COMMITTENTE

PROGETTAZIONE

DIREZIONE TECNICA U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO – ORSARA

RELAZIONE IDROLOGICA

File: IF1W00D09RIID0001001A.doc

Studio idrologico del bacino del Torrente Cervaro

								SCALA:
								-
COM	MESSA LOTTO FASI	E ENTE	TIPO DOC	. OPERA/	DISCIPLIN	A PROC	GR. RE	V .
I F	1 W 0 0 D	0 9	RI	I D (0 0 0 1	0 0	1 A	nnti Rom≥
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizza o Dada
А	EMISSIONE ESECUTIVA	C. Çejsali	Nov. 2018	F. Company	Nov. 2018	D. Aprea	Nov. 2018	A. VIIIozo Novembre 2018
								ERR S Fresti Arbe
								ITALS Civilie tt. Ing. N°
								Opere Dot degli it

PROGETTO DEFINITIVO

LOTTO

00 D 09

RELAZIONE IDROLOGICA

COMMESSA IF1W CODIFICA RI DOCUMENTO ID0001 001

REV.

Α

FOGLIO 2 di 38

INDICE

1.	PREMESSA	5
2.	INQUADRAMENTO DELL'AREA	6
3.	IL BACINO DEL TORRENTE CERVARO	7
4.	STUDIO IDROLOGICO	9
4.1	Analisi delle precipitazioni	10
	4.1.1 Va.Pi. Puglia: pluviometria	10
	4.1.2 Elaborazione statistica delle registrazioni pluviometriche	17
4.2	ANALISI DELLE REGISTRAZIONI IDROMETRICHE	23
4.3	STIMA DELLE PORTATE AL COLMO	28
	4.3.1 Metodo razionale	28
	4.3.2 Metodo di Nash	32
	4.3.3 Definizione delle portate di piena dall'analisi statistica delle registrazioni idrometriche	34
	4.3.4 Confronto tra le differenti metodologie adottate	34
4.4	DEFINIZIONE DEGLI IDROGRAMMI DI PIENA DI PROGETTO	36
5	RIFERIMENTI BIBLIOGRAFICI	38

PROGETTO DEFINITIVO

RELAZIONE IDROLOGICA

COMMESSA IF1W LOTTO CODIFICA

RI

00 D 09

DOCUMENTO

ID0001 001

REV.

FOGLIO 3 di 38

INDICE DELLE FIGURE

Fig. 1 – Inquadramento dell'area di studio6
Fig. 2 – Sottobacini del Torrente Cervaro
Fig. 3 – Torrente Cervaro: area analizzata dall'AdB Puglia nell'ambito del P.O. FESR 2007-201310
Fig. 4 – Sottobacini del Torrente Cervaro: Sottozone VAPI
Fig. 5 – Torrente Cervaro: stazione idrometrica di Incoronata
Fig. 6 – Stazione idrometrica di Incoronata: serie storica dei valori di portata massima giornaliera annuale (periodo: 1951-2012)
Fig. 7 – Torrente Cervaro, sottobacino 1 (Orsara): confronto tra i valori di portata al colmo ottenuti secondo differenti approcci
Fig. 8 – Torrente Cervaro, sottobacino 2 (Bovino): confronto tra i valori di portata al colmo ottenuti secondo differenti approcci
Fig. 9 – Torrente Cervaro, sottobacino 1 (Orsara): idrogrammi di piena di progetto, per differenti tempi di ritorno.
Fig. 10 – Torrente Cervaro, sottobacino 2 (Bovino): idrogrammi di piena di progetto, per differenti tempi di ritorno
INDICE DELLE TABELLE
Tab. 1 – Sottobacini del Torrente Cervaro: dati morfometrici
Tab. 2 – Torrente Cervaro: valori di portata al colmo in corrispondenza delle sezioni 13 e 19 (fonte: studio dell'AdB Puglia)
Tab. 3 – Parametri della distribuzione di probabilità dei massimi annuali delle piogge in Puglia
Tab. 4 – Valori teorici del coefficiente probabilistico di crescita K_{Tr} per le piogge in Puglia, per alcuni valori del periodo di ritorno
Tab. 5 – Stazione pluviometrica di Bovino: altezza di pioggia per durate di 1, 3, 6, 12, 24 ore (periodo 1929-2000)
Tab. 6 – Stazione pluviometrica di Faeto: altezza di pioggia per durate di 1, 3, 6, 12, 24 ore (periodo 1941-2000).
Tab. 7 – Stazione pluviometrica di Orsara di Puglia: altezza di pioggia per durate di 1, 3, 6, 12, 24 ore (periodo 1962-2000)

PROGETTO DEFINITIVO

RELAZIONE IDROLOGICA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1W
 00 D 09
 RI
 ID0001 001
 A
 4 di 38

Tab. 8 – Stazione pluviometrica di Monteleone di Puglia: altezza di pioggia per durate di 1, 3, 6, 12, 24 ore (periodo 1936-2000)
Tab. 9 – Stazione pluviometrica di Savignano Irpino: altezza di pioggia per durate di 1, 3, 6, 12, 24 ore (periodo 1932-2000).
Tab. 10 – Valori dei parametri a e n per le stazioni pluviometriche considerate23
Tab. 11 – Stazione idrometrica di Incoronata: valori di portata giornaliera massima annuale (periodo: 1951-2012)25
Tab. 12 – Stazione idrometrica di Incoronata: valori di portata $Q_{max,g}$, per differenti tempi di ritorno, secondo le distribuzioni di probabilità di Gumbel e Fuller
Tab. 13 – Stazione idrometrica di Incoronata: valori di portata massima giornaliera, al colmo e specifica, per differenti tempi di ritorno, secondo la distribuzione di Fuller
Tab. 14 – Stazione idrometrica di Incoronata: valori di portata massima giornaliera, al colmo e specifica, per differenti tempi di ritorno, secondo la distribuzione di Gumbel
Tab. 15 – Valori del Curve Number (CN) per le differenti coperture del suolo del CLC (Elaborazione ADIS)30
Tab. 16 – Sottobacino 1 (Orsara): valori dell'altezza di pioggia, per vari tempi di ritorno, relativi alle stazioni pluviometriche considerate
Tab. 17 – Sottobacino 2 (Bovino): valori dell'altezza di pioggia, per vari tempi di ritorno, relativi alle stazioni pluviometriche considerate
Tab. 18 – Sottobacino 1 (Orsara): valori dell'altezza di pioggia (ragguagliata all'area) per una durata pari a t _r al variare del tempo di ritorno.
Tab. 19 – Sottobacino 2 (Bovino): valori dell'altezza di pioggia (ragguagliata all'area) per una durata pari a t _r al variare del tempo di ritorno32
Tab. 20 – Sottobacino 1 (Orsara): valori del coefficiente di deflusso e della portata al colmo, per i tempi di ritorno considerati
Tab. 21 – Sottobacino 2 (Bovino): valori del coefficiente di deflusso e della portata al colmo, per i tempi di ritorno considerati
Tab. 22 – Sottobacino 1 (Orsara): modello di Nash, valori della portata al colmo, per differenti tempi di ritorno. 33
Tab. 23 – Sottobacino 2 (Bovino): modello di Nash, valori della portata al colmo, per differenti tempi di ritorno. 33
Tab. 24 – Valori di portata al colmo, per differenti tempi ritorno derivanti dall'analisi statistica delle registrazioni idrometriche in corrispondenza della stazione di Incoronata e delle sezioni di chiusura di interesse

1. PREMESSA

Il presente elaborato è parte integrante del Progetto di Raddoppio della Tratta Bovino - Orsara, nell'ambito dell'Itinerario Napoli-Bari, oggetto di approfondimenti progettuali sul progetto preliminare.

Il suddetto progetto si sviluppa in affiancamento al Torrente Cervaro. È stato condotto quindi lo studio idrologico del bacino idrografico di interesse finalizzato alla valutazione delle portate al colmo di progetto e dei relativi idrogrammi di piena da imporre/assumere come condizioni al contorno nel modello idraulico bidimensionale sviluppato.

Lo studio idrologico si compone delle seguenti fasi:

- analisi pluviometrica per la definizione dell'altezza totale di precipitazione;
- definizione della precipitazione netta, ovvero la componente di precipitazione che partecipa al deflusso, pari alla precipitazione totale depurata da quella che risulta persa in conseguenza a perdite idrologiche (immagazzinamento superficiale, vegetazione, evaporazione, infiltrazione);
- trasformazione afflussi-deflussi per il calcolo delle caratteristiche dell'onda di piena, per vari tempi di ritorno.

Le analisi sono state sviluppate nel rispetto della Pianificazione di Bacino attualmente in vigore (PIANO DI BACINO STRALCIO PER L'ASSETTO IDROGEOLOGICO – P.A.I. dell'Autorità di Bacino della Regione Puglia, aggiornamento 27/02/2017), nonché dei risultati dei recenti studi idrologico-idraulici condotti dall'Autorità di Bacino nell'ambito del P.O. FESR 2007 – 2013: *PROGRAMMA PLURIENNALE DI ATTUAZIONE DELL'ASSE II – "Studio per la definizione delle opere necessarie alla messa in sicurezza del reticolo idraulico pugliese, con particolare riferimento alle aree del Gargano, delle coste joniche e salentine della Regione Puglia".*

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO	TINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO – ORSARA PROGETTO DEFINITIVO						
RELAZIONE IDROLOGICA	COMMESSA IF1W	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO 6 di 38		

2. INQUADRAMENTO DELL'AREA

La tratta ferroviaria Bovino – Orsara si sviluppa interamente nella Regione Puglia. Il nuovo tracciato ferroviario ha inizio alla pk 29+050.29 in corrispondenza della P.S.E. dell'attuale comunicazione P/D S60U/1200/0.040 in prossimità del termine della tratta Cervaro - Bovino recentemente attivata. Il tracciato quindi prosegue come prolungamento della nuova linea a doppio binario e dopo un breve tratto di affiancamento all'attuale ferrovia piega verso Nord per dirigersi verso la fermata attuale di Orsara (termine della tratta). Per i primi 2 km quindi la ferrovia è allo scoperto dapprima in rilevato fino alla pk 30+950 poi in trincea fino all'imbocco della galleria (pk 31+044).

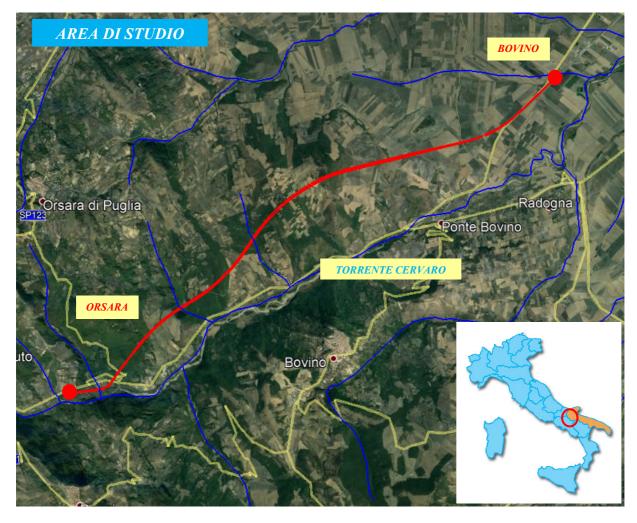


Fig. 1 – Inquadramento dell'area di studio.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPI	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO – ORSARA PROGETTO DEFINITIVO							
RELAZIONE IDROLOGICA	COMMESSA IF1W	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO 7 di 38			

La galleria si sviluppa complessivamente per 9871 m circa; l'imbocco lato Napoli si attesta alla pk 40+915.41. In prossimità di questa uscita è previsto il collegamento con la linea storica (km 40+913.63 - BD). Il tracciato ferroviario della tratta Bovino - Orsara si ferma quindi alla pk 40+889.79 (BP).

Dall'uscita della galleria Orsara si procede con la realizzazione del rilevato ferroviario di approccio al "futuro" viadotto Cervaro (Tratta Orsara-Hirpinia, II lotto funzionale) fino alla pk 41+046.85.

Il collegamento ferroviario provvisorio di 1^rfase prevede la chiusura della tratta Bovino - Orsara sulla linea esistente Foggia - Napoli alla pk 42+677.3, in prossimità dell'attuale fermata di Orsara.

3. IL BACINO DEL TORRENTE CERVARO

Il torrente Cervaro nasce dal monte Le Felci (853 m di quota) presso Monteleone di Puglia, si immette in provincia di Avellino e rientra in quella di Foggia fra Panni e Montaguto; incanalato nell'ultimo tratto, prende il nome di canale Cervaro Nuovo e sfocia, dopo circa 80 km di percorso, nel golfo di Manfredonia, mentre due rami si immettono nelle vasche di colmata del Cervaro. Costeggiato, da Radogna a Stradola, dalla SS 90, riceve a sinistra il torrente Lavella e il torrente Sannoro, a destra il torrente Bilera.

Relativamente al tracciato di progetto, ed in particolare ai due tratti allo "scoperto" (iniziale e finale), il bacino idrografico del T. Cervaro, chiuso in prossimità di Orsara, ricopre un'area di 205 km² circa; mentre fino a Bovino, ha una estensione di 298 km² (Fig. 2).

I dati morfometrici relativi ai due sottobacini considerati sono riportati in Tab. 1.

Sottobacino	Superficie (km²)	Lunghezza asta principale (km)	Quota massima (m slm)	Quota minima (m slm)	Quota media (m slm)
(1) Orsara	204.8	41.60	1105.0	343.0	671.4
(2) Bovino	298.0	50.0	1105.0	209.0	619.62

Tab. 1 – Sottobacini del Torrente Cervaro: dati morfometrici.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO – ORSARA PROGETTO DEFINITIVO					
RELAZIONE IDROLOGICA	COMMESSA IF1W	LOTTO 00 D 09	CODIFICA RI	DOCUMENTO ID0001 001	REV.	FOGLIO 8 di 38

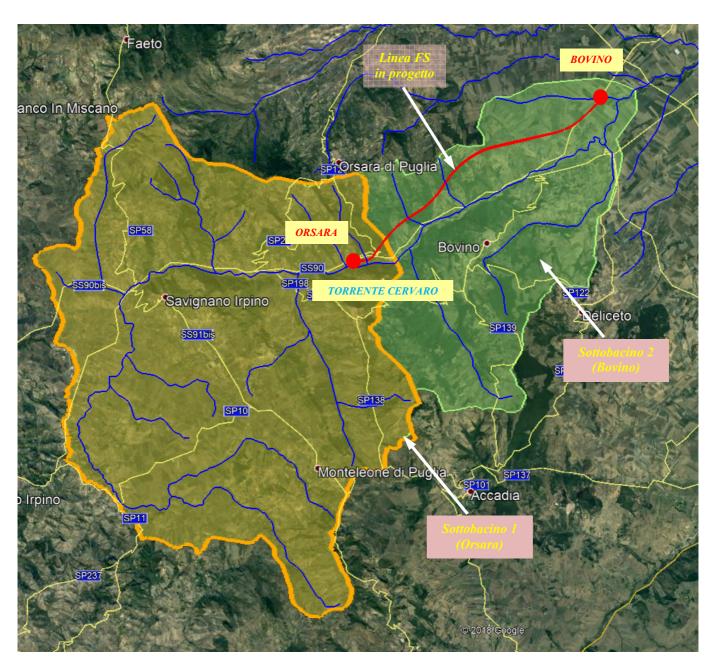


Fig. 2 – Sottobacini del Torrente Cervaro.

4. STUDIO IDROLOGICO

Il quadro conoscitivo di riferimento per la caratterizzazione idrologica del bacino del Torrente Cervaro nel territorio di competenza dell'Autorità di Bacino della Puglia (AdB Puglia) è attualmente riportato nel Piano di Assetto Idrogeologico (P.A.I.), approvato dal Comitato Istituzionale dell'AdB Puglia con delibera n° 39 del 30/11/2005, aggiornato successivamente a più riprese e ancora in fase di aggiornamento relativamente al Torrente Cervaro.

In particolare, nell'ambito del P.O. FESR 2007-2013, l'Autorità di Bacino della Puglia (AdB Puglia) ha prodotto uno studio idrologico-idraulico (i.e. "Studio per la definizione delle opere necessarie per la messa in sicurezza del reticolo idrografico pugliese") del bacino del T. Cervaro a partire dalla sezione che sottende un bacino con area contribuente uguale o maggiore a 25 km² sino alla confluenza con il T. Sannoro (Fig. 3), nel quale ricade l'intervento in oggetto. Le proposte di variazione delle perimetrazioni a diversa pericolosità idraulica hanno in parte già ricevuto l'approvazione da parte della Commissione della Provincia di Foggia. In tale studio, per l'individuazione delle caratteristiche pluviometriche dell'evento critico, si è operato in conformità a quanto previsto dalla metodologia Va.Pi. Puglia (descritta in seguito) sviluppata dal Gruppo Nazionale di Difesa delle Catastrofi Idrogeologiche (GNDCI), mediante l'applicazione delle procedure di regionalizzazione. Determinate le curve di possibilità pluviometrica, le portate di piena sono state valutate mediante l'applicazione della ben nota formula razionale, come da metodologia Va.Pi..

I valori di portata al colmo in corrispondenza della sezione 13 (Tav. 5.1.2_Cervaro_2D_tav.2 del sopracitato studio dell'AdB Puglia) a Orsara, e della sezione 19 (Tav. 5.1.2_Cervaro_2D_tav.3 del sopracitato studio dell'AdB Puglia) a Bovino, sono riportati in Tab. 2.

Nel presente studio sono stati rivalutati i valori di portata al colmo, in corrispondenza delle sezioni di chiusura dei sottobacini di interesse, ricorrendo a differenti metodologie (dirette e indirette). Nel dettaglio, oltre ad applicare la metodologia Va.Pi. Puglia, sono state raccolte ed elaborate le osservazioni pluviometriche ed idrometriche disponibili, registrate presso le stazioni di misura della zona, e sono stati applicati differenti modelli di trasformazione afflussi-deflussi per la determinazione delle portate massime di progetto e dei relativi idrogrammi di piena per i tempi di ritorno (Tr) di 30, 200, 300, 500 anni, in conformità alle analisi già sviluppate dall'AdB Puglia e alla normativa di riferimento in materia di compatibilità idraulica delle opere di attraversamento (Tr 200 - NTC 2018, Cap. 5; Tr 300 – Manuale di Progettazione RFI, per bacini idrografici con superficie superiore a 10 km²).

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO – OI	RSARA		
RELAZIONE IDROLOGICA	COMMESSA IF1W	LOTTO 00 D 09	CODIFICA RI	DOCUMENTO ID0001 001	REV.	FOGLIO 10 di 38

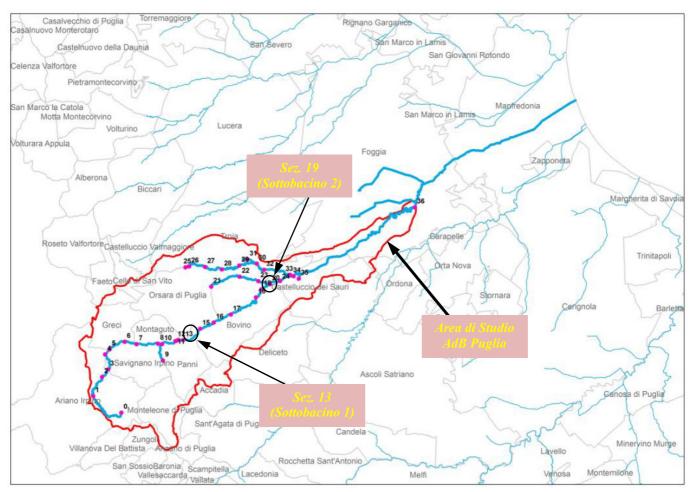


Fig. 3 – Torrente Cervaro: area analizzata dall'AdB Puglia nell'ambito del P.O. FESR 2007-2013.

Tr (anni)	Q [mc/s] (Orsara – sez. 13)	Q [mc/s] (Bovino – sez. 19)
30	349.9	417.4
200	560.5	664.5
500	664.4	786.4

Tab. 2 – Torrente Cervaro: valori di portata al colmo in corrispondenza delle sezioni 13 e 19 (fonte: studio dell'AdB Puglia).

4.1 Analisi delle precipitazioni

4.1.1 Va.Pi. Puglia: pluviometria

Per i massimi annuali delle precipitazioni di diversa durata, è stato adottato un modello di regionalizzazione basato sull'uso della distribuzione di probabilità TCEV (legge di distribuzione di

probabilità del Valore Estremo a Doppia Componente), che rappresenta la distribuzione del massimo valore conseguito, in un dato intervallo di tempo, da una variabile casuale distribuita secondo la miscela di due leggi esponenziali, nell'ipotesi che il numero di occorrenze di detta variabile, nello stesso intervallo di tempo, segua la legge di Poisson (Rossi e Versace, 1982; Rossi *et al.*,1984). Essa ha già mostrato in diverse altre occasioni una buona adattabilità alle serie storiche delle massime altezze di pioggia di una qualsiasi durata (Fiorentino *et al.* 1984; Fiorentino e Gabriele, 1984).

La funzione di probabilità cumulata del modello TCEV può essere espressa nella forma:

$$F_{X}(x) = \exp\left\{-\Lambda_{1} \exp\left(-\frac{x}{\Theta_{1}}\right) - \Lambda_{2} \exp\left(-\frac{x}{\Theta_{2}}\right)\right\} \quad x \ge 0$$

La funzione ha quattro parametri, Λ_1 , Θ_1 , Λ_2 e Θ_2 . I parametri contraddistinti dal pedice 1 sono relativi agli eventi più frequenti (componente base) mentre quelli con pedice 2 si riferiscono ad eventi più gravosi e rari (componente straordinaria). Ognuna delle due componenti è, a tutti gli effetti, una legge di Gumbel. I parametri Λ_1 e Λ_2 esprimono, rispettivamente per le due componenti, il numero medio annuo di eventi indipendenti superiori ad una soglia. I parametri Θ_1 e Θ_2 esprimono invece la media di tali eventi. Spesso è utile fare riferimento, anziché alla X, alla variabile standardizzata

$$Y = \frac{X}{\Theta_1} - \ln \Lambda_1$$

caratterizzata dalla funzione di probabilità cumulata:

$$F_{Y}(y) = \exp\left\{-\exp\left(-y\right) - \Lambda_{*}\exp\left(-\frac{y}{\Theta_{*}}\right)\right\}$$

nella quale risulta:

$$\Theta_* = \frac{\Theta_2}{\Theta_1} \ \text{e} \ \Lambda_* = \frac{\Lambda_2}{\Lambda_1^{1/\Theta_*}}$$

L'espressione completa della funzione di probabilità cumulata della TCEV può essere ulteriormente semplificata facendo riferimento alla variabile adimensionale $K_{t,Tr}=X_{t,Tr}/\mu(X_t)$ dove con $\mu(X_t)$ si è indicato il valore indice (la media della variabile). La funzione di probabilità cumulata di questa nuova variabile $K_{t,Tr}$ è la cosiddetta *curva di crescita* la quale dipende dai parametri Λ^* , Θ^* , Λ_1 e Θ_1 , l'ultimo dei quali è rappresentabile analiticamente in funzione della media.

Tale curva risulta avere validità nell'ambito di sottozone omogenee, per cui rappresenta uno strumento di uso particolarmente comodo. Infatti, nell'ambito delle suddette sottozone, è sufficiente determinare la media della variabile ($\mu(X_t)$) per avere, a partire dalla $K_{t,Tr}$, la distribuzione di probabilità finale.

$$F_{x}(x) = \mu(X_t) K_{t,Tr}$$

Sulle relazioni che intercorrono tra momenti teorici e parametri della distribuzione TCEV si basa la strutturazione regionale della stima dei parametri del modello TCEV, in particolare con riferimento ai momenti del secondo e del terzo ordine. Va innanzitutto detto che mediante l'espressione dei momenti teorici del modello TCEV, si dimostra che il coefficiente di variazione teorico dipende da Λ_* , Θ_* e Λ_1 ed è quindi indipendente da Θ_1 , mentre il coefficiente di asimmetria teorico dipende da Λ_* e Θ_* ed è quindi indipendente da Λ_1 e Θ_1 . La stima su base regionale di parametri dipendenti da momenti di ordine elevato si rende necessaria in quanto i coefficienti di asimmetria e di variazione campionari, espressi rispettivamente dalle relazioni:

$$C_{A} = \sqrt{N} \cdot \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{3}}{\left[\sum_{i=1}^{N} (x_{i} - \mu)^{2}\right]^{\frac{3}{2}}} \qquad C_{V} = \frac{N}{\sqrt{N-1}} \cdot \frac{\left[\sum_{i=1}^{N} (x_{i} - \mu)^{2}\right]^{\frac{3}{2}}}{\sum_{i=1}^{N} x_{i}}$$

stimati dalle serie storiche dei massimi annuali delle portate istantanee, o delle piogge di fissata durata, presentano una variabilità spaziale che nell'ambito di vaste aree non è superiore alla variabilità campionaria. In altri termini, presentano variabilità campionaria molto elevata, ma bassa variabilità spaziale. Ciò consente di ipotizzare l'esistenza di regioni nelle quali si può ammettere che i valori teorici di tali momenti siano costanti. Per le relazioni di cui si è detto in precedenza si ha come conseguenza la costanza dei parametri del modello TCEV direttamente legati ai suddetti momenti campionari.

La procedura di regionalizzazione adottata nello studio regionale è di tipo gerarchico strutturata su tre livelli:

I° Livello di regionalizzazione:

Si assume che il coefficiente di asimmetria C_A sia costante in una regione molto ampia (l'intera Italia Appenninica ed insulare ad eccezione della Sardegna). Ciò implica, per quanto detto in precedenza, la costanza dei parametri Λ^* e Θ^* del modello TCEV nella medesima zona.

Inoltre in una regione omogenea rispetto a Λ^* e Θ^* , risulta unica la funzione di probabilità cumulata della variabile standardizzata Y, in quanto essa dipende soltanto dai due suddetti parametri del modello.

In assenza di dati sufficienti a mettere in discussione localmente la validità di questa assunzione, si pone che ovunque Λ^* e Θ^* assumano i valori calcolati nell'ambito della zona unica.

II° Livello di regionalizzazione

Al secondo livello di regionalizzazione si assume che la regione omogenea rispetto a Λ_* e Θ_* possa suddividersi in sottozone in cui il coefficiente di variazione C_V risulti costante, nel senso che vari con piccoli scarti di disturbo spaziale intorno a valori medi differenti da una zona all'altra.

Per il modello TCEV questo si traduce nella costanza del parametro Λ_1 , nella sottozona omogenea, oltre che di Λ_* e Θ_* . Il valore di Λ_1 relativo alla sottozona va stimato utilizzando tutti i dati disponibili nella zona.

Se si individua una sottozona omogenea rispetto a Λ_1 la variabile $K_{t,Tr} = X_{t,Tr}/\mu(X_t)$ risulta identicamente distribuita, si ha cioè una curva di crescita unica per l'intera sottozona.

III° Livello di regionalizzazione

Il terzo livello di regionalizzazione consiste nell'individuazione di aree omogenee nelle quali sia possibile determinare le relazioni che legano la media $\mu(X_t)$ (valore indice) alle caratteristiche fisiche di interesse.

Nell'analisi delle piogge orarie per ogni sito è possibile legare il valore medio $\mu(X_t)$ dei massimi annuali della precipitazione media di diversa durata t alle durate stesse, attraverso la curva di probabilità pluviometrica:

$$\mu(X_t) = a t^n$$

La stima delle precipitazioni per fissata durata in corrispondenza di un dato tempo di ritorno avviene tramite il calcolo dei valori della media dei massimi delle precipitazioni stesse μ_t relative ad una generica durata t, e la successiva amplificazione delle stesse attraverso il fattore di crescita (della media con il periodo di ritorno) K_T .

$$h_{t,T} = \mu(X_t) K_T$$

Dalla procedura di regionalizzazione sopra descritta, per l'intera regione Puglia, sono stati ottenuti i seguenti valori dei parametri della distribuzione di probabilità adottata (Tab. 3).

Piogge
$$Θ_*=2.352$$
 $Λ_*=0.772$ $Λ_1=45$ $η=5.662$

Tab. 3 – Parametri della distribuzione di probabilità dei massimi annuali delle piogge in Puglia.

Conoscendo Λ_1 , Λ_1 e Θ_2 , è stato possibile quindi determinare le curve regionali di crescita della precipitazione; in particolare:

$$Tr = \frac{1}{1 - F_k(k)} = \frac{1}{1 - \exp(-\Lambda_1 e^{-\eta k} - \Lambda_* \Lambda_1^{1/\theta^*} e^{-\eta k/\theta^*})}$$

Più utile dal punto di vista pratico è la forma inversa dell'equazione precedente per cui, fissato un valore Tr del periodo di ritorno, si ricava il corrispondente valore del coefficiente di crescita K_T . Per la distribuzione TCEV tale relazione non è analiticamente ottenibile. Si riportano di seguito, i valori di K_T ottenuti numericamente per alcuni valori del periodo di ritorno.

Tr	5	10	20	40	50	100	200	500
K _{Tr}	1.26	1.53	1.81	2.10	2.19	2.48	2.77	3.15

Tab. 4 − Valori teorici del coefficiente probabilistico di crescita K_{Tr} per le piogge in Puglia, per alcuni valori del periodo di ritorno.

Nelle pratiche approssimazioni è possibile anche fare riferimento all'espressione semplificata:

$$K_{Tr} = \left(\frac{\mathcal{G}_* Ln\Lambda_*}{\eta} + \frac{Ln\Lambda_1}{\eta}\right) + \frac{\mathcal{G}_*}{\eta} Ln T_r$$

che per la Regione Puglia, dati i valori assunti dai parametri della distribuzione TCEV, diventa:

$$K_{Tr} = 0.5648 + 0.415 Ln T_r$$

Lo studio svolto nell'Analisi regionale dei massimi annuali delle precipitazioni in Puglia ha individuato diverse aree omogenee.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPI	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO – ORSARA PROGETTO DEFINITIVO						
RELAZIONE IDROLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
	IF1W	00 D 09	RI	ID0001 001	Α	15 di 38		

In particolare, il territorio di competenza dell'Autorità di Bacino della Puglia è suddiviso in 6 aree pluviometriche omogenee, per ognuna delle quali è possibile calcolare la Curva di Possibilità Pluviometrica.

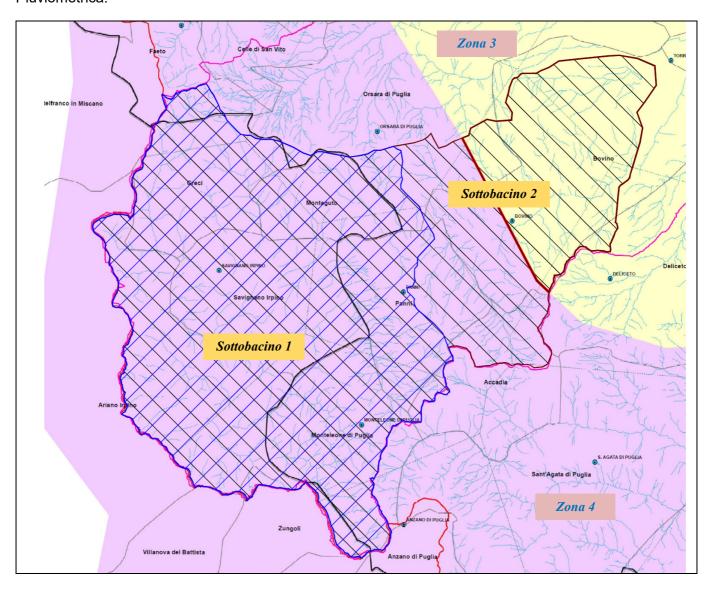


Fig. 4 – Sottobacini del Torrente Cervaro: Sottozone VAPI.

Nello specifico, i sottobacini ricadenti nel bacino del torrente Cervaro, interessano le zone omogenee 2, 3 e 4, per le quali valgono le seguenti equazioni:

Zona 2: $h(t) = 22.23 \cdot K_{Tr} \cdot t^{0.247}$

Zona 3: $h(t,z) = 25.325 \cdot K_{Tr} \cdot t^{[(0.696+0.000531\cdot z)/3.178]}$

Zona 4: $h(t) = 24.70 \cdot K_{Tr} \cdot t^{0.256}$

dove t è il tempo caratteristico dell'evento relativo al modello idrologico adottato e z è la quota media sul livello medio del mare del bacino idrografico. L'applicazione della formula della curva di possibilità pluviometrica consente la stima dell'altezza media di precipitazione espressa in mm. Nell'ambito del presente studio, relativamente al <u>sottobacino 1</u>, chiuso a Orsara, si è fatto riferimento alla CPP della **Zona 4** (a = 24.7; n = 0.256). Il <u>sottobacino 2</u> (chiuso a Bovino) ricade in parte in **Zona 4** (superficie = 245.4 km^2) e in parte in **Zona 3** (superficie = 52.6 km^2). Sono stati quindi applicati i valori medi dei parametri a e n, pesati sull'estensione del sottobacino nelle due sottozone (a = 24.8; n = 0.268) (Fig. 4).

All'analisi pluviometrica segue la valutazione delle portate al colmo di piena, mediante l'applicazione della formula razionale, attraverso un legame correlativo tra la piena indice x, la superficie del bacino ed il valore medio i(tr) dei massimi annuali delle intensità di pioggia puntuali di durata pari al tempo di ritardo caratteristico del bacino. La formula assume la seguente espressione:

$$x = i(t_r) \cdot S \cdot C * /3.6$$

In cui x è la piena indice espressa in m^3/s ; C^* è il coefficiente probabilistico di piena; tr è il tempo di ritardo del bacino espresso in ore; i(tr) è l'intensità dei massimi annuali delle intensità di pioggia puntuali di durata pari al tempo di ritardo caratteristico del bacino, espresso in mm/h. Il coefficiente probabilistico di piena C^* porta in conto, oltre all'effetto naturale di laminazione del picco di piena rispetto al picco di pioggia, l'effetto della riduzione areale delle piogge e le perdite idrologiche nel bilancio di piena, dovute principalmente al fenomeno dell'infiltrazione nel suolo ed a quello dell'intercettazione da parte della vegetazione. Tale coefficiente può essere valutato tramite la relazione:

$$C = 0.09 + 0.47 \cdot (1 - PP)$$

con PP = percentuale di bacino permeabile. Nel caso oggetto di studio, per l'intero bacino del Cervaro, C^* può essere assunto pari a 0.381. Per il tempo di ritardo del bacino, si può ricorrere invece alla formulazione:

$$t_r = 0.344 \cdot S^{0.5}$$

con S = area del bacino espressa in km².

Ai risultati ottenuti viene applicato il fattore di crescita K_{Tr} che contestualizza la piena all'evento considerato e il coefficiente di riduzione areale K_A , valutabile tramite la relazione:

$$K_A(d) = 1 - (1 - \exp(-c_1 S)) \cdot \exp(-c_2 d^{c_3})$$

con *d* che rappresenta la durata dell'evento, *S* la superficie del bacino considerato, c_1 = 0.0021, c_2 = 0.53 e c_3 = 0.25.

4.1.2 Elaborazione statistica delle registrazioni pluviometriche

Sono state raccolte le registrazioni pluviometriche delle stazioni di Bovino, Faeto, Monteleone di Puglia, Orsara di Puglia e Savignano Irpino, ricadenti nei sottobacini in esame.

Nelle tabelle seguenti sono riportati i dati di altezza di pioggia massima, per durate pari a 1, 3, 6, 12, 24 ore, per le cinque stazioni di misura prese in esame (Fonte: Annali idrologici).

Tali dati sono stati quindi elaborati statisticamente ricorrendo al metodo di Gumbel, il quale prevede l'applicazione della distribuzione doppio-esponenziale al campione di dati di precipitazione intesi come variabili indipendenti.

La funzione di probabilità cumulata che la definisce è:

$$F(x) = P(X \le x) = e^{-e^{-\alpha(x-u)}}$$

Introducendo la variabile ridotta y:

$$y = \alpha(x - u)$$

si ha la forma canonica:

$$F(y) = e^{-e^{-y}}$$

I parametri α e u sono legati alla media e alla varianza della popolazione. Sfruttando le informazioni contenute nel campione a disposizione si procede alla loro stima seguendo diversi metodi. Si otterranno parametri diversi per ogni durata di precipitazione.

PROGETTO DEFINITIVO

RELAZIONE IDROLOGICA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1W
 00 D 09
 RI
 ID0001 001
 A
 18 di 38

				Stazio	ne Pluvior	metrica - BO	OVINO				
			ORE						ORE		
ANNO	1	3	6	12	24	ANNO	1	3	6	12	24
	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm
1929	50.0	64.0	64.2	64.2	64.2	1969	26.4	28.0	33.2	51.0	71.8
1932	20.8	35.8	36.8	36.8	40.0	1970	32.6	34.6	41.2	53.8	74.6
1933	24.6	28.0	29.6	41.8	50.2	1971	11.6	17.0	26.2	39.6	52.8
1934	14.0	19.0	27.6	36.0	54.0	1973	32.4	55.2	61.0	64.6	64.6
1935	17.8	17.8	29.6	36.2	38.8	1974	18.6	29.2	30.2	38.2	43.8
1936	22.0	32.0	39.8	53.0	80.6	1975	32.2	46.4	75.8	89.8	106.2
1942	34.0	38.4	39.0	50.4	64.8	1976	38.2	48.0	48.0	49.0	62.0
1943	16.6	28.2	40.4	60.0	64.2	1977	12.2	15.8	18.2	21.2	25.4
1945	12.6	16.0	29.0	53.0	90.6	1978	23.4	25.2	45.0	54.0	67.6
1946	33.6	36.6	37.0	38.0	51.6	1979	21.4	33.2	40.8	54.0	56.8
1951	39.0	43.0	46.2	46.2	54.4	1980	68.2	72.4	72.6	72.6	72.6
1952	37.6	39.0	39.0	39.0	47.0	1981	29.8	31.8	31.8	31.8	35.6
1953	15.4	20.6	33.4	47.4	56.0	1982	37.0	50.6	50.6	50.6	50.6
1954	20.2	28.4	31.6	40.0	59.4	1983	16.6	25.0	45.0	62.8	82.4
1955	28.6	42.2	57.8	77.8	130.2	1984	17.6	26.8	39.6	62.2	94.4
1956	19.4	30.0	47.6	74.2	98.2	1985	17.4	28.4	51.6	86.0	104.2
1957	19.8	33.8	53.0	69.8	98.4	1986	23.8	30.6	39.2	68.2	73.4
1958	21.8	25.8	29.4	50.2	56.2	1988	17.4	18.2	36.2	48.0	48.4
1959	32.4	32.8	36.0	49.4	52.8	1991	18.4	27.0	29.4	39.6	55.6
1960	24.2	26.2	29.0	34.4	38.2	1992	16.6	21.6	27.6	39.0	48.2
1961	16.8	25.0	47.0	58.8	89.6	1993	33.8	33.8	36.4	45.0	49.0
1962	20.2	32.4	46.2	48.4	51.6	1994	26.0	31.0	31.2	34.0	42.8
1963	18.4	31.8	38.2	44.6	73.6	1995	25.0	25.4	25.4	39.8	44.2
1964	21.8	28.4	36.0	44.4	64.8	1996	28.0	36.6	36.6	36.6	46.0
1965	19.2	23.8	30.6	42.6	55.6	1997	35.6	38.4	38.4	43.8	58.2
1966	25.2	29.4	30.2	30.2	43.8	1998	29.6	63.0	63.0	63.0	63.6
1967	40.0	83.8	84.2	84.6	85.2	1999	43.6	46.2	46.4	46.4	58.2
1968	24.2	30.4	38.8	55.2	70.8	2000	19.0	25.8	40.8	59.4	59.4

Tab. 5 – Stazione pluviometrica di Bovino: altezza di pioggia per durate di 1, 3, 6, 12, 24 ore (periodo 1929-2000).

PROGETTO DEFINITIVO

RELAZIONE IDROLOGICA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1W
 00 D 09
 RI
 ID0001 001
 A
 19 di 38

				Stazio	one Pluvio	metrica - F	AETO				
			ORE						ORE		
ANNO	1	3	6	12	24	ANNO	1	3	6	12	24
	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm
1941	13.0	25.0	41.6	54.6	63.4	1981	14.8	18.2	24.0	31.6	32.2
1942	11.2	21.0	30.4	48.4	64.2	1982	24.6	24.6	34.0	46.8	50.2
1943	14.0	37.0	58.0	96.0	147.2	1984	12.6	17.4	29.2	49.4	82.2
1950	24.4	25.2	32.0	32.0	32.2	1985	16.0	24.0	41.0	64.4	81.0
1958	16.4	25.4	33.0	45.8	53.6	1988	19.0	20.6	40.0	44.2	44.4
1960	47.6	58.8	62.2	62.2	63.4	1989	27.4	31.0	36.2	42.6	51.0
1961	20.4	35.4	35.4	41.6	68.4	1990	34.6	39.6	59.4	85.2	118.6
1963	19.0	29.8	36.2	37.0	54.6	1991	29.0	34.8	41.4	49.2	69.8
1964	27.6	27.6	30.6	42.8	52.2	1992	29.2	34.4	39.0	62.2	70.6
1966	24.2	24.4	29.2	43.6	60.4	1993	18.0	20.0	37.4	52.4	57.0
1967	19.2	19.2	27.0	30.4	45.8	1994	12.8	30.8	44.6	48.6	64.4
1970	32.0	36.6	36.8	37.0	58.2	1997	18.4	29.2	33.2	36.0	40.8
1971	24.2	51.6	67.8	89.2	108.6	1998	30.4	44.0	44.0	53.0	56.8
1974	24.4	33.2	36.6	37.4	37.8	1999	26.8	31.2	32.6	33.2	38.3
1975	10.0	19.2	27.6	35.0	47.0	2000	18.2	22.0	25.2	35.4	46.0
1979	18.4	22.8	27.6	45.0	64.0						

Tab. 6 – Stazione pluviometrica di Faeto: altezza di pioggia per durate di 1, 3, 6, 12, 24 ore (periodo 1941-2000).

			S	tazione Pl	uviometric	a - ORSAR	A DI PUGLI	A			
			ORE						ORE		
ANNO	1	3	6	12	24	ANNO	1	3	6	12	24
	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm
1962	17.6	33.4	46.0	50.4	55.0	1979	28.6	28.8	29.4	36.4	73.6
1963	21.0	22.4	23.2	36.4	63.8	1981	19.0	33.6	33.6	33.6	33.6
1964	17.8	22.0	38.0	54.4	76.0	1982	32.6	41.0	44.0	47.0	58.2
1965	22.8	26.6	33.0	47.6	63.8	1983	26.4	39.4	57.8	57.8	57.8
1966	26.0	33.4	44.8	48.6	52.8	1984	12.6	26.0	37.6	70.8	107.4
1967	31.0	41.2	55.2	57.0	66.4	1990	16.4	30.0	57.2	81.0	113.2
1968	28.2	51.4	56.6	72.6	84.6	1991	29.0	35.8	36.2	36.2	62.4
1969	38.6	38.6	38.6	38.6	46.4	1992	17.4	25.0	29.2	42.0	47.0
1970	18.2	35.0	47.0	55.2	71.0	1995	34.6	56.4	56.4	56.4	56.4
1971	14.8	25.0	38.2	49.0	71.8	1996	19.8	20.2	25.2	37.2	41.2
1972	25.6	43.2	45.6	47.0	65.0	1997	22.0	24.4	34.0	60.0	88.4
1974	23.6	39.0	57.2	57.4	58.2	1998	24.6	55.0	55.8	56.0	56.0
1976	38.4	41.0	44.2	48.6	70.6	1999	35.8	39.4	41.2	41.2	46.6
1978	20.0	26.6	54.6	69.8	103.0	2000	32.6	63.6	67.6	67.8	68.2

Tab. 7 – Stazione pluviometrica di Orsara di Puglia: altezza di pioggia per durate di 1, 3, 6, 12, 24 ore (periodo 1962-2000).

			Staz	ione Pluvi	ometrica -	MONTELE	ONE DI PU	GLIA			
			ORE						ORE		
ANNO	1	3	6	12	24	ANNO	1	3	6	12	24
	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm
1936	31.0	36.2	46.0	46.0	46.0	1970	26.2	27.2	35.2	48.0	74.8
1937	14.2	16.2	20.4	32.8	38.2	1971	9.6	16.8	32.2	48.0	56.4
1938	26.6	32.4	32.4	48.0	89.0	1972	38.0	41.2	41.4	41.4	46.0
1939	13.8	17.4	19.0	30.0	34.6	1975	16.8	30.6	34.4	51.8	58.0
1940	11.0	20.6	23.0	34.0	41.6	1976	12.0	16.2	17.8	26.8	33.8
1941	11.6	17.0	22.6	31.8	41.6	1977	28.4	35.6	36.0	36.2	36.6
1948	40.4	45.6	45.6	45.6	52.2	1978	56.4	58.8	58.8	58.8	58.8
1949	55.8	69.2	107.8	134.0	136.8	1979	26.0	29.4	35.0	40.0	70.4
1952	23.0	42.4	45.6	55.4	61.2	1980	27.0	31.8	35.2	50.8	72.8
1953	17.0	20.0	26.6	40.4	65.4	1981	26.6	30.4	30.4	30.6	30.6
1954	16.8	26.4	35.6	42.6	63.2	1982	16.6	20.0	27.6	30.6	36.0
1955	39.8	48.6	55.2	58.2	68.0	1983	16.0	25.0	41.0	78.0	94.2
1956	15.4	21.9	40.8	71.6	94.6	1985	15.0	25.4	46.0	80.6	100.2
1958	20.2	25.6	31.8	37.4	41.8	1987	39.0	56.6	56.6	57.6	57.8
1959	17.0	28.0	42.4	49.0	53.6	1988	17.0	20.8	40.8	53.8	54.2
1960	25.0	36.8	40.2	45.6	51.6	1989	45.0	47.0	47.4	47.4	47.4
1961	21.8	54.0	79.0	92.2	95.0	1990	13.8	29.8	52.2	72.4	100.2
1962	18.4	24.0	27.6	27.6	38.4	1991	12.0	24.6	39.4	62.8	67.2
1964	49.4	50.0	50.0	50.0	65.0	1993	29.0	47.4	47.4	47.4	49.2
1965	9.6	15.4	23.0	30.2	65.0	1995	18.6	20.2	32.2	35.0	39.2
1966	16.0	23.6	33.2	38.8	49.6	1996	12.2	23.6	40.2	42.6	42.6
1967	18.8	21.6	21.6	34.4	43.6	1998	16.2	20.0	28.2	50.6	54.8
1968	32.6	34.6	37.0	63.4	70.4	1999	30.0	43.8	47.8	50.4	55.8
1969	33.6	35.6	35.6	35.6	40.0	2000	18.2	27.2	42.6	55.2	55.4

Tab. 8 – Stazione pluviometrica di Monteleone di Puglia: altezza di pioggia per durate di 1, 3, 6, 12, 24 ore (periodo 1936-2000).

Per una data durata di precipitazione, si ordinano le *N* altezze di precipitazione in ordine crescente e si numerano da 1 ad N. Ad ogni altezza di precipitazione si associa la relativa frequenza cumulata di non superamento, calcolata con la formula di Weibull:

$$F_i = \frac{i}{N+1}$$

A denominatore si ha N+1 in luogo di N per evitare che il più grande evento verificatosi sia caratterizzato da una frequenza cumulata di non superamento pari a 1: valore che rappresenta l'evento impossibile da superare.

Il metodo di Gumbel per la stima dei parametri della distribuzione si fonda sull'ipotesi di confondere la probabilità di non superamento di una certa altezza di precipitazione (relativa ad una popolazione) con la sua frequenza cumulata di non superamento (che si riferisce, invece ad un campione della popolazione suddetta), cioè:

$$F(h_i) \cong F_i$$

La variabile ridotta da associare ad ogni altezza di precipitazione viene quindi calcolata come:

$$F(h_i) = F_i = F(y) = e^{-e^{-y}}$$
 e $F_i = \frac{i}{N+1} \implies y_i = -\ln\left[-\ln\left(\frac{i}{N+1}\right)\right]$

Con questa assunzione, la variabile ridotta y dipende solamente da h con la relazione lineare:

$$y = \alpha(h - u)$$

La stima dei parametri α e u si ottiene sfruttando il metodo dei momenti, in base al quale i parametri della distribuzione vengono ottenuti eguagliando la media campionaria alla media della distribuzione della popolazione. Si ottengono quindi per α e u le seguenti espressioni:

$$\alpha = \frac{1.283}{S_h} \qquad u = m_h - \frac{0.577}{\alpha}$$

Introducendo ora il concetto di tempo di ritorno, *Tr*, cioè il tempo che mediamente trascorre tra la realizzazione di un evento e di un altro di entità uguale o superiore, si riesce ad ottenere l'espressione che esprime le altezze di precipitazione in funzione del tempo di ritorno:

$$T_r(h) = \frac{1}{1 - F(h)} \implies F(h) = \frac{T_r - 1}{T_r}$$

$$e^{-e^{-\alpha(h - u)}} = \frac{T_r - 1}{T_r} \implies h = u - \frac{1}{\alpha} \ln \left[-\ln \left(\frac{T_r - 1}{T_r} \right) \right]$$

E' stata quindi ricavata l'espressione analitica della funzione $h(Tr, \tau)$ che fornisce il valore di h in funzione del tempo di ritorno per una prefissata durata di precipitazione. Si vuole ora trovare un'espressione analitica che, per un dato tempo di ritorno, fornisca l'altezza di precipitazione in funzione della durata.

A questo scopo, si assegna alla funzione $h(Tr, \tau)$ la seguente forma:

$$h(T_r, \tau) = a(T_r)\tau^n$$

Queste equazioni, una per ogni prefissato tempo di ritorno, sono dette curve di possibilità pluviometrica (o climatica). L'intensità di precipitazione $j(T_r, \tau)$ è definita come l'altezza di precipitazione per unità di tempo ed ha la forma:

$$j(T_r,\tau) = \frac{h(T_r,\tau)}{\tau} = a \tau^{n-1}$$

Passando alla notazione logaritmica, l'equazione della curva di possibilità pluviometrica assume la forma lineare, e viene ottenuta interpolando i valori per regressione lineare ai minimi quadrati. Gli scarti da minimizzare sono quelli verticali, in quanto la misura di h soffre di maggiori incertezze rispetto a quella del tempo di precipitazione.

$$\log h = \log a + n \log \tau$$

			St	tazione Plu	viometric	a - SAVIGN	ANO IRPIN	0			
			ORE						ORE		
ANNO	1	3	6	12	24	ANNO	1	3	6	12	24
	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm
1932	20.4	20.4	21.8	24.2	37.4	1976	18.8	21.6	24.8	26.2	40.4
1933	20.0	31.0	31.0	31.0	31.0	1977	12.4	14.6	17.8	31.2	36.6
1934	39.2	41.0	41.6	43.2	47.2	1978	16.0	20.4	25.2	36.0	51.8
1935	17.0	21.2	22.2	32.6	43.8	1979	20.8	23.0	23.6	24.8	46.6
1936	31.8	44.4	45.4	48.2	56.4	1980	13.0	25.6	35.6	51.4	54.8
1949	20.0	36.0	60.0	85.2	87.6	1981	26.2	26.2	26.2	26.2	32.4
1952	27.6	36.8	38.2	39.6	42.4	1982	32.0	37.4	45.2	46.8	48.6
1953	29.0	30.6	32.2	33.2	36.2	1983	17.0	17.8	23.6	30.4	38.4
1955	23.2	34.8	40.6	41.6	48.0	1984	16.4	22.6	32.4	42.4	45.6
1957	14.2	15.0	20.4	33.4	44.6	1985	25.4	30.6	45.2	81.6	100.4
1965	12.0	18.6	24.0	35.6	70.0	1986	43.0	75.0	75.0	75.0	75.0
1967	20.0	24.6	37.0	37.2	64.4	1991	52.0	67.0	67.6	67.8	67.8
1970	30.0	38.4	45.4	49.6	78.0	1996	58.2	62.4	62.4	62.4	62.6
1971	14.6	22.6	39.4	62.6	83.0	1998	14.8	16.8	28.2	45.4	46.6
1972	35.2	39.4	40.6	40.6	40.8	2000	15.8	28.8	29.4	38.6	38.6
1974	22.0	36.0	46.6	51.2	52.2						

Tab. 9 – Stazione pluviometrica di Savignano Irpino: altezza di pioggia per durate di 1, 3, 6, 12, 24 ore (periodo 1932-2000).

Nella tabella seguente sono indicati i valori dei parametri *a* e *n* delle CPP adottate, per i diversi tempi di ritorno considerati, relativamente alle stazioni pluviometriche in esame.

Tempo di ritorno (anni)	500		30	300		00	30	
Stazione	а	n	а	n	а	n	а	n
Bovino	70.36	0.2223	66.25	0.2246	62.99	0.2266	47.68	0.2396
Savignano Irpino	76.28	0.1682	71.55	0.1708	67.80	0.1732	50.12	0.1885
Monteleone di Puglia	72.71	0.2324	68.25	0.2344	64.70	0.2362	48.00	0.2477
Faeto	52.47	0.3418	49.64	0.3414	47.39	0.3412	36.79	0.3392
Orsara di Puglia	57.77	0.2832	54.80	0.2841	52.44	0.2849	41.37	0.2896

Tab. 10 – Valori dei parametri a e n per le stazioni pluviometriche considerate.

L'altezza di pioggia (ragguagliata all'area) può essere valutata mediante l'applicazione del metodo dei poligoni di Thiessen (o dei topoieti). In particolare, il volume di pioggia (V_p) caduto all'interno di un poligono di Thiessen o topoieto è uguale all'altezza di precipitazione misurata nella relativa stazione pluviometrica per l'area del poligono.

Il volume di pioggia caduto sull'intero bacino sarà quindi fornito dalla somma dei prodotti di cui prima con l'avvertenza che, per quei topoieti che parzialmente ricadono fuori dalla regione in esame, si dovrà considerare solo l'area della porzione del poligono o del topoieto che appartiene al bacino:

$$V_p = \sum_{i=1}^N h_i(\Omega_i \cap S)$$

in cui i è il generico topoieto/poligono di Thiessen; N, il numero dei topoieti; h_i , l'altezza di pioggia misurata nella stazione; Ω_i è l'area del topoieto; S, la superficie del bacino. Quindi, l'altezza di pioggia (h) ragguagliata all'area può essere dedotta come $h = V_p/S$.

4.2 Analisi delle registrazioni idrometriche

Sono stati considerati i valori delle portate giornaliere massime annuali, negli anni **1951 – 2012**, registrati presso la stazione idrometrica di Incoronata, situata ad una distanza di circa 20 km da Bovino e circa 30 km da Orsara (Fig. 5).

	ITINERARIO RADDOPPIO PROGETTO	TRATTA	BOVINO – OF	RSARA		
RELAZIONE IDROLOGICA	COMMESSA IF1W	LOTTO 00 D 09	CODIFICA RI	DOCUMENTO	REV.	FOGLIO 24 di 38

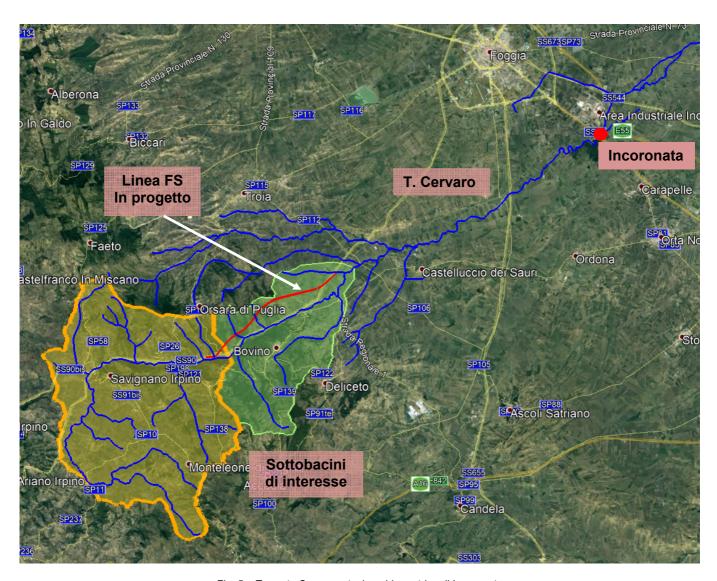


Fig. 5 – Torrente Cervaro: stazione idrometrica di Incoronata.

Di seguito, i dati idrometrici presi in esame in forma tabellare e grafica (fonte: Annali Idrologici pubblicati dal Servizio Idrografico del Ministero dei LL.PP.).

ANNO	Qmaxg	ANNO	Qmaxg	ANNO	Qmaxg	ANNO	Qmaxg
ANNO	$[m^3/s]$	ANNO	$[m^3/s]$	ANNO	$[m^3/s]$	ANNO	$[m^3/s]$
1951	44.50	1964	101.00	1977	32.00	1992	173.00
1952	13.80	1965	148.00	1978	163.00	1994	26.80
1953	95.70	1966	38.30	1979	159.00	1996	27.80
1954	56.10	1967	26.10	1980	110.00	1997	45.80
1955	116.00	1968	162.00	1981	65.10	1998	31.00
1956	134.00	1969	96.20	1982	56.00	1999	58.70
1957	244.00	1970	44.70	1983	44.50	2000	49.50
1958	71.30	1971	72.60	1984	182.00	2001	14.50
1959	80.30	1972	56.50	1985	142.00	2002	24.00
1960	57.70	1973	62.80	1988	51.50	2011	120.50
1961	228.00	1974	69.60	1989	11.00	2012	34.30
1962	77.80	1975	92.70	1990	10.40		
1963	114.00	1976	135.00	1991	152.00		

Tab. 11 – Stazione idrometrica di Incoronata: valori di portata giornaliera massima annuale (periodo: 1951-2012).

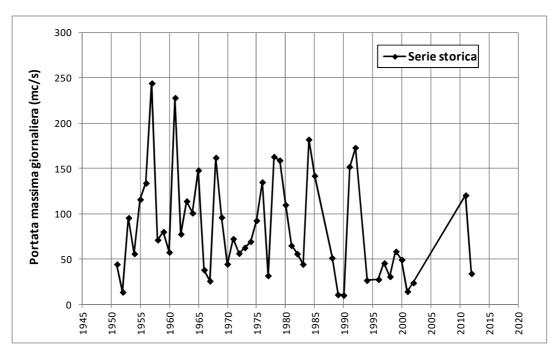


Fig. 6 – Stazione idrometrica di Incoronata: serie storica dei valori di portata massima giornaliera annuale (periodo: 1951-2012).

Per l'analisi statistica delle portate, sono stati quindi calcolati dapprima la media (μ) e lo scarto quadratico medio (σ) del campione dei dati: μ = 84.50 mc/s; σ = 56.7.

Sono state quindi considerate le seguenti distribuzioni di probabilità:

- Gumbel

$$Q_{\text{max, g}} = \xi - \frac{1}{\alpha} \left\{ \ln \left[\ln \left(\frac{TR}{TR - 1} \right) \right] \right\}$$

con $Q_{max,g}$ = portata massima giornaliera , corrispondente ad un determinato tempo di ritorno TR (non la portata che mediamente viene uguagliata o superata ogni TR anni, ma la media di tutte le portate che possono superare quest'ultima); $\xi = \mu - 0.45 \cdot \sigma$, $\alpha = 1.283/\sigma$.

- Fuller & Coutagne

$$Q_{\text{max},g} = q \cdot \left\{ 1 + \frac{1}{b \cdot q} \log_{10} \left[TR \right] \right\}$$

con $q = \mu \cdot \sigma$, $b = 0.434/\sigma$.

Sono stati dunque ricavati i valori di portata ($Q_{max,g}$), per differenti tempi di ritorno (Tab. 12), secondo le distribuzioni di probabilità considerate, in corrispondenza della sezione di chiusura presso la stazione di Incoronata, che sottende un bacino di 657 km². La portata al colmo corrispondente ad un determinato tempo di ritorno (Q_{TR}) può essere valutata ricorrendo a formule empiriche, disponibili nella letteratura tecnica, che in dipendenza della superficie del bacino (S) sottesa alle sezione di chiusura, permettono di valutare il cosiddetto coefficiente di punta: $C = Q_{TR}/Q_{max,g}$. In particolare, sono state considerate le seguenti formulazioni:

- Fuller & Tonini

$$C = \frac{Q_{TR}}{Q_{max,g}} = 1 + 68 \cdot S^{-0.5}$$

- Cotecchia

$$C = \frac{Q_{TR}}{Q_{max,g}} = \begin{cases} 32 \cdot S^{-0.313}, & per S > 120 - 140 \text{ km}^2 \\ 16 \cdot S^{-0.19}, & per S < 120 - 140 \text{ km}^2 \end{cases}$$

da cui C = 3.65, secondo la formula di Fuller & Tonini; C = 4.20, secondo la formula di Cotecchia.

TR	Gumbel	Fuller
(anni)	Q _{max,g} (mc/s)	Q _{max,g} (mc/s)
5	125.3	119.10
30	208.6	220.81
50	231.5	249.81
100	262.3	289.15
200	293.1	328.50
300	311.1	351.52
500	333.7	380.52
600	341.7	390.87
800	354.5	407.20
1000	364.3	419.86

Tab. 12 – Stazione idrometrica di Incoronata: valori di portata Q_{max,g}, per differenti tempi di ritorno, secondo le distribuzioni di probabilità di Gumbel e Fuller.

In definitiva, come coefficiente di punta è stato assunto un valore pari alla media dei valori ottenuti con le predette espressioni, ossia C = 3.93.

Il valore della portata Q_{TR} per diversi tempi di ritorno è stato calcolato (per ogni tempo di ritorno) considerando i valori di $Q_{max,g}$ calcolati secondo le distribuzioni di Gumbel e Fuller (Tab. 12), e moltiplicando questi ultimi per il coefficiente di punta C sopra determinato. I valori ottenuti, unitamente al valore della portata specifica, sono riportati nelle tabelle seguenti.

	Poi	rtata al coln	no (Fuller)
TR	Q _{max,g}	Q_{TR}	q =Qmax/S
(anni)	mc/s	mc/s	mc/s Kmq
5	119.1	467.62	0.71
30	220.8	867.0	1.31
50	249.8	980.86	1.49
100	289.2	1135.35	1.72
200	328.5	1289.85	1.96
300	351.5	1380.23	2.10
500	380.5	1494.09	2.27

Tab. 13 – Stazione idrometrica di Incoronata: valori di portata massima giornaliera, al colmo e specifica, per differenti tempi di ritorno, secondo la distribuzione di Fuller.

	Port	ata al colm	o (Gumbel)
TR	Q _{max,g}	Q_{TR}	q =Qmax/S
(anni)	mc/s	mc/s	mc/s Kmq
5	125.3	491.80	0.75
30	208.6	818.95	1.25
50	231.5	908.82	1.38
100	262.3	1030.03	1.57
200	293.1	1150.81	1.75
300	311.1	1221.35	1.86
500	333.7	1310.15	1.99

Tab. 14 – Stazione idrometrica di Incoronata: valori di portata massima giornaliera, al colmo e specifica, per differenti tempi di ritorno, secondo la distribuzione di Gumbel.

4.3 Stima delle portate al colmo

Il calcolo delle portate al colmo di progetto è stato effettuato secondo i seguenti approcci:

- Metodo razionale, sulla base delle curve di possibilità pluviometrica derivanti dall'analisi di frequenza regionale (metodologia Va.Pi. Puglia) e dall'elaborazione statistica dei dati di pioggia registrati presso le stazioni di misura di Bovino, Orsara di Puglia, Faeto, Monteleone di Puglia, Savignano Irpino;
- Metodo di Nash, sulla base delle curve di possibilità pluviometrica derivanti dall'analisi di frequenza regionale (metodologia Va.Pi. Puglia);
- Elaborazione statistica delle registrazioni idrometriche, con riferimento alla sezione di chiusura dei sottobacini di interesse.

4.3.1 Metodo razionale

Il metodo razionale o cinematico costituisce uno dei metodi più comuni per il calcolo della portata conseguente ad un'assegnata precipitazione incidente su un determinato bacino. Il metodo si basa sulle seguenti tre ipotesi fondamentali:

1. la pioggia critica ha durata pari al tempo di corrivazione;

- 2. la precipitazione si suppone di intensità costante per tutta la durata dell'evento;
- 3. il tempo di ritorno della portata è pari a quello della pioggia critica.

La portata di piena, in funzione del tempo di ritorno, è pari a:

$$Q_{\text{max}} = 278 \frac{\varphi \cdot S \cdot h}{\tau_{\text{c}}}$$

in cui Q_{max} = portata di piena [m³/sec]; φ = coefficiente di deflusso; h = pioggia netta [m]; S = area del bacino [km²]; τ_c = tempo di corrivazione [ore]. La determinazione del tempo di corrivazione può farsi mediante alcune classiche formule empiriche di uso comune; in particolare, per il sottobacino del T. Cervaro in esame, dalla notevole estensione (205 kmq circa), può essere applicata la ben nota formula di Giandotti:

$$\tau_c = \frac{4\sqrt{S} + 1.5L}{0.8\sqrt{h_m - h_0}}$$

con S = area del bacino [km²]; L = lunghezza dell'asta principale [km]; h_m = altitudine media del bacino imbrifero sotteso [m s.m.m.]; h_0 = quota della sezione di chiusura del bacino [m s.m.m.]. In analogia con le analisi condotte dall'AdB Puglia, nel presente studio è stata applicata la relazione, precedentemente introdotta, per il calcolo del tempo di ritardo caratteristico del bacino, da cui τ_c = t_r = 4.9 ore, relativamente al sottobacino 1 (Orsara) e τ_c = t_r = 5.9 ore, relativamente al sottobacino 2 (Bovino).

Il coefficiente di deflusso φ è stato valutato applicando il metodo del Curve Number CN (SCS method), sulla base della copertura del suolo (all'interno del bacino in esame) riportata nel Corine Land Cover (CLC) al 4° Livello (Ispra, 2012): in particolare, ad ogni codice del CLC relativo ad una specifica copertura del suolo è stato assegnato il relativo CN, dedotto da tabelle disponibili in letteratura, di seguito riportate.

In particolare, in relazione alle formazioni geologiche presenti, assumendo una classe di umidità media (II) e una categoria del suolo D, si ottiene CN (medio) pari a 84 per il sottobacino 1 (Orsara) e CN = 82, per il sottobacino 2 (Bovino).

				_						-	
Codice Uso del Suolo (UDS)	UDS	A	В	C	D	Codice Uso del Suolo (UDS)	UDS	A	В	C	D
AREE PORTUALI	123	98	98	98	98	PRATI ARTIFICIALI. COLTURE					
AREE AEROPORTUALI ED ELIPORTI	124	92	93	94	95	FORAGGERE OVE SI PUÒ RICONOSCERE					
AREE ESTRATTIVE	131	89	92	94	95	UNA SORTA DI AVVICENDAMENTO CON I					
DISCARICHE E DEPOSITI DI ROTTAMI	132	90	92	94	95	SEMINATIVI E UNA CERTA					
CANTIERI	133	90	92	94	95	PRODUTTIVITÀ, SONO SEMPRE					
AREE VERDI URBANE	141	65	74	81	84	POTENZIALMENTE RICONVERTITI A					
CIMITERI	143	57	77	85	89	SEMINATIVO, POSSONO ESSERE	2442				
VIGNETI	221	72	81	88	91	RICONOSCIBILI MURETTI O MANUFATTI	2112	67	71	81	89
FRUTTETI E FRUTTI MINORI	222	67	78	85	89	SEMINATIVI SEMPLICI E COLTURE					
OLIVETI	223	72	81	88	91	ORTICOLE A PIENO CAMPO	2121	66	77	85	89
ARBORICOLTURA CON ESSENZE						RISAIE	2122	98	98	98	98
FORESTALI	224	67	78	85	89	VIVAI	2123	66	77	85	89
PRATI STABILI	231	67	71	81	89	COLTURA IN SERRA	2124	98	98	98	98
COLTURE TEMPORANEE ASSOCIATE A						COLTURE TEMPORANEE ASSOCIATE					
COLTURE PERMANENTI	241	59	74	82	86	ALL'OLIVO	2411	59	74	82	86
SISTEMI COLTURALI E PARTICELLARI						COLTURE TEMPORANEE ASSOCIATE AL					
COMPLESSI	242	63	73	82	88	VIGNETO	2412	59	74	82	86
AREE PREVALENTEMENTE OCCUPATE DA						COLTURE TEMPORANEE ASSOCIATE AD					
COLTURA AGRARIE CON PRESENZA DI						ALTRE COLTURE PERMANENTI (PASCOLI					
SPAZI NATURALI IMPORTANTI	243	62	71	78	81	E SEMINATIVI ARBORATI CON					
AREE AGROFORESTALI	244	45	66	77	83	COPERTURA DELLA SUGHERA DAL 5 AL					
BOSCHI MISTI DI CONIFERE E LATIFOGLIE	313	39	51	63	70	25%)	2413	59	74	82	86
AREE A PASCOLO NATURALE	321	67	71	81	89	BOSCO DI LATIFOGLIE	3111	39	51	63	70
SPIAGGE DUNE E SABBIE	331	56	73	82	86	ARBORICOLTURA CON ESSENZE					
PARETI ROCCIOSE E FALESIE	332	98	98	98	98	FORESTALI (LATIFOGLIE)	3112	39	51	63	70
AREE CON VEGETAZIONE RADA	333	70	75	84	90	BOSCHI DI CONIFERE	3121	39	51	63	70
PALUDI INTERNE	411	100	100	100	100	CONIFERE A RAPIDO ACCRESCIMENTO	3122	39	51	63	70
PALUDI SALMASTRE	421				100	FORMAZIONI VEGETALI BASSE E CHIUSE,					
		100	100	100		STABILI, COMPOSTE PRINCIPALMENTE DI					
SALINE ZONE DITERTIDALI	422	100	100	100	100	CESPUGLI. ARBUSTI E PIANTE ERBACEE					
ZONE INTERTIDALI	423	98	98	98	98	(ERICHE, ROVI, GINESTRE, GINEPRI NANI					
LAGUNE, LAGHI E STAGNE COSTIERI	521	100	100	100	100	ECC.)	3221	51	58	73	80
MARI	523	100	100	100	100	FORMAZIONI DI RIPA NON ARBOREE	3222	51	58	73	80
TESSUTO RESIDENZIALE COMPATTO E			00	0.4	0.0	MACCHIA MEDITERRANEA	3231	51	58	73	80
DENSO	1111	89	92	94	96	GARIGA	3232	51	58	73	80
TESSUTO RESIDENZIALE RADO	1112	78	80	85	87	AREE A RICOLONIZZAZIONE NATURALE	3241	45	55	68	75
TESSUTO RESIDENZIALE RADO E						AREE A RICOLONIZZAZIONE ARTIFICIALE	3242	45	55	68	75
NUCLEIFORME A CARATTERE						SPIAGGE DI AMPIEZZA SUPERIORE A 25M	3311	56	73	82	86
RESIDENZIALE E SUBURBANO	1121	74	75	78	80	AREE DUNALI NON COPERTE DA	3311	50	,,,	02	- 00
TESSUTO AGRO-RESIDENZIALE SPARSO E						VEGETAZIONE DI AMPIEZZA SUPERIORE					
FABBRICATI RURALI A CARATTERE						A 25M	3312	56	73	82	86
TIPICAMENTE AGRICOLO O RURALE	1122	65	67	70	72	AREE DUNALI CON COPERTURA	3312	50	,,,	02	- 00
INSEDIAMENTI INDUSTRIALI/ARTIG. E						VEGETALE CON AMPIEZZA SUPERIORE A					
COMM. E SPAZI ANNESSI	1211	89	92	94	95	25 M	3313	56	73	82	86
INSEDIAMENTO DI GRANDI IMPIANTI DI						LETTI ASCIUTTI DI TORRENTI DI	3313	50	73	02	00
SERVIZI	1212	89	92	94	95	AMPIEZZA SUPERIORE A 25M	3315	56	73	82	86
RETI STRADALI E SPAZI ACCESSORI						FIUMI, TORRENTI E FOSSI	5111	100	100	100	100
(SVINCOLI, STAZIONI DI SERVIZIO, AREE						CANALI E IDROVIE	5111	100	100	100	100
DI PARCHEGGIO ECC.)	1221	98	98	98	98		5112				100
RETI FERROVIARIE COMPRESE LE						BACINI NATURALI		100	100	100	
SUPERFICI ANNESSE (STAZIONI,						BACINI ARTIFICIALI	5122	100	100	100	100
SMISTAMENTI, DEPOSITI ECC.)	1222	96	96	96	96	LAGUNE, LAGHI E STAGNE COSTIERI A					
GRANDI IMPIANTI DI CONCENTRAMENTO						PRODUZIONE ITTICA NATURALE	5211	100	100	100	100
E SMISTAMENTO MERCI (INTERPORTI E						ACQUACOLTURE IN LAGUNE, LAGHI E					
SIMILI)	1223	92	93	94	95	STAGNI COSTIERI	5212	100	100	100	100
IMPIANTI A SERVIZIO DELLE RETI DI						ESTUARI E DELTA	5213	100	100	100	100
DISTRIBUZIONE					- 1	AREE MARINE A PRODUZ. ITTICA			J		
(TELECOMUNICAZIONI/ENERGIA/IDRICHE)	1224	92	93	94	95	NATURALE	5231	100	100	100	100
	1321	90	92	94	95	ACQUACOLTURE IN MARE LIBERO	5232	100	100	100	100
DISCARICHE		,,,	72	- 71		PIOPPETI, SALICETI, EUCALITTETI ECC.					
DISCARICHE DEPOSITI DI ROTTAMI A CIELO APERTO		1									
DEPOSITI DI ROTTAMI A CIELO APERTO,	1322	90	92	9.4	95	ANCHE IN FORMAZIONI MISTE	31121	39	51	63	70
DEPOSITI DI ROTTAMI A CIELO APERTO, CIMITERI DI AUTOVEICOLI	1322	90	92	94	95		31121 31122	39 39	51 51	63 63	70 70
DEPOSITI DI ROTTAMI A CIELO APERTO,	1322 1421 1422	90 70 49	92 78 69	94 83 79	95 88 84	ANCHE IN FORMAZIONI MISTE					

Tab. 15 – Valori del Curve Number (CN) per le differenti coperture del suolo del CLC (Elaborazione ADIS).

Quindi con riferimento al metodo del *Soil Conservation Service* (SCS), il coefficiente di deflusso (φ) può essere valutato come segue:

$$\varphi = \frac{P_e}{P}$$

con P = altezza di pioggia di progetto corrispondente ad un tempo di ritorno TR e una durata τ_c ; $P_e = (P - 0.2 \cdot S)^2/(P + 0.8 \cdot S)$; $S = 254 \cdot (100/CN - 1)$.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO – ORSARA PROGETTO DEFINITIVO					
RELAZIONE IDROLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF1W	00 D 09	RI	ID0001 001	Α	31 di 38

Adottando le curve di possibilità pluviometrica derivanti dalla metodologia Va.Pi. si ottengono i valori di portata al colmo riportati nello studio dell'AdB Puglia sopra illustrato (Tab. 2).

Con riferimento invece ai risultati delle analisi statistiche eseguite con il metodo di Gumbel delle registrazioni pluviometriche delle stazioni di misura precedentemente descritte (Paragrafo 4.1.2), nella tabella seguente sono riportati i valori di altezza di pioggia (di durata pari al tempo di ritardo t_r), per vari tempi di ritorno, relativi alle stazioni pluviometriche considerate, unitamente all'area del poligono di Thiessen corrispondente, per i due sottobacini in esame.

Stazione	Area Poligono Thiessen (kmq)	h(TR30, t _r) [mm]	h(TR200, <i>t_r</i>) [mm]	h(TR300, <i>t_r</i>) [mm]	h(TR500, <i>t_r</i>) [mm]
Bovino	3.6	69.82	90.36	94.73	100.23
Savignano Irpino	100.1	67.66	89.32	93.91	99.70
Monteleone di Puglia	66.05	71.20	94.24	99.12	105.27
Faeto	11.1	63.13	81.59	85.48	90.41
Orsara di Puglia	23.2	65.61	82.54	86.15	90.68

Tab. 16 – Sottobacino 1 (Orsara): valori dell'altezza di pioggia, per vari tempi di ritorno, relativi alle stazioni pluviometriche considerate.

Stazione	Area Poligono Thiessen (kmq)	h(TR30, t _r) [mm]	h(TR200, t _r) [mm]	h(TR300, t _r) [mm]	h(TR500, t _r) [mm]
Bovino	93.4	73.06	94.33	98.85	104.54
Savignano Irpino	100.1	70.12	92.30	97	102.93
Monteleone di Puglia	66.05	74.62	98.55	103.62	110.01
Faeto	11.1	67.32	87.04	91.19	96.46
Orsara di Puglia	27.4	69.31	87.12	90.91	95.68

Tab. 17 – Sottobacino 2 (Bovino): valori dell'altezza di pioggia, per vari tempi di ritorno, relativi alle stazioni pluviometriche considerate.

Applicando il metodo dei topoieti o dei poligoni di Thiessen, introdotto in precedenza, sono stati quindi ottenuti i seguenti valori di altezza di pioggia (ragguagliata all'area del bacino), per vari tempi di ritorno dell'evento pluviometrico.

h(TR30, <i>t_r</i>)	h(TR200 <i>, t_r</i>)	h(TR300, <i>t_r</i>)	h(TR500 <i>, t_r</i>)
[mm]	[mm]	[mm]	[mm]
68.36	89.74	94.27	99.98

Tab. 18 – Sottobacino 1 (Orsara): valori dell'altezza di pioggia (ragguagliata all'area) per una durata pari a t, al variare del tempo di ritorno.

$h(TR30, t_r)$	h(TR200, t _r)	h(TR300, t _r)	$h(TR500, t_r)$		
[mm]	[mm]	[mm]	[mm]		
71.86	93.65	98.27	104.1		

Tab. 19 – Sottobacino 2 (Bovino): valori dell'altezza di pioggia (ragguagliata all'area) per una durata pari a t_r al variare del tempo di ritorno.

Sono stati quindi calcolati i valori del coefficiente di deflusso e della portata al colmo di piena, al variare del tempo di ritorno.

TR 30		R 30 TR 200		TR	300	TR 500		
φ	Q (mc/s)	φ	Q (mc/s)	φ	Q (mc/s)	φ	Q (mc/s)	
0.47	373.0	0.56	578.0	0.57	623.1	0.59	681.0	

Tab. 20 – Sottobacino 1 (Orsara): valori del coefficiente di deflusso e della portata al colmo, per i tempi di ritorno considerati.

TR 30		TR 30 TR 200		TR	300	TR 500		
φ	Q (mc/s)	φ	Q (mc/s)	φ	Q (mc/s)	φ	Q (mc/s)	
0.44	441.0	0.53	686.3	0.54	740.6	0.56	809.9	

Tab. 21 – Sottobacino 2 (Bovino): valori del coefficiente di deflusso e della portata al colmo, per i tempi di ritorno considerati.

4.3.2 Metodo di Nash

Il modello di Nash descrive il comportamento di un bacino idrografico mediante un numero *n* (parametro di forma) di invasi disposti in serie ciascuno dei quali caratterizzato da una stessa costante *k* (parametro di scala) di invaso. La funzione che descrive l'andamento dell'idrogramma è la seguente:

$$U(t) = \frac{(t/k)^{n-1}e^{-t/k}}{k(n-1)!}$$

Ricorrendo ad una astrazione matematica, il modello di Nash può essere esteso al caso in cui il numero di serbatoi disposti in serie sia un numero reale. In tal caso la funzione fattoriale (n-1)! viene sostituita con la funzione Gamma $\Gamma(\alpha)$ e la funzione U(t) diventa:

$$U(t) = \frac{(t/k)^{\alpha-1} e^{-t/k}}{k \Gamma(\alpha)}$$

Il tempo di ritardo ed il tempo di picco risultano pari a: $t_L = \alpha$ k e $t_P = (\alpha - 1)k$. Pertanto, ai fini della determinazione della portata al colmo e del relativo idrogramma unitario adimensionale, l'applicazione del modello di Nash richiede la conoscenza dei due parametri α (parametro di forma) e k (parametro di scala) legati al tempo di ritardo.

Per la stima di questi parametri è possibile procedere con diversi metodi, sfruttando i numerosi modelli geomorfologici disponibili in letteratura (Rodriguez et al. 1979, Rosso 1984), che sfruttano le caratteristiche del reticolo idrografico opportunamente analizzato secondo varie regole di classificazione (Strahler 1952), o più semplicemente ricorrendo alle espressioni che li correlano al più noto parametro idrologico ovvero il tempo di corrivazione del bacino ($\tau_c = t_r$, nel caso in esame).

Nella maggior parte dei casi, il parametro di forma n risulta compreso tra 2 e 3, mentre il valore del parametro di scala può essere valutato come $k = \tau_0/5$.

Nel caso in esame, sono stati adottati i seguenti parametri: k = 0.98 ore (sottobacino 1) e 1.19 ore (sottobacino 2), e n = 3, vista la forma dei sottobacini in esame che possono essere suddivisi in tre "serbatoi o invasi" disposti in serie. Quindi, con riferimento alle curve di possibilità pluviometrica derivanti dall'applicazione della metodologia Va.Pi. Puglia e considerando un coefficiente di ragguaglio all'area stimato secondo la formula precedentemente introdotta (metodologia Va.Pi. Puglia), e CN = 84 e 82, rispettivamente per i sottobacini 1 e 2 (come sopra determinati), si ottengono i seguenti valori di portata al colmo.

TR (anni)	Q [mc/s]
30	337.11
200	569.16
300	620.66
500	685.88

Tab. 22 – Sottobacino 1 (Orsara): modello di Nash, valori della portata al colmo, per differenti tempi di ritorno.

TR (anni)	Q [mc/s]
30	418.0
200	665.0
300	726.1
500	788.9

Tab. 23 – Sottobacino 2 (Bovino): modello di Nash, valori della portata al colmo, per differenti tempi di ritorno.

4.3.3 Definizione delle portate di piena dall'analisi statistica delle registrazioni idrometriche

Per similitudine idrologica, ricorrendo alla formula di Gherardelli & Marchetti:

$$\frac{Q_{a}}{S_{a}^{-2/3}} = \frac{Q_{b}}{S_{b}^{-2/3}}$$

con Q_a e S_a , portata al colmo (determinata per i vari tempi di ritorno) e superficie del bacino sottesa alla sezione di chiusura presso la stazione di Incoronata; Q_b e S_b , portata al colmo e superficie del bacino sottesa alla sezione di chiusura di interesse, sono stati determinati i valori di portata al colmo, per differenti tempi di ritorno, per il Torrente Cervaro a Orsara (sottobacino 1) e a Bovino (sottobacino 2) (Tab. 24), secondo le distribuzioni di probabilità considerate (Gumbel, Fuller).

	Sez. Stazione (S = 65	e Incoronata 57 km²)		acino 1 05 km²)	Sottobacino 2 $(S = 298 \text{ km}^2)$		
TR (anni)	Q (mc/s) Fuller	Q (mc/s) Gumbel	Q (mc/s) Fuller	Q (mc/s) Gumbel	Q (mc/s) Fuller	Q (mc/s) Gumbel	
30	867.00	818.95	398.59	376.50	511.8	483.4	
200	1289.86	1150.81	592.99	529.07	761.4	679.3	
300	1380.23	1221.35	634.54	561.50	814.8	721.0	
500	1494.10	1310.15	686.89	602.32	882.0	773.4	

Tab. 24 – Valori di portata al colmo, per differenti tempi ritorno derivanti dall'analisi statistica delle registrazioni idrometriche in corrispondenza della stazione di Incoronata e delle sezioni di chiusura di interesse.

4.3.4 Confronto tra le differenti metodologie adottate

Si riporta il confronto tra i valori di portata ricavati mediante le metodologie sopra descritte (Fig. 7), per i due sottobacini analizzati.

Le maggiori differenze tra i valori di portata al colmo ottenuti secondo i diversi approcci adottati si riscontrano per tempi di ritorno relativamente bassi (TR 30 anni); per tempi di ritorno elevati (TR 200, 300, 500 anni), con riferimento alle metodologie "Analisi Statistica Regist. Idromet. (Fuller)", "Metodo razionale + Anal. Stat. Dati Pluviometrici (Gumbel)", "Metodo di Nash + VaPi", "Metodo razionale + VaPi – AdB Puglia", si ottengono invece valori molto simili tra loro, per entrambi i sottobacini.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO – ORSARA PROGETTO DEFINITIVO					
RELAZIONE IDROLOGICA	COMMESSA IF1W	LOTTO 00 D 09	CODIFICA RI	DOCUMENTO ID0001 001	REV.	FOGLIO 35 di 38

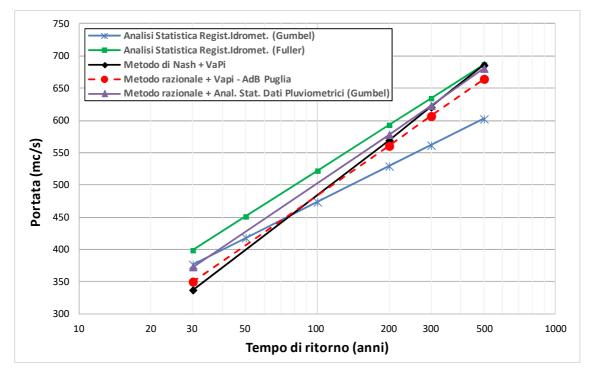


Fig. 7 – Torrente Cervaro, sottobacino 1 (Orsara): confronto tra i valori di portata al colmo ottenuti secondo differenti approcci.

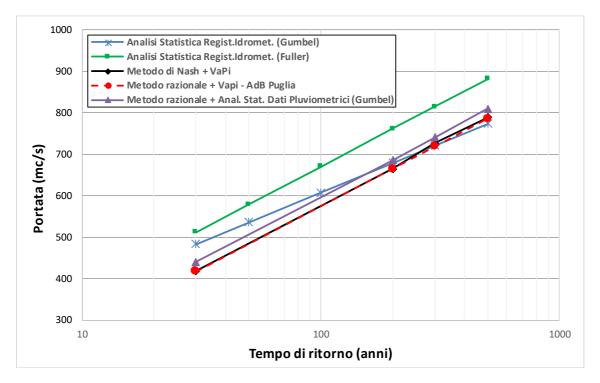


Fig. 8 – Torrente Cervaro, sottobacino 2 (Bovino): confronto tra i valori di portata al colmo ottenuti secondo differenti approcci.

L'elaborazione statistica delle registrazioni idrometriche secondo la distribuzione di Fuller fornisce valori di portata al colmo più elevati rispetto alle altre metodologie.

Tuttavia, per la modellazione idraulica del Torrente Cervaro e le relative verifiche di compatibilità dell'intervento in progetto (che non prevede la realizzazione di opere in alveo), si è fatto riferimento ai valori di portata di piena ottenuti applicando il modello di Nash che fornisce risultati simili a quelli ricavati mediante l'applicazione del metodo razionale (entrambi sulla base delle curve di possibilità pluviometrica Va.Pi. Puglia), riportati nello studio dell'AdB Puglia, illustrato in precedenza.

4.4 Definizione degli idrogrammi di piena di progetto

Sulla base delle considerazioni precedenti, si è proceduto alla determinazione (tramite il software URBIS) degli idrogrammi di piena (per i tempi di ritorno considerati), da imporre come condizione al contorno nel modello idraulico 2D, assumendo i seguenti dati di input:

- LEGGE DI PIOGGIA: Metodologia VA.PI. Puglia
- <u>IETOGRAMMA NETTO</u>: rettangolare, metodo del CN (curve number) per la stima del coefficiente di deflusso, applicazione del parametro K_a (coeff. ragguaglio all'area)
- <u>MODELLLO IDROGRAMMA</u>: Nash con n = 3; $k = t_r/5$

Di seguito, gli idrogrammi di piena in corrispondenza delle sezioni di chiusura (sottobacini 1 e 2) considerate.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA BOVINO – ORSARA PROGETTO DEFINITIVO					
RELAZIONE IDROLOGICA	COMMESSA IF1W	LOTTO 00 D 09	CODIFICA	DOCUMENTO	REV.	FOGLIO

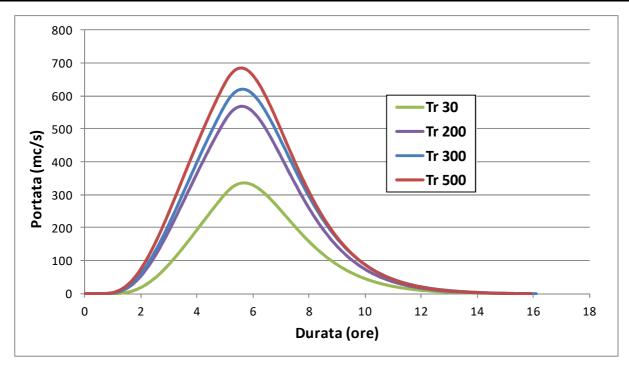


Fig. 9 – Torrente Cervaro, sottobacino 1 (Orsara): idrogrammi di piena di progetto, per differenti tempi di ritorno.

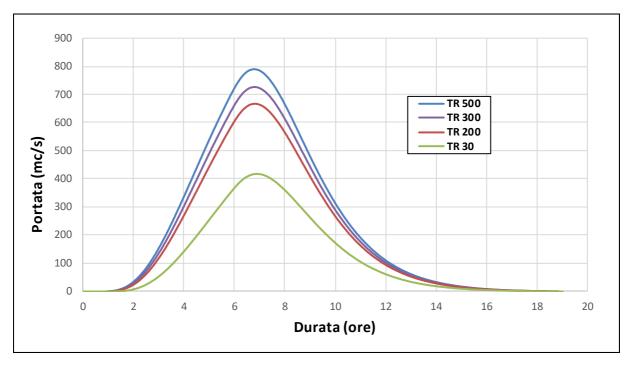


Fig. 10 – Torrente Cervaro, sottobacino 2 (Bovino): idrogrammi di piena di progetto, per differenti tempi di ritorno.

5. RIFERIMENTI BIBLIOGRAFICI

AA. VV. Manuale di Ingegneria Civile e Ambientale, Zanichelli ESAC, Bologna, 2003.

ADIS . Linee guida e indirizzi operativi per l'attuazione del principio della invarianza idraulica. Articolo 47 delle NTA del PAI della Regione Sardegna, 2008.

Autorità di Bacino della Puglia, Piano di Bacino Stralcio Assetto Idrogeologico (PAI) – Relazione di Piano, dicembre 2004.

Autorità di Bacino della Puglia, Piano di Bacino Stralcio Assetto Idrogeologico (PAI) – Norme Tecniche di Attuazione, novembre 2005.

Autorità di Bacino della Puglia, "Studio per la definizione delle opere necessarie per la messa in sicurezza del reticolo idrografico pugliese", P.O. FESR 2007-2013.

Da Deppo L., Datei C., Fognature, Edizioni Libreria Cortina, Padova, 2005.

Ferro V., La sistemazione dei bacini idrografici, McGraw-Hill, Milano, 2006.

Maione U., Appunti di idrologia 3. Le piene fluviali, La Goliardica Pavese, 1977

Marani M., Processi e modelli dell'Idrometeorologia, Dispense, 2005.

Manuale di Progettazione - RFI

Nuove Norme Tecniche per le costruzioni 2018, DECRETO 17 gennaio 2018. Aggiornamento delle «Norme tecniche per le costruzioni», MINISTRO DELLE INFRASTRUTTURE.

Rossi F., Fiorentino M., Versace P., *Two component extreme value distribution for Flood Frequency Analysis*, Water Resources Research, Vol. 20, N.7, 1984.

Surendra, K. M., Vijay., P. S. *Soil Conservation Service Curve Number (SCS-CN) Methodology.* Springer, pp. 84-146, 2003.