COMMITTENTE:



DIREZIONE LAVORI:



APPALTATORE:







| PROGETTAZIONE:                        | PROGETTISTA:     | DIRETTORE DELLA<br>PROGETTAZIONE                                  |
|---------------------------------------|------------------|-------------------------------------------------------------------|
| RAGGRUPPAMENTO TEMPORANEO PROGETTISTI | Prof. Ing.       | Ing. PIETRO MAZZOLI                                               |
| PIZZAROTTI VSintagma I INTEGRA        | MARCO PETRANGELI | Responsabile integrazione fra le varie prestazioni specialistiche |

#### PROGETTO ESECUTIVO

# ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

#### PONTI E VIADOTTI DI LINEA

Tratta Cancello-Frasso Telesino - VIADOTTO dal km 10+326 al km 11+737 Viadotto S. Michele

Pile 20, 21, 22, 23, 30, 41 e 42: Relazione di calcolo

| APPAL    | TATORE                |      |      |           |                  |        |     | SCALA: |
|----------|-----------------------|------|------|-----------|------------------|--------|-----|--------|
| CONSC    | RZIO CFT              |      |      |           |                  |        |     |        |
|          | ORE TECNICO           |      |      |           |                  |        |     | _      |
|          | C. Bianchi<br>09/2018 |      |      |           |                  |        |     |        |
|          |                       |      |      |           |                  |        |     |        |
| COMMESSA | LOTTO                 | FASE | ENTE | TIPO DOC. | OPERA/DISCIPLINA | PROGR. | REV |        |
| I F 1 N  | 0 1                   | Е    | Z Z  | CL        | V I 0 6 0 5      | 0 1 6  | В   |        |

| Rev. | Descrizione | Redatto      | Data       | Verificato    | Data       | Approvato | Data       | Autorizzato Data |
|------|-------------|--------------|------------|---------------|------------|-----------|------------|------------------|
| Α    | Emissione   | L. Gasperoni | 11/07/2018 | M. Petrangeli | 11/07/2018 | P.Mazzoli | 11/07/2018 | M. Petrangeli    |
| В    | Emissione   | L. Gasperoni | 13/09/2018 | M. Petrangeli | 13/09/2018 | P.Mazzoli | 13/09/2018 |                  |
|      |             |              |            |               |            |           |            |                  |
|      |             |              |            |               |            |           |            | 13/09/2018       |

| File:IF1N.0.1.E.ZZ.CL.VI.06.0.5.016.B.docx | n. Elab.: |
|--------------------------------------------|-----------|





CO

VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI

LOTTO

01 E ZZ

CODIFICA CL

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

DOCUMENTO VI0605 016

REV.

FOGLIO
3 di 138

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

## Indice

COMMESSA

IF1N

| 2 NORMATIVA E DOCUMENTI DI RIFERIMENTO                                                                                                                                                                                                                                                                                                                                                            | 1 PR  | EMESSA                                     | 6  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------|----|
| 2.1 NORMATIVE 2.2 ELABORATI DI RIFERIMENTO 3.3 MATERIALI                                                                                                                                                                                                                                                                                                                                          | 2 NO  | RMATIVA E DOCUMENTI DI RIFERIMENTO         | 7  |
| 2.2 ELABORATI DI RIFERIMENTO                                                                                                                                                                                                                                                                                                                                                                      |       |                                            |    |
| 3.1 CALCESTRUZZO PER FUSTO PILA E PULVINO.  3.2 CALCESTRUZZO PER PLINTO DI FONDAZIONE                                                                                                                                                                                                                                                                                                             |       |                                            |    |
| 3.1 CALCESTRUZZO PER FUSTO PILA E PULVINO.  3.2 CALCESTRUZZO PER PLINTO DI FONDAZIONE                                                                                                                                                                                                                                                                                                             | 3 MA  | TERIALI                                    | g  |
| 3.3 CALCESTRUZZO PER PALI DI FONDAZIONE                                                                                                                                                                                                                                                                                                                                                           |       |                                            |    |
| 3.4 ACCIAIO PER BARRE DI ARMATURA                                                                                                                                                                                                                                                                                                                                                                 | 3.2   | CALCESTRUZZO PER PLINTO DI FONDAZIONE      | 10 |
| 3.4 ACCIAIO PER BARRE DI ARMATURA                                                                                                                                                                                                                                                                                                                                                                 | 3.3   | CALCESTRUZZO PER PALI DI FONDAZIONE        | 11 |
| 4.1 CARATTERIZZAZIONE GEOTECNICA                                                                                                                                                                                                                                                                                                                                                                  | 3.4   |                                            |    |
| 4.1 CARATTERIZZAZIONE GEOTECNICA                                                                                                                                                                                                                                                                                                                                                                  | 4 CA  | RATTERIZZAZIONE GEOTECNICA                 | 13 |
| 6 ANALISI DEI CARICHI                                                                                                                                                                                                                                                                                                                                                                             |       |                                            |    |
| 6.1 PERMANENTI STRUTTURALI (G1)                                                                                                                                                                                                                                                                                                                                                                   | 5 DE  | SCRIZIONE DELLA STRUTTURA                  | 14 |
| 6.1 PERMANENTI STRUTTURALI (G1)                                                                                                                                                                                                                                                                                                                                                                   | 6 AN  | ALISI DEI CARICHI                          | 19 |
| 6.1.1 PESO PROPRIO IMPALCATI                                                                                                                                                                                                                                                                                                                                                                      |       |                                            |    |
| 6.2 PERMANENTI NON STRUTTURALI (G2)                                                                                                                                                                                                                                                                                                                                                               |       |                                            |    |
| 6.2.1 BALLAST (G21)                                                                                                                                                                                                                                                                                                                                                                               | 6.1.2 | 2 PESO PROPRIO PILA                        | 21 |
| 6.2.2 PERMANENTI NON STRUTTURALI GENERICI (G22) 23 6.2.3 RIEMPIMENTO PILA E TERRENO DI RICOPRIMENTO 24 6.3 CARICHI DA TRAFFICO 25 6.3.1 CARICHI VERTICALI DA TRAFFICO (Q1) 34 6.3.2 AZIONI DI AVVIAMENTO E FRENATURA (Q2) 44 6.3.3 FORZA CENTRIFUGA (Q3) 65 6.3.4 SERPEGGIO (Q4) 76 6.4 CARICHI VARIABILI (Q5) 88 6.4.1 AZIONI DEL VENTO (Q51) 88 6.5.1 RESISTENZE PARASSITE NEI VINCOLI (Q61) 94 | 6.2   | PERMANENTI NON STRUTTURALI (G2)            | 21 |
| 6.2.3 RIEMPIMENTO PILA E TERRENO DI RICOPRIMENTO                                                                                                                                                                                                                                                                                                                                                  | 6.2.  | 1 BALLAST (G21)                            | 21 |
| 6.3 CARICHI DA TRAFFICO                                                                                                                                                                                                                                                                                                                                                                           |       |                                            |    |
| 6.3.1 CARICHI VERTICALI DA TRAFFICO (Q1)                                                                                                                                                                                                                                                                                                                                                          | 6.2.  | RIEMPIMENTO PILA E TERRENO DI RICOPRIMENTO | 24 |
| 6.3.2 AZIONI DI AVVIAMENTO E FRENATURA (Q2)                                                                                                                                                                                                                                                                                                                                                       |       |                                            |    |
| 6.3.3 FORZA CENTRIFUGA (Q3)                                                                                                                                                                                                                                                                                                                                                                       |       | ` '                                        |    |
| 6.3.4 SERPEGGIO (Q4)                                                                                                                                                                                                                                                                                                                                                                              |       | ` ,                                        |    |
| 6.4 CARICHI VARIABILI (Q5)                                                                                                                                                                                                                                                                                                                                                                        |       | ` '                                        |    |
| 6.4.1 AZIONI DEL VENTO (Q51)                                                                                                                                                                                                                                                                                                                                                                      |       | ` '                                        |    |
| 6.5 AZIONI INDIRETTE (Q6)94 6.5.1 RESISTENZE PARASSITE NEI VINCOLI (Q61)94                                                                                                                                                                                                                                                                                                                        |       | ` '                                        |    |
| 6.5.1 RESISTENZE PARASSITE NEI VINCOLI (Q61)94                                                                                                                                                                                                                                                                                                                                                    |       | ` '                                        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                            |    |
| 6.6.1 VARIAZIONI TERMICHE DELL'IMPALCATO (Q71)9                                                                                                                                                                                                                                                                                                                                                   |       | ` '                                        |    |
| 6.6.2 AZIONI DI FRENATURA E AVVIAMENTO9                                                                                                                                                                                                                                                                                                                                                           |       | ` ,                                        |    |
| 6.6.3 INFLESSIONE DELL'IMPALCATO DOVUTA AI CARICHI VERTICALI DA TRAFFICO90                                                                                                                                                                                                                                                                                                                        |       |                                            |    |





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO

01 E ZZ

IF1N

CODIFICA CL DOCUMENTO VI0605 016

REV.

FOGLIO 4 di 138

|   | 6.7  | AZIONI SISMICHE (E)                                          | 97  |
|---|------|--------------------------------------------------------------|-----|
|   | 6.7. | 1 SPETTRI DI PROGETTO ALLO SLV                               | 98  |
| 7 | CO   | MBINAZIONI DI CARICO                                         | 101 |
| 8 | AN   | ALISI DELLE SOLLECITAZIONI                                   | 105 |
|   | 8.1  | MODELLO DI CALCOLO E.F.                                      | 105 |
|   | 8.2  | MASSE E FORZE SISMICHE                                       | 105 |
|   | 8.3  | CARICHI ELEMENTARI                                           | 110 |
|   | 8.3. | 1 RIEPILOGO DEGLI SCARICHI DALL'IMPALCATO                    | 110 |
|   | 8.4  | SOLLECITAZIONI DI CALCOLO                                    |     |
|   | 8.4. |                                                              |     |
|   | 8.4. |                                                              |     |
|   | 8.4. | 1 SOLLECITAZIONI DISTRIBUITE IN TESTA AI PALI DI FONDAZIONE  | 117 |
| 9 | VE   | RIFICHE STRUTTURALI DEL FUSTO PILA                           | 118 |
|   | 9.1  | GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA               | _   |
|   | 9.1. |                                                              |     |
|   | 9.1. |                                                              |     |
|   | _    | 3 VERIFICA DELL'ARMATURA MINIMA                              | _   |
|   | 9.2  | VERIFICA SLU A FLESSIONE                                     |     |
|   | 9.3  | VERIFICA SLU A TAGLIO                                        |     |
|   | 9.4  | VERIFICA SLE TENSIONALE                                      |     |
|   | 9.5  | VERIFICA SLE A FESSURAZIONE                                  |     |
|   | 9.6  | VERIFICA DEGLI SPOSTAMENTI                                   | 125 |
| 1 | 0 VE | RIFICHE STRUTTURALI DEI PALI DI FONDAZIONE                   | 126 |
|   | 10.1 | GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA               | 126 |
|   | 10.2 | VERIFICA SLU A PRESSOFLESSIONE                               | 127 |
|   | 10.3 | VERIFICA SLU A TAGLIO                                        | 128 |
|   | 10.4 | VERIFICA SLE TENSIONALE                                      | 129 |
|   | 10.5 | VERIFICA SLE A FESSURAZIONE                                  | 129 |
| 1 | 1 VE | RIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE                 | 130 |
|   |      | VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE             |     |
|   |      | I.1 GEOMETRIA DEL TIRANTE-PUNTONE                            |     |
|   |      | 1.2 SEZIONE DEL TIRANTE DI ARMATURA E DELLA BIELLA COMPRESSA |     |
|   |      | I.3 VERIFICHE SLU DELLE TENSIONI NORMALI                     |     |
|   |      |                                                              |     |
|   | 11.2 | VERIFICA SLU A PUNZONAMENTO                                  | 135 |



#### ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 5 di 138

| 11.3  | VERIFICA SLE A FESSURAZIONE | 37 |
|-------|-----------------------------|----|
| 12 IN | ICIDENZE1                   | 38 |





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 6 di 138

#### 1 PREMESSA

Nell'ambito dell'Itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Cancello – Benevento - 1° Lotto Funzionale Cancello-Frasso Telesino e Variante alla Linea Roma-Napoli Via Cassino nel Comune di Maddaloni (compreso il Collegamento Merci con lo scalo di Marcianise - Collegamento Benevento-Marcianise) oggetto della Progettazione Esecutiva in esame.

Oggetto della presente relazione è il dimensionamento degli elementi in elevazione e fondazione costituenti le Pile P20, P21, P22, P23, P30, P41 e P42- del *Viadotto S. Michele\_VI06*.

Nella presente relazione sono riportati in forma sintetica i risultati della analisi delle sollecitazioni e delle verifiche strutturali del fusto pila, del plinto di fondazione e dei pali di fondazione, con riferimento alla pila avente la maggiore altezza di fusto tra quelle indicate.

| Pila | H fusto [m] | H tot [m] |
|------|-------------|-----------|
| P20  | 4.5         | 6.4       |
| P21  | 4.5         | 6.4       |
| P22  | 4.5         | 6.4       |
| P23  | 4.5         | 6.4       |
| P30  | 4.6         | 6.5       |
| P41  | 4.6         | 6.5       |
| P42  | 4.6         | 6.5       |

Nell'allegato 2 alla presente relazione sono riportati in forma completa i risultati delle analisi delle sollecitazioni e delle verifiche strutturali della pila avente altezza maggiore tra quelle appartenenti al gruppo di pile preso in considerazione.

Nel seguito si procede al calcolo dello stato di sollecitazione ed alle verifiche dei vari elementi costituenti la pila, nei confronti degli Stati Limite Ultimi strutturali di presso-flessione e taglio e degli stati limite di esercizio di fessurazione e tensionale.

Si esegue inoltre la determinazione delle azioni massime sui pali di fondazione e la verifica del plinto di fondazione nei confronti degli stati limite ultimi e di esercizio strutturali.

Sono eseguite infine le verifiche strutturali dei pali di fondazione nei confronti degli stati limite ultimi e di esercizio strutturali.



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 7 di 138

#### 2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

#### 2.1 NORMATIVE

Sono state prese a riferimento le seguenti Normative nazionali ed internazionali vigenti alla data di redazione del presente documento:

- [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- [3] Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- [4] Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- [5] Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- [6] Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- [7] Istruzione RFI DTC INC PO SP IFS 004 Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- [8] Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- [9] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea



#### 2.2 ELABORATI DI RIFERIMENTO

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO VI0605 016

REV.

FOGLIO 9 di 138

## 3 MATERIALI

## 3.1 CALCESTRUZZO PER FUSTO PILA E PULVINO

| Classe | C32/ | 40 |
|--------|------|----|
|--------|------|----|

| R <sub>ck</sub> =                        | 40.00    | MPa       | Resistenza caratteristica cubica                                          |
|------------------------------------------|----------|-----------|---------------------------------------------------------------------------|
| $f_{ck} = 0.83 R_{ck} =$                 | 33.20    | MPa       | Resistenza caratteristica cilindrica                                      |
| $f_{cm} = f_{ck} + 8 =$                  | 41.20    | MPa       | Valore medio resistenza cilindrica                                        |
| α <sub>cc</sub> =                        | 0.85     |           | Coeff. rid. per carichi di lunga durata                                   |
| γм =                                     | 1.50     | -         | Coefficiente parziale di sicurezza SLU                                    |
| $f_{cd} = \alpha_{cc} f_{ck}/\gamma_M =$ | 18.81    | MPa       | Resistenza di progetto                                                    |
| $f_{ctm} = 0.3 f_{ck}^{(2/3)} =$         | 3.10     | MPa       | Resistenza media a trazione semplice                                      |
| $f_{cfm} = 1,2 f_{ctm} =$                | 3.72     | MPa       | Resistenza media a trazione per flessione                                 |
| $f_{ctk} = 0.7 f_{ctm} =$                | 2.17     | MPa       | Valore caratteristico resistenza a trazione (frattile 5%)                 |
| $\sigma_c = 0.55 \; f_{ck} =$            | 18.26    | MPa       | Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])          |
| $\sigma_c = 0.40 \; f_{ck} =$            | 13.28    | MPa       | Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])   |
| $E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$   | 33643.00 | MPa       | Modulo elastico di progetto                                               |
| v =                                      | 0.20     |           | Coefficiente di Poisson                                                   |
| $G_c = E_{cm} / (2(1+v)) =$              | 14018.00 | MPa       | Modulo elastico tangenziale di progetto                                   |
| Condizioni ambientali =                  | Debolmer | nte aggre | ssive                                                                     |
| Classe di esposizione =                  | XC4      |           |                                                                           |
| C =                                      | 4.00     | cm        | Copriferro minimo                                                         |
| w =                                      | 0.20     | mm        | Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3]) |





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO REV.

VI0605 016 B

FOGLIO 10 di 138

#### 3.2 CALCESTRUZZO PER PLINTO DI FONDAZIONE

| CI     | asse | C28    | /25 |
|--------|------|--------|-----|
| $\sim$ | asse | $\cup$ | -   |

| R <sub>ck</sub> =                          | 35.00     | MPa | Resistenza caratteristica cubica                                          |
|--------------------------------------------|-----------|-----|---------------------------------------------------------------------------|
| $f_{ck} = 0.83 R_{ck} =$                   | 29.05     | MPa | Resistenza caratteristica cilindrica                                      |
| $f_{cm} = f_{ck} + 8 =$                    | 37.05     | MPa | Valore medio resistenza cilindrica                                        |
| $\alpha_{cc} =$                            | 0.85      |     | Coeff. rid. per carichi di lunga durata                                   |
| γ <sub>M</sub> =                           | 1.50      | -   | Coefficiente parziale di sicurezza SLU                                    |
| $f_{cd} = \alpha_{cc} f_{ck} / \gamma_M =$ | 16.46     | MPa | Resistenza di progetto                                                    |
| $f_{ctm} = 0.3 f_{ck}^{(2/3)} =$           | 2.83      | MPa | Resistenza media a trazione semplice                                      |
| $f_{cfm} = 1,2 f_{ctm} =$                  | 3.40      | MPa | Resistenza media a trazione per flessione                                 |
| $f_{ctk} = 0.7 f_{ctm} =$                  | 1.98      | MPa | Valore caratteristico resistenza a trazione (frattile 5%)                 |
| $\sigma_c = 0{,}55 \; f_{ck} =$            | 15.98     | MPa | Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])          |
| $\sigma_c = 0.40 \; f_{ck} =$              | 11.62     | MPa | Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])   |
| $E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$     | 32588.00  | MPa | Modulo elastico di progetto                                               |
| v =                                        | 0.20      |     | Coefficiente di Poisson                                                   |
| $G_c = E_{cm} / (2(1+v)=$                  | 13578.00  | MPa | Modulo elastico tangenziale di progetto                                   |
| Condizioni ambientali =                    | Ordinarie |     |                                                                           |
| Classe di esposizione =                    | XC2       |     |                                                                           |
| C =                                        | 4.00      | cm  | Copriferro minimo                                                         |
| w =                                        | 0.30      | mm  | Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3]) |





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO
VI0605 016

REV. **B**  FOGLIO 11 di 138

#### 3.3 CALCESTRUZZO PER PALI DI FONDAZIONE

| $\sim$ | lasse | C25    | /20   |
|--------|-------|--------|-------|
| ١,     | 14558 | ( ,/:) | /.วเว |

| R <sub>ck</sub> =                        | 30.00     | MPa | Resistenza caratteristica cubica                                          |
|------------------------------------------|-----------|-----|---------------------------------------------------------------------------|
| $f_{ck} = 0.83 R_{ck} =$                 | 24.90     | MPa | Resistenza caratteristica cilindrica                                      |
| $f_{cm} = f_{ck} + 8 =$                  | 32.90     | MPa | Valore medio resistenza cilindrica                                        |
| $\alpha_{cc} =$                          | 0.85      |     | Coeff. rid. per carichi di lunga durata                                   |
| γ <sub>M</sub> =                         | 1.50      | -   | Coefficiente parziale di sicurezza SLU                                    |
| $f_{cd} = \alpha_{cc} f_{ck}/\gamma_M =$ | 14.11     | MPa | Resistenza di progetto                                                    |
| $f_{ctm} = 0.3 f_{ck}^{(2/3)} =$         | 2.56      | MPa | Resistenza media a trazione semplice                                      |
| $f_{cfm} = 1.2 f_{ctm} =$                | 3.07      | MPa | Resistenza media a trazione per flessione                                 |
| $f_{ctk} = 0.7 f_{ctm} =$                | 1.79      | MPa | Valore caratteristico resistenza a trazione (frattile 5%)                 |
| $\sigma_c = 0{,}55 \; f_{ck} =$          | 13.70     | MPa | Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])          |
| $\sigma_c = 0{,}40 \; f_{ck} =$          | 9.96      | MPa | Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])   |
| $E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$   | 31447.00  | MPa | Modulo elastico di progetto                                               |
| v =                                      | 0.20      |     | Coefficiente di Poisson                                                   |
| $G_c = E_{cm} / (2(1+v)) =$              | 13103.00  | MPa | Modulo elastico tangenziale di progetto                                   |
| Condizioni ambientali =                  | Ordinarie |     |                                                                           |
| Classe di esposizione =                  | XC2       |     |                                                                           |
| C =                                      | 6.00      | cm  | Copriferro minimo                                                         |
| w =                                      | 0.30      | mm  | Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3]) |



ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO – FRASSO TEL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 12 di 138

#### 3.4 ACCIAIO PER BARRE DI ARMATURA

| B450C                         |           |     |                                                           |
|-------------------------------|-----------|-----|-----------------------------------------------------------|
| f <sub>yk</sub> ≥             | 450.00    | MPa | Tensione caratteristica di snervamento                    |
| f <sub>tk</sub> ≥             | 540.00    | MPa | Tensione caratteristica di rottura                        |
| $(f_t / f_y)_{k \ge 1}$       | 1.15      |     |                                                           |
| $(f_t / f_y)_k <$             | 1.35      |     |                                                           |
| <b>γ</b> s=                   | 1.15      | -   | Coefficiente parziale di sicurezza SLU                    |
| $f_{yd} = f_{yk}/\gamma_s =$  | 391.30    | MPa | Tensione caratteristica di snervamento                    |
| E <sub>s</sub> =              | 210000.00 | MPa | Modulo elastico di progetto                               |
| $\epsilon_{yd} =$             | 0.20      | %   | Deformazione di progetto a snervamento                    |
| $\epsilon_{uk} = (A_{gt})_k$  | 7.50      | %   | Deformazione caratteristica ultima                        |
| $\sigma_s = 0.75 \; f_{yk} =$ | 337.50    | MPa | Tensione in esercizio in comb. Rara (rif. §1.8.3.2.1 [3]) |



Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 13 di 138

## 4 CARATTERIZZAZIONE GEOTECNICA

#### 4.1 CARATTERIZZAZIONE GEOTECNICA

Per la definizione della categoria di suolo delle opere appartenenti alla tratta in oggetto si rimanda all'elaborato progettuale "IF1N.0.1.E.ZZ.RB.GE.00.0.5.001.A - Relazione geotecnica generale di linea delle opere all'aperto".





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 14 di 138

#### 5 DESCRIZIONE DELLA STRUTTURA

Il Viadotto S. Michele\_VI06, a doppio binario, si estende tra le progressive km 10+326 e km 11+737 della *Tratta Cancello-Benevento – l° Lotto funzionale Cancello-Frasso Telesino*, per uno sviluppo complessivo di 1411 m, ed è realizzato con 55 campate isostatiche di cui:

- 51 campate di luce in asse sottostrutture pari a 25.00 m, realizzate con impalcati della tipologia a 4 cassoncini in c.a.p.;
- 4 campate (tra la pila P8 e la pila P9 e tra la pila P49 e la pila P52) di luce in asse sottostrutture pari a 34.00 m, realizzate con implacati della tipologia misto acciaio-calcestruzzo. L'adozione di tali campate speciali si è resa necessaria sia per sovrappassare, con il minimo intervento possibile, lo "svincolo Capitone" della S.S. di Fondo Valle Isclero, sia per sovrappassare, garantendo la necessaria visibilità, la deviazione della S.S. n°265.

L'opera, di scavalco di una zona di terreno agricolo, scavalca in particolare:

- a) il Fosso Valle Boschina tra le pile P5 e P6 alla progressiva km 10+430:
- b) il Torrente Valle Pietra Rossa tra le pile P15 e P16 alla progressiva km 10+664;
- c) la deviazione della S.S. n°265 tra le pile P8 e P9 alla progressiva 10+536.580;
- d) lo svincolo della S.S. di Fondo Valle Isclero tra le pile P49 e P52 alla progressiva 11+602.631.

Il viadotto è costituito da due tipologie di impalcato: a cassoncini in c.a.p. e misto acciaio calcestruzzo.

La <u>prima tipologia di impalcato</u> è realizzata con 4 cassoncini accostati in c.a.p. e soletta gettata in opera. La luce è pari a 25.00 m misurata in asse pile. La lunghezza complessiva delle travi prefabbricate è pari a 24.30 m e la luce tra gli appoggi è pari a 22.80 m. La larghezza dell'impalcato è pari a 13.70 m. L'armamento è di tipo tradizionale su ballast.

La <u>seconda tipologia di impalcato</u> è realizzata con sezione mista acciaio calcestruzzo e presenta una campata di lunghezza 34.00m in asse ai varchi, mentre la luce tra gli appoggi è pari a 32.40m. L'impalcato ha una larghezza costante di 13.70m ed è costituito da 4 travi saldate a doppio "T" di altezza 2,08m, poste ad interasse di 2,8m e solidarizzate da traversi reticolari. L'armamento è di tipo tradizionale su ballast.

Le <u>pile</u> sono realizzate in c.a.o. gettato in opera e hanno altezze fusto che variano tra 3.0m e 20.8m. Presentano un fusto a sezione rettangolare cava di dimensioni esterne 2.6mx8.6m con raccordi di raggio pari ad 1m ed un motivo "a lesena" nella parte centrale del fusto su tutti e quattro i lati. Le dimensioni esterne diventano 3.3m x 8.6m ove l'altezza della pila al netto del pulvino è superiore a 12.0 m.

Le <u>fondazioni</u> sono realizzate con plinti rettangolari in c.a. con pali trivellati del diametro  $\Phi$  1200 mm e del  $\Phi$  1500 mm, posti ad un interasse pari a 3 diametri.

Con riferimento alle sottostrutture prese in considerazione nella presente relazione, le tipologie di impalcato, la geometria del fusto e la geometria del plinto e dei pali sono sintetizzate nella seguente tabella:

| Pila    | Impalcato precedente | Impalcato successivo | Fusto              | Dimensioni plinto  | Pali     |
|---------|----------------------|----------------------|--------------------|--------------------|----------|
| P20→P23 | 4 c.a.p. (L=25m)     | 4 c.a.p. (L=25m)     | 2.6m x 8.6m x 4.5m | 9.6m x 9.6m x 2.5m | 12 ø1200 |
| P30     | 4 c.a.p. (L=25m)     | 4 c.a.p. (L=25m)     | 2.6m x 8.6m x 4.6m | 9.6m x 9.6m x 2.5m | 12 ø1200 |
| P41-42  | 4 c.a.p. (L=25m)     | 4 c.a.p. (L=25m)     | 2.6m x 8.6m x 4.6m | 9.6m x 9.6m x 2.5m | 12 ø1200 |

A seguire si riportano delle immagini che illustrano la geometria della pila (prospetto frontale e sezione orizzontale del fusto) e del plinto di fondazione (vista in pianta).

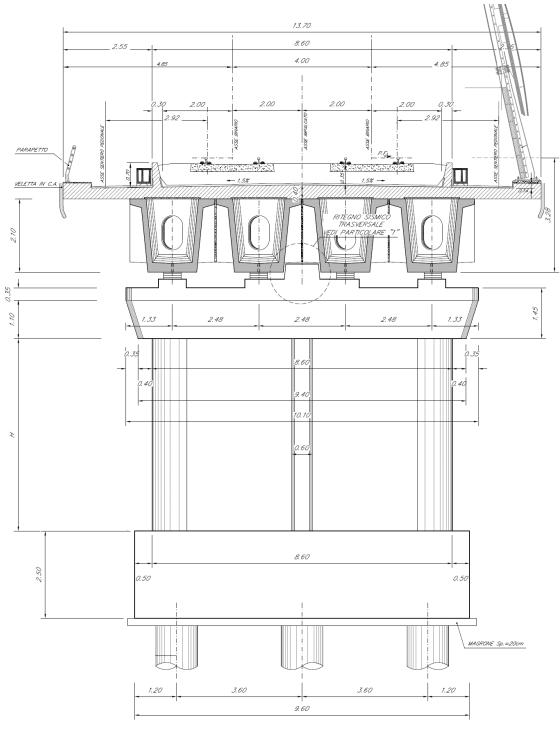



Figura 1 – Pila, prospetto frontale [m]



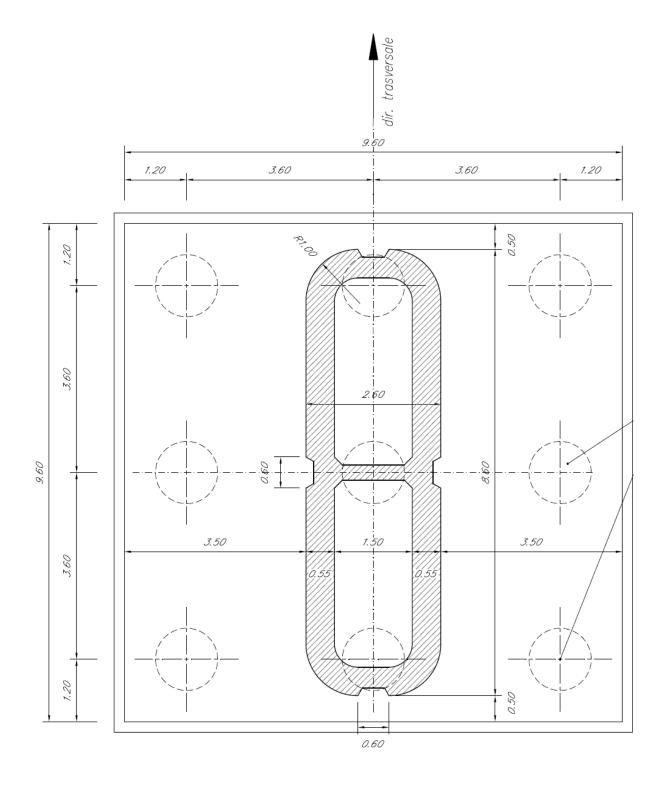



Figura 2 – Plinto di fondazione e pali, vista in pianta - Sezione del fusto pila [m]

Le seguenti figure illustrano la geometria del pulvino della pila in prospetto longitudinale, differenziata a seconda delle tipologia di impalcato che afferisce alla pila i-esima.

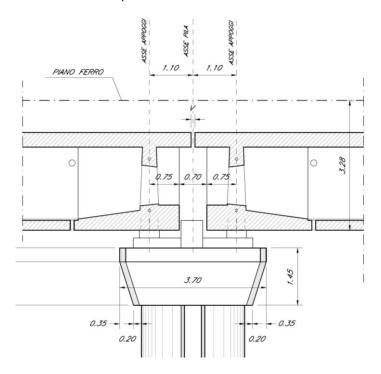



Figura 3 - Pila, prospetto longitudinale - Due impalcati CAP

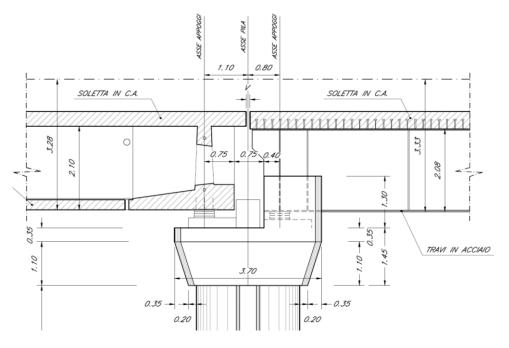



Figura 4 – Pila, prospetto longitudinale – Impalcato CAP e impalcato a struttura mista [m]



Si riportano a seguire due immagini che illustrano lo schema vincolare della campata isostatica i-esima ed il relativo dettaglio della pila i-esima (sono rappresentati due impalcati tipologici).

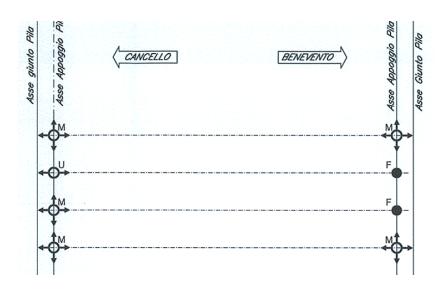



Figura 5 – Viadotto VI06 – Schema vincolare campata isostatica i-esima

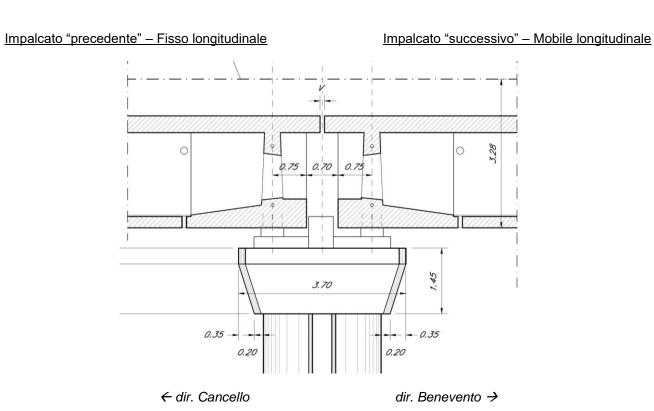



Figura 6 – Viadotto VI06 – Schema vincolare pila i-esima

#### 6 ANALISI DEI CARICHI

Di seguito si riporta l'analisi dei carichi agenti sulla pila e derivanti dagli impalcati afferenti.

Le azioni e le reazioni riportate sono riferite al seguente sistema di riferimento:

asse 1 o asse X: asse longitudinale;

asse 2 o asse Y: asse trasversale;

asse 3 o asse Z: asse verticale.

## 6.1 PERMANENTI STRUTTURALI (G1)

#### 6.1.1 PESO PROPRIO IMPALCATI

L'impalcato a singola campata isostatica, di luce pari a 25 m in asse ai giunti (22,80 m asse appoggi), è costituito da 4 cassoncini in c.a.p. solidarizzati da trasversi gettati in opera. La soletta è di spessore variabile tra 30 cm e 40 cm ed è anch'essa gettata in opera su predalles prefabbricate.

I carichi afferenti al peso proprio degli impalcati sono calcolati sulla base delle caratteristiche geometriche e del peso unitario di ciascun elemento, come riportato a seguire.

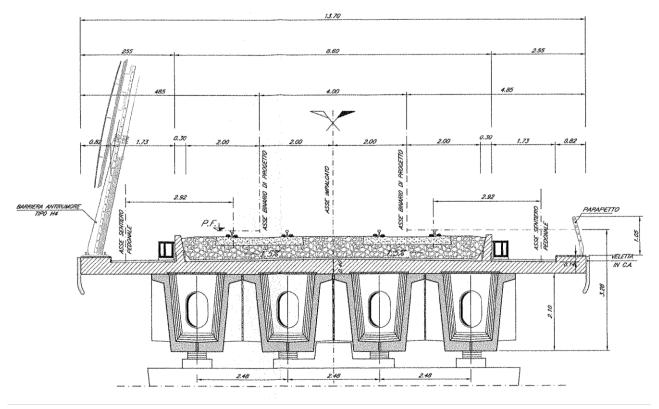



Figura 7 – Impalcato quadri cassone in c.a.p. (L=25m) – Sezione trasversale tipologica [m]





Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

#### ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 20 di 138

|                                       | IMPALCATO-SX |       | IMPALCATO | D-DX  |
|---------------------------------------|--------------|-------|-----------|-------|
| Peso proprio travi                    |              |       |           |       |
| A,1 sezione testata =                 | 2,01         | m2    | 2,01      | m2    |
| A,1 sezione media transizione =       | 1,60         | m2    | 1,60      | m2    |
| A,1 sezione corrente =                | 1,13         | m2    | 1,13      | m2    |
| L,testata =                           | 1,50         | m     | 1,50      | m     |
| L,zona transizione =                  | 3,60         | m     | 3,60      | m     |
| L,corrente =                          | 19,20        | m     | 19,20     | m     |
| L,tot =                               | 24,30        | m     | 24,30     | m     |
| V,1 trave =                           | 30,47        | m3    | 30,47     | m3    |
| peso unitario travi =                 | 25,00        | kN/m3 | 25,00     | kN/m3 |
| P,1 trave =                           | 761,78       | kN    | 761,78    | kN    |
| Peso proprio trasversi                |              |       |           |       |
| A,1 sez trasverso testata =           | 2,76         | m2    | 2,76      | m2    |
| A,1 sez trasverso corrente =          | 3,64         | m2    | 3,64      | m2    |
| s,trasverso testata =                 | 0,40         | m     | 0,40      | m     |
| s,trasverso corrente =                | 0,25         | m     | 0,25      | m     |
| V,1 trave trasversi =                 | 4,03         | m3    | 4,03      | m3    |
| peso unitario trasversi =             | 25,00        | kN/m3 | 25,00     | kN/m3 |
| P,1 trave trasv =                     | 100,70       | kN    | 100,70    | kN    |
| Peso proprio totale travi e trasversi |              |       |           |       |
| P,1 trave+trasv =                     | 862,48       | kN    | 862,48    | kN    |
| N,travi =                             | 4,00         |       | 4,00      |       |
| P,tot travi+trasv =                   | 3449,90      | kN    | 3449,90   | kN    |

#### Peso proprio soletta





CODIFICA

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO** 

DOCUMENTO

FOGLIO

| Dila | 20  | 21          | 22          | 23          | 30  | 11 | _ | 12 . | Relazione | Аi | calcolo |  |
|------|-----|-------------|-------------|-------------|-----|----|---|------|-----------|----|---------|--|
| riie | ZU. | <b>ZI</b> . | <b>ZZ</b> . | <b>Z</b> 3. | JU. | 41 | е | 42 : | Relazione | aı | Calcolo |  |

| 16 20, 21, 22, 23, 30, 41 6 42 . Relazione di Galcoi | .0  | IF1N  | 01 E | zz   | CL | VI0605 016 | В     | 21 di 138 |
|------------------------------------------------------|-----|-------|------|------|----|------------|-------|-----------|
|                                                      |     |       |      |      |    |            |       |           |
| A soletta =                                          | 5,0 | 05    | n    | 12   |    | 5,05       | m2    |           |
| L impalcato =                                        | 25  | ,00   | n    | 1    |    | 25,00      | m     |           |
| peso unitario soletta =                              | 25  | ,00   | k    | N/m3 |    | 25,00      | kN/m3 | 1         |
|                                                      |     |       |      |      |    |            |       |           |
| P soletta =                                          | 31  | 56,25 | k    | N    |    | 3156,25    | kN    |           |
|                                                      |     |       |      |      |    |            |       |           |
| Peso proprio totale impalcato                        |     |       |      |      |    |            |       |           |
|                                                      |     |       |      |      |    |            |       |           |
| Peso impalcato =                                     | 66  | 06,15 | k    | N    |    | 6606,15    | kN    |           |
|                                                      |     |       |      |      |    |            |       |           |
| Risultanti reazioni vincolari                        |     |       |      |      |    |            |       |           |
|                                                      |     |       |      |      |    |            |       |           |
| F1 =                                                 | 0   |       |      |      |    | 0          |       |           |
| F2 =                                                 | 0   |       |      |      |    | 0          |       |           |
| F3 =                                                 | 33  | 03    | k    | N    |    | 3303       | kN    |           |
| M1 =                                                 | 0   |       |      |      |    | 0          |       |           |
| M2 =                                                 | 0   |       |      |      |    | 0          |       |           |

COMMESSA

LOTTO

#### 6.1.2 PESO PROPRIO PILA

M3 =

I carichi afferenti al peso proprio degli elementi costituenti la pila (fusto, pulvino e fondazioni) sono calcolati sulla base delle caratteristiche geometriche di ciascun elemento e considerando un peso unitario del calcestruzzo pari a 25,00 kN/m<sup>3</sup>.

0

## 6.2 PERMANENTI NON STRUTTURALI (G2)

I carichi permanenti non strutturali sono costituiti dal peso della massicciata, dal peso delle barriere antirumore e dal peso delle canalette portacavi. In aggiunta ai permanenti non strutturali portati dagli impalcati si hanno anche quelli costituiti dal riempimento della pila e dal sovraccarico del terreno di ricoprimento del plinto.

La normativa distingue tra ballast e permanenti non strutturali generici nell'assegnazione dei valori del coefficiente di combinazione (rif. §1.8.3.1 [3]), per questo motivo nei paragrafi a seguire i due casi di carico vengono trattati separatamente.

#### 6.2.1 BALLAST (G21)

Secondo il §1.3.2 [3], ove non si eseguano valutazioni più dettagliate, la determinazione dei carichi permanenti portati relativi al peso della massicciata, armamento e dell'impermeabilizzazione potrà effettuarsi assumendo convenzionalmente, per linea in rettifilo, un peso di volume pari a 18,00 kN/m3, applicato su tutta la larghezza media compresa fra i muretti paraballast, per un'altezza media fra p.f. ed estradosso impalcato pari a 0,80 m. Per i ponti in curva si assume un peso convenzionale di 20 kN/m3.





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO VI0605 016

REV.

FOGLIO 22 di 138

|                               | IMPALCATO - SX |       | IMPALCATO - DX |       |
|-------------------------------|----------------|-------|----------------|-------|
| Peso ballast                  |                |       |                |       |
| p,ballast rettifilo =         | 18,00          | kN/m3 | 18,00          | kN/m3 |
| p,ballast curva =             | 20,00          | kN/m3 | 20,00          | kN/m3 |
| tracciato in curva (S/N) =    | S              |       | S              |       |
| p,ballast =                   | 20,00          | kN/m3 | 20,00          | kN/m3 |
| s ballast =                   | 0,80           | m     | 0,80           | m     |
| L ballast =                   | 8,30           | m     | 8,30           | m     |
| L impalcato =                 | 25,00          |       | 25,00          |       |
| P,tot ballast =               | 3320,00        | kN    | 3320,00        | kN    |
| Muretti paraballast           |                |       |                |       |
| A,muretti paraballast (2) =   | 0,287          | m2    | 0,287          | m2    |
| peso unitario muretti =       | 25,00          | kN/m3 | 25,00          | kN/m3 |
| P,tot muretti =               | 179,13         | kN    | 179,13         | kN    |
| Peso totale massicciata       |                |       |                |       |
| Peso totale massicciata =     | 3499,13        | kN    | 3499,13        | kN    |
| Risultanti reazioni vincolari |                |       |                |       |
| F1 =                          | 0              |       | 0              |       |
| F2 =                          | 0              |       | 0              |       |
| F3 =                          | 1750           | kN    | 1750           | kN    |
| M1 =                          | 0              |       | 0              |       |
| M2 =                          | 0              |       | 0              |       |
| M3 =                          | 0              |       | 0              |       |
|                               |                |       |                |       |



ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 23 di 138

#### 6.2.2 PERMANENTI NON STRUTTURALI GENERICI (G22)

#### 6.2.2.1 AFFERENTI ALL'IMPALCATO

Secondo il §1.3.2 [3], nella progettazione di nuovi ponti ferroviari dovranno essere sempre considerati i pesi le azioni e gli ingombri associati all'introduzione delle barriere antirumore, anche nei casi in cui non ne sia originariamente prevista la realizzazione, assumendo un peso pari a 4,00 kN/m2 ed un'altezza minima di 4,00 m misurata dall'estradosso della soletta. Cautelativamente si considerano presenti barriere H4 ad entrambe le estremità dell'impalcato.

|                                            | <u>IMPALCATO - SX</u> |       | <u>IMPALCATO - DX</u> |       |
|--------------------------------------------|-----------------------|-------|-----------------------|-------|
| Peso barriere antirumore                   |                       |       |                       |       |
| P,barriere =                               | 4,00                  | kN/m2 | 4,00                  | kN/m2 |
| B.A. lato sx =                             | H4                    |       | H4                    |       |
| B.A. lato sdx =                            | H4                    |       | H4                    |       |
| H,barriera sx (min. 4m) =                  | 5,40                  | m     | 5,40                  | m     |
| H,barriera dx (min. 4m) =                  | 5,40                  | m     | 5,40                  | m     |
| L impalcato =                              | 25,00                 | m     | 25,00                 | m     |
| P,tot barriere =                           | 1080,00               | kN    | 1080,00               | kN    |
| Peso cordoli, muretti paraballast, velette |                       |       |                       |       |
| A,cordoli =                                | 0,36                  | m2    | 0,36                  | m2    |
| A,veletta =                                | 0,19                  | m2    | 0,19                  | m2    |
| P,tot arredi =                             | 342,00                | kN    | 342,00                | kN    |
| Peso canalette portacavi                   |                       |       |                       |       |
| P,canalette =                              | 5,00                  | kN/m  | 5,00                  | kN/m  |
| P,tot canalette =                          | 125,00                | kN    | 125,00                | kN    |
| Permanenti non strutturali totali          |                       |       |                       |       |
| Permanenti tot =                           | 1547,00               | kN    | 1547,00               | kN    |





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FOGLIO

24 di 138

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IF1N 01 E ZZ CL VI0605 016 B

#### Risultanti reazioni vincolari

| F1 = | 0   |    | 0   |    |
|------|-----|----|-----|----|
| F2 = | 0   |    | 0   |    |
| F3 = | 774 | kN | 774 | kN |
| M1 = | 0   |    | 0   |    |
| M2 = | 0   |    | 0   |    |
| M3 = | 0   |    | 0   |    |

#### 6.2.3 RIEMPIMENTO PILA E TERRENO DI RICOPRIMENTO

Il riempimento della pila ed il terreno di ricoprimento del plinto costituiscono un carico permanente portato agente sul plinto di fondazione al livello dell'estradosso plinto.

Le forze risultanti così calcolate vengono considerate come forze concentrate agenti in corrispondenza dell'estradosso del plinto.

#### Peso terreno di ricoprimento

#### Area ingombro pila:

| dlong  | 2.6   | m  |
|--------|-------|----|
| dtrasv | 8.6   | m  |
| Α      | 22.36 | m2 |

#### Peso terreno:

| Wterr  | 1040  | kN    |
|--------|-------|-------|
| gterr  | 20    | kN/m3 |
| hterr  | 0.745 | m     |
| dtrasv | 9.6   | m     |
| dlong  | 9.6   | m     |

#### Peso riempimento pila

Assente.

#### Permanenti non strutturali pila totali

Pari a Wterr.



#### 6.3 CARICHI DA TRAFFICO

Le azioni verticali associate ai convogli ferroviari si schematizzano mediante i modelli di carico teorici LM71 e SW/2.

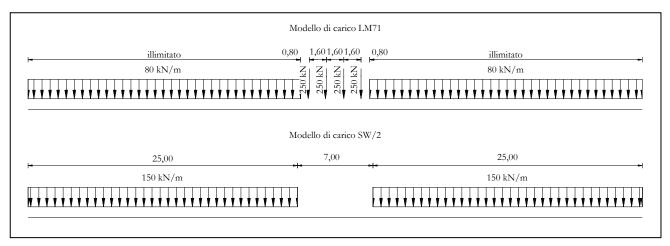



Figura 8 - Modelli di carico teorici LM71 e SW/2

Le differenti disposizioni degli assi e delle stese di carico considerate sono state definite in modo tale da massimizzare gli scarichi sulla pila:

- Disposizione 1: disposizione atta a massimizzare lo scarico assiale sulla pila. Prevede entrambi i binari di entrambe le campate caricati con i modelli LM71 e SW/2. Gli assi del LM71 e la stesa di carico di 25 m del SW/2 sono centrati sulla pila.
- Disposizione 2: disposizione atta a massimizzare il momento longitudinale (momento che "gira" intorno all'asse trasversale) sulla pila. Prevede entrambi i binari di un solo impalcato caricati con i modelli LM71 e SW/2. Gli assi del modello LM71 e la stesa di carico di 25 m del modello SW/2 sono posizionati a partire dall'estremità sinistra dell'impalcato di destra.
- Disposizione 3: disposizione atta a massimizzare il momento trasversale (momento che "gira" intorno all'asse longitudinale) sulla pila Prevede un solo binario di entrambi gli impalcati caricato il modello SW/2. La stesa di carico di 25 m del modello SW/2 è centrata sulla pila.
- Disposizione 4: disposizione atta a massimizzare il momento trasversale (momento che "gira" intorno all'asse longitudinale) sulla pila. Prevede un solo binario di entrambi gli impalcati caricato con il modello LM71. Gli assi del LM71 sono centrati sulla pila.
- Disposizione 5: disposizione atta a massimizzare lo scarico assiale sulla pila e contemporaneamente a creare un momento longitudinale (che "gira" intorno all'asse trasversale) sulla pila. Prevede entrambi i binari di entrambe le campate caricati con i modelli LM71 e SW/2. Gli assi del LM71 e la stesa di carico di 25 m del SW/2 sono posizionati a partire dall'estremità sinistra dell'impalcato di destra.
- Disposizione 6: disposizione atta a massimizzare lo scarico assiale sulla pila. Prevede entrambi i binari di entrambe le campate caricati con i modelli LM71 e SW/2. Gli assi del LM71 ed il tratto scarico di 7 m del SW/2 sono centrati sulla pila.
- Disposizione 7: disposizione atta a minimizzare lo scarico assiale sulla pila e contemporaneamente a massimizzare il momento longitudinale (momento che "gira" intorno all'asse trasversale. Prevede entrambi i binari di un solo impalcato caricati con i modelli LM71 e SW/2. Gli assi del modello LM71 e la stesa di carico di 25 m del modello SW/2 sono posizionati a partire dall'estremità sinistra dell'impalcato di destra.



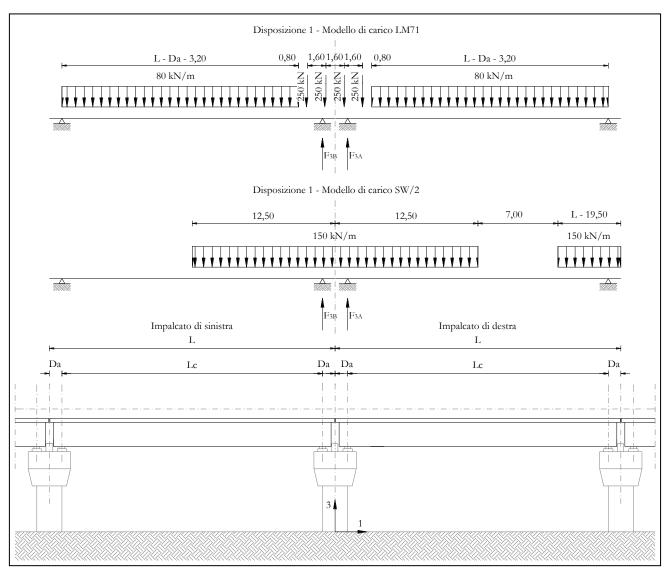



Figura 9 - Disposizione di carico 1



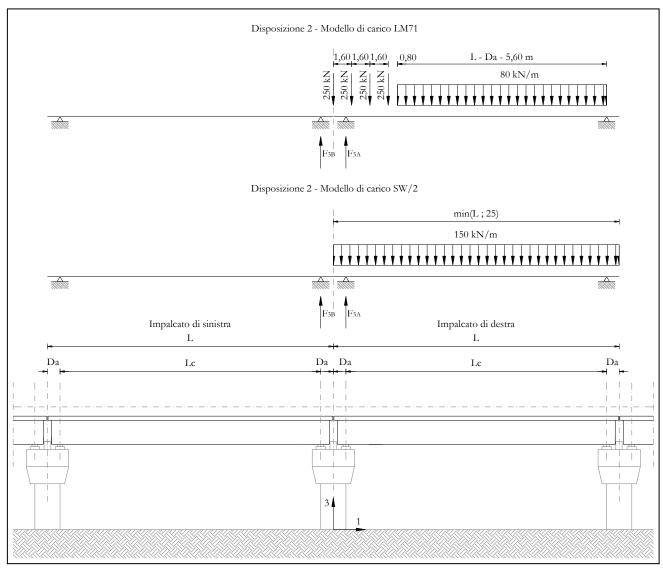



Figura 10 - Disposizione di carico 2



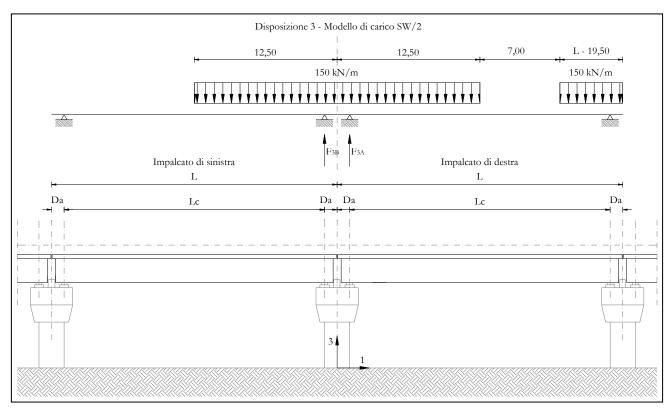



Figura 11 – Disposizione di carico 3



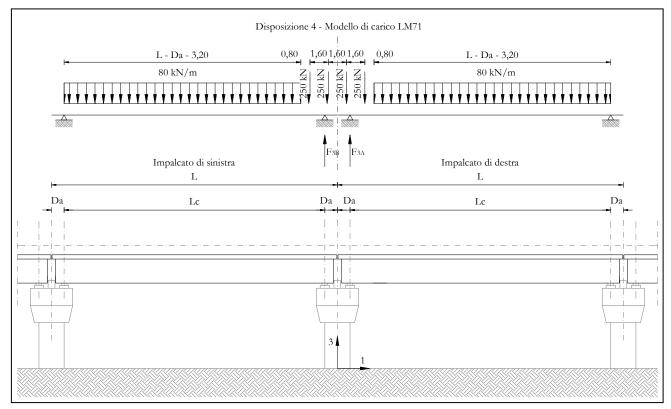



Figura 12 - Disposizione di carico 4



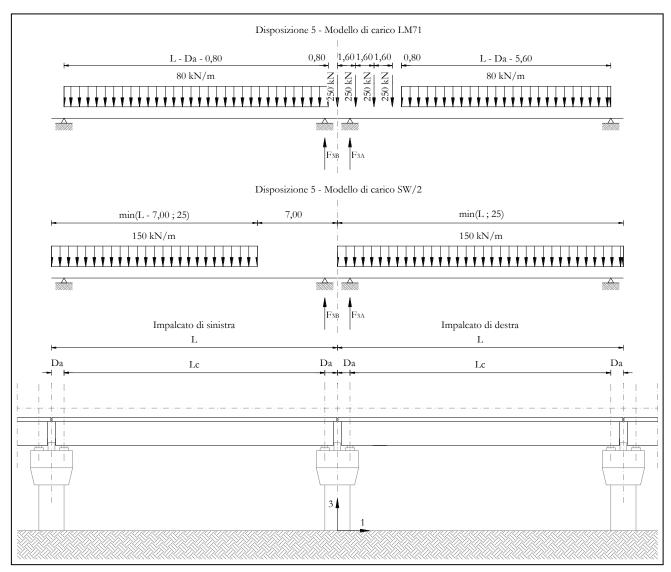



Figura 13 – Disposizione di carico 5



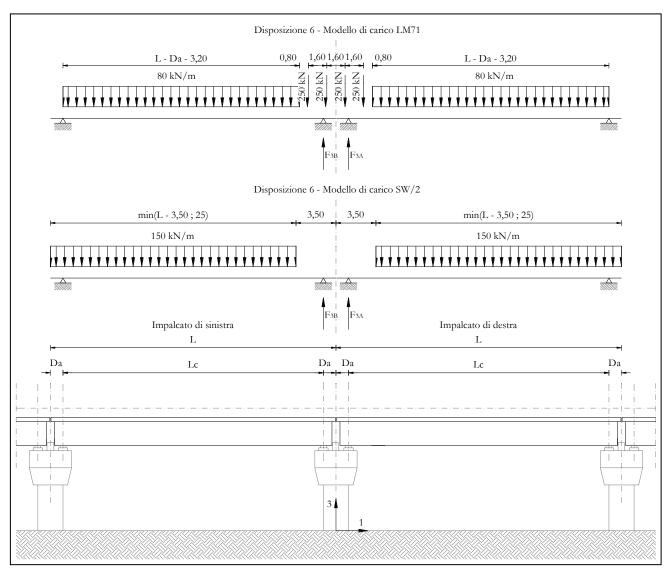



Figura 14 - Disposizione di carico 6



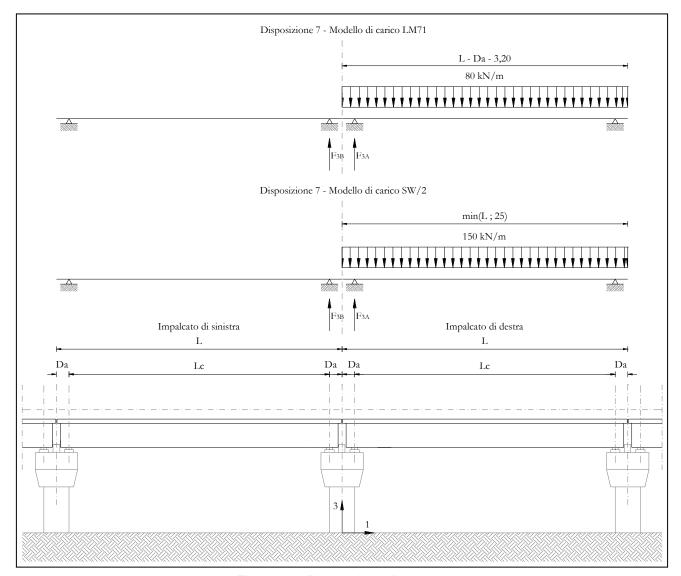



Figura 15 – Disposizione di carico 7

I valori caratteristici dei carichi attribuiti ai modelli di carico devono essere moltiplicati per il coefficiente  $\alpha$  che deve assumersi come da tabella seguente:

| Modello di carico | Coefficiente α |
|-------------------|----------------|
| LM71              | 1,10           |
| SW/2              | 1,00           |





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 33 di 138 |
|----------|---------|----------|------------|------|-----------|
| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |

I valori caratteristici dei carichi attribuiti ai modelli di carico devono essere moltiplicati per coefficienti che tengono conto dell'amplificazione dinamica. I coefficienti di amplificazione dinamica  $\Phi$  si assumono pari a  $\Phi_2$  o  $\Phi_3$  in dipendenza dal livello di manutenzione della linea. In particolare si assumerà:

• per linee con <u>elevato standard manutentivo</u>:  $\Phi_2 = 1,44/(\sqrt{L_{\Phi} - 0.2}) + 0.82$  con limitazione  $1,00 \le \Phi_2 \le 1.67$ 

per linee con <u>normale standard manutentivo</u>:  $\Phi_3 = 2,16/(\sqrt{L_{\Phi} - 0,2}) + 0,73$  con limitazione  $1,00 \le \Phi_2 \le 2,00$ 

Pile con snellezza  $\lambda \le 30$ , spalle, fondazioni, muri di sostegno e spinte del terreno possono essere calcolate assumendo coefficienti dinamici unitari.

| I pila                                   | 9.4                  | m4         | inerzia pila          |
|------------------------------------------|----------------------|------------|-----------------------|
| A pila                                   | 10.425               | m2         | area sez. pila        |
| r_pila                                   | 0.95                 | m          | raggio inerzia        |
| H pila                                   | 6.4                  | m          | altezza max           |
| λ pila                                   | 13.47                | < 30       | snellezza             |
|                                          |                      |            |                       |
|                                          |                      |            |                       |
|                                          | <u>IMPALCATO</u>     | <u>"A"</u> | IMPALCATO "B"         |
| Standard manutentivo =                   | IMPALCATO<br>Normale | <u>"A"</u> | IMPALCATO "B" Normale |
| Standard manutentivo =                   |                      | <u>"A"</u> |                       |
| Standard manutentivo =  Valori adottati: |                      | <u>"A"</u> |                       |
|                                          |                      | <u>"A"</u> |                       |



#### 6.3.1 CARICHI VERTICALI DA TRAFFICO (Q1)

Di seguito si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3.

#### 6.3.1.1 DISPOSIZIONE DI CARICO 1 (Q11)

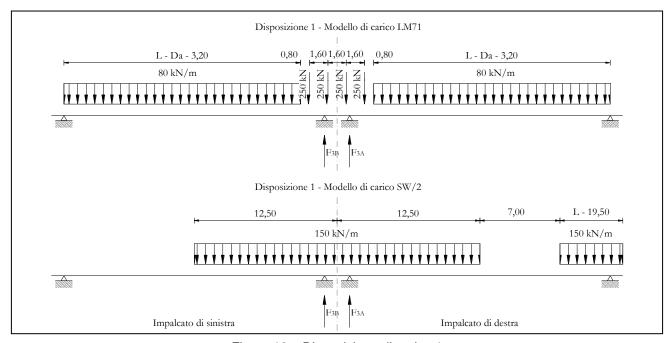



Figura 16 – Disposizione di carico 1

| IMPALCATO-SX         |                                             | IMPALCATO-DX                                                   |                                                                                                             |
|----------------------|---------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Reazioni vincolari B |                                             | Reazioni vincolari A                                           |                                                                                                             |
|                      |                                             |                                                                |                                                                                                             |
| 1240,77              | kN                                          | 1240,77                                                        | kN                                                                                                          |
| 1,10                 |                                             | 1,10                                                           |                                                                                                             |
| -1,92                | m                                           | -1,92                                                          | m                                                                                                           |
|                      |                                             |                                                                |                                                                                                             |
| 1451,48              | kN                                          | 1511,18                                                        | kN                                                                                                          |
| 1,00                 |                                             | 1,00                                                           |                                                                                                             |
| 2,00                 | m                                           | 2,00                                                           | m                                                                                                           |
|                      | 1240,77<br>1,10<br>-1,92<br>1451,48<br>1,00 | Reazioni vincolari B  1240,77 kN 1,10 -1,92 m  1451,48 kN 1,00 | Reazioni vincolari B Reazioni vin  1240,77 kN 1240,77 1,10 1,10 -1,92 m -1,92  1451,48 kN 1511,18 1,00 1,00 |





## ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 35 di 138

| Coeff. |  |  |  |
|--------|--|--|--|
|        |  |  |  |

| φ =                                            | 1,00    |     | 1,00    |     |
|------------------------------------------------|---------|-----|---------|-----|
| Reazioni vincolari carichi variabili verticali |         |     |         |     |
| F3 =                                           | 2816,33 | kN  | 2876,03 | kN  |
| Risultanti reazioni vincolari                  |         |     |         |     |
| F1 =                                           | 0       |     | 0       |     |
| F2 =                                           | 0       |     | 0       |     |
| F3 =                                           | 2816    | kN  | 2876    | kN  |
| M1 =                                           | 282     | kNm | 402     | kNm |
| M2 =                                           | 0       |     | 0       |     |
| M3 =                                           | 0       |     | 0       |     |



#### 6.3.1.2 DISPOSIZIONE DI CARICO 1 (Q12)

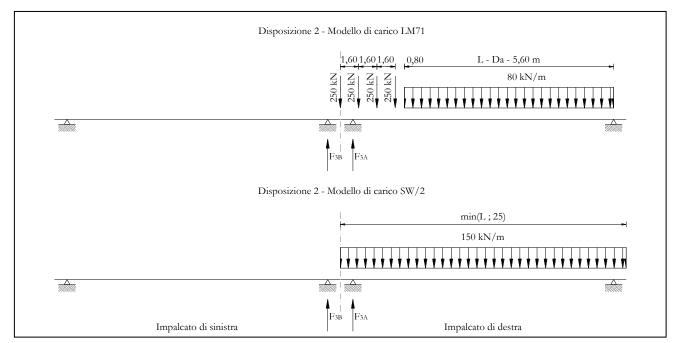



Figura 17 – Disposizione di carico 2

|                        | IMPALCATO-SX         |    | IMPALCATO-DX         |    |
|------------------------|----------------------|----|----------------------|----|
|                        | Reazioni vincolari B |    | Reazioni vincolari A |    |
| Modello di carico LM71 |                      |    |                      |    |
| F3 =                   | 0,00                 | kN | 1530,51              | kN |
| α =                    | 1,10                 |    | 1,10                 |    |
| eccentricità =         | -1,92                | m  | -1,92                | m  |
| Modello di carico SW/2 |                      |    |                      |    |
| F3 =                   | 0,00                 | kN | 1875,00              | kN |
| α =                    | 1,00                 |    | 1,00                 |    |
| eccentricità =         | 2,00                 | m  | 2,00                 | m  |
|                        |                      |    |                      |    |

Coeff. di amplificazione dinamica





# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 37 di 138 |

| φ =                                            | 1,00 |     | 1,00    |     |
|------------------------------------------------|------|-----|---------|-----|
| Reazioni vincolari carichi variabili verticali |      |     |         |     |
| F3 =                                           | 0,00 | kN  | 3558,56 | kN  |
| Risultanti reazioni vincolari                  |      |     |         |     |
| F1 =                                           | 0    |     | 0       |     |
| F2 =                                           | 0    |     | 0       |     |
| F3 =                                           | 0    | kN  | 3559    | kN  |
| M1 =                                           | 0    | kNm | 518     | kNm |
| M2 =                                           | 0    |     | 0       |     |
| M3 =                                           | 0    |     | 0       |     |



# 6.3.1.3 DISPOSIZIONE DI CARICO 1 (Q13)

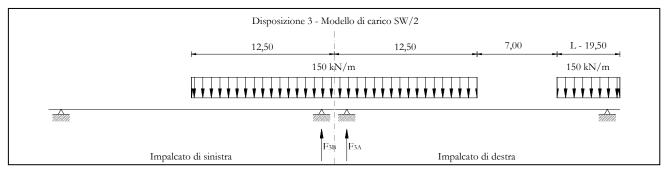



Figura 18 - Disposizione di carico 3

|                                                | IMPALCATO-SX<br>Reazioni vincolari B |    | IMPALCATO-DX<br>Reazioni vincolari A |    |
|------------------------------------------------|--------------------------------------|----|--------------------------------------|----|
| Modello di carico LM71                         |                                      |    |                                      |    |
| F3 = α =                                       | 0,00<br>1,10                         | kN | 0,00<br>1,10                         | kN |
| eccentricità =                                 | -1,92                                | m  | -1,92                                | m  |
| Modello di carico SW/2                         |                                      |    |                                      |    |
| F3 =<br>α =                                    | 1451,48<br>1,00                      | kN | 1511,18<br>1,00                      | kN |
| eccentricità =                                 | 2,00                                 | m  | 2,00                                 | m  |
| Coeff. di amplificazione dinamica              |                                      |    |                                      |    |
| φ =                                            | 1,00                                 |    | 1,00                                 |    |
| Reazioni vincolari carichi variabili verticali |                                      |    |                                      |    |
| F3 =                                           | 1451,48                              | kN | 1511,18                              | kN |
| Risultanti reazioni vincolari                  |                                      |    |                                      |    |
| F1 =                                           | 0                                    |    | 0                                    |    |





# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 39 di 138 |

| F2 = | 0    |     | 0    |     |
|------|------|-----|------|-----|
| F3 = | 1451 | kN  | 1511 | kN  |
| M1 = | 2903 | kNm | 3022 | kNm |
| M2 = | 0    |     | 0    |     |
| M3 = | 0    |     | 0    |     |



## 6.3.1.4 DISPOSIZIONE DI CARICO 1 (Q14)

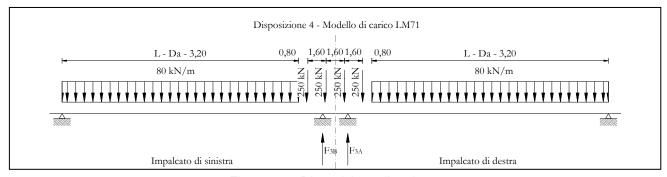



Figura 19 - Disposizione di carico 4

| Modello di carico LM71                         | IMPALCATO-S<br>Reazioni vinco |         | IMPALCATO-I<br>Reazioni vinco |         |
|------------------------------------------------|-------------------------------|---------|-------------------------------|---------|
| F3 =<br>α =<br>eccentricità =                  | 1240,77<br>1,10<br>2,08       | kN<br>m | 1240,77<br>1,10<br>2,08       | kN<br>m |
| Modello di carico SW/2                         |                               |         |                               |         |
| F3 =<br>α =<br>eccentricità =                  | 0,00<br>1,00<br>-2,00         | kN<br>m | 0,00<br>1,00<br>-2,00         | kN<br>m |
| Coeff. di amplificazione dinamica              |                               |         |                               |         |
| φ =                                            | 1,00                          |         | 1,00                          |         |
| Reazioni vincolari carichi variabili verticali |                               |         |                               |         |
| F3 =                                           | 1364,85                       | kN      | 1364,85                       | kN      |

Risultanti reazioni vincolari





# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 41 di 138 |

| F1 = | 0    |     | 0    |     |
|------|------|-----|------|-----|
| F2 = | 0    |     | 0    |     |
| F3 = | 1365 | kN  | 1365 | kN  |
| M1 = | 2839 | kNm | 2839 | kNm |
| M2 = | 0    |     | 0    |     |
| M3 = | 0    |     | 0    |     |



## 6.3.1.5 DISPOSIZIONE DI CARICO 1 (Q15)

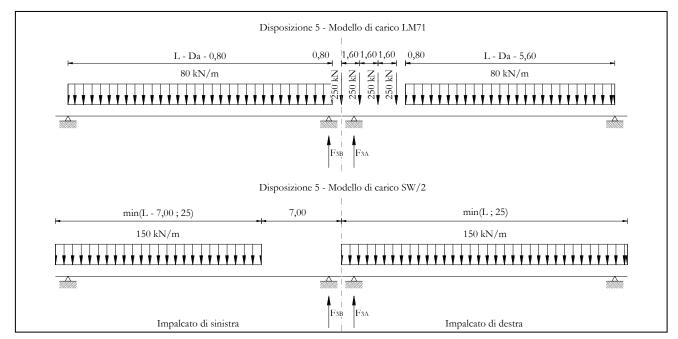



Figura 20 – Disposizione di carico 5

|                                   | IMPALCAT     | O-SX      | IMPALCATO    | D-DX     |
|-----------------------------------|--------------|-----------|--------------|----------|
|                                   | Reazioni vir | ncolari B | Reazioni vin | colari A |
| Modello di carico LM71            |              |           |              |          |
| F3 =                              | 936,16       | kN        | 1530,51      | kN       |
| α =                               | 1,10         |           | 1,10         |          |
| eccentricità =                    | 2,08         | m         | -1,92        | m        |
| Modello di carico SW/2            |              |           |              |          |
| F3 =                              | 935,53       | kN        | 1875,00      | kN       |
| α =                               | 1,00         |           | 1,00         |          |
| eccentricità =                    | -2,00        | m         | 2,00         | m        |
| Coeff. di amplificazione dinamica |              |           |              |          |
| φ =                               | 1,00         |           | 1,00         |          |
|                                   |              |           |              |          |





# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 43 di 138

## Reazioni vincolari carichi variabili verticali

| F3 =                          | 1965,30 | kN  | 3558,56 | kN  |
|-------------------------------|---------|-----|---------|-----|
| Risultanti reazioni vincolari |         |     |         |     |
| F1 =                          | 0       |     | 0       |     |
| F2 =                          | 0       |     | 0       |     |
| F3 =                          | 1965    | kN  | 3559    | kN  |
| M1 =                          | 271     | kNm | 518     | kNm |
| M2 =                          | 0       |     | 0       |     |
| M3 =                          | 0       |     | 0       |     |



## 6.3.1.6 DISPOSIZIONE DI CARICO 1 (Q16)

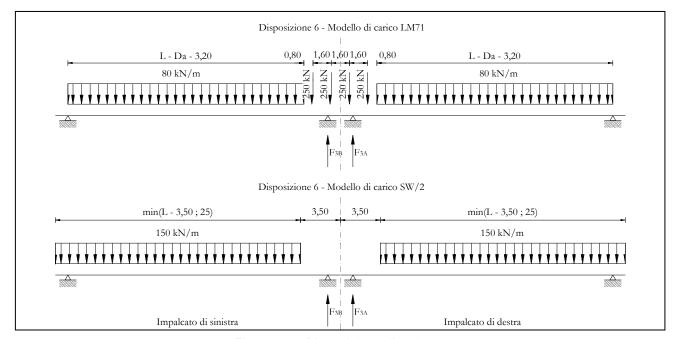



Figura 21 – Disposizione di carico 6

|                                   | IMPALCATO-     | SX      | IMPALCATO-DX   |         |
|-----------------------------------|----------------|---------|----------------|---------|
|                                   | Reazioni vince | olari B | Reazioni vinco | olari A |
| Modello di carico LM71            |                |         |                |         |
| F3 =                              | 1240,77        | kN      | 1240,77        | kN      |
| α =                               | 1,10           |         | 1,10           |         |
| eccentricità =                    | -1,92          | m       | -1,92          | m       |
| Modello di carico SW/2            |                |         |                |         |
| F3 =                              | 1364,97        | kN      | 1364,97        | kN      |
| α =                               | 1,00           |         | 1,00           |         |
| eccentricità =                    | 2,00           | m       | 2,00           | m       |
| Coeff. di amplificazione dinamica |                |         |                |         |
| φ =                               | 1,00           |         | 1,00           |         |
|                                   |                |         |                |         |





# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 45 di 138

## Reazioni vincolari carichi variabili verticali

| F3 =                          | 2729,82 | kN  | 2729,82 | kN  |
|-------------------------------|---------|-----|---------|-----|
| Risultanti reazioni vincolari |         |     |         |     |
| F1 =                          | 0       |     | 0       |     |
| F2 =                          | 0       |     | 0       |     |
| F3 =                          | 2730    | kN  | 2730    | kN  |
| M1 =                          | 109     | kNm | 109     | kNm |
| M2 =                          | 0       |     | 0       |     |
| M3 =                          | 0       |     | 0       |     |



## 6.3.1.7 DISPOSIZIONE DI CARICO 1 (Q17)

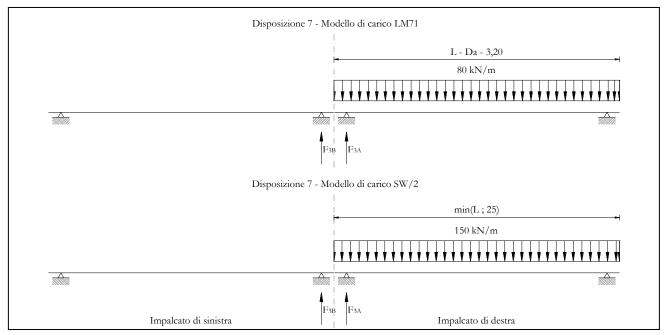



Figura 22 – Disposizione di carico 7

|                                   | IMPALCATO-SX<br>Reazioni vincolari B |         | IMPALCATO-DX<br>Reazioni vincolari A |         |
|-----------------------------------|--------------------------------------|---------|--------------------------------------|---------|
| Modello di carico LM71            |                                      |         |                                      |         |
| F3 = α = eccentricità =           | 0,00<br>1,10<br>-1,92                | kN<br>m | 1002,12<br>1,10<br>-1,92             | kN<br>m |
| Modello di carico SW/2            |                                      |         |                                      |         |
| F3 = α = eccentricità =           | 0,00<br>1,00<br>2,00                 | kN<br>m | 1875,00<br>1,00<br>2,00              | kN<br>m |
| Coeff. di amplificazione dinamica | ,                                    |         | ,                                    |         |
| φ =                               | 1,00                                 |         | 1,00                                 |         |





# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 47 di 138

## Reazioni vincolari carichi variabili verticali

| F3 =                          | 0,00 | kN  | 2977,34 | kN  |
|-------------------------------|------|-----|---------|-----|
| Risultanti reazioni vincolari |      |     |         |     |
| F1 =                          | 0    |     | 0       |     |
| F2 =                          | 0    |     | 0       |     |
| F3 =                          | 0    | kN  | 2977    | kN  |
| M1 =                          | 0    | kNm | 1634    | kNm |
| M2 =                          | 0    |     | 0       |     |
| M3 =                          | 0    |     | 0       |     |



ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 48 di 138

## 6.3.2 AZIONI DI AVVIAMENTO E FRENATURA (Q2)

La azioni di frenatura e avviamento sono costituite da forze uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato. I valori da considerare sono i sequenti:

avviamento: Q<sub>la,k</sub> = 33 kN/m · L ≤ 1000 kN per i modelli di carico LM71,SW/2

frenatura: Q<sub>Ib,k</sub> = 20 kN/m · L ≤ 6000 kN per i modelli di carico LM71

 $Q_{lb,k} = 35 \text{ kN/m}$  per i modelli di carico SW/2

I valori caratteristici dell'azione di frenatura e di avviamento devono essere moltiplicati per  $\alpha$  e non devono essere moltiplicati per  $\Phi$ .

Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento e l'altro in fase di frenatura.

Gli effetti di interazione relativamente alle azioni di frenatura e avviamento si tengono conto applicando ai valori della risultante un coefficiente  $\alpha_h$  che tiene conto del rapporto di rigidezza tra le pile del viadotto. Per la determinazione dei coefficienti si rimanda al §6.6.3 della presente relazione.

Nei sottoparagrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3.



## 6.3.2.1 DISPOSIZIONE DI CARICO 1 (Q21)

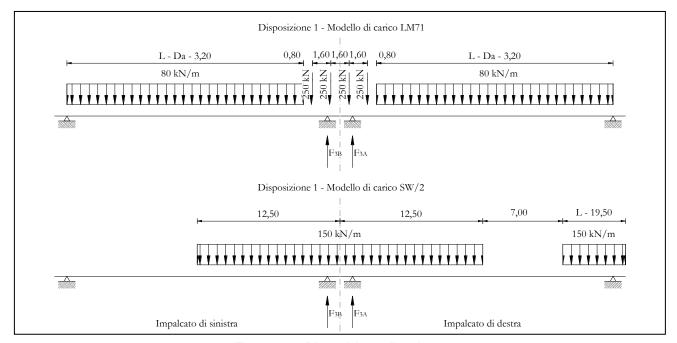



Figura 23 - Disposizione di carico 1

|                       |        | IMPALCATO-SX<br>Reazioni vincolari B |        | DX<br>blari A |
|-----------------------|--------|--------------------------------------|--------|---------------|
| Avviamento LM71       |        |                                      |        |               |
| f avv =               | 33,00  | kN/m                                 | 33,00  | kN/m          |
| α =                   | 1,10   |                                      | 1,10   |               |
| L caricata =          | 25,00  | m                                    | 25,00  | m             |
| F avv (max 1000 kN) = | 825,00 | kN                                   | 825,00 | kN            |
|                       |        |                                      |        |               |
| F1 =                  | 907,50 | kN                                   | 907,50 | kN            |
| Avviamento SW/2       |        |                                      |        |               |
| f avv =               | 33,00  | kN/m                                 | 33,00  | kN/m          |
| α =                   | 1,00   |                                      | 1,00   |               |
| L caricata =          | 12,50  | m                                    | 18,00  | m             |
| F avv (max 1000 kN) = | 412,50 | kN                                   | 594,00 | kN            |
|                       |        |                                      |        |               |
| F1 =                  | 412,50 | kN                                   | 594,00 | kN            |



Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 50 di 138

| Frenatura LM71                         |         |      |         |      |
|----------------------------------------|---------|------|---------|------|
| f fren =                               | 20,00   | kN/m | 20,00   | kN/m |
| α =                                    | 1,10    |      | 1,10    |      |
| L caricata =                           | 25,00   | m    | 25,00   | m    |
| F fren (max 6000 kN) =                 | 500,00  | kN   | 500,00  | kN   |
| F1 =                                   | 550,00  | kN   | 550,00  | kN   |
| Frenatura SW/2                         |         |      |         |      |
| f fren =                               | 35,00   | kN/m | 35,00   | kN/m |
| α =                                    | 1,00    |      | 1,00    |      |
| L caricata =                           | 12,50   | m    | 18,00   | m    |
| F fren =                               | 437,50  | kN   | 630,00  | kN   |
| F1 =                                   | 437,50  | kN   | 630,00  | kN   |
| αhp interazione semplificata           |         |      |         |      |
| αhp frenatura per LM71 =               | 1,60    |      | 1,60    |      |
| αhp frenatura per SW/2 =               | 1,30    |      | 1,30    |      |
| αhp avviam. per LM71 SW/2 =            | 1,12    |      | 1,12    |      |
| Forza totale di avviamento e frenatura |         |      |         |      |
| F1 =                                   | 1585,15 | kN   | 1835,40 | kN   |
| h rispetto a intradosso imp. =         | 3,28    | m    | 3,28    | m    |
| tipologia vincolo =                    | UL      |      | F       |      |
| Risultanti reazioni vincolari          |         |      |         |      |
| F1 =                                   | 0       | kN   | -1835   | kN   |
| F2 =                                   | 0       |      | 0       |      |
| F3 =                                   | 228     | kN   | -264    | kN   |
| M1 =                                   | 0       |      | 0       |      |
| M2 =                                   | 0       |      | 0       |      |
| M3 =                                   | 0       |      | 0       |      |



# 6.3.2.2 DISPOSIZIONE DI CARICO 2 (Q22)

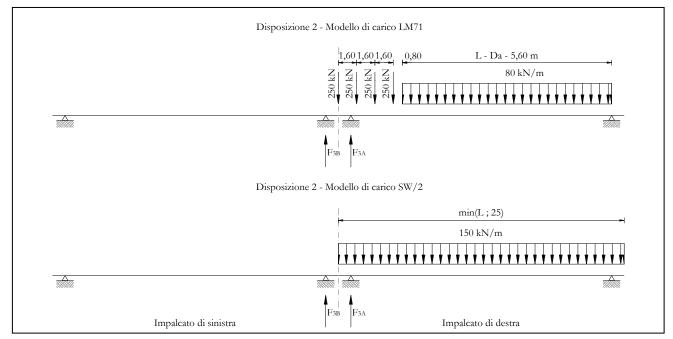



Figura 24 – Disposizione di carico 2

|                       |       |      |        | DX<br>olari A |
|-----------------------|-------|------|--------|---------------|
| Avviamento LM71       |       |      |        |               |
| f avv =               | 33,00 | kN/m | 33,00  | kN/m          |
| α =                   | 1,10  |      | 1,10   |               |
| L caricata =          | 0,00  | m    | 25,00  | m             |
| F avv (max 1000 kN) = | 0,00  | kN   | 825,00 | kN            |
| F1 =                  | 0,00  | kN   | 907,50 | kN            |
| Avviamento SW/2       |       |      |        |               |
| f avv =               | 33,00 | kN/m | 33,00  | kN/m          |
| α =                   | 1,00  |      | 1,00   |               |
| L caricata =          | 0,00  | m    | 25,00  | m             |
| F avv (max 1000 kN) = | 0,00  | kN   | 825,00 | kN            |
| F1 =                  | 0,00  | kN   | 825,00 | kN            |



ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 52 di 138

| Frenatura LM71                         |       |      |         |      |
|----------------------------------------|-------|------|---------|------|
| f fren =                               | 20,00 | kN/m | 20,00   | kN/m |
| α =                                    | 1,10  |      | 1,10    |      |
| L caricata =                           | 0,00  | m    | 25,00   | m    |
| F fren (max 6000 kN) =                 | 0,00  | kN   | 500,00  | kN   |
| F1 =                                   | 0,00  | kN   | 550,00  | kN   |
| Frenatura SW/2                         |       |      |         |      |
| f fren =                               | 35,00 | kN/m | 35,00   | kN/m |
| α =                                    | 1,00  |      | 1,00    |      |
| L caricata =                           | 0,00  | m    | 25,00   | m    |
| F fren =                               | 0,00  | kN   | 875,00  | kN   |
| F1 =                                   | 0,00  | kN   | 875,00  | kN   |
| αhp interazione semplificata           |       |      |         |      |
| αhp frenatura per LM71 =               | 1,60  |      | 1,60    |      |
| αhp frenatura per SW/2 =               | 1,30  |      | 1,30    |      |
| αhp avviam. per LM71 SW/2 =            | 1,12  |      | 1,12    |      |
| Forza totale di avviamento e frenatura |       |      |         |      |
| F1 =                                   | 0,00  | kN   | 2153,90 | kN   |
| h rispetto a intradosso imp. =         | 3,28  | m    | 3,28    | m    |
| tipologia vincolo =                    | UL    |      | F       |      |
| Risultanti reazioni vincolari          |       |      |         |      |
| F1 =                                   | 0     | kN   | -2154   | kN   |
| F2 =                                   | 0     |      | 0       |      |
| F3 =                                   | 0     | kN   | -310    | kN   |
| M1 =                                   | 0     |      | 0       |      |
| M2 =                                   | 0     |      | 0       |      |
| M3 =                                   | 0     |      | 0       |      |



# 6.3.2.3 DISPOSIZIONE DI CARICO 3 (Q23)



Figura 25 – Disposizione di carico 3

| Avviamento LM71                                | IMPALCATO-SX<br>Reazioni vincolari B |                 | IMPALCATO-DX<br>Reazioni vincolari A |                 |
|------------------------------------------------|--------------------------------------|-----------------|--------------------------------------|-----------------|
| f avv = α = L caricata = F avv (max 1000 kN) = | 33,00<br>1,10<br>0,00<br>0,00        | kN/m<br>m<br>kN | 33,00<br>1,10<br>0,00<br>0,00        | kN/m<br>m<br>kN |
| F1 =                                           | 0,00                                 | kN              | 0,00                                 | kN              |
| Avviamento SW/2                                |                                      |                 |                                      |                 |
| f avv = α = L caricata = F avv (max 1000 kN) = | 33,00<br>1,00<br>12,50<br>412,50     | kN/m<br>m<br>kN | 33,00<br>1,00<br>18,00<br>594,00     | kN/m<br>m<br>kN |
| F1 = Frenatura LM71                            | 412,50                               | kN              | 594,00                               | kN              |
| f fren =<br>α =<br>L caricata =                | 20,00<br>1,10<br>0,00                | kN/m<br>m       | 20,00<br>1,10<br>0,00                | kN/m<br>m       |

M3 =



# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

0

| Pil | le 20, 21, 22, 23, 30, 41 e 42 : Relazione di calco | lo | COMMESSA<br>IF1N | LOTTO 01 E ZZ | CODIFICA<br>CL | DOCUMENT |      | FOGLIO<br><b>54 di 138</b> |
|-----|-----------------------------------------------------|----|------------------|---------------|----------------|----------|------|----------------------------|
|     | F fren (max 6000 kN) =                              | 0  | ,00              | kN            |                | 0,00     | kN   |                            |
|     | F1 =                                                | 0  | ,00              | kN            |                | 0,00     | kN   |                            |
|     | Frenatura SW/2                                      |    |                  |               |                |          |      |                            |
|     | f fren =                                            | 3  | 5,00             | kN/           | m              | 35,00    | kN/m |                            |
|     | α =                                                 | 1, | ,00              |               |                | 1,00     |      |                            |
|     | L caricata =                                        | 1: | 2,50             | m             |                | 18,00    | m    |                            |
|     | F fren =                                            | 4  | 37,50            | kN            |                | 630,00   | kN   |                            |
|     | F1 =                                                | 4: | 37,50            | kN            |                | 630,00   | kN   |                            |
|     | αhp interazione semplificata                        |    |                  |               |                |          |      |                            |
|     | αhp frenatura per LM71 =                            | 1, | ,60              |               |                | 1,60     |      |                            |
|     | αhp frenatura per SW/2 =                            | 1  | ,30              |               |                | 1,30     |      |                            |
|     | αhp avviam. per LM71 SW/2 =                         | 1, | ,12              |               |                | 1,12     |      |                            |
|     | Forza totale di avviamento e frenatura              |    |                  |               |                |          |      |                            |
|     | F1 =                                                | 5  | 68,75            | kN            |                | 819,00   | kN   |                            |
|     | h rispetto a intradosso imp. =                      | 3  | ,28              | m             |                | 3,28     | m    |                            |
|     | tipologia vincolo =                                 | U  | L                |               |                | F        |      |                            |
|     | Risultanti reazioni vincolari                       |    |                  |               |                |          |      |                            |
|     | F1 =                                                | 0  |                  | kN            |                | -819     | kN   |                            |
|     | F2 =                                                | 0  |                  |               |                | 0        |      |                            |
|     | F3 =                                                | 8  | 2                | kN            |                | -118     | kN   |                            |
|     | M1 =                                                | 0  |                  |               |                | 0        |      |                            |
|     | M2 =                                                | 0  |                  |               |                | 0        |      |                            |
|     | 140                                                 | _  |                  |               |                | •        |      |                            |

0



## 6.3.2.4 DISPOSIZIONE DI CARICO 4 (Q24)

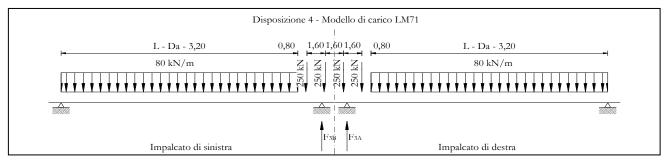



Figura 26 - Disposizione di carico 4

| Avviamento LM71                                | IMPALCATO-SX<br>Reazioni vincolari B |                 | IMPALCATO-DX<br>Reazioni vincolari A |                 |  |
|------------------------------------------------|--------------------------------------|-----------------|--------------------------------------|-----------------|--|
| f avv = α = L caricata = F avv (max 1000 kN) = | 33,00<br>1,10<br>25,00<br>825,00     | kN/m<br>m<br>kN | 33,00<br>1,10<br>25,00<br>825,00     | kN/m<br>m<br>kN |  |
| F1 = Avviamento SW/2                           | 907,50                               | kN              | 907,50                               | kN              |  |
| f avv = α = L caricata = F avv (max 1000 kN) = | 33,00<br>1,00<br>0,00<br>0,00        | kN/m<br>m<br>kN | 33,00<br>1,00<br>0,00<br>0,00        | kN/m<br>m<br>kN |  |
| F1 = Frenatura LM71                            | 0,00                                 | kN              | 0,00                                 | kN              |  |
| f fren =<br>α =<br>L caricata =                | 20,00<br>1,10<br>25,00               | kN/m<br>m       | 20,00<br>1,10<br>25,00               | kN/m<br>m       |  |



# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

| Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcol | COMMESSA  IF1N | LOTTO<br><b>01 E ZZ</b> | CODIFICA<br>CL | DOCUMENTO VI0605 016 | REV.<br><b>B</b> | FOGLIO<br>56 di 138 |
|--------------------------------------------------------|----------------|-------------------------|----------------|----------------------|------------------|---------------------|
| F fren (max 6000 kN) =                                 | 500,00         | kN                      |                | 500,00               | kN               |                     |
| F1 =                                                   | 550,00         | kN                      |                | 550,00               | kN               |                     |
| Frenatura SW/2                                         |                |                         |                |                      |                  |                     |
| f fren =                                               | 35,00          | kN/m                    |                | 35,00                | kN/m             |                     |
| α =                                                    | 1,00           |                         |                | 1,00                 |                  |                     |
| L caricata =                                           | 0,00           | m                       |                | 0,00                 | m                |                     |
| F fren =                                               | 0,00           | kN                      |                | 0,00                 | kN               |                     |
| F1 =                                                   | 0,00           | kN                      |                | 0,00                 | kN               |                     |
| αhp interazione semplificata                           |                |                         |                |                      |                  |                     |
| αhp frenatura per LM71 =                               | 1,60           |                         |                | 1,60                 |                  |                     |
| αhp frenatura per SW/2 =                               | 1,30           |                         |                | 1,30                 |                  |                     |
| αhp avviam. per LM71 SW/2 =                            | 1,12           |                         |                | 1,12                 |                  |                     |
| Forza totale di avviamento e frenatura                 |                |                         |                |                      |                  |                     |
| F1 =                                                   | 1016,40        | kN                      |                | 1016,40              | kN               |                     |
| h rispetto a intradosso imp. =                         | 3,28           | m                       |                | 3,28                 | m                |                     |
| tipologia vincolo =                                    | UL             |                         |                | F                    |                  |                     |
| Risultanti reazioni vincolari                          |                |                         |                |                      |                  |                     |
| F1 =                                                   | 0              | kN                      |                | -1016                | kN               |                     |
| F2 =                                                   | 0              |                         |                | 0                    |                  |                     |
| F3 =                                                   | 146            | kN                      |                | -146                 | kN               |                     |
| M1 =                                                   | 0              |                         |                | 0                    |                  |                     |
| M2 =                                                   | 0              |                         |                | 0                    |                  |                     |
| M3 =                                                   | 0              |                         |                | 0                    |                  |                     |



## 6.3.2.5 DISPOSIZIONE DI CARICO 5 (Q25)

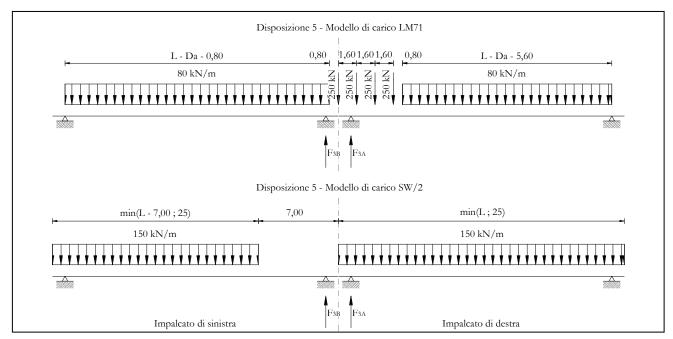



Figura 27 – Disposizione di carico 5

|                       |        |      | IMPALCATO-DX<br>Reazioni vincolari A |      |
|-----------------------|--------|------|--------------------------------------|------|
| Avviamento LM71       |        |      |                                      |      |
| f avv =               | 33,00  | kN/m | 33,00                                | kN/m |
| α =                   | 1,10   |      | 1,10                                 |      |
| L caricata =          | 25,00  | m    | 25,00                                | m    |
| F avv (max 1000 kN) = | 825,00 | kN   | 825,00                               | kN   |
| F1 =                  | 907,50 | kN   | 907,50                               | kN   |
| Avviamento SW/2       |        |      |                                      |      |
|                       |        |      |                                      |      |
| f avv =               | 33,00  | kN/m | 33,00                                | kN/m |
| α =                   | 1,00   |      | 1,00                                 |      |
| L caricata =          | 18,00  | m    | 25,00                                | m    |
| F avv (max 1000 kN) = | 594,00 | kN   | 825,00                               | kN   |
|                       |        |      |                                      |      |
| F1 =                  | 594,00 | kN   | 825,00                               | kN   |



Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 58 di 138

| Frenatura LM71                         |         |      |         |      |
|----------------------------------------|---------|------|---------|------|
| f fren =                               | 20,00   | kN/m | 20,00   | kN/m |
| α =                                    | 1,10    |      | 1,10    |      |
| L caricata =                           | 25,00   | m    | 25,00   | m    |
| F fren (max 6000 kN) =                 | 500,00  | kN   | 500,00  | kN   |
| F1 =                                   | 550,00  | kN   | 550,00  | kN   |
| Frenatura SW/2                         |         |      |         |      |
| f fren =                               | 35,00   | kN/m | 35,00   | kN/m |
| α =                                    | 1,00    |      | 1,00    |      |
| L caricata =                           | 18,00   | m    | 25,00   | m    |
| F fren =                               | 630,00  | kN   | 875,00  | kN   |
| F1 =                                   | 630,00  | kN   | 875,00  | kN   |
| αhp interazione semplificata           |         |      |         |      |
| αhp frenatura per LM71 =               | 1,60    |      | 1,60    |      |
| αhp frenatura per SW/2 =               | 1,30    |      | 1,30    |      |
| αhp avviam. per LM71 SW/2 =            | 1,12    |      | 1,12    |      |
| Forza totale di avviamento e frenatura |         |      |         |      |
| F1 =                                   | 1835,40 | kN   | 2153,90 | kN   |
| h rispetto a intradosso imp. =         | 3,28    | m    | 3,28    | m    |
| tipologia vincolo =                    | UL      |      | F       |      |
| Risultanti reazioni vincolari          |         |      |         |      |
| F1 =                                   | 0       | kN   | -2154   | kN   |
| F2 =                                   | 0       |      | 0       |      |
| F3 =                                   | 264     | kN   | -310    | kN   |
| M1 =                                   | 0       |      | 0       |      |
| M2 =                                   | 0       |      | 0       |      |
| M3 =                                   | 0       |      | 0       |      |



## 6.3.2.6 DISPOSIZIONE DI CARICO 6 (Q26)

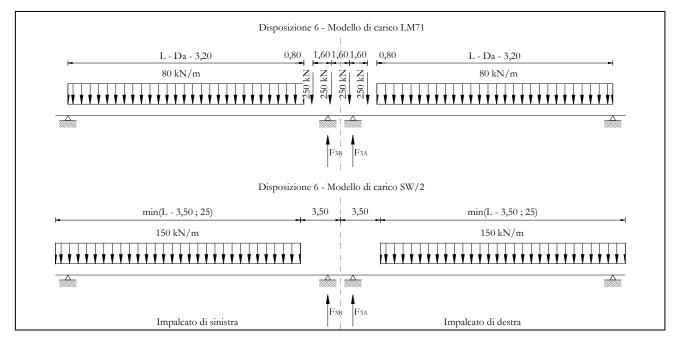



Figura 28 – Disposizione di carico 6

|                       | IMPALCATO-SX<br>Reazioni vincolari B |       | IMPALCATO-DX<br>Reazioni vincolari A |              |
|-----------------------|--------------------------------------|-------|--------------------------------------|--------------|
| Avviamento LM71       |                                      |       |                                      |              |
| f avv =               | 33,00                                | kN/m  | 33,00                                | kN/m         |
| α =                   | 1,10                                 |       | 1,10                                 |              |
| L caricata =          | 25,00                                | m     | 25,00                                | m            |
| F avv (max 1000 kN) = | 825,00                               | kN    | 825,00                               | kN           |
| F1 =                  | 907,50                               | kN    | 907,50                               | kN           |
| Avviamento SW/2       |                                      |       |                                      |              |
| f avv =               | 33,00                                | kN/m  | 33,00                                | kN/m         |
| α =                   | 1,00                                 |       | 1,00                                 |              |
| L caricata =          | 21,50                                | m     | 21,50                                | m            |
| F avv (max 1000 kN) = | 709,50                               | kN    | 709,50                               | kN           |
| F1 =                  | 709,50                               | kN    | 709,50                               | kN           |
| 11-                   | 100,00                               | IXI V | 100,00                               | IXI <b>V</b> |



Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 60 di 138 |

| Frenatura LM71                         |         |      |         |      |
|----------------------------------------|---------|------|---------|------|
| f fren =                               | 20,00   | kN/m | 20,00   | kN/m |
| α =                                    | 1,10    |      | 1,10    |      |
| L caricata =                           | 25,00   | m    | 25,00   | m    |
| F fren (max 6000 kN) =                 | 500,00  | kN   | 500,00  | kN   |
| F1 =                                   | 550,00  | kN   | 550,00  | kN   |
| Frenatura SW/2                         |         |      |         |      |
| f fren =                               | 35,00   | kN/m | 35,00   | kN/m |
| α =                                    | 1,00    |      | 1,00    |      |
| L caricata =                           | 21,50   | m    | 21,50   | m    |
| F fren =                               | 752,50  | kN   | 752,50  | kN   |
| F1 =                                   | 752,50  | kN   | 752,50  | kN   |
| αhp interazione semplificata           |         |      |         |      |
| αhp frenatura per LM71 =               | 1,60    |      | 1,60    |      |
| αhp frenatura per SW/2 =               | 1,30    |      | 1,30    |      |
| αhp avviam. per LM71 SW/2 =            | 1,12    |      | 1,12    |      |
| Forza totale di avviamento e frenatura |         |      |         |      |
| F1 =                                   | 1994,65 | kN   | 1994,65 | kN   |
| h rispetto a intradosso imp. =         | 3,28    | m    | 3,28    | m    |
| tipologia vincolo =                    | UL      |      | F       |      |
| Risultanti reazioni vincolari          |         |      |         |      |
| F1 =                                   | 0       | kN   | -1995   | kN   |
| F2 =                                   | 0       |      | 0       |      |
| F3 =                                   | 287     | kN   | -287    | kN   |
| M1 =                                   | 0       |      | 0       |      |
| M2 =                                   | 0       |      | 0       |      |
| M3 =                                   | 0       |      | 0       |      |



# 6.3.2.7 DISPOSIZIONE DI CARICO 7 (Q27)

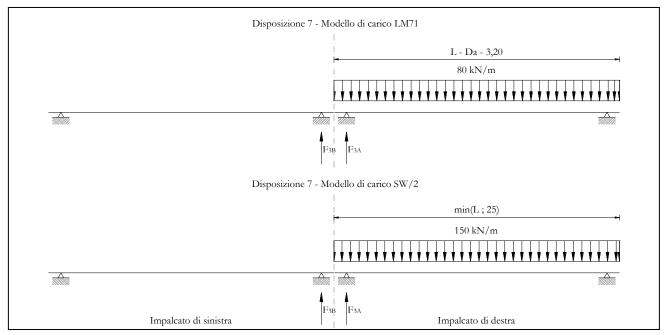



Figura 29 – Disposizione di carico 7

|                       | IMPALCATO-SX<br>Reazioni vincolari B |      | IMPALCATO-DX<br>Reazioni vincolari A |      |
|-----------------------|--------------------------------------|------|--------------------------------------|------|
| Avviamento LM71       |                                      |      |                                      |      |
| f avv =               | 33,00                                | kN/m | 33,00                                | kN/m |
| α =                   | 1,10                                 |      | 1,10                                 |      |
| L caricata =          | 0,00                                 | m    | 25,00                                | m    |
| F avv (max 1000 kN) = | 0,00                                 | kN   | 825,00                               | kN   |
| F1 =                  | 0,00                                 | kN   | 907,50                               | kN   |
| Avviamento SW/2       |                                      |      |                                      |      |
| f avv =               | 33,00                                | kN/m | 33,00                                | kN/m |
| α =                   | 1,00                                 |      | 1,00                                 |      |
| L caricata =          | 0,00                                 | m    | 25,00                                | m    |
| F avv (max 1000 kN) = | 0,00                                 | kN   | 825,00                               | kN   |
|                       |                                      |      |                                      |      |
| F1 =                  | 0,00                                 | kN   | 825,00                               | kN   |



Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 62 di 138 |

| Frenatura LM71                         |        |      |         |      |
|----------------------------------------|--------|------|---------|------|
| f fren =                               | 20,00  | kN/m | 20,00   | kN/m |
| α =                                    | 1,10   |      | 1,10    |      |
| L caricata =                           | 25,00  | m    | 25,00   | m    |
| F fren (max 6000 kN) =                 | 500,00 | kN   | 500,00  | kN   |
| F1 =                                   | 550,00 | kN   | 550,00  | kN   |
| Frenatura SW/2                         |        |      |         |      |
| f fren =                               | 35,00  | kN/m | 35,00   | kN/m |
| α =                                    | 1,00   |      | 1,00    |      |
| L caricata =                           | 0,00   | m    | 25,00   | m    |
| F fren =                               | 0,00   | kN   | 875,00  | kN   |
| F1 =                                   | 0,00   | kN   | 875,00  | kN   |
| αhp interazione semplificata           |        |      |         |      |
| αhp frenatura per LM71 =               | 1,60   |      | 1,60    |      |
| αhp frenatura per SW/2 =               | 1,30   |      | 1,30    |      |
| αhp avviam. per LM71 SW/2 =            | 1,12   |      | 1,12    |      |
| Forza totale di avviamento e frenatura |        |      |         |      |
| F1 =                                   | 880,00 | kN   | 2153,90 | kN   |
| h rispetto a intradosso imp. =         | 3,28   | m    | 3,28    | m    |
| tipologia vincolo =                    | UL     |      | F       |      |
| Risultanti reazioni vincolari          |        |      |         |      |
| F1 =                                   | 0      | kN   | -2154   | kN   |
| F2 =                                   | 0      |      | 0       |      |
| F3 =                                   | 127    | kN   | -310    | kN   |
| M1 =                                   | 0      |      | 0       |      |
| M2 =                                   | 0      |      | 0       |      |
| M3 =                                   | 0      |      | 0       |      |



## ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 63 di 138 |

## 6.3.3 FORZA CENTRIFUGA (Q3)

L'azione centrifuga è schematizzata come una forza agente in direzione orizzontale perpendicolarmente al binario e verso l'esterno della curva, applicata ad 1,80 m al di sopra del p.f.. Il valore caratteristico della forza centrifuga si determina in accordo con la seguente espressione:

$$Q_{tk} = V^2 \cdot f \cdot (\alpha \cdot Q_{vk})/(127 \cdot R)$$

dove V velocità di progetto espressa in km/h

Q<sub>vk</sub> valore caratteristico dei carichi verticali

R raggio di curvatura in m

f fattore di riduzione (rif. §1.4.3.1 [3])

Per il modello di carico LM71 e per velocità di progetto superiori a 120 km/h, si considerano i seguenti 2 casi:

- a) modello di carico LM71 e forza centrifuga per V = 120 km/h e f = 1;
- b) modello di carico LM71 e forza centrifuga calcolata per la massima velocità di progetto.

Per i modelli di carico SW si assume una velocità massima di 100 km/h.

La forza centrifuga non deve essere incrementata dei coefficienti dinamici.

Nei sottoparagrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3.



## 6.3.3.1 DISPOSIZIONE DI CARICO 1 (Q31)

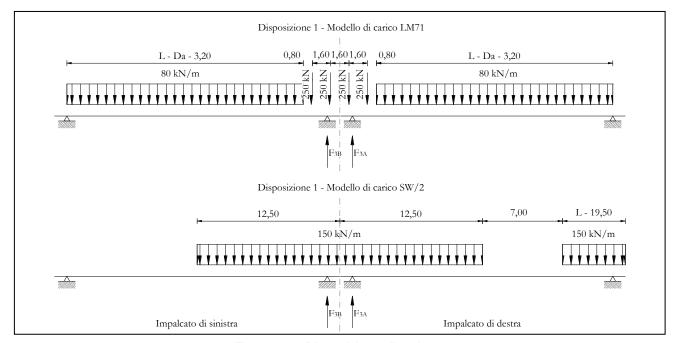



Figura 30 - Disposizione di carico 1

|                       | IMPALCATO-SX         |      | IMPALCATO-DX   |         |
|-----------------------|----------------------|------|----------------|---------|
|                       | Reazioni vincolari B |      | Reazioni vinco | olari A |
| Centrifuga LM71       |                      |      |                |         |
| v = vmax              |                      |      |                |         |
| Raggio minimo =       | 1500,00              | m    | 1500,00        | m       |
| Velocità massima =    | 180,00               | km/h | 180,00         | km/h    |
| Lf =                  | 25,00                | m    | 25,00          | m       |
| f =                   | 0,75                 |      | 0,75           |         |
| Qv =                  | 1240,77              | kN   | 1240,77        | kN      |
| Qh =                  | 158,57               | kN   | 158,57         | kN      |
|                       |                      |      |                |         |
| v = 120 km/h          |                      |      |                |         |
| Raggio minimo =       | 1500,00              | m    | 1500,00        | m       |
| Velocità (120 km/h) = | 120,00               | km/h | 120,00         | km/h    |
| f (1) =               | 1,00                 |      | 1,00           |         |
| Qv =                  | 1364,85              | kN   | 1364,85        | kN      |

M3 =



# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

0

DOCUMENTO

REV.

FOGLIO

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

CODIFICA

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| ie 20, 21, 22, 23, 30, 41 e 42 : Relazione 6 | ii caicolo | IF1N   | 01 E ZZ | CL | VI0605 016 | В    | 65 di 138 |
|----------------------------------------------|------------|--------|---------|----|------------|------|-----------|
| Qh =                                         | 10         | 03,17  | kN      |    | 103,17     | kN   |           |
| Qh,max =                                     | 15         | 58,57  | kN      |    | 158,57     | kN   |           |
| Centrifuga SW/2                              |            |        |         |    |            |      |           |
| v max = 100 km/h                             |            |        |         |    |            |      |           |
| Raggio minimo =                              | 15         | 500,00 | m       |    | 1500,00    | m    |           |
| Velocità (100 km/h) =                        | 10         | 00,00  | km/h    |    | 100,00     | km/h |           |
| f (1) =                                      | 1,         | 00     |         |    | 1,00       |      |           |
| Qv =                                         | 14         | 451,48 | kN      |    | 1511,18    | kN   |           |
| Qh,max =                                     | 76         | 6,19   | kN      |    | 79,33      | kN   |           |
| Forza centrifuga sull appoggio               |            |        |         |    |            |      |           |
| F2 =                                         | 23         | 34,76  | kN      |    | 237,89     | kN   |           |
| h rispetto a intradosso imp. =               | 5,         | 08     | m       |    | 5,08       | m    |           |
| Risultanti reazioni vincolari                |            |        |         |    |            |      |           |
| F1 =                                         | 0          |        |         |    | 0          |      |           |
| F2 =                                         | -2         | :35    | kN      |    | -238       | kN   |           |
| F3 =                                         | 0          |        |         |    | 0          |      |           |
| M1 =                                         | 11         | 193    | kNm     |    | 1209       | kNm  |           |
| M2 =                                         | 0          |        |         |    | 0          |      |           |
|                                              |            |        |         |    |            |      |           |

0

COMMESSA

LOTTO



## 6.3.3.2 DISPOSIZIONE DI CARICO 2 (Q32)

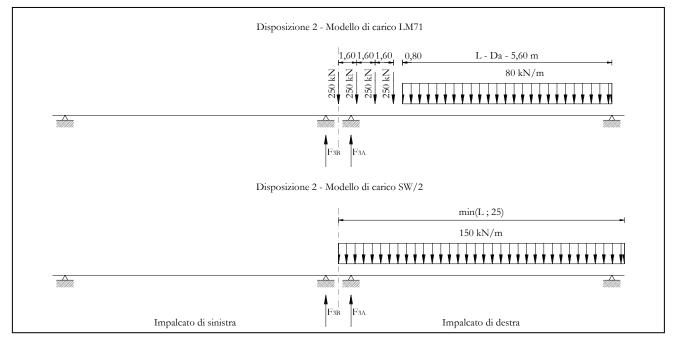



Figura 31 – Disposizione di carico 2

|                       | IMPALCATO-SX |          | <u>IMPALCATO</u> | <u> D-DX</u> |
|-----------------------|--------------|----------|------------------|--------------|
|                       | Reazioni vin | colari B | Reazioni vin     | colari A     |
| Centrifuga LM71       |              |          |                  |              |
| v = vmax              |              |          |                  |              |
| Raggio minimo =       | 1500,00      | m        | 1500,00          | m            |
| Velocità massima =    | 180,00       | km/h     | 180,00           | km/h         |
| Lf =                  | 25,00        | m        | 25,00            | m            |
| f =                   | 0,75         |          | 0,75             |              |
| Qv =                  | 0,00         | kN       | 1530,51          | kN           |
| Qh =                  | 0,00         | kN       | 195,59           | kN           |
|                       |              |          |                  |              |
| v = 120 km/h          |              |          |                  |              |
| Raggio minimo =       | 1500,00      | m        | 1500,00          | m            |
| Velocità (120 km/h) = | 120,00       | km/h     | 120,00           | km/h         |
| f (1) =               | 1,00         |          | 1,00             |              |
| Qv =                  | 0,00         | kN       | 1683,56          | kN           |
|                       |              |          |                  |              |



# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 67 di 138 |

| Qh =                           | 0,00    | kN   | 127,26  | kN   |
|--------------------------------|---------|------|---------|------|
| Qh,max =                       | 0,00    | kN   | 195,59  | kN   |
| Centrifuga SW/2                |         |      |         |      |
| v max = 100 km/h               |         |      |         |      |
| Raggio minimo =                | 1500,00 | m    | 1500,00 | m    |
| Velocità (100 km/h) =          | 100,00  | km/h | 100,00  | km/h |
| f =                            | 1,00    |      | 1,00    |      |
| Qv =                           | 0,00    | kN   | 1875,00 | kN   |
|                                |         |      |         |      |
| Qh,max =                       | 0,00    | kN   | 98,43   | kN   |
| Forza centrifuga sull appoggio |         |      |         |      |
| F2 =                           | 0,00    | kN   | 294,02  | kN   |
| h rispetto a intradosso imp. = | 5,08    | m    | 5,08    | m    |
| Risultanti reazioni vincolari  |         |      |         |      |
| F1 =                           | 0       |      | 0       |      |
| F2 =                           | 0       | kN   | -294    | kN   |
| F3 =                           | 0       |      | 0       |      |
| M1 =                           | 0       | kNm  | 1494    | kNm  |
| M2 =                           | 0       |      | 0       |      |
| M3 =                           | 0       |      | 0       |      |
|                                |         |      |         |      |



Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF1N 01 E ZZ CL VI0605 016 В 68 di 138

## 6.3.3.3 DISPOSIZIONE DI CARICO 3 (Q33)

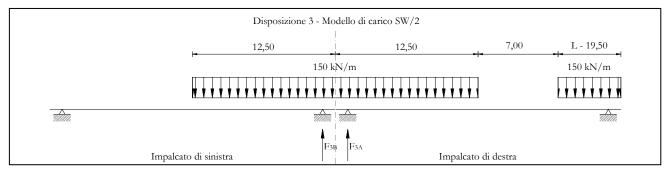



Figura 32 - Disposizione di carico 3

|                       | IMPALCATO-SX Reazioni vincolari B |      | IMPALCATO-DX<br>Reazioni vincolari |      |
|-----------------------|-----------------------------------|------|------------------------------------|------|
| Centrifuga LM71       |                                   |      |                                    |      |
| v = vmax              |                                   |      |                                    |      |
| Raggio minimo =       | 1500,00                           | m    | 1500,00                            | m    |
| Velocità massima =    | 180,00                            | km/h | 180,00                             | km/h |
| Lf =                  | 25,00                             | m    | 25,00                              | m    |
| f =                   | 0,75                              |      | 0,75                               |      |
| Qv =                  | 0,00                              | kN   | 0,00                               | kN   |
| Qh =                  | 0,00                              | kN   | 0,00                               | kN   |
| v = 120 km/h          |                                   |      |                                    |      |
| Raggio minimo =       | 1500,00                           | m    | 1500,00                            | m    |
| Velocità (120 km/h) = | 120,00                            | km/h | 120,00                             | km/h |
| f (1) =               | 1,00                              |      | 1,00                               |      |
| Qv =                  | 0,00                              | kN   | 0,00                               | kN   |
| Qh =                  | 0,00                              | kN   | 0,00                               | kN   |
| Qh,max =              | 0,00                              | kN   | 0,00                               | kN   |
| Centrifuga SW/2       |                                   |      |                                    |      |
| v max = 100 km/h      |                                   |      |                                    |      |
| Raggio minimo =       | 1500,00                           | m    | 1500,00                            | m    |





# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 69 di 138 |

| Velocità (100 km/h) = f =      | 100,00<br>1,00 | km/h | 100,00<br>1,00 | km/h |
|--------------------------------|----------------|------|----------------|------|
| Qv =                           | 1451,48        | kN   | 1511,18        | kN   |
| Qh,max =                       | 76,19          | kN   | 79,33          | kN   |
| Forza centrifuga sull appoggio |                |      |                |      |
|                                |                |      |                |      |
| F2 =                           | 76,19          | kN   | 79,33          | kN   |
| h rispetto a intradosso imp. = | 5,08           | m    | 5,08           | m    |
| Risultanti reazioni vincolari  |                |      |                |      |
| F1 =                           | 0              |      | 0              |      |
| F2 =                           | -76            | kN   | -79            | kN   |
| F3 =                           | 0              |      | 0              |      |
| M1 =                           | 387            | kNm  | 403            | kNm  |
| M2 =                           | 0              |      | 0              |      |
| M3 =                           | 0              |      | 0              |      |



## 6.3.3.4 DISPOSIZIONE DI CARICO 4 (Q34)

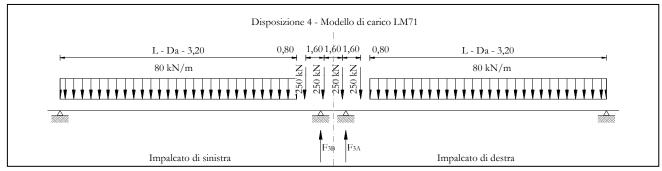



Figura 33 - Disposizione di carico 4

|                       | IMPALCATO-SX  Reazioni vincolari B |         | IMPALCATO-DX<br>Reazioni vincolari A |      |
|-----------------------|------------------------------------|---------|--------------------------------------|------|
|                       | Reazioni vinco                     | olari B | Reazioni vincolari A                 |      |
| Centrifuga LM71       |                                    |         |                                      |      |
| v = vmax              |                                    |         |                                      |      |
| Raggio minimo =       | 1500,00                            | m       | 1500,00                              | m    |
| Velocità massima =    | 180,00                             | km/h    | 180,00                               | km/h |
| Lf =                  | 25,00                              | m       | 25,00                                | m    |
| f =                   | 0,75                               |         | 0,75                                 |      |
| Qv =                  | 1240,77                            | kN      | 1240,77                              | kN   |
| Qh =                  | 158,57                             | kN      | 158,57                               | kN   |
|                       |                                    |         |                                      |      |
| v = 120 km/h          |                                    |         |                                      |      |
| Raggio minimo =       | 1500,00                            | m       | 1500,00                              | m    |
| Velocità (120 km/h) = | 120,00                             | km/h    | 120,00                               | km/h |
| f (1) =               | 1,00                               |         | 1,00                                 |      |
| Qv =                  | 1364,85                            | kN      | 1364,85                              | kN   |
| Qh =                  | 103,17                             | kN      | 103,17                               | kN   |
|                       |                                    |         |                                      |      |
| Qh,max =              | 158,57                             | kN      | 158,57                               | kN   |

## Centrifuga SW/2

v max = 100 km/h





# ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 71 di 138 |
|----------|---------|----------|------------|------|-----------|
| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |

| Raggio minimo =                | 1500,00 | m    | 1500,00 | m    |  |
|--------------------------------|---------|------|---------|------|--|
| Velocità (100 km/h) =          | 100,00  | km/h | 100,00  | km/h |  |
| f =                            | 1,00    |      | 1,00    |      |  |
| Qv =                           | 0,00    | kN   | 0,00    | kN   |  |
|                                |         |      |         |      |  |
| Qh,max =                       | 0,00    | kN   | 0,00    | kN   |  |
|                                | •       |      |         |      |  |
| Forza centrifuga sull appoggio |         |      |         |      |  |
| <u></u>                        |         |      |         |      |  |
| F2 =                           | 158,57  | kN   | 158,57  | kN   |  |
| 12-                            | 150,57  | KIN  | 130,37  | KIN  |  |
| h rianatta a intradagaa imp —  | 5,08    | m    | 5,08    | m    |  |
| h rispetto a intradosso imp. = | 5,06    | 111  | 5,06    | m    |  |
| Die Kend von Seit Steinlich    |         |      |         |      |  |
| Risultanti reazioni vincolari  |         |      |         |      |  |
|                                |         |      |         |      |  |
| F1 =                           | 0       |      | 0       |      |  |
| F2 =                           | -159    | kN   | -159    | kN   |  |
| F3 =                           | 0       |      | 0       |      |  |
| M1 =                           | 806     | kNm  | 806     | kNm  |  |
| M2 =                           | 0       |      | 0       |      |  |
| M3 =                           | 0       |      | 0       |      |  |
|                                |         |      |         |      |  |



## 6.3.3.5 DISPOSIZIONE DI CARICO 5 (Q35)

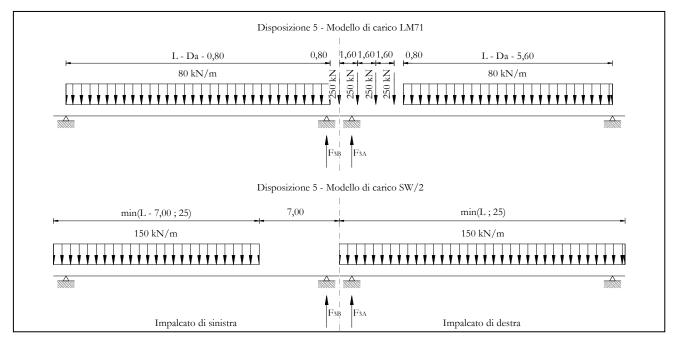



Figura 34 – Disposizione di carico 5

|                       | IMPALCATO-SX Reazioni vincolari B |      | IMPALCATO-<br>Reazioni vinco |      |
|-----------------------|-----------------------------------|------|------------------------------|------|
| Centrifuga LM71       |                                   |      |                              |      |
| v = vmax              |                                   |      |                              |      |
| Raggio minimo =       | 1500,00                           | m    | 1500,00                      | m    |
| Velocità massima =    | 180,00                            | km/h | 180,00                       | km/h |
| Lf =                  | 25,00                             | m    | 25,00                        | m    |
| f =                   | 0,75                              |      | 0,75                         |      |
| Qv =                  | 936,16                            | kN   | 1530,51                      | kN   |
| Qh =                  | 119,64                            | kN   | 195,59                       | kN   |
|                       |                                   |      |                              |      |
| v = 120 km/h          |                                   |      |                              |      |
| Raggio minimo =       | 1500,00                           | m    | 1500,00                      | m    |
| Velocità (120 km/h) = | 120,00                            | km/h | 120,00                       | km/h |
| f (1) =               | 1,00                              |      | 1,00                         |      |
| Qv =                  | 1029,77                           | kN   | 1683,56                      | kN   |

Ghella



### ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

CODIFICA

VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

DOCUMENTO

REV.

FOGLIO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| <br>,,,,,                      | IF1N 0  | 1 E ZZ CL | VI0605 016 | B 73 di 138 |
|--------------------------------|---------|-----------|------------|-------------|
| Qh =                           | 77,84   | kN        | 127,26     | kN          |
| Qh,max =                       | 119,64  | kN        | 195,59     | kN          |
| Centrifuga SW/2                |         |           |            |             |
| v max = 100 km/h               |         |           |            |             |
| Raggio minimo =                | 1500,00 | m         | 1500,00    | m           |
| Velocità (100 km/h) =          | 100,00  | km/h      | 100,00     | km/h        |
| f =                            | 1,00    |           | 1,00       |             |
| Qv =                           | 935,53  | kN        | 1875,00    | kN          |
| Qh,max =                       | 49,11   | kN        | 98,43      | kN          |
| Forza centrifuga sull appoggio |         |           |            |             |
| F2 =                           | 168,75  | kN        | 294,02     | kN          |
| h rispetto a intradosso imp. = | 5,08    | m         | 5,08       | m           |
| Risultanti reazioni vincolari  |         |           |            |             |
| F1 =                           | 0       |           | 0          |             |
| F2 =                           | -169    | kN        | -294       | kN          |
| F3 =                           | 0       |           | 0          |             |
| M1 =                           | 857     | kNm       | 1494       | kNm         |
| M2 =                           | 0       |           | 0          |             |
| M3 =                           | 0       |           | 0          |             |
|                                |         |           |            |             |

COMMESSA LOTTO



### 6.3.3.6 DISPOSIZIONE DI CARICO 6 (Q36)

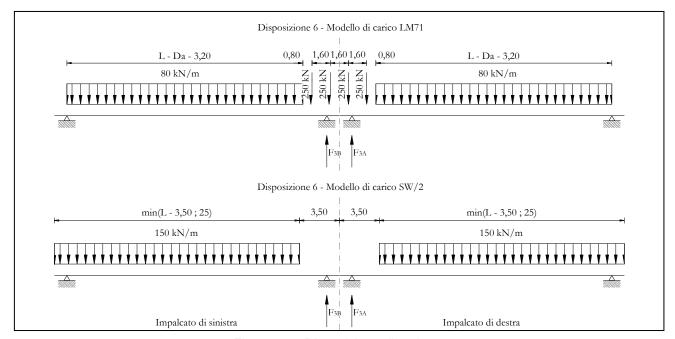



Figura 35 – Disposizione di carico 6

|                       | IMPALCATO-SX Reazioni vincolari B |      | IMPALCATO-DX<br>Reazioni vincolari A |      |
|-----------------------|-----------------------------------|------|--------------------------------------|------|
| Centrifuga LM71       |                                   |      |                                      |      |
| v = vmax              |                                   |      |                                      |      |
| Raggio minimo =       | 1500,00                           | m    | 1500,00                              | m    |
| Velocità massima =    | 180,00                            | km/h | 180,00                               | km/h |
| Lf =                  | 25,00                             | m    | 25,00                                | m    |
| f =                   | 0,75                              |      | 0,75                                 |      |
| Qv =                  | 1240,77                           | kN   | 1240,77                              | kN   |
| Qh =                  | 158,57                            | kN   | 158,57                               | kN   |
|                       |                                   |      |                                      |      |
| v = 120 km/h          |                                   |      |                                      |      |
| Raggio minimo =       | 1500,00                           | m    | 1500,00                              | m    |
| Velocità (120 km/h) = | 120,00                            | km/h | 120,00                               | km/h |
| f (1) =               | 1,00                              |      | 1,00                                 |      |
| Qv =                  | 1364,85                           | kN   | 1364,85                              | kN   |
|                       |                                   |      |                                      |      |

Ghella

M3 =



### ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E

CODIFICA

LOTTO

COMMESSA

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

0

DOCUMENTO

REV.

FOGLIO

| Pile 20, 21, 22, 23, 30, 4 | 1 e 42 : Relazione di calcolo |
|----------------------------|-------------------------------|
|----------------------------|-------------------------------|

| <br>e 20, 21, 22, 23, 30, 41 e 42 : Relazione di Calcol | Ю  | IF1N   | 01 E Z | z ( | CL | VI0605 016 | В    | 75 di 138 |
|---------------------------------------------------------|----|--------|--------|-----|----|------------|------|-----------|
| Qh =                                                    | 10 | 03,17  | k۱     | N   |    | 103,17     | kN   |           |
| Qh,max =                                                | 15 | 58,57  | k۱     | ٧   |    | 158,57     | kN   |           |
| Centrifuga SW/2                                         |    |        |        |     |    |            |      |           |
| v max = 100 km/h                                        |    |        |        |     |    |            |      |           |
| Raggio minimo =                                         | 15 | 500,00 | m      |     |    | 1500,00    | m    |           |
| Velocità (100 km/h) =                                   | 10 | 00,00  | kr     | n/h |    | 100,00     | km/h |           |
| f =                                                     | 1, | 00     |        |     |    | 1,00       |      |           |
| Qv =                                                    | 13 | 864,97 | k۱     | ١   |    | 1364,97    | kN   |           |
| Qh,max =                                                | 71 | ,65    | k۱     | ٧   |    | 71,65      | kN   |           |
| Forza centrifuga sull appoggio                          |    |        |        |     |    |            |      |           |
| F2 =                                                    | 23 | 30,22  | k۱     | ٧   |    | 230,22     | kN   |           |
| h rispetto a intradosso imp. =                          | 5, | 08     | m      |     |    | 5,08       | m    |           |
| Risultanti reazioni vincolari                           |    |        |        |     |    |            |      |           |
| F1 =                                                    | 0  |        |        |     |    | 0          |      |           |
| F2 =                                                    | -2 | 30     | k۱     | ٧   |    | -230       | kN   |           |
| F3 =                                                    | 0  |        |        |     |    | 0          |      |           |
| M1 =                                                    | 11 | 70     | k۱     | ٧m  |    | 1170       | kNm  |           |
| M2 =                                                    | 0  |        |        |     |    | 0          |      |           |
|                                                         | _  |        |        |     |    | _          |      |           |

0



### 6.3.3.7 DISPOSIZIONE DI CARICO 7 (Q37)

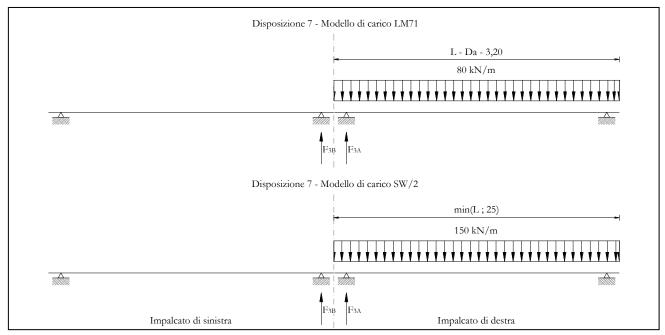



Figura 36 – Disposizione di carico 7

|                       | IMPALCATO-SX<br>Reazioni vincolari B |      | IMPALCATO-DX<br>Reazioni vincolari A |      |
|-----------------------|--------------------------------------|------|--------------------------------------|------|
| Centrifuga LM71       |                                      |      |                                      |      |
| v = vmax              |                                      |      |                                      |      |
| Raggio minimo =       | 1500,00                              | m    | 1500,00                              | m    |
| Velocità massima =    | 180,00                               | km/h | 180,00                               | km/h |
| Lf =                  | 25,00                                | m    | 25,00                                | m    |
| f =                   | 0,75                                 |      | 0,75                                 |      |
| Qv =                  | 0,00                                 | kN   | 1002,12                              | kN   |
| Qh =                  | 0,00                                 | kN   | 128,07                               | kN   |
| v = 120 km/h          |                                      |      |                                      |      |
| Raggio minimo =       | 1500,00                              | m    | 1500,00                              | m    |
| Velocità (120 km/h) = | 120,00                               | km/h | 120,00                               | km/h |
| f (1) =               | 1,00                                 |      | 1,00                                 |      |
| Qv =                  | 0,00                                 | kN   | 1102,34                              | kN   |

Ghella

M3 =



### ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO – ERASSO TE

CODIFICA

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

0

DOCUMENTO

REV.

FOGLIO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| ie 20, 21, 22, 23, 30, 41 e 42 : Relazione di ca | icolo | IF1N   | 01 E ZZ | CL | VI0605 016 | В    | 77 di 138 |
|--------------------------------------------------|-------|--------|---------|----|------------|------|-----------|
| Qh =                                             | 0,    | 00     | kN      |    | 83,33      | kN   |           |
| Qh,max =                                         | 0,    | 00     | kN      |    | 128,07     | kN   |           |
| Centrifuga SW/2                                  |       |        |         |    |            |      |           |
| v max = 100 km/h                                 |       |        |         |    |            |      |           |
| Raggio minimo =                                  | 15    | 500,00 | m       |    | 1500,00    | m    |           |
| Velocità (100 km/h) =                            | 10    | 00,00  | km/h    |    | 100,00     | km/h |           |
| f =                                              | 1,    | 00     |         |    | 1,00       |      |           |
| Qv =                                             | 0,    | 00     | kN      |    | 1875,00    | kN   |           |
| Qh,max =                                         | 0,    | 00     | kN      |    | 98,43      | kN   |           |
| Forza centrifuga sull appoggio                   |       |        |         |    |            |      |           |
| F2 =                                             | 0,    | 00     | kN      |    | 226,49     | kN   |           |
| h rispetto a intradosso imp. =                   | 5,    | 08     | m       |    | 5,08       | m    |           |
| Risultanti reazioni vincolari                    |       |        |         |    |            |      |           |
| F1 =                                             | 0     |        |         |    | 0          |      |           |
| F2 =                                             | 0     |        | kN      |    | -226       | kN   |           |
| F3 =                                             | 0     |        |         |    | 0          |      |           |
| M1 =                                             | 0     |        | kNm     |    | 1151       | kNm  |           |
| M2 =                                             | 0     |        |         |    | 0          |      |           |

0

COMMESSA

LOTTO



Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 78 di 138

### 6.3.4 SERPEGGIO (Q4)

La forza laterale indotta dal serpeggio si schematizza come una forza concentrata agente orizzontalmente perpendicolarmente all'asse del binario.

Il valore caratteristico di tale forza è assunto pari a 100 kN. Tale valore deve essere moltiplicato per  $\alpha$  ma non per il coefficiente di amplificazione dinamica.

Nei sottoparagrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3.

### 6.3.4.1 DISPOSIZIONE DI CARICO 1 (Q41)

|                                | IMPALCATO-SX   |         | IMPALCATO-DX         |     |
|--------------------------------|----------------|---------|----------------------|-----|
|                                | Reazioni vinco | olari B | Reazioni vincolari / |     |
| Serpeggio LM71                 |                |         |                      |     |
| Forza serpeggio =              | 100,00         | kN      | 100,00               | kN  |
| α =                            | 1,10           |         | 1,10                 |     |
| Serpeggio SW/2                 |                |         |                      |     |
| Forza serpeggio =              | 100,00         | kN      | 100,00               | kN  |
| α =                            | 1,00           |         | 1,00                 |     |
| Forza totale serpeggio F2 =    | 210,00         | kN      | 210,00               | kN  |
| h rispetto a intradosso imp. = | 3,28           | m       | 3,28                 | m   |
| Risultanti reazioni vincolari  |                |         |                      |     |
| F1 =                           | 0              |         | 0                    |     |
| F2 =                           | -105           | kN      | -105                 | kN  |
| F3 =                           | 0              |         | 0                    |     |
| M1 =                           | 344            | kNm     | 344                  | kNm |
| M2 =                           | 0              |         | 0                    |     |
| M3 =                           | 0              |         | 0                    |     |





Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 79 di 138

### 6.3.4.2 DISPOSIZIONE DI CARICO 2 (Q42)

|                                | IMPALCATO-SX<br>Reazioni vincolari B |     | IMPALCATO-DX<br>Reazioni vincolari A |     |  |  |  |
|--------------------------------|--------------------------------------|-----|--------------------------------------|-----|--|--|--|
| Serpeggio LM71                 |                                      |     |                                      |     |  |  |  |
| Forza serpeggio = α =          | 100,00<br>1,10                       | kN  | 100,00<br>1,10                       | kN  |  |  |  |
| Serpeggio SW/2                 |                                      |     |                                      |     |  |  |  |
| Forza serpeggio = α =          | 100,00<br>1,00                       | kN  | 100,00<br>1,00                       | kN  |  |  |  |
| Forza totale serpeggio         |                                      |     |                                      |     |  |  |  |
| F2 =                           | 210,00                               | kN  | 210,00                               | kN  |  |  |  |
| h rispetto a intradosso imp. = | 3,28                                 | m   | 3,28                                 | m   |  |  |  |
| Risultanti reazioni vincolari  |                                      |     |                                      |     |  |  |  |
| F1 =                           | 0                                    |     | 0                                    |     |  |  |  |
| F2 =                           | 0                                    | kN  | -210                                 | kN  |  |  |  |
| F3 =                           | 0                                    |     | 0                                    |     |  |  |  |
| M1 =                           | 0                                    | kNm | 689                                  | kNm |  |  |  |
| M2 =                           | 0                                    |     | 0                                    |     |  |  |  |
| M3 =                           | 0                                    |     | 0                                    |     |  |  |  |





Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 80 di 138

### 6.3.4.3 DISPOSIZIONE DI CARICO 3 (Q43)

|                                | IMPALCATO-S    | <u>SX</u> | IMPALCATO-DX         |     |
|--------------------------------|----------------|-----------|----------------------|-----|
|                                | Reazioni vinco | lari B    | Reazioni vincolari A |     |
| Serpeggio LM71                 |                |           |                      |     |
| Forza serpeggio = α =          | 0,00<br>1,10   | kN        | 0,00<br>1,10         | kN  |
| Serpeggio SW/2                 |                |           |                      |     |
| Forza serpeggio = α =          | 100,00<br>1,00 | kN        | 100,00<br>1,00       | kN  |
| Forza totale serpeggio         |                |           |                      |     |
| F2 =                           | 100,00         | kN        | 100,00               | kN  |
| h rispetto a intradosso imp. = | 3,28           | m         | 3,28                 | m   |
| Risultanti reazioni vincolari  |                |           |                      |     |
| F1 =                           | 0              |           | 0                    |     |
| F2 =                           | -50            | kN        | -50                  | kN  |
| F3 =                           | 0              |           | 0                    |     |
| M1 =                           | 164            | kNm       | 164                  | kNm |
| M2 =                           | 0              |           | 0                    |     |
| M3 =                           | 0              |           | 0                    |     |





### ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 81 di 138

### 6.3.4.4 DISPOSIZIONE DI CARICO 4 (Q44)

|                                | IMPALCATO-SX<br>Reazioni vincolari B |     | IMPALCATO-DX<br>Reazioni vincolari A |     |
|--------------------------------|--------------------------------------|-----|--------------------------------------|-----|
| Serpeggio LM71                 |                                      |     |                                      |     |
| Forza serpeggio = α =          | 100,00<br>1,10                       | kN  | 100,00<br>1,10                       | kN  |
| Serpeggio SW/2                 |                                      |     |                                      |     |
| Forza serpeggio = α =          | 0,00<br>1,00                         | kN  | 0,00<br>1,00                         | kN  |
| Forza totale serpeggio         |                                      |     |                                      |     |
| F2 =                           | 110,00                               | kN  | 110,00                               | kN  |
| h rispetto a intradosso imp. = | 3,28                                 | m   | 3,28                                 | m   |
| Risultanti reazioni vincolari  |                                      |     |                                      |     |
| F1 =                           | 0                                    |     | 0                                    |     |
| F2 =                           | -55                                  | kN  | -55                                  | kN  |
| F3 =                           | 0                                    |     | 0                                    |     |
| M1 =                           | 180                                  | kNm | 180                                  | kNm |
| M2 =                           | 0                                    |     | 0                                    |     |
| M3 =                           | 0                                    |     | 0                                    |     |





Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 82 di 138

### 6.3.4.5 DISPOSIZIONE DI CARICO 5 (Q45)

|                                | IMPALCATO-SX   |        | IMPALCATO-DX         |     |
|--------------------------------|----------------|--------|----------------------|-----|
|                                | Reazioni vinco | lari B | Reazioni vincolari A |     |
| Serpeggio LM71                 |                |        |                      |     |
| Forza serpeggio = α =          | 100,00<br>1,10 | kN     | 100,00<br>1,10       | kN  |
| Serpeggio SW/2                 |                |        |                      |     |
| Forza serpeggio =              | 100,00         | kN     | 100,00               | kN  |
| α =                            | 1,00           |        | 1,00                 |     |
| Forza totale serpeggio         |                |        |                      |     |
| F2 =                           | 210,00         | kN     | 210,00               | kN  |
| h rispetto a intradosso imp. = | 3,28           | m      | 3,28                 | m   |
| Risultanti reazioni vincolari  |                |        |                      |     |
| F1 =                           | 0              |        | 0                    |     |
| F2 =                           | -105           | kN     | -105                 | kN  |
| F3 =                           | 0              |        | 0                    |     |
| M1 =                           | 344            | kNm    | 344                  | kNm |
| M2 =                           | 0              |        | 0                    |     |
| M3 =                           | 0              |        | 0                    |     |





Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 83 di 138

### 6.3.4.6 DISPOSIZIONE DI CARICO 6 (Q46)

|                                | IMPALCATO-S<br>Reazioni vinco |     | IMPALCATO-DX<br>Reazioni vincolari A |     |  |  |  |
|--------------------------------|-------------------------------|-----|--------------------------------------|-----|--|--|--|
| Serpeggio LM71                 |                               |     |                                      |     |  |  |  |
| Forza serpeggio = α =          | 100,00<br>1,10                | kN  | 100,00<br>1,10                       | kN  |  |  |  |
| Serpeggio SW/2                 |                               |     |                                      |     |  |  |  |
| Forza serpeggio = α =          | 100,00<br>1,00                | kN  | 100,00<br>1,00                       | kN  |  |  |  |
| Forza totale serpeggio         |                               |     |                                      |     |  |  |  |
| F2 =                           | 210,00                        | kN  | 210,00                               | kN  |  |  |  |
| h rispetto a intradosso imp. = | 3,28                          | m   | 3,28                                 | m   |  |  |  |
| Risultanti reazioni vincolari  |                               |     |                                      |     |  |  |  |
| F1 =                           | 0                             |     | 0                                    |     |  |  |  |
| F2 =                           | -105                          | kN  | -105                                 | kN  |  |  |  |
| F3 =                           | 0                             |     | 0                                    |     |  |  |  |
| M1 =                           | 344                           | kNm | 344                                  | kNm |  |  |  |
| M2 =                           | 0                             |     | 0                                    |     |  |  |  |
| M3 =                           | 0                             |     | 0                                    |     |  |  |  |





### ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 84 di 138

### 6.3.4.7 DISPOSIZIONE DI CARICO 7 (Q47)

|                                | IMPALCATO-SX   |            | IMPALCATO-DX         |            |
|--------------------------------|----------------|------------|----------------------|------------|
|                                | Reazioni vinco | olari B    | Reazioni vincolari A |            |
| Serpeggio LM71                 |                |            |                      |            |
| Forza serpeggio =              | 100,00         | kN         | 100,00               | kN         |
| α =                            | 1,10           |            | 1,10                 |            |
| Serpeggio SW/2                 |                |            |                      |            |
| Forza serpeggio =              | 100,00         | kN         | 100,00               | kN         |
| α =                            | 1,00           |            | 1,00                 |            |
| Forza totale serpeggio         |                |            |                      |            |
| F2 =                           | 210,00         | kN         | 210,00               | kN         |
| h rispetto a intradosso imp. = | 3,28           | m          | 3,28                 | m          |
| Risultanti reazioni vincolari  |                |            |                      |            |
| F1 =                           | 0              |            | 0                    |            |
| F2 =                           | 0              | kN         | -210                 | kN         |
| F3 =                           | 0              | Le N I man | 0                    | l c N long |
| M1 =<br>M2 =                   | 0              | kNm        | 689<br>0             | kNm        |
| M3 =                           | 0              |            | 0                    |            |
|                                | •              |            | •                    |            |



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 85 di 138 |

### 6.4 CARICHI VARIABILI (Q5)

### 6.4.1 AZIONI DEL VENTO (Q51)

L'azione del vento viene ricondotta ad un'azione statica equivalente costituita da pressioni e depressioni agenti normalmente alle superfici.

La pressione del vento è data dalla seguente espressione:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d$$

dove qb pressione cinetica di riferimento

ce coefficiente di esposizione

cp coefficiente di forma

cd coefficiente dinamico, posto generalmente pari a 1

Di seguito si riporta il dettaglio del calcolo di tali fattori per l'opera in oggetto.





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 86 di 138 |

### 6.4.1.1 PRESSIONE CINETICA DI RIFERIMENTO

La pressione cinetica di riferimento si determina mediante l'espressione:

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2$$
 (in N/m<sup>2</sup>)

dove vb velocità di riferimento

ρ densità dell'aria, convenzionalmente posta pari a 1,25 kg/m<sup>3</sup>

Di seguito si determina la pressione di riferimento sulla base dei parametri caratteristici del sito e il tempo di ritorno dell'opera in oggetto:

0,02

m/s m

1/s

### Parametri dipendenti dal sito

| Zona = | 3      |
|--------|--------|
| vb,0 = | 27,00  |
| a0 =   | 500,00 |

### Altitudine del sito

ka =

| as = | 80,00 | m s.l.m. |
|------|-------|----------|
| vb = | 27.00 | m/s      |

### Tempo di ritorno

| TR =     | 75    | anni |
|----------|-------|------|
| αR(TR) = | 1,02  |      |
| vb(TR) = | 27.63 | m/s  |

### Pressione di riferimento

$$qb = 477.25$$
 N/m2





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO CODIFICA

IF1N 01 E ZZ CL

DOCUMENTO
VI0605 016

FOGLIO **87 di 138** 

### 6.4.1.2 COEFFICIENTE DI ESPOSIZIONE

Il coefficiente di esposizione c<sub>e</sub> dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito e si determina mediante l'espressione:

 $c_e(z) = k_r \cdot c_t \cdot ln(z/z_0) [7 + c_t \cdot ln(z/z_0)]$  per  $z \ge z_{min}$ 

 $C_e(Z) = C_e(Z_{min})$  per  $Z < Z_{min}$ 

dove k<sub>r</sub>, z<sub>0</sub>, z<sub>min</sub> sono parametri che dipendono dalla categoria di esposizione del sito;

ct è il coefficiente di topografia, posto generalmente pari a 1

Di seguito si determina il coefficiente di esposizione sulla base della classe d'esposizione e l'altezza z del punto considerato, posta pari alla massima quota del complesso impalcato, barriere antirumore, sagoma del treno. A tal proposito il §1.4.4.2 [3] impone di considerare il treno come una superficie piana continua convenzionalmente alta 4,00 m sul p.f.. Cautelativamente si considerano presenti barriere H4 ad entrambe le estremità dell'impalcato.

### Categoria di esposizione

Classe di rugosità = D

Distanza dalla costa = < 30 km

Categoria di esposizione = II

kr = 0,19

z0 = 0,05 m

zmin = 4,00 m

### Quota di riferimento z

H pila fino a intradosso imp. = 6.5 m H imp. fino a p.f. = 3,28 m

H b.a. su p.f. = 3,26 m

H min b.a. su p.f. = 4,07 m

H treno su p.f. = 4,00 m

z di riferimento= 14.45 m

### Coefficiente di esposizione

ce = 2.66



### 6.4.1.3 COEFFICIENTE DI FORMA DELL'IMPALCATO

Il coefficiente di forma dell'impalcato e l'area di riferimento per il calcolo della forza risultante si determinano in base ai criteri enunciati nel §8.3.1 [9].

A tal proposito si riconduce il coefficiente di forma  $c_p$  al coefficiente di forza  $c_{fx,0}$ . Il coefficiente di forza  $c_{fx,0}$  si determina in base al rapporto tra larghezza b e altezza totale dell'impalcato  $d_{tot}$ .

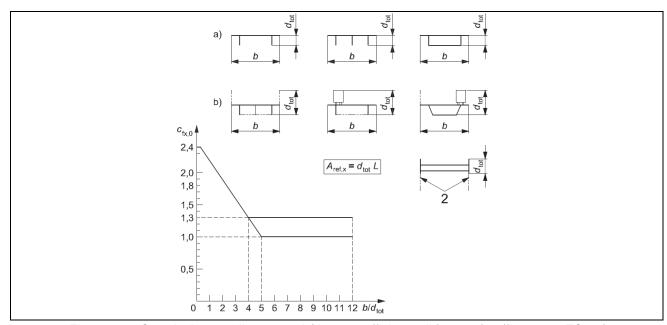



Figura 37 – Correlazione tra il rapporto b/dtot e coefficiente di forma cfx0 (figura 8.3 EC1-4)

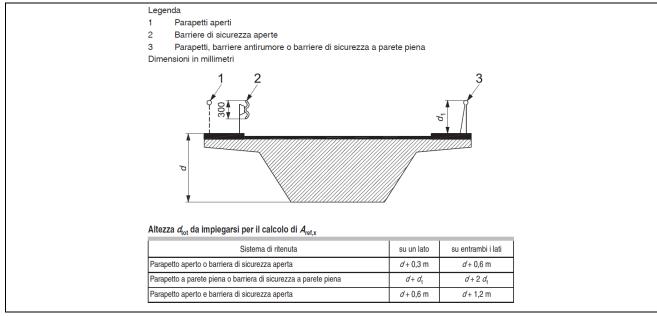



Figura 38 – Criteri per la determinazione dell'area di riferimento (figura 8.5 EC1-4)





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 89 di 138 |

'area da considerare per il calcolo della risultante di forza si definisce come la somma di tutte le superfici proiettate dall'impalcato nel piano longitudinale, comprese le barriere e la sagoma dei veicoli.

Per il caso in esame si ha:

### Caratteristiche geometriche dell'impalcato

|                                 | IMPALCATO- | <u>SX</u> | IMPALCATO-DX |    |
|---------------------------------|------------|-----------|--------------|----|
| b =                             | 13,70      | m         | 13,70        | m  |
| H b.a. su p.f. =                | 4,67       | m         | 4,67         | m  |
| dtot =                          | 7,95       | m         | 7,95         | m  |
|                                 |            |           |              |    |
| b/dtot =                        | 1,72       |           | 1,72         |    |
| cp =                            | 1,98       |           | 1,98         |    |
|                                 |            |           |              |    |
| Coefficiente di forma           |            |           |              |    |
|                                 |            |           |              |    |
| cp,max =                        | 1,98       |           |              |    |
|                                 |            |           |              |    |
| Area di riferimento             |            |           |              |    |
|                                 |            |           |              |    |
| H impalcato da intrad. a p.f. = | 3,28       | m         | 3,28         | m  |
| H barriera su p.f. sx =         | 4,67       | m         | 4,67         | m  |
| H barriera su p.f. dx =         | 4,67       | m         | 4,67         | m  |
| H b.a. min su p.f. =            | 3,35       | m         | 3,35         | m  |
| H treno su p.f. =               | 4,00       | m         | 4,00         | m  |
| dtot2 =                         | 12,62      | m         | 12,62        | m  |
| L impalcato =                   | 25,00      | m         | 25,00        | m  |
|                                 |            |           |              |    |
| Arif =                          | 315,50     | m2        | 315,50       | m2 |
|                                 |            |           |              |    |





Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 90 di 138

### 6.4.1.4 AZIONE DEL VENTO SULL'IMPALCATO

Di seguito si procede al calcolo dell'azione del vento sull'impalcato in relazione ai parametri determinati nei paragrafi precedenti.

|                                        | <u>IMPALCATO</u> | D-SX  | <u>IMPALCATO</u> | D-DX  |
|----------------------------------------|------------------|-------|------------------|-------|
| Pressione del vento                    |                  |       |                  |       |
| qb =                                   | 477.25           | N/m2  | 477.25           | N/m2  |
| ce =                                   | 2.66             |       | 2.66             |       |
| cp =                                   | 1,98             |       | 1,98             |       |
| cd =                                   | 1,00             |       | 1,00             |       |
| $qb = qb \cdot ce \cdot cp \cdot cd =$ | 2.52             | kN/m2 | 2.52             | kN/m2 |
| Area di riferimento                    |                  |       |                  |       |
| Arif =                                 | 315,50           | m2    | 315,50           | m2    |
| H rispetto a intrad. imp. =            | 5,62             | m     | 5,62             | m     |
| Risultante totale forza del vento      |                  |       |                  |       |
| Fvh =                                  | 794.52           | kN    | 794.52           | kN    |
| Mvt =                                  | 4461.22          | kNm   | 4461.22          | kNm   |
| Risultanti reazioni vincolari          |                  |       |                  |       |
| F1 =                                   | 0                |       | 0                |       |
| F2 =                                   | -397             | kN    | -397             | kN    |
| F3 =                                   | 0                |       | 0                |       |
| M1 =                                   | 2231             | kNm   | 2231             | kNm   |
| M2 =                                   | 0                |       | 0                |       |
| M3 =                                   | 0                |       | 0                |       |
|                                        |                  |       |                  |       |



### 6.4.1.5 COEFFICIENTE DI FORMA DELLA PILA

Nel caso di pila con sezione circolare, il coefficiente di forma della pila e l'area di riferimento per il calcolo della risultante si determinano in base alle indicazioni del §7.9.2 [9].

A tal proposito si riconduce il coefficiente di forma cp al coefficiente di forza cf.

Il coefficiente di esposizione c<sub>f</sub> si determina mediante l'espressione:

 $C_f = C_{f,0} \cdot \psi_{\lambda}$ 

dove c<sub>f,0</sub> è il

c<sub>f,0</sub> è il coefficiente di forma in assenza di effetto di estremità;

 $\psi_{\lambda}$  è il fattore di effetto di estremità, posto cautelativamente pari a 1.

Il valore di  $c_{f,0}$  si determina in funzione del numero di Reynolds e della rugosità equivalente mediante l'abaco riportato in Figura 34. Per il caso in questione, a favore di sicurezza, si pone  $c_{f,0}$  pari a 1,2 indipendentemente dai valori del numero di Reynolds e della rugosità equivalente.

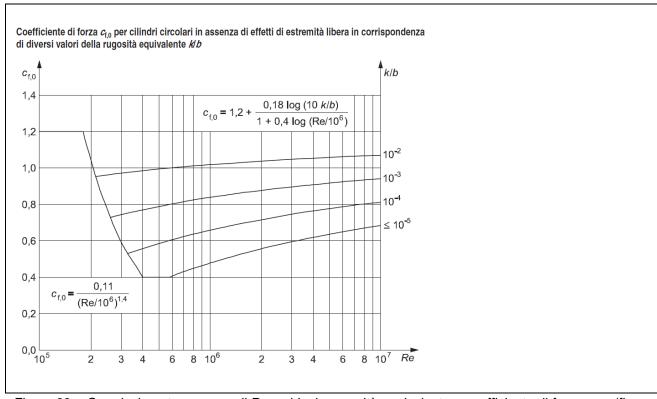



Figura 39 – Correlazione tra numero di Reynolds, la rugosità equivalente e coefficiente di forma  $c_{fx0}$  (figura 7.28 EC1-4)

Nel caso di pila con sezione rettangolare, il coefficiente di forma della pila e l'area di riferimento per il calcolo della risultante si determinano in base alle indicazioni del §7.6 [9]. A tal proposito si riconduce il coefficiente di forma  $c_p$  al coefficiente di forza  $c_f$ .

Il coefficiente di esposizione c<sub>f</sub> si determina mediante l'espressione:

 $C_f = C_{f,0} \cdot \psi_r \cdot \psi_\lambda$ 

dove c<sub>f,0</sub> è il coefficiente di forma in assenza di effetto di estremità;

ψ<sub>r</sub> è il fattore riduttivo per sezioni con spigoli arrotondati;

 $\psi_{\lambda}$  è il fattore di effetto di estremità, posto cautelativamente pari a 1.

I valori di  $c_{f,0}$  e  $\psi_r$  si determinano in funzione del rapporto tra le dimensioni in sezione dell'elemento investito, secondo gli abachi riportati nella Figura 35.

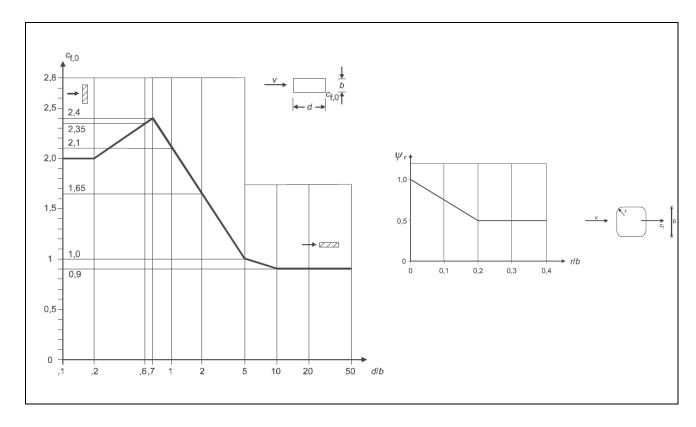



Figura 40 – Correlazione tra dimensioni in sezione dell'elemento e il coefficiente di forma  $c_{fx0}$  (figura 7.23 EC1-4) e correlazione tra il raggio di arrotondamento dello spigolo e il fattore riduttivo  $\psi_r$  (figura 7.24 EC1-4)



ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 93 di 138 |

L'area da considerare per il calcolo della risultante di forza si definisce come la superficie proiettata dalla pila nel piano longitudinale. Per il caso in esame si ha:

### Caratteristiche geometriche della pila

| Forma della pila =                                 | Rettangolare o | ava smussata |
|----------------------------------------------------|----------------|--------------|
| Dimensione proiettata nel piano b =                | 2.60           | m            |
| d =                                                | 8.60           | m            |
| d/b =                                              | 3.31           |              |
| cf,0 =                                             | 1.29           |              |
| r =                                                | 1,00           | m            |
| r/b =                                              | 0.38           |              |
| ψr =                                               | 0.50           |              |
| ψλ =                                               | 1.00           |              |
|                                                    |                |              |
| Coefficiente di forma                              |                |              |
| $cp = cf = cf,0 \cdot \psi r \cdot \psi \lambda =$ | 1.00           |              |

### Azione del vento sulla pila:

### Pressione del vento

| dp =                                   | 447.25 | N/m2  |
|----------------------------------------|--------|-------|
| ce =                                   | 2.66   |       |
| cp =                                   | 1.00   |       |
| cd =                                   | 1.00   |       |
|                                        |        |       |
| $qb = qb \cdot ce \cdot cp \cdot cd =$ | 1.27   | kN/m2 |
|                                        |        |       |
| Risultante totale forza del vento      |        |       |
|                                        |        |       |
| b =                                    | 2.60   | m     |
| fvh =                                  | 3.30   | kN/m  |

L'azione del vento così calcolata viene applicata come una forza uniformemente distribuita sugli elementi che compongono il fusto e il pulvino della pila.



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO** 

FOGLIO

94 di 138

COMMESSA LOTTO CODIFICA DOCUMENTO IF1N 01 E ZZ VI0605 016 CL В

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

### 6.5 AZIONI INDIRETTE (Q6)

### **RESISTENZE PARASSITE NEI VINCOLI (Q61)**

Per la valutazione delle coazioni generate dallo scorrimento dei vincoli, è stato considerato un coefficiente d'attrito f pari a 0,06, applicato alle azioni verticali agenti sugli apparecchi d'appoggio.

Con riferimento a quanto riportato nel §1.6.3 [3] la forza agente sulle pile per impalcati a travate isostatiche, facendo riferimento all'apparecchio d'appoggio maggiormente caricato tra i due presenti sulla pila, si considera pari a:

 $F_a = f (0.2 \cdot V_G + V_Q)$ 

 $V_{\mathsf{G}}$ reazione verticale massima associata ai carichi permanenti dove

> $V_Q$ reazione verticale massima associata ai carichi mobili dinamizzati

|                                           | IMPALCATO-         | <u>SX</u> | IMPALCATO-DX       |          |
|-------------------------------------------|--------------------|-----------|--------------------|----------|
| Reazioni verticali massime                |                    |           |                    |          |
| VG = F3 (G1+G2) =<br>VQ = F3 (Q1max) =    | 5826,14<br>3558,56 | kN<br>kN  | 5826,14<br>3558,56 | kN<br>kN |
| Forza d'attrito risultante per il singolo |                    |           | 000,00             |          |
|                                           |                    |           |                    |          |
| f =<br>F1 =                               | 0,06<br>283,43     | kN        | 0,06<br>283,43     | kN       |
| Risultante azione parassita nei vincol    | <u>i</u>           |           |                    |          |
| F1max =                                   | 283,43             | kN        |                    |          |
| Risultanti reazioni vincolari             |                    |           |                    |          |
| F1 =                                      | 0                  | kN        | -283               | kN       |
| F2 =                                      | 0                  |           | 0                  |          |
| F3 =                                      | 0                  |           | 0                  |          |
| M1 =                                      | 0                  |           | 0                  |          |
| M2 =                                      | 0                  |           | 0                  |          |
| M3 =                                      | 0                  |           | 0                  |          |



ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 95 di 138 |

### 6.6 EFFETTI D'INTERAZIONE (Q7)

Ove non applicabile il metodo semplificato per la valutazione delle azioni dovute agli effetti di interazione binario-struttura secondo quanto previsto nell'Allegato 3 delle specifiche RFI [3] si rimanda allo specifico elaborato:

IF0F.01.D.09.CL.VI0000.001 - Viadotti ferroviari - Relazione di interazione treno-binario-struttura.

### 6.6.1 VARIAZIONI TERMICHE DELL'IMPALCATO (Q71)

La presente azione si considera applicata in corrispondenza del piano ferro.

Di seguito si considera come prima pila la pila accostata alla spalla munita di appoggi fissi, si considera pertanto come ultima pila la pila accostata alla spalla munita di appoggi scorrevoli.

Dal §3.1 dell'Allegato 3 delle Specifiche RFI [3] si desume:

Fts =  $\beta \cdot \alpha ts1 \cdot \alpha ts2 \cdot \alpha ts3 \cdot L \cdot q \cdot n$ 

dove  $\alpha ts1$  0,70 nel caso di  $\Delta t = 30$  °C (valore massimo)

αts2 1,00 (rigidezza massima della spalla)

αts3 0,80 nel caso di viadotto con un numero di campate ≥ 3

L luce della campata

q resistenza allo scorrimento longitudinale del binario scarico, posto generalmente pari a 20,00 kN/m

n numero di binari

β 0,40 nel caso dell'ultima pila

β 0,20 nel caso della penultima e della prima pila

β 0,00 nel caso delle pile intermedie

Cautelativamente si pone β pari al suo valore massimo, ossia 0,4.

|                                            | IMPALCATO-SX |      | IMPALCATO- | DX   |
|--------------------------------------------|--------------|------|------------|------|
| Reazione per variazioni termiche dell'impa | llcato       |      |            |      |
| ΔT =                                       | 30.00        | °C   | 30.00      | °C   |
| L impalcato =                              | 25.00        | kN   | 25.00      | kN   |
| q =                                        | 20.00        | kN/m | 20.00      | kN/m |
| n binari =                                 | 2.00         |      | 2.00       |      |
| αtp1 =                                     | 0.70         |      | 0.70       |      |
| αtp2 =                                     | 1.00         |      | 1.00       |      |
| αtp3 =                                     | 1.00         |      | 1.00       |      |
| Ft,spalla =                                | 700.00       | kN   | 700.00     | kN   |
|                                            |              |      |            |      |
| Ft,pila =                                  | 280.00       | kN   | 280.00     | kN   |





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

| IF1N     | 01 E ZZ | CL       | VI0605 016 | B.   | 96 di 138 |
|----------|---------|----------|------------|------|-----------|
| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |

| Tipo di vincolo =             | UL   |    | F      |    |
|-------------------------------|------|----|--------|----|
| Moltiplicatore =              | 0.00 |    | 1.00   |    |
| Forza risultante              |      |    |        |    |
| F1 =                          | 0.00 | kN | 280.00 | kN |
| Risultanti reazioni vincolari |      |    |        |    |
| F1 =                          | 0    | kN | -280   | kN |
| F2 =                          | 0    |    | 0      |    |
| F3 =                          | 0    |    | 0      |    |
| M1 =                          | 0    |    | 0      |    |
| M2 =                          | 0    |    | 0      |    |
| M3 =                          | 0    |    | 0      |    |

### 6.6.2 AZIONI DI FRENATURA E AVVIAMENTO

Gli effetti di interazione relativi alle azioni di frenatura e avviamento si tengono conto applicando ai valori della risultante un coefficiente  $\alpha_h$  che tiene conto del rapporto di rigidezza tra le pile del viadotto.

Cautelativamente si prendono in considerazione le condizioni più sfavorevoli, ossia:

- per le azioni di frenatura del modello di carico LM71 :  $\alpha_{hp} = \alpha_{hp3} = 1,60$
- per le azioni di frenatura del modello di carico SW/2 :  $\alpha_{hp}$  =  $\alpha_{hp3}$  = 1,30
- per le azioni di avviamento di entrambi i modelli di carico :  $\alpha_{hp} = \alpha_{hp3} \cdot \alpha_{hp4} = 1,60 \cdot 0,70 = 1,12$

### 6.6.3 INFLESSIONE DELL'IMPALCATO DOVUTA AI CARICHI VERTICALI DA TRAFFICO

Le azioni longitudinali da inflessione impalcato esercitano delle spinte che si contrappongono alle flessioni generate dall'eccentricità dei carichi verticali. Per questo motivo a vantaggio di sicurezza tali azioni vengono trascurate nei calcoli successivi.



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |
|----------|---------|----------|------------|------|-----------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 97 di 138 |

### 6.7 AZIONI SISMICHE (E)

L'azione sismica di progetto è rappresentata da spettri di risposta definiti in base alla pericolosità sismica di base del sito ove sorge l'opera in oggetto, la vita di riferimento e le caratteristiche del sottosuolo.

Di seguito si riportano i parametri di input utilizzati per la definizione degli spettri di progetto orizzontali e verticali e i grafici degli stessi. Gli spettri di progetto così definiti vengono utilizzati nel modello di calcolo per la definizione di casi di analisi di tipo "dinamica lineare con spettro di risposta".

I valori del fattore di struttura q, adottati per la definizione delle azioni sismiche e per il dimensionamento degli elementi secondo i criteri della gerarchia delle resistenze, sono stati definiti in base ai criteri di seguito esplicitati.

Il valore del fattore di struttura q assunto per il dimensionamento delle fondazioni è pari a 1,5, in accordo con quanto indicato nel §1.8.3.3 [3] per le fondazioni su pali.

Per le strutture in elevazione, in accordo con quanto indicato nel  $\S7.9.2.1$  [1] per pile verticali inflesse in c.a. e progettazione in CD"B", si assume un fattore di struttura  $q_0$  paria 1,5 (vedi Tabella 1).

Per elementi duttili in c.a. i valori di  $q_0$  riportati in Tabella 1, valgono se la sollecitazione di compressione normalizzata  $v_k$  non eccede il valore 0,3. Per valori di  $v_k$  compresi tra 0,3 e 0,6 ( $v_k$  non può eccedere 0,6)  $q_0$  si ottiene dalla relazione seguente:

$$q_0(v_k) = q_0 - (v_k/0, 3 - 1) \cdot (q_0 - 1)$$

Infine il fattore di struttura q da adottare nelle analisi si ottiene moltiplicando il q<sub>0</sub> così ottenuto per il coefficiente riduttivo K<sub>R</sub> che dipende dalle caratteristiche di regolarità della struttura.

In generale il requisito di regolarità e quindi il valore di  $K_R$  si determinano a posteriori secondo il procedimento indicato nel  $\S7.9.2.1$  [1]. Per il caso in esame si ipotizza un  $K_R$  pari a 1.

$$\begin{array}{ll} q_0(v_k) & = q_0 = 1.5 \\ q & = q_0(v_k) \cdot K_R = 1.5. \end{array}$$

| Timi di alamandi duddili                          |       | <b>J</b> o |
|---------------------------------------------------|-------|------------|
| Tipi di elementi duttili                          | CD"B" | CD"A"      |
| Pile in cemento armato                            |       |            |
| Pile verticali inflesse                           | 1,5   | 3,5 λ      |
| Elementi di sostegno inclinati inflessi           | 1,2   | 2,1 λ      |
| Pile in acciaio:                                  |       |            |
| Pile verticali inflesse                           | 1,5   | 3,5        |
| Elementi di sostegno inclinati inflessi           | 1,2   | 2,0        |
| Pile con controventi concentrici                  | 1,5   | 2,5        |
| Pile con controventi eccentrici                   | -     | 3,5        |
| Spalle rigidamente connesse con l'impalcato       |       |            |
| In generale                                       | 1,5   | 1,5        |
| Strutture che si muovono col terreno <sup>7</sup> | 1,0   | 1,0        |
| Archi                                             | 1,2   | 2,0        |

 $<sup>^{7}</sup>$  Le strutture che si muovono con il terreno non subiscono amplificazione dell'accelerazione del suolo. Esse sono caratterizzate da periodi naturali di vibrazione in direzione orizzontale molto bassi (T ≤ 0,03 s). Appartengono a questa categoria le spalle connesse, mediante collegamenti flessibili, all'impalcato.

Tabella 1 – Valori del fattore struttura q<sub>0</sub> per differenti tipologie di pile e spalle - tabella 7.9.1 [1]





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

FOGLIO

98 di 138

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO

IF1N 01 E ZZ CL VI0605 016

### 6.7.1 SPETTRI DI PROGETTO ALLO SLV

Coordinate geografiche della pila:

| PILA | Latitudine | Longitudine |
|------|------------|-------------|
|      | [°]        | [°]         |
| P20  | 41.10234   | 14.43558    |
| P21  | 41.10252   | 14.43575    |
| P22  | 41.10271   | 14.43592    |
| P23  | 41.10289   | 14.43610    |
| P30  | 41.10409   | 14.43742    |
| P41  | 41.10594   | 14.43957    |
| P42  | 41.10612   | 14.43975    |

### Strategia di progettazione

Vita nominale VN = 75 anni

Coefficiente d'uso cu = 1.5

Vita di riferimento VR = 112.5 anni

Categoria di sottosuolo = B Categoria topografica = T1

Per la definizione della categoria di suolo si rimanda all'elaborato progettuale "IF1N.0.1.E.ZZ.RB.GE.00.0.5.001.A - Relazione geotecnica generale di linea delle opere all'aperto".

 $q_0 = 1,50$ 

 $K_r = 1,00$ 

Il valore di vk è pari a :

0.05

Fattore di struttura q = 1,50

Smorzamento  $\xi$  = 5,00 %





Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 99 di 138

### 6.7.1.1 PARAMETRI PER LA DEFINIZIONE DELLO SPETTRO ORIZZONTALE

| Tr   | 1068  | anni |
|------|-------|------|
| ag_o | 0.196 | g    |
| Fo   | 2.524 |      |
| S    | 1.200 |      |
| TB   | 0.189 | sec  |
| TC   | 0.566 | sec  |
| TD   | 2.386 | sec  |

### 6.7.1.2 PARAMETRI PER LA DEFINIZIONE DELLO SPETTRO VERTICALE

| Tr   | 1068  | anni |
|------|-------|------|
| ag_v | 0.118 | g    |
| Fv   | 2.524 |      |
| S    | 1.000 |      |
| TB   | 0.050 | sec  |
| TC   | 0.150 | sec  |
| TD   | 1.000 | sec  |

### Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

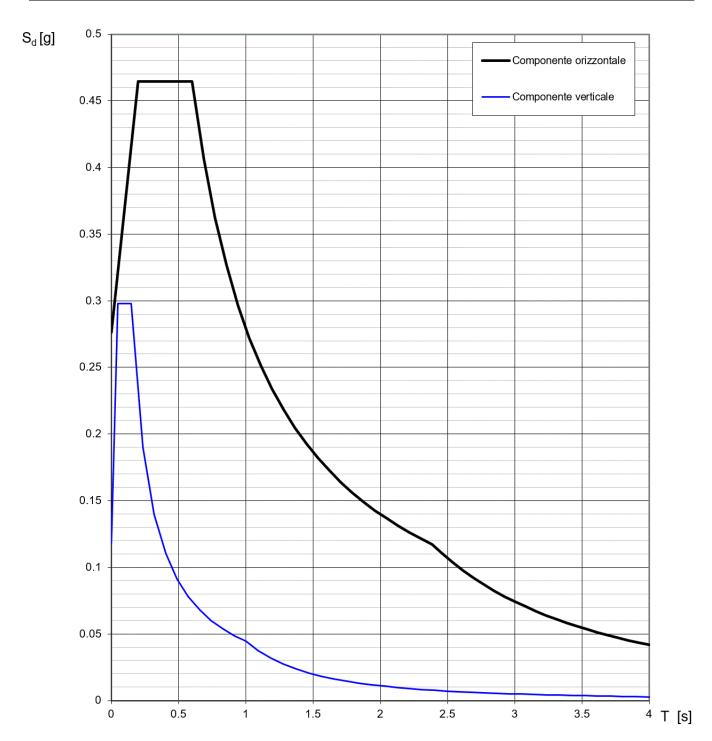



Figura 41 – Spettro elastico di progetto allo SLV – Componente orizzontale e verticale



### 7 COMBINAZIONI DI CARICO

Di seguito vengono riportate le tabelle che riepilogano le condizioni di carico elementari (C.C.E.) considerate.

|                             | C.C.E. | Descrizione                      |
|-----------------------------|--------|----------------------------------|
|                             | G1     | Pesi propri                      |
| G - Permanenti              | G21    | Ballast                          |
|                             | G22    | Permanenti non strutturali       |
|                             | Q11    | Disposizione 1 (massimizza N)    |
|                             | Q12    | Disposizione 2 (massimizza M2)   |
|                             | Q13    | Disposizione 3 (massimizza M1)   |
| Q1 - Variabili verticali    | Q14    | Disposizione 4 (massimizza M1)   |
|                             | Q15    | Disposizione 5 (massimizza N+M2) |
|                             | Q16    | Disposizione 6 (massimizza N)    |
|                             | Q17    | Disposizione 7 (minimizza N)     |
|                             | Q21    | Disposizione 1 (massimizza N)    |
|                             | Q22    | Disposizione 2 (massimizza M2)   |
|                             | Q23    | Disposizione 3 (massimizza M1)   |
| Q2 - Avviamento e frenatura | Q24    | Disposizione 4 (massimizza M1)   |
|                             | Q25    | Disposizione 5 (massimizza N+M2) |
|                             | Q26    | Disposizione 6 (massimizza N)    |
|                             | Q27    | Disposizione 7 (minimizza N)     |
|                             | Q31    | Disposizione 1 (massimizza N)    |
|                             | Q32    | Disposizione 2 (massimizza M2)   |
|                             | Q33    | Disposizione 3 (massimizza M1)   |
| Q3 - Centrifuga             | Q34    | Disposizione 4 (massimizza M1)   |
|                             | Q35    | Disposizione 5 (massimizza N+M2) |
|                             | Q36    | Disposizione 6 (massimizza N)    |
|                             | Q37    | Disposizione 7 (minimizza N)     |
|                             | Q41    | Disposizione 1 (massimizza N)    |
|                             | Q42    | Disposizione 2 (massimizza M2)   |
|                             | Q43    | Disposizione 3 (massimizza M1)   |
| Q4 - Serpeggio              | Q44    | Disposizione 4 (massimizza M1)   |
|                             | Q45    | Disposizione 5 (massimizza N+M2) |
|                             | Q46    | Disposizione 6 (massimizza N)    |
|                             | Q47    | Disposizione 7 (minimizza N)     |
| Variabili                   | Q51    | Vento                            |
| Azioni interne              | Q61    | Attrito su vincoli               |
| Effetti d'interazione       | Q71    | Variazioni termiche              |
|                             | E1     | Sisma x                          |
| E - Azioni sismiche         | E2     | Sisma y                          |
|                             | E3     | Sisma z                          |



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 102 di 138

Le combinazioni di calcolo sono state definite sulla base dei criteri enunciati nei §1.8.2.3 [3], §1.8.3.1 [3] e §1.8.3.2 [3] di cui si riportano di seguito alcuni stralci.

| TIPO DI CARICO   | Azioni verticali           |                  | Azioni orizzontali           |                   |                   |                                           |  |
|------------------|----------------------------|------------------|------------------------------|-------------------|-------------------|-------------------------------------------|--|
| Gruppo di carico | Carico<br>verticale<br>(1) | Treno<br>scarico | Frenatura<br>e<br>avviamento | Centrifuga        | Serpeggio         | Commenti                                  |  |
| Gruppo 1<br>(2)  | 1,00                       | -                | 0,5 (0,0)                    | 1,0 (0,0)         | 1,0 (0,0)         | massima azione<br>verticale e<br>laterale |  |
| Gruppo.2<br>(2)  | •                          | 1,00             | 0,00                         | 1,0 (0,0)         | 1,0(0,0)          | stabilità laterale                        |  |
| Gruppo 3<br>(2)  | 1,0 (0,5)                  | -                | 1,00                         | 0,5 (0,0)         | 0,5 (0,0)         | massima azione<br>longitudinale           |  |
| Gruppo 4         | 0,8 (0,6;<br>0,4)          | -                | 0,8 (0,6;<br>0,4)            | 0,8 (0,6;<br>0,4) | 0,8 (0,6;<br>0,4) | fessurazione                              |  |

Azione dominante

Includendo tutti i fattori ad essi relativi (Φ,α, ecc..)

Tabella 2 - Definizione dei gruppi di carico

|                                                      |                           | Coefficiente    | EQU <sup>(1)</sup>          | Al<br>STR                   | A2<br>GEO    | Combinazione<br>eccezionale | Combinazione<br>Sismica     |
|------------------------------------------------------|---------------------------|-----------------|-----------------------------|-----------------------------|--------------|-----------------------------|-----------------------------|
| Carichi permanenti                                   | favorevoli<br>sfavorevoli | γ <sub>G1</sub> | 0,90<br>1,10                | 1,00<br>1,35                | 1,00<br>1,00 | 1,00<br>1,00                | 1,00<br>1,00                |
| Carichi permanenti non<br>strutturali <sup>(2)</sup> | favorevoli<br>sfavorevoli | γ <sub>G2</sub> | 0,00<br>1,50                | 0,00<br>1,50                | 0,00<br>1,30 | 1,00<br>1,00                | 1,00<br>1,00                |
| Ballast <sup>(3)</sup>                               | favorevoli<br>sfavorevoli | γв              | 0,90<br>1,50                | 1,00<br>1,50                | 1,00<br>1,30 | 1,00<br>1,00                | 1,00<br>1,00                |
| Carichi variabili da<br>traffico <sup>(4)</sup>      | favorevoli<br>sfavorevoli | γο              | 0,00<br>1,45                | 0,00<br>1,45                | 0,00<br>1,25 | 0,00<br>0,20 <sup>(5)</sup> | 0,00<br>0,20 <sup>(5)</sup> |
| Carichi variabili                                    | favorevoli<br>sfavorevoli | γQi             | 0,00<br>1,50                | 0,00<br>1,50                | 0,00<br>1,30 | 0,00<br>1,00                | 0,00<br>0,00                |
| Precompressione                                      | favorevole<br>sfavorevole | γp              | 0,90<br>1,00 <sup>(6)</sup> | 1,00<br>1,00 <sup>(7)</sup> | 1,00<br>1,00 | 1,00<br>1,00                | 1,00<br>1,00                |

<sup>(1)</sup> Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

Tabella 3 – Coefficienti parziali di sicurezza per le combinazioni agli SLU

<sup>(2)</sup> La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

<sup>(2)</sup> Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

<sup>(3)</sup> Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

<sup>(4)</sup> Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

<sup>(5)</sup> Aliquota di carico da traffico da considerare.

<sup>(6) 1,30</sup> per instabilità in strutture con precompressione esterna





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 103 di 138

| Azioni              |                                                            | Ψo      | Ψ1      | Ψ2   |
|---------------------|------------------------------------------------------------|---------|---------|------|
| Azioni<br>singole   | Carico sul rilevato a tergo delle spalle                   | 0,80    | 0,50    | 0,0  |
| da traffico         | Azioni aerodinamiche generate dal transito<br>dei convogli | 0,80    | 0,50    | 0,0  |
|                     | grl                                                        | 0,80(2) | 0,80(1) | 0,0  |
| Gruppi di           | gr <sub>2</sub>                                            | 0,80(2) | 0,80(1) | -    |
| carico              | gr <sub>3</sub>                                            | 0,80(2) | 0,80(1) | 0,0  |
|                     | gr4                                                        | 1,00    | 1,00(1) | 0,0  |
| Azioni del<br>vento | F <sub>Wk</sub>                                            | 0,60    | 0,50    | 0,0  |
| Azioni da           | in fase di esecuzione                                      | 0,80    | 0,0     | 0,0  |
| neve                | SLU e SLE                                                  | 0,0     | 0,0     | 0,0  |
| Azioni<br>termiche  | T <sub>k</sub>                                             | 0,60    | 0,60    | 0,50 |

<sup>(1) 0,80</sup> se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

<sup>(2)</sup> Quando come azione di base venga assunta quella del vento, i coefficienti ψ<sub>0</sub> relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

|          | Azioni                      | Ψο                  | <b>V</b> 1 | Ψ2  |
|----------|-----------------------------|---------------------|------------|-----|
|          | Treno di carico LM 71       | 0,80(3)             | (1)        | 0,0 |
| Azioni   | Treno di carico SW /0       | 0,80 <sup>(3)</sup> | 0,80       | 0,0 |
| singole  | Treno di carico SW/2        | 0,0(3)              | 0,80       | 0,0 |
| da       | Treno scarico               | 1,00(3)             | 150        |     |
| traffico | Centrifuga                  | (2 (3)              | (2)        | (2) |
|          | Azione laterale (serpeggio) | 1,00(3)             | 0,80       | 0,0 |

 <sup>0,80</sup> se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tabella 4 – Coefficienti di combinazione ψ delle azioni

Le combinazioni di carico (C.C.C.) definite e considerate nei calcoli successivi sono riportate nell'allegato 1 alla presente relazione.

<sup>(3)</sup> Quando come azione di base venga assunta quella del vento, i coefficienti ψ<sub>0</sub> relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.



Si riporta un quadro sintetico delle combinazioni prese in considerazione:

| Gruppo             | Num.             |
|--------------------|------------------|
| SLU-STR            | 70 combinazioni  |
| SLU-GEO (appr. A2) | 70 combinazioni  |
| SIS-SLV            | 202 combinazioni |
| SLE-RAR/FRE        | 105 combinazioni |
| SLE-QP             | 2 combinazioni   |



### ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 105 di 138

### 8 ANALISI DELLE SOLLECITAZIONI

### 8.1 MODELLO DI CALCOLO E.F.

Il calcolo delle sollecitazioni lungo il fusto viene effettuato mediante una schematizzazione a mensola. Per gli scarichi in fondazione e la ripartizione degli sforzi sui pali si è ipotizzata una platea infinitamente rigida.

### 8.2 MASSE E FORZE SISMICHE

Secondo le indicazioni del §7.9.4.1 delle NTC2008 [1], nel caso di ponte a travate semplicemente appoggiate, i requisiti necessari per applicare l'analisi statica lineare possono ritenersi soddisfatti nel seguente caso:

• per entrambe le direzioni longitudinale e trasversale, purché la massa efficace di ciascuna pila non sia superiore ad 1/5 della massa di impalcato da essa portata (per pile a sezione costante, la massa efficace può essere assunta pari alla massa della metà superiore della pila).

Nel presente caso tale requisito risulta soddisfatto.

Per la determinazione delle sollecitazioni sui diversi elementi costituenti la pila si procede dunque con un'analisi statica lineare con spettro di risposta su oscillatore semolice.

Nel caso in esame si ha che:

- in direzione X la massa sismica è rappresentata dalle masse afferenti all'impalcato vincolato alla pila mediante gli apparecchi d'appoggio fissi; tale massa si considera agente alla quota degli apparecchi d'appoggio stessi;
- in direzione Y la massa sismica è rappresentata della metà della massa afferente a ciascun impalcato; tale massa si considera agente alla quota baricentrica degli impalcati stessi;
- in direzione Z la massa sismica è rappresentata della metà della massa di ciascun impalcato; tale massa si considera agente nel centro geometrico degli apparecchi d'appoggio degli impalcati stessi.





### ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA IF1N

LOTTO **01 E ZZ** 

CODIFICA CL DOCUMENTO VI0605 016

REV. B FOGLIO 106 di 138

| XTO-DX |
|--------|
|        |

### Masse sismiche afferenti agli impalcati

| Massa impalcato =                 | 11650 | kN  | 11650 | kN |
|-----------------------------------|-------|-----|-------|----|
| Carico max traffico LM71 =        | 2807  | kN  | 2807  | kN |
| Carico max traffico SW/2 =        | 3750  | kN  | 3750  | kN |
| Carico max traffico LM71+SW/2 =   | 6557  | kN  | 6557  | kN |
| Massa traffico (psi=0.2) =        | 1311  | kN  | 1311  | kN |
| Massa impalcato (perm+treni) =    | 12961 | kN  | 12961 | kN |
| tipologia vincolo =               | UL    |     | F     |    |
| Massa imp. longitudinale =        | 0     | kN  | 12961 | kN |
| Massa imp. trasversale =          | 6481  | kN  | 6481  | kN |
| Massa imp. totale longitudinale = | 40004 | LAI |       |    |
| gpp.                              | 12961 | kN  |       |    |

### Masse sismiche afferenti alla pila

| Massa pulvino =            | 1226 | kN |
|----------------------------|------|----|
| Massa fusto =              | 1216 | kN |
|                            |      |    |
| Massa efficace pila (M*) = | 1642 | kN |

### Requisito analisi statica lineare

| Massa efficace pila (M*) =          | 1642 | kN |
|-------------------------------------|------|----|
| 1/5 M impalcato (min[trasv;long]) = | 2592 | kN |

M\* < 1/5 Mimp. Il requisito per l'analisi statica lineare è soddisfatto.

### Massa totale

| M tot longitudinale = | 14604 | kN |
|-----------------------|-------|----|
| M tot trasversale =   | 14604 | kN |
| M tot verticale =     | 14604 | kN |





### ITINERARIO NAPOLI – BARI

### RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA IF1N

LOTTO **01 E ZZ** 

CODIFICA CL

DOCUMENTO VI0605 016

REV.

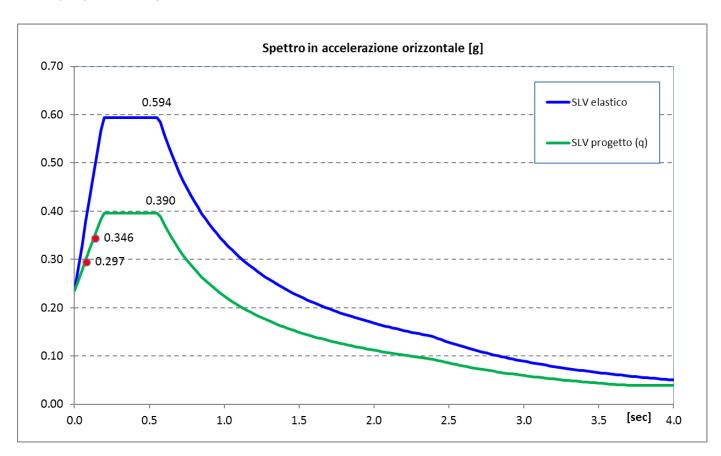
FOGLIO **107 di 138** 

### **Analisi statica lineare**

| Ac     | 10.58 | m2 |
|--------|-------|----|
| H1     | 4.60  | m  |
| H2     | 1.45  | m  |
| H3     | 0.45  | m  |
| Hpila  | 6.5   | m  |
| yg_imp | 2.08  | m  |

Ecm 33643 N\*/mm2

33643000 kN/m2


### Dir. longitudinale

### Dir. trasversale

| 0.346   | g                                                | Sdtrasv                          | 0.297                                                                                                                                               | g                                                                                                                                                                                                               |
|---------|--------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.131   | sec                                              | Ttrasv                           | 0.073                                                                                                                                               | sec                                                                                                                                                                                                             |
| 3.4E+06 | kN/m                                             | Ktrasv                           | 1.1E+07                                                                                                                                             | kN/m                                                                                                                                                                                                            |
| 6.50    | m                                                | Lvtrasv                          | 8.58                                                                                                                                                | m                                                                                                                                                                                                               |
| 1489    | ton                                              | Mtrasv                           | 1489                                                                                                                                                | ton                                                                                                                                                                                                             |
| 14604   | kN/m                                             | Wtrasv                           | 14604                                                                                                                                               | ton                                                                                                                                                                                                             |
| 9.4     | m4                                               | Itrasv                           | 69.8                                                                                                                                                | mm4                                                                                                                                                                                                             |
|         | 14604<br>1489<br>6.50<br>3.4E+06<br><b>0.131</b> | 3.4E+06 kN/m<br><b>0.131 sec</b> | 14604 kN/m       Wtrasv         1489 ton       Mtrasv         6.50 m       Lvtrasv         3.4E+06 kN/m       Ktrasv         0.131 sec       Ttrasv | 14604 kN/m       Wtrasv       14604         1489 ton       Mtrasv       1489         6.50 m       Lvtrasv       8.58         3.4E+06 kN/m       Ktrasv       1.1E+07         0.131 sec       Ttrasv       0.073 |



Nel seguente diagramma sono evidenziate le coordinate spettrali SLV corrispondenti ai valori dei periodi  $T_{long}$  [sec] e  $T_{trasv}$  [sec] calcolati in precedenza.





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 109 di 138

Il §7.9.3 [1] raccomanda di assumere un'eccentricità accidentale nel posizionamento delle masse sismiche riferite all'impalcato, pari a 0,03 volte la dimensione dell'impalcato stesso misurata perpendicolarmente alla direzione dell'azione sismica.

Per la pila in oggetto si avrebbe:

§7.9.3 [1] - Eccentricità accidentale nel posizionamento delle masse sismiche

|                                       | IMP. SX | IMP. DX       |   |
|---------------------------------------|---------|---------------|---|
|                                       |         |               |   |
| b =                                   | 13.7    | m 13.7        | m |
| L =                                   | 25.0    | m 25.0        | m |
| Sisma long (X): ey = $0.03 \cdot b =$ | 0.41    | m <b>0.41</b> | m |
| Sisma trasv (Y): ex = 0,03 ⋅ L =      | 0.75    | m <b>0.75</b> | m |



ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO **B** 110 di 138

IF1N 01 E ZZ CL VI0605 016

## 8.3 CARICHI ELEMENTARI

#### 8.3.1 RIEPILOGO DEGLI SCARICHI DALL'IMPALCATO

#### 8.3.1.1 SCARICHI IMPALCATO SX RISPETTO A BARICENTRO APPOGGI:

| IMPALC    | ATO 4 CASSONCINI DA 25 m              |    |     |       |       |     |     |
|-----------|---------------------------------------|----|-----|-------|-------|-----|-----|
|           | HI IMPALCATO SX RISPETTO A BARICENTRO |    |     |       | 1     | 1   |     |
| C.C.E.    | Descrizione                           | F1 | F2  | F3    | M1    | M2  | M3  |
|           |                                       | kN | kN  | kN    | kNm   | kNm | kNm |
| G - Perm  | nanenti                               |    |     |       |       |     |     |
| G1        | Pesi propri                           | 0  | 0   | -3303 | 0     | 0   | 0   |
| G2        | Ballast                               | 0  | 0   | -1750 | 0     | 0   | 0   |
| G2        | Permanenti non strutturali            | 0  | 0   | -774  | 0     | 0   | 0   |
| Q1 - Vari | iabili verticali                      |    |     |       |       |     |     |
| Q11       | Disposizione 1 (massimizza N)         | 0  | 0   | -2816 | -282  | 0   | 0   |
| Q12       | Disposizione 2 (massimizza M2)        | 0  | 0   | 0     | 0     | 0   | 0   |
| Q13       | Disposizione 3 (massimizza M1)        | 0  | 0   | -1451 | -2903 | 0   | 0   |
| Q14       | Disposizione 4 (massimizza M1)        | 0  | 0   | -1365 | -2839 | 0   | 0   |
| Q15       | Disposizione 5 (massimizza N+M2)      | 0  | 0   | -1965 | -271  | 0   | 0   |
| Q16       | Disposizione 6 (massimizza N)         | 0  | 0   | -2730 | -109  | 0   | 0   |
| Q17       | Disposizione 7 (minimizza N)          | 0  | 0   | 0     | 0     | 0   | 0   |
| Q2 - Avv  | iamento e frenatura                   |    |     |       |       |     |     |
| Q21       | Disposizione 1 (massimizza N)         | 0  | 0   | 0     | 0     | 0   | 0   |
| Q22       | Disposizione 2 (massimizza M2)        | 0  | 0   | 0     | 0     | 0   | 0   |
| Q23       | Disposizione 3 (massimizza M1)        | 0  | 0   | 0     | 0     | 0   | 0   |
| Q24       | Disposizione 4 (massimizza M1)        | 0  | 0   | 0     | 0     | 0   | 0   |
| Q25       | Disposizione 5 (massimizza N+M2)      | 0  | 0   | 0     | 0     | 0   | 0   |
| Q26       | Disposizione 6 (massimizza N)         | 0  | 0   | 0     | 0     | 0   | 0   |
| Q27       | Disposizione 7 (minimizza N)          | 0  | 0   | 0     | 0     | 0   | 0   |
| Q3 - Cer  | ntrifuga                              |    |     |       |       |     |     |
| Q31       | Disposizione 1 (massimizza N)         | 0  | 235 | 0     | -1193 | 0   | 0   |
| Q32       | Disposizione 2 (massimizza M2)        | 0  | 0   | 0     | 0     | 0   | 0   |
| Q33       | Disposizione 3 (massimizza M1)        | 0  | 76  | 0     | -387  | 0   | 0   |
| Q34       | Disposizione 4 (massimizza M1)        | 0  | 159 | 0     | -806  | 0   | 0   |
| Q35       | Disposizione 5 (massimizza N+M2)      | 0  | 169 | 0     | -857  | 0   | 0   |
| Q36       | Disposizione 6 (massimizza N)         | 0  | 230 | 0     | -1170 | 0   | 0   |
| Q37       | Disposizione 7 (minimizza N)          | 0  | 0   | 0     | 0     | 0   | 0   |
| Q4 - Ser  |                                       |    | -   |       | -     |     |     |
| Q41       | Disposizione 1 (massimizza N)         | 0  | 105 | 0     | -344  | 0   | 0   |
| Q42       | Disposizione 2 (massimizza M2)        | 0  | 0   | 0     | 0     | 0   | 0   |





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 111 di 138

|              |                                  | 1 |      |       |       | 1    |      |
|--------------|----------------------------------|---|------|-------|-------|------|------|
| Q43          | Disposizione 3 (massimizza M1)   | 0 | 50   | 0     | -164  | 0    | 0    |
| Q44          | Disposizione 4 (massimizza M1)   | 0 | 55   | 0     | -180  | 0    | 0    |
| Q45          | Disposizione 5 (massimizza N+M2) | 0 | 105  | 0     | -344  | 0    | 0    |
| Q46          | Disposizione 6 (massimizza N)    | 0 | 105  | 0     | -344  | 0    | 0    |
| Q47          | Disposizione 7 (minimizza N)     | 0 | 0    | 0     | 0     | 0    | 0    |
| Q5 - Varial  | pili                             |   |      |       |       |      |      |
| Q51          | Vento                            | 0 | 397  | 0     | -2231 | 0    | 0    |
| Q6 - Azion   | indirette                        |   |      |       |       |      |      |
| Q61          | Attrito su vincoli               | 0 | 0    | 0     | 0     | 0    | 0    |
| Q7 - Effetti | d'interazione                    |   |      |       |       |      |      |
| Q71          | Variazioni termiche              | 0 | 0    | 0     | 0     | 0    | 0    |
| E - Azioni s | sismiche                         |   |      |       |       |      |      |
| E1           | Sisma x                          | 0 | 0    | 0     | 0     | 0    | 0    |
| E2           | Sisma y                          | 0 | 2168 | 0     | -4509 | 0    | 1626 |
| E3           | Sisma z                          | 0 | 0    | -1930 | -793  | 1448 | 0    |





ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO – BENEVENTO
I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI – PROGETTO ESECUTIVO

FOGLIO

112 di 138

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B

#### 8.3.1.2 SCARICHI IMPALCATO DX RISPETTO A BARICENTRO APPOGGI:

| IMPALCATO 4 CASSONCINI DA 25 m |                                                     |      |     |       |       |     |     |  |  |  |
|--------------------------------|-----------------------------------------------------|------|-----|-------|-------|-----|-----|--|--|--|
|                                | SCARICHI IMPALCATO DX RISPETTO A BARICENTRO APPOGGI |      |     |       |       |     |     |  |  |  |
| C.C.E.                         | Descrizione                                         | F1   | F2  | F3    | M1    | M2  | М3  |  |  |  |
|                                |                                                     | kN   | kN  | kN    | kNm   | kNm | kNm |  |  |  |
| G - Perma                      | nenti                                               |      |     |       |       |     |     |  |  |  |
| G1                             | Pesi propri                                         | 0    | 0   | -3303 | 0     | 0   | 0   |  |  |  |
| G2                             | Ballast                                             | 0    | 0   | -1750 | 0     | 0   | 0   |  |  |  |
| G2                             | Permanenti non strutturali                          | 0    | 0   | -774  | 0     | 0   | 0   |  |  |  |
| Q1 - Varia                     | bili verticali                                      |      |     |       |       |     |     |  |  |  |
| Q11                            | Disposizione 1 (massimizza N)                       | 0    | 0   | -2876 | -402  | 0   | 0   |  |  |  |
| Q12                            | Disposizione 2 (massimizza M2)                      | 0    | 0   | -3559 | -518  | 0   | 0   |  |  |  |
| Q13                            | Disposizione 3 (massimizza M1)                      | 0    | 0   | -1511 | -3022 | 0   | 0   |  |  |  |
| Q14                            | Disposizione 4 (massimizza M1)                      | 0    | 0   | -1365 | -2839 | 0   | 0   |  |  |  |
| Q15                            | Disposizione 5 (massimizza N+M2)                    | 0    | 0   | -3559 | -518  | 0   | 0   |  |  |  |
| Q16                            | Disposizione 6 (massimizza N)                       | 0    | 0   | -2730 | -109  | 0   | 0   |  |  |  |
| Q17                            | Disposizione 7 (minimizza N)                        | 0    | 0   | -2977 | -1634 | 0   | 0   |  |  |  |
| Q2 - Avvia                     | amento e frenatura                                  |      |     |       |       |     |     |  |  |  |
| Q21                            | Disposizione 1 (massimizza N)                       | 1835 | 0   | 0     | 0     | 0   | 0   |  |  |  |
| Q22                            | Disposizione 2 (massimizza M2)                      | 2154 | 0   | 0     | 0     | 0   | 0   |  |  |  |
| Q23                            | Disposizione 3 (massimizza M1)                      | 819  | 0   | 0     | 0     | 0   | 0   |  |  |  |
| Q24                            | Disposizione 4 (massimizza M1)                      | 1016 | 0   | 0     | 0     | 0   | 0   |  |  |  |
| Q25                            | Disposizione 5 (massimizza N+M2)                    | 2154 | 0   | 0     | 0     | 0   | 0   |  |  |  |
| Q26                            | Disposizione 6 (massimizza N)                       | 1995 | 0   | 0     | 0     | 0   | 0   |  |  |  |
| Q27                            | Disposizione 7 (minimizza N)                        | 2154 | 0   | 0     | 0     | 0   | 0   |  |  |  |
| Q3 - Cent                      | rifuga                                              |      |     |       |       |     |     |  |  |  |
| Q31                            | Disposizione 1 (massimizza N)                       | 0    | 238 | 0     | -1209 | 0   | 0   |  |  |  |
| Q32                            | Disposizione 2 (massimizza M2)                      | 0    | 294 | 0     | -1494 | 0   | 0   |  |  |  |
| Q33                            | Disposizione 3 (massimizza M1)                      | 0    | 79  | 0     | -403  | 0   | 0   |  |  |  |
| Q34                            | Disposizione 4 (massimizza M1)                      | 0    | 159 | 0     | -806  | 0   | 0   |  |  |  |
| Q35                            | Disposizione 5 (massimizza N+M2)                    | 0    | 294 | 0     | -1494 | 0   | 0   |  |  |  |
| Q36                            | Disposizione 6 (massimizza N)                       | 0    | 230 | 0     | -1170 | 0   | 0   |  |  |  |
| Q37                            | Disposizione 7 (minimizza N)                        | 0    | 226 | 0     | -1151 | 0   | 0   |  |  |  |
| Q4 - Serp                      | eggio                                               |      |     |       |       |     |     |  |  |  |
| Q41                            | Disposizione 1 (massimizza N)                       | 0    | 105 | 0     | -344  | 0   | 0   |  |  |  |
| Q42                            | Disposizione 2 (massimizza M2)                      | 0    | 210 | 0     | -689  | 0   | 0   |  |  |  |
| Q43                            | Disposizione 3 (massimizza M1)                      | 0    | 50  | 0     | -164  | 0   | 0   |  |  |  |
| Q44                            | Disposizione 4 (massimizza M1)                      | 0    | 55  | 0     | -180  | 0   | 0   |  |  |  |
| Q45                            | Disposizione 5 (massimizza N+M2)                    | 0    | 105 | 0     | -344  | 0   | 0   |  |  |  |
| Q46                            | Disposizione 6 (massimizza N)                       | 0    | 105 | 0     | -344  | 0   | 0   |  |  |  |





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 113 di 138

| Q47                        | Disposizione 7 (minimizza N) | 0    | 210  | 0     | -689  | 0    | 0     |
|----------------------------|------------------------------|------|------|-------|-------|------|-------|
| Q5 - Varia                 |                              |      |      |       |       | -    |       |
| Q51                        | Vento                        | 0    | 397  | 0     | -2231 | 0    | 0     |
| Q6 - Azioi                 | ni indirette                 |      |      |       |       |      |       |
| Q61                        | Attrito su vincoli           | 283  | 0    | 0     | 0     | 0    | 0     |
| Q7 - Effetti d'interazione |                              |      |      |       |       |      |       |
| Q71                        | Variazioni termiche          | 280  | 0    | 0     | 0     | 0    | 0     |
| E - Azioni                 | sismiche                     |      |      |       |       |      |       |
| E1                         | Sisma x                      | 5055 | 0    | 0     | 0     | 0    | -2078 |
| E2                         | Sisma y                      | 0    | 2168 | 0     | -4509 | 0    | 1626  |
| E3                         | Sisma z                      | 0    | 0    | -1930 | -793  | 1448 | 0     |



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 114 di 138

## 8.4 SOLLECITAZIONI DI CALCOLO

#### 8.4.1 SOLLECITAZIONI ALLA BASE DEL FUSTO PILA

Le sollecitazioni di calcolo riferite alla sezione di base del fusto della pila avente maggiore altezza tra quelle prese in considerazione nella presente relazione, sono riportate in forma completa nel secondo allegato alla presente relazione.

Le sollecitazioni di calcolo ottenute in condizione sismica per le strutture in elevazione devono essere ulteriormente elaborate per tener conto delle indicazioni del §7.9 [1] e dei principi della gerarchia delle resistenze.

#### 8.4.1.1 SOLLECITAZIONI FLETTENTI IN ZONA CRITICA

Secondo le indicazioni del §7.9.4 [1] nelle zone critiche, gli effetti delle non linearità geometriche possono essere tenute in conto mediante l'espressione semplificata:

$$\Delta M = d_{Ed} \cdot N_{Ed}$$

con d<sub>Ed</sub> valutato secondo il §7.3.3.3, ossia pari a µ<sub>d</sub> · d<sub>Ee</sub> dove:

d<sub>Ee</sub> è lo spostamento derivante dall'analisi lineare

$$\mu_d = q$$
 per  $T_1 \ge T_C$ 

$$\mu_d = 1 + (q - 1) \cdot T_C/T_1$$
 per  $T_1 < T_C$  in ogni caso  $\mu_d \le 5 \cdot q - 4$ 

Per il caso in esame si ha:

| dEe_long | 1.5 mm        | dEe_trasv | 0.4 mm        |
|----------|---------------|-----------|---------------|
| μd_long  | 3.17          | μd_trasv  | 3.50          |
| dEd_long | <b>4.7</b> mm | dEd_trasv | <b>1.4</b> mm |

#### 8.4.1.2 SOLLECITAZIONI FLETTENTI FUORI DALLA ZONA CRITICA

II §7.9.5.1 [1] definisce il fattore di "sovraresistenza" γRd che viene calcolato mediante l'espressione:

$$\gamma_{Rd} = 0.7 + 0.2 \, q \ge 1$$

nella quale q è il fattore di struttura utilizzato nei calcoli.

Nel caso in cui la compressione normalizzata  $v_k = N_{Ed} / (A_c \cdot f_{ck})$  (rif. §7.9.2.1 delle NTC2008 [1]), ecceda il valore 0,1 tale fattore deve essere moltiplicato per f = 1 + 2 ·  $(v_k - 0,1)^2$ .





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO
VI0605 016

EV. FOGLIO

B 115 di 138

Nel caso in esame il fattore  $\gamma_{Rd}$  assume il valore:

| Dir. Longitudinale: |       | Dir. Trasversale: |        |       |     |
|---------------------|-------|-------------------|--------|-------|-----|
| qlong               | 1.50  |                   | qtrasv | 1.50  |     |
| NEd                 | 16000 | kN                | NEd    | 16000 | kN  |
| fck                 | 32    | Мра               | fck    | 32    | Мра |
| vk                  | 0.05  |                   | vk     | 0.05  |     |
| f                   | 1.006 |                   | f      | 1.006 |     |
| γRd                 | 1.00  |                   | yRd    | 1.00  |     |

Definite "zone di cerniera plastica" o "zone critiche" le zone dove si progetta di localizzare le plasticizzazioni che conferiranno la duttilità richiesta alla struttura soggetta all'evento sismico, nel caso delle pile tali zone si identificano come la zona compresa tra la sezione di incastro alla base e la sezione posta ad una distanza L<sub>h</sub> dall'incastro, dove L<sub>h</sub> assume il massimo tra i seguenti valori (rif §7.9.6.2):

- la profondità della sezione in direzione ortogonale all'asse di rotazione delle cerniere;
- la distanza tra la sezione di momento massimo e la sezione in cui il momento si riduce del 20%.

Nelle sezioni comprese nella zona critica deve risultare:

$$M_{Ed} \leq M_{Rd}$$

Nelle sezioni al di fuori della zona critica tenendo conto del criterio della gerarchia delle resistenze deve risultare:

$$M_{gr} \leq M_{Rd}$$

I valori di  $M_{gr}$  lungo lo sviluppo dell'elemento si ottengono scalando il diagramma delle sollecitazioni flettenti ponendo nella sezione critica un momento agente pari a  $\gamma_{Rd} \cdot M_{Rd}$ .

Nel caso in esame si ha una altezza della zona critica pari alla dimensione della sezione in direzione longitudinale:

$$L_h$$
 zona critica = 2.60 m

#### 8.4.1.3 SOLLECITAZIONI DI TAGLIO

Le sollecitazioni di taglio si ottengono con il criterio della gerarchia delle resistenze, il quale conduce ad adottare come sollecitazione di calcolo:

$$V_{gr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \le q \cdot V_{Ed}$$



I valori di resistenza a taglio degli elementi in c.a. devono inoltre essere divisi per un coefficiente di sicurezza aggiuntivo nei confronti della rottura fragile  $\gamma_{Bd}$  valutato mediante la seguente espressione:

$$1 \le \gamma_{Bd} = 1.25 + 1 - q \cdot V_{Ed}/V_{gr} \le 1.25$$

La valutazione delle sollecitazioni di taglio da GR viene condotto nei paragrafi successivi relativi alle verifiche a taglio, a fronte dei valori resistenti ottenuti dalle successive verifiche a pressoflessione.



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 117 di 138

#### 8.4.2 SOLLECITAZIONI ALL'INTRADOSSO DEL PLINTO DI FONDAZIONE

Le sollecitazioni di calcolo relative alle combinazioni sismiche devono essere elaborate per tener conto delle indicazioni del  $\S7.2.5[1]$ . Per gli elementi di fondazione il criterio della gerarchia delle resistenze si applica incrementando le azioni derivanti dagli elementi soprastanti di un fattore  $\gamma_{Rd}$  pari a 1.1.

(In accordo con quanto prescritto nel §7.2.5 [1], per le strutture progettate in CD"B", il dimensionamento delle strutture di fondazione deve essere eseguito per valori di taglio e momento flettente pari ai valori resistenti degli elementi soprastanti. Tali valori hanno come limite superiore le sollecitazioni derivanti dalle analisi amplificate con un  $\gamma_{Rd}$  pari a 1,1 in CD"B" e comunque non maggiori di quelle derivanti da un'analisi elastica della struttura eseguita con q pari a 1. A tal proposito per semplificazione e favore di sicurezza si assumono come valori di calcolo le sollecitazioni derivanti dall'analisi incrementate del coefficiente  $\gamma_{Rd}$  pari a 1,1).

Rispetto alle sollecitazioni calcolate alla sezione di base del fusto pila, le sollecitazioni riportate all'intradosso del plinto di fondazione sono incrementate dei seguenti contributi:

- P<sub>pl</sub> peso proprio del plinto di fondazione [kN]
- Pterr peso proprio del terreno di ricoprimento presente all'estradosso del plinto [kN]
- I<sub>pl\_hor</sub> forza di inerzia associata alla massa del plinto sul piano orizzontale (I<sub>pl,hor</sub> = P<sub>pl</sub> \* PGA) [kN]
- I<sub>pl\_vert</sub> forza di inerzia associata alla massa del plinto in direzione verticale (I<sub>pl,vert</sub> = P<sub>pl</sub> \* a<sub>gv</sub>) [kN]

Nel secondo allegato alla presente relazione si riportano (in forma di tabelle) le sollecitazioni di calcolo riferite all'intradosso del plinto di fondazione. In particolare, tali valori sono riferiti alla fondazione della pila avente altezza maggiore all'interno del gruppo di sottostrutture preso in considerazione nella presente relazione.

#### 8.4.1 SOLLECITAZIONI DISTRIBUITE IN TESTA AI PALI DI FONDAZIONE

Le caratteristiche di sollecitazione sul singolo palo sono state determinate a partire dalle sollecitazioni riportate all'intradosso del plinto di fondazione, secondo le seguenti relazioni (distribuzione rigida delle sollecitazioni):

$$N_{max} = F_3 / n_{pali} + ass(M_1) / W_1palificata + ass(M_2) / W_2palificata$$

$$N_{min} = F_3 / n_{pali} - ass(M_1) / W_1palificata - ass(M_2) / W_2palificata$$

$$H = \sqrt{((F_1 / n_{pali})^2 + (F_2 / n_{pali})^2)}$$

I valori del taglio sul palo così ottenuti, compresi quelli relativi alle combinazioni non sismiche, vengono inoltre ulteriormente incrementati di un fattore pari a 1,1 per tenere conto dell'effetto gruppo.

Nel secondo allegato alla presente relazione si riportano (in forma di tabelle) le sollecitazioni di calcolo distribuite in testa ai pali di fondazione. In particolare, tali valori sono riferiti alla fondazione della pila avente altezza maggiore all'interno del gruppo di sottostrutture preso in considerazione nella presente relazione.



## 9 VERIFICHE STRUTTURALI DEL FUSTO PILA

## 9.1 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Si riporta a seguire una figura che illustra la geometria della sezione di verifica, nella quale è rappresentata un'armatura tipologica.

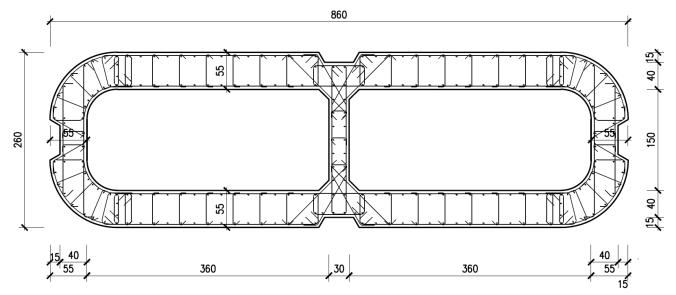



Figura 42 – Geometria della sezione trasversale della pila [cm]

#### 9.1.1 ARMATURA LONGITUDINALE

A seguire è indicata l'armatura flessionale prevista nella sezione di base del fusto pila, in termini di numero di barre presenti nello strato esterno (1° str.) e nello strato interno (2° str.) e loro diametro fi [mm].

| n barre (1° str.)  | 124 |    |
|--------------------|-----|----|
| fi barre (1° str.) | 20  | mm |
| n barre (2° str.)  | 122 |    |
| fi barre (2° str.) | 20  | mm |

#### 9.1.2 ARMATURA TRASVERSALE

A seguire è indicata l'armatura a taglio prevista nella sezione di base del fusto pila, all'interno della zona critica.





Spille:

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 119 di 138

<u>Direzione longitudinale</u>

| Staffe:                      |                          |                 | Spille:                      |                         |                 | Spille: |
|------------------------------|--------------------------|-----------------|------------------------------|-------------------------|-----------------|---------|
| øw<br>A1b<br>passo<br>bracci | 16<br>200.96<br>100<br>6 | mm<br>mm2<br>mm | øw<br>A1b<br>passo<br>bracci | 8<br>50.24<br>100<br>16 | mm<br>mm2<br>mm |         |

Spille:

Direzione trasversale

Staffe:

| øw     | 16     | mm  | øw     | 8     | mm  |
|--------|--------|-----|--------|-------|-----|
| A1b    | 200.96 | mm2 | A1b    | 50.24 | mm2 |
| passo  | 100    | mm  | passo  | 100   | mm  |
| bracci | 4      |     | bracci | 6     |     |

#### 9.1.3 VERIFICA DELL'ARMATURA MINIMA

Le armature del fusto pila devono soddisfare le quantità minime indicate dalla normativa e che vengono riepilogate di seguito.

#### Armatura minima longitudinale:

•  $\rho_{min} = 0.60 \%$  (rif. §2.2.6 [3])

#### Armatura minima trasversale nelle zone critiche:

Secondo le indicazioni del §7.9.6.2 [1], nelle sezioni piene, le armature di confinamento per la duttilità nelle zone critiche <u>non devono</u> rispettare i limiti di normativa nei seguenti casi:

- se la sollecitazione ridotta risulta v<sub>k</sub> ≤ 0,08;
- nel caso di sezioni a pareti sottili purché risulti v<sub>k</sub> ≤ 0,2, se è possibile raggiungere una duttilità in curvatura non inferiore a μ<sub>c</sub> = 12 senza che la deformazione nel conglomerato superi il valore 0,0035;
- se il fattore di struttura non supera il valore 1,5.

In caso contrario è necessario disporre le seguenti quantità minime di armatura a confinamento:

•  $\omega_{\text{wd,r}} = 0.33 \cdot A_c/A_{cc} \text{ v}_k - 0.07 \ge 0.12$  per sezioni rettangolari

•  $\omega_{wd,c} = 1.4 \cdot \omega_{wd,r}$  per sezioni circolari

La percentuale meccanica è definita dalle espressioni:

•  $\omega_{\text{wd.r}} = A_{\text{sw}}/(\text{s} \cdot \text{b}) \cdot f_{\text{vd}}/f_{\text{cd}}$  per sezioni rettangolari

•  $\omega_{wd,c} = 4 \text{ A}_{sp}/(D_{sp} \cdot s) \cdot f_{yd}/f_{cd}$  per sezioni circolari





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO CODIFICA

IF1N 01 E ZZ CL

DOCUMENTO VI0605 016

REV. FOGLIO **B** 120 di 138

Secondo le indicazioni del §2.2.6 [3] invece deve verificarsi:

•  $A_{sw}/(s \cdot b) \cdot f_{yd}/f_{cd} \ge \zeta$  per sezioni rettangolari

•  $\rho_w \cdot f_{yd}/f_{cd} \ge 1,40 \cdot \zeta$  per sezioni circolari

con:

 $\rho_{w} = V_{sc}/V_{cc}$  rapporto tra il volume complessivo delle armature di confinamento  $V_{sc}$  e volume di calcestruzzo confinato  $V_{cc}$ ;

 $\zeta = 0.07 \text{per } a_g \ge 0.35 \text{ g};$ 

 $\zeta = 0.05 \text{per a}_g \ge 0.25 \text{ g};$ 

 $\zeta = 0.04 \text{per a}_g \ge 0.15 \text{ g};$ 

 $\zeta$  = 0,03per a<sub>g</sub> < 0,15 g.



fi barre (2° str.)



ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

mm2 mm2

mm

DOCUMENTO VI0605 016

REV. B FOGLIO 121 di 138

#### Verifica armatura minima longitudinale secondo §2.2.6 [3]

| ρmin =   | 0.60%    |
|----------|----------|
| Ac =     | 10575900 |
| As,min = | 63455    |

n barre (1° str.) 124
fi barre (1° str.) 20 mm
n barre (2° str.) 122

As 77244 mm2

ρ **0.73**% requisito soddisfatto

20

L'armatura prevista equivale ad uno strato di barre esterno ed interno fi20/200mm. Tale quantitativo di armatura, riferito ad una porzione di setto di lunghezza unitaria, corrisponde ad una percentuale geometrica di armatura pari allo 0.6%, ossia il minimo secondo §2.2.6 [3].

#### Verifica armatura minima trasversale secondo §2.2.6 [3]

| ag =        | 0.2  | g |
|-------------|------|---|
| ζ =         | 0.04 |   |
| ωwd,r min = | 0.04 |   |

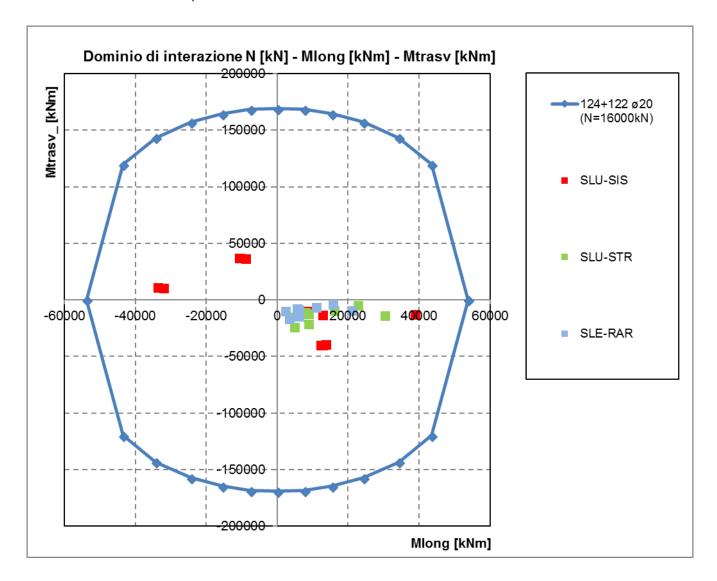
#### Armatura in dir. longitudinale

| Asw/s staffe = | 0.0121 | m2/m |
|----------------|--------|------|
| Asw/s spille = | 0.0080 | m2/m |
| b =            | 8.60   | m    |
| fyd =          | 391    | MPa  |
| fcd =          | 18.13  | MPa  |

 $\omega$ wd,r = **0.050** requisito soddisfatto

#### Armatura in dir. trasversale

| Asw/s staffe = | 0.0080 | m2/m |
|----------------|--------|------|
| Asw/s spille = | 0.0030 | m2/m |
| b =            | 2.60   | m    |
| fyd =          | 391    | MPa  |
| fcd =          | 18.13  | MPa  |
|                |        |      |


wwd,r = **0.092** requisito soddisfatto

L'armatura longitudinale di calcolo e l'armatura trasversale di calcolo rispettano le quantità minime indicate dalla normativa.

## 9.2 VERIFICA SLU A FLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di base della pila, espresse in forma sintetica mediante il diagramma di interazione  $M_{long}$  -  $M_{trasv}$ , valutato per una forza assiale corrispondente alla condizione di verifica più severa.

Le verifiche riportate a seguire sono riferite alla pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.



La verifica SLU di tipo flessionale nelle sezioni critiche si effettua verificando che:

$$FS = (M_{Rd,long}^2 + M_{Rd,trasv}^2)^{0.5} / (M_{Ed,long}^2 + M_{Ed,trasv}^2)^{0.5} \ge 1$$



Il valore minimo del fattore di sicurezza FS è pari a

FS 1.38

La verifica è soddisfatta, in quanto FS > 1.

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa relative alla pila con altezza maggiore tra quelle appartenenti al gruppo di sottostrutture considerato nella presente relazione.





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO     |
|----------|---------|----------|------------|------|------------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 124 di 138 |

## 9.3 VERIFICA SLU A TAGLIO

Nel caso di sezioni rettangolari la verifica viene effettuata distintamente per le due direzioni longitudinale e trasversale.

Nel caso si sezione circolare si esegue la verifica per un valore del taglio pari a:

$$V = \sqrt{(F1^2 + F2^2)}$$

Per quanto riguarda le combinazioni sismiche, con riferimento ai criteri della GR e a quanto precedentemente dichiarato nel §8.3.2, si procede al calcolo del taglio agente di calcolo sulla base dei risultati delle verifiche flessionali.

$$V_{ar} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \le q \cdot V_{Ed}$$

Il valore resistente a taglio della sezione si determina secondo le indicazioni del §4.1.2.1.3.2 [1]:

 $V_{Rd} = min(V_{Rcd}; V_{Rsd})$ 

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}' \cdot (ctg \alpha + ctg \theta)/(1 + ctg^2 \theta)$ 

 $V_{Rsd} = 0.9 \cdot d \cdot A_{sw}/s \cdot f_{vd} \cdot (ctg \alpha + ctg \theta) \cdot sen \alpha$  in cui

d altezza utile della sezione

bw larghezza minima della sezione

Asw area dell'armatura trasversale

s interasse tra due armature trasversali consecutive

θ inclinazione delle bielle di calcestruzzo

α angolo di inclinazione dell'armatura trasversale rispetto all'asse dell'elemento

f<sub>cd</sub>' resistenza a compressione ridotta (pari a 0,5 f<sub>cd</sub>)

α<sub>c</sub> coefficiente maggiorativo che tiene conto della compressione

Nel caso di sezione circolare, le dimensioni della sezione rettangolare equivalente da utilizzare per il calcolo della resistenza a taglio della sezione si determinano secondo le indicazioni del §7.9.5.2.2 [1]:

$$d = r + 2 \cdot r_s / \pi$$
$$b = 0.9 \cdot 2 \cdot r$$

I valori di resistenza a taglio degli elementi in c.a. devono inoltre essere divisi per un coefficiente di sicurezza aggiuntivo nei confronti della rottura fragile  $\gamma_{Bd}$  valutato mediante la seguente espressione:

$$1 \le \gamma_{Bd} = 1.25 + 1 - q \cdot V_{Ed} / V_{gr} \le 1.25$$

Si riporta a seguire in forma sintetica la verifica più severa della sezione di base del fusto della pila avente maggiore altezza tra quelle comprese nel gruppo di sottostruture considerato nella presente relazione.

II minimo valore del fattore di sicurezza FS = V<sub>Rd</sub> / V<sub>Ed</sub> è pari a

La verifica è soddisfatta in quanto FS > 1.

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa relative alla pila con altezza maggiore tra quelle appartenenti al gruppo considerato nella presente relazione.



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO

IF1N 01 E ZZ CL VI0605 016

REV. FOGLIO **B** 125 di 138

## 9.4 VERIFICA SLE TENSIONALE

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

#### per le combinazioni SLE-RAR:

• tensione limite nel calcestruzzo:  $\sigma_c = 0.55 f_{ck} = 18.3 MPa$ • tensione limite nelle barre:  $\sigma_s = 0.75 f_{yk} = 337.5 MPa$ 

per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo:  $\sigma_c = 0.40 f_{ck} = 13.3 MPa$ 

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) della sezione di base del fusto della pila avente maggiore altezza tra quelle comprese nel gruppo considerato nella presente relazione.

σc -5.4 MPaσs 77 MPa

La verifica è soddisfatta.

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa.

## 9.5 VERIFICA SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

#### per le combinazioni SLE-RAR:

• apertura fessure limite:  $w_{lim} = w_1 = 0,20 \text{ mm}$ 

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) della sezione di base del fusto della pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

L'ampiezza massima delle fessure calcolata è pari a

wk **0.123** mm

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa.

## 9.6 VERIFICA DEGLI SPOSTAMENTI

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa relative alla pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL

DOCUMENTO
VI0605 016

EV. FOGLIO

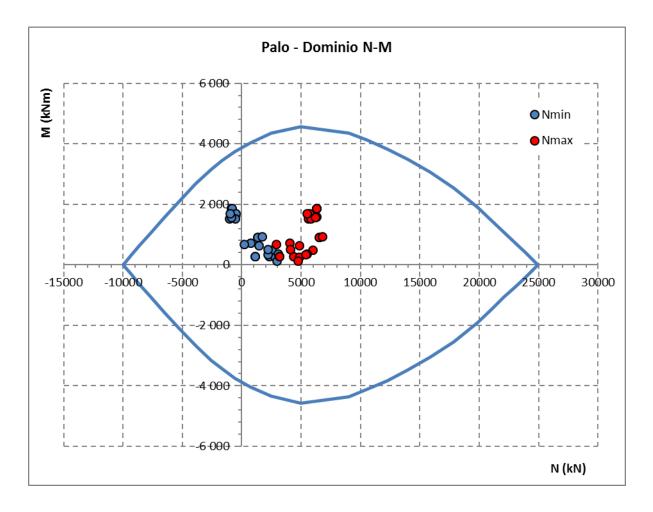
B 126 di 138

# 10 VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE 10.1 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Nelle tabelle seguenti sono descritte le caratteristiche geometriche della sezione di verifica dei pali di fondazione, nonché le caratteristiche di resistenza dei materiali.

| GEOMETRIA DELLA SEZIONE             |        |     |
|-------------------------------------|--------|-----|
| Diametro del palo =                 | 1200   | mm  |
| Copriferro netto c =                | 60     | mm  |
| Classe di resistenza calcestruzzo = | C25/30 | Мра |
| Classe di resistenza delle barre =  | B450C  | MPa |

Nella seguente tabella sono descritte le caratteristiche geometriche dell'armatura flessionale e a taglio dei pali, con riferimento ad un tratto di lunghezza pari a 10 ø dalla sezione di testa. Sono inoltre verificati i requisiti minimi in termini di armatura flessionale a taglio.


| ARMATURA PER I PRIMI 10 ø               |         |     |
|-----------------------------------------|---------|-----|
| 1° strato di armatura longitudinale     |         |     |
| Numero barre long.                      | 24      | -   |
| Diametro barre long.                    | 26      | mm  |
| Copriferro baricentrico arm. long. c' = | 87      | mm  |
| 2° strato di armatura longitudinale     |         |     |
| Numero barre long.                      | 24      | -   |
| Diametro barre long.                    | 26      | mm  |
| Copriferro baricentrico arm. long. c' = | 138     | mm  |
| Armatura trasversale                    |         |     |
| Diametro barre trasv.                   | 14      | mm  |
| Passo arm. trasv.                       | 150     | mm  |
| Diametro corona esterna =               | 1066    | mm  |
| VERIFICA ARMATURA MINIMA LONG.          |         |     |
| ρmin =                                  | 1.00%   |     |
| Ac =                                    | 1130973 | mm2 |
| As,min =                                | 11310   | mm2 |
| Armatura long. tot Asd,tot =            | 25485   | mm2 |
| ρl =                                    | 2.25%   |     |
|                                         |         |     |



## 10.2 VERIFICA SLU A PRESSOFLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di sommità del palo maggiormente sollecitato, espresse in forma sintetica mediante il diagramma di interazione N [kN] – M [kNm].

Le verifiche riportate a seguire sono riferite alla pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.



La verifica è soddisfatta in quanto le coppie N-M delle sollecitazioni agenti nella sezione di verifica sono interne al dominio di resistenza per ogni condizione di carico indagata.

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa relative alla pila con altezza maggiore tra quelle appartenenti al gruppo di sottostrutture considerato nella presente relazione.





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO     |
|----------|---------|----------|------------|------|------------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 128 di 138 |

## **10.3 VERIFICA SLU A TAGLIO**

Nel caso si sezione circolare si esegue la verifica per un valore del taglio pari a:

$$V = \sqrt{(F1^2 + F2^2)}$$

Per quanto riguarda le combinazioni sismiche, con riferimento ai criteri della GR e a quanto precedentemente dichiarato nel §8.3.2, si procede al calcolo del taglio agente di calcolo sulla base dei risultati delle verifiche flessionali.

$$V_{gr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \le q \cdot V_{Ed}$$

Il valore resistente a taglio della sezione si determina secondo le indicazioni del §4.1.2.1.3.2 [1]:

 $V_{Rd} = min (V_{Rcd}; V_{Rsd})$ 

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} \cdot (ctg \alpha + ctg \theta)/(1 + ctg^2 \theta)$ 

 $V_{Rsd} = 0.9 \cdot d \cdot A_{sw}/s \cdot f_{yd} \cdot (ctg \alpha + ctg \theta) \cdot sen \alpha$ 

in cui

d altezza utile della sezione

bw larghezza minima della sezione

Asw area dell'armatura trasversale

s interasse tra due armature trasversali consecutive

θ inclinazione delle bielle di calcestruzzo

angolo di inclinazione dell'armatura trasversale rispetto all'asse dell'elemento

f<sub>cd</sub>' resistenza a compressione ridotta (pari a 0,5 f<sub>cd</sub>)

αc coefficiente maggiorativo che tiene conto della compressione

Nel caso di sezione circolare, le dimensioni della sezione rettangolare equivalente da utilizzare per il calcolo della resistenza a taglio della sezione si determinano secondo le indicazioni del §7.9.5.2.2 [1]:

 $d = r + 2 \cdot r_s / \pi$ 

 $b = 0.9 \cdot 2 \cdot r$ 

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLV-SIS) relativa alla pila avente maggiore altezza tra quelle comprese nel gruppo considerato nella presente relazione.

Il minimo valore del fattore di sicurezza FS = V<sub>Rd</sub> / V<sub>Ed</sub> è pari a

FS 1.76

La verifica è soddisfatta, in quanto FS > 1.

Negli allegati alla presente relazione sono riportate le verifiche in forma completa relative alla pila con altezza maggiore tra quelle appartenenti al gruppo considerato.





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA

DOCUMENTO REV.

EV. FOGLIO

B 129 di 138

## **10.4 VERIFICA SLE TENSIONALE**

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

#### per le combinazioni SLE-RAR:

• tensione limite nel calcestruzzo:

 $\sigma_c = 0.55 \, f_{ck} = 13.7 \, MPa$ 

• tensione limite nelle barre:

 $\sigma_s = 0.75 \, f_{yk} = 337.5 \, MPa$ 

per le combinazioni SLE-QP:

• tensione limite nel calcestruzzo:

 $\sigma_{c} = 0.40 \, f_{ck} = 10.0 \, MPa$ 

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) relativa alla pila avente maggiore altezza tra quelle comprese nel gruppo considerato nella presente relazione.

σc

-4.13

MPa

σs

54.8

MPa

La verifica è soddisfatta.

Negli allegati alla presente relazione sono riportate le verifiche in forma completa.

## 10.5 VERIFICA SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

#### per le combinazioni SLE-RAR:

• apertura fessure limite:

 $w_{lim} = w_1 = 0.30 \text{ mm}$ 

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) relativa alla pila avente maggiore altezza tra quelle comprese nel gruppo considerato nella presente relazione.

L'ampiezza massima delle fessure calcolata è pari a

wk

0.075

mm

Negli allegati alla presente relazione sono riportate le verifiche in forma completa.



## 11 VERIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE

## 11.1 VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE

La verifica strutturale del plinto viene condotta a seguire impiegando un modello tirante-puntone, come quello rappresentato nella figura seguente, tratta da §C4.1.2.1.5 [2].

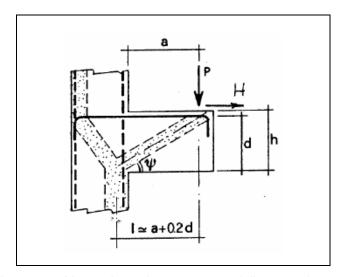



Figura 43 – Meccanismo tirante puntone della mensola tozza

Si distinguono due meccanismi di tipo tirante-puntone principali nel plinto di fondazione, illustrati nelle figure seguenti e descritti a seguire:

- un primo meccanismo è innescato dalle azioni trasmesse al plinto dai pali centrali e coinvolge un tirantepuntone parallelo alla direzione longitudinale (evidenziato in verde). Tale meccanismo coinvolge la sola armatura longitudinale inferiore del plinto.
- un secondo meccanismo coinvolge i pali di spigolo ed innesca un tirante-puntone con direzione diagonale (evidenziato in rosso), individuata da un angolo α misurato rispetto alla direzione trasversale. Tale meccanismo coinvolge sia l'armatura longitudinale inferiore del plinto che l'armatura trasversale, pertanto, ai fini delle verifiche del tirante di armatura e della biella di calcestruzzo, si considera composto dalla somma vettoriale di due meccanismi ortogonali disaccoppiati.



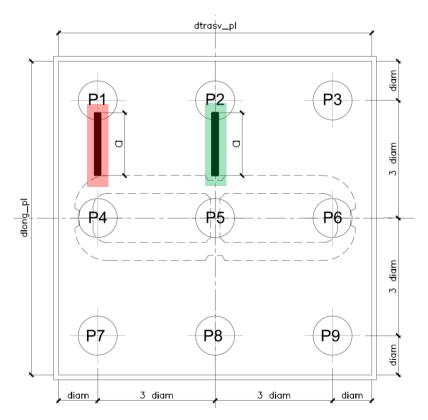



Figura 44 – Vista in pianta - Tirante-puntone centrale (verde) e di spigolo (rosso)

A seguire si riporta una immagine che illustra, in una vista in sezione, la geometria di un generico meccanismo tirante puntone che si innesca nel plinto per azione dei carichi concentrati trasmessi dai pali di fondazione

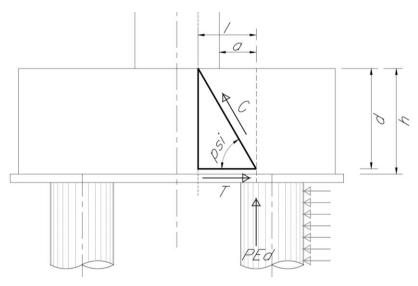



Figura 45 – Tirante puntone - Biella compressa di calcestruzzo C e tirante di armatura T



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

| Pile 20, 21, 22, 23, 30, 41 e 42 : Re | elazione di calcolo |
|---------------------------------------|---------------------|
|---------------------------------------|---------------------|

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO     |
|----------|---------|----------|------------|------|------------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 132 di 138 |

La forza di taglio di calcolo H<sub>Ed</sub> agente alla testa del palo si trascura in via conservativa, in quanto il suo effetto ridurrebbe la trazione nel tirante inferiore d'armatura, essendo tale azione di taglio indotta dalla reazione del terreno.

Ai fini delle successive verifiche, le azioni concentrate  $P_{Ed}$  [kN] trasmesse dai pali al plinto sono assunte pari alle forze assiali agenti in testa al palo  $N_{max}$  [kN], ridotte della quota parte spettante ad ogni palo del peso del plinto  $P_{pl}$  [kN] e del peso del rinterro  $P_{terr}$  [kN] presente all'estradosso del plinto:

$$P_{Ed} = N_{max} - (P_{pl} + P_{terr}) / n_{pali}$$

La larghezza della sezione resistente del tirante di armatura e della biella compressa (B<sub>eff</sub> = larghezza efficace) viene assunta pari a:

- per i pali centrali all'interasse pali i (B<sub>eff</sub> = i = 3 diam);
- per i pali di bordo a metà interasse pali i più la distanza dal bordo  $d_b$  ( $B_{eff} = i / 2 + d_b = 2.5$  diam).

L'altezza della sezione della biella compressa viene assunta pari a

$$h_c = 0.4 c d sen \psi$$
 (si assume  $c = 1$ )

in conformità a quanto riportato in §C4.1.2.1.5 [2].

#### 11.1.1 GEOMETRIA DEL TIRANTE-PUNTONE

#### 11.1.1.1 TIRANTE - PUNTONE IN DIREZIONE DI SPIGOLO

| 2.00 | m                            |
|------|------------------------------|
| 2.50 | m                            |
| 2.40 | m                            |
| 2.48 | m                            |
|      |                              |
| 0.87 |                              |
|      | 2.00<br>2.50<br>2.40<br>2.48 |

psi

#### 11.1.1.2 TIRANTE - PUNTONE CENTRALE

41.0 °

| а         | 2.00 | m |
|-----------|------|---|
| h         | 2.50 | m |
| d = 0.9 h | 2.40 | m |
| I         | 2.48 | m |
|           |      |   |
| tan psi   | 0.87 |   |
| psi       | 41.0 | 0 |



#### 11.1.2 SEZIONE DEL TIRANTE DI ARMATURA E DELLA BIELLA COMPRESSA

Con riferimento alla figura seguente, l'armatura prevista nel plinto di fondazione è descritta a seguire:

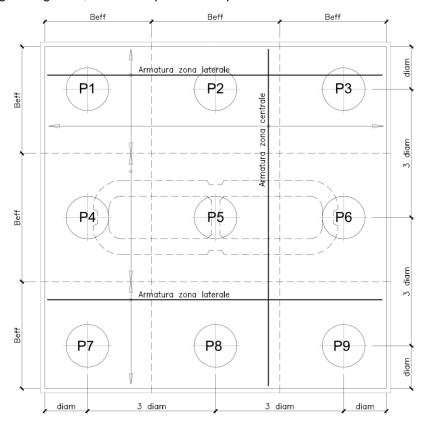



Figura 46 – Plinto di fondazione – Armatura longitudinale inferiore e superiore

Il tirante d'armatura impiegato nelle verifiche è descritto nella tabella seguente.

|         | Armatura inferiore di verifica |             |               | Armatura superiore di verifica |             |               |       |
|---------|--------------------------------|-------------|---------------|--------------------------------|-------------|---------------|-------|
|         | Zona laterale                  |             | Zona centrale | Zona laterale                  |             | Zona centrale |       |
|         | dir. Long.                     | dir. Trasv. | dir. Long.    | dir. Long.                     | dir. Trasv. | dir. Long.    |       |
| Beff    | 3.00                           | 3.00        | 3.60          | 3.00                           | 3.00        | 3.60          | [m]   |
| øbarre  | 3.00                           | 2.00        | 3.00          | 2.40                           | 2.40        | 2.40          | [cm]  |
| ibarre  | 0.15                           | 0.20        | 0.15          | 0.20                           | 0.20        | 0.20          | [m]   |
| nstrati | 2.50                           | 2.00        | 2.00          | 2.00                           | 1.00        | 1.00          |       |
| nbarre  | 50                             | 30          | 48            | 30                             | 15          | 18            |       |
| A1b     | 7.07                           | 3.14        | 7.07          | 4.52                           | 4.52        | 4.52          | [cm2] |
| Atot    | 353                            | 94          | 339           | 136                            | 68          | 81            | [cm2] |





I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 134 di 138 |
|----------|---------|----------|------------|------|------------|
| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO     |

La sezione della biella compressa di calcestruzzo impiegata nelle verifiche è descritta nella tabella seguente.

|   |    | Biella inferio | ore di verifica | Biella superi | ore di verifica |      |
|---|----|----------------|-----------------|---------------|-----------------|------|
|   |    | Zona laterale  | Zona centrale   | Zona laterale | Zona centrale   |      |
|   |    | dir. Long.     | dir. Long.      | dir. Long.    | dir. Long.      |      |
|   | Вс | 3.00           | 3.60            | 3.00          | 3.60            | [m]  |
| I | hc | 0.63           | 0.63            | 0.63          | 0.63            | [m]  |
| Ī | Ac | 1.89           | 2.26            | 1.89          | 2.26            | [m2] |

#### 11.1.3 VERIFICHE SLU DELLE TENSIONI NORMALI

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

#### per le combinazioni SLU e SLV:

• tensione limite nel calcestruzzo:  $\sigma_c = f_{cd}' = 0.5 f_{cd} = 8.2 \text{ MPa}$ • tensione limite nelle barre:  $\sigma_s = f_{yd} = 391 \text{ MPa}$ 

Si riportano a seguire in forma sintetica le verifiche più severe dei meccanismi tirante-puntone che si innescano nel plinto della pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

|         | Nmax | PEd  | Т    | σs_long | σs_trasv | < fyd | С    | σς  | < fcd' |
|---------|------|------|------|---------|----------|-------|------|-----|--------|
| SIS-SLV | 6254 | 5498 | 6323 | 179     | 0        | VERO  | 8379 | 4.4 | VERO   |
|         | kN   | kN   | kN   | Мра     | Мра      |       | kN   | Мра |        |

Negli allegati alla presente relazione sono riportate le verifiche in forma completa relative al plinto della pila con altezza maggiore tra quelle appartenenti al gruppo considerato.

#### 11.1.4 VERIFICHE SLE DELLE TENSIONI NORMALI

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

## per le combinazioni SLE-RAR:

• tensione limite nel calcestruzzo:  $\sigma_c = 0.55 \; f_{ck} = 16.0 \; MPa$ • tensione limite nelle barre:  $\sigma_s = 0.75 \; f_{yk} = 337.5 \; MPa$ 

per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo:  $\sigma_c = 0.40 f_{ck} = 11.6 MPa$ 



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO     |
|----------|---------|----------|------------|------|------------|
| IF1N     | 01 E ZZ | CL       | VI0605 016 | В    | 135 di 138 |

Si riportano a seguire in forma sintetica le verifiche più severe dei meccanismi tirante-puntone che si innescano nel plinto della pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

|         | Nmax | PEd  | Т    | σs_long | σs_trasv | < 0.75 fyk | С    | σς  | < 0.40 fck' |
|---------|------|------|------|---------|----------|------------|------|-----|-------------|
| SLE-RAR | 4676 | 3920 | 4509 | 128     | 0        | VERO       | 5974 | 3.2 | VERO        |
|         | kN   | kN   | kN   | Мра     | Мра      |            | kN   | Мра |             |

Negli allegati alla presente relazione sono riportate le verifiche in forma completa relative al plinto della pila con altezza maggiore tra quelle appartenenti al gruppo considerato.

#### 11.2 VERIFICA SLU A PUNZONAMENTO

Il valore resistente a taglio-punzonamento della sezione si determina secondo le indicazioni del §4.1.2.1.3.1 e 4 [1]:

 $V_{Rd,c} = V_{Rd,c} / u$  in cui

 $V_{Rd,c} = (0.18 \text{ k} (100 \text{ p}_1 \text{ f}_{ck})^{1/3} / \gamma_c + 0.15 \text{ } \sigma_{cp}) \text{ b}_w \text{ d} \ge (v_{min} + 0.15 \text{ } \sigma_{cp}) \text{ b}_w \text{ d}$ 

u = perimetro efficace per la verifica a taglio-punzomento

d altezza utile della sezione

bw larghezza minima della sezione

k = 1 +  $(200/d)^{1/2} \le 2$ 

 $v_{min} = 0.035 \ k^{3/2} \ f_{ck}^{1/2}$ 

 $\rho_I = A_{sI} / (b_w d)$ 

 $\sigma_{cp} = N_{Ed} / A_c$ 

Conservativamente, la verifica è stata riferita al palo di bordo maggiormente sollecitato e lo sviluppo del perimetro efficace u è stato definito considerando una distanza dall'impronta caricata (coincidente con la sezione di testa del palo) pari a  $d = a \cdot 0.9 H_{pl}$  ( $H_{pl} = altezza plinto, a < 2$ ), come illustrato nella seguente figura.



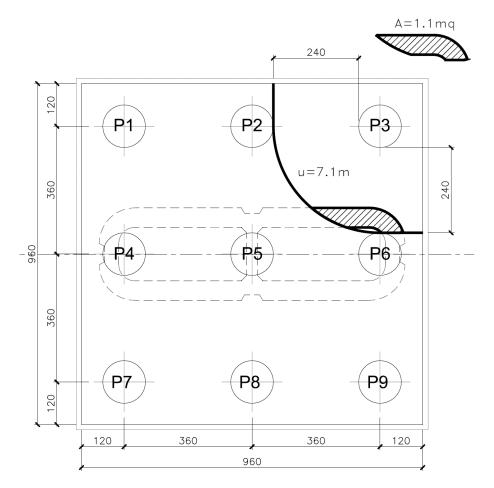



Figura 47 – Perimetro efficace per la verifica a taglio-punzonamento

A seguire si riportano il valore della forza concentrata V<sub>Ed</sub> [kN] agente alla testa del palo maggiormente sollecitato nella condizione di verifica più severa, il valore del coefficiente a che individua la geometria del perimetro efficace e lo sviluppo u [m] di quest'ultimo.

La forza concentrata  $V_{Ed}$  = 5915 kN è stata depurata della quota parte di forza assiale agente nella sezione di base del fusto della pila, pari a  $N_{Ed}$ \* =  $N_{Ed}$  \* A /  $A_c$  = 17000 kN \* 1.1 m² / 10.45 m² = 1789 kN

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLV-SIS) a a taglio-punzonamento della pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

| VEd   | 4126  | kN  |
|-------|-------|-----|
| а     | 1.07  |     |
| u     | 7.1   | m   |
| vEd   | 0.243 | MPa |
| vRd c | 0.320 | MPa |

Negli allegati alla presente relazione sono riportate le verifiche in forma completa.



Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

## ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 VI0605 016
 B
 137 di 138

## 11.3 VERIFICA SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

#### per le combinazioni SLE-RAR:

• apertura fessure limite:  $w_{lim} = w_1 = 0.30 \text{ mm}$ 

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) della pila avente maggiore altezza tra quelle comprese nel gruppo di sottostrutture considerato nella presente relazione.

L'ampiezza massima delle fessure calcolata è pari a

wk 0.228 mm

Negli allegati alla presente relazione sono riportate le verifiche in forma completa.



Pile 20, 21, 22, 23, 30, 41 e 42 : Relazione di calcolo

## ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

CL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA IF1N

LOTTO COL

01 E ZZ

CODIFICA DOCUMENTO

JMENTO REV.

VI0605 016

FOGLIO 138 di 138

## 12 INCIDENZE

Incidenza pulvino: 120 kg/m³
Incidenza fusto: 230 kg/m³
Incidenza platea: 90 kg/m³

Incidenza pali: 135 kg/m³ P20-21-21-23 Incidenza pali: 120 kg/m³ P30-41-42

# **ALLEGATO 1**

| NOME COMB.  | G -  | Permar | nenti |      |      | Q1 - V | ariabili v | verticali |      |      |      | Q2   | ! - Avvia | ımento e | e frenat | ura  |      |      |      | Q3   | - Centri | fuga |      |      |      |      | Q4   | - Serpe | ggio |      |      | Q6 - A | 5 - Varia<br>Azioni ir<br>17 - Effe<br>nterazio | nterne<br>etti | E - Az | rioni sisr | miche | De    | escrizione |
|-------------|------|--------|-------|------|------|--------|------------|-----------|------|------|------|------|-----------|----------|----------|------|------|------|------|------|----------|------|------|------|------|------|------|---------|------|------|------|--------|-------------------------------------------------|----------------|--------|------------|-------|-------|------------|
|             | G1   | G21    | G22   | Q11  | Q12  | Q13    | Q14        | Q15       | Q16  | Q17  | Q21  | Q22  | Q23       | Q24      | Q25      | Q26  | Q27  | Q31  | Q32  | Q33  | Q34      | Q35  | Q36  | Q37  | Q41  | Q42  | Q43  | Q44     | Q45  | Q46  | Q47  | Q51    | Q61                                             | Q71            | E1     | E2         | E3    |       |            |
| SLU-STR-001 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0        | 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | G1+G2 | solo perm  |
| SLU-STR-002 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0        | 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 1,5    | 0,9                                             | 0,9            | 0      | 0          | 0     | Q51   | vento      |
| SLU-STR-003 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0        | 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 0,9    | 1,45                                            | 1,5            | 0      | 0          | 0     | Q71   | termica    |
| SLU-STR-004 | 1    | 1      | 0     | 0    | 0    | 0      | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0        | 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 1,5    | 0,9                                             | 0,9            | 0      | 0          | 0     | Q51   | vento      |
| SLU-STR-005 | 1    | 1      | 0     | 0    | 0    | 0      | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0        | 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 0,9    | 1,45                                            | 1,5            | 0      | 0          | 0     | Q71   | termica    |
| SLU-STR-006 | 1,35 | 1,5    | 1,5   | 1,45 | 0    | 0      | 0          | 0         | 0    | 0    | 0,73 | 0    | 0         | 0        | 0        | 0    | 0    | 1,45 | 0    | 0    | 0        | 0    | 0    | 0    | 1,45 | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q11   | gruppo 1   |
| SLU-STR-007 | 1,35 | 1,5    | 1,5   | 0    | 1,45 | 0      | 0          | 0         | 0    | 0    | 0    | 0,73 | 0         | 0        | 0        | 0    | 0    | 0    | 1,45 | 0    | 0        | 0    | 0    | 0    | 0    | 1,45 | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q12   | gruppo 1   |
| SLU-STR-008 | 1,35 | 1,5    | 1,5   | 0    | 0    | 1,45   | 0          | 0         | 0    | 0    | 0    | 0    | 0,73      | 0        | 0        | 0    | 0    | 0    | 0    | 1,45 | 0        | 0    | 0    | 0    | 0    | 0    | 1,45 | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q13   | gruppo 1   |
| SLU-STR-009 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 1,45       | 0         | 0    | 0    | 0    | 0    | 0         | 0,73     | 0        | 0    | 0    | 0    | 0    | 0    | 1,45     | 0    | 0    | 0    | 0    | 0    | 0    | 1,45    | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q14   | gruppo 1   |
| SLU-STR-010 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 1,45      | 0    | 0    | 0    | 0    | 0         | 0        | 0,73     | 0    | 0    | 0    | 0    | 0    | 0        | 1,45 | 0    | 0    | 0    | 0    | 0    | 0       | 1,45 | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q15   | gruppo 1   |
| SLU-STR-011 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 1,45 | 0    | 0    | 0    | 0         | 0        | 0        | 0,73 | 0    | 0    | 0    | 0    | 0        | 0    | 1,45 | 0    | 0    | 0    | 0    | 0       | 0    | 1,45 | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q16   | gruppo 1   |
| SLU-STR-012 | 1,35 | 1,5    | 1,5   | 1,45 | 0    | 0      | 0          | 0         | 0    | 0    | 1,45 | 0    | 0         | 0        | 0        | 0    | 0    | 0,73 | 0    | 0    | 0        | 0    | 0    | 0    | 0,73 | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q11   | gruppo 3   |
| SLU-STR-013 | 1,35 | 1,5    | 1,5   | 0    | 1,45 | 0      | 0          | 0         | 0    | 0    | 0    | 1,45 | 0         | 0        | 0        | 0    | 0    | 0    | 0,73 | 0    | 0        | 0    | 0    | 0    | 0    | 0,73 | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q12   | gruppo 3   |
| SLU-STR-014 | 1,35 | 1,5    | 1,5   | 0    | 0    | 1,45   | 0          | 0         | 0    | 0    | 0    | 0    | 1,45      | 0        | 0        | 0    | 0    | 0    | 0    | 0,73 | 0        | 0    | 0    | 0    | 0    | 0    | 0,73 | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q13   | gruppo 3   |
| SLU-STR-015 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 1,45       | 0         | 0    | 0    | 0    | 0    | 0         | 1,45     | 0        | 0    | 0    | 0    | 0    | 0    | 0,73     | 0    | 0    | 0    | 0    | 0    | 0    | 0,73    | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q14   | gruppo 3   |
| SLU-STR-016 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 1,45      | 0    | 0    | 0    | 0    | 0         | 0        | 1,45     | 0    | 0    | 0    | 0    | 0    | 0        | 0,73 | 0    | 0    | 0    | 0    | 0    | 0       | 0,73 | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q15   | gruppo 3   |
| SLU-STR-017 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 1,45 | 0    | 0    | 0    | 0         | 0        | 0        | 1,45 | 0    | 0    | 0    | 0    | 0        | 0    | 0,73 | 0    | 0    | 0    | 0    | 0       | 0    | 0,73 | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q16   | gruppo 3   |
| SLU-STR-018 | 1    | 1      | 0     | 0    | 0    | 0      | 0          | 0         | 0    | 0,73 | 0    | 0    | 0         | 0        | 0        | 0    | 1,45 | 0    | 0    | 0    | 0        | 0    | 0    | 0,73 | 0    | 0    | 0    | 0       | 0    | 0    | 0,73 | 0      | 0                                               | 0              | 0      | 0          | 0     | Q27   | gruppo 3-2 |
| SLU-STR-019 | 1,35 | 1,5    | 1,5   | 1,45 | 0    | 0      | 0          | 0         | 0    | 0    | 0,73 | 0    | 0         | 0        | 0        | 0    | 0    | 1,45 | 0    | 0    | 0        | 0    | 0    | 0    | 1,45 | 0    | 0    | 0       | 0    | 0    | 0    | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q11   | gruppo 1   |
| SLU-STR-020 | 1,35 | 1,5    | 1,5   | 0    | 1,45 | 0      | 0          | 0         | 0    | 0    | 0    | 0,73 | 0         | 0        | 0        | 0    | 0    | 0    | 1,45 | 0    | 0        | 0    | 0    | 0    | 0    | 1,45 | 0    | 0       | 0    | 0    | 0    | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q12   | gruppo 1   |
| SLU-STR-021 | 1,35 | 1,5    | 1,5   | 0    | 0    | 1,45   | 0          | 0         | 0    | 0    | 0    | 0    | 0,73      | 0        | 0        | 0    | 0    | 0    | 0    | 1,45 | 0        | 0    | 0    | 0    | 0    | 0    | 1,45 | 0       | 0    | 0    | 0    | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q13   | gruppo 1   |
| SLU-STR-022 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 1,45       | 0         | 0    | 0    | 0    | 0    | 0         | 0,73     | 0        | 0    | 0    | 0    | 0    | 0    | 1,45     | 0    | 0    | 0    | 0    | 0    | 0    | 1,45    | 0    | 0    | 0    | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q14   | gruppo 1   |
| SLU-STR-023 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 1,45      | 0    | 0    | 0    | 0    | 0         | 0        | 0,73     | 0    | 0    | 0    | 0    | 0    | 0        | 1,45 | 0    | 0    | 0    | 0    | 0    | 0       | 1,45 | 0    | 0    | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q15   | gruppo 1   |
| SLU-STR-024 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 1,45 | 0    | 0    | 0    | 0         | 0        | 0        | 0,73 | 0    | 0    | 0    | 0    | 0        | 0    | 1,45 | 0    | 0    | 0    | 0    | 0       | 0    | 1,45 | 0    | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q16   | gruppo 1   |
| SLU-STR-025 | 1,35 | 1,5    | 1,5   | 1,45 | 0    | 0      | 0          | 0         | 0    | 0    | 1,45 | 0    | 0         | 0        | 0        | 0    | 0    | 0,73 | 0    | 0    | 0        | 0    | 0    | 0    | 0,73 | 0    | 0    | 0       | 0    | 0    | 0    | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q11   | gruppo 3   |
| SLU-STR-026 | 1,35 | 1,5    | 1,5   | 0    | 1,45 | 0      | 0          | 0         | 0    | 0    | 0    | 1,45 | 0         | 0        | 0        | 0    | 0    | 0    | 0,73 | 0    | 0        | 0    | 0    | 0    | 0    | 0,73 | 0    | 0       | 0    | 0    | 0    | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q12   | gruppo 3   |
| SLU-STR-027 | 1,35 | 1,5    | 1,5   | 0    | 0    | 1,45   | 0          | 0         | 0    | 0    | 0    | 0    | 1,45      | 0        | 0        | 0    | 0    | 0    | 0    | 0,73 | 0        | 0    | 0    | 0    | 0    | 0    | 0,73 | 0       | 0    | 0    | 0    | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q13   | gruppo 3   |
| SLU-STR-028 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 1,45       | 0         | 0    | 0    | 0    | 0    | 0         | 1,45     | 0        | 0    | 0    | 0    | 0    | 0    | 0,73     | 0    | 0    | 0    | 0    | 0    | 0    | 0,73    | 0    | 0    | 0    | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q14   | gruppo 3   |
| SLU-STR-029 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 1,45      | 0    | 0    | 0    | 0    | 0         | 0        | 1,45     | 0    | 0    | 0    | 0    | 0    | 0        | 0,73 | 0    | 0    | 0    | 0    | 0    | 0       | 0,73 | 0    | 0    | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q15   | gruppo 3   |
| SLU-STR-030 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 1,45 | 0    | 0    | 0    | 0         | 0        | 0        | 1,45 | 0    | 0    | 0    | 0    | 0        | 0    | 0,73 | 0    | 0    | 0    | 0    | 0       | 0    | 0,73 | 0    | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q16   | gruppo 3   |
| SLU-STR-031 | 1    | 1      | 0     | 0    | 0    | 0      | 0          | 0         | 0    | 0,73 | 0    | 0    | 0         | 0        | 0        | 0    | 1,45 | 0    | 0    | 0    | 0        | 0    | 0    | 0,73 | 0    | 0    | 0    | 0       | 0    | 0    | 0,73 | 0,9    | 0                                               | 0              | 0      | 0          | 0     | Q27   | gruppo 3-2 |
| SLU-STR-032 | 1,35 | 1,5    | 1,5   | 1,45 | 0    | 0      | 0          | 0         | 0    | 0    | 0,73 | 0    | 0         | 0        | 0        | 0    | 0    | 1,45 | 0    | 0    | 0        | 0    | 0    | 0    | 1,45 | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 1,45                                            | 0              | 0      | 0          | 0     | Q11   | gruppo 1   |
| SLU-STR-033 | 1,35 | 1,5    | 1,5   | 0    | 1,45 | 0      | 0          | 0         | 0    | 0    | 0    | 0,73 | 0         | 0        | 0        | 0    | 0    | 0    | 1,45 | 0    | 0        | 0    | 0    | 0    | 0    | 1,45 | 0    | 0       | 0    | 0    | 0    | 0      | 1,45                                            | 0              | 0      | 0          | 0     | Q12   | gruppo 1   |
| SLU-STR-034 | 1,35 | 1,5    | 1,5   | 0    | 0    | 1,45   | 0          | 0         | 0    | 0    | 0    | 0    | 0,73      | 0        | 0        | 0    | 0    | 0    | 0    | 1,45 | 0        | 0    | 0    | 0    | 0    | 0    | 1,45 | 0       | 0    | 0    | 0    | 0      | 1,45                                            | 0              | 0      | 0          | 0     | Q13   | gruppo 1   |
| SLU-STR-035 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 1,45       | 0         | 0    | 0    | 0    | 0    | 0         | 0,73     | 0        | 0    | 0    | 0    | 0    | 0    | 1,45     | 0    | 0    | 0    | 0    | 0    | 0    | 1,45    | 0    | 0    | 0    | 0      | 1,45                                            | 0              | 0      | 0          | 0     | Q14   | gruppo 1   |
| SLU-STR-036 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 1,45      | 0    | 0    | 0    | 0    | 0         | 0        | 0,73     | 0    | 0    | 0    | 0    | 0    | 0        | 1,45 | 0    | 0    | 0    | 0    | 0    | 0       | 1,45 | 0    | 0    | 0      | 1,45                                            | 0              | 0      | 0          | 0     | Q15   | gruppo 1   |
| SLU-STR-037 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 1,45 | 0    | 0    | 0    | 0         | 0        | 0        | 0,73 | 0    | 0    | 0    | 0    | 0        | 0    | 1,45 | 0    | 0    | 0    | 0    | 0       | 0    | 1,45 | 0    | 0      | 1,45                                            | 0              | 0      | 0          | 0     | Q16   | gruppo 1   |

| NOME COMB.  | G -  | Permar | nenti |      |      | Q1 - V | ariabili v | rerticali |      |      |      | Q2   | ! - Avvia | mento e | e frenati | ura  |      |      |      | Q3   | - Centri | fuga |      |      |      |      | Q4   | - Serpe | ggio |      |      | Q6 - | 5 - Varia<br>Azioni ii<br>Q7 - Effe<br>interazio | nterne<br>etti | E - Az | rioni sisr | miche | De    | scrizione  |
|-------------|------|--------|-------|------|------|--------|------------|-----------|------|------|------|------|-----------|---------|-----------|------|------|------|------|------|----------|------|------|------|------|------|------|---------|------|------|------|------|--------------------------------------------------|----------------|--------|------------|-------|-------|------------|
|             | G1   | G21    | G22   | Q11  | Q12  | Q13    | Q14        | Q15       | Q16  | Q17  | Q21  | Q22  | Q23       | Q24     | Q25       | Q26  | Q27  | Q31  | Q32  | Q33  | Q34      | Q35  | Q36  | Q37  | Q41  | Q42  | Q43  | Q44     | Q45  | Q46  | Q47  | Q51  | Q61                                              | Q71            | E1     | E2         | E3    |       |            |
| SLU-STR-038 | 1,35 | 1,5    | 1,5   | 1,45 | 0    | 0      | 0          | 0         | 0    | 0    | 1,45 | 0    | 0         | 0       | 0         | 0    | 0    | 0,73 | 0    | 0    | 0        | 0    | 0    | 0    | 0,73 | 0    | 0    | 0       | 0    | 0    | 0    | 0    | 1,45                                             | 0              | 0      | 0          | 0     | Q11   | gruppo 3   |
| SLU-STR-039 | 1,35 | 1,5    | 1,5   | 0    | 1,45 | 0      | 0          | 0         | 0    | 0    | 0    | 1,45 | 0         | 0       | 0         | 0    | 0    | 0    | 0,73 | 0    | 0        | 0    | 0    | 0    | 0    | 0,73 | 0    | 0       | 0    | 0    | 0    | 0    | 1,45                                             | 0              | 0      | 0          | 0     | Q12   | gruppo 3   |
| SLU-STR-040 | 1,35 | 1,5    | 1,5   | 0    | 0    | 1,45   | 0          | 0         | 0    | 0    | 0    | 0    | 1,45      | 0       | 0         | 0    | 0    | 0    | 0    | 0,73 | 0        | 0    | 0    | 0    | 0    | 0    | 0,73 | 0       | 0    | 0    | 0    | 0    | 1,45                                             | 0              | 0      | 0          | 0     | Q13   | gruppo 3   |
| SLU-STR-041 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 1,45       | 0         | 0    | 0    | 0    | 0    | 0         | 1,45    | 0         | 0    | 0    | 0    | 0    | 0    | 0,73     | 0    | 0    | 0    | 0    | 0    | 0    | 0,73    | 0    | 0    | 0    | 0    | 1,45                                             | 0              | 0      | 0          | 0     | Q14   | gruppo 3   |
| SLU-STR-042 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 1,45      | 0    | 0    | 0    | 0    | 0         | 0       | 1,45      | 0    | 0    | 0    | 0    | 0    | 0        | 0,73 | 0    | 0    | 0    | 0    | 0    | 0       | 0,73 | 0    | 0    | 0    | 1,45                                             | 0              | 0      | 0          | 0     | Q15   | gruppo 3   |
| SLU-STR-043 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 1,45 | 0    | 0    | 0    | 0         | 0       | 0         | 1,45 | 0    | 0    | 0    | 0    | 0        | 0    | 0,73 | 0    | 0    | 0    | 0    | 0       | 0    | 0,73 | 0    | 0    | 1,45                                             | 0              | 0      | 0          | 0     | Q16   | gruppo 3   |
| SLU-STR-044 | 1    | 1      | 0     | 0    | 0    | 0      | 0          | 0         | 0    | 0,73 | 0    | 0    | 0         | 0       | 0         | 0    | 1,45 | 0    | 0    | 0    | 0        | 0    | 0    | 0,73 | 0    | 0    | 0    | 0       | 0    | 0    | 0,73 | 0    | 1,45                                             | 0              | 0      | 0          | 0     | Q27   | gruppo 3-2 |
| SLU-STR-045 | 1,35 | 1,5    | 1,5   | 1,45 | 0    | 0      | 0          | 0         | 0    | 0    | 0,73 | 0    | 0         | 0       | 0         | 0    | 0    | 1,45 | 0    | 0    | 0        | 0    | 0    | 0    | 1,45 | 0    | 0    | 0       | 0    | 0    | 0    | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q11   | gruppo 1   |
| SLU-STR-046 | 1,35 | 1,5    | 1,5   | 0    | 1,45 | 0      | 0          | 0         | 0    | 0    | 0    | 0,73 | 0         | 0       | 0         | 0    | 0    | 0    | 1,45 | 0    | 0        | 0    | 0    | 0    | 0    | 1,45 | 0    | 0       | 0    | 0    | 0    | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q12   | gruppo 1   |
| SLU-STR-047 | 1,35 | 1,5    | 1,5   | 0    | 0    | 1,45   | 0          | 0         | 0    | 0    | 0    | 0    | 0,73      | 0       | 0         | 0    | 0    | 0    | 0    | 1,45 | 0        | 0    | 0    | 0    | 0    | 0    | 1,45 | 0       | 0    | 0    | 0    | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q13   | gruppo 1   |
| SLU-STR-048 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 1,45       | 0         | 0    | 0    | 0    | 0    | 0         | 0,73    | 0         | 0    | 0    | 0    | 0    | 0    | 1,45     | 0    | 0    | 0    | 0    | 0    | 0    | 1,45    | 0    | 0    | 0    | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q14   | gruppo 1   |
| SLU-STR-049 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 1,45      | 0    | 0    | 0    | 0    | 0         | 0       | 0,73      | 0    | 0    | 0    | 0    | 0    | 0        | 1,45 | 0    | 0    | 0    | 0    | 0    | 0       | 1,45 | 0    | 0    | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q15   | gruppo 1   |
| SLU-STR-050 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 1,45 | 0    | 0    | 0    | 0         | 0       | 0         | 0,73 | 0    | 0    | 0    | 0    | 0        | 0    | 1,45 | 0    | 0    | 0    | 0    | 0       | 0    | 1,45 | 0    | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q16   | gruppo 1   |
| SLU-STR-051 | 1,35 | 1,5    | 1,5   | 1,45 | 0    | 0      | 0          | 0         | 0    | 0    | 1,45 | 0    | 0         | 0       | 0         | 0    | 0    | 0,73 | 0    | 0    | 0        | 0    | 0    | 0    | 0,73 | 0    | 0    | 0       | 0    | 0    | 0    | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q11   | gruppo 3   |
| SLU-STR-052 | 1,35 | 1,5    | 1,5   | 0    | 1,45 | 0      | 0          | 0         | 0    | 0    | 0    | 1,45 | 0         | 0       | 0         | 0    | 0    | 0    | 0,73 | 0    | 0        | 0    | 0    | 0    | 0    | 0,73 | 0    | 0       | 0    | 0    | 0    | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q12   | gruppo 3   |
| SLU-STR-053 | 1,35 | 1,5    | 1,5   | 0    | 0    | 1,45   | 0          | 0         | 0    | 0    | 0    | 0    | 1,45      | 0       | 0         | 0    | 0    | 0    | 0    | 0,73 | 0        | 0    | 0    | 0    | 0    | 0    | 0,73 | 0       | 0    | 0    | 0    | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q13   | gruppo 3   |
| SLU-STR-054 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 1,45       | 0         | 0    | 0    | 0    | 0    | 0         | 1,45    | 0         | 0    | 0    | 0    | 0    | 0    | 0,73     | 0    | 0    | 0    | 0    | 0    | 0    | 0,73    | 0    | 0    | 0    | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q14   | gruppo 3   |
| SLU-STR-055 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 1,45      | 0    | 0    | 0    | 0    | 0         | 0       | 1,45      | 0    | 0    | 0    | 0    | 0    | 0        | 0,73 | 0    | 0    | 0    | 0    | 0    | 0       | 0,73 | 0    | 0    | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q15   | gruppo 3   |
| SLU-STR-056 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 1,45 | 0    | 0    | 0    | 0         | 0       | 0         | 1,45 | 0    | 0    | 0    | 0    | 0        | 0    | 0,73 | 0    | 0    | 0    | 0    | 0       | 0    | 0,73 | 0    | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q16   | gruppo 3   |
| SLU-STR-057 | 1    | 1      | 0     | 0    | 0    | 0      | 0          | 0         | 0    | 0,73 | 0    | 0    | 0         | 0       | 0         | 0    | 1,45 | 0    | 0    | 0    | 0        | 0    | 0    | 0,73 | 0    | 0    | 0    | 0       | 0    | 0    | 0,73 | 0    | 0                                                | 0,9            | 0      | 0          | 0     | Q27   | gruppo 3-2 |
| SLU-STR-058 | 1,35 | 1,5    | 1,5   | 1,45 | 0    | 0      | 0          | 0         | 0    | 0    | 0,73 | 0    | 0         | 0       | 0         | 0    | 0    | 1,45 | 0    | 0    | 0        | 0    | 0    | 0    | 1,45 | 0    | 0    | 0       | 0    | 0    | 0    | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q11   | gruppo 1   |
| SLU-STR-059 | 1,35 | 1,5    | 1,5   | 0    | 1,45 | 0      | 0          | 0         | 0    | 0    | 0    | 0,73 | 0         | 0       | 0         | 0    | 0    | 0    | 1,45 | 0    | 0        | 0    | 0    | 0    | 0    | 1,45 | 0    | 0       | 0    | 0    | 0    | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q12   | gruppo 1   |
| SLU-STR-060 | 1,35 | 1,5    | 1,5   | 0    | 0    | 1,45   | 0          | 0         | 0    | 0    | 0    | 0    | 0,73      | 0       | 0         | 0    | 0    | 0    | 0    | 1,45 | 0        | 0    | 0    | 0    | 0    | 0    | 1,45 | 0       | 0    | 0    | 0    | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q13   | gruppo 1   |
| SLU-STR-061 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 1,45       | 0         | 0    | 0    | 0    | 0    | 0         | 0,73    | 0         | 0    | 0    | 0    | 0    | 0    | 1,45     | 0    | 0    | 0    | 0    | 0    | 0    | 1,45    | 0    | 0    | 0    | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q14   | gruppo 1   |
| SLU-STR-062 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 1,45      | 0    | 0    | 0    | 0    | 0         | 0       | 0,73      | 0    | 0    | 0    | 0    | 0    | 0        | 1,45 | 0    | 0    | 0    | 0    | 0    | 0       | 1,45 | 0    | 0    | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q15   | gruppo 1   |
| SLU-STR-063 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 1,45 | 0    | 0    | 0    | 0         | 0       | 0         | 0,73 | 0    | 0    | 0    | 0    | 0        | 0    | 1,45 | 0    | 0    | 0    | 0    | 0       | 0    | 1,45 | 0    | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q16   | gruppo 1   |
| SLU-STR-064 | 1,35 | 1,5    | 1,5   | 1,45 | 0    | 0      | 0          | 0         | 0    | 0    | 1,45 | 0    | 0         | 0       | 0         | 0    | 0    | 0,73 | 0    | 0    | 0        | 0    | 0    | 0    | 0,73 | 0    | 0    | 0       | 0    | 0    | 0    | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q11   | gruppo 3   |
| SLU-STR-065 | 1,35 | 1,5    | 1,5   | 0    | 1,45 | 0      | 0          | 0         | 0    | 0    | 0    | 1,45 | 0         | 0       | 0         | 0    | 0    | 0    | 0,73 | 0    | 0        | 0    | 0    | 0    | 0    | 0,73 | 0    | 0       | 0    | 0    | 0    | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q12   | gruppo 3   |
| SLU-STR-066 | 1,35 | 1,5    | 1,5   | 0    | 0    | 1,45   | 0          | 0         | 0    | 0    | 0    | 0    | 1,45      | 0       | 0         | 0    | 0    | 0    | 0    | 0,73 | 0        | 0    | 0    | 0    | 0    | 0    | 0,73 | 0       | 0    | 0    | 0    | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q13   | gruppo 3   |
| SLU-STR-067 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 1,45       | 0         | 0    | 0    | 0    | 0    | 0         | 1,45    | 0         | 0    | 0    | 0    | 0    | 0    | 0,73     | 0    | 0    | 0    | 0    | 0    | 0    | 0,73    | 0    | 0    | 0    | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q14   | gruppo 3   |
| SLU-STR-068 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 1,45      | 0    | 0    | 0    | 0    | 0         | 0       | 1,45      | 0    | 0    | 0    | 0    | 0    | 0        | 0,73 | 0    | 0    | 0    | 0    | 0    | 0       | 0,73 | 0    | 0    | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q15   | gruppo 3   |
| SLU-STR-069 | 1,35 | 1,5    | 1,5   | 0    | 0    | 0      | 0          | 0         | 1,45 | 0    | 0    | 0    | 0         | 0       | 0         | 1,45 | 0    | 0    | 0    | 0    | 0        | 0    | 0,73 | 0    | 0    | 0    | 0    | 0       | 0    | 0,73 | 0    | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q16   | gruppo 3   |
| SLU-STR-070 | 1    | 1      | 0     | 0    | 0    | 0      | 0          | 0         | 0    | 0,73 | 0    | 0    | 0         | 0       | 0         | 0    | 1,45 | 0    | 0    | 0    | 0        | 0    | 0    | 0,73 | 0    | 0    | 0    | 0       | 0    | 0    | 0,73 | 0,9  | 1,45                                             | 0,9            | 0      | 0          | 0     | Q27   | gruppo 3-2 |
|             |      |        |       |      |      |        |            |           |      |      |      |      |           |         |           |      |      |      |      |      |          |      |      |      |      |      |      |         |      |      |      |      |                                                  |                |        |            |       |       |            |
| SLU-GEO-001 | 1    | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0       | 0         | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 0    | 0                                                | 0              | 0      | 0          | 0     | G1+G2 | solo perm  |
| SLU-GEO-002 | 1    | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0       | 0         | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 1,3  | 0,78                                             | 0,78           | 0      | 0          | 0     | Q51   | vento      |
| SLU-GEO-003 | 1    | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0       | 0         | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 0,78 | 1,25                                             | 1,3            | 0      | 0          | 0     | Q71   | termica    |

| NOME COMB.  | G- | Permar | nenti |      |      | Q1 - V | ariabili v | rerticali |      |      |      | Q2   | ! - Avvia | mento e | e frenati | ıra  |      |      |      | Q3 - | - Centrif | fuga |      |      |      |      | Q4   | - Serpe | ggio |      |      | Q6 - A | 5 - Varia<br>Azioni ir<br>17 - Effe<br>nterazio | nterne<br>etti | E - Az | rioni sisr | miche | De  | escrizione |
|-------------|----|--------|-------|------|------|--------|------------|-----------|------|------|------|------|-----------|---------|-----------|------|------|------|------|------|-----------|------|------|------|------|------|------|---------|------|------|------|--------|-------------------------------------------------|----------------|--------|------------|-------|-----|------------|
|             | G1 | G21    | G22   | Q11  | Q12  | Q13    | Q14        | Q15       | Q16  | Q17  | Q21  | Q22  | Q23       | Q24     | Q25       | Q26  | Q27  | Q31  | Q32  | Q33  | Q34       | Q35  | Q36  | Q37  | Q41  | Q42  | Q43  | Q44     | Q45  | Q46  | Q47  | Q51    | Q61                                             | Q71            | E1     | E2         | E3    |     |            |
| SLU-GEO-004 | 1  | 1      | 0     | 0    | 0    | 0      | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0       | 0         | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 1,3    | 0,78                                            | 0,78           | 0      | 0          | 0     | Q51 | vento      |
| SLU-GEO-005 | 1  | 1      | 0     | 0    | 0    | 0      | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0       | 0         | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 0,78   | 1,25                                            | 1,3            | 0      | 0          | 0     | Q71 | termica    |
| SLU-GEO-006 | 1  | 1,3    | 1,3   | 1,25 | 0    | 0      | 0          | 0         | 0    | 0    | 0,63 | 0    | 0         | 0       | 0         | 0    | 0    | 1,25 | 0    | 0    | 0         | 0    | 0    | 0    | 1,25 | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q11 | gruppo 1   |
| SLU-GEO-007 | 1  | 1,3    | 1,3   | 0    | 1,25 | 0      | 0          | 0         | 0    | 0    | 0    | 0,63 | 0         | 0       | 0         | 0    | 0    | 0    | 1,25 | 0    | 0         | 0    | 0    | 0    | 0    | 1,25 | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q12 | gruppo 1   |
| SLU-GEO-008 | 1  | 1,3    | 1,3   | 0    | 0    | 1,25   | 0          | 0         | 0    | 0    | 0    | 0    | 0,63      | 0       | 0         | 0    | 0    | 0    | 0    | 1,25 | 0         | 0    | 0    | 0    | 0    | 0    | 1,25 | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q13 | gruppo 1   |
| SLU-GEO-009 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 1,25       | 0         | 0    | 0    | 0    | 0    | 0         | 0,63    | 0         | 0    | 0    | 0    | 0    | 0    | 1,25      | 0    | 0    | 0    | 0    | 0    | 0    | 1,25    | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q14 | gruppo 1   |
| SLU-GEO-010 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 1,25      | 0    | 0    | 0    | 0    | 0         | 0       | 0,63      | 0    | 0    | 0    | 0    | 0    | 0         | 1,25 | 0    | 0    | 0    | 0    | 0    | 0       | 1,25 | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q15 | gruppo 1   |
| SLU-GEO-011 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 0         | 1,25 | 0    | 0    | 0    | 0         | 0       | 0         | 0,63 | 0    | 0    | 0    | 0    | 0         | 0    | 1,25 | 0    | 0    | 0    | 0    | 0       | 0    | 1,25 | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q16 | gruppo 1   |
| SLU-GEO-012 | 1  | 1,3    | 1,3   | 1,25 | 0    | 0      | 0          | 0         | 0    | 0    | 1,25 | 0    | 0         | 0       | 0         | 0    | 0    | 0,63 | 0    | 0    | 0         | 0    | 0    | 0    | 0,63 | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q11 | gruppo 3   |
| SLU-GEO-013 | 1  | 1,3    | 1,3   | 0    | 1,25 | 0      | 0          | 0         | 0    | 0    | 0    | 1,25 | 0         | 0       | 0         | 0    | 0    | 0    | 0,63 | 0    | 0         | 0    | 0    | 0    | 0    | 0,63 | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q12 | gruppo 3   |
| SLU-GEO-014 | 1  | 1,3    | 1,3   | 0    | 0    | 1,25   | 0          | 0         | 0    | 0    | 0    | 0    | 1,25      | 0       | 0         | 0    | 0    | 0    | 0    | 0,63 | 0         | 0    | 0    | 0    | 0    | 0    | 0,63 | 0       | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q13 | gruppo 3   |
| SLU-GEO-015 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 1,25       | 0         | 0    | 0    | 0    | 0    | 0         | 1,25    | 0         | 0    | 0    | 0    | 0    | 0    | 0,63      | 0    | 0    | 0    | 0    | 0    | 0    | 0,63    | 0    | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q14 | gruppo 3   |
| SLU-GEO-016 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 1,25      | 0    | 0    | 0    | 0    | 0         | 0       | 1,25      | 0    | 0    | 0    | 0    | 0    | 0         | 0,63 | 0    | 0    | 0    | 0    | 0    | 0       | 0,63 | 0    | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q15 | gruppo 3   |
| SLU-GEO-017 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 0         | 1,25 | 0    | 0    | 0    | 0         | 0       | 0         | 1,25 | 0    | 0    | 0    | 0    | 0         | 0    | 0,63 | 0    | 0    | 0    | 0    | 0       | 0    | 0,63 | 0    | 0      | 0                                               | 0              | 0      | 0          | 0     | Q16 | gruppo 3   |
| SLU-GEO-018 | 1  | 1      | 0     | 0    | 0    | 0      | 0          | 0         | 0    | 0,63 | 0    | 0    | 0         | 0       | 0         | 0    | 1,25 | 0    | 0    | 0    | 0         | 0    | 0    | 0,63 | 0    | 0    | 0    | 0       | 0    | 0    | 0,63 | 0      | 0                                               | 0              | 0      | 0          | 0     | Q27 | gruppo 3-2 |
| SLU-GEO-019 | 1  | 1,3    | 1,3   | 1,25 | 0    | 0      | 0          | 0         | 0    | 0    | 0,63 | 0    | 0         | 0       | 0         | 0    | 0    | 1,25 | 0    | 0    | 0         | 0    | 0    | 0    | 1,25 | 0    | 0    | 0       | 0    | 0    | 0    | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q11 | gruppo 1   |
| SLU-GEO-020 | 1  | 1,3    | 1,3   | 0    | 1,25 | 0      | 0          | 0         | 0    | 0    | 0    | 0,63 | 0         | 0       | 0         | 0    | 0    | 0    | 1,25 | 0    | 0         | 0    | 0    | 0    | 0    | 1,25 | 0    | 0       | 0    | 0    | 0    | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q12 | gruppo 1   |
| SLU-GEO-021 | 1  | 1,3    | 1,3   | 0    | 0    | 1,25   | 0          | 0         | 0    | 0    | 0    | 0    | 0,63      | 0       | 0         | 0    | 0    | 0    | 0    | 1,25 | 0         | 0    | 0    | 0    | 0    | 0    | 1,25 | 0       | 0    | 0    | 0    | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q13 | gruppo 1   |
| SLU-GEO-022 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 1,25       | 0         | 0    | 0    | 0    | 0    | 0         | 0,63    | 0         | 0    | 0    | 0    | 0    | 0    | 1,25      | 0    | 0    | 0    | 0    | 0    | 0    | 1,25    | 0    | 0    | 0    | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q14 | gruppo 1   |
| SLU-GEO-023 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 1,25      | 0    | 0    | 0    | 0    | 0         | 0       | 0,63      | 0    | 0    | 0    | 0    | 0    | 0         | 1,25 | 0    | 0    | 0    | 0    | 0    | 0       | 1,25 | 0    | 0    | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q15 | gruppo 1   |
| SLU-GEO-024 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 0         | 1,25 | 0    | 0    | 0    | 0         | 0       | 0         | 0,63 | 0    | 0    | 0    | 0    | 0         | 0    | 1,25 | 0    | 0    | 0    | 0    | 0       | 0    | 1,25 | 0    | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q16 | gruppo 1   |
| SLU-GEO-025 | 1  | 1,3    | 1,3   | 1,25 | 0    | 0      | 0          | 0         | 0    | 0    | 1,25 | 0    | 0         | 0       | 0         | 0    | 0    | 0,63 | 0    | 0    | 0         | 0    | 0    | 0    | 0,63 | 0    | 0    | 0       | 0    | 0    | 0    | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q11 | gruppo 3   |
| SLU-GEO-026 | 1  | 1,3    | 1,3   | 0    | 1,25 | 0      | 0          | 0         | 0    | 0    | 0    | 1,25 | 0         | 0       | 0         | 0    | 0    | 0    | 0,63 | 0    | 0         | 0    | 0    | 0    | 0    | 0,63 | 0    | 0       | 0    | 0    | 0    | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q12 | gruppo 3   |
| SLU-GEO-027 | 1  | 1,3    | 1,3   | 0    | 0    | 1,25   | 0          | 0         | 0    | 0    | 0    | 0    | 1,25      | 0       | 0         | 0    | 0    | 0    | 0    | 0,63 | 0         | 0    | 0    | 0    | 0    | 0    | 0,63 | 0       | 0    | 0    | 0    | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q13 | gruppo 3   |
| SLU-GEO-028 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 1,25       | 0         | 0    | 0    | 0    | 0    | 0         | 1,25    | 0         | 0    | 0    | 0    | 0    | 0    | 0,63      | 0    | 0    | 0    | 0    | 0    | 0    | 0,63    | 0    | 0    | 0    | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q14 | gruppo 3   |
| SLU-GEO-029 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 1,25      | 0    | 0    | 0    | 0    | 0         | 0       | 1,25      | 0    | 0    | 0    | 0    | 0    | 0         | 0,63 | 0    | 0    | 0    | 0    | 0    | 0       | 0,63 | 0    | 0    | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q15 | gruppo 3   |
| SLU-GEO-030 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 0         | 1,25 | 0    | 0    | 0    | 0         | 0       | 0         | 1,25 | 0    | 0    | 0    | 0    | 0         | 0    | 0,63 | 0    | 0    | 0    | 0    | 0       | 0    | 0,63 | 0    | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q16 | gruppo 3   |
| SLU-GEO-031 | 1  | 1      | 0     | 0    | 0    | 0      | 0          | 0         | 0    | 0,63 | 0    | 0    | 0         | 0       | 0         | 0    | 1,25 | 0    | 0    | 0    | 0         | 0    | 0    | 0,63 | 0    | 0    | 0    | 0       | 0    | 0    | 0,63 | 0,78   | 0                                               | 0              | 0      | 0          | 0     | Q27 | gruppo 3-2 |
| SLU-GEO-032 | 1  | 1,3    | 1,3   | 1,25 | 0    | 0      | 0          | 0         | 0    | 0    | 0,63 | 0    | 0         | 0       | 0         | 0    | 0    | 1,25 | 0    | 0    | 0         | 0    | 0    | 0    | 1,25 | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 1,25                                            | 0              | 0      | 0          | 0     | Q11 | gruppo 1   |
| SLU-GEO-033 | 1  | 1,3    | 1,3   | 0    | 1,25 | 0      | 0          | 0         | 0    | 0    | 0    | 0,63 | 0         | 0       | 0         | 0    | 0    | 0    | 1,25 | 0    | 0         | 0    | 0    | 0    | 0    | 1,25 | 0    | 0       | 0    | 0    | 0    | 0      | 1,25                                            | 0              | 0      | 0          | 0     | Q12 | gruppo 1   |
| SLU-GEO-034 | 1  | 1,3    | 1,3   | 0    | 0    | 1,25   | 0          | 0         | 0    | 0    | 0    | 0    | 0,63      | 0       | 0         | 0    | 0    | 0    | 0    | 1,25 | 0         | 0    | 0    | 0    | 0    | 0    | 1,25 | 0       | 0    | 0    | 0    | 0      | 1,25                                            | 0              | 0      | 0          | 0     | Q13 | gruppo 1   |
| SLU-GEO-035 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 1,25       | 0         | 0    | 0    | 0    | 0    | 0         | 0,63    | 0         | 0    | 0    | 0    | 0    | 0    | 1,25      | 0    | 0    | 0    | 0    | 0    | 0    | 1,25    | 0    | 0    | 0    | 0      | 1,25                                            | 0              | 0      | 0          | 0     | Q14 | gruppo 1   |
| SLU-GEO-036 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 1,25      | 0    | 0    | 0    | 0    | 0         | 0       | 0,63      | 0    | 0    | 0    | 0    | 0    | 0         | 1,25 | 0    | 0    | 0    | 0    | 0    | 0       | 1,25 | 0    | 0    | 0      | 1,25                                            | 0              | 0      | 0          | 0     | Q15 | gruppo 1   |
| SLU-GEO-037 | 1  | 1,3    | 1,3   | 0    | 0    | 0      | 0          | 0         | 1,25 | 0    | 0    | 0    | 0         | 0       | 0         | 0,63 | 0    | 0    | 0    | 0    | 0         | 0    | 1,25 | 0    | 0    | 0    | 0    | 0       | 0    | 1,25 | 0    | 0      | 1,25                                            | 0              | 0      | 0          | 0     | Q16 | gruppo 1   |
| SLU-GEO-038 | 1  | 1,3    | 1,3   | 1,25 | 0    | 0      | 0          | 0         | 0    | 0    | 1,25 | 0    | 0         | 0       | 0         | 0    | 0    | 0,63 | 0    | 0    | 0         | 0    | 0    | 0    | 0,63 | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 1,25                                            | 0              | 0      | 0          | 0     | Q11 | gruppo 3   |
| SLU-GEO-039 | 1  | 1,3    | 1,3   | 0    | 1,25 | 0      | 0          | 0         | 0    | 0    | 0    | 1,25 | 0         | 0       | 0         | 0    | 0    | 0    | 0,63 | 0    | 0         | 0    | 0    | 0    | 0    | 0,63 | 0    | 0       | 0    | 0    | 0    | 0      | 1,25                                            | 0              | 0      | 0          | 0     | Q12 | gruppo 3   |
| SLU-GEO-040 | 1  | 1,3    | 1,3   | 0    | 0    | 1,25   | 0          | 0         | 0    | 0    | 0    | 0    | 1,25      | 0       | 0         | 0    | 0    | 0    | 0    | 0,63 | 0         | 0    | 0    | 0    | 0    | 0    | 0,63 | 0       | 0    | 0    | 0    | 0      | 1,25                                            | 0              | 0      | 0          | 0     | Q13 | gruppo 3   |

| NOME COMB.  | G- | Permar | nenti |      |      | Q1 - Va | ariabili v | verticali |      |      |      | Q2   | ! - Avvia | amento e | e frenat | ura  |      |      |      | Q3   | - Centrii | fuga |      |      |      |      | Q4   | - Serpe | ggio |      |      | Q6 - A | 5 - Varia<br>Azioni ir<br>17 - Effe<br>nterazio | nterne<br>tti | E - Az | zioni sisr | miche | D   | escrizione |
|-------------|----|--------|-------|------|------|---------|------------|-----------|------|------|------|------|-----------|----------|----------|------|------|------|------|------|-----------|------|------|------|------|------|------|---------|------|------|------|--------|-------------------------------------------------|---------------|--------|------------|-------|-----|------------|
|             | G1 | G21    | G22   | Q11  | Q12  | Q13     | Q14        | Q15       | Q16  | Q17  | Q21  | Q22  | Q23       | Q24      | Q25      | Q26  | Q27  | Q31  | Q32  | Q33  | Q34       | Q35  | Q36  | Q37  | Q41  | Q42  | Q43  | Q44     | Q45  | Q46  | Q47  | Q51    | Q61                                             | Q71           | E1     | E2         | E3    |     |            |
| SLU-GEO-041 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 1,25       | 0         | 0    | 0    | 0    | 0    | 0         | 1,25     | 0        | 0    | 0    | 0    | 0    | 0    | 0,63      | 0    | 0    | 0    | 0    | 0    | 0    | 0,63    | 0    | 0    | 0    | 0      | 1,25                                            | 0             | 0      | 0          | 0     | Q14 | gruppo 3   |
| SLU-GEO-042 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 0          | 1,25      | 0    | 0    | 0    | 0    | 0         | 0        | 1,25     | 0    | 0    | 0    | 0    | 0    | 0         | 0,63 | 0    | 0    | 0    | 0    | 0    | 0       | 0,63 | 0    | 0    | 0      | 1,25                                            | 0             | 0      | 0          | 0     | Q15 | gruppo 3   |
| SLU-GEO-043 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 0          | 0         | 1,25 | 0    | 0    | 0    | 0         | 0        | 0        | 1,25 | 0    | 0    | 0    | 0    | 0         | 0    | 0,63 | 0    | 0    | 0    | 0    | 0       | 0    | 0,63 | 0    | 0      | 1,25                                            | 0             | 0      | 0          | 0     | Q16 | gruppo 3   |
| SLU-GEO-044 | 1  | 1      | 0     | 0    | 0    | 0       | 0          | 0         | 0    | 0,63 | 0    | 0    | 0         | 0        | 0        | 0    | 1,25 | 0    | 0    | 0    | 0         | 0    | 0    | 0,63 | 0    | 0    | 0    | 0       | 0    | 0    | 0,63 | 0      | 1,25                                            | 0             | 0      | 0          | 0     | Q27 | gruppo 3-2 |
| SLU-GEO-045 | 1  | 1,3    | 1,3   | 1,25 | 0    | 0       | 0          | 0         | 0    | 0    | 0,63 | 0    | 0         | 0        | 0        | 0    | 0    | 1,25 | 0    | 0    | 0         | 0    | 0    | 0    | 1,25 | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q11 | gruppo 1   |
| SLU-GEO-046 | 1  | 1,3    | 1,3   | 0    | 1,25 | 0       | 0          | 0         | 0    | 0    | 0    | 0,63 | 0         | 0        | 0        | 0    | 0    | 0    | 1,25 | 0    | 0         | 0    | 0    | 0    | 0    | 1,25 | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q12 | gruppo 1   |
| SLU-GEO-047 | 1  | 1,3    | 1,3   | 0    | 0    | 1,25    | 0          | 0         | 0    | 0    | 0    | 0    | 0,63      | 0        | 0        | 0    | 0    | 0    | 0    | 1,25 | 0         | 0    | 0    | 0    | 0    | 0    | 1,25 | 0       | 0    | 0    | 0    | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q13 | gruppo 1   |
| SLU-GEO-048 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 1,25       | 0         | 0    | 0    | 0    | 0    | 0         | 0,63     | 0        | 0    | 0    | 0    | 0    | 0    | 1,25      | 0    | 0    | 0    | 0    | 0    | 0    | 1,25    | 0    | 0    | 0    | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q14 | gruppo 1   |
| SLU-GEO-049 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 0          | 1,25      | 0    | 0    | 0    | 0    | 0         | 0        | 0,63     | 0    | 0    | 0    | 0    | 0    | 0         | 1,25 | 0    | 0    | 0    | 0    | 0    | 0       | 1,25 | 0    | 0    | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q15 | gruppo 1   |
| SLU-GEO-050 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 0          | 0         | 1,25 | 0    | 0    | 0    | 0         | 0        | 0        | 0,63 | 0    | 0    | 0    | 0    | 0         | 0    | 1,25 | 0    | 0    | 0    | 0    | 0       | 0    | 1,25 | 0    | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q16 | gruppo 1   |
| SLU-GEO-051 | 1  | 1,3    | 1,3   | 1,25 | 0    | 0       | 0          | 0         | 0    | 0    | 1,25 | 0    | 0         | 0        | 0        | 0    | 0    | 0,63 | 0    | 0    | 0         | 0    | 0    | 0    | 0,63 | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q11 | gruppo 3   |
| SLU-GEO-052 | 1  | 1,3    | 1,3   | 0    | 1,25 | 0       | 0          | 0         | 0    | 0    | 0    | 1,25 | 0         | 0        | 0        | 0    | 0    | 0    | 0,63 | 0    | 0         | 0    | 0    | 0    | 0    | 0,63 | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q12 | gruppo 3   |
| SLU-GEO-053 | 1  | 1,3    | 1,3   | 0    | 0    | 1,25    | 0          | 0         | 0    | 0    | 0    | 0    | 1,25      | 0        | 0        | 0    | 0    | 0    | 0    | 0,63 | 0         | 0    | 0    | 0    | 0    | 0    | 0,63 | 0       | 0    | 0    | 0    | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q13 | gruppo 3   |
| SLU-GEO-054 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 1,25       | 0         | 0    | 0    | 0    | 0    | 0         | 1,25     | 0        | 0    | 0    | 0    | 0    | 0    | 0,63      | 0    | 0    | 0    | 0    | 0    | 0    | 0,63    | 0    | 0    | 0    | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q14 | gruppo 3   |
| SLU-GEO-055 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 0          | 1,25      | 0    | 0    | 0    | 0    | 0         | 0        | 1,25     | 0    | 0    | 0    | 0    | 0    | 0         | 0,63 | 0    | 0    | 0    | 0    | 0    | 0       | 0,63 | 0    | 0    | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q15 | gruppo 3   |
| SLU-GEO-056 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 0          | 0         | 1,25 | 0    | 0    | 0    | 0         | 0        | 0        | 1,25 | 0    | 0    | 0    | 0    | 0         | 0    | 0,63 | 0    | 0    | 0    | 0    | 0       | 0    | 0,63 | 0    | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q16 | gruppo 3   |
| SLU-GEO-057 | 1  | 1      | 0     | 0    | 0    | 0       | 0          | 0         | 0    | 0,63 | 0    | 0    | 0         | 0        | 0        | 0    | 1,25 | 0    | 0    | 0    | 0         | 0    | 0    | 0,63 | 0    | 0    | 0    | 0       | 0    | 0    | 0,63 | 0      | 0                                               | 0,78          | 0      | 0          | 0     | Q27 | gruppo 3-2 |
| SLU-GEO-058 | 1  | 1,3    | 1,3   | 1,25 | 0    | 0       | 0          | 0         | 0    | 0    | 0,63 | 0    | 0         | 0        | 0        | 0    | 0    | 1,25 | 0    | 0    | 0         | 0    | 0    | 0    | 1,25 | 0    | 0    | 0       | 0    | 0    | 0    | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q11 | gruppo 1   |
| SLU-GEO-059 | 1  | 1,3    | 1,3   | 0    | 1,25 | 0       | 0          | 0         | 0    | 0    | 0    | 0,63 | 0         | 0        | 0        | 0    | 0    | 0    | 1,25 | 0    | 0         | 0    | 0    | 0    | 0    | 1,25 | 0    | 0       | 0    | 0    | 0    | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q12 | gruppo 1   |
| SLU-GEO-060 | 1  | 1,3    | 1,3   | 0    | 0    | 1,25    | 0          | 0         | 0    | 0    | 0    | 0    | 0,63      | 0        | 0        | 0    | 0    | 0    | 0    | 1,25 | 0         | 0    | 0    | 0    | 0    | 0    | 1,25 | 0       | 0    | 0    | 0    | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q13 | gruppo 1   |
| SLU-GEO-061 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 1,25       | 0         | 0    | 0    | 0    | 0    | 0         | 0,63     | 0        | 0    | 0    | 0    | 0    | 0    | 1,25      | 0    | 0    | 0    | 0    | 0    | 0    | 1,25    | 0    | 0    | 0    | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q14 | gruppo 1   |
| SLU-GEO-062 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 0          | 1,25      | 0    | 0    | 0    | 0    | 0         | 0        | 0,63     | 0    | 0    | 0    | 0    | 0    | 0         | 1,25 | 0    | 0    | 0    | 0    | 0    | 0       | 1,25 | 0    | 0    | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q15 | gruppo 1   |
| SLU-GEO-063 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 0          | 0         | 1,25 | 0    | 0    | 0    | 0         | 0        | 0        | 0,63 | 0    | 0    | 0    | 0    | 0         | 0    | 1,25 | 0    | 0    | 0    | 0    | 0       | 0    | 1,25 | 0    | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q16 | gruppo 1   |
| SLU-GEO-064 | 1  | 1,3    | 1,3   | 1,25 | 0    | 0       | 0          | 0         | 0    | 0    | 1,25 | 0    | 0         | 0        | 0        | 0    | 0    | 0,63 | 0    | 0    | 0         | 0    | 0    | 0    | 0,63 | 0    | 0    | 0       | 0    | 0    | 0    | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q11 | gruppo 3   |
| SLU-GEO-065 | 1  | 1,3    | 1,3   | 0    | 1,25 | 0       | 0          | 0         | 0    | 0    | 0    | 1,25 | 0         | 0        | 0        | 0    | 0    | 0    | 0,63 | 0    | 0         | 0    | 0    | 0    | 0    | 0,63 | 0    | 0       | 0    | 0    | 0    | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q12 | gruppo 3   |
| SLU-GEO-066 | 1  | 1,3    | 1,3   | 0    | 0    | 1,25    | 0          | 0         | 0    | 0    | 0    | 0    | 1,25      | 0        | 0        | 0    | 0    | 0    | 0    | 0,63 | 0         | 0    | 0    | 0    | 0    | 0    | 0,63 | 0       | 0    | 0    | 0    | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q13 | gruppo 3   |
| SLU-GEO-067 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 1,25       | 0         | 0    | 0    | 0    | 0    | 0         | 1,25     | 0        | 0    | 0    | 0    | 0    | 0    | 0,63      | 0    | 0    | 0    | 0    | 0    | 0    | 0,63    | 0    | 0    | 0    | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q14 | gruppo 3   |
| SLU-GEO-068 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 0          | 1,25      | 0    | 0    | 0    | 0    | 0         | 0        | 1,25     | 0    | 0    | 0    | 0    | 0    | 0         | 0,63 | 0    | 0    | 0    | 0    | 0    | 0       | 0,63 | 0    | 0    | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q15 | gruppo 3   |
| SLU-GEO-069 | 1  | 1,3    | 1,3   | 0    | 0    | 0       | 0          | 0         | 1,25 | 0    | 0    | 0    | 0         | 0        | 0        | 1,25 | 0    | 0    | 0    | 0    | 0         | 0    | 0,63 | 0    | 0    | 0    | 0    | 0       | 0    | 0,63 | 0    | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q16 | gruppo 3   |
| SLU-GEO-070 | 1  | 1      | 0     | 0    | 0    | 0       | 0          | 0         | 0    | 0,63 | 0    | 0    | 0         | 0        | 0        | 0    | 1,25 | 0    | 0    | 0    | 0         | 0    | 0    | 0,63 | 0    | 0    | 0    | 0       | 0    | 0    | 0,63 | 0,78   | 1,25                                            | 0,78          | 0      | 0          | 0     | Q27 | gruppo 3-2 |
|             |    |        |       |      |      |         |            |           |      |      |      |      |           |          |          |      |      |      |      |      |           |      |      |      |      |      |      |         |      |      |      |        |                                                 |               |        |            |       |     |            |
| SLU-SIS-001 | 1  | 1      | 1     | 0    | 0    | 0       | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0        | 0        | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 0                                               | 0             | 1      | 0,3        | 0,3   | E1  | solo perm  |
| SLU-SIS-002 | 1  | 1      | 1     | 0    | 0    | 0       | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0        | 0        | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 0,2                                             | 0,5           | 1      | 0,3        | 0,3   | E1  | termica    |
| SLU-SIS-003 | 1  | 1      | 0     | 0    | 0    | 0       | 0          | 0         | 0    | 0    | 0    | 0    | 0         | 0        | 0        | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 0,2                                             | 0,5           | 1      | 0,3        | 0,3   | E1  | termica    |
| SLU-SIS-004 | 1  | 1      | 1     | 0,2  | 0    | 0       | 0          | 0         | 0    | 0    | 0,1  | 0    | 0         | 0        | 0        | 0    | 0    | 0,2  | 0    | 0    | 0         | 0    | 0    | 0    | 0,2  | 0    | 0    | 0       | 0    | 0    | 0    | 0      | 0,2                                             | 0,5           | 1      | 0,3        | 0,3   | E1  | gruppo 1   |
| SLU-SIS-005 | 1  | 1      | 1     | 0    | 0,2  | 0       | 0          | 0         | 0    | 0    | 0    | 0,1  | 0         | 0        | 0        | 0    | 0    | 0    | 0,2  | 0    | 0         | 0    | 0    | 0    | 0    | 0,2  | 0    | 0       | 0    | 0    | 0    | 0      | 0,2                                             | 0,5           | 1      | 0,3        | 0,3   | E1  | gruppo 1   |
| SLU-SIS-006 | 1  | 1      | 1     | 0    | 0    | 0,2     | 0          | 0         | 0    | 0    | 0    | 0    | 0,1       | 0        | 0        | 0    | 0    | 0    | 0    | 0,2  | 0         | 0    | 0    | 0    | 0    | 0    | 0,2  | 0       | 0    | 0    | 0    | 0      | 0,2                                             | 0,5           | 1      | 0,3        | 0,3   | E1  | gruppo 1   |

| NOME COMB.  | G- | Permar | nenti |     |     | Q1 - V | ariabili v | rerticali |     |     |     | Q2  | 2 - Avvia | amento | e frenat | ura |     |     |     | Q3  | - Centri | fuga |     |     |     |     | Q4  | - Serpe | ggio |     |     | Q6 - / | 5 - Varia<br>Azioni ii<br>17 - Effe<br>nterazio | nterne<br>etti | E - Az | zioni sisi | miche | D  | Descrizione |
|-------------|----|--------|-------|-----|-----|--------|------------|-----------|-----|-----|-----|-----|-----------|--------|----------|-----|-----|-----|-----|-----|----------|------|-----|-----|-----|-----|-----|---------|------|-----|-----|--------|-------------------------------------------------|----------------|--------|------------|-------|----|-------------|
|             | G1 | G21    | G22   | Q11 | Q12 | Q13    | Q14        | Q15       | Q16 | Q17 | Q21 | Q22 | Q23       | Q24    | Q25      | Q26 | Q27 | Q31 | Q32 | Q33 | Q34      | Q35  | Q36 | Q37 | Q41 | Q42 | Q43 | Q44     | Q45  | Q46 | Q47 | Q51    | Q61                                             | Q71            | E1     | E2         | E3    |    |             |
| SLU-SIS-007 | 1  | 1      | 1     | 0   | 0   | 0      | 0,2        | 0         | 0   | 0   | 0   | 0   | 0         | 0,1    | 0        | 0   | 0   | 0   | 0   | 0   | 0,2      | 0    | 0   | 0   | 0   | 0   | 0   | 0,2     | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 1      | 0,3        | 0,3   | E1 | gruppo 1    |
| SLU-SIS-008 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,2       | 0   | 0   | 0   | 0   | 0         | 0      | 0,1      | 0   | 0   | 0   | 0   | 0   | 0        | 0,2  | 0   | 0   | 0   | 0   | 0   | 0       | 0,2  | 0   | 0   | 0      | 0,2                                             | 0,5            | 1      | 0,3        | 0,3   | E1 | gruppo 1    |
| SLU-SIS-009 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,2 | 0   | 0   | 0   | 0         | 0      | 0        | 0,1 | 0   | 0   | 0   | 0   | 0        | 0    | 0,2 | 0   | 0   | 0   | 0   | 0       | 0    | 0,2 | 0   | 0      | 0,2                                             | 0,5            | 1      | 0,3        | 0,3   | E1 | gruppo 1    |
| SLU-SIS-010 | 1  | 1      | 1     | 0,2 | 0   | 0      | 0          | 0         | 0   | 0   | 0,2 | 0   | 0         | 0      | 0        | 0   | 0   | 0,1 | 0   | 0   | 0        | 0    | 0   | 0   | 0,1 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 1      | 0,3        | 0,3   | E1 | gruppo 3    |
| SLU-SIS-011 | 1  | 1      | 1     | 0   | 0,2 | 0      | 0          | 0         | 0   | 0   | 0   | 0,2 | 0         | 0      | 0        | 0   | 0   | 0   | 0,1 | 0   | 0        | 0    | 0   | 0   | 0   | 0,1 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 1      | 0,3        | 0,3   | E1 | gruppo 3    |
| SLU-SIS-012 | 1  | 1      | 1     | 0   | 0   | 0,2    | 0          | 0         | 0   | 0   | 0   | 0   | 0,2       | 0      | 0        | 0   | 0   | 0   | 0   | 0,1 | 0        | 0    | 0   | 0   | 0   | 0   | 0,1 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 1      | 0,3        | 0,3   | E1 | gruppo 3    |
| SLU-SIS-013 | 1  | 1      | 1     | 0   | 0   | 0      | 0,2        | 0         | 0   | 0   | 0   | 0   | 0         | 0,2    | 0        | 0   | 0   | 0   | 0   | 0   | 0,1      | 0    | 0   | 0   | 0   | 0   | 0   | 0,1     | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 1      | 0,3        | 0,3   | E1 | gruppo 3    |
| SLU-SIS-014 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,2       | 0   | 0   | 0   | 0   | 0         | 0      | 0,2      | 0   | 0   | 0   | 0   | 0   | 0        | 0,1  | 0   | 0   | 0   | 0   | 0   | 0       | 0,1  | 0   | 0   | 0      | 0,2                                             | 0,5            | 1      | 0,3        | 0,3   | E1 | gruppo 3    |
| SLU-SIS-015 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,2 | 0   | 0   | 0   | 0         | 0      | 0        | 0,2 | 0   | 0   | 0   | 0   | 0        | 0    | 0,1 | 0   | 0   | 0   | 0   | 0       | 0    | 0,1 | 0   | 0      | 0,2                                             | 0,5            | 1      | 0,3        | 0,3   | E1 | gruppo 3    |
| SLU-SIS-016 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,1 | 0   | 0   | 0         | 0      | 0        | 0   | 0,2 | 0   | 0   | 0   | 0        | 0    | 0   | 0,1 | 0   | 0   | 0   | 0       | 0    | 0   | 0,1 | 0      | 0,2                                             | 0,5            | 1      | 0,3        | 0,3   | E1 | gruppo 3-2  |
| SLU-SIS-017 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | 1      | 0,3        | -0,3  | E1 | solo perm   |
| SLU-SIS-018 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 1      | 0,3        | -0,3  | E1 | termica     |
| SLU-SIS-019 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 1      | 0,3        | -0,3  | E1 | termica     |
| SLU-SIS-020 | 1  | 1      | 1     | 0,2 | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | 1      | 0,3        | -0,3  | E1 | solo vert   |
| SLU-SIS-021 | 1  | 1      | 1     | 0,2 | 0   | 0      | 0          | 0         | 0   | 0   | 0,1 | 0   | 0         | 0      | 0        | 0   | 0   | 0,2 | 0   | 0   | 0        | 0    | 0   | 0   | 0,2 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 1    |
| SLU-SIS-022 | 1  | 1      | 1     | 0   | 0,2 | 0      | 0          | 0         | 0   | 0   | 0   | 0,1 | 0         | 0      | 0        | 0   | 0   | 0   | 0,2 | 0   | 0        | 0    | 0   | 0   | 0   | 0,2 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 1    |
| SLU-SIS-023 | 1  | 1      | 1     | 0   | 0   | 0,2    | 0          | 0         | 0   | 0   | 0   | 0   | 0,1       | 0      | 0        | 0   | 0   | 0   | 0   | 0,2 | 0        | 0    | 0   | 0   | 0   | 0   | 0,2 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 1    |
| SLU-SIS-024 | 1  | 1      | 1     | 0   | 0   | 0      | 0,2        | 0         | 0   | 0   | 0   | 0   | 0         | 0,1    | 0        | 0   | 0   | 0   | 0   | 0   | 0,2      | 0    | 0   | 0   | 0   | 0   | 0   | 0,2     | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 1    |
| SLU-SIS-025 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,2       | 0   | 0   | 0   | 0   | 0         | 0      | 0,1      | 0   | 0   | 0   | 0   | 0   | 0        | 0,2  | 0   | 0   | 0   | 0   | 0   | 0       | 0,2  | 0   | 0   | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 1    |
| SLU-SIS-026 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,2 | 0   | 0   | 0   | 0         | 0      | 0        | 0,1 | 0   | 0   | 0   | 0   | 0        | 0    | 0,2 | 0   | 0   | 0   | 0   | 0       | 0    | 0,2 | 0   | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 1    |
| SLU-SIS-027 | 1  | 1      | 1     | 0,2 | 0   | 0      | 0          | 0         | 0   | 0   | 0,2 | 0   | 0         | 0      | 0        | 0   | 0   | 0,1 | 0   | 0   | 0        | 0    | 0   | 0   | 0,1 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 3    |
| SLU-SIS-028 | 1  | 1      | 1     | 0   | 0,2 | 0      | 0          | 0         | 0   | 0   | 0   | 0,2 | 0         | 0      | 0        | 0   | 0   | 0   | 0,1 | 0   | 0        | 0    | 0   | 0   | 0   | 0,1 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 3    |
| SLU-SIS-029 | 1  | 1      | 1     | 0   | 0   | 0,2    | 0          | 0         | 0   | 0   | 0   | 0   | 0,2       | 0      | 0        | 0   | 0   | 0   | 0   | 0,1 | 0        | 0    | 0   | 0   | 0   | 0   | 0,1 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 3    |
| SLU-SIS-030 | 1  | 1      | 1     | 0   | 0   | 0      | 0,2        | 0         | 0   | 0   | 0   | 0   | 0         | 0,2    | 0        | 0   | 0   | 0   | 0   | 0   | 0,1      | 0    | 0   | 0   | 0   | 0   | 0   | 0,1     | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 3    |
| SLU-SIS-031 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,2       | 0   | 0   | 0   | 0   | 0         | 0      | 0,2      | 0   | 0   | 0   | 0   | 0   | 0        | 0,1  | 0   | 0   | 0   | 0   | 0   | 0       | 0,1  | 0   | 0   | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 3    |
| SLU-SIS-032 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,2 | 0   | 0   | 0   | 0         | 0      | 0        | 0,2 | 0   | 0   | 0   | 0   | 0        | 0    | 0,1 | 0   | 0   | 0   | 0   | 0       | 0    | 0,1 | 0   | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 3    |
| SLU-SIS-033 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,1 | 0   | 0   | 0         | 0      | 0        | 0   | 0,2 | 0   | 0   | 0   | 0        | 0    | 0   | 0,1 | 0   | 0   | 0   | 0       | 0    | 0   | 0,1 | 0      | 0,2                                             | 0,2            | 1      | 0,3        | -0,3  | E1 | gruppo 3-2  |
| SLU-SIS-034 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | 0,3    | 1          | 0,3   | E2 | solo perm   |
| SLU-SIS-035 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 0,3    | 1          | 0,3   | E2 | termica     |
| SLU-SIS-036 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 0,3    | 1          | 0,3   | E2 | termica     |
| SLU-SIS-037 | 1  | 1      | 1     | 0,2 | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | 0,3    | 1          | 0,3   | E2 | solo vert   |
| SLU-SIS-038 | 1  | 1      | 1     | 0,2 | 0   | 0      | 0          | 0         | 0   | 0   | 0,1 | 0   | 0         | 0      | 0        | 0   | 0   | 0,2 | 0   | 0   | 0        | 0    | 0   | 0   | 0,2 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3    | 1          | 0,3   | E2 | gruppo 1    |
| SLU-SIS-039 | 1  | 1      | 1     | 0   | 0,2 | 0      | 0          | 0         | 0   | 0   | 0   | 0,1 | 0         | 0      | 0        | 0   | 0   | 0   | 0,2 | 0   | 0        | 0    | 0   | 0   | 0   | 0,2 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3    | 1          | 0,3   | E2 | gruppo 1    |
| SLU-SIS-040 | 1  | 1      | 1     | 0   | 0   | 0,2    | 0          | 0         | 0   | 0   | 0   | 0   | 0,1       | 0      | 0        | 0   | 0   | 0   | 0   | 0,2 | 0        | 0    | 0   | 0   | 0   | 0   | 0,2 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3    | 1          | 0,3   | E2 | gruppo 1    |
| SLU-SIS-041 | 1  | 1      | 1     | 0   | 0   | 0      | 0,2        | 0         | 0   | 0   | 0   | 0   | 0         | 0,1    | 0        | 0   | 0   | 0   | 0   | 0   | 0,2      | 0    | 0   | 0   | 0   | 0   | 0   | 0,2     | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3    | 1          | 0,3   | E2 | gruppo 1    |
| SLU-SIS-042 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,2       | 0   | 0   | 0   | 0   | 0         | 0      | 0,1      | 0   | 0   | 0   | 0   | 0   | 0        | 0,2  | 0   | 0   | 0   | 0   | 0   | 0       | 0,2  | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3    | 1          | 0,3   | E2 | gruppo 1    |
| SLU-SIS-043 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,2 | 0   | 0   | 0   | 0         | 0      | 0        | 0,1 | 0   | 0   | 0   | 0   | 0        | 0    | 0,2 | 0   | 0   | 0   | 0   | 0       | 0    | 0,2 | 0   | 0      | 0,2                                             | 0,2            | 0,3    | 1          | 0,3   | E2 | gruppo 1    |

| NOME COMB.  | G - | Permar | nenti |     |     | Q1 - Va | ariabili v | erticali |     |     |     | Q2  | - Avvia | mento e | e frenat | ura |     |     |     | Q3 · | - Centrif | fuga |     |     |     |     | Q4  | - Serpe | ggio |     |     | Q6 - A | 5 - Varia<br>Azioni ir<br>17 - Effe<br>nterazio | nterne<br>etti | E - A | zioni sis | miche |    | Descrizione |
|-------------|-----|--------|-------|-----|-----|---------|------------|----------|-----|-----|-----|-----|---------|---------|----------|-----|-----|-----|-----|------|-----------|------|-----|-----|-----|-----|-----|---------|------|-----|-----|--------|-------------------------------------------------|----------------|-------|-----------|-------|----|-------------|
|             | G1  | G21    | G22   | Q11 | Q12 | Q13     | Q14        | Q15      | Q16 | Q17 | Q21 | Q22 | Q23     | Q24     | Q25      | Q26 | Q27 | Q31 | Q32 | Q33  | Q34       | Q35  | Q36 | Q37 | Q41 | Q42 | Q43 | Q44     | Q45  | Q46 | Q47 | Q51    | Q61                                             | Q71            | E1    | E2        | E3    |    |             |
| SLU-SIS-044 | 1   | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0,2 | 0   | 0       | 0       | 0        | 0   | 0   | 0,1 | 0   | 0    | 0         | 0    | 0   | 0   | 0,1 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | 0,3   | E2 | gruppo 3    |
| SLU-SIS-045 | 1   | 1      | 1     | 0   | 0,2 | 0       | 0          | 0        | 0   | 0   | 0   | 0,2 | 0       | 0       | 0        | 0   | 0   | 0   | 0,1 | 0    | 0         | 0    | 0   | 0   | 0   | 0,1 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | 0,3   | E2 | gruppo 3    |
| SLU-SIS-046 | 1   | 1      | 1     | 0   | 0   | 0,2     | 0          | 0        | 0   | 0   | 0   | 0   | 0,2     | 0       | 0        | 0   | 0   | 0   | 0   | 0,1  | 0         | 0    | 0   | 0   | 0   | 0   | 0,1 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | 0,3   | E2 | gruppo 3    |
| SLU-SIS-047 | 1   | 1      | 1     | 0   | 0   | 0       | 0,2        | 0        | 0   | 0   | 0   | 0   | 0       | 0,2     | 0        | 0   | 0   | 0   | 0   | 0    | 0,1       | 0    | 0   | 0   | 0   | 0   | 0   | 0,1     | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | 0,3   | E2 | gruppo 3    |
| SLU-SIS-048 | 1   | 1      | 1     | 0   | 0   | 0       | 0          | 0,2      | 0   | 0   | 0   | 0   | 0       | 0       | 0,2      | 0   | 0   | 0   | 0   | 0    | 0         | 0,1  | 0   | 0   | 0   | 0   | 0   | 0       | 0,1  | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | 0,3   | E2 | gruppo 3    |
| SLU-SIS-049 | 1   | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0,2 | 0   | 0   | 0   | 0       | 0       | 0        | 0,2 | 0   | 0   | 0   | 0    | 0         | 0    | 0,1 | 0   | 0   | 0   | 0   | 0       | 0    | 0,1 | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | 0,3   | E2 | gruppo 3    |
| SLU-SIS-050 | 1   | 1      | 0     | 0   | 0   | 0       | 0          | 0        | 0   | 0,1 | 0   | 0   | 0       | 0       | 0        | 0   | 0,2 | 0   | 0   | 0    | 0         | 0    | 0   | 0,1 | 0   | 0   | 0   | 0       | 0    | 0   | 0,1 | 0      | 0,2                                             | 0,2            | 0,3   | 1         | 0,3   | E2 | gruppo 3-2  |
| SLU-SIS-051 | 1   | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0       | 0       | 0        | 0   | 0   | 0   | 0   | 0    | 0         | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | 0,3   | 1         | -0,3  | E2 | solo perm   |
| SLU-SIS-052 | 1   | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0       | 0       | 0        | 0   | 0   | 0   | 0   | 0    | 0         | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 0,3   | 1         | -0,3  | E2 | termica     |
| SLU-SIS-053 | 1   | 1      | 0     | 0   | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0       | 0       | 0        | 0   | 0   | 0   | 0   | 0    | 0         | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 0,3   | 1         | -0,3  | E2 | termica     |
| SLU-SIS-054 | 1   | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0       | 0       | 0        | 0   | 0   | 0   | 0   | 0    | 0         | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | 0,3   | 1         | -0,3  | E2 | solo vert   |
| SLU-SIS-055 | 1   | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0,1 | 0   | 0       | 0       | 0        | 0   | 0   | 0,2 | 0   | 0    | 0         | 0    | 0   | 0   | 0,2 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 1    |
| SLU-SIS-056 | 1   | 1      | 1     | 0   | 0,2 | 0       | 0          | 0        | 0   | 0   | 0   | 0,1 | 0       | 0       | 0        | 0   | 0   | 0   | 0,2 | 0    | 0         | 0    | 0   | 0   | 0   | 0,2 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 1    |
| SLU-SIS-057 | 1   | 1      | 1     | 0   | 0   | 0,2     | 0          | 0        | 0   | 0   | 0   | 0   | 0,1     | 0       | 0        | 0   | 0   | 0   | 0   | 0,2  | 0         | 0    | 0   | 0   | 0   | 0   | 0,2 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 1    |
| SLU-SIS-058 | 1   | 1      | 1     | 0   | 0   | 0       | 0,2        | 0        | 0   | 0   | 0   | 0   | 0       | 0,1     | 0        | 0   | 0   | 0   | 0   | 0    | 0,2       | 0    | 0   | 0   | 0   | 0   | 0   | 0,2     | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 1    |
| SLU-SIS-059 | 1   | 1      | 1     | 0   | 0   | 0       | 0          | 0,2      | 0   | 0   | 0   | 0   | 0       | 0       | 0,1      | 0   | 0   | 0   | 0   | 0    | 0         | 0,2  | 0   | 0   | 0   | 0   | 0   | 0       | 0,2  | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 1    |
| SLU-SIS-060 | 1   | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0,2 | 0   | 0   | 0   | 0       | 0       | 0        | 0,1 | 0   | 0   | 0   | 0    | 0         | 0    | 0,2 | 0   | 0   | 0   | 0   | 0       | 0    | 0,2 | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 1    |
| SLU-SIS-061 | 1   | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0,2 | 0   | 0       | 0       | 0        | 0   | 0   | 0,1 | 0   | 0    | 0         | 0    | 0   | 0   | 0,1 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 3    |
| SLU-SIS-062 | 1   | 1      | 1     | 0   | 0,2 | 0       | 0          | 0        | 0   | 0   | 0   | 0,2 | 0       | 0       | 0        | 0   | 0   | 0   | 0,1 | 0    | 0         | 0    | 0   | 0   | 0   | 0,1 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 3    |
| SLU-SIS-063 | 1   | 1      | 1     | 0   | 0   | 0,2     | 0          | 0        | 0   | 0   | 0   | 0   | 0,2     | 0       | 0        | 0   | 0   | 0   | 0   | 0,1  | 0         | 0    | 0   | 0   | 0   | 0   | 0,1 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 3    |
| SLU-SIS-064 | 1   | 1      | 1     | 0   | 0   | 0       | 0,2        | 0        | 0   | 0   | 0   | 0   | 0       | 0,2     | 0        | 0   | 0   | 0   | 0   | 0    | 0,1       | 0    | 0   | 0   | 0   | 0   | 0   | 0,1     | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 3    |
| SLU-SIS-065 | 1   | 1      | 1     | 0   | 0   | 0       | 0          | 0,2      | 0   | 0   | 0   | 0   | 0       | 0       | 0,2      | 0   | 0   | 0   | 0   | 0    | 0         | 0,1  | 0   | 0   | 0   | 0   | 0   | 0       | 0,1  | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 3    |
| SLU-SIS-066 | 1   | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0,2 | 0   | 0   | 0   | 0       | 0       | 0        | 0,2 | 0   | 0   | 0   | 0    | 0         | 0    | 0,1 | 0   | 0   | 0   | 0   | 0       | 0    | 0,1 | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 3    |
| SLU-SIS-067 | 1   | 1      | 0     | 0   | 0   | 0       | 0          | 0        | 0   | 0,1 | 0   | 0   | 0       | 0       | 0        | 0   | 0,2 | 0   | 0   | 0    | 0         | 0    | 0   | 0,1 | 0   | 0   | 0   | 0       | 0    | 0   | 0,1 | 0      | 0,2                                             | 0,2            | 0,3   | 1         | -0,3  | E2 | gruppo 3-2  |
| SLU-SIS-068 | 1   | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0       | 0       | 0        | 0   | 0   | 0   | 0   | 0    | 0         | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | 0,3   | 0,3       | 1     | E3 | solo perm   |
| SLU-SIS-069 | 1   | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0       | 0       | 0        | 0   | 0   | 0   | 0   | 0    | 0         | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 0,3   | 0,3       | 1     | E3 | termica     |
| SLU-SIS-070 | 1   | 1      | 0     | 0   | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0       | 0       | 0        | 0   | 0   | 0   | 0   | 0    | 0         | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | 0,3   | 0,3       | 1     | E3 | termica     |
| SLU-SIS-071 | 1   | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0       | 0       | 0        | 0   | 0   | 0   | 0   | 0    | 0         | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | 0,3   | 0,3       | 1     | E3 | solo vert   |
| SLU-SIS-072 | 1   | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0,1 | 0   | 0       | 0       | 0        | 0   | 0   | 0,2 | 0   | 0    | 0         | 0    | 0   | 0   | 0,2 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 0,3       | 1     | E3 | gruppo 1    |
| SLU-SIS-073 | 1   | 1      | 1     | 0   | 0,2 | 0       | 0          | 0        | 0   | 0   | 0   | 0,1 | 0       | 0       | 0        | 0   | 0   | 0   | 0,2 | 0    | 0         | 0    | 0   | 0   | 0   | 0,2 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 0,3       | 1     | E3 | gruppo 1    |
| SLU-SIS-074 | 1   | 1      | 1     | 0   | 0   | 0,2     | 0          | 0        | 0   | 0   | 0   | 0   | 0,1     | 0       | 0        | 0   | 0   | 0   | 0   | 0,2  | 0         | 0    | 0   | 0   | 0   | 0   | 0,2 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 0,3       | 1     | E3 | gruppo 1    |
| SLU-SIS-075 | 1   | 1      | 1     | 0   | 0   | 0       | 0,2        | 0        | 0   | 0   | 0   | 0   | 0       | 0,1     | 0        | 0   | 0   | 0   | 0   | 0    | 0,2       | 0    | 0   | 0   | 0   | 0   | 0   | 0,2     | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 0,3       | 1     | E3 | gruppo 1    |
| SLU-SIS-076 | 1   | 1      | 1     | 0   | 0   | 0       | 0          | 0,2      | 0   | 0   | 0   | 0   | 0       | 0       | 0,1      | 0   | 0   | 0   | 0   | 0    | 0         | 0,2  | 0   | 0   | 0   | 0   | 0   | 0       | 0,2  | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 0,3       | 1     | E3 | gruppo 1    |
| SLU-SIS-077 | 1   | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0,2 | 0   | 0   | 0   | 0       | 0       | 0        | 0,1 | 0   | 0   | 0   | 0    | 0         | 0    | 0,2 | 0   | 0   | 0   | 0   | 0       | 0    | 0,2 | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 0,3       | 1     | E3 | gruppo 1    |
| SLU-SIS-078 | 1   | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0,2 | 0   | 0       | 0       | 0        | 0   | 0   | 0,1 | 0   | 0    | 0         | 0    | 0   | 0   | 0,1 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 0,3       | 1     | E3 | gruppo 3    |
| SLU-SIS-079 | 1   | 1      | 1     | 0   | 0,2 | 0       | 0          | 0        | 0   | 0   | 0   | 0,2 | 0       | 0       | 0        | 0   | 0   | 0   | 0,1 | 0    | 0         | 0    | 0   | 0   | 0   | 0,1 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 0,3       | 1     | E3 | gruppo 3    |
| SLU-SIS-080 | 1   | 1      | 1     | 0   | 0   | 0,2     | 0          | 0        | 0   | 0   | 0   | 0   | 0,2     | 0       | 0        | 0   | 0   | 0   | 0   | 0,1  | 0         | 0    | 0   | 0   | 0   | 0   | 0,1 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | 0,3   | 0,3       | 1     | E3 | gruppo 3    |

| NOME COMB.  | G- | Permar | nenti |     |     | Q1 - V | ariabili v | rerticali |     |     |     | Q2  | - Avvia | ımento e | e frenat | ura |     |     |     | Q3  | - Centri | fuga |     |     |     |     | Q4  | - Serpe | ggio |     |     | Q6  | 5 - Varia<br>Azioni ii<br>17 - Effe<br>nterazio | nterne<br>etti | E - Az | zioni sisi | miche | D  | Descrizione |
|-------------|----|--------|-------|-----|-----|--------|------------|-----------|-----|-----|-----|-----|---------|----------|----------|-----|-----|-----|-----|-----|----------|------|-----|-----|-----|-----|-----|---------|------|-----|-----|-----|-------------------------------------------------|----------------|--------|------------|-------|----|-------------|
|             | G1 | G21    | G22   | Q11 | Q12 | Q13    | Q14        | Q15       | Q16 | Q17 | Q21 | Q22 | Q23     | Q24      | Q25      | Q26 | Q27 | Q31 | Q32 | Q33 | Q34      | Q35  | Q36 | Q37 | Q41 | Q42 | Q43 | Q44     | Q45  | Q46 | Q47 | Q51 | Q61                                             | Q71            | E1     | E2         | E3    |    |             |
| SLU-SIS-081 | 1  | 1      | 1     | 0   | 0   | 0      | 0,2        | 0         | 0   | 0   | 0   | 0   | 0       | 0,2      | 0        | 0   | 0   | 0   | 0   | 0   | 0,1      | 0    | 0   | 0   | 0   | 0   | 0   | 0,1     | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | 1     | E3 | gruppo 3    |
| SLU-SIS-082 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,2       | 0   | 0   | 0   | 0   | 0       | 0        | 0,2      | 0   | 0   | 0   | 0   | 0   | 0        | 0,1  | 0   | 0   | 0   | 0   | 0   | 0       | 0,1  | 0   | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | 1     | E3 | gruppo 3    |
| SLU-SIS-083 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,2 | 0   | 0   | 0   | 0       | 0        | 0        | 0,2 | 0   | 0   | 0   | 0   | 0        | 0    | 0,1 | 0   | 0   | 0   | 0   | 0       | 0    | 0,1 | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | 1     | E3 | gruppo 3    |
| SLU-SIS-084 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,1 | 0   | 0   | 0       | 0        | 0        | 0   | 0,2 | 0   | 0   | 0   | 0        | 0    | 0   | 0,1 | 0   | 0   | 0   | 0       | 0    | 0   | 0,1 | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | 1     | E3 | gruppo 3-2  |
| SLU-SIS-085 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0       | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0                                               | 0              | 0,3    | 0,3        | -1    | E3 | solo perm   |
| SLU-SIS-086 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0       | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,5            | 0,3    | 0,3        | -1    | E3 | termica     |
| SLU-SIS-087 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0       | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,5            | 0,3    | 0,3        | -1    | E3 | termica     |
| SLU-SIS-088 | 1  | 1      | 1     | 0,2 | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0       | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0                                               | 0              | 0,3    | 0,3        | -1    | E3 | solo vert   |
| SLU-SIS-089 | 1  | 1      | 1     | 0,2 | 0   | 0      | 0          | 0         | 0   | 0   | 0,1 | 0   | 0       | 0        | 0        | 0   | 0   | 0,2 | 0   | 0   | 0        | 0    | 0   | 0   | 0,2 | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 1    |
| SLU-SIS-090 | 1  | 1      | 1     | 0   | 0,2 | 0      | 0          | 0         | 0   | 0   | 0   | 0,1 | 0       | 0        | 0        | 0   | 0   | 0   | 0,2 | 0   | 0        | 0    | 0   | 0   | 0   | 0,2 | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 1    |
| SLU-SIS-091 | 1  | 1      | 1     | 0   | 0   | 0,2    | 0          | 0         | 0   | 0   | 0   | 0   | 0,1     | 0        | 0        | 0   | 0   | 0   | 0   | 0,2 | 0        | 0    | 0   | 0   | 0   | 0   | 0,2 | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 1    |
| SLU-SIS-092 | 1  | 1      | 1     | 0   | 0   | 0      | 0,2        | 0         | 0   | 0   | 0   | 0   | 0       | 0,1      | 0        | 0   | 0   | 0   | 0   | 0   | 0,2      | 0    | 0   | 0   | 0   | 0   | 0   | 0,2     | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 1    |
| SLU-SIS-093 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,2       | 0   | 0   | 0   | 0   | 0       | 0        | 0,1      | 0   | 0   | 0   | 0   | 0   | 0        | 0,2  | 0   | 0   | 0   | 0   | 0   | 0       | 0,2  | 0   | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 1    |
| SLU-SIS-094 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,2 | 0   | 0   | 0   | 0       | 0        | 0        | 0,1 | 0   | 0   | 0   | 0   | 0        | 0    | 0,2 | 0   | 0   | 0   | 0   | 0       | 0    | 0,2 | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 1    |
| SLU-SIS-095 | 1  | 1      | 1     | 0,2 | 0   | 0      | 0          | 0         | 0   | 0   | 0,2 | 0   | 0       | 0        | 0        | 0   | 0   | 0,1 | 0   | 0   | 0        | 0    | 0   | 0   | 0,1 | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 3    |
| SLU-SIS-096 | 1  | 1      | 1     | 0   | 0,2 | 0      | 0          | 0         | 0   | 0   | 0   | 0,2 | 0       | 0        | 0        | 0   | 0   | 0   | 0,1 | 0   | 0        | 0    | 0   | 0   | 0   | 0,1 | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 3    |
| SLU-SIS-097 | 1  | 1      | 1     | 0   | 0   | 0,2    | 0          | 0         | 0   | 0   | 0   | 0   | 0,2     | 0        | 0        | 0   | 0   | 0   | 0   | 0,1 | 0        | 0    | 0   | 0   | 0   | 0   | 0,1 | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 3    |
| SLU-SIS-098 | 1  | 1      | 1     | 0   | 0   | 0      | 0,2        | 0         | 0   | 0   | 0   | 0   | 0       | 0,2      | 0        | 0   | 0   | 0   | 0   | 0   | 0,1      | 0    | 0   | 0   | 0   | 0   | 0   | 0,1     | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 3    |
| SLU-SIS-099 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,2       | 0   | 0   | 0   | 0   | 0       | 0        | 0,2      | 0   | 0   | 0   | 0   | 0   | 0        | 0,1  | 0   | 0   | 0   | 0   | 0   | 0       | 0,1  | 0   | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 3    |
| SLU-SIS-100 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,2 | 0   | 0   | 0   | 0       | 0        | 0        | 0,2 | 0   | 0   | 0   | 0   | 0        | 0    | 0,1 | 0   | 0   | 0   | 0   | 0       | 0    | 0,1 | 0   | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 3    |
| SLU-SIS-101 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,1 | 0   | 0   | 0       | 0        | 0        | 0   | 0,2 | 0   | 0   | 0   | 0        | 0    | 0   | 0,1 | 0   | 0   | 0   | 0       | 0    | 0   | 0,1 | 0   | 0,2                                             | 0,2            | 0,3    | 0,3        | -1    | E3 | gruppo 3-2  |
| SLU-SIS-102 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0       | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0                                               | 0              | -1     | -0,3       | 0,3   | E1 | solo perm   |
| SLU-SIS-103 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0       | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | termica     |
| SLU-SIS-104 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0       | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | termica     |
| SLU-SIS-105 | 1  | 1      | 1     | 0,2 | 0   | 0      | 0          | 0         | 0   | 0   | 0,1 | 0   | 0       | 0        | 0        | 0   | 0   | 0,2 | 0   | 0   | 0        | 0    | 0   | 0   | 0,2 | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 1    |
| SLU-SIS-106 | 1  | 1      | 1     | 0   | 0,2 | 0      | 0          | 0         | 0   | 0   | 0   | 0,1 | 0       | 0        | 0        | 0   | 0   | 0   | 0,2 | 0   | 0        | 0    | 0   | 0   | 0   | 0,2 | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 1    |
| SLU-SIS-107 | 1  | 1      | 1     | 0   | 0   | 0,2    | 0          | 0         | 0   | 0   | 0   | 0   | 0,1     | 0        | 0        | 0   | 0   | 0   | 0   | 0,2 | 0        | 0    | 0   | 0   | 0   | 0   | 0,2 | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 1    |
| SLU-SIS-108 | 1  | 1      | 1     | 0   | 0   | 0      | 0,2        | 0         | 0   | 0   | 0   | 0   | 0       | 0,1      | 0        | 0   | 0   | 0   | 0   | 0   | 0,2      | 0    | 0   | 0   | 0   | 0   | 0   | 0,2     | 0    | 0   | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 1    |
| SLU-SIS-109 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,2       | 0   | 0   | 0   | 0   | 0       | 0        | 0,1      | 0   | 0   | 0   | 0   | 0   | 0        | 0,2  | 0   | 0   | 0   | 0   | 0   | 0       | 0,2  | 0   | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 1    |
| SLU-SIS-110 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,2 | 0   | 0   | 0   | 0       | 0        | 0        | 0,1 | 0   | 0   | 0   | 0   | 0        | 0    | 0,2 | 0   | 0   | 0   | 0   | 0       | 0    | 0,2 | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 1    |
| SLU-SIS-111 | 1  | 1      | 1     | 0,2 | 0   | 0      | 0          | 0         | 0   | 0   | 0,2 | 0   | 0       | 0        | 0        | 0   | 0   | 0,1 | 0   | 0   | 0        | 0    | 0   | 0   | 0,1 | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 3    |
| SLU-SIS-112 | 1  | 1      | 1     | 0   | 0,2 | 0      | 0          | 0         | 0   | 0   | 0   | 0,2 | 0       | 0        | 0        | 0   | 0   | 0   | 0,1 | 0   | 0        | 0    | 0   | 0   | 0   | 0,1 | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 3    |
| SLU-SIS-113 | 1  | 1      | 1     | 0   | 0   | 0,2    | 0          | 0         | 0   | 0   | 0   | 0   | 0,2     | 0        | 0        | 0   | 0   | 0   | 0   | 0,1 | 0        | 0    | 0   | 0   | 0   | 0   | 0,1 | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 3    |
| SLU-SIS-114 | 1  | 1      | 1     | 0   | 0   | 0      | 0,2        | 0         | 0   | 0   | 0   | 0   | 0       | 0,2      | 0        | 0   | 0   | 0   | 0   | 0   | 0,1      | 0    | 0   | 0   | 0   | 0   | 0   | 0,1     | 0    | 0   | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 3    |
| SLU-SIS-115 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,2       | 0   | 0   | 0   | 0   | 0       | 0        | 0,2      | 0   | 0   | 0   | 0   | 0   | 0        | 0,1  | 0   | 0   | 0   | 0   | 0   | 0       | 0,1  | 0   | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 3    |
| SLU-SIS-116 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,2 | 0   | 0   | 0   | 0       | 0        | 0        | 0,2 | 0   | 0   | 0   | 0   | 0        | 0    | 0,1 | 0   | 0   | 0   | 0   | 0       | 0    | 0,1 | 0   | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 3    |
| SLU-SIS-117 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,1 | 0   | 0   | 0       | 0        | 0        | 0   | 0,2 | 0   | 0   | 0   | 0        | 0    | 0   | 0,1 | 0   | 0   | 0   | 0       | 0    | 0   | 0,1 | 0   | 0,2                                             | 0,5            | -1     | -0,3       | 0,3   | E1 | gruppo 3-2  |

| NOME COMB.  | G- | Permar | nenti |     |     | Q1 - Va | ariabili v | rerticali |     |     |     | Q2  | ! - Avvia | amento e | e frenat | ura |     |     |     | Q3  | - Centri | fuga |     |     |     |     | Q4  | - Serpe | ggio |     |     | Q6 - A | 5 - Varia<br>Azioni ir<br>17 - Effe<br>nterazio | nterne<br>etti | E - A | zioni sis | miche | De    | escrizione |
|-------------|----|--------|-------|-----|-----|---------|------------|-----------|-----|-----|-----|-----|-----------|----------|----------|-----|-----|-----|-----|-----|----------|------|-----|-----|-----|-----|-----|---------|------|-----|-----|--------|-------------------------------------------------|----------------|-------|-----------|-------|-------|------------|
|             | G1 | G21    | G22   | Q11 | Q12 | Q13     | Q14        | Q15       | Q16 | Q17 | Q21 | Q22 | Q23       | Q24      | Q25      | Q26 | Q27 | Q31 | Q32 | Q33 | Q34      | Q35  | Q36 | Q37 | Q41 | Q42 | Q43 | Q44     | Q45  | Q46 | Q47 | Q51    | Q61                                             | Q71            | E1    | E2        | E3    |       |            |
| SLU-SIS-118 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | -1    | -0,3      | -0,3  | E1    | solo perm  |
| SLU-SIS-119 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | -1    | -0,3      | -0,3  | E1    | termica    |
| SLU-SIS-120 | 1  | 1      | 0     | 0   | 0   | 0       | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | -1    | -0,3      | -0,3  | E1    | termica    |
| SLU-SIS-121 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | -1    | -0,3      | -0,3  | E1    | solo vert  |
| SLU-SIS-122 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0         | 0   | 0   | 0,1 | 0   | 0         | 0        | 0        | 0   | 0   | 0,2 | 0   | 0   | 0        | 0    | 0   | 0   | 0,2 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 1   |
| SLU-SIS-123 | 1  | 1      | 1     | 0   | 0,2 | 0       | 0          | 0         | 0   | 0   | 0   | 0,1 | 0         | 0        | 0        | 0   | 0   | 0   | 0,2 | 0   | 0        | 0    | 0   | 0   | 0   | 0,2 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 1   |
| SLU-SIS-124 | 1  | 1      | 1     | 0   | 0   | 0,2     | 0          | 0         | 0   | 0   | 0   | 0   | 0,1       | 0        | 0        | 0   | 0   | 0   | 0   | 0,2 | 0        | 0    | 0   | 0   | 0   | 0   | 0,2 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 1   |
| SLU-SIS-125 | 1  | 1      | 1     | 0   | 0   | 0       | 0,2        | 0         | 0   | 0   | 0   | 0   | 0         | 0,1      | 0        | 0   | 0   | 0   | 0   | 0   | 0,2      | 0    | 0   | 0   | 0   | 0   | 0   | 0,2     | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 1   |
| SLU-SIS-126 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0,2       | 0   | 0   | 0   | 0   | 0         | 0        | 0,1      | 0   | 0   | 0   | 0   | 0   | 0        | 0,2  | 0   | 0   | 0   | 0   | 0   | 0       | 0,2  | 0   | 0   | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 1   |
| SLU-SIS-127 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0         | 0,2 | 0   | 0   | 0   | 0         | 0        | 0        | 0,1 | 0   | 0   | 0   | 0   | 0        | 0    | 0,2 | 0   | 0   | 0   | 0   | 0       | 0    | 0,2 | 0   | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 1   |
| SLU-SIS-128 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0         | 0   | 0   | 0,2 | 0   | 0         | 0        | 0        | 0   | 0   | 0,1 | 0   | 0   | 0        | 0    | 0   | 0   | 0,1 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 3   |
| SLU-SIS-129 | 1  | 1      | 1     | 0   | 0,2 | 0       | 0          | 0         | 0   | 0   | 0   | 0,2 | 0         | 0        | 0        | 0   | 0   | 0   | 0,1 | 0   | 0        | 0    | 0   | 0   | 0   | 0,1 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 3   |
| SLU-SIS-130 | 1  | 1      | 1     | 0   | 0   | 0,2     | 0          | 0         | 0   | 0   | 0   | 0   | 0,2       | 0        | 0        | 0   | 0   | 0   | 0   | 0,1 | 0        | 0    | 0   | 0   | 0   | 0   | 0,1 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 3   |
| SLU-SIS-131 | 1  | 1      | 1     | 0   | 0   | 0       | 0,2        | 0         | 0   | 0   | 0   | 0   | 0         | 0,2      | 0        | 0   | 0   | 0   | 0   | 0   | 0,1      | 0    | 0   | 0   | 0   | 0   | 0   | 0,1     | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 3   |
| SLU-SIS-132 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0,2       | 0   | 0   | 0   | 0   | 0         | 0        | 0,2      | 0   | 0   | 0   | 0   | 0   | 0        | 0,1  | 0   | 0   | 0   | 0   | 0   | 0       | 0,1  | 0   | 0   | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 3   |
| SLU-SIS-133 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0         | 0,2 | 0   | 0   | 0   | 0         | 0        | 0        | 0,2 | 0   | 0   | 0   | 0   | 0        | 0    | 0,1 | 0   | 0   | 0   | 0   | 0       | 0    | 0,1 | 0   | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 3   |
| SLU-SIS-134 | 1  | 1      | 0     | 0   | 0   | 0       | 0          | 0         | 0   | 0,1 | 0   | 0   | 0         | 0        | 0        | 0   | 0,2 | 0   | 0   | 0   | 0        | 0    | 0   | 0,1 | 0   | 0   | 0   | 0       | 0    | 0   | 0,1 | 0      | 0,2                                             | 0,2            | -1    | -0,3      | -0,3  | E1    | gruppo 3-2 |
| SLU-SIS-135 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | -0,3  | -1        | 0,3   | E2    | solo perm  |
| SLU-SIS-136 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | -0,3  | -1        | 0,3   | E2    | termica    |
| SLU-SIS-137 | 1  | 1      | 0     | 0   | 0   | 0       | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | -0,3  | -1        | 0,3   | E2    | termica    |
| SLU-SIS-138 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | -0,3  | -1        | 0,3   | E2    | solo vert  |
| SLU-SIS-139 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0         | 0   | 0   | 0,1 | 0   | 0         | 0        | 0        | 0   | 0   | 0,2 | 0   | 0   | 0        | 0    | 0   | 0   | 0,2 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | E2    | gruppo 1   |
| SLU-SIS-140 | 1  | 1      | 1     | 0   | 0,2 | 0       | 0          | 0         | 0   | 0   | 0   | 0,1 | 0         | 0        | 0        | 0   | 0   | 0   | 0,2 | 0   | 0        | 0    | 0   | 0   | 0   | 0,2 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | E2    | gruppo 1   |
| SLU-SIS-141 | 1  | 1      | 1     | 0   | 0   | 0,2     | 0          | 0         | 0   | 0   | 0   | 0   | 0,1       | 0        | 0        | 0   | 0   | 0   | 0   | 0,2 | 0        | 0    | 0   | 0   | 0   | 0   | 0,2 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | E2    | gruppo 1   |
| SLU-SIS-142 | 1  | 1      | 1     | 0   | 0   | 0       | 0,2        | 0         | 0   | 0   | 0   | 0   | 0         | 0,1      | 0        | 0   | 0   | 0   | 0   | 0   | 0,2      | 0    | 0   | 0   | 0   | 0   | 0   | 0,2     | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | E2    | gruppo 1   |
| SLU-SIS-143 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0,2       | 0   | 0   | 0   | 0   | 0         | 0        | 0,1      | 0   | 0   | 0   | 0   | 0   | 0        | 0,2  | 0   | 0   | 0   | 0   | 0   | 0       | 0,2  | 0   | 0   | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | E2    | gruppo 1   |
| SLU-SIS-144 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0         | 0,2 | 0   | 0   | 0   | 0         | 0        | 0        | 0,1 | 0   | 0   | 0   | 0   | 0        | 0    | 0,2 | 0   | 0   | 0   | 0   | 0       | 0    | 0,2 | 0   | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | E2    | gruppo 1   |
| SLU-SIS-145 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0         | 0   | 0   | 0,2 | 0   | 0         | 0        | 0        | 0   | 0   | 0,1 | 0   | 0   | 0        | 0    | 0   | 0   | 0,1 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | G1+G2 | gruppo 3   |
| SLU-SIS-146 | 1  | 1      | 1     | 0   | 0,2 | 0       | 0          | 0         | 0   | 0   | 0   | 0,2 | 0         | 0        | 0        | 0   | 0   | 0   | 0,1 | 0   | 0        | 0    | 0   | 0   | 0   | 0,1 | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | G1+G2 | gruppo 3   |
| SLU-SIS-147 | 1  | 1      | 1     | 0   | 0   | 0,2     | 0          | 0         | 0   | 0   | 0   | 0   | 0,2       | 0        | 0        | 0   | 0   | 0   | 0   | 0,1 | 0        | 0    | 0   | 0   | 0   | 0   | 0,1 | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | G1+G2 | gruppo 3   |
| SLU-SIS-148 | 1  | 1      | 1     | 0   | 0   | 0       | 0,2        | 0         | 0   | 0   | 0   | 0   | 0         | 0,2      | 0        | 0   | 0   | 0   | 0   | 0   | 0,1      | 0    | 0   | 0   | 0   | 0   | 0   | 0,1     | 0    | 0   | 0   | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | G1+G2 | gruppo 3   |
| SLU-SIS-149 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0,2       | 0   | 0   | 0   | 0   | 0         | 0        | 0,2      | 0   | 0   | 0   | 0   | 0   | 0        | 0,1  | 0   | 0   | 0   | 0   | 0   | 0       | 0,1  | 0   | 0   | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | G1+G2 | gruppo 3   |
| SLU-SIS-150 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0         | 0,2 | 0   | 0   | 0   | 0         | 0        | 0        | 0,2 | 0   | 0   | 0   | 0   | 0        | 0    | 0,1 | 0   | 0   | 0   | 0   | 0       | 0    | 0,1 | 0   | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | G1+G2 | gruppo 3   |
| SLU-SIS-151 | 1  | 1      | 0     | 0   | 0   | 0       | 0          | 0         | 0   | 0,1 | 0   | 0   | 0         | 0        | 0        | 0   | 0,2 | 0   | 0   | 0   | 0        | 0    | 0   | 0,1 | 0   | 0   | 0   | 0       | 0    | 0   | 0,1 | 0      | 0,2                                             | 0,2            | -0,3  | -1        | 0,3   | E2    | gruppo 3-2 |
| SLU-SIS-152 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                               | 0              | -0,3  | -1        | -0,3  | E2    | solo perm  |
| SLU-SIS-153 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | -0,3  | -1        | -0,3  | E2    | termica    |
| SLU-SIS-154 | 1  | 1      | 0     | 0   | 0   | 0       | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0,2                                             | 0,5            | -0,3  | -1        | -0,3  | E2    | termica    |

| NOME COMB.  | G- | Permar | nenti |     |     | Q1 - Va | ariabili v | erticali |     |     |     | Q2  | ! - Avvia | amento e | e frenat | ura |     |     |     | Q3  | - Centri | fuga |     |     |     |     | Q4  | - Serpeç | ggio |     |     | Q6 - A | i - Varia<br>Azioni ii<br>7 - Effe<br>nterazio | nterne<br>etti | E - A | zioni sis | miche | D  | Descrizione |
|-------------|----|--------|-------|-----|-----|---------|------------|----------|-----|-----|-----|-----|-----------|----------|----------|-----|-----|-----|-----|-----|----------|------|-----|-----|-----|-----|-----|----------|------|-----|-----|--------|------------------------------------------------|----------------|-------|-----------|-------|----|-------------|
|             | G1 | G21    | G22   | Q11 | Q12 | Q13     | Q14        | Q15      | Q16 | Q17 | Q21 | Q22 | Q23       | Q24      | Q25      | Q26 | Q27 | Q31 | Q32 | Q33 | Q34      | Q35  | Q36 | Q37 | Q41 | Q42 | Q43 | Q44      | Q45  | Q46 | Q47 | Q51    | Q61                                            | Q71            | E1    | E2        | E3    |    |             |
| SLU-SIS-155 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0                                              | 0              | -0,3  | -1        | -0,3  | E2 | solo vert   |
| SLU-SIS-156 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0,1 | 0   | 0         | 0        | 0        | 0   | 0   | 0,2 | 0   | 0   | 0        | 0    | 0   | 0   | 0,2 | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 1    |
| SLU-SIS-157 | 1  | 1      | 1     | 0   | 0,2 | 0       | 0          | 0        | 0   | 0   | 0   | 0,1 | 0         | 0        | 0        | 0   | 0   | 0   | 0,2 | 0   | 0        | 0    | 0   | 0   | 0   | 0,2 | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 1    |
| SLU-SIS-158 | 1  | 1      | 1     | 0   | 0   | 0,2     | 0          | 0        | 0   | 0   | 0   | 0   | 0,1       | 0        | 0        | 0   | 0   | 0   | 0   | 0,2 | 0        | 0    | 0   | 0   | 0   | 0   | 0,2 | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 1    |
| SLU-SIS-159 | 1  | 1      | 1     | 0   | 0   | 0       | 0,2        | 0        | 0   | 0   | 0   | 0   | 0         | 0,1      | 0        | 0   | 0   | 0   | 0   | 0   | 0,2      | 0    | 0   | 0   | 0   | 0   | 0   | 0,2      | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 1    |
| SLU-SIS-160 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0,2      | 0   | 0   | 0   | 0   | 0         | 0        | 0,1      | 0   | 0   | 0   | 0   | 0   | 0        | 0,2  | 0   | 0   | 0   | 0   | 0   | 0        | 0,2  | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 1    |
| SLU-SIS-161 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0,2 | 0   | 0   | 0   | 0         | 0        | 0        | 0,1 | 0   | 0   | 0   | 0   | 0        | 0    | 0,2 | 0   | 0   | 0   | 0   | 0        | 0    | 0,2 | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 1    |
| SLU-SIS-162 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0,2 | 0   | 0         | 0        | 0        | 0   | 0   | 0,1 | 0   | 0   | 0        | 0    | 0   | 0   | 0,1 | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 3    |
| SLU-SIS-163 | 1  | 1      | 1     | 0   | 0,2 | 0       | 0          | 0        | 0   | 0   | 0   | 0,2 | 0         | 0        | 0        | 0   | 0   | 0   | 0,1 | 0   | 0        | 0    | 0   | 0   | 0   | 0,1 | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 3    |
| SLU-SIS-164 | 1  | 1      | 1     | 0   | 0   | 0,2     | 0          | 0        | 0   | 0   | 0   | 0   | 0,2       | 0        | 0        | 0   | 0   | 0   | 0   | 0,1 | 0        | 0    | 0   | 0   | 0   | 0   | 0,1 | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 3    |
| SLU-SIS-165 | 1  | 1      | 1     | 0   | 0   | 0       | 0,2        | 0        | 0   | 0   | 0   | 0   | 0         | 0,2      | 0        | 0   | 0   | 0   | 0   | 0   | 0,1      | 0    | 0   | 0   | 0   | 0   | 0   | 0,1      | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 3    |
| SLU-SIS-166 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0,2      | 0   | 0   | 0   | 0   | 0         | 0        | 0,2      | 0   | 0   | 0   | 0   | 0   | 0        | 0,1  | 0   | 0   | 0   | 0   | 0   | 0        | 0,1  | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 3    |
| SLU-SIS-167 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0,2 | 0   | 0   | 0   | 0         | 0        | 0        | 0,2 | 0   | 0   | 0   | 0   | 0        | 0    | 0,1 | 0   | 0   | 0   | 0   | 0        | 0    | 0,1 | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 3    |
| SLU-SIS-168 | 1  | 1      | 0     | 0   | 0   | 0       | 0          | 0        | 0   | 0,1 | 0   | 0   | 0         | 0        | 0        | 0   | 0,2 | 0   | 0   | 0   | 0        | 0    | 0   | 0,1 | 0   | 0   | 0   | 0        | 0    | 0   | 0,1 | 0      | 0,2                                            | 0,2            | -0,3  | -1        | -0,3  | E2 | gruppo 3-2  |
| SLU-SIS-169 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0                                              | 0              | -0,3  | -0,3      | 1     | E3 | solo perm   |
| SLU-SIS-170 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,5            | -0,3  | -0,3      | 1     | E3 | termica     |
| SLU-SIS-171 | 1  | 1      | 0     | 0   | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,5            | -0,3  | -0,3      | 1     | E3 | termica     |
| SLU-SIS-172 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0                                              | 0              | -0,3  | -0,3      | 1     | E3 | solo vert   |
| SLU-SIS-173 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0,1 | 0   | 0         | 0        | 0        | 0   | 0   | 0,2 | 0   | 0   | 0        | 0    | 0   | 0   | 0,2 | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 1    |
| SLU-SIS-174 | 1  | 1      | 1     | 0   | 0,2 | 0       | 0          | 0        | 0   | 0   | 0   | 0,1 | 0         | 0        | 0        | 0   | 0   | 0   | 0,2 | 0   | 0        | 0    | 0   | 0   | 0   | 0,2 | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 1    |
| SLU-SIS-175 | 1  | 1      | 1     | 0   | 0   | 0,2     | 0          | 0        | 0   | 0   | 0   | 0   | 0,1       | 0        | 0        | 0   | 0   | 0   | 0   | 0,2 | 0        | 0    | 0   | 0   | 0   | 0   | 0,2 | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 1    |
| SLU-SIS-176 | 1  | 1      | 1     | 0   | 0   | 0       | 0,2        | 0        | 0   | 0   | 0   | 0   | 0         | 0,1      | 0        | 0   | 0   | 0   | 0   | 0   | 0,2      | 0    | 0   | 0   | 0   | 0   | 0   | 0,2      | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 1    |
| SLU-SIS-177 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0,2      | 0   | 0   | 0   | 0   | 0         | 0        | 0,1      | 0   | 0   | 0   | 0   | 0   | 0        | 0,2  | 0   | 0   | 0   | 0   | 0   | 0        | 0,2  | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 1    |
| SLU-SIS-178 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0,2 | 0   | 0   | 0   | 0         | 0        | 0        | 0,1 | 0   | 0   | 0   | 0   | 0        | 0    | 0,2 | 0   | 0   | 0   | 0   | 0        | 0    | 0,2 | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 1    |
| SLU-SIS-179 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0,2 | 0   | 0         | 0        | 0        | 0   | 0   | 0,1 | 0   | 0   | 0        | 0    | 0   | 0   | 0,1 | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 3    |
| SLU-SIS-180 | 1  | 1      | 1     | 0   | 0,2 | 0       | 0          | 0        | 0   | 0   | 0   | 0,2 | 0         | 0        | 0        | 0   | 0   | 0   | 0,1 | 0   | 0        | 0    | 0   | 0   | 0   | 0,1 | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 3    |
| SLU-SIS-181 | 1  | 1      | 1     | 0   | 0   | 0,2     | 0          | 0        | 0   | 0   | 0   | 0   | 0,2       | 0        | 0        | 0   | 0   | 0   | 0   | 0,1 | 0        | 0    | 0   | 0   | 0   | 0   | 0,1 | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 3    |
| SLU-SIS-182 | 1  | 1      | 1     | 0   | 0   | 0       | 0,2        | 0        | 0   | 0   | 0   | 0   | 0         | 0,2      | 0        | 0   | 0   | 0   | 0   | 0   | 0,1      | 0    | 0   | 0   | 0   | 0   | 0   | 0,1      | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 3    |
| SLU-SIS-183 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0,2      | 0   | 0   | 0   | 0   | 0         | 0        | 0,2      | 0   | 0   | 0   | 0   | 0   | 0        | 0,1  | 0   | 0   | 0   | 0   | 0   | 0        | 0,1  | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 3    |
| SLU-SIS-184 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0,2 | 0   | 0   | 0   | 0         | 0        | 0        | 0,2 | 0   | 0   | 0   | 0   | 0        | 0    | 0,1 | 0   | 0   | 0   | 0   | 0        | 0    | 0,1 | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 3    |
| SLU-SIS-185 | 1  | 1      | 0     | 0   | 0   | 0       | 0          | 0        | 0   | 0,1 | 0   | 0   | 0         | 0        | 0        | 0   | 0,2 | 0   | 0   | 0   | 0        | 0    | 0   | 0,1 | 0   | 0   | 0   | 0        | 0    | 0   | 0,1 | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | 1     | E3 | gruppo 3-2  |
| SLU-SIS-186 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0                                              | 0              | -0,3  | -0,3      | -1    | E3 | solo perm   |
| SLU-SIS-187 | 1  | 1      | 1     | 0   | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,5            | -0,3  | -0,3      | -1    | E3 | termica     |
| SLU-SIS-188 | 1  | 1      | 0     | 0   | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,5            | -0,3  | -0,3      | -1    | E3 | termica     |
| SLU-SIS-189 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0                                              | 0              | -0,3  | -0,3      | -1    | E3 | solo vert   |
| SLU-SIS-190 | 1  | 1      | 1     | 0,2 | 0   | 0       | 0          | 0        | 0   | 0   | 0,1 | 0   | 0         | 0        | 0        | 0   | 0   | 0,2 | 0   | 0   | 0        | 0    | 0   | 0   | 0,2 | 0   | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | -1    | E3 | gruppo 1    |
| SLU-SIS-191 | 1  | 1      | 1     | 0   | 0,2 | 0       | 0          | 0        | 0   | 0   | 0   | 0,1 | 0         | 0        | 0        | 0   | 0   | 0   | 0,2 | 0   | 0        | 0    | 0   | 0   | 0   | 0,2 | 0   | 0        | 0    | 0   | 0   | 0      | 0,2                                            | 0,2            | -0,3  | -0,3      | -1    | E3 | gruppo 1    |

| NOME COMB.  | G- | Permar | nenti |     |     | Q1 - V | ariabili v | rerticali |     |     |     | Q2  | 2 - Avvia | amento e | e frenat | ura |     |     |     | Q3  | - Centri | fuga |     |     |     |     | Q4  | - Serpe | ggio |     |     | Q6  | 5 - Varia<br>Azioni ir<br>17 - Effe<br>nterazio | nterne<br>etti | E - Az | zioni sisn | niche | De    | escrizione |
|-------------|----|--------|-------|-----|-----|--------|------------|-----------|-----|-----|-----|-----|-----------|----------|----------|-----|-----|-----|-----|-----|----------|------|-----|-----|-----|-----|-----|---------|------|-----|-----|-----|-------------------------------------------------|----------------|--------|------------|-------|-------|------------|
|             | G1 | G21    | G22   | Q11 | Q12 | Q13    | Q14        | Q15       | Q16 | Q17 | Q21 | Q22 | Q23       | Q24      | Q25      | Q26 | Q27 | Q31 | Q32 | Q33 | Q34      | Q35  | Q36 | Q37 | Q41 | Q42 | Q43 | Q44     | Q45  | Q46 | Q47 | Q51 | Q61                                             | Q71            | E1     | E2         | E3    |       |            |
| SLU-SIS-192 | 1  | 1      | 1     | 0   | 0   | 0,2    | 0          | 0         | 0   | 0   | 0   | 0   | 0,1       | 0        | 0        | 0   | 0   | 0   | 0   | 0,2 | 0        | 0    | 0   | 0   | 0   | 0   | 0,2 | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | -0,3   | -0,3       | -1    | E3    | gruppo 1   |
| SLU-SIS-193 | 1  | 1      | 1     | 0   | 0   | 0      | 0,2        | 0         | 0   | 0   | 0   | 0   | 0         | 0,1      | 0        | 0   | 0   | 0   | 0   | 0   | 0,2      | 0    | 0   | 0   | 0   | 0   | 0   | 0,2     | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | -0,3   | -0,3       | -1    | E3    | gruppo 1   |
| SLU-SIS-194 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,2       | 0   | 0   | 0   | 0   | 0         | 0        | 0,1      | 0   | 0   | 0   | 0   | 0   | 0        | 0,2  | 0   | 0   | 0   | 0   | 0   | 0       | 0,2  | 0   | 0   | 0   | 0,2                                             | 0,2            | -0,3   | -0,3       | -1    | E3    | gruppo 1   |
| SLU-SIS-195 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,2 | 0   | 0   | 0   | 0         | 0        | 0        | 0,1 | 0   | 0   | 0   | 0   | 0        | 0    | 0,2 | 0   | 0   | 0   | 0   | 0       | 0    | 0,2 | 0   | 0   | 0,2                                             | 0,2            | -0,3   | -0,3       | -1    | E3    | gruppo 1   |
| SLU-SIS-196 | 1  | 1      | 1     | 0,2 | 0   | 0      | 0          | 0         | 0   | 0   | 0,2 | 0   | 0         | 0        | 0        | 0   | 0   | 0,1 | 0   | 0   | 0        | 0    | 0   | 0   | 0,1 | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | -0,3   | -0,3       | -1    | E3    | gruppo 3   |
| SLU-SIS-197 | 1  | 1      | 1     | 0   | 0,2 | 0      | 0          | 0         | 0   | 0   | 0   | 0,2 | 0         | 0        | 0        | 0   | 0   | 0   | 0,1 | 0   | 0        | 0    | 0   | 0   | 0   | 0,1 | 0   | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | -0,3   | -0,3       | -1    | E3    | gruppo 3   |
| SLU-SIS-198 | 1  | 1      | 1     | 0   | 0   | 0,2    | 0          | 0         | 0   | 0   | 0   | 0   | 0,2       | 0        | 0        | 0   | 0   | 0   | 0   | 0,1 | 0        | 0    | 0   | 0   | 0   | 0   | 0,1 | 0       | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | -0,3   | -0,3       | -1    | E3    | gruppo 3   |
| SLU-SIS-199 | 1  | 1      | 1     | 0   | 0   | 0      | 0,2        | 0         | 0   | 0   | 0   | 0   | 0         | 0,2      | 0        | 0   | 0   | 0   | 0   | 0   | 0,1      | 0    | 0   | 0   | 0   | 0   | 0   | 0,1     | 0    | 0   | 0   | 0   | 0,2                                             | 0,2            | -0,3   | -0,3       | -1    | E3    | gruppo 3   |
| SLU-SIS-200 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,2       | 0   | 0   | 0   | 0   | 0         | 0        | 0,2      | 0   | 0   | 0   | 0   | 0   | 0        | 0,1  | 0   | 0   | 0   | 0   | 0   | 0       | 0,1  | 0   | 0   | 0   | 0,2                                             | 0,2            | -0,3   | -0,3       | -1    | E3    | gruppo 3   |
| SLU-SIS-201 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,2 | 0   | 0   | 0   | 0         | 0        | 0        | 0,2 | 0   | 0   | 0   | 0   | 0        | 0    | 0,1 | 0   | 0   | 0   | 0   | 0       | 0    | 0,1 | 0   | 0   | 0,2                                             | 0,2            | -0,3   | -0,3       | -1    | E3    | gruppo 3   |
| SLU-SIS-202 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,1 | 0   | 0   | 0         | 0        | 0        | 0   | 0,2 | 0   | 0   | 0   | 0        | 0    | 0   | 0,1 | 0   | 0   | 0   | 0       | 0    | 0   | 0,1 | 0   | 0,2                                             | 0,2            | -0,3   | -0,3       | -1    | E3    | gruppo 3-2 |
|             |    |        |       |     |     |        |            |           |     |     |     |     |           |          |          |     |     |     |     |     |          |      |     |     |     |     |     |         |      |     |     |     |                                                 |                |        |            |       |       |            |
| SLE-RAR-001 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | G1+G2 | solo perm  |
| SLE-RAR-002 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 1   | 0,6                                             | 0,6            | 0      | 0          | 0     | Q51   | vento      |
| SLE-RAR-003 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0,6 | 1                                               | 1              | 0      | 0          | 0     | Q61   | termica    |
| SLE-RAR-004 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 1   | 0,6                                             | 0,6            | 0      | 0          | 0     | Q51   | vento      |
| SLE-RAR-005 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0   | 0   | 0   | 0         | 0        | 0        | 0   | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0,6 | 1                                               | 1              | 0      | 0          | 0     | Q61   | termica    |
| SLE-RAR-006 | 1  | 1      | 1     | 1   | 0   | 0      | 0          | 0         | 0   | 0   | 0,5 | 0   | 0         | 0        | 0        | 0   | 0   | 1   | 0   | 0   | 0        | 0    | 0   | 0   | 1   | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | Q11   | gruppo 1   |
| SLE-RAR-007 | 1  | 1      | 1     | 0   | 1   | 0      | 0          | 0         | 0   | 0   | 0   | 0,5 | 0         | 0        | 0        | 0   | 0   | 0   | 1   | 0   | 0        | 0    | 0   | 0   | 0   | 1   | 0   | 0       | 0    | 0   | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | Q12   | gruppo 1   |
| SLE-RAR-008 | 1  | 1      | 1     | 0   | 0   | 1      | 0          | 0         | 0   | 0   | 0   | 0   | 0,5       | 0        | 0        | 0   | 0   | 0   | 0   | 1   | 0        | 0    | 0   | 0   | 0   | 0   | 1   | 0       | 0    | 0   | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | Q13   | gruppo 1   |
| SLE-RAR-009 | 1  | 1      | 1     | 0   | 0   | 0      | 1          | 0         | 0   | 0   | 0   | 0   | 0         | 0,5      | 0        | 0   | 0   | 0   | 0   | 0   | 1        | 0    | 0   | 0   | 0   | 0   | 0   | 1       | 0    | 0   | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | Q14   | gruppo 1   |
| SLE-RAR-010 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 1         | 0   | 0   | 0   | 0   | 0         | 0        | 0,5      | 0   | 0   | 0   | 0   | 0   | 0        | 1    | 0   | 0   | 0   | 0   | 0   | 0       | 1    | 0   | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | Q15   | gruppo 1   |
| SLE-RAR-011 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 1   | 0   | 0   | 0   | 0         | 0        | 0        | 0,5 | 0   | 0   | 0   | 0   | 0        | 0    | 1   | 0   | 0   | 0   | 0   | 0       | 0    | 1   | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | Q16   | gruppo 1   |
| SLE-RAR-012 | 1  | 1      | 1     | 1   | 0   | 0      | 0          | 0         | 0   | 0   | 1   | 0   | 0         | 0        | 0        | 0   | 0   | 0,5 | 0   | 0   | 0        | 0    | 0   | 0   | 0,5 | 0   | 0   | 0       | 0    | 0   | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | Q11   | gruppo 3   |
| SLE-RAR-013 | 1  | 1      | 1     | 0   | 1   | 0      | 0          | 0         | 0   | 0   | 0   | 1   | 0         | 0        | 0        | 0   | 0   | 0   | 0,5 | 0   | 0        | 0    | 0   | 0   | 0   | 0,5 | 0   | 0       | 0    | 0   | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | Q12   | gruppo 3   |
| SLE-RAR-014 | 1  | 1      | 1     | 0   | 0   | 1      | 0          | 0         | 0   | 0   | 0   | 0   | 1         | 0        | 0        | 0   | 0   | 0   | 0   | 0,5 | 0        | 0    | 0   | 0   | 0   | 0   | 0,5 | 0       | 0    | 0   | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | Q13   | gruppo 3   |
| SLE-RAR-015 | 1  | 1      | 1     | 0   | 0   | 0      | 1          | 0         | 0   | 0   | 0   | 0   | 0         | 1        | 0        | 0   | 0   | 0   | 0   | 0   | 0,5      | 0    | 0   | 0   | 0   | 0   | 0   | 0,5     | 0    | 0   | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | Q14   | gruppo 3   |
| SLE-RAR-016 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 1         | 0   | 0   | 0   | 0   | 0         | 0        | 1        | 0   | 0   | 0   | 0   | 0   | 0        | 0,5  | 0   | 0   | 0   | 0   | 0   | 0       | 0,5  | 0   | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | Q15   | gruppo 3   |
| SLE-RAR-017 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 1   | 0   | 0   | 0   | 0         | 0        | 0        | 1   | 0   | 0   | 0   | 0   | 0        | 0    | 0,5 | 0   | 0   | 0   | 0   | 0       | 0    | 0,5 | 0   | 0   | 0                                               | 0              | 0      | 0          | 0     | Q16   | gruppo 3   |
| SLE-RAR-018 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,5 | 0   | 0   | 0         | 0        | 0        | 0   | 1   | 0   | 0   | 0   | 0        | 0    | 0   | 0,5 | 0   | 0   | 0   | 0       | 0    | 0   | 0,5 | 0   | 0                                               | 0              | 0      | 0          | 0     | Q27   | gruppo 3-2 |
| SLE-RAR-019 | 1  | 1      | 1     | 1   | 0   | 0      | 0          | 0         | 0   | 0   | 0,5 | 0   | 0         | 0        | 0        | 0   | 0   | 1   | 0   | 0   | 0        | 0    | 0   | 0   | 1   | 0   | 0   | 0       | 0    | 0   | 0   | 0,6 | 0                                               | 0              | 0      | 0          | 0     | Q11   | gruppo 1   |
| SLE-RAR-020 | 1  | 1      | 1     | 0   | 1   | 0      | 0          | 0         | 0   | 0   | 0   | 0,5 | 0         | 0        | 0        | 0   | 0   | 0   | 1   | 0   | 0        | 0    | 0   | 0   | 0   | 1   | 0   | 0       | 0    | 0   | 0   | 0,6 | 0                                               | 0              | 0      | 0          | 0     | Q12   | gruppo 1   |
| SLE-RAR-021 | 1  | 1      | 1     | 0   | 0   | 1      | 0          | 0         | 0   | 0   | 0   | 0   | 0,5       | 0        | 0        | 0   | 0   | 0   | 0   | 1   | 0        | 0    | 0   | 0   | 0   | 0   | 1   | 0       | 0    | 0   | 0   | 0,6 | 0                                               | 0              | 0      | 0          | 0     | Q13   | gruppo 1   |
| SLE-RAR-022 | 1  | 1      | 1     | 0   | 0   | 0      | 1          | 0         | 0   | 0   | 0   | 0   | 0         | 0,5      | 0        | 0   | 0   | 0   | 0   | 0   | 1        | 0    | 0   | 0   | 0   | 0   | 0   | 1       | 0    | 0   | 0   | 0,6 | 0                                               | 0              | 0      | 0          | 0     | Q14   | gruppo 1   |
| SLE-RAR-023 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 1         | 0   | 0   | 0   | 0   | 0         | 0        | 0,5      | 0   | 0   | 0   | 0   | 0   | 0        | 1    | 0   | 0   | 0   | 0   | 0   | 0       | 1    | 0   | 0   | 0,6 | 0                                               | 0              | 0      | 0          | 0     | Q15   | gruppo 1   |
| SLE-RAR-024 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 1   | 0   | 0   | 0   | 0         | 0        | 0        | 0,5 | 0   | 0   | 0   | 0   | 0        | 0    | 1   | 0   | 0   | 0   | 0   | 0       | 0    | 1   | 0   | 0,6 | 0                                               | 0              | 0      | 0          | 0     | Q16   | gruppo 1   |
| SLE-RAR-025 | 1  | 1      | 1     | 1   | 0   | 0      | 0          | 0         | 0   | 0   | 1   | 0   | 0         | 0        | 0        | 0   | 0   | 0,5 | 0   | 0   | 0        | 0    | 0   | 0   | 0,5 | 0   | 0   | 0       | 0    | 0   | 0   | 0,6 | 0                                               | 0              | 0      | 0          | 0     | Q11   | gruppo 3   |

| NOME COMB.  | G- | Permar | nenti |     |     | Q1 - V | ariabili v | rerticali |     |     |     | Q2  | ! - Avvia | amento e | e frenat | ura |     |     |     | Q3  | - Centri | fuga |     |     |     |     | Q4  | - Serpe | ggio |     |     | Q6 - A | - Varia<br>Azioni i<br>7 - Effe<br>nterazio | nterne<br>etti | E - Az | zioni sisr | miche | Dŧ  | escrizione |
|-------------|----|--------|-------|-----|-----|--------|------------|-----------|-----|-----|-----|-----|-----------|----------|----------|-----|-----|-----|-----|-----|----------|------|-----|-----|-----|-----|-----|---------|------|-----|-----|--------|---------------------------------------------|----------------|--------|------------|-------|-----|------------|
|             | G1 | G21    | G22   | Q11 | Q12 | Q13    | Q14        | Q15       | Q16 | Q17 | Q21 | Q22 | Q23       | Q24      | Q25      | Q26 | Q27 | Q31 | Q32 | Q33 | Q34      | Q35  | Q36 | Q37 | Q41 | Q42 | Q43 | Q44     | Q45  | Q46 | Q47 | Q51    | Q61                                         | Q71            | E1     | E2         | E3    |     |            |
| SLE-RAR-026 | 1  | 1      | 1     | 0   | 1   | 0      | 0          | 0         | 0   | 0   | 0   | 1   | 0         | 0        | 0        | 0   | 0   | 0   | 0,5 | 0   | 0        | 0    | 0   | 0   | 0   | 0,5 | 0   | 0       | 0    | 0   | 0   | 0,6    | 0                                           | 0              | 0      | 0          | 0     | Q12 | gruppo 3   |
| SLE-RAR-027 | 1  | 1      | 1     | 0   | 0   | 1      | 0          | 0         | 0   | 0   | 0   | 0   | 1         | 0        | 0        | 0   | 0   | 0   | 0   | 0,5 | 0        | 0    | 0   | 0   | 0   | 0   | 0,5 | 0       | 0    | 0   | 0   | 0,6    | 0                                           | 0              | 0      | 0          | 0     | Q13 | gruppo 3   |
| SLE-RAR-028 | 1  | 1      | 1     | 0   | 0   | 0      | 1          | 0         | 0   | 0   | 0   | 0   | 0         | 1        | 0        | 0   | 0   | 0   | 0   | 0   | 0,5      | 0    | 0   | 0   | 0   | 0   | 0   | 0,5     | 0    | 0   | 0   | 0,6    | 0                                           | 0              | 0      | 0          | 0     | Q14 | gruppo 3   |
| SLE-RAR-029 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 1         | 0   | 0   | 0   | 0   | 0         | 0        | 1        | 0   | 0   | 0   | 0   | 0   | 0        | 0,5  | 0   | 0   | 0   | 0   | 0   | 0       | 0,5  | 0   | 0   | 0,6    | 0                                           | 0              | 0      | 0          | 0     | Q15 | gruppo 3   |
| SLE-RAR-030 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 1   | 0   | 0   | 0   | 0         | 0        | 0        | 1   | 0   | 0   | 0   | 0   | 0        | 0    | 0,5 | 0   | 0   | 0   | 0   | 0       | 0    | 0,5 | 0   | 0,6    | 0                                           | 0              | 0      | 0          | 0     | Q16 | gruppo 3   |
| SLE-RAR-031 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,5 | 0   | 0   | 0         | 0        | 0        | 0   | 1   | 0   | 0   | 0   | 0        | 0    | 0   | 0,5 | 0   | 0   | 0   | 0       | 0    | 0   | 0,5 | 0,6    | 0                                           | 0              | 0      | 0          | 0     | Q27 | gruppo 3-2 |
| SLE-RAR-032 | 1  | 1      | 1     | 1   | 0   | 0      | 0          | 0         | 0   | 0   | 0,5 | 0   | 0         | 0        | 0        | 0   | 0   | 1   | 0   | 0   | 0        | 0    | 0   | 0   | 1   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 1                                           | 0              | 0      | 0          | 0     | Q11 | gruppo 1   |
| SLE-RAR-033 | 1  | 1      | 1     | 0   | 1   | 0      | 0          | 0         | 0   | 0   | 0   | 0,5 | 0         | 0        | 0        | 0   | 0   | 0   | 1   | 0   | 0        | 0    | 0   | 0   | 0   | 1   | 0   | 0       | 0    | 0   | 0   | 0      | 1                                           | 0              | 0      | 0          | 0     | Q12 | gruppo 1   |
| SLE-RAR-034 | 1  | 1      | 1     | 0   | 0   | 1      | 0          | 0         | 0   | 0   | 0   | 0   | 0,5       | 0        | 0        | 0   | 0   | 0   | 0   | 1   | 0        | 0    | 0   | 0   | 0   | 0   | 1   | 0       | 0    | 0   | 0   | 0      | 1                                           | 0              | 0      | 0          | 0     | Q13 | gruppo 1   |
| SLE-RAR-035 | 1  | 1      | 1     | 0   | 0   | 0      | 1          | 0         | 0   | 0   | 0   | 0   | 0         | 0,5      | 0        | 0   | 0   | 0   | 0   | 0   | 1        | 0    | 0   | 0   | 0   | 0   | 0   | 1       | 0    | 0   | 0   | 0      | 1                                           | 0              | 0      | 0          | 0     | Q14 | gruppo 1   |
| SLE-RAR-036 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 1         | 0   | 0   | 0   | 0   | 0         | 0        | 0,5      | 0   | 0   | 0   | 0   | 0   | 0        | 1    | 0   | 0   | 0   | 0   | 0   | 0       | 1    | 0   | 0   | 0      | 1                                           | 0              | 0      | 0          | 0     | Q15 | gruppo 1   |
| SLE-RAR-037 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 1   | 0   | 0   | 0   | 0         | 0        | 0        | 0,5 | 0   | 0   | 0   | 0   | 0        | 0    | 1   | 0   | 0   | 0   | 0   | 0       | 0    | 1   | 0   | 0      | 1                                           | 0              | 0      | 0          | 0     | Q16 | gruppo 1   |
| SLE-RAR-038 | 1  | 1      | 1     | 1   | 0   | 0      | 0          | 0         | 0   | 0   | 1   | 0   | 0         | 0        | 0        | 0   | 0   | 0,5 | 0   | 0   | 0        | 0    | 0   | 0   | 0,5 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 1                                           | 0              | 0      | 0          | 0     | Q11 | gruppo 3   |
| SLE-RAR-039 | 1  | 1      | 1     | 0   | 1   | 0      | 0          | 0         | 0   | 0   | 0   | 1   | 0         | 0        | 0        | 0   | 0   | 0   | 0,5 | 0   | 0        | 0    | 0   | 0   | 0   | 0,5 | 0   | 0       | 0    | 0   | 0   | 0      | 1                                           | 0              | 0      | 0          | 0     | Q12 | gruppo 3   |
| SLE-RAR-040 | 1  | 1      | 1     | 0   | 0   | 1      | 0          | 0         | 0   | 0   | 0   | 0   | 1         | 0        | 0        | 0   | 0   | 0   | 0   | 0,5 | 0        | 0    | 0   | 0   | 0   | 0   | 0,5 | 0       | 0    | 0   | 0   | 0      | 1                                           | 0              | 0      | 0          | 0     | Q13 | gruppo 3   |
| SLE-RAR-041 | 1  | 1      | 1     | 0   | 0   | 0      | 1          | 0         | 0   | 0   | 0   | 0   | 0         | 1        | 0        | 0   | 0   | 0   | 0   | 0   | 0,5      | 0    | 0   | 0   | 0   | 0   | 0   | 0,5     | 0    | 0   | 0   | 0      | 1                                           | 0              | 0      | 0          | 0     | Q14 | gruppo 3   |
| SLE-RAR-042 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 1         | 0   | 0   | 0   | 0   | 0         | 0        | 1        | 0   | 0   | 0   | 0   | 0   | 0        | 0,5  | 0   | 0   | 0   | 0   | 0   | 0       | 0,5  | 0   | 0   | 0      | 1                                           | 0              | 0      | 0          | 0     | Q15 | gruppo 3   |
| SLE-RAR-043 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 1   | 0   | 0   | 0   | 0         | 0        | 0        | 1   | 0   | 0   | 0   | 0   | 0        | 0    | 0,5 | 0   | 0   | 0   | 0   | 0       | 0    | 0,5 | 0   | 0      | 1                                           | 0              | 0      | 0          | 0     | Q16 | gruppo 3   |
| SLE-RAR-044 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,5 | 0   | 0   | 0         | 0        | 0        | 0   | 1   | 0   | 0   | 0   | 0        | 0    | 0   | 0,5 | 0   | 0   | 0   | 0       | 0    | 0   | 0,5 | 0      | 1                                           | 0              | 0      | 0          | 0     | Q27 | gruppo 3-2 |
| SLE-RAR-045 | 1  | 1      | 1     | 1   | 0   | 0      | 0          | 0         | 0   | 0   | 0,5 | 0   | 0         | 0        | 0        | 0   | 0   | 1   | 0   | 0   | 0        | 0    | 0   | 0   | 1   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q11 | gruppo 1   |
| SLE-RAR-046 | 1  | 1      | 1     | 0   | 1   | 0      | 0          | 0         | 0   | 0   | 0   | 0,5 | 0         | 0        | 0        | 0   | 0   | 0   | 1   | 0   | 0        | 0    | 0   | 0   | 0   | 1   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q12 | gruppo 1   |
| SLE-RAR-047 | 1  | 1      | 1     | 0   | 0   | 1      | 0          | 0         | 0   | 0   | 0   | 0   | 0,5       | 0        | 0        | 0   | 0   | 0   | 0   | 1   | 0        | 0    | 0   | 0   | 0   | 0   | 1   | 0       | 0    | 0   | 0   | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q13 | gruppo 1   |
| SLE-RAR-048 | 1  | 1      | 1     | 0   | 0   | 0      | 1          | 0         | 0   | 0   | 0   | 0   | 0         | 0,5      | 0        | 0   | 0   | 0   | 0   | 0   | 1        | 0    | 0   | 0   | 0   | 0   | 0   | 1       | 0    | 0   | 0   | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q14 | gruppo 1   |
| SLE-RAR-049 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 1         | 0   | 0   | 0   | 0   | 0         | 0        | 0,5      | 0   | 0   | 0   | 0   | 0   | 0        | 1    | 0   | 0   | 0   | 0   | 0   | 0       | 1    | 0   | 0   | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q15 | gruppo 1   |
| SLE-RAR-050 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 1   | 0   | 0   | 0   | 0         | 0        | 0        | 0,5 | 0   | 0   | 0   | 0   | 0        | 0    | 1   | 0   | 0   | 0   | 0   | 0       | 0    | 1   | 0   | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q16 | gruppo 1   |
| SLE-RAR-051 | 1  | 1      | 1     | 1   | 0   | 0      | 0          | 0         | 0   | 0   | 1   | 0   | 0         | 0        | 0        | 0   | 0   | 0,5 | 0   | 0   | 0        | 0    | 0   | 0   | 0,5 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q11 | gruppo 3   |
| SLE-RAR-052 | 1  | 1      | 1     | 0   | 1   | 0      | 0          | 0         | 0   | 0   | 0   | 1   | 0         | 0        | 0        | 0   | 0   | 0   | 0,5 | 0   | 0        | 0    | 0   | 0   | 0   | 0,5 | 0   | 0       | 0    | 0   | 0   | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q12 | gruppo 3   |
| SLE-RAR-053 | 1  | 1      | 1     | 0   | 0   | 1      | 0          | 0         | 0   | 0   | 0   | 0   | 1         | 0        | 0        | 0   | 0   | 0   | 0   | 0,5 | 0        | 0    | 0   | 0   | 0   | 0   | 0,5 | 0       | 0    | 0   | 0   | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q13 | gruppo 3   |
| SLE-RAR-054 | 1  | 1      | 1     | 0   | 0   | 0      | 1          | 0         | 0   | 0   | 0   | 0   | 0         | 1        | 0        | 0   | 0   | 0   | 0   | 0   | 0,5      | 0    | 0   | 0   | 0   | 0   | 0   | 0,5     | 0    | 0   | 0   | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q14 | gruppo 3   |
| SLE-RAR-055 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 1         | 0   | 0   | 0   | 0   | 0         | 0        | 1        | 0   | 0   | 0   | 0   | 0   | 0        | 0,5  | 0   | 0   | 0   | 0   | 0   | 0       | 0,5  | 0   | 0   | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q15 | gruppo 3   |
| SLE-RAR-056 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 1   | 0   | 0   | 0   | 0         | 0        | 0        | 1   | 0   | 0   | 0   | 0   | 0        | 0    | 0,5 | 0   | 0   | 0   | 0   | 0       | 0    | 0,5 | 0   | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q16 | gruppo 3   |
| SLE-RAR-057 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,5 | 0   | 0   | 0         | 0        | 0        | 0   | 1   | 0   | 0   | 0   | 0        | 0    | 0   | 0,5 | 0   | 0   | 0   | 0       | 0    | 0   | 0,5 | 0      | 0                                           | 0,6            | 0      | 0          | 0     | Q27 | gruppo 3-2 |
| SLE-RAR-058 | 1  | 1      | 1     | 1   | 0   | 0      | 0          | 0         | 0   | 0   | 0,5 | 0   | 0         | 0        | 0        | 0   | 0   | 1   | 0   | 0   | 0        | 0    | 0   | 0   | 1   | 0   | 0   | 0       | 0    | 0   | 0   | 0,6    | 1                                           | 0,6            | 0      | 0          | 0     | Q11 | gruppo 1   |
| SLE-RAR-059 | 1  | 1      | 1     | 0   | 1   | 0      | 0          | 0         | 0   | 0   | 0   | 0,5 | 0         | 0        | 0        | 0   | 0   | 0   | 1   | 0   | 0        | 0    | 0   | 0   | 0   | 1   | 0   | 0       | 0    | 0   | 0   | 0,6    | 1                                           | 0,6            | 0      | 0          | 0     | Q12 | gruppo 1   |
| SLE-RAR-060 | 1  | 1      | 1     | 0   | 0   | 1      | 0          | 0         | 0   | 0   | 0   | 0   | 0,5       | 0        | 0        | 0   | 0   | 0   | 0   | 1   | 0        | 0    | 0   | 0   | 0   | 0   | 1   | 0       | 0    | 0   | 0   | 0,6    | 1                                           | 0,6            | 0      | 0          | 0     | Q13 | gruppo 1   |
| SLE-RAR-061 | 1  | 1      | 1     | 0   | 0   | 0      | 1          | 0         | 0   | 0   | 0   | 0   | 0         | 0,5      | 0        | 0   | 0   | 0   | 0   | 0   | 1        | 0    | 0   | 0   | 0   | 0   | 0   | 1       | 0    | 0   | 0   | 0,6    | 1                                           | 0,6            | 0      | 0          | 0     | Q14 | gruppo 1   |
| SLE-RAR-062 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 1         | 0   | 0   | 0   | 0   | 0         | 0        | 0,5      | 0   | 0   | 0   | 0   | 0   | 0        | 1    | 0   | 0   | 0   | 0   | 0   | 0       | 1    | 0   | 0   | 0,6    | 1                                           | 0,6            | 0      | 0          | 0     | Q15 | gruppo 1   |

| NOME COMB.  | G- | Permar | nenti |     |     | Q1 - V | ariabili v | rerticali |     |     |     | Q2  | ! - Avvia | ımento e | e frenat | ura |     |     |     | Q3  | - Centri | fuga |     |     |     |     | Q4  | - Serpe | ggio |     |     | Q6 - A | - Varia<br>Azioni ii<br>7 - Effe<br>nterazio | nterne<br>tti | E - Az | rioni sisr | miche | D   | escrizione |
|-------------|----|--------|-------|-----|-----|--------|------------|-----------|-----|-----|-----|-----|-----------|----------|----------|-----|-----|-----|-----|-----|----------|------|-----|-----|-----|-----|-----|---------|------|-----|-----|--------|----------------------------------------------|---------------|--------|------------|-------|-----|------------|
|             | G1 | G21    | G22   | Q11 | Q12 | Q13    | Q14        | Q15       | Q16 | Q17 | Q21 | Q22 | Q23       | Q24      | Q25      | Q26 | Q27 | Q31 | Q32 | Q33 | Q34      | Q35  | Q36 | Q37 | Q41 | Q42 | Q43 | Q44     | Q45  | Q46 | Q47 | Q51    | Q61                                          | Q71           | E1     | E2         | E3    |     |            |
| SLE-RAR-063 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 1   | 0   | 0   | 0   | 0         | 0        | 0        | 0,5 | 0   | 0   | 0   | 0   | 0        | 0    | 1   | 0   | 0   | 0   | 0   | 0       | 0    | 1   | 0   | 0,6    | 1                                            | 0,6           | 0      | 0          | 0     | Q16 | gruppo 1   |
| SLE-RAR-064 | 1  | 1      | 1     | 1   | 0   | 0      | 0          | 0         | 0   | 0   | 1   | 0   | 0         | 0        | 0        | 0   | 0   | 0,5 | 0   | 0   | 0        | 0    | 0   | 0   | 0,5 | 0   | 0   | 0       | 0    | 0   | 0   | 0,6    | 1                                            | 0,6           | 0      | 0          | 0     | Q11 | gruppo 3   |
| SLE-RAR-065 | 1  | 1      | 1     | 0   | 1   | 0      | 0          | 0         | 0   | 0   | 0   | 1   | 0         | 0        | 0        | 0   | 0   | 0   | 0,5 | 0   | 0        | 0    | 0   | 0   | 0   | 0,5 | 0   | 0       | 0    | 0   | 0   | 0,6    | 1                                            | 0,6           | 0      | 0          | 0     | Q12 | gruppo 3   |
| SLE-RAR-066 | 1  | 1      | 1     | 0   | 0   | 1      | 0          | 0         | 0   | 0   | 0   | 0   | 1         | 0        | 0        | 0   | 0   | 0   | 0   | 0,5 | 0        | 0    | 0   | 0   | 0   | 0   | 0,5 | 0       | 0    | 0   | 0   | 0,6    | 1                                            | 0,6           | 0      | 0          | 0     | Q13 | gruppo 3   |
| SLE-RAR-067 | 1  | 1      | 1     | 0   | 0   | 0      | 1          | 0         | 0   | 0   | 0   | 0   | 0         | 1        | 0        | 0   | 0   | 0   | 0   | 0   | 0,5      | 0    | 0   | 0   | 0   | 0   | 0   | 0,5     | 0    | 0   | 0   | 0,6    | 1                                            | 0,6           | 0      | 0          | 0     | Q14 | gruppo 3   |
| SLE-RAR-068 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 1         | 0   | 0   | 0   | 0   | 0         | 0        | 1        | 0   | 0   | 0   | 0   | 0   | 0        | 0,5  | 0   | 0   | 0   | 0   | 0   | 0       | 0,5  | 0   | 0   | 0,6    | 1                                            | 0,6           | 0      | 0          | 0     | Q15 | gruppo 3   |
| SLE-RAR-069 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 1   | 0   | 0   | 0   | 0         | 0        | 0        | 1   | 0   | 0   | 0   | 0   | 0        | 0    | 0,5 | 0   | 0   | 0   | 0   | 0       | 0    | 0,5 | 0   | 0,6    | 1                                            | 0,6           | 0      | 0          | 0     | Q16 | gruppo 3   |
| SLE-RAR-070 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,5 | 0   | 0   | 0         | 0        | 0        | 0   | 1   | 0   | 0   | 0   | 0        | 0    | 0   | 0,5 | 0   | 0   | 0   | 0       | 0    | 0   | 0,5 | 0,6    | 1                                            | 0,6           | 0      | 0          | 0     | Q27 | gruppo 3-2 |
| SLE-RAR-071 | 1  | 1      | 1     | 0,6 | 0   | 0      | 0          | 0         | 0   | 0   | 0,6 | 0   | 0         | 0        | 0        | 0   | 0   | 0,6 | 0   | 0   | 0        | 0    | 0   | 0   | 0,6 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                            | 0             | 0      | 0          | 0     | Q11 | gruppo 4   |
| SLE-RAR-072 | 1  | 1      | 1     | 0   | 0,6 | 0      | 0          | 0         | 0   | 0   | 0   | 0,6 | 0         | 0        | 0        | 0   | 0   | 0   | 0,6 | 0   | 0        | 0    | 0   | 0   | 0   | 0,6 | 0   | 0       | 0    | 0   | 0   | 0      | 0                                            | 0             | 0      | 0          | 0     | Q12 | gruppo 4   |
| SLE-RAR-073 | 1  | 1      | 1     | 0   | 0   | 0,8    | 0          | 0         | 0   | 0   | 0   | 0   | 0,8       | 0        | 0        | 0   | 0   | 0   | 0   | 0,8 | 0        | 0    | 0   | 0   | 0   | 0   | 0,8 | 0       | 0    | 0   | 0   | 0      | 0                                            | 0             | 0      | 0          | 0     | Q13 | gruppo 4   |
| SLE-RAR-074 | 1  | 1      | 1     | 0   | 0   | 0      | 0,8        | 0         | 0   | 0   | 0   | 0   | 0         | 0,8      | 0        | 0   | 0   | 0   | 0   | 0   | 0,8      | 0    | 0   | 0   | 0   | 0   | 0   | 0,8     | 0    | 0   | 0   | 0      | 0                                            | 0             | 0      | 0          | 0     | Q14 | gruppo 4   |
| SLE-RAR-075 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,6       | 0   | 0   | 0   | 0   | 0         | 0        | 0,6      | 0   | 0   | 0   | 0   | 0   | 0        | 0,6  | 0   | 0   | 0   | 0   | 0   | 0       | 0,6  | 0   | 0   | 0      | 0                                            | 0             | 0      | 0          | 0     | Q15 | gruppo 4   |
| SLE-RAR-076 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,6 | 0   | 0   | 0   | 0         | 0        | 0        | 0,6 | 0   | 0   | 0   | 0   | 0        | 0    | 0,6 | 0   | 0   | 0   | 0   | 0       | 0    | 0,6 | 0   | 0      | 0                                            | 0             | 0      | 0          | 0     | Q16 | gruppo 4   |
| SLE-RAR-077 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,6 | 0   | 0   | 0         | 0        | 0        | 0   | 0,6 | 0   | 0   | 0   | 0        | 0    | 0   | 0,6 | 0   | 0   | 0   | 0       | 0    | 0   | 0,6 | 0      | 0                                            | 0             | 0      | 0          | 0     | Q17 | gruppo 4   |
| SLE-RAR-078 | 1  | 1      | 1     | 0,6 | 0   | 0      | 0          | 0         | 0   | 0   | 0,6 | 0   | 0         | 0        | 0        | 0   | 0   | 0,6 | 0   | 0   | 0        | 0    | 0   | 0   | 0,6 | 0   | 0   | 0       | 0    | 0   | 0   | 0,6    | 0                                            | 0             | 0      | 0          | 0     | Q11 | gruppo 4   |
| SLE-RAR-079 | 1  | 1      | 1     | 0   | 0,6 | 0      | 0          | 0         | 0   | 0   | 0   | 0,6 | 0         | 0        | 0        | 0   | 0   | 0   | 0,6 | 0   | 0        | 0    | 0   | 0   | 0   | 0,6 | 0   | 0       | 0    | 0   | 0   | 0,6    | 0                                            | 0             | 0      | 0          | 0     | Q12 | gruppo 4   |
| SLE-RAR-080 | 1  | 1      | 1     | 0   | 0   | 0,8    | 0          | 0         | 0   | 0   | 0   | 0   | 0,8       | 0        | 0        | 0   | 0   | 0   | 0   | 0,8 | 0        | 0    | 0   | 0   | 0   | 0   | 0,8 | 0       | 0    | 0   | 0   | 0,6    | 0                                            | 0             | 0      | 0          | 0     | Q13 | gruppo 4   |
| SLE-RAR-081 | 1  | 1      | 1     | 0   | 0   | 0      | 0,8        | 0         | 0   | 0   | 0   | 0   | 0         | 0,8      | 0        | 0   | 0   | 0   | 0   | 0   | 0,8      | 0    | 0   | 0   | 0   | 0   | 0   | 0,8     | 0    | 0   | 0   | 0,6    | 0                                            | 0             | 0      | 0          | 0     | Q14 | gruppo 4   |
| SLE-RAR-082 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,6       | 0   | 0   | 0   | 0   | 0         | 0        | 0,6      | 0   | 0   | 0   | 0   | 0   | 0        | 0,6  | 0   | 0   | 0   | 0   | 0   | 0       | 0,6  | 0   | 0   | 0,6    | 0                                            | 0             | 0      | 0          | 0     | Q15 | gruppo 4   |
| SLE-RAR-083 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,6 | 0   | 0   | 0   | 0         | 0        | 0        | 0,6 | 0   | 0   | 0   | 0   | 0        | 0    | 0,6 | 0   | 0   | 0   | 0   | 0       | 0    | 0,6 | 0   | 0,6    | 0                                            | 0             | 0      | 0          | 0     | Q16 | gruppo 4   |
| SLE-RAR-084 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,6 | 0   | 0   | 0         | 0        | 0        | 0   | 0,6 | 0   | 0   | 0   | 0        | 0    | 0   | 0,6 | 0   | 0   | 0   | 0       | 0    | 0   | 0,6 | 0,6    | 0                                            | 0             | 0      | 0          | 0     | Q17 | gruppo 4   |
| SLE-RAR-085 | 1  | 1      | 1     | 0,6 | 0   | 0      | 0          | 0         | 0   | 0   | 0,6 | 0   | 0         | 0        | 0        | 0   | 0   | 0,6 | 0   | 0   | 0        | 0    | 0   | 0   | 0,6 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 1                                            | 0             | 0      | 0          | 0     | Q61 | gruppo 4   |
| SLE-RAR-086 | 1  | 1      | 1     | 0   | 0,6 | 0      | 0          | 0         | 0   | 0   | 0   | 0,6 | 0         | 0        | 0        | 0   | 0   | 0   | 0,6 | 0   | 0        | 0    | 0   | 0   | 0   | 0,6 | 0   | 0       | 0    | 0   | 0   | 0      | 1                                            | 0             | 0      | 0          | 0     | Q61 | gruppo 4   |
| SLE-RAR-087 | 1  | 1      | 1     | 0   | 0   | 0,8    | 0          | 0         | 0   | 0   | 0   | 0   | 0,8       | 0        | 0        | 0   | 0   | 0   | 0   | 0,8 | 0        | 0    | 0   | 0   | 0   | 0   | 0,8 | 0       | 0    | 0   | 0   | 0      | 1                                            | 0             | 0      | 0          | 0     | Q61 | gruppo 4   |
| SLE-RAR-088 | 1  | 1      | 1     | 0   | 0   | 0      | 0,8        | 0         | 0   | 0   | 0   | 0   | 0         | 0,8      | 0        | 0   | 0   | 0   | 0   | 0   | 0,8      | 0    | 0   | 0   | 0   | 0   | 0   | 0,8     | 0    | 0   | 0   | 0      | 1                                            | 0             | 0      | 0          | 0     | Q61 | gruppo 4   |
| SLE-RAR-089 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,6       | 0   | 0   | 0   | 0   | 0         | 0        | 0,6      | 0   | 0   | 0   | 0   | 0   | 0        | 0,6  | 0   | 0   | 0   | 0   | 0   | 0       | 0,6  | 0   | 0   | 0      | 1                                            | 0             | 0      | 0          | 0     | Q61 | gruppo 4   |
| SLE-RAR-090 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,6 | 0   | 0   | 0   | 0         | 0        | 0        | 0,6 | 0   | 0   | 0   | 0   | 0        | 0    | 0,6 | 0   | 0   | 0   | 0   | 0       | 0    | 0,6 | 0   | 0      | 1                                            | 0             | 0      | 0          | 0     | Q61 | gruppo 4   |
| SLE-RAR-091 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,6 | 0   | 0   | 0         | 0        | 0        | 0   | 0,6 | 0   | 0   | 0   | 0        | 0    | 0   | 0,6 | 0   | 0   | 0   | 0       | 0    | 0   | 0,6 | 0      | 1                                            | 0             | 0      | 0          | 0     | Q61 | gruppo 4   |
| SLE-RAR-092 | 1  | 1      | 1     | 0,6 | 0   | 0      | 0          | 0         | 0   | 0   | 0,6 | 0   | 0         | 0        | 0        | 0   | 0   | 0,6 | 0   | 0   | 0        | 0    | 0   | 0   | 0,6 | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                            | 0,6           | 0      | 0          | 0     | Q11 | gruppo 4   |
| SLE-RAR-093 | 1  | 1      | 1     | 0   | 0,6 | 0      | 0          | 0         | 0   | 0   | 0   | 0,6 | 0         | 0        | 0        | 0   | 0   | 0   | 0,6 | 0   | 0        | 0    | 0   | 0   | 0   | 0,6 | 0   | 0       | 0    | 0   | 0   | 0      | 0                                            | 0,6           | 0      | 0          | 0     | Q12 | gruppo 4   |
| SLE-RAR-094 | 1  | 1      | 1     | 0   | 0   | 0,8    | 0          | 0         | 0   | 0   | 0   | 0   | 0,8       | 0        | 0        | 0   | 0   | 0   | 0   | 0,8 | 0        | 0    | 0   | 0   | 0   | 0   | 0,8 | 0       | 0    | 0   | 0   | 0      | 0                                            | 0,6           | 0      | 0          | 0     | Q13 | gruppo 4   |
| SLE-RAR-095 | 1  | 1      | 1     | 0   | 0   | 0      | 0,8        | 0         | 0   | 0   | 0   | 0   | 0         | 0,8      | 0        | 0   | 0   | 0   | 0   | 0   | 0,8      | 0    | 0   | 0   | 0   | 0   | 0   | 0,8     | 0    | 0   | 0   | 0      | 0                                            | 0,6           | 0      | 0          | 0     | Q14 | gruppo 4   |
| SLE-RAR-096 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0,6       | 0   | 0   | 0   | 0   | 0         | 0        | 0,6      | 0   | 0   | 0   | 0   | 0   | 0        | 0,6  | 0   | 0   | 0   | 0   | 0   | 0       | 0,6  | 0   | 0   | 0      | 0                                            | 0,6           | 0      | 0          | 0     | Q15 | gruppo 4   |
| SLE-RAR-097 | 1  | 1      | 1     | 0   | 0   | 0      | 0          | 0         | 0,6 | 0   | 0   | 0   | 0         | 0        | 0        | 0,6 | 0   | 0   | 0   | 0   | 0        | 0    | 0,6 | 0   | 0   | 0   | 0   | 0       | 0    | 0,6 | 0   | 0      | 0                                            | 0,6           | 0      | 0          | 0     | Q16 | gruppo 4   |
| SLE-RAR-098 | 1  | 1      | 0     | 0   | 0   | 0      | 0          | 0         | 0   | 0,6 | 0   | 0   | 0         | 0        | 0        | 0   | 0,6 | 0   | 0   | 0   | 0        | 0    | 0   | 0,6 | 0   | 0   | 0   | 0       | 0    | 0   | 0,6 | 0      | 0                                            | 0,6           | 0      | 0          | 0     | Q17 | gruppo 4   |
| SLE-RAR-099 | 1  | 1      | 1     | 0,6 | 0   | 0      | 0          | 0         | 0   | 0   | 0,6 | 0   | 0         | 0        | 0        | 0   | 0   | 0,6 | 0   | 0   | 0        | 0    | 0   | 0   | 0,6 | 0   | 0   | 0       | 0    | 0   | 0   | 0,6    | 1                                            | 0,6           | 0      | 0          | 0     | Q61 | gruppo 4   |

| NOME COMB.  | G - | Perma | nenti |     |     | Q1 - \ | /ariabili | verticali |     |     |     | Q   | 2 - Avvi | amento | e frena | tura |     |     |     | Q3  | - Centri | fuga |     |     |     |     | Q4  | - Serpe | ggio |     |     | Q6 - / | 5 - Varia<br>Azioni i<br>17 - Effe<br>nterazio | nterne<br>etti | E - Az | zioni sis | miche |       | escrizione |
|-------------|-----|-------|-------|-----|-----|--------|-----------|-----------|-----|-----|-----|-----|----------|--------|---------|------|-----|-----|-----|-----|----------|------|-----|-----|-----|-----|-----|---------|------|-----|-----|--------|------------------------------------------------|----------------|--------|-----------|-------|-------|------------|
|             | G1  | G21   | G22   | Q11 | Q12 | Q13    | Q14       | Q15       | Q16 | Q17 | Q21 | Q22 | Q23      | Q24    | Q25     | Q26  | Q27 | Q31 | Q32 | Q33 | Q34      | Q35  | Q36 | Q37 | Q41 | Q42 | Q43 | Q44     | Q45  | Q46 | Q47 | Q51    | Q61                                            | Q71            | E1     | E2        | E3    |       |            |
| SLE-RAR-100 | 1   | 1     | 1     | 0   | 0,6 | 0      | 0         | 0         | 0   | 0   | 0   | 0,6 | 0        | 0      | 0       | 0    | 0   | 0   | 0,6 | 0   | 0        | 0    | 0   | 0   | 0   | 0,6 | 0   | 0       | 0    | 0   | 0   | 0,6    | 1                                              | 0,6            | 0      | 0         | 0     | Q61   | gruppo 4   |
| SLE-RAR-101 | 1   | 1     | 1     | 0   | 0   | 0,8    | 0         | 0         | 0   | 0   | 0   | 0   | 0,8      | 0      | 0       | 0    | 0   | 0   | 0   | 0,8 | 0        | 0    | 0   | 0   | 0   | 0   | 0,8 | 0       | 0    | 0   | 0   | 0,6    | 1                                              | 0,6            | 0      | 0         | 0     | Q61   | gruppo 4   |
| SLE-RAR-102 | 1   | 1     | 1     | 0   | 0   | 0      | 0,8       | 0         | 0   | 0   | 0   | 0   | 0        | 0,8    | 0       | 0    | 0   | 0   | 0   | 0   | 0,8      | 0    | 0   | 0   | 0   | 0   | 0   | 0,8     | 0    | 0   | 0   | 0,6    | 1                                              | 0,6            | 0      | 0         | 0     | Q61   | gruppo 4   |
| SLE-RAR-103 | 1   | 1     | 1     | 0   | 0   | 0      | 0         | 0,6       | 0   | 0   | 0   | 0   | 0        | 0      | 0,6     | 0    | 0   | 0   | 0   | 0   | 0        | 0,6  | 0   | 0   | 0   | 0   | 0   | 0       | 0,6  | 0   | 0   | 0,6    | 1                                              | 0,6            | 0      | 0         | 0     | Q61   | gruppo 4   |
| SLE-RAR-104 | 1   | 1     | 1     | 0   | 0   | 0      | 0         | 0         | 0,6 | 0   | 0   | 0   | 0        | 0      | 0       | 0,6  | 0   | 0   | 0   | 0   | 0        | 0    | 0,6 | 0   | 0   | 0   | 0   | 0       | 0    | 0,6 | 0   | 0,6    | 1                                              | 0,6            | 0      | 0         | 0     | Q61   | gruppo 4   |
| SLE-RAR-105 | 1   | 1     | 0     | 0   | 0   | 0      | 0         | 0         | 0   | 0,6 | 0   | 0   | 0        | 0      | 0       | 0    | 0,6 | 0   | 0   | 0   | 0        | 0    | 0   | 0,6 | 0   | 0   | 0   | 0       | 0    | 0   | 0,6 | 0,6    | 1                                              | 0,6            | 0      | 0         | 0     | Q61   | gruppo 4   |
|             |     |       |       |     |     |        |           |           |     |     |     |     |          |        |         |      |     |     |     |     |          |      |     |     |     |     |     |         |      |     |     |        |                                                |                |        |           |       |       |            |
| SLE-QPE-001 | 1   | 1     | 1     | 0   | 0   | 0      | 0         | 0         | 0   | 0   | 0   | 0   | 0        | 0      | 0       | 0    | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 0                                              | 0              | 0      | 0         | 0     | G1+G2 | solo perm  |
| SLE-QPE-002 | 1   | 1     | 1     | 0   | 0   | 0      | 0         | 0         | 0   | 0   | 0   | 0   | 0        | 0      | 0       | 0    | 0   | 0   | 0   | 0   | 0        | 0    | 0   | 0   | 0   | 0   | 0   | 0       | 0    | 0   | 0   | 0      | 1                                              | 1              | 0      | 0         | 0     | Q61   | termica    |

# ALLEGATO 2 VI06 – PILE 20-21-22-23, 30, 41 e 42

# 1 SOLLECITAZIONI ELEMENTARI A BASE PILA

| C.C.E. | Descrizione                      | F1        | F2        | F3        | M1        | M2        | М3        |
|--------|----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
|        |                                  | kN        | kN        | kN        | kNm       | kNm       | kNm       |
| G1     | Pesi propri                      | 0         | 0         | -9030.875 | 0         | 0         | 0         |
| G2     | Ballast                          | 0         | 0         | -3500     | 0         | 0         | 0         |
| G2     | Permanenti non strutturali       | 0         | 0         | -1548     | 0         | 0         | 0         |
| Q11    | Disposizione 1 (massimizza N)    | 0         | 0         | -5692     | -684      | 66        | 0         |
| Q12    | Disposizione 2 (massimizza M2)   | 0         | 0         | -3559     | -518      | 3914.9    | 0         |
| Q13    | Disposizione 3 (massimizza M1)   | 0         | 0         | -2962     | -5925     | 66        | 0         |
| Q14    | Disposizione 4 (massimizza M1)   | 0         | 0         | -2730     | -5678     | 0         | 0         |
| Q15    | Disposizione 5 (massimizza N+M2) | 0         | 0         | -5524     | -789      | 1753.4    | 0         |
| Q16    | Disposizione 6 (massimizza N)    | 0         | 0         | -5460     | -218      | 0         | 0         |
| Q17    | Disposizione 7 (minimizza N)     | 0         | 0         | -2977     | -1634     | 3274.7    | 0         |
| Q21    | Disposizione 1 (massimizza N)    | 1835      | 0         | 0         | 0         | 11927.5   | 0         |
| Q22    | Disposizione 2 (massimizza M2)   | 2154      | 0         | 0         | 0         | 14001     | 0         |
| Q23    | Disposizione 3 (massimizza M1)   | 819       | 0         | 0         | 0         | 5323.5    | 0         |
| Q24    | Disposizione 4 (massimizza M1)   | 1016      | 0         | 0         | 0         | 6604      | 0         |
| Q25    | Disposizione 5 (massimizza N+M2) | 2154      | 0         | 0         | 0         | 14001     | 0         |
| Q26    | Disposizione 6 (massimizza N)    | 1995      | 0         | 0         | 0         | 12967.5   | 0         |
| Q27    | Disposizione 7 (minimizza N)     | 2154      | 0         | 0         | 0         | 14001     | 0         |
| Q31    | Disposizione 1 (massimizza N)    | 0         | 473       | 0         | -5476.5   | 0         | 3.3       |
| Q32    | Disposizione 2 (massimizza M2)   | 0         | 294       | 0         | -3405     | 0         | 323.4     |
| Q33    | Disposizione 3 (massimizza M1)   | 0         | 155       | 0         | -1797.5   | 0         | 3.3       |
| Q34    | Disposizione 4 (massimizza M1)   | 0         | 318       | 0         | -3679     | 0         | 0         |
| Q35    | Disposizione 5 (massimizza N+M2) | 0         | 463       | 0         | -5360.5   | 0         | 137.5     |
| Q36    | Disposizione 6 (massimizza N)    | 0         | 460       | 0         | -5330     | 0         | 0         |
| Q37    | Disposizione 7 (minimizza N)     | 0         | 226       | 0         | -2620     | 0         | 248.6     |
| Q41    | Disposizione 1 (massimizza N)    | 0         | 210       | 0         | -2053     | 0         | 0         |
| Q42    | Disposizione 2 (massimizza M2)   | 0         | 210       | 0         | -2054     | 0         | 231       |
| Q43    | Disposizione 3 (massimizza M1)   | 0         | 100       | 0         | -978      | 0         | 0         |
| Q44    | Disposizione 4 (massimizza M1)   | 0         | 110       | 0         | -1075     | 0         | 0         |
| Q45    | Disposizione 5 (massimizza N+M2) | 0         | 210       | 0         | -2053     | 0         | 0         |
| Q46    | Disposizione 6 (massimizza N)    | 0         | 210       | 0         | -2053     | 0         | 0         |
| Q47    | Disposizione 7 (minimizza N)     | 0         | 210       | 0         | -2054     | 0         | 231       |
| Q51    | Vento                            | 0         | 826.5     | 0         | -9728.625 | 0         | 0         |
| Q61    | Attrito su vincoli               | 283       | 0         | 0         | 0         | 1839.5    | 0         |
| Q71    | Variazioni termiche              | 280       | 0         | 0         | 0         | 1820      | 0         |
| E1     | Sisma x                          | 5055.2324 | 0         | 0         | 0         | 32859.01  | -2077.7   |
| E2     | Sisma y                          | 0         | 4335.6794 | 0         | -37200.13 | 0         | 3251.7595 |
| E3     | Sisma z                          | 0         | 0         | -4582.525 | -1586.591 | 2895.2398 | 0         |
|        |                                  |           |           |           |           |           |           |

# 2 SPOSTAMENTI ELEMENTARI IN TESTA PILA

| C.C.E. | Descrizione                      | d1,1  | d2,1  | d3,1   | φ1,1          | φ2,1         | φ3,1          |
|--------|----------------------------------|-------|-------|--------|---------------|--------------|---------------|
|        |                                  | mm    | mm    | mm     | 1 <b>/</b> mm | 1 <b>/mm</b> | 1 <b>/</b> mm |
| G1     | Pesi propri                      | 0.000 | 0.000 | -0.165 | 0.000         | 0.000        | 0.000         |
| G2     | Ballast                          | 0.000 | 0.000 | -0.064 | 0.000         | 0.000        | 0.000         |
| G2     | Permanenti non strutturali       | 0.000 | 0.000 | -0.028 | 0.000         | 0.000        | 0.000         |
| Q11    | Disposizione 1 (massimizza N)    | 0.000 | 0.000 | -0.104 | 0.000         | 0.000        | 0.000         |
| Q12    | Disposizione 2 (massimizza M2)   | 0.000 | 0.000 | -0.065 | 0.000         | 0.000        | 0.000         |
| Q13    | Disposizione 3 (massimizza M1)   | 0.000 | 0.000 | -0.054 | 0.000         | 0.000        | 0.000         |
| Q14    | Disposizione 4 (massimizza M1)   | 0.000 | 0.000 | -0.050 | 0.000         | 0.000        | 0.000         |
| Q15    | Disposizione 5 (massimizza N+M2) | 0.000 | 0.000 | -0.101 | 0.000         | 0.000        | 0.000         |
| Q16    | Disposizione 6 (massimizza N)    | 0.000 | 0.000 | -0.100 | 0.000         | 0.000        | 0.000         |
| Q17    | Disposizione 7 (minimizza N)     | 0.000 | 0.000 | -0.054 | 0.000         | 0.000        | 0.000         |
| Q21    | Disposizione 1 (massimizza N)    | 0.533 | 0.000 | 0.000  | 0.000         | 0.082        | 0.000         |
| Q22    | Disposizione 2 (massimizza M2)   | 0.625 | 0.000 | 0.000  | 0.000         | 0.096        | 0.000         |
| Q23    | Disposizione 3 (massimizza M1)   | 0.238 | 0.000 | 0.000  | 0.000         | 0.037        | 0.000         |
| Q24    | Disposizione 4 (massimizza M1)   | 0.295 | 0.000 | 0.000  | 0.000         | 0.045        | 0.000         |
| Q25    | Disposizione 5 (massimizza N+M2) | 0.625 | 0.000 | 0.000  | 0.000         | 0.096        | 0.000         |
| Q26    | Disposizione 6 (massimizza N)    | 0.579 | 0.000 | 0.000  | 0.000         | 0.089        | 0.000         |
| Q27    | Disposizione 7 (minimizza N)     | 0.625 | 0.000 | 0.000  | 0.000         | 0.096        | 0.000         |
| Q31    | Disposizione 1 (massimizza N)    | 0.000 | 0.042 | 0.000  | 0.007         | 0.000        | 0.000         |
| Q32    | Disposizione 2 (massimizza M2)   | 0.000 | 0.026 | 0.000  | 0.004         | 0.000        | 0.000         |
| Q33    | Disposizione 3 (massimizza M1)   | 0.000 | 0.014 | 0.000  | 0.002         | 0.000        | 0.000         |
| Q34    | Disposizione 4 (massimizza M1)   | 0.000 | 0.029 | 0.000  | 0.004         | 0.000        | 0.000         |
| Q35    | Disposizione 5 (massimizza N+M2) | 0.000 | 0.042 | 0.000  | 0.006         | 0.000        | 0.000         |
| Q36    | Disposizione 6 (massimizza N)    | 0.000 | 0.041 | 0.000  | 0.006         | 0.000        | 0.000         |
| Q37    | Disposizione 7 (minimizza N)     | 0.000 | 0.020 | 0.000  | 0.003         | 0.000        | 0.000         |
| Q41    | Disposizione 1 (massimizza N)    | 0.000 | 0.019 | 0.000  | 0.003         | 0.000        | 0.000         |
| Q42    | Disposizione 2 (massimizza M2)   | 0.000 | 0.019 | 0.000  | 0.003         | 0.000        | 0.000         |
| Q43    | Disposizione 3 (massimizza M1)   | 0.000 | 0.009 | 0.000  | 0.001         | 0.000        | 0.000         |
| Q44    | Disposizione 4 (massimizza M1)   | 0.000 | 0.010 | 0.000  | 0.002         | 0.000        | 0.000         |
| Q45    | Disposizione 5 (massimizza N+M2) | 0.000 | 0.019 | 0.000  | 0.003         | 0.000        | 0.000         |
| Q46    | Disposizione 6 (massimizza N)    | 0.000 | 0.019 | 0.000  | 0.003         | 0.000        | 0.000         |
| Q47    | Disposizione 7 (minimizza N)     | 0.000 | 0.019 | 0.000  | 0.003         | 0.000        | 0.000         |
| Q51    | Vento                            | 0.000 | 0.074 | 0.000  | 0.011         | 0.000        | 0.000         |
| Q61    | Attrito su vincoli               | 0.082 | 0.000 | 0.000  | 0.000         | 0.013        | 0.000         |
| Q71    | Variazioni termiche              | 0.081 | 0.000 | 0.000  | 0.000         | 0.013        | 0.000         |
| E1     | Sisma x                          | 4.647 | 0.000 | 0.000  | 0.000         | 0.715        | 0.000         |
| E2     | Sisma y                          | 0.000 | 1.361 | 0.000  | 0.209         | 0.000        | 0.000         |
| E3     | Sisma z                          | 0.000 | 0.000 | -0.084 | 0.000         | 0.000        | 0.000         |

#### 3 SOLLECITAZIONI COMBINATE A BASE PILA

Si riportano a seguire i valori delle sollecitazioni di calcolo combinate secondo i coefficienti di combinazione riportati nell'allegato 1 della presente relazione. I valori seguenti tengono conto degli effetti del secondo ordine indotti dagli spostamenti elementari.

Per ogni gruppo di combinazioni di carico considerato (SLU-STR SLU-GEO, SLV-SIS, SLE-RAR e SLE-QP), sono riportati a seguire i valori delle sollecitazioni corrispondenti alle combinazioni che massimizzano ognuna delle componenti di sollecitazione (F1, F2, F3, M1, M2 e M3).

- F1 Forza di taglio in direzione longitudinale [kN]
- F2 Forza di taglio i direzione trasversale [kN
- F3 Forza assiale verticale [kN
- M1 Momento flettente attorno all'asse 1 (trasversale)
- M2 Momento flettente attorno all'asse 2 (longitudinale)
- M3 Momento flettente attorno all'asse 3 (toocente)

| SLU-STR | max | Combo.      | F1   | F2   | F3     | M1     | M2    | М3  |
|---------|-----|-------------|------|------|--------|--------|-------|-----|
|         |     |             | kN   | kN   | kN     | kNm    | kNm   | kNm |
| max     | F1  | SLU-STR-065 | 3786 | 1112 | -24924 | -13494 | 30311 | 405 |
| max     | F2  | SLU-STR-019 | 1340 | 1734 | -28017 | -20670 | 8814  | 5   |
| max     | F3  | SLU-STR-004 | 507  | 1240 | -12531 | -14594 | 3295  | 0   |
| max     | M1  | SLU-STR-018 | 3123 | 318  | -14704 | -4605  | 22705 | 350 |
| max     | M2  | SLU-STR-065 | 3786 | 1112 | -24924 | -13494 | 30311 | 405 |
| max     | М3  | SLU-STR-007 | 1572 | 731  | -24924 | -8668  | 15909 | 804 |

| SLU-STR | min | Combo.      | F1   | F2   | F3     | M1     | M2   | М3  |
|---------|-----|-------------|------|------|--------|--------|------|-----|
|         |     |             | kN   | kN   | kN     | kNm    | kNm  | kNm |
| min     | F1  | SLU-STR-002 | 507  | 1240 | -19764 | -14595 | 3296 | 0   |
| min     | F2  | SLU-STR-014 | 1188 | 186  | -24059 | -10618 | 7823 | 2   |
| min     | F3  | SLU-STR-006 | 1340 | 990  | -28017 | -11912 | 8814 | 5   |
| min     | M1  | SLU-STR-022 | 742  | 1364 | -23722 | -23885 | 4826 | 0   |
| min     | M2  | SLU-STR-004 | 507  | 1240 | -12531 | -14594 | 3295 | 0   |
| min     | М3  | SLU-STR-002 | 507  | 1240 | -19764 | -14595 | 3296 | 0   |

| SLU-GEO | max | Combo.      | F1   | F2   | F3     | M1     | M2    | М3  |
|---------|-----|-------------|------|------|--------|--------|-------|-----|
|         |     |             | kN   | kN   | kN     | kNm    | kNm   | kNm |
| max     | F1  | SLU-GEO-065 | 3265 | 962  | -20042 | -11677 | 26133 | 349 |
| max     | F2  | SLU-GEO-019 | 1156 | 1498 | -22708 | -17858 | 7604  | 4   |
| max     | F3  | SLU-GEO-004 | 439  | 1074 | -12531 | -12648 | 2856  | 0   |
| max     | M1  | SLU-GEO-018 | 2693 | 275  | -14406 | -3974  | 19576 | 302 |
| max     | M2  | SLU-GEO-065 | 3265 | 962  | -20042 | -11677 | 26133 | 349 |
| max     | М3  | SLU-GEO-007 | 1357 | 630  | -20042 | -7472  | 13722 | 693 |

| SLU-GEO | min | Combo.      | F1   | F2   | F3     | M1     | M2   | М3  |
|---------|-----|-------------|------|------|--------|--------|------|-----|
|         |     |             | kN   | kN   | kN     | kNm    | kNm  | kNm |
| min     | F1  | SLU-GEO-002 | 439  | 1074 | -15593 | -12649 | 2856 | 0   |
| min     | F2  | SLU-GEO-014 | 1024 | 161  | -19296 | -9155  | 6743 | 2   |
| min     | F3  | SLU-GEO-006 | 1156 | 854  | -22708 | -10269 | 7604 | 4   |
| min     | M1  | SLU-GEO-022 | 640  | 1180 | -19006 | -20630 | 4164 | 0   |
| min     | M2  | SLU-GEO-004 | 439  | 1074 | -12531 | -12648 | 2856 | 0   |
| min     | М3  | SLU-GEO-002 | 439  | 1074 | -15593 | -12649 | 2856 | 0   |

| SLU-SIS | max | Combo.      | F1    | F2    | F3     | M1     | M2     | М3    |
|---------|-----|-------------|-------|-------|--------|--------|--------|-------|
|         |     |             | kN    | kN    | kN     | kNm    | kNm    | kNm   |
| max     | F1  | SLU-SIS-011 | 5683  | 1351  | -16165 | -12292 | 38667  | -1047 |
| max     | F2  | SLU-SIS-038 | 1813  | 4472  | -16592 | -39342 | 12689  | 2629  |
| max     | F3  | SLU-SIS-087 | 1713  | 1301  | -7948  | -9577  | 8252   | 352   |
| max     | M1  | SLU-SIS-152 | -1517 | -4336 | -12704 | 37693  | -10744 | -2628 |
| max     | M2  | SLU-SIS-011 | 5683  | 1351  | -16165 | -12292 | 38667  | -1047 |
| max     | М3  | SLU-SIS-039 | 1845  | 4436  | -16165 | -38894 | 13665  | 2739  |

| SLU-SIS | min | Combo.      | F1    | F2    | F3     | M1     | M2     | М3    |
|---------|-----|-------------|-------|-------|--------|--------|--------|-------|
|         |     |             | kN    | kN    | kN     | kNm    | kNm    | kNm   |
| min     | F1  | SLU-SIS-102 | -5055 | -1301 | -15454 | 10690  | -32062 | 1102  |
| min     | F2  | SLU-SIS-135 | -1517 | -4336 | -15454 | 36745  | -9011  | -2628 |
| min     | F3  | SLU-SIS-071 | 1517  | 1301  | -19800 | -12892 | 12794  | 352   |
| min     | M1  | SLU-SIS-041 | 1731  | 4421  | -16000 | -39784 | 12142  | 2628  |
| min     | M2  | SLU-SIS-118 | -5055 | -1301 | -12704 | 11641  | -33787 | 1102  |
| min     | М3  | SLU-SIS-135 | -1517 | -4336 | -15454 | 36745  | -9011  | -2628 |

| SLE-RAR | max | Combo.      | F1   | F2   | F3     | M1     | M2    | М3  |
|---------|-----|-------------|------|------|--------|--------|-------|-----|
|         |     |             | kN   | kN   | kN     | kNm    | kNm   | kNm |
| max     | F1  | SLE-RAR-065 | 2605 | 748  | -17638 | -9086  | 20861 | 277 |
| max     | F2  | SLE-RAR-019 | 918  | 1179 | -19771 | -14053 | 6035  | 3   |
| max     | F3  | SLE-RAR-004 | 338  | 827  | -12531 | -9730  | 2197  | 0   |
| max     | M1  | SLE-RAR-018 | 2154 | 218  | -14019 | -3154  | 15647 | 240 |
| max     | M2  | SLE-RAR-065 | 2605 | 748  | -17638 | -9086  | 20861 | 277 |
| max     | М3  | SLE-RAR-007 | 1077 | 504  | -17638 | -5978  | 10921 | 554 |

| SLE-RAR | min | Combo.      | F1  | F2  | F3     | M1     | M2   | М3  |
|---------|-----|-------------|-----|-----|--------|--------|------|-----|
|         |     |             | kN  | kN  | kN     | kNm    | kNm  | kNm |
| min     | F1  | SLE-RAR-002 | 338 | 827 | -14079 | -9730  | 2197 | 0   |
| min     | F2  | SLE-RAR-014 | 819 | 128 | -17041 | -7313  | 5394 | 2   |
| min     | F3  | SLE-RAR-006 | 918 | 683 | -19771 | -8215  | 6035 | 3   |
| min     | M1  | SLE-RAR-022 | 508 | 924 | -16809 | -16271 | 3304 | 0   |
| min     | M2  | SLE-RAR-004 | 338 | 827 | -12531 | -9730  | 2197 | 0   |
| min     | М3  | SLE-RAR-002 | 338 | 827 | -14079 | -9730  | 2197 | 0   |

### 4 SOLLECITAZIONI COMBINATE A BASE PLINTO

Le sollecitazioni combinate alla base della pila sono state riportate ad intradosso plinto (in posizione baricentrica) e sono state incrementate per tenere conto del peso del plinto e del terreno di ricoprimento presente al suo estradosso, nonché della forza inerziale (orizzontale e verticale) associata alla massa del plinto stesso e considerata solidale con il terreno (T = 0 sec).

#### Terreno ricoprimento

| dlong  | 9.6   | m     |
|--------|-------|-------|
| dtrasv | 9.6   | m     |
| hterr  | 0.745 | m     |
| gterr  | 20    | kN/m3 |
| Wterr  | 1040  | kN    |

| Plinto  |      |       |                  |           |    |                  |       |    |
|---------|------|-------|------------------|-----------|----|------------------|-------|----|
| dlong   | 9.6  | m     | <u>Orizzonta</u> | <u>le</u> |    | <u>Verticale</u> |       |    |
| dtrasv  | 9.6  | m     | ag0              | 0.196     | g  | ag0              | 0.118 | g  |
| hpl     | 2.5  | m     | S                | 1.200     |    | s                | 1.000 |    |
| gcls    | 25   | kN/m3 | PGA              | 0.235     | g  | PGA              | 0.118 | g  |
| Wplinto | 5760 | kN    | Iplinto_h        | 1355      | kN | lplinto_v        | 680   | kN |

|             | F1   | F2   | F3     | M1     | M2    | М3  | Ftot |
|-------------|------|------|--------|--------|-------|-----|------|
|             | kN   | kN   | kN     | kNm    | kNm   | kNm | kN   |
| SLU-STR-001 |      |      | -29100 |        |       |     |      |
| SLU-STR-002 | 507  | 1240 | -29100 | -17695 | 4563  | 0   | 1339 |
| SLU-STR-003 | 830  | 744  | -29100 | -10617 | 7478  | 0   | 1115 |
| SLU-STR-004 | 507  | 1240 | -18291 | -17694 | 4562  | 0   | 1339 |
| SLU-STR-005 | 830  | 744  | -18291 | -10616 | 7476  | 0   | 1115 |
| SLU-STR-006 | 1340 | 990  | -37353 | -14388 | 12163 | 5   | 1666 |
| SLU-STR-007 | 1572 | 731  | -34260 | -10495 | 19840 | 804 | 1734 |
| SLU-STR-008 | 598  | 370  | -33395 | -13541 | 5481  | 5   | 703  |
| SLU-STR-009 | 742  | 621  | -33058 | -16679 | 6680  | 0   | 967  |
| SLU-STR-010 | 1572 | 976  | -37110 | -14336 | 16707 | 199 | 1851 |
| SLU-STR-011 | 1456 | 972  | -37017 | -13453 | 13119 | 0   | 1751 |
| SLU-STR-012 | 2661 | 499  | -37353 | -7736  | 24064 | 2   | 2707 |
| SLU-STR-013 | 3123 | 368  | -34260 | -5657  | 33809 | 405 | 3145 |
| SLU-STR-014 | 1188 | 186  | -33395 | -11083 | 10792 | 2   | 1202 |
| SLU-STR-015 | 1473 | 312  | -33058 | -12485 | 13269 | 0   | 1506 |
| SLU-STR-016 | 3123 | 491  | -37110 | -7785  | 30677 | 100 | 3162 |
| SLU-STR-017 | 2893 | 489  | -37017 | -6930  | 26058 | 0   | 2934 |
| SLU-STR-018 | 3123 | 318  | -20464 | -5401  | 30514 | 350 | 3139 |
| SLU-STR-019 | 1340 | 1734 | -37353 | -25005 | 12163 | 5   | 2191 |
| SLU-STR-020 | 1572 | 1475 | -34260 | -21112 | 19840 | 804 | 2156 |

| SLU-STR-021 | 598  | 1114 | -33395 | -24158 | 5481  | 5   | 1264 |
|-------------|------|------|--------|--------|-------|-----|------|
| SLU-STR-022 | 742  | 1364 | -33058 | -27296 | 6680  | 0   | 1553 |
| SLU-STR-023 | 1572 | 1720 | -37110 | -24953 | 16707 | 199 | 2330 |
| SLU-STR-024 | 1456 | 1715 | -37017 | -24070 | 13119 | 0   | 2250 |
| SLU-STR-025 | 2661 | 1242 | -37353 | -18353 | 24064 | 2   | 2937 |
| SLU-STR-026 | 3123 | 1112 | -34260 | -16274 | 33809 | 405 | 3315 |
| SLU-STR-027 | 1188 | 930  | -33395 | -21700 | 10792 | 2   | 1508 |
| SLU-STR-028 | 1473 | 1056 | -33058 | -23102 | 13269 | 0   | 1813 |
| SLU-STR-029 | 3123 | 1235 | -37110 | -18403 | 30677 | 100 | 3359 |
| SLU-STR-030 | 2893 | 1233 | -37017 | -17547 | 26058 | 0   | 3145 |
| SLU-STR-031 | 3123 | 1062 | -20464 | -16017 | 30514 | 350 | 3299 |
| SLU-STR-032 | 1750 | 990  | -37353 | -14388 | 15859 | 5   | 2011 |
| SLU-STR-033 | 1983 | 731  | -34260 | -10495 | 23536 | 804 | 2113 |
| SLU-STR-034 | 1008 | 370  | -33395 | -13541 | 9177  | 5   | 1074 |
| SLU-STR-035 | 1152 | 621  | -33058 | -16679 | 10376 | 0   | 1309 |
| SLU-STR-036 | 1983 | 976  | -37110 | -14336 | 20403 | 199 | 2210 |
| SLU-STR-037 | 1867 | 972  | -37017 | -13453 | 16815 | 0   | 2104 |
| SLU-STR-038 | 3071 | 499  | -37353 | -7736  | 27761 | 2   | 3111 |
| SLU-STR-039 | 3534 | 368  | -34260 | -5657  | 37505 | 405 | 3553 |
| SLU-STR-040 | 1598 | 186  | -33395 | -11083 | 14488 | 2   | 1609 |
| SLU-STR-041 | 1884 | 312  | -33058 | -12485 | 16965 | 0   | 1909 |
| SLU-STR-042 | 3534 | 491  | -37110 | -7785  | 34374 | 100 | 3568 |
| SLU-STR-043 | 3303 | 489  | -37017 | -6930  | 29754 | 0   | 3339 |
| SLU-STR-044 | 3534 | 318  | -20464 | -5401  | 34208 | 350 | 3548 |
| SLU-STR-045 | 1592 | 990  | -37353 | -14388 | 14433 | 5   | 1875 |
| SLU-STR-046 | 1824 | 731  | -34260 | -10495 | 22110 | 804 | 1965 |
| SLU-STR-047 | 850  | 370  | -33395 | -13541 | 7750  | 5   | 927  |
| SLU-STR-048 | 994  | 621  | -33058 | -16679 | 8950  | 0   | 1172 |
| SLU-STR-049 | 1824 | 976  | -37110 | -14336 | 18977 | 199 | 2069 |
| SLU-STR-050 | 1708 | 972  | -37017 | -13453 | 15389 | 0   | 1965 |
| SLU-STR-051 | 2913 | 499  | -37353 | -7736  | 26334 | 2   | 2955 |
| SLU-STR-052 | 3375 | 368  | -34260 | -5657  | 36079 | 405 | 3395 |
| SLU-STR-053 | 1440 | 186  | -33395 | -11083 | 13062 | 2   | 1452 |
| SLU-STR-054 | 1725 | 312  | -33058 | -12485 | 15539 | 0   | 1753 |
| SLU-STR-055 | 3375 | 491  | -37110 | -7785  | 32947 | 100 | 3411 |
| SLU-STR-056 | 3145 | 489  | -37017 | -6930  | 28328 | 0   | 3183 |
| SLU-STR-057 | 3375 | 318  | -20464 | -5401  | 32783 | 350 | 3390 |
| SLU-STR-058 | 2002 | 1734 | -37353 | -25005 | 18129 | 5   | 2649 |
| SLU-STR-059 | 2235 | 1475 | -34260 | -21112 | 25806 | 804 | 2677 |
| SLU-STR-060 | 1260 | 1114 | -33395 | -24158 | 11446 | 5   | 1682 |
| SLU-STR-061 | 1404 | 1364 | -33058 | -27296 | 12646 | 0   | 1958 |
| SLU-STR-062 | 2235 | 1720 | -37110 | -24953 | 22673 | 199 | 2820 |
| SLU-STR-063 | 2119 | 1715 | -37017 | -24070 | 19085 | 0   | 2726 |
| SLU-STR-064 | 3323 | 1242 | -37353 | -18353 | 30031 | 2   | 3548 |
| SLU-STR-065 | 3786 | 1112 | -34260 | -16274 | 39775 | 405 | 3946 |

| SLU-STR-066 | 1850 | 930  | -33395 | -21700 | 16758 | 2   | 2071 |
|-------------|------|------|--------|--------|-------|-----|------|
| SLU-STR-067 | 2136 | 1056 | -33058 | -23102 | 19235 | 0   | 2383 |
| SLU-STR-068 | 3786 | 1235 | -37110 | -18403 | 36644 | 100 | 3982 |
| SLU-STR-069 | 3555 | 1233 | -37017 | -17547 | 32024 | 0   | 3763 |
| SLU-STR-070 | 3786 | 1062 | -20464 | -16017 | 36478 | 350 | 3932 |

|             | F1   | F2   | F3     | M1     | M2    | М3  | Ftot |
|-------------|------|------|--------|--------|-------|-----|------|
|             | kN   | kN   | kN     | kNm    | kNm   | kNm | kN   |
| SLU-GEO-001 |      |      | -22705 |        |       |     |      |
| SLU-GEO-002 | 439  | 1074 | -22705 | -15335 | 3954  | 0   | 1161 |
| SLU-GEO-003 | 718  | 645  | -22705 | -9201  | 6463  | 0   | 965  |
| SLU-GEO-004 | 439  | 1074 | -18291 | -15335 | 3954  | 0   | 1161 |
| SLU-GEO-005 | 718  | 645  | -18291 | -9201  | 6462  | 0   | 965  |
| SLU-GEO-006 | 1156 | 854  | -29820 | -12403 | 10495 | 4   | 1437 |
| SLU-GEO-007 | 1357 | 630  | -27154 | -9047  | 17115 | 693 | 1496 |
| SLU-GEO-008 | 516  | 319  | -26408 | -11673 | 4729  | 4   | 606  |
| SLU-GEO-009 | 640  | 535  | -26118 | -14378 | 5764  | 0   | 834  |
| SLU-GEO-010 | 1357 | 841  | -29610 | -12358 | 14414 | 172 | 1597 |
| SLU-GEO-011 | 1257 | 838  | -29530 | -11597 | 11320 | 0   | 1510 |
| SLU-GEO-012 | 2294 | 430  | -29820 | -6675  | 20741 | 2   | 2334 |
| SLU-GEO-013 | 2693 | 318  | -27154 | -4881  | 29142 | 349 | 2711 |
| SLU-GEO-014 | 1024 | 161  | -26408 | -9557  | 9302  | 2   | 1036 |
| SLU-GEO-015 | 1270 | 270  | -26118 | -10767 | 11437 | 0   | 1298 |
| SLU-GEO-016 | 2693 | 424  | -29610 | -6718  | 26442 | 87  | 2726 |
| SLU-GEO-017 | 2494 | 422  | -29530 | -5980  | 22460 | 0   | 2529 |
| SLU-GEO-018 | 2693 | 275  | -20166 | -4661  | 26307 | 302 | 2706 |
| SLU-GEO-019 | 1156 | 1498 | -29820 | -21604 | 10495 | 4   | 1893 |
| SLU-GEO-020 | 1357 | 1275 | -27154 | -18249 | 17115 | 693 | 1862 |
| SLU-GEO-021 | 516  | 963  | -26408 | -20874 | 4729  | 4   | 1093 |
| SLU-GEO-022 | 640  | 1180 | -26118 | -23580 | 5764  | 0   | 1342 |
| SLU-GEO-023 | 1357 | 1486 | -29610 | -21559 | 14414 | 172 | 2012 |
| SLU-GEO-024 | 1257 | 1482 | -29530 | -20798 | 11320 | 0   | 1943 |
| SLU-GEO-025 | 2294 | 1075 | -29820 | -15877 | 20741 | 2   | 2533 |
| SLU-GEO-026 | 2693 | 962  | -27154 | -14082 | 29142 | 349 | 2859 |
| SLU-GEO-027 | 1024 | 805  | -26408 | -18758 | 9302  | 2   | 1303 |
| SLU-GEO-028 | 1270 | 914  | -26118 | -19968 | 11437 | 0   | 1565 |
| SLU-GEO-029 | 2693 | 1069 | -29610 | -15919 | 26442 | 87  | 2897 |
| SLU-GEO-030 | 2494 | 1067 | -29530 | -15181 | 22460 | 0   | 2712 |
| SLU-GEO-031 | 2693 | 919  | -20166 | -13862 | 26307 | 302 | 2845 |
| SLU-GEO-032 | 1510 | 854  | -29820 | -12403 | 13681 | 4   | 1734 |
| SLU-GEO-033 | 1711 | 630  | -27154 | -9047  | 20301 | 693 | 1823 |
| SLU-GEO-034 | 870  | 319  | -26408 | -11673 | 7915  | 4   | 926  |
| SLU-GEO-035 | 994  | 535  | -26118 | -14378 | 8950  | 0   | 1129 |

|             | 1    | i    |        |        | 1     | i . |      |
|-------------|------|------|--------|--------|-------|-----|------|
| SLU-GEO-036 | 1711 | 841  | -29610 | -12358 | 17600 | 172 | 1906 |
| SLU-GEO-037 | 1611 | 838  | -29530 | -11597 | 14506 | 0   | 1815 |
| SLU-GEO-038 | 2648 | 430  | -29820 | -6675  | 23927 | 2   | 2682 |
| SLU-GEO-039 | 3046 | 318  | -27154 | -4881  | 32328 | 349 | 3063 |
| SLU-GEO-040 | 1378 | 161  | -26408 | -9557  | 12488 | 2   | 1387 |
| SLU-GEO-041 | 1624 | 270  | -26118 | -10767 | 14623 | 0   | 1646 |
| SLU-GEO-042 | 3046 | 424  | -29610 | -6718  | 29628 | 87  | 3076 |
| SLU-GEO-043 | 2848 | 422  | -29530 | -5980  | 25646 | 0   | 2879 |
| SLU-GEO-044 | 3046 | 275  | -20166 | -4661  | 29492 | 302 | 3059 |
| SLU-GEO-045 | 1374 | 854  | -29820 | -12403 | 12462 | 4   | 1618 |
| SLU-GEO-046 | 1575 | 630  | -27154 | -9047  | 19082 | 693 | 1697 |
| SLU-GEO-047 | 734  | 319  | -26408 | -11673 | 6696  | 4   | 801  |
| SLU-GEO-048 | 858  | 535  | -26118 | -14378 | 7731  | 0   | 1012 |
| SLU-GEO-049 | 1575 | 841  | -29610 | -12358 | 16381 | 172 | 1786 |
| SLU-GEO-050 | 1475 | 838  | -29530 | -11597 | 13287 | 0   | 1696 |
| SLU-GEO-051 | 2512 | 430  | -29820 | -6675  | 22708 | 2   | 2549 |
| SLU-GEO-052 | 2911 | 318  | -27154 | -4881  | 31109 | 349 | 2928 |
| SLU-GEO-053 | 1242 | 161  | -26408 | -9557  | 11269 | 2   | 1252 |
| SLU-GEO-054 | 1488 | 270  | -26118 | -10767 | 13404 | 0   | 1513 |
| SLU-GEO-055 | 2911 | 424  | -29610 | -6718  | 28409 | 87  | 2942 |
| SLU-GEO-056 | 2712 | 422  | -29530 | -5980  | 24427 | 0   | 2745 |
| SLU-GEO-057 | 2911 | 275  | -20166 | -4661  | 28273 | 302 | 2924 |
| SLU-GEO-058 | 1728 | 1498 | -29820 | -21604 | 15648 | 4   | 2287 |
| SLU-GEO-059 | 1929 | 1275 | -27154 | -18249 | 22267 | 693 | 2312 |
| SLU-GEO-060 | 1088 | 963  | -26408 | -20874 | 9882  | 4   | 1453 |
| SLU-GEO-061 | 1212 | 1180 | -26118 | -23580 | 10917 | 0   | 1691 |
| SLU-GEO-062 | 1929 | 1486 | -29610 | -21559 | 19567 | 172 | 2435 |
| SLU-GEO-063 | 1829 | 1482 | -29530 | -20798 | 16473 | 0   | 2354 |
| SLU-GEO-064 | 2866 | 1075 | -29820 | -15877 | 25894 | 2   | 3061 |
| SLU-GEO-065 | 3265 | 962  | -27154 | -14082 | 34294 | 349 | 3403 |
| SLU-GEO-066 | 1596 | 805  | -26408 | -18758 | 14455 | 2   | 1788 |
| SLU-GEO-067 | 1842 | 914  | -26118 | -19968 | 16590 | 0   | 2057 |
| SLU-GEO-068 | 3265 | 1069 | -29610 | -15919 | 31595 | 87  | 3435 |
| SLU-GEO-069 | 3066 | 1067 | -29530 | -15181 | 27613 | 0   | 3246 |
| SLU-GEO-070 | 3265 | 919  | -20166 | -13862 | 31459 | 302 | 3392 |

|             | F1   | F2   | F3     | М1     | M2    | М3    |
|-------------|------|------|--------|--------|-------|-------|
|             | kN   | kN   | kN     | kNm    | kNm   | kNm   |
| SLU-SIS-001 | 6916 | 1837 | -22458 | -16892 | 52775 | -1102 |
| SLU-SIS-002 | 7132 | 1837 | -22458 | -16892 | 54722 | -1102 |
| SLU-SIS-003 | 7132 | 1837 | -19870 | -16891 | 54714 | -1102 |
| SLU-SIS-004 | 7334 | 1987 | -23596 | -19075 | 56560 | -1102 |
| SLU-SIS-005 | 7369 | 1948 | -23169 | -18484 | 57721 | -991  |

| SLU-SIS-006                | 7222 | 1893         | -23050 | -18946 | 55551 | -1102 | 7466         |
|----------------------------|------|--------------|--------|--------|-------|-------|--------------|
| SLU-SIS-007                | 7244 | 1931         | -23004 | -19422 | 55731 | -1102 | 7497         |
| SLU-SIS-008                | 7369 | 1985         | -23562 | -19067 | 57247 | -1075 | 7631         |
| SLU-SIS-009                | 7351 | 1985         | -23550 | -18933 | 56704 | -1102 | 7614         |
| SLU-SIS-010                | 7535 | 1912         | -23596 | -18059 | 58378 | -1102 | 7774         |
| SLU-SIS-011                | 7606 | 1893         | -23169 | -17745 | 59854 | -1047 | 7838         |
| SLU-SIS-012                | 7312 | 1865         | -23050 | -18571 | 56362 | -1102 | 7546         |
| SLU-SIS-013                | 7355 | 1884         | -23004 | -18782 | 56738 | -1102 | 7593         |
| SLU-SIS-014                | 7606 | 1911         | -23562 | -18066 | 59381 | -1088 | 7842         |
| SLU-SIS-015                | 7571 | 1911         | -23550 | -17936 | 58680 | -1102 | 7808         |
| SLU-SIS-016                | 7606 | 1885         | -20167 | -17705 | 59343 | -1054 | 7836         |
| SLU-SIS-017                | 6916 | 1837         | -19300 | -15843 | 50850 | -1102 | 7155         |
| SLU-SIS-018                | 7132 | 1837         | -19300 | -15843 | 52797 | -1102 | 7365         |
| SLU-SIS-019                | 7132 | 1837         | -16712 | -15842 | 52789 | -1102 | 7365         |
| SLU-SIS-020                | 6916 | 1837         | -20439 | -15994 | 50870 | -1102 | 7155         |
| SLU-SIS-021                | 7241 | 1987         | -20439 | -18026 | 53803 | -1102 | 7509         |
| SLU-SIS-021                | 7276 | 1948         | -20439 | -17436 | 54963 | -991  | 7533         |
| SLU-SIS-023                | 7129 |              |        |        |       |       | 7377         |
|                            |      | 1893         | -19893 | -17898 | 52794 | -1102 |              |
| SLU-SIS-024                | 7151 | 1931         | -19846 | -18374 | 52974 | -1102 | 7407         |
| SLU-SIS-025<br>SLU-SIS-026 | 7276 | 1985<br>1985 | -20405 | -18019 | 54490 | -1075 | 7542<br>7525 |
|                            | 7259 |              | -20392 | -17885 | 53946 | -1102 |              |
| SLU-SIS-027                | 7443 | 1912         | -20439 | -17010 | 55620 | -1102 | 7685         |
| SLU-SIS-028<br>SLU-SIS-029 | 7513 | 1893         | -20012 | -16697 | 57097 | -1047 | 7748<br>7457 |
| SLU-SIS-029                | 7220 | 1865<br>1884 | -19893 | -17522 | 53605 | -1102 |              |
|                            | 7263 |              | -19846 | -17733 | 53980 | -1102 | 7503         |
| SLU-SIS-031                | 7513 | 1911         | -20405 | -17018 | 56623 | -1088 | 7753         |
| SLU-SIS-032                | 7478 | 1911         | -20392 | -16888 | 55922 | -1102 | 7719         |
| SLU-SIS-033                | 7513 | 1885         | -17010 | -16656 | 56585 | -1054 | 7746         |
| SLU-SIS-034                | 2075 | 6124         | -22458 | -55083 | 16501 | 2628  | 6466         |
| SLU-SIS-035                | 2291 | 6124         | -22458 | -55083 | 18449 | 2628  | 6538         |
| SLU-SIS-036                | 2291 | 6124         | -19870 | -55081 | 18446 | 2628  | 6538         |
| SLU-SIS-037                | 2075 | 6124         | -23596 | -55236 | 16517 | 2628  | 6466         |
| SLU-SIS-038                | 2400 | 6274         | -23596 | -57268 | 19450 | 2629  | 6718         |
| SLU-SIS-039                | 2435 | 6235         | -23169 | -56677 | 20612 | 2739  | 6694         |
| SLU-SIS-040                | 2289 | 6180         | -23050 | -57139 | 18443 | 2629  | 6590         |
| SLU-SIS-041                | 2310 | 6218         | -23004 | -57615 | 18624 | 2628  | 6633         |
| SLU-SIS-042                | 2435 | 6272         | -23562 | -57260 | 20138 | 2656  | 6728         |
| SLU-SIS-043                | 2418 | 6271         | -23550 | -57126 | 19594 | 2628  | 6721         |
| SLU-SIS-044                | 2602 | 6199         | -23596 | -56252 | 21268 | 2629  | 6723         |
| SLU-SIS-045                | 2672 | 6179         | -23169 | -55938 | 22746 | 2684  | 6733         |
| SLU-SIS-046                | 2379 | 6152         | -23050 | -56763 | 19254 | 2629  | 6596         |
| SLU-SIS-047                | 2422 | 6171         | -23004 | -56974 | 19630 | 2628  | 6629         |
| SLU-SIS-048                | 2672 | 6198         | -23562 | -56259 | 22271 | 2642  | 6750         |
| SLU-SIS-049                | 2637 | 6198         | -23550 | -56130 | 21570 | 2628  | 6736         |
| SLU-SIS-050                | 2672 | 6172         | -20167 | -55895 | 22242 | 2676  | 6726         |

| SLU-SIS-051 | 2075 | 6124 | -19300 | -54032           | 14586          | 2628 | 6466 |
|-------------|------|------|--------|------------------|----------------|------|------|
| SLU-SIS-051 | 2075 | 6124 | -19300 | -54032<br>-54032 |                | 2628 | 6538 |
| SLU-SIS-053 | 2291 | 6124 | -16712 | -54032<br>-54030 | 16533<br>16531 | 2628 | 6538 |
| SLU-SIS-054 | 2075 | 6124 | -20439 | -54030<br>-54184 | 14602          | 2628 | 6466 |
| SLU-SIS-055 | 2400 | 6274 | -20439 | -56217           | 17535          | 2629 | 6718 |
| SLU-SIS-056 | 2435 | 6235 | -20439 | -55625           | 18697          | 2739 | 6694 |
| SLU-SIS-057 | 2289 | 6180 | -19893 | -56087           | 16528          | 2629 | 6590 |
| SLU-SIS-057 | 2310 | 6218 | -19846 | -56564           | 16708          | 2628 | 6633 |
| SLU-SIS-059 | 2435 | 6272 | -20405 | -56209           | 18222          | 2656 | 6728 |
| SLU-SIS-060 | 2418 | 6271 | -20392 | -56075           | 17679          | 2628 | 6721 |
| SLU-SIS-061 | 2602 | 6199 | -20439 | -55200           | 19353          | 2629 | 6723 |
| SLU-SIS-062 | 2672 | 6179 | -20012 | -54886           | 20830          | 2684 | 6733 |
| SLU-SIS-063 | 2379 | 6152 | -19893 | -55712           | 17339          | 2629 | 6596 |
| SLU-SIS-064 | 2422 | 6171 | -19846 | -55923           | 17715          | 2628 | 6629 |
| SLU-SIS-065 | 2672 | 6198 | -20405 | -55208           | 20356          | 2642 | 6750 |
| SLU-SIS-066 | 2637 | 6198 | -20392 | -55078           | 19655          | 2628 | 6736 |
| SLU-SIS-067 | 2672 | 6172 | -17010 | -54844           | 20326          | 2676 | 6726 |
| SLU-SIS-068 | 2075 | 1837 | -26141 | -18115           | 18735          | 352  | 2771 |
| SLU-SIS-069 | 2291 | 1837 | -26141 | -18115           | 20683          | 352  | 2937 |
| SLU-SIS-070 | 2291 | 1837 | -23553 | -18114           | 20680          | 352  | 2937 |
| SLU-SIS-071 | 2075 | 1837 | -27280 | -18266           | 18752          | 352  | 2771 |
| SLU-SIS-072 | 2400 | 1987 | -27280 | -20298           | 21685          | 353  | 3116 |
| SLU-SIS-073 | 2435 | 1948 | -26853 | -19707           | 22847          | 463  | 3119 |
| SLU-SIS-074 | 2289 | 1893 | -26734 | -20169           | 20678          | 353  | 2970 |
| SLU-SIS-075 | 2310 | 1931 | -26687 | -20645           | 20858          | 352  | 3011 |
| SLU-SIS-076 | 2435 | 1985 | -27246 | -20290           | 22372          | 380  | 3142 |
| SLU-SIS-077 | 2418 | 1985 | -27233 | -20156           | 21829          | 352  | 3128 |
| SLU-SIS-078 | 2602 | 1912 | -27280 | -19282           | 23503          | 353  | 3229 |
| SLU-SIS-079 | 2672 | 1893 | -26853 | -18968           | 24981          | 408  | 3275 |
| SLU-SIS-080 | 2379 | 1865 | -26734 | -19794           | 21489          | 353  | 3023 |
| SLU-SIS-081 | 2422 | 1884 | -26687 | -20005           | 21865          | 352  | 3069 |
| SLU-SIS-082 | 2672 | 1911 | -27246 | -19289           | 24506          | 366  | 3285 |
| SLU-SIS-083 | 2637 | 1911 | -27233 | -19160           | 23805          | 352  | 3257 |
| SLU-SIS-084 | 2672 | 1885 | -23851 | -18928           | 24476          | 400  | 3270 |
| SLU-SIS-085 | 2075 | 1837 | -15617 | -14620           | 12352          | 352  | 2771 |
| SLU-SIS-086 | 2291 | 1837 | -15617 | -14620           | 14299          | 352  | 2937 |
| SLU-SIS-087 | 2291 | 1837 | -13029 | -14619           | 14296          | 352  | 2937 |
| SLU-SIS-088 | 2075 | 1837 | -16755 | -14771           | 12368          | 352  | 2771 |
| SLU-SIS-089 | 2400 | 1987 | -16755 | -16803           | 15301          | 353  | 3116 |
| SLU-SIS-090 | 2435 | 1948 | -16328 | -16213           | 16463          | 463  | 3119 |
| SLU-SIS-091 | 2289 | 1893 | -16209 | -16675           | 14293          | 353  | 2970 |
| SLU-SIS-092 | 2310 | 1931 | -16163 | -17151           | 14474          | 352  | 3011 |
| SLU-SIS-093 | 2435 | 1985 | -16721 | -16795           | 15988          | 380  | 3142 |
| SLU-SIS-094 | 2418 | 1985 | -16709 | -16661           | 15444          | 352  | 3128 |
| SLU-SIS-095 | 2602 | 1912 | -16755 | -15787           | 17118          | 353  | 3229 |

| SLU-SIS-096 | 2672  | 1893  | -16328 | -15473 | 18596  | 408   | 3275 |
|-------------|-------|-------|--------|--------|--------|-------|------|
| SLU-SIS-090 | 2379  | 1865  | -16209 | -16299 | 15105  | 353   | 3023 |
| SLU-SIS-098 | 2422  | 1884  | -16163 | -16510 | 15480  | 352   | 3069 |
| SLU-SIS-099 | 2672  | 1911  | -16721 | -15795 | 18121  | 366   | 3285 |
| SLU-SIS-100 | 2637  | 1911  | -16709 | -15665 | 17420  | 352   | 3257 |
| SLU-SIS-101 | 2672  | 1885  | -13326 | -15433 | 18091  | 400   | 3270 |
| SLU-SIS-102 | -6916 | -1837 | -22458 | 15844  | -50864 | 1102  | 7155 |
| SLU-SIS-103 | -6699 | -1837 | -22458 | 15844  | -48916 | 1102  | 6947 |
| SLU-SIS-104 | -6699 | -1837 | -19870 | 15844  | -48909 | 1102  | 6947 |
| SLU-SIS-105 | -6497 | -1687 | -23596 | 13662  | -47090 | 1103  | 6713 |
| SLU-SIS-106 | -6462 | -1726 | -23169 | 14252  | -45925 | 1213  | 6689 |
| SLU-SIS-107 | -6609 | -1781 | -23050 | 13790  | -48094 | 1103  | 6845 |
| SLU-SIS-108 | -6587 | -1743 | -23004 | 13314  | -47913 | 1102  | 6814 |
| SLU-SIS-109 | -6462 | -1689 | -23562 | 13670  | -46403 | 1130  | 6679 |
| SLU-SIS-110 | -6480 | -1690 | -23550 | 13804  | -46946 | 1102  | 6697 |
| SLU-SIS-111 | -6296 | -1762 | -23596 | 14678  | -45272 | 1103  | 6537 |
| SLU-SIS-112 | -6225 | -1782 | -23169 | 14992  | -43792 | 1158  | 6475 |
| SLU-SIS-113 | -6519 | -1809 | -23050 | 14166  | -47283 | 1103  | 6765 |
| SLU-SIS-114 | -6476 | -1790 | -23004 | 13955  | -46907 | 1102  | 6719 |
| SLU-SIS-115 | -6225 | -1763 | -23562 | 14671  | -44269 | 1116  | 6470 |
| SLU-SIS-116 | -6260 | -1763 | -23550 | 14800  | -44970 | 1102  | 6504 |
| SLU-SIS-117 | -6225 | -1789 | -20167 | 15030  | -44283 | 1150  | 6477 |
| SLU-SIS-118 | -6916 | -1837 | -19300 | 16890  | -52761 | 1102  | 7155 |
| SLU-SIS-119 | -6699 | -1837 | -19300 | 16890  | -50813 | 1102  | 6947 |
| SLU-SIS-120 | -6699 | -1837 | -16712 | 16890  | -50806 | 1102  | 6947 |
| SLU-SIS-121 | -6916 | -1837 | -20439 | 16740  | -52752 | 1102  | 7155 |
| SLU-SIS-122 | -6590 | -1687 | -20439 | 14708  | -49819 | 1103  | 6802 |
| SLU-SIS-123 | -6555 | -1726 | -20012 | 15298  | -48654 | 1213  | 6778 |
| SLU-SIS-124 | -6702 | -1781 | -19893 | 14836  | -50823 | 1103  | 6934 |
| SLU-SIS-125 | -6680 | -1743 | -19846 | 14360  | -50642 | 1102  | 6904 |
| SLU-SIS-126 | -6555 | -1689 | -20405 | 14716  | -49132 | 1130  | 6769 |
| SLU-SIS-127 | -6572 | -1690 | -20392 | 14850  | -49675 | 1102  | 6786 |
| SLU-SIS-128 | -6388 | -1762 | -20439 | 15724  | -48002 | 1103  | 6627 |
| SLU-SIS-129 | -6318 | -1782 | -20012 | 16037  | -46521 | 1158  | 6564 |
| SLU-SIS-130 | -6611 | -1809 | -19893 | 15212  | -50012 | 1103  | 6855 |
| SLU-SIS-131 | -6568 | -1790 | -19846 | 15001  | -49636 | 1102  | 6808 |
| SLU-SIS-132 | -6318 | -1763 | -20405 | 15717  | -46998 | 1116  | 6559 |
| SLU-SIS-133 | -6353 | -1763 | -20392 | 15846  | -47699 | 1102  | 6593 |
| SLU-SIS-134 | -6318 | -1789 | -17010 | 16076  | -47012 | 1150  | 6566 |
| SLU-SIS-135 | -2075 | -6124 | -22458 | 54036  | -14590 | -2628 | 6466 |
| SLU-SIS-136 | -1858 | -6124 | -22458 | 54036  | -12643 | -2628 | 6400 |
| SLU-SIS-137 | -1858 | -6124 | -19870 | 54034  | -12641 | -2628 | 6400 |
| SLU-SIS-138 | -2075 | -6124 | -23596 | 53887  | -14578 | -2628 | 6466 |
| SLU-SIS-139 | -1749 | -5974 | -23596 | 51855  | -11645 | -2628 | 6224 |
| SLU-SIS-140 | -1714 | -6013 | -23169 | 52445  | -10481 | -2518 | 6253 |

|                                                             | 628     6347       628     6304 |
|-------------------------------------------------------------|---------------------------------|
|                                                             | 0304                            |
| SLU-SIS-143   -1/14   -59/6   -23562   51863   -10957   -26 | 204 0047                        |
|                                                             |                                 |
|                                                             | 6222                            |
|                                                             | 6244                            |
|                                                             | 6246                            |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     | 6348                            |
|                                                             | 6318                            |
|                                                             | 6228                            |
| SLU-SIS-150 -1512 -6050 -23550 52993 -9524 -26              | 6236                            |
|                                                             | 6253                            |
| SLU-SIS-152 -2075 -6124 -19300 55079 -16497 -26             | 6466                            |
| SLU-SIS-153 -1858 -6124 -19300 55079 -14550 -26             | 6400                            |
| SLU-SIS-154 -1858 -6124 -16712 55077 -14548 -26             | 6400                            |
| SLU-SIS-155 -2075 -6124 -20439 54931 -16484 -26             | 6466                            |
| SLU-SIS-156 -1749 -5974 -20439 52898 -13552 -26             | 6224                            |
| SLU-SIS-157 -1714 -6013 -20012 53488 -12388 -25             | 6253                            |
| SLU-SIS-158 -1861 -6068 -19893 53026 -14557 -26             | 6347                            |
| SLU-SIS-159 -1839 -6030 -19846 52550 -14376 -26             | 6304                            |
| SLU-SIS-160 -1714 -5976 -20405 52906 -12864 -26             | 6217                            |
| SLU-SIS-161 -1731 -5977 -20392 53040 -13407 -26             | 6222                            |
| SLU-SIS-162 -1547 -6049 -20439 53914 -11734 -26             | 6244                            |
| SLU-SIS-163 -1477 -6069 -20012 54227 -10255 -25             | 6246                            |
| SLU-SIS-164 -1771 -6096 -19893 53401 -13746 -26             | 6348                            |
| SLU-SIS-165 -1727 -6077 -19846 53190 -13370 -26             | 6318                            |
| SLU-SIS-166 -1477 -6050 -20405 53907 -10731 -26             | 6228                            |
| SLU-SIS-167 -1512 -6050 -20392 54037 -11432 -26             | 6236                            |
| SLU-SIS-168 -1477 -6076 -17010 54264 -10753 -25             | 6253                            |
| SLU-SIS-169 -2075 -1837 -26141 14624 -12366 -3              | 52 2771                         |
| SLU-SIS-170 -1858 -1837 -26141 14624 -10418 -3              | 52 2613                         |
| SLU-SIS-171 -1858 -1837 -23553 14623 -10416 -3              | 52 2613                         |
| SLU-SIS-172 -2075 -1837 -27280 14474 -12353 -3              | 52 2771                         |
| SLU-SIS-173 -1749 -1687 -27280 12442 -9420 -3               | 52 2430                         |
| SLU-SIS-174 -1714 -1726 -26853 13032 -8257 -2               | 41 2433                         |
| SLU-SIS-175 -1861 -1781 -26734 12570 -10426 -3              | 52 2576                         |
| SLU-SIS-176 -1839 -1743 -26687 12094 -10245 -3              | 52 2534                         |
| SLU-SIS-177 -1714 -1689 -27246 12450 -8733 -3               | 25 2406                         |
| SLU-SIS-178 -1731 -1690 -27233 12584 -9276 -3               | 52 2419                         |
| SLU-SIS-179 -1547 -1762 -27280 13458 -7602 -3               | 52 2345                         |
|                                                             | 97 2314                         |
|                                                             | 52 2531                         |
|                                                             | 52 2488                         |
|                                                             | 38 2300                         |
|                                                             | 52 2323                         |
|                                                             | 04 2320                         |

| SLU-SIS-186 | -2075 | -1837 | -15617 | 18111 | -18721 | -352 | 2771 |
|-------------|-------|-------|--------|-------|--------|------|------|
| SLU-SIS-187 | -1858 | -1837 | -15617 | 18111 | -16774 | -352 | 2613 |
| SLU-SIS-188 | -1858 | -1837 | -13029 | 18110 | -16772 | -352 | 2613 |
| SLU-SIS-189 | -2075 | -1837 | -16755 | 17961 | -18709 | -352 | 2771 |
| SLU-SIS-190 | -1749 | -1687 | -16755 | 15928 | -15776 | -352 | 2430 |
| SLU-SIS-191 | -1714 | -1726 | -16328 | 16519 | -14613 | -241 | 2433 |
| SLU-SIS-192 | -1861 | -1781 | -16209 | 16056 | -16782 | -352 | 2576 |
| SLU-SIS-193 | -1839 | -1743 | -16163 | 15580 | -16601 | -352 | 2534 |
| SLU-SIS-194 | -1714 | -1689 | -16721 | 15936 | -15089 | -325 | 2406 |
| SLU-SIS-195 | -1731 | -1690 | -16709 | 16070 | -15632 | -352 | 2419 |
| SLU-SIS-196 | -1547 | -1762 | -16755 | 16944 | -13959 | -352 | 2345 |
| SLU-SIS-197 | -1477 | -1782 | -16328 | 17258 | -12480 | -297 | 2314 |
| SLU-SIS-198 | -1771 | -1809 | -16209 | 16432 | -15971 | -352 | 2531 |
| SLU-SIS-199 | -1727 | -1790 | -16163 | 16221 | -15595 | -352 | 2488 |
| SLU-SIS-200 | -1477 | -1763 | -16721 | 16937 | -12956 | -338 | 2300 |
| SLU-SIS-201 | -1512 | -1763 | -16709 | 17067 | -13657 | -352 | 2323 |
| SLU-SIS-202 | -1477 | -1789 | -13326 | 17296 | -12978 | -304 | 2320 |

|             | F1   | F2   | F3     | M1     | M2    | М3  | Ftot |
|-------------|------|------|--------|--------|-------|-----|------|
|             | kN   | kN   | kN     | kNm    | kNm   | kNm | kN   |
| SLE-RAR-001 |      |      | -20879 |        |       |     |      |
| SLE-RAR-002 | 338  | 827  | -20879 | -11796 | 3042  | 0   | 893  |
| SLE-RAR-003 | 563  | 496  | -20879 | -7078  | 5069  | 0   | 750  |
| SLE-RAR-004 | 338  | 827  | -18291 | -11796 | 3041  | 0   | 893  |
| SLE-RAR-005 | 563  | 496  | -18291 | -7077  | 5069  | 0   | 750  |
| SLE-RAR-006 | 918  | 683  | -26571 | -9922  | 8329  | 3   | 1144 |
| SLE-RAR-007 | 1077 | 504  | -24438 | -7238  | 13613 | 554 | 1189 |
| SLE-RAR-008 | 410  | 255  | -23841 | -9338  | 3754  | 3   | 482  |
| SLE-RAR-009 | 508  | 428  | -23609 | -11503 | 4574  | 0   | 664  |
| SLE-RAR-010 | 1077 | 673  | -26403 | -9886  | 11453 | 138 | 1270 |
| SLE-RAR-011 | 998  | 670  | -26339 | -9277  | 8983  | 0   | 1202 |
| SLE-RAR-012 | 1835 | 342  | -26571 | -5303  | 16592 | 2   | 1867 |
| SLE-RAR-013 | 2154 | 252  | -24438 | -3878  | 23312 | 277 | 2169 |
| SLE-RAR-014 | 819  | 128  | -23841 | -7632  | 7441  | 2   | 829  |
| SLE-RAR-015 | 1016 | 214  | -23609 | -8590  | 9149  | 0   | 1038 |
| SLE-RAR-016 | 2154 | 337  | -26403 | -5338  | 21152 | 69  | 2180 |
| SLE-RAR-017 | 1995 | 335  | -26339 | -4748  | 17966 | 0   | 2023 |
| SLE-RAR-018 | 2154 | 218  | -19779 | -3699  | 21032 | 240 | 2165 |
| SLE-RAR-019 | 918  | 1179 | -26571 | -17000 | 8329  | 3   | 1494 |
| SLE-RAR-020 | 1077 | 1000 | -24438 | -14316 | 13613 | 554 | 1470 |
| SLE-RAR-021 | 410  | 751  | -23841 | -16416 | 3754  | 3   | 855  |
| SLE-RAR-022 | 508  | 924  | -23609 | -18580 | 4574  | 0   | 1054 |
| SLE-RAR-023 | 1077 | 1169 | -26403 | -16964 | 11453 | 138 | 1589 |

| SLE-RAR-024 | 998  | 1166 | -26339 | -16355 | 8983  | 0   | 1534 |
|-------------|------|------|--------|--------|-------|-----|------|
| SLE-RAR-025 | 1835 | 837  | -26571 | -12381 | 16592 | 2   | 2017 |
| SLE-RAR-026 | 2154 | 748  | -24438 | -10956 | 23312 | 277 | 2280 |
| SLE-RAR-027 | 819  | 623  | -23841 | -14709 | 7441  | 2   | 1029 |
| SLE-RAR-028 | 1016 | 710  | -23609 | -15668 | 9149  | 0   | 1239 |
| SLE-RAR-029 | 2154 | 832  | -26403 | -12415 | 21152 | 69  | 2309 |
| SLE-RAR-030 | 1995 | 831  | -26339 | -11825 | 17966 | 0   | 2161 |
| SLE-RAR-031 | 2154 | 714  | -19779 | -10777 | 21032 | 240 | 2269 |
| SLE-RAR-032 | 1201 | 683  | -26571 | -9922  | 10877 | 3   | 1381 |
| SLE-RAR-033 | 1360 | 504  | -24438 | -7238  | 16162 | 554 | 1450 |
| SLE-RAR-034 | 693  | 255  | -23841 | -9338  | 6302  | 3   | 738  |
| SLE-RAR-035 | 791  | 428  | -23609 | -11503 | 7123  | 0   | 899  |
| SLE-RAR-036 | 1360 | 673  | -26403 | -9886  | 14001 | 138 | 1517 |
| SLE-RAR-037 | 1281 | 670  | -26339 | -9277  | 11532 | 0   | 1445 |
| SLE-RAR-038 | 2118 | 342  | -26571 | -5303  | 19140 | 2   | 2145 |
| SLE-RAR-039 | 2437 | 252  | -24438 | -3878  | 25860 | 277 | 2450 |
| SLE-RAR-040 | 1102 | 128  | -23841 | -7632  | 9989  | 2   | 1109 |
| SLE-RAR-041 | 1299 | 214  | -23609 | -8590  | 11697 | 0   | 1317 |
| SLE-RAR-042 | 2437 | 337  | -26403 | -5338  | 23700 | 69  | 2460 |
| SLE-RAR-043 | 2278 | 335  | -26339 | -4748  | 20515 | 0   | 2303 |
| SLE-RAR-044 | 2437 | 218  | -19779 | -3699  | 23580 | 240 | 2447 |
| SLE-RAR-045 | 1086 | 683  | -26571 | -9922  | 9842  | 3   | 1282 |
| SLE-RAR-046 | 1245 | 504  | -24438 | -7238  | 15126 | 554 | 1343 |
| SLE-RAR-047 | 578  | 255  | -23841 | -9338  | 5266  | 3   | 631  |
| SLE-RAR-048 | 676  | 428  | -23609 | -11503 | 6087  | 0   | 800  |
| SLE-RAR-049 | 1245 | 673  | -26403 | -9886  | 12965 | 138 | 1415 |
| SLE-RAR-050 | 1166 | 670  | -26339 | -9277  | 10496 | 0   | 1344 |
| SLE-RAR-051 | 2003 | 342  | -26571 | -5303  | 18104 | 2   | 2032 |
| SLE-RAR-052 | 2322 | 252  | -24438 | -3878  | 24825 | 277 | 2336 |
| SLE-RAR-053 | 987  | 128  | -23841 | -7632  | 8954  | 2   | 995  |
| SLE-RAR-054 | 1184 | 214  | -23609 | -8590  | 10662 | 0   | 1203 |
| SLE-RAR-055 | 2322 | 337  | -26403 | -5338  | 22665 | 69  | 2346 |
| SLE-RAR-056 | 2163 | 335  | -26339 | -4748  | 19479 | 0   | 2189 |
| SLE-RAR-057 | 2322 | 218  | -19779 | -3699  | 22545 | 240 | 2332 |
| SLE-RAR-058 | 1369 | 1179 | -26571 | -17000 | 12390 | 3   | 1806 |
| SLE-RAR-059 | 1528 | 1000 | -24438 | -14316 | 17675 | 554 | 1826 |
| SLE-RAR-060 | 861  | 751  | -23841 | -16416 | 7815  | 3   | 1142 |
| SLE-RAR-061 | 959  | 924  | -23609 | -18580 | 8636  | 0   | 1332 |
| SLE-RAR-062 | 1528 | 1169 | -26403 | -16964 | 15514 | 138 | 1924 |
| SLE-RAR-063 | 1449 | 1166 | -26339 | -16355 | 13045 | 0   | 1859 |
| SLE-RAR-064 | 2286 | 837  | -26571 | -12381 | 20653 | 2   | 2435 |
| SLE-RAR-065 | 2605 | 748  | -24438 | -10956 | 27373 | 277 | 2710 |
| SLE-RAR-066 | 1270 | 623  | -23841 | -14709 | 11502 | 2   | 1415 |
| SLE-RAR-067 | 1467 | 710  | -23609 | -15668 | 13210 | 0   | 1630 |
| SLE-RAR-068 | 2605 | 832  | -26403 | -12415 | 25213 | 69  | 2735 |

|             | i    |     |        |        |       |     |      |
|-------------|------|-----|--------|--------|-------|-----|------|
| SLE-RAR-069 | 2446 | 831 | -26339 | -11825 | 22028 | 0   | 2583 |
| SLE-RAR-070 | 2605 | 714 | -19779 | -10777 | 25093 | 240 | 2701 |
| SLE-RAR-071 | 1101 | 410 | -24294 | -5953  | 9954  | 2   | 1175 |
| SLE-RAR-072 | 1292 | 302 | -23014 | -4343  | 13987 | 333 | 1327 |
| SLE-RAR-073 | 655  | 204 | -23248 | -7471  | 5953  | 3   | 686  |
| SLE-RAR-074 | 813  | 342 | -23063 | -9202  | 7319  | 0   | 882  |
| SLE-RAR-075 | 1292 | 404 | -24193 | -5932  | 12690 | 83  | 1354 |
| SLE-RAR-076 | 1197 | 402 | -24155 | -5566  | 10779 | 0   | 1263 |
| SLE-RAR-077 | 1292 | 262 | -20077 | -4439  | 13602 | 288 | 1319 |
| SLE-RAR-078 | 1101 | 906 | -24294 | -13031 | 9954  | 2   | 1426 |
| SLE-RAR-079 | 1292 | 798 | -23014 | -11420 | 13987 | 333 | 1519 |
| SLE-RAR-080 | 655  | 700 | -23248 | -14548 | 5953  | 3   | 959  |
| SLE-RAR-081 | 813  | 838 | -23063 | -16280 | 7319  | 0   | 1168 |
| SLE-RAR-082 | 1292 | 900 | -24193 | -13009 | 12690 | 83  | 1575 |
| SLE-RAR-083 | 1197 | 898 | -24155 | -12644 | 10779 | 0   | 1496 |
| SLE-RAR-084 | 1292 | 758 | -20077 | -11517 | 13602 | 288 | 1498 |
| SLE-RAR-085 | 1384 | 410 | -24294 | -5953  | 12503 | 2   | 1443 |
| SLE-RAR-086 | 1575 | 302 | -23014 | -4343  | 16535 | 333 | 1604 |
| SLE-RAR-087 | 938  | 204 | -23248 | -7471  | 8501  | 3   | 960  |
| SLE-RAR-088 | 1096 | 342 | -23063 | -9202  | 9867  | 0   | 1148 |
| SLE-RAR-089 | 1575 | 404 | -24193 | -5932  | 15239 | 83  | 1626 |
| SLE-RAR-090 | 1480 | 402 | -24155 | -5566  | 13327 | 0   | 1534 |
| SLE-RAR-091 | 1575 | 262 | -20077 | -4439  | 16150 | 288 | 1597 |
| SLE-RAR-092 | 1269 | 410 | -24294 | -5953  | 11467 | 2   | 1334 |
| SLE-RAR-093 | 1460 | 302 | -23014 | -4343  | 15499 | 333 | 1491 |
| SLE-RAR-094 | 823  | 204 | -23248 | -7471  | 7466  | 3   | 848  |
| SLE-RAR-095 | 981  | 342 | -23063 | -9202  | 8832  | 0   | 1039 |
| SLE-RAR-096 | 1460 | 404 | -24193 | -5932  | 14203 | 83  | 1515 |
| SLE-RAR-097 | 1365 | 402 | -24155 | -5566  | 12292 | 0   | 1423 |
| SLE-RAR-098 | 1460 | 262 | -20077 | -4439  | 15114 | 288 | 1484 |
| SLE-RAR-099 | 1552 | 906 | -24294 | -13031 | 14015 | 2   | 1797 |
| SLE-RAR-100 | 1743 | 798 | -23014 | -11420 | 18048 | 333 | 1917 |
| SLE-RAR-101 | 1106 | 700 | -23248 | -14548 | 10014 | 3   | 1309 |
| SLE-RAR-102 | 1264 | 838 | -23063 | -16280 | 11380 | 0   | 1517 |
| SLE-RAR-103 | 1743 | 900 | -24193 | -13009 | 16751 | 83  | 1962 |
| SLE-RAR-104 | 1648 | 898 | -24155 | -12644 | 14840 | 0   | 1877 |
| SLE-RAR-105 | 1743 | 758 | -20077 | -11517 | 17663 | 288 | 1901 |

|             | F1  | F2 | F3     | M1  | M2   | М3  |
|-------------|-----|----|--------|-----|------|-----|
|             | kN  | kN | kN     | kNm | kNm  | kNm |
| SLE-QPE-001 | 0   | 0  | -20879 | 0   | 0    | 0   |
| SLE-QPE-002 | 563 | 0  | -20879 | 0   | 5069 | 0   |

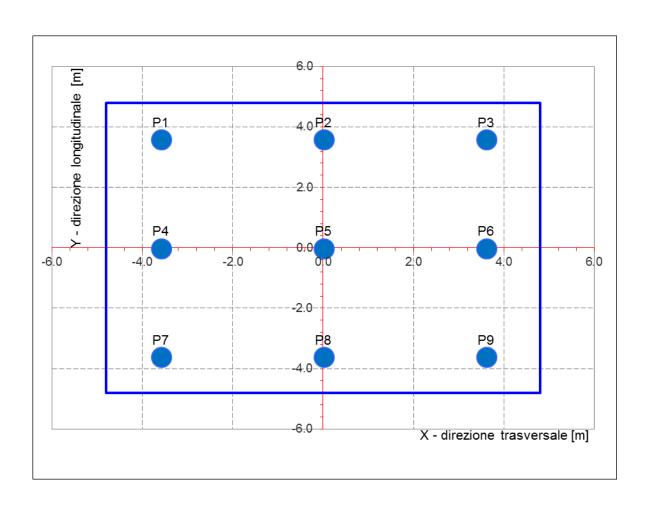
**Ftot** kN 0 563

## 5 DISTRIBUZIONE DELLE SOLLECITAZIONI IN TESTA PALI

## 5.1 GEOMETRIA DELLA PALIFICATA DI FONDAZIONE

Diametro dei pali di fondazione e loro numero:

diam 1.2 m


Num tot 9 Numero totale di pali

Geometria del plinto:

 dtrasv
 9.6
 m

 dlong
 9.6
 m

 hpl
 2.5
 m



Le caratteristiche di sollecitazione sul singolo palo sono state determinate a partire dalle sollecitazioni riportate all'intradosso del plinto di fondazione, secondo le seguenti relazioni (*distribuzione rigida delle sollecitazioni*):

 $N_{max} = F_3 / n_{pali} + ass(M_1) / W_1palificata + ass(M_2) / W_2palificata$ 

 $N_{min} = F_3 / n_{pali}$  - ass(M<sub>1</sub>) / W<sub>1</sub>palificata - ass(M<sub>2</sub>) / W<sub>2</sub>palificata

 $H = \sqrt{((F_1 / n_{pali})^2 + (F_2 / n_{pali})^2)}$ 

#### NB: coordinate riferite al baricentro della palificata

| num. | X (trasv) | Y (long) | X2   | Y2   | WI       | Wt       |
|------|-----------|----------|------|------|----------|----------|
|      | m         | m        | m2   | m2   |          |          |
| P1   | -3.60     | 3.60     | 13.0 | 13.0 | 2.2E+01  | -2.2E+01 |
| P2   | 0.00      | 3.60     | 0.0  | 13.0 | 2.2E+01  | 1.0E+99  |
| P3   | 3.60      | 3.60     | 13.0 | 13.0 | 2.2E+01  | 2.2E+01  |
| P4   | -3.60     | 0.00     | 13.0 | 0.0  | 1.0E+99  | -2.2E+01 |
| P5   | 0.00      | 0.00     | 0.0  | 0.0  | 1.0E+99  | 1.0E+99  |
| P6   | 3.60      | 0.00     | 13.0 | 0.0  | 1.0E+99  | 2.2E+01  |
| P7   | -3.60     | -3.60    | 13.0 | 13.0 | -2.2E+01 | -2.2E+01 |
| P8   | 0.00      | -3.60    | 0.0  | 13.0 | -2.2E+01 | 1.0E+99  |
| P9   | 3.60      | -3.60    | 13.0 | 13.0 | -2.2E+01 | 2.2E+01  |
| P10  |           |          |      |      |          |          |
| P11  |           |          |      |      |          |          |
| P12  |           |          |      |      |          |          |
| P13  |           |          |      |      |          |          |
| P14  |           |          |      |      |          |          |
| P15  |           |          |      |      |          |          |
| P16  |           |          |      |      |          |          |
| P17  |           |          |      |      |          |          |
| P18  |           |          |      |      |          |          |
| P19  |           |          |      |      |          |          |
| P20  |           |          |      |      |          |          |

| Σ X2  | Σ <b>Y2</b> |  |  |
|-------|-------------|--|--|
| 77.76 | 77.76       |  |  |
| m4    | m4          |  |  |

#### 5.2 DISTRIBUZIONE DELLE SOLLECITAZIONI IN TESTA AI PALI

Per ogni palo della fondazione e per ogni combinazione di carico considerata, si riportano a seguire i valori delle forze assiali agenti in testa  $N_{max}$  [kN] e  $N_{min}$  [kN], il valore del taglio medio incrementato del coefficiente che tiene conto dell'effetto gruppo ( $T_{med,gr} = 1.1 * T_{med}$  [kN]), nonché il valore del momento flettente agente alla testa del palo (valore massimo). Per il calcolo di tale valore in funzione del taglio agente alla testa del palo, si rimanda all'elaborato progettuale "IF1N.0.1.E.ZZ.RB.GE.00.0.5.001.A - Relazione geotecnica generale di linea delle opere all'aperto".

| D (m)      | 1.2    |
|------------|--------|
| kh (kN/m3) | 41667  |
| fck (Mpa)  | 25     |
| E (Mpa)    | 31476  |
| J (m4)     | 0.1018 |
| λ (cm)     | 400.12 |

|             | N <sub>max</sub> | N <sub>min</sub> |   | T <sub>media</sub> | T <sub>media_gruopo</sub> | M <sub>max</sub> |
|-------------|------------------|------------------|---|--------------------|---------------------------|------------------|
|             | [kN]             | [kN]             | ] | [kN]               | [kN]                      | [kNm]            |
| SLU-STR-001 | 3233             | 3233             |   | 0                  | 0                         | 0                |
| SLU-STR-002 | 4264             | 2203             |   | 149                | 164                       | 327              |
| SLU-STR-003 | 4071             | 2396             |   | 124                | 136                       | 273              |
| SLU-STR-004 | 3063             | 1002             |   | 149                | 164                       | 327              |
| SLU-STR-005 | 2870             | 1195             |   | 124                | 136                       | 273              |
| SLU-STR-006 | 5380             | 2921             |   | 185                | 204                       | 407              |
| SLU-STR-007 | 5211             | 2402             |   | 193                | 212                       | 424              |
| SLU-STR-008 | 4591             | 2830             |   | 78                 | 86                        | 172              |
| SLU-STR-009 | 4755             | 2592             |   | 107                | 118                       | 236              |
| SLU-STR-010 | 5560             | 2686             |   | 206                | 226                       | 453              |
| SLU-STR-011 | 5343             | 2883             |   | 195                | 214                       | 428              |
| SLU-STR-012 | 5623             | 2678             |   | 301                | 331                       | 662              |
| SLU-STR-013 | 5634             | 1980             |   | 349                | 384                       | 769              |
| SLU-STR-014 | 4723             | 2698             |   | 134                | 147                       | 294              |
| SLU-STR-015 | 4865             | 2481             |   | 167                | 184                       | 368              |
| SLU-STR-016 | 5904             | 2343             |   | 351                | 386                       | 773              |
| SLU-STR-017 | 5640             | 2586             |   | 326                | 359                       | 717              |
| SLU-STR-018 | 3936             | 611              |   | 349                | 384                       | 768              |
| SLU-STR-019 | 5871             | 2430             |   | 243                | 268                       | 536              |
| SLU-STR-020 | 5703             | 1911             |   | 240                | 263                       | 527              |
| SLU-STR-021 | 5083             | 2338             |   | 140                | 154                       | 309              |
| SLU-STR-022 | 5246             | 2100             |   | 173                | 190                       | 380              |
| SLU-STR-023 | 6052             | 2195             |   | 259                | 285                       | 570              |
| SLU-STR-024 | 5835             | 2391             |   | 250                | 275                       | 550              |
| SLU-STR-025 | 6114             | 2187             |   | 326                | 359                       | 718              |

| SLU-STR-026 | 6125 | 1488 | 368 | 405 | 811 |
|-------------|------|------|-----|-----|-----|
| SLU-STR-027 | 5215 | 2206 | 168 | 184 | 369 |
| SLU-STR-028 | 5357 | 1989 | 201 | 222 | 443 |
| SLU-STR-029 | 6395 | 1851 | 373 | 411 | 821 |
| SLU-STR-030 | 6132 | 2094 | 349 | 384 | 769 |
| SLU-STR-031 | 4428 | 120  | 367 | 403 | 807 |
| SLU-STR-032 | 5551 | 2750 | 223 | 246 | 492 |
| SLU-STR-033 | 5382 | 2231 | 235 | 258 | 517 |
| SLU-STR-034 | 4762 | 2659 | 119 | 131 | 263 |
| SLU-STR-035 | 4926 | 2421 | 145 | 160 | 320 |
| SLU-STR-036 | 5732 | 2515 | 246 | 270 | 540 |
| SLU-STR-037 | 5514 | 2712 | 234 | 257 | 515 |
| SLU-STR-038 | 5794 | 2507 | 346 | 380 | 761 |
| SLU-STR-039 | 5805 | 1808 | 395 | 434 | 869 |
| SLU-STR-040 | 4894 | 2527 | 179 | 197 | 393 |
| SLU-STR-041 | 5037 | 2310 | 212 | 233 | 467 |
| SLU-STR-042 | 6075 | 2171 | 396 | 436 | 872 |
| SLU-STR-043 | 5811 | 2415 | 371 | 408 | 816 |
| SLU-STR-044 | 4108 | 440  | 394 | 434 | 868 |
| SLU-STR-045 | 5485 | 2816 | 208 | 229 | 458 |
| SLU-STR-046 | 5316 | 2297 | 218 | 240 | 481 |
| SLU-STR-047 | 4696 | 2725 | 103 | 113 | 227 |
| SLU-STR-048 | 4860 | 2487 | 130 | 143 | 286 |
| SLU-STR-049 | 5666 | 2581 | 230 | 253 | 506 |
| SLU-STR-050 | 5448 | 2778 | 218 | 240 | 481 |
| SLU-STR-051 | 5728 | 2573 | 328 | 361 | 723 |
| SLU-STR-052 | 5739 | 1874 | 377 | 415 | 830 |
| SLU-STR-053 | 4828 | 2593 | 161 | 177 | 355 |
| SLU-STR-054 | 4971 | 2376 | 195 | 214 | 429 |
| SLU-STR-055 | 6009 | 2238 | 379 | 417 | 834 |
| SLU-STR-056 | 5745 | 2481 | 354 | 389 | 778 |
| SLU-STR-057 | 4042 | 506  | 377 | 414 | 829 |
| SLU-STR-058 | 6147 | 2153 | 294 | 324 | 648 |
| SLU-STR-059 | 5979 | 1635 | 297 | 327 | 655 |
| SLU-STR-060 | 5359 | 2062 | 187 | 206 | 411 |
| SLU-STR-061 | 5522 | 1824 | 218 | 239 | 479 |
| SLU-STR-062 | 6328 | 1918 | 313 | 345 | 690 |
| SLU-STR-063 | 6111 | 2115 | 303 | 333 | 667 |
| SLU-STR-064 | 6390 | 1910 | 394 | 434 | 867 |
| SLU-STR-065 | 6402 | 1212 | 438 | 482 | 965 |
| SLU-STR-066 | 5491 | 1930 | 230 | 253 | 506 |
| SLU-STR-067 | 5633 | 1713 | 265 | 291 | 583 |
| SLU-STR-068 | 6672 | 1575 | 442 | 487 | 974 |

| SLU-STR-069 | 6408 | 1818 | 418 | 460 | 920 |
|-------------|------|------|-----|-----|-----|
| SLU-STR-070 | 4704 | -157 | 437 | 481 | 961 |

|             | N <sub>max</sub> | N <sub>min</sub> | T <sub>media</sub> | T <sub>media_gruopo</sub> | M <sub>max</sub> |
|-------------|------------------|------------------|--------------------|---------------------------|------------------|
|             | [kN]             | [kN]             | [kN]               | [kN]                      | [kNm]            |
| SLU-GEO-001 | 2523             | 2523             | 0                  | 0                         | 0                |
| SLU-GEO-002 | 3416             | 1630             | 129                | 142                       | 284              |
| SLU-GEO-003 | 3248             | 1798             | 107                | 118                       | 236              |
| SLU-GEO-004 | 2925             | 1139             | 129                | 142                       | 284              |
| SLU-GEO-005 | 2757             | 1307             | 107                | 118                       | 236              |
| SLU-GEO-006 | 4373             | 2253             | 160                | 176                       | 351              |
| SLU-GEO-007 | 4228             | 1806             | 166                | 183                       | 366              |
| SLU-GEO-008 | 3694             | 2175             | 67                 | 74                        | 148              |
| SLU-GEO-009 | 3835             | 1969             | 93                 | 102                       | 204              |
| SLU-GEO-010 | 4529             | 2051             | 177                | 195                       | 390              |
| SLU-GEO-011 | 4342             | 2220             | 168                | 185                       | 369              |
| SLU-GEO-012 | 4583             | 2044             | 259                | 285                       | 571              |
| SLU-GEO-013 | 4592             | 1442             | 301                | 331                       | 663              |
| SLU-GEO-014 | 3807             | 2061             | 115                | 127                       | 253              |
| SLU-GEO-015 | 3930             | 1874             | 144                | 159                       | 317              |
| SLU-GEO-016 | 4825             | 1755             | 303                | 333                       | 666              |
| SLU-GEO-017 | 4598             | 1964             | 281                | 309                       | 618              |
| SLU-GEO-018 | 3674             | 807              | 301                | 331                       | 662              |
| SLU-GEO-019 | 4799             | 1827             | 210                | 231                       | 463              |
| SLU-GEO-020 | 4654             | 1380             | 207                | 228                       | 455              |
| SLU-GEO-021 | 4120             | 1749             | 121                | 134                       | 267              |
| SLU-GEO-022 | 4260             | 1543             | 149                | 164                       | 328              |
| SLU-GEO-023 | 4955             | 1625             | 224                | 246                       | 492              |
| SLU-GEO-024 | 4768             | 1794             | 216                | 238                       | 475              |
| SLU-GEO-025 | 5009             | 1618             | 281                | 310                       | 619              |
| SLU-GEO-026 | 5018             | 1016             | 318                | 349                       | 699              |
| SLU-GEO-027 | 4233             | 1635             | 145                | 159                       | 318              |
| SLU-GEO-028 | 4356             | 1448             | 174                | 191                       | 383              |
| SLU-GEO-029 | 5251             | 1329             | 322                | 354                       | 708              |
| SLU-GEO-030 | 5024             | 1538             | 301                | 332                       | 663              |
| SLU-GEO-031 | 4100             | 381              | 316                | 348                       | 696              |
| SLU-GEO-032 | 4521             | 2106             | 193                | 212                       | 424              |
| SLU-GEO-033 | 4376             | 1658             | 203                | 223                       | 446              |
| SLU-GEO-034 | 3841             | 2027             | 103                | 113                       | 226              |
| SLU-GEO-035 | 3982             | 1822             | 125                | 138                       | 276              |
| SLU-GEO-036 | 4677             | 1903             | 212                | 233                       | 466              |

| SLU-GEO-037 | 4490 | 2073 | 202 | 222 | 444 |
|-------------|------|------|-----|-----|-----|
| SLU-GEO-038 | 4730 | 1897 | 298 | 328 | 656 |
| SLU-GEO-039 | 4740 | 1294 | 340 | 374 | 749 |
| SLU-GEO-040 | 3955 | 1914 | 154 | 170 | 339 |
| SLU-GEO-041 | 4077 | 1727 | 183 | 201 | 402 |
| SLU-GEO-042 | 4973 | 1607 | 342 | 376 | 752 |
| SLU-GEO-043 | 4745 | 1817 | 320 | 352 | 704 |
| SLU-GEO-044 | 3822 | 660  | 340 | 374 | 748 |
| SLU-GEO-045 | 4465 | 2162 | 180 | 198 | 396 |
| SLU-GEO-046 | 4319 | 1715 | 189 | 207 | 415 |
| SLU-GEO-047 | 3785 | 2084 | 89  | 98  | 196 |
| SLU-GEO-048 | 3926 | 1878 | 112 | 124 | 247 |
| SLU-GEO-049 | 4621 | 1960 | 198 | 218 | 437 |
| SLU-GEO-050 | 4433 | 2129 | 188 | 207 | 415 |
| SLU-GEO-051 | 4674 | 1953 | 283 | 312 | 623 |
| SLU-GEO-052 | 4683 | 1351 | 325 | 358 | 716 |
| SLU-GEO-053 | 3898 | 1970 | 139 | 153 | 306 |
| SLU-GEO-054 | 4021 | 1783 | 168 | 185 | 370 |
| SLU-GEO-055 | 4916 | 1664 | 327 | 360 | 719 |
| SLU-GEO-056 | 4689 | 1873 | 305 | 335 | 671 |
| SLU-GEO-057 | 3765 | 716  | 325 | 357 | 715 |
| SLU-GEO-058 | 5038 | 1589 | 254 | 280 | 559 |
| SLU-GEO-059 | 4893 | 1141 | 257 | 283 | 565 |
| SLU-GEO-060 | 4358 | 1510 | 161 | 178 | 355 |
| SLU-GEO-061 | 4499 | 1305 | 188 | 207 | 414 |
| SLU-GEO-062 | 5194 | 1386 | 271 | 298 | 595 |
| SLU-GEO-063 | 5007 | 1556 | 262 | 288 | 576 |
| SLU-GEO-064 | 5247 | 1380 | 340 | 374 | 748 |
| SLU-GEO-065 | 5257 | 777  | 378 | 416 | 832 |
| SLU-GEO-066 | 4472 | 1397 | 199 | 218 | 437 |
| SLU-GEO-067 | 4594 | 1209 | 229 | 251 | 503 |
| SLU-GEO-068 | 5490 | 1090 | 382 | 420 | 840 |
| SLU-GEO-069 | 5262 | 1300 | 361 | 397 | 794 |
| SLU-GEO-070 | 4339 | 143  | 377 | 415 | 829 |

|             | $N_{max}$ | $N_{min}$ | $T_{media}$ | T <sub>media_gruopo</sub> | $\mathbf{M}_{max}$ |
|-------------|-----------|-----------|-------------|---------------------------|--------------------|
|             | [kN]      | [kN]      | [kN]        | [kN]                      | [kNm]              |
| SLU-SIS-001 | 5721      | -730      | 795         | 875                       | 1750               |
| SLU-SIS-002 | 5811      | -820      | 818         | 900                       | 1801               |
| SLU-SIS-003 | 5523      | -1107     | 818         | 900                       | 1801               |
| SLU-SIS-004 | 6123      | -880      | 844         | 929                       | 1858               |

| SLU-SIS-005 | 6102 | -954  | 847 | 932 | 1864 |
|-------------|------|-------|-----|-----|------|
| SLU-SIS-006 | 6010 | -888  | 830 | 913 | 1826 |
| SLU-SIS-007 | 6035 | -923  | 833 | 916 | 1833 |
| SLU-SIS-008 | 6151 | -915  | 848 | 933 | 1866 |
| SLU-SIS-009 | 6118 | -885  | 846 | 931 | 1862 |
| SLU-SIS-010 | 6160 | -917  | 864 | 950 | 1901 |
| SLU-SIS-011 | 6167 | -1018 | 871 | 958 | 1916 |
| SLU-SIS-012 | 6030 | -908  | 838 | 922 | 1845 |
| SLU-SIS-013 | 6052 | -940  | 844 | 928 | 1857 |
| SLU-SIS-014 | 6204 | -967  | 871 | 958 | 1918 |
| SLU-SIS-015 | 6164 | -930  | 868 | 954 | 1909 |
| SLU-SIS-016 | 5808 | -1326 | 871 | 958 | 1916 |
| SLU-SIS-017 | 5232 | -943  | 795 | 875 | 1750 |
| SLU-SIS-018 | 5322 | -1033 | 818 | 900 | 1801 |
| SLU-SIS-019 | 5034 | -1320 | 818 | 900 | 1801 |
| SLU-SIS-020 | 5367 | -825  | 795 | 875 | 1750 |
| SLU-SIS-021 | 5596 | -1054 | 834 | 918 | 1836 |
| SLU-SIS-022 | 5575 | -1128 | 837 | 921 | 1842 |
| SLU-SIS-023 | 5483 | -1062 | 820 | 902 | 1804 |
| SLU-SIS-024 | 5508 | -1098 | 823 | 905 | 1811 |
| SLU-SIS-025 | 5624 | -1090 | 838 | 922 | 1844 |
| SLU-SIS-026 | 5591 | -1060 | 836 | 920 | 1840 |
| SLU-SIS-027 | 5633 | -1092 | 854 | 939 | 1879 |
| SLU-SIS-028 | 5640 | -1193 | 861 | 947 | 1895 |
| SLU-SIS-029 | 5503 | -1083 | 829 | 911 | 1823 |
| SLU-SIS-030 | 5525 | -1115 | 834 | 917 | 1835 |
| SLU-SIS-031 | 5677 | -1142 | 861 | 948 | 1896 |
| SLU-SIS-032 | 5637 | -1105 | 858 | 943 | 1887 |
| SLU-SIS-033 | 5281 | -1501 | 861 | 947 | 1894 |
| SLU-SIS-034 | 5809 | -819  | 718 | 790 | 1581 |
| SLU-SIS-035 | 5900 | -909  | 726 | 799 | 1599 |
| SLU-SIS-036 | 5612 | -1196 | 726 | 799 | 1599 |
| SLU-SIS-037 | 5944 | -700  | 718 | 790 | 1581 |
| SLU-SIS-038 | 6174 | -930  | 746 | 821 | 1643 |
| SLU-SIS-039 | 6153 | -1004 | 744 | 818 | 1637 |
| SLU-SIS-040 | 6060 | -938  | 732 | 805 | 1611 |
| SLU-SIS-041 | 6086 | -974  | 737 | 811 | 1622 |
| SLU-SIS-042 | 6201 | -965  | 748 | 822 | 1645 |
| SLU-SIS-043 | 6168 | -935  | 747 | 822 | 1643 |
| SLU-SIS-044 | 6211 | -967  | 747 | 822 | 1644 |
| SLU-SIS-045 | 6217 | -1068 | 748 | 823 | 1646 |
| SLU-SIS-046 | 6080 | -958  | 733 | 806 | 1613 |
| SLU-SIS-047 | 6102 | -991  | 737 | 810 | 1621 |

| SLU-SIS-048 | 6254 | -1018 | 750 | 825 | 1650 |
|-------------|------|-------|-----|-----|------|
| SLU-SIS-049 | 6214 | -981  | 748 | 823 | 1647 |
| SLU-SIS-050 | 5858 | -1377 | 747 | 822 | 1645 |
| SLU-SIS-051 | 5321 | -1032 | 718 | 790 | 1581 |
| SLU-SIS-052 | 5411 | -1122 | 726 | 799 | 1599 |
| SLU-SIS-053 | 5124 | -1410 | 726 | 799 | 1599 |
| SLU-SIS-054 | 5456 | -914  | 718 | 790 | 1581 |
| SLU-SIS-055 | 5685 | -1143 | 746 | 821 | 1643 |
| SLU-SIS-056 | 5664 | -1217 | 744 | 818 | 1637 |
| SLU-SIS-057 | 5572 | -1152 | 732 | 805 | 1611 |
| SLU-SIS-058 | 5597 | -1187 | 737 | 811 | 1622 |
| SLU-SIS-059 | 5713 | -1179 | 748 | 822 | 1645 |
| SLU-SIS-060 | 5680 | -1149 | 747 | 822 | 1643 |
| SLU-SIS-061 | 5722 | -1181 | 747 | 822 | 1644 |
| SLU-SIS-062 | 5729 | -1282 | 748 | 823 | 1646 |
| SLU-SIS-063 | 5592 | -1172 | 733 | 806 | 1613 |
| SLU-SIS-064 | 5614 | -1204 | 737 | 810 | 1621 |
| SLU-SIS-065 | 5766 | -1231 | 750 | 825 | 1650 |
| SLU-SIS-066 | 5726 | -1194 | 748 | 823 | 1647 |
| SLU-SIS-067 | 5370 | -1590 | 747 | 822 | 1645 |
| SLU-SIS-068 | 4611 | 1199  | 308 | 339 | 678  |
| SLU-SIS-069 | 4701 | 1108  | 326 | 359 | 718  |
| SLU-SIS-070 | 4413 | 821   | 326 | 359 | 718  |
| SLU-SIS-071 | 4745 | 1317  | 308 | 339 | 678  |
| SLU-SIS-072 | 4975 | 1087  | 346 | 381 | 762  |
| SLU-SIS-073 | 4954 | 1014  | 347 | 381 | 763  |
| SLU-SIS-074 | 4861 | 1079  | 330 | 363 | 726  |
| SLU-SIS-075 | 4887 | 1044  | 335 | 368 | 736  |
| SLU-SIS-076 | 5002 | 1052  | 349 | 384 | 768  |
| SLU-SIS-077 | 4970 | 1082  | 348 | 382 | 765  |
| SLU-SIS-078 | 5012 | 1050  | 359 | 395 | 790  |
| SLU-SIS-079 | 5018 | 949   | 364 | 400 | 801  |
| SLU-SIS-080 | 4882 | 1059  | 336 | 369 | 739  |
| SLU-SIS-081 | 4904 | 1027  | 341 | 375 | 750  |
| SLU-SIS-082 | 5055 | 1000  | 365 | 402 | 803  |
| SLU-SIS-083 | 5015 | 1037  | 362 | 398 | 796  |
| SLU-SIS-084 | 4660 | 641   | 363 | 400 | 800  |
| SLU-SIS-085 | 2984 | 486   | 308 | 339 | 678  |
| SLU-SIS-086 | 3074 | 396   | 326 | 359 | 718  |
| SLU-SIS-087 | 2786 | 109   | 326 | 359 | 718  |
| SLU-SIS-088 | 3118 | 605   | 308 | 339 | 678  |
| SLU-SIS-089 | 3348 | 375   | 346 | 381 | 762  |
| SLU-SIS-090 | 3327 | 302   | 347 | 381 | 763  |

| SLU-SIS-091 | 3235 | 367   | 330 | 363 | 726  |
|-------------|------|-------|-----|-----|------|
| SLU-SIS-092 | 3260 | 332   | 335 | 368 | 736  |
| SLU-SIS-093 | 3376 | 340   | 349 | 384 | 768  |
| SLU-SIS-094 | 3343 | 370   | 348 | 382 | 765  |
| SLU-SIS-095 | 3385 | 338   | 359 | 395 | 790  |
| SLU-SIS-096 | 3392 | 237   | 364 | 400 | 801  |
| SLU-SIS-097 | 3255 | 347   | 336 | 369 | 739  |
| SLU-SIS-098 | 3277 | 315   | 341 | 375 | 750  |
| SLU-SIS-099 | 3428 | 288   | 365 | 402 | 803  |
| SLU-SIS-100 | 3388 | 325   | 362 | 398 | 796  |
| SLU-SIS-101 | 3033 | -71   | 363 | 400 | 800  |
| SLU-SIS-102 | 5584 | -593  | 795 | 875 | 1750 |
| SLU-SIS-103 | 5493 | -503  | 772 | 849 | 1699 |
| SLU-SIS-104 | 5206 | -790  | 772 | 849 | 1699 |
| SLU-SIS-105 | 5434 | -191  | 746 | 820 | 1641 |
| SLU-SIS-106 | 5360 | -212  | 743 | 818 | 1636 |
| SLU-SIS-107 | 5426 | -304  | 761 | 837 | 1674 |
| SLU-SIS-108 | 5391 | -279  | 757 | 833 | 1666 |
| SLU-SIS-109 | 5399 | -163  | 742 | 816 | 1633 |
| SLU-SIS-110 | 5429 | -196  | 744 | 818 | 1637 |
| SLU-SIS-111 | 5397 | -154  | 726 | 799 | 1599 |
| SLU-SIS-112 | 5296 | -147  | 719 | 791 | 1583 |
| SLU-SIS-113 | 5406 | -284  | 752 | 827 | 1654 |
| SLU-SIS-114 | 5374 | -262  | 747 | 821 | 1643 |
| SLU-SIS-115 | 5347 | -111  | 719 | 791 | 1582 |
| SLU-SIS-116 | 5384 | -151  | 723 | 795 | 1590 |
| SLU-SIS-117 | 4987 | -505  | 720 | 792 | 1584 |
| SLU-SIS-118 | 5369 | -1080 | 795 | 875 | 1750 |
| SLU-SIS-119 | 5279 | -990  | 772 | 849 | 1699 |
| SLU-SIS-120 | 4991 | -1277 | 772 | 849 | 1699 |
| SLU-SIS-121 | 5488 | -946  | 795 | 875 | 1750 |
| SLU-SIS-122 | 5258 | -716  | 756 | 831 | 1663 |
| SLU-SIS-123 | 5184 | -737  | 753 | 828 | 1657 |
| SLU-SIS-124 | 5250 | -829  | 770 | 848 | 1696 |
| SLU-SIS-125 | 5214 | -804  | 767 | 844 | 1688 |
| SLU-SIS-126 | 5223 | -689  | 752 | 827 | 1655 |
| SLU-SIS-127 | 5253 | -721  | 754 | 829 | 1659 |
| SLU-SIS-128 | 5221 | -679  | 736 | 810 | 1620 |
| SLU-SIS-129 | 5120 | -673  | 729 | 802 | 1605 |
| SLU-SIS-130 | 5230 | -809  | 762 | 838 | 1676 |
| SLU-SIS-131 | 5198 | -787  | 756 | 832 | 1665 |
| SLU-SIS-132 | 5171 | -636  | 729 | 802 | 1604 |
| SLU-SIS-133 | 5208 | -676  | 733 | 806 | 1612 |

| SLU-SIS-134 | 4811 | -1031 | 730 | 803 | 1606 |
|-------------|------|-------|-----|-----|------|
| SLU-SIS-135 | 5672 | -682  | 718 | 790 | 1581 |
| SLU-SIS-136 | 5582 | -592  | 711 | 782 | 1565 |
| SLU-SIS-137 | 5295 | -879  | 711 | 782 | 1565 |
| SLU-SIS-138 | 5791 | -548  | 718 | 790 | 1581 |
| SLU-SIS-139 | 5562 | -318  | 692 | 761 | 1522 |
| SLU-SIS-140 | 5488 | -339  | 695 | 764 | 1529 |
| SLU-SIS-141 | 5553 | -431  | 705 | 776 | 1552 |
| SLU-SIS-142 | 5518 | -406  | 700 | 770 | 1541 |
| SLU-SIS-143 | 5526 | -290  | 691 | 760 | 1520 |
| SLU-SIS-144 | 5556 | -323  | 691 | 761 | 1521 |
| SLU-SIS-145 | 5524 | -281  | 694 | 763 | 1527 |
| SLU-SIS-146 | 5423 | -274  | 694 | 763 | 1527 |
| SLU-SIS-147 | 5533 | -411  | 705 | 776 | 1552 |
| SLU-SIS-148 | 5501 | -389  | 702 | 772 | 1545 |
| SLU-SIS-149 | 5474 | -238  | 692 | 761 | 1523 |
| SLU-SIS-150 | 5511 | -278  | 693 | 762 | 1525 |
| SLU-SIS-151 | 5114 | -633  | 695 | 764 | 1529 |
| SLU-SIS-152 | 5458 | -1169 | 718 | 790 | 1581 |
| SLU-SIS-153 | 5368 | -1079 | 711 | 782 | 1565 |
| SLU-SIS-154 | 5080 | -1366 | 711 | 782 | 1565 |
| SLU-SIS-155 | 5577 | -1035 | 718 | 790 | 1581 |
| SLU-SIS-156 | 5347 | -805  | 692 | 761 | 1522 |
| SLU-SIS-157 | 5273 | -826  | 695 | 764 | 1529 |
| SLU-SIS-158 | 5339 | -919  | 705 | 776 | 1552 |
| SLU-SIS-159 | 5304 | -893  | 700 | 770 | 1541 |
| SLU-SIS-160 | 5312 | -778  | 691 | 760 | 1520 |
| SLU-SIS-161 | 5342 | -810  | 691 | 761 | 1521 |
| SLU-SIS-162 | 5310 | -768  | 694 | 763 | 1527 |
| SLU-SIS-163 | 5209 | -762  | 694 | 763 | 1527 |
| SLU-SIS-164 | 5319 | -898  | 705 | 776 | 1552 |
| SLU-SIS-165 | 5287 | -876  | 702 | 772 | 1545 |
| SLU-SIS-166 | 5260 | -725  | 692 | 761 | 1523 |
| SLU-SIS-167 | 5297 | -765  | 693 | 762 | 1525 |
| SLU-SIS-168 | 4900 | -1120 | 695 | 764 | 1529 |
| SLU-SIS-169 | 4154 | 1655  | 308 | 339 | 678  |
| SLU-SIS-170 | 4064 | 1745  | 290 | 319 | 639  |
| SLU-SIS-171 | 3776 | 1458  | 290 | 319 | 639  |
| SLU-SIS-172 | 4273 | 1789  | 308 | 339 | 678  |
| SLU-SIS-173 | 4043 | 2019  | 270 | 297 | 594  |
| SLU-SIS-174 | 3969 | 1998  | 270 | 297 | 595  |
| SLU-SIS-175 | 4035 | 1906  | 286 | 315 | 630  |
| SLU-SIS-176 | 3999 | 1931  | 282 | 310 | 620  |

| SLU-SIS-177 | 4008 | 2047 | 267 | 294 | 588 |
|-------------|------|------|-----|-----|-----|
| SLU-SIS-178 | 4038 | 2014 | 269 | 296 | 592 |
| SLU-SIS-179 | 4006 | 2056 | 261 | 287 | 573 |
| SLU-SIS-180 | 3905 | 2063 | 257 | 283 | 566 |
| SLU-SIS-181 | 4015 | 1926 | 281 | 309 | 619 |
| SLU-SIS-182 | 3982 | 1948 | 276 | 304 | 608 |
| SLU-SIS-183 | 3956 | 2099 | 256 | 281 | 562 |
| SLU-SIS-184 | 3993 | 2059 | 258 | 284 | 568 |
| SLU-SIS-185 | 3596 | 1704 | 258 | 284 | 567 |
| SLU-SIS-186 | 3440 | 30   | 308 | 339 | 678 |
| SLU-SIS-187 | 3350 | 120  | 290 | 319 | 639 |
| SLU-SIS-188 | 3063 | -167 | 290 | 319 | 639 |
| SLU-SIS-189 | 3559 | 164  | 308 | 339 | 678 |
| SLU-SIS-190 | 3329 | 394  | 270 | 297 | 594 |
| SLU-SIS-191 | 3256 | 373  | 270 | 297 | 595 |
| SLU-SIS-192 | 3321 | 281  | 286 | 315 | 630 |
| SLU-SIS-193 | 3286 | 306  | 282 | 310 | 620 |
| SLU-SIS-194 | 3294 | 422  | 267 | 294 | 588 |
| SLU-SIS-195 | 3324 | 389  | 269 | 296 | 592 |
| SLU-SIS-196 | 3292 | 431  | 261 | 287 | 573 |
| SLU-SIS-197 | 3191 | 438  | 257 | 283 | 566 |
| SLU-SIS-198 | 3301 | 301  | 281 | 309 | 619 |
| SLU-SIS-199 | 3269 | 323  | 276 | 304 | 608 |
| SLU-SIS-200 | 3242 | 474  | 256 | 281 | 562 |
| SLU-SIS-201 | 3279 | 434  | 258 | 284 | 568 |
| SLU-SIS-202 | 2882 | 79   | 258 | 284 | 567 |

|             | $N_{max}$ | $N_{min}$ | $T_{media}$ | T <sub>media_gruopo</sub> | $M_{max}$ |
|-------------|-----------|-----------|-------------|---------------------------|-----------|
|             | [kN]      | [kN]      | [kN]        | [kN]                      | [kNm]     |
| SLE-RAR-001 | 2320      | 2320      | 0           | 0                         | 0         |
| SLE-RAR-002 | 3007      | 1633      | 99          | 109                       | 218       |
| SLE-RAR-003 | 2882      | 1758      | 83          | 92                        | 183       |
| SLE-RAR-004 | 2719      | 1345      | 99          | 109                       | 218       |
| SLE-RAR-005 | 2595      | 1470      | 83          | 92                        | 183       |
| SLE-RAR-006 | 3797      | 2107      | 127         | 140                       | 280       |
| SLE-RAR-007 | 3681      | 1750      | 132         | 145                       | 291       |
| SLE-RAR-008 | 3255      | 2043      | 54          | 59                        | 118       |
| SLE-RAR-009 | 3368      | 1879      | 74          | 81                        | 162       |
| SLE-RAR-010 | 3922      | 1946      | 141         | 155                       | 311       |
| SLE-RAR-011 | 3772      | 2081      | 134         | 147                       | 294       |
| SLE-RAR-012 | 3966      | 1939      | 207         | 228                       | 456       |

| SLE-RAR-013 | 3974 | 1457 | 241 | 265 | 530 |
|-------------|------|------|-----|-----|-----|
| SLE-RAR-014 | 3347 | 1951 | 92  | 101 | 203 |
| SLE-RAR-015 | 3444 | 1802 | 115 | 127 | 254 |
| SLE-RAR-016 | 4160 | 1707 | 242 | 266 | 533 |
| SLE-RAR-017 | 3978 | 1875 | 225 | 247 | 495 |
| SLE-RAR-018 | 3343 | 1053 | 241 | 265 | 529 |
| SLE-RAR-019 | 4125 | 1780 | 166 | 183 | 365 |
| SLE-RAR-020 | 4008 | 1422 | 163 | 180 | 359 |
| SLE-RAR-021 | 3583 | 1715 | 95  | 105 | 209 |
| SLE-RAR-022 | 3695 | 1551 | 117 | 129 | 258 |
| SLE-RAR-023 | 4249 | 1618 | 177 | 194 | 389 |
| SLE-RAR-024 | 4100 | 1753 | 170 | 188 | 375 |
| SLE-RAR-025 | 4294 | 1611 | 224 | 247 | 493 |
| SLE-RAR-026 | 4302 | 1129 | 253 | 279 | 558 |
| SLE-RAR-027 | 3674 | 1624 | 114 | 126 | 252 |
| SLE-RAR-028 | 3772 | 1474 | 138 | 151 | 303 |
| SLE-RAR-029 | 4488 | 1380 | 257 | 282 | 565 |
| SLE-RAR-030 | 4306 | 1547 | 240 | 264 | 528 |
| SLE-RAR-031 | 3670 | 725  | 252 | 277 | 555 |
| SLE-RAR-032 | 3915 | 1989 | 153 | 169 | 338 |
| SLE-RAR-033 | 3799 | 1632 | 161 | 177 | 355 |
| SLE-RAR-034 | 3373 | 1925 | 82  | 90  | 180 |
| SLE-RAR-035 | 3486 | 1761 | 100 | 110 | 220 |
| SLE-RAR-036 | 4040 | 1828 | 169 | 185 | 371 |
| SLE-RAR-037 | 3890 | 1963 | 161 | 177 | 353 |
| SLE-RAR-038 | 4084 | 1821 | 238 | 262 | 525 |
| SLE-RAR-039 | 4092 | 1339 | 272 | 299 | 599 |
| SLE-RAR-040 | 3465 | 1833 | 123 | 136 | 271 |
| SLE-RAR-041 | 3562 | 1684 | 146 | 161 | 322 |
| SLE-RAR-042 | 4278 | 1589 | 273 | 301 | 602 |
| SLE-RAR-043 | 4096 | 1757 | 256 | 281 | 563 |
| SLE-RAR-044 | 3461 | 935  | 272 | 299 | 598 |
| SLE-RAR-045 | 3867 | 2037 | 142 | 157 | 314 |
| SLE-RAR-046 | 3751 | 1680 | 149 | 164 | 328 |
| SLE-RAR-047 | 3325 | 1973 | 70  | 77  | 154 |
| SLE-RAR-048 | 3438 | 1809 | 89  | 98  | 196 |
| SLE-RAR-049 | 3992 | 1876 | 157 | 173 | 346 |
| SLE-RAR-050 | 3842 | 2011 | 149 | 164 | 329 |
| SLE-RAR-051 | 4036 | 1869 | 226 | 248 | 497 |
| SLE-RAR-052 | 4044 | 1386 | 260 | 285 | 571 |
| SLE-RAR-053 | 3417 | 1881 | 111 | 122 | 243 |
| SLE-RAR-054 | 3515 | 1732 | 134 | 147 | 294 |
| SLE-RAR-055 | 4230 | 1637 | 261 | 287 | 574 |

| SLE-RAR-056 | 4048 | 1805 | 243 | 268 | 535 |
|-------------|------|------|-----|-----|-----|
| SLE-RAR-057 | 3413 | 983  | 259 | 285 | 570 |
| SLE-RAR-058 | 4313 | 1592 | 201 | 221 | 442 |
| SLE-RAR-059 | 4196 | 1234 | 203 | 223 | 447 |
| SLE-RAR-060 | 3771 | 1527 | 127 | 140 | 279 |
| SLE-RAR-061 | 3883 | 1363 | 148 | 163 | 326 |
| SLE-RAR-062 | 4437 | 1430 | 214 | 235 | 470 |
| SLE-RAR-063 | 4288 | 1565 | 207 | 227 | 455 |
| SLE-RAR-064 | 4482 | 1423 | 271 | 298 | 595 |
| SLE-RAR-065 | 4490 | 941  | 301 | 331 | 663 |
| SLE-RAR-066 | 3862 | 1435 | 157 | 173 | 346 |
| SLE-RAR-067 | 3960 | 1286 | 181 | 199 | 399 |
| SLE-RAR-068 | 4676 | 1192 | 304 | 334 | 669 |
| SLE-RAR-069 | 4494 | 1359 | 287 | 316 | 632 |
| SLE-RAR-070 | 3858 | 537  | 300 | 330 | 660 |
| SLE-RAR-071 | 3436 | 1963 | 131 | 144 | 287 |
| SLE-RAR-072 | 3406 | 1709 | 147 | 162 | 325 |
| SLE-RAR-073 | 3205 | 1962 | 76  | 84  | 168 |
| SLE-RAR-074 | 3327 | 1798 | 98  | 108 | 216 |
| SLE-RAR-075 | 3550 | 1826 | 150 | 165 | 331 |
| SLE-RAR-076 | 3441 | 1927 | 140 | 154 | 309 |
| SLE-RAR-077 | 3066 | 1396 | 147 | 161 | 322 |
| SLE-RAR-078 | 3763 | 1635 | 158 | 174 | 349 |
| SLE-RAR-079 | 3733 | 1381 | 169 | 186 | 371 |
| SLE-RAR-080 | 3532 | 1634 | 107 | 117 | 234 |
| SLE-RAR-081 | 3655 | 1470 | 130 | 143 | 286 |
| SLE-RAR-082 | 3878 | 1498 | 175 | 192 | 385 |
| SLE-RAR-083 | 3768 | 1599 | 166 | 183 | 366 |
| SLE-RAR-084 | 3394 | 1068 | 166 | 183 | 366 |
| SLE-RAR-085 | 3554 | 1845 | 160 | 176 | 353 |
| SLE-RAR-086 | 3524 | 1591 | 178 | 196 | 392 |
| SLE-RAR-087 | 3323 | 1844 | 107 | 117 | 235 |
| SLE-RAR-088 | 3445 | 1680 | 128 | 140 | 281 |
| SLE-RAR-089 | 3668 | 1708 | 181 | 199 | 398 |
| SLE-RAR-090 | 3559 | 1809 | 170 | 187 | 375 |
| SLE-RAR-091 | 3184 | 1278 | 177 | 195 | 390 |
| SLE-RAR-092 | 3506 | 1893 | 148 | 163 | 326 |
| SLE-RAR-093 | 3476 | 1639 | 166 | 182 | 365 |
| SLE-RAR-094 | 3275 | 1892 | 94  | 104 | 207 |
| SLE-RAR-095 | 3397 | 1728 | 115 | 127 | 254 |
| SLE-RAR-096 | 3620 | 1756 | 168 | 185 | 370 |
| SLE-RAR-097 | 3511 | 1857 | 158 | 174 | 348 |
| SLE-RAR-098 | 3136 | 1326 | 165 | 181 | 363 |

| SLE-RAR-099 | 3951 | 1447 | 200 | 220 | 439 |
|-------------|------|------|-----|-----|-----|
| SLE-RAR-100 | 3921 | 1193 | 213 | 234 | 469 |
| SLE-RAR-101 | 3720 | 1446 | 145 | 160 | 320 |
| SLE-RAR-102 | 3843 | 1282 | 169 | 185 | 371 |
| SLE-RAR-103 | 4066 | 1310 | 218 | 240 | 480 |
| SLE-RAR-104 | 3956 | 1411 | 209 | 229 | 459 |
| SLE-RAR-105 | 3582 | 880  | 211 | 232 | 465 |

|             | N <sub>max</sub> | N <sub>min</sub> |
|-------------|------------------|------------------|
|             | [kN]             | [kN]             |
| SLE-QPE-001 | 2320             | 2320             |
| SLE-QPE-002 | 2555             | 2085             |

| T <sub>media</sub> | T <sub>media_gruopo</sub> | $\mathbf{M}_{max}$ |
|--------------------|---------------------------|--------------------|
| [kN]               | [kN]                      | [kNm]              |
| 0                  | 0                         | 0                  |
| 63                 | 69                        | 138                |

## 6 VERIFICHE STRUTTURALI DEL FUSTO PILA

## 6.1 GEOMETRIA DELLA SEZIONE ED ARMATURA

Si riporta a seguire una figura che illustra la geometria della sezione di verifica, nella quale è rappresentata una armatura tipologica.

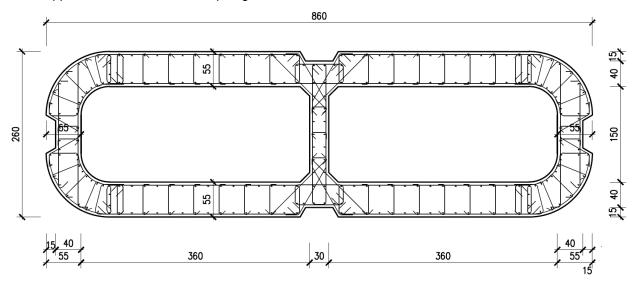



Figura 1 – Geometria della sezione trasversale della pila [cm]

#### 6.1.1 ARMATURA LONGITUDINALE

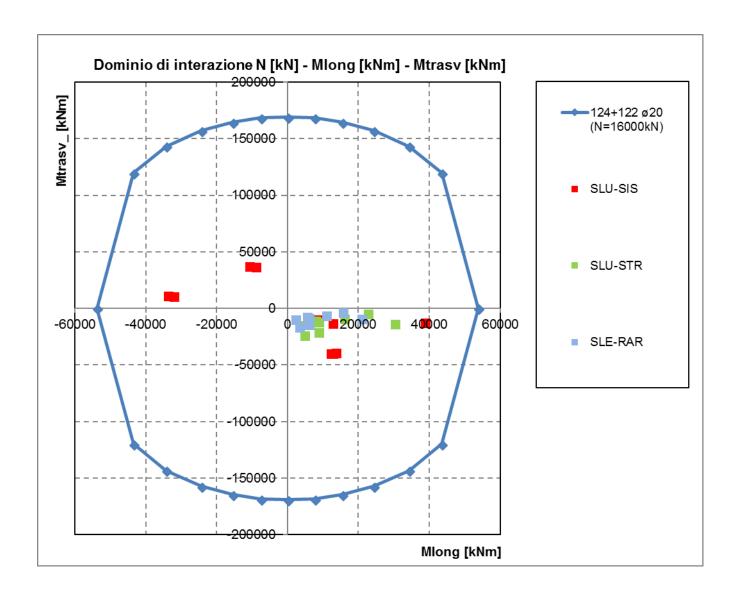
A seguire è indicata l'armatura flessionale prevista nella sezione di base del fusto pila, in termini di numero di barre presenti nello strato esterno (1° str.), nello strato interno (2° str.), nonché loro diametro fi [mm].

```
n barre (1° str.) 124
fi barre (1° str.) 20 mm
n barre (2° str.) 122
fi barre (2° str.) 20 mm
```

## 6.1.2 ARMATURA TRASVERSALE

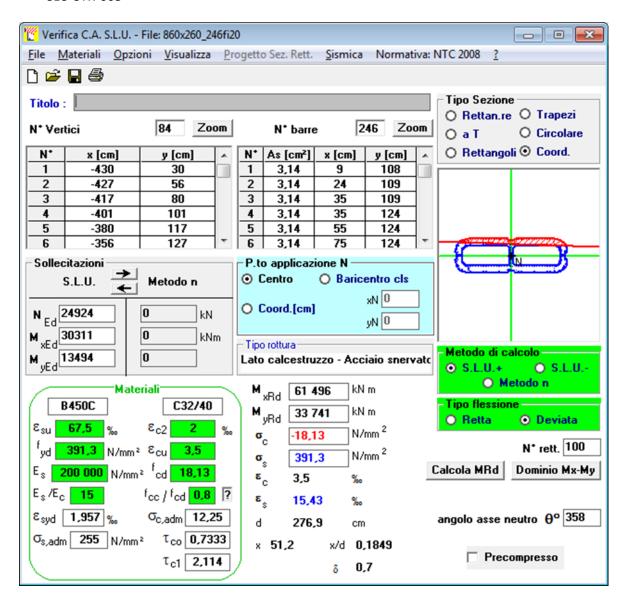
A seguire è indicata l'armatura a taglio prevista nella sezione di base del fusto pila, all'interno della zona critica.

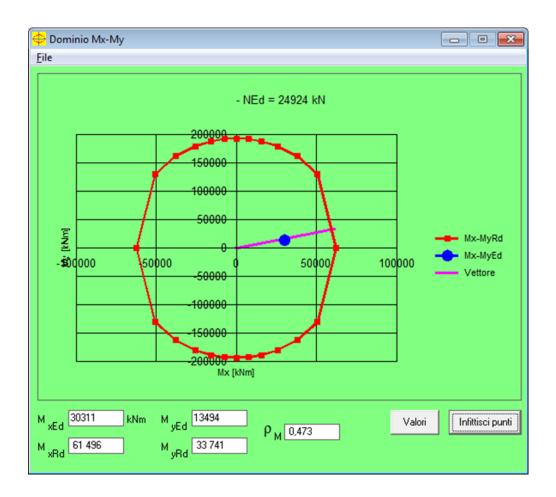
|           | _     | _     |          |
|-----------|-------|-------|----------|
| Direzione | long  | ituro | linala   |
|           | iuiiu | ILUC  | III Iaic |


| Staffe:                        |                          |                 | Spille:                      |                         |                 | Spille: |
|--------------------------------|--------------------------|-----------------|------------------------------|-------------------------|-----------------|---------|
| øw<br>A1b<br>passo<br>bracci   | 16<br>200.96<br>100<br>6 | mm<br>mm2<br>mm | øw<br>A1b<br>passo<br>bracci | 8<br>50.24<br>100<br>16 | mm<br>mm2<br>mm |         |
| <u>Direzione tr</u><br>Staffe: | <u>asversale</u>         |                 | Spille:                      |                         |                 | Spille: |
| øw<br>A1b<br>passo<br>bracci   | 16<br>200.96<br>100<br>4 | mm<br>mm2<br>mm | øw<br>A1b<br>passo<br>bracci | 8<br>50.24<br>100<br>6  | mm<br>mm2<br>mm |         |

## 6.2 VERIFICHE SLU A PRESSOFLESSIONE

La verifica SLU a presso-flessione nelle sezioni critiche si effettua verificando che:

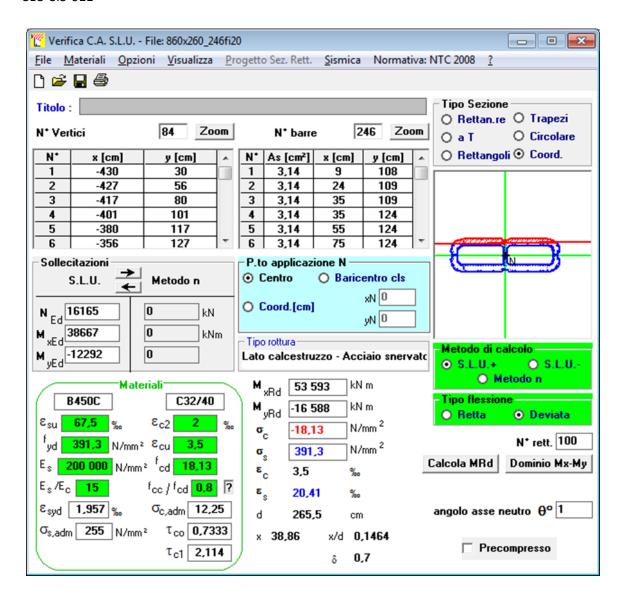

$$FS = (M_{Rd,long}^2 + M_{Rd,trasv}^2)^{0.5} / (M_{Ed,long}^2 + M_{Ed,trasv}^2)^{0.5} \ge 1$$

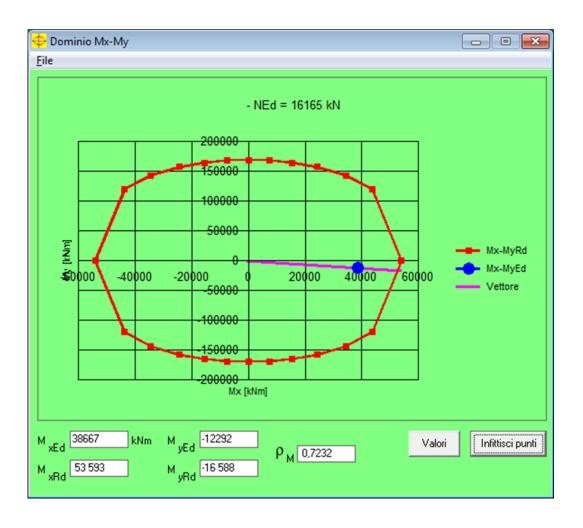

Sono riportate a seguire le verifiche SLU della sezione di base della pila, espresse in forma sintetica mediante il diagramma di interazione  $M_{long}$  -  $M_{trasv}$  valutato per una forza assiale corrispondente alla condizione di verifica più severa (SLV-SIS).



Si riportano a seguire le verifiche in forma esplicita nelle due combinazioni di carico più severe, di cui la prima ricadente in condizione statica SLU e la seconda ricadente in condizione sismica SLV.

#### SLU-STR-065




ρΜ 0.473

FS **2.11** 

#### SLU-SIS-011





ρM 0.7232FS 1.38

## 6.4 VERIFICHE SLU A TAGLIO

Seguono le sollecitazioni di verifica alla base del fusto pile, calcolate secondo il criterio della gerarchia delle resistenze:

## Sollecitazioni - Condizione statica STR

| SLU-STR | max | Combo.      | F1   | F2   | F3     | M1     | M2    |
|---------|-----|-------------|------|------|--------|--------|-------|
|         |     |             | kN   | kN   | kN     | kNm    | kNm   |
| max     | F1  | SLU-STR-065 | 3786 | 1112 | -24924 | -13494 | 30311 |
| max     | F2  | SLU-STR-019 | 1340 | 1734 | -28017 | -20670 | 8814  |
| min     | F1  | SLU-STR-002 | 507  | 1240 | -19764 | -14595 | 3296  |
| min     | F2  | SLU-STR-014 | 1188 | 186  | -24059 | -10618 | 7823  |

## Sollecitazioni - Condizione sismica SIS (da calcolo diretto con q=1.5)

| SLU-SIS | max | Combo.      | F1    | F2    | F3     | M1     | M2     |
|---------|-----|-------------|-------|-------|--------|--------|--------|
|         |     |             | kN    | kN    | kN     | kNm    | kNm    |
| max     | F1  | SLU-SIS-011 | 5683  | 1351  | -16165 | -12292 | 38667  |
| max     | F2  | SLU-SIS-038 | 1813  | 4472  | -16592 | -39342 | 12689  |
| min     | F1  | SLU-SIS-102 | -5055 | -1301 | -15454 | 10690  | -32062 |
| min     | F2  | SLU-SIS-135 | -1517 | -4336 | -15454 | 36745  | -9011  |

#### Sollecitazioni - Condizione sismica SIS (da G.R.)

| ,       |     |             |       |       |        |        |        |
|---------|-----|-------------|-------|-------|--------|--------|--------|
| SLU-SIS | max | Combo.      | F1    | F2    | F3     | M1     | M2     |
|         |     |             | kN    | kN    | kN     | kNm    | kNm    |
| max     | F1  | SLU-SIS-011 | 5683  | 1351  | -16165 | -12292 | 38667  |
| max     | F2  | SLU-SIS-038 | 1813  | 4472  | -16592 | -39342 | 12689  |
| min     | F1  | SLU-SIS-102 | -5055 | -1301 | -15454 | 10690  | -32062 |
| min     | F2  | SLU-SIS-135 | -1517 | -4336 | -15454 | 36745  | -9011  |

| MRd,1  | MRd,2 | Vgr,1 | Vgr,2 |
|--------|-------|-------|-------|
| kNm    | kNm   | kN    | kN    |
| 16588  | 53593 | 7876  | 1823  |
| 131678 | 40617 | 2719  | 6708  |
| 33019  | 52210 | 7583  | 1951  |
| 141056 | 34659 | 2275  | 6504  |

Verifica - Direzione Longitudinale Verifica a taglio per sezioni rettangolari armate a taglio (D.M. 14/01/2008)

| classe cls                                         | Rck       | 40       | N/mm2  |
|----------------------------------------------------|-----------|----------|--------|
| resist. Caratteristica cilindrica                  | fck       | 33       | N/mm2  |
|                                                    | fcd       | 19       |        |
| coeff. parziale                                    | γс        | 1.5      |        |
| larghezza membratura resistene a V                 | bw        | 1400     | mm     |
| altezza membratura resistene a V                   | Н         | 2600     | mm     |
| altezza utille                                     | d         | 2340     | mm     |
| area della sezione                                 | As        | 1.1E+07  | mm2    |
| sforzo assiale dovuto ai carichi o precompressione | N         | 1.5.E+07 | N      |
|                                                    | σср       | 4.25     | N/mm2  |
|                                                    | ας        | 1.23     |        |
| Acciaio                                            | fyk       | 450      | N/mm2  |
| Feb44k                                             | fyd       | 391      | N/mm2  |
| diametro staffe                                    | øw        | 16       | mm     |
| Area staffa                                        | Aøw       | 201      | mm2    |
| 0.9 d                                              | Z         | 2106     | mm     |
| passo delle staffe (spille)                        | sw        | 100      | mm     |
|                                                    | n° bracci | 6        |        |
| angolo di inclinazione                             | θ         | 33       | 0      |
| deve essere compreso tra 1 e 2.5                   | cot(θ)    | 1.54     |        |
| angolo di inclinazione armatura rispetto asse palo | α         | 90       | o      |
|                                                    | cot(a)    | 0.00     |        |
|                                                    | Asw/sw    | 12.06    | mm2/mm |

| Taglio resistente per "taglio trazione"     | VRsd | 15309 | kN |
|---------------------------------------------|------|-------|----|
| Taglio resistente per "taglio compressione" | VRcd | 15527 | kN |

| taglio sollecitante                          | VEd | 7876  | kN  |
|----------------------------------------------|-----|-------|-----|
| fattore di sicurezza per GR (par. 7.9.5.2.2) | γBd | 1.25  |     |
| taglio resistente                            | VRd | 12247 | kN  |
|                                              | VEd | <     | VRd |

La verifica è soddisfatta.

FS 1.55

Verifica - Direzione Trasversale Verifica a taglio per sezioni rettangolari armate a taglio (D.M. 14/01/2008)

| classe cls                                         | Rck       | 40      | N/mm2  |
|----------------------------------------------------|-----------|---------|--------|
| resist. Caratteristica cilindrica                  | fck       | 33      | N/mm2  |
|                                                    | fcd       | 19      |        |
| coeff. parziale                                    | γс        | 1.5     |        |
| larghezza membratura resistene a V                 | <br>bw    | 1100    | mm     |
| altezza membratura resistene a V                   | Н         | 8600    | mm     |
| altezza utille                                     | d         | 7740    | mm     |
| area della sezione                                 | As        | 1.1E+07 | mm2    |
| sforzo assiale dovuto ai carichi o precompressione | N         | 0       | N      |
| ' '                                                | σср       | 0.00    | N/mm2  |
|                                                    | ας        | 1.00    |        |
| Acciaio                                            | fyk       | 450     | N/mm2  |
| Feb44k                                             | fyd       | 391     | N/mm2  |
| diametro staffe                                    | øw        | 16      | mm     |
| Area staffa                                        | Aøw       | 201     | mm2    |
| 0.9 d                                              | Z         | 6966    | mm     |
| passo delle staffe (spille)                        | sw        | 100     | mm     |
|                                                    | n° bracci | 4       |        |
| angolo di inclinazione                             | θ         | 45      | ٥      |
| deve essere compreso tra 1 e 2.5                   | cot(θ)    | 1.00    |        |
| angolo di inclinazione armatura rispetto asse palo | α         | 90      | 0      |
|                                                    | cot(a)    | 0.00    |        |
|                                                    | Asw/sw    | 8.04    | mm2/mm |

| Taglio resistente per "taglio trazione"     | VRsd | 21922 | kN |
|---------------------------------------------|------|-------|----|
| Taglio resistente per "taglio compressione" | VRcd | 36040 | kN |

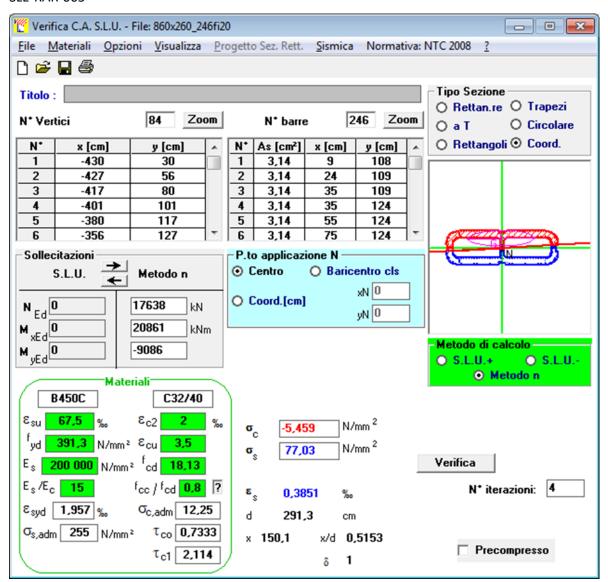
| taglio sollecitante                          | VEd | 6708  | kN  |
|----------------------------------------------|-----|-------|-----|
| fattore di sicurezza per GR (par. 7.9.5.2.2) | γBd | 1.25  |     |
| taglio resistente                            | VRd | 17538 | kN  |
|                                              | VEd | <     | VRd |

La verifica è soddisfatta.

FS 2.61

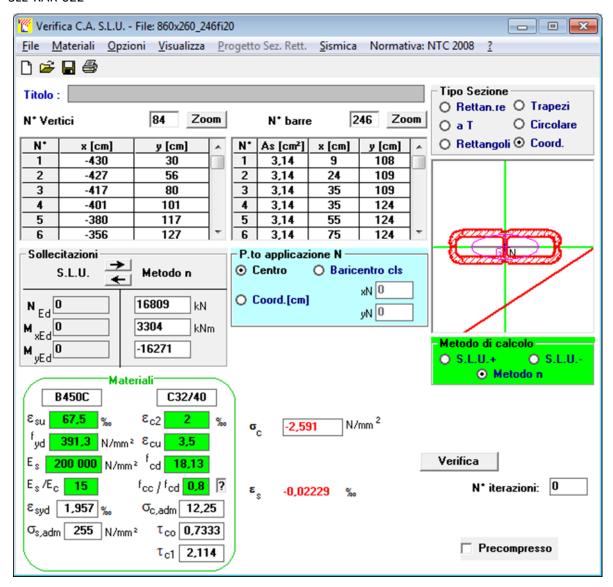
#### 6.6 VERIFICHE SLE DELLE TENSIONI

La verifica SLE di tipo tensionale si effettua controllando che le massime tensioni normali agenti nella sezione risultino inferiori ai seguenti valori limite:


#### per le combinazioni SLE-RAR:

• tensione limite nel calcestruzzo:  $\sigma_c = 0.55 \, f_{ck}$ • tensione limite nelle barre:  $\sigma_s = 0.75 \, f_{yk}$ 

## per le combinazioni SLE-QPE:


• tensione limite nel calcestruzzo:  $\sigma_c = 0.40 f_{ck}$ 

#### SLE-RAR-065



La verifica è soddisfatta.

#### SLE-RAR-022



La verifica è soddisfatta.

## 6.7 VERIFICHE SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua controllando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

## per le combinazioni SLE-RAR:

• apertura fessure limite:  $w_{lim} = w_1 = 0.30 \text{ mm}$ 

pos. baric. strato i-esimo [mm]
 diametro barre strato i-esimo [mm]
 numero barre strato i-esimo []

 $\sigma_{s_{max}}$  Tensione massima barre strato i-esimo [MPa]

 $egin{array}{ll} egin{array}{ll} egi$ 

Ac,eff area efficace relativamente ad una singola barre [mm2]

 $\begin{array}{ll} \rho_{p,\text{eff}} & \text{percentuale di armatura relativa a $A_{c,\text{eff}}$} \\ k_t & (0.6 \text{ carichi brevi; 0.4 lunga durata}) \\ k_1 & (0.8 \text{ barre ad. migliorata; 1.6 liscie}) \\ k_2 & (0.5 \text{ per flessione; 1 trazione}) \end{array}$ 

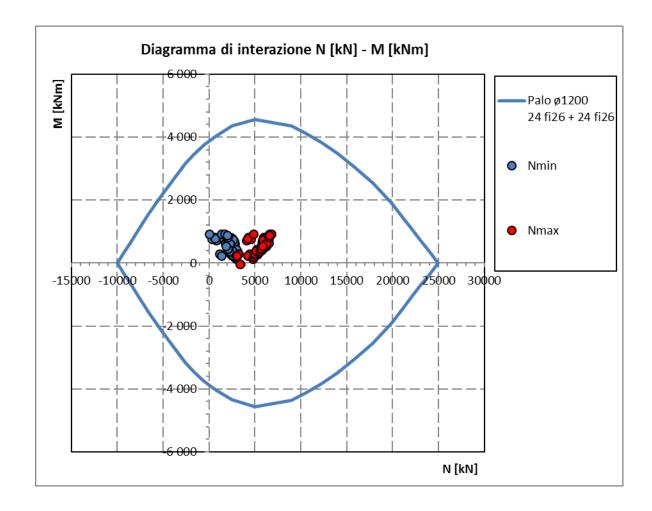
## Prima condizione di carico SLE-RAR

|                    | INPUT |     |  |  |
|--------------------|-------|-----|--|--|
| Rck                | 40    | Мра |  |  |
| h                  | 550   | mm  |  |  |
| c1                 | 66    | mm  |  |  |
| ф1                 | 20    | mm  |  |  |
| n1                 | 5.000 |     |  |  |
| c2                 |       | mm  |  |  |
| ф2                 |       | mm  |  |  |
| n2                 | 5.000 |     |  |  |
| d                  | 484   | mm  |  |  |
| beff               | 200   | mm  |  |  |
|                    |       |     |  |  |
| σs_max1            | 77    | Мра |  |  |
| σs_max2            |       | Мра |  |  |
| hc <sub>,eff</sub> | 165.0 | mm  |  |  |
| Ac,eff             | 33000 | mm2 |  |  |
| $ ho p_{, eff}$    | 0.010 |     |  |  |
| kt                 | 0.6   |     |  |  |
| k1                 | 8.0   |     |  |  |
| k2                 | 0.5   |     |  |  |
| k3                 | 3.4   |     |  |  |
| k4                 | 0.425 |     |  |  |

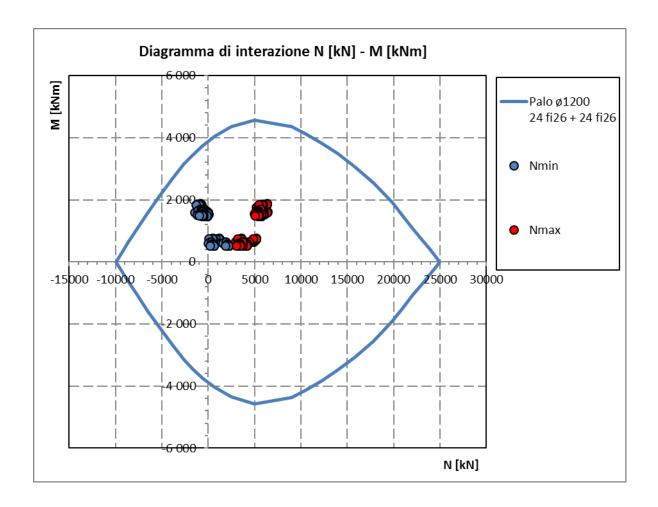
| OUTPUT                     |                           |    |  |  |
|----------------------------|---------------------------|----|--|--|
| diff. def. arm             | ature-cls                 |    |  |  |
| εsm - εcm                  | 2.24E-04                  | -  |  |  |
| distanza max               | k fessure                 |    |  |  |
| sr <sub>,max</sub>         | sr <sub>,max</sub> 548 mm |    |  |  |
| ampiezza fes               | ampiezza fessure:         |    |  |  |
| wk                         | 0.123                     | mm |  |  |
| wlim                       | 0.200                     | mm |  |  |
| La verifica è soddisfatta. |                           |    |  |  |

# 7 VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE

## 7.1 GEOMETRIA DELLA SEZIONE ED ARMATURA


| GEOMETRIA DELLA SEZIONE             |        |     |
|-------------------------------------|--------|-----|
| Diametro del palo =                 | 1200   | mm  |
| Copriferro netto c =                | 60     | mm  |
| Classe di resistenza calcestruzzo = | C25/30 | Мра |
| Classe di resistenza delle barre =  | B450C  | MPa |

| ARMATURA PER I PRIMI 10 ø               |      |    |
|-----------------------------------------|------|----|
| 1° strato di armatura longitudinale     |      |    |
| Numero barre long.                      | 24   | -  |
| Diametro barre long.                    | 26   | mm |
| Copriferro baricentrico arm. long. c' = | 87   | mm |
| 2° strato di armatura longitudinale     |      |    |
| Numero barre long.                      | 24   | -  |
| Diametro barre long.                    | 26   | mm |
| Copriferro baricentrico arm. long. c' = | 138  | mm |
| Armatura trasversale                    |      |    |
| Diametro barre trasv.                   | 14   | mm |
| Passo arm. trasv.                       | 150  | mm |
| Diametro corona esterna =               | 1066 | mm |


## 7.2 VERIFICHE SLU A PRESSOFLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di sommità del palo maggiormente sollecitato, espresse in forma sintetica mediante il diagramma di interazione N – M.

Diagramma di interazione N-M con coordinate sollecitazioni indotte da combinazioni SLU-STR



## Diagramma di interazione N-M con coordinate sollecitazioni indotte da combinazioni SLU-SIS



La verifica è soddisfatta in quanto le coppie N-M delle sollecitazioni agenti nella sezione di verifica sono interne al dominio di resistenza per ogni condizione di carico indagata.

# 7.3 VERIFICHE SLU A TAGLIO

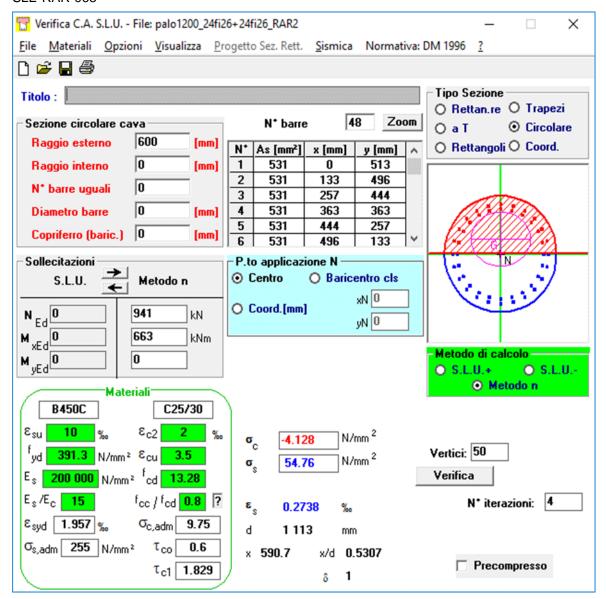
## Verifca a taglio per sezioni circolari armate a taglio (D.M. 14/01/2008)

| classe cls                                         | Rck       | 30      | N/mm2  |
|----------------------------------------------------|-----------|---------|--------|
| resist. Caratteristica cilindrica                  | fck       | 25      | N/mm2  |
|                                                    | fcd       | 14      | N/mm2  |
| diametro                                           | Φ         | 1200    | mm     |
| Area sezione                                       | Α         | 1130973 | mm2    |
| copriferro                                         | С         | 80      | mm     |
| Area sezione rettangolare equivalente              | Aeq       | 941544  | mm2    |
| altezza utile equivalente                          | d         | 931     | mm     |
| larghezza equivalente                              | bw        | 1011    | mm     |
| altezza equivalente                                | heq       | 1118    | mm     |
| sforzo assiale dovuto ai carichi o precompressione | N         |         | N      |
|                                                    | σср       | 0.000   | N/mm2  |
|                                                    | αср       | 1.00    |        |
|                                                    |           |         |        |
| Acciaio                                            | fyk       | 450     | N/mm2  |
| B450C                                              | fyd       | 391     | N/mm2  |
| diametro staffe (spille)                           | φw        | 14      | mm     |
| Area staffa (spilla)                               | Афw       | 154     | mm2    |
| 0.9 d                                              | Z         | 838     | mm     |
|                                                    |           |         |        |
| passo spirale                                      | SW        | 150     | mm     |
|                                                    | n° bracci | 2       |        |
| angolo di inclinazione biella compressa            | θ         | 21.8    | 0      |
| deve essere compreso tra 1 e 2.5                   | cot(θ)    | 2.50    |        |
| angolo di inclinazione armatura rispetto asse palo | α         | 90      | 0      |
|                                                    | cot(a)    | 0.00    |        |
|                                                    | Asw/sw    | 2.053   | mm2/mm |
|                                                    |           |         |        |
| Taglio resistente per "taglio trazione"            | VRsd      | 1682    | kN     |
| Taglio resistente per "taglio compressione"        | VRcd      | 2061    | kN     |
|                                                    |           |         |        |
| taglio sollecitante                                | VEd       | 958     | kN     |
| fattore di sicurezza per GR (par. 7.9.5.2.2)       | γRd       | 1       |        |
| taglio resistente                                  | VRd       | 1682    | kN     |
|                                                    | VEd       | <       | VRd    |

verifica

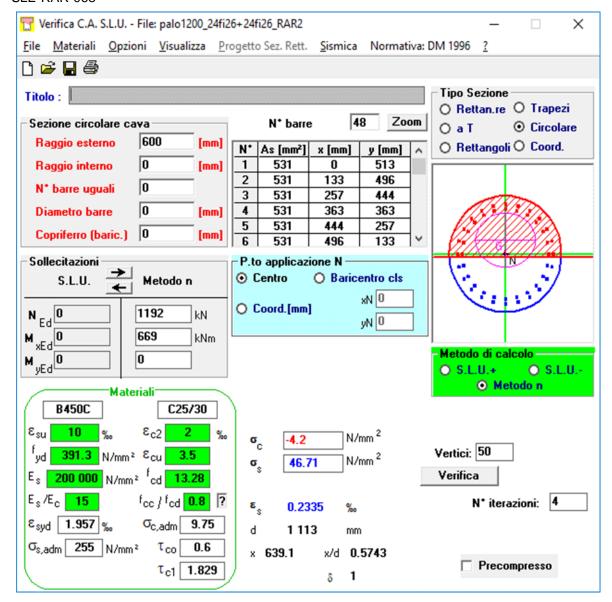
## 7.4 VERIFICHE SLE DELLE TENSIONI

La verifica SLE di tipo tensionale si effettua controllando che le massime tensioni normali agenti nella sezione risultino inferiori ai seguenti valori limite:


#### per le combinazioni SLE-RAR:

 $\begin{array}{lll} \bullet & \text{tensione limite nel calcestruzzo:} & \sigma_c & = 0.55 \ f_{ck} \\ \bullet & \text{tensione limite nelle barre:} & \sigma_s & = 0.75 \ f_{yk} \\ \end{array}$ 

#### per le combinazioni SLE-QPE:


• tensione limite nel calcestruzzo:  $\sigma_c = 0.40 f_{ck}$ 

#### SLE-RAR-065



La verifica è soddisfatta.

#### SLE-RAR-068



La verifica è soddisfatta.

## 7.5 VERIFICHE SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua controllando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

## per le combinazioni SLE-RAR:

• apertura fessure limite:  $w_{lim} = w_1 = 0.30 \text{ mm}$ 

## Prima condizione di carico SLE-RAR

|                     | INPUT |     |  |  |
|---------------------|-------|-----|--|--|
| Rck                 | 30    | Мра |  |  |
| h                   | 1200  | mm  |  |  |
| c1                  | 87    | mm  |  |  |
| ф1                  | 26    | mm  |  |  |
| n1                  | 7.839 |     |  |  |
| c2                  | 138   | mm  |  |  |
| ф2                  | 26    | mm  |  |  |
| n2                  | 7.839 |     |  |  |
| d                   | 1088  | mm  |  |  |
| beff                | 128   | mm  |  |  |
| х                   | 590.7 | mm  |  |  |
| σs_ <sub>max1</sub> | 55    | Мра |  |  |
| σs_ <sub>max2</sub> | 55    | Мра |  |  |
| hc <sub>,eff</sub>  | 203   | mm  |  |  |
| Ac,eff              | 25908 | mm2 |  |  |
| $ ho p_{, eff}$     | 0.041 |     |  |  |
| kt                  | 0.6   |     |  |  |
| k1                  | 8.0   |     |  |  |
| k2                  | 0.5   |     |  |  |
| k3                  | 3.4   |     |  |  |
| k4                  | 0.425 |     |  |  |

| OUTPUT                     |          |    |  |
|----------------------------|----------|----|--|
| diff. def. arma            | ture-cls |    |  |
| εsm - εcm 1.60E-04         |          |    |  |
| distanza max fessure       |          |    |  |
| sr <sub>,max</sub> 473 mm  |          |    |  |
| ampiezza fessure:          |          |    |  |
| wk                         | 0.075    | mm |  |
| wlim                       | 0.300    | mm |  |
| La verifica è soddisfatta. |          |    |  |

## Seconda condizione di carico SLE-RAR

|                     | INPUT |     |
|---------------------|-------|-----|
| Rck                 | 30    | Мра |
| h                   | 1200  | mm  |
| c1                  | 87    | mm  |
| ф1                  | 26    | mm  |
| n1                  | 7.839 |     |
| c2                  | 138   | mm  |
| ф2                  | 26    | mm  |
| n2                  | 7.839 |     |
| d                   | 1088  | mm  |
| beff                | 128   | mm  |
| х                   | 639.1 | mm  |
| σs_ <sub>max1</sub> | 47    | Мра |
| σs <sub>_max2</sub> | 47    | Мра |
| hc <sub>,eff</sub>  | 187   | mm  |
| Ac,eff              | 23850 | mm2 |
| ρp <sub>,eff</sub>  | 0.045 |     |
| kt                  | 0.6   |     |
| k1                  | 8.0   |     |
| k2                  | 0.5   |     |
| k3                  | 3.4   |     |
| k4                  | 0.425 |     |

| OUT                | OUTPUT      |    |  |  |  |  |  |
|--------------------|-------------|----|--|--|--|--|--|
| diff. def. arma    | ture-cls    |    |  |  |  |  |  |
| εsm <b>- εcm</b>   | 1.36E-04    | -  |  |  |  |  |  |
| distanza max       | fessure     |    |  |  |  |  |  |
| Sr <sub>,max</sub> | 460         | mm |  |  |  |  |  |
| ampiezza fess      | sure:       |    |  |  |  |  |  |
| wk                 | 0.063       | mm |  |  |  |  |  |
| wlim               | 0.300       | mm |  |  |  |  |  |
| La verifica è s    | oddisfatta. |    |  |  |  |  |  |

## 8 VERIFICHE DEL PLINTO DI FONDAZIONE

## 8.1 VERIFICHE SLU E SLE A TIRANTE-PUNTONE

Le verifiche SLU e SLE si effettuano controllando che le massime tensioni normali agenti nel tirante di armatura e nella biella compressa di calcestruzzo risultino inferiori ai seguenti valori limite:

#### per le combinazioni SLU e SLV:

• tensione limite nel calcestruzzo:  $\sigma_c = f_{cd}' = 0.5 f_{cd}$ 

• tensione limite nelle barre:  $\sigma_s = f_{yd}$ 

#### per le combinazioni SLE-RAR:

 $\begin{array}{lll} \bullet & \text{tensione limite nel calcestruzzo:} & \sigma_c & = 0.55 \ f_{ck} \\ \bullet & \text{tensione limite nelle barre:} & \sigma_s & = 0.75 \ f_{yk} \\ \end{array}$ 

#### per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo:  $\sigma_c = 0.40 f_{ck}$ 

Si distinguono due meccanismi di tipo tirante-puntone principali nel plinto di fondazione, illustrati nelle figure seguenti e descritti a seguire:

- un primo meccanismo è innescato dalle azioni trasmesse al plinto dai pali centrali e coinvolge un tirante-puntone parallelo alla direzione longitudinale (evidenziato in verde). Tale meccanismo coinvolge la sola armatura longitudinale inferiore del plinto.
- un secondo meccanismo coinvolge i pali di spigolo ed innesca un tirante-puntone anche'esso parallelo alla direzione longitudinale (evidenziato in rosso). Tale meccanismo coinvolge la sola armatura longitudinale inferiore del plinto.

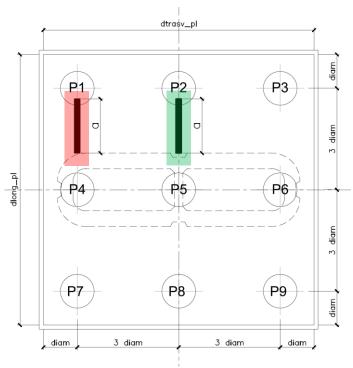



Figura 2 – Vista in pianta - Tirante-puntone centrale (verde) e di spigolo (rosso)

## 8.1.1 VERIFICHE RELATIVE AI PALI DI SPIGOLO

Seguono le forze assiali agenti alla testa dei pali nelle condizioni di carico più severe per ogni combinazione di carico:

|         | Nmax | Nmin  |
|---------|------|-------|
| SLU-STR | 6672 | -157  |
| SLU-GEO | 5490 | 143   |
| SIS-SLV | 6254 | -1590 |
|         |      |       |
|         | kN   | kN    |

|         | Nmax | Nmin |
|---------|------|------|
| SLE-QP  | 2555 | 2085 |
| SLE-RAR | 4676 | 537  |
|         |      |      |
|         |      |      |
|         | kN   | kN   |

Seguono le verifiche delle armature superiori ed inferiori del plinto di fondazione:

#### **Armatura inferiore**

|         | Nmax | PEd  | T    | σs_long | σs_trasv | < fyd | С    | σς  | < fcd' |
|---------|------|------|------|---------|----------|-------|------|-----|--------|
| SLU-STR | 6672 | 5916 | 6804 | 193     | 0        | VERO  | 9016 | 4.8 | VERO   |
| SLU-GEO | 5490 | 4734 | 5445 | 154     | 0        | VERO  | 7215 | 3.8 | VERO   |
| SIS-SLV | 6254 | 5498 | 6323 | 179     | 0        | VERO  | 8379 | 4.4 | VERO   |
|         | kN   | kN   | kN   | Мра     | Мра      |       | kN   | Мра |        |

#### Armatura superiore

|         | Nmin  | PEd  | Т    | σs_long | σs_trasv | < fyd | С    | σς  | < fcd' |
|---------|-------|------|------|---------|----------|-------|------|-----|--------|
| SLU-STR | -157  | 912  |      |         |          |       |      |     |        |
| SLU-GEO | 143   | -    |      |         |          |       |      |     |        |
| SIS-SLV | -1590 | 2346 | 2698 | 199     | 0        | VERO  | 3575 | 1.9 | VERO   |
|         |       |      |      |         |          |       |      |     |        |
|         | kN    | kN   | kN   | Мра     | Мра      |       | kN   | Мра |        |

#### **Armatura inferiore**

|         | Nmax | PEd  | Т    | σs_long | σs_trasv | < 0.75 fyk | С    | σς  | < 0.40 fck' |
|---------|------|------|------|---------|----------|------------|------|-----|-------------|
| SLE-QP  | 2555 | 1799 | 2069 | 59      | 0        | VERO       | 2742 | 1.5 | VERO        |
| SLE-RAR | 4676 | 3920 | 4509 | 128     | 0        | VERO       | 5974 | 3.2 | VERO        |
|         | kN   | kN   | kN   | Мра     | Мра      |            | kN   | Мра |             |

## Armatura superiore

|         | Nmin | PEd | T  | σs_long | σs_trasv | < 0.75 fyk | С  | σc  | < 0.40 fck' |
|---------|------|-----|----|---------|----------|------------|----|-----|-------------|
| SLE-QP  | 2085 | -   |    |         |          |            |    |     |             |
| SLE-RAR | 537  | -   |    |         |          |            |    |     |             |
|         |      |     |    |         |          |            |    |     |             |
|         | kN   | kN  | kN | Мра     | Мра      |            | kN | Мра |             |

Le verifiche sono soddisfatte.

## 8.1.2 VERIFICHE RELATIVE AI PALI DI INTERMEDI

Forze assiali agenti alla testa dei pali nelle condizioni di carico più severe per ogni combinazione di carico.

|         | Nmax | Nmin |
|---------|------|------|
| SLU-STR | 5820 | 585  |
| SLU-GEO | 4753 | 784  |
| SIS-SLV | 5367 | -730 |
|         |      |      |
|         | kN   | kN   |

|         | Nmax | Nmin |
|---------|------|------|
| SLE-QP  | 2555 | 2085 |
| SLE-RAR | 4101 | 1036 |
|         |      |      |
|         |      |      |
|         | kN   | kN   |

Seguono le verifiche delle armature superiori ed inferiori del plinto di fondazione:

## **Armatura inferiore**

|         | Nmax | PEd  | T    | σs_long | σs_trasv | < fyd | С    | σς  | < fcd' |
|---------|------|------|------|---------|----------|-------|------|-----|--------|
| SLU-STR | 5820 | 5064 | 5824 | 172     | -        | VERO  | 7718 | 3.4 | VERO   |
| SLU-GEO | 4753 | 3997 | 4597 | 136     | -        | VERO  | 6092 | 2.7 | VERO   |
| SIS-SLV | 5367 | 4612 | 5304 | 156     | -        | VERO  | 7028 | 3.1 | VERO   |
|         | kN   | kN   | kN   | Мра     | Мра      |       | kN   | Мра |        |

## Armatura superiore

|         | Nmin | PEd  | T    | σs_long | σs_trasv | < fyd | С    | σς  | < fcd' |
|---------|------|------|------|---------|----------|-------|------|-----|--------|
| SLU-STR | 585  | -    |      |         |          |       |      |     |        |
| SLU-GEO | 784  | -    |      |         |          |       |      |     |        |
| SIS-SLV | -730 | 1485 | 1708 | 210     | -        | VERO  | 2264 | 1.0 | VERO   |
|         |      |      |      |         |          |       |      |     |        |
|         | kN   | kN   | kN   | Мра     | Мра      |       | kN   | Мра |        |

#### **Armatura inferiore**

|         | Nmax | PEd  | T    | σs_long | σs_trasv | < 0.75 fyk | С    | σς  | < 0.40 fck' |
|---------|------|------|------|---------|----------|------------|------|-----|-------------|
| SLE-QP  | 2555 | 1799 | 2069 | 61      | -        | VERO       | 2742 | 1.2 | VERO        |
| SLE-RAR | 4101 | 3345 | 3847 | 113     | -        | VERO       | 5098 | 2.3 | VERO        |
|         | kN   | kN   | kN   | Мра     | Мра      |            | kN   | Мра |             |

#### **Armatura superiore**

|         | Nmin | PEd | T  | σs_long | σs_trasv | < 0.75 fyk | С  | σς  | < 0.40 fck' |
|---------|------|-----|----|---------|----------|------------|----|-----|-------------|
| SLE-QP  | 2085 | 1   |    |         |          |            |    |     |             |
| SLE-RAR | 1036 | -   |    |         |          |            |    |     |             |
|         |      |     |    |         |          |            |    |     | VERO        |
|         | kN   | kN  | kN | Мра     | Мра      |            | kN | Мра |             |

Le verifiche sono soddisfatte.

## 8.2 VERIFICHE SLU A PUNZONAMENTO

Conservativamente, la verifica è stata riferita al palo di bordo maggiormente sollecitato e lo sviluppo del perimetro efficace u è stato definito considerando una distanza dall'impronta caricata (coincidente con la sezione di testa del palo) pari a  $d = a 0.9 H_{pl} (H_{pl} = altezza plinto, a < 2)$ , come illustrato nella seguente figura.

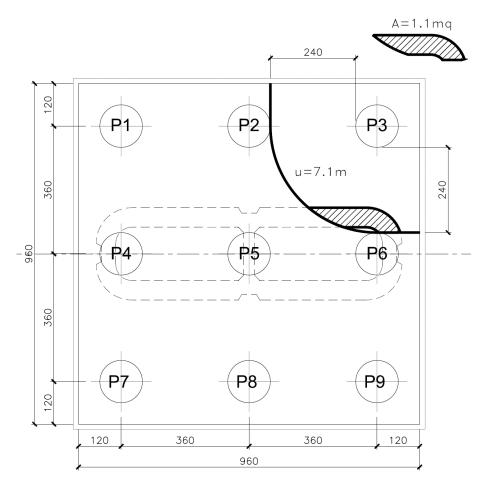



Figura 3 – Perimetro efficace per la verifica a taglio-punzonamento

A seguire si riportano il valore della forza concentrata  $V_{Ed}$  [kN] agente alla testa del palo maggiormente sollecitato nella condizione di verifica più severa, il valore del coefficiente a che individua la geometria del perimetro efficace e lo sviluppo u [m] di quest'ultimo.

La forza concentrata  $V_{Ed} = 5915$  kN è stata depurata della quota parte di forza assiale agente nella sezione di base del fusto della pila, pari a  $N_{Ed}$  \* A /  $A_c = 17000$  kN \* 1.1 m<sup>2</sup> / 10.45 m<sup>2</sup> = 1789 kN

| VEd | 4126 | kN |
|-----|------|----|
| а   | 1.07 |    |
| u   | 7.1  | m  |

| Verifica a punzonamento per sezioni rettangolari<br>SENZA armatura a taglio (NTC08 - EC2-rev05) |                             |       |       |  |
|-------------------------------------------------------------------------------------------------|-----------------------------|-------|-------|--|
| classe cls                                                                                      | С                           | 35    | Мра   |  |
| coeff. parziale                                                                                 | γс                          | 1.5   |       |  |
| perimetro di verifica                                                                           | u1                          | 7100  | mm    |  |
| altezza soletta                                                                                 | Н                           | 2500  | mm    |  |
| altezza utille                                                                                  | d                           | 2395  | mm    |  |
| diametro ferro longitudinale teso                                                               | φ lon                       | 30    | mm    |  |
|                                                                                                 | strati                      | 3     |       |  |
|                                                                                                 | passo                       | 150   | mm    |  |
| percentuale di armatura trasversale teso                                                        | ρlx                         | 0.49% |       |  |
| diametro ferro trasversale                                                                      | φ tra                       | 20    | mm    |  |
|                                                                                                 | strati                      | 2     |       |  |
|                                                                                                 | passo                       | 200   | mm    |  |
| percentuale di armatura trasv                                                                   | ρtx                         | 0.13% |       |  |
| percentuale di armatura totale                                                                  | ρΙ                          | 0.25% |       |  |
| Eventuale compressione long                                                                     | σc_lon                      | 0     | Мра   |  |
| Eventuale compressione trasv                                                                    | σc_tra                      | 0     | Мра   |  |
|                                                                                                 | σc                          | 0.00  | N/mm2 |  |
|                                                                                                 | k1                          | 0.10  |       |  |
|                                                                                                 | Cr,dc                       | 0.12  |       |  |
|                                                                                                 | k                           | 1.29  |       |  |
|                                                                                                 | vmin                        | 0.30  | Мра   |  |
|                                                                                                 | vrd_c                       | 0.320 | Мра   |  |
|                                                                                                 | vmin+k1σcp                  | 0.303 | Мра   |  |
| Tensione resistente taglio-punzonamento                                                         | vrd_c                       | 0.320 | N/mm2 |  |
| taglio sollecitante                                                                             | VEd - NEd*                  | 4126  | kN    |  |
|                                                                                                 | vEd                         | 0.243 | Мра   |  |
| La verifica è soddisfatta                                                                       | $\mathbf{vrd}_{\mathbf{c}}$ | >     | ved   |  |

## 8.3 VERIFICHE SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua controllando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

## per le combinazioni SLE-RAR:

· apertura fessure limite:

 $W_{lim} = W_1 = 0.30 \text{ mm}$ 

Le verifiche riportate a seguire sono riferite al meccanismo tirante-puntone che coinvolge i pali di spigolo (meccanismo diagonale), ossia il più severo tra i due presi in considerazione.

## 1. Armatura longitudinale inferiore

|                     | INPUT |     |
|---------------------|-------|-----|
| Rck                 | 35    | Мра |
| h                   | 2500  | mm  |
| c1                  | 55    | mm  |
| ф1                  | 30    | mm  |
| n1                  | 6.667 |     |
| c2                  | 105   | mm  |
| ф2                  | 30    | mm  |
| n2                  | 6.667 |     |
| с3                  | 155   | mm  |
| ф3                  | 30    | mm  |
| n3                  | 3.333 | 1/m |
| d                   | 2405  | mm  |
| beff                | 150   | mm  |
| х                   |       | mm  |
| σs_ <sub>max1</sub> | 128   | Мра |
| σs_ <sub>max2</sub> |       | Мра |
| hc <sub>,eff</sub>  | 237.5 | mm  |
| Ac,eff              | 35625 | mm2 |
| ρp,eff              | 0.050 |     |
| kt                  | 0.6   |     |
| k1                  | 0.8   |     |
| k2                  | 1     |     |
| k3                  | 3.4   |     |
| k4                  | 0.425 |     |

| OUTPUT                     |                         |    |  |  |  |
|----------------------------|-------------------------|----|--|--|--|
| diff. def. arr             | diff. def. armature-cls |    |  |  |  |
| εsm - εcm                  | 4.01E-04                | -  |  |  |  |
| distanza ma                | distanza max fessure    |    |  |  |  |
| sr <sub>,max</sub>         | 567                     | mm |  |  |  |
| ampiezza fe                | ampiezza fessure:       |    |  |  |  |
| wk                         | 0.228                   | mm |  |  |  |
| wlim                       | 0.300                   | mm |  |  |  |
| La verifica è soddisfatta. |                         |    |  |  |  |