COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

PROGETTAZIONE:	PROGETTISTA:	DIRETTORE DELLA PROGETTAZIONE
RAGGRUPPAMENTO TEMPORANEO PROGETTISTI	Ing. LUCA NANI	Ing. PIETRO MAZZOLI
Sintagma Integra (K)		Responsabile integrazione fra le varie prestazioni specialistiche

PROGETTO ESECUTIVO

ITINERARIO NAPOLI-BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

IMPIANTI LUCE E FORZA MOTRICE

GALLERIA MONTE AGLIO – PIAZZALE IMBOCCO GALLERIA LATO SUD

CALCOLI E VERIFICHE DI DIMENSIONAMENTO LINEE E PROTEZIONI ELETTRICHE

APPAL	TATORE						SCALA:
Consc	orzio CFT						
	ORE TECNICO						_
	C. BIANCHI						_
Ottol	ore 2018						
COMMESSA	LOTTO FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	RE\	V

JOHNNIE GOV	20110 17102		0 500.	0. 2.0.00.002	1110011.	
I F 1 N	0 1 E	ZZ	RO	L F 0 2 0 0	0 0 3	С

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	F.Checcucci	10-07-2018	L.Nani	10-07-2018	P. Mazzoli	10-07-2018	L.Nani
В	Rev. Istruttoria ITF 07/09/18	F.Checcucci	22-09-2018	L.Nani	22-09-2018	P. Mazzoli	22-09-2018	
ь								
_	Recepimento istruttoria	F.Checcucci	Ottobre 2018	L.Nani	Ottobre 2018	P. Mazzoli	Ottobre 2018	
C								
								Ottobre 2018

File: IF1N.0.1.E.ZZ.RO.LF.02.0.0.003.C	n. Elab.:

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 2 di 31

Indice

1	PR	EMESSA	4
2	ME	TODOLOGIA DI VERIFICA	4
	2.1	PROTEZIONE CONTRO I SOVRACCARICHI	4
	2.2	PROTEZIONE CONTRO I CORTOCIRCUITI	5
	2.3	PROTEZIONE CONTRO CONTATTI INDIRETTI	5
	2.3.		
	2.3.	PER SISTEMI TN	6
	2.4	ENERGIA SPECIFICA PASSANTE	
	2.5	CADUTA DI TENSIONE	8
	2.5.	1 TEMPERATURA A REGIME DEL CONDUTTORE	8
	2.6	LUNGHEZZA MAX PROTETTA PER GUASTO A TERRA	9
	2.7	LUNGHEZZA MAX	9
	2.8	CALCOLO DELLA POTENZA DEL GRUPPO DI RIFASAMENTO	9
3	FO	RMULE DI CALCOLO UTILIZZATE DAL PROGRAMMA	10
	3.1	CORRENTI DI CORTOCIRCUITO	10
	3.2	FATTORE DI TENSIONE	11
	3.3	VERIFICA DELLA CHIUSURA IN CORTOCIRCUITO	11
	3.3.	1 VALORE DI CRESTA $I_{\scriptscriptstyle P}$ DELLA CORRENTE DI CORTOCIRCUITO	11
4	LE	ITURA TABELLE DI VERIFICA	13
	4.1	DATI RELATIVI ALLA LINEA	13
	4.2	DATI RELATIVI ALLA PROTEZIONE	13
	4.3	PARAMETRI ELETTRICI	13
5	DA	TI RELATIVI AI CAVI SECONDO LE TABELLE CEI UNEL 35024/1 E 35026/1	14
	5.1	CAVI UNIPOLARI – POSE	15
	5.2	CAVI MULTIPOLARI – POSE	16
	5.3	CAVI UNIPOLARI – PORTATE	18

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

IF1N	01 E ZZ	RO	LF0200 003	С	3 di 31
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

5.4	CAVI MULTIPOLARI – PORTATE	19
5.5	COEFFICIENTI DI TEMPERATURA PER POSE IN ARIA LIBERA	19
5.6	COEFFICIENTI DI TEMPERATURA PER POSE INTERRATE	20
5.7	COLORI DISTINTIVI DEI CONDUTTORI	21
5.8	SIGLE DI DESIGNAZIONE DEI CAVI	23
5.9	ESEMPIO DI DESIGNAZIONE DI UN CAVO	24
6 I	DATI RELATIVI AI CAVI SECONDO LE TABELLE IEC 364-5-523-1983	25
6.1	PORTATE IN FUNZIONE DEL TIPO DI POSA	25
6.2		
6.3	CAVI MULTIPOLARI – POSE	27
7 [DATI RELATIVI AI CAVI SECONDO LE TABELLE CEI UNEL 35024/70	
7.1	DATI TECNICI DEI CAVI	30
7.2	COEFFICIENTI DI TEMPERATURA	31

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	RO	LF0200 003	С	4 di 31

1 PREMESSA

Nel seguito si analizzeranno gli strumenti di progettazione elettrica che permettono la realizzazione e la simulazione di un impianto elettrico a regime riferita agli impianti LFM che dovranno essere installati all'interno ed all'esterno del Posto di Comunicazione Valle Maddaloni inserito all'interno del raddoppio della tratta Cancello – Benevento sull'itinerario Napoli – Bari e relativo al l° Lotto funzionale Cancello Frasso Telesino e variante alla linea Roma Napoli Via Cassino nel Comune di Maddaloni.

I calcoli elettrici sono stati effettuati e verificati con il personal computer utilizzando apposito programma di calcolo. Nella relazione sono esposti i criteri di calcolo usati.

2 METODOLOGIA DI VERIFICA

2.1 PROTEZIONE CONTRO I SOVRACCARICHI

I conduttori che costituiscono gli impianti devono essere protetti contro le sovracorrenti causate da sovraccarichi o da corto circuiti.

La protezione contro i sovraccarichi deve essere effettuata in ottemperanza alle prescrizioni delle norme CEI 64-8 – 433.2. Le caratteristiche di funzionamento di un dispositivo di protezione delle condutture contro i sovraccarichi devono rispondere alle seguenti condizioni:

$$I_b \le I_n \le I_Z$$

$$I_f \le 1.45 \cdot I_Z$$

Dove

- I_b Corrente di impiego del circuito [A]
- Corrente nominale del dispositivo di protezione [A]
- I_Z Portata in regime permanente della conduttura [A]
- Corrente che assicura l'effettivo funzionamento del dispositivo di protezione entro il tempo convenzionale in condizioni definitive [A].

Quindi in particolare i conduttori devono essere scelti in modo che la loro portata ($^{I_{Z}}$) sia superiore alla corrente di impiego ($^{I_{b}}$) (valore di corrente calcolato in funzione della massima potenza di trasmettere in regime permanente). I dispositivi di protezione da installare devono avere una corrente nominale ($^{I_{n}}$) compresa fra la

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	RO	LF0200 003	С	5 di 31

corrente di impiego del conduttore (I_b) e la sua portata nominale (I_Z) ed una corrente di funzionamento (I_f) minore o uguale a 1,45 volte la portata (I_Z).

La seconda delle due disuguaglianze sopra indicate è automaticamente soddisfatta nel caso di impiego di interruttori automatici conformi alle CEI 23-3 e CEI 17-5.

2.2 PROTEZIONE CONTRO I CORTOCIRCUITI

La protezione contro i cortocircuiti deve essere effettuata in ottemperanza alle prescrizioni delle norme CEI 64-8/4 – 434.3.

Ogni dispositivo di protezione contro i cortocircuiti deve rispondere alle due seguenti condizioni:

- il potere di interruzione non deve essere inferiore alla corrente di cortocircuito, presunta nel punto di installazione;
- la corrente di corto circuito sia interrotta entro un tempo non superiore a quello che porta i conduttori ad una temperatura limite non ammissibile (la verifica deve essere effettuata per tutti i valori di corrente di corto circuito fino al valore massimo)

$$I_{cc} \max \leq P.d.i.$$

$$I^2t < K^2S^2$$

Dove

 I_{cc} max Corrente di cortocircuito massima [kA]

P.d.i. Potere di interruzione apparecchiatura di protezione [kA]

 I^2t Integrale di Joule della corrente di cortocircuito presunta (valore letto sulle curve delle apparecchiature di protezione) [A2s]

K Coefficiente della conduttura utilizzata

115 per cavi isolati in PVC

135 per cavi isolati in gomma naturale e butilica

143 per cavi isolati in gomma etilenpropilenica e polietilene reticolato

Sezione della conduttura

2.3 PROTEZIONE CONTRO CONTATTI INDIRETTI

La protezione contro i contatti indiretti deve essere effettuata in ottemperanza alle prescrizioni delle norme CEI Norma CEI 64-8/4 - 413.1.3 (sistemi TN), 413.1.4 (sistemi TT), 413.1.5 (sistemi IT).

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	RO	LF0200 003	С	6 di 31

Devono essere protette contro i contatti indiretti tutte le parti metalliche accessibili dell'impianto elettrico e degli apparecchi utilizzatori, normalmente non in tensione ma che, per cedimento dell'isolamento principale o per altre cause accidentali, potrebbero trovarsi sotto tensione (masse).

Per la protezione contro i contatti indiretti ogni impianto elettrico utilizzatore deve avere un proprio impianto di terra.

A tale impianto di terra devono essere collegati tutti i sistemi di tubazioni e carcasse metalliche accessibili destinate ad adduzione, distribuzione e scarico, nonché tutte le masse metalliche accessibili di notevole estensioni esistenti nell'area dell'impianto elettrico utilizzatore stesso.

Una volta eseguito l'impianto di messa a terra, la protezione contro i contatti indiretti deve essere realizzata attuando il coordinamento fra l'impianto di messa a terra e interruttori automatici (magnetotermici e/o differenziali).

2.3.1 PER SISTEMI TT

Se è soddisfatta la condizione:

$$R_A \cdot I_a \leq 50$$

Dove

 R_A = somma delle resistenze del dispersore e del conduttore di protezione $[\Omega]$

 I_a = corrente che provoca l'intervento automatico del dispositivo di protezione [A]

2.3.2 PER SISTEMI TN

Deve essere quindi soddisfatta la seguente relazione:

$$Z_S \cdot I_a \leq U_O$$

Dove

 $U_{\it o}$ Tensione nominale in c.a., valore efficace tra fase e terra [V]

 $U_{\it o}$ Tempo di intervento [s]

$$50V < U_o \le 120V$$
 0.8

$$120V < U_o \le 230V$$
 0,4

$$230V < U_o \le 400V$$
 0,2

$$U_o > 4000V$$
 0.1

Impedenza dell'anello di guasto che comprende la sorgente, il conduttore attivo fino al punto di guasto ed il conduttore di protezione tra il punto di guasto e la sorgente

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	RO	LF0200 003	С	7 di 31

 I_a

corrente che provoca l'interruzione automatica del dispositivo di protezione, entro il tempo di intervento definito precedentemente in funzione della tensione nominale per i circuiti terminali protetti contro le sovracorrenti aventi corrente nominale o regolata che non supera 32A, ed, entro un

tempo convenzionale a 5s; se si usa un interruttore differenziale I_a è la corrente differenziale nominale di intervento.

Nei sistemi TN (norma CEI 64-8) l'impedenza dell'anello di guasto, che è interamente in rame, ha normalmente un valore che è dello stesso ordine di grandezza dell'impedenza di corto circuito. Un eventuale guasto franco a massa provoca correnti di elevata intensità.

In assenza della protezione differenziale si deve verificare (norma CEI 64-8) che la Z_S più alta presente nell'impianto, relativa all'anello di guasto più esteso, sia sufficiente in caso di guasto a sganciare automaticamente la protezione di massima corrente entro tempi fissati, in base alla curva di sicurezza tensione tempo.

Nel caso di circuiti terminali protetti da dispositivo di protezione contro le sovracorrenti di taratura amperometrica fino a 32 A il tempo di intervento è di 0,4 sec, per tutti gli altri circuiti il tempo di intervento è di 5 secondi.

Utilizzando differenziali, I_a diventa la I_d nominale con evidenti vantaggi impiantistici e di sicurezza, come la possibilità di ampliare l'impianto senza dover rivedere l'intero sistema di protezione al primo insorgere del guasto e senza attendere la sua evoluzione, anzi impedendola.

Indipendentemente dalla resistenza di terra, la protezione contro le tensioni di contatto può in questo caso essere realizzata mediante gli stessi interruttori automatici magnetotermici di protezione delle linee. Il criterio è basato sull'assicurare l'intervento dei dispositivi di protezione, più che sul limitare il valore della tensione di contatto. Vi è comunque da considerare che se il guasto a massa non è franco l'intervento delle protezioni può non essere tempestivo, per cui può permanere una situazione di pericolo anche per tempi relativamente lunghi.

A tal proposito si tenga presente il legame ammesso tra la corrente nominale dell'apparecchio di protezione di massima corrente e la corrispondente impedenza dell'anello di guasto necessaria a consentire lo sgancio automatico entro i tempi previsti in seguito a guasto.

L'impiego di un interruttore differenziale opportunamente coordinato assicura invece, anche in tali situazioni, l'immediata apertura del circuito elettrico, con vantaggi anche dal punto di vista di contribuire alla protezione contro il pericolo di incendio, permettendo l'individuazione di guasti iniziali dell'isolamento verso terra.

2.4 ENERGIA SPECIFICA PASSANTE

 $I^2t \le K^2S^2$

Dove

 I^2t valore dell'energia specifica passante letto sulla curva I^2t della protezione in corrispondenza delle correnti di corto circuito

 K^2S^2 Energia specifica passante sopportata dalla conduttura dove:

K coefficiente del tipo di cavo (115,135,143)

S sezione della conduttura

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	RO	LF0200 003	С	8 di 31

2.5 CADUTA DI TENSIONE

$$\Delta V = K \cdot I_b \cdot L \cdot (R_I \cos \varphi + X_I sen \varphi)$$

Dove

 I_b corrente di impiego (A)

 R_I resistenza alla temperatura di regime (TR) della linea [Ω /km]

 X_I reattanza della linea [Ω/km]

K 2 per linee monofasi - 1,73 per linee trifasi

L lunghezza della linea (Km)

ΔV caduta di tensione (V) riferita alla tensione nominale

Per calcolare le cadute di tensione lungo le linee occorre determinare la resistenza, alla temperatura di regime, e la reattanza delle linee di collegamento e sommarle a quelle relative al circuito di cabina. Più precisamente per i quadri primari, ossia derivati direttamente dalla cabina, l'impedenza del circuito è data dalla somma vettoriale dell'impedenza della linea di collegamento e l'impedenza della linea di collegamento del quadri primari, occorre sommare, all'impedenza della linea di collegamento del quadro, l'impedenza calcolata per il relativo quadro primario.

2.5.1 TEMPERATURA A REGIME DEL CONDUTTORE

Il conduttore attraversato da corrente dissipa energia che si traduce in un aumento della temperatura del cavo. La temperatura viene calcolata come di seguito indicato:

$$T_R = T_Z \cdot n^2 - T_A \cdot (n^2 - 1)$$

Dove

 T_R è la temperatura a regime espressa [°C]

 $T_{\rm Z}$ è la temperatura massima di esercizio relativa alla portata espressa [°C]

 $T_{\scriptscriptstyle A}$ è la temperatura ambiente espressa [°C]

 n è il rapporto tra la corrente d'impiego $^{I_{b}}$ e la portata $^{I_{Z}}$ del cavo, ricavata dalla tabella delle portate adottata dall'utente (Unel 35024/70, IEC 364-5-523, CEI - Unel 35024/1)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 9 di 31

2.6 LUNGHEZZA MAX PROTETTA PER GUASTO A TERRA

 $I_{\rm CC} \min_{\rm a \ fondo \ linea} > I_{\rm int}$

Dove

 $I_{\it cc} \, {
m min}$ corrente di corto circuito minima tra fase e protezione calcolata a fondo linea considerando la

sommatoria delle impedenze di protezione a monte del tratto in esame.

 $I_{
m int}$ corrente di corto circuito necessaria per provocare l'intervento della protezione entro 5 secondi o nei tempi previsti dalle tabelle CEI 64-8/4 - 41A, 41B e 48A . (valore rilevato dalla curva I^2t della protezione) o, infine, il valore di intervento differenziale.

2.7 LUNGHEZZA MAX

Lunghezza massima determinata oltre che dalla lunghezza massima per guasto a terra, anche dalla corrente di corto circuito a fondo linea e dalla caduta di tensione a fondo linea.

2.8 CALCOLO DELLA POTENZA DEL GRUPPO DI RIFASAMENTO

Il calcolo della potenza reattiva del gruppo di rifasamento fatto in automatico dal programma viene eseguito utilizzando la formula:

$$Q_C = P \cdot (tg\varphi_i - tg\varphi_f)$$

Dove

 $Q_{\it C}$ è la potenza reattiva della batteria di rifasamento

P è la potenza attiva assorbita dall'impianto da rifasare

 $tg \, arphi_i$ è la tangente dello sfasamento di partenza da recuperare

 $tg \varphi_f$ è la tangente dello sfasamento a cui si vuole arrivare

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 10 di 31

3 FORMULE DI CALCOLO UTILIZZATE DAL PROGRAMMA

3.1 CORRENTI DI CORTOCIRCUITO

$$I_{cc} = \frac{U_n \cdot C}{k \cdot Z_{cc}}$$

Dove

per lcc trifase: U_n tensione concatenata

C fattore di tensione

 $k \sqrt{3}$

 Z_{CC} $\sqrt{\left(\sum R_{fase}^2 + \sum X_{fase}^2\right)}$

per lcc fase-fase: U_n tensione concatenata

C fattore di tensione

k 2

 Z_{CC} $\sqrt{\left(\sum R_{fase}^2 + \sum X_{fase}^2\right)}$

per lcc fase-neutro: U_n tensione concatenata

C fattore di tensione

 $k \sqrt{3}$

 Z_{CC} $\sqrt{\left(\left(\sum R_{fase} + \sum R_{neutro}\right)^2 + \left(\sum X_{fase} + \sum X_{neutro}\right)^2\right)}$

per lcc fase-protezione: U_n tensione concatenata

C fattore di tensione

k √3

 $Z_{CC} \qquad \sqrt{\left(\left(\sum R_{fase} + \sum R_{protez.}\right)^{2} + \left(\sum X_{fase} + \sum X_{protez.}\right)^{2}\right)}$

3.2 FATTORE DI TENSIONE

Il fattore di tensione e la resistenza dei cavi assumono valori differenti a seconda della corrente di cortocircuito calcolata. I valori assegnati sono riportati nella tabella seguente:

Tabella 1

	I_{cc} max	I_{cc} min
С	1	0.95
R	$R_{20^{\circ}C}$	$R = \left[1 + 0.004 \frac{1}{{}^{\circ}C} (\theta_e - 20^{\circ}C)\right] R_{20^{\circ}C}$
		(Norma CEI 11-28 Pag. 11 formula (7))

dove la $R_{20^{\circ}C}$ è la resistenza del cavo a 20°C e θ_e è la temperatura impostata dall'utente nella impostazione dei parametri per il calcolo.

Il valore della $R_{20^{\circ}C}$ viene riportato nella tabella "Resistenze e Reattanze" riportata di seguito.

3.3 VERIFICA DELLA CHIUSURA IN CORTOCIRCUITO

Verifica della chiusura in cortocircuito deve essere effettuata in ottemperanza alle prescrizioni delle norme CEI EN 60947-2

$$I_P \leq I_{CM}$$

Dove

 I_{P} è il valore di cresta della corrente di cortocircuito (massimo valore possibile della corrente presunta di cortocircuito)

 $I_{\it CM}$ è il valore del potere di chiusura nominale in cortocircuito

3.3.1 VALORE DI CRESTA I_P DELLA CORRENTE DI CORTOCIRCUITO

Il valore di cresta I_P è dato dalla norma CEI 11-28 - Art. 9.1.2 da:

$$I_P = K_{CR} \cdot \sqrt{2} \cdot I_K^{II}$$

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	RO	LF0200 003	С	12 di 31

Dove

 I_{κ}^{II}

è la corrente simmetrica iniziale di cortocircuito

 K_{CR}

è il coefficiente correttivo ricavabile dalla seguente formula:

$$K_{CR} = 1.02 + 0.98 \cdot e^{3*R_{CC}/X_{CC}}$$

Il valore di $I_{\it CM}\,$ è dato dalla norma CEI 11-28 - Art. 9.1.1 da:

$$I_{CM} = I_{CU} \cdot n$$

Dove:

 I_{CU}

è il valore del potere di interruzione estremo in cortocircuito

n

è un coefficiente da utilizzare in funzione della tabella normativa di seguito riportata

Estratto dalla Tabella 2 – Rapporto n tra potere di chiusura e potere di interruzione in cortocircuito e fattore di potenza relativo (interruttori per corrente alternata)

Potere di interruzione in	Fattore di	Valore minimo del fattore
cortocircuito kA valore efficace	potenza	n = <u>potere di interruzione in cortocircuito</u> potere di chiusura in cortocircuito
4,5 ≤ I ≤ 6	0,7	1,5
6 < I ≤ 10	0,5	1,7
10 < I ≤ 20	0,3	2,0
20 < I ≤ 50	0,25	2,1
50 < 1	0,2	2,2

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 13 di 31

4 LETTURA TABELLE DI VERIFICA

4.1 DATI RELATIVI ALLA LINEA

Sigla = identificativo alfanumerico introdotto nello schema

Sezione = formazione e sezione della conduttura

es.: 4X50+PE16 per cavo di neutro = cavo di fase

es.: 2Fj+1Nh+PEg per cavo di neutro diverso dal cavo di fase o con cavi fase (F), neutro (N),

protezione (PE); in parallelo (1F, 2F, 3F ecc.).

(la lettera minuscola indica la sezione ed è riportata di seguito nelle tabelle)

lunghezza = lunghezza della conduttura in metri

4.2 DATI RELATIVI ALLA PROTEZIONE

tipo e curva = Stringa di testo del tipo di apparecchiatura

numero dei poli = Poli dell'apparecchiatura

corrente nominale $\binom{I_n}{}$ = Corrente di taratura della protezione

potere di interruzione (P.d.I.) = Potere di interruzione della apparecchiatura

corrente differenziale ($^{I}_{d}$) = Corrente differenziale della protezione

corrente di intervento = Corrente di intervento della protezione

4.3 PARAMETRI ELETTRICI

 I_{cc} max a fondo linea = Corrente di corto circuito massima a fine linea

 I_{gt} fase/protezione a f.l. = Corrente di corto circuito minima a fondo linea

 I^2t inizio linea = Energia specifica passante massima ad inizio linea

 I^2t fondo linea = Energia specifica passante massima a fondo linea

 K^2S^2 = Energia specifica passante sopportata dalla conduttura

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 14 di 31

I_{h}	Onwanta manajanta dal angian (a di impiana)
$\boldsymbol{\nu}$	Corrente nominale del carico (o di impiego)

 I_n = Corrente di taratura della protezione

 I_Z = Portata della conduttura

 I_f = Corrente di funzionamento della protezione

C.d.t. con lb = Caduta di tensione con la corrente del carico

Lungh. max protetta per g.t. = Lunghezza massima della conduttura per avere un valore di corto circuito tra

fase e protezione tale da garantire l'apertura automatica dell'organo di

protezione entro i 5 secondi, o secondo la tabella CEI 64-8/4 - 41A

fase e protezione tale da garantire l'apertura automatica dell'organo di protezione entro i 5 secondi, o secondo la tabella CEI 64-8/4 - 41A, per avere un corto circuito Trifase / Fase - Fase - Neutro superiore alla corrente di intervento della protezione (se richiesta la verifica), per avere una caduta di

tensione inferiore al valore massimo impostato.

5 DATI RELATIVI AI CAVI SECONDO LE TABELLE CEI UNEL 35024/1 E 35026/1

Le tabelle seguenti riportano la corrispondenza esistente tra le tipologie di posa della norma CEI 64-8 tabella 52 C e le tabelle di portata dei cavi della norma UNEL 35024/1. Le tabelle sono caratterizzate da tre colonne. Il contenuto delle colonne è il seguente:

Tipo posa: riferimento numerico della posa secondo la Tabella 52C.

Descrizione: descrizione della posa secondo la Tabella 52C della norma CEI 64-8/5.

Metodo di installazione: è la tipologia di posa prevista dalla norma UNEL 35024/1 in corrispondenza

della quale è possibile ricavare la portata del cavo. Il metodo viene indicato con il riferimento della tabella delle portate e un numero progressivo. Il numero progressivo rappresenta la posizione della metodologia di posa prevista nella

tabella.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 15 di 31

5.1 CAVI UNIPOLARI – POSE

Tabella 2 -Tabelle di corrispondenza tra il tipo di posa secondo la norma CEI 64-8 e i metodi di installazione della norma CEI UNEL 35024/1

	UNIPOLARI	
Tipo di posa	Descrizione	Metodo d'installazione
1	senza guaina in tubi circolari entro muri isolanti	1U
3	senza guaina in tubi circolari su o distanziati da pareti	2U
4	senza guaina in tubi non circolari su pareti	2U
5	senza guaina in tubi annegati nella muratura	2U
11	con o senza armatura su o distanziati da pareti	4U
11A	con o senza armatura fissati su soffitti	
11B	con o senza armatura distanziati da soffitti	
12	con o senza armatura su passerelle non perforate	4U
13	con o senza armatura su passerelle perforate	5U
14	con o senza armatura su mensole distanziati dalle pareti	5U
14	con guaina a contatto fra loro su mensole	5U, 6U, 7U
15	con o senza armatura fissati da collari	5U, 6U, 7U
16	con o senza armatura su passerelle a traversini	5U, 6U, 7U
17	con guaina sospesi a od incorporati in fili o corde	5U
18	conduttori nudi o cavi senza guaina su isolatori	3U
21	con guaina in cavità di strutture	4U
22	senza guaina in tubi in cavità di strutture	2U
22A	con guaina in tubi in cavità di strutture	
23	senza guaina in tubi non circolari in cavità di strutture	2U
24	senza guaina in tubi non circolari annegati nella muratura	2U
24A	con guaina in tubi non circolari annegati nella muratura	
25	con guaina in controsoffitti o pavimenti sopraelevati	4U
31	con guaina in canali orizzontali su pareti	2U
32	con guaina in canali verticali su pareti	2U
33	senza guaina in canali incassati nel pavimento	2U
34	senza guaina in canali sospesi	2U
34A	con guaina in canali sospesi	
41	senza guaina in tubi in cunicoli chiusi orizzontali o verticali	2U
42	senza guaina in tubi in cunicoli ventilati in pavimento	2U
43	con guaina in cunicoli aperti o ventilati	4U
51	con guaina entro pareti termicamente isolanti	1U

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	RO	LF0200 003	С	16 di 31

52	con guaina in muratura senza protezione meccanica	4U
53	con guaina in muratura con protezione meccanica	4U
61	con guaina in tubi o cunicoli interrati	
62	con guaina interrati senza protezione meccanica	
63	con guaina interrati con protezione meccanica	
71	senza guaina in elementi scanalati	1U
72	senza guaina in canali provvisti di separatori	2U
73	senza/con guaina posati in stipiti di porte	1U
74	senza/con guaina posati in stipiti di finestre	1U

5.2 CAVI MULTIPOLARI – POSE

Tabella 3 - Tabelle di corrispondenza tra il tipo di posa secondo la norma CEI 64-8 e i metodi di installazione della norma CEI UNEL 35024/1

	MULTIPOLARI	
Tipo di posa	Descrizione	Metodo d'installazione
2	in tubi circolari entro muri isolanti	1M
3A	in tubi circolari su o distanziati da pareti	2M
4A	in tubi non circolari su pareti	2M
5A	in tubi annegati nella muratura	2M
11	con o senza armatura su o distanziati da pareti	4M
11A	con o senza armatura fissati su soffitti	4M
11B	con o senza armatura distanziati da soffitti	
12	con o senza armatura su passerelle non perforate	
13	con o senza armatura su passerelle perforate	3M
14	con o senza armatura su mensole distanziati da pareti	3M
15	con o senza armatura fissati da collari	3M
16	con o senza armatura su passerelle a traversini	3M
17	con guaina sospesi a od incorporati in fili o corde	3M
21	in cavità di strutture	2M
22A	in tubi in cavità di strutture	2M
24A	in tubi non circolari annegati in muratura	
25	in controsoffitti o pavimenti sopraelevati	2M
31	in canali orizzontali su pareti	2M
32	in canali verticali su pareti	2M
33A	in canali incassati nel pavimento	2M
34A	in canali sospesi	2M

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF1N 01 E ZZ RO LF0200 003 C 17 di 31

43	in cunicoli aperti o ventilati	2M
51	entro pareti termicamente isolanti	1M
52	in muratura senza protezione meccanica	4M
53	in muratura con protezione meccanica	4M
61	in tubi o cunicoli interrati	
62	interrati senza protezione meccanica	
63	interrati con protezione meccanica	
73	posati in stipiti di porte	1M
74	posati in stipiti di finestre	1M
81	immersi in acqua	

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 18 di 31

5.3 CAVI UNIPOLARI – PORTATE

Di seguito vengono riportate le portate dei cavi con conduttori di rame. La norma non prende in considerazione i seguenti tipi di posa: cavi interrati o posati in acqua, cavi posti all'interno di apparecchi elettrici o quadri e cavi per rotabili o aeromobili.

Tabella 4 - Tabella delle portate alla temperatura di 30 °C dei cavi unipolari con o senza guaina relative alla tabella della norma CEI-UNEL 35024/1

Cavi unipolari con o senza quaina																						
Cavi unipolari con o senza guaina																						
Metodo di installazione	Isolante	n° conduttori attivi								S	Sezio	ne no	omina	ale m	m²							
			1	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	300	400	500	630
1U	PVC	2	-	14,5	19,5	26	34	46	61	80	99	119	151	182	210	240	273	320	-	-	-	-
		3	-	13,5	18	24	31	42	56	73	89	108	136	164	188	216	245	286	-	-	-	-
	EPR	2	-	19	26	35	45	61	81	106	131	158	200	241	278	318	362	424	-	-	-	-
		3	-	17	23	31	40	54	73	95	117	141	179	216	249	285	324	380	-	-	-	-
2U	PVC	2	13,5	17,5	24	32	41	57	76	101	125	151	192	232	269	309	353	415	-	-	-	-
		3	12	15,5	21	28	36	50	68	89	110	134	171	207	239	275	314	369	-	-	-	-
	EPR	2	17	23	31	42	54	75	100	133	164	198	253	306	354	402	472	555	-	-	-	-
		3	15	20	28	37	48	66	88	117	144	175	222	269	312	355	417	490	-	-	-	-
3U	PVC	2	-	19,5	26	35	46	63	85	112	138	168	213	258	299	344	392	461	-	-	-	-
		3	-	15,5	21	28	36	57	76	101	125	151	192	232	269	309	353	415	-	-	-	-
	EPR	2	-	24	33	45	58	80	107	142	175	212	270	327	-	ı	-	-	1	1	-	-
		3	-	20	28	37	48	71	96	127	157	190	242	293	ı	ı	1	-	ı	ı	-	-
4U	PVC	3	-	19,5	26	35	46	63	85	110	137	167	216	264	308	356	409	485	561	656	749	855
	EPR	3	-	24	33	45	58	80	107	135	169	207	268	328	383	444	510	607	703	823	946	1088
5U	PVC	2	-	22	30	40	52	71	96	131	162	196	251	304	352	406	463	546	629	754	868	1005
		3	-	19,5	26	35	46	63	85	114	143	174	225	275	321	372	427	507	587	689	789	905
	EPR	2	-	27	37	50	64	88	119	161	200	242	310	377	437	504	575	679	783	940	1083	1254
		3	-	24	33	45	58	80	107	141	176	216	279	342	400	464	533	634	736	868	998	1151
6U	PVC	2	-	-	-	1	-	1	-	146	181	219	281	341	396	456	521	615	709	852	982	1138
		3	-	-	-	-	-	-	-	146	181	219	281	341	396	456	521	615	709	852	982	1138
	EPR	2	-	_	-	-	-	-	-	182	226	275	353	430	500	577	661	781	902	1085	1253	1454
		3	-	-	-	-	-	-	-	182	226	275	353	430	500	577	661	781	902	1085	1253	1454
7U	PVC	2	-	_	-	-	-	-	-	130	162	197	254	311	362	419	480	569	659	795	920	1070
		3	-	-	-	-	-	-	-	130	162	197	254	311	362	419	480	569	659	795	920	1070
	EPR	2	-	-	-	-	-	-	-	161	201	246	318	389	454	527	605	719	833	1008	1169	1362
		3	-	-	-	-	-	-	-	161	201	246	318	389	454	527	605	719	833	1008	1169	1362

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 19 di 31

5.4 CAVI MULTIPOLARI – PORTATE

Di seguito vengono riportate le portate dei cavi con conduttori di rame. La norma non prende in considerazione i seguenti tipi di posa: cavi interrati o posati in acqua, cavi posti all'interno di apparecchi elettrici o quadri e cavi per rotabili o aeromobili.

Tabella 5 - Tabella delle portate alla temperatura di 30 °C dei cavi multipolari relative alla tabella della norma CEI-UNEL 35024/1

							Ca	vi m	nultip	olari												
Metodo di installazione	Isolante	n° conduttori attivi	Sezione nominale mm²																			
			1	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	300	400	500	630
1M	PVC	2	-	14	18,5	25	32	43	57	75	92	110	139	167	192	219	248	291	334	-	-	-
		3	-	13	17,5	23	29	39	52	68	83	99	125	150	172	196	223	261	298	-	-	-
	EPR	2	ı	18,5	25	33	42	57	76	99	121	145	183	220	253	290	329	386	442	ı	1	1
		3	1	16,5	22	30	38	51	68	89	109	130	164	197	227	259	295	346	396	ı	-	-
2M	PVC	2	13,5	16,5	23	30	38	52	69	90	111	133	168	201	232	258	294	344	394	1	-	-
		3	12	15	20	27	34	46	62	80	99	118	149	179	206	225	255	297	339	-	-	-
	EPR	2	17	22	30	40	51	69	91	119	146	175	221	265	305	334	384	459	532	-	-	-
		3	15	19,5	26	35	44	60	80	105	128	154	194	233	268	300	340	398	455	-	-	-
3M	PVC	2	15	22	30	40	51	70	94	119	148	180	232	282	328	379	434	514	593	-	-	-
		3	13,6	18,5	25	34	43	60	80	101	126	153	196	238	276	319	364	430	497	-	-	-
	EPR	2	19	26	36	49	63	86	115	149	185	225	289	352	410	473	542	641	741	-	-	-
		3	17	23	32	42	54	75	100	127	158	190	246	298	346	399	456	538	621	-	-	-
4M	PVC	2	15	19,5	27	36	46	63	85	112	138	168	213	258	299	344	392	461	530	-	-	-
		3	13,5	17,5	24	32	41	57	76	96	119	144	184	223	259	299	341	403	464	-	-	-
	EPR	2	19	24	33	45	58	80	107	138	171	209	269	328	382	441	506	599	693	-	-	-
		3	17	22	30	40	52	71	96	119	147	179	229	278	322	371	424	500	576	-	-	-

5.5 COEFFICIENTI DI TEMPERATURA PER POSE IN ARIA LIBERA

Di seguito viene riportata la tabella contenente i coefficienti moltiplicativi che permettono di ricavare la portata dei cavi nel caso in cui la temperatura di posa sia diversa da 30°C, per le pose in aria libera.

La portata in tal caso è data da: IT = I30° * K

Dove

IT = è la portata del cavo alla temperatura considerata

130° = è la portata del cavo alla temperatura di 30°C

K = è il coefficiente moltiplicativo riportato nella tabella e corrispondente alla temperatura di posa considerata.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 20 di 31

Tabella 6 - Tabella dei coefficienti di temperatura (K1) relativa alle pose in aria libera secondo la tabella CEI Unel 35024/1

Temperatura	PVC	EPR
10	1,22	1,15
15	1.17	1.12
20	1.12	1.08
25	1.06	1.04
30	1.00	1.00
35	0.94	0.96
40	0.87	0,91
45	0.79	0.87
50	0.71	0.82
55	0,61	0.76
60	0,50	0,71
65	-	0,65
70	-	0,58
75	-	0,50
80	-	0,41

5.6 COEFFICIENTI DI TEMPERATURA PER POSE INTERRATE

Di seguito viene riportata la tabella contenente i coefficienti moltiplicativi che permettono di ricavare la portata dei cavi nel caso in cui la temperatura di posa sia diversa da 20°C, per le pose interrate.

La portata in tal caso è data da: IT = I20° * K

Dove

 I_{T} = è la portata del cavo alla temperatura considerata

120° = è la portata del cavo alla temperatura di 20°C

K = è il coefficiente moltiplicativo riportato nella tabella e corrispondente alla temperatura di posa considerata

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 21 di 31

Tabella 7 - Tabella dei coefficienti di correzione per temperature di posa (K1) relative ai cavi interrati secondo la tabella UNEL 35026/1

Temperatura	PVC	EPR
10	1,10	1,07
15	1.05	1.04
20	1.00	1.00
25	0.95	0.96
30	0.89	0.93
35	0.84	0.89
40	0.77	0.85
45	0.71	0.80
50	0.63	0.76
55	0.55	0.71
60	0,45	0,65
65	-	0,60
70	-	0,53
75	-	0,46
80	-	0,38

5.7 COLORI DISTINTIVI DEI CONDUTTORI

Tabella 8 - Colori distintivi dei conduttori (CEI 64-8/5 Art. 514)

Blu chiaro	Riservato al Neutro
Giallo - Verde	Riservato esclusivamente ai conduttori di terra, di protezione di collegamenti equipotenziali.
	I conduttori usati congiuntamente come neutro e conduttore di protezione (PEN), quando sono isolati, devono essere contrassegnati secondo uno dei metodi seguenti:
	Giallo/verde su tutta la loro lunghezza con, in aggiunta, fascette blu chiaro alle estremità;
	Blu chiaro su tutta la loro lunghezza con, in aggiunta, fascette giallo/verde alle estremità.
Marrone, Nero, Grigio	Consigliati per i conduttori di Fase.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 22 di 31

Tabella 9 -	Sezioni minime dei conduttori (CEI 64-8/5 Art. 524.1)
0,5 mm ²	Circuiti di segnalazione e circuiti ausiliari di comando. Se questi circuiti sono elettronici è ammessa anche la sezione di 0,1 mm2.
0,75 mm ²	Conduttore mobile con cavi flessibili (con e senza guaina).
1,5 mm ²	Circuiti di potenza.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 23 di 31

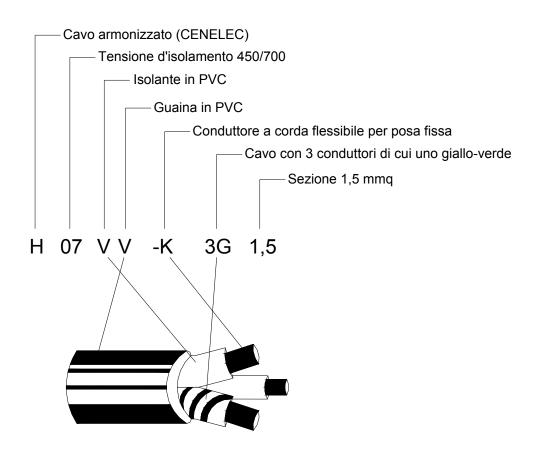

5.8 SIGLE DI DESIGNAZIONE DEI CAVI

Tabella 10 - Sigle di designazione dei cavi (CEI 20-27 e CENELEC HD 361)

Caratteristiche	designazione dei cavi (CEI 20-27 e CEINELEC II
Riferim. normativi	Norma armonizzata
Tensione nominale	300/300 V
Isolante	PVC
Guaina (eventualmente	PVC
Particolari costruttivi (eventuali)	Cavo piatto, anime divisibili
Conduttore	A filo unico rigido
Numero di anime.	
Con conduttore di	di protezione

5.9 ESEMPIO DI DESIGNAZIONE DI UN CAVO

6 DATI RELATIVI AI CAVI SECONDO LE TABELLE IEC 364-5-523-1983

6.1 PORTATE IN FUNZIONE DEL TIPO DI POSA

Tabella 11 - Tabella delle portate in funzione del tipo di posa secondo la norma CEI 64-8 e i metodi di installazione della norma IEC 364-5-523

Stralcio da IEC 364-5-523-1983 e da rapporto CENELEC RO 64-001 1991																	
Metodo di installazione	Isolante	n° conduttori attivi		Sezione nominale mm²													
			1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240
А	PVC	2	14,5	19,5	26	34	46	61	80	99	119	151	182	210	240	273	320
		3	13,5	18	24	31	42	56	73	89	108	136	164	188	216	245	286
	XPLE	2	19	26	35	45	61	81	106	131	158	200	241	278	318	362	424
	EPR	3	17	23	31	40	54	73	95	117	141	179	216	249	285	324	380
A2	PVC	2	14	18,5	25	32	43	57	75	92	110	139	167	192	219	248	291
		3	13	17,5	23	29	39	52	68	83	99	125	150	172	196	223	261
	XPLE	2	18,5	25	33	42	57	76	99	121	145	183	220	253	290	329	386
	EPR	3	16,5	22	30	38	51	68	89	109	130	164	197	227	259	295	346
В	PVC	2	17,5	24	32	41	57	76	101	125	151	192	232	269	-	-	_
		3	15,5	21	28	36	50	68	89	110	134	171	207	239	-	-	-
	XPLE	2	23	31	42	54	75	100	133	164	198	253	306	354	-	-	-
	EPR	3	20	28	37	48	66	86	117	144	175	222	269	312	-	-	-
B2	PVC	2	16,5	23	30	38	52	69	90	111	135	168	201	232	-	-	-
		3	15	20	27	34	46	62	80	99	118	149	176	206	-	-	-
	XPLE	2	22	30	40	51	69	91	119	146	175	221	265	305	-	-	-
	EPR	3	19,5	26	35	44	60	80	105	128	154	194	233	268	-	-	-
С	PVC	2	19,5	27	36	46	63	85	112	138	168	213	258	299	344	392	461
		3	17,5	24	32	41	57	76	96	119	144	184	223	259	299	341	403
	XPLE	2	24	35	45	58	80	107	138	171	209	269	328	382	441	506	599
	EPR	3	22	30	40	52	71	96	119	147	179	229	278	322	371	424	500
D	PVC	2	22	29	38	47	63	81	104	125	148	183	216	246	278	312	360
		3	18	24	31	39	52	67	86	103	122	151	179	203	230	257	297
	XPLE	2	26	34	44	56	73	95	121	146	173	213	252	287	324	363	419
	EPR	3	22	29	37	46	61	79	101	122	144	178	211	240	271	304	351
Е	PVC	2	22	30	40	51	70	94	119	148	180	232	282	328	379	434	514
		3	18,5	25	34	43	60	80	101	126	153	196	238	276	319	364	430
	XPLE	2	26	36	49	63	86	115	149	185	225	289	352	410	473	542	641
	EPR	3	23	32	42	54	75	100	127	158	192	246	298	346	399	456	538
F	PVC	2	-	-	-	-	-	-	131	162	196	251	304	352	406	463	546
		3 ⁽¹⁾	-	-	-	-	-	-	110	137	167	216	264	308	356	409	485
	XPLE	2	-	-	-	1	-	-	161	200	242	310	377	437	504	575	679
	EPR	3 ⁽¹⁾	-	-	-	-	-	-	135	169	207	268	328	383	444	510	607

Ghalla CONSORZIO CFT						RA I° VA	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO											
			MOTRICE - GA			C	OMMES	SA	LOTTO	С	ODIFICA	A	DOC	JMENTO)	REV.	FO	GLIO
L. D	MONTE AGLIO – PIAZZALE IMBOCCO GALLERIA LATO SUD – CALCOLI E VERIFICHE DI DIMENSIONAMENTO LINEE E PROTEZIONI ELETTRICHE					IF1N		01 E ZZ		RO		LF0	200 003		С	26	di 31	
F	G	PVC	3 ⁽²⁾	-	-	_	-	-	-	130	162	197	254	311	362	419	480	569
		XPLE/ _{EPR}	3 ⁽²⁾	-	-	-	-	-	-	161	201	246	318	389	454	527	605	719

Note: (1) - Disposti a trefolo

(2) - Distanziati di almeno 1 diametro e disposti verticalmente

6.2 CAVI UNIPOLARI – POSE

Il metodo di installazione permette di stabilire la portata del cavo utilizzato per la conduzione dell'energia.

Tabella 12 - Tabella di corrispondenza tra il tipo di posa dei cavi unipolari secondo la norma CEI 64-8 e i metodi di installazione della norma IEC 364-5-523

	UNIPOLARI	
Tipo di posa	Descrizione	Metodo di installazione
1	senza guaina in tubi circolari entro muri isolanti	A
3	senza guaina in tubi circolari su o distanziati da pareti	В
4	senza guaina in tubi non circolari su pareti	В
5	senza guaina in tubi annegati nella muratura	A
11	con o senza armatura su o distanziati da pareti	С
11A	con o senza armatura fissati su soffitti	С
11B	con o senza armatura distanziati da soffitti	С
12	con o senza armatura su passerelle non perforate	С
13	con o senza armatura su passerelle perforate	E
14	con o senza armatura su mensole distanziati dalle pareti	E
14	con guaina a contatto fra loro su mensole	F
15	con o senza armatura fissati da collari	E
16	con o senza armatura su passerelle a traversini	E
17	con guaina sospesi a od incorporati in fili o corde	E
18	conduttori nudi o cavi senza guaina su isolatori	G
21	con guaina in cavità di strutture	B2
22	senza guaina in tubi in cavità di strutture	B2
22A	con guaina in tubi in cavità di strutture	B2
23	senza guaina in tubi non circolari in cavità di strutture	B2
24	senza guaina in tubi non circolari annegati nella muratura	B2
24A	con guaina in tubi non circolari annegati nella muratura	B2
25	con guaina in controsoffitti o pavimenti sopraelevati	B2
31	con guaina in canali orizzontali su pareti	В

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

IF1N	01 E ZZ	RO	LF0200 003	С	27 di 31
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

32	con guaina in canali verticali su pareti	B2
33	senza guaina in canali incassati nel pavimento	В
34	senza guaina in canali sospesi	В
34A	con guaina in canali sospesi	B2
41	senza guaina in tubi in cunicoli chiusi orizzontali o verticali	B2
42	senza guaina in tubi in cunicoli ventilati in pavimento	В
43	con guaina in cunicoli aperti o ventilati	В
51	con guaina entro pareti termicamente isolanti	Α
52	con guaina in muratura senza protezione meccanica	С
53	con guaina in muratura con protezione meccanica	С
61	con guaina in tubi o cunicoli interrati	D
62	con guaina interrati senza protezione meccanica	D
63	con guaina interrati con protezione meccanica	D
71	senza guaina in elementi scanalati	А
72	senza guaina in canali provvisti di separatori	В
73	senza/con guaina posati in stipiti di porte	А
74	senza/con guaina posati in stipiti di finestre	Α

6.3 CAVI MULTIPOLARI – POSE

Il metodo di installazione permette di stabilire la portata del cavo utilizzato per la conduzione dell'energia.

Tabella 13 - Tabella di corrispondenza tra il tipo di posa dei cavi multipolari secondo la norma CEI 64-8 e i metodi di installazione della norma IEC 364-5-523

	MULTIPOLARI	
Tipo di posa	Descrizione	Metodo di
		installazione
2	in tubi circolari entro muri isolanti	A2
3A	in tubi circolari su o distanziati da pareti	B2
4A	in tubi non circolari su pareti	B2
5A	in tubi annegati nella muratura	A2
11	con o senza armatura su o distanziati da pareti	С
11A	con o senza armatura fissati su soffitti	С
11B	con o senza armatura distanziati da soffitti	С
12	con o senza armatura su passerelle non perforate	С
13	con o senza armatura su passerelle perforate	E
14	con o senza armatura su mensole distanziati da pareti	E
15	con o senza armatura fissati da collari	E

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI – PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 28 di 31

16	con o senza armatura su passerelle a traversini	Е
17	con guaina sospesi a od incorporati in fili o corde	E
21	in cavità di strutture	B2
22A	in tubi in cavità di strutture	B2
24A	in tubi non circolari annegati in muratura	B2
25	in controsoffitti o pavimenti sopraelevati	B2
31	in canali orizzontali su pareti	В
32	in canali verticali su pareti	B2
33A	in canali incassati nel pavimento	B2
34A	in canali sospesi	B2
43	in cunicoli aperti o ventilati	В
51	entro pareti termicamente isolanti	Α
52	in muratura senza protezione meccanica	С
53	in muratura con protezione meccanica	С
61	in tubi o cunicoli interrati	D
62	interrati senza protezione meccanica	D
63	interrati con protezione meccanica	D
73	posati in stipiti di porte	А
74	posati in stipiti di finestre	Α
81	immersi in acqua	Α

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 29 di 31

7 DATI RELATIVI AI CAVI SECONDO LE TABELLE CEI UNEL 35024/70

Tabella 14 - Tabella riepilogativa di tipo, posa e portata dei conduttori della tabella UNEL 35024/70 (a 30°C)

modo	01	1	02		03			04	1			05			06	0	7
\Rightarrow																	
tipo	multipolar	ri	unipo	olari	unipo	olari r	non dist	tanz	ziati			multip distar			unipolari di	stanz	ziati
conduttore		:	con senz guaii		senz	a gua	aina	cc	n gu	ıaina					senza guaina	С	on guaina
tipo posa	entro tubi o sotto m		ature	÷	su pa	asser	elle	а	pare	serell te e port		su pa		lle	su passerella	1 .	u asserella u isolatori
portata∜	Protezion ↓ numero				o Go	mma	ı G	•				•					
01	4																
02		3			4							4					
03	4			2		3		4	4				3				
04		3			4		2			3		4		2			
05				2		3		4	4		2		3				2-3-4
06							2			3				2	2-3-4		
07											2						2-3-4
08															2-3-4		
	Protezion	e cor	ndutt	ori: Gon	nma G	32 o (Gomma	G5	оΕ	PR		1				•	
			01		02		03		04		05		06		07	80	
SEZIONE ↓			РΟ	RTATE	\downarrow				ı					ı			
а	1			10,5		12	13	3,5		15		17		19	21		23
b	1,5	5		14		15,5	17	7,5		19,5		22		24	27		29
С	2,5	5		19		21		24		26		30		33	37		40
d	4			25		28		32		35		40		45	50		55
е	6			32		36		41		46	_	52		58	64		70
f	10			44		50		57		63		71		80	88		97
g	16			59		68		76		85		96		107	119		130
h	25		<u> </u>	75 97		89 111		01		112 138		127 157		142 175	157		172
i	35 50					134		25 51		168		190		212	194 235		213 257
j k	70		1	<u>-</u>		171		92		213		242		270	235		327
I	95		1			207		32		258		293		327	362		396
m	120					239		69		299		339		379	419		458

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1N	01 E ZZ	RO	LF0200 003	С	30 di 31

n	150	-	275	309	344	390	435	481	527
0	185	-	314	353	392	444	496	549	602
р	240	-	369	415	461	522	584	645	707

7.1 DATI TECNICI DEI CAVI

ELETTRICHE

Tabella 15 - Tabella delle resistenze e delle reattanze dei cavi elettrici secondo la tabella UNEL 35023-70 (a 20°C)

Sezione mm ²	Car	vi unipolari	Cavi M	ultipolari
	R _{20 °C}	X	R _{20 °C}	X
	mΩ/m	mΩ/m	mΩ/m	mΩ/m
1	17,82	0,176	18,14	0,125
1,5	11,93	0,168	12,17	0,118
2,5	7,18	0,155	7,32	0,109
4	4,49	0,143	4,58	0,101
6	2,99	0,135	3,04	0,0955
10	1,80	0,119	1,83	0,0861
16	1,137	0,112	1,15	0,0817
25	0,717	0,106	0,731	0,0813
35	0,517	0,101	0,527	0,0783
50	0,381	0,101	0,389	0,0779
70	0,264	0,0965	0,269	0,0751
95	0,190	0,0975	0,194	0,0762
120	0,152	0,0939	0,154	0,0740
150	0,123	0,0928	0,126	0,0745
185	0,0992	0,0908	0,100	0,0742
240	0,0760	0,0902	0,0779	0,0752
300	0,0614	0,0895	0,0629	0,0750
400	0,0489	0,0876	0,0504	0,0742
500	0,0400	0,0867	0,0413	0,0744
630	0,0324	0,0865	0,0336	0,0749

N.B.: Le resistenze e le reattanze per i cavi multipolari sono utilizzate per l'eventuale cavo di collegamento tra il trasformatore e il quadro generale di bassa tensione.

Il cavo di collegamento tra il trasformatore e il quadro generale di bassa tensione è possibile inserirlo nei dati di ingresso del quadro generale, però è possibile gestirlo in maniera più efficace creando un quadro fittizio in cui viene identificato solo il collegamento.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO – BENEVENTO

I° LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI - PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RO
 LF0200 003
 C
 31 di 31

7.2 COEFFICIENTI DI TEMPERATURA

Di seguito viene riportata la tabella contenente i coefficienti moltiplicativi che permettono di ricavare la portata dei cavi nel caso in cui la temperatura ambiente sia diversa da 30°C.

La portata in tal caso è data da: IT = I30° * K

Dove

IT = è la portata del cavo alla temperatura considerata

i30° = è la portata del cavo alla temperatura di 30°C

K = è il coefficiente moltiplicativo riportato nella tabella e corrispondente alla temperatura di posa considerata

Tabella 16 - Tabella dei coefficienti di temperatura (K1) relativa alla tabella Unel 35024/70

Temperatura	PVC	Gomma (G2)	EPR
15	1.17	1.22	1.13
20	1.12	1.15	1.09
25	1.06	1.06	1.04
30	1.00	1.00	1.00
35	0.94	0.91	0.95
40	0.87	0.82	0.90
45	0.79	0.71	0.85
50	0.71	0.58	0.80

APPALTATORE Ghella GRUPPO FERROVIE DELLO STATO ITALIANA
GRUPPO FERROVIE DELLO STATO ITALIANE
Ci riserviamo tutti i diritti connessi con il pres COMMITTENTE

PROGETTAZIONE

Responsabile integrazione fra le var prestazioni specialistiche DIRETTORE PROGETTAZIONE

QUADRI ELETTRICI GALLERIA MONTE AGLIO PIAZZALE IMBOCCO GALLERIA LATO SUD

PIZZAROTTI INTERRA

Oggetto: Tabella verifica Quadri Elettric Controllo corto circuito a fondo linea: 8 Verifica protezione contatti indiretti: SI

TOWN THE			OF DEPOSITOR OF DE	prestazioni specialistiche	ביים לו היים לואים ליטטטמואון איניקלעו ו	
resente documento con divieto di riprodurlo, utilizzarlo o renderlo accessibile a terzi in assenza	di riprodurlo, utiliz	zzarlo o renderlo acces	sibile a terzi in assenza di a	di autorizzazione scritta.		
rici	Sistema di dis	Sistema di distribuzione: TN-S	Tensione: 20/0,4+N [KV]	Frequenza: 50 [Hz]	Commessa:	Data: Ottobre 2018
. SI	Verifica cont	Verifica contemporaneità: SI		Verifica C.d.t. massima sui quadri: SI	luadri: Sl	
IS	Verifica I²t cc	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI		

CALCOLI E VERIFICHE

								1	1	1	ı	ı			ı						ı	ı	ı	ı										
	l _z Test					[A]		- S	549,55 SI	1 232,21 SI	549,55 SI	1 232,21 SI	-	<u>s</u>	IS -	IS .	IS	IS	IS	IS	92,80	44,23 SI	921,04 SI	439,64 SI	IS -	IS	30,45 SI	42,07 SI	IS	IS .	IS	IS	SI	30,45 SI
l _f ≤ 1,45	1.45lz					[A]		52,50	20,16 54	756,00 12	20,16 54	756,00 1 2		756,00	756,00	756,00	7,60	64,00	09'2	13,00	65,00 93	13,00 4	192,00	150,00 43	756,00	13,00	13,00	13,00 4;	756,00	756,00	13,00	13,00	756,00	13,00
1	- I					[A]		-	379,00	849,80 7:	379,00	849,80 7:		- 7	- 7	- 7	1	- 6	-	-	64,00	30,50	635,20 19	303,20	7	1	21,00	29,02	- 7:	- 7	1	- 1	- 7:	21,00
715	lu z					[A]		20,00	16,80	630,00	16,80	630,00		630,00	00,00	630,00	4,00	40,00	4,00	10,00	20,00	10,00	160,00	125,00	630,00	10,00	10,00	10,00	630,00	630,00	10,00	10,00	630,00	10,00
≥ u ≥ d	uq.					[A]		13,89	00'0	00'0	68'6	370,79		00'0	00'0	365,97	00'00	00'00	00'0	00'0	17,32	4,01	138,82	98,56	3,50	00'00	1,42	3,50	00'0	00'00	00'00	00,00	2,55	0,57
	Pot.	cont				[kW]		326,04	00'0	00'0	232,70	232,70	-	00,00	00'0	232,70	00'00	00'0	00'0	00'0	00'0	2,03	86,28	00'09	1,02	00'0	0,30	0,73	00'0	00'0	00'0	0,00	0,53	0,12
		ŭ									23					23))	J		
PROTEZIONE	K2S2					[A²S]			!	1 784,22	!	1 784,22			!	-	-	-			5,23	0,74	!	!			-	-	-	-		-		
PROTE	1 ² t	max	Inizio	Linea		[A ² S]		ı	!	448,90	!	448,90		ı	!	!	!	!	-	-	90'0	0,01	!	!	-	!	!	!	ļ	!	!	!	!	
	K2S2					[A ² S]		1	!	1177,86	!	1 177,86		1	!						!	0,74	1 177,86	294,47		-	0,13	0,33			-	-	-	0,13
NEUTRO						-1				-		-											+	2										
	7	max	Inizio	Linea		[A ² S]		ı	!	448,90	!	448,90	-	ı	!		!	!			!	0,01	0,34	0,17	-	!	00'0	00'0	!		!	!	!	00'00
FASE	K ² S ²					[A ² S]		ı	184,55	1 177,86	184,55	1 177,86		1	ı	-	-	-		-	5,23	0,74	1 177,86	1 177,86		-	0,13	0,33	1	-	-	ı	ı	0,13
FΑ	4	max	Inizio	Linea		[A ² S]		i	65,81	448,90	65,81	448,90	QGBT/S	1	1	ı					90'0	0,01	0,35	0,18		-	00'00	00'00		ı	-		-	0,00
	¥	minima	Trifase	fine linea		[kA]	QUADRO MEDIA TENSIONE QMT	15,60	15,54	8,59	15,54	8,59	QUADRO GENERALE BASSA TENSIONE QGBT/S	8,58	8,58	8,58	1,37	7,92	1,37	4,96	5,85	1,04	4,21	2,69	8,48	4,86	-	-	ı	-	4,86	-	8,48	-
	¥	Massima	Trifase	fine linea		[kA]	OIA TENS	16,56	16,50	9,22	16,50	9,22	BASSA	9,21	9,21	9,21	2,13	8,86	2,13	6,64	7,36	1,62	5,03	3,37	9,16	6,55	0,39	1,01	8,60	8,60	6,55	6,24	9,16	0,80
	C.d.t.	%	Con	<u>-</u>		[%]	ORO MEI	0	0	0	0	0,16	NERALE	0	0	0,17	0,17	0,17	0,17	0,17	0,18	0,44	1,79	2,47	0,17	0,17	0,48	0,58	0,17	0,17	0,17	0,17	0,17	0,24
	Distanza					[m]	QUAI	!	15,0	15,0	15,0	15,0	DRO GE	!	1	-	-	-			10,0	35,0	400,0	400,0			35,0	20,0		-				20,0
	Sezione					[mm ²]		1	3(1x95)	3(2x1x240)+(1x240)+(1PE240)	3(1x95)	3(2x1x240)+(1x240)+(1PE240)	QUA	1		-	-	-	-		1(4G16)	1(5G6)	3(2x1x240)+(1x240)	3(1x240)+(1x120)	-		1(2x2,5)	1(2x4)	-	-		-		1(2x2,5)
CAVO										3(2×1×240)+		3(2x1x240)+	-										3(2x1)	3(1)										
	Tipo cavo							1	RG7H1M1-20 KV	FG16M16	RG7H1M1-20 kV	FG16M16		1	ı	1					FG160M16	FG160M16	FG16M16	FG16M16	!	-	FG160M16	FG160M16		1	-	1	-	FG160M16
	20	massima	li barratura			[kA]		16,56	16,56	9,48	16,56	9,48		9,22	9,21	9,22	9,21	9,21	9,21	9,21	9,21	9,21	9,21	9,21	9,21	9,16	8,67	8,6	8,67	8,67	9,16	8,67	9,21	8,67
	Þ	Corrente	differenziale					1	3,00	!	3,00	1		1	1	1	-	-	-	-	!	!	!	1,00 - Cl. A	-	-	-	-	1	1	-	-	-	-
	e magnetica	lata (Irm) /		Istantaneo (I)		[A]		//	1 000,000,24/1 000,00	1 000,000,/	1 000,000,24/1 000,00	1 000,000,/	-	6 300,00/0,08/11,00		6 300,00/0,08/11,00					//	//	1 600,00/0,08/15,00	1 250,00//		/	//	/			/	//		//
INTERRUTTORE	Corrente termica Corrente magnetica				(L2) /]		//00,000,/					-		//		/	//	//	//00,001	//	//00,00//			//	//48,00//	//00,001	//48,00//	/	//	//48,00//	//00,00//	//	//00,001
INTERR	Corrente t	regolata	di Fase (Ir) /	Lungo	ritardo (L2) / Tempo (t1)	[A]		//00'09	00 16,80//5,00	//00'0E9	00 16,80//5,00	/	-	00 630,00/1,00/16,00	/	00 630,00/1,00/16,00	/	/	/	10,00//	//00//	10,00//	00 160,00/1,00/16,00	125,00//	/	10,00//	10,00//	10,00//	/	/	10,00//	10,00//	/	10,00//-
	Taglia	ln max				[A]		3 × 1 250,00/	3 x 630,00/630,00	/	3 x 630,00/630,00	/	-	4 x 630,00/630,00	/	4 x 630,00/630,00	4 × 20,00/	4 × 100,00/	4 × 20,00/	4 x 10,00/	3 × 50,00/	4 × 10,00/	4 x 160,00/160,00	4 x 160,00/	3P x 32,00 + N/	4 x 10,00/	2 × 10,00/	2 × 10,00/	/	/	4 x 10,00/	2 x 10,00/	3P x 20,00 + N/	2 × 10,00/
OTNE	Rif.	dre circuito												1 I/TR1		Int.Gen.2 I/TR2	N/Td .	SPD	MIS/N	1.1N	1.2N	1.3N	1.4N-G	1.5N	IP1.N	1.6N	1.7N	1.8N	OR	CR	1.9N	1.10N	IP2.N	1.11N
COLLEGAMENTO	4	o Quadr						Int.Gen.	TR1	QGBT/S	TR2	QGBT/S		lnt.Gen.1 I/TR1			Pr.Tens.	Scaric.	Misure			S QCE/S												
ິວ	Da	Quadro						QMT	QMT	TR1	QMT	TR2		QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS	QGBTS

QUADRI ELETTRICI GALLERIA MONTE AGLIO PIAZZALE IMBOCCO GALLERIA LATO SUD

CRUPPO FERROVIED STATE CONTROLLO STATE CONTROL PIZZAROTTI III INTERRA THERA

Responsabile integrazione fra le var prestazioni specialistiche

Data: Ottobre 2018 Commessa: Verifica C.d.t. massima sui quadri: SI Verifica C.d.t. con lb: SI Frequenza: 50 [Hz] Tensione: 20/0,4+N [KV] Verifica contemporaneità: SI Sistema di distribuzione: TT Verifica It con Icc Max: SI Controllo corto circuito a fondo linea: SI Oggetto: Tabella verifica Quadri Elettrici Verifica protezione contatti indiretti: SI

		1e							
	21	1.45Iz						[A]	
	l₁ ≤ 1,45	4						[A]	
		ľ						[A]	
	² 1 ≥ ¹ 1 ≥ ¹ 1	l _{n z}						[A]	
	S qI	n q						[A]	
		Pot.	cont					[kW]	
	J.	K2S2						[A ² S]	
	PROTEZIONE	174	max	Inizio	Linea			[A ² S]	
	NEUTRO	K²S²						[A²S]	
	NE	Pl	max	Inizio	Linea			[A²S]	
	FASE	K ₂ S ₂						[A ² S]	
HE	4	14	max	Inizio	Linea			[A ² S]	Segue QUADRO GENERALE BASSA TENSIONE QGBT/S
CALCOLI E VERIFICHE		¥	minima	Trifase	fine linea			[kA]	SA TENS
OLI E VI		¥	Massima	Trifase	fine linea			[kA]	ALE BAS
CALCC		C.d.t.	%	Con	_e			[%]	GENER.
)		Distanza						[m]	UADRO
	CAVO	Sezione						[mm²]	Segue (
	/0	Tipo cavo							
		co	massima	li barratura				[kA]	
		Ы	Corrente	differenziale li barratura					
	3E	Corrente termica Corrente magnetica	regolata (Irm) /	Tempo (t2) /	Istantaneo (I)			[A]	
	INTERRUTTORE	Corrente termica	regolata	di Fase (Ir) /	Lungo	ritardo (L2) /	Tempo (t1)	[A]	
		Taglia	In max					[A]	
	VTO	Rif.	Quadre circuito						
	COLLEGAMENTO	٧							
	Ö	Da	Quadro						

0,44 0,00 0,13 0,00	0,44 0,00 0,13 0,00 0,00 0,52 0,00 0,13 0,00	0,28 0,52 0,00 0,13 0,00 0,10 0,00	30,0 0,34 0,44 0,00 0,13 0,00						10,00-7 10,000-7 8,67 F-G160M16 1(2X2,5) 10,0 0,22 171 0,00 0,13 0,00	2x10,00/ 10,00// 100,00// 8,67 FG160M16 1(2x2.5) 10,0 0,22 1,11 0,00 0,13 0,00
	0,52 0,00 0,13 0,00	0,28 0,52 0,00 0,13 0,00		FG160M16 1(2x2,5) 30,0 0,34 0,44 0,00 0,13 0,00 0,13	1(2x2.5) 30.0 0,34 0,44 0,00 0,13 0,00	FGF6OM16 1(2:2.5) 30.0 0.34 0.44 0.00 0.13 0.00	8,67 FG160M16 1(2x2,5) 30,0 0,34 0,44 0,00 0,13 0,00	100,000// 8,67 FG160M16 1(2x2,5) 30,0 0,34 0,44 0,00 0,13 0,00	100,000// 8,67 FG160M16 1(2x2,5) 30,0 0,34 0,44 0,00 0,13 0,00	10,00/-/ 100,00// 8,67 FG16OM16 1(2x2.5) 30,0 0,34 0,44 0,00 0,13 0,00 0,00
0,52 0,00 0,13 0,00			0,28 0,52 0,00 0,13 0,00	25,0 0,28 0,52 0,00 0,13 0,00	1(2X2.5) 25,0 0,28 0,52 0,00 0,13 0,00	FG16OM16 1(2x2.5) 25.0 0,28 0,52 0,00 0,13 0,00	8,67 FG16OM16 1(2x2,5) 25,0 0,28 0,52 0,00 0,13 0,00	8,67 FG160M16 1(2x2,5) 25,0 0,28 0,52 0,00 0,13 0,00	100,000// 8,67 FG16OM16 1(2x2.5) 25,0 0,28 0,52 0,00 0,13 0,00	10,00//- 100,00// 8,67 FG16OM16 1(2A2,5) 25,0 0,28 0,52 0,00 0,13 0,00
77 6.24	-	6.24	0,17 6,24	0,17 6,24	0,17 6,24	0,17 6,24	8,67 0,17 6,24	8.67 0.17 6.24	100,00// 8,67	10,00/-/ 100,00/-/ 8,67 8,67 8,67 6,17 6,24
		6,24	0,17 6,24	0,17 6,24	0,17 6,24		8,67 0,17 6,24	- 8,67 0,17 6,24	100,001/ 8,67 6,17 6,24	10,000-4 100,000-4 8,67 8,67 8,67 6,17 6,24
8,48		9,16	0,18 9,16 8,48	0,18 9,16 8,48	0,18 9,16 8,48	0,18 9,16 8,48	9,21 0,18 9,16 8,48	9,21 0,18 9,16 8,48		
88 1,71 1,10 0,02 0,13 0,02 0,13	1,10 0,02 0,13 0,02	1,71 1,10 0,02 0,13 0,02	0,28 1,71 1,10 0,02 0,13 0,02	15,0 0,28 1,71 1,10 0,02 0,13 0,02	1(562.5) 15,0 0,28 1,71 1,10 0,02 0,13 0,02	FG16OM16 1(5G2,5) 15,0 0,28 1,71 1,10 0,02 0,13 0,02	9,16 FG16OM16 1(5G2.5) 15,0 0,28 1,71 1,10 0,02 0,13 0,02	9,16 FG16OM16 1(5G2,5) 15,0 0,28 1,71 1,10 0,02 0,13 0,02	76,80// 9,16 FG16OM16 1(5G2,5) 15,0 0,28 1,71 1,10 0,02 0,13 0,02	16,00//- 76,80// 9,16 FG16OM16 1(5G2,5) 15,0 0,28 1,71 1,10 0,02 0,13 0,02
24 2,40 1,55 0,02 0,13 0,02 0,13	1,55 0,02 0,13 0,02	2,40 1,55 0,02 0,13 0,02	0,24 2,40 1,55 0,02 0,13 0,02	10,0 0,24 2,40 1,55 0,02 0,13 0,02	1(562.5) 10.0 0.24 2.40 1.55 0.02 0.13 0.02	FG16OM16 1(5G2.5) 10,0 0,24 2,40 1,55 0,02 0,13 0,02	9,16 FG16OM16 1(5G2,5) 10,0 0,24 2,40 1,55 0,02 0,13 0,02	9,16 FG16OM16 1(5G2,5) 10,0 0,24 2,40 1,55 0,02 0,13 0,02	76,80// 9,16 FG16OM16 1(5G2,5) 10,0 0,24 2,40 1,55 0,02 0,13 0,02	16,00//- 76,80// 9,16 FG16OM16 1(5G2,5) 10,0 0,24 2,40 1,55 0,02 0,13 0,02
28 1,71 1,10 0,02 0,13 0,02 0,13	1,10 0,02 0,13 0,02	1,71 1,10 0,02 0,13 0,02	0,28 1,71 1,10 0,02 0,13 0,02	15,0 0,28 1,71 1,10 0,02 0,13 0,02	1(5G2,5) 15,0 0,28 1,71 1,10 0,02 0,13 0,02	FG16OM16 1(5G2.5) 15,0 0,28 1,71 1,10 0,02 0,13 0,02	9,16 FG16OM16 1(5G2,5) 15,0 0,28 1,71 1,10 0,02 0,13 0,02	9,16 FG16OM16 1(5G2,5) 15,0 0,28 1,71 1,10 0,02 0,13 0,02	76,80// 9,16 FG16OM16 1(5G2,5) 15,0 0,28 1,71 1,10 0,02 0,13 0,02	16,00// 76,80// 9,16 FG16OM16 1(5G2,5) 15,0 0,28 1,71 1,10 0,02 0,13 0,02
31 1,33 0,85 0,02 0,13 0,02 0,13	0,85 0,02 0,13 0,02	1,33 0,85 0,02 0,13 0,02	0,31 1,33 0,85 0,02 0,13 0,02	20,0 0,31 1,33 0,85 0,02 0,13 0,02	1(562.5) 20,0 0,31 1,33 0,85 0,02 0,13 0,02	FG16OM16 1(5G2,5) 20,0 0,31 1,33 0,85 0,02 0,13 0,02	9,16 FG16OM16 1(5G2.5) 20,0 0,31 1,33 0,85 0,02 0,13 0,02	9,16 FG16OM16 1(5G2,5) 20,0 0,31 1,33 0,85 0,02 0,13 0,02	76,80// 9,16 FG16OM16 1(5G2,5) 20,0 0,31 1,33 0,85 0,02 0,13 0,02	16,00//- 76,80// 9,16 FG16OM16 1(5G2,5) 20,0 0,31 1,33 0,85 0,02 0,13 0,02
57 0,69 0,01 0,13 0,01 0,13	0,01 0,13 0,01	0,69 0,01 0,13 0,01	0,57 0,69 0,01 0,13 0,01	20,0 0,57 0,69 0,01 0,13 0,01	1(3G2.5) 20,0 0,57 0,69 0,01 0,13 0,01	FG16OM16 1(3G2.5) 20,0 0,57 0,69 0,01 0,13 0,01	8,67 FG16OM16 1(3G2.5) 20,0 0,57 0,69 0,01 0,13 0,01	8,67 FG16OM16 1(3G2,5) 20,0 0,57 0,69 0,01 0,13 0,01	160,001/ 8,67 FG16OM16 1(3G2,5) 20,0 0,57 0,69 0,01 0,13 0,01	16,00//- 160,00// 8,67 FG16OM16 1(3G2,5) 20,0 0,57 0,69 0,01 0,13 0,01
88 1,32 0,01 0,13 0,01 0,13	0,01 0,13 0,01	1,32 0,01 0,13 0,01	0,38 1,32 0,01 0,13 0,01	10,0 0,38 1,32 0,01 0,13 0,01	1(3G2,5) 10,0 0,38 1,32 0,01 0,13 0,01	FG16OM16 1(3G2,5) 10,0 0,38 1,32 0,01 0,13 0,01	8.67 FG16OM16 1(3G2.5) 10,0 0,38 1,32 0,01 0,13 0,01	8,67 FG16OM16 1(3G2,5) 10,0 0,38 1,32 0,01 0,13 0,01	160,00// 8.67 FG16OM16 1(3G2,5) 10,0 0,38 1,32 0,01 0,13 0,01	16,00// 160,00// 8,67 FG16OM16 1(3G2,5) 10,0 0,38 1,32 0,01 0,13 0,01
18 8,25 6,94	96,94	8,25 6,94	0,18 8,25 6,94	0,18 8,25 6,94	0,18 8,25 6,94	0,18 8,25 6,94	9,16 0,18 8,25 6,94	9,16 0,18 8,25 6,94	76,80// 9,16 0,18 8,25 6,94	16,00// 76,80// 9,16 0,18 8,25 6,94
18 8,25 6,94	6,94	8,25 6,94	0,18 8,25 6,94	0,18 8,25 6,94	0,18 8,25 6,94	0,18 8,25 6,94	9,16 0,18 8,25 6,94	9.16 0.18 8.25 6.94	76,80// 9,16 0,18 8,25 6,94	16,001/- 76,801/ 9,16 9,16 9,16 0,18 8,25 6,94
	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	7,80		0,18 7,80	0,18 7,80	0,18 7,80	8,67 0,18 7,80 T	- 8,67 0,18 7,80	160,000-4 8,67 0,18 7,80	16,00// 160,00// 8,67 0,18 7,80 0,18 7,80
	!	7,80		0,18 7,80		0,18 7,80	8,67 0,18 7,80 T	- 8,67 0,18 7,80	160,000-/ 8,67 0,18 7,80	16,000-4 160,000-4 8,67 0,18 7,80 16,000-4
86 8,97 8,27 0,41 184,55 0,39 51,12 0,39 77,44	8,27 0,41 184,55 0,39 51,12 0,39	5,0 0,26 8,97 8,27 0,41 184,55 0,39 51,12 0,39	0,26 8,97 8,27 0,41 184,55 0,39 51,12 0,39	5,0 0,26 8,97 8,27 0,41 184,55 0,39 51,12 0,39	3(1x85)+(1x50)+(1PE50) 5,0 0,26 8,97 8,27 0,41 184,55 0,39 51,12 0,39	FG16M16 3(1x35)+(1x50)+(1PE50) 5,0 0,26 8,97 8,27 0,41 184,55 0,39 51,12 0,39	2500,000,0812,00 9,21 FG16M16 3(1x95)+(1xE0) 5,0 0,26 8,97 8,27 0,41 184,55 0,39 51,12 0,39	9,21 FG16M16 3(1x95)+(1x50)+(1PE50) 5,0 0,26 8,97 8,27 0,41 184,55 0,39 51,12 0,39	2500,000,0812,00 9,21 FG16M16 3(1x95)+(1xE0) 5,0 0,26 8,97 8,27 0,41 184,55 0,39 51,12 0,39	200,001,0016,00 2 500,000,0812,00 9,21 FG16M16 3(1x95)+(1x50)+(1PE50) 5,0 0,26 8,97 8,27 0,41 184,55 0,39 51,12 0,39 51,12
			100							
8,25 6,94 8,25 6,94 7,80 7,80 8,97 8,27 0,41 184,55	8,25 6,94 8,25 6,94 7,80 7,80 8,97 8,27 0,41 184,55	0,18 8,25 6,94	0,18 8,25 6,94		0.18 8,25 6,94	9,16 — — — — — — — — — — — — — — — — — — —	76,80//- 9,16 0,18 8,25 6,94 76,80// 9,16 0,18 8,25 6,94 160,00// 9,16 0,18 7,80 160,00// 8,67 0,18 7,80 2500,000,04/ 9,21 FG16M16 3(1x55)+(1x50)+(1PE50) 5,0 0,26 8,97 8,27 0,41 184,55	76.80/-/ 9,16 0,18 8,25 6,94 76.80/-/ 9,16 0,18 8,25 6,94 160,00/-/ 9,16 0,18 7,80 160,00/-/ 8,67 0,18 7,80 </td <td> 16,000-7 76,800-7 76,800-7 9,16 9,16 9,16 0,18 8,25 6,94 16,000-7 </td> <td>4 x 16,004 16,004-4 76,804-4 76,804-4 - 9,16 - - - 0,18 8,25 6,94 -<!--</td--></td>	16,000-7 76,800-7 76,800-7 9,16 9,16 9,16 0,18 8,25 6,94 16,000-7	4 x 16,004 16,004-4 76,804-4 76,804-4 - 9,16 - - - 0,18 8,25 6,94 - </td
1,71 1,10 0,02 1,33 0,85 0,02 0,69 0,01 1,32 0,01 8,25 6,94 7,80 7,80 7,80 7,80 7,80 7,80 8,97 8,27 0,41	1,71 1,10 0,02 1,33 0,85 0,02 0,69 0,01 1,32 0,01 8,25 6,94 7,80 7,80	15.0 0,28 1,71 1,10 0,02 20,0 0,31 1,33 0,85 0,02 20,0 0,57 0,69 0,01 10,0 0,38 1,32 0,01 0,18 8,25 6,94 0,18 8,25 6,94 0,18 7,80 0,18 7,80 0,16 7,80 0,26 8,97 8,27 0,41	15.0	1(5G2.5) 15,0 0,28 1,71 1,10 0,02 1(5G2.5) 20,0 0,31 1,33 0,85 0,02 1(3G2.5) 20,0 0,57 0,69 0,01 1(3G2.5) 10,0 0,38 1,32 0,01 0,18 8,25 6,94 0,18 7,80 0,18 7,80 0,18 7,80 3(1,85)+(1,85)+(1,PE60) 5,0 0,26 8,97 8,27 0,41	FG160M16 1(502.5) 15.0 0,28 1,71 1,10 0,02 FG160M16 1(562.5) 20,0 0,31 1,33 0,85 0,02 FG160M16 1(362.5) 20,0 0,57 0,69 0,01 FG160M16 1(362.5) 10,0 0,38 1,32 0,01 0,18 8,25 6,94 0,18 7,80 0,18 7,80 0,18 7,80 0,18 7,80 0,18 7,80 <	9,16 FG160M16 1(562.5) 15,0 0,28 1,71 1,10 0,02 8,67 FG160M16 1(562.5) 20,0 0,31 1,33 0,85 0,02 8,67 FG160M16 1(362.5) 20,0 0,57 0,69 0,01 9,16 0,18 8,25 6,94 8,67 0,18 8,25 6,94 8,67 0,18 7,80 8,67 0,18 7,80 8,67 8,67 0,18 7,80 9,21 FG16M16 3(1x95)+(1x50)+(1PE50) 5,0 0,26 8,97 9,71	76,801—1— — 9,16 FG160M16 1(9G2.5) 15,0 0,28 1,71 1,10 0,02 76,801—1— — 9,16 FG160M16 1(9G2.5) 20,0 0,31 1,33 0,85 0,02 0,01 160,001—1— — 8,67 FG160M16 1(3G2.5) 10,0 0,57 0,69 — 0,01 0,01 76,801—1— — 8,67 — — — 0,18 8,25 6,94 — 0,01 160,001—1— — 9,16 — — — 0,18 8,25 6,94 — — 160,001—1— — 9,16 — — — 0,18 8,25 6,94 — — 160,001—1— — 8,67 — — — 0,18 7,80 — — 160,001—1— — 8,67 — — — 0,18 7,80 — — 160,001—1 — <td>76.80/-y 9,16 FG160M16 1(9G25) 15.0 0,28 1,71 1,10 0,02 76.80/-y 9,16 FG160M16 1(9G25) 200 0,31 1,33 0,88 0,02 0,01 160.00/-y 8,67 FG160M16 1(3G25) 200 0,57 0,69 0,01 0 76.80/-y 8,67 FG160M16 1(3G25) 100 0,38 1,32 0,01 0 76.80/-y 9,16 0,18 8,25 6,94 0 160,00/-y 9,16 0,18 7,80 160,00/-y 8,67 0,18 7,80 160,00/-y 8,67 0,18 7,80 </td> <td>10,000-4 70,000-4</td> <td>4 X 16,00f 16,00f/- 7 (80)-4 7 (80)-4 9,16 FG16OM16 1(5G25) 15.0 0,28 1,71 1,10 0,022 2 X 16,00f 16,00f/- 76,80f/- 9,16 FG16OM16 1(5G25) 200 0,31 1,32 0,85 0,02 0,01 2 X 16,00f 16,00f/- 16,00f/- 76,80f/- 9,16 0,18 0,31 1,32 0,01 0,01 4 X 16,00f 16,00f/- 76,80f/- 9,16 0,18 8,25 6,94 0,01 2 X 16,00f 16,00f/- 16,00f/- 16,00f/- 9,16 0,18 8,25 6,94 0,01 2 X 16,00f 16,00f 16,00f 9,16 0,18 7,80 0,18 0,18 <td< td=""></td<></td>	76.80/-y 9,16 FG160M16 1(9G25) 15.0 0,28 1,71 1,10 0,02 76.80/-y 9,16 FG160M16 1(9G25) 200 0,31 1,33 0,88 0,02 0,01 160.00/-y 8,67 FG160M16 1(3G25) 200 0,57 0,69 0,01 0 76.80/-y 8,67 FG160M16 1(3G25) 100 0,38 1,32 0,01 0 76.80/-y 9,16 0,18 8,25 6,94 0 160,00/-y 9,16 0,18 7,80 160,00/-y 8,67 0,18 7,80 160,00/-y 8,67 0,18 7,80	10,000-4 70,000-4	4 X 16,00f 16,00f/- 7 (80)-4 7 (80)-4 9,16 FG16OM16 1(5G25) 15.0 0,28 1,71 1,10 0,022 2 X 16,00f 16,00f/- 76,80f/- 9,16 FG16OM16 1(5G25) 200 0,31 1,32 0,85 0,02 0,01 2 X 16,00f 16,00f/- 16,00f/- 76,80f/- 9,16 0,18 0,31 1,32 0,01 0,01 4 X 16,00f 16,00f/- 76,80f/- 9,16 0,18 8,25 6,94 0,01 2 X 16,00f 16,00f/- 16,00f/- 16,00f/- 9,16 0,18 8,25 6,94 0,01 2 X 16,00f 16,00f 16,00f 9,16 0,18 7,80 0,18 0,18 <td< td=""></td<>
1,71 1,10 1,33 0,85 0,69 1,32 1,32 8,25 6,94 8,25 6,94 7,80 7,80 7,80	1,71 1,10 1,33 0,85 0,69 1,32 8,25 6,94 8,25 6,94 7,80 7,80 7,80 7,80 8,97 8,27	150 0,28 1,71 1,10 1,10 20.0 0,31 1,33 0,85 10.0 0,38 1,32 10.0 0,38 1,32 10.18 8,25 6,94 0,18 8,25 6,94 0,18 7,80 0,18 7,80	15,0 0,28 1,71 1,10 20,0 0,31 1,33 0,85 20,0 0,57 0,69 10,0 0,38 1,32 0,18 8,25 6,94 0,18 8,25 6,94 0,18 8,25 6,94 0,18 7,80 0,18 7,80 0,18 7,80 5,0 0,26 8,97 8,27	1(562,5) 15,0 0,28 1,71 1,10 1(562,5) 20,0 0,31 1,33 0,85 1(362,5) 20,0 0,57 0,69 1(362,5) 10,0 0,38 1,32 0,18 8,25 6,94 0,18 8,25 6,94 0,18 7,80 0,18 7,80 3(1,95)+(1PE50) 5,0 0,26 8,97 8,27	FG160M16 1(5G2.5) 15.0 0,28 1,71 1,10 FG160M16 1(5G2.5) 20.0 0,31 1,33 0,85 FG160M16 1(3G2.5) 20,0 0,57 0,69 FG160M16 1(3G2.5) 10.0 0,38 1,32 0,18 8,25 6,94 0,18 7,80 0,18 7,80 0,18 7,80 0,18 7,80 0,18 7,80 0,18 7,80 0,18 7,80	9,16 FG160M16 1(5G2.5) 15.0 0,28 1,71 1,10 8,67 FG160M16 1(5G2.5) 20,0 0,31 1,33 0,85 8,67 FG160M16 1(3G2.5) 20,0 0,57 0,69 9,16 - - 0,18 8,25 6,94 8,67 - 0,18 8,25 6,94 - 8,67 - 0,18 7,80 - - 8,67 - 0,18 7,80 - - 8,67 - 0,18 7,80 - - 9,21 FG16M16 3(1,69)+(1,850)+(1PE50) 5,0 0,26 8,97 8,27	76,80/-/ 9,16 FG160M16 1(5G25) 15,0 0,28 1,71 1,10 76,80/-/ 9,16 FG160M16 1(5G25) 20,0 0,31 1,33 0,88 160,00/-/ 8,67 FG160M16 1(3G25) 10,0 0,57 0,69 76,80/-/ 9,16 0,18 8,25 6,94 76,80/-/ 9,16 0,18 8,25 6,94 78,00/-/ 9,16 0,18 8,25 6,94 160,00/-/ 8,67 0,18 7,80 160,00/-/ 8,67 0,18 7,80 250,0000,0,0812,00 9,21 FG16M16 3(1x85)+(1x50)+(1PE50) 5,0 0,28 8,97 8,27	76,80/-/ 9,16 FG160M16 1(5G25) 15,0 0,28 1,71 1,10 76,80/-/ 9,16 FG160M16 1(5G25) 20,0 0,31 1,33 0,88 160,00/-/ 8,67 FG160M16 1(3G25) 10,0 0,57 0,69 76,80/-/ 9,16 0,18 8,25 6,94 76,80/-/ 9,16 0,18 8,25 6,94 160,00/-/ 8,67 0,18 7,80 160,00/-/ 8,67 0,18 7,80 160,00/-/ 8,67 0,18 7,80 160,00/-/ 8,67 0,18 7,80 250,000/-/ 8,67 0,18 7,80 <	16,001—1— 76,801—1— 76,801—1— 9,16 FG160M16 1(5G2.5) 15,0 0,28 1,71 1,10 1,10 16,001—1— 76,801—1— 9,16 FG160M16 1(5G2.5) 20,0 0,31 1,32 0,85 16,001—1— 16,001—1— 8,67 FG160M16 1(3G2.5) 20,0 0,57 0,69 16,001—1— 16,001—1— 9,16 9,16 0,18 8,25 6,94 16,001—1— 76,801—1— 9,16 9,16 0,18 8,25 6,94 16,001—1— 16,001—1— 16,001—1— 9,16 0,18 8,25 6,94 16,001—1— 16,001—1— 16,001—1— 9,16 0,18 7,80 16,001—1— 16,001—1— 16,000—1— 8,67	4 x 16,007— 16,007— 76,807—/— 76,807—/— 9,16 FG160M16 1(5G2.5) 15,0 0,28 1,71 1,10 1,10 4 x 16,007— 16,007—/— 76,807—/— — 9,16 FG160M16 1(5G2.5) 20,0 0,31 1,32 0,88 2 x 16,007— 16,007—/— 16,000—/— — 9,16 — 9,16 — 0,18 8,25 6,94 4 x 16,007— 16,007—/— 76,807—/— — 9,16 — 9,16 — 0,18 8,25 6,94 2 x 16,007— 16,007—/— 76,807—/— — 9,16 — — 0,18 8,25 6,94 2 x 16,007— 16,007—/— 16,007—/— 16,007—/— — 9,16 — — 0,18 8,25 6,94 2 x 16,007— 16,007—/— 16,007—/— 16,007—/— 16,007—/— — 9,16 — — 0,18 7,80 — 2 x 16,007— 16,007—/— 16,007—/—
2,40 1,55 1,71 1,10 1,33 0,85 0,69 1,32 8,25 6,94 8,25 6,94 7,80 7,80 7,80	2,40 1,55 1,71 1,10 1,33 0,85 0,69 1,32 8,25 6,94 7,80 7,80 7,80 7,80 7,80	10.0 0.24 2.40 1,56 15.0 0,28 1,71 1,10 20.0 0,31 1,33 0,85 20.0 0,57 0,69 10.0 0,58 1,32 0,18 8,25 6,94 0,18 8,25 6,94 0,18 7,80 0,18 7,80 0,18 7,80 5,0 0,26 8,97 8,27	10.0 0.24 2.40 1.55 1.10 1.10 1.50 0.31 1.33 0.85 1.32 1.00 0.36 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	1(5G2.5)	FG160M16	9,16 FG16OM16 1(5G2,5) 100 0,24 2,40 1,55 9,16 FG16OM16 1(5G2,5) 150 0,28 1,71 1,10 9,16 FG16OM16 1(5G2,5) 20,0 0,31 1,33 0,85 8,67 FG16OM16 1(3G2,5) 20,0 0,57 0,69 9,16 0,18 8,25 6,94 9,16 0,18 8,25 6,94 8,67 0,18 7,80 8,67 0,18 7,80 8,67 0,18 7,80 8,67 0,18 7,80 9,21 FG16M16 3(1,895)+(1,850)+(1PE50) 5,0 0,26 8,97 8,27	76.80/-/ 9.16 FG16OM16 1(5G25) 10.0 0.24 2.40 1.55 76.80/-/ 9.16 FG16OM16 1(5G25) 10.0 0.24 2.40 1.55 76.80/-/ 9.16 FG16OM16 1(5G25) 20.0 0.31 1.71 1.10 160.00/-/ 9.16 FG16OM16 1(3G25) 20.0 0.57 0.69 76.80/-/ 8.67 FG16OM16 1(3G25) 20.0 0.57 0.69 76.80/-/ 9.16 0.18 8.25 6.94 76.00/-/- 9.16 0.18 8.25 6.94 160.00/-/- 9.16 0.18 7.80 160.00/-/- 9.16 0.18 7.80 160.00/-/- 8.	76.80/-/ 9.16 FC16OM16 1(5G25) 10.0 0.24 2.40 1.55 76.80/-/ 9.16 FC16OM16 1(5G25) 10.0 0.24 2.40 1.55 76.80/-/ 9.16 FC16OM16 1(5G25) 20.0 0.31 1.71 1.10 160.00/-/ 9.16 FG16OM16 1(3G25) 20.0 0.57 0.69 160.00/-/ 8.67 FG16OM16 1(3G25) 20.0 0.57 0.69 76.80/-/ 9.16 0.18 8.25 6.94 76.00/-/- 9.16 0.18 7.80 160.00/-/- 9.16 0.18 7.80 160.00/-/- 9.16 0.18 7.80 160.00/-/- 8.6	16,001-/- 76,801-/- 76,801-/- - 9,16 FG160M16 1(5G2.5) 10,0 0,24 2,40 1,55 16,001-/- 76,801-/- - 9,16 FG160M16 1(5G2.5) 15,0 0,28 1,71 1,10 1,10 16,001-/- 76,801-/- - 9,16 FG160M16 1(5G2.5) 20,0 0,37 0,85 1,71 1,10 <td< td=""><td>4 x 16,000 16,001-/- 76,800-/- - 9,16 FG160M16 1,562,5) 10,0 0,24 2,40 1,55 4 x 16,000 16,001-/- 76,801-/- - 9,16 FG160M16 1,562,5) 15,0 0,28 1,71 1,10 2 x 16,001 16,001-/- 76,801-/- - 9,16 FG160M16 1,622,5) 20,0 0,27 0,69 - 2 x 16,001 16,001-/- 160,001-/- - 8,67 FG160M16 1,362,5) 20,0 0,57 0,69 - 2 x 16,001 16,001-/- 160,001-/- - 8,67 FG160M16 1,362,5) 10,0 0,57 0,69 - 4 x 16,001 16,001-/- 16,001-/- - 9,16 - - - 0,18 8,25 6,94 2 x 16,001 16,001-/- 16,001-/- - 9,16 - - - 0,18 8,25 6,94 2 x 16,001 16,001-/- 160,001-/-</td></td<>	4 x 16,000 16,001-/- 76,800-/- - 9,16 FG160M16 1,562,5) 10,0 0,24 2,40 1,55 4 x 16,000 16,001-/- 76,801-/- - 9,16 FG160M16 1,562,5) 15,0 0,28 1,71 1,10 2 x 16,001 16,001-/- 76,801-/- - 9,16 FG160M16 1,622,5) 20,0 0,27 0,69 - 2 x 16,001 16,001-/- 160,001-/- - 8,67 FG160M16 1,362,5) 20,0 0,57 0,69 - 2 x 16,001 16,001-/- 160,001-/- - 8,67 FG160M16 1,362,5) 10,0 0,57 0,69 - 4 x 16,001 16,001-/- 16,001-/- - 9,16 - - - 0,18 8,25 6,94 2 x 16,001 16,001-/- 16,001-/- - 9,16 - - - 0,18 8,25 6,94 2 x 16,001 16,001-/- 160,001-/-
		150 0.28 100 0.24 150 0.24 150 0.31 200 0.31 100 0.38 100 0.48 1100 0.48 1100 0.48 1100 1.8 1100 1.8 1100 0.48 1100 1.8 1100 1.8	15.0 0.28 10.0 0.24 15.0 0.28 20.0 0.31 20.0 0.57 10.0 0.38 0.18 0.18 0.18	1(5G2.5) 15.0 0.28 1(5G2.5) 15.0 0.28 1(5G2.5) 10.0 0.24 1(5G2.5) 15.0 0.28 1(5G2.5) 20.0 0.31 1(3G2.5) 20.0 0.57 1(3G2.5) 10.0 0.38 0.18 0.18 3(1X95)+(1X50)+(1PE50) 5.0 0.26	FG16OM16 1(5G2,5) 15,0 0,28	9,21 — — — 0,18 9,16 FG16OM16 1(5G2.5) 15.0 0,24 9,16 FG16OM16 1(5G2.5) 10.0 0,24 9,16 FG16OM16 1(5G2.5) 15.0 0,28 8,67 FG16OM16 1(3G2.5) 20.0 0,57 8,67 FG16OM16 1(3G2.5) 20.0 0,57 9,16 — — — 0,18 8,67 — — — 0,18 8,67 — — — 0,18 8,67 — — — 0,18 8,67 — — 0,18 8,67 — — 0,18 8,67 — — 0,18 8,67 — — 0,18 8,67 — — 0,18 9,16 — — —	/ 9,21 0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,28 0,24 0,28 0,24 0,28 0,24 0,28 0,24 0,28 0,24 0,28 0,24 0,28 0,24 0,28 0,24 0,28 0,18 0,18 0,18 0,18 0,18 0,18	1—1—1— 9,21 — — — — 0,18 — — 0,18 — 0,18 — 0,18 — 0,18 — 0,18 0,28 — 0,18 0,28 — 0,18 0,28 — 0,18 0,28 — 0,18 0,24 0,28 — 0,24 0,28 — 0,24 0,28 — 0,24 0,28 — 0,24 — 0,24 0,28 — 0,28 — 0,24 — 0,28 — 0,18 — 0,18 <th< td=""><td>NV -I-J-L- -</td><td>3P x 32.00 + N/- -/-/-</td></th<>	NV -I-J-L- -	3P x 32.00 + N/- -/-/-
		0,17 0,18 0,18 15.0 0,28 15.0 0,24 15.0 0,24 15.0 0,31 10.0 0,31 0,18 0,18 0,18 0,18 0,18	0,17 0,18 0,18 15,0 0,28 10,0 0,24 15,0 0,31 20,0 0,31 0,18 0,18 0,18 0,18 0,18 0,18	0,17 0,17 0,18 0,18 1(5G2.5) 15,0 0,28 1(5G2.5) 15,0 0,24 1(5G2.5) 20,0 0,31 1(3G2.5) 20,0 0,31 0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18		8.67 0,17 8.67 0,17 9,16 FG16OM16 1(5G2.5) 15,0 0,28 9,16 FG16OM16 1(5G2.5) 15,0 0,28 9,16 FG16OM16 1(5G2.5) 15,0 0,28 9,16 FG16OM16 1(5G2.5) 20,0 0,28 8,67 FG16OM16 1(3G2.5) 20,0 0,31 9,16 0,18 8,67 FG16OM16 1(3G2.5) 20,0 0,57 8,67 0,18 8,67 0,18 8,67 0,18 8,67 0,18 8,67 0,18 8,67 0,18 8,67 0,18	100.001-√ 100.001-√	1 100,001-√1- 8,67 0,17 1 100,001-√1- 8,67 0,18 1 100,001-√1- 9,16 FG160M16 1(5G2,5) 15,0 0,28 1 76,801-√1- 9,16 FG160M16 1(5G2,5) 10,0 0,24 1 76,801-√1- 9,16 FG160M16 1(5G2,5) 10,0 0,28 1 76,801-√1- 9,16 FG160M16 1(5G2,5) 10,0 0,31 1 160,001-√1- 9,16 FG160M16 1(3G2,5) 20,0 0,31 1 160,001-√1- 9,16 FG160M16 1(3G2,5) 10,0 0,38 1 160,001-√1- 9,16 0,18 1 160,001-√1- 9,16 0,18	10,001-4 100,001-4 8,67	2 x 10,004 10,001-4 10,000-4 - 8 87 - - 0,17 2 x 10,004 10,001-4 100,001-4 - - 8 67 - - - 0,17 3 p x 32,004 NIA 10,001-4 100,001-4 - - - - - 0,17 4 x 16,002 16,001-4 76,801-4 - - 9,16 FG160M16 1(5G25) 15,0 0,28 4 x 16,002 16,001-4 76,801-4 - 9,16 FG160M16 1(5G25) 15,0 0,28 4 x 16,002 16,001-4 76,801-4 - 9,16 FG160M16 1(5G25) 20,0 0,28 2 x 16,002 16,001-4 76,801-4 - 9,16 FG160M16 1(5G25) 20,0 0,38 2 x 16,002 16,001-4 16,001-4 76,801-4 - 9,16 FG160M16 1(5G25) 20,0 0,38 2 x 16,002 16,001-4 76,801-4 -
		15.0 10.0 10.0 20.0 20.0 10.0 10.0 10.0 10	10.00 10.00			8,67 <	100.001-√ 100.0	1 100,001-√ 8,67	10,001j 100,001j	2 x 10,00 10,000/ 10,000/ 10,000/ 8,67

3

DIRETTORE PROGETTAZIONE

QUADRI ELETTRICI GALLERIA MONTE AGLIO PIAZZALE IMBOCCO GALLERIA LATO SUD

Ing. PIETRO MAZZOLI Responsabile integrazione fra le var prestazioni specialistiche

di autorizzazione scritta.	requenza: 50 [Hz] Commessa: Data: Ottobre 2018	Verifica C.d.t. massima sui quadri: SI	Verifica C.d.t. con lb: SI	
o o renderlo accessibile a terzi in assenza di aut	ouzione: TT Tensione: 20/0,4+N [KV] Frequenza: 50 [Hz]			CALCOLI E VERIFICHE
ssi con il presente documento con divieto di riprodurlo, utilizzarlo o renderlo accessibile a terzi in assenza	Sistema di distribuzione: TT	Verifica contemporaneità: SI	Verifica I²t con Icc Max: SI	
Ci riserviamo tutti i diritti connessi con il presente do	Oggetto: Tabella verifica Quadri Elettrici	Controllo corto circuito a fondo linea: SI	Verifica protezione contatti indiretti: SI	

1 1 1 1 1 1 1 1 1 1	COLL	COLLEGAMENTO		INTERRUTTORE	ш			CA	CAVO					FASE		NEUTRO	02	PROTEZIONE	ONE		4 ≥ 4 ≥ 4	zl ≥ n	≥ 4	կ ≤ 1,45	
	Da		Taglia	Corrente termica	Corrente magnetica	Р	၁၁	Tipo cavo		Distanza			¥	14	K2S2	14	K²S²	Pt Pt	K²S²	Pot.	n q			1.45lz	Tes
1 1 1 1 1 1 1 1 1	Quadro			regolata	regolata (Irm) /	Corrente	massima						inima	max		max		max		cont					
				di Fase (Ir) /	Tempo (t2) /	differenziale	li barratura						rifase	Inizio		Inizio		Inizio							
				Lungo	Istantaneo (I)								ne linea	Linea		Linea		Linea							
1 1 1 1 2 2 2 2 2 2				ritardo (L2) / Tempo (t1)																					
			[A]	[A]	[A]		[kA]		[mm ²]	[m]					[A ² S]	[A²S]	[A ² S]	[A ² S]	[A²S]	[kw]	[A]				
4 6 6 6 6 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7) enßeS	ONADRO (GENERAL	E BASSA	TENSIONE	QGBT/S											
4 6 6 6 6 6 6 6 7 6 7 6 7 6 7 6 6 7 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	QGBTS	1.7P	2 × 10,00/	10,00//	100,00//	!	8,11	FG160M16	1(3G2,5)	10,0	0,51	1,21	ı	00'00	0,13	0,00	0,13	00,00	0,13	0,50	2,41				
4 4 <th>QGBTS</th> <th>1.8P</th> <th>2 × 16,00/</th> <th>16,00//</th> <th>160,00//</th> <th>!</th> <th>8,11</th> <th>FG160M16</th> <th>1(3G2,5)</th> <th>10,0</th> <th>1,31</th> <th>1,29</th> <th>ı</th> <th>0,01</th> <th>0,13</th> <th>0,01</th> <th>0,13</th> <th>0,01</th> <th>0,13</th> <th>2,50</th> <th>12,03</th> <th></th> <th></th> <th></th> <th></th>	QGBTS	1.8P	2 × 16,00/	16,00//	160,00//	!	8,11	FG160M16	1(3G2,5)	10,0	1,31	1,29	ı	0,01	0,13	0,01	0,13	0,01	0,13	2,50	12,03				
4 4 <th>QGBTS</th> <th>1.9P</th> <th>2 x 16,00/</th> <th>16,00//</th> <th>160,00//</th> <th>!</th> <th>8,11</th> <th>FG160M16</th> <th>1(3G2,5)</th> <th>10,0</th> <th>1,31</th> <th>1,29</th> <th>i</th> <th>10,01</th> <th>0,13</th> <th>0,01</th> <th>0,13</th> <th>0,01</th> <th>0,13</th> <th>2,50</th> <th>12,03</th> <th></th> <th></th> <th></th> <th></th>	QGBTS	1.9P	2 x 16,00/	16,00//	160,00//	!	8,11	FG160M16	1(3G2,5)	10,0	1,31	1,29	i	10,01	0,13	0,01	0,13	0,01	0,13	2,50	12,03				
	QGBTS	1.10P	2 × 10,00/	10,00//	100,00//	-	8,11		-	-	0,28	5,76	-		-	-	-		-	00'0	00'0	10,00			S
4 1 5 6 7 <th>QGBTS</th> <th>1.11P</th> <th>2 × 16,00/</th> <th>16,00//</th> <th>160,00//</th> <th>!</th> <th>8,11</th> <th>FG160M16</th> <th>1(3G2,5)</th> <th>15,0</th> <th>1,79</th> <th>06'0</th> <th>ı</th> <th>0,01</th> <th>0,13</th> <th>0,01</th> <th>0,13</th> <th>0,01</th> <th>0,13</th> <th>2,50</th> <th>12,03</th> <th></th> <th></th> <th></th> <th></th>	QGBTS	1.11P	2 × 16,00/	16,00//	160,00//	!	8,11	FG160M16	1(3G2,5)	15,0	1,79	06'0	ı	0,01	0,13	0,01	0,13	0,01	0,13	2,50	12,03				
4. 4. 5. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	QGBTS	1.12P	2 × 16,00/	16,00//	160,00//	1	8,11	FG160M16	1(3G2,5)	15,0	1,79	06'0	-	0,01	0,13	0,01	0,13	0,01	0,13	2,50	12,03				
4. 1 1.0 1.0	QGBTS	1.13P	2 × 10,00/	10,00//	100,00//	1	8,11	FG160M16	1(3G2,5)	20,0	7,0	99'0	-	00'0	0,13	00'0	0,13	00,00	0,13	0,50	2,41				
4 4 4 6 6	QGBTS	1.14P	2 × 16,00/	16,00//	160,00//	1	8,11	FG160M16	1(3G2,5)	25,0	2,25	0,55	i	0,01	0,13	0,01	0,13	0,01	0,13	2,00	9,62				
14.0 14.0 14.0 40.0 <th< td=""><th>QGBTS</th><td>1.15P</td><td>4 × 10,00/</td><td>10,00//</td><td>48,00//</td><td>-</td><td>8,89</td><td>-</td><td>1</td><td>-</td><td>0,28</td><td>6,30</td><td>4,63</td><td></td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>00'0</td><td>00'0</td><td>10,00</td><td></td><td></td><td>S</td></th<>	QGBTS	1.15P	4 × 10,00/	10,00//	48,00//	-	8,89	-	1	-	0,28	6,30	4,63		-		-	-		00'0	00'0	10,00			S
4.14 4.14 6.14 <th< td=""><th>QGBTS</th><td>1.16P</td><td>4 x 10,00/</td><td>10,00//</td><td>48,00//</td><td>-</td><td>8,89</td><td>-</td><td>!</td><td>-</td><td>0,28</td><td>6,30</td><td>4,63</td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>00'00</td><td>0,00</td><td>10,00</td><td></td><td></td><td>S</td></th<>	QGBTS	1.16P	4 x 10,00/	10,00//	48,00//	-	8,89	-	!	-	0,28	6,30	4,63	-	-			-	-	00'00	0,00	10,00			S
4.14 1.14	QGBTS	1.17P	4 × 10,00/	10,00//	48,00//	-	8,89		!	-	0,28	6,30	4,63		-	-	-		!	00'0	0,00	10,00			S
4. 1 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	QGBTS	1.18P	4 × 10,00/	10,00//	48,00//	1	8,89	1	1	1	0,28	6,30	4,63	-	-			-	!	00'0	00'00	10,00			S
4 5 6 6 6 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 7 7	QGBTS	1.19P	2 × 10,00/	10,00//	100,00//	-	8,11		-	-	0,28	5,76	-		-	-	-		-	00'0	0,00	10,00			S
4 4 4 4	QGBTS	1.20P	2 × 10,00/	10,00//	100,00//	!	8,11	I	ı	-	0,28	5,76	ı	-	-			1	!	00'0	00'0	10,00			S
4 1	QGBTS	IP2.P	3P x 32,00 + N/	/	/	-	8,95	-	!	-	0,27	8,89	8,11	-	-	-	-		!	0,18	0,85	160,00			S
4 4	QGBTS	1.21P	2 × 6,00/	6,00//	//00,09	-	8,11	FG160M16	1(2x2,5)	34,0	0,49	0,45	-	00'00	0,13	0,00	0,13	1	!	0,18	0,85				
UPST 123P 4 x 63,04- 63 x 60 d -1 6.8 g b FG160Mile 10 x 7 7.7 f 6.7 f 1.2 R b 1.2 R b <t< th=""><th>QGBTS</th><th>1.22P</th><th>4 × 6,00/</th><th>6,00//</th><th>28,80//</th><th>1</th><th>8,89</th><th>1</th><th>1</th><th>1</th><th>0,27</th><th>4,65</th><th>3,18</th><th>-</th><th>-</th><th></th><th></th><th>-</th><th>!</th><th>00'0</th><th>00'00</th><th>6,00</th><th></th><th></th><th>S</th></t<>	QGBTS	1.22P	4 × 6,00/	6,00//	28,80//	1	8,89	1	1	1	0,27	4,65	3,18	-	-			-	!	00'0	00'00	6,00			S
UPS2 1.24 4 x 53 00 6 300 -l- 8 9.6 FelicionNife 1.52 0.17 6.5 0.17 6.7 0.17 0.			4 × 63,00/	63,00//	504,00//		8,95	FG160M16	1(5G25)	10,0	0,47	7,71	6,37	0,17	12,78	0,15	12,78	0,16	12,78	27,23	43,69				
Quest 1.28 A x 83.00-1 6.30 Fortion High Fortion High 1.27 6.37 6.1 6.37 6.38 6.37 7.37 7.38 7.39 7.30 7.37 7.37 <t< th=""><th></th><th></th><th>4 × 63,00/</th><th>63,00//</th><th>504,00//</th><th>!</th><th>8,95</th><th>FG160M16</th><th>1(5G25)</th><th>10,0</th><th>0,27</th><th>7,71</th><th>6,37</th><th>0,17</th><th>12,78</th><th>0,15</th><th>12,78</th><th>0,16</th><th>12,78</th><th>00'0</th><th>0,00</th><th></th><th></th><th></th><th></th></t<>			4 × 63,00/	63,00//	504,00//	!	8,95	FG160M16	1(5G25)	10,0	0,27	7,71	6,37	0,17	12,78	0,15	12,78	0,16	12,78	00'0	0,00				
CORDIT LIA CORDIT CORDIT <th></th> <td></td> <td>4 × 63,00/</td> <td>63,00//</td> <td>504,00//</td> <td>-</td> <td>8,95</td> <td>FG160M16</td> <td>1(5G25)</td> <td>10,0</td> <td>0,27</td> <td>7,71</td> <td>6,37</td> <td>0,17</td> <td>12,78</td> <td>0,15</td> <td>12,78</td> <td>0,16</td> <td>12,78</td> <td>00'0</td> <td>0,00</td> <td></td> <td></td> <td></td> <td></td>			4 × 63,00/	63,00//	504,00//	-	8,95	FG160M16	1(5G25)	10,0	0,27	7,71	6,37	0,17	12,78	0,15	12,78	0,16	12,78	00'0	0,00				
Hitcher Givines Livines Givines Livines Givines Civines Livines Civines Civi		QGBTS	4 x 63,00/	63,00//	630,00//	1	6,97	FTG160M16	1(5G25)	10,0	0,67	29'9	4,86	60'0	12,78	60'0	12,78	60'0	12,78	27,23	43,69				
Pr.Tens. Pt.Tens.			4 x 63,00/	63,00//	630,00//		5,69		-	-	0,68	6,61	4,78						-	27,23	43,69	80,00			S
Mistar M			4 × 20,00/	//	//	!	5,59	ı	1	!	0,68	1,86	1,15	-	-	ı	1	1	ı	0,00	00'0	4,00			S
1.15 4 x 6.00/ 6.00//- 60.00// 60.00/			4 × 20,00/	//	//	-	5,59	-	1	-	0,68	1,86	1,15			!	-	-	!	00'0	0,00	4,00			S
	QGBTS	1.18	4 × 6,00/	6,00//	//00,09	-	5,59	-	!	-	0,68	3,69	2,30	-	-		!	-		00'0	00'00	00'9			S

11,40

6,00

0,00

0,00

3,08

0,68

4,58

1.2S 1P x 20,00 + N/--1.3S 2 x 6,00/--

QGBTS

GALLERIA LATO SUD

Data: Ottobre 2018

QUADRI ELETTRICI

GENOTIA RELIGIONAL TALLIANA GENERALI STATE ITALIANA GENOPPO FERROVIE DELLO STATO ITALIANA GENOPPO FERROVIE D	Genella COMBORZIO CET OPZZAROLIII	T. MINERA (S. PIZZAROTTI	R. R. R. R.	Ing. PIETRO MAZZOLI Responsabile integrazione fra le var prestazioni specialistiche	GALLERIA MONTE AGI PIAZZALE IMBOCCO G
Ci riserviamo tutti i diritti connessi con il	presente documento con divieto di	riprodurlo, utilizzarlo o renderlo acces	sibile a terzi in assenza di a	utorizzazione scritta.	
Oggetto: Tabella verifica Quadri Elettrici	ttrici	Sistema di distribuzione: TT	Tensione: 20/0,4+N [KV] Frequenza: 50 [Hz]	Frequenza: 50 [Hz]	Commessa:
Controllo corto circuito a fondo linea: Sl	ea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui quadri: Sl	luadri: SI
Verifica protezione contatti indiretti: SI	IS:	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI	

									CALCOL	LI E VEL	CALCOLI E VERIFICHE												
		INTERRUTTORE	3E			Ö	CAVO					FASE	Ę	NEUTRO	RO	PROTEZIONE	ONE		² 1 ⋝ "1 ⋝ "1	²l > u	5 ¹ 1	լ ≤ 1,45	
	I	Corrente termica	Corrente termica Corrente magnetica	р	20	Тіро саvо	Sezione	Distanza			¥	14	K²S²	14	K²S²	l²t	K ² S ²	Pot.	u q	l _{n z}	lz If	1.45lz	Test
Quadre circuito In max		regolata di Fase (Ir) /	regolata (Irm) / Tempo (t2) /	Corrente differenziale	massima Ii barratura				% Con T	Massima r Trifase	minima Trifase	max Inizio		max Inizio		max Inizio		cont					
		Lungo	Istantaneo (I)			_					fine linea	Linea		Linea		Linea							
		ritardo (L2) / Tempo (t1)																					
[A]		[A]	[A]		[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A²S]	[A ² S]	[A ² S]	[A ² S]	[A²S]	[A ² S]	[kw]	[A]	[A]	[A] [A]] [A]	
							enbes	QUADRO	GENERAL	LE BASSA	Segue QUADRO GENERALE BASSA TENSIONE QGBT/S	IE QGBT/S											
2 × 6,00/		6,00//	//00,09	!	4,58	!	1	!	0,75	3,31	ı	!	ı	!	!	1	ı	0,50	2,41	00'9	7,80	!	S
2 × 10,00 /	-/-	10,00//	48,00//	!	4,58	FTG160M16	1(3G2,5)	35,0	1,45	0,39	1	0,01	0,13	0,01	0,13	0,01	0,13	0,56	2,69	10,00	22,32 13,00	0 32,36	S
2 × 10,00/	/0	10,00//	48,00//	1	4,28	FTG160M16	1(2×10)	530,0	2,78	0,11	ı	00,00	2,04	00'0	2,04	!	ı	69'0	3,31	10,00	42,97 13,00	0 62,30	S
2 × 10,00/	/00	10,00//	48,00//	!	4,28	FTG160M16	1(2x2,5)	445,0	1,01	0,03	ı	00,00	0,13	00'0	0,13	-	!	0,03	0,14	10,00	19,53 13,00	0 28,32	S
2 × 10,00/	/00	10,00//	48,00//	!	4,28	FTG160M16	1(2x2,5)	240,0	2,26	90'0	ı	00,00	0,13	00'0	0,13	ı	!	0,24	1,15	10,00	22,32 13,00	0 32,36	S
2 × 10,00/	/00	10,00//	48,00//	!	4,28	FTG160M16	1(2x2,5)	275,0	0,82	0,05	i	00'00	0,13	00'0	0,13	1	!	0,02	60'0	10,00	22,32 13,00	0 32,36	S
2 × 25,00/	/00'	25,00//	120,00//	!	4,58	FTG160M16	1(3G6)	15,0	1,32	1,72	i	10,0	0,74	0,01	0,74	0,01	0,74	2,50	12,03	25,00	40,80 32,50	0 59,16	S
2 × 25,00/	/00'	25,00//	120,00//	1	4,58	FTG160M16	1(3G6)	15,0	1,32	1,72	ı	10,0	0,74	0,01	0,74	0,01	0,74	2,50	12,03	25,00	40,80 32,50	0 59,16	S
2 × 10,00/	/00'	10,00//	48,00//	!	4,58	FTG160M16	1(3G2,5)	15,0	1,33	08'0	ı	00,00	0,13	00'0	0,13	0,00	0,13	1,00	4,81	10,00	21,00 13,00	30,45	S
2 × 10	2 × 10,00/	10,00//	48,00//	!	4,58	FTG160M16	1(3G2,5)	15,0	1,33	08'0	i	00,00	0,13	00'0	0,13	0,00	0,13	1,00	4,81	10,00	21,00 13,00	30,45	S
2×1	2 × 10,00/	10,00//	48,00//		4,58	FTG160M16	1(3G2,5)	15,0	1,01	0,80	-	00'00	0,13	00'0	0,13	0,00	0,13	09'0	2,41	10,00	21,00 13,00	30,45	S
2×,	2 × 10,00/	10,00//	48,00//	!	4,58	FTG160M16	1(3G2,5)	15,0	1,01	08'0	1	00'00	0,13	00'0	0,13	0,00	0,13	0,50	2,41	10,00	21,00 13,00	30,45	S
2 × (2 x 6,00/	6,00//	28,80//		4,58	FTG160M16	1(3G2,5)	15,0	1,04	92'0	1	00'0	0,13	00'0	0,13	0,00	0,13	09'0	2,41	00'9	21,00 7,80	30,45	S
2 x	2 x 6,00/	6,00//	28,80//		4,58	FTG160M16	1(3G2,5)	15,0	1,04	0,76	i	00'00	0,13	00'0	0,13	0,00	0,13	09'0	2,41	00'9	21,00 7,80	30,45	S
2×2	2 x 25,00/	25,00//	120,00//	!	4,58	FTG160M16	1	15,0	89'0	5,33	i	!	1	!	!	1	!	00'00	00,00	25,00	32,50	- 0	S
2 x	2 × 10,00/	10,00//	48,00//		4,58	FTG160M16	1(3G2,5)	10,0	0,91	1,11	-	00'0	0,13	00'0	0,13	0,00	0,13	09'0	2,41	10,00	21,00 13,00	30,45	S
2 x	2 x 10,00/	10,00//	48,00//		4,58	FTG160M16	1(3G2,5)	10,0	0,91	1,11	-	0,00	0,13	0,00	0,13	0,00	0,13	0,50	2,41	10,00	21,00 13,00	30,45	SI
2×	2 x 10,00/	10,00//	48,00//	-	4,58	FTG160M16	1(3G2,5)	20,0	2,37	0,63	i	00'00	0,13	00'0	0,13	0,00	0,13	2,00	9,62	10,00	21,00 13,00	30,45	S
2>	2 x 10,00/	10,00//	48,00/	-	4,28	FTG160M16	1(2x2,5)	0,07	98'0	0,84	-	0,01	0,13	0,01	0,13	0,01	0,13	06,0	1,44	16,00	21,00 20,80	30,45	SI
2	2 × 10,00/	10,00//	48,00//		4,58	!		-	1,89	0,20	-	00'0	0,13	00'0	0,13	!	-	0,44	2,11	10,00	19,53 13,00	0 28,32	S
3F	3P x 20,00 + N/	//	/		5,59	1		1	89'0	4,14	1	ı	-	1	-	-	ı	00'0	00,00	10,00	13,00	- 0	S
2×	2 × 6,00/	6,00//	//00,09		4,53	FTG160M16	1(2x2,5)	20,0	89'0	6,54	4,70	-	-	-	-	1	-	0,62	2,41	80,00	00'96	0	S
2×	2 × 6,00/	6,00//	//00,09	-	4,53	FTG160M16	1(2x2,5)	10,0	92'0	0,67	i	00'00	0,13	00,00	0,13	ı	ı	0,12	0,57	00'9	21,00 7,80	30,45	S
2 x	2 × 6,00/	6,00//	//00,09		4,53	FTG160M16	1(2x2,5)	25,0	0,73	0,88	-	00'00	0,13	00'0	0,13	!	1	0,12	0,57	00'9	21,00 7,80	30,45	S
2×	2 × 6,00/	6,00//	//00,09		4,53	FTG160M16	1(2x2,5)	25,0	92'0	0,46	-	00'00	0,13	00'0	0,13	!	1	60'0	0,42	00'9	21,00 7,80	30,45	S
2×	2 x 6,00/	6,00//	28,80//		4,53	FTG160M16	1(2x2,5)	30,0	8'0	0,46	ı	00'0	0,13	00'0	0,13	-	ı	0,12	0,57	00'9	21,00 7,80	30,45	S
2×	2 × 10,00/	10,00//	100,00//	!	4,53	ı	ı	!	0,84	0,45	ı	00'00	0,13	00'0	0,13	!	ı	0,18	0,85	00'9	19,53 7,80	28,32	S

COMMITTENTE

QUADRI ELETTRICI GALLERIA MONTE AGLIO PIAZZALE IMBOCCO GALLERIA LATO SUD

Data: Ottobre 2018

Commessa: Verifica C.d.t. massima sui quadri: SI | Ing. PIETRO MAZZOLI | Responsabile integrazione fra le var prestazioni specialistiche Frequenza: 50 [Hz] CRUPO FERROVIA DE LO STATO ITALIANA
CI riserviamo tutti i diritti connessi con il presente documento con divieto di riprodurlo, utilizzarlo o renderlo accessibile a terzi in assenza di autorizzazione scritta. Tensione: 20/0,4+N [KV] Verifica contemporaneità: SI Sistema di distribuzione: TT THERA Controllo corto circuito a fondo linea: SI Oggetto: Tabella verifica Quadri Elettrici

Verifica pro	tezione	contatti	/erifica protezione contatti indiretti: SI			Verifica I²t	Verifica It con Icc Max: SI	SI			Verific	erifica C.d.t. con lb: SI	b: SI								
								CAL	COLI E	CALCOLI E VERIFICHI	Œ										
COLLEGAMENTO		. -	INTERRUTTORE			0	CAVO				14	FASE	NEUTRO	PR	PROTEZIONE		≥ ₉	² 1 ⋝ "1 ⋝ ¶		l _f ≤ 1,45	
Da	Rif. Ta	Taglia Cc	Taglia Corrente termica Corrente magnetica	a Id	၁၁	Tipo cavo	Sezione	Distanza C.d.t. IK	i.t.	¥	1,4	K2S2	I²t K²S²	1 ² t	K2S2	Pot.	n q	l _{n z}	l _z	I _f 1.45I _z Test	z Test

TOD	COLLEGAMENTO		INTERRUTTORE	ш			CA	CAVO					FASE		NEUTRO	RO	PROTEZIONE	JONE		VI	45454	_	l, ≤ 1.45		
	1	:			:					:	3	1							ì		<u> </u>		; -	,	
Da	∢		Corrente termica	Corrente termica Corrente magnetica		20	Tipo cavo	Sezione	Distanza			¥	<u>+</u>	K-S-	<u>T</u>	¥,S,	<u>.</u>	¥,8,	Pot.	uq	z u		1.4512	Test	
Quadro	Quadre circuito	In max	regolata	regolata (Irm) /	Corrente	massima					_	minima	max		max		max		cont						
			di Fase (Ir) /	Tempo (t2) /	differenziale	i barratura				Con	Trifase	Trifase	Inizio		Inizio		Inizio								
			Lungo	Istantaneo (I)						- fi	fine linea f	fine linea	Linea		Linea		Linea								
			Tempo (t1)																						
		[A]	[A]	[A]		[kA]		[mm²]	[m]	[%]	[kA]	[kA]	[A²S]	[A²S]	[A²S]	[A²S]	[A ² S]	[A ² S]	[kW]	[A]	[A]	[A]	[A] [A]]	
								enbes	QUADRO	GENERA	LE BASS,	Segue QUADRO GENERALE BASSA TENSIONE QGBT/S	E QGBT/S												
QGBTS	1.30S	2 × 10,00/	10,00//	100,00//	!	4,53	ı	I	!	0,68	4,10	ı	!	ı	!	!	!	!	00,00	00,00	10,00	- 1	13,00	S	1
QGBTS	1.318	2 × 10,00/	10,00//	//00,001	!	4,53	1	-	!	0,68	4,10	i	!	1	!	!	!	!	00,00	00,00	10,00	1	13,00	S	
QGBTS	1.328	2 × 10,00/	10,00//	100,00//	!	4,53	1	-	!	89'0	4,10	-	!	1	!	!	!	!	00'0	00,00	10,00	- 1	13,00	S	
QGBTS	1.338	2 × 25,00/	25,00//	250,00//	!	5,73	FTG160M16	1(3G6)	20,0	1,32	1,39	-	0,01	0,74	0,01	0,74	0,01	0,74	1,89	60'6	25,00	36,46 32	32,50 52,86	IS 9	
QGBTS	1.34S	2 × 25,00/	25,00//	250,00//	!	5,73	FTG160M16	1(3G6)	80,0	0,68	0,41	-	0,01	0,74	0,01	0,74	0,01	0,74	00'0	0,00	25,00	36,46 32	32,50 52,86	IS 9	
QGBTS	1.35S	2 × 25,00/	25,00//	250,00//	!	5,73	FTG160M16	1(3G6)	50,0	2,22	0,64	-	0,01	0,74	0,01	0,74	0,01	0,74	1,89	60'6	25,00	36,46 32	32,50 52,86	IS 9	
QGBTS	1.36S	2 × 25,00/	25,00//	250,00//	!	5,73	FTG160M16	1(3G6)	0,03	0,68	0,64	-	0,01	0,74	0,01	0,74	0,01	0,74	00'0	00,00	25,00	36,46 32	32,50 52,86	IS 9	
QGBTS	1.378	2 × 25,00/	25,00//	250,00//	!	5,73	FTG160M16	1(3G16)	200,0	2,95	0,45	-	0,01	5,23	0,01	5,23	0,01	5,23	1,89	60'6	25,00	86,59	32,50 92,78	IS 8	
QGBTS	1.38S	2 × 25,00/	25,00//	250,00//	!	5,73	FTG160M16	1(3G16)	200,0	0,68	0,45	-	0,01	5,23	0,01	5,23	0,01	5,23	00'0	00,00	25,00	86,59	32,50 92,78	IS 8	
QGBTS	1.39S	2 × 25,00/	25,00//	250,00//	!	5,73	FTG160M16	1(3G16)	210,0	3,06	0,43	-	0,01	5,23	0,01	5,23	0,01	5,23	1,89	60'6	25,00	63,98	32,50 92,78	IS 8	
QGBTS	1.40S	2 x 25,00/	25,00//	250,00//	-	5,73	FTG160M16	1(3G16)	210,0	0,68	0,43		0,01	5,23	0,01	5,23	0,01	5,23	00'0	0,00	25,00	63,98	32,50 92,78	IS 8	
QGBTS	1.418	2 x 25,00/	25,00//	250,00//	-	5,73	FTG160M16	1(3G25)	230,0	2,39	0,59		0,01	12,78	0,01	12,78	0,01	12,78	1,89	60'6	25,00	82,58	32,50 119,75	S SI	
QGBTS	1.428	2 × 25,00/	25,00//	250,00//	!	5,73	FTG160M16	1(3G25)	230,0	89'0	0,59	-	0,01	12,78	0,01	12,78	0,01	12,78	00'0	00,00	25,00	82,58 32	32,50 119,75	r5 SI	
QGBTS	1.43S	2 x 25,00/	25,00//	250,00//	-	5,73	FTG160M16	1(3G25)	240,0	2,46	0,57		0,01	12,78	0,01	12,78	0,01	12,78	1,89	60'6	25,00	82,58 32	32,50 119,75	.5 SI	
QGBTS	1.44S	2 x 25,00/	25,00//	250,00//	!	5,73	FTG160M16	1(3G25)	240,0	0,68	0,57		0,01	12,78	0,01	12,78	0,01	12,78	00'0	0,00	25,00	82,58	32,50 119,75	.5 SI	
								ďΩ	ADRO FAI	BRICATO	CONSE	QUADRO FABBRICATO CONSEGNA ENEL QCE/S	QCE/S												
QCES	Int.Gen. IG	3P x 20,00 + N/	/	//	-	1,76			-	0,44	1,62	1,03			-				2,03	4,01	10,00	13	13,00	SI	
QCES	Pr.Tens. PT/N	4 x 20,00/	/	//	!	1,76	-		-	0,44	0,95	09'0		-	-	-	-		00'0	0,00	4,00	7	7,60	SI	
QCES	1.3N.1	2 × 10,00/	10,00//	100,00//	!	1,66	FG160M16	1(2x2,5)	20,0	0,57	0,37	-	0,00	0,13	0,00	0,13	1	-	0,24	1,14	10,00	21,00 13	13,00 30,45	S SI	
QCES	1.3N.2	2 × 10,00/	10,00//	100,00//	!	1,66	FG160M16	1(2x2,5)	11,0	0,46	0,58	-	0,00	0,13	0,00	0,13	-		0,06	0,28	10,00	21,00 13	13,00 30,45	S SI	
QCES	1.3N.3	2 × 10,00/	10,00//	100,00//	-	1,66	FG160M16	1(2x2,5)	10,0	0,47	0,48		00'0	0,13	0,00	0,13		-	90'0	0,28	10,00	21,00 13	13,00 30,45	ls s	
QCES	1.3N.4	2 × 10,00/	10,00//	100,00//	l	1,66	FG160M16	1(2x2,5)	19,0	0,54	0,40	ı	00,00	0,13	0,00	0,13	!	ŀ	0,18	0,85	10,00	21,00 13	13,00 30,45	S	
QCES	1.3N.5	4 x 16,00/	16,00//	160,00//	!	1,66	FG160M16	1(5G2,5)	10,0	0,51	1,01	0,64	0,00	0,13	0,00	0,13	0,00	0,13	1,00	1,60	16,00	20,80	20,80 30,16	IS 9	
QCES	1.3N.6	2 x 10,00/	10,00//	100,00//	-	1,66	FG160M16	1(3G2,5)	20,0	98'0	0,39		0,00	0,13	0,00	0,13	0,00	0,13	0,50	2,41	10,00	21,00 13	13,00 30,45	IS SI	
QCES	1.3N.7	2 × 10,00/	10,00//	100,00//	-	1,66			-	0,44	0,83				-				00'0	0,00	10,00	- 13	13,00	SI	
QCES	1.3N.8	2 x 10,00/	10,00//	100,00//	!	1,66	1	-	!	0,44	0,83	ı	-	1	!	!	-	-	00'0	0,00	10,00	- 13	13,00	S	

COMMITTENTE

3

Ing. PIETRO MAZZOLI

// Sintagma MINERA

Commessa Verifica C.d.t. massima sui quadri: Sl Responsabile integrazione fra le var prestazioni specialistiche $\overline{\circ}$ Verifica C.d.t. con lb: Frequenza: 50 [Hz] nento con divieto di riprodurlo, utilizzarlo o renderlo accessibile a terzi in assenza di autorizzazione scritta. Tensione: 20/0,4+N [KV] \overline{S} Sistema di distribuzione: TT $\overline{\circ}$ Verifica contemporaneità: Verifica It con Icc Max: GRUPPO FERROVIA STALLANA
GRUPPO FERROVIE DELLO STATO ITALIANE
Ci riserviamo tutti i diritti connessi con il presente docum Oggetto: Tabella verifica Quadri Elettrici Controllo corto circuito a fondo linea: SI Verifica protezione contatti indiretti: SI

CALCOLI E VERIFICHE

QUADRI ELETTRICI GALLERIA MONTE AGLIO PIAZZALE IMBOCCO GALLERIA LATO SUD

Data: Ottobre 2018

49,76 [4] 30,45 49,76 i 1.45Iz l_f ≤ 1,45 [A] 13,00 13,00 13,00 13,00 11,40 11,40 32,50 11,40 26,00 64,00 13,00 26,00 32,50 75,60 7,60 7,60 13,00 34,31 [¥] 21,00 34,31 [A] 20,00 10,00 10,00 10,00 10,00 10,00 25,00 25,00 6,00 20,00 6,00 25,00 00'9 63,00 40,00 10,00 6,00 6,00 25,00 4,00 4,00 u z l_b ≤ l_n ≤ l_z [4] 12,08 12,08 12,08 0,00 0,00 00,00 2,41 0,00 0,28 0,00 00,00 12,03 0,00 0,00 1,26 0,00 0,00 00'00 0,00 [kW] 00'0 0,00 00'0 00'0 2,50 2,50 0,00 0,50 00'0 90'0 2,50 0,00 00'0 2,50 00'0 00'0 0,56 0,00 2,50 Pot. [A²S] K^2S^2 1 1 i PROTEZIONE I²t max Inizio Linea [A²S] i 1 1 K^2S^2 [A²S] 0,13 0,74 0,74 1 1 1 NEUTRO I²t max Inizio Linea [A²S] 0,00 0,00 0,00 1 1 i [A²S] 0,13 0,74 0,74 K^2S^2 i i i FASE Segue QUADRO FABBRICATO CONSEGNA ENEL QCE/S rl max Inizio Linea 0,00 0,00 0,00 1 QUADRO USCITA EMERGENZA 1 QUE1 QUADRO TRASFORMATORE 3 QAPP/S IK minima Trifase fine linea 0,46 0,36 i 0,47 0,36 [kA] IK Massima fine linea 0,36 0,39 0,38 0,39 1,26 0,68 0,50 1,26 0,75 0,50 0,74 0,73 0,39 0,75 1,71 0,68 0,56 0,56 0,36 1,46 1,33 2,18 C.d.t. Con 1,46 1,49 1,46 1,33 2,18 1,33 0,47 1,48 1,33 1,33 1,33 0,47 0,47 [%] 1,33 0,47 0,47 20,0 Ξ 10,0 20,0 Sezione [mm²] 1(2x6) 1(2x6) ! 1 ! ! CAVO Tipo cavo FTG160M16 FTG160M16 FTG160M16 ! 1 ! [kA] barratur 0,38 0,72 0,62 1,58 1,58 0,72 0,62 0,74 0,38 0,38 0,38 0,38 1,59 1,58 0,38 0,38 1,58 1,59 0,74 0,74 0,74 0,37 0,30 0,30 0,30 0,30 1 0,30 ₽ Corrente termica Corrente magnetica regolata (Irm) / Tempo (t2) / Istantaneo (I) ₹ 100,00/---/----/--/00,002 48,00/--/--100,001 200,000/----/--/----/--/----/--/----/--/----/--/--------INTERRUTTORE regolata di Fase (Ir) / Lungo ritardo (L2) / Tempo (t1) 10,00/--/--10,00/--/--20,00/--/--₹ --/--/00'01 --/---/00,01 -/--/00,02 --/--/----/--/----/--/----/--/-----/-----/--/----/--/----/--/-----/---3P x 80,00 + N/---Taglia In max 2 x 32,00/---4 × 100,00/---₹ 2 × 20,00/---2 x 40,00/---2 × 20,00/---2 × 20,00/---2 x 20,00/--2 × 10,00/---2 x 20,00/---2 x 20,00/---4 × 20,00/---4 × 20,00/---2 × 10,00/--2 × 10,00/--2 × 10,00/--2 × 40,00/---2 × 20,00/---+ GSM-R Rif. circuito 1.58.1 1.58.2 1.58.3 GSM-P TRI.3-2 PT/U PT/I TRI.3-1 UE1.1 PT/N SPD MIS/N PT/U PT/I PT/N S/9I <u>១</u> COLLEGAMENTO N N <u>ত</u> CR <u>១</u> A Quadr Int.Gen. Pr.Tens. Pr.Tens. Pr.Tens. Pr.Tens. Int.Gen. Int.Gen. Int.Gen. Scaric. Da Quadro QAPPS QCES QCES QCES QCES QUE1 QUE1 QCES QUE1 QCES QUE1

 \overline{S}

 \overline{S} S \overline{S}

 \overline{S}

S

75,60

63,00 63,00

0,00 0,00

0,00

00'0

32,36

13,00

22,32

10,00

1,26

0,26

0,13

00,00

0,13

0,00

i

0,16

0,78

43,0

1(2x2,5)

FG160R16

0,37

10,00/--/--

2 × 10,00/---

UE1.2

QUE1

CR

OR

QUE1 QUE1

0,37

0,30

0,37

0,30

0,47

0,37 0,37

0,47

75,60

PROGETTAZIONE RETE FERROVIARIA ITALIANA RESPONSABILE INTEGRALE PROGETTA RESPONSABILE PROGETTA RESPON	CET MINERA SECTIAZIONE CET MINERA CET MINERA MINISTARIO o renderlo accessi	Remain Report Re	DIRETTORE PROGETTAZIONE Ing. PIETRO MAZZOLI Responsabile integrazione fra le var prestazioni specialistiche autorizzazione scritta.	QUADRI ELETTRICI GALLERIA MONTE AGLIO PIAZZALE IMBOCCO GALLERIA LATO SUD	O LLERIA LATO SUD
Oggetto: Tabella verifica Quadri Elettric i	Sistema di distribuzione: TT	Tensione: 20/0,4+N [KV]	Frequenza: 50 [Hz]	Commessa:	Data: Ottobre 2018
Controllo corto circuito a fondo linea: SI	Verifica contemporaneità: SI		Verifica C.d.t. massima sui quadri: Sl	uadri: SI	
Verifica protezione contatti indiretti: SI	Verifica I²t con Icc Max: SI		Verifica C.d.t. con lb: SI		

COLLEGAMENTO	INTERRUTTORE	INTERRUTTORE	# W				CAVO	0		CALCO	LI E VE	CALCOLI E VERIFICHE	FASE	ш	NEUTRO	RO	PROTEZIONE	JONE		VI Q	4 ≥ n ≥ d	-	l₁ ≤ 1,45	
A Rif. Taglia Corrente termica Corrente magnetica	Corrente termica Corrente magnetica				P	cc	Tipo cavo	Sezione	Distanza	C.d.t.	ᆂ	¥	124	K²S²	1,4	K2S2	154	K2S2	Pot.	n q	z ul	1 z1	1.45lz	Test
Quadre circuito In max regolata regolata (Irm) / Corrente	regolata regolata (Irm) /	regolata (Irm) /		Corre		massima				%	Massima	minima	max		max		max		cont					
di Fase (Ir) / Tempo (t2) / differenziale	Tempo (t2) /	Tempo (t2) /		differen	ziale li	li barratura				Con	Trifase	Trifase	Inizio		Inizio		Inizio							
Lungo Istantaneo (I)			Istantaneo (I)							9	fine linea	fine linea	Linea		Linea		Linea							
ritardo (L2) / Temno (11)	ritardo (L2) / Tempo (f1)	ritardo (L2) / Tempo (f1)																						
[A] [A]	[A]		[<u>A</u>]			[kA]		[mm ²]	<u>E</u>	[%]	[kA]	[kA]	[A ² S]	[A ² S]	[A ² S]	[A²S]	[A ² S]	[A ² S]	[kw]	[A]	[A]	[A]	[A] [A]	
									Segue QUADRO USCITA EMERGENZA 1 QUE1	NDRO USC	CITA EME	RGENZA 1	QUE1		•									
UE1.3 2 x 10,00/ 10,00/-/ 48,00//	10,00//	48,00//		!		0,37	FG160R16	1(2x2,5)	62,0	0,93	0,13	1	00,00	0,13	00,00	0,13	!	!	0,26	1,26	10,00	22,32	13,00 32,36	IS 9
UE1,4 2 x 10,00/ 10,00// 48,00//	10,00//	48,00//		!		0,37	FTG160M16	1(2x2,5)	25,0	0,49	0,22	ı	00,00	0,13	00,00	0,13	ı	!	0,02	0,12	10,00	21,00 13	13,00 30,45	S
UE1.5 3P x 10,00 + N/ 10,00// 48,00// 0,30	10,00//	48,00//		06,0		0,74	-	I	!	0,47	0,71	0,45	!	i	1	!	-	!	00'0	00,00	10,00	1	13,00	S
									QUADR	O USCITA	A EMERGE	QUADRO USCITA EMERGENZA 2 QUE2	E2											
Int.Gen. IG 3P x 80,00 + N// 0,30	//	//		0,30		0,53	-	!	-	0,46	0,53	0,34	ï	-	ı	!	ı	ï	0,37	0,84	63,00	75	75,60	S
Pr.Tens. PT/N 4 x 20,00// 0,30		//		0;30		0,53				0,46	0,43	0,27		-			-	-	00'0	00'0	4,00		7,60	IS
Scaric. SPD 4 x 100,00/// 0,30	//	//		0,30		0,53	-	-	-	0,46	0,53	0,34	!	-	1		-	!	00'0	00'0	40,00	79		īs
Misure MiS/N 4 x 20,00/ 0,30		//		06,0		0,53	-	-	1	0,46	0,43	0,27	ļ	-	ı	-	-	ļ	00'0	00'0	4,00		09'2	S
UE2.1 2 x 10,00/ 10,00/ 100,00// 0,30	10,00//	//00,001		0,30		0,27	-	-		0,46	0,26	-	-	-	-	-	1	-	00'00	00,00	10,00	- 1	13,00	IS
OR/ 0,30	//	//		6,0	Q	0,27	-	!	-	0,46	0,27	1	!	-	1	!	-	!	00'00	00,00	63,00	75	75,60	S
CR/ 0,30		//		6,0	Q	0,27	-	-	-	0,46	0,27	-	!	-	1		-	!	00'0	00'0	63,00	75	75,60	IS
UE2.2 2 × 10,00/ 10,00// 48,00//	10,00//	48,00//		•	!	0,27	FG160R16	1(2x2,5)	40,0	0,63	0,14	-	00'00	0,13	00,00	0,13	-	!	0,17	0,84	10,00	22,32	13,00 32,36	IS 9
UE2.3 2 x 10,00/ 10,00// 48,00//	10,00//		48,00//			0,27	FG160R16	1(2x2,5)	52,0	0,71	0,13		00'00	0,13	0,00	0,13		-	0,17	0,84	10,00	22,32	13,00 32,36	IS 9
UE2.4 2 x 10,00/ 10,00//- 48,00//	10,00//		48,00//		1	0,27	FTG160M16	1(2x2,5)	25,0	0,48	0,18	ı	00,00	0,13	00,00	0,13	!	!	0,02	0,12	10,00	22,32	13,00 32,36	IS 9
UE2.5 3P x 10.00 + N/ 10.00// 48.00// 0.3	10,00//	48,00//		0.0	0.30	0.53	!	!	1	0.46	0.52	0.33	!	ı	!	!	ı	!	00.00	0.00	10,00	- 13	13.00	S