COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

PROGETTAZIONE:	PROGETTISTA:	DIRETTORE DELLA PROGETTAZIONE
RAGGRUPPAMENTO TEMPORANEO PROGETTISTI PIZZAROTTI VISINTAGMA INTEGRA	Prof. Ing. MARCO PETRANGELI	Ing. PIETRO MAZZOLI Responsabile integrazione fra le varie prestazioni specialistiche

PROGETTO ESECUTIVO

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PONTI E VIADOTTI DI LINEA

VIADOTTO dal km 1+032 al km 1+825

"Struttura ad archi" - Relazione di calcolo - 3 di 6

APPALTATORE		SCALA:
CONSORZIO CFT IL DIRETTORE TECNICO Geom. C. Bianchi 13/09/2018		-
COMMESSA LOTTO FA	ENTE TIPO DOC. OPERA/DISCIPLINA PROGR.	REV.
I F 1 N 0 1	Z Z C L V I 0 1 0 0 0 4	В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	L. Aceto	11/07/2018	M. Petrangeli	11/07/2018	P.Mazzoli	11/07/2018	M. Petrangeli
В	Rev. Istruttoria ITF 29/08/18	L. Aceto	13/09/2018	M. Petrangeli	13/09/2018	P.Mazzoli	13/09/2018	
								13/09/2018

11. E. II 114.0.1.E.ZZ.OE. VI.01.0.0.004.B.GOOX	File: IF1N.0.1.E.ZZ.CL.VI.01.0.0.004.B.docx		n. Elab.:
---	---	--	-----------

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

COMMESSA IF1N

LOTTO

01 E ZZ

CODIFICA CL DOCUMENTO
VI0100 004

REV.

FOGLIO 2 di 62

Indice

1	PR	EMESSA	4
2		OPO DEL DOCUMENTO	
_	. 30	OPO DEL DOCUMENTO	4
3	NO	RMATIVA DI RIFERIMENTO	5
4	. МА	TERIALI	5
•	4.1	CALCESTRUZZO PER GETTI IN OPERAPER ELEVAZIONI	
	4.1	CALCESTRUZZO PER GETTI IN OPERA PER FONDAZIONI	
	4.3	ACCIAO PER C.A.	
	4.4	DESCRIZIONE DELL'OPERA	7
5	AN	ALISI DEI CARICHI	9
	5.1	PESO PROPRIO	9
	5.2	PERMANENTI PORTATI	9
	5.2.	1 Massicciata, armamento e impermeabilizzazione	9
	5.2.		
	5.2.	3 CANALETTE IMPIANTI E IMPIANTI	9
	5.3	AZIONI VARIABILI	10
	5.3.		
	5.3.		
	5.3.		
	5.3.		
	5.4	AZIONI DINAMICHE	
	5.5	AZIONI DOVUTE AL DERAGLIAMENTO	14
	5.6	AZIONI CLIMATICHE	
	5.6.		
	5.6.		
	5.6.		
		AZIONI INDIRETTE	
		1 RITIRO E VISCOSITÀ	
	5.8	INDIVIDUAZIONE DELLA PERICOLOSITÀ DEL SITO E STRATEGIA DI PROGETTAZIONE	
	5.9	AZIONI SISMICHE DA PESO PROPRIO E CARICHI PERMANENTI E VARIABILI	21
6	MO	DELLAZIONE E ANALISI	23
	6.1	CONDIZIONI VINCOLARI	26
	6.2	CARICHI	27
	6.3	COMBINAZIONI DI CARICO	31

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 3 di 62

7	VERI	FICHE	32
7	7.1 P	IEDRITTI	37
	7.1.1	SEZIONE TIPOLOGICA	37
	7.1.2	SEZIONE SEMI-PILASTRI	40
	7.1.3	SEZIONE IRREGOLARE 1	43
	7.1.4	SEZIONE IRREGOLARE 2	45
7	7.2 A	RCATE	47
	7.2.1	SEZIONE TIPOLOGICA	47
7	7.3 S	ETTI VERTICALI – INTRADOSSO SOLETTA	49
	7.3.1	SEZIONE TIPOLOGICA	49
7	7.4 S	OLETTA	51
	7.4.1	SEZIONE TRASVERSALE D'APPOGGIO	53
	7.4.2	SEZIONE TRASVERSALE DI MEZZERIA	54
	7.4.3	SEZIONE LONGITUDINALE	55
7	7.5 F	ONDAZIONE	56
	7.5.1	SEZIONE TRASVERSALE IN MEZZERIA	58
	7.5.2	SEZIONE TRASVERSALE IN APPOGGIO	59
		SEZIONE LONGITUDINALE	
7	7.6 V	ERIFICHE DI DEFORMABILITÀ DELL'IMPALCATO	61
Ω	VERI	FICHE GEO	62

1 PREMESSA

Nell'ambito dell'Itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Cancello-Benevento – 1° Lotto Funzionale Cancello-Frasso Telesino e Variante alla Linea Roma-Napoli Via Cassino di Maddaloni (compreso il Collegamento Merci con lo scalo di Marcianise – Collegamento Benevento-Marcianise) ed Interconnessione Nord su LS Roma-Napoli via Cassino, oggetto di progettazione esecutiva.

Nella presente relazione si riporta il dimensionamento strutturale del Concio 26 della "Struttura ad archi" del Viadotto dal km 1+0.31.726 al km 1+824.285.

2 SCOPO DEL DOCUMENTO

Nell'ambito del progetto in premessa è prevista la realizzazione del *Viadotto dal km 1+0.31.726 al km 1+824.285 con "Struttura ad archi"*. Il "concio 26" è il secondo manufatto di cinque che realizza una galleria artificiale per l'intersezione dei binari della *Variante RM-NA via Cassino nel comune di Madalloni* (sopra) e quelli dell'asse *Cancello-Benevento* (sotto). Il manufatto realizza una galleria artificiale con struttura scatolare in c.a. con fornici.

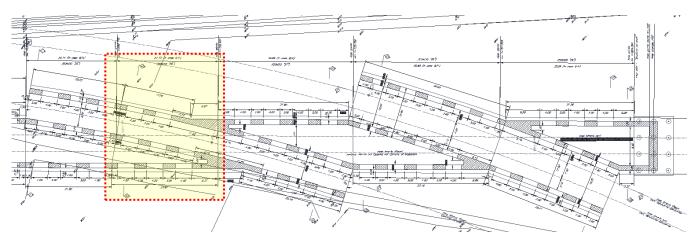


Figura 1 - Stralcio planimetrico

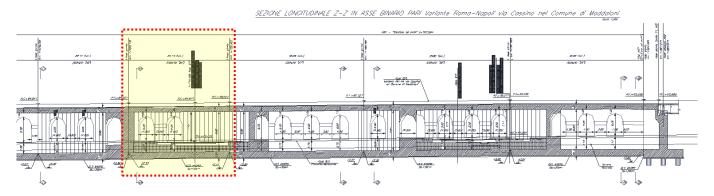


Figura 2 - Sezione Longitudinale

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

IF1N	01 E ZZ	CL	VI0100 004	B	5 di 62
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

3 NORMATIVA DI RIFERIMENTO

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Rif. [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Rif. [3] Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- Rif. [4] Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- Rif. [5] Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- Rif. [6] Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- Rif. [7] Istruzione RFI DTC INC PO SP IFS 004 Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- Rif. [8] Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- Rif. [9] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif. [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

4 MATERIALI

Si riportano di seguito i materiali previsti per la realizzazione delle strutture, suddivisi per elemento costruttivo.

4.1 CALCESTRUZZO PER GETTI IN OPERAPER ELEVAZIONI

Classe	C32/40		
R _{ck} =	40	MPa	resistenza caratteristica cubica
$f_{ck} =$	32	MPa	resistenza caratteristica cilindrica
$f_{\text{cm}} =$	40	MPa	valor medio resistenza cilindrica
$\alpha_{cc}=$	0,85		coeff. rid. Per carichi di lunga durata
дм=	1,5	-	coefficiente parziale di sicurezza SLU
$f_{\text{cd}} =$	18,13	MPa	resistenza di progetto
$f_{ctm} =$	3,02	MPa	resistenza media a trazione semplice
$f_{\text{cfm}} =$	3,63	MPa	resistenza media a trazione per flessione
$f_{ctk} =$	2,12	MPa	valore caratteristico resistenza a trazione

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO VI0100 004

REV. FOGLIO

6 di 62

E_{cm} = 33346 MPa Modulo elastico di progetto v = 0,2 Coefficiente di Poisson

 G_c = 13894 MPa Modulo elastico Tangenziale di progetto

4.2 CALCESTRUZZO PER GETTI IN OPERA PER FONDAZIONI

Classe	C28/35		
R _{ck} =	35	MPa	resistenza caratteristica cubica
$f_{\text{ck}} =$	28	MPa	resistenza caratteristica cilindrica
$f_{\text{cm}} =$	36	MPa	valor medio resistenza cilindrica
$\alpha_{cc}=$	0,85		coeff. rid. per carichi di lunga durata
дм=	1,5	-	coefficiente parziale di sicurezza SLU
$f_{\text{cd}} =$	15,87	MPa	resistenza di progetto
$f_{\text{ctm}} =$	2,77	MPa	resistenza media a trazione semplice
$f_{\text{cfm}} =$	3,32	MPa	resistenza media a trazione per flessione
$f_{ctk} =$	1,94	MPa	valore caratteristico resistenza a trazione
E _{cm} =	32.308	MPa	Modulo elastico di progetto
v =	0,2		Coefficiente di Poisson
$G_c =$	13462	MPa	Modulo elastico Tangenziale di progetto

4.3 ACCIAO PER C.A.

•	_	_	\sim
∡ ⁄I	^	11	
J÷	.,	.,	

f _{yk} ≥	450	MPa	tensione caratteristica di snervamento
$f_{tk} \ge$	540	MPa	tensione caratteristica di rottura
$(f_t/f_y)_k \ge$	1,15		
$(f_t/f_y)_k <$	1,35		
gs=	1,15	-	coefficiente parziale di sicurezza SLU
$f_{yd} =$	391,3	MPa	tensione caratteristica di snervamento
E _s =	200000	MPa	Modulo elastico di progetto
ε_{yd} =	0,196%		deformazione di progetto a snervamento
$\varepsilon_{uk} = (A_{gt})_k$	7,50%		deformazione caratteristica ultima

4.4 DESCRIZIONE DELL'OPERA

La tipologia strutturale in esame è costituita da una struttura scatolare in c.a. con fornici ("struttura ad archi") che ospita la sede ferroviaria sulla suola superiore e su una canna inferiore. Nella figura seguente è riportata una sezione tipo della struttura.

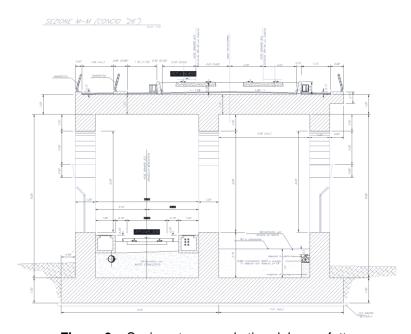


Figura 3 – Sezione trasversale tipo del manufatto

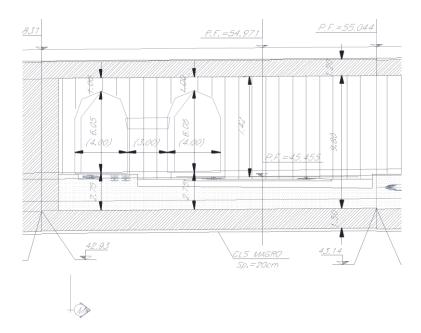


Figura 4 – Sezione longitudinale

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 8 di 62

"Struttura ad archi": Relazione di calcolo - 3 di 6

Di seguito si riportano le caratteristiche geometriche principali del manufatto.

$S_f =$	1,50	m	Spessore fondazione
S _s =	1,20	m	Spessore soletta sup.
$S_p =$	1,20	m	Spessore piedritti
$L_{\text{fond}} =$	~17.00	m	Larghezza fondazione
$L_{\text{int}} =$	6,20	m	Larghezza utile interna (canna binario)
$H_{int} =$	9,80	m	Altezza libera interna
$H_{tot} =$	12,50	m	Altezza totale
L _{sba} =	0,85	m	Lunghezza sbalzi laterali
S _{sba} =	0,56	m	Spessore sbalzi laterali

Il manufatto si inserisce nell'ambito di una tratta a doppio binario. La larghezza totale della piattaforma è pari a 13.70 m, in grado di ospitare il nuovo tipologico di B.A. previsto per il viadotto.Nell'analisi dei carichi sarà pertanto previsto il posizionamento di tale tipologia di barriere.

L'armamento è di tipo convenzionale su ballast. Non sono presenti portali di ormeggio della T.E. sul concio in oggetto.

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 9 di 62

5 ANALISI DEI CARICHI

5.1 PESO PROPRIO

Il carico delle strutture in c.a. viene valutato considerando un peso di volume pari a 25 kN/mc.

L'analisi di dettaglio delle azioni dovute al peso proprio è riportata in seguito.

5.2 PERMANENTI PORTATI

5.2.1 MASSICCIATA, ARMAMENTO E IMPERMEABILIZZAZIONE

Si assumono convenzionalmente i seguenti pesi di volume relativi alla massicciata, all'armamento e all'impermeabilizzazione

Si valuta l'azione sulla soletta di impalcato in riferimento al peso di volume in rettifilo (sede superiore):

 $q_{ballast} = 18.00 \times 0.80 = 14.40 \text{ kN/mq}$

ed in curva (sede inferiore):

 $q_{ballast} = 20.00 \times 0.80 = 16.00 \text{ kN/mq}$

Tale carico viene applicato per una larghezza pari a 8.54 m della suola superiore e 3.8m di quella inferiore.

5.2.2 BARRIERE ANTIRUMORE

Si considera un carico relativo alle barriere antirumore pari a 4.0 kN/mq. Considerando cautelativamente un'altezza massima di barriera pari a 5.0 m, si ottiene un carico lineare pari a:

$$G_{2,2} = q_{barriere} = 4.0 \text{ x } 5.0 = 20 \text{ kN/m per ogni lato}$$

A vantaggio di sicurezza si trascura il contributo del momento alla base delle barriere. Il peso delle barriere verrà considerato come azione concentrata agente in testa ai setti laterali.

Per sintesi si riportano i carichi al metro lineare considerati in fase di analisi.

 $N_{per,BA} = 20 \text{ kN}$

 $M_{per,BA} = 0 \text{ kN-m}$

 $V_{per,BA} = 0 kN$

5.2.3 CANALETTE IMPIANTI E IMPIANTI

A ridosso dei muri, sono previste delle canalette impianti sui lati esterni. Si assume un carico lineare uniforme pari a:

q_{canalette} = 2.50 kN/m per ogni lato dell'impalcato

5.3 AZIONI VARIABILI

5.3.1 TRENI DI CARICO

I carichi verticali sono definiti per mezzo dei modelli di carico elencati nella seguente tabella. I valori caratteristici dei carichi attribuiti ai modelli di carico debbono moltiplicarsi per il coefficiente "α" che deve assumersi come da tabella seguente:

MODELLO DI CARICO	COEFFICIENTE "a"
LM71	1.1
SW/0	1.1
SW/2	1.0

Tabella 1 – coefficienti α per modelli di carico

5.3.1.1 TRENO DI CARICO LM71

Il Treno di carico LM71 è schematizzato nella figura seguente.

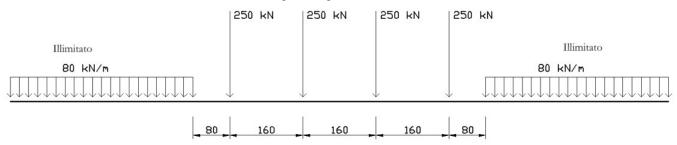


Figura 5 - Treno di carico LM71

Per questo modello di carico è prevista una eccentricità del carico rispetto all'asse del binario pari a s/18, con s=1435 mm. Data la grande variabilità geometrica della struttura e le significative larghezze trasversali di diffusione, si ammette trascurabile tale eccentricità ai fini del dimensionamento globale dell'opera.

5.3.1.2 TRENI DI CARICO SW/0- SW/2

II Treni di carico SW/0-SW/2 sono schematizzati nella figura seguente.

Figura 6 - Treno di carico SW

Tipo di carico	Qvk [kN/m]	A [m]	C [m]
SW/0	133	15.0	5.3
SW/2	150	25.0	7.0

Tabella 2 - caratterizzazione treni di carico SW

Nel modello è stato considerato il treno di carico SW/2 perché il più gravoso tra i carichi i due treni di carico SW.

5.3.1.3 TRENO SCARICO

Alcuni scenari di carico prevedono l'impiego del treno scarico, convenzionalmente costituito da un carico uniformemente distribuito pari a 10.00 kN/m. Tale carico non è dimensionante per il manufatto in oggetto.

5.3.1.4 RIPARTIZIONE LOCALE DEI CARICHI

5.3.1.4.1 Ripartizione longiutudinale

Nelle analisi si sono considerati i seguenti meccanismi di ripartizione longiutudinale dei carichi.

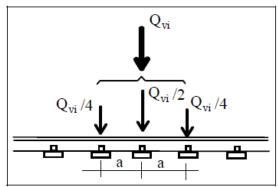


Figura 7 - meccanismo di ripartizione longitudinale per mezzo del binario

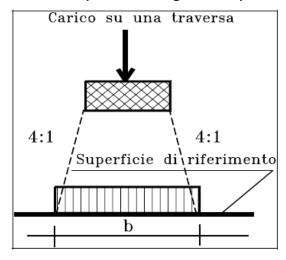


Figura 8 – meccanismo di ripartizione longitudinale per mezzo di traversa e ballast

La superficie di riferimento è la superficie di appoggio del ballast.

Nel caso specifico, la ripartizione viene valutata a partire dai seguenti parametri medi:

Larghezza traversine: B = 0.26 mInterasse traversine: i = 0.60 mAltezza di diffusione: h = 0.40 m

Larghezza di diffusione: b = B + 2 x h/4 = 0.46 m < i

5.3.1.4.2 Ripartizione trasversale

Nelle analisi si sono considerati il seguenti meccanismi di ripartizione trasversale dei carichi.

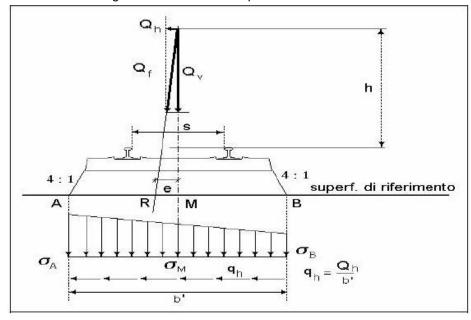


Figura 9 – meccanismo di ripartizione longitudinale per mezzo di traversa e ballast – ponte in rettifilo

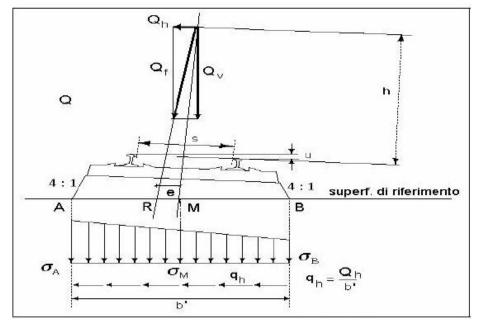


Figura 10 – meccanismo di ripartizione longitudinale per mezzo di traversa e ballast – ponte in curva La superficie di riferimento è la superficie di appoggio del ballast.

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

COMMESSA LOTTO CODIFICA DOCUMENTO

IF1N 01 E ZZ CL VI0100 004

REV. FOGLIO

B 13 di 62

Nel caso specifico, la ripartizione viene valutata a partire dai seguenti parametri medi. Si adotta lo schema di ponte in rettifilo.

Larghezza traversine: B = 2.40 mAltezza di diffusione: h = 0.40 m

Larghezza di diffusione: b = B + 2 x h/4 = 2.60 m

Si ripartiranno ulteriormente i carichi all'interno nella soletta con ripartizione a 45°, fino al piano medio della stessa, come indicato al paragrafo 2.5.1.4.1.4 del RFI DTC SI PS MA IFS 001 A.

Altezza soletta: H = 1.20/2=0.6 m

Altezza di diffusione: h = 1.20/2=0.6 mLarghezza diffusione: $B_{TOT}=2.6+2 \times 0.6=3.8 \text{m}$

La larghezza di diffusione è inferiore all'interasse dei binari (4.00 m).

Nel caso del binario della canna inferiore, data la presenza del riempimento (~1.8m) e l'altezza della fondazione (1.5m), si ottiene:

Larghezza diffusione: $B_{TOT}=2.6 + 2x1.8/4 + 2x1.5/2 = 5.0m$

5.3.2 CARICHI SUI MARCIAPIEDI

I marciapiedi non aperti al pubblico sono utilizzati solo dal personale autorizzato. I carichi accidentali sono schematizzati da un carico uniformemente ripartito del valore di 10 kN/mq.

Questo carico non deve considerarsi contemporaneo al transito dei convogli ferroviari e deve essere applicato sopra i marciapiedi in modo da dare luogo agli effetti locali più sfavorevoli. Per questo tipo di carico distribuito non deve applicarsi l'incremento dinamico.

Il valore di guesto carico verrà considerato nelle analisi locali degli sbalzi laterali.

5.3.3 SERPEGGIO

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva.

Il valore caratteristico di tale forza è stato assunto assunto pari a Q_{sk} =100 kN. Tale valore deve essere moltiplicato per α , ma non per il coefficiente di incremento dinamico.

5.3.4 AVVIAMENTO E FRENATURA

Si considerano i seguenti valori caratteristici per le azioni: Q_{la.k} = 33 kN/m avviamento LM71-SW/0-SW/2

 $Q_{lb,k} = 20 \text{ kN/m}$ frenatura LM71-SW/0 $Q_{lb,k} = 35 \text{ kN/m}$ per modelli di carico SW/2

Data la modesta influenza sul dimensionamento dell'opera, si assume cautelativamente un treno LM71 in avviamento e un SW2 in frenatura per la coppia di binari superiori e un SW2 in frenatura per il binario inferiore.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	VI0100 004	В	14 di 62

5.4 AZIONI DINAMICHE

Per i veicoli che transitano sopra il manufatto, la struttura risponde al caso 5.4 della tabella 1.4.2.5.3-1 dell'Istruzione RFI DTC INC PO SP IFS 001, che rimanda al caso 5.2. con l'applicazione di un coeff. riduttivo pari a 0.9. Di seguito si riporta la valutazione del coeff. dinamico.

n =	4		
L ₁ =	10,40	m	altezza piedritto
L ₂ =	6.20	m	luce netta media
L ₃ =	3.19	m	luce netta media
L ₄ =	10,40	m	altezza piedritto
k =	1,4		
L _m =	7,55	m	
L_{Φ} =	10,57	m	
α_{rid} =	0,9		
ф2 =	1,292	-	elevato standard manutentivo
ф3 =	1,438	-	normale standard manutentivo
$\alpha_{rid}\Phi_2$ =	1,163	-	elevato standard manutentivo
$\alpha_{rid} \Phi_3 =$	1,294	-	normale standard manutentivo

Data la variabilità delle luci rispetto ai valori medi, si ammette cautelativamente di impiegare nelle analisi un coefficiente $\alpha_{rid}\phi_3$ =1.35. Nel modello di calcolo gli effetti dinamici sono implementati direttamente come moltiplicatore dei rispettivi Load Case (e non nelle combinazioni di carico).

5.5 AZIONI DOVUTE AL DERAGLIAMENTO

In alternativa ai modelli di carico verticale da traffico ferroviario, ai fini della verifica della struttura si dovrà tenere conto della possibilità che un locomotore o un carro pesante deragli. La normativa propone due diverse situazioni di progetto;

Caso 1

Si considerano due carichi verticali lineari q_{A1d} = 60 kN/m (comprensivo dell'effetto dinamico) ciascuno. Trasversalmente i carichi distano fra loro di S (scartamento del binario) e possono assumere tutte le posizioni comprese entro i limiti indicati in Fig. 5.2.12.

Per questa condizione sono tollerati danni locali, purché possano essere facilmente riparati, mentre sono da evitare danneggiamenti delle strutture portanti principali.

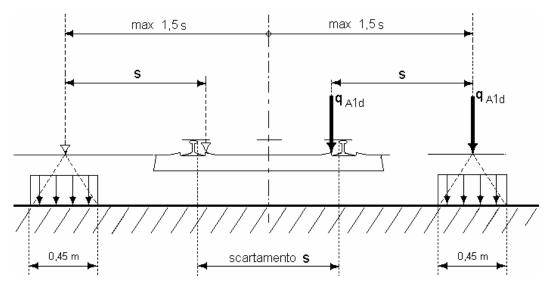


Figura 11 - posizione azioni da deragliamento - caso 1

Caso 2

Si considera un unico carico lineare q_{A2d} =80 x1.4 kN/m esteso per 20 m e disposto con una eccentricità massima, lato esterno, di 1.5 s rispetto all'asse del binario. Tale caso deve essere applicato solo per effetti globali.

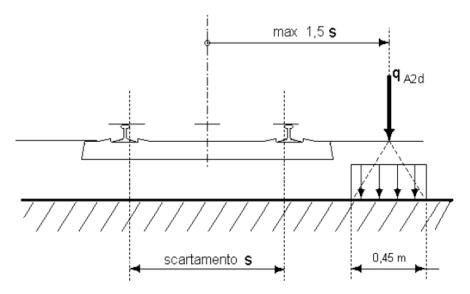


Figura 12 - posizione azioni da deragliamento - caso 2

La posizione dei carichi non determina scenari che vedono coinvolti elementi sensibili a rotture localizzate (mensole, muretti, elementi puntuali, ecc.). Inoltre, sia la posizione che l'entità dei carichi (molto inferiori rispetto ai carichi da traffico considerati in progetto), unitamente al fatto che i relativi effetti devono essere considerati nell'ambito delle combinazioni eccezionali (con valori dei coefficienti parziali sensibilmente meno gravosi di quelli considerate nelle combinazioni caratteristiche) portano a concludere che le azioni da deragliamento non sono significative per le verifiche degli elementi strutturali del manufatto e non determinano scenari più gravosi di quelli effettivamente considerati nei confronti della stabilità globale del manufatto.

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 16 di 62

5.6 AZIONI CLIMATICHE

Le azioni termiche sono state considerate come agenti sulla soletta di copertura e sui piedritti laterali visto il ricoprimento di terreno che protegge la platea di fondazione.

5.6.1 VARIAZIONE TERMICA UNIFORME

È stata considerata una variazione termica uniforme della soletta superiore e sui piedritti pari a ±15°C.

5.6.2 VARIAZIONE TERMICA DIFFERENZIALE

È stata considerata una differenza di temperatura tra esterno e interno dello scatolare pari a ±5°C, tale azione è stata applicata sia alla soletta che ai piedritti.

5.6.3 VENTO

Si assume convenzionalmente e cautelativamente una pressione uniforme agente lateralmente pari a 2.50 kN/mq, comprensiva dell'azione del vento e delle sovrapressioni dovute al transito dei veicoli. (vedi §1.5.4.3.1 del manuale RFI DTC SICS AM MA IFS 001), considerando che la velocità di progetto della linea è v >200 km/h.

In ogni caso, il valore della combinazione "vento +effetto aerodinamico" (ptot) sarà assunto pari a:

- p_{vento} +p_{aerod}=p_{tot} ≥ 1.5 kN/m² per linee percorse a velocità V≤200 Km/h;
- p_{vento} +p_{aerod}=p_{tot} ≥ 2.5 kN/m² per linee percorse a velocità V>200 Km/h.

La pressione del vento si considera agente sulla barriera antirumore. A vantaggio di sicurezza si assume un'altezza complessiva per la barriera pari a 5.00 m.

 $N_{var1} = 0 kN/m$

 $M_{var1} = 2.50 \times 5.00^2 / 2 = 31.25 \text{ kN/m}$

 $V_{var1} = 2.50 \times 5.00 = 12.5 \text{ kN/m}$

L'effetto del vento sulle barriere verrà considerato come azione concentrata agente in testa ai piedritti.

L'azione è considerata agente sulle barriere, in verso concorde per entrambe. Il taglio orizzontale ed il momento flettente sono stati assegnati al modello mediante forze e momenti applicati su elementi fittizi.

ITINERA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO VI0100 004

REV. FOGLIO

17 di 62

"Struttura ad archi": Relazione di calcolo - 3 di 6

5.7 AZIONI INDIRETTE

5.7.1 RITIRO E VISCOSITÀ

Di seguito si riporta la valutazione del ritiro sulla struttura. La valutazione tiene conto della riduzione del ritiro per effetto della viscosità. Il ritiro si considera agente solo sulla soletta di copertura e sono stati applicati nel modello come delta di temperatura.

Viscosità (El	N1992-1-1 §3.1.4)	
Classe	C32/40		Classe del calcestruzzo
$R_{ck} =$	40	MPa	resistenza caratteristica cubica
$f_{ck} =$	32	MPa	resistenza caratteristica cilindrica
$f_{cm} =$	40	MPa	valor medio resistenza cilindrica
$E_{cm} =$	33.346	MPa	Modulo elastico di progetto
$E_c =$	35.013	MPa	Modulo elastico tangente
Cem.Tipo	Ν	-	CEM 32,5 R, CEM 42,5 N
t ₀	7	99	età di applicazione del carico
t ₀ *	7	99	età di applicazione del carico modif. tipo cem. (S, N o R)
t	10.000	99	
A_c	11.520.000	mmq	area sez trasversale
U	19200	mm	perimetro a contatto con l'atmosfera
h ₀	1200	mm	dimensione fittizia dell'elemento
RH	65	%	Umidità Relativa
$\beta(f_{cm})$	2,66	-	influenza della resistenza del cls
$\beta(t_0)$	0,63	-	influenza del momento di applicazione del carico
ϕ_{RH}	1,29	-	coeff.influenza dell'umidità relativa
α_1	0,91	-	coeff.influenza della resistenza del cls
α_2	0,97	-	coeff.influenza della resistenza del cls
α_3	0,94	-	coeff.influenza della resistenza del cls
ϕ_0	2,18	-	coeff. nominale di viscosità
$eta_{ ext{H}}$	352,29	-	coeff. per RH e h ₀
$\beta_c(t^*,t_0)$	0,99	-	
φ(t*,t ₀)	2,16	-	Coeff. di viscosità

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 18 di 62

E _{c,R} =	11.096	MPa	Modulo elastico Ridotto
E* _{c,R} =	12.851	MPa	Modulo elastico Ridotto Modificato

Ritiro (EN19	992-1-1 §3.1.4)		
ε _{cs}	0,000289	-	Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$
Des 1			
Ritiro da es: Classe	C32/40		Classe del calcestruzzo
$R_{ck} =$	40	MPa	resistenza caratteristica cubica
$f_{ck} =$	32	MPa	resistenza caratteristica cilindrica
	40	MPa	
$f_{cm} =$			Valor medio resistenza cilindrica
$f_{cm,0} =$	10	MPa	Valor medio resistenza cilindrica
Cem.Tipo	N	-	CEM 32,5 R, CEM 42,5 N
$\alpha_{ds1} =$	4		
α _{ds2} =	0,12	0/	LL - PO D L e
RH =	65	%	Umidità Relativa
$RH_0 =$	100	%	
$\beta_{\text{RH}} =$	1,12		Coeff. per umidità relativa
$\epsilon_{cd,0} =$	0,00039	-	Deformazione da ritiro per essiccamento non contrastato
$A_c =$	11.520.000	mmq	Area sez trasversale
υ =	19200	mm	Perimetro a contatto con l'atmosfera
h _{0 =}	1200	mm	Dimensione fittizia dell'elemento
k _{h =}	0,7		Coeff. per dimensione fittizia
t =	10.000	99	Età del calcestruzzo, al momento considrato
† _{s =}	0	99	Età del calcestruzzo, all'inizio del ritiro per essiccamento
$\beta_{RH}(t,t_s)$	0,86		
$\epsilon_{cd} =$	0,0002343		Deformazione da ritiro per essiccamento
Ritiro autog	eno		
$\varepsilon_{ca}(\infty) =$	0,000055	_	Deformazione da ritiro autogeno per t=∞
t =	10.000	99	- ·
$\beta_{as}(t) =$	1,00	-	

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 19 di 62

 $\epsilon_{ca}(t) = 0,000055$ - Deformazione da ritiro autogeno

La variazione termica equivalente al ritiro viene valutata con l'espressione ϵ_s / [(1+ φ (t*,t₀)) x α].

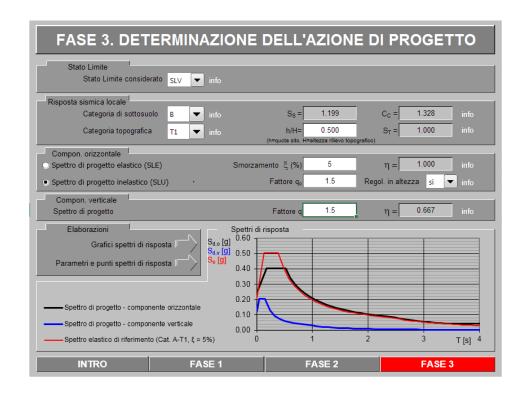
Variazione te	rmica equivalente		
ε _{cs}	0,000289 -		Deformazione totale da ritiro $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$
$\varphi(t^*,t_0)$ $\alpha =$	2,16 - 1,00E-05 1/	∕°C	Coeff. di viscosità Coeff. di dilatazione termica
ΔT _{rit} =	-9,17 °C		Variazione termica equivalente

5.8 INDIVIDUAZIONE DELLA PERICOLOSITÀ DEL SITO E STRATEGIA DI PROGETTAZIONE

Valori dei parametri a_q, F_o, T_C* per i periodi di ritorno T_R

SLAT0	T _R	ag	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0,070	2,367	0,328
SLD	113	0,088	2,396	0,344
SLV	1068	0,203	2,474	0,389
SLC	2193	0,251	2,521	0,409

Caratterizzazione dell'azioni sismica


$V_N =$	75	anni	vita nominale
Cl.uso	III	-	classe d'uso
C _U =	1,5	-	coeff. d'uso
V _R =	112,5	anni	periodo di riferimento
a _g =	0,203	g	accelerazione in sito
Terreno	Tipo B		
F ₀ =	2,474	-	
S _s =	1,199	-	Coeff. di amplificazione stratigrafica
S _t =	1	-	Coeff. di amplificazione topografica
a _{max} =	0,243	g	accelerazione T_0 ($S_s \times S_t \times a_g$)

5.9 AZIONI SISMICHE DA PESO PROPRIO E CARICHI PERMANENTI E VARIABILI

Le azioni sismiche da peso proprio e carichi permanenti e variabili vengono valutate mediante analisi pseudostatica, considerando l'accelerazione massima degli spettri di risposta, sia per quanto riguarda la componente orizzontale che per quella verticale.

Gli spettri di progetto utilizzati per la definizione delle azioni sono stati determinati considerando un fattore di struttura pari a 1.5.

Di seguito si riportano i parametri considerati e gli spettri di risposta relativi allo SLV.

ITINERARIO NAPOLI – BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO**

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

"Struttura ad archi": Relazione di calcolo - 3 di 6

CODIFICA DOCUMENTO COMMESSA LOTTO REV. **FOGLIO** IF1N 01 E ZZ CL VI0100 004 В 22 di 62

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV Parametri e punti dello spettro di risposta verticale per lo stato limite: SLV

Parametri indipendenti				
SL	SLV			
a _o	0.203 g			
F _o	2.474			
T _c *	0.389 s			
S _S	1.199			
C _C	1.328			
S _T	1.000			
a	1 500			

Parametri dinendenti

rarament dipendenti			
S	1.199		
η	0.667		
T _B	0.172 s		
T _C	0.517 s		
Tn	2.413 s		

T _D	2.413 s	
Espressioni dei para	metri dipend	ent

 $\eta = \sqrt{10/(5+\xi)} \geq 0,55; \ \eta = 1/q \ \ (\text{NTC-08 Eq. } 3.2.6; \ \S. \ 3.2.3.5)$

(NTC-08 Eq. 3.2.5)

 $T_B = T_C/3$ (NTC-07 Eq. 3.2.8)

(NTC-07 Eq. 3.2.7) $T_C = C_C \cdot T_C^*$ (NTC-07 Eq. 3.2.9) $T_D = 4.0 \cdot a_g \, / \, g + 1.6$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_{\rm e}(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

	T [s]	ro di rispo Se [g
Т	0.000	0.244
	0.172	0.402
П	0.517	0.402
Г	0.608	0.342
Г	0.698	0.298
Г	0.788	0.264
Г	0.878	0.237
Г	0.969	0.215
Г	1.059	0.196
Г	1.149	0.181
Г	1.239	0.168
Г	1.330	0.156
Г	1.420	0.146
	1.510	0.138
Г	1.601	0.130
Г	1.691	0.123
Г	1.781	0.117
Г	1.871	0.111
Г	1.962	0.106
	2.052	0.101
	2.142	0.097
Г	2.232	0.093
Г	2.323	0.090
-	2.413	0.086
Г	2.489	0.081
Г	2.564	0.076
	2.640	0.072
Г	2.715	0.068
Г	2.791	0.064
Г	2.866	0.061
	2.942	0.058
	3.018	0.055
	3.093	0.052
	3.169	0.050
	3.244	0.048
	3.320	0.046
	3.395	0.044
	3.471	0.042
	3.547	0.041
	3.622	0.041
	3.698	0.041
	3.773	0.041
	3.849	0.041
	3.924	0.041
	4.000	0.041

SL	dipendenti SLV				
a _{nv}	0.291 g				
Ss	1.000				
S _T	1.000				
q	1.500				
T _B	0.050 s				
T _C	0.150 s				
T _D	1.000 s				
Parametri dipendenti					
F., 1.506					

Espressioni dei parametri dipendenti

$$\begin{split} S &= S_S \cdot S_T & \text{(NTC-08 Eq. 3.2.5)} \\ \eta &= 1/q & \text{(NTC-08 §. 3.2.3.5)} \\ F_v &= 1,35 \cdot F_o \left(\frac{a_y}{g}\right)^{0.5} & \text{(NTC-08 Eq. 3.2.11)} \end{split}$$

Espressioni dello spettro di risposta (NTC-08 Ed

$$\begin{split} 0 \leq T < T_B & \qquad S_\epsilon(T) = a_g \cdot S \cdot \eta \cdot F_\epsilon \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left[1 - \frac{T}{T_B} \right] \right] \\ T_B \leq T < T_C & \qquad S_\epsilon(T) = a_g \cdot S \cdot \eta \cdot F_\epsilon \cdot \left[\frac{T_c}{T} \right] \\ T_C \leq T < T_D & \qquad S_\epsilon(T) = a_g \cdot S \cdot \eta \cdot F_\epsilon \cdot \left(\frac{T_c}{T} \right) \\ T_D \leq T & \qquad S_\epsilon(T) = a_g \cdot S \cdot \eta \cdot F_\epsilon \cdot \left(\frac{T_c T_D}{T_c^{-\frac{1}{2}}} \right) \end{split}$$

		ettro di risposta
	T [s]	Se [g]
-	0.000	0.124
T _B ◀	0.050	0.204
T _C ◀	0.150	0.204
-	0.235	0.130
-	0.320	0.096
-	0.405	0.076
-	0.490	0.062
-	0.575	0.053
-	0.660	0.046
-	0.745	0.041
-	0.830	0.037
-	0.915	0.033
TD◀	1.000	0.031
-	1.094	0.026
-	1.188	0.022
-	1.281	0.019
-	1.375	0.016
-	1.469	0.014
-	1.563	0.013
-	1.656	0.011
-	1.750	0.010
-	1.844	0.009
-	1.938	0.008
-	2.031	0.007
-	2.125	0.007
-	2.219	0.006
-	2.313	0.006
-	2.406	0.005
-	2.500	0.005
	2.594	0.005
3.2.10)	2.688	0.004
-	2.781	0.004
-	2.875	0.004
-	2.969	0.003
-	3.063	0.003
-	3.156	0.003
-	3.250	0.003
-	3.344	0.003
-	3.438	0.003
	3.531	0.002
-	3.625	0.002
	3.719	0.002
-	3.813	0.002
-	3.906	0.002
L	4.000	0.002

6 MODELLAZIONE E ANALISI

L'analisi delle sollecitazioni è stata effettuata mediante modelli FEM realizzati con l'ausilio del software SAP2000 della CSI, ver. 15.1. I modelli riproducono le caratteristiche meccaniche della struttura e sono rappresentativi del manufatto (concio 26).

Modello SLU/SLE

Questo modello è stato considerato per la valutazione delle sollecitazioni e le deformazioni degli elementi strutturali per le combinazioni SLU/SLE. Gli elementi strutturali in elevazione e in fondazione sono stati modellati mediante elementi bidimensionali a 4 nodi. I macro elementi rappresentati vengono automaticamente suddivisi dal programma di calcolo in elementi più piccoli, tali da avere una discretizzazione massima della mesh pari a ~0.6m per i setti e ~0.9m per gli orizzontamenti. Il programma di calcolo assegna automaticamente dei vincoli di congruenza sul campo di spostamenti dei bordi degli elementi, tale che non sia richiesta la compatibilità puntuale tra i nodi di mesh contigue (ad es. verticale ed orizzontale).

L'interazione tra struttura e terreno di fondazione è stata descritta mediante molle distribuite sull'elemento di base (vedi §6.1). La rigidezza delle molle è stata valutata a partire dal coefficiente di sottofondo stimato cautelativamente nel valore di 10'000 kN/mc. Di seguito si riporta una vista del modello di calcolo.

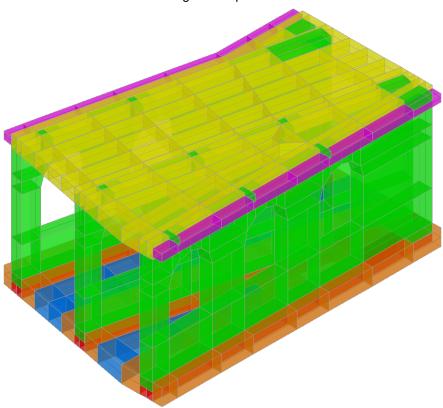


Figura 13 – Prospettiva modello di calcolo (vista estrusa)

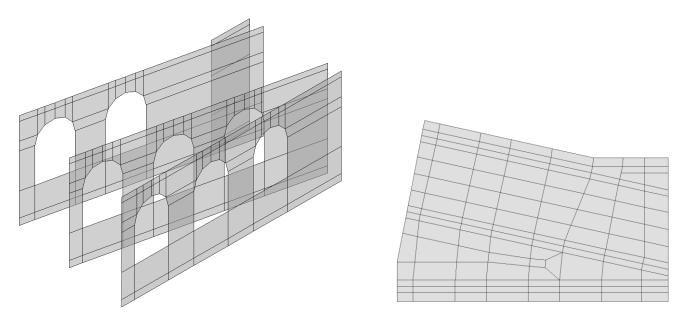


Figura 14 – Prospetti pareti (sx), pianta fondazione (dx)

Il carico verticale dei convogli è stato assegnato mediante l'opzione "carichi mobili" del programma di calcolo. Una volta assegnate delle linee d'asse fittizie, una per ciascun binario, dotate di una larghezza di diffusione trasversale, il programma di calcolo assegna i carichi mobili sugli elementi di piastra più vicini in maniera equilibrata e calcola i massimi effetti sfavorevoli spostando la posizione degli assi dei carichi e segmentando i carichi distribuiti.

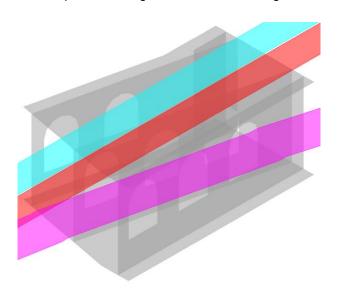


Figura 15 – Corsie di carico

Load Length Type	Minimum Distance	Maximum Distance	Uniform Load	Uniform Width Type	Uniform Width	Axle Load	Axle Width Type	Axle Width
Leading Load 🔻	Infinite		80.	Lane Width 🔻		0.	One Point 🔻	
Leading Load	Infinite		80.	Lane Width		0.	One Point	
Fixed Length	0.8		0.	Lane Width		250.	Lane Width Line	
Fixed Length	1.6		0.	Lane Width		250.	Lane Width Line	
Fixed Length	1.6		0.	Lane Width		250.	Lane Width Line	
Fixed Length	1.6		0.	Lane Width		250.	Lane Width Line	
Fixed Length	0.8		0.	Lane Width		0.	One Point	
Trailing Load	Infinite		80.	Lane Width]]		

Figura 16 – Definizione del carico mobile LM71 (α =1.1 è assegnato nella definizione della classe e ϕ 3 nella definizione della Load Case)

Load	Minimum	Maximum	Uniform	Uniform	Uniform	Axle	Axle	Axle
Length Type	Distance	Distance	Load	Width Type	Width	Load	Width Type	Width
Fixed Length	25.		150.	Lane Width 🔻		0.	One Point 🔻	
Fixed Length	25. 7. 25.		150. 0. 150.	Lane Width Lane Width Lane Width		0. 0. 0.	One Point One Point One Point	

Figura 17 – Definizione del carico mobile SW2 (φ3 è assegnato nella definizione della Load Case)

In maniera analoga a quanto fatto per i carichi mobili, anche per alcuni carichi statici (ballast, barriere, impianti, frenatura, serpeggio, etc.), sono stati adottati degli elementi asta fittizi (peso nullo e rigidezza trascurabile), su cui applicare opportunamente i carichi. Il programma di calcolo imponendo la compatibilità tra il campo di deformazione degli elementi asta e quelli piastra, trasferisce il carico alla struttura in maniera congruente.

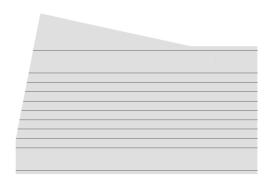
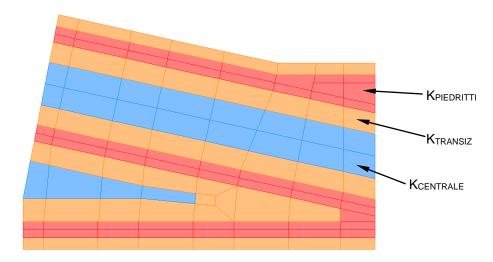



Figura 18 – Elementi asta fittizi sul solettone superiore

6.1 CONDIZIONI VINCOLARI

Il modello di calcolo attraverso il quale viene schematizzato il manufatto è vincolato alla base con un letto di molle alla Winkler. Le molle sono assegnate per unità di superficie agli elementi di fondazione. il programma di calcolo dopo aver effettuato la discretizzazione fina della mesh, calcola le molle nodali per aree di influenza.

La fondazione viene suddivisa in tre zone rappresentate in figura: a) le impronte sotto i piedritti, b) la porzione centrale delle campate (mezzeria), c) le zone di transizione a ridosso dei piedritti.

Per la rigidezza delle molle, nel il caso in esame, si assume un valore del modulo di reazione verticale KS=10'000 kN/m³ per la porzione centrale (b). Il modulo nella zona di transizione (c) e sotto i piedritti (a), sono assunti rispettivamente 1,5*Kcentrale e 2,0*Kcentrale.

Unitamente alla componente verticale delle molle, sono state assegnate anche delle molle "orizzontali" (tangenti al piano degli elementi) di valore pari ~Kcentrale/10, al fine di evitare punti fissi orizzontali e simulare un meccanismo di trasferimento per attrito delle forze orizzontali.

6.2 CARICHI

Di seguito si riportano i carichi definiti nei modelli di calcolo, valutati a partire dall'analisi precedentemente riportata. Il peso proprio degli elementi viene valutato automaticamente dal software $(G_{k1,pp})$.

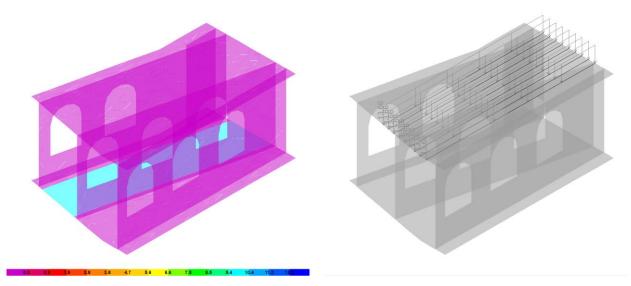


Figura 19 – G_{k2,ballast} – Ballast binario inferiore (sx), binario superiore (dx)

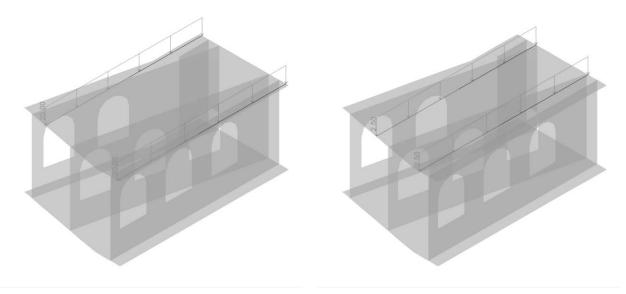


Figura 20 - G_{k2,barriere} B.A. (sx), G_{k2,impianti} canalette impianti (dx)

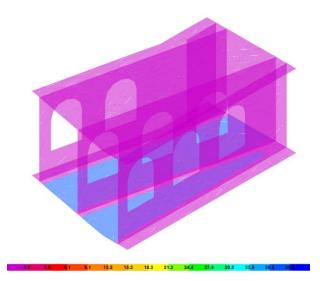


Figura 21 — G_{k2,riempimento} Rinterro

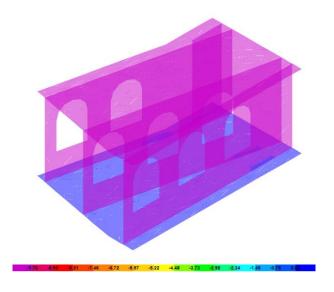


Figura 22 – $G_{k3,ritiro}$ Ritiro

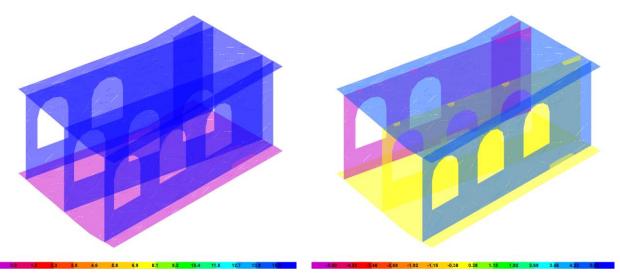


Figura 23 – T_{k,unif} termica uniforme (sx), T_{k,diff} termica differenziale (dx)

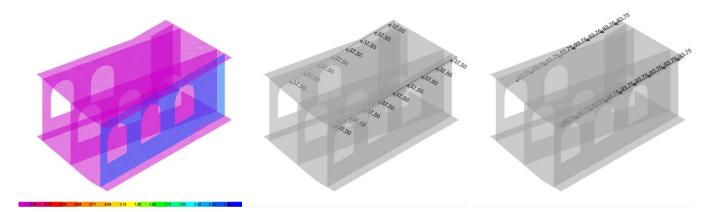


Figura 24 – W_{k,1} Vento Y – pressione sui setti (sx), taglio sulle barriere (cen), momento sulle barriere (dx)

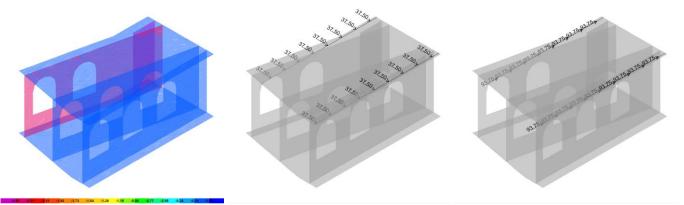


Figura 25 – W_{k,2} Vento -Y – pressione sui setti (sx), taglio sulle barriere (cen), momento sulle barriere (dx)

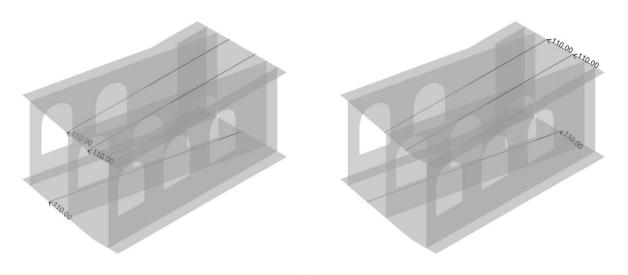


Figura 26 – Q_{k,serp} – Serpeggio, inizio manufatto (sx), fine manufatto (dx)

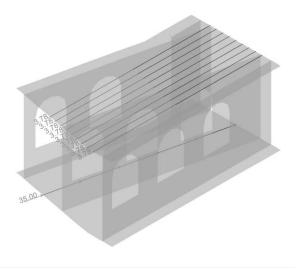


Figura 27 – Q_{k,avvfren} frenatura e avviamento

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

IF1N	01 E ZZ	CL	VI0100 004	В	31 di 62
OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

6.3 COMBINAZIONI DI CARICO

Le azioni descritte nei paragrafi precedenti sono combinate tra loro, al fine di ottenere le sollecitazioni di progetto relative agli elementi strutturali di volta in volta considerati in base a quanto prescritto dal D.M. 14 Gennaio 2008.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nella valutazione dell'azione sismica sono state combinate le azioni sismiche dovute al peso proprio e ai carichi variabili, combinati come segue:

- E1 = Ex \pm 0.3 Ey \pm 0.3 Ez
- E2 = 0.3 Ex ± Ey ± 0.3 Ez
- E3 = 0.3 Ex ± 0.3 Ey ± Ez

Con Ex, Ey e Ez rappresentative rispettivamente dell'azione sismica orizzontale in direzione x, orizzontale in direzione y e verticale. Per la valutazione delle masse e della spinta dovuta ai sovraccarichi da traffico si è considerato un coefficiente ψ =0.2.

I coefficienti di combinazione considerati sono riportati in allegato.

7 VERIFICHE

Si riportano di seguito le verifiche a presso-flessione e taglio della struttura nelle sezioni considerate.

Le sollecitazioni considerate in verifica sono state ottenute a partire dall'inviluppo delle sollecitazioni di progetto per ciascuna combinazione rilevante (SLU, SISMA SLV, SLS, fessurazione).

Di seguito si riportano i diagrammi dei principali casi di carico (SLU) ed in allegato i tabulati per tutte le altre combinazioni.

Per agevolare la comprensione dei grafici si riportano di seguito gli assi locali degli elementi bidimensionali e uno stralcio del manuale del SAP2000 che presenta le convenzioni adottate.

Per il modello in oggetto, l'asse 1 di tutti gli elementi è orizzontale e parallelo all'asse dei binari.

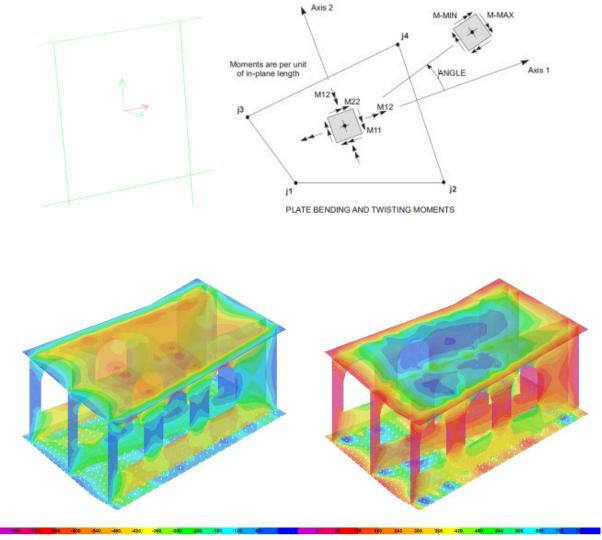


Figura 28- inviluppo M11 - SLU (min e max)

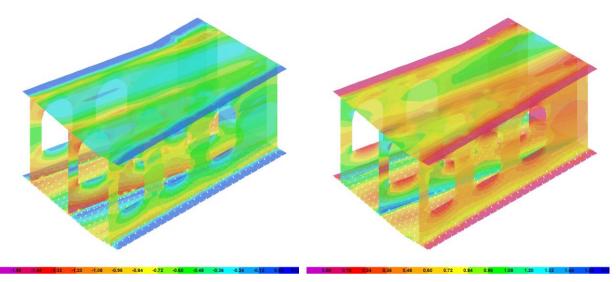


Figura 29- inviluppo M22 - SLU (min e max)

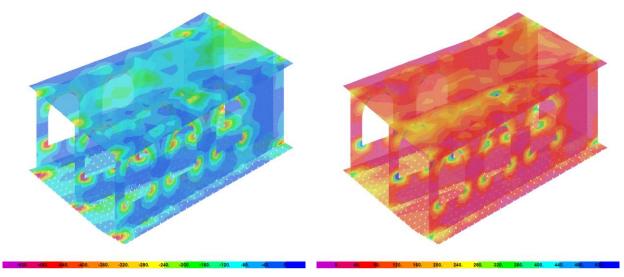


Figura 30- inviluppo V13 - SLU (min e max)

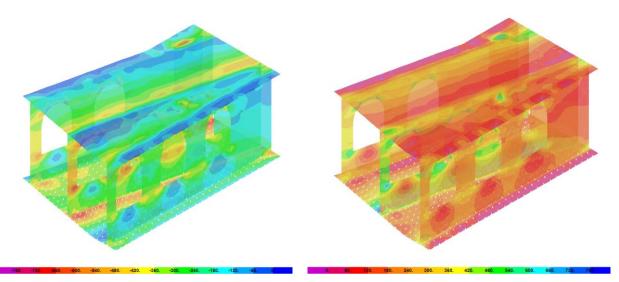


Figura 31- inviluppo V23 - SLU (min e max)

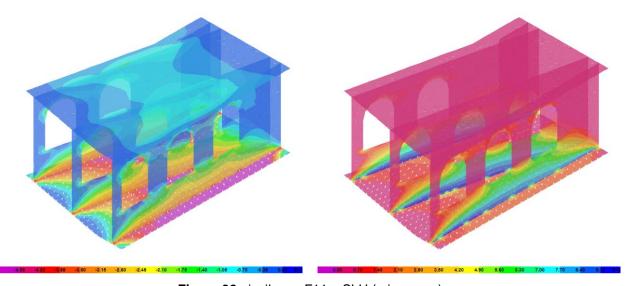


Figura 32- inviluppo F11 - SLU (min e max)

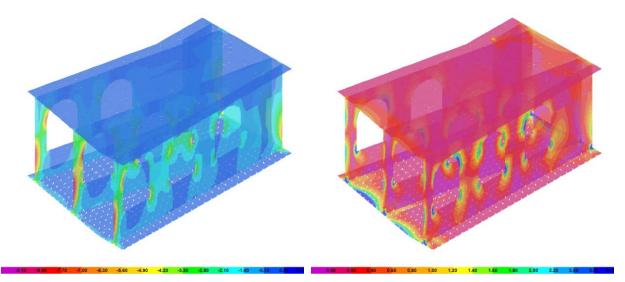


Figura 33- inviluppo F22 - SLU (min e max)

Gli elementi verticali oggetto di verifica sono (cfr. Allegato):

- elementi X*, piedritti
- elementi F*, fasce archi
- elementi Y*, setti verticali ad intradosso soletta

La sezione dei piedritti è tipologica (3000mm×1200mm), ad eccezione delle semi-colonne XB01-08-12 che hanno sezione differente (1480mm×1200mm), e dei setti irregolari XB04-05 (section cut HB1) e XB09-10 (section cut HB2).

Le sollecitazioni di verifica sono ottenute in automatico dal programma di calcolo mediante integrazione delle tensioni su ciascun macro-elemento (section cut).

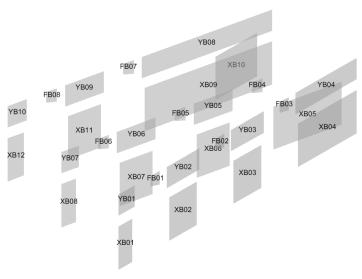


Figura 34 – Nomenclatura elementi verticali verificati

Gli elementi orizzontali oggetto di verifica sono rappresentati in figura (cfr. Allegato).

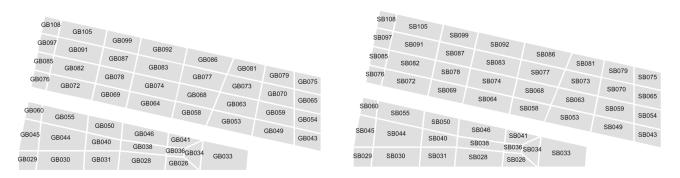


Figura 35 - Nomenclatura elementi orizzontali verificati, fondazione (sx), elevazione (dx)

Per le verifiche di resistenza a *stato limite di servizio*, in analogia con quanto fatto per le verifiche a SLU/SLV, si riporta un coefficiente di sicurezza rispetto alla sollecitazione ammissibile (peroide SLS), calcolata a sforzo normale costante dal limite più basso tra σ_{cls} =0.45f_{ck} ed σ_{acc} =0.8f_{yk}.

Per le verifiche a *fessurazione* si assume una condizione ambientale *aggressiva* (XC4) e si verifica l'apertura delle fessure nella combinazione da *stato limite di servizio frequente* con un limite per le aperture w₁ pari a 0.2mm. Per le sezioni per le quali la massima tensione di trazione elastica non supera in modulo f_{tcm}/1.2, è implicitamente verificata la *non formazione delle fessure*.

7.1 PIEDRITTI

7.1.1 SEZIONE TIPOLOGICA

7.1.1.1 VERIFICHE A PRESSOFLESSIONE

La sezione di verifica è 3000mm×1200mm, armata con ø26/200mm (42ø26 = 22302mm² $\rightarrow \rho$ = 0.62%).

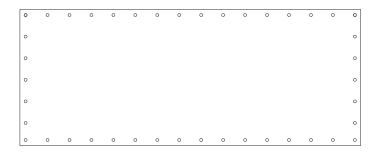


Figura 36 - Sezione di verifica

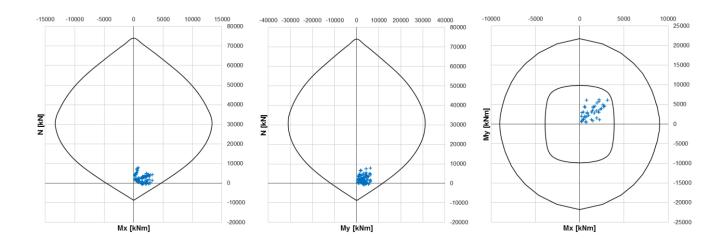


Figura 37 – Peroide SLU asse debole (sx), asse forte (cen), dominio Mx-My (dx) con sollecitazioni di verifica

THINCH

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO - BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 38 di 62

"Struttura ad archi": Relazione di calcolo - 3 di 6

Si riportano in tabella i minimi coefficienti di sicurezza suddivisi per elementi e gruppo di combinazioni (SLU/SLV, SLS), unitamente alle massime tensioni elastiche sulla sezione per la combinazione di fessurazione.

elemento	C.S. min SLS	C.S. min SLU	Ocls,el,traz,fess MPa
XB02a	1.28	1.66	-2.17
XB02b	1.42	1.66	-1.81
XB03a	2.45	2.08	-0.90
XB03b	2.22	2.08	-0.98
XB06a	5.62	1.85	-0.03
XB06b	5.13	2.38	-0.21
XB07a	1.85	1.48	-1.24
XB07b	2.48	2.05	-0.81
XB11a	1.33	1.56	-2.19
XB11b	1.33	1.57	-2.13

Tutti i coefficienti di sicurezza sono maggiori dell'unità.

Si omette in sicurezza la *verifica di apertura delle fessure*, in quanto è verificata la *non formazione delle fessure*, poiché le tensioni elastiche di trazione, nelle rispettive combinazioni di fessurazione, sono inferiori in modulo ad f_{ctm}/1.2 (=2.52MPa).

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 39 di 62

7.1.1.2 VERIFICHE A TAGLIO

Si riportano di seguito le massime sollecitazioni di taglio suddivise per elemento e combinazione di carico.

	In	viluppo SLU	Inviluppo SLV		
elemento	Max V _{2,long} kN	Max V _{3,trasv} kN	Max V _{2,long} kN	Max V _{3,trasv} kN	
XB02a	2419	478	2237	921	
XB02b	2419	451	2090	775	
XB03a	626	370	1924	835	
XB03b	626	352	1778	689	
XB06a	909	255	2106	1207	
XB06b	909	255	1931	1032	
XB07a	2574	321	2536	1420	
XB07b	2574	321	2362	1245	
XB11a	2655	542	1923	1201	
XB11b	2655	542	1748	1026	

DIREZIONE TRASVERSALE

Combinazione SLV_enve, elemento XB07: V = 1420 kN

f _{cd} [MPa]	b _w [mm]	d [mm]	σ _{cp} [MPa]	ας	ctg θ	1.00	1.0 ≤ ≤ 2	2.5
18.13	3000	1125	0.00	1.00	V _{Rcd} [kN]	13770	0.9 b_w d α	c f'cd ctg/(1+ctg ²)
f _{yd} [MPa]	n _b	φ [mm]	s [mm]	A_s [mm 2]	V _{Rsd} [kN]	2016	A _s /s f _{yd} 0.9	d ctg
391.3	9	12	200	1018	V _R [kN]	2016	min (V _{Rcd} ,	$V_{Rsd})$
	α [°]	90	1.571		V _S [kN]	1420	V _R /V _S	1.42

DIREZIONE LONGITUDINALE

Combinazione SLV_enve, elemento XB11: V = 2655 kN

f _{cd} [MPa]	b _w [mm]	d [mm]	σ _{cp} [MPa]	ας	ctg θ	1.00	1.0 ≤ ≤ 2	2.5
18.13	1200	2925	0.00	1.00	V _{Rcd} [kN]	14321	0.9 b _w d a	t_c f' _{cd} ctg/(1+ctg ²)
f yd [MPa]	n _b	φ [mm]	s [mm]	A_s [mm 2]	V _{Rsd} [kN]	2913	A _s /s f _{yd} 0.9	9 d ctg
391.3	5	12	200	565	V _R [kN]	2913	min (V _{Rcd} ,	V _{Rsd})
	α [°]	90	1.571		V _S [kN]	2655	V _R /V _S	1.10

7.1.2 SEZIONE SEMI-PILASTRI

7.1.2.1 VERIFICHE A PRESSOFLESSIONE

La sezione di verifica è 1480mm×1200mm, armata con 40ø26 (= 21240mm² $\rightarrow \rho$ = 1.20%).

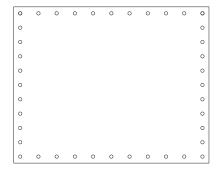


Figura 38 – Sezione di verifica

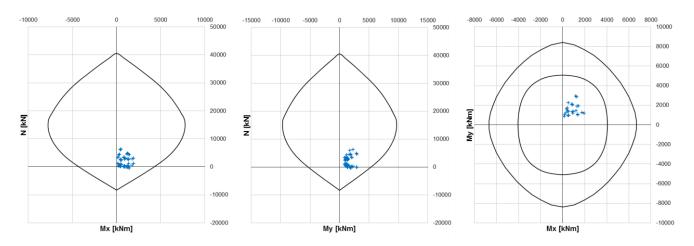


Figura 39 – Peroide SLU asse debole (sx), asse forte (cen), dominio Mx-My (dx) con sollecitazioni di verifica

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	VI0100 004	В	41 di 62

II III VILL

Si riportano in tabella i minimi coefficienti di sicurezza suddivisi per elementi e gruppo di combinazioni (SLU/SLV, SLS), unitamente alle massime tensioni elastiche sulla sezione per la combinazione di fessurazione.

elemento	C.S. min SLS	C.S. min SLU	Ocls,el,traz,fess MPa
XB01a	1.42	1.67	-3.11
XB01b	1.83	2.18	-2.31
XB08a	2.16	2.36	-1.70
XB08b	2.75	3.01	-1.32
XB12a	1.41	1.64	-3.08
XB12b	1.70	2.04	-2.56

Tutti i coefficienti di sicurezza sono maggiori dell'unità.

Essendo superato il limite di trazione elastica per la verifica di *non formazione delle fessure* (f_{ctm}/1.2), si riporta la verifica di *ampiezza delle fessure* per l'elemento più sollecitato (XB01).

f _{ck} [MPa]	f _{ctm} [MPa]	α_{e}	k ₁	k ₃	k ₄	k _T	$\alpha_{\sf min}$
32	3.024	15.00	0.8	3.40	0.425	0.40	0.60
N [kN]	M [kNm]	σ _{t,I} [MPa]	σ _{c,I} [MPa]	σ _{s,II} [MPa]	$\epsilon_{t,II}$	$\epsilon_{c,\parallel}$	X [mm]
925.8	504.4	-3.11	3.99	-119.8	-6.4E-04	4.4E-04	487
C [mm]	S [mm]	φ [mm]	$A_s \text{ [mm}^2]$	5(c+\psi/2)	h/2 [mm]	2.5(h-d)	(h-x)/3
62	135	26	5840	375	600	188	238
h _{eff} [mm]	$ ho_{\text{eff}}$	ϵ_2	k ₂	Δ_{smax} [mm]	ε _{sm} [°/ ₀₀]	W _d [mm]	esito
188	2.1%	0	0.500	421	0.35	0.147	apertura

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	VI0100 004	В	42 di 62

7.1.2.2 VERIFICHE A TAGLIO

Si riportano di seguito le massime sollecitazioni di taglio suddivise per elemento e combinazione di carico.

	In	viluppo SLU	In	viluppo SLV
elemento	Max V _{2,long}	Max V _{3,trasv}	Max V _{2,long}	Max V _{3,trasv}
XB01a	1176	246	634	485
XB01b	1176	233	561	412
XB08a	982	222	538	736
XB08b	982	222	462	659
XB12a	1206	290	577	667
XB12b	1206	290	490	580

DIREZIONE TRASVERSALE

Combinazione SLV_enve, elemento XB08: V = 736 kN

f _{cd} [MPa]	b _w [mm]	d [mm]	σ _{cp} [MPa]	α_{c}	ctg θ	1.00	1.0 ≤ ≤ 2	2.5
18.13	1480	1125	0.00	1.00	V _{Rcd} [kN]	6793	0.9 b _w d α	t_c f' _{cd} ctg/(1+ctg ²)
f _{yd} [MPa]	n _b	φ [mm]	s [mm]	A_s [mm 2]	V _{Rsd} [kN]	896	A _s /s f _{yd} 0.9	9 d ctg
391.3	4	12	200	452	V _R [kN]	896	min (V _{Rcd} ,	V _{Rsd})
	α [°]	90	1.571		V _S [kN]	736	V _R /V _S	1.22

DIREZIONE LONGITUDINALE

Combinazione SLU_enve, elemento XB12: V = 1206 kN

f _{cd} [MPa]	b _w [mm]	d [mm]	σ_{cp} [MPa]	$\alpha_{ extsf{c}}$	ctg θ	1.00	1.0 ≤ ≤ 2.5
18.13	1200	1405	0.00	1.00	V _{Rcd} [kN]	6879	$0.9 b_w d \alpha_c f'_{cd} ctg/(1+ctg^2)$
f _{yd} [MPa]	n_b	φ [mm]	S [mm]	A_s [mm 2]	V _{Rsd} [kN]	1399	$A_s/s f_{yd} 0.9 d ctg$
391.3	5	12	200	565	V _R [kN]	1399	min (V _{Rcd} , V _{Rsd})
	α [°]	90	1.571		V _S [kN]	1206	V _R /V _S 1.16

7.1.3 SEZIONE IRREGOLARE 1

7.1.3.1 VERIFICHE A PRESSOFLESSIONE

La sezione di verifica è rappresentata in figura ed è armata con $\emptyset 24/200$ mm ($124\emptyset 24=56048$ mm² $\rightarrow \rho = 0.33\%$).

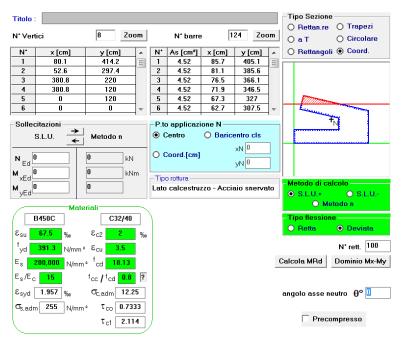


Figura 40 - Sezione di verifica

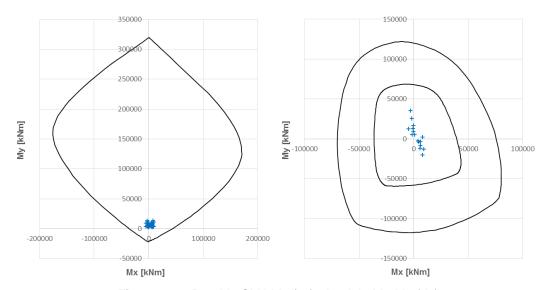


Figura 41 – Peroide SLU Mx (sx), dominio Mx-My (dx) con sollecitazioni di verifica

Tutti i coefficienti di sicurezza sono maggiori dell'unità.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	VI0100 004	В	44 di 62

Si omette in sicurezza la *verifica di apertura delle fessure*, in quanto è verificata la *non formazione delle fessure*, poiché le tensioni elastiche di trazione, nelle rispettive combinazioni di fessurazione, sono inferiori in modulo ad f_{ctm}/1.2 (=2.52MPa).

7.1.3.2 VERIFICHE A TAGLIO

Si riportano di seguito le massime sollecitazioni di taglio suddivise per elemento e combinazione di carico.

	In	viluppo SLU	In	viluppo SLV
elemento	Max V _{2,long}	Max V _{3,trasv}	Max V _{2,long}	Max V _{3,trasv}
HB1a	7007	1367	3873	2639
HB1b	7007	1367	3258	2023

DIREZIONE TRASVERSALE

Combinazione SLV_enve: V = 2639 kN

f _{cd} [MPa]	þ _w [mm]	d [mm]	σ_{cp} [MPa]	$\alpha_{ extsf{c}}$	ctg θ	1.00	1.0 ≤ ≤ 2.5
18.13	2560	2938	0.00	1.00	V _{Rcd} [kN]	30687	$0.9 b_w d \alpha_c f'_{cd} ctg/(1+ctg^2)$
f _{yd} [MPa]	n_b	φ [mm]	S [mm]	A_s [mm 2]	V _{Rsd} [kN]	3251	$A_s/s f_{yd}$ 0.9 d ctg
391.3	2	20	200	628	V _R [kN]	3251	min (V _{Rcd} , V _{Rsd})
	α [°]	90	1.571		V _S [kN]	2639	V _R /V _S 1.23

DIREZIONE LONGITUDINALE

Combinazione SLU_enve: V = 7007 kN

f _{cd} [MPa]	b _w [mm]	d [mm]	σ _{cp} [MPa]	ας	ctg θ	1.00	1.0 ≤ ≤ 2	2.5
18.13	2400	5655	0.00	1.00	V _{Rcd} [kN]	55374	0.9 b _w d a	$a_c f'_{cd} ctg/(1+ctg^2)$
f _{yd} [MPa]	n _b	φ [mm]	s [mm]	A_s [mm 2]	V _{Rsd} [kN]	12513	A _s /s f _{yd} 0.9	9 d ctg
391.3	4	20	200	1257	V _R [kN]	12513	min (V _{Rcd} ,	V _{Rsd})
	α [°]	90	1.571		V _S [kN]	7007	V _R /V _S	1.79

7.1.4 SEZIONE IRREGOLARE 2

7.1.4.1 VERIFICHE A PRESSOFLESSIONE

La sezione di verifica è rappresentata in figura ed è armata con $\emptyset 24/200$ mm ($124\emptyset 24=56048$ mm² $\rightarrow \rho = 0.28\%$).

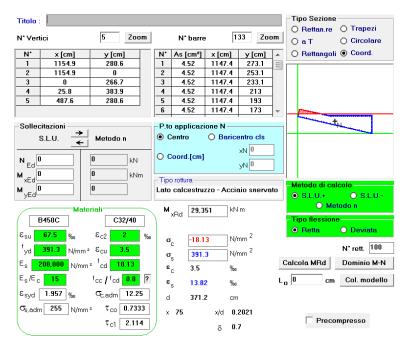


Figura 42 - Sezione di verifica

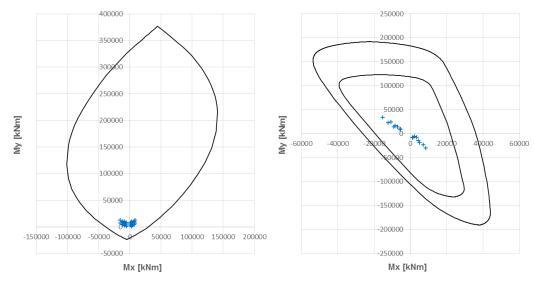


Figura 43 – Peroide SLU Mx (sx), dominio Mx-My (dx) con sollecitazioni di verifica

Tutti i coefficienti di sicurezza sono maggiori dell'unità.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 46 di 62

Si omette in sicurezza la *verifica di apertura delle fessure*, in quanto è verificata la *non formazione delle fessure*, poiché le tensioni elastiche di trazione, nelle rispettive combinazioni di fessurazione, sono inferiori in modulo ad f_{ctm}/1.2 (=2.52MPa).

7.1.4.2 VERIFICHE A TAGLIO

Si riportano di seguito le massime sollecitazioni di taglio suddivise per elemento e combinazione di carico.

	In	viluppo SLU	In	viluppo SLV
elemento	Max V _{2,long}	Max V _{3,trasv}	Max V _{2,long}	Max V _{3,trasv}
HB1a	3551	1915	3584	3041
HB1b	3554	1770	2798	2255

DIREZIONE TRASVERSALE

Combinazione SLV_enve: V = 3041 kN

f _{cd} [MPa]	þ _w [mm]	d [mm]	σ_{cp} [MPa]	$\alpha_{ extsf{c}}$	ctg θ	1.00	1.0 ≤ ≤ 2.5
18.13	11850	1138	0.00	1.00	V _{Rcd} [kN]	55020	$0.9 b_w d \alpha_c f'_{cd} ctg/(1+ctg^2)$
f _{yd} [MPa]	n_b	φ [mm]	S [mm]	A_s [mm 2]	V _{Rsd} [kN]	6044	A _s /s f _{yd} 0.9 d ctg
391.3	30	16	400	6032	V _R [kN]	6044	min (V _{Rcd} , V _{Rsd})
	α [°]	90	1.571		V _S [kN]	3041	V _R /V _S 1.99

DIREZIONE LONGITUDINALE

Combinazione SLU_enve: V = 3584 kN

f _{cd} [MPa]	b _w [mm]	d [mm]	σ _{cp} [MPa]	ας	ctg θ	1.00	1.0 ≤ ≤ 2	2.5	
18.13	1200	11788	0.00	1.00	V _{Rcd} [kN]	57714	0.9 b _w d a	$t_c f'_{cd} ctg/(1+ctg^2)$	
f _{yd} [MPa]	n _b	φ [mm]	s [mm]	A_s [mm 2]	V _{Rsd} [kN]	13042	A _s /s f _{yd} 0.9	9 d ctg	
391.3	2	20	200	628	V _R [kN]	13042	min (V _{Rcd} ,	V _{Rsd})	
	α [°]	90	1.571		V _S [kN]	3584	V _R /V _S	3.64	

7.2 ARCATE

Le sollecitazioni e le verifiche per questi elementi strutturali sono riportati in regime di pressoflessione retta.

7.2.1 SEZIONE TIPOLOGICA

7.2.1.1 VERIFICHE A PRESSOFLESSIONE

La sezione di verifica è 1200mm×~1000mm, armata con 8ø24 inferiormente e \emptyset 24/200mm lateralmente (16ø24 = 8496mm² $\rightarrow \rho$ = 0.6).

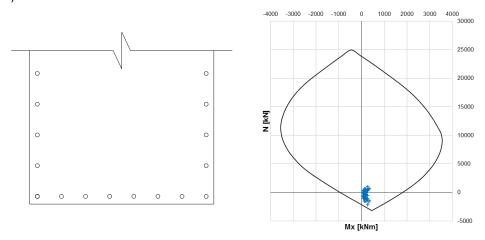


Figura 44 – Sezione di verifica (sx), peroide SLU asse verticale con sollecitazioni di verifica (dx)

Si riportano in tabella i minimi coefficienti di sicurezza suddivisi per elementi e gruppo di combinazioni (SLU/SLV, SLS), unitamente alle massime tensioni elastiche sulla sezione per la combinazione di fessurazione.

elemento	C.S. min SLS	C.S. min SLU	Ocls,el,traz,fess MPa
FB06	6.90	3.35	-0.86
FB07	6.31	3.45	-0.97
FB05	6.31	3.62	-0.54
FB02	8.57	5.18	-0.81
FB04	8.65	5.84	-1.24
FB01	14.10	7.96	-1.33
FB03	12.56	8.43	-1.30
FB08	16.01	8.93	-0.81

Tutti i coefficienti di sicurezza sono maggiori dell'unità.

Si omette in sicurezza la *verifica di apertura delle fessure*, in quanto è verificata la *non formazione delle fessure*, poiché le tensioni elastiche di trazione, nelle rispettive combinazioni di fessurazione, sono inferiori in modulo ad f_{ctm}/1.2 (=2.52MPa).

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 48 di 62

7.2.1.2 VERIFICHE A TAGLIO

Si riportano di seguito le massime sollecitazioni di taglio suddivise per elemento e combinazione di carico.

	In	viluppo SLU	In	viluppo SLV			
elemento	Max V _{2,vert} kN	Max V _{3,orizz} kN	Max V _{2,vert} kN	Max V _{3,orizz} kN			
FB01	1035	9	455	8			
FB02	392	7	516	8			
FB03	522	8	561	3			
FB04	584	117	559	108			
FB05	470	318	569	112			
FB06	1035	475	477	197			
FB07	578	371	503	154			
FB08	1048	333	398	151			

DIREZIONE VERTICALE

Combinazione SLU_enve, elemento FB08: V = 1048 kN

f _{cd} [MPa]	b _w [mm]	d [mm]	σ _{cp} [MPa]	$\alpha_{ extsf{c}}$	ctg θ	2.50	1.0 ≤ ≤ 2	2.5	
18.13	1200	926	0.00	1.00	V _{Rcd} [kN]	3127	0.9 b _w d o	$a_{\rm c} f'_{\rm cd} {\rm ctg}/(1 + {\rm ctg}^2)$	
f _{yd} [MPa]	n_b	φ [mm]	S [mm]	A_s [mm 2]	V _{Rsd} [kN]	1639	A _s /s f _{yd} 0.9	9 d ctg	
391.3	2	16	200	402	V _R [kN]	1639	$min \ (V_{Rcd},$	$V_{Rsd})$	
	α [°]	90	1.571		V _S [kN]	1048	V _R /V _S	1.56	

7.3 SETTI VERTICALI – INTRADOSSO SOLETTA

Le sollecitazioni e le verifiche per questi elementi strutturali sono riportati per unità di lunghezza ("a metro"), in regime di pressoflessione retta.

7.3.1 SEZIONE TIPOLOGICA

7.3.1.1 VERIFICHE A PRESSOFLESSIONE

La sezione di verifica è 1000mm×1200mm, armata con 1+1ø26/200mm (10ø26 = 5310mm² $\rightarrow \rho$ = 0.44%).

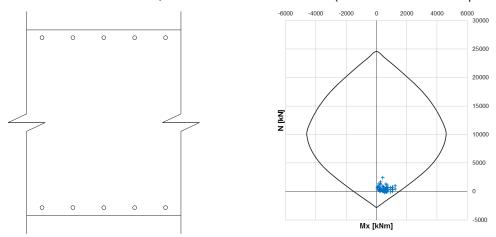


Figura 45 – Sezione di verifica (sx), peroide SLU asse debole con sollecitazioni di verifica (dx)

Si riportano in tabella i minimi coefficienti di sicurezza suddivisi per elementi e gruppo di combinazioni (SLU/SLV, SLS), unitamente alle massime tensioni elastiche sulla sezione per la combinazione di fessurazione.

elemento	C.S. min SLS	C.S. min SLU	Ocls,el,traz,fess MPa
YB01	2.52	1.74	-0.60
YB02	2.51	1.58	-0.67
YB03	2.85	1.79	-0.58
YB04	2.28	1.68	-0.76
YB05	7.24	1.42	0.04
YB06	7.11	1.19	0.08
YB07	3.80	1.11	-0.20
YB08	2.17	1.65	-0.78
YB09	2.18	1.18	-0.76
YB10	2.13	1.07	-0.80

Tutti i coefficienti di sicurezza sono maggiori dell'unità.

Si omette in sicurezza la *verifica di apertura delle fessure*, in quanto è verificata la *non formazione delle fessure*, poiché le tensioni elastiche di trazione, nelle rispettive combinazioni di fessurazione, sono inferiori in modulo ad f_{ctm}/1.2 (=2.52MPa).

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 50 di 62

7.3.1.2 VERIFICHE A TAGLIO

Si riportano di seguito le massime sollecitazioni di taglio suddivise per elemento e combinazione di carico.

	SLU	SLV
elemento	Max V _{3,trasv} kN	Max V _{3,trasv} kN
YB01	57	105
YB02	71	98
YB03	58	84
YB04	63	62
YB05	41	134
YB06	52	169
YB07	76	191
YB08	68	81
YB09	89	133
YB10	80	153

DIREZIONE TRASVERSALE (verifica sezioni senza armatura a taglio)

Combinazione SLV_enve, elemento YB07: V = 191 kN

γс	f _{ck} [MPa]	f _{cd} [MPa]	σ _{cp} [MPa]	
1.5	32	18.13	0.00	
b _w [mm]	d [mm]	k	v _{min} [MPa]	ν _{σ cp} [MPa]
1000	1125	1.42	0.336	0.000
A _{sI} [mm ²]	ρι	V _{Rd} [MPa]	V _s [MPa]	V _s [kN]
2655	0.24%	0.335	0.336	378

7.4 SOLETTA

Si riportano nelle figure ed in tabella l'inviluppo delle massime sollecitazioni agenti.

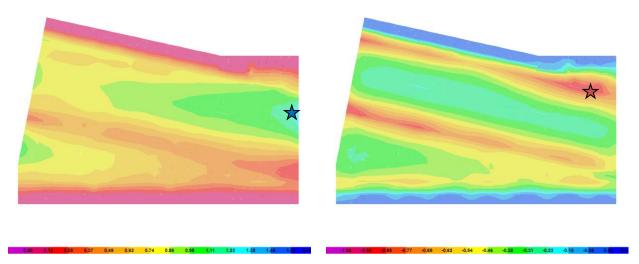
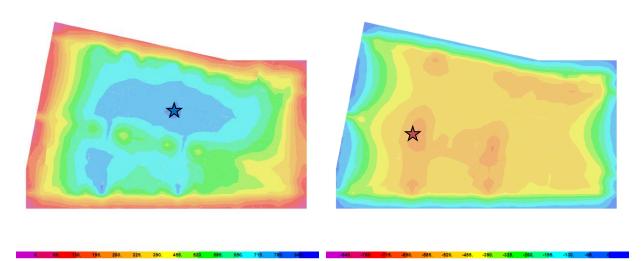
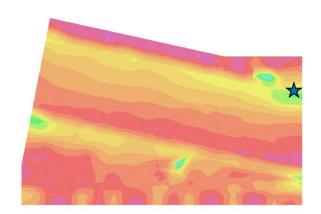


Figura 46 - Soletta, inviluppo SLU/SLV M22 (kNm/m) - massimo (sx), minimo (dx)




Figura 47 - Soletta, inviluppo SLU/SLV M11 (kNm/m) - massimo (sx), minimo (dx)

ITINERARIO NAPOLI – BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO** I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA CODIFICA LOTTO DOCUMENTO REV. **FOGLIO** IF1N 01 E ZZ VI0100 004 В 52 di 62 CL

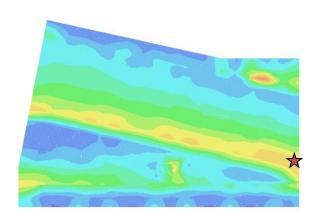


Figura 48 - Soletta, inviluppo SLU/SLV V23 (kNm/m) - massimo (sx), minimo (dx)

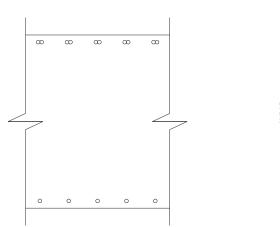
	F11	(kN/m)	F22	(kN/m)	M11 (I	kNm/m)	M22	(kNm/m)	V13	(kN/m)	V23	(kN/m)
	min	max	min	max	min	max	min	max	min	max	min	max
SLU	-1051.0	546.1	-539.4	607.4	-666.6	793.0	-943.7	1212.2	-320.2	472.9	-521.6	529.9
SLV	-416.9	119.3	-189.9	278.0	-188.3	235.0	-778.5	820.8	-338.5	404.0	-393.0	507.1
SLS	-753.2	319.3	-352.6	415.9	-436.3	543.8	-617.7	836.8	-211.1	331.4	-365.5	370.4
FESS	-514.0	95.2	-158.1	240.4	-218.5	336.0	-293.1	559.7	-129.0	234.1	-271.5	265.3

SI ammette <u>cautelativamente</u> di effettuare le verifiche a pressoflessione abbinando al massimo e al minimo sforzo normale nella zona oggetto di verifica, i valori massimi e minimi del momento flettente, per ciascun piano di flessione (F22 con M22 per la direzione trasversale, F11 con M11 per la direzione longitudinale).

	N (kN)	M (kNm)
SLU	607.4	-943.7
SLV	278.0	-778.5
SLS	415.9	-617.7
FESS	240.4	-293.1
SLU	-539.4	-943.7
SLV	-189.9	-778.5
SLS	-352.6	-617.7
FESS	-158.1	-293.1

	N (kN)	M (kNm)
SLU	607.4	1212.2
SLV	278.0	820.8
SLS	415.9	836.8
FESS	240.4	559.7
SLU	-539.4	1212.2
SLV	-189.9	820.8
SLS	-352.6	836.8
FESS	-158.1	559.7

	N (kN)	M- (kNm)	M+ (kNm)
SLU	546.1	-666.6	793.0
SLV	119.3	-188.3	235.0
SLS	319.3	-436.3	543.8
FESS	95.2	-218.5	336.0
SLU	-1051.0	-666.6	793.0
SLV	-416.9	-188.3	235.0
SLS	-753.2	-436.3	543.8
FESS	-514.0	-218.5	336.0


sezione trasversale in appoggio sezione trasversale in mezzeria sezione longitudinale

7.4.1 SEZIONE TRASVERSALE D'APPOGGIO

7.4.1.1 VERIFICHE A PRESSOFLESSIONE

La sezione di verifica è 1000mm×1200mm, armata con 2ø24/200mm accoppiati all'estradosso e 1ø24/200mm all'intradosso.

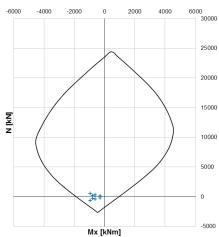


Figura 49 – Sezione di verifica (sx), peroide SLU con sollecitazioni di verifica (dx)

Il coefficiente di sicurezza minimo è 1.65 (SLU).

Si omette in sicurezza la *verifica di apertura delle fessure*, in quanto è verificata la *non formazione delle fessure*, poiché le tensioni elastiche di trazione, nelle rispettive combinazioni di fessurazione, sono inferiori in modulo ad f_{ctm}/1.2 (=2.52MPa).

7.4.1.2 VERIFICHE A TAGLIO

Si prevede un armatura a taglio costituita da spille \varnothing 12/200/200 a ridosso dei setti ed un armatura minima pari a \varnothing 12/200/400 altrove.

f _{cd} [MPa]	b _w [mm]	d [mm]	σ_{cp} [MPa]	α_{c}	ctg θ	1.00	1.0 ≤ ≤ 2.5
18.13	1000	1117	0.00	1.00	V _{Rcd} [kN]	4557	0.9 b _w d α_c f' _{cd} ctg/(1+ctg ²)
f _{yd} [MPa]	n _b	φ [mm]	s [mm]	A_s [mm 2]	V _{Rsd} [kN]	1112	A _s /s f _{yd} 0.9 d ctg
391.3	5	12	200	565	V _R [kN]	1112	min (V _{Rcd} , V _{Rsd})

f _{cd} [MPa]	b _w [mm]	d [mm]	$\sigma_{\sf cp}$ [MPa]	$\alpha_{ extsf{c}}$	ctg θ	1.00	1.0 ≤ ≤ 2.5
18.13	1000	1117	0.00	1.00	V _{Rcd} [kN]	4557	$0.9 b_w d \alpha_c f'_{cd} ctg/(1+ctg^2)$
f _{yd} [MPa]	n _b	φ [mm]	S [mm]	A _s [mm ²]	V _{Rsd} [kN]	556	A _s /s f _{yd} 0.9 d ctg
391.3	5	12	400	565	V _R [kN]	556	$\min (V_{Rcd}, V_{Rsd})$

7.4.2 SEZIONE TRASVERSALE DI MEZZERIA

7.4.2.1 VERIFICHE A PRESSOFLESSIONE

La sezione di verifica è 1000mm×1200mm, armata con 2ø24/200mm accoppiati all'intradosso e 1ø24/200mm all'estradosso.

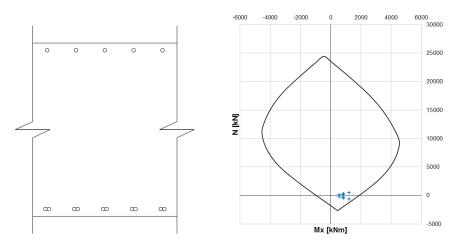


Figura 50 – Sezione di verifica (sx), peroide SLU con sollecitazioni di verifica (dx)

Il coefficiente di sicurezza minimo è 1.28 (SLU).

Si omette in sicurezza la *verifica di apertura delle fessure*, in quanto è verificata la *non formazione delle fessure*, poiché le tensioni elastiche di trazione, nelle rispettive combinazioni di fessurazione, sono inferiori in modulo ad f_{ctm}/1.2 (=2.52MPa).

7.4.3 SEZIONE LONGITUDINALE

7.4.3.1 VERIFICHE A PRESSOFLESSIONE

La sezione di verifica è 1000mm×1200mm, armata con 1+1ø26/200mm.

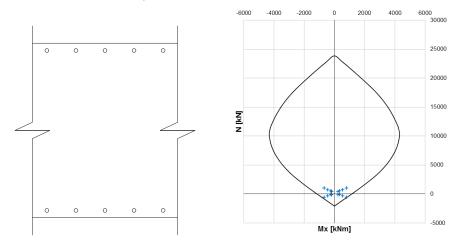


Figura 51 – Sezione di verifica (sx), peroide SLU con sollecitazioni di verifica (dx)

Il coefficiente di sicurezza minimo è 1.07 (SLU).

Si omette in sicurezza la *verifica di apertura delle fessure*, in quanto è verificata la *non formazione delle fessure*, poiché le tensioni elastiche di trazione, nelle rispettive combinazioni di fessurazione, sono inferiori in modulo ad f_{ctm}/1.2 (=2.52MPa).

7.5 FONDAZIONE

Si riportano nelle figure ed in tabella l'inviluppo delle massime sollecitazioni agenti.

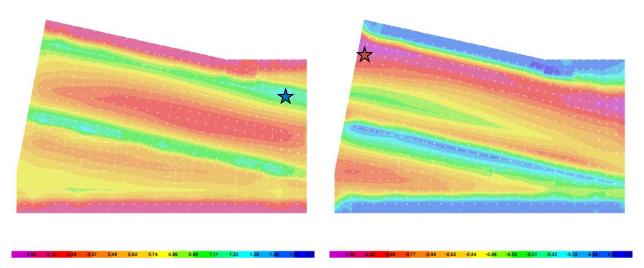


Figura 52 - Fondazione, inviluppo SLU/SLV M22 (kNm/m) - massimo (sx), minimo (dx)

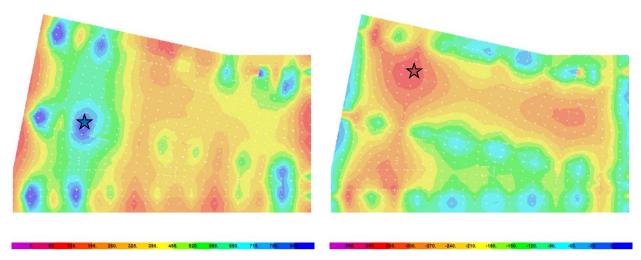


Figura 53 - Fondazione, inviluppo SLU/SLV M11 (kNm/m) - massimo (sx), minimo (dx)

ITINERARIO NAPOLI – BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO** I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA CODIFICA LOTTO DOCUMENTO REV. **FOGLIO** IF1N 01 E ZZ CL VI0100 004 В 57 di 62

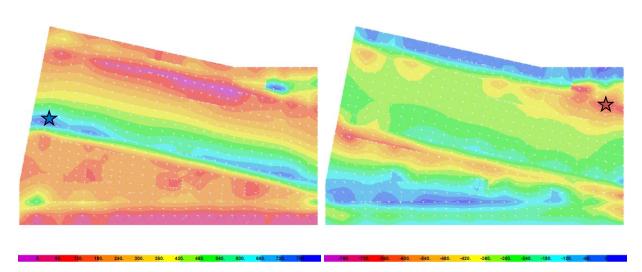


Figura 54 - Fondazione, inviluppo SLU/SLV V23 (kNm/m) - massimo (sx), minimo (dx)

	F11	(kN/m)	F22	2 (kN/m)	M11 (I	kNm/m)	M22	(kNm/m)	V13	(kN/m)	V23	(kN/m)
	min	max	min	max	min	max	min	max	min	max	min	max
SLU	-5790.4	1881.1	-1051.3	2182.6	-345.1	873.2	-776.9	981.1	-251.3	220.6	-607.0	634.0
SLV	-1886.7	5.6	-303.8	654.7	-190.9	420.6	-1087.5	1214.7	-233.4	197.1	-610.2	710.3
SLS	-4185.9	938.6	-660.6	1561.4	-205.2	625.5	-542.2	688.9	-172.0	155.8	-441.7	459.6
FESS	-2916.3	64.3	-289.6	1059.4	-89.7	435.2	-400.5	487.8	-107.5	110.2	-358.0	372.4

SI ammette <u>cautelativamente</u> di effettuare le verifiche a pressoflessione abbinando al massimo e al minimo sforzo normale nella zona oggetto di verifica, i valori massimi e minimi del momento flettente, per ciascun piano di flessione (F22 con M22 per la direzione trasversale ed F11 con M11 per la direzione longitudinale).

N (kN)	M (kNm)
2182.6	-776.9
654.7	-1087.5
1561.4	-542.2
1059.4	-400.5
-1051.3	-776.9
-303.8	-1087.5
-660.6	-542.2
-289.6	-400.5
	2182.6 654.7 1561.4 1059.4 -1051.3 -303.8 -660.6

	N (kN)	M (kNm)
SLU	2182.6	981.1
SLV	654.7	1214.7
SLS	1561.4	688.9
FESS	1059.4	487.8
SLU	-1051.3	981.1
SLV	-303.8	1214.7
SLS	-660.6	688.9
FESS	-289.6	487.8

	N (kN)	M- (kNm)	M+ (kNm)
SLU	1881.1	-345.1	873.2
SLV	5.6	-190.9	420.6
SLS	938.6	-205.2	625.5
FESS	64.3	-89.7	435.2
SLU	-5790.4	-345.1	873.2
SLV	-1886.7	-190.9	420.6
SLS	-4185.9	-205.2	625.5
FESS	-2916.3	-89.7	435.2

sezione trasversale in mezzeria sezione trasversale in appoggio sezione longitudinale

7.5.1 SEZIONE TRASVERSALE IN MEZZERIA

7.5.1.1 VERIFICHE A PRESSOFLESSIONE

La sezione di verifica è 1000mm×1500mm, armata con 2ø24/200mm accoppiati all'estradosso e 1ø24/200mm all'intradosso.

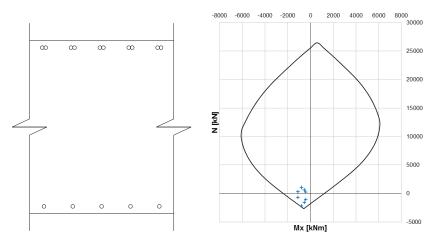


Figura 55 – Sezione di verifica (sx), peroide SLU con sollecitazioni di verifica (dx)

Il coefficiente di sicurezza minimo è 1.16 (SLU).

Si omette in sicurezza la *verifica di apertura delle fessure*, in quanto è verificata la *non formazione delle fessure*, poiché le tensioni elastiche di trazione, nelle rispettive combinazioni di fessurazione, sono inferiori in modulo ad $f_{ctm}/1.2$ (=2.30MPa).

7.5.2 SEZIONE TRASVERSALE IN APPOGGIO

7.5.2.1 VERIFICHE A PRESSOFLESSIONE

La sezione di verifica è 1000mm×1500mm, armata con 2ø24/200mm accoppiati + 1ø24/200mm (in secondo strato) all'intradosso e 1ø24/200mm all'estradosso.

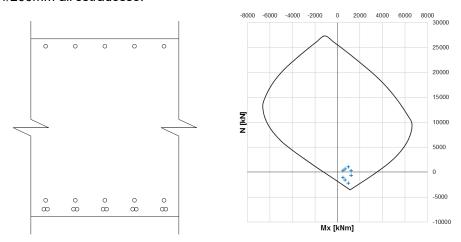


Figura 56 – Sezione di verifica (sx), peroide SLU con sollecitazioni di verifica (dx)

Il coefficiente di sicurezza minimo è 2.09 (SLU).

Si omette in sicurezza la *verifica di apertura delle fessure*, in quanto è verificata la *non formazione delle fessure*, poiché le tensioni elastiche di trazione, nelle rispettive combinazioni di fessurazione, sono inferiori in modulo ad f_{ctm}/1.2 (=2.30MPa).

7.5.2.2 VERIFICHE A TAGLIO

Si prevede un armatura a taglio costituita da spille \varnothing 12/200/200 a ridosso dei setti ed un armatura minima pari a \varnothing 12/200/400 altrove.

f _{cd} [MPa]	b _w [mm]	d [mm]	σ _{cp} [MPa]	α_{c}	ctg θ	1.00	1.0 ≤ ≤ 2.5
15.87	1000	1417	0.00	1.00	V _{Rcd} [kN]	5059	0.9 b_w d α_c f'cd ctg/(1+ctg ²)
f _{yd} [MPa]	n_b	φ [mm]	s [mm]	A_s [mm 2]	V _{Rsd} [kN]	1411	A _s /s f _{yd} 0.9 d ctg
391.3	5	12	200	565	V _R [kN]	1411	min (V _{Rcd} , V _{Rsd})
		·-			11/12/2013		······ (· red, · red)

f _{cd} [MPa]	b _w [mm]	d [mm]	$\sigma_{\sf cp}$ [MPa]	$\alpha_{ extsf{c}}$	ctg θ	1.00	1.0 ≤ ≤ 2.5
15.87	1000	1417	0.00	1.00	V _{Rcd} [kN]	5059	$0.9 b_w d \alpha_c f'_{cd} ctg/(1+ctg^2)$
f _{yd} [MPa]	n_b	φ [mm]	s [mm]	A_s [mm 2]	V _{Rsd} [kN]	706	A _s /s f _{yd} 0.9 d ctg
391.3	5	12	400	565	V _R [kN]	706	min (V _{Rcd} , V _{Rsd})

7.5.3 SEZIONE LONGITUDINALE

7.5.3.1 VERIFICHE A PRESSOFLESSIONE

La sezione di verifica è 1000mm×1500mm, armata con 2ø24/200mm accoppiati per faccia.

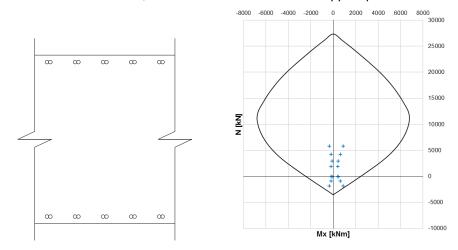


Figura 57 – Sezione di verifica (sx), peroide SLU con sollecitazioni di verifica (dx)

Il coefficiente di sicurezza minimo è 1.32 (SLU).

Si omette in sicurezza la *verifica di apertura delle fessure*, in quanto è verificata la *non formazione delle fessure*, poiché le tensioni elastiche di trazione, nelle rispettive combinazioni di fessurazione, sono inferiori in modulo ad f_{ctm}/1.2 (=2.30MPa).

7.6 VERIFICHE DI DEFORMABILITÀ DELL'IMPALCATO

Per la valutazione delle deformazioni della struttura si è fatto rifermento al modello costruito per le verifiche strutturali. Di seguito si riporta lo stato di deformazione del modello sotto l'effetto del carico LM71 su entrambi i binari.

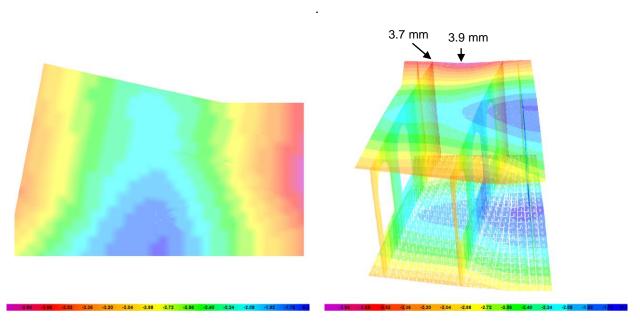


Figura 58 – abbassamenti verticali (inviluppo transito 2 LM71)

Eccessive deformazioni e/o vibrazioni del ponte possono indurre inaccettabili variazioni di geometria al binario. Queste possono avere ripercussioni sui convogli ferroviari e ridurre il comfort ai passeggeri. La valutazione dei parametri di deformazione degli impalcati, da eseguire utilizzando la combinazione caratteristica (rara) degli SLE, è richiesta per i motivi e con modalità riportati nei seguenti punti A e B:

A. Per questioni di sicurezza del traffico ferroviario (per garantire la stabilità e la continuità del binario ed assicurare il mantenimento del contatto ruota-rotaia), occorre verificare che non siano superati i limiti sulle seguenti grandezze:

- -Accelerazione verticale dell'impalcato;
- -Torsione dell'impalcato (sghembo del binario);
- -Inflessione dell'impalcato nel piano orizzontale;
- -Inflessione dell'impalcato nel piano verticale

B. Per il comfort del passeggero, si dovrà verificare che non siano superati i limiti di freccia verticale dell'impalcato. I valori riportati in Figura 58 consentono di ritenere soddisfatte le verifiche di sghembo e di inflessione nel piano verticale.

8 VERIFICHE GEO

Le verifiche geotecniche sono state riportate nella relazione specifica -IF1N01EZZCLVI0300002A- Relazione geotecnica di calcolo delle fondazioni - alla quale si rimanda.

ITINERA

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 1 di 10

"Struttura ad archi": Relazione di calcolo - 3 di 6

1 ALLEGATO

1.1 COMBINAZIONI DI CARICO

ComboName	ComboType	CaseType	CaseName	ScaleFactor
SLS0	Linear Add	Linear Static	Gk1	1
SLS0		Linear Static	Gk2	1
SLS0		Linear Static	Gk3	1
SLU0	Linear Add	Linear Static	Gk1	1.35
SLU0		Linear Static	Gk2	1.5
SLU0		Linear Static	Gk3	1.2
Tk_unif_enve	Abs Add	Linear Static	Tk_unif	1
Tk_diff_enve	Abs Add	Linear Static	Tk_diff	1
Tk	Linear Add	Response Combo	Tk_unif_enve	1
Tk		Response Combo	Tk_diff_enve	1
Wk	Envelope	Linear Static	Wk_1	1
Wk		Linear Static	Wk_2	1
Qk_serp1_enve	Abs Add	Linear Static	Qk_serp1	1
Qk_serp2_enve	Abs Add	Linear Static	Qk_serp2	1
Qk_serp_enve	Envelope	Response Combo	Qk_serp1_enve	1
Qk_serp_enve		Response Combo	Qk_serp2_enve	1
Qk_avvfren_enve	Abs Add	Linear Static	Qk_avvfren	1
SLU1	Linear Add	Response Combo	SLU0	1
SLU1		Moving Load	Qk_LMSW	1.45
SLU1		Response Combo	Qk_avvfren_enve	1.45
SLU1		Response Combo	Qk_serp_enve	1.45
SLU1		Response Combo	Tk	0.9
SLU1		Response Combo	Wk	0.9
SLU2	Linear Add	Response Combo	SLU0	1
SLU2		Moving Load	Qk_LMSW	1.16
SLU2		Response Combo	Qk_avvfren_enve	1.16
SLU2		Response Combo	Qk_serp_enve	1.16
SLU2		Response Combo	Tk	1.5
SLU2		Response Combo	Wk	0.9
SLU3	Linear Add	Response Combo	SLU0	1
SLU3		Response Combo	Tk	0.9
SLU3		Response Combo	Wk	1.5
SLU_enve	Envelope	Response Combo	SLU0	1
SLU_enve		Response Combo	SLU1	1
SLU_enve		Response Combo	SLU2	1
SLU_enve		Response Combo	SLU3	1
SLS1	Linear Add	Response Combo	SLS0	1
SLS1		Moving Load	Qk_LMSW	1
SLS1		Response Combo	Qk_avvfren_enve	1
SLS1		Response Combo	Qk_serp_enve	1

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL VI0100 004 B 2 di 10

SLS1		Response Combo	Tk	0.6
SLS1		Response Combo	Wk	0.6
SLS2	Linear Add	Response Combo	SLS0	1
SLS2		Moving Load	Qk_LMSW	0.8
SLS2		Response Combo	Qk_avvfren_enve	0.8
SLS2		Response Combo	Qk_serp_enve	0.8
SLS2		Response Combo	Tk	1
SLS2		Response Combo	Wk	0.6
SLS3	Linear Add	Response Combo	SLS0	1
SLS3		Response Combo	Tk	0.6
SLS3		Response Combo	Wk	1
SLS_enve	Envelope	Response Combo	SLS0	1
SLS_enve		Response Combo	SLS1	1
SLS_enve		Response Combo	SLS2	1
SLS_enve		Response Combo	SLS3	1
SLS_fess	Linear Add	Response Combo	SLS0	1
SLS_fess		Moving Load	Qk_LM	0.6
SLS_fess		Response Combo	Qk_avvfren_enve	0.6
SLS_fess		Response Combo	Qk_serp_enve	0.6
SLS_fess		Response Combo	Tk	0.5
Ek1	Linear Add	Linear Static	EkX	1
Ek1		Linear Static	EkY	1
Ek1		Linear Static	EkZ	0.3
Ek2	Linear Add	Linear Static	EkX	1
Ek2		Linear Static	EkY	0.3
Ek2		Linear Static	EkZ	1
Ek3	Linear Add	Linear Static	EkX	0.3
Ek3		Linear Static	EkY	1
Ek3		Linear Static	EkZ	1
Ek4	Linear Add	Linear Static	EkX	-1
Ek4		Linear Static	EkY	1
Ek4		Linear Static	EkZ	0.3
Ek5	Linear Add	Linear Static	EkX	-1
Ek5		Linear Static	EkY	0.3
Ek5		Linear Static	EkZ	1
Ek6	Linear Add	Linear Static	EkX	-0.3
Ek6		Linear Static	EkY	1
Ek6		Linear Static	EkZ	1
Ek7	Linear Add	Linear Static	EkX	1
Ek7		Linear Static	EkY	-1
Ek7		Linear Static	EkZ	0.3
Ek8	Linear Add	Linear Static	EkX	1
Ek8		Linear Static	EkY	-0.3
Ek8		Linear Static	EkZ	1
Ek9	Linear Add	Linear Static	EkX	0.3
Ek9		Linear Static	EkY	-1
Ek9		Linear Static	EkZ	1

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 3 di 10

Ek10	Linear Add	Linear Static	EkX	1
Ek10		Linear Static	EkY	1
Ek10		Linear Static	EkZ	-0.3
Ek11	Linear Add	Linear Static	EkX	1
Ek11		Linear Static	EkY	0.3
Ek11		Linear Static	EkZ	-1
Ek12	Linear Add		EkX	0.3
Ek12			EkY	1
Ek12			EkZ	-1
Ek13	Linear Add	Linear Static	EkX	-1
Ek13			EkY	-1
Ek13		Linear Static	EkZ	0.3
Ek14	Linear Add	Linear Static	EkX	-1
Ek14		Linear Static	EkY	-0.3
Ek14			EkZ	1
	Linear Add		EkX	-0.3
Ek15			EkY	-1
Ek15			EkZ	1
	Linear Add		EkX	-1
Ek16			EkY	1
Ek16			EkZ	-0.3
	Linear Add		EkX	-1
Ek17			EkY	0.3
Ek17			EkZ	-1
	Linear Add		EkX	-0.3
Ek18			EkY	1
Ek18	T		EkZ	-1
	Linear Add		EkX	1
Ek19			EkY EkZ	-1 -0.3
Ek19 Ek20	Tinoar Add		EkX	1
Ek20	Dinear Add	Linear Static		-0.3
Ek20		Linear Static		-1
Ek21	Tinear Add		EkX	0.3
Ek21	Binear naa	Linear Static	EkY	-1
Ek21			EkZ	-1
Ek22	Linear Add	Linear Static		-1
Ek22		Linear Static		-1
Ek22			EkZ	-0.3
Ek23	Linear Add		EkX	-1
Ek23		Linear Static	EkY	-0.3
Ek23		Linear Static		-1
Ek24	Linear Add	Linear Static		-0.3
Ek24		Linear Static	EkY	-1
Ek24		Linear Static	EkZ	-1
Ek	Envelope	Response Combo	Ek1	1
Ek		Response Combo	Ek2	1

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	VI0100 004	В	4 di 10

Ek		Response	Combo	Ek3	1
Ek		Response	Combo	Ek4	1
Ek		Response	Combo	Ek5	1
Ek		Response	Combo	Ek6	1
Ek		Response	Combo	Ek7	1
Ek		Response	Combo	Ek8	1
Ek		Response	Combo	Ek9	1
Ek		Response	Combo	Ek10	1
Ek		Response	Combo	Ek11	1
Ek		Response	Combo	Ek12	1
Ek		Response	Combo	Ek13	1
Ek		Response	Combo	Ek14	1
Ek		Response	Combo	Ek15	1
Ek		Response	Combo	Ek16	1
Ek		Response	Combo	Ek17	1
Ek		Response	Combo	Ek18	1
Ek		Response	Combo	Ek19	1
Ek		Response	Combo	Ek20	1
Ek		Response	Combo	Ek21	1
Ek		Response	Combo	Ek22	1
Ek		Response	Combo	Ek23	1
Ek		Response	Combo	Ek24	1
SLV_enve	Linear Add	Response	Combo	SLS0	1
SLV_enve		Linear St	tatic	Qk_sism	0.2
SLV_enve		Response	Combo	Ek	1
ENVE	Envelope	Response	Combo	SLU_enve	1
ENVE		Response	Combo	SLV_enve	1

ITINERA RA

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 5 di 10

1.2 SOLLECITAZIONI

Cut	Case	StepType	P P	V2	V3	Т	M2	мз
FB01	SLU_enve		619	1035	9	25	-638	13
FB01	SLU_enve		-1558	-548	-7	-175	651	-148
FB01	SLS_enve		351	744	6_	16	-430	6
FB01	SLS_enve		-1107	-316	- 5	-121	431	-103
FB01	SLS_fess		10 -757	497 -65	3 -3	1 -84	-220 214	-17 -76
FB01 FB01	SLS_fess SLV enve		-14	455	-3 7	31	-167	-16
FB01	SLV_enve		-726	-4	-8	-84	150	-69
FB02	SLU enve		466	392	7	86	-628	87
FB02	SLU enve		-1142	-263	-4	-174	632	-262
FB02	SLS enve	Max	255	276	4	58	-423	46
FB02	SLS_enve	Min	-820	-166	-3	-117	419	-188
FB02	SLS_fess		-2	180	2	26	-216	-8
FB02	SLS_fess		-563	- 75	-2	-76	206	-133
FB02	SLV_enve		-165	516	7	60	-161	4
FB02	SLV_enve		-395	-413	-8	-94	143	-144
FB03 FB03	SLU_enve		99 -324	365 -522	8 -4	122 -154	-628 637	52 -200
FB03	SLS enve		67	224	6	84	-422	25
FB03	SLS enve		-223	-372	-3	-102	422	-143
FB03	SLS fess		20	79	3	46	-215	-14
FB03	SLS fess	Min	-148	-241	-2	-58	209	-103
FB03	SLV_enve	Max	297	388	3	77	-131	-42
FB03	SLV_enve		-407	-561	-2	-82	118	-73
FB04	SLU_enve		279	307	64	151	-36	57
FB04	SLU_enve		-532	-584	-117	-82	92	-274
FB04	SLS_enve		172	193	40	107	-25	27
FB04 FB04	SLS_enve		-378 65	-409 70	-83 15	-53 68	62 -6	-196 -20
FB04	SLS_fess		-272	-275	-59	-21	34	-144
FB04	SLV enve		289	375	63	177	-188	-22
FB04	SLV enve		-496	-559	-108	-133	207	-128
FB05	SLU enve		714	470	159	197	-51	107
FB05	SLU enve	Min	-1439	-447	-318	-59	84	-340
FB05	SLS_enve	Max	413	332	92	138	-35	59
FB05	SLS_enve	Min	-1032	-288	-228	-37	57	-242
FB05	SLS_fess		82	208	18	94	-11	-7
FB05	SLS_fess		-709	-154	-156	-7	28	-173
FB05	SLV_enve		-153	569	-25	189	-239	22
FB05 FB06	SLV_enve		-468 1018	-499 1035	-112 226	-116 226	251 -97	-189 52
FB06	SLU enve		-2144	- 758	-475	-52	69	-276
FB06	SLS enve		604	742	134	157	-67	28
FB06	SLS enve		-1518	-463	-336	-33	47	-193
FB06	SLS fess		120	480	26	102	-34	-18
FB06	SLS_fess	Min	-1032	-181	-228	-3	16	-141
FB06	SLV_enve		-67	477	-3	207	-287	-6
FB06	SLV_enve		-838	-127	-197	-132	274	-136
FB07	SLU_enve		541	578	119	170	-698	105
FB07	SLU_enve		-1690	-271	-371 61	-97 116	648	-325
FB07 FB07	SLS_enve		276 -1216	410 -163	-267	-65	-464 435	54 -233
FB07	SLS fess		-76	285	-16	76	-236	-14
FB07	SLS fess		-855	-42	-187	-27	216	-164
FB07	SLV enve		-215	503	-46	157	-213	-42
FB07	SLV_enve	Min	-705	-269	-154	-109	207	-135
FB08	SLU_enve		595	1048	127	119	-672	28
FB08	SLU_enve		-1522	-508	-333	-47	630	-134
FB08	SLS_enve		333	753	71	82	-446	15
FB08	SLS_enve		-1083	-289	-237	-31	424	-94
FB08	SLS_fess		-7 -741	509	-3 -162	53	-225 211	-10 -67
FB08 FB08	SLS_ress		-741 -86	-42 398	-162 -11	-8 156	-246	-67 -22
FB08	SLV_enve		-654	74	-151	-117	242	-22 -54
HB1a	SLU enve		-13040	-3209	-1367	-1888	8274	-20140
HB1a	SLU enve		-6065	7007	694	1434	-2734	35406
	_							

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 6 di 10

HB1a	SLS enveMax	-9373	-1833	-933	-1235	5726	-11627
HB1a	SLS enve Min	-4648	5015	457	1016	-1721	25514
HB1a	SLS_fessMax	-8221	-247	-557	-733	3994	-2541
HB1a	SLS_fessMin	-5414	3442	130	615	-106	16764
HB1a	SLV_enveMax	-9254	-645	-2639	-473	7998	2426
HB1a	SLV_enveMin	-3549	3873	2298	466	-4733	12365
HB1b	SLU_enveMax	-4000	7007	636	1438	-596	12894
HB1b	SLU_enveMin	-10975	-3209	-1367	-1888	9104	-13014
HB1b	SLS_enveMax	-3118	5015	418	1019	-231	9189
HB1b	SLS_enveMin	-7843	-1833	-933	-1235	6332	-8191
HB1b	SLS_fessMax	-3884	3442	130	615	907	5315
HB1b HB1b	SLS_fessMin SLV enveMax	-6692 -2112	-247 3258	-557 1683	-733 465	4802 -1519	-4082 5220
HB1b	SLV_enveMax	-7632	-30	-2023	-473	6203	-3500
HB2a	SLU enveMax	-12952	-2489	-1915	-3164	8553	-30153
HB2a	SLU enveMin	-6944	3551	1496	2950	-15224	33836
HB2a	SLS enveMax	-9213	-1532	-1366	-2028	5127	-18724
HB2a	SLS enveMin	-5119	2536	922	2085	-10797	24179
HB2a	SLS fessMax	-7981	-643	-788	-941	1169	-8397
HB2a	SLS fessMin	-5696	1688	323	1124	-7009	14406
HB2a	SLV enveMax	-10062	-2421	-3041	-4220	3314	-7723
HB2a	SLV_enveMin	-2827	3584	2459	4544	-9052	14347
HB2b	SLU_enveMax	-4303	3554	1496	2945	-12245	23051
HB2b	SLU_enveMin	-10312	-2469	-1770	-3164	6964	-23190
HB2b	SLS_enveMax	-3163	2538	922	2081	-8470	16376
HB2b	SLS_enveMin	-7257	-1519	-1270	-2028	4398	-14639
HB2b	SLS_fessMax	-3740	1688	323	1124	-5378	9274
HB2b	SLS_fessMin	-6025	-643	-788	-941	1383	-7268
HB2b	SLV_enveMax	-1098	2798	1672	4496	-5670	8387
HB2b	SLV_enveMin	-7879 -4879	-1635	-2255	-4172	2320	-6207
XB01a XB01a	SLU_enveMax SLU enveMin	2	-1176 521	-219 246	-166 113	1258 -992	-2878 1401
XB01a	SLS enveMax	-3488	-841	-139	-111	871	-2062
XB01a	SLS_enveMin	-213	295	175	77	-636	800
XB01a	SLS fessMax	-2676	-567	-59	-64	504	-1376
XB01a	SLS fessMin	-926	24	100	37	-250	111
XB01a	SLV enveMax	-2742	-634	-426	-71	1061	-1335
XB01a	SLV enveMin	-649	85	485	55	-795	43
XB01b	SLU enveMax	248	521	233	113	-1114	1890
XB01b	SLU_enveMin	-4633	-1176	-219	-166	1307	-715
XB01b	SLS_enveMax	-31	295	166	77	-753	1347
XB01b	SLS_enveMin	-3306	-841	-139	-111	868	-398
XB01b	SLS_fessMax	-743	24	100	37	-372	925
XB01b	SLS_fessMin	-2494	-567	-59	-64	466	12
XB01b	SLV_enveMax	-478	12	412	55	-761	1092
XB01b	SLV_enveMin	-2549	-561	-353	-71	788	-160
XB02a XB02a	SLU_enveMax	-4926 -121	-2419 1350	-429 478	-249 132	2200 -1826	-5826 3173
XB02a	SLU_enveMin SLS enveMax	-3339	-1720	-272	-175	1521	-4137
XB02a XB02a	SLS enveMin	-108	814	337	83	-1173	1913
XB02a	SLS fessMax	-2471	-1137	-109	-119	862	-2737
XB02a	SLS fessMin	- 779	244	187	31	-468	549
XB02a	SLV enveMax	-3395	-2237	-818	-258	1970	-5380
XB02a	SLV enve Min	425	1325	921	172	-1555	3173
XB02b	SLU enve Max	371	1350	451	132	-2257	3978
XB02b	SLU enve Min	-4434	-2419	-429	-249	2486	-2309
XB02b	SLS_enveMax	257	814	319	83	-1527	2833
XB02b	SLS_enveMin	-2974	-1720	-272	-175	1646	-1393
XB02b	SLS_fessMax	-414	244	187	31	-760	1872
XB02b	SLS_fessMin	-2106	-1137	-109	-119	837	-441
XB02b	SLV_enveMax	767	1179	775	172	-1470	3382
XB02b	SLV_enveMin	-3008	-2090	-671	-258	1466	-1897
XB03a	SLU_enveMax	-3860	-626	-352	-248	1937	-1589
XB03a	SLU_enveMin	-661 -2637	549	370	130	-1817	1163
XB03a XB03a	SLS_enveMax SLS enveMin	-2637 -487	-422 383	-223 261	-175 83	1331 -1178	-1082 802
XB03a	SLS fessMax	-2034	-223	-90	-117	716	-603
XB03a	SLS fessMin	-949	222	139	31	-509	428
XB03a	SLV enveMax	-2836	-1899	-762	-301	1744	-4542

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 7 di 10

XBO28								
XBO3B SLU	XB03a	SLV enveMin	29	1924	835	225	-1499	4438
XBO3B SLS enveMax -123 383 243 83 -1459 683 XBO3B SLS enveMax -2273 -422 -232 -175 1496 -806 -806 XBO3B SLS feasMax -584 222 139 31 -730 343 XBO3B SLS feasMax -584 222 139 31 -730 343 XBO3B SLS feasMax -1669 -223 -90 -117 739 -519 XBO3B SLV enveMax 320 1778 689 225 -1143 2854 XBO3B SLV enveMax -4762 -1907 -488 -594 3071 -11289 XBO3B SLV enveMax -4762 -1907 -488 -594 3071 -11289 XBO4B SLV enveMax -4762 -1907 -488 -471 -3128 19717 XBO4B SLS enveMax -4762 -1907 -488 -471 -298 -1928	XB03b	SLU_enveMax	-169	549	343	130	-2159	1033
XBO3b SLS_fessMax		_						
XBO3b SLS_fessMin		-						
XBO3b		-						
XBO3b SLV_enveMax		_						
XBO3b SLU_enveMin		_						
XB04a SLU_enveMin -1880 3621 458 471 -3128 19717 XB04a SLS_enveMax -3493 -1099 -314 -411 2094 -6520 XB04a SLS_enveMin -1867 1743 166 138 -978 9234 XB04a SLS_fessMax -8876 -1811 -1449 -248 1110 -1287 XB04a SLS_fessMax -8876 -1816 -1449 -248 1110 -1287 XB04a SLS_fessMax -8876 -1816 -1449 -248 1110 -1287 XB04a SLS_fessMin -1867 1743 166 138 -978 9234 XB04a SLV_enveMax -8386 -1366 -991 -1008 1843 -1821 XB04a SLV_enveMin -785 2998 1051 908 -1631 10090 XB04b SLU_enveMin -3718 -1907 -488 -594 3591 -4711 XB04b SLS_enveMin -27619 -1099 -314 -411 2383 -2860 XB04b SLV_enveMin -2619 -1099 -314 -411 2383 -2860 XB04b SLV_enveMin -2619 -1099 -314 -411 2383 -2860 XB04b SLV_enveMin -2933 -1811 -149 -248 1214 -1129 XB04b SLS_fessMin -2203 -181 -149 -248 1214 -1129 XB04b SLV_enveMax -152 2687 740 908 -1782 3213 XB04b SLV_enveMax -152 2687 740 908 -1782 3213 XB04b SLV_enveMax -152 2687 740 908 -1782 3213 XB04b SLV_enveMax -152 687 -1836 -464 -519 976 -11396 XB05a SLV_enveMax -3710 -1896 -464 -519 976 -11396 XB05a SLV_enveMax -5716 -1133 -312 -342 693 -6818 XB05a SLV_enveMax -5755 -216 -157 -156 432 -2052 XB05b SLS_fessMax -3755 -216 -157 -156 432 -2052 XB05b SLS_fessMax -3755 -216 -157 -156 432 -2052 XB05b SLV_enveMax -2093 4048 229 585 -701 17871 XB05b SLS_fessMax -3755 -1895 -464 -519 9105 -448 -12788 XB05a SLV_enveMax -2093 4048 229 585 -81 6785 XB05b SLV_enveMax -2093 4098 229 585 -81 6785 XB05b SLV_enveMax -2094 1895 62 223 125 228 XB05b S		_						
XB04a SIS_enveMax -3393 -1099 -314 -411 2094 -6520 XB04a SIS_essMax -2867 -181 -149 -248 1110 -1287 XB04a SIS_essMax -2867 -181 -149 -248 1110 -1287 XB04a SIS_essMax -3836 -1366 -991 -1008 1843 -1821 XB04a SIV_enveMax -3836 -1366 -991 -1008 1843 -1821 XB04a SIV_enveMax -8356 -1366 -991 -1008 1843 -1821 XB04a SIV_enveMax -8356 -3614 400 471 -3409 6161 XB04b SIV_enveMax -836 3621 400 471 -3409 6161 XB04b SIV_enveMax -677 2605 284 308 -2296 4418 XB04b SIV_enveMax -677 2605 284 308 -2296 4418 XB04b SIS_enveMax -1093 -1811 -149 -248 1214 -1129 XB04b SIS_enveMax -1093 -1811 -149 -248 1214 -1129 XB04b SIV_enveMax -152 2687 740 908 -1782 3213 XB04b SIV_enveMax -152 2687 740 908 -1782 3213 XB04b SIV_enveMax -9370 -1896 -464 -519 976 -11396 -488 -515 SIS_enveMax -6716 -1133 -312 -342 693 -6818 XB05a SIS_enveMax -6716 -1133 -312 -342 693 -6818 XB05a SIS_enveMax -5755 -216 -157 -156 432 -2052 XB05a SIV_enveMax -5873 -1510 -1386 -1360 2623 -2055 XB05a SIV_enveMax -5873 -1510 -1386 -1360 2623 -2055 XB05a SIV_enveMax -5873 -1510 -1386 -1360 2623 -2055 XB05b SIV_enveMax -5873 -1510 -1386 -1360 2623 -2055 XB05b SIV_enveMax -2033 154 1339 1444 -2264 8399 XB05b SIV_enveMax -2039 154 1339 1444 -2264 8399 XB05b SIV_enveMax -2399 161 -405 -464 -519 1305 -688 -788		-						
XBD4a SLS enveMin -1451 2605 323 308 -2052 14206 XBD4a SLS fessMin -1867 1743 166 138 -978 9234 XBD4a SLV enveMax -3836 -1366 -991 -1008 1843 -1821 XBD4a SLV enveMax -785 2998 1051 908 -1631 10090 XBD4b SLU enveMax -836 3621 400 471 -3409 6161 XBD4b SLU enveMax -836 3621 400 471 -3409 6161 XBD4b SLS enveMax -677 2605 284 308 -2296 4418 XBD4b SLS enveMax -677 2605 284 308 -2296 4418 XBD4b SLS enveMax -2619 -1099 -314 -411 2333 -2860 XBD4b SLS fessMax -1093 1743 166 138 -1142 2701 XBD4b SLS fessMin -2033 -181 -149 -248 1214 -1129 XBD4b SLV enveMax -9370 -1896 -464 -519 976 -11396 XBD4b SLV enveMax -9370 -1896 -464 -519 976 -11336 XBD5a SLU enveMax -9370 -1896 -464 -519 976 -11336 XBD5a SLS fessMax -5755 -216 -157 -156 432 -2052 XBD5a SLS fessMax -5755 -216 -157 -156 432 -2052 XBD5a SLS fessMax -5755 -216 -157 -156 432 -2052 XBD5a SLV enveMax -2837 -1510 1366 -1330 -2633 -2065 XBD5a SLV enveMax -2301 3154 1339 1444 -2264 8399 XBD5a SLV enveMax -2301 3154 1339 1444 -2264 8399 XBD5a SLV enveMax -2301 3154 1339 1444 -2264 8399 XBD5a SLV enveMax -2301 3154 1339 1444 -2264 8399 XBD5a SLV enveMax -2301 3154 1339 1444 -2264 8399 XBD5a SLV enveMax -2301 3154 1339 1444 -2264 8399 XBD5a SLV enveMax -2309 3154 1339 1444 -2264 8399 XBD5a SLV enveMax -2309 3154 1339 1444 -2264 8399 XBD5b SLS enveMax -2304 1895 62 223 125 2368 XBD5a SLV enveMax -2304 1895 62 223 125 2368 XBD5a SLV enveMax -2304 1895 62 223 125 2366 3367 3367 3367 3367 3367 3367 3367 3367 3367 3367 3367 3367 3367 3367 33	XB04a	SLU enve Min	-1880	3621	458	471	-3128	19717
XB04a SIS_fessMax -1867 -181 -149 -248 1110 -1287 XB04a SIV_enveMax -3836 -1366 -991 -1008 1843 -1821 XB04a SIV_enveMax -3836 -3666 -991 -1008 1843 -1821 XB04a SIV_enveMax -836 3621 400 471 -3409 6161 XB04b SIU_enveMax -836 3621 400 471 -3409 6161 XB04b SIU_enveMax -677 2605 284 308 -2296 4418 XB04b SIU_enveMax -677 2605 284 308 -2296 4418 XB04b SIS_fessMax -1093 1743 166 138 -1142 2701 XB04b SIS_fessMax -2093 -181 -149 -248 1214 -1129 XB04b SIV_enveMax -2922 -1055 -680 -1008 1751 -1555 XB05a SIS_fessMax -29370 -1896 -464 -519 976 -11396 -464 -519 976 -11396 -464 -519 976 -11396 -6818 -1008 -1782 -1138 -149 -248 -124 -1129 -1138 -149 -248 -1248	XB04a	SLS_enveMax	-3393	-1099	-314	-411	2094	-6520
XB04a SIN		_						
XB04a SLV enve Min -785 2998 1051 908 -1631 10090 XB04b SLU enve Min -785 2998 1051 908 -1631 10090 XB04b SLU enve Min -3718 -1907 -488 -594 3591 -4711 XB04b SLS enve Min -3718 -1907 -488 -594 3591 -4711 XB04b SLS enve Min -2619 -1099 -314 -411 2383 -2860 XB04b SLS enve Min -2619 -1099 -314 -411 2383 -2860 XB04b SLS enve Min -2619 -1099 -314 -411 2383 -2860 XB04b SLS enve Min -2093 -181 -149 -248 1214 -1129 XB04b SLS enve Min -2922 -1055 -680 -1008 1751 -1555 XB05a SLU enve Min -9292 -1055 -680 -1008 1751 -1555 XB05a SLU enve Min -3113 4048 229 585 -701 17871 XB05a SLU enve Max -6716 -1133 -312 -342 693 -6818 XB05a SLS enve Min -2476 2859 161 405 -445 12768 XB05a SLS enve Min -2476 2859 161 405 -445 12768 XB05a SLS enve Min -3110 1895 62 223 -129 8090 XB05a SLV enve Max -5873 -1510 -1386 -1360 -2623 -2065 XB05a SLV enve Min -2310 3154 1339 1444 -2264 8399 XB05b SLU enve Min -2310 3154 1339 1444 -2264 8399 XB05b SLU enve Min -2310 3154 1339 1444 -2264 8399 XB05b SLU enve Min -3850 -1896 -464 -519 1305 -9089 XB05b SLU enve Min -3850 -1896 -464 -519 1305 -9089 XB05b SLU enve Min -3850 -1896 -464 -519 1305 -9089 XB05b SLU enve Min -3930 1614 405 -45 4797 XB05b SLS enve Min -390 4048 229 585 -81 6785 4797 XB05b SLS enve Min -3994 1895 62 223 125 2528 XB05b SLS enve Min -3994 1895 62 223 125 2528 XB05b SLS enve Min -3994 1895 62 223 125 2528 XB05b SLS enve Min -3994 1895 62 223 125 2528 XB05b SLS enve Min -3994 1895 62 223 125 2528 XB05b SLS enve Min -3994 -464 -119 118 -260 1242 XB06b		_						
XB04a		-						
XB04b SLU enve Max -836 3621 400 471 -3409 6161 XB04b SLU enve Min -3718 -1907 -488 -594 3591 -4711 XB04b SLS enve Max -677 2605 284 308 -2296 4418 XB04b SLS enve Max -2619 -1099 -314 -411 2383 -2860 XB04b SLS fess Max -1093 1743 166 138 -1142 2701 XB04b SLS fess Max -1093 1743 166 138 -1142 2701 XB04b SLS fess Max -1093 1743 166 138 -1142 2701 XB04b SLV enve Max -152 2687 740 908 -1782 3213 XB04b SLV enve Max -152 2687 740 908 -1782 3213 XB04b SLV enve Max -152 2687 740 908 -1782 3213 XB04b SLV enve Max -9370 -1896 -464 -519 976 -11396 XB05a SLU enve Max -9370 -1895 -464 -519 976 -11396 XB05a SLU enve Max -6716 -1133 -312 -342 693 -6818 XB05a SLS enve Max -6716 -1133 -312 -342 693 -6818 XB05a SLS enve Max -5755 -216 -157 -156 432 -2052 XB05a SLS fess Max -5755 -216 -157 -156 432 -2052 XB05a SLV enve Max -5873 -1510 -1386 -1360 -3623 -2065 XB05a SLV enve Max -5873 -1510 -1386 -1360 -3623 -2065 XB05a SLV enve Max -2093 4048 229 585 -81 6785 XB05b SLU enve Max -2093 4048 229 585 -81 6785 XB05b SLU enve Max -2093 4048 229 585 -81 6785 XB05b SLU enve Max -2093 4048 229 585 -81 6785 4797 XB05b SLS enve Max -2093 4048 229 585 -81 6785 4797 XB05b SLS enve Max -2093 4048 229 585 -81 6785 4797 XB05b SLS enve Max -2093 4048 229 585 -81 6785 4797 XB05b SLS enve Max -2093 4048 229 585 -81 6785 4797 XB05b SLS enve Max -2093 4048 229 585 -81 6785 4797 XB05b SLS enve Max -2093 4048 229 585 -81 6785 4797 3805b SLS enve Max -1706 2792 976 1444 -2082 3562 3805 3805 SLS enve Max -1706 2792		-						
XB04b SLD enveMax -3718 -1907 -488 -594 3591 -4711 XB04b SLS enveMax -677 2605 284 308 -2296 4418 XB04b SLS enveMin -2619 -1099 -314 -411 2383 -2860 XB04b SLS fessMin -2093 -181 -149 -248 1214 -1129 XB04b SLS fessMin -2093 -181 -149 -248 1214 -1129 XB04b SLV enveMax -152 2687 740 908 -1782 3213 XB04b SLV enveMin -2922 -1055 -680 -1008 1751 -1555 XB05a SLU enveMax -9370 -1896 -464 -519 976 -11396 XB05a SLU enveMax -9370 -1896 -464 -519 976 -11396 XB05a SLS enveMin -3113 4048 229 585 -701 17871 XB05a SLS enveMax -6716 -1133 -312 -342 693 -6818 XB05a SLS enveMin -2476 2859 161 405 -445 12768 XB05a SLS fessMax -5755 -216 -157 -156 432 -2052 XB05a SLS fessMin -3150 1895 62 223 -129 8090 XB05a SLV enveMin -2310 3154 1339 1444 -2264 8399 XB05b SLU enveMax -2093 4048 229 585 -81 6785 XB05b SLU enveMax -2093 4048 229 585 -81 6785 XB05b SLU enveMax -2103 3154 1339 1444 -2264 8399 XB05b SLS enveMax -1720 2859 161 405 -45 4797 XB05b SLS enveMax -1720 2859 161 405 -45 4797 XB05b SLS enveMax -2344 1895 62 223 125 2528 XB05b SLS fessMax -2394 1895 62 223 125 2528 XB05b SLS fessMax -2394 1895 62 223 125 2528 XB05b SLS fessMax -2394 1895 62 223 125 2528 XB05b SLS fessMax -2394 1895 62 223 235 2528 XB05b SLS fessMax -2394 1895 62 223 235 2528 XB05b SLS fessMax -2394 1895 62 223 235 2528 XB05b SLS enveMax -1706 2792 976 1444 -2082 3562 XB05b SLS fessMax -2394 1895 62 223 235 2528 XB05b SLS fessMax -2394 1895 62 233 235 23562 23665 23665 23665 23665 23665 23665 23665 23665 23665 23		-						
XB04b SLS_enveMax -677 2605 284 308 -2296 4418 XB04b SLS_enveMin -2619 -1099 -314 -411 2383 -2860 XB04b SLS_fessMax -1093 1743 166 138 -1142 2701 XB04b SLS_fessMax -1093 1743 166 138 -1142 2701 XB04b SLV_enveMax -152 2687 740 908 -1782 3213 XB04b SLV_enveMax -152 2687 740 908 -1782 3213 XB04b SLV_enveMax -2922 -1055 -680 -1008 1751 -1555 XB05a SLU_enveMin -3113 4048 229 585 -701 17871 XB05a SLU_enveMin -3113 4048 229 585 -701 17871 XB05a SLS_enveMax -6716 -1133 -312 -342 693 -6818 XB05a SLS_enveMax -5755 -216 -157 -156 432 -2055 -2850		_						
XBO4b SLS_fessMax -1093 1743 166 138 -1142 2701 XBO4b SLV_enveMax -152 2687 740 908 -1782 3213 XBO4b SLV_enveMax -152 2687 740 908 -1782 3213 XBO4b SLV_enveMax -370 -1896 -464 -519 976 -11396 XBO5a SLU_enveMin -3113 4048 229 585 -701 17871 XBO5a SLS_enveMax -8716 -1133 -312 -342 693 -6818 XBO5a SLS_enveMax -8755 -216 -157 -156 432 -2052 XBO5a SLS_enveMax -5755 -216 -157 -156 432 -2052 XBO5a SLS_fessMax -5755 -216 -157 -156 432 -2052 XBO5a SLS_fessMax -5755 -216 -157 -156 432 -2052 XBO5a SLS_fessMax -5755 -216 -157 -156 432 -2052 XBO5a SLV_enveMax -3310 3154 1339 1444 -2264 8399 XBO5a SLU_enveMax -293 4048 229 585 -81 6785 XBO5b SLU_enveMax -2093 4048 229 585 -81 6785 XBO5b SLS_fessMax -1720 2859 161 405 -45 4797 XBO5b SLS_fessMax -2394 1895 62 223 125 5258 XBO5b SLS_fessMax -2394 1895 62 223 125 5258 XBO5b SLS_fessMax -2394 1895 62 223 125 5258 XBO5b SLS_fessMax -3999 -216 -157 -156 584 3342 XBO5a SLS_fessMax -3999 -216 -157 -156 584 3342 XBO5a SLS_fessMax -3992 -264 -70 -108 204 -673 -7388 XBO6a SLU_enveMax -3654 -2068 -1207 -402 2634 -4965		-	-677	2605		308	-2296	4418
XBO4b SLS_fessMin -2093 -181 -149 -248 1214 -1129 XBO4b SLV_enveMax -152 2687 740 908 -1782 3213 32804b SLV_enveMin -2922 -1055 -680 -1008 1751 -1555 XBO5a SLU_enveMax -9370 -1896 -464 -519 976 -11396 3218 3205 3210 200 200 3213 322	XB04b	SLS_enveMin	-2619	-1099	-314	-411	2383	-2860
XBO4b SLV enve Max -152 2687 740 908 -1782 3213 XBO4b SLV enve Min -2922 -1055 -680 -1008 1751 -1555 XBO5a SLU enve Min -3113 4048 229 585 -701 17871 XBO5a SLS enve Min -2476 2859 161 405 -445 12768 XBO5a SLS enve Min -2476 2859 161 405 -445 12768 XBO5a SLS enve Min -2476 2859 161 405 -445 12768 XBO5a SLS enve Min -2476 2859 161 405 -445 12768 XBO5a SLS fess Max -5755 -216 -157 -156 432 -2052 XBO5a SLS fess Min -3150 1895 62 223 -129 8090 XBO5a SLV enve Max -5873 -1510 -1386 -1360 2623 -2065 XBO5a SLV enve Max -2093 4048 229 585 -81 6785 XBO5b SLU enve Min -8350 -1896 -464 -519 1305 -9089 XBO5b SLU enve Max -2093 4048 229 585 -81 6785 XBO5b SLS enve Max -2204 3899 XBO5b SLS enve Min -8350 -1896 -464 -519 1305 -9089 XBO5b SLS enve Max -1720 2859 161 405 -45 4797 XBO5b SLS enve Max -2394 1895 62 223 125 2258 XBO5b SLS fess Max -2394 1895 62 223 125 2258 XBO5b SLV enve Max -1706 2792 976 1444 -2082 3562 XBO5b SLV enve Max -1706 2792 976 1444 -2082 3562 XBO5b SLV enve Max -4064 -1148 -1024 -1360 2632 -3888 XBO6a SLU enve Max -4833 -467 -171 -190 393 -1161 XBO6a SLS enve Min -2359 909 171 172 -407 1888 XBO6a SLS enve Min -2359 909 171 172 -407 1888 XBO6a SLS enve Min -1754 607 119 118 -260 1242 XBO6b SLS enve Min -1867 909 171 172 -156 1130 XBO6a SLS enve Min -1867 909 171 172 -156 1130 XBO6b SLS enve Min -1867 909 171 172 -156 1130 XBO6b SLS enve Min -1867 909 171 172 -156 1130 XBO6b SLS enve Min -1867 909 171 172 -156 1130 XBO6b SLS enve Min -1876 -1873 3507 350 400 51 38		_						
XBO04b SLV_enve Min -2922 -1055 -660 -1008 1751 -1555 XB05a SLU_enve Main -9370 -1896 -464 -519 976 -11396 XB05a SLU_enve Main -3113 4048 229 585 -701 17871 XB05a SLS_enve Max -6716 -1133 -312 -342 693 -6818 XB05a SLS_enve Min -2476 2859 161 405 -445 2-2052 XB05a SLS_fess Max -5755 -216 -157 -156 432 -2052 XB05a SLS_fess Min -3150 1895 62 223 -129 8090 XB05a SLV_enve Max -5873 -1510 -1386 -1360 2623 -2065 XB05a SLV_enve Min -2310 3154 1339 1444 -2264 8399 XB05b SLU_enve Max -2093 4048 229 585 -81 6785 XB05b SLU_enve Min -8350 -1896 -464 -519 1305 -9089 XB05b SLS_enve Max -1720 2859 161 405 -45 4797 XB05b SLS_enve Max -1720 2859 161 405 -45 4797 XB05b SLS_fess Min -4999 -216 -157 -156 584 -3342 XB05b SLS_fess Min -4999 -216 -157 -156 584 -3342 XB05b SLV_enve Max -1706 2792 976 1444 -2082 3562 XB05b SLV_enve Max -1706 2792 976 1444 -2082 3562 XB05b SLV_enve Max -4964 -1148 -1024 -1360 2632 -3888 XB06a SLV_enve Min -4964 -1148 -1024 -1360 2632 -3888 XB06a SLV_enve Min -4964 -1448 -1024 -1360 2632 -3888 XB06a SLV_enve Min -4964 -1448 -1024 -1360 2632 -3888 XB06a SLV_enve Min -4964 -1448 -1024 -1360 2632 -3888 XB06a SLV_enve Min -4964 -1748 -1024 -1360 2632 -3888 XB06a SLV_enve Min -4964 -1748 -1024 -1360 2632 -3888 XB06a SLV_enve Min -4964 -1748 -1024 -1360 2632 -3888 XB06a SLV_enve Min -4964 -1748 -1024 -1360 2632 -3888 XB06a SLV_enve Min -4964 -1748 -1024 -1360 2632 -3888 XB06a SLV_enve Min -4964 -1748 -1711 -190 393 -1161 -172		_						
XBO5a SLU_enve Max -9370 -1896 -464 -519 976 -11396 XBO5a SLU_enve Min -3113 4048 229 585 -701 17871 XBO5a SLS_enve Max -6716 -1133 -312 -342 693 -6818 XBO5a SLS_enve Min -2476 2859 161 405 -445 12768 XBO5a SLS_fess Max -5755 -216 -157 -156 432 -2052 XBO5a SLS_fess Min -3150 1895 62 223 -129 8090 XBO5a SLV_enve Max -5873 -1510 -1386 -1360 2623 -2065 XBO5a SLV_enve Min -2310 3154 1339 1444 -2264 8399 XBO5a SLU_enve Max -2093 4048 229 585 -81 6785 XBO5b SLU_enve Max -1720 2859 161 405 -45 4797 XBO5b SLS_enve Max -1720 2859 161 405 -45 4797 XBO5b SLS_enve Max -1720 2859 161 405 -45 4797 XBO5b SLS_enve Max -1720 2859 161 405 -45 4797 XBO5b SLS_fess Max -2394 1895 62 223 125 2528 XBO5b SLV_enve Max -1706 2792 976 1444 -2082 3562 XBO5b SLV_enve Max -1706 2792 976 1444 -2082 3562 XBO5b SLV_enve Max -1706 2792 976 1444 -2082 3562 XBO5b SLV_enve Max -4964 -1148 -1024 -1360 2632 -3888 XB06a SLU_enve Min -4964 -1148 -1024 -1360 2632 -3888 XB06a SLU_enve Max -4833 -467 -171 -190 393 -1161 XB06a SLS_enve Max -4833 -467 -171 -190 393 -1161 XB06a SLS_fess Max -3992 -264 -70 -108 204 -673 XB06a SLS_fess Max -3992 -264 -70 -108 204 -673 XB06a SLV_enve Min -1897 2106 1193 361 -2452 4873 XB06a SLV_enve Max -1867 909 171 172 -407 1888 XB06a SLV_enve Min -1867 909 171 172 -407 1888 XB06a SLV_enve Min -1867 909 171 172 -407 1886 XB06a SLV_enve Min -1867 909 171 172 -156 -156 -157 -156 -157 -156 -157 -156 -157 -156 -157 -156 -157 -156 -157 -156 -157 -156 -157 -156 -157 -156 -157 -156 -157 -156 -157 -156 -157 -156 -157 -156 -157 -15		_						
XB05a SLU		_						
XB05a SLS_enve Max -6716 -1133 -312 -342 693 -6818 XB05a SLS_enve Min -2476 2859 161 405 -445 12768 XB05a SLS_fess Max -5755 -216 -157 -156 432 -2052 XB05a SLV_enve Max -5873 -1510 -1386 -1360 2623 -2065 XB05a SLV_enve Min -2310 3154 1339 1444 -2264 8399 XB05b SLU_enve Max -2093 4048 229 585 -81 6785 6		_						
XB05a SLS		-						
XB05a SLS fess Max -5755 -216 -157 -156 432 -2052 XB05a SLS fess Min -3150 1895 62 223 -129 8090 XB05a SLV enve Max -2310 3154 1339 1444 -2264 8399 XB05b SLU enve Min -2310 3154 1339 1444 -2264 8399 XB05b SLU enve Min -8350 -1896 -464 -519 1305 -9089 XB05b SLU enve Max -1720 2859 161 405 -45 4797 XB05b SLS enve Max -1720 2859 161 405 -45 4797 XB05b SLS fess Max -2394 1895 62 223 125 2528 XB05b SLS fess Max -2394 1895 62 223 125 2528 XB05b SLS fess Max -1706 2792 976 1444 -2082 3562 XB05b SLV enve Max -1706 2792 976 1444 -2082 3562 XB05b SLV enve Min -4964 -1148 -1024 -1360 2632 -3888 XB06a SLU enve Max -6879 -668 -255 -277 558 -1649 XB06a SLU enve Max -4833 -467 -171 -190 393 -1161 XB06a SLS enve Max -3892 -264 -70 -108 204 -673 XB06a SLS fess Min -2167 350 40 51 -399 681 XB06a SLS fess Max -3992 -264 -70 -108 204 -673 XB06a SLV enve Max -3654 -2068 -1207 -402 2634 -4965 A806a SLV enve Max -3654 -2068 -1207 -402 2634 -4965 A806a SLV enve Max -3654 -2068 -1207 -402 2634 -4965 A806a SLV enve Max -3654 -2068 -1207 -402 2634 -4965 A806a SLV enve Max -3654 -2068 -1207 -402 2634 -4965 A806b SLV enve Max -3654 -2068 -1207 -402 2634 -4965 A806b SLV enve Max -3654 -2068 -1207 -402 2634 -4965 A806b SLV enve Max -3674 -2068 -1207 -402 2634 -4965 A806b SLV enve Max -3654 -2068 -1207 -402 2634 -4965 A806b SLV enve Max -3664 -2068 -1207 -402 2634 -4965 A806b SLV enve Max -3664 -2068 -1207 -402 2634 -4965 A806b SLV enve Max -3664 -2068 -255 -277 -3660 -1818 A806b SLV enve Max -3664 -2068 -255 -277		_						
XB05a SLV_enve Max -5873 -1510 -1386 -1360 2623 -2065 XB05b SLU_enve Min -2310 3154 1339 1444 -2264 8399 XB05b SLU_enve Min -8350 -1896 -464 -519 1305 -9089 XB05b SLS_enve Max -1720 2859 161 405 -45 4797 XB05b SLS_enve Min -5959 -1133 -312 -342 903 -5877 XB05b SLS_fess Max -2394 1895 62 223 125 2528 XB05b SLS_fess Min -4999 -216 -157 -156 584 -3342 XB05b SLV_enve Max -1706 2792 976 1444 -2082 3562 XB05b SLV_enve Min -4964 -1148 -1024 -1360 2632 -3888 XB06a SLU_enve Min -2359 909 171 172 -407 1888	XB05a	SLS fessMax	-5755		-157	-156	432	-2052
XB05a SLV_enveMin -2310 3154 1339 1444 -2264 8399 XB05b SLU_enveMax -2093 4048 229 585 -81 6785 XB05b SLU_enveMin -8350 -1896 -464 -519 1305 -9089 XB05b SLS_enveMin -5959 -1133 -312 -342 903 -5877 XB05b SLS_fess Max -2394 1895 62 223 125 2528 XB05b SLS_fess Min -4999 -216 -157 -156 584 -3342 XB05b SLV_enve Max -1706 2792 976 1444 -2082 3562 XB05b SLV_enve Min -4964 -1148 -1024 -1360 2632 -388 XB06a SLD_enve Max -4833 -467 -171 -190 393 -1161 XB06a SLS_fess Max -3992 -264 -70 -108 204 -673	XB05a	SLS_fessMin	-3150	1895	62	223	-129	8090
XB05b SLU_enve Max -2093 4048 229 585 -81 6785 XB05b SLU_enve Min -8350 -1896 -464 -519 1305 -9089 XB05b SLS_enve Max -1720 2859 161 405 -44 4797 XB05b SLS_fess Max -2394 1895 62 223 125 2528 XB05b SLS_fess Max -2394 1895 62 223 125 2528 XB05b SLV_enve Max -1706 2792 976 1444 -2082 3562 XB05b SLV_enve Max -1706 2792 976 1444 -2082 3562 XB05b SLV_enve Max -6879 -668 -255 -277 558 -1649 XB06a SLD_enve Max -6879 -668 -255 -277 558 -1649 XB06a SLS_enve Min -1754 607 119 118 -260 1242		_						
XB05b SLU_enve Min -8350 -1896 -464 -519 1305 -9089 XB05b SLS_enve Max -1720 2859 161 405 -45 4797 XB05b SLS_enve Min -5959 -1133 -312 -342 903 -5877 XB05b SLS_fess Max -2394 1895 62 223 125 2528 XB05b SLV_enve Max -1706 2792 976 1444 -2082 3562 XB05b SLV_enve Max -1706 2792 976 1444 -2082 3562 XB05b SLV_enve Min -4964 -1148 -1024 -1360 2632 -3888 XB06a SLV_enve Max -6879 -668 -255 -277 558 -1649 XB06a SLS_enve Min -2359 909 171 172 -407 1888 XB06a SLS_enve Min -1267 407 119 18 260 1242		-						
XB05b SLS_enve Max -1720 2859 161 405 -45 4797 XB05b SLS_fess Max -2394 1895 62 233 125 2528 XB05b SLS_fess Min -4999 -216 -157 -156 584 -3342 XB05b SLV_enve Max -1706 2792 976 1444 -2082 3562 XB05b SLV_enve Max -1706 2792 976 1444 -2082 3562 XB06a SLU_enve Max -6879 -668 -255 -277 558 -1649 XB06a SLU_enve Max -4833 -467 -171 -190 393 -1161 XB06a SLS_enve Max -4833 -467 -171 -190 393 -1161 XB06a SLS_fess Max -3992 -264 -70 -108 204 -673 XB06a SLS_fess Max -3992 -266 -1207 -402 2634 -4965		-						
XB05b SLS_enve Min -5959 -1133 -312 -342 903 -5877 XB05b SLS_fess Max -2394 1895 62 223 125 2528 XB05b SLS_fess Min -4999 -216 -157 -156 584 -3342 XB05b SLV_enve Max -1706 2792 976 1444 -2082 3562 XB05b SLV_enve Min -4964 -1148 -1024 -1360 2632 -3888 XB06a SLU_enve Min -4964 -1148 -1024 -1360 2632 -3888 XB06a SLU_enve Min -2359 909 171 172 -407 1888 XB06a SLS_enve Max -4833 -467 -171 -190 393 -1161 XB06a SLS_enve Min -1754 607 119 118 -260 1242 XB06a SLS_fess Max -3992 -264 -70 -108 204 -673 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_						
XB05b SLS_fessMax -2394 1895 62 223 125 2528 XB05b SLS_fessMin -4999 -216 -157 -156 584 -3342 XB05b SLV_enveMax -1706 2792 976 1444 -2082 3562 XB05b SLV_enveMin -4964 -1148 -1024 -1360 2632 -3888 XB06a SLU_enveMax -6879 -668 -255 -277 558 -1649 XB06a SLS_enveMax -4833 -467 -171 -190 393 -1161 XB06a SLS_enveMax -4833 -467 -171 -190 393 -1161 XB06a SLS_essMax -3992 -264 -70 -108 204 -673 XB06a SLS_fessMax -3992 -264 -70 -108 204 -673 XB06a SLS_fessMin -2167 350 40 51 -39 681		_						
XB05b SLS_fess Min -4999 -216 -157 -156 584 -3342 XB05b SLV_enve Max -1706 2792 976 1444 -2082 3562 XB05b SLV_enve Min -4964 -1148 -1024 -1360 2632 -3888 XB06a SLU_enve Max -6879 -668 -255 -277 558 -1649 XB06a SLU_enve Min -2359 909 171 172 -407 1888 XB06a SLS_enve Max -4833 -467 -171 -190 393 -1161 XB06a SLS_enve Min -1754 607 119 118 -260 1242 XB06a SLS_fess Min -2167 350 40 51 -39 681 XB06a SLV_enve Max -3654 -2068 -1207 -402 2634 -4965 XB06a SLV_enve Max -3867 -668 -255 -277 660 -1818		_						
XB05b SLV_enveMin -4964 -1148 -1024 -1360 2632 -3888 XB06a SLU_enveMax -6879 -668 -255 -277 558 -1649 XB06a SLU_enveMin -2359 909 171 172 -407 1888 XB06a SLS_enveMin -1754 607 119 118 -260 1242 XB06a SLS_fessMax -3992 -264 -70 -108 204 -673 XB06a SLS_fessMin -2167 350 40 51 -39 681 XB06a SLV_enveMax -3654 -2068 -1207 -402 2634 -4965 XB06a SLV_enveMin -1897 2106 1193 361 -2452 4873 XB06a SLV_enveMin -1897 2106 1193 361 -2452 4873 XB06a SLV_enveMin -1897 2106 1193 361 -2452 4873		_						
XB06a SLU_enve Max -6879 -668 -255 -277 558 -1649 XB06a SLU_enve Min -2359 909 171 172 -407 1888 XB06a SLS_enve Max -4833 -467 -171 -190 393 -1161 XB06a SLS_fess Max -3992 -264 -70 -108 204 -673 XB06a SLS_fess Min -2167 350 40 51 -39 681 XB06a SLV_enve Max -3654 -2068 -1207 -402 2634 -4965 XB06a SLV_enve Min -1897 2106 1193 361 -2452 4873 XB06b SLU_enve Min -1897 2106 1193 361 -2452 4873 XB06b SLS_enve Max -1390 607 119 118 -102 785 XB06b SLS_enve Max -1390 607 119 118 -102 785	XB05b	SLV_enveMax	-1706	2792	976	1444	-2082	3562
XB06a SLU_enve Min -2359 909 171 172 -407 1888 XB06a SLS_enve Max -4833 -467 -171 -190 393 -1161 XB06a SLS_enve Min -1754 607 119 118 -260 1242 XB06a SLS_fess Max -3992 -264 -70 -108 204 -673 XB06a SLS_fess Min -2167 350 40 51 -39 681 XB06a SLV_enve Max -3654 -2068 -1207 -402 2634 -4965 XB06a SLV_enve Min -1897 2106 1193 361 -2452 4873 XB06b SLU_enve Max -1867 909 171 172 -156 1130 XB06b SLS_enve Max -1390 607 119 118 -102 785 XB06b SLS_enve Max -1803 350 40 51 38 406		SLV_enveMin						
XB06a SLS_enve Max -4833 -467 -171 -190 393 -1161 XB06a SLS_enve Min -1754 607 119 118 -260 1242 XB06a SLS_fess Max -3992 -264 -70 -108 204 -673 XB06a SLS_fess Min -2167 350 40 51 -39 681 XB06a SLV_enve Max -3654 -2068 -1207 -402 2634 -4965 XB06a SLV_enve Min -1897 2106 1193 361 -2452 4873 XB06b SLU_enve Max -1867 909 171 172 -156 1130 XB06b SLS_enve Max -1390 607 119 118 -102 785 XB06b SLS_enve Max -1390 607 119 118 -102 785 XB06b SLS_fess Max -1803 350 40 51 38 406 X		_						
XB06a SLS_enve Min -1754 607 119 118 -260 1242 XB06a SLS_fess Max -3992 -264 -70 -108 204 -673 XB06a SLS_fess Min -2167 350 40 51 -39 681 XB06a SLV_enve Max -3654 -2068 -1207 -402 2634 -4965 XB06a SLV_enve Min -1897 2106 1193 361 -2452 4873 XB06b SLU_enve Max -1867 909 171 172 -156 1130 XB06b SLU_enve Min -6387 -668 -255 -277 660 -1818 XB06b SLS_enve Min -4469 -467 -171 -190 454 -1233 XB06b SLS_fess Max -1803 350 40 51 38 406 XB06b SLS_fess Min -3627 -264 -70 -108 251 -745		_						
XB06a SLS_fessMax -3992 -264 -70 -108 204 -673 XB06a SLS_fessMin -2167 350 40 51 -39 681 XB06a SLV_enveMax -3654 -2068 -1207 -402 2634 -4965 XB06b SLV_enveMin -1897 2106 1193 361 -2452 4873 XB06b SLU_enveMax -1867 909 171 172 -156 1130 XB06b SLU_enveMin -6387 -668 -255 -277 660 -1818 XB06b SLS_enveMax -1390 607 119 118 -102 785 XB06b SLS_enveMin -4469 -467 -171 -190 454 -1233 XB06b SLS_fessMax -1803 350 40 51 38 406 XB06b SLV_enveMax -1606 1931 1018 361 -1853 3057 XB06b SLV_enveMin -3215 -1893 -1032 -402 2092 -3302		-						
XB06a SLS_fessMin -2167 350 40 51 -39 681 XB06a SLV_enveMax -3654 -2068 -1207 -402 2634 -4965 XB06a SLV_enveMin -1897 2106 1193 361 -2452 4873 XB06b SLU_enveMax -1867 909 171 172 -156 1130 XB06b SLU_enveMin -6387 -668 -255 -277 660 -1818 XB06b SLS_enveMax -1390 607 119 118 -102 785 XB06b SLS_fessMax -1803 350 40 51 38 406 XB06b SLS_fessMax -1803 350 40 51 38 406 XB06b SLS_fessMax -1803 350 40 51 -745 488 XB06b SLV_enveMax -1606 1931 1018 361 -1853 3057 XB06b SLV_enveMin -3215 -1893 -1032 -402 2092 -3302 </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_						
XB06a SLV_enve Max -3654 -2068 -1207 -402 2634 -4965 XB06a SLV_enve Min -1897 2106 1193 361 -2452 4873 XB06b SLU_enve Max -1867 909 171 172 -156 1130 XB06b SLU_enve Min -6387 -668 -255 -277 660 -1818 XB06b SLS_enve Max -1390 607 119 118 -102 785 XB06b SLS_enve Min -4469 -467 -171 -190 454 -1233 XB06b SLS_fess Max -1803 350 40 51 38 406 XB06b SLV_enve Max -1606 1931 1018 361 -1853 3057 XB06b SLV_enve Max -1606 1931 1018 361 -1853 3057 XB07a SLU_enve Max -7914 -2574 -282 -321 790 -6132 <		_						
XB06b SLU_enve Max -1867 909 171 172 -156 1130 XB06b SLU_enve Min -6387 -668 -255 -277 660 -1818 XB06b SLS_enve Max -1390 607 119 118 -102 785 XB06b SLS_enve Min -4469 -467 -171 -190 454 -1233 XB06b SLS_fess Max -1803 350 40 51 38 406 XB06b SLV_fess Min -3627 -264 -70 -108 251 -745 XB06b SLV_enve Max -1606 1931 1018 361 -1853 3057 XB06b SLV_enve Max -1606 1931 1018 361 -1853 3057 XB07a SLU_enve Max -7914 -2574 -282 -321 790 -6132 XB07a SLS_enve Min -1856 1725 321 176 -539 3927		_						
XB06b SLU_enve Min -6387 -668 -255 -277 660 -1818 XB06b SLS_enve Max -1390 607 119 118 -102 785 XB06b SLS_enve Min -4469 -467 -171 -190 454 -1233 XB06b SLS_fess Max -1803 350 40 51 38 406 XB06b SLS_fess Min -3627 -264 -70 -108 251 -745 XB06b SLV_enve Max -1606 1931 1018 361 -1853 3057 XB06b SLV_enve Max -1606 1931 1018 361 -1853 3057 XB07a SLU_enve Min -3215 -1893 -1032 -402 2092 -3302 XB07a SLU_enve Max -7914 -2574 -282 -321 790 -6132 XB07a SLS_enve Min -1406 1056 221 120 -354 238 <tr< td=""><td>XB06a</td><td>SLV_enveMin</td><td>-1897</td><td>2106</td><td>1193</td><td>361</td><td>-2452</td><td>4873</td></tr<>	XB06a	SLV_enveMin	-1897	2106	1193	361	-2452	4873
XB06b SLS_enve Max -1390 607 119 118 -102 785 XB06b SLS_enve Min -4469 -467 -171 -190 454 -1233 XB06b SLS_fess Max -1803 350 40 51 38 406 XB06b SLS_fess Min -3627 -264 -70 -108 251 -745 XB06b SLV_enve Max -1606 1931 1018 361 -1853 3057 XB07a SLU_enve Min -3215 -1893 -1032 -402 2092 -3302 XB07a SLU_enve Max -7914 -2574 -282 -321 790 -6132 XB07a SLU_enve Max -7914 -2574 -282 -321 790 -6132 XB07a SLS_enve Min -1856 1725 321 176 -539 3927 XB07a SLS_fess Max -4473 -1217 -67 -131 282 -2896 <		_						
XB06b SLS_enve Min -4469 -467 -171 -190 454 -1233 XB06b SLS_fess Max -1803 350 40 51 38 406 XB06b SLS_fess Min -3627 -264 -70 -108 251 -745 XB06b SLV_enve Max -1606 1931 1018 361 -1853 3057 XB07a SLU_enve Min -3215 -1893 -1032 -402 2092 -3302 XB07a SLU_enve Max -7914 -2574 -282 -321 790 -6132 XB07a SLU_enve Max -5505 -1840 -189 -221 550 -4382 XB07a SLS_fess Max -4473 -1217 -67 -131 282 -2896 XB07a SLS_fess Min -2041 401 100 49 -72 823 XB07a SLV_enve Max -4324 -2536 -1392 -380 3151 -6119		_						
XB06b SLS_fessMax -1803 350 40 51 38 406 XB06b SLS_fessMin -3627 -264 -70 -108 251 -745 XB06b SLV_enveMax -1606 1931 1018 361 -1853 3057 XB06b SLV_enveMin -3215 -1893 -1032 -402 2092 -3302 XB07a SLU_enveMax -7914 -2574 -282 -321 790 -6132 XB07a SLU_enveMin -1856 1725 321 176 -539 3927 XB07a SLS_enveMax -5505 -1840 -189 -221 550 -4382 XB07a SLS_fessMax -4473 -1217 -67 -131 282 -2896 XB07a SLS_fessMin -2041 401 100 49 -72 823 XB07a SLV_enveMax -4324 -2536 -1392 -380 3151 -6119 XB07b SLU_enveMax -1364 1725 321 176 -517 <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		_						
XB06b SLS_fessMin -3627 -264 -70 -108 251 -745 XB06b SLV_enveMax -1606 1931 1018 361 -1853 3057 XB06b SLV_enveMin -3215 -1893 -1032 -402 2092 -3302 XB07a SLU_enveMax -7914 -2574 -282 -321 790 -6132 XB07a SLU_enveMin -1856 1725 321 176 -539 3927 XB07a SLS_enveMax -5505 -1840 -189 -221 550 -4382 XB07a SLS_enveMin -1406 1056 221 120 -354 2388 XB07a SLS_fessMax -4473 -1217 -67 -131 282 -2896 XB07a SLS_fessMin -2041 401 100 49 -72 823 XB07a SLV_enveMax -4324 -2536 -1392 -380 3151 -6119		_						
XB06b SLV_enve Max -1606 1931 1018 361 -1853 3057 XB06b SLV_enve Min -3215 -1893 -1032 -402 2092 -3302 XB07a SLU_enve Max -7914 -2574 -282 -321 790 -6132 XB07a SLU_enve Min -1856 1725 321 176 -539 3927 XB07a SLS_enve Max -5505 -1840 -189 -221 550 -4382 XB07a SLS_enve Min -1406 1056 221 120 -354 2388 XB07a SLS_fess Max -4473 -1217 -67 -131 282 -2896 XB07a SLS_fess Min -2041 401 100 49 -72 823 XB07a SLV_enve Max -4324 -2536 -1392 -380 3151 -6119 XB07a SLV_enve Min -1475 1637 1420 318 -2954 3891 </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_						
XB06b SLV_enve Min -3215 -1893 -1032 -402 2092 -3302 XB07a SLU_enve Max -7914 -2574 -282 -321 790 -6132 XB07a SLU_enve Min -1856 1725 321 176 -539 3927 XB07a SLS_enve Max -5505 -1840 -189 -221 550 -4382 XB07a SLS_enve Min -1406 1056 221 120 -354 2388 XB07a SLS_fess Max -4473 -1217 -67 -131 282 -2896 XB07a SLS_fess Min -2041 401 100 49 -72 823 XB07a SLV_enve Max -4324 -2536 -1392 -380 3151 -6119 XB07a SLV_enve Min -1475 1637 1420 318 -2954 3891 XB07b SLU_enve Max -1364 1725 321 176 -517 4303 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_						
XB07a SLU_enve Max -7914 -2574 -282 -321 790 -6132 XB07a SLU_enve Min -1856 1725 321 176 -539 3927 XB07a SLS_enve Max -5505 -1840 -189 -221 550 -4382 XB07a SLS_fess Max -4473 -1217 -67 -131 282 -2896 XB07a SLS_fess Min -2041 401 100 49 -72 823 XB07a SLV_enve Max -4324 -2536 -1392 -380 3151 -6119 XB07a SLV_enve Max -4475 1637 1420 318 -2954 3891 XB07a SLV_enve Min -1475 1637 1420 318 -2954 3891 XB07b SLU_enve Max -1364 1725 321 176 -517 4303 XB07b SLU_enve Max -1042 1056 221 120 -352 3076 <								
XB07a SLS_enve Max -5505 -1840 -189 -221 550 -4382 XB07a SLS_enve Min -1406 1056 221 120 -354 2388 XB07a SLS_fess Max -4473 -1217 -67 -131 282 -2896 XB07a SLS_fess Min -2041 401 100 49 -72 823 XB07a SLV_enve Max -4324 -2536 -1392 -380 3151 -6119 XB07a SLV_enve Min -1475 1637 1420 318 -2954 3891 XB07b SLU_enve Max -1364 1725 321 176 -517 4303 XB07b SLU_enve Min -7421 -2574 -282 -321 625 -3088 XB07b SLS_enve Max -1042 1056 221 120 -352 3076			-7914					
XB07a SLS_enve Min -1406 1056 221 120 -354 2388 XB07a SLS_fess Max -4473 -1217 -67 -131 282 -2896 XB07a SLS_fess Min -2041 401 100 49 -72 823 XB07a SLV_enve Max -4324 -2536 -1392 -380 3151 -6119 XB07a SLV_enve Min -1475 1637 1420 318 -2954 3891 XB07b SLU_enve Max -1364 1725 321 176 -517 4303 XB07b SLU_enve Min -7421 -2574 -282 -321 625 -3088 XB07b SLS_enve Max -1042 1056 221 120 -352 3076	XB07a	SLU_enveMin	-1856	1725	321	176	-539	3927
XB07a SLS_fessMax -4473 -1217 -67 -131 282 -2896 XB07a SLS_fessMin -2041 401 100 49 -72 823 XB07a SLV_enveMax -4324 -2536 -1392 -380 3151 -6119 XB07a SLV_enveMin -1475 1637 1420 318 -2954 3891 XB07b SLU_enveMax -1364 1725 321 176 -517 4303 XB07b SLU_enveMin -7421 -2574 -282 -321 625 -3088 XB07b SLS_enveMax -1042 1056 221 120 -352 3076								
XB07a SLS_fessMin -2041 401 100 49 -72 823 XB07a SLV_enve Max -4324 -2536 -1392 -380 3151 -6119 XB07a SLV_enve Min -1475 1637 1420 318 -2954 3891 XB07b SLU_enve Max -1364 1725 321 176 -517 4303 XB07b SLU_enve Min -7421 -2574 -282 -321 625 -3088 XB07b SLS_enve Max -1042 1056 221 120 -352 3076		_						
XB07a SLV_enve Max -4324 -2536 -1392 -380 3151 -6119 XB07a SLV_enve Min -1475 1637 1420 318 -2954 3891 XB07b SLU_enve Max -1364 1725 321 176 -517 4303 XB07b SLU_enve Min -7421 -2574 -282 -321 625 -3088 XB07b SLS_enve Max -1042 1056 221 120 -352 3076		_						
XB07a SLV_enve Min -1475 1637 1420 318 -2954 3891 XB07b SLU_enve Max -1364 1725 321 176 -517 4303 XB07b SLU_enve Min -7421 -2574 -282 -321 625 -3088 XB07b SLS_enve Max -1042 1056 221 120 -352 3076		_						
XB07b SLU_enve Max -1364 1725 321 176 -517 4303 XB07b SLU_enve Min -7421 -2574 -282 -321 625 -3088 XB07b SLS_enve Max -1042 1056 221 120 -352 3076		_						
XB07b SLU_enveMin -7421 -2574 -282 -321 625 -3088 XB07b SLS_enveMax -1042 1056 221 120 -352 3076								
XB07b SLS_enveMax -1042 1056 221 120 -352 3076		_						
XB07b SLS_enveMin -5141 -1840 -189 -221 427 -1909		_						
	XB07b	SLS_enveMin	-5141	-1840	-189	-221	427	-1909

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 8 di 10

XB07b	SLS fessMax	-1677	401	100	49	-127	2038
XB07b	SLS fessMin	-4109	-1217	-67	-131	200	-802
XB07b	SLV enveMax	-1185	1463	1245	318	-2252	3800
XB07b	SLV_enveMin	-3886	-2362	-1217	-380	2334	-2386
XB08a	SLU_enveMax	-6277	-982	-152	-64	500	-2260
XB08a	SLU_enveMin	-279	472	222	41	-329	1294
XB08a	SLS_enveMax	-4489	-702	-102	-44	346	-1618
XB08a	SLS_enveMin	-451	272	153	27	-219	763
XB08a	SLS_fessMax	-3529	-476	-34	-24	182	-1068
XB08a	SLS_fessMin	-1236	41	78	10	-60	192
XB08a XB08a	SLV_enveMax	-3003 -1338	-538 91	-703	-151 137	1649 -1542	-1095 158
XB08a XB08b	SLV_enveMin SLU enveMax	-1338 -63	472	736 222	41	-1342 -405	1729
XB08b	SLU_enveMin	-6062	-982	-152	-64	290	-630
XB08b	SLS enveMax	-292	272	153	27	-277	1235
XB08b	SLS enveMin	-4329	-702	-102	-44	197	-348
XB08b	SLS fessMax	-1077	41	78	10	-137	864
XB08b	SLS fessMin	-3370	-476	-34	-24	81	17
XB08b	SLV enveMax	-1211	15	659	137	-1175	941
XB08b	SLV enve Min	-2811	-462	-627	-151	1151	-67
XB09a	SLU_enveMax	-11777	-2629	-957	-2144	4608	-25264
XB09a	SLU_enveMin	-4986	3854	874	1682	-6493	39658
XB09a	SLS_enveMax	-8335	-1599	-678	-1413	2932	-15198
XB09a	SLS_enveMin	-3731	2764	554	1169	-4493	28344
XB09a	SLS_fessMax	-7145	-607	-360	- 775	991	-4854
XB09a	SLS_fessMin	-4491	1828	227	595	-2694	18309
XB09a XB09a	SLV_enveMax	-8253 -2599	-2969	-2262 2061	-3461	2597	-6700
XB09a XB09b	SLV_enveMin SLU enveMax	-3085	4344 3854	874	3353 1682	-4313 -7174	19919 26521
XB09b	SLU enveMin	-9875	-2629	-852	-2144	5329	-16810
XB09b	SLS enveMax	-2323	2764	554	1169	-4811	18854
XB09b	SLS enveMin	-6927	-1599	-608	-1413	3554	-10235
XB09b	SLS fessMax	-3082	1828	227	595	-2679	12159
XB09b	SLS fessMin	-5737	-607	-360	-775	1516	-3622
XB09b	SLV enveMax	-1416	3669	1386	3353	-4449	8087
XB09b	SLV enve Min	-6619	-2294	-1587	-3461	3546	-434
XB10a	SLU_enveMax	-2839	-411	-319	-205	1568	-1376
XB10a	SLU_enveMin	-109	299	240	122	-2170	1719
XB10a	SLS_enveMax	-1982	-291	-225	-139	996	-869
XB10a	SLS_enveMin	-151	187	150	85	-1503	1206
XB10a	SLS_fessMax	-1493	-179	-128	-78	358	-365
XB10a XB10a	SLS_fessMin	-561 -1840	62 -841	57 -550	36 -442	-909 406	685 -1137
XB10a	SLV_enveMax SLV enveMin	-1040	705	460	413	-962	1453
XB10a XB10b	SLU enveMax	630	299	240	122	-2096	2634
XB10b	SLU enveMin	-2099	-411	-278	-205	1719	-1840
XB10b	SLS enveMax	397	187	150	85	-1408	1875
XB10b	SLS enve Min	-1434	-291	-198	-139	1144	-1120
XB10b	SLS fessMax	-13	62	57	36	-783	1159
XB10b	SLS_fessMin	-946	-179	-128	-78	518	-374
XB10b	SLV_enveMax	318	485	239	413	-1021	1931
XB10b	SLV_enveMin	-1259	-621	-330	-442	832	-1064
XB11a	SLU_enveMax	-4833	-2655	-448	-280	1915	-6138
XB11a	SLU_enveMin	-826	1230	542	136	-2219	2986
XB11a	SLS_enveMax	-3331	-1891	-316	-193	1226	-4365
XB11a XB11a	SLS_enveMin	-638	719	350	92	-1543	1769
XB11a	SLS_fessMax SLS fessMin	-2602 -1221	-1299 140	-150 167	-120 30	483 -870	-2982 416
XB11a	SLV enveMax	-3729	-1923	-1201	-377	2266	-4475
XB11a	SLV enveMin	81	774	1179	301	-2717	1914
XB11b	SLU enveMax	-334	1230	542	136	-2823	4622
XB11b	SLU enveMin	-4341	-2655	-421	-280	2062	-2004
XB11b	SLS enveMax	-273	719	350	92	-1886	3299
XB11b	SLS_enveMin	-2967	-1891	-298	-193	1383	-1150
XB11b	SLS_fessMax	-857	140	167	30	-1037	2282
XB11b	SLS_fessMin	-2237	-1299	-150	-120	582	-155
XB11b	SLV_enveMax	372	599	1004	301	-2164	2960
XB11b	SLV_enveMin	-3291	-1748	-1026	-377	1801	-867
XB12a	SLU_enveMax	-4641	-1206	-206	-165	1122	-2946

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0100 004
 B
 9 di 10

XB12a	SLU enveMin	159	509	290	172	-1167	1358
XB12a	SLS_enveMax	-3334	-863	-146	-114	726	-2111
XB12a	SLS_enveMin	-121	284	189	113	-809	768
XB12a	SLS_fessMax	-2540	-589	-65	-62	322	-1424
XB12a	SLS_fessMin	-882	12	99	58	-443	80
XB12a	SLV_enveMax	-2644	-577	-658	-139	1334	-1184
XB12a	SLV_enveMin	-724 405	-1 509	667 290	130	-1504	-171 1940
XB12b XB12b	SLU_enveMax SLU enveMin	-4395	-1206	-193	172 -165	-1430 1013	-703
XB12b	SLS enveMax	62	284	189	113	-957	1385
XB12b	SLS enveMin	-3152	-863	-137	-114	679	-385
XB12b	SLS fessMax	-700	12	99	58	-540	961
XB12b	SLS fessMin	-2358	-589	-65	-62	279	31
XB12b	SLV enveMax	-553	-89	580	130	-1193	987
XB12b	SLV_enveMin	-2451	-490	-571	-139	984	3
YB01	SLU_enveMax	-31	148	101	465	-910	925
YB01	SLU_enveMin	-2309	-439	-101	-531	1092	-717
YB01	SLS_enveMax	-88	88	73	307	-629	649
YB01	SLS_enveMin	-1621	-305	-63	-359	717	-450
YB01	SLS_fessMax	-382	-3	49	144	-339	392
YB01 YB01	SLS_fessMin SLV enveMax	-1236 -306	-208 -33	-26 185	-197 66	377 -1046	-184 334
YB01	SLV_enveMin	-1099	-166	-151	-112	997	-96
YB02	SLU enveMax	-850	362	248	115	-2221	2498
YB02	SLU enveMin	-2333	-402	-251	-210	2325	-1441
YB02	SLS enveMax	-624	232	176	74	-1527	1781
YB02	SLS enveMin	-1635	-281	-159	-147	1518	-868
YB02	SLS_fessMax	-769	117	110	27	-820	1183
YB02	SLS_fessMin	-1316	-169	-64	-99	726	-277
YB02	SLV_enveMax	132	28	348	115	-2067	2065
YB02	SLV_enveMin	-2017	-85	-287	-182	1878	-1132
YB03	SLU_enveMax	-738	403	183	86	-1943	742
YB03	SLU_enveMin	-1823	-275	-205	-177	2020	-812
YB03 YB03	SLS_enveMax	-544 -1282	288 -169	131 -130	55 -125	-1333 1319	489 -572
YB03	SLS_enveMin SLS fessMax	-667	190	81	20	-709	251
YB03	SLS fessMin	-1040	-64	-52	-84	618	-374
YB03	SLV enveMax	116	283	298	142	-1844	1821
YB03	SLV enveMin	-1687	-153	-255	-200	1672	-1969
YB04	SLU enve Max	11	2803	300	931	-3951	1364
YB04	SLU_enveMin	-2389	-1316	-415	-1133	4410	-2248
YB04	SLS_enveMax	-17	2022	215	623	-2697	866
YB04	SLS_enveMin	-1636	-734	-267	-763	2903	-1592
YB04	SLS_fessMax	-352	1365	142	313	-1428	289
YB04	SLS_fessMin	-1180	-47	-126	-422	1459	-1121
YB04 YB04	SLV_enveMax SLV enveMin	947 -2353	1349 5	410 -357	512 -586	-3053 2876	2973 -3879
YB05	SLU enveMax	-1852	571	99	135	-389	841
YB05	SLU enveMin	-4303	-395	-146	-186	855	-1266
YB05	SLS enveMax	-1381	399	68	93	-267	582
YB05	SLS enveMin	-3064	-257	-98	-127	580	-862
YB05	SLS fessMax	-1507	270	23	44	-50	301
YB05	SLS_fessMin	-2513	-135	-40	-70	287	-519
YB05	SLV_enveMax	-1393	290	467	245	-2667	1984
YB05	SLV_enveMin	-2127	-169	-474	-265	2837	-2142
YB06	SLU_enveMax	-1715	650	183	134	-852	2982
YB06	SLU_enveMin	-4965	-635	-161	-226	856	-2179
YB06	SLS_enveMax	-1296	427	126 -108	92	-584 570	2124
YB06 YB06	SLS_enveMin SLS fessMax	-3516 -1535	-440 245	-108 57	-155 40	579 -250	-1357 1396
YB06	SLS fessMin	-2894	-265	-38	-91	239	-590
YB06	SLV enveMax	-1174	78	597	213	-3269	2403
YB06	SLV enveMin	-2682	-112	-581	-253	3268	-1501
YB07	SLU enveMax	-188	232	119	58	-649	659
YB07	SLU_enveMin	-3849	-701	-80	-71	405	-730
YB07	SLS_enveMax	-245	137	82	39	-447	457
YB07	SLS_enveMin	-2716	-489	-54	-49	274	-474
YB07	SLS_fessMax	-667	2	42	17	-232	254
YB07	SLS_fessMin	-2123	-342	-18	-28	95	-249

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

"Struttura ad archi": Relazione di calcolo - 3 di 6

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	VI0100 004	В	10 di 10

YB07	SLV_enveMax	-782	-113	301	104	-1676	173
YB07	SLV_enveMin	-1576	-199	-283	-116	1588	-110
YB08	SLU_enveMax	-2856	5426	807	2033	-8961	11260
YB08	SLU enveMin	-7770	-3084	-713	-2454	7120	-6240
YB08	SLS enve Max	-2119	3903	512	1380	-5925	7818
YB08	SLS enveMin	-5472	-1806	-512	-1640	4854	-4099
YB08	SLS fessMax	-2551	2611	210	676	-3092	5356
YB08	SLS fessMin	-4419	-459	-334	-939	2387	-2083
YB08	SLV enveMax	-1008	2856	772	2440	-6898	4011
YB08	SLV enve Min	-5185	-570	-958	-2675	6632	-2281
YB09	SLU_enveMax	-1019	365	314	119	-2709	3153
YB09	SLU enve Min	-2378	-685	-230	-204	2034	-1368
YB09	SLS enve Max	-766	218	202	81	-1787	2254
YB09	SLS enveMin	-1685	-485	-163	-141	1391	-781
YB09	SLS fessMax	-944	55	96	33	-941	1561
YB09	SLS fessMin	-1426	-319	-89	-85	642	-102
YB09	SLV enveMax	26	-69	457	237	-2812	1883
YB09	SLV enveMin	-2261	-188	-471	-280	2637	-444
YB10	SLU enve Max	111	159	141	466	-1245	947
YB10	SLU enve Min	-1986	-423	-79	-498	803	-642
YB10	SLS enve Max	0	94	91	312	-827	665
YB10	SLS enve Min	-1404	-295	-57	-332	550	-398
YB10	SLS fessMax	-330	-1	48	159	-462	411
YB10	SLS fessMin	-1047	-198	-30	-171	232	-144
YB10	SLV enveMax	-112	9	270	92	-1613	270
YB10	SLV enveMin	-1211	-202	-265	-98	1459	2