

Direzione Progettazione e Realizzazione Lavori

Collegamento tra l'A4 (Torino—Milano) in località Santhià, Biella, Gattinara e l'A26 (Genova Voltri—Gravellona) in località Ghemme. Lotto 1

	PROGETTO DE	FINITIVO	COD.
PROGETTAZIONE: A	PROGETTAZIONE: ANAS - DIREZIONE PROGETTAZIONE E REALIZZAZIONE LAVO		NE LAVORI
I PROGETTISTI: ing. Vincenzo Marzi Ordine Ing. di Bari n.3594 ing. Achille Devitofranceschi			
Ordine Ing. di Roma n.19116			
IL GEOLOGO: geol. Serena Majetta Ordine Geol. del Lazio n.928			
RESPONSABILE DEL SIA arch. Giovanni Magarò Ordine Arch. di Roma n.16183			
IL COORDINATORE PER LA SICURE	ZZA IN FASE DI PROGETTAZIONE		
geom. Fabio Quondam			
VISTO: IL RESPONSABILE DEL PRO	OCEDIMENTO :		
ing. Nicolò Canepa			
PROTOCOLLO	DATA		

Ponte Rio Guarabione — Relazione di calcolo

CODICE PR		NOME FILE			REVISIONE	SCALA:
PROGETTO	D 1701	CODICE TOOVIO1	STRRE	0 1	A	_
С						
В						
А	emissione		18/5/2018			
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Collegamento viario "Pedemontana piemontese" tra la A4 e la A26 (Santhia'-Biella-Gattinara-Ghemme) Collegamento viario Masserano-Ghemme Progetto Definitivo

PONTE RIO GUARABIONE - VI01

RELAZIONE TECNICA E DI CALCOLO

INDICE

1.	PREMESSA	6
2.	NORMATIVA DI RIFERIMENTO	7
3.	MATERIALI	9
3.1.	. Calcestruzzo per pali di fondazione	9
3.2.	. Calcestruzzo per fondazioni spalle	9
3.3.	. Calcestruzzo per elevazione spalle	10
3.4.	. Calcestruzzo per solette, cordoli e baggioli	11
3.5.	. Calcestruzzo per predalle collaboranti con la soletta	11
3.6.	. Durabilità e copriferri	12
3.7.	. Acciaio per armatura lenta	13
3.8.	. Acciaio per carpenteria metallica	13
3.9.	. Acciaio per piolatura	14
4.	CARATTERIZZAZIONE SISMICA	15
5.	DESCRIZIONE DELL'OPERA	17
6.	CLASSIFICAZIONE DEI PROFILI METALLICI	19
6.1.	. Travi principali	19
6.	5.1.1. Sezione tipo A	19
6.	5.1.2. Sezione tipo B	20
6.	5.1.3. Sezione tipo D	22
6.2.	. Trasversi	23
6.	5.2.1. Trasversi correnti	23

6.2.	2.2. Trasversi in appoggio	23
7. [DEFINIZIONE DELLE LARGHEZZE COLLABORANTI	25
8. <i>A</i>	ANALISI DEI CARICHI	26
8.1.	Peso proprio delle strutture metalliche	26
8.2.	Peso proprio della soletta	26
8.3.	Spinta statica delle terre	26
8.4.	Sovraccarichi permanenti	26
8.5.	Cedimenti differenziali	27
8.6.	Ritiro della soletta	27
8.7.	Azioni variabili	27
8.7.	7.1. Carichi viaggianti da traffico	27
8.7.	7.2. Carichi variabili da traffico pesante per analisi della fatica	29
8.7.	7.3. Variazione termiche	29
8.7.	7.4. Vento	29
8.7.	7.5. Frenatura	29
8.7.	7.6. Azione centrifuga	30
8.7.	7.7. Azione sismica	30
8.7.	7.8. Carico di costruzione	30
8.8.	Azioni eccezionali	30
8.8.	3.1. Urto dei veicoli in svio	30
9. (COMBINAZIONI DI CARICO	31
9.1.	Combinazioni di carico SLU/SLE adottate ai fini delle verifiche dell'impal	cato 31
9.2.	Combinazioni di carico sismiche	31
10.	MODELLI DI CALCOLO	32
10.1.	Modellazione globale sismica	32

10.2.	Mod	dellazione delle travi principali composte acciaio-calcestruzzo	33
10.3.	Geo	metria dei conci	35
10.4.	ANA	ALISI E VERIFICHE SVOLTE CON L'AUSILIO DEI CODICI DI CALCOLO	36
10.4	4.1.	Origine e caratteristiche dei software di calcolo	36
10.4	4.2.	Affidabilità dei codici utilizzati	37
11.	CR	ITERI DI VERIFICA	38
11.1.	Pre	messa	38
		fiche considerate	38
11.3	2.1.	Verifiche agli SLU	38
11.	2.2.	Verifiche agli SLE	38
11.2	2.3.	Verifiche allo SLF	39
12.	AN	ALISI E VERIFICHE DELLA SOLETTA	40
12.1.	Fas	e di getto – verifica predalle	40
12.2.	In s	ituazione persistente / eccezionale	42
13.	ΑN	ALISI E VERIFICHE DELLE TRAVI PRINCIPALI	47
13.1.	Gra	fici di riepilogo delle azioni sollecitanti	47
13.2.	Ver	ifiche SLU	92
13.3.	Ver	ifiche SLE R	94
13.4.	Ver	ifiche SLE F	97
13.5.	Ver	fiche a fessurazione	99
13.6.	Ver	fiche a fatica	99
14.	AN	ALISI E VERIFICA DEI TRASVERSI	101
14.1.	Ver	fica dei trasversi di appoggio in combinazione sismica	102

15.	VERIFICA DEL SISTEMA DI VINCOLO (APPOGGI E GIUNTI)	105
16.	SPALLE	108
16.1.	Verifica muro frontale	108
16.2.	Verifica paraghiaia	110
16.3.	Verifica muro d'ala	112
16.4.	Fondazione	113

1. PREMESSA

La presente relazione riguarda il dimensionamento strutturale del ponte sul Rio Guarabione tra le progressive 28+526.25 e 28+568.65, previsto nell'ambito della progettazione definitiva del collegamento viario «Pedemontana piemontese» tra la A4 e la A26 (Santhià - Biella - Gattinara - Ghemme) – tratto Masserano – Ghemme.

Il ponte attraversa il torrente omonimo e presenta due impalcati gemelli distinti, a campata singola di lunghezza 42.40 m (in asse appoggi). Per entrambe le spalle sono previsti pali di fondazione trivellati.

La sede stradale di ciascun impalcato presenta un bitumato di 9.75 m più due cordoli da 0.75 m, per una larghezza complessiva di 11.25 m. Su entrambi i cordoli di ciascun impalcato sono previste barriere H3 bordo ponte mentre tra i due impalcati (delle due carreggiate) è collocata una rete anti-caduta.

Ciascun impalcato è realizzato con sistema costruttivo misto acciaio-calcestruzzo, costituito da 2 travi metalliche principali parallele all'asse stradale e soletta superiore di completamento in conglomerato cementizio armato. La collaborazione tra le travi metalliche e la soletta è ottenuta per mezzo di connettori (pioli tipo Nelson) saldati all'estradosso delle travi principali. Le travi principali sono collegate tra loro con traversi, aventi duplice funzione: da un lato, quella di contrastare - per tutto lo sviluppo del ponte - lo svergolamento e la perdita di forma, dall'altro - e specificatamente in corrispondenza degli appoggi - quella di trasferire le azioni trasversali alle sottostrutture e di permettere (in fase di manutenzione) il sollevamento dell'impalcato contrastando la flessione trasversale delle travi principali.

L'impalcato è vincolato alle spalle attraverso appoggi isolatori elastomerici, che realizzano un disaccoppiamento sismico tra impalcato e sotto-strutture.

Per motivi di realizzabilità e di trasporto ciascuna travata è prefabbricata in officina in conci, quindi trasportata e assemblata in opera mediante giunzioni saldate.

2. NORMATIVA DI RIFERIMENTO

I calcoli e le disposizioni esecutive sono conformi alle norme attualmente in vigore elencate nel seguito.

- [I] Legge 5 novembre 1971 n. 1086 Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica;
- [II] Circ. Min. LL.PP.14 Febbraio 1974, n. 11951 Applicazione della L. 5 novembre 1971, n. 1086";
- [III] Legge 2 febbraio 1974 n. 64, recante provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- [IV] D. M. Min. II. TT. del 14 gennaio 2008 Norme tecniche per le costruzioni;
- [V] CIRCOLARE 2 febbraio 2009, n.617 "Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008;
- [VI] UNI EN 1990 (Eurocodice 0) Aprile 2006: "Criteri generali di progettazione strutturale";
- [VII] UNI EN 1991-1-1 (Eurocodice 1) Agosto 2004 Azioni in generale- Parte 1-1: "Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici";
- [VIII] UNI EN 1991-2 (Eurocodice 1) Marzo 2005 Azioni sulle strutture- Parte 2: "Carico da traffico sui ponti";
 - [IX] UNI EN 1992-1-1 (Eurocodice 2) Novembre 2005: "Progettazione delle strutture di calcestruzzo Parte 1-1: "Regole generali e regole per gli edifici";
 - [X] UNI EN 1992-2 (Eurocodice 2) Gennaio 2006: "Progettazione delle strutture di calcestruzzo – Parte 2: "Ponti in calcestruzzo - progettazione e dettagli costruttivi";
 - [XI] UNI EN 1997-1 (Eurocodice 7) Febbraio 2005: "Progettazione geotecnica Parte 1: Regole generali";
- [XII] UNI EN 1998-1 (Eurocodice 8) Marzo 2005: "Progettazione delle strutture per la resistenza sismica – Parte 1: Regole generali – Azioni sismiche e regole per gli edifici";
- [XIII] UNI EN 1998-2 (Eurocodice 8) Febbraio 2006: "Progettazione delle strutture

- per la resistenza sismica Parte 2: Ponti";
- [XIV] UNI EN 1998-5 (Eurocodice 8) Gennaio 2005: "Progettazione delle strutture per la resistenza sismica Parte 2: Fondazioni, strutture di contenimento ed aspetti geotecnici".
- [XV] UNI EN 1994-2 (Eurocodice 4) Progettazione delle strutture composte acciaio-calcestruzzo Parte 2: Regole generali e regole per i ponti
- [XVI] UNI EN 1993-1-9 (Eurocodice 3) Progettazione delle strutture in acciaio Parte 1-9: Fatica
- [XVII] Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici Servizio Tecnico Centrale;
- [XVIII] UNI EN 197-1 giugno 2001 "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni;
 - [XIX] UNI EN 11104 marzo 2004 "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206-1;
 - [XX] UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità".

3. MATERIALI

Per la realizzazione delle strutture si prevede l'utilizzo di calcestruzzi ed acciai aventi le seguenti caratteristiche.

3.1. Calcestruzzo per pali di fondazione

Classe di resistenza	C28/35
Diametro massimo inerte	32 mm
Classe di consistenza	S5
$R_{ck} = 35 \text{ N/mm}^2$	resistenza cubica caratteristica a compressione
$f_{ck} = 0.83 \cdot R_{ck} = 29.05 \text{ N/mm}^2$	resistenza cilindrica caratteristica a compressione
$f_{cm} = f_{ck} + 8 = 37.05 \text{ N/mm}^2$	resistenza cilindrica media a compressione
$f_{ctm} = 0.30 \cdot f_{ck}^{2/3} = 2.835 \text{ N/mm}^2$	resistenza media a trazione semplice
$f_{ctk}(5\%) = 0.7 \cdot f_{ctm} = 1.984 \text{ N/mm}^2$	resistenza caratteristica a trazione (5%)
$f_{ctk}(95\%) = 1.3 \cdot f_{ctm} = 3.685 \text{ N/mm}^2$	resistenza caratteristica a trazione (95%)
$f_{cfm} = 1.2 \cdot f_{ctm} = 3.40 \text{ N/mm}^2$	resistenza media a trazione per flessione
$E_{cm} = 22000 \cdot [f_{cm}/10]^{0.3} = 32588 \text{ N/mm}^2$	valore medio del modulo di elasticità longitudinale
v = 0.15	coefficiente di Poisson
$\alpha = 1.0 \cdot 10^{-5} ^{\circ}\text{C}^{-1}$	coefficiente di dilatazione termica
$\alpha_{cc} = 0.85$	fattore di riduzione per carichi di lunga durata
$\gamma_c = 1.5$	coefficiente parziale di sicurezza del calcestruzzo
$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 16.45 \ N/mm^2$	valore di calcolo della resistenza a compressione
$f_{ctd} = f_{ctk}/\gamma_c = 1.32 \text{ N/mm}^2$	valore di calcolo della resistenza a trazione
$\sigma_c = 0.60 \cdot f_{ck} = 17.43 \text{ N/mm}^2$	resistenza a compressione agli SLE comb, Rara
$\sigma_c = 0.45 \cdot f_{ck} = 13.07 \ N/mm^2$	resistenza a compressione agli SLE comb, Q.perm.
$\alpha^{\text{cls}}_{\text{th}} = 10^{-5} {}^{\circ}\text{C}$	

3.2. Calcestruzzo per fondazioni spalle

Classe di resistenza	C28/35
Diametro massimo inerte	32 mm
Classe di consistenza	S4
$R_{ck} = 35 \text{ N/mm}^2$	resistenza cubica caratteristica a compressione
$f_{ck} = 0.83 \cdot R_{ck} = 29.05 \ N/mm^2$	resistenza cilindrica caratteristica a compressione
$f_{cm} = f_{ck} + 8 = 37.05 \text{ N/mm}^2$	resistenza cilindrica media a compressione

$f_{ctm} = 0.30 \cdot f_{ck}^{2/3} = 2.835 \text{ N/mm}^2$	resistenza media a trazione semplice
$f_{ctk}(5\%) = 0.7 \cdot f_{ctm} = 1.984 \text{ N/mm}^2$	resistenza caratteristica a trazione (5%)
$f_{ctk}(95\%) = 1.3 \cdot f_{ctm} = 3.685 \text{ N/mm}^2$	resistenza caratteristica a trazione (95%)
$f_{cfm} = 1.2 \cdot f_{ctm} = 3.40 \text{ N/mm}^2$	resistenza media a trazione per flessione
$E_{cm} = 22000 \cdot [f_{cm}/10]^{0.3} = 32588 \text{ N/mm}^2$	valore medio del modulo di elasticità longitudinale
v = 0.15	coefficiente di Poisson
$\alpha = 1.0 \cdot 10^{-5} {}^{\circ}\text{C}^{-1}$	coefficiente di dilatazione termica
$\alpha_{cc} = 0.85$	fattore di riduzione per carichi di lunga durata
$\gamma_c = 1.5$	coefficiente parziale di sicurezza del calcestruzzo
$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 16.45 \ N/mm^2$	valore di calcolo della resistenza a compressione
$f_{ctd} = f_{ctk}/\gamma_c = 1.32 \text{ N/mm}^2$	valore di calcolo della resistenza a trazione
$\sigma_c = 0.60 \cdot f_{ck} = 17.43 \text{ N/mm}^2$	resistenza a compressione agli SLE comb, Rara
$\sigma_c = 0.45 \cdot f_{ck} = 13.07 \ N/mm^2$	resistenza a compressione agli SLE comb, Q.perm.
$\alpha^{\text{cls}}_{\text{th}} = 10^{-5} {}^{\circ}\text{C}$	coefficiente di espansione termica

3.3. Calcestruzzo per elevazione spalle

. Calcesti uzzo pei elevazione sp	alic
Classe di resistenza	C32/40
Diametro massimo inerte	25 mm
Classe di consistenza	S4
$R_{ck} = 40 \text{ N/mm}^2$	resistenza cubica caratteristica a compressione
$f_{ck} = 0.83 \cdot R_{ck} = 33.20 \text{ N/mm}^2$	resistenza cilindrica caratteristica a compressione
$f_{cm} = f_{ck} + 8 = 41.20 \text{ N/mm}^2$	resistenza cilindrica media a compressione
$f_{ctm} = 0.30 \cdot f_{ck}^{2/3} = 3.10 \text{ N/mm}^2$	resistenza media a trazione semplice
$f_{ctk}(5\%) = 0.7 \cdot f_{ctm} = 2.17 \text{ N/mm}^2$	resistenza caratteristica a trazione (5%)
$f_{ctk}(95\%) = 1.3 \cdot f_{ctm} = 4.03 \text{ N/mm}^2$	resistenza caratteristica a trazione (95%)
$f_{cfm} = 1.2 \cdot f_{ctm} = 3.72 \text{ N/mm}^2$	resistenza media a trazione per flessione
$E_{cm} = 22000 \cdot [f_{cm}/10]^{0.3} = 33643 \text{ N/mm}^2$	valore medio del modulo di elasticità longitudinale
v = 0.15	coefficiente di Poisson
$\alpha = 1.0 \cdot 10^{-5} {}^{\circ}\text{C}^{-1}$	coefficiente di dilatazione termica
$\alpha_{cc} = 0.85$	fattore di riduzione per carichi di lunga durata
$\gamma_c = 1.5$	coefficiente parziale di sicurezza del calcestruzzo
$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 18.81 N/mm^2$	valore di calcolo della resistenza a compressione
$f_{ctd} = f_{ctk}/\gamma_c = 1.45 \ N/mm^2$	valore di calcolo della resistenza a trazione

$\sigma_c = 0.60 \cdot f_{ck} = 19.92 \text{ N/mm}^2$	resistenza a compressione agli SLE comb, Rara
$\sigma_c = 0.45 \cdot f_{ck} = 14.94 \text{ N/mm}^2$	resistenza a compressione agli SLE comb, Q.perm.
$\alpha^{\text{cls}}_{th} = 10^{-5} {}^{\circ}\text{C}$	coefficiente di espansione termica

3.4. Calcestruzzo per solette, cordoli e baggioli

Classe di resistenza	C35/45
Diametro massimo inerte	25 mm
Classe di consistenza	S5
$R_{ck} = 45 \text{ N/mm}^2$	resistenza cubica caratteristica a compressione
$f_{ck} = 0.83 \cdot R_{ck} = 37.35 \ N/mm^2$	resistenza cilindrica caratteristica a compressione
$f_{cm} = f_{ck} + 8 = 45.35 \text{ N/mm}^2$	resistenza cilindrica media a compressione
$f_{ctm} = 0.30 \cdot f_{ck}^{2/3} = 3.35 \text{ N/mm}^2$	resistenza media a trazione semplice
$f_{ctk}(5\%) = 0.7 \cdot f_{ctm} = 2.35 \text{ N/mm}^2$	resistenza caratteristica a trazione (5%)
$f_{ctk}(95\%) = 1.3 \cdot f_{ctm} = 4.36 \text{ N/mm}^2$	resistenza caratteristica a trazione (95%)
$f_{cfm} = 1.2 \cdot f_{ctm} = 4.02 \text{ N/mm}^2$	resistenza media a trazione per flessione
$E_{cm} = 22000 \cdot [f_{cm}/10]^{0.3} = 34625 \text{ N/mm}^2$	valore medio del modulo di elasticità longitudinale
v = 0.15	coefficiente di Poisson
$\alpha = 1.0 \cdot 10^{-5} ^{\circ}\text{C}^{-1}$	coefficiente di dilatazione termica
$\alpha_{cc} = 0.85$	fattore di riduzione per carichi di lunga durata
$\gamma_c = 1.5$	coefficiente parziale di sicurezza del calcestruzzo
$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 21.17 \ N/mm^2$	valore di calcolo della resistenza a compressione
$f_{ctd} = f_{ctk}/\gamma_c = 1.56 \text{ N/mm}^2$	valore di calcolo della resistenza a trazione
$\sigma_c=0.60 \cdot f_{ck}=22.41 \ N/mm^2$	resistenza a compressione agli SLE comb, Rara
$\sigma_c=0.45{\cdot}f_{ck}=16.81~N/mm^2$	resistenza a compressione agli SLE comb, Q.perm.
$\alpha^{cls}_{th} = 10^{-5} {}^{\circ}\text{C}$	coefficiente di espansione termica

3.5. Calcestruzzo per predalle collaboranti con la soletta

Classe di resistenza	C40/50
Diametro massimo inerte	16 mm
Classe di consistenza	secondo le specifiche di produzione
$R_{ck} = 50 \text{ N/mm}^2$	resistenza cubica caratteristica a compressione
$f_{ck} = 0.83 \cdot R_{ck} = 41.50 \ N/mm^2$	resistenza cilindrica caratteristica a compressione
$f_{cm} = f_{ck} + 8 = 49.50 \text{ N/mm}^2$	resistenza cilindrica media a compressione
$f_{ctm} = 0.30 \cdot f_{ck}^{2/3} = 3.60 \text{ N/mm}^2$	resistenza media a trazione semplice
1ctm = 0.00 1ck = 0.00 14/111111	resistenza media a trazione sempilee

$f_{ctk}(5\%) = 0.7 \cdot f_{ctm} = 2.52 \text{ N/mm}^2$	resistenza caratteristica a trazione (5%)
$f_{ctk}(95\%) = 1.3 \cdot f_{ctm} = 4.68 \text{ N/mm}^2$	resistenza caratteristica a trazione (95%)
$f_{cfm} = 1.2 \cdot f_{ctm} = 4.32 \text{ N/mm}^2$	resistenza media a trazione per flessione
$E_{cm} = 22000 \cdot [f_{cm}/10]^{0.3} = 35547 \text{ N/mm}^2$	valore medio del modulo di elasticità longitudinale
v = 0.15	coefficiente di Poisson
$\alpha = 1.0 \cdot 10^{-5} ^{\circ}\text{C}^{-1}$	coefficiente di dilatazione termica
$\alpha_{cc} = 0.85$	fattore di riduzione per carichi di lunga durata
$\gamma_c = 1.5$	coefficiente parziale di sicurezza del calcestruzzo
$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 23.52 \ N/mm^2$	valore di calcolo della resistenza a compressione
$f_{ctd} = f_{ctk}/\gamma_c = 1.68 \text{ N/mm}^2$	valore di calcolo della resistenza a trazione
$\sigma_c = 0.60 \cdot f_{ck} = 24.90 \text{ N/mm}^2$	resistenza a compressione agli SLE comb, Rara
$\sigma_c = 0.45 \cdot f_{ck} = 18.68 \text{ N/mm}^2$	resistenza a compressione agli SLE comb, Q.perm.
$\alpha^{cls}_{th} = 10^{-5} {}^{\circ}\text{C}$	coefficiente di espansione termica

3.6. Durabilità e copriferri

In relazione alle classi di esposizione ambientale definite nella UNI EN 206-1 e nella UNI 11104, sono state attribuite ai diversi elementi strutturali le seguenti classi di esposizione alle quali sono state associate le condizioni ambientali (vedi Tabella 4.1.III della [IV]):

-	palı	XC2	c.a. ordinarie
-	fondazioni spalle	XC2	c.a. ordinarie
-	elevazioni spalle	XC2	c.a. ordinarie
-	soletta impalcato / predalle	XC4+XD1	c.a. aggressive

Considerata la classe di esposizione ambientale dell'opera, la tipologia dell'opera e la classe del calcestruzzo impiegato, i valori del copriferro minimo (vedi tabella C4.1.IV della [V]) sono riportati nella seguente tabella, dove si è assunta una tolleranza di posizionamento delle armature pari a 5 mm.

Elemento	Cls classe	Condizioni ambientali	Tipo ele- mento	Copriferro di progetto c _{min}
pali	C28/35	ordinarie	altri elem.	75 mm
fondazioni spalle	C28/35	ordinarie	piastra	40 mm
elevazioni spalle	C32/40	ordinarie	piastra	40 mm
soletta impalcato / baggioli	C35/45	aggressive	piastra	35 mm
predalle collaboranti	C40/50	aggressive	piastra	25 mm

Tabella 3.1: Copriferri minimi

3.7. Acciaio per armatura lenta

Per le armature metalliche si adottano tondini in acciaio saldabile del tipo B450C controllato in stabilimento caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura da utilizzare nei calcoli:

$$f_{y \text{ nom}} = 450 \text{ N/mm}^2$$

$$f_{t nom} = 540 \text{ N/mm}^2$$

L'acciaio B450C deve rispettare le caratteristiche riportate nella seguente tabella.

Proprietà	Requisito	Frattile (%)
Tensione caratteristica di snervamento fyk	≥ 450 N/mm ²	5.0
Tensione caratteristica di rottura ftk	≥ 540 N/mm ²	5.0
$(f_t/f_y)_k$	≥ 1.15 ≤ 1.35	10.0
$(f_t/f_{ynom})_k$	≤ 1.25	10.0
Allungamento totale al carico massimo (A _{at})	≥ 7.5%	10.0
Diametro del mandrino per prove di piegamento a 90° e successivo raddrizzamento senza cricche:	44	
$\phi < 12$ $12 \le \phi \le 16$ $16 < \phi \le 25$ $25 < \phi \le 40$	4φ 5φ 8φ 10φ	

Tabella 3.2: Caratteristiche dell'acciaio

La resistenza di calcolo dell'acciaio fyd è riferita alla tensione di snervamento ed il suo valo-

re è pari a:
$$f_{yd} = f_{yk}/\gamma_s = 450/1.15 = 391.3N/mm^2$$

essendo γ_s = 1.15 il coefficiente parziale di sicurezza per l'acciaio.

L'acciaio B450C è idoneo per la realizzazione di strutture in zone sismiche, come indicato in [IV].

II modulo di elasticità è pari a: $E_a = 210 000 \text{ N/mm}^2$

Il coefficiente di espansione termica è pari a: $\alpha^a_{th} = 10^{-5}$ °C

3.8. Acciaio per carpenteria metallica

Si adotta un acciaio da costruzione tipo S355W secondo UNI EN 10025. La tensione di snervamento f_v e di rottura f_u , in funzione degli spessori è la seguente [IV].

t [mm]	≤ 40	> 40 ≤ 80
f _y	355	335
f _u	490	470

Tabella 3.3: Tensioni massime [N/mm²] di snervamento e rottura dell'acciaio

Gli altri parametri di calcolo assunti sono appresso riportati: modulo di elasticità E_a = 210 000 N/mm² coefficiente di espansione termica lineare α = 1.2 x 10-5 °C coefficiente di Poisson ν = 0.3 densità ρ = 7850 kg/m³

3.9. Acciaio per piolatura

L'acciaio per i connettori Nelson è di tipo S235J2G3 con tensione di rottura $f_u = 450 \; \text{N/mm}^2$

4. CARATTERIZZAZIONE SISMICA

La caratterizzazione dell'azione sismica dell'opera in esame viene effettuata ai sensi del *D.M. 14 gennaio 2008* e relative istruzioni.

Il sito ricade nella categoria classificata come C.

Si riportano di seguito i parametri utlizzati per la costruzione degli spettri allo **SLV** e allo **SLC**

Spettro SLV:

 $a_0/g = 0.048$;

 $F_0 = 2.669;$

 $S_s = 1.5;$

 $S_T = 1$;

 $\xi_{is} = 15\%$ (smorzamento equivalente sistema di isolamento)

 $T_C^* = 0.301 \text{ s}; T_C = 0.4697 \text{ s}; T_B = 0.1566 \text{ s}; T_D = 1.792 \text{ s}.$

Spettro SLC:

 $a_q/g = 0.06$;

 $F_0 = 2.718;$

 $S_s = 1.5$;

 $S_T = 1$;

 $\xi_{is} = 15\%$ (smorzamento equivalente sistema di isolamento)

 $T_C^* = 0.319 \text{ s}; T_C = 0.4883 \text{ s}; T_B = 0.1628 \text{ s}; T_D = 1.82 \text{ s}.$

Si riportano di seguito gli spettri SLV e SLC.

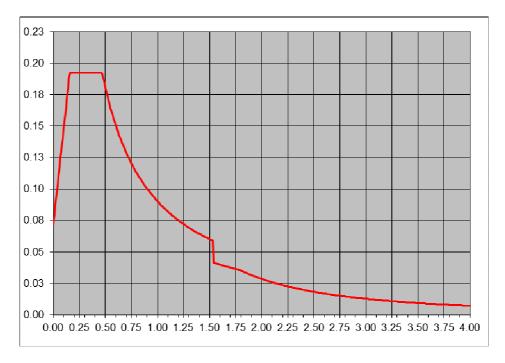


Figura 4.1: Spettro SLV

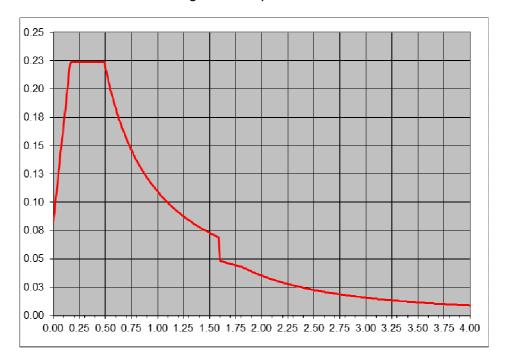


Figura 4.2. Spettro SLC

5. DESCRIZIONE DELL'OPERA

In accordo con il tracciato stradale, ciascuno dei due impalcati presenta un andamento in curva. Per ciò che riguarda le sottostrutture si prevede un'unica fondazione che colleghi le spalle omologhe dei due impalcato.

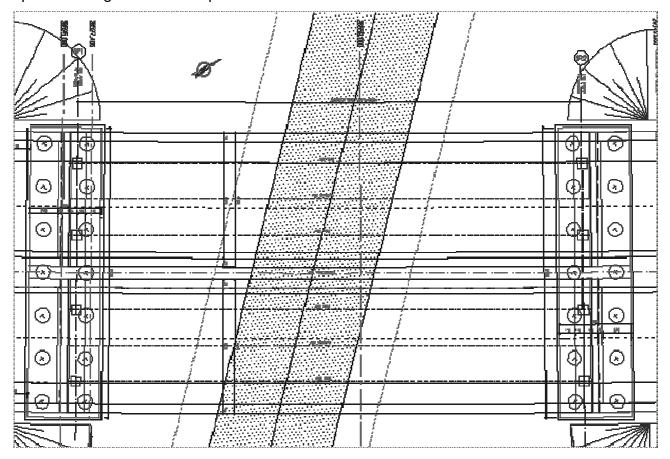


Figura 5.1: Pianta impalcato e fondazioni

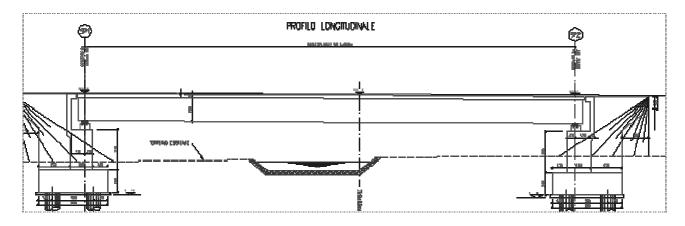


Figura 5.2: Sezione longitudinale

Entrambi gli impalcati presentano pendenza trasversale diretta verso il lato interno della curva, ottenuta mediante sfalsamento in altezza delle travi principali.

Per la realizzazione della soletta di completamento si prevede un getto su predalles prefabbricate disposte trasversalmente all'impalcato, con fondello interrotto (e traliccio passante) in corrispondenza della piolatura delle travi.

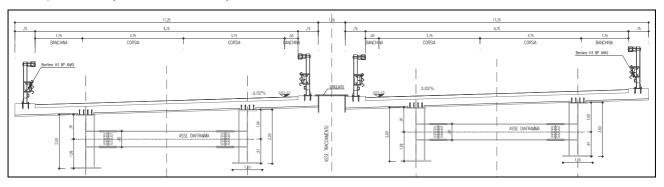


Figura 5.3: Sezione trasversale in campata

6. CLASSIFICAZIONE DEI PROFILI METALLICI

A seguire si riporta la descrizione delle caratteristiche geometriche dei profili metallici adottati come travi principali e come traversi.

6.1. Travi principali

Le travi principali sono a doppio T mono-simmetriche e presentano diverse tipologie di sezioni in funzione delle richieste di resistenza e rigidezza (figura successiva).

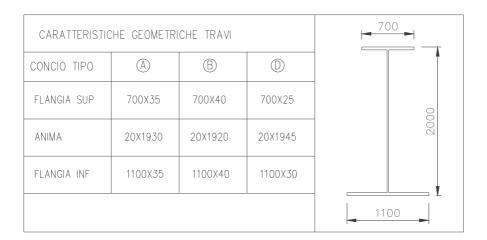


Figura 6.1: Sezioni tipo

Tenuto conto dell'elevata snellezza dell'anima e delle piattabande tutte le sezioni tipo delle travi principali sono state considerate, in sede di verifica, di classe 4, tenendo conto dell'assenza di irrigidimenti longitudinali.

6.1.1. Sezione tipo A

Caratteristiche generali

Dati principali

Dati priricipali	
Altezza della sezione di acciaio	2000 mm
Piattabanda superiore	700x35 mm
Piattabanda inferiore	1100x35 mm
Anima	20x1930 mm, Inclinazione: 0
Soletta	5494x300 mm
Raccordo	450x50 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 91 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 80 mm
Pioli	diametro 19 mm, altezza 180 mm, numero 20/m

Irrigidenti verticali

Interasse	5000 mm
Tipo	R da un solo lato
Piatto 1	200x20 mm
Piatto 2	

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.016E+5	2.217E+5	2.338E+5	2.027E+5	3.906E+5	1.189E+5
z _G (mm)	864.616	1587.507	1619.212	1530.232	1852.411	1057.722
$J_y (mm^4)$	7.094E+10	1.698E+11	1.742E+11	1.619E+11	2.07E+11	9.71E+10
$W_{y,0}$ (mm ³)	-8.205E+7	-1.07E+8	-1.076E+8	-1.058E+8	-1.118E+8	-9.18E+7
$W_{y,1}$ (mm ³)	-8.551E+7	-1.094E+8	-1.1E+8	-1.083E+8	-1.139E+8	-9.495E+7
$W_{y,3}$ (mm ³)	6.447E+7	4.498E+8	5.038E+8	3.723E+8	1.839E+9	1.07E+8
$W_{y,4}$ (mm ³)	6.248E+7	4.117E+8	4.575E+8	3.446E+8	1.403E+9	1.031E+8
$W_{y,5}$ (mm ³)	1E+300	3.671E+8	4.044E+8	3.115E+8	1.048E+9	9.786E+7
$W_{y,6}$ (mm ³)	1E+300	3.13E+8	3.41E+8	2.699E+8	7.458E+8	9.056E+7
$W_{y,7}$ (mm ³)	1E+300	2.529E+8	2.723E+8	2.221E+8	5.092E+8	8.083E+7
$W_{y,8}$ (mm ³)	1E+300	2.227E+8	2.384E+8	1.975E+8	4.161E+8	7.514E+7
$S_{y,1}(mm^3)$	3.261E+7	6.045E+7	6.167E+7	5.824E+7	7.064E+7	4.005E+7
$S_{y,2}(mm^3)$	3.95E+7	8.455E+7	8.676E+7	8.06E+7	1.037E+8	5.051E+7
$S_{y,3}(mm^3)$	2.739E+7	8.312E+7	8.557E+7	7.871E+7	1.035E+8	4.228E+7
$S_{y,4}(mm^3)$	3.725E-9	7.345E+7	7.667E+7	6.763E+7	1.004E+8	1.962E+7
n _E	1E+300	16.031	14.343	19.655	6.065	1E+300

Pre-classificazione

La preclassificazione e' riferita alla sezione composta in Fase 3

Caratteristiche plastiche dei singoli componenti

Caratteristiche plastiche dei singoli componenti				
Componenti	$N_{pl}(N)$	$z_N(mm)$	z _{max} (mm)	z _{min} (mm)
Strato di calcestruzzo superiore	1.049E+7	2304.89	2350	2259.79
Strato di calcestruzzo intermedio alle armature	1.482E+7	2194.5	2258.21	2130.79
Strato di calcestruzzo inferiore	9.211E+6	2089.61	2129.21	2050
Strato di armatura superiore	3.377E+6	2259	2259.79	2258.21
Strato di armatura inferiore	3.377E+6	2130	2130.79	2129.21
Raccordo in cls	0E+00	2026.81	2050	2000
Flangia superiore della trave di acciaio	8.283E+6	1982.5	2000	1965
Anima della trave di acciaio	1.305E+7	1000	1965	35
Flangia inferiore della trave di acciaio	1.302E+7	17.5	35	0
Compressione ultima per la sezione completa	-7.562E+7			
Trazione ultima per la sezione completa	4.11E+7			
Compressione ultima per la sezione senza anima	-6.257E+7			
Trazione ultima per la sezione senza anima	2.805E+7			

Classificazione delle piattabande

Classificazione dei	ie piati	abande	,	
	c/t	ε	Flessione semplice con fibre	Flessione semplice con fibre
			tese superiori (M+)	tese inferiori (M-)
Flangia superiore	9.714	0.814	1	0
Flangia inferiore	15.42	0.814	4	1
	9			

Classificazione dell'anima

	c/t	ε	α	Ψ	classe
Flessione semplice con fibre tese superiori (M+)	96.5	0.814	0.577	-0.887	4
Flessione semplice con fibre tese inferiori (M-)	96.5	0.814	0	-0.062	1
Compressione semplice (N)	96.5	0.814	1	1	4

6.1.2. Sezione tipo B

Caratteristiche generali

Dati principali

Altezza della sezione di acciaio	2000 mm
Piattabanda superiore	700x40 mm
Piattabanda inferiore	1100x40 mm
Anima	20x1920 mm, Inclinazione: 0

Soletta	5550x300 mm
Raccordo	450x50 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 91 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 80 mm
Pioli	diametro 19 mm, altezza 180 mm, numero 20/m

Irrigidenti verticali

Interasse	5000 mm
Tipo	R da un solo lato
Piatto 1	200x25 mm
Piatto 2	

Caratteristiche geometriche lorde

Saratteristiche geometriche lorde								
	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata		
A (mm ²)	1.104E+5	2.317E+5	2.439E+5	2.125E+5	4.024E+5	1.278E+5		
z _G (mm)	857.971	1560.134	1592.202	1502.483	1831.54	1040.263		
J _y (mm⁴)	7.873E+10	1.836E+11	1.884E+11	1.749E+11	2.251E+11	1.057E+11		
$W_{y,0}$ (mm ³)	-9.176E+7	-1.177E+8	-1.183E+8	-1.164E+8	-1.229E+8	-1.016E+8		
$W_{y,1}$ (mm ³)	-9.625E+7	-1.207E+8	-1.214E+8	-1.196E+8	-1.256E+8	-1.057E+8		
$W_{y,3}$ (mm ³)	7.144E+7	4.59E+8	5.122E+8	3.822E+8	1.752E+9	1.149E+8		
$W_{y,4}$ (mm ³)	6.894E+7	4.173E+8	4.62E+8	3.515E+8	1.336E+9	1.101E+8		
$W_{y,5}$ (mm ³)	1E+300	3.747E+8	4.115E+8	3.194E+8	1.03E+9	1.047E+8		
$W_{y,6}$ (mm ³)	1E+300	3.221E+8	3.503E+8	2.787E+8	7.541E+8	9.699E+7		
$W_{y,7}$ (mm ³)	1E+300	2.626E+8	2.825E+8	2.311E+8	5.265E+8	8.673E+7		
$W_{y,8}$ (mm ³)	1E+300	2.324E+8	2.486E+8	2.063E+8	4.341E+8	8.07E+7		
$S_{y,1}(mm^3)$	3.687E+7	6.777E+7	6.918E+7	6.523E+7	7.971E+7	4.489E+7		
$S_{y,2}(mm^3)$	4.356E+7	9.087E+7	9.327E+7	8.662E+7	1.118E+8	5.49E+7		
$S_{y,3}(mm^3)$	3.142E+7	8.928E+7	9.192E+7	8.452E+7	1.116E+8	4.644E+7		
$S_{y,4}(mm^3)$	-3.725E-9	7.752E+7	8.106E+7	7.115E+7	1.075E+8	2.013E+7		
n _E	1E+300	16.031	14.343	19.655	6.065	1E+300		

Pre-classificazione

La preclassificazione e' riferita alla sezione composta in Fase 3

Caratteristiche plastiche dei singoli componenti

Caratteristiche plastiche dei singoli componenti				
Componenti	$N_{pl}(N)$	$z_N(mm)$	z _{max} (mm)	z _{min} (mm)
Strato di calcestruzzo superiore	1.06E+7	2304.89	2350	2259.79
Strato di calcestruzzo intermedio alle armature	1.497E+7	2194.5	2258.21	2130.79
Strato di calcestruzzo inferiore	9.305E+6	2089.61	2129.21	2050
Strato di armatura superiore	3.411E+6	2259	2259.79	2258.21
Strato di armatura inferiore	3.411E+6	2130	2130.79	2129.21
Raccordo in cls	0E+00	2026.81	2050	2000
Flangia superiore della trave di acciaio	9.467E+6	1980	2000	1960
Anima della trave di acciaio	1.298E+7	1000	1960	40
Flangia inferiore della trave di acciaio	1.488E+7	20	40	0
Compressione ultima per la sezione completa	-7.902E+7			
Trazione ultima per la sezione completa	4.415E+7			
Compressione ultima per la sezione senza anima	-6.604E+7			
Trazione ultima per la sezione senza anima	3.117E+7			

Classificazione delle piattabande

	c/t	ε	Flessione semplice con fibre	Flessione semplice con fibre
			tese superiori (M+)	tese inferiori (M-)
Flangia superiore	8.5	0.814	1	0
Flangia inferiore	13.5	0.814	4	1

Classificazione dell'anima

0.00000	5.000m002.0.10 00m0.mm0								
	c/t	ε	α	Ψ	classe				
Flessione semplice con fibre tese superiori (M+)	96	0.814	0.554	-0.919	4				
Flessione semplice con fibre tese inferiori (M-)	96	0.814	0	-0.072	1				
Compressione semplice (N)	96	0.814	1	1	4				

6.1.3. Sezione tipo D

Caratteristiche generali

Dati principali

Altezza della sezione di acciaio	2000 mm
Piattabanda superiore	700x25 mm
Piattabanda inferiore	1100x30 mm
Anima	20x1945 mm, Inclinazione: 0
Soletta	5352x300 mm
Raccordo	450x50 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 91 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 80 mm
Pioli	diametro 19 mm, altezza 180 mm, numero 40/m

Irrigidenti verticali

irrigiacitii verticali	
Interasse	5000 mm
Tipo	R da un solo lato
Piatto 1	200x20 mm
Piatto 2	

Caratteristiche geometriche lorde

odiationotiono ge	Joiniothionio lorao					
	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm²)	8.94E+4	2.064E+5	2.182E+5	1.879E+5	3.709E+5	1.062E+5
z _G (mm)	830.8	1606.401	1638.477	1548.064	1869.761	1046.669
J _y (mm⁴)	5.879E+10	1.545E+11	1.585E+11	1.472E+11	1.88E+11	8.518E+10
$W_{y,0}$ (mm ³)	-7.076E+7	-9.617E+7	-9.674E+7	-9.509E+7	-1.005E+8	-8.138E+7
$W_{y,1}$ (mm ³)	-7.341E+7	-9.801E+7	-9.855E+7	-9.697E+7	-1.022E+8	-8.378E+7
$W_{y,3}$ (mm ³)	5.138E+7	4.191E+8	4.71E+8	3.448E+8	1.786E+9	9.175E+7
$W_{y,4}$ (mm ³)	5.028E+7	3.925E+8	4.385E+8	3.257E+8	1.443E+9	8.935E+7
$W_{y,5}$ (mm ³)	1E+300	3.483E+8	3.852E+8	2.933E+8	1.043E+9	8.489E+7
$W_{y,6}$ (mm ³)	1E+300	2.951E+8	3.225E+8	2.53E+8	7.224E+8	7.863E+7
$W_{y,7}$ (mm ³)	1E+300	2.367E+8	2.555E+8	2.071E+8	4.83E+8	7.026E+7
$W_{y,8}$ (mm ³)	1E+300	2.078E+8	2.228E+8	1.836E+8	3.915E+8	6.535E+7
$S_{y,1}(mm^3)$	2.692E+7	5.252E+7	5.357E+7	5.059E+7	6.121E+7	3.405E+7
$S_{y,2}(mm^3)$	3.333E+7	7.737E+7	7.945E+7	7.364E+7	9.505E+7	4.438E+7
$S_{y,3}(mm^3)$	2.024E+7	7.601E+7	7.831E+7	7.181E+7	9.494E+7	3.576E+7
$S_{y,4}(mm^3)$	-7.451E-9	6.934E+7	7.221E+7	6.412E+7	9.288E+7	1.93E+7
n _E	1E+300	16.031	14.343	19.655	6.065	1E+300

Pre-classificazione

La preclassificazione e' riferita alla sezione composta in Fase 3

Caratteristiche plastiche dei singoli componenti

Caratteristiche plastiche dei singoli componenti				
Componenti	$N_{pl}(N)$	$z_N(mm)$	z _{max} (mm)	z _{min} (mm)
Strato di calcestruzzo superiore	1.022E+7	2304.89	2350	2259.79
Strato di calcestruzzo intermedio alle armature	1.443E+7	2194.5	2258.21	2130.79
Strato di calcestruzzo inferiore	8.973E+6	2089.61	2129.21	2050
Strato di armatura superiore	3.29E+6	2259	2259.79	2258.21
Strato di armatura inferiore	3.29E+6	2130	2130.79	2129.21
Raccordo in cls	0E+00	2026.81	2050	2000
Flangia superiore della trave di acciaio	5.917E+6	1987.5	2000	1975
Anima della trave di acciaio	1.315E+7	1002.5	1975	30
Flangia inferiore della trave di acciaio	1.116E+7	15	30	0
Compressione ultima per la sezione completa	-7.043E+7			
Trazione ultima per la sezione completa	3.68E+7			
Compressione ultima per la sezione senza anima	-5.728E+7			
Trazione ultima per la sezione senza anima	2.365E+7			
Trazione ditina per la dezione deriza amina	L.000L+1			

Classificazione delle piattabande

	c/t	ε	Flessione semplice con fibre tese superiori (M+)	Flessione semplice con fibre tese inferiori (M-)
Flangia superiore	13.6	0.814	1	0
Flangia inferiore	18	0.814	4	1

Classificazione dell'anima

	c/t	ε	α	Ψ	classe
Flessione semplice con fibre tese superiori (M+)	97.25	0.814	0.551	-0.913	4
Flessione semplice con fibre tese inferiori (M-)	97.25	0.814	0	-0.057	1
Compressione semplice (N)	97.25	0.814	1	1	4

6.2. Trasversi

6.2.1. Trasversi correnti

I trasversi correnti presentano sezione doppio T normalizzata HEA 600. In presenza di sollecitazione di compressione (con o senza flessione) la sezione rientra in classe 4 ed ha le seguenti caratteristiche (riferite alla sezione efficace in compressione semplice):

Atot =	22'013.86	mm²	(area dell'intera sezione)
Avz =	9'320.78	mm²	(area sezione a taglio in direzione z)
Avy =	15'625.78	mm²	(area sezione a taglio in direzione y)
Az =	9'320.78	mm²	(area della parete della sezione // z)
Ay=	7'812.89	mm²	(area della piattabanda, ovvero dell'ala // y)
Wy,el,sup =	4'786.29	cm³	(modulo di resistenza elastico flangia sup)
Wy,el,inf =	4'786.29	cm³	(modulo di resistenza elastico flangia inf)
Wy,el =	4'786.29	cm³	(modulo di resistenza elastico)
Wz,el,sx =	751.36	cm³	(modulo di resistenza elastico flangia sup)
Wz,el,dx =	751.36	cm³	(modulo di resistenza elastico flangia inf)
Wz,el =	751.36	cm³	(modulo di resistenza elastico)
Iy=	141'195.59	cm ⁴	(momento d'inerzia rispetto asse y)
iy =	24.97	cm	(raggio d'inerzia rispetto asse y)
Iz =	11'271.31	cm ⁴	(momento d'inerzia rispetto asse z)
iz =	7.05	cm	(raggio d'inerzia rispetto asse z)
Imin =	11'271.31	cm ⁴	(momento d'inerzia minimo)
imin =	7.05	cm	(raggio d'inerzia minimo)
It =	350.97	cm ⁴	(momento d'inerzia torsionale)

Tabella 6.1: Caratteristiche geometriche efficaci dei trasversi correnti HEA 600

6.2.2. Trasversi in appoggio

I trasversi in appoggio presentano sezione doppio T normalizzata HEA 1000.

H =	990.00	mm
B =	300.00	mm
tf =	31.00	mm
tw=	16.50	mm

Tabella 6.2:

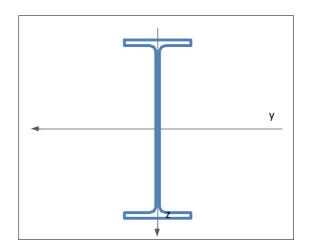


Figura 6.2: Geometria trasversi in appoggio

In presenza di sollecitazione di compressione (con o senza flessione) la sezione rientra in classe 4 ed ha le seguenti caratteristiche (riferite alla sezione efficace in compressione semplice):

Atot =	30'512.58	mm²	(area dell'intera sezione)
Avz =	18'456.07	mm²	(area sezione a taglio in direzione z)
Avy =	19'372.57	mm²	(area sezione a taglio in direzione y)
Az =	18'456.07	mm²	(area della parete della sezione // z)
Ay=	9'686.28	mm²	(area della piattabanda, ovvero dell'ala // y)
Wy,el,sup =	11'143.91	cm³	(modulo di resistenza elastico flangia sup)
Wy,el,inf =	11'143.91	cm³	(modulo di resistenza elastico flangia inf)
Wy,el =	11'143.91	cm³	(modulo di resistenza elastico)
Wz,el,sx =	933.00	cm³	(modulo di resistenza elastico flangia sup)
Wz,el,dx =	933.00	cm³	(modulo di resistenza elastico flangia inf)
Wz,el =	933.00	cm³	(modulo di resistenza elastico)
Iy=	551'623.32	cm ⁴	(momento d'inerzia rispetto asse y)
iy =	39.96	cm	(raggio d'inerzia rispetto asse y)
Iz =	14'004.44	cm ⁴	(momento d'inerzia rispetto asse z)
iz =	6.35	cm	(raggio d'inerzia rispetto asse z)
Imin =	14'004.44	cm ⁴	(momento d'inerzia minimo)
imin =	6.35	cm	(raggio d'inerzia minimo)
It =	715.02	cm ⁴	(momento d'inerzia torsionale)

Tabella 6.3: Caratteristiche geometriche efficaci dei trasversi di pila/spalla HEA 1000

7. DEFINIZIONE DELLE LARGHEZZE COLLABORANTI

La larghezza efficace della soletta collaborante è stata calcolata secondo il punto 4.3.2.3 della NTC 08 [IV] e punto 5.4.1.2 di [XV]. Nella tabella seguente si riportano i valori delle larghezze efficace in funzione delle ascisse notevoli.

X (m)	b1* (mm)	b2* (mm)	b0 (mm)	Tipo	beff (mm)	Le (m)	be1 (mm)	be2 (mm)	beta1
0	3'000	2'550	450	0	5'351	42.00	2'775	2'325	0.928
10.5	3'000	2'550	450	1	5'550	42.00	2'775	2'325	1.000
31.5	3'000	2'550	450	1	5'550	42.00	2'775	2'325	1.000
42	3'000	2'550	450	0	5'351	42.00	2'775	2'325	0.928

Tabella 7.1: Riepilogo delle larghezze efficaci beff

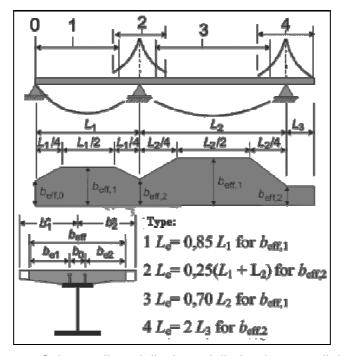


Figura 7.1: Schema di modellazione delle larghezze collaboranti

8. ANALISI DEI CARICHI

Le azioni prese in considerazione ai fini delle verifiche dell'impalcato in acciaiocalcestruzzo sono:

G1a Peso proprio impalcato metallico (travi princpali e strutture di controvento)

G1b Peso proprio della soletta di calcestruzzo armato (gettata in opera) e delle predalles

G2 Sovraccarichi permanenti (peso marciapiedi, pavimentazione, barriere, finiture, impianti, etc.)

Esh+cr Effetto di ritiro e viscosità a lungo termine

δi, i = 1,2... Cedimenti differenziali delle pile

ΔT+ Variazione termica differenziale positiva (T soletta > T acciaio)
 ΔT- Variazione termica differenziale negatva (T soletta < T acciaio)
 W Azione trasversale del vento su impalcato in esercizio (carico)

TS Azione equivalente al traffico stradale - modello di carico 1 - assi di carico
UDL Azione equivalente al traffico stradale - modello di carico 1 - carico distribuito

LM5 Azione equivalente all'azione della folla su marciapiedi praticabili

LMF3 Azione da traffico stradale - modello di carico 3 equivalente per analisi fatica

Ek Azione sismica

Tabella 8.1: Elenco delle azioni agenti

8.1. Peso proprio delle strutture metalliche

Il peso proprio delle travi metalliche è valutato in automatico dal software di analisi.

8.2. Peso proprio della soletta

Il peso proprio della soletta di calcestruzzo è pari a 25 x 0.30 = 7.50 kN/m²

8.3. Spinta statica delle terre

In considerazione del fatto che le spalle presentano fondazioni profonde, la spinta statica è stata valutata come spinta a riposo (K₀), assumendo come parametri fisico/meccanici del rilevato i seguenti valori:

peso di volume	γ	18.00	kN/m^3
angolo di attrito efficace	Φ	33.00	0

Per tener conto dei carichi variabili a monte del rilevato è stato assunto, in sostituzione del modello di carico LM1 (cfr. § 8.7.1 successivo) un carico uniformemente distribuiti di 20 kN/m².

8.4. Sovraccarichi permanenti

Pavimentazione: 23.00 x 0.11	2.53	kN/m²
Marciapiedi: 25.00 x 0.15	3.75	kN/m^2

Barriere di sicurezza (su entrambi i lati)	2.00	kN/m
Velette (su entrambi i lati)	7.20	kN/m
Collettori di drenaggio (su ambo i lati)	2.00	kN/m

8.5. Cedimenti differenziali

Non presi in considerazione trattandosi di schema isostatico.

8.6. Ritiro della soletta

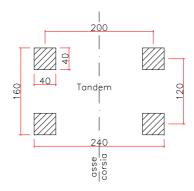
Gli effetti del ritiro sono valutati automaticamente dal software che ne scompone gli effetti in:

- una componente isostatica
- una componente iperstatica

La prima componente è, a sua volta, separata in un effetto locale - o sezionale - ed un effetto globale, quest'ultimo essendo corrispondente ad una distorsione distribuita lungo tutto lo sviluppo dell'impalcato (eccezione fatta per le zone fessurate a cavallo degli appoggi intermedi) e valutata dal software in funzione della sezione tipo localmente presente.

8.7. Azioni variabili

8.7.1. Carichi viaggianti da traffico


Ai fini della determinazione delle azioni variabili da traffico, l'opera in oggetto è considerata come un ponte stradale di 1° Categoria.

In relazione alla geometria della strada, a cui l'opera in esame è funzionale, si riportano le caratteristiche delle corsie convenzionali definite secondo il §5.1.3.3.2. di [IV]

W =	9.75 m	larghezza di carreggiata (corsie + banchine);
n _I =	3	numero di corsie convenzionali;
$W_I =$	3.0 m	larghezza di una corsia convenzionale;
$w-(3.0 \cdot n_i) =$	0.75 m	parte rimanente.

Le azioni variabili del traffico, comprensive degli effetti dinamici, sono definite mediante lo schema di carico 1 (Load model 1, LM1) che prevede:

- il carico Q_{1.k} costituito da un mezzo convenzionale a due assi (carico tandem, TS) posti ad un interasse di 1.20m lungo il senso di marcia e caratterizzati da una larghezza di 2.40m (comprese le dimensioni delle impronte);
- il carico ripartito q_{1 k} (UDL)

F 1. Schema di carico 1(LM) – Carico tandem (TS)

Trattandosi di ponte di 1° Categoria si considerano le intensità dei carichi riportate nella tabelle seguente.

Posizione	Carico asse Q _{ik} (kN)	Carico ripartito q _{ik} (kN/m²)
Corsia n. 1	300	9.00
Corsia n. 2	200	2.50
Corsia n. 3	100	2.50
Parte rimanente	0.00	2.50

Intensità dei carichi Qik e qik per le diverse corsie (Tabella 5.1.II [IV])

Il carico variabile da traffico è multi-componente e si caratterizza come gruppo di carico (cfr. tabella sotto) ossia può presentarsi sotto forma di azione GR. 1a, GR 1b, e così via. Ciascuna componente dei ciascun gruppo è costituita da uno schema di carico, eventualmente ridotto da un coefficiente di partecipazione, più altre azioni variabili legate al traffico stradale (frenatura/accelerazione, az. centrifuga).

		GRUPPI DI AZIONI DA TRAFFICO							
	GR.1a	GR.1b	GR.1c	GR.1d	GR.2a	GR.2b	GR.3	GR.4	
LM1 - carreggiata	1.00	-	-	-	ψα	фa	-	-	
LM2 - carreggiata	-	1.00	-	-	-	-	-	-	
LM3 - marciapiedi sormont.	-	-	1.00	-	-	-	-	-	
LM4 - marciapiedi protetti	-	-	-	1.00	-	-	-	-	
LM5 - marciapiedi e piste cci.	ψο	-	=	-	=	-	1.00	1.00	
LM5 - correggiata	-	-	-	-	-	-	-	1.00	
q3 - frenatura	-	-	-	-	1.00	-	-	-	
C ₁ 4 - forza centrifuga	-	_	-	_	-	1.00	-	-	

Figura 8.1: Gruppi di carico da traffico per ponti stradali

Nel caso del ponte in esame si è fatto riferimento ai gruppi 1a e 2a.

8.7.2. Carichi variabili da traffico pesante per analisi della fatica

Ai fini delle verifiche a fatica - secondo il criterio del danneggiamento - si adotta il metodo semplificato basato sul modello di carico LMF 3 (figura sotto) e sui fattori equivalenti di danno λi.

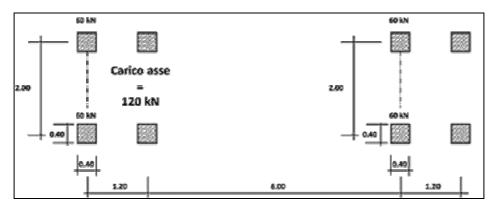


Figura 8.2: Modello di carico a fatica LMF 3

Le ipotesi di base sono: una vita utile di progetto a fatica pari a 100 anni ed un flusso annuo non superiore a 2×10^6 di veicoli con peso P > 100 kN (strade ed autostrade con 2 o più corsie per senso di marcia, caratterizzate da intenso traffico pesante).

8.7.3. Variazione termiche

Ai fini delle verifiche dell'impalcato sono state prese in considerazione due azioni termiche differenziali. Indicando con Ts la temperatura all'estradosso soletta e con Tb la temperatura all'intradosso delle travi metalliche, le azioni termiche considerate sono:

 ΔT + = Ts – Tb = 15 °C (variazione termica differenziale positiva)

 ΔT - = Ts – Tb = -18 °C (variazione termica differenziale negativa)

8.7.4. Vento

Per la valutazione del carico del vento sull'impalcato si considera un'altezza velica di 3 m oltre il piano stradale (vento a ponte carico) ed una pressione p = 2.50 kN/m². Tale azione si traduce in un carico distribuito differenziale verticale, funzione del braccio della risultante orizzontale agente rispetto al baricentro della sezione composta, nonché dell'interasse delle travi.

8.7.5. Frenatura

La forza di frenamento o di accelerazione q3 è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è uguale a

$$180 \text{ kN} \le q3 = 0.6 (2Q1\text{k}) + 0.10 \text{ q1k W1-} \le 900 \text{ kN}$$

Tale azione, non dimensionante ai fini delle verifiche dell'impalcato, è presa in conto nelle verifiche delle sottostrutture, delle fondazioni e degli apparecchi di appoggio.

8.7.6. Azione centrifuga

L'azione centrifuga è stata valutata secondo la tabella seguente. Essa è applicata alla quota della pavimentazione.

Raggio di curvatura [m]	Q4 [kN]
R < 200	0,2·Q _v
200 ≤R ≤ 1500	40•Q,∕R
1500 ≤R	0

Tabella 8.2

8.7.7. Azione sismica

L'azione sismica verticale è presente nella combinazione sismica, la quale esclude (in base ai fattori di combinazione previsti) i carichi da traffico. Pertanto non è stata presa in considerazione ai fini delle verifiche dell'impalcato bensì nel dimensionamento delle sottostrutture, fondazioni e collegamenti tra impalcato e sottostrutture, cioè baggioli, apparecchi d'appoggio e giunti di dilatazione. L'effetto dinamico del terreno a tergo delle spalle è stato tenuto in conto sia attraverso l'inerzia dovuta al peso proprio, sia attraverso l'incremento dinamico di spinta secondo la teoria di Wood.

Per gli altri dettagli si rimanda al cap. 4.

8.7.8. Carico di costruzione

Durante le fasi di getto della soletta sulle predalles si assume agente un carico aggiuntivo comprensivo sia degli effetti dinamici che della presenza degli addetti alle fasi di getto. Tale carico è assunto pari a $\Delta q = 1 \text{ kN/m}^2$.

8.8. Azioni eccezionali

8.8.1. Urto dei veicoli in svio

Si rimanda alla verifica dell'armatura trasversale di soletta (§ 12.2).

9. COMBINAZIONI DI CARICO

9.1. Combinazioni di carico SLU/SLE adottate ai fini delle verifiche dell'impalcato

A seguire si riporta un riepilogo dei coefficienti di combinazione, valutati in accordo con quanto riportata al §. 2.5.3 e al 5.1.3.12 della normativa adottata [IV].

COMBINAZIONI DI PROGETTO PER LE FASI PROVVISORIE (VARO E GETTO SOLETTA)											
	G1a	Δq									
SLU	1.35	1.35									
COMBINAZIONI DI PROGETTO IN ESERCIZIO FASE 1 FASE 2a FASE 2b FASE 3° FASE 3b FATICA											
		:F 1	トレベト フコ			LEVEL 30		FASE	7h		FATICA
	G1a	SE 1 G _{1b}	FASE 2a G2		δi, i = 1,2	FASE 3° ΔT±	w	FASE TS	3b UDL	LM5	FATICA LMF3
SLU							w	TS		LM5	_
SLU SLE R	G1a	G _{1b}	G2	€sh+cr	δi, i = 1,2	ΔT±		TS	UDL		_
	G 1a	G 1ь	G ₂	ε sh+cr 1.20	δi, i = 1,2 0 / 1.20	ΔT± 0 / 0.72	0 / 0.90	TS 0 / 1.35	UDL 0 / 1.35 0 / 1.00	0	_

9.2. Combinazioni di carico sismiche

Nella tabella a seguire sono dettagliati i coefficienti di combinazione adottati ai fini delle verifiche delle sottostrutture (con relative fondazioni), degli appoggi, baggioli e dei giunti, in aggiunta alle combinazione esposte al precedente § 9.1.

			C. SISMICHE			
		1	2	3		
G1	pei propri (1)	1.00	1.00	1.00		
G2	permanenti portati	1.00	1.00	1.00		
Ek,L	sisma long. (2)	± 1.00	± 0.30	± 0.30		
Ek,L	sisma trasv.	± 0.30	± 1.00	± 0.30		
Ek,L	sisma vert.	± 0.30	± 0.30	± 1.00		
(1) comprensivi delle spinte statiche del terreno (2) comprensivo della spinta dinamica del terreno						

10. MODELLI DI CALCOLO

10.1. Modellazione globale sismica

Per l'analisi sismica del viadotto si utilizza un modello di calcolo ad elementi finiti utilizzando il codice *CSiBridge ver. 15.1.1.*

Tale modello utilizza elementi "beam" a 2 nodi per modellare il funzionamento delle sottostrutture (composto da un graticcio di elementi longitudinali che simulano le travi e trasversali che simulano la soletta).

Il sistema di vincolo dell'iN/mm²lcato prevede l'utilizzo di elementi elastici lineari "link" che simulano il funzionamento degli isolatori in elastomero armato, disposti in corrispondenza degli appoggi dell'impalcato e sulle spalle, come rappresentato negli elaborati grafici relativi agli apparecchi di appoggio.

10.2. Modellazione delle travi principali composte acciaio-calcestruzzo

Trattandosi di un sistema misto, le azioni agenti vengono suddivise in tre fasi, corrispondenti al grado di maturazione del getto di calcestruzzo e quindi ai diversi livelli di rigidezza e caratteristiche statiche delle sezioni resistenti, costituite in generale dalla trave principale metallica e dalla parte di soletta c.a. collaborante..

- Fase 1: considera il peso proprio della struttura metallica, delle lastre prefabbricate e del getto della soletta che, in questa fase, non è ancora reagente. La sezione resistente corrisponde alla sola parte metallica.
- Fase 2a, 2b: tiene in conto il peso dei successivi carichi permanenti applicati alla struttura (pavimentazione, marciapiedi, barriere di sicurezza, etc.) nonché i fenomeni legati a ritiro della soletta e i cedimenti differenziali. Tale fase fa riferimento ad una sezione resistente mista acciaio-calcestruzzo che, per tenere in considerazione i fenomeni lenti imputabili alla viscosità del calcestruzzo, viene modellata adottando valori del modulo elastico del calcestruzzo corrispondente a quello indicato dalla normativa (§ 5.4.2.2 di [XV]).
- Fase 3: corrisponde al transito dei carichi mobili e a tutte le altre azioni "istantanee": vento, variazioni termiche differenziali positive/negative. Le sollecitazioni sono assegnate ad una sezione resistente acciaio-calcestruzzo omogenizzata a breve termine (tempo 0).

SI riporta a seguire il riepilogo delle caratteristiche reologiche del calcestruzzo della soletta nonché i coefficienti di omogeneizzazione scelti.

Caratteristiche del cls a tempo zero

Resistenza a compressione caratteristica, f_{ck} (N/mm²) 37.35 Resistenza a compressione media, $f_{cm} = f_{ck} + 8$ (N/mm²) 45.35 Modulo elastico secante, $E_{cm} = 22000 (f_{cm}/10)^{0.3}$ k (N/mm²) 34'625.49 Coefficiente di correzione, k 1.00 Tipo di aggregati presenti nell'impasto Quarziti Classe del cemento N

Coefficienti di omogeneizzazione

Moduli elastici Longitudinali	i	Moduli elastici Tangenziali		
nE a tempo 0	6.065	nG a tempo 0	5.598	
nE(t,t ₀) - Permanenti	16.031	nG(t,t₀) - Permanenti	14.798	
nE(t,t ₀) - Ritiro	14.343	nG(t,t ₀) - Ritiro	13.239	
nE(t,t ₀) - Def. imposte	19.655	nG(t,t ₀) - Def. imposte	18.143	

Tempo e ambiente

Tompo o ambiento	
Eta' del calcestruzzo in giorni all'inizio del ritiro per essiccamento, t_s Eta' del calcestruzzo in giorni al momento dell'applicazione dei carichi permanenti, t_0 Eta' del calcestruzzo in giorni al momento dell'applicazione del ritiro, t_0 Eta' del calcestruzzo in giorni al momento dell'applicazione delle deformazioni imposte, t_0 Eta' del calcestruzzo in giorni, t Dimensione fittizia dell'elemento di cls, $h_0 = 2A_c/u$ (mm) Sezione dell'elemento, A_c (mm²) Perimetro a contatto con l'atmosfera, u (mm) Umidita' relativa percentuale, RH (%)	2 30 2 30 36'500 288 3'800'000.00 26'400.00 75
Coefficiente di viscosita' $\varphi(t,t_0)$ e modulo elastico E_{cm} al tempo "t"	
Coefficiente di viscosita' $\phi(t,t_0)=\phi_0\beta_c(t,t_0)=$ al momento dell'applicazione dei carichi permanenti al momento dell'applicazione del ritiro al momento dell'applicazione delle deformazioni imposte	1.494 2.482 1.494
Coefficiente nominale di viscosita', $\phi_0 = \phi_{RH} \beta_c(f_{cm}) \beta_c(t_0) =$ al momento dell'applicazione dei carichi permanenti al momento dell'applicazione del ritiro al momento dell'applicazione delle deformazioni imposte	1.503 2.496 1.503
Coefficiente per l'evoluzione della viscosita' nel tempo, $\beta_c(t_0) = 1/(0.1 + t_0^{0.20})$ al momento dell'applicazione dei carichi permanenti al momento dell'applicazione del ritiro al momento dell'applicazione delle deformazioni imposte	0.482 0.801 0.482
Eta' del calcestruzzo corretta in funzione della tipologia di cemento, $t_0 = t_0 \left[9/(2+t_0^{-1.2})+1\right]^{\alpha} >= 0.5$ al momento dell'applicazione dei carichi permanenti al momento dell'applicazione del ritiro al momento dell'applicazione delle deformazioni imposte	30.00 2.00 30.00
Coefficiente per la variabilita' della viscosita' nel tempo, $\beta_c(t,t_0)=\left[(t-t_0)/(\beta_H+t-t_0)\right]^{0.30}$ al momento dell'applicazione dei carichi permanenti al momento dell'applicazione del ritiro al momento dell'applicazione delle deformazioni imposte	0.994 0.994 0.994
Modulo elastico al tempo "t", $E_{cm}(t,t_0) = E_{cm}/[1+\psi^*\phi(t,t_0)]$ al momento dell'applicazione dei carichi permanenti al momento dell'applicazione del ritiro al momento dell'applicazione delle deformazioni imposte	13'100 14'642 10'684
 ψ = al momento dell'applicazione dei carichi permanenti al momento dell'applicazione del ritiro al momento dell'applicazione delle deformazioni imposte 	1.100 0.550 1.500
Altri dati: Coefficiente che tiene conto dell'umidita', $\phi_{RH}=1+[(1-RH/100)/(0.1h_0^{-1/3})\alpha_1]\alpha_2$ Coefficiente per la resistenza del cls, $\alpha_1=(35/f_{cm})^{0.7}$ per $f_{cm}>35$ Mpa oppure $\alpha_1=1$ per $f_{cm}<=35$ Mpa Coefficiente per la resistenza del cls, $\alpha_2=(35/f_{cm})^{0.2}$ per $f_{cm}>35$ Mpa oppure $\alpha_2=1$ per $f_{cm}<=35$ Mpa Coefficiente per la resistenza del cls, $\beta_c(f_{cm})=16.8/f_{cm}^{0.5}$ Coefficiente per il tipo di cemento, $\alpha_1=1$	1.249 0.834 0.950 2.495

<u>Deformazione di ritiro ε_s (t,t₀)</u>

 $\varepsilon_{\text{s}}\left(t,t_{0}\right)=\varepsilon_{\text{cd}}\left(t\right)+\varepsilon_{\text{ca}}\left(t\right)=0.000290$

Ponte Rio Guarabione – VI01 Relazione tecnica e di calcolo

Coefficiente che tiene conto dell'umidita', β_H = 1.5 [1+(0.012 RH)¹⁸] h_0 + 250 α_3 <= 1500 α_3 Coefficiente per la resistenza del cls, α_3 =(35/f_{cm})^{0.5} per f_{cm}>35 Mpa oppure α_3 =1 per f_{cm}<=35 Mpa

716 0.879

Dove:

Deformazione dovuta al ritiro per essiccamento, $\varepsilon_{cd}(t) = \beta_{ds}(t,t_s) k_h \varepsilon_{cd,0} =$	0.000221
Coeff. per la variabilita' della deformazione nel tempo, $\beta_{ds}(t,t_s) = (t-t_s)/[(t-t_s)+0.04(h_0^3)^{0.5}] =$	0.995
Parametro che dipende da h₀ (vedi prospetto seguente), kh =	0.76
Deformazione di base, $\varepsilon_{cd,0} = 0.85 \left[(220+110\alpha_{ds1})^* \exp(-\alpha_{ds2} f_{cm}/f_{cm0}) \right] 10^{-6} \beta_{RH} =$	0.000292
$\beta_{RH} = 1.55 \left[1 - (RH/RH0)^3 \right] =$	0.896
$f_{cm0} =$	10 Mpa
RH0 =	100%
Coefficiente per il tipo di cemento, α _{ds1}	4
Coefficiente per il tipo di cemento, α _{ds2}	0.12
Deformazione dovuta al ritiro autogeno, $\varepsilon_{ca}(t) = \beta_{as}(t) \varepsilon_{caoo} =$	0.0000684
$ \beta_{as}(t) = 1-exp(-0.2t^{0.5}) = $ $ \varepsilon_{caoo} = 2.5(f_{ck}-10) \cdot 10^{-6} = $	1.00
$\varepsilon_{\text{caoo}} = 2.5(f_{\text{ck}} - 10) \ 10^{-6} =$	0.0000684

Valori di kh

h_0	k_h
100	1.00
200	0.85
300	0.75
>=500	0.70

10.3. Geometria dei conci

A seguire si riporta un riepilogo delle caratteristiche geometriche delle sezioni delle travi principali, in funzione dell'ascissa x parallela all'asse stradale. La tabella seguente riepiloga le caratteristiche geometriche di tutte le sezioni trasversali prese in esame. Il significato dei simboli impiegati è:

X = ascissa della sezione

hs = altezza delle travi (metalliche)

bsup = larghezza della flangia superiore delle travi

tsup = spessore della flangia superiore delle travi

hw = altezza dell'anima delle travi

tw = spessore dell'anima delle travi

binf = larghezza della flangia inferiore delle travi

tinf = spessore della flangia inferiore delle travi

tcls = spessore della soletta collaborante in cls

hcop = spessore coppelle (predalles)

beff = larghezza efficace (collaborante) della soletta

Øs' = diametro armatura longitudinale superiore

s sup = passo armatura longitudinale superiore

c sup = copriferro di calcolo armatura longitudinale superiore

Øs = diametro armatura longitudinale inferiore

s inf = passo armatura longitudinale inferiore

c inf = copriferro di calcolo armatura longitudinale inferiore

d pioli = diametro pioli (gambo)

h pioli = altezza pioli

n pioli = numero di pioli su un metro lineare di piattabanda

X (m)	hs (mm)	bsup (mm)	tsup (mm)	hw (mm)	tw (mm)	binf (mm)	tinf (mm)	tcls (mm)	hcop (mm)	beff (mm)	Øs'	s sup (mm)	c sup (mm)	Øs	s inf (mm)	c inf (mm)	d pioli (mm)	h pioli (mm)	n pioli (/m)
0.0	2'000	700	25	1'945	20	1100	30	300	50	5'352	20	200	91	20	200	80	19	180	40
2.5	2'000	700	25	1'945	20	1100	30	300	50	5'398	20	200	91	20	200	80	19	180	40
2.5	2'000	700	25	1'945	20	1100	30	300	50	5'399	20	200	91	20	200	80	19	180	40
5.0	2'000	700	25	1'945	20	1100	30	300	50	5'445	20	200	91	20	200	80	19	180	40
5.0	2'000	700	25	1'945	20	1100	30	300	50	5'446	20	200	91	20	200	80	19	180	40
7.5	2'000	700	25	1'945	20	1100	30	300	50	5'493	20	200	91	20	200	80	19	180	40
7.5	2'000	700	35	1'930	20	1100	35	300	50	5'494	20	200	91	20	200	80	19	180	20
10.0	2'000	700	35	1'930	20	1100	35	300	50	5'540	20	200	91	20	200	80	19	180	20
10.0	2'000	700	35	1'930	20	1100	35	300	50	5'541	20	200	91	20	200	80	19	180	20
12.5	2'000	700	35	1'930	20	1100	35	300	50	5'550	20	200	91	20	200	80	19	180	20
12.5	2'000	700	40	1'920	20	1100	40	300	50	5'550	20	200	91	20	200	80	19	180	20
15.0	2'000	700	40	1'920	20	1100	40	300	50	5'550	20	200	91	20	200	80	19	180	20
15.0	2'000	700	40	1'920	20	1100	40	300	50	5'550	20	200	91	20	200	80	19	180	20
17.5	2'000	700	40	1'920	20	1100	40	300	50	5'550	20	200	91	20	200	80	19	180	20
17.5	2'000	700	40	1'920	20	1100	40	300	50	5'550	20	200	91	20	200	80	19	180	20
21.0	2'000	700	40	1'920	20	1100	40	300	50	5'550	20	200	91	20	200	80	19	180	20
21.0	2'000	700	40	1'920	20	1100	40	300	50	5'550	20	200	91	20	200	80	19	180	20
24.5	2'000	700	40	1'920	20	1100	40	300	50	5'550	20	200	91	20	200	80	19	180	20
24.5	2'000	700	40	1'920	20	1100	40	300	50	5'550	20	200	91	20	200	80	19	180	20
27.0	2'000	700	40	1'920	20	1100	40	300	50	5'550	20	200	91	20	200	80	19	180	20
27.0	2'000	700	40	1'920	20	1100	40	300	50	5'550	20	200	91	20	200	80	19	180	20
29.5	2'000	700	40	1'920	20	1100	40	300	50	5'550	20	200	91	20	200	80	19	180	20
29.5	2'000	700	35	1'930	20	1100	35	300	50	5'550	20	200	91	20	200	80	19	180	20
32.0	2'000	700	35	1'930	20	1100	35	300	50	5'541	20	200	91	20	200	80	19	180	20
32.0	2'000	700	35	1'930	20	1100	35	300	50	5'540	20	200	91	20	200	80	19	180	20
34.5	2'000	700	35	1'930	20	1100	35	300	50	5'494	20	200	91	20	200	80	19	180	20
34.5	2'000	700	25	1'945	20	1100	30	300	50	5'493	20	200	91	20	200	80	19	180	40
37.0	2'000	700	25	1'945	20	1100	30	300	50	5'446	20	200	91	20	200	80	19	180	40
37.0	2'000	700	25	1'945	20	1100	30	300	50	5'445	20	200	91	20	200	80	19	180	40
39.5	2'000	700	25	1'945	20	1100	30	300	50	5'399	20	200	91	20	200	80	19	180	40
39.5	2'000	700	25	1'945	20	1100	30	300	50	5'398	20	200	91	20	200	80	19	180	40
42.0	2'000	700	25	1'945	20	1100	30	300	50	5'352	20	200	91	20	200	80	19	180	40

10.4. ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DEI CODICI DI CALCOLO

In accordo col cap. 10 della norma [IV] si riportano di seguito le considerazioni e valutazioni relativamente ai risultati dell'analisi e ai codici di calcolo adottati.

10.4.1. Origine e caratteristiche dei software di calcolo

L'analisi dei modelli di calcolo è stata condotta attraverso il software agli elementi finiti LUSAS Bridge v. 15 della casa software Lusas. La sovrapposizione dei risultati dei modelli

e le verifiche di resistenza, tensionale, di stabilità, fessurazione e fatica sono state condotte per mezzo del software Ponti EC4 sviluppato dalla società Alhambra srl di Terni.

10.4.2. Affidabilità dei codici utilizzati

La versione di LUSAS Bridge adottata per gli scopi di questa progettazione consente di eseguire analisi di elementi finiti in campo lineare statico e dinamico, utilizzando una modellazione a grigliato con elementi beam (monodimensionali) aventi leggi costitutive lineari. Il software permette di definire i carichi da traffico in accordo con le norme [IV] e [VIII], consentendo di movimentare, lungo le corsie convenzionali, le azioni concentrate e distribuite che simulano il passaggio dei veicoli, valutando per ogni sezione dell'impalcato gli effetti massimi e quelli concomitanti (in termini di sollecitazioni).

Il software in parola permette, inoltre, un'analisi strutturale per fasi – necessaria per eseguire correttamente il progetto di questa tipologia di impalcati – cioè è in grado di analizzare ed estrarre i risultati di differenti modelli aventi in comune la geometria (posizione e dimensioni degli elementi f.e.m.), ed i vincoli.

Dopo aver esaminato la documentazione a corredo del software e quella reperibile sul sito web (www.lusas.com) si ritiene, per le particolari funzioni implementate (in particolare la possibilità di interfacciarsi col software post-processore PontiEC4), che il LUSAS sia affidabile ed idoneo alla progettazione in oggetto.

Il software PontiEC4, pre / post-processore e verificatore specifico per ponti misti acciaio-calcestruzzo, è in grado di definire, in fase di pre-processing, le sezioni degli elementi beam da usare nel modello LUSAS in funzione delle diverse fasi (1, 2a, 2b, 3a, 3b) contemplate nell'analisi / verifica del ponte a sezione composta. In fase di post-processing, il software estrae e sovrappone i risultati dell'analisi dei diversi modelli ed esegue le verifiche previste (cfr. §.11.2)

Anche per il software di verifica PontiEC4 valgono le stesse considerazioni e giudizio di idoneità e affidabilità espressi per il Lusas, anche in considerazione di tutta la documentazione e degli esempi svolti reperibili sul sito www.lusas.it

11. CRITERI DI VERIFICA

11.1. Premessa

L'analisi delle azioni agenti e le verifiche vengono eseguite sulla base di una suddivisione del comportamento dell'impalcato in tre macro-fasi, corrispondenti al grado di maturazione del getto di calcestruzzo e, quindi, ai diversi livelli di rigidezza e caratteristiche statiche delle sezioni (cfr. § 10.2). Il prospetto successivo riepiloga le fasi ed i modelli considerati ai fini delle verifiche globali dell'impalcato.

		Struttura resistente	Azioni agenti
sovrapposiziore	FASE 1 FASE 2a FASE 2b FASE 3a FASE 3b	Impalcato metallico Impalcato acc-cls Impalcato acc-cls Impalcato acc-cls Impalcato acc-cls	Peso acciaio + soleta cls Sovracc, permanenti Rifiro e cedimenti differ. Azione termica Carichi traffico stradale + vento (in eserc.)
	FATICA	Impalcato acc-cls	Carichi traffico stradale - modelli di caricc a fatica

Tabella 11.1: Fasi e modelli considerati

11.2. Verifiche considerate

Il quadro normativo di cui al § 3 prevede le verifiche sotto riportate.

11.2.1. Verifiche agli SLU

Agli Stati Limite Ultimi sono condotte le verifiche:

- a) di resistenza globale della sezione composta (stato limite elastico) con riferimento alle tensioni normali e tangenziali sugli elementi della trave metallica e sulle fibre della soletta c.a, tenendo conto delle instabilità locali per compressione e taglio di anima e piattabande (sez. di classe 4 con irrigidimenti longitudinali, dove presenti, e trasversali) e delle armature longitudinali presenti nella larghezza collaborante, nonché della fessurazione
- b) di resistenza della connessione tra travi e soletta, con riferimento alle caratteristiche resistenti dei connettori, delle armature e del calcestruzzo
- c) di resistenza e stabilità degli irrigidimenti (longitudinali e trasversali)

11.2.2. Verifiche agli SLE

Agli Stati Limite di Esercizio sono condotte le verifiche:

d) tensionali della sezione composta (SLE R)

- e) di resistenza della connessione (SLE R)
- f) di fessurazione (SLE R e SLE F)
- g) di web-breathing limitazione dello sfogo dell'anima (SLE F).

Le verifiche alle tensioni in esercizio SLE QP per il calcestruzzo (0.45 fck), come previsto dalla norma [IV] e dalla Sezione 7 di [XV], sono implicitamente soddisfatte dalle verifiche alle tensioni SLE R (0.6 fck) perché il contributo dei carichi variabili è superiore a quello dei carichi permanenti portati. Pertanto le tensioni di compressione sul calcestruzzo della soletta in combinazione SLE Rara sono almeno pari al doppio di quelle che si hanno in combinazione quasi permanente, e quindi la verifica condotta sulle tensioni del calcestruzzo in combinazione rara rispetto al limite 0.6 fck include automaticamente la verifica in combinazione quasi permanente rispetto al limite 0.45 fck.

11.2.3. Verifiche allo SLF

Allo Stato Limite di Fatica sono condotte le verifiche:

- h) delle flange e delle anime delle travi metalliche
- i) della connessione (pioli)
- j) dei giunti saldati a completa penetrazione longitudinali, ossia di composizione delle sezioni (flangia-anima, anima-irrigidimento longitudinali, qualora presenti) e trasversali, cioè tra omologhi elementi di segmenti di trave consecutivi (flangia con flangia oppure anima con anima).

12. ANALISI E VERIFICHE DELLA SOLETTA

12.1. Fase di getto – verifica predalle

MATERIALI			
MATERIALI			
Calcestruzzo		Acciaio d'armatura	
Rck	50 N/mm²	fyk	450.00 N/mm²
fck	41.50 N/mm ²	γs	1.15
γс	1.50	fyd	391.30 N/mm²
αcc	0.85	Es	210.00 kN/mm ²
fcd	23.52 N/mm ²	n	5.91
Ec	35.55 kN/mm²		
GEOMETRIA			
S (spessore fondello)	6.00 cm		ϕ_1
h (altezza traliccio)	16.00 cm		
H (altezza soletta finita)	30.00 cm	 * ./	$1_{\rm L}$
b (larghezza fondello)	40.00 cm	*	
i _L (passo longit. traliccio)	19.00 cm	`	
i _T (passo trasv. traliccio	20.00 cm		
Ø ₁ (diametro ferro sup)	24 mm	h	
\emptyset_2 (diametro ferro diag)	10 mm		
Ø ₃ (diametro ferri inf)	18 mm		
☐ Blocchi di alleggerimento			ϕ_2
SCHEMA STATICO		\```\/\d	03
		×	3
Sbalzo (solo momento negativo e taglio)		$i_{\rm T}$	/ /
Trave appoggiata		b :>	
Trave appoggiata con sbalzo			
L _S (lunghezza sbalzo)	2.70 m		
L ₁ (luce interna)	6.00 m		
-1 (0.00 III		
ANALISI DELLE SOLLECITAZIONI		[kNm/m] -17.00 ¬	Momento
Q _k (peso): 25*0.30*0.40 =	0.00 LN/	-12.00 -	
-IK (//-	3.00 kN/m 1.00 kN/m²	-7.00 -	\
Δq (incremento dinamico getto)= q_d : 1.35*(3.00+1.00*0.40) =	4.59 kN/m	-2.000.00 2.00	4.00 6.00 8.00 10.00
Įū	4.59 KN/m 1.35		0.00 0.00
γG =	1.00	3.00 -	/
M _{Ed}	-16.73 kNm/m	8.00 -	
M ⁺ Ed	20.66 kNm/m	13.00 -	
V _{Ed}	16.56 kN/m	18.00 -	
*EU	10.00 KIN/III		

VERIFICHE					
 ✓ Verifica ad instabilità delle barre compresse sup ✓ Verifica ad instabilità delle barre compresse infe ✓ Verifica di resistenza del calcestruzzo compresso 	riori				
Verifica a taglio V					
$\begin{array}{l} \alpha_1 (\textit{inclinazione diagonali nel piano verticale}) \\ \alpha_2 (\textit{inclinazione diagonali nel piano trasversale}) \\ N_{2,Ed} (\textit{forza sul diagonale } \varnothing_2 - \textit{SLU}) \\ l_0 (\textit{lunghezza di libera inflessione dei diagonali}) \\ \lambda (\textit{snellezza diagonali}) \\ \epsilon \\ \lambda^{\bar{\lambda}} \\ \Phi \\ \chi \\ N_{2,Rd} (\textit{resistenza a compressione del diagonale}) \end{array}$		√,	$atan(16.00/(19.00/2)) = \\ atan(16.00/(20.00/2)) = \\ 6/[2*sen(59.30°)*sen(57.99°)] = \\ [16.00^2 + (19.00/2)^2 + (20.00/2)^2] = \\ 10*21.12/(10.00/4) = \\ \sqrt{[235/450]} = \\ 84.50/(93.9*0.72) = \\ 0.5*[1+0.49*(1.25-0.2)+1.25^2] = \\ 1/[1.53 + \sqrt{(1.53^2-1.25^2)}] = \\ 000*0.41*391.30*3.14*10^2/4 = \\ \end{aligned}$	59.30 ° 57.99 ° 11.35 kN 21.12 cm 84.50 0.72 1.25 1.53 0.41 12.68 kN > N2,Ed> C	OK
Verifica a M-					
$N_{1,Ed}$ (forza sulla barra superiore \varnothing_1) - SLU $N_{3,Ed}$ (forza sulle barre inferiori \varnothing_3) - SLU $N_{c.a.}$ (forza compressione sul fondello - SLE R)	104.57 -52.28 -77.46	kN	σ_{S} (tensione \varnothing_{1}) σ_{S} (tensione \varnothing_{3}) σ_{C} (tensione sul cls)	231.14 N/mm ² < fyd> 0 -205.46 N/mm ² < fyd> 0 2.87 N/mm ² < 0.6 fck	OK
l_0 (lunghezza libera infless. barre int. Ø $_3$) = λ (snellezza) $10*19.00 / (18 / 4) = $ ϵ $\sqrt{[235/450]} =$	19.00 42.22 0.72	cm	$\lambda^ \Phi$ χ	0.62 0.80 0.77	
$N_{3,Rd}$ (resistenza a instabilità barre inf. Ø $_3$)		0.0	001 * 0.77 * 391.30 * 3.14 * 18²/4 =	76.89 kN > N3,Ed> C	ЭK
Verifica a M+					
N_{1Ed} (forza sulla barra superiore Ø $_1$) $N_{3,Ed}$ (forza sulle barre inferiori Ø $_3$)	-129.09 64.55		σ_{S} (tensione \varnothing_{1}) σ_{S} (tensione \varnothing_{3})	-285.36 N/mm² < fyd> (253.65 N/mm² < fyd> (
l_0 (lunghezza libera infless. barre sup. \varnothing_1) = λ (snellezza) $10*19.00 / (24/4) = $ ε $\sqrt{[235/450]} =$	19.00 31.67 0.72	cm	$\lambda^ \Phi$ χ	0.47 0.67 0.86	
$N_{1,Rd}$ (resistenza a instabilità barre sup. Ø $_1$)		0.0	001 * 0.86 * 391.30 * 3.14 * 24²/4 =	152.49 kN > N1,Ed> C	DΚ

12.2. In situazione persistente / eccezionale

12.2.1 DATI GEOMETRICI

L_{sb}		2.70 m	(Lunghezza sbalzo)
Ssol		0.30 m	(Spessore totale soletta, comprensiva delle predalles)
Spav		0.11 m	(Spessore medio pavimentazione sullo sbalzo)
Smarc		0.15 m	(Sovralzo marciapiede oltre la soletta)
Lmarc		0.75 m	(Larghezza marciapiede)
Lpav	= 2.70 - 0.75 =	1.95 m	(Larghezza pavimentazione sulla parte a sbalzo)
d rete/barr	☐ barriera fonoassorbente/parapetto		(Distanza rete/barriera fonoassorbente da incastro)
S guard	☑ guard-rail	0.45 m	(Arretramento guard-rail rispetto filo marciapiede)
d veletta	veletta di chiusura laterale	2.70 m	(Distanza veletta da incastro)
d tubo	tubo di drenaggio	3.00 m	(Distanza collettore da incastro)

Diffusione dei carichi e delle sollecitazioni nella soletta dell'impalcato

ανεπt
45° (Diffusione verticale dei carichi nello spessore della soletta)

© Diffusione orizzontale da un solo lato

αhor
45° (Diffusione orizzontale nel piano della soletta)

© Diffusione orizzontale da ambo i lati

12.2.2 PESI UNITARI

Soletta impalcato 25.00 kN/m³
Pavimentazione (sullo sbalzo) 23.00 kN/m³
Guard-rail 1.00 kN/m
Veletta 3.60 kN/m

Tubo di drenaggio acque stradali 1.00 kN/m

Schema di calcolo

12.2.3 CALCOLO DELLE AZIONI

12.2.3.1 URTO VEICOLO IN SVIO

F_k		100.00	kN	(Azione urto)
Ldiff		0.50	m	(Lunghezza di diffusione dell'urto sulla barriera)
h _{barr sic}		1.60	m	(Altezza della barriera di sicurezza)
h_{svio}	= min {1.00 ; 1.60-0.10} =	1.00	m	(Altezza di applicazione dell'azione di svio)
F_k	= 100.00/0.50 =	200.00	kN/m	(Azione urto al piede barriera)
M_k	= 200.00 * 1.00 =	200.00	kNm/m	(Momento azione urto al piede barriera)
Ld	= 0.50 + 2 * 1.95 * tan (45°) =	4.40	m	(Larghezza diffusione urto alla sezione di incastro)
VAk	= 200 * 0.50/4.40 =	22.73	kN/m	(Azione urto - sezione di incastro)
m_{Ak}	= 200 * 0.50/4.40 =	22.73	kNm/m	(Momento azione urto - sezione di incastro)

12.2.3.2 CARICHI DA TRAFFICO

12.2.3.2.1 Schema di carico 1 (LM 1)

L_l	0.40 m	(Larghezza impronta direzione longitudinale)
L_2	0.40 m	(Larghezza impronta direzione trasversale)
İlong	1.20 m	(Interasse longitudinale impronte di carico)
İtrasv	2.00 m	(Interasse trasversale impronte di carico)
$Q_{1k}(TS - Tandem Sistem)$	150.00 kN	(Carico su singola ruota - corsia n. 1)
$q_{1k}(UDL)$	9.00 kN/m ²	(Carico uniformemente distribuito - corsia n. 1)

v1 v2 m1 m2 Schema 1-p	$= 1.95 - 0.40/2 =$ $= 0.40 + 2*1.75*tan (45°) + 2*(0.11 + 0.30/2)*tan (45°) =$ $= 0.40 + 1.20 + 2*1.75*tan (45°) + 2*(0.11 + 0.30/2)*tan (45°) =$ $= 150 * 100% / 4.42 + 9.00 * 1.95 =$ $= 2*150*100% / 5.62 + 9.00*1.95 =$ $= 150 * 100% / 4.42*1.75 + 9.00*1.95^{2}/2 =$ $= 2*150*100% / 5.62*1.75 + 9.00*1.95^{2}/2 =$ $= 2*150*100% / 5.62*1.75 + 9.00*1.95^{2}/2 =$ $= 0.40/2 =$ $= 0.40/2 =$ $= 0.40/2 =$ $= 0.40/2 =$ $= 0.40/2 =$	70.93 76.50	m	(Braccio di leva impronte di carico fila esterna) (Aliquota efficace impronte di carico fila esterna) (Larghezza diffusione 1 impronta di carico) (Larghezza diffusione 2 impronte di carico) (Azione verticale 1 impronta + carico distrib.) (Azione verticale 2 impronte + carico distrib.) (Momento 1 impronta + carico distrib.) (Momento 2 impronte + carico distrib.)
v1 v2 m1 m2 • Schema 1-F	=0.40+1.20+2*1.75*tan(45°)+2*(0.11+0.30/2)*tan(45°)= = 150 * 100% / 4.42 + 9.00 * 1.95 = = 2 * 150 * 100% / 5.62 + 9.00 * 1.95 = = 150 * 100% / 4.42 * 1.75 + 9.00 * 1.95 ² / 2 = = 2 * 150 * 100% / 5.62 * 1.75 + 9.00 * 1.95 ² / 2 = = 2 * 150 * 100% / 5.62 * 1.75 + 9.00 * 1.95 ² / 2 = posizione 2 (adiacente trave) = 0.40/2 =	51.49 70.93 76.50 110.53	m kN/m kN/m kNm/m	(Larghezza diffusione 1 impronta di carico) (Larghezza diffusione 2 impronte di carico) (Azione verticale 1 impronta + carico distrib.) (Azione verticale 2 impronte + carico distrib.)
v1 v2 m1 m2 • Schema 1-p	=0.40+1.20+2*1.75*tan(45°)+2*(0.11+0.30/2)*tan(45°)= = 150 * 100% / 4.42 + 9.00 * 1.95 = = 2 * 150 * 100% / 5.62 + 9.00 * 1.95 = = 150 * 100% / 4.42 * 1.75 + 9.00 * 1.95 ² / 2 = = 2 * 150 * 100% / 5.62 * 1.75 + 9.00 * 1.95 ² / 2 = = 2 * 150 * 100% / 5.62 * 1.75 + 9.00 * 1.95 ² / 2 = posizione 2 (adiacente trave) = 0.40/2 =	51.49 70.93 76.50 110.53	m kN/m kN/m kNm/m	(Larghezza diffusione 2 impronte di carico) (Azione verticale 1 impronta + carico distrib.) (Azione verticale 2 impronte + carico distrib.) (Momento 1 impronta + carico distrib.)
v1 v2 m1 m2 • Schema 1-F	= 150 * 100% / 4.42 + 9.00 * 1.95 = = 2 * 150 * 100% / 5.62 + 9.00 * 1.95 = = 150 * 100% / 4.42 * 1.75 + 9.00 * 1.95 ² / 2 = = 2 * 150 * 100% / 5.62 * 1.75 + 9.00 * 1.95 ² / 2 = posizione 2 (adiacente trave)	51.49 70.93 76.50 110.53	kN/m kN/m	(Azione verticale 1 impronta + carico distrib.) (Azione verticale 2 impronte + carico distrib.) (Momento 1 impronta + carico distrib.)
w2 m1 m2 • Schema 1-F	= 2 * 150 * 100% / 5.62 + 9.00 * 1.95 = = 150 * 100% / 4.42 * 1.75 + 9.00 * 1.95 ² / 2 = = 2 * 150 * 100% / 5.62 * 1.75 + 9.00 * 1.95 ² / 2 = posizione 2 (adiacente trave) = 0.40/2 =	70.93 76.50 110.53	kN/m kNm/m	(Azione verticale 2 impronte + carico distrib.) (Momento 1 impronta + carico distrib.)
d1	= 150 * 100% / 4.42 * 1.75 + 9.00 * 1.95 ² / 2 = = 2 * 150 * 100% / 5.62 * 1.75 + 9.00 * 1.95 ² / 2 = posizione 2 (adiacente trave) = 0.40/2 =	76.50 110.53	kNm/m	(Momento 1 impronta + carico distrib.)
m2 Schema 1-p	= 2 * 150 * 100% / 5.62 * 1.75 + 9.00 * 1.95 ² / 2 = posizione 2 (adiacente trave) = 0.40/2 =	110.53		
Schema 1-p	posizione 2 (adiacente trave) = 0.40/2 =		kNm/m	(Momento 2 impronte + carico distrib.)
d1	= 0.40/2 =	0.20		
		0.20		
Ld1	=0.40+2*0.20*tan (45°)+2*(0.11+0.30/2)*tan (45°)=		m	(Braccio di leva impronte di carico fila esterna)
Lui	3.10.2 3.20 wit (10).2 (0.11.0.00/2) wit (40)-	1.32	m	(Larghezza diffusione 1 impronta di carico)
Ld2	=0.40+1.20+2*0.20*tan(45°)+2*(0.11+0.30/2)*tan(45°)=	2.52	m	(Larghezza diffusione 2 impronte di carico)
q1	= 150 / 1.32 + 9.00 * 1.95 =	131.19	kN/m	(Azione verticale 1 impronta + carico distrib.)
q2	= 2 * 150 / 2.52 + 9.00 * 1.95 =	136.60	kN/m	(Azione verticale 2 impronte + carico distrib.)
m1	= 150 / 1.32 * 0.20 + 9.00 * 1.95 ² / 2 =	39.84	kNm/m	(Momento 1 impronta + carico distrib.)
m2	= 2 * 150 / 2.52 * 0.20 + 9.00 * 1.95 ² / 2 =	40.92	kNm/m	(Momento 2 impronte + carico distrib.)
12.2.3.2.2 Sc	rhema di carico 2 (LM 2)			
L_1		0.60	m	(Larghezza impronta direzione longitudinale)
L_2		0.35	m	(Larghezza impronta direzione trasversale)
ilong				(Interasse impronte)
Q1k		200.00	kN	(Carico su singola ruota)
Schema 2-p	osizione 1 (adiacente guard rail)			
d	= 1.95 - 0.35/2 =	1.78	m	(Braccio di leva impronte di carico)
T 11	0.00.044.704(450).04/0.44.0.00/0\41.450	100%		(Aliquota efficace impronte di carico fila esterna)
Ld1	$= 0.60 + 2*1.78*tan(45^\circ) + 2*(0.11 + 0.30/2)*tan(45^\circ) = 0.60 + 2.00 + 2.178*tan(45^\circ) + 2*(0.11 + 0.30/2)*tan(45^\circ) = 0.60 + 2.00 + 2.178*tan(45^\circ) + 2*(0.11 + 0.30/2)*tan(45^\circ) = 0.60 + 2.00 + 2.178*tan(45^\circ) + 2*(0.11 + 0.30/2)*tan(45^\circ) = 0.60 + 2*1.78*tan(45^\circ) + 2*(0.11 + 0.30/2)*tan(45^\circ) + 2*(0.11 + $	4.67		(Larghezza diffusione 1 impronta di carico)
Ld2	= 0.60+2.00+2*1.78*tan(45°)+2*(0.11+0.30/2)*tan(45°)=	6.67		(Larghezza diffusione 2 impronte di carico)
q1 2	= 200 * 100% / 4.67 =		kN/m	(Azione verticale a metro 1 impronta di carico)
q2	= 2 * 200 * 100% / 6.67 =		kN/m	(Azione verticale a metro 2 impronte di carico)
ml m2	= 42.83 * 1.78 = = 59.97 * 1.78 =		kNm/m kNm/m	(Momento a metro 1 impronta di carico) (Momento a metro 2 impronte di carico)

ſ	 Schema 2-po 	osizione 2 (adiacente trave)			
	d	= 0.35/2 =	0.18	m	(Braccio di leva impronte di carico)
	Ld1	= $0.60+2*0.18*tan (45°)+2*(0.11+0.30/2)*tan (45°) =$	1.47	m	(Larghezza diffusione 1 impronta di carico)
	Ld2	=0.60+2.00+2*0.18*tan(45°)+2*(0.11+0.30/2)*tan(45°) =	3.47	m	(Larghezza diffusione 2 impronte di carico)
	q1	= 200 / 1.47 =	136.05	kN/m	(Azione verticale a metro 1 impronta di carico)
	q2	= 2 * 200 / 3.47 =	115.27	kN/m	(Azione verticale a metro 2 impronte di carico)
	ml	= 136.05 * 0.18 =	23.81	kNm/m	(Momento a metro 1 impronta di carico)
	m2	= 115.27 * 0.18 =	20.17	kNm/m	(Momento a metro 2 impronte di carico)
- 1					

12.2.3.2.3 Schema di carico 4 - folla (LM 4)

q5k	5.00	kN/m²	(Carico distribuito folla compatta)
L	= 2.50 - 2.40 = 0.10	m	(Larghezza zona caricata)
d	= (2.50 + 2.40) / 2 = 2.45	m	(Braccio di leva carico folla compatta)
vk	= 5.00 * 0.10 = 0.50	kN/m	(Risultante carico folla compatta)
mk	= 0.50 * 2.45 = 1.23	kNm/m	(Momento carico folla compatta)

12.2.4 RISULTATI

SOLLECITAZIONI DI P	SOLLECITAZIONI DI PIASTRA ALL'INCASTRO - COND. DI CARICO ELEMENTARI									
AZIONE	TIPO	q [kN/	/m²]	H [kN/m]	V [kN/m]	M [kNm/m]				
Peso proprio soletta	G1k	0.30 * 25 =	7.50	-	20.3	27.3				
Peso marciapiede	G2k	0.15 * 25 =	3.75	-	2.8	6.5				
Peso pavimentazione	G2k	0.11 * 23 =	2.53	-	4.9	4.8				
Peso veletta	G2k		3.60	-	3.6	9.7				
Peso guard-rail + tubo di drenaggio	G2k		2.00	-	2.0	5.4				
		Tot permanenti	Gk	-	33.6	53.8				
Traffico - LM 1 pos. 1	Q11k			-	70.9	110.5				
Traffico - LM 1 pos. 2	Q12k			-	136.6	40.9				
Traffico - LM 2 pos. 1	Q13k			-	60.0	106.4				
Traffico - LM 2 pos. 2	Q14k			-	136.1	23.8				
Traffico - LM 4 (folla)	Q15k			-	0.5	1.2				
Azione del vento su barriera	Fwk			-	0.0	0.0				
Azione eccezionale (urto veicolo)	Ak			22.7	0.0	22.7				

	COMBINAZIONI DI CARICO PER SITUAZIONI DI PROGEITO										
		Permanenti	T	Vento	Urto						
		Gk	LM 1	LM 2	LM 5	Fwk	Ak				
γ _F (A1)	(persistente e transitoria)	1.35	1.35	1.35	1.35	1.50	-				
γF	(eccezionale)	1.00	-	1.00	1	1	1.00				
ψ0		-	0.75	-	0.60	0.60	-				
ψ1	(gruppi 1a e 1b)	-	0.75	0.75	-	0.20	-				
ψ2		-	-	-	-	-	-				
ψ0		-	-	-	-	0.60	-				
ψ1	(gruppi 4)	-	-	-	0.75	0.20	-				
ψ2		-	-	-	-	-	-				

SOLLECITAZIONI DI PIASTRA ALL'INCASTRO - VALORI DI PROGETTO								
COMB.	GRUPPO		H [kN/m]	V [kN/m]	M [kNm/m]			
1 - SLU	(Gr. 1a)	1.35 * Gk + 1.35 * Q11k + 1.35 * 0.6 * Q15k + 1.5 * 0.6 * Fwk	4.6	142.9	233.1			
2 - SLU	(Gr. 1a)	1.35 * Gk + 1.35 * Q12k + 1.35 * 0.6 * Q15k + 1.5 * 0.6 * Fwk	4.6	231.5	139.1			
3 - SLU	(Gr. 1b)	1.35 * Gk + 1.35 * Q13k + 1.5 * 0.6 * Fwk	4.6	127.7	226.6			
4 - SLU	(Gr. 1b)	1.35 * Gk + 1.35 * Q14k + 1.5 * 0.6 * Fwk	4.6	230.4	115.1			
5 - SLU	(Gr. 4)	1.35 * Gk + 1.35 * Q15k + 1.5 * 0.6 * Fwk	4.6	47.4	84.6			
6 - SLU	(Gr. 1a)	1.35 * Gk + 1.5 * Fwk + 1.35 * 0.75 * Q11k + 1.35 * 0 * Q15k	7.7	118.5	199.4			
7 - SLU	(Gr. 1a)	1.35 * Gk + 1.5 * Fwk + 1.35 * 0.75 * Q12k + 1.35 * 0 * Q15k	7.7	185.0	128.9			
8 - SLU	(Gr. 1b)	1.35 * Gk + 1.5 * Fwk + 1.35 * 0 * Q13k	7.7	46.7	87.5			
9 - ECC		Gk + Q13k + Ak	22.7	94.6	185.5			
10 - SLE R	(Gr. 1a)	Gk + Q11k + 0.6 * Q15k + 0.6 * Fwk	3.1	105.8	172.2			
11 - SLE R	(Gr. 1a)	Gk + Q12k + 0.6 * Q15k + 0.6 * Fwk	3.1	171.5	102.6			
12 - SLE R	(Gr. 1b)	Gk + Q13k + 0.6 * Fwk	3.1	94.6	167.4			
13 - SLE R	(Gr. 1b)	Gk + Q14k + 0.6 * Fwk	3.1	170.7	84.7			
14 - SLE R	(Gr. 4)	Gk + Q15k + 0.6 * Fwk	3.1	35.1	62.1			
15 - SLE R	(Gr. 1a)	Gk + Fwk + 0.75 * Q11k + 0 * Q15k	5.1	88.1	147.6			
16 - SLE R	(Gr. 1a)	Gk + Fwk + 0.75 * Q12k + 0 * Q15k	5.1	137.3	95.4			
17 - SLE R	(Gr. 1b)	Gk + Fwk + 0 * Q13k	5.1	34.6	64.0			
18 - SLE F	(Gr. 1a)	Gk + 0.75 * Q11k + 0 * Q15k + 0 * Fwk	-	87.8	139.2			
19 - SLE F	(Gr. 1a)	Gk + 0.75 * Q12k + 0 * Q15k + 0 * Fwk	-	137.0	87.0			
20 - SLE F	(Gr. 1b)	Gk + 0.75 * Q13k + 0 * Fwk	-	79.6	136.1			
21 - SLE F	(Gr. 1b)	Gk + 0.75 * Q14k + 0 * Fwk	-	136.6	74.2			
22 - SLE F	(Gr. 4)	Gk + 0.75 * Q15k + 0 * Fwk	-	35.0	57.2			
23 - SLE F		Gk + 0.2 * Fwk	1.0	34.6	57.8			
24 - SLE Q.	P.	Gk + 0 * Fwk	-	34.6	56.3			

GEOMETRIA SEZIONE	Ferri trasversali							
Dimensioni sezione			n. / Ø passo (cm)					
larghezza B	100.00	cm	$A_{s,staffe}$ - cm ² /m					
altezza H	30.00	cm	A _{piegati} 2.5Ø26 40.00 33.18 cm ² /m					
			Rapporto armatura trasversale ? 4.69 %					
Ferri longitudinali (flessione+tag	lio)							
copriferro sup	9.00	cm	PARAMETRI SEZIONE INTERAMENTE REAGENTE					
copriferro inf	8.00	cm						
As' 5Ø20+5Ø26	42.25	cm ²	Area totale omogenizzata 3'869.44 cm²					
As 5Ø20	15.71	cm ²	Posizione baricentro 14.44 cm					
Rapp. armatura superiore ?	2.012	2 %	Momento statico baricentrico* . 13'880.8 cm3					
Rapp. armatura inferiore?	0.714	ŀ %	Momento d'inerzia baricentrico . 25.82 dm ⁴					
Rapp. rerativo armatura ?/?'	35	%	Braccio coppia interna 18.60 cm					

SOLLECITAZIONI DI PROGETTO				VERIFICHE SLU N-M			ERIFICHE SLU TAGLIO				
N.B. N >0 compressione											
										η_{sic}	$\eta_{ m sic}$
N [kN]	M [kNm]	V [kN]	T [kNm]	M _{Rd} [kNm]	N _{Rd} [kN]	η_{sic}	V _{Rd} [kN]	V _{Rcd} [kN]	V _{Rsd} [kN]	taglio cls	taglio c.a.
0.00	-222.84	141.52		-279.7	5'096.9	1.26	210	1'200	521	1.48	3.68
0.00	-128.87	230.17		-279.7	6'574.3	2.17	210	1'200	521	0.91	2.26
0.00	-216.34	126.31		-279.7	5'220.7	1.29	210	1'200	521	1.66	4.12
0.00	-104.78	229.03		-279.7	6'885.9	2.67	210	1'200	521	0.92	2.27
0.00	-74.29	46.03		-279.7	7'264.6	3.76	210	1'200	521	4.56	11.31
0.00	-184.55	117.17		-279.7	5'765.8	1.52	210	1'200	521	1.79	4.44
0.00	-114.07	183.66		-279.7	6'766.6	2.45	210	1'200	521	1.14	2.83
0.00	-72.64	45.35		-279.7	7'283.9	3.85	210	1'200	521	4.62	11.48
-22.73	-182.98	93.57		-278.0	-1'215.8	1.52	207	1'200	521	2.22	5.56

SOLLECITA	AZIONI SLE				VERIFICHE					
N.B. N >0 compressione N [kNn] M [kNm] M _{decom} [kNm] M _{fess} [kNm]			M _{fess} [kNm]	Tipo comb.	(tensioni i	(apertura fessure [mm]) Wk [mm] Wk,max [mm]				
0.00	-165.07	0.00	-49.93	Rara	-16.22	230.39	-22.41	±360.00	0.215	
0.00	-160.25	0.00	-49.93	Rara	-15.75	223.67	-22.41	±360.00	0.209	
0.00	-55.03	0.00	-49.93	Rara	-5.41	76.81	-22.41	±360.00	0.053	
0.00	-137.44	0.00	-49.93	Rara	-13.51	191.82	-22.41	±360.00	0.179	
0.00	-136.70	0.00	-49.93	Frequente	-13.43	190.80	-22.41	±360.00	0.178	0.300
0.00	-133.64	0.00	-49.93	Frequente	-13.13	186.53	-22.41	±360.00	0.174	0.300
0.00	-54.73	0.00	-49.93	Frequente	-5.38	76.38	-22.41	±360.00	0.052	0.300
0.00	-53.81	0.00	-49.93	Frequente	-5.29	75.10	-22.41	±360.00	0.050	0.300
0.00	-53.81	0.00	-49.93	Q.perman.	-5.29	75.10	-16.81	-	0.050	0.200

13. ANALISI E VERIFICHE DELLE TRAVI PRINCIPALI

13.1. Grafici di riepilogo delle azioni sollecitanti

Nell'esposizione dei risultati delle analisi e delle verifiche si fa riferimento ad una numerazione delle "fibre" delle sezione composta acciaio-cls. dettagliata nella figura successiva.

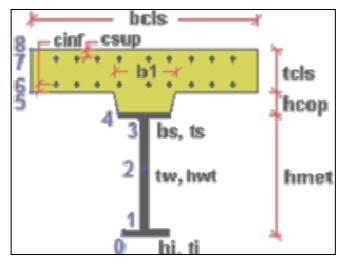


Figura 13.1: Simbologia adottata

Figura 13.2:

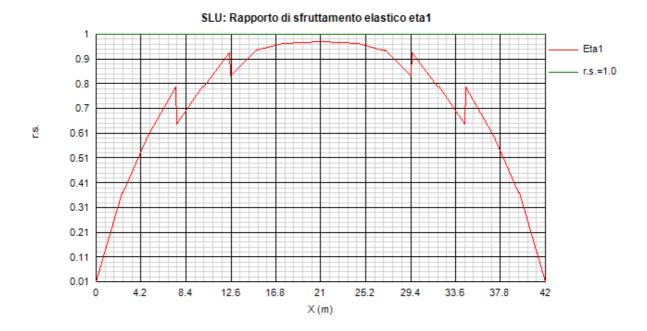


Figura 13.3:

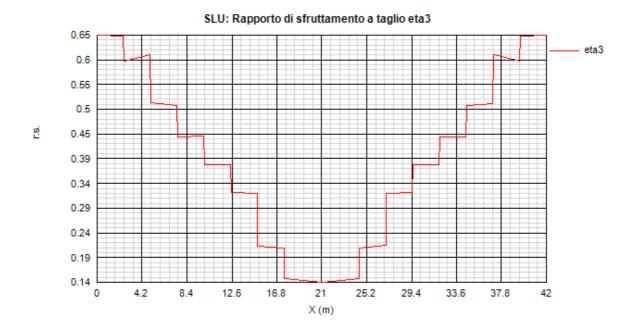


Figura 13.4:

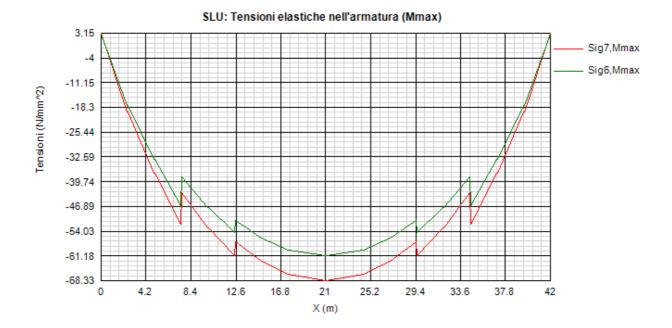


Figura 13.5:

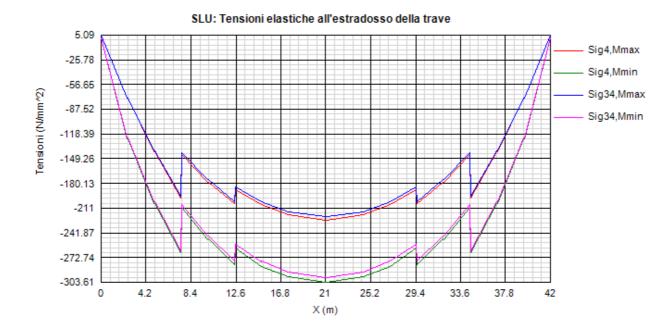


Figura 13.6:

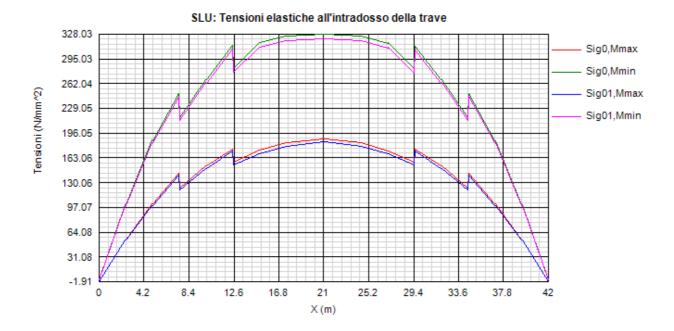


Figura 13.7:

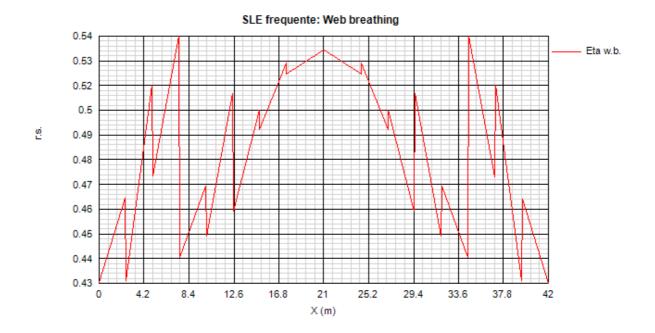


Figura 13.8:

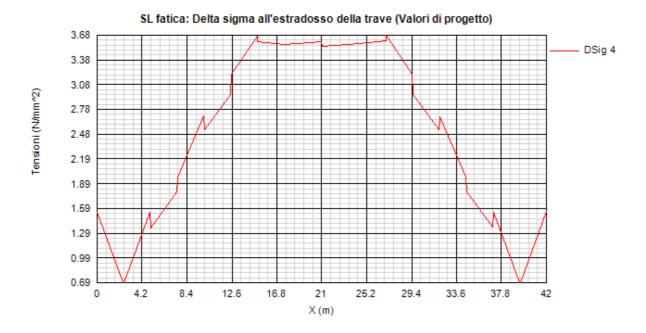


Figura 13.9:

Figura 13.10:

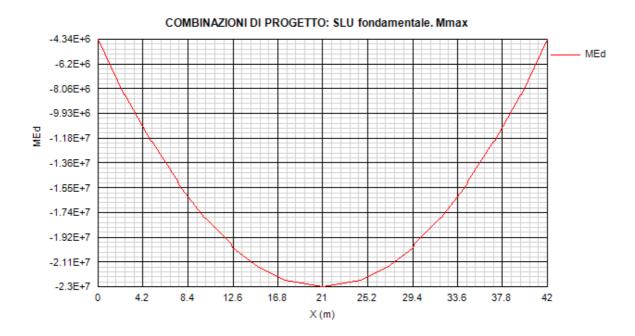


Figura 13.11:

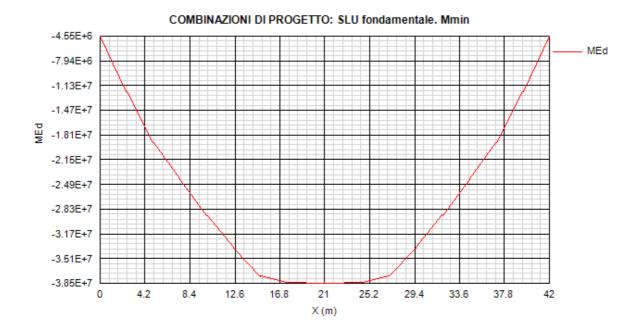


Figura 13.12:

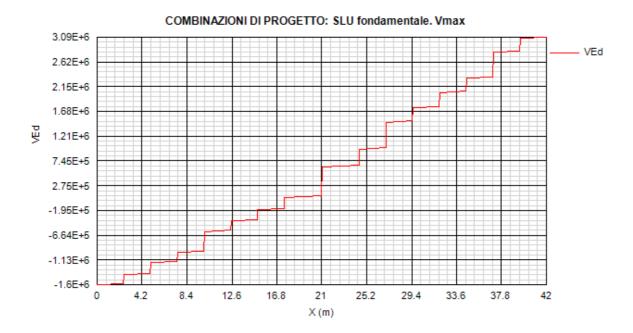


Figura 13.13:

Figura 13.14:

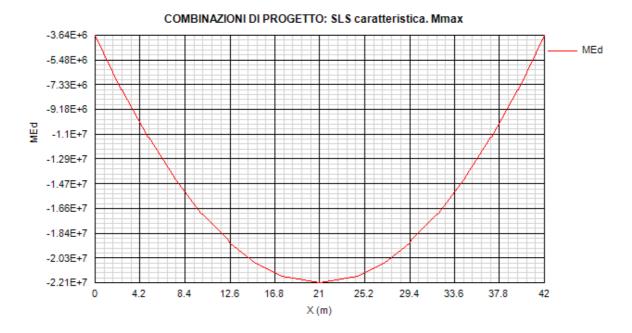


Figura 13.15:

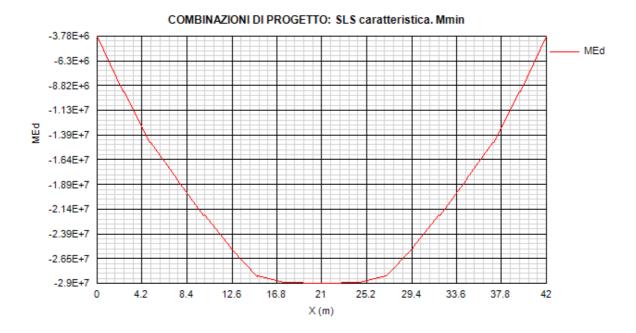


Figura 13.16:

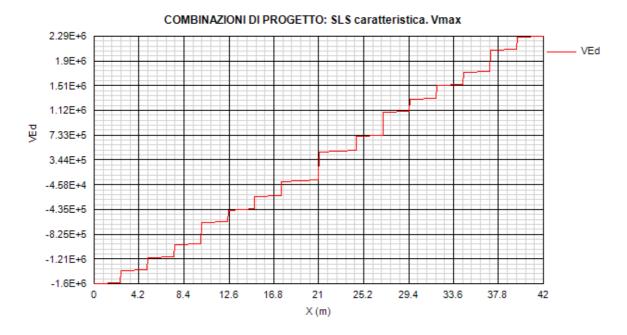


Figura 13.17:

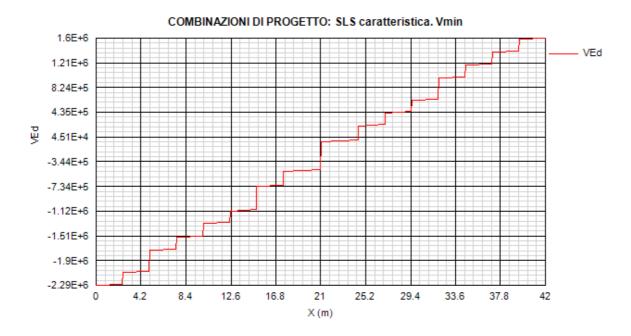


Figura 13.18:

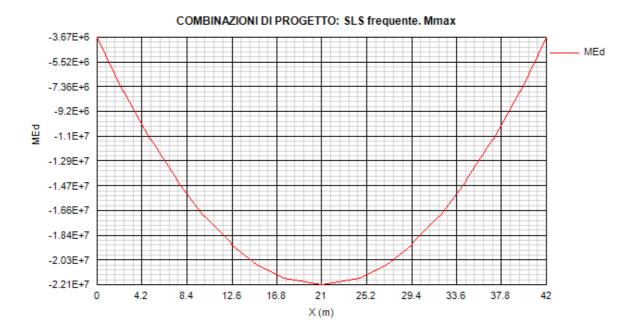


Figura 13.19:

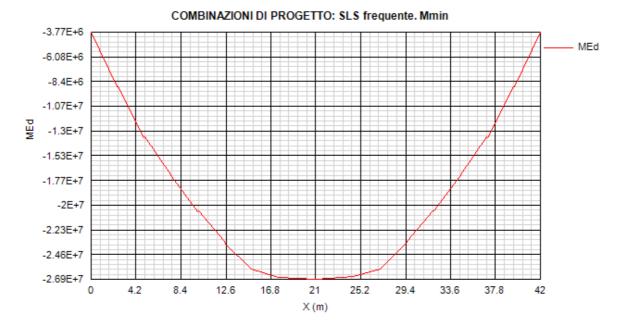


Figura 13.20:

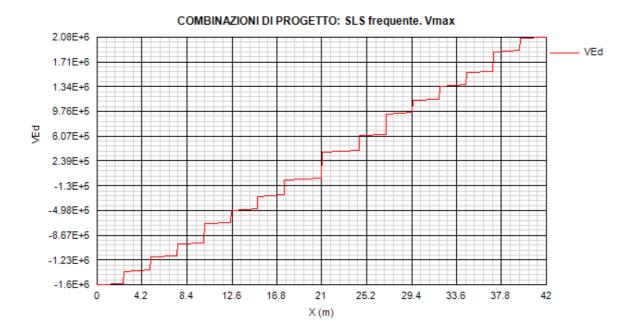


Figura 13.21:

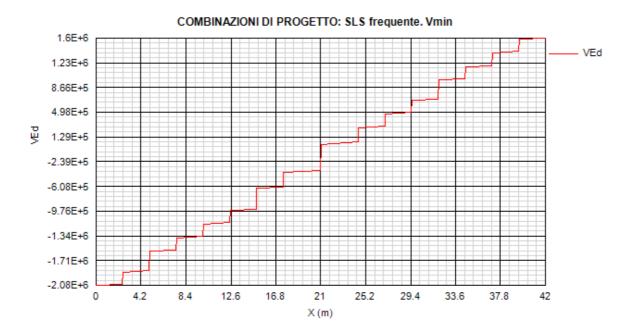


Figura 13.22:

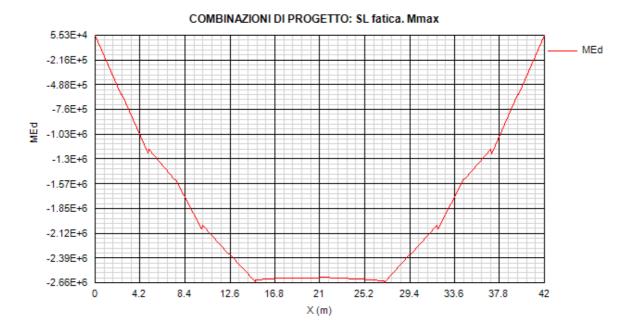


Figura 13.23:

Figura 13.24:

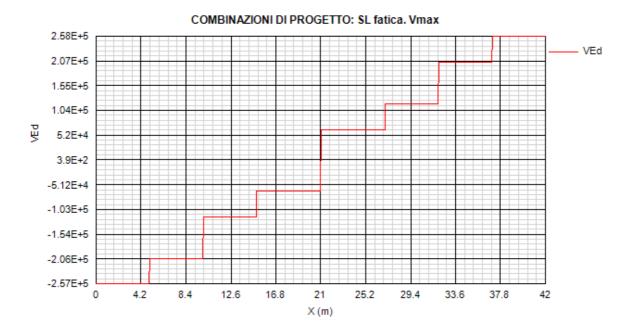


Figura 13.25:

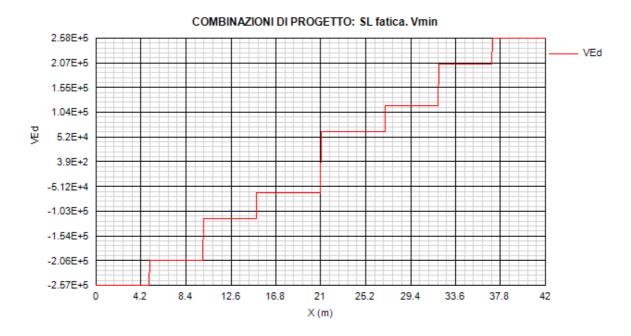


Figura 13.26:

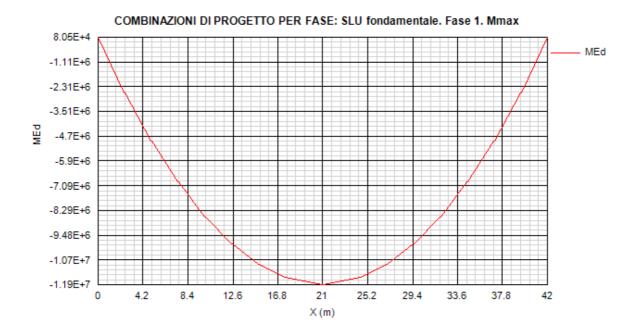


Figura 13.27:

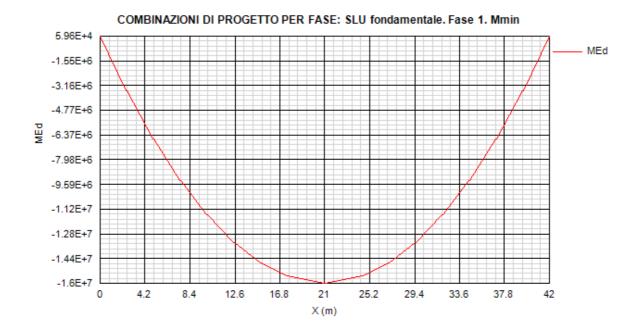


Figura 13.28:

Figura 13.29:

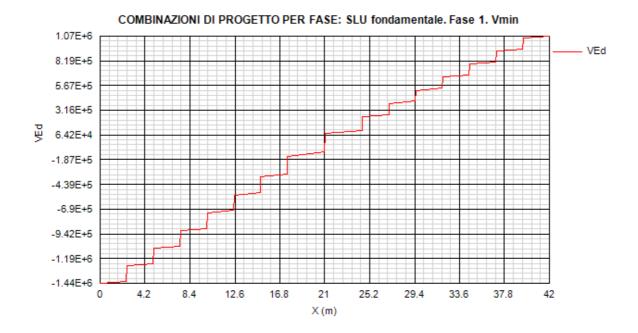


Figura 13.30:

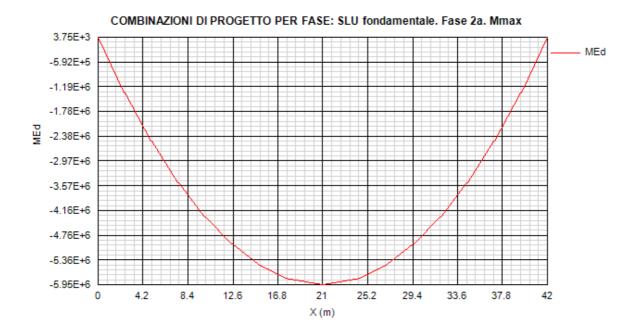


Figura 13.31:

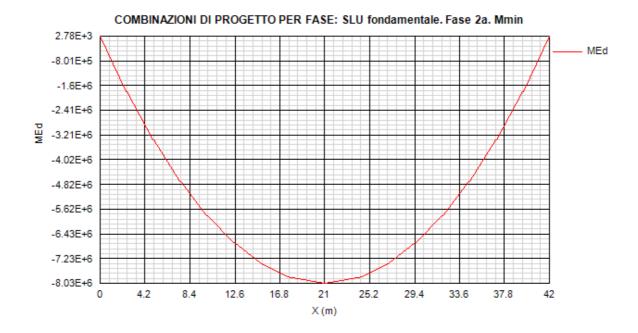


Figura 13.32:

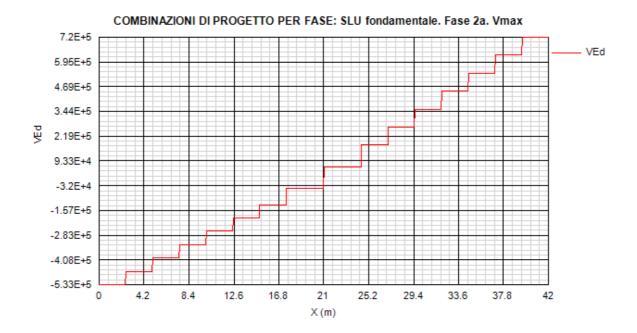


Figura 13.33:

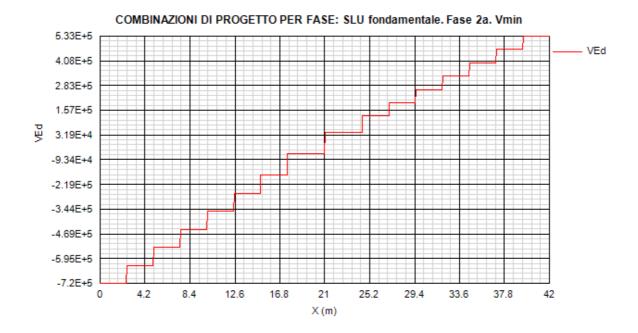


Figura 13.34:

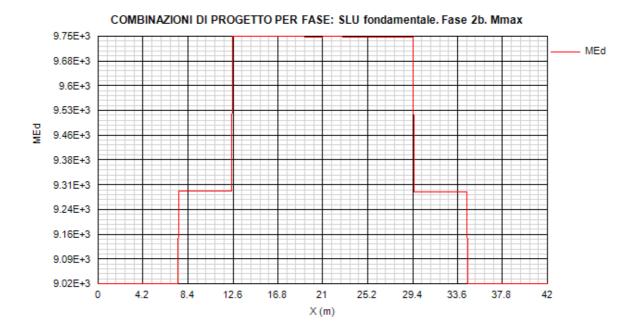


Figura 13.35:

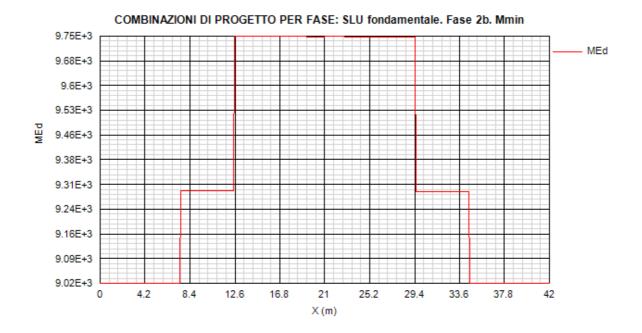


Figura 13.36:

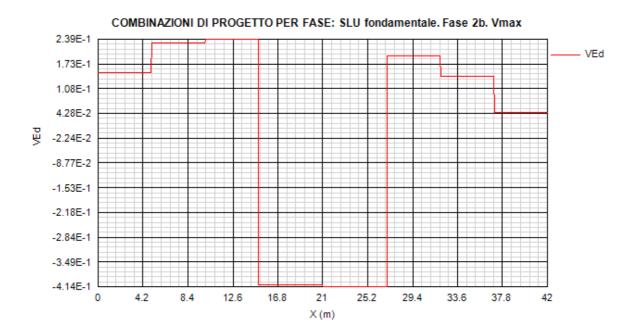


Figura 13.37:

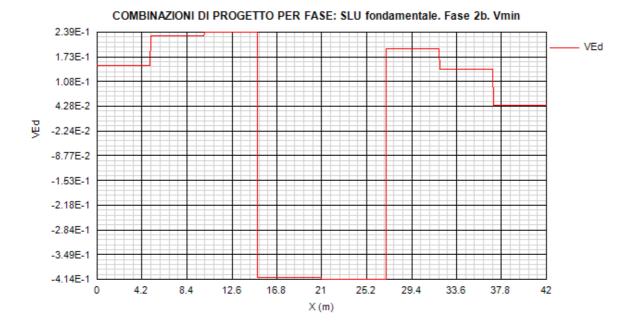


Figura 13.38:

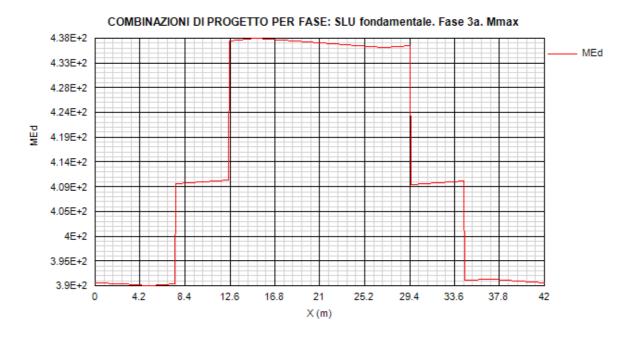


Figura 13.39:

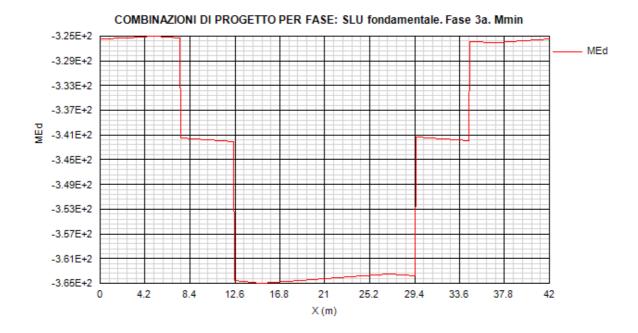


Figura 13.40:

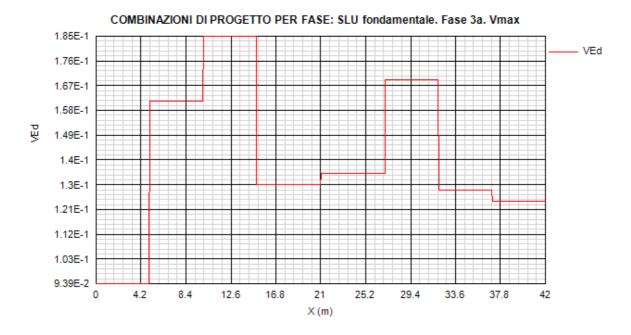


Figura 13.41:

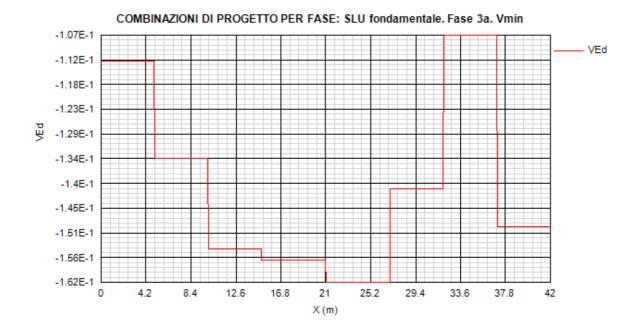


Figura 13.42:

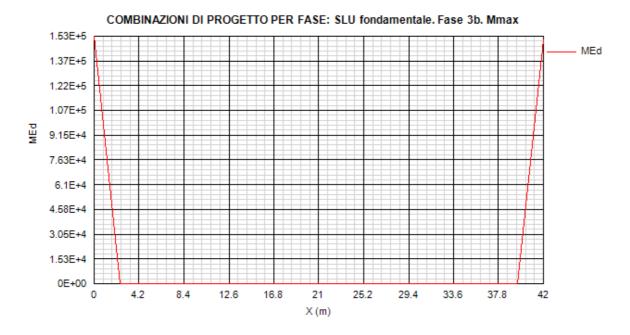


Figura 13.43:

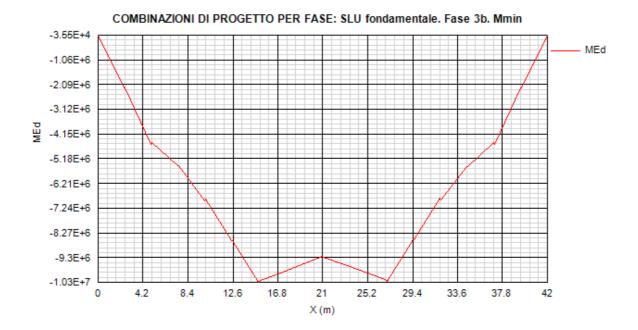


Figura 13.44:

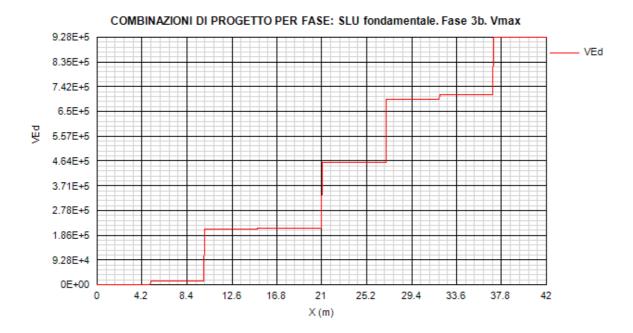


Figura 13.45:

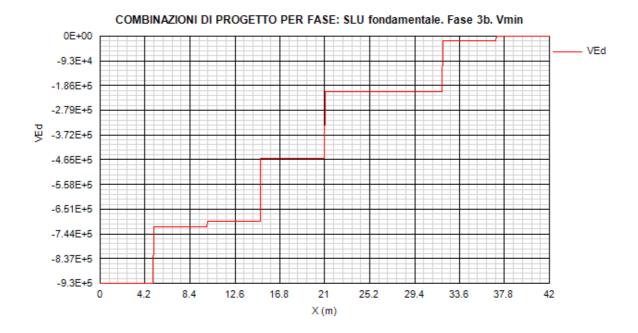


Figura 13.46:

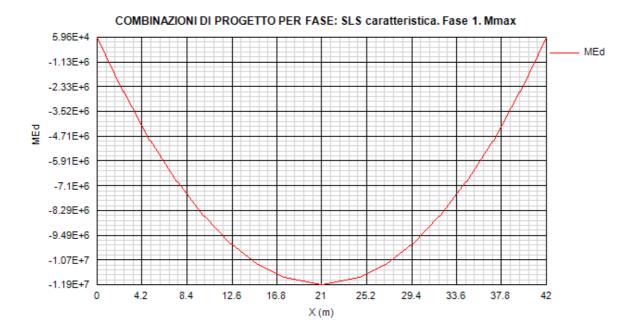


Figura 13.47:

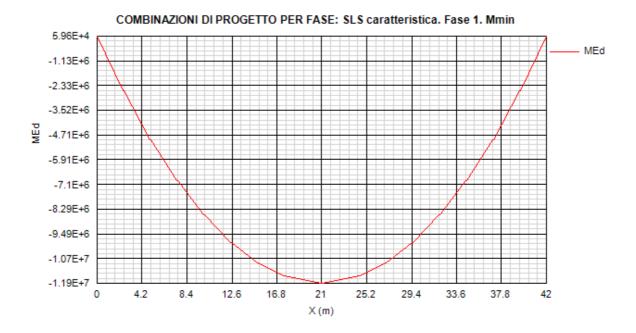


Figura 13.48:

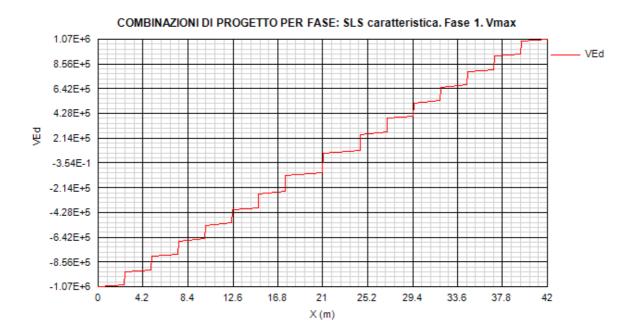


Figura 13.49:



Figura 13.50:

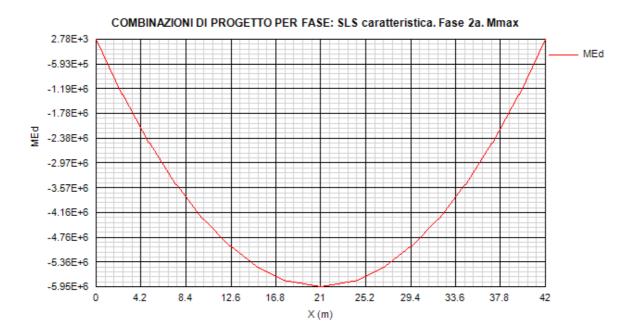


Figura 13.51:

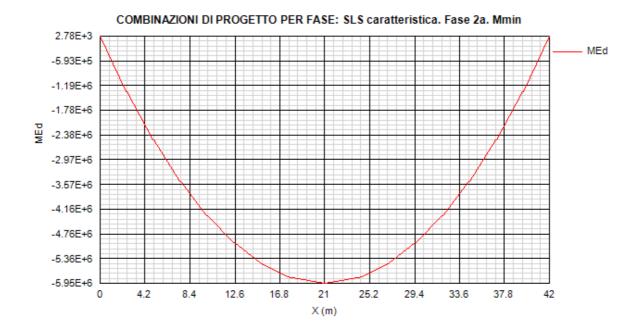


Figura 13.52:

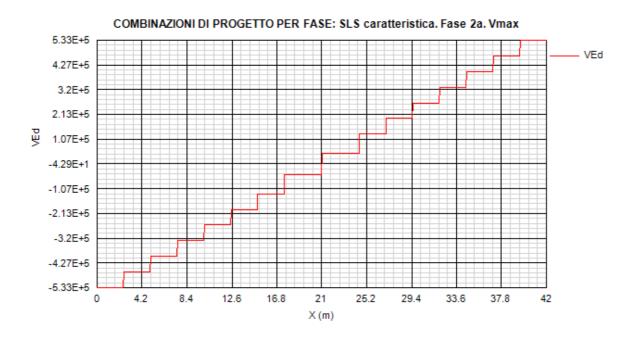


Figura 13.53:

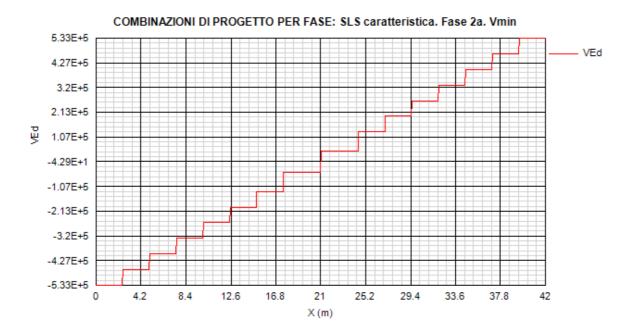


Figura 13.54:

Figura 13.55:

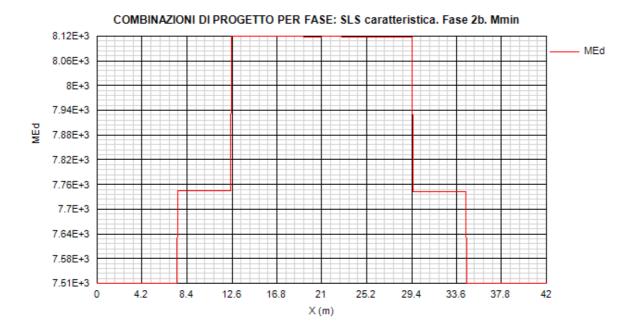


Figura 13.56:

Figura 13.57:

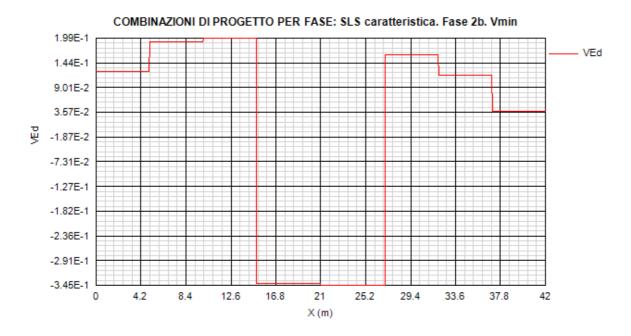


Figura 13.58:

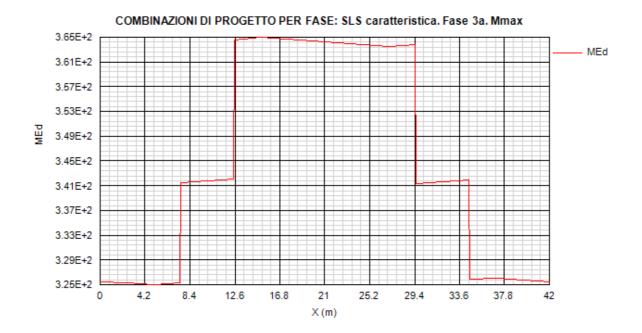


Figura 13.59:

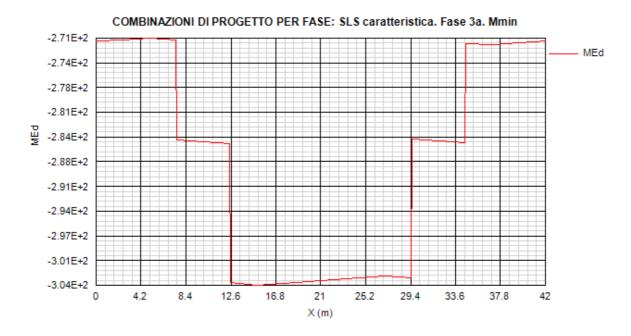


Figura 13.60:

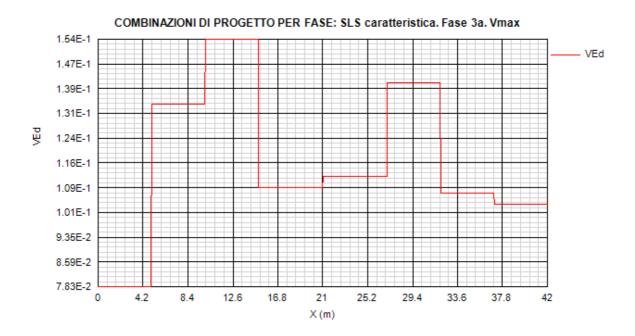


Figura 13.61:

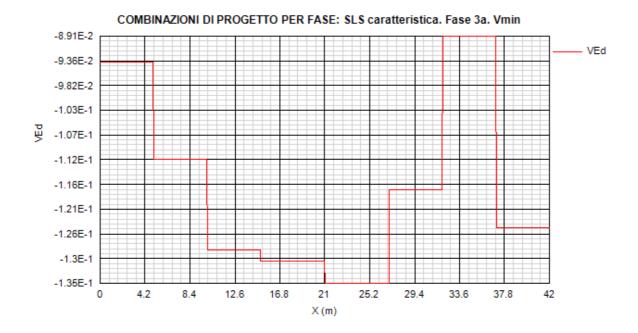


Figura 13.62:

Figura 13.63:

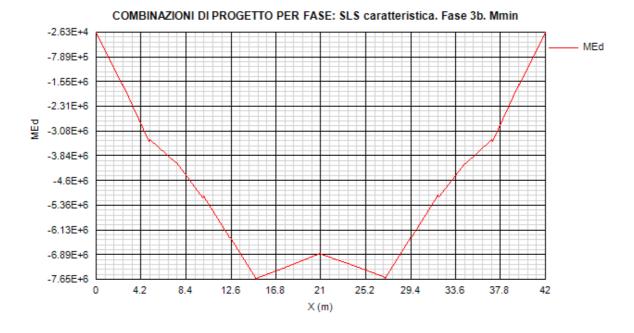


Figura 13.64:

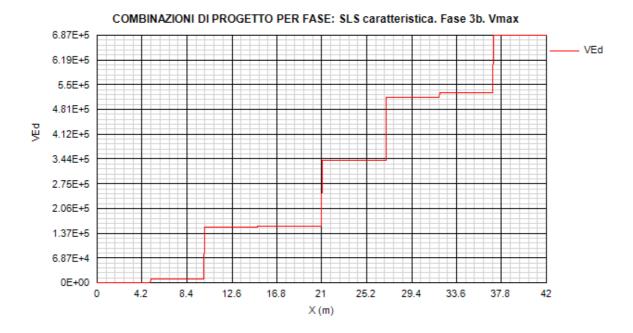


Figura 13.65:

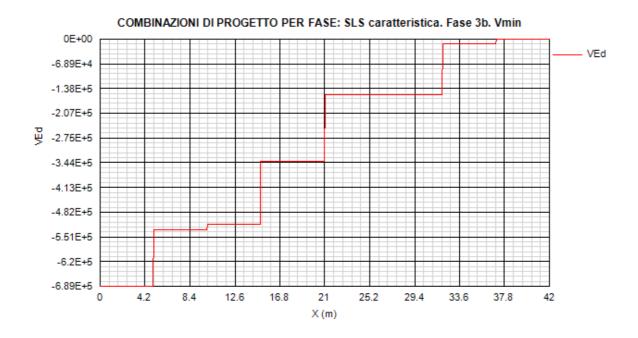


Figura 13.66:

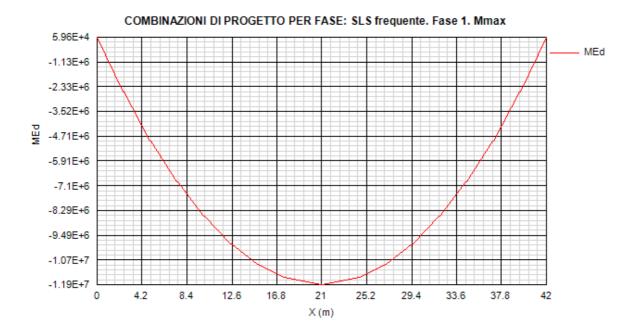


Figura 13.67:

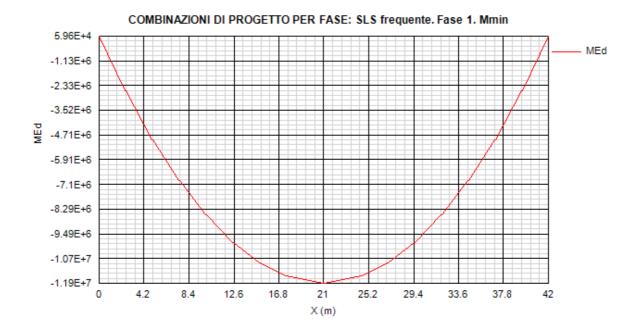


Figura 13.68:

Figura 13.69:

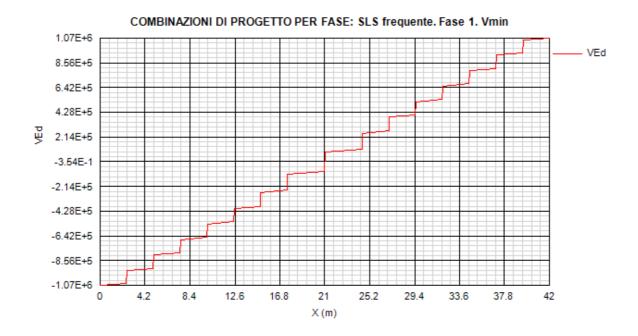


Figura 13.70:

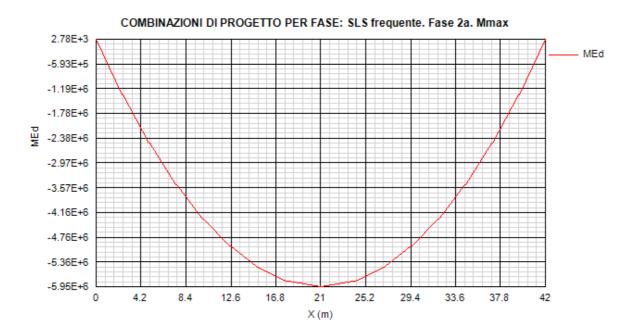


Figura 13.71:

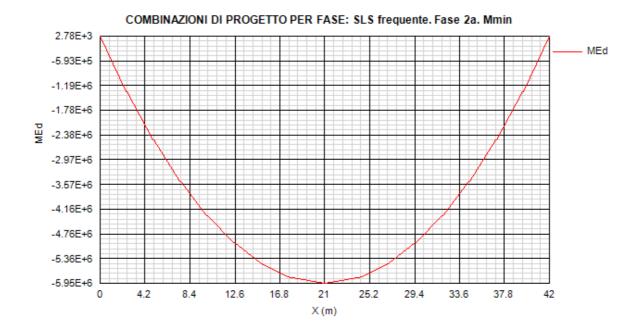


Figura 13.72:

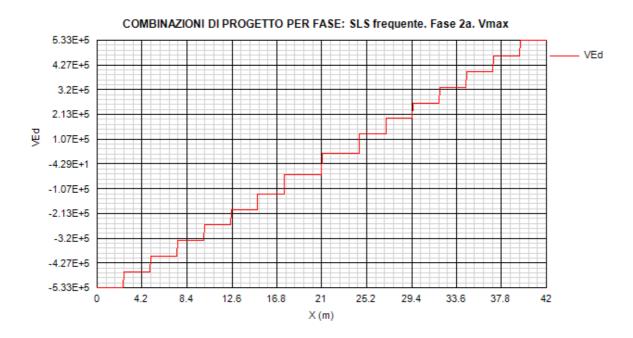


Figura 13.73:

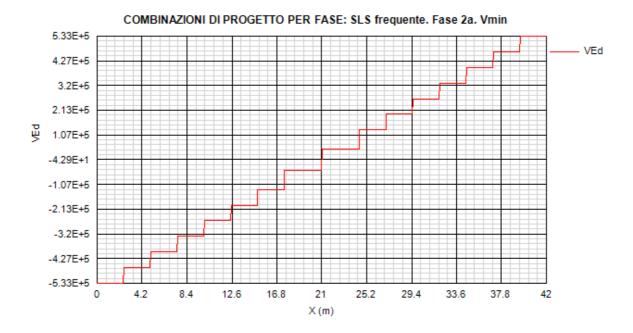


Figura 13.74:



Figura 13.75:

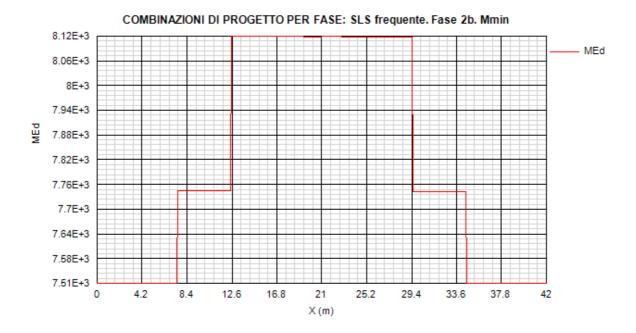


Figura 13.76:

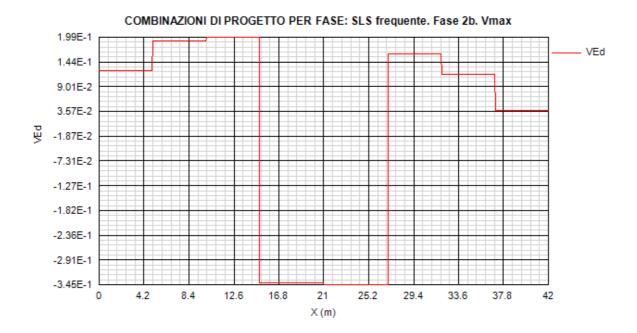


Figura 13.77:

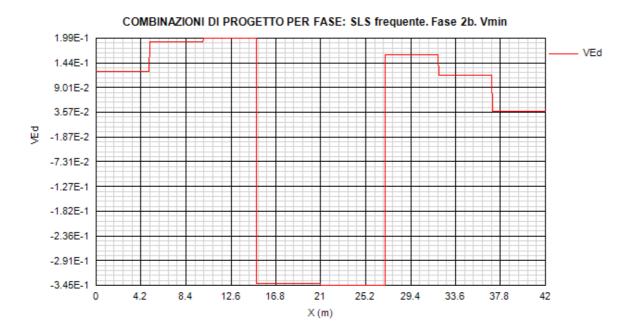


Figura 13.78:

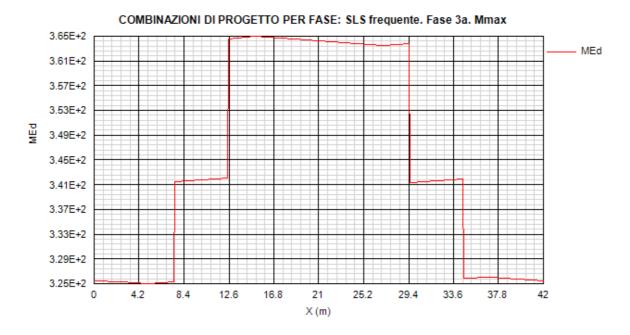


Figura 13.79:

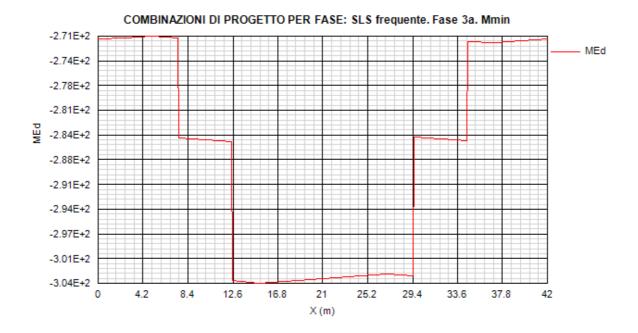


Figura 13.80:

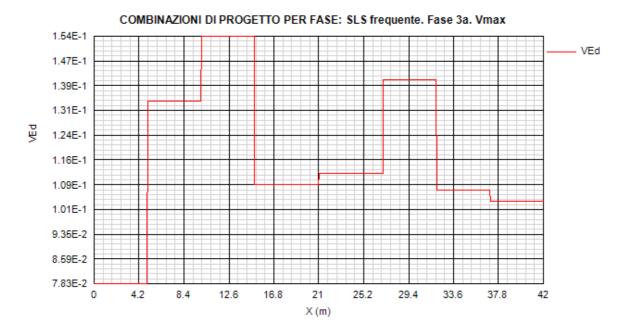


Figura 13.81:

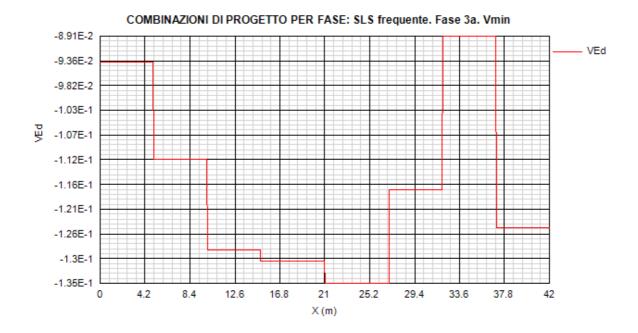


Figura 13.82:

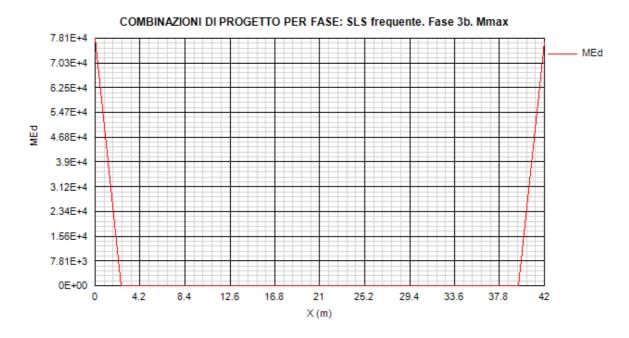


Figura 13.83:

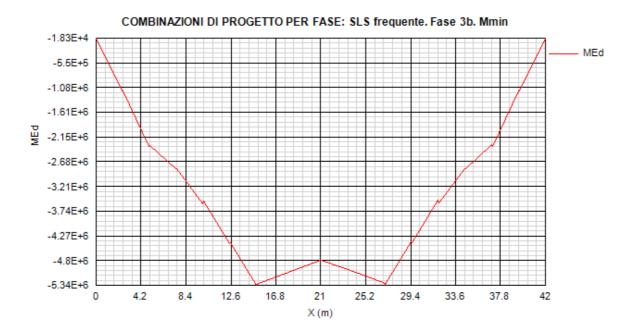


Figura 13.84:

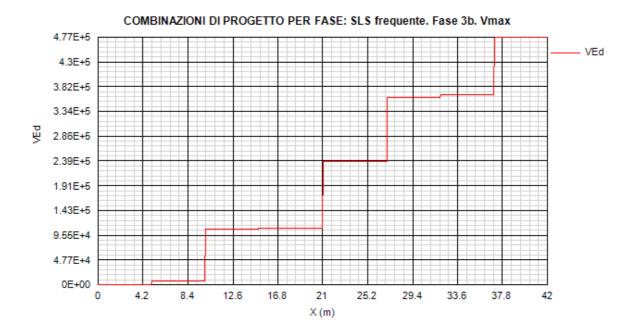


Figura 13.85:

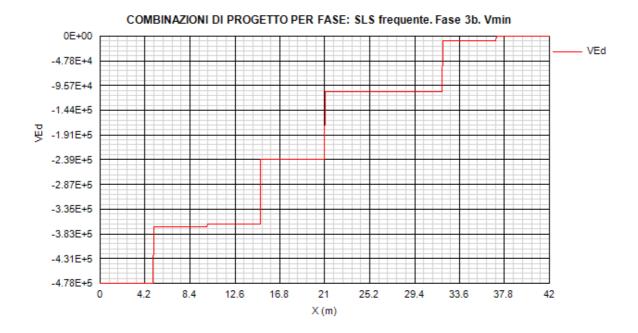


Figura 13.86:

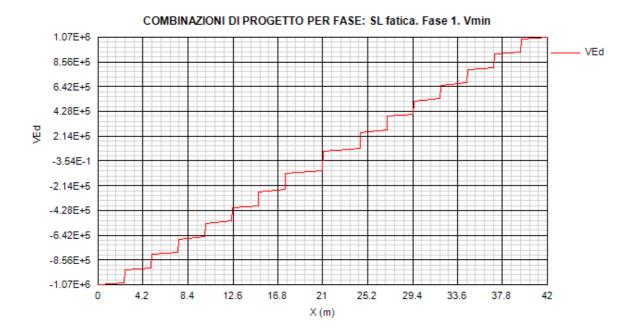


Figura 13.87:

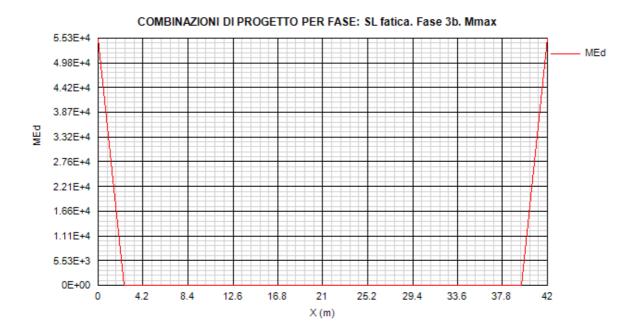


Figura 13.88:

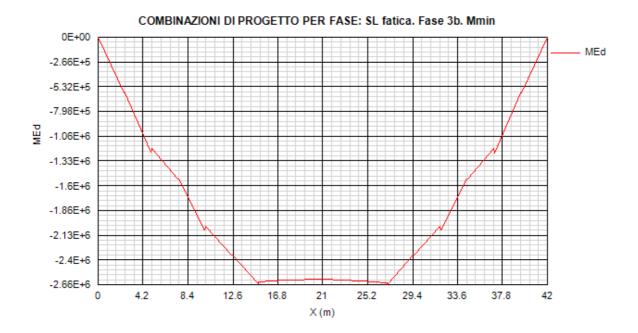


Figura 13.89:

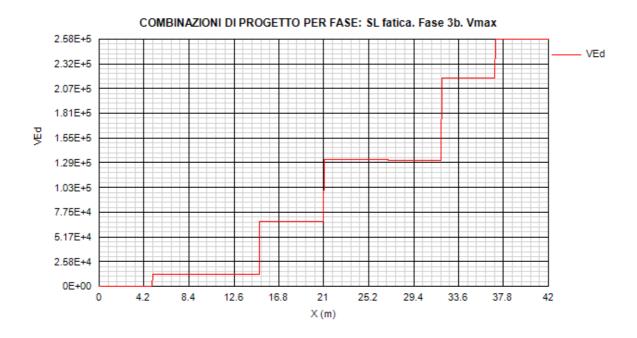


Figura 13.90:

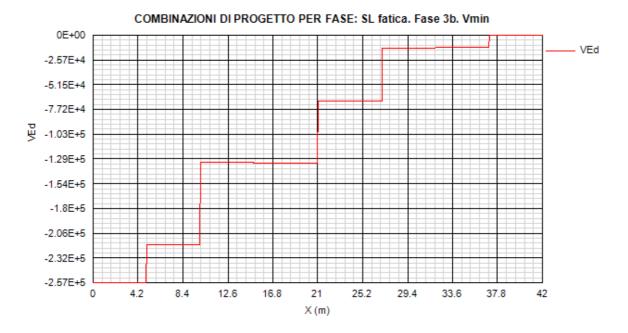


Figura 13.91:

13.2. Verifiche SLU

						RESI	STENZA			PIC)LI		IRRIGI	DIMENTI	
X	Combinazione	Classe	Classe	MEd/	σEd /	VEd/	MEd/	V Ed/	V/M/N	vEd/	di	verticali	verticali	verticali	verticali
(m)		F1	F3b	MR	fy	V Rd	Mf,Rd	$V_{\text{bw,Rd}}$		(n*PRd)	testata	LTB	lst,min /	σmax /	w/
												(inst.	İst	(fy/γM1)	(hw/300)
												tors.)			
0.0	SLU fond., Mmax	4	4	-0.110	0.015	0.595	-0.010	0.616	No int.	0.182	0.866	0.898	0.241	0.000	0.000
0.0	SLU fond., Mmin	4	4	-0.120	0.005	0.349	0.000	0.361	No int.	0.075	0.866	0.898	0.241	0.000	0.000
0.0	SLU fond., Vmax	4	4	-0.120	0.006	0.337	-0.010	0.349	No int.	0.067	0.866	0.898	0.241	0.000	0.000
0.0	SLU fond., Vmin	4	4	-0.110	0.012	0.651	-0.010	0.674	No int.	0.219	0.866	0.898	0.241	0.000	0.000
2.5	SLU fond., Mmax	4	4	-0.200	0.219	0.334	0.210	0.345	No int.	0.067	0.866	0.898	0.241	0.000	0.001
2.5	SLU fond., Mmin	4	4	-0.290	0.369	0.649	0.350	0.669	No int.	0.219	0.866	0.898	0.241	0.001	0.002
2.5	SLU fond., Vmax	4	4	-0.200	0.219	0.334	0.210	0.345	No int.	0.067	0.866	0.898	0.241	0.000	0.001
2.5	SLU fond., Vmin	4	4	-0.290	0.369	0.649	0.350	0.669	No int.	0.219	0.866	0.898	0.241	0.001	0.002
2.5	SLU fond., Mmax	4	4	-0.200	0.219	0.296	0.210	0.306	No int.	0.059	0.866	0.898	0.241	0.000	0.001
2.5	SLU fond., Mmin	4	4	-0.290	0.369	0.598	0.350	0.616	No int.	0.207	0.866	0.898	0.241	0.001	0.002
2.5	SLU fond., Vmax	4	4	-0.200	0.219	0.296	0.210	0.306	No int.	0.059	0.866	0.898	0.241	0.000	0.001
2.5	SLU fond., Vmin	4	4	-0.290	0.369	0.598	0.350	0.616	No int.	0.207	0.866	0.898	0.241	0.001	0.002
5.0	SLU fond., Mmax	4	4	-0.280	0.417	0.294	0.400	0.303	No int.	0.059	0.866	0.898	0.241	0.001	0.002
5.0	SLU fond., Mmin	4	4	-0.450	0.607	0.611	10.310	0.611	0.623	0.208	0.866	0.898	0.241	0.001	0.003
5.0	SLU fond., Vmax	4	4	-0.280	0.417	0.294	0.400	0.303	No int.	0.059	0.866	0.898	0.241	0.001	0.002
5.0	SLU fond., Vmin	4	4	-0.450	0.607	0.611	10.310	0.611	0.623	0.208	0.866	0.898	0.241	0.001	0.003
5.0	SLU fond., Mmax	4	4	-0.280	0.417	0.255	0.400	0.262	No int.	0.050	0.866	0.898	0.241	0.001	0.002
5.0	SLU fond., Mmin	4	4	-0.450	0.606	0.439	10.310	0.439	No int.	0.122	0.866	0.898	0.241	0.001	0.003
5.0	SLU fond., Vmax	4	4	-0.300	0.436	0.251	0.420	0.259	No int.	0.048	0.866	0.898	0.241	0.001	0.002
5.0	SLU fond., Vmin	4	4	-0.420	0.609	0.510	10.400	0.510	0.609	0.167	0.866	0.898	0.241	0.001	0.003
7.5	SLU fond., Mmax	4	4	-0.350	0.586	0.252	0.560	0.258	No int.	0.050	0.000	0.898	0.241	0.001	0.003
7.5	SLU fond., Mmin	4	4	-0.570	0.790	0.434	13.650	0.434	No int.	0.122	0.000	0.898	0.241	0.001	0.004
7.5	SLU fond., Vmax	4	4	-0.370	0.603	0.249	0.580	0.255	No int.	0.048	0.000	0.898	0.241	0.001	0.003
7.5	SLU fond., Vmin	4	4	-0.560	0.791	0.505	13.680	0.505	0.791	0.167	0.000	0.898	0.241	0.001	0.004
7.5	SLU fond., Mmax	4	3	-0.330	0.426	0.210	0.450	0.219	No int.	0.080	0.000	0.898	0.239	0.001	0.002
7.5	SLU fond., Mmin	4	3	-0.520	0.642	0.371	0.710	0.381	No int.	0.212	0.000	0.898	0.239	0.001	0.003

7.5	SLU fond., Vmax	4	3	-0.340	0.441	0.207	0.460	0.216	No int.	0.075	0.000	0.898	0.239	0.001	0.002
7.5	SLU fond., Vmin	4	3	-0.520	0.633	0.440	0.700	0.452	No int.	0.301	0.000	0.898	0.239	0.001	0.003
10.0	SLU fond., Mmax	4	3	-0.380	0.528	0.207	0.520	0.215	No int.	0.080	0.000	0.898	0.239	0.001	0.003
10.0	SLU fond., Mmin	4	3	-0.630	0.793	0.437	0.850	0.443	No int.	0.297	0.000	0.898	0.239	0.001	0.003
10.0	SLU fond., Vmax	4	3	-0.390	0.542	0.204	0.530	0.212	No int.	0.076	0.000	0.898	0.239	0.001	0.003
10.0	SLU fond., Vmin	4	3	-0.630	0.792	0.441	0.850	0.447	No int.	0.301	0.000	0.898	0.239	0.001	0.003
10.0	SLU fond., Mmax	4	3	-0.380	0.528	0.168	0.520	0.175	No int.	0.063	0.000	0.898	0.239	0.001	0.003
10.0	SLU fond., Mmin	4	3	-0.620	0.790	0.383	0.850	0.388	No int.	0.274	0.000	0.898	0.239	0.001	0.003
10.0	SLU fond., Vmax	4	3	-0.520	0.628	0.126	0.710	0.129	No int.	0.007	0.000	0.898	0.239	0.001	0.003
10.0	SLU fond., Vmin	4	3	-0.620	0.790	0.383	0.850	0.388	No int.	0.274	0.000	0.898	0.239	0.001	0.003
12.5	SLU fond., Mmax	4	3	-0.420	0.609	0.165	0.580	0.170	No int.	0.064	0.000	0.898	0.239	0.001	0.003
12.5	SLU fond., Mmin	4	3	-0.720	0.925	0.382	0.980	0.382	No int.	0.274	0.000	0.898	0.239	0.001	0.004
12.5	SLU fond., Vmax	4	3	-0.550	0.680	0.122	0.750	0.125	No int.	0.007	0.000	0.898	0.239	0.001	0.003
12.5	SLU fond., Vmin	4	3	-0.720	0.925	0.382	0.980	0.382	No int.	0.274	0.000	0.898	0.239	0.001	0.004
	SLU fond., Mmax	· -													
12.5		4	3	-0.400	0.557	0.124	0.520	0.131	No int.	0.046	0.000	0.576	0.200	0.001	0.002
12.5	SLU fond., Mmin	4	3	-0.670	0.835	0.325	0.880	0.329	No int.	0.247	0.000	0.576	0.200	0.001	0.003
12.5	SLU fond., Vmax	4	3	-0.510	0.614	0.082	0.670	0.086	No int.	0.009	0.000	0.576	0.200	0.001	0.002
12.5	SLU fond., Vmin	4	3	-0.670	0.835	0.325	0.880	0.329	No int.	0.247	0.000	0.576	0.200	0.001	0.003
15.0	SLU fond., Mmax	4	3	-0.420	0.612	0.121	0.560	0.127	No int.	0.046	0.000	0.576	0.200	0.001	0.003
15.0	SLU fond., Mmin	4	3	-0.740	0.937	0.323	0.970	0.323	No int.	0.247	0.000	0.576	0.200	0.001	0.003
15.0	SLU fond., Vmax	4	3	-0.530	0.652	0.081	0.700	0.081	No int.	0.009	0.000	0.576	0.200	0.001	0.002
15.0	SLU fond., Vmin	4	3	-0.740	0.937	0.323	0.970	0.323	No int.	0.247	0.000	0.576	0.200	0.001	0.003
15.0	SLU fond., Mmax	4	3	-0.420	0.612	0.082	0.560	0.086	No int.	0.030	0.000	0.576	0.200	0.001	0.003
15.0	SLU fond., Mmin	4	3	-0.740	0.936	0.002		0.000	No int.		0.000		0.200	0.001	0.003
		· -					0.970			0.006		0.576			
15.0	SLU fond., Vmax	4	3	-0.600	0.725	0.039	0.780	0.040	No int.	0.026	0.000	0.576	0.200	0.001	0.002
15.0	SLU fond., Vmin	4	3	-0.670	0.844	0.214	0.880	0.217	No int.	0.163	0.000	0.576	0.200	0.001	0.003
17.5	SLU fond., Mmax	4	3	-0.440	0.648	0.078	0.580	0.082	No int.	0.030	0.000	0.576	0.200	0.001	0.003
17.5	SLU fond., Mmin	4	3	-0.760	0.964	0.072	1.000	0.072	No int.	0.006	0.000	0.576	0.200	0.001	0.003
17.5	SLU fond., Vmax	4	3	-0.600	0.741	0.034	0.790	0.035	No int.	0.026	0.000	0.576	0.200	0.001	0.002
17.5	SLU fond., Vmin	4	3	-0.710	0.911	0.210	0.940	0.210	No int.	0.163	0.000	0.576	0.200	0.001	0.003
17.5	SLU fond., Mmax	4	3	-0.440	0.648	0.033	0.580	0.035	No int.	0.011	0.000	0.576	0.200	0.001	0.003
17.5	SLU fond., Mmin	4	3	-0.760	0.964	0.008	1.000	0.008	No int.	0.032	0.000	0.576	0.200	0.001	0.003
17.5	SLU fond., Vmax	4	3	-0.600	0.741	0.012	0.790	0.012	No int.	0.045	0.000	0.576	0.200	0.001	0.002
	SLU fond., Vmin		3												
17.5		4		-0.710	0.911	0.146	0.940	0.147	No int.	0.137	0.000	0.576	0.200	0.001	0.003
21.0	SLU fond., Mmax	4	3	-0.450	0.667	0.027	0.600	0.028	No int.	0.011	0.000	0.576	0.200	0.001	0.003
21.0	SLU fond., Mmin	4	3	-0.760	0.970	0.130	1.000	0.130	No int.	0.127	0.000	0.576	0.200	0.001	0.003
21.0	SLU fond., Vmax	4	3	-0.600	0.738	0.018	0.790	0.018	No int.	0.045	0.000	0.576	0.200	0.001	0.003
21.0	SLU fond., Vmin	4	3	-0.760	0.970	0.138	1.000	0.138	No int.	0.137	0.000	0.576	0.200	0.001	0.003
21.0	SLU fond., Mmax	4	3	-0.450	0.667	0.027	0.600	0.028	No int.	0.011	0.000	0.576	0.200	0.001	0.003
21.0	SLU fond., Mmin	4	3	-0.760	0.970	0.096	1.000	0.096	No int.	0.086	0.000	0.576	0.200	0.001	0.003
21.0	SLU fond., Vmax	4	3	-0.760	0.970	0.138	1.000	0.138	No int.	0.137	0.000	0.576	0.200	0.001	0.003
21.0	SLU fond., Vmin	4	3	-0.550	0.695	0.018	0.720	0.018	No int.	0.045	0.000	0.576	0.200	0.001	0.003
24.5	SLU fond., Mmax	4	3	-0.440	0.648	0.010	0.720	0.015	No int.	0.043	0.000	0.576	0.200	0.001	0.003
	SLU fond., Mmin														
24.5		4	3	-0.760	0.963	0.010	1.000	0.010	No int.	0.030	0.000	0.576	0.200	0.001	0.003
24.5	SLU fond., Vmax	4	3	-0.710	0.911	0.147	0.940	0.147	No int.	0.137	0.000	0.576	0.200	0.001	0.003
24.5	SLU fond., Vmin	4	3	-0.550	0.681	0.011	0.720	0.011	No int.	0.045	0.000	0.576	0.200	0.001	0.003
24.5	SLU fond., Mmax	4	3	-0.440	0.648	0.078	0.580	0.082	No int.	0.030	0.000	0.576	0.200	0.001	0.003
24.5	SLU fond., Mmin	4	3	-0.760	0.963	0.074	1.000	0.074	No int.	0.004	0.000	0.576	0.200	0.001	0.003
24.5	SLU fond., Vmax	4	3	-0.710	0.911	0.210	0.940	0.211	No int.	0.163	0.000	0.576	0.200	0.001	0.003
24.5	SLU fond., Vmin	4	3	-0.550	0.681	0.036	0.720	0.036	No int.	0.026	0.000	0.576	0.200	0.001	0.003
27.0	SLU fond., Mmax	4	3	-0.420	0.612	0.082	0.560	0.086	No int.	0.030	0.000	0.576	0.200	0.001	0.003
27.0	SLU fond., Mmin	4	3	-0.740	0.935	0.080	0.970	0.080	No int.	0.004	0.000	0.576	0.200	0.001	0.003
27.0	SLU fond., Vmax	4	3	-0.670	0.844	0.214	0.880	0.217	No int.	0.163	0.000	0.576	0.200	0.001	0.003
	SLU fond., Vmin														
27.0		4	3	-0.540	0.659	0.039	0.710	0.040	No int.	0.026	0.000	0.576	0.200	0.001	0.002
27.0	SLU fond., Mmax	4	3	-0.420	0.612	0.121	0.560	0.127	No int.	0.046	0.000	0.576	0.200	0.001	0.003
27.0	SLU fond., Mmin	4	3	-0.740	0.936	0.322	0.970	0.322	No int.	0.247	0.000	0.576	0.200	0.001	0.003
27.0	SLU fond., Vmax	4	3	-0.740	0.936	0.322	0.970	0.322	No int.	0.247	0.000	0.576	0.200	0.001	0.003
27.0	SLU fond., Vmin	4	3	-0.530	0.652	0.081	0.700	0.081	No int.	0.010	0.000	0.576	0.200	0.001	0.002
29.5	SLU fond., Mmax	4	3	-0.400	0.557	0.124	0.520	0.131	No int.	0.046	0.000	0.576	0.200	0.001	0.002
29.5	SLU fond., Mmin	4	3		0.834		0.880	0.329		0.247	0.000	0.576	0.200	0.001	0.003
1 1	•	1 .	ı -	1	1										

29.5	SLU fond., Vmax	4	3	-0.670	0.834	0.324	0.880	0.329	No int.	0.247	0.000	0.576	0.200	0.001	0.003
29.5	SLU fond., Vmin	4	3	-0.510	0.615	0.082	0.670	0.086	No int.	0.010	0.000	0.576	0.200	0.001	0.002
29.5	SLU fond., Mmax	4	3	-0.420	0.609	0.165	0.580	0.170	No int.	0.063	0.000	0.898	0.239	0.001	0.003
29.5	SLU fond., Mmin	4	3	-0.720	0.924	0.382	0.980	0.382	No int.	0.273	0.000	0.898	0.239	0.001	0.004
29.5	SLU fond., Vmax	4	3	-0.720	0.924	0.382	0.980	0.382	No int.	0.273	0.000	0.898	0.239	0.001	0.004
29.5	SLU fond., Vmin	4	3	-0.550	0.681	0.122	0.750	0.125	No int.	0.007	0.000	0.898	0.239	0.001	0.003
32.0	SLU fond., Mmax	4	3	-0.380	0.528	0.168	0.520	0.175	No int.	0.063	0.000	0.898	0.239	0.001	0.003
32.0	SLU fond., Mmin	4	3	-0.620	0.790	0.382	0.850	0.387	No int.	0.273	0.000	0.898	0.239	0.001	0.003
32.0	SLU fond., Vmax	4	3	-0.620	0.790	0.382	0.850	0.387	No int.	0.273	0.000	0.898	0.239	0.001	0.003
32.0	SLU fond., Vmin	4	3	-0.520	0.629	0.126	0.710	0.129	No int.	0.007	0.000	0.898	0.239	0.001	0.003
32.0	SLU fond., Mmax	4	3	-0.380	0.528	0.207	0.520	0.215	No int.	0.080	0.000	0.898	0.239	0.001	0.003
32.0	SLU fond., Mmin	4	3	-0.630	0.792	0.437	0.850	0.442	No int.	0.296	0.000	0.898	0.239	0.001	0.003
32.0	SLU fond., Vmax	4	3	-0.630	0.792	0.440	0.850	0.446	No int.	0.300	0.000	0.898	0.239	0.001	0.003
32.0	SLU fond., Vmin	4	3	-0.390	0.542	0.204	0.530	0.212	No int.	0.075	0.000	0.898	0.239	0.001	0.003
34.5	SLU fond., Mmax	4	3	-0.330	0.426	0.210	0.450	0.219	No int.	0.080	0.000	0.898	0.239	0.001	0.002
34.5	SLU fond., Mmin	4	3	-0.520	0.642	0.373	0.710	0.383	No int.	0.215	0.000	0.898	0.239	0.001	0.003
34.5	SLU fond., Vmax	4	3	-0.510	0.633	0.440	0.700	0.452	No int.	0.300	0.000	0.898	0.239	0.001	0.003
34.5	SLU fond., Vmin	4	3	-0.340	0.441	0.207	0.460	0.216	No int.	0.075	0.000	0.898	0.239	0.001	0.002
34.5	SLU fond., Mmax	4	4	-0.350	0.586	0.252	0.560	0.258	No int.	0.050	0.000	0.898	0.241	0.001	0.003
34.5	SLU fond., Mmin	4	4	-0.570	0.790	0.435	13.650	0.435	No int.	0.123	0.000	0.898	0.241	0.001	0.004
34.5	SLU fond., Vmax	4	4	-0.560	0.791	0.504	13.680	0.504	0.791	0.166	0.000	0.898	0.241	0.001	0.004
34.5	SLU fond., Vmin	4	4	-0.370	0.604	0.249	0.580	0.255	No int.	0.048	0.000	0.898	0.241	0.001	0.003
37.0	SLU fond., Mmax	4	4	-0.280	0.417	0.255	0.400	0.262	No int.	0.050	0.866	0.898	0.241	0.001	0.002
37.0	SLU fond., Mmin	4	4	-0.450	0.606	0.440	10.320	0.440	No int.	0.123	0.866	0.898	0.241	0.001	0.003
37.0	SLU fond., Vmax	4	4	-0.420	0.609	0.509	10.400	0.509	0.609	0.166	0.866	0.898	0.241	0.001	0.003
37.0	SLU fond., Vmin	4	4	-0.300	0.436	0.251	0.420	0.259	No int.	0.048	0.866	0.898	0.241	0.001	0.002
37.0	SLU fond., Mmax	4	4	-0.280	0.417	0.294	0.400	0.302	No int.	0.059	0.866	0.898	0.241	0.001	0.002
37.0	SLU fond., Mmin	4	4	-0.450	0.607	0.610	10.310	0.610	0.623	0.207	0.866	0.898	0.241	0.001	0.003
37.0	SLU fond., Vmax	4	4	-0.450	0.607	0.610	10.310	0.610	0.623	0.207	0.866	0.898	0.241	0.001	0.003
37.0	SLU fond., Vmin	4	4	-0.280	0.417	0.294	0.400	0.302	No int.	0.059	0.866	0.898	0.241	0.001	0.002
39.5	SLU fond., Mmax	4	4	-0.200	0.219	0.296	0.210	0.306	No int.	0.059	0.866	0.898	0.241	0.000	0.001
39.5	SLU fond., Mmin	4	4	-0.290	0.369	0.597	0.350	0.616	No int.	0.207	0.866	0.898	0.241	0.001	0.002
39.5	SLU fond., Vmax	4	4	-0.290	0.369	0.597	0.350	0.616	No int.	0.207	0.866	0.898	0.241	0.001	0.002
39.5	SLU fond., Vmin	4	4	-0.200	0.219	0.296	0.210	0.306	No int.	0.059	0.866	0.898	0.241	0.000	0.001
39.5	SLU fond., Mmax	4	4	-0.200	0.219	0.334	0.210	0.345	No int.	0.067	0.866	0.898	0.241	0.000	0.001
39.5	SLU fond., Mmin	4	4	-0.290	0.369	0.649	0.350	0.668	No int.	0.218	0.866	0.898	0.241	0.001	0.002
39.5	SLU fond., Vmax	4	4	-0.290	0.369	0.649	0.350	0.668	No int.	0.218	0.866	0.898	0.241	0.001	0.002
39.5	SLU fond., Vmin	4	4	-0.200	0.219	0.334	0.210	0.345	No int.	0.067	0.866	0.898	0.241	0.000	0.001
42.0	SLU fond., Mmax	4	4	-0.110	0.015	0.594	-0.010	0.615	No int.	0.182	0.866	0.898	0.241	0.000	0.000
42.0	SLU fond., Mmin	4	4	-0.120	0.005	0.349	0.000	0.361	No int.	0.075	0.866	0.898	0.241	0.000	0.000
42.0	SLU fond., Vmax	4	4	-0.110	0.012	0.651	-0.010	0.674	No int.	0.219	0.866	0.898	0.241	0.000	0.000
42.0	SLU fond., Vmin	4	4	-0.120	0.006	0.337	-0.010	0.349	No int.	0.067	0.866	0.898	0.241	0.000	0.000

13.3. Verifiche SLE R

X (m)	Combinazione	σid / σamm	Pioli VEd / (ks n PRd)
0.0	SLS caratt., Mmax	0.278	0.246
0.0	SLS caratt., Mmin	0.221	0.132
0.0	SLS caratt., Vmax	0.216	0.122
0.0	SLS caratt., Vmin	0.303	0.296
2.5	SLS caratt., Mmax	0.231	0.122
2.5	SLS caratt., Mmin	0.315	0.296
2.5	SLS caratt., Vmax	0.231	0.122

		11	1
2.5	SLS caratt., Vmin	0.315	0.296
2.5	SLS caratt., Mmax	0.221	0.107
2.5	SLS caratt., Mmin	0.304	0.281
2.5	SLS caratt., Vmax	0.221	0.107
2.5	SLS caratt., Vmin	0.304	0.281
5.0	SLS caratt., Mmax	0.366	0.107
5.0	SLS caratt., Mmin	0.456	0.281
5.0	SLS caratt., Vmax	0.366	0.107
5.0	SLS caratt., Vmin	0.456	0.281
5.0	SLS caratt., Mmax	0.361	0.091
5.0	SLS caratt., Mmin	0.428	0.164
5.0	SLS caratt., Vmax	0.372	0.089
5.0	SLS caratt., Vmin	0.438	0.226
7.5	SLS caratt., Mmax	0.495	0.092
7.5	SLS caratt., Mmin	0.538	0.164
7.5	SLS caratt., Vmax	0.506	0.089
7.5	SLS caratt., Vmin	0.547	0.226
7.5	SLS caratt., Mmax	0.405	0.146
7.5	SLS caratt., Mmin	0.458	0.288
7.5	SLS caratt., Vmax	0.416	0.140
7.5	SLS caratt., Vmin	0.466	0.409
10.0	SLS caratt., Mmax	0.503	0.146
10.0	SLS caratt., Mmin		
		0.562	0.403
10.0	SLS caratt., Vmax	0.513	0.141
10.0	SLS caratt., Vmin	0.562	0.409
10.0	SLS caratt., Mmax	0.503	0.116
10.0	SLS caratt., Mmin	0.560	0.372
10.0	SLS caratt., Vmax	0.552	0.040
10.0	SLS caratt., Vmin	0.560	0.372
12.5	SLS caratt., Mmax	0.580	0.116
12.5	SLS caratt., Mmin	0.655	0.372
12.5	SLS caratt., Vmax	0.605	0.040
12.5	SLS caratt., Vmin	0.655	0.372
12.5	SLS caratt., Mmax	0.530	0.084
12.5	SLS caratt., Mmin	0.591	0.336
12.5	SLS caratt., Vmax	0.553	0.009
12.5	SLS caratt., Vmin	0.591	0.336
15.0	SLS caratt., Mmax	0.583	0.084
15.0	SLS caratt., Mmin	0.663	0.336
15.0	SLS caratt., Vmax	0.596	0.009
15.0	SLS caratt., Vmin	0.663	0.336
	SLS caratt., Mmax		
15.0	,	0.583	0.055
15.0	SLS caratt., Mmin	0.662	0.008
15.0	SLS caratt., Vmax	0.635	0.022
15.0	SLS caratt., Vmin	0.598	0.221
17.5	SLS caratt., Mmax	0.618	0.055
17.5	SLS caratt., Mmin	0.682	0.008
17.5	SLS caratt., Vmax	0.653	0.022
17.5	SLS caratt., Vmin	0.645	0.221
17.5	SLS caratt., Mmax	0.618	0.020
17.5	SLS caratt., Mmin	0.682	0.020
17.5	SLS caratt., Vmax	0.653	0.056
17.5	SLS caratt., Vmin	0.645	0.186
21.0	SLS caratt., Mmax	0.632	0.020
21.0	SLS caratt., Mmin	0.687	0.172
21.0	SLS caratt., Vmax	0.655	0.056
21.0	SLS caratt., Vmin	0.687	0.186
21.0	SLS caratt., Mmax	0.632	0.020
	,		- !

21.0	SLS caratt., Mmin	0.687	0.116
21.0	SLS caratt., Vmax	0.687	0.186
21.0	SLS caratt., Vmin	0.638	0.056
24.5	SLS caratt., Mmax	0.618	0.020
24.5	SLS caratt., Mmin		0.040
		0.682	
24.5	SLS caratt., Vmax	0.645	0.186
24.5	SLS caratt., Vmin	0.625	0.056
24.5	SLS caratt., Mmax	0.618	0.055
24.5	SLS caratt., Mmin	0.682	0.005
24.5	SLS caratt., Vmax	0.645	0.221
24.5	SLS caratt., Vmin	0.625	0.021
27.0	SLS caratt., Mmax	0.583	0.055
27.0	SLS caratt., Mmin	0.662	0.005
	SLS caratt., Vmax		
27.0		0.598	0.221
27.0	SLS caratt., Vmin	0.597	0.021
27.0	SLS caratt., Mmax	0.583	0.084
27.0	SLS caratt., Mmin	0.662	0.335
27.0	SLS caratt., Vmax	0.662	0.335
27.0	SLS caratt., Vmin	0.596	0.009
29.5	SLS caratt., Mmax	0.530	0.084
29.5	SLS caratt., Mmin	0.591	0.335
29.5	SLS caratt., Vmax	0.591	0.335
29.5	SLS caratt., Vmin	0.553	0.009
29.5	SLS caratt., Mmax	0.580	0.116
29.5	SLS caratt., Mmin	0.655	0.371
29.5	SLS caratt., Vmax	0.655	0.371
29.5	SLS caratt., Vmin	0.605	0.040
32.0	SLS caratt., Mmax	0.503	0.116
32.0	SLS caratt., Mmin	0.560	0.371
32.0	SLS caratt., Vmax	0.560	0.371
32.0	SLS caratt., Vmin	0.552	0.040
32.0	SLS caratt., Mmax	0.503	0.146
32.0	SLS caratt., Mmin	0.561	0.402
32.0	SLS caratt., Vmax	0.561	0.408
32.0	SLS caratt., Vmin	0.513	0.140
34.5	SLS caratt., Mmax	0.405	0.146
34.5	SLS caratt., Mmin	0.458	0.291
34.5	SLS caratt., Vmax	0.466	0.407
34.5	SLS caratt., Vmin	0.416	0.140
34.5	SLS caratt., Mmax	0.495	0.092
34.5	SLS caratt., Mmin	0.538	0.166
34.5	SLS caratt., Vmax	0.547	0.225
34.5	SLS caratt., Vmin	0.507	0.089
37.0	SLS caratt., Mmax	0.361	0.091
37.0	SLS caratt., Mmin	0.428	0.166
37.0	SLS caratt., Vmax	0.438	0.225
37.0	SLS caratt., Vmin	0.373	0.088
37.0	SLS caratt., Mmax	0.366	0.107
37.0	SLS caratt., Mmin	0.456	0.280
37.0	SLS caratt., Vmax	0.456	0.280
37.0	SLS caratt., Vmin	0.366	0.107
39.5	SLS caratt, Mmax	0.221	0.107
39.5	SLS caratt., Mmin	0.304	0.280
39.5	SLS caratt., Vmax	0.304	0.280
39.5	SLS caratt., Vmin	0.221	0.107
39.5	SLS caratt., Mmax	0.231	0.122
39.5	SLS caratt., Mmin	0.315	0.296
39.5	SLS caratt., Vmax	0.315	0.296
Į.	•	. '	!

39.5	SLS caratt., Vmin	0.231	0.122
42.0	SLS caratt., Mmax	0.278	0.245
42.0	SLS caratt., Mmin	0.221	0.132
42.0	SLS caratt., Vmax	0.303	0.295
42.0	SLS caratt., Vmin	0.216	0.122

13.4. Verifiche SLE F

		Web
X (m)	Combinazione	breathing
0.0	SLS freq., Mmax	0.405
0.0	SLS freq., Mmin	0.340
0.0	SLS freq., Vmax	0.335
0.0	SLS freq., Vmin	0.433
2.5	SLS freq., Mmax	0.370
2.5	SLS freq., Mmin	0.468
2.5	SLS freq., Vmax	0.370
2.5	SLS freq., Vmin	0.468
2.5	SLS freq., Mmax	0.337
2.5	SLS freq., Mmin	0.434
2.5	SLS freq., Vmax	0.337
2.5	SLS freq., Vmin	0.434
5.0	SLS freq., Mmax	0.445
5.0	SLS freq., Mmin	0.515
5.0	SLS freq., Vmax	0.445
5.0	SLS freq., Vmin	0.515 0.420
5.0 5.0	SLS freq., Mmax SLS freq., Mmin	0.420
	SLS freq., Vmax	
5.0 5.0	SLS freq., Vinax	0.409 0.478
7.5	SLS freq., Villin	0.478
7.5	SLS freq., Mmin	0.512
7.5	SLS freq., Vmax	0.512
7.5	SLS freq., Vmin	0.535
7.5	SLS freq., Mmax	0.399
7.5	SLS freq., Mmin	0.420
7.5	SLS freq., Vmax	0.402
7.5	SLS freq., Vmin	0.444
10.0	SLS freq., Mmax	0.468
10.0	SLS freq., Mmin	0.472
10.0	SLS freq., Vmax	0.471
10.0	SLS freq., Vmin	0.473
10.0	SLS freq., Mmax	0.452
10.0	SLS freq., Mmin	0.451
10.0	SLS freq., Vmax	0.412
10.0	SLS freq., Vmin	0.451
12.5	SLS freq., Mmax	0.512
12.5	SLS freq., Mmin	0.475
12.5	SLS freq., Vmax	0.459
12.5	SLS freq., Vmin	0.475
12.5	SLS freq., Mmax	0.463
12.5	SLS freq., Mmin	0.437
12.5	SLS freq., Vmax	0.424
12.5	SLS freq., Vmin	0.437
15.0	SLS freq., Mmax	0.505
15.0	SLS freq., Mmin	0.451

150	CL C frank Manage	1 0.450
15.0	SLS freq., Vmax	0.458
15.0	SLS freq., Vmin	0.451
15.0	SLS freq., Mmax	0.497
15.0	SLS freq., Mmin	0.412
15.0	SLS freq., Vmax	0.424
15.0	SLS freq., Vmin	0.456
17.5	SLS freq., Mmax	0.525
17.5	SLS freq., Mmin	0.434
17.5	SLS freq., Vmax	0.448
17.5	SLS freq., Vmin	0.465
17.5	SLS freq., Mmax	0.520
17.5	SLS freq., Mmin	0.430
17.5	SLS freq., Vmax	0.444
17.5	SLS freq., Vmin	0.455
21.0	SLS freq., Mmax	0.530
	·	
21.0	SLS freq., Mmin	0.451
21.0	SLS freq., Vmax	0.461
21.0	SLS freq., Vmin	0.452
21.0	SLS freq., Mmax	0.530
21.0	SLS freq., Mmin	0.449
21.0	SLS freq., Vmax	0.452
21.0	SLS freq., Vmin	0.487
24.5	SLS freq., Mmax	0.520
24.5		
	SLS freq., Mmin	0.430
24.5	SLS freq., Vmax	0.455
24.5	SLS freq., Vmin	0.470
24.5	SLS freq., Mmax	0.525
24.5	SLS freq., Mmin	0.434
24.5	SLS freq., Vmax	0.465
24.5	SLS freq., Vmin	0.473
27.0	SLS freq., Mmax	0.497
27.0	SLS freq., Mmin	0.412
		0.456
27.0	SLS freq., Vmax	
27.0	SLS freq., Vmin	0.449
27.0	SLS freq., Mmax	0.505
27.0	SLS freq., Mmin	0.451
27.0	SLS freq., Vmax	0.451
27.0	SLS freq., Vmin	0.458
29.5	SLS freq., Mmax	0.463
29.5	SLS freq., Mmin	0.437
29.5	SLS freq., Vmax	0.437
29.5	SLS freq., Vmin	0.424
	·	
29.5	SLS freq., Mmax	0.512
29.5	SLS freq., Mmin	0.475
29.5	SLS freq., Vmax	0.475
29.5	SLS freq., Vmin	0.458
32.0	SLS freq., Mmax	0.452
32.0	SLS freq., Mmin	0.451
32.0	SLS freq., Vmax	0.451
32.0	SLS freq., Vmin	0.412
32.0	SLS freq., Mmax	0.468
32.0	SLS freq., Mmin	0.472
32.0	SLS freq., Vmax	0.473
32.0	SLS freq., Vmin	0.471
34.5	SLS freq., Mmax	0.399
34.5	SLS freq., Mmin	0.420
34.5	SLS freq., Vmax	0.444
34.5	SLS freq., Vmin	0.402
5		302

34.5	SLS freq., Mmax	0.536
34.5	SLS freq., Mmin	0.512
34.5	SLS freq., Vmax	0.535
34.5	SLS freq., Vmin	0.517
37.0	SLS freq., Mmax	0.420
37.0	SLS freq., Mmin	0.449
37.0	SLS freq., Vmax	0.477
37.0	SLS freq., Vmin	0.409
37.0	SLS freq., Mmax	0.445
37.0	SLS freq., Mmin	0.515
37.0	SLS freq., Vmax	0.515
37.0	SLS freq., Vmin	0.445
39.5	SLS freq., Mmax	0.337
39.5	SLS freq., Mmin	0.434
39.5	SLS freq., Vmax	0.434
39.5	SLS freq., Vmin	0.337
39.5	SLS freq., Mmax	0.370
39.5	SLS freq., Mmin	0.468
39.5	SLS freq., Vmax	0.468
39.5	SLS freq., Vmin	0.370
42.0	SLS freq., Mmax	0.404
42.0	SLS freq., Mmin	0.340
42.0	SLS freq., Vmax	0.433
42.0	SLS freq., Vmin	0.335

13.5. Verifiche a fessurazione

Omessa (schema isostatico con soletta in compressione).

13.6. Verifiche a fatica

									/ERIFICHE A FATICA - TASSI DI SFRUTTAMENTO							
		Pioli - t	asso sfru	ıttam.	Flange me	etalliche	Anima	Giunti salda	ati trasv.		Giunti sa	aldati long	jitudinali			
X (m)	Combinazione	η1	η2	ηз	FI,sup	FI,Inf	Α	tra Fl,sup	tra Fl,inf	A - Fl,sup	A - Fl,sup	A - IrrV	Fl,sup - IrrV	FI,inf - IrrV		
0.0	SL fatica., Mmax	0.214	0.026	0.184	0.017	0.011	0.227	0.018	0.012	0.018	0.012	0.026	0.026	0.017		
0.0	SL fatica., Mmin	0.214	0.026	0.184	0.017	0.011	0.227	0.018	0.012	0.018	0.012	0.026	0.026	0.017		
0.0	SL fatica., Vmax	0.252	0.025	0.213	0.016	0.009	0.268	0.017	0.009	0.018	0.009	0.025	0.025	0.013		
0.0	SL fatica., Vmin	0.252	0.025	0.213	0.016	0.009	0.268	0.017	0.009	0.018	0.009	0.025	0.025	0.013		
2.5	SL fatica., Mmax	0.252	0.012	0.203	0.007	0.129	0.268	0.008	0.138	0.006	0.142	0.198	0.009	0.198		
2.5	SL fatica., Mmin	0.252	0.012	0.203	0.007	0.129	0.268	0.008	0.138	0.006	0.142	0.198	0.009	0.198		
2.5	SL fatica., Vmax	0.252	0.012	0.203	0.007	0.129	0.268	0.008	0.138	0.006	0.142	0.198	0.009	0.198		
2.5	SL fatica., Vmin	0.252	0.012	0.203	0.007	0.129	0.268	0.008	0.138	0.006	0.142	0.198	0.009	0.198		
2.5	SL fatica., Mmax	0.252	0.012	0.203	0.007	0.129	0.268	0.008	0.138	0.006	0.142	0.198	0.009	0.198		
2.5	SL fatica., Mmin	0.252	0.012	0.203	0.007	0.129	0.268	0.008	0.138	0.006	0.142	0.198	0.009	0.198		
2.5	SL fatica., Vmax	0.252	0.012	0.203	0.007	0.129	0.268	0.008	0.138	0.006	0.142	0.198	0.009	0.198		
2.5	SL fatica., Vmin	0.252	0.012	0.203	0.007	0.129	0.268	0.008	0.138	0.006	0.142	0.198	0.009	0.198		
5.0	SL fatica., Mmax	0.252	0.026	0.214	0.017	0.267	0.268	0.018	0.285	0.015	0.293	0.411	0.020	0.411		
5.0	SL fatica., Mmin	0.252	0.026	0.214	0.017	0.267	0.268	0.018	0.285	0.015	0.293	0.411	0.020	0.411		
5.0	SL fatica., Vmax	0.252	0.026	0.214	0.017	0.267	0.268	0.018	0.285	0.015	0.293	0.411	0.020	0.411		
5.0	SL fatica., Vmin	0.252	0.026	0.214	0.017	0.267	0.268	0.018	0.285	0.015	0.293	0.411	0.020	0.411		
5.0	SL fatica., Mmax	0.113	0.023	0.104	0.015	0.259	0.120	0.016	0.277	0.013	0.285	0.398	0.018	0.398		
5.0	SL fatica., Mmin	0.113	0.023	0.104	0.015	0.259	0.120	0.016	0.277	0.013	0.285	0.398	0.018	0.398		
5.0	,	0.226	0.009	0.181	0.006	0.117	0.240	0.006	0.125	0.005	0.129	0.180	0.007	0.180		
5.0	SL fatica., Vmin	0.226	0.009	0.181	0.006	0.117	0.240	0.006	0.125	0.005	0.129	0.180	0.007	0.180		
7.5	SL fatica., Mmax	0.214	0.030	0.187	0.019	0.330	0.227	0.021	0.353	0.017	0.363	0.508	0.023	0.508		

7.5	SL fatica., Mmin	0.214	0.030	0.187	0.019	0.330	0.227	0.021	0.353	0.017	0.363	0.508	0.023	0.508
7.5	SL fatica., Vmax	0.226	0.022	0.191	0.014	0.241	0.240	0.015	0.257	0.012	0.265	0.371	0.017	0.371
7.5	SL fatica., Vmin	0.226	0.022	0.191	0.014	0.241	0.240	0.015	0.257	0.012	0.265	0.371	0.017	0.371
7.5	SL fatica., Mmax	0.418	0.033	0.347	0.021	0.298	0.225	0.023	0.318	0.018	0.326	0.456	0.025	0.456
7.5	SL fatica., Mmin	0.418	0.033	0.347	0.021	0.298	0.225	0.023	0.318	0.018	0.326	0.456	0.025	0.456
7.5	SL fatica., Vmax	0.443	0.024	0.359	0.016	0.217	0.238	0.017	0.232	0.013	0.238	0.333	0.018	0.333
7.5	SL fatica., Vmin	0.443	0.024	0.359	0.016	0.217	0.238	0.017	0.232	0.013	0.238	0.333	0.018	0.333
10.0	SL fatica., Mmax	0.419	0.046	0.357	0.029	0.403	0.225	0.031	0.430	0.024	0.441	0.617	0.034	0.617
10.0	SL fatica., Mmin	0.419	0.046	0.357	0.023	0.403	0.225	0.031	0.430	0.024	0.441	0.617	0.034	0.617
10.0	SL fatica., Vmax	0.443	0.040	0.370	0.023	0.403	0.238	0.031	0.450	0.024	0.360	0.504	0.034	0.504
10.0	SL fatica., Vmin	0.443	0.038	0.370	0.024	0.328	0.238	0.026	0.351		0.360		0.028	0.504
										0.020		0.504		
10.0	SL fatica., Mmax	0.240	0.043	0.218	0.027	0.396	0.129	0.029	0.423	0.022	0.434	0.607	0.031	0.607
10.0	SL fatica., Mmin	0.240	0.043	0.218	0.027	0.396	0.129	0.029	0.423	0.022	0.434	0.607	0.031	0.607
10.0	SL fatica., Vmax	0.278	0.016	0.226	0.010	0.157	0.149	0.011	0.167	0.008	0.172	0.240	0.012	0.240
10.0	SL fatica., Vmin	0.278	0.016	0.226	0.010	0.157	0.149	0.011	0.167	0.008	0.172	0.240	0.012	0.240
12.5	SL fatica., Mmax	0.240	0.050	0.223	0.032	0.456	0.129	0.034	0.487	0.026	0.500	0.699	0.037	0.699
12.5	SL fatica., Mmin	0.240	0.050	0.223	0.032	0.456	0.129	0.034	0.487	0.026	0.500	0.699	0.037	0.699
12.5	SL fatica., Vmax	0.278	0.025	0.233	0.016	0.227	0.149	0.017	0.242	0.013	0.248	0.347	0.018	0.347
12.5	SL fatica., Vmin	0.278	0.025	0.233	0.016	0.227	0.149	0.017	0.242	0.013	0.248	0.347	0.018	0.347
12.5	SL fatica., Mmax	0.236	0.054	0.223	0.035	0.415	0.128	0.037	0.443	0.029	0.453	0.635	0.040	0.635
12.5	SL fatica., Mmin	0.236	0.054	0.223	0.035	0.415	0.128	0.037	0.443	0.029	0.453	0.635	0.040	0.635
12.5	SL fatica., Vmax	0.274	0.027	0.231	0.017	0.206	0.148	0.018	0.220	0.014	0.225	0.315	0.020	0.315
12.5	SL fatica., Vmin	0.274	0.027	0.231	0.017	0.206	0.148	0.018	0.220	0.014	0.225	0.315	0.020	0.315
15.0	SL fatica., Mmax	0.236	0.062	0.229	0.040	0.470	0.128	0.042	0.502	0.033	0.513	0.718	0.046	0.718
15.0	SL fatica., Mmin	0.236	0.062	0.229	0.040	0.470	0.128	0.042	0.502	0.033	0.513	0.718	0.046	0.718
15.0	SL fatica., Vmax	0.274	0.036	0.238	0.023	0.270	0.148	0.024	0.288	0.019	0.295	0.412	0.027	0.412
15.0	SL fatica., Vmin	0.274	0.036	0.238	0.023	0.270	0.148	0.024	0.288	0.019	0.295	0.412	0.027	0.412
15.0	SL fatica., Mmax	0.016	0.061	0.059	0.039	0.467	0.009	0.042	0.498	0.032	0.510	0.714	0.045	0.714
15.0	SL fatica., Mmin	0.016	0.061	0.059	0.039	0.467	0.009	0.042	0.498	0.032	0.510	0.714	0.045	0.714
15.0	SL fatica., Vmax	0.380	0.002	0.294	0.001	0.023	0.206	0.001	0.025	0.001	0.025	0.036	0.001	0.036
15.0	SL fatica., Vmin	0.380	0.002	0.294	0.001	0.023	0.206	0.001	0.025	0.001	0.025	0.036	0.001	0.036
17.5	SL fatica., Mmax	0.016	0.060	0.059	0.039	0.463	0.009	0.041	0.494	0.032	0.506	0.708	0.045	0.708
17.5	SL fatica., Mmin	0.016	0.060	0.059	0.039	0.463	0.009	0.041	0.494	0.032	0.506	0.708	0.045	0.708
17.5	SL fatica., Vmax	0.380	0.015	0.304	0.009	0.112	0.206	0.010	0.119	0.008	0.122	0.171	0.011	0.171
17.5	SL fatica., Vmin	0.380	0.015	0.304	0.009	0.112	0.206	0.010	0.119	0.008	0.122	0.171	0.011	0.171
17.5	SL fatica., Mmax	0.016	0.060	0.059	0.039	0.463	0.009	0.041	0.494	0.032	0.506	0.708	0.045	0.708
17.5	SL fatica., Mmin	0.016	0.060	0.059	0.039	0.463	0.009	0.041	0.494	0.032	0.506	0.708	0.045	0.708
17.5	SL fatica., Vmax	0.380	0.015	0.304	0.009	0.112	0.206	0.010	0.119	0.002	0.122	0.171	0.043	0.171
17.5	SL fatica., Vmin	0.380	0.015	0.304	0.009	0.112	0.206	0.010	0.119	0.008	0.122	0.171	0.011	0.171
21.0	SL fatica., Mmax	0.251	0.013	0.240	0.003	0.461	0.200	0.041	0.113	0.000	0.504	0.705	0.011	0.705
21.0	SL fatica., Mmin	0.251	0.061	0.240	0.039	0.461	0.136	0.041	0.492	0.032	0.504	0.705	0.045	0.705
21.0	SL fatica., Vmax	0.380	0.032	0.240	0.033	0.401	0.130	0.022	0.432	0.032	0.257	0.763	0.043	0.765
21.0			0.032	0.317	0.021	0.235	0.206	0.022	0.251	0.017	0.257	0.360	0.024	0.360
	SL fatica., Vmin SL fatica., Mmax	0.380	0.032	0.056	0.021	0.460		0.022		0.017	0.503		0.024	0.704
21.0		0.013					0.007		0.491			0.704		
21.0	SL fatica., Mmin	0.013	0.060	0.056	0.038	0.460	0.007	0.041	0.491	0.032	0.503	0.704	0.044	0.704
21.0	SL fatica., Vmax	0.379	0.032	0.316	0.020	0.232	0.205	0.022	0.248	0.017	0.254	0.355	0.024	0.355
21.0	SL fatica., Vmin	0.379	0.032	0.316	0.020	0.232	0.205	0.022	0.248	0.017	0.254	0.355	0.024	0.355
24.5	· ·	0.013	0.060	0.057	0.039	0.465	0.007	0.041	0.496	0.032	0.507	0.710	0.045	0.710
24.5		0.013	0.060	0.057	0.039	0.465	0.007	0.041	0.496	0.032	0.507	0.710	0.045	0.710
24.5	SL fatica., Vmax	0.379	0.014	0.302	0.009	0.109	0.205	0.010	0.116	0.008	0.119	0.166	0.011	0.166
24.5	SL fatica., Vmin	0.379	0.014	0.302	0.009	0.109	0.205	0.010	0.116	0.008	0.119	0.166	0.011	0.166
24.5	SL fatica., Mmax	0.013	0.060	0.057	0.039	0.465	0.007	0.041	0.496	0.032	0.507	0.710	0.045	0.710
24.5	SL fatica., Mmin	0.013	0.060	0.057	0.039	0.465	0.007	0.041	0.496	0.032	0.507	0.710	0.045	0.710
24.5	SL fatica., Vmax	0.379	0.014	0.302	0.009	0.109	0.205	0.010	0.116	0.008	0.119	0.166	0.011	0.166
24.5	SL fatica., Vmin	0.379	0.014	0.302	0.009	0.109	0.205	0.010	0.116	0.008	0.119	0.166	0.011	0.166
27.0	SL fatica., Mmax	0.013	0.061	0.057	0.039	0.468	0.007	0.042	0.499	0.032	0.511	0.715	0.045	0.715
27.0	SL fatica., Mmin	0.013	0.061	0.057	0.039	0.468	0.007	0.042	0.499	0.032	0.511	0.715	0.045	0.715
27.0	SL fatica., Vmax	0.379	0.002	0.293	0.001	0.021	0.205	0.001	0.022	0.001	0.023	0.032	0.001	0.032
-	•			· ·			-		·-					

27.0 SL fatica., Vmin	0.379	0.002	0.293	0.001	0.021	0.205	0.001	0.022	0.001	0.023	0.032	0.001	0.032
27.0 SL fatica., Mmax	0.239	0.062	0.232	0.040	0.471	0.130	0.042	0.503	0.033	0.514	0.720	0.046	0.720
27.0 SL fatica., Mmin	0.239	0.062	0.232	0.040	0.471	0.130	0.042	0.503	0.033	0.514	0.720	0.046	0.720
27.0 SL fatica., Vmax	0.273	0.036	0.237	0.023	0.267	0.148	0.024	0.285	0.019	0.292	0.408	0.026	0.408
27.0 SL fatica., Vmin	0.273	0.036	0.237	0.023	0.267	0.148	0.024	0.285	0.019	0.292	0.408	0.026	0.408
29.5 SL fatica., Mmax	0.239	0.054	0.226	0.035	0.415	0.130	0.037	0.443	0.029	0.454	0.635	0.040	0.635
29.5 SL fatica., Mmin	0.239	0.054	0.226	0.035	0.415	0.130	0.037	0.443	0.029	0.454	0.635	0.040	0.635
29.5 SL fatica., Vmax	0.273	0.026	0.230	0.017	0.204	0.148	0.018	0.217	0.014	0.222	0.311	0.020	0.311
29.5 SL fatica., Vmin	0.273	0.026	0.230	0.017	0.204	0.148	0.018	0.217	0.014	0.222	0.311	0.020	0.311
29.5 SL fatica., Mmax	0.243	0.050	0.226	0.032	0.457	0.131	0.034	0.487	0.026	0.500	0.700	0.037	0.700
29.5 SL fatica., Mmin	0.243	0.050	0.226	0.032	0.457	0.131	0.034	0.487	0.026	0.500	0.700	0.037	0.700
29.5 SL fatica., Vmax	0.277	0.024	0.232	0.016	0.224	0.149	0.017	0.239	0.013	0.245	0.343	0.018	0.343
29.5 SL fatica., Vmin	0.277	0.024	0.232	0.016	0.224	0.149	0.017	0.239	0.013	0.245	0.343	0.018	0.343
32.0 SL fatica., Mmax	0.243	0.043	0.220	0.027	0.395	0.131	0.029	0.422	0.022	0.433	0.606	0.031	0.606
32.0 SL fatica., Mmin	0.243	0.043	0.220	0.027	0.395	0.131	0.029	0.422	0.022	0.433	0.606	0.031	0.606
32.0 SL fatica., Vmax	0.277	0.043	0.226	0.027	0.154	0.149	0.023	0.422	0.022	0.169	0.236	0.031	0.236
32.0 SL fatica., Vmin	0.277	0.016	0.226	0.010	0.154	0.149	0.011	0.165	0.008	0.169	0.236	0.011	0.236
32.0 SL fatica., Mmax	0.418	0.016	0.220	0.010	0.134	0.149	0.011	0.103	0.008	0.109	0.230	0.011	0.230
		0.045	0.357										
32.0 SL fatica., Mmin	0.418			0.029	0.402	0.225	0.031	0.429	0.024	0.441	0.617	0.034	0.617
32.0 SL fatica., Vmax	0.443	0.037	0.370	0.024	0.327	0.238	0.025	0.349	0.020	0.358	0.501	0.028	0.501
32.0 SL fatica., Vmin	0.443	0.037	0.370	0.024	0.327	0.238	0.025	0.349	0.020	0.358	0.501	0.028	0.501
34.5 SL fatica., Mmax	0.418	0.033	0.347	0.021	0.297	0.225	0.023	0.317	0.017	0.325	0.456	0.024	0.456
34.5 SL fatica., Mmin	0.418	0.033	0.347	0.021	0.297	0.225	0.023	0.317	0.017	0.325	0.456	0.024	0.456
34.5 SL fatica., Vmax	0.443	0.024	0.359	0.015	0.215	0.238	0.016	0.230	0.013	0.236	0.330	0.018	0.330
34.5 SL fatica., Vmin	0.443	0.024	0.359	0.015	0.215	0.238	0.016	0.230	0.013	0.236	0.330	0.018	0.330
34.5 SL fatica., Mmax	0.213	0.030	0.187	0.019	0.330	0.227	0.021	0.352	0.017	0.362	0.507	0.023	0.507
34.5 SL fatica., Mmin	0.213	0.030	0.187	0.019	0.330	0.227	0.021	0.352	0.017	0.362	0.507	0.023	0.507
34.5 SL fatica., Vmax	0.226	0.022	0.191	0.014	0.239	0.240	0.015	0.255	0.012	0.263	0.368	0.017	0.368
34.5 SL fatica., Vmin	0.226	0.022	0.191	0.014	0.239	0.240	0.015	0.255	0.012	0.263	0.368	0.017	0.368
37.0 SL fatica., Mmax	0.111	0.023	0.103	0.015	0.260	0.118	0.016	0.277	0.013	0.286	0.400	0.018	0.400
37.0 SL fatica., Mmin	0.111	0.023	0.103	0.015	0.260	0.118	0.016	0.277	0.013	0.286	0.400	0.018	0.400
37.0 SL fatica., Vmax	0.226	0.009	0.181	0.006	0.115	0.240	0.006	0.123	0.005	0.127	0.177	0.007	0.177
37.0 SL fatica., Vmin	0.226	0.009	0.181	0.006	0.115	0.240	0.006	0.123	0.005	0.127	0.177	0.007	0.177
37.0 SL fatica., Mmax	0.253	0.026	0.214	0.017	0.268	0.269	0.018	0.286	0.015	0.294	0.412	0.020	0.412
37.0 SL fatica., Mmin	0.253	0.026	0.214	0.017	0.268	0.269	0.018	0.286	0.015	0.294	0.412	0.020	0.412
37.0 SL fatica., Vmax	0.253	0.026	0.214	0.017	0.268	0.269	0.018	0.286	0.015	0.294	0.412	0.020	0.412
37.0 SL fatica., Vmin	0.253	0.026	0.214	0.017	0.268	0.269	0.018	0.286	0.015	0.294	0.412	0.020	0.412
39.5 SL fatica., Mmax	0.253	0.012	0.203	0.008	0.129	0.269	0.008	0.138	0.006	0.142	0.199	0.009	0.199
39.5 SL fatica., Mmin	0.253	0.012	0.203	0.008	0.129	0.269	0.008	0.138	0.006	0.142	0.199	0.009	0.199
39.5 SL fatica., Vmax	0.253	0.012	0.203	0.008	0.129	0.269	0.008	0.138	0.006	0.142	0.199	0.009	0.199
39.5 SL fatica., Vmin	0.253	0.012	0.203	0.008	0.129	0.269	0.008	0.138	0.006	0.142	0.199	0.009	0.199
39.5 SL fatica., Mmax	0.253	0.012	0.203	0.008	0.129	0.269	0.008	0.138	0.006	0.142	0.199	0.009	0.199
39.5 SL fatica., Mmin	0.253	0.012	0.203	0.008	0.129	0.269	0.008	0.138	0.006	0.142	0.199	0.009	0.199
39.5 SL fatica., Vmax	0.253	0.012	0.203	0.008	0.129	0.269	0.008	0.138	0.006	0.142	0.199	0.009	0.199
39.5 SL fatica., Vmin	0.253	0.012	0.203	0.008	0.129	0.269	0.008	0.138	0.006	0.142	0.199	0.009	0.199
42.0 SL fatica., Mmax	0.213	0.026	0.184	0.017	0.011	0.227	0.018	0.012	0.018	0.012	0.026	0.026	0.017
42.0 SL fatica., Mmin	0.213	0.026	0.184	0.017	0.011	0.227	0.018	0.012	0.018	0.012	0.026	0.026	0.017
42.0 SL fatica., Vmax	0.253	0.025	0.214	0.016	0.009	0.269	0.017	0.009	0.018	0.009	0.025	0.025	0.013
42.0 SL fatica., Vmin	0.253	0.025	0.214	0.016	0.009	0.269	0.017	0.009	0.018	0.009	0.025	0.025	0.013
· · ·													

14. ANALISI E VERIFICA DEI TRASVERSI

Come si è detto in premessa, i trasversi correnti hanno la funzione di ostacolare lo svergolamento delle travi principali. Per tale ragione è previsto un collegamento a mezzo di co-

prigiunti ad un tronco saldato sulle anime delle travi principali, ed ulteriormente irrigidito da un piatto trasversale saldato alle anime stesse.

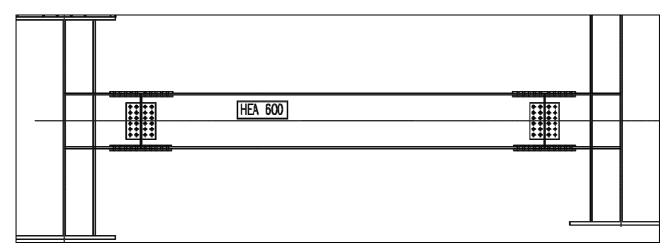


Figura 14.1: Geometria dei trasversi correnti

E', tuttavia, indubbio che i trasversi correnti partecipino, grazie alla rigidezza flessionale, alla ripartizione dei carichi mobili in direzione trasversale, assieme alla soletta. In questa sede, tenuto conto che il rapporto tra le rigidezze trasversali della soletta e quella dei trasversi è molto elevato e, peraltro, difficilmente quantificabile in quanto legato alla rigidezza rotazionale dell'attacco tra trasverso e anima, si è preferito trascurare tale contributo benefico ed modellare il bi-trave come un semplice grigliato in cui gli elementi trasversali (strisce di soletta e trasversi) sono incernierati trasversalmente ai nodi con le travi. SI rimanda, pertanto, alla fase di progettazione esecutiva lo studio della verifica dei trasversi correnti ad anima piena. In questa sede, pertanto, si riporta la verifica dei trasversi di appoggio in combinazione sismica.

14.1. Verifica dei trasversi di appoggio in combinazione sismica

In forza della maggiore rigidezza flessionale offerta dai trasversi in appoggio (HEA 1000), rispetto alla rigidezza trasversale delle anime delle travi (pur se irrigidite) e trascurando la rigidezza flessionale dell'attacco con la soletta, si può assumere uno schema di calcolo semplificato come in figura 14.3.

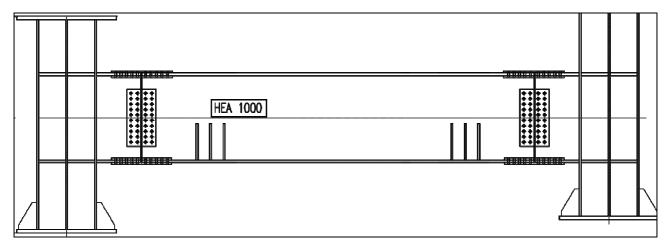


Figura 14.2: Geometria dei trasversi in appoggio

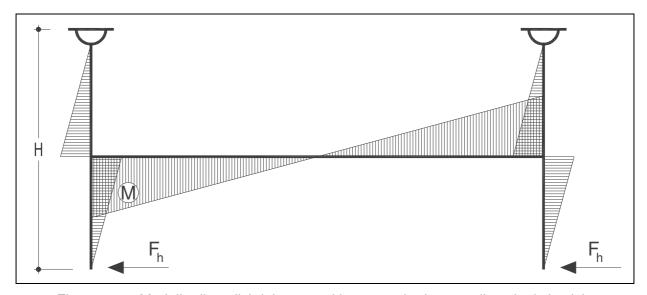


Figura 14.3: Modello di analisi dei trasversi in appoggio rispetto alle azioni sismiche

Il valore del momento flettente massimo agente sui nodi del trasverso è dato da

$$M = H \times F_h$$

essendo F_h l'azione sismica trasversale SLV scaricata sul singolo appoggio ed H l'altezza delle travi metalliche. Conseguentemente il taglio sul trasverso vale

$$T = 2 M / L$$

essendo L pari alla luce di calcolo del trasverso.

Traducendo in numeri quanto detto risulta (cfr. § 15):

 $F_h = 155 \text{ kN}$

H = 2.00 m

 $M = 155 \times 2.00 = 310 \text{ kNm}$

L = 6 m

T = 103.33 kN

Pertanto la verifica di resistenza del trasverso è:

 $\sigma_{tot,id,Ed} = 64.89 \text{ N/mm}^2$ (tensione ideale massima da pressoflessione + taglio) $\sigma_{tot,id,Ed}$ / fyd = $0.19 \le 1 \text{ OK} = 64.89/(355.00/1.05)$

15. VERIFICA DEL SISTEMA DI VINCOLO (APPOGGI E GIUNTI)

Come anticipato in premessa, per la presente opera sono previsti sulle spalle apparecchi di appoggio isolatori *HDRB* (appoggi in elastomero ad alto smorzamento ξ >10%). Si prevede l'uso di una mescola normale con:

 $G_{din} \cong 0.8 \text{ MPa} \Rightarrow \text{modulo di elasticità tangenziale dinamico.}$

Nel seguito si illustra la procedura di dimensionamento della rigidezza del sistema di isolamento.

Fissando il valore del periodo della struttura isolata, per lo spostamento massimo, pari a $T_{is} \cong 2.00$ s si ottiene:

 $T_{is} = 2 \times \pi \times \sqrt{m/k_{tot}} \Rightarrow k_{tot} \approx 7040 \text{ kN/m}$

 $m \cong 713 \text{ t} \Rightarrow \text{massa totale impalcato } (G_k \cong 165 \text{ kN/m}, L = 42.40 \text{ m}).$

Considerando n.2 dispositivi per n.2 allineamenti si ottiene per il singolo dispositivo:

 $k_{is} = k_{tot}/4 \approx 1.76 \text{ kN/mm}.$

Si utilizza un dispositivo avente valore di rigidezza equivalente (valore riferito ai cataloghi dei produttori):

 $k_{eq} = 2.36 \text{ kN/mm}.$

A tale rigidezza corrisponde il periodo effettivo:

 $T_{eff} \cong 1.73 \text{ s}$

Nei grafici seguenti si riportano gli spettri in spostamento per lo **SLV** e lo **SLC**.

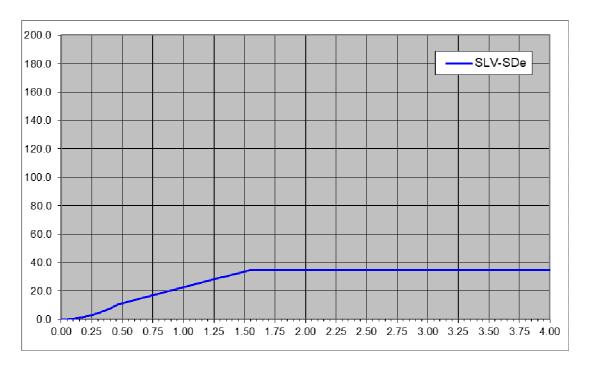


Figura 15.1. Spettro in spostamento SLV

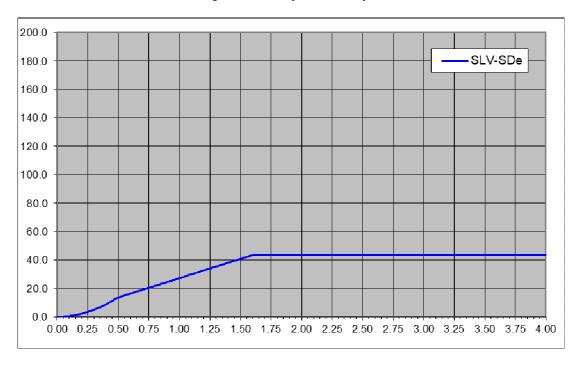


Figura 15.2. Spettro in spostamento SLC

Lo spostamento massimo allo SLC risulta pari a 44 mm.

Lo spostamento massimo allo SLV risulta pari a 35 mm.

Si riportano nella tabella seguente le caratteristiche geometriche e deformative allo **SLC** degli isolatori e l'escursione massima dei giunti allo **SLV** (si considera il contributo dell'azione termica ridotto).

Isolatori	Kh (rigidezza orizzontale equivalente)	D _{gomma}	t _{gomma}	V_{gomma}	n.	$\delta_{\text{SLC x}}$	$\delta_{\text{SLC y}}$
	[kN/mm]	[mm]	[mm]	[dm³]	[-]	[mm]	[mm]
VI01	2.36	450	54	8.584	4	50	45

Escursione giunti	SLV x	SLV y
	[±mm]	[±mm]
VI01	40	35

Le forze trasmesse dal singolo dispositivo alle sottostrutture sono pari a:

 $F_{x,SLV} \cong 95 \text{ kN}$

F_{y,SLV} ≅ 85 kN;

 $F_{x,SLC} \cong 120 \text{ kN}$

 $F_{v.SLC} \cong 110 \text{ kN}.$

16. SPALLE

A seguire si riportano le verifiche strutturali della spalla avente muro frontale di altezza maggiore. Ai fini della verifica delle sezioni di spiccato (muro frontale e d'ala) si utilizzano le caratteristiche meccaniche del calcestruzzo di fondazione.

16.1. Verifica muro frontale

DATI GEOMETRICI			
Larghezza striscia di parete considerata = Spessore parete = Altezza totale parete Htot = Altezza spingente H = Armatura a flessione (tesa) Armatura a taglio	1Ø24/10 = 1Ø8/20/40 =	1.000 2.000 9.400 9.400 45.239 6.283	m m m
MATERIALI			
Calcestruzzo - Rck - peso di volume γcls = Barre di armatura - fyk AZIONI SUGLI APPOGGI		35.000 25.000 450.000	
Altezza apparecchi d'appoggio rispetto spiccato fondazione h = Interasse apparecchi d'appoggio =		7.000 6.000	
SCARICHI IN ESERCIZIO			
Scarico verticale massimo in combinazione SLU Scarico verticale minimo in combinazione SLU Scarico orizzontale massimo in combinazione SLU		3300.000 2295.000 250.000	kN
SCARICHI SISMICI			
Scarico verticale minimo in combinazione SLV Scarico orizzontale massimo in combinazione SLV		1700.000 165.000	
VALUTAZIONE SPINTA STATICA (A RIPOSO)			
Peso specifico $\gamma_t =$ Peso specifico $\gamma_{sat} =$ Angolo di attrito interno $\emptyset =$		18.000 18.000 33.000	kN/m³

Coefficiente di spinta a riposo k0 = Spinta statica terreno =		0.455 362.121	kN/m
VALUTAZIONE INCREMENTO SPINTA STATICA D	A CARICHI VARIABILI		
Sovraccarico sul terrapieno (equivalente al traffico st Incremento spinta statica da sovraccarico variabile =	, ·	20.000 85.608	
VALUTAZIONE AZIONE SISMICA (WOOD)			
Accelerazione di picco $ag/g =$ Coefficiente di flessibilità $\beta =$ Coefficiente di categ. sottosuolo Ss = Coefficiente di amplif. topografica ST = Coefficiente sismico orizzontale kh = Spinta dinamica terreno = Inerzia parete =		0.048 1.000 3.364 1.000 0.161 256.818 75.892	
VALUTAZIONE DELL'EFFETTO PIASTRA			
Riduzione delle sollecitazioni M e T allo spiccato		0%	
COEFFICIENTI PARZIALI E DI COMBINAZIONE			
Coeff. parziale carichi permanenti $\gamma_G =$ Coeff. parziale carichi variabili $\gamma_Q =$ Coeff. di combinazione carichi variabili $\psi_1 =$ Coeff. di combinazione carichi variabili $\psi_2 =$		1.350 1.350 0.750 0.000	
VERIFICA DI RESISTENZA A TAGLIO			
Taglio massimo in comb. SLU Taglio massimo in combinazione SLV VRd VRcd VRsd Esito verifica	1.35 * 362.12 + 1.35 * 85.61 + 250 / 6.00 = 362.12 + 256.82 + 75.89 + 165 / 6.00 =	646.101 722.331 691.532 5'879.946 858.556 OK	kN kN kN
VERIFICA DI RESISTENZA A FLESSIONE			
Momento massimo in combinazione SLU Sforzo assiale massimo SLU Coefficiente di sicurezza SLU Sforzo assiale minimo SLU Coefficiente di sicurezza SLU	1.35*25*9.40*2.00 + 3300 / 6.00 = η sic = 1.35*25*9.40*2.00 + 2295 / 6.00 = η sic =	3132.508 1184.500 1.387 1017.000 1.343	kN/m OK
Momento massimo SLV Sforzo assiale concomitante SLV Coefficiente di sicurezza SLV	(362.12+256.82+75.89)*9.40 / 2 + 165 / 6.00*7.00 = 25 * 9.40 * 2.00 + 1700 / 6.00 = \$\text{\sigma} \text{sig} =	3458.206 753.333 1.153	kN OK
Momento massimo in combinazione SLE R (rara)		2320.376	kNm

Sforzo assiale massimo in combinazione SLE R Verifiche tensionali SLE R Sforzo assiale minimo in combinazione SLE R Momento massimo in combinaz. SLE FR (frequente) Sforzo assiale concomitante in combinazione SLE FR Momento di fessurazione SLE FR wk [mm] Momento massimo in comb. SLE QP (quasi perman.) Sforzo assiale concomitante in combinazione SLE QP Verifiche tensionali SLE QP Momento di fessurazione wk [mm]	αc =αc =	877.407 6.065 753.333 216.278 2165.775 682.500 1992.227 0.174 1701.970 470.000 2.669 1921.944 0.000	OK kN OK kNm kN kNm mm kNm kNm kNm kN OK
16.2. Verifica paraghiaia DATI GEOMETRICI			
Larghezza striscia di parete considerata = Spessore parete = Altezza spingente H = Armatura a flessione (tesa) Armatura a taglio	1Ø24/10 = 1Ø8/20/40 =	45.239	m m
MATERIALI			
Calcestruzzo - Rck - peso di volume γcls = Barre di armatura - fyk VALUTAZIONE SPINTA STATICA (A RIPOSO)		40.000 25.000 450.000	kN/m³
Peso specifico $\gamma t =$ Peso specifico $\gamma sat =$ Angolo di attrito interno $\emptyset =$ Coefficiente di spinta a riposo $k0 =$ Spinta statica terreno =		18.000 18.000 33.000 0.455 36.884	kN/m³ °
VALUTAZIONE INCREMENTO SPINTA STATICA DA CARICHI VARIABILI			
Sovraccarico sul terrapieno (equivalente al traffico stradale) q = Incremento spinta statica da sovraccarico variabile = VALUTAZIONE EFFETTO LOCALE TRAFFICO SU PARAGHIAIA		20.000 27.322	
Azione longitudinale localizzata = Azione verticale localizzata = Larghezza di applicazione del carico = Carico distribuito verticale equivalente =		180.000 300.000 2.400 125.000	kN m

Carico distribuito orizzontale equivalente =		75.000	kN/m
VALUTAZIONE AZIONE SISMICA (WOOD)			
Accelerazione di picco $ag/g =$ Coefficiente di flessibilità $\beta =$ Coefficiente di categ. sottosuolo Ss = Coefficiente di amplif. topografica ST = Coefficiente sismico orizzontale kh = Spinta dinamica terreno = Inerzia parete =		0.048 1.000 3.364 1.000 0.161 81.963 4.844	kN/m kN/m
VALUTAZIONE DELL'EFFETTO PIASTRA			
Riduzione delle sollecitazioni M e T allo spiccato		0%	
COEFFICIENTI PARZIALI E DI COMBINAZIONE			
Coeff. parziale carichi permanenti $\gamma_G =$ Coeff. parziale carichi variabili $\gamma_Q =$ Coeff. di combinazione carichi variabili $\psi_1 =$ Coeff. di combinazione carichi variabili $\psi_2 =$		1.350 1.350 0.750 0.000	
VERIFICA DI RESISTENZA A TAGLIO			
Taglio massimo in comb. SLU Taglio massimo in combinazione SLV VRd VRcd VRsd Esito verifica	1.35 * 36.88 + 1.35 * (27.32 + 75.00) = 36.88 + 81.96 + 4.84 =	187.928 123.692 258.671 1'155.966 150.469 OK	kN kN kN
VERIFICA DI RESISTENZA A FLESSIONE			
Momento massimo in combinazione SLU Sforzo assiale concomitante SLU Coefficiente di sicurezza SLU Momento massimo SLV Sforzo assiale concomitante SLV Coefficiente di sicurezza SLV Momento massimo in combinazione SLE R (rara) Sforzo assiale concomitante in combinazione SLE R Verifiche tensionali SLE R	1.35*25*3.00*0.40 + 1.35*125 = η sic = $(36.88+81.96+4.84)*3.00 / 2 = 25 * 3.00 * 0.40 = \etasic = \sigmac =$	433.767 209.250 1.235 185.537 30.000 2.795 321.309 155.000 14.587	kN/m OK kNm kN OK kNm
	$\sigma s =$	231.774	OK
Momento massimo in combinaz. SLE FR (frequente) Sforzo assiale concomitante in combinazione SLE FR Momento di fessurazione SLE FR wk [mm] Momento massimo in comb. SLE QP (quasi perman.)		254.813 123.750 100.001 0.123 55.326	kN kNm mm

Sforzo assiale concomitante in combinazione SLE QP Verifiche tensionali SLE QP Momento di fessurazione wk [mm]	σc =	30.000 kN 1.969 OK 94.689 kNm 0.000 mm
16.3. Verifica muro d'ala		
DATI GEOMETRICI		
Larghezza striscia di parete considerata = Spessore parete = Altezza totale parete Htot = Altezza spingente H = Armatura a flessione (tesa) Armatura a taglio	$1\emptyset 26/10 + 1\emptyset 26/10 =$ $1\emptyset 10/20/40 =$	1.000 m 0.750 m 9.400 m 9.400 m 106.186 cm ² 9.817 cm ² /m
MATERIALI		
Calcestruzzo - Rck - peso di volume γcls = Barre di armatura - fyk		35.000 N/mm² 25.000 kN/m³ 450.000 N/mm²
VALUTAZIONE SPINTA STATICA (A RIPOSO)		
Peso specifico γ_{t} = Peso specifico γ_{sat} = Angolo di attrito interno \emptyset = Coefficiente di spinta a riposo k_0 = Spinta statica terreno =		18.000 kN/m³ 18.000 kN/m³ 33.000 ° 0.455 362.121 kN/m
VALUTAZIONE INCREMENTO SPINTA STATICA DA CARICHI VARIA	BILI	
Sovraccarico sul terrapieno (equivalente al traffico stradale) q = Incremento spinta statica da sovraccarico variabile =		20.000 kN/m² 85.608 kN/m
VALUTAZIONE AZIONE SISMICA (WOOD)		
Accelerazione di picco $ag/g =$ Coefficiente di flessibilità $\beta =$ Coefficiente di categ. sottosuolo Ss = Coefficiente di amplif. topografica ST = Coefficiente sismico orizzontale kh = Spinta dinamica terreno = Inerzia parete =		0.048 1.000 3.364 1.000 0.161 256.818 kN/m 28.459 kN/m
VALUTAZIONE DELL'EFFETTO PIASTRA		
Riduzione delle sollecitazioni M e T allo spiccato		30%

COEFFICIENTI PARZIALI E DI COMBINAZIONE

Coeff. parziale carichi permanenti γG =	1.350
Coeff. parziale carichi variabili γQ =	1.350
Coeff. di combinazione carichi variabili ψ1 =	0.750
Coeff. di combinazione carichi variabili ψ2 =	0.000
VERIFICA DI RESISTENZA A TAGLIO	

Taglio massimo in comb. SLU	0.70 * [1.35 * 362.12 + 1.35 * 85.61] =	423.104	kΝ
Taglio massimo in combinazione SLV	0.70 * [362.12 + 256.82 + 28.46] =	453.179	kN
VRd		476.403	kΝ
VRcd		2'073.726	kΝ
VRsd		477.129	kΝ
Esito verifica		OK	

VERIFICA DI RESISTENZA A FLESSIONE

Momento massimo in combinazione SLU		1988.589	kNm
Sforzo assiale concomitante SLU	1.35*25*9.40*0.75 =	237.938	kN/m
Coefficiente di sicurezza SLU	ηsic =	1.181	OK
Momento massimo SLV	0.70 * [(362.12+256.82+28.46)*9.40 / 2] =	2129.942	kNm
Sforzo assiale concomitante SLV	25 * 9.40 * 0.75 =	176.250	kN
Coefficiente di sicurezza SLV	ηsic =	1.100	OK
Momento massimo in combinazione SLE R (rara)		1473.029	kNm
Sforzo assiale concomitante in combinazione SLE R		176.250	kN
Verifiche tensionali SLE R	σc =	15.458	OK
	σs =	233.577	OK
Momento massimo in combinaz. SLE FR (frequente)		2003.738	kNm
Sforzo assiale concomitante in combinazione SLE FR		176.250	kN
Momento di fessurazione SLE FR		375.475	kNm
wk [mm]		0.198	mm
Momento massimo in comb. SLE QP (quasi perman.)		1191.379	kNm
Sforzo assiale concomitante in combinazione SLE QP		176.250	kN
Verifiche tensionali SLE QP	σc =	12.555	OK
Momento di fessurazione		375.475	kNm
wk [mm]		0.116	mm

16.4. Fondazione

Si riporta a seguire la verifica di resistenza della mensola di monte della fondazione.

DATI GEOMETRICI

Spessore suola di fondazione =	2.000	m
Larghezza striscia di suola considerata =	3.600	m
Interasse pali =	3.600	m

Braccio rispetto al baricentro dell'elevazione		2.100	m
Armatura a flessione (tesa)	1Ø24/10 =	162.860	cm ²
Armatura a taglio	$1\emptyset 12/20/40 =$	50.894	cm²/m

MATERIALI

Calcestruzzo - Rck	35.000	N/mm^2
- peso di volume γcls =	25.000	kN/m^3
Barre di armatura - fyk	450.000	N/mm²

AZIONI

Scarico massimo su palo = 5250.000 kN

VERIFICA DI RESISTENZA A TAGLIO

Taglio massimo	5250 / 3.60 * 3.60 =	5250	kΝ
VRd	2	2095	kN
VRcd	20	0694	kΝ
VRsd	6	3954	kΝ
Esito verifica	Ok	(

VERIFICA DI RESISTENZA A FLESSIONE

Momento rmassimo di progetto MEd	5250.00 * 2.10 =	11025.000	kNm
Momento resistente MRd		12000.000	kNm
Coefficiente di sicurezza SLU	ηsic =	1.089	OK