COMMITTENTE: FERROVIARIA ITALIANA **GRUPPO FERROVIE DELLO STATO ITALIANE DIREZIONE LAVORI: TALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE APPALTATORE: Ghella ITINERA PIZZAROTTI **DIRETTORE DELLA** PROGETTISTA: PROGETTAZIONE: **PROGETTAZIONE** RAGGRUPPAMENTO TEMPORANEO PROGETTISTI Prof. Ing. Ing. PIETRO MAZZOLI MARCO PETRANGELI Responsabile integrazione fra le varie PIZZAROTTI Sintagma INTEGRA prestazioni specialistiche PROGETTO ESECUTIVO ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI ELABORATI TIPOLOGICI PONTI E VIADOTTI FERROVIARI Impalcato a struttura mista acc.-cls L=34m doppio binario: Relazione di calcolo **APPALTATORE** SCALA: Consorzio CFT IL DIRETTORE TECNICO Geom. C Bianchi 11/07/18 LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. **COMMESSA** Α 0 Redatto Data Verificato Data Data Autorizzato Data Rev. Descrizione Approvato M. Petrangeli A. Coronati 11/07/18 11/07/18 P. Mazzoli 11/07/18 M. Petrangeli Α Tipo di Emissione 11/07/18 File: IF1N.0.1.E.ZZ.CL.VI.00.0.7.002.A.doc n. Elab.:

Ponti e Viadotti di linea

Relazione di Calcolo

Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

LOTTO

01

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA IF1N

CODIFICA E ZZ CL

DOCUMENTO VI 00 07 002

REV. FOGLIO Α 2 di 91

INDICE

1	PREM	IESSA	6
2	SCOF	O DEL DOCUMENTO	6
3	NOR	MATIVA E DOCUMENTI DI RIFERIMENTO	6
	3.1 N	ORMATIVE	6
	3.2 E	LABORATI DI RIFERIMENTO	6
4	MATE	RIALI	7
	4.1.1	CALCESTRUZZO PER SOLETTA	7
	4.1.2	ACCIAO PER C.A	7
	4.1.3	ACCIAO PER CARPENTERIA METALLICA	7
	4.1.4	ACCIAO PER PIOLI NELSON	7
5	DESC	RIZIONE DELL'OPERA	8
6	ANAL	ISI DEI CARICHI	.10
		ESO PROPRIO (G1)	
	6.2 P	ERMANENTI PORTATI E BALLAST	
	6.2.1	MASSICCIATA, ARMAMENTO E IMPERMEABILIZZAZIONE	. 10
	6.2.2	BARRIERE ANTIRUMORE	
	6.2.3	CANALETTE IMPIANTI, IMPIANTI E MURETTI PARABALLAST	
	6.2.4	VELETTE	
		ALTRE AZIONI PERMANENTI	. 11
		ZIONI VARIABILI	. 11
	6.3.1	TRENI DI CARICO	
	6.3.2	CARICHI SUI MARCIAPIEDI	
	6.3.3	SERPEGGIO	
	6.3.4	AVVIAMENTO E FRENATURA	
	6.3.5	AZIONI DINAMICHE:	. 15

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

IF1N	01	E ZZ CL	VI 00 07 002	Α	3 di 91
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

	6.	3.6	AZIONI DOVUTE AL DERAGLIAMENTO	15
	6.	3.7	RESISTENZE PASSIVE DEI VINCOLI	16
	6.4	A	ZIONI CLIMATICHE	16
	6.	4.1	VARIAZIONE TERMICA UNIFORME	16
	6.	4.2	VARIAZIONE TERMICA NON UNIFORME	16
	6.	4.3	VENTO	17
	6.5	A	ZIONI INDIRETTE	21
	6.	5.1	RITIRO E VISCOSITÀ	21
	6.6	A	ZIONI SISMICHE	23
7	F	ASI	COSTRUTTIVE E MODELLAZIONE	24
	7.1	М	ODELLAZIONE: GENERALITÀ	24
	7.	1.1	MODELLO FASE 0	25
	7.	1.2	MODELLO FASE 1	25
	7.	1.3	MODELLO FASE 2	26
	7.2	Α	NALISI MODALE	27
	7.3	С	OMBINAZIONI DI CARICO	28
8	Е	FFE	TTI GLOBALI SU IMPALCATO	30
	8.1	V	ERIFICHE ALLO STATO LIMITE ULTIMO	30
	8.	1.1	VERIFICHE MODELLO FASE 0	31
	8.	1.2	VERIFICHE A TEMPO INFINITO	35
	8.2	V	ERIFICHE DEI CONNETTORI A TAGLIO	39
	8.3	V	ERIFICHE A FATICA	40
9	TI	RAS	VERSI	42
1	0 E	FFE'	TTI LOCALI SULL'IMPALCATO – MODELLO TRASVERSALE	46
-	10.1		NALISI DEI CARICHI	
).1.1	PESO PROPRIO (G ₁)	
		0.1.2	PERMANENTI NON STRUTTURALI	
		-		

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

IF1N	01	E ZZ CL	VI 00 07 002	Α	4 di 91
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

10.1.	.3	CARICHI VARIABILI	47
10.2	VER	IFICHE ALLO STATO LIMITE ULTIMO	49
10.3	VER	IFICHE ALLO STATO LIMITE DI ESERCIZIO	51
10.3.	.1	VERIFICHE TENSIONALI	52
10.3.	.2	VERIFICA FESSURAZIONE	53
10.4	VER	IFICHE A FATICA	54
11 VER	RIFIC	CHE DI DEFORMAZIONE	55
11.1	VER	IFICA DEFORMAZIONI TORSIONALI (SGHEMBO)	55
11.2	VER	IFICA STATO LIMITE DI COMFORT DEI PASSEGGERI	55
12 VER	RIFIC	CA PREDALLES	56
12.1	ANA	ALISI DEI CARICHI	57
12.2	SOL	LECITAZIONI E VERIFICHE	57
12.3	VER	IFICA TRASVERSALE	62
13 AZI	ONI	SUGLI APPOGGI	63
13.1 SOTTO	VAL SUO	UTAZIONE DELL'AZIONE SISMICA PER V _N =75 ANNI E C _U =1.5 (V _R =112.5) – CATEG LO B	ORIA 63
13.1.	.1	ÎNDIVIDUAZIONE DELLA PERICOLOSITÀ DEL SITO E STRATEGIA DI PROGETTAZIONE	63
13.1.	.2	AZIONI SISMICHE DI PROGETTO	66
13.2 SOTTO		UTAZIONE DELL'AZIONE SISMICA PER V _N =100 ANNI E C _U =2.0 (V _R =200) - CATEG LO B	72
13.2.	.1	ÎNDIVIDUAZIONE DELLA PERICOLOSITÀ DEL SITO E STRATEGIA DI PROGETTAZIONE	
13.2.	.2	AZIONI SISMICHE DI PROGETTO	74
13.3 SOTTO		UTAZIONE DELL'AZIONE SISMICA PER V _N =75 ANNI E C _U =1.5 (V _R =112.5) - CATEG LO C	
13.3.	.1	ÎNDIVIDUAZIONE DELLA PERICOLOSITÀ DEL SITO E STRATEGIA DI PROGETTAZIONE	80
13.3.	.2	AZIONI SISMICHE DI PROGETTO	82
13.3.	.3	MASSE IMPALCATO	88
13.4	AZIO	ONE SUGLI APPOGGI	88
13.4.	.1	AZIONE SISMICA PER V_N =75 ANNI E C_U =1.5 (V_R =112.5) – CATEGORIA SOTTOSUOLO B	89

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	5 di 91

14	INCIDE	NZE	.91
	13.4.3	AZIONE SISMICA PER V_N =75 ANNI E C_U =1.5 (V_R =112.5) – CATEGORIA SOTTOSUOLO C	90
	13.4.2	AZIONE SISMICA PER V_N =100 ANNI E C_U =2.0 (V_R =200) — CATEGORIA SOTTOSUOLO B	89

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	_
IF1N	01	E ZZ CL	VI 00 07 002	Α	6 di 91	

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

1 PREMESSA

Nell'ambito dell'Itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Cancello – Benevento - 1° Lotto Funzionale Cancello-Frasso Telesino e Variante alla Linea Roma-Napoli Via Cassino nel Comune di Maddaloni (compreso il Collegamento Merci con lo scalo di Marcianise - Collegamento Benevento-Marcianise) oggetto di progettazione esecutiva.

2 SCOPO DEL DOCUMENTO

Nel presente documento di calcolo è riportata l'analisi strutturale relativa agli impalcati ferroviari a struttura mista acciaio calcestruzzo costituiti sostanzialmente da 4 travi metalliche a doppio T accostate e soletta di completamento gettata in opera, di portata teorica pari a L=32,4 (interasse fra le pile/fra le pile e le spalle pari a L=34m). Tale tipologia strutturale è frequentemente impiegata nell'ambito del Raddoppio della Tratta Cancello – Benevento - 1° Lotto Funzionale Cancello-Frasso Telesino e Variante alla Linea Roma-Napoli Via Cassino nel Comune di Maddaloni (compreso il Collegamento Merci con lo scalo di Marcianise - Collegamento Benevento-Marcianise) di cui al § 1. Le analisi strutturali anzidette inviluppano cautelativamente le peggiori condizioni di impiego, in termini di azioni (sismiche, vento, centrifuga, etc..), della tipologia strutturale in questione.

3 NORMATIVA E DOCUMENTI DI RIFERIMENTO

3.1 NORMATIVE

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Rif. [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Rif. [3] Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- Rif. [4] Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- Rif. [5] Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- Rif. [6] Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- Rif. [7] Istruzione RFI DTC INC PO SP IFS 004 Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- Rif. [8] Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- Rif. [9] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif. [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea.
- Rif. [11] Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-5: Elementi strutturali a lastra.

3.2 ELABORATI DI RIFERIMENTO

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

Ponti e Viadotti di linea
Impalcato in acccls. L=34m (Lc=32.4m) doppio binario
Relazione di Calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	7 di 91

4 MATERIALI

Si riportano di seguito i materiali previsti per la realizzazione delle strutture, suddivisi per elemento costruttivo.

4.1.1 CALCESTRUZZO PER SOLETTA

Classe	C32/40		
R _{ck} =	40	MPa	resistenza caratteristica cubica
f _{ck} =	33.2	MPa	resistenza caratteristica cilindrica
f _{cm} =	41.2	MPa	valor medio resistenza cilindrica
α _{cc} =	0.85		coeff. rid. per carichi di lunga durata
үм=	1.5	-	coefficiente parziale di sicurezza SLU
f _{cd} =	18.81	MPa	resistenza di progetto
f _{ctm} =	3.10	MPa	resistenza media a trazione semplice
f _{cfm} =	3.72	MPa	resistenza media a trazione per flessione
f _{ctk} =	2.17	MPa	valore caratteristico resistenza a trazione
E _{cm} =	33642	MPa	Modulo elastico di progetto
v =	0.2		Coefficiente di Poisson
G _c =	14017	MPa	Modulo elastico Tangenziale di progetto

4.1.2 ACCIAO PER C.A.

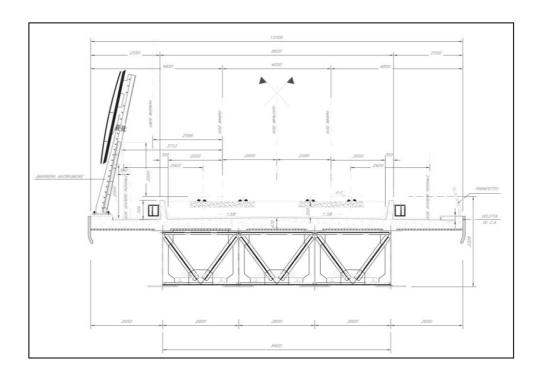
B450C			
f _{yk} ≥	450	MPa	tensione caratteristica di snervamento
f _{tk} ≥	540	MPa	tensione caratteristica di rottura
$(f_t/f_y)_k \ge$	1.15		
$(f_t/f_y)_k <$	1.35		
γ s=	1.15	-	coefficiente parziale di sicurezza SLU
f _{yd} =	391.3	MPa	tensione caratteristica di snervamento
Es =	200000	MPa	Modulo elastico di progetto
$\epsilon_{yd} =$	0.196%		deformazione di progetto a snervamento
$\epsilon_{uk} = (A_{gt})_k$	7.50%		deformazione caratteristica ultima

4.1.3 ACCIAO PER CARPENTERIA METALLICA

S355			
f_{yk}	355	MPa	tensione caratteristica di snervamento per t ≤ 40mm
f _{yk}	335	MPa	tensione caratteristica di snervamento per t > 40mm
γ _S =	1.05	-	coefficiente parziale di sicurezza SLU
$f_{yd} = f_{yk} / \gamma_s$	338.1	MPa	tensione di progetto per t ≤ 40mm
$f_{yd} = f_{yk} / \gamma_s$	319	MPa	tensione di progetto per t > 40mm
Ēs	210000	MPa	Modulo elastico
v =	0.3		Coefficiente di Poisson
G _c =	80769	MPa	Modulo elastico Tangenziale di progetto

4.1.4 ACCIAO PER PIOLI NELSON

St 37-3K DIN 171000			
ft	355	MPa	tensione caratteristica di snervamento



Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	8 di 91

5 DESCRIZIONE DELL'OPERA

L'impalcato a doppio binario è realizzato con 4 travi metalliche e soletta gettata in opera. La luce è pari a 34.00 m misurata dall'asse delle pile. La lunghezza complessiva delle travi prefabbricate è pari a 33,8 m. La luce tra gli appoggi (portata teorica) è pari a 32,40 m. Lo schema di calcolo è di trave in semplice appoggio. Lo schema degli appoggi, riportato di seguito, prevede un dispositivo sotto ogni trave. La larghezza dell'impalcato è pari a 13.70 m, necessaria al fine di ospitare il *tipologico RFI* per le barriere antirumore. L'armamento è di tipo tradizionale su ballast e l'interasse tra i binari è pari a 4.0 m. Le travi metalliche hanno una altezza complessiva di 2.08m mentre la soletta ha un'altezza variabile fra i 35 ed i 47 cm. Le travi metalliche sono irrigidite da traversi realizzati con angolari accoppiati. Inoltre, sono previste controventature longitudinali superiori ed inferiori lungo l'intero sviluppo sia per aumentare la rigidezza globale in esercizio che durante le fasi di montaggio.

Le travi metalliche sono costituite da due tipologie di conci saldati a completa penetrazione, o in alternativa bullonati. Il varo delle coppie di travi verrà effettuato per sollevamento per mezzo di una autogrù. Una volta posizionate saranno solidarizzate con il montaggio dei traversi e dei controventi.

La soletta sarà gettata in opera su predalles in cls prefabbricate autoportanti.

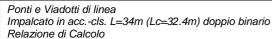
Oltre i traversi di testata, sono previsti quattro traversi intermedi. Di seguito si riportano il prospetto, la sezione dell'impalcato tipologico, sezioni delle travi, oltre che lo schema di disposizione dei vincoli previsto.

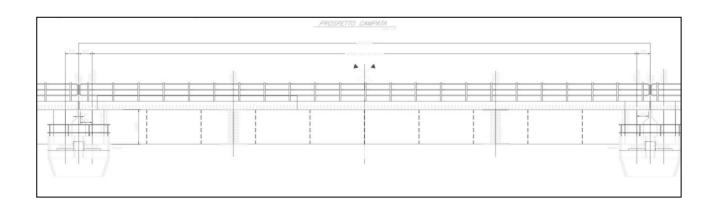
RADDOPPIO TRATTA CANCELLO – BENEVENTO

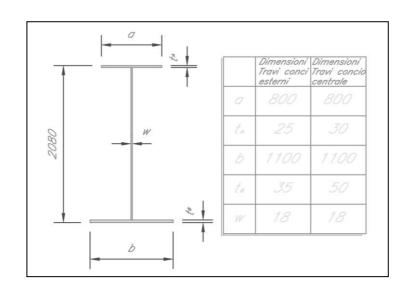
ITINERARIO NAPOLI – BARI

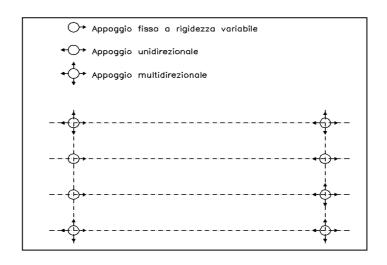
LOTTO

01


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO


ario


COMMESSA IF1N CODIFICA E ZZ CL DOCUMENTO VI 00 07 002 REV.


Α

FOGLIO 9 di 91

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

COMMESSA LOTTO

CODIFICA E ZZ CL VI 00 07 002

RFV

Α

FOGLIO

6 ANALISI DEI CARICHI

Di seguito si riporta l'analisi dei carichi agenti sulla struttura.

6.1 PESO PROPRIO (G1)

Di seguito si riporta la stima dei pesi propri considerati.

> Peso proprio delle travi

Il peso complessivo di ogni trave compresi gli irrigidimenti ed i controventi è pari a:

 $G_{1,1} = 43.2 \text{ kN/m}$

> Soletta gettata in opera

La soletta ha una altezza variabile tra 32 e 42 cm.

Acls = 5.60 mq

 $G_{1,2} = 5.6 \times 25.00 = 140 \text{ kN/m}$

> Predalles

 $L_{tot} = 13.7-0.75 \text{ x } 4=10.7 \text{m}$ t=0.05 m

 $G_{1,3} = 10.7 \times 0.05 \times 25.00 = 13.25 \text{ kN/m}$

I carichi complessivi permanenti risultano:

 $G_1 = 196.5 \text{ kN/m}$

6.2 PERMANENTI PORTATI E BALLAST

6.2.1 MASSICCIATA, ARMAMENTO E IMPERMEABILIZZAZIONE

Si assumono convenzionalmente i seguenti pesi di volume relativi alla massicciata, all'armamento e all'impermeabilizzazione

Peso di volume in rettifilo: 18.00 kN/mc

 $G_{Ballast} = 20.00 \times 0.85 \times 8.2 = 125.5 \text{ kN/mq}$

Dove 0.85 è lo spessore medio del pacchetto considerato, mentre 8.2m è la larghezza della massicciata

6.2.2 BARRIERE ANTIRUMORE

Si considera un carico relativo alle barriere antirumore pari a 4.0 kN/mq. Considerando cautelativamente un'altezza massima di barriera pari a 5.4 m, si ottiene un carico lineare pari a:

 $G_{2,1} = q_{barriere} = 4.0 \times 5.4 = 21.6 \text{ kN/m per ogni lato dell'impalcato}$

Il carico lineare complessivo è pari a 43.2 kN/m.

6.2.3 CANALETTE IMPIANTI, IMPIANTI E MURETTI PARABALLAST

A ridosso dei muretti paraballast, sono previste delle canalette impianti sui lati esterni. Si assume un carico lineare uniforme pari a:

G_{2,2} = 9.00 kN/m per ogni lato dell'impalcato

Il carico lineare complessivo è pari a 18.0 kN/m.

6.2.4 VELETTE

 $G_{2,3} = q_{velette} = 2,5 \text{ kN/m per ogni lato dell'impalcato}$

Il carico lineare complessivo è pari a 5.0 kN/m.

6.2.5 ALTRE AZIONI PERMANENTI

Non sono presenti sull'impalcato altre azioni permanenti (spinta delle terre, spinte idrauliche, ecc...).

Risulta dunque:

 $G_2=66.2 \text{ kN/m}$

6.3 AZIONI VARIABILI

6.3.1 TRENI DI CARICO

I carichi verticali sono definiti per mezzo dei modelli di carico elencati nella seguente tabella. I valori caratteristici dei carichi attribuiti ai modelli di carico debbono moltiplicarsi per il coefficiente " α " che deve assumersi come da tabella seguente:

MODELLO DI CARICO	COEFFICIENTE "α"
LM71	1.1
SW/0	1.1
SW/2	1.0

Tabella 1 – coefficienti α per modelli di carico

Non si considera il modello di carico SW/0 perché l'impalcato non è continuo.

6.3.1.1 TRENO DI CARICO LM71

Il Treno di carico LM71 è schematizzato nella figura seguente.

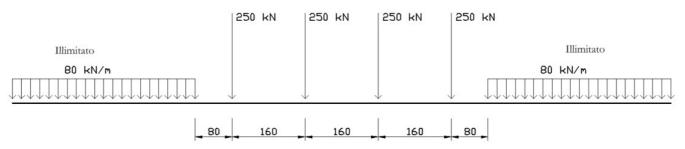


Figura 1 - Treno di carico LM71

LOTTO CODIFICA DOCUMENTO COMMESSA RFV FOGLIO Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario E ZZ CL VI 00 07 002 12 di 91 IF1N 01 Α

Per questo modello di carico è prevista una eccentricità del carico rispetto all'asse del binario pari a s/18, con s=1435 mm. Quindi, l'eccentricità considerata nel modo più sfavorevole per le strutture è pari a:

e = ~80 m

Relazione di Calcolo

6.3.1.2 TRENO DI CARICO SW/2

Il Treno di carico SW/2 è schematizzato nella figura seguente.

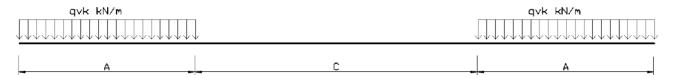
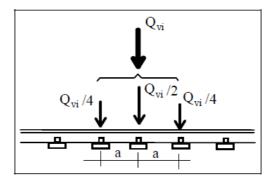


Figura 2 - Treno di carico SW

Tipo di carico	Qvk	Α	С
	[kN/m]	[m]	[m]
SW/0	133	15.0	5.3
SW/2	150	25.0	7.0

Tabella 2 – caratterizzazione treni di carico SW

Nel presente documento, si è considerato solo il modello di carico SW/2.


6.3.1.3 TRENO SCARICO

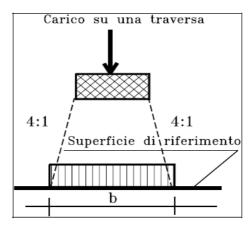
Alcuni scenari di carico prevedono l'impiego del treno scarico, convenzionalmente costituito da un carico uniformemente distribuito pari a 10.00 kN/m.

6.3.1.4 RIPARTIZIONE LOCALE DEI CARICHI

6.3.1.4.1 Ripartizione longitudinale

Nelle analisi si sono considerati i seguenti meccanismi di ripartizione longitudinale dei carichi.

- meccanismo di ripartizione longitudinale per mezzo del binario



Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

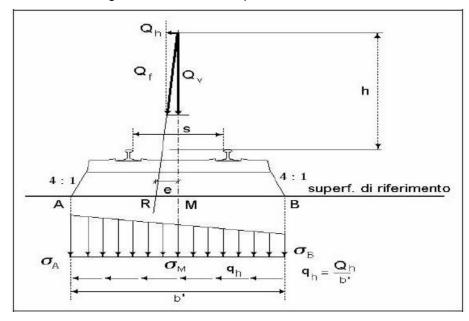
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 13 di 91

- meccanismo di ripartizione longitudinale per mezzo di traversa e ballast

La superficie di riferimento è la superficie di appoggio del ballast.

Nel caso specifico, la ripartizione viene valutata a partire dai seguenti parametri medi:


Larghezza traversine: B = 0.30 mInterasse traversine: i = 0.60 mAltezza di diffusione: h = 0.40 m

Larghezza di diffusione: b = B + 2 x h/4 = 0.50 m < i

Il valore appena calcolato per la larghezza di ripartizione sarà impiegato per la valutazione degli effetti locali trasversali.

6.3.1.4.2 Ripartizione trasversale

Nelle analisi si sono considerati i seguenti meccanismi di ripartizione trasversale dei carichi.

- meccanismo di ripartizione longitudinale per mezzo di traversa e ballast - ponte in rettifilo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

COMMESSA LOTTO

CODIFICA E ZZ CL DOCUMENTO REV.

VI 00 07 002 A

FOGLIO **14 di 91**

La superficie di riferimento è la superficie di appoggio del ballast. Nel caso specifico, la ripartizione viene valutata a partire dai seguenti parametri medi. A vantaggio di sicurezza si adotta lo schema di ponte in rettifilo.

Larghezza traversine: B = 2.40 mAltezza di diffusione: h = 0.40 mLarghezza di diffusione: b = B + 2 * h/4 = 2.60 m

Il valore appena calcolato per la larghezza di diffusione sarà impiegato per la definizione del modello di calcolo globale e per la valutazione degli effetti locali trasversali.

6.3.2 CARICHI SUI MARCIAPIEDI

I marciapiedi non aperti al pubblico sono utilizzati solo dal personale autorizzato. I carichi accidentali sono schematizzati da un carico uniformemente ripartito del valore di 10 kN/mg.

Questo carico non deve considerarsi contemporaneo al transito dei convogli ferroviari e deve essere applicato sopra i marciapiedi in modo da dare luogo agli effetti locali più sfavorevoli. Per questo tipo di carico distribuito non deve applicarsi l'incremento dinamico.

6.3.3 SERPEGGIO

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva.

Il valore caratteristico di tale forza è stato assunto pari a Q_{sk} =100 kN. Tale valore deve essere moltiplicato per α , ma non per il coefficiente di incremento dinamico.

Questa forza laterale deve essere sempre combinata con i carichi verticali.

6.3.4 AVVIAMENTO E FRENATURA

Le forze di frenatura e di avviamento si considerano come azioni agenti sulla sommità del binario, nella direzione longitudinale dello stesso, come carico uniformemente distribuito. A vantaggio di sicurezza si trascurano gli effetti di interazione binario struttura.

Si considerano i seguenti valori delle azioni:

Avviamento

 $Q_{la} = 33 \times 34 \times 1.1 = 1234 \text{ kN} > 1000 \text{ kN} -> Q_{la} = 1000 \text{ kN}$ per LM71

 $Q_{la} = 33 \times 27 \times 1.0 = 891 \text{ kN}$

per SW/2

Frenatura

 $Q_{lb} = 20 \times 34 \times 1.1 = 748 \text{ kN}$ < 6000 kN per LM71 $Q_{lb} = 35 \times 27 = 945 \text{ kN}$ per SW/2

Come previsto dalla normativa, si considerano due treni in transito in versi opposti, uno in fase di avviamento, l'altro in fase di frenatura. Le azioni di frenatura ed avviamento si combinano con i relativi carichi da traffico verticali.

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	15 di 91

Relazione di Calcolo

Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario

AZIONI DINAMICHE:

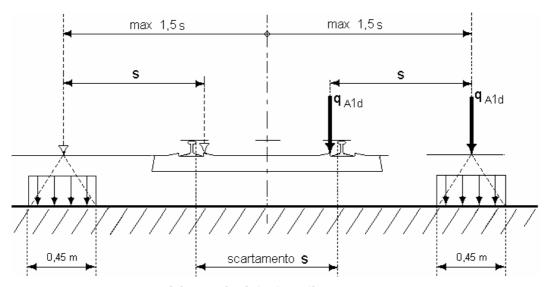
Ponti e Viadotti di linea

6.3.5

In riferimento a quanto previsto per linee a normale standard manutentivo, si calcolano i seguenti coefficienti di amplificazione dinamica:

$$\begin{cases} \Phi_2 = \frac{1.44}{\sqrt{L_\Phi} - 0.2} + 0.82 = \frac{1.44}{\sqrt{32.4} - 0.2} + 0.82 = 1.082; & \textit{per effetti globali} \\ \Phi_2 = \frac{1.44}{\sqrt{L_\Phi} - 0.2} + 0.82 = \frac{1.44}{\sqrt{3 \cdot 2.80} - 0.2} + 0.82 = 1.35; & \textit{per effetti locali} \\ \Phi_3 = \frac{2.16}{\sqrt{L_\Phi} - 0.2} + 0.73 = \frac{2.16}{\sqrt{32.4} - 0.2} + 0.73 = 1.123; & \textit{per effetti globali} \\ \Phi_3 = \frac{2.16}{\sqrt{L_\Phi} - 0.2} + 0.73 = \frac{2.16}{\sqrt{3 \cdot 2.80} - 0.2} + 0.73 = 1.53; & \textit{per effetti locali} \end{cases}$$

Avendo considerato per gli effetti globali la luce tra gli appoggi delle travi principali, mentre per gli effetti locali la luce della soletta tra le nervature delle travi principali pari a 2.80 m.


6.3.6 AZIONI DOVUTE AL DERAGLIAMENTO

In alternativa ai modelli di carico verticale da traffico ferroviario, ai fini della verifica della struttura si dovrà tenere conto della possibilità che un locomotore o un carro pesante deragli. La normativa propone due diverse situazioni di progetto;

Caso 1

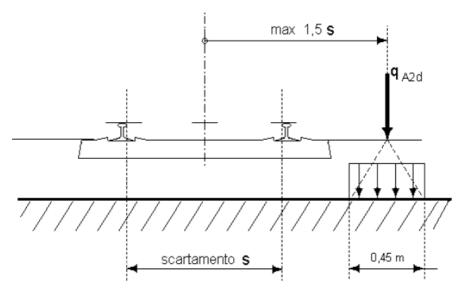
Si considerano due carichi verticali lineari $q_{A1d} = 60$ kN/m (comprensivo dell'effetto dinamico) ciascuno. Trasversalmente i carichi distano fra loro di S (scartamento del binario) e possono assumere tutte le posizioni comprese entro i limiti indicati in Fig. 5.2.12.

Per questa condizione sono tollerati danni locali, purché possano essere facilmente riparati, mentre sono da evitare danneggiamenti delle strutture portanti principali.

- posizione azioni da deragliamento - caso 1

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 16 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

Caso 2

Si considera un unico carico lineare $q_{A2d} = 80^*1.4$ kN/m esteso per 20 m e disposto con una eccentricità massima, lato esterno, di 1.5*s rispetto all'asse del binario. Tale caso deve essere applicato solo per effetti globali.

- posizione azioni da deragliamento - caso 2

6.3.7 RESISTENZE PASSIVE DEI VINCOLI

Per la valutazione delle coazioni generate all'atto dello scorrimento dei vincoli, è stato considerato un coefficiente d'attrito pari al 4% applicato alle azioni verticali agenti sugli apparecchi d'appoggio.

6.4 AZIONI CLIMATICHE

6.4.1 VARIAZIONE TERMICA UNIFORME

Si considera una variazione termica uniforme pari a ±15°C. Per il calcolo delle escursioni dei giunti e degli apparecchi d'appoggio si considera una variazione di temperatura incrementata del 50 %.

6.4.2 VARIAZIONE TERMICA NON UNIFORME

In aggiunta alla variazione termica uniforme, si considera un gradiente di temperatura di 5°C fra soletta e travi prefabbricate, considerando i due casi possibili: intradosso a temperatura superiore rispetto all'estradosso e intradosso a temperatura inferiore rispetto all'estradosso. L'effetto di tale azione viene introdotta nel modello attraverso l'applicazione di una forza assiale e di un momento flettente per ogni trave dell'implacato pari a:

 $N_{\Delta T,NonUnif} = +/-2835 kN$

 $M_{\Delta T NonUnif} = \pm /- 1720 \text{ kNm}.$

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Ponti e Viadotti di linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in acccls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 002	Α	17 di 91

6.4.3 **VENTO**

Si assume una pressione uniforme agente lateralmente pari a 2.50 kN/mq, calcolata come riportato di seguito.

Parametri dipendenti dal sito					
Zona 3					
V _{b,0} =	27	m/s			
a ₀ =	500	m			
k _a =	0,02	1/s			

Altitudine del sito				
a _s = 80 m s.l.m.				
V _b =	27	m/s		

Tempo di ritorno				
TR =	75	anni		
$\alpha_R(TR) =$	1,02			
$v_b(TR) =$	27,6	m/s		

Pressione di riferimento			
q _b =	477	N/m ²	

6.4.3.1 COEFFICIENTE DI ESPOSIZIONE

Il coefficiente di esposizione ce dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito e si determina mediante l'espressione:

$$\begin{aligned} c_e(z) &= k_r \cdot c_t \cdot ln(z/z_0) \left[7 + c_t \cdot ln(z/z_0) \right] & \text{per } z \geq z_{min} \\ c_e(z) &= c_e(z_{min}) & \text{per } z < z_{min} \end{aligned}$$

dove:

- k_r, z₀, z_{min} sono parametri che dipendono dalla categoria di esposizione del sito;
- è il coefficiente di topografia, posto generalmente pari a 1

Di seguito si determina il coefficiente di esposizione sulla base della classe d'esposizione e l'altezza z del punto considerato, posta pari alla massima quota del complesso impalcato, barriere antirumore, sagoma del treno. A tal proposito il §1.4.4.2 [3] impone di considerare il treno come una superficie piana continua convenzionalmente alta 4,00 m sul p.f.. L'azione del vento dovrà comunque considerarsi agente sulle b.a. presenti considerando la loro altezza effettiva se disponibile oppure un'altezza convenzionale di 5,40 m misurati dall'estradosso della soletta qualora le b.a. non siano previste al momento della redazione del progetto.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

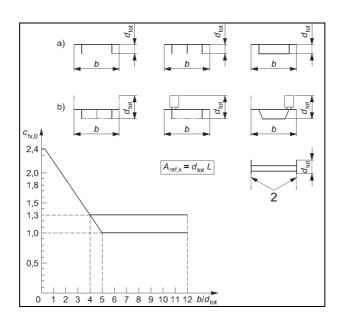
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 18 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

<u>Categoria di esposizione</u>					
Classe di rugosità =	D				
Distanza dalla costa =	< 30 km				
Categoria di esposizione =	II				
$k_r =$	0,19				
$z_0 =$	0,05	m			
$z_{min} =$	4,00	m			

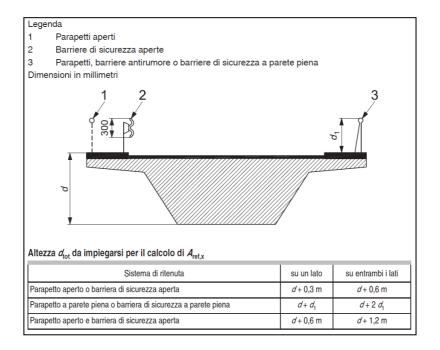

Quota di riferimento z				
H pila fino a intradosso imp. =	7,9	m		
H imp. fino a p.f. =	3,3	m		
H b.a. su p.f. =	4,7	m		
H min b.a. su p.f. =	3,3	m		
H treno su p.f. =	4,0	m		
z di riferimento=	15,9	m		

Coefficiente di esposizione				
$c_{\rm e}$ =	2,6			

6.4.3.2 COEFFICIENTE DI FORMA DELL'IMPALCATO

Il coefficiente di forma dell'impalcato e l'area di riferimento per il calcolo della forza risultante si determinano in base ai criteri enunciati nel §8.3.1 [9].

A tal proposito si riconduce il coefficiente di forma c_p al coefficiente di forza $c_{fx,0}$. Il coefficiente di forza $c_{fx,0}$ si determina in base al rapporto tra larghezza b e altezza totale dell'impalcato d_{tot} .



Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

RADDOPPIO TRATTA CANCELLO - BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

ITINERARIO NAPOLI - BARI

CODIFICA DOCUMENTO COMMESSA LOTTO REV. **FOGLIO** 01 E ZZ CL VI 00 07 002 19 di 91 Α

L'area da considerare per il calcolo della risultante di forza si definisce come la somma di tutte le superfici proiettate dall'impalcato nel piano longitudinale, comprese le barriere e la sagoma dei veicoli.

Per il caso in esame si ha:

Caratteristiche geometriche dell'impalcato				
b =	13,70	m		
$d_{tot} =$	8,00	m		
$b/d_{tot} =$	1,71			
$c_p =$	1,98			

Coefficiente di forma				
$c_{p,max} =$	1,98			

Area di riferimento					
H impalcato da intrad. a p.f. =	3,3	m			
H barriera su p.f. sx =	4,7	m			
H barriera su p.f. dx =	4,7	m			
H b.a. min su p.f. =	3,3	m			
H treno su p.f. =	4,00	m			
$d_{tot2} =$	12,7	m			
L _{impalcato} =	34,00	m			

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

	COMMESSA	LOTTO
Impalcato in acccls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo	IF1N	01

0	CODIFICA	DOCUMENTO	REV.	FOGLIO
	E ZZ CL	VI 00 07 002	A	20 di 91

6.4.3.3 AZIONE DEL VENTO SULL'IMPALCATO

$q_b =$	477	N/m ²
$c_e =$	2,65	
$c_p =$	1,98	
$c_d =$	1,00	
$\mathbf{q_b} = \mathbf{q_b} \cdot \mathbf{c_e} \cdot \mathbf{c_p} \cdot \mathbf{c_d} =$	2,50	kN/m ²

Nei casi in cui si considera la condizione di "treno scarico" la pressione del vento si considera agente sulla barriera antirumore.

L'azione del vento viene applicata considerando due distinte risultanti. La prima applicata a metà dell'altezza delle strutture dell'impalcato, la seconda a metà dell'altezza di barriera considerata, secondo lo schema riportato di seguito. Il momento risultante è stato calcolato rispetto al baricentro della sezione composta (2.16m).

 $F_1 = 2.50 \text{kN/m}^2 * 2.60 \text{m} = 6.50 \text{ kN/m}$

 $M_1 = -2.7 \text{ kNm/m}$

F2 = 2.50kN/m2 * 5.40m = 13.50 kN/m (applicata su entrambe le barriere)

M2 = 13.50kN/m2 * (5.4m/2 +2.6m -1.71m) = 48.50 kNm/m

Il momento totale agente sulla struttura è:

M_{vento}=94.3 [kNm/m];

F_{vento}=33.5 [kN/m];

6.5 AZIONI INDIRETTE

6.5.1 RITIRO E VISCOSITÀ

Gli effetti conseguenti alla viscosità del calcestruzzo per azioni di lunga durata (sovraccarichi permanenti, ritiro, ecc.) possono essere valutati assumendo nel calcolo delle caratteristiche geometriche della sezione composta un valore fittizio del modulo di elasticità del calcestruzzo Ec* fornito dall'espressione:

$$E_c^* = E_{cm}^{-1}/(1+\varphi)$$
 modulo di elasticità ridotto

Di seguito è riportata la valutazione del coefficiente di viscosità e del modulo di elasticità ridotto.

Viscosità (EN1	1992-1-1 §3.1.4)		
Classe	C32/40		Classe del calcestruzzo
R _{ck} =	40	MPa	resistenza caratteristica cubica
f _{ck} =	32	MPa	resistenza caratteristica cilindrica
f _{cm} =	40	MPa	valor medio resistenza cilindrica
E _{cm} =	33346	MPa	Modulo elastico di progetto
E _c =	35013	MPa	Modulo elastico tangente
Cem.Tipo	N	-	CEM 32,5 R, CEM 42,5 N
t_0	7	gg	età di applicazione del carico
t ₀ *	7	gg	età di applicazione del carico modif. tipo cem. (S, N o R)
t	10000	gg	
Ac	5.67E+06	mmq	area sez trasversale
u	14113	mm	perimetro a contatto con l'atmosfera
h ₀	803	mm	dimensione fittizia dell'elemento
RH	75	%	Umidità Relativa
β(f _{cm})	2.66		influenza della resistenza del cls
$\beta(t_0)$	0.63	-	influenza del momento di applicazione del carico
	1.239	-	coeff.influenza dell'umidità relativa
фкн α ₁	0.91	-	coeff.influenza della resistenza del cls
α_2	0.97	- -	coeff.influenza della resistenza del cis
α ₂ α ₃	0.94	-	coeff.influenza della resistenza del cls
фо	2.09	_	coeff. nominale di viscosità
φ ₀ βн	1403	_	coeff. per RH e h ₀
β _c (t*,t ₀)	0.96	_	000n. por 101 0 m
φ (t*,t ₀)	2.01	_	Coeff. di viscosità
Ψ (ε ,ευ)	2.01		Souli di Nossala
E _{c,R} =	11086	MPa	Modulo elastico Ridotto
E*c,R=	11640	MPa	Modulo elastico Ridotto Modificato

Di seguito si valutano le deformazioni da ritiro della soletta, sulla base della sua geometria, nell'ipotesi di una umidità relativa pari al 75%.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Ponti e Viadotti di linea
Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario
Relazione di Calcolo

COMMESSA
LOTTO
CODIFICA
DOCUMENTO
REV. FOGLIO
1F1N
01
E ZZ CL
VI 00 07 002
A
22 di 91

Ritiro (EN1992-	1-1 §3.1.4)		
ε _{cs}	2.55E-04	-	Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$
Ritiro da essicca	amento		
Classe	C32/40		Classe del calcestruzzo
$\begin{aligned} R_{ck} &= \\ f_{ck} &= \\ f_{cm} &= \\ f_{cm,0} &= \end{aligned}$	40 32 40 10	MPa MPa MPa MPa	resistenza caratteristica cubica resistenza caratteristica cilindrica Valor medio resistenza cilindrica
Cem.Tipo $\alpha_{ds1} = \alpha_{ds2} =$	N 4 0.12		CEM 32,5 R, CEM 42,5 N
RH = RH ₀ =	75 100	% %	Umidità Relativa
β _{RH} =	0.90		Coeff. per umidità relativa
$\varepsilon_{\rm cd,0} =$	3.11E-04	-	Deformazione da ritiro per essiccamento non contrastato
A _c = u = h _{0 =}	5666320 14113 803	mmq mm mm	Area sez trasversale Perimetro a contatto con l'atmosfera Dimensione fittizia dell'elemento
k _{h =}	0.7		Coeff. per dimensione fittizia
t = t _{s =}	10000	99 99	Età del calcestruzzo, al momento considrato Età del calcestruzzo, all'inizio del ritiro per essiccamento
$\beta_{ds}(t,t_s)$	0.917		
$\epsilon_{cd} =$	2.00E-04		Deformazione da ritiro per essiccamento
Ritiro autogeno			
$\epsilon_{ca}(\infty) = t = \beta_{as}(t) = 0$	0.000055 10000 1.00	- gg -	Deformazione da ritiro autogeno per t=∞
$\varepsilon_{ca}(t) =$	5.50E-05	-	Deformazione da ritiro autogeno

L'effetto di tale azione viene introdotta nel modello attraverso l'applicazione di una forza assiale e di un momento flettente per ogni trave dell'implacato pari a:

 $N_{ritiro} = -3808 \text{ kN}$

 $M_{ritiro} = +3854 \text{ kNm}.$

ITINERA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
ı	IF1N	01	E ZZ CL	VI 00 07 002	A	23 di 91	

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

6.6 AZIONI SISMICHE

Le azioni sismiche non sono dimensionanti ai fini delle verifiche relative all'impalcato e non vengono quindi considerate nelle analisi dello stesso. Le azioni sismiche considerate per la progettazione delle sottostrutture (pile, spalle e fondazioni) sono riportate nelle corrispondenti relazioni di calcolo.

La valutazione delle azioni sismiche considerate nella progettazione dei dispositivi di appoggio degli impalcati oggetto del presente documento è riportata nel corrispondente paragrafo.

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

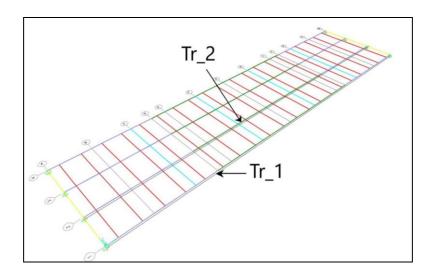
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL VI 00 07 002 A 24 di 91

7 FASI COSTRUTTIVE E MODELLAZIONE

L'analisi delle sollecitazioni è stata effettuata considerando le fasi costruttive. Sono stati realizzati tre modelli differenti come illustrato di seguito.

7.1 MODELLAZIONE: GENERALITÀ

Le sollecitazioni relative ad ogni fase sono state valutate con adeguati modelli e combinate secondo quanto previsto dalla normativa. In riferimento alle verifiche tensionali previste dalla normativa, gli effetti sugli elementi resistenti sono stati valutati e verificati ad ogni fase e cumulati ove necessario.


L'analisi delle sollecitazioni è stata effettuata con l'ausilio di modelli di calcolo realizzati con il software CSI SAP2000 Plus v.15.1.0.

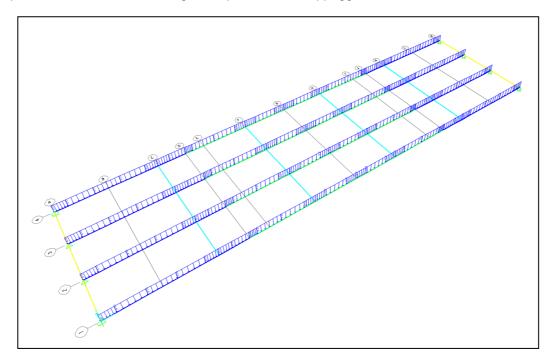
Sono stati realizzati diversi modelli per l'individuazione delle sollecitazioni nelle diverse fasi costruttive. Tale approccio ha consentito di considerare le fasi realizzative mediante analisi lineari, evitando inutili complicazioni del modello di calcolo.

I modelli riproducono le caratteristiche geometriche e meccaniche delle strutture. L'impalcato è stato modellato come un graticcio i cui elementi longitudinali rappresentano il comportamento della trave metallica e della soletta collaborante, mentre gli elementi trasversali rappresentano la rigidezza della soletta e dei trasversi. La soletta collaborante è stata calcolata in conformità con quanto descritto nella normativa Nazionale D.M.08.

Nella seguente tabella si riportano i valori per le travi in acciaio centrali (Tr_2 e Tr_3).

LARGHEZZA SOLETTA COLLABORANTE					
L1	32.4	[m]	Lunghezza campata		
b_0	0.20	[m]	Larghezza tra i distanziatori		
b_1	1.3	[m]	Semi-interasse trave sx		
b_2	1.3	[m]	Semi-interasse trave sx		
β_1	1	[m]			
β_2	1	[m]			
$oldsymbol{b_{\it eff}}$	2.8	[m]	Larghezza soletta collaborante		

Per semplicità anche alle travi esterne (Tr_1 e Tr_4) è stata associata una soletta collaborante di 2.8m.


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 25 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

7.1.1 MODELLO FASE 0

Il modello replica le travi metalliche di lunghezza pari a 32,4m, appoggiate alle estremità.

I carichi applicati sono il peso proprio della singola trave (applicato come carico distribuito), il peso delle predalles, ed il peso del getto della soletta (applicato come carico uniforme).

7.1.2 MODELLO FASE 1

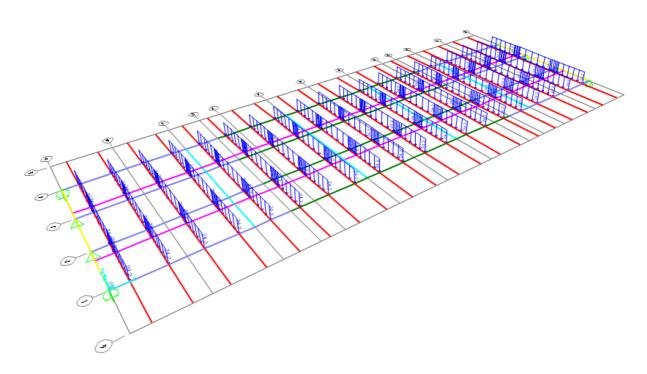
Il modello replica l'impalcato, comprensivo di travi, traversi e soletta, appoggiato in corrispondenza degli appoggi previsti per l'impalcato. I carichi applicati sono quelli relativi ai carichi di servizio, valutati in coerenza con quanto definito nell'analisi dei carichi (traffico, vento, termica).

I carichi verticali del traffico sono stati applicati come Moving Load. Il software di calcolo automaticamente posiziona i carichi in modo tale da ottenere le sollecitazioni maggiori secondo le linee di influenza.

Le sollecitazioni generate dai carichi variabili sono state calcolate considerando la sezione resistente mista composta dalla trave in acciaio e dalla soletta collaborante. Il calcolo della rigidezza è stato effettuato considerando un coefficiente di omogeneizzazione n=6. Per i carichi variabili non intervengono deformazioni viscose del calcestruzzo.

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 26 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

7.1.3 MODELLO FASE 2

Il modello replica l'impalcato, comprensivo di travi, traversi e soletta, appoggiato in corrispondenza degli appoggi previsti per l'impalcato. I carichi applicati sono quelli relativi ai sovraccarichi permanenti, valutati in coerenza con quanto definito nell'analisi dei carichi (massicciata, barriere antirumore e canalette).

Le sollecitazioni generate dai carichi variabili sono state calcolate considerando la sezione resistente mista composta dalla trave in acciaio e dalla soletta collaborante. Il calcolo della rigidezza è stato effettuato considerando un coefficiente di omogeneizzazione n=18. Il coefficiente di omogeneizzazione tiene in conto del comportamento viscoso del calcestruzzo a tempo infinito.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Ponti e Viadotti di linea
Impalcato in acccls. L=34m (Lc=32.4m) doppio binario
Relazione di Calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	27 di 91

7.2 ANALISI MODALE

Il software di calcolo SAP2000 permette di effettuare l'analisi modale al fine di determinare le frequenze di vibrazione proprie della struttura. Di seguito si riportano i primi periodi propri della struttura.

Outputcase	StepType	StepNum	Period [sec]
MODAL	Mode	1	0.318
MODAL	Mode	2	0.237

Per una trave semplicemente appoggiata la prima frequenza flessionale può essere ricavata come:

$$n_0 = \frac{17.75}{\sqrt{\delta_0}} = \frac{17.75}{\sqrt{31.7}} = 3.15 \ [Hz]$$

Per poter effettuare le verifiche applicando carichi statici bisogna verificare che la frequenza n₀ ricarda all'interno del seguente intervallo:

$$\begin{cases} n_{0,max} = 94.76 \cdot L^{-0.748} = 7.03 \ [Hz] \\ n_{0,min} = 23.58 \cdot L^{-0.592} = 3.01 \ [Hz] \end{cases}$$

La verifica risulta soddisfatta.

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	28 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

7.3 COMBINAZIONI DI CARICO

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella seguente tabella:

TIPO DI CARICO	Azioni v	erticali	A				
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1 (2)	1,00	2	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione	

Includendo tutti i fattori ad essi relativi (Φ,α, ecc..)

La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

Le azioni di cui ai paragrafi precedenti sono combinate tra loro, al fine di ottenere le sollecitazioni di progetto relative agli elementi strutturali di volta in volta considerati in base a quanto prescritto dal D.M. 14 Gennaio 2008 al paragrafo § 2.5.3, §3.2.4 e paragrafo §5.2.3.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Ponti e Viadotti di linea	
Impalcato in acccls. L=34m (Lc=32.4m) doppio binario	
Relazione di Calcolo	

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	29 di 91

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto $A_d(v. \S 3.6)$:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

L'analisi ragionata delle combinazioni di carico previste dalla normativa ha consentito di ridurre il numero di combinazioni considerate.

Nella tabella seguente si riportano i valori di combinazioni adottati per analisi e verifiche. I valori riportati in tabella considerano già i coefficienti di combinazione previsti dalla normativa.

Tipo Combinazione	Combinazione	Azione principale	G1_pp	G1_perm	Ballast	gr_traffico	Tk_ΔT	Fw_Vento	Ritiro
SLU	A1STR_gr1	gr1	1.35	1.5	1.5	1.45	0.90	0.9	1.2
SLU	A1STR_gr2	gr2	1.35	1.5	1.5	1.45	0.90	0.9	1.2
SLU	A1STR_gr3	gr3	1.35	1.5	1.5	1.45	0.90	0.9	1.2
SLU	A1STR_gr1_Fw	Fw	1.35	1.5	1.5	1.16	0.90	1.5	1.2
SLU	A1STR_gr2_Fw	Fw	1.35	1.5	1.5	1.16	0.90	1.5	1.2
SLU	A1STR_gr3_Fw	Fw	1.35	1.5	1.5	1.16	0.90	1.5	1.2
SLU	A1STR_gr1_Tk	Tk	1.35	1.5	1.5	1.16	1.5	0.9	1.2
SLU	A1STR_gr2_Tk	Tk	1.35	1.5	1.5	1.16	1.5	0.9	1.2
SLU	A1STR_gr3_Tk	Tk	1.35	1.5	1.5	1.16	1.5	0.9	1.2

I valori della colonna "gr_traffico" moltiplicano gli effetti dei singoli gruppi di carico considerati. I gruppi di carico sono definiti sulla base delle indicazioni di normativa.

Ponti e Viadotti di linea

Relazione di Calcolo

Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	30 di 91

EFFETTI GLOBALI SU IMPALCATO 8

8.1 **VERIFICHE ALLO STATO LIMITE ULTIMO**

Le verifiche allo stato limite ultimo sono state condotte nella fase 0, ovvero durante la fase costruttiva per la quale la soletta ancora non è collaborante, e a tempo infinito. Le verifiche sono state condotte in campo elastico, considerando tuttavia l'instabilità locale delle travi in acciaio utilizzando il metodo delle aree efficaci (UNI EN 1993-1-5). Si riportano di seguito le sollecitazioni nelle sezioni di maggiore importanza.

	x [m]	CARICO	V _{ed} [kN]	M _{ed} [kNm]
	0.0	G1	-862	0
TR_1	8.4	G1	-380	5495
	16.2	G1	0	6869
	0.0	G1	-729	0
TR_2	8.4	G1	-336	4781
_	16.2	G1	0	6016

	x [m]	CARICO	V _{ed} [kN]	M _{ed} [kNm]
	0.0	G2+BALLAST	-852	0
TR_1	8.4	G2+BALLAST	-326	5225
	16.2	G2+BALLAST	0	6490
	0.0	G2+BALLAST	-701	0
TR_2	8.4	G2+BALLAST	-302	4833
	16.2	G2+BALLAST	0	6086

	x [m]	CARICO		V _{ed} [kN]	M _{ed} [kNm]
	0.0	TRAFFICO	Max M3	-33	1
TR_1	8.4	TRAFFICO	Max M3	-494	7703
	16.2	TRAFFICO	Max M3	0	9773
	0.0	TRAFFICO	Max M3	-176	3
TR_2	8.4	TRAFFICO	Max M3	-494	8321
_	16.2	TRAFFICO	Max M3	0	10362

	x [m]	CARICO		V _{ed} [kN]	M _{ed} [kNm]
	0.0	TRAFFICO	Min V2	-1064	0
TR_1	8.4	TRAFFICO	Min V2	-576	6182
	16.2	TRAFFICO	Min V2	-231	5276
	0.0	TRAFFICO	Min V2	-1430	0
TR_2	8.4	TRAFFICO	Min V2	-752	6212
	16.2	TRAFFICO	Min V2	-452	5817

Ponti e Viadotti di linea						
Impalcato in acccls. L=34m (Lc=32.4m) doppio binario	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 002	Α	31 di 91
Relazione di Calcolo						

	x [m]	CARICO	V _{ed} [kN]	M _{ed} [kNm]
	0.0	VENTO	-68	0
TR_1	8.4	VENTO	-27	331
	16.2	VENTO	0	408
	0.0	VENTO	-16	0
TR_2	8.4	VENTO	-11	111
	16.2	VENTO	0	142

8.1.1 VERIFICHE MODELLO FASE 0

Si riportano di seguito le verifiche allo stato limite ultimo per il modello fase 0. In questa fase i carichi agenti sono il peso proprio della trave ed il peso del getto della soletta.

8.1.1.1 SEZIONE DI APPOGGIO (X=0) TRAVE TR_1

			SEZION	NE ACCIAIO			
ha		2080	[mm]	Altezza trave			
bf,sup		800	[mm]	Larghezza flangia superiore			
tf,sup		25	[mm]	Spessore flangia superiore			
hw		2020	[mm]	Altezza anima			
tw		18	[mm]	Spessore anima			
bf,inf		1100	[mm]	Larghezza flangia inferiore			
tf,inf		35	[mm]	Spessore flangia inferiore			
	SOLETTA						
b,sol	-		[mm]	Larghezza soletta			
h,sol	-		[mm]	Spessore soletta			
hc	-		[mm]	spessore soletta sulla flangia			
			ARN	MATURA			
n° ferri sup	-			Numero ferri per metro			
φ sup	-		[mm]	Diametro ferri superiori			
Aarm,sup	-		[mm ²]	Area ferri superiori			
n° ferri inf	-			Numero ferri per metro			
φ inf	-		[mm]	Diametro ferri inferiori			
Aarm,inf	-		[mm ²]	Area ferri inferiori			

	CARATTI	ERISTICHE M	<u> 1ECCANI</u>	CHE
.:	Yg	844	[mm]	Altezza baricentro
ACC.	Α	9.49E+04	[mm ²]	Area
⋖	1	7.01E+10	[mm ⁴]	Inerzia
60	Yg	-	[mm]	Altezza baricentro
9=	Α	-	[mm ²]	Area
_	1	-	[mm ⁴]	Inerzia
ω	Yg	-	[mm]	Altezza baricentro
n=18	Α	-	[mm ²]	Area
	1	-	[mm ⁴]	Inerzia
CAR	ATTERISTIC	HE MECCAN	IICHE SE	ZIONE EFF.
· i	Yg	740	[mm]	Altezza baricentro
ACC.	Α	8.52E+04	[mm ²]	Area
< <	1	6.03E+10	[mm ⁴]	Inerzia
-	Yg	-	[mm]	Altezza baricentro
9=1	Α	-	[mm ²]	Area
_	1	-	[mm ⁴]	Inerzia
	Yg	-	[mm]	Altezza baricentro
n=18	Α	-	[mm ²]	Area
ı ==	I			

	Med	Ned	Ved
Modello 0	0	0	-1163
Modello 1	-	-	-
Modello 2	-	-	-

	σ_fl,sup	σ_w,sup	σ_w,inf		σ_fl,inf	σ_arm,sup	σ_arm,inf	σ_cls	τ_acc	Von Mises
Modello 0	0	0		0	0	-	-	-		
Modello 1	-	-	-		-	-	-	-		
Modello 2	-	-	-		-	-	-	-		
TOT	0	0		0	0	-	-	-	48	98
Limite	-338	-338		338	338	391	391	18.81	195.2	319

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	32 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

8.1.1.2 SEZIONE X=8.4 TRAVE TR_1

		Ş	SEZIONE	ACCIAIO
ha		2080	[mm]	Altezza trave
bf,sup		800	[mm]	Larghezza flangia superiore
tf,sup		25	[mm]	Spessore flangia superiore
hw		2020	[mm]	Altezza anima
tw		18	[mm]	Spessore anima
bf,inf		1100	[mm]	Larghezza flangia inferiore
tf,inf		35	[mm]	Spessore flangia inferiore
			SOL	ETTA
b,sol	-		[mm]	Larghezza soletta
h,sol	-		[mm]	Spessore soletta
hc	-		[mm]	spessore soletta sulla flangia
			ARMA	ATURA
n° ferri sup	-			Numero ferri per metro
φ sup	-		[mm]	Diametro ferri superiori
Aarm,sup	-		[mm ²]	Area ferri superiori
n° ferri inf	-			Numero ferri per metro
φ inf	-		[mm]	Diametro ferri inferiori
Aarm,inf	-		[mm ²]	Area ferri inferiori

	OADATTE	DIOTIOLIE	450041	IIOLIE
	CARATTE	RISTICHE N	/IECCAI	NICHE
· i	Yg	844	[mm]	Altezza baricentro
ACC.	Α	9.49E+04	$[mm^2]$	Area
٧	1	7.01E+10	[mm ⁴]	Inerzia
•	Yg	-	[mm]	Altezza baricentro
9=u	Α	-	$[mm^2]$	Area
ı	1	-	[mm ⁴]	Inerzia
8	Yg	-	[mm]	Altezza baricentro
n=18	Α	-	[mm ²]	Area
_	1	-	[mm ⁴]	Inerzia
CARA	TERISTICH	HE MECCAN	NICHE S	SEZIONE EFF.
45	Yg	740	[mm]	Altezza baricentro
ACC.	Α	8.52E+04	[mm ²]	Area
٧	1	6.03E+10	[mm ⁴]	Inerzia
"	Yg	-	[mm]	Altezza baricentro
9=u	Α	-	[mm ²]	Area
ı	1	-	[mm ⁴]	Inerzia
~	Yg	-	[mm]	Altezza baricentro
n=18	A	-	[mm ²]	Area
ڠ	1	-	[mm ⁴]	Inerzia

	Med	Ned	Ved
Modello 0	7147	0	-552
Modello 1	-	-	-
Modello 2	-	-	-

	σ_fl,sup	σ_w,sup	σ_w,inf		σ_fl,inf	σ_arm,sup	σ_arm,inf	σ_cls	τ_acc	Von Mises	
Modello 0	-159	-156		83	88	-	-	-			
Modello 1	-	-	-		-	-	-	-			
Modello 2	-	-	-		-	-	-	-			
TOT	-159	-156		83	88	-	-	-	23		165
Limite	-338	-338		338	338	391	391	18.81	195.2	•	319

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
IN LOTTO FUNZIONALE CANCELLO – ERASSO TELES

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	33 di 91

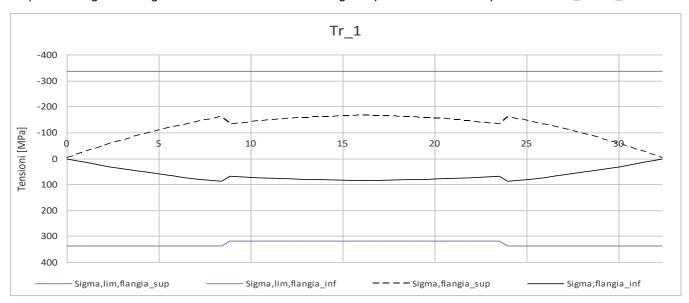
8.1.1.3 SEZIONE DI MEZZERIA (X=16.2 M) TRAVE TR_1

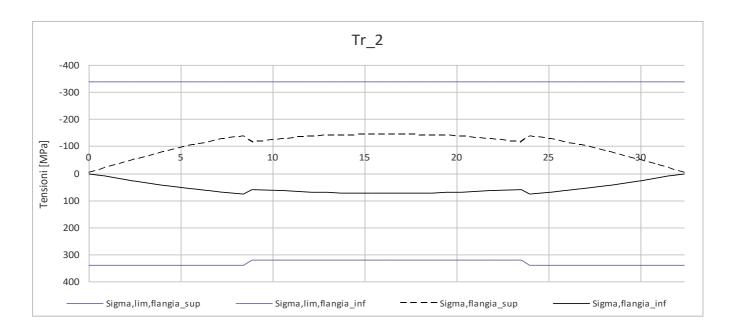
SEZIONE ACCIAIO						
ha		2080	[mm]	Altezza trave		
bf,sup		800	[mm]	Larghezza flangia superiore		
tf,sup		30	[mm]	Spessore flangia superiore		
hw		2020	[mm]	Altezza anima		
tw		18	[mm]	Spessore anima		
bf,inf		1100	[mm]	Larghezza flangia inferiore		
tf,inf		50	[mm]	Spessore flangia inferiore		
			SOLE	ETTA		
b,sol	-		[mm]	Larghezza soletta		
h,sol	-		[mm]	Spessore soletta		
hc	-		[mm]	spessore soletta sulla flangia		
			ARMA			
n° ferri sup	-			Numero ferri per metro		
φ sup	-		[mm]	Diametro ferri superiori		
Aarm,sup	-		[mm ²]	Area ferri superiori		
n° ferri inf	-			Numero ferri per metro		
φ inf	-		[mm]	Diametro ferri inferiori		
Aarm,inf	-		[mm ²]	Area ferri inferiori		

CARATTERISTICHE MECCANICHE							
45	Yg	772	[mm]	Altezza baricentro			
ACC.	Α	1.15E+05	[mm ²]	Area			
<	1	8.56E+10	[mm ⁴]	Inerzia			
	Yg	-	[mm]	Altezza baricentro			
9=u	Α	-	[mm ²]	Area			
_	1	-	[mm ⁴]	Inerzia			
∞	Yg	-	[mm]	Altezza baricentro			
n=18	Α	-	[mm ²]	Area			
	1	-	[mm ⁴]	Inerzia			
CAR	ATTERISTIC	HE MECCAN	IICHE SE	ZIONE EFF.			
ı,	Yg	699	[mm]	Altezza baricentro			
ACC.	Α	1.06E+05	[mm ²]	Area			
⋖	1	7.78E+10	[mm ⁴]	Inerzia			
	Yg	-	[mm]	Altezza baricentro			
9=u	Α	-	[mm ²]	Area			
_	1	-	[mm ⁴]	Inerzia			
	Yg	-	[mm]	Altezza baricentro			
n=18	A	-	[mm ²]	Area			
	I	-	[mm ⁴]	Inerzia			

	Med	Ned	Ved
Modello 0	9274	0	0
Modello 1	-	-	-
Modello 2	-	-	-

	σ_fl,sup	σ_w,sup	σ_w,inf	σ_fl,inf	σ_arm,sup	σ_arm,inf	σ_cls	τ_acc	Von Mises
Modello 0	0	0	0	0	-	-	-		
Modello 1	-			-	-	-	-		
Modello 2	-			-	-	-	-		
TOT	-165	-161	77	83	-	-	-	0	165
Limite	-338	-338	338	319	391	391	18.81	195.2	319




Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 34 di 91

Si riporta di seguito il diagramma delle tensioni della flangia superiore ed inferiore per la trave Tr_1 e Tr_2.

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 35 di 91

8.1.2 VERIFICHE A TEMPO INFINITO

Le verifiche tensionali sono state condotte tenendo conto delle fasi costruttive. Sono state sommate quindi in maniera separata le tensioni dei 3 modelli.

8.1.2.1 SEZIONE DI APPOGGIO (X=0) TRAVE TR_1

SEZIONE ACCIAIO						
ha	2080	[mm]	Altezza trave			
bf,sup	800	[mm]	Larghezza flangia superiore			
tf,sup	25	[mm]	Spessore flangia superiore			
hw	2020	[mm]	Altezza anima			
tw	18	[mm]	Spessore anima			
bf,inf	1100	[mm]	Larghezza flangia inferiore			
tf,inf	35	[mm]	Spessore flangia inferiore			
		SC	DLETTA			
b,sol	2800	[mm]	Larghezza soletta			
h,sol	0	[mm]	Spessore soletta			
hc	50	[mm]	spessore soletta sulla flangia			
		ARI	MATURA			
n° ferri sup	5		Numero ferri per metro			
φ sup	14	[mm]	Diametro ferri superiori			
Aarm,sup	2155	[mm ²]	Area ferri superiori			
n° ferri inf	5		Numero ferri per metro			
φ inf	14	[mm]	Diametro ferri inferiori			
Aarm,inf	2155	[mm ²]	Area ferri inferiori			

CARATTERISTICHE MECCANICHE							
	_	844		Altezza baricentro			
ACC.	Yg	_	[mm]				
) မ	A	9.49E+04	[mm ²]				
	I	7.01E+10	[mm ⁴]	Inerzia			
"	Yg	1811	[mm]	Altezza baricentro			
9=u	Α	2.76E+05	[mm ²]	Area			
_	1	2.06E+11	[mm ⁴]	Inerzia			
8	Yg	1433	[mm]	Altezza baricentro			
n=18	Α	1.58E+05	[mm ²]	Area			
_	1	1.50E+11	[mm ⁴]	Inerzia			
CARA	TTERISTIC	HE MECCA	NICHE	SEZIONE EFF.			
(5	Yg	774	[mm]	Altezza baricentro			
ACC.	Α	8.39E+04	[mm ²]	Area			
⋖	1	6.62E+10	[mm ⁴]	Inerzia			
10	Yg	1829	[mm]	Altezza baricentro			
n=6	Α	2.65E+05	[mm ²]	Area			
_	1	2.04E+11	[mm ⁴]	Inerzia			
- 80	Yg	1437	[mm]	Altezza baricentro			
n=18	A	1.47E+05	[mm ²]	Area			
	1	1.50E+11	[mm ⁴]	Inerzia			

	Med	Ned	Ved
Modello 0	0	0	-1163
Modello 1	1563	-4569	-1604
Modello 2	4615	-2551	-1278

	σ_fl,sup	σ_w,sup	σ_w,inf	σ_fl,inf	σ_arm,sup	σ_arm,inf	σ_cls	τ_acc	Von Mises	
Modello 0	0	0	0	0	-12	-11	0			
Modello 1	-12	-11	4	4	-14	-12	-2			
Modello 2	-51	-50	12	13	-61	-52	-3			
TOT	-62	-62	16	18	-75	-64	-6	167		296
Limite	-338	-338	338	319	391	391	18.81	195.2		338

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Ponti e Viadotti di linea Impalcato in acccls. L=34m (Lc=32.4m) doppio binario	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 002	Α	36 di 91

8.1.2.2 SEZIONE DI MEZZERIA (X=8.4) TRAVE TR_1

SEZIONE ACCIAIO						
ha	2080	[mm]	Altezza trav			
bf,sup	800	[mm]	Larghezza flangia superiore			
tf,sup	25	[mm]	Spessore flangia superiore			
hw	2020	[mm]	Altezza anima			
tw	18	[mm]	Spessore anima			
bf,inf	1100	[mm]	Larghezza flangia inferiore			
tf,inf	35	[mm]	Spessore flangia inferiroe			
		SC	DLETTA			
b,sol	2800	[mm]	Larghezza soletta			
h,sol	378	[mm]	Spessore soletta			
hc	50	[mm]	spessoe soletta sulla flangia			
		ARI	MATURA			
n° ferri sup	5		Numero ferri per metro			
φ sup	14	[mm]	Diametro ferri superiori			
Aarm,sup	2155	$[mm^2]$	Area ferri superiori			
n° ferri inf	5		Numero ferri per metro			
φ inf	14	[mm]	Diametro ferri inferiori			
Aarm,inf	2155	[mm ²]	Area ferri inferiori			

CARATTERISTICHE MECCANICHE						
(5	Yg	844	[mm]	Altezza baricentro		
ACC.	Α	9.49E+04	[mm ²]	Area		
⋖	1	7.01E+10	[mm ⁴]	Inerzia		
6	Yg	1811	[mm]	Altezza baricentro		
n=6	Α	2.76E+05	[mm ²]	Area		
_	1	2.06E+11	[mm ⁴]	Inerzia		
∞	Yg	1433	[mm]	Altezza baricentro		
n=18	Α	1.58E+05	[mm ²]	Area		
	1	1.50E+11	[mm ⁴]	Inerzia		
CARA	TTERISTIC	CHE MECCA	NICHE	SEZIONE EFF.		
ci.	Yg	844	[mm]	Altezza baricentro		
ACC.	Α	9.49E+04	[mm ²]	Area		
٩	1	7.01E+10	[mm ⁴]	Inerzia		
6	Yg	1811	[mm]	Altezza baricentro		
9=u	Α	2.76E+05	[mm ²]	Area		
_	1	2.06E+11	[mm ⁴]	Inerzia		
&	Yg	1433	[mm]	Altezza baricentro		
n=18	Α	1.58E+05	[mm ²]	Area		
	1	1.50E+11	[mm ⁴]	Inerzia		

	Med	Ned	Ved
Modello 0	7147	0	-552
Modello 1	12553	-4569	-911
Modello 2	12168	-2454	-599

	σ_fl,sup	σ_w,sup	o_w,inf	σ_fl,inf	σ_arm,sup	σ_arm,inf	σ_cls	τ_acc	Von Mises
Modello 0	-126	-124	82	86	-25	-24	0		
Modello 1	-25	-24	99	101	-45	-28	-8		
Modello 2	-81	-79	85	87	-108	-85	-6		
TOT	-233	-227	266	275	-154	-113	-14	85	312
Limite	-338	-338	338	338	391	391	18.81	195.2	338

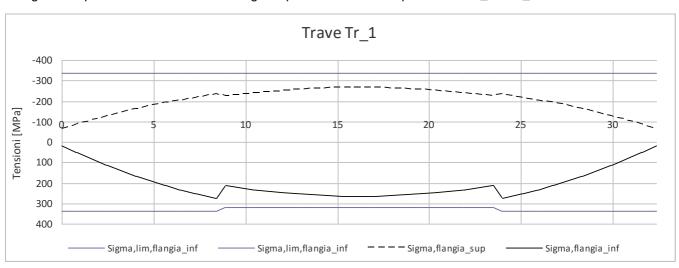
Ponti e Viadotti di linea

Relazione di Calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO - BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

LOTTO CODIFICA DOCUMENTO COMMESSA REV. FOGLIO Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario IF1N 01 E ZZ CL VI 00 07 002 Α 37 di 91

8.1.2.3 SEZIONE DI MEZZERIA (X=16.2) TRAVE TR_1

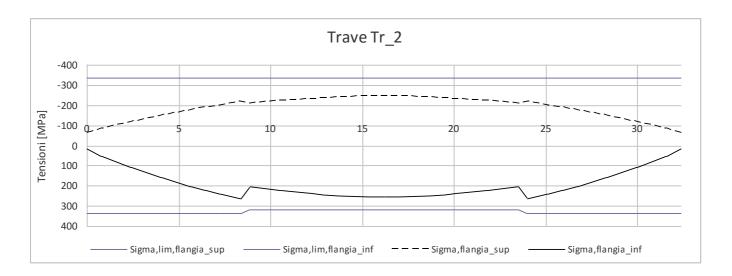

	SEZIONE ACCIAIO					
ha	2080	[mm]	Altezza trav			
bf,sup	800	[mm]	Larghezza flangia superiore			
tf,sup	30	[mm]	Spessore flangia superiore			
hw	2000	[mm]	Altezza anima			
tw	18	[mm]	Spessore anima			
bf,inf	1100	[mm]	Larghezza flangia inferiore			
tf,inf	35	[mm]	Spessore flangia inferiroe			
		SOL	ETTA			
b,sol	2800	[mm]	Larghezza soletta			
h,sol	378	[mm]	Spessore soletta			
hc	50	[mm]	spessoe soletta sulla flangia			
		ARMA	ATURA			
n° ferri sup	5		Numero ferri per metro			
φ sup	14	[mm]	Diametro ferri superiori			
Aarm,sup	2155	[mm ²]	Area ferri superiori			
n° ferri inf	5		Numero ferri per metro			
φ inf	14	[mm]	Diametro ferri inferiori			
Aarm,inf	2155	[mm ²]	Area ferri inferiori			

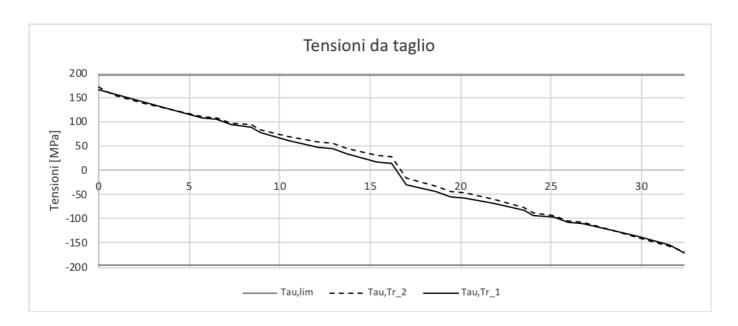
	0.40.4	DIOTIONE		
		RISTICHE N	MECCAI	VICHE
ci.	Yg	772	[mm]	Altezza baricentro
ACC.	Α	1.15E+05	[mm ²]	Area
< <	1	8.56E+10	[mm ⁴]	Inerzia
	Yg	1717	[mm]	Altezza baricentro
n=6	Α	2.96E+05	$[mm^2]$	Area
_	1	2.54E+11	[mm ⁴]	Inerzia
8	Yg	1320	[mm]	Altezza baricentro
n=18	Α	1.78E+05	[mm ²]	Area
_	1	1.80E+11	[mm ⁴]	Inerzia
CARAT	TERISTIC	HE MECCAN	VICHE S	SEZIONE EFF.
<i>(</i> 3	Yg	758	[mm]	Altezza baricentro
ACC.	Α	1.13E+05	[mm ²]	Area
⋖	I	8.43E+10	[mm ⁴]	Inerzia
	Yg	1718	[mm]	Altezza baricentro
9=u	Α	2.94E+05	[mm ²]	Area
_	1	2.54E+11	[mm ⁴]	Inerzia
	I Yg	2.54E+11 1317	[mm ⁴] [mm]	Inerzia Altezza baricentro
n=18 r	Yg A			

	Med	Ned	Ved
Modello 0	9274	0	0
Modello 1	16101	-4569	0
Modello 2	14350	-2393	0

	σ_fl,sup	σ_w,sup	σ_w,inf	σ_fl,inf	σ_arm,sup	σ_arm,inf	σ_cls	τ_acc	Von Mises	
Modello 0	-145	-142	7	8 83	-31	-29	0			
Modello 1	-31	-29	g	7 101	-51	-33	-9			
Modello 2	-87	-85	7	5 79	-112	-89	-6			
TOT	-264	-256	25	1 263	-162	-122	-15	0		264
Limite	-338	-338	33	8 319	391	391	18.81	195.2		319

Di seguito si riportano le tensioni nella flangia superiore ed inferiore per le travi Tr_1 e Tr_2.




Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 38 di 91

Si riportano di seguito le tensioni tangenziali nelle travi Tr_1 e Tr_2.

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

IF1N	01	E ZZ CL	VI 00 07 002	REV.	39 di 91
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

8.2 VERIFICHE DEI CONNETTORI A TAGLIO

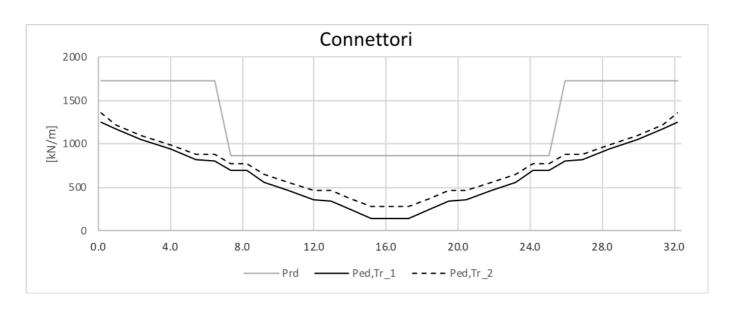
I connettori a taglio garantiscono la collaborazione tra soletta e trave in acciaio. Le sollecitazioni di taglio, tra soletta e trave, assorbite dai connettori, sono state calcolate con il metodo elastico. Il taglio per metro lineare è stato ottenuto con la seguente formula:

$$v_{\rm ed} = \frac{V_{\rm ed} \cdot S_{\rm soletta}}{I_{\rm Sez,omo\,g}} \ [kN/m]$$

Dove:

- V_{ed} è la sollecitazione di taglio;
- Ssoletta è il momento statico della soletta rispetto il baricentro della sezione;
- I_{sez,omog} è l'inerzia della sezione omogeneizzata.

La resistenza di progetto dei pioli è la minima tra la resistenza a taglio dei pioli e di rifollamento del calcestruzzo:


$$P_{Rd}a = 0.8f_t (\pi d^2/4)/\gamma V$$

$$P_{Rd\ c} = 0.29 \,\alpha \,d^{2} \,(f_{ck}\,E_{c})^{0.5}/\gamma_{V}.$$

Dove:

- y_√ è il fattore parziale definito al § 4.3.3.
- ft è la resistenza a rottura dell'acciaio del piolo;
- f_{ck} è la resistenza cilindrica del calcestruzzo della soletta;
- d è il diametro del piolo, compreso tra 16 e 25 mm;
- h_{sc} è l'altezza del piolo dopo la saldatura, non minore di 3 volte il diametro del gambo del piolo;

Si riporta di seguito il diagramma del taglio resistente e del taglio agente.

da	а	ft	d	hsc	Passo pioli	n° pioli trasversalmente
[m]	[m]	[MPa]	[mm]	[mm]	[cm]	ii pioli trasversaimente
0	7	355	22	100	20	4
7	16.2	355	22	100	40	4

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	A	40 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

8.3 VERIFICHE A FATICA

Le verifiche a fatica possono essere effettuate calcolando le variazioni di tensioni generate dai carichi ciclici e verificando che queste siano inferiori ad un determinato limite. Le verifiche sono state condotte per le travi e per i connettori in accordo a quanto indicato nelle indicazioni di Ferrovie dello stato. La verifica per essere in sicurezza nei riguardi della fatica è data da:

$$\Delta \sigma_{E,d} \leq \frac{\Delta \sigma_c}{\gamma_{Mf}}$$
 con $\Delta \sigma_{E,d} = \lambda \cdot \Phi_2 \cdot \Delta \sigma_{71}$

Dove:

- A è un fattore di correzione;
- $\Delta \sigma_c$ è la resistenza alla fatica corrispondente a 2x10⁶ cicli;
- Δσ_{E,d} è la differenza di tensione generate dal sovraccarico teorico adottato;
- Φ₂ è il coefficiente di incremento dinamico;

La precedente equazione è valida anche per le tensioni di taglio.

Il fattore di correzione può essere calcolato come:

$$\lambda = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 \cdot \lambda_4$$

Dove:

- $-\lambda_1 = 0.65$ è un fattore che tiene conto l'effetto di danneggiamento dovuto al traffico;
- λ₂=1 è un fattore che tiene conto il volume di traffico;
- λ₂ =1è un fattore che tiene conto la vita di progetto del ponte;
- ¼ è un fattore da applicarsi quando l'elemento strutturale è caricato da più di un binario;

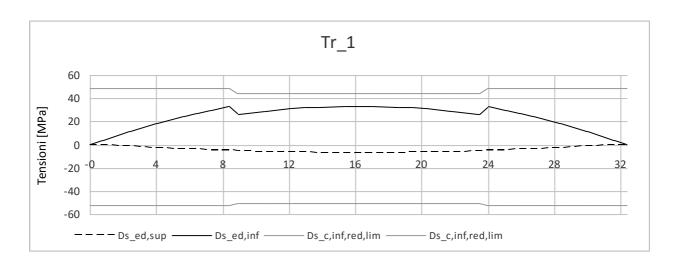
Il fattore λ_4 è stato assunto, a favore di sicurezza, pari ad 1. La vita utile a fatica è stata presa pari a 100 anni. Nel caso di lamiere di spessore maggiore di 25mm la resistenza a fatica deve essere moltiplicata per un coefficiente riduttivo k_s che può assunto pari a:

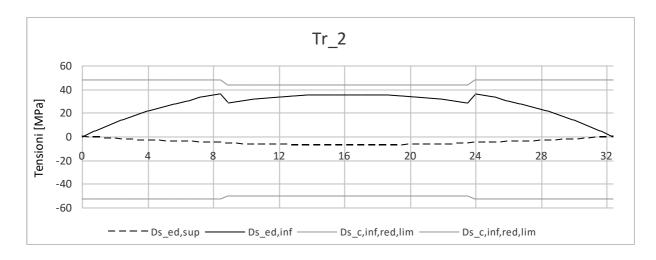
$$k_s = \sqrt[4]{\frac{25}{t}}$$

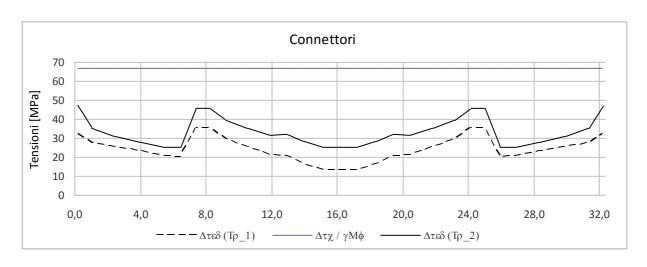
Il carico ciclico considerato è il LM71 che è stato posizionato in modo tale da massimizzare le sollecitazioni in ogni sezione.

Il valore del $\Delta \sigma_c$ della flangia vale 71 MPa, mentre per i connettori $\Delta \tau_c$ viene assunto pari a 90 MPa. Di seguito si riportano i diagrammi delle tensioni e dei relativi limiti per le travi Tr_1 e Tr_2 e per i connettori a taglio.

ITINERA


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 41 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 42 di 91

9 TRASVERSI

Ponti e Viadotti di linea

Relazione di Calcolo

Le travi reticolari trasversali sono composte da angolari accoppiati le cui caratteristiche sono riportate nella seguente tabella.

CAR	ATTERISTIC	НЕ МЕ	CCANICHE PROFILO 90X90X8
h=b	90	mm	Altezza sezione
t	8	mm	Spessore
Α	13.89	cm^2	Area sezione lorda
Izz	1.04E+06	$\rm mm^4$	Inerzia sezione asse zz
lyy	1.04E+06	$\rm mm^4$	Inerzia sezione asse zz
iy = iz	27.42	mm	Raggio giratore di inerzia
Zs	25.00	mm	Distanza baricentro asse y
Уs	25.00	mm	Distanza baricentro asse z
CARA	TERISTICH	E MEC	CANICHE PROFILO ACCOPPIATO
$t_{imbottitura}$	8	mm	Spessore Imbottitura
i _{imbottitura}	467	mm	Interasse imbottitura
A_{lorda}	27.78	cm^2	Area sezione lorda
A _{netta}	21.62	cm^2	Area sezione netta
lyy	2.09E+06	$\rm mm^4$	Inerzia profilo accoppiato asse yy
Izz	4.42E+06	$\rm mm^4$	Inerzia profilo accoppiato asse zz
iy	27.42	mm	Raggio giratore di inerzia y
iz	39.91	mm	Raggio giratore di inerzia z

Nei paragrafi successivi si riportano le verifiche per i correnti superiori, inferiori e per i diagonali. Le sollecitazioni dei diversi modelli sono state combinate come descritto nel paragrafo 7.3.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	43 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

9.1.1.1 CORRENTE SUPERIORE

	Stabilità	Aste (Compresse (Asse YY)	
E	210000	MPa	Modulo elastico	
f _{yk}	355	MPa	Resistenza cratteristica	
L	2800	mm	Lunghezza asta	
A _{lorda}	27.8	cm^2	Area sezione lorda	
1	2.09E+06	mm ⁴	Inerzia sezione	
i	27.42	mm	Raggio giratore di inerzia	
N _{cr}	5.52E+05	N	Carico critico euleriano	
λ	102.1		Snellezza	
λ,segnato	1.34		Snellezza normalizzata	
α	0.34		Coeff. Imperfezione	
Φ	1.59			
χ	0.41			
γ _{M1}	1.1			
N _{Rd}	367	kN	Resistenza instabilità	
N_{ed}	10.8	kN	Sforzo normale agente	
		V	ERIFICA	
			VERO	

	Stabilità A	ste Com	presse (Asse ZZ)
E	210000	MPa	Modulo elastico
f _{yk}	355	MPa	Resistenza cratteristica
L	2800	mm	Lunghezza asta
Alorda	27.8	cm ²	Area sezione lorda
1	4.42E+06	mm ⁴	Inerzia sezione
i	39.91	mm	Raggio giratore di inerzia
N _{cr}	1.17E+06	N	Carico critico euleriano
λ	70.2		Snellezza
λ,segnato	0.92		Snellezza normalizzata
α	0.34		Coeff. Imperfezione
Φ	1.04		
χ	0.65		
γ _{M1}	1.1		
N_{Rd}	582	kN	Resistenza instabilità
N _{ed}	10.8	kN	Sforzo normale agente
		VERIF	FICA
		VER	RO

	Resisenza a Trazione						
f _{yk}	355	MPa	Resistenza Snervamento				
f _{tk}	510	MPa	Resistenza ultima				
A _{lorda}	27.78	cm^2	Area sezione lorda				
A _{netta}	23.26	cm^2	Area sezione netta				
γ_{M0}	1.05						
γм2	1.25						
$N_{\text{pl,Rd}}$	939	kN	Resistenza a trazione plastica				
$N_{\text{u,Rd}}$	854	kN	Resistenza a trazione ultima				
N_{ed}	69	kN	Sforzo normale agente				
		VI	ERIFICA				
		,	VERO				

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	44 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

9.1.1.2 CORRENTE INFERIORE

	Stabilità	Aste C	Compresse (Asse YY)
E	210000	MPa	Modulo elastico
f_{yk}	355	MPa	Resistenza cratteristica
L	1400	mm	Lunghezza asta
Alorda	27.8	cm ²	Area sezione lorda
1	2.09E+06	mm ⁴	Inerzia sezione
i	27.42	mm	Raggio giratore di inerzia
N _{cr}	2.21E+06	N	Carico critico euleriano
λ	51.1		Snellezza
λ,segnato	0.67		Snellezza normalizzata
α	0.34		Coeff. Imperfezione
Φ	0.80		
χ	0.80		
γ_{M1}	1.1		
N _{Rd}	718	kN	Resistenza instabilità
N_{ed}	85.8	kN	Sforzo normale agente
		VE	ERIFICA
		1	VERO

	Stabilità Aste Compresse (Asse ZZ)							
E	210000	MPa	Modulo elastico					
f _{yk}	355	MPa	Resistenza cratteristica					
L	2800	mm	Lunghezza asta					
Alorda	27.8	cm ²	Area sezione lorda					
1	4.42E+06	mm ⁴	Inerzia sezione					
i	39.91	mm	Raggio giratore di inerzia					
N _{cr}	1.17E+06	N	Carico critico euleriano					
λ	70.2		Snellezza					
λ,segnato	0.92		Snellezza normalizzata					
α	0.34		Coeff. Imperfezione					
Φ	1.04							
χ	0.65							
$\gamma_{\rm M1}$	1.1							
N _{Rd}	582	kN	Resistenza instabilità					
N _{ed}	85.8	kN	Sforzo normale agente					
		VERII	FICA					
		VEF	RO					

Resisenza a Trazione						
f _{yk}	355	MPa	Resistenza Snervamento			
f _{tk}	510	MPa	Resistenza ultima			
Alorda	27.78	cm^2	Area sezione lorda			
A _{netta}	23.26	cm^2	Area sezione netta			
γм0	1.05					
γм2	1.25					
$N_{pl,Rd}$	939	kN	Resistenza a trazione plastica			
$N_{u,Rd}$	854	kN	Resistenza a trazione ultima			
N_{ed}	18	kN	Sforzo normale agente			
	VERIFICA					
		,	VERO			

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	45 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

9.1.1.3 DIAGONALI

Stabilità Aste Compresse (Asse YY)						
E	210000	MPa	Modulo elastico			
f _{yk}	355	MPa	Resistenza cratteristica			
L	2360	mm	Lunghezza asta			
A _{lorda}	27.8	cm ²	Area sezione lorda			
I	2.09E+06	mm ⁴	Inerzia sezione			
i	27.42	mm	Raggio giratore di inerzia			
N _{cr}	7.77E+05	N	Carico critico euleriano			
λ	86.1		Snellezza			
λ,segnato	1.13		Snellezza normalizzata			
α	0.34		Coeff. Imperfezione			
Φ	1.29					
χ	0.52					
γ _{м1}	1.1					
N _{Rd}	466	kN	Resistenza instabilità			
N _{ed}	51.7	kN	Sforzo normale agente			
		VE	RIFICA			
		١	/ERO			

	Stabilità A	Stabilità Aste Compresse (Asse ZZ)							
E	210000	MPa	Modulo elastico						
f_{yk}	355	MPa	Resistenza cratteristica						
L	2360	mm	Lunghezza asta						
Alorda	27.8	cm ²	Area sezione lorda						
1	4.42E+06	mm ⁴	Inerzia sezione						
i	39.91	mm	Raggio giratore di inerzia						
N _{cr}	1.65E+06	N	Carico critico euleriano						
λ	59.1		Snellezza						
λ,segnato	0.77		Snellezza normalizzata						
α	0.34		Coeff. Imperfezione						
Φ	0.90								
χ	0.74								
γ_{M1}	1.1								
N _{Rd}	664	kN	Resistenza instabilità						
N _{ed}	51.7	kN	Sforzo normale agente						
		VERII	FICA						
		VEF	RO						

Resisenza a Trazione						
f _{yk}	355	MPa	Resistenza Snervamento			
f _{tk}	510	MPa	Resistenza ultima			
Alorda	27.78	cm^2	Area sezione lorda			
A _{netta}	23.26	cm^2	Area sezione netta			
γм0	1.05					
γм2	1.25					
$N_{pl,Rd}$	939	kN	Resistenza a trazione plastica			
$N_{\text{u,Rd}}$	854	kN	Resistenza a trazione ultima			
N_{ed}	51.7	kN	Sforzo normale agente			
	VERIFICA					
		•	VERO			

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	46 di 91

10 EFFETTI LOCALI SULL'IMPALCATO – MODELLO TRASVERSALE

La valutazione degli effetti locali prodotti dalle azioni di progetto è stata effettuata mediante un modello a trave continua, riferito ad una striscia di impalcato avente larghezza pari a 1 m. Il modello riproduce la geometria e la rigidezza degli elementi che costituiscono l'impalcato nella sua sezione corrente.

Di seguito si riporta una vista del modello di calcolo.

10.1 ANALISI DEI CARICHI

Di seguito si riporta l'analisi delle azioni considerate e applicate al modello di calcolo per l'analisi degli effetti locali trasversali sull'impalcato, in riferimento a quanto descritto al capitolo 6 della presente relazione.

10.1.1 PESO PROPRIO (G₁)

Il peso proprio della soletta è stato considerato come un carico uniforme pari a 10 kN/m.

G₁=10 kN/m.

A questo si somma un carico concentrato alle estremità di 4.2kN a rappresentare il cordolo esterno.

10.1.2 PERMANENTI NON STRUTTURALI

10.1.2.1 MASSICCIATA, ARMAMENTO E IMPERMEABILIZZAZIONE

A vantaggio di sicurezza si valuta l'azione sulla soletta di impalcato in riferimento al peso di volume in curva:

 $G_{Ballast}$ = 18.00 * 0.85 * 1.0 = 15.30 kN/m

10.1.2.2 BARRIERE ANTIRUMORE

Si considera un carico relativo alle barriere antirumore pari a 4.0 kN/mq. Considerando cautelativamente un'altezza massima di barriera pari a 5.4 m, si ottiene un carico lineare pari a:

 $G_{2,1} = q_{barriere} = 4.0 * 5.4 = 21.6 kN/m per ogni lato dell'impalcato$

Vengono quindi applicate due azioni concentrate pari a 21.6 kN in posizione corrispondente a ogni barriera.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

COMMESSA LOTTO

CODIFICA E ZZ CL DOCUMENTO REV.

VI 00 07 002 A

FOGLIO **47 di 91**

10.1.2.3 CANALETTE IMPIANTI, IMPIANTI E MURETTI PARABALLAST

A ridosso dei muretti paraballast, sono previste delle canalette impianti sui lati esterni. Si assume un carico lineare uniforme pari a:

G_{2,2} = 9.00 kN/m per ogni lato dell'impalcato

10.1.2.4 VELETTE

Alle estremità della soletta, sono previste delle velette in calcestruzzo. Si assume un carico lineare uniforme pari a:

 $G_{2,3}$ = 2.50 kN/m per ogni lato dell'impalcato

10.1.3 CARICHI VARIABILI

10.1.3.1 CARICHI VERTICALI DA TRAFFICO

Si considera il treno di carico LM71, che è il carico più gravoso.

 $Q_{vk} = 250 \text{ kN}; \quad \alpha = 1.1 \text{ (coefficiente di adattamento)}$

Nella seguente figura è indicata la distribuzione longitudinale dei carichi assiali Q_{vk} nell'ipotesi di ripartizione nel ballast 4:1 e nella soletta 1:1 ipotizzata ad altezza costante e pari a 0.40 m.

 $Q'_{vk} = 156.3 \text{ kN/m}$

Il carico appena calcolato si ripartisce trasversalmente (4:1 nel ballast e 1:1 nella soletta) per una larghezza pari a:

L = 2.4m + 0.4m/4*2 + 0.4m/2*2 = 3.00 m.

Il carico sul modello è quindi pari a:

 $q_{vk} = 156.3 / 3 = 52.1 \text{ kN/mq}$

Tale valore deve essere amplificato per il fattore α pari a 1.1.

Sono state considerate tre diverse posizioni del carico, corrispondenti alla posizione centrata e a quelle con massima eccentricità. Di seguito si calcolano le distanze dall'asse del ponte per i tre casi.

 $d_0 = (4.00/2 + 0.08) = 2.08 \text{ m}$

 $d_1 = (4.00/2) = 2.00 \text{ m}$

 $d_2 = (4.00/2 - 0.08) = 1.92m$

con

- 4.00m interasse binari

- 0.08 = s/18 eccentricità treni tipo LM71

10.1.3.2 CARICHI SUI MARCIAPIEDI

I carichi accidentali sui marciapiedi (di larghezza 1m ciascuno) sono schematizzati da un carico concentrato pari al valore:

 $Q_M = 10 \text{ kN/mq} * 1\text{m} * 1\text{m} = 10 \text{ kN}$

10.1.3.3 SERPEGGIO

Il valore caratteristico di tale forza è stato assunto pari a Q_{sk} =100 kN. Tale valore deve essere moltiplicato per α , ma non per il coefficiente di incremento dinamico. Si considera una larghezza di diffusione pari a 2.00 m.

La quota di applicazione dell'azione rispetto al piano medio della soletta è pari a:

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	A	48 di 91

 $h_t = 1.05 \text{ m}$

Il momento da applicare al modello è pari a

 $M_t = 50 \times 1.05 = 52.5 \text{ kNm/m}$

Tale momento viene applicato al modello come distribuzione a farfalla di carichi verticali. Le tensioni massime alle estremità della larghezza b di applicazione del carico sono calcolate di seguito.

 $q_{max} = 6 * M_t / (b^2) = 6 * 52.5 / (3.00^2) = 35.00 kN/m$

10.1.3.4 AVVIAMENTO E FRENATURA

Si trascurano gli effetti delle azioni di avviamento e frenatura.

10.1.3.5 AZIONI DINAMICHE

Si considera un coefficiente di amplificazione dinamica pari a: $\phi_3 = 1.53$.

Avendo considerato la luce della soletta tra le nervature delle travi principali pari a 2.80 m. (Vedi paragrafo 6.3.5).

10.1.3.6 AZIONI DOVUTE AL DERAGLIAMENTO

Vedi paragrafo 6.3.6.

10.1.3.7 AZIONI CLIMATICHE

Si considera una variazione termica uniforme pari a ±15°C.

10.1.3.8 VENTO

Si assume una pressione uniforme agente lateralmente pari a 2.50 kN/mg.

In riferimento allo schema riportato nel paragrafo 6.4.3 si applicano le seguenti azioni sulla struttura.

Azione applicata sulla barriera

F2 = 2.50 * 5.40 = 13.50 kN/m

Le azioni sono applicate nel nodo corrispondente alla posizione della barriera, per cui riferendosi al baricentro della soletta si ha:

M2 = 36.5 kNm/m

Azione applicata sul treno

F2 = 2.50 * 4 = 10 kN/m

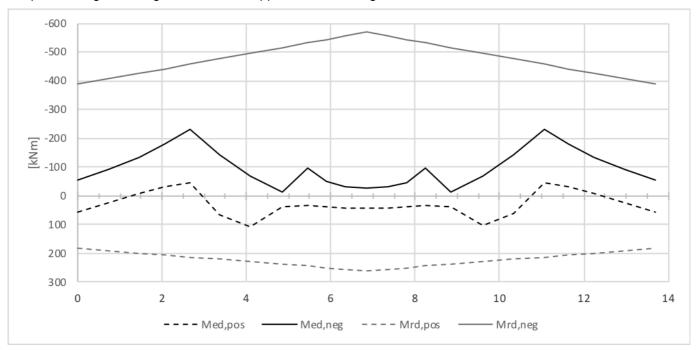
L'azione è stata applicata considerando la distribuzione del ballast

M2 = 30 kNm/m

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 49 di 91


Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

10.2 VERIFICHE ALLO STATO LIMITE ULTIMO

La soletta ha una altezza variabile: 32cm alle estremità e 42cm in mezzeria. Le armature di progetto sono:

- Estradosso: 24Φ /10;
- Intradosso: 24Φ /20.

Si riporta di seguito il diagramma dell'inviluppo dei momenti agenti e dei momenti resistenti.

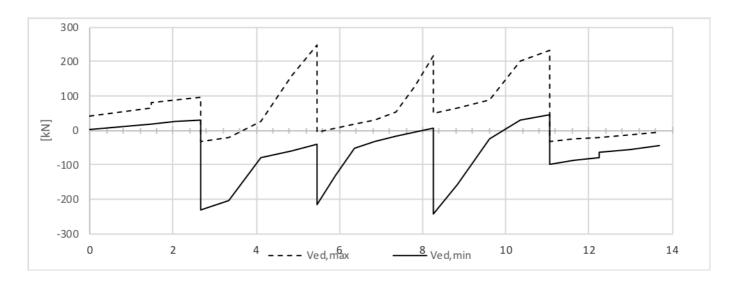
Il taglio resistente della soletta è stato calcolato con la seguente equazione (eq. 4.1.14 NTC 2008):

$$V = \left\{0.18 \cdot k \cdot \frac{(100 \cdot \rho_1 \cdot f_{ck})^{\frac{1}{3}}}{\gamma_c} + 0.15 \cdot \sigma_{cp}\right\} \cdot b_w \cdot d \ge \left(v_{min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$$

Dove:

- k è un fattore di scala pari a $k = 1 + (200/d)^{0.5} \le 2$
- $-v_{min} = 0.035k^{3/2}f_{ck}^{0.5}$
- d è l'altezza utile della sezione (in mm);
- **ρ**₁ è il rapporto geometrico di armatura longitudinale (≤ 0,02);
- σ_{CP} = N_{Ed}/A_C è la tensione media di compressione nella sezione (≤ 0,2 f_{cd});
- b_W è la larghezza minima della sezione (in mm).

Di seguito si riporta l'inviluppo del taglio.



ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 50 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

La verifica di resistenza a taglio è stata condotta nella sezione maggiormente sollecitata in corrispondenza dell'appoggio B (x=5.45m).

Verifica a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

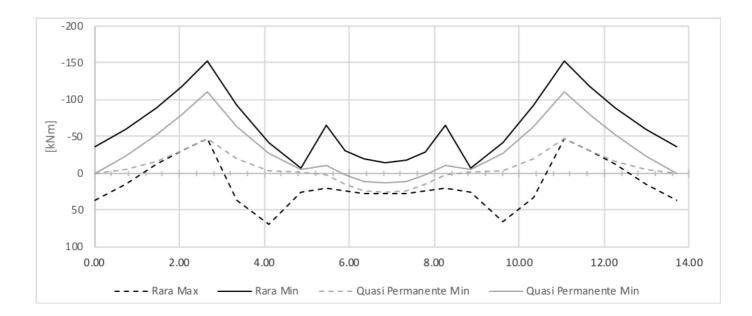
classe cls	Rck	40	N/mm ²
resist. Caratteristica cilindrica	f_{ck}	33	N/mm ²
	f _{cd}	19	_
coeff. parziale	γс	1.5	
larghezza membratura resistene a V	b_w	1000	mm
altezza membratura resistene a V	Н	450	mm
altezza utille	d	400	mm
area della sezione	A_{TOT}	400000	mm^2
diametro ferro longitudinale	øl	24	mm
area armatura	Asl	452.4	mm ²
	passo	100	mm
diametro ferro longitudinale predalle	øl	0	
area armatura	Asl	0.0	mm^2
	passo	400	mm
area armatura totale	$A_{f tot}$	4524	mm^2
percentuale di armatura	ρΙ	0.0113	
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm ²
	k	1.71	
	V_{min}	0.45	
taglio resistente	V _{Rd1}	274	kN
· ·	V_{Rd2}	180	kN
taglio sollecitante	V_{Ed}	248	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
· " /	V_{Rd}	274	kN
	V_{Ed}	<	V_{Rd}
		verifica	

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	51 di 91

10.3 VERIFICHE ALLO STATO LIMITE DI ESERCIZIO

Le verifiche in esercizio possono essere distinte in: verifiche tensionali e verifiche della fessurazione. Nelle combinazioni caratteristica e quasi permanente deve risultare:


$$\textit{Calcestruzzo:} \begin{cases} \sigma_{\textit{c}} \leq 0.60 f_{\textit{ck}} & \textit{(combinazione rara)} \\ \sigma_{\textit{c}} \leq 0.45 f_{\textit{ck}} & \textit{(combinazione quasi permanente)} \end{cases}$$

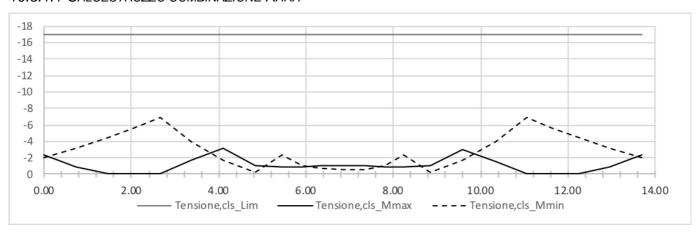
Acciaio ordinario: $\sigma_s \leq 0.80 f_{yk}$ (combinazione rara)

La verifica della apertura delle fessure è stata condotta utilizzando le tabelle fornite nel par. 4.1.2.2.5.1 della NTC 2008. I limiti sono i seguenti:

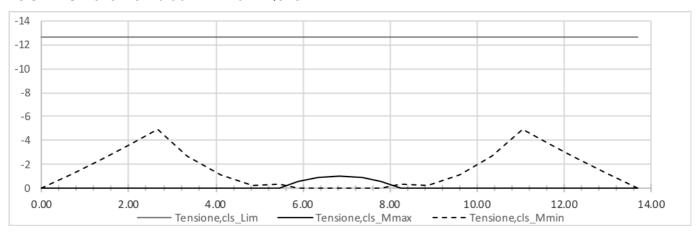
$$w < w_1 = 0.2 \text{ mm (combinazione rara)}$$

Di seguito si riportano i diagrammi dei momenti flettente massimi e minimi per le diverse combinazioni.

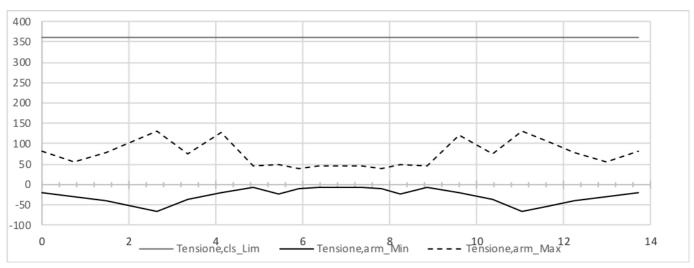
ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 52 di 91


Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

10.3.1 VERIFICHE TENSIONALI


10.3.1.1 CALCESTRUZZO COMBINAZIONE RARA

10.3.1.2 CALCESTRUZZO COMBINAZIONE QUASI PERMANENTE

10.3.1.3 ACCIAIO ARMATURE COMBINAZIONE RARA

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IF1N	01	E ZZ CL	VI 00 07 002	Α	53 di 91	

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

10.3.2 VERIFICA FESSURAZIONE

La verifica a fessurazione si effettua a partire dalle tensioni nelle armature nella combinazione rara. Le tensioni massime risultano 129.5MPa e 126.6 MPa nelle armature superiori ed inferiori rispettivamente. La verifica può essere condotta rispettando il diametro e l'interesse massimo fornito nella circolare esplicativa del 2 febbraio 2009, n. 617.

Tabella C4.1.II Diametri massimi delle barre per il controllo di fessurazione

Tensione nell'acciaio	Diametro massimo φ delle barre (mm)				
σ _s [MPa]	$w_3 = 0.4 \text{ mm}$	$w_2 = 0.3 \text{ mm}$	$\mathbf{w}_1 = 0.2 \text{ mm}$		
160	40	32	25		
200	32	25	16		
240	20	16	12		
280	16	12	8		
320	12	10	6		
360	10	8	-		

Tabella C4.1.III Spaziatura massima delle barre per il controllo di fessurazione

Tensione nell'acciaio	SI	m)	
σ _s [MPa]	$w_3 = 0.4 \text{ mm}$	$w_2 = 0.3 \text{ mm}$	$w_1 = 0.2 \text{ mm}$
160	300	300	200
200	300	250	150
240	250	200	100
280	200	150	50
320	150	100	-
360	100	50	-

Per garantire un'apertura massima w=0.2mm il diametro e l'interasse delle armature deve essere minore di 25mm e 200mm rispettivamente.

La verifica risulta soddisfatta.

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	54 di 91

10.4 VERIFICHE A FATICA

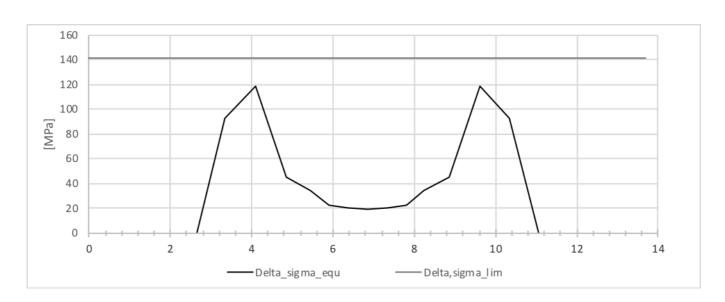
Le verifiche di fatica sono state condotte sulle armature ordinarie. Il metodo utilizzato è illustrato nel paragrafo 8.2 del presente documento.

Il fattore di correzione λ_s stato assunto pari a:

$$\lambda_s = \lambda_{s,1} \cdot \lambda_{s,2} \cdot \lambda_{s,3} \cdot \lambda_{s,4} = 1$$

Con:

- $\lambda_{s,1} = 1$ a favore di sicurezza;
- $\lambda_{s,2} = 1$ corrispondente ad un volume di traffico di 25 milioni t/anno/via;
- $\lambda_{s,3} = 1$ corrispondente ad una vita utile a fatica di 100 anni;
- $\lambda_{s,4} = 1$ a favore di sicurezza.


La tensione equivalente è dunque:

$$\Delta \sigma_{s,equ} = \lambda_s \cdot \Phi_2 \cdot \Delta \sigma_{s,71}$$

La verifica è positiva se risulta:

$$\Delta \sigma_{s,equ} \cdot 1.00 \le \Delta \sigma_{Rsk} / 1.15$$

Con $\Delta \sigma_{Rsk} = 162 MPa$.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	55 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

11 VERIFICHE DI DEFORMAZIONE

11.1 VERIFICA DEFORMAZIONI TORSIONALI (SGHEMBO)

La condizione più severa si realizza in corrispondenza della zona di appoggio dell'impalcato, durante il passaggio del convoglio SW/2. Di seguito si riporta la verifica di sghembo, riferita agli abbassamenti massimi riscontrati nella soletta di impalcato. I valori degli abbassamenti massimi, rilevati in nodi posti in posizioni coerenti con quanto prevede la normativa per tale tipo di verifica, sono:

 $\delta_1 = 4.80 \text{ mm}$

 $\delta_2 = 4.54 \text{ mm}$

Lo sghembo, amplificato dinamicamente, è pari a:

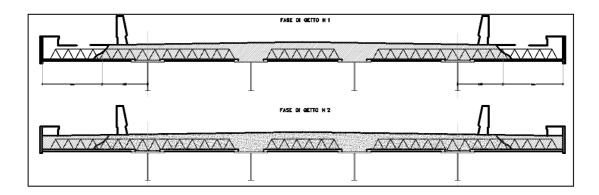
$$t \cong \Phi_3 \times [(\delta_1 - \delta_2)] = 1.13^*[4.8\text{-}4.52] = 0.3 \text{ mm /3m}$$

Il valore di t appena calcolato è inferiore al valore limite previsto dalla normativa e pari a 3.0 mm /3m per il caso $120 < V_{max} < 200 \text{ km/h}.$

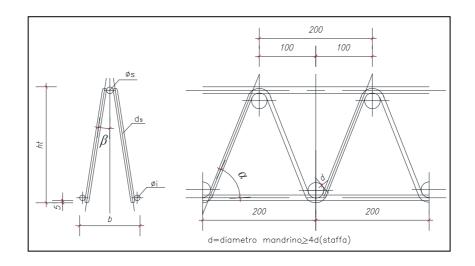
11.2 VERIFICA STATO LIMITE DI COMFORT DEI PASSEGGERI

Il comfort di marcia per i passeggeri è controllato limitando i valori della freccia verticale; l'inflessione verticale deve calcolarsi in asse al binario, considerando il modello di carico LM71 con il relativo incremento dinamico e con il coefficiente α; in caso di ponte a doppio binario dovrà considerarsi carico un solo binario e calcolarsi la freccia in asse a tale binario carico, applicando un solo modello di carico LM71 con il relativo incremento dinamico e con il coefficiente a.

L'abbassamento massimo, amplificato dinamicamente, si rileva in mezzeria ed è pari a:

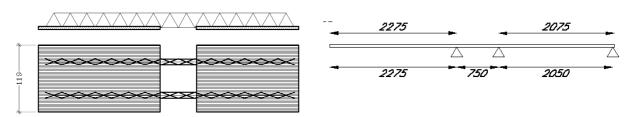

 $\delta = 14.0$ mm

Il valore di δ appena calcolato è inferiore al valore limite previsto dalla normativa per travi appoggiate, pari a L/600 = 32.4 / 600 = 54 mm.

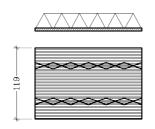


12 VERIFICA PREDALLES

La soletta in cls viene realizzata con un getto in opera su predalles autoportanti prefabbricate tralicciate. Il getto viene effettuato in due differenti fasi: nella fase 1 si getta il calcestruzzo nella zona sovrastante le travi in acciaio, nella fase due si gettano i due sbalzi di luce 1.5m.



Le predalles hanno una larghezza di 120cm ed uno spessore di 5cm. Il corrente superiore ha diametro 16mm, quello inferiore 12mm mentre i diagonali hanno diametro 10mm.



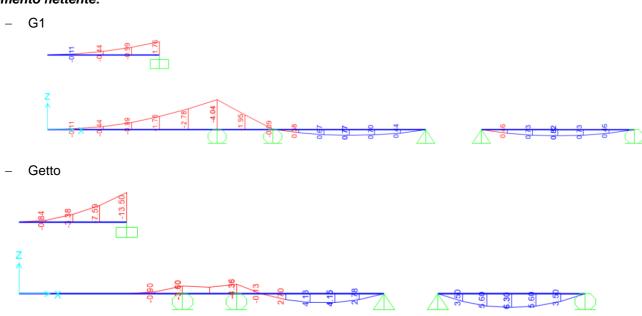
L'altezza e la larghezza del traliccio sono 205mm e 120mm rispettivamente.

Lo schema statico di calcolo è quello di una trave continua su tre appoggi e di una trave in semplice appoggio. Le predalles sono appoggiate sulla flangia superiore delle travi per una lunghezza di 5cm.

12.1 ANALISI DEI CARICHI

In fase di progetto si è considerata una predalle di larghezza di 1.2m.

		q[kN/mq]	q[kN/m]	Q [kN/m]	Q [kN]
Peso proprio	G_1	1.3	-	1.53	-
Getto soletta	$G_{2,1}$	10	-	12	-
Velette	$G_{2,2}$	-	2.5	-	3.0
Carico Accidentale	Q	1	-	1.2	-


Allo stato limite ultimo i carichi sono stati combinati nel seguente modo:

Comb. SLU: $1.35 \times G_1 + 1.35 \times G_{2,1} + 1.5 \times (Q + G_{2,2})$

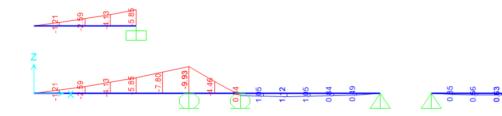
12.2 SOLLECITAZIONI E VERIFICHE

Nelle successive figure sono riportate le sollecitazioni relative ai diversi carichi per la fase 1 e la fase 2. La mensola incastrata di luce 1.5m rappresenta il getto di completamento della soletta effettuato nella fase 2.

Momento flettente:

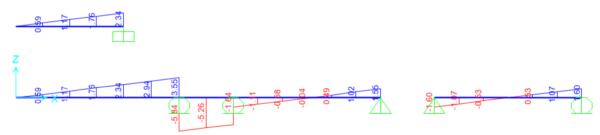
ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

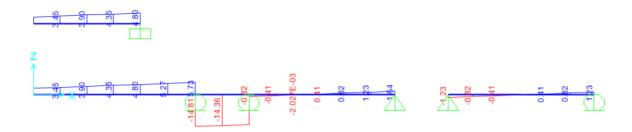

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

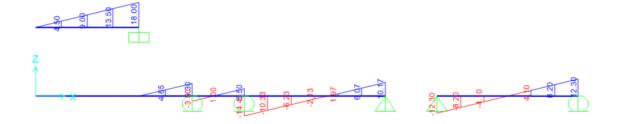
 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 58 di 91


Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

Velette + Q



Taglio:


– G1

- Getto

- Veletta + Q

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF1N 01 E ZZ CL VI 00 07 002 Α 59 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

12.2.1.1 MEZZERIA TRAVE APPOGGIATA (CAMPATA DE)

SOLLE	CITAZIONI
Momento	11.5 kNm
Taglio	22.5 kN

<u> </u>	TACI	10		
	TAGI	LIO		
	Num. Tralicci		2	
	Altezza tralicci	h d	186 200	mm
	Distanza tra i diagonali Interassi ferri inf	u ii	108	mm
		ıı di		mm mm
	Diagonale			
	angolo long	β	0.50	
	angolo trasv.	α	1.02	
	Taglio	Ved	22.5	kN
	Num Barre per traliccio		2	
	Diametro barre sup.		10	mm
ш	Area barra	Abarra	79	
DIAGONALE	Area barre	Atot	314	mm2
Ž	Inerzia	I	491	
၂	Lunghezza libera inflessione	I ₀	218	
¥	Carico critico euleriano	Ncr	20394	N
	α		0.49	
	λ_{segnato}		1.32	
	Φ		1.64	
	χ		0.38	
	Resistenza caratteristica	fyk	450	MPa
	Resistenza caratteristica	fuk	540	MPa
	Coeff. SLU	γ	1.05	
	Coeff. SLU	γ	1.25	
	Resistenza di progetto	۱ Nrd	51	kN
	Res. sezione	Vrd	43.9	kN
	Verifica		OK	

, 				
	TRAZIONE/CO	MPRESSION		
	tralicci Altezza tralicci	h	2 186	mm
	Distanza tra i diagonali	d	200	mm
	Interassi ferri inf.	ii	108	mm
	Interasse ferri sup.	is	600	mm
3E	Num Barre sup Sollecitazione agente Diametro barre sup.	Ned	1 -61.9 16	kN mm
CORRENTE SUPERIORE	Area barra	Abarra	201	
Ä	Area barre	Asup	402	$\rm mm^2$
P	Inerzia	1	3217	$\rm mm^4$
SE	Lunghezza libera inflessione	l _o	200	mm
Ä	Carico critico euleriano	Ncr	158752	N
RE	α		0.49 0.75	
Ö	λsegnato Φ		0.75	
O	χ		0.69	
	Resistenza caratteristica	fyk	450	MPa
	Resistenza caratteristica	fuk	540	MPa
	Coeff. SLU	γ	1.05	
	Coeff. SLU	γ	1.25	
	Resistenza di progetto	Nrd	119.0	kN
	Verifica		OK	
	Num Barre inf Sollecitazione agente	Ned	2 61.9	kN
	Diametro barre inf	Neu	12	
Ш	Area barra	Abarra		mm ²
OR	Area barre	Ainf	452	mm^2
Ř	Inerzia	1	1018	$\rm mm^4$
Ë	Lunghezza libera inflessione	I_0	200	mm
≟	Carico critico euleriano	Ncr	50230	N
Ę	α		0.49	
RE	λ_{segnato}		1.01	
CORRENTE INFERIORE	Φ		1.20	
S	χ		1.00	
	Resistenza di progetto	Nrd	193.9	kN
	Verifica		ок	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 60 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

12.2.1.2 SBALZO FASE 1 (APPOGGIO A)

	SOLLECITAZIONI	
Momento	-24.7	kNm
Taglio	26.9	kN

	TAG	LIO		
	Num. Tralicci		2	
	Altezza tralicci	h	186	
	Distanza tra i diagonali	d	200	
	Interassi ferri inf.	ii	108	
	Diagonale	di	114	
	angolo long	β	0.50	
	angolo trasv.	α	1.02	
	Taglio	Ved	26.9	kN
	Num Barre per traliccio		2	
	Diametro barre sup.		10	mm
ш	Area barra	Abarra	79	
DIAGONALE	Area barre	Atot	314	mm2
Ž	Inerzia	I	491	
9	Lunghezza libera inflessione	I_0	218	
₹	Carico critico euleriano	Ncr	20394	N
	α		0.49	
	λ_{segnato}		1.32	
	Φ		1.64	
	χ		0.38	
	Resistenza caratteristica	fyk	450	MPa
	Resistenza caratteristica	fuk	540	MPa
	Coeff. SLU	γ	1.05	
	Coeff. SLU	γ	1.25	
	Resistenza di progetto	, Nrd	51	kN
	Res. sezione	Vrd	43.9	kN
	Verifica		OK	

	TRAZIONE/CO	MPRESSION	E	
	tralicci		2	
	Altezza tralicci	h	186	mm
	Distanza tra i diagonali	d	200	mm
	Interassi ferri inf.	ii	108	mm
	Interasse ferri sup.	is	600	mm
	Num Barre sup		1	
Ä	Sollecitazione agente Diametro barre sup.	Ned	132.9	KN mm
Ö	Area barra	Abarra	_	mm ²
E	Area barre	Asup	_	mm ²
P	Inerzia	I	3217	
CORRENTE SUPERIORE	Lunghezza libera inflessione	I_0	200	mm
Ë	Carico critico euleriano	Ncr	158752	N
É	α		0.49	
N.	λ_{segnato}		0.75	
ၓ	Φ		0.92	
	χ	6.1.	1.00	MD-
	Resistenza caratteristica Resistenza caratteristica	fyk fuk	450 540	MPa MPa
	Coeff. SLU	γ	1.05	IVIFA
	Coeff. SLU	γ	1.25	
	Resistenza di progetto	Nrd	157.4	kN
	Verifica		ОК	
	Num Barre inf		2	
	Sollecitazione agente	Ned	-132.9	
	Diametro barre inf		12	
Ä	Area barra	Abarra	_	mm ²
≥	Area barre Inerzia	Ainf I	452 1018	mm²
Ü	Lunghezza libera inflessione	I I ₀	200	
Ξ	Carico critico euleriano	Ncr	50230	
빝	α		0.49	
EN I	λsegnato		1.01	
CORRENTE INFERIORE	Λ segnato Φ		1.01	
ဝ				
	χ		1.00	
	Resistenza di progetto	Nrd	193.9	kN
	Verifica		OK	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	61 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

12.2.1.3 SBALZO FASE 2 (APPOGGIO F)

	SOLLECITAZIONI	
Momento	-30.7	kNm
Taglio	36.9	kN

	TAG	110		
	Num. Tralicci	LIO	2	
	Altezza tralicci	h	186	mm
	Distanza tra i diagonali	d	200	
	Interassi ferri inf.	ii	108	
	Diagonale	di	114	
	angolo long	β	0.50	
	angolo trasv.	α	1.02	
	Taglio	νed	36.9	
	•	veu	20.9	KIN
	Num Barre per traliccio		_	
	Diametro barre sup.		10	mm
щ	Area barra	Abarra		mm²
DIAGONALE	Area barre	Atot		mm²
S S	Inerzia	!	491	
Ö	Lunghezza libera inflessione	l _o	218	
	Carico critico euleriano	Ncr	20394	N
_	α		0.49	
	λ_{segnato}		1.32	
	Φ		1.64	
	χ		0.38	
	Resistenza caratteristica	fyk	450	MPa
	Resistenza caratteristica	fuk	540	MPa
	Coeff. SLU	γ	1.05	
	Coeff. SLU	γ	1.25	
	Resistenza di progetto	Nrd	51	kN
	Res. sezione	Vrd	43.9	kN
	Verifica		OK	

	TRAZIONE/CO	MPRESSION	E	
	tralicci		2	
	Altezza tralicci	h	186	mm
	Distanza tra i diagonali	d	200	mm
	Interassi ferri inf.	ii	108	mm
	Interasse ferri sup.	is	600	mm
	Num Barre sup		1	
Щ	Sollecitazione agente	Ned	165.2 16	
O.	Diametro barre sup. Area barra	Abarra		mm mm²
2	Area barre	Asup		mm ²
H	Inerzia	Asup I	3217	
ร	Lunghezza libera inflessione	I _o	200	
2	Carico critico euleriano	Ncr	158752	N
CORRENTE SUPERIORE	α	1401	0.49	
R	λ _{segnato}		0.75	
- B	Φ		0.92	
	χ		1.00	
	Resistenza caratteristica	fyk	450	MPa
	Resistenza caratteristica	fuk	540	MPa
	Coeff. SLU	γ	1.05	
	Coeff. SLU	γ	1.25	
	Resistenza di progetto	Nrd	172.3	kN
	Verifica		OK	
	Num Barre inf	Ned	2 -165.2	kN
	Sollecitazione agente Diametro barre inf.	nea	12	
ш	Area barra	Abarra	113	
N N	Area barre	Ainf	452	
M	Inerzia) 	1018	
빞	Lunghezza libera inflessione	I ₀	200	
Z	Carico critico euleriano	Ncr	50230	N
Ę	α		0.49	
ZE	$\lambda_{segnato}$		1.01	
CORRENTE INFERIORE	Φ		1.20	
S	χ		1.00	
	Resistenza di progetto	Nrd	193.9	kN
	Verifica		ок	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Ponti e Viadotti di linea
Impalcato in acccls. L=34m (Lc=32.4m) doppio binario
Relazione di Calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	62 di 91

12.3 VERIFICA TRASVERSALE

La verifica trasversale delle predalles è stata effettuata alle tensioni ammissibili. I carichi agenti sono:

Peso proprio: 1.2 kN/m²

Getto: 10 kN/m²

Carichi variabili: 1 kN/m²

L'armatura resistente è rappresentata da una rete elettrosaldata ∮5 passo 10cm. Si è ipotizzato che le predalles lavorino in semplice appoggio con una luce di 60cm ed una mensola di 30cm.

Si riportano le tensioni generate rispettivamente dal momento massimo e minimo:

Mon	enti agenti	Tensio	ni M _{max}	Tensio	oni M _{min}	Tension	ni Limite	
Max	Min	σ_ C	σ_arm	σ_C	σ_arm	σ_c,lim	σ_s,lim	VERIFICHE
[kNm/m	[kNm/m]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	
0.75	-0.19	-10.0	168.4	-2.5	42.1	-12.2	260	OK

La verifica a strappamento è stata condotta applicando la formula della resistenza a taglio per elementi privi di armatura a taglio. La resistenza a taglio V_{rd} risulta pari a 11kN maggiore del taglio agente massimo V_{ed} pari a 5 kN.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Ponti e Viadotti di linea
Impalcato in acccls. L=34m (Lc=32.4m) doppio binario
Relazione di Calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	63 di 91

13 AZIONI SUGLI APPOGGI

Di seguito si riporta la valutazione dei carichi sui dispositivi di appoggio da impiegare per la tipologia di impalcati oggetto del presente documento.

Al riguardo si precisa che, per esigenze di carattere funzionale, per tale tipologia di impalcati sono previsti due distinti valori di vita nominale e di classe d'uso: $V_N = 75$ anni, con coefficiente d'uso Cu = 1.5 e $V_N = 100$ anni, con coefficiente Cu = 2.

Inoltre, in funzione del viadotto considerato, si distinguono due categorie diverse di sottosuolo: terreno di tipo B e di tipo C.

Questa differenziazione, ininfluente ai fini del dimensionamento degli impalcati, porta invece a differenti valori di di azioni sui dispositivi di appoggio, a causa prevalentemente dei differenti valori di azione sismica relativi a differenti periodi di riferimento, come meglio specificato nelle apposite relazioni.

13.1 VALUTAZIONE DELL'AZIONE SISMICA PER $V_N=75$ ANNI E $C_U=1.5$ ($V_R=112.5$) – CATEGORIA SOTTOSUOLO B

Le condizioni più severe si verificano per il viadotto VI02. Il ponte appartiene alla classe d'uso III, corrispondente ad un coefficiente d'uso c_u = **1.5**, la vita nominale è pari a V_N = 75 anni, la categoria di sottosuolo è "**B**" e la categoria topografica è "**T1**".

L'azione sismica è stata calcolata per gli stati limite:

- Stato limite di esercizio: Stato Limite di Danno, SLD
- Stato limite ultimo: Stato Limite di salvaguardia della Vita, SLV

13.1.1 INDIVIDUAZIONE DELLA PERICOLOSITÀ DEL SITO E STRATEGIA DI PROGETTAZIONE

Di seguito si riportano i valori dei parametri spettrali dipendenti dal sito per il viadotto considerato:

Latitudine: 41.0224 Longitudine: 14.40056

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 64 di 91

SLATO	T _R	ag	F _o	Tc
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.070	2.371	0.328
SLD	113	0.087	2.402	0.345
SLV	1068	0.199	2.479	0.395
SLC	2193	0.245	2.519	0.416

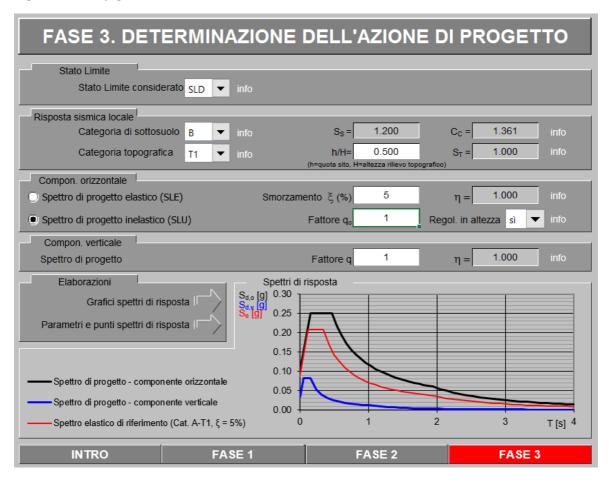

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	65 di 91

Spettri di risposta elastici per i diversi Stati Limite

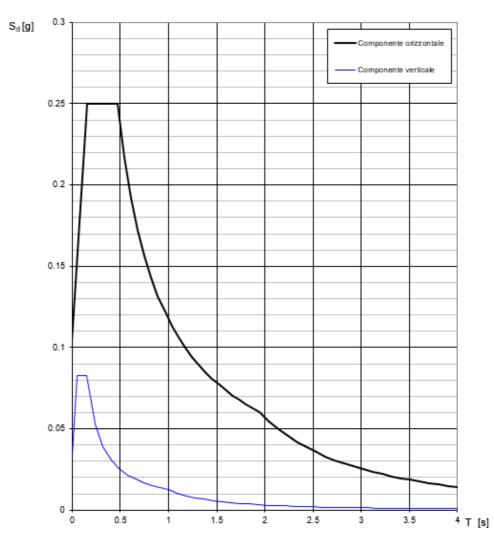


13.1.2 AZIONI SISMICHE DI PROGETTO

Per la definizione delle azioni, sia allo SLD che allo SLV, è stato considerato un fattore di struttura q=1 sia per gli spettri verticali che orizzontali. In relazione alla categoria topografica considerata (T1) si è assunto un coefficiente di amplificazione medio unico e pari a $S_T = 1.0$.

13.1.2.1 SPETTRI ALLO SLD

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E


VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 67 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLD

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 68 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LD

Parametri indipendenti

STATO LIMITE	SLD	
a _o	0.087 g	
F _o	2,402	
T _c *	0.3 45 s	
Ss	1.200	
Cc	1.361	
S _T	1.000	
q	1.000	

Parametri dipendenti

S	1.200
η	1.000
TB	0.156 s
T _c	0.469 s
Tp	1.947 s

Espressioni dei parametri dipendenti

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

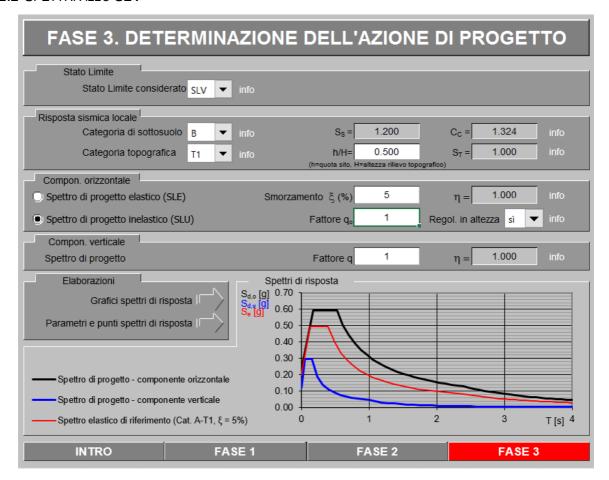
$$T_B = T_C/3$$
 (NTC-07 Eq. 3.2.8)

$$T_c = C_c \cdot T_c'$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4,0 \cdot a_x/g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c}{T} \right) \\ T_D \leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c T_D}{T^2} \right) \end{split}$$


Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

T [s] Se [g] 0.000 0.104 T 0.156 0.250 T 0.469 0.250 0.539 0.218 0.610 0.192 0.680 0.172 0.751 0.156 0.821 0.143 0.891 0.132 0.962 0.122 1.032 0.114 1.102 0.106 1.173 0.100 1.243 0.094 1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.877 0.063 1.806 0.065 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.000 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015 4.000 0.014	inti d	ello spettro	di risposta	
T→ 0.156 0.250 Tc→ 0.469 0.250 0.539 0.218 0.610 0.192 0.680 0.172 0.751 0.156 0.821 0.143 0.891 0.132 0.962 0.122 1.032 0.114 1.102 0.106 1.173 0.100 1.243 0.094 1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 T→ 1.947 0.060 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		T [s]	Se [g]	
Te→ 0.469 0.539 0.218 0.610 0.192 0.680 0.172 0.751 0.156 0.821 0.143 0.891 0.132 0.962 0.122 1.032 1.102 1.102 0.106 1.173 0.100 1.243 0.094 1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.877 0.063 1.877 0.063 1.877 0.063 1.877 0.060 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.021 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		0.000	0.104	
0.539 0.218 0.610 0.192 0.680 0.172 0.751 0.156 0.821 0.143 0.891 0.132 0.962 0.122 1.032 0.114 1.102 0.106 1.173 0.100 1.243 0.094 1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.877 0.063 1.874 0.081 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		0.156		
0.610 0.192 0.680 0.172 0.751 0.156 0.821 0.143 0.891 0.132 0.962 0.122 1.032 0.114 1.102 0.106 1.173 0.100 1.243 0.094 1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.877 0.063 1.877 0.063 1.877 0.063 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015	T₀ ⋖	0.469	0.250	
0.680 0.172 0.751 0.156 0.821 0.143 0.891 0.132 0.962 0.122 1.032 0.114 1.102 0.106 1.173 0.100 1.243 0.094 1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.806 0.065 1.877 0.063 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		0.539	0.218	
0.751 0.156 0.821 0.143 0.891 0.132 0.962 0.122 1.032 0.114 1.102 0.106 1.173 0.100 1.243 0.094 1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.806 0.065 1.877 0.063 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		0.610	0.192	
0.821 0.143 0.891 0.132 0.962 0.122 1.032 0.114 1.102 0.106 1.173 0.100 1.243 0.094 1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.806 0.065 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		0.680	0.172	
0.891 0.132 0.962 0.122 1.032 0.114 1.102 0.106 1.173 0.100 1.243 0.094 1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.806 0.065 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		0.751	0.156	
0.962 0.122 1.032 0.114 1.102 0.106 1.173 0.100 1.243 0.094 1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.877 0.063 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		0.821	0.143	
1.032		0.891	0.132	
1.102 0.106 1.173 0.100 1.243 0.094 1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.894 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		0.962	0.122	
1.173		1.032	0.114	
1.243 0.094 1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.877 0.063 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		1.102	0.106	
1.314 0.089 1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.877 0.060 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		1.173	0.100	
1.384 0.085 1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.877 0.063 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		1.243	0.094	
1.454 0.081 1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.877 0.063 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		1.314	0.089	
1.525 0.077 1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.877 0.060 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		1.384	0.085	
1.595 0.074 1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.877 0.063 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		1.454	0.081	
1.666 0.070 1.736 0.068 1.806 0.065 1.877 0.063 1.877 0.063 1.947 0.060 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		1.525	0.077	
1,736 0,068 1,806 0,065 1,877 0,063 1,877 0,063 2,045 0,055 2,143 0,050 2,240 0,046 2,338 0,042 2,436 0,038 2,534 0,036 2,631 0,033 2,729 0,031 2,827 0,029 2,925 0,027 3,022 0,025 3,120 0,023 3,218 0,022 3,316 0,021 3,413 0,020 3,511 0,019 3,609 0,018 3,707 0,017 3,804 0,016 3,902 0,015		1.595	0.074	
1.806 0.065 1.877 0.063 1.877 0.063 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		1.666	0.070	
1.877 0.063 T₀ 1.947 0.060 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		1.736	0.068	
T₀← 1.947 0.060 2.045 0.055 2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		1.806	0.065	
2,045 0,055 2,143 0,050 2,240 0,046 2,338 0,042 2,436 0,038 2,534 0,036 2,631 0,033 2,729 0,031 2,827 0,029 2,925 0,027 3,022 0,025 3,120 0,023 3,218 0,022 3,316 0,021 3,413 0,020 3,511 0,019 3,609 0,018 3,707 0,017 3,804 0,016 3,902 0,015		1.877	0.063	
2.143 0.050 2.240 0.046 2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015	T₀ ∢	1.947	0.060	
2,240 0,046 2,338 0,042 2,436 0,038 2,534 0,036 2,631 0,033 2,729 0,031 2,827 0,029 2,925 0,027 3,022 0,025 3,120 0,023 3,218 0,022 3,316 0,021 3,413 0,020 3,511 0,019 3,609 0,018 3,707 0,017 3,804 0,016 3,902 0,015		2.045	0.055	
2.338 0.042 2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		2.143	0.050	
2.436 0.038 2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		2.240	0.046	
2.534 0.036 2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		2.338	0.042	
2.631 0.033 2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		2.436	0.038	
2.729 0.031 2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		2.534	0.036	
2.827 0.029 2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		2.631	0.033	
2.925 0.027 3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		2.729	0.031	
3.022 0.025 3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		2.827		
3.120 0.023 3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		2.925	0.027	
3.218 0.022 3.316 0.021 3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		3.022	0.025	
3,316 0.021 3,413 0.020 3,511 0.019 3,609 0.018 3,707 0.017 3,804 0.016 3,902 0.015		3.120	0.023	
3.413 0.020 3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		3.218	0.022	
3.511 0.019 3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015			0.021	
3.609 0.018 3.707 0.017 3.804 0.016 3.902 0.015		3,413	0.020	
3,707 0,017 3,804 0,016 3,902 0,015				
3.804 0.016 3.902 0.015		3.609	0.018	
3.902 0.015		3.707		
			0.016	
4.000 0.014		3.902	0.015	
		4.000	0.014	

13.1.2.2 SPETTRI ALLO SLV

Ponti e Viadotti di linea

ITINERA

ITINERARIO NAPOLI – BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO** I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

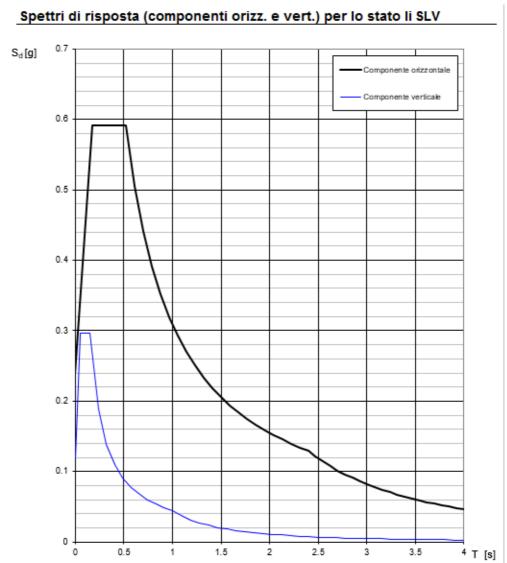
Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario

LOTTO 01

COMMESSA

IF1N

CODIFICA E ZZ CL


DOCUMENTO VI 00 07 002

FOGLIO 70 di 91

REV.

Α

Relazione di Calcolo

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	71 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

- arametr marpenaent		
SLV		
0.199	g	
2,479		
0.395	s	
1.200		
1.324		
1.000		
1.000		
	0.199 2.479 0.395 1.200 1.324 1.000	

Parametri dipendenti

S	1.200
η	1.000
T _B	0.174 s
T _c	0.523 s
Tp	2.395 s

Espressioni dei parametri dipendenti

-22=2	(NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C/3$$
 (NTC-07 Eq. 3.2.8)

$$T_c = C_c \cdot T_c'$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4,0 \cdot a_g / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c}{T} \right) \\ T_D \leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

mu u	Tr-1			
	T [s]	Se [g]		
.	0.000	0.239		
T₀ ∢ T⊶	0.174	0.591		
T⊶	0.523	0.591		
	0.613	0.505		
	0.702	0.441		
	0.791	0.391		
	0.880	0.352		
	0.969	0.319		
	1.058	0.293		
	1.147	0.270		
	1.237	0.250		
	1.326	0.234		
	1.415	0.219		
	1.504	0.206		
	1.593	0.194		
	1.682 1.771	0.184		
		0.175		
	1.860 1.950	0.166		
	2.039	0.159		
	2.128	0.152 0.146		
	2.217	0.140		
	2.306	0.140		
T₀ ∢	2.395	0.129		
	2.472	0.121		
	2.548	0.114		
2.624		0.108		
2.701		0.102		
	2.777	0.096		
	2.854	0.091		
	2.930	0.086		
	3.007	0.082		
	3.083	0.078		
	3.159	0.074		
	3.236	0.071		
	3.312	0.068		
	3.389	0.065		
	3.465	0.062		
	3.541	0.059		
	3.618	0.057		
	3.694	0.054		
	3.771	0.052		
	3.847	0.050		
	3.924	0.048		
	4.000	0.046		

13.2 VALUTAZIONE DELL'AZIONE SISMICA PER $V_N=100$ ANNI E $C_U=2.0$ ($V_R=200$) – CATEGORIA SOTTOSUOLO B

Le condizioni più severe si verificano per il viadotto VI06. Il ponte appartiene alla classe d'uso IV, corrispondente ad un coefficiente d'uso c_u = **2.0**, la vita nominale è pari a V_N = 100 anni, la categoria di sottosuolo è "**B**" e la categoria topografica è "**T1**".


L'azione sismica è stata calcolata per gli stati limite:

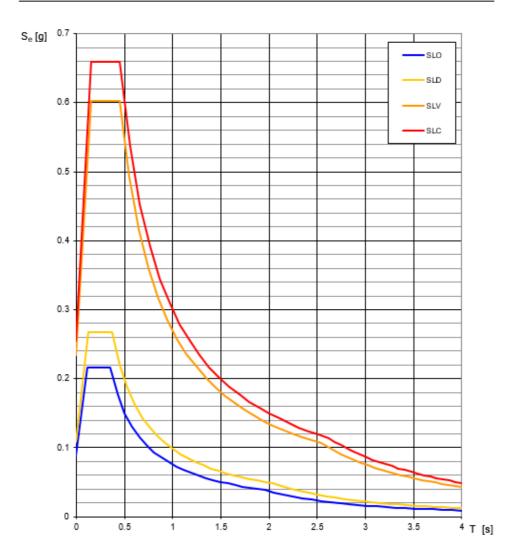
- Stato limite di esercizio: Stato Limite di Danno, SLD
- Stato limite ultimo: Stato Limite di salvaguardia della Vita, SLV

13.2.1 INDIVIDUAZIONE DELLA PERICOLOSITÀ DEL SITO E STRATEGIA DI PROGETTAZIONE

Di seguito si riportano i valori dei parametri spettrali dipendenti dal sito per il viadotto considerato:

Longitudine: 14.437009 Latitudine: 41.103735

SLATO LIMITE	T _R [anni]	a _g [9]	F。 [-]	T _C [s]
SLO	120	0.089	2.436	0.350
SLD	201	0.109	2.463	0.367
SLV	1898	0.234	2.571	0.448
SLC	2475	0.254	2.592	0.454

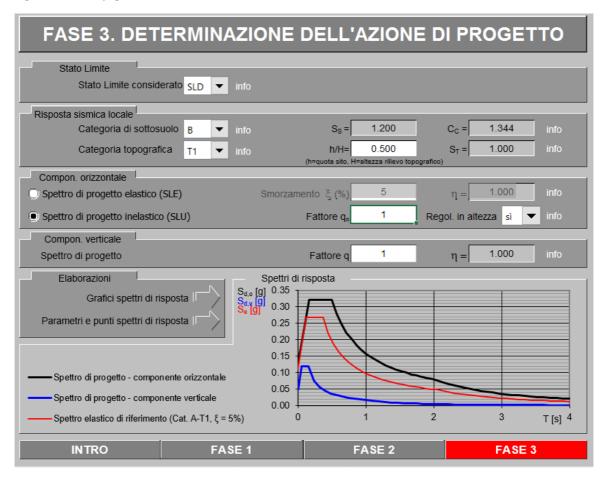

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	73 di 91

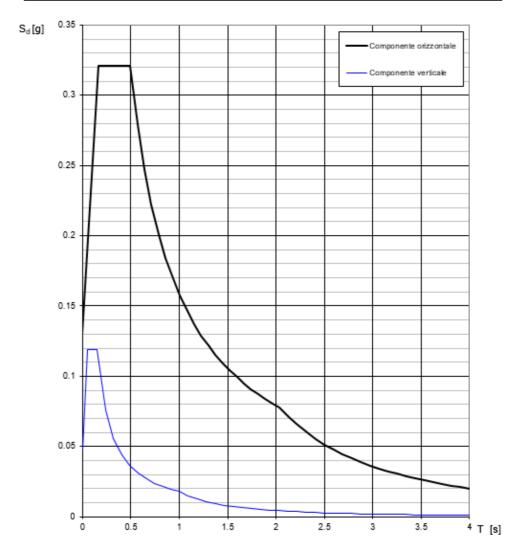
Spettri di risposta elastici per i diversi Stati Limite



13.2.2 AZIONI SISMICHE DI PROGETTO

Per la definizione delle azioni, sia allo SLD che allo SLV, è stato considerato un fattore di struttura q=1 sia per gli spettri verticali che orizzontali. In relazione alla categoria topografica considerata (T1) si è assunto un coefficiente di amplificazione medio unico e pari a $S_T = 1.0$.

13.2.2.1 SPETTRI ALLO SLD



ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 75 di 91

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLD

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	76 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LD

Parametri indipendenti

STATO LIMITE	SLD
a,	0.109 g
F _o	2.463
T _c *	0.367 s
Ss	1.200
Cc	1.344
S _T	1.000
q	1.000
C _C S _T q	1.000

Parametri dipendenti

S	1.200			
η	1.000			
T _B	0.164 s			
To	0. 49 3 s			
T _D	2.035 s			

Espressioni dei parametri dipendenti

$$\mathbb{S} = \mathbb{S}_{\mathbb{S}} \cdot \mathbb{S}_{\mathbb{T}} \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

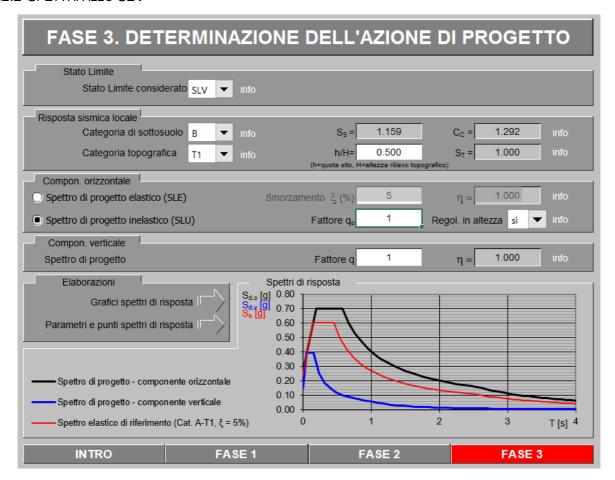
$$T_B = T_C/3$$
 (NTC-07 Eq. 3.2.8)

$$T_c = C_c \cdot T_c'$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4,0 \cdot a_x / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

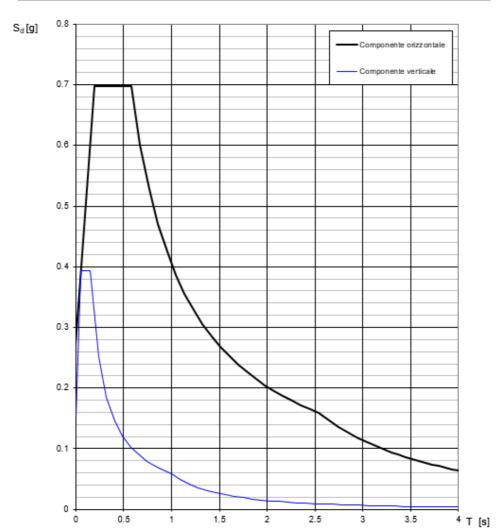
$$\begin{split} 0 \leq T < T_B & \left| \begin{array}{l} S_{\text{e}}(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_{\text{e}}(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & S_{\text{e}}(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & S_{\text{e}}(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \\ \end{split}$$


Lo spettro di progetto $S_4(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_4(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 \S 3.2.3.5)

Punti dello spettro di risposta

nti d	lello spettro	di risposta
	T [s]	Se [g]
	0.000	0.130
T₀◀	0.164	0.321
Tℯ <mark>◆</mark>	0.493	0.321
	0.566	0.280
	0.640	0.248
	0.713	0.222
	0.787	0.201
	0.860	0.184
	0.934	0.170
	1.007	0.157
	1.080	0.147
	1.154	0.137
	1.227	0.129
	1.301	0.122
	1.374	0.115
	1.447	0.109
	1.521	0.104
	1.594	0.099
	1.668	0.095
	1.741	0.091
	1.815	0.087
	1.888	0.084
	1.961	0.081
T₀ <mark>∢</mark>	2.035	0.078
	2.128	0.071
	2.222	0.065
	2.316	0.060
	2.409	0.056
	2.503	0.051
	2.596	0.048
	2.690	0.045
	2.783	0.042
	2.877	0.039
	2.971	0.037
	3.064	0.034
	3.158	0.032
	3.251	0.030
	3.345	0.029
	3,439	0.027
	3.532	0.026
	3.626	0.025
	3.719	0.023
	3.813	0.022
	3.906	0.021
	4.000	0.020
	7.000	0.020

13.2.2.2 SPETTRI ALLO SLV



ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	78 di 91

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLV

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	79 di 91

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Darama	-		din -	-	
Paramet	ш	ш	mbe	:110	ıeπι

STATO LIMITE	SLV
a _o	0.234 g
F _o	2.571
T _o *	0.448 s
Ss	1.159
Co	1.292
S _T	1.000
q	1.000

Parametri dipendenti

S	1.159
η	1.000
T _B	0.193 s
T _C	0.579 s
T _D	2.538 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C/3$$
 (NTC-07 Eq. 3.2.8)

$$T_c = C_c \cdot T_c'$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4,0 \cdot a_g / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_e \\ T_C \leq T < T_D & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c}{T} \right) \\ T_D \leq T & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_4(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_*(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 \S 3.2.3.5)

Punti dello spettro di risposta

nti d	dello spettro di risposta				
	T [s]	Se [g]			
	0.000	0.272			
4	0.193	0.698			
.◀	0.579	0.698			
	0.672	0.601			
	0.765	0.528			
	0.859	0.471			
	0.952	0.425			
	1.045	0.387			
	1.139	0.355			
	1.232	0.328			
	1.325	0.305			
	1.418	0.285			
	1.512	0.267			
	1.605	0.252			
	1.698	0.238			
	1.791	0.226			
	1.885	0.214			
	1.978	0.204			
	2.071	0.195			
	2.165	0.187			
	2.258	0.179			
	2.351	0.172			
	2.444	0.165			
•	2.538	0.159			
	2.607	0.151			
	2.677	0.143			
	2.747	0.136			
	2.816	0.129			
	2.886	0.123			
	2.956	0.117			
	3.025	0.112			
	3.095	0.107			
	3.164	0.102			
	3.234	0.098			
	3.304	0.094			
	3.373	0.090			
	3.443	0.087			
	3.513	0.083			
	3.582	0.080			
	3.652	0.077			
	3.721	0.074			
	3.791	0.071			
	3.861	0.069			
	3.930	0.066			
	4.000	0.064			
	1.000	0.001			

13.3 VALUTAZIONE DELL'AZIONE SISMICA PER V_N =75 ANNI E C_U =1.5 (V_R =112.5) – CATEGORIA SOTTOSUOLO C

Le condizioni più severe si verificano per il viadotto VI08. Il ponte appartiene alla classe d'uso III, corrispondente ad un coefficiente d'uso c_0 = **1.5**, la vita nominale è pari a V_N = 75 anni, la categoria di sottosuolo è "**C**" e la categoria topografica è "**T1**".

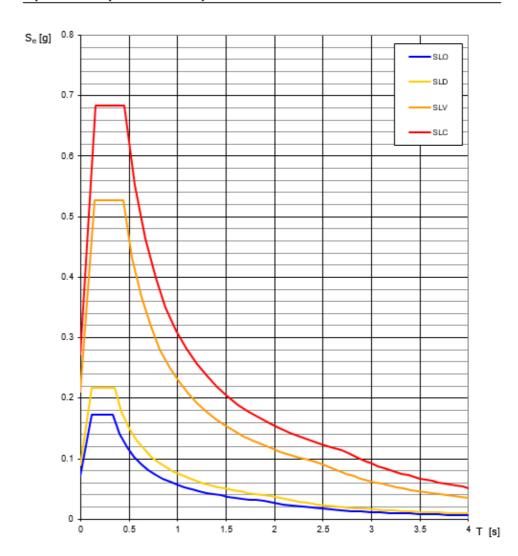
L'azione sismica è stata calcolata per gli stati limite:

- Stato limite di esercizio: Stato Limite di Danno, SLD
- Stato limite ultimo: Stato Limite di salvaguardia della Vita, SLV

13.3.1 INDIVIDUAZIONE DELLA PERICOLOSITÀ DEL SITO E STRATEGIA DI PROGETTAZIONE

Di seguito si riportano i valori dei parametri spettrali dipendenti dal sito di ogni opera:

Longitudine: 14.45829 Latitudine: 41.13286

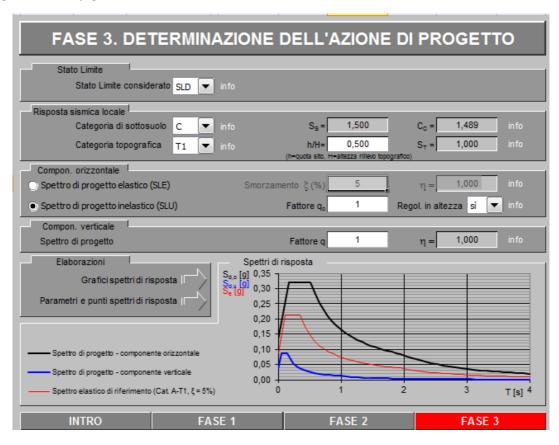


ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	81 di 91

SLATO	T _R	ag	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.072	2.404	0.328
SLD	113	0.089	2.437	0.347
SLV	1068	0.211	2.502	0.437
SLC	2193	0.273	2.504	0.450

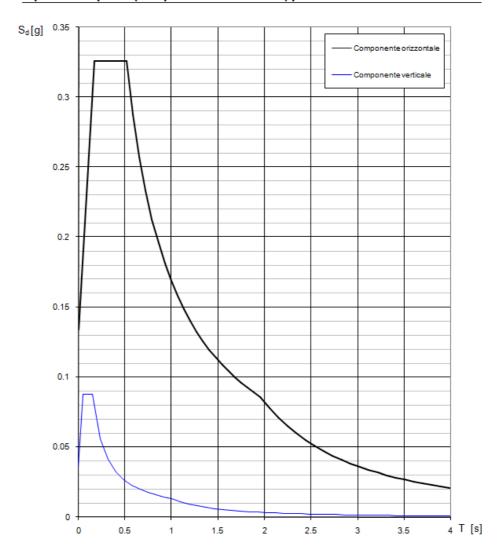
Spettri di risposta elastici per i diversi Stati Limite



13.3.2 AZIONI SISMICHE DI PROGETTO

Per la definizione delle azioni, sia allo SLD che allo SLV, è stato considerato un fattore di struttura q=1 sia per gli spettri verticali che orizzontali. In relazione alla categoria topografica considerata (T1) si è assunto un coefficiente di amplificazione medio unico e pari a $S_T = 1.0$.

13.3.2.1 SPETTRI ALLO SLD



ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	83 di 91

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLD

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	84 di 91

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LD

Parametri indipendenti

SLD
0.089 <u>g</u>
2.437
0.347 s
1.500
1.490
1.000
1.000

Parametri dipendenti

 $T_B = T_C / 3$

S	1.500
η	1.000
T _o	0.172 s
To	0.516 s
To	1.957 s

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$$
 (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

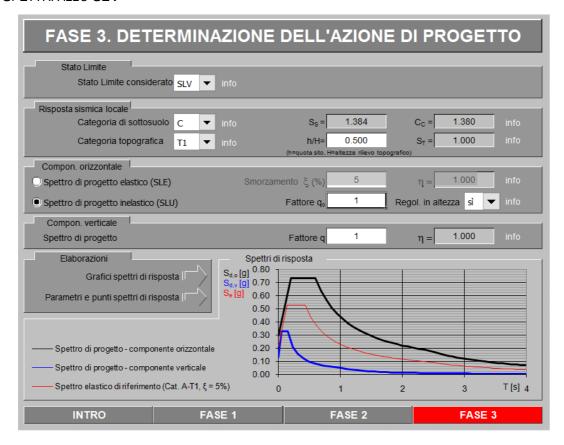
(NTC-07 Eq. 3.2.8)

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

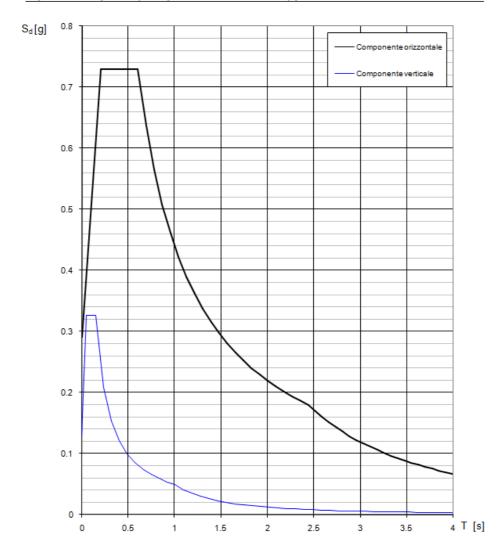
$$\begin{split} 0 \leq & T < T_{\mathtt{B}} & \qquad \mathbb{S}_{\mathtt{o}}(T) = a_{\mathtt{g}} \cdot \mathbb{S} \cdot \eta \cdot F_{\mathtt{o}} \cdot \left[\frac{T}{T_{\mathtt{B}}} + \frac{1}{\eta \cdot F_{\mathtt{o}}} \left(1 - \frac{T}{T_{\mathtt{B}}} \right) \right] \\ & T_{\mathtt{B}} \leq & T < T_{\mathtt{C}} & \qquad \mathbb{S}_{\mathtt{c}}(T) = a_{\mathtt{g}} \cdot \mathbb{S} \cdot \eta \cdot F_{\mathtt{o}} \\ & T_{\mathtt{C}} \leq & T < T_{\mathtt{D}} & \qquad \mathbb{S}_{\mathtt{c}}(T) = a_{\mathtt{g}} \cdot \mathbb{S} \cdot \eta \cdot F_{\mathtt{o}} \cdot \left(\frac{T_{\mathtt{C}}}{T} \right) \\ & T_{\mathtt{D}} \leq & T & \qquad \mathbb{S}_{\mathtt{c}}(T) = a_{\mathtt{g}} \cdot \mathbb{S} \cdot \eta \cdot F_{\mathtt{c}} \cdot \left(\frac{T_{\mathtt{C}}T_{\mathtt{D}}}{T^{2}} \right) \end{split}$$


Lo spettro di progetto $S_4(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_*(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 \S 3.2.3.5)

Punti d<u>ello spettro di risposta</u>

nti d	ello spettro				
	T [s]	Se [g]			
	0.000	0.134			
Τρ◀	0.172	0.326			
Tc◀	0.516	0.326			
	0.585	0.288			
	0.653	0.258			
	0.722	0.233			
	0.791	0.213			
	0.859	0.196			
	0.928	0.181			
	0.996	0.169			
	1.065	0.158			
	1.134	0.148			
	1.202	0.140			
	1.271	0.132			
	1.339	0.126			
	1.408	0.120			
	1.477	0.114			
	1.545	0.109			
	1.614	0.104			
	1.682	0.100			
	1.751	0.096			
	1.820	0.092			
	1.888	0.089			
Τ₀┫	1.957	0.086			
	2.054	0.078			
	2.151	0.071			
	2.249	0.065			
	2.346	0.060			
	2.443	0.055			
	2.541	0.051			
	2.638	0.047			
	2.735	0.044			
	2.832	0.041			
	2.930	0.038			
	3.027	0.036			
	3.124	0.034			
	3.222	0.032			
	3.319	0.030			
	3.416	0.028			
	3.514	0.027			
	3.611	0.025			
	3.708	0.024			
	3.805	0.023			
	3.903	0.022			
	4.000	0.021			

13.3.2.2 SPETTRI ALLO SLV


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01
 E ZZ CL
 VI 00 07 002
 A
 86 di 91

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF1N 01 E ZZ CL VI 00 07 002 87 di 91 Α

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

SLV
0.211 <u>g</u>
2.502
0.437 s
1.384
1.380
1.000
1.000

Parametri dipendenti

S	1.384
η	1.000
T.	0.201 s
To	0.603 s
To	2.443 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

(NTC-07 Eq. 3.2.8)

$$T_B = T_C/3$$
 (NTC-07 Eq. 3.2.8)

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_c(T) = a_g \cdot S \cdot \eta \cdot F_e \\ T_C \leq T < T_D & S_c(T) = a_g \cdot S \cdot \eta \cdot F_e \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & S_c(T) = a_g \cdot S \cdot \eta \cdot F_e \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto S₄(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico S,(T) sostituendo n con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

uniti u	ello spettro	ui risposta	
	T [s]	Se [g]	
_	0.000	0.291	
T⊳ ∢	0.201	0.729	
Tc◀	0.603	0.729	
	0.690	0.637	
	0.778	0.565	
	0.866	0.508	
	0.953	0.461	
	1.041	0.422	
	1.128	0.390	
	1.216	0.362	
	1.304	0.337	
	1.391	0.316	
	1.479	0.297	
	1.567	0.281	
	1.654	0.266	
	1.742	0.252	
	1.829	0.240	
	1.917	0.229	
	2.005	0.219	
	2.092	0.210	
	2.180	0.202	
	2.267	0.194	
	2.355	0.187	
T₀ ∢	2.443	0.180	
	2.517	0.170	
	2.591	0.160	
	2.665	0.151	
	2.739	0.143	
	2.813	0.136	
	2.888	0.129	
	2.962	0.122	
	3.036	0.117	
	3.110	0.111	
	3.184	0.106	
	3.258	0.101	
	3.333	0.097	
	3.407	0.093	
	3.481	0.089	
	3.555	0.085	
	3.629	0.082	
	3.703	0.078	
	3.778	0.075	
	3.852	0.072	
	3.926	0.070	
	4.000	0.067	

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Ponti e Viadotti di linea	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Impalcato in acccls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo	IF1N	01	E ZZ CL	VI 00 07 002	Α	88 di 91

13.3.3 MASSE IMPALCATO

Le masse dell'impalcato comprendono il peso proprio, il peso dei carichi permanenti portati ed una quota dei carichi da traffico.

CALCOLO MASSA					
Carichi	kN	ton			
G1	6367	649			
G2	6211	633			
LM71	3208	-			
SW/2	4050	-			
0.2(LM71+SW/2)	1452	148			
	Tot	1430			

13.4 AZIONE SUGLI APPOGGI

Sono riportate di seguito le reazioni sugli appoggi in funzione della tipologia.

			H longi	tudinale	H tras	versale	V ver	ticale
		Vincolo Fisso	Max	Min	Max	Min	Max	Min
			[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1.1		G1	0	0	0	0	729	729
1.2	Permanenti	G2	0	0	0	0	-87	-87
1.3		Ballast	0	0	0	0	624	624
2.1		Treni (LM71,SW2)	0	0	0	0	1616	-29
2.2		Avviamento e Frenatura	977	-977	37	-37	42	-42
2.3	Variabili	Serpeggio	15	-15	132	-132	69	-69
2.4		Vento sulla struttura carica	51	-51	294	-294	5	-5
2.5		Temperatura	0	0	0	0	0	0

	Vincolo Multidirezionale			udinale	H trasversale		V verticale	
	Vine	colo Multidirezionale	Max	Min	Max	Min	Max	Min
			[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1.1		G1	0	0	0	0	862	729
1.2	Permanenti	G2	0	0	0	0	624	-87
1.3		Ballast	0	0	0	0	624	392
2.1		Treni (LM71,SW2)	0	0	0	0	1616	-101
2.2		Avviamento e Frenatura	0	0	0	0	8	-8
2.3	Variabili	Serpeggio	0	0	0	0	20	-20
2.4		Vento sulla struttura carica	0	0	0	0	113	-113
2.5		Temperatura	0	0	0	0	0	0

RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI

Ponti e Viadotti di linea
Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario
Relazione di Calcolo

COMMESSA
IF1N

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	89 di 91

	Vincolo Unidirezionale			udinale	H trasversale		V verticale	
	Vir	Max	Min	Max	Min	Max	Min	
			[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1.1		G1	0	0	0	0	729	729
1.2	Permanenti	G2	0	0	0	0	-87	-87
1.3		Ballast	0	0	0	0	624	624
2.1		Treni (LM71,SW2)	0	0		0	1504	-24
2.2		Avviamento e Frenatura	0	0	2	-2	39	-39
2.3	Variabili	Serpeggio	0	0	200	-200	2	-2
2.4		Vento sulla struttura carica	0	0	538	-538	5	-5
2.5		Temperatura	0	0	0	0	0	0

13.4.1 AZIONE SISMICA PER V_N =75 ANNI E C_U =1.5 (V_R =112.5) – CATEGORIA SOTTOSUOLO B

			H longitudinale		H trasversale		V verticale	
		Vincolo Fisso	Max	Min	Max	Min	Max	Min
			[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.1		Sisma,X (longitudinale)	4146	-4146	0	0	0	0
3.2	Sisma	Sisma,Y (Trasversale)	391	-391	2247	-2247	0	0
3.3		Sisma,Z (Verticale)	0	0	0	0	517	-517

			H longi	tudinale	H trasversale		V verticale	
Vincolo Multidirezionale			Max	Min	Max	Min	Max	Min
			[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.1		Sisma,X (longitudinale)	0	0	0	0	0	0
3.2	Sisma	Sisma,Y (Trasversale)	0	0	0	0	0	0
3.3		Sisma,Z (Verticale)	0	0	0	0	517	-517

		H longi	H longitudinale		H trasversale		ticale	
	Vincolo Unidirezionale			Min	Max	Min	Max	Min
			[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.1		Sisma,X (longitudinale)	0	0	0	0	0	0
3.2	Sisma	Sisma, Y (Trasversale)	0	0	4112	-4112	0	0
3.3		Sisma,Z (Verticale)	0	0	0	0	0	0

13.4.2 AZIONE SISMICA PER V_N =100 ANNI E C_U =2.0 (V_R =200) - CATEGORIA SOTTOSUOLO B

			H longitudinale		H trasversale		V verticale	
		Vincolo Fisso	Max	Min	Max	Min	Max	Min
			[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.1		Sisma,X (longitudinale)	4896	-4896	0	0	0	0
3.2	Sisma	Sisma,Y (Trasversale)	462	-462	2654	-2654	0	0
3.3		Sisma,Z (Verticale)	0	0	0	0	612	-612

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01	E ZZ CL	VI 00 07 002	Α	90 di 91

				udinale	H trasversale		V verticale	
Vincolo Multidirezionale			Max	Min	Max	Min	Max	Min
			[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.1		Sisma,X (longitudinale)	0	0	0	0	0	0
3.2	Sisma	Sisma,Y (Trasversale)	0	0	0	0	0	0
3.3		Sisma,Z (Verticale)	0	0	0	0	612	-612

				H longitudinale		H trasversale		ticale
Vincolo Unidirezionale			Max	Min	Max	Min	Max	Min
			[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.1		Sisma,X (longitudinale)	0	0	0	0	0	0
3.2	Sisma	Sisma, Y (Trasversale)	0	0	4856	-4856	0	0
3.3		Sisma,Z (Verticale)	0	0	0	0	0	0

13.4.3 AZIONE SISMICA PER V_N =75 ANNI E C_U =1.5 (V_R =112.5) - CATEGORIA SOTTOSUOLO C

			H longitudinale		H trasversale		V verticale	
		Vincolo Fisso	Max	Min	Max	Min	Max	Min
			[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.1		Sisma,X (longitudinale)	5114	-5114	0	0	0	0
3.2	Sisma	Sisma,Y (Trasversale)	483	-483	2772	-2772	0	0
3.3		Sisma,Z (Verticale)	0	0	0	0	639	-639

Vincolo Multidirezionale			H longitudinale		H trasversale		V verticale	
			Max	Min	Max	Min	Max	Min
			[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.1		Sisma,X (longitudinale)	0	0	0	0	0	0
3.2	Sisma	Sisma,Y (Trasversale)	0	0	0	0	0	0
3.3		Sisma,Z (Verticale)	0	0	0	0	639	-639

Vincolo Unidirezionale			H longi	H longitudinale		H trasversale		V verticale	
			Max	Min	Max	Min	Max	Min	
			[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
3.1		Sisma,X (longitudinale)	0	0	0	0	0	0	
3.2	Sisma	Sisma, Y (Trasversale)	0	0	5072	-5072	0	0	
3.3		Sisma, Z (Verticale)	0	0	0	0	0	0	

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Ponti e Viadotti di linea Impalcato in acc.-cls. L=34m (Lc=32.4m) doppio binario Relazione di Calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL VI 00 07 002 A 91 di 91

14 INCIDENZE

Incidenza carpenteria metallica: 321 kg/m 2

Incidenza armatura soletta: 200 kg/m³