







RELAZIONE GEOTECNICA GENERALE

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

# INDICE

| ١N | IDICE     |                                                                                 | 3    |
|----|-----------|---------------------------------------------------------------------------------|------|
| 1  | Sezione 1 | l                                                                               | 9    |
|    | 1.1       | Premessa                                                                        | 9    |
|    | 1.2       | Indagini eseguite                                                               | . 10 |
| 2  | Sezione 2 | 2: Caratterizzazione geotecnica delle principali formazioni geologiche          | . 15 |
|    | 2.1       | Generalità                                                                      | . 15 |
|    | 2.2       | Criteri per la caratterizzazione di Terreni incoerenti o debolmente cementati   | . 16 |
|    | 2.2.1     | Parametri fisici e stato iniziale del deposito                                  | . 17 |
|    | 2.2.1.1   | Densità relativa                                                                | . 19 |
|    | 2.2.1.2   | Indice dei vuoti iniziale e pesi di volume                                      | . 22 |
|    | 2.2.2     | Resistenza in condizioni drenate                                                | . 24 |
|    | 2.2.3     | Resistenza in condizioni non drenate                                            | . 26 |
|    | 2.2.3.1   | Valutazione del rapporto di tensione ciclica CSR                                | . 27 |
|    | 2.2.3.2   | Valutazione del rapporto di resistenza ciclica CRR da SPT                       | . 27 |
|    | 2.2.3.3   | Valutazione del rapporto di resistenza ciclica CRR da Vs                        | . 29 |
|    | 2.2.3.4   | Valutazione del rapporto di resistenza ciclica CRR da prove triassiali cicliche | . 30 |
|    | 2.2.4     | Deformabilità                                                                   | . 30 |
|    | 2.2.4.1   | Moduli elastici a piccole deformazioni                                          | . 30 |
|    | 2.2.4.2   | Moduli elastici a medie e grandi deformazioni                                   | . 33 |
|    | 2.2.4.3   | Coefficienti di smorzamento intrinseco                                          | . 38 |
|    | 2.2.5     | Permeabilità                                                                    | . 42 |
|    | 2.3       | Criteri per la caratterizzazione dei Terreni coesivi                            | . 44 |
|    | 2.3.1     | Caratteristiche fisiche                                                         | . 44 |
|    | 2.3.2     | Stato iniziale                                                                  | . 44 |
|    | 2.3.3     | Resistenza al taglio non drenata                                                | . 45 |
|    | 2.3.3.1   | Prove di laboratorio                                                            | . 45 |
|    | 2.3.3.2   | Valutazione di c <sub>u</sub> da prove SPT                                      | . 46 |
|    | 2.3.3.3   | Valutazione di c <sub>u</sub> da prove pressiometriche                          | . 46 |
|    | 2.3.4     | Parametri di resistenza al taglio in termini di sforzi efficaci                 | . 46 |
|    | 2.3.5     | Caratteristiche di deformabilità                                                | . 48 |
|    | 2.3.5.1   | Moduli elastici a piccole deformazioni                                          | . 48 |





Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011

| 2.3.5.2   | Moduli elastici a medie e grandi deformazioni                          | 50           |
|-----------|------------------------------------------------------------------------|--------------|
| 2.3.5.3   | Coefficienti di smorzamento intrinseco                                 | 53           |
| 2.3.6     | Coefficienti di permeabilità e di consolidazione primaria              | 55           |
| 2.3.7     | Coefficienti di consolidazione primaria e secondaria                   | 56           |
| 2.4       | Criteri per la caratterizzazione degli Ammassi rocciosi                | 57           |
| 2.4.1     | Descrizione mineralogica e caratteristiche fisiche                     | 57           |
| 2.4.2     | Resistenza e deformabilità delle rocce costituenti l'ammasso           | 57           |
| 2.4.3     | Resistenza al taglio lungo le discontinuità naturali                   | 57           |
| 2.4.4     | Classificazioni dell'ammasso                                           | 59           |
| 2.4.5     | Modellazione dell'ammasso                                              | 62           |
| 2.4.6     | Parametri dell'ammasso                                                 | 62           |
| 2.4.7     | Deformabilità                                                          | 66           |
| 2.4.7.1   | Moduli elastici a piccole deformazioni                                 | 66           |
| 2.4.7.2   | Moduli elastici a medie deformazioni                                   | 67           |
| 2.4.8     | Permeabilità                                                           | 68           |
| 2.4.9     | Stato iniziale                                                         | 68           |
| 2.5       | Caratterizzazione geotecnica                                           | 70           |
| 2.5.1     | Inquadramento geologico, geomorfologico, idrogeologico                 | 72           |
| 2.5.1.1   | Inquadramento geologico                                                | 72           |
| 2.5.1.2   | Inquadramento geomorfologico                                           | 72           |
| 2.5.1.3   | Inquadramento stratigrafico lungo il tracciato                         | 77           |
| 2.5.1.4   | Inquadramento idrogeologico                                            | 103          |
| 2.5.1.5   | Acquifero dei terreni cristallini e metamorfici                        | 105          |
| 2.5.1.6   | Acquifero conglomeratico-sabbioso miocenico                            | 105          |
| 2.5.1.7   | Acquifero calcarenitico-sabbioso pleistocenico                         | 106          |
| 2.5.1.8   | Acquifero ghiaioso-sabbioso pleistocenico                              | 106          |
| 2.5.1.9   | Acquiferi alluvionali                                                  | 106          |
| 2.5.2     | Dati piezometrici                                                      | 107          |
| 2.5.3     | Considerazioni generali ed individuazione delle principali criticità n | norfologiche |
| legate ai | processi di dissesto                                                   | 119          |
| 2.6       | Conglomerato di Pezzo                                                  | 124          |
| 2.6.1     | Descrizione                                                            | 124          |
| 2.6.2     | Caratteristiche fisiche                                                | 124          |





RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

|   | 2.6.3   | Stato iniziale                                                    | 124 |
|---|---------|-------------------------------------------------------------------|-----|
|   | 2.6.4   | Parametri di resistenza al taglio                                 | 125 |
|   | 2.6.5   | Back analysis                                                     | 134 |
|   | 2.6.6   | Caratteristiche di deformabilità                                  | 138 |
|   | 2.6.7   | Caratteristiche di permeabilità                                   | 139 |
|   | 2.6.8   | Caratterizzazione per tratte                                      | 140 |
|   | 2.6.9   | Stradale - Rampa A – tratta in galleria naturale                  | 140 |
|   | 2.6.10  | Stradale - Rampa B – tratta in galleria naturale                  | 141 |
|   | 2.6.11  | Stradale - Rampa C – tratta in galleria naturale                  | 141 |
|   | 2.6.12  | Stradale - Rampa D – tratta in galleria naturale                  | 141 |
|   | 2.6.13  | Stradale – Rampe A-B-C-D – tratta all'aperto da 0 a +500 Km circa | 142 |
|   | 2.6.14  | Commenti                                                          | 143 |
|   | 2.6.15  | Tabella riepilogativa di caratterizzazione geotecnica             | 145 |
| 2 | .7      | Plutoniti                                                         | 147 |
|   | 2.7.1   | Descrizione                                                       | 147 |
|   | 2.7.2   | Caratteristiche fisiche                                           | 147 |
|   | 2.7.3   | Stato iniziale                                                    | 147 |
|   | 2.7.4   | Parametri di resistenza al taglio in termini di sforzi efficaci   | 148 |
|   | 2.7.5   | Caratteristiche di deformabilità                                  | 149 |
|   | 2.7.6   | Coefficienti di permeabilità                                      | 150 |
|   | 2.7.7   | Tabella riepilogativa di caratterizzazione geotecnica             | 151 |
| 2 | .8      | Sabbie e Ghiaie di Messina                                        | 153 |
|   | 2.8.1   | Descrizione                                                       | 153 |
|   | 2.8.2   | Caratteristiche fisiche                                           | 153 |
|   | 2.8.3   | Stato iniziale                                                    | 154 |
|   | 2.8.4   | Parametri di resistenza al taglio in termini di sforzi efficaci   | 155 |
|   | 2.8.4.1 | Analisi per tratte                                                | 156 |
|   | 2.8.5   | Caratteristiche di deformabilità                                  | 157 |
|   | 2.8.5.1 | Analisi per tratte                                                | 158 |
|   | 2.8.6   | Leggi di degrado dei moduli elastici                              | 160 |
|   | 2.8.7   | Coefficienti di smorzamento intrinseco                            | 160 |
|   | 2.8.8   | Coefficienti di permeabilità                                      | 160 |
|   | 2.8.9   | Tabella riepilogativa di caratterizzazione geotecnica generale    | 161 |





RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| 2.9     | Depositi terrazzati marini                                      | 163 |
|---------|-----------------------------------------------------------------|-----|
| 2.9.1   | Descrizione                                                     | 163 |
| 2.9.2   | Caratteristiche fisiche                                         | 163 |
| 2.9.3   | Stato iniziale                                                  | 163 |
| 2.9.4   | Parametri di resistenza al taglio in termini di sforzi efficaci | 165 |
| 2.9.5   | Caratteristiche di deformabilità                                |     |
| 2.9.6   | Leggi di degrado dei moduli elastici                            | 168 |
| 2.9.7   | Coefficienti di smorzamento intrinseco                          |     |
| 2.9.8   | Coefficienti di permeabilità                                    |     |
| 2.9.9   | Tabella riepilogativa di caratterizzazione geotecnica           |     |
| 2.10    | Depositi costieri di spiaggia                                   | 171 |
| 2.10.1  | Descrizione                                                     | 171 |
| 2.10.2  | Caratteristiche fisiche                                         | 171 |
| 2.10.3  | Stato iniziale                                                  | 171 |
| 2.10.4  | Parametri di resistenza al taglio in termini di sforzi efficaci | 173 |
| 2.10.5  | Caratteristiche di deformabilità                                | 173 |
| 2.10.5. | 1 Analisi generale                                              | 174 |
| 2.10.5. | 2 Analisi per subtratte                                         | 175 |
| 2.10.6  | Leggi di degrado dei moduli elastici                            | 176 |
| 2.10.7  | Coefficienti di smorzamento intrinseco                          | 176 |
| 2.10.8  | Coefficienti di permeabilità                                    | 177 |
| 2.10.9  | Tabella riepilogativa di caratterizzazione geotecnica           | 178 |
| 2.11    | Trubi                                                           | 180 |
| 2.11.1  | Descrizione                                                     | 180 |
| 2.11.2  | Caratteristiche fisiche                                         | 180 |
| 2.11.3  | Stato iniziale                                                  | 181 |
| 2.11.4  | Parametri di resistenza al taglio in termini di sforzi efficaci | 181 |
| 2.11.5  | Caratteristiche di deformabilità                                | 183 |
| 2.11.6  | Leggi di degrado dei moduli elastici                            | 184 |
| 2.11.7  | Coefficienti di smorzamento intrinseco                          |     |
| 2.11.8  | Coefficienti di permeabilità                                    | 184 |
| 2.11.9  | Tabella riepilogativa di caratterizzazione geotecnica           | 185 |
| 2.12    | Depositi alluvionali                                            | 187 |





| RELAZIONE GEOTECNICA GENERALE | Cod  |
|-------------------------------|------|
|                               | CB00 |

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| 2.12.1    | Descrizione                                                                                                                                                                                                                                                                                                                                                                                                                           | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.12.2    | Caratteristiche fisiche                                                                                                                                                                                                                                                                                                                                                                                                               | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.12.3    | Stato iniziale                                                                                                                                                                                                                                                                                                                                                                                                                        | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.12.4    | Parametri di resistenza al taglio in termini di sforzi efficaci                                                                                                                                                                                                                                                                                                                                                                       | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.12.5    | Caratteristiche di deformabilità                                                                                                                                                                                                                                                                                                                                                                                                      | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.12.6    | Leggi di degrado dei moduli elastici                                                                                                                                                                                                                                                                                                                                                                                                  | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.12.7    | Coefficienti di smorzamento intrinseco                                                                                                                                                                                                                                                                                                                                                                                                | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.12.8    | Coefficienti di permeabilità                                                                                                                                                                                                                                                                                                                                                                                                          | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.12.9    | Tabella riepilogativa di caratterizzazione geotecnica                                                                                                                                                                                                                                                                                                                                                                                 | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| .13       | Depositi di versante                                                                                                                                                                                                                                                                                                                                                                                                                  | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.13.1    | Caratteristiche fisiche                                                                                                                                                                                                                                                                                                                                                                                                               | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.13.2    | Stato iniziale                                                                                                                                                                                                                                                                                                                                                                                                                        | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.13.3    | Parametri di resistenza al taglio in termini di sforzi efficaci                                                                                                                                                                                                                                                                                                                                                                       | 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.13.4    | Caratteristiche di deformabilità                                                                                                                                                                                                                                                                                                                                                                                                      | 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.13.5    | Leggi di degrado dei moduli elastici                                                                                                                                                                                                                                                                                                                                                                                                  | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.13.6    | Coefficienti di smorzamento intrinseco                                                                                                                                                                                                                                                                                                                                                                                                | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.13.7    | Coefficienti di permeabilità                                                                                                                                                                                                                                                                                                                                                                                                          | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.13.8    | Tabella riepilogativa di caratterizzazione geotecnica                                                                                                                                                                                                                                                                                                                                                                                 | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | Calcareniti di San Corrado e formazione Le Masse                                                                                                                                                                                                                                                                                                                                                                                      | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15        | Determinazione delle azioni sismiche di progetto                                                                                                                                                                                                                                                                                                                                                                                      | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | Resistenza dei terreni incoerenti in tensioni totali                                                                                                                                                                                                                                                                                                                                                                                  | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sezione 3 | 3: Normativa Di Riferimento                                                                                                                                                                                                                                                                                                                                                                                                           | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sezione 4 | I: Procedure di dimensionamento e verifica delle opere                                                                                                                                                                                                                                                                                                                                                                                | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| .1        | Coefficienti di sicurezza                                                                                                                                                                                                                                                                                                                                                                                                             | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| .2        | Spostamenti ammissibili                                                                                                                                                                                                                                                                                                                                                                                                               | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.2.1     | Gallerie in ambito urbano                                                                                                                                                                                                                                                                                                                                                                                                             | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.2.2     | Fondazioni strutture                                                                                                                                                                                                                                                                                                                                                                                                                  | 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.2.3     | Fondazioni viadotti                                                                                                                                                                                                                                                                                                                                                                                                                   | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.2.4     | Opere di sostegno flessibili                                                                                                                                                                                                                                                                                                                                                                                                          | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.2.5     | Muri rigidi                                                                                                                                                                                                                                                                                                                                                                                                                           | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.2.6     | Rilevati                                                                                                                                                                                                                                                                                                                                                                                                                              | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.2.7     | Pendii e sbancamenti                                                                                                                                                                                                                                                                                                                                                                                                                  | 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ALLEGAT   | ۲۱                                                                                                                                                                                                                                                                                                                                                                                                                                    | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | 2.12.1<br>2.12.2<br>2.12.3<br>2.12.4<br>2.12.5<br>2.12.6<br>2.12.7<br>2.12.8<br>2.12.9<br>2.13<br>2.13.1<br>2.13.2<br>2.13.3<br>2.13.4<br>2.13.5<br>2.13.6<br>2.13.7<br>2.13.8<br>2.13.7<br>2.13.8<br>2.13.7<br>2.13.8<br>2.13.7<br>2.13.8<br>2.13.7<br>2.13.8<br>2.13.7<br>2.13.8<br>2.14<br>2.15<br>2.16<br>Sezione 2<br>3<br>Sezione 2<br>4.2.1<br>4.2.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.2.4<br>4.2.5<br>4.2.6<br>4.2.7<br>ALLEGAT | 2.12.1       Descrizione         2.12.2       Caratteristiche fisiche         2.12.3       Stato iniziale         2.12.4       Parametri di resistenza al taglio in termini di sforzi efficaci         2.12.5       Caratteristiche di deformabilità         2.12.6       Leggi di degrado dei moduli elastici         2.12.7       Coefficienti di smorzamento intrinseco         2.12.8       Coefficienti di permeabilità         2.12.9       Tabella riepilogativa di caratterizzazione geotecnica         2.13.1       Caratteristiche fisiche         2.13.2       Stato iniziale         2.13.3       Parametri di resistenza al taglio in termini di sforzi efficaci         2.13.4       Caratteristiche di deformabilità         2.13.5       Leggi di degrado dei moduli elastici         2.13.4       Caratteristiche di deformabilità         2.13.5       Leggi di degrado dei moduli elastici         2.13.6       Coefficienti di smorzamento intrinseco         2.13.7       Coefficienti di permeabilità         2.13.8       Tabella riepilogativa di caratterizzazione geotecnica         2.13.4       Calcarenti di San Corrado e formazione Le Masse         2.15       Determinazione delle azioni sismiche di progetto         2.16       Resistenza dei terreni incoerenti in tensioni totali |





RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| Į | 5.1      | CONGLOMERATI DI PEZZO                                       | 225 |
|---|----------|-------------------------------------------------------------|-----|
|   | 5.1.1    | Conglomerato di Pezzo – Rampa A – tratta in galleria        | 280 |
|   | 5.1.2    | Conglomerato di Pezzo – Rampa B – tratta in galleria        | 290 |
|   | 5.1.3    | Conglomerato di Pezzo – Rampa C – tratta in galleria        | 293 |
|   | 5.1.4    | Conglomerato di Pezzo – Rampa D – tratta in galleria        | 303 |
|   | 5.1.5    | Conglomerato di Pezzo – Rampe – tratta da 0 a 0+500Km circa | 313 |
| į | 5.2      | PLUTONITI                                                   | 323 |
| ł | 5.3      | SABBIE E GHIAIE DI MESSINA                                  | 353 |
|   | 5.3.1    | G.N. Rampa A                                                | 387 |
|   | 5.3.2    | G.N. Rampa B                                                | 402 |
|   | 5.3.3    | G.N. Rampa D                                                | 411 |
|   | 5.3.4    | Rampa B da Km 0+800                                         | 420 |
|   | 5.3.5    | Rampa D da Km 1+350                                         | 436 |
|   | 5.3.6    | Rampa D_dec                                                 | 451 |
| ł | 5.4      | DEPOSITI TERRAZZATI MARINI                                  | 467 |
| ę | 5.5      | DEPOSITI COSTIERI DI SPIAGGIA                               | 542 |
|   | 5.5.1    | Zona prossima alla costa                                    | 572 |
|   | 5.5.2    | Zona distante dalla costa                                   | 589 |
| ę | 5.6      | TRUBI                                                       | 606 |
| ę | 5.7      | DEPOSITI ALLUVIONALI                                        | 635 |
| ę | 5.8      | DEPOSITI DI VERSANTE                                        | 654 |
| ę | 5.9      | CALCARENITI DI SAN CORRADO                                  | 673 |
| 6 | BIBLIOGI | RAFIA                                                       | 684 |
| 7 | INDAGIN  | I PREGRESSE SA-RC                                           | 688 |
|   |          |                                                             |     |



# 1 Sezione 1

#### 1.1 Premessa

Nell'ambito della progettazione definitiva delle opere connesse ai collegamenti infrastrutturali, ferroviari e stradali, lato Calabria e lato Sicilia, è stata eseguita una campagna di indagini integrative, così come era previsto nel documento di gara GCG.F.02.03 ("Specifiche tecniche generali di progettazione: indagini geognostiche").

L'esame di tutta la documentazione alla base del Progetto Preliminare e del Progetto di Gara ha evidenziato che le indagini eseguite risultavano localizzate soprattutto in corrispondenza delle strutture dell'opera di attraversamento, e solo in misura minore sulle opere a terra. Le opere a terra comprendono la realizzazione di una serie di gallerie, stradali e ferroviarie per il collegamento tra il ponte e la città di Messina (lato Sicilia), il ponte e le città di Reggio Calabria e di Salerno (lato Calabria). Lo sviluppo complessivo delle gallerie è di circa 50 Km, da realizzarsi sia in tradizionale sia in meccanizzato. Le opere d'arte presenti lungo i tracciati sono costituite da alcuni viadotti, gallerie artificiali, scatolari e tombini; sono presenti inoltre diverse opere di carattere geotecnico quali muri di contenimento, trincee e rilevati.

Pertanto in questa fase di Progettazione Definitiva si è resa necessaria la realizzazione di una nuova e più estesa campagna di indagini geognostiche, finalizzata all'approfondimento delle caratteristiche geologiche, geostrutturali e geotecniche, ed, in particolare, finalizzate alla definizione di una caratterizzazione lito – stratigrafica e geotecnica in corrispondenza delle singole opere d'arte: gallerie, viadotti, scatolari, rilevati e scavi in trincea.

Nella presente relazione vengono descritti e commentati gli studi sviluppati nell'ambito del Progetto Definitivo, per la definizione della caratterizzazione geotecnica delle formazioni geologiche presenti lungo i tracciati ferroviari e stradali delle opere di collegamento lato Sicilia.

Tali formazioni, sono state puntualmente ed approfonditamente investigate attraverso la sopra citata campagna di indagine, e qui caratterizzata, sulla base di valutazioni a larga e media scala. Per quanto riguarda invece la caratterizzazione geotecnica di dettaglio, si rimanda ai capitoli monografici riportati nelle relazioni tecniche e di calcolo delle singole opere d'arte.

I risultati qui presentati hanno infine permesso di individuare le integrazioni e gli approfondimenti di Eurolink S.C.p.A. Pagina 9 di 688



indagine, localmente necessari per la realizzazione del Progetto Esecutivo. Ciò ha portato alla stesura di una planimetria riassuntiva delle indagini integrative da eseguire per la redazione del PE. Tale documento sarà eseguito e finalizzato nel corso della Progettazione Esecutiva.

La campagna di indagini si è articolata in una serie di indagini in campo ed una serie di indagini in laboratorio.

Di seguito si riportano in sintesi le indagini eseguite lato Calabria.

#### 1.2 Indagini eseguite

La programmazione della campagna di indagini ha tenuto conto innanzitutto di tutta la documentazione a disposizione, a partire dal Progetto di Massima del 1992. La ricostruzione dei profili geologico – geotecnici lungo i tracciati delle opere a progetto si è basata sui dati ottenuti da una serie di indagini geognostiche eseguite a partire dal 1984, e precisamente:

- indagini 1984
- indagini 1987
- indagini 1988 1989
- indagini 1992
- indagini 2003
- indagini ANAS.

Inoltre per la programmazione delle indagini geognostiche per la redazione del Progetto Definitivo, si è tenuto anche conto delle indagini eseguite per la progettazione delle opere d'arte relative al Macrolotto 6 dell'autostrada A3, così come riportato nelle planimetrie di ubicazione delle indagini. Il numero di queste indagini è rilevante e consente di disporre di informazioni significative sia per le tratte dove il nuovo tracciato dell'opera di collegamento risulta in adiacenza all'autostrada in costruzione (viadotti affiancati, tratte in rilevato o con scavi a monte dell'opera d'arte), sia per le zone delle gallerie naturali delle singole rampe, dover le nuove opere in sotterraneo intersecano su più livelli, le gallerie dell'autostrada A3 attualmente in fase di scavo (in particolare i dati raccolti presso i fronti di scavo della galleria Piale saranno assai utili nella definizione delle caratteristiche geomeccaniche degli ammassi rocciosi ivi previsti).



Inoltre il piano di indagini ha tenuto conto dei seguenti aspetti molto importanti:

- revisione dei tracciati stradali,
- esame delle condizioni geomorfologiche dei versanti coinvolti dalle opere a progetto, decidendo di eseguire alcuni sondaggi allo scopo di verificare le effettive condizioni di franosità segnalate dalle carte di Progetto Preliminare e per l'installazione di strumentazione idonea a monitorare le condizioni dei versanti,
- adeguamento a quanto richiesto dalla nuova normativa nazionale.

Nel complesso sono stati eseguiti n. 35 sondaggi dei 39 previsti per i collegamenti infrastrutturali lato Calabria, sono stati installati i 3 inclinometri previsti per il monitoraggio di versanti potenzialmente instabili, e sono stati installati n. 7 piezometri a tubo aperto e n. 11 piezometri tipo Casagrande.

Di seguito si riportano le indagini eseguite:

C402, C403bis, C404, C405, C406, C407, C408, C410, C411, C412, C413, C414, C415, C416, C417, C419, C420, C420bis, C421, C421ter, C421quater, C423bis, C424, C425, C426, C427, C428, C429, C430, C432, C433, C434, C435, Cn450, Cn451.

Non sono stati eseguiti n. 4 sondaggi per motivi di accessibilità praticamente impossibile ai siti di indagine, dovuti alla mancanza di rilascio delle autorizzazioni necessarie.

I sondaggi sono stati eseguiti conformemente a quanto prescritto dal documento GCG.F.02.03 "Specifiche tecniche generali di progettazione: indagini geognostiche". L'ubicazione prevista dal piano di indagini (consegnato in data 18/05/2010) ha subito variazioni e spostamenti in funzione dell'accessibilità dei siti ed in funzioni delle variazioni di tracciato.

Per quanto riguarda le planimetrie di ubicazione delle indagini, si faccia riferimento ais seguenti elaborati:

- CG0800QPRDCRII5000000001A
- CG0800QP6DCRII5000000001A
- CG0800QP6DCRII5000000002A
- CG0800QP6DCRII5000000003A
- CG0800QP6DCRII5000000004A
- Relazione Tecnica Illustrativa
- Planimetria Indagini Geognostiche Tav. 1
- Planimetria Indagini Geognostiche Tav. 2
- Planimetria Indagini Geognostiche Tav. 3
- Planimetria Indagini Geognostiche Tav. 4

Nel dettaglio sono stati eseguiti:

Eurolink S.C.p.A.





- sondaggio a carotaggio continuo

RELAZIONE GEOTECNICA GENERALE

- prove in situ per la determinazione delle caratteristiche di deformabilità dei terreni consistenti in prove pressiometriche e prove dilatometriche in foro di sondaggio a profondità concordate di volta in volta e comunque sempre in corrispondenza del cavo delle gallerie,
- prove in situ per la determinazione delle caratteristiche di permeabilità dei terreni indagati, consistenti in prove di tipo Lefranc e prove di tipo Lugeon, anche in questo caso le profondità di prova sono sempre state concordate di volta in volta con il cantiere,
- esecuzione di prove S.P.T.,
- prelievo di campioni rimaneggiati ed indisturbati per l'esecuzione di prove in laboratorio,
- prove di laboratorio sui campioni prelevati,
- sono inoltre eseguite una serie di indagini geofisiche in foro, cross-hole e down-hole per la verifica delle caratteristiche di deformabilità dei terreni in condizioni quasi indisturbate.

Le indagini di tipo geofisico, previste in corrispondenza degli imbocchi delle gallerie, delle zone a bassa copertura e/o di aree interessate da zone di incrocio tra differenti gallerie, sono state realizzate mediante la tecnica della sismica a rifrazione con misura delle onde di compressione  $V_P$  e delle onde di taglio  $V_s$ . I risultati delle indagini saranno elaborati mediante le tecniche tomografiche. Anche per queste indagini, l'ubicazione degli stendimenti ha subito variazioni in funzione dell'accessibilità dei siti di indagine.

Le prove di laboratorio eseguite si differenziano da quanto era previsto come conseguenza diretta della difficoltà a prelevare campioni, in particolare campioni indisturbati nei terreni indagati.

Il dettaglio e le risultanze di tutte le indagini eseguite si trovano nei seguenti documenti:

- "Indagini geognostiche risultati prove di laboratorio, doc. CG0000 P RG D C SB C8 G0 00 00 00 03 A,
- "Restituzione campagna indagini geognostiche", doc. CG1500 P SD D C SB C8 G0 00 00 00 01 A,
- "Restituzione campagna indagini geofisiche", doc. CG1500 P SD D C SB C8 G0 00 00 00 02 A.

La campagna di indagini eseguita per il PD ha consentito l'affinamento del modello geologico e del





modello geotecnico dei terreni presenti lungo il tracciato dei collegamenti infrastrutturali, presentato nel Progetto Preliminare.

Per la ricostruzione del modello geologico – geotecnico sono stati utilizzate, come specificato in premessa, anche tutte le indagini pregresse. Di queste non è stata eseguita una ricostruzione grafica di dettaglio sui profili geotecnici delle singole tratte all'aperto, perché il materiale a disposizione della Scrivente, costituito dai soli logs stratigrafici, senza alcun corredo di documentazione fotografica, prove in sito e prove di laboratorio, non è stato ritenuto adeguato ad una analisi di dettaglio.

Nel particolare la ricostruzione di dettaglio dei profili geotecnici in scala 1:2000/1:200, delle singole tratte all'aperto lungo i tracciati stradali, ha riportato nel dettaglio tutti i sondaggi eseguiti per la campagna di PD (2010) e laddove, queste sono state ritenute esaustive e rappresentative, sono state riportate anche le indagini pregresse.

Per una migliore comprensione dei profili geotecnici si ricorda infine che:

- sono state utilizzate le stratigrafie al fine di ricostruire le sezioni geologiche lungo i tracciati delle opere viarie operando opportune proiezioni lungo le tracce a partire dalle ubicazioni planimetriche,
- la numerosa presenza di sondaggi fuori linea ha comportato la necessità di una loro proiezione sul tracciato per la ricostruzione del modello geologico stratigrafico.
- in considerazione delle geometrie deposizionali tipiche delle coltri di superficie analizzate, si è ritenuto più opportuno ed adeguato proiettare i sondaggi fuori linea, sul locale piano campagna e riportare sulla "bandierina" la quota reale di esecuzione.

In particolare, i criteri secondo i quali sono state effettuate le suddette proiezioni sono:

- ✓ criterio geometrico: la proiezione è stata effettuata ortogonalmente alla traccia della sezione;
- ✓ criterio geologico: la proiezione è stata effettuata, qualora tra la posizione del sondaggio e la traccia della sezione non fossero interposte faglie, il sondaggio è stato posto alla quota del terreno del profilo lungo il tracciato, piuttosto che alla quota assoluta di esecuzione del sondaggio. Nella "bandierina" è comunque indicata la quota assoluta di esecuzione;
- ✓ criterio geologico: si è tenuto ovviamente conto nella estrapolazione della situazione stratigrafica di "partenza" e di "arrivo".





In taluni casi, i passaggi stratigrafici tra le differenti formazioni lungo i profili geotecnici, possono non coincidere con i passaggi puntuali riportati nei singoli logs stratigrafici. Ciò dipende dalla ricostruzione del modello geologico – stratigrafico generale che, alla scala proposta non può tenere conto di modesti livelli stratigrafici riportati nei singoli logs stratigrafici ma necessita di una intepretazione generale. L'approfondimento puntuale verrà eseguito nelle successive fasi di progettazione.

Nel dettaglio, la ricostruzione eseguita ha evidenziato la presenza, ad oggi di alcune aree/zone, per le quali è necessario un approfondimento di indagine, per le seguenti motivazioni:

- nella fase di PD non poche indagini sono state spostate o non sono state eseguite per motivi di accessibilità alle aree di indagine, ciò ha comportato alcuni elementi di incertezze nella ricostruzione del modello geologico e geotecnico
- in altre aree la necessità di un approfondimento di indagine è emersa a seguito dell'analisi di tutti i dati di PD a disposizione.

In base a queste considerazioni si segnala la necessità di un approfondimento di indagine, che, si rimanda alla successiva fase di progettazione di PE. A tal fine, è stata predisposta una planimetria generale con l'ubicazione delle indagini da eseguire per il PE. L'ubicazione tiene conto di quelle aree per le quali l'accesso è stato impossibile o per le quali le evidenze attuali hanno portato alla luce complessità geologico-stratigrafiche e geotecniche tali per cui le attuali informazioni necessitano di un approfondimento:

- zone in corrispondenza degli imbocchi delle gallerie
- zone in corrispondenza dei viadotti
- zone puntuali in corrispondenza di opere d'arte minori (rilevati, trincee, scarpate).



# 2 Sezione 2: Caratterizzazione geotecnica delle principali formazioni geologiche

La presente relazione è stata redatta secondo quanto prescritto dalla specifica di progettazione GCG.F.02.05 "Studi e caratterizzazione geotecnica".

#### 2.1 Generalità

I criteri di caratterizzazione geotecnica, descritti di seguito, si basano su una prima classificazione degli ammassi presenti lungo i tracciati delle opere di collegamento stradali e ferroviarie all'Opera di Attraversamento, che sono rappresentati principalmente da depositi sabbioso-ghiaiosi ed ammassi rocciosi ed in seconda istanza da rocce sedimentarie e/o depositi di natura prevalentemente coesiva

In questo contesto sono stati effettuati:

- sondaggi geotecnici con prelievo di campioni indisturbati e rimaneggiati;
- prove penetrometriche dinamiche SPT in foro;
- prove di permeabilità Lefranc e Lugeon in foro;
- prove pressiometriche in foro;
- prove dilatometriche in foro;
- prove geofisiche "down hole" e "cross hole" per la misura della velocità di propagazione delle onde di compressione Vp e di taglio Vs;
- prove di carico su piastra PLT;
- prove di laboratorio di classificazione di resistenza e di deformabilità su campioni indisturbati e rimaneggiati di terreno, prelevati nei fori di sondaggio;
- prove di laboratorio su provini di roccia prelevati nei fori di sondaggio;
- rilievi geostrutturali su alcuni affioramenti rocciosi rappresentativi.

Dal punto di vista dei criteri di caratterizzazione geotecnica, secondo quanto prescritto dalla specifica GCG.F.02.05, sono state distinte tre tipologie di materiale:

- materiali a grana grossa più o meno cementati (sabbie e ghiaie più o meno limose);
- materiali a grana fine (limi e argille più o meno sabbioso-ghiaiose);
- rocce (arenarie, siltiti, calcari marnosi, marne calcaree, marne e argilliti).



# 2.2 Criteri per la caratterizzazione di Terreni incoerenti o debolmente cementati

In questa sede per terreni incoerenti a grana grossa si intendono quei materiali caratterizzati da percentuali di fine (limo e argilla) generalmente inferiori a 30-35%.

In conseguenza del fatto che in tali materiali risulta difficile prelevare campioni indisturbati, la caratterizzazione geotecnica si basa sull'interpretazione delle prove in sito (SPT, sismiche,...) e delle prove di laboratorio effettuate su campioni rimaneggiati.

Utili integrazioni a quanto fino ad oggi (30/09/2010) elaborato potranno essere effettuate a seguito del completamento delle prove di laboratorio su campioni congelati in corso di esecuzione.

La caratterizzazione evidenzia i seguenti aspetti:

- Parametri fisici e stato iniziale in sito.
- Resistenza al taglio.
- Deformabilità.
- Permeabilità.



#### 2.2.1 Parametri fisici e stato iniziale del deposito

Per quanto concerne i <u>parametri fisici</u>, in base alle prove dei laboratorio effettuate su provini disturbatti e/o rimaneggiati si sono potute ottenere delle informazioni sui fusi granulometrici caratteristici (fuso medio e range di variabilità suffragato da considerazioni di tipo probabilistico) e sulle principali caratteristiche granulometriche medie ( $D_{10}$ ,  $D_{60}$ ,  $D_{50}$ ), valori del peso di volume dei granuli  $\gamma_s$ . Per i fusi granulometrici si faranno considerazioni statistiche evidenziando il fuso medio ed i fusi "estremi" statisticamente rappresentativi (distribuzione di t-Student) e le percentuali medie delle componenti granulometriche, nonché, laddove numericamente significativo, la distribuzione delle percentuali con la profondità.

Laddove si è reso disponibile è stato possibile ottenere dalle prove i valori delle densità massime e minime.

Lo stato iniziale del deposito è definito in termini di:

- a) tensioni geostatiche iniziali;
- b) pressioni interstiziali;
- c) indice dei vuoti iniziale o densità relativa Dr.

Per quanto riguarda i punti a) e b), le indicazioni relative al livello di falda e quindi ai valori delle pressioni neutre si è fatto riferimento alle indicazioni di carattere geologico.

Per la storia dello stato tensionale necessaria per la determinazione delle tensioni orizzontali per il tramite di K<sub>0</sub>, è stato possibile avere delle indicazioni provenienti dagli studi di carattere geologico.

Per la stima di K<sub>0</sub>, oltre alle informazioni di carattere geologico, (es: entità dell'erosione,...) si possono utilizzare le seguenti correlazioni che tengono implicitamente conto di

- stato di addensamento
- storia tensionale
- fenomeni di aging

#### - terreni normalconsolidati

•  $k_{0 nc} = (1-\sin \phi')$  Jaky (1944)

• correlazione di Bellotti (1985) per materiali granulari riportato nella seguente figura

(-)





Figura 1 Correlazione di Bellotti

#### - terreni sovraconsolidati

- $k_{0 sc} = k_{o,NC} \cdot (OCR)^{0.5}$  (Mayne and Kulhawy (1982)) (-) con OCR=grado di sovra consolidazione
- terreni caratterizzati da fenomeni di "aging"

• 
$$k_0 = k_{0nc} \cdot \left(\frac{t}{t_p}\right)^{\frac{C_{ae}}{C_c}}$$
 (Mesri (1989)) (-)

dove:

t= tempo intercorso dalla deposizione

t<sub>p</sub>=tempo necessario per il completamento della consolidazione primaria (stimato 1 anno)

- Cae=coefficiente di consolidazione secondaria
- $C_c$ = coefficiente di consolidazione primaria. Per i terreni granulari si pone  $C_{ae}$  /  $C_c$ = 0.02

Per il punto c) l'indice dei vuoti iniziale (eo) e la densità relativa (Dr) vengono ricavati dall'interpretazione delle prove penetrometriche dinamiche SPT (per eo laddove disponibili o stimabili emax ed emin, altrimenti in condizioni sature si sfrutta la correlazione di Foti di cui al par 2.2.1.2).



#### 2.2.1.1 Densità relativa

La densità relativa si definisce:

$$\mathsf{D}_{\mathsf{r}} = \frac{e_{\max} - e_o}{e_{\max} - e_{\min}}$$

essendo:

| e <sub>max</sub> = | indice dei vuoti massimo del materiale | (-) |
|--------------------|----------------------------------------|-----|
| e <sub>min</sub> = | indice dei vuoti minimo del materiale  | (-) |
| e <sub>o</sub> =   | indice dei vuoti in sito del materiale | (-) |

Per quanto riguarda i terreni incoerenti **prevalentemente sabbiosi** la densità relativa  $D_r$  può essere correlata al valore  $N_{SPT}$  con la seguente legge di Skempton (1986):

$$\mathsf{D}_{\mathsf{r}} = \left(\frac{1}{A + B \cdot \sigma_{vo}} \cdot N_{SPT}\right)^{0.5}$$

essendo:

A, B = costanti empiriche indicate in tabella
 σ<sub>vo</sub>' = pressione verticale efficace esistente in sito alla quota della prova SPT
 N<sub>SPT</sub> = numero di colpi per 30 cm corrispondente ad una energia di infissione pari ad una

percentuale di quella teorica (60%)

 $(K_{o})$  = coefficiente di spinta a riposo per terreni (-)

Costanti empiriche A e B (Skempton, 1986)

| Tipo di materiale                     | Α         | В                                                     |
|---------------------------------------|-----------|-------------------------------------------------------|
| Sabbie fini normalmente consolidate   | 27,5      | 27,5                                                  |
| Sabbie grosse normalmente consolidate | 43,3      | 21,7                                                  |
| Sabbie sovraconsolidate               | 27,5÷43,3 | ( <b>21,7÷27,5)</b> , <u>1+2.(ko)sc</u><br>1+2.(ko)nc |

Eurolink S.C.p.A.



In questa sede, ove non specificato espressamente, si assumeranno valori di A e B corrispondenti alle sabbie grosse.

Per quanto riguarda i terreni incoerenti **prevalentemente costituiti da sabbie e ghiaie** la determinazione della densità relativa D<sub>r</sub> rischia di essere meno rappresentativa sia per motivi di natura operativa (tipo di attrezzatura utilizzata) sia per la presenza di valori a rifiuto che non sono necessariamente indice di elevati gradi di addensamento.

In questa sede per tenere conto di tali fattori si è operato come segue:

- Dove le informazioni desunte dai sondaggi lo hanno reso possibile nelle situazioni di rifiuto, l'interpretazione dei valori di NSPT sono stati calcolati come segue:
- N<sub>SPT</sub> = 100 se le condizioni di rifiuto sono raggiunte nel primo tratto di 15 cm o nel secondo tratto di 15 cm
- $N_{SPT} = N_2 + \frac{50}{2} \cdot 15 \le 100$  se le condizioni di rifiuto sono raggiunte nel terzo tratto di 15 cm

essendo (a) l'affondamento misurato (in centimetri) per un numero di colpi pari a 50.

 L'interpretazione dei valori N<sub>SPT</sub> verrà fatta in accordo al metodo proposto da Cubrinowski & Ishihara (1999) utilizzando la seguente espressione:

$$D_{r} = \left\{ \frac{\left(N_{SPT}\right)_{78\%} \cdot \left(0,23 + \frac{0,06}{D_{50}}\right)^{1.7}}{9} \cdot \left(\frac{98}{\sigma_{vo}}\right)^{1/2} \cdot \left(\frac{k_{o,NC}}{k_{o,SC}}\right)^{1/2} \right\}^{1/2}$$

essendo:

D<sub>r</sub> = densità relativa

(-)

(N<sub>SPT</sub>)<sub>78%</sub> = numero di colpi/30 cm associabile ad un'energia trasferita

alle aste pari al 78% di quella teorica

$$\left(N_{SPT}\right)_{78\%} = \left(N_{SPT}\right) \cdot \frac{ER}{78}$$

 $D_{50}$  = diametro delle particelle corrispondente al 50% di passante (mm)

Il valore del D<sub>50</sub> è stato desunto sulla base delle curve granulometriche disponibili dalle prove di laboratorio per le formazioni in esame. Nelle correlazioni si è considerato il valore corrispondente Pagina 20 di 688 Eurolink S.C.p.A.

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     | 1          |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |

al fuso granulometrico medio delle formazioni.

| σ'νο                | = pressione verticale efficace geostatica                            | (kPa) |
|---------------------|----------------------------------------------------------------------|-------|
| k <sub>o,NC</sub> = | = coefficiente di spinta a riposo di terreni normalmente consolidati | (-)   |
| k <sub>o,SC</sub> = | = coefficiente di spinta a riposo di terreni sovraconsolidati        | (-)   |

Per quanto riguarda il <u>criterio di applicazione della correlazione di Skempton piuttosto che di</u> <u>Cubrinowski</u> per il calcolo di Dr, considerando che le analisi granulometriche risultano spesso in numero non elevato oppure non sono disponibili in tutti i sondaggi dove sono state effettuate le SPT, considerando che il tipo di campionamento può non rendere rappresentative le granulometrie effettuate in laboratorio, si sono considerate le informazioni provenienti dalle colonnine stratigrafiche e dalle foto delle cassette, per ogni verticale, alle quote di ciascuna prova SPT, distinguendo il caso di sabbie prevalenti da quello di ghiaie prevalenti.

I valori di Nspt sono stati corretti (N'spt=Csg \* Nspt) tenendo conto dell'effetto della dimensione delle particelle, in particolare della ghiaia, secondo quanto proposto da Tokimatsu & Yoshimi, 1983 (fattore correttivo Csg) in funzione del D50.



Figura 2 - Fattore Csg correttivo di Tokimatsu & Yoshimi, 1983



Laddove disponibili i valori  $N_{LPT}$  ottenuti con con il campionatore LPT, di diametro maggiore rispetto a quello standard, sono trasformati in  $N_{spt}$  equivalenti secondo quanto di seguito riportato (Tokimatsu & Yoshimi, 1983).



Figura 3 – Fattore correttivo N<sub>spt</sub>/N<sub>Lpt</sub> di Tokimatsu & Yoshimi, 1983

#### 2.2.1.2 Indice dei vuoti iniziale e pesi di volume

Una volta noto il valore di Dr calcolato come esplicitato nel capitolo precedente, il valore dell'indice dei vuoti in sito e del peso di volume del secco possono essere determinati dalla relazione:

 $\mathsf{D}_{\mathsf{r}} = \frac{e_{\max} - e_o}{e_{\max} - e_{\min}} = \frac{\gamma_{d \max}}{\gamma_d} \cdot \frac{\gamma_d - \gamma_{d \min}}{\gamma_{d \max} - \gamma_{d \min}}$ 

una volta noti i valori di  $e_{max}$ ,  $e_{min}$ ,  $\gamma_{dmax}$  e  $\gamma_{dmin}$ . Essi possono essere determinati in laboratorio. In questa sede, in mancanza del valore  $e_{emin}$ , noto o stimato il valore  $e_{max}$  (Youd (1973)) è stato possibile determinare  $e_0$  una volta noto il valore di Dr e quello della differenza  $e_{max}$ - $e_{min}$  attraverso le relazioni di Cubrinowski & Ishihara (1999):

 $(e_{max}-e_{min})=0.23+0.06 \ / \ D_{50}$ con  $D_{50}$  in mm

Si riportano al proposito anche le relazioni di Youd (1973):

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     | I          |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |

 $e_{max}$ =0.554+0.154 R<sup>-1</sup>  $e_{min}$ =0.359+0.082 R<sup>-1</sup>

essendo R definito come "rotondità" delle particelle e stimabile mediamente pari a 0.5.

Per <u>terreni saturi</u> può essere utilizzata la relazione di Foti et al. (2002) che sfrutta i risultati delle prove sismiche in foro (cross hole o down hole) per determinare la porosità e quindi l'indice dei vuoti:

$$n = \frac{\rho^{S} - \sqrt{(\rho^{S})^{2} - \frac{4(\rho^{S} - \rho^{F})K^{F}}{V_{P}^{2} - 2\left(\frac{1 - v^{SK}}{1 - 2v^{SK}}\right)V_{S}^{2}}}{2(\rho^{S} - \rho^{F})}$$

essendo Vp e Vs le misure sperimentali delle velocità di compressione e di taglio,  $\rho^{s}$  la densità di massa dei grani,  $\rho^{F}$  la densità di massa del fluido,  $v^{sk}$  coefficiente drenato dello scheletro solido,  $K^{F}$  modulo volumico del fluido (2.25·10<sup>6</sup> KPa).

$$e_0 = \frac{n}{1-n}$$

In questo caso è possibile, nelle stesse verticali, fare un confronto fra i valori di e0 calcolati con la correlazione di Foti con quelli calcolati attraverso la formula della Dr, consentendo una verifica delle correlazioni utlizzate.

Il confronto è possibile anche laddove esistono misure di laboratorio di e0.

Per la determinazione di  $\gamma_{d,}$  in mancanza di determinazioni di laboratorio per  $\gamma_{dmax}$  e  $\gamma_{dmin}$  si può fare riferimento a dati di letteratura per i siti in esame (Jamiolkowski and Lo Presti, 2003).

Dalla relazione n=1- $\gamma$ d/ $\gamma$ s si può quindi ricavare n o viceversa  $\gamma$ d una volto nota la porosità n. Noti il peso di volume dei granuli e l'indice dei vuoti iniziale, considerando il mezzo saturo (Sr=1), è possibile stimare il peso di volume in sito:

$$\gamma = \frac{\frac{\gamma_s}{\gamma_w} + e}{1 + e} \cdot \gamma_w$$

essendo  $\gamma_s$  la densità di massa dei grani.



#### 2.2.2 Resistenza in condizioni drenate

L'angolo di resistenza al taglio di picco  $\varphi'_{picco}$  è stato determinato facendo riferimento al metodo proposto da Bolton (1986) in base al quale:

| $\phi'_{\text{picco}}$ | =        | $\varphi_{cv}$ ' + m·DI                                                     |       |
|------------------------|----------|-----------------------------------------------------------------------------|-------|
| DI                     | =        | $D_r \cdot [Q - ln(p_f)] - 1$                                               |       |
| essend                 | do:      |                                                                             |       |
| φ' <sub>picco</sub>    | =        | angolo di attrito di picco riferito a pressioni $\sigma_{\rm ff}$ = 272 kPa | (°)   |
| Q                      | =        | coefficiente che dipende dalla composizione mineralologica e                |       |
| dalla fo               | orma de  | elle particelle, assunto in questa sede pari a 10                           |       |
| p <sub>f</sub> '       | =        | 1,4⋅σ <sub>ff</sub> ' (vedi Jamiolkowski et al. 1988)                       | (kPa) |
| σ <sub>ff</sub> ' =    | tensior  | ne efficace normale alla superficie di rottura = 272 kPa                    |       |
| m                      | =        | costante empirica dipendente dalle condizioni di                            |       |
| deform                 | nazione  | prevalenti a rottura (vedi <b>tabella</b> )                                 |       |
| φ <sub>cv</sub>        | ' = ango | olo di attrito di stato critico                                             | (°)   |
| Dr                     | =        | densità relativa                                                            | (-)   |

#### Valori della costante empirica m secondo Bolton (1986)

| Condizioni di rottura                                                                    | m(`) |
|------------------------------------------------------------------------------------------|------|
| Prova triassiale di compressione ( $\sigma_2$ ' = $\sigma_3$ ')                          | 3    |
| Prova triassiale in estensione o di deformazione piana ( $\sigma_2$ ' $\neq \sigma_3$ ') | 5    |
| $\sigma_2$ ' = tensione principale efficace intermedia                                   |      |
| $\sigma_3$ ' = tensione principale efficace minore                                       |      |

I valori dell'angolo di attrito  $\phi_{cv}$ ' andrebbero ricavate da prove di laboratorio su provini ricostituiti a basse densità relative.

In assenza di queste ultime, ipotizzabili in base a quanto indicato nella tabella (Youd, 1972)

| Valori dell'angolo di attrito φ <sub>cv</sub> p | er sabbie silicee secondo qu | anto riportato in | Youd ( | 1972) |
|-------------------------------------------------|------------------------------|-------------------|--------|-------|
|                                                 |                              |                   |        |       |

|--|

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |           | 1                  |
|-------------------------------|----------|-------------------------------------------------------|-----------|--------------------|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento<br>CB0057_F0                         | Rev<br>F0 | Data<br>20/06/2011 |
|                               |          |                                                       |           |                    |

| Sabbie a spigoli vivi        | $\varphi_{cv}$ ' = 38° | $\varphi_{cv}' = 34^{\circ}$ |
|------------------------------|------------------------|------------------------------|
| Sabbie a spigoli arrotondati | $\varphi_{cv}$ ' = 33° | $\varphi_{cv}$ , = 30°       |

In questa sede per <u>i valori di stato critico</u> si sono assunti cautelativamente i seguenti valori:

 $\varphi_{cv}$ ' = 33° in presenza di sabbie

 $\varphi_{cv}$ ' = 33°-35° in presenza di sabbie e ghiaie

m = 3.

In accordo con l'inviluppo curvilineo di Baligh (1975) fino a valori di  $\sigma_{ff}$  =272KPa l'angolo di attrito di picco può ritenersi costante.

Per valori superiori esso tenderà a diminuire ed andrà determinato in base al campo di valori progettuali di  $\sigma_{\rm ff}$ .

Al proposito può essere utilizzata l'espressione di Baligh (1975) valida per valori secanti dell'angolo di attrito di picco:



Figura 4 – Inviluppo di Baligh, 1975

 $\tan \phi' = \tan \phi'_0 + \tan a \left( \frac{1}{2.3} - \log_{10} \left( \frac{\sigma'_{ff}}{p_a} \right) \right) \ge \tan \phi_{cv} \quad \text{(maggiore del valore corrispondente all'angolo}$ 

di attrito di stato critico)

Eurolink S.C.p.A.

Pagina 25 di 688



angolo in corrispondenza di  $\sigma_{\rm ff}$ '=272 KPa

 $\alpha$  = 1.25 (D<sub>r</sub>-0.2) 10° angolo che dipende dalla non linearità dell'inviluppo (4°-7° per D<sub>r</sub>=0.55-0.75)

Anche le prove pressiometriche permettono di stimare  $\phi$ ' con una buona approssimazione. Per cui i valori di  $\phi$ ' possono ricavarsi dalla relazione:

 $P'I = 0.25 \times 2(\phi'/4-6)$ 

**φ**'<sub>0</sub>=

con P'I pressione limite in MPa

#### 2.2.3 Resistenza in condizioni non drenate

In condizioni non drenate, i depositi di terreni granulari sciolti possono liquefare, ovverosia si possono trasformare in fluidi.

Al fine di valutare la suscettibilità alla liquefazione o potenziale di liquefazione di un deposito granulare attraverso metodi semplificati occorre stimare gli <u>sforzi di taglio indotti dal terremoto</u> <u>atteso</u> e la <u>resistenza ciclica non drenata del terreno</u>.

Il coefficiente di sicurezza alla liquefazione è:

$$FS = \frac{CRR_{7.5}}{CSR}MSF$$

con MSF (magnitude scaling factor) dato da (Idriss 1990):

$$MSF = \frac{10^{2.24}}{M^{2.56}}$$

L'indice per misurare il potenziale di liquefazione entro i primi 20m da p,.c., l<sub>L</sub> (Iwasaki et al., 1982), è definito come:

$$I_L = \int_0^{20m} F(z) \cdot w(z) \cdot dz$$

dove z è la profondità in metri e w(z) and F(z) sono:

$$w(z) = 10 - 0.5 \cdot z$$
  
 $F(z) = max \begin{cases} 1 - F_L \\ 0 \end{cases}$ 

Iwasaki et al. (1982) propone la seguente classificazione del rischio di liquefazione:

Pagina 26 di 688



| $I_L \leq 5$              | low       |
|---------------------------|-----------|
| $5 < I_L \leq 15$         | high      |
| <i>I<sub>L</sub></i> > 15 | very high |

Di seguito si espongono i metodi semplificati per effettuare in modo speditivo la verifica alla liquefazione.

#### 2.2.3.1 Valutazione del rapporto di tensione ciclica CSR

Per quanto riguarda gli <u>sforzi di taglio indotti dal terremoto atteso</u>, esso viene indicato come CSR (cyclic stress ratio) e può essere determinato mediante le espressioni di seguito riportate (Seed e Idriss 1982, Youd e Idriss 2001):

CSR =(
$$\tau_{av} / \sigma'_{v0}$$
) = 0.65 ( $a_{max} / g$ )( $\sigma_{v0} / \sigma'_{v0}$ )  $r_{d}$ 

dove:  $a_{max}$  = massima accelerazione orizzontale attesa al suolo;

g = accelerazione di gravità;

 $r_d$  = fattore riduttivo degli sforzi di taglio in funzione di z(m) (Youd e Idriss 2001).

#### 2.2.3.2 Valutazione del rapporto di resistenza ciclica CRR da SPT

Per quanto riguarda la <u>resistenza ciclica non drenata del terreno</u> CRR (cyclic resistance ratio) può essere convenientemente stimata mediante opportune prove di laboratorio, in condizioni non drenate, eseguite su campioni indisturbati congelati.

In alternativa è diventata pratica comune ricorrere ai risultati di prove in sito ed in particolare alla prova SPT per la determinazione di CRR.





Figura 5 – Grafico di Youd e Idriss,2001

La Figura (Youd e Idriss 2001) consente di ricavare CRR nel caso di terremoti di Magnitudo 7.5, noto il valore di (N1)<sub>60</sub>.

Le curve sono posizionate in modo da separare la regione che contiene i casi di liquefazione (parziale o totale) da quella di non liquefazione. Sono state ricavate tre curve: una per terreni granulari con contenuto di fine inferiore al 5 % (SPT clean sand base curve), le altre due sono relative a terreni granulari con un contenuto di fine pari al 15 e 35 % rispettivamente.

$$CRR_{7.5} = \frac{1}{34 - N_{160}} + \frac{N_{160}}{135} + \frac{50}{\left(10 \cdot N_{160} + 45\right)^2} - \frac{1}{200}$$

valida per N<sub>160</sub><30

per tenere conto della percentuale di fine FC si calcola  $N_{\rm 160cs}\!\!:$ 

 $N1_{60cs}$ =  $\alpha$ + $\beta$  ( $N1_{60}$ )

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     |            |  |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|--|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |  |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |  |

$$a = 0 \rightarrow FC \le 5\%$$
  
$$a = \exp\left[1.76 - \left(\frac{190}{FC^2}\right)\right] \rightarrow 5\% \le FC \le 35\%$$
  
$$a = 0 \rightarrow FC \ge 35\%$$

$$\beta = 1 \rightarrow FC \le 5\%$$
  
$$\beta = \left[ 0.99 + \left( \frac{FC^{1.5}}{1000} \right) \right] \rightarrow 5\% \le FC \le 35\%$$
  
$$\beta = 1.2 \rightarrow FC \ge 35\%$$

### 2.2.3.3 Valutazione del rapporto di resistenza ciclica CRR da Vs

La velocità di propagazione delle onde di taglio S, Vs è normalizzata secondo le seguenti espressioni:

 $V_{s1}=C_v V_s$ 

essendo

$$Cv = \left(\frac{p_a}{\sigma' v}\right)^{0.25} < 1.4$$

essendo p<sub>a</sub>=100 KPa La curva limite è data da:

Eurolink S.C.p.A.



$$CRR = 0.022 \cdot \left(\frac{V_{s1}}{100}\right)^2 + 2.8 \cdot \left(\frac{1}{V_{s1}^* - V_{s1}} - \frac{1}{V_{s1}^*}\right)$$

essendo (Idriss e Boulanger,2004): per FC $\leq$ 5%, V\*<sub>s1</sub>=215 m/s per 5% $\leq$ FC $\leq$ 35%, V\*<sub>s1</sub>=215-0.5(FC-5) m/s per FC>35%, V\*<sub>s1</sub>=200 m/s

#### 2.2.3.4 Valutazione del rapporto di resistenza ciclica CRR da prove triassiali cicliche

La resistenza alla liquefazione (linee guida AGI,2005) è:

$$R_{\max} = \frac{0.9}{C_k} \cdot \left(\frac{1+2K_0}{3}\right) \cdot \left(\frac{\tau_l}{\sigma_c}\right)_{N_c=20},$$

essendo:

 $\left(\frac{\tau_l}{\sigma_c}\right)_{N_c=20}$  il valore misurato in laboratorio della resistenza ciclica in corrispondenza di 20 cicli.

 $-C_k$  un coefficiente correttivo pari a 0.55 nel caso di moto sismico "ad impatto", e pari a 0.7 per una sollecitazione di tipo "vibrazionale".

Il coefficiente di sicurezza nei confronti della liquefazione è valutato come

$$Fs = \frac{R \max}{L \max}$$

essendo  $L_{\text{max}} = \left(\frac{\tau_{\text{max}}}{\sigma_c}\right)$  con  $\tau_{\text{max}}$  la tensione tangenziale massima alla profondità considerata e

 $\sigma'_{c}$  la tensione efficace di confinamento.

#### 2.2.4 Deformabilità

#### 2.2.4.1 Moduli elastici a piccole deformazioni

Come è noto il comportamento deformativo dei terreni a piccole deformazioni (deformazioni di taglio  $\gamma < \gamma l$  con  $\gamma l$  soglia di linearità) si presenta lineare e dipende da variabili dipendenti dalla Pagina 30 di 688 Eurolink S.C.p.A.



tipologia dei materiali (granulometria, caratteristiche fisiche dei grani,...) e da variabili di stato (stato tensionale, addensamento, storia tensionale,...).

In generale per i terreni incoerenti, <u>a parità delle altre condizioni</u>, si ha che:

- Go aumenta all'aumentare della pressione media p'
- Go diminuisce all'aumentare dell'indice dei vuoti e
- G<sub>0</sub> aumenta all'aumentare del grado di sovraconsolidazione OCR
- G<sub>0</sub> aumenta all'aumentare del grado di cementazione c
- G<sub>0</sub> non risente sensibilmente della velocità di applicazione dei carichi

In generale la relazione che lega  $G_o$  ai parametri di cui sopra è del tipo:

$$G_o = S \cdot f(e) \cdot p_a \cdot \left(\frac{p}{p_a}\right)^n \cdot OCR^k$$

Nel caso di terreni incoerenti l'equazione può essere riscritta in:

$$G_o = S \cdot f(e) \cdot p_a \cdot \left(\frac{p}{p_a}\right)^n$$

essendo modesta l'influenza di OCR.

Mancuso et al. (1997) assume per la funzione f(e) l'espressione:  $f(e) = \frac{(2.973 - e)^2}{(1 + e)}$ 



Figura 6– Espressioni di f(e) secondo vari Autori



S rappresenta un fattore che dipende dalla mineralogia, microstruttura e tessitura degli aggregati mentre n rappresenta un fattore che rappresenta la sensibilità della variazione con p'.

I moduli iniziali di taglio ( $G_o$ ) e di Young ( $E_o$ ), corrispondenti <u>alle pressioni efficaci geostatiche</u> <u>medie p'</u>, possono essere ricavati dai valori delle velocità delle onde di taglio V<sub>s</sub> utilizzando le seguenti equazioni:

$$G_o = \frac{\gamma_t}{9.81} \cdot (V_s)^2 \quad \text{(kPa)}$$
$$E_o = G_o \cdot 2 \cdot (1 + \nu') \text{ (kPa)}$$

essendo:

 $\gamma_t$  = peso di volume naturale del terreno in kN/m<sup>3</sup> v' = rapporto di Poisson del terreno = 0,20-0,30 V<sub>s</sub> = velocità di propagazione delle onde di taglio in m/sec.

La velocità di propagazione delle onde di taglio  $V_s$  può essere ricavata direttamente da prove geofisiche "down hole" e "cross hole" o indirettamente, interpretando i risultati delle prove SPT. La velocità delle onde di taglio da prove SPT in sabbie e ghiaie normalmente consolidate, silicee non cementate, può essere ricavata sulla base alla correlazione proposta da Ohta & Goto (1978) (vedi anche Baldi et al., 1989); in base a tale correlazione vale quanto segue:

$$V_{s} = C \cdot \left(\!N_{SPT}\right)^{0.171}_{60\%} \cdot \left(z\right)^{0.199} \cdot f_{A} \cdot f_{G} \text{ (m/sec)}$$

essendo:

C = 67,3z = profondità dal p.c. in metri

f<sub>A</sub> = coefficiente funzione dell'epoca geologica del deposito (vedi la **tabella**)

f<sub>G</sub> = coefficiente funzione della composizione granulometrica (vedi la **tabella**)

#### Relazione di Ohta e Goto, 1978 - Coefficiente f<sub>A</sub>

(funzione dell'epoca geologica del deposito)

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |           |                    |  |
|-------------------------------|----------|-------------------------------------------------------|-----------|--------------------|--|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento<br>CB0057_F0                         | Rev<br>F0 | Data<br>20/06/2011 |  |
|                               |          | 1                                                     | 1         |                    |  |

| f <sub>A</sub> | Olocene | Pleistocene |
|----------------|---------|-------------|
|                | 1,0     | 1,3         |
|                |         |             |

#### Relazione di Ohta e Goto, 1978 - Coefficiente f<sub>G</sub>

#### (funzione della composizione granulometrica del deposito)

| f <sub>G</sub> | Ghiaie | Sabbie<br>ghiaiose | Sabbie<br>grosse | Sabbie<br>medie | Sabbie<br>fini |
|----------------|--------|--------------------|------------------|-----------------|----------------|
|                | 1,45   | 1,15               | 1,14             | 1,07            | 1,09           |

Nei fori di sondaggio ove è presente una prova sismica può essere effettuato un confronto fra le Vs stimate da SPT con quelle misurate, consentendo una eventuale "taratura" della correlazione di Ohta Goto che quindi può applicarsi affidabilmente anche in contesti in cui non si hanno a disposizione misure di Vs da prove sismiche. Inoltre, l'interpretazione di V<sub>0</sub> in termini di indice dei vuoti ( $e_0$ ), con l'ausilio della determinazione di laboratorio dei valori di  $e_{max}$  ed  $e_{min}$  può fornire importanti informazioni relativamente al grado di addensamento dei depositi. Quest'ultimo aspetto verrà approfondito ulteriormente in fase di P.E. per una più ampia disponibilità di dati di laboratorio.

#### 2.2.4.2 Moduli elastici a medie e grandi deformazioni

Il comportamento deformativo a medie deformazioni ( $\gamma_1 < \gamma < \gamma_v$  con  $\gamma_v$  soglia di deformazione volumetrica) ed a grandi deformazioni di taglio ( $\gamma > \gamma_v$ ) si manifesta in modo fortemente non lineare. In generale per i terreni incoerenti, <u>a parità delle altre condizioni</u>, si ha che:

- G(γ)/G<sub>0</sub> aumenta all'aumentare della pressione media p': all'aumentare di p' le curve si spostano verso l'alto e verso destra, cioè lo stesso rapporto G(γ)/G<sub>0</sub> si manifesta per γ più elevate.
- $G(\gamma)/G_0$  aumenta all'aumentare di **e**.
- $G(\gamma)/G_0$  non risente del grado di sovraconsolidazione **OCR**.
- $G(\gamma)/G_0$  aumenta all'aumentare del grado di cementazione c.

| Stretto                       | Ponte sullo Stretto di Messina |     |            |  |
|-------------------------------|--------------------------------|-----|------------|--|
| di Messina                    | PROGETTO DEFINITIVO            |     |            |  |
| RELAZIONE GEOTECNICA GENERALE | Codice documento               | Rev | Data       |  |
|                               | CB0057_F0                      | F0  | 20/06/2011 |  |

Le curve di  $G(\gamma)$  risultano normalizzate rispetto a  $G_0$  per valutare l'effetto di alcuni fattori indipendenetemente da quelli che influenzano  $G_0$  riportati nel precedente paragrafo.

La soglia di linearità  $\gamma_l$  per terreni granulari può fissarsi già a partire da un valore pari a 0.001%: essa diminuisce al crescere della dimensione dei grani ed aumenta con la pressione **p'** di confinamento. Esistono varie correlazioni in letteratura per definire opportune curve di degrado del modulo in funzione dei parametri sopra menzionati.

Tali curve risultano valide anche per terreni a grana fine per i quali si rimanda allo specifico paragrafo e possono utilizzarsi in **modelli di calcolo elastici non lineari.** 

Si riporta di seguito la relazione di Ishibashi e Zang (1993):

$$\frac{G}{G_0} = K(\gamma, Ip) \cdot (p')^{m(\gamma, Ip) - m0}$$

$$K(\gamma, Ip) = 0.5 \cdot \left[ 1 + \tanh\left(\ln\left(\frac{0.000102 + n(Ip)}{\gamma}\right)^{0.492}\right)\right]$$

$$m(\gamma, Ip) - m_0 = 0.272 \cdot \left[ 1 - \tanh\left(\ln\left(\frac{0.000556}{\gamma}\right)^{0.4}\right)\right] \cdot \exp(-0.0145 \cdot Ip^{1.3})$$

$$0.0 \qquad Ip = 0$$

$$n(Ip) = \frac{3.37 \cdot 10^{-6} Ip^{1.404} \quad 0\% < Ip < 15\%}{7.0 \cdot 10^{-7} Ip^{1.976} \quad 15\% < Ip < 70\%}$$

$$2.7 \cdot 10^{-5} Ip^{1.115} \qquad Ip > 70\%$$

Si riportano di seguito anche le curve teoriche proposte rispettivamente da Lo Presti (1989) e da Vucetic e Dobry (1991)





Figura 7- Curve di decadimento secondo Lo Presti, 1989





Figura 8– Curve di decadimento secondo Vucetic e Dobry,1991

#### Modelli di calcolo convenzionali elastico lineari

In questo caso si ha che la scelta del <u>modulo elastico operativo</u> viene fatta convenzionalmente essendo a conoscenza del range di deformazioni indotte dalle opere in eame:

- Fronti di scavo ed opere di sostegno: i moduli statici sono pari a circa (1/3 ÷ 1/5)·E<sub>0</sub> in quanto le deformazioni indotte risultano relativamente contenute, dell'ordine di 1 x 10<sup>-3</sup>÷5 x 10<sup>-3</sup> e prevalentemente di scarico o scarico-ricarico.
- Fondazioni profonde e dirette: i moduli statici E' possono ritenersi pari a circa (1/3 ÷ 1/5)·E<sub>o</sub> con valori prossimi all'estremo inferiore del range, in considerazione del livello deformativo indotto e del fatto che gli spostamenti totali e differenziali ammissibili per l'opera devono essere comunque contenuti.
- **Rilevati:** i moduli statici E' sono pari a circa 1/5 ÷ 1/10 ·E<sub>o</sub>: per tali strutture in terra infatti si hanno cedimenti totali e differenziali maggiori di quelli delle fondazioni profonde e dirette.


L'estremo superiore del range (1/5) sarà considerato nel caso in cui la stima di  $E_o$  possa ritenersi già cautelativa (es: interpolazione dei valori medi-minimi,...).

- **Gallerie naturali:** i moduli statici sono pari a circa (1/3 ÷ 1/5)·E<sub>0</sub> in quanto le deformazioni massime indotte risultano relativamente contenute, dell'ordine di 1 x 10<sup>-3</sup>÷5 x 10<sup>-3</sup> e prevalentemente di scarico.
- **Fondazioni su pali:** nel progetto delle fondazioni profonde su pali i moduli di reazione orizzontale iniziali (E<sub>si</sub>) alla Matlock & Reese (1960), utili per definire la parte iniziale delle curve p-y, verranno valutati in accordo alla seguente espressione:

 $E_{si} = k_{hi} \cdot z$  (kPa)

## essendo:

 $k_{hi}$  = gradiente con la profondità del modulo di reazione orizzontale, riportato nella **tab. 4.6** (vedi Reese et al, 1974 e Elson, 1984) (kN/m<sup>3</sup>)

z = profondità dal piano campagna originario.

| D <sub>r</sub> (%) | K <sub>hi</sub> (kN/m³) |
|--------------------|-------------------------|
| 35%                | 10000                   |
| 50%                | 15000                   |
| 70%                | 25000                   |

## Modulo di reazione orizzontale secondo Reese et al. (1974) (vedi anche Elson (1984))

In generale la costante di sottofondo può determinarsi secondo la seguente espressione (Bowles, 1998):

 $K_s = A_s + B_s Z^n$ 

dove:

 $A_s=C (c N_c s_c + 0.5 \gamma B N\gamma s\gamma)$ 

 $B_s Z=C (\gamma N_q s_q) Z$ 

Eurolink S.C.p.A.



C=40

 $N_{c_1} N_{q_2} N_{\gamma}$ ,  $s_{c_2} s_{q_3}$ ,  $s_{\gamma}$  = coefficienti di capacità portante e di forma

n un esponente per tenere conto della variabilità con la profondità, tarabile nel caso si abbiano a disposizione prove di carico su piastra.

Per le platee si può assumere che  $B_s$  sia uguale a zero.

I moduli di Young possono essere determinati e confrontati con i valori ottenuti come precedentemente indicato, in base all'esito delle prove pressiometriche o <u>dilatometriche</u> sulla base delle relazioni seguenti:

 $E_m = 3 / (1/E_1 + 1/E_2 + 1/E_3)$ Ei=(1+v)  $\Delta p D_0 / \Delta D_j$ essendo:

Ei = Modulo di Young nella direzione del trasduttore i-esimo 1 o 2 o 3;

v = Coefficiente di Poisson = 0.25;

 $\Delta p$  = Intervallo di pressione radiale applicata;

D<sub>0</sub> = Diametro iniziale del foro;

 $\Delta D_j$  = Variazione diametrale per l'applicazione di P misurata dal trasduttore i-esimo.

In generale, laddove le misurazioni lo renderanno possibile, si privilegeranno i valori di scarico e ricarico, soprattutto nel caso di prove effettuate in profondità e quindi rappresentative del comportamento di opere caratterizzate da comportamenti in scarico o scarico ricarico.

Laddove tali prove fornissero solo i valori di carico saranno evidenziate nel testo.

## 2.2.4.3 Coefficienti di smorzamento intrinseco

Il comportamento non lineare di un terreno in condizioni di carico ciclico è rappresentabile non solo attraverso **G** ma anche attraverso il fattore di smorzamento **D** allo scopo di riassumere le proprietà dissipative globalmente mostrate dal materiale nel corso di un ciclo di scarico-ricarico.

Anche per **D** l'evoluzione complessiva del comportamento del terreno al crescere del livello di sollecitazione è convenzionalmente rappresentata dall'andamento con la deformazione tangenziale  $\gamma$ .

A piccole deformazioni ( $\gamma < \gamma I$ ), sotto la soglia di linearità, il legame tra tensioni e deformazioni il Pagina 38 di 688 Eurolink S.C.p.A.





# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

legame è, ai fini pratici, interpretabile con una relazione di tipo lineare e le le proprietà dissipative possono ritenersi costanti ed essere misurate durante un ciclo di carico-scarico attraverso la percentuale di energia di deformazione dispersa nel ciclo completo rispetto a quella immagazzinata nella fase di carico.

E' lecito ipotizzare, che gli stessi fattori che influenzano  $G_0$  a piccole deformazioni ne regolino anche lo smorzamento  $D_0$  anche se con un peso diverso.

In generale per i terreni incoerenti, <u>a parità delle altre condizioni</u>, si ha che:

- Do diminuisce limitatamente all'aumentare della pressione media p'
- Do aumenta all'aumentare dell'indice dei vuoti e
- **D**<sub>0</sub> diminuisce limitatamente all'aumentare del grado di sovraconsolidazione **OCR**
- **D**<sub>0</sub> può aumentare all'aumentare del grado di cementazione **c**
- **D**<sub>0</sub> può aumentare con la velocità di applicazione dei carichi

Generalmente, per i terreni incoerenti, **D**<sub>0</sub> assume un valore trascurabile.

Può determinarsi da prove sismiche cross-hole laddove si rendono disponibili le misurazioni o da prove di laboratorio (es:colonna risonante) su campioni indisturbati prelevati con la tecnica del congelamento.

A medie deformazioni ( $\gamma I < \gamma < \gamma v$ ), sotto la soglia di deformazione volumetrica (condizioni drenate) o in assenza di sovrapressioni interstiziali (condizioni non drenate), il comportamento del terreno comincia a manifestarsi non lineare. Esso non conserva memoria della storia pregressa al termine di un ciclo completo ed il terreno ritorna nello stato iniziale, tendendo a ripercorrere la stessa curva tensione-deformazione se nuovamente sottoposto ad una medesima storia di carichi tangenziali: il comportamento tensione-deformazione è quindi "stabile", e permette di essere modellato sempre con un'unica coppia di valori dei parametri **G**( $\gamma$ ) e **D**( $\gamma$ ).

Anche in questo caso è lecito ipotizzare, che gli stessi fattori che influenzano  $G(\gamma)$  a medie deformazioni ne regolino anche lo smorzamento  $D(\gamma)$  anche se con un peso diverso.

In generale per i terreni incoerenti, <u>a parità delle altre condizioni</u>, si ha che:

- D(γ)/D<sub>0</sub> diminuisce all'aumentare della pressione media p': all'aumentare di p' le curve si spostano verso il basso e verso destra, cioè lo stesso rapporto D(γ)/D<sub>0</sub> si manifesta per γ più elevate.
- $D(\gamma)/D_0$  diminuisce al'aumentare di **e**.
- $D(\gamma)/D_0$  non risente del grado di sovraconsolidazione **OCR**.
- $D(\gamma)/D_0$  diminuisce all'aumentare del grado di cementazione c.

Si riporta di seguito la relazione di Ishibashi e Zang (1993):

| Stretto<br>di Messina | EurolinK        | Ponte sullo Stretto di Me<br>PROGETTO DEFINITI | <b>essina</b><br>VO | 1                  |
|-----------------------|-----------------|------------------------------------------------|---------------------|--------------------|
| RELAZIONE GEOTE       | ECNICA GENERALE | Codice documento<br>CB0057_F0                  | Rev<br>F0           | Data<br>20/06/2011 |

$$D = 0.333 \cdot \frac{1 + \exp(-0.0145Ip^{1.3})}{2} \cdot \left| 0.586 \cdot \left(\frac{G}{G_0}\right)^2 - 1.547 \frac{G}{G_0} + 1 \right|$$

Si riportano di seguito anche le curve teoriche proposte rispettivamente da Vucetic e Dobry (1991):



Figura 9– Curve di decadimento secondo Vucetic e Dobry, 1991

A deformazioni elevate ( $\gamma > \gamma_v$ ), sopra la soglia volumetrica, il comportamento del terreno diviene affetto in maniera significativa da modifiche irreversibili dell'assetto particellare: si evidenzia l'effetto dei fattori legati alla non monotonicità delle sollecitazioni: le caratteristiche di deformabilità del terreno, lette in termini di parametri di rigidezza e dissipazione, variano all'aumentare del numero di cicli.

In particolare, per alcuni materiali (ad esempio le sabbie sciolte asciutte) si possono verificare fenomeni di graduale addensamento, fino al "rientro" in condizioni di stabilità dopo un certo numero di cicli. In gran parte dei casi, viceversa, i materiali manifestano tendenza alla degradazione progressiva, segnalata dall'incremento di deformazioni tangenziali non recuperabili. Inoltre, per effetto del comportamento dilatante o contraente dello scheletro solido, si accumulano deformazioni volumetriche in condizioni drenate, sovrappressioni neutre in condizioni non drenate.

Pagina 40 di 688



Dopo escursioni a deformazioni maggiori di  $\gamma_v$ , una nuova fase di carico deviatorico darà quindi luogo ad una risposta iniziale (**Go e Do**) del terreno modificata rispetto a quella esibita dal materiale non presollecitato.

L'insieme dei fenomeni appena descritti viene indicato come **degradazione ciclica**. L'approccio lineare equivalente precedentemente introdotto è improponibile, perché le relazioni  $G(\gamma) e D(\gamma)$  non sono più univoche (comportamento instabile). In tali casi, può essere sufficiente una generalizzazione del modello con l'introduzione dell'effetto del numero dei cicli N. Generalmente si ha che:

- $G_0$ ,  $G(\gamma)$  aumentano col numero dei cicli N (terreni incoerenti asciutti).
- $D_0$ ,  $D(\gamma)$  diminuiscono col numero dei cicli N (terreni incoerenti asciutti).
- $G_0$ ,  $G(\gamma)$  diminuiscono col numero dei cicli N (terreni incoerenti saturi).
- **D**<sub>0</sub>, **D**(γ) aumentano col numero dei cicli N (terreni incoerenti saturi).



Figura 10- Curve di decadimento e smorzamento tipologiche



#### 2.2.5 Permeabilità

I coefficienti di permeabilità k verranno determinati sulla base dei risultati delle prove di permeabilità Lefranc in foro di sondaggio.

## Stima dei coefficienti di permeabilità in base alla descrizione litologica

| k (m/sec)                                   | Grado di permeabilità     | Tipo di terreno         |
|---------------------------------------------|---------------------------|-------------------------|
| k > 1·10 <sup>-3</sup>                      | Alta                      | Ghiaie                  |
| 1.10 <sup>-3</sup> × k × 1.10 <sup>-5</sup> | Media                     | Sabbie ghiaiose e       |
|                                             | Media                     | Ghiaie sabbiose         |
| $1.10^{-5} > k > 1.10^{-7}$                 | Bassa                     | Sabbie fini             |
| $1.10^{-7} > k > 1.10^{-9}$                 | Molto bassa               | Limi e sabbie argillose |
| $1.10^{-9} > k$                             | Bassissima (impermeabile) | Argille                 |

In alternativa essi verranno stimati sulla base delle seguente metodologia (vedi Somerville, 1986) che consiste nella:

- Valutazione del coefficiente di uniformità =  $D_{60}/D_{10}$ , essendo  $D_{60}$  il diametro corrispondente al 60% di passante e  $D_{10}$  il diametro corrispondente al 10% di passante;
- Assegnazione del valore caratteristico di D<sub>50</sub>, ovvero del diametro corrispondente al 50% di passante;
- Utilizzo dei diagrammi riportati nelle figure seguenti





Figura 11- Curve di Somerville, 1986



## 2.3 Criteri per la caratterizzazione dei Terreni coesivi

La caratterizzazione geotecnica dei terreni coesivi si basa sia sull'interpretazione delle prove di laboratorio, laddove disponibili, sia all'interpretazione delle prove in sito.

La caratterizzazione evidenzia i seguenti aspetti:

- Parametri fisici e stato iniziale in sito.
- Resistenza al taglio.
- Deformabilità.
- Permeabilità.

#### 2.3.1 Caratteristiche fisiche

La classificazione dei terreni a grana fine verrà effettuata facendo riferimento ai risultati delle prove di laboratorio in termini di :

- fusi granulometrici;
- limiti di Atterberg (limite liquido e limite plastico);
- pesi di volume naturale e secco;
- grado di saturazione;
- contenuti d'acqua naturale;

#### 2.3.2 Stato iniziale

La valutazione dello stato tensionale iniziale verrà fatta sulla base:

- di quanto desumibile dagli studi di carattere geologico;
- dell'interpretazione delle prove di laboratorio, laddove disponibili.

<u>Lo stato tensionale in sito</u> può essere valutato in termini di grado di sovraconsolidazione (OCR= $\sigma_{vmax}$ '/ $\sigma_{vo}$ '), essendo  $\sigma_{vmax}$ ' la pressione di preconsolidazione desumibile dalle prove edometriche e  $\sigma_{vo}$ ' la pressione verticale efficace geostatica.

In alternativa OCR può determinarsi anche sulla base delle seguenti espressioni (vedi Ladd & Foot, 1974; Ladd et al. 1977):



$$(OCR)^{0.85} = \frac{\frac{C_u}{\sigma_{vo}}}{\left(\frac{C_u}{\sigma_{vo}}\right)_{NC}}$$

dove:

 $\left(\frac{c_u}{\sigma_{vo}}\right)_{NC} \cong 0.30$  (Chandler et al., 1988)

c<sub>u</sub> = resistenza al taglio in condizioni non drenate

 $\sigma_{\text{vo}}\text{'=}$  pressione verticale efficace geostatica.

Il coefficiente di spinta del terreno a riposo ko sarà stimato sulla base della seguente espressione:

$$k_o = (1 - \sin \varphi') \cdot \sqrt{OCR}$$

#### essendo:

 $\phi$ ' = angolo di attrito.

## 2.3.3 Resistenza al taglio non drenata

La resistenza al taglio non drenata c<sub>u</sub> verrà valutata facendo riferimento ai risultati delle seguenti prove:

- di laboratorio TX-UU
- all'interpretazione delle prove penetrometriche dinamiche SPT.
- all'interpretazione delle prove pressiometriche.

La resistenza al taglio non drenata dipende:

- dalla pressione di consolidazione e dall'OCR o dall'indice dei vuoti iniziale
- dal percorso di carico

## 2.3.3.1 Prove di laboratorio

In questa sede si farà riferimento, laddove disponibili, ai risultati di prove triassiali non consolidate non drenate di compressione e carico (TX-UU) effettuate su campioni indisturbati.



#### 2.3.3.2 Valutazione di c<sub>u</sub> da prove SPT

La resistenza al taglio non drenata di materiali saturi sotto falda, associabile a quella di prove triassiali di compressione e carico, consolidate alle tensioni efficaci geostatiche, verrà stimata adottando la correlazione empirica proposta da Stroud (1974) (vedi anche Clayton, 1995). In base a tale correlazione risulta quanto segue:

Cu=5.0-5.5 Nspt (kPa)

#### 2.3.3.3 Valutazione di c<sub>u</sub> da prove pressiometriche

Per ricavare il valore della Cu si sono utilizzate le relazioni proposte da Amar e Jezequel che legano direttamente la Cu al valore della pressione limite netta p'I=pI-po (Amar e Jezequel, 1972):

| Cu=(pl-po)/5.5     | se pl<0.3Mpa | (KPa) |
|--------------------|--------------|-------|
| Cu=[(pl-po)/10]+25 | se pl>0.3Mpa | (KPa) |

## 2.3.4 Parametri di resistenza al taglio in termini di sforzi efficaci

I parametri di resistenza di picco in termini di sforzi efficaci verranno determinati sulla base dei risultati delle prove di laboratorio

- per i parametri di picco e per quelli di stato critico si farà riferimento a prove di taglio diretto (TD) e triassiali consolidate non drenate e drenate (TX-CIU e TX-CID);
- per quelli di resistenza residua, laddove disponibili, si farà riferimento anche ai risultati di prove di taglio torsionale (TT);

Gli inviluppi di rottura nel piano  $\tau$  -  $\sigma$ 'n, per argille sovraconsolidate, mostrano un andamento curvilineo che secondo Mesri e AbdelGhafar (1993) assumono la seguente forma:

$$\tau_{\rm oc} = \sigma'_{\rm n} \tan \varphi \left( \frac{\sigma_p}{\sigma_n} \right)^{(1-m)}$$

ove:  $\sigma'_{\rm p}\,$  = pressione di preconsolidazione

Pagina 46 di 688

| Stretto<br>di Messina | EurolinK        | Ponte sullo Stretto di Me<br>PROGETTO DEFINITI | <b>essina</b><br>VO | 1                  |
|-----------------------|-----------------|------------------------------------------------|---------------------|--------------------|
| RELAZIONE GEOTE       | ECNICA GENERALE | Codice documento<br>CB0057_F0                  | Rev<br>F0           | Data<br>20/06/2011 |

 $\sigma {\rm 'n}\,$  = pressione efficace sulla superficie di rottura

m = coefficiente che dipende dalla struttura e dalla composizione dell'argilla. Secondo gli Autori m decresce (aumentando la curvatura) all'aumentare dell'indice di plasticità Ip, ed invece cresce con l'angolo di attrito  $\phi$ '. Tipici valori sono di seguito riportati Mesri e AbdelGhafar (1993):

|                                                             | m                             |                               |  |
|-------------------------------------------------------------|-------------------------------|-------------------------------|--|
| Material                                                    | Intact                        | Destructured                  |  |
| Cemented soft clays<br>Stiff clays and shales<br>Soft clays | 0.4-0.5<br>0.5-0.6<br>0.6-0.7 | 0.5–0.7<br>0.6–0.8<br>0.7–0.9 |  |

Figura 12– Coefficiente "m" secondo Mesri e AbdelGhafar (1993)

L'angolo di attrito è quello corrispondente ai materiali in esame in condizioni di normalconsolidazione.

Gli inviluppi di rottura saranno distinti, possibilmente, per rottura in condizioni piane ( $\sigma'_2 \neq \sigma'_3$ ) e per rottura in condizioni triassiali ( $\sigma'_2 = \sigma'_3$ ).

Per quanto riguarda i valori operativi c' e  $\phi$ ' che possono essere ricavati dall'inviluppo a rottura di cui sopra è opportuno distinguere i seguenti casi:

- nei modelli di calcolo che simulano la diminuzione della resistenza (strain-softening), i dati di input consisteranno nei parametri c' e φ' di picco inserendo la legge di decadimento dal picco, da determinare in base alle prove di laboratorio;
- nei modelli di calcolo convenzionali che non simulano la diminuzione della resistenza (es: Mohr Coulomb) si farà riferimento a parametri di resistenza operativi pari a quelli di picco cautelativi, confrontati eventualmente con i dati pubblicati nella letteratura tecnica, oppure a valori intermedi con quelli di stato critico.

In entrambi i modelli di calcolo, nel caso di materiali interessati in passato da fenomeni di rottura, lungo superfici di scivolamento già formate si applicheranno invece le resistenze residue.



## 2.3.5 Caratteristiche di deformabilità

## 2.3.5.1 Moduli elastici a piccole deformazioni

Come è noto il comportamento deformativo dei terreni a piccole deformazioni (deformazioni di taglio  $\gamma < \gamma l$  con  $\gamma l$  soglia di linearità) si presenta lineare e dipende da variabili dipendenti dalla tipologia dei materiali (granulometria, caratteristiche fisiche dei grani,...) e da variabili di stato (stato tensionale, addensamento, storia tensionale,...).

In generale per i terreni coesivi, a parità delle altre condizioni, si ha che:

- Go aumenta all'aumentare della pressione media p'
- **G**<sub>0</sub> aumenta all'aumentare dell'indice di plasticità **IP** per argille oc mentre risulta tendenzialmente stabile per argille n.c.
- **G**<sub>0</sub> aumenta all'aumentare del grado di sovraconsolidazione **OCR**
- **G**<sub>0</sub> aumenta all'aumentare del grado di cementazione **c**
- $G_0$  risente sensibilmente della velocità di applicazione dei carichi

In generale la relazione che lega  $G_o$  ai parametri di cui sopra è del tipo:

$$G_o = S \cdot f(e) \cdot p_a \cdot \left(\frac{p}{p_a}\right)^n \cdot OCR^m$$

Nel caso di terreni coesivi l'equazione può essere riscritta in:

$$G_o = S \cdot \left(\frac{p}{p_a}\right)^n OCR^m$$

S, n, m rappresentano fattori che dipendono dalla mineralogia, microstruttura e tessitura degli aggregati mentre; n rappresenta un fattore che rappresenta la sensibilità della variazione con p'. In figura sono rappresentate le variazioni di tali parametri con IP (Mancuso et al, 1997).





Figura 13- Coefficienti S, "n" e "m" secondo Mancuso (1997)



I moduli iniziali di taglio ( $G_o$ ) e di Young ( $E_o$ ), corrispondenti <u>alle pressioni efficaci geostatiche</u> <u>medie p'</u>, possono essere ricavati dai valori delle velocità delle onde di taglio V<sub>s</sub> utilizzando le seguenti equazioni:

$$G_o = \frac{\gamma_t}{9.81} \cdot (V_s)^2 \quad \text{(kPa)}$$
$$E_o = G_o \cdot 2 \cdot (1 + \nu') \text{ (kPa)}$$

essendo:

 $\gamma_t$  = peso di volume naturale del terreno in kN/m<sup>3</sup>

v' = rapporto di Poisson del terreno = 0,20-0,30

 $V_s$  = velocità di propagazione delle onde di taglio in m/sec.

## 2.3.5.2 Moduli elastici a medie e grandi deformazioni

Il comportamento deformativo a medie deformazioni ( $\gamma_1 < \gamma < \gamma_v$  con  $\gamma_v$  soglia di deformazione volumetrica) ed a grandi deformazioni di taglio ( $\gamma > \gamma_v$ ) si manifesta in modo fortemente non lineare. In generale per i terreni coesivi, <u>a parità delle altre condizioni</u>, si ha che:

- G(γ)/G<sub>0</sub> per argille n.c. aumenta all'aumentare della pressione media p', mentre è tendenzialmente stasbile per argille o.c.
- $G(\gamma)/G_0$  aumenta all'aumentare di IP.
- $G(\gamma)/G_0$  non risente del grado di sovraconsolidazione OCR.
- $G(\gamma)/G_0$  aumenta all'aumentare del grado di cementazione c.

Le curve di  $G(\gamma)$  risultano normalizzate rispetto a  $G_0$  per valutare l'effetto di alcuni fattori indipendenetemente da quelli che influenzano  $G_0$  riportati nel precedente paragrafo.

La soglia di linearità  $\gamma_1$  per terreni coesivi dipende dall'indice di plasticità **IP**: essa cresce al crescere di IP. Le argille in generale (ad esclusione di quelle scagliose), caratterizzate da legami interparticellari, presentano una soglia di linearità mediamente superiore a quella dei terreni granulari.

Esistono varie correlazioni in letteratura per definire opportune curve di degrado del modulo in funzione dei parametri sopra menzionati.

Tali curve risultano possono utilizzarsi in modelli di calcolo elastici non lineari e potranno

| Stretto<br>di Messina | EurolinK        | Ponte sullo Stretto di Me<br>PROGETTO DEFINITI | <b>essina</b><br>VO | 1                  |
|-----------------------|-----------------|------------------------------------------------|---------------------|--------------------|
| RELAZIONE GEOTE       | ECNICA GENERALE | Codice documento<br>CB0057_F0                  | Rev<br>F0           | Data<br>20/06/2011 |

essere confrontate con quelle ricavabili da prove di laboratorio (es: colonne risonanti) Si riporta di seguito la relazione teorica di Ishibashi e Zang (1993):

$$\frac{G}{G_0} = K(\gamma, Ip) \cdot (p')^{m(\gamma, Ip) - m0}$$

$$K(\gamma, Ip) = 0.5 \cdot \left[ 1 + \tanh\left( \ln\left(\frac{0.000102 + n(Ip)}{\gamma}\right)^{0.492}\right) \right]$$

$$m(\gamma, Ip) - m_0 = 0.272 \cdot \left[ 1 - \tanh\left( \ln\left(\frac{0.000556}{\gamma}\right)^{0.4}\right) \right] \cdot \exp(-0.0145 \cdot Ip^{1.3})$$

$$0.0 \qquad Ip = 0$$

$$n(Ip) = \frac{3.37 \cdot 10^{-6} Ip^{1.404}}{7.0 \cdot 10^{-7} Ip^{1.976}} \qquad 15\% < Ip < 15\%$$

$$2.7 \cdot 10^{-5} Ip^{1.115} \qquad Ip > 70\%$$

Si riportano di seguito anche le curve teoriche proposte da Vucetic e Dobry (1991)



Figura 14– Curve di decadimento secondo Vucetic e Dobry (1991)

Eurolink S.C.p.A.



In relazione a quanto esposto sino ad ora la scelta dei moduli di deformazione per le analisi ingegneristiche viene a dipendere anche dal metodo di analisi adottato.

Modelli di calcolo convenzionali elastico lineari

In questo caso si ha che la scelta del <u>modulo elastico operativo</u> viene fatta convenzionalmente essendo a conoscenza del range di deformazioni indotte dalle opere in eame:

- Fronti di scavo sostenuti ed opere di sostegno: i moduli statici sono pari a circa (1/3 ÷ 1/5)·E<sub>0</sub> o (400÷500)·c<sub>u</sub> in quanto le deformazioni indotte risultano relativamente contenute, dell'ordine di 1 x 10<sup>-3</sup>÷5 x 10<sup>-3</sup> e prevalentemente di scarico o scarico-ricarico.
- Fondazioni profonde e dirette, rilevati: per tali problemi di carico i moduli statici possono ritenersi pari a (150÷200)·c<sub>u</sub> oppure, in generale, 1/10·E<sub>0</sub>÷1/5·E<sub>0</sub>. I risultati delle prove edometriche (E<sub>ed</sub>) potranno essere considerati soprattutto nel caso di terreni normal consolidati.
- **Gallerie naturali:** i moduli statici sono pari a circa  $(1/3 \div 1/5) \cdot E_0$  in quanto le deformazioni massime indotte risultano relativamente contenute, dell'ordine di 1 x  $10^{-3} \div 5 \times 10^{-3}$  e prevalentemente di scarico.
- **Fondazioni su pali:** nel caso del progetto di pali di fondazione il modulo di reazione orizzontale "operativo", nel caso di ricorso a calcoli semplificati lineari, può essere assunto pari a 400 Cu (Elson (1984)) essendo c<sub>u</sub> la resistenza al taglio non drenata.
- Valori di riferimento per le costanti di sottofondo possono essere dedotti dalle seguenti indicazioni di letteratura:

Ks=12000-24000 KN/m<sup>3</sup> per Cu<200 KPa Ks=24000-48000 KN/m<sup>3</sup> per 200KPa<Cu<400 KPa Ks>48000 KN/m<sup>3</sup> per Cu>400 KPa



## 2.3.5.3 Coefficienti di smorzamento intrinseco

Il comportamento non lineare di un terreno in condizioni di <u>carico ciclico</u> è rappresentabile non solo attraverso **G** ma anche attraverso il fattore di smorzamento **D** allo scopo di riassumere le proprietà dissipative globalmente mostrate dal materiale nel corso di un ciclo di scarico-ricarico.

Anche per **D** l'evoluzione complessiva del comportamento del terreno al crescere del livello di sollecitazione è convenzionalmente rappresentata dall'andamento con la deformazione tangenziale  $\gamma$ .

A piccole deformazioni ( $\gamma < \gamma I$ ), sotto la soglia di linearità, il legame tra tensioni e deformazioni il legame è, ai fini pratici, interpretabile con una relazione di tipo lineare e le le proprietà dissipative possono ritenersi costanti ed essere misurate durante un ciclo di carico-scarico attraverso la percentuale di energia di deformazione dispersa nel ciclo completo rispetto a quella immagazzinata nella fase di carico.

E' lecito ipotizzare, che gli stessi fattori che influenzano  $G_0$  a piccole deformazioni ne regolino anche lo smorzamento  $D_0$  anche se con un peso diverso.

In generale per i terreni coesivi, a parità delle altre condizioni, si ha che:

- D<sub>0</sub> diminuisce all'aumentare della pressione media p'
- Do aumenta all'aumentare dell'indice di plasticità IP
- Do diminuisce all'aumentare del grado di sovraconsolidazione OCR
- D<sub>0</sub>' aumenta all'aumentare del grado di cementazione c
- D<sub>0</sub> aumenta con la velocità di applicazione dei carichi

**D**<sub>0</sub> può determinarsi da prove sismiche cross-hole laddove si rendono disponibili le misurazioni o da prove di laboratorio (es:colonna risonante) su campioni indisturbati.

A medie deformazioni ( $\gamma I < \gamma < \gamma v$ ), sotto la soglia di deformazione volumetrica (condizioni drenate) o in assenza di sovrapressioni interstiziali (condizioni non drenate), il comportamento del terreno comincia a manifestarsi non lineare. Esso non conserva memoria della storia pregressa al termine di un ciclo completo ed il terreno ritorna nello stato iniziale, tendendo a ripercorrere la stessa curva tensione-deformazione se nuovamente sottoposto ad una medesima storia di carichi tangenziali: il comportamento tensione-deformazione è quindi "stabile", e permette di essere modellato sempre con un'unica coppia di valori dei parametri  $G(\gamma) \in D(\gamma)$ .

Anche in questo caso è lecito ipotizzare, che gli stessi fattori che influenzano  $G(\gamma)$  a medie deformazioni ne regolino anche lo smorzamento  $D(\gamma)$  anche se con un peso diverso.

In generale per i terreni incoerenti, a parità delle altre condizioni, si ha che:



- D(γ)/D<sub>0</sub> diminuisce all'aumentare della pressione media p', nel caso di argille n.c., mentre è tendenzialmente costante per le argille o.c.
- $D(\gamma)/D_0$  diminuisce al'aumentare di IP.
- $D(\gamma)/D_0$  non risente del grado di sovraconsolidazione OCR.
- $D(\gamma)/D_0$  diminuisce tendenzialmente all'aumentare del grado di cementazione c.

Si riporta di seguito la relazione di Ishibashi e Zang (1993):

$$D = 0.333 \cdot \frac{1 + \exp(-0.0145Ip^{1.3})}{2} \cdot \left[ 0.586 \cdot \left(\frac{G}{G_0}\right)^2 - 1.547 \frac{G}{G_0} + 1 \right]$$

Si riportano di seguito anche le curve teoriche proposte rispettivamente da Vucetic e Dobry (1991):



Figura 15– Curve di decadimento secondo Vucetic e Dobry (1991)

A deformazioni elevate ( $\gamma > \gamma_v$ ), sopra la soglia volumetrica, il comportamento del terreno diviene affetto in maniera significativa da modifiche irreversibili: si evidenzia l'effetto dei fattori legati alla non monotonicità delle sollecitazioni: le caratteristiche di deformabilità del terreno, lette in termini di parametri di rigidezza e dissipazione, variano all'aumentare del numero di cicli.

Pagina 54 di 688





# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |

I materiali manifestano tendenza alla degradazione progressiva, segnalata dall'incremento di deformazioni tangenziali non recuperabili: tale fenomeno è controllato sia dalle variazioni di pressione neutra sia dal deterioramento dei legami interparticellari. Dopo escursioni a deformazioni maggiori di  $\gamma_v$ , una nuova fase di carico deviatorico darà quindi luogo ad una risposta iniziale **(Go e Do)** del terreno modificata rispetto a quella esibita dal materiale non presollecitato.

L'insieme dei fenomeni appena descritti viene indicato come **degradazione ciclica**. L'approccio lineare equivalente precedentemente introdotto è improponibile, perché le relazioni  $G(\gamma) e D(\gamma)$  non sono più univoche (comportamento instabile). In tali casi, può essere sufficiente una generalizzazione del modello con l'introduzione dell'effetto del numero dei cicli N. Generalmente si ha che:

Generalmente si na che:

- **D**<sub>0</sub>, **D**(γ)aumentano tendenzialmente col numero dei cicli N (argille o.c. e argille n.c.).
- $G_0$ ,  $G(\gamma)$  diminuiscono col numero dei cicli N (argille n.c.).

## 2.3.6 Coefficienti di permeabilità e di consolidazione primaria

Nella definizione delle caratteristiche di permeabilità si farà riferimento ai risultati:

- Di prove di laboratorio (edometri) in corrispondenza di pressioni verticali efficaci pari a quelle geostatiche, ovvero in corrispondenza di indici dei vuoti pari a quelli iniziali e<sub>o</sub>.
- Dell'applicazione della seguente correlazione empirica (Rocchi, 2003), applicabile a condizioni di pressioni verticali efficaci pari a quelle geostatiche:

$$\log \frac{e}{e_L} = 1.22 + 0.19 \cdot \log k_v$$

essendo:

e = indice dei vuoti corrente

e<sub>L</sub> = indice dei vuoti corrispondente al limite liquido

- $k_v$  = coefficiente di permeabilità verticale corrente un cm/sec.
- Delle prove di permeabilità tipo Lefranc in foro.

Il coefficiente di permeabilità con l'indice dei vuoti corrente, potrà essere stimata sulla base della seguente espressione:

$$\log k = \log k_o - \frac{e_o - e}{C_k}$$

essendo:

k = coefficiente di permeabilità corrente



 $k_o$  = coefficiente di permeabilità corrispondente all'indice dei vuoti iniziale  $e_o$ 

e = indice dei vuoti corrente

e<sub>o</sub> = indice dei vuoti iniziale

 $C_k = 0.5 \cdot e_o$ .

- Dalle prove edometriche si ricavano i coefficienti di permeabilità in direzione verticale k<sub>v</sub>;
- Dalle prove in foro i coefficienti di permeabilità in direzione orizzontale k<sub>h</sub>.

## 2.3.7 Coefficienti di consolidazione primaria e secondaria

l coefficienti di consolidazione primaria  $c_v$  e secondaria  $c_{\alpha}$ , utilizzabili nell'ambito di teorie di consolidazione convenzionali e a problemi di flusso principalmente nella direzione verticale, saranno ricavati dalle prove di laboratorio (edometri).



# 2.4 Criteri per la caratterizzazione degli Ammassi rocciosi

## 2.4.1 Descrizione mineralogica e caratteristiche fisiche

Attraverso l'analisi delle prove di laboratorio su provini, laddove disponibili, potrà essere effettuata una descrizione mineralogica nonché potranno essere determinati i valori dei pesi di volume e del grado di saturazione.

#### 2.4.2 Resistenza e deformabilità delle rocce costituenti l'ammasso

I valori di resistenza potranno essere determinati dalle prove di compressione non confinata effettuate in laboratorio.

Per la deformabilità della matrice si ha che:

$$E_{50} = \frac{\frac{\sigma_c}{2}}{\left(\varepsilon_a\right)_{\frac{\sigma_c}{2}}}$$

Essendo  $\varepsilon_a$  la deformazione corrispondente a  $\sigma_c/2$ .

Tale valore risente dell'eventuale disturbo del campione e dalle caratteristiche del medesimo (campione irregolare, disturbato, con discontinuità,...).

## 2.4.3 Resistenza al taglio lungo le discontinuità naturali

I modelli di mezzo discontinuo normalmente utilizzati sono di tipo rigido o elasto-plastico.

Dal punto di vista della resistenza a i giunti viene attribuita una resistenza nulla a trazione e una resistenza a taglio funzione dello sforzo normale, usualmente definita con un criterio lineare o con un criterio non lineare; quest'ultimo rappresenta meglio il comportamento di giunti scabri privi di riempimento.

Il criterio non lineare suggerito è quello di Barton (1974), definito dalla relazione seguente:

 $\tau = \sigma_n \tan [ JRC \cdot \log 10 ( JCS / \sigma_n) + \phi_r ]$ 



essendo:

JRC = Joint Roughness Coefficient (coefficiente di scabrezza)

JCS = Joint Wall Compressive Strength (coefficiente di resistenza delle pareti)

 $\phi_r$  = angolo di attrito residuo

Il criterio di Barton può essere linearizzato in modo da avere parametri di resistenza in termini di c' e  $\phi$ ' mediante le seguenti equazioni:

$$\phi = \operatorname{arc} \tan\left(\frac{\partial \tau}{\partial \sigma_n}\right)$$

$$\frac{\partial \tau}{\partial \sigma_n} = \tan\left(JRC \cdot \log_{10}\left(\frac{JCS}{\sigma_n}\right) + \phi_b\right) - \frac{\pi \cdot JRC}{180 \cdot \ln 10} \cdot \left[\tan^2\left(JRC \cdot \log_{10}\left(\frac{JCS}{\sigma_n}\right) + \phi_r\right) + 1\right]$$

 $c = \tau - \sigma_n \cdot \tan \phi$ 

JRC e JCS essi possono essere determinati da apposite prove di taglio da eseguire sulle discontinuità.

In mancanza di tali prove si può ricorrere ai dati dei rilievi geostrutturali e facendo ricorso alle correlazioni empiriche. Al proposito si riporta di seguito quanto proposto per **JRC** da Barton (1977); **JCS** è determinato mediante misure con martello di Schimdt.

| Stretto                       | Ponte sullo Stretto di Me | essina | I          |
|-------------------------------|---------------------------|--------|------------|
| di Messina                    | PROGETTO DEFINITI         | VO     |            |
| RELAZIONE GEOTECNICA GENERALE | Codice documento          | Rev    | Data       |
|                               | CB0057_F0                 | F0     | 20/06/2011 |

|                                         | JRC = 0 - 2   |
|-----------------------------------------|---------------|
|                                         | JRC = 2 - 4   |
|                                         | JRC = 4 - 6   |
|                                         | JRC = 6 - 8   |
|                                         | JRC = 8 - 10  |
| ~                                       | JRC = 10 - 12 |
| ~~~~~                                   | JRC = 12 - 14 |
| ~~~~~                                   | JRC = 14 - 16 |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | JRC = 16 - 18 |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | JRC = 18 - 20 |
| 0 5 cm 10                               |               |

Figura 16– Profili tipici secondo Barton (1977)

## 2.4.4 Classificazioni dell'ammasso

Si adotta il sistema tradizionale di classificazione di Bieniawski (1989).

Per ogni litotipo, in base a quanto scaturito dai rilievi geostrutturali, viene stimato il parametro  $RMR_{89}$  come somma dei seguenti 8 indici (I1 $\rightarrow$ I8):



#### • Resistenza alla compressione semplice della roccia intatta (I1)

| Resistenza alla compressione semplice | l1 |
|---------------------------------------|----|
| σ <sub>c</sub> (MPa)                  |    |
| > 250                                 | 15 |
| 100÷250                               | 12 |
| 50÷100                                | 7  |
| 25÷50                                 | 4  |
| 5÷25                                  | 2  |
| 1÷5                                   | 1  |
| < 1                                   | 0  |

# • Qualità della roccia RQD (I2)

| RQD (%) | 12 |
|---------|----|
| 90÷100  | 20 |
| 75÷90   | 17 |
| 50÷75   | 13 |
| 25÷50   | 8  |
| < 25    | 3  |

• Spaziatura delle discontinuità (**I3**)

|               | 13 |
|---------------|----|
| > 2 m         | 20 |
| 0.6 m÷2 m     | 15 |
| 200 mm÷600 mm | 10 |
| 60 mm÷200 mm  | 8  |
| < 60 mm       | 4  |

• Lunghezza delle discontinuità (**I4**)

| Ĺ         | 14 |
|-----------|----|
| < 1 m     | 6  |
| 1 m÷3 m   | 4  |
| 3 m÷10 m  | 2  |
| 10 m÷20 m | 1  |
| > 20 m    | 0  |



• Apertura delle discontinuità (I5)

| н           | 15 |
|-------------|----|
| 0 mm        | 6  |
| > 0.1 mm    | 5  |
| 0.1 mm÷1 mm | 4  |
| 1 mm÷5 mm   | 1  |
| > 5 mm      | 0  |

• Condizioni delle superfici di discontinuità in termini di scabrezza (16)

| Descrizione  | 16 |
|--------------|----|
| Molto rugose | 6  |
| Rugose       | 5  |
| Poco rugose  | 3  |
| Ondulate     | 1  |
| Lisce        | 0  |

#### • Caratteristiche del riempimento delle discontinuità (17)

| Descrizione – spessore | 17 |
|------------------------|----|
| Assente                | 6  |
| Compatto – < 5 mm      | 4  |
| Compatto – > 5 mm      | 2  |
| Tenero – < 5 mm        | 2  |
| Tenero – > 5 mm        | 0  |

• Condizioni delle superfici di discontinuità in termini di alterazione (**I8**)

| Descrizione    | 18 |
|----------------|----|
| Non alterate   | 6  |
| Poco alterate  | 4  |
| Alterate       | 2  |
| Molto alterate | 2  |
| Decomposte     | 0  |

Nel calcolo di RMR<sub>'89</sub>:

 Non si terrà conto dell'indice che descrive qualitativamente l'orientamento più o meno favorevole delle discontinuità (incluse quelle dovute alla stratificazione) rispetto alle opere da realizzare; ove rilevante/possibile tale aspetto verrà messo in conto nella definizione del modello geometrico da utilizzare nelle analisi di progetto.



 L'indice legato alla presenza dell'acqua verrà assunto pari a quello associabile a condizioni "dry". Gli effetti della presenza dell'acqua verranno messi in conto nella definizione del modello geotecnico da utilizzare nelle analisi di progetto.

Il parametro GSI (Geological Strength Index) verrà valutato con la seguente espressione (vedi Sjoberg, 1997):

 $GSI = RMR_{'89} - 5$ 

#### 2.4.5 Modellazione dell'ammasso

In considerazione dell'elevato grado di fratturazione e delle dimensioni delle opere da realizzare, la caratterizzazione geotecnica di tali formazioni verrà fatta facendo tendenzialmente riferimento allo schema concettuale di <u>mezzo continuo</u> (omogeneo o stratificato) facendo riferimento ai sistemi di classificazione precedentemente descritti.

#### 2.4.6 Parametri dell'ammasso

Nel caso si debba utilizzare il <u>modello continuo</u> l'inviluppo delle resistenze dell'ammasso roccioso in condizioni "undisturbed" o "disturbed" verrà valutato sulla base di quanto riportato in Brown & Hoek (1988), Hoek & Brown (1988), Hoek, Kaiser & Bawden (1995), Hoek et al (2002). L'ammasso roccioso verrà descritto per ogni litotipo dal seguente criterio di rottura:

$$\sigma_1 = \sigma_3 + \sigma_c \cdot \left( m_b \cdot \frac{\sigma_3}{\sigma_c} + s \right)^a$$

essendo:

 $m_b = m_i \cdot e^{\frac{GSI-100}{28-14 \cdot D}}$ 

 $s = e^{\frac{GSI-100}{9-3 \cdot D}}$ 

Pagina 62 di 688



D = 0 per "undisturbed rock masses"

D = 1 per "disturbed rock masses"

$$a = \frac{1}{2} + \frac{1}{6} \cdot \left( e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}} \right)$$

GSI = RMR<sup>,</sup>89 –5

m<sub>i</sub> = coefficiente relativo alla roccia intatta

 $\sigma_{\text{1}}\text{'}$  = tensione principale efficace maggiore

 $\sigma_{\text{3}}{}^{\text{\prime}}$  = tensione principale efficace minore

 $\sigma_c$  = resistenza alla compressione semplice della roccia intatta.

Per il coefficiente m<sub>i,</sub> in mancanza di dati sperimentali, si farà riferimento a quanto riportato nella seguente tabella, in quanto, in mancanza di prove specifiche è stato ritenuto il modo tecnicamente più affidabile di procedere:



#### Coefficiente m<sub>i</sub> relativo alla roccia intatta (Hoek, Kaiser e Bawden, 1995)

| Rocce        | m <sub>i</sub> (-) |
|--------------|--------------------|
| Metamorfiti  | 33                 |
| Conglomerato | 22                 |
| Arenaria     | 19                 |
| Calcare      | 10                 |
| Argilliti    | 4                  |

In presenza di ammassi rocciosi eterogenei, alternanze di strati competenti e di strati con caratteristiche geotecniche più scadenti, il valore di GSI valutato sulla base di RMR<sub>'89</sub> verrà messo a confronto anche con quello stimabile sulla base della carta proposta da Hoek et al. (1998):





Figura 17– Carta del GSI, Hoek et al. (1998)

I criteri di rottura espressi in termini di tensioni efficaci principali  $\sigma_1$ ' e  $\sigma_3$ ' possono essere trasformati in termini di tensioni di taglio  $\tau$  e di tensioni efficaci normali alla superficie di rottura  $\sigma_n$ '. A tale proposito valgono le seguenti equazioni:

$$\frac{\delta \sigma_1}{\delta \sigma_3} = 1 + a \cdot m_b \cdot \left(\frac{m_b \cdot \sigma_3}{\sigma_c} + s\right)^{a-1}$$

| Stretto<br>di Messina | EurolinK        | Ponte sullo Stretto di Me<br>PROGETTO DEFINITI | essina<br>VO | 1                  |
|-----------------------|-----------------|------------------------------------------------|--------------|--------------------|
| RELAZIONE GEOTE       | ECNICA GENERALE | Codice documento<br>CB0057_F0                  | Rev<br>F0    | Data<br>20/06/2011 |

$$\sigma_{n} = \frac{\sigma_{1} + \sigma_{3}}{2} - \frac{\sigma_{1} - \sigma_{3}}{2} \cdot \frac{\frac{\delta\sigma_{1}}{\delta\sigma_{3}} - 1}{\frac{\delta\sigma_{3}}{\delta\sigma_{3}} + 1}$$
$$\tau = (\sigma_{1} - \sigma_{3}) \cdot \frac{\sqrt{\frac{\delta\sigma_{1}}{\delta\sigma_{3}}}}{\frac{\delta\sigma_{1}}{\delta\sigma_{3}} + 1}$$

In corrispondenza di valori di  $\sigma_n$ ' negativi (trazione) le resistenze al taglio saranno assunte pari a 0 kPa ("tension cut off").

E' quindi possibile determinare un inviluppo alla Mohr Coulomb attraverso una linearizzazione da cui ricavare i valori di **c' e**  $\phi$  in corrispondenza dello stato tensionale di riferimento.

Per quanto riguarda i valori "operativi" di resistenza da utilizzare nelle analisi ingegneristiche; si ha:

- La resistenza in condizioni "undisturbed rock masses" può considerarsi rappresentativa della resistenza di picco dell'ammasso roccioso.
- La resistenza in condizioni "disturbed rock masses" può considerarsi rappresentativa della resistenza in condizioni prossime alle residue.

In contesti non caratterizzati da rotture pregresse o in atto e per analisi convenzionali in cui non venga simulato il decadimento della resistenza si potranno considerare come valori operativi quelli rappresentati dai valori medi tra quelli "undisturbed" e "disturbed" oppure cautelativamente prossimi a quelli "disturbed".

In contesti caratterizzati da rotture pregresse o in atto e per analisi convenzionali si potranno considerare come valori operativi quelli rappresentati dai valori prossimi a quelli "disturbed".

## 2.4.7 Deformabilità

#### 2.4.7.1 Moduli elastici a piccole deformazioni

I moduli iniziali di taglio (G<sub>o</sub>) e di Young (E<sub>o</sub>) iniziali, corrispondenti <u>alle pressioni efficaci</u> <u>geostatiche medie p<sub>o</sub>'</u>, possono essere ricavati dai valori delle velocità delle onde di taglio V<sub>s</sub>



utilizzando le seguenti equazioni:

$$G_{o1} = \frac{\gamma_t}{9.81} \cdot (V_s)^2 \quad \text{(kPa)}$$
$$E_{o1} = G_{o1} \cdot 2 \cdot (1 + \nu') \text{ (kPa)}$$

#### essendo:

- $\gamma_t$  = peso di volume naturale del terreno in kN/m<sup>3</sup>
- v' = rapporto di Poisson del terreno = 0,15  $\div$  0,20

 $V_s$  = velocità di propagazione delle onde di taglio in m/sec.

La velocità di propagazione delle onde di taglio  $V_s$  può essere ricavata direttamente dalle prove geofisiche down hole.

I moduli iniziali di taglio (G<sub>o</sub>) e di Young (E<sub>o</sub>) iniziali, corrispondenti <u>alle pressioni efficaci medie</u> <u>generiche p'</u>, possono essere ricavati dalle seguenti espressioni:

$$G_0/p_a = A x (p'/p_a)^n$$
 (kPa)

 $E_{o} = G_{o} \cdot 2 \cdot (1 + v') \dots (kPa)$ 

#### 2.4.7.2 Moduli elastici a medie deformazioni

- Per problemi ingegneristici caratterizzati dallo sviluppo di deformazioni dell'ordine di 10<sup>-3</sup> (gallerie, opere di sostegno,...) i moduli operativi potranno essere definiti come (1/3÷1/5)·E<sub>0</sub>. I moduli iniziali potranno essere scalati di un fattore che dipenderà dal confronto con i valori operativi ottenuti come di seguito esposto.
- I moduli di Young "operativi" E dell'ammasso roccioso possono essere generalmente stimati anche sulla base delle seguente espressione (Bieniawski, 1978; Serafim & Pereira, 1983; Hoek et al., 2002):



20/06/2011

| CB0057_F0 | F0 |
|-----------|----|
|           |    |

$$E' = 1000 \cdot \left(1 - \frac{D}{2}\right) \cdot \sqrt{\frac{\sigma_c}{100} \cdot 10^{(GSI - 10)/40}}$$

per 10 < GSI < 50 e per  $\sigma_c$  < 100 MPa.

essendo:

D = coefficiente di disturbo, variabile tra 0 e 1.(D=1 per rilevati, D=0,5 in generale)

Co

 I moduli di Young relativi alle fasi di carico e di scarico possono essere determinati dalle prove dilatometriche sulla base delle relazioni seguenti: Em = 3 / (1/E1 + 1/E2 + 1/E3) Ei=(1+v) Δp D0 / ΔDj

#### essendo:

Ei = Modulo di Young nella direzione del trasduttore i-esimo 1 o 2 o 3;

v = Coefficiente di Poisson = 0.25;

 $\Delta p$  = Intervallo di pressione radiale applicata;

D<sub>0</sub> = Diametro iniziale del foro;

 $\Delta D_j$  = Variazione diametrale per l'applicazione di P misurata dal trasduttore iesimo.

In generale, laddove le misurazioni lo renderanno possibile, si privilegeranno i valori di scarico e ricarico, soprattutto nel caso di prove effettuate in profondità e quindi rappresentative del comportamento di opere come gallerie oppure fronti di scavo.

## 2.4.8 Permeabilità

I coefficienti di permeabilità dell'ammasso roccioso sono determinati con prove di permeabilità Lefranc e Lugeon, laddove disponibili.

## 2.4.9 Stato iniziale

Lo stato tensionale in sito è stabilito in base a considerazioni di carattere geologico e può essere determinato in base a prove all'interno dei sondaggi (fatturazione idraulica)

Pagina 68 di 688



# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

| Codice documento |
|------------------|
| CB0057_F0        |

In mancanza di tali elementi, a partire dalla formulazione di Heim, lo stato tensionale tensionale tende alle condizioni di tipo idrostatico in profondità, a causa di fenomeni viscosi ed a causa della ridotta capacità di assorbire elevate tensioni deviatoriche.

In prima approssimazione quindi,

- per elevate profondità è plausibile definire verticali ed orizzontali le tensioni principali e pari alla profondità moltiplicata per i pesi di volume.
- per basse profondità (<30÷40m), in presenza di irregolarità morfologiche ed in funzione della storia geologica le tensioni principali non sono più verticali ed orizzontali ed una maniera per determinare la loro intensità è quello di effettuare specifiche analisi numeriche atte a simulare i passi salienti della storia tensionale del deposito (erosione, deposizione,...) inserendo le opportune condizioni al contorno (geometriche, tensionali,...).



# 2.5 Caratterizzazione geotecnica

Prima di procedere si ritiene necessario sottolineare che la caratterizzazione geotecnica delle principali formazioni si è occupata dell'individuazione dei valori dei parametri fisici e meccanici alla luce:

- 1) di una geologia dei tracciati stradali e ferroviari rivelatasi particolarmente complessa;
- 2) della disponibilità di un numero e quindi di una distribuzione delle indagini che ha risentito della complessità geologica delle formazioni man mano che queste venivano investigate: al riguardo c'è da dire che il numero di indagini e quindi il grado di approfondimento della caratterizzazione geotecnica vanno letti in funzione del grado di importanza, e cioè di interferenza delle formazioni con le opere.
- di quanto prescritto dal D.M. del 14/01/2008, in base al quale i "valori caratteristici" devono essere ottenuti certamente da specifiche prove in sito ed in laboratorio ma contemporaneamente effettuando una stima ragionata e cautelativa del valore del parametro considerato.

Alla luce di tali criticità la caratterizzazione delle formazioni in esame non è stata effettuata solo in base a considerazioni di carattere statistico ma anche in base:

- all'individuazione del tipo di problema geotecnico, e quindi della tipologia di opera, come chiave di lettura per la determinazione del parametro: a questo scopo la caratterizzazione fa riferimento, non tanto, per ogni ogni tratta, all'opera specifica in sé, ma alla tipologia di opera (fondazione, galleria,...) come discriminante per la scelta nell'ambito dei range ottenuti (es: scelta in funzione dell'individuazione di un problema di scarico tensionale, di grandi o piccole deformazioni,...)
- 2) alla verifica del grado di rappresentatività, del numero delle prove e delle correlazioni da cui si sono ottenuti i dati.
- 3) alla verifica della compatibilità dei dati con i metodi di analisi progettuale usualmente utilizzati nella pratica: in sostanza si ritiene che la caratterizzazione geotecnica debba dare al progettista gli strumenti con cui effettuare quelle analisi (convenzionali o no) che egli stesso riterrà opportuno utilizzare (Vd. Sezione 4) in funzione del tipo e del grado di importanza o di approfondimento dello studio progettuale (es: fornire sia i parametri di picco



# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

| Codice documento |
|------------------|
| CB0057_F0        |

che quelli residui per consentire un potenziale utilizzo di un legame costituivo di "strain softening", fornire invece parametri di resistenza "operativi" per l'utilizzo più convenzionale di un legame elastoplastico perfetto (Mohr-Coulomb), fornire gli inviluppi di resistenza per analisi più approfondite che tengano conto della dipendenza della resistenza dallo stato tensionale, etc...)

4) all'esperienza ed ai dati di letteratura, laddove disponibili, relativi a contesti simili.

La caratterizzazione geotecnica riportata nei paragrafi seguenti riguarda le principali formazioni geologiche; di seguito si riporta l'elenco delle medesime e la loro "distribuzione" lungo i tracciati:

| Conglomerato di Pezzo         | 59% |
|-------------------------------|-----|
| Plutoniti                     | 31% |
| Sabbie e Ghiaie di Messina    | 6%  |
| Depositi terrazzati marini    | 3%  |
| Depositi costieri di spiaggia | <1% |
| Trubi                         | <1% |
| Depositi di versante          | <1% |
| Depositi alluvionali          | <1% |
| Calcareniti di S.Corrado      | <1% |
| Formazione di Le Masse        | <1% |

Tale distribuzione, in relazione alla quantità di indagini disponibili, ha reso possibile e significativa un'analisi dei risultati per tratte della sola formazione maggiormente presente.

Le principali tipologie di opere geotecniche previste sui tracciati stradali e ferroviari sono:

- Fondazioni dirette o indirette;
- Opere di sostegno (berlinesi, muri);
- Gallerie naturali ed artificiali;
- Rilevati e trincee.

Per ciascuna formazione e per ciascun parametro geotecnico rappresentativo, i dati di indagine sono stati riportati in Allegato in forma tabellare e grafica in modo che sia percepibile il "range" di variazione; i principali dati sperimentali sono stati dapprima raggruppati in funzione della profondità

| Stretto                       | Ponte sullo Stretto di Messina |     |            |
|-------------------------------|--------------------------------|-----|------------|
| di Messina                    | PROGETTO DEFINITIVO            |     |            |
| RELAZIONE GEOTECNICA GENERALE | Codice documento               | Rev | Data       |
|                               | CB0057_F0                      | F0  | 20/06/2011 |

e poi a seguire anche in funzione dell'appartenenza al sondaggio/prova.

## 2.5.1 Inquadramento geologico, geomorfologico, idrogeologico

Di seguito si riporta un sintetico inquadramento geologico, geomorfologico, idrogeologico e geotecnico dell'area interessata dallo scavo delle opere stradali realizzate in sotterraneo del versante Calabrese. Per il dettaglio di tali caratteristiche si rimanda ai singoli elaborati: Relazione geologica generale, Relazione geomorfologica generale, Relazione idrogeologica generale e Relazione geotecnica generale.

## 2.5.1.1 Inquadramento geologico

L'evoluzione geologica del territorio comprendente le due aree sulle sponde dello Stretto è riconducibile alla complessa storia deformativa della Sicilia nord-orientale e della Calabria, il cui assetto strutturale è stato da tempo oggetto di analisi e di diversa interpretazione da parte di vari Autori, in un contesto più ampio che comprende l'intero Arco Calabro-Peloritano.

Nel territorio considerato restano compresi termini della Catena Kabilo-Calabride, costituita da unità di basamento ercinico con resti delle originarie coperture sedimentarie meso-cenozoiche. Al tetto di tali unità si hanno successioni terrigene sin - e tardorogeniche a carattere fliscioide di età supraeocenica e oligo-miocenica. Seguono depositi sia terrigeni che evaporitici di età compresa tra il Serravalliano ed il Pleistocene, appartenenti a cicli sedimentari sovrapposti, riscontrabili principalmente lungo le fasce costiere.

I terreni più antichi affioranti nelle aree oggetto di studio appartengono alla terminazione meridionale dell'Arco Calabro-peloritano, che costituisce un segmento dell'orogene appenninicomaghrebide, esteso dall'Appennino meridionale alla Sicilia. Detti terreni, appartenenti all'unità tettonica dell'Aspromonte, costituiscono il basamento dei sedimenti miocenici e plio-pleistocenici, più estesamente affioranti nelle aree in esame.

## 2.5.1.2 Inquadramento geomorfologico

Il rilevamento condotto nell'area ha consentito di ricostruire il quadro geomorfologico generale che nei suoi punti salienti può essere così sintetizzato:




RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011

1) Il motivo geomorfologico di fondo e caratteristico dell'area è legato alla presenza, fino alle quote massime della zona rilevata, dell'alternanza di superfici terrazzate di origine marina e delle scarpate che le delimitano e, quindi, dall'alternanza tra superfici blandamente inclinate e versanti più o meno elevati ed acclivi.

2) Sempre in relazione alle recenti variazioni eustatiche e, guindi, dei livelli di base rispetto alla circolazione idrica continentale, le forme primarie terrazzate sono state incise ad opera delle acque incanalate che si sono organizzate in reticoli di estensione limitata e a basso grado di gerarchizzazione, guindi di formazione recente. I rapidi abbassamenti relativi del livello del mare hanno prodotto forti fasi di incisione, con la formazione delle valli tipiche della zona, cioè strette e profonde e delimitate da versanti ad elevata inclinazione. Ovviamente, in funzione della tipologia del substrato entro cui agiscono le acque incanalate, la morfologia appena descritta può essere più o meno accentuata: morfologie più accentuate sono riscontrabili nei settori di attraversamento di litologie guali il basamento cristallino ed il Conglomerato di Pezzo, mentre forme relativamente più dolci sono tipiche delle zone di attraversamento delle Sabbie e Ghiaie di Messina, più erodibili e soggette a fenomeni di degradazione. Nell'ambito della morfologia fluviale rimane inoltre traccia anche delle fasi di stazionamento del livello del mare, che hanno condotto alla formazione di terrazzi fluviali di cui si riscontrano sporadici lembi residui su più livelli. L'evidenza raccolta in alcuni luoghi di alvei che incidono le alluvioni recenti, testimoniano di una dinamica fluviale in cui ancora si registrano fasi erosive in alternanza alle fasi deposizionali.

3) Ulteriore fattore morfogenetico che segue e, in parte, si sovrappone all'azione fluviale è rappresentato dai fenomeni di degradazione e di frana che si impostano principalmente sui versanti formati per azione fluviale e/o marina, determinandone il rimodellamento. La presenza di numerosi forme e depositi attivi o al più quiescenti di origine gravitativa e, più in generale, dovuti a processi di denudazione/degradazione, mette in risalto un quadro di instabilità generalizzata dell'area, in risposta al sollevamento rapido e di grande entità che ha interessato l'area nel Quaternario.

I principali fattori di dissesto nell'area possono essere sintetizzati come segue:

1) Possibile occorrenza di fenomeni alluvionali, con coinvolgimento dei tratti terminali dei principali torrenti, ove si possono avere esondazioni e/o la deiezione dell'elevato trasporto solido, di cui i coni alluvionali rappresentano la testimonianza.

2) Processi di instabilità diffusi sui versanti locali e che si esplicano sia tramite processi erosivi lato sensu (degradazione) sia tramite fenomeni franosi che abbracciano un'ampia tipologia di cinematismi. Tra questi meritano menzione, per dimensione e stato di attività, le frane traslative e





RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011

rototraslative del settore nord; in particolare, le frane con componente traslativa prevalente e di crollo/ribaltamento sono concentrate sia in destra che in sinistra idrografica dei valloni compresi tra i torrenti S. Trada e Zagarella (Figura 2.5.1.18), mentre le frane con componente rotazionale più apprezzabile sono per lo più concentrate sul versante che borda a sud il tracciato della A3 tra lo svincolo di S. Trada e l'area di servizio "Villa San Giovanni" (Figura 2.5.1.19). In quest'ultimo settore sono inoltra diffuse alla base del versante anche accumuli tipo coni di origine mista, a testimoniare la possibile attivazione di fenomeni di erosione, trasporto e deposizione delle coltri detritiche prodotte dalla sommità e lungo il versante stesso, secondo meccanismi di flusso detritico incanalato lungo i solchi di erosione concentrata.

Fenomeni di dissesto legati sia a frane (seppure mediamente di dimensioni minori) che a processi di degradazione sono presenti anche nei settori meridionale ed occidentale dell'area, dove si osservano in particolare diffusi fenomeni franosi alla tesata e lungo i fianchi delle valli più incise e ampie coltri colluviali che registrano gli intensi processi erosivo-deposizionali che coinvolgono soprattutto le Sabbie e Ghiaie di Messina (Figura 2.5.1.20 e Figura 2.5.1.21).





Figura 2.5.1.18 - Inquadramento geomorfologico; valloni compresi tra i torrenti S. Trada e Zagarella





Figura 2.5.1.19 - Inquadramento geomorfologico; versante tra lo svincolo del tracciato della A3 di S. Trada e l'area di servizio "Villa San



Figura 2.5.1.20 - Inquadramento geomorfologico; settori meridionale ed occidentale dell'area



| Codice documento | Rev | Data       |
|------------------|-----|------------|
|                  | 50  | 20/06/2011 |
| CB0057_F0        | FU  | 20/06/2011 |

Ponte sullo Stretto di Messina

**PROGETTO DEFINITIVO** 



Figura 2.5.1.21 - Inquadramento geomorfologico; settori meridionale ed occidentale dell'area

#### 2.5.1.3 Inquadramento stratigrafico lungo il tracciato

Di seguito si descrivono in sintesi le litologie presenti lungo il tracciato autostradale a partire dalla più antica alla più recente.

La successione stratigrafica riconosciuta comprende, dal basso verso l'alto, i seguenti termini ai quali, se esistente, è stata attribuita la denominazione formazionale di letteratura:

- 1) Substrato cristallino,
- 2) Conglomerato di Pezzo,
- 3) Trubi,
- 4) Calcareniti di S.Corrado,
- 5) Formazione di Le Masse,
- 6) Ghiaie e sabbie di Messina,
- 7) Terrazzi marini.

In aggiunta, sono stati distinti i seguenti depositi superficiali:

8) Depositi alluvionali,

Eurolink S.C.p.A.



- 9) Eluvio-colluvio,
- 10) Depositi di piana costiera recenti ed attuali,
- 11) Depositi di versante,
- 12) Riporti antropici.

L'intervallo temporale coperto dalla successione sedimentaria cenozoico-quaternaria, sovrastante il substrato paleozoico cristallino-metamorfico, è Tortoniano (Miocene sup.) – Olocene.

Lo schema dei rapporti stratigrafici riportato in Figura 2.5.1.22, sintetizza le tipologie di contatti geologici laterali e verticali interpretati tra i suddetti termini stratigrafici ed, in particolare, mette in luce il carattere trasgressivo di tutte le sovrapposizioni litologiche riconosciute. Di particolare rilievo è il contatto disconforme tra i termini cristallino-metamorfici paleozoici (Substrato cristallino) ed i sovrastanti depositi sedimentari, ascrivibili al Conglomerato di Pezzo, alla Formazione di Le Masse o anche alle Ghiaie e Sabbie di Messina.

### SCHEMA DEI RAPPORTI STRATIGRAFICI



Figura 2.5.1.22 - Schema dei rapporti stratigrafici. 1) Depositi di spiaggia attuale e recente con lenti torbose; 2) Depositi marini terrazzati; 3) Ghiaie e sabbie di Messina; 4) Calcareniti di S. Corrado; 5) Formazione di Massa; 6) Trubi; 7) Conglomerato di Pezzo; 8) Substrato granitico e metamorfico.





Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011

#### SUBSTRATO CRISTALLINO-METAMORFICO

RELAZIONE GEOTECNICA GENERALE

Sono state distinte in affioramento due litologie ascrivibili al substrato paleozoico: metamorfiti di medio-alto grado (Figura 2.5.1.23) e rocce cristalline granitoidi (Figura 2.5.1.24), rispettivamente nei settori settentrionale e centro-meridionale dell'area di intervento.

Le metamorfiti affioranti nel settore settentrionale sono costituite da paragneiss che lateralmente tendono a passare a micascisti biotitici attraversando petrofacies intermedie. Tali litotipi si presentano di colore grigio, a grana media-fina e tessitura da massiva a foliata.

Le rocce cristalline graniotoidi del settore centro-meridionale sono, invece, costituiti da leucogranodioriti a due miche e graniti-monzograniti. Esse contengono xenoliti metamorfici, allungati, a prevalente biotite con inclusi rotondeggianti, e a biotite e plagioclasi; hanno una struttura granulare a tessitura prevalentemente isotropa e costituiscono masse o filoni da decimetrici a metrici intrusi nelle metamorfiti di medio e alto grado.



Figura 2.5.1.23 - Affioramento di paragneiss sul versante sud del vallone Santa Trada.





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |



Figura 2.5.1.24 - Affioramento di rocce granitoidi in corrispondenza del Vallone Piria

Il contatto tra le masse granitoidi e le rocce metamorfiche si sarebbe realizzato in ambito di metamorfismo regionale; a tale contatto, ipotizzato sulla base dell'evidenza di affioramento dei due litotipi, non è stato possibile attribuire una geometria definita. Pertanto, il limite geologico cartografato è da ritenersi valido in prima approssimazione. Tuttavia, esso non interferisce con le opere in sotterraneo all'interno dell'area di intervento.

All'interno dei termini granitoidi è stato localmente riscontrato un sensibile grado di alterazione idrotermale che conferisce alla roccia un aspetto brecciato, a luoghi con colorazione biancastra e farinosa al tatto. Tali caratteristiche si osservano, in particolare, lungo una fascia a direzione N-NE S-SW, in corrispondenza di un allineamento tettonico ben visibile anche da foto aree in corrispondenza del Vallone Piria. Tale fascia può essere, quindi, associata ad un ampia zona cataclastica, ipotesi questa avvalorata ulteriormente dalla presenza di un' intensa fatturazione degli ammassi rocciosi immediatamente adiacenti. (Figura 2.5.1.25)





Figura 2.5.1.25 - Fascia cataclastica nel substrato cristallino granitoide, in prossimità della testata del Vallone Piria.

Le evidenze di affioramento e di sondaggio consentono di ritenere determinante, ai fini della caratterizzazione geomeccanica dell'ammasso roccioso, la presenza di un fratturazione, a luoghi molto intensa (Figura 2.5.1.26, parte destra), legata alla coesistenza di più sistemi di discontinuità pervasivi che, tuttavia, non conferiscono all'ammasso una spiccata anisotropia. Lungo il sistema tettonico Piale – Mortille, il substrato granitico si presenta in affioramento fortemente cementato per ricristillazione di calcite in un fitto reticolo di fratture (Figura 2.5.1.26, parte sinistra).



| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

Ponte sullo Stretto di Messina

**PROGETTO DEFINITIVO** 



Figura 2.5.1.26 - Affioramento del substrato granitico intensamente fratturato affiorante nel settore meridionale (sinistra) e nord-orientale (destra) dell'area di studio.

#### CONGLOMERATO DI PEZZO

E' costituito da un conglomerato poligenico ed eterometrico, a matrice arenacea, da poco a mediamente fino a ben cementato, a stratificazione poco distinta a volte completamente assente. I clasti sono costituiti quasi esclusivamente da rocce del substrato cristallino-metamorfico. I singoli clasti si presentano da sub a scarsamente arrotondati, hanno dimensione variabile, anche superiore al metro ed il deposito si presenta non classato (Figura 2.5.1.27, Figura 2.5.1.28 e Figura 2.5.1.29). Raramente è stata rinvenuta nella matrice tra i clasti la presenza di frammenti lignei carboniosi. Localmente, inoltre, nella parte alta, al di sotto del contatto trasgressivo con i soprastanti depositi ascritti ai Trubi, si rinviene in affioramento ed in sondaggio la presenza di un livello di spessore metrico costituito da sabbie grigie monogranulari a laminazione piano-parallela che a luoghi passano a sabbie gialle ascrivibili ai depositi trasgressivi dei Trubi (Figura 2.5.1.30). Queste evidenze portano ad ipotizzare un ambiente di sedimentazione condizionato dalla vicinanza di rilievi cristallini, caratterizzati da una forte energia del rilievo, soggetti ad intensa erosione. Il materiale smantellato si sarebbe depositato al piede dei rilievi, al margine di una piana costiera o in un ambiente marino litorale, dove subiva una scarsa evoluzione da parte del moto ondoso. Il materiale si sarebbe accumulato prevalentemente allo sbocco delle aree di impluvio con flussi ad alta efficienza, presumibilmente con meccanismi di trasporto in massa gravitativi (debris flow).





RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |



Figura 2.5.1.27 - Affioramenti del Conglomerato di Pezzo nei pressi di Campo Piale.



Figura 2.5.1.28 – Affioramento del Conglomerato di Pezzo nei pressi di Campo Piale (Hotel Panorama).

I depositi del Conglomerato di Pezzo affiorano estesamente nel settore più occidentale dell'area Eurolink S.C.p.A. Pagina 83 di 688



(località Pezzo e Cannitello, versante a monte dell'autostrada SA-RC).

Data la limitata estensione degli affioramenti di Conglomerato di Pezzo la sua caratterizzazione litologica è stata significativamente coadiuvata dall'analisi macroscopica delle carote di sondaggio.



Figura 2.5.1.29 – Affioramento del Conglomerato di Pezzo nei pressi della località Mortille.

Ciononostante, permane in alcuni siti (cfr Opera Terminale) l'oggettiva difficoltà a distinguere inequivocabilmente il Conglomerato di Pezzo dal sottostante substrato cristallino, a causa della mancanza in carota di sondaggio di evidenza di clasti natura metamorfici, all'elevato grado di cementazione che tende ad obliterare l'eventuale natura clastica del deposito ed al ridotto stato di fratturazione osservabile sulle carota.

In base all'insieme dei dati stratigrafici disponibili non è possibile stimare direttamente la potenza massima dell'Unità; tuttavia, le indagini geognostiche hanno reso possibile attribuire al Conglomerato di Pezzo spessori variabili da un minimo di qualche metro ad un massimo di diverse decine di metri (Figura 2.5.1.28 e Figura 2.5.1.29). L'aumento di spessore si osserva da est verso



ovest ed è presumibilmente connesso a geometrie deposizionali del corpo detritico, a loro volta connesse all'evoluzione tettonica sin-sedimentaria.



Figura 2.5.1.30 - Affioramento di sabbie gialle alla base dei Trubi, soprastanti le sabbie grigie a laminazione piano-parallela (affioranti limitatamente alla porzione in basso a destra della foto) al tetto del Conglomerato di Pezzo. È ben visibile il passaggio verso l'alto dalla facies marnoso-limosa a quella calcarenitica dei Trubi. Affioramento ubicato qualche centinaio di metri a nord della stazione di servizio autostradale.

In corrispondenza degli affioramenti disponibili nell'area non è mai stato osservato uno stato di fratturazione pervasiva caratterizzata da giunti persistenti (extraclastici) nell'ammasso roccioso, evidenza che rende più approssimativa rispetto al substrato la definizione di ampiezza delle fasce cataclastiche in corrispondenza degli elementi tettonici principali (Figura 2.5.1.29).

Per quanto attiene invece al grado di cementazione, l'insieme delle evidenze di affioramento e, soprattutto, di sondaggio induce a tenere conto di una ampia variabilità di questa caratteristica relativamente alla quale, tuttavia, non è stato possibile restituire una affidabile zonazione alla scala di lavoro.

Eurolink S.C.p.A.



RELAZIONE GEOTECNICA GENERALE



# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento CB0057\_F0

E' da rilevare che, ad oggi, né in sondaggio né in affioramento è stato osservato il contatto disconforme tra il Conglomerato di Pezzo ed il substrato paleozoico.

Il contenuto fossilifero dell'Unità è pressoché assente (Atzori & Vezzani, 1974). Pertanto l'età di tali depositi (ovvero Tortoniano sup.) è desunta in via indiretta, dalla loro posizione stratigrafica.

#### <u>TRUBI</u>

Sono caratterizzati da marne, marne argillose e marne siltose di colore bianco-giallastro, a frattura concoide, localmente con abbondanti livelli sabbiosi fini di colore grigio chiaro. La stratificazione, non ovunque netta, è medio-sottile (10-50 centimetri) (Figura 2.5.1.31). Questa unità costituisce un livello guida determinante ai fini della ricostruzione dell'assetto geologico–strutturale dell'area In tutta l'area di intervento essi poggiano discordanti sul Conglomerato di Pezzo, con uno hiatus deposizionale relativo all'intero intervallo temporale del Messiniano. A monte dell'abitato di Pezzo, in un affioramento a NW dell'area di servizio della SA-RC, i Trubi poggiano sul Conglomerato di Pezzo con interposizione alla base di un orizzonte di circa 1,5 metri di sabbie giallastre e presentano al tetto, ed in contatto trasgressivo, un orizzonte calcarenitico (Figura 2.5.1.31) e Figura 2.5.1.32).



Figura 2.5.1.31 - Affioramenti della formazione dei Trubi. Si notano i sistemi di faglia mesoscopici e la stratificazione da sub-orizzontale a debolmente immergente verso S.

Lo spessore massimo in affioramento è stato valutato nell'ordine di 20m; in alcuni sondaggi sono

Pagina 86 di 688





RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |

 Rev
 Data

 F0
 20/06/2011

stati raggiunti spessori fino a 30-40m. Tale variabilità di spessori è da connettersi in prima istanza all'articolazione in alti e bassi della superficie morfologica sulla quale essi si sarebbero deposti al di sopra del Conglomerato di Pezzo, livellando la paleomorfologia in esso scolpita. Di particolare rilievo, è l'ispessimento della formazione nel settore posto a sud della zona dell'ancoraggio, nel quale è stata riconosciuta una paleo-depressione orientata NE-SW nella quale i Trubi raggiungono spessore massimo. In alcuni settori dell'area, tale unità risulta mancante per erosione.



Figura 2.5.1.32 - Affioramento del contatto trasgressivo tra la facies marnosa e quella calcarenitica dei Trubi a valle della stazione di servizio autostradale.

La deposizione dei Trubi è legata alla trasgressione del Pliocene inferiore (biozona a Sphaerodinellopsis), con cui si ristabiliscono condizioni deposizionali di tipo marino normale, dopo l'esaurimento della crisi di salinità del Messiniano superiore. Localmente, la rilevata mancanza di Eurolink S.C.p.A. Pagina 87 di 688





RELAZIONE GEOTECNICA GENERALE

## Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento

 Rev
 Data

 F0
 20/06/2011

depositi sedimentari attributi al Messiniano, potrebbe essere imputabile sia ad una fase erosionale pre-pliocenica, sia ad una mancata deposizione in quanto questo settore, già nel Messiniano, avrebbe potuto costituire un alto strutturale.

Datazioni condotte per mezzo della analisi di biozone a micro foraminiferi planctonici hanno consentito di individuare, limitatamente al settore di interesse per l'intervento (ovvero dalla località Campo Piale a Cannitello), un intervallo cronologico di competenza dei Trubi compreso tra lo Zancleano (c.a. 5.3 Ma – biozona a Globogerina puncticulata) ed il Piacenziano (c.a. 2.6 Ma – biozona a Globigerina aemiliana), dunque intrapliocenico. In particolare, i termini più recenti dei Trubi si sovrappongono cronologicamente alla base della Formazione di Le Masse, lungo la scarpata morfologica correlabile all'elemento tettonico Campo Piale-Mortille, mentre i più antichi si rinvengono in affioramento e sondaggio dagli affioramenti all'altezza della stazione di servizio autostradale al settore di competenza della progettanda Opera Terminale (OPTC).

In affioramento i Trubi presentano sistemi di faglie mesoscopiche con rigetti centimetrici a cui non sono associate fasce cataclastiche; nel complesso il grado di fratturazione è basso.

#### FORMAZIONE DI LE MASSE

Si tratta di un'alternanza di spesse bancate di marne argillose, arenarie debolmente cementate, passanti verso l'alto a calcareniti e sabbie con sottili intercalazioni argillose, affioranti estesamente nel settore sud- orientale dell'area di intervento (Figura 2.5.1.33 e Figura 2.5.1.34). I livelli calcarenitici presentano laminazioni piano parallele. L'attribuzione formazionale è tratta dalla letteratura (Di Stefano & Lentini, 1996; Lentini et alii, 2000; Carbone et alii, 2008) che ne riporta anche un contenuto fossilifero ricco in nannoflore del Pliocene medio.





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |



Figura 2.5.1.33 - Affioramento della Formazione di Le Masse in cui è ben visibile la stratificazione dei depositi ghiaioso-sabbiosi e la loro intercalazione in spessori metrici.



Figura 2.5.1.34 - Formazione di Le Masse affiorante nel settore sud-orientale dell'area di intervento. A destra si nota il passaggio graduale verso l'alto ad alternanze tra sabbie e livelli calcarenitici.



Figura 2.5.1.35 - Schema dei rapporti tra i depositi riferiti alla Formazione di le Masse ed il substrato cristallino granitoide lungo il sistema tettonico Piale-Mortille (sinistra).

Tale unità è stata riconosciuta in affioramento in prossimità del sistema tettonico Piale- Mortille, ove essa poggia in discordanza angolare sul substrato cristallino granitoide intensamente fagliato e ribassato verso SW (Figura 2.5.1.35). La chiusura verso nord, al disopra del suddetto sistema di faglia, è riconducibile a una geometria di tipo on-lap con gradi di inclinazione che non superano 10° verso SW. La formazione di Le Masse non risulta comunque interessata da evidenti sistemi di fagliazione.

Lo spessore massimo in affioramento è superiore a 200m.

L'estensione complessiva di formazione è stata desunta tramite l'ausilio di sondaggi geognostici che hanno intercettato tali depositi anche nel settore orientale, al disotto dei depositi dei terrazzi marini, o delle Sabbie e Ghiaie di Messina.

Verso l'alto il passaggio con le sovrastanti Sabbie e Ghiaie di Messina è erosivo. Presentano laminazioni piano parallele ben distinguibili mantenendo spesso una giacitura sub-orizzontale.



Codice documento CB0057\_F0

#### CALCARENITI DI S. CORRADO

Si tratta di calcareniti e calciruditi clastiche e bioclastiche, da moderatamente cementate a cementate, con stratificazione incrociata (Figura 2.5.1.36, Figura 2.5.1.37destra). Sono presenti orizzonti di sabbie giallastre, grossolane, addensate e laminate, a luoghi di qualche metro di spessore (Figura 2.5.1.38). Alla base è stato a luoghi rinvenuto una banco di brecce cementate costituite da clasti spigolosi di roccia metamorfica e granitici di dimensione da centimetrica a decimetrica, in matrice micritica (Figura 2.5.1.37 sinistra).



Figura 2.5.1.36 – Affioramento di Calcareniti di S.Corrado presso Cannitello (livelli lapidei di natura bioclastica).





RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |



Figura 2.5.1.37 - Dettagli di affioramenti della Formazione di S. Corrado in cui è ben visibile l'abbondante contenuto bioclastico (foto di destra) e la presenza, a luoghi, di blocchi cristallino-metamorfici cementati da matrice micritica (foto di sinistra).



Figura 2.5.1.38 - Affioramento di Calcareniti di S.Corrado lungo la statale SS18 presso Cannitello (orizzonti sabbiosi grallastri). La frazione clastica dei livelli calcarenitici è costituita da elementi eterogenei, eterometrici (diametri da millimetrici a pluricentrimetrici), sub angolari e subordinatamente subarrotondati. La frazione

Pagina 92 di 688





RELAZIONE GEOTECNICA GENERALE

### Ponte sullo Stretto di Messina **PROGETTO DEFINITIVO**

Codice documento CB0057\_F0

bioclastica è rappresentata da coralli, bivalvi, principalmente ostreidi, gasteropodi, brachiopodi, scafopodi, echinidi, balani e coralli.

Il colore prevalente è avana, a luoghi avana-biancastro e la stratificazione, ben visibile, è generalmente piano-parallela e localmente incrociata.

Il deposito è trasgressivo sia sui sottostanti Trubi sia sul Conglomerato di Pezzo. La discordanza angolare rispetto alla formazione di appoggio è tra 5 e 10°. Non è mai stato osservato un appoggio diretto delle Calcareniti di San Corrado sul substrato cristallino.

L'unità è attribuita cronologicamente al Pleistocene inferiore (Ghisetti, 1981a, b; Carbone et alii, 2008); nella letteratura è stata localmente indicata anche come Calcareniti di Vinco. Analogamente ai Trubi, le Calcareniti di San Corrado costituiscono un livello guida nella successione stratigrafica. L'analisi micropaleontologica dei depositi calcarenitici qui ascritti alla formazione di San Corrado rileva la sterilità di microrganismi.

I depositi ad essa ascritti si rinvengono in affioramento in lembi discontinui in prossimità della Strada Statale 18 e lungo il versante settentrionale che, dall'autostrada SA-RC, degrada verso il mare. L'unità è stata riconosciuta grazie alle peculiari caratteristiche litologiche in numerosi sondaggi.

Lo spessore varia da qualche metro a 10 metri circa (località Pezzo).

#### SABBIE E GHIAIE DI MESSINA

Sono costituiti da ghiaie da medie a grossolane in matrice sabbiosa. Si presentano generalmente ben stratificate anche se, più raramente, agli strati si intercalano livelli lenticolari conglomeratici o sabbiosi. I clasti, da sub-arrotondati ad appiattiti, sono di natura poligenica e risultano prevalentemente costituiti da termini cristallino-metamorfici (Figura 2.5.1.39, Figura 2.5.1.40, Figura 2.5.1.41). La giacitura presenta tipicamente una inclinazione di 25°-30° verso l'asse dello Stretto di Messina ed é spesso ben evidente una stratificazione incrociata con embricatura dei clasti (Figura 2.5.1.39). L'insieme delle caratteristiche sedimentologiche ed i rapporti con gli altri depositi affioranti, indicano per tali depositi un ambiente deposizionale riferibile ad un sistema deltizio fortemente alimentato dalle fiumare.

Le Ghiaie e Sabbie di Messina affiorano estesamente nell'intero settore occidentale e sudoccidentale dell'area di intervento, gli spessori deducibili da affioramento e sondaggio aumentano spostandosi verso ovest, e variano da pochi metri, in prossimità dei punti in cui si osservano a diretto contato con il substrato cristallino-metamorfico (località Campo Piale), fino a 100m tra gli Eurolink S.C.p.A.



abitati di Cannitello e Villa S.Giovanni. Nell'area di intervento, le Sabbie e Ghiaie di Messina si osservano in discordanza su tutti i termini litologici presneti nell'aerea di studio e di età precedente, ovvero dal substrato cristallino alla Formazione di S. Corrado. Nell'intera area di intervento le Sabbie e Ghiaie di Messina non si presentano interessate da elementi tettonici anche se, sul lato siciliano, diversi Autori (Carbone et alii, 2008) rilevano la presenza di fagliazione al loro interno (Figura 2.5.1.39).



Figura 2.5.1.39 - Affioramento di Sabbie e Ghiaie di Messina in cui è ben visibile la pendenza a basso angolo degli strati verso l'asse dello Stretto di Messina.

Il sistema deltizio delle ghiaie di Messina, legato alla sua progradazione verso l'asse dello Stretto di Messina, è deducibile a più grande scala considerando l'estensione e la disposizione areale dell'intero corpo deposizionale stratificato. Relativamente all'area di Villa S.Giovanni-Cannitello, i depositi affioranti possono essere attribuiti alle facies clinostratificate del foreset (ovvero della



porzione più esterna del corpo deltizio). Le Ghiaie e Sabbie di Messina vengono attribuite da diversi Autori (in particolare Barrier et alii, 1987) al Pleistocene medio, esse non presentano faune significative, ma sono trasgressive al disopra della Formazione di Le Masse e ricoperte a loro volta da depositi dei terrazzi marini olocenici.



Figura 2.5.1.40 - Dettaglio di un livello ghiaioso intercalato con sabbie nelle Sabbie e Ghiaie di Messina.





Figura 2.5.1.41 - Affioramento in parete sub-verticale delle Sabbie e Ghiaie di Messina. Nella foto a sinistra è osservabile la stratificazione incrociata.

Dal punto di vista litotecnico, i depositi delle Ghiaie e Sabbie di Messina sono da considerarsi terre da moderatamente a fortemente addensate, con cementazione da scarsa ad assente. All'accentuata eterometria dei clasti ed alla stratificazione del deposito si deve la capacità di sostenere pareti sub-verticali fino a 10-20 m di altezza (Figura 2.5.1.41).

#### DEPOSITI MARINI TERRAZZATI

Sono rappresentati da depositi marini sabbiosi e sabbioso ghiaiosi fortemente pedogenizzati in prossimità della superficie, che ricoprono la maggior parte della superficie esposta nell'area di intervento (Figura 2.5.1.42). A luoghi il contatto trasgressivo con il substrato cristallino-metamorfico è marcato dalla presenza di un orizzonte clastico a grossi blocchi arrotondati, in una scarsa matrice sabbiosa arrossata (Figura 2.5.1.43). Non si osserva, in generale, una chiara stratificazione; tuttavia, quando presente, essa risulta sub-orizzontale o al più si osserva una debole immersione dei depositi verso mare.



Figura 2.5.1.42 - Spessi depositi marini terrazzati presso Campo Piale.

5 11:08



RELAZIONE GEOTECNICA GENERALE



## Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |



Figura 2.5.1.43 - Affioramento del contatto trasgressivo tra terrazzo marino e substrato cristallino-metamorfico, marcato dalla facies conglomeratica a grossi blocchi arrotondati.

I depositi marini si presentano terrazzati a diverse quote sul livello del mare, in trasgressione sul substrato cristallino, sul conglomerato di Pezzo, sui Trubi, sulla formazione di Le Masse, sulle Calcareniti di San Corrado e sulle Sabbie Ghiaie di Messina. Sulla base dell'ampia letteratura esistente in materia (Ghisetti & Vezzani, 1980; Bonfiglio & Violanti, 1983; Bassinot et alii, 1984; Martison et alii, 1987; Bonfiglio, 1991; Bada et alii, 1991; Catalano & Cinque, 1995; Catalano & Di Stefano, 1997; Catalano et alii, 2003; Carbone et alii, 2008; Miyauchi et alii, 1994; Dumas et alii, 2005) l'età attribuibile ai terrazzi cartografati nell'area di intervento copre l'intervallo Pleistocene medio-superiore. Dettagli più specifici relativi agli ordini gerarchici di suddetti terrazzi e alla loro attribuzione cronologica sono contenuti nella relazione geomorfologica.

Dal punto di vista litotecnico, i depositi dei terrazzi marini rappresentano terre da sciolte a debolmente coesive con cementazione da debole ad assente. L'eterometria degli orizzonti ghiaioso-sabbiosi e la loro alternanza garantiscono comunque la capacità da parte dei depositi di



mantenere pareti sub-verticali anche in corrispondenza di tagli antropici (Figura 2.5.1.44).



Figura 2.5.1.44 – Pareti di trincea artificiale realizzate nei depositi dei terrazzi marini presso Campo Piale.

#### **DEPOSITI ALLUVIONALI**

Si tratta prevalentemente di depositi sabbioso-ghiaiosi olocenici di fondo alveo (Figura 2.5.1.45), contenenti a luoghi grossi blocchi.





Figura 2.5.1.45 – Depositi alluvionali terrazzati che colmano una vallecola sospesa presso Campo Piale.

Tali depositi risultano spesso terrazzati a diverse altezze rispetto all'attuale alveo fluviale. Essi poggiano al disopra di diversi termini della successione presente nell'area e spesso l'incisione lineare operata dai corsi d'acqua determina la diretta sovrapposizione di tali depositi sul substrato cristallino-metamorfico. Gli spessori massimi dedotti da affioramento e sondaggi non è superiore alla decina di metri.

#### ELUVIO-COLLUVIO

Comprende depositi olocenici derivanti dalla degradazione meteorica dei litotipi affioranti; coltri superficiali di alterazione; materiali eluvio-colluviali a composizione prevalentemente sabbiosolimosa e solo subordinatamente argillosa (Figura 2.5.1.46). Lo spessore è fortemente variabile in funzione della locale topografia ed, in generale, esso é compreso entro il metro, mentre raggiunge alcuni metri soprattutto in corrispondenza di impluvi e vallecole.





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |



Figura 2.5.1.46 - Depositi eluvio-colluviali soprastanti depositi di versante clinostratificati, eterometrici ed a clasti visibilmente spigolosi, osservabili presso il Vallone Piria.

#### DEPOSITI DI PIANA COSTIERA E RECENTE

Depositi distribuiti entro 200 m dall'attuale linea di costa di età olocenica (Figura 2.5.1.47), il cui spessore massimo misurato in sondaggio è di circa 60 m. Sono costituiti da sabbie con ciottoli di composizione prevalentemente quarzoso-feldspatica a cui si intercalano livelli o lenti di argille limose e di torbe.





RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |



Figura 2.5.1.47 – Vista panoramica dalla SS18 della piana costiera colmata da depositi olocenici presso Cannitello (in corrispondenza del sito designato per le fondazioni dell'opera di attraversamento).

Nella piana costiera prospiciente l'abitato di Cannitello sono stati individuati in sondaggio fino a tre distinti livelli di torba, compresi entro i primi 50 m dal p.c.. Lo spazio di accomodamento di tali depositi è risultato dalla strutturazione tettonica della fascia costiera frutto della tettonica estensionale che ha interessato il substrato cristallino-metamorfico e la soprastante la successione sedimentaria plio-pleistocenica. In corrispondenza del tratto di piana costiera di interesse per l'intervento non sono mai state rinvenute in sondaggio Ghiaie e Sabbie di Messina al di sotto dei depositi costieri olocenici che, invece, risultano poggiare direttamente sul Conglomerato di Pezzo o sulle calcarenitì della Formazione di S.Corrado.





| Codice documento |
|------------------|
| CB0057_F0        |

#### DEPOSITI DI VERSANTE

RELAZIONE GEOTECNICA GENERALE

Sono depositi detritici olocenici alimentati da processi di degradazione e trasporto dovuto sia alle acque di dilavamento che alla gravità ed accumulati, in genere, alla base dei versanti, dove costituiscono perlopiù falde a luoghi coalescenti (Figura 2.5.1.46). In località Case Alte, nel settore nord-orientale dell'area di intervento, è stato distinto un deposito di sabbie di colore rossastro da medie a grossolane, solo subordinatamente fini, con rare intercalazioni di livelli di ghiaiosi o limosi. La clinostratificazione è resa evidente dalla presenza di livelli da medi e sottili, inclinati di 20°-25°, e dalla presenza, a luoghi, di una laminazione incrociata. I clasti sono ben classati ed a composizione perlopiù quarzoso-feldspatica. Lo spessore massimo deducibile dagli affioramenti di tali depositi è valutabile nell'ordine dei 10 metri.

Tali depositi affiorano estesamente lungo l'intero versante a monte dell'attuale tracciato autostradale, interrompendosi solo in corrispondenza dei valloni e dei versanti a maggiore acclività.

#### 2.5.1.4 Inquadramento idrogeologico

Dal punto di vista idrogeologico i terreni affioranti nel settore in esame presentano sostanziali differenze di comportamento nei confronti dell'infiltrazione delle acque meteoriche e della circolazione idrica al loro interno.

Nelle zone a più alta quota, dove affiorano in prevalenza le metamorfiti, la permeabilità è bassa, dipendendo principalmente dallo stato di fessurazione dell'ammasso roccioso e quindi dalla frequenza, distribuzione e tipologia delle discontinuità di origine tettonica. Lungo le fasce collinari, caratterizzate da notevole eterogeneità litologica, le condizioni risultano molto variabili da luogo a luogo per la presenza di termini a permeabilità differente per tipo e grado. Nelle piane costiere e lungo i fondovalle, dove più estesi e consistenti sono i depositi alluvionali, si riscontrano condizioni di permeabilità per porosità da alta a media, che favoriscono l'esistenza di corpi idrici relativamente estesi e localmente di apprezzabile produttività.

In base alle condizioni di permeabilità i terreni presenti possono essere così classificati:

- Terreni con grado di permeabilità medio-alto per porosità: depositi alluvionali attuali e recenti, depositi delle piane costiere.
- Terreni con grado di permeabilità medio per porosità: depositi alluvionale e marini terrazzati, ghiaie e sabbie di Messina, calcareniti e sabbie di San Corrado.

Eurolink S.C.p.A.





- Terreni con grado di permeabilità medio-basso per porosità: calcare evaporitico sbrecciato alternato a laminati marnose e gessareniti, conglomerati e sabbie grossolane di San Pier Niceto.
- Terreni con grado di permeabilità molto basso: marne e calcari marnosi (Trubi), argille gessose, limi e argille limose con intercalazioni arenacee di San Pier Niceto, metamorfiti.

Le unità litologiche costituenti la successione stratigrafica prima indicata sono state assimilate a diversi complessi idrogeologici in base alle condizioni spaziali e giaciturali ed alle relative caratteristiche di permeabilità. Sono stati così distinti i seguenti complessi:

- COMPLESSO DEI DEPOSITI DETRITICI (*OLOCENE*)
   Depositi alluvionali attuali e recenti dei corsi d'acqua e delle piane costiere.
- COMPLESSO DEI SEDIMENTI GHIAIOSO SABBIOSO SILTOSI (*PLEISTOCENE*)
   Depositi marini terrazzati, sabbie e ghiaie con abbondante matrice siltosa e livelli di ciottoli (Formazione di Messina), calcareniti organogene con livelli sabbioso-limosi (Calcareniti di s. Corrado).
- COMPLESSO DEI SEDIMENTI MARNOSO-CALCAREI (*PLIOCENE PLEISTOCENE*)
   Marne sabbiose ed alternanza sabbioso calcarenitica (Formazione di Le Masse); marne e calcari marnosi (Trubi).
- COMPLESSO CONGLOMERATICO SABBIOSO (*MIOCENE MEDIO-SUPERIORE*) Conglomerato, arenarie e sabbie (Conglomerato di Pezzo).
- COMPLESSO CRISTALLINO METAMORFICO
   Paragneiss biotitici e micascisti, plutoniti.

In base ai dati acquisiti con le indagini idrogeologiche ed il censimento dei punti d'acqua, nell'area studiata si riconoscono acquiferi con diverse caratteristiche e differente comportamento nei confronti della circolazione idrica sotterranea, contenenti corpi idrici dotati di diversa potenzialità, in parte oggetto di sfruttamento per i fabbisogni locali.

Le risorse idriche di maggiore interesse sono contenute nei depositi alluvionali di fondovalle delle fiumare, sotto forma di corpi idrici relativamente indipendenti, che in parte confluiscono in corrispondenza della fascia costiera.

Le aree di alimentazione sono rappresentate dai bacini imbriferi, i cui spartiacque idrografici sono stati considerati come limiti di idrostrutture in base alle caratteristiche morfologiche,





RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011

litostratigrafiche e strutturali oltre che di permeabilità dei terreni. La ricarica è costituita principalmente dalle precipitazioni efficaci dirette e dall'infiltrazione di un'aliquota dei deflussi superficiali lungo gli alvei. Un limitato contributo deriva inoltre dalle acque di ruscellamento lungo i versanti delle valli e dalle acque di infiltrazione nei terreni meno permeabili e nelle relative coperture detritiche e di alterazione che, in base alle predette condizioni morfologiche, stratigrafiche e strutturali, raggiungono gli acquiferi di fondovalle. Nella zone più estesamente antropizzate un ulteriore contributo può essere rappresentato dalle perdite delle reti di acquedotto e fognarie dei centri abitati.

#### 2.5.1.5 Acquifero dei terreni cristallini e metamorfici

Le metamorfiti e le plutoniti costituiscono un acquifero anisotropo, caratterizzato da circolazione idrica discontinua e localizzata, che esclude l'esistenza di corpi idrici estesi e produttivi.

La permeabilità è principalmente localizzata nella parte superficiale alterata degli affioramenti e diminuisce rapidamente con la profondità. Fanno eccezione situazioni locali in cui la roccia è interessata da particolare disturbo tettonico con estese fratture, spesso beanti e prive di riempimento, che permettono una maggiore capacità di immagazzinamento delle acque di infiltrazione ed una circolazione più attiva, lasciando tuttavia immutato il ruolo di acquiferi scarsamente produttivi, dato il limitato volume dei serbatoi ricettori.

#### 2.5.1.6 Acquifero conglomeratico-sabbioso miocenico

Fra i depositi terrigeni che si sovrappongono alle metamorfiti, il conglomerato sabbioso di Pezzo, affiorante nella zona nord-occidentale dell'area, si riscontra spesso al di sotto delle coperture recenti in larga parte dell'area, con spessori anche rilevanti. In questo deposito, in parte sciolto ed in parte cementato, costituito da clasti eterometrici anche di grosse dimensioni e spesso alterati, la circolazione idrica è discontinua essendo la permeabilità da media a bassa per la frequente presenza di materiale pelitico frammisto al materiale grossolano. Detta circolazione idrica si attua preferenzialmente nelle zone interessate da dislocazioni tettoniche, con direzione di flusso parallela a queste ultime.





Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011

#### 2.5.1.7 Acquifero calcarenitico-sabbioso pleistocenico

RELAZIONE GEOTECNICA GENERALE

L'acquifero costituito dalle calcareniti organogene e sabbie pleistoceniche affiora limitatamente nella zona sud-occidentale dell'area, in relazione ad un sistema di dislocazioni tettoniche orientate all'incirca Est-Ovest, che pongono a brusco contatto i sedimenti con le metamorfiti ed i conglomerati, ma anche con le sabbie e ghiaie di Messina. L'acquifero poggia verosimilmente sulle marne infraplioceniche (Trubi) poco permeabili ed è in connessione idraulica con l'acquifero sabbioso-ghiaioso pleistocenico. Il grado di permeabilità media per porosità e per fessurazione favorisce una circolazione idrica sotterranea discretamente attiva, che si traduce nell'esistenza di un corpo idrico di potenzialità non trascurabile, seppure limitata dalla continuità dell'acquifero. Condizioni più favorevoli si riscontrano generalmente nelle zone dove l'acquifero riceve alimentazione per travaso dalle metamorfiti e per percolazione dai depositi clastici soprastanti.

#### 2.5.1.8 Acquifero ghiaioso-sabbioso pleistocenico

L'acquifero delle sabbie e ghiaie di Messina affiora per una discreta estensione tra Pezzo superiore e Acciarello, a ridosso della fascia costiera, e più all'interno tra Musalà e Campo Piale. In gran parte dell'area è presente al di sotto dei depositi alluvionali recenti e dei terrazzi, con spessori molto diversi in relazione alla quota dei sottostanti terreni dislocati da faglie con diverso rigetto. La variabilità granulometrica comporta continue differenze di permeabilità sia verticale che orizzontale che influiscono sulla circolazione idrica sotterranea, la quale risulta più attiva dove predominano la granulometria grossolana rispetto alle pareti nelle quali predomina la componente sabbioso-siltosa. Nell'acquifero possono riscontrarsi a varia profondità livelli idrici discontinui, di estensione e spessore diverso, assimilabili a falde sospese, la cui temporanea esistenza e produttività dipendono strettamente dall'andamento delle precipitazioni meteoriche. Alla base è presente un corpo idrico relativamente continuo con produttività generalmente modesta ma di interesse locale, sostenuto dall'interfaccia acqua dolce/acqua salata e connesso idraulicamente con i soprastanti depositi alluvionali e costieri.

#### 2.5.1.9 Acquiferi alluvionali

Gli acquiferi alluvionali presenti sul fondo valle dei corsi d'acqua ed in corrispondenza delle zone costiere rappresentano i principali serbatoi naturali del territorio, in cui sono contenute le risorse idriche di maggiore interesse. Essi sono caratterizzati da permeabilità medio-alta per porosità, Pagina 106 di 688 Eurolink S.C.p.A.



RELAZIONE GEOTECNICA GENERALE



# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011

seppure molto variabile in relazione alla granulometria. Sono sede di un'attiva circolazione idrica che comporta il rapido trasferimento delle acque verso la costa. L'alimentazione è rappresentata principalmente dalle piogge dei mesi autunnali e invernali, dal ruscellamento lungo i versanti dei bacini imbriferi e dal deflusso superficiale lungo gli alvei dei corsi d'acqua. Ciò determina l'esistenza all'interno dei depositi di corpi idrici con persistente deflusso in subalveo, seppure variabile nell'arco delle stagioni, con conseguenti fluttuazioni del livello piezometrico. L'importanza delle risorse idriche contenute in questi acquiferi dipende, oltre che dal regime delle precipitazioni meteoriche, dall'estensione dei bacini idrografici dei corsi d'acqua e dal volume dei deposti alluvionali.

#### 2.5.2 Dati piezometrici

Nel corso della campagna di indagini eseguita nel periodo aprile – febbraio 2010 sono stati installati una serie di piezometri, a tubo aperto e con celle tipo Casagrande, all'interno delle verticali di sondaggio previste. La strumentazione installata è operativa per il controllo della piezometrica ante-operam e pertanto dell'assetto idrogeologico che verrà incontrato lungo le gallerie autostradali e ferroviarie.

Per quanto riguarda la ricostruzione dei livelli piezometrici attesi in corrispondenza delle opere si è presa come riferimento la carta delle isopieze riportata negli elaborati a cura del Prof. Ferrara. Questa piezometria è stata ricostruita utilizzando i livelli d'acqua registrati nei pozzi censiti (vedi schede censimento) e corrisponde ad un livello mediato su rilievi eseguiti nei mesi di aprile maggio e giugno 2010. Tale riferimento piezometrico è stato utilizzato anche come riferimento di calibrazione nelle simulazioni numeriche di seguito illustrate.

Poiché il dato di calibrazione piezometrico rappresenta un dato essenziale nelle ricostruzioni modellistiche e dal momento che la carta delle isopieze utilizzata mediava dati su tre mesi è stata eseguita una accurata verifica della sua validità in funzione dei dati piezometrici raccolti da Eurolink nei mesi di ottobre, novembre, dicembre 2010, gennaio e febbraio 2011. Tale verifica aveva il duplice scopo da un lato di valutare se nella zona di interesse le oscillazioni della superficie di falda sono di entità consistente o meno, dall'altro di valutare se i livelli d'acqua indicati dalla ricostruzione della superficie di falda corrispondano o meno a quelli osservati nei piezometri.

Per quanto attiene al primo aspetto (oscillazioni della falda) i dati dei piezometri indicano che le oscillazioni piezometriche non sono consistenti; esse sono perlopiù circoscritte nell'ordine dei





| Codice documento |
|------------------|
| CB0057_F0        |

 Rev
 Data

 F0
 20/06/2011

50cm (almeno per il periodo in cui i dati sono disponibili) che, se confrontate con i forti gradienti idraulici della falda in questo settore (dell'ordine del 15%), possono essere considerate del tutto trascurabili ai fini della modellizzazione numerica.

Per quanto attiene al secondo aspetto (corrispondenza tra ricostruzione della falda e dati piezometrici) si osserva in linea generale una buona corrispondenza, con scarti perlopiù dell'ordine di 1 o 2 metri, ancora una volta ampiamente tollerabili ai fini della modellizzazione se si considerano i forti gradienti della falda. Alcuni dati piezometrici, concentrati perlopiù all'estremità est dell'area di progetto e ben al di fuori del settore in cui sono state eseguite le modellizzazioni numeriche, mostrano scarti piuttosto forti rispetto alla ricostruzione della piezometria. Si tratta dei piezometri C427, C429, C432 e C435. Anomalo risulta invece il dato del piezometrico molto elevato rispetto alla superficie di falda ricostruita. Tale dato non può tuttavia essere ragionevolmente correlato con quelli dei piezometri adiacenti e pertanto è da ritenersi indicativo di una situazione locale o di un malfunzionamento della cella Casagrande.

Pertanto solo nella zona est dell'area di interesse la ricostruzione della superficie piezometrica è da ritenersi imprecisa mentre nel resto dell'area (rilevante ai fini della modellizzazione numerica) la ricostruzione è da ritenersi affidabile.


Di seguito si riportano l'ultima lettura piezometrica disponibile alla data del 16/02/2011.

| Sondaggio | Piezometro  | Profondità (m) | Livello falda da p.c. |
|-----------|-------------|----------------|-----------------------|
| C401      | Casagrande  | 60             | -8.25                 |
| C404      | Casagrande  | 30             | -17.40                |
| C405      | Casagrande  | 45             | -26.16                |
| C406      | Casagrande  | 50             | -4.69                 |
| C407      | Casagrande  | 65             | -17.27                |
| C408      | Tubo aperto | 60             | -8.27                 |
| C410      | Casagrande  | 35             | assente               |
| C411      | Casagrande  | 35             | -20.34                |
| C412      | Tubo aperto | 70             | -30.43                |
| C414      | Tubo aperto | 25             | assente               |
| C424      | Tubo aperto | 31             | -14.48                |
| C425      | Casagrande  | 29.9           | -23.45                |
| C427      | Tubo aperto | 40             | -13.69                |
| C428      | Tubo aperto | 60             | -13.36                |
| C429      | Casagrande  | 40             | -4.58                 |
| C432      | Casagrande  | 40             | -19.08                |
| C434      | Casagrande  | 35             | -10.50                |
| C435      | Tubo aperto | 40             | -13.66                |

Di seguito si riportano inoltre, i grafici relativi ai singoli piezometri al fine di valutare la variazione della piezometrica nel periodo agosto 2010 – febbraio 2011.



#### PIEZOMETRO (Tubo aperto) C401











PIEZOMETRO (Casagrande) C406















#### PIEZOMETRO (Tubo aperto) C412



Eurolink S.C.p.A.

Pagina 113 di 688



#### PIEZOMETRO (Tubo aperto) C414



PIEZOMETRO (Tubo aperto) C424







#### PIEZOMETRO (Tubo aperto) C427



Eurolink S.C.p.A.

Pagina 115 di 688



#### PIEZOMETRO (Tubo aperto) C428



#### PIEZOMETRO (Casagrande) C429











| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     | 1          |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |





I singoli grafici non evidenziano variazioni significative della piezometrica, al massimo di pochi metri nel periodo considerato. Occorre inoltre precisare, che il periodo esaminato, purtroppo non è del tutto rappresentativo, in quanto non riporta un intero ciclo annuale.

I dati dei piezometri indicano che le oscillazioni piezometriche non sono consistenti; esse sono perlopiù circoscritte nell'ordine dei 50cm (almeno per il periodo in cui i dati sono disponibili).

Si osserva, in linea generale, una buona corrispondenza, tra ricostruzione della falda e dati piezometrici, con scarti dell'ordine di 1 o 2 metri. Alcuni dati piezometrici, concentrati all'estremità est dell'area di progetto, mostrano scarti piuttosto forti rispetto alla ricostruzione della piezometria. Si tratta dei piezometri C427, C429, C432 e C435. Anomalo risulta invece il dato del piezometro C401, unico piezometro nella zona degli imbocchi delle gallerie, a restituire un valore piezometrico molto elevato rispetto alla superficie di falda ricostruita. Tale dato non può tuttavia essere ragionevolmente correlato con quelli dei piezometri adiacenti e pertanto è da ritenersi indicativo di una situazione locale o di un malfunzionamento della cella Casagrande.

Pertanto, solo nella zona est dell'area di interesse, la ricostruzione della superficie piezometrica è da ritenersi imprecisa, mentre nel resto dell'area, la ricostruzione è da ritenersi affidabile.



# 2.5.3 Considerazioni generali ed individuazione delle principali criticità morfologiche legate ai processi di dissesto

I principali fattori di dissesto nell'area possono essere sintetizzati come segue:

1) Possibile occorrenza di fenomeni alluvionali, con coinvolgimento dei tratti terminali dei principali torrenti, ove si possono avere esondazioni e/o la deiezione dell'elevato trasporto solido, di cui i coni alluvionali rappresentano la testimonianza.

2) Processi di instabilità diffusi sui versanti locali e che si esplicano sia tramite processi erosivi *lato sensu* (degradazione) sia tramite fenomeni franosi che abbracciano un'ampia tipologia di cinematismi. Tra questi meritano menzione, per dimensione e stato di attività, le frane traslative e rototraslative del settore nord; in particolare, le frane con componente traslativa prevalente e di crollo/ribaltamento sono concentrate sia in destra che in sinistra idrografica dei valloni compresi tra i torrenti S. Trada e Zagarella (fig. 2.5.1), mentre le frane con componente rotazionale più apprezzabile sono per lo più concentrate sul versante che borda a sud il tracciato della A3 tra lo svincolo di S. Trada e l'area di servizio "Villa San Giovanni" (fig. 2.5.2). In quest'ultimo settore sono inoltra diffuse alla base del versante anche accumuli tipo coni di origine mista, a testimoniare la possibile attivazione di fenomeni di erosione, trasporto e deposizione delle coltri detritiche prodotte dalla sommità e lungo il versante stesso, secondo meccanismi di flusso detritico incanalato lungo i solchi di erosione concentrata.

Fenomeni di dissesto legati sia a frane (seppure mediamente di dimensioni minori) che a processi di degradazione sono presenti anche nei settori meridionale ed occidentale dell'area, dove si osservano in particolare diffusi fenomeni franosi alla tesata e lungo i fianchi delle valli più incise e ampie coltri colluviali che registrano gli intensi processi erosivo-deposizionali che coinvolgono soprattutto le Sabbie e Ghiaie di Messina (figg. 2.5.3 e 2.5.4).





| RELAZIONE GEOTECNICA GENERALE | Codice documento |  |
|-------------------------------|------------------|--|
|                               | CB0057_F0        |  |



Figura 2.5.1.31



Figura 2.5.1.32





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |



Figura 2.5.1.32



Figura 2.5.1.33

Con specifico riferimento alle opere in sotterraneo, le condizioni di pericolosità più significative in relazione alle opere da realizzare sono comunque concentrate lungo tutta la scarpata compresa



tra il fiume S. Trada e la zona di imposta dell'opera principale; in particolare, gli imbocchi lato nord delle rampe C e A ed i relativi tracciati sono previsti in tratti di versante caratterizzati dalla presenza di diversi fenomeni franosi e – più in generale – da dissesti legati a processi di degradazione ed erosione/trasporto ad opera delle acque incanalate.



Figura 2.5.1.34 - Stralcio della Carta geomorfologica della Calabria, dove si evidenziano le interferenze tra movimenti franosi ed opere di progetto.

Infatti, sebbene come evidenziato dalla stessa fig. 2.5.5 i tracciati delle rampe sopra menzionate non interagiscono direttamente con i corpi di frana riconosciuti e cartografati (distanza planimetrica dagli imbocchi dei tratti in sotterraneo o passaggio sotto coperture relativamente alte), è da considerare che la realizzazione delle opere di progetto comporterà una variazione degli stati tensionali agenti sulla scarpata potenzialmente in grado di indurre deformazioni che si traducono in riattivazioni e/o attivazioni di fenomeni franosi. A tale proposito si segnala pertanto la necessità di prevedere un piano di monitoraggio per controllare la risposta deformativa del versante rispetto alla variazione degli stati tensionali indotta dalla realizzazione delle opere. In tal senso sarà possibile operare tramite l'installazione, ad esempio, di strumentazione di monitoraggio topografico e geotecnico da posizionare nei punti più significativi del versante. In particolare, a titolo di eseè possibile ipotizzare la costruzione di un sistema di monitoraggio integrato che prevede:

• l'installazione di tubi inclinometrici in corrispondenza delle opere di imbocco ed in





prossimità delle frane già note e cartografate;

• il posizionamento di una rete di mire ottiche per il controllo periodico o continuo tramite stazione totale degli eventuali spostamenti.

Infine, si segnala che per una corretta gestione ed intepretazione dei dati di monitoraggio è raccomandabile di prevedere un funzionamento della rete:

- in fase *ante operam* (monitoraggio conoscitivo) per valutare l'effettivo stato di attività dei principali movimenti franosi;
- in fase di esecuzione dei lavori per valutare entità e tassi degli eventuali spostamenti e comprendere le relazioni con la fasistica delle lavorazioni;
- in fase *post operam* per verificare l'evoluzione dei dissesti eventualmente attivati o riattivati e valutare l'idoneità delle contromisure messe in opera in fase di realizzazione.

Per quanto riguarda le opere all'aperto non sono state invece individuate interferenze con fenomeni di dissesto rilevanti.



# 2.6 Conglomerato di Pezzo

# 2.6.1 Descrizione

Il conglomerato di Pezzo, di età tortoniana, è la litologia stratigraficamente più bassa della successione sedimentaria. La sua potenza è superiore ai 200 m.

Il conglomerato è composto prevalentemente da clasti di graniti e gneiss cementati in matrice prevalentemente composta da frazioni arenacee fini e limose.

Le dimensioni dei clasti sono eterogenee e variabili da pochi mm fino a blocchi superiori al metro, interpretati come grossi trovanti inglobati nel conglomerato.

Negli affioramenti la formazione presenta un aspetto litoide con scarpate stabili.

Il Conglomerato di Pezzo ha quindi generalmente caratteristiche assimilabili a quelle di rocce tenere.

In Allegato si riportano le figure (da Figura 50 a Figura 81) e le tabelle relative ai valori calcolati per i parametri descritti nei paragrafi successivi.

# 2.6.2 Caratteristiche fisiche

Per questi litotipi l'analisi granulometrica effettuata non è chiaramente rappresentativa se non, in parte, della frazione associabile alla matrice.

Le caratteristiche granulometriche dei campioni rispecchiano le caratteristiche precedentemente descritte, ossia materiali la cui percentuale maggiore è costituita da sabbie (58%). Il contenuto di fino è mediamente del 21% (Figura 50).

Il peso di volume dei grani  $\gamma_s$  è risultato pari a circa 26.5 kN/m³.

Il peso di volume naturale medio  $\gamma_d$  è risultato pari a circa 18.5 kN/m³.

Con riferimento al <u>fuso medio</u> della matrice si ottiene  $D_{50}=0.25$ mm,  $D_{60}=0.5$ mm,  $D_{10}=0.004$ mm Per quanto riguarda gli <u>spezzoni di roccia o di conglomerato</u> prelevati nei sondaggi il peso di volume totale  $\gamma$  è risultato mediamente pari a 23 kN/m<sup>3</sup> con i valori più bassi di 20 -21 kN/m<sup>3</sup> rappresentativi degli spezzoni conglomeratici.

# 2.6.3 Stato iniziale

Vista la natura di tale conglomerato, una valutazione globale dello stato iniziale ed in particolare di: Pagina 124 di 688 Eurolink S.C.p.A.



- indice dei vuoti,
- pesi di volume,
- K<sub>0</sub>

non può essere fatta esclusivamente ed in modo rappresentativo tramite le correlazioni da prove SPT utilizzate per i depositi granulari.

Inoltre in base alle indicazioni provenienti dagli studi geologici del progetto preliminare tale formazione localmente può essere caratterizzata da un certo grado di sovra consolidazione e da elevati gradi di cementazione.

Per questo si ritiene maggiormente rappresentativo utilizzare le prove in situ, laddove disponibili, quelle cioè che investigano l'ammasso a grande scala, quindi si ha:

- e<sub>o</sub>: in base alla correlazione proposta da Foti che sfrutta i risultati delle indagini sismiche (velocità Vp e Vs), scartando i valori ritenuti poco realistici, si può stimare un indice dei vuoti e<sub>o</sub> in sito pari a 0.15÷0.2 con un andamento non molto variabile con la profondità (>20m) come evidente dal grafico in Figura 56.
- γ : in base al valore precedentemente ricavati si può stimare dall'indice dei vuoti e<sub>o</sub> e da γ<sub>s</sub> un valore medio di γ in condizioni sature (Foti et al.) pari a circa 23 KN/m<sup>3</sup> che ben si correla al valore medio misurato e che risulta non molto variabile con la profondità (Figura 57 e Figura 58)
- K<sub>0</sub>: poiché la litologia in esame è quella, della successione sedimentaria, più vecchia, è difficile tenere in conto in modo sintetico della storia tensionale del deposito che è stato caratterizzato da fenomeni di preconsolidazione e cementazione. La stima può <u>in prima approssimazione</u> essere effettuata come indicato nel paragrafo 2.2.1: considerando un età di almeno 10 milioni di anni, considerando che Ko<sub>nc</sub>=0.35÷0.5 (φ'=30°÷40°) e che Ko<sub>oc</sub>=0.5÷0.6 per tenere conto dell'effetto dell'erosione (si stima un fattore minimo pari a 1.4 corrispondente ad OCR=2) ed infine per considerare gli effetti di "aging" con la correlazione di (Mesri (1989)), si ottiene verosimilmente un valore compreso approssimativamente fra 0.7 e 0.9 (si moltiplica per un fattore pari a 1.4).

## 2.6.4 Parametri di resistenza al taglio

Le prove simiche in foro mostrano una elevata dispersione dei valori (da Figura 71 a Figura 77). Dall'analisi di tutti i valori di Vs (media mobile con la profondità) si evidenzia un andamento medio

Eurolink S.C.p.A.



in cui è riconoscibile un primo sismostrato di più scadenti caratteristiche elastiche anche se mediamente crescenti fino a circa 25m.

## a) strato superficiale alterato (z<25÷30m)

In questo ambito, presumibilmente caratterizzato da una più scarsa cementazione e da maggiore alterazione, sono disponibili:

- prove di carico su piastra di grande diametro
- prove SPT
- prove pressiometriche

Le prove pressiometriche e le prove SPT sono prove "puntuali", non in grado di rappresentare il comportamento globale di un ammasso conglomeratico molto eterogeneo; inoltre, soprattutto per quanto riguarda le prove SPT, si riferiscono ad un materiale disturbato dall'esecuzione del foro e quindi a maggior ragione non rappresentativo della frazione medio fine cementata ma eventualmente solo della matrice non cementata.

Alla luce degli aspetti appena evidenziati l'interpretazione delle prove SPT si rende problematica e parzialmente rappresentativa.

Sulla base di tali prove, non tenendo in conto dell'influenza dell'eventuale cementazione, si ottengono un valore di picco medio di  $\phi$ ' pari a circa 42°. Tale valore non è ritenuto caratterizzante in quanto le prove SPT, per quanto detto anche precedentemente, non sono considerate significative per la formazione in esame; piuttosto tale valore è riportato come confronto con i valori riportati di seguito e scaturiti dall'esito di altre prove.

Dalle prove pressiometriche, ad esempio, si ottengono valori variabili tra 40° e 42°.

Per quanto invece concerne le prove di carico su piastra, ritenute maggiormente rappresentative del comportamento d'insieme dell'ammasso, si considerano quelle ubicate in prossimità del blocco di ancoraggio lato Calabria (campagna di indagine 1988 – pozzo P2500) ed al proposito si è ripreso lo studio effettuato nel Progetto preliminare ("Le basi del progetto – Geotecnica" – Elab. PP2RA24). Le prove sono state eseguite a tre diverse profondità all'interno di un pozzo di diametro pari a 2.5 m rivestito in c.a., a profondità di 5m, 12m e 16 m dal piano campagna (da Figura 63 a Figura 66).

L'interpretazione delle prove prevede di assimilare il comportamento rilevato a quello di una fondazione superficiale: dalla stima del carico ultimo q<sub>ult</sub> è stato quindi possibile eseguire un'analisi a ritroso dei risultati delle prove di carico, utilizzando le formule riportate in letteratura per il calcolo



di fondazioni superficiali, per determinare i parametri di resistenza c' e  $\phi$ '.

Infatti facendo riferimento alla soluzione teorica per fondazione circolare ottenuta da Berezantzev (1964) si ha:

 $q_{ult} = 0.5 \gamma B A_k + \gamma D B_k + c C_k$ dove:

q<sub>ult</sub> = carico ultimo a rottura del terreno

 $\gamma$  = peso di volume del terreno = 20 kN/m<sup>3</sup>

B = diametro della piastra = 0.865m

- D = approfondimento della piastra = 0
- c' = coesione

 $A_k$ ,  $B_k$ ,  $C_k$  = fattori di capacità portante in funzione dell'angolo di resistenza al

taglio ø'

Il valore del carico ultimo q<sub>ult</sub> è stimabile direttamente dalla prova di carico interpretando i risultati con una relazione carichi cedimenti di tipo iperbolico se non si è raggiunta la configurazione limite. Così facendo si sono ottenuti i seguenti valori di carico ultimo:

- 1) qu=3200 KPa
- 2) qu=10500 KPa
- 3) qu=16800 KPa

In corrispondenza di un valore medio ø'=40° i valori di c' ottenuti variano linearmente, tra 0 e circa 25m di profondità, da 0 a 100 KPa circa.

## b) Ammasso in profondità (z>25-30m)

L'andamento della coesione efficace e dell'angolo di attrito per spessori superiori ai 25 m del Conglomerato di Pezzo può essere determinato alla luce delle seguenti considerazioni:

 Negli scavi effettuati nella galleria naturale Piale (lavori di ammodernamento dell'autostrada SA-RC), a partire dagli imbocchi sud (lato RC), l'ammasso di natura granitoide rilevato al fronte, nella parte medio-bassa, che nella nuova campagna è stato reinterpretato, attraverso i



RELAZIONE GEOTECNICA GENERALE



# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

sondaggi che lo hanno intercettato (S8, SG15, S7, S9/DG42, S6, SG14), come formazione ascrivibile al Conglomerato di Pezzo, presenta un aspetto litoide.

- In alcuni affioramenti superficiali la formazione del Conglomerato di Pezzo presenta un aspetto litoide o cementato con fronti stabili.
- L'andamento con la profondità della velocità delle onde mostra un miglioramento rispetto a quello evidenziato nei primi 20-25m circa, più evidente nelle velocità delle onde P che nelle velocità delle onde S.

Appare lecito quindi, a grande scala, assimilare il Conglomerato di Pezzo ad un ammasso roccioso seppur di scadenti caratteristiche meccaniche.

Si riportano di seguito i valori di GSI forniti insieme ai rilievi del fronte della costruenda galleria Piale, facente parte delle opere previste nell'ambito del Macrolotto 6 della autostrada A3, durante gli scavi, a partire dagli imbocchi sud, sia in carreggiata nord che in carreggiata sud (pk = progressiva relativa di scavo da imbocchi sud).

Il fronte, soprattutto nella parte bassa, generalmente si è sempre presentato come costituito da blocchi litici circondati da zone di alterazione e di disfacimento a matrice sabbiosa più o meno cementata; nella parte alta, più alterata, si è talvolta rilevata la presenza di materiale limo - argilloso.

La parte più bassa rappresenterebbe quindi quella con caratteristiche meccaniche relativamente migliori.

Di seguito si riportano le descrizioni del fronte effettuate durante i rilievi.

In Allegato si riporta un rilievo del fronte alle massime coperture (circa 25m) (da Figura 82 a Figura 84).





RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

| Galleria naturale Piale - Carreggiata Nord |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|--------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| pk<br>(m)                                  | GSI   | Osservazioni (estratto dal Rapporto di sopralluogo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 0                                          | 34-38 | Su tutto il fronte affiorano litotipi ascrivibili al basamento cristallino alterato. Detto basamento,<br>come descritto nella nota del 15/07/08, è costituito da graniti con una alterazione sferoidale<br>piuttosto pervasiva che porta all'individuazione di blocchi litoidi arrotondati circondati da una<br>aureola di alterazione di spessore variabile.<br>Nella parte alta del fronte il materiale si presenta molto alterato (Foto 1; Foto 2) mentre, verso le<br>parti più basse dello scavo il grado di alterazione tende progressivamente a diminuire, i blocchi<br>relitti aumentano in numero e dimensione (Foto 2; Foto 3), sino a raggiungere una consistenza<br>litoide nella parte più bassa del fronte. |  |  |
| 11                                         | 34-38 | Su tutto il fronte affiorano litotipi ascrivibili al basamento cristallino alterato. Detto basamento,<br>come descritto nella nota del 15/07/08, è costituito da graniti con una alterazione sferoidale<br>piuttosto pervasiva che porta all'individuazione di blocchi litoidi arrotondati circondati da una<br>aureola di alterazione di spessore variabile. Tale zona di alterazione si presenta moderatamente<br>alterata e coesiva.<br>Il materiale è omogeneo su tutto il fronte di scavo; solo nella parte inferiore e centrale presenta<br>caratteristiche litoidi.                                                                                                                                                |  |  |
| 21                                         | 34-38 | Il basamento affiora con caratteristiche omogenee su tutto il fronte di scavo; la matrice di alterazione è piuttosto<br>pervasiva ed è moderatamente coesiva.<br>Durante le fasi di scavo localmente si sono riscontrate limitate venute d'acqua, interpretabili come piccole sacche<br>relitte, che si sono essurite rapidamente; in particolare limitati stillicidi si sono osservati da un vir sul piedritto destro.                                                                                                                                                                                                                                                                                                   |  |  |
|                                            |       | Durante l'esecuzione dello scavo, anche dai settori di calotta, non si sono osservati distacchi sensibili di materiale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 29                                         | 24-27 | Il fronte è costituito da basamento plutonitico alterato, costituito da blocchi a consistenza litica dispersi in una<br>matrice alterata; in calotta sono presenti porzioni di basamento più alterato ridotto a sabbia fine limoso-argillosa.<br>Nella parte centrale sono presenti dei piani di taglio, a basso angolo immergenti a franapoggio; molto probabilmente<br>sono strutture antiche ormai non più attive (antiche shear zone milonitiche).                                                                                                                                                                                                                                                                    |  |  |
|                                            | 33-36 | Durante l'esecuzione dello scavo, anche dai settori di calotta, non si sono osservati distacchi sensibili di matariale.<br>Il materiale presenta una elevata degradabilità se esposto agli agenti esterni.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 39                                         | 33-36 | Il fronte è ocstituito da basamento plutonitico alterato, costituito da blocchi a consistenza litica dispersi in una<br>matrice di disfacimento del basale; in calotta sono presenti porzioni di basamento più alterato meno coesive.<br>Durante l'esecuzione dello scavo si sono osservati distacchi di materiale molto limitati dai settori di calotta.                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 45                                         | 33-37 | Sul fronte affiora il basamento cristallino alterato; le condizioni del basamento sono piuttosto<br>omogenee e non si osservano zone particolarmente ammalorate.<br>In fase di scavo non si osservano particolari rilasci di materiale.<br>Sul settore destro si hanno limitati stillicidi da due VTR che comunque si sono esauriti nel corso<br>dello scavo stesso.                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 59                                         | 33-37 | Sul fronte affiora il basamento cristallino alterato le cui condizioni sono piuttosto omogenee; solo<br>nella parte sinistra si osserva una zona leggermente più alterata.<br>Sul rene destro si ha un limitato stillicidio da un VTR che comunque si è esaurito nel corso dello<br>scavo stesso.                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |





RELAZIONE GEOTECNICA GENERALE

Codice documento

CB0057\_F0

 Rev
 Data

 F0
 20/06/2011

| 67 | 35    | Fronte di scavo costituito da graniti e granodiotiti a colorazione variabile dal<br>marrone chiaro al grigio scuro.<br>Si riconosce una sola famiglia di discontinuità per fratturazione K1(010°/060°) che<br>presenta persistenza elevata e spaziatura da decimetrica a pluridecimetrica.<br>Nel complesso l'ammasso rocciso si presenta alterato e tettonizzato con presenza di<br>abbondante materiale molle a granulometria limo argillosa mostarndo una scarsa<br>resistenza all'azione dinamica del martellone.<br>Il fronte di scavo si presenta umido con locali stillicidi in paramento sinistro, mentre<br>la resistenza a compressione uniassiale della roccia viene stimata generalmente<br>inferiore ai 25 Mpa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 74 | 33    | <ul> <li>Fronte di scavo costituito da graniti e granodiotiti a colorazione variabile dal marrone chiaro al grigio verdastro.</li> <li>Si riconosce una sola famiglia di discontinuità per fratturazione K1(010°/060°) che presenta persistenza elevata e spaziatura da decimetrica a pluridecimetrica.</li> <li>Nel settore di paramento sinistro-chiave calotta l'ammasso roccioso si presenta alterato e tettonizzato con abbondante materiale molle a granulometria limo argillosa di colore grigio verdastro, offrendo una scarsa resistenza all'azione meccanica del martellone.</li> <li>La restante porzione del fronte di scavo (parameto destro) si presenza con caratteristiche geomeccaniche discrete in corrispondenza del piedritto destro, mentre le stesse, tendono a deteriorarsi progressivamente verso il settore del nucleo.</li> <li>Il fronte di scavo si presenta umido con locali stillicidi in paramento sinistro e chiave calotta</li> <li>La resistenza a compressione uniassiale dell'ammasso maggiormente alterato viene stimata generalmente inferiore ai 25 Mpa mentre per la restante porzione di ammasso si stima compresa tra i 25 Mpa e i 50 Mpa.</li> </ul> |
| 89 | 21-23 | Nel settore medio alto del fronte di scavo, l'ammasso si presenta alterato e<br>tettonizzato a granulometria argillo-limosa debolmente sabbiosa con presenza<br>sporadica di inclusi decimetrici di natura intrusiva alterati e privi di consistenza<br>litoide.<br>La restante porzione di ammasso si presenta con una minora alterazione e con<br>presenza abbondante di materiale molle a granulometria limo argillosa e limo<br>sabbiosa. In tale porzione del fronte si individuano inoltre, inclusi di natura intrusiva<br>di dimensioni da decimentici a pluridecimtrici che conservano localmente ancora<br>una consistenza litoide.<br>Durante le fasi del rilievo non si osservano fenomeni di distacco gravitativo.<br>Il fronte di scavo si presenta umido con stillicidi d'acqua limitati al settore di<br>paramento sinistro.<br>La resistenza dell'ammasso viene stimata generalmente inferiore ai 25 Mpa.                                                                                                                                                                                                                                                                       |
| 98 | 23-25 | Nel settore di paramento destro, l'ammasso risulta costituito da Plutoniti di colore<br>marrone rossastro da alterate a tettonizzate con presenza abbondane di materiale<br>molle a granulometria limo argillosa e inclusi decimetrici di natura cristallina privi<br>di consistenza litoide.<br>La restante porzione di ammasso invece, risulta rappresentata da terreni a matrice<br>sabbiosa di colore grigio beige con struttura caotica e abbondante presenza di inclusi<br>cristallini decimetrici da arrotondati a subarrotondati e con intercalazioni di livelli<br>decimetrici di sabbia modertamente cementata.<br>Nel complesso quest'ultimi terreni si presentano da poco a moderatamente<br>cementati offrendo una discreta resistenza all'azione dinamica del martellone.<br>Per la porzione maggiormente alterata (paramento destro) la resistenza a<br>compressione uiniassiale della roccia viene stimata generalmente inferiore ai 25<br>Mpa , mentre per la restante porzione di ammasso la stessa si stima compresa tra i<br>25 e i 50 Mpa.<br>Il fronte si presenta umido.                                                                                                 |





RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

| 102 | 23-25 | L'ammasso roccioso risulta rappresentato in paramento sinistro da terreni<br>appartenentio alla formazione delle plutoniti alterate (graniti e granodioriti). tali<br>terreni si presentano alterati e tettonizzati con abbondante presenza di materiale<br>molle a granulometria limo argillosa.<br>diversamente la resante porzione del frontedi scavo risulta rappresentato da terreni a<br>matrice sabbiosa moderatamente cementati con presenza di inclusi cristallini da<br>arrotondati a sub arrotondati con presenza di livelli decimetrici di sabbia fine<br>cementata.<br>Tali terreni offrono una buona resistenza all'azione dinamica del martellone mentra<br>la resistenza a compressione uniassiale della rocci viene stimata generalmente<br>compresa tra i 25 mpa e i 50 mpa.<br>il fronte di scavo si presenta umido                                                                                                                                       |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 112 | 23-27 | Nei settori medio alti il fronte di scavo risulta rappresentato da terreni a matrice<br>sabbiosa di colore grigio beige da moderatamente cementati a cementati con<br>presenza di inclusi cristallini di dimensioni decimetriche a consistenza litoide e<br>livelli sabbiosi a granulometria fine cementati di spessore decimetrico.<br>La restante porzione di ammasso risulta rappresentato da rocce del basamento<br>cristallino quali graniti e granodioriti (Plutoniti alterate) di colore marrone rossastro<br>moderatamente alterati con sporadica presenza, tra le discontinuità per fratturazione,<br>di materiale di riempimento molle a granulometria limo argillosa<br>Nel complesso l'ammasso si presenta competente allo scavo offrendo una buona<br>resistenza all'azione dinamica del martellone.<br>Il fronte di scavo si presenta umido mentre la resistenza a compressione uniassiale<br>dell'ammasso viene stimata generalemnte superiore ai 25 Mpa.     |
| 120 | 23-27 | Nei settori medio alti il fronte di scavo risulta rappresentato da terreni a matrice<br>sabbiosa di colore grigio beige da moderatamente cementati a cementati con<br>presenza di inclusi cristallini di dimensioni decimetriche a consistenza litoide.<br>In tale settore si individuano livelli decimetrici di sabbia fine da moderatamente<br>cementata a cementata intervallati a livelli decimetrici a matrice limo argillosa da<br>poco a moderatamente consistenti.<br>La restante porzione di ammasso risulta rappresentato da rocce del basamento<br>cristallino quali graniti e granodioriti (Plutoniti alterate) di colore marrone rossastro<br>moderatamente alterati con sporadica presenza, tra le discontinuità per fratturazione,<br>di materiale di riempimento molle a granulometria limo argillosa<br>Il fronte di scavo si presenta umido mentre la resistenza a compressione uniassiale<br>dell'ammasso viene stimata generalmente superiore ai 25 Mpa. |
| 130 | 23-25 | Il settore medio basso della sezione di scavo risulta rappresentato da terreni a matrice<br>sabbiosa di colore grigio beige da moderatamente cementati a cementati con presenza di<br>inclusi cristallini di dimensioni decimetriche a consistenza litoide.<br>In tale settore si individuano livelli decimetrici di sabbia fine da moderatamente cementata a<br>cementata intervallati a livelli decimetrici a matrice limo argillosa da poco a moderatamente<br>consistenti.<br>Il settore medio alto risulta rappresentato invece, da concrezioni carbonatiche di colore<br>rugginoso da moderatamente cementate a cementate e poggianti direttamente su dei limi<br>sabbiosi di colore beige da moderatamente consistenti a consistenti.<br>Il fronte di scavo si presenta umido mentre la resistenza a compressione uniassiale<br>dell'ammasso viene stimata generalmente inferiore ai 25 Mpa                                                                           |





Codice documento CB0057\_F0

| Galleria naturale Piale - Carreggiata Sud |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| pk<br>(m)                                 | GSI   | Osservazioni (estratto dal Rapporto di sopralluogo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 0                                         | 35-38 | Il fronte è costituito da basamento plutonitico alterato, costituito da blocchi a consistenza litica dispersi in una<br>matrice di disfacimento; in calotta affiorano depositi sedimentari ascrivibili alla formazione delle Ghiale di Messina<br>costituite prevalentemente da alternanze di ghiale sabbiose e livelli sabbiosi, localmente si hanno lenti marnose<br>fossilifere di colore biancastro.<br>I depositi sedimentari quando non sono direttamente interessati dallo scavo mostrano rilasci limitati; mentre, quando<br>sono più direttamente coinvolti nelle operazioni di demolizione offrono una bassa resistenza allo scavo e sono poco<br>stabili.                                                                         |  |  |
| 8                                         | 33-36 | Le ghiaie di Messina sono circoscritte alla zona compresa tra la calotta ed il rene sinistro, per<br>uno spessore di circa 1-1.5 m.<br>Sulla restante parte del fronte affiora il basamento alterato, questo presenta caratteristiche<br>piuttosto omogenee; solo nella parte centrale si distingue una fascia di colore rosso ferrettizzata<br>argillificata.                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 15                                        | 35-40 | Il fronte è completamente asciutto ed è costituito da basamento cristallino le cui condizioni di<br>alterazione sono piuttosto omogenee.<br>Si osservano due piani di faglia, probabilmente antiche zone di taglio, della potenza di circa 15 –<br>20 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 37                                        | 35-40 | Il fronte è praticamente asciutto, si osserva solo un limitato gocciolamento da un VTR sul<br>piedritto sinistro, ed è costituito da basamento cristallino le cui condizioni di alterazione sono<br>piuttosto omogenee; sul piedritto destro affiora un basamento meno alterato che presenta una<br>maggiore resistenza allo scavo.                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 53                                        | 38    | Fronte di scavo costituito da graniti e granodiotiti a colorazione variabile dal marrone<br>chiaro al grigio verdastro moderatamente alterate<br>Si riconoscono due famiglie di discontinuità per fratturazione a persistenza medio-alta e<br>spaziatura ridotta con presenza di riempimento molle a granulometria limo argillosa.<br>Il fronte di scavo si presenta localmente umido in paramento destro e la resistenza a<br>compressione uniassiale dell'ammasso viene stimata generalmente compresa tra i 25<br>Mpa e i 50 Mpa.                                                                                                                                                                                                          |  |  |
| 61                                        | 34    | Fronte di scavo costituito da graniti e granodiotiti a colorazione variabile dal marrone<br>rossastro al grigio chiaro.<br>Il settore medio alto della sezione di scavo si presenta alterato con abbondante presenza<br>di materiale molle a granulometria limo argillosa .<br>La restante porzione di scavo si presenta invece meno alterata con famiglie di<br>discontinuità per fratturazione a persistenza media e spaziatura pluridecimetrica e<br>presenza sporadica di materiale di riempimento molle.<br>Il fronte di scavo si presenta localmente umido nel settore di chiave calotta.<br>La resistenza a compressione uniassiale della roccia maggiormente alterata viene<br>stimata generalmente inferiore ai 25 Mpa.             |  |  |
| 67                                        | 34    | Fronte di scavo costituito da graniti e granodiotiti a colorazione variabile dal marrone<br>rossastro al grigio chiaro.<br>Si individuano n.3 principali famiglie di discontinuità per fratturazione (K1,K2 e K3) e<br>persistenza medio alta e spaziatura ridotta, con presenta di materiale di riempimento<br>molle limo argilloso.<br>Nel settore medio alto l'ammasso roccioso si presenta maggiormente alterato a scarse<br>consistenza litoide offrendo una scarsa resistenza all'azione dinamica del martellone.<br>Il fronte di scavo si presenta umido e non si osservano fenomeni di rilascio gravitativi.<br>La resistenza a compressione uniassiale dell'ammasso roccioso maggiormente alterato si<br>stima inferiore ai 25 Mpa. |  |  |



Il parametro GSI, per coperture della galleria comprese fra circa 10m e 25m, è quindi mediamente risultato pari a 32±5.

Il valore assunto per le elaborazioni è stato posto pari a 27.

Tale valore, confrontato con quelli riportati nella classificazione di Hoek et al. (1998), corrisponderebbe ad un ammasso molto scadente costituito da molti blocchi.

Gli inviluppi di rottura dell'ammasso roccioso sono stati determinati sulla base:

- del valore GSI di cui al paragrafo precedente;
- dei valori della resistenza alla compressione semplice  $\sigma_c$  e del parametro  $\mathbf{m}_i$  della roccia: la natura eterogenea dell'ammasso si riflette sui valori delle resistenze a compressione monoassiale che, in base alle prove di laboratorio effettuate, sono risultate molto variabili; esse vanno da valori medi dell'ordine di  $\sigma_c$  = 40 MPa (spezzoni di roccia) ad un valore medio pari 3MPa rappresentativa della parte medio fine cementata. Su alcuni provini sono state eseguite prove di taglio diretto in laboratorio; nonostante abbiano una componente sabbiosa preponderante e risultino disturbati, hanno evidenziato un comportamento coesivo (mediamente c'=30KPa) imputabile alla parziale cementazione e/o al contenuto di fino. In considerazione della elevata eterogeneità dovuta alla presenza di componenti più o meno coerenti si può determinare la  $\sigma_c$  mediando la parte competente con quella meno competente, come suggerito da Hoek et al. (2000) per ammassi eterogenei, ottenendo quindi un valore medio pesato paria 15MPa.
- Per  $\mathbf{m}_i$  si assume un valore pari a 22.

I risultati ottenuti in termini di coesione e di angolo di attrito tangenti, per diversi valori di  $\sigma_n$ ' e profondità maggiori di 20-25m, sono riportati nella seguente tabella.

|         | Picco    |        | Residuo  |        |
|---------|----------|--------|----------|--------|
| σn(Mpa) | c' (MPa) | φ' (°) | c' (MPa) | φ' (°) |
| 0,42    | 0,16     | 41     | 0,10     | 24     |
| 0,63    | 0,22     | 37     | 0,14     | 21     |
| 0,84    | 0,27     | 34     | 0,17     | 19     |
| 1,05    | 0,32     | 32     | 0,20     | 17     |
| 1,26    | 0,37     | 30     | 0,23     | 16     |
| 1,47    | 0,41     | 29     | 0,26     | 15     |



In casi rappresentati da situazioni non caratterizzate da dissesti pregressi o in atto, si opererà come segue:

- In analisi ove non è possibile riprodurre il comportamento "strain softening" si farà riferimento ai parametri medi dell'ammasso (D=0.5);
- In analisi ove è possibile riprodurre la caduta di resistenza verranno ipotizzate leggi di degrado dei parametri di resistenza da quelli di picco a quelli "residui".
- In casi rappresentati da situazioni caratterizzate da dissesti pregressi o in atto, si farà riferimento ai parametri residui (D=1) dell'ammasso.
- Nelle zone di disturbo tettonico si utilizzeranno parametri prossimi a quelli residui.

## 2.6.5 Back analysis

Allo scopo di verificare l'approccio precedentemente esposto si è effettuata una back analysis relativa alla stabilità del fronte della costruenda galleria Piale, scavato e consolidato con 44 VTR cementati al fronte (sovrapposizione 6m), risultato stabile allo scavo con spostamenti ammissibili.

La verifica è condotta mediante il metodo all'equilibrio limite proposto da Tamez (1984).

La sezione tipo B2, è caratterizzata da un consolidamento del fronte di scavo, con lo scopo di irrigidirlo e di prevenirne i fenomeni di estrusione e contenere gli spostamenti in campo elastoplastico, visto il sottopasso di alcuni edifici in località Piale.

Per le caratteristiche meccaniche adottate nei calcoli per i terreni si rimanda a quanto riportato nel paragrafo precedente; a questo proposito si precisa che si è considerata la copertura massima pari a circa 25m (ad una distanza di circa 100m dagli imbocchi sud).

L'ammasso più degradato si è spesso rivelato interferente con il fronte mentre quello caratterizzato relativamente da migliori caratteristiche meccaniche si è spesso rivelato nella parte medio bassa del fronte.

Per la sezione si ha:



Il contributo in termini di pressione equivalente che il consolidamento al fronte fornisce, è calcolabile come descritto nel seguito.

Le principali caratteristiche, meccaniche e geometriche, impiegate per calcolare la pressione al fronte, equivalente all'azione dei consolidamenti, utilizzate nei calcoli sono le seguenti:

| τ <sub>min</sub> ≅150 KPa                 | Aderenza VTR - terreno           |
|-------------------------------------------|----------------------------------|
| L <sub>sovr</sub> = 6 m                   | Lunghezza di sovrapposizione     |
| $T=\pi \ \varphi \ L_{sovr} \ \tau_{min}$ | Tiro complessivo                 |
| φ =0.1                                    | Diametro foro VTR                |
| N= 44                                     | Numero VTR al fronte             |
| $Pe = N T / A_{fronte} \cong 100 KPa$     | Pressione equivalente sul fronte |

I parametri geotecnici utilizzati sono:

| Parametri                         | Z da p.c.                | γ                    | c'      | φ'    |  |
|-----------------------------------|--------------------------|----------------------|---------|-------|--|
| di calcolo                        | (m)                      | (kN/m <sup>3</sup> ) | (kPa)   | (°)   |  |
| Conglomerato di Pezzo<br>alterato | 10-25                    | 22                   | 0 - 100 | 38-40 |  |
| Conglomerato di Pezzo<br>- fronte | >25<br>(σn=0.4-0.5MPa)** | 22                   | 130*    | 32*   |  |

\*= valori medi fra quelli residui e di picco

\*\*= tensione media normale

Come risulta evidente dalle figure di seguito riportate, in assenza del consolidamento, per uno sfondo medio pari a 1.5m, si ha Fs prossimo ad 1.1 al quale, secondo Tamez corrisponderebbe un comportamento di tipo elastoplastico stabile ma con spostamenti non ammissibili.

In presenza dei consolidamenti tale valore si porta a circa 1.5 con spostamenti che, sempre in campo elastoplastico, risultano però ammissibili, come rilevabile in galleria.

I parametri utilizzati, avendo fornito un risultato compatibile con le evidenze rilevate in galleria, possono ritenersi rappresentativi della resistenza globale dell'ammasso alle profondità investigate.



Figura 48– Verifica in assenza del consolidamento al fronte



Figura 49-Verifica in presenza del consolidamento al fronte



#### 2.6.6 Caratteristiche di deformabilità

I valori delle velocità delle onde di taglio  $V_s$  misurati con le **prove sismiche in foro** risultano molto dispersi (da Figura 71 a Figura 77).

Un andamento ragionevolmente cautelativo (valori medio-minimi) è definibile dalla seguente espressione:

 $V_s = 280 \cdot (z)^{0.2}$  m/sec

essendo z la profondità dal p.c. in metri.

Ai valori di  $V_s$  corrispondono moduli di taglio iniziali  $G_0$  ugualmente molto dispersi, che riferiti alle pressioni efficaci geostatiche, possono cautelativamente (valori medio-minimi delle prove sismiche) porsi pari a:

$$G_o = 3000 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.50}$$
$$E_o = 7200 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.50}$$

essendo:

p<sub>a</sub> = pressione atmosferica di riferimento

p<sub>o</sub>' = pressione efficace media

Come riferimento per il calcolo delle pressione efficace media, a favore di sicurezza in questo caso, non si considera la presenza della falda. Comunque per il livelli piezometrici locali si fa riferimento ai progili geotecnici di progetto.

L'andamento di  $G_0$  ed  $E_0$  può invece essere anche espresso anche con la profondità, cautelativamente come (valori medio minimi delle prove sismiche):

$$G_0 = 115 \cdot (z)^{0.5}$$

$$E_0 = 280 \cdot (z)^{0.5}$$

I moduli di Young "operativi" corrispondenti possono, in funzione delle profondità, porsi quindi pari a:



 $E' = 40 - 93 \cdot (z)^{0.5}$ 

corrispondenti circa ad  $1/5 \div 1/10 E_0$  ed a  $1/3 E_0$ .

Dalle **prove pressiometriche e dilatometriche** (Figura 78 e Figura 79) effettuate i valori di E' risultano generalmente compresi fra 125 e 350 MPa fino a 35m di profondità. Tali moduli rappresentano valori di E' a medie o grandi deformazioni, e risultano generalmente in buon accordo con quelli stimabili da  $E_0$  (1/5÷1/10  $E_0$ ), fino a 35m circa di profondità.

Anche le **prove SPT**, per quanto ritenute non rappresentative, forniscono nei primi 35m valori compresi tra 150 e 300MPa.

Alla luce di tutto quanto sinora esposto e della dispersione dei dati, caratteristica di questa formazione molto eterogenea, a prescindere dalle espressioni precedentemente esposte, si preferisce assegnare i seguenti moduli operativi in funzione della profondità, che vista appunto la dispersione dei dati, possono considerarsi mediamente cautelativi:

E'=150-300 (z 0 -20m)

E'=300-500 (20 - 35m)

E'=500-900 (35 - 65m)

E'=900 -1500\* (>65m)

A profondità maggiori di 35m i valori riportati si riferiscono a medio - piccole deformazioni .

\*Il valore massimo è riferibile a quello ottenuto dalle sismiche tra 65m e 100m di profondità.

Gallerie, fronti scavo sostenuti, opere di sostegno: si considerano valori contenuti nel range. Rilevati, fondazioni dirette: valori corrispondenti al minimo del range.

## 2.6.7 Caratteristiche di permeabilità

I coefficienti di permeabilità dell'ammasso roccioso sono stati determinati con prove di permeabilità Lefranc.

Nell'ambito delle profondità di indagine (primi 60 m dal p.c.), ad essi possono essere assegnati valori molto variabili: nei primi 35m valori dell'ordine di 10<sup>-4</sup>m/sec mentre più in profondità di 10<sup>-7</sup>m/sec (Figura 81).



## 2.6.8 Caratterizzazione per tratte

Tale formazione coinvolge per chilometri le opere inerenti al tracciato ferroviario e stradale rende necessaria un analisi, per tratte, approfondendo soprattutto l'aspetto connesso con la deformabilità. Per ogni tratta si considerano le prove abbastanza vicine alle opere in esame da ritenersi rappresentative dello scenario in esame.

Per il tracciato ferroviario, vista l'estensione dell'opera in relazione al numero delle indagini disponibili, si può invece rimandare a quanto riportato nella caratterizzazione generale.

In Allegato si riportano le figure (da Figura 85 a Figura 127) e le tabelle relative ai valori calcolati per i parametri descritti nei paragrafi successivi.

## 2.6.9 Stradale - Rampa A – tratta in galleria naturale

In questo contesto l'opera attraversa la parte relativamente più superficiale del Conglomerato di Pezzo al di sotto delle gallerie Piale, attualmente in fase di scavo. Le coperture sono di circa 35m.

Le sismiche SG14 ed S8 non investigano se non fino a 28m di profondità e quindi non colgono eventuali miglioramenti, mostrando comunque una lieve tendenza all' aumento delle onde Vs, con la maggior parte dei valori intorno posizionati intorno a 600m/s (da Figura 85 a Figura 91).

Il modulo E<sub>0</sub>, fino a 28m da p.c., risulta quindi mediamente pari a 2000 Mpa.

Le prove pressiometriche e dilatometriche (da Figura 92 a Figura 94) sono state effettuate, tra 15m e 85m di profondità, nei sondaggi SG14 (carico), S8 (carico), C405 (carico), C410 (carico) , C408 (scarico-ricarico), C421ter (scarico-ricarico).

I valori sono molto dispersi, e, tra 15m e 35m, per la maggior parte risultano compresi fra 225 MPa e 320 MPa ricadendo quindi nel range di E'=1/10÷1/5 E<sub>0</sub>.

Le prove più profonde, tra 35 e 80m di profondità, forniscono un range di variabilità pari a 70÷400 MPa.

Al proposito valgono le seguenti considerazioni:

- I moduli del primo ciclo di carico, dedotti da prove pressiometriche o dilatometriche non risultano rappresentativi della deformabilità dell'ammasso indotta dallo scavo di gallerie (E'=1/5÷1/3 E<sub>0</sub>) perché queste sono caratterizzate da piccole deformazioni e prevalentemente in regime di scarico.
- Per il loro carattere puntuale le prove rischiano di divenire parzialmente rappresentative della deformabilità di un ammasso particolarmente eterogeneo come il Conglomerato di Pezzo.

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     |            |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |

• I risultati possono essere localmente affetti dal disturbo del foro di prova.

Si ritiene che i valori ricadenti nel range di progetto E'=300-500 MPa (E'=1/10-1/5 ÷1/3E<sub>0</sub>) fornito nella caratterizzazione generale per profondità comprese fra 15 e 35m, possano in questo contesto considerarsi adeguati per rappresentare la deformabilità dell'ammasso coinvolto dalle opere in esame.

## 2.6.10 Stradale - Rampa B – tratta in galleria naturale

Si rimanda a quanto riportato nel paragrafo precedente (da Figura 95 a Figura 97).

## 2.6.11 Stradale - Rampa C – tratta in galleria naturale

In questo contesto l'opera attraversa il Conglomerato di Pezzo in uno scenario dovrebbe essere quello rappresentato da coperture variabili da circa 15m a circa 35m. da p.c.

Le sismiche SG13bis, C403bis investigano fino a 60m di profondità mostrando una tendenza all' aumento delle onde Vs, con la maggior parte dei valori da 400m/s a 800 m/s con valori massimi anche di 800-1200m/s a 20m da p.c.. La sismica SG13bis fornisce dei valori singolarmente molto bassi delle Vs anche ad elevate profondità (300m/s a 34m e a 46m) (da Figura 98 a Figura 104).

Il modulo  $E_0$  è molto variabile, e tra 15m e 35m è mediamente pari a 1500 $\div$ 2000MPa.

Le prove pressiometriche e dilatometriche (da Figura 105 a Figura 107) sono state effettuate fino a 56m di profondità nei sondaggi SG13bis (carico), C403bis (carico), C404 (scarico-ricarico), C406 (scarico-ricarico), C407 (scarico-ricarico).

La maggior parte dei valori compresi ricade fra 100 e 220 Mpa.

Valgono le osservazioni sulle prove già effettuate nel paragrafo precedente.

Anche in questo caso si ritiene che i valori ricadenti nel range di progetto E'=300-500 MPa (E'=1/10-1/5 ÷1/3E<sub>0</sub>) fornito nella caratterizzazione generale per profondità comprese fra 15 e 35m, possano in questo contesto considerarsi adeguati per rappresentare la deformabilità dell'ammasso coinvolto dalle opere in esame.

## 2.6.12 Stradale - Rampa D – tratta in galleria naturale

In questo contesto l'opera attraversa il Conglomerato di Pezzo in uno scenario dovrebbe essere quello rappresentato da coperture che vanno da circa 15m a circa 75m. da p.c.

Eurolink S.C.p.A.





Le sismiche SG13bis, C403bis,S7DG42 mostrando una tendenza all' aumento delle onde Vs, con valori anche di 800-1200m/s a 20m da p.c.(da Figura 108 a Figura 114).

Il modulo  $E_0$  è molto disperso, il valore medio è 2500MPa.

RELAZIONE GEOTECNICA GENERALE

Le prove pressiometriche e dilatometriche in SG13 (carico), S7 (carico), C420bis (scarico-ricarico), C403bis (carico), C404 (carico e scarico-ricarico), C406 (carico e scarico-ricarico), C407 (carico e scarico-ricarico), C412 (carico e scarico-ricarico) forniscono un range di valori la maggior parte dei quali compresi fra 100 e 400 MPa (15m-75m) (da Figura 115 a Figura 117).

Valgono le osservazioni sulle prove già effettuate nel paragrafo precedente

Si ritiene quindi che il range di progetto E'=300-500 MPa fra 20 e 35m e E'=500-900 MPa fra 35 e 65m fornito nella caratterizzazione generale possa considerarsi adeguato per la tratte in esame alle profondità di progetto e per le opere in esame che sono costituite da gallerie naturali.

## 2.6.13 Stradale – Rampe A-B-C-D – tratta all'aperto da 0 a +500 Km circa

In questo contesto le simiche di riferimento sono CS103, C423bis, FCCH1508, OTCCH1501.

Queste ultime due indagano fino a 100m di profondità (da Figura 118 a Figura 124).

I valori sono molto dispersi ma a partire da 5m da p.c. il valore di Go parte da un valore medio di circa 600 MPa, a cui corrisponde Eo=1500MPa.

Si ritengono valide le considerazioni effettuate nella caratterizzazione generale.

Le pressiometriche nei fori C403bis (carico), C404 (carico e scarico-ricarico), C423 (carico e scarico-ricarico), C423bis (carico), OTCSPT504 (scarico-ricarico) forniscono un range di valori variabilissimo fra 15m e 35m di profondità compreso fra 75 e 220 MPa, mediamente pari a 150 MPa (1/10 Eo) (da Figura 125 a Figura 127).

Per tali prove valgono ancora tali considerazioni:

- i valori possono ritenersi rappresentativi di un comportamento a medie e grandi deformazioni ed infatti, nel caso in esame, considerando la stima di Eo, il valore medio corrisponde ad 1/10-1/5 Eo.
- Per il loro carattere puntuale le prove rischiano di divenire parzialmente rappresentative della deformabilità di un ammasso particolarmente eterogeneo come il Conglomerato di Pezzo.
- I risultati possono essere localmente affetti dal disturbo del foro di prova.

In ogni caso, facendo riferimento all'esito delle prove sismiche ed al valore medio dei valori





 Rev
 Data

 F0
 20/06/2011

scaturiti dalle prove dilatometriche e pressiometriche si ritiene quindi che il range di progetto fornito nella caratterizzazione generale E'=150÷300 MPa valido nei primi 15m di spessore del Conglomerato di Pezzo possa considerarsi adeguati per la tratta in esame: in particolare il valore minimo di 150 MPa (1/10 E<sub>0</sub>) si ritiene <u>mediamente</u> rappresentativo del contesto geotecnico in cui sono previste opere all'aperto quali fondazioni o rilevati che mobilitano medie e grandi deformazioni in fase di carico.

## 2.6.14 Commenti

La valutazione delle caratteristiche geotecniche del Conglomerato di Pezzo si è resa problematica, a causa della elevata eterogeneità connessa con la presenza di un elevato contenuto di materiali fini e molto grossolani (anche metrici) nonché di estesi fenomeni di cementazione.

Si ritiene quindi che essa non possa essere fatta esclusivamente tramite le correlazioni usualmente utilizzate per i terreni granulari.

Inoltre le prove pressiometriche e le prove SPT sono prove "puntuali", non in grado di rappresentare il comportamento globale di un ammasso così eterogeneo ed interessato "globalmente" dalle opere in esame.

Le prove SPT, poi, si riferiscono ad un materiale disturbato dall'esecuzione del foro e quindi a maggior ragione non rappresentativo della frazione medio fine cementata ma eventualmente solo della matrice non cementata.

Quindi le prove ed i rilievi che si sono ritenuti invece maggiormente rappresentativi sono quelli che hanno investigato il comportamento alla scala dell'ammasso.

Per la deformabilità le prove pressiometriche e dilatometriche sono state comunque analizzate avendo come termine di confronto i risultati delle sismiche.

Si sono anche considerati i rilievi effettuati nella costruenda galleria Piale, i quali:

- hanno consentito una caratterizzazione globale della resistenza secondo un approccio del tipo di continuo equivalente.
- ha anche confermato quanto ipotizzato e cioè la potenziale presenza di una porzione superficiale di ammasso di circa 25m più alterato al di sotto del quale dovrebbe esserci un ammasso di relative migliori caratteristiche meccaniche.

La back analysis effettuata relativamente sulla stabilità del fronte della costruenda galleria Piale deve considerarsi come una verifica con lo scopo di valutare l'approccio seguito per la



caratterizzazione della resistenza dell'ammasso.

Bisogna sottolineare inoltre che i valori di resistenza e deformabilità che sono scaturiti dalla caratterizzazione debbono intendersi come dei valori medi globali che rappresentano la resistenza e la deformabilità d'insieme di un ammasso alquanto eterogeneo che quindi localmente può anche essere caratterizzato da proprietà peggiori o migliori, difficilmente individuabili.
| Stretto                       | Ponte sullo Stretto di Messina |     |            |  |
|-------------------------------|--------------------------------|-----|------------|--|
| di Messina                    | PROGETTO DEFINITIVO            |     |            |  |
| RELAZIONE GEOTECNICA GENERALE | Codice documento               | Rev | Data       |  |
|                               | CB0057_F0                      | F0  | 20/06/2011 |  |

## 2.6.15 Tabella riepilogativa di caratterizzazione geotecnica

Sulla base di quanto presentato e discusso nei paragrafi precedenti nella tabella seguente vengono riassunti i parametri medi caratteristici.

| γ (kN/m³)                    | 20÷22                                                            |  |  |  |  |
|------------------------------|------------------------------------------------------------------|--|--|--|--|
|                              | 0÷100 z (0-25m)                                                  |  |  |  |  |
| C <sup>°</sup> picco (KPa)   | per profondità maggiori vedi tabella par. 2.7.4.                 |  |  |  |  |
|                              | 38-42 z (0-25m)                                                  |  |  |  |  |
| φ΄ picco (Č)                 | per profondità maggiori vedi tabella par. 2.7.4                  |  |  |  |  |
| C <sub>residuo</sub> ' (kPa) | vedi tabella par. 2.7.4                                          |  |  |  |  |
| φ <sub>residuo</sub> ' (°)   | vedi tabella par. 2.7.4                                          |  |  |  |  |
| k <sub>o</sub> (-)           | 0.7-0.9                                                          |  |  |  |  |
| V <sub>s</sub> (m/sec)       | $V_s = 280 \cdot (z)^{0.2}$                                      |  |  |  |  |
| G'o                          | $G_o = 3000 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.50}$ |  |  |  |  |
|                              | E'=150-300 (z 0 -20m)                                            |  |  |  |  |
|                              | E'=300-500 (20 - 35m)                                            |  |  |  |  |
| E' *                         | E'=500-900 (35 - 65m)                                            |  |  |  |  |
|                              | E'=900 -1500* (>65m)                                             |  |  |  |  |
| ν' (-)                       | 0.2-0.3                                                          |  |  |  |  |
| K(m/s)                       | 10 <sup>-7</sup>                                                 |  |  |  |  |





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

### Simbologia:

 $\gamma_t$  = peso di volume naturale;

N<sub>SPT</sub> = resistenza penetrometrica dinamica in prova SPT;

 $\varphi'$  = angolo di attrito operativo;

c' = intercetta di coesione operativa;

 $\varphi_{r}$ ' = angolo di attrito residuo;

c<sub>r</sub>' = intercetta di coesione residua;

OCR = grado di sovraconsolidazione;

 $\sigma_{vo}$ ' = pressione verticale efficace geostatica;

 $\sigma_{vmax}$ ' = pressione verticale efficace massima subita dal deposito;

c<sub>u</sub> = resistenza al taglio non drenata riferita a tensioni di consolidazione pari a quelle geostatiche e a condizioni di carico tipo quelle delle prove triassiali di compressione e carico;

k<sub>o</sub> = coefficiente di spinta del terreno a riposo;

 $k_v$  = coefficiente di permeabilità verticale riferito a pressioni di consolidazione pari a quelle geostatiche e a problemi di flusso diretto principalmente nella direzione verticale;

V<sub>s</sub> = velocità di propagazione delle onde di taglio;

G<sub>o</sub> = modulo di taglio iniziale riferito alle pressioni efficaci geostatiche;

E' = modulo di Young "operativo"; \* = si considerano valori nel range per gallerie, fronti di scavo sostenuti, opere di sostegno tirantate o puntonate; valori al minimo del range per fondazioni dirette, fondazioni su pali e rilevati.

v' (-)= coefficiente di Poisson



# 2.7 Plutoniti

### 2.7.1 Descrizione

Le metamorfiti affioranti nel settore settentrionale sono costituite da paragneiss che lateralmente tendono a passare a micascisti biotitici attraversando petrofacies intermedie. Tali litotipi si presentano di colore grigio, a grana media-fina e tessitura da massiva a foliata.

Le rocce cristalline graniotoidi del settore centro-meridionale sono, invece, costituiti da leucogranodioriti a due miche e graniti-monzograniti.

All'interno dei graniti è stato localmente riscontrato un sensibile grado di alterazione idrotermale che conferisce alla roccia un aspetto brecciato, a luoghi con colorazione biancastra e farinosa al tatto. Le evidenze di affioramento e di sondaggio consentono di ritenere determinante, ai fini della caratterizzazione geomeccanica dell'ammasso roccioso, la presenza di una fratturazione, a luoghi molto intensa legata alla coesistenza di più sistemi di discontinuità che, tuttavia, non conferiscono all'ammasso una spiccata anisotropia.

In Allegato si riportano le figure (da Figura 128 a Figura 135) e le tabelle relative ai valori calcolati per i parametri descritti nei paragrafi successivi.

### 2.7.2 Caratteristiche fisiche

Per quanto riguarda le caratteristiche del deposito si rimanda a quanto riportato nelle relazioni geologiche di progetto.

Dalle prove di laboratorio emerge un peso di volume  $\gamma$  di volume totale pari a 21KN/m<sup>3</sup>. Considerando il probabile disturbo dei campioni si assume un range pari a 21-23 KN/m<sup>3</sup>

### 2.7.3 Stato iniziale

In mancanza di prove specifiche, per la determinazione delle caratteristiche iniziali si rimanda alle informazione di carattere geologico.

Per la determinazione dello stato iniziale i progettisti potranno considerare quanto esposto nel paragrafo 2.4.9.





## 2.7.4 Parametri di resistenza al taglio in termini di sforzi efficaci

Il modello utilizzato per la determinazione dei parametri è un continuo equivalente.

L'interpretazione delle caratteristiche dell'ammasso parte dalla stima del parametro RMR<sub>'89</sub> che è stato valutato sulla base di 15 rilievi geostrutturali effettuati sugli affioramenti.

Il parametro GSI è quindi mediamente pari a 35-40.

Gli inviluppi di rottura dell'ammasso roccioso sono stati determinati tenendo conto:

- del valore GSI di cui in precedenza;
- dei valori della resistenza alla compressione semplice σ<sub>c</sub> determinata in laboratorio (30MPa) e del parametro m<sub>i</sub> della roccia intatta pari a 33.

I risultati che si otterrebbero, per GSI = 40 sono riportati nella tabella, sia per le condizioni di resistenza di picco ("undisturbed rock mass") che per le condizioni di resistenza residua ("disturbed rock mass") per tensioni normali corrispondenti a profondità massime di circa 20m.

|               |         | Picco    |        | Residuo  |        |
|---------------|---------|----------|--------|----------|--------|
| copertura (m) | σn(Mpa) | c' (MPa) | φ' (°) | c' (MPa) | φ' (°) |
| 10.00         | 0.22    | 0.14     | 59     | 0.10     | 46     |
| 20.00         | 0.44    | 0.23     | 53     | 0.16     | 40     |
| 30.00         | 0.66    | 0.32     | 50     | 0.22     | 36     |
| 40.00         | 0.88    | 0.39     | 47     | 0.27     | 33     |
| 50.00         | 1.10    | 0.47     | 45     | 0.33     | 31     |
| 60.00         | 1.32    | 0.54     | 44     | 0.37     | 29     |
| 70.00         | 1.54    | 0.60     | 42     | 0.42     | 28     |
| 80.00         | 1.76    | 0.67     | 41     | 0.46     | 26     |
| 90.00         | 1.98    | 0.73     | 40     | 0.51     | 25     |
| 100.00        | 2.20    | 0.79     | 39     | 0.55     | 24     |

In contesti non caratterizzati da rotture pregresse o in atto e per analisi convenzionali in cui non venga simulato il decadimento della resistenza si potranno considerare come valori operativi quelli rappresentati dai valori medi tra quelli "undisturbed" e "disturbed" oppure cautelativamente prossimi a quelli "disturbed".

In contesti caratterizzati da rotture pregresse o in atto e per analisi convenzionali potranno Pagina 148 di 688 Eurolink S.C.p.A.

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     |            |  |  |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|--|--|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |  |  |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |  |  |

considerarsi come valori operativi quelli rappresentati dai valori "disturbed".

Per le zone tettonizzate o alterate si assume GSI=20 (classe IV-V RMR) e quindi si ottiene:

|               |         | Picco    |        | Residuo  |        |
|---------------|---------|----------|--------|----------|--------|
| copertura (m) | σn(Mpa) | c' (MPa) | φ' (°) | c' (MPa) | φ' (°) |
| 10.00         | 0.22    | 0.11     | 53     | 0.07     | 36     |
| 20.00         | 0.44    | 0.19     | 47     | 0.12     | 29     |
| 30.00         | 0.66    | 0.27     | 44     | 0.17     | 26     |
| 40.00         | 0.88    | 0.33     | 41     | 0.21     | 23     |
| 50.00         | 1.10    | 0.39     | 39     | 0.25     | 21     |
| 60.00         | 1.32    | 0.45     | 37     | 0.28     | 20     |
| 70.00         | 1.54    | 0.51     | 36     | 0.32     | 19     |
| 80.00         | 1.76    | 0.56     | 34     | 0.35     | 18     |
| 90.00         | 1.98    | 0.62     | 33     | 0.38     | 17     |
| 100.00        | 2.20    | 0.67     | 32     | 0.41     | 16     |

Su campioni rimaneggiati e prelevati nei sondaggi SG11, SG11bis, SG13 e SG13bis nei primi 30m, e quindi nella parte più alterata dell'ammasso, sono state effettuate prove di taglio diretto che forniscono per i parametri di resistenza c=0-20KPa e  $\phi$ '=32-40°.(Figura 130)

### 2.7.5 Caratteristiche di deformabilità

Considerando la relazione di Serafim & Pereira, 1983 si ottiene:

E'=500 ÷ 700 Mpa rispettivamente per D=1e D=0.5 in ammassi di classe IV-V RMR (faglie) E'=1000 ÷ 1500 Mpa rispettivamente per D=1 e D=0.5 in ammassi di classe III-IV RMR

In base alle **prove sismiche in foro** (SG11, SG11bis, CN451, da Figura 131 a Figura 133) si ottiene un range di valori Vs rappresentabile mediamente da tale relazione: Vs=400+13z (m/s)

Eurolink S.C.p.A.





# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Si ottiene un range di valori, tra 5m e 40m di profondità di E<sub>0</sub> molto variabile mediamente pari a 1000 fino a 10m e a 2000 MPa tra 10m e 35m di profondità.

Dopo tale profondità la sismica Cn451 fornisce valori crescenti con E<sub>0</sub>>4000 MPa.

Il modulo statico E' risulta pari a E'=500 ÷ 700 Mpa pari rispettivamente a circa 1/5 ÷ 1/3 di quello iniziale (da Figura 131 a Figura 132).

**Le prove pressiometriche** forniscono un range di valori, tra 15m e 35m di profondità di E' pari a 150-250MPa, mentre le prove dilatometriche un valore che si aggira intorno a 250-500MPa (1/5-1/10E<sub>0</sub>) (da Figura 128 a Figura 129).

Si ritiene quindi ragionevole assumere tale range di valori operativi:

E'=250 ÷ 500 Mpa in ammassi di classe IV-V RMR (faglie) e nei primi 10m di profondità

E'=500 ÷ 700 Mpa in ammassi di classe IV-V RMR (faglie) e nei primi 10-35m di profondità

E'=1000 ÷ 1500 Mpa per profondità maggiori

RELAZIONE GEOTECNICA GENERALE

Gallerie, fronti scavo sostenuti, opere di sostegno: si considerano valori contenuti nel range. Rilevati, fondazioni dirette: valori corrispondenti al minimo del range.

## 2.7.6 Coefficienti di permeabilità

Dalle prove si ottiene un range di permeabilità pari a  $1 \times 10^{-8} \div 1 \times 10^{-7}$  m/s.

| Stretto                       | Ponte sullo Stretto di Messina |     |            |  |  |
|-------------------------------|--------------------------------|-----|------------|--|--|
| di Messina                    | PROGETTO DEFINITIVO            |     |            |  |  |
| RELAZIONE GEOTECNICA GENERALE | Codice documento               | Rev | Data       |  |  |
|                               | CB0057_F0                      | F0  | 20/06/2011 |  |  |

## 2.7.7 Tabella riepilogativa di caratterizzazione geotecnica

Sulla base di quanto presentato e discusso nei paragrafi precedenti nella tabella seguente vengono riassunti i parametri medi caratteristici.

| γ (kN/m³)                    | 21÷23                                                                                                                                                                                   |  |  |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| c' <sub>picco</sub> (kPa)    | vedi tabella par. 2.10.4                                                                                                                                                                |  |  |  |  |  |
| φ' <sub>picco</sub> (°)      | vedi tabella par. 2.10.4                                                                                                                                                                |  |  |  |  |  |
| C <sub>residuo</sub> ' (kPa) | vedi tabella par. 2.10.4                                                                                                                                                                |  |  |  |  |  |
| φ <sub>residuo</sub> ' (°)   | vedi tabella par. 2.10.4                                                                                                                                                                |  |  |  |  |  |
| k <sub>o</sub> (-)           | -                                                                                                                                                                                       |  |  |  |  |  |
| V <sub>s</sub> (m/sec)       | Vs=400+13z (m/s)                                                                                                                                                                        |  |  |  |  |  |
| G'。                          | -                                                                                                                                                                                       |  |  |  |  |  |
| E' *                         | E'=250 ÷ 500 Mpa in ammassi di classe IV-V RMR<br>(faglie) e nei primi 10m di profondità<br>E'=500 ÷ 700 Mpa in ammassi di classe IV-V RMR<br>(faglie) e nei primi 10-35m di profondità |  |  |  |  |  |
|                              | E'=1000 ÷ 1500 Mpa per profondità maggiori                                                                                                                                              |  |  |  |  |  |
| ν' (-)                       | 0.2                                                                                                                                                                                     |  |  |  |  |  |
| K(m/s)                       | 10 <sup>-7</sup> ÷10 <sup>-8</sup>                                                                                                                                                      |  |  |  |  |  |





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

### Simbologia:

 $\gamma_t$  = peso di volume naturale;

N<sub>SPT</sub> = resistenza penetrometrica dinamica in prova SPT;

 $\varphi'$  = angolo di attrito operativo;

c' = intercetta di coesione operativa;

 $\varphi_{r}$ ' = angolo di attrito residuo;

c<sub>r</sub>' = intercetta di coesione residua;

OCR = grado di sovraconsolidazione;

 $\sigma_{vo}$ ' = pressione verticale efficace geostatica;

 $\sigma_{vmax}$ ' = pressione verticale efficace massima subita dal deposito;

c<sub>u</sub> = resistenza al taglio non drenata riferita a tensioni di consolidazione pari a quelle geostatiche e a condizioni di carico tipo quelle delle prove triassiali di compressione e carico;

k<sub>o</sub> = coefficiente di spinta del terreno a riposo;

 $k_v$  = coefficiente di permeabilità verticale riferito a pressioni di consolidazione pari a quelle geostatiche e a problemi di flusso diretto principalmente nella direzione verticale;

V<sub>s</sub> = velocità di propagazione delle onde di taglio;

G<sub>o</sub> = modulo di taglio iniziale riferito alle pressioni efficaci geostatiche;

E' = modulo di Young "operativo"; \* = si considerano valori nel range per gallerie, fronti di scavo sostenuti, opere di sostegno tirantate o puntonate; valori al minimo del range per fondazioni dirette, fondazioni su pali e rilevati.

v' (-)= coefficiente di Poisson



### 2.8 Sabbie e Ghiaie di Messina

### 2.8.1 Descrizione

I materiali in oggetto sono granulometricamente descritti come ghiaie e ciottoli da sub arrotondati ad appiattiti con matrice di sabbie grossolane.

In Allegato si riportano le figure (da Figura 136 a Figura 160) e le tabelle relative ai valori calcolati per i parametri descritti nei paragrafi successivi.

### 2.8.2 Caratteristiche fisiche

Da un analisi statistica delle caratteristiche granulometriche emerge, per ogni diametro una limitata variabilità del passante evidenziando quindi per il fuso medio una buona rappresentatività delle caratteristiche granulometriche generali.

L'andamento del fuso conferma che le caratteristiche granulometriche dei materiali in esame sono tipiche di materiali sia di materiali a grana grossa (ghiaie 36%), sia di materiali intermedi (sabbie 52%). Il contenuto di fino è mediamente del 11%. Si riporta in Allegato l'andamento delle percentuali delle sabbie e ghiaie con la profondità (Figura 136).

C'è da dire che a causa del campionamento l'analisi granulometrica (67 prove) può sicuramente risultare poco rappresentativa della parte più grossolana (ciottoli e ghiaia grossa).

Con riferimento al fuso medio si ha:

- Il valore di **D**<sub>50</sub> è pari a 0.8mm
- Il valore di **D**60 è pari a 1.2 mm
- Il valore di D<sub>10</sub> è pari a 0.025 mm

l valori calcolati di  $D_{50}$  di ogni prova granulometrica, rappresentati in funzione della profondità, sono riportati in Allegato. Il valore medio è risultato pari a 1.45±1.35 con grande dispersione dei valori.

Il peso di volume dei grani medio  $\gamma_s$  è risultato pari a circa 26 kN/m3;

In base a dati di letteratura il valore di  $\gamma_{dmax}$  risulterebbe mediamente pari a circa 21 KN/m<sup>3</sup> mentre  $\gamma_{dmin}$  mediamente pari a circa 16 KN/m<sup>3</sup>.



## 2.8.3 Stato iniziale

In base alle indicazioni provenienti dagli studi geologici tale formazione non è sovraconsolidata, nel senso che in passato non ha generalmente subito dei carichi maggiori di quelli attuali. Presenta un locale grado di cementazione di natura chimica.

Inoltre non è stato possibile tenere in conto dell'effetto della cementazione sui risultati delle prove SPT; vista la debole cementazione si può considerare che tale effetto possa ritenersi ininfluente sui risultati (Figura 139).

- Dr: in Allegato si mostrano le verticali e le quote alle quali sono state applicate le correlazioni di Skempton o di Cubrinowski. I valori di N<sub>spt</sub> sono stati corretti con il fattore correttivo C<sub>sg</sub>=0.75 corrispondente al d50=0.8mm (Figura 140 e Figura 141).
- e<sub>o</sub>: a partire dal d50 stimato si ottiene di e<sub>max</sub>-e<sub>min</sub> pari a 0.31, non dissimile dai valori reperibili in letteratura (0.17<e<sub>max</sub>-e<sub>min</sub><0.29). Stimando per e<sub>max</sub> un valore pari a 0.7 a partire dai valori di Dr è stato possibile determinare i valori di e<sub>o</sub> in sito (sia dalla componente sabbio-ghiaiosa che da quella sabbiosa, vedi tabella). In Allegato si mostra anche il buon confronto/calibratura di e<sub>o</sub> determinato a partire da Dr con e<sub>o</sub> misurato nelle prove di laboratorio che ha mostrato un valore medio pari a 0.5.
- $\gamma_d$ : in base a tali valori di  $e_o$  e da  $\gamma_s$  si può stimare  $\gamma_d$ , riportato nel grafico in Allegato.
- K<sub>0</sub>: si considera la relazione di Mesri (1989) per tenere conto degli effetti di "aging".

|                       | z(m) | Dr(%)<br>Prevalente | Dr(%)<br>Sabbie e | eO      | γd(KN/m3) | K₀        |
|-----------------------|------|---------------------|-------------------|---------|-----------|-----------|
|                       |      | sabbiosa            | ghiaie            |         |           |           |
| GN RAMPA A            | 0-20 | 70-90               | 60-80             | 0.4-0.6 | 17 10     | 0.40-0.45 |
| Figura 161-Figura 162 | >20  | 60-80               | 60                | 0.5     | 17-19     | 0.45-0.5  |
| GN RAMPA B            | 0-20 | -                   | 60-80             | 0.4-0.5 | 17 10     | 0.40-0.45 |
| Figura 175-Figura 176 | >20  | -                   | 60                | 0.5-0.6 | 17-18     | 0.45      |
| GN RAMPA D            | 0-15 | 70-90               | 60-90             | 0.4-0.5 | 17 10     | 0.40-0.45 |
| Figura 183-Figura 184 | >15  | 60                  | 50-60             | 0.5-0.6 | 17-19     | 0.45-0.5  |
| Rampa B da km 0+800   |      | 80.00               | 60.70             | 0407    | 10.00     | 0 45 0 5  |
| Figura 191-Figura 192 |      | 00-90               | 00-70             | 0.4-0.7 | 10-20     | 0.45-0.5  |
| Rampa D da km         | 0-10 | 80-90               | -                 | 0.4-0.7 | 17-20     | 0.40-0.45 |
| 1+350                 | >10  | 60-90               | -                 | 0.4-0.5 | 18-19     | 0.40-0.45 |

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |           |                    |
|-------------------------------|----------|-------------------------------------------------------|-----------|--------------------|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento<br>CB0057_F0                         | Rev<br>F0 | Data<br>20/06/2011 |
|                               |          |                                                       |           |                    |

| Figura 206            |      |         |   |         |       |           |
|-----------------------|------|---------|---|---------|-------|-----------|
| Rampa D_dec           | 0-15 | 0.8     | - | 0.4-0.5 | 18-20 | 0.40-0.45 |
| Figura 220-Figura 221 | >15  | 0.6-0.8 | - | 0.5-0.6 | 17-18 | 0.45-0.5  |

 <u>Commento</u>: nella caratterizzazione generale si evidenzia una estrema variabilità dei valori delle Dr che si riduce drasticamente laddove si considera un analisi per tratte riportata in tabella e supportata dalle corrispondenti figure in Allegato; c'è da dire ad ogni modo che spesso tale variabilità (es: GN Rampa A) è il risultato di oscillazioni dei valori con la profondità anche solo in corrispondenza della singola verticale (es: C411 con Dr che varia da 35% a 85% nel giro di pochi metri).

### 2.8.4 Parametri di resistenza al taglio in termini di sforzi efficaci

Sarà dapprima effettuata un analisi generale e poi, di seguito, per tratte.

**Sulla base delle prove SPT** si è ottenuto un valore medio di angolo di attrito di 41°; ai parametri di resistenza operativi al taglio in termini di sforzi efficaci si sono assegnati i seguenti valori operativi:

### Resistenze di picco / operative (p'ff=0 - 272KPa)

 $c_p$ ' = 0÷10 kPa = coesione apparente

 $\phi_p$ ' = 38÷40° =angolo di resistenza al taglio

Tali valori sono compatibili con uno stato di sforzo che preveda una pressione normale alla superficie di rottura compresa nel range tra 0 e 272KPa. Tali valori sono stati confermati dalle prove pressiometriche effettuate per le quali il valore medio risulta pari a 39° (Figura 144).

Per quanto riguarda il livello coesivo di picco, si ritiene ragionevole associare il valore massimo per tenere in conto del livello di cementazione che viene rilevato dagli studi geologici.

In ogni caso si ritiene che localmente i valori di resistenza proposti possano essere verificati attraverso back analysis sulle evidenze morfologiche rilevate.

In problemi caratterizzati da un aumento delle tensioni normali si possono definire i seguenti parametri:

### Resistenze di picco / operative (p'ff=272 - 350KPa)

 $c_p$ ' = 0÷10 kPa = coesione apparente

 $\phi_p$ ' = 35°÷38° =angolo di resistenza al taglio.



Tali valori sono compatibili con uno stato di sforzo che preveda una pressione normale alla superficie di rottura compresa nel range tra 272KPa÷350KPa.

Per intervalli tensionali differenti si rimanda a quanto proposto da Baligh (1975).

Per i valori di stato critico, in assenza di prove specifiche, in base ai dati di letteratura si possono definire i seguenti valori operativi (Figura 142 e Figura 143)

#### **Resistenze residue/operative**

- cr' = 0 kPa = coesione apparente
- $\varphi_r$ ' = 33°-35° =angolo di resistenza al taglio

#### 2.8.4.1 Analisi per tratte

Analizzando i risultati nelle varie tratte si ottengono i range di valori calcolati di seguito riportati. In Allegato sono riportati i relativi grafici. I dati per ogni tratta sono piuttosto esigui si ritiene quindi di fare comunque riferimento, per i parametri operativi, alla caratterizzazione generale.

|                         | z(m) | φ" <sub>p (pff=0-272KPa)</sub> (°) | ф" <sub>р (pff=272-350КРа)</sub> (°) | φ' <sub>cv</sub> (°) |  |
|-------------------------|------|------------------------------------|--------------------------------------|----------------------|--|
| GN RAMPA A              | 0-20 | 40-43                              | 38-40                                | 22.25                |  |
| (Figura 165-Figura 166) | >20  | 38-40                              | 38                                   | 33-35                |  |
| GN RAMPA B              | 0-20 | 40-43                              | 38-40                                | 22.25                |  |
| (Figura 179-Figura 180) | >20  | 40                                 | 37                                   | 33-35                |  |
| GN RAMPA D              | 0-15 | 40-43                              | 37-40                                | 22.25                |  |
| (Figura 187-Figura 188) | >15  | 38-40                              | 35-37                                | 33-35                |  |
| Rampa B da km 0+800     |      | 40.42                              | 38-40                                | 22.25                |  |
| (Figura 195-Figura 196) |      | 40-43                              |                                      | 33-35                |  |
| Rampa D da km           | 0.10 | 40.44                              | 38-40                                |                      |  |
| 1+350                   | 0-10 | 40-44                              | 36-38                                | 33-35                |  |
| (Figura 211-Figura 212) | >10  | 40-42                              |                                      |                      |  |
| Rampa D_dec             | 0-15 | 40-42                              | 37-39                                | 22.25                |  |
| (Figura 226-Figura 227) | >15  | 39-41                              | 36-38                                | 33-35                |  |

Si considerano <u>valori operativi</u> dell'angolo di attrito di picco più cautelativi e pari a 38°-40° Le prove di laboratorio su materiale sciolto hanno evidenziato un valore medio di 38°.



#### 2.8.5 Caratteristiche di deformabilità

Sarà dapprima effettuata un analisi generale e poi, di seguito, per tratte.

**Dalle prove sismiche in foro** (SG14,SG15,SG13bis,C417,C415,C416,C403bis) si ottengono valori di  $V_s$  che mostrano una tendenza all'aumento con la profondità con valori che vanno mediamente da 170 m/s a 600 m/s fino a 40m di profondità (da Figura 149 a Figura 158).

Nelle figure in Allegato si mostra anche il confronto e taratura tra le velocità ottenute dalle correlazioni da prove SPT e le misure di Vs in foro che evidenzia una corrispondenza <u>resa</u> problematica dalla grande variabilità dei valori anche nell'ambito della medesima verticale.

Per i valori di  $V_p$  si ottengono valori che mostrano una tendenza all'aumento con la profondità con valori che vanno mediamente da 400 m/s a 1300 m/s fino a 40m di profondità.

Appare ragionevole e cautelativo rappresentare Vs attraverso tale andamento con la profondità: Vs=200 +  $7 \cdot z$  (m/s)

Ai valori delle velocità di taglio Vs corrispondono moduli di taglio iniziali  $G_0$  molto variabili che mostrano un andamento mediamente crescente con la profondità, da 100MPa a 500MPa a 40m di profondità.

Una stima con la profondità si rende difficoltosa per la dispersione di  $G_0$  che si rende particolarmente evidente con il valore normalizzato della pressione efficace media.

I valori di Go **da prove SPT** hanno un andamento che, stimato graficamente (Figura 147) con una linea di tendenza, risulta pari a:

$$G_o = 1730 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.6}$$

da cui:

$$E_o = 4150 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.6}$$

essendo:

p<sub>a</sub> = pressione atmosferica

$$p'_{o} = \frac{1 + 2 \cdot k_{o}}{3} \cdot \sigma'_{vo}$$

k<sub>o</sub> = coefficiente di spinta a riposo

Eurolink S.C.p.A.



# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

 $\sigma_{vo}$ ' = pressione verticale efficace geostatica

Come riferimento per il calcolo delle pressione efficace media, in questo caso a favore di sicurezza, non si considera la presenza della falda. Comunque per il livelli piezometrici locali si fa riferimento alla relazione idrogeologica ed ai progili geotecnici di progetto.

La formula, oltre che dalla correlazione, trova grosso modo riscontro in letteratura in quanto si ottiene anche assumendo S=450, f(e)=4 che insieme a n=0.6 rappresentano dei valori reperibili per i terreni granulari.

Ad f(e)=4 corrisponderebbe un indice dei vuoti in sito pari a 0.5.

Sempre in base alle prove SPT,  $G_0$  ed  $E_0$  si possono anche esprimere in funzione di z(m), una stima ottenuta correlando i dati sperimetali è data da (Figura 146):

$$G_o = 50 \cdot (z)^{0.6}$$

$$E_o = 120 \cdot (z)^{0.6}$$

con valori  $E_0$  variabili da 350 MPa circa 5m di profondità a 1500 MPa circa a 40m di profondità.

I moduli di Young "operativi" a medie deformazioni, valutati sulla base dei criteri descritti nei capitoli precedenti risulteranno pari a:

$$E = (17 \div 40) \cdot (z)^{0.6}$$

pari rispettivamente a circa 1/5÷1/10 ed a 1/3 di quelli iniziali.

**Dalle prove pressiometriche** effettuate nella nuova campagna di indagine 2010 i valori di E' (ciclo scarico) risultano pari a 150 ÷ 200 MPa fino a 35m di profondità. Per come sono state interpretate le prove tali moduli rappresentano generalmente i valori in scarico e rappresentano valori a medie deformazioni, con i quali risultano in buon accordo.

Gallerie, fronti scavo sostenuti, opere di sostegno: si considerano valori contenuti nel range.

Rilevati, fondazioni dirette: valori corrispondenti al minimo del range.

Nel caso di fondazioni su pali, per il modulo di reazione orizzontale secondo Reese, si può considerare un valore della costante pari a 15000 ÷ 25000 KN/m<sup>3.</sup>

Per il calcolo della costante di sottofondo in generale si può fare riferimento a quanto riportato nel capitolo 2.2.4.

### 2.8.5.1 Analisi per tratte

Analizzando i risultati nelle varie tratte si ottengono i range di valori calcolati di seguito riportati. In



Allegato sono riportati i relativi grafici.

|                                                   | G0 (MPa)             | Go/pa                                                  | E0 (MPa)              | E' (MPa)                  |
|---------------------------------------------------|----------------------|--------------------------------------------------------|-----------------------|---------------------------|
| GN RAMPA A<br>(Figura 169-Figura 174)             | 74 z <sup>0.45</sup> | $1850 \cdot \left(\frac{\dot{p_o}}{p_a}\right)^{0.45}$ | 178 z <sup>0.45</sup> | (24-59) z <sup>0.45</sup> |
| GN RAMPA B                                        | 85 z <sup>0.45</sup> | $2050 \cdot \left(\frac{p_o}{p_a}\right)^{0.45}$       | 205 z <sup>0.45</sup> | (30-70) z <sup>0.45</sup> |
| GN RAMPA D                                        | 55 z <sup>0.5</sup>  | $1550 \cdot \left(\frac{p_o}{p_a}\right)^{0.5}$        | 130 z <sup>0.45</sup> | (16-40) z <sup>0.45</sup> |
| Rampa B da km 0+800<br>(Figura 199-Figura 205)    | 35 z <sup>0.7</sup>  | $1500 \cdot \left(\frac{p_o}{p_a}\right)^{0.7}$        | 84 z <sup>0.7</sup>   | (12-28) z <sup>0.7</sup>  |
| Rampa D da km<br>1+350<br>(Figura 213-Figura 219) | 45 z <sup>0.65</sup> | $1800 \cdot \left(\frac{p_o}{p_a}\right)^{0.65}$       | 108 z <sup>0.65</sup> | (15-36) z <sup>0.65</sup> |
| Rampa D_dec<br>(Figura 228-Figura 234)            | 65 z <sup>0.5</sup>  | $1800 \cdot \left(\frac{p_o}{p_a}\right)^{0.5}$        | 154 z <sup>0.5</sup>  | (19-48) z <sup>0.5</sup>  |

Come valori operativi dei moduli elastici E' da adottare <u>per le differenti opere</u>, nell'ambito dei range proposti, valgono gli stessi criteri esposti nella caratterizzazione generale.

Commento: nella caratterizzazione generale si evidenzia una discreta variabilità dei valori della deformabilità la cui espressione analitica rappresenta quindi un valore medio; tale variabilità si riduce laddove si effettua un analisi per tratte i cui risultati sono riportati in tabella; c'è da dire che in quest'ultimo contesto mentre i valori di G<sub>0</sub>, determinati correlando i risultati delle prove SPT da una parte mostrano di per sé una variabilità relativamente ridotta, dall'altra interpolano solo mediamente i valori di G<sub>0</sub> derivanti dalle velocità sismiche Vs a causa della estrema variabilità di questi ultimi anche in corrispondenza della medesima verticale (es:in SG14 (fig. 172), G<sub>0</sub> oscilla tra 200 a 900 MPa da 7 a 10m, in SG15 e C415 (fig. 203) G<sub>0</sub> oscilla tra 50 a 600 MPa da 7 a 8m, G<sub>0</sub> oscilla tra 200 a 900 MPa da 7 a 10m, in C416 e C417 G<sub>0</sub> oscilla tra 400 a 600 MPa da 31 a 33m (fig. 232). La scelta dei parametri operativi verrà definita per ciascuna opera nell'ambito delle monografie inserite nelle specifiche relazioni geotecniche.



### 2.8.6 Leggi di degrado dei moduli elastici

In mancanza di prove su provini indisturbati prelevati con la tecnica del congelamento si può fare riferimento alle curve proposte in teoria.

### 2.8.7 Coefficienti di smorzamento intrinseco

In mancanza di prove su provini indisturbati prelevati con la tecnica del congelamento e di indicazioni dalle prove cross-hole ( $D_0$ ) si può fare riferimento alle curve proposte in teoria.

### 2.8.8 Coefficienti di permeabilità

I materiali in oggetto sono eterogenei; conformemente con quanto proposto da Somerville (1986) risulta per K(m/sec) un valore di  $10^{-4}$  m/s.

Nel caso di prove Lefranc si ottengono valori dell'ordine di 1 x  $10^{-4}$ ÷1 x  $10^{-5}$  m/sec.

| Stretto<br>di Messina | EurolinK       | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |           | 1                  |
|-----------------------|----------------|-------------------------------------------------------|-----------|--------------------|
| RELAZIONE GEOTE       | CNICA GENERALE | Codice documento<br>CB0057_F0                         | Rev<br>F0 | Data<br>20/06/2011 |

## 2.8.9 Tabella riepilogativa di caratterizzazione geotecnica generale

Sulla base di quanto presentato e discusso nei paragrafi precedenti nella tabella seguente vengono riassunti i parametri medi caratteristici.

| γ (kN/m³)                      | 18÷20                                                           |
|--------------------------------|-----------------------------------------------------------------|
| N <sub>SPT</sub> (colpi/30 cm) | 70±25                                                           |
| c' <sub>picco</sub> (kPa)      | 0÷10                                                            |
| φ' <sub>picco</sub> (°)        | 38÷40 (p'ff=0-272KPa) / 35÷38 (p'ff=272-350KPa)                 |
| C <sub>cv</sub> ' (kPa)        | 0                                                               |
| φ <sub>cv</sub> ' (°)          | 33÷35                                                           |
| k <sub>o</sub> (-)             | 0.45-0.55                                                       |
| V <sub>s</sub> (m/sec)         | Vs=200+7·z (m/s)                                                |
| G'。                            | $G_o = 1730 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.6}$ |
| E' *                           | $E' = (17 \div 40) \cdot (z)^{0.6}$                             |
| v' (-)                         | 0.2                                                             |
| G0, G/G0                       | curve teoriche                                                  |
| D0, D/D0                       | curve teoriche                                                  |
| K(m/s)                         | 10 <sup>-4</sup> ÷10 <sup>-5</sup>                              |





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

### Simbologia:

 $\gamma_t$  = peso di volume naturale;

N<sub>SPT</sub> = resistenza penetrometrica dinamica in prova SPT;

 $\varphi'$  = angolo di attrito operativo;

c' = intercetta di coesione operativa;

 $\varphi_{r}$ ' = angolo di attrito residuo;

c<sub>r</sub>' = intercetta di coesione residua;

OCR = grado di sovraconsolidazione;

 $\sigma_{vo}$ ' = pressione verticale efficace geostatica;

 $\sigma_{vmax}$ ' = pressione verticale efficace massima subita dal deposito;

c<sub>u</sub> = resistenza al taglio non drenata riferita a tensioni di consolidazione pari a quelle geostatiche e a condizioni di carico tipo quelle delle prove triassiali di compressione e carico;

k<sub>o</sub> = coefficiente di spinta del terreno a riposo;

 $k_v$  = coefficiente di permeabilità verticale riferito a pressioni di consolidazione pari a quelle geostatiche e a problemi di flusso diretto principalmente nella direzione verticale;

V<sub>s</sub> = velocità di propagazione delle onde di taglio;

G<sub>o</sub> = modulo di taglio iniziale riferito alle pressioni efficaci geostatiche;

E' = modulo di Young "operativo"; \* = si considerano valori nel range per gallerie, fronti di scavo sostenuti, opere di sostegno tirantate o puntonate; valori al minimo del range per fondazioni dirette, fondazioni su pali e rilevati.

v' (-)= coefficiente di Poisson



## 2.9 Depositi terrazzati marini

### 2.9.1 Descrizione

Sono rappresentati da depositi marini sabbiosi e sabbioso ghiaiosi fortemente pedogenizzati in prossimità della superficie. I depositi dei terrazzi marini rappresentano terre da sciolte a debolmente coesive con cementazione da debole ad assente.

L'età attribuibile ai terrazzi cartografati nell'area di intervento copre l'intervallo Pleistocene mediosuperiore.

In Allegato si riportano le figure (da Figura 235 a Figura 304) e le tabelle relative ai valori calcolati per i parametri descritti nei paragrafi successivi.

### 2.9.2 Caratteristiche fisiche

L'andamento del fuso evidenzia che le caratteristiche granulometriche dei materiali in esame sono tipiche di materiali sia di materiali a grana grossa (ghiaie 30%), sia di materiali intermedi (sabbie 50%). Il contenuto di fino è mediamente del 17% (Figura 235).

C'è da dire che a causa del campionamento l'analisi granulometrica può sicuramente risultare poco rappresentativa della parte più grossolana.

Con riferimento al fuso medio si ha:

- Il valore di **D**<sub>50</sub> è pari a 0.5mm
- Il valore di **D**<sub>60</sub> è pari a 1.0 mm
- Il valore di  $D_{10}$  è pari a 0.008 mm

Il peso di volume dei grani  $\gamma_s$  è risultato pari a circa 26.5 kN/m<sup>3</sup>.

Da letteratura si hanno a disposizione i valori di  $\gamma_{dmax}$  e  $\gamma_{dmin}$  pari rispettivamente a 18.8 e 15.7 kN/m<sup>3</sup>

### 2.9.3 Stato iniziale

In questa sede si considera che i materiali siano prettamente normalmente consolidati.



- Dr: in Allegato si mostrano le verticali e le quote alle quali sono state applicate le correlazioni di Skempton o di Cubrinowski. I valori di N<sub>spt</sub> sono stati corretti con il fattore correttivo C<sub>sg</sub>=0.85 corrispondente al d50=0.5mm (Figura 238-Figura 239).
- e<sub>o</sub>: a partire dal d50 stimato si ottiene di e<sub>max</sub>-e<sub>min</sub> pari a 0.35. Stimando per e<sub>max</sub> un valore pari a 0.7 a partire dai valori di Dr è stato possibile determinare i valori di e<sub>o</sub> in sito (dalla componente sabbiosa, vedi tabella). In Allegato si mostra anche il buon confronto/calibratura di e<sub>o</sub> determinato a partire da Dr con e<sub>o</sub> misurato nelle prove di laboratorio che è risultato mediamente pari a 0.55.
- $\gamma d$ : in base ai valori di  $e_o$  da  $\gamma_s$  si può stimare  $\gamma$ , riportato nel grafico in Allegato.
- **K**<sub>0</sub>: si considera la relazione di Jaky.

|                                                | z(m) | Dr(%)<br>Prevalente<br>sabbiosa | Dr(%)<br>Sabbie e ghiaie | e0       | γd(KN/m3) | Ko       |
|------------------------------------------------|------|---------------------------------|--------------------------|----------|-----------|----------|
| Rampe fino a Km 0+500<br>circa                 | 0-10 | 60-70                           | -                        | 0.3-0.55 | 17-21     | 0.3-0.4  |
| Figura 240                                     |      |                                 |                          |          |           |          |
| Zona del ramo G<br>(Figura 243-Figura 244)     | 0-20 | 40-60                           | -                        | 0.5-0.55 | 18        | 0.4      |
| <b>Zona del ramo F</b><br>Figura 247           | 0-10 | 50-80                           | -                        | 0.3-0.55 | 17-20     | 0.35-0.4 |
| Zona del Ramo C_dec<br>(Figura 250-Figura 251) | 0-10 | 70-90                           | -                        | 0.4-0.55 | 17-20     | 0.35     |
| Zona del Ramo D_dec<br>Figura 254              | 5-15 | 50-90                           | -                        | 0.4-0.5  | 19-20     | 0.35-0.4 |

• <u>Commento</u>: nella caratterizzazione generale si evidenzia una discreta variabilità dei valori delle Dr che si riduce drasticamente laddove si considera un analisi per tratte riportata in tabella e supportata dalle corrispondenti figure in Allegato.



### 2.9.4 Parametri di resistenza al taglio in termini di sforzi efficaci

Sarà dapprima effettuata un analisi generale e poi, di seguito, per zone omogenee.

**Sulla base delle prove SPT** si è ottenuto un valore medio di angolo di attrito di circa 40°; ai parametri di resistenza operativi al taglio in termini di sforzi efficaci si sono assegnati i seguenti valori operativi:

Resistenze di picco / operative (p'ff=0 - 272KPa)

c' = 0 kPa = coesione apparente

 $\phi$ ' = 38°÷40° =angolo di resistenza al taglio

Anche le prove pressiometriche (SN8-SN9) hanno fornito valori di 38°÷40°

Tali valori sono compatibili con uno stato di sforzo che preveda una pressione normale alla superficie di rottura compresa nel range tra 0 e 272KPa.

In problemi caratterizzati da un aumento delle tensioni normali si possono definire i seguenti parametri:

### Resistenze di picco / operative (p'ff=272 - 350KPa)

 $c_p$ ' = 0 kPa = coesione apparente

 $\phi_p$ ' = 37°- 38° = angolo di resistenza al taglio.

Tali valori sono compatibili con uno stato di sforzo che preveda una pressione normale alla superficie di rottura compresa nel range tra 272KPa÷350KPa.

Per intervalli tensionali differenti si rimanda a quanto proposto da Baligh (1975).

Per i valori di stato critico, in assenza di prove specifiche, in base ai dati di letteratura si possono definire i seguenti valori operativi

#### **Resistenze residue/operative**

 $c_r' = 0$  kPa = coesione apparente  $\phi_r' = 33^\circ-35^\circ$  =angolo di resistenza al taglio Per intervalli tensionali differenti si rimanda a quanto proposto da Baligh (1975).



Un analisi per tratte conduce ai seguenti risultati:

|                                      | z(m) | ф" <sub>р (рff=0-272КРа)</sub> (°) | φ" <sub>p (pff=-272-350KPa)</sub> (°) | φ' <sub>cv</sub> (°) |
|--------------------------------------|------|------------------------------------|---------------------------------------|----------------------|
| Rampe fino a Km 0+500                |      |                                    |                                       |                      |
| circa                                | 0-10 | 38-43                              | 35-40                                 | 33-35                |
| Figura 258                           |      |                                    |                                       |                      |
| Zona del ramo G<br>Figura 259        | 0-20 | 38                                 | 34-35                                 | 33-35                |
| <b>Zona del ramo F</b><br>Figura 260 | 0-10 | 38-41                              | 35-38                                 | 33-35                |
| Zona del Ramo C_dec<br>Figura 261    | 0-10 | 40-41                              | 36-38                                 | 33-35                |
| Zona del Ramo D_dec<br>Figura 262    | 5-15 | 38-42                              | 35-38                                 | 33-35                |

Si considerano valori operativi dell'angolo di attrito di picco cautelativi e pari a 38°-40°

### 2.9.5 Caratteristiche di deformabilità

Sarà dapprima effettuata un analisi generale e poi, di seguito, per zone omogenee.

**Dalle prove sismiche in foro** (CS101, CS103, SG14, SG15, C417, C415, C416, Cn451, C403bis) si ottengono valori di  $V_s$  che vanno mediamente da 150 m/s a 550 m/s fino a 15m di profondità (da Figura 277 a Figura 285).

Nella figura in Allegato si mostra anche il confronto delle velocità ottenute con le correlazioni da prove SPT.

La taratura delle Vs ottenute da SPT è stata effettuata con i valori di Vs misurate durante le prove sismiche in foro nei sondaggi ritenuti più significativi. Il raffronto risulta abbastanza cautelativo.

Ai valori delle velocità di taglio sismiche Vs corrispondono moduli di taglio iniziali G<sub>0</sub> molto variabili.

Una stima con la profondità si rende quindi difficoltosa per la dispersione di  $G_0$  che si rende particolarmente evidente con il valore normalizzato della pressione efficace media.

I valori **da prove SPT** hanno invece un andamento che, stimato graficamente con una linea di tendenza, risulta pari a (Figura 270):



$$G_o = 1550 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.7}$$

da cui:

$$E_o = 3720 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.7}$$

Come riferimento per il calcolo delle pressione efficace media, in questo caso a favore di sicurezza, non si considera la presenza della falda. Comunque per il livelli piezometrici locali si fa riferimento ai progili geotecnici di progetto.

 $E_0 e G_0 si possono esprimere in funzione di z(m), una stima (Figura 269) media da SPT è data da:$ 

$$G_o = 37 \cdot (z)^{0.7}$$

$$E_o = 90 \cdot (z)^{0.7}$$

con valori  $E_0$  variabili da 300 MPa circa 5m di profondità a 660 MPa circa a 15m di profondità.

I moduli di Young "operativi" a medie deformazioni, valutati sulla base dei criteri descritti nei capitoli precedenti risulteranno pari a:

$$E = (19 \div 30) \cdot (z)^{0.7}$$

pari rispettivamente a circa 1/5 ed a 1/3 di quelli iniziali.

Le prove pressiometriche (SN8-SN9) hanno fornito un valore medio (primo carico) di 125-130MPa a circa 18m di profondità, compatibilmente con il valore minimo del range.

Per rilevati e fondazioni dirette ed indirette si farà riferimento ai valori minimi del range.

Per opere di sostegno si farà riferimento a valori intermedi del range.

Nel caso di fondazioni su pali, per il modulo di reazione orizzontale secondo Reese, si può considerare un valore della costante pari a 15000  $\div$  25000 KN/m<sup>3.</sup>

Per il calcolo della costante di sottofondo in generale si può fare riferimento a quanto riportato nel capitolo 2.2.4.

• <u>Commento</u>: nella caratterizzazione generale si evidenzia una discreta variabilità dei valori delle Dr che si riduce drasticamente laddove si considera un analisi per tratte riportata in tabella e supportata dalle corrispondenti figure in Allegato.



Un analisi per tratte conduce ai seguenti risultati:

|                                                   | z(m) | G0(MPa) | E0(MPa) | E'(MPa)          |
|---------------------------------------------------|------|---------|---------|------------------|
| Rampe fino a Km 0+500 ca<br>Figura 286-Figura 289 | 0-10 | 50-200  | 120-480 | 16-40 / 64-160   |
| Zona del ramo G<br>Figura 290-Figura 293          | 0-20 | 100-250 | 240-600 | 32-80 / 80-200   |
| Zona del ramo F<br>Figura 290-Figura 293          | 0-10 | 100-250 | 240-600 | 32-80 / 80-200   |
| Zona del Ramo C_dec<br>Figura 294-Figura 297      | 0-10 | 100-200 | 240-480 | 32-80 / 64-160   |
| Zona del Ramo D_dec<br>Figura 298-Figura 301      | 5-15 | 200-400 | 480-960 | 64-160 / 128-320 |

Come <u>valori operativi</u> dei moduli elastici E' da adottare per le differenti opere, nell'ambito dei range proposti, valgono gli stessi criteri esposti nella caratterizzazione generale.

• <u>Commento</u>: a volte (ramo F) l'espressione determinata per G0 nella caratterizzazione generale interpola mediamente i valori di Go determinati dalle Vs misurate nelle prove sismiche in quanto queste sono risultate variabili anche in corrispondenza della medesima verticale (fig. 296).

### 2.9.6 Leggi di degrado dei moduli elastici

In mancanza di prove su provini indisturbati si può fare riferimento alle curve proposte in teoria.

### 2.9.7 Coefficienti di smorzamento intrinseco

In mancanza di prove su provini indisturbati e di indicazioni dalle prove cross-hole  $(D_0)$  si può fare riferimento alle curve proposte in teoria.

### 2.9.8 Coefficienti di permeabilità

Le prove Lefranc forniscono valori compresi fra  $10^{-5}$  e  $10^{-6}$  m/s.

| Stretto<br>di Messina | EurolinK        | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |           | 1                  |
|-----------------------|-----------------|-------------------------------------------------------|-----------|--------------------|
| RELAZIONE GEOTE       | ECNICA GENERALE | Codice documento<br>CB0057_F0                         | Rev<br>F0 | Data<br>20/06/2011 |

## 2.9.9 Tabella riepilogativa di caratterizzazione geotecnica

Sulla base di quanto presentato e discusso nei paragrafi precedenti nella tabella seguente vengono riassunti i parametri medi caratteristici.

| γ (kN/m³)                    | 18÷20                                                           |
|------------------------------|-----------------------------------------------------------------|
| c' <sub>picco</sub> (kPa)    | 0                                                               |
| φ' <sub>picco</sub> (°)      | 38°÷40° (p'ff=0-272KPa) / 36°÷38° (p'ff=272-350KPa)             |
| C <sub>residuo</sub> ' (kPa) | 0                                                               |
| φ <sub>residuo</sub> ' (°)   | 33°÷35°                                                         |
| k <sub>o</sub> (-)           | 0.4-0.5                                                         |
| V <sub>s</sub> (m/sec)       | 200+14 z                                                        |
| G'₀                          | $G_o = 1550 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.7}$ |
| E' *                         | $E = (19 \div 30) \cdot (z)^{0.7}$                              |
| v' (-)                       | 0.2                                                             |
| K(m/s)                       | 10 <sup>-5</sup> - 10 <sup>-6</sup>                             |





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

### Simbologia:

 $\gamma t$  = peso di volume naturale;

NSPT = resistenza penetrometrica dinamica in prova SPT;

 $\varphi'$  = angolo di attrito operativo;

c' = intercetta di coesione operativa;

 $\varphi_{r}$ ' = angolo di attrito residuo;

c<sub>r</sub>' = intercetta di coesione residua;

OCR = grado di sovraconsolidazione;

 $\sigma_{vo}$ ' = pressione verticale efficace geostatica;

 $\sigma_{vmax}$ ' = pressione verticale efficace massima subita dal deposito;

k<sub>o</sub> = coefficiente di spinta del terreno a riposo;

 $k_v$  = coefficiente di permeabilità verticale riferito a pressioni di consolidazione pari a quelle geostatiche e a problemi di flusso diretto principalmente nella direzione verticale;

V<sub>s</sub> = velocità di propagazione delle onde di taglio;

G<sub>o</sub> = modulo di taglio iniziale riferito alle pressioni efficaci geostatiche;

E' = modulo di Young "operativo"; \* = si considerano valori nel range per gallerie, fronti di scavo sostenuti, opere di sostegno tirantate o puntonate; valori al minimo del range per fondazioni dirette, fondazioni su pali e rilevati.

v' (-)= coefficiente di Poisson



# 2.10 Depositi costieri di spiaggia

### 2.10.1 Descrizione

Tali depositi sono distribuiti entro 200 m dall'attuale linea di costa il cui spessore massimo misurato in sondaggio è di circa 60 m. Sono costituiti da sabbie con ciottoli di composizione prevalentemente quarzoso-feldspatica a cui si intercalano livelli o lenti di argille limose e di torbe. In Allegato si riportano le figure (da Figura 305 a Figura 326) e le tabelle relative ai valori calcolati per i parametri descritti nei paragrafi successivi.

### 2.10.2 Caratteristiche fisiche

L'andamento del fuso conferma che le caratteristiche granulometriche dei materiali in esame sono tipiche di materiali sia di materiali a grana grossa (ghiaie 40%), sia di materiali intermedi (sabbie 53%). Il contenuto di fino è mediamente del 6% (Figura 305).

C'è da dire che a causa del campionamento l'analisi granulometrica (125 prove) può sicuramente risultare poco rappresentativa della parte più grossolana (ciottoli e ghiaia grossa). Con riferimento al <u>fuso medio</u> si ha:

- Il valore di **D**<sub>50</sub> è pari a 0.9mm
- Il valore di D<sub>60</sub> è pari a 2 mm
- Il valore di  $D_{10}$  è pari a 0.065 mm

Il peso di volume dei grani  $\gamma_s$  è risultato pari a circa 26.5 kN/m<sup>3</sup>.

In base a dati di letteratura il valore di  $\gamma_{dmax}$  risulterebbe mediamente pari a circa 19 KN/m<sup>3</sup> mentre  $\gamma_{dmin}$  mediamente pari a circa 15 KN/m<sup>3</sup>.

### 2.10.3 Stato iniziale

In questa sede si considera cautelativamente che i materiali siano prettamente normalmente consolidati.



RELAZIONE GEOTECNICA GENERALE



# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

| Codice documento |
|------------------|
| CB0057_F0        |

 Rev
 Data

 F0
 20/06/2011

- Dr: in Allegato si mostrano le verticali e le quote alle quali sono state applicate le correlazioni di Skempton o di Cubrinowski. I valori di N<sub>spt</sub> sono stati corretti con il fattore correttivo C<sub>sg</sub>=0.7 corrispondente al d50=0.9mm (Figura 309 - Figura 310).
- e<sub>o</sub>: a partire dal d50 stimato si ottiene di e<sub>max</sub>-e<sub>min</sub> pari a 0.29, non dissimile dai valori reperibili in letteratura (0.17<e<sub>max</sub>-e<sub>min</sub><0.29) e da quanto misurato in laboratorio con valore medio pari a 0.31. Stimando per e<sub>max</sub> un valore pari a 0.55, compatibile con quanto ottenuto mediamente in laboratorio, a partire dai valori di Dr è stato possibile determinare i valori di e<sub>o</sub> in sito (sia dalla componente sabbiosa che da quella sabbio-ghiaiosa, vedi tabella). In Allegato si mostra anche il confronto di e<sub>o</sub> determinato a partire da Dr con e<sub>o</sub> misurato nelle prove di laboratorio ed ottenuto dalla correlazione di Foti. Si rileva una buona correlazione fra i dati misurati (laboratorio) ed i dati ottenuti sperimentalmente (da SPT) ma non sempre con la correlazione di Foti che fornisce valori bassi considerati in questo caso poco realistici (0.15-0.25), soprattutto nella zona lontana dalla costa; i valori tabellati di progetto fanno quindi riferimento ai valori ottenuti dalle prove SPT.
- γ : in base ai valori di e<sub>o</sub> e da γ<sub>s</sub> si può stimare γ da Dr, riportato nel grafico in Allegato. Non si sono considerati i valori considerati anomali, maggiori di 22 KN/m3.
- K<sub>0</sub>: si considera la relazione di Jaky.

Si considerano due sub-zone "omogenee": prossima alla costa (sondaggi FCBH5,FCBH6,FCBH7 FCSPT503, FCLPT1502) e più interna (ad es. sondaggi C4, FCBH4, FCBH9, FCCH1508).

|                                                      | z(m)        | Dr(%)<br>Prevalente<br>sabbiosa | Dr(%)<br>Sabbie e<br>ghiaie | e0                   | γ(KN/m3)       | K٥                   |
|------------------------------------------------------|-------------|---------------------------------|-----------------------------|----------------------|----------------|----------------------|
| Zona prossima alla<br>costa<br>Figura 327-Figura 328 | 0-15<br>>15 | 70-90<br>35-65                  | 50-80<br>35-60              | 0.15-0.35<br>0.3-0.4 | 20-22<br>20-21 | 0.3-0.35<br>0.35-0.4 |
| Zona lontana dalla<br>costa<br>Figura 343-Figura 344 | 0-25        | 30-90                           | 30-50                       | 0.2-0.4              | 21-22          | 0.35-0.4             |

 <u>Commento</u>: nella caratterizzazione generale si evidenzia una discreta variabilità dei valori delle Dr che si riduce effettuando un analisi per subzone come riportato in tabella; c'è da dire ad Pagina 172 di 688
 Eurolink S.C.p.A.





# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |

 Rev
 Data

 F0
 20/06/2011

ogni modo che tale variabilità ancora risulta localmente riscontrabile ed è il risultato di forti oscillazioni dei valori di Dr con la profondità anche solo in corrispondenza della singola verticale, a testimonianza di una eterogeneità della formazione (es: <u>Costa</u>: FCBH7 - componente sabbiosa - Dr che varia da 30% a 65% nel giro di pochi metri, FCBH5 componente sabbio- ghiaiosa con Dr che varia fra 30% e 60% <u>Interno</u>: FCBH9 - componente sabbiosa - Dr che varia da 30% a 65% nel giro di pochi metri). Non risulterebbero quindi evidenti delle verticali o gruppi di verticali adiacenti i cui valori di Dr risultino interamente allineati sui minimi. Nella relazione di PE si procederà ad una sistematica misura di emax ed emin, in corrispondenza delle possibili distribuzioni granuolometriche presenti per le varie formazioni in modo da costituire una base statistica di interpretazione sufficientemente rappresentativa dei valori Vs, in termini di densità relativa.

### 2.10.4 Parametri di resistenza al taglio in termini di sforzi efficaci

**Sulla base delle prove SPT** si sono ottenuto i valori (di picco e di stato critico) di seguito riportati Per intervalli tensionali differenti si rimanda a quanto proposto da Baligh (1975).

|                                                      | z(m)        | ф" <sub>р (pff=0-272КРа)</sub> (°) | φ"p (pff=-272-350KPa) (°) | φ' <sub>cv</sub> (°) |
|------------------------------------------------------|-------------|------------------------------------|---------------------------|----------------------|
| Zona prossima alla<br>costa<br>Figura 331-Figura 332 | 0-15<br>>15 | 40-44<br>37-40                     | 36-42<br>33-37            | 33-35                |
| Zona lontana dalla<br>costa                          | 0-25        | 37-40                              | 33-37                     | 33-35                |
| Figura 347-Figura 348                                |             |                                    |                           |                      |

Si considerano <u>valori operativi</u> dell'angolo di attrito di picco più cautelativi e pari a 36°-38° Le prove di laboratorio su materiale sciolto hanno evidenziato un valore medio di 35°.

### 2.10.5 Caratteristiche di deformabilità

Sarà dapprima effettuata un analisi generale e poi, di seguito, per zone più omogenee.



#### 2.10.5.1 Analisi generale

Dalle prove sismiche in foro si ottengono valori di  $V_s$  che mostrano una tendenza all'aumento con la profondità con valori che vanno mediamente da 200 m/s a 500 m/s fino a 50m di profondità. I valori appaiono abbastanza bassi, soprattutto alle piccole profondità.

Nella figura in Allegato si mostra anche il confronto delle velocità ottenute con le correlazioni da prove SPT.

La taratura delle  $V_s$  da SPT fornisce un profilo "operativo" mediamente cautelativo come si rende evidente dal confronto con le velocità sismiche riportato in Allegato (Figura 320 e Figura 321).

Per i valori di V<sub>p</sub> si ottengono valori che mostrano una tendenza all'aumento con la profondità con valori che vanno mediamente da 1000 m/s a 2000 m/s fino a 50m di profondità.

Appare ragionevole e cautelativo rappresentare Vs attraverso tale andamento con la profondità:

 $V_s = 150 + 5 \cdot z (m/s)$ 

Ai valori delle velocità di taglio Vs corrispondono moduli di taglio iniziali  $G_0$  che mostrano un andamento crescente con la profondità, da 100MPa a 500MPa a 50m di profondità ma una elevata dispersione dei valori.

I valori da prove SPT i valori hanno un andamento medio (Figura 315) che, stimato graficamente con una linea di tendenza media, risulta pari a:

$$G_o = 1400 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.63}$$

da cui:

$$E_o = 3360 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.63}$$

Come riferimento per il calcolo delle pressione efficace media si considera la presenza della falda pressochè a piano campagna. Comunque per il livelli piezometrici locali si fa riferimento ai profili geotecnici di progetto.

La formula, oltre che dalla correlazione, trova riscontro in letteratura in quanto si ottiene anche assumendo S=400, f(e)=3.5 che insieme a n=0.65 rappresentano dei valori reperibili per i terreni granulari.



 $E_0 e G_0$  si possono esprimere in funzione di z(m): vista l'estrema variabilità dei valori di G0 anche da SPT se ne propone una stima più cautelativa (Figura 314), non confrontabile con la precedente espressione, che tenga particolarmente conto anche dell'andamento delle prove sismiche (Figura 322) interpolandone i valori medio-minimi. Tale stima è data da:

$$G_o = 18 \cdot (z)^{0.63}$$

$$E_o = 45 \cdot (z)^{0.63}$$

con valori  $E_0$  variabili da 120 MPa circa 5m di profondità a 470 MPa circa a 40m di profondità.

 <u>Commento</u>: nell'analisi generale si evidenzia una discreta variabilità anche locale dei valori della deformabilità sia nell'ambito della interpretazione delle prove sismiche che delle SPT per cui le espressioni determinate precedentemente per i moduli debbono intendersi solo come andamenti medio-minimi delle caratteristiche di deformabilità; per i valori "operativi" si rimanda al successivo paragrafo. La scelta dei parametri operativi verrà definita per ciascuna opera nell'ambito delle monografie inserite nelle specifiche relazioni geotecniche.

#### 2.10.5.2 Analisi per subtratte

Analizzando subtratte relativamente più omogenee una vicina e l'altra lontana dalla costa si riscontra (Figura 333, Figura 334, Figura 349, Figura 350) quanto di seguito riportato in tabella:

|                                                              | G0(MPa)              | G0/pa                                                            | E0(MPa)              | E'(MPa)                  |
|--------------------------------------------------------------|----------------------|------------------------------------------------------------------|----------------------|--------------------------|
| Zona prossima alla<br>costa<br>Figura 333-Figura 342         | 24 z <sup>0.55</sup> | $G_o = 1090 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.55}$ | 58 z <sup>0.55</sup> | (8÷19) z <sup>0.55</sup> |
| Zona lontana dalla<br>costa (z<25m)<br>Figura 349-Figura 358 | 14 z <sup>0.7</sup>  | $G_o = 940 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.70}$  | 34 z <sup>0.7</sup>  | (5÷12) z <sup>0.7</sup>  |

Come riferimento per il calcolo delle pressione efficace media si considera la presenza della falda a piano campagna. Comunque per il livelli piezometrici locali si fa riferimento ai progili geotecnici di progetto.

Eurolink S.C.p.A.



In Allegato si riporta un grafico di confronto che mostra l'accordo (a meno dell'approssimazione nelle formule di correlazione) fra le formule di  $G_0(z)$  e  $G_0(pa;p'/pa)$ ) (Figura 335, Figura 351).

Le espressioni riportate, ottenute dal prove SPT, risultano cautelative in quanto interpolano i valori medio minimi delle prove sismiche (Figura 339, Figura 355).

Le prove pressiometriche (SN8-SN9) hanno fornito un valore medio (primo carico) di 125-130MPa a circa 18m di profondità, compatibilmente con i range.

**I moduli di Young "operativi"** corrispondono rispettivamente a circa  $1/5 \div 1/10$  ed a 1/3 di quelli iniziali  $E_0$ .

Per rilevati e fondazioni dirette ed indirette si farà riferimento ai valori minimi del range.

Per **opere di sostegno** si farà riferimento a valori intermedi del range.

Nel caso di fondazioni su pali, per il modulo di reazione orizzontale secondo Reese, si può considerare un valore della costante pari a  $10000 \div 15000 \text{ KN/m}^3$ .

Per il calcolo della costante di sottofondo in generale si può fare riferimento a quanto riportato nel capitolo 2.2.4.

<u>Commento</u>: nella caratterizzazione generale si evidenzia una discreta variabilità dei valori della deformabilità; nell'analisi per tratte tale variabilità, pur riducendosi, persiste ed il motivo è riconducibile a quanto già videnziato per le Dr nel par. 2.10.3; anche i valori di G<sub>0</sub> ricavabili dalle velocità Vs mostrano di per sé una variabilità relativamente elevata anche in corrispondenza della singola verticale; vista questa eterogeneità le correlazioni "operative" proposte per G<sub>0</sub> e riportate nella precedente tabella sono state definite con un criterio di cautela, correlando i valori medio minimi dei valori determinabili dalle Vs sismiche, come bene si evidenzia nelle figure in Allegato (Figura 339, Figura 355).

### 2.10.6 Leggi di degrado dei moduli elastici

In mancanza di prove su provini indisturbati prelevati con la tecnica del congelamento si può fare riferimento alle curve proposte in teoria.

### 2.10.7 Coefficienti di smorzamento intrinseco

In mancanza di prove su provini indisturbati prelevati con la tecnica del congelamento e di indicazioni dalle prove cross-hole ( $D_0$ ) si può fare riferimento alle curve proposte in teoria.

Pagina 176 di 688



## 2.10.8 Coefficienti di permeabilità

I materiali in oggetto sono eterogenei; conformemente con quanto proposto da Somerville (1986) risulta per K(m/sec) un valore di  $10^{-5}$  m/s. Nel caso di prove Lefranc si ottengono valori compresi fra 1 x  $10^{-4}$ ÷1 x  $10^{-5}$  m/sec decrescenti con la profondità tra 5m e 40m.



#### 2.10.9 Tabella riepilogativa di caratterizzazione geotecnica

Sulla base di quanto presentato e discusso nei paragrafi precedenti nella tabella seguente vengono riassunti i parametri medi caratteristici.

|                                | COSTA                    | INTERNO                 |  |
|--------------------------------|--------------------------|-------------------------|--|
| γ (kN/m³)                      | 20÷21                    | 20÷21                   |  |
| N <sub>SPT</sub> (colpi/30 cm) | 44±30                    | 44±30                   |  |
| c' <sub>picco</sub> (kPa)      | 0                        | 0                       |  |
| 1 (0)                          | 0-15m 40°-44°            | 37°-40°                 |  |
| φ´ picco (                     | >15m 37°-40°             |                         |  |
| C <sub>cv</sub> ' (kPa)        | 0                        | 0                       |  |
| φ <sub>cv</sub> ' (°)          | 33÷35                    | 33÷35                   |  |
|                                | 0-15m 0.3-0.35           | 0.35-0.4                |  |
| K <sub>o</sub> (-)             | >15m 0.35-0.4            |                         |  |
| V <sub>s</sub> (m/sec)         | Vs=150 + 5·z (m/s)       | Vs=150 + 5·z (m/s)      |  |
| G'o                            | 24 z <sup>0.55</sup>     | 14 z <sup>0.7</sup>     |  |
| E' *                           | (8÷19) z <sup>0.55</sup> | (5÷12) z <sup>0.7</sup> |  |
| v' (-)                         | 0.2                      | 0.2                     |  |
| G0, G/G0                       | curve teoriche           | curve teoriche          |  |
| D0, D/D0                       | curve teoriche           | curve teoriche          |  |
| K(m/s)                         | $10^{-4} \div 10^{-5}$   | $10^{-4} \div 10^{-5}$  |  |





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

#### Simbologia:

 $\gamma_t$  = peso di volume naturale;

N<sub>SPT</sub> = resistenza penetrometrica dinamica in prova SPT;

 $\varphi'$  = angolo di attrito operativo;

c' = intercetta di coesione operativa;

 $\varphi_{r}$ ' = angolo di attrito residuo;

c<sub>r</sub>' = intercetta di coesione residua;

OCR = grado di sovraconsolidazione;

 $\sigma_{vo}$ ' = pressione verticale efficace geostatica;

 $\sigma_{vmax}$ ' = pressione verticale efficace massima subita dal deposito;

c<sub>u</sub> = resistenza al taglio non drenata riferita a tensioni di consolidazione pari a quelle geostatiche e a condizioni di carico tipo quelle delle prove triassiali di compressione e carico;

k<sub>o</sub> = coefficiente di spinta del terreno a riposo;

 $k_v$  = coefficiente di permeabilità verticale riferito a pressioni di consolidazione pari a quelle geostatiche e a problemi di flusso diretto principalmente nella direzione verticale;

V<sub>s</sub> = velocità di propagazione delle onde di taglio;

G<sub>o</sub> = modulo di taglio iniziale riferito alle pressioni efficaci geostatiche;

E' = modulo di Young "operativo"; \* = si considerano valori nel range per gallerie, fronti di scavo sostenuti, opere di sostegno tirantate o puntonate; valori al minimo del range per fondazioni dirette, fondazioni su pali e rilevati.

v' (-)= coefficiente di Poisson



## 2.11 Trubi

### 2.11.1 Descrizione

Sono caratterizzati da marne, marne argillose e marne siltose di colore bianco-giallastro, a frattura concoide, localmente con abbondanti livelli sabbiosi fini di colore grigio chiaro.

I Trubi poggiano sul Conglomerato di Pezzo con interposizione alla base di un orizzonte di circa 1,5 metri di sabbie giallastre e presentano al tetto, ed in contatto trasgressivo, un orizzonte calcarenitico.

Lo spessore massimo in affioramento è stato valutato nell'ordine di 20m; in alcuni sondaggi sono stati raggiunti spessori fino a 30-40m. Tale variabilità di spessori è da connettersi in prima istanza all'articolazione in alti e bassi della superficie morfologica sulla quale essi si sarebbero deposti al di sopra del Conglomerato di Pezzo. Di particolare rilievo è l'ispessimento della formazione nel settore posto a sud della zona dell'ancoraggio nella quale i Trubi raggiungono spessore massimo. In alcuni settori dell'area, tale unità risulta mancante per erosione.

L'approccio di caratterizzazione, sia per quanto riguarda la determinazione dei parametri di resistenza che per quanto riguarda le caratteristiche di deformabilità, tratta i materiali con le metodologie degli ammassi rocciosi (modello continuo). Verranno comunque confrontati i parametri con quanto desunto da alcune prove effettuate sia in sito che in laboratorio, interpretando queste ultime con criteri propri dei terreni coesivi a grana fine.

In Allegato si riportano le figure (da Figura 359 a Figura 384) e le tabelle relative ai valori calcolati per i parametri descritti nei paragrafi successivi. I parametri rappresentano una media dei valori riportati nelle figure.

### 2.11.2 Caratteristiche fisiche

Per quanto riguarda le caratteristiche del deposito si rimanda a quanto riportato nelle relazioni geologiche di progetto. Per quanto riguarda le caratteristiche della componente argillosa (da Figura 359 a Figura 362) si ha quanto di seguito riportato:

• Il **fuso granulometrico** (10 prove granulometriche) mostra che le caratteristiche sono tipiche di materiali a grana medio fine con percentuale media di ghiaia 10%, sabbia al 36%, limo al 38% ed argilla al 19% (Figura 359).


- Per quanto riguarda i limiti di Atterberg si hanno valori medi, poco rappresentativi, pari a Wn=32%, Wl=49%, Wp=29%, IP=20%
- Dalla carta di Casagrande la posizione prevalente corrisponderebbe a limi organici di medio alta plasticità.
- Il peso di volume  $\gamma$  al quale si assegna un valore medio di circa 18-19 KN/m<sup>3</sup>

# 2.11.3 Stato iniziale

Per quanto riguarda la determinazione delle caratteristiche iniziali e per la determinazione delle pressioni verticali di consolidazione.

- OCR: è stato possibile stimare il grado di sovraconsolidazione (≈1.5) a partire dall'edometrica che ha evidenziato uno stato di leggera sovraconsolidazione, imputabile al disturbo del campione;
- e<sub>o</sub> è stato stimato dalle prove edometriche di laboratorio: si è ottenuto un valore medio pari a 0.8;
- $\mathbf{k}_{o}$  è stimabile sulla base della seguente espressione:

 $k_{o} = (1 - \sin \varphi') \cdot \sqrt{OCR}$ 

essendo:

 $\phi$ ' = angolo di attrito.

# 2.11.4 Parametri di resistenza al taglio in termini di sforzi efficaci

# 1) Approccio come ammasso roccioso

L'interpretazione delle caratteristiche dell'ammasso parte dalla stima del parametro RMR'89 che è stato valutato sulla base di un rilievo effettuato su un affioramento (Vd Allegato). Il parametro RMR'89 è risultato pari a 58. Il parametro GSI è quindi pari a 53.

Gli inviluppi di rottura dell'ammasso roccioso sono stati determinati tenendo conto:

- del valore GSI di cui in precedenza;
- dei valori della resistenza alla compressione semplice σ<sub>c</sub> stimabile (15MPa) e del parametro m<sub>i</sub> della roccia intatta pari a 8.



I risultati che si otterrebbero, per GSI = 58 sono riportati nella tabella, sia per le condizioni di resistenza di picco ("undisturbed rock mass") che per le condizioni di resistenza residua ("disturbed rock mass") per tensioni normali corrispondenti a profondità massime di circa 20m.

|         | Picco    |        | Residuo  |        |
|---------|----------|--------|----------|--------|
| σn(Mpa) | c' (MPa) | φ' (°) | c' (MPa) | φ' (°) |
| 0,19    | 0,14     | 46     | 0,09     | 36     |
| 0,37    | 0,19     | 40     | 0,13     | 30     |
| 0,56    | 0,24     | 37     | 0,17     | 26     |
| 0,74    | 0,28     | 34     | 0,20     | 24     |
| 0,93    | 0,32     | 32     | 0,23     | 22     |
| 1,11    | 0.36     | 30     | 0,26     | 21     |

#### 2) Approccio come terreno coesivo a grana fine

Si hanno a disposizione prove di laboratorio su campioni prelevati fra 7m e 18m; le condizioni di rottura delle prove sono caratterizzate sia da  $\sigma'_2 = \sigma'_3$  che da  $\sigma'_2 \neq \sigma'_3$ 

Nel primo caso dall'interpretazione dei dati, nel range di pressioni di prova si ottengono i seguenti valori di resistenza di picco:

c' <sub>picco</sub> = 0,09-0,1 MPa  $\phi'_{picco} = 24^{\circ} \div 22^{\circ}$ 

Per i valori di resistenza in condizioni di stato critico dall'interpretazione delle prove si ottiene:

c' <sub>cv</sub> = 0 MPa

φ'<sub>cv</sub> = 27°

Per i valori di resistenza residui, in mancanza di dati, si possono prendere in prima approssimazione i valori minimi riscontrati per i valori di stato critico.

Durante le prove le tensioni normali efficaci a rottura sono contenute nel range fra 200 e 900 KPa. In questo contesto la resistenza di picco per tensioni generiche  $\sigma'_n$  può esprimersi con un inviluppo curvilineo di picco interpolante i dati sperimentali che diviene pari a:

 $\tau_{\rm oc} = \sigma'_{\rm n} \tan \varphi' (OCR)^{0.6}$ 

avendo ottenuto per il fattore "m" un valore pari a 0.4, tipico di argille prettamente Pagina 182 di 688 Eurolink S.C.p.A.



sovraconsolidate.

Compatibilmente con tale legge OCR risulta variabile nell'intervallo tensionale considerato ed una stima (in assenza di prove edometriche su campioni indisturbati o altre prove) con la profondità potrebbe essere: OCR=8-0.18 z con z=z(m) ed OCR=1 circa per z=40m.

L'angolo di attrito è quello corrispondente ai materiali in esame in condizioni di normalconsolidazione stimabile pari a 24°.

Per la prova di laboratorio di taglio diretto su campione indisturbato in condizioni di rottura in cui  $\sigma'_2 \neq \sigma'_3$  si ha:

c'  $_{\text{picco}}$  = 0.035 MPa  $\phi'_{\text{picco}}$  = 27°

Per i valori di resistenza in condizioni di stato critico si ottiene:

c' <sub>cv</sub> = 0 MPa

φ'<sub>cv</sub> = 25°

Per i valori di resistenza residui, in mancanza di dati, si possono prendere in prima approssimazione i valori minimi riscontrati per i valori di stato critico.

Vista l'esiguità del numero di prove si ritiene cautelativo assegnare all'ammasso i valori di resistenza drenata ricavati nel secondo approccio.

Per la <u>resistenza in condizioni non drenate</u> si hanno a disposizione 2 prove di laboratorio TXUU a 24m e 22m di profondità che forniscono un valore di 100 KPa e 200KPa circa che sottostimano il valore che ci si aspetterebbe forse a causa del probabile disturbo del campionamento .

Tali valori presumibilmente sottostimano la resistenza non drenata della formazione: in assenza di ulteriori prove si considereranno tali valori operativi, considerando comunque la non rappresentatività di tale parametro ai fini della caratterizzazione di tale formazione assimilabile nel comportamento meccanico maggiormente ad una roccia tenera piuttosto che ad un'argilla.

#### 2.11.5 Caratteristiche di deformabilità

Dalla prova sismica effettuata nel sondaggio OTCCH1501 (da Figura 377 a Figura 381) si

Eurolink S.C.p.A.





# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

ottengono valori di Vs tra 12 e 17m di profondità circa, compresi nel range 340÷480 m/s.

Il modulo elastico G<sub>0</sub> corrispondente risulterebbe pari a 240÷460 MPa a cui corrisponderebbe un range di valori E'=130÷270 MPa relativi rispettivamente a  $1/5 \div 1/10$  E'<sub>0</sub> ed a 1/3 E'<sub>0</sub>.

Dalle **prove pressiometriche** (Figura 382) effettuate si ottiene un valore medio del modulo (di primo carico) pari a circa 135 MPa, variabile tra 40 e 235 MPa per profondità fra 7m e 25m da piano campagna.

La **prova di laboratorio edometrica**, per la determinazione delle caratteristiche di compressibilità e per la determinazione dei coefficienti di consolidazione, non è ritenuta significativa per il litotipo in esame e anche a causa del presunto disturbo del campione.

Si assume, un modulo operativo pari a:

RELAZIONE GEOTECNICA GENERALE

E'= 130÷270 MPa

**Fondazioni dirette, rilevati:** valore prossimo al minimo per problemi di carico e grandi deformazioni.

Gallerie, opere di sostegno tirantate o puntonate: valori contenuti nel range per problemi di scarico e ricarico e medie e piccole deformazioni.

Per le costanti di sottofondo si possono considerare tali valori: ks=24000-48000 KN/m<sup>3</sup>

# 2.11.6 Leggi di degrado dei moduli elastici

In mancanza di prove su provini indisturbati si può fare riferimento alle curve proposte in teoria.

#### 2.11.7 Coefficienti di smorzamento intrinseco

In mancanza di prove su provini indisturbati si può fare riferimento alle curve proposte in teoria.

#### 2.11.8 Coefficienti di permeabilità

L'unica prova Le Franc disponibile fornisce un valore di permeabilità (orizzontale) pari a 1 x  $10^{-7}$  m/s.

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     | I          |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |

# 2.11.9 Tabella riepilogativa di caratterizzazione geotecnica

Sulla base di quanto presentato e discusso nei paragrafi precedenti nella tabella seguente vengono riassunti i parametri medi caratteristici.

| γ (kN/m³)                 | 18÷19                                                            |  |
|---------------------------|------------------------------------------------------------------|--|
| c' <sub>picco</sub> (kPa) | 35-90                                                            |  |
| φ' <sub>picco</sub> (°)   | 27°-24°                                                          |  |
| C <sub>cv</sub> ' (kPa)   | 0 ( - 10)                                                        |  |
| φ <sub>cv</sub> ' (°)     | 22°-25°                                                          |  |
| OCR                       | OCR=8-0.18 z                                                     |  |
| k <sub>o</sub> (-)        | 1-sin <sub>0</sub> ' OCR <sup>0.5</sup>                          |  |
| Cu (KPa)                  | 100-200                                                          |  |
| V <sub>s</sub> (m/sec)    | $V_s = 280 \cdot (z)^{0.2}$                                      |  |
| G'。                       | $G_o = 3000 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.50}$ |  |
| E' *                      | 130÷270 MPa                                                      |  |
| v' (-)                    | 0.2                                                              |  |
| K(m/s)                    | 10 <sup>-7</sup>                                                 |  |





| Codice documento |    | Data       |  |  |
|------------------|----|------------|--|--|
| CB0057_F0        | F0 | 20/06/2011 |  |  |

# Simbologia:

 $\gamma t$  = peso di volume naturale;

NSPT = resistenza penetrometrica dinamica in prova SPT;

 $\varphi'$  = angolo di attrito operativo;

c' = intercetta di coesione operativa;

 $\varphi_{r}$ ' = angolo di attrito residuo;

cr' = intercetta di coesione residua;

OCR = grado di sovraconsolidazione;

Cu=resistenza in condizioni non drenate

 $\sigma_{vo}$ ' = pressione verticale efficace geostatica;

 $\sigma_{\text{vmax}}$ ' = pressione verticale efficace massima subita dal deposito;

 $c_u$  = resistenza al taglio non drenata riferita a tensioni di consolidazione pari a quelle geostatiche e

a condizioni di carico tipo quelle delle prove triassiali di compressione e carico;

k<sub>o</sub> = coefficiente di spinta del terreno a riposo;

 $k_v$  = coefficiente di permeabilità verticale riferito a pressioni di consolidazione pari a quelle geostatiche e a problemi di flusso diretto principalmente nella direzione verticale;

V<sub>s</sub> = velocità di propagazione delle onde di taglio;

G<sub>o</sub> = modulo di taglio iniziale riferito alle pressioni efficaci geostatiche;

E' = modulo di Young "operativo"; \* = si considerano valori nel range per gallerie, fronti di scavo sostenuti, opere di sostegno tirantate o puntonate; valori al minimo del range per fondazioni dirette, fondazioni su pali e rilevati.

v' (-)= coefficiente di Poisson



# 2.12 Depositi alluvionali

# 2.12.1 Descrizione

Si tratta prevalentemente di depositi sabbioso-ghiaiosi olocenici di fondo alveo.

L'incisione operata dai corsi d'acqua determina la diretta sovrapposizione di tali depositi sul substrato cristallino-metamorfico. Gli spessori massimi dedotti da affioramento e sondaggi non è superiore alla decina di metri.

In Allegato si riportano le figure (da Figura 385 a Figura 401) e le tabelle relative ai valori calcolati per i parametri descritti nei paragrafi successivi.

#### 2.12.2 Caratteristiche fisiche

L'andamento del fuso evidenzia che le caratteristiche granulometriche dei materiali in esame sono tipiche di materiali sia di materiali intermedi (ghiaie 36%, sabbie 49%). Il contenuto di fino è mediamente del 13% (Figura 385).

C'è da dire che a causa del campionamento l'analisi granulometrica (20 prove) può sicuramente risultare poco rappresentativa della parte più grossolana.

Con riferimento al fuso medio si ha:

- Il valore di **D**<sub>50</sub> è pari a 0.8mm
- Il valore di **D**<sub>60</sub> è pari a 1.6 mm
- Il valore di D<sub>10</sub> è pari a 0.02 mm

Il peso di volume dei grani  $\gamma_s$  è risultato pari a circa 26.5 kN/m<sup>3</sup>.

#### 2.12.3 Stato iniziale

In questa sede si considera che i materiali siano prettamente normalmente consolidati.

 Dr: la densità relativa media della prevalente componente sabbiosa è del 50-70% e del 50-60% della frazione ghiaiosa. I valori di Nspt sono stati corretti con un fattore Csg=0.85 (Figura 388-Figura 389).



- e<sub>o</sub>: stimando per e<sub>max</sub> un valore pari a 0.7 e risultando, in base al d50=0.8mm, e<sub>max</sub>- e<sub>min</sub> = 0.31 dalla formula di Dr si ottengono valori di e<sub>o</sub> (dalla componente sabbiosa e sabbio-ghiaiosa) rappresentati nel grafico in Figura 390, con valori compresi fra 0.5 e 0.7.
- γd : in base ai valori precedentemente ricavati si può stimare dall'indice dei vuoti e<sub>o</sub> e da γ<sub>s</sub> un valore medio di γ<sub>d</sub> pari a circa 18KN/m<sup>3</sup>.
- <u>Commento</u>: il numero di prove a disposizione non consente un analisi per tratte omogenee. Si evidenzia una certa variabilità anche in corrispondenza di singole verticali (es: C430). Nella relazione di PE si procederà ad una sistematica misura di e<sub>max</sub> ed e<sub>min</sub>, in corrispondenza delle possibili distribuzioni granulometriche presenti per le varie formazioni in modo da costituire una base statistica di interpretazione dei valori V<sub>s</sub>, in termini di densità relativa sufficientemente rappresentativa.

# 2.12.4 Parametri di resistenza al taglio in termini di sforzi efficaci

**Sulla base delle prove SPT** (Figura 386) si è ottenuto un valore medio di angolo di attrito di circa 40°; ai parametri di resistenza operativi al taglio in termini di sforzi efficaci si sono assegnati i seguenti valori operativi:

#### Resistenze di picco / operative (p'ff=0 - 272KPa)

c' = 0 kPa = coesione apparente

 $\phi$ ' = 38°÷40° =angolo di resistenza al taglio

Tali valori sono compatibili con uno stato di sforzo che preveda una pressione normale alla superficie di rottura compresa nel range tra 0 e 272KPa.

In problemi caratterizzati da un aumento delle tensioni normali si possono definire i seguenti parametri:

# Resistenze di picco / operative (p'ff=272 - 350KPa)

 $c_p' = 0$  kPa = coesione apparente

 $\varphi_p$ ' = 36°- 38° = angolo di resistenza al taglio.

Tali valori sono compatibili con uno stato di sforzo che preveda una pressione normale alla superficie di rottura compresa nel range tra 272KPa÷350KPa.

Per intervalli tensionali differenti si rimanda a quanto proposto da Baligh (1975).



Per i valori di stato critico, in assenza di prove specifiche, in base ai dati di letteratura si possono definire i seguenti valori operativi

#### **Resistenze residue/operative**

 $c_r' = 0 \text{ kPa} = \text{coesione apparente}$  $\phi_r' = 33^\circ-35^\circ = \text{angolo di resistenza al taglio}$ 

<u>Commento:</u> il numero di prove a disposizione non consente un analisi per tratte omogenee, i valori operativi della resistenza risultano comunque cautelativi risultando inferiori a quelli medi. La scelta dei parametri operativi verrà definita per ciascuna opera nell'ambito delle monografie inserite nelle specifiche relazioni geotecniche.

# 2.12.5 Caratteristiche di deformabilità

Il numero di prove a disposizione non consente un analisi per tratte omogenee.

**Dalla prova sismica in foro** (CS430) si ottengono valori di  $V_s$  che vanno mediamente da 160 m/s a 190 m/s i primi metri di profondità (da Figura 396 a Figura 401)

Da prove SPT la media di  $V_s$  stimata fino a 13m di profondità e di circa 200 m/s. E<sub>0</sub> è stimato in 120÷170 MPa a 2m di profondità.

Ai valori delle velocità di taglio sismiche **V**s corrispondono moduli di taglio iniziali  $G_0$  molto variabili. Una stima con la profondità si rende quindi difficoltosa per la dispersione di  $G_0$  e per il numero ridotto di valori.

 $G_0$  ed  $E_0$  si possono esprimere in funzione di z(m), una stima da **SPT** è data da:

 $G_o = 14 \cdot z$ 

$$E_o = 34 \cdot z$$

I moduli di Young "operativi" a medie deformazioni, valutati sulla base dei criteri descritti nei capitoli precedenti risulteranno pari a:

$$E = (4 - 11) \cdot z$$

pari rispettivamente a circa 1/10 ÷ 1/5 ed 1/3 di quelli iniziali.

Per **rilevati e fondazioni dirette ed indirette** si farà riferimento ai valori prossimi ai minimi del range.

Eurolink S.C.p.A.





# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Per **opere di sostegno** si farà riferimento a valori intermedi del range.

RELAZIONE GEOTECNICA GENERALE

Nel caso di fondazioni su pali, per il modulo di reazione orizzontale secondo Reese, si può considerare un valore della costante pari a 10000 -15000 KN/m<sup>3.</sup>

Per il calcolo della costante di sottofondo in generale si può fare riferimento a quanto riportato nel capitolo 2.2.4.

<u>Commento: il</u> numero esiguo a disposizione di prove non consente un analisi per tratte omogenee; i valori di G0 non risultano comunque eccessivamente variabili per cui la correlazione media proposta può considerarsi rappresentativa. I valori operativi di E' risultano in ogni caso cautelativi, soprattutto per quanto concerne l'estremo inferiore del range (1/5-1/10 E0). La scelta dei parametri operativi verrà definita per ciascuna opera nell'ambito delle monografie inserite nelle specifiche relazioni geotecniche.

# 2.12.6 Leggi di degrado dei moduli elastici

In mancanza di prove su provini indisturbati prelevati con la tecnica del congelamento si può fare riferimento alle curve proposte in teoria.

# 2.12.7 Coefficienti di smorzamento intrinseco

In mancanza di prove su provini indisturbati prelevati con la tecnica del congelamento e di indicazioni dalle prove cross-hole ( $D_0$ ) si può fare riferimento alle curve proposte in teoria.

# 2.12.8 Coefficienti di permeabilità

Non avendo a disposizione delle prove dirette si assumono valori compresi fra 10<sup>-3</sup> e 10<sup>-4</sup> m/s, tenendo conto anche di quanto indicato nella relazione idrogeologica allegata al progetto.

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     | 1          |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |

# 2.12.9 Tabella riepilogativa di caratterizzazione geotecnica

Sulla base di quanto presentato e discusso nei paragrafi precedenti nella tabella seguente vengono riassunti i parametri medi caratteristici.

| γ (kN/m³)                    | 18÷20                                               |
|------------------------------|-----------------------------------------------------|
| c' <sub>picco</sub> (kPa)    | 0                                                   |
| φ' <sub>picco</sub> (°)      | 37°÷39° (p'ff=0-272KPa) / 35°÷37° (p'ff=272-350KPa) |
| C <sub>residuo</sub> ' (kPa) | 0                                                   |
| φ <sub>residuo</sub> ' (°)   | 33°÷35°                                             |
| k <sub>o</sub> (-)           | 1-sen¢'                                             |
| V <sub>s</sub> (m/sec)       | -                                                   |
| G'。                          | -                                                   |
| E' *                         | $E = (4 - 11) \cdot z$                              |
| v' (-)                       | 0.2                                                 |
| K(m/s)                       | 10 <sup>-5</sup> - 10 <sup>-6</sup>                 |





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

# Simbologia:

 $\gamma t$  = peso di volume naturale;

NSPT = resistenza penetrometrica dinamica in prova SPT;

 $\varphi'$  = angolo di attrito operativo;

c' = intercetta di coesione operativa;

 $\varphi_{r}$ ' = angolo di attrito residuo;

cr' = intercetta di coesione residua;

OCR = grado di sovraconsolidazione;

 $\sigma_{vo}$ ' = pressione verticale efficace geostatica;

 $\sigma_{vmax}$ ' = pressione verticale efficace massima subita dal deposito;

c<sub>u</sub> = resistenza al taglio non drenata riferita a tensioni di consolidazione pari a quelle geostatiche e a condizioni di carico tipo quelle delle prove triassiali di compressione e carico;

k<sub>o</sub> = coefficiente di spinta del terreno a riposo;

 $k_v$  = coefficiente di permeabilità verticale riferito a pressioni di consolidazione pari a quelle geostatiche e a problemi di flusso diretto principalmente nella direzione verticale;

V<sub>s</sub> = velocità di propagazione delle onde di taglio;

G<sub>o</sub> = modulo di taglio iniziale riferito alle pressioni efficaci geostatiche;

E' = modulo di Young "operativo"; \* = si considerano valori nel range per gallerie, fronti di scavo sostenuti, opere di sostegno tirantate o puntonate; valori al minimo del range per fondazioni dirette, fondazioni su pali e rilevati.

v' (-)= coefficiente di Poisson



# 2.13 Depositi di versante

Sono depositi detritici olocenici alimentati da processi di degradazione e trasporto dovuto sia alle acque di dilavamento che alla gravità ed accumulati, in genere, alla base dei versanti. Affiora come un deposito di sabbie di colore rossastro da medie a grossolane, solo subordinatamente fini, con rare intercalazioni di livelli di ghiaiosi o limosi.

In Allegato si riportano le figure (da Figura 402 a Figura 418) e le tabelle relative ai valori calcolati per i parametri descritti nei paragrafi successivi.

# 2.13.1 Caratteristiche fisiche

L'andamento del fuso conferma che le caratteristiche granulometriche dei materiali in esame sono tipiche di materiali sia di materiali a grana grossa (ghiaie 12%), sia di materiali intermedi (sabbie 60%). Il contenuto di fino è mediamente del 22% (Figura 402).

C'è da dire che a causa del campionamento l'analisi granulometrica può sicuramente risultare poco rappresentativa della parte più grossolana (ciottoli e ghiaia grossa).

Con riferimento al fuso medio si ha:

- Il valore di D<sub>50</sub> è pari a 0.25mm
- Il valore di D<sub>60</sub> è pari a 0.4 mm
- Il valore di D<sub>10</sub> è pari a 0.005 mm

Il peso di volume dei grani  $\gamma_s$  è risultato pari a circa 26 kN/m3;

# 2.13.2 Stato iniziale

Dalle elaborazioni risulta che:

- **Dr:** la densità relativa media della sola componente sabbiosa è del 40-70%. I valori di Nspt sono stati corretti con un fattore Csg=0.95 (Figura 405).
- e<sub>o</sub>: stimando e<sub>max</sub>=0.7mm a partire dalle Dr si ottiene (dalla componente sabbiosa e sabbioghiaiosa) un valore compreso fra 0.4 e 0.5 come si evidenzia dal grafico in Allegato (Figura 406).



•  $\gamma_d$  : si può stimare un valore medio di  $\gamma_d$  pari a circa 17 -19 KN/m<sup>3</sup> (Figura 407).

# 2.13.3 Parametri di resistenza al taglio in termini di sforzi efficaci

**Sulla base delle prove SPT** (Figura 403) si è ottenuto un valore medio di angolo di attrito di 38°; ai parametri di resistenza operativi al taglio in termini di sforzi efficaci si sono assegnati i seguenti valori operativi:

#### Resistenze di picco / operative (p'ff=0 - 272KPa)

 $c_p' = 0$  kPa = coesione apparente

 $\phi_p$ ' = 36÷38° =angolo di resistenza al taglio

Tali valori sono compatibili con uno stato di sforzo che preveda una pressione normale alla superficie di rottura compresa nel range tra 0 e 272KPa.

In problemi caratterizzati da un aumento delle tensioni normali si possono definire i seguenti parametri:

# Resistenze di picco / operative (p'ff=272 - 350KPa)

c<sub>p</sub>' = 0kPa = coesione apparente

 $\phi_p$ ' = 35°÷36° =angolo di resistenza al taglio.

Tali valori sono compatibili con uno stato di sforzo che preveda una pressione normale alla superficie di rottura compresa nel range tra 272KPa÷350KPa.

Per intervalli tensionali differenti si rimanda a quanto proposto da Baligh (1975).

Per i valori di stato critico, in assenza di prove specifiche, in base ai dati di letteratura si possono definire i seguenti valori operativi

# Resistenze residue/operative

 $c_r' = 0$  kPa = coesione apparente  $\phi_r' = 33^\circ-35^\circ$  =angolo di resistenza al taglio

# 2.13.4 Caratteristiche di deformabilità

Dalle prove sismiche in foro (da Figura 413 a Figura 418) si ottengono valori di  $V_s$  che mostrano

Pagina 194 di 688



una tendenza all'aumento con la profondità con valori che arrivano a 200 m/s fino a 10m di profondità.

Nella figura in Allegato si mostra anche il confronto delle velocità ottenute con le correlazioni da prove SPT.

Ai valori delle velocità di taglio Vs corrispondono moduli di taglio iniziali  $G_0$  che mostrano un andamento crescente con la profondità, da 80MPa a 160MPa a 10m di profondità.

Da prove SPT invece valori di G<sub>0</sub> variano da 30 a 130MPa nei primi 10m.

Per G ed  $_{0}E_{0}$  una stima è data quindi da:

$$G_0 = 20 \cdot (z)^{0.85}$$

$$E_0 = 48 \cdot (z)^{0.85}$$

I moduli di Young "operativi" a medie deformazioni, valutati sulla base dei criteri descritti nei capitoli precedenti risulteranno pari a:

$$E = (6 \div 16) \cdot (z)^{0.85}$$

pari rispettivamente a circa 1/5÷1/10 ed 1/3 di quelli iniziali.

Fronti scavo sostenuti, opere di sostegno tirantate o puntonate: si considerano valori contenuti nel range.

Rilevati, fondazioni dirette: valori corrispondenti al minimo del range.

Nel caso di fondazioni su pali, per il modulo di reazione orizzontale secondo Reese, si può considerare un valore della costante pari a 10000 - 15000 KN/m<sup>3.</sup>

Per il calcolo della costante di sottofondo in generale si può fare riferimento a quanto riportato nel capitolo 2.2.4.

• <u>Commento</u>: il numero di prove SPT non consente un analisi per tratte; la dispersione riscontrata dei valori di G0 appare comunque moderata. Le analisi di dettaglio sono proposte nelle singole monografie.

# 2.13.5 Leggi di degrado dei moduli elastici

In mancanza di prove su provini indisturbati si può fare riferimento alle curve proposte in teoria.

# 2.13.6 Coefficienti di smorzamento intrinseco

In mancanza di prove su provini indisturbati e di indicazioni dalle prove cross-hole (D<sub>0</sub>) si può fare

Eurolink S.C.p.A.



riferimento alle curve proposte in teoria.

# 2.13.7 Coefficienti di permeabilità

I materiali in oggetto sono eterogenei; conformemente con quanto proposto da Somerville (1986) risulta per K(m/sec) si può ottenere un valore medio di  $10^{-3}$  -  $10^{-5}$ m/s.

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     | 1          |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |

# 2.13.8 Tabella riepilogativa di caratterizzazione geotecnica

Sulla base di quanto presentato e discusso nei paragrafi precedenti nella tabella seguente vengono riassunti i parametri medi caratteristici.

| γ (kN/m³)                      | 19÷21                                           |
|--------------------------------|-------------------------------------------------|
| N <sub>SPT</sub> (colpi/30 cm) | 25±20                                           |
| c' <sub>picco</sub> (kPa)      | 0                                               |
| φ' <sub>picco</sub> (°)        | 36÷38 (p'ff=0-272KPa) / 35÷36 (p'ff=272-350KPa) |
| C <sub>cv</sub> ' (kPa)        | 0                                               |
| φ <sub>cv</sub> ' (°)          | 33÷35                                           |
| k <sub>o</sub> (-)             | 1-sen¢'                                         |
| V <sub>s</sub> (m/sec)         | 200                                             |
| G'。                            | $G_{_0} = 20 \cdot (z)^{_{0.85}}$               |
| E' *                           | $E = (6 \div 16) \cdot (z)^{0.85}$              |
| v' (-)                         | 0.2                                             |
| G0, G/G0                       | curve teoriche                                  |
| D0, D/D0                       | curve teoriche                                  |
| K(m/s)                         | 10 <sup>-3</sup> ÷10 <sup>-5</sup>              |





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

# Simbologia:

 $\gamma_t$  = peso di volume naturale;

N<sub>SPT</sub> = resistenza penetrometrica dinamica in prova SPT;

 $\varphi'$  = angolo di attrito operativo;

c' = intercetta di coesione operativa;

 $\varphi_{r}$ ' = angolo di attrito residuo;

c<sub>r</sub>' = intercetta di coesione residua;

OCR = grado di sovraconsolidazione;

 $\sigma_{vo}$ ' = pressione verticale efficace geostatica;

 $\sigma_{vmax}$ ' = pressione verticale efficace massima subita dal deposito;

c<sub>u</sub> = resistenza al taglio non drenata riferita a tensioni di consolidazione pari a quelle geostatiche e a condizioni di carico tipo quelle delle prove triassiali di compressione e carico;

k<sub>o</sub> = coefficiente di spinta del terreno a riposo;

 $k_v$  = coefficiente di permeabilità verticale riferito a pressioni di consolidazione pari a quelle geostatiche e a problemi di flusso diretto principalmente nella direzione verticale;

V<sub>s</sub> = velocità di propagazione delle onde di taglio;

G<sub>o</sub> = modulo di taglio iniziale riferito alle pressioni efficaci geostatiche;

E' = modulo di Young "operativo"; \* = si considerano valori nel range per gallerie, fronti di scavo sostenuti, opere di sostegno tirantate o puntonate; valori al minimo del range per fondazioni dirette, fondazioni su pali e rilevati.

v' (-)= coefficiente di Poisson





# 2.14 Calcareniti di San Corrado e formazione Le Masse

Si tratta di calcareniti e calciruditi clastiche e bioclastiche, da moderatamente cementate a cementate, con stratificazione incrociata. Sono presenti orizzonti di sabbie giallastre, grossolane, addensate e laminate, a luoghi di qualche metro di spessore.

In Allegato si riportano le figure (da Figura 419 a Figura 426) e le tabelle relative ai valori calcolati per i parametri descritti nei paragrafi successivi.

Il numero di prove è abbastanza modesto.

Dalle prove di laboratorio sui provini estratti si può determinare un range per il valore del  $\gamma$  pari a 22-23 KN/m3.

Dalle prove SPT si ottiene un angolo di attrito medio di 37°.

Dalle prove di schiacciamento si ottiene un valore medio della resistenza a compressione pari a 15Mpa (Figura 425 e Figura 426).

Dalla prova sismica effettuata nel sondaggio OTCCH1501 si ottengono valori di Vs tra 3 e 11m di profondità circa, compresi nel range 340÷500 m/s (da Figura 422 a Figura 424).

Il modulo elastico G<sub>0</sub>' corrispondente risulterebbe pari a 225÷500 MPa a cui corrisponderebbe un range di valori E'=120÷290 MPa relativi rispettivamente a  $1/5 - 1/10 E'_0$  ed a  $1/3 E'_0$ .

Dalle due prove di permeabilità di Le Franc emerge un valore medio dell'ordine di 10<sup>-7</sup>m/s. Alla luce dei pochi dati disponibili si ritiene di caratterizzare cautelativamente l'ammasso come riportato in tabella:

| γ (kN/m³)                      | 22÷23   |
|--------------------------------|---------|
| N <sub>SPT</sub> (colpi/30 cm) | -       |
| c' <sub>picco</sub> (kPa)      | 0*-50   |
| φ' <sub>picco</sub> (°)        | 36°-38° |
| C <sub>cv</sub> ' (kPa)        | -       |
| φ <sub>cv</sub> ' (°)          | -       |
| k <sub>o</sub> (-)             | -       |
| V <sub>s</sub> (m/sec)         | -       |
| G'。                            | 225-500 |
| E' (MPa)                       | 120-290 |



| ν' (-)   | 0.2-0.3          |
|----------|------------------|
| G0, G/G0 | curve teoriche   |
| D0, D/D0 | curve teoriche   |
| K(m/s)   | 10 <sup>-7</sup> |

 Commento: \* il valore minimo pafri a zero associato alla coesione drenata è da associare alla porzione eventualmente più sciolta e/o superficiale.
La deformabilità dell'ammasso è stata determinata in base alle prove in sito, non considerando rappresentative per l'intero ammasso quelle determinate in laboratorio alla scala del campione

La <u>formazione di Le Masse</u> è caratterizzata da un'alternanza di spesse bancate di marne argillose, arenarie debolmente cementate, passanti verso l'alto a calcareniti e sabbie con sottili intercalazioni argillose, affioranti estesamente nel settore sud- orientale dell'area di intervento Non avendo a disposizione prove si ritiene di poter associare a tale formazione i parametri di resistenza e deformabilità minimi delle due formazioni che a livello geologico possono ritenersi limiti costituiti dai Trubi e dalle Calcareniti di san Corrado.





# 2.15 Determinazione delle azioni sismiche di progetto

Le prove meccaniche in sito condotte durante le precedenti e le recenti campagne di indagine (prove penetrometriche dinamiche e prove cross-hole / down-hole) hanno consentito la caratterizzazione ai fini sismici del sottosuolo facendo riferimento alle principali formazioni interferenti con le opere in oggetto.

L'azione sismica di progetto è determinabile secondo quanto prescritto dal D.M. del 14/01/2008, al quale quindi si rimanda; nel Decreto è specificato che, per determinare tale azione sismica è necessario effettuare un analisi locale; seguendo l'approccio più semplificato che si basa sull'individuazione delle categorie sismiche di sottosuolo si può fare riferimento alla seguente tabella:

|   | Categoria di suolo                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |  |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| A | Ammassi rocciosi affioranti o terreni molto rigidi<br>caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s,<br>eventualmente comprendenti in superficie uno strato di<br>alterazione, con spessore massimo pari a 3 m                                                                                                                                                                                                            | $V_{a,30}$ > 800 m/s                                                                                                                                                                                      |  |  |  |
| в | Rocce tenere e depositi di terreni a grana grossa molto<br>addensati o terreni a grana fina molto consistenti con<br>spessori superiori a 30 m, caratterizzati da un graduale<br>miglioramento delle proprietà meccaniche con la profondità e<br>da valori di $V_{s,30}$ compresi tra 360 m/s e 800 m/s (ovvero<br>$N_{SPT,30} > 50$ nei terreni a grana grossa e c <sub>u,30</sub> > 250 kPa nei<br>terreni a grana fina)             | 360 m/s <v<sub>4,36&lt;800<br/>m/s<br/>ovvero N<sub>597,36</sub>&gt;50<br/>(terreni a grana<br/>grosta)<br/>ovvero c<sub>4,36</sub>&gt;250<br/>kPa<br/>(terreni a grana<br/>fine)</v<sub>                 |  |  |  |
| с | Depositi di terreni a grana grossa mediamente addensati o<br>terreni a grana fina mediamente consistenti con spessori<br>superiori a 30 m, caratterizzati da un graduale miglioramento<br>delle proprietà meccaniche con la profondità e da valori di<br>$V_{a,30}$ compresi tra 180 m/s e 360 m/s (ovvero 15 < N <sub>SPT,30</sub> < 50<br>nei terreni a grana grossa e 70 < c <sub>a,30</sub> < 250 kPa nei terreni a<br>grana fina) | 180 m/s <v<sub>x,35&lt;360<br/>m/s<br/>ovvero 15<n<sub>SPT,30<br/>&lt;50<br/>(terreni a grana<br/>grossa)<br/>ovvero 70<c<sub>x,30<br/>&lt;250 kPa<br/>(terreni a grana<br/>fine)</c<sub></n<sub></v<sub> |  |  |  |
| D | Depositi di terreni a grana grossa scarsamente addensati o di<br>terreni a grana fina scarsamente consistenti, con spessori<br>superiori a 30 m, caratterizzati da un graduale miglioramento<br>delle proprietà meccaniche con la profondità e da valori di<br>V <sub>a,30</sub> inferiori a 180 m/s (ovvero N <sub>SPT,30</sub> < 15 nei terreni a<br>grana grossa e c <sub>u,30</sub> < 70 kPa nei terreni a grana fina)             | V <sub>s,30</sub> <180 m/s<br>ovvero N <sub>SPT,30</sub> < 15<br>(terreni a grana<br>grossa)<br>ovvero cu < 70 kPa<br>(terreni a grana<br>fine)                                                           |  |  |  |
| E | Terreni dei sottosuoli di tipo C o D per spessore non<br>superiore a 20 m, posti sul substrato di riferimento (con Vs ><br>800 m/s)                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                           |  |  |  |

La velocità equivalente delle onde di taglio Vs30 è definita come:

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     | 1          |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |

$$Vs_{30} = \frac{30}{\sum_{i=1,N} \frac{hi}{Vsi}}$$

hi= spessore dell'iesimo strato Vsi= velocità dell'iesimo strato

Per le verticali in terreni incoerenti cui sono disponibili le prove penetrometriche dinamiche si ha:

$$Nspt_{30} = \frac{30}{\sum_{i=1,N} \frac{hi}{Nspti}}$$

hi= spessore dell'iesimo strato Nspti= N<sub>spt</sub> dell'iesimo strato

Di seguito sono riportati i valori di Vs<sub>30</sub> calcolati in ogni verticale che abbia una profondità di almeno 30m, la cui analisi ha condotto alla classificazione sismica nelle principali zone in cui ricadono i sondaggi.

Sono riportati anche i valori di Nspt<sub>30</sub> calcolati in ogni verticale in cui le prove siano state effettuate almeno fino a 30m di profondità, la cui analisi ha condotto alla classificazione sismica nelle principali zone in cui ricadono i sondaggi.

Considerazioni più approfondite sul tema potranno essere rintracciate nella specifica relazione Sismica di progetto.





# Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

# RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| TRATTA                                                                                                                                                                                                                                                                                                                                                                                                                      | verticale | Vs30   | Categoria |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|-----------|
| Fondozioni                                                                                                                                                                                                                                                                                                                                                                                                                  | FCCH1508  | 251,72 | С         |
| TRATTA     Fondazioni     Opere terminali     Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria     Rampa D / ferrovia     Rampa D_dec     Rampa C 1+200-3+300 / Rampa F / Rampa V     Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovi     Galleria Rampa C / Galleria Rampa D / ferrovia     Galleria Rampa A / ferrovia     Galleria Rampa A / ferrovia     Rampa D 1+600-2+200 / Rampa B 0+800-1+325 / Rampa M | FCBH5     | 291,21 | С         |
| Opere terminali                                                                                                                                                                                                                                                                                                                                                                                                             | OTCCH1501 | 438,15 | В         |
| Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria                                                                                                                                                                                                                                                                                                                                                             | C403bis   |        |           |
| Rampa D / ferrovia                                                                                                                                                                                                                                                                                                                                                                                                          | 0400013   | 383,46 | В         |
| Rampa D. dec                                                                                                                                                                                                                                                                                                                                                                                                                | C416      | 358,58 | C         |
| Nampa D_dec                                                                                                                                                                                                                                                                                                                                                                                                                 | C417      | 343,28 | С         |
| Rampa (~ 1+200-3+300 / Rampa E / Rampa V                                                                                                                                                                                                                                                                                                                                                                                    | C430      | 433,61 | В         |
| Rampa C 1+200-3+3007 Rampa T / Rampa V                                                                                                                                                                                                                                                                                                                                                                                      | Cn451     | 365,33 | В         |
| Rampa D. 0-0+500 / Rampa C. 0-0+500 / Rampa A. 0-0+500 / ferrovia                                                                                                                                                                                                                                                                                                                                                           | CS103     | 596,95 | В         |
| Kampa D 0-0+3007 Kampa C 0-0+3007 Kampa A 0-0+3007 Ienovia                                                                                                                                                                                                                                                                                                                                                                  | C423bis   | 551,68 | В         |
| Galleria Rampa C / Galleria Rampa D / ferrovia                                                                                                                                                                                                                                                                                                                                                                              | SG13bis   | 481,84 | В         |
| Galleria Rampa A / ferrovia                                                                                                                                                                                                                                                                                                                                                                                                 | SG14      | 411,53 | В         |
| Rampa D 1+600-2+200 / Rampa B 0+800-1+325 / Rampa M                                                                                                                                                                                                                                                                                                                                                                         | C415      | 242,91 | С         |
| Rampa C 1+200-3+300                                                                                                                                                                                                                                                                                                                                                                                                         | SG11      | 411,08 | В         |
| Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G                                                                                                                                                                                                                                                                                                                                                                         | SG11bis   | 502,24 | В         |

| TRATTA                                       | verticale  | Nspt30 | Categoria |
|----------------------------------------------|------------|--------|-----------|
|                                              | FCBH4      | 46     | С         |
|                                              | FCBH5      | 37     | С         |
|                                              | FCBH6      | 29     | С         |
| Fondazioni                                   | FCBH7      | 26     | С         |
| Fondazioni                                   | FCBH9      | 20     | С         |
|                                              | FCCH1508   | 16     | С         |
|                                              | FCLPT1502  | 30     | С         |
|                                              | FCSPT503   | 32     | С         |
| Opere terminali                              | OTCCH1501  | 18     | С         |
| Opere terminan                               | OTCLPT1505 | 65     | В         |
| Galleria Rampa D / ferrovia                  | C412       | 53     | В         |
| Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria | C403bis    | 34     | С         |
| Rampa C / Galleria Rampa D / ferrovia        | C404       | 17     | С         |
| Rompo D. doo                                 | C416       | 54     | В         |
| Rampa D_dec                                  | C417       | 72     | В         |



# 2.16 Resistenza dei terreni incoerenti in tensioni totali

Si è analizzato il contesto prossimo alla costa (Fondazione Torre) caratterizzato dalla presenza dei depositi costieri incoerenti sotto falda (1-3m s.l.m.).

Secondo il D.M. 14/01/2008 «Norme tecniche per le costruzioni» all'allegato B, nei punti della maglia sismica, per la longitudine e la latitudine in esame (15,3837; 38,1357), corrispondono i seguenti valori di accelerazione orizzontale massima convenzionale (ag), ed i corrispondenti Fo e Tc (s) come riportato nella tabella seguente:

| STATO<br>LIMITE | A <sub>G</sub>      | Fo   | T <sub>C</sub> * |
|-----------------|---------------------|------|------------------|
|                 | (m/s <sup>2</sup> ) |      | (s)              |
| SLV             | 0.394               | 2.54 | 0.423            |

Dove  $a_g$  rappresenta l'accelerazione orizzontale massima al sito,  $F_o$  il valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale,  $T_c$  il periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale e lo Stato Limite di Vita (SLV).

La tipologia del terreno di fondazione, ai fini della determinazione dell'azione sismica, è individuato nella seguente categoria di terreno:

| Categoria terreno | Descrizione                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| С                 | Depositi di terreni a grana grossa mediamente<br>addensati o terreni a grana fina mediamente<br>consistenti con spessori superiori a 30 m,<br>caratterizzati da un graduale miglioramento<br>delle proprietà meccaniche con la profondità e<br>da valori di V <sub>s,30</sub> inferiori a 180 m/s (ovvero<br>$15 < N_{SPT,30} < 50$ nei terreni a grana grossa e<br>$70 < c_{u,30} < 250$ kPa nei terreni a grana fina) | 180 < $V_{s,30}$ <360 m/s<br>15< $N_{SPT,30}$ <50<br>(terreni a grana grossa)<br>70< $c_{u,30}$ <250 kPa<br>(terreni a grana fine) |

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     | 1          |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |

#### Coefficiente di amplificazione stratigrafica (D.M. 14.1.2008 Tab. 3.2.V)

| Categoria terreno                                                       | Ss                                       | C <sub>c</sub>                                       |       |  |
|-------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|-------|--|
| С                                                                       | 1,00≤1,70-0,60·F₀·a₅/g≤1,50              | 1,05·(T <sup>*</sup> <sub>c</sub> ) <sup>-0,33</sup> |       |  |
| Categoria topografica                                                   |                                          |                                                      |       |  |
| Categoria terreno                                                       | Caratteristiche della superficie to      | pografica                                            |       |  |
| T1                                                                      | Superficie pianeggiante, pendii<br>i≤15° | e rilievi isolati con inclinazione m                 | nedia |  |
| Coefficiente di amplificazione topografica (D.M. 14.1.2008 Tab. 3.2.VI) |                                          |                                                      |       |  |
| Categoria terreno                                                       | Ubicazione dell'opera o intervento       |                                                      | St    |  |

In base a quanto previsto dal D.M. 14.1.2008-§2.4, le opere in oggetto saranno considerate di classe II, con una valutazione delle forze sismiche riferite ad un periodo di 100 anni.

In base a quanto reperibile in letteratura ed in base agli studi della INGV (Istituto nazionale di Geofisica e Vulcanologia) la disaggregazione corrispondente alla PGA di cui sopra, per la zona in esame, conduce ad un intervallo di magnitudo M=5÷7.5 ed ad una distanza epicentrale di 0-30Km.



T1

1,0

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     | 1          |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |

Per l'analisi della liquefazione si considera una magnitudo di calcolo 7.5 (nel 1905 e nel 1908 si sono verificati terremoti di Magnitudo =7.2)

# Fondazione Calabria

# Verifica da prove SPT(z=0÷58m)



FONDAZIONE - ZONA LONTANA DALLA COSTA - FCCH1508



# FONDAZIONE - ZONA LONTANA DALLA COSTA - FCBH9

.



Eurolink S.C.p.A.



### FONDAZIONE - ZONA VICINA ALLA COSTA -FCBH5





# FONDAZIONE - ZONA VICINA ALLA COSTA -FCBH6





### FONDAZIONE - ZONA VICINA ALLA COSTA -FCBH7



N160







# zona di fondazione della Torre:

| sondaggio | IL          | valore |
|-----------|-------------|--------|
| FC-BH9    | alto        | 10     |
| FCCH1508  | molto basso | 0      |
| FCBH5     | basso       | 1      |
| FCBH6     | basso       | 0      |
| FCBH7     | basso       | 1      |



# Verifica da Vs







Data

20/06/2011





| Stretto<br>di Messina         | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     | I          |
|-------------------------------|-------------------------------------------------------|-----|------------|
| RELAZIONE GEOTECNICA GENERALE | Codice documento                                      | Rev | Data       |
|                               | CB0057_F0                                             | F0  | 20/06/2011 |

# Conclusioni

In questo contesto, come si evince dai grafici e dalle tabelle (IL) precedentemente riportati, la verifica del potenziale di liquefazione, condotta come descritto nel paragrafo 2.2.3, ha evidenziato delle criticità localizzabili in determinate verticali.

Si ritiene che l'approccio presentato in tale sezione rappresenti il punto d'inizio di un necessario approfondimento, come la valutazione della resistenza ciclica dei terreni interessati attraverso prove su campioni indisturbati congelati ed analisi più sofisticate di risposta simica locale, per il quale si rimanda a quanto prodotto nell'ambito del progetto delle fondazioni e dei blocchi di ancoraggio dell'Opera di Attraversamento (es: CG1000-P-CL-D-P-ST-F3-TO-00-00-01\_A-01).




# **3** Sezione 3: Normativa Di Riferimento

Gli studi geotecnici faranno riferimento alle seguenti Normative:

- D.M. 14/01/2008 "Norme Tecniche per le Costruzioni" (pubblicato sulla G.U. n.29 –Suppl. Ordinario n.30 – del 4 febbraio 2008);
- D.M. 11/3/1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le specifiche per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- Istruzioni relative alle "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le specifiche per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione". Circ. Dir. Centr. Tecn. N°97/81



# 4 Sezione 4: Procedure di dimensionamento e verifica delle opere

#### 4.1 Coefficienti di sicurezza

La definzione dei coefficienti di sicurezza per la progettazione delle diverse opere geotecniche sarà effettuata secondo NTC2008.

#### 4.2 Spostamenti ammissibili

Per la valutazione degli spostamenti ammissibili indotti si dovrà considerare, nello specifico, il tipo di opera, il contesto in esame e lo stato limite di riferimento, riferendosi a quanto riportato dalla Normativa vigente (NTC2008) e prevedendo un corretto piano di monitoraggio.

I valori ammissibili degli spostamenti di seguito riportati, quindi, dedotti da quanto reperibile in Ietteratura, hanno solo una valenza generale e devono intendersi solo come valori orientativi.

#### 4.2.1 Gallerie in ambito urbano

In base a quanto reperibile in letteratura (*Mair e Taylor e Burland (1996) "Prediction of ground movements and assessment of risk of building damage due to bored tunneling"*) gli spostamenti (rapporti di inflessione  $\Delta/L$  e deformazioni orizzontali) valutabili come riporato in letteratura (*Peck(1969)"Deep excavation and tunneling*) indotti sulle preesistenze superficiali dallo scavo di gallerie superficiali possono correlarsi alle possibili categoria di danno (deformazione unitaria massima di allungamento  $\varepsilon_{max}$ , in base ad una vasta e collaudata esperienza in merito.

<u>Gli spostamenti massimi risultano quindi connessi con la categoria di danno ritenuta ammissibile</u> per garantire contemporaneamente la funzionalità e la sicurezza delle preesistenze che in linea generale potrà essere cautelativamente posta pari ad 2.

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |           |                    |  |
|-------------------------------|----------|-------------------------------------------------------|-----------|--------------------|--|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento<br>CB0057_F0                         | Rev<br>F0 | Data<br>20/06/2011 |  |
|                               |          |                                                       |           |                    |  |

| Classe di danno | Normal degree of severity | Limiting tensile strain ( $\epsilon_{max}$ ) (%) |
|-----------------|---------------------------|--------------------------------------------------|
| 0               | Negligible                | 0-0.05                                           |
| 1               | Very Slight               | 0.05-0.075                                       |
| 2               | Slight                    | 0.075-0.15                                       |
| 3               | Moderate                  | 0.15-0.3                                         |
| 4 to 5          | Severe to Very Severe     | >0.3                                             |

(Mair R.J., Taylor R.N., Burland J.B., (1996) "Prediction of ground movements and assessment of risk of building damage due to bored tunneling")

#### 4.2.2 Fondazioni strutture

Si riportano di seguito alcuni dati reperibili in letteratura relativi alle distorsioni ammissibili in relazione alla tipologia strutturale ed al tipo di danno atteso (*Bjerrum (1963), "Allowable settlements of structures"*):

| Categoria di danno potenziale                                                                                               | tanβ  |
|-----------------------------------------------------------------------------------------------------------------------------|-------|
| Limite oltre il quale possono sorgere problemi in macchinari sensibili ai cedimenti                                         | 1/750 |
| Limite di pericolo per strutture reticolari                                                                                 | 1/600 |
| Limite di sicurezza per edifici in cui non si ammettono fessurazioni                                                        | 1/500 |
| Limite oltre il quale possono apparire le prime fessure nei muri di tampo-<br>namento e difficoltà nell'uso dei carri ponte | 1/300 |
| Limite oltre il quale possono essere visibili inclinazioni di edifici alti                                                  | 1/250 |
| Notevoli fessure in muri di tamponamento e muri portanti in laterizio.                                                      |       |
| Limite di sicurezza per muri portanti in laterizio con h/L<1/4.                                                             | 1/150 |
| Limite oltre il quale si devono temere danni strutturali negli edifici.                                                     |       |

:





#### 0 RELAZIONE GEOTECNICA GENERALE

| Codice documento |
|------------------|
| CB0057_F0        |

Rev Data 20/06/2011

F0

| Buildings sett                         | ling under their ov                                                   | vn weight                                                 |                                            |                                      |                                                 | Buildings subject to<br>rapid movement caused<br>by under-pinning |
|----------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|--------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|
| (a) Framed by                          | uildings and reinforc                                                 | ed load-bearing v                                         | walls                                      |                                      |                                                 |                                                                   |
| Limiting value                         | es of relative rotation                                               | n (angular distorti                                       | on, β) give                                | n by:                                |                                                 |                                                                   |
|                                        | Skempton &<br>MacDonald <sup>(4)</sup><br>(1956)                      | Meyerhof<br>(1956)                                        | Polshir<br>Tokar                           | 1 &<br>(1957)                        | Bjernim<br>(1963)                               | O'Rourke et al. (1976)                                            |
| Structural<br>Damage                   | 1/150                                                                 | 1/250                                                     | 1/200                                      |                                      | 1/150                                           | -                                                                 |
| Cracking in<br>walls and<br>partitions | 1/300<br>(but 1/500<br>recommended)                                   | 1/500                                                     | 1/500<br>(0.7/10<br>to 1/10<br>for end     | 000<br>000<br>1 bays)                | 1/500                                           | 1/750                                                             |
| (b) Unreinfor<br>Limiting valu         | ced load-bearing wo                                                   | nlLs<br>ο (Δ/L) for the on                                | set of visib                               | e cracki                             | ng given by:                                    |                                                                   |
|                                        | Meyerhof<br>(1956)                                                    | Polshin & Tok                                             | ar (1957)                                  | Burlar<br>(1975                      | nd & Wroth                                      | O'Rourke et al. (1976)                                            |
| Sagging                                | 1/2500                                                                | 1/3300-1/2500;<br>1/2000-1/1430;                          | ЦН < 3<br>ЦН > 5                           | 1/250<br>1/125                       | 0: $L/H = 1$<br>0: $L/H = 5$                    | 1/4000 <sup>(b)</sup><br>at <i>L/H</i> = 1                        |
| Hogging                                | -                                                                     | -                                                         |                                            | 1/500<br>1/250                       | 0; <i>L/H</i> = 1<br>0; <i>L/H</i> = 5          |                                                                   |
| votes: (a) St<br>sir<br>tu             | udies of permissible<br>noe the time scales a<br>nnelling may include | deformation may<br>re not comparable<br>a substantial cor | not be apple.<br>In addition<br>nponent of | licable to<br>n, deform<br>horizonta | o tunnelling-in<br>nations associ<br>al strain. | duced movements<br>isted with                                     |
| (b) Gi                                 | iven at $\beta = 1/1000$ a<br>ryature on a limb of                    | nd assuming a rat<br>a trough, (O'Roo                     | io of Δ/L to<br>arke et al.,               | β of 1:<br>1976)                     | 4 consistent w                                  | ith circular                                                      |



In linea di massima appare cautelativo e sufficientemente suffragato dall'esperienza fare riferimento alla classificazione di *W.J. Rankin (1988) "Ground Movements resulting from Urban tunneling: Prediction ed effects*" di seguito riportata:

| Classe di danno | Distorsione $\beta$        | Cedimento max W                                                                              | Danno atteso                                                             |
|-----------------|----------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 0               | β <b>&lt;1/500</b>         | w< 1 cm                                                                                      | Non visibile                                                             |
| 1               | β <b>&lt;1/500</b>         | 1 cm <w<5 cm<="" td=""><td>Compreso tra non visibile e<br/>leggero</td></w<5>                | Compreso tra non visibile e<br>leggero                                   |
| 2               | 1/500 <u>&lt;</u> β <1/200 | 1 cm <w<5 cm<="" td=""><td>Leggero: crepe facilmente rimovibili con tinteggiatura</td></w<5> | Leggero: crepe facilmente rimovibili con tinteggiatura                   |
| 3               | β >1/200                   | w >5 cm                                                                                      | Moderato: danni a porte e finestre.<br>Danni da infiltrazione di umidità |

#### 4.2.3 Fondazioni viadotti

In linea generale si possono considerare i seguenti valori orientativi per gli spostamenti massimi ammissibili:

- wh (assoluto orizzontale) a testa pila: 4 cm (statico), 10 cm (sismico)
- ∆w (cedimento differenziale verticale) fra pile adiacenti: <0.2‰ della lunghezza libera delle luci concorrenti all'appoggio

Si riportano di seguito anche dei valori dei cedimenti assoluti e distorsioni massimi ammissibili secondo (*Poulos (2001), "Foundations and retaining structures – research and practise"*):

| Bridges – general       | Ride quality<br>Structural distress<br>Function | Total settlement<br>Total settlement<br>Horizontal movement | 100 mm<br>63 mm<br>38 mm |  |
|-------------------------|-------------------------------------------------|-------------------------------------------------------------|--------------------------|--|
| Bridges – multiple span | Structural damage                               | Angular distortion                                          | 1/250                    |  |
| Bridges – single span   | Structural damage                               | Angular distortion                                          | 1/200                    |  |



#### 4.2.4 Opere di sostegno flessibili

Come riportato in Normativa (NTC2008) gli spostamenti dell'opera devono essere valutati dai progettisti per verificarne la compatibilità con:

- 1) la funzionalità e la sicurezza globale dell'opera;
- 2) la sicurezza e la funzionalità dei manufatti adiacenti anche in relazione alla modifica delle pressioni interstiziali nel sottosuolo;
- in condizioni sismiche anche con il massimo valore che l'opera può sopportare senza subire una riduzione di resistenza;

In tutti i casi per poter valutare un valore ammissibile degli spostamenti è necessario effettuare, caso per caso, un analisi di interazione terreno-opera ed anche tra terreno, opera e manufatti preesistenti.

In linea del tutto generale e solo orientativa, per i punti precedenti, può valere quanto segue:

- lo spostamento massimo ammissibile nei confronti della sicurezza globale (SLU) può essere valutato, soprattutto per terreni coesivi, in base a quanto proposto da *Mana e Clough (1981) ("Prediction of Movements for braced cut in clay"*) per paratie puntonate: per garantire un coefficiente di sicurezza FS>2 nei confronti del sollevamento del fondo scavo si deve avere che lo spostamento deve risultare inferiore a 0.5% H (altezza fuori scavo).
- 2) Lo spostamento massimo ammissibile (in relazione alla funzionalità (SLE) e alla sicurezza (SLU) delle preesistenze) può essere indirettamente valutato facendo riferimento ai diagrammi empirici reperibili in letteratura (*Clough e O'Rourke (1990), "Construction induced movements in situ walls"*) che riportano profili di subsidenza a tergo dell'opera, normalizzati rispetto al cedimento massimo (che per paratie multiancorate può porsi pari al 94% dello spostamento orizzontale della parete:





3) La Normativa (NTC2008) prescrive che, in condizioni sismiche, lo spostamento massimo debba in ogni caso essere inferiore allo 0.5% dell'altezza fuori scavo.

#### 4.2.5 Muri rigidi

Tipici valori degli spostamenti massimi ammissibili indicati anche dagli Eurocodici sono di seguito indicati

- Muri a gravità:0.002 H (traslazione)
- Muri liberi in testa e vincolati alla base:0.005 H (rotazione intorno alla base)
- Muri vincolati in testa (da tiranti, impalcati,...):0.002 H (rotazione intorno alla testa)

con H altezza del muro.

#### 4.2.6 Rilevati

La Normativa (NTC2008) impone che i cedimenti del piano di fondazione, da valutare con specifiche analisi, siano compatibili con la funzionalità della sovrastruttura e delle preesistenze adiacenti.

In linea di massima i cedimenti residui massimi ammissibili non dovrebbero superare il 10% di quelli totali e comunque il valore di 5cm.

Eurolink S.C.p.A.



Per la sovrastruttura stradale o ferroviaria si rimanda alle tolleranze massime ammesse.

Per le ferrovie si ammettono le seguenti variazioni massime delle caratteristiche geometriche dei binari:

 $\Delta$  sghembo max= 6.5‰ (base 3m)  $\Delta$  sghembo max= 5.5‰ (base 6m)  $\Delta$  sghembo max= 4.5‰ (base 9m)  $\Delta$  sopraelevazione max= ±5mm

#### 4.2.7 Pendii e sbancamenti

Lo spostamento ammissibile dipende da innumerevoli fattori fra i quali:

- tipo di pendio (artificiale, naturale)
- preesistenze
- gravità dei danni connessi allo sviluppo di eventuali dissesti
- stato limite

Si riportano di seguito dei "valori limite" assolutamente indicativi provenienti da indicazioni di letteratura, in relazione al tipo di preesistenze; il riferimento per un valore ammissibile, soprattutto in condizioni sismiche, è quello connesso con un grado di danno irrilevante.

|                | Strutture             | Infrastrutture viarie |                         |         |  |
|----------------|-----------------------|-----------------------|-------------------------|---------|--|
|                | Legg & Slosson Idriss |                       | Silvestri et al. (2006) |         |  |
| Grado di danno | (1984)                | (1985)                | Crada di danna          |         |  |
|                | u (cm)                | u (cm)                | Grado di danno          | u (cm)  |  |
| Irrilevante    | < 0.5                 | < 3                   | Trascurabile            | < 2     |  |
| Modesto        | 0.5 – 5               | 15                    | Riparabile              | 2 - 10  |  |
| Forte/Moderato | 5 – 50                | 30                    | Interruzione            | 10 - 50 |  |
| Severo/Elevato | 50 – 500              | 90                    | 0                       | . 50    |  |
| Catastrofico   | > 500                 | 300                   | Collasso                | > 50    |  |

Per quanto riguarda più genericamente le procedure di dimensionamento e verifica, si rimanda a quanto previsto nelle singole relazioni di calcolo delle Opere ed a quanto comunque previsto dalle Specifiche di Progetto (Documenti GCG.F).

Pagina 224 di 688



# 5 ALLEGATI

# 5.1 CONGLOMERATI DI PEZZO



#### Conglomerati di Pezzo (matrice)

Figura 50





Codice documento CB0057\_F0



Figura 51



Codice documento CB0057\_F0

#### Conglomerato di Pezzo (matrice) - d50(mm)



Figura 52





Codice documento CB0057\_F0











Codice documento CB0057\_F0









### RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |



Figura 55



eo









Figura 57





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |
|------------------|
| CB0057 F0        |



Figura 58





Figura 59





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |



Figura 60





# RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |







#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0









Figura 63 PLT Ancoraggio Calabria (-5 m da p.c.)



Figura 64 PLT Ancoraggio Calabria (-11.85 m da p.c.)





Figura 65 PLT Ancoraggio Calabria (-16 m da p.c.)





Figura 66 Ancoraggio Calabria, prove di carico su piastra





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |



Figura 67



#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |



| Stretto                       | Ponte sullo Stretto di Me | <b>essina</b> | I          |
|-------------------------------|---------------------------|---------------|------------|
| di Messina                    | PROGETTO DEFINITI         | VO            |            |
| RELAZIONE GEOTECNICA GENERALE | Codice documento          | Rev           | Data       |
|                               | CB0057_F0                 | F0            | 20/06/2011 |



Figura 69











Figura 71











Figura 73





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |











Eurolink S.C.p.A.











Figura 77





#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011






#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0



Figura 79





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |



Figura 80





Figura 81



#### Tabella 1 Riepilogo caratteristiche fisiche del conglomerato di pezzo

| SONDAGGIO | N°<br>PROVINO | OPERA                                                                              | z<br>(m) | (](kN/m³) | ( <sub>d</sub><br>(kN/m <sup>3</sup> ) | ( <sub>s</sub><br>(kN/m <sup>3</sup> ) |
|-----------|---------------|------------------------------------------------------------------------------------|----------|-----------|----------------------------------------|----------------------------------------|
| S4        | C2            | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 29.85    | 20.1      | (                                      | (                                      |
| S7        | C1            | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 12.2     | 20.4      | 18.14                                  | 25.9                                   |
| S7        | C2            | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 22.4     | 20.5      | 18.5                                   | 26                                     |
| S7        | C3            | Rampa C 1+200-3+300 / Rampa V / Ramo C_dec                                         | 31.8     | 21.18     |                                        | 27                                     |
| S8        | C1            | Rampa C 1+200-3+300 / Rampa V / Ramo C_dec                                         | 6.85     | 21.28     | 18.47                                  | 25.9                                   |
| S8        | C2            | Rampa C 1+200-3+300 / Rampa V / Ramo C_dec                                         | 14.2     | 22.75     |                                        |                                        |
| S8        | C3            | Rampa C 1+200-3+300 / Rampa V / Ramo C_dec                                         | 22.2     | 19.71     | 17.69                                  | 27.46                                  |
| C411      | CR4           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 25.4     |           |                                        | 26.32                                  |
| Cn450     | CR1           | Galleria Rampa A / ferrovia                                                        | 12.75    |           |                                        | 25.96                                  |
| Cn450     | CR2           | Ramo D_dec                                                                         | 17.3     |           |                                        | 25.52                                  |
| Cn450     | CR3           | Ramo D_dec                                                                         | 25.2     |           |                                        | 26.01                                  |
| Cn450     | CR4           | Rampa D 1+350 -1+800 / Rampa M                                                     | 38.75    |           |                                        | 25.62                                  |
| Cn450     | SPT2          | Rampa D 1+350 -1+800 / Rampa M                                                     | 3        |           |                                        | 26.11                                  |
| Cn450     | SPT3          | Ramo D_dec                                                                         | 4.5      |           |                                        | 26.15                                  |
| Cn450     | SPT5          | Ramo D_dec                                                                         | 7.5      |           |                                        | 25.76                                  |
| Cn450     | SPT6          | Ramo D_dec                                                                         | 9        |           |                                        | 25.49                                  |
| Cn450     | CI 1          | Ramo D dec                                                                         | 18.8     |           |                                        | 25.32                                  |
| C403bis   | SPT4          | Ramo D dec                                                                         | 6        |           |                                        | 26.98                                  |
| C403bis   | SPT5          | Ramo D dec                                                                         | 7.5      |           |                                        | 26.66                                  |
| C403bis   | SPT6          |                                                                                    | 9        |           |                                        | 26.48                                  |
| C403bis   | SPT7          | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G                                | 12.4     |           |                                        | 27.03                                  |
| C403bis   | SPT8          | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G                                | 17.2     |           |                                        | 27.15                                  |
| C403bis   | SPT9          | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G                                | 20       |           |                                        | 27.22                                  |
| C403bis   | SPT11         | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G                                | 26.5     |           |                                        | 26.77                                  |
| C403bis   | SPT12         | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G                                | 29       |           |                                        | 27.06                                  |
| C403bis   | C1            | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 13.8     |           |                                        | 26.84                                  |
| C403bis   | C2            | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 18.7     |           |                                        | 26.21                                  |
| C403bis   | C3            | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 25.6     |           |                                        | 26.78                                  |
| C403bis   | C4            | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 27.8     |           |                                        | 26.72                                  |
| C404      | 9             | Rampa C 1+200-3+300 / Rampa V / Ramo C dec                                         | 14.5     |           |                                        | 26.62                                  |
| C404      | 10            | Rampa C 1+200-3+300 / Rampa V / Ramo C dec                                         | 16       |           |                                        | 26.6                                   |
| C404      | 11            | Galleria Rampa A                                                                   | 18.2     |           |                                        | 26.27                                  |
| C404      | 12            | Galleria Rampa A                                                                   | 22       |           |                                        | 26.49                                  |
| C404      | 14            | Galleria Rampa A                                                                   | 26       |           |                                        | 27.21                                  |
| C404      | 15            | Galleria Rampa A                                                                   | 27.5     |           |                                        | 26.82                                  |
| C404      | C3            | Rampa C 1+200-3+300 / Rampa U / Rampa G                                            | 15.3     |           |                                        | 26.91                                  |
| C404      | C4            | Rampa C 1+200-3+300 / Rampa U / Rampa G                                            | 16.8     |           |                                        | 27 57                                  |
| C404      | C5            | Rampa C 1+200-3+300 / Rampa U / Rampa G                                            | 19.5     |           |                                        | 26.31                                  |
| C404      | C6            | Rampa C 1+200-3+300 / Rampa U / Rampa G                                            | 20.6     |           |                                        | 26.37                                  |
| C404      | C7            | Rampa C 1+200-3+300 / Rampa U / Rampa G                                            | 22.4     |           |                                        | 26.99                                  |
| C404      | C8            | Rampa C 1+200-3+300 / Rampa U / Rampa G                                            | 23.5     |           |                                        | 26.51                                  |
| C404      | C9            | Rampa C 1+200-3+300 / Rampa U / Rampa G                                            | 24.7     |           |                                        | 26.97                                  |
| C405      | SPT7          | Rampa C 1+200-3+300 / Rampa U / Rampa G                                            | 25.6     |           |                                        | 26.13                                  |
| C405      | SPT8          | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 32.4     |           |                                        | 26.18                                  |
| C405      | CR2           | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 21.6     |           |                                        | 26.28                                  |
| C405      | CI3           | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 25.5     | 22.59     | 18.12                                  | 26.6                                   |
| C405      | CI4           | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 28.4     |           |                                        | 26.5                                   |
| C405      | CR5           | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 34.5     |           |                                        | 26.55                                  |
| C405      | CR6           | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 38.2     |           |                                        | 25.97                                  |
| C420bis   | SPT11         | Rampa C 1+200-3+300 / Ramo A acc/ Ramo C dec                                       | 24       |           |                                        | 26.81                                  |
| C420bis   | CR1           | Galleria Rampa A / Galleria Rampa D / ferrovia                                     | 28.8     |           |                                        | 26.77                                  |
| S7DG42    | 1             | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 15       | 23.1      | 20.7                                   |                                        |
| S7DG42    | 2             | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 30       | 23.2      | 21.3                                   |                                        |
| S7DG42    | 3             | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 45       | 23.4      | 21.8                                   | l                                      |
| SG12      | C1            | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 50       | 18.23     | 17.24                                  | 26.7                                   |
| SG12      | C2            | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 55       | 19.23     | 16.54                                  | 27.3                                   |
| SG12      | C4            | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 22.35    | 18.53     | 16.74                                  | 27                                     |
| SG13      | C1            | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 38       | 17.74     | 16.44                                  | 26.8                                   |





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| SONDAGGIO | N°<br>PROVINO | OPERA                                                                              | z<br>(m) | (](kN/m³) | ( <sub>d</sub><br>(kN/m <sup>3</sup> ) | ( <sub>s</sub><br>(kN/m <sup>3</sup> ) |
|-----------|---------------|------------------------------------------------------------------------------------|----------|-----------|----------------------------------------|----------------------------------------|
| SG13      | C2            | Galleria Rampa D / ferrovia                                                        | 44       | 19.13     | 17.14                                  | 26.3                                   |
| SG13      | C3            | Galleria Rampa D / ferrovia                                                        | 58       | 19.33     | 17.64                                  | 27                                     |
| SG14      | C1            | Galleria Rampa A / ferrovia                                                        | 11       | 19.83     | 18.13                                  | 26.2                                   |
| SG14      | C2            | Galleria Rampa A / ferrovia                                                        | 24.15    | 19.33     | 15.74                                  | 26.2                                   |
| SG14      | C3            | Galleria Rampa A / ferrovia                                                        | 35.2     | 20.23     | 17.94                                  | 26.66                                  |
| SG15      | C2            | Rampa D 1+350 -1+800 / Rampa M                                                     | 24.5     | 19.82     | 18.33                                  | 27.4                                   |
| SG15      | C3            | Rampa D 1+350 -1+800 / Rampa M                                                     | 29.9     | 20.73     | 18.93                                  | 27.1                                   |
| CS101     | 4             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 11.8     | 24.1      | 22.1                                   |                                        |
| CS103     | 1             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 5.5      | 22.4      | 21                                     |                                        |
| CS103     | 2             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 8.1      | 21.8      | 19.5                                   |                                        |
| CS103     | 9             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 28.75    | 22.3      | 20                                     |                                        |
| CS103     | 3             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 9.6      | 23.3      | 21.8                                   |                                        |
| CS103     | 8             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 26.55    | 22.3      | 20.5                                   |                                        |
| CS103     | 11            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 35.15    | 23        | 21.7                                   |                                        |
| C421ter   | C7            | Galleria Rampa A / ferrovia                                                        | 81.7     | 22.3      |                                        |                                        |
| C421ter   | C20           | Galleria Rampa A / ferrovia                                                        | 44.6     | 22.8      |                                        |                                        |
| FCBH1501  | 5             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 49.7     | 21.77     |                                        |                                        |
| C402      | SPT6          | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 9.2      |           |                                        | 26.67                                  |
| C402      | SPT7          | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 10.6     |           |                                        | 25.98                                  |
| C402      | SPT8          | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 13.7     |           |                                        | 26.17                                  |
| C402      | SPT9          | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 16.6     |           |                                        | 26.22                                  |
| C402      | SPT10         | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 19.7     |           |                                        | 26.74                                  |
| C402      | CR2           | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 20.5     |           |                                        | 26.58                                  |
| C402      | SPT11         | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 22.1     |           |                                        | 26.53                                  |
| C402      | SPT12         | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 25.85    |           |                                        | 26.59                                  |
| C402      | SPT13         | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 31       |           |                                        | 26.54                                  |
| C402      | CR3           | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 36.8     |           |                                        | 26.46                                  |
| C402      | CR4           | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 43.5     |           |                                        | 26.63                                  |
| C411      | SPT8          | Rampa B 0+800-1+325 / Rampa M                                                      | 29.3     |           |                                        | 26.75                                  |
| C421ter   | CI1           | Galleria Rampa A / ferrovia                                                        | 60.15    |           |                                        | 26.51                                  |
| C421ter   | CR1           | Galleria Rampa A / ferrovia                                                        | 46.25    |           |                                        | 26.61                                  |
| C421ter   | CR2           | Galleria Rampa A / ferrovia                                                        | 52.5     |           |                                        | 26.6                                   |
| C421ter   | CR3           | Galleria Rampa A / ferrovia                                                        | 68.5     |           |                                        | 26.57                                  |
| C421ter   | CR4           | Galleria Rampa A / ferrovia                                                        | 76.3     |           |                                        | 26.5                                   |
| C421ter   | CR4           | Galleria Rampa A / ferrovia                                                        | 84       |           |                                        | 26.46                                  |
| FCBH1512  | N             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 17.5     |           |                                        | 26.93                                  |
| FCBH1512  | L             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 14.75    |           |                                        | 26.86                                  |
| FCBH1512  | Т             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 28       |           |                                        |                                        |
| C407      | SPT5          | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 7.5      |           |                                        | 27.25                                  |
| C407      | SPT6          | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 9        |           |                                        | 26.98                                  |
| C407      | SPT7          | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 10.5     |           |                                        | 26.69                                  |
| C407      | SPT8          | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 25.35    |           |                                        | 27.2                                   |
| C420      | CI1           | Galleria Rampa A / Galleria Rampa D / ferrovia                                     | 29.65    |           |                                        | 26.54                                  |



#### Tabella 2 Riepilogo caratteristiche fisiche del conglomerato di pezzo (ammasso roccioso)

| SONDAGGIO  | N°<br>PROVINO | OPERA                                                          | z<br>(m) | γ<br>(kN/m³) | γd<br>(KN/m <sup>3</sup> ) |
|------------|---------------|----------------------------------------------------------------|----------|--------------|----------------------------|
| FCBH6      | 4-1           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 50.65    | 26.60        | 26.60                      |
| FCBH6      | 4-2           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 51.00    | 26.50        | 26.50                      |
| FCBH6      | 5-1           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 56.00    | 23.40        | 23.20                      |
| FCBH6      | 5-2           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 56.50    | 23.40        | 23.20                      |
| CS103      | 4             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 14.20    | 26.00        | 25.90                      |
| CS103      | 5             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 16.95    | 25.60        | 25.50                      |
| CS103      | 6-1           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 19.55    | 26.50        | 26.40                      |
| CS103      | 6-2           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 19.55    | 26.50        | 26.40                      |
| CS102      | 1-1           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 15.85    | 26.6         | 26.5                       |
| CS102      | 1-2           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 15.85    | 26.6         | 26.5                       |
| CS102      | 2             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 17.75    | 26.3         | 26.2                       |
| FCBH1512   | 10            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 35.3     | 26.5         |                            |
| FCBH1512   | 16            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 41       | 22.8         |                            |
| FCBH1512   | 4NK3          | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 58.00    | 24.57        |                            |
| FCBH1512   | 28            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 56.00    | 25.93        |                            |
| FCBH1512   | 30            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 59.00    | 24.50        |                            |
| C420bis    | C2            | Galleria Rampa D / Galleria Rampa A / ferrovia                 | 117.70   | 25.80        |                            |
| OTCLPT1505 | C4            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 40.50    | 24.40        |                            |
| C420bis    | C5            | Galleria Rampa D / Galleria Rampa A / ferrovia                 | 76.60    | 21.10        |                            |
| ACBH3505   | C6            | Galleria Rampa B / Galleria Rampa A / ferrovia                 | 45.20    | 26.40        |                            |
| FCCH2509   | C9            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 92.20    | 24.00        |                            |
| FCCH2509   | C11           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 51.50    | 23.65        |                            |
| ACBH3505   | C12           | Galleria Rampa B / Galleria Rampa A / ferrovia                 | 65.00    | 23.80        |                            |
| C412       | C15           | Galleria Rampa D / ferrovia                                    | 70.30    | 26.30        |                            |
| OTCSPT504  | C16           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 29.80    | 23.20        |                            |
| OTCSPT504  | C17           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 37.60    | 26.70        |                            |
| OTCSPT504  | C18           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 35.60    | 20.70        |                            |
| C420bis    | C19           | Galleria Rampa D / Galleria Rampa A / ferrovia                 | 38.20    | 24.60        |                            |
| ACBH3505   | C21           | Galleria Rampa B / Galleria Rampa A / ferrovia                 | 17.50    | 22.44        |                            |
| ACBH3505   | C22           | Galleria Rampa B / Galleria Rampa A / ferrovia                 | 43.20    | 23.48        |                            |
| OTCSPT504  | C24           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 52.80    | 21.87        |                            |
| FCBH1501   | 1             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 43.65    | 21.58        |                            |
| FCBH1501   | 2             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 45.60    | 21.63        |                            |
| FCBH1501   | 3             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 47.55    | 23.61        |                            |
| FCBH1501   | 7             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 52.80    | 20.71        |                            |
| FCBH1501   | 9             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 55.62    | 19.96        |                            |
| FCBH1501   | 11            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 58.80    | 21.31        |                            |
| OTCLPT2503 | 1L            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 7.67     | 20.9         |                            |
| OTCLPT2503 | 2L            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 9.93     | 22.68        |                            |
| OTCLPT2503 | 4L            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 13.70    | 21.2         |                            |
| OTCLPT2503 | 6L            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 19.17    | 20.4         |                            |
| OTCLPT2503 | 8L            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 25.80    | 21.82        |                            |
| OTCLPT2503 | 9L            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 27.48    | 22.68        |                            |
| OTCLPT2503 | 12L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 36.20    | 19.51        |                            |
| OTCLPT2503 | 13L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 39.69    | 21.67        |                            |
| OTCLPT2503 | 15L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 45.72    | 23.05        |                            |
| OTCLPT2503 | 16L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 47.83    | 22.49        |                            |





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| SONDAGGIO  | N°<br>PROVINO | OPERA                                                          | z<br>(m) | γ<br>(kN/m³) | γd<br>(KN/m <sup>3</sup> ) |
|------------|---------------|----------------------------------------------------------------|----------|--------------|----------------------------|
| OTCLPT2503 | 17L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 51.10    | 21.76        |                            |
| OTCLPT2503 | 18L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 53.44    | 22.79        |                            |
| OTCLPT2503 | 19L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 55.53    | 20.7         |                            |
| OTCLPT2503 | 20L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 58.05    | 22.37        |                            |
| Cn450      | SL02          | Rampa B 0+800-1+325 / Rampa M                                  | 31.5     | 23.54        |                            |
| Cn450      | SL03          | Rampa B 0+800-1+325 / Rampa M                                  | 35.6     | 21.8         |                            |
| C412       | SL02          | Galleria Rampa D / ferrovia                                    | 62.70    | 22.17        |                            |
| C406       | 1_1           | Galleria Rampa C / Galleria Rampa D / ferrovia                 | 23.60    | 23.35        |                            |
| C406       | 1_2           | Galleria Rampa C / Galleria Rampa D / ferrovia                 | 23.60    | 23.45        |                            |
| C406       | 3             | Galleria Rampa C / Galleria Rampa D / ferrovia                 | 46.50    | 22.76        |                            |
| ACBH3505   | 4L            | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 14.70    | 24.32        |                            |
| ACBH3505   | 5L_TXDC1      | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 15.90    | 22.28        |                            |
| ACBH3505   | 5L_TXDC2      | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 16       | 22.39        |                            |
| ACBH3505   | 5L_TXDC3      | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 16.2     | 22.41        |                            |
| ACBH3505   | 6L_TXDC1      | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 18.8     | 22.75        |                            |
| ACBH3505   | 6L_TXDC2      | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 19       | 23.23        |                            |
| ACBH3505   | 7L_TXDC1      | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 20.20    | 23.22        |                            |
| ACBH3505   | 7L_TXDC2      | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 20.40    | 23.20        |                            |
| ACBH3505   | 8L            | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 22.00    | 23.60        |                            |
| ACBH3505   | 9L_TXDC1      | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 23.10    | 23.03        |                            |
| ACBH3505   | 9L_TXDC2      | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 23.30    | 22.93        |                            |
| ACBH3505   | 9L_TXDC3      | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 23.50    | 22.91        |                            |
| ACBH3505   | 11L_TXDC1     | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 30.50    | 22.93        |                            |
| ACBH3505   | 11L_TXDC2     | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 30.70    | 22.86        |                            |
| ACBH3505   | 13L           | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 35.40    | 23.11        |                            |
| ACBH3505   | 16L           | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 44.80    | 22.99        |                            |
| ACBH3505   | 17L           | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 48.5     | 25.60        |                            |
| ACBH3505   | 18L_TXDC1     | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 51.3     | 23.93        |                            |
| ACBH3505   | 18L_TXDC2     | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 51.6     | 23.74        |                            |
| ACBH3505   | 18L_TXDC3     | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 51.8     | 23.93        |                            |
| ACBH3505   | 20L           | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 57.50    | 22.90        |                            |
| ACBH3505   | 21L           | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 62.3     | 23.46        |                            |
| ACBH3505   | 22L           | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 64.50    | 24.10        |                            |
| FCCH2509   | 5L            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 34.40    | 21.80        |                            |
| FCCH2509   | 6L            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 35.60    | 19.00        |                            |
| FCCH2509   | 8L            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 40.50    | 20.90        |                            |
| FCCH2509   | 11L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 50.30    | 20.18        |                            |
| FCCH2509   | 13L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 58.00    | 21.24        |                            |
| FCCH2509   | 15L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 64.70    | 22.11        |                            |
| FCCH2509   | 16L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 71.10    | 20.53        |                            |
| FCCH2509   | 17L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 73.40    | 21.88        |                            |
| FCCH2509   | 18L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 74.50    | 20.83        |                            |
| FCCH2509   | 19L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 75.80    | 21.95        |                            |
| FCCH2509   | 21L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 84.00    | 21.18        |                            |
| FCCH2509   | 23L           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 92.80    | 20.73        |                            |
| C421ter    | C20           | Galleria Rampa A / ferrovia                                    | 44.60    |              | 22.80                      |
| C421ter    | C7            | Galleria Rampa A / ferrovia                                    | 81.70    |              | 22.28                      |





### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

#### Tabella 3 Granulometria del Conglomerato di Pezzo

| SONDAGGIO | N°PROVINO | z (m) | С   | G   | S        | L   | Α   | С   | G   | S   | L   | Α   |
|-----------|-----------|-------|-----|-----|----------|-----|-----|-----|-----|-----|-----|-----|
|           |           | - ()  | [%] | [%] | [%]      | [%] | [%] | [%] | [%] | [%] | [%] | [%] |
| CS101     | 4         | 11.8  | 0   | 4   | 61       | 28  | 7   | 100 | 100 | 96  | 35  | 7   |
| CS101     | SPI       | 11.8  | 0   | 8   | 66       | 20  | 6   | 100 | 100 | 92  | 26  | 6   |
| CS102     | SPT10     | 10.8  | 0   | 45  | 44       | 11  | 0   | 100 | 100 | 55  | 11  | 0   |
| CS102     | SPT12     | 12.0  | 0   | 4   | 69       | 22  | 5   | 100 | 100 | 96  | 27  | 5   |
| CS102     | D         | 13.0  | 0   | 13  | 60       | 22  | 5   | 100 | 100 | 87  | 27  | 5   |
| CS102     | E         | 21.4  | 0   | 26  | 55       | 15  | 4   | 100 | 100 | /4  | 19  | 4   |
| CS103     | 1         | 5.5   | 0   | 5   | 75       | 19  | 1   | 100 | 100 | 95  | 20  | 1   |
| 00103     | 2         | 8.1   | 0   | 2   | 58       | 37  | 3   | 100 | 100 | 98  | 40  | 3   |
| CS103     | 9         | 28.8  | 0   | 0   | 6/<br>70 | 30  | 3   | 100 | 100 | 100 | 33  | 3   |
|           | 5P18      | 20.4  | 0   | 1   | 70       | 23  | 0   | 100 | 100 | 93  | 23  | 0   |
|           | <u>∠</u>  | 24.1  | 0   | 04  | 20       | 10  | 1   | 100 | 100 | 30  | 10  | 7   |
|           | 4         | 21.0  | 0   | 20  | 6/       | 12  | 0   | 100 | 100 | 99  | 12  | 0   |
| FCBH1512  | 10        | 35.0  | 0   | 20  | 86       | 10  | 0   | 100 | 100 | 100 | 10  | 0   |
| FCBH1512  | 10        | 44.5  | 0   | 0   | 80       | 11  | 0   | 100 | 100 | 100 | 14  | 0   |
| FCBH1512  | 20        | 47.5  | 0   | 24  | 60       | 16  | 0   | 100 | 100 | 76  | 16  | 0   |
| FCBH1512  | 20        | 50.0  | 0   | 0   | 85       | 15  | 0   | 100 | 100 | 100 | 15  | 0   |
| FCBH1512  | 26        | 54.0  | 0   | 8   | 79       | 13  | 0   | 100 | 100 | 92  | 13  | 0   |
| FCBH1512  | 28        | 56.0  | 0   | 0   | 72       | 24  | 4   | 100 | 100 | 100 | 28  | 4   |
| C411      | CR4       | 25.4  | 0   | 57  | 35       | 8   | 0   | 100 | 100 | 43  | 8   | 0   |
| C411      | SPT8      | 29.3  | 0   | 3   | 66       | 28  | 3   | 100 | 100 | 97  | 31  | 3   |
| Cn450     | CR3       | 25.2  | 0   | 5   | 68       | 23  | 4   | 100 | 100 | 95  | 27  | 4   |
| Cn450     | CR4       | 38.8  | 0   | 7   | 66       | 23  | 4   | 100 | 100 | 93  | 27  | 4   |
| Cn450     | SPT5      | 7.3   | 0   | 50  | 36       | 9   | 5   | 100 | 100 | 50  | 14  | 5   |
| Cn450     | SPT6      | 9.0   | 0   | 7   | 65       | 24  | 4   | 100 | 100 | 93  | 28  | 4   |
| Cn450     | SPT7      | 11.0  | 0   | 58  | 41       | 1   | 0   | 100 | 100 | 42  | 1   | 0   |
| Cn450     | CI 1      | 18.8  | 0   | 8   | 72       | 17  | 3   | 100 | 100 | 92  | 20  | 3   |
| Cn450     | CI 3      | 28.7  | 0   | 23  | 67       | 10  | 0   | 100 | 100 | 77  | 10  | 0   |
| C403bis   | SPT6      | 9.0   | 0   | 4   | 56       | 23  | 17  | 100 | 100 | 96  | 40  | 17  |
| C403bis   | SPT7      | 12.4  | 0   | 5   | 66       | 22  | 7   | 100 | 100 | 95  | 29  | 7   |
| C403bis   | SPT8      | 17.2  | 0   | 47  | 42       | 10  | 1   | 100 | 100 | 53  | 11  | 1   |
| C403bis   | SPT9      | 20.0  | 0   | 25  | 54       | 19  | 2   | 100 | 100 | 75  | 21  | 2   |
| C403bis   | SPT11     | 26.5  | 0   | 43  | 44       | 10  | 3   | 100 | 100 | 57  | 13  | 3   |
| C403bis   | SPT12     | 29.0  | 0   | 0   | 54       | 41  | 5   | 100 | 100 | 100 | 46  | 5   |
| C403bis   | C1        | 13.8  | 0   | 5   | 57       | 27  | 11  | 100 | 100 | 95  | 38  | 11  |
| C403bis   | C2        | 18.7  | 0   | 0   | 48       | 46  | 6   | 100 | 100 | 100 | 52  | 6   |
| C403bis   | C3        | 25.6  | 0   | 16  | 57       | 22  | 5   | 100 | 100 | 84  | 27  | 5   |
| C403bis   | C4        | 27.8  | 0   | 15  | 64       | 19  | 2   | 100 | 100 | 85  | 21  | 2   |
| C403bis   | SPT4      | 6.0   | 0   | 16  | 57       | 21  | 6   | 100 | 100 | 84  | 27  | 6   |
| C403bis   | SPT5      | 7.5   | 0   | 5   | 60       | 25  | 10  | 100 | 100 | 95  | 35  | 10  |
| C404      | 9         | 14.5  | 0   | 28  | 46       | 17  | 9   | 100 | 100 | 72  | 26  | 9   |
| C404      | 10        | 16.0  | 0   | 2   | 57       | 25  | 16  | 100 | 100 | 98  | 41  | 16  |
| C404      | 11        | 18.2  | 0   | 12  | 48       | 28  | 12  | 100 | 100 | 88  | 40  | 12  |
| C404      | 12        | 22.0  | 0   | 17  | 49       | 24  | 10  | 100 | 100 | 83  | 34  | 10  |
| C404      | 14        | 26.0  | 0   | 31  | 48       | 14  | 7   | 100 | 100 | 69  | 21  | 7   |
| C404      | 15        | 27.5  | 0   | 20  | 55       | 16  | 9   | 100 | 100 | 80  | 25  | 9   |
| C404      | C3        | 15.3  | 0   | 18  | 53       | 24  | 5   | 100 | 100 | 82  | 29  | 5   |
| C404      | C4        | 16.8  | 0   | 15  | 49       | 28  | 8   | 100 | 100 | 85  | 36  | 8   |
| C404      | C5        | 19.5  | 0   | 6   | 36       | 40  | 18  | 100 | 100 | 94  | 58  | 18  |
| C404      | C6        | 20.6  | 0   | 13  | 67       | 13  | 7   | 100 | 100 | 87  | 20  | 7   |
| C404      | C7        | 22.4  | 0   | 9   | 58       | 30  | 3   | 100 | 100 | 91  | 33  | 3   |
| C404      | C8        | 23.5  | 0   | 6   | 59       | 26  | 9   | 100 | 100 | 94  | 35  | 9   |
| C404      | C9        | 24.7  | 0   | 20  | 39       | 30  | 11  | 100 | 100 | 80  | 41  | 11  |
| C405      | SPT7      | 25.6  | 0   | 3   | 63       | 25  | 9   | 100 | 100 | 97  | 34  | 9   |
| C405      | SPT8      | 32.4  | 0   | 22  | 59       | 15  | 4   | 100 | 100 | 78  | 19  | 4   |
| C405      | CR2       | 21.6  | 0   | 2   | 43       | 30  | 25  | 100 | 100 | 98  | 55  | 25  |
| C405      | CI3       | 25.5  | 0   | 1   | 48       | 34  | 17  | 100 | 100 | 99  | 51  | 17  |
| C405      | CI4       | 28.4  | 0   | 5   | 61       | 25  | 9   | 100 | 100 | 95  | 34  | 9   |
| C405      | CR5       | 34.5  | 0   | 13  | 61       | 19  | 7   | 100 | 100 | 87  | 26  | 7   |





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| SONDAGGIO |           | 7 (m)   | С   | G   | S   | L   | Α   | С   | G   | S   | L   | Α   |
|-----------|-----------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SUNDAGGIO | N PROVINO | 2 (III) | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] |
| C405      | CR6       | 38.2    | 0   | 14  | 74  | 10  | 2   | 100 | 100 | 86  | 12  | 2   |
| C420bis   | SPT11     | 24.0    | 0   | 55  | 34  | 6   | 5   | 100 | 100 | 45  | 11  | 5   |
| C420bis   | CR1       | 28.8    | 0   | 82  | 14  | 4   | 0   | 100 | 100 | 18  | 4   | 0   |
| S7        | C1        | 12.2    | 0   | 4   | 66  | 18  | 12  | 100 | 100 | 96  | 30  | 12  |
| S7        | C2        | 22.4    | 0   | 0   | 59  | 26  | 15  | 100 | 100 | 100 | 41  | 15  |
| S7        | C3        | 31.8    | 0   | 8   | 59  | 23  | 10  | 100 | 100 | 92  | 33  | 10  |
| S8        | C1        | 6.9     | 0   | 11  | 58  | 22  | 9   | 100 | 100 | 89  | 31  | 9   |
| S8        | C3        | 22.2    | 0   | 11  | 57  | 23  | 9   | 100 | 100 | 89  | 32  | 9   |
| S7DG42    | 2         | 21.0    | 0   | 0   | 90  | 10  | 0   | 100 | 100 | 100 | 10  | 0   |
| SG13      | C1        | 38.0    | 0   | 12  | 55  | 24  | 10  | 100 | 100 | 88  | 33  | 10  |
| SG13      | C2        | 44.0    | 0   | 27  | 56  | 10  | 7   | 100 | 100 | 73  | 17  | 7   |
| SG13      | C3        | 58.0    | 0   | 24  | 55  | 16  | 5   | 100 | 100 | 76  | 21  | 5   |
| SG14      | C2        | 24.2    | 0   | 0   | 23  | 59  | 19  | 100 | 100 | 100 | 77  | 19  |
| SG14      | C3        | 35.2    | 0   | 7   | 62  | 23  | 8   | 100 | 100 | 93  | 31  | 8   |
| SG15      | C2        | 24.5    | 0   | 4   | 63  | 26  | 8   | 100 | 100 | 96  | 33  | 8   |
| SG15      | C3        | 29.9    | 0   | 15  | 57  | 20  | 8   | 100 | 100 | 85  | 28  | 8   |
| S4        | C2        | 29.9    | 0   | 5   | 72  | 19  | 5   | 100 | 100 | 95  | 23  | 5   |
| FCBH1501  | 5         | 49.7    | 0   | 1   | 88  | 11  | 0   | 100 | 100 | 99  | 11  | 0   |
| FCBH1501  | 10        | 57.0    | 0   | 0   | 87  | 13  | 0   | 100 | 100 | 100 | 13  | 0   |
| C402      | SPT6      | 9.2     | 0   | 61  | 33  | 6   | 0   | 100 | 100 | 39  | 6   | 0   |
| C402      | SPT7      | 10.6    | 0   | 56  | 37  | 7   | 0   | 100 | 100 | 44  | 7   | 0   |
| C402      | SPT8      | 13.7    | 0   | 43  | 41  | 12  | 4   | 100 | 100 | 57  | 16  | 4   |
| C402      | SPT9      | 16.6    | 0   | 24  | 54  | 17  | 5   | 100 | 100 | 76  | 22  | 5   |
| C402      | SPT10     | 19.7    | 0   | 37  | 43  | 15  | 5   | 100 | 100 | 63  | 20  | 5   |
| C402      | CR2       | 20.5    | 0   | 15  | 51  | 21  | 13  | 100 | 100 | 85  | 34  | 13  |
| C402      | SPT11     | 22.1    | 0   | 28  | 50  | 15  | 7   | 100 | 100 | 72  | 22  | 7   |
| C402      | SPT12     | 25.9    | 0   | 14  | 60  | 20  | 6   | 100 | 100 | 86  | 26  | 6   |
| C402      | SPT13     | 31.0    | 0   | 11  | 53  | 27  | 9   | 100 | 100 | 89  | 36  | 9   |
| C402      | CR3       | 36.8    | 0   | 6   | 49  | 34  | 11  | 100 | 100 | 94  | 45  | 11  |
| C402      | CR4       | 43.5    | 0   | 1   | 35  | 48  | 16  | 100 | 100 | 99  | 64  | 16  |
| Cn450     | CR1       | 12.8    | 0   | 9   | 68  | 20  | 3   | 100 | 100 | 91  | 23  | 3   |
| Cn450     | CR2       | 17.3    | 0   | 4   | 64  | 32  | 0   | 100 | 100 | 96  | 32  | 0   |
| Cn450     | SPT1      | 1.5     | 0   | 36  | 56  | 8   | 0   | 100 | 100 | 64  | 8   | 0   |
| Cn450     | SPT2      | 3.0     | 0   | 49  | 37  | 10  | 4   | 100 | 100 | 51  | 14  | 4   |
| Cn450     | SPT3      | 4.5     | 0   | 26  | 54  | 14  | 6   | 100 | 100 | 74  | 20  | 6   |
| C407      | SPT7      | 10.5    | 0   | 37  | 51  | 12  | 0   | 100 | 100 | 63  | 12  | 0   |
| C421ter   | CI1       | 60.2    | 0   | 5   | 61  | 26  | 8   | 100 | 100 | 95  | 34  | 8   |
| C421ter   | CR1       | 46.3    | 0   | 1   | 69  | 24  | 6   | 100 | 100 | 99  | 30  | 6   |
| C421ter   | CR2       | 50.3    | 0   | 30  | 48  | 19  | 3   | 100 | 100 | 70  | 22  | 3   |
| C421ter   | CR3       | 68.5    | 0   | 24  | 53  | 20  | 3   | 100 | 100 | 76  | 23  | 3   |
| C421ter   | CR4       | 76.3    | 0   | 10  | 50  | 32  | 8   | 100 | 100 | 90  | 40  | 8   |
| C421ter   | CR5       | 84.0    | 0   | 8   | 62  | 27  | 3   | 100 | 100 | 92  | 30  | 3   |
| FCBH1512  | N         | 17.5    | 0   | 0   | 63  | 28  | 9   | 100 | 100 | 100 | 37  | 9   |
| FCBH1512  | М         | 16.0    | 0   | 2   | 75  | 17  | 6   | 100 | 100 | 98  | 23  | 6   |
| FCBH1512  |           | 13.0    | 0   | 4   | 73  | 16  | 7   | 100 | 100 | 96  | 23  | 7   |
| FCBH1512  | L         | 14.8    | 0   | 4   | 71  | 18  | 6   | 100 | 100 | 96  | 24  | 6   |



#### Tabella 4 Riepilogo risultati prove penetrometriche

| FORO       | Opera                                                                            |       |     |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------|-------|-----|--|--|--|--|--|
| S8DG42     | Ramo C_dec / Galleria Rampa D / ferrovia                                         | 20    | 100 |  |  |  |  |  |
| S8DG42     | Ramo C_dec / Galleria Rampa D / ferrovia                                         | 26.00 | 68  |  |  |  |  |  |
| S8DG42     | Ramo C_dec / Galleria Rampa D / ferrovia                                         | 33.00 | 76  |  |  |  |  |  |
| C210       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia | 5.40  | 100 |  |  |  |  |  |
| C210       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia | 9.10  | 60  |  |  |  |  |  |
| C208       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 17.50 | 100 |  |  |  |  |  |
| C208       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 23.50 | 100 |  |  |  |  |  |
| C208       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 25.00 | 100 |  |  |  |  |  |
| C208       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 29.70 | 100 |  |  |  |  |  |
| C208       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 36    | 100 |  |  |  |  |  |
| C208       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 40.00 | 100 |  |  |  |  |  |
| C210       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia | 11.60 | 78  |  |  |  |  |  |
| CS102      | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 13.50 | 100 |  |  |  |  |  |
| C28        | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 33.46 | 56  |  |  |  |  |  |
| C213biS    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia | 6.80  | 100 |  |  |  |  |  |
| C213biS    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia | 9.00  | 43  |  |  |  |  |  |
| C213biS    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia | 13.00 | 40  |  |  |  |  |  |
| C213biS    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia | 17.00 | 48  |  |  |  |  |  |
| C214       | Galleria Rampa C / Galleria Rampa D / ferrovia                                   | 7.5   | 46  |  |  |  |  |  |
| C214       | Galleria Rampa C / Galleria Rampa D / ferrovia                                   | 9.5   | 66  |  |  |  |  |  |
| C214       | Galleria Rampa C / Galleria Rampa D / ferrovia                                   | 13.5  | 100 |  |  |  |  |  |
| C214       | Galleria Rampa C / Galleria Rampa D / ferrovia                                   | 17    | 76  |  |  |  |  |  |
| C28        | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 21.43 | 67  |  |  |  |  |  |
| C28        | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 24.49 | 54  |  |  |  |  |  |
| C28        | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 27.1  | 100 |  |  |  |  |  |
| C28        | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 30.4  | 40  |  |  |  |  |  |
| S7DG42     | Galleria Rampa D                                                                 | 18.5  | 100 |  |  |  |  |  |
| S7DG42     | Galleria Rampa D                                                                 | 30    | 63  |  |  |  |  |  |
| S7DG42     | Galleria Rampa D                                                                 | 36    | 100 |  |  |  |  |  |
| SN10       | Rampa D 1+350 -1+800 / Rampa M                                                   | 24.5  | 88  |  |  |  |  |  |
| SG15       | Rampa D 1+350 -1+800 / Rampa M                                                   | 25    | 100 |  |  |  |  |  |
| SG15       | Rampa D 1+350 -1+800 / Rampa M                                                   | 30    | 100 |  |  |  |  |  |
| S8         | Rampa D 1+350 -1+800 / Rampa M / ferrovia                                        | 5     | 90  |  |  |  |  |  |
| S8         | Rampa D 1+350 -1+800 / Rampa M / ferrovia                                        | 10.5  | 67  |  |  |  |  |  |
| S8         | Rampa D 1+350 -1+800 / Rampa M / ferrovia                                        | 15.5  | 59  |  |  |  |  |  |
| S8         | Rampa D 1+350 -1+800 / Rampa M / ferrovia                                        | 20.5  | 69  |  |  |  |  |  |
| S8         | Rampa D 1+350 -1+800 / Rampa M / ferrovia                                        | 25.5  | 72  |  |  |  |  |  |
| S8         | Rampa D 1+350 -1+800 / Rampa M / ferrovia                                        | 29.5  | 69  |  |  |  |  |  |
| S6         | Galleria Rampa A / Galleria Rampa C / Galleria Rampa D                           | 30    | 70  |  |  |  |  |  |
| S7         | Galleria Rampa D / ferrovia                                                      | 11    | 86  |  |  |  |  |  |
| S7         | Galleria Rampa D / ferrovia                                                      | 16    | 100 |  |  |  |  |  |
| S7         | Galleria Rampa D / ferrovia                                                      | 20.5  | 87  |  |  |  |  |  |
| S7         | Galleria Rampa D / ferrovia                                                      | 25.5  | 93  |  |  |  |  |  |
| S7         | Galleria Rampa D / ferrovia                                                      | 30    | 100 |  |  |  |  |  |
| OTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 6     | 32  |  |  |  |  |  |
| OTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 8     | 100 |  |  |  |  |  |
| UTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 9.5   | 100 |  |  |  |  |  |
| OTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 10.6  | 100 |  |  |  |  |  |
| OTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 14.2  | 74  |  |  |  |  |  |
| UTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 15.5  | 100 |  |  |  |  |  |
| OTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 17.7  | 100 |  |  |  |  |  |
| OTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 19    | 87  |  |  |  |  |  |
| OTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 20.7  | 80  |  |  |  |  |  |
| OTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                   | 22.7  | 83  |  |  |  |  |  |





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| 5000        | 0                                                                      | z    | Mant |
|-------------|------------------------------------------------------------------------|------|------|
| FURU        | Opera                                                                  | [m]  | NSPT |
| OTCLPT1505  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 24.5 | 89   |
| OTCLPT1505  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 27.3 | 100  |
| OTCL PT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 28.9 | 55   |
| OTCL PT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 30.5 | 84   |
| OTCL PT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 33   | 100  |
| OTCLI T1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 34.5 | 100  |
| OTCLPT1505  | Rampa D 0-0500 / Rampa C 0-0500 / Rampa A 0-0500 / ferrovia            | 34.5 | 100  |
| OTCLPT1505  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Tenovia          | 30   | 100  |
| OTCLPT1505  | Rainipa D 0-0+500 / Rainipa C 0-0+500 / Rainipa A 0-0+500 / Tentovia   | 37.0 | 100  |
| OTCLPT1505  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 39.5 | 100  |
| OTCLPT1505  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 41.1 | 100  |
| OTCLPT1505  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 43.9 | 100  |
| OTCLPT1505  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 46.7 | 100  |
| OTCLPT1505  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 49.6 | 100  |
| OTCLPT2503  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 7    | 53   |
| OTCLPT2503  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 9    | 79   |
| OTCLPT2503  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 11   | 31   |
| OTCLPT2503  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 12.7 | 20   |
| OTCI PT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 14.6 | 79   |
| OTCL PT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 16.6 | 74   |
| OTCL PT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 18.6 | 86   |
| OTCLI 12503 | Pampa D 0 0+500 / Pampa C 0 0+500 / Pampa A 0 0+500 / forrovia         | 20.5 | 83   |
| OTCLPT2503  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia         | 20.3 | 100  |
| OTCEPT2303  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Tenovia          | 22.3 | 100  |
| 0105P1504   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia         | 7.5  | 23   |
| OTCSP1504   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 9    | 54   |
| OTCSPT504   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 10.5 | 68   |
| OTCSPT504   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 12   | 100  |
| OTCSPT504   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 13.5 | 100  |
| OTCSPT504   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 15   | 100  |
| OTCSPT504   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 17   | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 18   | 71   |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 20   | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 22   | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 24   | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 26   | 98   |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 28   | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 29.5 | 100  |
| OTCCH1501   | Rampa D 0 0+500 / Rampa C 0 0+500 / Rampa A 0 0+500 / forrovia         | 20.0 | 100  |
| OTCCH1501   | Rampa D 0-0-500 / Rampa C 0-0-500 / Rampa A 0-0-500 / ferrovia         | 24   | 100  |
| OTCCH1501   | Rainipa D 0-0+500 / Rainipa C 0-0+500 / Rainipa A 0-0+500 / Tentovia   | 34   | 100  |
| 01CCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 35.5 | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 36.8 | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 38.3 | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 41.3 | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 42.8 | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 44.2 | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 45.7 | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 47.2 | 94   |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 48.7 | 100  |
| OTCCH1501   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia         | 50   | 100  |
| FCCH1508    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/interno | 28.5 | 100  |
| FCCH1508    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/interno | 30   | 100  |
| FCCH1508    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/interno | 31.4 | 73   |
| FCCH1508    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia/interno | 22   | 100  |
| ECCH1500    | Rampa D 0-0+500 / Nampa C 0-0+500 / Nampa A 0-0+500 / Terrovia/Interno | 34 5 | 100  |
|             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Tenovia/Interno  | 34.3 | 100  |
| FUCH1508    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/interno | 30   | 100  |
| FCCH1508    | Kampa D 0-0+500 / Kampa C 0-0+500 / Kampa A 0-0+500 / Terrovia/Interno | 37.5 | 100  |
| FCCH1508    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/interno | 39   | 100  |
| FCCH1508    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/interno | 40.5 | 100  |
| FCCH1508    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/interno | 42   | 92   |

Eurolink S.C.p.A.





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| FORO     | FORO Opera                                                                          |        |     |  |
|----------|-------------------------------------------------------------------------------------|--------|-----|--|
| 50014500 | Barras D. 0. 1500 / Damas C. 0. 0. 1500 / Damas A. 0. 0. 1500 / farras via linterna | [m]    |     |  |
| FCCH1508 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/interno              | 43.5   | 100 |  |
| FCCH1508 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia/Interno              | 45     | 100 |  |
| FCCH1508 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia/Interno              | 40.5   | 100 |  |
| FCCH1508 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/interno              | 47.8   | 100 |  |
| C403bis  | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 6      | 42  |  |
| C403DIS  | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / Terrovia  | 7.5    | 39  |  |
| C403DIS  | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / Terrovia  | 9      | 20  |  |
| C403bis  | Rampa A 0.0+500 / Rampa B 0.0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 12.4   | 32  |  |
| C403bis  | Rampa A 0-0+500 / Rampa B 0-0+500 / Galleria Rampa C / Galleria Rampa D / Terrovia  | 17.2   | 100 |  |
| C403DIS  | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / Terrovia  | 23.7   | 100 |  |
| C403     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 6.5    | 28  |  |
| C403     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 8      | 55  |  |
| C403     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 12.5   | 23  |  |
| C403     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 15.5   | 100 |  |
| C403     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 18.5   | 100 |  |
| C403     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 21.5   | 27  |  |
| C403     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 24.4   | 100 |  |
| C403     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 27.5   | 40  |  |
| C404     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 14.5   | 100 |  |
| C404     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 16     | 100 |  |
| C404     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 18.2   | 100 |  |
| C404     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 22     | 100 |  |
| C404     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 24.2   | 100 |  |
| C404     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 26     | 100 |  |
| C404     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia  | 27.5   | /4  |  |
| C405     | Galleria Rampa A / Galleria Rampa B / ferrovia                                      | 25.6   | 85  |  |
| C405     | Galleria Rampa A / Galleria Rampa B / ferrovia                                      | 32.4   | 100 |  |
| C407     | Galleria Rampa C / Galleria Rampa D / ferrovia                                      | 10.5   | 100 |  |
| C407     | Galleria Rampa C / Galleria Rampa D / ferrovia                                      | 23.5   | 100 |  |
| C408     | Galleria Rampa A / Galleria Rampa B / Galleria Rampa C / ferrovia                   | 3.425  | 44  |  |
| C408     | Galleria Rampa A / Galleria Rampa B / Galleria Rampa C / ferrovia                   | 4.825  | 47  |  |
| C408     | Galleria Rampa A / Galleria Rampa B / Galleria Rampa C / ferrovia                   | (      | 100 |  |
| C408     | Galleria Rampa A / Galleria Rampa B / Galleria Rampa C / ferrovia                   | 8.4    | 100 |  |
| C408     | Galleria Rampa A / Galleria Rampa B / Galleria Rampa C / ferrovia                   | 10.425 | 50  |  |
| C408     | Galleria Rampa A / Galleria Rampa B / Galleria Rampa C / ferrovia                   | 14.1   | 100 |  |
| C408     | Galleria Rampa A / Galleria Rampa B / Galleria Rampa C / ferrovia                   | 17.7   | 100 |  |
| C408     | Galieria Rampa A / Galieria Rampa B / Galieria Rampa C / ferrovia                   | 20.65  | 100 |  |
| C411     | Rampa B 0+800-1+325 / Rampa M                                                       | 29.3   | 100 |  |
| Cn450    | Rampa B 0+800-1+325 / Rampa M                                                       | 4.5    | 46  |  |
| Cn450    | Rampa B 0+800-1+325 / Rampa M                                                       | 6      | 14  |  |
| Cn450    | Rampa B 0+800-1+325 / Rampa M                                                       | 7.5    | 63  |  |
| Cn450    | Rampa B 0+800-1+325 / Rampa M                                                       | 9      | 100 |  |
| Cn450    | Rampa B U+80U-1+325 / Rampa M                                                       | 11     | 100 |  |
| 0401     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia    | 2      | 21  |  |
| 0401     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia    | 3.5    | 30  |  |
| C401     | Rampa D U-U+500 / Rampa C U-U+500 / Rampa A U-U+500 / Rampa B U-U+300 / ferrovia    | 5      | 26  |  |
| C401     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia    | 6.5    | 37  |  |
| 0401     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia    | 8.45   | 100 |  |
| 0401     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia    | 11.5   | 100 |  |
| C401     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia    | 14.7   | 100 |  |



#### Tabella 5 Riepilogo risultati prove di permeabilità

| FORO    | Opera                                                                              | z(m) | K(m/s)   |
|---------|------------------------------------------------------------------------------------|------|----------|
| SG12    | Galleria Rampa C / ferrovia                                                        | 48   | 4.28E-08 |
| SG13    | Galleria Rampa D / ferrovia                                                        | 39   | 3.05E-08 |
| C403bis | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 10.5 | 2.82E-04 |
| C403bis | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 20.5 | 4.72E-04 |
| C404    | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 20   | 8.94E-05 |
| C405    | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 40   | 2.00E-07 |
| C407    | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 50   | 1.90E-07 |
| C407    | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 60   | 5.90E-09 |
| C423bis | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 16   | 1.10E-08 |
| C423bis | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 30.5 | 5.60E-09 |
| Cn450   | Rampa B 0+800-1+325 / Rampa M                                                      | 10.5 | 1.10E-04 |
| Cn450   | Rampa B 0+800-1+325 / Rampa M                                                      | 30   | 2.80E-05 |
| C411    | Rampa B 0+800-1+325 / Rampa M                                                      | 27   | 9.70E-08 |
| C401    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia   | 35.2 | 8.80E-05 |
| C401    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia   | 41.1 | 8.70E-09 |
| C401    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia   | 51   | 4.70E-09 |

#### Tabella 6 Riepilogo risultati prove di permeabilità (ammasso roccioso)

| foro | opera                       | z (m) | K(cm/s)  |
|------|-----------------------------|-------|----------|
| C412 | Galleria Rampa D / ferrovia | 64.5  | 6.13E-06 |

#### Tabella 7 Riepilogo risultati prove di laboratorio

| SONDAGGIO | N° PROVINO | z<br>(m) | Opera                                                          | PROVA    | c'<br>[kPa] | φ'<br>[°] | cr<br>[kPa] | φr'<br>[°] |
|-----------|------------|----------|----------------------------------------------------------------|----------|-------------|-----------|-------------|------------|
| S7        | C1         | 12.20    | Galleria Rampa D / ferrovia                                    | TD       | 10          | 31        |             |            |
| S7        | C2         | 22.4     | Galleria Rampa D / ferrovia                                    | TD       | 4           | 36        |             |            |
| S8        | C1         | 6.85     | Galleria Rampa A / Rampa M / ferrovia                          | TD       | 0           | 43        |             |            |
| S8        | C3         | 22.2     | Galleria Rampa A / Rampa M / ferrovia                          | TD       | 0           | 41        |             |            |
| C405      | CI3        | 25.48    | Galleria Rampa B / Galleria Rampa A / ferrovia                 | TD       | 30          | 25        | 0           | 23.5       |
| FCBH1512  | Т          | 28       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | TRIAX_CD | 0           | 41.40     |             |            |



#### Tabella 8 Riepilogo risultati prove di schiacciamento

| FORO        | campione | Prova | Opera                                                          |             | σf<br>(MPa)  | з<br>(%) | E(Mpa)  |
|-------------|----------|-------|----------------------------------------------------------------|-------------|--------------|----------|---------|
| FCBH6       | 5-1      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 56.00       | 2.86         | 1.54     | 185.7   |
| FCBH6       | 5-2      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 56.50       | 2.96         | 2.45     | 120.8   |
| CS103       | 4        | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 14.20       | 9.50         | 3.20     | 296.9   |
| CS103       | 5        | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 16.95       | 16.80        | 1.60     | 1050.0  |
| CS103       | 6-1      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 19.55       | 37.90        | 1.40     | 2707.1  |
| CS103       | 6-2      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 19.55       | 37.30        | 0.90     | 4144.4  |
| CS102       | 1-1      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 15.85       | 29.80        | 1.69     | 1763.3  |
| CS102       | 1-2      |       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 15.85       | 34.60        | 1.85     | 1870.3  |
| CS102       | 2        |       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 17.75       | 38.00        | 0.77     | 4935.1  |
| FCBH1512    | 10       |       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia | 35.3        | 0 12         |          |         |
| FCBH1512    | 10       |       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia | 41<br>59.00 | 2.20         | 1 10     | 200.0   |
| FCBH1512    | 28       |       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 56.00       | 45.00        | 0.30     | 15000.0 |
| FCBH1512    | 30       | I PT  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 59.00       | 9.50         | 0.00     | 1357.1  |
| C420bis     | C2       | IPT   | Galleria Rampa D / Galleria Rampa A / ferrovia                 | 117 70      | 5.30         | 0.70     | 1007.1  |
| OTCI PT1505 | C4       | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 40.50       | 3.90         |          |         |
| C420bis     | C5       | LPT   | Galleria Rampa D / Galleria Rampa A / ferrovia                 | 76.60       | 0.60         |          |         |
| ACBH3505    | C6       | LPT   | Galleria Rampa B / Galleria Rampa A / ferrovia                 | 45.20       | 30.10        |          |         |
| FCCH2509    | C9       | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 92.20       | 0.70         |          |         |
| FCCH2509    | C11      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 51.50       | 1.30         |          |         |
| ACBH3505    | C12      | LPT   | Galleria Rampa B / Galleria Rampa A / ferrovia                 | 65.00       | 5.00         |          |         |
| C412        | C15      | LPT   | Galleria Rampa D / ferrovia                                    | 70.30       | 31.30        |          |         |
| OTCSPT504   | C16      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 29.80       | 5.00         |          |         |
| OTCSPT504   | C17      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 37.60       | 45.90        |          |         |
| OTCSPT504   | C18      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 35.60       | 0.90         |          |         |
| C420bis     | C19      | LPT   | Galleria Rampa D / Galleria Rampa A / ferrovia                 | 38.20       | 1.00         |          |         |
| ACBH3505    | C21      | LPT   | Galleria Rampa B / Galleria Rampa A / ferrovia                 | 17.50       | 3.30         |          |         |
| ACBH3505    | C22      | LPT   | Galleria Rampa B / Galleria Rampa A / ferrovia                 | 43.20       | 2.50         |          |         |
| OTCSPT504   | C24      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 52.80       | 0.70         |          |         |
| FCBH1501    | 1        | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 43.65       | 8.60         |          | 8790.0  |
| FCBH1501    | 2        | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 45.60       | 4.70         |          | 4330.0  |
| FCBH1501    | 3        | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 47.55       | 24.40        |          |         |
| FCBH1501    | /        |       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 52.80       | 0.09         |          |         |
| FCBH1501    | 9        |       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 55.62       | 0.14         |          |         |
| FCBH1501    | 11       |       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 58.80       | 0.10         |          |         |
| OTCLP12503  | 1L<br>21 |       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 7.07        | 0.10         |          |         |
| OTCLP12503  | 2L<br>/I |       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 9.93        | 0.34         |          |         |
| OTCL PT2503 | 61       | IPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 19.17       | 0.50         |          |         |
| OTCL PT2503 | 81       | IPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 25.80       | 0.00         |          |         |
| OTCI PT2503 | 91       | I PT  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 27.48       | 0.20         |          |         |
| OTCLPT2503  | 12L      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 36.20       | 0.18         |          |         |
| OTCLPT2503  | 13L      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 39.69       | 0.69         |          | 50.0    |
| OTCLPT2503  | 15L      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 45.72       | 0.54         |          |         |
| OTCLPT2503  | 16L      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 47.83       | 0.21         |          |         |
| OTCLPT2503  | 17L      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 51.10       | 0.28         |          |         |
| OTCLPT2503  | 18L      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 53.44       | 0.76         |          |         |
| OTCLPT2503  | 19L      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 55.53       | 0.47         |          | 70.0    |
| OTCLPT2503  | 20L      | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 58.05       | 0.35         |          | 90.0    |
| Cn450       | SL02     | LPT   | Rampa B 0+800-1+325 / Rampa M                                  | 31.5        | 0.125        | 1.14     | 10.9649 |
| Cn450       | SL03     | LPT   | Rampa B 0+800-1+325 / Rampa M                                  | 35.6        | 0.179        | 1.987    | 9.0086  |
| C412        | SL02     | LPT   | Galleria Rampa D / ferrovia                                    | 62.70       | 0.11         | 1.37     | 8.3272  |
| C406        | 1_1      | LPT   | Galleria Rampa C / Galleria Rampa D / ferrovia                 | 23.60       | 1.03         | 3.07     | 33.4747 |
| C406        | 1_2      |       | Galleria Rampa C / Galleria Rampa D / ferrovia                 | 23.60       | 1.64         | 3.18     | 51.4133 |
| C406        | 3        |       | Galleria Rampa C / Galleria Rampa D / Terrovia                 | 46.50       | 0.64         | 3.10     | 20.74   |
| ACBH3505    |          |       | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 14.70       | 5.20         |          | 520.00  |
| ACBH3505    | 5L_TXDC1 |       | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 15.90       | 5.40<br>7.20 |          | 520.00  |
| ACBH3505    |          |       | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 16.2        | 8.40         |          | 640.00  |
| ACBH3505    | 6 TXDC1  | IPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 18.8        | 4 70         |          | 500.00  |
| ACBH3505    |          | IPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 19          | 4 00         |          | 520     |
| ACBH3505    | 7L TXDC1 | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 20 20       | 3.80         |          | 490.00  |
| ACBH3505    | 7L TXDC2 | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 20.40       | 5,70         |          | 510.00  |
| ACBH3505    | 8L       | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 22.00       | 2.50         |          | 400.00  |
|             |          |       |                                                                |             |              |          |         |





| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| FORO     | campione  | Prova | Opera                                                          |       | σf<br>(MPa) | ε<br>(%) | E(Mpa)  |
|----------|-----------|-------|----------------------------------------------------------------|-------|-------------|----------|---------|
| ACBH3505 | 9L_TXDC1  | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 23.10 | 3.90        |          | 600.00  |
| ACBH3505 | 9L_TXDC2  | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 23.30 | 4.50        |          | 770.00  |
| ACBH3505 | 9L_TXDC3  | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 23.50 | 6.90        |          | 820.00  |
| ACBH3505 | 11L_TXDC1 | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 30.50 | 5.40        |          | 680.00  |
| ACBH3505 | 11L_TXDC2 | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 30.70 | 4.20        |          | 700.00  |
| ACBH3505 | 13L       | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 35.40 | 3.90        |          | 660.00  |
| ACBH3505 | 16L       | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 44.80 | 7.80        |          | 2250.00 |
| ACBH3505 | 17L       | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 48.5  | 14.50       |          | 3890.00 |
| ACBH3505 | 18L_TXDC  | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 51.3  | 5.50        |          | 1140.00 |
| ACBH3505 | 18L_TXDC2 | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 51.6  | 6.50        |          | 1030.00 |
| ACBH3505 | 18L_TXDC  | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 51.8  | 18.60       |          | 1880.00 |
| ACBH3505 | 20L       | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 57.50 | 3.30        |          | 500.00  |
| ACBH3505 | 21L       | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 62.3  | 6.50        |          | 1180.00 |
| ACBH3505 | 22L       | LPT   | Galleria Rampa A / Galleria Rampa B / ferrovia                 | 64.50 | 7.10        |          | 1870.00 |
| FCCH2509 | 5L        | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 34.40 | 0.91        |          |         |
| FCCH2509 | 6L        | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 35.60 | 0.50        |          | 110.00  |
| FCCH2509 | 8L        | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 40.50 | 0.60        |          |         |
| FCCH2509 | 11L       | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 50.30 | 0.92        |          |         |
| FCCH2509 | 13L       | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 58.00 | 1.00        |          |         |
| FCCH2509 | 15L       | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 64.70 | 0.80        |          | 150.00  |
| FCCH2509 | 16L       | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 71.10 | 0.61        |          |         |
| FCCH2509 | 17L       | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 73.40 | 1.40        |          |         |
| FCCH2509 | 18L       | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 74.50 | 1.10        |          | 150.00  |
| FCCH2509 | 19L       | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 75.80 | 1.40        |          | 310.00  |
| FCCH2509 | 21L       | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 84.00 | 0.88        |          |         |
| FCCH2509 | 23L       | LPT   | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 92.80 | 0.57        |          | 110.00  |
| C421ter  | C20       | LPT   | Galleria Rampa A / ferrovia                                    | 44.60 | 0.70        |          |         |
| C421ter  | C7        | LPT   | Galleria Rampa A / ferrovia                                    | 81.70 | 2.60        |          |         |



Tabella 9 Riepilogo risultati prove pressiometriche

|         | _                                                                                  |       |         |         |      |
|---------|------------------------------------------------------------------------------------|-------|---------|---------|------|
| FORO    | Opera                                                                              | z (m) | Ep(MPa) | E'(MPa) | ф'   |
| SG13    | Galleria Rampa D / ferrovia                                                        | 34.6  | 38.6    | 154.5   | 42.3 |
| SG13    | Galleria Rampa D / ferrovia                                                        | 49.6  | 70.2    | 280.8   | 42.5 |
| SG14    | Galleria Rampa A / ferrovia                                                        | 25.5  | 79.5    | 317.9   | 42.4 |
| SG14    | Galleria Rampa A / ferrovia                                                        | 34    | 54.5    | 218.1   | 42.9 |
| SG15    | Rampa D 1+350 -1+800 / Rampa M                                                     | 21.45 | 51.4    | 205.6   | 42.4 |
| SG15    | Rampa D 1+350 -1+800 / Rampa M                                                     | 27.8  | 45.9    | 183.8   | 42.4 |
| S7      | Galleria Rampa D / ferrovia                                                        | 17.5  | 31.0    | 123.9   | 42.5 |
| S7      | Galleria Rampa D / ferrovia                                                        | 28.3  | 43.3    | 173.2   | 41.4 |
| S8      | Rampa D 1+350 -1+800 / Rampa M / ferrovia                                          | 16.2  | 56.1    | 224.6   | 42.6 |
| S8      | Rampa D 1+350 -1+800 / Rampa M / ferrovia                                          | 26.2  | 65.1    | 260.4   | 43.6 |
| SN7     | Ramo C_dec                                                                         | 21.5  | 40.0    | 160.0   | 43.7 |
| SG13bis | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 20.5  | 105.7   | 422.7   | 49.3 |
| C403bis | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 14.7  | 32.0    | 128.0   | 38.0 |
| C403bis | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 25.4  | 19.0    | 76.0    | 39.0 |
| C404    | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 17.5  | 55.0    | 220.0   | 42.0 |
| C405    | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 35    | 66.7    | 266.9   | 42.0 |
| C410    | Galleria Rampa A / Galleria Rampa B                                                | 22    | 90.0    | 360.0   | 42   |
| C410    | Galleria Rampa A / Galleria Rampa B                                                | 34    | 73.0    | 292.0   | 40   |
| C411    | Rampa B 0+800-1+325 / Rampa M                                                      | 31    | 47.4    | 189.6   | 40   |
| C412    | Galleria Rampa D / ferrovia                                                        | 41.8  | 54.5    | 218.0   | 41   |
| C412    | Galleria Rampa D / ferrovia                                                        | 51.6  | 51.6    | 206.4   |      |
| C423    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 15.6  | 41.0    | 164.0   | 40   |
| C423bis | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 24.7  | 93.1    | 372.6   | 42   |
| C423bis | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 35.4  | 18.5    | 74.1    | 39   |
| Cn450   | Rampa B 0+800-1+325 / Rampa M                                                      | 22.4  | 47.1    | 188.4   | 41   |
| C413    | Rampa D 1+350 -1+800 / Rampa M                                                     | 36.8  | 53.0    | 160.6   | 40   |



#### Tabella 10 Riepilogo risultati prove dilatometriche

| FORO       | Opera                                                                              | z (m) | E'(MPa) | ф' |
|------------|------------------------------------------------------------------------------------|-------|---------|----|
| C404       | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 28    | 123.0   |    |
| C405       | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 26    | 105.0   |    |
| C406       | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 47.5  | 134.0   | 38 |
| C407       | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 34.5  | 221.7   |    |
| C407       | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 44    | 37.0    |    |
| C407       | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 55.7  | 191.0   | 39 |
| C408       | Galleria Rampa A / Galleria Rampa B / Galleria Rampa C / ferrovia                  | 34.7  | 125.6   | 39 |
| C408       | Galleria Rampa A / Galleria Rampa B / Galleria Rampa C / ferrovia                  | 44    | 130.0   |    |
| C408       | Galleria Rampa A / Galleria Rampa B / Galleria Rampa C / ferrovia                  | 53.9  | 128.3   | 37 |
| C420bis    | Galleria Rampa A / Galleria Rampa D / ferrovia                                     | 64.5  | 411.0   |    |
| C420bis    | Galleria Rampa A / Galleria Rampa D / ferrovia                                     | 74.5  | 413.3   |    |
| C420bis    | Galleria Rampa A / Galleria Rampa D / ferrovia                                     | 84.5  | 74.3    |    |
| C421quater | ferrovia                                                                           | 74.5  | 1051.0  |    |
| C421ter    | Galleria Rampa A / ferrovia                                                        | 74.5  | 225.3   |    |
| C421ter    | Galleria Rampa A / ferrovia                                                        | 83.5  | 194.3   |    |
| C423       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 29.5  | 174.6   |    |
| Cn450      | Rampa B 0+800-1+325 / Rampa M                                                      | 36.5  | 287.0   | 40 |
| OTCSPT504  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 19    | 91.0    | 37 |
| OTCSPT504  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 20.5  | 65.0    | 37 |
| OTCSPT504  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 22    | 165.0   | 40 |
| OTCSPT504  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 24.5  | 125.6   | 39 |
| OTCSPT504  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 27.5  | 233.0   | 40 |
| OTCSPT504  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 30    | 224.6   | 40 |
| OTCSPT504  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 34    | 42.6    | 34 |
| C412       | Galleria Rampa D / ferrovia                                                        | 64.9  | 395.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 24.8  | 164.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 27.5  | 168.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 30.5  | 461.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 33.5  | 155.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 36.5  | 154.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 39.5  | 121.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 43.5  | 234.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 46.5  | 243.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 48.5  | 171.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 51    | 164.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 52.5  | 136.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 55.5  | 746.0   |    |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 58.5  | 145.0   |    |
| C413       | Rampa D 1+350 -1+800 / Rampa M                                                     | 20.6  | 1200.0  |    |
| C423bis    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 29.5  | 175.0   |    |



Tabella 11 Riepilogo risultati prove sismiche in foro





### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

| горо   | -()  | Vs     | E'0      |
|--------|------|--------|----------|
| FURU   | Z(M) | [m/s]  | [MPa]    |
| CS101  | 6    | 388.6  | 739.02   |
| CS101  | 8    | 375.5  | 689.99   |
| CS101  | 10   | 372.9  | 680.32   |
| CS101  | 12   | 428.1  | 896.58   |
| CS101  | 14   | 403.4  | 796.39   |
| CS103  | 6    | 371.4  | 675.09   |
| CS103  | 8    | 433.2  | 918.10   |
| CS103  | 10   | 440.6  | 949.96   |
| CS103  | 12   | 881.6  | 3803.05  |
| CS103  | 14   | 715.8  | 2506.94  |
| CS103  | 16   | 591.1  | 1709.52  |
| CS103  | 18   | 530.5  | 1376.80  |
| CS103  | 20   | 1112.1 | 6051.57  |
| CS103  | 22   | 903.1  | 3990.82  |
| CS103  | 24   | 920.9  | 4149.69  |
| CS103  | 28   | 860.8  | 3625.27  |
| CS103  | 30   | 649.5  | 2064.11  |
| S7DG42 | 10.5 | 950.0  | 4415.90  |
| S7DG42 | 11.5 | 932.0  | 4250.15  |
| S7DG42 | 12.5 | 1320.0 | 8525.50  |
| S7DG42 | 13.5 | 844.0  | 3485.44  |
| S7DG42 | 14.5 | 865.0  | 3661.04  |
| S7DG42 | 15.5 | 959.0  | 4499.97  |
| S7DG42 | 16.5 | 876.0  | 3754.74  |
| S7DG42 | 17.5 | 841.0  | 3460.70  |
| S7DG42 | 18.5 | 1694.0 | 14041.03 |
| S7DG42 | 19.5 | 1203.0 | 7081.14  |
| S7DG42 | 20.5 | 1290.0 | 8142.39  |
| S7DG42 | 21.5 | 1116.0 | 6093.97  |
| S7DG42 | 22.5 | 1130.0 | 6247.83  |
| S7DG42 | 23.5 | 643.0  | 2022.99  |
| S7DG42 | 24.5 | 653.0  | 2086.40  |
| S7DG42 | 25.5 | 909.0  | 4042.97  |
| S7DG42 | 26.5 | 1200.0 | 7045.87  |
| S7DG42 | 27.5 | 763.0  | 2848.53  |
| S7DG42 | 28.5 | 1129.0 | 6236.78  |
| S7DG42 | 29.5 | 761.0  | 2833.62  |
| S7DG42 | 30.5 | 1090.0 | 5813.33  |
| S7DG42 | 31.5 | 976.0  | 4660.92  |
| S7DG42 | 32.5 | 1044.0 | 5333.02  |
| S7DG42 | 33.5 | 1358.0 | 9023.43  |
| S7DG42 | 34.5 | 586.0  | 1680.23  |
| S7DG42 | 35.5 | 1098.0 | 5898.98  |
| S7DG42 | 36.5 | 967.0  | 4575.36  |
| S7DG42 | 37.5 | 1365.0 | 9116.70  |
| S7DG42 | 38.5 | 745.0  | 2715.72  |
| S7DG42 | 39.5 | 532.0  | 1384.83  |
| S7DG42 | 40.5 | 475.0  | 1103.98  |
| S7DG42 | 41.5 | 681.0  | 2269.17  |
| S7DG42 | 42.5 | 858.0  | 3602.03  |





### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

| FORO     | 5000 -(m) |                  | E'o     |  |
|----------|-----------|------------------|---------|--|
| FURU     | 2(11)     | [m/s]            | [MPa]   |  |
| S7DG42   | 43.5      | 612              | 1832.6  |  |
| S7DG42   | 44.5      | 596              | 1738.1  |  |
| S7DG42   | 45.5      | 780              | 2976.9  |  |
| SG14     | 23        | 1913             | 17906.1 |  |
| SG14     | 24        | 759              | 2818 7  |  |
| SG14     | 25        | 1220             | 7282 7  |  |
| SG14     | 26        | 660              | 2131.4  |  |
| SG15     | 19        | 814              | 3242.1  |  |
| SG15     | 20        | 816              | 3258.0  |  |
| SG13bie  | 14        | 571.62           | 1508.8  |  |
| SG13bis  | 16        | 1063.21          | 5531.1  |  |
| SG13bis  | 10        | 615.6            | 1854.3  |  |
| SG13bis  | 10        | 1146.53          | 6432.0  |  |
| SG13bis  | 20        | 1140.00          | 6521.4  |  |
| SG ISDIS | 22        | 620.02           | 1006.4  |  |
| SG ISDIS | 24        | 620.92           | 1000.4  |  |
| SG ISDIS | 20        | 002.73<br>505.07 | 2149.0  |  |
| SG13DIS  | 28        | 585.87           | 1679.5  |  |
| SG13DIS  | 30        | 553.83           | 1500.8  |  |
| SG13bis  | 32        | 399.4            | 780.5   |  |
| SG13bis  | 34        | 243.8            | 290.8   |  |
| SG13bis  | 36        | 664.5            | 2160.5  |  |
| SG13bis  | 38        | 499.15           | 1219.1  |  |
| SG13bis  | 40        | 587.05           | 1686.3  |  |
| SG13bis  | 42        | 322.43           | 508.7   |  |
| SG13bis  | 44        | 767.29           | 2880.7  |  |
| SG13bis  | 46        | 243.89           | 291.0   |  |
| SG13bis  | 48        | 554.82           | 1506.2  |  |
| SG13bis  | 50        | 906.83           | 4023.7  |  |
| SG13bis  | 52        | 624.18           | 1906.3  |  |
| SG13bis  | 54        | 997.6            | 4869.5  |  |
| SG13bis  | 56        | 1117.3           | 6108.2  |  |
| SG13bis  | 58        | 525.94           | 1353.5  |  |
| S8       | 7         | 650              | 2067.3  |  |
| S8       | 9         | 372              | 677.1   |  |
| S8       | 11        | 635              | 1973.0  |  |
| S8       | 17        | 681              | 2269.2  |  |
| S8       | 19        | 522              | 1333.3  |  |
| S8       | 21        | 583              | 1663.1  |  |
| S8       | 23        | 1038             | 5271.9  |  |
| S8       | 25        | 685              | 2295.9  |  |
| S8       | 27        | 622              | 1893.0  |  |
| FCCH1508 | 28        | 479              | 1122.6  |  |
| FCCH1508 | 29        | 386              | 729.0   |  |
| FCCH1508 | 30        | 475              | 1104.0  |  |
| FCCH1508 | 31        | 507              | 1257.7  |  |
| FCCH1508 | 32        | 494              | 1194.1  |  |
| FCCH1508 | 33        | 581              | 1651.7  |  |
| FCCH1508 | 34        | 560              | 1534.4  |  |
| FCCH1508 | 35        | 426              | 888.0   |  |
| FCCH1508 | 36        | 401              | 786.8   |  |
| FCCH1508 | 37        | 451              | 995.2   |  |
| FCCH1508 | 38        | 479              | 1122.6  |  |
| FCCH1508 | 39        | 419              | 859.0   |  |
| FCCH1508 | 40        | 368              | 662.6   |  |
|          |           |                  |         |  |





#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

| EOPO     | <b>7(m)</b> | Vs    | E'o     |
|----------|-------------|-------|---------|
| TORO     | 2(11)       | [m/s] | [MPa]   |
| FCCH1508 | 41          | 383   | 717.74  |
| FCCH1508 | 42          | 353   | 609.71  |
| FCCH1508 | 43          | 390   | 744.22  |
| FCCH1508 | 44          | 365   | 651.87  |
| FCCH1508 | 45          | 392   | 751.87  |
| FCCH1508 | 46          | 494   | 1194.06 |
| FCCH1508 | 47          | 409   | 818.50  |
| FCCH1508 | 48          | 464   | 1053.44 |
| FCCH1508 | 49          | 483   | 1141.48 |
| FCCH1508 | 50          | 469   | 1076.26 |
| FCCH1508 | 51          | 511   | 1277.66 |
| FCCH1508 | 52          | 568   | 1578.59 |
| FCCH1508 | 53          | 582   | 1657.37 |
| FCCH1508 | 54          | 598   | 1749 74 |
| FCCH1508 | 55          | 459   | 1030.86 |
| FCCH1508 | 56          | 459   | 1030.86 |
| FCCH1508 | 57          | 498   | 1213 48 |
| FCCH1508 | 58          | 606   | 1796 87 |
| FCCH1508 | 59          | 641   | 2010 43 |
| FCCH1508 | 60          | 582   | 1657.37 |
| FCCH1508 | 61          | 624   | 1905 20 |
| FCCH1508 | 62          | 607   | 1802.81 |
| FCCH1508 | 63          | 667   | 2176.83 |
| FCCH1508 | 64          | 656   | 2105.62 |
| FCCH1508 | 65          | 603   | 1779 13 |
| FCCH1508 | 66          | 582   | 1657.37 |
| FCCH1508 | 67          | 577   | 1629.01 |
| FCCH1508 | 68          | 554   | 1501.73 |
| FCCH1508 | 69          | 514   | 1292.70 |
| FCCH1508 | 70          | 605   | 1790.95 |
| FCCH1508 | 71          | 550   | 1480.12 |
| FCCH1508 | 72          | 538   | 1416.24 |
| FCCH1508 | 73          | 537   | 1410.98 |
| FCCH1508 | 74          | 572   | 1600.90 |
| FCCH1508 | 75          | 565   | 1561.96 |
| FCCH1508 | 76          | 634   | 1966.76 |
| FCCH1508 | 77          | 664   | 2157.29 |
| FCCH1508 | 78          | 671   | 2203.01 |
| FCCH1508 | 79          | 652   | 2080.02 |
| FCCH1508 | 80          | 729   | 2600.32 |
| FCCH1508 | 81          | 690   | 2329.54 |
| FCCH1508 | 82          | 692   | 2343.07 |
| FCCH1508 | 83          | 632   | 1954.37 |
| FCCH1508 | 84          | 663   | 2150.80 |
| FCCH1508 | 85          | 739   | 2672.15 |
| FCCH1508 | 86          | 758   | 2811.32 |
| FCCH1508 | 87          | 679   | 2255.86 |
| FCCH1508 | 88          | 589   | 1697.47 |
| FCCH1508 | 89          | 547   | 1464.02 |
| FCCH1508 | 90          | 437   | 934.40  |
| FCCH1508 | 91          | 461   | 1039.86 |
| FCCH1508 | 92          | 557   | 1518.04 |
| FCCH1508 | 93          | 605   | 1790.95 |
| FCCH1508 | 94          | 643   | 2022.99 |





#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

| FORO      | -()               | Vs    | E'o      |  |
|-----------|-------------------|-------|----------|--|
| FURU      | 2(m)              | [m/s] | [MPa]    |  |
| FCCH1508  | 21                | 619   | 1874.79  |  |
| FCCH1508  | 22                | 709   | 2459.60  |  |
| FCCH1508  | 97                | 758   | 2811.32  |  |
| FCCH1508  | 98                | 648   | 2054.58  |  |
| FCCH1508  | 99                | 789   | 3045.97  |  |
| FCCH1508  | 100               | 784   | 3007.49  |  |
| OTCCH1501 | 19                | 583   | 1663.07  |  |
| OTCCH1501 | 20                | 564   | 1556.43  |  |
| OTCCH1501 | 21                | 578   | 1634.66  |  |
| OTCCH1501 | 22                | 558   | 1523.49  |  |
| OTCCH1501 | 23                | 464   | 1053.44  |  |
| OTCCH1501 | 24                | 568   | 1578.59  |  |
| OTCCH1501 | 25                | 593   | 1720.61  |  |
| OTCCH1501 | 26                | 586   | 1680.23  |  |
| OTCCH1501 | 27                | 705   | 2431.93  |  |
| OTCCH1501 | 28                | 898   | 3945.71  |  |
| OTCCH1501 | 29                | 876   | 3754.74  |  |
| OTCCH1501 | 30                | 732   | 2621.77  |  |
| OTCCH1501 | 31                | 862   | 3635.69  |  |
| OTCCH1501 | 32                | 949   | 4406.61  |  |
| OTCCH1501 | 33                | 783   | 2999 82  |  |
| OTCCH1501 | 34                | 852   | 3551.82  |  |
| OTCCH1501 | 35                | 628   | 1929 71  |  |
| OTCCH1501 | 36                | 604   | 1785.03  |  |
| OTCCH1501 | 37                | 606   | 1796.87  |  |
| OTCCH1501 | 38                | 629   | 1935.86  |  |
| OTCCH1501 | 39                | 566   | 1567.49  |  |
| OTCCH1501 | 40                | 705   | 2431.93  |  |
| OTCCH1501 | 40                | 652   | 2080.02  |  |
| OTCCH1501 | 42                | 603   | 1779.13  |  |
| OTCCH1501 | 42                | 524   | 13/13/10 |  |
| OTCCH1501 | 40                | 607   | 1802.81  |  |
| OTCCH1501 | 44                | 551   | 1/185 51 |  |
| OTCCH1501 | 46                | 579   | 1640 32  |  |
| OTCCH1501 | 40                | 587   | 1685.96  |  |
| OTCCH1501 | 48                | 679   | 2255.86  |  |
| OTCCH1501 | 40                | 643   | 2200.00  |  |
| OTCCH1501 | <del></del><br>50 | 502   | 1740 74  |  |
| OTCCH1501 | 51                | 704   | 2425.03  |  |
| OTCCH1501 | 52                | 653   | 2086.40  |  |
| OTCCH1501 | 53                | 645   | 2035.60  |  |
| ОТССН1501 | 55                | 661   | 2000.00  |  |
| OTCCH1501 | 55                | 655   | 2107.04  |  |
|           | 55                | 660   | 2033.20  |  |
|           | 50                | 652   | 2131.30  |  |
|           | 57                | 714   | 2/00.40  |  |
|           | 50                | 720   | 2434.41  |  |
|           | 60                | 770   | 2012.10  |  |
|           | 61                | 757   | 2901.04  |  |
|           | 62                | 101   | 2003.91  |  |
|           | 62                | 700   | 2100.99  |  |
| OTCCH1501 | 03                | 750   | 2000.32  |  |
|           | 04                | 103   | 2//4.30  |  |
| 0100H1501 | <u>co</u>         | //8   | 2901.03  |  |
| 01CCH1501 | 66                | 935   | 4277.55  |  |





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |
|------------------|
| CB0057_F0        |

| FORO      | 7(m)  | Vs      | E'o     |  |
|-----------|-------|---------|---------|--|
| FURU      | 2(11) | [m/s]   | [MPa]   |  |
| OTCCH1501 | 67    | 949     | 4406.61 |  |
| OTCCH1501 | 68    | 1117    | 6104.90 |  |
| OTCCH1501 | 69    | 919     | 4132.41 |  |
| OTCCH1501 | 70    | 942     | 4341.84 |  |
| OTCCH1501 | 71    | 1002    | 4912.56 |  |
| OTCCH1501 | 72    | 1000    | 4892.97 |  |
| OTCCH1501 | 73    | 812     | 3226.15 |  |
| OTCCH1501 | 74    | 898     | 3945.71 |  |
| OTCCH1501 | 75    | 919     | 4132.41 |  |
| OTCCH1501 | 76    | 789     | 3045.97 |  |
| OTCCH1501 | 77    | 877     | 3763.32 |  |
| OTCCH1501 | 78    | 945     | 4369.54 |  |
| OTCCH1501 | 79    | 988     | 4776.24 |  |
| OTCCH1501 | 80    | 1165    | 6640.86 |  |
| OTCCH1501 | 81    | 1069    | 5591.49 |  |
| OTCCH1501 | 82    | 1111    | 6039.49 |  |
| OTCCH1501 | 83    | 1116    | 6093.97 |  |
| OTCCH1501 | 84    | 967     | 4575.36 |  |
| OTCCH1501 | 85    | 953     | 4443.84 |  |
| OTCCH1501 | 86    | 1015    | 5040.86 |  |
| OTCCH1501 | 87    | 967     | 4575.36 |  |
| OTCCH1501 | 88    | 1058    | 5477.01 |  |
| OTCCH1501 | 89    | 1030    | 5190.95 |  |
| OTCCH1501 | 90    | 912     | 4069 70 |  |
| OTCCH1501 | 91    | 905     | 4007.46 |  |
| OTCCH1501 | 92    | 966     | 4565.90 |  |
| OTCCH1501 | 93    | 1037    | 5261.74 |  |
| OTCCH1501 | 94    | 1000    | 4892.97 |  |
| OTCCH1501 | 95    | 920     | 4141.41 |  |
| OTCCH1501 | 96    | 975     | 4651.38 |  |
| OTCCH1501 | 97    | 1070    | 5601.96 |  |
| OTCCH1501 | 98    | 1039    | 5282.06 |  |
| OTCCH1501 | 99    | 1254    | 7694.27 |  |
| OTCCH1501 | 100   | 1253    | 7682.00 |  |
| C423bis   | 4     | 443.59  | 962.80  |  |
| C423bis   | 5     | 576.13  | 1624 10 |  |
| C423bis   | 6     | 610.87  | 1825.87 |  |
| C423bis   | 7     | 451.36  | 996.82  |  |
| C423bis   | 8     | 603.86  | 1784.21 |  |
| C423bis   | 9     | 646.89  | 2047 54 |  |
| C423bis   | 10    | 540.29  | 1428.32 |  |
| C423bis   | 11    | 785.7   | 3020.55 |  |
| C423bis   | 12    | 664 91  | 2163 21 |  |
| C423bis   | 12    | 789.62  | 3050.76 |  |
| C423bis   | 10    | 070.02  | 4608.02 |  |
| C423his   | 15    | 923 54  | 4173 34 |  |
| C.423his  | 16    | 1137.62 | 6332 38 |  |
| C423bis   | 17    | 940 42  | 4410 51 |  |
| C423bis   | 12    | 1007.05 | 5808 11 |  |
| C423bis   | 10    | 1335.40 | 8726 77 |  |
| C423bis   | 20    | 1225.62 | 73/0 0/ |  |
| C423bio   | 20    | 640.91  | 2000 24 |  |
| C423015   | 20    | 762.00  | 2009.24 |  |
| C423DIS   | 22    | 272.00  | 2049.13 |  |
| 0423015   |       | 213.93  | 307.10  |  |





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |
|------------------|
| CB0057_F0        |

| FORO    | 7(m)       | Vs      | E'o     |  |
|---------|------------|---------|---------|--|
| FURU    | 2(11)      | [m/s]   | [MPa]   |  |
| C423bis | 24         | 511.01  | 1277.71 |  |
| C423bis | 25         | 585.77  | 1678.91 |  |
| C423bis | 26         | 585.97  | 1680.05 |  |
| C423bis | 27         | 1165.02 | 6641.08 |  |
| C423bis | 28         | 1238.1  | 7500.39 |  |
| C423bis | 29         | 664.31  | 2159.30 |  |
| C423bis | C423bis 30 |         | 2871.50 |  |
| C423bis | 31         | 738.1   | 2665.65 |  |
| C423bis | 32         | 664.81  | 2162.56 |  |
| C423bis | 33         | 866.14  | 3670.70 |  |
| C423bis | 34         | 1183.79 | 6856.80 |  |
| C423bis | 35         | 1037.14 | 5263.17 |  |
| C423bis | 36         | 948.99  | 4406.52 |  |
| C423bis | 37         | 797.95  | 3115.47 |  |
| C423bis | 38         | 949.42  | 4410.51 |  |
| C403bis | 4          | 224.57  | 246.76  |  |
| C403bis | 5          | 173.55  | 147.37  |  |
| C403bis | 6          | 306.51  | 459.69  |  |
| C403bis | 7          | 401.86  | 790.17  |  |
| C403bis | 8          | 488.41  | 1167.19 |  |
| C403bis | 9          | 467.85  | 1070.99 |  |
| C403bis | 10         | 414.31  | 839.89  |  |
| C403bis | 11         | 400.62  | 785.30  |  |
| C403bis | 12         | 358.1   | 627.45  |  |
| C403bis | 13         | 279.32  | 381.75  |  |
| C403bis | 14         | 492.97  | 1189.09 |  |
| C403bis | 15         | 531.93  | 1384.46 |  |
| C403bis | 16         | 528.59  | 1367.13 |  |
| C403bis | 17         | 419.79  | 862.26  |  |
| C403bis | 18         | 631.8   | 1953.13 |  |
| C403bis | 19         | 1073.12 | 5634.67 |  |
| C403bis | 20         | 1179.4  | 6806.04 |  |
| C403bis | 21         | 831.53  | 3383.20 |  |
| C403bis | 22         | 892.71  | 3899.36 |  |
| C403bis | 23         | 618.84  | 1873.82 |  |
| C403bis | 24         | 660.24  | 2132.93 |  |
| C403bis | 25         | 620.05  | 1881.16 |  |
| C403bis | 26         | 473.92  | 1098.96 |  |





#### **RELAZIONE GEOTECNICA GENERALE**

Codice documento

CB0057 F0

Rev Data 20/06/2011

F0



ACQUA Q < 1L/see q > 1L/secX ASSENTI PIEDRITTO SX PIEORITTO DX DISTACCHI CALDITA Y < 0.6mc 0.6mc < V < 1.0mc V > 1.0mc ASSENTI RETE ELETTROSALDATA X **DSSERVAZION** CENTINE х SPRITZ-BETON (cm) x SPAITZ-BETON (con aghi) SPRITZ AL FRONTE (cm) CHIODI SX CHIODI DX IDAMENT CHIODI CALDITA YTR FRONTE (N") ¥ CONSOL VTR CONTORNO (N\*) PRETABLID (ap. cm) J.G. CONTORNO J.G. FRONTE x INFILAGGI DRENAGGI (N') X



Rocce del basamento cristallino (plutoniti alterate) di colore marrone-rossastro

Rocce a matrice sabbiosa di colore grigo beige, con presenza di inclusi crisatllini decimetrici da arrotondati a subarrotondati e con intercalazioni di livelli decimetrici di sabbia fine moderatamente cementata.



Materiale di smarino

Nei settori medio alti il fronte di scavo risulta rappresentato da terreni a matrice sabbiosa di colore grigio beige da moderatamente cementati a cementati con presenza di inclusi cristallini di dimensioni decimetriche a consistenza litoide e livelli sabbiosi a granulometria fine cementati di spessore decimetrico.

La restante porzione di ammasso risulta rappresentato da rocce del basamento cristallino quali graniti e granodioriti (Plutoniti alterate) di colore marrone rossastro moderatamente alterati con sporadica presenza, tra le discontinuità per fratturazione, di materiale di riempimento molle a granulometria limo argillosa

Nel complesso l'ammasso si presenta competente allo scavo offrendo una buona resistenza all'azione dinamica del martellone.

Il fronte di scavo si presenta umido mentre la resistenza a compressione uniassiale dell'ammasso viene stimata generalemnte superiore ai 25 Mpa.





RELAZIONE GEOTECNICA GENERALE

Codice documento

CB0057\_F0

Rev Data 20/06/2011

F0

| LLERIA :                                                                                                                                                                                                                     | PIALE-                                                                                                                                                                            | CARR NORD                                                                                                                                                                                                                          |                                                                                                                                                       | RILIEV                                                                                                                                     | O SPEDITIVO                                                                                                                                                           | <u>)()</u>                                                                                            | Data                                  | :                       | 19.05.05                                | <u>)</u>                                                             | Progr.:                                                     | 430+625.0   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|-----------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-------------|
| BOULU.                                                                                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                       | RILIEV                                                                                                                                     | O ANALITIO                                                                                                                                                            | <u>0 (X)</u>                                                                                          | Reda                                  | attore:                 |                                         |                                                                      | verificato:                                                 |             |
|                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                       | <u>SEZ, AF</u>                                                                                                                             | PLICATA: B                                                                                                                                                            | 2                                                                                                     | - 1                                   |                         |                                         |                                                                      |                                                             |             |
| 1. FORM                                                                                                                                                                                                                      | AZIONE:                                                                                                                                                                           | Rocce di ba                                                                                                                                                                                                                        | asament                                                                                                                                               | o cristall                                                                                                                                 | lino                                                                                                                                                                  |                                                                                                       |                                       | 13. TI                  | PO DI SCA<br>1                          | IVO: scavo a<br>nartellone.                                          | a piena sezio                                               | one tramite |
| <ol> <li>LITOLI<br/>Nei settori<br/>sabbiosa di<br/>di inclusi ci<br/>a granulom<br/>La restante<br/>cristallino o<br/>moderatam<br/>di materiale<br/>Nel comple<br/>resistenza a<br/>Il fronte di<br/>dell'ammas</li> </ol> | DGLA:<br>medio alti :<br>colore griș<br>ristallini di<br>etria fine c<br>porzione d<br>juali granit<br>ente alterat<br>e di riempin<br>esso l'ammu<br>all'azione d<br>scavo si pr | il fronte di scav<br>gio beige da mo<br>dimensioni dei<br>ementati di spe<br>li ammasso risu<br>i e granodioriti<br>ti con sporadico<br>mento molle a j<br>asso si presenta<br>inamica del ma<br>esenta tumido p<br>imata generalm | to risulta i<br>oderatame<br>cimetriche<br>ssore deci<br>lta rappre<br>(Plutonit<br>i presenza<br>granulomy<br>competes<br>rtellone,<br>mentre la ri- | appresent<br>nte cemen<br>e a consist<br>imetrico.<br>sentato da<br>i alterate)<br>, tra le dis<br>etria limo<br>nte allo sc<br>resistenza | ato da terreni :<br>itati a cementa<br>enza litoide e l<br>rocce del bas<br>di colore marr<br>continuità per<br>argillosa<br>avo offrendo u<br>a compression<br>i Mna | a matrice<br>ti con pre<br>livelli sab<br>amento<br>one rossa<br>fratturazi<br>ma buona<br>e uniassi: | senza<br>biosi<br>stro<br>one,<br>ile | 14. SC                  | OSTEGNO:                                | 2 IPN 180 p                                                          | asso 1,00 n                                                 | 1           |
| 3. RAPPC                                                                                                                                                                                                                     | RTOLIT                                                                                                                                                                            | OLOGIA 1 /                                                                                                                                                                                                                         | FRONT                                                                                                                                                 | E DI SCA                                                                                                                                   | AVO: 100 %                                                                                                                                                            |                                                                                                       |                                       | 15. CO<br>VTR a         | ONSOLIDA<br>al fronte                   | MENTO: In                                                            | ufilaggi in c                                               | orona e     |
| 4. COPER                                                                                                                                                                                                                     | TURA:                                                                                                                                                                             | са. 22.0                                                                                                                                                                                                                           | 0 mt                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                                       |                                                                                                       |                                       | 16. SE                  | ZIONE TI                                | PO CORREI                                                            | NTE: B2                                                     |             |
| 5. PARIE<br>(distanz                                                                                                                                                                                                         | FALITÀ<br>a dal vers                                                                                                                                                              | ante):                                                                                                                                                                                                                             |                                                                                                                                                       |                                                                                                                                            | -                                                                                                                                                                     |                                                                                                       |                                       | 17. CO                  | ONVERGE                                 | NZE DIAMI                                                            | ETRALI:                                                     |             |
| 6. RESIST<br>ROCCI                                                                                                                                                                                                           | ENZA A<br>A INTAT                                                                                                                                                                 | LLA COMPF<br>TA:                                                                                                                                                                                                                   | RESSION                                                                                                                                               | 1E UNIA                                                                                                                                    | SSIALE DE                                                                                                                                                             | LLA                                                                                                   |                                       | 18. CI<br>(E            | ASSIFICA                                | ZIONE DEI<br>iawski 1989                                             | LL'AMMA<br>)                                                | SSO:        |
| I a recister                                                                                                                                                                                                                 | 178.8 COM                                                                                                                                                                         | mressione uni                                                                                                                                                                                                                      | assiale d                                                                                                                                             | ella rocci                                                                                                                                 | a viene stima                                                                                                                                                         | its                                                                                                   |                                       | 1-RESI<br>CON<br>ROC    | STENZA ALI<br>APRESSIONE<br>XCIA INTATT | LA<br>DELLA<br>A                                                     | R1 =                                                        |             |
| generalme                                                                                                                                                                                                                    | nte super                                                                                                                                                                         | iore ai 25Mpa                                                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                                                            | a vicine stille                                                                                                                                                       |                                                                                                       |                                       | 2-R.Q.D. (stimato) R2 = |                                         |                                                                      |                                                             |             |
|                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                       |                                                                                                       |                                       | 3-SPA2                  | ZIATURA                                 |                                                                      | R3 =                                                        |             |
|                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                       |                                                                                                       |                                       | 4-CON                   | DIZIONE DE                              | I GIUNTI                                                             | R4=                                                         |             |
|                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                       |                                                                                                       |                                       | 5-CON                   | DIZIONI IDR                             | ICHE                                                                 | R5=                                                         |             |
|                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                       |                                                                                                       |                                       | 6-ORIE                  | NTAZIONE                                | GALLERIA                                                             |                                                             |             |
|                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                       | ŀ                                                                                                     |                                       |                         | (rispetto alla giacitura degli strati)  |                                                                      | R6 =                                                        |             |
|                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                       |                                                                                                       |                                       | (Basic                  | rock mass                               | rating)                                                              | BRMR                                                        |             |
|                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                       |                                                                                                       |                                       | (Rock                   | mass rating                             | g) stimato                                                           | RMR                                                         | 28-32       |
| 7. ALTER                                                                                                                                                                                                                     | AZIONE                                                                                                                                                                            | :                                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                       |                                                                                                       |                                       | CLAS                    | SE (Geolog                              | gical Strengtl                                                       | h Index GSI                                                 | ):          |
| L'ammass                                                                                                                                                                                                                     | 0 1000105                                                                                                                                                                         | o si presenta i                                                                                                                                                                                                                    | noderata                                                                                                                                              | mente an                                                                                                                                   | erato.                                                                                                                                                                |                                                                                                       |                                       |                         |                                         |                                                                      |                                                             |             |
|                                                                                                                                                                                                                              | ZIONI II                                                                                                                                                                          | DRICHE DEL                                                                                                                                                                                                                         | FRONT                                                                                                                                                 | E:                                                                                                                                         |                                                                                                                                                                       |                                                                                                       |                                       |                         |                                         |                                                                      |                                                             |             |
| 8. CONDI                                                                                                                                                                                                                     | cavo umi                                                                                                                                                                          | ido                                                                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                       |                                                                                                       |                                       |                         |                                         |                                                                      |                                                             |             |
| 8. CONDI<br>Fronte di s                                                                                                                                                                                                      | NTINUT                                                                                                                                                                            | ſÀ:                                                                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                       |                                                                                                       |                                       |                         |                                         |                                                                      |                                                             |             |
| 8. CONDI<br>Fronte di 1<br>9. DISCO                                                                                                                                                                                          |                                                                                                                                                                                   | SPAZIATURA                                                                                                                                                                                                                         | GIACI                                                                                                                                                 | TURA                                                                                                                                       | APERTURA                                                                                                                                                              | REMP                                                                                                  | ALTE                                  | ERAZ.                   | PERSI                                   | STENZA                                                               | ACOUA                                                       | SCABREZ.    |
| 8. CONDI<br>Fronte di 1<br>9. DISCO<br>SET N*                                                                                                                                                                                | тро                                                                                                                                                                               |                                                                                                                                                                                                                                    |                                                                                                                                                       | Incl (*)                                                                                                                                   | (nun)                                                                                                                                                                 |                                                                                                       |                                       |                         | LUNGH. (m)                              | TERMINAZ.                                                            |                                                             | (JKC)       |
| 8. CONDI<br>Fronte di 1<br>9. DISCO<br>SET N*                                                                                                                                                                                | πрο                                                                                                                                                                               | Cm                                                                                                                                                                                                                                 | Imm (*)                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                       |                                                                                                       | M                                     | £A.                     | >10                                     | -                                                                    |                                                             | LS          |
| 8. CONDI<br>Fronte di 1<br>9. DISCO<br>SET N*                                                                                                                                                                                | ттро<br>-                                                                                                                                                                         | Cm -                                                                                                                                                                                                                               | Imm (*)<br>170                                                                                                                                        | 040                                                                                                                                        | -                                                                                                                                                                     | -                                                                                                     |                                       |                         | -                                       |                                                                      | -                                                           |             |
| 8. CONDI<br>Fronte di 19<br>9. DISCO<br>SET N*<br>K1<br>K2                                                                                                                                                                   | TIPO<br>-<br>ST                                                                                                                                                                   | Cm<br>-<br>-50                                                                                                                                                                                                                     | Imm (*)<br>170<br>220                                                                                                                                 | 040                                                                                                                                        | -                                                                                                                                                                     | -<br>A                                                                                                | M                                     | (A                      | -5                                      |                                                                      |                                                             | LS          |
| 8. CONDI<br>Fronte di 9<br>9. DISCO<br>SET N*<br>K1<br>K2<br>K3                                                                                                                                                              | TIPO<br>ST<br>GN                                                                                                                                                                  | Cm<br>                                                                                                                                                                                                                             | Imma (*)<br>170<br>220<br>340                                                                                                                         | 040<br>060<br>050                                                                                                                          | -<br>-<br>A-B                                                                                                                                                         | -<br>A<br>A-B                                                                                         | MA<br>MA                              | íA<br>I-LA              | >5<br>>2                                | -                                                                    |                                                             | LS          |
| 8. CONDI<br>Fronte di 1<br>9. DISCO<br>SET N*<br>K1<br>K2<br>K3<br>TIPO DI I<br>SC = Scis<br>ST = Stra<br>FA = Fag<br>GN = Gh                                                                                                | TIPO<br>ST<br>GN<br>DISCONT<br>itosità<br>tificazion<br>lia<br>mto gener                                                                                                          | Cm<br>-50<br>-30<br>CTNUITÀ<br>CT = Cc<br>e VN = V<br>FR = Fn<br>ico CL = Cl                                                                                                                                                       | Inun (*)<br>170<br>220<br>340<br>ontatto<br>ena – int<br>attura ap<br>ivaggio                                                                         | 040<br>060<br>050<br>rusione<br>erta                                                                                                       | A-B<br>RIEMPIM<br>A = Ne<br>B = Co<br>C = Co<br>D = Sci                                                                                                               | A<br>A-B<br>ENTO<br>essuno<br>mpatto <<br>iolto < 5 r                                                 | 5 mm<br>5 mm<br>5 mm                  | IA<br>I-LA              | >5<br>>2<br>AI<br>N<br>L<br>M<br>A      | -<br>.TERAZIONI<br>A = Non al<br>A = Legge<br>IA= Moder<br>A = Altam | -<br>iterato<br>m.alterato<br>vat.alterato<br>ente.alterato | LS          |





RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

Rev Data 20/06/2011

F0

# RILIEVO GEOLOGICO-STRUTTURALE DEL FRONTE

| GALLERIA : | PIALE-CARR NORD | RILIEVO SPEDITIVO ( ) | Data;      | 19.05.09   | Progr.: 430+625.00 |
|------------|-----------------|-----------------------|------------|------------|--------------------|
| IMBOCCO;   | SUD             | RILIEVO ANALITICO (X) | Redattore: | L. LUCENTE | Verificato:        |
|            |                 | SEZ. APPLICATA: B2    |            | Che        |                    |



Visione fronte di scavo galleria Piale, imbocco Sud carr. Nord

| VALORI RMR | CLASSE ROCCIA | DESCRIZIONE    |
|------------|---------------|----------------|
| 100-81     | 1             | Ottimo         |
| 80-61      | п             | Buono          |
| 60-41      | ш             | Discreto       |
| 40-21      | IV            | Scadente       |
| <21        | v             | Molto scadente |

Figura 84

#### CLASSI DI AMMASSO ROCCIOSO



#### 5.1.1 Conglomerato di Pezzo – Rampa A – tratta in galleria









#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |



Figura 86





Figura 87 - G0 da Vs misurate in prove sismiche in foro





| Codice documento |  |
|------------------|--|
| CB0057 F0        |  |



Figura 88







Figura 89











| Codice documento |  |
|------------------|--|
| CB0057 F0        |  |



Figura 91





#### Figura 92



| Codice documento |
|------------------|
| CB0057_F0        |



Figura 93




#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0





#### 5.1.2 Conglomerato di Pezzo – Rampa B – tratta in galleria













#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0





#### 5.1.3 Conglomerato di Pezzo – Rampa C – tratta in galleria









## RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |





Codice documento CB0057\_F0









Figura 101- G0 da Vs misurate in prove sismiche in foro













Codice documento CB0057\_F0











#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |
|------------------|
| CB0057_F0        |







#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0





#### 5.1.4 Conglomerato di Pezzo – Rampa D – tratta in galleria





## RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011









Eurolink S.C.p.A.





#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0













Figura 113



Codice documento CB0057\_F0













Codice documento CB0057\_F0







#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011

#### Prove dilatometriche CONGLOMERATO DI PEZZO E' (Mpa) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 0 10 20 30 40 **(**) 50 60 C404\_3DRT 70 C406\_2DRT C407\_1DRT ▲ C407\_2DRT 80 • C407\_3DRT C412\_3DRT 90 C420bis\_1DRT C420bis\_2DRT C420bis\_3DRT 100



#### 5.1.5 Conglomerato di Pezzo – Rampe – tratta da 0 a 0+500Km circa



Figura 118



#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |
|------------------|
| CB0057_F0        |











Figura 120- G0 da Vs misurate in prove sismiche in foro





#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0



















#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0











#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |







Codice documento CB0057\_F0





# 5.2 PLUTONITI

Tabella 12 Riepilogo caratteristiche fisiche plutoniti

| SONDAGGIO |       | OPERA                                                      | Z<br>(m)   | γ (kN/m³) | γ <sub>d</sub>       | γ <sub>s</sub>       |
|-----------|-------|------------------------------------------------------------|------------|-----------|----------------------|----------------------|
| SC11bia   |       | Bompo A 2+100 2+270 / Bompo C 1+200 2+200 / Bompo C        | (11)       | 10.01     | (KN/M <sup>2</sup> ) | (KN/m <sup>2</sup> ) |
| SG11bis   |       | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G        | 4.1<br>Q / | 19.91     | 16.0                 | 25.00                |
| SG11bis   | C2    | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G        | 0.4        | 19.65     | 17.0                 | 20.90                |
| SG11bis   | C3    | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G        | 16 15      | 20.01     | 17.0                 | 20.10                |
| SG11bis   | C4    | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G        | 22.9       | 20.01     | 17.0                 | 20.10                |
| SG11bis   | C5    | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G        | 22.0       | 20.01     | 17.9                 | 26.70                |
| SG13bic   | C0    | Calloria Pampa C / Calloria Pampa D / forrovia             | 6.65       | 20.01     | 17.0                 | 26.70                |
| SG13bis   |       | Galleria Rampa C / Galleria Rampa D / ferrovia             | 12 15      | 10.02     | 16.9                 | 25.20                |
| SG13bis   | C2    | Galleria Rampa C / Galleria Rampa D / ferrovia             | 10.60      | 19.02     | 10.0                 | 20.30                |
| SG13bis   | C3    | Colleria Rampa C / Colleria Rampa D / ferrovia             | 19.00      | 20.40     | 10.7                 | 20.30                |
| SG I SDIS | 04    | Galleria Rampa C / Galleria Rampa D / ferrovia             | 40.05      | 20.40     | 10.7                 | 25.50                |
| SGT3DIS   | C6    | Galleria Rampa C / Galleria Rampa D / ferrovia             | 54.65      | 20.97     | 17.9                 | 25.80                |
| Cn451     | CRI   | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 31.60      |           |                      | 20.07                |
| Cn451     | CR2   | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 34.60      |           |                      | 20.87                |
| Cn451     | CR3   | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 37.35      |           |                      | 26.74                |
| C421      | CR3   | Galleria Rampa A                                           | 31.8       |           |                      | 26.50                |
| C421      | CR4   | Galleria Rampa A                                           | 35.2       |           |                      | 27.18                |
| C421      | CR5   | Galleria Rampa A                                           | 38.80      |           |                      | 27.21                |
| C425      | CR2   | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G | 19.2       |           |                      | 26.84                |
| C425      | SPT10 | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G | 21         |           |                      | 26.39                |
| C425      | CR3   | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G | 22.5       |           |                      | 26.84                |
| C425      | SPT11 | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G | 24         |           |                      | 26.58                |
| C429      | CR2   | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 23.8       |           |                      | 27.19                |
| C429      | CR3   | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 28.9       |           |                      | 26.92                |
| C432      | CR2   | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 25.8       |           |                      | 26.41                |
| C432      | SL01  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 18.8       |           |                      | 27.21                |
| C435      | CR1   | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                | 20.5       |           |                      | 26.86                |
| C435      | CR2   | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                | 25.7       |           |                      | 26.83                |
| C435      | CR3   | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                | 32.3       |           |                      | 26.77                |
| C435      | CR4   | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                | 39.9       |           |                      | 26.39                |
| C427      | CR03  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 23.4       |           |                      | 26.79                |
| C427      | CR04  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 31.3       |           |                      | 26.61                |
| C427      | CR05  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 38.5       |           |                      | 26.13                |
| C421      | SL01  | Galleria Rampa A                                           | 13.6       |           |                      | 26.78                |
| C421      | SL02  | Galleria Rampa A                                           | 22.9       |           |                      | 27.06                |
| C427      | SL01  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 31.8       |           |                      | 27.05                |
| C428      | CI1   | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 14.08      |           |                      | 26.76                |
| C428      | CR1   | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 17.42      |           |                      | 26.45                |
| C428      | SPT7  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 21         |           |                      | 27.13                |
| C428      | CR2   | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 21 74      |           |                      | 27.20                |
| C428      | CR03  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 24.4       |           |                      | 27 75                |
| C428      | CR4   | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 33.9       |           |                      | 26.92                |
| C428      | CR6   | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 38 55      |           |                      | 26.66                |
| C434      | SPT8  | Rampa C 1+200-3+300 / Rampa E / Rampa A acc                | 15         |           |                      | 26.37                |
| C.434     | SPTO  | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                | 18         |           |                      | 26.57                |
| 0404      | 0118  | Rampa C 11200-51500 / Rampa L / Rampa A_acc                | 10         |           |                      | 20.04                |



Tabella 13 Riepilogo caratteristiche fisiche plutoniti (ammasso roccioso)

| SONDAGGIO  | N°<br>PROVINO | OPERA                                      | z<br>(m) | γ<br>(kN/m³) | γd<br>(KN/m <sup>3</sup> ) |
|------------|---------------|--------------------------------------------|----------|--------------|----------------------------|
| SG11       | C1/riman      | Rampa C 1+200-3+300                        | 10.00    | 20.23        | 18.83                      |
| SG11       | C2/ind        | Rampa C 1+200-3+300                        | 23.00    | 21.82        | 20.83                      |
| SG11       | C3/ind        | Rampa C 1+200-3+300                        | 27.00    | 20.20        | 20.63                      |
| Cn451      | CR1           | Rampa C 1+200-3+300 / Rampa V / Ramo C_dec | 31.60    |              | 26.67                      |
| Cn451      | CR2           | Rampa C 1+200-3+300 / Rampa V / Ramo C_dec | 34.60    |              | 26.87                      |
| Cn451      | CR3           | Rampa C 1+200-3+300 / Rampa V / Ramo C_dec | 37.35    |              | 26.74                      |
| C421quater | SL01          | ferrovia                                   | 83.90    |              | 27.13                      |
| C421quater | CR1           | ferrovia                                   | 60.50    |              | 27.26                      |
| C421quater | CR2           | ferrovia                                   | 68.20    |              | 27.11                      |
| C421quater | CR3           | ferrovia                                   | 85.00    |              | 27.02                      |
| C421quater | CR4           | ferrovia                                   | 93.30    |              | 26.83                      |
| C433       | SL01          | Rampa C 1+200-3+300 / Ramo A_acc / Rampa F | 35.60    |              | 26.70                      |
| C433       | SL01          | Rampa C 1+200-3+300 / Ramo A_acc / Rampa F | 37.40    |              | 26.68                      |

#### Tabella 14 Granulometria plutoniti

|           |          | = (m) | С   | G   | S   | L   | Α   | С   | G   | S   | L   | Α   |
|-----------|----------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SUNDAGGIU | NPROVINO | z (m) | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] |
| SG11bis   | C1       | 4     | 0   | 13  | 53  | 26  | 8   | 100 | 100 | 87  | 34  | 8   |
| SG11bis   | C2       | 8     | 0   | 1   | 38  | 27  | 34  | 100 | 100 | 99  | 61  | 34  |
| SG11bis   | C3       | 11    | 0   | 28  | 51  | 16  | 5   | 100 | 100 | 72  | 21  | 5   |
| SG11bis   | C4       | 16    | 0   | 12  | 56  | 24  | 7   | 100 | 100 | 88  | 32  | 7   |
| SG11bis   | C5       | 23    | 0   | 23  | 36  | 31  | 9   | 100 | 100 | 77  | 41  | 9   |
| SG11bis   | C6       | 26    | 0   | 16  | 50  | 24  | 10  | 100 | 100 | 84  | 34  | 10  |
| SG13bis   | C1       | 7     | 0   | 72  | 27  | 1   | 0   | 100 | 100 | 28  | 1   | 0   |
| SG13bis   | C2       | 11    | 0   | 33  | 48  | 13  | 7   | 100 | 100 | 67  | 20  | 7   |
| SG13bis   | C3       | 16    | 0   | 9   | 46  | 35  | 10  | 100 | 100 | 91  | 45  | 10  |
| SG13bis   | C4       | 23    | 0   | 1   | 64  | 26  | 9   | 100 | 100 | 99  | 35  | 9   |
| SG13bis   | C6       | 26    | 0   | 1   | 95  | 4   | 0   | 100 | 100 | 99  | 4   | 0   |
| Cn451     | CR1      | 32    | 0   | 36  | 45  | 15  | 4   | 100 | 100 | 64  | 19  | 4   |
| Cn451     | CR2      | 35    | 0   | 29  | 52  | 15  | 4   | 100 | 100 | 71  | 19  | 4   |
| Cn451     | CR3      | 37    | 0   | 59  | 32  | 9   | 0   | 100 | 100 | 41  | 9   | 0   |
| C425      | SPT11    | 24    | 0   | 3   | 68  | 24  | 5   | 100 | 100 | 97  | 29  | 5   |
| C429      | CR2      | 24    | 0   | 9   | 58  | 24  | 9   | 100 | 100 | 91  | 33  | 9   |
| C429      | CR3      | 29    | 0   | 24  | 50  | 20  | 6   | 100 | 100 | 76  | 26  | 6   |
| C432      | CR2      | 26    | 0   | 25  | 56  | 17  | 2   | 100 | 100 | 75  | 19  | 2   |
| C432      | SPT9     | 27    | 0   | 11  | 54  | 26  | 9   | 100 | 100 | 89  | 35  | 9   |
| C432      | CR3      | 29    | 0   | 22  | 47  | 27  | 4   | 100 | 100 | 78  | 31  | 4   |
| C435      | CR1      | 21    | 0   | 22  | 41  | 25  | 12  | 100 | 100 | 78  | 37  | 12  |
| C435      | CR2      | 26    | 0   | 43  | 41  | 13  | 3   | 100 | 100 | 57  | 16  | 3   |
| C435      | CR3      | 32    | 0   | 16  | 50  | 28  | 6   | 100 | 100 | 84  | 34  | 6   |
| C435      | CR4      | 40    | 0   | 64  | 25  | 10  | 1   | 100 | 100 | 36  | 11  | 1   |
| C427      | CR03     | 23    | 0   | 28  | 32  | 34  | 6   | 100 | 100 | 72  | 40  | 6   |
| C427      | CR04     | 31    | 0   | 40  | 38  | 20  | 2   | 100 | 100 | 60  | 22  | 2   |
| C427      | CR05     | 39    | 0   | 36  | 34  | 27  | 3   | 100 | 100 | 64  | 30  | 3   |
| C428      | SPT7     | 21    | 0   | 49  | 37  | 14  | 0   | 100 | 100 | 51  | 14  | 0   |
| C428      | SPT11    | 24    | 0   | 27  | 67  | 6   | 0   | 100 | 100 | 73  | 6   | 0   |
| C428      | SPT13    | 31    | 0   | 18  | 77  | 5   | 0   | 100 | 100 | 82  | 5   | 0   |




#### RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

|           | N°PROVINO | <b>z</b> (m) | С   | G   | S   | L   | Α   | С   | G   | S   | L   | Α   |
|-----------|-----------|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CONDACCIO |           | 2 (11)       | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] |
| C434      | SPT8      | 15           | 0   | 15  | 63  | 20  | 3   | 100 | 100 | 85  | 23  | 3   |
| C434      | SPT9      | 18           | 0   | 7   | 66  | 22  | 4   | 100 | 100 | 93  | 27  | 4   |
| C425      | CR2       | 19           | 0   | 4   | 79  | 14  | 3   | 100 | 100 | 96  | 17  | 3   |
| C425      | SPT10     | 21           | 0   | 5   | 70  | 22  | 3   | 100 | 100 | 95  | 25  | 3   |
| C425      | CR3       | 23           | 0   | 14  | 59  | 23  | 4   | 100 | 100 | 86  | 27  | 4   |
| C435      | SPT7      | 14           | 0   | 47  | 43  | 10  | 0   | 100 | 100 | 53  | 10  | 0   |
| C435      | SPT8      | 16           | 0   | 73  | 19  | 8   | 0   | 100 | 100 | 27  | 8   | 0   |
| C435      | SPT9      | 19           | 0   | 41  | 36  | 23  | 0   | 100 | 100 | 59  | 23  | 0   |
| C421      | CR3       | 32           | 0   | 44  | 37  | 16  | 3   | 100 | 100 | 56  | 19  | 3   |
| C421      | CR4       | 35           | 0   | 71  | 20  | 9   | 0   | 100 | 100 | 29  | 9   | 0   |
| C421      | CR5       | 39           | 0   | 58  | 34  | 8   | 0   | 100 | 100 | 42  | 8   | 0   |
| C434      | SPT8      | 15           | 0   | 14  | 63  | 20  | 3   | 100 | 100 | 86  | 23  | 3   |
| C434      | SPT9      | 18           | 0   | 7   | 66  | 22  | 5   | 100 | 100 | 93  | 27  | 5   |

#### Tabella 15 Riepilogo risultati prove penetrometriche

| FORO    | Opera                                                      | z<br>[m] | Nspt |
|---------|------------------------------------------------------------|----------|------|
| C9      | Galleria Rampa A / Galleria Rampa B / ferrovia             | 33       | 44   |
| C9      | Galleria Rampa A / Galleria Rampa B / ferrovia             | 38       | 65   |
| C9      | Galleria Rampa A / Galleria Rampa B / ferrovia             | 47       | 70   |
| C9      | Galleria Rampa A / Galleria Rampa B / ferrovia             | 53.2     | 100  |
| C3bis   | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 17       | 19   |
| C3bis   | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 20       | 100  |
| C3bis   | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 53       | 14   |
| SG11    | Rampa C 1+200-3+300                                        | 15       | 100  |
| SG11    | Rampa C 1+200-3+300                                        | 21.5     | 90   |
| SG11    | Rampa C 1+200-3+300                                        | 24       | 88   |
| SG11bis | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G        | 3        | 100  |
| SG11bis | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G        | 6        | 54   |
| SG11bis | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G        | 9        | 100  |
| SG11bis | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G        | 12       | 100  |
| SG11bis | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G        | 15       | 100  |
| C428    | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 21       | 100  |
| C425    | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G | 21       | 86   |
| C435    | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                | 13.6     | 100  |
| C435    | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                | 16       | 100  |
| C435    | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                | 19.1     | 100  |

| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     |            |  |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|--|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |  |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |  |

#### Tabella 16 Riepilogo risultati prove di permeabilità (ammasso roccioso)

| FORO       | OPERA                                             | z (m) | K(cm/s)  |
|------------|---------------------------------------------------|-------|----------|
| SG11       | Rampa C 1+200-3+300                               | 23.5  | 1.09E-07 |
| SG11       | Rampa C 1+200-3+300                               | 29    | 2.04E-07 |
| C421quater | ferrovia                                          | 65.5  | 7,27E-07 |
| C428       | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa G | 45.5  | 7,17E-07 |
| C421       | Galleria Rampa A                                  | 15.8  | 7.90E-08 |
| C421       | Galleria Rampa A                                  | 35    | 7.80E-08 |
| C421ter    | Galleria Rampa A / ferrovia                       | 54.5  | 1.40E-08 |
| C421ter    | Galleria Rampa A / ferrovia                       | 77    | 1.20E-05 |
| C421ter    | Galleria Rampa A / ferrovia                       | 80.8  | 1.20E-05 |
| C424       | Rampa G                                           | 10.2  | 4.00E-04 |
| C424       | Rampa G                                           | 21    | 6.10E-08 |
| C428       | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa G | 30    | 1.50E-05 |
| C428       | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa G | 35.5  | 1.60E-05 |
| C429       | Rampa C 1+200-3+300 / Rampa F / Rampa V           | 15    | 1.40E-07 |
| C429       | Rampa C 1+200-3+300 / Rampa F / Rampa V           | 30.5  | 1.50E-07 |
| C432       | Rampa C 1+200-3+300 / Rampa F / Rampa V           | 15    | 7.20E-08 |
| C432       | Rampa C 1+200-3+300 / Rampa F / Rampa V           | 29.3  | 5.60E-07 |
| C433       | Rampa C 1+200-3+300 / Ramo A_acc / Rampa F        | 15    | 1.40E-05 |
| C433       | Rampa C 1+200-3+300 / Ramo A_acc / Rampa F        | 30.5  | 6.60E-08 |
| C434       | Rampa C 1+200-3+300 / Ramo A_acc/ Rampa F         | 15.5  | 1.30E-05 |
| C434       | Rampa C 1+200-3+300 / Ramo A_acc/ Rampa F         | 25    | 1.40E-05 |
| C435       | Rampa C 1+200-3+300 / Ramo A_acc/ Ramo C_dec      | 30    | 1.30E-02 |
| Cn451      | Rampa C 1+200-3+300 / Rampa V / Ramo C_dec        | 30.5  | 1.80E-05 |

#### Tabella 17 Riepilogo risultati prove pressiometriche

| FORO    | N° PROVINO | Opera                                                                 | z (m) | Ep(MPa) | E'(MPa) | <b>φ</b> (°) |
|---------|------------|-----------------------------------------------------------------------|-------|---------|---------|--------------|
| SG11    | 1MPT       | Rampa C 1+200-3+300                                                   | 16.5  | 56.67   | 226.68  | 43.3         |
| SG11    | 2MPT       | Rampa C 1+200-3+300                                                   | 28.5  | 41.48   | 165.92  | 44.0         |
| SG11bis | 1MPT       | Rampa C 1+200-3+300 / Rampa A 2+100-2+370                             | 10.5  | 44.98   | 179.93  | 42.2         |
| SG11bis | 2MPT       | Rampa C 1+200-3+300 / Rampa A 2+100-2+370                             | 23.5  | 53.35   | 213.38  | 40.2         |
| C424    | 1MPT       | Rampa G                                                               | 15    | 82.69   | 330.76  | 41           |
| C428    | 1MPT       | Rampa C 1+200-3+300 / Rampa A 2+100-2+370 / Rampa F / Rampa G         | 40.4  | 90.22   | 360.88  | 39           |
| C429    | 1MPT       | Rampa C 1+200-3+300 / Rampa F / Rampa G / Rampa R / Rampa Q / Rampa H | 20.7  | 56.3    | 225.20  | 41           |
| C429    | 2MPT       | Rampa C 1+200-3+300 / Rampa F / Rampa G / Rampa R / Rampa Q / Rampa H | 37    | 34.7    | 138.80  |              |
| C435    | 1MPT       | Rampa C 1+200-3+300 / Rampa R / Rampa Q / Rampa H                     | 22    | 31      | 124.00  | 39           |
| Cn451   | 2MPT       | Rampa C 1+200-3+300 / Rampa F / Rampa R / Rampa Q / Rampa H           | 35.5  | 31.4    | 125.6   |              |

#### Tabella 18 Riepilogo risultati prove dilatometriche

| FORO  | N° PROVINO | Opera                                                                 | z (m) | E'(MPa) | φ' |
|-------|------------|-----------------------------------------------------------------------|-------|---------|----|
| C424  | 2DRT       | Rampa G                                                               | 28.2  | 194     |    |
| C428  | 2DRT       | Rampa C 1+200-3+300 / Rampa A 2+100-2+370 / Rampa F / Rampa G         | 55    | 1079.00 |    |
| C430  | 1DRT       | Rampa C 1+200-3+300 / Rampa F / Rampa G / Rampa R / Rampa Q / Rampa H | 15.7  | 524.3   | 40 |
| C430  | 2DRT       | Rampa C 1+200-3+300 / Rampa F / Rampa G / Rampa R / Rampa Q / Rampa H | 20.5  | 743     | 43 |
| C432  | 1DRT       | Rampa C 1+200-3+300 / Rampa F / Rampa G / Rampa R / Rampa Q / Rampa H | 19.5  | 475     |    |
| C432  | 2DRT       | Rampa C 1+200-3+300 / Rampa F / Rampa G / Rampa R / Rampa Q / Rampa H | 33.8  | 957     |    |
| C434  | 1DRT       | Rampa C 1+200-3+300 / Rampa F / Rampa G / Rampa R / Rampa Q / Rampa H | 22    | 250     |    |
| C434  | 2DRT       | Rampa C 1+200-3+300 / Rampa F / Rampa G / Rampa R / Rampa Q / Rampa H | 32.5  | 227.6   |    |
| C435  | 2DRT       | Rampa C 1+200-3+300 / Rampa R / Rampa Q / Rampa H                     | 33.2  | 4616    |    |
| Cn451 | 1DRT       | Rampa C 1+200-3+300 / Rampa F / Rampa R / Rampa Q / Rampa H           | 25.5  | 439.30  |    |
| C421  | 1DRT       | Galleria Rampa A / Rampa R / Rampa Q / Rampa H                        | 21.24 | 538.00  |    |
| C421  | 2DRT       | Galleria Rampa A / Rampa R / Rampa Q / Rampa H                        | 36.50 | 451.30  |    |





#### RELAZIONE GEOTECNICA GENERALE

| Codice | documento |
|--------|-----------|
| CB0057 | F0        |







#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |
|------------------|
| CB0057_F0        |

Prove dilatometriche

 Rev
 Data

 F0
 20/06/2011







Tabella 19 Riepilogo risultati prove di laboratorio

| SONDAGGIO | N° PROVINO | z<br>(m) | Opera                                               | PROVA | c'<br>[kPa] | φ'<br>[°] |
|-----------|------------|----------|-----------------------------------------------------|-------|-------------|-----------|
| SG11      | C1/riman   | 10.0     | Rampa C 1+200-3+300                                 | TD    | 16.3        | 41        |
| SG11      | C2/ind     | 23.0     | Rampa C 1+200-3+300                                 | TD    | 11.6        | 33        |
| SG11      | C3/ind     | 27.0     | Rampa C 1+200-3+300                                 | TD    | 18.3        | 34        |
| SG11bis   | C1         | 4.1      | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G | TD    | 21          | 34        |
| SG11bis   | C2         | 8.4      | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G | TD    | 9           | 36        |
| SG11bis   | C3         | 11.5     | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G | TD    | 8           | 36        |
| SG11bis   | C4         | 16.2     | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G | TD    | 15          | 32        |
| SG11bis   | C5         | 22.9     | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G | TD    | 0           | 35        |
| SG11bis   | C6         | 26.2     | Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G | TD    | 11          | 39        |
| SG13bis   | C1         | 6.7      | Galleria Rampa C / Galleria Rampa D / ferrovia      | TD    | 1           | 36        |
| SG13bis   | C2         | 13.2     | Galleria Rampa C / Galleria Rampa D / ferrovia      | TD    | 5           | 39        |
| SG13bis   | C3         | 19.6     | Galleria Rampa C / Galleria Rampa D / ferrovia      | TD    | 0           | 40        |
| SG13bis   | C4         | 40.7     | Galleria Rampa C / Galleria Rampa D / ferrovia      | TD    | 32          | 45        |
| SG13bis   | C6         | 54.7     | Galleria Rampa C / Galleria Rampa D / ferrovia      | TD    | 19          | 42        |





Figura 130



Tabella 20 Riepilogo risultati prove sismiche in foro

| FORO    | <b>7</b> (m) | Vs     | G'o     | E'0   |
|---------|--------------|--------|---------|-------|
| FURU    | 2(11)        | [m/s]  | [Mpa]   | [MPa] |
| SG11    | 5.00         | 381    | 295.94  | 710   |
| SG11    | 6.00         | 477    | 463.87  | 1113  |
| SG11    | 7.00         | 189    | 72.83   | 175   |
| SG11    | 8.00         | 391    | 311.68  | 748   |
| SG11    | 9.00         | 368    | 276.09  | 663   |
| SG11    | 10.00        | 401    | 327.83  | 787   |
| SG11    | 11.00        | 177    | 63.87   | 153   |
| SG11    | 12.00        | 596    | 724.19  | 1738  |
| SG11    | 14.00        | 539    | 592.30  | 1422  |
| SG11    | 15.00        | 608    | 753.65  | 1809  |
| SG11    | 16.00        | 650    | 861.37  | 2067  |
| SG11    | 17.00        | 429    | 375.21  | 901   |
| SG11    | 18.00        | 813    | 1347.54 | 3234  |
| SG11    | 19.00        | 331    | 223.37  | 536   |
| SG11    | 20.00        | 616    | 773.61  | 1857  |
| SG11    | 21.00        | 1085   | 2400.05 | 5760  |
| SG11    | 22.00        | 759    | 1174.48 | 2819  |
| SG11    | 23.00        | 822    | 1377.54 | 3306  |
| SG11    | 24.00        | 551    | 618.96  | 1486  |
| SG11    | 25.00        | 311    | 197.19  | 473   |
| SG11    | 26.00        | 332    | 224.72  | 539   |
| SG11    | 27.00        | 662    | 893.46  | 2144  |
| SG11bis | 4.00         | 539    | 591.64  | 1420  |
| SG11bis | 6.00         | 483    | 476.48  | 1144  |
| SG11bis | 8.00         | 392    | 313.28  | 752   |
| SG11bis | 10.00        | 665    | 902.15  | 2165  |
| SG11bis | 12.00        | 393    | 314.32  | 754   |
| SG11bis | 14.00        | 609    | 755.95  | 1814  |
| SG11bis | 16.00        | 1120   | 2555.56 | 6133  |
| SG11bis | 18.00        | 627    | 800.82  | 1922  |
| SG11bis | 20.00        | 468    | 446.04  | 1070  |
| SG11bis | 22.00        | 707    | 1020.39 | 2449  |
| SG11bis | 24.00        | 415    | 351.80  | 844   |
| SG11bis | 26.00        | 990    | 1996.83 | 4792  |
| SG11bis | 28.00        | 686    | 959.92  | 2304  |
| SG11bis | 30.00        | 664    | 898.82  | 2157  |
| Cn451   | 16.00        | 740.04 | 1116.53 | 2680  |
| Cn451   | 17.00        | 419.11 | 358.11  | 859   |
| Cn451   | 18.00        | 611.36 | 762.00  | 1829  |
| Cn451   | 19.00        | 546.54 | 608.98  | 1462  |
| Cn451   | 20.00        | 752.81 | 1155.40 | 2773  |
| Cn451   | 21.00        | 635.48 | 823.31  | 1976  |
| Cn451   | 22.00        | 890.75 | 1617.61 | 3882  |
| Cn451   | 23.00        | 787.77 | 1265.20 | 3036  |
| Cn451   | 24.00        | 759.26 | 1175.28 | 2821  |
| Cn451   | 25.00        | 473.33 | 456.76  | 1096  |
| Cn451   | 26.00        | 509.69 | 529.63  | 1271  |





#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011

| FORO  | <b>7</b> (m) | Vs      | G'o     | E'0   |
|-------|--------------|---------|---------|-------|
| TORO  | 2(11)        | [m/s]   | [Mpa]   | [MPa] |
| Cn451 | 27.00        | 683.88  | 953.50  | 2288  |
| Cn451 | 28.00        | 762.49  | 1185.30 | 2845  |
| Cn451 | 29.00        | 568.39  | 658.65  | 1581  |
| Cn451 | 30.00        | 552.95  | 623.35  | 1496  |
| Cn451 | 31.00        | 735.98  | 1104.32 | 2650  |
| Cn451 | 32.00        | 1317.2  | 3537.24 | 8489  |
| Cn451 | 33.00        | 1237.14 | 3120.32 | 7489  |
| Cn451 | 34.00        | 1166.11 | 2772.30 | 6654  |
| Cn451 | 35.00        | 1045.15 | 2226.99 | 5345  |
| Cn451 | 36.00        | 993.83  | 2013.66 | 4833  |
| Cn451 | 37.00        | 994.28  | 2015.48 | 4837  |
| Cn451 | 38.00        | 829.83  | 1403.91 | 3369  |
| Cn451 | 39.00        | 947.94  | 1831.99 | 4397  |
| Cn451 | 40.00        | 995.37  | 2019.90 | 4848  |
| C430  | 12.00        | 501.69  | 513.14  | 1232  |
| C430  | 13.00        | 382.05  | 297.58  | 714   |
| C430  | 14.00        | 600.45  | 735.05  | 1764  |
| C430  | 15.00        | 643.12  | 843.23  | 2024  |
| C430  | 16.00        | 909.61  | 1686.83 | 4048  |
| C430  | 17.00        | 1185.93 | 2867.34 | 6882  |
| C430  | 18.00        | 1195.31 | 2912.88 | 6991  |
| C430  | 19.00        | 1161.27 | 2749.33 | 6598  |
| C430  | 20.00        | 1433.41 | 4188.92 | 10053 |
| C430  | 21.00        | 1381.52 | 3891.13 | 9339  |
| C430  | 22.00        | 1490.23 | 4527.60 | 10866 |
| C430  | 23.00        | 937.22  | 1790.79 | 4298  |
| C430  | 24.00        | 1092.18 | 2431.92 | 5837  |
| C430  | 25.00        | 1094.21 | 2440.97 | 5858  |
| C430  | 26.00        | 1095.96 | 2448.78 | 5877  |
| C430  | 27.00        | 775.1   | 1224.83 | 2940  |
| C430  | 28.00        | 758.07  | 1171.60 | 2812  |
| C430  | 29.00        | 681.21  | 946.07  | 2271  |
| C430  | 30.00        | 770.61  | 1210.68 | 2906  |



Codice documento CB0057\_F0





Figura 131



Codice documento CB0057\_F0







Codice documento CB0057\_F0



Prove sismiche PLUTONITI

Figura 133



RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011



Figura 134







# STAZIONE ST\_11 (X = 2558798,7553 Y = 4231904,4767 Z = 130,0)

|               | Jv H    | 21,00    | Jv H    | 24,50    | Jv    | Н    | 17,50   | Jv H r   | medio    |       | 21,00 |
|---------------|---------|----------|---------|----------|-------|------|---------|----------|----------|-------|-------|
|               | Jv V    | 25,33    | Jv V    | 22,67    | Jv    | v    | 27,33   | Jv V r   | nedio    | 1     | 25,11 |
| JV standard   | Jv O    | 16,00    | Jv O    | 24,00    | Jv    | 0    | 19,00   | Jv O i   | medio    |       | 19,67 |
|               |         |          |         |          |       |      | Medi    | a totale | e Jv     | :     | 21,93 |
|               |         |          | Ana     | lisi sog | getti | iva  |         |          |          |       |       |
| 1° Sistema In | nmersi  | one (°)  | 310     |          |       | Incl | inazio  | ne (°)   | 65       |       | Media |
| Spaz. (cm)    | 2 8     | 10 7 19  | ) 10 18 | 7 7      | 2     | 20   | 21 10   | 13 2     | 2 11     | 10 22 | 11,06 |
| Apert. (mm)   |         |          |         |          |       |      |         |          |          |       |       |
| Riempimento   |         |          |         |          |       |      |         |          |          |       |       |
| 2° Sistema In | nmersi  | one (°)  | 230     |          |       | Incl | inazio  | ne (°)   | 55       |       | Media |
| Spaz. (cm) 1  | 11 17 3 | 27 11 28 | 3 29 14 | 7 5      | 11    |      |         |          |          |       | 16,00 |
| Apert. (mm)   |         |          |         |          |       |      |         |          |          |       |       |
| Riempimento   |         |          |         |          |       |      |         |          |          |       |       |
| 3° Sistema In | nmersi  | one (°)  | 190     |          |       | Incl | inazio  | ne (°)   | 35       |       | Media |
| Spaz. (cm) 1  | 10 21   | 3 15 4   | 4 6 10  | 37 21    | 6     | 8    | 9 5     | 3        |          |       | 11,29 |
| Apert. (mm)   |         |          |         |          |       |      |         |          |          |       |       |
| Riempimento   |         |          |         |          |       |      |         |          |          |       |       |
| 4° Sistema In | nmersi  | one (°)  | 30      |          |       | Incl | inazio  | ne (°)   | 70       |       | Media |
| Spaz. (cm)    | 2 2     | 3 4 7    | 7 12 5  | 3 8      |       |      |         |          |          |       |       |
| Apert. (mm)   |         |          |         |          |       |      |         |          |          |       |       |
| Riempimento   |         |          |         |          |       |      |         |          |          |       |       |
|               |         |          |         |          |       |      |         |          |          |       |       |
|               |         |          |         |          |       |      | ndice d | ei bloco | chi* (cr | n):   | 12,78 |

# RMR = 55 GSI = (RMR-5) = 50



Eurolink S.C.p.A.





#### STAZIONE ST\_12

### (X = 2559115,3658 Y = 4231779,6472 Z = 225,0)

Plutoniti

|             | Jv H | 30,00 | Jv H | 30,00 | Jv H | 28,00 | Jv H medio  | 29,33 |
|-------------|------|-------|------|-------|------|-------|-------------|-------|
| by standard | Jv V | 21,33 | Jv V | 28,00 | Jv V | 28,67 | Jv V medio  | 26,00 |
| JV standard | Jv O | 32,00 | Jv O | 34,67 | Jv O | 27,00 | Jv O medio  | 31,22 |
|             |      |       |      |       |      | Media | a totale Jv | 28,85 |

|             |     |      |      |       |    | Α   | nal | isi s | sog | get | tiva |      |      |      |      |       |      |   |       |
|-------------|-----|------|------|-------|----|-----|-----|-------|-----|-----|------|------|------|------|------|-------|------|---|-------|
| 1° Sistema  | Imr | ner  | sior | 1e (' | °) | 300 | )   |       |     |     | Inc  | lina | zio  | ne ( | °)   | 60    |      |   | Media |
| Spaz. (cm)  | 5   | 10   | 4    | 6     | 5  | 3   | 4   | 7     | 9   | 10  | 14   | 18   | 5    | 2    | 25   | - 7   | 17   | 9 | 8,89  |
| Apert. (mm) |     |      |      |       |    |     |     |       |     |     |      |      |      |      |      |       |      |   |       |
| Riempimento |     |      |      |       |    |     |     |       |     |     |      |      |      |      |      |       |      |   |       |
| 2° Sistema  | Imr | ner  | sior | 1e (' | °) | 190 | )   |       |     |     | Inc  | lina | zio  | ne ( | °)   | 70    |      |   | Media |
| Spaz. (cm)  | - 7 | 40   | 10   | 8     | 15 | 15  | 10  | 6     | 7   | 25  | 14   | 15   |      |      |      |       |      |   | 14,33 |
| Apert. (mm) |     |      |      |       |    |     |     |       |     |     |      |      |      |      |      |       |      |   |       |
| Riempimento |     |      |      |       |    |     |     |       |     |     |      |      |      |      |      |       |      |   |       |
| 3° Sistema  | Imr | ner  | sior | 1e (' | °) | 20  |     |       |     |     | Inc  | lina | zio  | ne ( | °)   | 70    |      |   | Media |
| Spaz. (cm)  | 8   | - 14 | 4    | 4     | 21 | 29  | 5   | 14    | 12  | - 7 | 6    | 17   | 12   | 10   |      |       |      |   | 11,64 |
| Apert. (mm) |     |      |      |       |    |     |     |       |     |     |      |      |      |      |      |       |      |   |       |
| Riempimento |     |      |      |       |    |     |     |       |     |     |      |      |      |      |      |       |      |   |       |
|             |     |      |      |       |    |     |     |       |     |     |      | Indi | ce d | ei b | locc | hi* ( | cm): |   | 11,62 |







# STAZIONE ST\_13 (X = 2559120,0022 Y = 4231637,7464 Z = 295,0)

|             | J   | vН   | 2    | 4,50 |    | Jv H |     | 22,0  | 0   | Jv  | н    | 21,  | 00   | Jv I  | Hm   | edio   |     | 2 | 2,50  |
|-------------|-----|------|------|------|----|------|-----|-------|-----|-----|------|------|------|-------|------|--------|-----|---|-------|
| by standard | J   | ٧V   | 2    | 2,67 |    | Jv V |     | 18,6  | 57  | Jv  | v    | 19,  | 33   | Jv ۱  | V m  | edio   |     | 2 | 0,22  |
| JV standard | J   | ٧O   | 2    | 7,00 |    | Jv O |     | 38,6  | 57  | Jv  | 0    | 32,  | 00   | Jv (  | 0 m  | edio   |     | 3 | 2,56  |
|             |     |      |      |      |    |      |     |       |     |     |      | M    | edia | a tot | ale  | Jv     |     | 2 | 5,09  |
|             |     |      |      |      |    | A    | nal | isi : | sog | get | tiva |      |      |       |      |        |     |   |       |
| 1° Sistema  | lmn | ners | sion | e (° | )  | 120  |     |       |     |     | Inc  | lina | zio  | ne (  | °)   | 25     |     |   | Media |
| Spaz. (cm)  | 13  | 5    | 7    | 10   | 11 | 5    | 17  | 8     | - 7 | ·   |      |      |      |       |      |        |     |   | 9,22  |
| Apert. (mm) |     |      |      |      |    |      |     |       |     |     |      |      |      |       |      |        |     |   |       |
| Riempimento |     |      |      |      |    |      |     |       |     |     |      |      |      |       |      |        |     |   |       |
| 2° Sistema  | lmn | ners | sion | e (° | )  | 160  |     |       |     |     | Inc  | lina | zio  | ne (  | °)   | 60     |     |   | Media |
| Spaz. (cm)  | 13  | 8    | 12   | 6    | 7  | 10   | 2   | 23    | 3   | 22  | 17   | - 33 |      |       |      |        |     |   | 13,00 |
| Apert. (mm) |     |      |      |      |    |      |     |       |     |     |      |      |      |       |      |        |     |   |       |
| Riempimento |     |      |      |      |    |      |     |       |     |     |      |      |      |       |      |        |     |   |       |
| 3° Sistema  | lmn | ners | sion | e (° | )  | 10   |     |       |     |     | Inc  | lina | zio  | ne (  | °)   | 70     |     |   | Media |
| Spaz. (cm)  | 9   | 5    | 18   | 4    | 11 | 4    | 4   | 18    | 24  | 5   | 12   |      |      |       |      |        |     |   | 10,36 |
| Apert. (mm) |     |      |      |      |    |      |     |       |     |     |      |      |      |       |      |        |     |   |       |
| Riempimento |     |      |      |      |    |      |     |       |     |     |      |      |      |       |      |        |     |   |       |
|             |     |      |      |      |    |      |     |       |     |     |      | Indi | ce d | lei b | loco | :hi* ( | cm) | : | 10,86 |









# STAZIONE ST\_14 (X = 2558555,9645 Y = 4231695,0394 Z = 125,0)

|               | Jv   | Н    | 36,   | 50 | Jv  | Н  | 39     | ,00, | J   | νH   |      | 37,50 | J     | νH   | medi | io   |   | 37,67        |
|---------------|------|------|-------|----|-----|----|--------|------|-----|------|------|-------|-------|------|------|------|---|--------------|
| by atom doesd | Jv   | V    | 33,   | 33 | Jv  | V  | 24     | ,67  | J   | vV   | 2    | 24,00 | J     | v V  | medi | io   | 2 | 27,33        |
| JV standard   | Jv   | 0    | 28,   | 00 | Jv  | 0  | 39     | ,33  | J   | v O  |      | 32,00 | J     | lv O | med  | io   |   | 33,11        |
|               |      |      |       |    |     |    |        |      |     |      |      | Med   | lia t | otal | e Jv |      |   | 32,70        |
|               |      |      |       |    | Α   | na | lisi s | sog  | get | tiva |      |       |       |      |      |      |   |              |
| 1° Sistema In | nmer | rsio | ne (' | °) | 30  |    |        |      |     | Inc  | lina | zio   | ne (  | °)   | 25   |      | 1 | <b>Nedia</b> |
| Spaz. (cm) 1  | 13 4 | - 5  | 19    | 12 | 11  | 1  | 22     | 8    | 6   | - 7  | 4    | - 33  |       |      |      |      |   | 11,15        |
| Apert. (mm)   |      |      |       |    |     |    |        |      |     |      |      |       |       |      |      |      |   |              |
| Riempimento   |      |      |       |    |     |    |        |      |     |      |      |       |       |      |      |      |   |              |
| 2° Sistema In | nmer | rsio | ne (' | °) | 170 | )  |        |      |     | Inc  | lina | zio   | ne (  | °)   | 85   |      |   | <b>Nedia</b> |
| Spaz. (cm)    | 2 3  | 8    | 4     | 8  | 8   | 13 | 7      | 4    | 2   | 4    | 10   | 2     | 6     | 11   | 8    |      |   | 6,25         |
| Apert. (mm)   |      |      |       |    |     |    |        |      |     |      |      |       |       |      |      |      |   |              |
| Riempimento   |      |      |       |    |     |    |        |      |     |      |      |       |       |      |      |      |   |              |
| 3° Sistema In | nmer | rsio | ne (  | °) | 240 | )  |        |      |     | Inc  | lina | zio   | ne (  | °)   | 80   |      | I | <b>Nedia</b> |
| Spaz. (cm)    | 7 6  | 11   | 3     | 10 | 2   | 6  | 23     | 8    | 9   | 7    | 4    | 12    | 8     | 5    | 15   | 17   |   | 9,00         |
| Apert. (mm)   |      |      |       |    |     |    |        |      |     |      |      |       |       |      |      |      |   |              |
| Riempimento   |      |      |       |    |     |    |        |      |     |      |      |       |       |      |      |      |   |              |
|               |      |      |       |    |     |    |        |      |     |      | Ind  |       |       |      | L:*/ | amlı | 4 | 0.96         |







# STAZIONE ST\_15 (X = 2558765,2901 Y = 4231575,8738 Z = 160,0)

|              |     | Jv  | Н    | 30,   | 00   | Jv  | Н  | 27,   | 50  | Jv  | Н    | 25,  | 50   | Jv H   | H me  | dio  |    | 27 | ,67   |
|--------------|-----|-----|------|-------|------|-----|----|-------|-----|-----|------|------|------|--------|-------|------|----|----|-------|
|              | . [ | Jv  | v    | 29,   | 33   | Jv  | V  | 22,   | 67  | Jv  | V    | 18,  | 67   | Jv ۱   | / me  | dio  |    | 23 | ,56   |
| JV standard  |     | Jv  | 0    | 28,   | 00   | Jv  | 0  | 32,   | 67  | Jv  | 0    | 29,  | 00   | Jv (   | ) me  | edio |    | 29 | ,89   |
|              | Γ   |     |      |       |      |     |    |       |     |     |      | м    | edia | a tota | ale J | lv   |    | 27 | .04   |
|              |     |     |      |       |      | Α   | na | isi s | sog | get | tiva |      |      |        |       |      |    |    | ,     |
| 1° Sistema   | lmn | ner | sior | ne (° | ')   | 300 | )  |       | -   | -   | Inc  | lina | zio  | ne (   | °)    | 70   |    |    | Media |
| Spaz. (cm)   | 8   | 14  | 2    | 5     | 6    | 22  | 2  | 4     | 7   | 21  | 29   | 19   | - 5  | 6      | 19    | 25   | 27 | 14 | 13,06 |
| Apert. (mm)  |     |     |      |       |      |     |    |       |     |     |      |      |      |        |       |      |    |    |       |
| Riempimento  |     |     |      |       |      |     |    |       |     |     |      |      |      |        |       |      |    |    |       |
| 2° Sistema I | lmn | ner | sior | ne (° | ")   | 10  |    |       |     |     | Inc  | lina | zio  | ne (   | °)    | 75   |    |    | Media |
| Spaz. (cm)   | 10  | 2   | 11   | 3     | 3    | 6   | 3  | 2     | 18  | 4   | 7    | 4    | 6    | 2      | 1     | 6    |    |    | 5,50  |
| Apert. (mm)  |     |     |      |       |      |     |    |       |     |     |      |      |      |        |       |      |    |    |       |
| Riempimento  |     |     |      |       |      |     |    |       |     |     |      |      |      |        |       |      |    |    |       |
| 3° Sistema I | lmn | ner | sior | ne (° | ')   | 210 | )  |       |     |     | Inc  | lina | zio  | ne (   | °)    | 30   |    |    | Media |
| Spaz. (cm)   | 6   | 32  | 16   | 21    | 24   | 15  | 19 | 24    | 34  | 17  | 11   | 8    | 4    | 26     |       |      |    |    | 18,36 |
| Apert. (mm)  |     |     |      |       |      |     |    |       |     |     |      |      |      |        |       |      |    |    |       |
| Riempimento  |     |     |      |       |      |     |    |       |     |     |      |      |      |        |       |      |    |    |       |
| 4° Sistema I | lmn | ner | sior | ne (° | ') ' | 150 |    |       |     |     | Inc  | lina | zio  | ne (   | °)    | 55   |    |    | Media |
| Spaz. (cm)   | 26  | 15  | 28   | 16    | 29   | 11  | 21 | 17    | 8   | 10  | 9    | 7    |      |        |       |      |    |    |       |
| Apert. (mm)  |     |     |      |       |      |     |    |       |     |     |      |      |      |        |       |      |    |    |       |
| Riempimento  |     |     |      |       |      |     |    |       |     |     |      |      |      |        |       |      |    |    |       |
|              |     |     |      |       |      |     |    |       |     |     |      |      |      |        |       |      |    |    | 10.05 |







# STAZIONE ST\_16 (X = 2558865,1916 Y = 4231477,4837 Z = 185,0)

|               | Jv H | 1 20  | 0,00 | Jv I | Н    | 20,   | 00 | ٦٧   | Η   | 18   | ,50   | Jv   | Hm   | nedio |      | 1 | 9,50  |
|---------------|------|-------|------|------|------|-------|----|------|-----|------|-------|------|------|-------|------|---|-------|
| by etendend   | Jv ۱ | / 10  | 6,67 | J۷   | v    | 18,   | 00 | J٧   | v   | 17   | ,33   | Jv   | Vm   | nedio |      | 1 | 7,33  |
| JV standard   | Jv C | D 10  | 8,00 | Jv ( | C    | 33,   | 33 | Jv   | 0   | 38   | ,00,  | Jv   | 0 m  | nedio |      | 2 | 9,78  |
|               |      |       |      |      |      |       |    |      |     | N    | ledia | a to | tale | Jv    |      | 2 | 2,20  |
|               |      |       |      | Α    | nali | isi s | og | geti | iva |      |       |      |      |       |      |   |       |
| 1° Sistema Im | mers | sione | (°)  | 60   |      |       |    |      | Inc | lina | zioi  | ne ( | °)   | 60    |      |   | Media |
| Spaz. (cm) 8  | 3 11 | 10 1  | 5 11 | 10'  | 24   | 6     | 9  | 2    | 4   | 11   |       |      |      |       |      |   | 10,09 |
| Apert. (mm)   |      |       |      |      |      |       |    |      |     |      |       |      |      |       |      |   |       |
| Riempimento   |      |       |      |      |      |       |    |      |     |      |       |      |      |       |      |   |       |
| 2° Sistema Im | mers | sione | (°)  | 160  |      |       |    |      | Inc | lina | zioi  | ne ( | °)   | 45    |      |   | Media |
| Spaz. (cm) 10 | ) 13 | 1     | 3 7  | 2    | 5    | 6     | 4  | 5    | 5   |      |       |      |      |       |      |   | 5,55  |
| Apert. (mm)   |      |       |      |      |      |       |    |      |     |      |       |      |      |       |      |   |       |
| Riempimento   |      |       |      |      |      |       |    |      |     |      |       |      |      |       |      |   |       |
| 3° Sistema Im | mers | sione | (°)  | 290  |      |       |    |      | Inc | lina | zioı  | ne ( | °)   | 50    |      |   | Media |
| Spaz. (cm) 4  | 8 1  | 14 1  | 2 6  | 15   | 10   |       |    |      |     |      |       |      |      |       |      |   | 9,86  |
| Apert. (mm)   |      |       |      |      |      |       |    |      |     |      |       |      |      |       |      |   |       |
| Riempimento   |      |       |      |      |      |       |    |      |     |      |       |      |      |       |      |   |       |
|               |      |       |      |      |      |       |    |      |     | Indi | ce d  | ei b | oloc | chi*  | (cm) | : | 8,50  |







| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

# STAZIONE ST\_17 (X = 25588994,5294 Y = 4231500,5212 Z = 225,0)

|               | Jv H   | 19,50   | Jv H  | 25,00    | Jv H   | 22,00    | Jv H m    | nedio   | 2    | 2,17  |
|---------------|--------|---------|-------|----------|--------|----------|-----------|---------|------|-------|
| by standard   | Jv V   | 30,00   | Jv V  | 24,67    | Jv V   | 17,33    | Jv V m    | nedio   | 2    | 4,00  |
| JV standard   | Jv O   | 22,00   | Jv O  | 24,67    | Jv O   | 31,00    | Jv O n    | nedio   | 2    | 5,89  |
|               |        |         |       |          |        | Med      | ia totale | Jv      | 2    | 4,02  |
|               |        | •       | Ana   | lisi sog | gettiv | a        |           |         |      |       |
| 1° Sistema Ir | nmersi | one (°) | 330   |          | In     | clinazio | ne (°)    | 30      |      | Media |
| Spaz. (cm)    | 5 7 1  | 9 22 13 | 15 14 | 40       |        |          |           |         |      | 16,88 |
| Apert. (mm)   |        |         |       |          |        |          |           |         |      |       |
| Riempimento   |        |         |       |          |        |          |           |         |      |       |
| 2° Sistema Ir | nmersi | one (°) | 140   |          | In     | clinazio | ne (°)    | 60      |      | Media |
| Spaz. (cm)    | 4 3    | 2 5 7   | 8 7   | 6 6      | 8      |          |           |         |      | 5,60  |
| Apert. (mm)   |        |         |       |          |        |          |           |         |      |       |
| Riempimento   |        |         |       |          |        |          |           |         |      |       |
| 3° Sistema Ir | nmersi | one (°) | 240   |          | In     | clinazio | ne (°)    | 40      |      | Media |
| Spaz. (cm)    | 7 4    | 3 5 6   | 59    | 7 9      | 4 1    | 3 7 2    | 5         |         |      | 6,14  |
| Apert. (mm)   |        |         |       |          |        |          |           |         |      |       |
| Riempimento   |        |         |       |          |        |          |           |         |      |       |
|               |        |         |       |          |        | Indice   | dei bloc  | chi* (c | :m): | 9,54  |





RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

#### STAZIONE ST\_18

(X = 2558647, 5085 Y = 4231692, 0089 Z = 145, 0)

Plutoniti

|               | Jv H    | 30,00   | Jv H  | 26,50    | Jv   | Н    | 36,50    | Jv H r   | nedio  |      | 31,00 |
|---------------|---------|---------|-------|----------|------|------|----------|----------|--------|------|-------|
| by standard   | Jv V    | 33,33   | Jv V  | 31,33    | Jv   | v    | 28,67    | Jv V r   | nedio  |      | 31,11 |
| JV standard   | Jv O    | 26,00   | Jv O  | 32,00    | Jv   | 0    | 27,00    | Jv O r   | nedio  |      | 28,33 |
|               |         |         |       |          |      |      | Medi     | a totale | e Jv   |      | 30,15 |
|               |         |         | Ana   | lisi sog | gett | iva  |          |          |        |      |       |
| 1° Sistema In | nmersio | one (°) | 130   |          |      | Incl | linazio  | ne (°)   | 34     |      | Media |
| Spaz. (cm) 2  | 8 4     | 5 5 10  | 15 19 | 15 7     | 5    | 6    | 12 21    | 13 6     | 6      |      | 11,40 |
| Apert. (mm)   |         |         |       |          |      |      |          |          |        |      |       |
| Riempimento   |         |         |       |          |      |      |          |          |        |      |       |
| 2° Sistema In | nmersio | one (°) | 310   |          |      | Incl | linazio  | ne (°)   | 45     |      | Media |
| Spaz. (cm) 1  | 7 5     | 7 5 12  | 7 10  | 12 10    | 11   | 4    | 5 5      | 6 11     | 3      | 26   | 9,18  |
| Apert. (mm)   |         |         |       |          |      |      |          |          |        |      |       |
| Riempimento   |         |         |       |          |      |      |          |          |        |      |       |
| 3° Sistema In | nmersio | one (°) | 200   |          |      | Incl | linazio  | ne (°)   | 75     |      | Media |
| Spaz. (cm) 2  | 0 3     | 7 2 3   | 99    | 4 5      | 6    | 9    | 36       |          |        |      | 9,42  |
| Apert. (mm)   |         |         |       |          |      |      |          |          |        |      |       |
| Riempimento   |         |         |       |          |      |      |          |          |        |      |       |
|               |         |         |       |          |      |      | Indice ( | lei bloc | chi* ( | cm): | 10,00 |







# STAZIONE ST\_19

# (X = 2558753,8451 Y = 4231832,3711 Z = 155,0)

|               | Jv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н    | 40,0  | 00 | Jv I | Н  | 42,    | 00 | J٧  | Н    | 47   | ,50   | Jv    | Hm   | edio |    | 4 | 3,17  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|----|------|----|--------|----|-----|------|------|-------|-------|------|------|----|---|-------|
| be stored and | Jv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V    | 36,0  | 00 | J۷   | V  | 40,    | 00 | J٧  | v    | 39   | ,33   | Jv    | Vm   | edio |    | 3 | 8,44  |
| JV standard   | Jv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0    | 38,0  | 00 | Jv ( | D  | 42,    | 67 | Jv  | 0    | 40   | ,00   | Jv    | 0 m  | edio |    | 4 | 0,22  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |    |      |    |        |    |     |      | N    | ledia | a tot | tale | Jv   |    | 4 | 0,61  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |    | Α    | na | lisi s | og | get | tiva |      |       |       |      |      |    |   |       |
| 1º Sistema Ir | nme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rsio | ne (° | ') | 120  |    |        |    |     | Inc  | lina | zio   | ne (  | °)   | 25   |    |   | Media |
| Spaz. (cm)    | 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 4  | 3     | 3  | 25   | 2  | 2      | 13 | 13  | 2    | 19   | 10    | 7     | 10   | 3    | 14 |   | 7,94  |
| Apert. (mm)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |    |      |    |        |    |     |      |      |       |       |      |      |    |   |       |
| Riempimento   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |    |      |    |        |    |     |      |      |       |       |      |      |    |   |       |
| 2° Sistema In | nme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rsio | ne (° | ") | 190  |    |        |    |     | Inc  | lina | zio   | ne (  | °)   | 60   |    |   | Media |
| Spaz. (cm)    | 6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 8  | 9     | 2  | 6    | 13 | 10     | 7  | 11  | 2    | 5    | 2     | 3     | 10   | 5    |    |   | 6,31  |
| Apert. (mm)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |    |      |    |        |    |     |      |      |       |       |      |      |    |   |       |
| Riempimento   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |    |      |    |        |    |     |      |      |       |       |      |      |    |   |       |
| 3° Sistema In | nme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rsio | ne (° | ') | 330  |    |        |    |     | Inc  | lina | zio   | ne (  | °)   | 45   |    |   | Media |
| Spaz. (cm)    | 1 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 3  | 8 2   | 6  | 2    | 7  | 10     | 3  |     |      |      |       |       |      |      |    |   | 4,67  |
| Apert. (mm)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |    |      |    |        |    |     |      |      |       |       |      |      |    |   |       |
| Riempimento   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |    |      |    |        |    |     |      |      |       |       |      |      |    |   |       |
|               | Interference (r)       100       110       7       11       2       5       2       3       10       5         Image: state |      |       |    |      |    |        |    |     |      |      |       |       |      | 6,31 |    |   |       |







# STAZIONE ST\_20 (X = 2558815,0785 Y = 4231772,2684 Z = 295,0)

|               | Jv   | н   | 22,   | 00 | Jv  | Н   | 38,    | 00  | J٧              | Н                   | 33   | ,50  | Jv    | Hm   | edio   |     | 3     | 1,17  |  |
|---------------|------|-----|-------|----|-----|-----|--------|-----|-----------------|---------------------|------|------|-------|------|--------|-----|-------|-------|--|
| be stored and | Jv   | V   | 32,   | 67 | Jv  | v   | 32,    | 00  | Jv              | v                   | 27   | ,33  | Jv    | Vm   | edio   |     | 3     | 0,67  |  |
| JV standard   | Jv   | 0   | 24,   | 00 | Jv  | 0   | 26,    | 00  | Jv              | 0                   | 36   | ,00  | Jv    | 0 m  | edio   |     | 28,67 |       |  |
|               |      |     |       |    |     |     |        |     | Media totale Jv |                     |      |      |       |      |        |     | 30,17 |       |  |
|               |      |     |       |    | Α   | nal | lisi s | sog | get             | tiva                |      |      |       |      |        |     |       |       |  |
| 1° Sistema In | nmer | sio | ne (° | ') | 140 |     |        |     |                 | Inc                 | lina | zio  | ne (  | °)   | 20     |     |       | Media |  |
| Spaz. (cm)    | 4 4  | 5   | 4     | 8  | 15  | 18  | 7      | 19  | 4               | 5                   |      |      |       | -    |        |     |       | 8,45  |  |
| Apert. (mm)   |      |     |       |    |     |     |        |     |                 |                     |      |      |       |      |        |     |       |       |  |
| Riempimento   |      |     |       |    |     |     |        |     |                 |                     |      |      |       |      |        |     |       |       |  |
| 2° Sistema Im | nmer | sio | ne (° | ') | 320 |     |        |     |                 | Inclinazione (°) 20 |      |      |       |      |        |     |       | Media |  |
| Spaz. (cm) 1  | 0 2  | 7   | 14    | 3  | 9   | 19  | 10     | 4   | 11              | 9                   |      |      |       |      |        |     |       | 8,91  |  |
| Apert. (mm)   |      |     |       |    |     |     |        |     |                 |                     |      |      |       |      |        |     |       |       |  |
| Riempimento   |      |     |       |    |     |     |        |     |                 |                     |      |      |       |      |        |     |       |       |  |
| 3° Sistema Im | nmer | sio | ne (° | ') | 20  |     |        |     |                 | Inc                 | lina | zio  | ne (  | °)   | 60     |     |       | Media |  |
| Spaz. (cm)    | 2 10 | 6   | 9     | 7  | 29  | 4   | 12     | 12  | 6               | 10                  | 17   | 6    | 17    |      |        |     |       | 10,50 |  |
| Apert. (mm)   |      |     |       |    |     |     |        |     |                 |                     |      |      |       |      |        |     |       |       |  |
| Riempimento   |      |     |       |    |     |     |        |     |                 |                     |      |      |       |      |        |     |       |       |  |
|               |      |     |       |    |     |     |        |     |                 |                     | Indi | ce d | lei b | loco | :hi* ( | cm) |       | 9,29  |  |

# RMR = 48 GSI = (RMR-5) = 43



e.





# STAZIONE ST\_21 (X = 2558960,6178 Y = 4231871,4017 Z = 115,0)

|                     |     | Jv H | 38,  | 50           | Jv | Н   | 36   | ,00               | ٦٧  | Η     | 33                | ,00  | Jv   | Hm   | edio   |      | 35,83 |       |  |
|---------------------|-----|------|------|--------------|----|-----|------|-------------------|-----|-------|-------------------|------|------|------|--------|------|-------|-------|--|
| li se e te me de me |     | Jv V | 29,  | 33           | Jv | V   | 46   | , <mark>67</mark> | J٧  | v     | 40                | ,00, | Jv   | Vm   | edio   |      | 3     | 8,67  |  |
| JV standard         | ٦ ( | lv O | 35,  | 00           | Jv | 0   | 43   | ,33               | Jv  | 0     | 37                | ,00  | Jv   | 0 m  | edio   |      | 3     | 8,44  |  |
|                     | Γ   |      |      |              |    |     |      |                   |     |       | Ν                 | ledi | a to | tale | Jv     |      | 37,65 |       |  |
|                     |     |      |      |              |    | An  | alis | i so              | gge | ettiv | а                 |      |      |      |        |      |       |       |  |
| 1° Sistema          | lmn | ner  | sion | e (°         | )  | 180 |      |                   |     | Inc   | lina              | zio  | ne ( | °)   | 65     |      |       | Media |  |
| Spaz. (cm)          | 11  | 9    | 6    | 9            | 12 | 8   | - 7  | 7                 | 4   | 9     | - 7               | 4    | 6    |      |        |      |       | 7,64  |  |
| Apert. (mm)         |     |      |      |              |    |     |      |                   |     |       |                   |      |      |      |        |      |       |       |  |
| Riempimento         |     |      |      |              |    |     |      |                   |     |       |                   |      |      |      |        |      |       |       |  |
| 2° Sistema          | lmn | ner  | sion | e (°         | )  | 0   |      |                   |     | Inc   | clinazione (°) 30 |      |      |      |        |      |       | Media |  |
| Spaz. (cm)          | 6   | 4    | 3    | 4            | 2  | 4   | 3    | 5                 | - 7 | 4     | 1                 | 5    | 4    |      |        |      |       | 3,93  |  |
| Apert. (mm)         |     |      |      |              |    |     |      |                   |     |       |                   |      |      |      |        |      |       |       |  |
| Riempimento         |     |      |      |              |    |     |      |                   |     |       |                   |      |      |      |        |      |       |       |  |
| 3° Sistema          | lmn | ner  | sion | <b>e (</b> ° | )  | 250 | )    |                   |     | Inc   | lina              | zio  | ne ( | °)   | 55     |      |       | Media |  |
| Spaz. (cm)          | 7   | 4    | 3    | 5            | 6  | 4   | 1    |                   |     |       |                   |      |      |      |        |      |       | 4,88  |  |
| Apert. (mm)         |     |      |      |              |    |     |      |                   |     |       |                   |      |      |      |        |      |       |       |  |
| Riempimento         |     |      |      |              |    |     |      |                   |     |       |                   |      |      |      |        |      |       |       |  |
|                     |     |      |      |              |    |     |      |                   |     |       | Indi              | ce d | ei b | loco | :hi* ( | cm): |       | 5,48  |  |







| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

#### STAZIONE ST\_22

(X = 2558969,1606 Y = 4231965,7045 Z = 160,0)

Plutoniti

|               | Jv H   | 38,67   | Jv H | 40,00    | Jv   | Н    | 38,67     | Jv H    | medio    | 3    | 9,11  |
|---------------|--------|---------|------|----------|------|------|-----------|---------|----------|------|-------|
| by standard   | Jv V   | 31,00   | Jv V | 40,00    | Jv   | V    | 46,00     | Jv V    | medio    | 3    | 9,00  |
| JV standard   | Jv O   | 60,00   | Jv O | 49,00    | Jv   | 0    | 51,00     | Jv O    | medio    | 5    | 3,33  |
|               |        |         |      |          |      |      | Medi      | a tota  | 4        | 3,81 |       |
|               |        |         | Ana  | lisi sog | geti | tiva |           |         |          |      |       |
| 1° Sistema In | nmersi | one (°) | 330  |          |      | Inc  | linazio   | ne (°)  | 75       |      | Media |
| Spaz. (cm)    | 4 7    | 3 7 5   | 7 7  | 2 8      | 2    |      |           |         |          |      | 5,20  |
| Apert. (mm)   |        |         |      |          |      |      |           |         |          |      |       |
| Riempimento   |        |         |      |          |      |      |           |         |          |      |       |
| 2° Sistema Im | nmersi | one (°) | 150  |          |      | Inc  | linazio   |         | Media    |      |       |
| Spaz. (cm)    | 6 7    | 4 6 6   | 5 3  | 7 4      |      |      |           |         |          |      | 5,33  |
| Apert. (mm)   |        |         |      |          |      |      |           |         |          |      |       |
| Riempimento   |        |         |      |          |      |      |           |         |          |      |       |
| 3° Sistema In | nmersi | one (°) | 70   |          |      | Inc  | linazio   | ne (°)  | 45       |      | Media |
| Spaz. (cm)    | 8 6    | 4 5 3   | 4 3  | 7 7      | 8    | 6    |           |         |          |      | 5,55  |
| Apert. (mm)   |        |         |      |          |      |      |           |         |          |      |       |
| Riempimento   |        |         |      |          |      |      |           |         |          |      |       |
|               |        |         |      |          |      |      | Indice of | lei blo | occhi* ( | cm): | 5,36  |

RMR = 41 GSI = (RMR-5) = 36







# STAZIONE ST\_23 (X = 2558636,3865 Y = 4232153,0100 Z = 60,0)

|              |     | Jv  | н    | 28,   | 00  | Jv  | Н   | 29     | ,50 | ٦٧  | /H                  | 27   | ,50   | Jv    | Нm   | edio   |      | 20 | 3,33  |
|--------------|-----|-----|------|-------|-----|-----|-----|--------|-----|-----|---------------------|------|-------|-------|------|--------|------|----|-------|
|              |     | Jv  | v    | 32/   | 1,5 | Jv  | V   | 31     | ,33 | ٦V  | ٧V                  | 22   | ,00   | Jv    | Vm   | edio   |      | 20 | 5,67  |
| JV standard  | ' [ | Jv  | 0    | 32.   | 00  | Jv  | 0   | 34     | .00 | J٧  | 0                   | 39   | .00   | Jv    | 0 m  | edio   |      | 3  | 5.00  |
|              | ľ   |     |      |       |     |     |     |        |     |     |                     | N    | ledia | a tot | tale | Jv     |      | 3  | 0.00  |
|              |     |     |      |       |     | ŀ   | \na | lisi : | soq | get | tiva                |      |       |       |      |        |      |    | ,     |
| 1° Sistema I | mr  | ner | sior | 1e (' | °)  | 270 | )   |        |     | -   | Inc                 | lina | zio   | ne (  | °)   | 58     |      |    | Media |
| Spaz. (cm)   | 5   | 15  | 8    | 8     | 15  | 10  | 2   | 8      | 2   | 4   | 3                   | 22   | 4     |       |      |        |      |    | 8,15  |
| Apert. (mm)  |     |     |      |       |     |     |     |        |     |     |                     |      |       |       |      |        |      |    |       |
| Riempimento  |     |     |      |       |     |     |     |        |     |     |                     |      |       |       |      |        |      |    |       |
| 2° Sistema I | mr  | ner | sior | 1e (' | °)  | 120 | )   |        |     |     | Inclinazione (°) 30 |      |       |       |      |        |      |    | Media |
| Spaz. (cm)   | 12  | 11  | 5    | 11    | 11  | 2   | 10  | 2      | 4   | 32  |                     |      |       |       |      |        |      |    | 10,00 |
| Apert. (mm)  |     |     |      |       |     |     |     |        |     |     |                     |      |       |       |      |        |      |    |       |
| Riempimento  |     |     |      |       |     |     |     |        |     |     |                     |      |       |       |      |        |      |    |       |
| 3° Sistema I | mr  | ner | sior | 1e (' | °)  | 40  |     |        |     |     | Inc                 | lina | zio   | ne (  | °)   | 60     |      |    | Media |
| Spaz. (cm)   | - 7 | 11  | 11   | 17    | 30  | 2   | 10  | 6      | 27  | 3   | 19                  | 18   | 29    |       |      |        |      |    | 14,62 |
| Apert. (mm)  |     |     |      |       |     |     |     |        |     |     |                     |      |       |       |      |        |      |    |       |
| Riempimento  |     |     |      |       |     |     |     |        |     |     |                     |      |       |       |      |        |      |    |       |
|              |     |     |      |       |     |     |     |        |     |     |                     | Indi | ce d  | ei b  | loco | :hi* ( | cm). |    | 10 92 |







# STAZIONE ST\_24

# (X = 2558638,2674 Y = 4232198,5131 Z = 55,0)

|               | Jv H 42,00 Jv H 33,0 |      |       |     |     |     |       |     |     | H                   | 30   | ,00, | Jv   | Hm   | edio  |       | 3     | 5,00  |
|---------------|----------------------|------|-------|-----|-----|-----|-------|-----|-----|---------------------|------|------|------|------|-------|-------|-------|-------|
| h             | Jv                   | v    | 45/1  | 1,5 | Jv  | v   | 28,   | 67  | Jv  | v                   | 28   | ,00  | Jv   | Vm   | edio  |       | 2     | 8,33  |
| JV standard   | Jv                   | 0    | 59,   | 00  | Jv  | 0   | 33,   | 33  | Jv  | 0                   | 44   | ,00  | Jv   | 0 m  | edio  |       | 45,44 |       |
|               |                      |      |       |     |     |     |       |     |     | Media totale Jv     |      |      |      |      |       | 36,26 |       |       |
|               |                      |      |       |     | Α   | nal | isi s | sog | get | tiva                |      |      |      |      |       |       |       |       |
| 1º Sistema Im | mer                  | sio  | ne (° | ')  | 160 |     |       |     |     | Inc                 | lina | zio  | ne ( | °)   | 60    |       |       | Media |
| Spaz. (cm) 6  | i 13                 | - 5  | 14    | 14  | 10  | 9   | 11    | 2   | 4   | 13                  | 15   | 15   |      |      |       |       |       | 10,08 |
| Apert. (mm)   |                      |      |       |     |     |     |       |     |     |                     |      |      |      |      |       |       |       |       |
| Riempimento   |                      |      |       |     |     |     |       |     |     |                     |      |      |      |      |       |       |       |       |
| 2° Sistema Im | Immersione (°) 360   |      |       |     |     |     |       |     |     | Inclinazione (°) 60 |      |      |      |      |       |       |       | Media |
| Spaz. (cm) 8  | 3 13                 | 4    | 2     | 20  | 17  | 8   | 2     | 16  | 10  |                     |      |      |      |      |       |       |       | 10,00 |
| Apert. (mm)   |                      |      |       |     |     |     |       |     |     |                     |      |      |      |      |       |       |       |       |
| Riempimento   |                      |      |       |     |     |     |       |     |     |                     |      |      |      |      |       |       |       |       |
| 3° Sistema Im | mer                  | sioı | ne (° | °)  | 260 |     |       |     |     | Inc                 | lina | zio  | ne ( | °)   | 80    |       |       | Media |
| Spaz. (cm) 1  | 1                    | 3    | 15    | 4   | 11  | 3   | 4     | 3   | 2   | 4                   | - 14 |      |      |      |       |       |       | 5,42  |
| Apert. (mm)   |                      |      |       |     |     |     |       |     |     |                     |      |      |      |      |       |       |       |       |
| Riempimento   |                      |      |       |     |     |     |       |     |     |                     |      |      |      |      |       |       |       |       |
|               |                      |      |       |     |     |     |       |     |     |                     | Indi | ce d | ei b | locc | hi* ( | cm):  |       | 8,50  |







# STAZIONE ST\_26

# (X = 2577552,9683 Y = 4231791,9704 Z = 40,5)

|                 |      | Jv I | н    | 70  | )   | Jv    | Н   | 7   | 3 | J٧ | Η   | (   | 69  | Jv   | Нn   | nedi | 0  |   | 71    |
|-----------------|------|------|------|-----|-----|-------|-----|-----|---|----|-----|-----|-----|------|------|------|----|---|-------|
| ly standard     |      | J٧   | v    | 42  | 2   | Jv    | v   | 3   | 4 | J٧ | v   | 4   | 48  | Jv   | Vn   | nedi | 0  |   | 41    |
| ov standard     |      | Jv ( | b    | 62  | 2   | Jv    | 0   | 5   | 3 | J٧ | 0   | 4   | 55  | Jv   | O n  | nedi | io |   | 57    |
|                 |      |      |      |     |     |       |     |     |   |    |     | М   | edi | a to | tal  | e Jv | ,  |   | 56    |
| 1° Sistema      | Imr  | mei  | rsio | one | (°) |       |     | 340 | ) |    | Inc | lin | azi | on   | e (° | )    | 30 |   | Media |
| Spaziatura (cm) | 7    | 10   | 12   | 5   | 9   | 10    | 14  | 2   | 4 | 4  | 5   |     |     |      |      |      |    |   | 7     |
| Apertura (mm)   |      |      |      |     |     |       |     |     |   |    |     |     |     |      |      |      |    |   |       |
| Riempimento     |      |      |      |     |     |       |     |     |   |    |     |     |     |      |      |      |    |   |       |
| 2° Sistema      | Imr  | mei  | rsio | one | (°) |       |     | 150 | ) |    | Inc | lin | azi | on   | e (° | )    | 50 |   | Media |
| Spaziatura (cm) | 6    | 8    | 6    | 3   | 2   | 9     | 11  | 9   | 8 | 3  |     |     |     |      |      |      |    |   | 7     |
| Apertura (mm)   |      |      |      |     |     |       |     |     |   |    |     |     |     |      |      |      |    |   |       |
| Riempimento     |      |      |      |     |     |       |     |     |   |    |     |     |     |      |      |      |    |   |       |
| 3° Sistema      | Imr  | mei  | rsic | one | (°) |       |     | 10  |   |    | Inc | lin | azi | on   | e (° | )    | 75 | 5 | Media |
| Spaziatura (cm) | 5    | 8    | 8    | 9   | 2   | 2     | 1   | 3   | 3 | 4  | 6   | 5   | 7   | 3    | 4    | 9    | 6  | 3 | 5     |
| Apertura (mm)   |      |      |      |     |     |       |     |     |   |    |     |     |     |      |      |      |    |   |       |
| Riempimento     |      |      |      |     |     |       |     |     |   |    |     |     |     |      |      |      |    |   |       |
| 4° Sistema      | Imr  | mei  | rsic | one | (°) |       |     | 23  | 0 |    | Inc | lin | azi | on   | e (° | )    | 70 | ) | Media |
| Spaziatura (cm) | 4    | 9    | 4    | 12  | 13  | 6     | 9   | 8   | 2 | 4  | 7   |     |     |      |      |      |    |   | 7     |
| Apertura (mm)   |      |      |      |     |     |       |     |     |   |    |     |     |     |      |      |      |    |   |       |
| Riempimento     |      |      |      |     |     |       |     |     |   |    |     |     |     |      |      |      |    |   |       |
| 5° Sistema      | Imr  | mei  | rsic | one | (°) |       |     | 29  | 0 |    | Inc | lin | azi | on   | e (° | )    | 40 | ) | Media |
| Spaziatura (cm) | 4    | 2    | 4    | 1   | 3   | 2     | 5   | 10  | 6 |    |     |     |     |      |      |      |    |   | 4     |
| Apertura (mm)   |      |      |      |     |     |       |     |     |   |    |     |     |     |      |      |      |    |   |       |
| Riempimento     |      |      |      |     |     |       |     |     |   |    |     |     |     |      |      |      |    |   |       |
|                 | Indi | ce   | dei  | blo | cch | i (lb | )*: |     |   |    |     |     |     | (    | 6 cn | n    |    |   |       |

| Stretto<br>di Messina | EurolinK        | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |           |                                                      |  |  |  |  |  |  |
|-----------------------|-----------------|-------------------------------------------------------|-----------|------------------------------------------------------|--|--|--|--|--|--|
| RELAZIONE GEOTE       | ECNICA GENERALE | Codice documento<br>CB0057_F0                         | Rev<br>F0 | Data<br>20/06/2011                                   |  |  |  |  |  |  |
|                       |                 |                                                       | Dip Devid | aon<br>10[1]<br>150[1]<br>230[7]<br>340[4]<br>340[1] |  |  |  |  |  |  |

Basal Angle Lower Hemispher 6 Pales 6 Entries



### 5.3 SABBIE E GHIAIE DI MESSINA



Figura 136





Figura 137





Codice documento CB0057\_F0

#### Sabbie e Ghiaie di Messina- d50(mm)



Figura 138





Codice documento CB0057\_F0









Codice documento CB0057\_F0



Figura 140





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |



Figura 141
















Codice documento CB0057\_F0































### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0







Codice documento CB0057\_F0

#### Sabbie e Ghiaie di Messina- confrontoVs







#### Sabbie e Ghiaie di Messina - confronto Vs







Figura 154



Codice documento CB0057\_F0

#### Sabbie e Ghiaie di Messina- confrontoVs







Figura 156 – G0 da Vs misurate in prove sismiche in foro

Eurolink S.C.p.A.











## RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011







#### RELAZIONE GEOTECNICA GENERALE

| Codice   | documento      |
|----------|----------------|
| CB0057_F | <del>-</del> 0 |

Prove pressiometriche



Figura 159







Tabella 21 Riepilogo caratteristiche fisiche delle sabbie e ghiaie di Messina

| SONDAGGIO     | N°<br>PROVINO | OPERA                                                                              | z<br>(m)   | γ (kN/m³) | γ <sub>d</sub><br>(kN/m <sup>3</sup> ) | γ <sub>s</sub><br>(kN/m <sup>3</sup> ) |
|---------------|---------------|------------------------------------------------------------------------------------|------------|-----------|----------------------------------------|----------------------------------------|
| Svar1         | C1            | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | C1         | 19.71     | 18.04                                  | 26.50                                  |
| Svar1         | C2            | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | C2         | 19.42     | 18.21                                  |                                        |
| Svar1         | C3            | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | C3         | 19.22     | 17.88                                  |                                        |
| Svar1         | C4            | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | C4         | 19.61     | 17.93                                  |                                        |
| C410          | SPT5          | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | SPT5       |           |                                        | 26.52                                  |
| C410          | SPT6          | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | SPT6       |           |                                        | 26.57                                  |
| C410          | SP17          | Galleria Rampa C / ferrovia                                                        | SP17       |           |                                        | 26.62                                  |
| C410          | 5P16          | Colleria Rampa C / ferrovia                                                        | 5P16       |           |                                        | 20.00                                  |
| C410          |               | Galleria Rampa D / ferrovia                                                        | SPTO       |           |                                        | 20.33                                  |
| C410          | SPT10         | Galleria Rampa D / ferrovia                                                        | SPT10      |           |                                        | 26.45                                  |
| C410          | CR2           | Galleria Rampa D / ferrovia                                                        | CR2        |           |                                        | 26.40                                  |
| C410          | SPT11         | Galleria Rampa A / ferrovia                                                        | SPT11      |           |                                        | 26.50                                  |
| C410          | CR3           | Galleria Rampa A / ferrovia                                                        | CR3        |           |                                        | 26.58                                  |
| C410          | CR4           | Galleria Rampa A / ferrovia                                                        | CR4        |           |                                        | 26.33                                  |
| C411          | SPT1          | Rampa D 1+350 -1+800 / Rampa M                                                     | SPT1       |           |                                        | 26.43                                  |
| C411          | SPT2          | Rampa D 1+350 -1+800 / Rampa M                                                     | SPT2       |           |                                        | 26.42                                  |
| C411          | SPT3          | Rampa D 1+350 -1+800 / Rampa M                                                     | SPT3       |           |                                        | 26.62                                  |
| C411          | SPT4          | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | SPT4       |           |                                        | 26.45                                  |
| C411          | SPT5          | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | SPT5       |           |                                        | 26.64                                  |
| C411          | SPT6          | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | SPT6       |           |                                        | 26.44                                  |
| C411          | SPT7          | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | SPT7       |           |                                        | 26.53                                  |
| C411          | CR1           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | CR1        |           |                                        | 26.50                                  |
| C411          | CR2           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | CR2        |           |                                        | 26.91                                  |
| C417          | CI 1          | Galleria Rampa A / ferrovia                                                        | CI1        | 19.46     | 17.4                                   | 26.17                                  |
| C404          | 6             | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 6          |           |                                        | 27.14                                  |
| C404          | /             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     |            |           |                                        | 26.86                                  |
| C404          | 8             | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 8          |           |                                        | 27.21                                  |
| C404          |               | Galleria Rampa A                                                                   |            |           |                                        | 20.93                                  |
| C404          | CZ<br>SDT3    | Galiella Rallipa A<br>Pampa C 1+200 3+300 / Pampa LI / Pampa V / Pampa E/ Pampa C  | CZ<br>SDT3 |           |                                        | 20.01                                  |
| C405          | SPT4          | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G                         | SPT4       |           |                                        | 26.43                                  |
| C405          | SPT5          | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G                         | SPT5       |           |                                        | 26.40                                  |
| C405          | SPT6          | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G                         | SPT6       |           |                                        | 26.68                                  |
| C405          | CR1           | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | CR1        |           |                                        | 26.52                                  |
| C413          | SPT1          | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                                        | SPT1       |           |                                        | 26.76                                  |
| C413          | SPT2          | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                                        | SPT2       |           |                                        | 27.14                                  |
| C413          | SPT3          | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | SPT3       |           |                                        | 26.59                                  |
| C413          | SPT4          | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | SPT4       |           |                                        | 26.59                                  |
| C413          | SPT5          | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | SPT5       |           |                                        | 26.55                                  |
| C413          | SPT6          | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | SPT6       |           |                                        | 26.14                                  |
| C413          | SPT7          | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | SPT7       |           |                                        | 26.46                                  |
| C413          | CR1           | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | CR1        |           |                                        | 27.11                                  |
| C420bis       | SPT1          | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | SPT1       |           |                                        | 26.40                                  |
| C420bis       | SPT2          | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | SPT2       |           |                                        | 26.11                                  |
| C420bis       | SPT3          | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | SPT3       |           |                                        | 26.25                                  |
| C420bis       | SPT4          | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | SPT4       |           |                                        | 26.49                                  |
| C420bis       | SP15          | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | SP15       | 00 70     | 10.5                                   | 26.54                                  |
| SN11          |               | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia |            | 20.73     | 19.5                                   | 26.20                                  |
| SIN11<br>SG15 | C1            | Rampa A U-U+50U / Kampa B U-U+50U / Gallería Kampa C / Gallería Kampa D / Terrovia |            | 21.UZ     | 10.53                                  | 20.20                                  |
| SN12          |               | Rampa C 17200-37300 / Rampa C / Rampa V / Rampa V / Rampa F                        |            | 20.12     | 18.2                                   | 20.00                                  |
| SN13          | C/            | Rampa D 0-0-500 / Rampa C 0-0-500 / Rampa A 0-0-500 / Terrovia                     | C4         | 10.13     | 17.3                                   | 20.90                                  |
| SN10          | C1            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | C1         | 19.33     | 18.2                                   | 26.00                                  |
| SN10          | C2            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | C2         | 20.53     | 18.9                                   | 26.30                                  |
| SN12          | C1            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | C1         | 18.53     | 17.3                                   | 25.90                                  |
| SN12          | C2            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | C2         | 19.63     | 18.1                                   | 26.60                                  |
| SN12          | C3            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | C3         | 21.12     | 19.3                                   | 26.90                                  |
| SN14          | C2            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | C2         | 20.53     | 17.9                                   | 26.10                                  |
| SN14          | C3            | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | C3         | 18.43     | 16.3                                   | 25.90                                  |
| SN14          | C4            | Pampa D 0-0+500 / Pampa C 0-0+500 / Pampa A 0-0+500 / ferrovia                     | C4         | 18/13     | 16.0                                   | 26.30                                  |





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| SONDAGGIO | N°<br>PROVINO | OPERA                                          | z<br>(m) | γ (kN/m³) | γ <sub>d</sub><br>(kN/m <sup>3</sup> ) | γ <sub>s</sub><br>(kN/m³) |
|-----------|---------------|------------------------------------------------|----------|-----------|----------------------------------------|---------------------------|
| C420bis   | SPT6          | Galleria Rampa A / Galleria Rampa D / ferrovia | SPT6     |           |                                        | 26.14                     |
| C420bis   | SPT7          | Galleria Rampa A / Galleria Rampa D / ferrovia | SPT7     |           |                                        | 26.65                     |
| C412      | CI01          | Galleria Rampa D / ferrovia                    | CI01     |           |                                        | 27.20                     |
| C416      | SPT8          | Rampa D_dec                                    | SPT8     |           |                                        | 26.92                     |
| C416      | CR01          | Rampa D_dec                                    | CR01     |           |                                        | 26.63                     |
| C416      | SPT3          | Rampa D_dec                                    | SPT3     |           |                                        | 26.60                     |
| C416      | SPT7          | Rampa D_dec                                    | SPT7     |           |                                        | 27.43                     |
| C416      | SPT11         | Rampa D_dec                                    | SPT11    |           |                                        | 26.62                     |
| C416      | SPT12         | Rampa D_dec                                    | SPT12    |           |                                        | 26.98                     |
| C416      | CR2           | Rampa D_dec                                    | CR2      |           |                                        | 26.64                     |
| C416      | SPT13         | Rampa D_dec                                    | SPT13    |           |                                        | 27.30                     |
| C416      | CR3           | Rampa D_dec                                    | CR3      |           |                                        | 26.95                     |
| C416      | CR4           | Rampa D_dec                                    | CR4      |           |                                        | 27.55                     |
| C416      | CR5           | Rampa D_dec                                    | CR5      |           |                                        | 27.02                     |
| C416      | CR6           | Rampa D_dec                                    | CR6      |           |                                        | 26.77                     |

### Tabella 22 Granulometria Sabbie e ghiaie di Messina

| SONDACCIO |                        | 7(m) | С   | G   | S   | L   | Α   | С   | G   | S   | L   | Α   |
|-----------|------------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SUNDAGGIU | N <sup>°</sup> PROVINO | Z(M) | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] |
| Svar1     | C1                     | 2.8  | 0.0 | 12  | 65  | 15  | 8   | 100 | 100 | 88  | 23  | 8   |
| Svar1     | C2                     | 5.2  | 0.0 | 45  | 46  | 9   | 0   | 100 | 100 | 55  | 9   | 0   |
| Svar1     | C3                     | 15.2 | 0.0 | 33  | 42  | 16  | 9   | 100 | 100 | 67  | 25  | 9   |
| Svar1     | C4                     | 25.2 | 0.0 | 23  | 55  | 15  | 8   | 100 | 100 | 77  | 23  | 8   |
| C410      | SPT5                   | 7.5  | 0.0 | 57  | 39  | 4   | 0   | 100 | 100 | 43  | 4   | 0   |
| C410      | SPT6                   | 9.0  | 0.0 | 55  | 38  | 7   | 0   | 100 | 100 | 45  | 7   | 0   |
| C410      | SPT7                   | 12.0 | 0.0 | 48  | 46  | 6   | 0   | 100 | 100 | 52  | 6   | 0   |
| C410      | SPT8                   | 15.0 | 0.0 | 47  | 47  | 6   | 0   | 100 | 100 | 53  | 6   | 0   |
| C410      | CR1                    | 17.5 | 0.0 | 49  | 35  | 14  | 2   | 100 | 100 | 51  | 16  | 2   |
| C410      | SPT9                   | 18.0 | 0.0 | 60  | 34  | 6   | 0   | 100 | 100 | 40  | 6   | 0   |
| C410      | SPT10                  | 21.5 | 0.0 | 51  | 43  | 6   | 0   | 100 | 100 | 49  | 6   | 0   |
| C410      | CR2                    | 22.1 | 0.0 | 25  | 59  | 13  | 3   | 100 | 100 | 75  | 16  | 3   |
| C410      | SPT11                  | 26.6 | 0.0 | 69  | 27  | 4   | 0   | 100 | 100 | 31  | 4   | 0   |
| C410      | CR3                    | 28.9 | 0.0 | 62  | 26  | 10  | 2   | 100 | 100 | 38  | 12  | 2   |
| C410      | CR4                    | 32.9 | 0.0 | 55  | 40  | 5   | 0   | 100 | 100 | 45  | 5   | 0   |
| C411      | CR1                    | 8.2  | 0.0 | 44  | 33  | 19  | 4   | 100 | 100 | 56  | 23  | 4   |
| C411      | CR2                    | 10.4 | 0.0 | 42  | 33  | 22  | 3   | 100 | 100 | 58  | 25  | 3   |
| C411      | SPT1                   | 1.5  | 0.0 | 27  | 59  | 11  | 3   | 100 | 100 | 73  | 14  | 3   |
| C411      | SPT2                   | 3.0  | 0.0 | 27  | 66  | 7   | 0   | 100 | 100 | 73  | 7   | 0   |
| C411      | SPT3                   | 4.5  | 0.0 | 30  | 60  | 9   | 1   | 100 | 100 | 70  | 10  | 1   |
| C411      | SPT4                   | 6.0  | 0.0 | 64  | 31  | 5   | 0   | 100 | 100 | 36  | 5   | 0   |
| C411      | SPT5                   | 7.5  | 0.0 | 67  | 25  | 8   | 0   | 100 | 100 | 33  | 8   | 0   |
| C411      | SPT6                   | 9.0  | 0.0 | 53  | 39  | 8   | 0   | 100 | 100 | 47  | 8   | 0   |
| C411      | SPT7                   | 16.0 | 0.0 | 54  | 41  | 5   | 0   | 100 | 100 | 46  | 5   | 0   |
| C412      | SPT04                  | 6.0  | 0.0 | 44  | 48  | 8   | 0   | 100 | 100 | 56  | 8   | 0   |
| C412      | SPT05                  | 7.5  | 0.0 | 52  | 41  | 7   | 0   | 100 | 100 | 48  | 7   | 0   |
| C412      | SPT06                  | 9.0  | 0.0 | 45  | 44  | 11  | 0   | 100 | 100 | 55  | 11  | 0   |
| C412      | SPT07                  | 12.0 | 0.0 | 54  | 37  | 9   | 0   | 100 | 100 | 46  | 9   | 0   |
| C412      | SPT08                  | 15.0 | 0.0 | 39  | 53  | 8   | 0   | 100 | 100 | 61  | 8   | 0   |
| C412      | SPT09                  | 18.0 | 0.0 | 32  | 58  | 10  | 0   | 100 | 100 | 68  | 10  | 0   |
| C412      | SPT10                  | 21.0 | 0.0 | 22  | 67  | 11  | 0   | 100 | 100 | 78  | 11  | 0   |
| C412      | SPT11                  | 24.2 | 0.0 | 14  | 76  | 10  | 0   | 100 | 100 | 86  | 10  | 0   |
| C412      | SPT12                  | 27.0 | 0.0 | 22  | 66  | 12  | 0   | 100 | 100 | 78  | 12  | 0   |
| C416      | SPT7                   | 21.0 | 0.0 | 35  | 59  | 6   | 0   | 100 | 100 | 65  | 6   | 0   |
| C416      | SPT9                   | 17.0 | 0.0 | 22  | 66  | 12  | 0   | 100 | 100 | 78  | 12  | 0   |
| C416      | CR01                   | 15.3 | 0.0 | 25  | 58  | 17  | 0   | 100 | 100 | 75  | 17  | 0   |
| C416      | CR05                   | 36.5 | 0.0 | 24  | 61  | 15  | 0   | 100 | 100 | 76  | 15  | 0   |
| C417      | CI1                    | 12.2 | 0.0 | 13  | 69  | 13  | 5   | 100 | 100 | 87  | 18  | 5   |
| C417      | SPT4                   | 6.0  | 0.0 | 28  | 63  | 9   | 0   | 100 | 100 | 72  | 9   | 0   |
| C417      | SPT5                   | 7.5  | 0.0 | 8   | 85  | 7   | 0   | 100 | 100 | 92  | 7   | 0   |
| C417      | SPT6                   | 9.0  | 0.0 | 5   | 86  | 9   | 0   | 100 | 100 | 95  | 9   | 0   |





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| SONDACCIO |           | <b>T</b> (m) | С   | G   | S   | L   | Α   | С   | G   | S   | L   | Α   |
|-----------|-----------|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SUNDAGGIO | N PROVINO | 2(11)        | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] |
| C404      | 6         | 10.0         | 0.0 | 47  | 38  | 11  | 4   | 100 | 100 | 53  | 15  | 4   |
| C404      | 7         | 11.5         | 0.0 | 66  | 27  | 5   | 2   | 100 | 100 | 34  | 7   | 2   |
| C404      | 8         | 13.0         | 0.0 | 32  | 61  | 4   | 3   | 100 | 100 | 68  | 7   | 3   |
| C404      | C1        | 10.7         | 0.0 | 26  | 45  | 20  | 9   | 100 | 100 | 74  | 29  | 9   |
| C404      | C2        | 12.0         | 0.0 | 35  | 44  | 14  | 7   | 100 | 100 | 65  | 21  | 7   |
| C405      | SPT1      | 1.5          | 0.0 | 43  | 47  | 6   | 4   | 100 | 100 | 57  | 10  | 4   |
| C405      | SPT2      | 3.0          | 0.0 | 59  | 33  | 8   | 0   | 100 | 100 | 41  | 8   | 0   |
| C405      | SPT3      | 6.0          | 0.0 | 54  | 37  | 6   | 3   | 100 | 100 | 46  | 9   | 3   |
| C405      | SPT4      | 9.0          | 0.0 | 57  | 36  | 4   | 3   | 100 | 100 | 43  | 7   | 3   |
| C405      | SPT5      | 16.1         | 0.0 | 5   | 82  | 10  | 3   | 100 | 100 | 95  | 13  | 3   |
| C405      | SPT6      | 17.0         | 0.0 | 4   | 87  | 7   | 2   | 100 | 100 | 96  | 9   | 2   |
| C405      | CR1       | 13.8         | 0.0 | 22  | 44  | 23  | 11  | 100 | 100 | 78  | 34  | 11  |
| C413      | SPT1      | 1.5          | 0.0 | 3   | 81  | 13  | 3   | 100 | 100 | 97  | 16  | 3   |
| C413      | SPT2      | 3.0          | 0.0 | 17  | 76  | 7   | 0   | 100 | 100 | 83  | 7   | 0   |
| C413      | SPT3      | 4.5          | 0.0 | 4   | 83  | 9   | 4   | 100 | 100 | 96  | 13  | 4   |
| C413      | SPT4      | 6.0          | 0.0 | 60  | 27  | 9   | 4   | 100 | 100 | 40  | 13  | 4   |
| C413      | SPT5      | 9.0          | 0.0 | 58  | 29  | 10  | 3   | 100 | 100 | 42  | 13  | 3   |
| C413      | SPT6      | 12.0         | 0.0 | 55  | 38  | 7   | 0   | 100 | 100 | 45  | 7   | 0   |
| C413      | CR1       | 10.1         | 0.0 | 59  | 26  | 12  | 3   | 100 | 100 | 41  | 15  | 3   |
| C420bis   | SPT1      | 1.5          | 0.0 | 21  | 68  | 9   | 2   | 100 | 100 | 79  | 11  | 2   |
| C420bis   | SPT2      | 3.4          | 0.0 | 12  | 72  | 14  | 2   | 100 | 100 | 88  | 16  | 2   |
| C420bis   | SPT3      | 4.7          | 0.0 | 9   | 76  | 13  | 2   | 100 | 100 | 91  | 15  | 2   |
| C420bis   | SPT4      | 6.4          | 0.0 | 10  | 75  | 13  | 2   | 100 | 100 | 90  | 15  | 2   |
| C420bis   | SPT5      | 7.6          | 0.0 | 24  | 60  | 13  | 3   | 100 | 100 | 76  | 16  | 3   |
| C420bis   | SPT6      | 9.1          | 0.0 | 24  | 53  | 16  | 7   | 100 | 100 | 76  | 23  | 7   |
| C420bis   | SPT7      | 10.7         | 0.0 | 14  | 60  | 18  | 8   | 100 | 100 | 86  | 26  | 8   |

#### Tabella 23 Riepilogo risultati prove penetrometriche

| FORO | Opera                                                                                | z<br>[m] |
|------|--------------------------------------------------------------------------------------|----------|
| C203 | Galleria Rampa A / ferrovia                                                          | 16.50    |
| C203 | Galleria Rampa A / ferrovia                                                          | 27.00    |
| C203 | Galleria Rampa A / ferrovia                                                          | 30.00    |
| C203 | Galleria Rampa A / ferrovia                                                          | 34.00    |
| C203 | Galleria Rampa A / ferrovia                                                          | 37.00    |
| C211 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0+800-1+325 / ferrovia | 12.10    |
| C211 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0+800-1+325 / ferrovia | 14.00    |
| C211 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0+800-1+325 / ferrovia | 16.50    |
| C211 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0+800-1+325 / ferrovia | 19.50    |
| C211 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0+800-1+325 / ferrovia | 22.00    |
| C211 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0+800-1+325 / ferrovia | 24.50    |
| C211 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0+800-1+325 / ferrovia | 28.00    |
| C212 | Galleria Rampa D / ferrovia                                                          | 7.90     |
| C212 | Galleria Rampa D / ferrovia                                                          | 10.40    |
| C212 | Galleria Rampa D / ferrovia                                                          | 13.00    |
| C212 | Galleria Rampa D / ferrovia                                                          | 15.00    |
| C212 | Galleria Rampa D / ferrovia                                                          | 18.00    |
| C212 | Galleria Rampa D / ferrovia                                                          | 21.00    |
| C8   | Galleria Rampa A / Galleria Rampa B                                                  | 6        |
| C8   | Galleria Rampa A / Galleria Rampa B                                                  | 12.95    |





| RELAZIONE GEOTECNICA GENERALE | Codice documento |
|-------------------------------|------------------|
|                               | CB0057_F0        |

| FORO     | Opera                                                                                | z<br>[m] | Nspt |
|----------|--------------------------------------------------------------------------------------|----------|------|
| C8       | Galleria Rampa A / Galleria Rampa B                                                  | 17.95    | 74   |
| C8       | Galleria Rampa A / Galleria Rampa B                                                  | 23.25    | 78   |
| C8       | Galleria Rampa A / Galleria Rampa B                                                  | 28.75    | 87   |
| C8       | Galleria Rampa A / Galleria Rampa B                                                  | 38.45    | 100  |
| S9DG42   | Galleria Rampa A                                                                     | 21.00    | 56   |
| S9DG42   | Galleria Rampa A                                                                     | 25.50    | 100  |
| S9DG42   | Galleria Rampa A                                                                     | 29.00    | 60   |
| S10DG42  | Rampa D_dec                                                                          | 9.00     | 61   |
| S10DG42  | Rampa D_dec                                                                          | 12.00    | 55   |
| S10DG42  | Rampa D_dec                                                                          | 22.00    | 72   |
| S6       | Galleria Rampa A / Galleria Rampa C / Galleria Rampa D                               | 5.50     | 58   |
| S5       | Galleria Rampa A / Galleria Rampa D / ferrovia                                       | 5.50     | 39   |
| S5       | Galleria Rampa A / Galleria Rampa D / ferrovia                                       | 10.50    | 46   |
| SG15     | Rampa D 1+350 -1+800 / Rampa M                                                       | 5.50     | 87   |
| SG15     | Rampa D 1+350 -1+800 / Rampa M                                                       | 10.40    | 100  |
| SG15     | Rampa D 1+350 -1+800 / Rampa M                                                       | 15.50    | 46   |
| SG15     | Rampa D 1+350 -1+800 / Rampa M                                                       | 20.10    | 100  |
| Svar1    | Rampa D 1+350 -1+800 / Rampa M                                                       | 6.50     | 87   |
| Svar1    | Rampa D 1+350 -1+800 / Rampa M                                                       | 12.5     | 81   |
| Svar1    | Rampa D 1+350 -1+800 / Rampa M                                                       | 18.5     | 88   |
| Svar1    | Rampa D 1+350 -1+800 / Rampa M                                                       | 24.33    | 98   |
| Svar1    | Rampa D 1+350 -1+800 / Rampa M                                                       | 30.50    | 80   |
| SN10     | Rampa D 1+350 -1+800 / Rampa M                                                       | 6.75     | 95   |
| SN10     | Rampa D 1+350 -1+800 / Rampa M                                                       | 12.45    | 40   |
| SN10     | Rampa D 1+350 -1+800 / Rampa M                                                       | 20.45    | 65   |
| SN11     | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                                 | 6.00     | 60   |
| SN11     | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                                 | 11 00    | 92   |
| SN11     | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                                 | 16.00    | 100  |
| SN11     | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                                 | 20.00    | 100  |
| SN12     | Rampa D dec                                                                          | 16.00    | 46   |
| SN12     | Rampa D dec                                                                          | 24.50    | 74   |
| SN12     | Rampa D dec                                                                          | 29.50    | 94   |
| SN13     | Rampa D dec                                                                          | 10.20    | 85   |
| SN13     | Rampa D dec                                                                          | 33.30    | 71   |
| SN14     | Rampa D dec                                                                          | 6.50     | 100  |
| SN14     | Rampa D dec                                                                          | 12.50    | 100  |
| SN14     | Rampa D dec                                                                          | 18.50    | 100  |
| SG13bis  | Galleria Rampa C / Galleria Rampa D / ferrovia                                       | 3.00     | 68   |
| SG13bis  | Galleria Rampa C / Galleria Rampa D / ferrovia                                       | 4.5      | 86   |
| SG13bis  | Galleria Rampa C / Galleria Rampa D / ferrovia                                       | 5.5      | 88   |
| SG13bis  | Galleria Rampa C / Galleria Rampa D / ferrovia                                       | 8.50     | 78   |
| SP1      | ferrovia                                                                             | 5.00     | 100  |
| SP1      | ferrovia                                                                             | 10.00    | 100  |
| SP1      | ferrovia                                                                             | 15.00    | 100  |
| SP1      | ferrovia                                                                             | 20.00    | 100  |
| SP1      | ferrovia                                                                             | 25.00    | 100  |
| SP2      | ferrovia                                                                             | 10.00    | 100  |
| SP2      | ferrovia                                                                             | 15.00    | 100  |
| SP2      | ferrovia                                                                             | 20.00    | 100  |
| SP2      | ferrovia                                                                             | 25.00    | 100  |
| S1       | ferrovia                                                                             | 20.00    | 90   |
| C211     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0+800-1+325 / ferrovia | 4.50     | 40   |
| C211     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0+800-1+325 / ferrovia | 8.00     | 100  |
| FCSPT503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/costa                 | 41.50    | 100  |
| FCSPT503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/costa                 | 43.00    | 100  |
| FCSPT503 | Rampa D 0 0 000 / Rampa C 0 0 000 / Rampa A 0 0 000 / Informational                  | 44 50    | 100  |
| C404     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia   | 10.00    | 40   |
| C404     | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia   | 11 50    | 16   |





### RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| FORO | Opera                                                                              | z<br>[m] | Nspt     |
|------|------------------------------------------------------------------------------------|----------|----------|
| C404 | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 13.00    | 45       |
| C405 | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 1.50     | 57       |
| C405 | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 3.00     | 88       |
| C405 | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 6.00     | 75       |
| C405 | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 9.00     | 100      |
| C405 | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 16.00    | 73       |
| C405 | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 19.00    | 71       |
| C410 | Galleria Rampa A / Galleria Rampa B                                                | 7.50     | 64       |
| C410 | Galleria Rampa A / Galleria Rampa B                                                | 9.00     | 45       |
| C410 | Galleria Rampa A / Galleria Rampa B                                                | 12.00    | 72       |
| C410 | Galleria Rampa A / Galleria Rampa B                                                | 15.00    | 86       |
| C410 | Galleria Rampa A / Galleria Rampa B                                                | 18.00    | 100      |
| C410 | Galleria Rampa A / Galleria Rampa B                                                | 21.50    | 100      |
| C411 | Rampa B 0+800-1+325 / Rampa M                                                      | 1.50     | 6        |
| C411 | Rampa B 0+800-1+325 / Rampa M                                                      | 3.00     | 27       |
| C411 | Rampa B 0+800-1+325 / Rampa M                                                      | 4.50     | 46       |
| C411 | Rampa B 0+800-1+325 / Rampa M                                                      | 6.00     | 78       |
| C411 | Rampa B 0+800-1+325 / Rampa M                                                      | 7.50     | 100      |
| C411 | Rampa B 0+800-1+325 / Rampa M                                                      | 9        | 100      |
| C411 | Rampa B 0+800-1+325 / Rampa M                                                      | 16       | 95       |
| C414 | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | 1.50     | 9        |
| C414 | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | 3.00     | 14       |
| C414 | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | 4.50     | 14       |
| C414 | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | 6.00     | 100      |
| C414 | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | 7.50     | 63       |
| C414 | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | 9.00     | 54       |
| C414 | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | 14.00    | 100      |
| C416 | Rampa D_dec                                                                        | 14.00    | 70       |
| C416 | Rampa D_dec                                                                        | 17.00    | 63       |
| C416 | Rampa D_dec                                                                        | 21.00    | 57       |
| C416 | Rampa D_dec                                                                        | 24.00    | 78       |
| C416 | Rampa D_dec                                                                        | 27.00    | 68       |
| C416 | Rampa D_dec                                                                        | 31.20    | 100      |
| C417 | Rampa D_dec                                                                        | 6.00     | 64       |
| C417 | Rampa D_dec                                                                        | 7.50     | 81       |
| C417 | Rampa D_dec                                                                        | 9.00     | 65       |
| C417 | Rampa D_dec                                                                        | 11.20    | 72       |
| C417 | Rampa D_dec                                                                        | 13.70    | 69       |
| C417 | Rampa D_dec                                                                        | 16.4     | 61       |
| C417 | Rampa D_dec                                                                        | 19.2     | /8       |
| C417 | Rampa D_dec                                                                        | 22.50    | 100      |
| C417 | Rampa D_dec                                                                        | 25.50    | 100      |
| C417 | Rampa D_dec                                                                        | 28.50    | 100      |
| 0417 | Rampa D_dec                                                                        | 32.50    | 100      |
| 0412 | Galleria Rampa D / ferrovia                                                        | 6.00     | 57       |
| 0412 | Galleria Rampa D / ferrovia                                                        | 7.50     | 80       |
| 0412 | Galleria Rampa D / ferrovia                                                        | 9.00     | 98       |
| 0412 | Galleria Rampa D / ferrovia                                                        | 12.00    | 76       |
| 0412 | Galleria Rampa D / Terrovia                                                        | 15.00    | 44       |
| 0412 | Galleria Kampa D / ferrovia                                                        | 18.00    | 42       |
| 0412 | Galleria Rampa D / Terrovia                                                        | 21.00    | 25<br>54 |
| 0412 | Galleria Rampa D / ferrovia                                                        | 24.20    | 51       |
| 0412 | Galleria Rampa D / ferrovia                                                        | 27.00    | 53       |
| 0412 | Galleria Rampa D / terrovia                                                        | 30.00    | /9       |
| 0415 | Kampa D 1+350 -1+800 / Kampa B 0+800-1+325 / Kampa M                               | 3.00     | 100      |
| 0415 | Kampa D 1+350 -1+800 / Kampa B 0+800-1+325 / Kampa M                               | 4.50     | /4       |
| 0415 | Rampa D 1+350 - 1+800 / Rampa B 0+800-1+325 / Rampa M                              | 0.00     | 43       |
| 0415 | Kampa D 1+350 - 1+800 / Kampa B 0+800-1+325 / Kampa M                              | 8.00     | 100      |



## RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| FORO      | Opera                                                                | z<br>[m] | Nspt |
|-----------|----------------------------------------------------------------------|----------|------|
| C415      | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                 | 11.50    | 94   |
| C415      | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                 | 14.00    | 100  |
| C415      | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                 | 18.00    | 100  |
| C413      | Rampa D 1+350 -1+800 / Rampa M                                       | 1.50     | 26   |
| C413      | Rampa D 1+350 -1+800 / Rampa M                                       | 3.00     | 35   |
| C413      | Rampa D 1+350 -1+800 / Rampa M                                       | 4.50     | 38   |
| C413      | Rampa D 1+350 -1+800 / Rampa M                                       | 6.00     | 41   |
| C413      | Rampa D 1+350 -1+800 / Rampa M                                       | 7.50     | 22   |
| C413      | Rampa D 1+350 -1+800 / Rampa M                                       | 9.00     | 83   |
| C413      | Rampa D 1+350 -1+800 / Rampa M                                       | 12.00    | 64   |
| FCLPT1502 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/costa | 42.00    | 40   |
| FCLPT1502 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/costa | 45.00    | 38   |
| FCLPT1502 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/costa | 48.00    | 100  |

#### Tabella 24 Riepilogo risultati prove di permeabilità

| FORO | Opera                                                                              | z(m) | K(m/s)   |
|------|------------------------------------------------------------------------------------|------|----------|
| C404 | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 10   | 1.44E-04 |
| C405 | Galleria Rampa A / Galleria Rampa B / ferrovia                                     | 17.2 | 5.00E-07 |
| C410 | Galleria Rampa A / Galleria Rampa B                                                | 15.5 | 2.70E-05 |
| C410 | Galleria Rampa A / Galleria Rampa B                                                | 25.3 | 7.26E-04 |
| C411 | Rampa B 0+800-1+325 / Rampa M                                                      | 15   | 7.56E-05 |
| C412 | Galleria Rampa D / ferrovia                                                        | 35   | 9.74E-06 |
| C412 | Galleria Rampa D / ferrovia                                                        | 45.6 | 3.60E-05 |
| C414 | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | 8.5  | 1.70E-05 |
| C414 | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | 15.5 | 2.34E-05 |
| C415 | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | 7    | 2.00E-04 |
| C415 | Rampa D 1+350 -1+800 / Rampa B 0+800-1+325 / Rampa M                               | 15.8 | 8.00E-08 |
| C416 | Rampa D_dec                                                                        | 19.5 | 8.90E-05 |
| C416 | Rampa D_dec                                                                        | 30   | 5.90E-05 |
| C417 | Rampa D_dec                                                                        | 10.5 | 9.30E-06 |
| C417 | Rampa D_dec                                                                        | 31   | 3.80E-05 |
| C413 | Rampa D 1+350 -1+800 / Rampa M                                                     | 20.4 | 2.90E-05 |

#### Tabella 25 Riepilogo risultati prove di laboratorio

| SONDAGGIO | N° PROVINO | z<br>(m) | Opera                         | PROVA | c'<br>[kPa] | φ'<br>[°] |
|-----------|------------|----------|-------------------------------|-------|-------------|-----------|
| Svar1     | C1         | 2.75     | Rampa D 1+600-2+200 / Rampa M | TD    | 15          | 38        |
| Svar1     | C2         | 5.20     | Rampa D 1+600-2+200 / Rampa M | TD    | 0           | 38        |
| Svar1     | C3         | 15.20    | Rampa D 1+600-2+200 / Rampa M | TD    | 16          | 40        |
| Svar1     | C4         | 25.20    | Rampa D 1+600-2+200 / Rampa M | TD    | 3           | 38        |
| C417      | CI 1       | 12.2     | Rampa D dec                   | TD    | 15          | 41        |



#### Tabella 26 Riepilogo risultati prove pressiometriche

| FORO | Opera                                               | z (m) | Ep(MPa) | E'(MPa) | <b>¢</b> ' |
|------|-----------------------------------------------------|-------|---------|---------|------------|
| C414 | Rampa D 1+600-2+200 / Rampa B 0+800-1+325 / Rampa M | 12    | 84.38   | 337.52  | 41         |
| C414 | Rampa D 1+600-2+200 / Rampa B 0+800-1+325 / Rampa M | 23.5  | 4.1     | 16.40   | 26         |
| C415 | Rampa D 1+600-2+200 / Rampa B 0+800-1+325 / Rampa M | 10.2  | 34.66   | 138.64  | 41         |
| C415 | Rampa D 1+600-2+200 / Rampa B 0+800-1+325 / Rampa M | 20.8  | 42.8    | 171.20  | 42         |
| C416 | Rampa D_dec                                         |       | 33.66   | 134.64  | 40         |
| C416 | 416 Rampa D_dec                                     |       | 49.5    | 198.00  | 41         |
| C417 | Rampa D_dec                                         |       | 32.64   | 130.56  | 40         |
| C417 | Rampa D_dec                                         |       | 49.76   | 199.04  | 40         |



Codice documento CB0057\_F0

#### Tabella 27 Riepilogo risultati prove sismiche in foro

| FORO    | 7(m)  | Vs     | E'o   |
|---------|-------|--------|-------|
|         | 2(11) | [m/s]  | [MPa] |
| SG15    | 1     | 223    | 231   |
| SG15    | 2     | 249    | 288   |
| SG15    | 3     | 343    | 547   |
| SG15    | 4     | 343    | 547   |
| SG14    | 7     | 311    | 450   |
| SG14    | 8     | 375    | 654   |
| SG14    | 9     | 380    | 671   |
| SG14    | 10    | 523    | 1271  |
| SG14    | 12    | 316    | 464   |
| SG14    | 14    | 408    | 774   |
| SG14    | 15    | 365    | 619   |
| SG14    | 16    | 468    | 1018  |
| SG14    | 18    | 255    | 302   |
| SG14    | 20    | 246    | 281   |
| SG14    | 21    | 450    | 941   |
| SG14    | 22    | 675    | 2118  |
| SG15    | 5     | 337    | 528   |
| SG15    | 6     | 586    | 1596  |
| SG15    | 7     | 458    | 975   |
| SG15    | 8     | 469    | 1022  |
| SG15    | 9     | 476    | 1053  |
| SG15    | 10    | 188    | 164   |
| SG15    | 11    | 149    | 103   |
| SG15    | 12    | 461    | 988   |
| SG15    | 13    | 425    | 840   |
| SG15    | 14    | 605    | 1701  |
| SG15    | 15    | 248    | 286   |
| SG15    | 16    | 310    | 447   |
| SG15    | 17    | 545    | 1381  |
| SG15    | 18    | 331    | 509   |
| SG13BIS | 8     | 440    | 901   |
| SG13BIS | 10    | 336    | 524   |
| SG13BIS | 12    | 350    | 571   |
| C417    | 6.00  | 227.93 | 241   |
| C417    | 7.00  | 267.35 | 332   |
| C417    | 8.00  | 270.68 | 341   |
| C417    | 9.00  | 483.65 | 1087  |
| C417    | 10.00 | 417.14 | 809   |
| C417    | 11.00 | 198.68 | 183   |
| C417    | 12.00 | 431.16 | 864   |
| C417    | 13.00 | 370.1  | 637   |
| C417    | 14.00 | 378.2  | 665   |
| C417    | 15.00 | 304.72 | 432   |
| C417    | 16.00 | 451.26 | 947   |
| C417    | 17.00 | 303.63 | 429   |
| C417    | 18.00 | 403.89 | 758   |
| C417    | 19.00 | 210.08 | 205   |
| C417    | 20.00 | 449.93 | 941   |





### RELAZIONE GEOTECNICA GENERALE

| Codice documento |
|------------------|
| CB0057_F0        |

| 5000 | -()   | Vs     | E'0   |
|------|-------|--------|-------|
| FURU | z(m)  | [m/s]  | [MPa] |
| C417 | 21.00 | 348 70 | 565   |
| C417 | 21.00 | 524.01 | 1220  |
| 0417 | 22.00 | 534.91 | 1330  |
| C417 | 23.00 | 423.4  | 833   |
| C417 | 24.00 | 423.4  | 833   |
| C417 | 25.00 | 473.58 | 1043  |
| C417 | 26.00 | 552 05 | 1417  |
| C417 | 27.00 | 423.03 | 835   |
| 0417 | 27.00 | 423.93 | 635   |
| C417 | 28.00 | 552.62 | 1420  |
| C417 | 29.00 | 383.6  | 684   |
| C417 | 30.00 | 424.28 | 837   |
| C417 | 31.00 | 270    | 339   |
| C417 | 32.00 | 474 68 | 1047  |
| 0417 | 22.00 | 442.00 | 012   |
| 0417 | 33.00 | 443.20 | 913   |
| C417 | 34.00 | 553.62 | 1425  |
| C417 | 35.00 | 622.59 | 1802  |
| C417 | 36.00 | 298.24 | 413   |
| C417 | 37.00 | 498.77 | 1156  |
| C417 | 38.00 | 525    | 1281  |
| C/17 | 30.00 | 490    | 1071  |
| 0417 | 39.00 | 400    | 10/1  |
| C417 | 40.00 | 475.45 | 1051  |
| C415 | 6.00  | 557.75 | 1446  |
| C415 | 7.00  | 108.95 | 55    |
| C415 | 8.00  | 548.67 | 1399  |
| C415 | 9.00  | 254 95 | 302   |
| 0415 | 10.00 | 420 50 | 002   |
| 0415 | 10.00 | 420.58 | 022   |
| C415 | 11.00 | 159.11 | 118   |
| C415 | 12.00 | 606.5  | 1710  |
| C415 | 13.00 | 343.19 | 547   |
| C415 | 14 00 | 730 56 | 2481  |
| C415 | 15.00 | 267.7  | 233   |
| 0415 | 10.00 | 207.7  | 333   |
| C415 | 16.00 | 365.11 | 620   |
| C415 | 17.00 | 283.44 | 373   |
| C415 | 18.00 | 576.08 | 1543  |
| C415 | 19.00 | 216.68 | 218   |
| C415 | 20.00 | 547.06 | 1391  |
| C415 | 21.00 | 221.61 | 228   |
| 0415 | 21.00 | 615.04 | 4700  |
| 6415 | 22.00 | 015.94 | 1763  |
| C415 | 24.00 | 297.3  | 411   |
| C415 | 25.00 | 565.91 | 1489  |
| C416 | 12.00 | 383.63 | 684   |
| C416 | 13 00 | 296.92 | 410   |
| C416 | 14.00 | 316.05 | 467   |
| 0410 | 15.00 | 202.50 |       |
| 0410 | 15.00 | 203.52 | 3/4   |
| C416 | 16.00 | 387.38 | 698   |
| C416 | 17.00 | 391.02 | 711   |
| C416 | 18.00 | 505.69 | 1189  |
| C416 | 19.00 | 318.72 | 472   |
| C416 | 20.00 | 554.8  | 1431  |
| C416 | 21.00 | 402.15 | 752   |
| 0410 | 21.00 | 464.05 | 047   |
| 0410 | 22.00 | 401.25 | 947   |
| C416 | 23.00 | 423.04 | 832   |
| C416 | 24.00 | 378.56 | 666   |
| C416 | 25.00 | 407.97 | 774   |
| C416 | 26 00 | 507.2  | 1196  |
| C416 | 27.00 | 341 54 | 5/2   |
| 0410 | 21.00 | 502 57 | 4474  |
| 0410 | 20.00 | 002.57 | 11/4  |
| C416 | 29.00 | 409.78 | 1026  |
| C416 | 30.00 | 463.42 | 998   |
| C416 | 31.00 | 424.29 | 837   |
| C416 | 32.00 | 629.77 | 1844  |
| C416 | 33.00 | 463 77 | 1000  |
| 0410 | 24.00 | 470.4  | 1000  |
| 0410 | 34.00 | 4/0.4  | 1029  |
| C416 | 35.00 | 463.95 | 1001  |
| C416 | 36.00 | 464.02 | 1001  |
| C416 | 37.00 | 300.03 | 418   |
| C416 | 38.00 | 563 35 | 1475  |
| C/16 | 30.00 | 643.07 | 1022  |
| 0410 | 40.00 | 560.07 | 1522  |
| C416 | 40.00 | 569.97 | 1510  |



5.3.1 G.N. Rampa A











































Vs


## RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0







Figura 171 - G0 da Vs misurate in prove sismiche in foro





### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011



Figura 172









### RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057 F0        |  |





#### 5.3.2 G.N. Rampa B





Figura 175







eo































#### 5.3.3 G.N. Rampa D











eo



Figura 185

























#### 5.3.4 Rampa B da Km 0+800



















































### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011














## RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0















#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011





#### 5.3.5 Rampa D da Km 1+350



















































## RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0



Figura 215





Figura 216- G0 da Vs misurate in prove sismiche in foro





## RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0









Eurolink S.C.p.A.





## RELAZIONE GEOTECNICA GENERALE

Codice documento

CB0057\_F0





5.3.6 Rampa D\_dec









Codice documento CB0057\_F0

#### Dr Cubrinovski e Ishihahara (1999) Componente ghiaiosa e sabbiosa SABBIE E GHIAIE DI MESSINA









































Vs

Figura 229



# RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0







Figura 231- G0 da Vs misurate in prove sismiche in foro





## RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |









Figura 233 - G0 da Vs misurate in prove sismiche in foro





# RELAZIONE GEOTECNICA GENERALE

| Codice | documento |
|--------|-----------|
| CB0057 | F0        |



Figura 234



# 5.4 DEPOSITI TERRAZZATI MARINI







Figura 236










| PROGETTO DEFINITIVO |     |            |
|---------------------|-----|------------|
| odice documento     | Rev | Data       |
| B0057_F0            | F0  | 20/06/2011 |

Ponte sullo Stretto di Messina







Codice documento CB0057\_F0















# eo – Tratta da Km 0 a 0+500





























Figura 247





















Codice documento CB0057\_F0







Figura 253







Codice documento CB0057\_F0































Codice documento CB0057\_F0



































Figura 269 – riepilogo generale





Figura 270 – riepilogo generale





Codice documento CB0057\_F0









Figura 272




#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0































Codice documento CB0057\_F0







Codice documento CB0057\_F0













Pagina 514 di 688





#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011



Figura 283 -G0 da Vs misurate in prove sismiche in foro – riepilogo generale

Eurolink S.C.p.A.

Pagina 515 di 688











#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011



Figura 285- riepilogo generale



#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0







#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011



Figura 287



Codice documento CB0057\_F0











Eurolink S.C.p.A.



Codice documento CB0057\_F0







### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011



Figura 291





#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011



Figura 292 - G0 da Vs misurate in prove sismiche in foro







Eurolink S.C.p.A.









#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011







#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011











Eurolink S.C.p.A.



Codice documento CB0057\_F0







#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011







#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011



Figura 300- G0 da Vs misurate in prove sismiche in foro







Eurolink S.C.p.A.





## RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |



Figura 302 – riepilogo generale





#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011













Tabella 28 Riepilogo caratteristiche fisiche dei depositi terrazzati marini

| SONDAGGIO | N° PROVINO   | OPERA                                                                              | z<br>(m) | γ (kN/m³) | γ <sub>d</sub><br>(kN/m <sup>3</sup> ) | γ <sub>s</sub><br>(kN/m <sup>3</sup> ) |
|-----------|--------------|------------------------------------------------------------------------------------|----------|-----------|----------------------------------------|----------------------------------------|
| C410      | SPT1         | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | 1.5      |           | ,                                      | 26.42                                  |
| C410      | SPT2         | Galleria Rampa D                                                                   | 3.0      |           |                                        | 26.80                                  |
| C410      | SPT3         | Galleria Rampa D                                                                   | 4.5      |           |                                        | 26.90                                  |
| C410      | SPT4         | Galleria Rampa D                                                                   | 6.0      |           |                                        | 26.63                                  |
| C403bis   | SPT3         | Rampa D_dec                                                                        | 4.5      |           |                                        | 26.30                                  |
| Cn451     | SPT4         | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 6.0      |           |                                        | 26.86                                  |
| Cn451     | SPT5         | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 7.3      |           |                                        | 27.18                                  |
| Cn451     | SP16         | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 9.0      |           |                                        | 26.49                                  |
| Cn451     | SP17         | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 12.0     |           |                                        | 26.51                                  |
| Cn451     | SP18         | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 15.2     |           |                                        | 26.71                                  |
| Cn451     | SP19         | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 17.7     |           |                                        | 20.53                                  |
| C11451    | SP110        | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                        | 20.5     |           |                                        | 20.71                                  |
| C434      | SP12<br>SPT2 | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 3.0      |           |                                        | 20.07                                  |
| C434      | SPT/         | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 4.0      |           |                                        | 26.17                                  |
| C434      | SPT5         | Rampa A 0-0+500 / Rampa B 0-0+300 / Calleria Rampa C / Calleria Rampa D / ferrovia | 7.5      |           |                                        | 26.42                                  |
| C434      | SPT7         | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 12.0     |           |                                        | 26.30                                  |
| SN14      | C1           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 6.0      | 18.33     | 17 1                                   | 26.00                                  |
| C425      | SPT4         | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 6.0      | 10.00     |                                        | 26.00                                  |
| C425      | SPT5         | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 7.5      |           |                                        | 26.55                                  |
| C425      | SPT6         | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 9.5      |           |                                        | 26.73                                  |
| C425      | SPT7         | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 12.5     |           |                                        | 26.59                                  |
| C425      | CI01         | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 14.3     |           |                                        | 25.50                                  |
| C425      | SPT8         | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 14.7     |           |                                        | 26.59                                  |
| C425      | SPT9         | Galleria Rampa C / Galleria Rampa D / ferrovia                                     | 17.6     |           |                                        | 26.97                                  |
| C429      | SPT3         | Rampa D_dec                                                                        | 4.5      |           |                                        | 26.74                                  |
| C429      | SPT4         | Rampa D_dec                                                                        | 6.0      |           |                                        | 27.13                                  |
| C429      | SPT6         | Rampa D_dec                                                                        | 9.2      |           |                                        | 26.96                                  |
| C430      | SPT5         | Rampa D_dec                                                                        | 7.7      |           |                                        | 26.56                                  |
| C430      | SPT7         | Rampa D_dec                                                                        | 12.0     |           |                                        | 26.57                                  |
| C432      | SPT3         | Rampa D_dec                                                                        | 4.5      |           |                                        | 26.34                                  |
| C432      | CR1          | Rampa D_dec                                                                        | 12.9     |           |                                        | 26.64                                  |
| C433      | SPT4         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 6.5      |           |                                        | 26.83                                  |
| C433      | SPT5         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 8.0      |           |                                        | 26.66                                  |
| C433      | SPT6         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 9.5      |           |                                        | 26.40                                  |
| C433      | SP17         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 12.8     |           |                                        | 26.63                                  |
| C433      | SP18         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 16.5     |           |                                        | 26.61                                  |
| C435      | SP15         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 7.6      |           |                                        | 26.39                                  |
| 0435      | SPID         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 9.0      |           | 17.0                                   | 26.68                                  |
| C435      |              | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 12.0     |           | 17.2                                   | 20.94                                  |
| C402      | SPT1         | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 1.5      |           |                                        | 20.20                                  |
| C402      | SF12<br>SPT2 | Rampa A 0.0+500 / Rampa B 0.0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 3.0      |           |                                        | 20.39                                  |
| C402      | SPT4         | Rampa A 0-0+500 / Rampa B 0-0+500 / Galleria Rampa C / Galleria Rampa D / ferrovia | 4.5      |           |                                        | 26.00                                  |
| C402      | CR1          | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 6.6      |           |                                        | 26.64                                  |
| C402      | SPT5         | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 7.5      |           |                                        | 26.79                                  |
| C427      | SPT3         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 4.5      |           |                                        | 26.31                                  |
| C427      | SPT4         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 6.0      |           |                                        | 26.24                                  |
| C427      | SPT5         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 7.5      |           |                                        | 26.49                                  |
| C427      | CR01         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 8.2      |           |                                        | 26.09                                  |
| C427      | SPT6         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 9.0      |           |                                        | 26.11                                  |
| C427      | SPT7         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 12.0     |           |                                        | 26.66                                  |
| C427      | CR02         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 13.9     |           |                                        | 26.78                                  |
| C432      | SPT6         | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 9.0      |           |                                        | 26.33                                  |
| C416      | SPT1         | Rampa D_dec                                                                        | 1.5      |           |                                        | 26.89                                  |
| C416      | SPT3         | Rampa D_dec                                                                        | 4.8      |           |                                        | 26.94                                  |
| C416      | SPT4         | Rampa D_dec                                                                        | 6.2      |           |                                        | 26.72                                  |
| C416      | SPT6         | Rampa D_dec                                                                        | 7.2      |           |                                        | 27.05                                  |
| C416      | SPT5         | Rampa D_dec                                                                        | 7.5      |           |                                        | 26.58                                  |
| C428      | SPT1         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 1.5      |           |                                        | 26.40                                  |
| C428      | SPT2         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 3.0      |           |                                        | 26.54                                  |
| C428      | SPT3         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 4.5      |           |                                        | 26.56                                  |
| C428      | SPT4         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 6.0      |           | ļ                                      | 26.22                                  |
| C428      | SPT5         | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 7.5      | 1         | 1                                      | 26.43                                  |



RELAZIONE GEOTECNICA GENERALE



## Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento CB0057\_F0

#### Tabella 29 Granulometria dei depositi terrazzati marini

| SONDAGGIO | N° PROVINO   | z (m)                  | С   | G        | S        | L       | Α   | С   | G   | S        | L            | Α   |
|-----------|--------------|------------------------|-----|----------|----------|---------|-----|-----|-----|----------|--------------|-----|
| 00402     | 0074         | 4.5                    | [%] | [%]      | [%]      | [%]     | [%] | [%] | [%] | [%]      | [%]          | [%] |
| CS103     | SPT1         | 1.5                    | 0   | 1        | 86       | 13      | 0   | 100 | 100 | 99       | 13           | 0   |
| CS103     |              | 3.5                    | 0   | <u> </u> | 41       | 10      | 2   | 100 | 100 | 02       | 21           | 2   |
| C3103     | SP14<br>SDT1 | 4.0                    | 0   | 9<br>42  | 47       | 0       | 2   | 100 | 100 | 59       | 20           | 2   |
| C410      | SPT2         | 3.0                    | 0   | 42       | 47       | 9<br>7  | 0   | 100 | 100 | 52       | 7            | 0   |
| C410      | SPT3         | 4.5                    | 0   | 56       | 37       | 7       | 0   | 100 | 100 | 44       | 7            | 0   |
| C410      | SPT4         | <del>-</del> .5<br>6.0 | 0   | 43       | 46       | 9       | 2   | 100 | 100 | 57       | 11           | 2   |
| C412      | SPT01        | 1.5                    | 0   | 40       | 40       | 12      | 0   | 100 | 100 | 56       | 12           | 0   |
| C412      | SPT02        | 3.0                    | 0   | 52       | 40       | 8       | 0   | 100 | 100 | 48       | 8            | 0   |
| C412      | SPT03        | 4.5                    | 0   | 54       | 36       | 10      | 0   | 100 | 100 | 46       | 10           | 0   |
| C416      | SPT1         | 1.5                    | 0   | 44       | 46       | 10      | 0   | 100 | 100 | 56       | 10           | 0   |
| C416      | SPT2         | 3.0                    | 0   | 22       | 60       | 18      | 0   | 100 | 100 | 78       | 18           | 0   |
| C416      | SPT3         | 4.8                    | 0   | 25       | 68       | 7       | 0   | 100 | 100 | 75       | 7            | 0   |
| C416      | SPT4         | 6.2                    | 0   | 34       | 58       | 8       | 0   | 100 | 100 | 66       | 8            | 0   |
| C416      | SPT5         | 7.5                    | 0   | 28       | 66       | 6       | 0   | 100 | 100 | 72       | 6            | 0   |
| C416      | SPT6         | 9.2                    | 0   | 41       | 53       | 6       | 0   | 100 | 100 | 59       | 6            | 0   |
| C428      | SPT2         | 3.0                    | 0   | 26       | 63       | 11      | 0   | 100 | 100 | 74       | 11           | 0   |
| C428      | SPT5         | 7.5                    | 0   | 56       | 33       | 11      | 0   | 100 | 100 | 44       | 11           | 0   |
| Cn451     | SPT5         | 7.3                    | 0   | 57       | 33       | 9       | 1   | 100 | 100 | 43       | 10           | 1   |
| Cn451     | SPT6         | 9.0                    | 0   | 48       | 44       | 8       | 0   | 100 | 100 | 52       | 8            | 0   |
| Cn451     | SPT7         | 12.0                   | 0   | 36       | 53       | 8       | 3   | 100 | 100 | 64       | 11           | 3   |
| C434      | SPT2         | 3.0                    | 0   | 37       | 46       | 15      | 2   | 100 | 100 | 63       | 17           | 2   |
| C434      | SPT3         | 4.6                    | 0   | 22       | 55       | 18      | 5   | 100 | 100 | 78       | 23           | 5   |
| C434      | SP14         | 6.0                    | 0   | 23       | 60       | 15      | 3   | 100 | 100 | //       | 18           | 3   |
| 0434      | SP15         | 1.5                    | 0   | 25       | 49       | 21      | 5   | 100 | 100 | 75       | 26           | 5   |
| 0434      | SP17         | 12.0                   | 0   | 22       | 60       | 14      | 4   | 100 | 100 | /8       | 18           | 4   |
| C425      | SP10         | 9.5                    | 0   | 3        | 04<br>72 | 28      | 5   | 100 | 100 | 97       | 33           | 5   |
| C425      |              | 12.5                   | 0   | 3        | 13       | 20      | 4   | 100 | 100 | 97       | 24           | 4   |
| C425      | SPT0         | 14.7                   | 0   | <u> </u> | 78       | 20      | 3   | 100 | 100 | 90       | - 30<br>- 18 | 3   |
| C429      | SPT3         | 4.5                    | 0   | 21       | 64       | 12      | 3   | 100 | 100 | 90<br>79 | 10           | 3   |
| C429      | SPT4         | - <del>1</del> .0      | 0   | 20       | 59       | 16      | 5   | 100 | 100 | 80       | 21           | 5   |
| C430      | SPT5         | 77                     | 0   | 33       | 59       | 8       | 0   | 100 | 100 | 67       | 8            | 0   |
| C430      | SPT7         | 12.0                   | 0   | 49       | 41       | 10      | 0   | 100 | 100 | 51       | 10           | 0   |
| C432      | SPT1         | 1.5                    | 0   | 40       | 43       | 17      | 0   | 100 | 100 | 60       | 17           | 0   |
| C432      | SPT2         | 3.1                    | 0   | 4        | 46       | 37      | 13  | 100 | 100 | 96       | 50           | 13  |
| C432      | SPT3         | 4.5                    | 0   | 7        | 51       | 31      | 11  | 100 | 100 | 93       | 42           | 11  |
| C432      | SPT4         | 6.0                    | 0   | 42       | 41       | 17      | 0   | 100 | 100 | 58       | 17           | 0   |
| C432      | SPT5         | 7.6                    | 0   | 34       | 49       | 13      | 4   | 100 | 100 | 66       | 17           | 4   |
| C432      | SPT6         | 9.0                    | 0   | 13       | 59       | 21      | 7   | 100 | 100 | 87       | 28           | 7   |
| C432      | SPT7         | 11.0                   | 0   | 66       | 28       | 6       | 0   | 100 | 100 | 34       | 6            | 0   |
| C432      | CR1          | 12.9                   | 0   | 49       | 34       | 14      | 3   | 100 | 100 | 51       | 17           | 3   |
| C432      | SPT8         | 14.2                   | 0   | 61       | 31       | 8       | 0   | 100 | 100 | 39       | 8            | 0   |
| C433      | SPT4         | 6.5                    | 0   | 12       | 63       | 20      | 5   | 100 | 100 | 88       | 25           | 5   |
| C433      | SPT5         | 8.0                    | 0   | 7        | 58       | 30      | 5   | 100 | 100 | 93       | 35           | 5   |
| C433      | SPT6         | 9.5                    | 0   | 23       | 60       | 14      | 3   | 100 | 100 | 77       | 17           | 3   |
| C433      | SPT7         | 12.8                   | 0   | 4        | 53       | 39      | 4   | 100 | 100 | 96       | 43           | 4   |
| 0433      | 5218         | 16.5                   | 0   | 5        | 50       | 38      | (   | 100 | 100 | 95       | 45           |     |
| C435      | 5715         | 1.0                    | 0   | 55       | 35       | 10      | 0   | 100 | 100 | 45       | 10           | 0   |
| C430      | 0110         | 9.0                    | 0   | 12       | 20       | 0<br>32 | 10  | 100 | 100 | 34<br>97 | 0<br>12      | 10  |
| C402      |              | 12.0                   | 0   | 13       | 44<br>1  | 12      | 10  | 100 | 100 | 56       | 40           | 2   |
| C402      | SPT2         | 3.0                    | 0   | 62       | 28       | 10      | 0   | 100 | 100 | 28       | 10           | 0   |
| C402      | SPT3         | 4.5                    | 0   | 50       | 20       | 15      | 8   | 100 | 100 | 50       | 23           | 8   |
| C402      | SPT4         | 6.0                    | 0   | 45       | 38       | 12      | 5   | 100 | 100 | 55       | 17           | 5   |
| C402      | CR1          | 6.6                    | 0   | 48       | 33       | 13      | 6   | 100 | 100 | 52       | 19           | 6   |
| C402      | SPT5         | 7.5                    | 0   | 77       | 20       | 3       | 0   | 100 | 100 | 23       | 3            | 0   |
| C427      | SPT3         | 4.5                    | 0   | 15       | 37       | 38      | 10  | 100 | 100 | 85       | 48           | 10  |
| C427      | SPT4         | 6.0                    | 0   | 28       | 58       | 11      | 3   | 100 | 100 | 72       | 14           | 3   |
| C427      | SPT5         | 7.5                    | 0   | 9        | 61       | 25      | 5   | 100 | 100 | 91       | 30           | 5   |
| C427      | CR01         | 8.2                    | 0   | 11       | 54       | 30      | 5   | 100 | 100 | 89       | 35           | 5   |
| C427      | SPT6         | 9.0                    | 0   | 17       | 67       | 13      | 3   | 100 | 100 | 83       | 16           | 3   |
| C427      | SPT7         | 12.0                   | 0   | 8        | 55       | 30      | 7   | 100 | 100 | 92       | 37           | 7   |
| C427      | CR02         | 13.9                   | 0   | 37       | 33       | 25      | 5   | 100 | 100 | 63       | 30           | 5   |





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| SONDAGGIO | N° PROVINO | z (m) | C<br>[%] | G<br>[%] | S<br>[%] | L<br>[%] | A<br>[%] | C<br>[%] | G<br>[%] | S<br>[%] | L<br>[%] | A<br>[%] |
|-----------|------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| C425      | SPT4       | 6.0   | 0        | 3        | 68       | 24       | 5        | 100      | 100      | 97       | 29       | 5        |
| C425      | SPT5       | 7.5   | 0        | 2        | 71       | 23       | 4        | 100      | 100      | 98       | 27       | 4        |
| C425      | CI01       | 14.3  | 0        | 1        | 77       | 22       | 0        | 100      | 100      | 99       | 22       | 0        |
| C403bis   | SPT3       | 4.5   | 0        | 13       | 40       | 35       | 12       | 100      | 100      | 87       | 47       | 12       |

#### Tabella 30 Riepilogo risultati prove penetrometriche

| FORO       | Opera                                                                              | z<br>[m] | Nspt |
|------------|------------------------------------------------------------------------------------|----------|------|
| SN12       | Rampa D_dec                                                                        | 6.5      | 37   |
| SN12       | Rampa D_dec                                                                        | 9.7      | 57   |
| C212       | Galleria Rampa D / ferrovia                                                        | 4.60     | 41   |
| CS102      | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 1.50     | 23   |
| CS102      | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 3.00     | 23   |
| CS102      | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 4.50     | 25   |
| CS102      | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 6.00     | 21   |
| CS102      | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 7.50     | 31   |
| CS102      | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 10.80    | 61   |
| S1         | ferrovia                                                                           | 8.00     | 36   |
| S1         | ferrovia                                                                           | 13.00    | 27   |
| S2         | ferrovia                                                                           | 3.00     | 17   |
| S2         | ferrovia                                                                           | 9.00     | 37   |
| S2         | ferrovia                                                                           | 14.50    | 60   |
| S2         | ferrovia                                                                           | 19.00    | 77   |
| S2         | ferrovia                                                                           | 24.20    | 82   |
| S3         | Galleria Rampa A / ferrovia                                                        | 4.30     | 41   |
| S3         | Galleria Rampa A / ferrovia                                                        | 10.50    | 51   |
| S3         | Galleria Rampa A / ferrovia                                                        | 15.70    | 56   |
| S3         | Galleria Rampa A / ferrovia                                                        | 17.00    | 83   |
| S3         | Galleria Rampa A / ferrovia                                                        | 21.00    | 78   |
| SN8        | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 6        | 21   |
| SN8        | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 12.5     | 22   |
| SN8        | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 20       | 8    |
| SN9        | Rampa C_dec                                                                        | 6.5      | 48   |
| SN9        | Rampa C_dec                                                                        | 12.5     | 13   |
| S7         | Galleria Rampa D / ferrovia                                                        | 5.5      | 68   |
| OTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 1.5      | 23   |
| OTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 3        | 55   |
| OTCLPT1505 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 4.5      | 100  |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 1.5      | 22   |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 3        | 21   |
| OTCLPT2503 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 5        | 10   |
| OTCSPT504  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 1.5      | 54   |
| OTCCH1501  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                     | 1.5      | 3    |
| C403bis    | Rampa A 0-0+500 / Rampa B 0-0+300 / Galleria Rampa C / Galleria Rampa D / ferrovia | 4.5      | 24   |
| C410       | Galleria Rampa A / Galleria Rampa B                                                | 1.5      | 33   |
| C410       | Galleria Rampa A / Galleria Rampa B                                                | 3        | 25   |
| C410       | Galleria Rampa A / Galleria Rampa B                                                | 4.5      | 25   |
| C410       | Galleria Rampa A / Galleria Rampa B                                                | 6        | 31   |
| C416       | Rampa D_dec                                                                        | 1.5      | 36   |
| C416       | Rampa D_dec                                                                        | 3        | 42   |
| C416       | Rampa D_dec                                                                        | 4.8      | 46   |
| C416       | Kampa D_dec                                                                        | 6.2      | 56   |
| C416       | Kampa D_dec                                                                        | 1.5      | 45   |
| C416       | Kampa D_dec                                                                        | 9.2      | 36   |
| C416       | Rampa D_dec                                                                        | 10.6     | 46   |
| C428       | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 3        | 22   |
| C428       | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 4.5      | 18   |
| C428       | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 1.5      | 100  |
| C428       | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F                                  | 9        | 100  |
| C430       | Rampa C 1+200-3+300 / Rampa F / Rampa V                                            | 7.65     | 39   |





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento | Rev | Data       |
|------------------|-----|------------|
| CB0057_F0        | F0  | 20/06/2011 |

| FORO  | Opera                                                      | z<br>[m] | Nspt |
|-------|------------------------------------------------------------|----------|------|
| C430  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 9        | 16   |
| C430  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 12       | 27   |
| Cn451 | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 6        | 54   |
| Cn451 | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 7.3      | 94   |
| Cn451 | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 9        | 64   |
| Cn451 | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 12       | 65   |
| Cn451 | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 15.2     | 100  |
| C412  | Galleria Rampa D / ferrovia                                | 1.5      | 97   |
| C412  | Galleria Rampa D / ferrovia                                | 3        | 72   |
| C412  | Galleria Rampa D / ferrovia                                | 4.5      | 69   |
| C425  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G | 6        | 12   |
| C425  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G | 7.5      | 18   |
| C425  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G | 9.6      | 20   |
| C425  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G | 12.5     | 24   |
| C425  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G | 14.7     | 26   |
| C425  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G | 17.6     | 52   |
| C427  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 4.5      | 17   |
| C427  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 6        | 26   |
| C427  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 9        | 29   |
| C427  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F          | 12       | 100  |
| C429  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 1.5      | 29   |
| C429  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 3        | 37   |
| C429  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 4.5      | 25   |
| C429  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 6        | 29   |
| C429  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 7.7      | 100  |
| C432  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 1.5      | 42   |
| C432  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 3.1      | 9    |
| C432  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 4.5      | 37   |
| C432  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 6        | 34   |
| C432  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 7.6      | 44   |
| C432  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 9        | 27   |
| C432  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 11       | 100  |
| C435  | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                | 4.5      | 4    |
| C435  | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                | 6.2      | 20   |
| C435  | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                | 7.6      | 54   |
| C435  | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                | 9        | 23   |
| C434  | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                | 3        | 40.0 |
| C434  | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                | 4.6      | 27.0 |
| C434  | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                | 6        | 35.0 |
| C434  | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                | 7.5      | 99.0 |
| C434  | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc_               | 12       | 51.0 |

#### Tabella 31 Riepilogo risultati prove di permeabilità

| FORO  | Opera                                                      | z(m) | K(m/s)   |
|-------|------------------------------------------------------------|------|----------|
| C425  | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G | 10.5 | 2.17E-05 |
| C430  | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 11.5 | 1.60E-04 |
| Cn451 | Rampa C 1+200-3+300 / Rampa F / Rampa V                    | 16   | 1.50E-06 |

#### Tabella 32 Riepilogo risultati prove pressiometriche

| FORO | Opera                         | z (m) | Ep(MPa) | E'(MPa) | ф'    |
|------|-------------------------------|-------|---------|---------|-------|
| SN8  | Rampa C 1+200-3+300 / Rampa V | 16.5  | 13.98   | 42.36   | 39.30 |
| SN9  | Ramo C_dec                    | 17.5  | 15.26   | 46.23   | 37.50 |


## Tabella 33 Riepilogo risultati prove sismiche in foro

| FORO      | <b>7</b> (m) | Vs     | E'0   |
|-----------|--------------|--------|-------|
| FURU      | 2(m)         | [m/s]  | [MPa] |
| CS101     | 4.0          | 375    | 755   |
| CS103     | 4.0          | 417    | 937   |
| SG14      | 4.0          | 332    | 593   |
| SG14      | 6.0          | 454    | 1109  |
| C415      | 1.0          | 172.01 | 159   |
| C415      | 2.0          | 251.28 | 340   |
| C415      | 3.0          | 142.57 | 109   |
| C415      | 4.0          | 398.06 | 853   |
| C415      | 5.0          | 491.32 | 1299  |
| C416      | 1.0          | 270.06 | 393   |
| C416      | 2.0          | 335.66 | 606   |
| C416      | 3.0          | 221.78 | 265   |
| C416      | 4.0          | 350.7  | 662   |
| C416      | 5.0          | 262.32 | 370   |
| C416      | 6.0          | 519.36 | 1452  |
| C416      | 7.0          | 322.14 | 559   |
| C416      | 8.0          | 299.52 | 483   |
| C416      | 9.0          | 277.81 | 415   |
| C416      | 10.0         | 488.67 | 1285  |
| C416      | 11.0         | 266.86 | 383   |
| Cn451     | 1.0          | 183.28 | 181   |
| Cn451     | 2.0          | 126.45 | 86    |
| Cn451     | 3.0          | 189.62 | 194   |
| Cn451     | 4.0          | 353.57 | 673   |
| Cn451     | 5.0          | 144.95 | 113   |
| Cn451     | 6.0          | 152.75 | 126   |
| Cn451     | 7.0          | 270.74 | 395   |
| Cn451     | 8.0          | 395.44 | 842   |
| Cn451     | 9.0          | 313.99 | 531   |
| Cn451     | 10.0         | 424.31 | 969   |
| Cn451     | 11.0         | 397.16 | 849   |
| Cn451     | 12.0         | 554.61 | 1656  |
| Cn451     | 13.0         | 381.3  | 783   |
| Cn451     | 14.0         | 462    | 1149  |
| Cn451     | 15.0         | 475.27 | 1216  |
| C403bis   | 1.0          | 172.01 | 159   |
| C403bis   | 2.0          | 181.82 | 178   |
| C403bis   | 3.0          | 158.08 | 134   |
| C430      | 3.0          | 272.99 | 401   |
| C430      | 4.0          | 318.95 | 548   |
| C430      | 5.0          | 378.89 | 773   |
| C430      | 6.0          | 401.4  | 867   |
| C430      | 7.0          | 224.76 | 272   |
| C430      | 8.0          | 207.99 | 233   |
| C430      | 9.0          | 165.03 | 147   |
| C430      | 10.0         | 244.15 | 321   |
| C430      | 11.0         | 264.31 | 376   |
| OTCCH1501 | 1.0          | 206    | 228   |
| OTCCH1501 | 2.0          | 258    | 358   |



# 5.5 DEPOSITI COSTIERI DI SPIAGGIA



#### Depositi costieri di spiaggia









Codice documento CB0057\_F0

#### Depositi costieri- d50(mm) (mm) 1 2 3 6 7 8 0 4 5 9 0 . 5 8 8 . 8 10 0 • • • • 8 0 15 • 20 ۵ 8 . □ Sprofonditada p.c. [m] • • • • • • • • 40 45 50 55 60





Codice documento CB0057\_F0



























































#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011









Codice documento CB0057\_F0



Figura 320



Codice documento CB0057\_F0



Figura 321







Eurolink S.C.p.A.











## RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0













к



#### Tabella 34 Riepilogo caratteristiche fisiche dei depositi costieri di spiaggia

| SONDAGGIO |       | OPERA                                                          | z<br>(m) | γ (kN/m³) | γ <sub>d</sub><br>(kN/m <sup>3</sup> ) | γ <sub>s</sub><br>(kN/m <sup>3</sup> ) |
|-----------|-------|----------------------------------------------------------------|----------|-----------|----------------------------------------|----------------------------------------|
| ECBH1510  | F     | Rampa C 1+200-3+300 / Rampa E / Rampa V                        | 8.00     |           |                                        | 26.56                                  |
| FCBH1510  | F     | Rampa C 1+200-3+300 / Rampa F / Rampa V                        | 8.00     |           |                                        | 26.44                                  |
| FCBH1510  | G     | Rampa C 1+200-3+300 / Rampa F / Rampa V                        | 9.50     |           |                                        | 26.59                                  |
| FCBH1510  | G     | Rampa C 1+200-3+300 / Rampa F / Rampa V                        | 9.50     |           |                                        | 26.60                                  |
| FCBH1510  | H     | Rampa C 1+200-3+300 / Rampa F / Rampa V                        | 10.75    |           |                                        | 26.66                                  |
| FCBH1510  | 1     | Rampa C 1+200-3+300 / Rampa F / Rampa V                        | 12 50    |           |                                        | 26.62                                  |
| FCBH1510  | L     | Rampa D 1+350 -1+800 / Rampa M                                 | 14.75    |           |                                        | 26.71                                  |
| FCBH1510  | L     | Rampa D 1+350 -1+800 / Rampa M                                 | 14.75    |           |                                        | 26.62                                  |
| FCBH1510  | N     | Rampa D 1+350 -1+800 / Rampa M                                 | 17.50    |           |                                        | 26.60                                  |
| FCBH1510  | 1     | Rampa D 1+350 -1+800 / Rampa M                                 | 20.00    |           |                                        | 27.30                                  |
| FCBH1510  | 3     | Rampa D 1+350 -1+800 / Rampa M                                 | 23.00    |           |                                        | 26.94                                  |
| FCBH1510  | 4     | Rampa D 1+350 -1+800 / Rampa M                                 | 24.00    |           |                                        | 26.70                                  |
| FCSPT503  | E     | Rampa D 1+350 -1+800 / Rampa M                                 | 9.20     |           |                                        | 26.59                                  |
| FCSPT503  | E     | Rampa D 1+350 -1+800 / Rampa M                                 | 9.20     |           |                                        | 26.84                                  |
| FCSPT503  | H     | Galleria Rampa A / Galleria Rampa D / ferrovia                 | 13.75    |           |                                        | 26.71                                  |
| FCSPT503  | Н     | Galleria Rampa A / Galleria Rampa D / ferrovia                 | 16.75    |           |                                        | 26.80                                  |
| FCSPT503  | L     | Galleria Rampa A / Galleria Rampa D / ferrovia                 | 16.75    |           |                                        | 26.72                                  |
| FCSPT503  | <br>L | Galleria Rampa A / Galleria Rampa D / ferrovia                 | 18.2     |           |                                        | 26.90                                  |
| FCSPT503  | M     | Galleria Rampa A / Galleria Rampa D / ferrovia                 | 18.2     |           |                                        | 26.60                                  |
| FCSPT503  | M     | Galleria Rampa A / Galleria Rampa D / ferrovia                 | 21.2     |           |                                        | 26.68                                  |
| FCSPT503  | 0     | Galleria Rampa A / Galleria Rampa D / ferrovia                 | 21.2     |           |                                        | 26.79                                  |
| FCSPT503  | 0     | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                    | 25.7     |           |                                        | 26.87                                  |
| FCSPT503  | R     | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                    | 25.7     |           |                                        | 26.67                                  |
| FCSPT503  | R     | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                    | 10.15    |           |                                        | 26.61                                  |
| FCCH2509  | C     | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                    | 10.15    |           |                                        | 26.56                                  |
| FCCH2509  | C     | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                    | 12.15    |           |                                        | 26.53                                  |
| FCCH2509  | D     | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                    | 12.15    |           |                                        | 26.90                                  |
| FCCH2509  | E     | Rampa C 1+200-3+300 / Rampa F / Rampa A acc                    | 16.85    |           |                                        | 26.65                                  |
| FCBH1501  | A     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 2.5      |           |                                        | 26.69                                  |
| FCBH1501  | С     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 6        |           |                                        | 26.75                                  |
| FCBH1501  | E     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 8.5      |           |                                        | 26.84                                  |
| FCBH1501  | G     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 11.5     |           |                                        | 26.91                                  |
| FCBH1501  | L     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 16       |           |                                        | 26.79                                  |
| FCBH1501  | N     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 19       |           |                                        | 26.71                                  |
| FCBH1501  | Р     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 22       |           |                                        | 26.94                                  |
| FCBH1501  | Q     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 23.5     |           |                                        | 26.66                                  |
| FCBH1501  | R     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 25       |           |                                        | 26.62                                  |
| FCBH1501  | S     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 26.5     |           |                                        | 26.85                                  |
| FCBH1501  | Т     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 28       |           |                                        | 26.77                                  |
| FCBH1501  | V     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 31       |           |                                        | 26.65                                  |
| FCBH1501  | AA    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 34       |           |                                        | 26.69                                  |
| FCBH1501  | AB    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 35.5     |           |                                        | 26.5                                   |
| FCBH1501  | AC    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 37       |           |                                        | 26.56                                  |
| FCBH1501  | AD    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 38.5     |           |                                        | 26.52                                  |
| FCBH1501  | AF    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 41.5     |           |                                        | 26.71                                  |
| FCBH1512  | В     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 2.5      |           |                                        | 24.74                                  |
| FCBH1512  | Н     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 11.75    |           |                                        | 27.08                                  |
| FCBH1512  | E     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 7        |           |                                        | 26.62                                  |
| FCBH1512  | С     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 4        |           |                                        | 26.63                                  |
| FCBH1512  | А     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 1        |           |                                        | 26.68                                  |
| FCBH1512  | G     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 10       |           |                                        | 26.70                                  |
| FCBH1512  | F     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 8.5      |           |                                        | 26.87                                  |
| FCBH1512  | М     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 16       |           |                                        | 26.76                                  |
| FCBH1512  | l     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 13       |           |                                        | 26.88                                  |





## RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

#### Tabella 35 Granulometria dei depositi costieri di spiaggia

| SONDAGGIO | PROVINO    | z    | С   | G   | S        | L        | Α   | С   | G   | S        | L             | Α   |
|-----------|------------|------|-----|-----|----------|----------|-----|-----|-----|----------|---------------|-----|
| CONDACCIO |            | [m]  | [%] | [%] | [%]      | [%]      | [%] | [%] | [%] | [%]      | [%]           | [%] |
| FC BH5    | A          | 2.0  | 0   | 52  | 42       | 6        | 0   | 100 | 100 | 48       | 6             | 0   |
| FC BH5    | SPT        | 3.0  | 0   | 67  | 27       | 6        | 0   | 100 | 100 | 33       | 6             | 0   |
| FC BH5    | SPT<br>SPT | 7.5  | 0   | 76  | 20       | 4        | 0   | 100 | 100 | 24       | 4             | 0   |
| FC BH5    | SPT        | 9.0  | 0   | 72  | 24       | 4        | 0   | 100 | 100 | 28       | 4             | 0   |
| FC BH5    | B          | 9.5  | 0   | 72  | 25       | 3        | 0   | 100 | 100 | 28       | 3             | 0   |
| FC BH5    | SPT        | 10.5 | 0   | 74  | 21       | 5        | 0   | 100 | 100 | 26       | 5             | 0   |
| FC BH5    | SPT        | 12.0 | 0   | 59  | 35       | 6        | 0   | 100 | 100 | 41       | 6             | 0   |
| FC BH5    | U<br>C     | 17.0 | 0   | 80  | 1/       | 3        | 0   | 100 | 100 | 20       | 3             | 0   |
| FC BH5    | SPI        | 18.0 | 0   | 61  | 36       | 3        | 0   | 100 | 100 | 39       | 3             | 0   |
| FC BH5    | D          | 21.5 | 0   | 50  | 43       | /        | 0   | 100 | 100 | 50       | /             | 0   |
| FC BH5    | SPI        | 22.5 | 0   | 69  | 29       | <u> </u> | 0   | 100 | 100 | 31       | <u> </u>      | 0   |
|           | SPI        | 24.0 | 0   | 0   | 90       | 4        | 0   | 100 | 100 | 94<br>50 | 4             | 0   |
|           |            | 20.0 | 0   | 42  | 55<br>97 | 3<br>5   | 0   | 100 | 100 | 00       | <u> </u>      | 0   |
|           | 5P1        | 20.5 | 0   | 0   | 0/<br>70 | 5<br>6   | 0   | 100 | 100 | 92       | 5<br>6        | 0   |
|           |            | 30.5 | 0   | 24  | 70       | 0        | 0   | 100 | 100 | 70       | 0             | 0   |
|           |            | 34.5 | 0   | 0   | 00       | 4        | 0   | 100 | 100 | 92       | 4             | 0   |
| FC BH5    | SPT        | 36.0 | 0   | 18  | 70       | 3        | 0   | 100 | 100 | 99<br>82 | 3             | 0   |
| FC BH5    | SPT        | 37.5 | 0   | 10  | 85       | 2        | 0   | 100 | 100 | 87       | 2             | 0   |
| FC BH5    | F          | 39.5 | 0   | 14  | 82       | 4        | 0   | 100 | 100 | 86       | <u>2</u><br>4 | 0   |
| FC BH5    | G          | 42.5 | 0   | 73  | 24       | -<br>    | 0   | 100 | 100 | 27       | 7             | 0   |
| FC BH5    | <u> </u>   | 44.0 | 56  | 20  | 12       | 3        | 0   | 100 | 44  | 15       | 3             | 0   |
| FC BH5    | SPT        | 45.0 | 0   | 70  | 26       | 4        | 0   | 100 | 100 | 30       | 4             | 0   |
| FC BH5    |            | 49.5 | 0   | 48  | 49       | 3        | 0   | 100 | 100 | 52       | 3             | 0   |
| FC BH5    | SPT        | 52.5 | 0   | 46  | 40       | 12       | 0   | 100 | 100 | 54       | 12            | 0   |
| FC BH5    | SPT        | 54.0 | 0   | 62  | 36       | 2        | 0   | 100 | 100 | 38       | 2             | 0   |
| FC BH5    | SPT        | 57.0 | 0   | 15  | 83       | 2        | 0   | 100 | 100 | 85       | 2             | 0   |
| FC BH6    | SPT3       | 3.0  | 0   | 57  | 38       | 5        | 0   | 100 | 100 | 43       | 5             | 0   |
| FC BH6    | SPT4       | 4.5  | 0   | 51  | 42       | 7        | 0   | 100 | 100 | 49       | 7             | 0   |
| FC BH6    | В          | 6.5  | 0   | 71  | 22       | 7        | 0   | 100 | 100 | 29       | 7             | 0   |
| FC BH6    | SPT7       | 7.5  | 0   | 70  | 22       | 8        | 0   | 100 | 100 | 30       | 8             | 0   |
| FC BH6    | SPT9       | 9.0  | 0   | 63  | 31       | 6        | 0   | 100 | 100 | 37       | 6             | 0   |
| FC BH6    | С          | 12.5 | 0   | 66  | 25       | 9        | 0   | 100 | 100 | 34       | 9             | 0   |
| FC BH6    | SPT12      | 12.0 | 0   | 14  | 80       | 6        | 0   | 100 | 100 | 86       | 6             | 0   |
| FC BH6    | SPT13      | 13.5 | 0   | 59  | 33       | 8        | 0   | 100 | 100 | 41       | 8             | 0   |
| FC BH6    | D          | 17.0 | 0   | 25  | 69       | 6        | 0   | 100 | 100 | 75       | 6             | 0   |
| FC BH6    | SPT18      | 18.0 | 0   | 7   | 89       | 4        | 0   | 100 | 100 | 93       | 4             | 0   |
| FC BH6    | SPT19      | 19.5 | 0   | 57  | 40       | 3        | 0   | 100 | 100 | 43       | 3             | 0   |
| FC BH6    | SPT22      | 22.5 | 0   | 27  | 69       | 4        | 0   | 100 | 100 | 73       | 4             | 0   |
| FC BH6    | SPT27      | 27.0 | 0   | 25  | 71       | 4        | 0   | 100 | 100 | 75       | 4             | 0   |
| FC BH6    | SPT28      | 28.5 | 0   | 36  | 59       | 5        | 0   | 100 | 100 | 64       | 5             | 0   |
| FC BH6    | SPT33      | 33.0 | 0   | 4   | 90       | 6        | 0   | 100 | 100 | 96       | 6             | 0   |
| FC BH6    | E          | 38.0 | 0   | 33  | 63       | 4        | 0   | 100 | 100 | 67       | 4             | 0   |
| FC BH6    | SPT42      | 42.0 | 0   | 46  | 42       | 12       | 0   | 100 | 100 | 54       | 12            | 0   |
| FC BH6    | F          | 44.0 | 0   | 75  | 22       | 3        | 0   | 100 | 100 | 25       | 3             | 0   |
| FC BH7    | SPT        | 5.0  | 0   | 57  | 39       | 7        | 0   | 103 | 103 | 46       | 7             | 0   |
| FC BH7    | A          | 6.5  | 0   | 37  | 42       | 17       | 4   | 100 | 100 | 63       | 21            | 4   |
| FC BH7    | SPT        | 7.5  | 0   | 39  | 54       | 7        | 0   | 100 | 100 | 61       | 7             | 0   |
| FC BH7    | SPT        | 9.0  | 0   | 52  | 42       | 6        | 0   | 100 | 100 | 48       | 6             | 0   |
| FC BH7    | B          | 11.5 | 0   | 71  | 24       | 5        | 0   | 100 | 100 | 29       | 5             | 0   |
| FC BH7    | B          | 12.0 | 0   | /2  | 21       | 7        | 0   | 100 | 100 | 28       | 7             | 0   |
| FC BH7    | SPI        | 13.0 | 0   | 66  | 29       | 5        | 0   | 100 | 100 | 34       | 5             | 0   |
| FC BH7    | SPT        | 14.5 | 0   | 32  | 60       | 8        | 0   | 100 | 100 | 68       | 8             | 0   |
| FC BH7    |            | 18.5 | 0   | 21  | (4       | 5        | 0   | 100 | 100 | /9       | 5             | 0   |
| FC BH7    | E          | 22.0 | 0   | 35  | 44       | 17       | 4   | 100 | 100 | 65       | 21            | 4   |





### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

Rev Data 20/06/2011

F0

| SONDAGGIO | PROVINO       | z<br>[m]    | C<br>[%]  | G<br>[%] | S<br>[%] | L<br>[%] | A<br>[%] | C<br>[%] | G<br>[%] | S<br>[%]  | L<br>[%] | A<br>[%] |
|-----------|---------------|-------------|-----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|
| FC BH7    | F             | 23.5        | 0         | 6        | 89       | 5        | 0        | 100      | 100      | 94        | 5        | 0        |
| FC BH7    | SPT           | 24.5        | 0         | 9        | 87       | 4        | 0        | 100      | 100      | 91        | 4        | 0        |
| FC BH7    | G             | 27.0        | 0         | 6        | 88       | 6        | 0        | 100      | 100      | 94        | 6        | 0        |
| FC BH7    | SPT           | 29.5        | 0         | 3        | 86       | 11       | 0        | 100      | 100      | 97        | 11       | 0        |
| FC BH7    | Н             | 32.0        | 0         | 48       | 46       | 6        | 0        | 100      | 100      | 52        | 6        | 0        |
| FC BH7    | SPT           | 34.5        | 0         | 9        | 85       | 6        | 0        | 100      | 100      | 91        | 6        | 0        |
| FC BH7    | SPT           | 36.5        | 0         | 56       | 26       | 16       | 2        | 100      | 100      | 44        | 18       | 2        |
| FC BH7    | SPT           | 38.0        | 0         | 54       | 39       | 7        | 0        | 100      | 100      | 46        | 7        | 0        |
| FC BH7    | SPT           | 39.5        | 0         | 38       | 46       | 13       | 3        | 100      | 100      | 62        | 16       | 3        |
| FC BH7    | K             | 40.0        | 11        | 66       | 16       | 1        | 0        | 100      | 89       | 23        | (        | 0        |
| FC BH7    | SPT           | 41.5        | 0         | 41       | 50       | 9        | 0        | 100      | 100      | 59        | 9        | 0        |
|           | 5P1           | 43.0        | 0         | /1<br>57 | 20       | 3        | 0        | 100      | 100      | 29        | 3        | 0        |
|           |               | 40.0        | 0         | 37       | 30       | 7<br>21  | 0        | 100      | 100      | 43        | 7<br>21  | 0        |
| FC BH9    | SPT3          | 3.0         | 0         | 19       | 68       | 13       | 0        | 100      | 100      | 81        | 13       | 0        |
| FC BH9    | A             | 4.0         | 0         | 6        | 87       | 7        | 0        | 100      | 100      | 94        | 7        | 0        |
| FC BH9    | SPT4          | 4.5         | 0         | 7        | 68       | 21       | 4        | 100      | 100      | 93        | 25       | 4        |
| FC BH9    | B             | 6.0         | 0         | 32       | 58       | 10       | 0        | 100      | 100      | 68        | 10       | 0        |
| FC BH9    | SPT7          | 7.5         | 0         | 62       | 34       | 4        | 0        | 100      | 100      | 38        | 4        | 0        |
| FC BH9    | SPT9          | 9.0         | 0         | 60       | 34       | 6        | 0        | 100      | 100      | 40        | 6        | 0        |
| FC BH9    | С             | 10.0        | 0         | 66       | 30       | 4        | 0        | 100      | 100      | 34        | 4        | 0        |
| FC BH9    | SPT12         | 12.0        | 0         | 44       | 54       | 2        | 0        | 100      | 100      | 56        | 2        | 0        |
| FC BH9    | D             | 14.0        | 0         | 36       | 60       | 4        | 0        | 100      | 100      | 64        | 4        | 0        |
| FC BH9    | E             | 18.0        | 0         | 10       | 74       | 14       | 2        | 100      | 100      | 90        | 16       | 2        |
| FC BH9    | SPT19         | 19.5        | 0         | 57       | 39       | 4        | 0        | 100      | 100      | 43        | 4        | 0        |
| FC BH9    | SPT21         | 21.0        | 0         | 40       | 57       | 3        | 0        | 100      | 100      | 60        | 3        | 0        |
| FC BH9    | F             | 23.0        | 0         | 18       | 76       | 6        | 0        | 100      | 100      | 82        | 6        | 0        |
| FC BH9    | SP124         | 24.0        | 0         | 2        | 93       | 5        | 0        | 100      | 100      | 98        | 5        | 0        |
| FC BH9    | G<br>ODT07    | 26.0        | 0         | 3        | 82       | 13       | 2        | 100      | 100      | 97        | 15       | 2        |
|           | 5P127         | 27.0        | 0         | 20       | 32       | 7        | 0        | 100      | 100      | 70        | 7        | 0        |
|           | п<br>90729    | 20.0        | 0         | 65       | 32       | 5        | 0        | 100      | 100      | 37        | 5        | 0        |
| FC BH9    | 3F120         | 39.4        | 0         | 50       | 36       | 4<br>14  | 0        | 100      | 100      | 50        | 4        | 0        |
| FCSPT503  | F             | 9.2         | 0         | 65       | 33       | 2        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCSPT503  | H             | 13.7        | 0         | 73       | 27       | 0        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCSPT503  | L             | 16.7        | 0         | 50       | 47       | 3        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCSPT503  | M             | 18.2        | 0         | 20       | 78       | 2        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCSPT503  | 0             | 21.2        | 0         | 86       | 12       | 2        | 0        | 100      | 100      | 14        | 2        | 0        |
| FCCH2509  | С             | 10.2        | 0         | 40       | 60       | 0        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCCH2509  | D             | 12.3        | 0         | 10       | 84       | 6        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCCH2509  | E             | 16.9        | 0         | 0        | 80       | 20       | 0        | 100      | 100      | 48        | 6        | 0        |
| FCBH1510  | F             | 8.3         | 1         | 27       | 67       | 5        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCBH1510  | G             | 9.8         | 2         | 53       | 40       | 5        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCBH1510  | H             | 10.8        | 0         | 7        | 91       | 2        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCBH1510  | I             | 12.4        | 0         | 5        | 86       | 9        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCBH1510  | L             | 14.8        | 3         | 10       | 85       | 2        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCBH1510  | N             | 17.6        | 0         | <u> </u> | 93       | 5        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCRH1501  | <u>А</u><br>С | 2.0<br>6.0  | - 5<br>24 | 43       | 40<br>33 | 4        | 0        | 100      | 90       | 202       | 4        | 0        |
| FCBH1501  | F             | 8.5         | 24        | 50       | 16       |          | 0        | 100      | 70       | 20        | 3<br>4   | 0        |
| FCBH1501  | G             | 11.5        | 2         | 68       | 25       | 5        | 0        | 100      | 98       | 30        | 5        | 0        |
| FCBH1501  | L             | 16.0        | 0         | 64       | 32       | 4        | 0        | 100      | 100      | 36        | 4        | Ũ        |
| FCBH1501  | N             | 19.0        | 0         | 23       | 70       | 7        | 0        | 100      | 100      | 77        | 7        | 0        |
| FCBH1501  | Р             | 22.0        | 0         | 70       | 27       | 3        | 0        | 100      | 100      | 30        | 3        | 0        |
| FCBH1501  | Q             | 23.5        | 0         | 11       | 77       | 12       | 0        | 100      | 100      | 89        | 12       | 0        |
| FCBH1501  | R             | 25.0        | 3         | 28       | 61       | 8        | 0        | 100      | 97       | 69        | 8        | 0        |
| FCBH1501  | S             | 26.5        | 0         | 43       | 49       | 8        | 0        | 100      | 100      | 57        | 8        | 0        |
| FCBH1501  | Т             | 28.0        | 6         | 54       | 35       | 5        | 0        | 100      | 94       | 40        | 5        | 0        |
| FCBH1501  | V             | 31.0        | 0         | 2        | 93       | 5        | 0        | 100      | 100      | 48        | 6        | 0        |
| FCBH1501  | AA            | 34.0        | 0         | 11       | 85       | 4        | 0        | 100      | 100      | 89        | 4        | 0        |
| FCBH1501  | AB            | 35.5        | 0         | 11       | 85       | 4        | 0        | 100      | 100      | 89        | 4        | 0        |
| FCBH1501  | AC            | 37.0        | 6         | 25       | 69       | 0        | 0        | 100      | 94       | 69        | 0        | 0        |
| FUBH1501  | AD            | 30.5<br>25  | 0         | 10       | 05<br>77 | 10       | U        | 100      | 95       | 85        | 0        | U        |
|           | В             | 2.0<br>11.5 | 0         | 7        | 74       | 13       | 9        | 100      | 100      | 99        | 10       | 9        |
| FUBRI1512 |               | 7.0         | 0         | /        | 00       | 10       | 0        | 100      | 100      | 93<br>100 | 19       | 0<br>0   |
| FCBH1512  |               | 1.0         | 0         | 5        | 90<br>67 | 10       | 0<br>0   | 100      | 100      | 95        | 28       | 0<br>Q   |
| FCBH1512  | Δ             | 1.0         | 0         | 1        | 78       | 10       | 9<br>10  | 100      | 100      | 90        | 20       | 10       |
| FCBH1512  | G             | 10.0        | 0         | 0        | 74       | 20       | 5        | 100      | 100      | 100       | 25       | 5        |
| FCBH1512  | F             | 8.5         | 0         | 0        | 89       | 3        | 8        | 100      | 100      | 100       | 11       | 8        |
|           |               |             |           |          |          |          |          |          |          |           |          |          |



#### Tabella 36 Riepilogo prove penetrometriche

| FORO  | Opera                                                          | z<br>[m] | Nspt |
|-------|----------------------------------------------------------------|----------|------|
| FCBH4 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 6.5      | 56   |
| FCBH4 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 9.5      | 40   |
| FCBH4 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 12.5     | 42   |
| FCBH4 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 15.4     | 45   |
| FCBH4 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 18.11    | 100  |
| FCBH4 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 21.49    | 67   |
| FCBH4 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 24.48    | 39   |
| FCBH4 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 27.5     | 23   |
| FCBH4 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 30.47    | 43   |
| FCBH4 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 33.04    | 100  |
| FCBH4 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 36.08    | 100  |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 4.50     | 78   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 6.00     | 41   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 7.50     | 29   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 9.00     | 36   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 10.50    | 30   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 12.00    | 30   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 13.50    | 35   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 15.00    | 20   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 16.50    | 100  |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 18.00    | 51   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 19.50    | 33   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 21.00    | 31   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 22.50    | 48   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 24.00    | 17   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 25.50    | 26   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 27.00    | 50   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 28.50    | 49   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 30.00    | 32   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 31.50    | 45   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 33.00    | 28   |





#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |

Rev Data 20/06/2011

F0

|       |                                                                   | r     |      |
|-------|-------------------------------------------------------------------|-------|------|
| FORO  | Onora                                                             | z     | Nent |
| TORO  | Opera                                                             | [m]   | Napr |
| ECBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 34.50 | 29   |
| FCDUE | Rampa D 0 0 500 / Rampa C 0 0 500 / Rampa A 0 0 500 / forrovia    | 36.00 | 45   |
| говпр | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia    | 30.00 | 45   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 37.50 | -22  |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 39.00 | 49   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 40.50 | 44   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 42.00 | 100  |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 43 50 | 100  |
| ECRUS | Pampa D 0 0+500 / Pampa C 0 0+500 / Pampa A 0 0+500 / forravia    | 45.00 | 76   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia    | 45.00 | 100  |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 46.50 | 100  |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 48.00 | 100  |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 49.50 | 32   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 51.00 | 37   |
| ECBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 52 50 | 35   |
| ECRUS | Pampa D 0 0+500 / Rampa C 0 0+500 / Rampa A 0 0+500 / ferrovia    | 54.00 | 26   |
| FCBHJ | Rainpa D 0-0+500 / Rainpa C 0-0+500 / Rainpa A 0-0+500 / Terrovia | 54.00 | 30   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 55.50 | 24   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 57.00 | 35   |
| FCBH5 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 58.50 | 43   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 6.00  | 100  |
| ECBH6 | Ramna D 0-0+500 / Ramna C 0-0+500 / Ramna A 0-0+500 / ferrovia    | 7 50  | 100  |
| ECBH6 | Pampa D 0.0+500 / Rampa C 0.0+500 / Rampa A 0.0+500 / ferrovia    | 0.00  | 77   |
| FODUC | Dampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 9.00  | 67   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 10.50 | 67   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 12.00 | 59   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 13.50 | 100  |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 15.00 | 100  |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 16 50 | 31   |
| ECBH6 | Pampa D 0.0+500 / Rampa C 0.0+500 / Rampa A 0.0+500 / ferrovia    | 19.00 | 24   |
| FCBH0 | Rainpa D 0-0+500 / Rainpa C 0-0+500 / Rainpa A 0-0+500 / Terrovia | 10.00 | 24   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 19.50 | 23   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 21.00 | 28   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 22.50 | 23   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 24.00 | 23   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 25.50 | 29   |
| ECBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 27.00 | 27   |
| FCDHG | Rempa D 0 0 500 / Rempa C 0 0 500 / Rempa A 0 0 500 / forrovia    | 29.50 | 40   |
| FCBH0 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / femovia     | 20.00 | 42   |
| FCBH0 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia    | 30.00 | 33   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 31.50 | 7    |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 33.00 | 21   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 34.50 | 32   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 36.60 | 14   |
| ECBH6 | Ramna D 0-0+500 / Ramna C 0-0+500 / Ramna A 0-0+500 / ferrovia    | 37 50 | 38   |
| ECRUS | Pampa D 0 0+500 / Pampa C 0 0+500 / Pampa A 0 0+500 / forravia    | 20.00 | 22   |
| FODUC | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 39.00 | 20   |
| FCBH0 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia    | 40.50 | 30   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 42.00 | 73   |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 43.50 | 27   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 5.00  | 74   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 6.50  | 100  |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 7.50  | 76   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 9.00  | 68   |
| ECPH7 | Bampa D 0 0+500 / Rampa C 0 0+500 / Rampa A 0 0+500 / ferrovia    | 11 50 | 100  |
| FCBH7 | Rainpa D 0-0+500 / Rainpa C 0-0+500 / Rainpa A 0-0+500 / Terrovia | 11.00 | 100  |
| FUBH/ | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 13.00 | 52   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 14.50 | 100  |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 16.50 | 22   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 18.00 | 8    |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 19.50 | 10   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 21.50 | 10   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa Δ 0-0+500 / ferrovia    | 23.00 | 19   |
| ECPU7 | Rampa D 0-0-000 / Rampa C 0-0-000 / Rampa A 0-0-000 / Terrovia    | 20.00 | 34   |
|       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia    | 24.50 | 34   |
| FCBH/ | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 26.50 | 16   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 28.00 | 33   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 29.50 | 40   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 31.50 | 33   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 33.00 | 23   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 34 50 | 24   |
| ECPU7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0 0+500 / forroute    | 38.00 | 100  |
|       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Tell0Via    | 30.00 | 100  |
|       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia    | 39.50 | 100  |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 41.50 | 33   |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 43.00 | 33   |
| FCBH9 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 1.50  | 28   |
| FCBH9 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 3.00  | 17   |
| FCBH9 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 4 50  | 13   |
| FCBHQ | Rampa D 0.0+500 / Rampa C 0.0+500 / Rampa A 0.0+500 / forrovia    | 6.00  | 15   |
| FODUO | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Tell0Vid    | 0.00  | 10   |
| FCBH9 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 1.50  | 45   |
| FCBH9 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 9.00  | 24   |
| FCBH9 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia    | 10.50 | 24   |





#### RELAZIONE GEOTECNICA GENERALE

| 0 |
|---|
|   |

CB0057\_F0

 Rev
 Data

 F0
 20/06/2011

| FORO                   | Opera                                                                                                                            | z            | Nspt     |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|----------|
| ECBH9                  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | [m]<br>12.00 | 29       |
| FCBH9                  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 13.50        | 8        |
| FCBH9                  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 15.00        | 17       |
| FCBH9                  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 16.50        | 23       |
| FCBH9                  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 18.00        | 14       |
| FCBH9<br>FCBH9         | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia                                                                   | 21.00        | 20       |
| FCBH9                  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 22.50        | 13       |
| FCBH9                  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 24.00        | 16       |
| FCBH9                  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 27.00        | 42       |
| C4                     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 19.45        | 25       |
| C28                    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia                                                                   | 9.48         | 54       |
| C28                    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 12.47        | 26       |
| C28                    | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 18.45        | 4        |
| FCBH5                  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 1.50         | 100      |
| FCBH5<br>FCBH5         | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 3.00         | 60       |
| FCBH5                  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia                                                                   | 3.00         | 42       |
| FCBH5                  | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 4.50         | 57       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 3            | 47       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 4.5          | 65       |
| FCSP1503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 6<br>7.5     | 100      |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 9            | 48       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 10.5         | 38       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 12           | 52       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 13.5         | 47       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 16.5         | 44       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 18           | 35       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 19.5         | 27       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 21           | 30       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 22.5         | 9        |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia                                                                   | 25 5         | 56       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 27           | 30       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 28.5         | 43       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 30           | 36       |
| FCSP1503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 31.5         | 32       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia                                                                   | 34.5         | 22       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 37           | 23       |
| FCSPT503               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 40           | 73       |
| FCCH1508               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 1.5          | 5        |
| FCCH1508               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia                                                                   | 3<br>45      | 5        |
| FCCH1508               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 6            | 6        |
| FCCH1508               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 7.5          | 4        |
| FCCH1508               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 9            | 40       |
| FCCH1508               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 10.5         | 38       |
| FCCH1508               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia                                                                   | 21           | 26       |
| FCCH1508               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 22.5         | 52       |
| FCCH1508               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 24           | 74       |
| FCCH1508               | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 25.5         | 100      |
| FCL PT1508             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 21           | 79<br>30 |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 4.5          | 59       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 6            | 100      |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 7.5          | 100      |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 9<br>10.5    | 31<br>20 |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 10.5         | 85       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 13.5         | 56       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 15           | 100      |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 16.5         | 100      |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia                                                                   | 19.5         | 20       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 21           | 22       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 22.5         | 19       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 24           | 16       |
| FCLP11502              | катра D 0-0+500 / катра C 0-0+500 / катра A 0-0+500 / ferrovia<br>Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 25.5<br>27   | 23       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 28.5         | 24       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 30           | 14       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 31.5         | 26       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 33           | 19       |
| FOLP11502<br>FCLPT1502 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Terrovia                                                                   | 36<br>36     | 26       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 37.5         | 21       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 39           | 20       |
| FCLPT1502              | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia                                                                   | 40.5         | 24       |



#### Tabella 37 Riepilogo prove di permeabilità

| FORO  | Opera                                                                | z(m) | K(m/s)   |
|-------|----------------------------------------------------------------------|------|----------|
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/costa | 4.5  | 7.88E-05 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 5    | 6.78E-05 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 9.5  | 1.11E-04 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 10   | 1.24E-04 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 14.5 | 3.23E-04 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 15   | 1.14E-03 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 19.5 | 3.77E-05 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 20   | 3.79E-05 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 24.5 | 3.67E-05 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 25   | 1.94E-05 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 29.5 | 2.69E-05 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 30   | 3.58E-05 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 34.5 | 1.29E-05 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 35   | 1.63E-05 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 39.5 | 1.45E-05 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia       | 40   | 1.96E-05 |

#### Tabella 38 Riepilogo prove di laboratorio

| SONDAGGIO | N°<br>DDOV/NO | Z<br>(m) | Opera                                                          | PROVA    | C'    | φ'<br>[9] |
|-----------|---------------|----------|----------------------------------------------------------------|----------|-------|-----------|
|           | PROVINO       | (m)      |                                                                |          | [крај |           |
| FCBH1510  | F1            | 8.25     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Triax_CD | 0     | 32        |
| FCBH1510  | F2            | 8.25     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Triax_CD | 0     | 35        |
| FCBH1510  | F3            | 8.25     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Triax_CD | 0     | 35        |
| FCBH1510  | G1            | 9.75     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Triax_CD | 0     | 34        |
| FCBH1510  | G2            | 9.75     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Triax_CD | 0     | 36        |
| FCBH1510  | G3            | 9.75     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Triax_CD | 0     | 39        |
| FCBH1501  | AF_25         | 41.5     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Triax_CD | 0     | 35        |
| FCBH1501  | AF_43         | 41.5     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Triax_CD | 0     | 37        |
| FCBH1501  | AF_81         | 41.5     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Triax_CD | 0     | 38        |
| FCBH1501  | T_M           | 28       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Triax_CD | 0     | 35        |
| FCBH1501  | T_C           | 28       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Triax_CD | 0     | 36        |



Codice documento CB0057\_F0

#### Tabella 39 Riepilogo prove sismiche in foro

| FORO     | z(m) | Vs    | E'o    |  |  |
|----------|------|-------|--------|--|--|
|          | -(,  | [m/s] | [MPa]  |  |  |
| FCBH5    | 4    | 247.1 | 283.9  |  |  |
| FCBH5    | 6    | 215.3 | 215.4  |  |  |
| FCBH5    | 8    | 200.2 | 186.3  |  |  |
| FCBH5    | 10   | 217.0 | 218.9  |  |  |
| FCBH5    | 12   | 224.5 | 234.3  |  |  |
| FCBH5    | 14   | 498.3 | 1154.2 |  |  |
| FCBH5    | 16   | 428.4 | 853.2  |  |  |
| FCBH5    | 18   | 444.7 | 919.2  |  |  |
| FCBH5    | 20   | 682.3 | 2163.8 |  |  |
| FCBH5    | 22   | 602.6 | 1687.8 |  |  |
| FCBH5    | 24   | 245.8 | 280.9  |  |  |
| FCBH5    | 26   | 208.5 | 202.2  |  |  |
| FCBH5    | 28   | 325.4 | 492.1  |  |  |
| FCBH5    | 30   | 326.5 | 495.4  |  |  |
| FCBH5    | 32   | 247.4 | 284.6  |  |  |
| FCBH5    | 34   | 233.4 | 253.2  |  |  |
| FCBH5    | 36   | 434.2 | 876.4  |  |  |
| FCBH5    | 38   | 488.1 | 1107.5 |  |  |
| FCBH5    | 40   | 489.6 | 1114.1 |  |  |
| FCBH5    | 42   | 490.8 | 1119.6 |  |  |
| FCBH5    | 44   | 491.8 | 1124.3 |  |  |
| FCBH5    | 46   | 492.7 | 1128.2 |  |  |
| FCBH5    | 48   | 493.4 | 1131.6 |  |  |
| FCBH6    | 6    | 425.7 | 842.3  |  |  |
| FCBH6    | 8    | 388.3 | 700.8  |  |  |
| FCBH6    | 10   | 349.4 | 567.3  |  |  |
| FCBH6    | 12   | 358.4 | 597.1  |  |  |
| FCBH6    | 14   | 632.3 | 1858.5 |  |  |
| FCBH6    | 16   | 345.2 | 553.8  |  |  |
| FCBH6    | 18   | 416.6 | 806.9  |  |  |
| FCBH6    | 20   | 262.5 | 320.4  |  |  |
| FCBH6    | 22   | 262.6 | 320.4  |  |  |
| FCBH6    | 24   | 280.6 | 366.0  |  |  |
| FCCH1508 | 1    | 224.0 | 233.2  |  |  |
| FCCH1508 | 2    | 246.0 | 281.3  |  |  |
| FCCH1508 | 3    | 254.0 | 299.9  |  |  |
| FCCH1508 | 4    | 171.0 | 135.9  |  |  |
| FCCH1508 | 5    | 171.0 | 135.9  |  |  |
| FCCH1508 | 6    | 157.0 | 114.6  |  |  |
| FCCH1508 | 7    | 171.0 | 135.9  |  |  |
| FCCH1508 | 8    | 181.0 | 152.3  |  |  |
| FCCH1508 | 9    | 184.0 | 157.4  |  |  |
| FCCH1508 | 10   | 214.0 | 212.9  |  |  |
| FCCH1508 | 11   | 199.0 | 184.1  |  |  |
| FCCH1508 | 12   | 210.0 | 205.0  |  |  |
| FCCH1508 | 13   | 196.0 | 178.6  |  |  |
| FCCH1508 | 14   | 193.0 | 173 1  |  |  |





## RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |

| FORO     | z(m) | Vs<br>[m/s] | E'₀<br>[MPa] |
|----------|------|-------------|--------------|
| FCCH1508 | 15   | 213.0       | 210.9        |
| FCCH1508 | 16   | 241.0       | 270.0        |
| FCCH1508 | 17   | 283.0       | 372.3        |
| FCCH1508 | 18   | 283.0       | 372.3        |
| FCCH1508 | 19   | 265.0       | 326.4        |
| FCCH1508 | 20   | 289.0       | 388.2        |
| FCCH1508 | 21   | 352.0       | 575.9        |
| FCCH1508 | 22   | 401.0       | 747.5        |
| FCCH1508 | 23   | 339.0       | 534.2        |
| FCCH1508 | 24   | 351.0       | 572.7        |
| FCCH1508 | 25   | 434.0       | 875.5        |
| FCCH1508 | 26   | 522.0       | 1266.6       |
| FCCH1508 | 27   | 551.0       | 1411.2       |

#### 5.5.1 Zona prossima alla costa




















































## RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0











Eurolink S.C.p.A.



Codice documento CB0057\_F0











Figura 341- G0 da Vs misurate in prove sismiche in foro



## RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0







#### 5.5.2 Zona distante dalla costa











eo











































Vs (m/s)





### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011













RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

Rev Data F0 20/06/2011















#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0





## 5.6 TRUBI







# Indice di plasticità











RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057 F0        |  |



Figura 362



RELAZIONE GEOTECNICA GENERALE

| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |












## Indice di compressibilità vergine (Cc)





Codice documento CB0057\_F0

## Indice di ricompressione vergine (Cs)





Codice documento CB0057\_F0

# Resistenza al taglio non drenata (da prove di laboratorio) Cu [kPa] 0 100 200 300 400 500 600 700 800 0 5 10 15 20 0 Ò 25 Profondità da p.c. [m] 30 35 40 45 50 55 ♦ trubi 60





#### Coesione efficace da prova consolidata non drenata CIU c' [kPa] þ Profondità da p.c. [m] ♦ trubi







#### Coesione efficace da prove consolidate drenate CID









Codice documento CB0057\_F0











#### TRUBI - inviluppo condizioni triassiali





#### TRUBI - inviluppo condizioni piane









Codice documento CB0057\_F0



Figura 378



Codice documento CB0057\_F0













Codice documento CB0057\_F0







#### RELAZIONE GEOTECNICA GENERALE

| Codice documento |
|------------------|
| CB0057_F0        |

 Rev
 Data

 F0
 20/06/2011







Codice documento CB0057\_F0

## Coefficiente di permeabilità verticale da edometrica







RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

# Coefficiente di permeabilità da Le Franc



| Stretto<br>di Messina | EurolinK        | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |           |                    |  |  |  |  |
|-----------------------|-----------------|-------------------------------------------------------|-----------|--------------------|--|--|--|--|
| RELAZIONE GEOTE       | ECNICA GENERALE | Codice documento<br>CB0057_F0                         | Rev<br>F0 | Data<br>20/06/2011 |  |  |  |  |

#### Tabella 40 Riepilogo caratteristiche fisiche Trubi

|           | N°      | OPERA                                                                | <b>z</b> (m) | wn   | lp   | wL    | wP   | γ                    | γd                   | γs                   |
|-----------|---------|----------------------------------------------------------------------|--------------|------|------|-------|------|----------------------|----------------------|----------------------|
| CONDACCIO | PROVINO |                                                                      | 2()          | (%)  | (%)  | (%)   | (%)  | (kN/m <sup>3</sup> ) | (kN/m <sup>3</sup> ) | (kN/m <sup>3</sup> ) |
| FCBH6     | 1       | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia/costa | 36.6         | 72.6 | 72.6 | 152.4 | 79.8 | 14.1                 | 8.4                  |                      |
| S4        | C1      | Galleria Rampa A / ferrovia                                          | 15           | 10.0 | 10.0 | 41.0  | 31.0 | 18.1                 | 14.7                 |                      |
| S6        | C1      | Galleria Rampa A / Galleria Rampa C / Galleria Rampa D               | 7.05         | 20.0 | 20.0 | 53.0  | 33.0 | 18.4                 | 15.0                 |                      |
| S6        | C2      | Galleria Rampa A / Galleria Rampa C / Galleria Rampa D               | 18.2         | 23.0 | 23.0 | 55.0  | 32.0 | 18.2                 | 14.9                 | 27.0                 |
| S6        | C3      | Galleria Rampa A / Galleria Rampa C / Galleria Rampa D               | 22.2         | 20.0 | 20.0 | 48.0  | 28.0 | 18.5                 | 15.34                | 26.6                 |
| C411      | CR3     | Rampa B 0+800-1+325 / Rampa M                                        | 23.7         | 19.0 | 19.0 | 39.0  | 20.0 |                      |                      | 26.6                 |
| C420bis   | SPT8    | Galleria Rampa A / Galleria Rampa D / ferrovia                       | 13.7         | 6.0  | 6.0  | 24.0  | 18.0 |                      |                      | 26.4                 |
| C420bis   | SPT9    | Galleria Rampa A / Galleria Rampa D / ferrovia                       | 18.0         | 17.0 | 17.0 | 37.0  | 20.0 |                      |                      | 26.7                 |
| C420bis   | SPT10   | Galleria Rampa A / Galleria Rampa D / ferrovia                       | 21.0         | 10.0 | 10.0 | 25.0  | 15.0 |                      |                      | 26.8                 |
| C420bis   | CI 1    | Galleria Rampa A / Galleria Rampa D / ferrovia                       | 17.5         | 22.0 | 22.0 | 43.0  | 21.0 |                      |                      | 26.1                 |
| C421      | CR2     | Galleria Rampa A                                                     | 19.50        | 4.0  | 4.0  | 26.0  | 22.0 |                      |                      |                      |

#### Tabella 41 Granulometria Trubi

| SONDACCIO |                      | 7 (m)          | С   | G   | S    | L    | Α    | С   | G   | S   | L   | Α   |
|-----------|----------------------|----------------|-----|-----|------|------|------|-----|-----|-----|-----|-----|
| SUNDAGGIO | SONDAGGIO IN PROVINO | <b>Z</b> (III) | [%] | [%] | [%]  | [%]  | [%]  | [%] | [%] | [%] | [%] | [%] |
| FCBH6     | 1                    | 37             | 100 | 100 | 92   | 42   | 0    | 0   | 8   | 50  | 42  | 0   |
| S4        | C1                   | 15.00          | 100 | 100 | 98.2 | 65.2 | 35.0 | 0   | 2   | 33  | 30  | 35  |
| S6        | C1                   | 7.05           | 100 | 100 | 100  | 78.5 | 37.5 | 0   | 0   | 21  | 41  | 37  |
| S6        | C2                   | 18.20          | 100 | 100 | 100  | 75.1 | 28.9 | 0   | 0   | 25  | 46  | 29  |
| S6        | C3                   | 22.20          | 100 | 100 | 100  | 59.1 | 26.2 | 0   | 0   | 41  | 33  | 26  |
| C411      | CR3                  | 23.70          | 100 | 100 | 100  | 72.6 | 29.0 | 0   | 0   | 27  | 44  | 29  |
| C420bis   | SPT8                 | 13.70          | 100 | 100 | 99   | 48   | 21   | 0   | 1   | 51  | 27  | 21  |
| C420bis   | SPT9                 | 18             | 100 | 100 | 100  | 86   | 43   | 0   | 0   | 14  | 43  | 43  |
| C420bis   | SPT10                | 21             | 100 | 100 | 92   | 48   | 23   | 0   | 8   | 44  | 25  | 23  |
| C420bis   | CI 1                 | 17.5           | 100 | 100 | 100  | 81   | 42   | 0   | 0   | 19  | 39  | 42  |
| C421      | CR2                  | 19.5           | 100 | 100 | 75   | 24   | 4    | 0   | 25  | 51  | 20  | 4   |

#### Tabella 42 Riepilogo risultati prove penetrometriche

| FORO      | Opera                                                          | LITOLOGIA | z<br>[m] | Nspt |
|-----------|----------------------------------------------------------------|-----------|----------|------|
| FCBH4     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Trubi     | 45.5     | 77   |
| FCBH4     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Trubi     | 48.4     | 87   |
| OTCSPT504 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Trubi     | 3.0      | 38   |
| OTCSPT504 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Trubi     | 4.5      | 35   |
| OTCSPT504 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Trubi     | 6.0      | 96   |
| OTCCH1501 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Trubi     | 15.0     | 38   |
| OTCCH1501 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Trubi     | 16.7     | 66   |





# STAZIONE T\_1

## (X = 2577123,8247 Y = 4231180,3878 Z = 159,0)

|             | Jv H | 6 | 4 | 7 | 12 | 10    | Jv H medio | 7,8 |
|-------------|------|---|---|---|----|-------|------------|-----|
| Jv standard | Jv V | 3 | 6 | 5 | 5  | 6     | Jv V medio | 5   |
|             | Jv O | 5 | 8 | 7 | 5  | 7     | Jv O medio | 6,4 |
|             |      |   |   |   |    | Media | totale Jv  | 6,4 |

| 1° Sistema       |     | Immersione (°) |     |      |     |     |     |      |      | 34  | 10  | Inclinazione (°) |      |     |     |      | )   | 80  |     |     | edia |
|------------------|-----|----------------|-----|------|-----|-----|-----|------|------|-----|-----|------------------|------|-----|-----|------|-----|-----|-----|-----|------|
| Spaziatura (cm)  | )   |                |     |      |     |     |     |      |      |     |     |                  |      |     |     |      |     |     |     | 2   | 4,6  |
| Apertura (mm)    |     |                |     |      |     |     |     |      |      |     |     |                  |      |     |     |      |     |     |     |     |      |
| Riempimento      |     |                |     |      |     |     |     |      |      |     |     |                  |      |     |     |      |     |     |     |     |      |
| 2° Sistema       |     | Imr            | mei | rsio | ne  | (°) |     |      |      | 17  | 70  | Inc              | clin | azi | on  | e (° | )   | 70  |     |     | edia |
| Spaziatura (cm)  | )   |                |     |      |     |     |     |      |      |     |     |                  |      |     |     |      |     |     |     | 2   | 0,3  |
| Apertura (mm)    |     |                |     |      |     |     |     |      |      |     |     |                  |      |     |     |      |     |     |     |     |      |
| Riempimento      |     |                |     |      |     |     |     |      |      |     |     |                  |      |     |     |      |     |     |     |     |      |
| 3° Sistema       |     | Imr            | nei | rsio | ne  | (°) |     |      |      | 5   | 0   | Inc              | clin | azi | on  | e (° | )   | 7   | 0   | Me  | edia |
| Spaziatura (cm)  | )   |                |     |      |     |     |     |      |      |     |     |                  |      |     |     |      |     |     |     | 1   | 3,2  |
| Apertura (mm)    |     |                |     |      |     |     |     |      |      |     |     |                  |      |     |     |      |     |     |     |     |      |
| Riempimento      |     |                |     |      |     |     |     |      |      |     |     |                  |      |     |     |      |     |     |     |     |      |
|                  |     |                | Α   | nal  | isi | og  | get | tiva | a (s | tes | a o | riz              | zoi  | nta | le) |      |     |     |     |     |      |
| Progr. (cm)      | 7   | 17             | 70  | 77   | 87  | 96  | 140 | 171  | 173  | 190 | 221 | 229              | 233  | 263 | 283 | 284  | 291 | 305 | 315 | 319 | 323  |
| Immersione (°)   | 30  | 220            | 320 | 180  | 350 | 120 | 320 | 340  | 65   | 350 | 270 | 60               | 65   | 150 | 130 | 40   | 240 | 150 | 40  | 160 | 60   |
| Inclinazione (°) | 70  | 45             | 85  | 80   | 70  | 65  | 80  | 85   | 60   | 80  | 75  | 50               | 70   | 70  | 65  | 60   | 65  | 80  | 45  | 85  | 75   |
| Progr. (cm)      | 329 | 332            | 357 | 362  | 375 | 381 | 392 | 396  | 412  | 418 | 428 | 443              | 446  | 460 | 466 | 472  | 487 | 496 |     |     |      |
| Immersione (°)   | 90  | 145            | 340 | 340  | 330 | 340 | 320 | 40   | 30   | 50  | 180 | 180              | 40   | 350 | 350 | 190  | 330 | 340 |     |     |      |
| Inclinazione (°) | 85  | 70             | 89  | 89   | 85  | 85  | 80  | 70   | 85   | 80  | 50  | 75               | 70   | 75  | 70  | 75   | 70  | 75  |     |     |      |

Indice dei blocchi (lb)\*:

19,4

cm

RMR = 58 GSI = (RMR-5) = 53

| Stretto<br>di Messina | EurolinK        | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |           |                                                           |  |  |  |  |  |  |
|-----------------------|-----------------|-------------------------------------------------------|-----------|-----------------------------------------------------------|--|--|--|--|--|--|
| RELAZIONE GEOTE       | ECNICA GENERALE | Codice documento<br>CB0057_F0                         | Rev<br>F0 | Data<br>20/06/2011                                        |  |  |  |  |  |  |
|                       |                 |                                                       | × *       | D.: D. +rsion<br>(2017)<br>2021)1<br>30071<br>+ 9071      |  |  |  |  |  |  |
|                       |                 |                                                       |           | Est pi Angle<br>Lower Henispite s<br>A Totay<br>4 Entrice |  |  |  |  |  |  |

## Tabella 43 Riepilogo risultati prove pressiometriche

| FORO    | PROVINO | Opera                                                  | z (m) | Ep(MPa) | E'(MPa) |
|---------|---------|--------------------------------------------------------|-------|---------|---------|
| S5      | 1MPT    | Galleria Rampa D / Galleria Rampa A / ferrovia         | 14    | 34.22   | 68.45   |
| S5      | 2MPT    | Galleria Rampa D / Galleria Rampa A / ferrovia         | 24.5  | 31.79   | 63.58   |
| SG13bis | 1MPT    | Galleria Rampa C / Galleria Rampa D / ferrovia         | 10.5  | 117.88  | 235.77  |
| S6      | C1      | Galleria Rampa D / Galleria Rampa C / Galleria Rampa A | 7     | 18.51   | 37.02   |

## Tabella 44 Riepilogo risultati prove sismiche in foro

| FORO      | LITOLOGIA | z(m) | Vs<br>[m/s] | E'₀<br>[MPa] | G₀<br>[MPa] |
|-----------|-----------|------|-------------|--------------|-------------|
| OTCCH1501 | Trubi     | 12   | 342         | 572.30       | 238.46      |
| OTCCH1501 | Trubi     | 13   | 363         | 644.74       | 268.64      |
| OTCCH1501 | Trubi     | 14   | 361         | 637.66       | 265.69      |
| OTCCH1501 | Trubi     | 15   | 369         | 666.23       | 277.60      |
| OTCCH1501 | Trubi     | 16   | 421         | 867.23       | 361.35      |
| OTCCH1501 | Trubi     | 17   | 476         | 1108.63      | 461.93      |



## 5.7 DEPOSITI ALLUVIONALI



Depositi Alluvionali



Nspt



60

Nspt







Codice documento CB0057\_F0





Codice documento CB0057\_F0















































Codice documento CB0057\_F0








Eurolink S.C.p.A.









Codice documento CB0057\_F0



| Stretto<br>di Messina | EurolinK        | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |           |                    |  |  |  |
|-----------------------|-----------------|-------------------------------------------------------|-----------|--------------------|--|--|--|
| RELAZIONE GEOTE       | ECNICA GENERALE | Codice documento<br>CB0057_F0                         | Rev<br>F0 | Data<br>20/06/2011 |  |  |  |

### Tabella 45 Riepilogo caratteristiche fisiche depositi alluvionali

| SONDAGGIO | N°<br>PROVINO | OPERA                                        |     | γ (kN/m³) | γ <sub>d</sub><br>(kN/m <sup>3</sup> ) | γ <sub>s</sub><br>(kN/m³) |
|-----------|---------------|----------------------------------------------|-----|-----------|----------------------------------------|---------------------------|
| Cn451     | SPT1          | Rampa C 1+200-3+300 / Rampa V / Ramo C_dec   | 1.6 |           |                                        | 26.4                      |
| Cn451     | SPT2          | Rampa C 1+200-3+300 / Rampa V / Ramo C_dec   | 3.1 |           |                                        | 26.5                      |
| Cn451     | SPT3          | Rampa C 1+200-3+300 / Rampa V / Ramo C_dec   | 4.5 |           |                                        | 26.6                      |
| C434      | SPT1          | Rampa C 1+200-3+300 / Ramo A_acc/ Rampa F    | 1.6 |           |                                        | 26.63                     |
| C429      | SPT1          | Rampa C 1+200-3+300 / Rampa F / Rampa V      | 1.5 |           |                                        | 26.8                      |
| C429      | SPT2          | Rampa C 1+200-3+300 / Rampa F / Rampa V      | 3   |           |                                        | 26.53                     |
| C430      | SPT1          | Rampa C 1+200-3+300 / Rampa F / Rampa V      | 1.5 |           |                                        | 26.83                     |
| C430      | SPT2          | Rampa C 1+200-3+300 / Rampa F / Rampa V      | 3   |           |                                        | 26.80                     |
| C430      | SPT3          | Rampa C 1+200-3+300 / Rampa F / Rampa V      | 4.5 |           |                                        | 26.65                     |
| C433      | SPT1          | Rampa C 1+200-3+300 / Ramo A_acc / Rampa F   | 1.5 |           |                                        | 26.76                     |
| C433      | SPT2          | Rampa C 1+200-3+300 / Ramo A_acc / Rampa F   | 3   |           |                                        | 26.82                     |
| C435      | SPT2          | Rampa C 1+200-3+300 / Ramo A_acc/ Ramo C_dec | 3.1 |           |                                        | 26.46                     |
| C427      | SPT1          | Rampa C 1+200-3+300 / Rampa U                | 1.5 |           |                                        | 26.09                     |
| C427      | SPT2          | Rampa C 1+200-3+300 / Rampa U                | 3   |           |                                        | 26.76                     |

#### Tabella 46 Granulometria depositi alluvionali

|           |            | = (m) | С   | G   | S   | L   | Α   | С   | G   | S   | L   | Α   |
|-----------|------------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SUNDAGGIU | N° PROVINO | z (m) | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] |
| Cn451     | SPT1       | 1.6   | 0   | 60  | 32  | 8   | 0   | 100 | 100 | 40  | 8   | 0   |
| Cn451     | SPT2       | 3.1   | 0   | 53  | 39  | 8   | 0   | 100 | 100 | 47  | 8   | 0   |
| Cn451     | SPT3       | 4.5   | 0   | 50  | 44  | 6   | 0   | 100 | 100 | 50  | 6   | 0   |
| C430      | SPT1       | 1.5   | 0   | 43  | 39  | 16  | 2   | 100 | 100 | 57  | 18  | 2   |
| C430      | SPT2       | 3     | 0   | 64  | 29  | 7   | 0   | 100 | 100 | 36  | 7   | 0   |
| C430      | SPT3       | 4.5   | 0   | 52  | 35  | 11  | 2   | 100 | 100 | 48  | 13  | 2   |
| C433      | SPT1       | 1.5   | 0   | 28  | 63  | 9   | 0   | 100 | 100 | 72  | 9   | 0   |
| C433      | SPT2       | 3     | 0   | 24  | 67  | 9   | 0   | 100 | 100 | 76  | 9   | 0   |
| C435      | SPT1       | 1.6   | 0   | 26  | 55  | 17  | 2   | 100 | 100 | 74  | 19  | 2   |
| C435      | SPT2       | 3.1   | 0   | 23  | 55  | 18  | 4   | 100 | 100 | 77  | 22  | 4   |
| C435      | SPT3       | 4.5   | 0   | 48  | 30  | 22  | 0   | 100 | 100 | 52  | 22  | 0   |
| C435      | SPT4       | 6.2   | 0   | 61  | 28  | 11  | 0   | 100 | 100 | 39  | 11  | 0   |
| C427      | SPT1       | 1.5   | 0   | 1   | 77  | 19  | 3   | 100 | 100 | 99  | 22  | 3   |
| C427      | SPT2       | 3     | 0   | 3   | 49  | 37  | 11  | 100 | 100 | 97  | 48  | 11  |
| C417      | SPT1       | 1.5   | 0   | 32  | 59  | 9   | 0   | 100 | 100 | 68  | 9   | 0   |
| C417      | SPT2       | 3     | 0   | 36  | 56  | 8   | 0   | 100 | 100 | 64  | 8   | 0   |
| C417      | SPT3       | 4.4   | 0   | 42  | 49  | 9   | 0   | 100 | 100 | 58  | 9   | 0   |
| C434      | SPT1       | 1.6   | 0   | 24  | 59  | 13  | 3   | 100 | 100 | 76  | 16  | 3   |
| C429      | SPT1       | 1.5   | 0   | 31  | 57  | 9   | 3   | 100 | 100 | 69  | 12  | 3   |
| C429      | SPT2       | 3     | 0   | 28  | 59  | 9   | 4   | 100 | 100 | 72  | 13  | 4   |



#### Tabella 47 Riepilogo risultati prove penetrometriche

| FORO    | Opera                                                                            | z<br>[m] | Nspt |
|---------|----------------------------------------------------------------------------------|----------|------|
| C203    | Galleria Rampa A / ferrovia                                                      | 5.0      | 19   |
| C203    | Galleria Rampa A / ferrovia                                                      | 13.0     | 100  |
| C203    | Galleria Rampa A / ferrovia                                                      | 9.0      | 40   |
| C213bis | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / Rampa B 0-0+300 / ferrovia | 3.3      | 24   |
| C415    | Rampa D 1+600-2+200 / Rampa B 0+800-1+325 / Rampa M                              | 1.5      | 4    |
| C417    | Rampa D_dec                                                                      | 1.5      | 44   |
| C417    | Rampa D_dec                                                                      | 3.0      | 62   |
| C417    | Rampa D_dec                                                                      | 4.5      | 63   |
| C430    | Rampa C 1+200-3+300 / Rampa F / Rampa V                                          | 4.5      | 34   |
| C430    | Rampa C 1+200-3+300 / Rampa F / Rampa V                                          | 6.0      | 7    |
| C434    | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                                      | 1.6      | 22   |
| Cn451   | Rampa C 1+200-3+300 / Rampa F / Rampa V                                          | 4.5      | 13   |
| Cn451   | Rampa C 1+200-3+300 / Rampa F / Rampa V                                          | 1.6      | 21   |
| Cn451   | Rampa C 1+200-3+300 / Rampa F / Rampa V                                          | 3.1      | 28   |

Tabella 48 Riepilogo risultati prove sismiche in foro

| FORO | z(m) | Vs<br>[m/s] | E'₀<br>[MPa] |
|------|------|-------------|--------------|
| C430 | 1.0  | 164.4       | 125.7        |
| C430 | 2.0  | 191.2       | 169.8        |
| C417 | 1.0  | 213.0       | 244.1        |
| C417 | 2.0  | 222.4       | 266.2        |
| C417 | 3.0  | 333.7       | 599.2        |
| C417 | 4.0  | 389.3       | 815.8        |
| C417 | 5.0  | 346.9       | 647.6        |



Depositi di versante

## 5.8 DEPOSITI DI VERSANTE

















#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0





| Codice documento |  |
|------------------|--|
| CB0057_F0        |  |







































Figura 413







100





### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011



















### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011





| Stretto<br>di Messina | EurolinK        | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |           |                    |  |  |  |
|-----------------------|-----------------|-------------------------------------------------------|-----------|--------------------|--|--|--|
| RELAZIONE GEOTE       | ECNICA GENERALE | Codice documento<br>CB0057_F0                         | Rev<br>F0 | Data<br>20/06/2011 |  |  |  |

### Tabella 49 Riepilogo caratteristiche fisiche Depositi di versante

| SONDAGGIO | N°<br>PROVINO | OPERA                                          | z<br>(m) | γ (kN/m³) | γ <sub>d</sub><br>(kN/m³) | γ <sub>s</sub><br>(kN/m³) |
|-----------|---------------|------------------------------------------------|----------|-----------|---------------------------|---------------------------|
| C407      | SPT1          | Galleria Rampa C / Galleria Rampa D / ferrovia | 1.5      |           |                           | 26.21                     |
| C407      | SPT2          | Galleria Rampa C / Galleria Rampa D / ferrovia | 3        |           |                           | 26.51                     |
| C407      | SPT3          | Galleria Rampa C / Galleria Rampa D / ferrovia | 4.5      |           |                           | 26.54                     |
| C407      | SPT4          | Galleria Rampa C / Galleria Rampa D / ferrovia | 6        |           |                           | 26.59                     |
| C421      | SPT1          | Galleria Rampa A                               | 1.50     |           |                           | 26.59                     |
| C421      | SPT2          | Galleria Rampa A                               | 3.00     |           |                           | 26.58                     |
| C421      | CR1           | Galleria Rampa A                               | 6.5      |           |                           | 26.83                     |
| C425      | SPT1          | Rampa C 1+200-3+300 / Rampa U / Rampa G        | 1.5      |           |                           | 26.60                     |
| C425      | SPT2          | Rampa C 1+200-3+300 / Rampa U / Rampa G        | 3        |           |                           | 26.58                     |
| C425      | SPT3          | Rampa C 1+200-3+300 / Rampa U / Rampa G        | 4.5      |           |                           | 26.54                     |

#### Tabella 50 Granulometria depositi di versante

| SONDAGGIO | N° PROVINO | z(m) | C<br>[%] | G<br>[%] | S<br>[%] | L<br>[%] | A<br>[%] | C<br>[%] | G<br>[%] | S<br>[%] | L<br>[%] | A<br>[%] |
|-----------|------------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| C407      | SPT1       | 1.5  | 0        | 56       | 35       | 9        | 0        | 100      | 100      | 44       | 9        | 0        |
| C407      | SPT2       | 3    | 0        | 4        | 57       | 34       | 5        | 100      | 100      | 96       | 39       | 5        |
| C407      | SPT5       | 7.5  | 0        | 2        | 85       | 13       | 0        | 100      | 100      | 98       | 13       | 0        |
| C407      | SPT6       | 9    | 0        | 12       | 48       | 27       | 13       | 100      | 100      | 88       | 40       | 13       |
| C425      | SPT1       | 1.5  | 0        | 3        | 76       | 18       | 3        | 100      | 100      | 97       | 21       | 3        |
| C425      | SPT2       | 3    | 0        | 2        | 68       | 25       | 5        | 100      | 100      | 98       | 30       | 5        |
| C425      | SPT3       | 4.5  | 0        | 4        | 76       | 17       | 3        | 100      | 100      | 96       | 20       | 3        |
| C421      | SPT1       | 1.5  | 0        | 1        | 45       | 42       | 12       | 100      | 100      | 99       | 54       | 12       |
| C421      | SPT2       | 3    | 0        | 13       | 61       | 20       | 6        | 100      | 100      | 87       | 26       | 6        |
| C421      | CR1        | 6.5  | 0        | 28       | 53       | 16       | 3        | 100      | 100      | 72       | 19       | 3        |

#### Tabella 51 Riepilogo risultati prove penetrometriche

| FORO    | Opera                                                          | z<br>[m] | Nspt |
|---------|----------------------------------------------------------------|----------|------|
| C406    | Galleria Rampa C / Galleria Rampa D / ferrovia                 | 1.73     | 15   |
| C406    | Galleria Rampa C / Galleria Rampa D / ferrovia                 | 3.08     | 100  |
| C406    | Galleria Rampa C / Galleria Rampa D / ferrovia                 | 4.53     | 100  |
| C406    | Galleria Rampa C / Galleria Rampa D / ferrovia                 | 5.94     | 100  |
| C407    | Galleria Rampa C / Galleria Rampa D / ferrovia                 | 6.00     | 21   |
| C407    | Galleria Rampa C / Galleria Rampa D / ferrovia                 | 7.50     | 13   |
| C407    | Galleria Rampa C / Galleria Rampa D / ferrovia                 | 9.00     | 18   |
| C423bis | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 3        | 28   |
| C424    | Rampa G                                                        | 1.5      | 7    |
| C424    | Rampa G                                                        | 3        | 19   |
| C424    | Rampa G                                                        | 4.5      | 16   |
| C424    | Rampa G                                                        | 6        | 16   |
| C424    | Rampa G                                                        | 7.5      | 36   |
| C424    | Rampa G                                                        | 9        | 28   |
| C421    | Galleria Rampa A                                               | 1.5      | 17   |
| C421    | Galleria Rampa A                                               | 3        | 19   |
| C425    | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G     | 1.5      | 14   |
| C425    | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G     | 3        | 17   |
| C425    | Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G     | 4.5      | 12   |
| C433    | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                    | 3        | 26   |
| C433    | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                    | 4.55     | 20   |
| C433    | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                    | 6.5      | 32   |
| C433    | Rampa C 1+200-3+300 / Rampa F / Rampa A_acc                    | 8        | 38   |



#### Tabella 52 Riepilogo risultati prove sismiche in foro

| FORO    | z(m) | Vs<br>[m/s] | E'₀<br>[MPa] |
|---------|------|-------------|--------------|
| SG11    | 1    | 243.0       | 303.4        |
| SG11    | 2    | 262.0       | 352.7        |
| SG11    | 4    | 274.0       | 385.7        |
| C423bis | 1    | 179.9       | 166.3        |
| C423bis | 2    | 236.2       | 286.5        |
| C423bis | 3    | 209.8       | 226.1        |



## 5.9 CALCARENITI DI SAN CORRADO



#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0





Codice documento CB0057\_F0









#### Tabella 53 Riepilogo caratteristiche fisiche calcareniti di S.Corrado

| SONDAGGIO | N°<br>PROVINO | OPERA                                                          | z<br>(m) | γ<br>(kN/m³) | γd<br>(KN/m³) |
|-----------|---------------|----------------------------------------------------------------|----------|--------------|---------------|
| FCBH6     | 2_1           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 45.10    | 24.70        |               |
| FCBH6     | 2_2           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 45.30    | 21.90        | 21.80         |
| FCBH6     | 3_1           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 47.40    | 23.50        | 23.10         |
| FCBH6     | 3_2           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 47.95    | 24.60        | 24.30         |
| FCBH7     | 1_1           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 45.75    | 22.20        |               |
| FCBH7     | 1_2           | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 45.75    | 23.10        | 23.00         |
| FCBH7     | 2             | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 48.15    | 24.30        | 24.30         |
| C420bis   | SPT6          | Galleria Rampa D / Galleria Rampa A / ferrovia                 | 9.10     |              | 26.14         |
| C420bis   | SPT7          | Galleria Rampa D / Galleria Rampa A / ferrovia                 | 10.70    |              | 26.65         |

#### Tabella 54 Riepilogo risultati prove penetrometriche

| FORO      | Opera                                                          | LITOLOGIA               | z<br>[m] | Nspt |
|-----------|----------------------------------------------------------------|-------------------------|----------|------|
| FCBH4     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Calcareniti San Corrado | 39.07    | 100  |
| FCBH4     | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Calcareniti San Corrado | 42.46    | 17   |
| OTCCH1501 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Calcareniti San Corrado | 3        | 16   |
| OTCCH1501 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Calcareniti San Corrado | 4.5      | 25   |
| OTCCH1501 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Calcareniti San Corrado | 6        | 21   |
| OTCCH1501 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Calcareniti San Corrado | 7.5      | 22   |
| OTCCH1501 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Calcareniti San Corrado | 9        | 17   |
| OTCCH1501 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | Calcareniti San Corrado | 10.5     | 9    |

#### Tabella 55 Riepilogo risultati prove di permeabilità

| FORO  | Opera                                                          | z(m) | K(m/s)   |
|-------|----------------------------------------------------------------|------|----------|
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 44.5 | 7.19E-07 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 50   | 6.12E-07 |

#### Tabella 56 Riepilogo risultati prove sismiche in foro

| FORO      | LITOLOGIA                  | z(m) | Vs<br>[m/s] | E'₀<br>[MPa] | G'₀<br>[MPa] |
|-----------|----------------------------|------|-------------|--------------|--------------|
| OTCCH1501 | Calcareniti di San Corrado | 3.0  | 458         | 975          | 406          |
| OTCCH1501 | Calcareniti di San Corrado | 4.0  | 506         | 1190         | 496          |
| OTCCH1501 | Calcareniti di San Corrado | 5.0  | 470         | 1027         | 428          |
| OTCCH1501 | Calcareniti di San Corrado | 6.0  | 385         | 689          | 287          |
| OTCCH1501 | Calcareniti di San Corrado | 7.0  | 345         | 553          | 231          |
| OTCCH1501 | Calcareniti di San Corrado | 8.0  | 341         | 541          | 225          |
| OTCCH1501 | Calcareniti di San Corrado | 9.0  | 360         | 602          | 251          |
| OTCCH1501 | Calcareniti di San Corrado | 10.0 | 358         | 596          | 248          |
| OTCCH1501 | Calcareniti di San Corrado | 11.0 | 369         | 633          | 264          |





RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011







#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0 
 Rev
 Data

 F0
 20/06/2011



Figura 423





#### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0





| Stretto<br>di Messina         | EurolinK | Ponte sullo Stretto di Messina<br>PROGETTO DEFINITIVO |     |            |  |  |
|-------------------------------|----------|-------------------------------------------------------|-----|------------|--|--|
| RELAZIONE GEOTECNICA GENERALE |          | Codice documento                                      | Rev | Data       |  |  |
|                               |          | CB0057_F0                                             | F0  | 20/06/2011 |  |  |

## Tabella 57 Riepilogo risultati prove di schiacciamento

| FORO  | Opera                                                          | campione | Prova | Prof. (m) | σf<br>(MPa) | ε<br>(%) | E(Mpa) |
|-------|----------------------------------------------------------------|----------|-------|-----------|-------------|----------|--------|
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 2-2      | LPT   | 45.30     | 8.00        | 3.50     | 228.6  |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 3-1      | LPT   | 47.40     | 15.10       | 1.41     | 1070.9 |
| FCBH6 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 3-2      | LPT   | 47.95     | 13.60       | 0.97     | 1402.1 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 1        | LPT   | 45.75     | 14.26       | 1.25     | 1140.8 |
| FCBH7 | Rampa D 0-0+500 / Rampa C 0-0+500 / Rampa A 0-0+500 / ferrovia | 2        | LPT   | 48.35     | 21.30       | 1.54     | 1383.1 |





### RELAZIONE GEOTECNICA GENERALE

Codice documento CB0057\_F0

Prove di schiacciamento - LPT-

 Rev
 Data

 F0
 20/06/2011





### Prove di schiacciamento - LPT-CALCARENITI DI SAN CORRADO







# 6 BIBLIOGRAFIA

- 1) AMAR, S,, y JEZEQUEL, 1,, 1972, "Essais en place et en laboratoire sur sols cohérents, Comparaison des résultats", Bull, Lab, Ponts et Chauss,, nº 61
- 2) Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M. & Pasqualini, E. 1985. "Penetration resistance and liquefaction of sands". Proc. XI ICSMFE, S. Francisco, Vol. 4: p. 1891. Aug.
- 3) Baldi, G., Bellotti, R., Ghionna, V.N., Jamiolkowski, M. and D.C.F. Lo Presti (1989), "Modulus of sand from CPT and DMT", *Proc. 12th Int. Conf. on Soil Mech. and Found. Engrg.*, Balkema, Rotterdam, TheNetherlands, vol. 1, 165-170.
- Baligh, M. (1975). Theory of deep site static conepenetration resistance. Report R.75-76. MassachusettsInstitute of Technology
- 5) Barton, N. (1974), Estimating the shear strength of *rock* joints. Srd. Int. Conf. of the ISRM, Denver 2A
- 6) Bieniawski Z.T. (1989) "Engineering Rock Mass Classifications" New York, John Wiley & Sons.
- 7) Bolton (1986) "The strength and dilatancy of sands" Geotechnique 36, n° 1.
- 8) J.E. Bowles (Fondazioni, progetto e analisi, McGraw Hill editore, 1991).
- Chandler, R.J. (1988). The in-situ measurement of the undrained shear strength of clays using the fieldvane. Vane Shear Strength Testing in Soils: Field and Laboratory Studies, ASTM STP 1014, (ed.) A.F. Richards, ASTM, Philadelphia, 13-44
- 10) Clayton, C.R.I. (1995) "The Standard Penetration Test (SPT): methods and use". Report 143, CIRIA, London
- 11) Cubrinowski M., Ishihara K. (1999) "Empirical correlation between SPT N-value and relative density for sandy soils" Soils and Foundations, vol. 39, n° 5, pp. 61-71...
- 12) Elson, W. K. (1984) "*Design of laterally-loaded piles*" Construction Industry Research and Information Association, CIRIA Report 103, United Kingdom
- *13)* Heim A.(1878), Untersuchungen über den Mechanismus der Gebirgsbildung um Anschluss an die Geologische Monographie der Tod, Windgallen-Gruppe, Basel
- 14) Hoek E., Brown E.T. (1988) "The Hoek-Brown failure criterion A 1988 update" Proc. of 15<sup>th</sup> Canadian Rock Mechanics Symposium, Toronto, Canada.
- 15) Hoek E. (1990) "Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion" Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 27.


- 16) Hoek E., Kaiser P.K. and Bawden W.F. (1995): *Support of Underground Excavations in Hard Rock.* Balkema, Rotterdam, 215pp.
- 17) Hoek E., Marinos P., Benissi M. (1998) "Applicability of the Geological Strenght Index (GSI) classification for very weak and sheared rock masses" The Case of Athens Schist Formation, Bull. Engg, Geol, Env. 57(2), 151-160.
- 18) Hoek E., Carranza-Torres C.T., Corkum B. (2002) "Hoek-Brown failure criterion- 2002 edition" Proc. North American Rock Mechanics Society Meeting in Toronto, July.
- 19) Ishihara K., Tsukamoto Y., Shimizu Y. (2001) "Estimate of relative density from in-situ penetration tests" Proceedings In-situ 2001, Bali.
- 20) Idriss I.M. (1990). Response of soft soil sites during earthquakes. Proc. H. Bolton Seed Memorial Symposium. Volume 2. BiTech Publishers Ltd. Vancouver. 273-290.
- 21) Ishibashi I. and Zhang X. J.; 1993: Unified dynamic shear moduli and damping ratios of sands and clay. Soils Foundations 33 (1), pp 182-191.
- 22) Iwasaki, T., Tokida, K., Tatsuoka, F., Watanabe, S. Yasuda, S., Sato, H. (1982) "Microzonation for soil liquefaction potential using simplified methods" Proceedings of 3<sup>rd</sup> International Conference on Microzonation, Seattle Vol.3 pp 1319-1330.
- 23) Jaky J. (1948) Pressure in soils, 2nd ICSMFE, London, Vol. 1, pp 103-107.
- 24) Jamiolkowski M., Ghionna V.N., Lancellotta R., Pasqualini E. (1988) "New correlations of penetration tests for design practice" Proceedings of I International Symposium on Penetration Testing, ISOPT I, Orlando.
- 25) Ladd CC. & Foot, R. 1974. New design procedure for stability of soft clays. ASCE Journal of the Geotechnical Engineering Division. Vol 100, No GT7, pp 763-786.
- 26) Ladd CC, Foott, R, Ishihara, K, Schlosser, F, Poulos, HG. 1977. Stress-deformation and strength characteristics. ICSMFE 9, Proceedings, Vol. 2, pp 421-494. Tokyo.
- 27) Lai C.G, Foti S., R.Lancellotta "Determinazione della porosità in mezzi porosi saturi da misure di velocità delle onde sismiche" IARG 2002 Napoli
- 28) Lo Presti D. (1989) "Proprietà dinamiche dei terreni" Atti delle Conferenze di Geotecnica di Torino, 14<sup>th</sup> Ciclo, Comportamento dei terreni e delle fondazioni in campo dinamico.
- 29) Lo Presti D. e Puci I. (2001) "IMPIEGO DELLE PROVE PENETROMETRICHE DINAMICHE PER LA CARATTERIZZAZIONE MECCANICA DEI TERRENI", Politecnico di Torino, Dipartimento di Ingegneria Strutturale e Geotecnica, CONFERENZE DI GEOTECNICA DI TORINO, NOVEMBRE 2001



- 30) Mancuso C., Silvestri F., Vinale F., 1997. Soil properties relevant to seismic microzonation. Proc. of the First Japanese Turkish Conference on Earthquake Engineering, Invited lecture, Istanbul.
- 31) Mayne, P.W. and Kulhawy, F.H. (1982). "K0-OCR relationships in soil". Journal of Geotechnical Engineering, Vol. 108 (GT6), 851-872.
- 32) Mesri, G. and A. Castro. "The C<sub>α</sub>/C<sub>c</sub> Concept and K<sub>o</sub> During Secondary Compression." Closure, *Journal of the Geotechnical Engineering Division*, ASCE, 115, 2 (February 1989): pp. 273-277.
- 33) Mesri, G. and Abdelghafar, M. (1993), Cohesion intercept in effective stress stability analysis,J. Geotech .Eng ., 119 (8),1229- 1249.
- 34) Matlock, H., Reese, L.C. (1960). "Generalized Solutions for Laterally Loaded Piles". Journal of Soil Mechanics and Foundations Division, ASCE, V.86, No.SM5, pp.63-91.
- 35) Ohta Y., Goto N. (1978) "Empirical shear wave velocity equations in terms of characteristic soil indexes" Earthquake Engineering anf Structural Dynamics, vol.6.
- 36) Reese L.C., Cox W.R. e Kocp F. D. (1974) "Analysis of laterally loaded piles in sand", Proc. Offshore Technology Conference, Dallas
- *37*) Rocchi G.F. (2003) "Correlazione empirica tra coefficiente di permeabilità, indice dei vuoti e caratteristiche di plasticità in argille e limi" Documento interno Studio Geotecnico Italiano.
- 38) Santamarina, J.C. and Cho, G.C. (2004), Soil Behavior: The Role of Particle Shape, Proc. Skempton Conf., March, London.
- 39) Seed H.B. e Idriss I.M. (1982). Ground Motions and Soil Liquefaction during Earthquakes. *EERI, Monograph. Oakland, California.*
- 40) Serafim J.L., Pereira J.P. (1983) "Considerations of the geomechanic classification of Bieniawski" Proc. Int. Symp. On Engg, Geol. And Underground Constr. (L.N.E.C., Lisb. Portugal), Vol.1, Section 2, pp.33-42.
- 41) Sjoberg, (1997) "Estimating rock mass strenght using the Hoek and Brown failure criterion and rock mass classification" Department of Civil and Mining Engineering Division of Rock Mechanics BM 1997:02
- 42) Skempton A.W. (1986) "Standard Penetration Test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation" Geotechnique 36, n° 3.
- 43) Somerville S.H. (1986) "Control of groundwater for temporary works" CIRIA Report 113.
- 44) Stroud M.A. (1974) "The standard penetration test in insensitive clays and soft rocks" Proceedings ESOPT I.



- 45) Stroud M.A. (1988) "The Standard Penetration Test Its application and interpretation" Penetration Testing in UK, Proceedings of the Geotechnical Conference organized by ICE, Birmingham.
- 46) Tamez E. (1984) "Estabilidad de tuneles excavados en suelos", Conferenza presso la Mexican Academy, Mexico
- 47) Tokimatsu K., Yoshimi Y. (1983) "Empirical correlation of soil liquefaction based on SPT Nvalueand fines content" Soils and Foundations 23, n° 4.
- 48) Vucetic M., Dobry R. (1991) "Effect of soil plasticity on cyclic response" Journal of Geotechnical Engineering, vol. 117, n° 1, pp. 89-107.
- 49) Youd T.L. e Idriss I.M. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liguefaction resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering. 127(4): 297-313.



## 7 INDAGINI PREGRESSE SA-RC