	Az	ZIONI DOVUTE AL DERAGLIAMENTO	.22
	6.6	Rı	ESISTENZE PASSIVE DEI VINCOLI	.24
	6.7	Az	ZIONI CLIMATICHE	.24
	6.7.	1	Variazione termica uniforme	.24
	6.7.	2	Variazione termica non uniforme	.25
	6.7.	3	Vento	.25
	6.8	Az	ZIONI INDIRETTE	.30
	6.8.	1	Ritiro	.30
	6.8.	2	Viscosità	.33
	6.9	Az	ZIONI SISMICHE	.35
7	FAS	SI C	COSTRUTTIVE E MODELLAZIONE	.36
	7.1	M	ODELLAZIONE: GENERALITÀ	.37
	7.1.	1	Modello fase 0	.37
	7.1.	2	Modello fase 1	.38
	7.1.	3	Modello fase 2	.38
	7.1.	4	Modello fase 3	.40
	7.2	A۱	NALISI MODALE	.41
	7.3	C	OMBINAZIONI DI CARICO	.44
8	EFF		TI GLOBALI SU IMPALCATO – VERIFICHE TENSIONALI AGLI SLE	
	8.1	S	OLLECITAZIONI	.48

Relazione di Calcolo

Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario:

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

DOCUMENTO COMMESSA LOTTO CODIFICA REV. FOGLIO IF1N 01 E ZZ CL VI 00 07 001 4 di 128 Α

	8.2	VE	RIFICHE TENSIONALI	51
	8.2	2.1	Materiali	51
	8.2	2.2	Maschera precompressione	53
	8.2	2.3	Caratteristiche delle sezioni	54
	8.2	2.4	Fase 0	55
	8.2	2.5	Fase 1	56
	8.2	2.6	Fase 2	60
	8.2	2.7	Fase 3	64
	8.3	VE	ERIFICHE A FESSURAZIONE	65
9	EF	FET	TI GLOBALI SU IMPALCATO – VERIFICHE AGLI SLU	67
	9.1	Sc	DLLECITAZIONI A PRESSOFLESSIONE	67
	9.2	VE	RIFICHE DI RESISTENZA	68
	9.2	2.1	Verifica a pressoflessione	68
	9.3	Sc	DLLECITAZIONI A TAGLIO	71
	9.4	Sc	DLLECITAZIONI DI TORSIONE	71
	9.5	VE	ERIFICHE DI RESISTENZA	72
	9.5	5.1	Verifica a taglio	72
	9.5	5.2	Verifica a torsione	73
	9.5	5.3	Verifica a taglio-torsione	74
10	TR	RASV	ERSI – VERIFICHE TENSIONALI AGLI SLE	75
11	EF	FET	TI LOCALI SULL'IMPALCATO – MODELLO TRASVERSALE	83
	11.1	A۱	IALISI DEI CARICHI	83
	11.	.1.1	Peso proprio (G1)	83
	11.	.1.2	Massicciata, armamento e impermeabilizzazione	83

Ghella

Ponti e Viadotti di Linea

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

ITINERA

COMMESSA LOTTO CODIFICA DOCUMENTO

REV. FOGLIO

Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	5 di 128
11 1 3 Barriere antirumore						83

	11.	1.4 Car	nalette impianti e impianti	84
	11.	1.5 Car	ichi verticali da traffico	84
	11.	1.6 Car	ichi sui marciapiedi	85
	11.	1.7 For	za centrifuga	85
	11.	1.8 Ser	peggio	86
	11.	1.9 Avv	iamento e frenatura	86
	11.	1.10	Azioni dinamiche	86
	11.	1.11	Azioni dovute al deragliamento	86
	11.	1.12	Azioni climatiche	86
	11.	1.13	Vento	87
1	1.2	VERIFI	CHE SLU	88
	11.	2.1 Sez	rione di incastro dello sbalzo	88
	11.	2.2 Sez	rione di mezzeria (compresa tra le anime del prefabbricato)	90
12	VEI	RIFICHE	E DI DEFORMAZIONE	92
1	2.1	VERIFI	CA DEFORMAZIONI TORSIONALI (SGHEMBO)	92
1	2.2	VERIFI	CA STATO LIMITE DI COMFORT DEI PASSEGGERI	92
13	AZI	ONI SU	GLI APPOGGI	93
1	3.1	VALUT	AZIONE DELL'AZIONE SISMICA PER V_N =75 ANNI E C_U =1.5 (V_R =112.5) – CATEGORIA SOTTOSUOLO B	93
	13.	1.1 Indi	viduazione della pericolosità del sito e strategia di progettazione	93
	13.	1.2 Azio	oni sismiche di progetto	95
1	3.2	VALUT	AZIONE DELL'AZIONE SISMICA PER V_N =100 anni e C_{U} =2.0 (V_R =200) – Categoria sottosuolo B	102
	13.	2.1 Indi	viduazione della pericolosità del sito e strategia di progettazione	102
	13.	2.2 Azio	oni sismiche di progetto	104

Ponti e Viadotti di Linea

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

	in c.a.p. L=25m (Lc=22.80m) doppio binario: e di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	6 di 128
13.3	VALUTAZIONE DELL'AZIONE SISMICA PER V _N =	=75 ANNI E C	C _∪ =1.5 ((V _R =112.5) –	CATEGORIA SOT	TOSUOL	.o c11

1	13.3 VALUTAZIONE DELL'AZIONE SISMICA PER $V_N=75$ ANNI E $C_0=1.5$ ($V_R=112.5$) – CATEGORIA SOTTOSUOLO C	11C
	13.3.1 Individuazione della pericolosità del sito e strategia di progettazione	110
	13.3.2 Azioni sismiche di progetto	112
1	13.4 VALUTAZIONE DELL'AZIONE SUGLI APPOGGI	118
	13.4.1 Appoggi per impalcati con categoria sottosuolo B V _N =75 anni e C _u =1.5 (V _R =112.5)	120
	13.4.2 Appoggi per impalcati con categoria sottosuolo B V_N =100 anni e C_u =2.0 (V_R =200)	122
	13.4.3 Appoggi per impalcati con categoria sottosuolo C V_N =75 anni e C_u =1.5 (V_R =112.5)	124
	13.4.4 Riepilogo scarichi appoggi	126
14	INCIDENZE	128

Ghella CONSORZIO CFT PIZZAROTTI FORMATARIL 1110	I° LOTTO VARIANTE	TRATT FUNZIO ALLA L	A CANCEL NALE CAN INEA RON	LO-BENEVENTO ICELLO-FRASSI IA-NAPOLI VIA IGETTO DEFINIT	O TELI	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	7 di 128

1 PREMESSA

Nell'ambito dell'Itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Cancello – Benevento - 1° Lotto Funzionale Cancello-Frasso Telesino e Variante alla Linea Roma-Napoli Via Cassino nel Comune di Maddaloni (compreso il Collegamento Merci con lo scalo di Marcianise - Collegamento Benevento-Marcianise) oggetto di progettazione definitiva.

2 SCOPO DEL DOCUMENTO

Nel presente documento di calcolo è riportata l'analisi strutturale relativa agli impalcati ferroviari in c.a.p., costituiti sostanzialmente da 4 travi a cassoncino accostate e soletta di completamento gettata in opera, di portata teorica pari a L=22.80m (interasse fra le pile/fra le pile e le spalle pari a L=25m). Tale tipologia strutturale è frequentemente impiegata nell'ambito del *Raddoppio della Tratta Cancello – Benevento - 1° Lotto Funzionale Cancello-Frasso Telesino e Variante alla Linea Roma-Napoli Via Cassino nel Comune di Maddaloni* (compreso il *Collegamento Merci con lo scalo di Marcianise - Collegamento Benevento-Marcianise*) di cui al § 1. Le analisi strutturali anzidette inviluppano cautelativamente le peggiori condizioni di impiego, in temini di azioni (sismiche, vento, centrifuga, etc..), della tipologia strutturale in questione.

3 NORMATIVA E DOCUMENTI DI RIFERIMENTO

3.1 NORMATIVE

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Rif. [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Rif. [3] Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- Rif. [4] Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- Rif. [5] Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- Rif. [6] Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- Rif. [7] Istruzione RFI DTC INC PO SP IFS 004 Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- Rif. [8] Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- Rif. [9] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif. [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

3.2 ELABORATI DI RIFERIMENTO

Rif. [11] Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

4 MATERIALI

Si riportano di seguito i materiali previsti per la realizzazione delle strutture, suddivisi per elemento costruttivo.

4.1 CALCESTRUZZO PER TRAVI IN C.A.P. E TRAVERSI

Classe	C45/55		
R _{ck} =	55	MPa	resistenza caratteristica cubica
$f_{ck} =$	45	MPa	resistenza caratteristica cilindrica
f _{cm} =	53	MPa	valor medio resistenza cilindrica
α _{cc} =	0.85		coeff. rid. Per carichi di lunga durata
үм=	1.5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	25.50	MPa	resistenza di progetto
f _{ctm} =	3.80	MPa	resistenza media a trazione semplice
$f_{\text{cfm}} =$	4.55	MPa	resistenza media a trazione per flessione
f _{ctk} =	2.66	MPa	valore caratteristico resistenza a trazione
E _{cm} =	36283	MPa	Modulo elastico di progetto
v =	0.2		Coefficiente di Poisson
$G_c =$	15118	MPa	Modulo elastico Tangenziale di progetto

4.2 CALCESTRUZZO PER GETTI IN OPERA IMPALCATO E PREDALLES

Classe	C32/40		
R _{ck} =	40	MPa	resistenza caratteristica cubica
$f_{ck} =$	32	MPa	resistenza caratteristica cilindrica
$f_{cm} =$	40	MPa	valor medio resistenza cilindrica
α_{cc} =	0.85		coeff. rid. Per carichi di lunga durata
γ м=	1.5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	18.13	MPa	resistenza di progetto
$f_{\text{ctm}} =$	3.02	MPa	resistenza media a trazione semplice
$f_{\text{cfm}} =$	3.63	MPa	resistenza media a trazione per flessione
f _{ctk} =	2.12	MPa	valore caratteristico resistenza a trazione

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 001
 A
 10 di 128

E _{cm} =	33346	MPa	Modulo elastico di progetto
v =	0.2		Coefficiente di Poisson
G _c =	13894	MPa	Modulo elastico Tangenziale di progetto

4.3 ACCIAO PER C.A.

B450C			
f _{yk} ≥	450	MPa	tensione caratteristica di snervamento
$f_{tk} \ge$	540	MPa	tensione caratteristica di rottura
$(f_t/f_y)_k \ge$	1.15		
$(f_t/f_y)_k <$	1.35		
γs=	1.15	-	coefficiente parziale di sicurezza SLU
$f_{yd} =$	391.3	MPa	tensione caratteristica di snervamento
E _s =	200000	MPa	Modulo elastico di progetto
ε_{yd} =	0.196%		deformazione di progetto a snervamento
$\varepsilon_{uk} = (A_{gt})_k$	7.50%		deformazione caratteristica ultima

4.4 ACCIAO PER C.A.P.

Trefoli Φ0.6"A=139 mmq

f _{pk} ≥	1860	MPa	tensione caratteristica di rottura
$f_{p(0,1)k} \ge$	-	MPa	tensione caratteristica allo 0,1% di def. Residua
$f_{p(1)k} \ge$	1670	MPa	tensione caratteristica allo 1% di def. Totale
ϵ_{uk}	3.50%	-	allung. per carico max.
E _p =	195000	MPa	Modulo elastico di progetto
γ_s =	1.15	-	coefficiente parziale di sicurezza SLU
$f_{pd} = f_{p(1)k} / \gamma_s$	1456	MPa	tensione caratteristica di snervamento
$\epsilon_{ypd} = f_{pd} / E_p$	0.75%		deformazione di progetto a snervamento
$\epsilon_{ud} = 0.9 * \epsilon_{uk}$	3.15%		deformazione caratteristica ultima

Ghella CONSORZIO CFT PIZZAROTTI TORRALL UII	I° LOTTO VARIANTE	O TRATT FUNZIO ALLA L	A CANCEL NALE CAN INEA RON	LO-BENEVENTO ICELLO-FRASS IA-NAPOLI VIA IGETTO DEFINI	O TELE	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	11 di 128

5 DESCRIZIONE DELL'OPERA

L'impalcato a doppio binario è realizzato con 4 cassoncini accostati in c.a.p. e soletta gettata in opera. La luce è pari a 25.00 m misurata dall'asse delle pile. La lunghezza complessiva delle travi prefabbricate è pari a 24.30 m. La luce tra gli appoggi (portata teorica) è pari a 22.80 m. Lo schema di calcolo è di trave in semplice appoggio. Lo schema degli appoggi, riportato di seguito, prevede un dispositivo sotto ogni trave. La larghezza dell'impalcato è pari a 13.70 m, necessaria al fine di ospitare il tipologico RFI per le barriere antirumore. L'armamento è di tipo tradizionale su ballast e l'interasse tra i binari è pari a 4.0 m. Oltre i traversi di testata, sono previsti due traversi intermedi; i traversi saranno solidarizzati mediante trefoli post-tesi iniettati. Di seguito si riportano delle viste in pianta, prospetto e sezione dell'impalcato tipologico, oltre che lo schema di disposizione dei vincoli previsto.

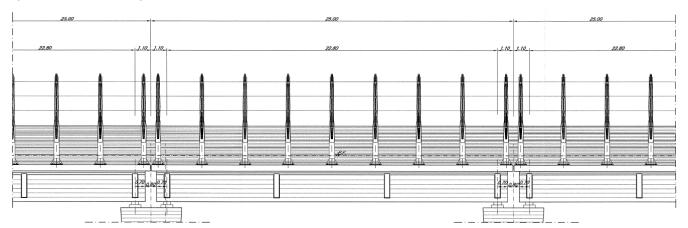


Figura 1 – Prospetto tipo viadotto c.a.p. L=25.00m

- Appoggio fisso a rigidezza variabile
- ◆○→ Appoggio unidirezionale
- Appoggio multidirezionale

Figura 2 – schema di disposizione degli appoggi

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO Ghella ITINERA PIZZAROTTI DOCUMENTO COMMESSA LOTTO CODIFICA REV. FOGLIO Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: IF1N E ZZ CL 01 VI 00 07 001 12 di 128 Relazione di Calcolo

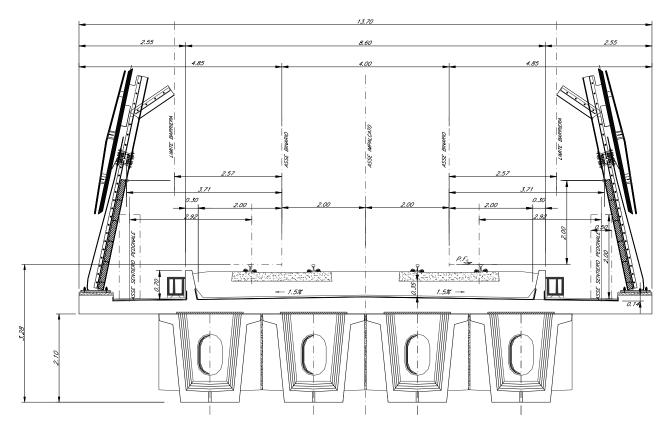


Figura 3 – Sezione tipo viadotto c.a.p. L=25.00m

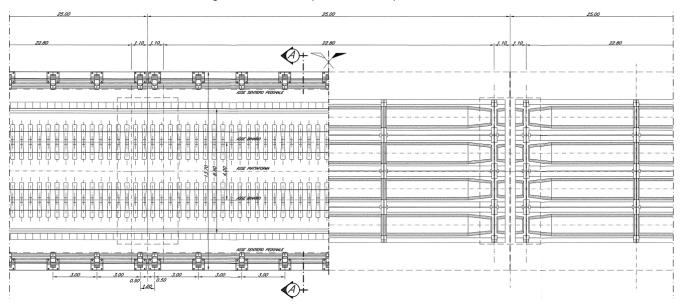


Figura 4 – Pianta tipo viadotto c.a.p. L=25.00m

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL Ghella ITINERA **COMUNE DI MADDALONI - PROGETTO DEFINITIVO** PIZZAROTTI COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: IF1N E ZZ CL VI 00 07 001 Α 13 di 128 Relazione di Calcolo

6 ANALISI DEI CARICHI

6.1 PESO PROPRIO (G1)

Il peso proprio delle strutture viene considerato automaticamente dal software di calcolo utilizzato. Il carico delle strutture in c.a. e c.a.p. viene valutato considerando un peso di volume pari a 25 kN/mc.

Di seguito si riporta la stima dei pesi propri considerati.

Elementi prefabbricati

Trave prefabbricata – sezione di appoggio

Acls = 2.01 mq Pp1 = $2.01 \times 25 = 50.25 \text{ kN/m}$

• Trave prefabbricata – sezione di transizione (media)

Acls = 1.60 mg Pp2 = 1.60 x 25 = 40.00 kN/m

• Trave prefabbricata – sezione corrente

Acls = 1.13 mq Pp3 = 1.13 x 25 = 28.25 kN/m

Traversi di testata (per ogni trave)

Acls = 4.77-2.01 = 2.76 mg; sp = 0.40 m Pp4 = $2.76 \times 0.40 \times 25 = 27.60 \text{ kN}$

• Traversi intermedi (per ogni trave)

Acls = 4.77-1.13 = 3.64 mg; sp = 0.25 m Pp4 = $3.64 \times 0.25 \times 25 = 22.75$ kN

Il peso complessivo di ogni elemento prefabbricaro è pari a:

 $G_{1,1} = 50.25 \times 0.75 \times 2 + 40.00 \times 1.80 \times 2 + 28.25 \times 19.20 + 27.60 \times 2 + 22.75 \times 2 = 863 \text{ kN}$

Elementi gettati in opera

• Soletta, muretti paraballast e cordoli

Acls = 5.41 mg Pp5 = 5.41 x 25 = 135.25 kN/m

Il peso complessivo degli elementi gettati in opera è pari a:

 $G_{1,2} = 135.25 \text{ x } (25.00 - 0.10) = 3368 \text{ kN}$

6.2 PERMANENTI PORTATI (G2)

6.2.1 MASSICCIATA, ARMAMENTO E IMPERMEABILIZZAZIONE

Si assumono convenzionalmente i seguenti pesi di volume relativi alla massicciata, all'armamento e all'impermeabilizzazione

Peso di volume in rettifilo: 18.00 kN/mc

Peso di volume in curva: 20.00 kN/mc

A vantaggio di sicurezza si valuta l'azione sulla soletta di impalcato in riferimento al peso di volume in curva:

 $G_{2,1} = 20.00 \times 0.80 = 16.00 \text{ kN/mq}$

6.2.2 BARRIERE ANTIRUMORE

Si considera un carico relativo alle barriere antirumore pari a 4.0 kN/mq. Considerando cautelativamente un'altezza massima di barriera pari a 5.4 m, si ottiene un carico lineare pari a:

 $G_{2,2} = q_{barriere} = 4.0 \text{ x } 5.4 = 21.6 \text{ kN/m per ogni lato dell'impalcato}$

Il carico lineare complessivo è pari a 43.2 kN/m.

6.2.3 CANALETTE IMPIANTI E IMPIANTI

A ridosso dei muretti paraballast, sono previste delle canalette impianti sui lati esterni. Si assume un carico lineare uniforme pari a:

 $G_{2,3} = q_{canalette} = 2.50 \text{ kN/m per ogni lato dell'impalcato}$

Il carico lineare complessivo è pari a 5.0 kN/m.

6.2.4 VELETTE

 $G_{2,4} = q_{velette} = 2.50 \text{ kN/m per ogni lato dell'impalcato}$

Il carico lineare complessivo è pari a 5.0 kN/m.

6.2.5 ALTRE AZIONI PERMANENTI

Non sono presenti sull'impalcato altre azioni permanenti (spinta delle terre, spinte idrauliche, ecc...).

6.3 AZIONI VARIABILI

6.3.1 TRENI DI CARICO

I carichi verticali sono definiti per mezzo dei modelli di carico elencati nella seguente tabella. I valori caratteristici dei carichi attribuiti ai modelli di carico debbono moltiplicarsi per il coefficiente "α" che deve assumersi come da tabella seguente:

MODELLO DI CARICO	COEFFICIENTE "α"
LM71	1.1
SW/0	1.1
SW/2	1.0

Tabella 1 – coefficienti α per modelli di carico

Non si considera il modello di carico SW/0 perché l'impalcato non è continuo.

6.3.1.1 TRENO DI CARICO LM71

Il Treno di carico LM71 è schematizzato nella figura seguente.

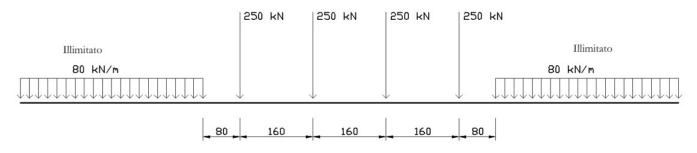


Figura 5 – Treno di carico LM71

Per questo modello di carico è prevista una eccentricità del carico rispetto all'asse del binario pari a s/18, con s=1435 mm. Quindi, l'eccentricità considerata nel modo più sfavorevole per le strutture è pari a:

 $e = ~80 \text{ mm}\alpha$

6.3.1.2 TRENO DI CARICO SW/2

Il Treno di carico SW/2 è schematizzato nella figura seguente.

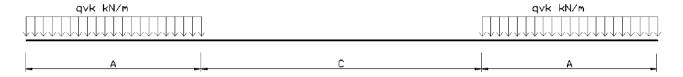


Figura 6 - Treno di carico SW

Tipo di carico	Qvk	Α	С
	[kN/m]	[m]	[m]
SW/0	133	15.0	5.3
SW/2	150	25.0	7.0

Tabella 2 – caratterizzazione treni di carico SW

Nel presente documento, si è considerato solo il modello di carico SW/2.

6.3.1.3 TRENO SCARICO

Alcuni scenari di carico prevedono l'impiego del treno scarico, convenzionalmente costituito da un carico uniformemente distribuito pari a 10.00 kN/m.

6.3.1.4 RIPARTIZIONE LOCALE DEI CARICHI

6.3.1.4.1 Ripartizione longiutudinale

Nelle analisi si sono considerati i seguenti meccanismi di ripartizione longiutudinale dei carichi.

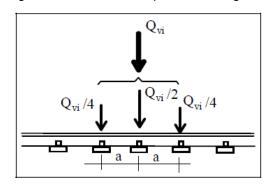


Figura 7 – meccanismo di ripartizione longitudinale per mezzo del binario

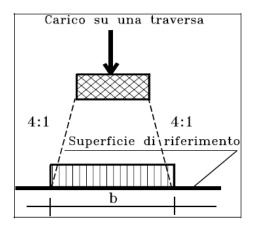


Figura 8 – meccanismo di ripartizione longitudinale per mezzo di traversa e ballast

La superficie di riferimento è la superficie di appoggio del ballast.

Nel caso specifico, la ripartizione viene valutata a partire dai seguenti parametri medi:

Larghezza traversine: B = 0.26 m

Interasse traversine: i = 0.60 mAltezza di diffusione: h = 0.40 m

Larghezza di diffusione: b = B + 2 x h/4 = 0.46 m < i

Il valore appena calcolato per la larghezza di ripartizione sarà impiegato per la valutazione degli effetti locali trasversali.

6.3.1.4.2 Ripartizione trasversale

Nelle analisi si sono considerati i seguenti meccanismi di ripartizione trasversale dei carichi.

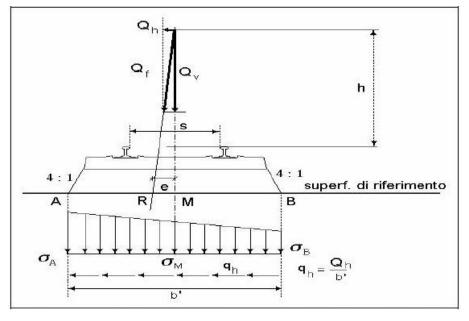


Figura 9 – meccanismo di ripartizione longitudinale per mezzo di traversa e ballast – ponte in rettifilo

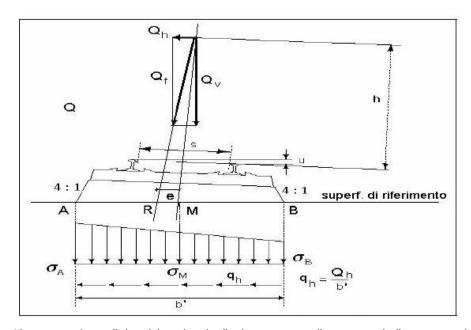


Figura 10 – meccanismo di ripartizione longitudinale per mezzo di traversa e ballast – ponte in curva

La superficie di riferimento è la superficie di appoggio del ballast.

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL Ghella ITINERA **COMUNE DI MADDALONI - PROGETTO DEFINITIVO** PIZZAROTTI COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: IF1N E ZZ CL VI 00 07 001 19 di 128 Relazione di Calcolo

Nel caso specifico, la ripartizione viene valutata a partire dai seguenti parametri medi. A vantaggio di sicurezza si adotta lo schema di ponte in rettifilo.

Larghezza traversine: B = 2.40 mAltezza di diffusione: h = 0.40 m

Larghezza di diffusione: b = B + 2 * h/4 = 2.60 m

Il valore appena calcolato per la larghezza di diffusione sarà impiegato per la definizione del modello di calcolo globale e per la valutazioni degli effetti locali trasversali.

6.3.2 CARICHI SUI MARCIAPIEDI

I marciapiedi non aperti al pubblico sono utilizzati solo dal personale autorizzato. I carichi accidentali sono schematizzati da un carico uniformemente ripartito del valore di 10 kN/mg.

Questo carico non deve considerarsi contemporaneo al transito dei convogli ferroviari e deve essere applicato sopra i marciapiedi in modo da dare luogo agli effetti locali più sfavorevoli. Per questo tipo di carico distribuito non deve applicarsi l'incremento dinamico.

6.3.3 FORZA CENTRIFUGA

La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1,80 m al di sopra del P.F.

Le azioni centrifughe sono state valutate secondo le seguenti espressioni:

$$\begin{aligned} Q_{vk} &= \frac{v^2}{g \cdot r} (\mathbf{f} \cdot Q_{vk}) = \frac{V^2}{127 \cdot r} (\mathbf{f} \cdot Q_{vk}) \\ q_{tk} &= \frac{v^2}{g \cdot r} (\mathbf{f} \cdot q_{vk}) = \frac{V^2}{127 \cdot r} (\mathbf{f} \cdot q_{vk}) \end{aligned}$$

Le azioni centrifughe sono state valutate secondo quanto riportato nella seguente tabella.

Valore di α	Massima velocità		Azi	one cent	rifuga basata su:	traffico verticale
valore di u	della linea [Km/h]	v	α	f		associato
	≥ 100	100	1	1	1 x 1 x SW/2	
SW/2	< 100	V	1	1	1 x 1 x SW/2	Φ x 1 x SW/2
		V	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0)
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)	Φκακ1κ
	≤ 120	V	α	1	α x 1 x (LM71"+"SW/0)	(LM71"+"SW/0)

Tabella 3 – Parametri per determinazione della forza centrifuga

A vantaggio di sicurezza si assumono le seguenti coppie di valori per velocità di progetto e raggi dicurvatura:

tipo	V [km/h]	R [m]	f
1 – linea LM71	180	1500	1
2 – linea SW/2	100	1500	1

Si ottengono quindi i seguenti valori caratteristici dell'azione centrifuga. I valori massimi sono impiegati nelle analisi.

Tipo	treno	Q_{vk}	q _{vk}	V	R	f	Qtk	q _{tk}
-		kN	kN/m	km/h	m	-	kN	kN/m
1	LM71	250	80	180	1550	1	41,1	13,2
2	SW/2	0	100	100	1550	1	0,0	5,08

6.3.4 SERPEGGIO

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva.

Il valore caratteristico di tale forza è stato assunto assunto pari a Qsk=100 kN. Tale valore deve essere moltiplicato per α, ma non per il coefficiente di incremento dinamico.

Questa forza laterale deve essere sempre combinata con i carichi verticali.

6.3.5 AVVIAMENTO E FRENATURA

Le forze di frenatura e di avviamento si considerano come azioni agenti sulla sommità del binario, nella direzione longitudinale dello stesso, come carico uniformemente distribuito. A vantaggio di sicurezza si trascurano gli effetti di interazione binario struttura.

Si considerano i seguenti valori delle azioni:

Avviamento

$$Q_{la} = 33 \times 25 = 825 \text{ kN} < 1000 \text{ kN}$$
 per LM71 e SW/2

Frenatura

$$Q_{lb} = 20 \times 25 = 500 \text{ kN} < 6000 \text{ kN}$$
 per LM71

$$Q_{lb} = 35 \times 25 = 875 \text{ kN}$$
 per SW/2

Come previsto dalla normativa, si considerano due treni in transito in versi opposti, uno in fase di avviamento, l'altro in fase di frenatura. Le azioni di frenatura ed avviamento si combinano con i relativi carichi da traffico verticali.

6.4 AZIONI DINAMICHE

In riferimento a quanto previsto per linee a normale standard manutentivo, si calcolano i seguenti coefficienti di amplificazione dinamica:

$$\phi_{\rm 3} = \frac{2.16}{\sqrt{L_{\phi}} - 0.2} + 0.73 = \frac{2.16}{\sqrt{22.8} - 0.2} + 0.73 = 1.202 \qquad \qquad {\rm per \ effetti \ globali}$$

$$\phi_{_{3}} = \frac{2.16}{\sqrt{L_{_{\phi}}} - 0.2} + 0.73 = \frac{2.16}{\sqrt{(1.50 \cdot 3)} - 0.2} + 0.73 = 1.854$$
 per effetti locali

avendo considerato per gli effetti globali la luce tra gli appoggi delle travi principali, mentre per gli effetti locali la luce della soletta tra le nervature delle travi principali pari a 1.50 m.

Ghella CONSORZIO CFT PIZZAROTTI CONSORZIO LI TIMERA	I° LOTTO VARIANTE	TRATT FUNZIO ALLA L	A CANCELI NALE CAN INEA ROM	O-BENEVENTO CELLO-FRASSO A-NAPOLI VIA GETTO DEFINIT	CASSI	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	22 di 128

6.5 AZIONI DOVUTE AL DERAGLIAMENTO

In alternativa ai modelli di carico verticale da traffico ferroviario, ai fini della verifica della struttura si dovrà tenere conto della possibilità che un locomotore o un carro pesante deragli. La normativa propone due diverse situazioni di progetto;

Caso 1

Si considerano due carichi verticali lineari $q_{A1d} = 60$ kN/m (comprensivo dell'effetto dinamico) ciascuno. Trasversalmente i carichi distano fra loro di S (scartamento del binario) e possono assumere tutte le posizioni comprese entro i limiti indicati in Fig. 5.2.12.

Per questa condizione sono tollerati danni locali, purché possano essere facilmente riparati, mentre sono da evitare danneggiamenti delle strutture portanti principali.

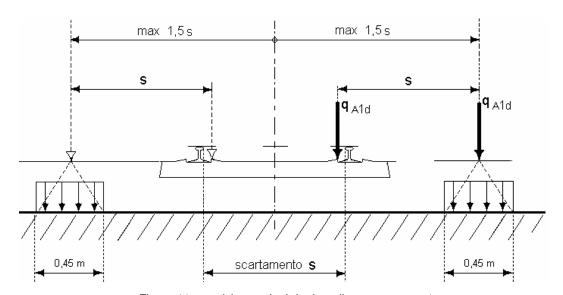


Figura 11 – posizione azioni da deragliamento – caso 1

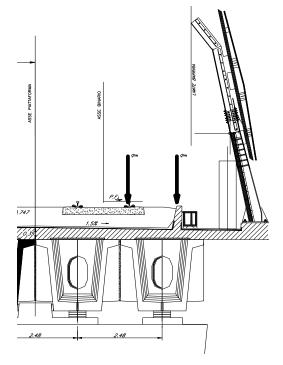


Figura 12 – posizione azioni da deragliamento – caso 1

Caso 2

Si considera un unico carico lineare $q_{A2d} = 80*1.4$ kN/m esteso per 20 m e disposto con una eccentricità massima, lato esterno, di 1.5*s rispetto all'asse del binario. Tale caso deve essere applicato solo per effetti globali.

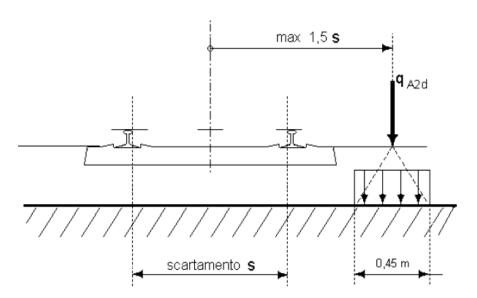


Figura 13 – posizione azioni da deragliamento – caso 2

Ghella CONSORZIO CFT PIZZAROTTI CONSORZIO LI TIMERA	I° LOTTO VARIANTE	TRATT FUNZIO ALLA L	A CANCELI NALE CAN INEA ROM	LO-BENEVENTO CELLO-FRASSO IA-NAPOLI VIA IGETTO DEFINIT	TELI CASS	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	24 di 128

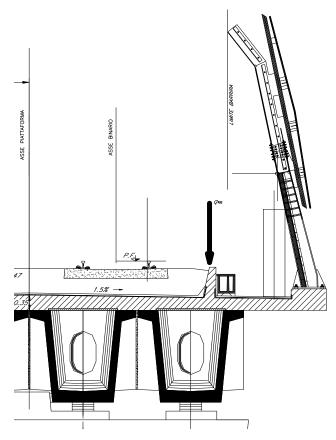


Figura 14 – posizione azioni da deragliamento – caso 2

6.6 RESISTENZE PASSIVE DEI VINCOLI

Per la valutazione delle coazioni generate all'atto dello scorrimento dei vincoli, è stato considerato un coefficiente d'attrito pari al 4% applicato alle azioni verticali agenti sugli apparecchi d'appoggio.

6.7 AZIONI CLIMATICHE

6.7.1 VARIAZIONE TERMICA UNIFORME

Si considera una variazione termica uniforme pari a ±15°C. Per il calcolo delle escursioni dei giunti e degli apparecchi d'appoggio si considera una variazione di temperatura incrementata del 50 %.

6.7.2 VARIAZIONE TERMICA NON UNIFORME

In aggiunta alla variazione termica uniforme, si considera un gradiente di temperatura di 5°C fra soletta e travi prefabbricate, considerando i due casi possibili: intradosso a temperatura superiore rispetto all'estradosso e intradosso a temperatura inferiore rispetto all'estradosso.

Nella valutazione degli effetti locali, si è considerato un gradiente termico lineare di 5°C nello spessore delle pareti tra esterno ed interno dei cassoncini.

L'effetto di tale azione viene introdotta nel modello attraverso l'applicazione di una forza assiale e di un momento flettente per ogni trave dell'implacato pari a:

 $N_{\Delta T,NonUnif} = +/-834 kN$

 $M \Delta T$, NonUnif = +/- 674 kNm.

6.7.3 VENTO

Si assume una pressione uniforme agente lateralmente pari a 2.50 kN/mg, calcolata come riportato di seguito.

Parametri dipendenti dal sito		
Zona =	3	
Vb,0 =	27,00	m/s
a0 =	500,00	m
ka =	0,02	1/s
Altitudine del sito		
as =	80,00	m s.l.m.
vb =	27,00	m/s
Tempo di ritorno		
TR =	75	anni
αR(TR) =	1,02	
vb(TR) =	27,63	m/s
Pressione di riferimento		
qb =	477,25	N/m2

6.7.3.1 COEFFICIENTE DI ESPOSIZIONE

Categoria di esposizione

Il coefficiente di esposizione ce dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito e si determina mediante l'espressione:

$$\begin{aligned} c_e(z) &= k_r \cdot c_t \cdot ln(z/z_0) \left[7 + c_t \cdot ln(z/z_0) \right] & \text{per } z \geq z_{min} \\ c_e(z) &= c_e(z_{min}) & \text{per } z < z_{min} \end{aligned}$$

dove k_r , z_0 , z_{min} sono parametri che dipendono dalla categoria di esposizione del sito;

ct è il coefficiente di topografia, posto generalmente pari a 1

Di seguito si determina il coefficiente di esposizione sulla base della classe d'esposizione e l'altezza z del punto considerato, posta pari alla massima quota del complesso impalcato, barriere antirumore, sagoma del treno. A tal proposito il §1.4.4.2 [3] impone di considerare il treno come una superficie piana continua convenzionalmente alta 4,00 m sul p.f.. L'azione del vento dovrà comunque considerarsi agente sulle b.a. presenti considerando la loro altezza effettiva se disponibile oppure un'altezza convenzionale di 4,00 m misurati dall'estradosso della soletta qualora le b.a. non siano previste al momento della redazione del progetto.

D	
< 30 km	
II	
0,19	
0,05	m
4,00	m
7,90	m
3,28	m
4,67	m
3,35	m
4,00	m
	< 30 km II 0,19 0,05 4,00 7,90 3,28 4,67 3,35

Ghella	I° LOTTO VARIANTE	TRATT FUNZIO ALLA L	A CANCELI NALE CAN INEA ROM	LO-BENEVENTO CELLO-FRASSO IA-NAPOLI VIA IGETTO DEFINIT	TELI CASS	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	27 di 128

m

z di riferimento= 15,85

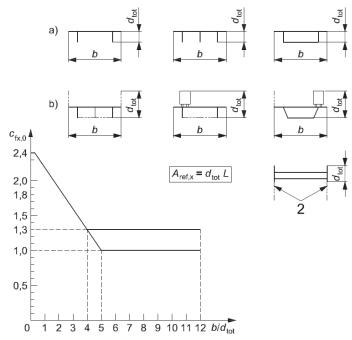
Coefficiente di esposizione

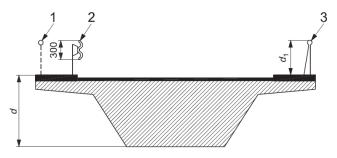
ce = 2,65

6.7.3.2 COEFFICIENTE DI FORMA DELL'IMPALCATO

Il coefficiente di forma dell'impalcato e l'area di riferimento per il calcolo della forza risultante si determinano in base ai criteri enunciati nel §8.3.1 [9].

A tal proposito si riconduce il coefficiente di forma cp al coefficiente di forza cfx,0. Il coefficiente di forza cfx,0 si determina in base al rapporto tra larghezza b e altezza totale dell'impalcato dtot.




Figura 15 – Correlazione tra il rapporto b/dtot e coefficiente di forma cfx0 (figura 8.3 EC1-4)

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO Ghella ITINERA ONSORZIO CFT PIZZAROTTI DOCUMENTO COMMESSA LOTTO CODIFICA REV. **FOGLIO** Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: IF1N E ZZ CL VI 00 07 001 Α 28 di 128 Relazione di Calcolo

Legenda

- 1 Parapetti aperti
- 2 Barriere di sicurezza aperte
- Parapetti, barriere antirumore o barriere di sicurezza a parete piena

Dimensioni in millimetri

Altezza d_{tot} da impiegarsi per il calcolo di $A_{\text{ref},x}$

Sistema di ritenuta	su un lato	su entrambi i lati
Parapetto aperto o barriera di sicurezza aperta	d+0,3 m	d+ 0,6 m
Parapetto a parete piena o barriera di sicurezza a parete piena	d+ d ₁	d+2 d ₁
Parapetto aperto e barriera di sicurezza aperta	d+ 0,6 m	d+ 1,2 m

Figura 16 – Criteri per la determinazione dell'area di riferimento (figura 8.5 EC1-4)

L'area da considerare per il calcolo della risultante di forza si definisce come la somma di tutte le superfici proiettate dall'impalcato nel piano longitudinale, comprese le barriere e la sagoma dei veicoli.

Per il caso in esame si ha:

Caratteristiche geometriche dell'impalcato

b =	13,70	m
H b.a. su p.f. =	4,67	m
dtot =	7,95	m
b/dtot =	1,72	
cp =	1,98	
Coefficiente di forma		
cp,max =	1,98	
Area di riferimento		
H impalcato da intrad. a p.f. =	3,28	m
H barriera su p.f. sx =	4,67	m

Ghella

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
mpalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	29 di 128

ITINERA

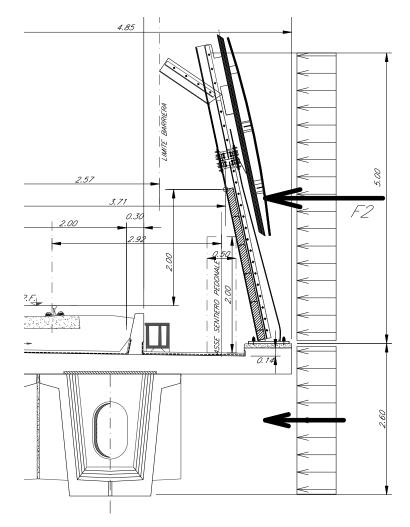
H barriera su p.f. dx =	4,67	m
H b.a. min su p.f. =	3,35	m
H treno su p.f. =	4,00	m
dtot2 =	12,62	m
L impalcato =	25,00	m

6.7.3.3 AZIONE DEL VENTO SULL'IMPALCATO

	477,25	N/m2
qb =		
ce =	2,65	
cp =	1,98	
cd =	1,00	
$qb = qb \cdot ce \cdot cp \cdot cd =$	2,50	kN/m2

Nei casi in cui si considera la condizione di "treno scarico" la pressione del vento si considera agente sulla barriera antirumore.

L'azione del vento viene applicata considerando due distinte risultanti. La prima applicata a metà dell'altezza delle strutture dell'impalcato, la seconda a metà dell'altezza di barriera considerata, secondo lo schema riportato di seguito. Per semplicità di calcolo, è stata trascurata l'eccentricità della forza F1 rispetto al baricentro dell'impalcato.


F1 = 2.50 kN/m 2 * 2.60 m = 6.50 kN/m

M1 = ~0

F2 = 2.50kN/m2 * 5.00m = 12.50 kN/m (applicata su entrambe le barriere)

M2 = 12.50kN/m2 * (5.0m/2 + 2.6m/2) = 47.50 kNm/m

6.8 AZIONI INDIRETTE

6.8.1 RITIRO

Di seguito si valutano le deformazioni da ritiro della trave, sulla base della sua geometria, nell'ipotesi di una umidità relativa pari al 65%. Per la valutazione del ritiro è stata considerata la geometria della sezione corrente ed è stato considerato cautelativamente come istante iniziale il giorno del getto delle travi (t=0).

6.8.1.1 RITIRO DELLA TRAVE IN C.A.P.

Ritiro (EN1992-1-1 §3.1.4)						
€ cs	0,000376	-	Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$			
Ditiro do o	ssiccamento					
Classe	C45/55		Classe del calcestruzzo			
R _{ck} =	55	MPa	resistenza caratteristica cubica			
f _{ck} =	45	MPa	resistenza caratteristica cilindrica			
f _{cm} =	53	MPa	Valor medio resistenza cilindrica			
f _{cm,0} =	10	MPa	Valor medio resistenza cilindrica			
Cem.Tipo	N	_	CEM 32,5 R, CEM 42,5 N			
$\alpha_{ds1} =$	4					
$\alpha_{ds2} =$	0.12					
RH =	65	%	Umidità Relativa			
$RH_0 =$	100	%				
β _{RH} =	1.12		Coeff. per umidità relativa			
$\epsilon_{cd,0} =$	0.00033	_	Deformazione da ritiro per essiccamento non contrastato			
Ac =	1093000	mmq	Area sez trasversale			
u =	11847	mm	Perimetro a contatto con l'atmosfera			
h ₀ =	184.519288	mm	Dimensione fittizia dell'elemento			
k _{h =}	0.8732211		Coeff. per dimensione fittizia			
t =	10000	99	Età del calcestruzzo, al momento considrato			
ts =	0	g g	Età del calcestruzzo, all'inizio del ritiro per essiccamento			
$\beta_{RH}(t,t_s)$	0.99					
$\epsilon_{cd} =$	0.0002887		Deformazione da ritiro per essiccamento			
Ritiro auto	geno					
ε _{ca} (∞) =	0.000088	-	Deformazione da ritiro autogeno per t=∞			
t =	10000	g g				
$\beta_{as}(t) =$	1.00	-				
$\epsilon_{ca}(t) =$	0.000087	-	Deformazione da ritiro autogeno			

	ITINERARIO RADDOPPIO			LO-BENEVENTO)	
Ghella CONSORZIO CFT CPIZZAROTTI PORDAIANEL UNI	VARIANTE	ALLA L	INEA ROM	ICELLO-FRASS IA-NAPOLI VIA IGETTO DEFINI	CASSI	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	32 di 128

A vantaggio di sicurezza, si considera completamente esaurito il ritiro della trave prefabbricata all'atto del getto della soletta. Di seguito si calcola il ritiro della soletta gettata in opera a tempo infinito (10.000 gg), coincidente con il ritiro differenziale soletta-travi.

6.8.1.2 RITIRO DELLA SOLETTA GETTATA

Ritiro (EN1	992-1-1 §3.1	.4)	
€ cs	0.000309	-	Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$
Ritiro da es	ssiccamento		
Classe	C32/40		Classe del calcestruzzo
R _{ck} =	40	MPa	resistenza caratteristica cubica
f _{ck} =	32	MPa	resistenza caratteristica cilindrica
f _{cm} =	40	MPa	Valor medio resistenza cilindrica
f _{cm,0} =	10	MPa	Valor medio resistenza cilindrica
Cem.Tipo	N	-	CEM 32,5 R, CEM 42,5 N
$\alpha_{ds1} =$	4		
$\alpha_{ds2} =$	0.12		
RH =	65	%	Umidità Relativa
$RH_0 =$	100	%	
β _{RH} =	1.12		Coeff. per umidità relativa
$\epsilon_{cd,0} =$	0.00039	_	Deformazione da ritiro per essiccamento non contrastato
A _c =	854000	mmq	Area sez trasversale
u =	2440	mm	Perimetro a contatto con l'atmosfera
h ₀ =	700	mm	Dimensione fittizia dell'elemento
k _{h =}	0.7		Coeff. per dimensione fittizia
t =	10000	99	Età del calcestruzzo, al momento considrato
t _{s =}	0	99	Età del calcestruzzo, all'inizio del ritiro per essiccamento
$\beta_{\text{RH}}(t,t_s)$	0.93		
$\epsilon_{cd} =$	0.0002544		Deformazione da ritiro per essiccamento
Ritiro auto	geno		

ε _{ca} (∞) =	0.000055	-	Deformazione da ritiro autogeno per t=∞
t =	10000	99	
$\beta_{as}(t) =$	1.00	-	
$\epsilon_{ca}(t) =$	0.000055	-	Deformazione da ritiro autogeno

6.8.2 VISCOSITÀ

Gli effetti conseguenti alla viscosità del calcestruzzo per azioni di lunga durata (sovraccarichi permanenti, ritiro, ecc.) possono essere valutati assumendo nel calcolo delle caratteristiche geometriche della sezione composta un valore fittizio del modulo di elasticità del calcestruzzo Ec* fornito dall'espressione:

$$E_c^* = E_c / (1+\phi)$$
 modulo di elasticità ridotto

Di seguito è riportata la valutazione del coefficiente di viscosità ridotto utilizzato per la valutazione degli effetti della viscosità sulle perdite di precompressione.

Viscosità per valutazione perdite di precompressione

Viscosità (EN1992-1-1 §	3.1.4)	
Classe	C45/55		Classe del calcestruzzo
R _{ck} =	55	MPa	resistenza caratteristica cubica
f _{ck} =	45	MPa	resistenza caratteristica cilindrica
f _{cm} =	53	MPa	valor medio resistenza cilindrica
E _{cm} =	36283	MPa	Modulo elastico di progetto
Ec=	38097	MPa	Modulo elastico tangente
Cem.Tipo	N	-	CEM 32,5 R, CEM 42,5 N
t ₀	7	99	età di applicazione del carico
t ₀ *	7	g g	età di applicazione del carico modif. tipo cem. (S, N o R)
t	10000	99	
Ac	1093000	mmq	area sez trasversale
u	11847	mm	perimetro a contatto con l'atmosfera
h ₀	183.607358	mm	dimensione fittizia dell'elemento

RH	65	%	Umidità Relativa
$\beta(f_{cm})$	2.31	-	influenza della resistenza del cls
$\beta(t_0)$	0.63	-	influenza del momento di applicazione del carico
фкн	1.42	-	coeff.influenza dell'umidità relativa
α_1	0.75	-	coeff.influenza della resistenza del cls
α_2	0.92	-	coeff.influenza della resistenza del cls
α ₃	0.81	-	coeff.influenza della resistenza del cls
ф0	2.09	-	coeff. nominale di viscosità
βн	483	-	coeff. per RH e h₀
$\beta_c(t^*,t_0)$	0.99	-	
φ(t*,t ₀)	2.06	-	Coeff. di viscosità
E _{c,R} =	11873	MPa	Modulo elastico Ridotto
E*c,R=	12467	MPa	Modulo elastico Ridotto Modificato

Di seguito è riportata la valutazione del coefficiente di viscosità ridotto utilizzato per la del contributo alla resistenza della sezione composta sotto l'effetto dei carichi di lunga durata (permanenti portati).

6.8.2.1 VISCOSITÀ PER VALUTAZIONE CARATTERISTICHE SEZIONE COMPOSTA A T = INF.

Viscosità (EN1992-1-1 §3.1.4)					
Classe	C32/40		Classe del calcestruzzo		
R _{ck} =	40	MPa	resistenza caratteristica cubica		
f _{ck} =	32	MPa	resistenza caratteristica cilindrica		
f _{cm} =	40	MPa	valor medio resistenza cilindrica		
E _{cm} =	33346	MPa	Modulo elastico di progetto		
E _c =	35013	MPa	Modulo elastico tangente		
Cem.Tipo	N	-	CEM 32,5 R, CEM 42,5 N		

t ₀	7	gg	età di applicazione del carico
t ₀ *	7	gg	età di applicazione del carico modif. tipo cem. (S, N o R)
t	10000	gg	
Ac	854000	mmq	area sez trasversale
u	2440	mm	perimetro a contatto con l'atmosfera
h ₀	700	mm	dimensione fittizia dell'elemento
RH	65	%	Umidità Relativa
β(f _{cm})	2.66	-	influenza della resistenza del cls
$\beta(t_0)$	0.63	-	influenza del momento di applicazione del carico
□RH	1.35	-	coeff.influenza dell'umidità relativa
α_1	0.91	-	coeff.influenza della resistenza del cls
α ₂	0.97	-	coeff.influenza della resistenza del cls
α_3	0.94	-	coeff.influenza della resistenza del cls
\Box_0	2.28	-	coeff. nominale di viscosità
βн	1296	-	coeff. per RH e h ₀
$\beta_c(t^*,t_0)$	0.96	-	
□(t*,t ₀)	2.19	-	Coeff. di viscosità
E _{c,R} =	10439	MPa	Modulo elastico Ridotto
E*c,R=	10960	MPa	Modulo elastico Ridotto Modificato

6.9 AZIONI SISMICHE

Le azioni sismiche non sono dimensionanti ai fini delle verifiche relative all'impalcato e non vengono quindi considerate nelle analisi dello stesso. Le azioni sismiche considerate per la progettazione delle sottostrutture (pile, spalle e fondazioni) sono riportate nelle corrispondenti relazioni di calcolo.

La valutazione delle azioni sismiche considerate nella progettazione dei dispositivi di appoggio degli impalcati in CAP oggetto del presente documento è riportata nel corrispondente paragrafo.

7 FASI COSTRUTTIVE E MODELLAZIONE

L'analisi delle sollecitazioni è stata effettuata considerando le fasi costruttive descritte di seguito.

Fase 0: Condizione a vuoto

In questa fase si verifica la condizione della trave prefabbricata alla tesatura in stabilimento, secondo le seguenti ipotesi.

- Azione di precompressione alla tesatura.
- Peso proprio della trave prefabbricata agente con schema statico di trave appoggiata sui lembi estremi della trave (L = Ltrave).
- Sezione resistente della sola trave prefabbricata.

Fase 1: getto della soletta

In questa fase si verifica la condizione della trave prefabbricata al getto della soletta di impalcato, secondo le seguenti ipotesi.

- Precompressione a perdite per rilassamento e ritiro completamente esaurite.
- Peso proprio trave prefabbricata e del getto della soletta agenti con schema statico di trave appoggiata sugli appoggi finali (L = iappoggi).
- Sezione resistente della sola trave.

A vantaggio di sicurezza, in questa fase si considerano le travi prefabbricate non solidarizzate. L'entità del carico spettante alla trave di bordo risulta quindi stimato cautelativamente con il criterio delle aree di influenza e non considerando invece una ripartizione uniforme del carico tra tutte le travi.

Fase 2: carichi permanenti e valutazione effetti di ritiro differenziale e viscosità

In questa fase si verifica la condizione della trave prefabbricata (ora collaborante con la soletta di impalcato) soggetta all'effetto dei carichi permanenti, secondo le seguenti ipotesi.

- Precompressione a perdite per rilassamento e ritiro completamente esaurite.
- Carichi permanenti agenti con schema statico di trave appoggiata sugli appoggi finali (L = Lappoggi).
- Sezione resistente trave+soletta.
- Valutazione degli effetti di ritiro differenziale e viscosità.

Fase 3: condizione di servizio

In questa fase si verifica la condizione della trave prefabbricata (collaborante con la soletta di impalcato) soggetta all'effetto dei carichi di servizio, secondo le seguenti ipotesi.

Ghella CONSORZIO CFT PIZZAROTTI OMBALAHL III	I° LOTTO VARIANTE	O TRATT FUNZIO ALLA L	A CANCEL NALE CAN INEA RON	LO-BENEVENTO ICELLO-FRASSI IA-NAPOLI VIA IGETTO DEFINI	O TELE	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	37 di 128

- Precompressione a perdite per rilassamento e ritiro completamente esaurite.
- Carichi di servizio agenti con schema statico di trave appoggiata sugli appoggi finali (L = Lappoggi).
- Sezione resistente trave+soletta.

7.1 MODELLAZIONE: GENERALITÀ

Le sollecitazioni relative ad ogni fase sono state valutate con adeguati modelli e combinate secondo quanto previsto dalla normativa. In riferimento alle verifiche tensionali previste dalla normativa, gli effetti sugli elementi resistenti sono stati valutati e verificati ad ogni fase e cumulati ove necessario.

L'analisi delle sollecitazioni è stata effettuata con l'ausilio di modelli di calcolo realizzati con il software CSI SAP2000 Plus v.15.1.0.

Sono stati realizzati diversi modelli per l'individuazione delle sollecitazioni nelle diverse fasi costruttive. Tale approccio ha consentito di considerare le fasi realizzative mediante analisi lineari, evitando inutili complicazioni del modello di calcolo.

I modelli riproducono le caratteristiche geometriche e meccaniche delle strutture.

7.1.1 MODELLO FASE 0

Il modello replica la trave prefabbricata, di lunghezza pari a 24.3m, appoggiato alle estremità della trave stessa.

I carichi sono relativi al peso proprio della singola trave (applicato come carico distribuito, differenziando tra sezione ringrossata, sezione di transizione e sezione corrente della trave) e dei trasversi (applicati come carichi concentrati alle progressive corrispondenti al loro reale posizionamento).

Di seguito si riporta una vista del modello di calcolo e dei carichi applicati.

Figura 17 – modello di calcolo f.e.m. fase 0 – carico distribuito dovuto al peso proprio della trave

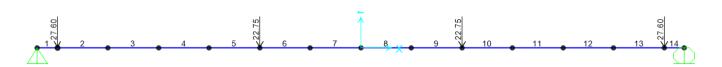
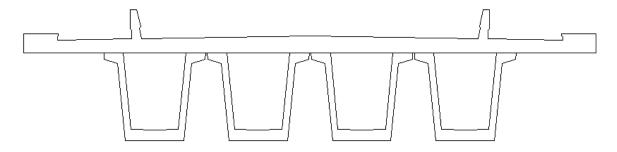


Figura 18 – modello di calcolo f.e.m. fase 0 – carico concentrato dovuto al peso dei trasversi

		ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO						
Ghella CONSORZIO CFT PIZZAROTTI PROBAZANEL 1711	VARIANTE	ALLA L	INEA RON	NCELLO-FRASS MA-NAPOLI VIA DGETTO DEFINI	CASS			
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	38 di 128		


7.1.2 MODELLO FASE 1

Il modello replica la trave prefabbricata, di lunghezza pari a 24.3m, appoggiato in corrispondenza degli appoggi previsti per l'impalcato (L=22.8m).

Oltre al peso proprio degli elementi prefabbricati, viene applicato il carico relativo al getto della soletta come carico uniforme. La valutazione del peso della soletta è effettuata secondo il criterio di area di influenza. Per semplicità, viene valutato solamente l'elemento trave di bordo, che è quello maggiormente sollecitato.

Di seguito si riporta una vista del modello di calcolo.

A vantaggio di sicurezza il carico del muretto baraballast e i cordoli sono stati considerati in questa fase, quindi agenti sulla sola trave prefabbricata.

A_{soletta} ≈ 5.29 mq

 $q = A_{soletta} \gamma_{cls} / numero travi = 5.29 mq * 25 kN/m³ / 4 = 33 kN/m$

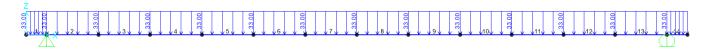


Figura 19 – modello di calcolo f.e.m. fase 1 – carico distribuito dovuto al peso proprio della soletta

7.1.3 MODELLO FASE 2

Il modello replica l'impalcato, comprensivo di travi, traversi e soletta, appoggiato in corrispondenza degli appoggi previsti per l'impalcato. I carichi applicati sono quelli relativi ai sovraccarichi permanenti, valutati in coerenza con quanto definito nell'analisi dei carichi (massicciata, barriere antirumore e canalette).

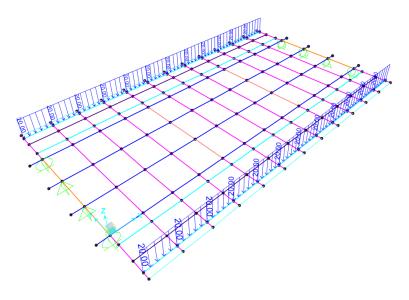


Figura 20 – modello fase 2 – Carico barriere a.r.

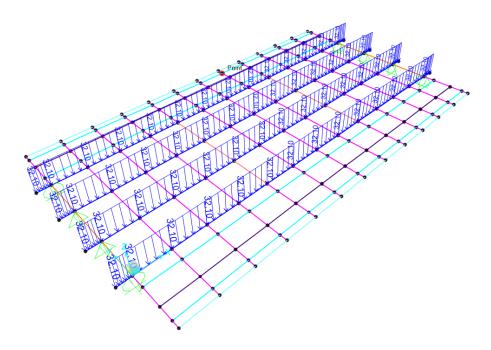


Figura 21 – modello fase 2 – Carico armamento

Ghella CONSORZIO CFT PIZZAROTTI PROMANEL UN	I° LOTTO VARIANTE	O TRATT FUNZIO ALLA L	A CANCEL NALE CAN INEA ROM	LO-BENEVENTO ICELLO-FRASSI IA-NAPOLI VIA IGETTO DEFINI	O TELI CASSI	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	40 di 128

7.1.4 MODELLO FASE 3

Il modello replica l'impalcato, comprensivo di travi, traversi e soletta, appoggiato in corrispondenza degli appoggi previsti per l'impalcato. I carichi applicati sono quelli relativi ai carichi di servizio, valutati in coerenza con quanto definito nell'analisi dei carichi (traffico, vento, termica).

Il carico da traffico viene applicato in corrispondenza delle linee di carico (frame rossi nell'immagine sottostante):

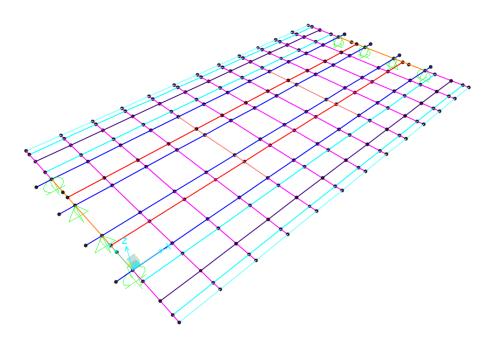


Figura 22 – modello di calcolo f.e.m. fase 3 – linee di carico

Ghella CONSORZIO CFT PIZZAROTTI PORDALA REL 1719	I° LOTTO VARIANTE	O TRATT FUNZIO ALLA L	A CANCEL NALE CAN LINEA ROM	LO-BENEVENTO ICELLO-FRASSI IA-NAPOLI VIA IGETTO DEFINI	O TELI CASS	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	41 di 128

7.2 ANALISI MODALE

Dall'analisi modale dell'impalcato si ottiene la seguente frequenza corrispondente alla prima forma modale: f = 3.94 Hz.

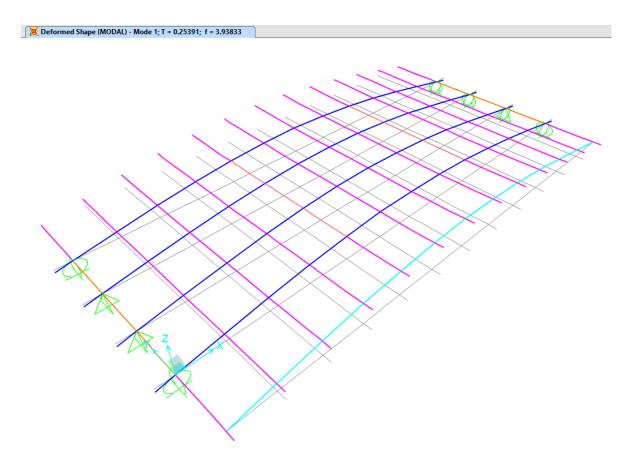
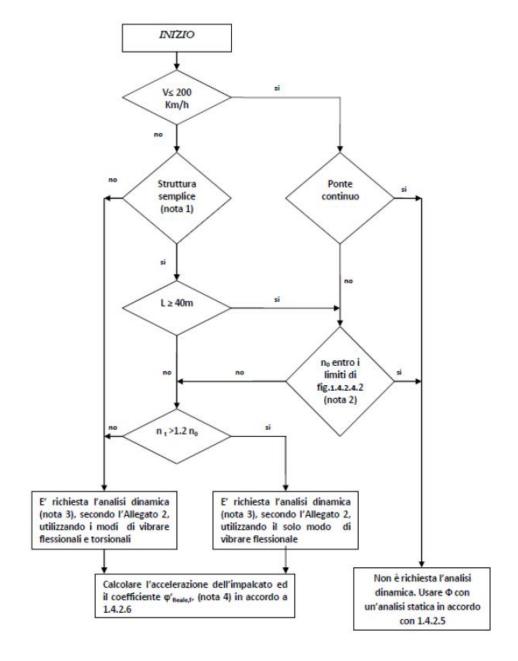



Figura 23 – modello di calcolo – analisi modale

L'abbassamento massimo in mezzeria dovuto ai pesi propri (G1) e ai permanernti portati (G2) è: $\delta_0 = 20.7$ mm.

Si esegue la verifica dei requsiti per determinare la necessità o meno dell'analisi dinamica secondo quanto indicato nel seguente diagramma ("Manuale di progettazione delle opere civili" – parte II – sezione 2 – Ponti e strutture):

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL Ghella ITINERA ONSORZIO CFT **COMUNE DI MADDALONI - PROGETTO DEFINITIVO** PIZZAROTTI Ponti e Viadotti di Linea COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: IF1N 01 E ZZ CL VI 00 07 001 Α 42 di 128 Relazione di Calcolo

Per una trave semplicemente appoggiata la prima frequenza flessionale può essere valutata con la formula:

$$n_0 = \frac{17.75}{\sqrt{\delta_o}} \text{ [Hz]}$$

 $n_0 = 17.75 / v \delta_0 = 3.9 \ Hz.$

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	43 di 128

Il limite superiore di no è

$$n_0 = 94.76 \, ^{\star} \, L^{-0.748} \, = 94.76 \, ^{\star} \, (22.80m)^{-0.748} = 9.14 \, Hz$$

Il limite inferiore di no è

$$n_0 = \frac{80}{L}$$
 per 4 m $\leq L \leq$ 20 m
 $n_0 = 23,58 \cdot L^{-0,592}$ per 20 m $\leq L \leq$ 100 m

 $n_0 = 3.70$ Hz (per il caso in esame con L= 22.80m)

Il valore della frequenza relativo all'impalcato in esame è compreso tra i limiti indicati, percui non risulta necessaria la verifica dinamica dell'impalcato.

ITINERA

7.3 COMBINAZIONI DI CARICO

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella seguente tabella:

TIPO DI CARICO	Azioni v	Azioni verticali		Azioni orizzontali			
Gruppo di carico	carico Carico Verticale (1)		Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità lateral	
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione	

Tabella 4 - Valutazione dei carichi da traffico (da "Istruzioni per la progettazione e l'esecuzione dei font ferroviari")

Le azioni di cui ai paragrafi precedenti sono combinate tra loro, al fine di ottenere le sollecitazioni di progetto relative agli elementi strutturali di volta in volta considerati in base a quanto prescritto dal D.M. 14 Gennaio 2008 al paragrafo § 2.5.3, §3.2.4 e paragrafo §5.2.3.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

Ghella CONSORZIO CFT PIZZAROTTI FORMANANI III	I° LOTTO VARIANTE	O TRATT FUNZIO ALLA L	A CANCELI NALE CAN INEA ROM	O-BENEVENTO CELLO-FRASSO A-NAPOLI VIA GETTO DEFINITI	CASSI	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	45 di 128

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto $A_d(v. \S 3.6)$:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

L'analisi ragionata delle combinazioni di carico previste dalla normativa ha consentito di ridurre il numero di combinazioni considerate.

Nella tabella seguente si riportano i valori di combinazioni adottati per analisi e verifiche. I valori riportati in tabella considerano già i coefficienti di combinazione previsti dalla normativa.

Tipo Combinazi one	Combinazi one	Azione principale	G1_pp	G1_perm	r_rreconn pr	gr_traffico	TK_∆T_uni f	Tk_∆T_ lin	Fw_Vento	Ritiro	Viscosità
SLU	A1STR_gr1	gr1	1.35	1.5	1	1.45	0.72	0.72	0.9	1.2	1.2
SLU	A1STR_gr2	gr2	1.35	1.5	1	1.45	0.72	0.72	0.9	1.2	1.2
SLU	A1STR_gr3	gr3	1.35	1.5	1	1.45	0.72	0.72	0.9	1.2	1.2
SLU	A1STR_gr1_Fw	Fw	1.35	1.5	1	1.16	0.72	0.72	1.5	1.2	1.2
SLU	A1STR_gr2_Fw	Fw	1.35	1.5	1	1.16	0.72	0.72	1.5	1.2	1.2
SLU	A1STR_gr3_Fw	Fw	1.35	1.5	1	1.16	0.72	0.72	1.5	1.2	1.2
SLU	A1STR_gr1_Tk	Tk	1.35	1.5	1	1.45	1.2	1.2	0.9	1.2	1.2
SLU	A1STR_gr2_Tk	Tk	1.35	1.5	1	1.45	1.2	1.2	0.9	1.2	1.2
SLU	A1STR_gr3_Tk	Tk	1.35	1.5	1	1.45	1.2	1.2	0.9	1.2	1.2
SLV	SLV_gr1	Tk	1	1	1	0.2	0.5	0.5	0	1	1
SLV	SLV_gr3	Tk	1	1	1	0.2	0.5	0.5	0	1	1
RARA (Caratteristica)	RARA_gr1	gr1	1	1	1	1	0.6	0.6	0.6	1	1
RARA (Caratteristica)	RARA_gr2	gr2	1	1	1	1	0.6	0.6	0.6	1	1
RARA (Caratteristica)	RARA_gr3	gr3	1	1	1	1	0.6	0.6	0.6	1	1
RARA (Caratteristica)	RARA_gr1_Fw	Fw	1	1	1	8.0	0.6	0.6	1	1	1
RARA (Caratteristica)	RARA_gr2_Fw	Fw	1	1	1	8.0	0.6	0.6	1	1	1
RARA (Caratteristica)	RARA_gr3_Fw	Fw	1	1	1	8.0	0.6	0.6	1	1	1
RARA (Caratteristica)	RARA_gr1_Tk	Tk	1	1	1	8.0	1	1	0.6	1	1
RARA (Caratteristica)	RARA_gr2_Tk	Tk	1	1	1	0.8	1	1	0.6	1	1
RARA (Caratteristica)	RARA_gr3_Tk	Tk	1	1	1	0.8	1	1	0.6	1	1
FREQUENTE	FR_gr1	gr1	1	1	1	8.0	0.5	0.5	0	1	1

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL Ghella ITINERA **COMUNE DI MADDALONI - PROGETTO DEFINITIVO** PIZZAROTTI COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: IF1N E ZZ CL VI 00 07 001 Α 46 di 128 Relazione di Calcolo

Tipo Combinazi one	Combinazi one	Azione principale	G1_pp	G1_perm	pr pr	gr_traffico	Tk_ΔT_uni f	Tk_ΔT_ lin	Fw_Vento	Ritiro	Viscosità
FREQUENTE	FR_gr2	gr2	1	1	1	0.8	0.5	0.5	0	1	1
FREQUENTE	FR_gr3	gr3	1	1	1	8.0	0.5	0.5	0	1	1
FREQUENTE	FR_gr1_Fw	Fw	1	1	1	0	0.5	0.5	0.5	1	1
FREQUENTE	FR_gr2_Fw	Fw	1	1	1	0	0.5	0.5	0.5	1	1
FREQUENTE	FR_gr3_Fw	Fw	1	1	1	0	0.5	0.5	0.5	1	1
FREQUENTE	FR_gr1_Tk	Tk	1	1	1	0	0.6	0.6	0	1	1
FREQUENTE	FR_gr2_Tk	Tk	1	1	1	0	0.6	0.6	0	1	1
FREQUENTE	FR_gr3_Tk	Tk	1	1	1	0	0.6	0.6	0	1	1
QP	QP_Tk	Tk	1	1	1	0	0.5	0.5	0	1	1
SLD	SLD_gr1	Tk	1	1	1	0	0.5	0.5	0	1	1
SLD	SLD_gr3	Tk	1	1	1	0	0.5	0.5	0	1	1

I valori della colonna "gr_traffico" moltiplicano gli effetti dei singoli gruppi di carico considerati. I gruppi di carico sono definiti sulla base delle indicazioni di normativa, secondo i coefficienti riportati nella seguente tabella.

	Carico Verticale	Treno Scarico	Frenatura	Avviamento	Centrifuga	Serpeggio
Gruppo 1 - fren (SW/2)	1	0	0.5	0	1	1
Gruppo 1 - avv (LM71)	1	0	0	0.5	1	1
Gruppo 2 - (Scarico)	0	1	0	0	1	1
Gruppo 3 - fren (SW/2)	1	0	1	0	0.5	0.5
Gruppo 3 - avv (LM71)	1	0	0	1	0.5	0.5

Legenda:

Gruppo 1 - fren (SW/2) - gruppo 1 con treno di carico SW/2 e corrispondenti azioni da traffico con frenatura

Gruppo 1 - avv (LM71) - gruppo 1 con treno di carico LM71 e corrispondenti azioni da traffico con avviamento

Gruppo 2 - (Scarico) - gruppo 2 con treno scarico e corrispondenti azioni centrifuga e serpeggio

Gruppo 3 - fren (SW/2) - gruppo 3 con treno di carico SW/2 e corrispondenti azioni da traffico con frenatura

Gruppo 3 - avv (LM71) - gruppo 3 con treno di carico LM71 e corrispondenti azioni da traffico con avviamento

Per ridurre il numero di combinazioni, i gruppi di carico che prevedono il treno SW/2 comprendono sempre il carico di frenatura (che è più gravoso di quello di avviamento), mentre i gruppi di carico che prevedono il treno LM71 comprendono sempre il carico di avviamento.

8 EFFETTI GLOBALI SU IMPALCATO – VERIFICHE TENSIONALI AGLI SLE

Per ogni fase sono verificate le tensioni ai lembi superiore ed inferiore della trave e, una volta che la soletta diventa collaborante, anche la tensione ai lembi superiore ed inferiore della soletta stessa. I limiti tensionali per l'acciaio da precompressione e per il calcestruzzo nelle varie fasi, sono definiti nel D.M. 14 Gennaio 2008 al §4.1.8.1 e nella Istruzione RFI DTC INC PO SP IFS 001 "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario" del 21 Dicembre 2011. I limiti tensionali considerati, tengono conto del livello di maturazione del cls, secondo quanto di seguito definito.

Fase 0 e 1:

- test cls sup.: si verifica che il lembo superiore della sezione non sia in trazione per i carichi considerati;
- test cls inf.: si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.6 * f_{ck};
- test precompr.: si verifica che la tensione di trazione nell'armatura di precompressione non sia superiore al limite 0.75 * f_{pk}.

Fase 2 e 3:

- test cls sup.soletta: si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.55 * fck per combinazioni rare, 0.40 * fck per combinazioni quasi permanenti.
- test cls inf.soletta: si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.55 * fck per combinazioni rare, 0.40 * fck per combinazioni quasi permanenti.
- test cls sup.: si verifica che la tensione di compressione al lembo superiore della sezione non sia superiore al limite 0.55 * fck per combinazioni rare, 0.40 * fck per combinazioni quasi permanenti.
- test cls inf.compr.: si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.55 * fck per combinazioni rare, 0.40 * fck per combinazioni quasi permanenti.
- test cls inf.trazione.: si verifica che il lembo inferiore della sezione non sia in trazione per i carichi considerati.
- test precompr.: si verifica che la tensione di trazione nell'armatura di precompressione non sia superiore al limite 0.75 * f_{pk}.

Tali verifiche sono state effettuate in corrispondenza delle sezioni di seguito descritte.

- Sezione 1: sezione ringrossata all'appoggio (x=0.75 m), 46 trefoli
- Sezione 2: sezione corrente posta alla fine del tratto a sez. variabile (x=2.55 m), 46 trefoli
- Sezione 3: sezione corrente in corrispondenza del primo traverso intermedio (x=8.35 m), 70 trefoli
- Sezione 4: sezione corrente in mezzeria (x=12.15 m), 70 trefoli

Oltre che per la geometria della sezione in c.a., le sezioni considerate differiscono anche per la precompressione agente.

8.1 SOLLECITAZIONI

Si riportano di seguito le sollecitazioni riscontrate nelle sezioni di verifica, dovute ai carichi elementari precedentemente descritti. I valori sono da intendersi già combinati.

Fase 0 - condizione a vuoto

Le sollecitazioni sotto riportate sono valide sia per le travi di bordo che per quelle intermedie.

	M_pp	V_{pp}
	kNm	kN
Sezione 1	310	367
Sezione 2	905	295
Sezione 3	2136	107
Sezione 4	2340	0

Fase 1 – getto della soletta

Le sollecitazioni sotto riportate sono relative alle travi di bordo che sono quelle maggiormente sollecitate.

	M_pp	V_{pp}	$M_{soletta}$	V _{soletta}
	kNm	kN	kNm	kN
Sezione 1	-14	367	-9	376
Sezione 2	581	295	614	317
Sezione 3	1812	107	1897	125
Sezione 4	2016	0	2135	0

Fase 2 - carichi permanenti

Le sollecitazioni sotto riportate sono relative alle travi di bordo che sono quelle maggiormente sollecitate.

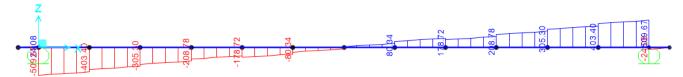


Figura 24 – Sollecitazione di taglio fase 3

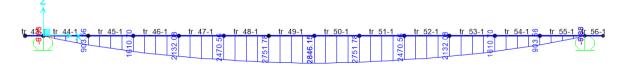


Figura 25 – Sollecitazione di momento flettente fase 3

	M _{perm}	V _{perm}
	kNm	kN
Sezione 1	-7	510
Sezione 2	1611	342
Sezione 3	2471	148
Sezione 4	2846	19

Fase 3: condizione di servizio

Si riportano di seguito le sollecitazioni di taglio e flessione, per le travi di bordo, dovute ai carichi variabili.

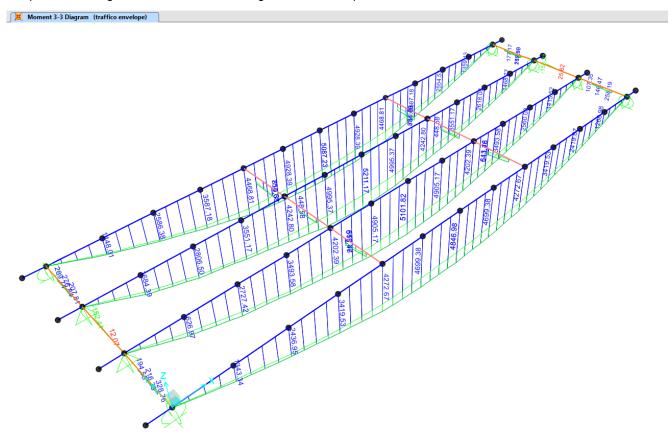


Figura 26 – Sollecitazioni inviluppo dovute al carico del traffico (con relativa azione centrifuga) – massima flessione

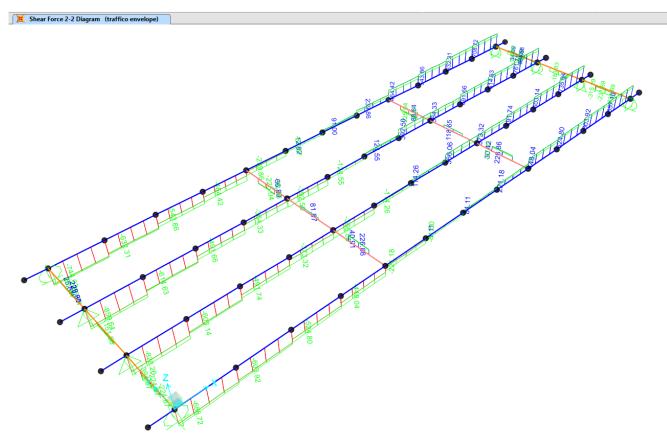


Figura 27 – Sollecitazioni inviluppo dovute al carico del traffico (con relativa azione centrifuga) – massimo taglio

	MSLE,3fase	V _{SLE,3fase}
	kNm	kN
Sezione 1	-312	751
Sezione 2	3071	638
Sezione 3	4986	475
Sezione 4	5642	99

Le sollecitazioni indicate in tabella si riferiscono ai soli carichi variabili (traffico, vento, variazione termica e resistenze passive dei voncoli) nella combinazione SLE che comporta la condizione peggiore per la trave.

8.2 VERIFICHE TENSIONALI

Di seguito si riportano di seguito le verifiche tensionali previste per gli SLE.

8.2.1 MATERIALI

Calcestruzzo travi prefabbricate

Classe	C45/55		
R _{ck} =	55	MPa	resistenza caratteristica cubica
$f_{ck} =$	45	MPa	resistenza caratteristica cilindrica
γc=	1.5	-	coefficiente parziale di sicurezza SLU
$\alpha_{cc}=$	1		coeff. rid. Per carichi di lunga durata (1;0,85)
$f_{cd} =$	30	MPa	resistenza di progetto
$f_{\text{cm}} =$	53	MPa	resistenza media
$f_{\text{ctm}} =$	3.80	MPa	resistenza media a trazione semplice
E _{cm} =	36283	MPa	Modulo elastico di progetto
$\epsilon_{c2} =$	0.20%		per classi inferiori a C50/60
$\varepsilon_{cu2} =$	0.35%		per classi inferiori a C50/60

Calcestruzzo travi prefabbricate al trasferimento della precompressione

Classe	C35/45		
R _{ck} =	45	MPa	resistenza caratteristica cubica
$f_{ck} =$	35	MPa	resistenza caratteristica cilindrica
γc=	1.5	-	coefficiente parziale di sicurezza SLU
α _{cc} =	1		coeff. rid. Per carichi di lunga durata (1;0,85)
$f_{\text{cd}} =$	23.33	MPa	resistenza di progetto
$f_{\text{cm}} =$	43	MPa	resistenza media
$f_{ctm} =$	3.21	MPa	resistenza media a trazione semplice
E _{cm} =	34077	MPa	Modulo elastico di progetto
$\epsilon_{c2} =$	0.20%		per classi inferiori a C50/60
ϵ_{cu2} =	0.35%		per classi inferiori a C50/60
$0.7 x f_{ck} =$	24.5	MPa	Valore limite della tensione all'atto della precompressione
$0,6 \times f_{ck} =$	21	MPa	Valore limite della tensione a cadute avvenute

Ghella CONSORZIO CFT Ponti e Viadotti di Linea

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	52 di 128

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

ITINERA

Calcestruzzo soletta

C32/40		
40	M Pa	resistenza caratteristica cubica
32	M Pa	resistenza caratteristica cilindrica
1.5	-	coefficiente parziale di sicurezza SLU
1		coeff. rid. Per carichi di lunga durata (1;0,85)
21.33	M Pa	resistenza di progetto
40	M Pa	resistenza media
3.02	M Pa	resistenza media a trazione semplice
33346	M Pa	Modulo elastico di progetto
0.20%		per classi inferiori a C50/60
0.35%		per classi inferiori a C50/60
	40 32 1.5 1 21.33 40 3.02 33346 0.20%	M Pa M M Pa M M M M

Acciaio da precompressione

Trefoli a basso rilassamento

f _{pk} ≥	1860	MPa	tensione caratteristica di rottura
$f_{p(0,1)k} \ge$	1670	MPa	tensione caratteristica allo 0,1% di def. Residua
$0.8 x f_{pk} =$	1488	MPa	Tensione limite alla tesatura - Condiz.1
$0.9 \times f_{p(0,1)k} =$	1503	MPa	Tensione limite alla tesatura - Condiz.2
$\sigma_{p,max}\!=\!$	1488	MPa	Tensione massima alla tesatura (=min{cond.1;cond.2})
$\sigma_p \! = \!$	1400	MPa	Tensione alla tesatura <σ _{p,max}
E _p =	195000	MPa	Modulo elastico di progetto
$0.75 \times f_{pk} =$	1395		Tensione alla tesatura dopo trasf Condiz.1
$0.85 \times f_{p(0,1)k} =$	1420		Tensione alla tesatura dopo trasf Condiz.2
$\sigma_{p0,max}$ =	1395		Tensione massima alla tesatura a perdite immediate avvenute

8.2.2 MASCHERA PRECOMPRESSIONE

8.2.2.1 Precompressione tipo 1 – sezione corrente

Famiglia	Numero Trefoli	A _{trefolo}	y _{P,i}	A _{P,i}	y _{P,i} x A _{P,i}	N _{prec}
- anngna	1101011	[cmq]	[cm]	[cmq]	[cmc]	[kN]
1	2	1.39	202.0	2.78	567.12	-389.2
2	2	1.39	117.0	2.78	325.26	-389.2
3	2	1.39	110.0	2.78	305.8	-389.2
4	2	1.39	103.0	2.78	286.34	-389.2
5	2	1.39	96.0	2.78	266.88	-389.2
6	2	1.39	89.0	2.78	247.42	-389.2
7	2	1.39	82.0	2.78	227.96	-389.2
8	2	1.39	75.0	2.78	208.5	-389.2
9	2	1.39	68.0	2.78	189.04	-389.2
10	2	1.39	61.0	2.78	169.58	-389.2
11	2	1.39	40.0	2.78	111.2	-389.2
12	2	1.39	33.0	2.78	91.74	-389.2
13	2	1.39	26.0	2.78	72.28	-389.2
14	2	1.39	20.6	2.78	57.268	-389.2
15	14	1.39	15.6	19.46	303.576	-2724.4
16	14	1.39	11.6	19.46	225.736	-2724.4
17	14	1.39	5.6	19.46	108.976	-2724.4
	70		•		3759.1	13622

 $A_P = 97.30$ cmq $y_{G,P} = 38.63$ cm

8.2.2.2 PRECOMPRESSIONE TIPO 2 – SEZIONE APPOGGIO

Famiglia	Numero Trefoli	A _{trefolo}	A _{P,i}	y P,i	y _{P,i} x A _{P,i}	N_{prec}
		[cmq]	[cmq]	[cm]	[mmc]	[kN]
6	2	1.39	2.78	202.0	567.12	-389.2
7	2	1.39	2.78	117.0	325.26	-389.2
8	2	1.39	2.78	110.0	305.8	-389.2

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 001
 A
 54 di 128

	Numero					
Famiglia	Trefoli	A _{trefolo}	$\mathbf{A}_{P,i}$	y _{P,i}	$\mathbf{y}_{P,i} \times \mathbf{A}_{P,i}$	N_{prec}
		[cmq]	[cmq]	[cm]	[mmc]	[kN]
9	2	1.39	2.78	103.0	286.34	-389.2
10	2	1.39	2.78	96.0	266.88	-389.2
11	2	1.39	2.78	89.0	247.42	-389.2
12	2	1.39	2.78	82.0	227.96	-389.2
13	0	1.39	2.78	75.0	208.5	-389.2
14	0	1.39	2.78	68.0	189.04	-389.2
15	0	1.39	2.78	61.0	169.58	-389.2
16	2	1.39	2.78	40.0	111.2	-389.2
17	2	1.39	2.78	33.0	91.74	-389.2
18	2	1.39	2.78	26.0	72.28	-389.2
19	2	1.39	2.78	20.6	57.268	-389.2
20	6	1.39	8.34	15.6	130.104	-1167.6
21	6	1.39	8.34	11.6	96.744	-1167.6
22	6	1.39	8.34	5.6	46.704	-1167.6
	46				3394.4	-8951.6

 $A_{P} = 63.94$ cmq

 $y_{G,P} = 53.09$ cm

8.2.3 CARATTERISTICHE DELLE SEZIONI

Sezione	-	1	2	3	4	
ascissa x	[m]	0.75	2.55	8.35	12.15	
Precompr.	-	Tipo 2	Tipo 2	Tipo 1	Tipo 1	
n		5.4	5.4	5.4	5.4	Coeff. di omogeneizzazione acciaio da precompressione
A _{cls} =	mmq	1973000	1093000	1093000	1093000	Area lorda sezione CLS
A _P =	mmq	6394	6394	9730	9730	Area armatura di precompressione
A* =	mmq	2030990	1150990	1168919	1168919	Area omogeneizzata (si considera la presenza di armatura lenta)
y _{G,cls} =	mm	961	915	915	915	Baricentro sezione cls
y _{G,P} =	mm	531	531	386	386	Baricentro armatura precompressione
y* _{G,cls} =	mm	955	905	893	893	Baricentro sezione cls omogeneizzata
I _{cls} =	mm4	8,85E+11	5,90E+11	5,90E+11	5,90E+11	Inerzia sezione cls
I* _{cls} =	mm4	9.20E+11	6.00E+11	6.04E+11	2.10E+03	Inerzia sezione cls omogeneizzata

Ghella CONSORZIO CFT PIZZAROTTI FONDATA REL 1710

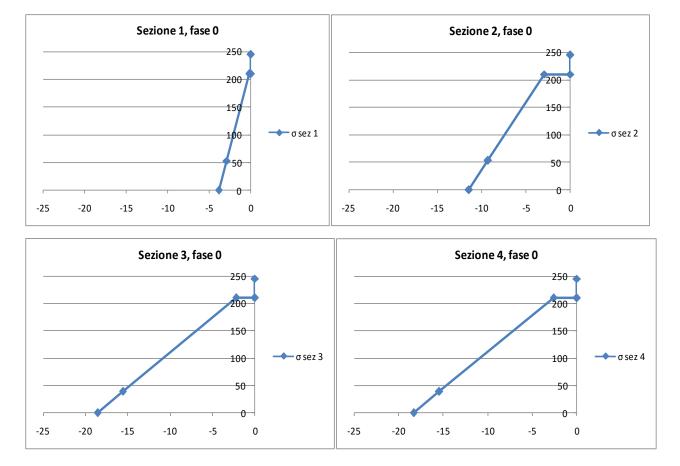
ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 001
 A
 55 di 128

Sezione	-	1	2	3	4	
ascissa x	[m]	0.75	2.55	8.35	12.15	
H _{sez} =	mm	2100	2100	2100	2100	Altezza sezione
y _{sup} =	mm	1145	1195	1207	1207	distanza del lembo sup. da y* _{G,ds}
y _{inf} =	mm	955	905	893	893	distanza del lembo inf. da y* _{G,cls}
е	mm	424	375	507	507	Eccentricità cavo risultante
W* _{sup} =	mmc	-8.03E+08	-5.02E+08	-5.00E+08	-5.00E+08	Modulo di res. Lembo sup.
W* _{inf} =	mmc	9.64E+08	6.63E+08	6.76E+08	6.76E+08	Modulo di res. Lembo inf.


ITINERA

8.2.4 FASE 0

Sezione	-	1	2	3	4	
ascissa x	[m]	0.75	2.55	8.35	12.15	
N _{prec}	[kN]	-8952	-8952	-13622	-13622	Precompressione alla tesatura
M _{prec}	[kN-m]	-3794	-3353	-6906	-6906	Momento di Precompressione alla tesatura
c - trasferim.	-	0.5	1	1	1	coefficiente di trasferimento precompressione
N*prec	[kN]	-4476	-8952	-13622	-13622	Parte di Precompressione trasferita alla tesatura
M*prec	[kN-m]	-1897	-3353	-6906	-6906	Parte di Momento di Precompressione trasferito alla tesatura
M* _{pp}	[kN-m]	310	905	2136	2340	Momento dovuto al peso proprio - L=L _{trave}
$\sigma^*_{c,sup} =$	MPa	-0.23	-2.90	-2.12	-2.53	Tensione nel cls al lembo superiore della sezione
$\sigma^*_{c,inf} =$	MPa	-3.85	-11.47	-18.71	-18.41	Tensione nel cls al lembo inferiore della sezione
$\sigma^*_{c,yGp} =$	МРа	-2.93	-9.31	-15.66	-15.49	Tensione nel cls fibra cavo risultante
$\Delta \sigma_{p0} =$	MPa	0	0	0	0	Perdite immediate per rientro ancoraggi
$\Delta\sigma_{p0,elast.}$ =	MPa	33.08	53.05	93.79	93.79	Perdite immediate per deformazione elastica
σ* _{pi} =	MPa	-684.23	-1349.99	-1315.85	-1316.77	Tensione nel cavo a perdite iniziali avvenute
test cls sup.	-	OK	ОК	ОК	ОК	$\sigma^*_{c,sup} > 0$?
test cls inf.	-	OK	ОК	ОК	ОК	$\sigma^*_{c,inf} < 0.6 \times f_{ck}$?
test precompr.	-	ОК	ОК	ОК	ОК	$\sigma^*_{pi} < \sigma_{p0,max}$?

Si riportano di seguito gli andamenti delle tensioni al termine della fase 0.

8.2.5 FASE 1

Sezione	-	1	2	3	4	
ascissa x	[m]	0.75	2.55	8.35	12.15	
$\Delta\sigma_{pr}$	MPa	93	93	93	93	Perdita per rilassamento al tempo t = 500,000h
ε _{cs,1 =}	-	0.000376	0.,000376	0.000376	0.000376	Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$
E _p =	MPa	195000	195000	195000	195000	Modulo elastico di progetto acciaio da prec.
E _{cm} =	MPa	36283	36283	36283	36283	Modulo elastico di progetto cls travi
φ(t*,t ₀)	-	2.06	2.06	2.06	2.06	Coeff. di viscosità fase 1 (tave prefabbricata)
A _P =	mmq	6394	6394	9730	9730	Area armatura di precompressione
A _c =	mmq	1973000	1093000	1093000	1093000	Area lorda sezione CLS

Ghella

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 001
 A
 57 di 128

Sezione	-	1	2	3	4	
ascissa x	[m]	0.75	2.55	8.35	12.15	
I _c =	mm4	8.85E+11	5.90E+11	5.90E+11	5.90E+11	Inerzia sezione cls
I* _{cls} =	mm4	9.20E+11	6.00E+11	6.04E+11	6.04E+11	Inerzia sezione cls omogeneizzata
z _{cp} =	mm	424	375	507	507	Eccentricità cavo risultante
ncls =	-	1.088	1.088	1.088	1.088	Area omogeneizzata
ssoletta =	mm	350	350	350	350	Baricentro sezione cls
bsol, coll. =	mm	2440	2440	2440	2440	Baricentro armatura precompressione
n		5.4	5.4	5.4	5.4	Baricentro sezione cls omogeneizzata
Acls =	mmq	1973000	1093000	1093000	1093000	Inerzia sezione cls omogeneizzata
AP =	mmq	6394	6394	9730	9730	Altezza sezione trave + soletta
A* =	mmq	2717686	1837686	1855615	1855615	distanza del lembo sup. della soletta da y*G,cls
yG,cls =	mm	961	915	915	915	distanza del lembo inf. della soletta da y*G,cls
yG,P =	mm	531	531	386	386	distanza del lembo sup. della trave da y*G,cls
y*G,cls =	mm	1307	1446	1433	1433	distanza del lembo inf. della trave da y*G,cls
I*cls+sol =	mm4	1.85E+12	1.442E+12	1.466E+12	1.466E+12	eccentricità cavo risultante
Hsez,tr+sol=	mm	2450	2450	2450	2450	Modulo di res. Lembo sup. soletta
ysup, sol =	mm	1143	1004	1017	1017	Modulo di res. Lembo inf. soletta
yinf, sol =	mm	793	-1446	-1433	667	Modulo di res. Lembo sup. trave
ysup,trave =	mm	793	-1446	-1433	667	Modulo di res. Lembo inf. trave
yinf,trave =	mm	1307	1446	1433	1433	Modulo elastico di progetto acciaio da prec.
е	mm	777	915	1046	1046	Area omogeneizzata
W*sup,sol =	mmc	-1.62E+09	-1.44E+09	-1.44E+09	-1.44E+09	Baricentro sezione cls
W*inf,sol =	mmc	-2.20E+09	-2.05E+09	-2.04E+09	-2.04E+09	Baricentro armatura precompressione
W*sup,trave =	mmc	-2.34E+09	-2.2E+09	-2.20E+09	-2.20E+09	Baricentro sezione cls omogeneizzata
W*inf,trave =	mmc	1.42E+09	997659121	1.02E+09	1.02E+09	Inerzia sezione cls omogeneizzata
Ep =	MPa	195000	195000	195000	195000	Altezza sezione trave + soletta
					Т	
Ritiro trave fase	1					
ε _{cs} =	-	0.000169	0.000169	0.000169	0.000169	Residuo Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$ nella trave ancora da scontare
ε _{cs,soletta} =		0.000309	0.000309	0.000309	0.000309	Deformazione totale da ritiro ε_{cs} = ε_{cd} + ε_{ca} nella soleltta

Ghella

Relazione di Calcolo

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

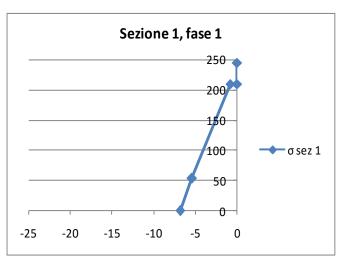
I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

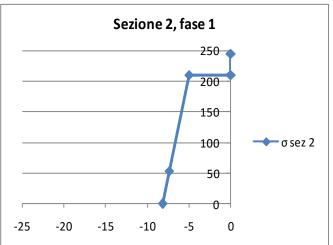
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario:

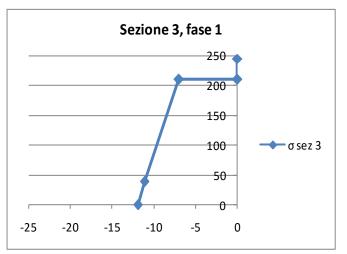
COMMESSA LOTTO

DOCUMENTO CODIFICA

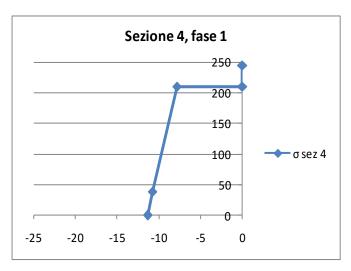
REV. FOGLIO


IF1N 01 E ZZ CL VI 00 07 001 58 di 128 Α


Sezione	-	1	2	3	4	7
ascissa x	[m]	0.75	2.55	8.35	12.15	
$\Delta\epsilon_{cs,soletta}$ =		0.000140	0.000140	0.000140	0.000140	Ritiro differenziale Soletta-Trave
E _{cm} =	MPa	36283	36283	36283	36283	Modulo elastico di progetto cls travi
E _{cm,soletta} =	MPa	33346	33346	33346	33346	Modulo elastico di progetto cls soletta
n _{cls} =	-	1.088	1.088	1.088	1.088	Coeff. omogeneizzazione tra cls soletta e CAP
E' _{cm,soletta} =	MPa	12117	12117	12117	12117	Modulo elastico di progetto cls soletta (eff.viscosi)
$\sigma_{c,soletta} =$	MPa	1.6939	1.6939	1.6939	1.6939	Tensioni fittizia da ritiro nella soletta
N _{Ritiro differenziale}	[kN]	-1447	-1447	-1447	-1447	Sforzo assiale da ritiro differenziale Soletta-Trave
M _{Ritiro differenziale}	[kN-m]	1436	1236	1255	1255	Momento dovuto al ritiro differenziale Soletta-Trave
$\Delta\sigma_{c,sup, Sol}$ =	MPa	-1.42	-1.65	-1.65	-1.65	Variazione di tensione Lembo sup. soletta
$\Delta\sigma_{c,inf, Sol}$ =	MPa	-1.18	-1.39	-1.39	-1.39	Variazione di tensione Lembo inf. soletta
$\Delta\sigma_{c,sup, Trave} =$	MPa	-1.15	-1.35	-1.35	-1.35	Variazione di tensione Lembo sup. trave
$\Delta\sigma_{c,inf, Trave} =$	МРа	0.48	0.45	0.45	0.45	Variazione di tensione Lembo inf. trave
$\Delta \sigma_{c,yGp}$ =	MPa	0.07	0.00	0.12	0.12	Variazione di tensione fibra corrisp. al cavo
$\Delta\sigma_{pi,rit}$ =	MPa	-0.37	0.02	-0.62	-0.62	Variazione di tensione nel cavo
Sollecitazioni	di fase 1					
ψ2	-	0,00	0,00	0,00	0,00	Coeff. di combinazione carico variabile
M _Q	[kN-m]	0	0	0	0	Momento dovuto ai carichi variabili - L=L _{appoggi}
M _{pp}	[kN-m]	-14	581	1812	2016	Momento dovuto al peso proprio - L=L _{appoggi}
M _{soletta}	[kN-m]	-9	614	1897	2135	Momento dovuto al getto della soletta
$\sigma_{p,i}$	MPa	-1400	-1400	-1400	-1400	σ_p - $\Delta\sigma_{p0}$ (tens. Alla tesatura-perdite per rientro ancoraggi)
N _{prec}	[kN]	-8952	-8952	-13622	-13622	Precompressione iniziale
M _{prec}	[kN-m]	-3794	-3353	-6906	-6906	Momento di precompressione iniziale
$\sigma_{c,QP} =$	MPa	-5.42	-7.54	-11.14	-10.81	Tensione nel cls in corrisp. del cavo
$\Delta\sigma_{p,c+s+r}$	MPa	170.45	224.58	256.73	253.29	Perdite per rit. visc. e rilassamento
ΔN_{prec}	[kN]	1090	1436	2498	2464	Riduzione precompressione
$\sigma_{c,sup}$ =	MPa	-0.84	-4.65	-7.01	-7.89	Tensione nel cls al lembo superiore della sezione
$\sigma_{c,inf}$ =	MPa	-6.87	-8.52	-11.93	-11.33	Tensione nel cls al lembo inferiore della sezione
$\sigma_{c,yGp}$ =	MPa	-5.42	-7.54	-11.14	-10.81	Tensione nel cls fibra cavo risultante
			1	-i		



Sezione	-	1	2	3	4	
ascissa x	[m]	0.75	2.55	8.35	12.15	
test cls sup.	-	ОК	ОК	ок	ОК	$\sigma^*_{c,sup}$ >0 ?
test cls inf.	-	ОК	ОК	ОК	ОК	$\sigma^*_{c,inf} < 0.6 \times f_{ck}$?
test precompr.	-	ОК	ОК	ОК	ОК	$\sigma^*_{pi} < \sigma_{p0,max}$?


Si riportano di seguito gli andamenti delle tensioni al termine della fase 1.

8.2.6 FASE 2

Si considerano le perdite da viscosità, ritiro e rilassamento attraverso la formula di interdipendenza, riportata di seguito, ed applicate interamente alla sola trave.

$$\Delta P_{\mathsf{c+s+r}} = A_\mathsf{p} \Delta \sigma_{\mathsf{p},\mathsf{c+s+r}} = A_\mathsf{p} \frac{\varepsilon_\mathsf{cs} \mathcal{E}_\mathsf{p} + 0.8 \Delta \sigma_\mathsf{pr} + \frac{\mathcal{E}_\mathsf{p}}{\mathcal{E}_\mathsf{cm}} \varphi(t,t_0) \cdot \sigma_{\mathsf{c},\mathsf{Qp}}}{1 + \frac{\mathcal{E}_\mathsf{p}}{\mathcal{E}_\mathsf{cm}} A_\mathsf{c}} \left(1 + \frac{A_\mathsf{c}}{I_\mathsf{c}} Z_\mathsf{cp}^2\right) \left[1 + 0.8 \varphi(t,t_0)\right]$$

L'effetto di viscosità relativo al calcestruzzo della soletta viene computato considerando un coefficiente di omogeneizzazione differente, secondo la relazione seguente:

$$n'_{cls} = n_{cls} * (1+0.8 * \phi(t^*,t_0))$$

Sollecitazioni d	i fase 2					
Sezione	-	1	2	3	4	
ascissa x	[m]	0.75	2.55	8.35	12.15	
ψ2	-	0,00	0,00	0,00	0,00	Coeff. di combinazione carico variabile
MQ	[kN- m]	0	0	0	0	Momento dovuto ai carichi variabili - L=L _{appoggi}
M _{Permanenti}	[kN- m]	-12	1611	2471	3150	Momento dovuto ai carichi permanenti portati
$\Delta\sigma_{c,sup, Sol} =$	MPa	-0.01	-1.17	-3.23	-3.72	Variazione di tensione Lembo sup. soletta
$\Delta\sigma_{c,inf, Sol}$ =	MPa	0.01	-0.90	-2.49	-2.87	Variazione di tensione Lembo inf. soletta
$\Delta\sigma_{c,sup, Trave} =$	MPa	0.01	-0.85	-2.37	-2.73	Variazione di tensione Lembo sup. trave
$\Delta\sigma_{c,inf, Trave} =$	MPa	-0.01	1.03	2.80	3.22	Variazione di tensione Lembo inf. trave

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

DOCUMENTO COMMESSA LOTTO CODIFICA IF1N E ZZ CL 01

VI 00 07 001 Α 61 di 128

REV. FOGLIO

$\Delta\sigma_{c,yGp}$ =	MPa	0.00	0.55	1.85	2.12	Variazione di tensione fibra corrisp. al cavo
$\Delta \sigma_{pi}$ =	MPa	0.02	-2.98	-9.93	-11.41	Variazione di tensione nel cavo
Rilassamento	<u> </u>					Double and the second and the
$\Delta\sigma_{pr}$	MPa	0	0	0	0	Perdita per rilassamento residua (inserire 0, se già scontata nella fase precedente)
	<u>, </u>					
Ritiro differenz	iale Trave-	soletta				
ε _{cs =}	-	0.000169	0.000169	0.000169	0.000169	Residuo Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$ nella trave ancora da scontare
ε _{cs,soletta} =		0.000309	0.000309	0.000309	0.000309	Deformazione totale da ritiro ε_{cs} = ε_{cd} + ε_{ca} nella soleltta
$\Delta\epsilon_{cs,soletta} =$		0.000140	0.000140	0.000140	0.000140	Ritiro differenziale Soletta-Trave
E _{cm} =	MPa	36283	36283	36283	36283	Modulo elastico di progetto cls travi
E _{cm,soletta} =	MPa	33346	33346	33346	33346	Modulo elastico di progetto cls soletta
n _{cls} =	-	1.088	1.088	1.088	1.088	Coeff. omogeneizzazione tra cls soletta e CAP
E' _{cm,soletta} =	MPa	12117	12117	12117	12117	Modulo elastico di progetto cls soletta (eff.viscosi)
$\sigma_{c,soletta}$ =	MPa	1.6939	1.6939	1.6939	1.6939	Tensioni fittizia da ritiro nella soletta
$\Delta\sigma_{c,sup, \; Sol} =$	MPa	1.69	1.69	1.69	1.69	Variazione di tensione Lembo sup. soletta
$\Delta\sigma_{c,inf, Sol}$ =	MPa	1.69	1.69	1.69	1.69	Variazione di tensione Lembo inf. soletta
$\Delta\sigma_{c,sup, Trave} =$	MPa	0.00	0.00	0.00	0.00	Variazione di tensione Lembo sup. trave
$\Delta\sigma_{c,inf,\;Trave}\!=\!$	MPa	0.00	0.00	0.00	0.00	Variazione di tensione Lembo inf. trave
$\Delta\sigma_{c,yGp} =$	MPa	0.00	0.00	0.00	0.00	Variazione di tensione fibra corrisp. al cavo
$\Delta\sigma_{\text{pi,rit}}$ =	MPa	0.00	0.00	0.00	0.00	Variazione di tensione nel cavo
Viscosità						
$\phi(t^*,t_0)$	-	2.19	2.19	2.19	2.19	Coeff. di viscosità fase 2 (soletta)
n _{cls} =		1.088	1.088	1.088	1.088	Coeff. omogeneizzazione tra cls soletta e CAP
n' _{cls} =	-	2.99	2.99	2.99	2.99	$n_{cls} \times (1+0.8 \times \Box(t^*,t_0))$
S _{soletta} =	mm	350	350	350	350	Spessore soletta
b _{soletta, collab.} =	mm	2440	2440	2440	2440	Larghezza collaborante soletta
n	-	5.4	5.4	5.4	5.4	Coeff. di omogeneizzazione acciaio da precompressione
A _{cls} =	mmq	1973000	1093000	1093000	1093000	Area lorda sezione CLS
A _{cls,soletta} =	mmq	854000	854000	854000	854000	Area lorda sezione CLS soletta (comprensiva della predalle, sp. 5cm)
A _P =	mmq	6394	6394	9730	9730	Area armatura di precompressione

Ghella

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

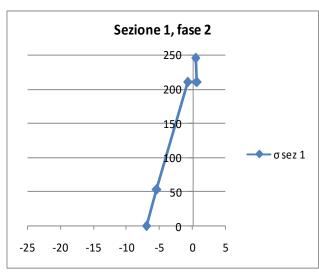
I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

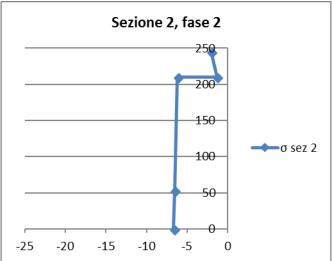
Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo COMMESSA LOTTO CODIFICA

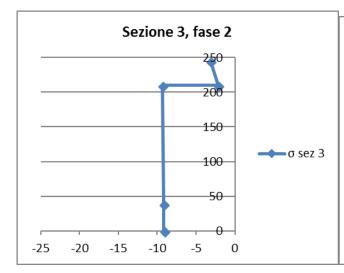
DOCUMENTO

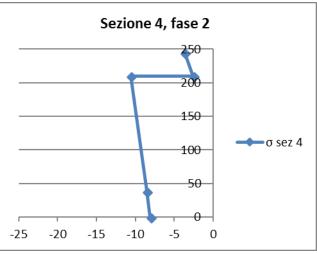
REV. FOGLIO

IF1N 01 E ZZ CL


VI 00 07 001 A 62 di 128


	mmq	2275444	1395444	1413373	1413373	Area omogeneizzata
y _{G,P} =	mm	531	531	386	386	Baricentro armatura precompressione
y* _{G,cls} =	mm	1099	1150	1137	1137	Baricentro sezione cls omogeneizzata
I* _{cls+sol} =	mm4	1.317E+12	9.940E+11	1.006E+12	1.006E+12	Inerzia sezione cls omogeneizzata
H _{sez,tr+sol} =	mm	2450	2450	2450	2450	Altezza sezione trave + soletta
y _{sup, sol} =	mm	1351	1300	1313	1313	distanza del lembo sup. della soletta da y*G,cls
y _{inf, sol} =	mm	1001	950	963	963	distanza del lembo inf. della soletta da y*G,cls
y _{sup,trave} =	mm	1001	950	963	963	distanza del lembo sup. della trave da y*G,cls
y _{inf,trave} =	mm	1099	1150	1137	1137	distanza del lembo inf. della trave da y*G,cls
е	mm	568	619	750	750	eccentricità cavo risultante
W* _{sup,sol} =	mmc	-9.75E+08	-7.65E+08	-7.66E+08	-7.66E+08	Modulo di res. Lembo sup. soletta
W* _{inf,sol} =	mmc	-1.25E+09	-9.94E+08	-9.92E+08	-9.92E+08	Modulo di res. Lembo inf. soletta
W* _{sup,trave} =	mmc	-1.32E+09	-1.05E+09	-1.04E+09	-1.04E+09	Modulo di res. Lembo sup. trave
W* _{inf,trave} =	mmc	1.20E+09	8.65E+08	8.85E+08	8.85E+08	Modulo di res. Lembo inf. trave
E _p =	MPa	195000	195000	195000	195000	Modulo elastico di progetto acciaio da prec.
				1		
Tensioni totali di	Fase 2 a	cadute avveni	ute			
Tensioni totali di $\Delta\sigma_{c,sup,\;Sol} =$	Fase 2 a	cadute avvenu	ute -0.41	-1.53	-2.42	Variazione di tensione Lembo sup. soletta
				-1.53 -0.80	-2.42 -1.48	Variazione di tensione Lembo sup. soletta Variazione di tensione Lembo inf. soletta
$\Delta\sigma_{c,sup,\ Sol} =$	MPa	1.71	-0.41			·
$\Delta\sigma_{c,sup,\;Sol} =$ $\Delta\sigma_{c,inf,\;Sol} =$	MPa MPa	1.71	-0.41	-0.80	-1.48	Variazione di tensione Lembo inf. soletta
$\Delta\sigma_{c,sup,\;Sol} =$ $\Delta\sigma_{c,inf,\;Sol} =$ $\Delta\sigma_{c,sup,\;Trave} =$	MPa MPa MPa	1.71 1.70 0.01	-0.41 0.07 0.01	-0.80	-1.48 0.01	Variazione di tensione Lembo inf. soletta Variazione di tensione Lembo sup. trave
$\begin{split} \Delta\sigma_{c,sup, \; Sol} = \\ \Delta\sigma_{c,inf, \; Sol} = \\ \Delta\sigma_{c,sup, \; Trave} = \\ \Delta\sigma_{c,sup, \; Trave} = \end{split}$	MPa MPa MPa MPa	1.71 1.70 0.01 -0.01	-0.41 0.07 0.01 1.86	-0.80 0.01 2.79	-1.48 0.01 3.56	Variazione di tensione Lembo inf. soletta Variazione di tensione Lembo sup. trave Variazione di tensione Lembo inf. trave
$\begin{split} \Delta\sigma_{c,sup, Sol} &= \\ \Delta\sigma_{c,inf, Sol} &= \\ \Delta\sigma_{c,sup, Trave} &= \\ \Delta\sigma_{c,inf, Trave} &= \\ \Delta\sigma_{c,yGp} &= \\ \end{split}$	MPa MPa MPa MPa MPa	1.71 1.70 0.01 -0.01	-0.41 0.07 0.01 1.86 1.00	-0.80 0.01 2.79 1.84	-1.48 0.01 3.56 2.35	Variazione di tensione Lembo inf. soletta Variazione di tensione Lembo sup. trave Variazione di tensione Lembo inf. trave Variazione di tensione fibra corrisp. al cavo
$\begin{split} \Delta\sigma_{c,sup, Sol} &= \\ \Delta\sigma_{c,inf, Sol} &= \\ \Delta\sigma_{c,sup, Trave} &= \\ \Delta\sigma_{c,inf, Trave} &= \\ \Delta\sigma_{c,yGp} &= \\ \end{split}$	MPa MPa MPa MPa MPa MPa	1.71 1.70 0.01 -0.01 -0.01 0.03	-0.41 0.07 0.01 1.86 1.00	-0.80 0.01 2.79 1.84	-1.48 0.01 3.56 2.35	Variazione di tensione Lembo inf. soletta Variazione di tensione Lembo sup. trave Variazione di tensione Lembo inf. trave Variazione di tensione fibra corrisp. al cavo
$\begin{split} \Delta\sigma_{c,sup, \ Sol} = \\ \Delta\sigma_{c,inf, \ Sol} = \\ \Delta\sigma_{c,inf, \ Trave} = \\ \Delta\sigma_{c,sup, \ Trave} = \\ \Delta\sigma_{c,inf, \ Trave} = \\ \Delta\sigma_{c,yGp} = \\ \Delta\sigma_{pi,v} = \end{split}$	MPa MPa MPa MPa MPa MPa	1.71 1.70 0.01 -0.01 -0.01 0.03	-0.41 0.07 0.01 1.86 1.00	-0.80 0.01 2.79 1.84	-1.48 0.01 3.56 2.35	Variazione di tensione Lembo inf. soletta Variazione di tensione Lembo sup. trave Variazione di tensione Lembo inf. trave Variazione di tensione fibra corrisp. al cavo
$\begin{split} \Delta\sigma_{c,sup, \ Sol} &= \\ \Delta\sigma_{c,inf, \ Sol} &= \\ \Delta\sigma_{c,sup, \ Trave} &= \\ \Delta\sigma_{c,sup, \ Trave} &= \\ \Delta\sigma_{c,inf, \ Trave} &= \\ \Delta\sigma_{c,yGp} &= \\ \Delta\sigma_{pi,v} &= \\ \end{split}$	MPa MPa MPa MPa MPa MPa MPa	1.71 1.70 0.01 -0.01 -0.01 0.03	-0.41 0.07 0.01 1.86 1.00 -5.39	-0.80 0.01 2.79 1.84 -9.90	-1.48 0.01 3.56 2.35 -12.63	Variazione di tensione Lembo inf. soletta Variazione di tensione Lembo sup. trave Variazione di tensione Lembo inf. trave Variazione di tensione fibra corrisp. al cavo Variazione di tensione nel cavo
$\begin{split} \Delta\sigma_{c,sup, Sol} &= \\ \Delta\sigma_{c,inf, Sol} &= \\ \Delta\sigma_{c,inf, Trave} &= \\ \Delta\sigma_{c,sup, Trave} &= \\ \Delta\sigma_{c,inf, Trave} &= \\ \Delta\sigma_{c,yGp} &= \\ \Delta\sigma_{pi,v} &= \\ \end{split}$	MPa MPa MPa MPa MPa MPa MPa MPa MPa	1.71 1.70 0.01 -0.01 -0.01 0.03	-0.41 0.07 0.01 1.86 1.00 -5.39	-0.80 0.01 2.79 1.84 -9.90	-1.48 0.01 3.56 2.35 -12.63	Variazione di tensione Lembo inf. soletta Variazione di tensione Lembo sup. trave Variazione di tensione Lembo inf. trave Variazione di tensione fibra corrisp. al cavo Variazione di tensione nel cavo tensione Lembo sup. soletta
$\begin{split} \Delta\sigma_{c,sup, Sol} &= \\ \Delta\sigma_{c,inf, Sol} &= \\ \Delta\sigma_{c,sup, Trave} &= \\ \Delta\sigma_{c,sup, Trave} &= \\ \Delta\sigma_{c,inf, Trave} &= \\ \Delta\sigma_{c,yGp} &= \\ \Delta\sigma_{pl,v} &= \\ \end{split}$	MPa	1.71 1.70 0.01 -0.01 -0.01 0.03 Evenute 0.29 0.52	-0.41 0.07 0.01 1.86 1.00 -5.39 -2.06 -1.32	-0.80 0.01 2.79 1.84 -9.90 -3.18 -2.19	-1.48 0.01 3.56 2.35 -12.63 -4.07 -2.87	Variazione di tensione Lembo inf. soletta Variazione di tensione Lembo sup. trave Variazione di tensione Lembo inf. trave Variazione di tensione fibra corrisp. al cavo Variazione di tensione nel cavo tensione Lembo sup. soletta tensione Lembo inf. soletta
$\begin{split} \Delta\sigma_{c,\text{sup, Sol}} &= \\ \Delta\sigma_{c,\text{inf, Sol}} &= \\ \Delta\sigma_{c,\text{inf, Sol}} &= \\ \Delta\sigma_{c,\text{sup, Trave}} &= \\ \Delta\sigma_{c,\text{inf, Trave}} &= \\ \Delta\sigma_{c,\text{yGp}} &= \\ \Delta\sigma_{p,\text{iv}} &= \\ \end{split}$	MPa	1.71 1.70 0.01 -0.01 -0.03 Evenute 0.29 0.52 -0.83	-0.41 0.07 0.01 1.86 1.00 -5.39 -2.06 -1.32 -6.19	-0.80 0.01 2.79 1.84 -9.90 -3.18 -2.19 -9.38	-1.48 0.01 3.56 2.35 -12.63 -4.07 -2.87 -10.90	Variazione di tensione Lembo inf. soletta Variazione di tensione Lembo sup. trave Variazione di tensione Lembo inf. trave Variazione di tensione fibra corrisp. al cavo Variazione di tensione nel cavo tensione Lembo sup. soletta tensione Lembo sup. trave




test cls sup.soletta	-	ок	ОК	ОК	ОК	σ^*_{c} < 0,4 x f _{ck} ?
test cls inf.soletta	-	ОК	ОК	ОК	ОК	$\sigma_{c}^{*} < 0.4 \text{ x f}_{ck}$?
test cls sup.	-	ОК	ок	ОК	ОК	$\sigma_{c}^{*} < 0.4 \text{ x f}_{ck}$?
test cls inf.compr.	-	ОК	ок	ОК	ОК	$\sigma_{c}^{*} < 0.4 \text{ x f}_{ck}$?
test cls inf.trazione	-	ОК	ок	ОК	ОК	σ* _{c,} >0 ?
test precompr.	-	ОК	ОК	ОК	ОК	$\sigma^*_p < \sigma_{p0,max}$?

Si riportano di seguito gli andamenti delle tensioni al termine della fase 2.

Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario:

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA

ITINERA

LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

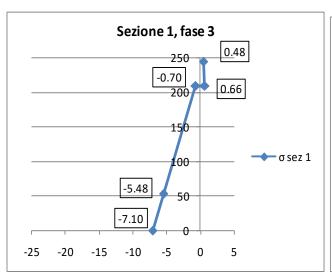
Α

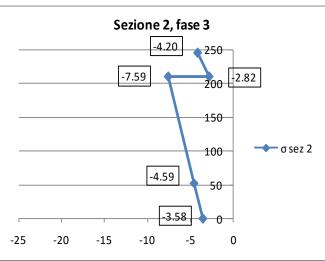
IF1N 01

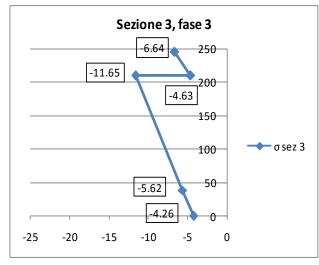
E ZZ CL

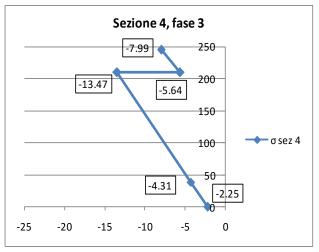
VI 00 07 001

64 di 128


8.2.7 FASE 3


Relazione di Calcolo


Sezione	-	1	2	3	4	7
ascissa x	[m]	0.75	2.55	8.35	12.15	
Sollecitazioni di fa	se 3	_		_	_	
ψ_2	-	1.00	1.00	1.00	1.00	Coeff. di combinazione carico variabile
M _Q	[kN-m]	-312	3071	4986	5642	Momento dovuto ai carichi variabili - L=L _{appoggi}
M _{Permanenti}	[kN-m]	0	0	0	0	Momento dovuto ai carichi permanenti
Tensioni totali di F	ase 3					
$\Delta\sigma_{c,sup, Sol} =$	MPa	0.29	-2.06	-3.18	-4.07	Variazione di tensione Lembo sup. soletta
$\Delta\sigma_{c,inf, Sol}$ =	MPa	0.52	-1.32	-2.19	-2.87	Variazione di tensione Lembo inf. soletta
$\Delta\sigma_{c,sup, Trave} =$	MPa	-0.83	-6.19	-9.38	-10.90	Variazione di tensione Lembo sup. trave
$\Delta\sigma_{c,inf, Trave} =$	MPa	-6.88	-6.66	-9.13	-7.77	Variazione di tensione Lembo inf. trave
$\Delta\sigma_{c,yGp}$ =	MPa	-5.35	-6.54	-9.18	-8.34	Variazione di tensione fibra corrisp. al cavo
$\Delta\sigma_p$ =	МРа	0.70	-10.47	-19.13	-21.65	Variazione di tensione nel cavo
				<u> </u>	Т	
Tensioni totali	1		1			
$\sigma_{c,sup, Sol} =$	MPa	0.48	-4.20	-6.64	-7.99	tensione Lembo sup. soletta
$\sigma_{c,inf, \; Sol} =$	MPa	0.66	-2.82	-4.63	-5.64	tensione Lembo inf. soletta
$\sigma_{c,sup, Trave} =$	MPa	-0.70	-7.59	-11.65	-13.47	tensione Lembo sup. trave
$\sigma_{\text{c,inf, Trave}} =$	MPa	-7.10	-3.58	-4.26	-2.25	tensione Lembo inf. trave
$\sigma_{c,yGp}$ =	MPa	-5.48	-4.59	-5.62	-4.31	tensione fibra corrisp. al cavo
σ_p =	MPa	-683.04	-1366.80	-1352.61	-1359.84	tensione nel cavo
test cls sup.soletta	-	ОК	ОК	ОК	ОК	σ^*_{c} < 0,4 x f _{ck} ?
test cls inf.soletta	-	ОК	ОК	ОК	ОК	$\sigma^*_{c} < 0.4 \text{ x f}_{ck}$?
test cls sup.	-	ОК	ОК	ОК	ОК	σ^*_{c} < 0,4 x f _{ck} ?
test cls inf.compr.	-	ОК	ОК	ОК	ОК	$\sigma^*_{c} < 0.4 \text{ x f}_{ck}$?
test cls inf.trazione	-	ОК	ОК	ОК	ОК	σ* _{c,} >0 ?
test precompr.	-	ОК	ОК	ОК	ОК	σ^*_{p} < $\sigma_{p0,max}$?



Si riportano di seguito gli andamenti delle tensioni al termine della fase 3.

8.3 VERIFICHE A FESSURAZIONE

Le combinazioni SLE Frequenti presentano sollecitazioni inferiori a quelle delle combinazioni Rare analizzate nelle verifiche tensionali sopra riportate.

Secondo il §4.1.2.2.4.1 delle Norme Tecniche lo stato limite di formazione delle fessure si ha quando la tensioni massima di trazione della sezione supera

$$\frac{f_{ctm}}{1.2} = 3.2 \text{ MPa}, \text{ per la trave in cap}$$

$$\frac{f_{\text{ctm}}}{1.2} = 2.5 \text{ MPa, per la soletta in ca}$$

Le tensioni relative alla trave in cap non sono mai di trazione.

La tensioni massime di trazione per la soletta sono le seguenti:

- $\sigma_{c,sup, Sol} = 0.48$ MPa sezione di appoggio (x=0.75m)
- $\sigma_{c,inf, Sol} = 0.66$ MPa sezione di appoggio (x=0.75m)

Si ha quindi che le combinazioni frequenti non portano mai alla formazione di fessure in quanto già nelle combinazioni rare la tensione massima non supera il valore sopra riportato.

9 EFFETTI GLOBALI SU IMPALCATO – VERIFICHE AGLI SLU

Si riporta di seguito la verifica allo SLU per presso-flessione retta della sezione 4 (mezzeria) della trave composta di bordo, che è risultata la più sollecitata.

Si riporta inoltre la verifica a taglio con le sollecitazioni di taglio massime (zona di appoggio) dedotta dai modelli di calcolo. A vantaggio di sicurezza è stata considerata comunque la sezione resistente corrispondente alla sezione corrente.

9.1 SOLLECITAZIONI A PRESSOFLESSIONE

Si riportano di seguito le sollecitazioni riscontrate nella sezione di verifica, dovute ai carichi elementari precedentemente descritti.

Fase 1 – peso proprio e getto della soletta

$$M = (M_{pp} + M_{soletta}) * \gamma = (2016+2135) * 1.35 = 5603.5 \text{ kNm}$$

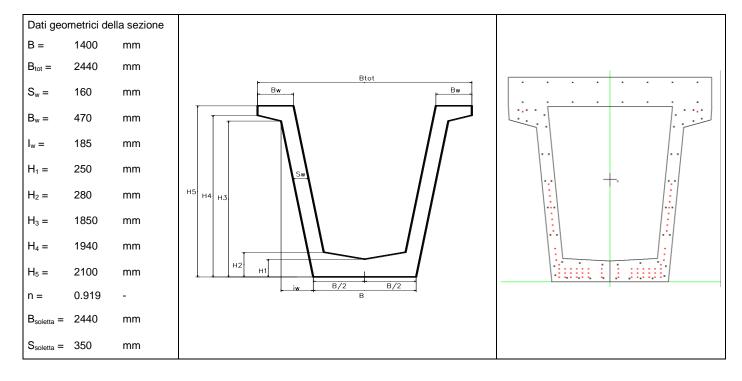
 $N = 0$

Fase 2 e 3 - carichi permanenti portati e di esercizio

Di seguito si valutano momento e sforzo assiale complessivo nella condizione più gravosa.

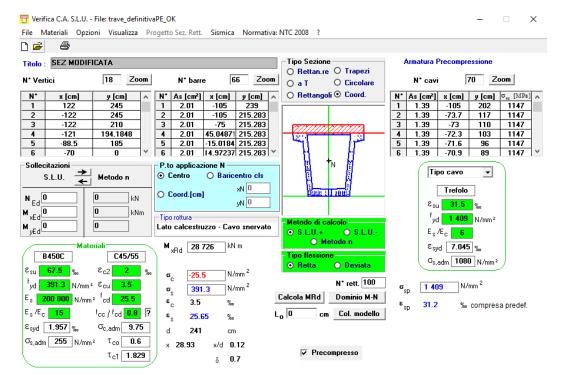
$$M_{E,d} = 14560 + 5603 = 20164$$
 kNm (somma delle 3 fasi)
 $N_{E,d}$ max = 1414 kN (somma delle 3 fasi)

Ghella CONSORZIO CFT PIZZAROTTI FORMANALI 1710	I° LOTTO VARIANTE	O TRATT FUNZIO ALLA I	A CANCEL NALE CAN LINEA ROM	LO-BENEVENTO ICELLO-FRASS IA-NAPOLI VIA IGETTO DEFINI	O TELI	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	68 di 128

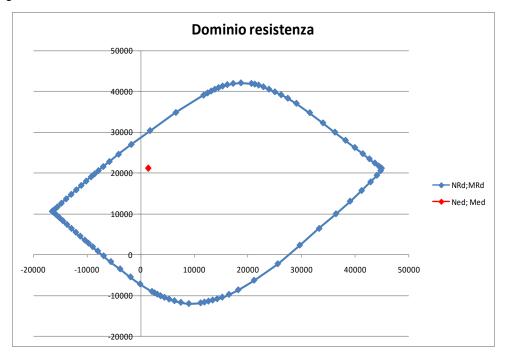

9.2 VERIFICHE DI RESISTENZA

Si riportano di seguito le verifiche tensionali previste per gli SLU. Tali verifiche sono state realizzate con le sollecitazioni a tempo infinito, ossia considerando già avvenute integralmente le perdite di precompressione.

I cavi di precompressione presenti nella sezione di verifica, a cadute lente esaurite, sono soggetti ad una deformazione media ϵ_{p0} che risultata pari a 6.7%, a fronte di una ϵ di snervamento, che essendo la E dell'acciaio 195000 MPa e la f_{ptk} / 1.15 = 1617 MPa, è uguale all' 8.3%.


9.2.1 VERIFICA A PRESSOFLESSIONE

In riferimento al seguente schema, si riportano le caratteristiche geometriche della sezione.



Nella verifica si è tenuto conto anche della presenza di armatura lenta, in riferimento allo schema sopra riportato (φ16 soletta, φ10 trave cap, disposti come in figura).

Si ottiene il seguente dominio di resistenza:

Come si osserva dal grafico sopra riportata, le sollecitazioni ricadono all'interno del dominio di resistenza, quindi la verifica è soddisfatta.

La deformazione dei trefoli è pari a 2.74%, inferiore al limite ultimo ε_{su} = 3.15%, per cui anche questa ulteriore verifica risulta soddisfatta.

9.3 SOLLECITAZIONI A TAGLIO

Si riportano di seguito le sollecitazioni riscontrate nella sezione di verifica, dovute ai carichi elementari precedentemente descritti.

Fase 1 – peso proprio e getto della soletta

$$V = (V_{pp} + V_{soletta}) * \gamma = (367+376) * 1.35 = 1003 kN$$

 $N = 0$

Fase 2 e 3 – carichi permanenti portati e di esercizio

$$V_{es,SLU} = V_{traffico}^* \ \gamma_{traffico} + V_{vento}^* \ \gamma_{vento} + V_{termica}^* \ \gamma_{termica} = \\ = 748 * 1.45 + 5 * 0.6 + 0 = 1081 \ kN \\ V = V_{perm}^* \ \gamma_{perm} + V_{es,SLU} = 510 * 1.5 + 1081 = 1846 \ kN$$

Il taglio complessivo nella condizione più gravosa è pari a:

$$V_{Ed_SLU} = 1003 + 1846 = 2849 \text{ kN}$$

La tensione di compressione presente è pari a σ_{cp} = 15.87 MPa

9.4 SOLLECITAZIONI DI TORSIONE

Di seguito si riportano le sollecitazioni di torsione agenti sulla trave di bordo, considerata nella verifica di taglio/torsione.

$$T_{Ed_SLU} = T_{perm} * \gamma_{perm} + T_{traffico} * \gamma_{traffico} * \gamma_{vento} * \gamma_{vento} * T_{termica} * \gamma_{termica} = 57 \text{ kN}$$

9.5 VERIFICHE DI RESISTENZA

Si riportano di seguito le verifiche previste per gli SLU.

9.5.1 VERIFICA A TAGLIO

Resist. Caratteristica	fck	45	N/mm2
	fcd	26	N/mm ²
larghezza membratura resistente a V	bw	320	mm
altezza membratura resistente a V	Н	2450	mm
copriferro	С	50	mm
altezza utile	d	2400	mm
area della sezione	Ac	768000	mm2
tensione di compressione media da precompressione	σср	15.87	N/mm ²
	αc	0.94	
Acciaio B450C	fyk	450	N/mm ²
tensione limite	fyd	391	N/mm ²
diametro staffe (spille)	øw	14	mm
Area staffa (spilla)	Aøw	154	mm^2
0.9 d	Z	2160	mm
passo delle staffe (spille)	SW	125	mm
	n° bracci	4	
	Λ	4.5	•
angolo di indinazione	θ	45	
angolo di inclinazione deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
_	•		•
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	•
deve essere compreso tra 1 e 2.5	cot(θ) α	1.00 90	mm²/mm
deve essere compreso tra 1 e 2.5	$\cot(\theta)$ α $\cot(\alpha)$	1.00 90 0.00	

Taglio resistente per "taglio trazione"	VRsd	4164	kN
Taglio resistente per "taglio compressione"	VRcd	4160	kN
Taglio resistente minimo tra VRsd, VRcd	Vrd	4160	kN

 $V_{Ed_SLU} = 2849 \text{ kN}$

La verifica risulta pertanto soddisfatta.

9.5.2 VERIFICA A TORSIONE

Resist. Caratteristica	fck	45	N/mm ²
	fcd	26	N/mm ²
altezza membratura resistente a T	Н	2450	mm
copriferro	C	50	mm
altezza utile	d	2400	mm
area racchiusa perimetro medio	A	3256759	mm ²
spessore minimo parete sezione cava	t	160	mm
perimetro medio sezione cava	um	7951	mm
tensione di compressione da precompressione	σcp	15.87	N/mm ²
		0.94	. 1
Acciaio B450C	fyk	450	N/mm ²
	fyd	391	N/mm ²
diametro barre long	øl	10	mm
numero barre long	nl	70	
area armatura long	Al	5495	mmq
diametro staffe (spille)	øw	14	mm
Area staffa (spilla)	Aøw	154	mm ²
0.9 d	Z	2160	mm
passo delle staffe (spille)	SW	125	mm
	n° bracci	2	
angolo di indinazione	θ	45	•
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura	α	90	•
	cot(a)	0.00	
	Asw/sw	2.46	mm²/mm

Torsione resistente per "taglio compressione"	TRcd	6644	kNm
Torsione resistente per "taglio trazione armatura trasv"	TRsd	6278	kNm
Torsione resistente per "taglio trazione armatura long"	TRId	1762	kNm
Torsione resistente minimo tra Trsd, Trcd, Trld	Trd	1762	kN

 $T_{Ed_SLU} = 57 \text{ kN}$

La verifica risulta pertanto soddisfatta.

2 Ghella ITINERA	I° LOTTO VARIANTE	TRATT FUNZIO ALLA L	A CANCELI NALE CAN INEA ROM	LO-BENEVENTO CELLO-FRASSO IA-NAPOLI VIA IGETTO DEFINIT	CASSI	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	74 di 128

9.5.3 VERIFICA A TAGLIO-TORSIONE

In riferimento alle sollecitazione e alle resistenze precedentemente calcolate, si riporta la verifica a tagliotorsione prevista dalla normativa (punto b del par. 4.1.2.1.4 del D.M. 14/01/2008).

$$\frac{T_{Ed}}{T_{Rcd}} + \frac{V_{Ed}}{V_{Rcd}} = \frac{57}{6644} + \frac{2849}{4160} = 0.693 \le 1$$

La verifica è soddisfatta.

	ITINERARIO RADDOPPI			LO-BENEVENT)	
Ghella CONSORZIO CFT PIZZAROTTI PORDALANLI UNI	VARIANTE	ALLA L	INEA ROM	ICELLO-FRASS IA-NAPOLI VIA IGETTO DEFINI	CASS	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	75 di 128

10 TRASVERSI – VERIFICHE TENSIONALI AGLI SLE

Si riportano di seguito le verifiche di resistenza per i trasversi. Si considera solamente il trasverso di testata, nella condizione di sollevamento che è la più gravosa per questo elemento strutturale. Tale scenario è stato considerato come condizione eccezionale.

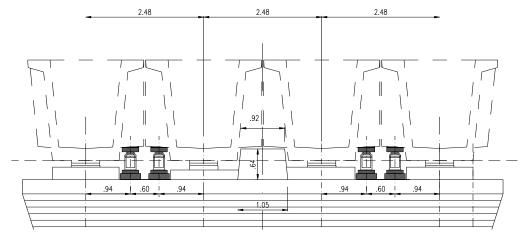


Figura 28 – Posizionamento dei martinetti per il sollevamento dell'impalcato

Per il calcolo delle sollecitazioni si è adottato un modello di calcolo che considerasse il posizionamento dei martinetti per il sollevamento (come indicato nell'immagine sopra riportata) nella condizione di carico G1+G2.

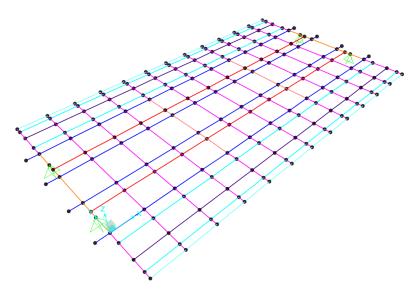


Figura 29 – Modello di calcolo – appoggi in corrispondenza dei punti di sollevamento

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL Ghella ITINERA NSORZIO CFT **COMUNE DI MADDALONI - PROGETTO DEFINITIVO** PIZZAROTTI COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: IF1N E ZZ CL VI 00 07 001 Α 76 di 128 Relazione di Calcolo

Si riportano di seguito le caratteristiche principali del traverso:

Altezza: 1.83 m Spessore soletta: 0.35 m Spessore trasverso: 0.35 m

Precompressione superiore: 1 cavo da 7 trefoli da 0.6"

Distanza cavo superiore da estradosso traverso: 0.3 m

Precompressione inferiore: 1 cavo da 7 trefoli da 0.6"

Distanza cavo inferiore da estradosso traverso: 1.6 m

Si effettuano le verifiche relative alle fasi T = 0, $T = \infty$ e in condizioni di esercizio.

Nelle fasi T=0 e T=∞ si considera la sola porzione del trasverso composta dal prefabbricato. In esercizio si considera anche il contributo della soletta.

Nella figura seguente è riportata la geometria della sezione considerata in fase di esercizio. La verifica della sezione di trasverso forata non viene considerata in fase di esercizio, in quanto lo scenario di progetto (sollevamento con martinetti) comporta sollecitazioni non significative nelle zone interne alle travi in c.a.p.

Figura 30 – Sezione rettangolare trasverso a T=0 e T=infinito

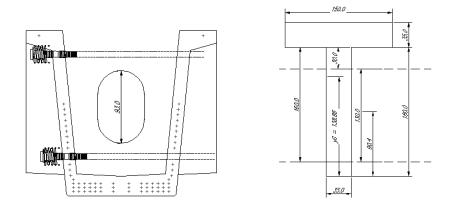


Figura 31 – Sezione trasverso in condizione di esercizio

Si adottano i seguenti limiti:

- Limite di compressione per T=0: 0.6*fck = 27MPa
- Limite di compressione per T=infinito e in condizione di esercizio: 0.4*fck = 18MPa
- Limite di trazione per il cap = 0 MPa (il calcestruzzo dell'elemento precompresso non va mai in trazione)

VERIFICA TRASVERSO T=0

Geometria - sezione rettangolare

sp. traverso	350	mm	spessore trasverso
h rettangolo	1800	mm	altezza sezione rettangolare (T=0)
h totale	2150	mm	altezza sezione a T (T=infinito)
sp. soletta	350	mm	spessore soletta
L sol	1500	mm	larghezza soletta

sezione piena

A _{sez.piena} 630000 mmq area sezione piena	
J _{sez,piena} 1.701E+11 mm ⁴ momento d'inerzia sezione	piena
yG sez.piena 900 mm baricentro sezione piena	
W _{sup} -189000000 mmc modulo di resistenza supe	riore
W _{inf} 189000000 mmc modulo di resistenza inferi	ore

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario:

ITINERA

LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

Α

Relazione di Calcolo

Ponti e Viadotti di Linea

COMMESSA IF1N

E ZZ CL

VI 00 07 001

78 di 128

sezione cava

COLIGINO GUVU			
h foro	930	mm	altezza foro trasverso
y sup foro	1301	mm	quota superiore foro
y inf foro	371	mm	quota inferiore foro
A _{sez.cava}	325500	mmq	area sezione cava
J _{sez.cava}	1.44E+11	mm^4	momento d'inerzia sezione cava
yG sez.cava	968	mm	baricentro sezione cava
W_{sup}	-1.49E+08	mmc	modulo di resistenza superiore
W_{inf}	1.73E+08	mmc	modulo di resistenza inferiore
σ_{p0}	1300	MPa	tensione cavi
A _{trefoli}	139	mmq	area trefolo
Ntrefoli,sup	7	-	numero trefoli cavo sup
N _{trefoli,inf}	7	-	numero trefoli cavo inf
A _{cavo,sup}	973	mmq	Area cavo sup
A _{cavo,inf}	973	mmq	Area cavo inf
$N_{\text{cavo,sup}}$	-1264.9	kN	tiro cavo sup
$N_{\text{cavo,inf}}$	-1264.9	kN	tiro cavo inf
e cavo,sup	-600	mm	eccentricità cavo sup (>0)
ecavo,inf	700	mm	eccentricità cavo inf (<0)

Sollecitazioni a T=0

N	-2529.8	kN	N di precompressione totale
M	-126.5	kNm	M di precompressione totale
Mest	0	kNm	M di precompressione esterno

Tensioni a T=0

sezione piena

$\sigma_{\text{co,sup}}$	-3.35	MPa	tensione lembo sup
Ω co inf	-4.68	MPa	tensione lembo inf.

sezione cava

$\sigma_{\text{co,sup}}$	-6.92	мРа	tensione lembo sup.
$\sigma_{\text{co,inf}}$	-8.50	MPa	tensione lembo inf.

Nelle successive fasi si considerano le seguenti perdite di precompressione dei trefoli:

PERDITE ELASTICHE TREFOLI

N prec	2529.8	kN
Ep	195000	MPa
Ecap	36283	MPa
Ар	1946	mmq
np	5.4	
μί	0.00304	
yi	3.9	mm
Np0	2488	kN
ΔNp elast	41	kN
Δσp elast	21	MPa

PERDITE PER RITIRO

ε rit	3.45E-04
ΔN rit [kN]	130.9
Δσp,rit [MPa]	67

PERDITE VISCOSE

φ visc	2.43
σ qperm [MPa]	-3.95
φ εsp	2.65E-04
ΔNp,visc	100.5
Δσp,visc	52

PERDITE PER RILASSAMENTO

1300	MPa
1860	MPa
2.5	%
5.00E+05	ore
0.7	-
150	KN
5.9%	-
	1860 2.5 5.00E+05 0.7 150

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL VI 00 07 001 A 80 di 128

PERDITE TOTALI

perdite totali 217 MPa σ finale 1083 MPa

VERIFICA TRASVERSO T=inf

Geometria - sezione a rettangolare

sp. traverso	350	mm	spessore trasverso
h rettangolo	1800	mm	altezza sezione rettangolare (T=0)
h totale	2150	mm	altezza sezione a T (T=infinito)
sp. soletta	350	mm	spessore soletta
L sol	1500	mm	larghezza soletta

ITINERA

sezione piena

A _{sez.piena}	630000	mmq	area sezione piena
J sez.piena	1.701E+11	mm^4	momento d'inerzia sezione piena
yG sez.piena	900	mm	baricentro sezione piena
W_{sup}	-189000000	mmc	modulo di resistenza superiore
W_{inf}	189000000	mmc	modulo di resistenza inferiore

sezione cava

h foro	930	mm	altezza foro trasverso
y sup foro	1301	mm	quota superiore foro
y inf foro	371	mm	quota inferiore foro
A _{sez.cava}	325500	mmq	area sezione cava
J _{sez.cava}	1.44E+11	mm^4	momento d'inerzia sezione cava
yG sez.cava	968	mm	baricentro sezione cava
W_{sup}	-1.49E+08	mmc	modulo di resistenza superiore
W_{inf}	1.73E+08	mmc	modulo di resistenza inferiore
σ_{p0}	1083	MPa	tensione cavi
A _{trefoli}	139	mmq	area trefolo
n _{trefoli,sup}	7	-	numero trefoli cavo sup
n _{trefoli,inf}	7	-	numero trefoli cavo inf

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	81 di 128

Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo
--

$A_{cavo,sup}$	973	mmq	Area cavo sup
$A_{\text{cavo,inf}}$	973	mmq	Area cavo inf
$N_{\text{cavo},\text{sup}}$	-1053.610	kN	tiro cavo sup
$N_{\text{cavo,inf}}$	-1053.610	kN	tiro cavo inf
e cavo,sup	-600	mm	eccentricità cavo sup (>0)
e cavo,inf	700	mm	eccentricità cavo inf (<0)
y cavo	904	mm	

Sollecitazioni a T=inf

N	-2107.2	kN	N di precompressione totale
M	-105.4	kNm	M di precompressione totale
M _{est}	0	kNm	M di precompressione esterno

Tensioni a T=inf

sezione piena

$\sigma_{\text{co,sup}}$	-2.79	MPa	tensione lembo sup.
$\sigma_{\text{co,inf}}$	-3.90	MPa	tensione lembo inf.

sezione cava

$\sigma_{\text{co,sup}}$	-5.67	MPa	tensione lembo sup.
$\sigma_{\text{co,inf}}$	-7.08	MPa	tensione lembo inf.

VERIFICA TRASVERSO M est

Geometria - sezione a T

sp. traverso	350	mm	spessore trasverso
h rettangolo	1800	mm	altezza sezione rettangolare (T=0)
h totale	2150	mm	altezza sezione a T (T=infinito)
sp. soletta	350	mm	spessore soletta
L sol	1500	mm	larghezza soletta
			armatura lenta soletta omogen al cls di
arm sol omog	20936	mmq	сар
arm prec omog	10459	mmq	armatura prec omogen al cls di cap
yG arm lenta	1975	mm	baricentro armatura lenta
yG arm prec	850	mm	baricentro armatura precompress
Asez.piena cls	1155000	mmq	area sezione piena

Ghella

Relazione di Calcolo

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario:	IF1N	01	E ZZ CL	VI 00 07 001	Α	82 di 128

(compressione)

A _{sez.tot} omog	1186395	mmq	
J _{sez.piena}	5.06E+11	mm^4	momento d'inerzia sezione piena
yG sez.piena	1388.64	mm	baricentro sezione piena
yG omog	1394.24	mm	baricentro sezione piena omogen
W _{sup soletta}	-6.70E+08	mmc	
W_{sup}	-1.25E+09	mmc	modulo di resistenza superiore
W_{inf}	3.63E+08	mmc	modulo di resistenza inferiore

Sollecitazioni a T=0

N	0	kN	N di precompressione totale
М	0	kNm	M di precompressione totale
M _{est}	-1877.6	kNm	M esterno G1 + G2

Tensioni a T=0 sezione piena

$\sigma_{\text{co,sup,sol}}$	2.80	MPa	
$\sigma_{\text{co,sup}}$	1.50	MPa	tensione lembo sup.
$\sigma_{\text{co,inf}}$	-5.17	MPa	tensione lembo inf.

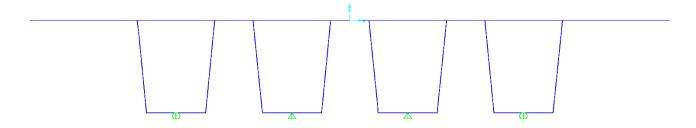
Le tensioni totali sono le seguenti.

Sezione piena:

 $\sigma_{\text{co,inf}} =$

$\sigma_{\text{co,sup,sol}} =$	2.80 MPa	(trazione)
$\sigma_{\text{co,sup}} =$	- 2.79 + 1.50 = - 1.28 MPa	(compressione)
$\sigma_{\text{co,inf}} =$	- 3.90 - 5.17 = - 9.07 MPa	(compressione)
Sezione cava:		
$\sigma_{\text{co,sup,sol}} =$	2.80 MPa	(trazione)
$\sigma_{\text{co,sup}} =$	- 5.76 + 1.50 = - 4.26 MPa	(compressione)

-8.50 - 7.08 = -12.25 MPa


Le verifiche risultano soddisfatte.

11 EFFETTI LOCALI SULL'IMPALCATO – MODELLO TRASVERSALE

La valutazione degli effetti locali prodotti dalle azioni di progetto è stata effettuata mediante un modello a telaio, riferito ad una striscia di impalcato avente larghezza pari a 1 m. Il modello riproduce la geometria e la rigidezza degli elementi che costituiscono l'impalcato nella sua sezione corrente.

Di seguito si riporta una vista del modello di calcolo.

11.1 ANALISI DEI CARICHI

Di seguito si riporta l'analisi delle azioni considerate e applicate al modello di calcolo per l'analisi degli effetti locali trasversali sull'impalcato, in riferimento a quanto descritto al capitolo 6 della presente relazione.

11.1.1 PESO PROPRIO (G1)

Il peso proprio delle strutture viene considerato automaticamente dal software di calcolo utilizzato. Il carico delle strutture in c.a. e c.a.p. viene valutato considerando un peso di volume pari a 25 kN/mc.

11.1.2 MASSICCIATA, ARMAMENTO E IMPERMEABILIZZAZIONE

A vantaggio di sicurezza si valuta l'azione sulla soletta di impalcato in riferimento al peso di volume in curva:

 $G_{2,1} = 20.00 * 0.80 * 1.0 = 16.00 \text{ kN/m}$

11.1.3 BARRIERE ANTIRUMORE

Si considera un carico relativo alle barriere antirumore pari a 4.0 kN/mq. Considerando cautelativamente un'altezza massima di barriera pari a 5.0 m, si ottiene un carico lineare pari a:

 $G_{2,2}$ = $q_{barriere}$ = 4.0 * 5.0 = 20 kN/m per ogni lato dell'impalcato

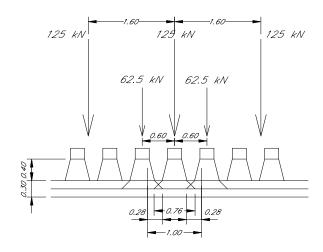
Vengono quindi applicate due azioni concentrate pari a 20 kN in posizione corrispondente a ogni barriera.

11.1.4 CANALETTE IMPIANTI E IMPIANTI

A ridosso dei muretti paraballast, sono previste delle canalette impianti sui lati esterni. Si assume un carico lineare uniforme pari a:

 $G_{2,3} = q_{canalette} = 2.50 \text{ kN/m per ogni lato dell'impalcato}$

Vengono quindi applicate due azioni concentrate pari a 2.50 kN in posizione corrispondente a ogni barriera.


11.1.5 CARICHI VERTICALI DA TRAFFICO

Si considera il treno di carico LM71, che è il carico più gravoso.

 $Q_{vk} = 250 \text{ kN}$

 α = 1.1 (coefficiente di adattamento)

Nella seguente figura è indicata la distribuzione longitudinale dei carichi assiali Q_{vk} nell'ipotesi di ripartizione nel ballast 4:1 e nella soletta 1:1 ipotizzata ad altezza costante e pari a 0.30 m.

 $Q'_{vk} = (125 + 62.5 * 2 * 0.28 / 0.76) / 1.00 = 171.1 kN/m$

Il carico appena calcolato si ripartisce trasversalmente (4:1 nel ballast e 1:1 nella soletta) per una larghezza pari a:

L = 2.4m + 0.4m/4*2 + 0.3m/2*2 = 2.90 m.

Il carico sul modello è quindi pari a:

 $q_{vk} = 171.1 / 2.90 = 59 \text{ kN/mq}$

Tale valore deve essere amplificato per il fattore α pari a 1.1.

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	85 di 128

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

Sono state considerate tre diverse posizioni del carico, corrispondenti alla posizione centrata e a quelle con massima eccentricità. Di seguito si calcolano le distanze dall'asse del ponte per i tre casi.

ITINERA

$$d_0 = (4.00/2 + 0.06 + 0.08) = 2.14 \text{ m}$$

$$d_1 = (4.00/2) = 2.00 \text{ m}$$

$$d_2 = (4.00/2 - 0.06 - 0.08) = 1.86 \text{ m}$$

con

- 4.00m interasse binari
- 0.06m scostamento in pianta per effetto della curvatura del tracciato e della pendenza del ballast
- 0.08 = s/18 eccentricità treni tipo LM71

11.1.6 CARICHI SUI MARCIAPIEDI

I carichi accidentali sui marciapiedi (di larghezza 1m ciascuno) sono schematizzati da un carico concentrato pari al valore:

$$Q_M = 10 \text{ kN/mq} * 1\text{m} * 1\text{m} = 10 \text{ kN}$$

11.1.7 FORZA CENTRIFUGA

Considerando il carico tipo 3 del precedente paragrafo 6.3.3 e considerando la stessa legge di ripartizione utilizzata per i carichi verticali concentrati si ottiene la seguente azione orizzontale.

$$q_{vk} = 180^2 / (127 * 1550) * 1 * 171.1 / 2.90 = 28.16kN/m / 2.90m = 9.71kN/mq$$

La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1.80 m al di sopra del P.F.

Considerando un sovralzo di 0.105 m e un distanza PF-estradosso soletta pari a 0.90 m si ottiene la quota di applicazione dell'azione centrifuga rispetto al piano medio della soletta:

$$h_t = 1.80 + (0.30/2) + (0.105/2) + 0.90 = 2.90 \text{ m}$$

Il momento da applicare al modello è pari a

$$Mt = 10.83 * 2.90 = 31.41 \text{ kNm/m}$$

Tale momento viene applicato al modello come distribuzione a farfalla di carichi verticali. Le tensioni massime alle estremita della larghezza b di applicazione del carico è calcolata di seguito.

$$q_{max} = 6 * Mt / (b * b) = 6 * 31.41 / (2.902) = 22.4 kN/m$$

11.1.8 SERPEGGIO

Il valore caratteristico di tale forza è stato assunto assunto pari a Qsk=100 kN. Tale valore deve essere moltiplicato per α , ma non per il coefficiente di incremento dinamico. Si considera una larghezza di diffusione pari a 1.96 m.

$$q_{vk} = 100 / 1.96 = ~50 \text{ kN/m}$$

La quota di applicazione dell'azione rispetto al piano medio della soletta è pari a:

$$h_t = (0.30/2) + (0.105/2) + 0.90 = 1.10 \text{ m}$$

Il momento da applicare al modello è pari a

$$Mt = 50 * 1.10 = 55.0 kNm/m$$

Tale momento viene applicato al modello come distribuzione a farfalla di carichi verticali. Le tensioni massime alle estremità della larghezza b di applicazione del carico è calcolata di seguito.

$$q_{max} = 6 * Mt / (b^2) = 6 * 55.0 / (2.90^2) = 39.24 kN/m$$

11.1.9 AVVIAMENTO E FRENATURA

Si trascurano gli effetti delle azioni di avviamento e frenatura.

11.1.10 AZIONI DINAMICHE

Si considera un coefficiente di amplificazione dinamica pari a: $\varphi_3 = 1.854$.

Avendo considerato la luce della soletta tra le nervature delle travi principali pari a 1.50 m. (Vedi paragrafo 6.4).

11.1.11 AZIONI DOVUTE AL DERAGLIAMENTO

Vedi paragrafo 6.5.

11.1.12 AZIONI CLIMATICHE

Si considera una variazione termica uniforme pari a ±15°C.

Si è considerato un gradiente termico lineare di 5°C nello spessore delle pareti tra esterno ed interno dei cassoncini.

(Vedi paragrafo 6.7).

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	87 di 128

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

11.1.13 VENTO

Si assume convenzionalmente una pressione uniforme agente lateralmente pari a 2.50 kN/mq.

ITINERA

11.1.13.1 VENTO A STRUTTURA SCARICA

In riferimento allo schema riportato nel paragrafo 6.7.3 si applicano le seguenti azioni sulla struttura.

Azione applicata sulla trave

F1 = 2.50 * 2.60 = 6.50 kN/m

Le azioni sono applicate in corrispondenza del baricentro della trave, percui riferendosi al baricentro della soletta si ha anche un effetto torcente:

M1 = 6.50 * 2.6/2 = 8.45 kNm/m

Azione applicata sulla barriera

F2 = 2.50 * 5.00 = 12.50 kN/m

Le azioni sono applicate nel nodo corrispondente alla posizione della barriera, percui riferendosi al baricentro della soletta si ha:

M2 = 12.50 * 5.00 / 2 = 31.25 kNm/m

In definitiva l'effetto complessivo è:

F = 6.50 + 12.50 = 19 kN/m

M = 8.45 - 31.25 = -22.8 kNm/m

L'azione di omento torcente viene applicata al modello come tira e spingi ottenuto dal rapporto tra M e la distanza tra i punti di applicazione.

11.1.13.2 VENTO A STRUTTURA CARICA

Si applicano le seguenti azioni sulla struttura.

F = 2.50 * 4.00 = 10.0 kN/m

La quota di applicazione dell'azione rispetto al piano medio della soletta è pari a:

 $h_w = 4.0/2 + (0.30/2) + (0.105/2) + 0.90 = 3.10 \text{ m}$

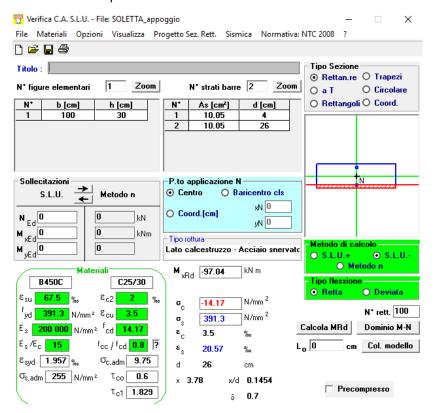
M = 10.0 * 3.1 = 31.0 kNm/m

11.2 VERIFICHE SLU

Si riporta di seguito la verifica a pressoflessione retta delle sezioni più significative della soletta superiore.

Le sollecitazioni considerate nelle verifiche si riferiscono all'inviluppo delle massime sollecitazioni corrispondenti alle combinazione di carico previste.

11.2.1 SEZIONE DI INCASTRO DELLO SBALZO


11.2.1.1 VERIFICA A PRESSOFLESSIONE

Mmax = -90 kNm/m

Sezione h = 30cm

Armatura: ϕ 16/20 strato sup.

 ϕ 16/20 strato inf.

 $M_{Rd} = -97.04 \text{ kNm/m}$

Verifica soddisfatta.

11.2.1.2 VERIFICA A TAGLIO

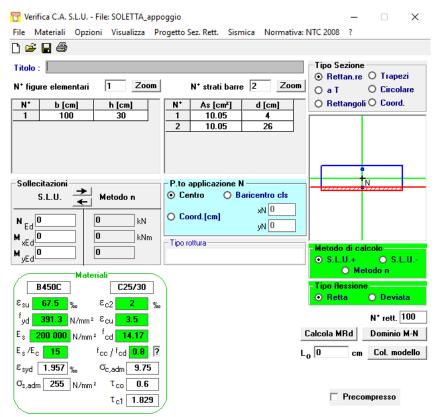
Verifca a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

Classe cls	f _{ck}	32.0	N/mm ²
coeff. parziale	Уc	1.5	
resistenza di calcolo	f _{cd}	18	N/mm2
larghezza membratura resistene	b _w	1000	mm
altezza membratura resistene	Н	280	mm
altezza utille	d	250	mm
area della sezione	A _{TOT}	250000	mm ²
diametro ferro longitudinale	øl	16	mm
area armatura	Α	201.1	mm ²
	strato	1	
	passo	200	mm
	n _# /strato	4	
area armatura totale	Al	804	mm^2
percentuale di armatura	ρl	0.0032	
sforzo assiale dovuto ai carichi o precompressione	N	-5700	N
	$\sigma_{\sf cp}$	-0.02	N/mm ²
	k	1.89	
	V _{min}	0.52	
	V _{Rd1}	123	kN
	V_{Rd2}	128.30	kN
taglio resistente	V_{Rd}	128	kN
		>	
taglio sollecitante	V _{Ed}	58	kN

verifica

11.2.2 SEZIONE DI MEZZERIA (COMPRESA TRA LE ANIME DEL PREFABBRICATO)

11.2.2.1 VERIFICA A PRESSOFLESSIONE


Mmax = +75 kNm/m

N = -13 kN/m

Sezione h = 30cm

Armatura: ϕ 16/20 strato sup.

φ 16/20 strato inf

MRd = 97.04 kNm/m

Verifica soddisfatta.

11.2.2.2 VERIFICA A TAGLIO

Verifca a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

0 -	£	20.0	2
Classe cls	f _{ck}	32.0	N/mm ²
coeff. parziale	Уc	1.5	
resistenza di calcolo	f_{cd}	18	N/mm2
larghezza membratura resistene	b_w	1000	mm
altezza membratura resistene	Н	280	mm
altezza utille	d	250	mm
area della sezione	A _{TOT}	250000	mm^2
diametro ferro longitudinale	øl	16	mm
area armatura	Α	201.1	mm ²
	strato	1	
	passo	200	mm
	n _r /strato	4	
area armatura totale	Al	804	mm^2
percentuale di armatura	ρl	0.0032	
sforzo assiale dovuto ai carichi o precompressione	N	-13475	N
	$\sigma_{\rm cp}$	-0.05	N/mm ²
	k	1.89	
	V _{min}	0.52	
	V_{Rd1}	122	kN
	V_{Rd2}	127.26	kN
taglio resistente	V_{Rd}	127	kN
		>	
taglio sollecitante	V _{Ed}	81	kN
		verifies	

verifica

12 VERIFICHE DI DEFORMAZIONE

12.1 VERIFICA DEFORMAZIONI TORSIONALI (SGHEMBO)

La condizione più severa si realizza in corrispondenza della zona di appoggio dell'impalcato, durante il passaggio del convoglio SW/2. Di seguito si riporta la verifica di sghembo, riferita agli abbassamenti massimi riscontrati nella soletta di impalcato. I valori degli abbassamenti massimi, rilevati in nodi posti in posizioni coerenti con quanto prevede la normativa per tale tipo di verifica, sono:

 $\delta_1 = 3.01 \text{ mm}$

 $\delta_2 = 2.83 \text{ mm}$

Lo sghembo, amplificato dinamicamente, è pari a:

$$t\cong\Phi_3\times$$
 [$(\delta_1$ - $\delta_2)]$ = 1.854 * $(3.01-2.83)$ = 0.334 mm /3m

Il valore di t appena calcolato è inferiore al valore limite previsto dalla normativa e pari a 3.0 mm /3m per il caso $120 < V_{max} < 200 \text{ km/h}$.

12.2 VERIFICA STATO LIMITE DI COMFORT DEI PASSEGGERI

Il comfort di marcia per i passeggeri è controllato limitando i valori della freccia verticale; l'inflessione verticale deve calcolarsi in asse al binario, considerando il modello di carico LM71 con il relativo incremento dinamico e con il coefficiente α ; in caso di ponte a doppio binario dovrà considerarsi carico un solo binario e calcolarsi la freccia in asse a tale binario carico, applicando un solo modello di carico LM71 con il relativo incremento dinamico e con il coefficiente α .

L'abbassamento massimo, amplificato dinamicamente, si rileva in mezzeria ed è pari a:

 δ = 6.9 mm

Il valore di δ appena calcolato è inferiore al valore limite previsto dalla normativa per travi appoggiate, pari a L/600 = 22800/600 = 38 mm.

	RADDOPPI			LO-BENEVENT	0	
Ghella CONSORZIO CFT PIZZAROTTI FORBATANEL ITHE	VARIANTE	ALLA L	INEA RON	ICELLO-FRASS IA-NAPOLI VIA IGETTO DEFINI	CASS	
Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	93 di 128

13 AZIONI SUGLI APPOGGI

Di seguito si riporta la valutazione dei carichi sui dispositivi di appoggio da impiegare per la tipologia di impalcati oggetto del presente documento.

Al riguardo si precisa che, per esigenze di carattere funzionale, per tale tipologia di impalcati sono previsti due distinti valori di vita nominale e di classe d'uso: $V_N = 75$ anni, con coefficiente d'uso Cu = 1.5 e $V_N = 100$ anni, con coefficiente Cu = 2.

Inoltre, in funzione del viadotto considerato, si distinguono due catergorie diverse di sottosuolo: terreno di tipo B e di tipo C.

Questa differenziazione, ininfluente ai fini del dimensionamento degli impalcati, porta invece a differenti valori di di azioni sui dispositivi di appoggio, a causa prevalentemente dei differenti valori di azione sismica relativi a differenti periodi di riferimento, come meglio specificato nelle apposite relazioni.

13.1 VALUTAZIONE DELL'AZIONE SISMICA PER $V_N=75$ ANNI E $C_U=1.5$ ($V_R=112.5$) – CATEGORIA SOTTOSUOLO B

Le condizioni più severe si verificano per il viadotto VI02. Il ponte appartiene alla classe d'uso III, corrispondente ad un coefficiente d'uso c_u = 1.5, la vita nominale è pari a V_N = 75 anni, la categoria di sottosuolo è "**B**" e la categoria topografica è "**T1**".

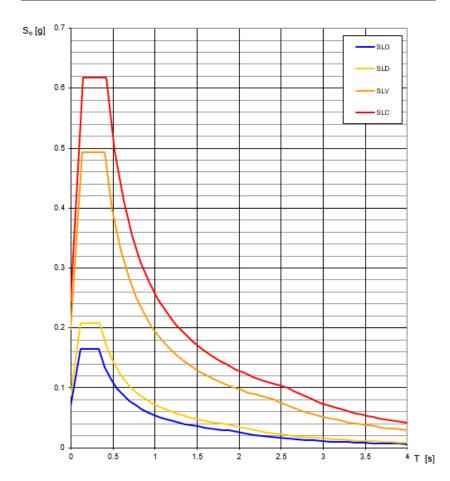
L'azione sismica è stata calcolata per gli stati limite:

- Stato limite di esercizio: Stato Limite di Danno, SLD
- Stato limite ultimo: Stato Limite di salvaguardia della Vita, SLV

13.1.1 INDIVIDUAZIONE DELLA PERICOLOSITÀ DEL SITO E STRATEGIA DI PROGETTAZIONE

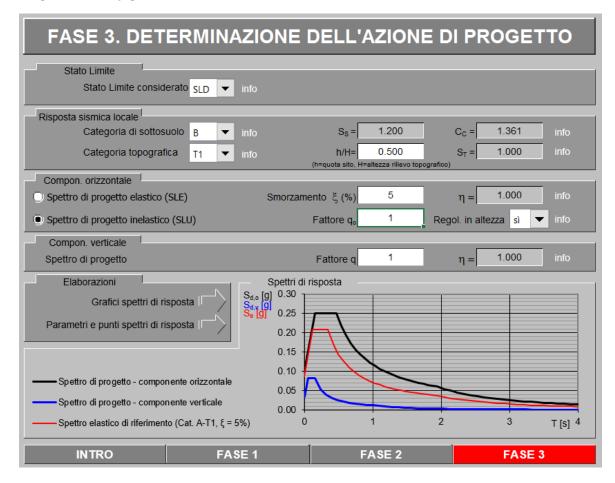
Di seguito si riportano i valori dei parametri spettrali dipendenti dal sito per il viadotto considerato:

Latitudine: 41.0224 Longitudine: 14.40056



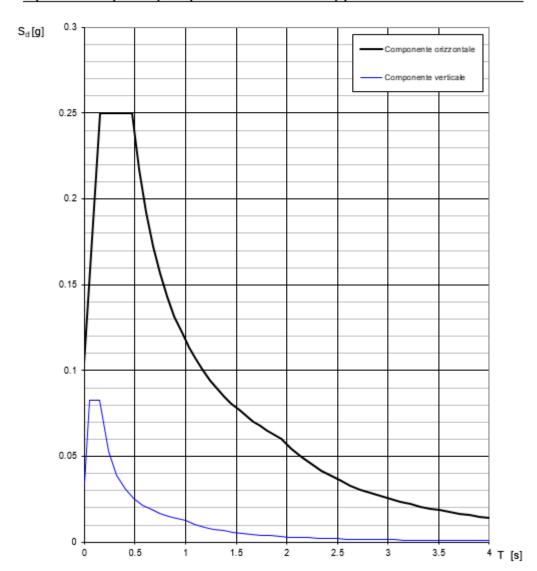
SLATO	T _R	ag	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.070	2.371	0.328
SLD	113	0.087	2.402	0.345
SLV	1068	0.199	2.479	0.395
SLC	2193	0.245	2.519	0.416

Spettri di risposta elastici per i diversi Stati Limite



13.1.2 AZIONI SISMICHE DI PROGETTO

Per la definizione delle azioni, sia allo SLD che allo SLV, è stato considerato un fattore di struttura q=1 sia per gli spettri verticali che orizzontali. In relazione alla categoria topografica considerata (T1) si è assunto un coefficiente di amplificazione medio unico e pari a $S_T = 1.0$.



13.1.2.1 SPETTRI ALLO SLD

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLD

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LD

Parametri indipendenti

· arametri mare					
STATO LIMITE	SLD				
a _o	0.087	g			
F _o	2,402				
T _c *	0.345	s			
Ss	1.200				
Co	1.361				
S _T	1.000				
q	1.000				

Parametri dipendenti

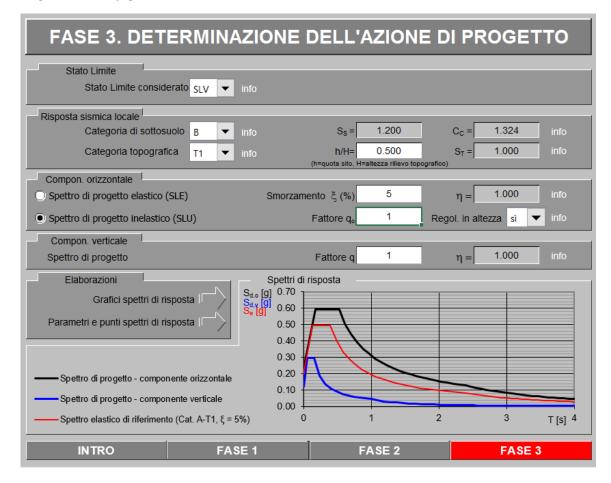
S	1.200
η	1.000
TB	0.156 s
T _c	0.469 s
Tp	1.947 s

Espressioni dei parametri dipendenti

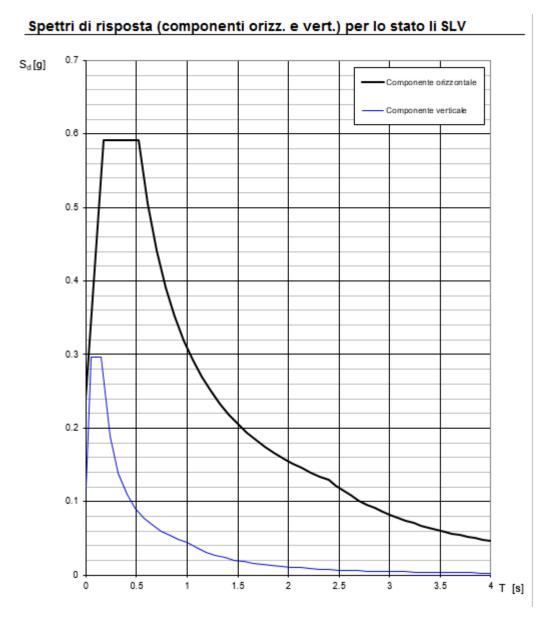
$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §, 3.2.3.5)
$T_B = T_C / 3$	(NTC-07 Eq. 3.2.8)
$T_c = C_c \cdot T_c^{\prime}$	(NTC-07 Eq. 3.2.7)
$T_D = 4,0 \cdot a_g / g + 1,6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$


Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta


	T [s]	Se [g]
	0.000	0.104
T₽◀	0.156	0.250
Tℯ 	0.469	0.250
	0.539	0.218
	0.610	0.192
	0.680	0.172
	0.751	0.156
	0.821	0.143
	0.891	0.132
	0.962	0.122
	1.032	0.114
	1.102	0.106
	1.173	0.100
	1.243	0.094
	1.314	0.089
	1.384	0.085
	1.454	0.081
	1.525	0.077
	1.595	0.074
	1.666	0.070
	1.736	0.068
	1.806	0.065
	1.877	0.063
T₽◀─	1.947	0.060
	2.045	0.055
	2.143	0.050
	2.240	0.046
	2.338	0.042
	2.436	0.038
	2.534	0.036
	2.631	0.033
	2.729	0.031
	2.827	0.029
	2.925	0.027
	3.022	0.025
	3.120	0.023
	3.218	0.022
	3.316	0.021
	3.413	0.020
	3.511	0.019
	3.609	0.018
	3.707	0.017
	3.804	0.016
	3.902	0.015
	4.000	0.014

13.1.2.2 SPETTRI ALLO SLV

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

STATO LIMITE	SLV	
a _o	0.199	g
F _o	2,479	
T _c *	0.395	s
Ss	1.200	
Cc	1.324	
S _T	1.000	
q	1.000	

Parametri dipendenti

S	1.200
η	1.000
T _B	0.174 s
T _c	0.523 s
T _D	2.395 s

Espressioni dei parametri dipendenti

$S = S_s \cdot S_T$	(NTC-08 Eq. 3.2.5)
n - n2 .n1	V

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C/3$$
 (NTC-07 Eq. 3.2.8)

$$T_c = C_c \cdot T_c^*$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4,0 \cdot a_x / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_e \\ T_C \leq T < T_D & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

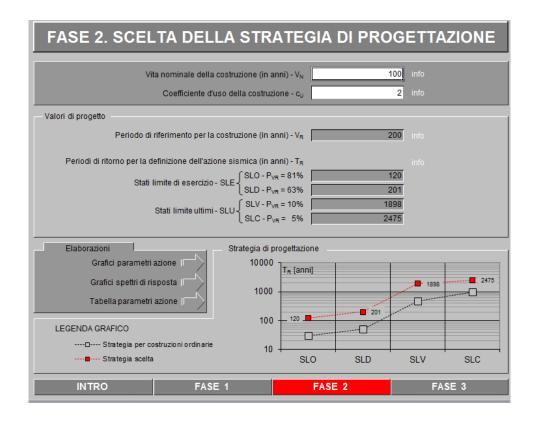
Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0.000	0.239
T₀ ∢	0.174	0.591
Te€	0.523	0.591
	0.613	0.505
	0.702	0.441
	0.791	0.391
	0.880	0.352
	0.969	0.319
	1.058	0.293
	1.147	0.270
	1.237	0.250
	1.326	0.234
	1.415	0.219
	1.504	0.206
	1.593	0.194
	1.682	0.184
	1.771	0.175
	1.860	0.166
	1.950	0.159
	2.039	0.152
	2.128	0.146
	2.217	0.140
	2.306	0.134
T₀ ∢	2.395	0.129
	2.472	0.121
	2.548	0.114
	2.624	0.108
	2.701	0.102
	2.777	0.096
	2.854	0.091
	2.930	0.086
	3.007	0.082
	3.083	0.078
	3.159	0.074
	3.236	0.071
	3.312	0.068
	3.389	0.065
	3.465	0.062
	3.541	0.059
	3.618	0.057
	3.694	0.054
	3.771	0.052
	3.847	0.050
	3.924	0.048
	4.000	0.046

13.2 VALUTAZIONE DELL'AZIONE SISMICA PER $V_N=100$ ANNI E $C_U=2.0$ ($V_R=200$) – CATEGORIA SOTTOSUOLO B

Le condizioni più severe si verificano per il viadotto VI06. Il ponte appartiene alla classe d'uso IV, corrispondente ad un coefficiente d'uso c_u = **2.0**, la vita nominale è pari a V_N = 100 anni, la categoria di sottosuolo è "**B**" e la categoria topografica è "**T1**".


L'azione sismica è stata calcolata per gli stati limite:

- Stato limite di esercizio: Stato Limite di Danno, SLD
- Stato limite ultimo: Stato Limite di salvaguardia della Vita, SLV

13.2.1 INDIVIDUAZIONE DELLA PERICOLOSITÀ DEL SITO E STRATEGIA DI PROGETTAZIONE

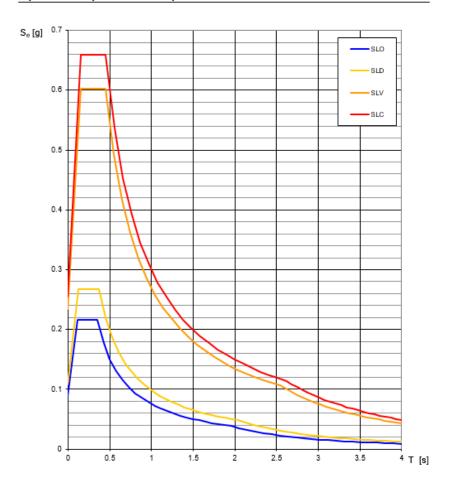
Di seguito si riportano i valori dei parametri spettrali dipendenti dal sito per il viadotto considerato:

Longitudine: 14.437009 Latitudine: 41.103735

Relazione di Calcolo

Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario:

ITINERA VA

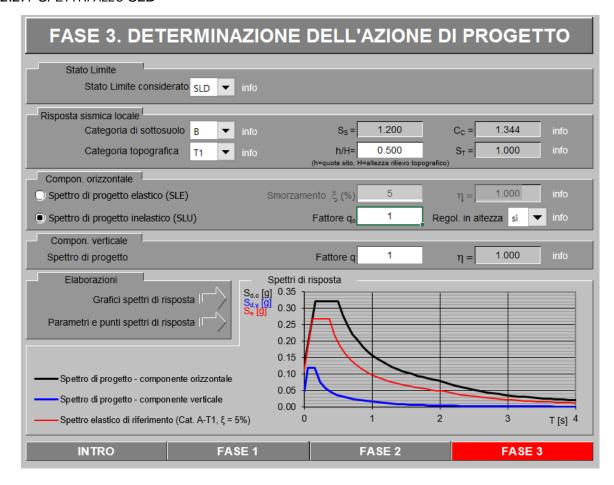

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

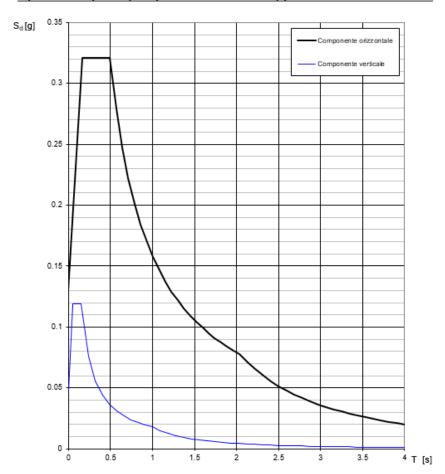
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	103 di 128

SLATO	T _R	ag	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.089	2.436	0.350
SLD	201	0.109	2.463	0.367
SLV	1898	0.234	2.571	0.448
SLC	2475	0.254	2.592	0.454

Spettri di risposta elastici per i diversi Stati Limite



13.2.2 AZIONI SISMICHE DI PROGETTO


Per la definizione delle azioni, sia allo SLD che allo SLV, è stato considerato un fattore di struttura q=1 sia per gli spettri verticali che orizzontali. In relazione alla categoria topografica considerata (T1) si è assunto un coefficiente di amplificazione medio unico e pari a $S_T = 1.0$.

13.2.2.1 SPETTRI ALLO SLD

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLD

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	106 di 128

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LD

ITINERA

Parametri indipendenti

SLD
0.109 g
2.463
0.367 s
1.200
1.344
1.000
1.000

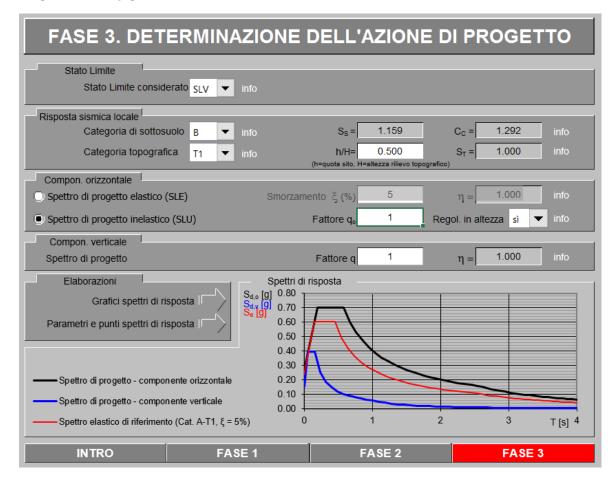
Parametri dipendenti

r drametir dipendenti		
S	1.200	
η	1.000	
T _B	0.164 s	
T _c	0.493 s	
Tn	2.035 s	

Espressioni dei parametri dipendenti

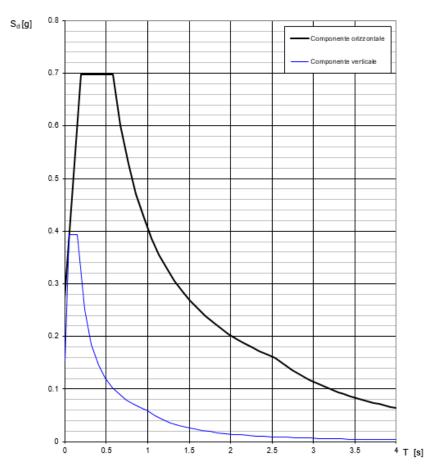
$S = S_s \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_B = T_C / 3$	(NTC-07 Eq. 3.2.8)
$T_c = C_c \cdot T_c'$	(NTC-07 Eq. 3.2.7)
$T_D = 4,0 \cdot a_x / g + 1,6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)


$$\begin{split} &0 \leq T < T_B \quad \quad S_{\varphi}(T) = a_g \cdot S \cdot \eta \cdot F_e \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_e} \left(1 - \frac{T}{T_B} \right) \right] \\ &T_B \leq T < T_C \quad \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_e \\ &T_C \leq T < T_D \quad \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_e \cdot \left(\frac{T_c}{T} \right) \\ &T_D \leq T \quad \quad \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_e \cdot \left(\frac{T_c T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_4(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_*(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

ıntı d	ello spettro	di risposta
	T [s]	Se [g]
- [0.000	0.130
T₽◀	0.164	0.321
Tℯ ⋖	0.493	0.321
	0.566	0.280
	0.640	0.248
- [0.713	0.222
- [0.787	0.201
	0.860	0.184
	0.934	0.170
l	1.007	0.157
	1.080	0.147
	1.154	0.137
	1.227	0.129
	1.301	0.122
	1.374	0.115
	1.447	0.109
	1.521	0.104
	1.594	0.099
	1.668	0.095
	1.741	0.091
	1.815	0.087
	1.888	0.084
	1.961	0.081
T₽◀	2.035	0.078
	2.128	0.071
	2.222	0.065
	2.316	0.060
	2.409	0.056
[2.503	0.051
[2.596	0.048
	2.690	0.045
	2.783	0.042
	2.877	0.039
[2.971	0.037
[3.064	0.034
[3.158	0.032
	3.251	0.030
[3.345	0.029
	3,439	0.027
[3.532	0.026
	3.626	0.025
	3.719	0.023
- 1	3.813	0.022
- 1	3.906	0.021
- 1	4.000	0.020



13.2.2.2 SPETTRI ALLO SLV

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLV

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 001
 A
 109 di 128

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

_											
Da	ra	m	et	ri	in	di	'n	e	nd	mi	H

STATO LIMITE	SLV
a _o	0.23 4 g
F.	2.571
T₀ ^ˆ	0.448 s
Ss	1.159
Co	1.292
S⊤	1.000
q	1.000

Parametri dipendenti

 $T_D = 4,0 \cdot a_g / g + 1,6$

r arametir dipendenti					
S	1.159				
η	1.000				
TB	0.193 s				
T _C	0.579 s				
Tn	2.538 s				

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0.55$; $\eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_B = T_C/3$	(NTC-07 Eq. 3.2.8)
$T_C = C_C \cdot T_C'$	(NTC-07 Eq. 3.2.7)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

(NTC-07 Eq. 3.2.9)

$$\begin{split} 0 \leq T < T_B & \quad S_o(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c}{T} \right) \\ T_D \leq T & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_4(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_s(T)$ sostituendo $\mathfrak q$ con $\mathfrak 1/\mathfrak q$, dove $\mathfrak q$ è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	iciio spetti o	urrisposta
	T [s]	Se [g]
	0.000	0.272
•	0.193	0.698
.◀	0.579	0.698
	0.672	0.601
	0.765	0.528
	0.859	0.471
	0.952	0.425
	1.045	0.387
	1.139	0.355
	1.232	0.328
	1.325	0.305
	1.418	0.285
	1.512	0.267
	1.605	0.252
	1.698	0.238
	1.791	0.226
	1.885	0.214
	1.978	0.204
	2.071	0.195
	2.165	0.187
	2.258	0.179
	2.351	0.172
	2.444	0.165
•	2.538	0.159
	2.607	0.151
	2.677	0.143
	2.747	0.136
	2.816	0.129
	2.886	0.123
	2.956	0.117
	3.025	0.112
	3.095	0.107
	3.164	0.102
	3.234	0.098
	3.304	0.094
	3.373	0.090
	3.443	0.087
	3.513	0.083
	3,582	0.080
	3.652	0.077
	3.721	0.074
	3.791	0.071
	3.861	0.069
	3.930	0.066
	4.000	0.064

13.3 VALUTAZIONE DELL'AZIONE SISMICA PER $V_N=75$ ANNI E $C_U=1.5$ ($V_R=112.5$) – CATEGORIA SOTTOSUOLO C

Le condizioni più severe si verificano per il viadotto VI08. Il ponte appartiene alla classe d'uso III, corrispondente ad un coefficiente d'uso c_u = 1.5, la vita nominale è pari a V_N = 75 anni, la categoria di sottosuolo è "C" e la categoria topografica è "T1".

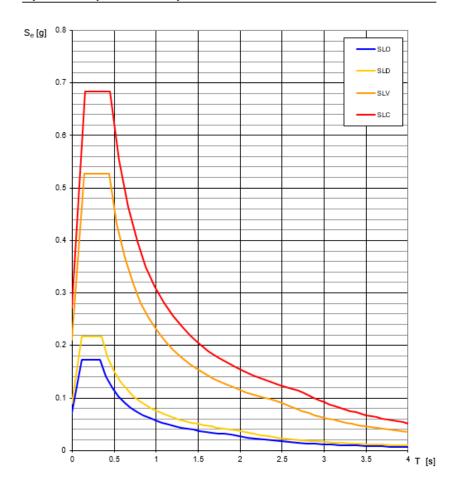
L'azione sismica è stata calcolata per gli stati limite:


- Stato limite di esercizio: Stato Limite di Danno, SLD

Stato limite ultimo: Stato Limite di salvaguardia della Vita, SLV

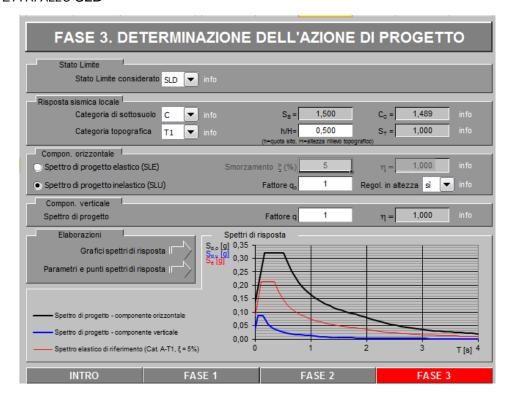
13.3.1 INDIVIDUAZIONE DELLA PERICOLOSITÀ DEL SITO E STRATEGIA DI PROGETTAZIONE

Di seguito si riportano i valori dei parametri spettrali dipendenti dal sito di ogni opera:

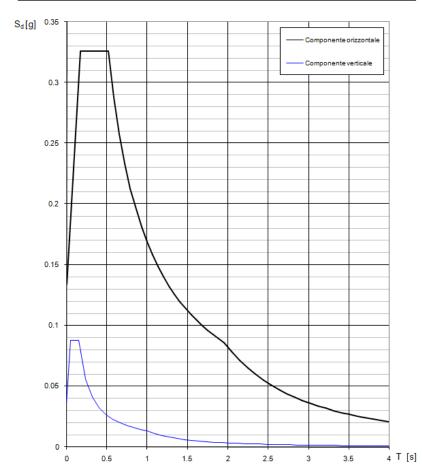

Longitudine: 14.45829 Latitudine: 41.13286

SLATO	T _R	ag	F.	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.072	2.404	0.328
SLD	113	0.089	2.437	0.347
SLV	1068	0.211	2.502	0.437
SLC	2193	0.273	2.504	0.450

Spettri di risposta elastici per i diversi Stati Limite



13.3.2 AZIONI SISMICHE DI PROGETTO


Per la definizione delle azioni, sia allo SLD che allo SLV, è stato considerato un fattore di struttura q=1 sia per gli spettri verticali che orizzontali. In relazione alla categoria topografica considerata (T1) si è assunto un coefficiente di amplificazione medio unico e pari a $S_T = 1.0$.

13.3.2.1 SPETTRI ALLO SLD

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLD

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	114 di 128

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LD

ITINERA

Parametri indipendenti

i arametri maipenaenti					
STATO LIMITE	SLD				
a.	0.089 l g				
F.	2.437				
Tc*	0.347 s				
S ₌	1.500				
C _~	1.490				
S-	1.000				
q	1.000				
q	1.000				

Parametri dipendenti

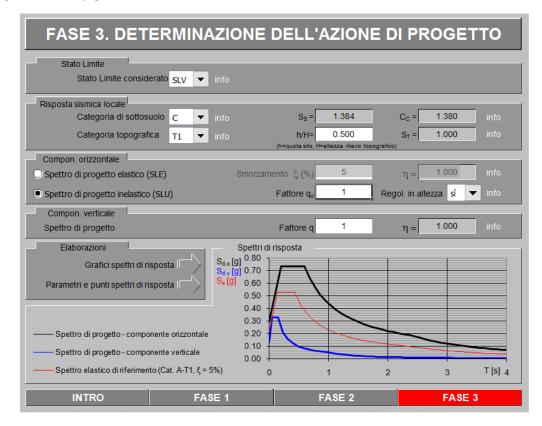
S	1.500
η	1.000
T _e	0.172 s
To	0.516 s
T.	1.957 s

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_B = T_C / 3$	(NTC-07 Eq. 3.2.8)
$T_C = C_C \cdot T_C^*$	(NTC-07 Eq. 3.2.7)
$T_D = 4,0 \cdot a_g / g + 1,6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

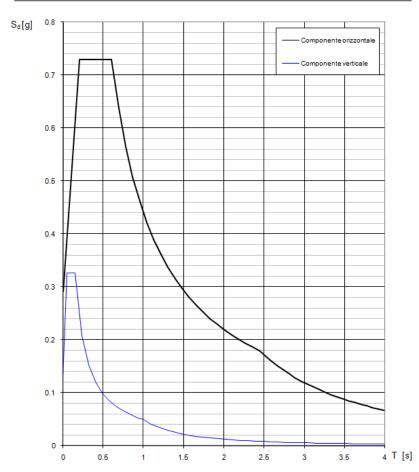
$$\begin{split} 0 \leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$


Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti	dello	s	pettro	di	risi	post
runu	ueno	•	pettio	uı	113	posi

T → 0.172 0.326 T → 0.516 0.328 0.585 0.288 0.653 0.258 0.722 0.233 0.791 0.213 0.859 0.196 0.928 0.181 0.928 0.181 0.938 0.169 1.065 0.158 1.134 0.148 1.202 0.140 1.271 0.132 1.339 0.126 1.408 0.120 1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.888 0.089 T → 1.957 0.086 2.2541 0.051 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.832 0.041 2.832 0.041 2.832 0.033 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023 3.903 0.022	JIII G	ello spettro	
T → 0.172		I [S]	Se [g]
To≠ 0.516 0.526 0.585 0.288 0.653 0.258 0.722 0.233 0.791 0.213 0.859 0.196 0.928 0.169 1.085 1.134 0.148 1.202 0.140 1.271 0.132 1.339 0.126 1.408 0.120 1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.889 0.092 1.889 0.093 1.889 0.093 1.880 0.092 1.880 0.093 1.880 0.093 1.880 0.093 1.957 0.096 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.022 3.708 0.024 3.805 0.023			
0.585 0.288 0.653 0.258 0.722 0.233 0.791 0.213 0.859 0.196 0.928 0.181 0.996 0.169 1.085 0.158 1.134 0.148 1.202 0.140 1.271 0.132 1.339 0.126 1.408 0.120 1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.888 0.089 1.957 0.086 2.244 0.055 2.348 0.060 2.443 0.055 2.348 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.830 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		0.172	0.326
0.653	Tc◀		
0.722 0.233 0.791 0.213 0.859 0.196 0.928 0.181 0.396 0.169 1.065 0.158 1.134 0.148 1.202 0.140 1.271 0.132 1.339 0.126 1.408 0.120 1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.888 0.099 1.957 0.086 2.244 0.078 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.830 0.032 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023			
0.791 0.213 0.859 0.196 0.928 0.181 0.996 0.169 1.095 0.158 1.104 0.148 1.202 0.140 1.271 0.132 1.339 0.126 1.408 0.120 1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.820 0.092 1.820 0.093 1.820 0.093 1.820 0.095 1.820 0.095 1.820 0.095 1.820 0.095 1.820 0.095 1.820 0.095 1.820 0.096 1.820 0.096 1.820 0.096 1.820 0.097 1.957 0.086 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023			
0.859 0.196 0.928 0.181 0.938 0.169 1.065 0.158 1.134 0.148 1.202 0.140 1.271 0.132 1.339 0.126 1.408 0.120 1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.888 0.089 1.888 0.089 2.054 0.078 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.346 0.060 2.443 0.055 2.346 0.060 2.443 0.055 2.346 0.060 2.443 0.055 2.346 0.060 2.443 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.146 0.023 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		0.722	0.233
0.928 0.181 0.996 0.169 1.085 0.158 1.134 0.148 1.202 0.140 1.271 0.132 1.339 0.126 1.408 0.120 1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.838 0.089 1.898 0.089 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		0.791	0.213
0.996 0.169 1.065 0.158 1.134 0.148 1.202 0.140 1.271 0.132 1.339 0.126 1.408 0.120 1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.888 0.089 1.957 0.086 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.830 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		0.859	0.196
1,065 0,158 1,134 0,148 1,202 0,140 1,271 0,132 1,339 0,126 1,408 0,120 1,477 0,114 1,545 0,109 1,614 0,104 1,682 0,100 1,751 0,096 1,820 0,092 1,888 0,099 1,820 0,092 1,888 0,099 1,957 0,086 2,054 0,078 2,151 0,071 2,249 0,065 2,346 0,060 2,443 0,055 2,541 0,051 2,638 0,047 2,735 0,044 2,832 0,041 2,832 0,041 2,830 0,038 3,027 0,036 3,124 0,034 3,222 0,032 3,319 0,030 3,416 0,028 3,514 0,027 3,611 0,025 3,708 0,024 3,805 0,023		0.928	0.181
1.134 0.148 1.202 0.140 1.271 0.132 1.339 0.126 1.408 0.120 1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.888 0.099 1.957 0.086 2.054 0.078 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.341 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		0.996	0.169
1.202 0.140 1.271 0.132 1.339 0.126 1.408 0.120 1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.888 0.089 1.957 0.086 2.054 0.078 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		1.065	0.158
1.271 0.132 1.339 0.126 1.408 0.120 1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.888 0.089 1.957 0.096 2.054 0.078 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		1.134	0.148
1,339 0,126 1,408 0,120 1,477 0,114 1,545 0,109 1,614 0,104 1,682 0,100 1,751 0,096 1,820 0,092 1,888 0,089 1,957 0,086 2,054 0,078 2,151 0,071 2,249 0,065 2,346 0,060 2,443 0,055 2,541 0,051 2,638 0,047 2,735 0,044 2,832 0,041 2,930 0,038 3,027 0,036 3,124 0,034 3,222 0,032 3,319 0,030 3,416 0,028 3,514 0,027 3,611 0,025 3,708 0,024 3,805 0,023		1.202	0.140
1.408 0.120 1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.888 0.089 1.957 0.086 2.054 0.078 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.054 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		1.271	0.132
1.477 0.114 1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.820 0.099 1.820 0.099 1.957 0.086 2.054 0.078 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		1.339	0.126
1.545 0.109 1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.888 0.089 1.820 0.092 1.888 0.089 2.054 0.078 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		1.408	0.120
1.614 0.104 1.682 0.100 1.751 0.096 1.820 0.092 1.888 0.089 1.897 0.086 2.054 0.078 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		1.477	0.114
1,682 0,100 1,751 0,096 1,820 0,092 1,888 0,089 1,888 0,089 2,054 0,078 2,151 0,071 2,249 0,065 2,346 0,060 2,443 0,055 2,541 0,051 2,638 0,047 2,735 0,044 2,832 0,041 2,930 0,038 3,027 0,036 3,124 0,034 3,222 0,032 3,319 0,030 3,416 0,028 3,514 0,027 3,611 0,025 3,708 0,024 3,805 0,023		1.545	0.109
1,751 0.096 1,820 0.092 1,888 0.089 1,957 0.086 2,054 0.078 2,151 0.071 2,249 0.065 2,346 0.060 2,443 0.055 2,541 0.051 2,638 0.047 2,735 0.044 2,832 0.041 2,830 0.038 3,027 0.036 3,124 0.034 3,222 0.032 3,319 0.030 3,416 0.028 3,514 0.027 3,611 0.025 3,708 0.024 3,805 0.023		1.614	0.104
1,820 0.092 1,888 0.099 1,957 0.086 2,054 0.078 2,151 0.071 2,249 0.065 2,346 0.060 2,443 0.055 2,541 0.051 2,638 0.047 2,735 0.044 2,832 0.041 2,930 0.038 3,027 0.036 3,124 0.034 3,222 0.032 3,319 0.030 3,416 0.028 3,514 0.027 3,611 0.025 3,708 0.024 3,805 0.023		1.682	0.100
1,888 0,089 1,957 0,086 2,054 0,078 2,151 0,071 2,249 0,065 2,346 0,060 2,443 0,055 2,541 0,051 2,638 0,047 2,735 0,044 2,832 0,041 2,830 0,038 3,027 0,036 3,124 0,034 3,222 0,032 3,319 0,030 3,416 0,028 3,514 0,027 3,611 0,025 3,708 0,024 3,805 0,023		1.751	0.096
To4 1.957 0.086 2.054 0.078 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		1.820	0.092
2.054 0.078 2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		1.888	0.089
2.151 0.071 2.249 0.065 2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023	T₀ ∢ −	1.957	0.086
2,249 0,065 2,346 0,060 2,443 0,055 2,541 0,051 2,638 0,047 2,735 0,044 2,832 0,041 2,930 0,038 3,027 0,036 3,124 0,034 3,222 0,032 3,319 0,030 3,416 0,028 3,514 0,027 3,611 0,025 3,708 0,024 3,805 0,023		2.054	0.078
2.346 0.060 2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		2.151	0.071
2.443 0.055 2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		2.249	0.065
2.541 0.051 2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		2.346	0.060
2.638 0.047 2.735 0.044 2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		2.443	0.055
2,735 0,044 2,832 0,041 2,930 0,038 3,027 0,036 3,124 0,034 3,222 0,032 3,319 0,030 3,416 0,028 3,514 0,027 3,611 0,025 3,708 0,024 3,805 0,023		2.541	0.051
2.832 0.041 2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		2.638	0.047
2.930 0.038 3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		2.735	0.044
3.027 0.036 3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		2.832	0.041
3.124 0.034 3.222 0.032 3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		2.930	0.038
3,222 0.032 3,319 0.030 3,416 0.028 3,514 0.027 3,611 0.025 3,708 0.024 3,805 0.023		3.027	0.036
3.319 0.030 3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		3.124	0.034
3.416 0.028 3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		3.222	0.032
3.514 0.027 3.611 0.025 3.708 0.024 3.805 0.023		3.319	0.030
3.611 0.025 3.708 0.024 3.805 0.023		3.416	0.028
3.611 0.025 3.708 0.024 3.805 0.023		3.514	0.027
3,805 0.023			
3,805 0.023		3.708	0.024
4.000 0.021			

13.3.2.2 SPETTRI ALLO SLV


Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	116 di 128

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 001
 A
 117 di 128

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

arametr malpendent								
STATO LIMITE	SLV							
a.	0.211 <u>g</u>							
F.	2.502							
Tc*	0.437 s							
S _e	1.384							
C _~	1.380							
S-	1.000							
q	1.000							
C _r S _T q	1.000							

Parametri dipendenti

S	1.384								
η	1.000								
T _o	0.201 s								
To	0.603 s								
Т.	2. 44 3 s								

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0.55$; $\eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_B = T_C / 3$	(NTC-07 Eq. 3.2.8)
$T_C = C_C \cdot T_C^*$	(NTC-07 Eq. 3.2.7)
$T_0 = 4.0 \cdot a_g / g + 1.6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_c(T) = a_g \cdot S \cdot \eta \cdot F_e \\ T_C \leq T < T_D & S_c(T) = a_g \cdot S \cdot \eta \cdot F_e \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & S_c(T) = a_g \cdot S \cdot \eta \cdot F_e \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_i(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_i(T)$ sostituendo η con $\mathcal{H}q$, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

ti d	ello spettro						
	T [s]	Se [g]					
	0.000	0.291					
•	0.201	0.729					
•	0.603	0.729					
	0.690	0.637					
	0.778	0.565					
	0.866	0.508					
	0.953	0.461					
	1.041	0.422					
	1.128	0.390					
	1.216	0.362					
	1.304	0.337					
	1.391	0.316					
	1.479	0.297					
	1.567	0.281					
	1.654	0.266					
	1.742	0.252					
	1.829	0.240					
	1.917	0.229					
	2.005	0.219					
	2.092	0.210					
	2.180	0.202					
	2.267	0.194					
	2.355	0.187					
•	2.443	0.180					
	2.517	0.170					
	2.591	0.160					
	2.665	0.151					
	2.739	0.143					
	2.813	0.136					
	2.888	0.129					
	2.962	0.122					
	3.036	0.117					
	3.110	0.111					
	3.184	0.106					
	3.258	0.101					
	3.333	0.097					
	3.407	0.093					
	3.481	0.089					
	3.555	0.085					
	3.629	0.082					
	3.703	0.078					
	3.778	0.075					
	3.852	0.072					
	3.926	0.070					
	4.000	0.067					
	1.000	0.001					

13.4 VALUTAZIONE DELL'AZIONE SUGLI APPOGGI

Nel seguito si riepilogano i valori delle azioni sugli appoggi per effetto dei carichi da impalcato descritti in precedenza.

Ove opportuno, i valori delle singole azioni elementari sono state arrotondate per eccesso, a partire dai valori di calcolo derivati dagli scenari di carico considerati.

Si riportano di seguito le reazioni su ogni appoggio dovute ai carichi elementari:

		G1		G2			LM71		LM71 + SW/2		LM71_appoggio			LM71+SW/2_appoggio					
		>	H trasv	H long	>	H trasv	H long	Vmax	H trasv	H long	>	H trasv	H long	>	H trasv	H long	>	H trasv	H long
1	multi	849	0	0	880	0	0	623	0	0	827	0	0	641	0	0	820	0	0
2	fisso	855	0	0	341	0	0	905	0	0	1163	0	0	1122	0	0	1131	0	0
3	fisso	855	0	0	437	0	0	905	0	0	994	0	0	1122	0	0	1243	0	0
4	multi	849	0	0	554	0	0	623	0	0	600	0	0	641	0	0	625	0	0
5	multi	849	0	0	880	0	0	623	0	0	827	0	0	541	0	0	837	0	0
6	multi	855	0	0	341	0	0	905	0	0	1163	0	0	779	0	0	1089	0	0
7	uni	855	0	0	437	0	0	905	0	0	994	0	0	779	0	0	942	0	0
8	multi	849	0	0	554	0	0	623	0	0	600	0	0	541	0	0	479	0	0

		CE	entr_LN	<i>1</i> 71	centr	entr_LM71+SW/2 centr_LM71_app centr_LM71+SW/2_app		serpeggio			serpeggio _appoggio								
		Vmax	H trasv	H long	Vmax	H trasv	H long	Vmax	H trasv	H long	Vmax	H trasv	H long	>	H trasv	H long	>	H trasv	H long
1	multi	85	0	0	55	0	0	55	0	0	51	0	0	33	0	0	41	0	0
2	fisso	5	196	407	12	140	230	29	221	278	31	144	208	-6	62	134	31	94	44
3	fisso	-5	196	-407	3	151	-230	-29	221	-278	2	174	-208	6	62	-134	-31	94	-44
4	multi	-85	0	0	-70	0	0	-55	0	0	-83	0	0	-33	0	0	-41	0	0
5	multi	85	0	0	55	0	0	12	0	0	49	0	0	33	0	0	5	0	0
6	multi	5	0	0	12	0	0	-3	0	0	12	0	0	-6	0	0	-1	0	0
7	uni	-5	322	0	3	241	0	3	273	0	1	213	0	6	95	0	1	12	0
8	multi	-85	0	0	-70	0	0	-12	0	0	-62	0	0	-33	0	0	-5	0	0

		frenatura LM71 frenat		atura S	SW/2	avviamento LM71		avviamento SW/2			temperatura			vento					
		^	H trasv	H long	>	H trasv	H long	>	H trasv	H long	Vmax	H trasv	H long	>	H trasv	H long	>	H trasv	H long
1	multi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	163	0	0
2	fisso	0	0	275	0	0	438	0	0	454	0	0	413	0	0	0	-48	195	0
3	fisso	0	0	275	0	0	438	0	0	454	0	0	413	0	0	0	48	195	286
4	multi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-163	0	-286
5	multi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	163	0	0
6	multi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-48	0	0
7	uni	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48	390	0
8	multi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-163	0	0

Infine si riporta la tabella riassuntiva degli scarichi su una fila di appoggi:

TABELLA RIASSUNTIVA SCARICHI APPOGGI FILA SINISTRA								
	Rz [kN]	R trasv [kN]	R long [kN]					
G1	3408	0	0					
G2	2212	0	0					
ritiro	0	0	0					
LM71	2543	0	0					
LM71 + SW/2	2982	0	0					
LM71_appoggio	2934	0	0					
LM71+SW/2_appoggio	3177	0	0					
centrifuga LM71	0	392	0					
centrifuga LM71+SW/2	0	291	0					
centrifuga LM71_appoggio	0	441	0					
centrifuga LM71+SW/2_appoggio	1	318	0					
serpeggio	0	188	0					
frenatura LM71	0	0	880					
frenatura SW/2	0	0	1138					
avviamento LM71	0	0	1016					
avviamento SW/2	0	0	924					
temperatura	0	0	0					
vento	0	390	0					

ITINERA

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 001
 A
 120 di 128

Ponti e Viadotti di Linea
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario:
Relazione di Calcolo

TABELLA RIASSUNTIVA SCARICHI APPOGGI FILA DESTRA								
	Rz [kN]	R trasv [kN]	R long [kN]					
G1	3408	0	0					
G2	2212	0	0					
ritiro	0	0	0					
LM71	2543	0	0					
LM71 + SW/2	2982	0	0					
LM71_appoggio	2152	0	0					
LM71+SW/2_appoggio	2785	0	0					
centrifuga LM71	0	322	0					
centrifuga LM71+SW/2	0	241	0					
centrifuga LM71_appoggio	0	273	0					
centrifuga LM71+SW/2_appoggio	0	213	0					
serpeggio	0	95	0					
frenatura LM71	0	0	0					
frenatura SW/2	0	0	0					
avviamento LM71	0	0	0					
avviamento SW/2	0	0	0					
temperatura	0	0	0					
vento	0	390	0					

13.4.1 APPOGGI PER IMPALCATI CON CATEGORIA SOTTOSUOLO B $V_N=75$ ANNI E $C_U=1.5$ ($V_R=112.5$)

Di seguito si riportano le tabelle riassuntive degli scarichi degli appoggi per ogni tipologia; si specificano anche gli scarichi dovuti alle azioni sismiche.

tabella riassuntiva scarichi appoggi _ APPOGGIO FISSO									
	Rz [kN]	R trasv [kN]	R long [kN]						
G1	855	0	0						
G2	437	0	0						
ritiro	0	0	0						
LM71	815	0	0						
LM71 + SW/2	1047	0	0						
LM71_appoggio	1010	0	0						

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

Ponti e Viadotti di Linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 001	Α	121 di 128

LM71+SW/2_appoggio	1119	0	0
centrifuga LM71	5	196	407
centrifuga LM71+SW/2	12	151	230
centrifuga LM71_appoggio	29	221	278
centrifuga LM71+SW/2_appoggio	31	174	208
serpeggio	31	94	134
frenatura LM71	0	0	275
frenatura SW/2	0	0	438
avviamento LM71	0	0	454
avviamento SW/2	0	0	413
temperatura	0	0	0
vento	48	195	286
SISMA	417	3322	3322

tabella riassuntiva scarichi appoggi _ APPOGGIO UNIDIREZ					
	Rz [kN]	R trasv [kN]	R long [kN]		
G1	855	0	0		
G2	437	0	0		
ritiro	0	0	0		
LM71	815	0	0		
LM71 + SW/2	895	0	0		
LM71_appoggio	701	0	0		
LM71+SW/2_appoggio	848	0	0		
centrifuga LM71	5	322	0		
centrifuga LM71+SW/2	-3	241	0		
centrifuga LM71_appoggio	3	273	0		
centrifuga LM71+SW/2_appoggio	1	213	0		
serpeggio	6	95	0		
frenatura LM71	0	0	0		
frenatura SW/2	0	0	0		
avviamento LM71	0	0	0		
avviamento SW/2	0	0	0		
temperatura	0	0	0		
vento	48	390	0		
SISMA	417	3322	0		

tabella riassuntiva scarichi appoggi _ APPOGGIO MULTIDIREZ				
	Rz [kN]	R trasv [kN]	R long [kN]	
G1	855	0	0	
G2	880	0	0	
ritiro	0	0	0	
LM71	815	0	0	
LM71 + SW/2	1047	0	0	
LM71_appoggio	701	0	0	
LM71+SW/2_appoggio	980	0	0	
centrifuga LM71	85	0	0	
centrifuga LM71+SW/2	55	0	0	
centrifuga LM71_appoggio	55	0	0	
centrifuga LM71+SW/2_appoggio	51	0	0	
serpeggio	41	0	0	
frenatura LM71	0	0	0	
frenatura SW/2	0	0	0	
avviamento LM71	0	0	0	
avviamento SW/2	0	0	0	
temperatura	0	0	0	
vento	163	0	0	
SISMA	417	0	0	

13.4.2 APPOGGI PER IMPALCATI CON CATEGORIA SOTTOSUOLO B $V_N=100$ ANNI E $C_U=2.0$ ($V_R=200$)

Di seguito si riportano le tabelle riassuntive degli scarichi degli appoggi per ogni tipologia; si specificano anche gli scarichi dovuti alle azioni sismiche.

tabella riassuntiva scarichi appoggi _ APPOGGIO FISSO						
	Rz [kN]	R trasv [kN]	R long [kN]			
G1	855	0	0			
G2	437	0	0			
ritiro	0	0	0			
LM71	815	0	0			
LM71 + SW/2	1047	0	0			
LM71_appoggio	1010	0	0			

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	123 di 128

Ponti e Viadotti di Linea
Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario:
Relazione di Calcolo

LM71+SW/2_appoggio	1119	0	0
centrifuga LM71	5	196	407
centrifuga LM71+SW/2	12	151	230
centrifuga LM71_appoggio	29	221	278
centrifuga LM71+SW/2_appoggio	31	174	208
serpeggio	31	94	134
frenatura LM71	0	0	275
frenatura SW/2	0	0	438
avviamento LM71	0	0	454
avviamento SW/2	0	0	413
temperatura	0	0	0
vento	48	195	286
SISMA	554	3923	3923

tabella Hassuritiva sc		PPOGGIO UNIDIREZ	
	Rz [kN]	R trasv [kN]	R long [kN]
G1	855	0	0
G2	437	0	0
ritiro	0	0	0
LM71	815	0	0
LM71 + SW/2	895	0	0
LM71_appoggio	701	0	0
LM71+SW/2_appoggio	848	0	0
centrifuga LM71	5	322	0
centrifuga LM71+SW/2	-3	241	0
centrifuga LM71_appoggio	3	273	0
centrifuga LM71+SW/2_appoggio	1	213	0
serpeggio	6	95	0
frenatura LM71	0	0	0
frenatura SW/2	0	0	0
avviamento LM71	0	0	0
avviamento SW/2	0	0	0
temperatura	0	0	0
vento	48	390	0
SISMA	554	3923	0

tabella riassuntiva scarichi appoggi _ APPOGGIO MULTIDIREZ					
	Rz [kN]	R trasv [kN]	R long [kN]		
G1	855	0	0		
G2	880	0	0		
ritiro	0	0	0		
LM71	815	0	0		
LM71 + SW/2	1047	0	0		
LM71_appoggio	701	0	0		
LM71+SW/2_appoggio	980	0	0		
centrifuga LM71	85	0	0		
centrifuga LM71+SW/2	55	0	0		
centrifuga LM71_appoggio	55	0	0		
centrifuga LM71+SW/2_appoggio	51	0	0		
serpeggio	41	0	0		
frenatura LM71	0	0	0		
frenatura SW/2	0	0	0		
avviamento LM71	0	0	0		
avviamento SW/2	0	0	0		
temperatura	0	0	0		
vento	163	0	0		
SISMA	554	0	0		

13.4.3 APPOGGI PER IMPALCATI CON CATEGORIA SOTTOSUOLO C $V_N=75$ ANNI E $C_U=1.5$ ($V_R=112.5$)

Di seguito si riportano le tabelle riassuntive degli scarichi degli appoggi per ogni tipologia; si specificano anche gli scarichi dovuti alle azioni sismiche.

tabella riassuntiva scarichi appoggi _ APPOGGIO FISSO						
	Rz [kN]	R trasv [kN]	R long [kN]			
G1	855	0	0			
G2	437	0	0			
ritiro	0	0	0			
LM71	815	0	0			
LM71 + SW/2	1047	0	0			
LM71_appoggio	1010	0	0			

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	125 di 128

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

LM71+SW/2_appoggio	1119	0	0
centrifuga LM71	5	196	407
centrifuga LM71+SW/2	12	151	230
centrifuga LM71_appoggio	29	221	278
centrifuga LM71+SW/2_appoggio	31	174	208
serpeggio	31	94	134
frenatura LM71	0	0	275
frenatura SW/2	0	0	438
avviamento LM71	0	0	454
avviamento SW/2	0	0	413
temperatura	0	0	0
vento	48	195	286
SISMA	459	4097	4097

tabella riassuntiva s	scarichi appoggi _ API	POGGIO UNIDIRE	Z
	Rz [kN]	R trasv [kN]	R long [kN]
G1	855	0	0
G2	437	0	0
ritiro	0	0	0
LM71	815	0	0
LM71 + SW/2	895	0	0
LM71_appoggio	701	0	0
LM71+SW/2_appoggio	848	0	0
centrifuga LM71	5	322	0
centrifuga LM71+SW/2	-3	241	0
centrifuga LM71_appoggio	3	273	0
centrifuga LM71+SW/2_appoggio	1	213	0
serpeggio	6	95	0
frenatura LM71	0	0	0
frenatura SW/2	0	0	0
avviamento LM71	0	0	0
avviamento SW/2	0	0	0
temperatura	0	0	0
vento	48	390	0
SISMA	459	4097	0

Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario:

Relazione di Calcolo

ITINERARIO NAPOLI-BARI
RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	126 di 128

tabella riassuntiva scarichi appoggi _ APPOGGIO MULTIDIREZ					
	Rz [kN]	R trasv [kN]	R long [kN]		
G1	855	0	0		
G2	880	0	0		
ritiro	0	0	0		
LM71	815	0	0		
LM71 + SW/2	1047	0	0		
LM71_appoggio	701	0	0		
LM71+SW/2_appoggio	980	0	0		
centrifuga LM71	85	0	0		
centrifuga LM71+SW/2	55	0	0		
centrifuga LM71_appoggio	55	0	0		
centrifuga LM71+SW/2_appoggio	51	0	0		
serpeggio	41	0	0		
frenatura LM71	0	0	0		
frenatura SW/2	0	0	0		
avviamento LM71	0	0	0		
avviamento SW/2	0	0	0		
temperatura	0	0	0		
vento	163	0	0		
SISMA	459	0	0		

13.4.4 RIEPILOGO SCARICHI APPOGGI

Di seguito si riportano gli scarichi massimi per ogni tipologia di dispositivo di appoggio, per le combinazioni SLU e SLV.

	terreno B - VN 57 anni					
	reaz	ioni appoggi	i SLV	reaz	ioni appoggi	i SLU
appoggio	F vert F trasv		F long	F vert	F trasv	F long
fisso	1750	3450	3500	3560	660	1660
uni	1750	3550	0	3160	1070	0
multi	2250	0	0	4300	0	0

	terreno B - VN 100 anni					
	reaz	ioni appoggi	i SLV	reaz	ioni appoggi	SLU
appoggio	F vert	F trasv	F long	F vert	F trasv	F long
fisso	1900	4050	4100	3560	660	1660
uni	1900	4150	0	3160	1070	0
multi	2400	0	0	4300	0	0

Ponti e Viadotti di Linea Impalcato in c.a.p. L=25m (Lc=22.80m) doppio binario: Relazione di Calcolo

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO DEFINITIVO

0014145004	LOTTO	OODIEIOA	DOOLIMENTO	DEV	E00110
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 001	Α	127 di 128
	٠.	0_			

	terreno C - VN 75 anni						
	reaz	ioni appogg	i SLV	reaz	ioni appogg	i SLU	
appoggio	F vert	F trasv	F long	F vert	F trasv	F long	
fisso	1800	4200	4250	3560	660	1660	
uni	1800	4300	0	3160	1070	0	
multi	2300	0	0	4300	0	0	

14 INCIDENZE

Incidenza travi: trefoli 90 kg/ml Incidenza soletta e getti in opera: 200 kg/m³