COMMITTENTE: RETE FERROVIARIA ITALIANA GRUPPO FERROVIE DELLO STATO ITALIANE **DIREZIONE LAVORI:** ERROVIE DELLO STATO ITALIANE APPALTATORE: Ghella ITIMESA. ORZIO CFT YZZAROTTI **DIRETTORE DELLA** PROGETTISTA: PROGETTAZIONE: **PROGETTAZIONE** RAGGRUPPAMENTO TEMPORANEO PROGETTISTI Ing. FEDERICO DURASTANTI Ing. PIETRO MAZZOLI Responsabile integrazione fra le varie PIZZAROTTI Sintagma INTEGRA prestazioni specialistiche PROGETTO ESECUTIVO ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI FERMATE E STAZIONI FERMATA VALLE DI MADDALONI - Elaborati strutturali Sottopasso di fermata: Relazione di calcolo **APPALTATORE** SCALA: Consorzio CFT IL DIRETTORE TECNICO Geom. C. BIANCHI 10-07-2018 ENTE TIPO DOC. OPERA/DISCIPLINA REV. COMMESSA LOTTO FASE PROGR. 0 Data Data Approvato Data Descrizione Redatto Verificato Autorizzato Data Rev. 10-07-2018 F.Durastanti 10-07-2018 P. Mazzoli 10-07-2018 F.Durastanti P.Castraberte **Emissione** Α 10-07-2018

n. Elab.:

File: IF1N.0.1.E.ZZ.CL.FV.01.2.0.001.A.doc

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0120 001
 A
 2 di 64

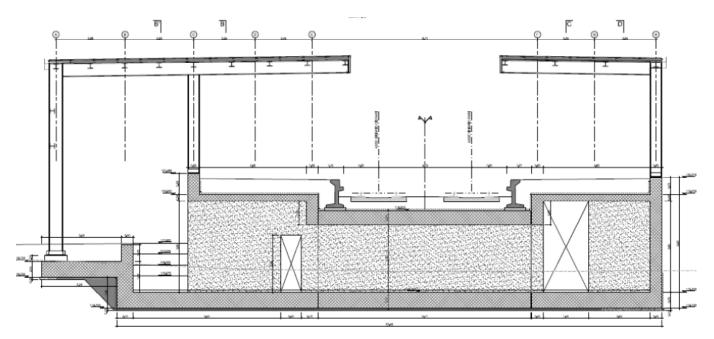
Indice

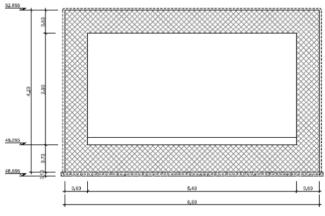
1	PR	EMESSA	4
2	NC	DRMATIVE DI RIFERIMENTO	5
3	3.1. 3.1. 3.1.	2 CALCESTRUZZO OPERE CONTROTERRA C32/40	6 7 8
4	CA	RATTERIZZAZIONE TERRENO DI FONDAZIONE	10
5	CA	RATTERIZZAZIONE SISMICA DEL SITO	11
6	MC	DDELLAZIONE STRUTTURALE	15
	6.1	CODICE DI CALCOLO	15
	6.2	TIPO DI ANALISI SVOLTA	15
	6.3	AFFIDABILITÀ DEI CODICI DI CALCOLO	15
	6.4	GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI	16
7	AN	IALISI DEI CARICHI	16
	7.1	PESO PROPRIO DELLA STRUTTURA	16
	7.2	CARICHI PERMANENTI NON STRUTTURALI	16
	7.3	SPINTA DEL TERRENO SULLE PARETI	17
	7.4	TRENI DI CARICO	17
	7.4.		
	7.4.	.2 TRENO DI CARICO SW2	
	7.5	SPINTA DEL TERRENO INDOTTA DAI TRENI	
	7.6	AVVIAMENTO E FRENATURA	
	7.7	AZIONE TERMICA	20
	7.8	RITIRO SOLETTA DI COPERTURA	
	7.9	AZIONE SISMICA INERZIALE	22
	7.10	SPINTA SISMICA TERRENO	23
8	CC	MBINAZIONI DI CARICO	26
9	AN	IALISI DEL MODELLO E RISULTATI	33
10) VE	RIFICHE STRUTTURALI	35

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0120 001	Α	3 di 64


10.1 SOLETTA SUPERIORE	35
10.1.1 VERIFICA A PRESSO FLESSIONE - SEZIONE DI MEZZERIA	35
10.1.2 VERIFICA A TAGLIO	39
10.1.3 VERIFICA A PRESSO FLESSIONE E TAGLIO - SEZIONE DI ESTREMITÀ	40
10.2 PIEDRITTI	43
10.2.1 VERIFICA A TAGLIO	43
10.2.2 VERIFICA A PRESSO FLESSIONE - SEZIONE DI ESTREMITA'	44
10.3 SOLETTA INFERIORE	48
10.3.1 VERIFICA A PRESSO FLESSIONE - SEZIONE DI MEZZERIA	48
10.3.2 VERIFICA A TAGLIO	51
10.3.3 VERIFICA A PRESSO FLESSIONE E TAGLIO - SEZIONE DI ESTREMITÀ	52
11 VERIFICA A CAPACITA' PORTANTE	56


1 PREMESSA

Nella seguente relazione si descrive l'analisi statica e sismica del sottopasso facente parte delle opere del raddoppio tratta Cancello-Benevento l° lotto funzionale Cancello-Frasso Telesino nel comune di Valle di Maddaloni L'opera consiste in uno scatolare in c.a. gettato in opera realizzato in un unica fase.

La sezione trasversale retta ha una larghezza interna di B=5.40 m ed un'altezza netta di H=2.90 m; lo spessore della soletta di fondazione è di s=70 cm; lo spessore dei piedritti è di 60 cm e lo spessore della soletta di copertura è di 60 cm. La lunghezza del sottopasso è di 9.20 m.

Sezione longitudunale

Sezione trasversale

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0120 001	Α	5 di 64

2 NORMATIVE DI RIFERIMENTO

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Rif. [1] "Istruzione per la progettazione e l'esecuzione dei ponti ferroviari" (rif. RFI-DTC-ICI-PO-SP-INF-001-A);
- Rif. [2] Approvazione delle nuove norme tecniche per le costruzioni D.M. 14-01-08 (NTC-2008);
- Rif. [3] Circolare n. 617 del 2 febbraio 2009 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008;
- Rif. [4] Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20/03/2003. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica;
- Rif. [5] Decreto del Presidente del Consiglio dei Ministri del 21/10/2003;
- Rif. [6] Eurocodice 2: Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- Rif. [7] UNI ENV 1992-1-1 Parte 1-1:Regole generali e regole per gli edifici;
- Rif. [8] UNI EN 206-1/2001 Calcestruzzo. Specificazioni, prestazioni, produzione e conformità;
- Rif. [9] UNI EN 1998-5 Fondazioni ed opere di sostegno.
- Rif. [10] REGOLAMENTO (UE) N. 1299/2014 DELLA COMMISSIONE del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea
- Rif. [11] Eurocodice 3 "Progettazione delle strutture in acciaio" ENV 1993-1-1.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

ITINERA

LOTTO **01 E ZZ**

CODIFICA CL

DOCUMENTO FV0120 001

REV.

Α

FOGLIO 6 di 64

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

3 CARATTERISTICHE DEI MATERIALI

3.1.1 ACCIAIO CARPENTERIA METALLICA

A) ACCIAIO PROFILATI METALLICI S275 JR

Composizione chimica \$275JR (%)

C max	Mn	P	S	Si	Cu	N		
< 16 mm	> 16 ≤ 40 mm	> 40 mm	max	max	max	max	max	max
0,21	0,21	0,22	1,50	0,035	0,035	-	0,55	0,012

COMMESSA

IF1N

Caratteristiche meccaniche S275JR

THE CONTROL OF THE CO											
Laminato a caldo (Ø del provino in mm)											
		≤ 3	> 3 ≤ 16	> 16 ≤ 40	> 40 ≤ 63	> 63 ≤ 80	> 80 ≤ 100	> 100 ≤ 150	> 150 ≤ 200	> 200 ≤ 250	> 250 ≤ 400
Limite di Snervamento, Reh (MP	a) min	275	275	265	255	245	235	225	215	205	-
Resistenza a Trazione	min	430	410	410	410	410	410	400	380	380	380
Rm (MPa)	max	580	560	560	560	560	560	540	540	540	540
Allungamento A (%) min		23	23	23	22	21	21	19	18	18	18
Resilienza Kv +20°C (J) min		27	27	27	27	27	27	27	27	27	27
Durozza HR	min	-	-	-	-	-	-	-	-	-	-
Durezza HB	max	-	-	-	-	-	-	-	-	-	-

B) ACCIAIO BULLONI E DADI

Acciaio ad alta resistenza secondo

UNI 3740

Vite Classe 8.8 Dado Classe 8G

C) SALDATURE

Procedimenti di saldatura omologati e qualificati (tipo automatico ad arco sommerso o altri che verranno concordati e accettati dall'ente appaltante) conformi a DM 09/01/1996 e CNR 10011/1997

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

IF1N	01 E ZZ	CL	FV0120 001	Α	7 di 64
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

3.1.2 CALCESTRUZZO OPERE CONTROTERRA C32/40

Resistenza caratteristica a compressione su cubi (N/mm²)

$$R_{ck} := 40.00$$

valore del coefficiente di sicurezza γ M=1.5

Resistenza caratteristica cilindrica a compressione (N/mm²)

$$f_{ck} := 0.83 \cdot R_{ck} = 33.2$$

Resistenza cilindrica media a compressione (N/mm²)

$$f_{cm} := f_{ck} + 8 = 41.2$$

Resinza media a trazione semplice (N/mm²)

$$f_{\text{ctm}} := 0.30 \cdot f_{\text{ck}}^{\frac{2}{3}} = 3.099$$

Resisteza media a trazione per flessione (N/mm²)

$$f_{cfm} := 1.2 \cdot 0.30 \cdot f_{ck}^{\frac{2}{3}} = 3.719$$

Resistenza caratteristica a trazione , frattile 5% (N/mm²)

$$f_{\text{ctk.5\%}} := 0.7 \cdot f_{\text{ctm}} = 2.169$$

Resistenza caratteristica a trazione , frattile 95% (N/mm 2)

$$f_{ctk.95\%} := 1.3 \cdot f_{ctm} = 4.029$$

Resistenza di calcolo a compressione (N/mm²)

$$f_{\text{cd}} := \frac{0.85 \cdot f_{\text{ck}}}{1.5} = 18.813$$

Resistenza di calcolo a compressione per spessori minori di 50 mm(N/mm²)

$$f_{cd.50} := 0.8 \cdot \frac{0.85 \cdot f_{ck}}{1.5} = 15.051$$

Resistenza di calcolo a trazione , frattile $5\% \ (\text{N/mm}^2)$

$$f_{\text{ctd.5\%}} := \frac{f_{\text{ctk.5\%}}}{1.5} = 1.446$$

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata:

Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0120 001
 A
 8 di 64

Resistenza di calcolo a trazione, frattile 5% per spessori minori di 50 mm (N/mm²)

ITINERA

$$f_{ctd.50.5\%} := 0.8 f_{ctd.5\%} = 1.157$$

Modulo elastico istantaneo medio del calcestruzzo (N/mm²)

$$E_{cm} := 22000 \cdot \left(\frac{f_{ck} + 8}{10}\right)^{0.3} = 33642.78$$

Valore del coefficiente di sicurezza per addensamento di barre γ M=1

Tensione tangenziale di aderenza caratteristica (5%) per ϕ < 32 (N/mm²)

$$f_{bk} := 2.25 \cdot 1 \cdot f_{ctk.5\%} = 4.881$$

Tensione tangenziale di aderenza di calcolo (N/mm²)

$$f_{bd} := \frac{f_{bk}}{1.5} = 3.254$$

Coefficiente di Poisson del calcestruzzo in stadio non fessurato µ =0.2

Coefficiente di Poisson del calcestruzzo in stadio fessurato μ =0.0

Coefficiente di dilatazione termica α =0.00001

3.1.3 ACCIAIO D'ARMATURA IN BARRE TONDE AD ADERENZA MIGLIORATA

Si adotta acciaio tipo B450C come previsto al punto 11.3.2.1 delle NTC2008, per il quale si possono assumere le seguenti caratteristiche:

Resistenza a trazione – compressione:

f_{tk} = 540 N/mm² = Resistenza caratteristica di rottura

 f_{vk} = 450 N/mm² = Resistenza caratteristica a snervamento

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = 391.3 \text{ N/mm}^2 = \text{Resistenza di calcolo}$$

dove:

 y_s = 1.15 = Coefficiente parziale di sicurezza relativo all'acciaio.

Modulo Elastico:

 $Es = 210000 \text{ N/mm}^2$

Tensione tangenziale di aderenza acciaio-calcestruzzo:

		Solaio in lastre predalles	Struttura in elevazione	Fondazioni
f _{bk}	(N/mm ²)	4.36	4,36	4,36
f _{bd}	(N/mm ²)	2.90	2,90	2,90

dove:

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

CL

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO CODIFICA IF1N 01 E ZZ

DOCUMENTO FV0120 001

RFV **FOGLIO**

9 di 64

Α

 f_{bk} = 2.25· η · f_{ctk} = Resistenza tangenziale caratteristica di aderenza

$$f_{bd} = \frac{f_{bk}}{\gamma_c}$$
 = Resistenza tangenziale di aderenza di calcolo

η = 1.0 - per barre di diametro Φ ≤ 32 mm;

 $y_c = 1.5$ – Coefficiente parziale di sicurezza relativo al calcestruzzo.

3.1.4 COPRIFERRO

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 2.2.2009, riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

			barre o	arre da c.a.		barre da c.a.		cavi da c.a.p		cavi da c.a.p	
		elementi a piastra		altri elementi		elementi a piastra		altri elementi			
Cmin	Со	ambiente	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<>	C≥Co	Cmin≤C <co< td=""></co<>	
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35	
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	45	
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50	

Ai valori riportati nella tabella vanno aggiunte le tolleranze di posa, pari a 10 mm. Si riportano di seguito i copriferri adottati, determinati in funzione della classe del cls e delle condizioni ambientali.

	Ambiente	Copriferro minimo	Tolleranza di posa	Copriferro nominale
Struttura ir elevazione	Ordinario	25	10	35
Lastre predalles	Ordinario	20	0	20
Fondazioni	Ordinario	25	10	35

In definitiva si prescrive che in fondazione e in elevazione tranne che per le lastre predalles il copriferro netto non deve essere inferiore a 40mm.

Prove sui materiali

La costruzione delle strutture dovrà essere eseguita nel rispetto delle specifiche d'istruzione tecnica FS 44/M -REV. A DEL 10/04/00.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

IF1N 01 E ZZ

LOTTO

CODIFICA CL DOCUMENTO FV0120 001

REV.

FOGLIO 10 di 64

4 CARATTERIZZAZIONE TERRENO DI FONDAZIONE

Nel seguito si riportano le tabelle contenenti la stratigrafia di progetto per l'opera in esame e i relativi parametri geotecnici di calcolo.

COMMESSA

geotecnici di calcolo.

Strato	Profondità Da (m da p.c.)	Profondità a (m da p.c.)	Descrizione	N _{SPT} (colpi/30cm)
1	0.0	8.0 ÷ 12.0	Coltre E/C -Limi argillosi	2 - 16
2	8.0 ÷ 12.0	23.0 ÷ 27.0	Tufo grigio alterato	30- 50
3	23.0 ÷ 27.0	30	Sabbie limose	-

Profondità della falda: 20 ÷ 25 m da p.c.

Parametri	Strato 1	Strato 2	Strato 3
γ _t (kN/m³)	15.0 ÷ 18.0	16.0 – 17.0	15.0 – 16.0
GSI	-	-	-
σ _c (MPa)	-	-	-
σ _t (MPa)	-	-	-
m _i (-)	-	-	-
φ'(°)	26	33 - 34	26
c' (kPa)	-	0	-
c _u (kPa)	15 – 50 ^(*)	-	-
V _s (m/s)	100 - 150 ^(*)	200 – 300 ^(*)	200 (*)
G ₀ (MPa)	20 - 50 ^(*)	80 – 160 ^(*)	100 ^(*)
E _{op} (MPa)	8 - 20 ^(*)	30 – 70 ^(*)	40
v' (-)	0.25	0.25	0.25
k (m/s)	1 x 10 ⁻⁶ – 1 x 10 ⁻⁵	1 x 10 ⁻⁶ – 5 x 10 ⁻⁵	1 x 10 ⁻⁶ – 5 x 10 ⁻⁵

Nota: (*) crescente con la profondità

Per i parametri geotecnici dei rilevati ferroviari si assumono invece i seguenti valori:

peso volume γ=20 kN/m³
 angolo d'attrito φ'=38°
 coesione efficace c'=0 kPa

La classe di suolo, stabilita sulla base delle prove SPT e in analogia a quanto indicato nel PD, è stata assunta pari alla C.

La falda è posizionata ad una profondità da piano campagna pari a 20-25m da p.c.

La reazione elastica del terreno di fondazione é stata simulata con molle elastiche.

Il modulo di Winkler del terreno si è posto pari a K=25000 KN/m²/m

Elaborati strutturali - Sottopasso di fermata:

Relazione di calcolo

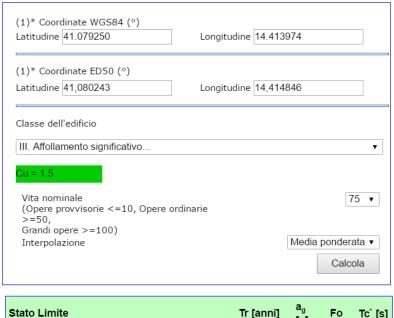
ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0120 001	Α	11 di 64

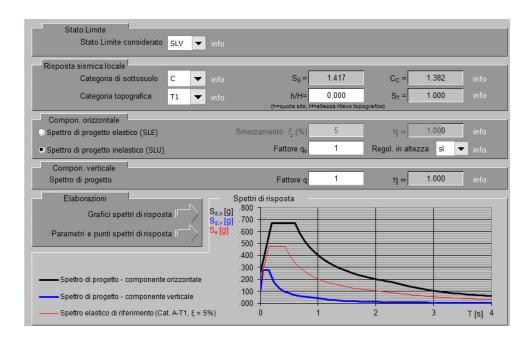
Tab. 10: Parametri geotecnici di calcolo – materiali antropici

+					_						
	STRATO	Spess.	Peso di volume	Ang	olo di res al tagli		Coe	sione eff	icace	Modulo di Young operativo	Permeab.
		[m]	γd	φ' _k	ο' _k φ' _d M1 φ' _d M2		c' _k	c' _d M1	c' _d M2	E _{op} .	k,
		[m]	[kN/m³]	[°]	[°]	[°]	[kPa]	[kPa]	[kPa]	[MPa]	[m/s]
	SUB-BALLAST	0.12	20	38	38	32	600	600	480	400 - 500	1x10 ⁻⁹
	SUPER- COMPATTATO	0.3	20	42	42	35.8	0	0	0	60	1x10 ⁻⁹
	INERBIMENTO	0.3	19	26	26	21.3	10	10	8	8	1x10 ⁻⁵
	RILEVATO	Variab.	20	38	38	32	0	0	0	30	1x10-5
	STRATO DI BONIFICO	1.0	19	38	38	32	0	0	0	15	1x10 ⁻⁵


5 CARATTERIZZAZIONE SISMICA DEL SITO

L'azione sismica è sta definita adottando i seguenti parametri.

La vita nominale (V_N) dell'opera è stata assunta pari a 75 anni. la classe d'uso assunta è laIII. il periodo di riferimento (V_R) per l'azione sismica. data la vita nominale e la classe d'uso. vale quindi: $V_R = V_N \cdot C_u = 113$ anni.



Stato Limite	Tr [anni]	a _g [g]	Fo	Tc* [s]
Operatività (SLO)	68	0,069	2,386	0,329
Danno (SLD)	113	0,084	2,427	0,348
Salvaguardia vita (SLV)	1068	0,187	2,523	0,432
Prevenzione collasso (SLC)	2193	0,228	2,607	0,450
Periodo di riferimento per l'azione sismica:	113			

La categoria del suolo di fondazione è la C

ITINERARIO NAPOLI - BARI ITINERA

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO CODIFICA

DOCUMENTO

REV.

FOGLIO

IF1N 01 E ZZ FV0120 001 13 di 64 CL Α

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV

				-		_
h	len	nend	ndı		'arametri	ч
		Perio			ai ai iica i	

i didinetti iridiperideriti					
STATO LIMITE	SLV				
a,	0.187 g				
F.	2.525				
Τ.	0.434 s				
S	1.417				
್ಪಿ	1.382				
S,	1.000				
q	1.000				

Punti dello spettro di risposta

	T [s]		- 5
	0.000		
Tø ← Tø ←	0.200		
T∢	0.601		
	0.684		
	0.767		
	0.850		
	0.934		
	1.017		
	1.100		
	1100	Т	

Parametri dipendenti

S	1.417
η	1.000
T _R	0.200 s
T _c	0.601 s
Tn	2.348 s

Espressioni dei parametri dipendenti

S=S ₂ ·S ₇	(NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$$
 (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C/3$$
 (NTC-07 Eq. 3.2.8)

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4,0 \cdot a_g / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08Eq. 3.2.

$$0\!\leq\! T\!<\!T_{\!_{B}} \quad \left| \quad S_{\scriptscriptstyle{\boldsymbol{o}}}(T)\!=\!a_{\scriptscriptstyle{\boldsymbol{g}}}\!\cdot\! S\!\cdot\! \eta\cdot\! F_{\scriptscriptstyle{\boldsymbol{o}}}\!\cdot\! \left[\frac{T}{T_{\!_{B}}}\!+\!\frac{1}{\eta\cdot F_{\!_{\boldsymbol{o}}}}\!\left(1\!-\!\frac{T}{T_{\!_{\boldsymbol{b}}}}\right)\right]$$

$$T_B \le T < T_C \mid S_c(T) = a_s \cdot S \cdot \eta \cdot F_c$$

$$\begin{split} T_c \leq T < T_D & \quad \mathbb{S}_e(T) = a_g \cdot S \cdot \eta \cdot F_e \cdot \left(\frac{T_c}{T}\right) \\ T_D \leq T & \quad \mathbb{S}_e(T) = a_g \cdot S \cdot \eta \cdot F_e \cdot \left(\frac{T_c T_D}{T^2}\right) \end{split}$$

Lo spettro di progetto S_a(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico S,(T) sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

0.000	0.265
0.200	0.669
0.601	0.669
0.684	0.588
0.767	0.524
0.850	0.473
0.934	0.430
1.017	0.395
1.100	0.365
1.183	0.340
1.266	0.317
1.350	0.298
1.433	0.280
1.516	0.265
1.599	0.251
1.682	0.239
1.766	0.228
1.849	0.217
1.932	0.208
2.015	0.199
2.098	0.191
2.182	0.184
2.265	0.177
2.348	0.171
2.427	0.160
2.505	0.150
2.584	0.141
2.663	0.133
2.741	0.126
2.820	0.119
2.899	0.112
2.977	0.106
2.977 3.056	
	0.106
3.056	0.106 0.101
3.056 3.135	0.106 0.101
3.056 3.135 3.213	0.106 0.101 0.096
3.056 3.135 3.213 3.292	0.106 0.101 0.096 0.087
3.056 3.135 3.213 3.292 3.371	0.106 0.101 0.096 0.087 0.083
3.056 3.135 3.213 3.292 3.371 3.449	0.106 0.101 0.096 0.087 0.083 0.079
3.056 3.135 3.213 3.292 3.371 3.449 3.528	0.106 0.101 0.096 0.087 0.083 0.079 0.076
3.056 3.135 3.213 3.292 3.371 3.449 3.528 3.607	0.106 0.101 0.096 0.087 0.083 0.079 0.076 0.073
3.056 3.135 3.213 3.292 3.371 3.449 3.528 3.607 3.685	0.106 0.101 0.096 0.087 0.083 0.079 0.076 0.073
3.056 3.135 3.213 3.292 3.371 3.449 3.528 3.607 3.685 3.764	0.106 0.101 0.096 0.087 0.083 0.079 0.076 0.073 0.069
	0.200 0.601 0.684 0.767 0.850 0.934 1.017 1.100 1.183 1.266 1.350 1.433 1.516 1.599 1.682 1.766 1.849 1.932 2.015 2.098 2.182 2.265 2.348 2.427 2.505 2.584 2.663 2.741 2.820

IITINERA

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

a:

LOTTO **01 E ZZ**

COMMESSA

IF1N

CODIFICA CL


DOCUMENTO FV0120 001

REV. FOGLIO

Α

14 di 64

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

6 MODELLAZIONE STRUTTURALE

6.1 CODICE DI CALCOLO

L'analisi della struttura scatolare è stata condotta con un programma agli elementi finiti:

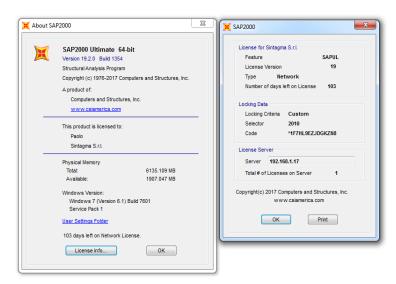
Titolo SAP2000

Versione 19.2.0 advanced

Distributore CSI Italia

6.2 TIPO DI ANALISI SVOLTA

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La struttura viene discretizzata in elementi finiti con aste (frames).


La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

6.3 AFFIDABILITÀ DEI CODICI DI CALCOLO

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche. degli algoritmi impiegati e l'individuazione dei campi d'impiego.

Come detto, per la risoluzione del modello di calcolo si e' fatto uso del programma di calcolo SAP2000 NL

Di seguito si riporta una schermata con tutte le informazioni del programma, del produttore e della licenza d'uso:

IL PRODUTTORE FORNISCE IDONEA DOCUMENTAZIONE UTILE AL CORRETTO USO DEL PROGRAMMA. SUL SITO DEL PRODUTTORE E' INOLTRE POSSIBILE SCARICARE LA NECESSARIA DOCUMENTAZIONE UTILE ALLA VALIDAZIONE DEL PROGRAMMA.

6.4 GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli. eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati. si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

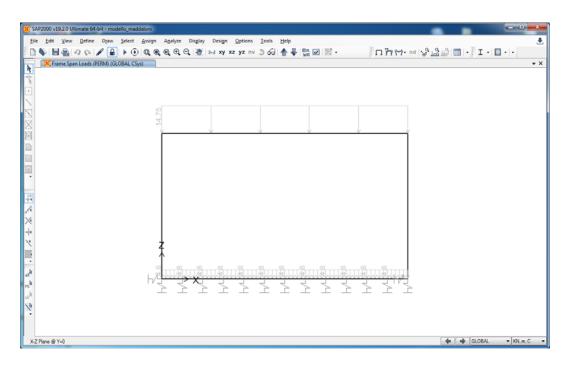
7 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

7.1 PESO PROPRIO DELLA STRUTTURA

Le sollecitazioni indotte dal peso della struttura sono valutate automaticamente dal programma

Peso soletta superiore: $P_{ss} = 0.6 \times 25 = 15.0 \text{ kN/m}^2$ Peso soletta inferiore: $P_{si} = 0.7 \times 25 = 17.5 \text{ kN/m}^2$


Peso piedritti: $P_p = 0.6 \times 25 = 15.0 \text{ kN/m}^2$

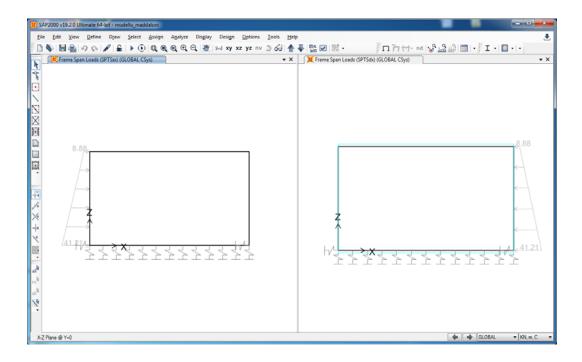
7.2 CARICHI PERMANENTI NON STRUTTURALI

Peso del massetto di protezione (h=0.05 m) P_r = 0.05 ×25 = 1.25 kN/m^2

Peso proprio ballast $P_r = 0.75 \times 18 = 13.50 \text{ kN/m}^2$

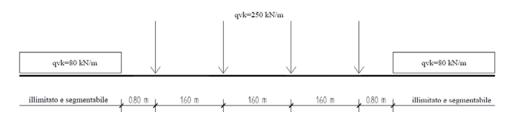
Sovraccarichi permanenti al di sopra della soletta di fondazione P= 0.2*24 = 4.80 KN/m²

7.3 SPINTA DEL TERRENO SULLE PARETI


Terreno a ridosso dei piedritti γ=20 KN/m³ Φ=33°

Il coefficiente di spinta a riposo viene calcolato utilizzando la formula K_0 = 1-sin Φ per cui si ottiene il valore K_0 = 0.46

La pressione del terreno verrà calcolata secondo la formula P=γ×H×K_o


Pressione in asse soletta superiore = 8.88 kN/m²

Pressione in asse soletta inferiore = 41.21 kN/m²

7.4 TRENI DI CARICO

7.4.1 TRENO DI CARICO LM71

 α = coefficiente di adattamento= 1.10

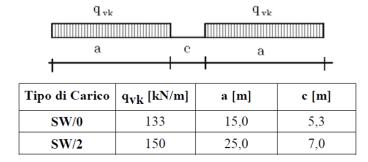
Per solette ed altri elementi di scatolari per uno o più binari di altezza libera < **5.0** m e luce libera < **8.0** m il coefficiente dinamico vale Φ_3 =1.35 (ridotto standard manutentivo)

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0120 001	Α	18 di 64


Il sovraccarico ferroviario si distribuisce attraverso il ricoprimento. con la pendenza di 1/4 e con la pendenza a 45° all'interno del cls. per cui la lunghezza di diffusione del carico in senso trasversale all'asse binario risulta pari a:

 L_{trasv} =3.23m

Pertanto il carico ripartito dovuto al singolo treno LM 71 (considerando il coefficiente di adattamento α =1.1 e il coefficiente dinamico Φ_3 = 1.35 risulta:

Carico ripartito prodotto dalle forze concentrate = 71.95 kN/m

7.4.2 TRENO DI CARICO SW2

 α = coefficiente di adattamento= 1.10

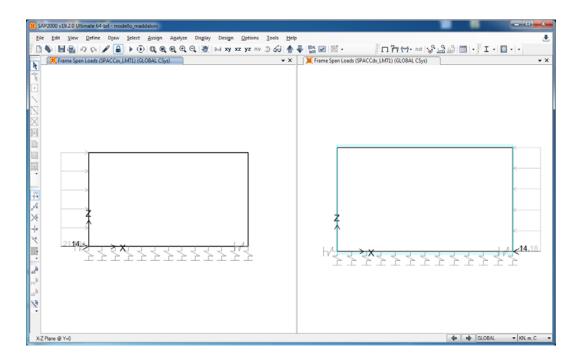
Per solette ed altri elementi di scatolari per uno o più binari di altezza libera < **5.0** m e luce libera < **8.0** m il coefficiente dinamico vale Φ_3 =1.35 (ridotto standard manutentivo)

Il sovraccarico ferroviario si distribuisce attraverso il ballast con la pendenza di 1/4 e con la pendenza a 45° all'interno del cls. per cui la lunghezza di diffusione del carico in senso trasversale all'asse binario risulta pari a:

 $L_{trasv}=3.23m$

Pertanto il carico ripartito a metro di profondità dovuto al singolo treno SW/2 (considerando il coefficiente di adattamento α =1.1 e il coefficiente dinamico Φ = 1.35) risulta pari a 62.79 kN/m

7.5 SPINTA DEL TERRENO INDOTTA DAI TRENI

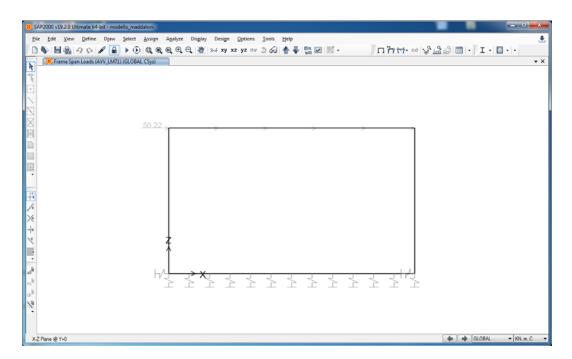

Il coefficiente di spinta a riposo viene calcolato utilizzando la formula K_0 = 1-sin Φ per cui si ottiene il valore K_0 = 0.46.

La pressione del terreno sui piedritti ed indotta dai treni di carico viaggianti su due linee adiacenti verrà calcolata secondo la formula P=q×K₀

Il sovraccarico laterale indotto dal passaggio del treno è dato dal carico distrubuito più gravoso (SW2) ripartito a su una larghezza pari a L_{rip} =3.23 m.

La pressione del terreno sui piedritti ed indotta dai treni di carico viaggianti su due linee adiacenti verrà calcolata secondo la formula $P=q\times K_0$ in cui q=150 kN/m è il sovraccarico ferroviario

Pressione =21.18 kN/m²


7.6 AVVIAMENTO E FRENATURA

avviamento: Q_{la.k} = 33 [kN/m] × L[m] < 1000 kN per modelli di carico LM 71 e SW/0 e SW/2

frenatura: $Q_{\text{lb.k}}$ = 20 [kN/m]× L[m] < 6000 kN per modelli di carico LM 71 e SW/0

Q_{Ib.k} = 35 [kN/m] × L[m]per modelli di carico SW/2

Treno LM71 : 47.35 KN/m² Treno SW2 : 50.22 KN/m²

7.7 AZIONE TERMICA

Si applica la variazione uniforme della temperatura di ±15° alle membrature in cls

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA IF1N 01 E ZZ

LOTTO

ITINERA

CODIFICA CL

DOCUMENTO FV0120 001

REV. Α

FOGLIO 21 di 64

7.8 RITIRO SOLETTA DI COPERTURA

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RFI DTC INC (Specifica per la progettazion ferro			ope	ere civili
resistenza a compressione media f_{cm} 41.20 N/mm² 41.20 N/mm² 2		Calcolo	dell'azione pro	dotta	da ritiro
resistenza a compressione media modulo elastico secante $E_{cm} = 33642.78 \text{ M/mm}^2$ 33642.78 M/mm^2		Rck	40		
modulo elastico secante coefficiente di dilatazione termica classe del cemento cis tipo R el del Cis all'inizio del ritiro ta del Cis all'inizio del ritiro tetà del cis all'minizio del ritiro ta del cis all'minizio del ritiro ta del cis all'minizio del ritiro tetà del cis al momento del carico to 2 gg età del cis de		f _{ck}	33.20 N	/mm ²	
coefficiente di dilatazione termica classe del cemento cistipo R età del cis all'inizio del ritiro t_s 2 gg età del cis al momento del carico t_0 2 gg età del cis al momento del carico t_0 2 gg età del cis al momento del carico t_0 2 gg età del cis al momento del carico t_0 2 gg età del cis al momento del carico t_0 2 gg età del cis al momento del carico t_0 2 gg età del cis al momento del carico t_0 2 gg età del cis t_0 2 del commento t_0 2 del commento t_0 2 del commento t_0 3 del commento t_0 4 del commento t_0 4 del commento t_0 4 del commento t_0 5 del commento t_0 6 del commento t_0 6 del tipo di cemento t_0 6 del sipo di cemento t_0 6 del sipo di cemento t_0 6 del sipo gg > 0.5 coeff. della resistenza del cis t_0 6 del coeff. della resistenza del cis t_0 2 del coeff. della resistenza del cis t_0 2 del coeff. della resistenza del cis t_0 3 del coeff. della variabilità viscosità nel tempo t_0 6 della variabilità viscosità t_0 6 della deformazione di ritro parametro fuzione di hg 6 della deformazione nel tempo def. di ritro per essicoamento t_0 6 della deformazione nel tempo t_0 6 della deformazione di cemento t_0 6 della deformazione di cem	resistenza a compressione media	f_{cm}	41.20 N	/mm ²	
classe del cemento cls tipo R età del cls all'inizio del ritiro ta del cls al momento del carico to to 2 gg età del cls al momento del carico to to 2 gg età del cls transcription del cls del cls coeff. del cls cls cls cls cls cls cls cls cls cl	modulo elastico secante	E _{cm}	33642.78 N	/mm ²	
età del cls all'inizio del ritiro età del cls al momento del carico to 2 gg età del cls al momento del carico to 2 gg età del cls t 25550 gg t 8 t 26 t 26 t 27 t 27 t 28 t 29 t 20 t 21 t 21 t 21 t 21 t 21 t 22 t 22 t 22 t 22 t 26 t 26 t 26 t 26 t 26 t 27 t 26 t 27 t 27 t 27 t 28 t 29 t 29 t 29 t 29 t 20 t 29 t 20 t		α	0.00001		
età del cls al momento del carico to del del cis de del cls to to 25550 gg B	classe del cemento	cls tipo	R		
età del cis t 25550 gg B 100 cm H 0.60 cm Ac 6000 mm perimetro a contatto con l'atmosfera u 1000 mm dimensione elemento di cis h=2A_v/u 12 mm RH 75 % Calcolo del modulo elastico coeff. del lipo di cemento coeff. della resistenza del cis $\beta_{\rm c}(t_{\rm m}) = 2.62$ $\beta_{\rm c}(t_{\rm m}) $	età del cls all'inizio del ritiro	t _s	2 gg	g	
sezione dell'elemento perimetro a contatto con l'atmosfera u 1000 mm dimensione elemento di cis $h_0=2A_c/u$ 12 mm $h_0=2A_c/u$ 13 mm $h_0=2A_c/u$ 14 mm $h_0=2A_c/u$ 15 mm $h_0=2A_c/u$ 15 mm $h_0=2A_c/u$ 16 mm $h_0=2A_c/u$ 17 mm $h_0=2A_c/u$ 18 mm $h_0=2A_c/u$ 19 mm $h_0=2A_c/u$ 10 mm $h_0=2A_c/u$	età del cls al momento del carico	t _o	2 gg	g	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	età del cls	t	25550 gg	g	
sezione dell'elemento perimetro a contatto con l'atmosfera u 1000 mm dimensione elemento di cls $h_0=2A_c/u$ 12 mm RH 75 % Calcolo del modulo elastico coeff. del tipo di cemento α 1 tempo t_0 corretto in funz del tipo di cem t_0 6.189 gg > 0.5 coeff. della resistenza del cls $\beta_c(t_{cm})$ 2.62 coeff. della resistenza del cls α_1 0.892 coeff. della resistenza del cls α_2 0.968 coeff. della resistenza del cls α_2 0.968 coeff. della resistenza del cls α_2 0.968 coeff. della resistenza del cls α_3 0.922 coeff. della resistenza del cls α_2 0.968 coeff. della resistenza del cls α_3 0.922 coeff. della variabilità viscosità nel tempo $\beta_c(t_0)$ 0.997 coeff. della variabilità viscosità φ_0 3.302 coeff. di viscosità φ_0 3.302 coeff. di viscosità φ_0 3.302 coeff. di viscosità φ_0 3.329 Modulo elastico al tempo t $E_{cm}(t,t_0)$ 7837.1 N/mm² Calcolo della deformazione di ritiro parametro fuzione di ho $\beta_c(t_0)$ 0.0002982 deformazione di base $\beta_c(t_0)$ 0.0002982 coeff. per il tipo di cemento α_{ds1} 6 coeff. per il tipo di cemento α_{ds2} 0.11 β_{RH} 0.89609375 $\beta_{s0}(t)$ 1 ϵ_{ca} 0.000058 deformazione dovuta al ritiro autogeno ϵ_{ca} 5.8E-05		В	100 cr	m	
perimetro a contatto con l'atmosfera dimensione elemento di cls unidità relativa percentuale RH 75 % Calcolo del modulo elastico coeff. del tipo di cemento α 1 tempo β_c corretto in funz del tipo di cem to tempo β_c corretto in funz del tipo di cem coeff. della resistenza del cls $\beta_c(f_{cm})$ 2.62 coeff. della resistenza del cls α_1 0.892 coeff. della resistenza del cls α_2 0.968 coeff. della resistenza del cls α_3 0.922 coeff. della resistenza del cls α_3 0.922 coeff. della variabilità viscosità nel tempo $\beta_c(t,t_0)$ 0.997 coeff. che tiene conto dell'umidità relativa coeff. della variabilità viscosità nel tempo $\beta_c(t,t_0)$ 0.997 coeff. del viscosità $\beta_c(t,t_0)$ 0.997 coeff. di viscosità $\beta_c(t,t_0)$ 0.997 coeff. viscosità coeff. viscosità		Н	0.60 cr	m	
dimensione elemento di cls umidità relativa percentuale RH 75% Calcolo del modulo elastico coeff. del tipo di cemento tempo to corretto in funz del tipo di cem to tempo to corretto in funz del tipo di cem to 3 3 3 3 3 3 3 3 3 3		-			
umidità relativa percentuale Calcolo del modulo elastico coeff. del tipo di cemento tempo to corretto in funz del tipo di cem to tempo to corretto in funz del tipo di cem to to 6.189 gg > 0.5 coeff. della resistenza del cis $\beta_c(t_{cm})$ 2.62 coeff. della resistenza del cis α_1 0.892 coeff. della resistenza del cis α_2 0.968 coeff. della resistenza del cis α_3 0.922 coeff. della resistenza del cis α_3 0.922 coeff. della resistenza del cis α_3 0.922 coeff. della viscosità nel tempo $\beta_c(t,t_0)$ 0.997 coeff. della viscosità nel tempo $\beta_c(t,t_0)$ 0.997 coeff. della viscosità viscosità φ_0 3.302 coeff. della viscosità φ_0 3.302 coeff. di viscosità φ_0 3.302 coeff. di viscosità φ_0 3.302 coeff. di viscosità φ_0 3.309 Modulo elastico al tempo t $E_{cm}(t,t_0)$ 7837.1 N/mm² Calcolo della deformazione di ritiro parametro fuzione di h $_0$ k $_h$ 0.7 coeff. variabilità deformazione nel tempo def. di ritiro per essiccamento $\varepsilon_{cd}(t)$ 0.0002982 deformazione di base $\varepsilon_{cd,0}$ 0.00042602 coeff. per il tipo di cemento α_{ds1} 6 coeff. per il tipo di cemento α_{ds2} 0.11 β_{RH} 0.89609375 $\beta_{ast}(t)$ 1 ε_{ca} 0.0000058 deformazione dovuta al ritiro autogeno ε_{ca} 5.8E-05	17				
Calcolo del modulo elastico coeff. del tipo di cemento α 1 tempo t_0 corretto in funz del tipo di cem t_0 6.189 gg > 0.5 coeff. della resistenza del cls β c(f _{cm}) 2.62 coeff. della viscosità nel tempo β c(to) 0.649 coeff. della resistenza del cls α_1 0.892 coeff. della resistenza del cls α_2 0.968 coeff. della resistenza del cls α_3 0.922 coeff. della resistenza del cls α_3 0.922 coeff. della resistenza del cls α_3 0.922 coeff. della variabilità viscosità nel tempo β c(t, to) 0.997 coeff. che tiene conto dell'umidità relativa coeff. che tiene conto dell'umidità φ Ret 1.943 coeff. nominale della viscosità φ 3.302 coeff. di viscosità φ 3.302 coeff. di viscosità φ 3.302 coeff. di viscosità φ 7.7 (t, to) 3.29 φ Modulo elastico al tempo t φ 8.7 (t, to) φ 7.837.1 N/mm² Calcolo della deformazione di ritiro parametro fuzione di h ₀ φ 4.8 0.7 coeff. variabilità deformazione nel tempo def. di ritiro per essiccamento φ 6.40 0.0002982 deformazione di base φ 0.000282 coeff. per il tipo di cemento φ 6.51 φ 0.11 φ 8.8 0.89609375 φ 8.8 0.900058 φ 0.000058 deformazione dovuta al ritiro autogeno φ 5.8E-05					
coeff. del tipo di cemento tempo t_0 corretto in funz del tipo di cem t_0 6.189 gg > 0.5 coeff. della resistenza del cls $\beta_c(f_{cm})$ 2.62 coeff. della viscosità nel tempo $\beta_c(t_0)$ 0.649 coeff. della viscosità nel tempo $\beta_c(t_0)$ 0.649 coeff. della resistenza del cls α_1 0.892 coeff. della resistenza del cls α_2 0.968 coeff. della resistenza del cls α_3 0.922 coeff. della resistenza del cls α_3 0.922 coeff. della variabilità viscosità nel tempo $\beta_c(t,t_0)$ 0.997 coeff. che tiene conto dell'umidità φ_{RH} 1.943 coeff. nominale della viscosità φ_0 3.302 coeff. di viscosità φ_0 3.302 coeff. di viscosità φ_0 3.302 coeff. di viscosità φ_0 3.29 Modulo elastico al tempo t $E_{cm}(t,t_0)$ 7837.1 N/mm² Calcolo della deformazione di ritiro parametro fuzione di h $_0$ k_h 0.7 coeff. variabilità deformazione nel tempo def. di ritiro per essiccamento $\varepsilon_{cd}(t)$ 0.0002982 deformazione di base $\varepsilon_{cd,0}$ 0.00042602 coeff. per il tipo di cemento α_{ds1} 6 coeff. per il tipo di cemento α_{ds2} 0.11 β_{RH} 0.89609375 $\beta_{as}(t)$ 1 ε_{ca} 00 0.000058 deformazione dovuta al ritiro autogeno ε_{ca} 5.8E-05	'		, 0 70	•	
tempo to corretto in funz del tipo di cem to 6.189 gg > 0.5 coeff. della resistenza del cls β c(fcm) 2.62 coeff. della viscosità nel tempo β c(to) 0.649 coeff. della resistenza del cls α_1 0.892 coeff. della resistenza del cls α_2 0.968 coeff. della resistenza del cls α_3 0.922 coeff. che tiene conto dell'umidità relativa coeff. della variabilità viscosità nel tempo β c(t,t_0) 0.997 coeff. che tiene conto dell'umidità φ RH 1.943 coeff. nominale della viscosità φ 0 3.302 coeff. di viscosità φ 0 3.302 coeff. di viscosità φ 0 7837.1 N/mm² coeff. di viscosità φ 1.000 def. di ritiro per essiccamento φ cs(t,t_0) 1.000 def. di ritiro per essiccamento φ coeff. variabilità deformazione nel tempo def. di ritiro per essiccamento φ cooff. φ 0.0002982 deformazione di base φ 0.00042602 coeff. per il tipo di cemento φ ds1 6 coeff. φ 0.11 φ RH 0.89609375 φ as(t) 1 φ Calcolo delormazione dovuta al ritiro autogeno φ 5.8E-05					
coeff. della resistenza del cls $\beta_{c}(f_{cm})$ 2.62 coeff. della viscosità nel tempo $\beta_{c}(t_0)$ 0.649 coeff. della resistenza del cls α_1 0.892 coeff. della resistenza del cls α_2 0.968 coeff. della resistenza del cls α_3 0.922 coeff. della resistenza del cls α_3 0.922 coeff. che tiene conto dell'umidità relativa coeff. della variabilità viscosità nel tempo $\beta_{c}(t,t_0)$ 0.997 coeff. che tiene conto dell'umidità φ_{RH} 1.943 coeff. nominale della viscosità φ_0 3.302 coeff. di viscosità $\varphi(t,t_0)$ 3.29 Modulo elastico al tempo t $\varphi(t,t_0)$ 7837.1 N/mm² Calcolo della deformazione di ritiro parametro fuzione di h_0 $h_$	•			~	. 0.5
coeff. della viscosità nel tempo $\beta_c(t_0)$ 0.649 coeff. della resistenza del cls α_1 0.892 coeff. della resistenza del cls α_2 0.968 coeff. della resistenza del cls α_3 0.922 coeff. che tiene conto dell'umidità relativa coeff. della variabilità viscosità nel tempo $\beta_c(t,t_0)$ 0.997 coeff. che tiene conto dell'umidità φ_{RH} 1.943 coeff. che tiene conto dell'umidità φ_{RH} 1.943 coeff. nominale della viscosità φ_0 3.302 coeff. di viscosità $\varphi(t,t_0)$ 3.29 Modulo elastico al tempo t φ_0 7837.1 N/mm² Calcolo della deformazione di ritiro parametro fuzione di h_0 k_h 0.7 coeff. variabilità deformazione nel tempo $\beta_{cs}(t,t_s)$ 1.000 def. di ritiro per essiccamento $\varepsilon_{cot}(t)$ 0.0002982 deformazione di base $\varepsilon_{cot}(t)$ 0.00042602 coeff. per il tipo di cemento α_{ds1} 6 coeff. per il tipo di cemento α_{ds2} 0.11 β_{RH} 0.89609375 $\beta_{as}(t)$ 1 ε_{ca} 0.000058 deformazione dovuta al ritiro autogeno ε_{ca} 5.8E-05		-	-	g	> 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
coeff. della resistenza del cls α_2 0.968 coeff. della resistenza del cls α_3 0.922 coeff. della resistenza del cls α_3 0.922 coeff. che tiene conto dell'umidità relativa coeff. della variabilità viscosità nel tempo $\beta_c(t,t_0)$ 0.997 coeff. che tiene conto dell'umidità φ_{RH} 1.943 coeff. nominale della viscosità φ_0 3.302 coeff. di viscosità $\varphi(t,t_0)$ 3.29 Modulo elastico al tempo t $E_{cm}(t,t_0)$ 7837.1 N/mm² Calcolo della deformazione di ritiro parametro fuzione di ho $\beta_{cs}(t,t_s)$ 1.000 def. di ritiro per essiccamento $\varepsilon_{cd}(t)$ 0.0002982 deformazione di base $\varepsilon_{cd,0}$ 0.00042602 coeff. per il tipo di cemento α_{ds1} 6 coeff. per il tipo di cemento α_{ds2} 0.11 β_{RH} 0.89609375 $\beta_{as}(t)$ 1 ε_{ca} 00.000058 deformazione dovuta al ritiro autogeno ε_{cd} 5.8E-05	coeff. della viscosità nel tempo	P c(t₀)	0.649		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	coeff. della resistenza del cls	α_1	0.892		
coeff. che tiene conto dell'umidità relativa coeff. della variabilità viscosità nel tempo $\beta_c(t,t_0)$ 0.997 coeff. che tiene conto dell'umidità φ_{RH} 1.943 coeff. nominale della viscosità φ_0 3.302 coeff. di viscosità $\varphi(t,t_0)$ 3.29 Modulo elastico al tempo t $E_{cm}\left(t,t_0\right)$ 7837.1 N/mm² Calcolo della deformazione di ritiro parametro fuzione di ho $\beta_{cs}(t,t_s)$ 1.000 def. di ritiro per essiccamento $\varepsilon_{cd}(t)$ 0.0002982 deformazione di base $\varepsilon_{cd}(t)$ 0.0002982 deformazione di base $\varepsilon_{cd}(t)$ 0.00042602 coeff. per il tipo di cemento α_{ds1} 6 coeff. per il tipo di cemento α_{ds2} 0.11 β_{RH} 0.89609375 $\beta_{as}(t)$ 1 ε_{ca} 00.00058 deformazione dovuta al ritiro autogeno ε_{cd} 5.8E-05	coeff. della resistenza del cls	α_2	0.968		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	coeff. della resistenza del cls	α_3	0.922		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ß.,			
coeff. che tiene conto dell'umidità $\varphi_{\rm RH}$ 1.943 coeff. nominale della viscosità φ_0 3.302 coeff. di viscosità $\varphi(t,t_0)$ 3.29 Modulo elastico al tempo t $E_{\rm cm}(t,t_0)$ 7837.1 N/mm² Calcolo della deformazione di ritiro parametro fuzione di h $_0$ k $_{\rm h}$ 0.7 coeff. variabilità deformazione nel tempo def. di ritiro per essiccamento $\varepsilon_{\rm cd}(t)$ 0.0002982 deformazione di base $\varepsilon_{\rm cd}(t)$ 0.00042602 coeff. per il tipo di cemento $\alpha_{\rm ds1}$ 6 coeff. per il tipo di cemento $\alpha_{\rm ds2}$ 0.11 $\beta_{\rm RH}$ 0.89609375 $\beta_{\rm as}(t)$ 1 $\varepsilon_{\rm ca}$ 00.00058 deformazione dovuta al ritiro autogeno $\varepsilon_{\rm ca}$ 5.8E-05					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	coeff. della variabilità viscosità nel tempo	$\beta_{c}(t,t_{0})$	0.997		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	coeff. che tiene conto dell'umidità	φ_{RH}	1.943		
Modulo elastico al tempo t E_{cm} (t,t ₀) 7837.1 N/mm^2 Calcolo della deformazione di ritiro parametro fuzione di h ₀ k_h 0.7 coeff. variabilità deformazione nel tempo def. di ritiro per essiccamento $\varepsilon_{cd}(t)$ 0.0002982 deformazione di base $\varepsilon_{cd,0}$ 0.00042602 coeff. per il tipo di cemento α_{ds1} 6 coeff. per il tipo di cemento α_{ds2} 0.11 β_{RH} 0.89609375 $\beta_{as}(t)$ 1 ε_{ca} 0.000058 deformazione dovuta al ritiro autogeno ε_{ca} 5.8E-05	coeff. nominale della viscosità	φ_{0}	3.302		
Calcolo della deformazione di ritiro $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	coeff. di viscosità	φ (t,t ₀)	3.29		
Calcolo della deformazione di ritiro $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Modulo elastico al tempo t	$E_{cm}(t,t_0)$	7837.1 N	/mm ²	
parametro fuzione di h_0 k_h 0.7 coeff. variabilità deformazione nel tempo def. di ritiro per essiccamento $\varepsilon_{cd}(t)$ 0.0002982 deformazione di base $\varepsilon_{cd,0}$ 0.00042602 coeff. per il tipo di cemento α_{ds1} 6 coeff. per il tipo di cemento α_{ds2} 0.11 β_{RH} 0.89609375 $\beta_{as}(t)$ 1 ε_{caoo} 0.000058 deformazione dovuta al ritiro autogeno ε_{ca} 5.8E-05	·	(. 0/	14		
coeff. variabilità deformazione nel tempo $ \beta_{cs}(t,t_s) \qquad 1.000 $ def. di ritiro per essiccamento $ \varepsilon_{cd}(t) \qquad 0.0002982 $ deformazione di base $ \varepsilon_{cd,0} \qquad 0.00042602 $ coeff. per il tipo di cemento $ \alpha_{ds1} \qquad 6 $ coeff. per il tipo di cemento $ \alpha_{ds2} \qquad 0.11 $ $ \beta_{RH} \qquad 0.89609375 $ $ \beta_{as}(t) \qquad 1 $ $ \varepsilon_{ca} \bowtie \qquad 0.000058 $ deformazione dovuta al ritiro autogeno $ \varepsilon_{ca} \qquad 5.8E-05 $	Calcolo della delorniazione di fillio				
$\begin{array}{llll} \operatorname{def. di ritiro per essiccamento} & \varepsilon_{\operatorname{cd}}(t) & 0.0002982 \\ \operatorname{deformazione di base} & \varepsilon_{\operatorname{cd},0} & 0.00042602 \\ \operatorname{coeff. per il tipo di cemento} & \alpha_{\operatorname{ds1}} & 6 \\ \operatorname{coeff. per il tipo di cemento} & \alpha_{\operatorname{ds2}} & 0.11 \\ & \beta_{\operatorname{RH}} & 0.89609375 \\ & \beta_{\operatorname{as}}(t) & 1 \\ & \varepsilon_{\operatorname{ca} \operatorname{oo}} & 0.000058 \\ \end{array} \\ \operatorname{deformazione dovuta al ritiro autogeno} & \varepsilon_{\operatorname{ca}} & 5.8\text{E-05} \\ \end{array}$	parametro fuzione di h ₀	\mathbf{k}_{h}	0.7		
deformazione di base $ \begin{array}{c} \varepsilon_{\rm cd,0} \\ \text{coeff. per il tipo di cemento} \\ \text{coeff. per il tipo di cemento} \\ \text{coeff. per il tipo di cemento} \\ \\ \beta_{\rm RH} \\ \\ \delta_{\rm as}(t) \\ \text{deformazione dovuta al ritiro autogeno} \\ \end{array} \begin{array}{c} \varepsilon_{\rm cd,0} \\ \alpha_{\rm ds1} \\ \alpha_{\rm ds2} \\ 0.11 \\ \beta_{\rm RH} \\ 0.89609375 \\ \beta_{\rm as}(t) \\ 1 \\ \varepsilon_{\rm ca \ oo} \\ 0.000058 \\ 5.8\text{E-05} \\ \end{array} $	coeff. variabilità deformazione nel tempo	$\beta_{ \rm cs}({\rm t,t_s})$	1.000		
coeff. per il tipo di cemento $\alpha_{\rm ds1} = 6$ coeff. per il tipo di cemento $\alpha_{\rm ds2} = 0.11$ $\beta_{\rm RH} = 0.89609375$ $\beta_{\rm as}(t) = 1$ $\varepsilon_{\rm caoo} = 0.000058$ deformazione dovuta al ritiro autogeno $\varepsilon_{\rm ca} = 5.8 \text{E-}05$	def. di ritiro per essiccamento	$\varepsilon_{cd}(t)$			
coeff. per il tipo di cemento $\begin{array}{ccc} \alpha_{\rm ds2} & 0.11 \\ \beta_{\rm RH} & 0.89609375 \\ \beta_{\rm as}(t) & 1 \\ \varepsilon_{\rm caoo} & 0.000058 \\ \end{array}$ deformazione dovuta al ritiro autogeno $\begin{array}{ccc} \varepsilon_{\rm ca} & 5.8\text{E-}05 \end{array}$			0.00042602		
$\begin{array}{ccc} \beta_{\rm RH} & 0.89609375 \\ \beta_{\rm as}(t) & 1 \\ \varepsilon_{\rm caoo} & 0.000058 \\ \\ {\rm deformazione\ dovuta\ al\ ritiro\ autogeno} & \varepsilon_{\rm ca} & 5.8 {\rm E-}05 \end{array}$		$lpha_{ m ds1}$	6		
$\begin{array}{ccc} \beta_{\rm as}(t) & 1 \\ \varepsilon_{\rm caoo} & 0.000058 \\ \\ {\rm deformazione\ dovuta\ al\ ritiro\ autogeno} & \varepsilon_{\rm ca} & 5.8 {\rm E-}05 \end{array}$	coeff. per il tipo di cemento				
$\epsilon_{\text{ca} oo} \qquad 0.000058$ deformazione dovuta al ritiro autogeno $\epsilon_{\text{ca}} \qquad \qquad 5.8\text{E-}05$					
deformazione dovuta al ritiro autogeno $\epsilon_{\rm ca}$ 5.8E-05					
deformazione di ritiro $ \epsilon_s(t,t_0) \qquad 0.0003562 $	deformazione dovuta al ritiro autogeno				
	deformazione di ritiro	$\varepsilon_s(t,t_0)$	0.0003562		
Variazione termica uniforme ΔT_{ritiro} -8.30 °C	Variazione termica uniforme	$\Delta \textbf{T}_{\text{ritiro}}$	-8.30 °C	0	
NOTA : I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura	NOTA: I fenomeni di ritiro vengono	conside	rati agenti sol	lo sul	la soletta di copertura

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ CL FV0120 001 Α 22 di 64

7.9 AZIONE SISMICA INERZIALE

Per il calcolo dell'azione sismica si utilizza il metodo dell' analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h \times W$

Forza sismica verticale $F_V = k_V \times W$

I valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le espressioni:

 $kh = a_{ma} \times /g$

 $k_v = \pm 0.5 \times k_h$

Con riferimento alla nuova classificazione sismica del territorio nazionale, ai fini del calcolo dell'azione sismica secondo il DM 14/01/2008 viene assegnata all'opera una vita nominale V_N>=75 anni ed una III classe d'uso Cu=1.5; seque un periodo di riferimento VR=VN×Cu=113 anni

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a ag=0.187 g.

In assenza di analisi specifiche della risposta sismica locale. l'accelerazione massima può essere valutata con la relazione:

 $a_{ma \times} = S \times a = S_S \times S_t \times a_g$

dove assumendo un terreno di tipo C ed in base al fattore di amplificazione del sito Fo si ottiene:

S_s=1.417 Coefficiente di amplificazione stratigrafica

ST=1 Coefficiente di amplificazione topografica

ne deriva che:

ama×=1.417×1×0.187 g=0.265 g

 $k_h = a_{ma} \times /g = 0.265$

 $k_V = \pm 0.5 \times k_h = 0.132$

Gli effetti dell'azione sismica saranno valutati tenendo contodelle masse associate ai seguenti carichi gravitazionali:

 $G_1 + G_2 + \psi_{2i} Q_{ki}$

Dove nel caso specifico si assumerà per i carichi dovuti al transito dei convogli ferroviari ψ2 j = 0.2.

Pertanto avremo che:

Massa treno Qk = 71.95 kN/m

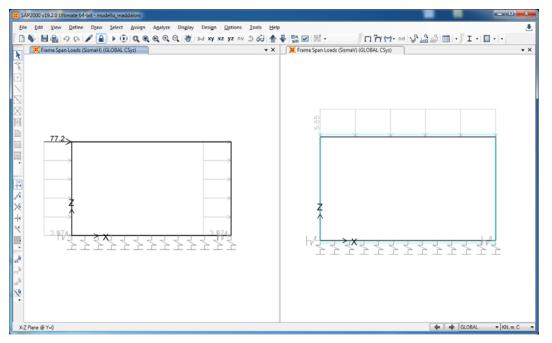
Sisma-H

Forza orizzontale sulla soletta di copertura totale:

 $F'_h = 77.2 \text{ kN/m}$

Forza orizzontale sui piedritti:

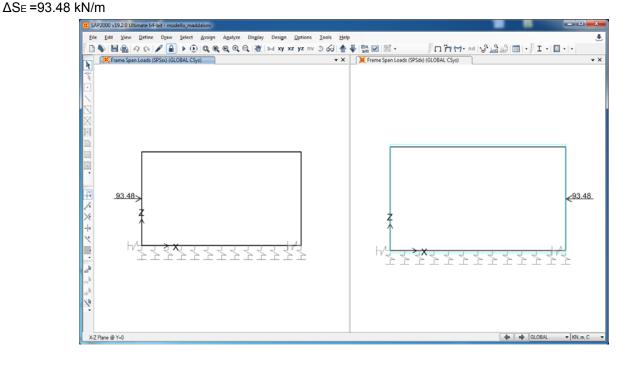
 $F''_h = 3.97 \text{ kN/m}$


Sisma-V

Per la forza sismica verticale avremo analogamente:

Forza verticale sulla soletta di copertura:

 $F''_{v} = 5.85 \text{ kN}$



7.10 SPINTA SISMICA TERRENO

Le spinte delle terre potranno essere determinate secondo la teoria di Wood. secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinato con la seguente espressione:

 $\Delta SE = (a_{max}/g) \cdot \gamma \cdot H^2$

Tale risultante. applicata ad un'altezza pari ad H/2.sarà considerata agente su uno solo dei piedritti dell'opera.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0120 001
 A
 24 di 64

Di seguito si riporta il foglio di calcolo con i carichi applicati al modello.

CARATTERISTICHE GEOMETRICHE DELLO	SCATOLARE		
Angolo inclinazione sottovia (°) Altezza interna scatolare (m) Larghezza interna scatolare (m) Lunghezza dello scatolare (m)	90.00 2.90 5.40 9.20	Spessore soletta superiore (m) Spessore soletta inferiore (m) Larghezza piedritti (m) Area della sezione (mq) Peso totale (KN)	0.60 0.70 0.60 12.06 2773.8
Angolo attrito terreno ricoprimento (°) Peso specifico ricoprimento (KN/mc) Scarpa ballast 1:	38 20 4.00	Dati per analisi sismica NTC 2008: Sottosuolo tipo Categoria topografica T1	
Peso specifico armamento (KN/mc)	18	$K_{h} = 0.265$	
Peso specifico calcestruzzo (KN/mc)	25	S _s = 1.417	
Angolo attrito terreno laterale (°)	33	$S_T = 1.00$	
Peso specifico terreno laterale (KN/mc)	20	$\beta_{\rm m} = 1.00$	
Coeff. spinta in quiete Ko	0.46	$a_g/g = 0.187$	
Larghezza traversina (m)	2.40	$K_{v} = 0.132$	
Ponte categoria Standard manutentivo Modello LM71 A RIDOTTO coeff. α =	(maiuscolo) (maiuscolo)	Dimensioni in asse scatolare: Angolo inclinazione sottovia (°) Altezza (m) Larghezza sezione retta (m)	90.0 3.5 6.0
Modello SW/0 coeff. α =	1.10	Larghezza sezione retta (111) Larghezza direzione linea FF.SS. (m)	6.00
Modello SW/2 coeff. α =	1.00	Lunghezza (m)	9.20
Numero di binari 2 Distanza tra asse dei binari (m) 4.0	00	Coefficiente dinamico φ =	1.3
Ponti con impalcato in struttura mista acciaio - c Ponti con impalcato metallico ed armamento su Ponti con impalcato metallico ed attacco diretto ANALISI DEI CARICHI	ballast		0.75
Spessore soletta superiore (m) Spessore soletta inferiore (m)	0.60 0.70	Copertura totale (m)	0.75
Larghezza piedritti (m)	0.60		
Spessore armamento (m)			
Conseque discondina auto ()	0.75		
Spessore ricoprimento (m)	0.00		
Spessore massetto protezione (m) Spessore riempimento soletta di fondo (m)			
Spessore massetto protezione (m) Spessore riempimento soletta di fondo (m)	0.00 0.05 0.20		
Spessore massetto protezione (m) Spessore riempimento soletta di fondo (m) Larghezza di ripartizione (m) =	0.00 0.05 0.20		
Spessore massetto protezione (m) Spessore riempimento soletta di fondo (m) Larghezza di ripartizione (m) = CARICHI PERMANENTI VERTICALI Pesi propri: Soletta sup. (KN/mq) Soletta inf. (KN/mq)	0.00 0.05 0.20 3.23 15.00 17.50		
Spessore massetto protezione (m) Spessore riempimento soletta di fondo (m) Larghezza di ripartizione (m) = CARICHI PERMANENTI VERTICALI Pesi propri: Soletta sup. (KN/mq) Soletta inf. (KN/mq) Piedritti (KN/mq) Sovraccarichi permanenti soletta superiore: Armamento (KN/mq) Ricoprimento (KN/mq)	0.00 0.05 0.20 3.23 15.00 17.50 15.00		
Spessore massetto protezione (m) Spessore riempimento soletta di fondo (m) Larghezza di ripartizione (m) = CARICHI PERMANENTI VERTICALI Pesi propri: Soletta sup. (KN/mq) Soletta inf. (KN/mq) Piedritti (KN/mq) Sovraccarichi permanenti soletta superiore: Armamento (KN/mq) Ricoprimento (KN/mq) Totale (KN/mq) Sovraccarichi permanenti soletta inferiore:	0.00 0.05 0.20 3.23 15.00 17.50 15.00 13.50 1.25 14.75		

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0120 001
 A
 25 di 64

SPINTA SULLE PARETI DOVUTA AL TERRENO ED AL CARICO SOVRASTANTE

Spinta parete in corrispondenza linea d'asse soletta superiore (KN/mq)

Spinta parete a metà altezza (KN/mq)

Spinta parete in corrispondenza linea d'asse soletta inferiore (KN/mq)

41.21

SPINTA SULLE PARETI DOVUTA AL SOVRACCARICO ACCIDENTALE

Treno LM71 (KN/mq) 12.43 Treno SW/2 (KN/mq) 21.18

FRENATURA E AVVIAMENTO

 Treno LM71 (KN/m)
 47.35

 Treno SW/2 (KN/m)
 50.22

RITIRO

Si considera una variazione uniforme di temperatura della soletta di copertura -8.30 °C

VARIAZIONE TERMICA

Variazione termica uniforme ±15°C
Differenza di temperatura tra interno ed esterno ±10°C

AZIONE SISMICA SU STRUTTURA

Coefficiente carichi mobili ψ 0.20

Forza orizzontale su soletta sup. (KN/m)
Forza orizzontale su soletta sup. (KN/m)
Forza orizzontale su soletta sup. (KN/m)
Forza orizzontale su piedritti (KN/mq)
Forza verticale su soletta sup. (KN/mq)
Forza verticale su soletta sup. (KN/mq)
Forza verticale su soletta sup. (KN/mq)

5.61

considerando LM71

considerando SW2

AZIONE SISMICA SUL TERRENO

Determinata secondo la teoria di Wood

SLV

 $a_{max} = 0.265$

Incremento spinta (kN/m) ΔS_E = 93.48 Applicato a metà altezza del paramento ed agente su uno solo dei piedritti

REAZIONE DEL TERRENO

Coefficiente di Winkler (KN/mc)	25000	MOLL	E
		Kv	
	Area influenza nodo (mq)	KN/m	KN/m
Nodo 1 estremo di sinistra	0.550	13750	44375
Nodo 2	0.500	12500	
Nodo 3	0.500	12500	
Nodo 4	0.500	12500	
Nodo 5	0.500	12500	
Nodo 6	0.500	12500	
Nodo 7	0.500	12500	
Nodo 8	0.500	12500	
Nodo 9 estremo di destra	0.550	13750	44375

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL FV0120 001 A 26 di 64

8 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si riportano per comodità le combinazioni delle azioni riportate nella normativa ponti alla quale è possibile fare riferimento per la simbologia adottata:

-Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

ITINERA

 γ G1 · G1 + γ G2 · G2 + γ P · P + γ Q1 · Qk1 + γ Q2 · ψ 02 · Qk2 + γ Q3 · ψ 03 · Qk3 + ...

-Combinazione caratteristica (rara). generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

-Combinazione frequente. generalmente impiegata per gli stati limite di esercizio (SLE) reversibili; utilizzata nella verifica a Fessurazione:

 $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$

-Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

 $G_1 + G_2 + P + \phi_{21} \cdot Q_{k1} + \phi_{22} \cdot Q_{k2} + \phi_{23} \cdot Q_{k3} + \dots$

-Combinazione sismica. impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

 $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$

dove:

 $E = \pm 1.00 \times E_{Y} \pm 0.30 \times E_{Z}$ oppure $E = \pm 0.30 \times E_{Y} \pm 1.00 \times E_{Z}$

avendo indicato con Ey e Ez rispettivamente le componenti orizzontale e verticale dell'azione sismica

Gli effetti dei carichi verticali. dovuti alla presenza dei convogli. vengono sempre combinati con le altre azioni derivanti dal traffico ferroviario. adottando i coefficienti di cui alla Tabella 5.2.IV del DM 14/01/2008 di seguito riportata. In particolare. per ogni gruppo viene individuata una azione dominante che verrà considerata per intero; per le altre azioni. vengono definiti diversi coefficienti di combinazione. Ogni gruppo massimizza una particolare condizione alla quale la struttura dovrà essere verificata

Tabella 5.2.IV - Valutazione dei carichi da traffico (da DM 14/01/2008)

TIPO DI CARICO	Azioni ve	rticali	Azion	ni orizzontali		COMMENT
Gruppo di carico	Carico Verticale (1)	Treno Scarico	Frenatura ed Avviamento	Centrifuga	Serpeggio	COMMENTI
Gruppo 1 (2)	1.0	-	0.5 (0.0)	1.0 (0.0)	1.0 (0.0)	massima azione verticale e laterale
Gruppo 2 (2)	-	1.0	0.0	1.0 (0.0)	1.0 (0.0)	stabilità laterale
Gruppo 3 (2)	1.0 (0.5)	-	1.0	0.5 (0.0)	0.5 (0.0)	massima azione longitudinale
Gruppo 4	0.8 (0.6; 0.4)	-	0.8 (0.6; 0.4)	0.8 (0.6; 0.4)	0.8 (0.6; 0.4)	fessurazione

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0120 001	Α	27 di 64

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

- 1) Includendo tutti i fattori ad essi relativi (Φ . α . ecc..)
- (2) La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1). sebbene improbabile. è stata considerata come semplificazione per i gruppi di carico 1. 2. 3 senza che ciò abbia significative conseguenze progettuali.

Nelle tabelle sopra riportate è indicato un coefficiente per gli effetti a sfavore di sicurezza e. tra parentesi. un coefficiente. minore del precedente. per gli effetti a favore di sicurezza.

In fase di combinazione, ai fini delle verifiche degli SLU e SLE per la verifica delle tensioni, si sono considerati i soli Gruppo 1 e 3, mentre per la verifica a fessurazione è stato utilizzato il Gruppo 4. Nella tabella 5.2.III vengono riportati i carichi da utilizzare in caso di impalcati con due, tre o più binari caricati.

I Gruppi definiscono le azioni che nelle diverse combinazioni sono generalmente definite come Qki.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ϕ sono riportati nelle tabelle seguenti. In particolare nel calcolo della struttura scatolare si fa riferimento alla combinazione A1 STR.

Tabella 5.2.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 14/01/2008)

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1.00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γ₽	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast. se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) Aliquota di carico da traffico da considerare.
- (6) 1.30 per instabilità in strutture con precompressione esterna
- (7) 1.20 per effetti locali

Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata:

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF1N 01 E ZZ CL FV0120 001 28 di 64 Α

Azioni		Ψο	Ψ ₁	Ψ2
AZIONI SINGOLE	Carico sul rilevato a tergo delle spalle	0.80	0.80 (0.6; 0.4)(1)	0.0
DA TRAFFICO	Azioni aerodinamiche generate dal transito dei convogli	0.80	0.80	0.0
	gr ₁	0.80@	0.80 (0.6; 0.4)(1)	0.0
	gr_2	1.00 @	o = 0	
GRUPPI DI	gr ₃	0.80 (2)	0.80 (0.6; 0.4)(1)	0.0
CARICO	gr ₄	0.80 (2)	0.80 (0.6; 0.4)(1)	0.0
	gr ₅	0.80 (2)	0.80 (0.6; 0.4)(1)	0.0
AZIONI DEL VENTO	F _{Wk}	0,60	0.50	0.0
AZIONI TERMICHE	T _k	0.60	0.60	0.50

Tabella 1.7.4.3.2 - Coefficienti di combinazione ψ delle azioni.

ITINERA

Nella combinazione sismica le azioni indotte dal traffico ferroviario sono combinate con un coefficiente $\phi z = 0.2$ (punto 3.2.4 del DM 14/01/2008) coerentemente con l'aliquota di massa afferente ai carichi da traffico

IITINERA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL FV0120 001 A 29 di 64

	7	ABLE: Combi	nation Definitions		
ComboName	CaseName	ScaleFactor	ComboName	CaseName	ScaleFactor
Text	Text	Unitless	Text	Text	Unitless
	DEAD	1.35		DEAD	1
	PERM	1.5		PERM	1
	SPTsx	1		SPTsx	1
	SPTdx	1		SPTdx	1.35
	LM71	1.45		LM71	0
CLLIA	SPACCsx_LM71	0	CLLIO	SPACCsx_LM71	0
SLU1	SPACCdx_LM71	1.45	SLU8	SPACCdx_LM71	1.45
	AVV_LM71	1.45		AVV_LM71	0
	Term	0		Term	0
	Ritiro	0		Ritiro	0
	SP_water dx	1		SP_water sx	1
	SP_water sx	1		SP_water dx	1.35
	DEAD	1.35		DEAD	1.35
	PERM	1.5		PERM	1.5
	SPTsx	1		SPTsx	1
	SPTdx	1		SPTdx	1.35
	LM71	1.45		LM71	1.45
CLUD	SPACCsx_LM71	0	CLLIO	SPACCsx_LM71	0
SLU2	SPACCdx_LM71	0	SLU9	SPACCdx_LM71	1.45
	AVV_LM71	1.45		AVV_LM71	0
	Term	-0.9		Term	0.9
	Ritiro	1.2		Ritiro	1.2
	SP_water dx	1		SP_water sx	1
	SP_water sx	1		SP_water dx	1.35
	DEAD	1.35		DEAD	1.35
	PERM	1.5		PERM	1.5
	SPTsx	1		SPTsx	1.35
	SPTdx	1		SPTdx	1
	LM71	1.45		LM71	1.45
CLLID	SPACCsx_LM71	0	CLUIAO	SPACCsx_LM71	1.45
SLU3	SPACCdx_LM71	0	SLU10	SPACCdx_LM71	0
	AVV_LM71	1.45		AVV_LM71	0
	Term	0		Term	-0.9
	Ritiro	0		Ritiro	1.2
	SP_water dx	1		SP_water sx	1.35
	SP_water sx	1		SP_water dx	1
	DEAD	1.35		DEAD	1.35
	PERM	1.5		PERM	1.5
	SPTsx	1	 	SPTsx	1.35
	SPTdx	1.35	 	SPTdx	1
	LM71	1.45		LM71	1.16
SLU4	SPACCsx_LM71	0	SLU11	SPACCsx_LM71	0
3LU4	SPACCdx_LM71	1.45	31011	SPACCdx_LM71	1.16
	AVV_LM71	1.45		AVV_LM71	0
	Term	0	 	Term	1.5
	Ritiro	0		Ritiro	1.2
	SP_water sx	1	 	SP_water sx	1.35
	SP_water dx	1.35		SP_water dx	1

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL FV0120 001 A 30 di 64

	DEAD	1.35
	PERM	1.5
	SPTsx	1.35
	SPTdx	1.35
	LM71	1.45
SLU5	SPACCsx_LM71	0
31.03	SPACCdx_LM71	1.45
	AVV_LM71	1.45
	Term	0
	Ritiro	0
	SP_water dx	1.35
	SP_water sx	1.35
	DEAD	1.35
	PERM	1.5
	SPTsx	1.35
	SPTdx	1.35
SLU6	LM71	0
	SPACCsx_LM71	0
3100	SPACCdx_LM71	1.45
	AVV_LM71	0
	Term	0
	Ritiro	0
	SP_water sx	1.35
	SP_water dx	1.35
	DEAD	1.35
	PERM	1.5
	SPTsx	1
	SPTdx	1.35
	LM71	1.45
SLU7	SPACCsx_LM71	0
3LU/	SPACCdx_LM71	1.45
	AVV_LM71	1.45
	Term	-0.9
	Ritiro	0
	SP_water sx	1
	SP_water dx	1.35

	DEAD	1.35
	PERM	1.5
	SPTsx	1.35
	SPTdx	1
	LM71	1.16
SLU12	SPACCsx_LM71	0
31012	SPACCdx_LM71	1.16
	AVV_LM71	0
	Term	-1.5
	Ritiro	1.2
	SP_water sx	1.35
	SP_water dx	1
	DEAD	1 25
	DEAD	1.35
	PERM	1.35
	PERM	1.5
	PERM SPTsx	1.5 1.35
CIIII2	PERM SPTsx SPTdx	1.5 1.35 1
SLU13	PERM SPTsx SPTdx LM71	1.5 1.35 1 1.015
SLU13	PERM SPTsx SPTdx LM71 SPACCsx_LM71	1.5 1.35 1 1.015
SLU13	PERM SPTsx SPTdx LM71 SPACCsx_LM71 SPACCdx_LM71	1.5 1.35 1 1.015 0 1.105
SLU13	PERM SPTsx SPTdx LM71 SPACCsx_LM71 SPACCdx_LM71 AVV_LM71	1.5 1.35 1 1.015 0 1.105 1.45
SLU13	PERM SPTsx SPTdx LM71 SPACCsx_LM71 SPACCdx_LM71 AVV_LM71 Term	1.5 1.35 1 1.015 0 1.105 1.45

Relazione di calcolo

IITINERA

COMMESSA

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata:

IF1N

ITINERARIO NAPOLI – BARI

LOTTO

CODIFICA

DOCUMENTO

REV. FOGLIO

01 E ZZ CL FV0120 001 Α 31 di 64

	7	ABLE: Combina	tion Definitions
ComboName	CaseName	ScaleFactor	ComboName
Text	Text	Unitless	Text
	DEAD	1	
	PERM	1	
	SPTsx	1	
	SPTdx	1	
	LM71	0.2	
	SPACCsx_LM71	0.2	
	Term	-0.5	
SH1	Ritiro	0	SV3
	Sisma H	1	
	Sisma V	0.3	
	SPSdx	0	
	SPSsx	1	
	AVV_LM71	0.2	
	SP_water dx	1	
	SP_water sx	1	
	DEAD	1	
	PERM	1	
	SPTsx	1	
	SPTdx	1	
	LM71	0.2	
	SPACCsx_LM71	0.2	
	Term	-0.5	
SH2	Ritiro	0	SV4
	Sisma H	1	
	Sisma V	-0.3	
	SPSdx	0	
	SPSsx	1	
	AVV_LM71	0.2	
	SP_water dx	1	
	SP_water sx	1	
	DEAD	1	
	PERM	1	
	SPTsx	1	
	SPTdx	1	
	LM71	0.2	
	SPACCsx_LM71	0.2	
	Term	-0.5	SLE1r
SH3	Ritiro	0	
	Sisma H	1	
	Sisma V	0.3	
	SPSdx	1	
	SPSsx	0	
	AVV_LM71	0.2	
	SP_water dx	1	
	SP_water sx	1	

ComboName	CaseName	ScaleFactor
Text	Text	Unitless
	DEAD	1
	PERM	1
	SPTsx	1
	SPTdx	1
	LM71	0.2
	SPACCsx_LM71	0.2
	Term	-0.5
SV3	Ritiro	0
	Sisma H	0.3
	Sisma V	-1
	SPSdx	0.3
	SPSsx	0
	AVV_LM71	0.2
	SP_water dx	1
	SP_water sx	1
	DEAD	1
	PERM	1
	SPTsx	1
	SPTdx	1
	LM71	0.2
	SPACCsx_LM71	0
	SPACCdx_LM71	0.2
SV4	Term	-0.5
3V4	Ritiro	0
	Sisma H	0.3
	Sisma V	1
	SPSdx	0.3
	SPSsx	0
	AVV_LM71	0.2
	SP_water dx	1
	SP_water sx	1
	DEAD	1
	PERM	1
	SPTsx	1
	SPTdx	0.8
	LM71	0.8
CI E1 r	SPACCsx_LM71	0.8
SLE1r	SPACCdx_LM71	0.8
	AVV_LM71	-0.8
	Term	-0.6
	Ritiro	0
	SP_water sx	1
	SP_water dx	0.8
		-

IITINERA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

CODIFICA DOCUMENTO COMMESSA LOTTO REV. FOGLIO IF1N 01 E ZZ CL FV0120 001 Α 32 di 64

	DEAD	1
	PERM	1
	SPTsx	1
	SPTdx	1
	LM71	0.2
	SPACCsx_LM71	0.2
	Term	-0.5
SH4	Ritiro	0
	Sisma H	1
	Sisma V	-0.3
	SPSdx	1
	SPSsx	0
	AVV_LM71	0.2
	SP_water dx	1
	SP_water sx	1
	DEAD	1
	PERM	1
	SPTsx	1
	SPTdx	1
	LM71	0.2
	SPACCsx_LM71	0.2
	Term	-0.5
SV1	Ritiro	0
	Sisma H	0.3
	Sisma V	-1
	SPSdx	0
	SPSsx	0.3
	AVV_LM71	0.2
	SP_water dx	1
	SP_water sx	1
	DEAD	1
	PERM	1
	SPTsx	1
	SPTdx	1
	LM71	0.2
	SPACCsx_LM71	0.2
SV2	Term	-0.5
342	Ritiro	0
	Sisma H	0.3
	Sisma V	1
	SPSdx	0
	SPSsx	0.3
	SP_water dx	1
	SP_water sx	1

	DEAD	1
	PERM	1
	SPTsx	1
	SPTdx	0.8
	LM71	0.8
SLE2r	SPACCsx_LM71	0.8
JLLZI	SPACCdx_LM71	0.8
	AVV_LM71	0.8
	Term	0.6
	Ritiro	0
	SP_water sx	1
	SP_water dx	0.8
	DEAD	1
	PERM	1
	PERM SPTsx	1
	SPTsx	1
CLE2*	SPTsx SPTdx	1 0.8
SLE3r	SPTsx SPTdx LM71	1 0.8 0.8
SLE3r	SPTsx SPTdx LM71 SPACCsx_LM71	1 0.8 0.8 0
SLE3r	SPTsx SPTdx LM71 SPACCsx_LM71 SPACCdx_LM71	1 0.8 0.8 0 0
SLE3r	SPTsx SPTdx LM71 SPACCsx_LM71 SPACCdx_LM71 AVV_LM71	1 0.8 0.8 0 0.8 -0.8
SLE3r	SPTsx SPTdx LM71 SPACCsx_LM71 SPACCdx_LM71 AVV_LM71 Term	1 0.8 0.8 0 0.8 -0.8 -0.6

9 ANALISI DEL MODELLO E RISULTATI

Si riportano i risultati ottenuti dall'inviluppo delle combinazioni di carico. I valori massimi delle caratteristiche di sollecitazione ottenuti sono stati utilizzati nelle successive verifiche.

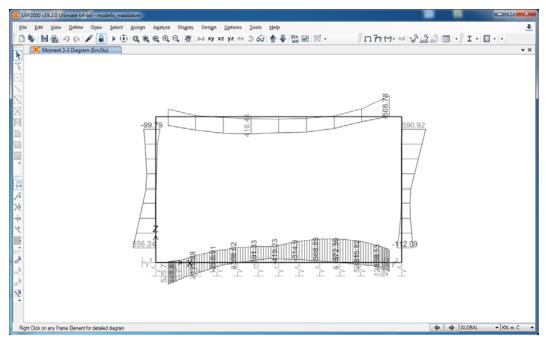


Figura 1 - Diagramma del momento flettente M33 (kNm) per la gli inviluppi EnvSlu - EnvSlu

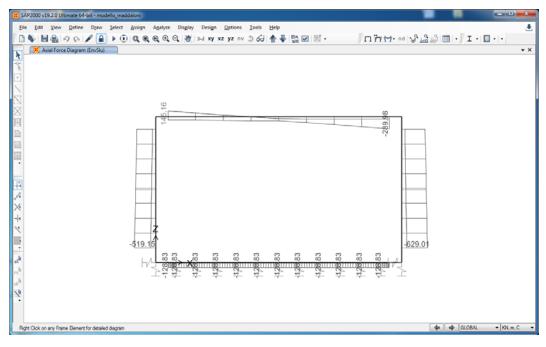


Figura 2 - Diagramma dello sforzo assiale N (kN) per la gli inviluppi EnvSlu - EnvSlu

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0120 001	Α	34 di 64

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

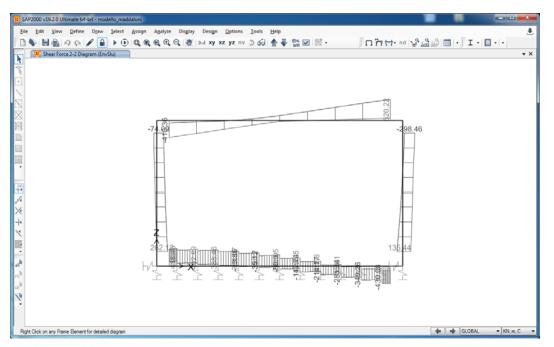


Figura 3 - Diagramma del taglio V22 (kN) per la gli inviluppi EnvSlu

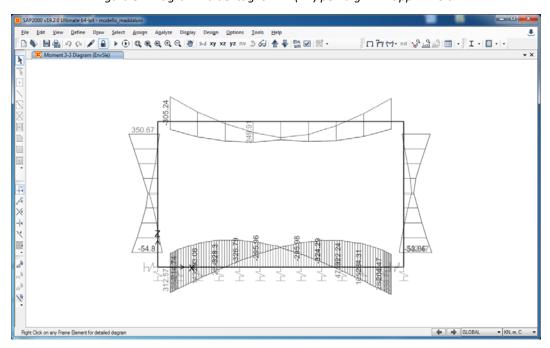


Figura 4 - Diagramma del momento flettente M33 (kNm) per la gli inviluppi EnvSlu - EnvSle

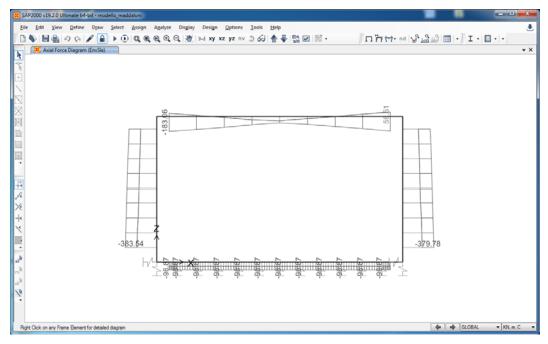


Figura 5 - Diagramma dello sforzo assiale N (kN) per la gli inviluppi EnvSlu - EnvSle

10 VERIFICHE STRUTTURALI

10.1 SOLETTA SUPERIORE

Le sollecitazioni massime ottenute sono riportate nella tabella seguente:

Combo	Sezione	P (KN)	V2 (KN)	M3 (KNm)
SLU3	mezzeria	0.00	0.00	416.5
SLU2	estremità	0.00	520.2	-508.8
SLE 2r	mezzeria	0.00	0.00	249.9
SLE 1r	estremità	0.00	0.00	-305.2

Si riportano di seguito le verifiche di resistenza della sezione di dimensioni 100 x 60 cm.

10.1.1 VERIFICA A PRESSO FLESSIONE - SEZIONE DI MEZZERIA

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: sol_sup mezz

Descrizione Sezione: Metodo di calcolo resistenza: Tipologia sezione: Normativa di riferimento: Percorso sollecitazione: Condizioni Ambientali: Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Stati Limite IIltimi Sezione generica A Sforzo Norm. costante Molto aggressive

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0120 001
 A
 36 di 64

Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C32/40

Resis. compr. di calcolo fcd : 188.10 daN/cm²
Resis. compr. ridotta fcd': 94.05 daN/cm²

Def.unit. max resistenza ec2 : 0.0020 Def.unit. ultima ecu : 0.0035

Diagramma tensione-deformaz. : Parabola-Rettangolo

Modulo Elastico Normale Ec : 336428 daN/cm²

Coeff. di Poisson : 0.20

Resis. media a trazione fctm: 31.00 daN/cm^2

Coeff. Omogen. S.L.E. : 15.0 Combinazioni Rare in Esercizio (Tens.Limite):

Sc Limite: 166.00 daN/cm²

Apert.Fess.Limite: 99999.000 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. caratt. rottura ftk: 5400.0 daN/cm² Resist. snerv. di calcolo fyd: 3913.0 daN/cm² Resist. ultima di calcolo ftd: 4500.0 daN/cm²

Deform. ultima di calcolo Epu: 0.068

Modulo Elastico Ef : 2000000 daN/cm²
Diagramma tensione-deformaz. : Bilineare finito
Coeff. Aderenza ist. £1*£2 : 1.00 daN/cm²
Coeff. Aderenza diff. £1*£2 : 0.50 daN/cm²
Comb.Rare Sf Limite : 3600.0 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C32/40

N.vertice	Ascissa X, cm	Ordinata Y, cm
1	0.00	0.00
2	0.00	60.00
3	100.00	60.00
4	100.00	0.00

DATI BARRE ISOLATE

N.Barra Numero assegnato alle singole barre isolate e nei vertici dei domini
Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Ordinata Y Diam.

Diametro in mm della barra

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	6.60	6.60	20
T			
∠ 3	6.60	53.40	20
3	93.40	53.40	20
4	93.40	6.60	20

DATI GENERAZIONI LINEARI DI BARRE

N.Gen. Numero assegnato alla singola generazione lineare di barre N.Barra In. Numero della barra iniziale cui si riferisce la gener. N.Barra Fin. Numero della barra finale cui si riferisce la gener.

N.Barre Numero di barre generate equidist. inserite tra la barra iniz. e fin.

Diam. Diametro in mm della singola barra generata

N.Gen. N.Barra In. N.Barra Fin. N.Barre Diam.Ø,mm

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

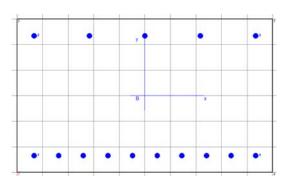
Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata:

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0120 001	Α	37 di 64

2 2 3 3 20

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA


N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb.	N	Mx	My	Vy	Vx
1	0	41650	0	0	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo superiore della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb.	N	Mx	My
		0.4000	
1	Ü	24990	U

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 5.6 cm Interferro netto minimo barre longitudinali: 7.6 cm Copriferro netto minimo staffe: 4.8 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver N	S = combinazione verificata / N = combin. non verificata Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My)
	Verifica positiva se tale rapporto risulta >=1.000

N.Comb.	Ver	N	Mx	My	N ult	Mx ult	My ult	Mis.Sic.
1	S	0	41650	0	0	64048	0	1.538

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0120 001	Α	38 di 64

ef min	Deform. uni	t. minima nell	acciaio (negat	iva se di traz	ione)
Xf min					rif. X,Y,O sez.)
Yf min	Ordinata in	cm della barra	a corrisp. a ef	min (sistema	rif. X,Y,O sez.)
ef max	Deform. uni	t. massima nell	l'acciaio (posi	tiva se di com	press.)
Xf max	Ascissa in	cm della barra	a corrisp. a ef	max (sistema :	rif. X,Y,O sez.)
Yf max	Ordinata in	cm della barra	a corrisp. a ef	max (sistema	rif. X,Y,O sez.)
N.Comb.	ec max ec 3/7	Xc max Yc max	ef min Xf m	nin Yf min e	f max Xf max Yf max
1	0.00350 -0.00845	0.0 60.0	0.00043 6	5.6 53.4 -0.	02132 6.6 6.6

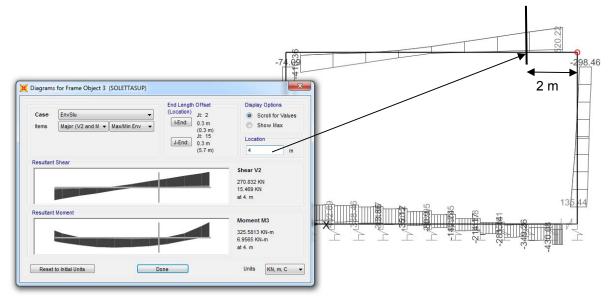
POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a b c x/d C.Rid.	Coeff. b ne Coeff. c ne Rapp. di du	ll'eq. dell'asse ll'eq. dell'asse ll'eq. dell'asse ttilità a rottur iduz. momenti pe	neutro aX+bY+c=(neutro aX+bY+c=(a in presenza di	nel rif. nel rif. sola fles	X,Y,O gen. X,Y,O gen. ss.(travi)
N.Comb.	a	b	C	x/d	C.Rid.
1	0.000000000	0.000464756 -0	.024385371	0.141	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione positiva di compressione nel conglomerato [daN/cm²]
Xc max	Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sf min	Minima tensione negativa di trazione nell'acciaio [daN/cm²]
Xf min	Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Yf min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.	Area di conglomerato [cm²] in zona tesa considerata aderente alle barre
D fess.	Distanza calcolata tra le fessure espressa in mm
К3	Coeff. di normativa dipendente dalla forma del diagramma delle tensioni
Ap.fess.	Apertura calcolata delle fessure espressa in mm
N.Comb. Ver	Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.
1 S	52.5 0.0 60.0 -1672 16.2 6.6 2029 215 0.162 0.122

10.1.2 VERIFICA A TAGLIO


Il taglio massimo di progetto è pari a Ved = 520.20 KN.

Il valore limite del taglio per cui non risulta necessaria armatura a taglio è pari a :

$$V_{Rd} = \begin{cases} \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \end{cases} \cdot b_w \cdot d \geq \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d \\ \text{Rck} & 40 \text{ MPa} \\ \text{fck} & 33.2 \text{ MPa} \\ \text{yc} & 1.5 \\ \text{h} & 600 \text{ mm} \\ \text{d} & 534 \text{ mm} \\ \text{bw} & 1000 \text{ mm} & \text{As} & 10 & \Phi & 20.0 \\ 1 + (200/\text{d})^{\wedge_1} & 1.612 \\ \text{k} & 1.612 \\ \text{Asl} & 3142 \text{ mmq} \\ \text{Asl}/(\text{bw} \cdot \text{d}) & 0.0059 \\ \text{p1} & 0.006 \\ \text{vmin} & 0.413 \\ \text{vmin} \cdot \text{bw} \cdot \text{d} & 220405 \\ \text{V}_{\text{Rd}} & 278.2 \text{ KN} \\ \text{senzya considerator ill contribute della eferza assigle} \end{cases}$$

senza considerare il contributo dello sforzo assiale

Nelle zone in cui il valore del taglio di progetto non supera il valore limite precedente non è necessario armare a taglio, mentre nelle zone in cui tale valore limite viene superato si procede al calcolo dell'armatura a taglio necessaria per corprire il taglio massimo di progetto (vedi figura sottostante).

Si procederà ad inserire una armatura a taglio formata da staffe Φ 14/20 a 170 cm da interno parete.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ CL FV0120 001 Α 40 di 64

10.1.3 VERIFICA A PRESSO FLESSIONE E TAGLIO - SEZIONE DI ESTREMITÀ

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: sol_sup estrem

Descrizione Sezione:

Stati Limite Ultimi Metodo di calcolo resistenza: Tipologia sezione: Sezione generica Normativa di riferimento: N.T.C. Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Molto aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -Classe: C32/40

Resis. compr. di calcolo fcd : 188.10 daN/cm² Resis. compr. ridotta fcd': 94.05 daN/cm²

Def.unit. max resistenza ec2 : 0.0020 Def.unit. ultima ecu : 0.0035

Diagramma tensione-deformaz. : Parabola-Rettangolo Modulo Elastico Normale Ec : 336428 daN/cm² Coeff. di Poisson 0.20

Resis. media a trazione fctm: 31.00 daN/cm² Coeff. Omogen. S.L.E. : 15.0

Combinazioni Rare in Esercizio (Tens.Limite): Sc Limite :

166.00 daN/cm²

Apert.Fess.Limite: 99999.000 mm

ACCIAIO Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. caratt. rottura ftk: 5400.0 daN/cm² Resist. snerv. di calcolo fyd: 3913.0 daN/cm² Resist. ultima di calcolo ftd: 4500.0 daN/cm²

0.068 Deform. ultima di calcolo Epu:

2000000 daN/cm² Modulo Elastico Ef : Diagramma tensione-deformaz. : Bilineare finito Coeff. Aderenza ist. £1*£2: 1.00 daN/cm² Coeff. Aderenza diff. \$1*\$2: 0.50 daN/cm² Comb.Rare Sf Limite : 3600.0 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C32/40

N.vertice	Ascissa X, cm	Ordinata Y, cm
1	0.00	0.00
2	0.00	60.00
3	100.00	60.00
4	100.00	0.00

DATI BARRE ISOLATE

Numero assegnato alle singole barre isolate e nei vertici dei domini N. Barra Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Diametro in mm della barra

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	6.60	6.60	20
2	6.60	53.40	20
3	93.40	53.40	20
4	93.40	6.60	20

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0120 001
 A
 41 di 64

DATI GENERAZIONI LINEARI DI BARRE

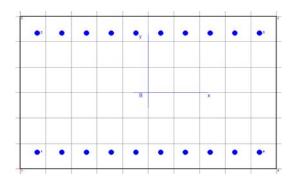
N.Gen. Numero assegnato alla singola generazione lineare di barre N.Barra In. Numero della barra iniziale cui si riferisce la gener. N.Barra Fin. Numero della barra finale cui si riferisce la gener.

N.Barre Numero di barre generate equidist. inserite tra la barra iniz. e fin.

Diam. Diametro in mm della singola barra generata

N.Gen.	N.Barra In.	N.Barra Fin.	N.Barre	Diam.Ø,mm
1	1	4	8	20
2	2	3	8	20

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA


N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb.	N	Mx	My	Vy	Vx
1	0	-50880	0	52020	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo superiore della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 5.6 cm Interferro netto minimo barre longitudinali: 7.6 cm Copriferro netto minimo staffe: 4.2 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My)
	Verifica positiva se tale rapporto risulta >=1.000

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata:

Relazione di calcolo

COMMESSA LOTTO IF1N 01 E ZZ

CODIFICA

DOCUMENTO

RFV FOGLIO

42 di 64 CL FV0120 001 Α

N.Comb.	Ver	N	Mx	My	N ult	Mx ult	My ult	Mis.Sic.
1	S	0	-50880	0	0	-64178	0	1.261

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec	max	Deform. unit. massima del conglomerato a compressione
ec	3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Хc	max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc	max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef	min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xf	min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf	min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef	max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Хf	max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Υf	max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
NT (1		2/7 V V V V V V V V V V V V-

ec max ec 3/7 Xc max Yc max ef min Xf min Yf min N.Comb. ef max Xf max Yf max 0.00350 -0.00897 0.0 0.0 0.00030 6.6 6.6 -0.02239 93.4 53.4 1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a	Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
b	Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
C	Coeff. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N.Comb. b с x/d C.Rid. 0.00000000 -0.000484775 0.003500000 0.700 0.135

ARMATURE A TAGLIO DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

Diametro staffe: 14 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 20.5] N.Bracci staffe:

Area staffe/m : $15.4 \text{ cm}^2/\text{m}$ [Area Staffe Minima normativa = 15.0]

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Ver	S = comb. verificata a taglio / N = comb. non verificata
Vsdu	Taglio agente [daN] = proiez. di Vx e Vy sulla normale all'asse neutro
Vru	Taglio resistente ultimo [daN] lato conglomerato compresso
Vcd	Taglio [daN] assorbito dal conglomerato nel calcolo delle staffe
Vwd	Taglio resistente [daN] assorbito dalle staffe
Dmed	Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.
	Vengono prese nella media le strisce con almeno un estremo compresso.
	I pesi della media sono costituiti dalle stesse lunghezze delle strisce.
bw	Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro.
	E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.
Teta	Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato
Acw	Coefficiente maggiorativo della resistenza a taglio per compressione
Afst	Area staffe strettamente necessarie a taglio per metro di trave [cm²/m]

N.Comb. Ver Vsdu Vcd Vwd Dmed bw Teta Acw Afst 52020 155864 72374 53.4 100.0 21.80° 1.000 11.1

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione positiva di compressione nel conglomerato [daN/cm²]
Xc max	Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

IF1N

LOTTO

COMMESSA

CODIFICA

DOCUMENTO

FOGLIO

REV.

01 E ZZ 43 di 64 CL FV0120 001 Α

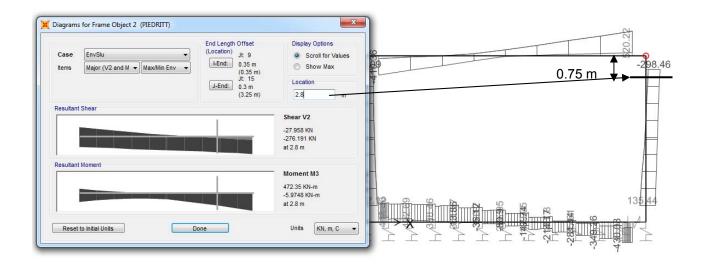
Sf min Xf min Yf min Ac eff. D fess.	Minima tensione negativa di trazione nell'acciaio [daN/cm²] Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di conglomerato [cm²] in zona tesa considerata aderente alle barre Distanza calcolata tra le fessure espressa in mm
K3 Ap.fess.	Coeff. di normativa dipendente dalla forma del diagramma delle tensioni Apertura calcolata delle fessure espressa in mm
N.Comb. Ver	Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.
1 S	58.9 0.0 0.0 -2037 83.8 53.4 2029 216 0.164 0.150

10.2 PIEDRITTI

Le sollecitazioni massime ottenute sono riportate nella tabella seguente:

Combo	Sezione	P (KN)	V2 (KN)	M3 (KNm)
SLU2	estremità	-570.3	298.5	590.9
SLU3	estremità	-629.0	0.00	-112.10
CARATTERISTICA3	estremità	-340.1	0.00	350.7
CARATTERISTICA3	estremità	-383.5	0.00	-55

Si riportano di seguito le verifiche di resistenza della sezione di dimensioni 100 x 60 cm.


10.2.1 VERIFICA A TAGLIO

Il taglio massimo di progetto è pari a Ved = 298.5 KN.

Il valore limite del taglio per cui non risulta necessaria armatura a taglio è pari a :

Nelle zone in cui il valore del taglio di progetto non supera il valore limite precedente non è necessario armare a taglio, mentre nelle zone in cui tale valore limite viene superato si procede al calcolo dell'armatura a taglio necessaria per corprire il taglio massimo di progetto (vedi figura sottostante).

Si procederà ad inserire una armatura a taglio formata da staffe Φ14/20 a 45 cm da intradosso soletta di copertura.

10.2.2 VERIFICA A PRESSO FLESSIONE - SEZIONE DI ESTREMITA'

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: piedritti Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica Normativa di riferimento: N.T.C. Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Molto aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

```
CONGLOMERATO -
                   Classe: C32/40
                   Resis. compr. di calcolo fcd :
                                                          188.10 daN/cm<sup>2</sup>
                   Resis. compr. ridotta fcd':
                                                          94.05 daN/cm<sup>2</sup>
                                                          0.0020
                   Def.unit. max resistenza ec2 :
                   Def.unit. ultima
                                              ecu :
                                                          0.0035
                   Diagramma tensione-deformaz. :
                                                          Parabola-Rettangolo
                   Modulo Elastico Normale Ec
                                                          336428 daN/cm<sup>2</sup>
                   Coeff. di Poisson
                                                            0.20
                   Resis. media a trazione fctm:
                                                           31.00 daN/cm<sup>2</sup>
                        Coeff. Omogen. S.L.E.
                                                  •
                                                            15.0
              Combinazioni Rare in Esercizio (Tens.Limite):
                                       Sc Limite :
                                                          166.00 daN/cm<sup>2</sup>
                               Apert.Fess.Limite: 99999.000 mm
ACCIAIO
                   Tipo: B450C
                   Resist. caratt. snervam. fyk:
                                                          4500.0 daN/cm<sup>2</sup>
                   Resist. caratt. rottura ftk:
                                                          5400.0 daN/cm<sup>2</sup>
```


I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO RFV FOGLIO IF1N 01 E ZZ CL FV0120 001 Α 45 di 64

Resist. snerv. di calcolo fyd: 3913.0 daN/cm² 4500.0 daN/cm² Resist. ultima di calcolo ftd: 0.068

Deform. ultima di calcolo Epu:

Modulo Elastico Ef : Diagramma tensione-deformaz. : 2000000 daN/cm² Bilineare finito Coeff. Aderenza ist. £1*£2: 1.00 daN/cm² Coeff. Aderenza diff. 81*82: 0.50 daN/cm² Comb.Rare Sf Limite : 3600.0 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C32/40

N.vertice	Ascissa X, cm	Ordinata Y, cm
1	0.00	0.00
2	0.00	60.00
3	100.00	60.00
4	100.00	0.00

DATI BARRE ISOLATE

N.Barra Numero assegnato alle singole barre isolate e nei vertici dei domini Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Ascissa X Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Diametro in mm della barra Diam.

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	6.60	6.60	20
2	6.60	53.40	20
3	93.40	53.40	20
4	93 40	6 60	20

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre N.Barra In. Numero della barra iniziale cui si riferisce la gener. N.Barra Fin. Numero della barra finale cui si riferisce la gener.

Numero di barre generate equidist. inserite tra la barra iniz. e fin. N. Barre

Diam. Diametro in mm della singola barra generata

N.Gen.	N.Barra	In. N.Barra	Fin. N.Barr	e Diam.Ø,mm
1	1	4	8	20
2	2	3	3	20

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

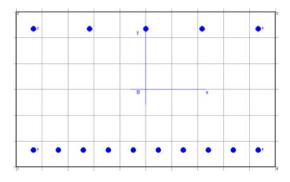
Sforzo normale in daN applicato nel Baric. (+ se di compressione) Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Coppia concentrata in daNm applicata all'asse y princ. d'inerzia Му con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [daN] parall. all'asse princ.d'inerzia y Vν Componente del Taglio [daN] parall. all'asse princ.d'inerzia x Vx

N.Comb.	N	Mx	Му	Vy	Vx
1	57030	59090	0	29850	0
2	62900	-11210	0	0	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Ν Coppia concentrata in daNm applicata all'asse \boldsymbol{x} princ. d'inerzia Mx con verso positivo se tale da comprimere il lembo superiore della sez.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO


Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0120 001	Α	46 di 64

My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb.	N	Mx	Му
1	34010	35070	0
2	38350	-5500	0

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: $5.6~\rm cm$ Interferro netto minimo barre longitudinali: $7.6~\rm cm$ Copriferro netto minimo staffe: $4.2~\rm cm$

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000

N.Comb.	Ver	N	Mx	My	N ult	Mx ult	My ult	Mis.Sic.
1		E7020	59090	n	57046	76466	0	1.291
1	5	57030	39090	U	3/040	70400	U	1.291
2	S	62900	-11210	0	62908	-48789	0	4.572

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xf min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xf max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)

N.Comb.	ec max	ec 3/7	Xc max	Yc max	ef min 2	Xi min	Yf min	ei max X	i max	Yi max	
1	0.00350	-0.00573	100.0	60.0	0.00113	93.4	53.4	-0.01567	6.6	6.6	
2	0.00350	-0.00903	0.0	0.0	0.00029	6.6	6.6	-0.02251	93.4	53.4	

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

- a Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
- b Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF1N 01 E ZZ CL FV0120 001 A 47 di 64

c Coeff. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N.Comb. a b c x/d C.Rid.

1 0.000000000 0.000358999 -0.018039961
2 0.000000000 -0.000487102 0.003500000

ARMATURE A TAGLIO DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

Diametro staffe: 14 mm

Passo staffe: 23.0 cm [Passo massimo di normativa = 24.0] N.Bracci staffe: 2 Area staffe/m : 13.4 cm 2 /m [Area Staffe Minima normativa = 2.4]

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

S = comb. verificata a taglio / N = comb. non verificata Ver Vsdu Taglio agente [daN] = proiez. di Vx e Vy sulla normale all'asse neutro Vru Taglio resistente ultimo [daN] lato conglomerato compresso Taglio [daN] assorbito dal conglomerato nel calcolo delle staffe Vcd Taglio resistente [daN] assorbito dalle staffe Vwd Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro. Dmed Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro. E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Teta Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Acw Afst Area staffe strettamente necessarie a taglio per metro di trave [cm²/m]

Acw N.Comb. Ver Vsdu Vcd Vwd Dmed bw Teta Afst S 29850 163740 62933 53.4 100.0 21.80° 1.051 6.3 1 0 238598 2 S 25173 53.4 100.0 45.00° 1.056 0.0

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

S = combinazione verificata / N = combin. non verificata Ver Sc max Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Xc max Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Sf min Xf min Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Yf min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di conglomerato [cm²] in zona tesa considerata aderente alle barre Ac eff. D fess. Distanza calcolata tra le fessure espressa in mm Coeff. di normativa dipendente dalla forma del diagramma delle tensioni K.3 Ap.fess. Apertura calcolata delle fessure espressa in mm

N.Comb. Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.

1 S 77.7 0.0 60.0 -1858 25.9 6.6 1950 206 0.151 0.150
2 S 12.8 100.0 0.0 -7 6.6 53.4 0 0 0.151 0.000

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0120 001
 A
 48 di 64

10.3 SOLETTA INFERIORE

Le sollecitazioni massime ottenute sono riportate nella tabella seguente:

Combo	Sezione	P (KN)	V2 (KN)	M3 (KNm)
SLU2	mezzeria	0.00	0.00	-572.40
SLU3	estremità	0.00	430.1	525.70
CARATTERISTICA1	mezzeria	0.00	0.00	-328.30
CARATTERISTICA2	estremità	0.00	0.00	336.70

Si riportano di seguito le verifiche di resistenza della sezione di dimensioni 100 x 70 cm.

ITINERA

10.3.1 VERIFICA A PRESSO FLESSIONE - SEZIONE DI MEZZERIA

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: sol inf mezz

Descrizione Sezione:

Metodo di calcolo resistenza:
Tipologia sezione:
Normativa di riferimento:
Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:

Riferimento alla sismicità:

Posizione sezione nell'asta:

Stati Limite Ultimi
Sezione generica
N.T.C.
A Sforzo Norm. costante
Molto aggressive
Assi x,y principali d'inerzia
Zona non sismica
In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C32/40

Resis. compr. di calcolo fcd : 188.10 daN/cm²
Resis. compr. ridotta fcd': 94.05 daN/cm²
Def.unit. maximes ec2 : 0.0020

Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz. : Parabola-Rettangolo Modulo Elastico Normale Ec : 336428 daN/cm^2

Coeff. di Poisson : 0.20

Resis. media a trazione fctm: 31.00 daN/cm²

Coeff. Omogen. S.L.E. : 15.0 Combinazioni Rare in Esercizio (Tens.Limite):

Sc Limite : 166.00 daN/cm²
Apert.Fess.Limite : 99999.000 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. caratt. rottura ftk: 5400.0 daN/cm² Resist. snerv. di calcolo fyd: 3913.0 daN/cm² Resist. ultima di calcolo ftd: 4500.0 daN/cm² Deform. ultima di calcolo Epu: 0.068 Modulo Elastico Ef : Diagramma tensione-deformaz. : 2000000 daN/cm2 Bilineare finito 1.00 daN/cm² Coeff. Aderenza ist. £1*£2: Coeff. Aderenza diff. £1*£2: 0.50 daN/cm² Comb.Rare Sf Limite : 3600.0 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C32/40

N.vertice Ascissa X, cm Ordinata Y, cm

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0120 001	Α	49 di 64

1	0.00	0.00
2	0.00	70.00
3	100.00	70.00
4	100.00	0.00

DATI BARRE ISOLATE

N.Barra Numero assegnato alle singole barre isolate e nei vertici dei domini
Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Diam. Diametro in mm della barra

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	6.60	6.60	20
2	6.60	63.40	20
3	93.40	63.40	20
4	93.40	6.60	2.0

DATI GENERAZIONI LINEARI DI BARRE

N.Gen. Numero assegnato alla singola generazione lineare di barre
N.Barra In. Numero della barra iniziale cui si riferisce la gener.
N.Barra Fin. Numero della barra finale cui si riferisce la gener.
N.Barre Numero di barre generate equidist. inserite tra la barra iniz. e fin.
Diam. Diametro in mm della singola barra generata

N.Gen.	N.Barra In.	N.Barra Fin.	N.Barre	Diam.Ø,mm
1	1	4	3	20
2	2	3	8	2.0

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

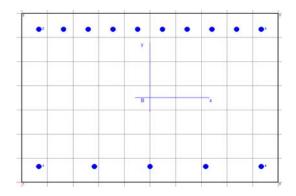
N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb.	N	Mx	My	Vy	Vx
1	0	-57240	0	0	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo superiore della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb.	N	Mx	My
1	0	-32830	0


RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0120 001
 A
 50 di 64

ITINERA

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 5.6 cm Interferro netto minimo barre longitudinali: 7.6 cm Copriferro netto minimo staffe: 4.2 cm $\,$

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000

N.Comb. Ver N Mx My Nult Mx ult My ult Mis.Sic.

1 S 0 -57240 0 0 -77605 0 1.356

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec	max	Deform. unit. massima del conglomerato a compressione	
ec	3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace	
ХC	max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)	
Yc	max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)	
ef	min	Deform. unit. minima nell'acciaio (negativa se di trazione)	
Хf	min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)	
Υf	min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)	
ef	max	Deform. unit. massima nell'acciaio (positiva se di compress.)	
Xf	max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)	
Yf	max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)	
N.Cor	mb. ∈	c max ec 3/7 Xc max Yc max ef min Xf min Yf min ef max Xf max Yf ma	ιx

1 0.00350 -0.01036 0.0 0.0 0.00045 6.6 6.6 -0.02579 93.4 63.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a	Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
b	Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
С	Coeff. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N.Comb.	a	b	С	x/d	C.Rid.
1	0.000000000	-0.000461912	0.003500000	0.120	0.700

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ CL FV0120 001 A 51 di 64

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

ITINERA

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione positiva di compressione nel conglomerato [daN/cm²]
Xc max	Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sf min	Minima tensione negativa di trazione nell'acciaio [daN/cm²]
Xf min	Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Yf min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.	Area di conglomerato [cm²] in zona tesa considerata aderente alle barre
D fess.	Distanza calcolata tra le fessure espressa in mm
K3	Coeff. di normativa dipendente dalla forma del diagramma delle tensioni
Ap.fess.	Apertura calcolata delle fessure espressa in mm
N.Comb. Ver	Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.
1 S	52.2 100.0 0.0 -1832 83.8 63.4 2029 221 0.175 0.138

10.3.2 VERIFICA A TAGLIO

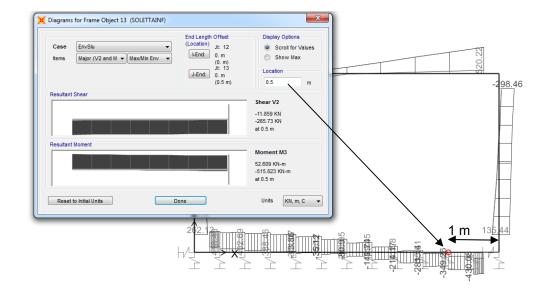
Il taglio massimo di progetto è pari a Ved = 430.10 KN.

Il valore limite del taglio per cui non risulta necessaria armatura a taglio è pari a :

$$V_{Rd} = \begin{cases} \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \end{cases} \cdot b_w \cdot d \geq \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d \end{cases}$$
 Rck 40 MPa fck 33.2 MPa yc 1.5 h 700 mm d 634 mm bw 1000 mm As 10 Φ 20.0 1+(200/d)^1 1.562 k 1.562 Asl 3142 mmq Asl/(bw · d) 0.0050 p1 0.005 vmin 0.394 vmin·bw·d 249519
$$V_{Rd}$$
 302.2 KN

senza considerare il contributo dello sforzo assiale

Nelle zone in cui il valore del taglio di progetto non supera il valore limite precedente non è necessario armare a taglio, mentre nelle zone in cuii tale valore limite viene superato si procede al calcolo dell'armatura a taglio necessaria per corprire il taglio massimo di progetto (vedi figura sottostante).



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0120 001
 A
 52 di 64

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

Si procederà ad inserire una armatura a taglio formata da staffe Φ 14/20 a 100 cm da interno parete.

10.3.3 VERIFICA A PRESSO FLESSIONE E TAGLIO - SEZIONE DI ESTREMITÀ

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: sol_inf estrem

Descrizione Sezione: Stati Limite Ultimi Metodo di calcolo resistenza: Tipologia sezione: Sezione generica Normativa di riferimento: N.T.C. Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Molto aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C32/40

Resis. compr. di calcolo fcd: 188.10 daN/cm²
Resis. compr. ridotta fcd: 94.05 daN/cm²
Def.unit. max resistenza ec2: 0.0020

Def.unit. max resistenza ec2 : 0.0020 Def.unit. ultima ecu : 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec : 336428 daN/cm²
Coeff. di Poisson : 0.20
Resis. media a trazione fctm: 31.00 daN/cm²

Coeff. Omogen. S.L.E. : 15.0 Combinazioni Rare in Esercizio (Tens.Limite):

Sc Limite : 166.00 daN/cm² Apert.Fess.Limite : 99999.000 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm²
Resist. caratt. rottura ftk: 5400.0 daN/cm²
Resist. snerv. di calcolo fyd: 3913.0 daN/cm²
Resist. ultima di calcolo ftd: 4500.0 daN/cm²
Deform. ultima di calcolo Epu: 0.068

Modulo Elastico Ef : 2000000 daN/cm²
Diagramma tensione-deformaz. : Bilineare finito
Coeff. Aderenza ist. £1*£2 : 1.00 daN/cm²
Coeff. Aderenza diff. £1*£2 : 0.50 daN/cm²

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0120 001
 A
 53 di 64

Comb.Rare Sf Limite: 3600.0 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: C32/40

N.vertice	Ascissa X, c	m Ordinata Y, cm
1	0.00	0.00
2	0.00	70.00
3	100.00	70.00
4	100.00	0.00

DATI BARRE ISOLATE

N.Barra Numero assegnato alle singole barre isolate e nei vertici dei domini
Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O
Diam. Diametro in mm della barra

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	6.60	6.60	20
2	6.60	63.40	20
3	93.40	63.40	20
4	93.40	6.60	2.0

DATI GENERAZIONI LINEARI DI BARRE

N.Gen. Numero assegnato alla singola generazione lineare di barre
N.Barra In. Numero della barra iniziale cui si riferisce la gener.
N.Barra Fin. Numero della barra finale cui si riferisce la gener.
N.Barre Numero di barre generate equidist. inserite tra la barra iniz. e fin.
Diam. Diametro in mm della singola barra generata

N.Gen.	N.Barra In.	N.Barra Fin.	N.Barre	Diam.Ø,mm
1	1	4	8	20
2	2	2	Ω	20

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

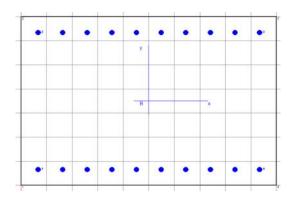
N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb.	N	Mx	My	Vy	Vx
1	0	52570	0	43010	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo superiore della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb.	N	Mx	My
1	Λ	33670	٥
	U	33070	U



I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 CL
 FV0120 001
 A
 54 di 64

RISULTATI DEL CALCOLO

1

Copriferro netto minimo barre longitudinali: $5.6~\rm cm$ Interferro netto minimo barre longitudinali: $7.6~\rm cm$ Copriferro netto minimo staffe: $4.2~\rm cm$

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My) Verifica positiva se tale rapporto risulta >=1.000
	verifica posiciva se care rapporco fisurca >-1.000

N.Comb.	Ver	N	Mx	My	N ult	Mx ult	My ult	Mis.Sic.
1	s	0	52570	0	0	77792	0	1.480

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xf min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xf max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
N.Comb.	ec max ec 3/7 Xc max Yc max ef min Xf min Yf min ef max Xf max Yf max

0.0 70.0 0.00031 6.6 63.4 -0.02710

6.6

6.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

0.00350 -0.01098

a	Coeff. a nell'eq	. dell'asse neutr	co aX+bY+c=0 ne:	l rif. X,Y,O gen.
b	Coeff. b nell'eq	. dell'asse neutr	o aX+bY+c=0 ne	l rif. X,Y,O gen.
С	Coeff. c nell'eq	. dell'asse neutr	o aX+bY+c=0 ne	l rif. X,Y,O gen.
x/d	Rapp. di duttili	tà a rottura in p	resenza di sola	a fless.(travi)
C.Rid.	Coeff. di riduz.	momenti per sola	flessione in t	travi continue
AT Clamba	_	l _m		/a a n.a.

N.Comb.	a	d	С	x/d	C.Rid.
1	0.00000000	0.000482677	-0.030287407	0.114	0.700

bw

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF1N 01 E ZZ CL FV0120 001 Α 55 di 64

ARMATURE A TAGLIO DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

Diametro staffe: 14 mm

Passo staffe: [Passo massimo di normativa = 20.5] 20.0 cm

N.Bracci staffe: 2

Area staffe/m : $15.4 \text{ cm}^2/\text{m}$ [Area Staffe Minima normativa = 15.0]

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

43010 185051

S

S

Ver	S	=	comb.	verificata	а	taglio /	/ :	N	=	comb.	non	verificata	
-----	---	---	-------	------------	---	----------	-----	---	---	-------	-----	------------	--

Taglio agente [daN] = proiez. di Vx e Vy sulla normale all'asse neutro Vsdu

Vru Taglio resistente ultimo [daN] lato conglomerato compresso

Vcd Taglio [daN] assorbito dal conglomerato nel calcolo delle staffe

Vwd Taglio resistente [daN] assorbito dalle staffe

Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.

> Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro.

> > 63.4 100.0 21.80° 1.000

E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Teta Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Acw

Afst Area staffe strettamente necessarie a taglio per metro di trave [cm²/m] Vcd Ver Vsdu Vwd Dmed N.Comb. bw Teta Acw Afst

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

85927

Ver	S =	combinazione	verificata	/ N =	combin.	non	verificata	

Sc max Massima tensione positiva di compressione nel conglomerato $[daN/cm^2]$ Xc max Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)

Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Sf min

Xf min Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

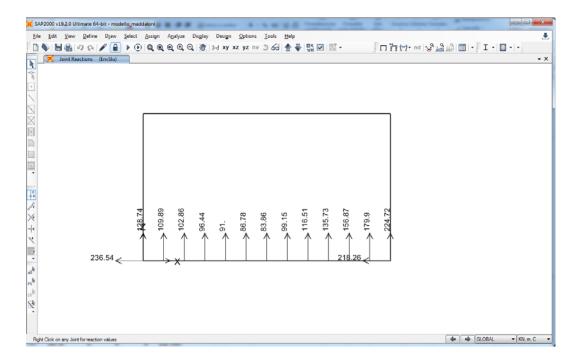
Yf min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff. Area di conglomerato [cm²] in zona tesa considerata aderente alle barre

Distanza calcolata tra le fessure espressa in mm D fess.

к3 Coeff. di normativa dipendente dalla forma del diagramma delle tensioni

Ap.fess. Apertura calcolata delle fessure espressa in mm


N.Comb. Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess. 49.2 0.0 70.0 -1872 93.4 6.6 2029 222 0.176 0.142

11 VERIFICA A CAPACITA' PORTANTE

Viene di seguito condotta la verifica a capacità portante del manufatto considerando l' approccio 1 A1-M1-R1 e l'approccio 2 A2-M2-R2.

Di seguito si riportano le reazioni vincolari massime allo SLU ottenute dal modello.

Lo scarico verticale massimo allo SLU è pari a : Nmax = 1847 KN

La profondità del piano di posa vine considerata in favore di sicurezza pari all'altezza del piano campagna dalla fondazione delle scatolare D=1.70 m

La larghezza dello scatolare è pari a : B= 6.60 m

Il terreno di fondazione su cui insiste il manufatto è lo strato 1.

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO FV0120 001

REV. FOGLIO

A 57 di 64

Verifica secondo approccio 1 A1-M1-R1

<u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

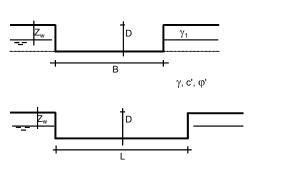
 $qlim = c'*Nc* sc*dc*ic*bc*gc + q*Nq*sq*dq*iq*bq*gq + 0,5*\gamma*B*N\gamma*s\gamma*d\gamma*i\gamma*b\gamma*g\gamma$

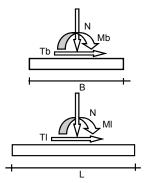
D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

e_L = Eccentricità in direzione L (e_L = MI/N)

(per fondazione nastriforme $e_L = 0$; $L^* = L$)

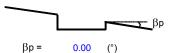

 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_1)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			az	ioni	proprietà del terreno		
Metodo di calcolo			permanenti	temporanee variabili	tan φ'	c'	
Stato limite ultimo	0		1.00	1.30	1.25	1.25	
Tensioni ammissibili	0		1.00	1.00	1.00	1.00	
definiti dall'utente	•		1.00	0.00	1.00	1.00	



(Per fondazione nastriforme L = 100 m)

B = 6.60 (m) L = 1.00 (m) D = 1.70 (m)

AZIONI

	valori (Valori di	
	permanenti	temporanee	calcolo
N [kN]	1847.00	0.00	1847.00
Mb [kNm]	0.00	0.00	0.00
MI [kNm]	0.00	0.00	0.00
Tb [kN]	0.00	0.00	0.00
TI [kN]	0.00	0.00	0.00
H [FVI]	0.00	0.00	0.00

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

COMMESSA

LOTTO 01 E ZZ CODIFICA CL

DOCUMENTO FV0120 001

REV.

Α

FOGLIO 58 di 64

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

Peso unità di volume del terreno

17.50 (kN/mc) 17.50 (kN/mc)

Valori caratteristici di resistenza del terreno

0.00 (kN/mq) c' 26.00 (°)

Valori di progetto c'

IF1N

(kN/mq)

(°)

Profondità della falda

7w 1.80 (m)

0.00 $e_B =$ (m) e_L = 0.00 (m) B* = 6.60 (m) L* = 1.00 (m)

0.00

26.00

q : sovraccarico alla profondità D

29.75 (kN/mq) q =

γ: peso di volume del terreno di fondazione

 $\gamma =$ 7.65 (kN/mc)

Nc, Nq, Nγ: coefficienti di capacità portante

Nq = $\tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$

Nq = 11.85

 $Nc = (Nq - 1)/tan\phi'$

Nc = 22.25

 $N\gamma = 2*(Nq + 1)*tan\phi'$

12.54

s_c, s_q, s_γ : <u>fattori di forma</u>

 $s_c = 1 + B*Nq / (L*Nc)$

4.52 s_c =

 $s_q = 1 + B*tan\phi' / L*$

sq = 4.22

 $s_{\gamma} = 1 - 0.4*B* / L*$

s_γ = -1.64

ITINERA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

:			

LOTTO 01 E ZZ

CODIFICA CL

DOCUMENTO FV0120 001

REV.

Α

FOGLIO 59 di 64

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata Relazione di calcolo

i_c, i_q, i_γ : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

1.13

COMMESSA

IF1N

(°)

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

1.87

1.13

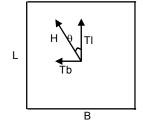
(-)

$$i_q = (1 - H/(N + B*L* c' \cot q\phi'))^m$$

 $i_q =$ 1.00

$$i_c = i_a - (1 - i_a)/(Nq - 1)$$

 $i_c =$ 1.00


$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g_{\phi}'))^{(m+1)}$$

$$i_{\gamma} = 1.00$$

$\theta = arctg(Tb/TI) =$ 90.00

m =

(m=2 nel caso di fondazione nastriforme e $m = (m_b \sin^2 \theta + m_l \cos^2 \theta)$ in tutti gli altri casi)

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

$$\begin{split} \text{per D/B*} &\leq 1; \, d_q = 1 \, +\! 2 \, D \, tan\phi' \, (1 - sen\phi')^2 \, / \, B^* \\ \text{per D/B*} &> 1; \, d_q = 1 \, +\! (2 \, tan\phi' \, (1 - sen\phi')^2) \, ^* \, arctan \, (D \, / \, B^*) \end{split}$$

$$d_q = 1.08$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$$

$$d_c = 1.09$$

 $d_{v} = 1$

$$d_v = 1.00$$

b_c , b_q , b_γ : fattori di inclinazione base della fondazione

$$b_{\alpha} = (1 - \beta_f \tan \varphi')^2$$

 $b_a =$

 $\beta_f + \beta_p =$

0.00

 $\beta_f + \beta_p < 45^\circ$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi')$$

1.00

$$b_c = 1.00$$

$$b_{\gamma} = b_{q}$$

$$b_{y} = 1.00$$

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO

IF1N 01 E ZZ

CODIFICA CL DOCUMENTO FV0120 001

REV.

Α

FOGLIO 60 di 64

g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - tan\beta_p)^2$$

 $\beta_f + \beta_p =$

0.00

 β_f + β_p < 45°

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_c = 1.00$$

$$g_{\gamma} = g_{q}$$

$$J_{y} = 1.00$$

Carico limite unitario

$$q_{lim} = 1086.58$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 279.85 (kN/m2)$$

Coefficiente di sicurezza

$$Fs = q_{lim}/q = 3.88$$

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL **COMUNE DI MADDALONI – PROGETTO ESECUTIVO**

Fermata Valle di Maddaloni

Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO IF1N 01 E ZZ CODIFICA CL

DOCUMENTO FV0120 001

REV. **FOGLIO**

Α

61 di 64

Verifica secondo approccio 2 A2-M2-R2

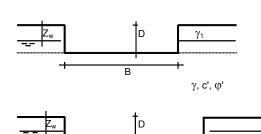
 $qlim = c'^*\underline{Nc^* \ sc^*dc^*ic^*bc^*gc} + q^*Nq^*sq^*dq^*iq^*bq^*gq + 0,5^*\gamma^*B^*N\gamma^*s\gamma^*d\gamma^*i\gamma^*b\gamma^*g\gamma$

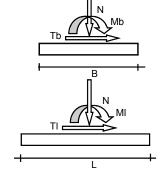
D = Profondità del piano di appoggio

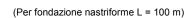
 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N)

(per fondazione nastriforme $e_L = 0$; $L^* = L$)

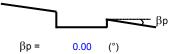

 B^* = Larghezza fittizia della fondazione (B^* = $B - 2^*e_B$)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_l)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			azioni		proprietà del terreno	
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	
Stato limite ultimo	0		1.00	1.30	1.25	1.25
Tensioni ammissibili	0		1.00	1.00	1.00	1.00
definiti dall'utente	•		1.00	0.00	1.25	1.25



В	=	6.60	(m)
L	=	1.00	(m)
_			

$$L = 1.00$$
 (m)
 $D = 1.70$ (m)

AZIONI

	valori	Valori di	
	permanenti temporanee		calcolo
N [kN]	1847.00	0.00	1847.00
Mb [kNm]	0.00	0.00	0.00
MI [kNm]	0.00	0.00	0.00
Tb [kN]	0.00	0.00	0.00
TI [kN]	0.00	0.00	0.00
H [kN]	0.00	0.00	0.00

IITINERA

ITINERARIO NAPOLI – BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO**

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata:

Relazione di calcolo

LOTTO COMMESSA IF1N 01 E ZZ CODIFICA CL

DOCUMENTO FV0120 001

REV. **FOGLIO**

Α

62 di 64

Peso unità di volume del terreno

γ1	=	17.50	(kN/mc)
γ	=	17.50	(kN/mc)

Valori caratteristici di resistenza del terreno

$$c' = 0.00 (kN/mq)$$

 $\phi' = 26.00 (°)$

Valori di progetto

c' = 0.00 (kN/mq)

$$\phi'$$
 = 21.32 (°)

Profondità della falda

$$Zw = 1.80$$
 (m)
 $e_B = 0.00$ (m)
 $e_L = 0.00$ (m)

q : sovraccarico alla profondità D

$$q = 29.75 (kN/mq)$$

γ: peso di volume del terreno di fondazione

$$\gamma = 7.65$$
 (kN/mc)

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

$$Nc = (Nq - 1)/tan\phi'$$

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 6.48$$

s_c, s_q, s_γ : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 3.98$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 3.58$$

$$s_{\gamma} = 1 - 0.4*B* / L*$$

$$s_{\gamma} = -1.64$$

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

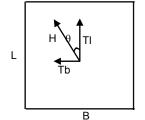
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	CL	FV0120 001	Α	63 di 64

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata:

Elaborati strutturali - Sottopasso di ferma Relazione di calcolo

i_c, i_q, i_γ : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$


ITINERA

$$\theta = arctg(Tb/TI) =$$

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

$$i_q = (1 - H/(N + B*L* c' \cot q\phi'))^m$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = i_a - (1 - i_a)/(Nq - 1)$$

$$i_c = 1.00$$

$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g_{\phi}'))^{(m+1)}$$

$$i_{v} = 1.00$$

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

$$\begin{split} \text{per D/B*} &\leq 1; \ d_q = 1 \ + 2 \ D \ tan\phi' \ (1 - sen\phi')^2 \ / \ B^* \\ \text{per D/B*} &> 1; \ d_q = 1 \ + (2 \ tan\phi' \ (1 - sen\phi')^2) \ ^* \ arctan \ (D \ / \ B^*) \end{split}$$

$$d_q = 1.08$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$$

$$d_c = 1.09$$

 $d_{v} = 1$

$$d_{y} = 1.00$$

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_0 = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi')$$

$$b_c = 1.00$$

$$b_{\gamma} = b_{q}$$

$$b_{y} = 1.00$$

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

Fermata Valle di Maddaloni Elaborati strutturali - Sottopasso di fermata: Relazione di calcolo

COMMESSA LOTTO CODIFICA

IF1N 01 E ZZ CL

DOCUMENTO FV0120 001

REV. FOGLIO **A** 64 di 64

g_c, g_q, g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - tan\beta_p)^2$$

 $\beta_f + \beta_p =$

0.00

 $\beta_f + \beta_p < 45^\circ$

$$g_q = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_c = 1.00$$

 $g_{\gamma} = g_{q}$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 571.31$$
 (kN/m²)

Pressione massima agente

q = N / B* L*

q = 279.85 (kN/m²)

Coefficiente di sicurezza

$$Fs = q_{lim}/q = 2.04$$