COMMITTENTE: RETE FERROVIARIA ITALIANA GRUPPO FERROVIE DELLO STATO ITALIANE **DIREZIONE LAVORI: TALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE APPALTATORE: Ghella ITINERA SORZIO CFT PIZZAROTTI **DIRETTORE DELLA** PROGETTISTA: PROGETTAZIONE: **PROGETTAZIONE** RAGGRUPPAMENTO TEMPORANEO PROGETTISTI Ing. PIETRO MAZZOLI Prof. Ing. Responsabile integrazione fra le varie MARCO PETRANGELI (AK PIZZAROTTI Sintagma INTEGRA prestazioni specialistiche PROGETTO ESECUTIVO ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI PONTI E VIADOTTI DI LINEA Tratta Cancello-Frasso Telesino - VIADOTTO dal km 1+828 al km 2+201: Viadotto Cancello Pile 7, 8, 9 e 12: Relazione di calcolo **APPALTATORE** SCALA: CONSORZIO CET IL DIRETTORE TECNICO Geom. C. Bianchi 13/09/2018 COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. 1 0 1 Ε 0 0 0 0 3 В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	L. Gasperoni	11/07/2018	M. Petrangeli	11/07/2018	P.Mazzoli	11/07/2018	M. Petrangeli
В	Rev. istruttoria ITF 29/08/2018	L. Gasperoni	13/09/2018	M. Petrangeli	13/09/2018	P.Mazzoli	13/09/2018	
								13/09/2018

File:IF1N.0.1.E.ZZ.CL.VI.02.0.5.003.B.docx n. Elab.:

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO CODIFICA

IF1N 01 E ZZ CL

CA DOCUMENTO

VI0205 003

REV.

FOGLIO
3 di 140

Indice

1	PR	EMESSA	6
2	NO	RMATIVA E DOCUMENTI DI RIFERIMENTO	7
	.1	NORMATIVE	
		ELABORATI DI RIFERIMENTO	
2	.2	ELABORATI DI RIFERIMENTO	
3	MA	TERIALI	9
3	.1	CALCESTRUZZO PER FUSTO PILA E PULVINO	
3	.2	CALCESTRUZZO PER PLINTO DI FONDAZIONE	10
3	.3	CALCESTRUZZO PER PALI DI FONDAZIONE	11
3	.4	ACCIAIO PER BARRE DI ARMATURA	
4	CA	RATTERIZZAZIONE GEOTECNICA	
4	.1	CARATTERIZZAZIONE GEOTECNICA	13
5	DF	SCRIZIONE DELLA STRUTTURA	14
•			
6		ALISI DEI CARICHI	
6	.1	PERMANENTI STRUTTURALI (G1)	
	6.1.		
		2 PESO PROPRIO PILA	
6		PERMANENTI NON STRUTTURALI (G2)	
		1 BALLAST (G21)	
	6.2. 6.2.		
6	.3	CARICHI DA TRAFFICO	
0	_	1 CARICHI VERTICALI DA TRAFFICO (Q1)	
	6.3.	` '	
	6.3.	` ,	
	6.3.	4 SERPEGGIO (Q4)	79
6	.4	CARICHI VARIABILI (Q5)	86
	6.4.	1 AZIONI DEL VENTO (Q51)	8
6	.5	AZIONI INDIRETTE (Q6)	
	6.5.	1 RESISTENZE PARASSITE NEI VINCOLI (Q61)	95
6	.6	EFFETTI D'INTERAZIONE (Q7)	
	6.6.	(4.7)	
	6.6.		
	6.6.	3 INFLESSIONE DELL'IMPALCATO DOVUTA AI CARICHI VERTICALI DA TRAFFICO	97

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

01 E ZZ

IF1N

CODIFICA CL

DOCUMENTO VI0205 003

REV.

FOGLIO 4 di 140

6.7	7 /	AZIONI SISMICHE (E)	98
	6.7.1	SPETTRI DI PROGETTO ALLO SLV	99
7	CON	IBINAZIONI DI CARICO	102
8	ANA	LISI DELLE SOLLECITAZIONI	106
8.	1 M	MODELLO DI CALCOLO E.F	106
8.2	2 I	MASSE E FORZE SISMICHE	106
8.3	3 (CARICHI ELEMENTARI	111
	8.3.1	RIEPILOGO DEGLI SCARICHI DALL'IMPALCATO	111
8.4	4 5	SOLLECITAZIONI DI CALCOLO	115
	8.4.1		
	8.4.2		
	8.4.1	SOLLECITAZIONI DISTRIBUITE IN TESTA AI PALI DI FONDAZIONE	118
9	VER	IFICHE STRUTTURALI DEL FUSTO PILA	119
9.	1 (GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA	119
	9.1.1	ARMATURA LONGITUDINALE	
	9.1.2	,	
		VERIFICA DELL'ARMATURA MINIMA	
9.2		/ERIFICA SLU A FLESSIONE	
9.3		/ERIFICA SLU A TAGLIO	
9.4		/ERIFICA SLE TENSIONALE	
9.	5 \	/ERIFICA SLE A FESSURAZIONE	126
9.0	6 \	/ERIFICA DEGLI SPOSTAMENTI	126
10	VER	IFICHE STRUTTURALI DEI PALI DI FONDAZIONE	127
10).1 (GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA	127
10	.2 \	/ERIFICA SLU A PRESSOFLESSIONE	128
10	.3 \	/ERIFICA SLU A TAGLIO	130
10	.4 \	/ERIFICA SLE TENSIONALE	131
10).5 \	/ERIFICA SLE A FESSURAZIONE	131
11	VER	IFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE	132
11	.1 \	/ERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE	132
		1 GEOMETRIA DEL TIRANTE-PUNTONE	
		2 SEZIONE DEL TIRANTE DI ARMATURA E DELLA BIELLA COMPRESSA	
		3 VERIFICHE SLU DELLE TENSIONI NORMALI	
		4 VERIFICHE SLE DELLE TENSIONI NORMALI	
11	.2 \	/ERIFICA SLU A PUNZONAMENTO	137

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 Pile 07-08-09-12: Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0205 003
 B
 5 di 140

11.3	VERIFICA SLE A FESSURAZIONE	139
12 IN	ICIDENZE	140

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO IF1N 01 E ZZ CODIFICA CL

DOCUMENTO VI0205 003

FOGLIO REV. в

6 di 140

1 **PREMESSA**

Nell'ambito dell' Itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Cancello - Benevento - 1° Lotto Funzionale Cancello-Frasso Telesino e Variante alla Linea Roma-Napoli Via Cassino nel Comune di Maddaloni (compreso il Collegamento Merci con lo scalo di Marcianise - Collegamento Benevento-Marcianise) oggetto della Progettazione Esecutiva in esame.

Oggetto della presente relazione è il dimensionamento degli elementi in elevazione e fondazione costituenti le Pile P07, P08, P09 e P12 del Viadotto Cancello_VI02.

Nella presente relazione sono riportati in forma sintetica i risultati della analisi delle sollecitazioni e delle verifiche strutturali del fusto pila, del plinto di fondazione e dei pali di fondazione, con riferimento alla pila avente la maggiore altezza di fusto tra quelle indicate.

Pila	H fusto [m]	H tot [m]
P07	5.0	6.9
P08	5.0	6.9
P09	5.0	6.9
P12	4.4	6.3

Nell'allegato 2 alla presente relazione sono riportati in forma completa i risultati delle analisi delle sollecitazioni e delle verifiche strutturali della pila avente altezza maggiore tra quelle appartenenti al gruppo di pile preso in considerazione.

Nel seguito si procede al calcolo dello stato di sollecitazione ed alle verifiche dei vari elementi costituenti la pila, nei confronti degli Stati Limite Ultimi strutturali di presso-flessione e taglio e degli stati limite di esercizio di fessurazione e tensionale.

Si esegue inoltre la determinazione delle azioni massime sui pali di fondazione e la verifica del plinto di fondazione nei confronti degli stati limite ultimi e di esercizio strutturali.

Sono eseguite infine le verifiche strutturali dei pali di fondazione nei confronti degli stati limite ultimi e di esercizio strutturali.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

SA LOTTO CODIFICA

01 E ZZ CL

DOCUMENTO
VI0205 003

REV. F

FOGLIO 7 di 140

2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 NORMATIVE

Sono state prese a riferimento le seguenti Normative nazionali ed internazionali vigenti alla data di redazione del presente documento:

IF1N

- [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- [3] Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- [4] Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- [5] Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- [6] Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- [7] Istruzione RFI DTC INC PO SP IFS 004 Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- [8] Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- [9] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

2.2 ELABORATI DI RIFERIMENTO

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO VI0205 003

REV.

FOGLIO 9 di 140

3 MATERIALI

3.1 CALCESTRUZZO PER FUSTO PILA E PULVINO

CI	lasse	C32/	40

R _{ck} =	40.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 R_{ck} =$	33.20	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	41.20	MPa	Valore medio resistenza cilindrica
$\alpha_{cc} =$	0.85		Coeff. rid. per carichi di lunga durata
γм =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} \; f_{ck}/\gamma_M =$	18.81	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	3.10	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1,2 f_{ctm} =$	3.72	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	2.17	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0.55 \; f_{ck} =$	18.26	MPa	Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])
$\sigma_c = 0.40 \; f_{ck} =$	13.28	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	33643.00	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+v))=$	14018.00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Debolmer	nte aggre	ssive
Classe di esposizione =	XC4		
c =	4.00	cm	Copriferro minimo
W =	0.20	mm	Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3])

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO
VI0205 003

REV. FOGLIO **B** 10 di 140

3.2 CALCESTRUZZO PER PLINTO DI FONDAZIONE

Classe	C28	/35
Classe	\cup	$^{\prime}$

R _{ck} =	35.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 R_{ck} =$	29.05	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	37.05	MPa	Valore medio resistenza cilindrica
$\alpha_{cc} =$	0.85		Coeff. rid. per carichi di lunga durata
γ _M =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} f_{ck} / \gamma_M =$	16.46	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	2.83	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1,2 f_{ctm} =$	3.40	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	1.98	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0{,}55 \; f_{ck} =$	15.98	MPa	Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])
$\sigma_c = 0.40 \; f_{ck} =$	11.62	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	32588.00	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+v)=$	13578.00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Ordinarie		
Classe di esposizione =	XC2		
c =	4.00	cm	Copriferro minimo
w =	0.30	mm	Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3])

CL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA IF1N

LOTTO CODIFICA

01 E ZZ

DOCUMENTO VI0205 003

REV.

FOGLIO 11 di 140

3.3 CALCESTRUZZO PER PALI DI FONDAZIONE

\mathbf{C}	lasse	C_{2}	5	12	Λ
٠,	14558	\ <i>,</i> _	:)/	. 7	.,

R _{ck} =	30.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 \; R_{ck} =$	24.90	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	Valore medio resistenza cilindrica
$\alpha_{cc} =$	0.85		Coeff. rid. per carichi di lunga durata
γ _M =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} f_{ck} / \gamma_M =$	14.11	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	2.56	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1,2 f_{ctm} =$	3.07	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	1.79	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0{,}55 \; f_{ck} =$	13.70	MPa	Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])
$\sigma_c = 0,40 \; f_{ck} =$	9.96	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	31447.00	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+v)=$	13103.00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Ordinarie		
Classe di esposizione =	XC2		
C =	6.00	cm	Copriferro minimo
w =	0.30	mm	Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3])

Pile 07-08-09-12: Relazione di calcolo

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0205 003
 B
 12 di 140

3.4 ACCIAIO PER BARRE DI ARMATURA

B450C			
$f_{yk} \ge$	450.00	MPa	Tensione caratteristica di snervamento
f _{tk} ≥	540.00	MPa	Tensione caratteristica di rottura
$(f_t / f_y)_{k \ge 1}$	1.15		
$(f_t / f_y)_k <$	1.35		
γ _s =	1.15	-	Coefficiente parziale di sicurezza SLU
$f_{yd} = f_{yk}/\gamma_s =$	391.30	MPa	Tensione caratteristica di snervamento
E _s =	210000.00	MPa	Modulo elastico di progetto
$\epsilon_{yd} =$	0.20	%	Deformazione di progetto a snervamento
$\epsilon_{uk} = (A_{gt})_k$	7.50	%	Deformazione caratteristica ultima
$\sigma_s = 0.75 \; f_{yk} =$	337.50	MPa	Tensione in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])

4 CARATTERIZZAZIONE GEOTECNICA

4.1 CARATTERIZZAZIONE GEOTECNICA

Per la definizione della categoria di suolo delle opere appartenenti alla tratta in oggetto si rimanda all'elaborato progettuale "IF1N.0.1.E.ZZ.RB.GE.00.0.5.001.A - Relazione geotecnica generale di linea delle opere all'aperto".

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

CODIFICA

DOCUMENTO VI0205 003

REV.

FOGLIO 14 di 140

5 DESCRIZIONE DELLA STRUTTURA

Il *Viadotto Cancello_VI02*, a doppio binario, si estende tra le progressive km 1+828 e km 2+201, per uno sviluppo complessivo di 372,70 m, ed è realizzato con 15 campate isostatiche, di cui:

- √ 14 campate di luce in asse sottostrutture pari a 25,00 m, realizzate con impalcati della tipologia a 4 cassoncini in c.a.p.;
- ✓ 1 campata (tra la pila P10 e la pila P11) di luce in asse sottostrutture pari a 22,70 m, realizzata con implacato della tipologia travi in acciaio incorporate nel calcestruzzo.

Il viadotto è costituito da due tipologie di impalcato: a cassoncini in c.a.p. e a travi in acciaio incorporate.

La <u>prima tipologia di impalcato</u> è realizzato con 4 cassoncini accostati in c.a.p. e soletta gettata in opera. La luce è pari a 25 m misurata in asse pile. La lunghezza complessiva delle travi prefabbricate è pari a 24,30 m e la luce tra gli appoggi è pari a 22,80 m. La larghezza dell'impalcato è pari a 13,70 m, necessaria al fine di ospitare il "nuovo tipologico" di barriere antirumore. L'armamento è di tipo tradizionale su ballast.

La <u>seconda tipologia di impalcato</u> è realizzato con travi incorporate in un getto di calcestruzzo e presenta una campata unica di lunghezza 22,70 m in asse pile e luce tra gli appoggi pari a 21,00 m. L'impalcato ha una larghezza costante di 13,70 m ed è costituito da 16 profili HLM 1100 posti ad interasse di 0,577 m. L'altezza massima della sola struttura dell'impalcato è pari a 82 cm in asse impalcato e la distanza tra il piano del ferro e il sotto trave è pari a 2.06 m. L'armamento è di tipo tradizionale su ballast.

Le <u>pile</u>, di altezza fusto variabile tra 3,40 m e 5,90 m, sono realizzate in c.a.o. gettato in opera. Presentano un fusto a sezione rettangolare cava di dimensioni esterne 2,60 m x 8,60 m con raccordi di raggio pari ad 1 m ed un motivo "a lesena" nella parte centrale del fusto su tutti e quattro i lati. Le fondazioni sono realizzate con pali trivellati del diametro Φ 1200 mm. Il fusto presenta la sezione tipologica 2,60 m x 8,60 m e un'altezza pari a 5,90 m. La fondazione è costituita da un plinto su 9 pali di diametro pari a 1200 mm.

Le <u>fondazioni</u> sono realizzate con plinti rettangolari in c.a. con pali trivellati del diametro Φ 1200 mm, posti ad un interasse pari a 3 diametri.

Con riferimento alle sottostrutture prese in considerazione nella presente relazione, le tipologie di impalcato, la geometria del fusto e la geometria del plinto e dei pali sono sintetizzate nella seguente tabella:

Pila	Impalcato precedente	Impalcato successivo	Fusto	Dimensioni plinto	Pali
P07	4 c.a.p. (L=25m)	4 c.a.p. (L=25m)	2.6m x 8.6m x 5m	9.6m x 9.6m x 2.5m	9 ø1200
P08	4 c.a.p. (L=25m)	4 c.a.p. (L=25m)	2.6m x 8.6m x 5m	9.6m x 9.6m x 2.5m	9 ø1200
P09	4 c.a.p. (L=25m)	4 c.a.p. (L=25m)	2.6m x 8.6m x 5m	9.6m x 9.6m x 2.5m	9 ø1200
P12	4 c.a.p. (L=25m)	4 c.a.p. (L=25m)	2.6m x 8.6m x 4.4m	9.6m x 9.6m x 2.5m	9 ø1200

A seguire si riportano delle immagini che illustrano la geometria della pila (prospetto frontale e sezione orizzontale del fusto) e del plinto di fondazione (vista in pianta).

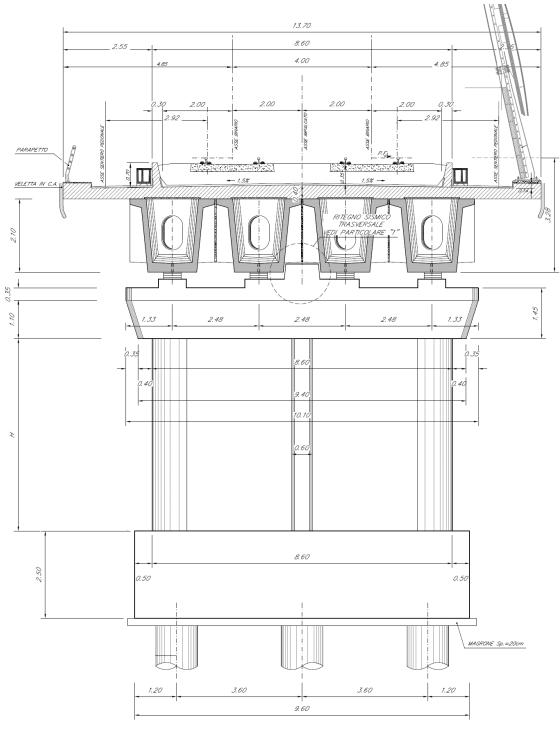


Figura 1 – Pila, prospetto frontale – Impalcato in C.A.P. [m]

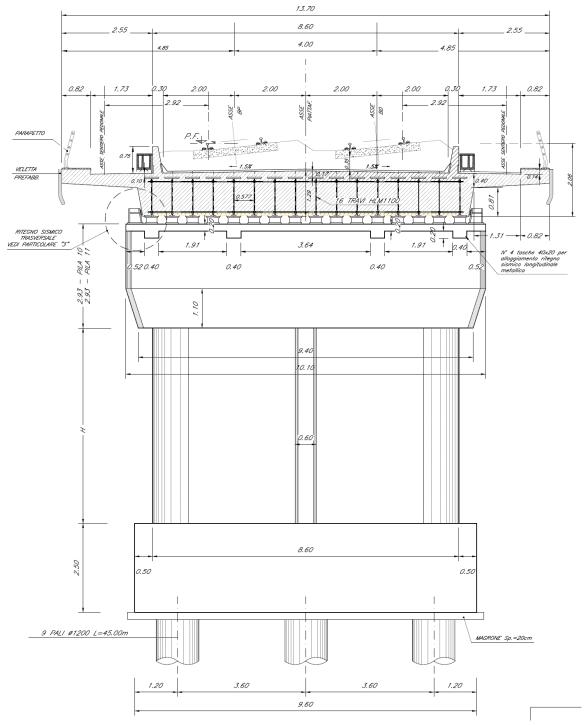


Figura 2 – Pila, prospetto frontale – Impalcato con travi incorporate. [m]

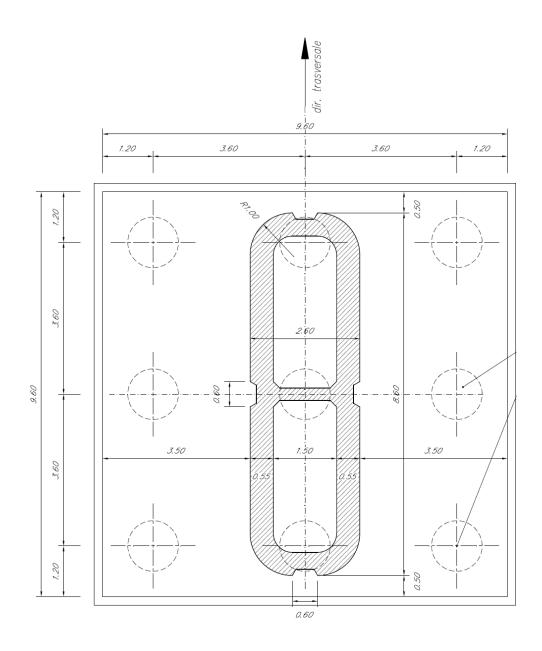


Figura 3 – Plinto di fondazione e pali, vista in pianta - Sezione del fusto pila [m]

Le seguenti figure illustrano la geometria del pulvino della pila in prospetto longitudinale, differenziata a seconda delle tipologia di impalcato che afferisce alla pila i-esima.

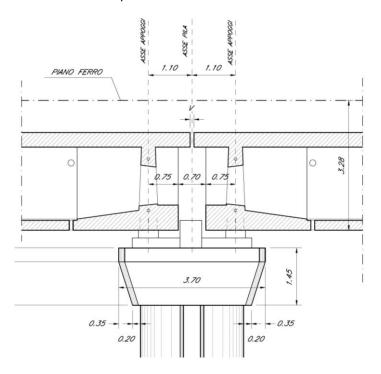


Figura 4 - Pila, prospetto longitudinale - Due impalcati CAP

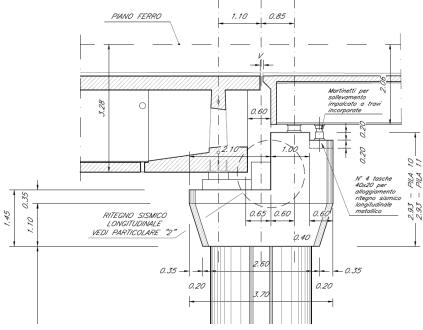


Figura 5 – Pila, prospetto longitudinale – Impalcato in CAP ed impalcato a travi incorporate

Si riportano a seguire due immagini che illustrano lo schema vincolare della campata isostatica i-esima ed il relativo dettaglio della pila i-esima (sono rappresentati due impalcati tipologici).

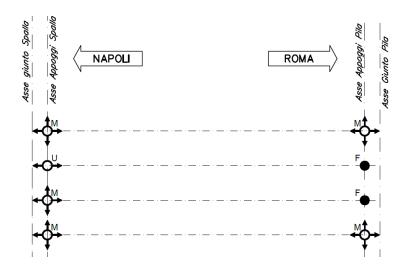


Figura 6 – Viadotto VI06 – Schema vincolare campata isostatica i-esima

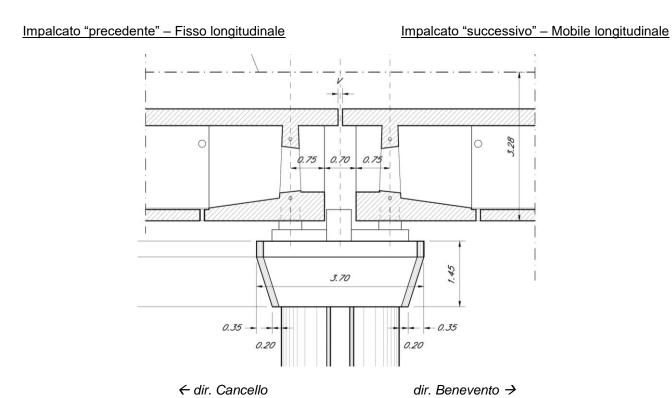


Figura 7 – Viadotto VI06 – Schema vincolare pila i-esima

6 ANALISI DEI CARICHI

Di seguito si riporta l'analisi dei carichi agenti sulla pila e derivanti dagli impalcati afferenti.

Le azioni e le reazioni riportate sono riferite al seguente sistema di riferimento:

• asse 1 o asse X: asse longitudinale;

asse 2 o asse Y: asse trasversale;

asse 3 o asse Z: asse verticale.

6.1 PERMANENTI STRUTTURALI (G1)

6.1.1 PESO PROPRIO IMPALCATI

L'impalcato a singola campata isostatica, di luce pari a 25 m in asse ai giunti (22,80 m asse appoggi), è costituito da 4 cassoncini in c.a.p. solidarizzati da trasversi gettati in opera. La soletta è di spessore variabile tra 30 cm e 40 cm ed è anch'essa gettata in opera su predalles prefabbricate.

I carichi afferenti al peso proprio degli impalcati sono calcolati sulla base delle caratteristiche geometriche e del peso unitario di ciascun elemento, come riportato a seguire.

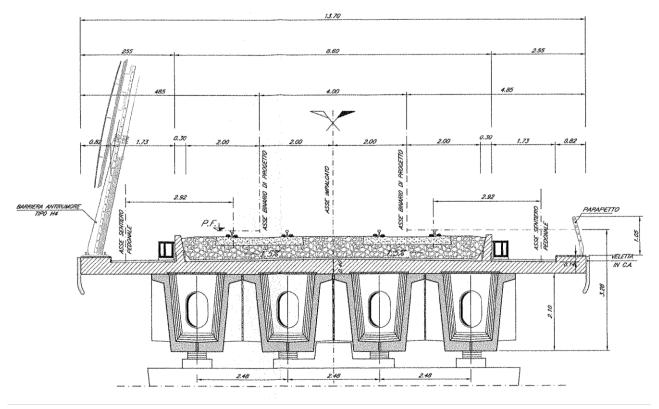


Figura 8 – Impalcato quadri cassone in c.a.p. (L=25m) – Sezione trasversale tipologica [m]

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA

IF1N

LOTTO

01 E ZZ

CODIFICA

CL

DOCUMENTO

VI0205 003

REV.

FOGLIO 21 di 140

	IMPALCATO)-SX	IMPALCATO	D-DX
Peso proprio travi				
A,1 sezione testata =	2,01	m2	2,01	m2
A,1 sezione media transizione =	1,60	m2	1,60	m2
A,1 sezione corrente =	1,13	m2	1,13	m2
L,testata =	1,50	m	1,50	m
L,zona transizione =	3,60	m	3,60	m
L,corrente =	19,20	m	19,20	m
L,tot =	24,30	m	24,30	m
V,1 trave =	30,47	m3	30,47	m3
peso unitario travi =	25,00	kN/m3	25,00	kN/m3
P,1 trave =	761,78	kN	761,78	kN
Peso proprio trasversi				
A,1 sez trasverso testata =	2,76	m2	2,76	m2
A,1 sez trasverso corrente =	3,64	m2	3,64	m2
s,trasverso testata =	0,40	m	0,40	m
s,trasverso corrente =	0,25	m	0,25	m
V,1 trave trasversi =	4,03	m3	4,03	m3
peso unitario trasversi =	25,00	kN/m3	25,00	kN/m3
P,1 trave trasv =	100,70	kN	100,70	kN
Peso proprio totale travi e trasver	<u>si</u>			
P,1 trave+trasv =	862,48	kN	862,48	kN
N,travi =	4,00		4,00	
P,tot travi+trasv =	3449,90	kN	3449,90	kN

Peso proprio soletta

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

ile 07-08-09-12: Relazione di calcolo		COMMESSA IF1N	LOTTO 01 E ZZ	CODIFICA	DOCUMENTO VI0205 003	REV.	FOGLIO 22 di 140
A soletta =	5,05	m2		5,05	m2		
L impalcato =	25,00	m		25,00	m		
peso unitario soletta =	25,00	kN/m	13	25,00	kN/m3		
P soletta =	3156,25	kN		3156,25	kN		
Peso proprio totale impalcato							
Peso impalcato =	6606,15	kN		6606,15	kN		
Risultanti reazioni vincolari							
F1 =	0			0			
F2 =	0			0			
F3 =	3303	kN		3303	kN		
M1 =	0			0			
M2 =	0			0			
M3 =	0			0			

6.1.2 PESO PROPRIO PILA

I carichi afferenti al peso proprio degli elementi costituenti la pila (fusto, pulvino e fondazioni) sono calcolati sulla base delle caratteristiche geometriche di ciascun elemento e considerando un peso unitario del calcestruzzo pari a 25,00 kN/m³.

6.2 PERMANENTI NON STRUTTURALI (G2)

I carichi permanenti non strutturali sono costituiti dal peso della massicciata, dal peso delle barriere antirumore e dal peso delle canalette portacavi. In aggiunta ai permanenti non strutturali portati dagli impalcati si hanno anche quelli costituiti dal riempimento della pila e dal sovraccarico del terreno di ricoprimento del plinto.

La normativa distingue tra ballast e permanenti non strutturali generici nell'assegnazione dei valori del coefficiente di combinazione (rif. §1.8.3.1 [3]), per questo motivo nei paragrafi a seguire i due casi di carico vengono trattati separatamente.

6.2.1 BALLAST (G21)

Secondo il §1.3.2 [3], ove non si eseguano valutazioni più dettagliate, la determinazione dei carichi permanenti portati relativi al peso della massicciata, armamento e dell'impermeabilizzazione potrà effettuarsi assumendo convenzionalmente, per linea in rettifilo, un peso di volume pari a 18,00 kN/m3, applicato su tutta la larghezza media compresa fra i muretti paraballast, per un'altezza media fra p.f. ed estradosso impalcato pari a 0,80 m. Per i ponti in curva si assume un peso convenzionale di 20 kN/m3.

M2 =

M3 =

IF1N

01 E ZZ

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

CL

0

0

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

VI0205 003

23 di 140

Pile 07-08-09-12: Relazione di calcolo

IMPALCATO - SX IMPALCATO - DX Peso ballast p,ballast rettifilo = 18,00 kN/m3 18,00 kN/m3 20,00 kN/m3 20,00 kN/m3 p,ballast curva = tracciato in curva (S/N) = S S p,ballast = 20,00 kN/m3 20,00 kN/m3 s ballast = 0,80 m 0,80 m L ballast = 8,30 m 8,30 m L impalcato = 25,00 25,00 P,tot ballast = 3320,00 kΝ 3320,00 kΝ Muretti paraballast 0,287 0,287 A,muretti paraballast (2) = m2 m2 25,00 kN/m3 25,00 kN/m3 peso unitario muretti = 179,13 kΝ 179,13 kΝ P,tot muretti = Peso totale massicciata 3499,13 3499,13 Peso totale massicciata = kΝ kΝ Risultanti reazioni vincolari F1 = 0 0 F2 = 0 F3 = kΝ 1750 1750 kΝ M1 =0 0

0

0

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0205 003
 B
 24 di 140

6.2.2 PERMANENTI NON STRUTTURALI GENERICI (G22)

6.2.2.1 AFFERENTI ALL'IMPALCATO

Pile 07-08-09-12: Relazione di calcolo

Secondo il §1.3.2 [3], nella progettazione di nuovi ponti ferroviari dovranno essere sempre considerati i pesi le azioni e gli ingombri associati all'introduzione delle barriere antirumore, anche nei casi in cui non ne sia originariamente prevista la realizzazione, assumendo un peso pari a 4,00 kN/m2 ed un'altezza minima di 4,00 m misurata dall'estradosso della soletta. Cautelativamente si considerano presenti barriere H4 ad entrambe le estremità dell'impalcato.

	IMPALCATO -	<u>SX</u>	IMPALCATO - I	<u>DX</u>
Peso barriere antirumore				
P,barriere =	4,00	kN/m2	4,00	kN/m2
B.A. lato sx =	H4		H4	
B.A. lato sdx =	H4		H4	
H,barriera sx (min. 4m) =	5,40	m	5,40	m
H,barriera dx (min. 4m) =	5,40	m	5,40	m
L impalcato =	25,00	m	25,00	m
P,tot barriere =	1080,00	kN	1080,00	kN
Peso cordoli, muretti paraballast, velette				
A,cordoli =	0,36	m2	0,36	m2
A,veletta =	0,19	m2	0,19	m2
P,tot arredi =	342,00	kN	342,00	kN
Peso canalette portacavi				
P,canalette =	5,00	kN/m	5,00	kN/m
P,tot canalette =	125,00	kN	125,00	kN
Permanenti non strutturali totali				
Permanenti tot =	1547,00	kN	1547,00	kN

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

IF1N	01 E ZZ	
COMMESSA	LOTTO	(

CODIFICA DOCUMENTO
CL VI0205 003

REV. FOGLIO **B** 25 di 140

Risultanti reazioni vincolari

F1 =	0		0	
F2 =	0		0	
F3 =	774	kN	774	kN
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

6.2.3 RIEMPIMENTO PILA E TERRENO DI RICOPRIMENTO

Il riempimento della pila ed il terreno di ricoprimento del plinto costituiscono un carico permanente portato agente sul plinto di fondazione al livello dell'estradosso plinto.

Le forze risultanti così calcolate vengono considerate come forze concentrate agenti in corrispondenza dell'estradosso del plinto.

Peso terreno di ricoprimento

Area ingombro pila:

along	2.0	111
dtrasv	8.6	m
Α	22.36	m2

Peso terreno:

dlong	9.6	m
dtrasv	9.6	m
hterr	1.16	m
gterr	20	kN/m3
Wterr	1619	kN

Peso riempimento pila

Assente.

Permanenti non strutturali pila totali

Pari a Wterr.

6.3 CARICHI DA TRAFFICO

Le azioni verticali associate ai convogli ferroviari si schematizzano mediante i modelli di carico teorici LM71 e SW/2.

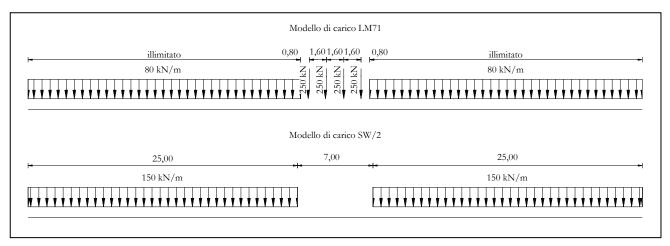


Figura 9 - Modelli di carico teorici LM71 e SW/2

Le differenti disposizioni degli assi e delle stese di carico considerate sono state definite in modo tale da massimizzare gli scarichi sulla pila:

- Disposizione 1: disposizione atta a massimizzare lo scarico assiale sulla pila. Prevede entrambi i binari di entrambe le campate caricati con i modelli LM71 e SW/2. Gli assi del LM71 e la stesa di carico di 25 m del SW/2 sono centrati sulla pila.
- Disposizione 2: disposizione atta a massimizzare il momento longitudinale (momento che "gira" intorno all'asse trasversale) sulla pila. Prevede entrambi i binari di un solo impalcato caricati con i modelli LM71 e SW/2. Gli assi del modello LM71 e la stesa di carico di 25 m del modello SW/2 sono posizionati a partire dall'estremità sinistra dell'impalcato di destra.
- Disposizione 3: disposizione atta a massimizzare il momento trasversale (momento che "gira" intorno all'asse longitudinale) sulla pila Prevede un solo binario di entrambi gli impalcati caricato il modello SW/2. La stesa di carico di 25 m del modello SW/2 è centrata sulla pila.
- Disposizione 4: disposizione atta a massimizzare il momento trasversale (momento che "gira" intorno all'asse longitudinale) sulla pila. Prevede un solo binario di entrambi gli impalcati caricato con il modello LM71. Gli assi del LM71 sono centrati sulla pila.
- Disposizione 5: disposizione atta a massimizzare lo scarico assiale sulla pila e contemporaneamente a creare un momento longitudinale (che "gira" intorno all'asse trasversale) sulla pila. Prevede entrambi i binari di entrambe le campate caricati con i modelli LM71 e SW/2. Gli assi del LM71 e la stesa di carico di 25 m del SW/2 sono posizionati a partire dall'estremità sinistra dell'impalcato di destra.
- Disposizione 6: disposizione atta a massimizzare lo scarico assiale sulla pila. Prevede entrambi i binari di entrambe le campate caricati con i modelli LM71 e SW/2. Gli assi del LM71 ed il tratto scarico di 7 m del SW/2 sono centrati sulla pila.
- Disposizione 7: disposizione atta a minimizzare lo scarico assiale sulla pila e contemporaneamente a massimizzare il momento longitudinale (momento che "gira" intorno all'asse trasversale. Prevede entrambi i binari di un solo impalcato caricati con i modelli LM71 e SW/2. Gli assi del modello LM71 e la stesa di carico di 25 m del modello SW/2 sono posizionati a partire dall'estremità sinistra dell'impalcato di destra.

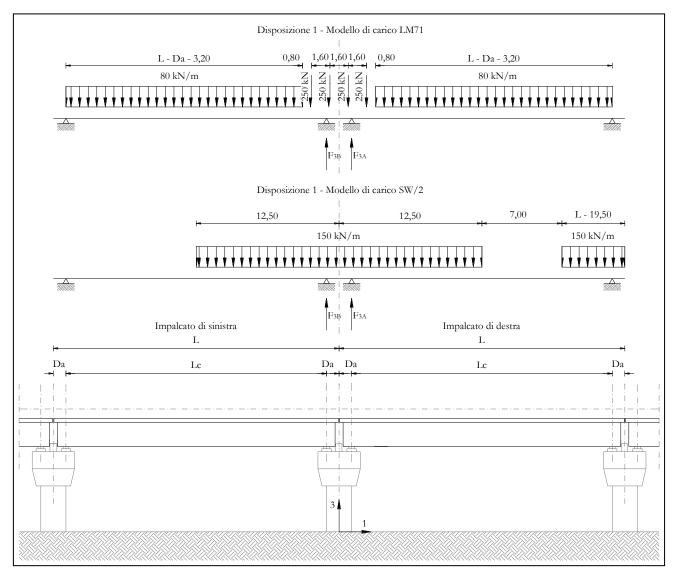


Figura 10 - Disposizione di carico 1

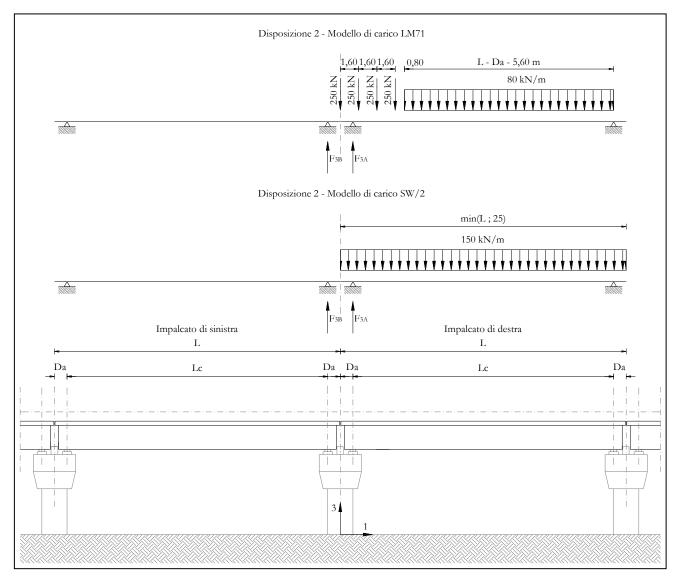


Figura 11 - Disposizione di carico 2

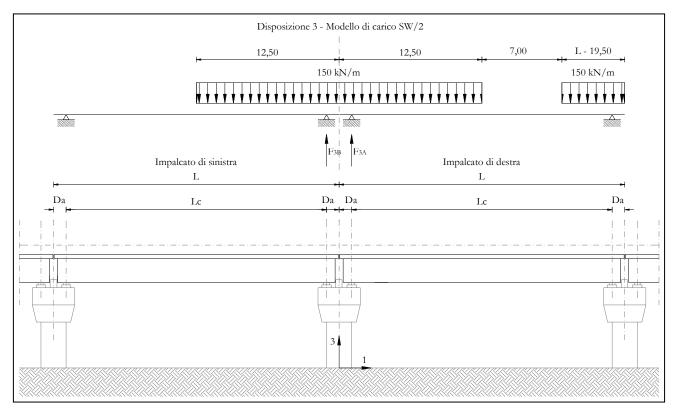


Figura 12 – Disposizione di carico 3

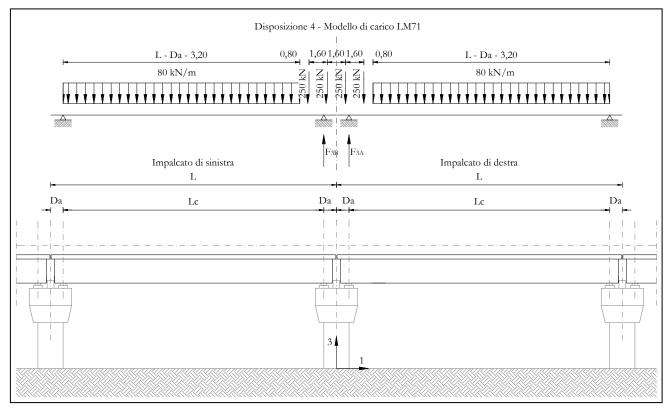


Figura 13 - Disposizione di carico 4

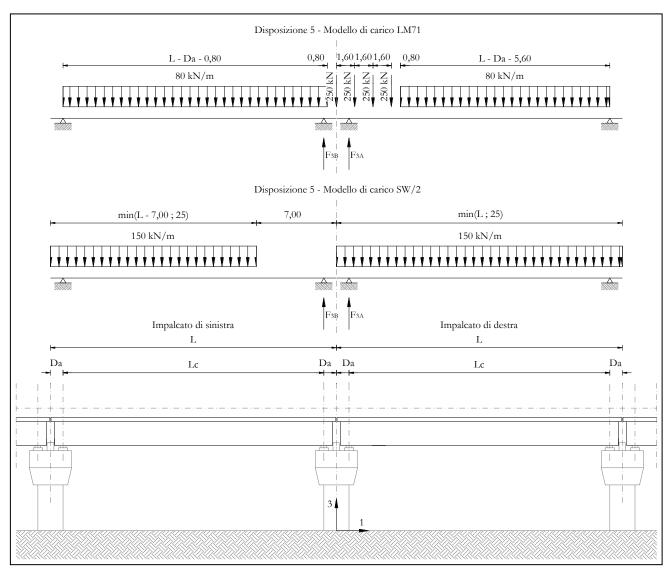


Figura 14 – Disposizione di carico 5

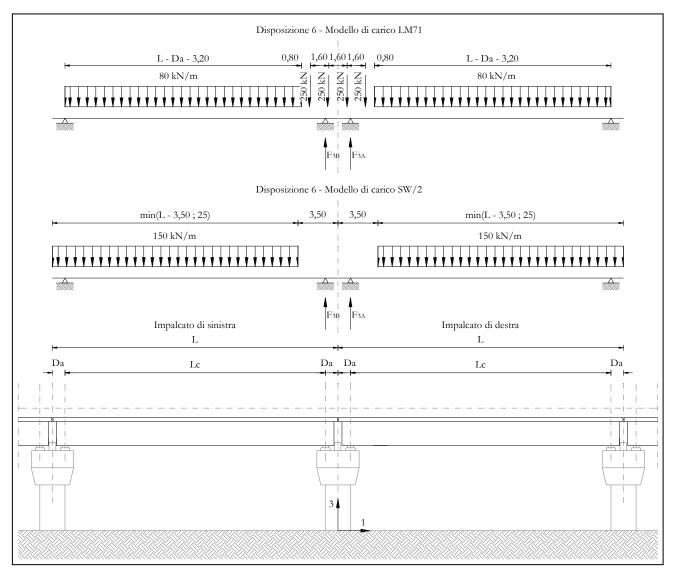


Figura 15 - Disposizione di carico 6

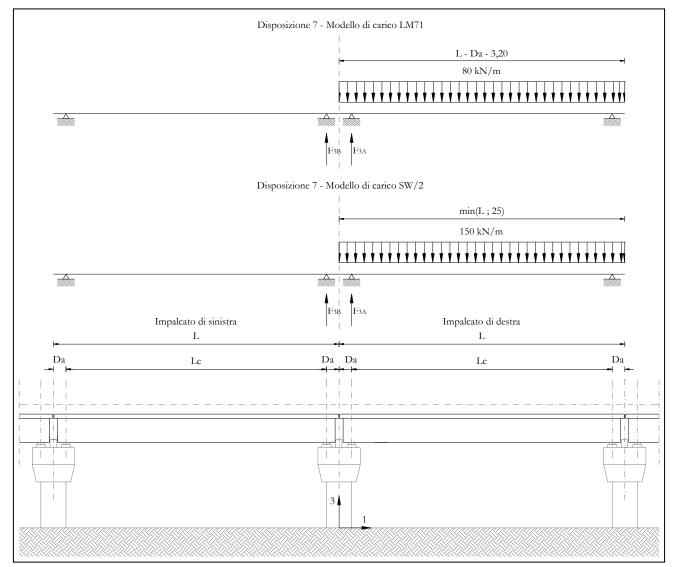


Figura 16 - Disposizione di carico 7

I valori caratteristici dei carichi attribuiti ai modelli di carico devono essere moltiplicati per il coefficiente α che deve assumersi come da tabella seguente:

Modello di carico	Coefficiente α
LM71	1,10
SW/2	1,00

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FOGLIO

34 di 140

Pile 07-08-09-12: Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.
	IF1N	01 E ZZ	CL	VI0205 003	В

ITINERA

I valori caratteristici dei carichi attribuiti ai modelli di carico devono essere moltiplicati per coefficienti che tengono conto dell'amplificazione dinamica. I coefficienti di amplificazione dinamica Φ si assumono pari a Φ_2 o Φ_3 in dipendenza dal livello di manutenzione della linea. In particolare si assumerà:

per linee con <u>elevato standard manutentivo</u>: $\Phi_2 = 1,44/(\sqrt{L_{\Phi} - 0.2}) + 0.82$ con limitazione $1,00 \le \Phi_2 \le 1,67$

• per linee con <u>normale standard manutentivo</u>: $\Phi_3 = 2,16/(\sqrt{L_{\Phi} - 0,2}) + 0,73$ con limitazione $1,00 \le \Phi_2 \le 2,00$

Pile con snellezza $\lambda \le 30$, spalle, fondazioni, muri di sostegno e spinte del terreno possono essere calcolate assumendo coefficienti dinamici unitari.

I pila	9.4	m4	inerzia pila
A pila	10.425	m2	area sez. pila
r_pila	0.95	m	raggio inerzia
H pila	6.9	m	altezza max
λ pila	14.5	< 30	snellezza
	IMPALCATO "A"		IMPALCATO "B"
Standard manutentivo =	Normale		Normale
Valori adottati:			
Φ elevazione =	1.00		1.00
Φ fondazioni =	1.00		1.00

6.3.1 CARICHI VERTICALI DA TRAFFICO (Q1)

Di seguito si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3.

6.3.1.1 DISPOSIZIONE DI CARICO 1 (Q11)

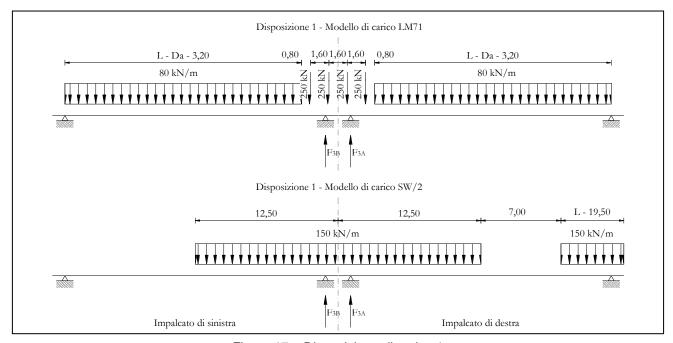


Figura 17 – Disposizione di carico 1

	IMPALCATO-SX		IMPALCATO-DX	
	Reazioni vin	colari B	Reazioni vin	colari A
Modello di carico LM71				
F3 =	1240,77	kN	1240,77	kN
α =	1,10		1,10	
eccentricità =	-1,92	m	-1,92	m
Modello di carico SW/2				
F3 =	1451,48	kN	1511,18	kN
α =	1,00		1,00	
eccentricità =	2,00	m	2,00	m

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA IF1N

CODIFICA

CL

LOTTO

01 E ZZ

DOCUMENTO VI0205 003

REV.

FOGLIO 36 di 140

Coeff.	di ampl	ificazione	dinamica
--------	---------	------------	----------

 $\varphi =$

1,00

1,00

Reazioni vincolari carichi variabili verticali

F3 =

2816,33

kΝ

2876,03

kΝ

Risultanti reazioni vincolari

F1 =

0

0

F2 =

0

0

F3 =

2816 282

kΝ kNm 2876 402

kΝ kNm

M1 =M2 =

M3 =

0

0

0

0

6.3.1.2 DISPOSIZIONE DI CARICO 1 (Q12)

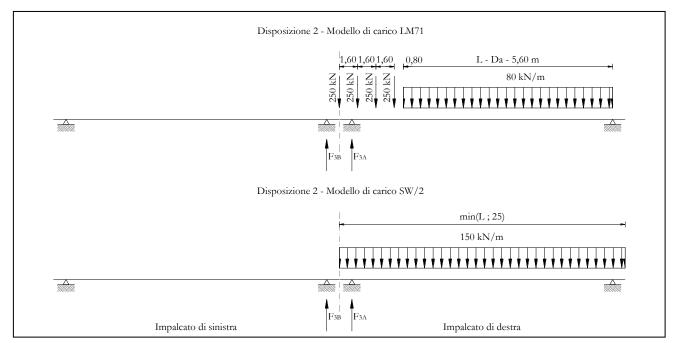


Figura 18 – Disposizione di carico 2

	IMPALCATO-SX		IMPALCATO-DX	
	Reazioni vince	olari B	Reazioni vinco	olari A
Modello di carico LM71				
F3 =	0,00	kN	1530,51	kN
α =	1,10		1,10	
eccentricità =	-1,92	m	-1,92	m
Modello di carico SW/2				
F3 =	0,00	kN	1875,00	kN
α =	1,00		1,00	
eccentricità =	2,00	m	2,00	m

Coeff. di amplificazione dinamica

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0205 003
 B
 38 di 140

φ =	1,00		1,00	
Reazioni vincolari carichi variabili vertical	i			
F3 =	0,00	kN	3558,56	kN
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	0		0	
F3 =	0	kN	3559	kN
M1 =	0	kNm	518	kNm
M2 =	0		0	
M3 =	0		0	

6.3.1.3 DISPOSIZIONE DI CARICO 1 (Q13)

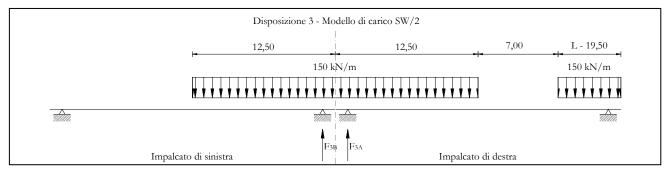


Figura 19 - Disposizione di carico 3

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-DX Reazioni vincolari	
Modello di carico LM71				
F3 = α = eccentricità =	0,00 1,10 -1,92	kN m	0,00 1,10 -1,92	kN m
Modello di carico SW/2				
F3 = α = eccentricità =	1451,48 1,00 2,00	kN m	1511,18 1,00 2,00	kN m
Coeff. di amplificazione dinamica				
φ =	1,00		1,00	
Reazioni vincolari carichi variabili verticali				
F3 =	1451,48	kN	1511,18	kN
Risultanti reazioni vincolari				
F1 =	0		0	

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0205 003
 B
 40 di 140

F2 =	0		0	
F3 =	1451	kN	1511	kN
M1 =	2903	kNm	3022	kNm
M2 =	0		0	
M3 =	0		0	

6.3.1.4 DISPOSIZIONE DI CARICO 1 (Q14)

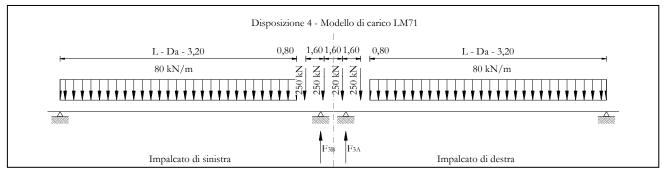


Figura 20 - Disposizione di carico 4

Modello di carico LM71	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-D Reazioni vincola	
F3 = α = eccentricità =	1240,77 1,10 2,08	kN m	1240,77 1,10 2,08	kN m
Modello di carico SW/2				
F3 = α = eccentricità =	0,00 1,00 -2,00	kN m	0,00 1,00 -2,00	kN m
Coeff. di amplificazione dinamica				
φ =	1,00		1,00	
Reazioni vincolari carichi variabili verticali				
F3 =	1364,85	kN	1364,85	kN

Risultanti reazioni vincolari

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	VI0205 003	В	42 di 140

F1 =	0		0	
F2 =	0		0	
F3 =	1365	kN	1365	kN
M1 =	2839	kNm	2839	kNm
M2 =	0		0	
M3 =	0		0	

6.3.1.5 DISPOSIZIONE DI CARICO 1 (Q15)

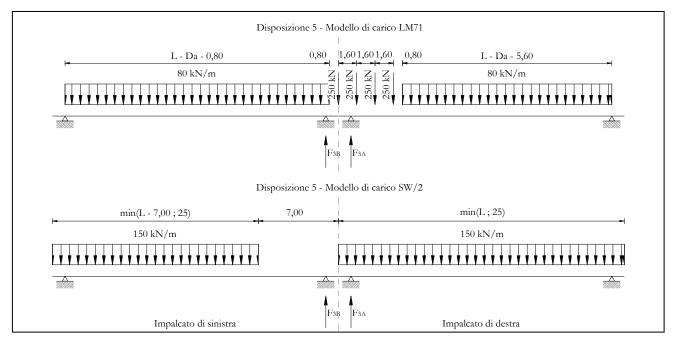


Figura 21 – Disposizione di carico 5

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-DX Reazioni vincolari A	
Modello di carico LM71				
F3 =	936,16	kN	1530,51	kN
α =	1,10		1,10	
eccentricità =	2,08	m	-1,92	m
Modello di carico SW/2				
F3 =	935,53	kN	1875,00	kN
α =	1,00		1,00	
eccentricità =	-2,00	m	2,00	m
Coeff. di amplificazione dinamica				
φ =	1,00		1,00	

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA IF1N LOTTO

01 E ZZ

CODIFICA CL DOCUMENTO VI0205 003

REV.

FOGLIO 44 di 140

Reazioni vincolari carichi variabili verticali

F3 =	1965,30	kN	3558,56	kN
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	0		0	
F3 =	1965	kN	3559	kN
M1 =	271	kNm	518	kNm
M2 =	0		0	
M3 =	0		0	

6.3.1.6 DISPOSIZIONE DI CARICO 1 (Q16)

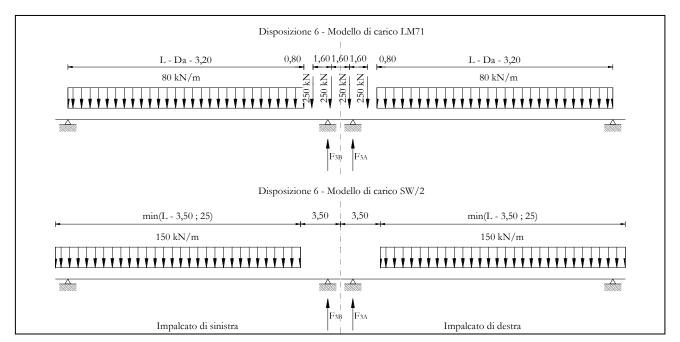


Figura 22 – Disposizione di carico 6

	IMPALCATO-SX		IMPALCATO-DX	
	Reazioni vinco	lari B	Reazioni vincolari A	
Modello di carico LM71				
F3 =	1240,77	kN	1240,77	kN
α =	1,10		1,10	
eccentricità =	-1,92	m	-1,92	m
Modello di carico SW/2				
F3 =	1364,97	kN	1364,97	kN
α =	1,00		1,00	
eccentricità =	2,00	m	2,00	m
Coeff. di amplificazione dinamica				
φ =	1,00		1,00	

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO REV.

VI0205 003

REV. FOGLIO **B** 46 di 140

Reazioni vincolari carichi variabili verticali

F3 =	2729,82	kN	2729,82	kN
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	0		0	
F3 =	2730	kN	2730	kN
M1 =	109	kNm	109	kNm
M2 =	0		0	
M3 =	0		0	

6.3.1.7 DISPOSIZIONE DI CARICO 1 (Q17)

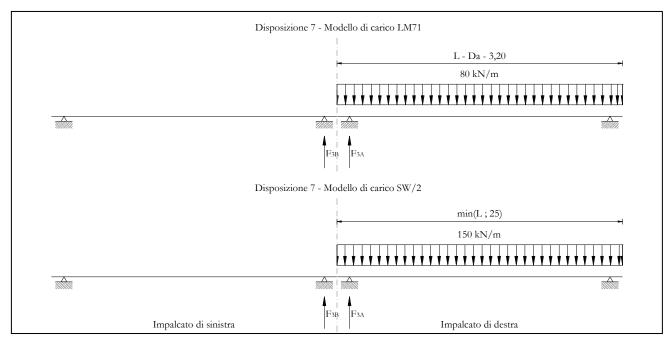


Figura 23 – Disposizione di carico 7

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-DX Reazioni vincolari A	
Modello di carico LM71				
F3 = α = eccentricità =	0,00 1,10 -1,92	kN m	1002,12 1,10 -1,92	kN m
Modello di carico SW/2				
$F3 = \alpha = $ eccentricità =	0,00 1,00 2,00	kN m	1875,00 1,00 2,00	kN m
Coeff. di amplificazione dinamica				
φ =	1,00		1,00	

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO VI0205 003

REV.

FOGLIO 48 di 140

Reazioni vincolari carichi variabili verticali

F3 =	0,00	kN	2977,34	kN
Risultanti reazioni vincolari				
E4 _	0		0	
F1 =	0		0	
F2 =	0		0	
F3 =	0	kN	2977	kN
M1 =	0	kNm	1634	kNm
M2 =	0		0	
M3 =	0		0	

ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO**

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA Pile 07-08-09-12: Relazione di calcolo

LOTTO CODIFICA DOCUMENTO

REV. FOGLIO

01 E ZZ VI0205 003 49 di 140 IF1N CL

6.3.2 AZIONI DI AVVIAMENTO E FRENATURA (Q2)

La azioni di frenatura e avviamento sono costituite da forze uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato. I valori da considerare sono i seguenti:

 $= 33 \text{ kN/m} \cdot \text{L} \le 1000 \text{ kN}$ per i modelli di carico LM71,SW/2 avviamento: $Q_{la,k}$

frenatura: $= 20 \text{ kN/m} \cdot \text{L} \le 6000 \text{ kN}$ per i modelli di carico LM71 $Q_{lb,k}$

> $Q_{lb,k}$ =35 kN/mper i modelli di carico SW/2

I valori caratteristici dell'azione di frenatura e di avviamento devono essere moltiplicati per α e non devono essere moltiplicati per Φ.

Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento e l'altro in fase di frenatura.

Gli effetti di interazione relativamente alle azioni di frenatura e avviamento si tengono conto applicando ai valori della risultante un coefficiente α_h che tiene conto del rapporto di rigidezza tra le pile del viadotto. Per la determinazione dei coefficienti si rimanda al §6.6.3 della presente relazione.

Nei sottoparagrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3.

6.3.2.1 DISPOSIZIONE DI CARICO 1 (Q21)

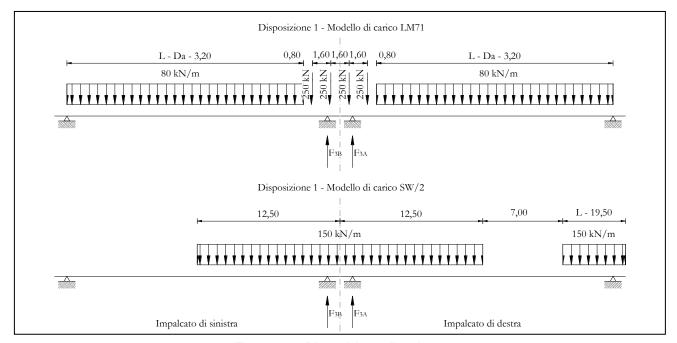


Figura 24 - Disposizione di carico 1

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO- Reazioni vinco	
Avviamento LM71				
f avv =	33,00	kN/m	33,00	kN/m
α =	1,10		1,10	
L caricata =	25,00	m	25,00	m
F avv (max 1000 kN) =	825,00	kN	825,00	kN
F1 =	907,50	kN	907,50	kN
Avviamento SW/2				
f avv =	33,00	kN/m	33,00	kN/m
α =	1,00		1,00	
L caricata =	12,50	m	18,00	m
F avv (max 1000 kN) =	412,50	kN	594,00	kN
F1 =	412,50	kN	594,00	kN

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12:	Relazione di	i calco	lo
-------------------	--------------	---------	----

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO VI0205 003

REV.

FOGLIO **51 di 140**

Frenatura LM71				
f fren =	20,00	kN/m	20,00	kN/m
α =	1,10		1,10	
L caricata =	25,00	m	25,00	m
F fren (max 6000 kN) =	500,00	kN	500,00	kN
F1 =	550,00	kN	550,00	kN
Frenatura SW/2				
f fren =	35,00	kN/m	35,00	kN/m
α =	1,00		1,00	
L caricata =	12,50	m	18,00	m
F fren =	437,50	kN	630,00	kN
F1 =	437,50	kN	630,00	kN
αhp interazione semplificata				
αhp frenatura per LM71 =	1,60		1,60	
αhp frenatura per SW/2 =	1,30		1,30	
αhp avviam. per LM71 SW/2 =	1,12		1,12	
Forza totale di avviamento e frenatura				
F1 =	1585,15	kN	1835,40	kN
h rispetto a intradosso imp. =	3,28	m	3,28	m
tipologia vincolo =	UL		F	
Risultanti reazioni vincolari				
F1 =	0	kN	-1835	kN
F2 =	0		0	
F3 =	228	kN	-264	kN
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

6.3.2.2 DISPOSIZIONE DI CARICO 2 (Q22)

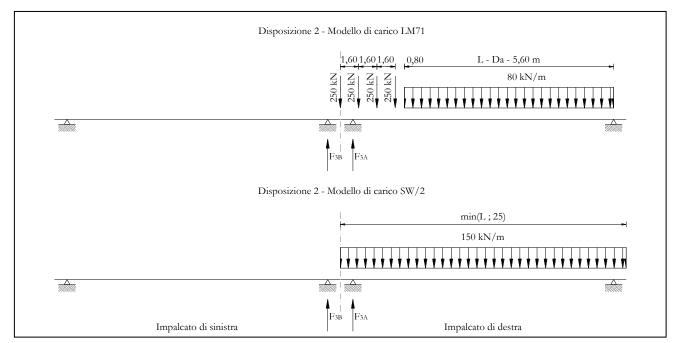


Figura 25 – Disposizione di carico 2

	IMPALCAT	IMPALCATO-SX		O-DX	
	Reazioni vi	ncolari B	Reazioni vii	ncolari A	
Avviamento LM71					
f avv =	33,00	kN/m	33,00	kN/m	
α =	1,10		1,10		
L caricata =	0,00	m	25,00	m	
F avv (max 1000 kN) =	0,00	kN	825,00	kN	
F1 =	0,00	kN	907,50	kN	
Avviamento SW/2					
f avv =	33,00	kN/m	33,00	kN/m	
α =	1,00		1,00		
L caricata =	0,00	m	25,00	m	
F avv (max 1000 kN) =	0,00	kN	825,00	kN	
F1 =	0,00	kN	825,00	kN	

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12:	Relazione di	i calco	lo
-------------------	--------------	---------	----

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO VI0205 003

REV.

FOGLIO 53 di 140

Frenatura LM71				
f fren =	20,00	kN/m	20,00	kN/m
α =	1,10		1,10	
L caricata =	0,00	m	25,00	m
F fren (max 6000 kN) =	0,00	kN	500,00	kN
F1 =	0,00	kN	550,00	kN
Frenatura SW/2				
f fren =	35,00	kN/m	35,00	kN/m
α =	1,00		1,00	
L caricata =	0,00	m	25,00	m
F fren =	0,00	kN	875,00	kN
F1 =	0,00	kN	875,00	kN
αhp interazione semplificata				
αhp frenatura per LM71 =	1,60		1,60	
αhp frenatura per SW/2 =	1,30		1,30	
αhp avviam. per LM71 SW/2 =	1,12		1,12	
Forza totale di avviamento e frenatura				
F1 =	0,00	kN	2153,90	kN
h rispetto a intradosso imp. =	3,28	m	3,28	m
tipologia vincolo =	UL		F	
Risultanti reazioni vincolari				
F1 =	0	kN	-2154	kN
F2 =	0		0	
F3 =	0	kN	-310	kN
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

6.3.2.3 DISPOSIZIONE DI CARICO 3 (Q23)

Figura 26 - Disposizione di carico 3

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-DX Reazioni vincolari A	
Avviamento LM71				
f avv =	33,00	kN/m	33,00	kN/m
α =	1,10		1,10	
L caricata =	0,00	m	0,00	m
F avv (max 1000 kN) =	0,00	kN	0,00	kN
F1 =	0,00	kN	0,00	kN
Avviamento SW/2				
f avv =	33,00	kN/m	33,00	kN/m
α =	1,00		1,00	
L caricata =	12,50	m	18,00	m
F avv (max 1000 kN) =	412,50	kN	594,00	kN
F1 =	412,50	kN	594,00	kN
Frenatura LM71				
f fren =	20,00	kN/m	20,00	kN/m
α =	1,10		1,10	
L caricata =	0,00	m	0,00	m

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo	COMMESSA IF1N	LOTTO 01 E ZZ	CODIFICA CL	DOCUMENTO VI0205 003	REV. B	FOGLIO 55 di 140
F fren (max 6000 kN) =	0,00	kN		0,00	kN	
F1 =	0,00	kN		0,00	kN	
Frenatura SW/2						
f fren =	35,00	kN/m		35,00	kN/m	
α =	1,00			1,00		
L caricata =	12,50	m		18,00	m	
F fren =	437,50	kN		630,00	kN	
F1 =	437,50	kN		630,00	kN	
αhp interazione semplificata						
αhp frenatura per LM71 =	1,60			1,60		
αhp frenatura per SW/2 =	1,30			1,30		
αhp avviam. per LM71 SW/2 =	1,12			1,12		
Forza totale di avviamento e frenatura						
F1 =	568,75	kN		819,00	kN	
h rispetto a intradosso imp. =	3,28	m		3,28	m	
tipologia vincolo =	UL			F		
Risultanti reazioni vincolari						
F1 =	0	kN		-819	kN	
F2 =	0			0		
F3 =	82	kN		-118	kN	
M1 =	0			0		
M2 =	0			0		
M3 =	0			0		

6.3.2.4 DISPOSIZIONE DI CARICO 4 (Q24)

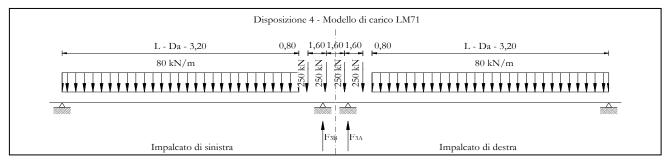


Figura 27 - Disposizione di carico 4

Avviamento LM71	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-DX Reazioni vincolari A	
f avv = α = L caricata = F avv (max 1000 kN) =	33,00 1,10 25,00 825,00	kN/m m kN	33,00 1,10 25,00 825,00	kN/m m kN
F1 =	907,50	kN	907,50	kN
Avviamento SW/2				
f avv = α = L caricata = F avv (max 1000 kN) =	33,00 1,00 0,00 0,00	kN/m m kN	33,00 1,00 0,00 0,00	kN/m m kN
F1 = Frenatura LM71	0,00	kN	0,00	kN
f fren = α = L caricata =	20,00 1,10 25,00	kN/m m	20,00 1,10 25,00	kN/m m

Pile 07-08-09-12: Relazione di calcolo

COMMESSA

LOTTO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

CODIFICA

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

DOCUMENTO

REV.

FOGLIO

The U7-00-09-12. Relazione di Calcolo	IF1N	01 E ZZ CL	VI0205 003	В	57 di 140
F fren (max 6000 kN) =	500,00	kN	500,00	kN	
F1 =	550,00	kN	550,00	kN	
Frenatura SW/2					
f fren =	35,00	kN/m	35,00	kN/m	
α =	1,00		1,00		
L caricata =	0,00	m	0,00	m	
F fren =	0,00	kN	0,00	kN	
F1 =	0,00	kN	0,00	kN	
αhp interazione semplificata					
αhp frenatura per LM71 =	1,60		1,60		
αhp frenatura per SW/2 =	1,30		1,30		
αhp avviam. per LM71 SW/2 =	1,12		1,12		
Forza totale di avviamento e frenatura					
F1 =	1016,40	kN	1016,40	kN	
h rispetto a intradosso imp. =	3,28	m	3,28	m	
tipologia vincolo =	UL		F		
Risultanti reazioni vincolari					
F1 =	0	kN	-1016	kN	
F2 =	0		0		
F3 =	146	kN	-146	kN	
M1 =	0		0		
M2 =	0		0		
M3 =	0		0		

6.3.2.5 DISPOSIZIONE DI CARICO 5 (Q25)

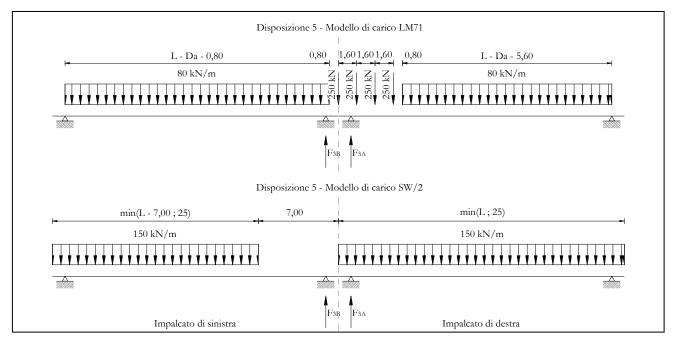


Figura 28 – Disposizione di carico 5

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-DX Reazioni vincolari A	
Avviamento LM71				
f avv =	33,00	kN/m	33,00	kN/m
α =	1,10		1,10	
L caricata =	25,00	m	25,00	m
F avv (max 1000 kN) =	825,00	kN	825,00	kN
F1 =	907,50	kN	907,50	kN
Avviamento SW/2				
f avv =	33,00	kN/m	33,00	kN/m
α =	1,00		1,00	
L caricata =	18,00	m	25,00	m
F avv (max 1000 kN) =	594,00	kN	825,00	kN
F1 =	594,00	kN	825,00	kN

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO VI0205 003

REV. F

FOGLIO **59 di 140**

Frenatura LM71				
f fren =	20,00	kN/m	20,00	kN/m
α =	1,10		1,10	
L caricata =	25,00	m	25,00	m
F fren (max 6000 kN) =	500,00	kN	500,00	kN
F1 =	550,00	kN	550,00	kN
Frenatura SW/2				
f fren =	35,00	kN/m	35,00	kN/m
α =	1,00		1,00	
L caricata =	18,00	m	25,00	m
F fren =	630,00	kN	875,00	kN
F1 =	630,00	kN	875,00	kN
αhp interazione semplificata				
αhp frenatura per LM71 =	1,60		1,60	
αhp frenatura per SW/2 =	1,30		1,30	
αhp avviam. per LM71 SW/2 =	1,12		1,12	
Forza totale di avviamento e frenatura				
F1 =	1835,40	kN	2153,90	kN
h rispetto a intradosso imp. =	3,28	m	3,28	m
tipologia vincolo =	UL		F	
Risultanti reazioni vincolari				
F1 =	0	kN	-2154	kN
F2 =	0		0	
F3 =	264	kN	-310	kN
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

6.3.2.6 DISPOSIZIONE DI CARICO 6 (Q26)

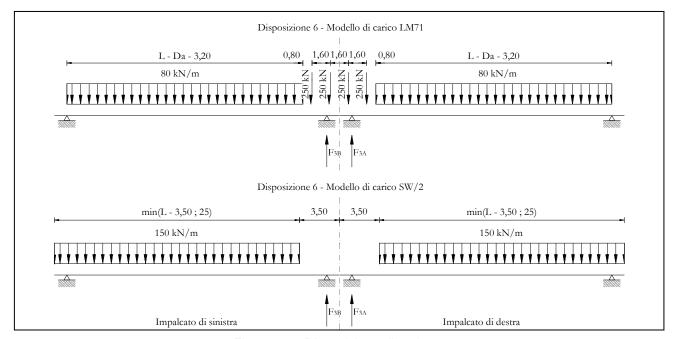


Figura 29 – Disposizione di carico 6

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-DX Reazioni vincolari A	
Avviamento LM71				
f avv =	33,00	kN/m	33,00	kN/m
α =	1,10		1,10	
L caricata =	25,00	m	25,00	m
F avv (max 1000 kN) =	825,00	kN	825,00	kN
F1 =	907,50	kN	907,50	kN
Avviamento SW/2				
f avv =	33,00	kN/m	33,00	kN/m
α =	1,00		1,00	
L caricata =	21,50	m	21,50	m
F avv (max 1000 kN) =	709,50	kN	709,50	kN
F1 =	709,50	kN	709,50	kN

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazion	e di ca	lcolo
----------------------------	---------	-------

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO VI0205 003

REV.

FOGLIO **61 di 140**

Frenatura LM71				
f fren =	20,00	kN/m	20,00	kN/m
α =	1,10		1,10	
L caricata =	25,00	m	25,00	m
F fren (max 6000 kN) =	500,00	kN	500,00	kN
F1 =	550,00	kN	550,00	kN
Frenatura SW/2				
f fren =	35,00	kN/m	35,00	kN/m
α =	1,00		1,00	
L caricata =	21,50	m	21,50	m
F fren =	752,50	kN	752,50	kN
F1 =	752,50	kN	752,50	kN
αhp interazione semplificata				
αhp frenatura per LM71 =	1,60		1,60	
αhp frenatura per SW/2 =	1,30		1,30	
αhp avviam. per LM71 SW/2 =	1,12		1,12	
Forza totale di avviamento e frenatura				
F1 =	1994,65	kN	1994,65	kN
h rispetto a intradosso imp. =	3,28	m	3,28	m
tipologia vincolo =	UL		F	
Risultanti reazioni vincolari				
F1 =	0	kN	-1995	kN
F2 =	0		0	
F3 =	287	kN	-287	kN
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

6.3.2.7 DISPOSIZIONE DI CARICO 7 (Q27)

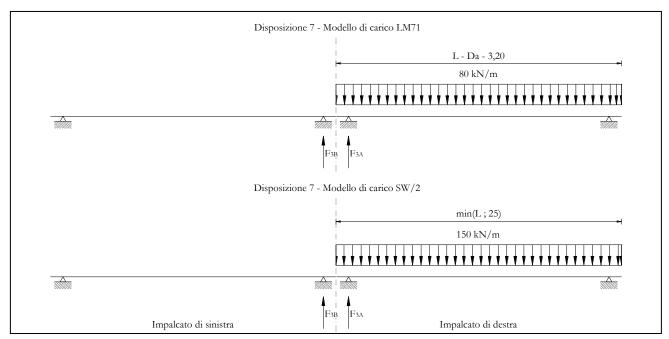


Figura 30 – Disposizione di carico 7

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-DX Reazioni vincolari A	
Avviamento LM71				
f avv =	33,00	kN/m	33,00	kN/m
α =	1,10		1,10	
L caricata =	0,00	m	25,00	m
F avv (max 1000 kN) =	0,00	kN	825,00	kN
F1 =	0,00	kN	907,50	kN
Avviamento SW/2				
f avv =	33,00	kN/m	33,00	kN/m
α =	1,00		1,00	
L caricata =	0,00	m	25,00	m
F avv (max 1000 kN) =	0,00	kN	825,00	kN
F1 =	0,00	kN	825,00	kN

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

CL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile	07-08-0	09-12:	Relazione	di	calco	10
------	---------	--------	-----------	----	-------	----

CODIFICA COMMESSA LOTTO 01 E ZZ

DOCUMENTO VI0205 003

FOGLIO 63 di 140

REV.

Frenatura LM71				
f fren =	20,00	kN/m	20,00	kN/m
α =	1,10		1,10	
L caricata =	25,00	m	25,00	m
F fren (max 6000 kN) =	500,00	kN	500,00	kN
F1 =	550,00	kN	550,00	kN
Frenatura SW/2				
f fren =	35,00	kN/m	35,00	kN/m
α =	1,00		1,00	
L caricata =	0,00	m	25,00	m
F fren =	0,00	kN	875,00	kN
F1 =	0,00	kN	875,00	kN
αhp interazione semplificata				
αhp frenatura per LM71 =	1,60		1,60	
αhp frenatura per SW/2 =	1,30		1,30	
αhp avviam. per LM71 SW/2 =	1,12		1,12	
Forza totale di avviamento e frenatura				
F1 =	880,00	kN	2153,90	kN
h rispetto a intradosso imp. =	3,28	m	3,28	m
tipologia vincolo =	UL		F	
Risultanti reazioni vincolari				
F1 =	0	kN	-2154	kN
F2 =	0		0	
F3 =	127	kN	-310	kN
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0205 003
 B
 64 di 140

6.3.3 FORZA CENTRIFUGA (Q3)

Pile 07-08-09-12: Relazione di calcolo

L'azione centrifuga è schematizzata come una forza agente in direzione orizzontale perpendicolarmente al binario e verso l'esterno della curva, applicata ad 1,80 m al di sopra del p.f.. Il valore caratteristico della forza centrifuga si determina in accordo con la seguente espressione:

$$Q_{tk} = V^2 \cdot f \cdot (\alpha \cdot Q_{vk})/(127 \cdot R)$$

dove V velocità di progetto espressa in km/h

Q_{vk} valore caratteristico dei carichi verticali

R raggio di curvatura in m

f fattore di riduzione (rif. §1.4.3.1 [3])

Per il modello di carico LM71 e per velocità di progetto superiori a 120 km/h, si considerano i seguenti 2 casi:

- a) modello di carico LM71 e forza centrifuga per V = 120 km/h e f = 1;
- b) modello di carico LM71 e forza centrifuga calcolata per la massima velocità di progetto.

Per i modelli di carico SW si assume una velocità massima di 100 km/h.

La forza centrifuga non deve essere incrementata dei coefficienti dinamici.

Nei sottoparagrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3.

6.3.3.1 DISPOSIZIONE DI CARICO 1 (Q31)

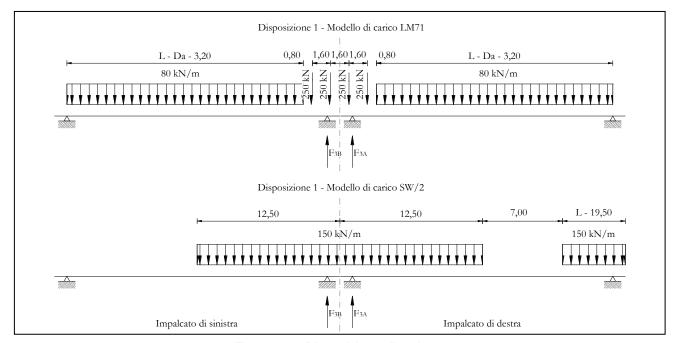


Figura 31 - Disposizione di carico 1

	IMPALCATO-SX		IMPALCATO-DX	
	Reazioni vinco	olari B	Reazioni vincolari A	
Centrifuga LM71				
v = vmax				
Raggio minimo =	1500,00	m	1500,00	m
Velocità massima =	180,00	km/h	180,00	km/h
Lf =	25,00	m	25,00	m
f =	0,75		0,75	
Qv =	1240,77	kN	1240,77	kN
Qh =	158,57	kN	158,57	kN
v = 120 km/h				
Raggio minimo =	1500,00	m	1500,00	m
Velocità (120 km/h) =	120,00	km/h	120,00	km/h
f (1) =	1,00		1,00	
Qv =	1364,85	kN	1364,85	kN

M3 =

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

0

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo	COMMESS IF1N	01 E ZZ	CODIFICA CL	DOCUMENTO VI0205 003	REV. B	FOGLIO 66 di 140
Qh =	103,17	kN		103,17	kN	
Qh,max =	158,57	kN		158,57	kN	
Centrifuga SW/2						
v max = 100 km/h						
Raggio minimo =	1500,00	m		1500,00	m	
Velocità (100 km/h) =	100,00	km/h		100,00	km/h	
f (1) =	1,00			1,00		
Qv =	1451,48	kN		1511,18	kN	
Qh,max =	76,19	kN		79,33	kN	
Forza centrifuga sull appoggio						
F2 =	234,76	kN		237,89	kN	
h rispetto a intradosso imp. =	5,08	m		5,08	m	
Risultanti reazioni vincolari						
F1 =	0			0		
F2 =	-235	kN		-238	kN	
F3 =	0			0		
M1 =	1193	kNm		1209	kNm	
M2 =	0			0		

0

6.3.3.2 DISPOSIZIONE DI CARICO 2 (Q32)

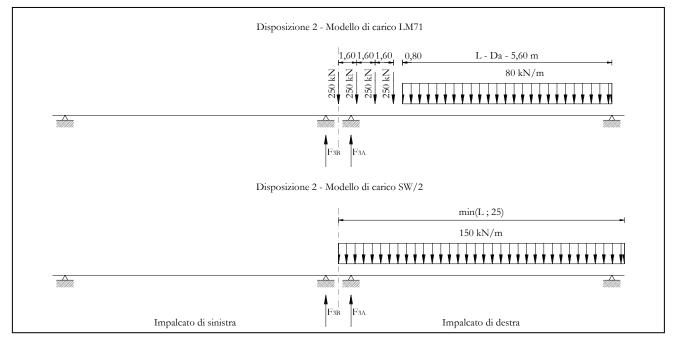


Figura 32 - Disposizione di carico 2

	IMPALCATO-SX		<u>IMPALCATO</u>	D-DX
	Reazioni vin	colari B	Reazioni vin	colari A
Centrifuga LM71				
v = vmax				
Raggio minimo =	1500,00	m	1500,00	m
Velocità massima =	180,00	km/h	180,00	km/h
Lf =	25,00	m	25,00	m
f =	0,75		0,75	
Qv =	0,00	kN	1530,51	kN
Qh =	0,00	kN	195,59	kN
v = 120 km/h				
Raggio minimo =	1500,00	m	1500,00	m
Velocità (120 km/h) =	120,00	km/h	120,00	km/h
f (1) =	1,00		1,00	
Qv =	0,00	kN	1683,56	kN

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo	COMMESSA IF1N	LOTTO 01 E ZZ	CODIFICA CL	DOCUMENTO VI0205 003	REV. B	FOGLIO 68 di 140
Qh =	0,00	kN		127,26	kN	
Qh,max =	0,00	kN		195,59	kN	
Centrifuga SW/2						
v max = 100 km/h						
Raggio minimo =	1500,00	m		1500,00	m	
Velocità (100 km/h) =	100,00	km/h		100,00	km/h	
f =	1,00			1,00		
Qv =	0,00	kN		1875,00	kN	
Qh,max =	0,00	kN		98,43	kN	
Forza centrifuga sull appoggio						
F2 =	0,00	kN		294,02	kN	
h rispetto a intradosso imp. =	5,08	m		5,08	m	
Risultanti reazioni vincolari						
F1 =	0			0		
F2 =	0	kN		-294	kN	
F3 =	0			0		
M1 =	0	kNm		1494	kNm	
M2 =	0			0		
M3 =	0			0		

6.3.3.3 DISPOSIZIONE DI CARICO 3 (Q33)

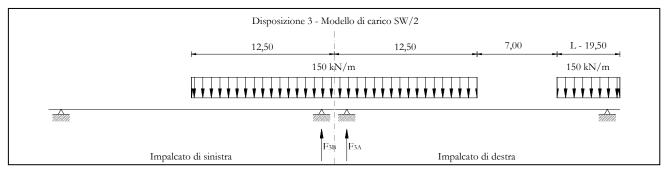


Figura 33 - Disposizione di carico 3

	IMPALCATO-SX		IMPALCATO-DX	
	Reazioni vin	colari B	Reazioni vin	colari A
Centrifuga LM71				
v = vmax				
Raggio minimo =	1500,00	m	1500,00	m
Velocità massima =	180,00	km/h	180,00	km/h
Lf =	25,00	m	25,00	m
f =	0,75		0,75	
Qv =	0,00	kN	0,00	kN
Qh =	0,00	kN	0,00	kN
v = 120 km/h				
Raggio minimo =	1500,00	m 	1500,00	m
Velocità (120 km/h) =	120,00	km/h	120,00	km/h
f (1) =	1,00	1.51	1,00	
Qv =	0,00	kN	0,00	kN
Qh =	0,00	kN	0,00	kN
Qh,max =	0,00	kN	0,00	kN
Centrifuga SW/2				
v max = 100 km/h				
Raggio minimo =	1500,00	m	1500,00	m

F3 =

M1 =

M2 =

M3 =

Pile 07-08-09-12: Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

CODIFICA

CL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

0

0

0

403

kNm

DOCUMENTO

VI0205 003

REV.

В

kNm

FOGLIO

70 di 140

	_			
Velocità (100 km/h) =	100,00	km/h	100,00	km/h
f =	1,00		1,00	
Qv =	1451,48	kN	1511,18	kN
Qh,max =	76,19	kN	79,33	kN
Forza centrifuga sull appoggio				
F2 =	76,19	kN	79,33	kN
12-	70,19	KIV	79,55	KIV
h viamatta a introducaci inch	F 00		F 00	
h rispetto a intradosso imp. =	5,08	m	5,08	m
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	-76	kN	-79	kN

0

0

0

387

COMMESSA

IF1N

LOTTO

01 E ZZ

6.3.3.4 DISPOSIZIONE DI CARICO 4 (Q34)

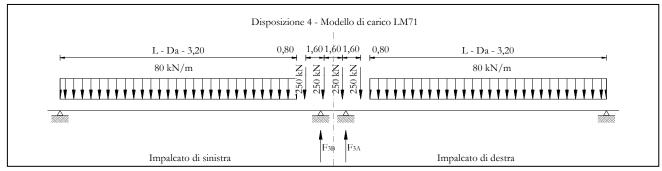


Figura 34 - Disposizione di carico 4

	IMPALCATO-SX		IMPALCATO-DX	
	Reazioni vincolari B		Reazioni vincolari A	
Centrifuga LM71				
v = vmax				
Raggio minimo =	1500,00	m	1500,00	m
Velocità massima =	180,00	km/h	180,00	km/h
Lf =	25,00	m	25,00	m
f =	0,75		0,75	
Qv =	1240,77	kN	1240,77	kN
Qh =	158,57	kN	158,57	kN
v = 120 km/h				
Raggio minimo =	1500,00	m	1500,00	m
Velocità (120 km/h) =	120,00	km/h	120,00	km/h
f (1) =	1,00		1,00	
Qv =	1364,85	kN	1364,85	kN
Qh =	103,17	kN	103,17	kN
Qh,max =	158,57	kN	158,57	kN

Centrifuga SW/2

v max = 100 km/h

M3 =

Pile 07-08-09-12: Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

CODIFICA

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

0

DOCUMENTO

REV.

FOGLIO

THE OF GO GO 12. Relazione di Galegio	IF1N	01 E ZZ 0	CL VI0205 003	В	72 di 140
Raggio minimo =	1500,00	m	1500,00	m	
Velocità (100 km/h) =	100,00	km/h	100,00	km/h	
f =	1,00		1,00		
Qv =	0,00	kN	0,00	kN	
Qh,max =	0,00	kN	0,00	kN	
Forza centrifuga sull appoggio					
F0	450.57	1.51	450.57		
F2 =	158,57	kN	158,57	kN	
h rispetto a intradosso imp. =	5,08	m	5,08	m	
ii iispetto a iiittadosso iiiip. –	0,00	****	3,00	•••	
Risultanti reazioni vincolari					
F1 =	0		0		
F2 =	-159	kN	-159	kN	
F3 =	0		0		
M1 =	806	kNm	806	kNm	
M2 =	0		0		

0

COMMESSA

LOTTO

6.3.3.5 DISPOSIZIONE DI CARICO 5 (Q35)

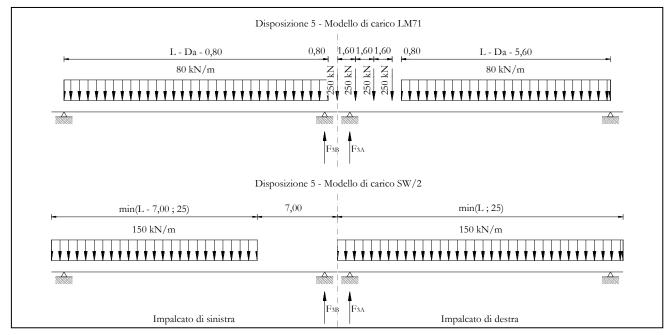


Figura 35 – Disposizione di carico 5

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO- Reazioni vinco	
Centrifuga LM71				
v = vmax				
Raggio minimo =	1500,00	m	1500,00	m
Velocità massima =	180,00	km/h	180,00	km/h
Lf =	25,00	m	25,00	m
f =	0,75		0,75	
Qv =	936,16	kN	1530,51	kN
Qh =	119,64	kN	195,59	kN
v = 120 km/h				
Raggio minimo =	1500,00	m	1500,00	m
Velocità (120 km/h) =	120,00	km/h	120,00	km/h
f (1) =	1,00		1,00	
Qv =	1029,77	kN	1683,56	kN

Ghella

Pile 07-08-09-12: Relazione di calcolo

COMMESSA

LOTTO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TEL

CODIFICA

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

DOCUMENTO

REV.

FOGLIO

ne 07-00-03-12. Nelazione di Calcolo		IF1N	01 E ZZ	CL	VI0205 003	В	74 di 140
Qh =	77,	84	kN		127,26	kN	
Qh,max =	119	9,64	kN		195,59	kN	
Centrifuga SW/2							
v max = 100 km/h							
Raggio minimo =	150	00,00	m		1500,00	m	
Velocità (100 km/h) =	100	0,00	km/h		100,00	km/h	
f =	1,0	0			1,00		
Qv =	935	5,53	kN		1875,00	kN	
Qh,max =	49,	11	kN		98,43	kN	
Forza centrifuga sull appoggio							
F2 =	168	3,75	kN		294,02	kN	
h rispetto a intradosso imp. =	5,0	8	m		5,08	m	
Risultanti reazioni vincolari							
F1 =	0				0		
F2 =	-16	9	kN		-294	kN	
F3 =	0				0		
M1 =	857	7	kNm		1494	kNm	
M2 =	0				0		
M3 =	0				0		

6.3.3.6 DISPOSIZIONE DI CARICO 6 (Q36)

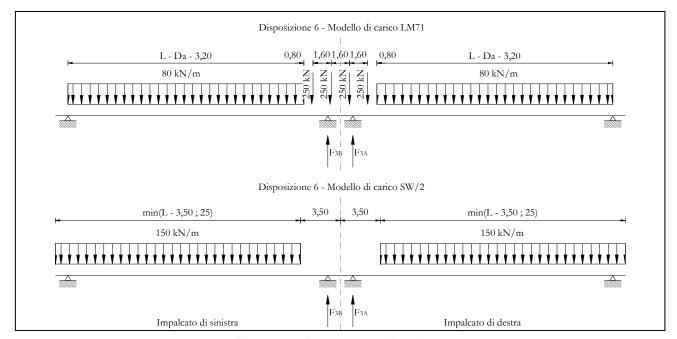


Figura 36 – Disposizione di carico 6

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO Reazioni vin	
Centrifuga LM71				
v = vmax				
Raggio minimo =	1500,00	m	1500,00	m
Velocità massima =	180,00	km/h	180,00	km/h
Lf =	25,00	m	25,00	m
f =	0,75		0,75	
Qv =	1240,77	kN	1240,77	kN
Qh =	158,57	kN	158,57	kN
v = 120 km/h				
Raggio minimo =	1500,00	m	1500,00	m
Velocità (120 km/h) =	120,00	km/h	120,00	km/h
f (1) =	1,00		1,00	
Qv =	1364,85	kN	1364,85	kN

Ghella

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo		COMMESSA IF1N	LOTTO 01 E ZZ	CODIFICA CL	DOCUMENTO VI0205 003	REV.	FOGLIO 76 di 140
Qh =	10	03,17	kN		103,17	kN	
Qh,max =	18	58,57	kN		158,57	kN	
Centrifuga SW/2							
v max = 100 km/h							
Raggio minimo =	15	500,00	m		1500,00	m	
Velocità (100 km/h) =	10	00,00	km/h		100,00	km/h	
f =	1,	00			1,00		
Qv =	13	364,97	kN		1364,97	kN	
Qh,max =	7	1,65	kN		71,65	kN	
Forza centrifuga sull appoggio							
F2 =	23	30,22	kN		230,22	kN	
h rispetto a intradosso imp. =	5,	08	m		5,08	m	
Risultanti reazioni vincolari							
F1 =	0				0		
F2 =	-2	30	kN		-230	kN	
F3 =	0				0		
M1 =	1	170	kNm		1170	kNm	
M2 =	0				0		
M3 =	0				0		

6.3.3.7 DISPOSIZIONE DI CARICO 7 (Q37)

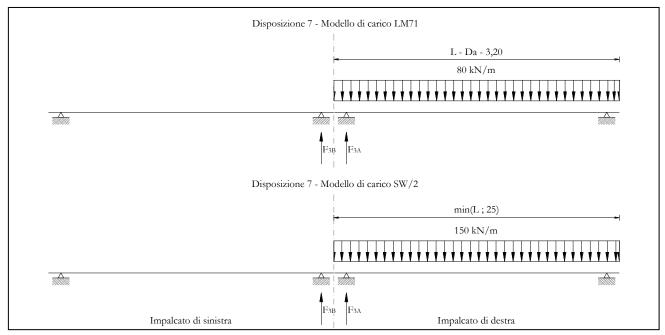


Figura 37 – Disposizione di carico 7

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-DX Reazioni vincolari	
Centrifuga LM71				
v = vmax				
Raggio minimo =	1500,00	m	1500,00	m
Velocità massima =	180,00	km/h	180,00	km/h
Lf =	25,00	m	25,00	m
f =	0,75		0,75	
Qv =	0,00	kN	1002,12	kN
Qh =	0,00	kN	128,07	kN
v = 120 km/h				
Raggio minimo =	1500,00	m	1500,00	m
Velocità (120 km/h) =	120,00	km/h	120,00	km/h
f (1) =	1,00		1,00	
Qv =	0,00	kN	1102,34	kN

Ghella

Pile 07-08-09-12: Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO – FRASSO TEI

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FOGLIO

			IF1N	01 E	zz	CL	VI0205 003	В	78 di 140
Qh =		0	,00	ŀ	κN		83,33	kN	
Qh,max	=	0	,00	ŀ	κN		128,07	kN	
Centrifug	a SW/2								
v max =	100 km/h								
Raggio n	ninimo =	1	500,00	r	n		1500,00	m	
Velocità	(100 km/h) =	1	00,00	ŀ	km/h		100,00	km/h	
f =		1	,00				1,00		
Qv =		0	,00	k	κN		1875,00	kN	
Qh,max	=	0	,00	ŀ	κN		98,43	kN	
Forza ce	ntrifuga sull appoggio								
F2 =		0	,00	ŀ	κN		226,49	kN	
h rispetto	a intradosso imp. =	5	,08	r	n		5,08	m	
Risultant	i reazioni vincolari								
F1 =		0					0		
F2 =		0		k	κN		-226	kN	
F3 =		0					0		
M1 =		0		k	κNm		1151	kNm	
M2 =		0					0		
M3 =		0					0		

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO 1º LOTTO EUNZIONALE CANCELLO – ERASSO TEL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	VI0205 003	В	79 di 140

6.3.4 SERPEGGIO (Q4)

Pile 07-08-09-12: Relazione di calcolo

La forza laterale indotta dal serpeggio si schematizza come una forza concentrata agente orizzontalmente perpendicolarmente all'asse del binario.

Il valore caratteristico di tale forza è assunto pari a 100 kN. Tale valore deve essere moltiplicato per α ma non per il coefficiente di amplificazione dinamica.

Nei sottoparagrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3.

6.3.4.1 DISPOSIZIONE DI CARICO 1 (Q41)

	IMPALCATO:	<u>-SX</u>	IMPALCATO-DX		
	Reazioni vinc	olari B	Reazioni vincolari		
Serpeggio LM71					
Forza serpeggio =	100,00	kN	100,00	kN	
α =	1,10		1,10		
	,		ŕ		
Serpeggio SW/2					
Forza serpeggio =	100,00	kN	100,00	kN	
α =	1,00		1,00		
Corre totale correggie					
Forza totale serpeggio					
F2 =	210,00	kN	210,00	kN	
h rispetto a intradosso imp. =	3,28	m	3,28	m	
Risultanti reazioni vincolari					
F1 =	0		0		
F2 =	-105	kN	-105	kN	
F3 =	0	KIN	0	KIN	
		lcN loo		la Nimo	
M1 =	344	kNm	344	kNm	
M2 =	0		0		
M3 =	0		0		

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO IF1N 01 E ZZ CODIFICA CL

DOCUMENTO VI0205 003

REV. FOGLIO 80 di 140

В

6.3.4.2 DISPOSIZIONE DI CARICO 2 (Q42)

	IMPALCATO-S	<u>SX</u>	IMPALCATO-DX		
	Reazioni vinco	lari B	Reazioni vincolari A		
Serpeggio LM71					
Forza serpeggio = α =	100,00 1,10	kN	100,00 1,10	kN	
Serpeggio SW/2					
Forza serpeggio =	100,00	kN	100,00	kN	
α =	1,00		1,00		
Forza totale serpeggio F2 =	210,00	kN	210,00	kN	
h rispetto a intradosso imp. =	3,28	m	3,28	m	
Risultanti reazioni vincolari					
F1 =	0		0		
F2 =	0	kN	-210	kN	
F3 =	0		0		
M1 =	0	kNm	689	kNm	
M2 =	0		0		
M3 =	0		0		

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO VI0205 003

REV. FO

FOGLIO 81 di 140

6.3.4.3 DISPOSIZIONE DI CARICO 3 (Q43)

	IMPALCATO-S	<u>SX</u>	IMPALCATO-DX		
	Reazioni vinco	lari B	Reazioni vincolari A		
Serpeggio LM71					
Forza serpeggio = α =	0,00 1,10	kN	0,00 1,10	kN	
Serpeggio SW/2					
Forza serpeggio = α =	100,00 1,00	kN	100,00 1,00	kN	
Forza totale serpeggio					
F2 =	100,00	kN	100,00	kN	
h rispetto a intradosso imp. =	3,28	m	3,28	m	
Risultanti reazioni vincolari					
F1 =	0		0		
F2 =	-50	kN	-50	kN	
F3 =	0		0		
M1 =	164	kNm	164	kNm	
M2 =	0		0		
M3 =	0		0		

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO III LOTTO FUNZIONALE CANCELLO – FRASSO TELE

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO
VI0205 003

REV. FOGLIO **B** 82 di 140

6.3.4.4 DISPOSIZIONE DI CARICO 4 (Q44)

	IMPALCATO-S	<u>X</u>	IMPALCATO-DX	
	Reazioni vincol	ari B	Reazioni vincolari A	
Serpeggio LM71				
Forza serpeggio = α =	100,00 1,10	kN	100,00 1,10	kN
Serpeggio SW/2				
Forza serpeggio =	0,00	kN	0,00	kN
α =	1,00		1,00	
Forza totale serpeggio				
F2 =	110,00	kN	110,00	kN
h rispetto a intradosso imp. =	3,28	m	3,28	m
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	-55	kN	-55	kN
F3 =	0		0	
M1 =	180	kNm	180	kNm
M2 =	0		0	
M3 =	0		0	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO
VI0205 003

REV. F

FOGLIO 83 di 140

6.3.4.5 DISPOSIZIONE DI CARICO 5 (Q45)

	IMPALCATO-S Reazioni vinco		IMPALCATO-DX Reazioni vincolari A	
Serpeggio LM71				
Forza serpeggio = α =	100,00 1,10	kN	100,00 1,10	kN
Serpeggio SW/2				
Forza serpeggio = α =	100,00 1,00	kN	100,00 1,00	kN
Forza totale serpeggio				
F2 =	210,00	kN	210,00	kN
h rispetto a intradosso imp. =	3,28	m	3,28	m
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	-105	kN	-105	kN
F3 =	0		0	
M1 =	344	kNm	344	kNm
M2 =	0		0	
M3 =	0		0	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO VI0205 003

REV.

FOGLIO **84 di 140**

6.3.4.6 DISPOSIZIONE DI CARICO 6 (Q46)

	IMPALCATO-SX		IMPALCATO-DX	
	Reazioni vinco	lari B	Reazioni vincolari A	
Serpeggio LM71				
Forza serpeggio =	100,00	kN	100,00	kN
α =	1,10		1,10	
Serpeggio SW/2				
Forza serpeggio =	100,00	kN	100,00	kN
α =	1,00		1,00	
Forza totale serpeggio				
F2 =	210,00	kN	210,00	kN
h rispetto a intradosso imp. =	3,28	m	3,28	m
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	-105	kN	-105	kN
F3 =	0	LNI	0	LaNias
M1 =	344 0	kNm	344 0	kNm
M2 = M3 =	0		0	
IVIO =	U		U	

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA

DOCUMENTO

REV. FOGLIO

01 E ZZ CL VI0205 003 B 85 di 140

6.3.4.7 DISPOSIZIONE DI CARICO 7 (Q47)

	IMPALCATO-SX		IMPALCATO-DX	
	Reazioni vinco	lari B	Reazioni vincolari A	
Serpeggio LM71				
Forza serpeggio = α =	100,00 1,10	kN	100,00 1,10	kN
Serpeggio SW/2				
Forza serpeggio =	100,00	kN	100,00	kN
α =	1,00		1,00	
Forza totale serpeggio F2 =	210,00	kN	210,00	kN
h rispetto a intradosso imp. =	3,28	m	3,28	m
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	0	kN	-210	kN
F3 =	0		0	
M1 =	0	kNm	689	kNm
M2 =	0		0	
M3 =	0		0	

6.4 CARICHI VARIABILI (Q5)

6.4.1 AZIONI DEL VENTO (Q51)

L'azione del vento viene ricondotta ad un'azione statica equivalente costituita da pressioni e depressioni agenti normalmente alle superfici.

La pressione del vento è data dalla seguente espressione:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d$$

dove qb pressione cinetica di riferimento

ce coefficiente di esposizione

c_p coefficiente di forma

cd coefficiente dinamico, posto generalmente pari a 1

Di seguito si riporta il dettaglio del calcolo di tali fattori per l'opera in oggetto.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO VI0205 003

REV.

FOGLIO 87 di 140

6.4.1.1 Pressione cinetica di riferimento

La pressione cinetica di riferimento si determina mediante l'espressione:

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2$$
 (in N/m²)

dove vb velocità di riferimento

ρ densità dell'aria, convenzionalmente posta pari a 1,25 kg/m³

Di seguito si determina la pressione di riferimento sulla base dei parametri caratteristici del sito e il tempo di ritorno dell'opera in oggetto:

m/s

Parametri dipendenti dal sito

Zona =	2
Z011a =	3

 $vb_{,0} = 27,00$

a0 = 500,00 m

ka = 0.02 1/s

Altitudine del sito

as = 80,00 m s.l.m.

vb = 27,00 m/s

Tempo di ritorno

TR = 75 anni

 $\alpha R(TR) = 1,02$

vb(TR) = 27.63 m/s

Pressione di riferimento

qb = 477.25 N/m2

CL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA D

DOCUMENTO REV.
VI0205 003 B

FOGLIO 88 di 140

6.4.1.2 COEFFICIENTE DI ESPOSIZIONE

Il coefficiente di esposizione c_e dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito e si determina mediante l'espressione:

 $c_e(z) = k_r \cdot c_t \cdot ln(z/z_0) [7 + c_t \cdot ln(z/z_0)]$ per $z \ge z_{min}$

 $C_e(z) = C_e(z_{min})$ per $z < z_{min}$

dove k_r, z₀, z_{min} sono parametri che dipendono dalla categoria di esposizione del sito;

ct è il coefficiente di topografia, posto generalmente pari a 1

Di seguito si determina il coefficiente di esposizione sulla base della classe d'esposizione e l'altezza z del punto considerato, posta pari alla massima quota del complesso impalcato, barriere antirumore, sagoma del treno. A tal proposito il §1.4.4.2 [3] impone di considerare il treno come una superficie piana continua convenzionalmente alta 4,00 m sul p.f.. Cautelativamente si considerano presenti barriere H4 ad entrambe le estremità dell'impalcato.

Categoria di esposizione

Classe di rugosità = D

Distanza dalla costa = < 30 km

Categoria di esposizione = II

kr = 0,19

z0 = 0,05 m

zmin = 4,00 m

Quota di riferimento z

H pila fino a intradosso imp. = 6.9 m

H imp. fino a p.f. = 3,28 m H b.a. su p.f. = 4,67 m

H min b.a. su p.f. = 3,35 m

H treno su p.f. = 4,00 m

z di riferimento= 15.65 m

Coefficiente di esposizione

ce = 2.65

6.4.1.3 COEFFICIENTE DI FORMA DELL'IMPALCATO

Il coefficiente di forma dell'impalcato e l'area di riferimento per il calcolo della forza risultante si determinano in base ai criteri enunciati nel §8.3.1 [9].

A tal proposito si riconduce il coefficiente di forma c_p al coefficiente di forza $c_{fx,0}$. Il coefficiente di forza $c_{fx,0}$ si determina in base al rapporto tra larghezza b e altezza totale dell'impalcato d_{tot} .

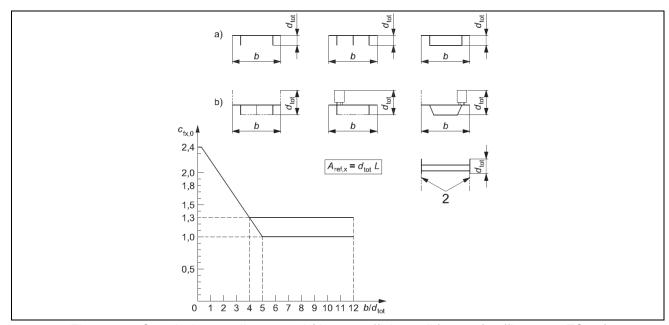


Figura 38 – Correlazione tra il rapporto b/dtot e coefficiente di forma cfx0 (figura 8.3 EC1-4)

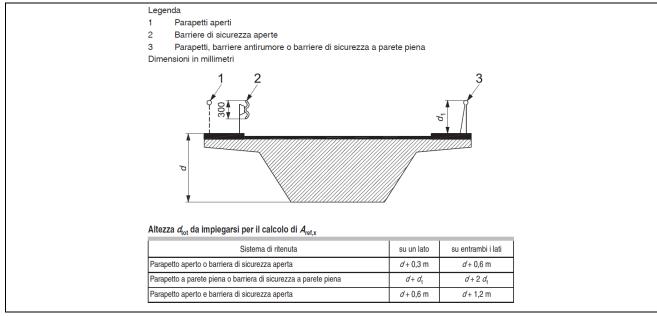


Figura 39 – Criteri per la determinazione dell'area di riferimento (figura 8.5 EC1-4)

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA
IF1N	01 E ZZ	CL

DOCUMENTO
VI0205 003

REV. FOGLIO **B** 90 di 140

'area da considerare per il calcolo della risultante di forza si definisce come la somma di tutte le superfici proiettate dall'impalcato nel piano longitudinale, comprese le barriere e la sagoma dei veicoli.

Per il caso in esame si ha:

Caratteristiche geometriche dell'impalcato

	<u>IMPALCAT</u>	O-SX	IMPALCATO-DX	
b =	13,70	m	13,70	m
H b.a. su p.f. =	4,67	m	4,67	m
dtot =	7,95	m	7,95	m
b/dtot =	1,72		1,72	
cb =	1,98		1,98	
Coefficiente di forma				
cp,max =	1,98			
Area di riferimento				
H impalcato da intrad. a p.f. =	3,28	m	3,28	m
H barriera su p.f. sx =	4,67	m	4,67	m
H barriera su p.f. dx =	4,67	m	4,67	m
H b.a. min su p.f. =	3,35	m	3,35	m
H treno su p.f. =	4,00	m	4,00	m
dtot2 =	12,62	m	12,62	m
L impalcato =	25,00	m	25,00	m
Arif =	315,50	m2	315,50	m2

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO CO

CODIFICA DOCUMENTO
CL VI0205 003

REV. FOGLIO **B** 91 di 140

6.4.1.4 AZIONE DEL VENTO SULL'IMPALCATO

Di seguito si procede al calcolo dell'azione del vento sull'impalcato in relazione ai parametri determinati nei paragrafi precedenti.

	<u>IMPALCATO</u>	O-SX	IMPALCATO	O-DX
Pressione del vento				
qb =	477.25	N/m2	477.25	N/m2
ce =	2.65		2.65	
cp =	1,99		1,99	
cd =	1,00		1,00	
$qb = qb \cdot ce \cdot cp \cdot cd =$	2.43	kN/m2	2.43	kN/m2
Area di riferimento				
Arif =	315,50	m2	315,50	m2
H rispetto a intrad. imp. =	5.62	m	5.62	m
Risultante totale forza del vento				
Fvh =	794.52	kN	794.52	kN
Mvt =	4461.22	kNm	4461.22	kNm
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	-397	kN	-397	kN
F3 =	0		0	
M1 =	2231	kNm	2231	kNm
M2 =	0		0	
M3 =	0		0	

6.4.1.5 COEFFICIENTE DI FORMA DELLA PILA

Nel caso di pila con sezione circolare, il coefficiente di forma della pila e l'area di riferimento per il calcolo della risultante si determinano in base alle indicazioni del §7.9.2 [9].

A tal proposito si riconduce il coefficiente di forma cp al coefficiente di forza cf.

Il coefficiente di esposizione c_f si determina mediante l'espressione:

 $C_f = C_{f,0} \cdot \psi_{\lambda}$

dove

è il coefficiente di forma in assenza di effetto di estremità;

 ψ_{λ} è il fattore di effetto di estremità, posto cautelativamente pari a 1.

Il valore di $c_{f,0}$ si determina in funzione del numero di Reynolds e della rugosità equivalente mediante l'abaco riportato in Figura 34. Per il caso in questione, a favore di sicurezza, si pone $c_{f,0}$ pari a 1,2 indipendentemente dai valori del numero di Reynolds e della rugosità equivalente.

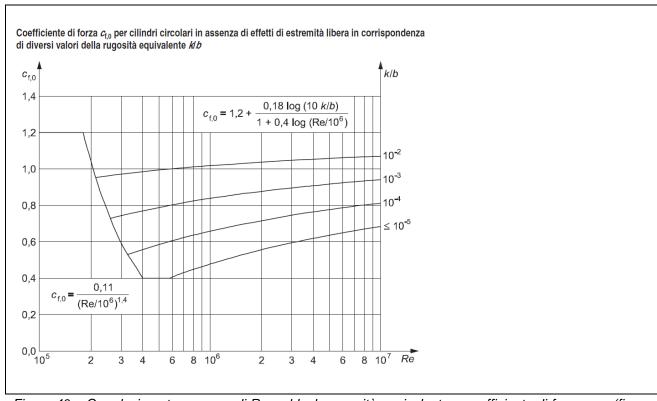


Figura 40 – Correlazione tra numero di Reynolds, la rugosità equivalente e coefficiente di forma c_{fx0} (figura 7.28 EC1-4)

Nel caso di pila con sezione rettangolare, il coefficiente di forma della pila e l'area di riferimento per il calcolo della risultante si determinano in base alle indicazioni del §7.6 [9]. A tal proposito si riconduce il coefficiente di forma c_p al coefficiente di forza c_f .

Il coefficiente di esposizione c_f si determina mediante l'espressione:

 $C_f = C_{f,0} \cdot \psi_r \cdot \psi_\lambda$

dove c_{f,0} è il coefficiente di forma in assenza di effetto di estremità;

ψ_r è il fattore riduttivo per sezioni con spigoli arrotondati;

 ψ_{λ} è il fattore di effetto di estremità, posto cautelativamente pari a 1.

I valori di $c_{f,0}$ e ψ_r si determinano in funzione del rapporto tra le dimensioni in sezione dell'elemento investito, secondo gli abachi riportati nella Figura 35.

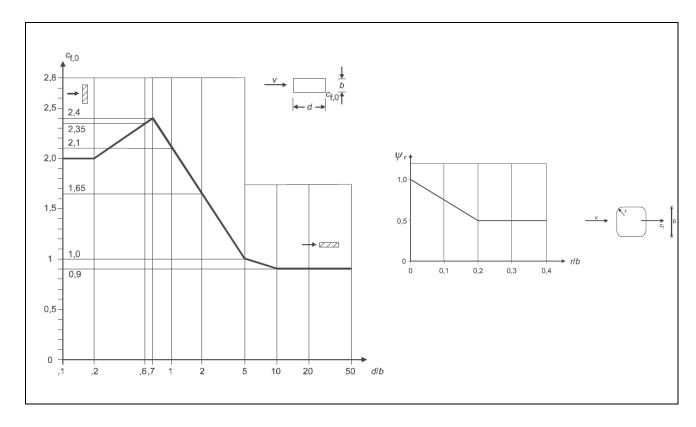


Figura 41 – Correlazione tra dimensioni in sezione dell'elemento e il coefficiente di forma c_{fx0} (figura 7.23 EC1-4) e correlazione tra il raggio di arrotondamento dello spigolo e il fattore riduttivo ψ_r (figura 7.24 EC1-4)

L'area da considerare per il calcolo della risultante di forza si definisce come la superficie proiettata dalla pila nel piano longitudinale. Per il caso in esame si ha:

Caratteristiche geometriche della pila

Forma della pila =	Rettangola	are cava smussata
Dimensione proiettata nel piano b =	2.60	m
d =	8.60	m
d/b =	3.31	
cf,0 =	1.29	
r =	1,00	m
r/b =	0.38	
ψr =	0.50	
ψλ =	1.00	
Coefficiente di forma		
$cp = cf = cf,0 \cdot \psi r \cdot \psi \lambda =$	1.00	

Azione del vento sulla pila:

Pressione del vento

qb =	447.25	N/m2
ce =	2.65	
cp =	1.00	
cd =	1.00	
$qb = qb \cdot ce \cdot cp \cdot cd =$	1.26	kN/m2
Risultante totale forza del vento		
b =	2.60	m
fvh =	3.28	kN/m

L'azione del vento così calcolata viene applicata come una forza uniformemente distribuita sugli elementi che compongono il fusto e il pulvino della pila.

6.5 AZIONI INDIRETTE (Q6)

6.5.1 RESISTENZE PARASSITE NEI VINCOLI (Q61)

Per la valutazione delle coazioni generate dallo scorrimento dei vincoli, è stato considerato un coefficiente d'attrito f pari a 0,06, applicato alle azioni verticali agenti sugli apparecchi d'appoggio.

Con riferimento a quanto riportato nel §1.6.3 [3] la forza agente sulle pile per impalcati a travate isostatiche, facendo riferimento all'apparecchio d'appoggio maggiormente caricato tra i due presenti sulla pila, si considera pari a:

 $F_a = f (0.2 \cdot V_G + V_Q)$

dove V_G reazione verticale massima associata ai carichi permanenti

VQ reazione verticale massima associata ai carichi mobili dinamizzati

	IMPALCATO-	<u>SX</u>	IMPALCATO-DX	
Reazioni verticali massime				
VG = F3 (G1+G2) =	5826,14	kN	5826,14	kN
VQ = F3 (Q1max) =	3558,56	kN	3558,56	kN
Forza d'attrito risultante per il singolo	<u>impalcato</u>			
f =	0,06		0,06	
F1 =	283,43	kN	283,43	kN
Risultante azione parassita nei vincol	<u>i</u>			
F1max =	283,43	kN		
Risultanti reazioni vincolari				
F1 =	0	kN	-283	kN
F2 =	0		0	
F3 =	0		0	
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

6.6 EFFETTI D'INTERAZIONE (Q7)

Ove non applicabile il metodo semplificato per la valutazione delle azioni dovute agli effetti di interazione binario-struttura secondo quanto previsto nell'Allegato 3 delle specifiche RFI [3] si rimanda allo specifico elaborato:

IF0F.01.D.09.CL. VI0000.001 - Viadotti ferroviari - Relazione di interazione treno-binario-struttura.

6.6.1 VARIAZIONI TERMICHE DELL'IMPALCATO (Q71)

La presente azione si considera applicata in corrispondenza del piano ferro.

Di seguito si considera come prima pila la pila accostata alla spalla munita di appoggi fissi, si considera pertanto come ultima pila la pila accostata alla spalla munita di appoggi scorrevoli.

Dal §3.1 dell'Allegato 3 delle Specifiche RFI [3] si desume:

	Fts = β	3 · ats1 · ats2 · ats3 · L · q · n
dove	αts1	0,70 nel caso di Δt = 30 °C (valore massimo)
	αts2	1,00 (rigidezza massima della spalla)
	ats3	0,80 nel caso di viadotto con un numero di campate ≥ 3
	L	luce della campata
	q	resistenza allo scorrimento longitudinale del binario scarico, posto generalmente pari a 20,00 kN/m
	n	numero di binari
	β	0,40 nel caso dell'ultima pila
	β	0,20 nel caso della penultima e della prima pila
	β	0,00 nel caso delle pile intermedie
		Cautelativamente si pone β pari al suo valore massimo, ossia 0,4.

	IMPALCATO-SX		IMPALCATO-DX	
Reazione per variazioni termiche dell'impale	<u>cato</u>			
ΔT =	30.00	°C	30.00	°C
L impalcato =	25.00	kN	25.00	kN
q =	20.00	kN/m	20.00	kN/m
n binari =	2.00		2.00	
αtp1 =	0.70		0.70	
αtp2 =	1.00		1.00	
αtp3 =	1.00		1.00	
Ft,spalla =	700.00	kN	700.00	kN
Ft,pila =	280.00	kN	280.00	kN

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF1N	01 F 77	CI	VI0205 003	R	97 di 140

Tipo di vincolo = Moltiplicatore =	UL 0.00		F 1.00	
Forza risultante				
F1 =	0.00	kN	280.00	kN
Risultanti reazioni vincolari				
F1 =	0	kN	-280	kN
F2 =	0		0	
F3 =	0		0	
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

6.6.2 AZIONI DI FRENATURA E AVVIAMENTO

Gli effetti di interazione relativi alle azioni di frenatura e avviamento si tengono conto applicando ai valori della risultante un coefficiente α_h che tiene conto del rapporto di rigidezza tra le pile del viadotto.

Cautelativamente si prendono in considerazione le condizioni più sfavorevoli, ossia:

- per le azioni di frenatura del modello di carico LM71 : $\alpha_{hp} = \alpha_{hp3} = 1,60$
- per le azioni di frenatura del modello di carico SW/2 : $\alpha_{hp} = \alpha_{hp3} = 1,30$
- per le azioni di avviamento di entrambi i modelli di carico : $\alpha_{hp} = \alpha_{hp3} \cdot \alpha_{hp4} = 1,60 \cdot 0,70 = 1,12$

6.6.3 INFLESSIONE DELL'IMPALCATO DOVUTA AI CARICHI VERTICALI DA TRAFFICO

Le azioni longitudinali da inflessione impalcato esercitano delle spinte che si contrappongono alle flessioni generate dall'eccentricità dei carichi verticali. Per questo motivo a vantaggio di sicurezza tali azioni vengono trascurate nei calcoli successivi.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

IF1N	01 E ZZ	CL	VI0205 003	В	98 di 140
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Pile 07-08-09-12: Relazione di calcolo

6.7 AZIONI SISMICHE (E)

L'azione sismica di progetto è rappresentata da spettri di risposta definiti in base alla pericolosità sismica di base del sito ove sorge l'opera in oggetto, la vita di riferimento e le caratteristiche del sottosuolo.

Di seguito si riportano i parametri di input utilizzati per la definizione degli spettri di progetto orizzontali e verticali e i grafici degli stessi. Gli spettri di progetto così definiti vengono utilizzati nel modello di calcolo per la definizione di casi di analisi di tipo "dinamica lineare con spettro di risposta".

I valori del fattore di struttura q, adottati per la definizione delle azioni sismiche e per il dimensionamento degli elementi secondo i criteri della gerarchia delle resistenze, sono stati definiti in base ai criteri di seguito esplicitati.

Il valore del fattore di struttura q assunto per il dimensionamento delle fondazioni è pari a 1,5, in accordo con quanto indicato nel §1.8.3.3 [3] per le fondazioni su pali.

Per le strutture in elevazione, in accordo con quanto indicato nel §7.9.2.1 [1] per pile verticali inflesse in c.a. e progettazione in CD"B", si assume un fattore di struttura g₀ paria 1,5 (vedi Tabella 1).

Per elementi duttili in c.a. i valori di q_0 riportati in Tabella 1, valgono se la sollecitazione di compressione normalizzata v_k non eccede il valore 0,3. Per valori di v_k compresi tra 0,3 e 0,6 (v_k non può eccedere 0,6) q_0 si ottiene dalla relazione seguente:

$$q_0(v_k) = q_0 - (v_k/0, 3 - 1) \cdot (q_0 - 1)$$

Infine il fattore di struttura q da adottare nelle analisi si ottiene moltiplicando il q₀ così ottenuto per il coefficiente riduttivo K_R che dipende dalle caratteristiche di regolarità della struttura.

In generale il requisito di regolarità e quindi il valore di K_R si determinano a posteriori secondo il procedimento indicato nel $\S7.9.2.1$ [1]. Per il caso in esame si ipotizza un K_R pari a 1.

$$\begin{array}{ll} q_0(v_k) & = q_0 = 1.5 \\ q & = q_0(v_k) \cdot K_R = 1.5. \end{array}$$

	q	\mathbf{q}_0			
Tipi di elementi duttili	CD"B"	CD"A"			
Pile in cemento armato					
Pile verticali inflesse	1,5	3,5 λ			
Elementi di sostegno inclinati inflessi	1,2	2,1 λ			
Pile in acciaio:					
Pile verticali inflesse	1,5	3,5			
Elementi di sostegno inclinati inflessi	1,2	2,0			
Pile con controventi concentrici	1,5	2,5			
Pile con controventi eccentrici	-	3,5			
Spalle rigidamente connesse con l'impalcato					
In generale	1,5	1,5			
Strutture che si muovono col terreno ⁷	1,0	1,0			
Archi	1,2	2,0			

 $^{^{7}}$ Le strutture che si muovono con il terreno non subiscono amplificazione dell'accelerazione del suolo. Esse sono caratterizzate da periodi naturali di vibrazione in direzione orizzontale molto bassi (T ≤ 0,03 s). Appartengono a questa categoria le spalle connesse, mediante collegamenti flessibili, all'impalcato.

Tabella 1 – Valori del fattore struttura q₀ per differenti tipologie di pile e spalle - tabella 7.9.1 [1]

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO CODIFICA

IF1N 01 E ZZ CL

DOCUMENTO VI0205 003

REV. FOGLIO **B** 99 di 140

6.7.1 SPETTRI DI PROGETTO ALLO SLV

Coordinate geografiche della pila:

PILA	Latitudine	Longitudine
	[°]	[°]
P07	41.02234	14.40070
P08	41.02248	14.40048
P09	41.02262	14.40025
P12	41.02304	14.39957

Strategia di progettazione

Vita nominale $V_N = 75$ anni

Coefficiente d'uso $c_u =$ 1.5

Vita di riferimento V_R = 112.5 anni

Categoria di sottosuolo = B
Categoria topografica = T1

Per la definizione della categoria di suolo si rimanda all'elaborato progettuale "IF1N.0.1.E.ZZ.RB.GE.00.0.5.001.A - Relazione geotecnica generale di linea delle opere all'aperto".

 $q_0 = 1,50$

 $K_r = 1,00$

Il valore di v_k è pari a :

0.05

Fattore di struttura q = 1,50

Smorzamento ξ = 5,00 %

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

6.7.1.1 PARAMETRI PER LA DEFINIZIONE DELLO SPETTRO ORIZZONTALE

Tr	1068	anni
ag_o	0.199	g
Fo	2.479	
S	1.200	
TB	0.175	sec
TC	0.524	sec
TD	2.395	sec

6.7.1.2 PARAMETRI PER LA DEFINIZIONE DELLO SPETTRO VERTICALE

Tr	1068	anni
ag_v	0.120	g
Fv	2.479	
S	1.000	
TB	0.050	sec
TC	0.150	sec
TD	1.000	sec

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

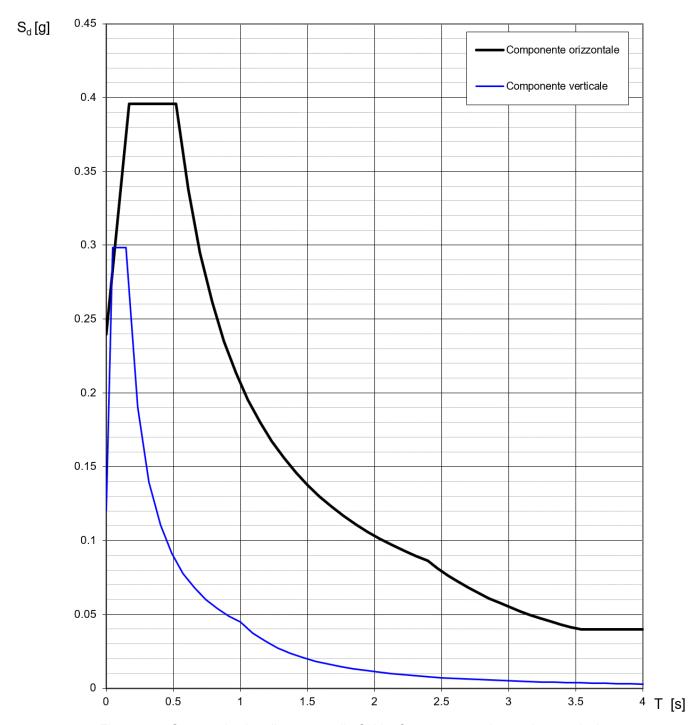


Figura 42 – Spettro elastico di progetto allo SLV – Componente orizzontale e verticale

7 COMBINAZIONI DI CARICO

Di seguito vengono riportate le tabelle che riepilogano le condizioni di carico elementari (C.C.E.) considerate.

	C.C.E.	Descrizione
	G1	Pesi propri
G - Permanenti	G21	Ballast
	G22	Permanenti non strutturali
	Q11	Disposizione 1 (massimizza N)
	Q12	Disposizione 2 (massimizza M2)
	Q13	Disposizione 3 (massimizza M1)
Q1 - Variabili verticali	Q14	Disposizione 4 (massimizza M1)
	Q15	Disposizione 5 (massimizza N+M2)
	Q16	Disposizione 6 (massimizza N)
	Q17	Disposizione 7 (minimizza N)
	Q21	Disposizione 1 (massimizza N)
	Q22	Disposizione 2 (massimizza M2)
	Q23	Disposizione 3 (massimizza M1)
Q2 - Avviamento e frenatura	Q24	Disposizione 4 (massimizza M1)
	Q25	Disposizione 5 (massimizza N+M2)
	Q26	Disposizione 6 (massimizza N)
	Q27	Disposizione 7 (minimizza N)
	Q31	Disposizione 1 (massimizza N)
	Q32	Disposizione 2 (massimizza M2)
	Q33	Disposizione 3 (massimizza M1)
Q3 - Centrifuga	Q34	Disposizione 4 (massimizza M1)
	Q35	Disposizione 5 (massimizza N+M2)
	Q36	Disposizione 6 (massimizza N)
	Q37	Disposizione 7 (minimizza N)
	Q41	Disposizione 1 (massimizza N)
	Q42	Disposizione 2 (massimizza M2)
	Q43	Disposizione 3 (massimizza M1)
Q4 - Serpeggio	Q44	Disposizione 4 (massimizza M1)
	Q45	Disposizione 5 (massimizza N+M2)
	Q46	Disposizione 6 (massimizza N)
	Q47	Disposizione 7 (minimizza N)
Variabili	Q51	Vento
Azioni interne	Q61	Attrito su vincoli
Effetti d'interazione	Q71	Variazioni termiche
	E1	Sisma x
E - Azioni sismiche	E2	Sisma y
	E3	Sisma z

Le combinazioni di calcolo sono state definite sulla base dei criteri enunciati nei §1.8.2.3 [3], §1.8.3.1 [3] e §1.8.3.2 [3] di cui si riportano di seguito alcuni stralci.

TIPO DI CARICO	Azioni v	erticali	A	Azioni orizzontali			
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione	
Azione dominante (1) Includendo tutti i fattori ad essi relativi (Φ.α. ecc)							

Tabella 2 – Definizione dei gruppi di carico

La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze

		Coefficiente	EQU ⁽¹⁾	Al STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γp	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

progettuali.

Tabella 3 – Coefficienti parziali di sicurezza per le combinazioni agli SLU

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO CODIFICA

IF1N 01 E ZZ CL

DOCUMENTO VI0205 003

REV. FOGLIO

104 di 140

Azioni		Ψo	V 1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	grl	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

	Azioni	Ψο	V 1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80 ⁽³⁾	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	150	
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tabella 4 – Coefficienti di combinazione ψ delle azioni

Le combinazioni di carico (C.C.C.) definite e considerate nei calcoli successivi sono riportate nell'allegato 1 alla presente relazione.

⁽²⁾ Si usano gli stessi coefficienti \(\psi\) adottati per i carichi che provocano dette azioni.

⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Si riporta un quadro sintetico delle combinazioni prese in considerazione:

Gruppo	Num.
SLU-STR	70 combinazioni
SLU-GEO (appr. A2)	70 combinazioni
SIS-SLV	202 combinazioni
SLE-RAR/FRE	105 combinazioni
SLE-QP	2 combinazioni

8 ANALISI DELLE SOLLECITAZIONI

8.1 MODELLO DI CALCOLO E.F.

Il calcolo delle sollecitazioni lungo il fusto viene effettuato mediante una schematizzazione a mensola. Per gli scarichi in fondazione e la ripartizione degli sforzi sui pali si è ipotizzata una platea infinitamente rigida.

8.2 MASSE E FORZE SISMICHE

Secondo le indicazioni del §7.9.4.1 delle NTC2008 [1], nel caso di ponte a travate semplicemente appoggiate, i requisiti necessari per applicare l'analisi statica lineare possono ritenersi soddisfatti nel seguente caso:

• per entrambe le direzioni longitudinale e trasversale, purché la massa efficace di ciascuna pila non sia superiore ad 1/5 della massa di impalcato da essa portata (per pile a sezione costante, la massa efficace può essere assunta pari alla massa della metà superiore della pila).

Nel presente caso tale requisito risulta soddisfatto.

Per la determinazione delle sollecitazioni sui diversi elementi costituenti la pila si procede dunque con un'analisi statica lineare con spettro di risposta su oscillatore semplice.

Nel caso in esame si ha che:

- in direzione X la massa sismica è rappresentata dalle masse afferenti all'impalcato vincolato alla pila mediante gli apparecchi d'appoggio fissi e si considera agente alla quota degli apparecchi d'appoggio;
- in direzione Y la massa sismica è rappresentata della metà della massa afferente a ciascun impalcato e si considerano agenti alla quota baricentrica degli impalcati stessi;
- in direzione Z la massa sismica è rappresentata della metà della massa di ciascun impalcato ciascuna delle quali agisce nel centro geometrico degli apparecchi d'appoggio degli impalcati stessi.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO VI0205 003

REV.

FOGLIO **107 di 140**

IMPALCATO-SX	IMPALCATO-DX

Masse sismiche afferenti agli impalcati

Massa impalcato =	11652	kN	11652	kN
Carico max traffico LM71 =	2807	kN	2807	kN
Carico max traffico SW/2 =	3750	kN	3750	kN
Carico max traffico LM71+SW/2 =	6557	kN	6557	kN
Massa traffico (psi=0.2) =	1311	kN	1311	kN
Massa impalcato (perm+treni) =	12963	kN	12963	kN
tipologia vincolo =	UL		F	
Massa imp. longitudinale =	0	kN	12963	kN
Massa imp. trasversale =	6482	kN	6482	kN
Massa imp. totale longitudinale =	12963	kN		
Massa imp. totale trasversale =	12963	kN		

Masse sismiche afferenti alla pila

Massa pulvino =	1226	kN
Massa fusto =	1303	kN
Massa efficace pila (M*) =	1689	kN

Requisito analisi statica lineare

Massa efficace pila (M*) =	1689	kN
1/5 M impalcato (min[trasv;long]) =	2593	kN

 $M^* < 1/5$ Mimp. Il requisito per l'analisi statica lineare è soddisfatto.

Massa totale

M tot longitudinale =	14652	kΝ
M tot trasversale =	14652	kN
M tot verticale =	14652	kN

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO VI0205 003

REV. F

FOGLIO 108 di 140

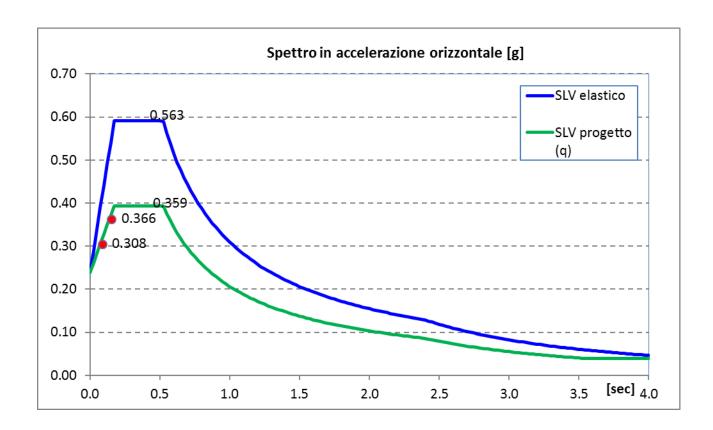
Analisi statica lineare

Ac	10.425	m2
H1	5.00	m
H2	1.45	m
H3	0.45	m
Hpila	6.90	m
yg_imp	2.08	m

Ecm 33643 N*/mm2

33643000 kN/m2

Dir. longitudinale


Dir. trasversale

llong	9.4	m4	Itrasv	69.8	mm4
Wlong	14652	kN/m	Wtrasv	14652	ton
Mlong	1494	ton	Mtrasv	1494	ton
Lvlong	6.9	m	Lvtrasv	9.0	m
Klong	2.9E+06	kN/m	Ktrasv	9.7E+06	kN/m
Tlong	0.143	sec	Ttrasv	0.078	sec
Sdlong	0.366	g	Sdtrasv	0.308	g
Elong	E2E0	LNI	Etrocy	4500	I/NI

Flong 5359 kN Ftrasv 4509 kN

Nel seguente diagramma sono evidenziate le coordinate spettrali SLV corrispondenti ai valori dei periodi T_{long} [sec] e T_{trasv} [sec] calcolati in precedenza.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	VI0205 003	В	110 di 140

Il §7.9.3 [1] raccomanda di assumere un'eccentricità accidentale nel posizionamento delle masse sismiche riferite all'impalcato, pari a 0,03 volte la dimensione dell'impalcato stesso misurata perpendicolarmente alla direzione dell'azione sismica.

Per la pila in oggetto si avrebbe:

Pile 07-08-09-12: Relazione di calcolo

§7.9.3 [1] - Eccentricità accidentale nel posizionamento delle masse sismiche

	IMP. SX		IMP. DX	
b =	13.7	m	13.7	m
L =	25.0	m	25.0	m
Sisma long (X): $ey = 0.03 \cdot b =$	0.411	m	0.411	m
Sisma trasv (Y): ex = 0,03 · L =	0.75	m	0.75	m

8.3 CARICHI ELEMENTARI

8.3.1 RIEPILOGO DEGLI SCARICHI DALL'IMPALCATO

8.3.1.1 SCARICHI IMPALCATO SX RISPETTO A BARICENTRO APPOGGI:

	ATO 4 CASSONCINI DA 25 m							
SCARICHI IMPALCATO SX RISPETTO A BARICENTRO APPOGGI								
C.C.E.	Descrizione	F1	F2	F3	M1	M2	М3	
		kN	kN	kN	kNm	kNm	kNm	
G - Perm	nanenti I							
G1	Pesi propri	0	0	-3303	0	0	0	
G2	Ballast	0	0	-1750	0	0	0	
G2	Permanenti non strutturali	0	0	-774	0	0	0	
Q1 - Vari	abili verticali							
Q11	Disposizione 1 (massimizza N)	0	0	-2816	-282	0	0	
Q12	Disposizione 2 (massimizza M2)	0	0	0	0	0	0	
Q13	Disposizione 3 (massimizza M1)	0	0	-1451	-2903	0	0	
Q14	Disposizione 4 (massimizza M1)	0	0	-1365	-2839	0	0	
Q15	Disposizione 5 (massimizza N+M2)	0	0	-1965	-271	0	0	
Q16	Disposizione 6 (massimizza N)	0	0	-2730	-109	0	0	
Q17	Disposizione 7 (minimizza N)	0	0	0	0	0	0	
Q2 - Avv	iamento e frenatura							
Q21	Disposizione 1 (massimizza N)	0	0	0	0	0	0	
Q22	Disposizione 2 (massimizza M2)	0	0	0	0	0	0	
Q23	Disposizione 3 (massimizza M1)	0	0	0	0	0	0	
Q24	Disposizione 4 (massimizza M1)	0	0	0	0	0	0	
Q25	Disposizione 5 (massimizza N+M2)	0	0	0	0	0	0	
Q26	Disposizione 6 (massimizza N)	0	0	0	0	0	0	
Q27	Disposizione 7 (minimizza N)	0	0	0	0	0	0	
Q3 - Cer	<u> </u>							
Q31	Disposizione 1 (massimizza N)	0	235	0	-1193	0	0	
Q32	Disposizione 2 (massimizza M2)	0	0	0	0	0	0	
Q33	Disposizione 3 (massimizza M1)	0	76	0	-387	0	0	
Q34	Disposizione 4 (massimizza M1)	0	159	0	-806	0	0	
Q35	Disposizione 5 (massimizza N+M2)	0	169	0	-857	0	0	
Q36	Disposizione 6 (massimizza N)	0	230	0	-1170	0	0	
Q37	Disposizione 7 (minimizza N)	0	0	0	0	0	0	
Q4 - Ser			_	1	_	<u> </u>		
Q41	Disposizione 1 (massimizza N)	0	105	0	-344	0	0	
Q42	Disposizione 2 (massimizza M2)	0	0	0	0	0	0	

CL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO CODIFICA IF1N 01 E ZZ

DOCUMENTO

VI0205 003

REV.

В

FOGLIO 112 di 140

Q43	Disposizione 3 (massimizza M1)	0	50	0	-164	0	0
Q44	Disposizione 4 (massimizza M1)	0	55	0	-180	0	0
Q45	Disposizione 5 (massimizza N+M2)	0	105	0	-344	0	0
Q46	Disposizione 6 (massimizza N)	0	105	0	-344	0	0
Q47	Disposizione 7 (minimizza N)	0	0	0	0	0	0
Q5 - Var	iabili						
Q51	Vento	0	419	0	-2351	0	0
Q6 - Azi	oni _, indirette						
Q61	Attrito su vincoli	0	0	0	0	0	0
Q7 - Effe	etti d'interazione						
Q71	Variazioni termiche	0	0	0	0	0	0
E - Azior	ni sismiche						
E1	Sisma x	0	0	0	0	0	0
E2	Sisma y	0	2255	0	-4690	0	1691
E3	Sisma z	0	0	-1921	-789	1440	0

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO CODIFI

CODIFICA DO

DOCUMENTO REV.

В

VI0205 003

FOGLIO 113 di 140

8.3.1.2 SCARICHI IMPALCATO DX RISPETTO A BARICENTRO APPOGGI:

IMPALC	ATO 4 CASSONCINI DA 25 m							
SCARICHI IMPALCATO DX RISPETTO A BARICENTRO APPOGGI								
C.C.E.	Descrizione	F1	F2	F3	M1	M2	М3	
		kN	kN	kN	kNm	kNm	kNm	
G - Perm	nanenti							
G1	Pesi propri	0	0	-3303	0	0	0	
G2	Ballast	0	0	-1750	0	0	0	
G2	Permanenti non strutturali	0	0	-774	0	0	0	
Q1 - Var	iabili verticali							
Q11	Disposizione 1 (massimizza N)	0	0	-2876	-402	0	0	
Q12	Disposizione 2 (massimizza M2)	0	0	-3559	-518	0	0	
Q13	Disposizione 3 (massimizza M1)	0	0	-1511	-3022	0	0	
Q14	Disposizione 4 (massimizza M1)	0	0	-1365	-2839	0	0	
Q15	Disposizione 5 (massimizza N+M2)	0	0	-3559	-518	0	0	
Q16	Disposizione 6 (massimizza N)	0	0	-2730	-109	0	0	
Q17	Disposizione 7 (minimizza N)	0	0	-2977	-1634	0	0	
Q2 - Avv	riamento e frenatura							
Q21	Disposizione 1 (massimizza N)	1835	0	0	0	0	0	
Q22	Disposizione 2 (massimizza M2)	2154	0	0	0	0	0	
Q23	Disposizione 3 (massimizza M1)	819	0	0	0	0	0	
Q24	Disposizione 4 (massimizza M1)	1016	0	0	0	0	0	
Q25	Disposizione 5 (massimizza N+M2)	2154	0	0	0	0	0	
Q26	Disposizione 6 (massimizza N)	1995	0	0	0	0	0	
Q27	Disposizione 7 (minimizza N)	2154	0	0	0	0	0	
Q3 - Cer	ntrifuga							
Q31	Disposizione 1 (massimizza N)	0	238	0	-1209	0	0	
Q32	Disposizione 2 (massimizza M2)	0	294	0	-1494	0	0	
Q33	Disposizione 3 (massimizza M1)	0	79	0	-403	0	0	
Q34	Disposizione 4 (massimizza M1)	0	159	0	-806	0	0	
Q35	Disposizione 5 (massimizza N+M2)	0	294	0	-1494	0	0	
Q36	Disposizione 6 (massimizza N)	0	230	0	-1170	0	0	
Q37	Disposizione 7 (minimizza N)	0	226	0	-1151	0	0	
Q4 - Ser	peggio							
Q41	Disposizione 1 (massimizza N)	0	105	0	-344	0	0	
Q42	Disposizione 2 (massimizza M2)	0	210	0	-689	0	0	
Q43	Disposizione 3 (massimizza M1)	0	50	0	-164	0	0	
Q44	Disposizione 4 (massimizza M1)	0	55	0	-180	0	0	
Q45	Disposizione 5 (massimizza N+M2)	0	105	0	-344	0	0	
Q46	Disposizione 6 (massimizza N)	0	105	0	-344	0	0	

CL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

01 E ZZ

IF1N

CODIFICA DOCUMENTO

VI0205 003

REV.

FOGLIO 114 di 140

Q47	Disposizione 7 (minimizza N)	0	210	0	-689	0	0
Q5 - Varia	bili						
Q51	Vento	0	419	0	-2351	0	0
Q6 - Azior	ni indirette						
Q61	Attrito su vincoli	283	0	0	0	0	0
Q7 - Effett	i d'interazione						
Q71	Variazioni termiche	280	0	0	0	0	0
E - Azioni	sismiche						
E1	Sisma x	5359	0	0	0	0	2202
E2	Sisma y	0	2255	0	-4690	0	1691
E3	Sisma z	0	0	-1921	-789	1440	0

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	VI0205 003	В	115 di 140

Pile 07-08-09-12: Relazione di calcolo

8.4 SOLLECITAZIONI DI CALCOLO

8.4.1 SOLLECITAZIONI ALLA BASE DEL FUSTO PILA

Le sollecitazioni di calcolo riferite alla sezione di base del fusto della pila avente maggiore altezza tra quelle prese in considerazione nella presente relazione, sono riportate in forma completa nel secondo allegato alla presente relazione.

Le sollecitazioni di calcolo ottenute in condizione sismica per le strutture in elevazione devono essere ulteriormente elaborate per tener conto delle indicazioni del §7.9 [1] e dei principi della gerarchia delle resistenze.

8.4.1.1 SOLLECITAZIONI FLETTENTI IN ZONA CRITICA

Secondo le indicazioni del §7.9.4 [1] nelle zone critiche, gli effetti delle non linearità geometriche possono essere tenute in conto mediante l'espressione semplificata:

$$\Delta M = d_{Ed} \cdot N_{Ed}$$

con d_{Ed} valutato secondo il §7.3.3.3, ossia pari a µ_d · d_{Ee} dove:

d_{Ee} è lo spostamento derivante dall'analisi lineare

$$\mu_d = q$$
 per $T_1 \ge T_C$

$$\mu_d = 1 + (q - 1) \cdot T_C/T_1$$
 per $T_1 < T_C$ in ogni caso $\mu_d \le 5 \cdot q - 4$

Per il caso in esame si ha:

dEe_long	1.9	mm	dEe_trasv	0.5	mm
µd_long	2.83		μd_trasv	3.50	
dEd_long	5.3	mm	dEd_trasv	1.6	mm

8.4.1.2 SOLLECITAZIONI FLETTENTI FUORI DALLA ZONA CRITICA

II §7.9.5.1 [1] definisce il fattore di "sovraresistenza" γRd che viene calcolato mediante l'espressione:

$$\gamma_{Rd} = 0.7 + 0.2 \, q \ge 1$$

nella quale q è il fattore di struttura utilizzato nei calcoli.

Nel caso in cui la compressione normalizzata $v_k = N_{Ed} / (A_c \cdot f_{ck})$ (rif. §7.9.2.1 delle NTC2008 [1]), ecceda il valore 0,1 tale fattore deve essere moltiplicato per f = 1 + 2 · $(v_k - 0,1)^2$.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

CODIFICA CL DOCUMENTO
VI0205 003

REV. FOGLIO **B** 116 di 140

Nel caso in esame il fattore γ_{Rd} assume il valore:

Dir. Longitudinale:				Dir. Trasversale:			
qlong	1.50		qtrasv	/ 1.50			
NEd	16804	kN	NEd	16804	kN		
fck	32	Мра	fck	32	Мра		
vk	0.05		vk	0.05			
f	1.005		f	1.005			
γRd	1.00		γRd	1.00			

Definite "zone di cerniera plastica" o "zone critiche" le zone dove si progetta di localizzare le plasticizzazioni che conferiranno la duttilità richiesta alla struttura soggetta all'evento sismico, nel caso delle pile tali zone si identificano come la zona compresa tra la sezione di incastro alla base e la sezione posta ad una distanza L_h dall'incastro, dove L_h assume il massimo tra i seguenti valori (rif §7.9.6.2):

- la profondità della sezione in direzione ortogonale all'asse di rotazione delle cerniere;
- la distanza tra la sezione di momento massimo e la sezione in cui il momento si riduce del 20%.

Nelle sezioni comprese nella zona critica deve risultare:

 $M_{Ed} \leq M_{Rd}$

Nelle sezioni al di fuori della zona critica tenendo conto del criterio della gerarchia delle resistenze deve risultare:

 $M_{gr} \leq M_{Rd}$

I valori di M_{gr} lungo lo sviluppo dell'elemento si ottengono scalando il diagramma delle sollecitazioni flettenti ponendo nella sezione critica un momento agente pari a $\gamma_{Rd} \cdot M_{Rd}$.

Nel caso in esame si ha una lunghezza della zona critica pari alla profondità della sezione in direzione longitudinale:

 L_h zona critica = 2.60 m

8.4.1.3 SOLLECITAZIONI DI TAGLIO

Le sollecitazioni di taglio si ottengono con il criterio della gerarchia delle resistenze, il quale conduce ad adottare come sollecitazione di calcolo:

 $V_{gr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \le q \cdot V_{Ed}$

I valori di resistenza a taglio degli elementi in c.a. devono inoltre essere divisi per un coefficiente di sicurezza aggiuntivo nei confronti della rottura fragile γ_{Bd} valutato mediante la seguente espressione:

$$1 \le \gamma_{Bd} = 1.25 + 1 - q \cdot V_{Ed}/V_{gr} \le 1.25$$

La valutazione delle sollecitazioni di taglio da GR viene condotto nei paragrafi successivi relativi alle verifiche a taglio, a fronte dei valori resistenti ottenuti dalle successive verifiche a pressoflessione.

Pile 07-08-09-12: Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0205 003
 B
 118 di 140

8.4.2 SOLLECITAZIONI ALL'INTRADOSSO DEL PLINTO DI FONDAZIONE

Le sollecitazioni di calcolo relative alle combinazioni sismiche devono essere elaborate per tener conto delle indicazioni del $\S7.2.5[1]$. Per gli elementi di fondazione il criterio della gerarchia delle resistenze si applica incrementando le azioni derivanti dagli elementi soprastanti di un fattore γ_{Rd} pari a 1.1.

(In accordo con quanto prescritto nel §7.2.5 [1], per le strutture progettate in CD"B", il dimensionamento delle strutture di fondazione deve essere eseguito per valori di taglio e momento flettente pari ai valori resistenti degli elementi soprastanti. Tali valori hanno come limite superiore le sollecitazioni derivanti dalle analisi amplificate con un γ_{Rd} pari a 1,1 in CD"B" e comunque non maggiori di quelle derivanti da un'analisi elastica della struttura eseguita con q pari a 1. A tal proposito per semplificazione e favore di sicurezza si assumono come valori di calcolo le sollecitazioni derivanti dall'analisi incrementate del coefficiente γ_{Rd} pari a 1,1).

Rispetto alle sollecitazioni calcolate alla sezione di base del fusto pila, le sollecitazioni riportate all'intradosso del plinto di fondazione sono incrementate dei seguenti contributi:

- Ppl peso proprio del plinto di fondazione [kN]
- Pterr peso proprio del terreno di ricoprimento presente all'estradosso del plinto [kN]
- I_{pl_hor} forza di inerzia associata alla massa del plinto sul piano orizzontale (I_{pl,hor} = P_{pl} * PGA) [kN]
- I_{pl_vert} forza di inerzia associata alla massa del plinto in direzione verticale (I_{pl,vert} = P_{pl} * a_{gv}) [kN]

Nel secondo allegato alla presente relazione si riportano (in forma di tabelle) le sollecitazioni di calcolo riferite all'intradosso del plinto di fondazione. In particolare, tali valori sono riferiti alla fondazione della pila avente altezza maggiore all'interno del gruppo di sottostrutture preso in considerazione nella presente relazione.

8.4.1 SOLLECITAZIONI DISTRIBUITE IN TESTA AI PALI DI FONDAZIONE

Le caratteristiche di sollecitazione sul singolo palo sono state determinate a partire dalle sollecitazioni riportate all'intradosso del plinto di fondazione, secondo le seguenti relazioni (distribuzione rigida delle sollecitazioni):

$$N_{max} = F_3 / n_{pali} + ass(M_1) / W_1palificata + ass(M_2) / W_2palificata$$

$$N_{min} = F_3 / n_{pali} - ass(M_1) / W_1palificata - ass(M_2) / W_2palificata$$

$$H = \sqrt{((F_1 / n_{pali})^2 + (F_2 / n_{pali})^2)}$$

I valori del taglio sul palo così ottenuti, compresi quelli relativi alle combinazioni non sismiche, vengono inoltre ulteriormente incrementati di un fattore pari a 1,1 per tenere conto dell'effetto gruppo.

Nel secondo allegato alla presente relazione si riportano (in forma di tabelle) le sollecitazioni di calcolo distribuite in testa ai pali di fondazione. In particolare, tali valori sono riferiti alla fondazione della pila avente altezza maggiore all'interno del gruppo di sottostrutture preso in considerazione nella presente relazione.

9 VERIFICHE STRUTTURALI DEL FUSTO PILA

9.1 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Si riporta a seguire una figura che illustra la geometria della sezione di verifica, nella quale è rappresentata un'armatura tipologica.

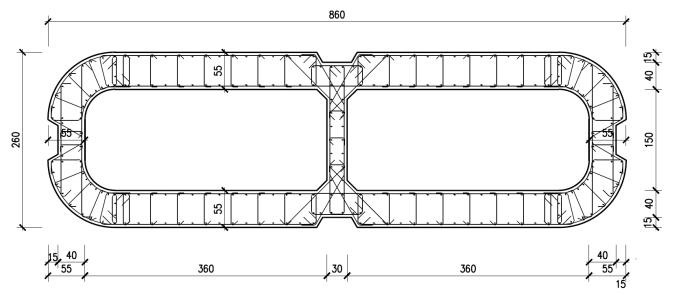


Figura 43 – Geometria della sezione trasversale della pila [cm]

9.1.1 ARMATURA LONGITUDINALE

A seguire è indicata l'armatura flessionale prevista nella sezione di base del fusto pila, in termini di numero di barre presenti nello strato esterno (1° str.) e nello strato interno (2° str.) e loro diametro fi [mm].

n barre (1° str.)	124	
fi barre (1° str.)	20	mm
n barre (2° str.)	122	
fi barre (2° str.)	20	mm

9.1.2 ARMATURA TRASVERSALE

A seguire è indicata l'armatura a taglio prevista nella sezione di base del fusto pila, all'interno della zona critica.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO VI0205 003

REV.

FOGLIO 120 di 140

Direzione longitudinale

Staffe:		_	Spille:			Spille:		
øw	16	mm	øw	8	mm	øw	16	mm
A1b	200.96	mm2	A1b	50.24	mm2	A1b	200.96	mm2
passo	100	mm	passo	100	mm	passo	100	mm
bracci	6		bracci	16		bracci	6	
Direzione	trasversale							
Staffe:			Spille:			Spille:		
øw	16	mm	øw	8	mm	øw	16	mm
A1b	200.96	mm2	A1b	50.24	mm2	A1b	200.96	mm2
passo	100	mm	passo	100	mm	passo	100	mm
bracci	4		bracci	6		bracci	2	

9.1.3 VERIFICA DELL'ARMATURA MINIMA

Le armature del fusto pila devono soddisfare le quantità minime indicate dalla normativa e che vengono riepilogate di seguito.

Armatura minima longitudinale:

• $\rho_{min} = 0.60 \%$ (rif. §2.2.6 [3])

Armatura minima trasversale nelle zone critiche:

Secondo le indicazioni del §7.9.6.2 [1], nelle sezioni piene, le armature di confinamento per la duttilità nelle zone critiche non devono rispettare i limiti di normativa nei seguenti casi:

- se la sollecitazione ridotta risulta v_k ≤ 0,08;
- nel caso di sezioni a pareti sottili purché risulti $v_k \le 0,2$, se è possibile raggiungere una duttilità in curvatura non inferiore a $\mu_c = 12$ senza che la deformazione nel conglomerato superi il valore 0,0035;
- se il fattore di struttura non supera il valore 1,5.

In caso contrario è necessario disporre le seguenti quantità minime di armatura a confinamento:

• $\omega_{\text{wd,r}} = 0.33 \cdot A_c/A_{cc} v_k - 0.07 \ge 0.12$

per sezioni rettangolari

• $\omega_{wd,c} = 1.4 \cdot \omega_{wd,r}$

per sezioni circolari

La percentuale meccanica è definita dalle espressioni:

• $\omega_{wd,r} = A_{sw}/(s \cdot b) \cdot f_{vd}/f_{cd}$

per sezioni rettangolari

• $\omega_{wd,c} = 4 A_{sp}/(D_{sp} \cdot s) \cdot f_{yd}/f_{cd}$

per sezioni circolari

CL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO IF1N 01 E ZZ CODIFICA DOCUMENTO VI0205 003

REV. В

FOGLIO 121 di 140

Secondo le indicazioni del §2.2.6 [3] invece deve verificarsi:

 $A_{sw}/(s \cdot b) \cdot f_{yd}/f_{cd} \ge \zeta$ per sezioni rettangolari

 $\rho_{\rm w} \cdot f_{\rm yd}/f_{\rm cd} \ge 1,40 \cdot \zeta$ per sezioni circolari

con:

 $\rho_w = V_{\text{sc}}/V_{\text{cc}}$ rapporto tra il volume complessivo delle armature di confinamento V_{sc} e volume di calcestruzzo confinato V_{cc};

 $\zeta = 0.07 \text{per a}_g \ge 0.35 \text{ g};$

 $\zeta = 0.05 \text{per a}_g \ge 0.25 \text{ g};$

 $\zeta = 0.04 \text{per a}_g \ge 0.15 \text{ g};$

 ζ = 0,03per a_g < 0,15 g.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO VI0205 003

REV.

FOGLIO 122 di 140

Verifica armatura minima longitudinale secondo §2.2.6 [3]

ρmin =	0.60%	
Ac =	10425000	mm2
As,min =	62550	mm2
n barre (1° str.)	124	
fi barre (1° str.)	20	mm
n barre (2° str.)	122	
fi barre (2° str.)	20	mm

As 77244 mm2

ρ **0.74**% requisito soddisfatto

Verifica armatura minima trasversale secondo §2.2.6 [3]

ag = 0.199 g $\zeta = 0.04$ $\omega wd, r min = 0.04$

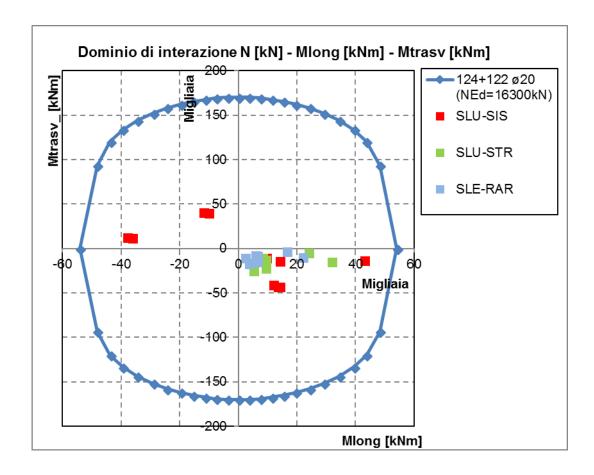
Armatura in dir. longitudinale

Asw/s staffe =	0.0121	m2/m
Asw/s spille =	0.0201	m2/m
b =	8.60	m
fyd =	391	MPa
fcd =	18.13	MPa

 ω wd,r = **0.081** requisito soddisfatto

Armatura in dir. trasversale

Asw/s staffe =	0.0080	m2/m
Asw/s spille =	0.0070	m2/m
b =	2.60	m
fyd =	391	MPa
fcd =	18.13	MPa


 ω wd,r = **0.125** requisito soddisfatto

L'armatura longitudinale di calcolo e l'armatura trasversale di calcolo rispettano le quantità minime indicate dalla normativa.

9.2 VERIFICA SLU A FLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di base della pila, espresse in forma sintetica mediante il diagramma di interazione M_{long} - M_{trasv} , valutato per una forza assiale corrispondente alla condizione di verifica più severa.

Le verifiche riportate a seguire sono riferite alla pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

La verifica SLU di tipo flessionale nelle sezioni critiche si effettua verificando che:

Il valore minimo del fattore di sicurezza FS è pari a

FS 1.20

La verifica è soddisfatta, in quanto FS > 1.

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa relative alla pila con altezza maggiore tra quelle appartenenti al gruppo di sottostrutture considerato nella presente relazione.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO VI0205 003

REV.

FOGLIO 125 di 140

9.3 VERIFICA SLU A TAGLIO

Nel caso di sezioni rettangolari la verifica viene effettuata distintamente per le due direzioni longitudinale e trasversale.

Nel caso si sezione circolare si esegue la verifica per un valore del taglio pari a:

$$V = \sqrt{(F1^2 + F2^2)}$$

Per quanto riguarda le combinazioni sismiche, con riferimento ai criteri della GR e a quanto precedentemente dichiarato nel §8.3.2, si procede al calcolo del taglio agente di calcolo sulla base dei risultati delle verifiche flessionali.

$$V_{gr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \le q \cdot V_{Ed}$$

Il valore resistente a taglio della sezione si determina secondo le indicazioni del §4.1.2.1.3.2 [1]:

 $V_{Rd} = min (V_{Rcd}; V_{Rsd})$

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}' \cdot (ctg \alpha + ctg \theta)/(1 + ctg^2 \theta)$

 $V_{Rsd} = 0.9 \cdot d \cdot A_{sw}/s \cdot f_{yd} \cdot (ctg \alpha + ctg \theta) \cdot sen \alpha$ in cui

d altezza utile della sezione

bw larghezza minima della sezione

Asw area dell'armatura trasversale

s interasse tra due armature trasversali consecutive

θ inclinazione delle bielle di calcestruzzo

α angolo di inclinazione dell'armatura trasversale rispetto all'asse dell'elemento

f_{cd}' resistenza a compressione ridotta (pari a 0,5 f_{cd})

αc coefficiente maggiorativo che tiene conto della compressione

Nel caso di sezione circolare, le dimensioni della sezione rettangolare equivalente da utilizzare per il calcolo della resistenza a taglio della sezione si determinano secondo le indicazioni del §7.9.5.2.2 [1]:

$$d = r + 2 \cdot r_s / \pi$$
$$b = 0.9 \cdot 2 \cdot r$$

I valori di resistenza a taglio degli elementi in c.a. devono inoltre essere divisi per un coefficiente di sicurezza aggiuntivo nei confronti della rottura fragile γ_{Bd} valutato mediante la seguente espressione:

$$1 \le \gamma_{Bd} = 1.25 + 1 - q \cdot V_{Ed} / V_{gr} \le 1.25$$

Si riporta a seguire in forma sintetica la verifica più severa della sezione di base del fusto della pila avente maggiore altezza tra quelle comprese nel gruppo di sottostruture considerato nella presente relazione.

II minimo valore del fattore di sicurezza FS = V_{Rd} / V_{Ed} è pari a

La verifica è soddisfatta in quanto FS > 1.

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa relative alla pila con altezza maggiore tra quelle appartenenti al gruppo considerato nella presente relazione.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

CODIFICA CL DOCUMENTO VI0205 003

REV. FOGLIO **B** 126 di 140

9.4 VERIFICA SLE TENSIONALE

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

per le combinazioni SLE-RAR:

• tensione limite nel calcestruzzo: $\sigma_c = 0.55 \, f_{ck} = 18.3 \, MPa$ • tensione limite nelle barre: $\sigma_s = 0.75 \, f_{yk} = 337.5 \, MPa$

per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo: $\sigma_c = 0.40 f_{ck} = 13.3 MPa$

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) della sezione di base del fusto della pila avente maggiore altezza tra quelle comprese nel gruppo considerato nella presente relazione.

σc -5.2 MPaσs 101 MPa

La verifica è soddisfatta.

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa.

9.5 VERIFICA SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

per le combinazioni SLE-RAR:

• apertura fessure limite: $w_{lim} = w_1 = 0,20 \text{ mm}$

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) della sezione di base del fusto della pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

L'ampiezza massima delle fessure calcolata è pari a

wk **0.161** mm

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa.

9.6 VERIFICA DEGLI SPOSTAMENTI

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa relative alla pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

Pile 07-08-09-12: Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0205 003
 B
 127 di 140

10 VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE 10.1 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Nelle tabelle seguenti sono descritte le caratteristiche geometriche della sezione di verifica dei pali di fondazione, nonché le caratteristiche di resistenza dei materiali.

GEOMETRIA DELLA SEZIONE		
Diametro del palo =	1200	mm
Copriferro netto c =	60	mm
Classe di resistenza calcestruzzo =	C25/30	Мра
Classe di resistenza delle barre =	B450C	MPa

Nella seguente tabella sono descritte le caratteristiche geometriche dell'armatura flessionale e a taglio dei pali, con riferimento ad un tratto di lunghezza pari a 10 ø dalla sezione di testa. Sono inoltre verificati i requisiti minimi in termini di armatura flessionale a taglio.

ARMATURA PER I PRIMI 10 ø		
1° strato di armatura longitudinale		
Numero barre long.	22	-
Diametro barre long.	26	mm
Copriferro baricentrico arm. long. c' =	87	mm
2° strato di armatura longitudinale		
Numero barre long.	22	-
Diametro barre long.	26	mm
Copriferro baricentrico arm. long. c' =	138	mm
Armatura trasversale		
Diametro barre trasv.	14	mm
Passo arm. trasv.	200	mm
Diametro corona esterna =	1066	mm
VERIFICA ARMATURA MINIMA LONG.		
ρmin =	1.00%	
Ac =	1130973	mm2
As, _{min} =	11310	mm2
Armatura long. tot Asd,tot =	23361	mm2
ρl =	2.07%	

10.2 VERIFICA SLU A PRESSOFLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di sommità del palo maggiormente sollecitato, espresse in forma sintetica mediante il diagramma di interazione N [kN] – M [kNm].

Le verifiche riportate a seguire sono riferite alla pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

Diagramma d'interazione con le coordinate delle sollecitazioni indotte dalle combinazioni SLU-STR

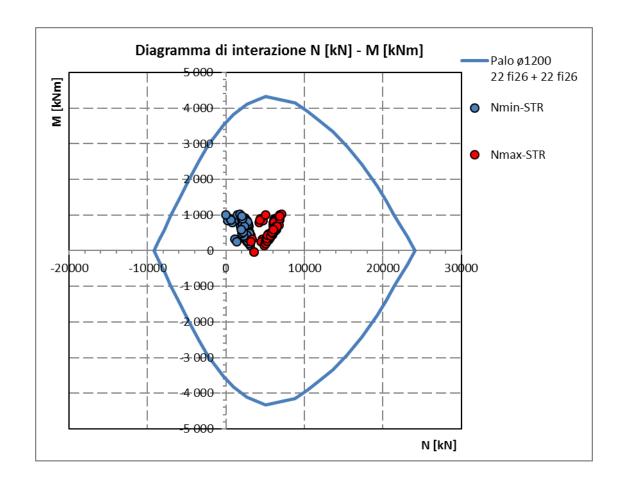
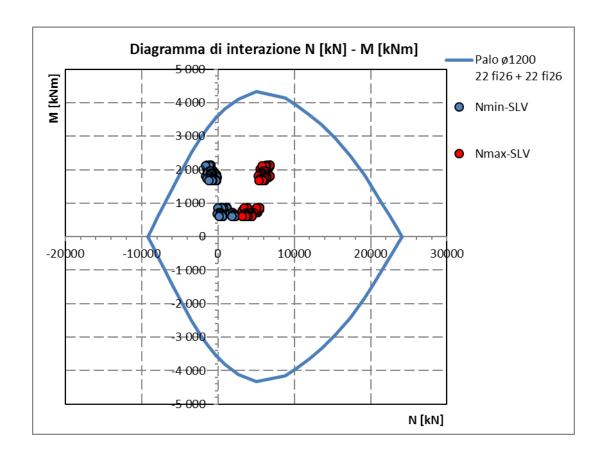



Diagramma d'interazione con le coordinate delle sollecitazioni indotte dalle combinazioni SLU-SLV

La verifica è soddisfatta in quanto le coppie N-M delle sollecitazioni agenti nella sezione di verifica sono interne al dominio di resistenza per ogni condizione di carico indagata.

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa relative alla pila con altezza maggiore tra quelle appartenenti al gruppo di sottostrutture considerato nella presente relazione.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO CODIFICA

IF1N 01 E ZZ CL

FICA DOCUMENTO
VI0205 003

REV. FOGLIO **B** 130 di 140

10.3 VERIFICA SLU A TAGLIO

Nel caso si sezione circolare si esegue la verifica per un valore del taglio pari a:

$$V = \sqrt{(F1^2 + F2^2)}$$

Per quanto riguarda le combinazioni sismiche, con riferimento ai criteri della GR e a quanto precedentemente dichiarato nel §8.3.2, si procede al calcolo del taglio agente di calcolo sulla base dei risultati delle verifiche flessionali.

$$V_{gr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd} / M_{Ed} \le q \cdot V_{Ed}$$

Il valore resistente a taglio della sezione si determina secondo le indicazioni del §4.1.2.1.3.2 [1]:

 $V_{Rd} = min (V_{Rcd}; V_{Rsd})$

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}' \cdot (ctg \alpha + ctg \theta)/(1 + ctg^2 \theta)$

 $V_{Rsd} = 0.9 \cdot d \cdot A_{sw}/s \cdot f_{yd} \cdot (ctg \alpha + ctg \theta) \cdot sen \alpha$

in cui

d altezza utile della sezione

bw larghezza minima della sezione

Asw area dell'armatura trasversale

s interasse tra due armature trasversali consecutive

θ inclinazione delle bielle di calcestruzzo

angolo di inclinazione dell'armatura trasversale rispetto all'asse dell'elemento

f_{cd}' resistenza a compressione ridotta (pari a 0,5 f_{cd})

 α_{c} $\,$ coefficiente maggiorativo che tiene conto della compressione

Nel caso di sezione circolare, le dimensioni della sezione rettangolare equivalente da utilizzare per il calcolo della resistenza a taglio della sezione si determinano secondo le indicazioni del §7.9.5.2.2 [1]:

 $d = r + 2 \cdot r_s / \pi$

b = $0.9 \cdot 2 \cdot r$

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLV-SIS) relativa alla pila avente maggiore altezza tra quelle comprese nel gruppo considerato nella presente relazione.

Il minimo valore del fattore di sicurezza FS = V_{Rd} / V_{Ed} è pari a

FS 1.26

La verifica è soddisfatta, in quanto FS > 1.

Negli allegati alla presente relazione sono riportate le verifiche in forma completa relative alla pila con altezza maggiore tra quelle appartenenti al gruppo considerato.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA IF1N LOTTO

01 E ZZ

CODIFICA CL DOCUMENTO VI0205 003

REV. FOGLIO **B** 131 di 140

10.4 VERIFICA SLE TENSIONALE

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

per le combinazioni SLE-RAR:

• tensione limite nel calcestruzzo:

 $\sigma_c = 0.55 \, f_{ck} = 13.7 \, MPa$

• tensione limite nelle barre:

 $\sigma_s = 0.75 \, f_{yk} = 337.5 \, MPa$

per le combinazioni SLE-QP:

tensione limite nel calcestruzzo:

 $\sigma_c = 0.40 \, f_{ck} = 10.0 \, MPa$

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) relativa alla pila avente maggiore altezza tra quelle comprese nel gruppo considerato nella presente relazione.

σc

-4.6

MPa

σs

88

MPa

La verifica è soddisfatta.

Negli allegati alla presente relazione sono riportate le verifiche in forma completa.

10.5 VERIFICA SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

per le combinazioni SLE-RAR:

• apertura fessure limite:

 $w_{lim} = w_1 = 0.30 \text{ mm}$

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) relativa alla pila avente maggiore altezza tra quelle comprese nel gruppo considerato nella presente relazione.

L'ampiezza massima delle fessure calcolata è pari a

wk

0.132

mm

Negli allegati alla presente relazione sono riportate le verifiche in forma completa.

11 VERIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE

11.1 VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE

La verifica strutturale del plinto viene condotta a seguire impiegando un modello tirante-puntone, come quello rappresentato nella figura seguente, tratta da §C4.1.2.1.5 [2].

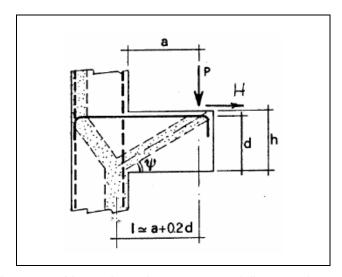


Figura 44 – Meccanismo tirante puntone della mensola tozza

Si distinguono due meccanismi di tipo tirante-puntone principali nel plinto di fondazione, illustrati nelle figure seguenti e descritti a seguire:

- un primo meccanismo è innescato dalle azioni trasmesse al plinto dai pali centrali e coinvolge un tirantepuntone parallelo alla direzione longitudinale (evidenziato in verde). Tale meccanismo coinvolge la sola armatura longitudinale inferiore del plinto.
- un secondo meccanismo coinvolge i pali di spigolo ed innesca un tirante-puntone con direzione diagonale (evidenziato in rosso), individuata da un angolo α misurato rispetto alla direzione trasversale. Tale meccanismo coinvolge sia l'armatura longitudinale inferiore del plinto che l'armatura trasversale, pertanto, ai fini delle verifiche del tirante di armatura e della biella di calcestruzzo, si considera composto dalla somma vettoriale di due meccanismi ortogonali disaccoppiati.

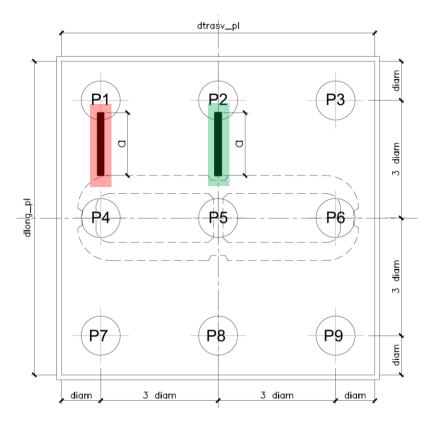


Figura 45 – Vista in pianta - Tirante-puntone centrale (verde) e di spigolo (rosso)

A seguire si riporta una immagine che illustra, in una vista in sezione, la geometria di un generico meccanismo tirante puntone che si innesca nel plinto per azione dei carichi concentrati trasmessi dai pali di fondazione

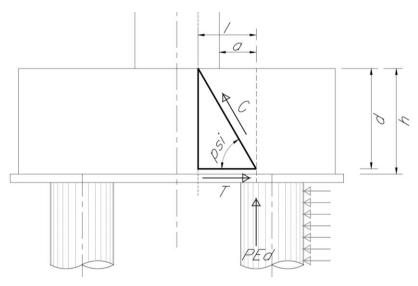


Figura 46 – Tirante puntone - Biella compressa di calcestruzzo C e tirante di armatura T

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

REV.

FOGLIO

134 di 140

Pile 07-08-09-12: Relazione di calcolo

IF1N	01 E ZZ	CL	VI0205 003
COMMESSA	LOTTO	CODIFICA	DOCUMENTO

La forza di taglio di calcolo H_{Ed} agente alla testa del palo si trascura in via conservativa, in quanto il suo effetto ridurrebbe la trazione nel tirante inferiore d'armatura, essendo tale azione di taglio indotta dalla reazione del terreno.

Ai fini delle successive verifiche, le azioni concentrate P_{Ed} [kN] trasmesse dai pali al plinto sono assunte pari alle forze assiali agenti in testa al palo N_{max} [kN], ridotte della quota parte spettante ad ogni palo del peso del plinto P_{pl} [kN] e del peso del rinterro P_{terr} [kN] presente all'estradosso del plinto:

$$P_{Ed} = N_{max} - (P_{pl} + P_{terr}) / n_{pali}$$

La larghezza della sezione resistente del tirante di armatura e della biella compressa (B_{eff} = larghezza efficace) viene assunta pari a:

- per i pali centrali all'interasse pali i (B_{eff} = i = 3 diam);
- per i pali di bordo a metà interasse pali i più la distanza dal bordo d_b ($B_{eff} = i / 2 + d_b = 2.5$ diam).

L'altezza della sezione della biella compressa viene assunta pari a

$$h_c = 0.4 c d sen \psi$$
 (si assume $c = 1$)

in conformità a quanto riportato in §C4.1.2.1.5 [2].

11.1.1 GEOMETRIA DEL TIRANTE-PUNTONE

11.1.1.1 TIRANTE - PUNTONE DI SPIGOLO

a	2.00	m
h	2.50	m
d = h-cferro	2.393	m
1	2.48	m
tan psi	0.87	
psi	41.0	0

11.1.1.2 TIRANTE - PUNTONE CENTRALE

а	2.00	m
h	2.50	m
d = h-cferro	2.39	m
I	2.48	m
tan psi	0.87	
psi	41.0	0

11.1.2 SEZIONE DEL TIRANTE DI ARMATURA E DELLA BIELLA COMPRESSA

Con riferimento alla figura seguente, l'armatura prevista nel plinto di fondazione è descritta a seguire:

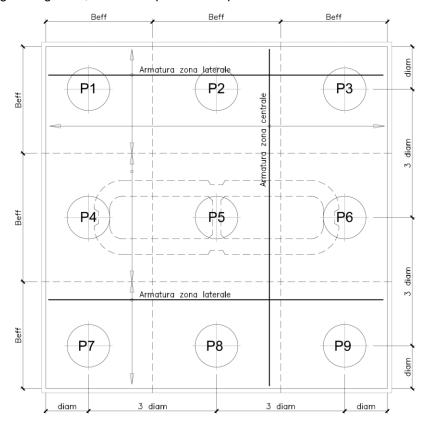


Figura 47 – Plinto di fondazione – Armatura longitudinale inferiore e superiore

Il tirante d'armatura impiegato nelle verifiche è descritto nella tabella seguente.

	Armatura inferiore di verifica			Armatu	ra superiore di	verifica	
	Zona laterale		Zona centrale	Zona laterale		Zona centrale	
	dir. Long.	dir. Trasv.	dir. Long.	dir. Long.	dir. Trasv.	dir. Long.	
Beff	3	3	3.6	3	3	3.6	[m]
øbarre	3.00	2.20	3.00	2.20	2.20	2.20	[cm]
ibarre	0.15	0.20	0.15	0.20	0.20	0.20	[m]
nstrati	2.00	2.00	1.50	2.00	1.00	1.00	
nbarre	40	30	36	30	15	18	
A1b	7.07	3.80	7.07	3.80	3.80	3.80	[cm2]
Atot	283	114	254	114	57	68	[cm2]

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO VI0205 003

REV. FOGLIO **B** 136 di 140

La sezione della biella compressa di calcestruzzo impiegata nelle verifiche è descritta nella tabella seguente.

	Biella inferio	ore di verifica	Biella superi	ore di verifica	
	Zona laterale	Zona centrale	Zona laterale	Zona centrale	
	dir. Long.	dir. Long.	dir. Long.	dir. Long.	
Вс	3.00	3.60	3.00	3.60	[m]
hc	0.63	0.63	0.63	0.63	[m]
Ac	1.88	2.26	1.88	2.26	[m2]

11.1.3 VERIFICHE SLU DELLE TENSIONI NORMALI

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

per le combinazioni SLU e SLV:

tensione limite nel calcestruzzo:

 $\sigma_c = f_{cd}' = 0.5 f_{cd} = 8.2 \text{ MPa}$

• tensione limite nelle barre:

 $\sigma_s = f_{vd}$

= 391 MPa

Si riportano a seguire in forma sintetica le verifiche più severe dei meccanismi tirante-puntone che si innescano nel plinto della pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

	Nmax	PEd	Т	σs_long	σs_trasv	< fyd	С	σς	< fcd'
SIS-SLV	6609	5789	6663	236	0	VERO	8827	4.7	VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Negli allegati alla presente relazione sono riportate le verifiche in forma completa relative al plinto della pila con altezza maggiore tra quelle appartenenti al gruppo considerato.

11.1.4 VERIFICHE SLE DELLE TENSIONI NORMALI

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

per le combinazioni SLE-RAR:

tensione limite nel calcestruzzo:

 $\sigma_c = 0.55 \, f_{ck} = 16.0 \, MPa$

tensione limite nelle barre:

 $\sigma_s = 0.75 \, f_{yk} = 337.5 \, MPa$

per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo:

 $\sigma_c = 0.40 \, f_{ck} = 11.6 \, MPa$

Si riportano a seguire in forma sintetica le verifiche più severe dei meccanismi tirante-puntone che si innescano nel plinto della pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

IF1N

01 E ZZ

CL

REV.

в

VI0205 003

FOGLIO

137 di 140

	Nmax	PEd	Т	σs_long	σs_trasv	< 0.75 fyk	С	σς	< 0.40 fck'
SLE-RAR	4832	4012	4617	163	0	VERO	6117	3.2	VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Negli allegati alla presente relazione sono riportate le verifiche in forma completa relative al plinto della pila con altezza maggiore tra quelle appartenenti al gruppo considerato.

11.2 VERIFICA SLU A PUNZONAMENTO

Il valore resistente a taglio-punzonamento della sezione si determina secondo le indicazioni del §4.1.2.1.3.1 e 4 [1]:

VRd.c

= $(0.18 \text{ k} (100 \text{ p}_1 \text{ f}_{ck})^{1/3} / \gamma_c + 0.15 \text{ } \sigma_{cp}) \text{ b}_w \text{ d} \ge (v_{min} + 0.15 \text{ } \sigma_{cp}) \text{ b}_w \text{ d}$ $V_{Rd,c}$

= perimetro efficace per la verifica a taglio-punzomento u

altezza utile della sezione d

larghezza minima della sezione b_{w}

 $= 1 + (200/d)^{1/2} \le 2$ k $= 0.035 \text{ k}^{3/2} \text{ f}_{ck}^{1/2}$ ν_{min}

 $= A_{sl} / (b_w d)$ ρι

 $= N_{Ed} / A_c$ σ_{cp}

Conservativamente, la verifica è stata riferita al palo di bordo maggiormente sollecitato e lo sviluppo del perimetro efficace u è stato definito considerando una distanza dall'impronta caricata (coincidente con la sezione di testa del palo) pari a d = a 0.9 H_D (H_D = altezza plinto, a < 2), come illustrato nella seguente figura.

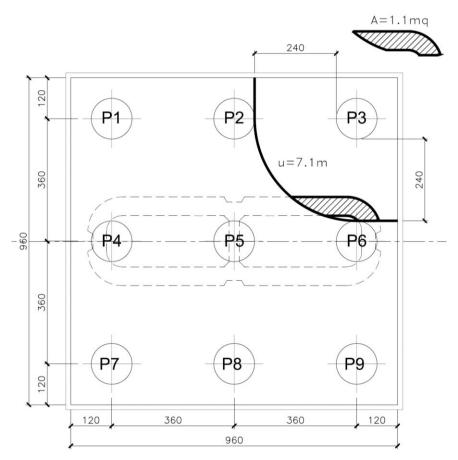


Figura 48 – Perimetro efficace per la verifica a taglio-punzonamento

A seguire si riportano il valore della forza concentrata V_{Ed} [kN] agente alla testa del palo maggiormente sollecitato nella condizione di verifica più severa, il valore del coefficiente a che individua la geometria del perimetro efficace e lo sviluppo u [m] di quest'ultimo.

La forza concentrata V_{Ed} = 5680 kN è stata depurata della quota parte di forza assiale agente nella sezione di base del fusto della pila, pari a N_{Ed} * = N_{Ed} * A / A_c = 15500 kN * 1.1 m² / 10.45 m² = 1635 kN

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLV-SIS) a a taglio-punzonamento della pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

VEd - NEd*	4446	kN
а	1.1	
u	7.1	m
vEd	0.262	MPa
vRd,c	0.319	MPa

Negli allegati alla presente relazione sono riportate le verifiche in forma completa.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0205 003
 B
 139 di 140

11.3 VERIFICA SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

per le combinazioni SLE-RAR:

Pile 07-08-09-12: Relazione di calcolo

• apertura fessure limite: $w_{lim} = w_1 = 0.30 \text{ mm}$

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) della pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

L'ampiezza massima delle fessure calcolata è pari a

wk **0.289** mm

Negli allegati alla presente relazione sono riportate le verifiche in forma completa.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 07-08-09-12: Relazione di calcolo

COMMESSA LOTTO

01 E ZZ

IF1N

CODIFICA CL DOCUMENTO VI0205 003

REV.

FOGLIO 140 di 140

12 INCIDENZE

Incidenza pulvino: 120 kg/m³
Incidenza fusto: 220 kg/m³
Incidenza platea: 80 kg/m³
Incidenza pali: 130 kg/m³

ALLEGATO 1

NOME COMB.	G - I	Perman	nenti		Q1 - Variabili verticali							Q2	! - Avvia	ımento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 - A	5 - Varia Azioni ii 17 - Effe nterazio	nterne etti	E - Az	zioni sisn	miche	De	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-STR-001	1,35	1,5	1,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1+G2	solo perm
SLU-STR-002	1,35	1,5	1,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0,9	0,9	0	0	0	Q51	vento
SLU-STR-003	1,35	1,5	1,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,9	1,45	1,5	0	0	0	Q71	termica
SLU-STR-004	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0,9	0,9	0	0	0	Q51	vento
SLU-STR-005	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,9	1,45	1,5	0	0	0	Q71	termica
SLU-STR-006	1,35	1,5	1,5	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 1
SLU-STR-007	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 1
SLU-STR-008	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 1
SLU-STR-009	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0	0	Q14	gruppo 1
SLU-STR-010	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0	Q15	gruppo 1
SLU-STR-011	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	Q16	gruppo 1
SLU-STR-012	1,35	1,5	1,5	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 3
SLU-STR-013	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 3
SLU-STR-014	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 3
SLU-STR-015	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0	0	Q14	gruppo 3
SLU-STR-016	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0	Q15	gruppo 3
SLU-STR-017	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	Q16	gruppo 3
SLU-STR-018	1	1	0	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	Q27	gruppo 3-2
SLU-STR-019	1,35	1,5	1,5	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,9	0	0	0	0	0	Q11	gruppo 1
SLU-STR-020	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0,9	0	0	0	0	0	Q12	gruppo 1
SLU-STR-021	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0,9	0	0	0	0	0	Q13	gruppo 1
SLU-STR-022	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0,9	0	0	0	0	0	Q14	gruppo 1
SLU-STR-023	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0,9	0	0	0	0	0	Q15	gruppo 1
SLU-STR-024	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0,9	0	0	0	0	0	Q16	gruppo 1
SLU-STR-025	1,35	1,5	1,5	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,9	0	0	0	0	0	Q11	gruppo 3
SLU-STR-026	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0,9	0	0	0	0	0	Q12	gruppo 3
SLU-STR-027	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0,9	0	0	0	0	0	Q13	gruppo 3
SLU-STR-028	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0,9	0	0	0	0	0	Q14	gruppo 3
SLU-STR-029	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0,9	0	0	0	0	0	Q15	gruppo 3
SLU-STR-030	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0,9	0	0	0	0	0	Q16	gruppo 3
SLU-STR-031	1	1	0	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0,9	0	0	0	0	0	Q27	gruppo 3-2
SLU-STR-032	1,35	1,5	1,5	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	1,45	0	0	0	0	Q11	gruppo 1
SLU-STR-033	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	Q12	gruppo 1
SLU-STR-034	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	1,45	0	0	0	0	Q13	gruppo 1
SLU-STR-035	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	1,45	0	0	0	0	Q14	gruppo 1
SLU-STR-036	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	1,45	0	0	0	0	Q15	gruppo 1
SLU-STR-037	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	1,45	0	0	0	0	Q16	gruppo 1

NOME COMB.	G -	Perman	enti	Q1 - Variabili verticali								Q2	! - Avvia	mento e	e frenati	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 -	5 - Varia Azioni ii Q7 - Effe interazio	nterne etti	E - Azioni sismiche			De	scrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-STR-038	1,35	1,5	1,5	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	1,45	0	0	0	0	Q11	gruppo 3
SLU-STR-039	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	Q12	gruppo 3
SLU-STR-040	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	1,45	0	0	0	0	Q13	gruppo 3
SLU-STR-041	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	1,45	0	0	0	0	Q14	gruppo 3
SLU-STR-042	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	1,45	0	0	0	0	Q15	gruppo 3
SLU-STR-043	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	1,45	0	0	0	0	Q16	gruppo 3
SLU-STR-044	1	1	0	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	1,45	0	0	0	0	Q27	gruppo 3-2
SLU-STR-045	1,35	1,5	1,5	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0	0,9	0	0	0	Q11	gruppo 1
SLU-STR-046	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0,9	0	0	0	Q12	gruppo 1
SLU-STR-047	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,9	0	0	0	Q13	gruppo 1
SLU-STR-048	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0,9	0	0	0	Q14	gruppo 1
SLU-STR-049	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0,9	0	0	0	Q15	gruppo 1
SLU-STR-050	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0,9	0	0	0	Q16	gruppo 1
SLU-STR-051	1,35	1,5	1,5	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0	0,9	0	0	0	Q11	gruppo 3
SLU-STR-052	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0,9	0	0	0	Q12	gruppo 3
SLU-STR-053	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,9	0	0	0	Q13	gruppo 3
SLU-STR-054	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0,9	0	0	0	Q14	gruppo 3
SLU-STR-055	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0,9	0	0	0	Q15	gruppo 3
SLU-STR-056	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0,9	0	0	0	Q16	gruppo 3
SLU-STR-057	1	1	0	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0,9	0	0	0	Q27	gruppo 3-2
SLU-STR-058	1,35	1,5	1,5	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,9	1,45	0,9	0	0	0	Q11	gruppo 1
SLU-STR-059	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0,9	1,45	0,9	0	0	0	Q12	gruppo 1
SLU-STR-060	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0,9	1,45	0,9	0	0	0	Q13	gruppo 1
SLU-STR-061	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0,9	1,45	0,9	0	0	0	Q14	gruppo 1
SLU-STR-062	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0,9	1,45	0,9	0	0	0	Q15	gruppo 1
SLU-STR-063	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0,9	1,45	0,9	0	0	0	Q16	gruppo 1
SLU-STR-064	1,35	1,5	1,5	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,9	1,45	0,9	0	0	0	Q11	gruppo 3
SLU-STR-065	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0,9	1,45	0,9	0	0	0	Q12	gruppo 3
SLU-STR-066	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0,9	1,45	0,9	0	0	0	Q13	gruppo 3
SLU-STR-067	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0,9	1,45	0,9	0	0	0	Q14	gruppo 3
SLU-STR-068	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0,9	1,45	0,9	0	0	0	Q15	gruppo 3
SLU-STR-069	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0,9	1,45	0,9	0	0	0	Q16	gruppo 3
SLU-STR-070	1	1	0	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0,9	1,45	0,9	0	0	0	Q27	gruppo 3-2
SLU-GEO-001	1	1,3	1,3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1+G2	solo perm
SLU-GEO-002	1	1,3	1,3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,3	0,78	0,78	0	0	0	Q51	vento
SLU-GEO-003	1	1,3	1,3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,78	1,25	1,3	0	0	0	Q71	termica

NOME COMB.	G-	Permar	nenti			Q1 - Va	ariabili v	riabili verticali				Q2 - Avviamento e frenatura								Q3	- Centrii	uga					Q4	- Serpe	ggio			Q6	5 - Varia Azioni ir 17 - Effe nterazio	nterne etti	E - Az	zioni sisi	miche	D	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-GEO-004	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,3	0,78	0,78	0	0	0	Q51	vento
SLU-GEO-005	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,78	1,25	1,3	0	0	0	Q71	termica
SLU-GEO-006	1	1,3	1,3	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 1
SLU-GEO-007	1	1,3	1,3	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 1
SLU-GEO-008	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 1
SLU-GEO-009	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0	0	Q14	gruppo 1
SLU-GEO-010	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0	Q15	gruppo 1
SLU-GEO-011	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	Q16	gruppo 1
SLU-GEO-012	1	1,3	1,3	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 3
SLU-GEO-013	1	1,3	1,3	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 3
SLU-GEO-014	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 3
SLU-GEO-015	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0	0	Q14	gruppo 3
SLU-GEO-016	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0	Q15	gruppo 3
SLU-GEO-017	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	Q16	gruppo 3
SLU-GEO-018	1	1	0	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	Q27	gruppo 3-2
SLU-GEO-019	1	1,3	1,3	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,78	0	0	0	0	0	Q11	gruppo 1
SLU-GEO-020	1	1,3	1,3	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0,78	0	0	0	0	0	Q12	gruppo 1
SLU-GEO-021	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0,78	0	0	0	0	0	Q13	gruppo 1
SLU-GEO-022	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0,78	0	0	0	0	0	Q14	gruppo 1
SLU-GEO-023	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0,78	0	0	0	0	0	Q15	gruppo 1
SLU-GEO-024	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0,78	0	0	0	0	0	Q16	gruppo 1
SLU-GEO-025	1	1,3	1,3	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,78	0	0	0	0	0	Q11	gruppo 3
SLU-GEO-026	1	1,3	1,3	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0,78	0	0	0	0	0	Q12	gruppo 3
SLU-GEO-027	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0,78	0	0	0	0	0	Q13	gruppo 3
SLU-GEO-028	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0,78	0	0	0	0	0	Q14	gruppo 3
SLU-GEO-029	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0,78	0	0	0	0	0	Q15	gruppo 3
SLU-GEO-030	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0,78	0	0	0	0	0	Q16	gruppo 3
SLU-GEO-031	1	1	0	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0,78	0	0	0	0	0	Q27	gruppo 3-2
SLU-GEO-032	1	1,3	1,3	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	1,25	0	0	0	0	Q11	gruppo 1
SLU-GEO-033	1	1,3	1,3	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	Q12	gruppo 1
SLU-GEO-034	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	1,25	0	0	0	0	Q13	gruppo 1
SLU-GEO-035	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	1,25	0	0	0	0	Q14	gruppo 1
SLU-GEO-036	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	1,25	0	0	0	0	Q15	gruppo 1
SLU-GEO-037	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	1,25	0	0	0	0	Q16	gruppo 1
SLU-GEO-038	1	1,3	1,3	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	1,25	0	0	0	0	Q11	gruppo 3
SLU-GEO-039	1	1,3	1,3	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	Q12	gruppo 3
SLU-GEO-040	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	1,25	0	0	0	0	Q13	gruppo 3

NOME COMB.	G -	Perman	nenti			Q1 - Va	ariabili v	verticali				Q2	2 - Avvia	mento e	e frenati	ıra				Q3 -	· Centrif	uga					Q4	- Serpe	ggio			Q6 - A	5 - Varia Azioni ir 17 - Effe nterazio	nterne tti	E - Az	rioni sisr	miche	De	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-GEO-041	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	1,25	0	0	0	0	Q14	gruppo 3
SLU-GEO-042	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	1,25	0	0	0	0	Q15	gruppo 3
SLU-GEO-043	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	1,25	0	0	0	0	Q16	gruppo 3
SLU-GEO-044	1	1	0	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	1,25	0	0	0	0	Q27	gruppo 3-2
SLU-GEO-045	1	1,3	1,3	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0	0,78	0	0	0	Q11	gruppo 1
SLU-GEO-046	1	1,3	1,3	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0,78	0	0	0	Q12	gruppo 1
SLU-GEO-047	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,78	0	0	0	Q13	gruppo 1
SLU-GEO-048	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0,78	0	0	0	Q14	gruppo 1
SLU-GEO-049	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0,78	0	0	0	Q15	gruppo 1
SLU-GEO-050	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0,78	0	0	0	Q16	gruppo 1
SLU-GEO-051	1	1,3	1,3	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0	0,78	0	0	0	Q11	gruppo 3
SLU-GEO-052	1	1,3	1,3	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0,78	0	0	0	Q12	gruppo 3
SLU-GEO-053	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,78	0	0	0	Q13	gruppo 3
SLU-GEO-054	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0,78	0	0	0	Q14	gruppo 3
SLU-GEO-055	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0,78	0	0	0	Q15	gruppo 3
SLU-GEO-056	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0,78	0	0	0	Q16	gruppo 3
SLU-GEO-057	1	1	0	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0,78	0	0	0	Q27	gruppo 3-2
SLU-GEO-058	1	1,3	1,3	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,78	1,25	0,78	0	0	0	Q11	gruppo 1
SLU-GEO-059	1	1,3	1,3	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0,78	1,25	0,78	0	0	0	Q12	gruppo 1
SLU-GEO-060	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0,78	1,25	0,78	0	0	0	Q13	gruppo 1
SLU-GEO-061	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0,78	1,25	0,78	0	0	0	Q14	gruppo 1
SLU-GEO-062	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0,78	1,25	0,78	0	0	0	Q15	gruppo 1
SLU-GEO-063	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0,78	1,25	0,78	0	0	0	Q16	gruppo 1
SLU-GEO-064	1	1,3	1,3	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,78	1,25	0,78	0	0	0	Q11	gruppo 3
SLU-GEO-065	1	1,3	1,3	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0,78	1,25	0,78	0	0	0	Q12	gruppo 3
SLU-GEO-066	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0,78	1,25	0,78	0	0	0	Q13	gruppo 3
SLU-GEO-067	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0,78	1,25	0,78	0	0	0	Q14	gruppo 3
SLU-GEO-068	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0,78	1,25	0,78	0	0	0	Q15	gruppo 3
SLU-GEO-069	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0,78	1,25	0,78	0	0	0	Q16	gruppo 3
SLU-GEO-070	1	1	0	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0,78	1,25	0,78	0	0	0	Q27	gruppo 3-2
SLU-SIS-001	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	0,3	E1	solo perm
SLU-SIS-002	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	termica
SLU-SIS-003	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	termica
SLU-SIS-004	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 1
SLU-SIS-005	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 1
SLU-SIS-006	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 1

NOME COMB.	G-	Permar	nenti			Q1 - V	ariabili v	verticali				Q2	2 - Avvia	amento	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 - /	5 - Varia Azioni ii 17 - Effe nterazio	nterne etti	E - Az	zioni sis	miche	D	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-SIS-007	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 1
SLU-SIS-008	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 1
SLU-SIS-009	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 1
SLU-SIS-010	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3
SLU-SIS-011	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3
SLU-SIS-012	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3
SLU-SIS-013	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3
SLU-SIS-014	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3
SLU-SIS-015	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3
SLU-SIS-016	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3-2
SLU-SIS-017	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	-0,3	E1	solo perm
SLU-SIS-018	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	1	0,3	-0,3	E1	termica
SLU-SIS-019	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	1	0,3	-0,3	E1	termica
SLU-SIS-020	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	-0,3	E1	solo vert
SLU-SIS-021	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 1
SLU-SIS-022	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 1
SLU-SIS-023	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 1
SLU-SIS-024	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 1
SLU-SIS-025	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 1
SLU-SIS-026	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 1
SLU-SIS-027	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3
SLU-SIS-028	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3
SLU-SIS-029	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3
SLU-SIS-030	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3
SLU-SIS-031	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3
SLU-SIS-032	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3
SLU-SIS-033	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3-2
SLU-SIS-034	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	0,3	E2	solo perm
SLU-SIS-035	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	1	0,3	E2	termica
SLU-SIS-036	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	1	0,3	E2	termica
SLU-SIS-037	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	0,3	E2	solo vert
SLU-SIS-038	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 1
SLU-SIS-039	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 1
SLU-SIS-040	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 1
SLU-SIS-041	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 1
SLU-SIS-042	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 1
SLU-SIS-043	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 1

NOME COMB.	G -	Permar	nenti			Q1 - Va	ariabili v	erticali				Q2	- Avvia	mento e	e frenat	ura				Q3 ·	- Centrif	fuga					Q4	- Serpe	ggio			Q6 - A	5 - Varia Azioni ir 17 - Effe nterazio	nterne etti	E - A	zioni sis	smiche		escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-SIS-044	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3
SLU-SIS-045	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3
SLU-SIS-046	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3
SLU-SIS-047	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3
SLU-SIS-048	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3
SLU-SIS-049	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3
SLU-SIS-050	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3-2
SLU-SIS-051	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	-0,3	E2	solo perm
SLU-SIS-052	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	1	-0,3	E2	termica
SLU-SIS-053	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	1	-0,3	E2	termica
SLU-SIS-054	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	-0,3	E2	solo vert
SLU-SIS-055	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 1
SLU-SIS-056	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 1
SLU-SIS-057	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 1
SLU-SIS-058	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 1
SLU-SIS-059	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 1
SLU-SIS-060	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 1
SLU-SIS-061	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3
SLU-SIS-062	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3
SLU-SIS-063	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3
SLU-SIS-064	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3
SLU-SIS-065	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3
SLU-SIS-066	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3
SLU-SIS-067	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3-2
SLU-SIS-068	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	0,3	1	E3	solo perm
SLU-SIS-069	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	0,3	1	E3	termica
SLU-SIS-070	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	0,3	1	E3	termica
SLU-SIS-071	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	0,3	1	E3	solo vert
SLU-SIS-072	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 1
SLU-SIS-073	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 1
SLU-SIS-074	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 1
SLU-SIS-075	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 1
SLU-SIS-076	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 1
SLU-SIS-077	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 1
SLU-SIS-078	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3
SLU-SIS-079	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3
SLU-SIS-080	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3

NOME COMB.	G-	Permar	nenti			Q1 - V	ariabili v	rerticali				Q2	- Avvia	ımento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 - /	5 - Varia Azioni ii 17 - Effe nterazio	nterne etti	E - Az	zioni sisi	miche	D	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-SIS-081	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3
SLU-SIS-082	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3
SLU-SIS-083	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3
SLU-SIS-084	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3-2
SLU-SIS-085	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	0,3	-1	E3	solo perm
SLU-SIS-086	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	0,3	-1	E3	termica
SLU-SIS-087	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	0,3	-1	E3	termica
SLU-SIS-088	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	0,3	-1	E3	solo vert
SLU-SIS-089	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 1
SLU-SIS-090	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 1
SLU-SIS-091	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 1
SLU-SIS-092	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 1
SLU-SIS-093	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 1
SLU-SIS-094	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 1
SLU-SIS-095	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3
SLU-SIS-096	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3
SLU-SIS-097	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3
SLU-SIS-098	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3
SLU-SIS-099	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3
SLU-SIS-100	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3
SLU-SIS-101	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3-2
SLU-SIS-102	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	-0,3	0,3	E1	solo perm
SLU-SIS-103	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	termica
SLU-SIS-104	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	termica
SLU-SIS-105	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 1
SLU-SIS-106	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 1
SLU-SIS-107	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 1
SLU-SIS-108	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 1
SLU-SIS-109	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 1
SLU-SIS-110	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 1
SLU-SIS-111	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3
SLU-SIS-112	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3
SLU-SIS-113	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3
SLU-SIS-114	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3
SLU-SIS-115	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3
SLU-SIS-116	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3
SLU-SIS-117	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3-2

NOME COMB.	G-	Permar	nenti			Q1 - Va	ariabili v	rerticali				Q2	! - Avvia	amento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 - A	5 - Varia Azioni ir 17 - Effe nterazio	nterne etti	E - A	zioni sisi	miche	De	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-SIS-118	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	-0,3	-0,3	E1	solo perm
SLU-SIS-119	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-1	-0,3	-0,3	E1	termica
SLU-SIS-120	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-1	-0,3	-0,3	E1	termica
SLU-SIS-121	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	-0,3	-0,3	E1	solo vert
SLU-SIS-122	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 1
SLU-SIS-123	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 1
SLU-SIS-124	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 1
SLU-SIS-125	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 1
SLU-SIS-126	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 1
SLU-SIS-127	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 1
SLU-SIS-128	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3
SLU-SIS-129	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3
SLU-SIS-130	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3
SLU-SIS-131	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3
SLU-SIS-132	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3
SLU-SIS-133	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3
SLU-SIS-134	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3-2
SLU-SIS-135	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-1	0,3	E2	solo perm
SLU-SIS-136	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-1	0,3	E2	termica
SLU-SIS-137	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-1	0,3	E2	termica
SLU-SIS-138	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-1	0,3	E2	solo vert
SLU-SIS-139	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 1
SLU-SIS-140	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 1
SLU-SIS-141	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 1
SLU-SIS-142	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 1
SLU-SIS-143	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 1
SLU-SIS-144	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 1
SLU-SIS-145	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	-0,3	-1	0,3	G1+G2	gruppo 3
SLU-SIS-146	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	-0,3	-1	0,3	G1+G2	gruppo 3
SLU-SIS-147	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	-0,3	-1	0,3	G1+G2	gruppo 3
SLU-SIS-148	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	-0,3	-1	0,3	G1+G2	gruppo 3
SLU-SIS-149	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	-0,3	-1	0,3	G1+G2	gruppo 3
SLU-SIS-150	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	-0,3	-1	0,3	G1+G2	gruppo 3
SLU-SIS-151	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 3-2
SLU-SIS-152	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-1	-0,3	E2	solo perm
SLU-SIS-153	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-1	-0,3	E2	termica
SLU-SIS-154	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-1	-0,3	E2	termica

NOME COMB.	G-	Permar	nenti			Q1 - Va	ariabili v	erticali				Q2	! - Avvia	amento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpeç	ggio			Q6 - A	i - Varia Azioni ii 7 - Effe nterazio	nterne etti	E - A	zioni sis	miche	D	Pescrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-SIS-155	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-1	-0,3	E2	solo vert
SLU-SIS-156	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 1
SLU-SIS-157	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 1
SLU-SIS-158	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 1
SLU-SIS-159	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 1
SLU-SIS-160	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 1
SLU-SIS-161	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 1
SLU-SIS-162	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3
SLU-SIS-163	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3
SLU-SIS-164	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3
SLU-SIS-165	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3
SLU-SIS-166	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3
SLU-SIS-167	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3
SLU-SIS-168	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3-2
SLU-SIS-169	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-0,3	1	E3	solo perm
SLU-SIS-170	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-0,3	1	E3	termica
SLU-SIS-171	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-0,3	1	E3	termica
SLU-SIS-172	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-0,3	1	E3	solo vert
SLU-SIS-173	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 1
SLU-SIS-174	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 1
SLU-SIS-175	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 1
SLU-SIS-176	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 1
SLU-SIS-177	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 1
SLU-SIS-178	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 1
SLU-SIS-179	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3
SLU-SIS-180	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3
SLU-SIS-181	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3
SLU-SIS-182	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3
SLU-SIS-183	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3
SLU-SIS-184	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3
SLU-SIS-185	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3-2
SLU-SIS-186	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-0,3	-1	E3	solo perm
SLU-SIS-187	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-0,3	-1	E3	termica
SLU-SIS-188	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-0,3	-1	E3	termica
SLU-SIS-189	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-0,3	-1	E3	solo vert
SLU-SIS-190	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 1
SLU-SIS-191	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 1

NOME COMB.	G-	Permar	nenti			Q1 - V	ariabili v	rerticali				Q2	2 - Avvia	amento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 - /	5 - Varia Azioni ir 17 - Effe nterazio	nterne etti	E - Az	zioni sisn	niche	De	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-SIS-192	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 1
SLU-SIS-193	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 1
SLU-SIS-194	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 1
SLU-SIS-195	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 1
SLU-SIS-196	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3
SLU-SIS-197	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3
SLU-SIS-198	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3
SLU-SIS-199	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3
SLU-SIS-200	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3
SLU-SIS-201	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3
SLU-SIS-202	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3-2
SLE-RAR-001	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1+G2	solo perm
SLE-RAR-002	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,6	0,6	0	0	0	Q51	vento
SLE-RAR-003	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,6	1	1	0	0	0	Q61	termica
SLE-RAR-004	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,6	0,6	0	0	0	Q51	vento
SLE-RAR-005	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,6	1	1	0	0	0	Q61	termica
SLE-RAR-006	1	1	1	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 1
SLE-RAR-007	1	1	1	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 1
SLE-RAR-008	1	1	1	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 1
SLE-RAR-009	1	1	1	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	Q14	gruppo 1
SLE-RAR-010	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	Q15	gruppo 1
SLE-RAR-011	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	Q16	gruppo 1
SLE-RAR-012	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 3
SLE-RAR-013	1	1	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 3
SLE-RAR-014	1	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 3
SLE-RAR-015	1	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	0	Q14	gruppo 3
SLE-RAR-016	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	Q15	gruppo 3
SLE-RAR-017	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	Q16	gruppo 3
SLE-RAR-018	1	1	0	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	Q27	gruppo 3-2
SLE-RAR-019	1	1	1	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,6	0	0	0	0	0	Q11	gruppo 1
SLE-RAR-020	1	1	1	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0,6	0	0	0	0	0	Q12	gruppo 1
SLE-RAR-021	1	1	1	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0,6	0	0	0	0	0	Q13	gruppo 1
SLE-RAR-022	1	1	1	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0,6	0	0	0	0	0	Q14	gruppo 1
SLE-RAR-023	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0,6	0	0	0	0	0	Q15	gruppo 1
SLE-RAR-024	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0,6	0	0	0	0	0	Q16	gruppo 1
SLE-RAR-025	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,6	0	0	0	0	0	Q11	gruppo 3

NOME COMB.	G-	Permar	nenti			Q1 - V	ariabili v	rerticali				Q2	! - Avvia	amento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 - A	- Varia Azioni i 7 - Effe nterazio	nterne etti	E - Az	zioni sisr	niche	Dŧ	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLE-RAR-026	1	1	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0,6	0	0	0	0	0	Q12	gruppo 3
SLE-RAR-027	1	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0,6	0	0	0	0	0	Q13	gruppo 3
SLE-RAR-028	1	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0,6	0	0	0	0	0	Q14	gruppo 3
SLE-RAR-029	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0,6	0	0	0	0	0	Q15	gruppo 3
SLE-RAR-030	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0,6	0	0	0	0	0	Q16	gruppo 3
SLE-RAR-031	1	1	0	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0,6	0	0	0	0	0	Q27	gruppo 3-2
SLE-RAR-032	1	1	1	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	Q11	gruppo 1
SLE-RAR-033	1	1	1	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	Q12	gruppo 1
SLE-RAR-034	1	1	1	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	Q13	gruppo 1
SLE-RAR-035	1	1	1	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	Q14	gruppo 1
SLE-RAR-036	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	Q15	gruppo 1
SLE-RAR-037	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	Q16	gruppo 1
SLE-RAR-038	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	1	0	0	0	0	Q11	gruppo 3
SLE-RAR-039	1	1	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	Q12	gruppo 3
SLE-RAR-040	1	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	1	0	0	0	0	Q13	gruppo 3
SLE-RAR-041	1	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	1	0	0	0	0	Q14	gruppo 3
SLE-RAR-042	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	1	0	0	0	0	Q15	gruppo 3
SLE-RAR-043	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	1	0	0	0	0	Q16	gruppo 3
SLE-RAR-044	1	1	0	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	1	0	0	0	0	Q27	gruppo 3-2
SLE-RAR-045	1	1	1	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0,6	0	0	0	Q11	gruppo 1
SLE-RAR-046	1	1	1	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0,6	0	0	0	Q12	gruppo 1
SLE-RAR-047	1	1	1	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,6	0	0	0	Q13	gruppo 1
SLE-RAR-048	1	1	1	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0,6	0	0	0	Q14	gruppo 1
SLE-RAR-049	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0,6	0	0	0	Q15	gruppo 1
SLE-RAR-050	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0,6	0	0	0	Q16	gruppo 1
SLE-RAR-051	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	0,6	0	0	0	Q11	gruppo 3
SLE-RAR-052	1	1	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0,6	0	0	0	Q12	gruppo 3
SLE-RAR-053	1	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,6	0	0	0	Q13	gruppo 3
SLE-RAR-054	1	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0,6	0	0	0	Q14	gruppo 3
SLE-RAR-055	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0,6	0	0	0	Q15	gruppo 3
SLE-RAR-056	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0,6	0	0	0	Q16	gruppo 3
SLE-RAR-057	1	1	0	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0,6	0	0	0	Q27	gruppo 3-2
SLE-RAR-058	1	1	1	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,6	1	0,6	0	0	0	Q11	gruppo 1
SLE-RAR-059	1	1	1	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0,6	1	0,6	0	0	0	Q12	gruppo 1
SLE-RAR-060	1	1	1	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0,6	1	0,6	0	0	0	Q13	gruppo 1
SLE-RAR-061	1	1	1	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0,6	1	0,6	0	0	0	Q14	gruppo 1
SLE-RAR-062	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0,6	1	0,6	0	0	0	Q15	gruppo 1

NOME COMB.	G-	Permar	nenti			Q1 - V	ariabili v	rerticali				Q2	! - Avvia	ımento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 - A	5 - Varia Azioni ii 17 - Effe nterazio	nterne etti	E - Az	zioni sisr	niche	De	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLE-RAR-063	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0,6	1	0,6	0	0	0	Q16	gruppo 1
SLE-RAR-064	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,6	1	0,6	0	0	0	Q11	gruppo 3
SLE-RAR-065	1	1	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0,6	1	0,6	0	0	0	Q12	gruppo 3
SLE-RAR-066	1	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0,6	1	0,6	0	0	0	Q13	gruppo 3
SLE-RAR-067	1	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0,6	1	0,6	0	0	0	Q14	gruppo 3
SLE-RAR-068	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0,6	1	0,6	0	0	0	Q15	gruppo 3
SLE-RAR-069	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0,6	1	0,6	0	0	0	Q16	gruppo 3
SLE-RAR-070	1	1	0	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0,6	1	0,6	0	0	0	Q27	gruppo 3-2
SLE-RAR-071	1	1	1	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 4
SLE-RAR-072	1	1	1	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 4
SLE-RAR-073	1	1	1	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 4
SLE-RAR-074	1	1	1	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0	0	0	Q14	gruppo 4
SLE-RAR-075	1	1	1	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	0	Q15	gruppo 4
SLE-RAR-076	1	1	1	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	Q16	gruppo 4
SLE-RAR-077	1	1	0	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	Q17	gruppo 4
SLE-RAR-078	1	1	1	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	Q11	gruppo 4
SLE-RAR-079	1	1	1	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0,6	0	0	0	0	0	Q12	gruppo 4
SLE-RAR-080	1	1	1	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0,6	0	0	0	0	0	Q13	gruppo 4
SLE-RAR-081	1	1	1	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0,6	0	0	0	0	0	Q14	gruppo 4
SLE-RAR-082	1	1	1	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0,6	0	0	0	0	0	Q15	gruppo 4
SLE-RAR-083	1	1	1	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0,6	0	0	0	0	0	Q16	gruppo 4
SLE-RAR-084	1	1	0	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0,6	0	0	0	0	0	Q17	gruppo 4
SLE-RAR-085	1	1	1	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-086	1	1	1	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-087	1	1	1	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-088	1	1	1	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-089	1	1	1	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-090	1	1	1	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-091	1	1	0	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-092	1	1	1	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	0	0,6	0	0	0	Q11	gruppo 4
SLE-RAR-093	1	1	1	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	0,6	0	0	0	Q12	gruppo 4
SLE-RAR-094	1	1	1	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,6	0	0	0	Q13	gruppo 4
SLE-RAR-095	1	1	1	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0,6	0	0	0	Q14	gruppo 4
SLE-RAR-096	1	1	1	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0,6	0	0	0	Q15	gruppo 4
SLE-RAR-097	1	1	1	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0,6	0	0	0	Q16	gruppo 4
SLE-RAR-098	1	1	0	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0,6	0	0	0	Q17	gruppo 4
SLE-RAR-099	1	1	1	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	1	0,6	0	0	0	Q61	gruppo 4

NOME COMB.	G -	Perma	nenti			Q1 - \	/ariabili v	/erticali				Q	2 - Avvia	amento	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 - /	- Varia Azioni ir 7 - Effe nterazio	nterne tti	E - Az	zioni sis	miche		escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLE-RAR-100	1	1	1	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0,6	1	0,6	0	0	0	Q61	gruppo 4
SLE-RAR-101	1	1	1	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0,6	1	0,6	0	0	0	Q61	gruppo 4
SLE-RAR-102	1	1	1	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0,6	1	0,6	0	0	0	Q61	gruppo 4
SLE-RAR-103	1	1	1	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0,6	1	0,6	0	0	0	Q61	gruppo 4
SLE-RAR-104	1	1	1	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0,6	1	0,6	0	0	0	Q61	gruppo 4
SLE-RAR-105	1	1	0	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0,6	1	0,6	0	0	0	Q61	gruppo 4
SLE-QPE-001	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1+G2	solo perm
SLE-QPE-002	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	Q61	termica

ALLEGATO 2 VI02 – PILE P07-P08-P09-P12

1 SOLLECITAZIONI ELEMENTARI A BASE PILA

C.C.E.	Descrizione	F1	F2	F3	M1	M2	М3
		kN	kN	kN	kNm	kNm	kNm
G1	Pesi propri	0	0	-9135	0	0	0
G2	Ballast	0	0	-3500	0	0	0
G2	Permanenti non strutturali	0	0	-1548	0	0	0
Q11	Disposizione 1 (massimizza N)	0	0	-5692	-684	66	0
Q12	Disposizione 2 (massimizza M2)	0	0	-3559	-518	3915	0
Q13	Disposizione 3 (massimizza M1)	0	0	-2962	-5925	66	0
Q14	Disposizione 4 (massimizza M1)	0	0	-2730	-5678	0	0
Q15	Disposizione 5 (massimizza N+M2)	0	0	-5524	-789	1753	0
Q16	Disposizione 6 (massimizza N)	0	0	-5460	-218	0	0
Q17	Disposizione 7 (minimizza N)	0	0	-2977	-1634	3275	0
Q21	Disposizione 1 (massimizza N)	1835	0	0	0	12662	0
Q22	Disposizione 2 (massimizza M2)	2154	0	0	0	14863	0
Q23	Disposizione 3 (massimizza M1)	819	0	0	0	5651	0
Q24	Disposizione 4 (massimizza M1)	1016	0	0	0	7010	0
Q25	Disposizione 5 (massimizza N+M2)	2154	0	0	0	14863	0
Q26	Disposizione 6 (massimizza N)	1995	0	0	0	13766	0
Q27	Disposizione 7 (minimizza N)	2154	0	0	0	14863	0
Q31	Disposizione 1 (massimizza N)	0	473	0	-5666	0	0
Q32	Disposizione 2 (massimizza M2)	0	294	0	-3523	0	0
Q33	Disposizione 3 (massimizza M1)	0	155	0	-1860	0	0
Q34	Disposizione 4 (massimizza M1)	0	318	0	-3806	0	0
Q35	Disposizione 5 (massimizza N+M2)	0	463	0	-5546	0	0
Q36	Disposizione 6 (massimizza N)	0	460	0	-5514	0	0
Q37	Disposizione 7 (minimizza N)	0	226	0	-2710	0	0
Q41	Disposizione 1 (massimizza N)	0	210	0	-2137	0	0
Q42	Disposizione 2 (massimizza M2)	0	210	0	-2138	0	0
Q43	Disposizione 3 (massimizza M1)	0	100	0	-1018	0	0
Q44	Disposizione 4 (massimizza M1)	0	110	0	-1119	0	0
Q45	Disposizione 5 (massimizza N+M2)	0	210	0	-2137	0	0
Q46	Disposizione 6 (massimizza N)	0	210	0	-2137	0	0
Q47	Disposizione 7 (minimizza N)	0	210	0	-2138	0	0
Q51	Vento	0	861	0	-10563	0	0
Q61	Attrito su vincoli	283	0	0	0	1953	0
Q71	Variazioni termiche	280	0	0	0	1932	0
E1	Sisma x	5359	0	0	0	36976	2202
E2	Sisma y	0	4509	0	-40494	0	3382
E3	Sisma z	0	0	-4614	-1579	2881	0

2 SPOSTAMENTI ELEMENTARI IN TESTA PILA

C.C.E.	Descrizione	d1,1	d2,1	d3,1	φ1,1	φ2,1	φ3,1
		mm	mm	mm	1 /mm	1 /mm	1 /mm
G1	Pesi propri	0.00	0.00	-0.18	0.00	0.00	0.00
G2	Ballast	0.00	0.00	-0.07	0.00	0.00	0.00
G2	Permanenti non strutturali	0.00	0.00	-0.03	0.00	0.00	0.00
Q11	Disposizione 1 (massimizza N)	0.00	0.00	-0.11	0.00	0.00	0.00
Q12	Disposizione 2 (massimizza M2)	0.00	0.00	-0.07	0.00	0.00	0.00
Q13	Disposizione 3 (massimizza M1)	0.00	0.00	-0.06	0.00	0.00	0.00
Q14	Disposizione 4 (massimizza M1)	0.00	0.00	-0.05	0.00	0.00	0.00
Q15	Disposizione 5 (massimizza N+M2)	0.00	0.00	-0.11	0.00	0.00	0.00
Q16	Disposizione 6 (massimizza N)	0.00	0.00	-0.11	0.00	0.00	0.00
Q17	Disposizione 7 (minimizza N)	0.00	0.00	-0.06	0.00	0.00	0.00
Q21	Disposizione 1 (massimizza N)	0.64	0.00	0.00	0.00	0.09	0.00
Q22	Disposizione 2 (massimizza M2)	0.75	0.00	0.00	0.00	0.11	0.00
Q23	Disposizione 3 (massimizza M1)	0.28	0.00	0.00	0.00	0.04	0.00
Q24	Disposizione 4 (massimizza M1)	0.35	0.00	0.00	0.00	0.05	0.00
Q25	Disposizione 5 (massimizza N+M2)	0.75	0.00	0.00	0.00	0.11	0.00
Q26	Disposizione 6 (massimizza N)	0.69	0.00	0.00	0.00	0.10	0.00
Q27	Disposizione 7 (minimizza N)	0.75	0.00	0.00	0.00	0.11	0.00
Q31	Disposizione 1 (massimizza N)	0.00	0.05	0.00	0.01	0.00	0.00
Q32	Disposizione 2 (massimizza M2)	0.00	0.03	0.00	0.00	0.00	0.00
Q33	Disposizione 3 (massimizza M1)	0.00	0.02	0.00	0.00	0.00	0.00
Q34	Disposizione 4 (massimizza M1)	0.00	0.03	0.00	0.00	0.00	0.00
Q35	Disposizione 5 (massimizza N+M2)	0.00	0.05	0.00	0.01	0.00	0.00
Q36	Disposizione 6 (massimizza N)	0.00	0.05	0.00	0.01	0.00	0.00
Q37	Disposizione 7 (minimizza N)	0.00	0.02	0.00	0.00	0.00	0.00
Q41	Disposizione 1 (massimizza N)	0.00	0.02	0.00	0.00	0.00	0.00
Q42	Disposizione 2 (massimizza M2)	0.00	0.02	0.00	0.00	0.00	0.00
Q43	Disposizione 3 (massimizza M1)	0.00	0.01	0.00	0.00	0.00	0.00
Q44	Disposizione 4 (massimizza M1)	0.00	0.01	0.00	0.00	0.00	0.00
Q45	Disposizione 5 (massimizza N+M2)	0.00	0.02	0.00	0.00	0.00	0.00
Q46	Disposizione 6 (massimizza N)	0.00	0.02	0.00	0.00	0.00	0.00
Q47	Disposizione 7 (minimizza N)	0.00	0.02	0.00	0.00	0.00	0.00
Q51	Vento	0.00	0.09	0.00	0.01	0.00	0.00
Q61	Attrito su vincoli	0.10	0.00	0.00	0.00	0.01	0.00
Q71	Variazioni termiche	0.10	0.00	0.00	0.00	0.01	0.00
E1	Sisma x	5.26	0.00	0.00	0.00	0.76	0.00
E2	Sisma y	0.00	1.62	0.00	0.24	0.00	0.00
E3	Sisma z	0.00	0.00	-0.09	0.00	0.00	0.00

3 SOLLECITAZIONI COMBINATE A BASE PILA

Si riportano a seguire i valori delle sollecitazioni di calcolo combinate secondo i coefficienti di combinazione riportati nell'allegato 1 della presente relazione. I valori seguenti tengono conto degli effetti del secondo ordine indotti dagli spostamenti elementari.

Per ogni gruppo di combinazioni di carico considerato (SLU-STR SLU-GEO, SLV-SIS, SLE-RAR e SLE-QP), sono riportati a seguire i valori delle sollecitazioni corrispondenti alle combinazioni che massimizzano ognuna delle componenti di sollecitazione (F1, F2, F3, M1, M2 e M3).

- F1 Forza di taglio in direzione longitudinale [kN]
- F2 Forza di taglio i direzione trasversale [kN
- F3 Forza assiale verticale [kN
- M1 Momento flettente attorno all'asse 1 (trasversale)
- M2 Momento flettente attorno all'asse 2 (longitudinale)
- M3 Momento flettente attorno all'asse 3 (toocente)

SLU-STR	max	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
max	F1	SLU-STR-065	3786	1143	-25065	-14393	31830	0
max	F2	SLU-STR-019	1340	1765	-28158	-21817	9352	0
max	F3	SLU-STR-004	507	1291	-12635	-15846	3498	0
max	M1	SLU-STR-018	3123	318	-14808	-4733	23957	0
max	M2	SLU-STR-065	3786	1143	-25065	-14393	31830	0
max	М3	SLU-STR-002	507	1291	-19904	-15847	3500	0

SLU-STR	min	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
min	F1	SLU-STR-002	507	1291	-19904	-15847	3500	0
min	F2	SLU-STR-014	1188	186	-24199	-10692	8300	0
min	F3	SLU-STR-006	1340	990	-28158	-12309	9352	0
min	M1	SLU-STR-022	742	1395	-23863	-24885	5124	0
min	M2	SLU-STR-004	507	1291	-12635	-15846	3498	0
min	М3	SLU-STR-002	507	1291	-19904	-15847	3500	0

SLU-GEO	max	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
max	F1	SLU-GEO-065	3265	989	-20146	-12455	27442	0
max	F2	SLU-GEO-019	1156	1525	-22813	-18851	8068	0
max	F3	SLU-GEO-004	439	1119	-12635	-13733	3032	0
max	M1	SLU-GEO-018	2693	275	-14511	-4084	20655	0
max	M2	SLU-GEO-065	3265	989	-20146	-12455	27442	0
max	М3	SLU-GEO-002	439	1119	-15698	-13733	3032	0

SLU-GEO	min	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
min	F1	SLU-GEO-002	439	1119	-15698	-13733	3032	0
min	F2	SLU-GEO-014	1024	161	-19400	-9219	7153	0
min	F3	SLU-GEO-006	1156	854	-22813	-10610	8068	0
min	M1	SLU-GEO-022	640	1206	-19110	-21495	4421	0
min	M2	SLU-GEO-004	439	1119	-12635	-13733	3032	0
min	М3	SLU-GEO-002	439	1119	-15698	-13733	3032	0

SLU-SIS	max	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
max	F1	SLU-SIS-011	5986	1403	-16279	-13300	43042	3217
max	F2	SLU-SIS-038	1904	4646	-16706	-42692	14041	4043
max	F3	SLU-SIS-087	1804	1353	-8022	-10573	9582	1675
max	M1	SLU-SIS-152	-1608	-4509	-12799	40989	-11977	-4043
max	M2	SLU-SIS-011	5986	1403	-16279	-13300	43042	3217
max	М3	SLU-SIS-034	1608	4509	-15567	-40993	11982	4043

SLU-SIS	min	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
min	F1	SLU-SIS-102	-5359	-1353	-15567	11682	-36194	-3217
min	F2	SLU-SIS-135	-1608	-4509	-15567	40046	-10253	-4043
min	F3	SLU-SIS-071	1608	1353	-19935	-13874	14018	1675
min	M1	SLU-SIS-041	1822	4595	-16113	-43115	13462	4043
min	M2	SLU-SIS-118	-5359	-1353	-12799	12628	-37908	-3217
min	М3	SLU-SIS-135	-1608	-4509	-15567	40046	-10253	-4043

SLE-RAR	max	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
max	F1	SLE-RAR-065	2605	768	-17742	-9687	21905	0
max	F2	SLE-RAR-019	918	1199	-19875	-14827	6403	0
max	F3	SLE-RAR-004	338	861	-12635	-10564	2332	0
max	M1	SLE-RAR-018	2154	218	-14124	-3242	16510	0
max	M2	SLE-RAR-065	2605	768	-17742	-9687	21905	0
max	М3	SLE-RAR-002	338	861	-14183	-10564	2332	0

SLE-RAR	min	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
min	F1	SLE-RAR-002	338	861	-14183	-10564	2332	0
min	F2	SLE-RAR-014	819	128	-17145	-7364	5722	0
min	F3	SLE-RAR-006	918	683	-19875	-8488	6403	0
min	M1	SLE-RAR-022	508	944	-16913	-16942	3508	0
min	М2	SLE-RAR-004	338	861	-12635	-10564	2332	0
min	М3	SLE-RAR-002	338	861	-14183	-10564	2332	0

4 SOLLECITAZIONI COMBINATE A BASE PLINTO

Le sollecitazioni combinate alla base della pila sono state riportate ad intradosso plinto (in posizione baricentrica) e sono state incrementate per tenere conto del peso del plinto e del terreno di ricoprimento presente al suo estradosso, nonché della forza inerziale (orizzontale e verticale) associata alla massa del plinto stesso e considerata solidale con il terreno (T = 0 sec).

Terreno ricoprimento

dlong	9.6	m
dtrasv	9.6	m
hterr	1.16	m
gterr	20	kN/m3
Wterr	1619	kN

Plinto								
dlong	9.6	m	Orizzonta	<u>le</u>		<u>Verticale</u>		
dtrasv	9.6	m	ag0	0.199	g	ag0	0.120	g
hpl	2.5	m	S	1.200		S	1.000	
gcls	25	kN/m3	PGA	0.238	g	PGA	0.120	g
Wplinto	5760	kN	lplinto_h	1373	kN	lplinto_v	688	kN

	F1	F2	F3	M1	M2	М3	Ftot
	kN	kN	kN	kNm	kNm	kNm	kN
SLU-STR-001			-30109				
SLU-STR-002	507	1291	-30109	-19075	4766	0	1387
SLU-STR-003	830	775	-30109	-11445	7811	0	1136
SLU-STR-004	507	1291	-18395	-19074	4765	0	1387
SLU-STR-005	830	775	-18395	-11444	7809	0	1136
SLU-STR-006	1340	990	-38363	-14784	12701	0	1666
SLU-STR-007	1572	731	-35270	-10788	20471	0	1734
SLU-STR-008	598	370	-34404	-13689	5721	0	703
SLU-STR-009	742	621	-34068	-16928	6978	0	967
SLU-STR-010	1572	976	-38119	-14726	17338	0	1851
SLU-STR-011	1456	972	-38026	-13842	13704	0	1751
SLU-STR-012	2661	499	-38363	-7936	25133	0	2707
SLU-STR-013	3123	368	-35270	-5804	35063	0	3145
SLU-STR-014	1188	186	-34404	-11158	11269	0	1202
SLU-STR-015	1473	312	-34068	-12610	13860	0	1506
SLU-STR-016	3123	491	-38119	-7982	31932	0	3162
SLU-STR-017	2893	489	-38026	-7125	27220	0	2934
SLU-STR-018	3123	318	-20568	-5528	31766	0	3139
SLU-STR-019	1340	1765	-38363	-26230	12701	0	2216

SLU-STR-020	1572	1505	-35270	-22233	20471	0	2177
SLU-STR-021	598	1144	-34404	-25134	5721	0	1291
SLU-STR-022	742	1395	-34068	-28373	6978	0	1580
SLU-STR-023	1572	1751	-38119	-26172	17338	0	2353
SLU-STR-024	1456	1746	-38026	-25287	13704	0	2274
SLU-STR-025	2661	1273	-38363	-19381	25133	0	2950
SLU-STR-026	3123	1143	-35270	-17249	35063	0	3326
SLU-STR-027	1188	961	-34404	-22603	11269	0	1528
SLU-STR-028	1473	1087	-34068	-24055	13860	0	1831
SLU-STR-029	3123	1266	-38119	-19427	31932	0	3370
SLU-STR-030	2893	1264	-38026	-18571	27220	0	3157
SLU-STR-031	3123	1093	-20568	-16973	31766	0	3309
SLU-STR-032	1750	990	-38363	-14784	16562	0	2011
SLU-STR-033	1983	731	-35270	-10788	24332	0	2113
SLU-STR-034	1008	370	-34404	-13689	9581	0	1074
SLU-STR-035	1152	621	-34068	-16928	10839	0	1309
SLU-STR-036	1983	976	-38119	-14726	21200	0	2210
SLU-STR-037	1867	972	-38026	-13842	17565	0	2104
SLU-STR-038	3071	499	-38363	-7936	28994	0	3111
SLU-STR-039	3534	368	-35270	-5804	38924	0	3553
SLU-STR-040	1598	186	-34404	-11158	15129	0	1609
SLU-STR-041	1884	312	-34068	-12610	17721	0	1909
SLU-STR-042	3534	491	-38119	-7982	35793	0	3568
SLU-STR-043	3303	489	-38026	-7125	31081	0	3339
SLU-STR-044	3534	318	-20568	-5528	35625	0	3548
SLU-STR-045	1592	990	-38363	-14784	15072	0	1875
SLU-STR-046	1824	731	-35270	-10788	22842	0	1965
SLU-STR-047	850	370	-34404	-13689	8092	0	927
SLU-STR-048	994	621	-34068	-16928	9349	0	1172
SLU-STR-049	1824	976	-38119	-14726	19710	0	2069
SLU-STR-050	1708	972	-38026	-13842	16075	0	1965
SLU-STR-051	2913	499	-38363	-7936	27504	0	2955
SLU-STR-052	3375	368	-35270	-5804	37434	0	3395
SLU-STR-053	1440	186	-34404	-11158	13640	0	1452
SLU-STR-054	1725	312	-34068	-12610	16231	0	1753
SLU-STR-055	3375	491	-38119	-7982	34303	0	3411
SLU-STR-056	3145	489	-38026	-7125	29591	0	3183
SLU-STR-057	3375	318	-20568	-5528	34136	0	3390
SLU-STR-058	2002	1765	-38363	-26230	18933	0	2669
SLU-STR-059	2235	1505	-35270	-22233	26703	0	2695
SLU-STR-060	1260	1144	-34404	-25134	11952	0	1702
SLU-STR-061 SLU-STR-062	1404	1395 1751	-34068 -38119	-28373 -26172	13209	0	1979
	2235			-26172 -25287	23571	_	2839
SLU-STR-063	2119	1746	-38026	-25287	19936	0	2746

SLU-STR-064	3323	1273	-38363	-19381	31365	0	3559
SLU-STR-065	3786	1143	-35270	-17249	41295	0	3954
SLU-STR-066	1850	961	-34404	-22603	17500	0	2085
SLU-STR-067	2136	1087	-34068	-24055	20092	0	2396
SLU-STR-068	3786	1266	-38119	-19427	38164	0	3992
SLU-STR-069	3555	1264	-38026	-18571	33452	0	3773
SLU-STR-070	3786	1093	-20568	-16973	37995	0	3940

SLU-GEO-001			-23563			
SLU-GEO-002	439	1119	-23563	-16531	4130	0
SLU-GEO-003	718	671	-23563	-9919	6751	0
SLU-GEO-004	439	1119	-18395	-16531	4130	0
SLU-GEO-005	718	671	-18395	-9918	6750	0
SLU-GEO-006	1156	854	-30678	-12745	10959	0
SLU-GEO-007	1357	630	-28011	-9300	17659	0
SLU-GEO-008	516	319	-27265	-11801	4936	0
SLU-GEO-009	640	535	-26975	-14593	6021	0
SLU-GEO-010	1357	841	-30468	-12695	14958	0
SLU-GEO-011	1257	838	-30388	-11932	11824	0
SLU-GEO-012	2294	430	-30678	-6847	21662	0
SLU-GEO-013	2693	318	-28011	-5008	30222	0
SLU-GEO-014	1024	161	-27265	-9621	9713	0
SLU-GEO-015	1270	270	-26975	-10875	11946	0
SLU-GEO-016	2693	424	-30468	-6887	27522	0
SLU-GEO-017	2494	422	-30388	-6149	23461	0
SLU-GEO-018	2693	275	-20271	-4771	27386	0
SLU-GEO-019	1156	1525	-30678	-22664	10959	0
SLU-GEO-020	1357	1301	-28011	-19218	17659	0
SLU-GEO-021	516	990	-27265	-21719	4936	0
SLU-GEO-022	640	1206	-26975	-24511	6021	0
SLU-GEO-023	1357	1513	-30468	-22614	14958	0
SLU-GEO-024	1257	1509	-30388	-21851	11824	0
SLU-GEO-025	2294	1102	-30678	-16766	21662	0
SLU-GEO-026	2693	989	-28011	-14927	30222	0
SLU-GEO-027	1024	832	-27265	-19540	9713	0
SLU-GEO-028	1270	941	-26975	-20794	11946	0
SLU-GEO-029	2693	1095	-30468	-16806	27522	0
SLU-GEO-030	2494	1094	-30388	-16068	23461	0
SLU-GEO-031	2693	946	-20271	-14689	27386	0
SLU-GEO-032	1510	854	-30678	-12745	14287	0
SLU-GEO-033	1711	630	-28011	-9300	20987	0
SLU-GEO-034	870	319	-27265	-11801	8264	0
SLU-GEO-035	994	535	-26975	-14593	9349	0

_	_			_			_
SLU-GEO-036	1711	841	-30468	-12695	18286	0	1906
SLU-GEO-037	1611	838	-30388	-11932	15152	0	1815
SLU-GEO-038	2648	430	-30678	-6847	24990	0	2682
SLU-GEO-039	3046	318	-28011	-5008	33550	0	3063
SLU-GEO-040	1378	161	-27265	-9621	13040	0	1387
SLU-GEO-041	1624	270	-26975	-10875	15274	0	1646
SLU-GEO-042	3046	424	-30468	-6887	30850	0	3076
SLU-GEO-043	2848	422	-30388	-6149	26789	0	2879
SLU-GEO-044	3046	275	-20271	-4771	30713	0	3059
SLU-GEO-045	1374	854	-30678	-12745	13013	0	1618
SLU-GEO-046	1575	630	-28011	-9300	19714	0	1697
SLU-GEO-047	734	319	-27265	-11801	6991	0	801
SLU-GEO-048	858	535	-26975	-14593	8075	0	1012
SLU-GEO-049	1575	841	-30468	-12695	17013	0	1786
SLU-GEO-050	1475	838	-30388	-11932	13879	0	1696
SLU-GEO-051	2512	430	-30678	-6847	23717	0	2549
SLU-GEO-052	2911	318	-28011	-5008	32276	0	2928
SLU-GEO-053	1242	161	-27265	-9621	11767	0	1252
SLU-GEO-054	1488	270	-26975	-10875	14001	0	1513
SLU-GEO-055	2911	424	-30468	-6887	29577	0	2942
SLU-GEO-056	2712	422	-30388	-6149	25515	0	2745
SLU-GEO-057	2911	275	-20271	-4771	29440	0	2924
SLU-GEO-058	1728	1525	-30678	-22664	16341	0	2305
SLU-GEO-059	1929	1301	-28011	-19218	23041	0	2327
SLU-GEO-060	1088	990	-27265	-21719	10318	0	1471
SLU-GEO-061	1212	1206	-26975	-24511	11403	0	1710
SLU-GEO-062	1929	1513	-30468	-22614	20341	0	2451
SLU-GEO-063	1829	1509	-30388	-21851	17207	0	2371
SLU-GEO-064	2866	1102	-30678	-16766	27045	0	3070
SLU-GEO-065	3265	989	-28011	-14927	35604	0	3411
SLU-GEO-066	1596	832	-27265	-19540	15095	0	1800
SLU-GEO-067	1842	941	-26975	-20794	17328	0	2069
SLU-GEO-068	3265	1095	-30468	-16806	32905	0	3444
SLU-GEO-069	3066	1094	-30388	-16068	28843	0	3255
SLU-GEO-070	3265	946	-20271	-14689	32767	0	3399

l	Ī	l		I	Ī	ĺ	Ī
SLU-SIS-001	7268	1900	-23153	-18127	58168	3217	7512
SLU-SIS-002	7484	1900	-23153	-18127	60202	3217	7721
SLU-SIS-003	7484	1900	-19986	-18127	60193	3217	7721
SLU-SIS-004	7686	2050	-24291	-20371	62121	3217	7955
SLU-SIS-005	7721	2011	-23865	-19765	63296	3217	7978
SLU-SIS-006	7574	1956	-23745	-20205	61067	3217	7823
SLU-SIS-007	7596	1994	-23699	-20696	61256	3217	7853
SLU-SIS-008	7721	2048	-24258	-20362	62822	3217	7988
SLU-SIS-009	7703	2047	-24245	-20228	62272	3217	7971
SLU-SIS-010	7888	1975	-24291	-19325	64020	3217	8131
SLU-SIS-011	7958	1955	-23865	-19003	65524	3217	8195
SLU-SIS-012	7664	1928	-23745	-19818	61914	3217	7903
SLU-SIS-013	7707	1947	-23699	-20037	62307	3217	7950
SLU-SIS-014	7958	1974	-24258	-19332	65051	3217	8199
SLU-SIS-015	7923	1974	-24245	-19202	64336	3217	8165
SLU-SIS-016	7958	1948	-20283	-18960	65011	3217	8193
SLU-SIS-017	7268	1900	-19972	-17084	56250	3217	7512
SLU-SIS-018	7484	1900	-19972	-17084	58284	3217	7721
SLU-SIS-019	7484	1900	-16805	-17083	58275	3217	7721
SLU-SIS-020	7268	1900	-21110	-17235	56271	3217	7512
SLU-SIS-021	7593	2050	-21110	-19328	59335	3217	7865
SLU-SIS-022	7629	2011	-20684	-18721	60509	3217	7889
SLU-SIS-023	7482	1956	-20564	-19161	58280	3217	7733
SLU-SIS-024	7503	1994	-20518	-19653	58469	3217	7764
SLU-SIS-025	7629	2048	-21077	-19319	60036	3217	7899
SLU-SIS-026	7611	2047	-21064	-19185	59485	3217	7882
SLU-SIS-027	7795	1975	-21110	-18281	61233	3217	8042
SLU-SIS-028	7865	1955	-20684	-17960	62737	3217	8105
SLU-SIS-029	7572	1928	-20564	-18775	59128	3217	7813
SLU-SIS-030	7615	1947	-20518	-18993	59520	3217	7860
SLU-SIS-031	7865	1974	-21077	-18288	62264	3217	8109
SLU-SIS-032	7830	1974	-21064	-18159	61549	3217	8075
SLU-SIS-033	7865	1948	-17102	-17916	62224	3217	8103
SLU-SIS-034	2180	6333	-23153	-59209	18116	4043	6698
SLU-SIS-035	2397	6333	-23153	-59209	20150	4043	6772
SLU-SIS-036	2397	6333	-19986	-59207	20147	4043	6772
SLU-SIS-037	2180	6333	-24291	-59362	18132	4043	6698
SLU-SIS-038	2506	6484	-24291	-61454	21196	4043	6951
SLU-SIS-039	2541	6444	-23865	-60847	22372	4043	6927
SLU-SIS-040	2394	6389	-23745	-61287	20144	4043	6823
SLU-SIS-041	2416	6427	-23699	-61779	20333	4043	6866
SLU-SIS-042	2541	6481	-24258	-61445	21897	4043	6962
SLU-SIS-043	2524	6481	-24245	-61311	21347	4043	6955
SLU-SIS-044	2708	6408	-24291	-60408	23094	4043	6957

SLU-SIS-045	2778	6389	-23865	-60086	24600	4043	6967
SLU-SIS-046	2484	6361	-23745	-60901	20991	4043	6829
SLU-SIS-047	2528	6380	-23699	-61119	21384	4043	6863
SLU-SIS-048	2778	6407	-24258	-60415	24126	4043	6984
SLU-SIS-049	2743	6407	-24245	-60285	23411	4043	6969
SLU-SIS-050	2778	6381	-20283	-60040	24096	4043	6960
SLU-SIS-051	2180	6333	-19972	-58162	16210	4043	6698
SLU-SIS-052	2397	6333	-19972	-58162	18243	4043	6772
SLU-SIS-053	2397	6333	-16805	-58160	18241	4043	6772
SLU-SIS-054	2180	6333	-21110	-58315	16226	4043	6698
SLU-SIS-055	2506	6484	-21110	-60407	19289	4043	6951
SLU-SIS-056	2541	6444	-20684	-59800	20465	4043	6927
SLU-SIS-057	2394	6389	-20564	-60240	18237	4043	6823
SLU-SIS-058	2416	6427	-20518	-60732	18426	4043	6866
SLU-SIS-059	2541	6481	-21077	-60399	19990	4043	6962
SLU-SIS-060	2524	6481	-21064	-60264	19440	4043	6955
SLU-SIS-061	2708	6408	-21110	-59361	21188	4043	6957
SLU-SIS-062	2778	6389	-20684	-59039	22694	4043	6967
SLU-SIS-063	2484	6361	-20564	-59854	19084	4043	6829
SLU-SIS-064	2528	6380	-20518	-60072	19477	4043	6863
SLU-SIS-065	2778	6407	-21077	-59368	22219	4043	6984
SLU-SIS-066	2743	6407	-21064	-59238	21504	4043	6969
SLU-SIS-067	2778	6381	-17102	-58993	22189	4043	6960
SLU-SIS-068	2180	1900	-26864	-19345	20340	1675	2892
SLU-SIS-069	2397	1900	-26864	-19345	22374	1675	3058
SLU-SIS-070	2397	1900	-23697	-19344	22371	1675	3058
SLU-SIS-071	2180	1900	-28003	-19496	20356	1675	2892
SLU-SIS-072	2506	2050	-28003	-21589	23420	1675	3238
SLU-SIS-073	2541	2011	-27576	-20982	24596	1675	3240
SLU-SIS-074	2394	1956	-27457	-21422	22368	1675	3092
SLU-SIS-075	2416	1994	-27410	-21913	22557	1675	3133
SLU-SIS-076	2541	2048	-27969	-21580	24121	1675	3264
SLU-SIS-077	2524	2047	-27956	-21445	23571	1675	3250
SLU-SIS-078	2708	1975	-28003	-20542	25319	1675	3352
SLU-SIS-079	2778	1955	-27576	-20221	26825	1675	3397
SLU-SIS-080	2484	1928	-27457	-21035	23215	1675	3145
SLU-SIS-081	2528	1947	-27410	-21254	23608	1675	3191
SLU-SIS-082	2778	1974	-27969	-20549	26350	1675	3408
SLU-SIS-083	2743	1974	-27956	-20419	25635	1675	3379
SLU-SIS-084	2778	1948	-23995	-20177	26320	1675	3393
SLU-SIS-085	2180	1900	-16261	-15867	13986	1675	2892
SLU-SIS-086	2397	1900	-16261	-15867	16019	1675	3058
SLU-SIS-087	2397	1900	-13093	-15866	16016	1675	3058
SLU-SIS-088	2180	1900	-17399	-16018	14002	1675	2892
SLU-SIS-089	2506	2050	-17399	-18110	17065	1675	3238

CLLL CIC OOO	0544	2011	40070	47504	40044	4075	2240
SLU-SIS-090	2541	2011	-16972	-17504	18241	1675	3240
SLU-SIS-091	2394	1956	-16853	-17944	16013	1675	3092
SLU-SIS-092	2416	1994	-16807	-18435	16202	1675	3133
SLU-SIS-093	2541	2048	-17365	-18101	17766	1675	3264
SLU-SIS-094	2524	2047	-17353	-17967	17216	1675	3250
SLU-SIS-095	2708	1975	-17399	-17064	18963	1675	3352
SLU-SIS-096	2778	1955	-16972	-16742	20469	1675	3397
SLU-SIS-097	2484	1928	-16853	-17557	16860	1675	3145
SLU-SIS-098 SLU-SIS-099	2528	1947 1974	-16807 -17365	-17776	17253	1675	3191 3408
	2778			-17071	19994	1675	3379
SLU-SIS-100 SLU-SIS-101	2743 2778	1974 1948	-17353 -13391	-16941 -16699	19280 19964	1675 1675	3393
SLU-SIS-101	-7268	-1900	-23153	17086	-56266	-3217	7512
SLU-SIS-102	-7200	-1900	-23153	17086	-54232	-3217	7303
SLU-SIS-103	-7051	-1900	-19986	17085	-54232	-3217	7303
SLU-SIS-104	-6850	-1750	-24291	14843	-54223	-3217	7070
SLU-SIS-106	-6815	-1789	-23865	15449	-52326 -51146	-3217	7070
SLU-SIS-107	-6961	-1844	-23745	15009	-53374	-3217	7043
SLU-SIS-107	-6940	-1806	-23699	14518	-53184	-3217	7171
SLU-SIS-108	-6940 -6815	-1752	-24258	14852	-51624	-3217	7036
SLU-SIS-110	-6832	-1753	-24245	14986	-52174	-3217	7053
SLU-SIS-111	-6648	-1825	-24291	15889	-50427	-3217	6894
SLU-SIS-112	-6578	-1845	-23865	16211	-48918	-3217	6831
SLU-SIS-113	-6871	-1872	-23745	15396	-52526	-3217	7122
SLU-SIS-114	-6828	-1853	-23699	15177	-52133	-3217	7075
SLU-SIS-115	-6578	-1826	-24258	15882	-49396	-3217	6826
SLU-SIS-116	-6613	-1826	-24245	16012	-50110	-3217	6860
SLU-SIS-117	-6578	-1852	-20283	16252	-49408	-3217	6833
SLU-SIS-118	-7268	-1900	-19972	18126	-58152	-3217	7512
SLU-SIS-119	-7051	-1900	-19972	18126	-56118	-3217	7303
SLU-SIS-120	-7051	-1900	-16805	18125	-56109	-3217	7303
SLU-SIS-121	-7268	-1900	-21110	17976	-58144	-3217	7512
SLU-SIS-122	-6942	-1750	-21110	15884	-55080	-3217	7159
SLU-SIS-123	-6907	-1789	-20684	16490	-53901	-3217	7135
SLU-SIS-124	-7054	-1844	-20564	16049	-56128	-3217	7291
SLU-SIS-125	-7032	-1806	-20518	15558	-55939	-3217	7260
SLU-SIS-126	-6907	-1752	-21077	15892	-54379	-3217	7126
SLU-SIS-127	-6924	-1753	-21064	16027	-54929	-3217	7143
SLU-SIS-128	-6740	-1825	-21110	16930	-53182	-3217	6983
SLU-SIS-129	-6670	-1845	-20684	17251	-51673	-3217	6920
SLU-SIS-130	-6964	-1872	-20564	16436	-55281	-3217	7211
SLU-SIS-131	-6920	-1853	-20518	16218	-54888	-3217	7164
SLU-SIS-132	-6670	-1826	-21077	16923	-52151	-3217	6915
SLU-SIS-133	-6705	-1826	-21064	17053	-52865	-3217	6949
SLU-SIS-134	-6670	-1852	-17102	17292	-52163	-3217	6922

0111 010 405	0400	6000	00450	50407	10044	4040	
SLU-SIS-135	-2180	-6333	-23153	58167	-16214	-4043	6698
SLU-SIS-136	-1964	-6333	-23153	58167	-14180	-4043	6631
SLU-SIS-137	-1964	-6333	-19986	58165	-14178	-4043	6631
SLU-SIS-138	-2180	-6333	-24291	58019	-16202	-4043	6698
SLU-SIS-139	-1855	-6183	-24291	55926	-13138	-4043	6455
SLU-SIS-140	-1820	-6222	-23865	56532	-11961	-4043	6483
SLU-SIS-141	-1966	-6277	-23745	56092	-14189	-4043	6578
SLU-SIS-142	-1945	-6239	-23699	55600	-13999	-4043	6535
SLU-SIS-143	-1820	-6185	-24258	55935	-12437	-4043	6447
SLU-SIS-144	-1837	-6186	-24245	56069	-12987	-4043	6453
SLU-SIS-145	-1653	-6258	-24291	56973	-11240	-4043	6473
SLU-SIS-146	-1583	-6278	-23865	57293	-9732	-4043	6474
SLU-SIS-147	-1876	-6305	-23745	56478	-13341	-4043	6578
SLU-SIS-148	-1833	-6286	-23699	56260	-12948	-4043	6548
SLU-SIS-149	-1583	-6259	-24258	56965	-10208	-4043	6456
SLU-SIS-150	-1618	-6260	-24245	57095	-10923	-4043	6465
SLU-SIS-151	-1583	-6285	-20283	57332	-10230	-4043	6481
SLU-SIS-152	-2180	-6333	-19972	59204	-18111	-4043	6698
SLU-SIS-153	-1964	-6333	-19972	59204	-16077	-4043	6631
SLU-SIS-154	-1964	-6333	-16805	59202	-16075	-4043	6631
SLU-SIS-155	-2180	-6333	-21110	59056	-18098	-4043	6698
SLU-SIS-156	-1855	-6183	-21110	56963	-15035	-4043	6455
SLU-SIS-157	-1820	-6222	-20684	57569	-13858	-4043	6483
SLU-SIS-158	-1966	-6277	-20564	57129	-16085	-4043	6578
SLU-SIS-159	-1945	-6239	-20518	56637	-15896	-4043	6535
SLU-SIS-160	-1820	-6185	-21077	56972	-14334	-4043	6447
SLU-SIS-161	-1837	-6186	-21064	57106	-14884	-4043	6453
SLU-SIS-162	-1653	-6258	-21110	58010	-13137	-4043	6473
SLU-SIS-163	-1583	-6278	-20684	58330	-11629	-4043	6474
SLU-SIS-164	-1876	-6305	-20564	57515	-15238	-4043	6578
SLU-SIS-165	-1833	-6286	-20518	57297	-14845	-4043	6548
SLU-SIS-166	-1583	-6259	-21077	58003	-12106	-4043	6456
SLU-SIS-167	-1618	-6260	-21064	58132	-12820	-4043	6465
SLU-SIS-168	-1583	-6285	-17102	58369	-12127	-4043	6481
SLU-SIS-169	-2180	-1900	-26864	15872	-14002	-1675	2892
SLU-SIS-170	-1964	-1900	-26864	15872	-11967	-1675	2733
SLU-SIS-171	-1964	-1900	-23697	15871	-11965	-1675	2733
SLU-SIS-172	-2180	-1900	-28003	15722	-13989	-1675	2892
SLU-SIS-173	-1855	-1750	-28003	13629	-10925	-1675	2550
SLU-SIS-174	-1820	-1789	-27576	14235	-9748	-1675	2552
SLU-SIS-175	-1966	-1844	-27457	13795	-11976	-1675	2696
SLU-SIS-176	-1945	-1806	-27410	13304	-11786	-1675	2654
SLU-SIS-177	-1820	-1752	-27969	13638	-10224	-1675	2526
SLU-SIS-178	-1837	-1753	-27956	13772	-10774	-1675	2539
SLU-SIS-179	-1653	-1825	-28003	14675	-9026	-1675	2462

					1	1	
SLU-SIS-180	-1583	-1845	-27576	14997	-7519	-1675	2430
SLU-SIS-181	-1876	-1872	-27457	14182	-11128	-1675	2650
SLU-SIS-182	-1833	-1853	-27410	13963	-10735	-1675	2606
SLU-SIS-183	-1583	-1826	-27969	14668	-7995	-1675	2416
SLU-SIS-184	-1618	-1826	-27956	14798	-8710	-1675	2440
SLU-SIS-185	-1583	-1852	-23995	15038	-8017	-1675	2436
SLU-SIS-186	-2180	-1900	-16261	19340	-20324	-1675	2892
SLU-SIS-187	-1964	-1900	-16261	19340	-18290	-1675	2733
SLU-SIS-188	-1964	-1900	-13093	19339	-18288	-1675	2733
SLU-SIS-189	-2180	-1900	-17399	19190	-20311	-1675	2892
SLU-SIS-190	-1855	-1750	-17399	17098	-17248	-1675	2550
SLU-SIS-191	-1820	-1789	-16972	17704	-16071	-1675	2552
SLU-SIS-192	-1966	-1844	-16853	17263	-18298	-1675	2696
SLU-SIS-193	-1945	-1806	-16807	16772	-18109	-1675	2654
SLU-SIS-194	-1820	-1752	-17365	17106	-16547	-1675	2526
SLU-SIS-195	-1837	-1753	-17353	17241	-17097	-1675	2539
SLU-SIS-196	-1653	-1825	-17399	18144	-15350	-1675	2462
SLU-SIS-197	-1583	-1845	-16972	18465	-13843	-1675	2430
SLU-SIS-198	-1876	-1872	-16853	17650	-17451	-1675	2650
SLU-SIS-199	-1833	-1853	-16807	17432	-17058	-1675	2606
SLU-SIS-200	-1583	-1826	-17365	18137	-14319	-1675	2416
SLU-SIS-201	-1618	-1826	-17353	18267	-15034	-1675	2440
SLU-SIS-202	-1583	-1852	-13391	18506	-14341	-1675	2436

SLE-RAR-001			-21562				
SLE-RAR-002	338	861	-21562	-12716	3177	0	925
SLE-RAR-003	563	516	-21562	-7630	5295	0	764
SLE-RAR-004	338	861	-18395	-12716	3177	0	925
SLE-RAR-005	563	516	-18395	-7629	5295	0	764
SLE-RAR-006	918	683	-27254	-10196	8697	0	1144
SLE-RAR-007	1077	504	-25121	-7440	14045	0	1189
SLE-RAR-008	410	255	-24524	-9440	3918	0	482
SLE-RAR-009	508	428	-24292	-11674	4778	0	664
SLE-RAR-010	1077	673	-27086	-10156	11885	0	1270
SLE-RAR-011	998	670	-27022	-9545	9383	0	1202
SLE-RAR-012	1835	342	-27254	-5440	17328	0	1867
SLE-RAR-013	2154	252	-25121	-3979	24176	0	2169
SLE-RAR-014	819	128	-24524	-7683	7769	0	829
SLE-RAR-015	1016	214	-24292	-8676	9556	0	1038
SLE-RAR-016	2154	337	-27086	-5472	22016	0	2180
SLE-RAR-017	1995	335	-27022	-4882	18767	0	2023
SLE-RAR-018	2154	218	-19884	-3787	21895	0	2165
SLE-RAR-019	918	1199	-27254	-17825	8697	0	1510
SLE-RAR-020	1077	1020	-25121	-15069	14045	0	1484

SLE-RAR-021	410	771	-24524	-17070	3918	0	873
SLE-RAR-022	508	944	-24292	-19304	4778	0	1072
SLE-RAR-023	1077	1189	-27086	-17785	11885	0	1605
SLE-RAR-024	998	1186	-27022	-17175	9383	0	1550
SLE-RAR-025	1835	858	-27254	-13070	17328	0	2026
SLE-RAR-026	2154	768	-25121	-11609	24176	0	2287
SLE-RAR-027	819	644	-24524	-15312	7769	0	1042
SLE-RAR-028	1016	730	-24292	-16306	9556	0	1251
SLE-RAR-029	2154	853	-27086	-13102	22016	0	2317
SLE-RAR-030	1995	851	-27022	-12512	18767	0	2169
SLE-RAR-031	2154	734	-19884	-11416	21895	0	2276
SLE-RAR-032	1201	683	-27254	-10196	11359	0	1381
SLE-RAR-033	1360	504	-25121	-7440	16707	0	1450
SLE-RAR-034	693	255	-24524	-9440	6580	0	738
SLE-RAR-035	791	428	-24292	-11674	7440	0	899
SLE-RAR-036	1360	673	-27086	-10156	14547	0	1517
SLE-RAR-037	1281	670	-27022	-9545	12045	0	1445
SLE-RAR-038	2118	342	-27254	-5440	19990	0	2145
SLE-RAR-039	2437	252	-25121	-3979	26838	0	2450
SLE-RAR-040	1102	128	-24524	-7683	10431	0	1109
SLE-RAR-041	1299	214	-24292	-8676	12218	0	1317
SLE-RAR-042	2437	337	-27086	-5472	24678	0	2460
SLE-RAR-043	2278	335	-27022	-4882	21429	0	2303
SLE-RAR-044	2437	218	-19884	-3787	24557	0	2447
SLE-RAR-045	1086	683	-27254	-10196	10277	0	1282
SLE-RAR-046	1245	504	-25121	-7440	15626	0	1343
SLE-RAR-047	578	255	-24524	-9440	5498	0	631
SLE-RAR-048	676	428	-24292	-11674	6358	0	800
SLE-RAR-049	1245	673	-27086	-10156	13465	0	1415
SLE-RAR-050	1166	670	-27022	-9545	10964	0	1344
SLE-RAR-051	2003	342	-27254	-5440	18908	0	2032
SLE-RAR-052	2322	252	-25121	-3979	25756	0	2336
SLE-RAR-053	987	128	-24524	-7683	9350	0	995
SLE-RAR-054	1184	214	-24292	-8676	11137	0	1203
SLE-RAR-055	2322	337	-27086	-5472	23596	0	2346
SLE-RAR-056	2163	335	-27022	-4882	20347	0	2189
SLE-RAR-057	2322	218	-19884	-3787	23476	0	2332
SLE-RAR-058	1369	1199	-27254	-17825	12939	0	1820
SLE-RAR-059	1528	1020	-25121	-15069	18287	0	1837
SLE-RAR-060	861	771	-24524	-17070	8160	0	1156
SLE-RAR-061	959	944	-24292	-19304	9020	0	1346
SLE-RAR-062	1528	1189	-27086	-17785	16127	0	1936
SLE-RAR-063	1449	1186	-27022	-17175	13626	0	1872
SLE-RAR-064	2286	858	-27254	-13070	21570	0	2442
SLE-RAR-065	2605	768	-25121	-11609	28418	0	2716

SLE-RAR-066	1270	644	-24524	-15312	12012	0	1424
SLE-RAR-067	1467	730	-24292	-16306	13798	0	1639
SLE-RAR-068	2605	853	-27086	-13102	26258	0	2741
SLE-RAR-069	2446	851	-27022	-12512	23009	0	2590
SLE-RAR-070	2605	734	-19884	-11416	26137	0	2707
SLE-RAR-071	1101	410	-24978	-6117	10396	0	1175
SLE-RAR-072	1292	302	-23698	-4464	14505	0	1327
SLE-RAR-073	655	204	-23932	-7552	6215	0	686
SLE-RAR-074	813	342	-23746	-9339	7645	0	882
SLE-RAR-075	1292	404	-24877	-6093	13208	0	1354
SLE-RAR-076	1197	402	-24838	-5727	11259	0	1263
SLE-RAR-077	1292	262	-20181	-4544	14120	0	1319
SLE-RAR-078	1101	926	-24978	-13747	10396	0	1439
SLE-RAR-079	1292	819	-23698	-12093	14505	0	1530
SLE-RAR-080	655	720	-23932	-15182	6215	0	974
SLE-RAR-081	813	859	-23746	-16969	7645	0	1182
SLE-RAR-082	1292	920	-24877	-13723	13208	0	1587
SLE-RAR-083	1197	918	-24838	-13357	11259	0	1509
SLE-RAR-084	1292	778	-20181	-12173	14120	0	1509
SLE-RAR-085	1384	410	-24978	-6117	13058	0	1443
SLE-RAR-086	1575	302	-23698	-4464	17167	0	1604
SLE-RAR-087	938	204	-23932	-7552	8877	0	960
SLE-RAR-088	1096	342	-23746	-9339	10307	0	1148
SLE-RAR-089	1575	404	-24877	-6093	15870	0	1626
SLE-RAR-090	1480	402	-24838	-5727	13921	0	1534
SLE-RAR-091	1575	262	-20181	-4544	16781	0	1597
SLE-RAR-092	1269	410	-24978	-6117	11976	0	1334
SLE-RAR-093	1460	302	-23698	-4464	16085	0	1491
SLE-RAR-094	823	204	-23932	-7552	7796	0	848
SLE-RAR-095	981	342	-23746	-9339	9225	0	1039
SLE-RAR-096	1460	404	-24877	-6093	14789	0	1515
SLE-RAR-097	1365	402	-24838	-5727	12839	0	1423
SLE-RAR-098	1460	262	-20181	-4544	15700	0	1484
SLE-RAR-099	1552	926	-24978	-13747	14638	0	1807
SLE-RAR-100	1743	819	-23698	-12093	18747	0	1926
SLE-RAR-101	1106	720	-23932	-15182	10457	0	1320
SLE-RAR-102	1264	859	-23746	-16969	11887	0	1528
SLE-RAR-103	1743	920	-24877	-13723	17451	0	1971
SLE-RAR-104	1648	918	-24838	-13357	15501	0	1887
SLE-RAR-105	1743	778	-20181	-12173	18361	0	1909

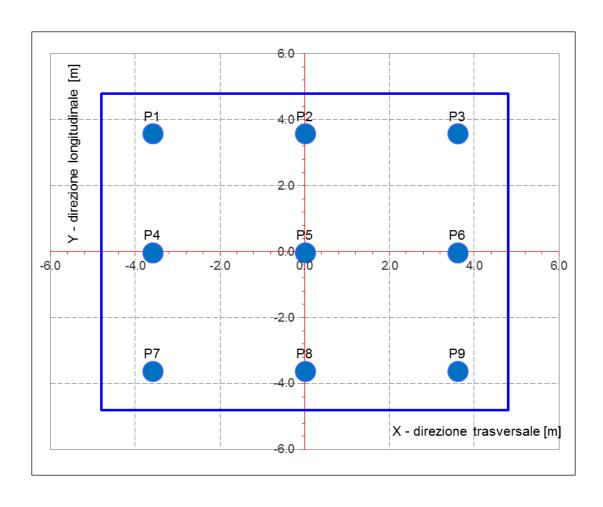
SLE-QPE-001	0	0	-21562	0	0	0	0
SLE-QPE-002	563	0	-21562	0	5295	0	563

5 DISTRIBUZIONE DELLE SOLLECITAZIONI IN TESTA PALI

5.1 GEOMETRIA DELLA PALIFICATA DI FONDAZIONE

Diametro dei pali di fondazione e loro numero:

diam 1.2 m


Num tot 9 Numero totale di pali

Geometria del plinto:

 dtrasv
 9.6
 m

 dlong
 9.6
 m

 hpl
 2.5
 m

Le caratteristiche di sollecitazione sul singolo palo sono state determinate a partire dalle sollecitazioni riportate all'intradosso del plinto di fondazione, secondo le seguenti relazioni (*distribuzione rigida delle sollecitazioni*):

 $N_{max} = F_3 / n_{pali} + ass(M_1) / W_1palificata + ass(M_2) / W_2palificata$

 $N_{min} = F_3 / n_{pali}$ - ass(M₁) / W₁palificata - ass(M₂) / W₂palificata

 $H = \sqrt{((F_1 / n_{pali})^2 + (F_2 / n_{pali})^2)}$

NB: coordinate riferite al baricentro della palificata

num.	X (trasv)	Y (long)	X2	Y2	WI	Wt
	m	m	m2	m2		
P1	-3.60	3.60	13.0	13.0	2.2E+01	-2.2E+01
P2	0.00	3.60	0.0	13.0	2.2E+01	1.0E+99
P3	3.60	3.60	13.0	13.0	2.2E+01	2.2E+01
P4	-3.60	0.00	13.0	0.0	1.0E+99	-2.2E+01
P5	0.00	0.00	0.0	0.0	1.0E+99	1.0E+99
P6	3.60	0.00	13.0	0.0	1.0E+99	2.2E+01
P7	-3.60	-3.60	13.0	13.0	-2.2E+01	-2.2E+01
P8	0.00	-3.60	0.0	13.0	-2.2E+01	1.0E+99
P9	3.60	-3.60	13.0	13.0	-2.2E+01	2.2E+01
P10						
P11						
P12						
P13						
P14						
P15						
P16						
P17						
P18						
P19						
P20						

Σ X2	Σ Y 2
77.76	77.76
m4	m4

5.2 DISTRIBUZIONE DELLE SOLLECITAZIONI IN TESTA AI PALI

Per ogni palo della fondazione e per ogni combinazione di carico considerata, si riportano a seguire i valori delle forze assiali agenti in testa N_{max} [kN] e N_{min} [kN], il valore del taglio medio incrementato del coefficiente che tiene conto dell'effetto gruppo ($T_{med,gr} = 1.1 * T_{med}$ [kN]), nonché il valore del momento flettente agente alla testa del palo (valore massimo). Per il calcolo di tale valore in funzione del taglio agente alla testa del palo, si rimanda all'elaborato progettuale "IF1N.0.1.E.ZZ.RB.GE.00.0.5.001.A - Relazione geotecnica generale di linea delle opere all'aperto".

D (m)	1.2
kh (kN/m3)	29167
fck (Mpa)	25
Е (Мра)	31476
J (m4)	0.1018
λ (cm)	437.44

	N _{max}	N _{min}	T _{media}	T _{media_gruopo}	M _{max}
	[kN]	[kN]	[kN]	[kN]	[kNm]
SLU-STR-001	3345	3345	0	0	0
SLU-STR-002	4449	2242	154	170	371
SLU-STR-003	4237	2454	126	139	304
SLU-STR-004	3148	940	154	170	371
SLU-STR-005	2935	1153	126	139	304
SLU-STR-006	5535	2990	185	204	445
SLU-STR-007	5366	2472	193	212	464
SLU-STR-008	4721	2924	78	86	188
SLU-STR-009	4892	2679	107	118	259
SLU-STR-010	5720	2751	206	226	495
SLU-STR-011	5500	2950	195	214	468
SLU-STR-012	5793	2732	301	331	724
SLU-STR-013	5811	2027	349	384	841
SLU-STR-014	4861	2784	134	147	321
SLU-STR-015	5011	2560	167	184	403
SLU-STR-016	6083	2388	351	386	845
SLU-STR-017	5815	2635	326	359	784
SLU-STR-018	4012	559	349	384	839
SLU-STR-019	6065	2460	246	271	592
SLU-STR-020	5896	1942	242	266	582
SLU-STR-021	5251	2394	143	158	345
SLU-STR-022	5422	2149	176	193	422
SLU-STR-023	6250	2221	261	288	629

SLU-STR-024	6030	2420	253	278	608
SLU-STR-025	6323	2202	328	361	789
SLU-STR-026	6341	1497	370	406	889
SLU-STR-027	5391	2255	170	187	408
SLU-STR-028	5541	2030	203	224	489
SLU-STR-029	6613	1858	374	412	901
SLU-STR-030	6345	2105	351	386	844
SLU-STR-031	4542	29	368	404	885
SLU-STR-032	5714	2811	223	246	538
SLU-STR-033	5545	2293	235	258	565
SLU-STR-034	4900	2745	119	131	287
SLU-STR-035	5071	2500	145	160	350
SLU-STR-036	5899	2572	246	270	591
SLU-STR-037	5679	2771	234	257	563
SLU-STR-038	5972	2553	346	380	832
SLU-STR-039	5990	1848	395	434	950
SLU-STR-040	5040	2606	179	197	430
SLU-STR-041	5190	2381	212	233	510
SLU-STR-042	6262	2209	396	436	954
SLU-STR-043	5994	2456	371	408	893
SLU-STR-044	4191	380	394	434	948
SLU-STR-045	5645	2880	208	229	501
SLU-STR-046	5476	2362	218	240	525
SLU-STR-047	4831	2814	103	113	248
SLU-STR-048	5002	2569	130	143	313
SLU-STR-049	5830	2641	230	253	553
SLU-STR-050	5610	2840	218	240	525
SLU-STR-051	5903	2622	328	361	790
SLU-STR-052	5921	1917	377	415	908
SLU-STR-053	4971	2675	161	177	388
SLU-STR-054	5121	2450	195	214	469
SLU-STR-055	6193	2278	379	417	912
SLU-STR-056	5925	2525	354	389	851
SLU-STR-057	4122	449	377	414	906
SLU-STR-058	6353	2172	297	326	713
SLU-STR-059	6184	1653	299	329	720
SLU-STR-060	5540	2106	189	208	455
SLU-STR-061	5710	1860	220	242	529
SLU-STR-062	6538	1933	315	347	759
SLU-STR-063	6319	2131	305	336	734
SLU-STR-064	6612	1913	395	435	951
SLU-STR-065	6629	1209	439	483	1057
SLU-STR-066	5679	1966	232	255	557

SLU-STR-067	5829	1741	266	293	641
SLU-STR-068	6902	1569	444	488	1067
SLU-STR-069	6634	1817	419	461	1009
SLU-STR-070	4830	-259	438	482	1053

	N _{max}	N _{min}	T _{media}	Tmedia_gruopo	M _{max}
	[kN]	[kN]	[kN]	[kN]	[kNm]
SLU-GEO-001	2618	2618	0	0	0
SLU-GEO-002	3575	1662	134	147	321
SLU-GEO-003	3390	1846	109	120	263
SLU-GEO-004	3000	1087	134	147	321
SLU-GEO-005	2816	1272	109	120	263
SLU-GEO-006	4506	2311	160	176	384
SLU-GEO-007	4360	1864	166	183	400
SLU-GEO-008	3804	2255	67	74	162
SLU-GEO-009	3952	2043	93	102	223
SLU-GEO-010	4666	2105	177	195	427
SLU-GEO-011	4476	2277	168	185	404
SLU-GEO-012	4729	2089	259	285	624
SLU-GEO-013	4743	1481	301	331	725
SLU-GEO-014	3925	2134	115	127	277
SLU-GEO-015	4054	1941	144	159	347
SLU-GEO-016	4978	1792	303	333	729
SLU-GEO-017	4747	2006	281	309	676
SLU-GEO-018	3741	764	301	331	724
SLU-GEO-019	4965	1852	213	234	512
SLU-GEO-020	4820	1405	209	230	503
SLU-GEO-021	4264	1795	124	136	298
SLU-GEO-022	4411	1584	152	167	365
SLU-GEO-023	5125	1646	226	248	543
SLU-GEO-024	4935	1817	218	240	525
SLU-GEO-025	5188	1630	283	311	680
SLU-GEO-026	5203	1022	319	351	767
SLU-GEO-027	4384	1675	147	161	353
SLU-GEO-028	4513	1481	176	193	423
SLU-GEO-029	5438	1333	323	355	777
SLU-GEO-030	5206	1546	303	333	728
SLU-GEO-031	4200	304	317	349	763
SLU-GEO-032	4660	2157	193	212	464
SLU-GEO-033	4515	1710	203	223	487
SLU-GEO-034	3958	2101	103	113	248

l	İ	İ			Ì	İ
SLU-GEO-035	4106	1889		125	138	302
SLU-GEO-036	4820	1951		212	233	510
SLU-GEO-037	4630	2123		202	222	485
SLU-GEO-038	4883	1935		298	328	717
SLU-GEO-039	4897	1327		340	374	819
SLU-GEO-040	4079	1980		154	170	371
SLU-GEO-041	4208	1787		183	201	440
SLU-GEO-042	5132	1638		342	376	822
SLU-GEO-043	4901	1852		320	352	770
SLU-GEO-044	3895	610		340	374	818
SLU-GEO-045	4601	2216		180	198	433
SLU-GEO-046	4456	1769		189	207	454
SLU-GEO-047	3899	2160		89	98	214
SLU-GEO-048	4047	1948		112	124	270
SLU-GEO-049	4761	2010		198	218	477
SLU-GEO-050	4571	2181		188	207	453
SLU-GEO-051	4824	1994		283	312	681
SLU-GEO-052	4839	1386		325	358	783
SLU-GEO-053	4020	2039		139	153	335
SLU-GEO-054	4149	1846		168	185	404
SLU-GEO-055	5073	1697		327	360	786
SLU-GEO-056	4842	1910		305	335	734
SLU-GEO-057	3836	668		325	357	782
SLU-GEO-058	5214	1603		256	282	616
SLU-GEO-059	5069	1156		259	284	622
SLU-GEO-060	4513	1546		163	180	393
SLU-GEO-061	4660	1335		190	209	457
SLU-GEO-062	5374	1397		272	300	655
SLU-GEO-063	5185	1568		263	290	634
SLU-GEO-064	5437	1380		341	375	821
SLU-GEO-065	5452	773		379	417	912
SLU-GEO-066	4633	1426		200	220	481
SLU-GEO-067	4762	1232		230	253	553
SLU-GEO-068	5687	1084		383	421	921
SLU-GEO-069	5456	1297		362	398	870
SLU-GEO-070	4449	55		378	415	909
	1	l	_		l	1

	N _{max}	N _{min}	T media	Tmedia_gruopo	M _{max}
	[kN]	[kN]	[kN]	[kN]	[kNm]
SLU-SIS-001	6105	-960	835	918	2008
SLU-SIS-002	6199	-1054	858	944	2064
SLU-SIS-003	5847	-1405	858	944	2064
SLU-SIS-004	6518	-1120	884	972	2126
SLU-SIS-005	6497	-1194	886	975	2133
SLU-SIS-006	6401	-1124	869	956	2091
SLU-SIS-007	6427	-1161	873	960	2099
SLU-SIS-008	6546	-1156	888	976	2135
SLU-SIS-009	6513	-1126	886	974	2131
SLU-SIS-010	6558	-1160	903	994	2174
SLU-SIS-011	6565	-1262	911	1002	2191
SLU-SIS-012	6422	-1146	878	966	2113
SLU-SIS-013	6445	-1179	883	972	2125
SLU-SIS-014	6602	-1211	911	1002	2192
SLU-SIS-015	6561	-1174	907	998	2183
SLU-SIS-016	6141	-1634	910	1001	2190
SLU-SIS-017	5614	-1176	835	918	2008
SLU-SIS-018	5708	-1270	858	944	2064
SLU-SIS-019	5356	-1622	858	944	2064
SLU-SIS-020	5749	-1057	835	918	2008
SLU-SIS-021	5987	-1296	874	961	2103
SLU-SIS-022	5966	-1370	877	964	2109
SLU-SIS-023	5870	-1300	859	945	2067
SLU-SIS-024	5897	-1337	863	949	2075
SLU-SIS-025	6016	-1332	878	965	2111
SLU-SIS-026	5983	-1302	876	963	2107
SLU-SIS-027	6027	-1336	894	983	2150
SLU-SIS-028	6034	-1438	901	991	2167
SLU-SIS-029	5891	-1322	868	955	2089
SLU-SIS-030	5915	-1355	873	961	2101
SLU-SIS-031	6071	-1387	901	991	2168
SLU-SIS-032	6031	-1350	897	987	2159
SLU-SIS-033	5610	-1810	900	990	2166
SLU-SIS-034	6152	-1007	744	819	1791
SLU-SIS-035	6247	-1101	752	828	1810
SLU-SIS-036	5894	-1453	752	828	1810
SLU-SIS-037	6287	-889	744	819	1791
SLU-SIS-038	6525	-1127	772	850	1858
SLU-SIS-039	6504	-1201	770	847	1852

SLU-SIS-040	6408	-1132	758	834	1824
SLU-SIS-041	6435	-1168	763	839	1836
SLU-SIS-042	6554	-1163	774	851	1861
SLU-SIS-043	6521	-1133	773	850	1859
SLU-SIS-044	6565	-1167	773	850	1860
SLU-SIS-045	6572	-1269	774	851	1862
SLU-SIS-046	6430	-1153	759	835	1826
SLU-SIS-047	6453	-1186	763	839	1835
SLU-SIS-048	6609	-1219	776	854	1867
SLU-SIS-049	6569	-1181	774	852	1863
SLU-SIS-050	6149	-1641	773	851	1860
SLU-SIS-051	5662	-1224	744	819	1791
SLU-SIS-052	5756	-1318	752	828	1810
SLU-SIS-053	5404	-1670	752	828	1810
SLU-SIS-054	5797	-1105	744	819	1791
SLU-SIS-055	6035	-1344	772	850	1858
SLU-SIS-056	6014	-1418	770	847	1852
SLU-SIS-057	5918	-1348	758	834	1824
SLU-SIS-058	5944	-1385	763	839	1836
SLU-SIS-059	6064	-1380	774	851	1861
SLU-SIS-060	6030	-1350	773	850	1859
SLU-SIS-061	6075	-1384	773	850	1860
SLU-SIS-062	6082	-1486	774	851	1862
SLU-SIS-063	5939	-1370	759	835	1826
SLU-SIS-064	5963	-1403	763	839	1835
SLU-SIS-065	6119	-1435	776	854	1867
SLU-SIS-066	6079	-1398	774	852	1863
SLU-SIS-067	5659	-1858	773	851	1860
SLU-SIS-068	4822	1148	321	353	773
SLU-SIS-069	4916	1054	340	374	818
SLU-SIS-070	4564	702	340	374	818
SLU-SIS-071	4956	1266	321	353	773
SLU-SIS-072	5195	1028	360	396	866
SLU-SIS-073	5174	954	360	396	866
SLU-SIS-074	5078	1023	344	378	826
SLU-SIS-075	5104	987	348	383	837
SLU-SIS-076	5223	992	363	399	872
SLU-SIS-077	5190	1022	361	397	869
SLU-SIS-078	5235	988	372	410	896
SLU-SIS-079	5242	886	377	415	908
SLU-SIS-080	5099	1002	349	384	841
SLU-SIS-081	5123	969	355	390	853
SLU-SIS-082	5279	936	379	417	911

SLU-SIS-083	5238	974	375	413	903
SLU-SIS-084	4819	513	377	415	907
SLU-SIS-085	3189	425	321	353	773
SLU-SIS-086	3283	331	340	374	818
SLU-SIS-087	2931	-21	340	374	818
SLU-SIS-088	3323	543	321	353	773
SLU-SIS-089	3562	305	360	396	866
SLU-SIS-090	3541	231	360	396	866
SLU-SIS-091	3445	300	344	378	826
SLU-SIS-092	3471	264	348	383	837
SLU-SIS-093	3590	269	363	399	872
SLU-SIS-094	3557	299	361	397	869
SLU-SIS-095	3601	265	372	410	896
SLU-SIS-096	3609	163	377	415	908
SLU-SIS-097	3466	279	349	384	841
SLU-SIS-098	3489	246	355	390	853
SLU-SIS-099	3645	213	379	417	911
SLU-SIS-100	3605	251	375	413	903
SLU-SIS-101	3185	-209	377	415	907
SLU-SIS-102	5968	-823	835	918	2008
SLU-SIS-103	5874	-729	811	893	1952
SLU-SIS-104	5522	-1081	811	893	1952
SLU-SIS-105	5809	-411	786	864	1890
SLU-SIS-106	5735	-431	783	861	1883
SLU-SIS-107	5804	-527	800	880	1925
SLU-SIS-108	5768	-501	797	876	1917
SLU-SIS-109	5773	-382	782	860	1881
SLU-SIS-110	5803	-415	784	862	1885
SLU-SIS-111	5769	-371	766	843	1843
SLU-SIS-112	5667	-364	759	835	1826
SLU-SIS-113	5783	-506	791	870	1904
SLU-SIS-114	5749	-483	786	865	1891
SLU-SIS-115	5717	-327	758	834	1825
SLU-SIS-116	5755	-367	762	838	1834
SLU-SIS-117	5294	-786	759	835	1827
SLU-SIS-118	5750	-1312	835	918	2008
SLU-SIS-119	5656	-1218	811	893	1952
SLU-SIS-120	5304	-1570	811	893	1952
SLU-SIS-121	5870	-1178	835	918	2008
SLU-SIS-122	5631	-940	795	875	1914
SLU-SIS-123	5557	-961	793	872	1907
SLU-SIS-124	5626	-1057	810	891	1949
SLU-SIS-125	5590	-1030	807	887	1941

SLU-SIS-126	5595	-911	792	871	1905
SLU-SIS-127	5625	-945	794	873	1909
SLU-SIS-128	5592	-900	776	853	1867
SLU-SIS-129	5489	-893	769	846	1850
SLU-SIS-130	5605	-1035	801	881	1928
SLU-SIS-131	5572	-1012	796	876	1915
SLU-SIS-132	5540	-856	768	845	1849
SLU-SIS-133	5577	-897	772	849	1858
SLU-SIS-134	5116	-1315	769	846	1850
SLU-SIS-135	6016	-871	744	819	1791
SLU-SIS-136	5922	-777	737	810	1773
SLU-SIS-137	5570	-1129	737	810	1773
SLU-SIS-138	6135	-737	744	819	1791
SLU-SIS-139	5896	-498	717	789	1726
SLU-SIS-140	5823	-519	720	792	1733
SLU-SIS-141	5892	-615	731	804	1758
SLU-SIS-142	5855	-589	726	799	1747
SLU-SIS-143	5861	-470	716	788	1724
SLU-SIS-144	5891	-503	717	789	1725
SLU-SIS-145	5857	-459	719	791	1730
SLU-SIS-146	5755	-451	719	791	1731
SLU-SIS-147	5871	-594	731	804	1759
SLU-SIS-148	5837	-571	728	800	1750
SLU-SIS-149	5805	-415	717	789	1726
SLU-SIS-150	5843	-455	718	790	1728
SLU-SIS-151	5382	-874	720	792	1733
SLU-SIS-152	5799	-1360	744	819	1791
SLU-SIS-153	5704	-1266	737	810	1773
SLU-SIS-154	5352	-1618	737	810	1773
SLU-SIS-155	5918	-1226	744	819	1791
SLU-SIS-156	5679	-988	717	789	1726
SLU-SIS-157	5605	-1009	720	792	1733
SLU-SIS-158	5674	-1105	731	804	1758
SLU-SIS-159	5638	-1078	726	799	1747
SLU-SIS-160	5643	-959	716	788	1724
SLU-SIS-161	5673	-992	717	789	1725
SLU-SIS-162	5639	-948	719	791	1730
SLU-SIS-163	5537	-941	719	791	1731
SLU-SIS-164	5653	-1083	731	804	1759
SLU-SIS-165	5620	-1060	728	800	1750
SLU-SIS-166	5588	-904	717	789	1726
SLU-SIS-167	5625	-944	718	790	1728
SLU-SIS-168	5164	-1363	720	792	1733

SLU-SIS-169	4368	1602	321	353	773
SLU-SIS-170	4274	1696	304	334	731
SLU-SIS-171	3922	1344	304	334	731
SLU-SIS-172	4487	1736	321	353	773
SLU-SIS-173	4248	1975	283	312	682
SLU-SIS-174	4174	1954	284	312	682
SLU-SIS-175	4244	1858	300	329	721
SLU-SIS-176	4207	1884	295	324	709
SLU-SIS-177	4212	2003	281	309	675
SLU-SIS-178	4243	1970	282	310	679
SLU-SIS-179	4209	2014	274	301	658
SLU-SIS-180	4106	2022	270	297	650
SLU-SIS-181	4223	1879	294	324	709
SLU-SIS-182	4189	1902	290	319	697
SLU-SIS-183	4157	2058	268	295	646
SLU-SIS-184	4195	2018	271	298	652
SLU-SIS-185	3733	1599	271	298	651
SLU-SIS-186	3643	-30	321	353	773
SLU-SIS-187	3549	65	304	334	731
SLU-SIS-188	3197	-287	304	334	731
SLU-SIS-189	3762	104	321	353	773
SLU-SIS-190	3523	343	283	312	682
SLU-SIS-191	3449	322	284	312	682
SLU-SIS-192	3519	226	300	329	721
SLU-SIS-193	3482	253	295	324	709
SLU-SIS-194	3488	371	281	309	675
SLU-SIS-195	3518	338	282	310	679
SLU-SIS-196	3484	383	274	301	658
SLU-SIS-197	3382	390	270	297	650
SLU-SIS-198	3498	247	294	324	709
SLU-SIS-199	3464	271	290	319	697
SLU-SIS-200	3432	427	268	295	646
SLU-SIS-201	3470	386	271	298	652
SLU-SIS-202	3009	-33	271	298	651

	N_{max}	N _{min}	T _{med}
	[kN]	[kN]	[kN
SLE-RAR-001	2396	2396	0
SLE-RAR-002	3132	1660	103
SLE-RAR-003	2994	1797	85

T_{media}	T _{media_gruopo}	M_{max}
[kN]	[kN]	[kNm]
0	0	0
103	113	247
85	93	204

SLE-RAR-004	2780	1308	103	113	247
SLE-RAR-005	2642	1446	85	93	204
SLE-RAR-006	3903	2154	127	140	306
SLE-RAR-007	3786	1797	132	145	318
SLE-RAR-008	3343	2107	54	59	129
SLE-RAR-009	3461	1937	74	81	178
SLE-RAR-010	4030	1989	141	155	339
SLE-RAR-011	3879	2126	134	147	321
SLE-RAR-012	4082	1974	207	228	499
SLE-RAR-013	4095	1488	241	265	580
SLE-RAR-014	3440	2010	92	101	222
SLE-RAR-015	3543	1855	115	127	278
SLE-RAR-016	4282	1737	242	266	583
SLE-RAR-017	4097	1908	225	247	541
SLE-RAR-018	3398	1020	241	265	579
SLE-RAR-019	4256	1800	168	185	404
SLE-RAR-020	4139	1443	165	181	397
SLE-RAR-021	3697	1753	97	107	233
SLE-RAR-022	3814	1584	119	131	287
SLE-RAR-023	4383	1636	178	196	429
SLE-RAR-024	4232	1773	172	189	414
SLE-RAR-025	4436	1621	225	248	542
SLE-RAR-026	4448	1135	254	280	611
SLE-RAR-027	3794	1656	116	127	279
SLE-RAR-028	3896	1502	139	153	335
SLE-RAR-029	4635	1384	257	283	619
SLE-RAR-030	4451	1554	241	265	580
SLE-RAR-031	3751	667	253	278	608
SLE-RAR-032	4026	2030	153	169	369
SLE-RAR-033	3909	1673	161	177	388
SLE-RAR-034	3467	1983	82	90	197
SLE-RAR-035	3584	1814	100	110	240
SLE-RAR-036	4153	1866	169	185	406
SLE-RAR-037	4002	2003	161	177	386
SLE-RAR-038	4206	1851	238	262	574
SLE-RAR-039	4218	1365	272	299	655
SLE-RAR-040	3564	1886	123	136	297
SLE-RAR-041	3666	1732	146	161	352
SLE-RAR-042	4405	1614	273	301	658
SLE-RAR-043	4221	1784	256	281	616
SLE-RAR-044	3521	897	272	299	654
SLE-RAR-045	3976	2080	142	157	343
SLE-RAR-046	3859	1723	149	164	359

SLE-RAR-047	3417	2033	70	77	169
SLE-RAR-048	3534	1864	89	98	214
SLE-RAR-049	4103	1916	157	173	378
SLE-RAR-050	3952	2053	149	164	359
SLE-RAR-051	4155	1901	226	248	543
SLE-RAR-052	4168	1415	260	285	624
SLE-RAR-053	3513	1936	111	122	266
SLE-RAR-054	3616	1782	134	147	322
SLE-RAR-055	4355	1664	261	287	627
SLE-RAR-056	4170	1835	243	268	585
SLE-RAR-057	3471	947	259	285	623
SLE-RAR-058	4453	1604	202	222	486
SLE-RAR-059	4336	1247	204	225	491
SLE-RAR-060	3893	1557	128	141	309
SLE-RAR-061	4010	1388	150	165	360
SLE-RAR-062	4580	1440	215	237	518
SLE-RAR-063	4428	1577	208	229	501
SLE-RAR-064	4632	1425	271	298	653
SLE-RAR-065	4644	938	302	332	726
SLE-RAR-066	3990	1460	158	174	381
SLE-RAR-067	4093	1305	182	200	438
SLE-RAR-068	4832	1187	305	335	733
SLE-RAR-069	4647	1358	288	317	692
SLE-RAR-070	3948	471	301	331	724
SLE-RAR-071	3540	2011	131	144	314
SLE-RAR-072	3511	1755	147	162	355
SLE-RAR-073	3297	2022	76	84	183
SLE-RAR-074	3425	1852	98	108	236
SLE-RAR-075	3658	1871	150	165	362
SLE-RAR-076	3546	1973	140	154	338
SLE-RAR-077	3106	1378	147	161	352
SLE-RAR-078	3893	1658	160	176	385
SLE-RAR-079	3864	1402	170	187	409
SLE-RAR-080	3650	1668	108	119	260
SLE-RAR-081	3778	1499	131	145	316
SLE-RAR-082	4011	1517	176	194	424
SLE-RAR-083	3899	1620	168	184	403
SLE-RAR-084	3460	1025	168	184	403
SLE-RAR-085	3663	1888	160	176	386
SLE-RAR-086	3634	1632	178	196	429
SLE-RAR-087	3420	1898	107	117	257
SLE-RAR-088	3548	1729	128	140	307
SLE-RAR-089	3781	1747	181	199	435

SLE-RAR-090	3669	1850	170	187	410
SLE-RAR-091	3230	1255	177	195	427
SLE-RAR-092	3613	1938	148	163	356
SLE-RAR-093	3584	1682	166	182	399
SLE-RAR-094	3370	1949	94	104	227
SLE-RAR-095	3498	1779	115	127	278
SLE-RAR-096	3731	1797	168	185	405
SLE-RAR-097	3619	1900	158	174	380
SLE-RAR-098	3180	1305	165	181	397
SLE-RAR-099	4089	1461	201	221	483
SLE-RAR-100	4061	1205	214	235	515
SLE-RAR-101	3846	1472	147	161	353
SLE-RAR-102	3974	1303	170	187	408
SLE-RAR-103	4207	1321	219	241	527
SLE-RAR-104	4096	1424	210	231	504
SLE-RAR-105	3656	829	212	233	510

	N _{max}	N_{min}
	[kN]	[kN]
SLE-QPE-001	2396	2396
SLE-QPE-002	2641	2151

T _{media}	T _{media_gruopo}	M _{max}
[kN]	[kN]	[kNm]
0	0	0
63	69	151

6 VERIFICHE STRUTTURALI DEL FUSTO PILA

6.1 GEOMETRIA DELLA SEZIONE ED ARMATURA

Si riporta a seguire una figura che illustra la geometria della sezione di verifica, nella quale è rappresentata una armatura tipologica.

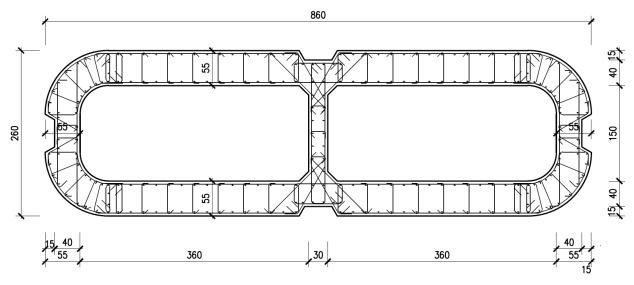


Figura 1 – Geometria della sezione trasversale della pila [cm]

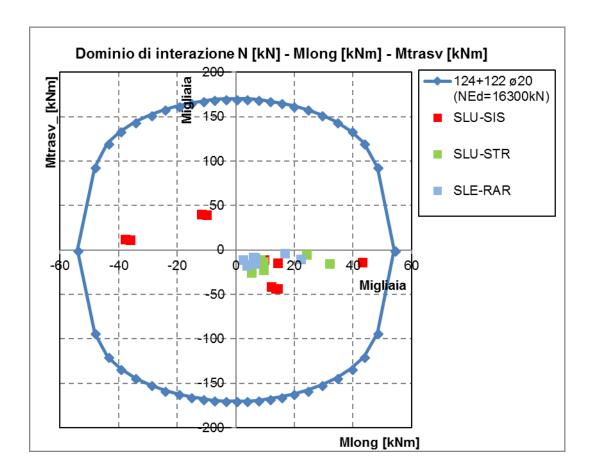
6.1.1 ARMATURA LONGITUDINALE

A seguire è indicata l'armatura flessionale prevista nella sezione di base del fusto pila, in termini di numero di barre presenti nello strato esterno (1° str.), nello strato interno (2° str.), nonché loro diametro fi [mm].

n barre (1° str.)	124	
fi barre (1° str.)	20	mm
n barre (2° str.)	122	
fi barre (2° str.)	20	mm

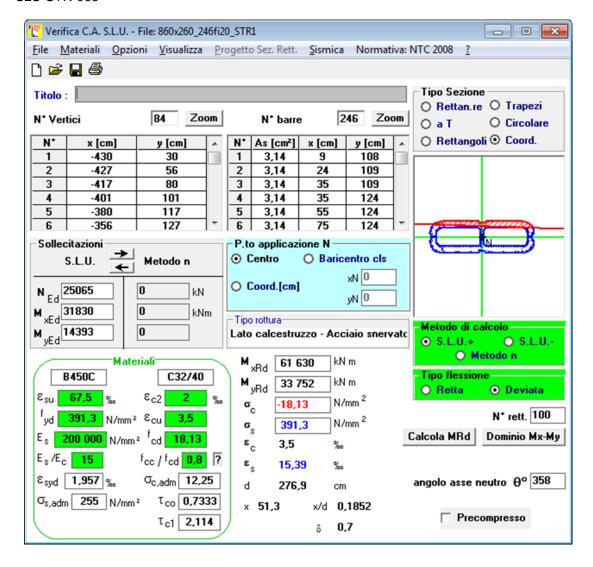
6.1.2 ARMATURA TRASVERSALE

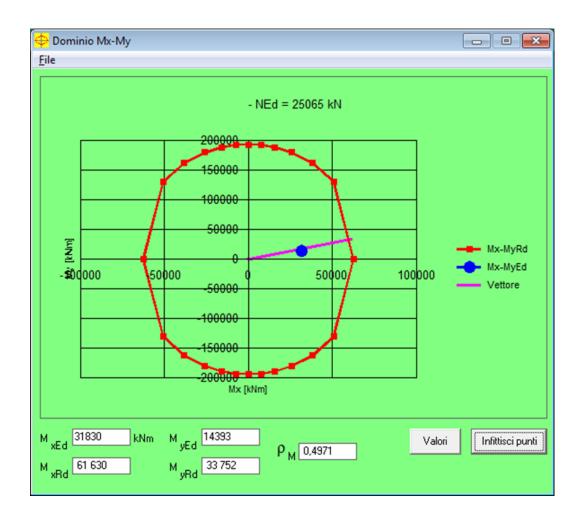
A seguire è indicata l'armatura a taglio prevista nella sezione di base del fusto pila, all'interno della zona critica.


	longitudinal	<u>e</u>	.			0 '''		
Staffe:			Spille:			Spille:		
ØW	16	mm	ØW	8	mm	ØW	16	mm
A1b	200.96	mm2	A1b	50.24	mm2	A1b	200.96	mm2
passo	100	mm	passo	100	mm	passo	100	mm
bracci	6		bracci	16		bracci	6	
Direzione	trasversale							
Staffe:			Spille:			Spille:		
ØW	16	mm	øw	8	mm	øw	16	mm
A1b	200.96	mm2	A1b	50.24	mm2	A1b	200.96	mm2
passo	100	mm	passo	100	mm	passo	100	mm
bracci	4		bracci	6		bracci	2	

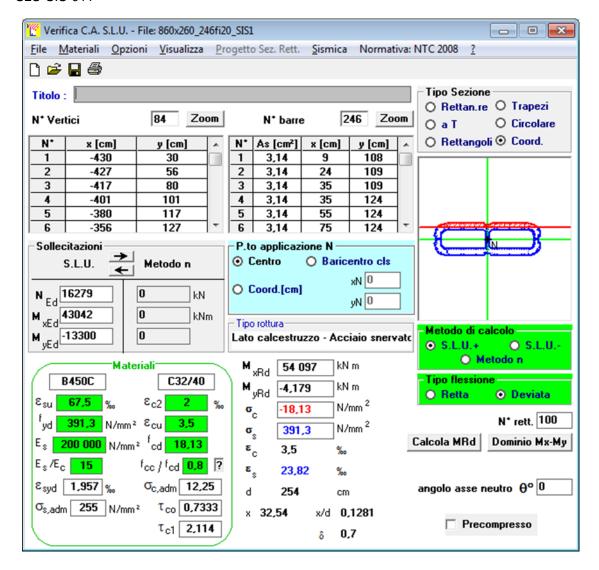
6.2 VERIFICHE SLU A PRESSOFLESSIONE

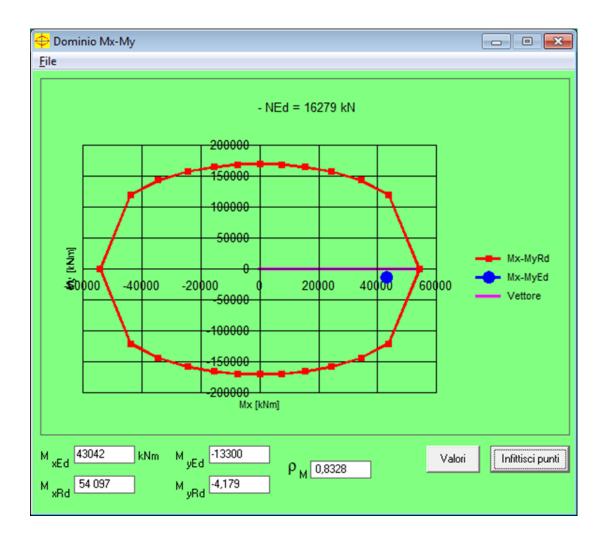
La verifica SLU a presso-flessione nelle sezioni critiche si effettua verificando che:


$$FS = (M_{Rd,long}^2 + M_{Rd,trasv}^2)^{0.5} / (M_{Ed,long}^2 + M_{Ed,trasv}^2)^{0.5} \ge 1$$


Sono riportate a seguire le verifiche SLU della sezione di base della pila, espresse in forma sintetica mediante il diagramma di interazione M_{long} - M_{trasv} valutato per una forza assiale corrispondente alla condizione di verifica più severa (SLV-SIS).

Si riportano a seguire le verifiche in forma esplicita nelle due combinazioni di carico più severe, di cui la prima ricadente in condizione statica SLU e la seconda ricadente in condizione sismica SLV.


SLU-STR-065



ρM 0.4971 **FS 2.01**

SLU-SIS-011

ρM 0.8328FS 1.20

6.3 VERIFICHE SLU A TAGLIO

Seguono le sollecitazioni di verifica alla base del fusto pile, calcolate secondo il criterio della gerarchia delle resistenze:

Sollecitazioni - Condizione statica STR

SLU-STR	max	Combo.	F1	F2	F3	M1	M2
			kN	kN	kN	kNm	kNm
max	F1	SLU-STR-065	3786	1143	-25065	-14393	31830
max	F2	SLU-STR-019	1340	1765	-28158	-21817	9352
min	F1	SLU-STR-002	507	1291	-19904	-15847	3500
min	F2	SLU-STR-014	1188	186	-24199	-10692	8300

Sollecitazioni - Condizione sismica SIS (da calcolo diretto con q=1.5)

SLU-SIS	max	Combo.	F1	F2	F3	M1	M2
			kN	kN	kN	kNm	kNm
max	F1	SLU-SIS-011	5986	1403	-16279	-13300	43042
max	F2	SLU-SIS-038	1904	4646	-16706	-42692	14041
min	F1	SLU-SIS-102	-5359	-1353	-15567	11682	-36194
min	F2	SLU-SIS-135	-1608	-4509	-15567	40046	-10253

Sollecitazioni - Condizione sismica SIS (da G.R.)

SLU-SIS	max	Combo.	F1	F2	F3	M1	M2
			kN	kN	kN	kNm	kNm
max	F1	SLU-SIS-011	5986	1403	-16279	-13300	43042
max	F2	SLU-SIS-038	1904	4646	-16706	-42692	14041
min	F1	SLU-SIS-102	-5359	-1353	-15567	11682	-36194
min	F2	SLU-SIS-135	-1608	-4509	-15567	40046	-10253

MRd,1	MRd,2	Vgr,1	Vgr,2
kNm	kNm	kN	kN
33111	52950	7364	2105
130249	41240	2856	6969
33023	52238	7734	2029
141120	34673	2411	6764

Verifica - Direzione Longitudinale Verifica a taglio per sezioni rettangolari armate a taglio (D.M. 14/01/2008)

classe cls	Rck	40	N/mm2
resist. Caratteristica cilindrica	fck	33	N/mm2
	fcd	19	
coeff. parziale	γс	1.5	
larghezza membratura resistene a V	bw	1100	mm
altezza membratura resistene a V	Н	2600	mm
altezza utille	d	2340	mm
area della sezione	As	1.0E+07	mm2
sforzo assiale dovuto ai carichi o precompressione	N	1.6E+07	N
	σср	5.44	N/mm2
	αc	1.25	
Acciaio	fyk	450	N/mm2
Feb44k	fyd	391	N/mm2
diametro staffe	øw	16	mm
Area staffa	Aøw	201	mm2
0.9 d	Z	2106	mm
passo delle staffe (spille)	SW	100	mm
	n° bracci	6	
angolo di inclinazione	θ	37.0	0
deve essere compreso tra 1 e 2.5	$cot(\theta)$	1.33	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	cot(a)	0.00	
	Asw/sw	12.06	mm2/mm

Taglio resistente per "taglio trazione"	VRsd	13193	kN
Taglio resistente per "taglio compressione"	VRcd	13092	kN

taglio sollecitante	VEd	7734	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γBd	1.21	
taglio resistente	VRd	10814	kN
	VEd	<	VRd

La verifica è soddisfatta.

FS 1.40

Verifica - Direzione Trasversale Verifica a taglio per sezioni rettangolari armate a taglio (D.M. 14/01/2008)

classe cls	Rck	40	N/mm2
resist. Caratteristica cilindrica	fck	33	N/mm2
	fcd	19	
coeff. parziale	γс	1.5	
larghezza membratura resistene a V	bw	1100	mm
altezza membratura resistene a V	Н	8600	mm
altezza utille	d	7740	mm
area della sezione	As	1.1E+07	mm2
sforzo assiale dovuto ai carichi o precompressione	N	1.7E+07	N
	σср	1.77	N/mm2
	αc	1.09	
Acciaio	fyk	450	N/mm2
Feb44k	fyd	391	N/mm2
diametro staffe	øw	16	mm
Area staffa	Aøw	201	mm2
0.9 d	Z	6966	mm
passo delle staffe (spille)	sw	100	mm
	n° bracci	4	
angolo di inclinazione	θ	45	0
deve essere compreso tra 1 e 2.5	$\cot(\theta)$	1.00	
angolo di inclinazione armatura rispetto asse palo	α	45	0
	cot(a)	1.00	
	Asw/sw	8.04	mm2/mm

Taglio resistente per "taglio trazione"	VRsd	31003	kN
Taglio resistente per "taglio compressione"	VRcd	78845	kN

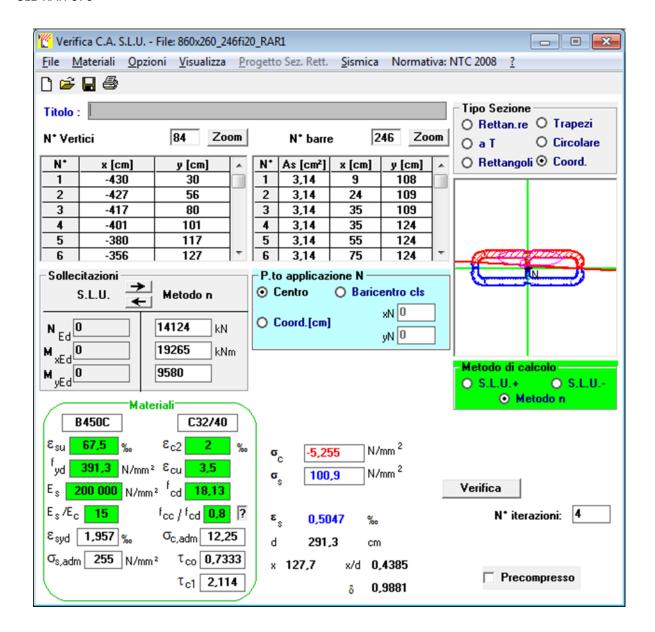
taglio sollecitante	VEd	6969	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γBd	1.25	
taglio resistente	VRd	24802	kN
	VEd	<	VRd

La verifica è soddisfatta.

FS 3.56

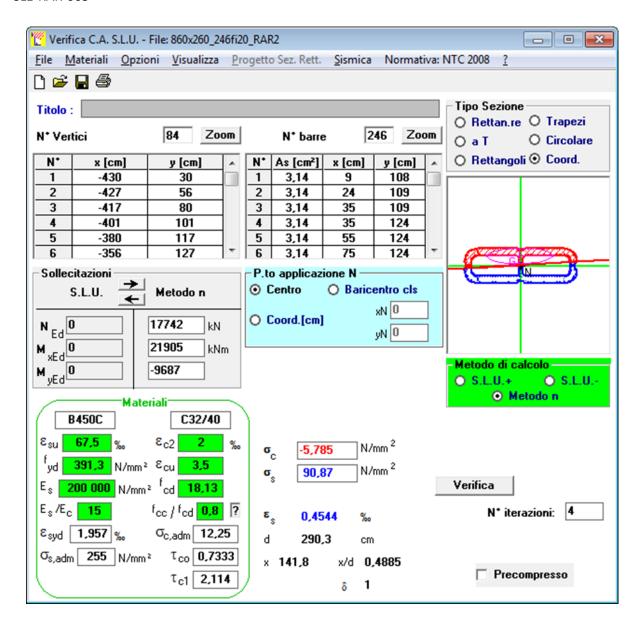
6.5 VERIFICHE SLE DELLE TENSIONI

La verifica SLE di tipo tensionale si effettua controllando che le massime tensioni normali agenti nella sezione risultino inferiori ai seguenti valori limite:


per le combinazioni SLE-RAR:

• tensione limite nel calcestruzzo: $\sigma_c = 0.55 \, f_{ck}$ • tensione limite nelle barre: $\sigma_s = 0.75 \, f_{vk}$

per le combinazioni SLE-QPE:


• tensione limite nel calcestruzzo: $\sigma_c = 0.40 f_{ck}$

SLE-RAR-070

La verifica è soddisfatta.

SLE-RAR-065

La verifica è soddisfatta.

6.6 VERIFICHE SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua controllando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

per le combinazioni SLE-RAR:

• apertura fessure limite: $w_{lim} = w_1 = 0.30 \text{ mm}$

pos. baric. strato i-esimo [mm]
 diametro barre strato i-esimo [mm]
 numero barre strato i-esimo []

 $\sigma_{s_{max}}$ Tensione massima barre strato i-esimo [MPa]

b_{eff} larghezza efficace [mm]h_{c,eff} altezza efficace [mm]

Ac,eff area efficace relativamente ad una singola barre [mm2]

 $\begin{array}{ll} \rho_{p,\text{eff}} & \text{percentuale di armatura relativa a $A_{c,\text{eff}}$} \\ k_t & (0.6 \text{ carichi brevi; 0.4 lunga durata}) \\ k_1 & (0.8 \text{ barre ad. migliorata; 1.6 liscie}) \\ k_2 & (0.5 \text{ per flessione; 1 trazione}) \end{array}$

Prima condizione di carico SLE-RAR

	INPUT	
Rck	40	Мра
h	550	mm
c1	66	mm
ф1	20	mm
n1	5.000	1/m
c2		mm
ф2		mm
n2	5.000	1/m
d	484	mm
beff	200	mm
σs_max1	101	Мра
σs_max2		Мра
hc _{,eff}	165.0	mm
Ac,eff	33000	mm2
$ ho p_{,eff}$	0.010	
kt	0.6	
k1	8.0	
k2	0.5	
k3	3.4	
k4	0.425	

OUTPUT					
diff. def. arm	ature-cls				
εsm - εcm	2.94E-04	-			
distanza ma	distanza max fessure				
Sr, _{max}	sr _{,max} 548 mm				
ampiezza fe	ssure:				
wk	0.161	mm			
wlim	0.200	mm			
La verifica è soddisfatta.					

7 VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE

7.1 GEOMETRIA DELLA SEZIONE ED ARMATURA

GEOMETRIA DELLA SEZIONE		
Diametro del palo =	1200	mm
Copriferro netto c =	60	mm
Classe di resistenza calcestruzzo =	C25/30	Мра
Classe di resistenza delle barre =	B450C	MPa

ARMATURA PER I PRIMI 10 ø		
1° strato di armatura longitudinale		
Numero barre long.	22	-
Diametro barre long.	26	mm
Copriferro baricentrico arm. long. c' =	87	mm
2° strato di armatura longitudinale		
Numero barre long.	22	-
Diametro barre long.	26	mm
Copriferro baricentrico arm. long. c' =	138	mm
Armatura trasversale		
Diametro barre trasv.	14	mm
Passo arm. trasv.	200	mm
Diametro corona esterna =	1066	mm

7.2 VERIFICHE SLU A PRESSOFLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di sommità del palo maggiormente sollecitato, espresse in forma sintetica mediante il diagramma di interazione N – M.

Diagramma d'interazione con le coordinate delle sollecitazioni indotte dalle combinazioni SLU-STR

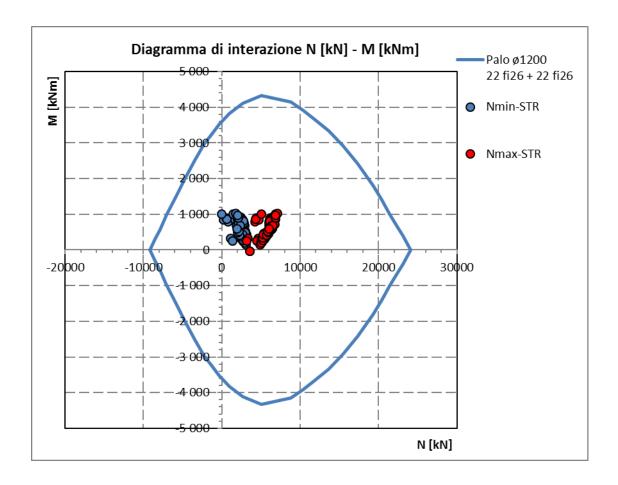



Diagramma d'interazione con le coordinate delle sollecitazioni indotte dalle combinazioni SLU-SLV

La verifica è soddisfatta in quanto le coppie N-M delle sollecitazioni agenti nella sezione di verifica sono interne al dominio di resistenza per ogni condizione di carico indagata.

7.3 VERIFICHE SLU A TAGLIO

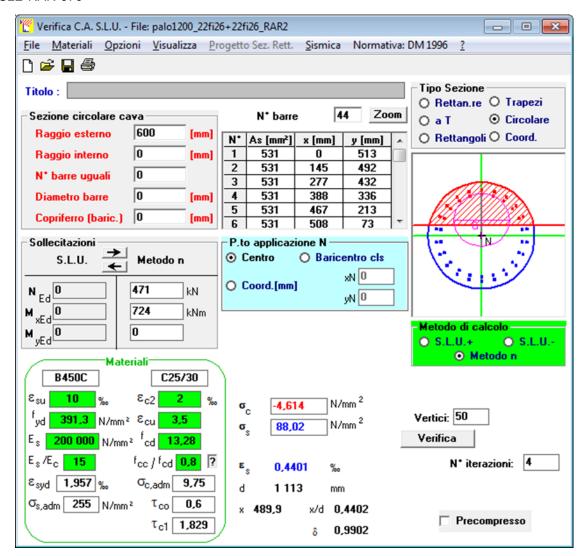
Verifca a taglio per sezioni circolari armate a taglio (D.M. 14/01/2008)

vernea a tagno per 30210m en colair armate a tagno (2	1-1/01/20	00)	
classe cls	Rck	30	N/mm2
resist. Caratteristica cilindrica	fck	25	N/mm2
	fcd	14	N/mm2
diametro	Ф	1200	mm
Area sezione	Α	1130973	mm2
copriferro	С	80	mm
Area sezione rettangolare equivalente	Aeq	941544	mm2
altezza utile equivalente	d	931	mm
larghezza equivalente	bw	1011	mm
altezza equivalente	heq	1118	mm
sforzo assiale dovuto ai carichi o precompressione	N		N
	σср	0.000	N/mm2
	αср	1.00	
Acciaio	fyk	450	N/mm2
B450C	fyd	391	N/mm2
diametro staffe (spille)	φw	14	mm
Area staffa (spilla)	Афw	154	mm2
0.9 d	Z	838	mm
passo spirale	sw	200	mm
	n° bracci	2	
angolo di inclinazione biella compressa	θ	21.8	o
deve essere compreso tra 1 e 2.5	cot(θ)	2.50	
angolo di inclinazione armatura rispetto asse palo	α	90	o
	cot(a)	0.00	
	Asw/sw	1.54	mm2/mm
Taglio resistente per "taglio trazione"	VRsd	1262	kN
Taglio resistente per "taglio compressione"	VRcd	2061	kN
taglio sollecitante	VEd	1002	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	VRd	1262	kN
<u> </u>	VEd	<	VRd
		•	

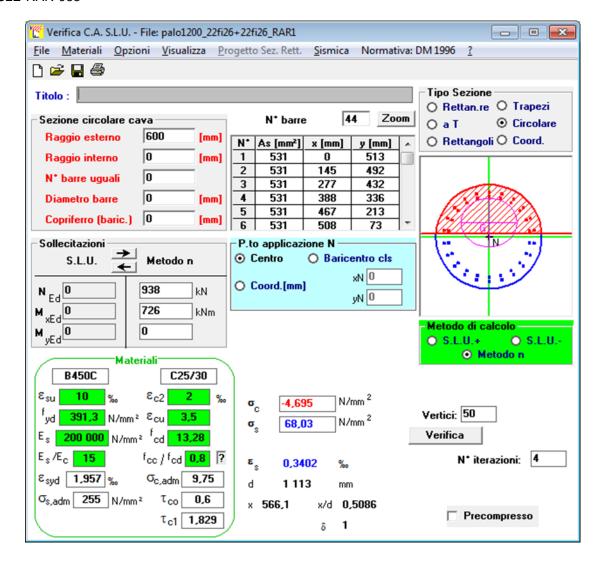
verifica

7.4 VERIFICHE SLE DELLE TENSIONI

La verifica SLE di tipo tensionale si effettua controllando che le massime tensioni normali agenti nella sezione risultino inferiori ai seguenti valori limite:


per le combinazioni SLE-RAR:

 $\begin{array}{lll} \bullet & \text{tensione limite nel calcestruzzo:} & \sigma_c & = 0.55 \ f_{ck} \\ \bullet & \text{tensione limite nelle barre:} & \sigma_s & = 0.75 \ f_{yk} \\ \end{array}$


per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo: $\sigma_c = 0.40 f_{ck}$

SLE-RAR-070

SLE-RAR-065

7.5 VERIFICHE SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua controllando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

per le combinazioni SLE-RAR:

• apertura fessure limite: $w_{lim} = w_1 = 0.30 \text{ mm}$

Prima condizione di carico SLE-RAR

INPUT							
Rck	30	Мра					
h	1200	mm					
c1	87	mm					
ф1	26	mm					
n1	7.186	1/m					
c2	138	mm					
ф2	26	mm					
n2	7.186	1/m					
d	1088	mm					
beff	139	mm					
х	490	mm					
σs_max1	88	Мра					
σs_max2	88	Мра					
hc _{,eff}	237	mm					
Ac,eff	32934	mm2					
$ ho p_{,eff}$	0.032						
kt	0.6						
k1	8.0						
k2	0.5						
k3	3.4						
k4	0.425						

OUTPUT						
diff. def. armat	ure-cls					
εsm - εcm	2.56E-04	-				
distanza max fessure						
sr _{,max}	514	mm				
ampiezza fess	ure:					
wk	0.132	mm				
wlim	0.300	mm				
La verifica è soddisfatta.						

Seconda condizione di carico SLE-RAR

INPUT							
Rck	30	Мра					
h	1200	mm					
c1	87	mm					
ф1	26	mm					
n1	7.186	1/m					
c2	138	mm					
ф2	26	mm					
n2	7.186	1/m					
d	1088	mm					
beff	139	mm					
х	566	mm					
σs _{_max1}	68	Мра					
σs _{_max2}	68	Мра					
hc _{,eff}	211	mm					
Ac _{,eff}	29409	mm2					
ρp _{,eff}	0.036						
kt	0.6						
k1	0.8						
k2	0.5						
k3	3.4						
k4	0.425						

OUTPUT						
diff. def. armatı	ıre-cls					
εsm - εcm	1.98E-04	-				
distanza max fe	distanza max fessure					
Sr _{,max}	493	mm				
ampiezza fessu	ıre:					
wk	0.098	mm				
wlim	0.300	mm				
La verifica è so	La verifica è soddisfatta.					

8 VERIFICHE DEL PLINTO DI FONDAZIONE

8.1 VERIFICHE SLU E SLE A TIRANTE-PUNTONE

Le verifiche SLU e SLE si effettuano controllando che le massime tensioni normali agenti nel tirante di armatura e nella biella compressa di calcestruzzo risultino inferiori ai seguenti valori limite:

per le combinazioni SLU e SLV:

• tensione limite nel calcestruzzo: $\sigma_c = f_{cd}' = 0.5 f_{cd}$

• tensione limite nelle barre: $\sigma_s = f_{yd}$

per le combinazioni SLE-RAR:

 $\begin{array}{lll} \bullet & \text{tensione limite nel calcestruzzo:} & \sigma_c & = 0.55 \ f_{ck} \\ \bullet & \text{tensione limite nelle barre:} & \sigma_s & = 0.75 \ f_{yk} \\ \end{array}$

per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo: $\sigma_c = 0.40 f_{ck}$

Si distinguono due meccanismi di tipo tirante-puntone principali nel plinto di fondazione, illustrati nelle figure seguenti e descritti a seguire:

- un primo meccanismo è innescato dalle azioni trasmesse al plinto dai pali centrali e coinvolge un tirante-puntone parallelo alla direzione longitudinale (evidenziato in verde). Tale meccanismo coinvolge la sola armatura longitudinale inferiore del plinto.
- un secondo meccanismo coinvolge i pali di spigolo ed innesca un tirante-puntone anch'esso parallelo alla direzione longitudinale (evidenziato in rosso). Tale meccanismo coinvolge la sola armatura longitudinale inferiore del plinto.

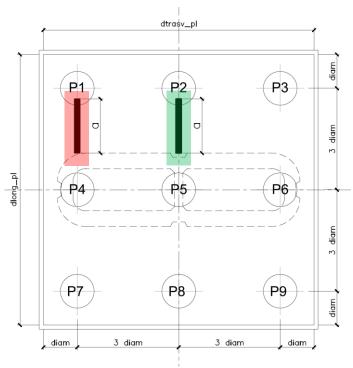


Figura 2 – Vista in pianta - Tirante-puntone centrale (verde) e di spigolo (rosso)

8.1.1 VERIFICHE RELATIVE AI PALI DI SPIGOLO

Seguono le forze assiali agenti alla testa dei pali nelle condizioni di carico più severe per ogni combinazione di carico:

	Nmax	Nmin
SLU-STR	6902	-259
SLU-GEO	5687	55
SIS-SLV	6609	-1858
	kN	kN

	Nmax	Nmin
SLE-QP	2641	2151
SLE-RAR	4832	471
	kN	kN

Seguono le verifiche delle armature superiori ed inferiori del plinto di fondazione:

Armatura inferiore

	Nmax	PEd	T	σs_long	σs_trasv	< fyd	С	σς	< fcd'
SLU-STR	6902	6082	6999	248	0	VERO	9272	4.9	VERO
SLU-GEO	5687	4867	5601	198	0	VERO	7420	3.9	VERO
SIS-SLV	6609	5789	6663	236	0	VERO	8827	4.7	VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Armatura superiore

	Nmin	PEd	Т	σs_long	σs_trasv	< fyd	С	σς	< fcd	l'
SLU-STR	-259	1079								
SLU-GEO	55	-								
SIS-SLV	-1858	2678	3082	270	0	VERO	4083	2.2	VER	Õ
	kN	kN	kN	Мра	Мра		kN	Мра		

Armatura inferiore

	Nmax	PEd	T	σs_long	σs_trasv	< 0.75 fyk	C	σς	< 0.40 fck'
SLE-QP	2641	1821	2096	74	0	VERO	2776	1.5	VERO
SLE-RAR	4832	4012	4617	163	0	VERO	6117	3.2	VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Armatura superiore

	Nmin	PEd	T	σs_long	σs_trasv	< 0.75 fyk	С	σc	< 0.40 fck'
SLE-QP	2151	-							
SLE-RAR	471	-							
	kN	kN	kN	Мра	Мра		kN	Мра	

Le verifiche sono soddisfatte.

8.1.2 VERIFICHE RELATIVE AI PALI DI INTERMEDI

Forze assiali agenti alla testa dei pali nelle condizioni di carico più severe per ogni combinazione di carico.

	Nmax	Nmin
SLU-STR	6002	526
SLU-GEO	4909	735
SIS-SLV	5707	-981
	kN	kN

	Nmax	Nmin
SLE-QP	2641	2151
SLE-RAR	4225	999
	kN	kN

Seguono le verifiche delle armature superiori ed inferiori del plinto di fondazione:

Armatura inferiore

	Nmax	PEd	T	σs_long	σs_trasv	< fyd	С	σς	< fcd'
SLU-STR	6002	5182	5964	234	-	VERO	7901	3.5	VERO
SLU-GEO	4909	4089	4706	185	-	VERO	6234	2.8	VERO
SIS-SLV	5707	4887	5624	221	-	VERO	7451	3.3	VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Armatura superiore

	Nmin	PEd	T	σs_long	σs_trasv	٧	fyd	С	σς	< fcd'
SLU-STR	526	-								
SLU-GEO	735	-								
SIS-SLV	-981	1800	2072	303	-		VERO	2745	1.2	VERO
	kN	kN	kN	Мра	Мра		·	kN	Мра	

Armatura inferiore

	Nmax	PEd	T	σs_long	σs_trasv	< 0.75 fyk	C	σς	< 0.40 fck'
SLE-QP	2641	1821	2096	82	-	VERO	2776	1.2	VERO
SLE-RAR	4225	3405	3919	154	-	VERO	5192	2.3	VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Armatura superiore

	Nmin	PEd	T	σs_long	σs_trasv	< 0.75 fyk	С	σς	< 0.40 fck'
SLE-QP	2151	-							
SLE-RAR	999	-							
									VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Le verifiche sono soddisfatte.

8.2 VERIFICHE SLU A PUNZONAMENTO

Conservativamente, la verifica è stata riferita al palo di bordo maggiormente sollecitato e lo sviluppo del perimetro efficace u è stato definito considerando una distanza dall'impronta caricata (coincidente con la sezione di testa del palo) pari a $d = a 0.9 H_{pl}$ ($H_{pl} = altezza plinto, a < 2$), come illustrato nella seguente figura.

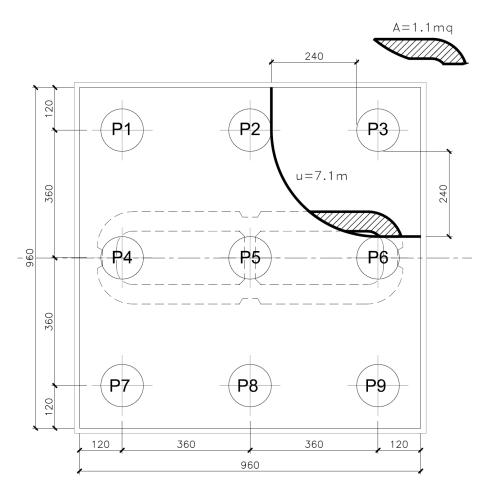


Figura 3 – Perimetro efficace per la verifica a taglio-punzonamento

A seguire si riportano il valore della forza concentrata V_{Ed} [kN] agente alla testa del palo maggiormente sollecitato nella condizione di verifica più severa, il valore del coefficiente a che individua la geometria del perimetro efficace e lo sviluppo u [m] di quest'ultimo.

La forza concentrata $V_{Ed} = 5680 \text{ kN}$ è stata depurata della quota parte di forza assiale agente nella sezione di base del fusto della pila, pari a N_{Ed} * A / $A_c = 15500 \text{ kN}$ * 1.1 m² / 10.45 m² = 1635 kN.

VEd - NEd*	4446	kN
a	1.1	
u	7.1	m

Verifica a punzonamento per sezioni rettangolari SENZA armatura a taglio (NTC08 - EC2-rev05)					
classe cls	С	35	Мра		
coeff. parziale	γс	1.5			
perimetro di verifica	u1	7100	mm		
altezza soletta	Н	2500	mm		
altezza utille	d	2393	mm		
diametro ferro longitudinale teso	φ lon	30	mm		
	strati	2.0			
	passo	150	mm		
percentuale di armatura trasversale teso	ρΙχ	0.39%			
diametro ferro trasversale	φ tra	22	mm		
	strati	2.0			
	passo	200	mm		
percentuale di armatura trasv	ρtx	0.16%			
percentuale di armatura totale	ρΙ	0.25%			
Eventuale compressione long	σc_lon	0	Мра		
Eventuale compressione trasv	σc_tra	0	Мра		
	σς	0.00	N/mm2		
	k1	0.10			
	Cr,dc	0.12			
	k	1.29			
	vmin	0.30	Мра		
	$\mathbf{vrd}_{\mathtt{c}}$	0.319	Мра		
	vmin+k1σcp	0.303	Мра		
Tensione resistente taglio-punzonamento	vrd_c	0.319	N/mm2		
taglio sollecitante (*)	VEd - NEd*	4446	kN		
(*) valore ridotto della quota parte di NEd (base pila) relativa all'area A*	vEd	0.262	Мра		
La verifica è soddisfatta	$\mathbf{vrd}_{\mathtt{c}}$	>	ved		

8.3 VERIFICHE SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua controllando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

per le combinazioni SLE-RAR:

• apertura fessure limite:

 $W_{lim} = W_1 = 0.30 \text{ mm}$

Le verifiche riportate a seguire sono riferite al meccanismo tirante-puntone che coinvolge i pali di spigolo (meccanismo diagonale), ossia il più severo tra i due presi in considerazione.

8.3.1 VERIFICA RELATIVA AI PALI DI SPIGOLO

1. Armatura longitudinale inferiore LATERALE

	INPUT	
Rck	35	Мра
h	2500	mm
c1	55	mm
ф1	30	mm
n1	6.667	1/m
c2	107	mm
ø2	30	mm
n2	6.667	1/m
с3		mm
ø3	0	mm
n3	0.000	1/m
d	2419	mm
beff	150	mm
Х		mm
σs_max1	163	Мра
σs_max2	163	Мра
hc,eff	202.5	mm
Ac,eff	30375	mm2
$ ho p_{,eff}$	0.047	
kt	0.6	
k1	8.0	
k2	1	
k3	3.4	
k4	0.425	

OUTPUT					
diff. def. arm	ature-cls				
εsm - εcm	5.63E-04	-			
distanza ma	distanza max fessure				
Sr _{,max}	513	mm			
ampiezza fe	ssure:				
wk	0.289	mm			
wlim	0.300	mm			
La verifica è soddisfatta.					

8.3.2 VERIFICA RELATIVA AI PALI INTERMEDI

1. Armatura longitudinale inferiore CENTRALE

	INPUT	
Rck	35	Мра
h	2500	mm
c1	55	mm
ф1	30	mm
n1	6.667	1/m
c2	107	mm
ø2	30	mm
n2	3.333	1/m
сЗ		mm
ø3		mm
n3		1/m
d	2428	mm
beff	150	mm
х		mm
σs_max1	154	Мра
σs_max2	154	Мра
hc,eff	180.8	mm
Ac,eff	27125	mm2
$\rho p_{,\text{eff}}$	0.039	
kt	0.6	
k1	8.0	
k2	1	
k3	3.4	
k4	0.425	

OUTPUT					
diff. def. arma	ture-cls				
εsm - εcm	4.85E-04	-			
distanza max	distanza max fessure				
Sr _{,max}	503	mm			
ampiezza fess	sure:				
wk	0.244	mm			
wlim	0.300	mm			
La verifica è soddisfatta.					