COMMITTENTE

PROGETTAZIONE

DIREZIONE TECNICA
U.O. INFRASTRUTTURE CENTRO
PROGETTO DEFINITIVO
ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA BOVINO - ORSARA

SCALA:

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

Sottovia scatolare SL01 - Relazione di calcolo

Rev. Descrizione Redatto Data Verificato Data Approvato Data Autorizzato Data Biologica Descrizione A EMISSIONE ESECUTIVA

G. Usai 09.2018

P. Di Nucci 09.2018

O9.2018

File: IF1W00D29CLSL0100001A.doc n. Elab.: 163_1

00 D 29

Sottovia scatolare SL01 - Relazione di calcolo

COMMESSA IF1W LOTTO CODIFICA

CL

DOCUMENTO SL0100 001

REV.

FOGLIO 2 di 86

INDICE

1.	PREMESSA	6
2.	DOCUMENTAZIONE DI RIFERIMENTO	10
2.1	DOCUMENTI REFERENZIATI	10
2.2	DOCUMENTI CORRELATI	10
3.	CARATTERISTICHE DEI MATERIALI	11
3.1	CEMENTO ARMATO	11
	3.1.1 Calcestruzzo strutturale C30/37	11
	3.1.2 Acciaio di armatura in barre tonde ad aderenza migliorata	12
	3.1.3 Copriferro	13
	3.1.4 Prove sui materiali	13
4.	CARATTERIZZAZIONE GEOTECNICA	14
5.	CRITERI PROGETTUALI	16
5.1	VITA NOMINALE	16
5.2	CLASSE D'USO	16
5.3	PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA	16
6.	ANALISI DEI CARICHI DI PROGETTO	17
6.1	Carichi permanenti strutturali (G_1)	17
6.2	Carichi permanenti non strutturali (G_2)	17
	6.2.1 Ballast e armamento	17
	6.2.2 Spinta del terreno	18
6.3	Carichi accidentali (Q_k)	19
	6.3.2 Sovraccarico accidentale ferroviario mobile	21
	6.3.3 Spinta sui piedritti SPACC	22

Sottovia scatolare SL01 - Relazione di calcolo

COMMESSA LOTTO

IF1W 00 D 29

CODIFICA CL DOCUMENTO SL0100 001

REV.

Α

FOGLIO 3 di 86

	6.3.4	Avviamento e frenata ferroviaria	22
	6.3.5	Sovraccarico accidentale stradale mobile	23
	6.3.6	Accelerazione o frenata stradale	24
6.4	VA	RIAZIONE TERMICA	25
6.5	RIT	TRO E VISCOSITÀ DEL CALCESTRUZZO	25
6.6	VA	LUTAZIONE DELL'AZIONE SISMICA	26
	6.6.1	Azione sismica di progetto	26
	6.6.2	Sovraspinta sismica	28
7.	COME	BINAZIONI DI CARICO	30
8.	MODE	ELLAZIONE STRUTTURALE	36
8.1	Mo	DELLO DI CALCOLO	36
8.2	Mo	DELLAZIONE DELL'INTERAZIONE SUOLO-STRUTTURA	37
9.	RISUI	TATI DELLE ANALISI	40
9.1	Co	NFRONTO SOLLECITAZIONI PER SOLLECITAZIONI SOLETTA DI FONDAZIONE	40
9.2	RIS	ULTATI ANALISI STRUTTURALI	42
10.	VERIE	FICHE STR	51
10.1	VE	RIFICHE A PRESSOFLESSIONE	51
	10.1.1	Soletta di copertura e piedritti	51
	10.1.2	Soletta di fondazione	52
10.2	VE	RIFICHE A TAGLIO	52
	10.2.1	Soletta di copertura e piedritti	52
	10.2.2	Soletta di fondazione	53
10.3	VE	RIFICHE A FESSURAZIONE	54
	10.3.1	Soletta di copertura e piedritti	55
	10.3.2	Soletta di fondazione	5€
11.	VERIE	FICHE GEO	58

00 D 29

Sottovia scatolare SL01 - Relazione di calcolo

COMMESSA IF1W

LOTTO CODIFICA

CL

DOCUMENTO SL0100 001

REV.

FOGLIO 4 di 86

12.	INCID	ENZA ARMATURE	63
13.	CALCO	OLO DEI MURI A U	64
13.1	DES	SCRIZIONE	64
13.2	CAR	RICHI DI PROGETTO	64
	13.2.1	Spinta delle terre piedritto sx	65
	13.2.2	Spinta delle terre piedritto dx	65
	13.2.3	Sovraccarico accidentale stradale mobile	65
	13.2.4	Variazione termica	65
	13.2.5	Ritiro e viscosità del cls	66
	13.2.6	Azione sismica di progetto	66
	13.2.7	Sovraspinta sismica piedritto sx	66
13.3	Con	MBINAZIONI DI CARICO	66
13.4	Mo	DELLO DI CALCOLO	66
13.5	Mo	DELLAZIONE DELL'INTERAZIONE SUOLO-STRUTTURA	67
13.6	Rist	ULTATI DELLE ANALISI	68
13.7	Ver	RIFICHE STR	73
	13.7.1	Verifiche a pressoflessione	73
	▶	Piedritto dx	73
	A	Piedritto sx	74
	∠	Soletta di fondazione	74
	13.7.2	Verifiche a taglio	75
	∠	Piedritto dx	75
	▶	Piedritto sx	
	∠	Soletta di fondazione	
	13.7.3	Verifiche a fessurazione	
	<i>▶</i>	Piedritto dx	

Sottovia scatolare SL01 - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1W
 00 D 29
 CL
 SL0100 001
 A
 5 di 86

A	•	Piedritto sx	. 79
A	•	Soletta di fondazione	.80
13.8	VEI	RIFICHE GEO	82

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO					
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA CL	DOCUMENTO SL0100 001	REV.	FOGLIO	

1. PREMESSA

Nell'ambito dell'Itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Bovino - Orsara oggetto della Progettazione Definitiva in esame.

Nella presente relazione sono illustrati i calcoli e le verifiche del Sottovia scatolare SL01. La struttura ha uno sviluppo longitudinale in asse tracciato di circa 155m. L'asse ferroviario passante sulla soletta di copertura del sottovia ha un inclinazione di 30° rispetto all'asse stradale passante sulla soletta di fondazione. Le sezioni del sottovia sono variabili sia in altezza che in larghezza lungo il suo sviluppo longitudinale. Di seguito si riportano pianta e sezione longitudinale del sottovia.

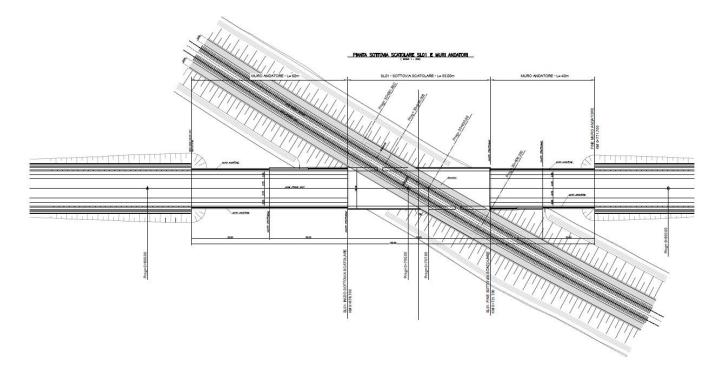
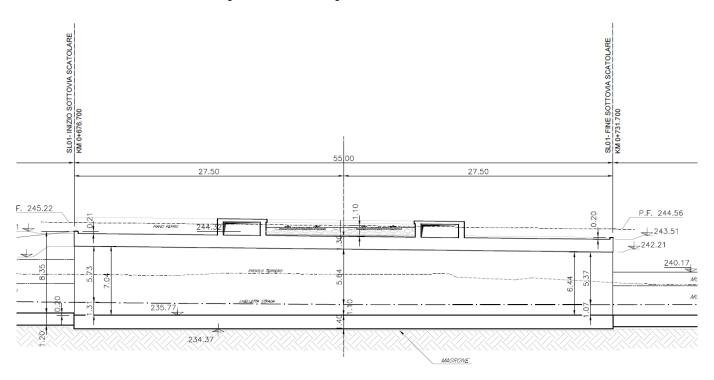



Figura 1-1 – Pianta Sottovia scatolare SL01

Figura 1-2 – Sezione longitudinale Sottovia scatolare SL01

Di seguito si riportano alcune sezioni trasversali del sottovia in asse ferroviario e in asse stradale.

Figura 1-3 – Sezione trasversale in asse ferroviario Sottovia scatolare SL01

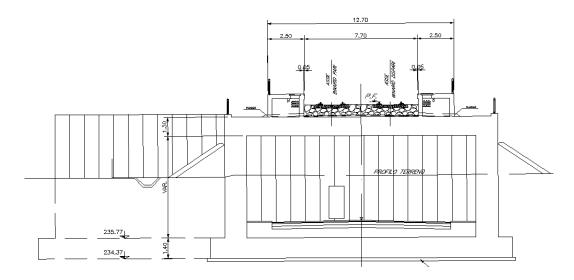
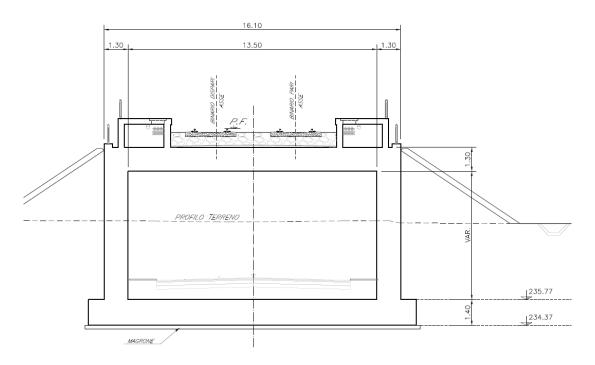
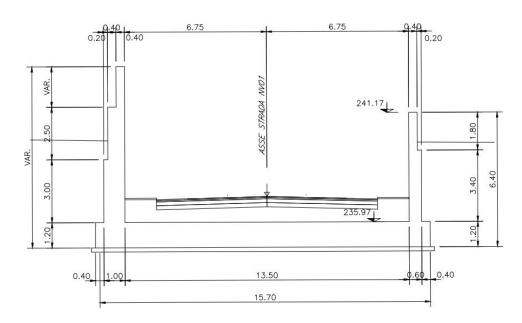



Figura 1-4 – Sezione trasversale in asse stradale Sottovia scatolare SL01


Trasversalmente all'asse stradale la larghezza interna dello scatolare è di 13,50 m ed ha un'altezza netta massima di 7,04m. I piedritti hanno spessore pari a 1,30 m così come la soletta superiore, mentre la soletta di fondazione ha uno spessore di 1,40 m. Tale sezione è presa come riferimento per il calcolo del manufatto.

Il sottovia, in ingresso e in uscita, è completato da opere di sostegno costituite da muri d'ala di sezioni e altezze variabili. Tra questi, quello che presenta le geometrie più rilevanti ha altezza massima di 8,30m e spessore variabile dalla sommità verso il piede da 0,40m a 1,00m. La scarpa di fondazione ha spessore 1,20m ed è lunga complessivamente 4,00m.

Di seguito si riporta la sezione del muro di sostegno.

Figura 1-5 – Sezione trasversale muro d'ala Sottovia scatolare SL01

2. DOCUMENTAZIONE DI RIFERIMENTO

2.1 Documenti referenziati

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Rif. [1] Nuove norme tecniche per le costruzioni D.M. 17-01-18 (NTC-2018);
- Rif. [2] Circolare n. 617 del 2 febbraio 2009 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008;
- Rif. [3] Eurocodice 2: Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- Rif. [4] UNI ENV 1992-1-1 Parte 1-1: Regole generali e regole per gli edifici;
- Rif. [5] UNI EN 206-1/2001 Calcestruzzo. Specificazioni, prestazioni, produzione e conformità;
- Rif. [6] UNI EN 1998-5 Fondazioni ed opere di sostegno.
- Rif. [7] REGOLAMENTO (UE) N. 1299/2014 DELLA COMMISSIONE del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea
- Rif. [8] RFI Manuale di progettazione delle opere civili parte II sezione 2 Ponti e strutture
- Rif. [9] RFI Manuale di progettazione delle opere civili parte II sezione 3 Corpo stradale

2.2 Documenti correlati

- Rif. [10] IF1W00D29B9SL0100001A SL01 Sottovia scatolare Pianta scavi e pianta fondazioni
- Rif. [11] IF1W00D29B9SL0100002A SL01 Sottovia scatolare Piante a quota strada e pianta a quota banchine
- Rif. [12] IF1W00D29B9SL0100003A SL01 Sottovia scatolare Sezioni trasversali
- Rif. [13] IF1W00D29L9SL0100001A SL01 Sottovia scatolare Planimetria generale
- Rif. [14] IF1W00D29L9SL0100002A SL01 Sottovia scatolare Prospetto e sezione longitudinale
- Rif. [15] IF1W03D11GEOC0000001-BO_Bovino
- Rif. [16] 180705_BO 02 Profilo geotecnico tratta allo scoperto Tav. 2 di 2

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO						
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Total and an additional and additional additional and additional ad	IF1W	00 D 29	CL	SL0100 001	Α	11 di 86	

3. CARATTERISTICHE DEI MATERIALI

3.1 Cemento armato

3.1.1 Calcestruzzo strutturale C30/37

Si riportano di seguito due tabelle riepilogative del tipo e delle caratteristiche del calcestruzzo adottato:

Rck	37	(N/mm^2)
f_{ck}	30	(N/mm^2)
f_{cm}	38,7	(N/mm^2)
$\alpha_{\rm cc}$	0,85	(-)
γο	1,5	(-)
f_{cd}	17,40	(N/mm^2)
f_{ctm}	2,94	(N/mm^2)
f_{ctk}	2,06	(N/mm^2)
f_{ctd}	1,37	(N/mm^2)
f_{cfm}	3,53	(N/mm^2)
f_{cfk}	2,06	
Ec	33019	(N/mm^2)

dove:

 f_{ck} = 0.83·R_{ck} = Resistenza cilindrica caratteristica

 $f_{cm} = f_{ck} + 8 (N/mm^2) = Resistenza cilindrica media a compressione$

 α_{cc} = Coefficiente per effetti a lungo termine e sfavorevoli: α_{cc} (t > 28gg) = 0.85

 γ_c = 1.5; viene ridotto a 1.4 per produzioni continuative di elementi o strutture soggette a controllo continuativo del calcestruzzo dal quale risulti un coefficiente di variazione (rapporto tra scarto quadratico medio e valore medio della resistenza) non superiore al 10%:

$$\label{eq:fcd} \textit{f}_{\text{cd}} = \frac{\alpha_{\text{cc}} \cdot f_{\text{ck}}}{\gamma_{\text{c}}} \, = \text{Resistenza di calcolo a compressione}$$

 f_{ctm} = 0.3· $(f_{\text{ck}})^{2/3}$ [per classi \leq C50/60] = Resistenza cilindrica media a trazione

 f_{ctk} = 0.7· f_{ctm} = Resistenza cilindrica caratteristica a trazione

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c}$$
 = Resistenza di calcolo a trazione

f_{cfm} = 1.2· f_{ctm} = Resistenza media a trazione per flessione

f_{cfk} = 0.7· f_{cfm} = Resistenza cilindrica caratteristica a trazione

$$E_{cm} = 22000 \cdot \left(\frac{f_{cm}}{10}\right)^{0.3} = Modulo Elastico$$

Coefficiente di Poisson:

Secondo quanto prescritto al punto 11.2.10.4 della NTC2018, per il coefficiente di Poisson può adottarsi, a seconda dello stato di sollecitazione, un valore compreso tra 0 (calcestruzzo fessurato) e 0.2 (calcestruzzo non fessurato).

Coefficiente di dilatazione termica:

In sede di progettazione, o in mancanza di una determinazione sperimentale diretta, per il coefficiente di dilatazione termica del calcestruzzo può assumersi un valore medio pari a 10 x 10⁻⁶ °C-1 (NTC2018 – 11.2.10.5).

3.1.2 Acciaio di armatura in barre tonde ad aderenza migliorata

Si adotta acciaio tipo B450C come previsto al punto 11.3.2.1 delle NTC2018, per il quale si possono assumere le seguenti caratteristiche:

f_{tk}	540	(N/mm ²)
f_{yk}	450	(N/mm^2)
$\gamma_{\rm s}$	1,15	(-)
f_{yd}	391,3	(N/mm^2)
f_{bk}	4,36	(N/mm ²)
f_{bd}	2,90	(N/mm^2)
Es	210000	(N/mm ²)

dove:

f_{tk} = 540 N/mm² = Resistenza caratteristica di rottura

f_{vk} = 450 N/mm² = Resistenza caratteristica a snervamento

 $y_s = 1.15$ = Coefficiente parziale di sicurezza relativo all'acciaio.

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = 391.3 \text{ N/mm}^2 = \text{Resistenza di calcolo}$$

f_{bk} = 2.25·η·f_{ctk} = Resistenza tangenziale caratteristica di aderenza acciaio-calcestruzzo

 $f_{bd} = \frac{f_{bk}}{\gamma_c}$ = Resistenza tangenziale di aderenza di calcolo acciaio-calcestruzzo

 $\eta = 1.0$ – per barre di diametro $\Phi \le 32$ mm;

 $\gamma_c = 1.5$ – Coefficiente parziale di sicurezza relativo al calcestruzzo.

Es = 210000 N/mm² = Modulo Elastico

3.1.3 Copriferro

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 2.2.2009, riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

						cavi da c.a.p elementi a piastra		cavi da c.a.p altri elementi		
Cmin	Cmin Co ambiente C≥Co Cmin≤C <co (<="" td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co>		C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<>	C≥Co	Cmin≤C <co< td=""></co<>		
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Ai valori riportati nella tabella vanno aggiunte le tolleranze di posa, pari a 10 mm. Si riportano di seguito i copriferri adottati, determinati in funzione della classe del cls e delle condizioni ambientali.

	Ambiente	Copriferro minimo	Tolleranza di posa	Copriferro nominale
Strutture scatolari interrate	Aggressivo	25	10	35

In definitiva si prescrive che il copriferro netto non deve essere inferiore a 40mm.

3.1.4 Prove sui materiali

La costruzione delle strutture dovrà essere eseguita nel rispetto delle specifiche d'istruzione tecnica FS 44/M - REV. A DEL 10/04/00.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA CL	DOCUMENTO SL0100 001	REV.	FOGLIO

4. CARATTERIZZAZIONE GEOTECNICA

Di seguito si riporta il profilo geotecnico di riferimento per il sottovia scatolare SL01 oggetto della presente, che si estende approssimativamente dal km 30+600 fino al km 30+650 della tratta ferroviaria di riferimento. Il sondaggio di riferimento è il BO PD S12 di cui ai Rif. [11] e Rif. [16]. Si riporta di seguito uno stralcio di quest'ultimo elaborato.

BO PD \$12

(f.a. 60m dx)

Terreno di copertura Marenaria

Argilla Marna

Argilla Argilla Calcare

Sabbia e ghiala

Chiara

UNITA' GEOTECNICHE

DO PREVINCA

AL1_A = ARGILLA E ARGILLA LIMOSA

AL2_S = SABBIA E SABBIA LIMOSA

AL2_S = Argille limose, argille marnose e marne di colore grigio

ANZ2 = Argille limose, argille marnose e marne di colore grigio e princa del princa de

Figura 4-1 – Stralcio profilo geotecnico tratta di riferimento

Dal sondaggio di riferimento e dalle misure piezometriche (§ 4.1 Rif. [11]), si ricava la seguente stratigrafia di riferimento.

Strato	Profondità Da (m da p.c.)	Profondità a (m da p.c.)	Descrizione		
1	0.0	2.0	Terreno di copertura		
2	2.0	6.6	Depositi alluvionali (ALL3_G)		
3	6.6	>30	Argille (ASP)		
Profondità della falda: 3m da p.c.					

Tabella 4-1 Stratigrafia e falda di riferimento

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA CL	DOCUMENTO SL0100 001	REV.	FOGLIO 15 di 86

L'imposta fondazione si attesta ad una profondità media di 5,50 m dal piano campagna.

Si conclude che l'imposta fondazione è situata sullo strato di depositi alluvionali ALL3_G, al disotto della quota di falda, individuata a 3m dal piano campagna.

Si riportano di seguito i parametri geotecnici caratteristici per la stratigrafia di riferimento.

Tabella 4-2 Parametri geotecnici caratteristici dei terreni della tratta Bovino (valore medio indicato tra parentesi quadre [])

	Terreno di Copertura	ALL3_G	1	ASP	SID
γ [kN/m³]	18.0÷18.6 [18.3]	18.0÷20.2 [19.0]		0÷21.0 20.0]	19.0÷20.5 [19.0]
IP [%]	18÷40 [21]	-	_	0÷ 4 5 [30]	45÷97 [60]
- 07.1	75÷250		z≤20m	130÷300 [180]	230÷500
Cu [kPa]	[130]	-	z>20m	200÷300 [250]	[280]
φ'[°]	24	36÷59 [36]		0÷30 [22]	26
c' [kPa]	10	0.0	_	0÷40 [26]	58
E _u /C _u	403	-		228	268
F. D.D.	40÷340	145÷846	z≤15m	266÷1258 [367]	314÷1112
E ₀ [MPa]	[85]	[367]	z>15m	453÷1258 [689]	[423]
Eop,1 [MPa]	8÷68	29÷169	z≤15m	53÷251 [73]	62÷222
Lop,I (ivii a)	Eop,1 [MPa] [17]	[73]	z>15m	90÷251 [137]	[84]
E _{op,2} [MPa]	4÷34	14÷84	z≤15m	26÷125 [36]	31÷111
Lop,2 [ivii a]	[8.5]	[36]	z>15m	45÷125 [68]	[42]
Cc [-]	dato non disponibile	-	7.5	5*10 ⁻²	7.8*10-2
c _r [-]	dato non disponibile	-	1.3	3*10-2	1.3*10-2
Cas	dato non disponibile	-		5*10 ⁻³	2.7*10-3
c _v [m ² /s]	2.0*10 ⁻⁷ ÷4.0*10 ⁻⁷ [2.5*10 ⁻⁷]	-	[1.0	⁸ ÷5.0*10 ⁻⁷ 0*10 ⁻⁷]	1.5*10 ⁻⁸ ÷1.3*10 ⁻⁷ [1.0*10 ⁻⁷]
e ₀ [-]	0.77÷0.87 [0.8]	0.41÷0.56 [0.45]		5÷0.70 0.50]	0.50÷0.80 [0.57]
OCR [-]	2÷10 [4]	-		÷13 [7]	4÷13 [6]
υ' [-]	0.3	0.3		0.3	0.3
k [m/s]	2.0*10-6	4.0*10 ⁻⁵ ÷2.0*10 ⁻⁵ [2.4*10 ⁻⁵]	3.0*10 ⁻¹⁰ ÷1.0*10 ⁻⁶ [7.0*10 ⁻⁹]		8.0*10 ⁻¹¹ ÷2.0*10 ⁻¹⁰ [1.0*10 ⁻¹⁰]
			α =7.42		
Caratterizzazione dinamica	-	-		=0.68 -2.417	
dinamica				= 0.3058	
	ļ		~ max		

I parametri verranno utilizzati per la caratterizzazione dell'interazione terreno-struttura, ricavando la costante di sottofondo alla Winkler da utilizzare nella modellazione del suolo sotto la fondazione del manufatto (vedi § 8.2).

5. CRITERI PROGETTUALI

5.1 Vita nominale

La vita nominale di un'opera strutturale VN è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. Nel presente caso l'opera viene inserita nella seguente tipologia di costruzione:

2 - Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale La cui vita nominale è pari a: 75 anni.

5.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso:

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Il coefficiente d'uso è pari a: 1.50.

5.3 Periodo di riferimento per l'azione sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione al periodo di riferimento VR ricavato, per ciascun tipo di costruzione, moltiplicandone la vita nominale VN per il coefficiente d'uso Cu.

Pertanto VR = 75 x 1.5 = 112.5 anni

6. ANALISI DEI CARICHI DI PROGETTO

Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. Tali azioni sono definite secondo la normativa di riferimento e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio e in presenza dell'evento sismico. Tutti i carichi elementari si riferiscono a un concio longitudinale di lunghezza unitaria, pertanto sono tutti definiti rispetto all'unità di lunghezza.

6.1 Carichi permanenti strutturali (G₁)

Il peso proprio dello scatolare viene calcolato in automatico dal programma di calcolo utilizzato, una volta definite le geometrie e le proprietà dei materiali. Le geometrie del manufatto sono di seguito riportate:

Spessore soletta di fondazione: 1,40 m;
Spessore piedritti: 1,30 m;
Spessore soletta di copertura: 1,30 m;
Larghezza netta: 13,50 m;
Altezza netta (max): 7,00 m.

6.2 Carichi permanenti non strutturali (G2)

6.2.1 Ballast e armamento

Sulla soletta di copertura (di sostegno alla linea ferroviaria) si considera il seguente carico:

Ballast e armamento: 0.80 m x 18.00 kN/m³ = 14.40 kN/m²

Tale carico viene distribuito conservativamente su tutta la soletta, considerando anche le banchine laterali della linea ferroviaria

• Barriere antirumore: 3.0 kN/m² x 8.0 m = **24.00** kN/m considerando un peso delle barriere di 300 kg/m² e un'altezza di 8m.

I carichi delle due barriere antirumore vengono inseriti come forze concentrate ognuna pari a 24 kN.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPI	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO					
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Total dia contra	IF1W	00 D 29	CL	SL0100 001	Α	18 di 86	

Sulla soletta di fondazione (di sostegno alla tratta stradale), considerando anche lo spessore di riempimento sotto il manto stradale (vedi sezione longitudinale Rif. [14]), si considera il seguente carico:

• Ballast e riempimento: 0.12 m x 22.00 + 0.80 m x 18.00 kN/m³ = **17,04** kN/m²

6.2.2 Spinta del terreno

Le spinte del terreno di rinfianco vengono calcolate assumendo alternativamente uno scenario di spinta non equilibrata sui due piedritti con spinta a riposo sul piedritto sinistro e spinta a riposo ridotta a 0.60 sul piedritto destro. In aggiunta, si considera anche la condizione di carico con spinte equilibrate su entrambi i piedritti. La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta a riposo k₀.

$$\sigma = \gamma \ z \ K_0$$

$$S = 1/2 \ \gamma \ H^2 \ K_0$$

Facendo riferimento alla sezione trasversale in Figura 1-3, si considera anche la spinta del terreno di rinfianco sui piedritti, che si ipotizza, conservativamente, presente fino alla sommità dei piedritti per l'intero sviluppo del sottovia e di caratteristiche geotecniche analoghe al terreno ALL3_G.

Spinta del terreno (Condizioni SPTSX e SPTDX)

Coeff. Spinta a riposo	K_0	1 - sen (36°) =	0,412	
Pressione alla quota di estradosso sol. sup.	p1	$\Upsilon \cdot z 1 \cdot K_0 =$	0,00	kN/m²
Pressione in asse sol. sup.	p2	$\Upsilon \cdot z \cdot \mathbf{Z} \cdot \mathbf{K}_0 =$	5,09	kN/m²
Pressione in asse sol. inf.	р3	$\Upsilon \cdot z3 \cdot K_0 =$	65,40	kN/m²
Pressione alla quota di intradosso sol. inf.	p4	$\Upsilon \cdot z 4 \cdot K_0 =$	70,88	kN/m²
Spinta semispessore sol. sup.	F1	$(p1+p2)/2 \cdot sp/2 =$	1,78	kN/m
Spinta semispessore sol. inf.	F2	$(p3+p4)/2 \cdot sp/2 =$	47,70	kN/m

z1 = 0 m z2 = z1 + sp/2 0,65 m z3 = z2 + h + sp 8,35 m z4 = z3 + sp/2 9,05 m

dove:

Sui piedritti è stato quindi applicato un carico concentrato simulante la spinta sul semispessore delle solette superiore e inferiore, rispettivamente pari a F1 e F2.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO					
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA CL	DOCUMENTO SL0100 001	REV.	FOGLIO

6.3 Carichi accidentali (Qk)

6.3.1 Disposizione dei carichi mobili per realizzare le condizioni di carico più gravose

La struttura è stata calcolata secondo due disposizioni dei carichi mobili:

- Condizione Q_M: disposizione dei carichi per massimizzare le sollecitazioni flettenti sul traverso
- Condizione Q_T: disposizione dei carichi che massimizza il taglio sul traverso

La linea ferroviaria ha un inclinazione di 30° rispetto all'asse stradale, dovranno essere quindi applicati contemporaneamente i carichi dovuti al treno SW/2 e al treno LM71 definiti al § 6.3.2.

Le impronte dei carichi sulla soletta si ottengono dalla proiezione di questi ultimi sulla sezione di calcolo, considerando le larghezze di diffusione dei carichi attraverso ballast e soletta.

Di seguito si riporta uno schema della procedura di applicazione dei carichi ferroviari per le due condizioni di carico considerate.

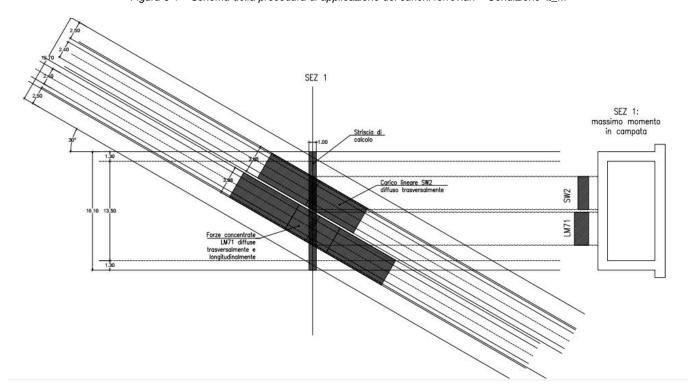
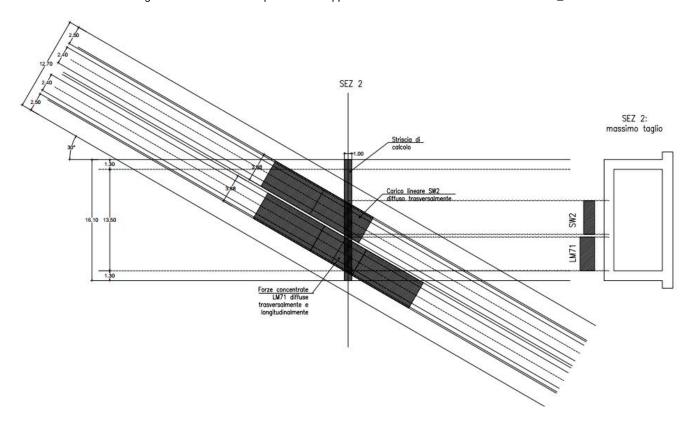
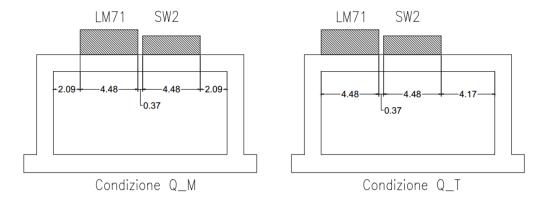



Figura 6-1 – Schema della procedura di applicazione dei carichi ferroviari – Condizione Q_M


Figura 6-2 – Schema della procedura di applicazione dei carichi ferroviari – Condizione Q_M

Per la condizione di carico Q_M il sovraccarico ferroviario Q_{vk} (definito al § 6.3.2) viene applicato al centro della soletta di copertura del sottovia. Per la condizione di carico Q_T il sovraccarico ferroviario Q_{vk} viene applicato agli estremi dx e sx della soletta di copertura del sottovia (Q_T sarà dato dall'inviluppo delle condizioni Q_T dx e Q_T sx).

Di seguito uno schema dell'applicazione dei carichi ferroviari in base alle condizioni suddette.

Figura 6-3 – Disposizione carichi per realizzazione condizioni più gravose

6.3.2 Sovraccarico accidentale ferroviario mobile

Per quanto attiene il sovraccarico ferroviario, nel caso in esame si considera l'impronta dei carichi sulla soletta di copertura. La linea ferroviaria ha un inclinazione di 30° rispetto all'asse stradale, dovranno essere quindi applicati contemporaneamente i carichi dovuti al treno SW/2 pari a 150 kN/m x 1 e al treno LM71 pari a 250 kN / 1.6 m x 1.1 = 172.0 kN/m.

MODELLO	COEFFICIENTE "α"					
DI CARICO	PONTI CAT. "A"	PONTI CAT. "B"				
LM 71	1.1	0.83				
SW / 0	1.1	0.83				
SW / 2	1.0	0.83				

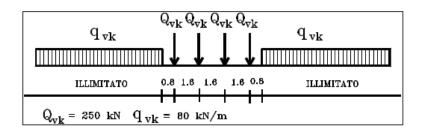


Figura 6-4 – Treno di carico LM71

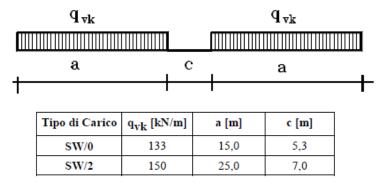


Figura 6-5 – Treno di carico SW

Il coefficiente di amplificazione dinamica Φ_3 (per linee con ridotto standard manutentivo) viene calcolato in base alla tab. 5.2.II NTC2018 – p.to 5.3 (portali a luce singola a tre campate) ed è pari a:

$$\Phi_3 = \frac{2,16}{\sqrt{L_\phi} - 0.2} + 0.73$$

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPI	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO					
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Conto the Coulonal Coulon Trong Library	IF1W	00 D 29	CL	SL0100 001	Α	22 di 86	

nella quale L_{ϕ} è pari a 1.3·L_m con $L_{m} = (1/3)\cdot(L_{soletta} + 2\cdot H_{piedritti})$. Si avrà quindi:

 $\Phi_3 = 1.24$

La diffusione dei carichi attraverso il ballast avviene con pendenza 1:4 mentre, attraverso il resto degli strati dei diversi materiali con pendenza 1:1.

Carico verticale sulla soletta di copertura treno LM71:

Larghezza t	traversa	Lt		2,4	m
Impronta d	li carico trasv	Ld1	2,4 2 x (0.35/4+0.00+1.30/2) =	3,88	m
Impronta d	li carico long	Ld2	0.8+1.6+1.6+1.6+0.8=	6,40	m
Qvk totale				1000	kN
Qvk riparti	to	Qvk_LM71	1.1 · 1.24 · 1000 / (3.88 · 6.40) =	54,93	kN/m²

Carico verticale sulla soletta di copertura treno SW02:

Larghezza traversa	Lt		2,4	m
Impronta di carico trasv	Ld1	2,4 2 x (0.35/4+0.00+1.30/2) =	3,88	m
Qvk totale			150	kN/m
Qvk ripartito	Qvk_swo2	1.24 · 150 / 3.88 =	47,94	kN/m²

6.3.3 Spinta sui piedritti SPACC

Per considerare la presenza di un sovraccarico da traffico gravante a tergo, si considera un carico uniformemente distribuito. Il valore della spinta risultante al metro è dunque pari a:

$$S = k0 \cdot q \cdot H$$

con punto di applicazione posizionato a metà dell'altezza dell'elemento su cui insiste.

La spinta del sovraccarico a tergo del rilevato verrà considerata agente sia su un solo piedritto per massimizzare lo sbilanciamento e sia su entrambi i piedritti.

Spinta del carico accidentale (Condizioni SPACCSX e SPACCDX)

$$p = 0.412 \cdot 1.1 \cdot 1000 / (3.88 \times 6.4) = 16.62 \text{ kN/m}^2$$

6.3.4 Avviamento e frenata ferroviaria

Si associano al convoglio di progetto le azioni di avviamento del carico LM71 in quanto maggiormente gravose per la struttura in esame. Le azioni in esame vengono ripartite trasversalmente sulla sola

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Total and an additional and additional additional and additional ad	IF1W	00 D 29	CL	SL0100 001	Α	23 di 86

larghezza di diffusione trascurando di fatto il ruolo di diaframma della soletta stessa che ripartirebbe le azioni orizzontali sull'intera opera. Essendo l'asse ferroviario inclinato di 30° rispetto all'asse stradale, sulla sezione trasversale dello scatolare agirà il seguente carico:

$$Q_{avv} = (33/L_{d1}) \cdot sen30^{\circ} = 8,52/2 = 4,26 \text{ kN/m}^2$$

6.3.5 Sovraccarico accidentale stradale mobile

In conformità alla normativa di riferimento NTC2018 Rif. [1], si prendono in considerazione i seguenti carichi mobili, per ponti di 1ª categoria:

- prima colonna di carico costituita da due carichi assiali Q_{1k} = 300 kN e un carico uniformemente distribuito q_{1k} = 9 kN/m² su una larghezza convenzionale di 3,00m;
- seconda colonna di carico analoga alla prima, ma con carichi rispettivamente pari a Q_{2k} = 200 kN $e q_{2k} = 2.5 \text{ kN/m}^2$
- terza colonna di carico analoga alla prima, ma con carichi rispettivamente pari a Q_{3k} = 100 kN e $q_{3k} = 2.5 \text{ kN/m}^2$
- quarta colonna di carico e/o area rimanente costituita da un carico uniformemente distribuito pari $a q_{rk} = 2.5 \text{ kN/m}^2$

La dimensione delle impronte dei carichi tandem e la loro posizione relativa è riportata nella sottostante figura. I valori dei carichi stradali forniti sono già comprensivi degli incrementi di natura dinamica.

Carico tandem 2 Qik i=1,2 m 0 0 0.5 2,00 Q14=300 kN 2.0 Corsia n. 1 $q_{tk} = 9 \text{ kN/m}^3$ >0.50 m* Tondem Q_{2k}=200 kN Corsia n. 2 2.0 $q_{2k} = 2.5 \text{ kN/m}^2$ 2.0 Corsia n. 3 $q_{3k} = 2.5 \text{ kN/m}^2$ Area rimanente q_{rk}=2,5 kN/m² *per w_i≤2,90 m

Schema di carico 1 (dimensioni in [m])

Figura 6-6 – Schema di carico 1 (dimensioni in [m])

In relazione alle dimensioni della carreggiata, sono state considerate n.2 "corsie convenzionali" di larghezza 3,00m più una fascia parte rimanente di larghezza pari rispettivamente a 2,0m, per una larghezza totale di 10,0m.

I carichi concentrati da considerarsi ai fini delle verifiche si assumono uniformemente distribuiti sulla superficie della rispettiva impronta.

Determinazione della larghezza di diffusione dei carichi mobili:

 $h_{Ballast} = 0.12 \text{ m}$

 $h_{soletta} = 1.40 \text{ m}$

 $h_{ricoprimento} = 0.80 \text{ m}$

Secondo quanto riportato al § C5.1.3.3.7.1 della circolare 02.02.2009 n.617 Rif. [2], si può considerare applicato lo schema di carico 1, in cui per semplicità, i carichi tandem possono essere sostituiti da carichi uniformemente distribuiti equivalenti, applicati su una superficie rettangolare larga a=3,0 m e lunga b=2,20 m. La diffusione attraverso la pavimentazione e lo spessore della soletta si considera avvenire secondo un angolo di 30°, fino al piano medio della struttura della soletta sottostante.

Calcolo area di diffusione dei carichi:

$$a_1 = 3.00 + 2 \cdot (0.12 + 0.8 + 1.40/2) \cdot tg30^\circ = 4.87 \text{ m}$$

$$b_1 = 2.20 + 2 \cdot (0.12 + 0.8 + 1.40/2) \cdot tg30^\circ = 4.07 \text{ m}$$

Il carico distribuito equivalente totale dato dai carichi mobili sarà quindi la somma delle seguenti componenti:

 $Q_{1k,eq} = 600 / (a_1 \cdot b_1) = 30,26 \text{ kN/m}^2$

 $q_{1k} = 9,00 \text{ kN/m}^2$

 $Q_{acc,m} = 39,26 \text{ kN/m}^2$

6.3.6 Accelerazione o frenata stradale

La forza di frenamento/accelerazione q_3 è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è uguale a:

 $180 \text{ kN} < q3 = 0.6 (2Q_{1k}) + 0.10q_{1k} \cdot \text{ w}_1 \cdot \text{L} < 900 \text{ kN}$

essendo w₁ la larghezza della corsia e L la lunghezza della zona caricata, pari a:

L = 13,50 m. Si ha quindi:

$$q_3 = 0.6 \cdot (2.300) + 0.1.9.3.13,5 = 404,01 \text{ kN}$$

La forza calcolata è assunta uniformemente distribuita sulla lunghezza complessiva dello scatolare e include gli effetti di interazione:

$$Q_3 = q_3 / (w_1 \cdot L) = 404,01 / (3.13,5) = 8,26 \text{ kN/m}^2$$

Avendo trascurato, conservativamente, la larghezza di diffusione del carico dovuta all'approfondimento dello scatolare. Tale carico non sarà tuttavia applicato nel modello di calcolo poiché agisce trasversalmente alla sezione dello scatolare.

6.4 Variazione termica

La variazione termica uniforme applicata al traverso è pari a:

$$\Delta T = \pm 15^{\circ}C$$

Essendo il ricoprimento superiore a 2.5 m si trascura la variazione termica a farfalla. Per il coefficiente di dilatazione termica si assume α = 10 E-6.

6.5 Ritiro e viscosità del calcestruzzo

Gli effetti del ritiro del calcestruzzo sono valutati impiegando i coefficienti indicati al punto 11.2.10.6 delle NTC2018.

La deformazione totale da ritiro è data dalla somma della deformazione per ritiro da essiccamento e della deformazione da ritiro autogeno. Il ritiro è stato applicato mediante una variazione termica equivalente pari a **14.5°** ed un'umidità relativa del 75% a 7 gg. Di seguito i calcoli eseguiti.

f _{ck} =	32 Mpa	Resistenza Caratteristica Cilindrica a Compressione
UR=	75 %	Umidità Relativa
0 -	-0.304 %	Deformazione per Ritiro da Essiccamento
ε _{co} =	-0,304 700	Delornazione per Kiliro da Essiccamento
A _c =	1,4 m ²	Area della Sezione in Conglomerato
u=	24 m	Perimetro della Sezione in Conglomerato esposto all'Aria

h ₀ =	116,7	mm	Dimensione Fittizia pari al rapporto 2A√u
k _h =	0,975		
ε _{cd,∞} =	-0,296	°/ ₀₀	Deformazione per Ritiro da Essiccamento (a Tempo infinito)
ε _{ca,∞} =	-0,055	°/ ₀₀	Deformazione per Ritiro da Autogeno (a Tempo infinito)
εcs=	-0,351	°/ ₀₀	Deformazione per Ritiro Totale (a Tempo infinito)
$\phi(t_\infty,t_0)=$	2		Coefficiente di Viscosità a t=∞
α=	1,00E-06	°C ⁻¹	
$\Delta T_{eq} =$	-35,14	°C	
ΔT _{eq(t∞)} =	-18,43	°C	

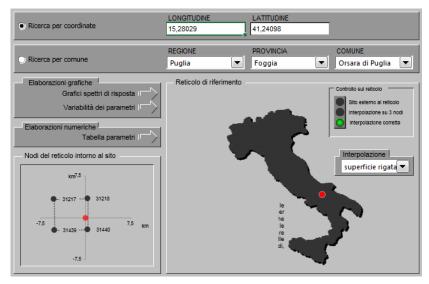
6.6 Valutazione dell'azione sismica

Per definire l'azione sismica di riferimento si devono operare alcune scelte in termini di "vita nominale" e "classi d'uso" dell'opera legati al livello prestazionale atteso.

6.6.1 Azione sismica di progetto

L'opera in oggetto viene progettata per una vita nominale $V_N = 75$ anni ed una classe d'uso III a cui corrisponde un coefficiente d'uso $C_U = 1.5$.

L'azione sismica di progetto è definita per lo Stato Limite di Salvaguardia della Vita (**SLV**). Il periodo di ritorno di quest'ultima - in funzione della vita utile, della classe d'uso, del tipo di costruzione e dello stato limite di riferimento (prima definiti) - è di 1068 anni.


Essa, conformemente a quanto prescritto dalle NTC2018, è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste. Tale pericolosità sismica è descritta, in termini geografici e temporali:

- attraverso i valori di accelerazione orizzontale di picco ag (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione Se(T)
- in corrispondenza del punto del reticolo che individua il punto intermedio della tratta in oggetto:

Longitudine: 15,28029

Latitudine: 41,24098

con riferimento a prefissate probabilità di eccedenza PVR.

In particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

- **a**_g, accelerazione orizzontale massima del terreno
- F₀, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- T_c*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

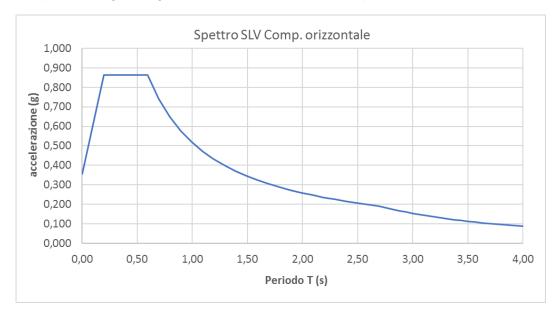
Parametri indipendenti

STATO LIMITE	SLV
a _g	0.272 g
F _o	2.436
T _c *	0.431 s
Ss	1.302
C _c	1.387
S _T	1.000
q	1.000

Parametri dipendenti

S	1.302
η	1.000
T _B	0.199 s
Tc	0.597 s
T _D	2.688 s

Per lo stato limite di salvaguardia della vita (SLV) risulta quanto segue.


Tabella 6-1 Azione sismica di riferimento

ag/g					ag _{max} /g
0.272	С	T1	75	III	0.354

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici. Si assume un fattore di struttura **q=1** poiché si impiegheranno le azioni sismiche per il dimensionamento degli apparecchi di appoggio.

Si riporta di seguito il grafico dello spettro SLV in componente orizzontale.

I dati così ottenuti sono stati richiamati nel programma di calcolo per effettuare un'analisi pseudo-statica lineare.

6.6.2 Sovraspinta sismica

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di **Wood**, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza del piedritto, da applicare ad una quota pari ad H/2.

$$\Delta P_d = a_{max \, (\%g)} \, \gamma \, H^2$$

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPI	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO				
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF1W	00 D 29	CL	SL0100 001	Α	29 di 86

Per il calcolo delle azioni sismiche sui piedritti si assume il convoglio di progetto ripartito al livello dell'asse della soletta superiore e incrementato del coefficiente di adattamento e del coefficiente dinamico.

Non si considerano associate al convoglio azioni di frenatura in quanto l'azione sismica è in direzione trasversale alla canna del sottopasso. Si considera quindi il carico **LM71 + SW02** con un **coefficiente di partecipazione 0.20.** Di seguito si riporta il procedimento completo per la valutazione delle sovraspinte sismiche.

Stato limite		Salvaguardia della vita - SLU -	SLV	
Vita nominale	V_{N}		75	anni
Classe d'uso			III	
Coefficiente Cu	Сυ		1.5	
Periodo di riferimento	V_{R}		112.5	anni
Accelerazione orizzontale	a _g /g		0,272	
Amplificazione spettrale	Fo		2,436	
Categoria sottosuolo		A, B, C, D, E	С	
Coeff. amplificazione stratigrafica	Ss		1,302	
Coeff. amplificazione topografica	St		1,000	
Coefficiente S	S	Ss · St	1,302	
accellerazione orizzontale max	a _{max} /g	ag/g ⋅ S	0,354	
Fattore di struttura	q		1.00	
Coeff. sismico orizzontale	\mathbf{k}_{h}	a _{max} /g	0,354	
Coeff. sismico verticale	k_{ν}	±0.5·k _h	0,177	
Carico accidentale LM71 gravante sulla cop.	Qv	(vedi § 6.3.2)	91,32	kN/m
Forza orizz. sulla sol. di cop.	FHs	kh · (sp·25 + (Yz1+pv) + 0.2·Qv/(L+sp)) / 1.00	34.05	kN/m²
Forza orizz. sui piedritti	FHp	kh · (sp·25) / 1.00	11.50	kN/m²

Spinta del terreno in fase sismica (Condizione SPSDX)

Risultante della spinta sismica	ΔS_{E}	$kh \cdot \gamma \cdot (H_{int} + sp_s + sp_f)^2$	633,11	kN/m
Pressione risultante	Δp_{E}	ΔSE / H	76,28	kN/m²

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO					
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF1W	00 D 29	CL	SL0100 001	Α	30 di 86

7. COMBINAZIONI DI CARICO

In linea con quanto riportato nel quadro normativo vigente, le azioni descritte nei paragrafi precedenti, sono combinate nel modo seguente:

combinazione fondamentale (SLU):

$$\gamma_{\text{G1}} \cdot G_{1} + \gamma_{\text{G2}} \cdot G_{2} + \gamma_{\text{D}} \cdot P + \gamma_{\text{O1}} \cdot Q_{\text{k1}} + \gamma_{\text{O2}} \cdot \psi_{\text{O2}} \cdot Q_{\text{k2}} + \gamma_{\text{O3}} \cdot \psi_{\text{O3}} \cdot Q_{\text{k3}} + \dots$$

combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

combinazione eccezionale:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

combinazione Rara (SLE irreversibile):

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

combinazione Frequente (SLE reversibile):

$$\boldsymbol{G}_{1} + \boldsymbol{G}_{2} + \boldsymbol{P} + \boldsymbol{\psi}_{11} \cdot \boldsymbol{Q}_{k1} + \boldsymbol{\psi}_{22} \cdot \boldsymbol{Q}_{k2} + \boldsymbol{\psi}_{23} \cdot \boldsymbol{Q}_{k3} + ...$$

combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella tabella seguente.

Tabella 7-1 Valutazione dei carichi da traffico

TIPO DI CARICO	Azioni v	erticali	Azioni orizzontali			
Gruppi di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti
Gruppo 1 (2)	1,0	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale
Gruppo 2 (2)	-	1,0	0,0	1,0 (0,0)	1,0 (0,0)	stabilità laterale
Gruppo 3 (2)	1,0 (0,5)	-	1,0	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale
Gruppo 4	0,8 (0,6;0,4)	-	0,8 (0,6;0,4)	0,8 (0,6;0,4)	0,8 (0,6;0,4)	Fessurazione

⁽¹⁾ Includendo tutti i valori (F; a; etc..)

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali ed i coefficienti di combinazione ψ delle tabelle seguenti.

Tabella 7-2 Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica

Coefficie	nte		EQU(1)	A1	A2
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast(3)	favorevoli	YΒ	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γQ	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli	~	1,45	1,45	1,25
Azioni variabili	favorevoli	γOi	0,00	0,00	0,00
	sfavorevoli		1,50	1,50	1,30
Precompressione	favorevole	γP	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00(6)	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	γCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

⁽ⁱ⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1.0), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1,2 e 3 senza che ciò abbia significative conseguenze progettuali

I valori campiti in grigio rappresentano l'azione dominante.

Sottovia scatolare SL01 - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1W	00 D 29	CL	SL0100 001	Α	32 di 86

Tabella 7-3 Coefficienti di combinazione ψ delle azioni

Azioni		ψο	ψ1	Ψ 2
Azioni singole	Carico sul rilevato a tergo delle	0,80	0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Sono prese in considerazione le seguenti verifiche agli stati limite ultimi:

- SLU di tipo Geotecnico (GEO), relative a condizioni di collasso per carico limite dell'insieme fondazione terreno;
- SLU di tipo strutturale (STR), relative a condizioni di raggiungimento della resistenza negli elementi strutturali.

Le verifiche sono svolte considerando il seguente approccio:

Approccio 2: A1 + M1 + R3

Tale approccio prevede un'unica combinazione di gruppi di coefficienti, da adottare sia nelle verifiche strutturali che nelle verifiche geotecniche.

Tabella 7-4 Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	Coefficiente parziale	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	γ _φ .	1,00	1,25
Coesione efficace	ç,	1,00	1,25
Resistenza non drenata	S _i	1,00	1,40
Peso dell'unità di volume	Ϋ́τ	1,00	1,00

VERIFICA	Coefficiente parziale	(R1)	(R2)	(R3)
Capacità portante	γR	1,00	1,80	2,30

⁽²⁾ Ouando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF1W	00 D 29	CL	SL0100 001	Α	33 di 86

Si ottengono le combinazioni riportate nella successiva tabella.

Tabella 7-5 Combinazioni di carico

сомв.	G1	G2	Q_M	Q_T	Q_Avv	ΔΤ	Q_Rit	SPT dx	SPT sx	SPAcc dx	SPAcc sx	SS_H	SS_V	SP_S
SLU_1	1,35	1,35	1,45	0	0	0,9	0	1	1	0	0	0	0	0
SLU_2	1,35	1,35	0	1,45	0	0,9	0	1	1	0	0	0	0	0
SLU_3	1,35	1,35	1,45	0	0	0,9	0	1,35	1,35	1,45	1,45	0	0	0
SLU_4	1,35	1,35	0	1,45	0	0,9	0	1,35	1,35	1,45	1,45	0	0	0
SLU_5	1,35	1,35	1,45	0	0	0,9	0	1	1,35	0	1,45	0	0	0
SLU_6	1,35	1,35	0	1,45	0	0,9	0	1	1,35	0	1,45	0	0	0
SLU_7	1,35	1,35	0	0	0	0,9	0	1,35	1,35	1,45	1,45	0	0	0
SLU_8	1,35	1,35	0	0	0	0,9	0	1	1,35	0	1,45	0	0	0
SLU_9	1,35	1,35	1,45	0	0	-0,9	1,20	1	1	0	0	0	0	0
SLU_10	1,35	1,35	0	1,45	0	-0,9	1,20	1	1	0	0	0	0	0
SLU_11	1,35	1,35	1,45	0	0	-0,9	1,20	1,35	1,35	1,45	1,45	0	0	0
SLU_12	1,35	1,35	0	1,45	0	-0,9	1,20	1,35	1,35	1,45	1,45	0	0	0
SLU_13	1,35	1,35	1,45	0	0	-0,9	1,20	1	1,35	0	1,45	0	0	0
SLU_14	1,35	1,35	0	1,45	0	-0,9	1,20	1	1,35	0	1,45	0	0	0
SLU_15	1,35	1,35	0	0	0	-0,9	1,20	1,35	1,35	1,45	1,45	0	0	0
SLU_16	1,35	1,35	0	0	0	-0,9	1,20	1	1,35	0	1,45	0	0	0
SLU_17	1,35	1,35	1,16	0	1,16	1,5	0	1	1	0	0	0	0	0
SLU_18	1,35	1,35	0	1,16	1,16	1,5	0	1	1	0	0	0	0	0
SLU_19	1,35	1,35	1,16	0	1,16	1,5	0	1,35	1,35	1,16	1,16	0	0	0
SLU_20	1,35	1,35	0	1,16	1,16	1,5	0	1,35	1,35	1,16	1,16	0	0	0
SLU_21	1,35	1,35	1,16	0	1,16	1,5	0	1	1,35	0	1,16	0	0	0
SLU_22	1,35	1,35	0	1,16	1,16	1,5	0	1	1,35	0	1,16	0	0	0
SLU_23	1,35	1,35	0	0	0	1,5	0	1,35	1,35	1,16	1,16	0	0	0
SLU_24	1,35	1,35	0	0	0	1,5	0	1	1,35	0	1,16	0	0	0
SLU_25	1,35	1,35	1,16	0	1,16	-1,5	1,20	1	1	0	0	0	0	0
SLU_26	1,35	1,35	0	1,16	1,16	-1,5	1,20	1	1	0	0	0	0	0
SLU_27	1,35	1,35	1,16	0	1,16	-1,5	1,20	1,35	1,35	1,16	1,16	0	0	0
SLU_28	1,35	1,35	0	1,16	1,16	-1,5	1,20	1,35	1,35	1,16	1,16	0	0	0
SLU_29	1,35	1,35	1,16	0	1,16	-1,5	1,20	1	1,35	0	1,16	0	0	0
SLU_30	1,35	1,35	0	1,16	1,16	-1,5	1,20	1	1,35	0	1,16	0	0	0
SLU_31	1,35	1,35	0	0	0	-1,5	1,20	1,35	1,35	1,16	1,16	0	0	0
SLU_32	1,35	1,35	0	0	0	-1,5	1,20	1	1,35	0	1,16	0	0	0
SLU_33	1,35	1,35	1,45	0	1,45	0,9	0	1	1	0	0	0	0	0
SLU_34	1,35	1,35	0	1,45	1,45	0,9	0	1	1	0	0	0	0	0
SLU_35	1,35	1,35	1,45	0	1,45	0,9	0	1,35	1,35	1,45	1,45	0	0	0
SLU_36	1,35	1,35	0	1,45	1,45	0,9	0	1,35	1,35	1,45	1,45	0	0	0
SLU_37	1,35	1,35	1,45	0	1,45	0,9	0	1	1,35	0	1,45	0	0	0

Sottovia scatolare SL01 - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1W
 00 D 29
 CL
 SL0100 001
 A
 34 di 86

COMB.	G1	G2	Q_M	Q_T	Q_Avv	ΔΤ	Q_Rit	SPT dx	SPT sx	SPAcc dx	SPAcc sx	SS_H	SS_V	SP_S
SLU_38	1,35	1,35	0	1,45	1,45	0,9	0	1	1,35	0	1,45	0	0	0
SLU_39	1,35	1,35	1,45	0	1,45	-0,9	1,35	1	1	0	0	0	0	0
SLU_40	1,35	1,35	0	1,45	1,45	-0,9	1,35	1	1	0	0	0	0	0
SLU_41	1,35	1,35	1,45	0	1,45	-0,9	1,35	1,35	1,35	1,45	1,45	0	0	0
SLU_42	1,35	1,35	0	1,45	1,45	-0,9	1,35	1,35	1,35	1,45	1,45	0	0	0
SLU_43	1,35	1,35	1,45	0	1,45	-0,9	1,35	1	1,35	0	1,45	0	0	0
SLU_44	1,35	1,35	0	1,45	1,45	-0,9	1,35	1	1,35	0	1,45	0	0	0
SLE_1	1	1	0,8	0	0,8	0,6	0	0,6	0,6	0	0	0	0	0
SLE_2	1	1	0	0,8	0,8	0,6	0	0,6	0,6	0	0	0	0	0
SLE_3	1	1	0,8	0	0,8	0,6	0	1	1	0,8	0,8	0	0	0
SLE_4	1	1	0	0,8	0,8	0,6	0	1	1	0,8	0,8	0	0	0
SLE_5	1	1	0,8	0	0,8	0,6	0	0,6	1	0	0,8	0	0	0
SLE_6	1	1	0	0,8	0,8	0,6	0	0,6	1	0	0,8	0	0	0
SLE_7	1	1	0,8	0	0,8	-0,6	1	0,6	0,6	0	0	0	0	0
SLE_8	1	1	0	0,8	0,8	-0,6	1	0,6	0,6	0	0	0	0	0
SLE_9	1	1	0,8	0	0,8	-0,6	1	1	1	0,8	0,8	0	0	0
SLE_10	1	1	0	0,8	0,8	-0,6	1	1	1	0,8	0,8	0	0	0
SLE_11	1	1	0,8	0	0,8	-0,6	1	0,6	1	0	0,8	0	0	0
SLE_12	1	1	0	0,8	0,8	-0,6	1	0,6	1	0	0,8	0	0	0
SLE_13	1	1	0,8	0	0,8	1	0	0,6	0,6	0	0	0	0	0
SLE_14	1	1	0	0,8	0,8	1	0	0,6	0,6	0	0	0	0	0
SLE_15	1	1	0,8	0	0,8	1	0	1	1	0,8	0,8	0	0	0
SLE_16	1	1	0	0,8	0,8	1	0	1	1	0,8	0,8	0	0	0
SLE_17	1	1	0,8	0	0,8	1	0	0,6	1	0	0,8	0	0	0
SLE_18	1	1	0	0,8	0,8	1	0	0,6	1	0	0,8	0	0	0
SLE_19	1	1	0,8	0	0,8	-1	1	0,6	0,6	0	0	0	0	0
SLE_20	1	1	0	0,8	0,8	-1	1	0,6	0,6	0	0	0	0	0
SLE_21	1	1	0,8	0	0,8	-1	1	1	1	0,8	0,8	0	0	0
SLE_22	1	1	0	0,8	0,8	-1	1	1	1	0,8	0,8	0	0	0
SLE_23	1	1	0,8	0	0,8	-1	1	0,6	1	0	0,8	0	0	0
SLE_24	1	1	0	0,8	0,8	-1	1	0,6	1	0	0,8	0	0	0
SS_1	1	1	0,2	0	0	0,5	0	0,6	1	0	0,2	1	0,3	1
SS_2	1	1	0,2	0	0	0,5	0	0,6	1	0	0,2	1	-0,3	1
SS_3	1	1	0,2	0	0	-0,5	1	0,6	1	0	0,2	1	0,3	1
SS_4 SS_5	1	1	0,2			-0,5	0	0,6			0,2		-0,3	
SS_6	1	1	0,2 0,2	0	0	0,5 0,5	0	0,6	1	0	0,2 0,2	0,3	-1	0,3
SS_7	1	1	0,2	0	0	-0,5	1	0,6	1	0	0,2	0,3	1	0,3
SS_8	1	1	0,2	0	0	-0,5	1	0,6	1	0	0,2	0,3	-1	0,3
SS_9	1	1	0,2	0	0	0,5	0	1	0,6	0	0,2	1	0,3	1
33_9	I	<u>'</u>	0,2	U	U	0,5	U	ı	0,0	U	0,2	ı	0,3	'

Sottovia scatolare SL01 - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1W	00 D 29	CL	SL0100 001	Α	35 di 86

сомв.	G1	G2	Q_M	Q_T	Q_Avv	ΔΤ	Q_Rit	SPT dx	SPT sx	SPAcc dx	SPAcc sx	SS_H	SS_V	SP_S
SS_10	1	1	0,2	0	0	0,5	0	1	0,6	0	0,2	1	-0,3	1
SS_11	1	1	0,2	0	0	-0,5	1	1	0,6	0	0,2	1	0,3	1
SS_12	1	1	0,2	0	0	-0,5	1	1	0,6	0	0,2	1	-0,3	1
SS_13	1	1	0,2	0	0	0,5	0	1	0,6	0	0,2	0,3	1	0,3
SS_14	1	1	0,2	0	0	0,5	0	1	0,6	0	0,2	0,3	-1	0,3
SS_15	1	1	0,2	0	0	-0,5	1	1	0,6	0	0,2	0,3	1	0,3
SS_16	1	1	0,2	0	0	-0,5	1	1	0,6	0	0,2	0,3	-1	0,3

Come descritto nel paragrafo § 6.3.1, i carichi QM e QT massimizzano rispettivamente il momento e il taglio sulla soletta di copertura per effetto dei carichi ferroviari.

Per quanto concerne la soletta di fondazione è necessario considerare invece la non contemporaneità dei carichi ferroviari e stradali, che rappresenta la condizione che massimizza le sollecitazioni sulla stessa.

Da un'analisi preliminare, i cui risultati sono esposti al § 9.1, si dimostra che le sollecitazioni sulla soletta inferiore, applicando o meno i carichi stradali contemporaneamente a quelli ferroviari nella condizione QM e QT, hanno variazioni trascurabili.

Per minimizzare il numero di combinazioni di carico, viene quindi considerata principalmente la contemporaneità dei carichi che rappresenta sicuramente la condizione più gravosa da un punto di vista geotecnico e per le rimanenti parti della struttura.

8. MODELLAZIONE STRUTTURALE

8.1 Modello di calcolo

Le analisi sono state condotte mediante l'ausilio del SAP2000, un Codice di calcolo F.E.M. (Finite Element Method) capace di gestire analisi lineari e non lineari ed analisi sismiche con integrazione al passo delle equazioni nel tempo. Dal modello sono state dedotte, per le combinazioni di calcolo statiche e sismiche descritte in precedenza, le sollecitazioni complessive agenti sugli elementi strutturali al fine di procedere con le verifiche di sicurezza previste dalle Normative di riferimento. Dallo stesso modello sono state poi ricavate le sollecitazioni agenti all'intradosso della soletta di fondazione necessarie ai fini delle verifiche geotecniche del sistema terreno-fondazione e delle verifiche strutturali.

Il modello di calcolo attraverso il quale viene discretizzata la struttura è quello di telaio chiuso. I componenti del manufatto sono stati modellati con elementi 1D "frame" di sezioni rettangolari 100x130cm per la soletta di coertura e 100x140cm per soletta di fondazione e piedritti. Di seguito uno schema del modello di calcolo.

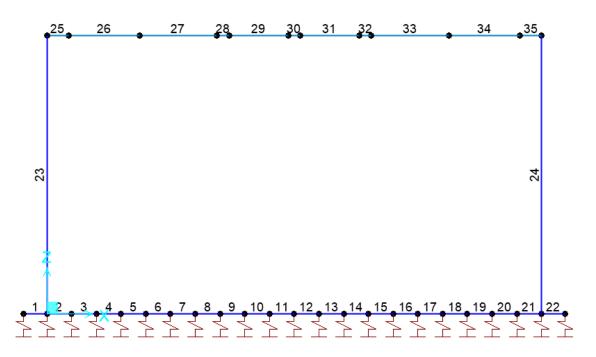


Figura 8-1 – Modello di calcolo

Nomenclatura elementi frame:

ID 1÷22: Soletta di fondazione

ID 23: Piedritto sx

ID 24: Piedritto dx

ID 25÷35: Soletta di copertura

Convenzione assi:

x = asse trasversale dello scatolare

y = asse longitudinale dello scatolare

z = asse verticale dello scatolare

L'applicazione dei carichi di progetto è stata eseguita inserendo forze distribuite o concentrate sugli elementi frame del modello di calcolo.

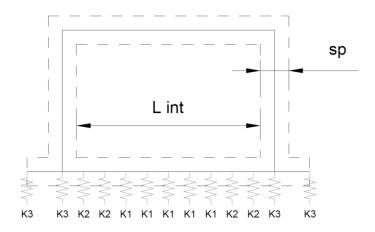
8.2 Modellazione dell'interazione suolo-struttura

Per simulare il comportamento del terreno di fondazione vengono inserite molle alla Winkler.

La soletta inferiore viene divisa in elementi per poter schematizzare, tramite molle applicate in direzione verticale, l'interazione terreno-struttura.

Il coefficiente di sottofondo alla Winkler può essere determinato tramite la seguente espressione:

$$K_W = \frac{E}{(1 - v^2) \cdot B \cdot c_t}$$


nella quale c_t (coefficiente di forma) è calcolato considerando un rapporto L/B>10. Di seguito vengono esplicitati i calcoli per la determinazione della costante di sottofondo.

E_0	Modulo elastico a piccole deformazioni	367 Mpa
Е	Modulo elastico fondazioni (E ₀ /5)	73,4 MPa
ν	Coefficiente di Poisson	0,3
В	Larghezza fondazione	14,9 m
L	Lunghezza fondazione (L>B)	155 m
Ct	Coefficiente di forma: 2 + 0,0089·(L/B)	2,09 (L/B) > 10

Kw 2586,9 kN/m³

Con questo valore si ricavano le costanti elastiche delle singole molle, differenziandole tra interne, intermedie e esterne, come schematizzato di seguito.

Sono stati quindi considerati i seguenti valori:

Molle centrali:

$$K1 = K_W \cdot i = 1940,1$$

essendo:
$$i = (sp/2 + L int + sp/2) / 20 = 0,75m$$

Molle intermedie:

$$K2 = 1.5 \cdot K1 = 2910.3$$

Molle d'angolo:

$$K3 = 2 \cdot K_W \cdot (i/2 + sp/2) = 5303,1$$

Il valore della costante di sottofondo viene ripartito sulle molle inserite nel modello di calcolo.

Di seguito alcuni output del software SAP2000 relativi all'applicazione dei carichi di progetto.

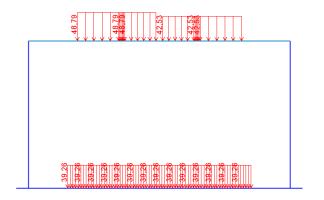


Figura 8-2 – Applicazione carichi Q_M

Figura 8-3 – Applicazione carichi Q_T1



Figura 8-4 – Applicazione carichi SPT_dx

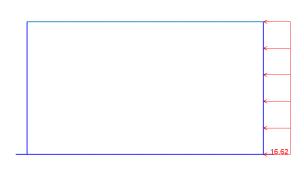


Figura 8-5 – Applicazione carichi SPAcc_dx

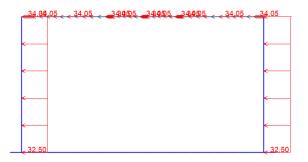
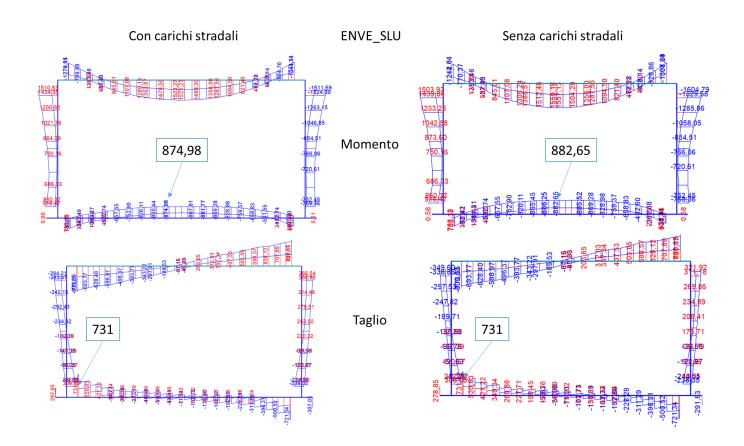
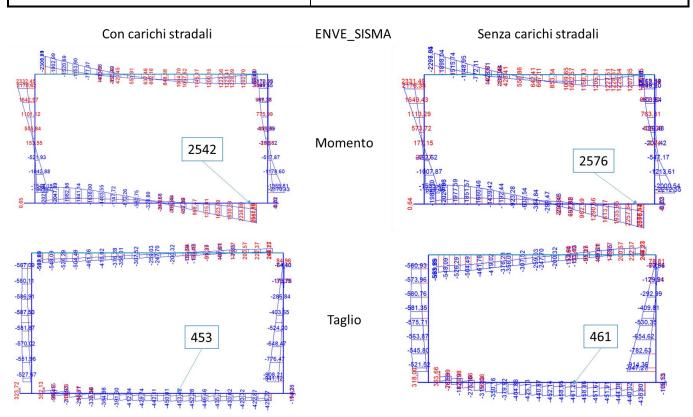


Figura 8-6 – Applicazione carichi SS_H

Figura 8-7 – Applicazione carichi SP_S


STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA CL	DOCUMENTO SL0100 001	REV.	FOGLIO

9. RISULTATI DELLE ANALISI


9.1 Confronto sollecitazioni per sollecitazioni soletta di fondazione

Si riporta di seguito il confronto in forma grafica dei risultati di calcolo ottenuti considerando o meno la contemporaneità di carichi ferroviari e stradali, come anticipato al § 7. In particolare vengono confrontate le sollecitazioni di taglio e i momenti in condizioni statiche e sismiche ottenuti inserendo o meno nel modello di calcolo i carichi stradali sulla soletta di fondazione.

Dal confronto dei diagrammi si evince che la variazione delle sollecitazioni risulta trascurabile.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF1W	00 D 29	CL	SL0100 001	Α	41 di 86

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF1W	00 D 29	CL	SL0100 001	Α	42 di 86

9.2 Risultati analisi strutturali

Si riportano di seguito i risultati in forma grafica e tabellare per le combinazioni ENVE_SLU e ENVE_SISMA, rispettivamente inviluppi delle combinazioni statiche e sismiche. In forma tabellare verranno riportati altresì gli spostamenti e le sollecitazioni necessari per le verifiche agli SLE.

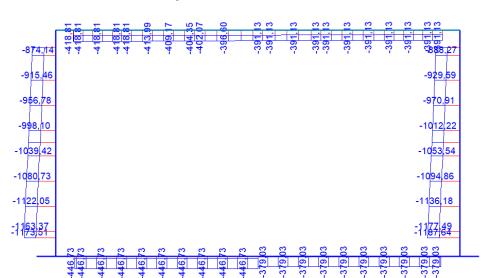


Figura 9-1 – Sforzi assiali ENVE_SLU

Figura 9-2 - Momenti flettenti ENVE_SLU

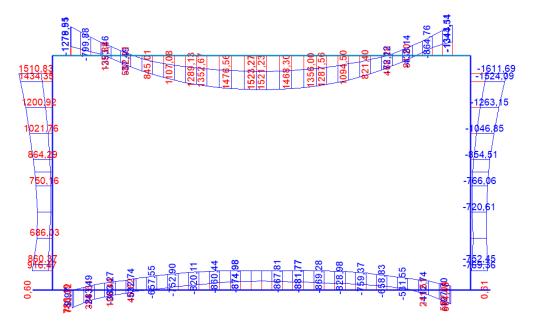


Figura 9-3 – Sforzi di taglio ENVE_SLU

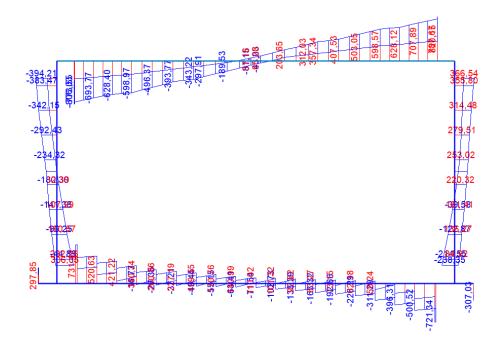


Figura 9-4 - Sforzi assiali ENVE_SISMA

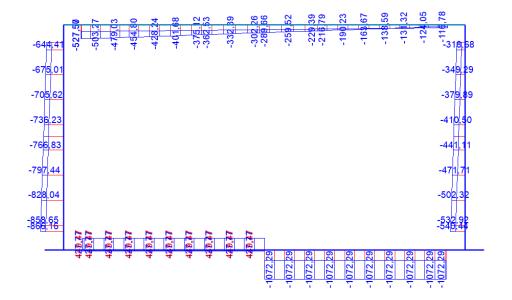


Figura 9-5 – Momenti flettenti ENVE_SISMA

Figura 9-6 – Sforzi di taglio ENVE_SISMA

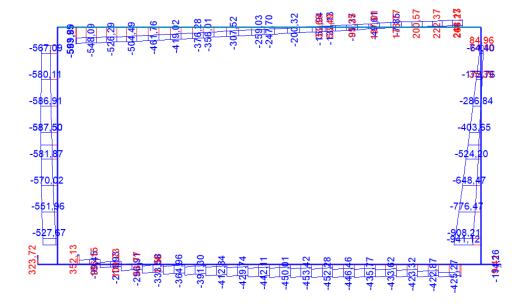


Figura 9-7 - Sforzi assiali ENVE_SLE

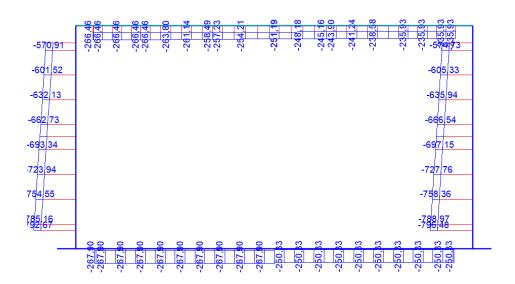
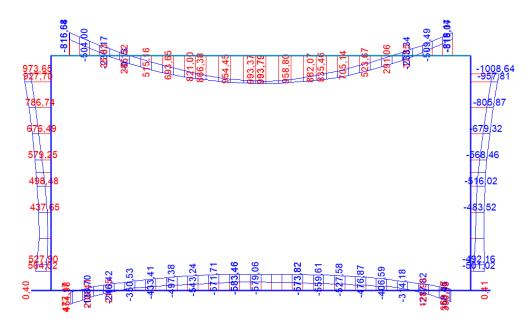



Figura 9-8 - Momenti flettenti ENVE_SLE

Si riportano di seguito le tabelle di verifica con l'indicazione delle sollecitazioni considerate in ognuna di esse, ottenute massimizzando, rispettivamente, sforzi assiali, momenti flettenti e tagli.

• SOLETTA DI COPERTURA

Tabella 9-1 Sollecitazioni soletta di copertura ENVE_SLU

Sollecitazioni per verifica a pressoflessione (PMAX)

Frame	Station	OutputCase	P	V	М
25	0,648	SLU_35	<mark>-418,8</mark>	-719,7	-1279,9
35	0,002	SLU_18	<mark>-167,0</mark>	541,0	-833,9

Sollecitazioni per verifica a pressoflessione (MMAX)

Frame	Station	OutputCase	P	V	М
35	0,002	SLU_5	-323,4	719,3	<mark>-1344,5</mark>
29	1,77	SLU_1	-255,7	5,4	<mark>1523,3</mark>

Sollecitazioni per verifica a taglio (V_{MAX})

Frame	Station	OutputCase	P	V	М
25	0,648	SLU_42	-361,8	- 806,0	-1169,4
35	0,002	SLU_6	-266,4	<mark>820,2</mark>	-1197,6

Tabella 9-2 Sollecitazioni soletta di copertura ENVE_SISMA

Sollecitazioni per verifica a pressoflessione (PMAX)

Frame	Station	OutputCase	P	V2	М3
25	0,648	SS_9	<mark>-527,6</mark>	-610,8	-2416,4
35	0	SS_9	<mark>-64,4</mark>	64,7	1283,8

Sollecitazioni per verifica a pressoflessione (MMAX)

Frame	Station	OutputCase	P	V2	МЗ
25	0,648	SS_9	-527,6	-610,8	<mark>-2416,4</mark>
34	0,71167	SS_9	-112,9	-2,9	<mark>1310,8</mark>

Sollecitazioni per verifica a taglio (V_{MAX})

Frame	Station	OutputCase	P	V2	М3
25	0,648	SS_9	-527,6	<mark>-610,8</mark>	-2416,4
35	0,002	SS_8	-116,8	<mark>268,2</mark>	-53,5

Per quanto concerne le combinazioni di calcolo agli SLE, si riportano, conservativamente, i valori più gravosi derivanti dalla combinazione ENVE_SLE, inviluppo delle combinazioni agli SLE rara, frequente e quasi permanente.

Tabella 9-3 Sollecitazioni soletta di copertura ENVE_SLE

Sollecitazioni per verifica a pressoflessione (PMAX)

Frame	Station	OutputCase	P	V2	М3
25	0,648	SLE_3	<mark>-266,5</mark>	-472,9	-816,6
35	0,002	SLE_2	<mark>-108,3</mark>	393,6	-595,7

Sollecitazioni per verifica a pressoflessione (MMAX)

Frame	Station	OutputCase	P	V2	МЗ
30	0,37	SLE_1	-155,0	4,5	<mark>993,8</mark>
35	0,002	SLE_5	-187,8	468,7	<mark>-819,1</mark>

PIEDRITTI

Tabella 9-4 Sollecitazioni piedritti ENVE_SLU

Sollecitazioni per verifica a pressoflessione (PMAX)

Frame	Station	OutputCase	P	V2	М3
24	0,7	SLU_6	<mark>-1187,6</mark>	14,3	-401,2
23	7,7	SLU_8	<mark>-427,3</mark>	-194,0	512,0

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO

Sottovia scatolare SL01 - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1W	00 D 29	CL	SL0100 001	Α	48 di 86

Frame	Station	OutputCase	P	V2	М3
24	7,7	SLU_5	-775,1	316,8	<mark>-1611,7</mark>
23	7,7	SLU_33	-775,5	-276,8	<mark>1510,8</mark>

Sollecitazioni per verifica a taglio (V_{MAX})

Frame	Station	OutputCase	P	V2	М3
23	7,7	SLU_41	-775,5	<mark>-394,2</mark>	1491,4
24	7,7	SLU_3	-745,9	<mark>366,5</mark>	-1387,2

Tabella 9-5 Sollecitazioni piedritti ENVE_SISMA

Sollecitazioni per verifica a pressoflessione (PMAX)

Frame	Station	OutputCase	P	V2	М3
23	0,7	SS_12	<mark>-883,0</mark>	-621,6	-1818,9
24	7,7	SS_9	<mark>-106,1</mark>	-35,0	1237,2

Sollecitazioni per verifica a pressoflessione (MMAX)

Frame	Station	OutputCase	P	V2	М3
24	0,7	SS_9	-337,0	-1041,9	<mark>-2325,8</mark>
23	7,7	SS_9	-652,1	-564,6	<mark>2456,7</mark>

Sollecitazioni per verifica a taglio (V_{MAX})

Frame	Station	OutputCase	Р	V2	М3
24	0,7	SS_9	-337,0	<mark>-1041,9</mark>	-2325,8
24	7,7	SS_5	-309,5	<mark>85,0</mark>	-170,5

Tabella 9-6 Sollecitazioni piedritti ENVE_SLE

Sollecitazioni per verifica a pressoflessione (PMAX)

Frame	Station	OutputCase	P	V2	МЗ
24	0,7	SLE_6	<mark>-796,5</mark>	5,1	-308,9
23	7,7	SLE_24	<mark>-431,1</mark>	-171,6	787,1

Sollecitazioni per verifica a pressoflessione (MMAX)

Frame	Station	OutputCase	P	V2	М3
24	7,7	SLE_5	-509,9	183,9	<mark>-1008,6</mark>
23	7,7	SLE_1	-514,1	-166,3	<mark>973,6</mark>

SOLETTA DI FONDAZIONE

Tabella 9-7 Sollecitazioni soletta di fondazione ENVE_SLU

Sollecitazioni per verifica a pressoflessione (PMAX)

Frame	Station	OutputCase	P	V2	М3
2	0,7	SLU_8	<mark>-446,7</mark>	481,9	650,9
17	0,745	SLU_5	<mark>-20,3</mark>	50,2	-577,8

Sollecitazioni per verifica a pressoflessione (MMAX)

Frame	Station	OutputCase	P	V2	М3
13	0,745	SLU_6	-77,4	27,1	<mark>-881,8</mark>
2	0,7	SLU_6	-398,9	729,4	<mark>786,2</mark>

Sollecitazioni per verifica a taglio (V_{MAX})

			3	,		_
Frame	Station	OutputCase	P	V2	М3	_
21	0	SLU_36	-358,9	<mark>-721,3</mark>	519,7	
2	0,745	SLU_6	-398,9	<mark>731,4</mark>	753,3	

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO

Sottovia scatolare SL01 - Relazione di calcolo

IF1W	00 D 29	CL	SL0100 001	Α	50 di 86
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Tabella 9-8 Sollecitazioni soletta di fondazione ENVE_SISMA

Sollecitazioni per verifica a pressoflessione (PMAX)

Frame	Station	OutputCase	P	V2	М3
21	0,045	SS_9	<mark>-1209,8</mark>	-432,9	2777,7
3	0,745	SS_9	<mark>587,0</mark>	27,4	-2248,7

Sollecitazioni per verifica a pressoflessione (MMAX)

Frame	Station	OutputCase	P	V2	М3
3	0,745	SS_9	587,0	27,4	<mark>-2248,7</mark>
21	0,045	SS_9	-1209,8	-432,9	<mark>2777,7</mark>

Sollecitazioni per verifica a taglio (V_{MAX})

Frame	Station	OutputCase	P	V2	М3
14	0	SS_9	-1209,8	<mark>-490,5</mark>	412,4
2	0,745	SS_5	-27,8	<mark>352,1</mark>	-385,0

Tabella 9-9 Sollecitazioni soletta di fondazione ENVE_SLE

Sollecitazioni per verifica a pressoflessione (PMAX)

Frame	Station	OutputCase	P	V2	М3
11	0,745	SLE_6	<mark>-267,9</mark>	65,7	-551,7
15	0,745	SLE_5	<mark>-18,4</mark>	32,0	-380,9

Sollecitazioni per verifica a pressoflessione (MMAX)

Frame	Station	OutputCase	P	V2	М3
10	0,745	SLE_2	-67,5	34,4	<mark>-583,5</mark>
2	0,7	SLE_6	-267,9	492,4	<mark>477,2</mark>

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA	DOCUMENTO SL0100 001	REV.	FOGLIO 51 di 86

10. VERIFICHE STR

10.1 Verifiche a pressoflessione

10.1.1 Soletta di copertura e piedritti

Le verifiche sono state effettuate su una sezione H=130cm, B=100cm, armata con Ø26/10cm superiori e inferiori, sia in campata che sugli appoggi. Il copriferro di calcolo è pari a 6 cm in asse armatura.

Le sollecitazioni sono quelle d'inviluppo statiche e sismiche, indicate nelle tabelle precedenti, che massimizzano sforzi assiali e momenti flettenti.

Di seguito le verifiche.

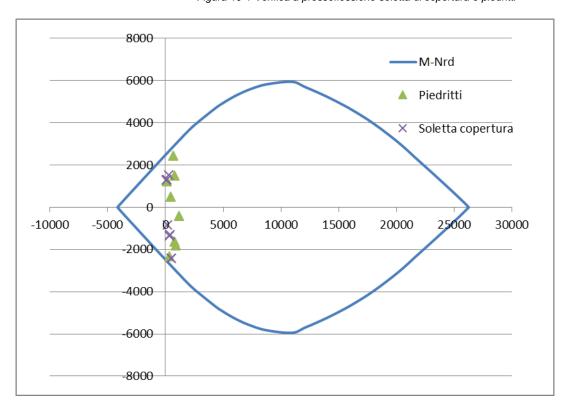


Figura 10-1 Verifica a pressoflessione soletta di copertura e piedritti

La soletta di copertura e i piedritti risultano verificati per ogni condizione di carico. Il massimo rapporto tra coppia agente e resistente è pari a 0,93.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA CL	DOCUMENTO SL0100 001	REV.	FOGLIO

10.1.2 Soletta di fondazione

Le verifiche sono state effettuate su una sezione H=140cm, B=100cm, armata con Ø30/10cm superiori e inferiori, sia in campata che sugli appoggi. Il copriferro di calcolo è pari a 6 cm in asse armatura.

Le sollecitazioni sono quelle d'inviluppo statiche e sismiche, indicate nelle tabelle precedenti, che massimizzano sforzi assiali e momenti flettenti.

Di seguito le verifiche.

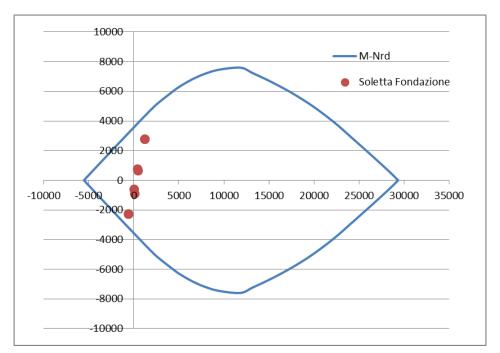


Figura 10-2 Verifica a pressoflessione

La soletta di fondazione e i piedritti risultano verificate per ogni condizione di carico. Il massimo rapporto tra coppia agente e resistente è pari a 0,88.

10.2 Verifiche a taglio

10.2.1 Soletta di copertura e piedritti

Per la verifica si considera una sezione H=130cm B=100cm, armata simmetricamente con Ø26/10cm.

La massima sollecitazione di taglio è ottenuta alla base del piedritto destro e vale:

 $V_{Ed} = 1042 \text{ kN}.$

Di seguito le verifiche.

-	
ALTEZZA [mm]	1300
BASE [mm]	1000
COPRIFERRO [mm]	60
CLS - f _{ck} [MPa]	30
CLS - f _{cd} [MPa]	17,0
ACCIAIO - f _{yk} [MPa]	450
ACCIAIO - f _{yd} [MPa]	391,3
N° Ferri	10
Φ Ferri [mm]	26
ARMATURA [mm²]	5309,3

C _{rd}	0,120
k	1,402
ρΙ	0,0043

Vrd [kN]	488,4
v _{min} [MPa]	0,318
v _{rd} [MPa]	0,394

La verifica a taglio NON è soddisfatta.

Si provvede a disporre un'armatura al taglio costituita da spille Ø12 per un minimo di n.20 spille/m² (n.5 spille nello spessore della soletta a passo 20 cm). Di seguito la verifica con armatura a taglio.

Φ Spille [mm]	12
n°bracci	5
Passo Spille [mm]	200,0
Area Spille/m [mm²/m]	2827,4

C _{rd}	0,120
k	1,402
ρΙ	0,0043

Vrd [kN]	488,4
v _{min} [MPa]	0,318
v _{rd} [MPa]	0,394

Considerando il contributo dell'armatura a taglio, la verifica risulta soddisfatta.

10.2.2 Soletta di fondazione

Per la verifica si considera una sezione H=140cm B=100cm, armata simmetricamente con Ø30/10cm.

La massima sollecitazione tagliante vale:

 $V_{Ed} = 731,4 \text{ kN}.$

Di seguito le verifiche.

ALTEZZA [mm]	1400
BASE [mm]	1000
COPRIFERRO [mm]	60
CLS - f _{ck} [MPa]	30
CLS - f _{cd} [MPa]	17,0
ACCIAIO - f _{yk} [MPa]	450
ACCIAIO - f _{yd} [MPa]	391,3
N° Ferri	10
Φ Ferri [mm]	30
ARMATURA [mm²]	7068,6

C _{rd}	0,120
k	1,386
ρΙ	0,0053

Vrd [kN]	559,7
v _{min} [MPa]	0,313
v _{rd} [MPa]	0,418

La verifica a taglio NON è soddisfatta.

Si provvede a disporre un'armatura al taglio costituita da spille Ø12 per un minimo di n.20 spille/m² (n.5 spille nello spessore della soletta a passo 20 cm). Di seguito la verifica con armatura a taglio.

Φ Spille [mm]	12
n°bracci	5
Passo Spille [mm]	200,0
Area Spille/m [mm²/m]	2827,4

C _{rd}	0,120
k	1,386
ρΙ	0,0053

v _{rd} [MPa] v _{min} [MPa]	0,418
	•
Vrd [kN]	559,7

Considerando il contributo dell'armatura a taglio, la verifica risulta soddisfatta.

10.3 Verifiche a fessurazione

Le verifiche vengono condotte secondo quanto previsto dalle norme NTC2018 Rif. [1].

Si riportano di seguito le condizioni di verifica.

Combinazioni di verifica: SLE rara

Condizioni ambientali: aggressive

• Limite apertura fessure: w1 = 0.2 mm

Per le verifiche tensionali si considerano i seguenti valori (cfr. §§ 4.1.2.2.5.1 e 4.1.2.2.5.2 NTC2018):

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO					
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF1W	00 D 29	CL	SL0100 001	Α	55 di 86

 $\sigma_{c,caratt.} = 0,6 \cdot f_{ck} = 18 \; MPa$

 $\sigma_{s,sls} = 0.8 \cdot f_{yk} = 255 \text{ MPa}$

Di seguito le verifiche.

10.3.1 Soletta di copertura e piedritti

Le sollecitazioni di progetto sono le seguenti:

 $M_{\text{ed}}\!\!:=1009\;kNm$

<u>DETERMINAZIONE DELLE TENSIONI A SLS</u>			
Controllo tensionale per la Combinazione Caratteristica			
Momento sollecitante assunto in valore assoluto	M_{Ed}	1009,0 [kNm]	
Coefficiente di omogeneizzazione	n	15,0 [-]	
Altezza della sezione trasversale di calcestruzzo	h	1300 [mm]	
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]	
Copriferro	d'	60 [mm]	
Altezza utile della sezione	d	1240 [mm]	
Area dell'armatura tesa	As	5309 [mm ²]	
Area dell'armatura compressa	A's	4524 [mm ²]	
Posizione dell'asse neutro	X	329,37 [mm]	
Momento d'inerzia della sezione rispetto a x	J	82875062211 [mm ⁴]	
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	$\sigma_{c,caratt.}$	18 [MPa]	
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]	
Tensione nel calcestruzzo	σ_{c}	4,01 [MPa]	
Tensione nell'armatura tesa	σ_{s}	166,30 [MPa]	

Calcolo dell'ampiezza delle fessure - Combinazione Caratteristica		
Momento sollecitante per la combinazione Caratteristica	$M_{Ed,caratt.}$	1009 [kNm]
Durata del carico		lunga [-]
Posizione dell'asse neutro dal lembo superiore	X	329,37 [mm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!\scriptscriptstyle S}$	166,30 [MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{ct,eff}$	2,9 [MPa]
Fattore dipendente dalla durata del carico	k _t	0,4 [-]
Altezza efficace	$h_{c,eff}$	150 [mm]
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	150000 [mm ²]
Rapporto geometrico sull'area efficace	$\rho_{\text{p,eff}}$	0,03540 [-]
Rapporto tra E _s /E _{cm}	$lpha_{e}$	6,09 [-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	ε _{sm} − ε _{cm}	0,000633 [-] 0,000633 [-]

Determinazione del diametro equivalente delle barre tese	Феq	26,00 [mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8 [-]
Coefficiente che tiene conto della flessione pura	k_2	0,5 [-]
	k_3	3,4 [-]
	k_4	0,425 [-]
Distanza massima tra le fessure	S _{r,max}	260,88 [mm]
		260,88 [mm]
Ampiezza delle fessure	$\mathbf{w}_{\mathbf{k}}$	0,1650 [mm]
Ampiezza massima delle fessure	W _{max}	0,2 [mm]

La verifica è soddisfatta.

10.3.2 Soletta di fondazione

Le sollecitazioni di progetto sono le seguenti:

M_{ed}: 584 kNm

Di seguito la verifica.

DETERMINAZIONE DELLE TENSIONI A SLS						
Controllo tensionale per la Combinazione Caratteristica						
Momento sollecitante assunto in valore assoluto	M_{Ed}	584,0 [kNm]				
Coefficiente di omogeneizzazione	n	15,0 [-]				
Altezza della sezione trasversale di calcestruzzo	h	1400 [mm]				
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]				
Copriferro	d'	60 [mm]				
Altezza utile della sezione	d	1340 [mm]				
Area dell'armatura tesa	As	7069 [mm ²]				
Area dell'armatura compressa	A's	4524 [mm ²]				
Posizione dell'asse neutro	X	394,04 [mm]				
Momento d'inerzia della sezione rispetto a x	J	1,22845E+11 [mm ⁴]				
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	$\sigma_{c,caratt.}$	18 [MPa]				
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]				
Tensione nel calcestruzzo	σ_{c}	1,87 [MPa]				
Tensione nell'armatura tesa	σs	67,46 [MPa]				

Calcolo dell'ampiezza delle fessure - Combinazione Caratteristica						
Momento sollecitante per la combinazione Caratteristica	$M_{Ed,caratt.}$	584	[kNm]			
Durata del carico		lunga	[-]			
Posizione dell'asse neutro dal lembo superiore	X	394,04	[mm]			
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!\scriptscriptstyle S}$	67,46	[MPa]			
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	2,9	[MPa]			
Fattore dipendente dalla durata del carico	k_{\dagger}	0,4	[-]			
Altezza efficace	h _{c,eff}	150	[mm]			
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	150000	$[mm^2]$			
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0,04712	[-]			
Rapporto tra E _s /E _{cm}	$lpha_{ extsf{e}}$	6,09	[-]			
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	ε _{sm} − ε _{cm}	0,000179				
Determinazione del diametro equivalente delle barre tese	феq	30,00	[mm]			
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8	[-]			
Coefficiente che tiene conto della flessione pura	k_2	0,5	[-]			
	k ₃	3,4	[-]			
	k ₄	0,425	[-]			
Distanza massima tra le fessure	S _{r,max}	244,23	[mm]			
		244,23	[mm]			
Ampiezza delle fessure	w _k	0,0494	[mm]			
Ampiezza massima delle fessure	W _{max}	0,2	[mm]			

La verifica è soddisfatta.

11. VERIFICHE GEO

Le verifiche sono condotte secondo l'approccio 2 considerando la combinazione A1+M1+R3, secondo quanto previsto dalle NTC2018 Rif. [1] e secondo quanto detto al § 7.

Per quanto concerne le azioni, nel foglio di verifica vengono considerati coefficienti unitari poiché le azioni di progetto sono quelle d'inviluppo ENVE_SLU, le quali sono ricavate applicando ai carichi i coefficienti di combinazione A1 (per carichi stradali).

La verifica è soddisfatta se il coefficiente di sicurezza $F_S = q_{lim} / q$ risulta maggiore del valore 2,3, coefficiente parziale per la capacità portante.

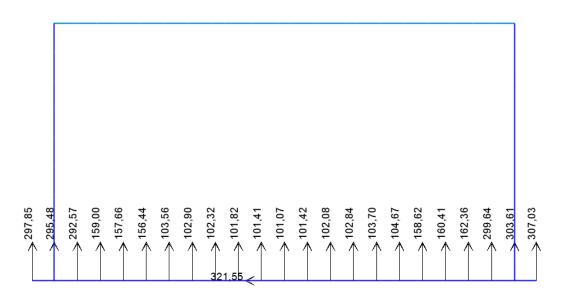


Figura 11-1 – Reazioni molle in fondazione

L'azione di progetto è pari alla somma delle reazioni delle molle in fondazione:

N = 3878,5 kN

Di seguito le verifiche geotecniche.

Fondazioni Dirette Verifica in tensioni efficaci

 $qlim = c'*Nc* sc*dc*ic*bc*gc + q*Nq*sq*dq*iq*bq*gq + 0,5*\gamma*B*N\gamma*s\gamma*d\gamma*i\gamma*b\gamma*g\gamma$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

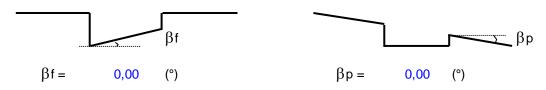
 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali


			az	ioni	proprieta d	el terreno
Metodo di calcolo			permanenti	temporanee variabili	tan φ'	c'
Stato limite ultimo	0		1,00	1,30	1,25	1,25
Tensioni ammissibili	0		1,00	1,00	1,00	1,00
definiti dall'utente	•		1,00	1,00	1,00	1,00

(Per fondazione nastriforme L = 100 m)

B = 14,90 (m)

L = 100,00 (m)

D = 5,50 (m)

AZIONI

	valori d	valori di input		
	permanenti	permanenti temporanee		
N [kN]	3878,50	0,00	3878,50	
Mb [kNm	0,00	0,00	0,00	
MI [kNm]	0,00	0,00	0,00	
Tb [kN]	0,00	0,00	0,00	
TI [kN]	0,00	0,00	0,00	
H [kN]	0,00	0,00	0,00	

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO

Sottovia scatolare SL01 - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1W	00 D 29	CL	SL0100 001	Α	60 di 86

Peso unità di volume del terreno

$$\gamma_1 = 9,00 \text{ (kN/mc)}$$
 $\gamma = 19,00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 0.00 (kN/mq) $\phi' = 36.00$ (°)

Valori di progetto

c' = 0,00 (kN/mq) $\phi' = 36,00 (°)$

Profondità della falda

Zw = 3,10 (m)

q : sovraccarico alla profondità D

q = 25,50 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 9,00 \quad (kN/mc)$

Nc, Nq, Nγ: coefficienti di capacità portante

Nq = $tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$

Nq = 37,75

 $Nc = (Nq - 1)/tan\phi'$

Nc = 50,59

 $N\gamma = 2*(Nq + 1)*tan\phi'$

 $N\gamma = 56,31$

s_c, s_q, s_γ : fattori di forma

 $s_c = 1 + B*Nq / (L*Nc)$

 $s_c = 1,00$

 $s_q = 1 + B*tan\phi' / L*$

 $s_q = 1,00$

 $s_{\nu} = 1 - 0.4*B* / L*$

 $s_{\gamma} = 1,00$

Sottovia scatolare SL01 - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1W	00 D 29	CL	SL0100 001	Α	61 di 86

i_c, i_q, i_γ : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

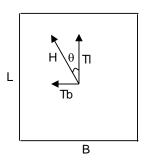
$$\theta = arctg(Tb/TI) =$$

m =

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

 $i_a = (1 - H/(N + B^*L^* c' \cot q\phi'))^m$

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2\theta + m_l cos^2\theta)$ in tutti gli altri casi)


$$i_{q} = 1,00$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 1,00$$

$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

$$i_{\gamma} = 1,00$$

d_c , d_q , d_γ : fattori di profondità del piano di appoggio

$$\begin{split} &\text{per D/B*} \underline{<} \ 1; \ d_q = 1 \ + 2 \ D \ tan\phi' \ (1 \ - \ sen\phi')^2 \ / \ B^* \\ &\text{per D/B*} \!\!> 1; \ d_q = 1 \ + (2 \ tan\phi' \ (1 \ - \ sen\phi')^2) \ ^* \ arctan \ (D \ / \ B^*) \end{split}$$

$$d_{q} = 1,09$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$$

$$d_c = 1,09$$

$$d_{\nu} = 1$$

$$d_{y} = 1,00$$

b_c , b_q , b_γ : fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \varphi)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

b_q =

1,00

$$b_c = b_q - (1 - b_q) / (N_c tan\phi)$$

$$b_c =$$

1,00

$$b_{\gamma} = b_{q}$$

$$b_{\gamma} =$$

1,00

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO

Sottovia scatolare SL01 - Relazione di calcolo

COMMESSA LOTTO

IF1W 00 D 29

CODIFICA DOCUMENTO
CL SL0100 001

REV.

FOGLIO 62 di 86

 g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

 $\beta_f + \beta_p =$

0,00

 β_f + β_p < 45°

$$g_q = 1,00$$

$$g_c = g_q - (1 - g_q) / (N_c tan\phi)$$

$$g_c = 1,00$$

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1,00$$

Carico limite unitario

$$q_{lim} = 4826,06 \quad (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 260,30 (kN/m2)$$

Coefficiente di sicurezza

$$Fs = q_{lim} / q = 18,54$$

Fs > 2,3

La verifica è soddisfatta.

12. INCIDENZA ARMATURE

La struttura scatolare presenta un'incidenza di 111 kg/mc per tutti gli elementi strutturali.

Come previsto dall' Eurocodice (UNI EN 1992-1-1) per le piastre a portanza unidirezionale si raccomanda di prevedere un'armatura secondaria in quantità non minore del 20% dell'armatura principale. Pertanto nel calcolo è stata considerata un'armatura longitudinale diffusa ϕ 14/20 ed un incremento del 15% per tener conto della presenza di legature, spille e sovrapposizioni.

Incidenza scatolar	e SL01			
Hsez	1.4	m		
Bsez	1	m		
Lsez	1	m		
Vcls	1.4	m3		
Ptot	154.73	kg/m3		
Peso acciaio	7850	kg/m3		
Incidenza media	110.52	kg/m3		
Ferri longitudinali				
renriongitualian	ф	Аф	n°barre	Peso
	mm	m2	-	kg/m
Strato superiore	26	4.52E-04	10	35.14
Strato inferiore	26	4.52E-04	10	35.14
Strato inferiore	26	4.52E-04	5	17.57
Ferri trasversali				
	ф	Аф	n°barre	Peso
	mm	m2	-	kg/m
Strato superiore	14	1.54E-04	5	6.04
Strato inferiore	14	1.54E-04	5	6.04
Staffe				
	٨٨		n°bracci	Dece
φ	Аф	passo	n bracci	Peso
mm	m2	cm	-	kg/m
12	1.13E-04	20	5	34.62

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO					
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA CL	DOCUMENTO SL0100 001	REV.	FOGLIO

13. CALCOLO DEI MURI A U

13.1 Descrizione

Di seguito si riporta il calcolo dei muri a U presenti all'imbocco del sottovia scatolare SL01.

La struttura di dimensioni maggiori ha una larghezza interna di 13,5m, mentre l'altezza dei piedritti è variabile dai 5m (muro di destra) agli 8m circa (muro di sinistra). I piedritti hanno sezione variabile da 0,4m in sommità a 0,6m al piede (muro di destra) e da 0,4m in sommità a 1,0m al piede (muro di sinistra). La soletta di fondazione ha uno spessore di 1,2m.

Di seguito un immagine della sezione di calcolo.

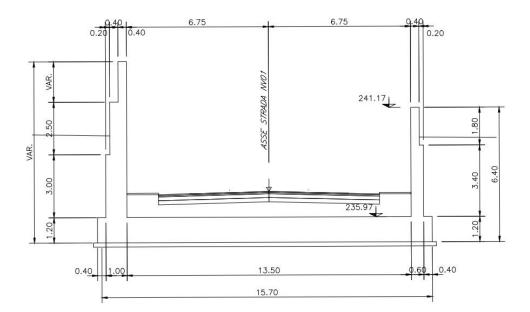


Figura 13-1 - Sezione trasversale muro d'ala Sottovia scatolare SL01

Per il dettaglio delle geometrie si faccia riferimento al Rif. [12]. Per i materiali si faccia riferimento al § 3.1 del presente documento.

13.2 Carichi di progetto

Sul muro a U oggetto di calcolo agiscono i carichi di seguito descritti.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	O TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF1W	00 D 29	CL	SL0100 001	Α	65 di 86

13.2.1 Spinta delle terre piedritto sx

Coeff. Spinta a riposo	K_0	1 - sen (36°) =	0,412	
Pressione alla quota di sommità	p1	$\Upsilon \cdot z 1 \cdot K_0 =$	0,00	kN/m²
Pressione in asse sol. inf.	р3	$\Upsilon \cdot z3 \cdot K_0 =$	67,32	kN/m²
Pressione alla quota di intradosso sol. inf.	p4	$\Upsilon \cdot z 4 \cdot K_0 =$	72,02	kN/m²
Spinta semispessore sol. sup.	F1	p1·sp/2 =	0,00	kN/m
Spinta semispessore sol. inf.	F2	(p3+p4)/2·sp/2 =	27,87	kN/m

dove:

z1 =	0	m
z3 = h + sp/2	8,60	m
z4 = z3 + sp/2	9,20	m

Sul piedritto è stato quindi applicato un carico concentrato simulante le spinte in sommità e sul semispessore della soletta inferiore, rispettivamente pari a F1 e F2.

13.2.2 Spinta delle terre piedritto dx

Coeff. Spinta a riposo	K_0	1 - sen (36°) =	0,412	
Pressione alla quota di sommità	p1	$\Upsilon \cdot z 1 \cdot K_0 =$	0,00	kN/m^2
Pressione in asse sol. inf.	р3	Υ·z3· K ₀ =	43,84	kN/m²
Pressione alla quota di intradosso sol. inf.	p4	$\Upsilon \cdot z 4 \cdot K_0 =$	48,53	kN/m^2
Spinta semispessore sol. sup.	F1	p1·sp/2 =	0,00	kN/m
Spinta semispessore sol. inf.	F2	(p3+p4)/2·sp/2 =	11,55	kN/m

dove:

z1 =	0	m
z3 = h + sp/2	5,60	m
z4 = z3 + sp/2	6.20	m

Sul piedritto è stato quindi applicato un carico concentrato simulante le spinte in sommità e sul semispessore della soletta inferiore, rispettivamente pari a F1 e F2.

13.2.3 Sovraccarico accidentale stradale mobile

Per tale carico si faccia riferimento al § 6.3.5.

13.2.4 Variazione termica

Per tale carico si faccia riferimento al § 6.4.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA CL	DOCUMENTO SL0100 001	REV.	FOGLIO 66 di 86

13.2.5 Ritiro e viscosità del cls

Per tale carico si faccia riferimento al § 6.5.

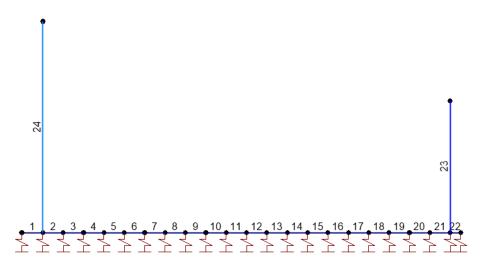
13.2.6 Azione sismica di progetto

Per le caratteristiche del sisma di progetto si faccia riferimento al § 6.6.1.

13.2.7 Sovraspinta sismica piedritto sx

Spinta del terreno in fase sismica (Condia				
Risultante della spinta sismica	ΔS_{E}	$kh \cdot \gamma \cdot (H_{int} + sp_s + sp_f)^2$	569,52	kN/m
Pressione risultante	Δp_{E}	ΔSE / H	61,90	kN/m²

13.3 Combinazioni di carico


Per le combinazioni di carico si faccia riferimento al § 7.

13.4 Modello di calcolo

Le analisi sono state condotte mediante l'ausilio del software SAP2000.

Il modello di calcolo attraverso il quale viene discretizzata la struttura è a telaio 2D. I componenti del manufatto sono stati modellati con elementi 1D "frame" di sezione rettangolare 100x120cm per soletta di fondazione e di sezione variabile 100x40 ÷ 100x100cm per i piedritti. Di seguito uno schema e una vista estrusa del modello di calcolo.

Figura 13-2 – Modello di calcolo

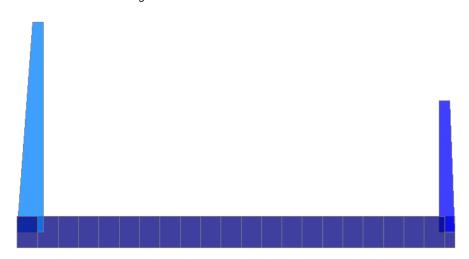



Figura 13-3 – Modello di calcolo – Vista estrusa

Nomenclatura elementi frame:

ID 1÷22: Soletta di fondazione

ID 23: Piedritto sx

ID 24: Piedritto dx

Convenzione assi:

x = asse trasversale

y = asse longitudinale

z = asse verticale

L'applicazione dei carichi di progetto è stata eseguita inserendo forze distribuite o concentrate sugli elementi frame del modello di calcolo.

13.5 Modellazione dell'interazione suolo-struttura

Per la modellazione dell'interazione suolo-struttura si faccia riferimento a quanto esposto al § 8.2.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA CL	DOCUMENTO SL0100 001	REV.	FOGLIO

13.6 Risultati delle analisi

Si riportano di seguito i risultati in forma grafica e tabellare per le combinazioni ENVE_SLU e ENVE_SISMA, rispettivamente inviluppi delle combinazioni statiche e sismiche. In forma tabellare verranno riportati altresì gli spostamenti e le sollecitazioni necessari per le verifiche agli SLE.

Figura 13-4 – Sforzi assiali ENVE_SLU

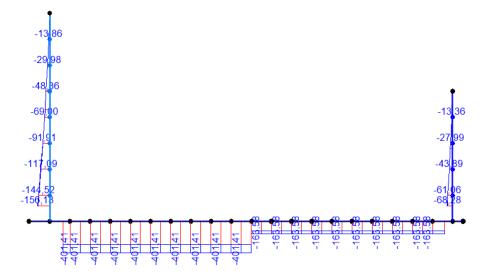


Figura 13-5 – Momenti flettenti ENVE_SLU

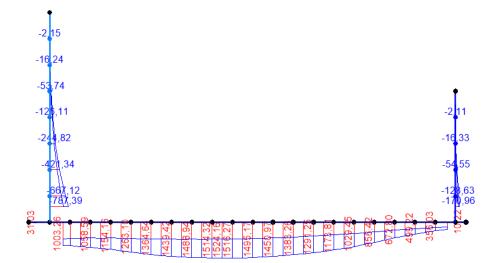


Figura 13-6 – Sforzi di taglio ENVE_SLU

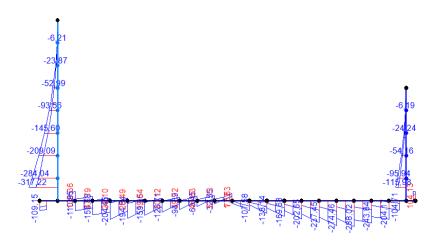


Figura 13-7 – Sforzi assiali ENVE_SISMA

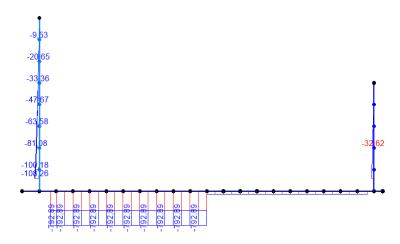


Figura 13-8 – Momenti flettenti ENVE_SISMA

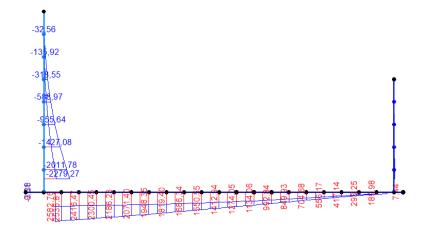


Figura 13-9 - Sforzi di taglio ENVE_SISMA

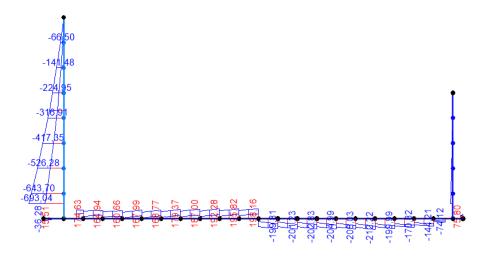
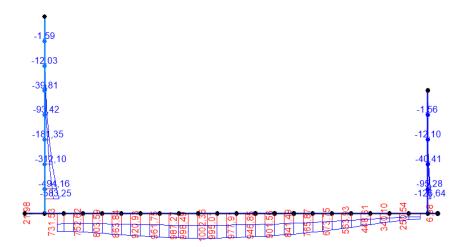



Figura 13-10 - Momenti flettenti ENVE_SLE

Si riportano di seguito le tabelle di verifica con l'indicazione delle sollecitazioni da considerare per le verifiche strutturali.

PIEDRITTO DX

Tabella 13-1 Sollecitazioni di verifica al piede del piedritto dx ENVE_SLU

Frame	Р	V2	М3
23	-67,7	-116,0	-171,0

Tabella 13-2 Sollecitazioni di verifica al piede del piedritto dx ENVE_SISMA

Frame	P	V2	М3
23	-50,8	-52,0	-76,8

Tabella 13-3 Sollecitazioni di verifica piedritto dx ENVE_SLE

Frame	М3
23	-126,6

PIEDRITTO SX

Tabella 13-4 Sollecitazioni di verifica al piede del piedritto sx ENVE_SLU

Frame	Р	V2	М3
24	-153,1	-317,2	-787,4

Tabella 13-5 Sollecitazioni di verifica al piede del piedritto sx ENVE_SISMA

Frame	P	V2	МЗ
24	-96,2	-693,0	-2279,3

Tabella 13-6 Sollecitazioni di verifica piedritto sx ENVE_SLE

Frame	МЗ
23	-583,3

SOLETTA DI FONDAZIONE

Tabella 13-7 Sollecitazioni di verifica soletta di fondazione ENVE_SLU

P	V2	М3
-401,4	-288,0	1524,2

Tabella 13-8 Sollecitazioni di verifica soletta di fondazione ENVE_SISMA

P	V2	М3
-792,9	-212,2	2582,8

Tabella 13-9 Sollecitazioni di verifica soletta di fondazione ENVE_SLE

М3		
1002,4		

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO					
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA	DOCUMENTO SL0100 001	REV.	FOGLIO 73 di 86

13.7 Verifiche STR

13.7.1 Verifiche a pressoflessione

Piedritto dx

Le verifiche sono state effettuate su una sezione H=60cm, B=100cm, armata simmetricamente con Ø14/10cm. Il copriferro di calcolo è pari a 6 cm in asse armatura.

Le sollecitazioni sono quelle d'inviluppo statiche e sismiche, indicate nelle tabelle precedenti, che massimizzano sforzi assiali e momenti flettenti.

Di seguito le verifiche.

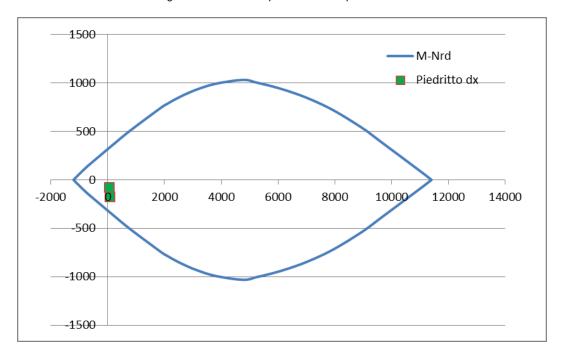


Figura 13-11 Verifica a pressoflessione piedritto dx

Il piedritto risulta verificato per ogni condizione di carico. Il massimo rapporto tra coppia agente e resistente è pari a 0,78.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO					
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA	DOCUMENTO SL0100 001	REV.	FOGLIO

Piedritto sx

Le verifiche sono state effettuate su una sezione H=100cm, B=100cm, armata simmetricamente con Ø30/10cm. Il copriferro di calcolo è pari a 6 cm in asse armatura.

Le sollecitazioni sono quelle d'inviluppo statiche e sismiche, indicate nelle tabelle precedenti, che massimizzano sforzi assiali e momenti flettenti. Di seguito le verifiche.

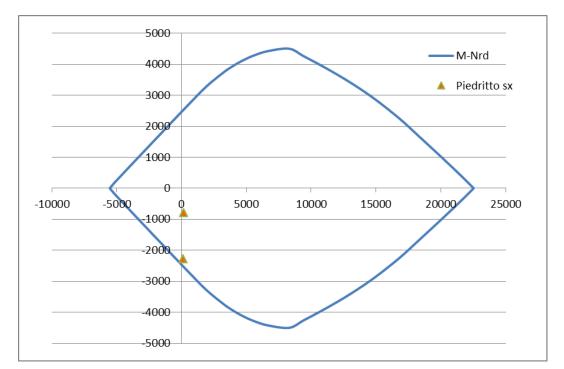
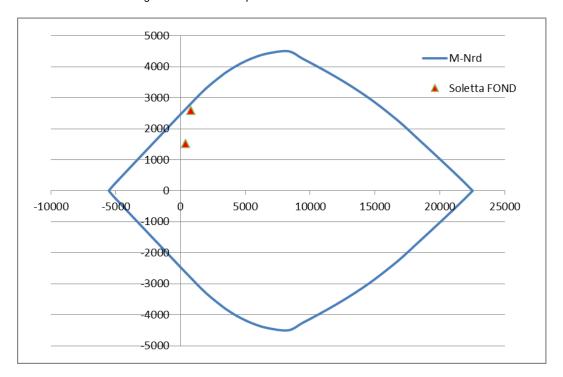


Figura 13-12 Verifica a pressoflessione piedritto sx

Il piedritto risulta verificato per ogni condizione di carico. Il massimo rapporto tra coppia agente e resistente è pari a 0,93.

Soletta di fondazione


Le verifiche sono state effettuate su una sezione H=60cm, B=100cm, armata simmetricamente con Ø30/10cm. Il copriferro di calcolo è pari a 6 cm in asse armatura.

Le sollecitazioni sono quelle d'inviluppo statiche e sismiche, indicate nelle tabelle precedenti, che massimizzano sforzi assiali e momenti flettenti.

Di seguito le verifiche.

Figura 13-13 Verifica a pressoflessione soletta di fondazione

La soletta di fondazione risulta verificata per ogni condizione di carico. Il massimo rapporto tra coppia agente e resistente è pari a 0,91.

13.7.2 Verifiche a taglio

Piedritto dx

Per la verifica si considera una sezione H=60cm B=100cm, armata simmetricamente con Ø26/10cm.

La massima sollecitazione di taglio è ottenuta alla base del piedritto e vale:

 $V_{Ed} = 116 \text{ kN}.$

Di seguito le verifiche.

ALTEZZA [mm]	600
BASE [mm]	1000
COPRIFERRO [mm]	60
CLS - f _{ck} [MPa]	30
CLS - f _{cd} [MPa]	17,0
ACCIAIO - f _{yk} [MPa]	450
ACCIAIO - f _{yd} [MPa]	391,3
N° Ferri	10
Φ Ferri [mm]	14
ARMATURA [mm²]	1539,4

C _{rd}	0,120
k	1,609
ρΙ	0,0029

Vrd [kN]	213,2
v _{min} [MPa]	0,391
v _{rd} [MPa]	0,395

La verifica risulta soddisfatta.

Piedritto sx

Per la verifica si considera una sezione H=100cm B=100cm, armata simmetricamente con Ø30/10cm.

La massima sollecitazione tagliante vale:

 $V_{Ed} = 693 \text{ kN}.$

Di seguito le verifiche.

ALTEZZA [mm]	1000
BASE [mm]	1000
COPRIFERRO [mm]	60
CLS - f _{ck} [MPa]	30
CLS - f _{cd} [MPa]	17,0
ACCIAIO - f _{yk} [MPa]	450
ACCIAIO - f _{yd} [MPa]	391,3
N° Ferri	10
Φ Ferri [mm]	30
ARMATURA [mm²]	7068,6

C _{rd}	0,120
k	1,461
ρΙ	0,0075

v _{rd} [MPa]	0,418
v _{min} [MPa]	0,313
Vrd [kN]	559,7

La verifica a taglio NON è soddisfatta.

Si provvede a disporre un'armatura al taglio costituita da spille Ø12 per un minimo di n.20 spille/m² (n.5 spille nello spessore della soletta a passo 20 cm). Di seguito la verifica con armatura a taglio.

Φ Spille [mm]	12
n°bracci	5
Passo Spille [mm]	200,0
Area Spille/m [mm²/m]	2827,4

C _{rd}	0,120
k	1,386
ρΙ	0,0053

v _{rd} [MPa]	0,495
v _{min} [MPa]	0,339
Vrd [kN]	465,7

Considerando il contributo dell'armatura a taglio, la verifica risulta soddisfatta.

> Soletta di fondazione

Per la verifica si considera una sezione H=120cm B=100cm, armata simmetricamente con Ø30/10cm.

La massima sollecitazione tagliante vale:

 $V_{Ed} = 288 \text{ kN}.$

Di seguito le verifiche.

ALTEZZA [mm]	1200
BASE [mm]	1000
COPRIFERRO [mm]	60
CLS - f _{ck} [MPa]	30
CLS - f _{cd} [MPa]	17,0
ACCIAIO - f _{yk} [MPa]	450
ACCIAIO - f _{yd} [MPa]	391,3
N° Ferri	10
Φ Ferri [mm]	30
ARMATURA [mm²]	7068,6

C _{rd}	0,120
k	1,419
ρΙ	0,0062

Vrd [kN]	514,3
v _{min} [MPa]	0,324
v _{rd} [MPa]	0,451

La verifica risulta soddisfatta.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO - O	RSARA		
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA CL	DOCUMENTO SL0100 001	REV.	FOGLIO 78 di 86

13.7.3 Verifiche a fessurazione

Le verifiche vengono condotte secondo quanto previsto dalle norme NTC2018 Rif. [1].

Si riportano di seguito le condizioni di verifica.

• Combinazioni di verifica: SLE rara

Condizioni ambientali: aggressive

• Limite apertura fessure: w1 = 0.2 mm

Per le verifiche tensionali si considerano i seguenti valori (cfr. §§ 4.1.2.2.5.1 e 4.1.2.2.5.2 NTC2018):

 $\sigma_{c,caratt.} = 0.6 \cdot f_{ck} = 18 \text{ MPa}$

 $\sigma_{s,sls} = 0.8 \cdot f_{yk} = 255 \text{ MPa}$

Di seguito le verifiche.

Piedritto dx

Le sollecitazioni di progetto sono le seguenti:

 M_{ed} : = 126,6 kNm

DETERMINAZIONE DELLE TENSIONI A SLS					
Controllo tensionale per la Combinazione Caratteris	stica				
Momento sollecitante assunto in valore assoluto	M_{Ed}	126,6 [kNm]			
Coefficiente di omogeneizzazione	n	15,0 [-]			
Altezza della sezione trasversale di calcestruzzo	h	600 [mm]			
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]			
Copriferro	d'	60 [mm]			
Altezza utile della sezione	d	540 [mm]			
Area dell'armatura tesa	As	4524 [mm ²]			
Area dell'armatura compressa	A's	4524 [mm ²]			
Posizione dell'asse neutro	X	180,27 [mm]			
Momento d'inerzia della sezione rispetto a x	J	11715587438 [mm ⁴]			
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	$\sigma_{c,caratt.}$	18 [MPa]			
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]			
Tensione nel calcestruzzo	σ_{c}	1, 95 [MPa]			
Tensione nell'armatura tesa	σ_{s}	58,31 [MPa]			

Calcolo dell'ampiezza delle fessure - Combinazione Car	atteristica	
Momento sollecitante per la combinazione Caratteristica	M _{Ed,caratt.}	126,6 [kNm]
Durata del carico		lunga [-]
Posizione dell'asse neutro dal lembo superiore	X	180,27 [mm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!\scriptscriptstyle S}$	58,31 [MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{ct,eff}$	2,9 [MPa]
Fattore dipendente dalla durata del carico	k _t	0,4 [-]
Altezza efficace	$h_{c,eff}$	139,909221 [mm]
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	139909,221 [mm ²]
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0,03233 [-]
Rapporto tra E _s /E _{cm}	$lpha_{ extsf{e}}$	6,09 [-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	ε _{sm} - ε _{cm}	0,000077 [-] 0,000175 [-]
Determinazione del diametro equivalente delle barre tese	Феq	24,00 [mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8 [-]
Coefficiente che tiene conto della flessione pura	k_2	0,5 [-]
	k_3	3,4 [-]
	k ₄	0,425 [-]
Distanza massima tra le fessure	S _{r,max}	296,18 [mm]
		296,18 [mm]
Ampiezza delle fessure	w _k	0,0518 [mm]
Ampiezza massima delle fessure	W _{max}	0,2 [mm]

La verifica è soddisfatta.

Piedritto sx

Le sollecitazioni di progetto sono le seguenti:

 M_{ed} : = 583,3 kNm

DETERMINAZIONE DELLE TENSIONI A SLS							
Controllo tensionale per la Combinazione Caratteristica							
Momento sollecitante assunto in valore assoluto	M_{Ed}	583,3 [kNm]					
Coefficiente di omogeneizzazione	n	15,0 [-]					
Altezza della sezione trasversale di calcestruzzo	h	1000 [mm]					
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]					
Copriferro	d'	60 [mm]					
Altezza utile della sezione	d	940 [mm]					
Area dell'armatura tesa	As	4524 [mm ²]					
Area dell'armatura compressa	A's	4524 [mm ²]					
Posizione dell'asse neutro	X	256,88 [mm]					
Momento d'inerzia della sezione rispetto a x	J	39946910688 [mm ⁴]					
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	$\sigma_{\!\scriptscriptstyle C,caratt.}$	18 [MPa]					
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]					
Tensione nel calcestruzzo	σ_{c}	3,75 [MPa]					
Tensione nell'armatura tesa	σ_{s}	149,62 [MPa]					

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO

Sottovia scatolare SL01 - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1W
 00 D 29
 CL
 SL0100 001
 A
 80 di 86

Calcolo dell'ampiezza delle fessure - Combinazione Car	atteristica	
Momento sollecitante per la combinazione Caratteristica	M _{Ed,caratt.}	583,3 [kNm]
Durata del carico		lunga [-]
Posizione dell'asse neutro dal lembo superiore	X	256,88 [mm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!\scriptscriptstyle S}$	149,62 [MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{ct,eff}$	2,9 [MPa]
Fattore dipendente dalla durata del carico	k _t	0,4 [-]
Altezza efficace	$h_{c,eff}$	150 [mm]
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	150000 [mm²]
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0,03016 [-]
Rapporto tra E _s /E _{cm}	α_{e}	6,09 [-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	ε _{sm} − ε _{cm}	0,000521 [-]
Determinazione del diametro equivalente delle barre tese	Феq	24,00 [mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8 [-]
Coefficiente che tiene conto della flessione pura	k_2	0,5 [-]
	k ₃	3,4 [-]
	k ₄	0,425 [-]
Distanza massima tra le fessure	S _{r,max}	305,28 [mm]
		305,28 [mm]
Ampiezza delle fessure	$\mathbf{w}_{\mathbf{k}}$	0,1590 [mm]
Ampiezza massima delle fessure	W _{max}	0,2 [mm]

La verifica è soddisfatta.

> Soletta di fondazione

Le sollecitazioni di progetto sono le seguenti:

Med: 1002,4 kNm

Di seguito la verifica.

DETERMINAZIONE DELLE TENSIONI A SLS					
Controllo tensionale per la Combinazione Caratteris	tica				
Momento sollecitante assunto in valore assoluto	M_{Ed}	1002,4 [kNm]			
Coefficiente di omogeneizzazione	n	15,0 [-]			
Altezza della sezione trasversale di calcestruzzo	h	1200 [mm]			
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]			
Copriferro	d'	60 [mm]			
Altezza utile della sezione	d	1140 [mm]			
Area dell'armatura tesa	As	7069 [mm²]			
Area dell'armatura compressa	A's	7069 [mm ²]			
Posizione dell'asse neutro	X	335,15 [mm]			
Momento d'inerzia della sezione rispetto a x	J	89259494040 [mm ⁴]			
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	$\sigma_{\!\scriptscriptstyle C,Caratt.}$	18 [MPa]			
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]			
Tensione nel calcestruzzo	σ_{c}	3,76 [MPa]			
Tensione nell'armatura tesa	σ_{s}	135,58 [MPa]			

Calcolo dell'ampiezza delle fessure - Combinazione Caratteristica						
Momento sollecitante per la combinazione Caratteristica	M _{Ed,caratt} .	1002,4 [kNm]				
Durata del carico		lunga [-]				
Posizione dell'asse neutro dal lembo superiore	X	335,15 [mm]				
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!\scriptscriptstyle S}$	135,58 [MPa]				
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{ct,eff}$	2,9 [MPa]				
Fattore dipendente dalla durata del carico	k _t	0,4 [-]				
Altezza efficace	h _{c,eff}	150 [mm]				
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	150000 [mm ²]				
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0,04712 [-]				
Rapporto tra E _s /E _{cm}	$lpha_{ extsf{e}}$	6,09 [-]				
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	ε _{sm} - ε _{cm}	0,000520 [-] 0,000520}[-]				
Determinazione del diametro equivalente delle barre tese	феq	30,00 [mm]				
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8 [-]				
Coefficiente che tiene conto della flessione pura	k_2	0,5 [-]				
	k_3	3,4 [-]				
	k ₄	0,425 [-]				
Distanza massima tra le fessure	S _{r,max}	278,23 [mm]				
		278,23 [mm]				
Ampiezza delle fessure	$\mathbf{w}_{\mathbf{k}}$	0,1446 [mm]				
Ampiezza massima delle fessure	W _{max}	<mark>0,2</mark> [mm]				

La verifica è soddisfatta.

GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO					
Sottovia scatolare SL01 - Relazione di calcolo	COMMESSA IF1W	LOTTO 00 D 29	CODIFICA CL	DOCUMENTO SL0100 001	REV.	FOGLIO 82 di 86

13.8 Verifiche GEO

Le verifiche sono condotte secondo l'approccio 2 considerando la combinazione A1+M1+R3, secondo quanto previsto dalle NTC2018 Rif. [1] e secondo quanto detto al § 7.

Per quanto concerne le azioni, nel foglio di verifica vengono considerati coefficienti unitari poiché le azioni di progetto sono quelle d'inviluppo ENVE_SLU, le quali sono ricavate applicando ai carichi i coefficienti di combinazione A1 (per carichi stradali).

La verifica è soddisfatta se il coefficiente di sicurezza $F_S = q_{lim} / q$ risulta maggiore del valore 2,3, coefficiente parziale per la capacità portante.

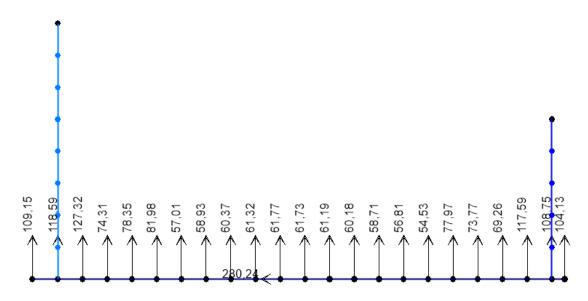


Figura 13-14 - Reazioni molle in fondazione

L'azione di progetto è pari alla somma delle reazioni delle molle in fondazione:

N = 1793,7 kN

Di seguito le verifiche geotecniche.

<u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

 $qlim = c'*Nc* sc*dc*ic*bc*gc + q*Nq*sq*dq*iq*bq*gq + 0,5*\gamma*B*N\gamma*s\gamma*d\gamma*i\gamma*b\gamma*g\gamma$

D = Profondità del piano di appoggio

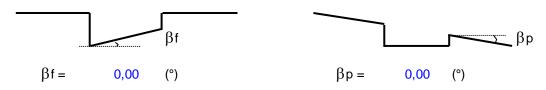
 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

 B^* = Larghezza fittizia della fondazione (B^* = $B - 2^*e_B$)

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)


coefficienti parziali

			az	ioni	proprietà d	lel terreno
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	
Stato limite ultimo	0		1,00	1,30	1,25	1,25
Tensioni ammissibili	0		1,00	1,00	1,00	1,00
definiti dall'utente	•		1 00	1.00	1.00	1.00

(Per fondazione nastriforme L = 100 m)

B = 25,00 (m) L = 50,00 (m)

D = 3,00 (m)

AZIONI

	valori d	Valori di	
	permanenti	temporanee	calcolo
N [kN]	1793,70	0,00	1793,70
Mb [kNm]	0,00	0,00	0,00
MI [kNm]	0,00	0,00	0,00
Tb [kN]	0,00	0,00	0,00
TI [kN]	0,00	0,00	0,00
H [kN]	0,00	0,00	0,00

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1W
 00 D 29
 CL
 SL0100 001
 A
 84 di 86

Peso unità di volume del terreno

$$\gamma_1 = 19,00 \text{ (kN/mc)}$$

 $\gamma = 19,00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c'	=	0,00	(kN/mq	
φ'	=	36,00	(°)	

Valori di progetto

$$c' = 0.00 (kN/mq)$$

 $\phi' = 36.00 (°)$

Profondità della falda

$$Zw = 5,00$$
 (m)

q : sovraccarico alla profondità D

$$q = 57,00 (kN/mq)$$

γ : peso di volume del terreno di fondazione

$$\gamma = 9,80 \quad (kN/mc)$$

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

$$Nq = 37,75$$

$$Nc = (Nq - 1)/tan\phi'$$

$$Nc = 50,59$$

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 56,31$$

s_c , s_q , s_γ : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1,37$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1,36$$

$$s_{\nu} = 1 - 0.4*B* / L*$$

$$s_{\gamma} = 0.80$$

Sottovia scatolare SL01 - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF1W	00 D 29	CL	SL0100 001	Α	85 di 86

i_c, i_q, i_γ : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

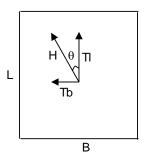
1,67
$$\theta = \operatorname{arctg}(\mathsf{Tb/TI}) =$$

1,33

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

$$i_{\alpha} = (1 - H/(N + B^*L^* c' \cot g\phi'))^m$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2\theta + m_l cos^2\theta)$ in tutti gli altri casi)


$$i_{q} = 1,00$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 1,00$$

$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

$$i_{\gamma} = 1,00$$

d_c , d_q , d_γ : fattori di profondità del piano di appoggio

$$\begin{split} &\text{per D/B*} \underline{<} \ 1; \ d_q = 1 \ + 2 \ D \ tan\phi' \ (1 \ - \ sen\phi')^2 \ / \ B^* \\ &\text{per D/B*} \!\!> 1; \ d_q = 1 \ + (2 \ tan\phi' \ (1 \ - \ sen\phi')^2) \ ^* \ arctan \ (D \ / \ B^*) \end{split}$$

$$d_{q} = 1,03$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$$

$$d_c = 1,03$$

$$d_{\nu} = 1$$

$$d_{y} = 1,00$$

b_c , b_q , b_γ : fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_q =$$

1,00

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c =$$

1,00

$$b_{\gamma} = b_{q}$$

$$b_{\gamma} =$$

1,00

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO - ORSARA PROGETTO DEFINITIVO

Sottovia scatolare SL01 - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 IF1W
 00 D 29
 CL
 SL0100 001

REV. FOGLIO **A** 86 di 86

 g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f$$
 + β_p < 45°

$$g_q = 1,00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

$$g_c = 1,00$$

$$g_{\gamma} = g_{q}$$

$$g_{y} = 1,00$$

Carico limite unitario

$$q_{lim} = 4826,06 (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 260,30 (kN/m2)$$

Coefficiente di sicurezza

$$Fs = q_{lim} / q = 18,54$$

Fs > 2,3

La verifica è soddisfatta.