

COMUNE DI LIPARI

(PROVINCIA DI MESSINA)

MESSA IN SICUREZZA DEL PORTO DI LEVANTE E PONENTE NELL'ISOLA DI VULCANO CON LA SISTEMAZIONE DEL MOLO FORANEO E COLLEGAMENTO TRA LE BANCHINE PORTUALI E RADICE PONTILE ATTRACCO ALISCAFO

PROGETTO DEFINITIVO

DATA:

15-11-2018

SEZIONE:

A: RELAZIONE GENERALE E STUDI AMBIENTALI

ELAB./TAV.:

B.03

OGGETTO:

INDAGINI GEOLOGICHE E GEOGNOSTICHE

PROGETTAZIONE:

Certified by Bureau Veritas Italia S.p.A.

ISO 9001:2015 ISO 14001:2015
Sistema di Gestione Qualità Sistema di Gestione Ambientale

.

Associazione delle organizzazioni di ingegneria di architettura e di consulenza tecnico-economica

PROJECT MANAGER: Ing. Antonino SUTERA

PROGETTISTI: Ing. Giuseppe BERNARDO Ing. Davide FERLAZZO GRUPPO DI LAVORO: Arch. Rossella FARALLA Ing. Stefania FERLAZZO Ing. Simone FIUMARA Arch. Francesca GANGEMI Arch. Emanuela PANARELLO

GEOLOGO: Geol. Enzo PINIZZOTTO

Ξ			
SIOI			
~	REV. n°	DATA	MOTIVAZIONE

R.U.P.:

VISTI/APPROVAZIONI:

Geom. Carmelo Antonino MEDURI

COMUNE DI LIPARI

PROVINCIA DI MESSINA "Eolie, patrimonio dell'umanità"

III SETTORE - Tecnico, Urbanistico, Sviluppo e Tutela Territoriale - 1° e 2° Servizio

MESSA IN SICUREZZA DEL PORTO DI LEVANTE E DI PONENTE NELL'ISOLA DI VULCANO CON LA SISTEMAZIONE DEL MOLO FORANEO E COLLEGAMENTO TRA LE BANCHINE PORTUALI E RADICE PONTILE ATTRACCO ALISCAFO

INDAGINI GEOGNOSTICHE

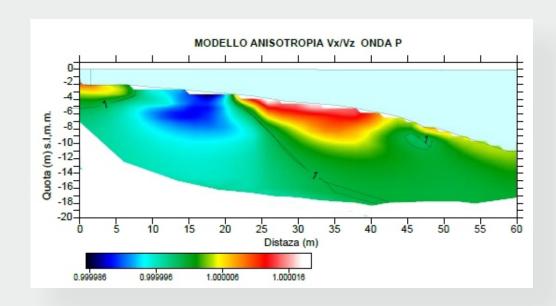
Data: settembre 2018

ld. file:

LP_18_E606_VULC_PORT_INDAGINI

Dott. Geologo
Vincenzo Pinizzotto

Dott. Geol.


Dott. Geol.

PINIZZOTTO
PINIZZOTTO
VINCENZO
PINIZZOTTO
PINIZZO

COMUNE DI LIPARI

(Città metropolitana di Messina)

Indagini geognostiche, geofisiche e prove di laboratorio a supporto dello studio geologico relativo al progetto « Messa in sicurezza del porto di levante e di ponente nell'Isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo»

Codice documento: 32.2018	COMMITTENTE:		n° pagine:	
Revisione: 0	Dott. Geol. Vincenzo Pinizzotto	Redatto	Controllato	Approvato
Data: settembre 2018	(in nome e per conto del Comune di Lipari - ME)	Dott. A. Cubito	Dott. Santi Pappalardo	Dott. A. Cubito

Soluzioni per la geologia, l'ingegneria, l'ambiente

Tel. /Fax +39 095 647684 www. Sigeodrilling.com info@sigeodrilling.com

Via Umberto 110 95015 Linguaglossa (CT)

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

INDICE

1.0	PREMESSA
2.0	PERFORAZIONI GEOGNOSTICHE
3.0	PROVE PENETROMETRICHE DINAMICHE (S.P.T.)
4.01	NDAGINI GEOFISICHE
5.0	PROVE DI LABORATORIO

ALLEGATI:

-	Colonna stratigrafica	(all. STR)
-	Documentazione fotografica	(all. DF)
-	Indagini geofisiche	(all. lg)
_	Prove di laboratorio	(all. PL)

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

1.0 PREMESSA

Nella presente nota vengono esposti i risultati delle indagini geognostiche, geofisiche e delle prove di laboratorio eseguite su incarico del dott. geologo Vincenzo Pinizzotto, in nome e per conto del Comune di Lipari (ME), come da determina nº 110 del 20/06/2018, in relazione ai lavori di "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo".

La campagna di indagini è consistita nell'esecuzione di una perforazione a carotaggio continuo, spinta ad una profondià di 30 m dal p.c., nel corso della quale sono stati prelevati dei campioni rimaneggiati e delle prove S.P.T. a varie profondità, indagini geofisiche e prove di laboratorio sui campioni prelevati.

Perforazioni geognostiche

Sondaggio	Lunghezza (m)	Cassette catalogatrici (n°)	Prove SPT	Campioni N°	Piezometro (m)	Inclinometro (m)
Sg1	30.00	6	5	6	-	-
Totali	30.00	6	5	6	-	-

Le indagini geofisiche eseguite a mare, sono consistite in due transetti elettrici, un transetto sismico tomografico e un MASW, mentre in corrispondenza del foro residuo, opportunamente condizionato, è stata effettuata una indagine di sismica in foro del tipo Down Hole Onde P (Fase longitudinale),

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

Nei paragrafi che seguono vengono illustrate le modalità esecutive delle indagini, riportando negli allegati la stratigrafia, i risultati delle indagini geofisiche e delle prove di laboratorio.

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

2.0 PERFORAZIONE GEOGNOSTICA

E' stata eseguita una perforazione a carotaggio continuo spinta fino a 30 m dal p.c.

L'attrezzatura utilizzata è consistita in una sonda oleodinamica marca CMV modello MK 600 D idonea a fornire una coppia superiore a 400 kgm, utile ad un corretto espletamento dei sondaggi in oggetto, adottando la tecnica della conservazione del nucleo per tutto lo spessore indagato e con l'ausilio di tubi carotieri semplici del diametro 101 mm.

La stabilizzazione delle pareti del foro, laddove è stato necessario, è stata ottenuta mediante l'utilizzo di tubazione di rivestimento in acciaio sottile. Tutto ciò per garantire il minimo disturbo al terreno, indispensabile per le finalità dell'indagine. La tecnica del carotaggio è stata applicata utilizzando tutte le cautele imposte dal litotipo in questione: manovre corte, corretta pressione di spinta, adeguata velocità di perforazione, quando possibile manovre condotte a secco o con moderato utilizzo di acqua di circolazione.

Le carote estratte sono state esaminate e descritte in dettaglio nelle colonne stratigrafiche riportate in allegato, fotografate (vedi allegato DF1) quindi conservate in apposite cassette in PVC e consegnate alla committenza. Ad una profondità di 1,10 m, inoltre, è stata riscontrata la presenza di acqua.

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

3.0 PROVE S.P.T.

Nel corso del sondaggio geognostico sono state effettuate n. 5 prove penetrometriche dinamiche tipo S.P.T. (Standard Penetration Test) alle profondità indicate nelle colonne stratigrafiche e riassunte nella relativa tabella.

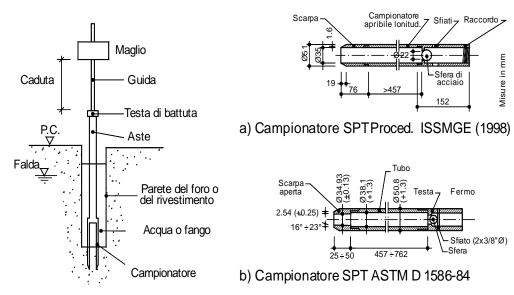


Figura 1: Schema della prova SPT.

Figura 2: Campionatori della prova SPT.

La prova è stata eseguita facendo riferimento alla normativa ASTM 1586/68 "Penetration and Split-Barrel Sampling of Soil". Le caratteristiche strumentali possono essere così riassunte:

- Campionatore tipo Raymond apribile longitudinalmente ϕ = 50.8 35 mm, lunghezza utile L = 630 mm, munito di valvola a sfera alla sommità.
- Massa battente di peso pari a 63.4 kg con altezza di caduta pari a 750 mm, munito di dispositivo di sganciamento automatico.

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

- Aste collegate al campionatore aventi peso pari a 6.5 kg/ml.
- Centratore di guida installata tra la testa di battuta in sommità alle aste ed il piano di campagna.
- Differenza tra il diametro esterno e il diametro interno della tubazione di rivestimento minore di 60 mm.
- Utensile di perforazione campionatore Raymond, munito di scarpa standard conica $\phi = 51$ mm e/o punta conica.

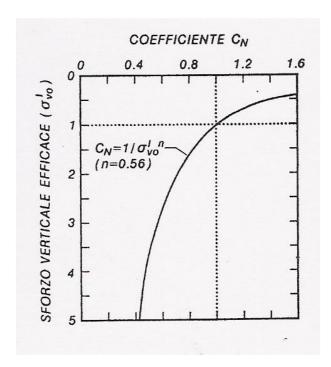
La suddetta prova consiste nell'infiggere nel terreno, alla base del sondaggio, l'utensile per tre tratti consecutivi di 15 cm ciascuno, rilevando il numero di colpi necessario per la penetrazione di ciascun tratto. Il valore di N è dato dalla somma dei colpi ottenuti per il 2° e 3° tratto. Prima di eseguire la prova è stata controllata, con adeguato scandaglio, la quota del fondo foro confrontandola con quella raggiunta con la manovra di perforazione precedentemente eseguita. Le particolari modalità di esecuzione delle prove S.P.T. richiedono che ai valori di N siano apportate delle correzioni, che tengano conto delle variabili esistenti nel caso specifico. Solitamente occorre considerare i seguenti elementi:

- 1) eventuale uso di punta conica in luogo della scarpa standard;
- 2) Influenza della pressione litostatica;
- 3) Influenza della presenza di falda acquifera.

Relativamente al punto 1, i valori di N ottenuti con uso di punta conica al posto della scarpa "standard", vanno corretti apportando una riduzione del 30 % in accordo con Palmer e Stuart:

$$N1 = 0.7 N$$

Nella prova S.P.T. il numero di colpi è influenzato dalla pressione litostatica (punto 2), di conseguenza è necessario normalizzare le misure riportandole al valore corrispondente alla pressione litostatica efficace (Gibbs e Holtz 1957; Seed e Idriss 1981).



Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

Per quanto concerne l'influenza della falda sul valore del numero di colpi Terzaghi e Peck (1948) consigliano di adottare, in presenza di sabbie fini e/o limose molto addensate (NSPT >15) la seguente relazione:

 $N_{corretto} = 15 + 0.5(NSPT - 15)$

TABELLA DELLE PROVE S.P.T

N° Sondaggio	N° SPT	Profondità dal p.c. (m)	N° colpi
S1	1	2,00 - 2,45	56
S1	2	3,80 - 4,25	72
S1	3	6,30 - 6,58	R
S1	4	12,00 – 12,20	R
S1	5	13,50 – 13,60	R

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

4.0 INDAGINI GEOFISICHE

Le indagini geofisiche sono state eseguite dalla ditta Geochek srl e di seguito sono tabulate le quantità, le denominazioni e le configurazioni geometriche, mentre i risultati sono allegati alla presente nota. Le indagini sono consistite in:

- n° 2 transetti elettrici
- n° 1 transetto sismico tomografico
- n° 1 MASW secondo NTC 2018
- n° 1 sismica in foro del tipo Down Hole Onde P (Fase longitudinale)

Riferimento tomografia Elettrica	N° Elettrodi	Distanza tra gli elettrodi (m)	Lunghezza (m)	Risoluzione (m)
TOMO_ERT1	24	3	72	1.5
TOMO_ERT2	24	3	72	1.5
Riferimento tomografia Sismica	N° Idrofoni	Distanza tra gli elettrodi (m)	Lunghezza (m)	Risoluzione (m)
TOMO SISM	24	2	48	/
Riferimento MASW	Nº Idrofoni	Distanza tra gli elettrodi (m)	Lunghezza (m)	Risoluzione (m)
MASW_1	24	2	48	/
Riferimento DH - Vp	N° Idrofoni	Distanza tra gli elettrodi (m)	Profondità (m)	Risoluzione (m)
DH_Vp	9	2	17	/

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

6.0 PROVE DI LABORATORIO

I campioni prelevati durante l'esecuzione del sondaggio geognostico sono stati analizzati dal laboratorio LA.SP.EDIL. srl, con autorizzazione ministeriale per l'analisi e le prove di laboratorio (D.M. n° 153 del 13 luglio 2016).

I campioni n° 1,2,3,4,5 sono stati sottoposti a prove geotecniche per l'individuazione delle caratteristiche fisiche, il campione n° 6 anche a prove meccaniche del tipo taglio diretto. La quota di prelievo è riportata nella stratigrafia mentre tutti i risultati ottenuti delle suddette prove sono in allegato.

Linguaglossa, settembre 2018

Il relatore

www. sigeodrilling.com

info@sigeodrilling.com

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Messa in sicurezza del porto di levante e di ponente nell'Isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo

COMMITTENTE: Dott. Geol. Vincenzo Pinizzotto (in nome e per conto del Comune di Lipari - ME)

COMUNE: Lipari (ME)

LOCALITA: Vulcano-porto di Levante

DATA: 27 - 28 agosto

CARTA DELLE UBICAZIONI INDAGINI

Scala 1:1.000

Legenda

- O Sondaggio geognostico
- Sismica in foro DH
- Tomografia sismica 2D
- Tomografia elettrica 2D
 - MASW

Direttore di cantiere Dott. Carmelo Greco Il direttore tecnico

Dott. Antonino Cubito

Il responsabile S.Q. Dott. Santi Pappalardo Rev. 03

All. STR 1a

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

ALLEGATO "STR"

COLONNA STRATIGRAFICA

_/\/\	SIG	EO	- Soluzioni pe	er la geologia, l'ingegneria, l'ambien	nell'Isola di	Vulcan	del porto di lev o con la sistem nento tra le ba	mazione de	el molo	CO	MMI ⁻ MUN			tt. Geol. V rconto del D ari (M E	/incenzo Pinizz Comune di Lip	otto (in nor pari-ME)	SON	IDAGGIC	Sg1	
V	www. sigeo	drilling.com		Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684	radice pontil			incline poi	ituali e		CALI	TA:	Vu	ulcano -	porto di L	evante	DATA: 27 -	28 agosto Prof	f. 30,00 m	Fg. 1 di 3
cta				101. /1 dx 107 073 047 004		del		Carotieri speciali	8	fera	0	2	ter	+	Campio	ni g		S. P. ⁻	Γ	
Quota assoluta m	Profondità progressiva m	Spessore dello strato m	Sezione stratigrafica	DESCRIZIONE LITOLOGICA D	EL TERRENO	Diametro c sondaggio r	Carotaggio %	NT2 Nt6s	R. Q. D. %	Falda acquifera	Piezometro	Inclinometro	Pocket penetrameter	Vane test	Quota di preliev Ind. Ri		Profondità	Numero dei	colpi	Tipo di punto
	0,00	0,90		Sabbie medio-grossolane ghiaiose	debolmente		50	100									da m2.00 a m2.45	15 cm 15 cm 15 cm	20 25 31	
	3,00	2,10		Sabbie fini con limo		101 <i>mm</i>				<u>-</u>						.0	da m 3.80 a m 4.25 da m 6.30 a m 6.58	15 cm 15 cm 15 cm 15 cm 15 cm 15 cm	27 32 40 38 R	
	3,30	0,30	0000	Livello ciottoloso		0											a m _12.20	15 cm 15 cm	R	•
	4,00	0,70		Sabbie fini con limo											3	.8	da m 13.50 a m 13.60	15 cm 15 cm	R	
	4,30	0,30	0 0	Sabbie grossolane con ciotto	li												<u> </u>	15 cm		
	5,00	0,70		Sabbie fini												.35	da m	15 cm 15 cm 15 cm		
		2,40		Sabbie limose e limi sabbiosi	di colore grigio										5	.5	da m a m da m a m	15 cm 15 cm 15 cm 15 cm 15 cm 15 cm		
	7,40																C = Craps O = Osterberg	D = DenisonP = Percussione		Mazier Shelby
	7,80	0,40		Brecce vulcaniche														eografiche boo		
	.,00	1,80		Pomici														7° LONG 14.9 italogatrici n.		
	9,60	7,40		Sabbie medio fini limose, di colo	re grigio scuro															
	Sonda Direttore di cantiere Operator		tore		II diretto	re tec	nico		II r	esponsa	bile S.	Q. Re	ev. 03	All.	CERTIFICATO ICIM	_				
CMV			t. Carmelo Greco	Geom. Carm	elo Set	tineri	Dott. Antor	nino Cu	ıbito		Dott	. Santi F	appala	ırdo		STR 1a	UNI EN ISO		ISQ	

	ilG	FO					del porto di le			e CO	MMIT	TEN	TE: Do	tt. Geol. Vin r conto del C	cenzo Pinizzotto (in non omune di Lipari - ME)	ne e	IDACCIO	S~4	
$-\sqrt{}$			Soluzioni pe	r la geologia, l'ingegneria, l'ambier	ne i		o con la sist nento tra le l			16 6 1	MUNE	Ξ:	Lip	oari (ME)		SONDAG(Sg i	
		drilling.com Irilling.com		Nunicipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684	radice pontile						LOCALITA:		Vulcano-port		orto di Levante	DATA: 27 - 2	28 agosto Prof. 3	30 m F	og 2/3
ota ,						del		Carotie specia		ifera	9	ţo	eter	10	Campioni e		S. P. T		
Quota assoluta m	Protonalta progressiva m	Spessore dello strato m	Sezione stratigrafica	DESCRIZIONE LITOLOGICA [DEL TERRENO	Diametro o sondaggio	Carotaggio %	NT2	N 768	Falda acquifera	Piezometro	Inclinometro	Pocket penetrameter	Vane test	Campioni Quota di prelievo Ind. Rim.	Profondità	Numero dei col	pi Z	
	17,00	5,00		Sabbie medio fini limose, o scuro Brecce vulcaniche	li colore grigio	Φ 101 mm									12.0 12.2 13.5 14.0	LAT. 3841377	15 cm		azier
	onda			ettore di cantiere	Opera	tore		Il diret	tore te	cnico		II r	esponsa	abile S.Q	Rev. 03	All.	CERTIFICATO ICIM N. 446		
CMV N		00		Carmelo Greco	Geom. Carme		tineri		tonino C					Pappalaro		STR 1b	- I Net	CIS	Q

Λ Λ.	SIG	EO			nell'Isola di	urezza Vulcan	del porto di le o con la siste	vante e d emazione	ponento							di Lipari - 1	(in nom ME)	SON	IDAGGIO	Sa1	
\ \ \ \ \	www. siged			er la geologia, l'ingegneria, l'ambier	foraneo e c	ollegan	nento tra le l				MUNI		Lip	oari (Mi	≣)						
	info@sigeo			Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684	radice pontil	_	co aliscafo	Carotie	:		CALI	IA:		ulcano-	porto	di Levo		DATA: 27 -	28 agosto Prof.	30 m	Fog 3/3
oluta	ità Siva	a to				del o mm		special	i №	acquifera	etro	etro	et neter	ts es		npioni	di atore		S. P. T		
Quota assoluta m	Profondità progressiva m	Spessore dello strato m	Sezione stratigrafica	DESCRIZIONE LITOLOGICA E	DEL TERRENO	Diametro o sondaggio	Carotaggio %	NT2	. S. G. D.	Falda acq	Piezometro	Inclinometro	Pocket penetrameter	Vane test		ota elievo Rim.	Tipo di campionatore	Profondità	Numero dei co	olpi z	
	20,00		2 2 2				0 50	100													
				Post consistence in the														a m	15 cm - 15 cm - 15 cm -		
		5,00		Brecce vulcaniche														da m	15 cm -		
	22,00																	da m	15 cm -		+
	,-		2 15/2 15/2 3 15/2 15/2			шш												a m	15 cm -		
			\$ 75 Je 75 Je			101 m												al av ma	15 cm -		+++
						Φ												da m	15 cm _		
		3,00		Lave fessurate a struttura	norfiring con	firica, con seni											l6s	da m	15 cm _		
				fenocristalli di plagioclasi e p	irosseni														a m	15 cm ₋ 15 cm ₋	
	25.00																	da m	15 cm _		
	25,00		<u> </u>															a m	15 cm _		
																		da m	15 cm 15 cm		
																		a m	15 cm		
																		da m	15 cm 15 cm		
		4,60		Sabbie medio fini														C = Craps O = Osterberg	CAMPIONATORI D = Denison P = Percussione	M = <i>M</i> S = Sh	
																			eografiche bocca		
							-												′° LONG 14.960 talogatrici n. 6		
																			talogather ii. C		
																		NOTE:			
	29,60																				
		0,40		Limi sabbiosi di colore avano ch	niaro	+															
	30,00 Sonda		Dire	ettore di cantiere	Opera	tore		II dirett	ore te	nico		ll r	espons	abile S.	Q.	Rev.	03	All.	CERTIFICATO ICIM N. 44		
	/ MK D6			. Carmelo Greco	Geom. Carm		tineri	Dott. Ant					t. Santi F						UNI EN ISO 900	t - C/S	Q

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

ALLEGATO "DF"

DOCUMENTAZIONE FOTOGRAFICA

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684

Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

DOCUMENTAZIONE FOTOGRAFICA

COMMITTENTE: Dott. Geol. Vincenzo Pinizzotto (in nome e per conto del Comune di Lipari - ME)

COMUNE: Lipari (Me)

LOCALITA: Vulcano-porto di Levante

Agosto 2018 DATA:

SONDAGGIO S1 (posizionamento sonda)

Il direttore tecnico

Il responsabile S.Q. Dott. Santi Pappalardo

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684

Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

DOCUMENTAZIONE FOTOGRAFICA

COMMITTENTE: Dott. Geol. Vincenzo Pinizzotto

(in nome e per conto del Comune di Lipari - ME)

COMUNE: Lipari (Me)

LOCALITA: Vulcano-porto di Levante

Agosto 2018 DATA:

SONDAGGIO S1 (0.0 - 5.00)

SONDAGGIO S1 (5.00 - 10.00)

Direttore dei lavori
Dott Enzo Pinizzotto

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684

Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

DOCUMENTAZIONE FOTOGRAFICA

COMMITTENTE: Dott. Geol. Vincenzo Pinizzotto

(in nome e per conto del Comune di Lipari - ME)

COMUNE: Lipari (Me)

LOCALITA: Vulcano-porto di Levante

Agosto 2018 DATA:

SONDAGGIO S1 (10.00 - 15.00)

SONDAGGIO S1 (15.00 - 20.50)

Direttore dei lavori
Dott Enzo Pinizzotto

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684

Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

DOCUMENTAZIONE FOTOGRAFICA

COMMITTENTE: Dott. Geol. Vincenzo Pinizzotto

(in nome e per conto del Comune di Lipari - ME)

COMUNE: Lipari (Me)

LOCALITA: Vulcano-porto di Levante

Agosto 2018 DATA:

SONDAGGIO S1 (20.50 - 27.00)

SONDAGGIO S1 (27.00 - 30.00)

Direttore dei lavori
Dott Enzo Pinizzotto

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

ALLEGATO "IG"

INDAGINI GEOFISICHE

Tel/Fax 095 413000 Sito web: www.geocheck.it E-mail: geocheck@mclink.it

SIGEO DRILLING S.R.L.

PROGETTO DI MESSA IN SICUREZZA DEL PORTO DI LEVANTE (AREA PONTILE METALLICO ALISCAFI) - ISOLA DI VULCANO, COMUNE DI LIPARI (ME)

PROSPEZIONI DI TIPO GEOFISICO IN MARE – "GEOELETTRICA TOMOGRAFICA" FINALIZZATA ALLA DEFINIZIONE D'INTERFACCE ELETTRICHE E ANOMALIE ALTO-BASSO RESISTIVE – "TOMOGRAFIA SISMICA A RIFRAZIONE FINALIZZATA ALLA RICOSTRUZIONE DI PROFILI 2D IN TERMINI DI VELOCITA" Vp - "SISMICA ATTIVA MASW" FINALIZZATA ALLA DEFINIZIONE DEL VSeq E SUOLO TIPO SEONDO NTC 2018

RAPPORTO DI PROVA

REV.	Data e località	REDATTO PREP'D	CONTR. CHK'D	APPR. APPR'D	COMMJOB:	
0	Agosto 2018_Isola di Vulcano (ME)	Dr. M. Corrao	Dr. G. Coco	Dr.M. Corrao	IG_74_18	
	IL PRESENTE DOCUMENTO È PROPRIETA' GEOCHECK S.r.I. A TERMINE DI LEGGE OGNI DIRITTO E' RISERVATO					

DIAGNOSTICA & GEOFISICA

10

CONCLUSIONI

INDICE	pag.
1. INTRODUZIONE	3
2. PROSPEZIONE GEOELETTRICA TOMOGRAFICA – Resistività	5
2.1 - Generalità	5
2.2 – Resistività delle rocce	5
2.3 -Strumentazione ed acquisizione dati	8
3. RISULTATI E INTERPRETAZIONE DEI PROFILI ELETTRORESISTIVI	10
3.1 – Restituzioni grafiche delle sezioni 2D elettrotomografiche in resistività	10
4. PROVA SISMICA MULTICANALE MASW (Multichannel Analysis of Surface Waves)	14
4.1 Premessa	14
4.2 Strumentazione e configurazione geometrica utilizzata	14
4.3 Elaborazione dati	16
5. RISULTATI ELABORAZIONE MASW	18
6. DEFINIZIONE SUOLO TIPO (NTC 2018)	21
7. CALCOLO MODULI ELASTICI E PARAMETRI GEOSISMICI	22
7.1 Moduli elastici	22
7.2 Parametri geosismici	23
7.3 Impedenza sismica (IS)	24
7.4 Coefficienti di rifrazione e di riflessione (t e ξ)	24
8.0 - TOMOGRAFIA SISMICA	25
8.1 - Generalità	25
8.2 Metodologia e strumentazione utilizzata	25
8. 3 Metodologia di calcolo - G. S. A. O. (Generalized Simulated-Annealing Optimization)	26
8.4 RISULTATI TOMOGRAFIE SISMICHE	28
9 SISMICA IN FORO Vp	30

31

1. INTRODUZIONE

Le prove geofisiche oggetto del presente rapporto sono state commissionate dalla SIGEO DRILLING S.r.l. e coordinate dalla D.L. nella persona del Dr. Geol. Vincenzo Pinizzotto (in nome e per conto del Comune di Lipari) nell'ambito di uno studio finalizzato alla definizione d'interfacce sismiche e elettriche (copertura sedime di fondo, substrato roccioso di sottofondo, anomalie altobasso resistive imputabili alla presenza di corpi sommersi), relativamente al "PROGETTO DI MESSA IN SICUREZZA DEL PORTO DI LEVANTE (AREA PONTILE METALLICO ALISCAFI) - ISOLA DI VULCANO, COMUNE DI LIPARI (ME)". Inoltre, nello stesso ambito, è stata eseguita una prova sismica attiva MASW (MULTICHANNEL ANALYSIS OF SURFACE WAVES) in mare per la definizione del suolo tipo secondo quanto previsto dalla NTC 2018.

Il presente rapporto tecnico tratta i risultati di misure elettrotomografiche e sismiche che hanno interessato la porzione d'acqua secondo quanto mostrato di seguito (vedi figura 1).

Figura 1 – Schematizzazione areale transetti geofisici eseguiti

In dettaglio, sono stati eseguiti:

- n° 2 transetti elettrici
- n° 1 transetto sismico tomografico
- n° 1 MASW secondo NTC 2018
- n° 1 sismica in foro del tipo Down Hole Onde P (Fase longitudinale),

ubicati sulla porzione d'acqua interessata dal progetto ed indicata dalla committenza.

Le linee elettrotomografiche sono state distribuite secondo quanto richiesto dai progettisti. Di seguito sono tabulate le quantità, le denominazioni e le configurazioni geometriche eseguite:

Riferimento tomografia Elettrica	N° Elettrodi	Distanza tra gli elettrodi (m)	Lunghezza (m)	Risoluzione (m)
TOMO_ERT1	24	3	72	1. 5
TOMO_ERT2	24	3	72	1. 5
Riferimento tomografia Sismica	N° Idrofoni	Distanza tra gli elettrodi (m)	Lunghezza (m)	Risoluzione (m)
TOMO SISM	24	2	48	/
Riferimento MASW	N° Idrofoni	Distanza tra gli elettrodi (m)	Lunghezza (m)	Risoluzione (m)
MASW_1	24	2	48	/
Riferimento DH - Vp	N° Idrofoni	Distanza tra gli elettrodi (m)	Profondità (m)	Risoluzione (m)
DH_Vp	9	2	17	/

Tabella 1 – Elenco e configurazione prospezioni geofisiche eseguite.

P.I. 03042530877 - n° Iscr. Trib. CT015 -29218 Sez. Ord. 196305 Tel/Fax 095 413000 Sito web: www.geocheck.it E-mail: geocheck@mclink.it

2. PROSPEZIONE GEOELETTRICA TOMOGRAFICA – Resistività

2.1 - Generalità

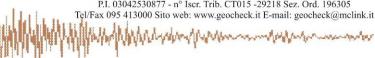
Ha avuto lo scopo, nella fattispecie, di individuare e definire geometricamente interfacce elettriche imputabili a passaggi stratigrafici (sedime di fondo_substrato roccioso).

Le linee geoelettriche sono state eseguite col supporto di n° 1 imbarcazione destinata al traino del cavo geoelettrico.

La "Tomografia Elettrica", consiste nella determinazione di profili di resistività attraverso la disposizione sul terreno di un numero elevato di elettrodi che progressivamente vengono spostati lungo una data direzione variandone la distanza inter-elettrodica al fine di aumentare la profondità d'investigazione. Il set di dati così ottenuto consente la costruzione di una matrice di valori di resistività la cui inversione, mediante algoritmi matematici, restituisce la definizione del mezzo investigato in "immagini" di elettro-resistive.

2.2 – Resistività delle rocce

La resistività delle rocce, considerando che queste sono praticamente isolanti, dipende principalmente dalla presenza di **acqua** nei *pori*. La quantità dei pori nella roccia è definita dalla *porosità* che è data dal rapporto tra il volume dei pori e quello della roccia. Macrofessure o cavità laddove l'unica presenza è **l'aria** hanno un comportamento elettrico nullo, cioè la resistività tende a valori altissimi (*infinito* dal punto di vista teorico).


La resistività di una roccia dipende ancora dalla *tessitura*, cioè dalla disposizione, forma e dimensioni dei granuli che la compongono, e dai vuoti riempiti di acqua. Si precisa che le rocce ed i minerali non sono mezzi *isotropi* e cioè corpi materiali dove le grandezze fisiche si mantengono le stesse prescindendo dalla direzione, ma variano da leggermente a fortemente *anisotropi*. L'anisotropia delle rocce, relativamente la resistività, è il risultato di una combinazione di differenti caratteristiche spaziali legate a *microfessurazioni*, *stratificazioni variabili*, tessitura, porosità.

Quindi riepilogando la resistività elettrica, oltre alle proprietà elettriche intrinseche del materiale indagato, principalmente dai seguenti fattori:

- grado di saturazione dei pori;
- porosità;
- la densità, ovvero lo stato d'addensamento (specie in terreni alluvionali) della formazione;

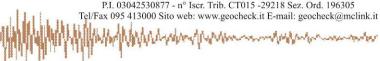
DIAGNOSTICA & GEOFISICA

- la granulometria;
- l'eventuale grado di fratturazione;
- la presenza di acqua o di umidità e quindi il grado di saturazione;
- salinità del fluido presente nei pori;
- la presenza di vuoti;
- temperatura;
- presenza di sostanze organiche (idrocarburi, solventi, ecc.);
- presenza di argilla.

La relazione empirica proposta da Archie, invece, è valida per suoli avente scarsa componente argillosa (sabbie, ghiaie):

$$\rho s = \rho f a \phi^{-n S-m}$$

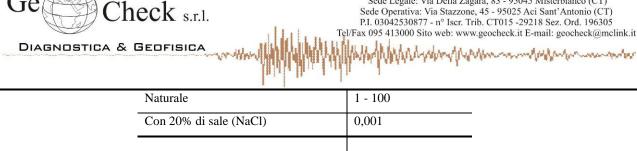
dove:


- ρ s : resistività (Ω •m) del suolo parzialmente saturo di fluido;
- ρ**f** : resistività (W•m) del fluido presente nei pori;
- S : frazione del volume di pori occupata dal fluido;
- **m** : coefficiente di saturazione (solitamente assunto essere pari a 2 in caso di saturazione in acqua);
- a : costante empirica, detta di Winsaur (tipico per sabbia: 0.62);
- n : coefficiente empirico, detto di "tortuosità" (tipico per sabbia: 2.15);
- φ : porosità del suolo.

La resistività del fluido ρ **f** è calcolabile, qualora si conoscano le concentrazioni di ioni in soluzione (ad es. Cl-, SO4 =, NO3-, ecc.), utilizzando la formula:

$$\rho f = 0.0123 + 10 (3.562 - 0.955 \log 10C)$$

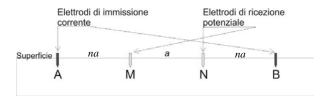
dove **C** è la somma delle concentrazioni (pesate da opportuni coefficienti ricavati sperimentalmente per ciascun ione) di tutti gli ioni presenti. In geoelettrica si osserva il "flusso" delle cariche attraverso le rocce, trascurando le tendenze allo squilibrio elettrico. Il flusso di cariche è la corrente elettrica che scorre per convezione da un polo positivo (+) ad un altro negativo (-). Questa si misura in Ampere (**A**) e cioè la quantità che passa in un punto del circuito nell'unità di tempo (1 secondo). Ciò che determina il flusso è la differenza di potenziale (**d.d.p.**) e cioè la depressione elettrica tra due punti distanti. La d.d.p. si misura in Volt (**V**). Nelle rocce il flusso di corrente è direttamente proporzionale alla differenza di potenziale (**V**). Il rapporto tra d.d.p. e corrente (**I**), a meno di un coefficiente geometrico (**K**), definisce la resistenza offerta da un corpo a farsi attraversare da


cariche. Questo semplice rapporto, definito come legge di Ohm, introduce una terza grandezza: la resistività elettrica (ρ).

$$\rho = K \frac{V}{I}$$

Vengono di seguito elencati i "range" di resistività di alcune rocce, minerali e metalli:

ROCCE – MINERALI - METALLI	Resistività (ohmxm)
Rocce sedimentarie	
Calcare	100 – 5000
Argilla	1 – 100
Ghiaia	100 – 5000
Sabbia	$100 - 10^3$
Arenaria	100 -104
Marna	1 - 100
Quarzite	$5000 - 10^5$
Rocce ignee e metamorfiche	
Basalto	$10 - 10^5$
Granito	100- 10 ⁵
Marmo	$100 - 10^6$
Scisto	$10 - 10^4$
Gabbro	$10^3 - 10^6$
Ardesia	$100 - 10^6$
Minerali e metalli	
Pirite	0,0001 - 10
Argento	10 ⁻⁷
Grafite	0,001 - 1
Quarzo	10^{5}
Salgemma	$10 - 10^9$
Bauxite	200 - 6000
Galena	0,01 - 200
Acque	
Di mare	< 0,2
Pura	$100 - 10^3$


 $^{{}^*}$ I valori sono assolutamente approssimativi.

2.3 -Strumentazione ed acquisizione dati

La strumentazione utilizzata consiste in un georesistivimetro multielettrodico digitale (16 bit) con risoluzione fino a 100 microvolts, dotato di una gestione automatica degli elettrodi, in grado cioè, di commutare gli elettrodi disposti lungo la sezione da investigare in elettrodi d'immissione e in elettrodi di misura con tutte le possibili combinazioni quadripolari degli elettrodi (Figure seguenti).

Configurazione Wenner-Schlumberger

L'acquisitore multielettrodico è stato collegato ad un cavo marino in "Pur" con elettrodi in grafite n° 24 canali.

Figura 2 - Cavo in PUR con elettrodi in grafite - un momento della preparazione del cavo

P.I. 03042530877 - n° Iscr. Trib. CT015 -29218 Sez. Ord. 196305 Tel/Fax 095 413000 Sito web: www.geocheck.it E-mail: geocheck@mclink.it

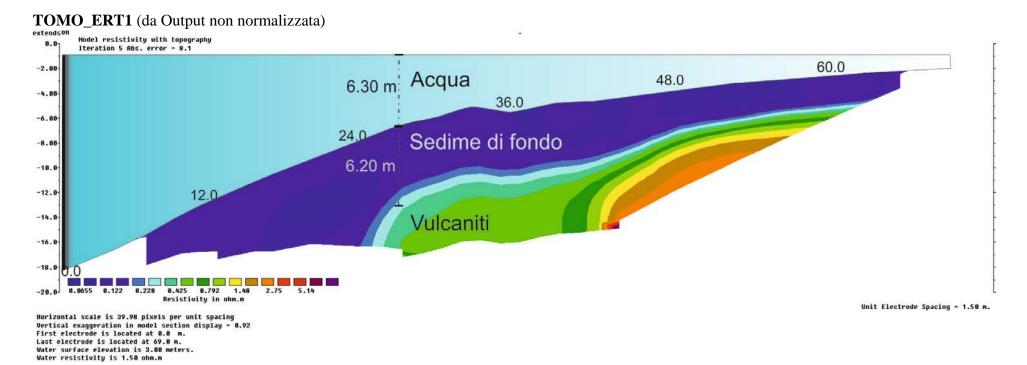
L'acquisizione dei dati consiste nel misurare la differenza di potenziale che si genera nei picchetti di misura M-N, secondo delle geometrie prefissate. Nel dettaglio l'operazione d'acquisizione può essere riassunta così come segue:

- disposizione del cavo elettrodico marino (in galleggiamento con boe posizionate in corrispondenza di ogni elettrodo) lungo un dato profilo;
- > scelta della configurazione geometrica (nel caso specifico Wenner-Schlumberger);
- > misura dei potenziali spontanei;
- immissione della corrente;
- > misura ed archiviazione dati.

La restituzione dei dati avviene in forma matriciale consentendone l'immediata elaborazione.

Figura 3 – Un momento dell'acquisizione

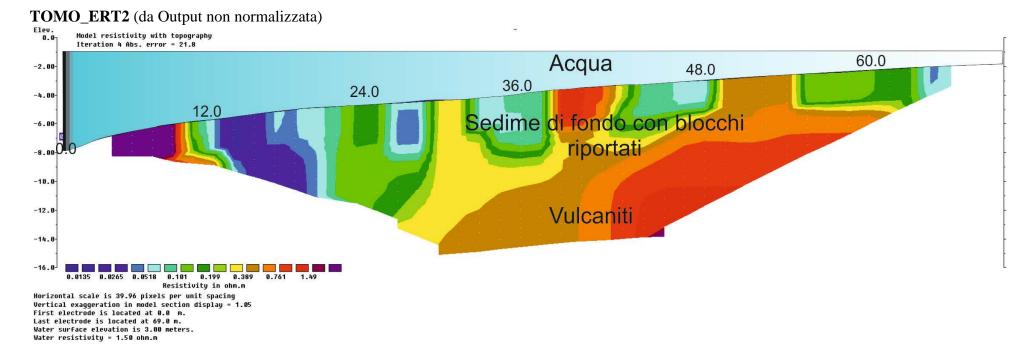
P.I. 03042530877 - n° Iscr. Trib. CT015 -29218 Sez. Ord. 196305 Tel/Fax 095 413000 Sito web: www.geocheck.it E-mail: geocheck@mclink.it


3. RISULTATI E INTERPRETAZIONE DEI PROFILI ELETTRORESISTIVI

La profondità d'investigazione ottenuta è stata funzione delle esigenze progettuali. In particolare sono state raggiunte profondità nell'intorno di 12,5 metri dall'interfaccia acqua/fondale (sea floor). Vengono di seguito descritte singolarmente le interpretazioni delle linee elettrotomografiche ottenute.

L'elaborazione d'inversione tomografica è stata eseguita con software dedicato RES2DINV e in particolare con "Routine" dedicata "Water layer with an undlading sediment surface with all electrodes underwater".

Inoltre, in fase d'inversione il valore di resistività dell'acqua è stato vincolato, in modo da non farlo variare liberamente. Ciò, perché il valore di resistività intrinseco dell'acqua è stato misurato su campione prelevato mediante conducimetro digitale noto in modo preciso.

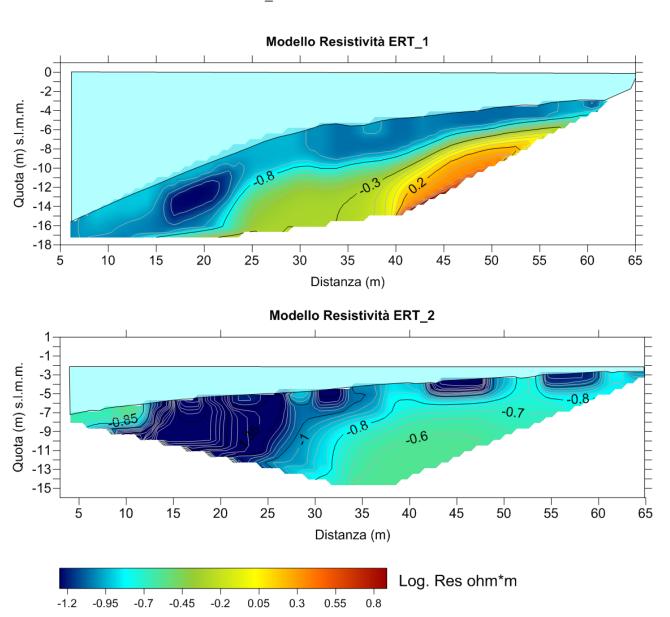

3.1 – Restituzioni grafiche delle sezioni 2D elettrotomografiche in resistività

Direzione NNE - SSW

Nota descrittiva:

La sezione tomografica di resistività n° 1 intercetta tre elettrostrati significativi: il primo più superficiale a bassa resistività, costituito da sedime di fondo (variabile da 6.30 a 8.00 metri di spessore). Il passaggio verticale al substrato alto_resistivo "roccioso" è parzialmente graduale. Infatti, si intercetta prima un elettrostrato intermedio, presumibilmente costituito da materiale rimaneggiato e/o roccia molto fratturata (PIROCLASTITI). Il substrato più consistente meccanicamente presenta nel complesso una copertura variabile (sedime di fondo + piroclastiti) dai 9.0 ai 12.0 metri.

Direzione NNE - SSW


Nota descrittiva:

La sezione tomografica di resistività n° 2 intercetta tre elettrostrati significativi: il primo più superficiale a bassa resistività, costituito da sedime di fondo, mostra una disomogenea continuità laterale; ciò presumibilmente dovuta alla vicinanza al pontile e quindi alla presenza di blocchi delocalizzati e fondazioni profonde. Il passaggio verticale al substrato alto_resistivo "roccioso" (piroclastiti) si ha a circa 8.0 metri di profondità dalla superficie batimetrica. Il substrato roccioso risulta molto articolato morfologicamente e presenta nel complesso una copertura totale variabile da 9.0 ai 12.0 metri.

SEZIONI ELETTRO_TOMOGRAFICHE NORMALIZZATE

Direzione NNE - SSW

4. PROVA SISMICA MULTICANALE MASW (Multichannel Analysis of Surface Waves)

4.1 Premessa

Il metodo MASW è una tecnica d'indagine non invasiva che consente la definizione del profilo di velocità delle onde di taglio verticali Vs, basandosi sulla misura delle onde superficiali fatta in corrispondenza di diversi sensori posti sulla superficie del suolo. Il contributo predominante alle onde superficiali è dato dalle onde di Rayleigh, che si trasmettono con una velocità correlata alla rigidezza della porzione di terreno interessata dalla propagazione delle onde. In un mezzo stratificato le onde di Rayleigh sono dispersive, cioè onde con diverse lunghezze d'onda si propagano con diverse velocità di fase e velocità di gruppo o detto in maniera equivalente la velocità di fase (o di gruppo) apparente delle onde di Rayleigh dipende dalla frequenza di propagazione, cioè sono onde la cui velocità dipende dalla frequenza.

4.2 Strumentazione e configurazione geometrica utilizzata

La strumentazione utilizzata è costituita da un sismografo multicanale A6000S_ MAE, avente le seguenti caratteristiche tecniche:

- capacità di campionamento dei segnali tra 0.002 e 0.00003 sec;
- sistema di comunicazione e di trasmissione del "tempo zero" (time break);
- filtri High Pass e Band Reject;
- "Automatic Gain Control";
- convertitore A/D a 24 bit;

La configurazione spaziale in sito è equivalente a un dispositivo geometrico punto di scoppiogeofoni "base distante in linea". In particolare è stato utilizzato il seguente set-up:

- 24 IDROFONI freq. 10 Hz GX pari a 2.0 metri;
- n. 3 energizzazioni ad offset (SX) 2.0, 4.0 e 30.0 m;
- passo di campionatura pari a 1000 Hz;
- lunghezza delle tracce sismiche pari a 4.096 sec.
- Energizzazione con fucile a cartuccia calibro 8.

Tale configurazione ha consentito di mitigare gli effetti near-field dovuti alle onde di volume ed ha altresì consentito di avere le seguenti risoluzioni spazio-temporali: lungo i numeri d'onda k la risoluzione è di 0.130, mentre la risoluzione in frequenza è pari a 0.244 Hz.

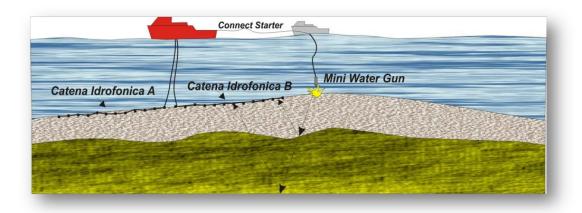


Figura 4 - disposizione catene idrofoniche sul fondo

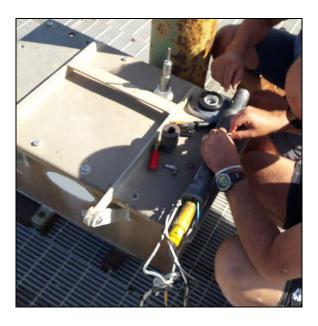
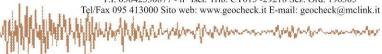



Figura 5 – Fucile sismico impiegato

4.3 Elaborazione dati

L'analisi MASW può essere ricondotta in quattro fasi:

 la prima fase prevede la trasformazione delle serie temporali (fig. 2) nel dominio frequenza f – numero d'onda K (fig. 3);

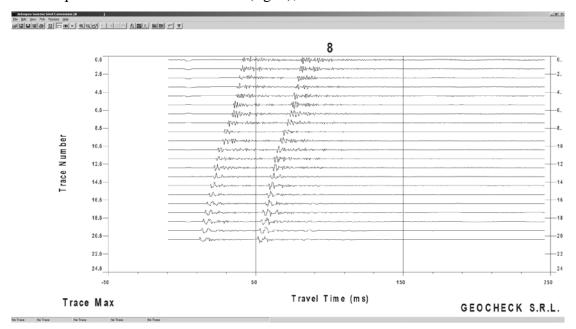


Fig. 1 Serie temporali prova MASW_offset 10.0 metri

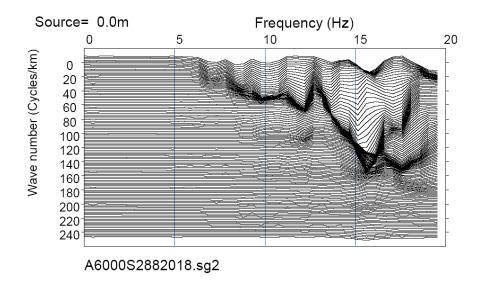
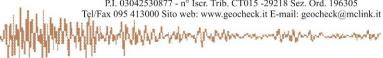
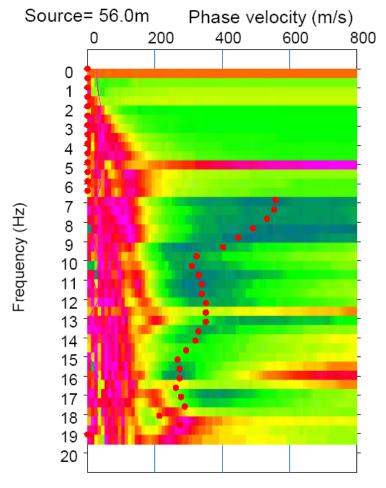



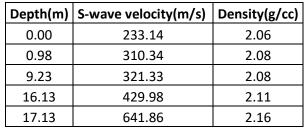
Fig. 2 Analisi dominio f-k



- la seconda fase consiste nella individuazione delle coppie f-k cui corrispondono i
 massimi spettrali d'energia (densità spettrale) consentono di risalire alla curva di
 dispersione delle onde di Rayleigh nel piano V_{fase} (m/sec) frequenza (Hz) (fig.3).
- la terza fase consiste nel calcolo della curva di dispersione teorica attraverso la formulazione del profilo di velocità delle onde di taglio verticali Vs, modificando opportunamente lo spessore h, le velocità delle onde di taglio Vs e di compressione Vp, la densità di massa ρ degli strati che costituiscono il modello del suolo (fig. 4);
- la quarta ed ultima fase consiste nella modifica della curva teorica fino a raggiungere una sovrapposizione ottimale tra la velocità di fase (o curva di dispersione) sperimentale e la velocità di fase (o curva di dispersione) numerica corrispondente al modello di suolo (fig. 5).

5. RISULTATI ELABORAZIONE MASW

La velocità di fase risulta dispersa nel piano velocità (m/s) - frequenza (Hz) in un intervallo di frequenza compreso tra 6.00 Hz e 18.00 Hz. La corrispondente velocità di fase apparente è compresa, rispettivamente, tra 200.25 m/s e 525.6 m/s (Fig.3). La curva di dispersione, estratta nel campo di frequenza analizzato, mostra avere un andamento normale dispersivo.



Dispersion curve: A6000S2882018.sg2

Fig. 3 Densità spettrale normalizzata

La curva di dispersione teorica calcolata attraverso l'inversione del modello di velocità (Fig. 4) ha uno scarto pari RMSE = 14.380683 m/s con la curva di dispersione sperimentale. Tale curva rappresenta il modo fondamentale dell'onda Rayleigh.

DIAGNOSTICA & GEOFISICA

Modello di velocità teorico relativo alla curva di figura 4

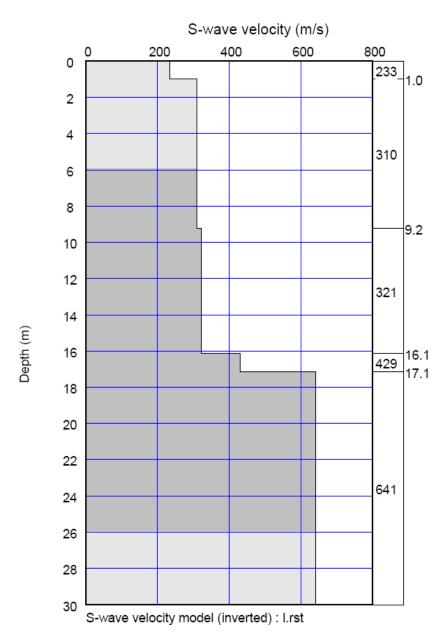
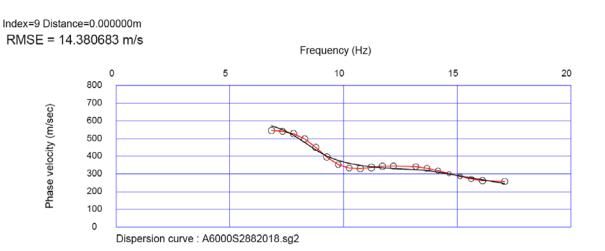



Fig. 4 Modello di velocità del sottosuolo

DIAGNOSTICA & GEOFISICA

Fig. 5 Confronto tra curva di dispersione teorica calcolata attraverso il modello di velocità teorico del sottosuolo con la curva sperimentale.

6. DEFINIZIONE SUOLO TIPO (NTC 2018)

Il DM 2018, definisce l'azione sismica di progetto, in assenza di analisi specifiche, sulla base dell'accelerazione di picco attesa al suolo (ag) e della categoria sismica di suolo su cui sarà realizzata l'opera. I valori di ag riportati nella norma, fanno riferimento all'accelerazione di picco in superficie per suolo di tipo A, cioè roccia affiorante o suolo omogeneo molto rigido, per il quale il moto sismico al bedrock non subisce variazioni sostanziali.

In presenza di suoli di tipo B, C, D, E, il moto sismico in superficie in genere risulta modificato rispetto al moto sismico al bedrock, in funzione dell'intensità e del contenuto in frequenza dell'input sismico e delle caratteristiche geotecniche sismiche e dello spessore del suolo attraversato dalle onde sismiche per giungere in superficie.

In assenza di una specifica analisi di amplificazione sismica locale per il suolo in esame, per valutare l'accelerazione sismica spettrale in presenza di suoli di tipo B, C, D E la normativa introduce un fattore di amplificazione S e i periodi T che definiscono lo spettro di risposta di un oscillatore semplice con smorzamento pari al 5%.

La classificazione del suolo è convenzionalmente eseguita sulla base della velocità media equivalente di propagazione delle onde di taglio entro 30 m di profondità:

Per il caso in esame, utilizzando i valori del modello di velocità relativo alle onde di taglio fino alla profondità di 30 metri, il sottosuolo risulta appartenere alla CATEGORIA **B**¹.

Sismostrato	Profondità (m)	Spessore (h - (m-) 30 m	V _s (m/s)	h/V _s (sec)	$V_{\sf sEQ}$
1	0.00	0.98	233.14	0.0042	401.92
2	0.98	8.25	310.34	0.0266	
3	9.23	6.90	321.33	0.0215	
4	16.13	1.00	429.98	0.0023	
5	17.13	12.87	641.86	0.0200	
		Suolo tipo A	$V_{\rm sEQ} > 800 \text{ m/s}$		
		Suolo tipo B	$360 \text{ m/s} < V_{\text{sEQ}}$	< 800 m/s	
		Suolo tipo C	$180 \text{ m/s} < V_{\text{sEQ}}$	< 360 m/s	
		Suolo tipo D	100 m/s < VsE0	Q < 360 m/s	
		Suolo tipo E	$V_{s} < 360 \text{ m/s}$	Bedrock < 30 m	(Vs 800 m/s)

21

¹ La categoria del sottosuolo è stata definita dal fondo marino.

Tel/Fax 095 413000 Sito web: www.geocheck.it E-mail: geocheck@mclink.it

7. CALCOLO MODULI ELASTICI E PARAMETRI GEOSISMICI

7.1 Moduli elastici

Il calcolo dei moduli elastici si basa sulla teoria dell'elasticità, la quale prevede che, per sforzi impulsivi e di piccola energia, i corpi subiscono deformazioni linearmente proporzionali alle forze che le originano.

In presenza di tali condizioni anche ai terreni ed alle rocce si possono attribuire le proprietà dei corpi elastici, vale a dire: omogeneità, isotropia e continuità. Pertanto, per sollecitazioni impulsive e di bassa energia, terreni e rocce rispondono nel campo della legge di Hooke:

 $\sigma = \varepsilon K$

dove:

 σ = sforzo applicato

 ε = deformazione prodotta

K = coefficiente di proporzionalità.

K, è un generico coefficiente di proporzionalità che assume significato fisico diverso in relazione al tipo di forze applicate e deformazioni conseguenti (costanti elastiche dei mezzi).

Le deformazioni e le tensioni generate da un transiente sismico rispondono al requisito di: sollecitazioni impulsive di bassa energia; quindi, come già detto, i terreni e le rocce attraversate da onde sismiche subiscono deformazioni di tipo elastico.

Tali deformazioni trovano un'intrinseca corrispondenza biunivoca con le fasi P e S dell'input sismico. Infatti, le velocità di propagazione delle onde sismiche variano al variare delle caratteristiche geomeccaniche e fisiche dei litotipi coinvolti e, pertanto, consentono di ottenere informazioni sulle proprietà elastiche dei mezzi attraversati.

Tali parametri, riportati nella tabella seguente, esprimono le caratteristiche elastiche di un corpo quando è sottoposto ad uno sforzo e sono:

- modulo d'elasticità o di Young (E) che fornisce una misura del rapporto sforzo-deformazione nel caso di una semplice torsione o compressione. Il modulo di Young dipende dalla porosità dalla

P.I. 03042530877 - n° Iscr. Trib. CT015 -29218 Sez. Ord. 196305 Tel/Fax 095 413000 Sito web: www.geocheck.it E-mail: geocheck@mclink.it

pressione litostatica. I valori minimi del modulo si registrano in litotipi ad alta porosità saturi in gas, mentre i valori massimi si hanno per litotipi a bassa porosità, sotto pressione e saturi d'acqua.

- densità geofisica (γ^{din}) è un parametro che indica lo stato di addensamento dei terreni ed è paragonabile al peso di volume geotecnico;
- rapporto di Poisson (σ) che dà la misura della deformazione geometrica subita da un corpo elastico e varia da, 0.2 a 0.3 per le rocce compatte; da 0.3 a 0.35 per le sabbie e da 0.4 a 0.5 per le argille;
- modulo di rigidità (**G**) che esprime la misura del rapporto sforzo-deformazione nel caso di uno sforzo di taglio, stabilendo pertanto la resistenza del corpo alle variazioni di forma. Tale parametro è fortemente dipendente dalla porosità e dalla pressione litostatica. Assume valori più bassi in litotipi ad alta porosità, sottoposti a bassa pressione e saturi d'acqua.
- modulo di volume o di compressibilità (**K**) misura il rapporto sforzo-deformazione nel caso di una pressione idrostatica ed indica la resistenza del corpo alle variazioni di volume. Tale parametro varia con la porosità, con la pressione e con la quantità d'acqua presente nella roccia. Aumenta con il grado di saturazione, con il decrescere della porosità e con l'aumentare della pressione litostatica.
- modulo di contrasto (**M**) che esprime la misura del rapporto sforzo-deformazione nel caso di uno sforzo di compressione, stabilendo pertanto la resistenza del corpo alle variazioni in direzione perpendicolare al fronte di propagazione. Tale parametro è fortemente dipendente dalla porosità e dalla pressione litostatica. Assume valori più bassi in litotipi ad alta porosità, sottoposti a bassa pressione e privi d'acqua.

7.2 Parametri geosismici

Tali parametri consentono di quantizzare il comportamento sismico di un pacchetto lito - stratigrafico, in termini di potere di trasmissione dell'energia sismica da una formazione all'altra. Tale caratteristica è legata all'impedenza sismica (IS) ed a due coefficienti ad essa dipendenti: coefficiente di rifrazione (t) e coefficiente di riflessione (ξ).

7.3 Impedenza sismica (IS)

L'impedenza sismica è data dal prodotto della velocità di propagazione delle onde trasversali per la densità del mezzo in cui l'onda si propaga. L'**IS** è un parametro che permette di valutare l'amplificazione sismica al sito.

7.4 Coefficienti di rifrazione e di riflessione ($t e \xi$)

Altri due valori legati alla rigidità dei terreni sono: i coefficienti di rifrazione (t) e di riflessione (ξ). Tali coefficienti rappresentano il rapporto tra l'ampiezza dell'onda riflessa o rifratta con l'ampiezza dell'onda incidente.

 ξ può assumere valori compresi tra -1 e +1: quando ξ tende a +1, l'onda riflessa ha la stessa fase ed ampiezza dell'onda incidente, mentre quando ξ tende a -1, l'onda riflessa avrà la stessa ampiezza dell'onda incidente, ma sarà in opposizione di fase. Il coefficiente \mathbf{t} è sempre positivo e, laddove i terreni hanno forte contrasto di impedenza sismica ($\rho 2 >> \rho 1$), \mathbf{t} tende a 2 cui corrisponde un aumento della frazione di energia trasmessa.

Nella tabella seguente sono riportati i valori dei moduli elasto-dinamici relativi ai sismostrati individuati.

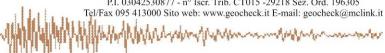
MODULI ELA	STO-DINAMIC				
	1° sismostrato	2° sismostrato	3° sismostrato	4° sismostrato	5° sismostrato
VP (m/s)	1549.00	1634.00	1646.00	1766.00	2002.00
VS (m/s)	233.00	310.00	321.00	429.00	641.00
γ (g/cm³)	2.06	2.08	2.08	2.11	2.16
σ	0.49	0.48	0.48	0.47	0.44
E (Kg/cm ²)	3393.36	6039.14	6479.53	11637.00	26140.17
Estat (Mpa)	14.05	34.52	38.53	96.06	339.48
K (Kg/cm²)	48564.19	53588.33	54298.46	61478.96	75819.64
G (Kg/cm²)	1139.92	2038.42	2188.69	3961.82	9058.28
M (Kg/cm²)	50380.71	56633.54	57548.37	67136.91	88360.47
IS (t/m ² *sec.)	479.77	644.84	668.65	905.64	1385.82
t	1.15	1.02	1.15	1.21	0.00
ξ	-0.15	-0.02	-0.15	-0.21	1.00

8.0 - TOMOGRAFIA SISMICA

8.1 - Generalità

La tomografia sismica assiale di superficie è una tecnica che consente la ricostruzione in immagini della struttura interna del terreno, mediante l'impiego dei travel-time delle onde sismiche che si propagano dalla superficie.

Lo scopo è di determinare un dettagliato andamento della distribuzione della velocità delle onde sismiche longitudinali nel sottofondo marino.


8.2 Metodologia e strumentazione utilizzata

La metodologia adottata si avvale di un dispositivo geometrico punto di scoppio-geofoni "base distante in linea".

La strumentazione utilizzata è costituita da un sismografo multicanale M.A.E. A6000S, avente le seguenti caratteristiche tecniche:

- Convertitori: risoluzione 24 bit, tecnologia sigma-delta
- Range dinamico: 144 dB (teorico)
- Distorsione massima: +/-0.0010%
- Banda passante: 2Hz-30KHz
- Common mode rejection: 110 dB a 60 Hz
- Diafonia: -120dB a 20 Hz
- Soglia di rumore dell'amplificatore programmabile: 27nV
- Precisione del trigger: 1/30 del tempo di campionatura
- Range massimo segnale in ingresso: +/-5V
- Impedenza di ingresso a 1000 campioni /secondo: 20Mohm
- Livelli di amplificazione: 0 dB, 6 dB, 12 dB, 18 dB, 24 dB, 30 dB, 36 dB impostabili singolarmente per ogni canale o per gruppi di canali liberamente organizzabili
- Filtro anti-alias: -3dB,80% della frequenza di Nyquist,-80dB
- Tempo pre-trigger: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 50, 100, 200, 300, 400, 500ms
- Intervalli di campionamento: 1/30, 1/15, 1/7.5, 1/3.75, 0.5, 1.0, 2.0, 10.0, 20.0 ms; 8.0, 4.0, 2.0 ms in registrazione continua

Le onde di compressione P sono state generate mediante "water gun" a cartuccia industriale calibro 8. I segnali sismici registrati in formato digitale sono stati analizzati nel dominio del tempo con apposito software (CWP/SU) per la stima del primo arrivo delle onde sismiche generate (P).

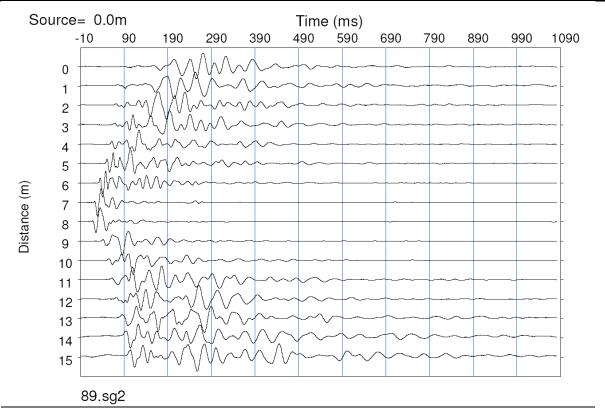


Figura 6. Tracce sismiche onde P

8. 3 Metodologia di calcolo - G. S. A. O. (Generalized Simulated-Annealing Optimization)

Il G.S.A.O., metodo basato sulla tecnica Monte Carlo2, è un modello di calcolo che consente l'ottimizzazione non lineare dell'inversione dei tempi di primo arrivo delle fasi dirette e rifratte delle onde sismiche registrate durante una prospezione sismica. Il vantaggio di tale tecnica è nell'assoluta indipendenza dal modello iniziale di velocità. Le fasi di calcolo che vengono eseguite nel processo d'elaborazione dei dati, possono essere così sintetizzate:

□ Calcolo dei traveltimes attraverso un modello iniziale di velocità e determinazione dell'errore minimo quadrato (E0 = least-square error), tra il travel − time calcolato e quello osservato. Per ogni iterazione i è possibile definire il "least − square error" secondo la formula:

$$E_{i} = \frac{1}{N} \left[\sum_{j=1}^{N} (t_{j}^{obs} - t_{j}^{cal})^{2} \right]$$
 (1)

DIAGNOSTICA & GEOFISICA

dove N è il numero di campioni, j denota ogni osservazione, e t_{obs} e t_{cal} sono rispettivamente il tempo osservato e calcolato.

- ☐ Perturbazione del modello di velocità mediante l'inserimento di una costante di velocità casuale, mantenendo la non linearità del sistema, e calcolo del nuovo "least square error" E1.
- ☐ Determinazione della probabilità P di ammettere il nuovo modello (cioè che il modello sia accettabile):

$$P = 1; E_1 \le E_0$$
 (2)


$$P = P_c = \exp\left[\frac{(E_{\min} - E_1)^q \Delta E}{T}\right]; \qquad E_1 > E_0$$
(3)

dove Pc è la probabilità di accettare la condizione, T è chiamata temperatura; $\Delta E = E_0 - E_1$, q è una costante d'integrazione (che si determina empiricamente), e E_{min} è il valore oggettivo della funzione dei minimi totali. Teoricamente si ha $E_{min} = 0$.

L'equazione (2) significa che il nuovo modello è accettato quando la "least – square error" è inferiore a quella della iterazione precedente. L'equazione (3) prevede l'accettazione condizionata di modelli con una più ampio least – square error". Ciò consente, durante l'inversione dei dati, di sfuggire dall'intorno dei minimi, andando alla ricerca del minimo globale.

□ Ripetizione delle inversioni fino al raggiungimento della convergenza richiesta tra la differenza dell'errore minimo quadrato ed il successivo modello e la probabilità di accettare nuovi modelli di velocità a minimo errore.

² Metropolis, N., A. Rosenbluth, A. Teller, and E. Teller (1953). Equations of state calculation by fast computing machines, J. Chem. Phys. 21, 1087-1092.

8.4 RISULTATI TOMOGRAFIE SISMICHE

I risultati consistono nella restituzione dell'immagine sismica del sottofondo marino espressa in termini di velocità di propagazione delle onde sismiche P (modello di velocità default e modello di velocità normalizzato al valore massimo riscontrato) e di anisotropia (rapporto Vx/Vz).

Dal *modello di velocità* risulta che la Vp è compresa tra 900 m/sec e 2780 m/sec. Tali valori sono da attribuire alla variazione dello stato di addensamento della coltre di sedime di fondo superficiale ed alla consistenza dei sedimenti di natura prevalentemente piroclastica che costituiscono il substrato dell'area di studio. Si rileva, inoltre, che tali variazioni di velocità sono prevalentemente verticali.

La sezione *anisotropia* data dal rapporto Vx/Vz, mostra che i valori variano da 0.99 a 1.00, pertanto si rileva un ammasso lungo la sezione prevalentemente isotropo.

Di seguito si riportano gli elaborati grafici (modello di velocità e modello di anisotropia) e le sezioni sismostatigrafiche.

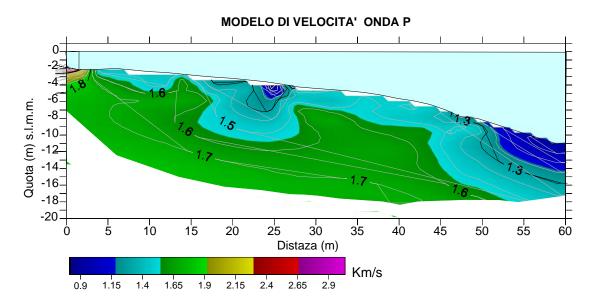


Figura 7. MODELLO DI VELOCITA' NORMALIZZATO – SISM_1

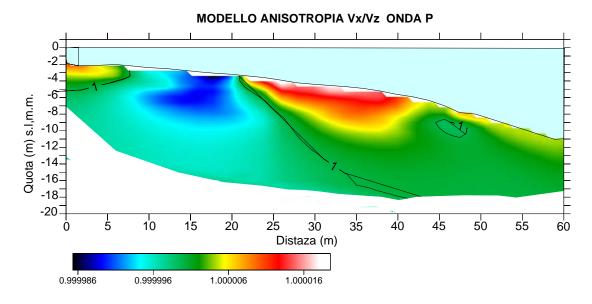
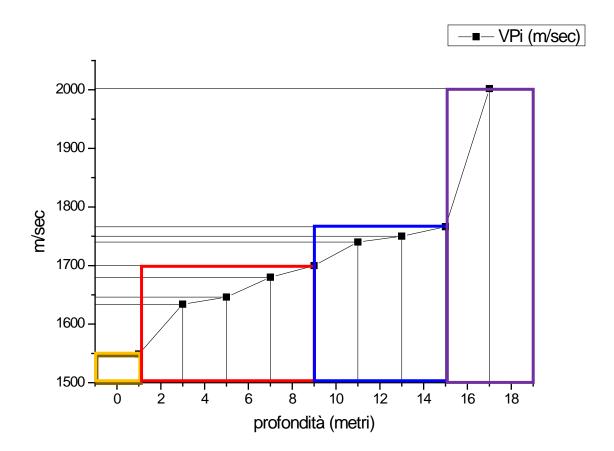


Figura 8. MODELLO DI ANISOTROPIA – SISM_1


Direzione SSW - NNE

9 SISMICA IN FORO Vp

All'interno del sondaggio meccanico è stata eseguita una misura delle velocità di compressione Vp, alloggiando all'interno del foro una catena idrofonica con passo 2 metri di lettura e energizzazione con "offset" pari ad 1 metro.

Segue diagrafia delle velocità Vp con la profondità con markers fisici stratigrafici.

P.I. 030425308// - n° Iscr. 111b. C 1015 -29218 Sez. Ord. 196305 Tel/Fax 095 413000 Sito web: www.geocheck.it E-mail: geocheck@mclink.it

10 CONCLUSIONI

Le prove geofisiche oggetto del presente rapporto sono state eseguite per conto della SIGEO DRILLING S.r.l. e coordinate dalla D.L. nella persona del Dr. Geol. Vincenzo Pinizzotto (in nome e per conto del Comune di Lipari) nell'ambito di uno studio finalizzato alla definizione d'interfacce sismiche e elettriche (copertura sedime di fondo, substrato roccioso di sottofondo, anomalie altobasso resistive imputabili alla presenza di corpi sommersi), relativamente al "PROGETTO DI MESSA IN SICUREZZA DEL PORTO DI LEVANTE (AREA PONTILE METALLICO ALISCAFI) - ISOLA DI VULCANO, COMUNE DI LIPARI (ME)". Inoltre, nello stesso ambito, è stata eseguita una prova sismica attiva MASW (MULTICHANNEL ANALYSIS OF SURFACE WAVES) in mare per la definizione del suolo tipo secondo quanto previsto dalla NTC 2018.

In particolare, le configurazioni geometriche e d'acquisizione utilizzate per la geoelettrica, sono state scelte per ridurre il rumore elettrico (l'acqua di mare rappresenta un mezzo altamente conduttivo) e aumentare la risoluzione latero - verticale.

Nel complesso, l'ambito areale scansionato elettricamente e sismicamente, ha reso evidente la successione fisico_stratigrafica fino a una profondità di circa 16 - 18 metri dall'interfaccia acqua/fondale, con una buona risoluzione.

info@sigeodrilling.com

Soluzioni per la geologia, l'ingegneria, l'ambiente

P.zza Municipio 6 - 95015 Linguaglossa (CT) Tel. /Fax +39 095 647684 Progetto: indagini geognostiche a supporto del progetto "Messa in sicurezza del porto di levante e di ponente nell'isola di Vulcano con la sistemazione del molo foraneo e collegamento tra le banchine portuali e radice pontile attracco aliscafo"

Committente: Dott. Geol. Vincenzo Pinizzotto (per conto Comune di Lipari)

ALLEGATO "PL"

PROVE DI LABORATORIO

IS O 9001 2008

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. nº 8451/2009, ai sensi dell' art. 20 della legge nº 1086/1971 e dell'art. 59 del D.P.R. 380/2001

Sezione	SETTORE TERRE - Circolare 76	18 STC, DM n°153 del 13/07/2016						
	Verbale Accettazione nº: 48	Data Accettazione: 31/08/2018						
	Certificati nº: 207 - 219	Data Certificati: 07-10/09/2018						
Prove richieste	Analisi e prove geote	ecniche di laboratorio						
Num. dei campioni / qualità dichiarata	Num. 6 campioni /	rimaneggiati (Q2)						
Lavoro/Cantiere	Messa in sicurezza del porto di levante (area pontile metallico aliscafi) - Isola di vulcano - Comune di Lipari (ME)							
Richiedente		cenzo Pinizzotto Geognostiche)						
Ente Appaltante/Proprietà	Comune di	Lipari (ME)						
Impresa Esecutrice dei sondaggi	Sigeo Drilling S.r.l via Umb	perto nº110, Linguaglossa (CT)						
Prove richieste	- Caratteristiche fisiche (peso dell'unità di volum - Limiti di Atterberg - Limiti di ritiro - Analisi granulometrica per stacciatura - Analisi granulometrica per sedimentazione - Contenuto di carbonato di calcio - Contenuto di sostanze organiche - Classificazione UNI 10006 - Permeabilità a carico costante e/o variabile - Prova di compressione ELL - Prova triassiale UU - Prova triassiale CU - Prova triassiale CD - Prova di taglio diretto - Prova edometrica - Indice di Portanza CBR - Prova di Costipamento AASHO modificata e/o st	tandard						
Data Prelievo dichiarata Data Prova	1	08/2018. - 10/09/2018						
		LA LA SPEDIL TO S.r.t.						
	pag. I di II	3/						

- I Certificati, così come le copie conformi, vengono autenticate dalla La.Sp.Edil Srl mediante l'apposizione su ciascun foglio di apposito timbro. In assenza, i Certificati sono da ritenersi non autentici.
- E' vietata la riproduzione e/o divulgazione parziale o totale del presente documento senza l'autorizzazione scritta della La.Sp.Edil Srl
- Il presente Documento è costituito da num.18 pagine totali

Laboratorio autorizzato all'esecuzione prove sui materiali da cos fruzione con D.M. nº 8451/2009, ai sensi dell' aut. 20 della legge nº 1086/1971 e dell'art. 59 del D.P.R. 380/2001

INTRODUZIONE

In data 31/08/2018 il Dott. Geol. Antonino Cubito, Direttore Tecnico della ditta SIGEO Drilling S.r.l., ha consegnato presso la sede operativa di questo laboratorio n°6 campioni di terreno da sottoporre a prove geotecniche come da richiesta ufficiale.

Le prove richieste sono state trascritte nel Verbale di Accettazione n°48 del 31/08/2018.

I campioni, contenuti in sacchetti di plastica, sono stati conservati in camera climatica dedicata sino all'inizio del set di prove richieste avviato con l'apertura dei campioni e la catalogazione.

I campioni sono stati sottoposti a prove geotecniche per l'individuazione delle caratteristiche fisiche (Campione C1,C2,C3,C4,C5,C6)e meccaniche (Campione C6) in deroga alla compatibilità delle stesse con le caratteristiche possedute dai terreni, come da richiesta del richiedente.

Per quanto attiene la prova di taglio diretto sul campione C6, si precisa che i campioni sono stati preliminarmente ricostruiti all'umidità naturale fino alla densità media ricavata.

Le prove sono state eseguite secondo le procedure tecniche standardizzate riportate nelle norme vigenti (ASTM, CNR,UNI).

pag. Il di Il

Sperimentatore
Dott.Geol. Giuseppe Musumeci

Direttore dil Laboratorio Dott. Ide. Antonio Pallolta

CERTIFICATO DI PROVA Nº:

VERBALE DI ACCETTAZIONE N°:

Sede Legale: Via Don Minzoni 14, 95045 Missarbianco (CT) - P.iva 04240280877 - R.E.A n°282590 Cap. Soc. 10.000,0 € Sede Laboratorio: C.da Montecenere s/n. Piano Tavola - Tet 085/7867198 - Fax 085/2837259 - Cell 331 174 55 36 web : www.laspedii.it - artail; info@laspedii.it - pec: laspediisn@pec.it

2,00-2,20

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. n° 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, al sensi dell'art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

Pagina 1/1

DATA DI EMISSIONE:	07/09/18	Inizio analisi:	04/09/18
Apertura campione:	04/00/18	Fine analisi:	04/00/19

PROFONDITA': m

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)

48 del 31/08/18

RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

00207

SONDAGGIO: S1 CAMPIONE:

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma ASTM D2937

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale (media delle due misure) = 16,3 kN/m³

Lo Sperimentatore Dott Giuseppe Musumeci II Direttore di Laboratorio Dott. Ing. Antonio Pallotta

Sede Legale: Via Don Minzoni 14, 95045 Misterbiance (CT) - P./wa 04240280377 - R.E.A n°282590 Cap. Soc. 10.000,0 € Sede Laboratorio: C.da Montecenere s/n. Pizno Tavola - Tel 095/7887198 - Fex 095/2937259 - Cell 331 174 55 36 web : www.laspedil.it - email: info@laspedil.it - pec: laspedilsri@pec.li

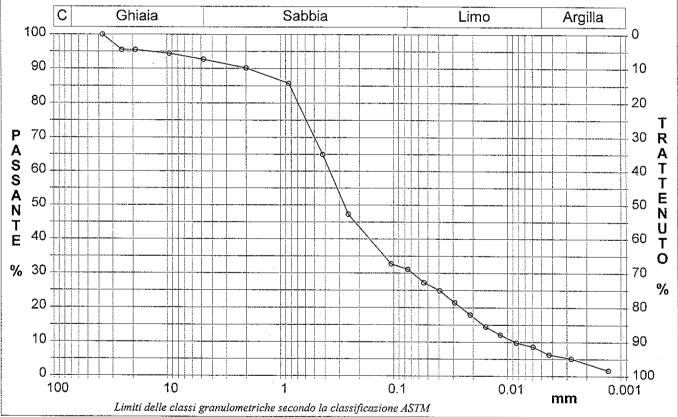
Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. n° 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, al sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

Certificato Nº: IT230937

 CERTIFICATO DI PROVA N°:
 00208
 Pagina 1/1
 DATA DI EMISSIONE:
 07/09/18
 Inizio analisi:
 04/09/18

 VERBALE DI ACCETTAZIONE N°:
 48 del 31/08/18
 Apertura campione:
 04/09/18
 Fine analisi:
 07/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)


RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: S1 CAMPIONE: C1 PROFONDITA': m 2,00-2,20

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D421, D422 ASTM D2217

Ghiaia Sabbia Limo Argilla	7,3 % 61,6 % 23,7 % 7,4 %	Passante se	etaccio 10 (2 mm) etaccio 40 (0.42 mm) etaccio 200 (0.075 mm)	90,2 % 63,3 % 31,1 %	D ₁₀ D ₃₀ D ₅₀ D ₆₀	0,00859 mm 0,06843 mm 0,27082 mm 0.36326 mm
Coefficiente	di uniformità	42,30	Coefficiente di curvatura	1,50	D ₉₀	1,92882 mm

Diametro mm	Passante %								
37,0000	100,00	2,0000	90,19	0,0750	31,08	0,0155	14,46	0,0027	5,16
25,0000	95,49	0,8410	85,67	0,0542	27,25	0,0116	12,14	0,0013	1,68
19,0000	95,49	0,4200	64,94	0,0394	24,92	0,0084	9,81		
9,5200	94,38	0,2500	47,28	0,0290	21,43	0,0060	8,65		
4,7500	92,67	0,1050	32,71	0,0212	17,95	0,0043	6,33		<u> </u>

Sabbia limosa debolmente argillosa e ghiaiosa

Lo Sperimentatore Dott. Gioseppe Musumeci

| Direttore di Laboratorio Dott. Ing. Antonio Pallotta

Sede Legale: Via Don Minzoni 14, 95045 Misterbianso (CT) - P.iva 04240280377 - R.E.A n°282590 Cap. Soc. 10.000.0 € Sede Laboratorio: C.da Montecenere s/n ,Piano Tavola - Tel 095/7867198 - Fax 095/2997259 - Cell 331 174 55 35 web : www.laspedil.it - email: info@laspedil.it - pec: taspedilsrk@pec.it

Fine analisi:

04/09/18

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. nº 8451/2009 e all'esecuzione prove su terre D.M. 153/2016, ai sensi dell' art. 20 della legge n' 1086/1971 e dell'art. 59 del D.P.R. 380/2001

CERTIFICATO DI PROVA Nº: 00209 Pagina 1/1 DATA DI EMISSIONE: 07/09/18 Inizio analisi: 04/09/18 VERBALE DI ACCETTAZIONE N°: 48 del 31/08/18 Apertura campione: 04/09/18

Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari) COMMITTENTE:

Dott. Geologo Vincenzo Pinizzotto RIFERIMENTO:

SONDAGGIO: CAMPIONE: PROFONDITA': m 3,80-4,00

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma ASTM D2937

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale (media delle due misure) = 17,0 kN/m³

Lo Sperimentatore Dott. Giuseppe Musumeci

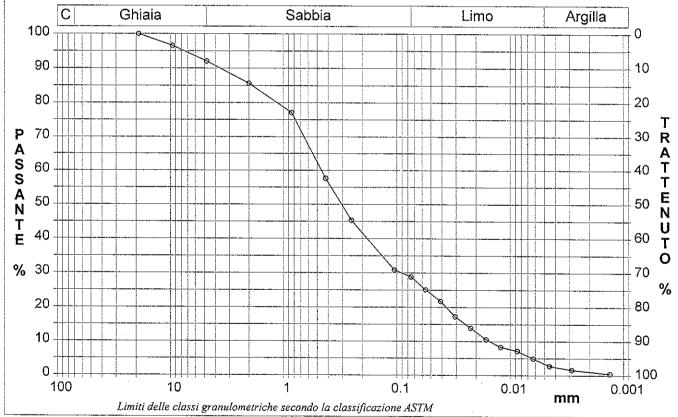
II Direttore di Laboratorio

Sede Legale: Via Don Minzoni 14, 95045 Misterbianco (CT) - P.iva 04240289877 - R.E.A n°282590 Cap. Soc. 10.000,0 € Sede Laboratorio: C.da Montecenere s/n ,Piano Tavola - Tel 095/7867198 - Fax 095/2837259 - Cell 331 174 55 38 web : www.laspedil.it - email: info@laspedil.it - pec: laspedilist/@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. nº 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, ai sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

CERTIFICATO DI PROVA Nº: 00210 Pagina 1/1 DATA DI EMISSIONE: 07/09/18 Inizio analisi: 04/09/18 VERBALE DI ACCETTAZIONE N°: 48 del 31/08/18 Apertura campione: 04/09/18 Fine analisi: 07/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)


Dott. Geologo Vincenzo Pinizzotto RIFERIMENTO:

SONDAGGIO: **S**1 CAMPIONE: PROFONDITA': m 3.80-4.00

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D421, D422 ASTM D2217

Ghiaia Sabbia Limo Argilla	8,0 % 63,2 % 25,4 % 3,4 %	Passante se	etaccio 10 (2 mm) etaccio 40 (0.42 mm) etaccio 200 (0.075 mm)	85,6 % 56,5 % 28,8 %	D ₁₀ D ₃₀ D ₅₀ D ₆₀	0,01517 mm 0,09118 mm 0,30450 mm 0,45711 mm
Coefficiente	di uniformità	30,14	Coefficiente di curvatura	1,20	D ₉₀	3,61050 mm

Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %
19,0000	100,00	0,4200	57,63	0,0411	21,76	0,0087	7,19		
9,5200	96,50	0,2500	45,32	0,0305	17,27	0,0062	4,95		
4,7500	92,03	0,1050	30,85	0,0223	13,91	0,0045	2,71		
2,0000	85,64	0,0750	28,83	0,0163	10,55	0,0029	1,59		<u> </u>
0,8410	77,07	0,0559	25,12	0,0121	8,31	0,0013	0,47		

Sabbia con limo debolmente ghiaiosa

Lo Sperimentatore Dott. Giuseppe Musumeci Il Direttore di Laboratorio

Sede Legale: Via Don Minzoni 14, 95045 Misterbienco (CT) - P.iva 04240280877 - R.E.A n*282590 Cap. Soc. 10.000,0 € Sede Laboratorio: C.da Montecenere s'n ,Piano Tavola - Tel 095/7887198 - Fax 095/2837259 - Cell 331 174 55 36 web : www.laspedii.it - email: info@laspedii.it - pec: laspediisri@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. n° 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, ai sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

····································						
CERTIFICATO DI PROVA Nº:	00211	Pagina 1/1	DATA DI EMISSIONE:	07/09/18	Inizio analisi:	04/09/18
VERBALE DI ACCETTAZIONE N	√1°: 48 d	el 31/08/18	Apertura campione:	04/09/18	Fine analisi:	04/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)

RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: S1 CAMPIONE: C3 PROFONDITA': m 5,35-5,50

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma ASTM D2937

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale (media delle due misure) = 18,0 kN/m³

Lo Sperimentatore Dott. Giuseppe Musumeci

Il Direttore di Laboratorio Doff. Ing. Antonio Pallotta

Sede Legale: Via Don Minzoni 14, 95045 Misterbianco (CT) - P.iva 04240280877 - R.E.A n°282590 Cap. Soc. 10,000,0 € Sede Laboratorio: C.da Montecensre s/n ,Piano Tavola - Tel 095/7887198 - Fax 095/2937259 - Cell 331 174 55 35 web : www.laspedii.ii - email: info@laspedii.ii - pec: laspediisri@pec.it

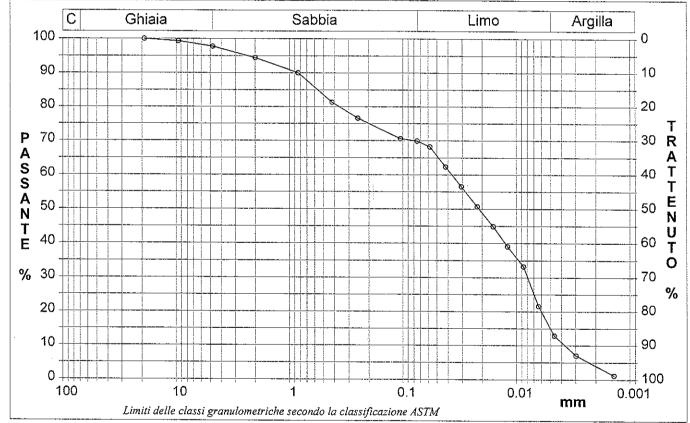
Laboratorio autorizzato all'esecuzione prove sul materiali da costruzione con D.M. nº 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, al sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

.

 CERTIFICATO DI PROVA N°:
 00212
 Pagina 1/1
 DATA DI EMISSIONE:
 07/09/18
 Inizio analisi:
 04/09/18

 VERBALE DI ACCETTAZIONE N°:
 48 del 31/08/18
 Apertura campione:
 04/09/18
 Fine analisi:
 07/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)


RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: S1 CAMPIONE: C3 PROFONDITA': m 5,35-5,50

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D421, D422 ASTM D2217

Ghiaia Sabbia Limo Argilla	2,2 % 27,9 % 54,9 % 15,0 %	Passante se	etaccio 10 (2 mm) etaccio 40 (0.42 mm) etaccio 200 (0.075 mm)	94,4 % 80,9 % 69,9 %	D ₁₀ D ₃₀ D ₅₀ D ₆₀	0,00373 mm 0,00794 mm 0,02125 mm 0,03690 mm
Coefficiente di uniformità		9,89	Coefficiente di curvatura	0,46	D ₉₀	0,83762 mm

Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante.	Diametro mm	Passante %
19,0000	100,00	0,4200	81,30	0,0420	62,36	0,0086	33,24		
9,5200	99,27	0,2500	76,62	0,0305	56,54	0,0064	21,59		
4,7500	97,78	0,1050	70,57	0,0221	50,71	0,0046	12,86		
2,0000	94,44	0,0750	69,86	0,0160	44,89	0,0030	7,03		
0,8410	90,05	0,0578	68,19	0,0120	39,07	0,0014	1,21		

Limo con sabbia argilloso

Lo Sperimentatore Dott. Giuseppe Musumeci II Direttore di Laboratorio Dott. Ing. Antonio Pallotta

Sede Legale: Via Don Minzoni 14, 95045 Misterbianco (CT) - P.iva 04240280877 - R.E.A n'282590 Cap. Soc. 10,000.0 Sede Laboratorio: C.da Montecenere s/n. Piano Tavola - Tel 093/7887198 - Fax 095/2937259 - Cell 331 174 55 38 with "Tel 093/7887198" | Sede Laboratorio: C.da Montecenere s/n. Piano Tavola - Tel 093/7887198 - Fax 095/2937259 - Cell 331 174 55 38 with "Tel 093/7887198" | Sede 14 - Sed

Laboratorio autorizzato all'esecuzione prove sul materiali da costruzione con D.M. n° 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, al sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

 CERTIFICATO DI PROVA N°:
 00213
 Pagina 1/1
 DATA DI EMISSIONE:
 07/09/18
 Inizio analisi:
 04/09/18

 VERBALE DI ACCETTAZIONE N°:
 48 del 31/08/18
 Apertura campione:
 04/09/18
 Fine analisi:
 04/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)

RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: S1 CAMPIONE: C4 PROFONDITA': m 6,30-6,50

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma ASTM D2937

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale (media delle due misure) = 17,4 kN/m³

Lo Sperimentatore Dott. Giuseppe Musumeci TERRANGO LA. SPEDIL TERRANGO LA. SPEDIL TERRANGO LA. SPEDIL TERRANGO LA. SPEDIL TERRANGO LA. SP. III.

Il Direttore di Laporatorio Dotti. Ing. Antonio Pallotta

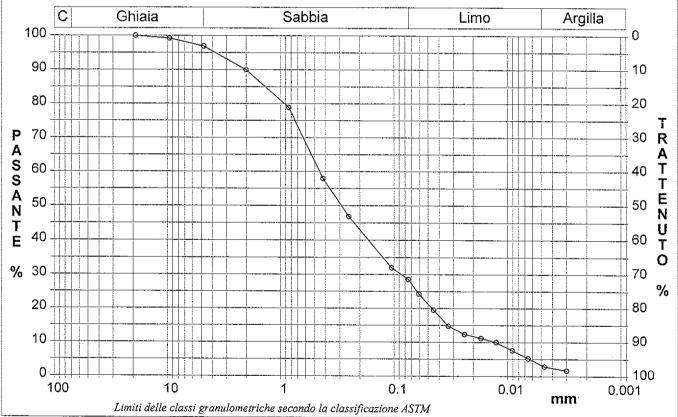
Sede Legale: Via Don Minzoni 14, 95045 Misterbianco (CT) - P.iva 04240280377 - R.E.A n*282590 Cap. Soc. 10.000,0 € Sede Laboratorio: C.da Montecenere s/n. Piano Tavola - Tel 095/7867198 - Fax 095/2937259 - Cell 331 174 55 36 web : www.laspedil.if - email: info@laspedil.if - pec: laspedilsri@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. nº 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, ai sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 dei D.P.R. 380/2001

Celuicalu N : 11 230937

CERTIFICATO DI PROVA N°:00214Pagina 1/1DATA DI EMISSIONE:07/09/18Inizio analisi:04/09/18VERBALE DI ACCETTAZIONE N°:48 del 31/08/18Apertura campione:04/09/18Fine analisi:07/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)


RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: S1 CAMPIONE: C4 PROFONDITA': m 6,30-6,50

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D421, D422 ASTM D2217

Ghiaia Sabbia Limo Argilla	3,1 % 68,3 % 25,3 % 3,3 %	Passante se	etaccio 10 (2 mm) etaccio 40 (0.42 mm) etaccio 200 (0.075 mm)	90,0 % 56,9 % 28,6 %	D ₁₀ D ₃₀ D ₅₀ D ₆₀	0,01263 mm 0,08624 mm 0,28989 mm 0,44953 mm
Coefficiente di uniformità		35,58	Coefficiente di curvatura	1,31	D ₉₀	2,00108 mm

Diametro mm	Passante %								
19,0000	100,00	0,4200	57,95	0,0448	19,49	0,0091	7,62		
9,5200	99,18	0,2500	46,82	0,0331	14,74	0,0066	5,24		
4,7500	96,91	0,1050	32,00	0,0239	12,37	0,0047	2,87		
2,0000	90,00	0,0750	28,58	0,0171	11,18	0,0030	1,68		1
0,8410	78,87	0,0602	24,24	0,01,2615	3 79,99				

Sabbia con limo

Lo Sperimentatore Dott / Giuseppe Musumeci Il Direttore de Laboratorio Dotti Ing. Artonio Pallotta

Sede Legale: Vie Don Minzoni 14, 95045 Missterbianco (CT) - P.iva 04240280877 - R.E.A n*282590 Cap. Soc. 10.000.0 € Sede Laboratorio: C.da Montecenere s/n. Piano Tavota - Tel 095/7867198 - Fax 095/2937259 - Celt 331, 174 55 36 web : www.laspedii.it - email: info@laspedii.it - pec: tespediisn*@pec.it

Laboratorio autorizzato all'esecuzione prove sul materiali da costruzione con D.M. nº 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, al sensi dell'art. 20 della logge n° 1086/1971 e dell'art. 59 del D.P.R. 280/2001

7/00/49 | Initia analisis 04/00/40

CERTIFICATO DI PROVA N°:00215Pagina 1/1DATA DI EMISSIONE:07/09/18Inizio analisi:04/09/18VERBALE DI ACCETTAZIONE N°:48 del 31/08/18Apertura campione:04/09/18Fine analisi:04/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)

RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: S1 CAMPIONE: C5 PROFONDITA': m 12,00-12,20

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma ASTM D2937

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale (media delle due misure) = 18,9 kN/m³

CORIZZAZA S.I.I. S.II.

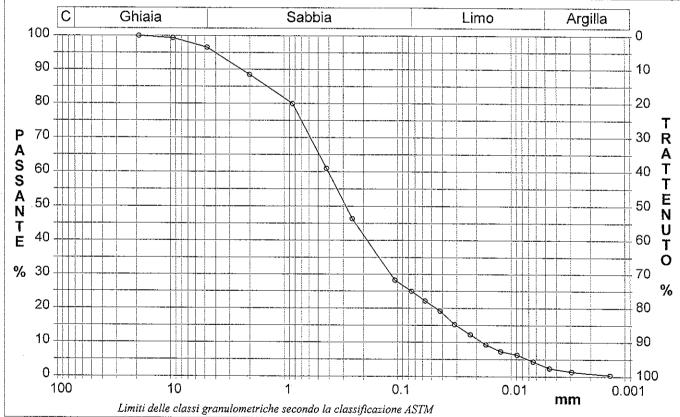
Lo Sperimentatore Dott, Giuseppe Musumeci Il Direttore di Laboratorio Dott/ Ing. Antonio Pallotta

Sede Legale: Via Don Minzoni 14, 95045 Misterbianco (CT) - P.iva 04240280877 - R.E.A n*282590 Cap. Soc. 10.000.0 € Sede Laboratorio: C.da Montecenere s/n ,Pano 7avola - Tel 095/7867198 - Pax 095/2937259 - Cell 331 174 55 36 web : vww.laspedikit - email: info@laspedikit - pec: kaspedikst@pec.it

Laboratorio autorizzato all'esecuzione prove sul materiali da costruzione con D.M. n' 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, ai sensi dell'art. 20 della legge n' 1086/1971 e dell'art. 59 del D.P.R. 380/2001

CERTIFICATO DI PROVA Nº: 00216 Pagina 1/1 DATA DI EMISSIONE: 07/09/18 Inizio analisi: 04/09/18 VERBALE DI ACCETTAZIONE N°: 48 del 31/08/18 Apertura campione: 04/09/18 Fine analisi: 07/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)


RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: CAMPIONE: PROFONDITA': m 12,00-12,20

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D421, D422 ASTM D2217

Ghiaia Sabbia Limo Argilla	3,5 % 71,5 % 22,1 % 2,9 %	Passante setaccio 10 (2 mm) Passante setaccio 40 (0.42 mm) Passante setaccio 200 (0.075 mm)	88,5 % 59,6 % 25,0 %	D ₁₀ D ₃₀ D ₅₀ D ₆₀	0,01792 mm 0,11430 mm 0,28449 mm 0.40587 mm
Coefficiente	di uniformità	22,64 Coefficiente di curvatura	1,80	D ₉₀	2,35390 mm

Diametro mm	Passante %								
19,0000	100,00	0,4200	60,96	0,0420	19,18	0,0089	6,34		
9,5200	99,33	0,2500	46,36	0,0312	15,23	0,0064	4,36		
4,7500	96,55	0,1050	28,22	0,0228	12,26	0,0046	2,39		
2,0000	88,48	0,0750	24,98	0,0166	9,30	0,0029	1,40		
0,8410	79,93	0,0571	22,14	0,0124 5	Z,33	0,0013	0,41		

Sabbia limosa

Lo Sperimentatore Dott. Giuseppe Musumeci Il Direttore di Laboratorio

Sede Legale: Via Don Minzoni 14, 95045 Misterbianco (CT) - P.iva 04240280877 - R.E.A n*282590 Cap. Soc. 10.000,0 € Sede Laboratorio: C.da Moniecenere s/n. Piano Tavola - Tel 095/7867198 - Fax 095/2937259 - Cell 331 174 55 36 web : www.laspedii.it - email: info@laspedii.it - pec: laspediisr@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. n° 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, al sensi dell'art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

0/00/40	Inizio	apolisi:	04/00/49	1

CERTIFICATO DI PROVA N°:00217Pagina 1/1DATA DI EMISSIONE:10/09/18Inizio analisi:04/09/18VERBALE DI ACCETTAZIONE N°:48 del 31/08/18Apertura campione:04/09/18Fine analisi:04/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto ComUne di Lipari)

RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: S1 CAMPIONE: C6 PROFONDITA': m 13,50-14,00

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma ASTM D2937

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale (media delle due misure) = 16,9 kN/m³

Lo Sperimentatore
Dott. Giuseppe Musumeci

CAN CONTROL OF THE PROPERTY OF

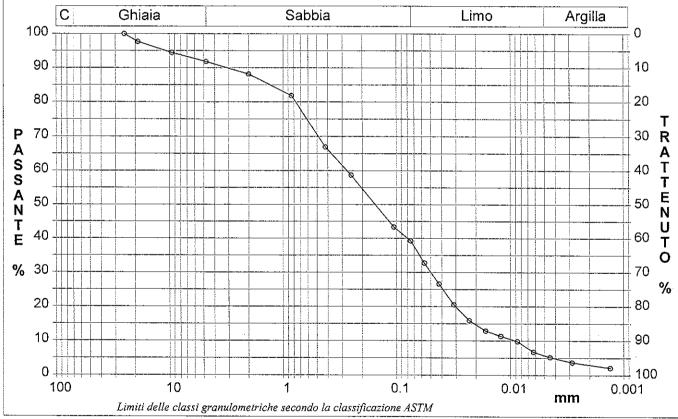
Il Direttore di Laboratorio Dott. Ing. Antonio Paliotta

Sede Legale: Via Don Minzoni 14, 95045 Misterbianco (CT) - P.iva 04240280877 - R.E.A n°282590 Cap. Soc. 10.000,0 € Sede Laboratorio: C.da Montecenere s/n. Pano Tavola - Tel 095/7867198 - Fax 095/2937259 - Cett 331 174 55 36 web : www.laspedil.it - email: info@taspedil.it - pec: laspedilsrt@pec.it

D.M. 153/2016, ai sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

CERTIFICATO DI PROVA Nº: 00218 Pagina 1/1 DATA DI EMISSIONE: 10/09/18 Inizio analisi: 04/09/18 VERBALE DI ACCETTAZIONE N°: 48 del 31/08/18 Apertura campione: 04/09/18 Fine analisi: 07/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto ComUne di Lipari)


RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: CAMPIONE: PROFONDITA': m 13,50-14,00

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D421, D422 ASTM D2217

Ghiaia Sabbìa Limo Argilla	8,2 % 52,5 % 33,6 % 5,7 %	Passante se	etaccio 10 (2 mm) etaccio 40 (0.42 mm) etaccio 200 (0.075 mm)	88,1 % 66,2 % 39,3 %	D ₁₀ D ₃₀ D ₅₀ D ₆₀	0,00908 mm 0,04979 mm 0,15305 mm 0,27125 mm
Coefficiente di uniformità		29,89	Coefficiente di curvatura	1,01	D ₉₀	3,09622 mm

Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %
25,0000	100,00	0,8410	81,84	0,0568	32,72	0,0122	11,33	0,0013	2,16
19,0000	97,66	0,4200	66,92	0,0422	26,60	0,0087	9,80		
9,5200	94,42	0,2500	58,71	0,0313	20,49	0,0063	6,74		
4,7500	91,82	0,1050	43,31	0,0229	15,91	0,0045	5,22		
2,0000	88,15	0,0750	39,26	0,0165	153.86	0,0028	3,69		

Sabbia con limo debolmente ghiaiosa e argillosa

Lo Sperimentatore Dott. Giuseppe Musumeci

II Direttore di Laboratorio

Sede Legale: Via Don Minzoni 14, 95045 Misterbianco (CT) - P.iva 04240280877 - R.E.A n*282590 Cap. Soc. 10.000,0 €
Sede Laboratorio: C.da Montecenere s/n ,Piano Tavola - Tel 095/7887198 - Fax 095/2937259 - Cell 331 174 55 35
web : www.laspedil.it - email: info@laspedil.it - pec: laspedilist@pec.it

D.M. 153/2016, al sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

CERTIFICATO DI PROVA Nº: 00219 Pagina 1/4 DATA DI EMISSIONE: 10/09/18 04/09/18 Inizio analisi: VERBALE DI ACCETTAZIONE N°: 48 del 31/08/18 Apertura campione: 04/09/18 Fine analisi: 10/09/18

Dott. Geologo Vincenzo Pinizzotto (per conto ComUne di Lipari) COMMITTENTE:

RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

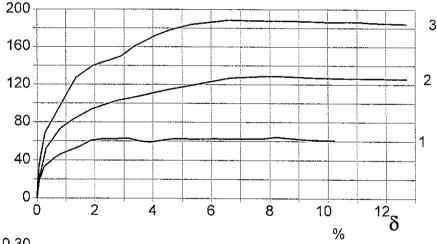
SONDAGGIO: CAMPIONE: PROFONDITA': m 13,50-14,00

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino n°:	1	2	3
Condizione del provino:	Ricostituito	Ricostituito	Ricostituito
Tempo di consolidazione (ore):	12	12	12
Pressione verticale (kPa):	100,0	200,0	300,0
Umidità naturale (%):			
Peso di volume (kN/m³):	16,8	16,8	17,0

Velocità di deformazione: 0,093 mm / min Tipo di prova: Consolidata - rapida


τ

kPa

<u>Tensione</u>

Deformazione orizzontale

0,30 0.20 mm 0,10 0,004 **DIAGRAMMA** -0,10 Deformazione verticale -0,20 Deformazione orizzontale -0,30 10

Sabbia con limo debolmente ghiaiosa e argillosa

Lo Sperimentatore Dott. Gjuşeppe Musumeci

Il Direttore di Laboratorio

Sede Legale: Via Don Minzoni 14, 95045 Misterbienco (CT) - P.iva 04240280877 - R.E.A n°282590 Cap. Soc. 10,000.0 € Sede Laboratorio: C.da Montecenere s/n. Prano Tavola - Tet 095/7867198 - Fax 095/2937259 - Cell 331 174 55 38 web : www.laspedii.it - email: info@laspedii.it - pec: laspediisri@pec.it

Laboratorio autorizzato all'esecuzione prove sul materiali da costruzione con D.M. nº 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, al sensi dell'art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

Certificato N°: IT230937

 CERTIFICATO DI PROVA N°:
 00219
 Pagina 2/4
 DATA DI EMISSIONE:
 10/09/18
 Inizio analisi:
 04/09/18

 VERBALE DI ACCETTAZIONE N°:
 48 del 31/08/18
 Apertura campione:
 04/09/18
 Fine analisi:
 10/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto ComUne di Lipari)

RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: S1 CAMPIONE: C6 PROFONDITA': m 13,50-14,00

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

	Provino 1			Provino 2		Provino 3			
Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert.	Spostam. mm	Tensione kPa	Deform, vert.	
0,050	18,8	0,01	0,016	13,4	0,04	0,042	33,8	0,01	
0,154	33,4	0,03	0,189	52,4	0,06	0,167	68,5	0,02	
0,369	42,5	0,06	0,475	72,7	0,10	0,811	127,1	0,11	
0,474	46,0	0,07	0,744	82,4	0,13	1,158	140,0	0,15	
0,887	54,5	0,11	1,137	93,8	0,17	1,736	149,8	0,20	
1,113	60,6	0,12	1,654	102,7	0,22	2,017	160,3	0,22	
1,383	62,5	0,12	2,118	107,4	0,25	2,448	171,9	0,24	
1,566	62,2	0,13	2,713	114,4	0,27	2,741	177,7	0,24	
1,889	62,8	0,15	3,359	120,6	0,27	3,188	183,8	0,24	
2,127	60,1	0,16	3,997	127,0	0,27	3,964	188,5	0,24	
2,340	58,9	0,17	4,761	128,8	0,27	4,492	187,8	0,24	
2,660	61,5	0,19	5,079	128,4	0,27	5,279	187,5	0,24	
2,863	62,5	0,20	5,337	127,9	0,27	5,987	186,4	0,24	
3,228	62,2	0,21	5,837	126,7	0,27	6,563	186,6	0,24	
3,731	62,5	0,21	6,430	126,3	0,27	7,120	184,9	0,24	
4,179	62,2	0,22	7,027	126,0	0,27	7,619	184,3	0,25	
4,655	62,5	0,22	7,621	125,8	0,27	7,010	104,5	0,20	
4,921	64,3	0,22	1,021	120,0	1 0,21				
5,386	62,2	0,22			1			 	
5,607	61,3	0,22		<u> </u>					
6,127	60,7	0,22							
·	 								
]								
·	<u> </u>								
		<u> </u>		NE Nº 15					
	<u> </u>		/	ONE N° 18 ONE PRO VAIO PRO VAI	13 Oct				
	<u> </u>		/s	·/67	10/0				
			/N	LA.SP.EI	15/3/11				
		İ	\ `	C LA.SP.EI					

Lo Sperimentatore Dott. Giuseppe Musumeci Il Direttore di Laboratorio Dott. Ing. Antonio Rallotta

Sede Legale: Via Don Minzoni 14, 95045 Misterbianco (CT) - P.iva 04240280977 - R.E.A n°282590 Cap. Soc. 10.000,0 € Socie Laboratorio: C.da Montecenere s/n ,Piano Tavola - Tel 095/7867198 - Fax 095/2937259 - Celi 331 174 55 36 web : www.laspedii.il - email; info@laspedii.il - pec: laspediisri@pec.it

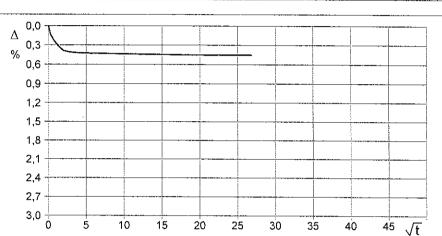
Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. n° 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, ai sensi dell' art. 20 della logge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

CERTIFICATO DI PROVA Nº: 00219 Pagina 3/4 DATA DI EMISSIONE: 10/09/18 Inizio analisi: 04/09/18 VERBALE DI ACCETTAZIONE N°: 48 del 31/08/18 Apertura campione: 04/09/18 Fine analisi: 10/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto ComUne di Lipari)

RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

0,095


SONDAGGIO: CAMPIONE: PROFONDITA': m 13,50-14,00

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D3080

TEMPO - CEDIMENTO PROVINO 1 Pressione (kPa) 100 Altezza iniziale (cm) 2,30 Altezza finale (cm) 2,29 Sezione (cm²): 36,00 T₁₀₀ (min) 5,3 Df (mm) 5

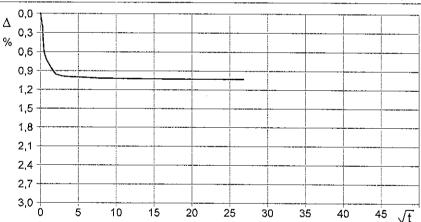
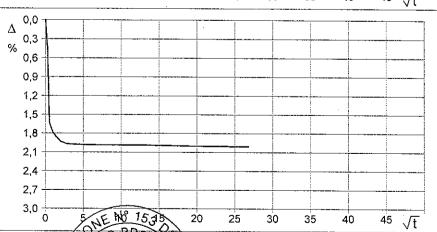

Diagramma

Diagramma **TEMPO - CEDIMENTO**


Vs (mm/min)

PROVINO 2	
Pressione (kPa)	200
Altezza iniziale (cm)	2,30
Altezza finale (cm)	2,28
Sezione (cm²):	36,00
T_{100} (min)	5,3
Df (mm)	5
Vs (mm/min)	0,094
<u> </u>	

Diagramma TEMPO - CEDIMENTO

TEM O - OLDIMEN	<u> </u>
PROVINO 3	
Pressione (kPa)	300
Altezza iniziale (cm)	2,30
Altezza finale (cm)	2,25
Sezione (cm²):	36,00
T ₁₀₀ (min)	5,6
Df (mm)	5
Vs (mm/min)	0,090

LA SPEDII

 $tf = 10 \times T_{100}$

Vs = Df / tf

Vs = Velocità stimata di prova Df = Deformazione

Lo Sperimentatore Dott. Giuseppe Musumeci

Direttore di Laboratorio

Sede Legale: Via Don Minzoni 14, 95045 Misterbianco (CT) - P.iva 04240280877 - R.E.A n°282590 Cap. Soc. 10,000,0 € Sede Laboratorio: C.da Montecenere s/n .Piano Tavola - Tel 095/7867198 - Fax 095/2937259 - Cell 331 174 55 35 web ; www.laspedil.it - email; info@laspedil.it - pec; tespedilisri@pec.it

Laboratorio autorizzato all'esecuzione prove sul materiali da costruzione con D.M. nº 8451/2009 e all'esecuzione prove su terre con D.M. 153/2016, al sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

Certificato N°: IT230937

CERTIFICATO DI PROVA N°:00219Pagina 4/4DATA DI EMISSIONE:10/09/18Inizio analisi:04/09/18VERBALE DI ACCETTAZIONE N°:48 del 31/08/18Apertura campione:04/09/18Fine analisi:10/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto ComUne di Lipari)

RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: S1 CAMPIONE: C6 PROFONDITA': m 13,50-14,00

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D3080

	Provino 1			Provino 2	THE PARTY OF THE P		Provino 3	
Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.
minuti	mm/100	%	minuti	mm/100	%	minuti	mm/100	%
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,08	3,00	0,13	0,08	5,12	0,22	0,08	11,00	0,48
0,16	3,60	0,16	0,16	12,20	0,53	0,16	25,70	1,12
0,25	4,10	0,18	0,25	14,40	0,63	0,25	37,40	1,63
0,50	5,13	0,22	0,50	16,01	0,70	0,50	39,07	1,70
1,00	6,18	0,27	1,00	17,68	0,77	1,00	41,24	1,79
2,00	7,46	0,32	2,00	19,65	0,85	2,00	42,64	1,85
4,00	8,96	0,39	4,00	21,91	0,95	4,00	44,42	1,93
8,00	9,41	0,41	8,00	22,65	0,98	8,00	45,30	1,97
16,00	9,66	0,42	16,00	22,92	1,00	16,00	45,50	1,98
30,00	9,78	0,43	30,00	23,06	1,00	30,00	45,60	1,98
60,00	9,92	0,43	60,00	23,38	1,02	60,00	45,70	1,99
180,00	10,19	0,44	180,00	23,56	1,02	180,00	45,71	1,99
360,00	10,38	0,45	360,00	23,69	1,03	360,00	45,99	2,00
720,00	10,39	0,45	720,00	23,69	1,03	720,00	46,19	2,01
				ONE N° 15	3			
			<u>2</u>	LA.SPEDII	6 SU 17	7		

Lo Sperimentatore Dott. Giuseppe Musimeci II Direttore di Labbratorio Dott. Ing. Antonio Pallotta

CERTIFICATO DI PROVA N°:

VERBALE DI ACCETTAZIONE N°:

egale: Via Don Minzoni,14, 95045 Misterbianco (CT) - P.IVA 04240280877 - R.E.A. n° 282590 Cap. Soc. 10.000,00 € poratorio: Z. Industriale Ovest ASI Belpasso (CT), fraz. Piano Tavola - Tel : 0952935168 - fax : 0952937259 - Cell : 33117455 w.laspedil.it - Email: info@laspedil.it, laspedilsri@pec.it

2,00-2,20

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. n° 8451/2009, ai sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

48 del 31/08/18

DATA DI EMISSIONE: 10/09/18 Inizio analisi: 04/09/18 Apertura campione: 04/09/18 Fine analisi: 05/09/18

PROFONDITA': m

Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari) COMMITTENTE:

Pagina 1/1

Dott. Geologo Vincenzo Pinizzotto RIFERIMENTO:

00221

SONDAGGIO: S1 CAMPIONE:

CONTENUTO D'ACQUA ALLO STATO NATURALE

Modalità di prova: Norma ASTM D2217

Wn = contenuto d'acqua allo stato naturale (media delle tre misure) = 10,8 %

Omogeneo

Struttura del materiale:

Stratificato

Caotico

Temperatura di essiccazione:

110 °C

Sperimentatore Dott. Giuseppe Musumeci

Sede Legale: Via Don Minzoni; 14, 95045 Misterbianco (CT) - P.IVA 04240280877 - R.E.A. n° 282590 Cap., Soc. 10.000,00 €

Sede laboratorio: Z. Industriale Ovest ASI Belpasso (CT), fraz. Piano Tavola - Tel : 0952935168 - fax : 0952937259 - Cell : 3311745538

Web: www.laspedii.ti - Email: info@laspedii.ti, laspediis/i@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. n° 8451/2009, ai sensì dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

 CERTIFICATO DI PROVA N°:
 00222
 Pagina 1/1
 DATA DI EMISSIONE:
 10/09/18
 Inizio analisi:
 05/09/18

 VERBALE DI ACCETTAZIONE N°:
 48 del 31/08/18
 Apertura campione:
 04/09/18
 Fine analisi:
 05/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)

RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: S1 CAMPIONE: C1 PROFONDITA': m 2,00-2,20

PESO SPECIFICO DEI GRANULI

Modalità di prova: Norma ASTM D854

 γ_s = Peso specifico dei granuli (media delle due misure) = 2,68

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2,67

Metodo:

A

□В

Capacità del picnometro:

100 ml

Temperatura di prova:

27,0 °C

Disaerazione eseguita sotto vuoto

Sperimentatore
Dott: Giuseppe Musumeci

Sede Legale: Via Don Minzoni,14, 95045 Misterbianco (CT) - P.IVA 04240280877 - R.E.A. n° 282590 Cap. Soc. 10.009,00 €
Sede laboratorio: Z. Industriale Ovest ASI Belpasso (CT), fraz. Plano Tavola - Tel : 0952935168 - fax : 0952937259 - Cell : 3311745536
Web: www.laspedil.it - Email: nfo@laspedil.it, laspedilsri@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. nº 8451/2009, ai sensi dell' art. 20 della legge nº 1086/1971 e dell'art. 59 del D.P.R. 380/2001

Certificato N°: IT230937

CERTIFICATO DI PROVA N°:	00223 Pagina 1/1	DATA DI EMISSIONE:	10/09/18	Inizio analisi:	04/09/18		
VERBALE DI ACCETTAZIONE N°	°: 48 del 31/08/18	Apertura campione:	04/09/18	Fine analisi:	05/09/18		
COMMITTENTE: Dott. Geo	ologo Vincenzo Pinizz	zotto (per conto Comu	ne di Lipa	ri)			
RIFERIMENTO: Dott. Geol	logo Vincenzo Pinizzo	otto					
SONDAGGIO: S1	CAMPIONE:	C2	PROFONI	DITA': m 3,8	80-4,00		
CONTE	ENUTO D'ACQU	A ALLO STATO N	IATURA	LE			
Modalità di prova: Norma ASTM D2217							
Wn = contenuto d'acqua allo stato naturale (media delle tre misure) = 17,5 %							
- 17,5 %							
• Omogeneo							

☐ Stratificato

☐ Caotico

Temperatura di essiccazione: 110 °C

Struttura del materiale:

Sperimentatore
Dott, Giuseppe Musumeci

Sede Legale: Via Don Minzoni, 14, 95045 Misterbianco (CT) - P.IVA 04240280377 - R.E.A. n° 282590 Cap. Soc. 10.000,00 €

Sete laboratorio: Z. Industriale Ovest ASI Belpasso (CT), fraz. Piano Tavola - Tel : 0952935168 - fax : 0952937259 - Cell : 3311745536

Web: www.laspedil.it - Email: info@laspedil.it, laspedilsn@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. nº 8451/2009, ai sensi dell' art. 20 della legge nº 1086/1971 e dell'art. 59 del D.P.R. 380/2001

CERTIFICATO DI PROVA N°: 00224 Pagina 1/1	DATA DI EMISSIONE:	10/09/18	Inizio analisi:	05/09/18			
VERBALE DI ACCETTAZIONE N°: 48 del 31/08/18	Apertura campione:	04/09/18	Fine analisi:	05/09/18			
COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)							
RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto							
SONDAGGIO: S1 CAMPIONE:	C2	PROFONI	DITA': m 3,8	0-4,00			
PESO SPECIFICO DEI GRANULI							
Modalità di prova: Norma ASTM D854							

 $\gamma_{\rm S}$ = Peso specifico dei granuli (media delle due misure) = 2,63

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2,62

Metodo:

A

□В

Capacità del picnometro:

100 ml

Temperatura di prova:

27,0 °C

Disaerazione eseguita sotto vuoto

Sperimentatore Dott. Giuseppe Musumeci

Temperatura di essiccazione:

Sede Legale: Via Don Minzoni.14, 95045 Misterbianco (CT) - P.IVA 04240280877 - R.E.A. n° 282590 Cap. Soc. 10.000,00 €

Sede laboratorio: 2. Industriale Ovesl ASI Belipasso (CT), fraz. Plano Tavola - Tel : 0952935168 - fax : 0952937259 - Cell : 3311745536

Web; www.laspedil.it - Email: info@laspedil.it, laspedilsri@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. n° 8451/2009, ai sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

110 °C

ISO 9001:2008 Certificato N°: IT230937

CERTIFICATO DI PROVA N°: 00225	Pagina 1/1	DATA DI EMISSIONE:	10/09/18	Inizio analisi:	04/09/18	
VERBALE DI ACCETTAZIONE N°: 48	del 31/08/18	Apertura campione:	04/09/18	Fine analisi:	05/09/18	
COMMITTENTE: Dott. Geologo	Vincenzo Pinizz	otto (per conto Comu	ne di Lipa	ri)		
RIFERIMENTO: Dott. Geologo	Vincenzo Pinizzo	tto				
SONDAGGIO: S1	CAMPIONE:	C3	PROFONI	DITA': m 5,3	5-5,50	
CONTENUTO D'ACQUA ALLO STATO NATURALE						
	Modalità di prova:	Norma ASTM D2217				
Wn = contenuto d'acqua allo	stato naturale (media delle tre misi	ure) = 2	26,6 %		
	Omoge	eneo				
Struttura del materiale:	☐ Stratific	cato				
	☐ Caotico)				

Sperimentatore Dott. Giuseppe Musumeci

Sede Legale: Via Don Minzoni,14, 95045 Misterbianco (CT) - P.IVA 04240280377 - R.E.A. n* 282590 Cap. Soc. 10.000,00 €

Sede laboratorio: Z. Industriaie Ovest ASI Belpasso (CT), fraz. Plano Tavola - Tel : 0952935168 - fax : 0952937259 - Cell : 3311745538 Web: www.laspedil.it - Email: info@laspedil.it, laspedilsri@pec.it

ISO 9001:2008

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. n° 8451/2009, ai sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

CERTIFICATO DI PROVA N°: DATA DI EMISSIONE: 10/09/2018 00226 Pagina 1/1 Inizio analisi: 05/09/18 VERBALE DI ACCETTAZIONE N°: 48 del 31/08/18 Apertura campione: 04/09/18 Fine analisi: 05/09/18

Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari) COMMITTENTE:

Dott. Geologo Vincenzo Pinizzotto RIFERIMENTO:

SONDAGGIO: S1 CAMPIONE: PROFONDITA': m 5,35-5,50

PESO SPECIFICO DEI GRANULI

Modalità di prova: Norma ASTM D854

 γ_s = Peso specifico dei granuli (media delle due misure) = 2,48

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2,47

Metodo:

A

□В

Capacità del picnometro:

100 ml

Temperatura di prova:

27,0°C

Disaerazione eseguita sotto vuoto

Sperimentatore Dott, Giuseppe Musumeci

Sede Legale: Via Don Minzoni,14, 95045 Misterbianco (CT) - P.IVA 04240280877 - R.E.A. n° 282590 Cap. Soc. 10.000,00 €

Sede laboratorio: Z. Industriale Ovest ASI Belpasso (CT), fraz. Plano Tavola - Tel : 0952935168 - fax : 0952937259 - Cell : 3311745536 Web: www.laspedii.it - Email: info@laspedii.it | Laspediisri@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. n° 8451/2009, ai sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

110 °C

Certificato N°: IT230937

CERTIFICATO DI PROVA N°: 00227	Pagina 1/1	DATA DI EMISSIONE:	10/09/18	Inizio analisi:	04/09/18	
VERBALE DI ACCETTAZIONE N°: 48 de	el 31/08/18	Apertura campione:	04/09/18	Fine analisi:	05/09/18	
COMMITTENTE: Dott. Geologo Vi	ncenzo Pinizz	otto (per conto Comu	ne di Lipa	ri)		
RIFERIMENTO: Dott. Geologo Vin	cenzo Pinizzo	tto		······································		
SONDAGGIO: S1	CAMPIONE:	C4	PROFONI	DITA': m 6,3	0-6,50	
CONTENUTO D'ACQUA ALLO STATO NATURALE						
Mc	odalità di prova:	Norma ASTM D2217				
	W-7078HINNINGAWARANA					
Wn = contenuto d'acqua allo st	ato naturale (media delle tre misu	ıre) = 1	8,7 %		
	Omoge	neo				
Struttura del materiale:	☐ Stratific	ato				
	☐ Caotico)				

Sperimentatore

Dott. Gjuseppe Musumeci

Temperatura di essiccazione:

Sede Legale: Via Don Minzoni,14, 95045 Misterbianco (CT) - P.IVA 04240280377 - R.E.A. n° 282590 Cap. Soc. 10.000,00 €

Sede laboratorio: Z. Industriale Ovest ASI Belpasso (CT), fraz. Piano Tavola - Tel : 0952935168 - fax : 0952937259 - Celt : 3311745536

Web: www.laspedii.it - Email: info@iaspedii.it, laspediisrl@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. n° 8451/2009, ai sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

CERTIFICATO DI PROVA N°: 00228 Pagina 1/1	DATA DI EMISSIONE:	10/09/18	Inizio analisi:	05/09/18			
VERBALE DI ACCETTAZIONE N°: 48 del 31/08/18	Apertura campione:	04/09/18	Fine analisi:	05/09/18			
COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)							
RIFERIMENTO: Dott. Geologo Vincenzo Pinizzo	tto						
SONDAGGIO: S1 CAMPIONE:	C4	PROFONE	DITA': m 6,3	0-6,50			
PESO SPECIFICO DEI GRANULI							
Modalità di prova	: Norma ASTM D854						

 $\gamma_{\rm S}$ = Peso specifico dei granuli (media delle due misure) = 2,56

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2,56

Metodo:

A

□В

Capacità del picnometro:

100 ml

Temperatura di prova:

27,0 °C

Disaerazione eseguita sotto vuoto

Sperimentatore Dott. Giuseppe Musumeci

Sede Legale: Via Don Minzoni,14, 95045 Misterbianco (CT) - P.IVA 04240280877 - R.E.A. n° 282590 Cap. Soc. 10.000,00 €
Sede laboratorio: Z. Industriale Ovest ASI Belpasso (CT), fraz. Plano Tavola - Tel : 0952935168 - fax : 0952937259 - Cell : 3311745536
Web: www.laspedii.it - Email: info@iaspedli.it, laspedlisfi@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. nº 8451/2009, ai sensi dell' art. 20 della legge nº 1086/1971 e dell'art. 59 del D.P.R. 380/2001

Wn = contenuto d'acqua allo stato naturale (media delle tre misure) =

Omogeneo

□ Stratificato

□ Caotico

ISO 9001:2008 Certificato N°: IT230937

17,8 %

CERTIFICATO DI PROVA N°: 00229	Pagina 1/1	DATA DI EMISSIONE:	10/09/18	Inizio analisi:	04/09/18			
VERBALE DI ACCETTAZIONE N°: 48	3 del 31/08/18	Apertura campione:	04/09/18	Fine analisi:	05/09/18			
COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari)								
RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto								
SONDAGGIO: S1 CAMPIONE: C5 PROFONDITA': m 12,00-12,20								
CONTENUTO D'ACQUA ALLO STATO NATURALE								
Modalità di prova: Norma ASTM D2217								

110 °C Temperatura di essiccazione:

Struttura del materiale:

Sperimentatore Dott. Giuseppe Musumeci

egalo: Via Don Minzoni,14, 95045 Mislerbianco (CT) - P.IVA 04240280877 - R.E.A. n° 282590 Cap. Soc. 10.000,00 € boratorio: Z. Industriale Ovest ASI Belpasso (CT), fraz. Plano Tavola - Tel : 0952935168 - fax : 0952937259 - Cell : 3311745 wyłaspeddii: 1- Email: Info@laspeddii, Itaspedisi@pec. ti

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. nº 8451/2009, ai sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

CERTIFICATO DI PROVA N°: 00230 Pagina 1/1 DATA DI EMISSIONE: 10/09/18 Inizio analisi: 05/09/18 VERBALE DI ACCETTAZIONE N°: 48 del 31/08/18 Apertura campione: 04/09/18 Fine analisi: 05/09/18

Dott. Geologo Vincenzo Pinizzotto (per conto Comune di Lipari) COMMITTENTE:

RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

CAMPIONE: SONDAGGIO: **S1**

PROFONDITA': m 12,00-12,20

PESO SPECIFICO DEI GRANULI

Modalità di prova: Norma ASTM D854

 γ_s = Peso specifico dei granuli (media delle due misure) = 2,60

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2,59

Metodo:

A

 \square B

Capacità del picnometro:

100 ml

Temperatura di prova:

27,0 °C

Disaerazione eseguita sotto vuoto

Sperimentatore. Dott. Giuseppe Musumeci

Sede Legale: Via Don Minzoni, 14. 95045 Misterbianco (CT) - P.IVA 04240280977 - R.E.A. n° 282590 Cap. Soc. 10.000,00 €
Sede laboratorio: Z. Industriale Ovest ASI Belpasso (CT), fraz. Plano Tavola - Tel : 0852935168 - fax : 0952937259 - Cell : 3311745536
Web: www.laspedil.it - Email: info@laspedil.it, laspedilsri@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. nº 8451/2009, ai sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

ISO 9001:2008 Certificato N°: IT230937

CERTIFICATO DI PROVA N°: 00231	Pagina 1/1	DATA DI EMISSIONE:	10/09/18	Inizio analisi:	04/09/18			
VERBALE DI ACCETTAZIONE N°: 48 d	del 31/08/18	Apertura campione:	04/09/18	Fine analisi:	05/09/18			
COMMITTENTE: Dott. Geologo V	/incenzo Pinizz	otto (per conto ComU	Ine di Lipa	ari)				
RIFERIMENTO: Dott. Geologo Vi								
SONDAGGIO: S1	CAMPIONE:	C6 PI	ROFONDIT	A': m 13,50	-14,00			
CONTENUT	O D'ACQU	A ALLO STATO N	IATURA	LE				
Modalità di prova: Norma ASTM D2217								
Wn = contenuto d'acqua allo s	tato naturale (media delle tre misi	ıre) = 2	20,5 %				
	Omoge	eneo						
Struttura del materiale:	☐ Stratific	cato						
	☐ Caotico	`						
		,						
		,						
Temperatura di essicoazione:		,						
Temperatura di essiccazione:	110 °C	,						
Temperatura di essiccazione:		,						
Temperatura di essiccazione:		,						
Temperatura di essiccazione:		,						
Temperatura di essiccazione:		,						
Temperatura di essiccazione:								
Temperatura di essiccazione:								
Temperatura di essiccazione:								

Sperimentatore Dott. Giuseppe Musumeci

Sede Legale: Via Don Minzoni,14, 95045 Misterbianco (CT) - P.IVA 04240280877 - R.E.A. n° 282590 Cap. Soc. 10.000,00 €
Sede laboratorio: Z. Industriale Ovest ASI Belpasso (CT), fraz. Piano Tavola - Tel : 0852935168 - fax : 0952937259 - Cell : 3311745536
Web: www.laspedii.it - Email: info@laspedii.it, laspediisri@pec.it

Laboratorio autorizzato all'esecuzione prove sui materiali da costruzione con D.M. n° 8451/2009, ai sensi dell' art. 20 della legge n° 1086/1971 e dell'art. 59 del D.P.R. 380/2001

ISO 9001:2008 Certificato N°: IT230937

CERTIFICATO DI PROVA N°:	00232	Pagina 1/1	DATA DI EMISSIONE:	10/09/18	Inizio analisi:	05/09/18
VERBALE DI ACCETTAZIONE	N°: 48	del 31/08/18	Apertura campione:	04/09/18	Fine analisi:	05/09/18

COMMITTENTE: Dott. Geologo Vincenzo Pinizzotto (per conto ComUne di Lipari)

RIFERIMENTO: Dott. Geologo Vincenzo Pinizzotto

SONDAGGIO: S1 CAMPIONE: PROFONDITA': m 13,50-14,00

PESO SPECIFICO DEI GRANULI

Modalità di prova: Norma ASTM D854

 $\gamma_{\rm S}$ = Peso specifico dei granuli (media delle due misure) = 2,62

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2,62

Metodo:

A

 \square B

Capacità del picnometro:

100 ml

Temperatura di prova:

27,0 °C

Disaerazione eseguita sotto vuoto

Sperimentatore Giuseppe Musumeci

Direttore del Laboratorio