

Concessionaria per la progettazione, realizzazione e gestione del collegamento stabile tra la Sicilia e il Continente Organismo di Diritto Pubblico (Legge n°1158 del 17 dicembre 1971, modificata dal D.Lgs. n°114 del 24 aprile 2003)

PONTE SULLO STRETTO DI MESSINA

PROGETTO DEFINITIVO

EUROLINK S.C.p.A.

IMPREGILO S.p.A. (MANDATARIA) SOCIETÀ ITALIANA PER CONDOTTE D'ACQUA S.p.A. (MANDANTE) COOPERATIVA MURATORI E CEMENTISTI - C.M.C. DI RAVENNA SOC. COOP. A.R.L. (MANDANTE) SACYR S.A.U. (MANDANTE) ISHIKAWAJIMA - HARIMA HEAVY INDUSTRIES CO. LTD (MANDANTE)

A.C.I. S.C.P.A. - CONSORZIO STABILE (MANDANTE)

Eurolin K

IL CONTRAENTE GENERALE

Project Manager (Ing. P.P. Marcheselli) STRETTO DI MESSINA Direttore Generale e **RUP** Validazione (Ing. G. Fiammenghi)

STRETTO DI MESSINA

Amministratore Delegato (Dott. P. Ciucci)

COLLEGAMENTI CALABRIA CS0341_F0 Unità Funzionale

Tipo di sistema INFRASTRUTTURE STRADALI OPERE CIVILI

Raggruppamento di opere/attività **ELEMENTI DI CARATTERE GENERALE**

VIADOTTO ZAGARELLA 1 Opera - tratto d'opera - parte d'opera Titolo del documento **RELAZIONE DI CALCOLO**

G 0 7 0 С D С С ٧ С 0 F0 0 L S 0 0 3 0 0 0 0 1 CODICE

REV	DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO
F0	20/06/2011	EMISSIONE FINALE	R.CAFFARENA	G.SCIUTO	F.COLLA

NOME DEL FILE: CS0341_F0.doc revisione interna:

RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0 **Data** 20/06/2011

INDICE

IN	DICE .		3
PF	REMES	SA	8
1	RIFE	RIMENTI NORMATIVI	8
2	RIFE	RIMENTI BIBLIOGRAFICI	10
3	CAR	ATTERISTICHE MATERIALI	13
	3.1	Conglomerato cementizio	13
	3.1.1	Conglomerato cementizio per sottofondazioni	13
	3.1.2	2 Conglomerato cementizio per pali di fondazione	13
	3.1.3	Conglomerato cementizio per fondazioni	13
	3.1.4	Conglomerato cementizio per elevazioni	14
	3.1.5	Conglomerato cementizio per soletta d'impalcato, cordoli e baggioli	14
	3.1.6	Conglomerato cementizio per lastre tralicciate	14
	3.2	Acciaio per cemento armato	15
	3.3	Acciaio per carpenteria metallica tipo CORTEN	15
	3.4	Collegamenti bullonati	16
	3.5	Connettori a piolo	16
	3.6	Saldature	16
4	DES	CRIZIONE DELLA STRUTTURA	17
	4.1	CARATTERISTICHE GEOMETRICHE E UBICAZIONE DELLA STRUTTURA	
	4.2	CARATTERIZZAZIONE GEOTECNICA DEL LUOGO	19
	4.3	CARATTERIZZAZIONE DELLA SISMICITA' DEL LUOGO	45
	4.4	CRITERI GENERALI DI PROGETTAZIONE	52
	4.4.1	•	
	4.4.2	P. Definizione della larghezza collaborante	53
	4.4.3	B Definizione del coefficiente di omogeneizzazione acciaio-cls	55
	4.4.4	Classificazione delle sezioni in acciaio	56
5	FAS	COSTRUTTIVE	57
6	ELA	BORATI DI RIFERIMENTO	58
7	ANA	LISI LONGITUDINALE D'IMPALCATO	59
	7.1	ANALISI DEI CARICHI	59
	7.1.1	Carichi permanenti strutturali (g ₁)	59

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

7.1.2	Carichi permanenti portati (g ₃)	59
7.1.3	Distorsioni e\o presollecitazioni (ε ₁)	59
7.1.4	Ritiro differenziale del calcestruzzo (ε ₂)	60
7.1.5	Variazione termica uniforme (ε ₃)	62
7.1.6	Carichi mobili (q ₁)	63
7.1.7	Incremento dinamico (q ₂)	66
7.1.8	Azione di frenamento (q ₃)	67
7.1.9	Azione centrifuga (q ₄)	67
7.1.10	Azione del vento (q ₅)	67
7.1.11	Azione sismica (q ₆)	69
7.2 N	MODELLO DI CALCOLO	70
7.2.1	PROGRAMMA DI CALCOLO UTILIZZATO	70
7.2.2	DESCRZIONE DEL MODELLO DI CALCOLO	73
7.2.3	SISTEMA DI RIFERIMENTO E CONVENZIONE DEI SEGNI	74
7.3	CALCOLO DELLE SOLLECITAZIONI	77
7.3.1	Combinazioni per gli S.L.U.	86
7.3.2	Combinazioni per lo stato limite di fatica	
7.3.3	Combinazioni per gli S.L.S	90
7.4 ∖	'ERIFICA DELLE SEZIONI	
7.4.1	Verifiche di resistenza agli SLU	91
7.4.2	Verifiche dell'instabilità dell'anima soggetta a taglio (SHEAR BUCKLING)	
7.4.3	Verifica a fatica	
7.4.4	Verifica della connessione dei pioli	98
7.4.5	Verifica agli S.L.S. per deformabilità	
7.4.		
7.4.	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	SI TRASVERSALE D'IMPALCATO	
8.1 A	NALISI DEI CARICHI	
8.1.1	Carichi permanenti strutturali (g ₁)	
8.1.2	Carichi permanenti portati (g ₃)	
8.1.3	Distorsioni e\o presollecitazioni (ε ₁)	
8.1.4	Ritiro differenziale del calcestruzzo (ϵ_2)	
8.1.5	Variazione termica uniforme (ε ₃)	110

8

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

	8.1.6	Carichi mobili (q ₁)	. 110
	8.1.7	Incremento dinamico (q ₂)	. 110
	8.1.8	Azione di frenamento (q ₃)	. 110
	8.1.9	Azione centrifuga (q ₄)	. 110
	8.1.10	Azione del vento (q ₅)	. 110
	8.1.11	Azione sismica (q ₆)	. 111
	8.1.12	Urto di veicolo in svio (q ₈)	. 111
8	.2 M	ODELLO DI CALCOLO	. 111
	8.2.1	PROGRAMMA DI CALCOLO UTILIZZATO	. 111
	8.2.2	DESCRZIONE DEL MODELLO DI CALCOLO	. 112
	8.2.3	SISTEMA DI RIFERIMENTO E CONVENZIONE DEI SEGNI	. 113
8	.3 C	ALCOLO DELLE SOLLECITAZIONI	. 113
	8.3.1	Modello con vincoli rigidi	. 114
	8.3.2	Modello con vincoli cedevoli	. 116
	8.3.3	Disamina dei modelli di calcolo implementati	. 119
	8.3.4	Combinazioni per gli S.L.U.	. 119
	8.3.5	Combinazioni per gli S.L.S	. 119
8	.4 V	ERIFICA DELLE SEZIONI	. 120
	8.4.1	Sezione dei controventi tipo L accoppiati 65x130x12	. 120
	8.4.2	Sezione della soletta in c.a. sp=30 cm	. 122
	VERIF	CA DEL TRAVERSO DI SPALLA	. 123
9	.1 A	NALISI DEI CARICHI	. 123
9	.2 M	ODELLO DI CALCOLO	. 123
	9.2.1	PROGRAMMA DI CALCOLO UTILIZZATO	. 123
	9.2.2	DESCRZIONE DEL MODELLO DI CALCOLO	. 124
	9.2.3	SISTEMA DI RIFERIMENTO E CONVENZIONE DEI SEGNI	. 124
9	.3 C	ALCOLO DELLE SOLLECITAZIONI	. 125
	9.3.1	Combinazioni per gli S.L.U.	. 126
	9.3.2	Combinazioni per gli S.L.S.	. 126
9	.4 V	ERIFICA DELLE SEZIONI	. 126
	9.4.1	Sezione dei controventi tipo UPN 300	. 126
	9.4.2	Sezione dei controventi tipo 140x17	. 128
	943	Sezione dei controventi tipo HEB500	130

9

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

10	VERIF	CA DELLE PREDALLES	132
10.1	ANA	ALISI DEI CARICHI	132
10.2	VEF	RIFICA DELLE SEZIONI	132
10).2.1	Verifica dello sbalzo	133
10).2.2	Verifica in campata	135
11	ANALIS	SI SISTEMA DI VINCOLAMENTO	138
11.1	ANA	ALISI DEI CARICHI	138
11	.1.1	Carichi permanenti strutturali (g ₁)	138
11	.1.2	Carichi permanenti portati (g ₃)	138
11	.1.3	Distorsioni e\o presollecitazioni (ε ₁)	139
11	.1.4	Ritiro differenziale del calcestruzzo (ε ₂)	139
11	.1.5	Variazione termica uniforme (ϵ_3)	139
11	.1.6	Carichi mobili (q ₁)	
11	.1.7	Incremento dinamico (q ₂)	140
11	.1.8	Azione di frenamento (q ₃)	140
11	.1.9	Azione centrifuga (q ₄)	140
11	.1.10	Azione del vento (q ₅)	140
11	.1.11	Azione sismica (q ₆)	
11.2	CAL	COLO DELLE SOLLECITAZIONI	142
11.3		RATTERISTICHE DEL SISTEMA DI VINCOLAMENTO E DEI GIUNTI	
12		SI SOTTOSTRUTTURE	
12.1	ANA	ALISI DELLE SPALLE	
12	2.1.1	ANALISI DEI CARICHI	
	12.1.1.	1	
	12.1.1.	2 Carichi permanenti strutturali e permanenti portati (g ₁ - g ₃)	
	12.1.1.		
	12.1.1.	4 Azione sismica (q ₆)	
12	2.1.2	MODELLO DI CALCOLO	
	12.1.2.		
		2 DESCRZIONE DEL MODELLO DI CALCOLO	
	2.1.3	CALCOLO DELLE SOLLECITAZIONI "MODELLO SEMPLIFICATO"	
	12.1.3.		
	12 1 3	2 Sollecitazioni base muri andatori	157

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

12.1.3.3 Sollecitazioni base muro frontale	158
12.1.4 VERIFICA DELLE SEZIONI "MODELLO SEMPLIFICATO"	159
12.1.4.1 Verifica base paraghiaia	160
12.1.4.2 Verifica base muri andatori	163
12.1.4.3 Verifica base muro frontale	165
12.1.5 CALCOLO DELLE SOLLECITAZIONI "MODELLO AGLI EF"	168
12.1.6 DISAMINA DELLE SOLLECITAZIONI OTTENUTE NEI MODELLI DI CALC	OLO 171
13 ANALISI DELLE FONDAZIONI	173
13.1 ANALISI DEL SISTEMA FONDAZIONALE DELLE SPALLE	173
13.1.1 ANALISI DEI CARICHI	177
13.1.2 MODELLO DI CALCOLO	177
13.1.2.1 PROGRAMMA DI CALCOLO UTILIZZATO	177
13.1.2.2 DESCRZIONE DEL MODELLO DI CALCOLO	177
13.1.3 CALCOLO DELLE SOLLECITAZIONI A INTRADOSSO FONDAZIONE	177
13.1.4 Combinazioni per gli S.L.U	179
13.1.4.1 Condizione azione verticali massime (Fz-max)	180
13.1.4.2 Condizione azione verticali minime (Fz-min)	185
13.1.5 VERIFICHE GEOTECNICHE	189
13.1.5.1 Verifica a scorrimento	189
13.1.5.2 Verifica a ribaltamento	190
13.1.5.3 Verifica di capacità portante	192
13.1.5.4 Calcolo dei cedimenti indotti	199

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

PREMESSA

La presente relazione riguarda il dimensionamento statico del ponte ubicato alla PK. 2+501 denominato "Viadotto Zagarella 1" (altezza max. trave 240 cm e luce 40 m), nell'ambito del progetto Definitivo per la realizzazione del "*Ponte sullo Stretto di Messina*".

1 RIFERIMENTI NORMATIVI

- [NT_1]. D.M. 14.01.2008 "Norme tecniche per le costruzioni (Gazzetta ufficiale 04/02/2008 n. 29)"
- [NT_2]. C.M. 02.02.2009 "Istruzioni per l'applicazione delle Nuove Norme tecniche per le costruzioni (Gazzetta ufficiale 04/02/2008 n. 29)"
- [NT_3]. UNI EN 1990: 2006 "Eurocodice 0 Criteri generali di progettazione strutturale"
- [NT_4]. UNI EN 1991-1-1: 2004 "Eurocodice 1 Azioni sulle strutture Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici"
- [NT_5]. UNI EN 1991-1-4: 2005 "Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento"
- [NT_6]. UNI EN 1991-1-5: 2004 "Eurocodice 1 Azioni sulle strutture Parte 1-5: Azioni in generale Azioni termiche"
- [NT_7]. UNI EN 1991-2: 2005 "Eurocodice 1 Azioni sulle strutture Parte 2: Carichi da traffico sui ponti"
- [NT_8]. UNI EN 1992-1-1: 2005 "Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici"
- [NT_9]. UNI EN 1992-2: 2006 "Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi"
- [NT_10]. UNI EN 1993-1-5: 2007 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-5: Elementi strutturali a lastra"
- [NT_11]. UNI EN 1993-1-9: 2005 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-9: Fatica"
- [NT_12]. UNI EN 1993-2: 2007 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti in acciaio"
- [NT_13]. UNI EN 1994-2: 2006 "Eurocodice 4 Progettazione delle strutture composte acciaiocalcestruzzo – Parte 2: Regole generali e regole per i ponti"

Eurolink S.C.p.A. Pagina 8 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

- [NT_14]. UNI EN 1997-1: 2005 "Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali"
- [NT_15]. UNI EN 1998-1: 2005 "Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici"
- [NT_16]. UNI EN 1998-5: 2005 "Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici"
- [NT_17]. UNI 11104-2004 "Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1"
- [NT_18]. UNI EN 197-1-2007 "Cemento: Parte 1 Composizione, specificazioni e criteri di conformità per cementi comuni
- [NT_19]. UNI EN 206-1-2006 "Calcestruzzo. Specificazioni, prestazioni, produzione e conformità"
- [NT_20]. CNR DT 207: 2008 "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni"

Eurolink S.C.p.A. Pagina 9 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

2 RIFERIMENTI BIBLIOGRAFICI

RIFERIMENTI PER CALCOLO STRUTTURALE

- [B1]. A.I.C.A.P. [2006] "Guida all'uso dell'Eurocodice 2"
- [B2]. ANTONIO MIGLIACCI, FRANCO MOLA [2003] "Progetto agli stati limite delle strutture in c.a."
- [B3]. CSI COMPUTER & STRUCTURE [2009] "SAP 2000 user's manual"
- [B4]. C. CESTELLI GUIDI [1987] "Cemento armato precompresso"
- [B5]. DAVID COLLINGS [2005] "Steel-concrete composite bridge"
- [B6]. ERASMO VIOLA [1992] "Scienza delle costruzioni"
- [B7]. INTERNETIONAL CENTRE FOR MECHANICAL SCIENCES [2003] "Strutture composte: nuove costruzioni recupero ponti"
- [B8]. LUIGI SABTARELLA [1998] "Il cemento armato: la tecnica e la statica"
- [B9]. MARIO PETRANGELI [1996] "Progettazione e costruzione di ponti"
- [B10]. MARCELLO ARICI, ENZO SIVIERO [2005] "Nuovi orientamenti per la progettazione di Ponti e Viadotti"
- [B11]. NIGEL R. HEWSON [2006] "Prestressed concrete bridge: design and construction"
- [B12]. O. BELLUZZI [1996] "Scienza delle costruzioni"
- [B13]. PAOLO RUGALI [2008] "Calcolo di strutture in acciaio; guida all'Eurocodice 3"
- [B14]. P. POZZATI, C. CECCOLI [2000] "Teoria e tecnica delle strutture"
- [B15]. R. WALTHER, B. HOURIET, W. ISLER, P. MOIA, J.F. KLEIN [2008] "Cable stayed bridges"
- [B16]. WAI-FAH CHEN, LIAN DUAN [2000] "Bridge engineering, substructure design"

RIFERIMENTI PER CALCOLO SISMICO

- [B17]. ANDRE' PREUMONT, KAZUTO SETO [2008] "Active control of structures"
- [B18]. AMR S. ELNASHI, LUIGI DI SARNO [2008] "Foundamental of earthquake engineering"
- [B19]. C. CASAROTTI, R. PINHO, G.M. CALVI [2006] "Adaptive pushover-based methods for seismic assessment and design of bridge structure"
- [B20]. C.G. LAI, S. FOTI, M. ROTA [2009] "Input sismico e stabilità geotecnica dei siti in costruzione"
- [B21]. D. PIETRA, G.M. CALVI, R. PINHO [2008] "Displacement-based sismic design of isolated bridge"

Eurolink S.C.p.A. Pagina 10 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

- [B22]. ERASMO VIOLA [2001] "Fondamenti di dinamica e vibrazione delle strutture"
- [B23]. IUSS PRESS, rivista quadrimestrale "Progettazione sismica"
- [B24]. M.J.N. PRIESTLEY, G.M. CALVI, M.J. KOWLASKY [2007] "Displacement-based seismic design of structures"
- [B25]. P.E. PINTO, P. FRANCHIN, A. LUPOI [2009] "Valutazione e consolidamento sismico dei ponti esistenti"
- [B26]. P.E. PINTO, R. GIANNINI, P. FRANCHIN [2004] "seismic reliability analysis of structures"

RIFERIMENTI PER CALCOLO GEOTECNICO

- [B27]. ASSOCIAZIONE GEOTECNICA ITALIANA [1984] "Raccomandazioni sui pali di fondazione"
- [B28]. BRINCH-HANSEN, J. [1961] "A General Formula for Bearing Capacity" The Danish Geotechnical Institute, Bull. n.11, Copenhagen.
- [B29]. BRINCH-HANSEN, J. [1970] "A Revised and Extended Formula for Bearing Capacity" The Danish Geotechnical Institute, Bull. n.28, Copenhagen.
- [B30]. BUSTAMANTE M. & DOIX B. (1985) "Une méthode pour le calcul des tirants et des micropieux injectés" Bulletin Laboratoire Central des Ponts et Chaussées, n°140, nov.-déc.. ref. 3047
- [B31]. BUSTAMANTE M., GIANESELLI L.. [1982] "Pile bearing capacity prediction by means of static penetrometer CPT" -. Pr. of the 2th European symposium on penetration testing, Amsterdam.
- [B32]. BOWLES J.E. [1991] "Fondazioni Progetto e Analisi" Editore McGraw-Hill
- [B33]. CARLO CESTELLI GUIDI [1987] "Geotecnica e tecnica delle fondazioni"
- [B34]. DE BEER, E.E., LADANYI, B. [1961] "Etude experimentale de la capacite portante du sable sous des fondations circulaires etablies en surface". 5th ICSMFE, Paris, 1, 577-581.
- [B35]. GROUP 7.0 for windows [2000] Technical & User's manual Ensoft Inc.
- [B36]. H.G. POULOS, E.H. DAVIS [2002] "Analisi e progettazione di fondazioni su pali"
- [B37]. JAMIOLKOWSKI M. et al. [1983] "Scale effects of ultimate pile capacity" Discussion, JGED, ASCE.
- [B38]. LANCELLOTTA R. [1991] " Geotecnica" Edizioni Zanichelli.
- [B39]. MEYERHOF, G.G. [1951] "The Ultimate Bearing Capacity of Foundations" -

Eurolink S.C.p.A. Pagina 11 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

- Geotechnique, 2, 301-332.
- [B40]. MEYERHOF, G.G. [1951] "Some recent research on the bearing capacity of foundations" Canadian Geotechnical Journal,1, 16-26
- [B41]. MEYERHOF G.G., SASTRY V.V.R.N. [1978] "Bearing capacity of piles in layered soils. Part 1. Clay overlying sand" Canadian Geotechnical Journal, 15,171-182, 183-189.
- [B42]. REESE L.C., WRIGHT S.J. [1977] "Drilled shaft manual" U.S. Dept. Transportation, Offices of Research and Development, Implementation Div., HDV 2, Washington D.C., vol.1
- [B43]. REESE L.C., W.R.COX, F.D. KOOP [1974] "Analysis of lateralli loaded piles in sand" Paper N° OCT 2080, Proceedings, Fifth Annual Offshore Technology Conference, Houston, Texas, 1975.
- [B44]. REESE L.C., W.R.COX, F.D. KOOP [1975] "Field testing and analysis of laterally loaded piles in stiff clay" Paper N° OCT 2313, Proceedings, Seventh Offshore Technology Conference, Houston, Texas, 1975.
- [B45]. REESE L.C., WELCH R.C. [1975] "Lateral loading of deep foundations in stiff clay" Journal of the geotechnical Division, ASCE, Vol. 101, No GT7, Proocedings Paper 11456, 1975, pp. 633 649.
- [B46]. SKEMPTON, A. W. [1951] "The bearing capacity of clays" Building Research Congress, London, 1, 180-189.
- [B47]. VESIC, A.S. [1970] "Tests on instrumented Piles, Ogeechee River Site" JSMFD, ASCE, V. 96, N. SM2, Proc. Paper 7170, March.
- [B48]. VESIC, A.S. [1973] "Analysis of Ultimate Loads of Shallow Foundations". JSMFD, ASCE, Jan., 45-73.
- [B49]. WELCH, R.C., REESE L.C. [1972] "Laterally loaded Behavior of drilled shafts" Research Report N° 3-5-65-89, conducted for Texas Highway Department and U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, by Center for Highway Research, The University of Austin.

Eurolink S.C.p.A. Pagina 12 di 201

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

3 CARATTERISTICHE MATERIALI

3.1 Conglomerato cementizio

I conglomerati cementizi dovranno essere realizzati in accordo con le normative UNI 11104 e UNI EN 206-1; più in dettaglio ogni parte strutturale dovrà possedere le seguenti caratteristiche resistenti:

3.1.1 Conglomerato cementizio per sottofondazioni

Classe C12/15

Resistenza caratteristica cubica $f_{ck,cube} = 15 \text{ N/mm}^2$ Resistenza caratteristica cilindrica $f_{ck,cvl} = 12 \text{ N/mm}^2$

Classe di esposizione X0
Classe di consistenza S4 / S5

3.1.2 Conglomerato cementizio per pali di fondazione

Classe C25/30

Resistenza caratteristica cubica $f_{ck,cube} = 30 \text{ N/mm}^2$ Resistenza caratteristica cilindrica $f_{ck,cyl} = 25 \text{ N/mm}^2$

Resistenza di calcolo a compressione $f_{cd} = \alpha_{cc}^* f_{ck}/\gamma_c = 0.85^* f_{ck}/1.5 = 14,167 \text{ N/mm}^2$

Resistenza a trazione media $f_{ctm} = 0.30^* f_{ck}^{2/3} = 2.565 \text{ N/mm}^2$ Resistenza a trazione (frattile 5%) $f_{ctk \ 0.05} = 0.7^* f_{ctm} = 1.795 \text{ N/mm}^2$ Resistenza a trazione di calcolo $f_{ctd} = f_{ctk 0.05} / \gamma_c = 1.197 \text{ N/mm}^2$

Classe di esposizione XC2
Classe di consistenza S4-S5

3.1.3 Conglomerato cementizio per fondazioni

Classe C25/30

Resistenza caratteristica cubica $f_{ck,cube} = 30 \text{ N/mm}^2$ Resistenza caratteristica cilindrica $f_{ck,cyl} = 25 \text{ N/mm}^2$

Resistenza di calcolo a compressione $f_{cd} = \alpha_{cc}{}^{\star} f_{ck}/\gamma_c = 0.85 {}^{\star} f_{ck}/1,5 = 14,167 \text{ N/mm}^2$

Eurolink S.C.p.A. Pagina 13 di 201

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

Resistenza a trazione media $f_{ctm} = 0,30^* \; f_{ck}^{2/3} = 2,565 \; \text{N/mm}^2$ Resistenza a trazione (frattile 5%) $f_{ctk \; 0,05} = 0,7^* \; f_{ctm} = 1,795 \; \text{N/mm}^2$ Resistenza a trazione di calcolo $f_{ctd} = f_{ctk0,05} \, / \, \gamma_c = 1,197 \; \text{N/mm}^2$

Classe di esposizione XC2
Classe di consistenza S4

3.1.4 Conglomerato cementizio per elevazioni

Classe C32/40

Resistenza caratteristica cubica $f_{ck,cube} = 40 \text{ N/mm}^2$ Resistenza caratteristica cilindrica $f_{ck,cvl} = 32 \text{ N/mm}^2$

Resistenza di calcolo a compressione $f_{cd} = \alpha_{cc} * f_{ck}/\gamma_c = 0.85 * f_{ck}/1.5 = 18,133 \text{ N/mm}^2$

Resistenza a trazione media $f_{ctm} = 0.30^* f_{ck}^{2/3} = 3.024 \text{ N/mm}^2$ Resistenza a trazione (frattile 5%) $f_{ctk \ 0.05} = 0.7^* f_{ctm} = 2.117 \text{ N/mm}^2$ Resistenza a trazione di calcolo $f_{ctd} = f_{ctk \ 0.05} / \gamma_c = 1.411 \text{ N/mm}^2$

Classe di esposizione XC4 – XS1– XF2

Classe di consistenza S4

3.1.5 Conglomerato cementizio per soletta d'impalcato, cordoli e baggioli

Classe C32/40

Resistenza caratteristica cubica $f_{ck,cube} = 40 \text{ N/mm}^2$ Resistenza caratteristica cilindrica $f_{ck,cyl} = 32 \text{ N/mm}^2$

Resistenza di calcolo a compressione $f_{cd} = \alpha_{cc}^* f_{ck}/\gamma_c = 0.85^* f_{ck}/1.5 = 18,133 \text{ N/mm}^2$

Resistenza a trazione media $f_{ctm} = 0.30^* \, f_{ck}^{2/3} = 3.024 \, \text{N/mm}^2$ Resistenza a trazione (frattile 5%) $f_{ctk \, 0.05} = 0.7^* \, f_{ctm} = 2.117 \, \text{N/mm}^2$ Resistenza a trazione di calcolo $f_{ctd} = f_{ctk \, 0.05} \, / \, \gamma_c = 1.411 \, \text{N/mm}^2$

Classe di esposizione XF4
Classe di consistenza S4

3.1.6 Conglomerato cementizio per lastre tralicciate

Classe C35/45

Resistenza caratteristica cubica $f_{ck,cube} = 45 \text{ N/mm}^2$ Resistenza caratteristica cilindrica $f_{ck,cyl} = 35 \text{ N/mm}^2$

Eurolink S.C.p.A. Pagina 14 di 201

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

Resistenza di calcolo a compressione $f_{cd} = \alpha_{cc}^* f_{ck}/\gamma_c = 0.85^* f_{ck}/1.5 = 19.833 \text{ N/mm}^2$

Resistenza a trazione media $f_{\text{ctm}} = 0,30^* \; f_{\text{ck}}^{2/3} = 3,210 \; \text{N/mm}^2$ Resistenza a trazione (frattile 5%) $f_{\text{ctk}\;0,05} = 0,7^* \; f_{\text{ctm}} = 2,247 \; \text{N/mm}^2$ Resistenza a trazione di calcolo $f_{\text{ctd}} = f_{\text{ctk}0,05} / \gamma_c = 1,498 \; \text{N/mm}^2$

Classe di esposizione XS1– XF2

Classe di consistenza S4

3.2 Acciaio per cemento armato

Per le armature metalliche si adottano tondini in acciaio del tipo B450C controllato in stabilimento che presentano le sequenti caratteristiche:

Tensione di snervamento caratteristica $f_{yk} \ge 450 \text{ N/mm}^2$ Tensione caratteristica a rottura $f_{tk} \ge 540 \text{ N/mm}^2$

Resistenza di calcolo $f_{yd} = f_{yk} / \gamma_s = 450/1,15 = 391,30 \text{ N/mm}^2$

Deformazione caratteristica al carico massimo ϵ_{uk} = 7,5 % Deformazione di progetto ϵ_{ud} = 6,75 %

3.3 Acciaio per carpenteria metallica tipo CORTEN

In conformità con la norma UNI EN 10025:

Elementi composti per saldatura:

spessori t ≤ 40 mm:

Tipo S355J2G3

Soglia di snervamento $f_{yk} \ge 355 \text{ N/mm}^2$

Tensione di rottura $f_{tk} \ge 470-630 \text{ N/mm}^2$

spessori t > 40 mm:

Tipo S355K2G3

Soglia di snervamento $f_{vk} \ge 315 \text{ N/mm}^2$

Tensione di rottura $f_{tk} \ge 470-630 \text{ N/mm}^2$

• Elementi non saldati:

spessori t ≤ 16 mm:

Tipo S355J0

Soglia di snervamento $f_{yk} \ge 355 \text{ N/mm}^2$

Tensione di rottura $f_{tk} \ge 470-630 \text{ N/mm}^2$

Eurolink S.C.p.A. Pagina 15 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

spessori $16 < t \le 40$ mm:

Tipo S355J0

Soglia di snervamento $f_{yk} \ge 315 \text{ N/mm}^2$

Tensione di rottura $f_{tk} \ge 470-630 \text{ N/mm}^2$

3.4 Collegamenti bullonati

Giunzioni ad attrito da realizzarsi con bulloneria ad alta resistenza a serraggio controllato secondo UNI 3740 e UNI 20898 parte I e II:

• Viti classe 10.9 (UNI EN ISO 898-1:2001)

• Dadi classe 10 (UNI EN ISO 20898-2:1994)

Rosette acciaio C50 EN10083 (HRC 32-40) (UNI EN ISO 10083-2:2006)

Le giunzioni bullonate ad attrito dovranno prevedere un coefficiente di attrito pari a 0,3 e coppie di serraggio secondo D.M. 14.01.2008.

I bulloni disposti verticalmente avranno la testa della vite verso l'alto ed il dado verso il basso ed avranno una rosetta sotto la vite ed una sotto il dado.

Fori per bulloni secondo D.M. 14/01/2008.

3.5 Connettori a piolo

In conformità con la norma UNI EN ISO 13918:

Acciaio tipo ST 37-3K (S235J2G3+C450)

Soglia di snervamento $f_{yk} \ge 350 \text{ N/mm}^2$ Tensione di rottura $f_{tk} \ge 450 \text{ N/mm}^2$

Allungamento $A \ge 15\%$ Strizione $Z \ge 50\%$

3.6 Saldature

In conformità con il D.M. 14/01/2008.

Dove non diversamente specificato si prevedono saldature a cordone d'angolo di lato pari a 0.7 per lo spessore minimo da collegare se su entrambi i lati, e di lato pari allo spessore minimo da collegare se su un solo lato. Tutti i cordoni devono essere sigillati sul contorno. Per i giunti a piena penetrazione le lamiere dovranno essere preventivamente preparate con opportuno cianfrino.

Eurolink S.C.p.A. Pagina 16 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

4 DESCRIZIONE DELLA STRUTTURA

4.1 CARATTERISTICHE GEOMETRICHE E UBICAZIONE DELLA STRUTTURA

La zona in cui è individuata l'opera esaminata nel presente documento, ricade all'incirca alla Latitudine di 38,232738 e Longitudine di 15,666339.

F1. Individuazione della zona in cui ricade l'opera

L'opera si sviluppa con andamento rettilineo su un'unica via di corsa di larghezza massima B = 15,20 m (dei quali 11,20 carrabili) e si presenta retto rispetto alla direzione di percorrenza della viabilità; l'angolo tra l'asse longitudinale del ponte e l'asse appoggi è pari a 90°. Da un punto di vista statico, la struttura è a 1 campata con luce di calcolo pari a 40 m:

Campata	Lunghezza [m]	
Spalla A – Spalla B	40,00	

L'impalcato è a graticcio, realizzato mediante 3 travate metalliche doppio T con soletta in c.a. collaborante (prevista con il sistema costruttivo "a prédalles", armate con tralicci tipo Bausta o

Eurolink S.C.p.A. Pagina 17 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

similari, autoportanti nei confronti del getto in opera della soletta) e traversi metallici reticolari. Le travi in acciaio hanno altezza costante lungo il loro sviluppo longitudinale e un interasse 5,10 m. La larghezza delle piattabande superiori ed inferiori e lo spessore dei singoli elementi è costante lungo lo sviluppo della trave (vedi elaborati grafici):

	TIPO 1
H trave (mm)	2400
Piattabanda sup. (mm)	800x40
Anima (mm)	28
Piattabanda inf. (mm)	1000x45

Le travi in acciaio vengono prefabbricate in officina per conci di lunghezza massima 8,00 m, conci risultano trasportabili agevolmente senza oneri specifici.

La spalla è in c.a. di tipo tradizionale con muro frontale, paraghiaia e muri andatori, con fondazione di tipo diretto. La sezione trasversale della spalla è costituita dal muro frontale di spessore costante pari a 2,30 m, posto davanti al muro paraghiaia di spessore di 50 cm che si eleva fino a quota pavimentazione; i muri andatori hanno spessore costante pari a 150 cm.

Per limitare le deformazioni del paramento verticale viene realizzato un setto in c.a. gettato in opera dello spessore di 100 cm, posto a tergo della spalla in posizione baricentrica.

Le spalle sono rette rispetto all'asse longitudinale del ponte, parallele alla direzione di scorrimento del corso d'acqua interferito.

Il sistema di vincolamento è realizzato mediante appoggi tipo VASOFLON, creando uno schema statico isostatico mediante un carrello e una cerniera. Saranno quindi predisposti:

- su spalla B = 2 appoggio unidirezionale trasversali + 1 appoggio fisso
- su spalla A = 2 appoggi multidirezionali +1 appoggio unidirezionale longitudinale

I dispositivi saranno progettati affinché resistano all'azione di progetto allo stato limite ultimo e risultino idonei:

- a trasmettere le forze conseguenti alle azioni sismiche;
- ad evitare sconnessioni tra gli elementi componenti il dispositivo di vincolo;
- ad evitare la fuoriuscita dei vincoli dalle loro sedi.

Gli elementi di sostegno ai quali vengono trasmesse le azioni longitudinali e le azioni trasversali

Eurolink S.C.p.A. Pagina 18 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

sono progettati affinché si mantengano in campo elastico anche sotto l'azione sismica allo stato limite ultimo.

Sono presenti inoltre ritegni sismici di emergenza in direzione trasversale (realizzati in cemento armato), i quali non possono però essere considerati come dispositivi di ritenuta adatti a fenomeni ciclici perché durante un evento sismico sono elementi soggetti a fenomeni di martellamento.

Le azioni considerate nel calcolo sono quelle tipiche di una struttura interrata con le aggiunte delle azioni di tipo stradale, con applicazione della Normativa sui ponti stradali D. M. Min. II. TT. del 14 gennaio 2008 – Norme tecniche per le costruzioni.

4.2 CARATTERIZZAZIONE GEOTECNICA DEL LUOGO

Le fondazioni si attestano a una profondità media da p.c. di circa 3,0 m.

La zona in cui ricade l'opera in oggetto presenta quindi una stratigrafia dove i primi 14-15 m da intradosso fondazione sono caratterizzati da "depositi marini terrazzati", mentre il successivo strato uniforme è caratterizzato dai "plutoniti di tipo A".

Più in dettaglio tale le litologie presentano le seguenti caratteristiche:

DEPOSITI MARINI TERRAZZATI

γ (kN/m³)	18-20	
c' _{picco} (kPa)	0	
φ' _{picco} (9	38°÷40° (p'ff=0-272KPa) / 36° ÷38° (p'ff=272-350KPa)	
C _{residuo} ' (kPa)	0	
φ _{residuo} ' (°)	33°÷35°	
k _o (-)	0.4-0.5	
V _s (m/sec)	200+14·(z)	
G' _o (MPa)	$G_o = 2060 \cdot p_a \cdot \left(\frac{p_o}{p_a}\right)^{0.6}$	
E' (MPa) *	$E = (19 \div 30) \cdot \left(z\right)^{0.7}$	
ν' (-)	0.2	
K(m/s)	10 ⁻⁵ - 10 ⁻⁶	

Eurolink S.C.p.A. Pagina 19 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

PLUTONITI DI TIPO A

γ (kN/m³)	21÷23
c' _{picco} (kPa)	vedi sotto
φ' _{picco} (9	vedi sotto
C _{residuo} ' (kPa)	vedi sotto
φ _{residuo} ' (°)	vedi sotto
k _o (-)	-
V _s (m/sec)	Vs=400+13z (m/s)
G' _o (MPa)	-
E' (MPa) *	E'=250 ÷ 500 Mpa in ammassi di classe IV-V RMR (faglie) e nei primi 10m di profondità E'=500 ÷ 700 Mpa in ammassi di classe IV-V RMR (faglie) e nei primi 10-35m di profondità E'=1000 ÷ 1500 Mpa per profondità maggiori
ν' (-)	0.2
K(m/s)	10 ⁻⁷ ÷10 ⁻⁸

Sulla base delle prove SPT si è ottenuto un valore medio di angolo di attrito di 38°, ai parametri di resistenza operativi al taglio in termini di sforzi efficaci si sono assegnati i seguenti valori operativi:

Resistenze di picco / operative (p'ff=0 - 272KPa)

c' = 0 kPa = coesione apparente

 φ ' = 36÷38° = angolo di resistenza al taglio

Tali valori sono compatibili con uno stato di sforzo che preveda una pressione normale alla superficie di rottura compresa nel range tra 0 e 272KPa.

In problemi caratterizzati da un aumento delle tensioni normali si possono definire i seguenti parametri:

Resistenze di picco / operative (p'ff=272 - 350KPa)

 c_p ' = 0 kPa = coesione apparente

Eurolink S.C.p.A. Pagina 20 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

 φ_p ' = 36° = angolo di resistenza al taglio.

Tali valori sono compatibili con uno stato di sforzo che preveda una pressione normale alla superficie di rottura compresa nel range tra 272KPa÷350KPa.

Simbologia:

 γt = peso di volume naturale;

NSPT = resistenza penetrometrica dinamica in prova SPT;

 φ' = angolo di attrito operativo;

c' = intercetta di coesione operativa;

 φ_r ' = angolo di attrito residuo;

c_r' = intercetta di coesione residua;

OCR = grado di sovraconsolidazione;

 σ_{vo} ' = pressione verticale efficace geostatica;

 σ_{vmax} ' = pressione verticale efficace massima subita dal deposito;

c_u = resistenza al taglio non drenata riferita a tensioni di consolidazione pari a quelle geostatiche e a condizioni di carico tipo quelle delle prove triassiali di compressione e carico;

 k_o = coefficiente di spinta del terreno a riposo;

 k_v = coefficiente di permeabilità verticale riferito a pressioni di consolidazione pari a quelle geostatiche e a problemi di flusso diretto principalmente nella direzione verticale;

V_s = velocità di propagazione delle onde di taglio;

G_o = modulo di taglio iniziale riferito alle pressioni efficaci geostatiche;

E' = modulo di Young "operativo"; * = si considerano valori nel range per gallerie, fronti di scavo sostenuti, opere di sostegno tirantate o puntonate; valori al minimo del range per fondazioni dirette, fondazioni su pali e rilevati.

v' (-)= coefficiente di Poisson

p_a = pressione atmosferica di riferimento, espressa in MPa

p'₀ = pressione efficace alla profondità z, espressa in MPa

Con riferimento ai due sondaggi C434 e C435 in adiacenza all'opera in progetto, la posizione della falda è stata individuata a una quota di circa -17 m da p.c., pertanto nel proseguo della relazione si considererà assente la falda in quanto ininfluente nei dimensionamenti.

Eurolink S.C.p.A. Pagina 21 di 201

RELAZIONE DI CALCOLO

Codice documento

Rev F0 Data 20/06/2011

Per un maggior dettaglio della caratterizzazione geotecnica dei suoli si rimanda alla relazione generale CG0800PRBDCSBC8G000000001B.

Per un maggior dettaglio della stratigrafia di profilo si rimanda agli elaborati:

Profilo geologico-geotecnico - Tav. 1/2 1:2000 CG0800 P F6 D C SB C6 ST 00 00 00 05 B Profilo geologico-geotecnico - Tav. 2/2 1:2000 CG0800 P F6 D C SB C6 ST 00 00 00 26 A Profilo idrogeologico 1:2000 CG0800 P F6 D C SB C6 ST 00 00 00 06 B

Nel seguito si porta un estratto di dettaglio per la zona in esame.

Descrizione delle litologie prevalenti

Le litologie prevalenti sono costituite dalle formazioni dei Depositi terrazzati marini, plutoniti.

<u>Depositi terrazzati marini:</u> sono rappresentati da depositi marini sabbiosi e sabbioso ghiaiosi fortemente pedogenizzati in prossimità della superficie. I depositi dei terrazzi marini rappresentano terre da sciolte a debolmente coesive con cementazione da debole ad assente.

L'età attribuibile ai terrazzi cartografati nell'area di intervento copre l'intervallo Pleistocene mediosuperiore.

Le <u>plutoniti</u> costituite da rocce cristalline graniotoidi nel settore centro-meridionale sono, costituite da leucogranodioriti a due miche e graniti-monzograniti.

All'interno dei graniti è stato localmente riscontrato un sensibile grado di alterazione idrotermale che conferisce alla roccia un aspetto brecciato, a luoghi con colorazione biancastra e farinosa al tatto. Le evidenze di affioramento e di sondaggio consentono di ritenere determinante, ai fini della caratterizzazione geomeccanica dell'ammasso roccioso, la presenza di una fratturazione, a luoghi molto intensa legata alla coesistenza di più sistemi di discontinuità che, tuttavia, non conferiscono all'ammasso una spiccata anisotropia.

La falda non risulta interferente con le opere.

Localmente non ci sono indagini che indagano nei primi 30m di profondità per la caratterizzazione sismica del suolo.

Le prove sismiche nei lontani sondaggi C430 e CN451 forniscono una Vs30 di cat. B; cautelativamente si assume quindi la categoria C per la definizione del tipo di suolo, poiché sono stati ottenuti dei valori di Nspt, nel vicino sondaggio C435, che oscillano tra 22 e 40 nei primi 7-8 m

Eurolink S.C.p.A. Pagina 22 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0

20/06/2011

Data

da p.c.

Indagini previste

Data l'esiguità dei sondaggi e delle prove localmente presenti, si è scelto di tenere conto anche di altri sondaggi e prove disponibili.

Le prove localmente utilizzate nella caratterizzazione sono:

Depositi terrazzati marini:

Si considerano i sondaggi della tratta relativa alla Rampa C dopo il km 1+500.

- prove SPT (C429, C430, C432, C433, C434, C3, C3bis)
- 2 prove sismiche (CN451, C430)
- 1 prova pressiometrica (SN9)
- 3 prove Le Franc (CN451, C425, C430)
- Prove di laboratorio per la determinazione dei parametri fisici ed elle caratteristiche di resistenza (TD, sondaggio C435)

<u>Plutoniti</u>

Si considerano i sondaggi della caratterizzazione generale.

- 15 rilievi geostrutturali
- 3 prove sismiche (SG11, SG11bis, CN451)
- 12 prove pressiometriche e dilatometriche
- 16 prove Le Franc
- Prove di laboratorio per la determinazione dei parametri fisici ed elle caratteristiche di resistenza

Caratterizzazione geotecnica

Per i criteri e per gli aspetti generali di caratterizzazione si rimanda a quanto riportato nella relazione Elab. CG0800PRBDCSBC8G000000001A. Per la definizione delle categorie di suolo si rimanda al medesimo elaborato ed alla relazione sismica di riferimento.

Depositi terrazzati marini

Per le <u>caratteristiche fisiche</u> l'andamento del fuso evidenzia che le caratteristiche granulometriche dei materiali in esame sono tipiche di materiali sia di materiali a grana grossa (ghiaie 30%), sia di materiali intermedi (sabbie 50%). Il contenuto di fino è mediamente del 17%.

Con riferimento al fuso medio si ha:

Eurolink S.C.p.A. Pagina 23 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

- Il valore di D₅₀ è pari a 0.5mm
- Il valore di D₆₀ è pari a 1.0 mm
- Il valore di D₁₀ è pari a 0.008 mm

Il peso di volume dei grani γ_s è risultato pari a circa 26.5 kN/m³.

Da letteratura si hanno a disposizione i valori di γ_{dmax} e γ_{dmin} pari rispettivamente a 18.8 e 15.7 kN/m^3

Per lo stato iniziale si ha:

- Dr: i valori di N_{spt} sono stati corretti con il fattore correttivo C_{sg}=0.85 corrispondente al d50=0.5mm.
- **e_o:** a partire dal d50 stimato si ottiene di e_{max}-e_{min} pari a 0.35. Stimando per e_{max} un valore pari a 0.7 a partire dai valori di Dr è stato possibile determinare i valori di **e_o** in sito.
- γd : in base ai valori di e_o da γ_s si può stimare γ , riportato nel grafico.
- K₀: si considera la relazione di Jaky.

Dr(%)	Dr(%)	γd(KN/m3)	K_0	
Prevalente sabbiosa	Sabbie e ghiaie	γα(ΚΙΝ/ΠΙ3)	13()	
40-90	70-100	18-20	0.35	

Per quanto riguarda le <u>caratteristiche di resistenza</u> sulla base delle prove SPT si è ottenuto un valore medio di angolo di attrito di circa 40°.

z(m)	φ' _{p (pff=0-272KPa)} (°)	φ' _{p (pff=-272-350KPa)} (°)	φ' _{cv} (°)
0-15	38-42	33-38	33-35

Ai parametri di resistenza operativi al taglio in termini di sforzi efficaci si sono assegnati i seguenti valori operativi:

c' = 0 kPa = coesione apparente

φ' = 38°÷40°=angolo di resistenza al taglio

Eurolink S.C.p.A. Pagina 24 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Anche le prove pressiometriche (SN9) hanno fornito valori di 38°

Per i valori di stato critico, in assenza di prove specifiche, in base ai dati di letteratura si possono definire i seguenti valori operativi

 $c_r' = 0$ kPa = coesione apparente

φ_r' = 33°-35°=angolo di resistenza al taglio

Dalle prove di laboratorio su campioni rimaneggiati si ottiene per l'angolo di attrito un valore di 30°-35°.

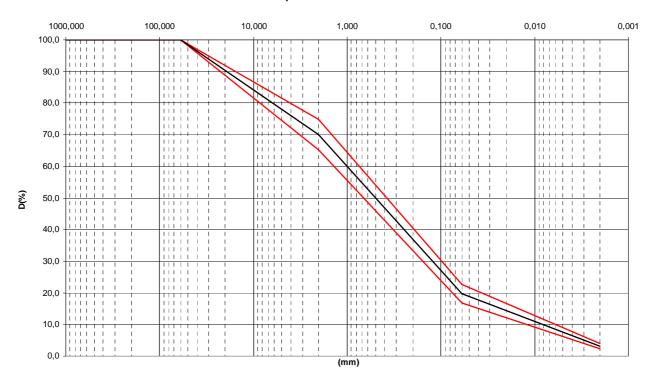
Per le <u>caratteristiche di deformabilità</u> in base alle SPT e alle sismiche si può assumere:

z(m)	G0(MPa)	E0(MPa)	E'(MPa)
0-15	37 z ^{0.7}	90 z ^{0.7}	$(17-30) z^{0.7}$

con i valori di E pari rispettivamente a circa 1/10 ÷ 1/5 (medie e grandi deformazioni) ed 1/3 di quelli iniziali (piccole deformazioni).

La prova pressiometrica (SN9) ha fornito un valore medio (primo carico) di circa 120MPa a circa 18m di profondità.

Eurolink S.C.p.A. Pagina 25 di 201



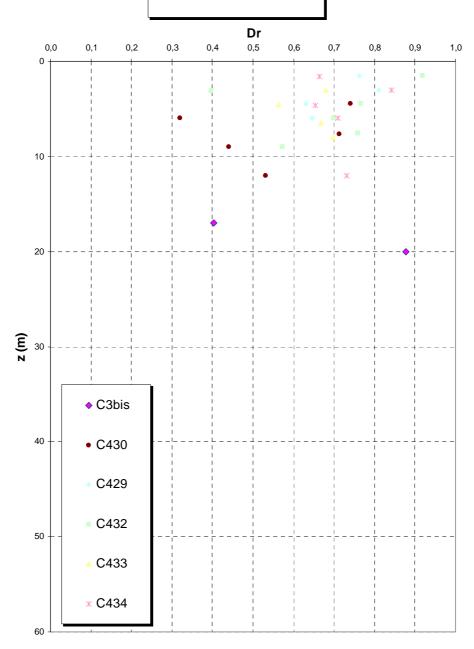
RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0 Data 20/06/2011

Depositi terrazzati marini

Eurolink S.C.p.A. Pagina 26 di 201



RELAZIONE DI CALCOLO

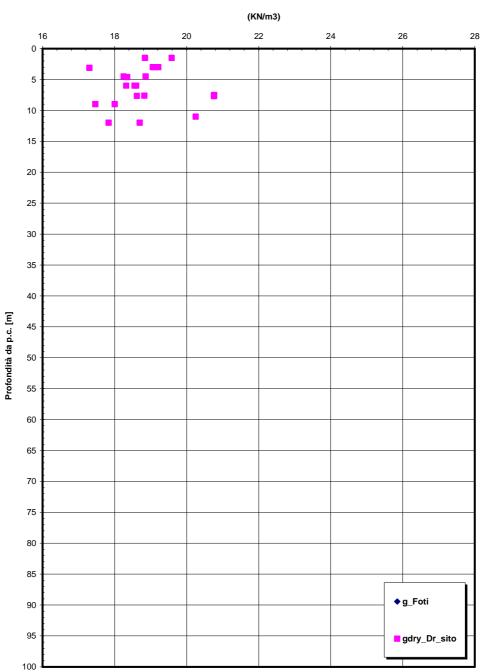
Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Dr Cubrinovski e Ishihahara (1999) Componente sabbiosa prevalente DEPOSITI TERRAZZATI MARINI

Eurolink S.C.p.A. Pagina 27 di 201

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

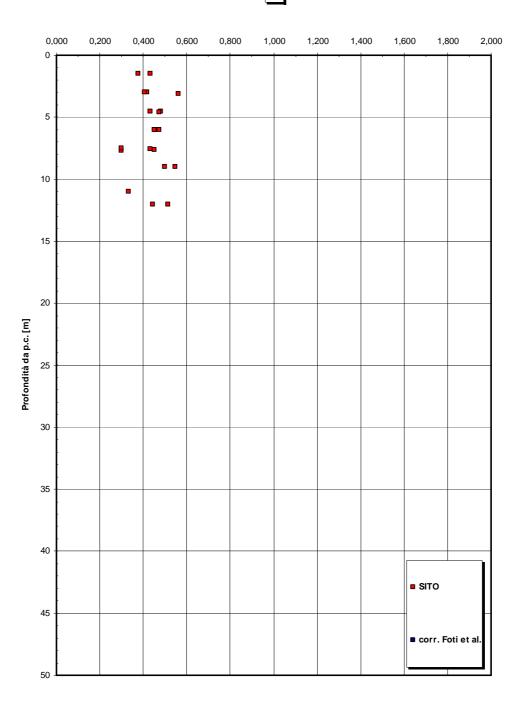

RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0

Data 20/06/2011

Eurolink S.C.p.A. Pagina 28 di 201



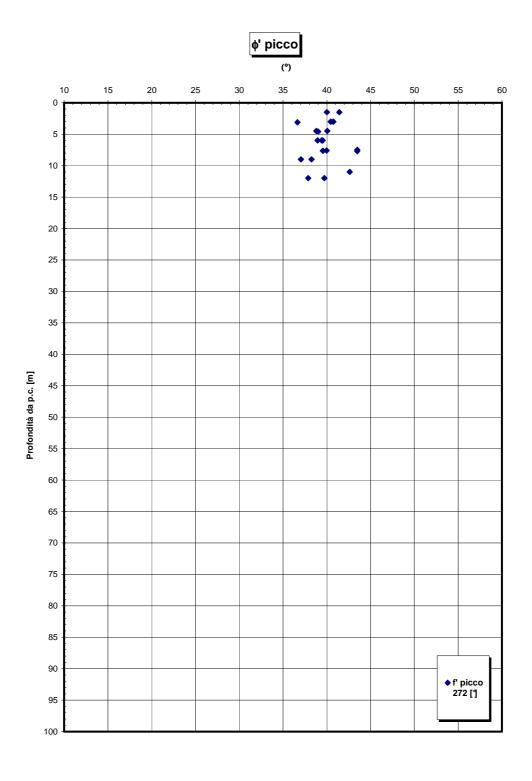
RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

eo

Eurolink S.C.p.A. Pagina 29 di 201

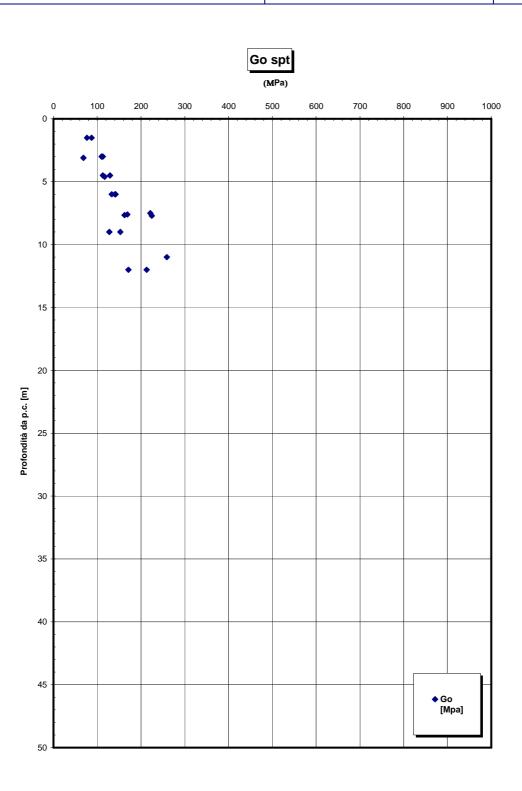


RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Eurolink S.C.p.A. Pagina 30 di 201



RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

Eurolink S.C.p.A. Pagina 31 di 201

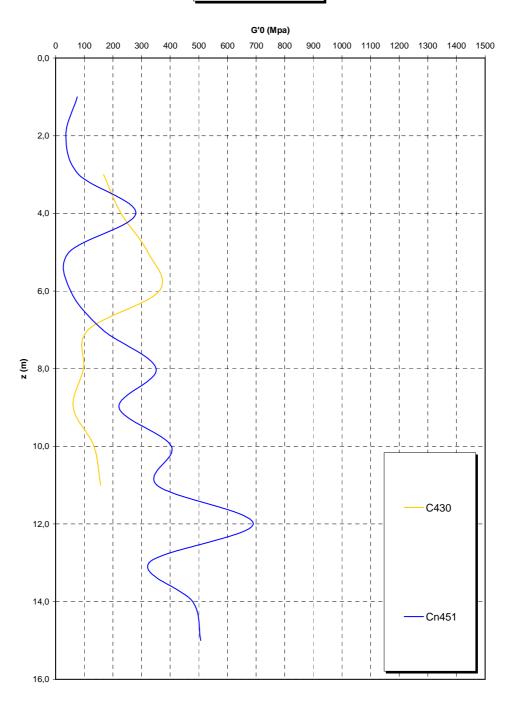


RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Eurolink S.C.p.A. Pagina 32 di 201



RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Prove sismiche DEPOSITI TERRAZZATI MARINI

Eurolink S.C.p.A. Pagina 33 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

Plutoniti

Per le <u>caratteristiche fisiche</u> dalle prove di laboratorio emerge un peso di volume γ di volume totale pari a 21KN/m³.

Considerando il probabile disturbo dei campioni si assume un range pari a 21-23 KN/m³

Per i <u>parametri di resistenza</u> al taglio in termini di sforzi efficaci il modello utilizzato per la determinazione dei parametri è un continuo equivalente.

L'interpretazione delle caratteristiche dell'ammasso parte dalla stima del parametro RMR_{'89} che è stato valutato sulla base di 15 rilievi geostrutturali effettuati sugli affioramenti.

Il parametro GSI è quindi mediamente pari a 35-40.

Gli inviluppi di rottura dell'ammasso roccioso sono stati determinati tenendo conto:

- del valore GSI di cui in precedenza;
- dei valori della resistenza alla compressione semplice σ_c determinata in laboratorio (30MPa) e del parametro m_i della roccia intatta pari a 33.

I risultati che si otterrebbero, per GSI = 40 sono riportati nella tabella, sia per le condizioni di resistenza di picco ("undisturbed rock mass") che per le condizioni di resistenza residua ("disturbed rock mass") per tensioni normali corrispondenti a profondità massime di circa 20m.

		Picco		Residuo	
copertura (m)	σn(Mpa)	c' (MPa)	φ' (9	c' (MPa)	φ' (°)
10.00	0.22	0.14	59	0.10	46
20.00	0.44	0.23	53	0.16	40
30.00	0.66	0.32	50	0.22	36
40.00	0.88	0.39	47	0.27	33
50.00	1.10	0.47	45	0.33	31
60.00	1.32	0.54	44	0.37	29
70.00	1.54	0.60	42	0.42	28
80.00	1.76	0.67	41	0.46	26
90.00	1.98	0.73	40	0.51	25
100.00	2.20	0.79	39	0.55	24

Eurolink S.C.p.A. Pagina 34 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

In contesti non caratterizzati da rotture pregresse o in atto e per analisi convenzionali in cui non venga simulato il decadimento della resistenza si potranno considerare come valori operativi quelli rappresentati dai valori medi tra quelli "undisturbed" e "disturbed" oppure cautelativamente prossimi a quelli "disturbed".

In contesti caratterizzati da rotture pregresse o in atto e per analisi convenzionali potranno considerarsi come valori operativi quelli rappresentati dai valori "disturbed".

Per le zone tettonizzate o alterate si assume GSI=20 (classe IV-V RMR) e quindi si ottiene:

		Picco		Residuo	
copertura (m)	σn(Mpa)	c' (MPa)	φ' (9	c' (MPa)	φ' (°)
10.00	0.22	0.11	53	0.07	36
20.00	0.44	0.19	47	0.12	29
30.00	0.66	0.27	44	0.17	26
40.00	0.88	0.33	41	0.21	23
50.00	1.10	0.39	39	0.25	21
60.00	1.32	0.45	37	0.28	20
70.00	1.54	0.51	36	0.32	19
80.00	1.76	0.56	34	0.35	18
90.00	1.98	0.62	33	0.38	17
100.00	2.20	0.67	32	0.41	16

Su campioni rimaneggiati e prelevati nei sondaggi SG11, SG11bis, SG13 e SG13bis nei primi 30m, e quindi nella parte più alterata dell'ammasso, sono state effettuate prove di taglio diretto che forniscono per i parametri di resistenza c=0-20KPa e ϕ '=32-40°.

Per le <u>caratteristiche di deformabilità</u> considerando la relazione di Serafim & Pereira, 1983 si ottiene:

E'=500 ÷ 700 Mpa rispettivamente per D=1e D=0.5 in ammassi di classe IV-V RMR (faglie) E'=1000 ÷ 1500 Mpa rispettivamente per D=1 e D=0.5 in ammassi di classe III-IV RMR

In base alle prove sismiche in foro (SG11, SG11bis, CN451) si ottiene un range di valori, tra 5m e

Eurolink S.C.p.A. Pagina 35 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

40m di profondità di Eo molto variabile mediamente pari a 1000 fino a 10m e a 2000 MPa tra 10m e 35m di profondità.

Dopo tale profondità la sismica Cn451 fornisce valori crescenti con E₀>4000 MPa.

Il modulo statico E' risulta pari a E'= $500 \div 700$ Mpa pari rispettivamente a circa $1/5 \div 1/3$ di quello iniziale.

Le prove pressiometriche forniscono un range di valori, tra 15m e 35m di profondità di E' pari a 150-250MPa, mentre le prove dilatometriche un valore che si aggira intorno a 250-500MPa (1/5-1/10E₀).

Si ritiene quindi ragionevole assumere tale range di valori operativi:

E'=250 ÷ 500 Mpa in ammassi di classe IV-V RMR (faglie) e nei primi 10m di profondità

E'=500 ÷ 700 Mpa in ammassi di classe IV-V RMR (faglie) e nei primi 10-35m di profondità

E'=1000 ÷ 1500 Mpa per profondità maggiori

Riepilogo caratteristiche fisiche plutoniti

SONDAGGIO	N° PROVINO	OPERA	z (m)	γ (kN/m³)	γd (KN/m³)
SG11	C1/riman	Rampa C 1+200-3+300	10.00	20.23	18.83
SG11	C2/ind	Rampa C 1+200-3+300	23.00	21.82	20.83
SG11	C3/ind	Rampa C 1+200-3+300	27.00	20.20	20.63
Cn451	CR1	Rampa C 1+200-3+300 / Rampa V / Ramo C_dec	31.60		26.67
Cn451	CR2	Rampa C 1+200-3+300 / Rampa V / Ramo C_dec	34.60		26.87
Cn451	CR3	Rampa C 1+200-3+300 / Rampa V / Ramo C_dec	37.35		26.74
C421quater	SL01	ferrovia	83.90		27.13
C421quater	CR1	ferrovia	60.50		27.26
C421quater	CR2	ferrovia	68.20		27.11
C421quater	CR3	ferrovia	85.00		27.02
C421quater	CR4	ferrovia	93.30		26.83
C433	SL01	Rampa C 1+200-3+300 / Ramo A_acc / Rampa F	35.60		26.70
C433	SL01	Rampa C 1+200-3+300 / Ramo A_acc / Rampa F	37.40		26.68

SONDAGGIO	N° PROVINO	z (m)	Opera	PROVA	c' [kPa]	φ' [°]
SG11	C1/riman	10.0	Rampa C 1+200-3+300	TD	16.3	41
SG11	C2/ind	23.0	Rampa C 1+200-3+300	TD	11.6	33
SG11	C3/ind	27.0	Rampa C 1+200-3+300	TD	18.3	34
SG11bis	C1	4.1	Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G	TD	21	34
SG11bis	C2	8.4	Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G	TD	9	36
SG11bis	C3	11.5	Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G	TD	8	36
SG11bis	C4	16.2	Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G	TD	15	32
SG11bis	C5	22.9	Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G	TD	0	35
SG11bis	C6	26.2	Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G	TD	11	39
SG13bis	C1	6.7	Galleria Rampa C / Galleria Rampa D / ferrovia	TD	1	36
SG13bis	C2	13.2	Galleria Rampa C / Galleria Rampa D / ferrovia	TD	5	39
SG13bis	C3	19.6	Galleria Rampa C / Galleria Rampa D / ferrovia	TD	0	40
SG13bis	C4	40.7	Galleria Rampa C / Galleria Rampa D / ferrovia	TD	32	45
SG13bis	C6	54.7	Galleria Rampa C / Galleria Rampa D / ferrovia	TD	19	42

Eurolink S.C.p.A. Pagina 36 di 201

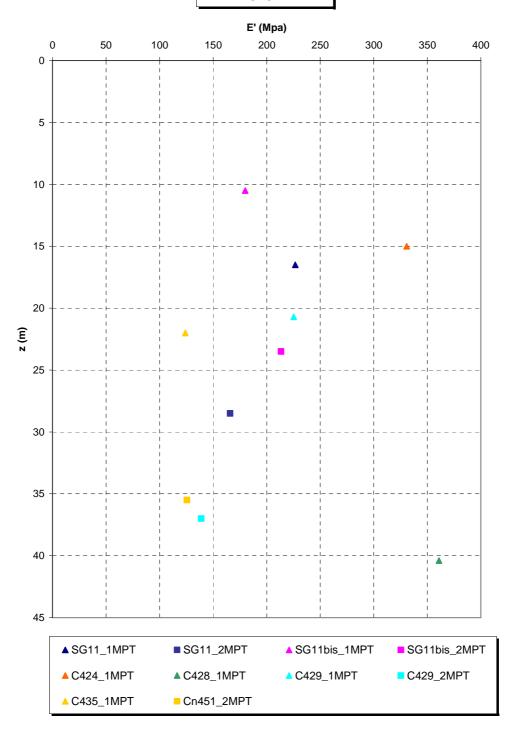
RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

SONDAGGIO	N° PROVINO	OPERA	z (m)	γ (kN/m³)	γ _d (kN/m³)	γ _s (kN/m³)
SG11bis	C1	Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G	4.1	19.91	18.0	25.80
SG11bis	C2	Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G	8.4	18.85	15.2	25.90
SG11bis	C3	Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G	11.45	18.55	17.0	26.10
SG11bis	C4	Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G	16.15	20.01	17.3	26.10
SG11bis	C5	Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G	22.8	19.52	17.9	25.40
SG11bis	C6	Rampa A 2+100-2+370 / Rampa C 1+200-3+300 / Rampa G	26.15	20.01	17.6	26.70
SG13bis	C1	Galleria Rampa C / Galleria Rampa D / ferrovia	6.65	19.81	17.1	26.70
SG13bis	C2	Galleria Rampa C / Galleria Rampa D / ferrovia	13.15	19.02	16.8	25.30
SG13bis	C3	Galleria Rampa C / Galleria Rampa D / ferrovia	19.60	18.8	17.3	26.30
SG13bis	C4	Galleria Rampa C / Galleria Rampa D / ferrovia	40.65	20.40	18.7	25.50
SG13bis	C6	Galleria Rampa C / Galleria Rampa D / ferrovia	54.65	20.97	17.9	25.80
Cn451	CR1	Rampa C 1+200-3+300 / Rampa F / Rampa V	31.60			26.67
Cn451	CR2	Rampa C 1+200-3+300 / Rampa F / Rampa V	34.60			26.87
Cn451	CR3	Rampa C 1+200-3+300 / Rampa F / Rampa V	37.35			26.74
C421	CR3	Galleria Rampa A	31.8			26.50
C421	CR4	Galleria Rampa A	35.2			27.18
C421	CR5	Galleria Rampa A	38.80			27.21
C425	CR2	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G	19.2			26.84
C425	SPT10	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G	21			26.39
C425	CR3	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G	22.5			26.84
C425	SPT11	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F/ Rampa G	24			26.58
C429	CR2	Rampa C 1+200-3+300 / Rampa F / Rampa V	23.8			27.19
C429	CR3	Rampa C 1+200-3+300 / Rampa F / Rampa V	28.9			26.92
C432	CR2	Rampa C 1+200-3+300 / Rampa F / Rampa V	25.8			26.41
C432	SL01	Rampa C 1+200-3+300 / Rampa F / Rampa V	18.8			27.21
C435	CR1	Rampa C 1+200-3+300 / Rampa F / Rampa A_acc	20.5			26.86
C435	CR2	Rampa C 1+200-3+300 / Rampa F / Rampa A_acc	25.7			26.83
C435	CR3	Rampa C 1+200-3+300 / Rampa F / Rampa A acc	32.3			26.77
C435	CR4	Rampa C 1+200-3+300 / Rampa F / Rampa A acc	39.9			26.39
C427	CR03	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F	23.4			26.79
C427	CR04	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F	31.3			26.61
C427	CR05	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F	38.5			26.13
C421	SL01	Galleria Rampa A	13.6			26.78
C421	SL02	Galleria Rampa A	22.9			27.06
C427	SL01	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F	31.8			27.05
C428	CI1	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F	14.08			26.76
C428	CR1	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F	17.42			26.45
C428	SPT7	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F	21			27.13
C428	CR2	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F	21.74			27.20
C428	CR03	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F	24.4			27.75
C428	CR4	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F	33.9			26.92
C428	CR6	Rampa C 1+200-3+300 / Rampa U / Rampa V / Rampa F	38.55			26.66
C434	SPT8	Rampa C 1+200-3+300 / Rampa F / Rampa A_acc	15			26.37
C434	SPT9	Rampa C 1+200-3+300 / Rampa F / Rampa A_acc	18			26.54

Eurolink S.C.p.A. Pagina 37 di 201



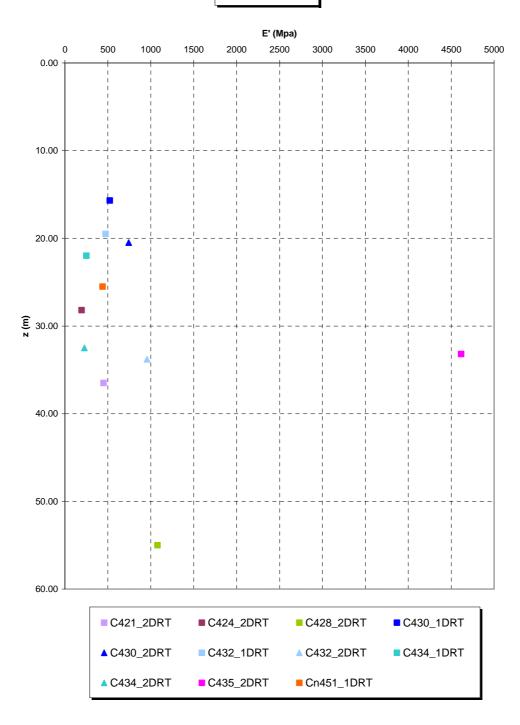
RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Prove pressiometriche PLUTONITI

Eurolink S.C.p.A. Pagina 38 di 201



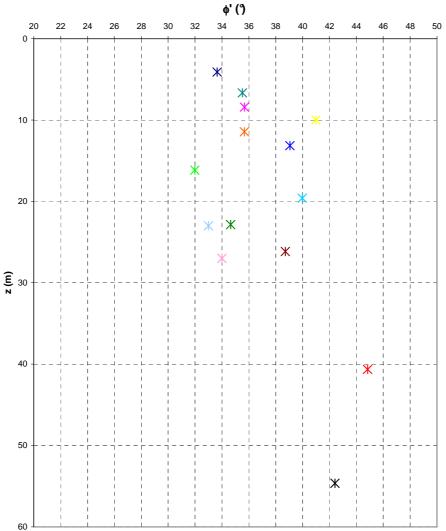
RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Prove dilatometriche PLUTONITI

Eurolink S.C.p.A. Pagina 39 di 201



RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

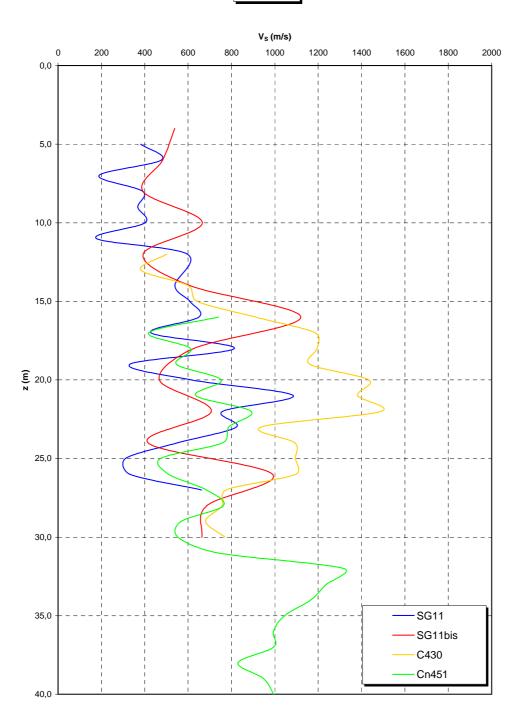
 # \$G11bis_C1_TD
 # \$G11bis_C2_TD
 # \$G11bis_C3_TD
 # \$G11bis_C4_TD

 # \$G11bis_C5_TD
 # \$G11bis_C6_TD
 # \$G13bis_C1_TD
 # \$G13bis_C2_TD

 # \$G13bis_C3_TD
 # \$G13bis_C4_TD
 # \$G13bis_C6_TD
 # \$G11_C1_TD

 # \$G11_C2_TD
 # \$G11_C3_TD

Eurolink S.C.p.A. Pagina 40 di 201

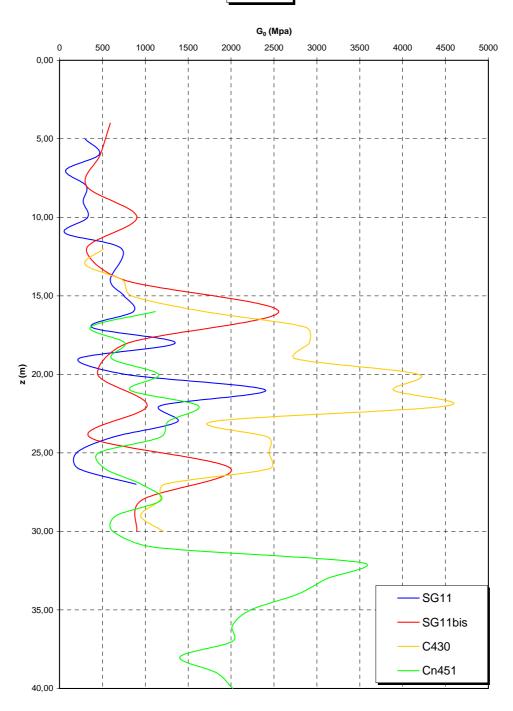


RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

Eurolink S.C.p.A. Pagina 41 di 201



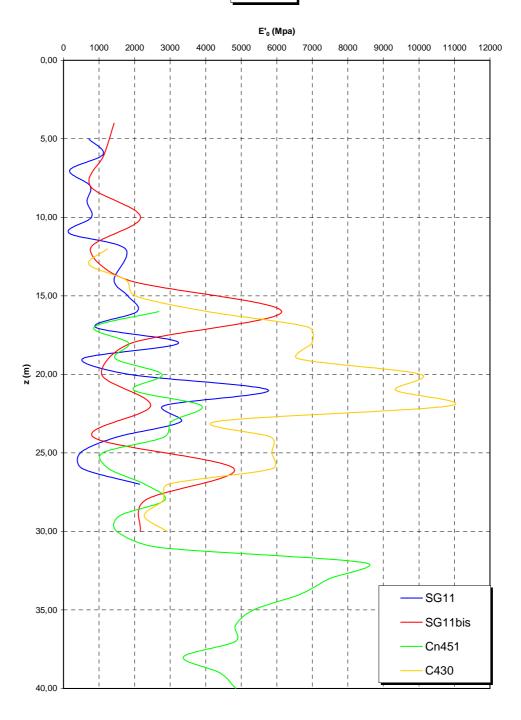
RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0 Data 20/06/2011

Prove sismiche PLUTONITI

Eurolink S.C.p.A. Pagina 42 di 201



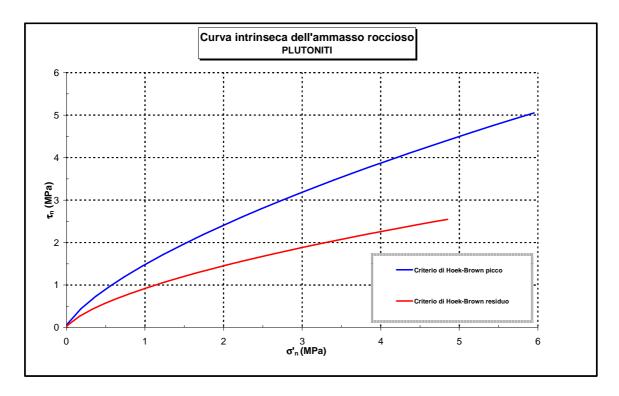
RELAZIONE DI CALCOLO

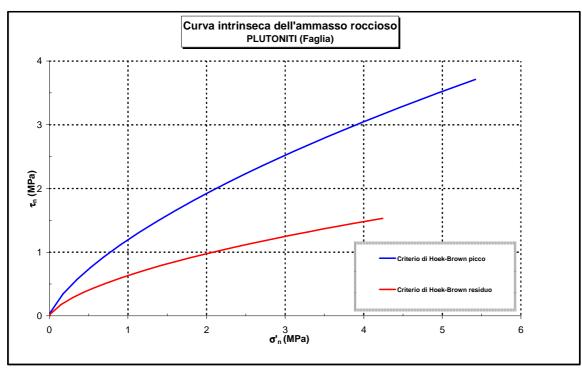
Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Prove sismiche PLUTONITI

Eurolink S.C.p.A. Pagina 43 di 201





RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Eurolink S.C.p.A. Pagina 44 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

4.3 CARATTERIZZAZIONE DELLA SISMICITA' DEL LUOGO

L'effetto dell'azione sismica di progetto sull'opera nel suo complesso, includendo il volume significativo di terreno, la struttura di fondazione, gli elementi strutturali e non, nonché gli impianti, deve rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, i cui requisiti di sicurezza sono indicati nel § 7.1 della norma.

Il rispetto degli stati limite si considera conseguito quando:

- nei confronti degli stati limite di esercizio siano rispettate le verifiche relative al solo Stato Limite di Danno:
- nei confronti degli stati limite ultimi siano rispettate le verifiche relative al solo Stato Limite di salvaguardia della Vita.

Per Stato Limite di Danno (SLD) s'intende che l'opera, nel suo complesso, a seguito del terremoto, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non provocare rischi agli utenti e non compromette significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali e orizzontali. Lo stato limite di esercizio comporta la verifica delle tensioni di lavoro, in conformità al § 4.1.2.2.5 [NT_1].

Per Stato Limite di salvaguardia della Vita (SLV) si intende che l'opera a seguito del terremoto subisce rotture e crolli dei componenti non strutturali e impiantistici e significativi danni di componenti strutturali, cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali (creazione di cerniere plastiche secondo il criterio della gerarchia delle resistenze), mantenendo ancora un margine di sicurezza (resistenza e rigidezza) nei confronti delle azioni verticali.

Gli stati limite, sia di esercizio sia ultimi, sono individuati riferendosi alle prestazioni che l'opera a realizzarsi deve assolvere durante un evento sismico; per la funzione che l'opera deve espletare nella sua vita utile, è significativo calcolare lo Stato Limite di Danno (SLD) per l'esercizio e lo Stato Limite di Salvaguardia della Vita (SLV) per lo stato limite ultimo.

Per la definizione dell'azione sismica, occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato.

La vita nominale (V_N) dell'opera è stata assunta pari a $V_N = 100$ anni.

La classe d'uso assunta è la IV, da cui C_u=2.

Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso vale:

 $V_R = V_N \cdot C_u = 200 \text{ anni}$

Eurolink S.C.p.A. Pagina 45 di 201

RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0

Data 20/06/2011

I valori di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente è:

$$P_{VR}(SLD) = 63\%$$

$$P_{VR}(SLV) = 10\%$$

Il periodo di ritorno dell'azione sismica T_R espresso in anni, vale:

$$T_R(SLD) = \frac{Vr}{\ln(1 - Pvr)} = 201 \text{ anni}$$

$$T_{R}(SLV) = \frac{Vr}{\ln(1 - Pvr)} = 1898 \text{ anni}$$

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di a_a , F_0 , T_c^* .

 $a_g \rightarrow \,\,$ accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;

 $F_0 \rightarrow valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;$

T*_c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

 $S \rightarrow coefficiente$ che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St);

I valori delle caratteristiche sismiche (a_g, F₀, T*_c) per lo Stato Limite di salvaguardia della Vita sono:

Per SLD \rightarrow (a_q=0,171g; F₀=2,358; T*_c=0,337s)

Per SLV \rightarrow (a₀=0,438g; F₀=2,496; T*_c=0,424s)

Il sottosuolo su cui insiste l'opera può essere inserito nella categoria "C".

Il valore del coefficiente di amplificazione stratigrafico risulta:

 $S_S(SLD) = 1.7 - 0.6 \cdot F_0 \cdot a_0/g = 1.458$

 $S_S(SLV) = 1.7 - 0.6 \cdot F_0 \cdot a_g/g = 1.044$

Le caratteristiche della superficie topografica possono essere assunte come categoria T1, adottando di conseguenza un valore di amplificazione topografica $S_T = 1,0$.

L'accelerazione massima è valutata con la relazione:

$$a_{max}(SLD) = S \cdot a_g = Ss \cdot S_T \cdot a_g = 1,458 \cdot 1,0 \cdot 0,171g = 0,249g$$

$$a_{max}(SLV) = S \cdot a_g = Ss \cdot S_T \cdot a_g = 1,044 \cdot 1,0 \cdot 0,438g = 0,457g$$

Per completezza di riportano gli spettri elastici di progetto (in forma tabellare) sia per gli SLD che per gli SLV in direzione orizzontale e verticale:

Eurolink S.C.p.A. Pagina 46 di 201

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLD

Parametri indipendenti

STATO LIMITE	SLD	
a _g	0,171 g	
F _o	2,358	
T _C *	0,337 s	
S _S	1,458	
C_C	1,503	
S _T	1,000	
q	1,000	

Parametri dipendenti

S	1,458
η	1,000
T _B	0,169 s
T _C	0,507 s
T _D	2,285 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{\rm B} = T_{\rm C}/3$$
 (NTC-07 Eq. 3.2.8)

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

Punt	i dello spettr	
	T [s]	Se [g]
	0,000	0,250
T _B ←	0,169	0,589
T _C ◀	0,507	0,589
	0,592	0,505
	0,676	0,441
	0,761	0,392
	0,846	0,353
	0,930	0,321
	1,015	0,294
	1,100	0,271
	1,184	0,252
	1,269	0,235
	1,354	0,220
	1,439	0,207
	1,523	0,196
	1,608	0,186
	1,693	0,176
	1,777	0,168
	1,862	0,160
	1,947	0,153
	2,031	0,147
	2,116	0,141
	2,201	0,136
T _D ◀	2,285	0,131
	2,367	0,122
	2,449	0,114
	2,530	0,107
	2,612	0,100
	2,694	0,094
	2,775	0,089
	2,857	0,084
	2,939	0,079
	3,020	0,075
	3,102	0,071
	3,184	0,067
	3,265	0,064
	3,347	0,061
	3,428	0,058
	3,510	0,055
	3,592	0,053
	3,673	0,051
	3,755	0,048
	3,837	0,046
	3,918	0,044
	4,000	0,043

Eurolink S.C.p.A. Pagina 47 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLD

Parametri indipendenti

STATO LIMITE	SLD
a _{gv}	0,096 g
a _{qv} S _S	1,000
S _T	1,000
q	1,000
T _B	0,050 s
T _C	0,150 s
T_D	1,000 s

Parametri dipendenti

F _v	1,318
S	1,000
η	1,000

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$F_{v} = 1,35 \cdot F_{o} \cdot \left(\frac{a_{g}}{g}\right)^{0,5}$$
 (NTC-08 Eq. 3.2.11)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

Punt	i dello spettr	o di risposta
	T [s]	Se [g]
	0,000	0,096
ГВ ←	0,050	0,226
Гс ←	0,150	0,226
	0,235	0,144
	0,320	0,106
	0,405	0,084
	0,490	0,069
	0,575	0,059
	0,660	0,051
	0,745	0,045
	0,830	0,041
	0,915	0,037
Γ _D ←	1,000	0,034
	1,094	0,028
	1,188	0,024
	1,281	0,021
	1,375	0,018
	1,469	0,016
	1,563	0,014
	1,656	0,012
	1,750	0,011
	1,844	0,010
	1,938	0,009
	2,031	0,008
	2,125	0,008
	2,219	0,007
	2,313	0,006
	2,406	0,006
	2,500	0,005
	2,594	0,005
	2,688	0,005
	2,781	0,004
	2,875	0,004
	2,969	0,004
	3,063	0,004
	3,156 3,250	0,003
	3,344	0,003
	3,438	0,003
	3,531	0,003
	3,625	0,003
	3,719	0,002
	3,813	0,002
	3,906	0,002
	4,000	0,002
	.,500	0,00L

Eurolink S.C.p.A. Pagina 48 di 201

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento

CS0341_F0

Rev F0

Data 20/06/2011

RELAZIONE DI CALCOLO

Parametri e punti dello spettro di risposta orizzontale per lo stato limite:

Parametri indipendenti

STATO LIMITE	SLV
a _g	0,438 g
F _o	2,496
T _C *	0,424 s
S_S	1,045
C _C	1,394
S _T	1,000
q	1,000

Parametri dipendenti

S	1,045
η	1,000
T _B	0,197 s
T _C	0,591 s
T_D	3,350 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$

(NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C / 3$$

(NTC-07 Eq. 3.2.8)

$$\mathbf{T}_{\mathbf{C}} = \mathbf{C}_{\mathbf{C}} \cdot \mathbf{T}_{\mathbf{C}}^*$$

(NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_g / g + 1.6$$

(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \end{split}$$

Lo spettro di progetto S_d(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_{\text{e}}(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

I WIII		o di fisposta
	T [s]	Se [g]
	0,000	0,457
T _B ←	0,197	1,141
T _C ←	0,591	1,141
	0,722	0,933
	0,854	0,790
	0,985	0,684
	1,116	0,604
	1,248	0,540
	1,379	0,489
	1,511	0,446
	1,642	0,410
	1,773	0,380
	1,905	0,354
	2,036	0,331
	2,168	0,311
	2,299	0,293
	2,431	0,277
	2,562	0,263
	2,693	0,250
	2,825	0,239
	2,956	0,228
	3,088	0,218
т .	3,219	0,209
T _D ←	3,350	0,201
	3,381	0,197
	3,412	0,194
	3,443	0,190
	3,474	0,187
	3,505	0,184
	3,536	0,181
	3,567	0,177
	3,598	0,174
	3,629 3,660	0,171 0,169
	3,691	0,166
	3,722	0,163
	3,753	0,160
	3,783	0,160
	3,814	0,155
	3,845	0,153
	3,876	0,150
	3,907	0,148
	3,938	0,146
	3,969	0,143
	4,000	0,141
	1,500	VIITI

Eurolink S.C.p.A. Pagina 49 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
a _{gv}	0,391 g
S _S	1,000
S _T	1,000
q	1,000
T _B	0,050 s
T _C	0,150 s
T_D	1,000 s

Parametri dipendenti

F_{v}	2,229
S	1,000
η	1,000

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$F_{v} = 1,35 \cdot F_{o} \cdot \left(\frac{a_{g}}{g}\right)^{0,5}$$
 (NTC-08 Eq. 3.2.11)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \end{split}$$

Punti dello spettro di risposta

Punt	i dello spettr	
	T [s]	Se [g]
	0,000	0,391
T _B ←	0,050	0,975
T _C ←	0,150	0,975
	0,235	0,623
	0,320	0,457
	0,405	0,361
	0,490	0,299
	0,575	0,254
	0,660	0,222
	0,745	0,196
	0,830	0,176
	0,915	0,160
T _D ←	1,000	0,146
	1,094	0,122
	1,188	0,104
	1,281	0,089
	1,375	0,077
	1,469	0,068
	1,563	0,060
	1,656	0,053
	1,750	0,048
	1,844	0,043
	1,938	0,039
	2,031	0,035
	2,125	0,032
	2,219	0,030
	2,313	0,027
	2,406	0,025
	2,500	0,023
	2,594	0,022
	2,688	0,020
	2,781	0,019
	2,875	0,018
	2,969	0,017
	3,063	0,016
	3,156	0,015
	3,250	0,014
	3,344	0,013
	3,438	0,012
	3,531	0,012
	3,625	0,011
	3,719	0,011
	3,813	0,010
	3,906	0,010
	4,000	0,009

Eurolink S.C.p.A. Pagina 50 di 201

RELAZIONE DI CALCOLO

Codice documento

Rev F0

Data 20/06/2011

L'applicazione delle azioni sismiche alle sottostrutture, in particolar modo alle Spalla, viene affrontato mediante il metodo <u>pseudostatico</u> ([NT_1] § 7.11.6). In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

L'analisi sismica è stata fatta considerando il valore di ancoraggio dello spettro.

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per i coefficienti sismici in precedenza definiti.

Essendo le spalle opere a comportamento deformabile (potendo permettere movimenti relativi di roto-traslazione fra struttura e terreno), l'azione sismica viene valutata in accordo con UNI EN 1998-5:2005 secondo la relazione di Mononobe-Okabe:

$$\beta \leq \phi - \theta \colon \qquad K = \frac{ \operatorname{sen}^2 \left(\psi + \phi - \theta \right) }{ \cos \theta \, \operatorname{sen}^2 \psi \, \operatorname{sen} \left(\psi - \theta - \delta \right) \left[1 + \sqrt{ \frac{\operatorname{sen} \left(\phi + \delta \right) \operatorname{sen} \left(\phi - \beta - \theta \right)}{\operatorname{sen} \left(\psi - \theta - \delta \right) \operatorname{sen} \left(\psi + \beta \right)} \right]^2 }$$

$$\beta > \phi - \theta$$
: $K = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \sin^2\psi \sin(\psi - \theta - \delta)}$

In cui:

 ϕ'_d è il valore di progetto dell'angolo di resistenza a taglio del terreno, cioè: $\phi'_d = \tan^{-1}\left(\frac{\tan \phi'}{\gamma_{\phi'}}\right)$;

 ψ e β sono gli angoli di inclinazione rispetto all'orizzontale, rispettivamente della parete del muro rivolta a monte e della superficie del terrapieno, come mostrato in figura E.1;

 δ_d è il valore di progetto dell'angolo di attrito tra terreno e muro, cioè: $\delta_d = \tan^{-1}\left(\frac{\tan\delta}{\gamma_{e'}}\right)$;

 θ è l'angolo definito sotto nei punti da **E.5** a **E.7**.

Il punto di applicazione della spinta è posto h_{tot}/2, con "h_{tot}" altezza del muro di sostegno.

Nelle verifiche allo Stato Limite Ultimo, i valori dei coefficienti sismici orizzontali k_h e verticale k_v possono essere valutati mediante le espressioni:

$$k_h=\beta_m \cdot \frac{a \max}{g}$$
 $k_v=\pm 0.5^* k_h$

dove

a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità;

 β = parametro riduttivo dell'azione sismica in accordo con il §7.11.6.2.1 di [NT_1] (cautelativamente si assumerà β = 0,35).

Eurolink S.C.p.A. Pagina 51 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

4.4 CRITERI GENERALI DI PROGETTAZIONE

In ottemperanza al D.M. del 14.01.2008 (Norme tecniche per le costruzioni), i calcoli sono condotti con il metodo semiprobabilistico agli stati limite.

4.4.1 Durabilità delle opere

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Al fine di ottenere la prestazione richiesta in funzione delle condizioni ambientali, nonché per la definizione della relativa classe, si fa riferimento alle indicazioni contenute nelle Linee Guida sul calcestruzzo strutturale edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici ovvero alle norme UNI EN 206-1:2006 ed UNI 11104:2004.

Per le opere della presente relazione si adottano le classi di esposizione indicate al §3.1 ricordando che per ciascuna classe di esposizione le condizioni ambientali da considerare sono le seguenti (in accordo con [NT_1]):

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Nella tabella seguente si riportano per completezza anche i limiti di apertura delle fessure in funzione delle condizioni ambientali e della sensibilità delle armature secondo [NT_1]:

0	Condinioni	Complete on to a di	Α	rmatur	а	
Gruppi di esigenze	Condizioni ambientali	Combinazione di azioni	Sensibile		Poco sensi	ibile
esigerize	ambientan	azioni	Stato limite	\mathbf{W}_{d}	Stato limite	$\mathbf{W_d}$
0	Ordinarie	frequente	ap. fessure	$\leq W_2$	ap. fessure	$\leq W_3$
a Ordinarie	quasi permanente	ap. fessure	≤ w ₁	ap. fessure	\leq W ₂	
b	Aggressive	frequente	ap. fessure	≤ w ₁	ap. fessure	\leq W ₂
D	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$
	Molto	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
С	aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$

Per tutte le parti strutturali componenti l'opera in progetto si utilizzano armature poco sensibili.

Eurolink S.C.p.A. Pagina 52 di 201

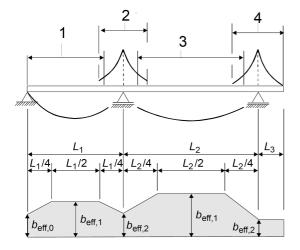
RELAZIONE DI CALCOLO

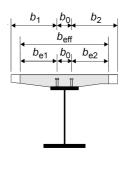
Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

4.4.2 Definizione della larghezza collaborante

La valutazione della larghezza collaborante della soletta sia in fase di modellazione sia in fase di verifica della resistenza è riferita alle indicazioni del § 4.3.2.3 del D.M. 14-01-2008 e § 5.4.1.2 di UNI EN 1994-2:2006.


La larghezza collaborante b_{eff} si ottiene come somma delle due aliquote b_{e1} e b_{e2} ai due lati dell'asse della trave e della larghezza b_0 impegnata direttamente dai connettori:


$$b_{eff} = b_{e1} + b_{e2} + b_0$$

dove b_0 è la distanza tra gli assi dei connettori e le aliquote b_{e1} e b_{e2} (b_{ei} ; i=1,2), che costituiscono il valore della larghezza collaborante da ciascun lato della sezione composta, si assumono pari a:

$$b_{ei} = \min\left[\frac{L_e}{8}; b_i - \frac{b_0}{2}\right]$$

Il valore di L_e nelle travi semplicemente appoggiate coincide con la luce della trave; nelle travi continue L_e è la distanza indicata nella figura sottostante:

Legenda:

1 $L_{\rm e}$ = 0,85 $L_{\rm 1}$ for $b_{\rm eff,1}$

2 $L_e = 0.25(L_1 + L_2)$ for $b_{eff.2}$

3 $L_{\rm e}$ = 0.70 L_2 for $b_{\rm eff.1}$

4 L_e = 2 L_3 for $b_{eff,2}$

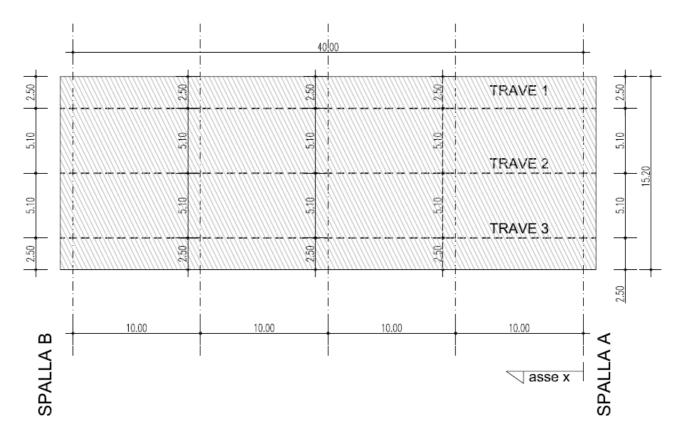
Negli appoggi di estremità la determinazione della larghezza collaborante b_{eff} si ottiene con la formula:

$$b_{eff} = \beta_1 b_{e1} + \beta_2 b_{e2} + b_0$$

dove
$$\beta_i = \left(0.55 + 0.025 \frac{L_e}{b_{ei}}\right)$$
.

I valori numerici della larghezza collaborante, determinati in base ai criteri di cui sopra ed in corrispondenza delle varie ascisse, sono riportate di seguito, per ciascuna trave:

Eurolink S.C.p.A. Pagina 53 di 201



RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0 Data 20/06/2011

	LARGHEZZA COLLABORANTE SECONDO UNI EN 1994-2 [DIMENSIONE IN m]						
N°TRAVE	TRAVE 1	TRAVE 2	TRAVE 3				
ASCISSA							
x = 0 m	4,78 m	4,81 m	4,78 m				
x = 10 m	5,05 m	5,10 m	5,05 m				
x = 20 m	5,05 m	5,10 m	5,05 m				
x = 30 m	5,05 m	5,10 m	5,05 m				
x = 40 m	4,78 m	4,81 m	4,78 m				

F2. Schematico disposizione travi longitudinali e loro interasse

A favore di sicurezza si adotterà nella modellazione e nell'analisi un larghezza collaborante per ciascuna trave pari a **4,50 m** per le sezioni di estremità e **5,00 m** per le sezioni comprese tra 10 m \leq x \leq 30 m. Nelle zone terminali di lunghezza 10 m, la larghezza collaborante aumenta linearmente dal valore 4,50 m al valore 5,00 m.

Eurolink S.C.p.A. Pagina 54 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

4.4.3 Definizione del coefficiente di omogeneizzazione acciaio-cls

Per tenere mettere in conto le effettive caratteristiche geometrico\inerziali dell'implacato, si considera un coefficiente di omogeneizzazione tra le strutture metalliche resistenti (travi longitudinali) e la soletta in calcestruzzo armato, modellando il comportamento del calcestruzzo per azioni di breve e lunga durata.

Nell'analisi strutturale si tiene quindi conto delle fasi transitorie e di esercizio e si opera considerano 3 modelli di calcolo:

- *Modello* 1: ottenuto considerando le proprietà inerziali delle sole travi metalliche ed utilizzato per la valutazione degli effetti indotti dal peso proprio dell'acciaio e della soletta.
- Modello 2: ottenuto considerando le proprietà inerziali ideali della sezione composta con soletta collaborante omogeneizzata all'acciaio mediante coefficiente n = 6,30. Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di breve durata.
- *Modello* 3: ottenuto considerando le proprietà inerziali ideali della sezione mista con soletta collaborante omogeneizzata all'acciaio mediante coefficiente n = 17,58. Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di lunga durata.

I coefficienti di omogeneizzazioni sono stati determinati in accordo con § 5.4.2.2 UNI EN 1994-2:2006, come evidenziato nel seguito.

• <u>Per azioni di breve durata</u>, la soletta, realizzata in conglomerato cementizio di resistenza caratteristica f_{cm}=40 N/mm², ha modulo elastico istantaneo pari a:

$$E_{cm} = 22000 \cdot (f_{cm}/10)^{0,3} = 33346 \text{ N/mm}^2$$

Il coefficiente di omogeneizzazione risulta pertanto:

$$n_0 = E_s / E_{cm} = 210000 / 33346 = 6,30$$

 Per azioni di lunga durata, adottando un coefficiente di viscosità per il conglomerato della soletta (vedi §7.1.4) pari a φ (t∞, t₀) = 2,239 da cui:

$$E_{cls}$$
, $\infty = 10296 \text{ N/mm}^2$

Il coefficiente di omogeneizzazione a tempo infinito risulta:

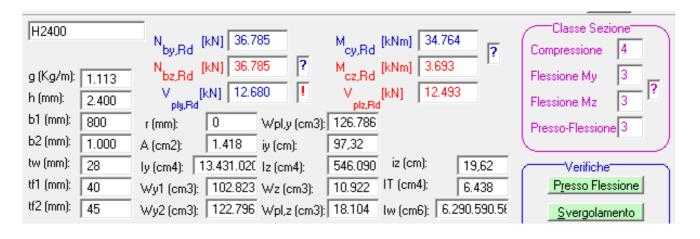
$$n_L = n_0 \cdot (1 + \psi_L \cdot \varphi) = 17,58$$

con
$$\psi_L = 0.8$$

Eurolink S.C.p.A. Pagina 55 di 201

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data


 CS0341_F0
 F0
 20/06/2011

4.4.4 Classificazione delle sezioni in acciaio

Con riferimento alle norme vigenti (vedi § 4.2.3.1 del D.M. 14-01-2008 e § 5.5 di EN 1993-1-1:2005) la sezione delle travi d'impalcato viene classificata come di **classe 3**:

$$\frac{c}{t} = \frac{2315}{28} = 82,67 \le 124 \cdot \sqrt{\frac{235}{f_{yk}}} = 100$$

Si riporta nel seguito le caratteristiche geometrico inerziali della sezione:

Eurolink S.C.p.A. Pagina 56 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

5 FASI COSTRUTTIVE

La realizzazione dell'opera prevede le seguenti fasi principali di costruzione:

ESECUZIONI DI PRIMA FASE:

- getto del cls magro e realizzazione della soletta di fondazione successivamente al disarmo dei casseri;
- eseguire il riempimento dello scavo fino alla quota di estradosso della fondazione in c.a.

ESECUZIONI DI SECONDA FASE

- casseratura delle elevazioni e getto delle parti in c.a. della spalla successivamente al disarmo dei casseri;
- eseguire il riempimento dello scavo fino alla quota di +50cm dall'estradosso della fondazione in c.a.;
- installazione degli apparecchi di appoggio;
- rimodellazione del terreno antistante la spalla allo scopo di ottenere un piano di lavoro a quota costante per lo stoccaggio delle travi

Eurolink S.C.p.A. Pagina 57 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

ESECUZIONI DI TERZA FASE

- assemblaggio degli elementi metallici costituenti l'impalcato;
- posizionamento della gru
- varo dell'impalcato
- sistemazione dei rilevati come da elaborato CG0700PPZDCSC00VIC3000001A

6 ELABORATI DI RIFERIMENTO

Gli elaborati di riferimento per l'opera in esame sono i seguenti:

Relazione tecnico descrittiva dell'opera	CG0700	Р	RG	D	С	SC	00	VI	C3	00	00	01	Α
Scheda riassuntiva di rintracciabilità dell'opera	CG0700	Р	SH	D	С	SC	00	VI	C3	00	00	01	Α
Relazione di calcolo	CG0700	Р	CL	D	С	SC	00	VI	C3	00	00	01	Α
relazione geotecnica	CG0700	Р	RB	D	С	SC	00	VI	C3	00	00	01	Α
Planimetria di progetto	CG0700	Р	P8	D	С	SC	00	VI	C3	00	00	01	Α
Profilo longitudinale di progetto	CG0700	Р	FZ	D	С	SC	00	VI	C3	00	00	01	Α
Planimetria di tracciamento	CG0700	Р	P8	D	С	SC	00	VI	C3	00	00	02	Α
Sezione longitudinale e pianta fondazioni	CG0700	Р	Z 9	D	С	SC	00	VI	C3	00	00	01	Α
Pianta dell'opera, prospetti e sezioni trasversali	CG0700	Р	PΖ	D	С	SC	00	VI	C3	00	00	01	Α
Carpenteria spalla A	CG0700	Р	ВА	D	С	SC	00	VI	СЗ	00	00	01	Α
Carpenteria spalla B	CG0700	Р	ВА	D	С	SC	00	VI	C3	00	00	02	Α
Carpenteria impalcati	CG0700	Р	ВА	D	С	SC	00	VI	C3	00	00	03	Α
Particolari costruttivi impalcati	CG0700	Р	SZ	D	С	SC	00	VI	СЗ	00	00	01	Α
Fasi costruttive dell'opera d'arte	CG0700	Р	SA	D	С	SC	00	VI	СЗ	00	00	01	Α

Eurolink S.C.p.A. Pagina 58 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

7 ANALISI LONGITUDINALE D'IMPALCATO

7.1 ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche dagli SLS, SLU ed in presenza dell'evento sismico.

Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato: 25 kN/m³
 acciaio: 78,5 kN/m³

7.1.1 Carichi permanenti strutturali (g₁)

Carpenteria metallica = $78,50 \times (0,15 \times 3) \times 1,25 = 44,15 \text{ kN/m}$ Soletta in c.a. = $25,00 \times (15,20 \times 0,30) = 114,00 \text{ kN/m}$

Totale carichi permanenti strutturali ≈ 160 kN/m.

7.1.2 Carichi permanenti portati (g₃)

Pavimentazione $3,00 \times 11,20 =$ 33,60 kN/m Cordoli $25,00 \times (2,0+2,0) \times 0,18 =$ 18,00 kN/m Barriere di sicurezza $2 \times 2,00 =$ 4,00 kN/m = Barriere laterali $2 \times 4,00 =$ 8,00 kN/m = Elementi di bordo $2 \times 2,00 =$ 4,00 kN/m = **Impianti** $2 \times 1,00 =$ 2,00 kN/m =

Totale carichi permanenti portati ≈ 70,00 kN/m.

7.1.3 Distorsioni e\o presollecitazioni (ϵ_1)

Essendo la struttura in semplice appoggio e priva di ogni tipo di presollecitazione, tale contributo non è presente su tale opera.

Eurolink S.C.p.A. Pagina 59 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

7.1.4 Ritiro differenziale del calcestruzzo (ε_2)

Secondo le indicazioni di UNI EN 1992-1-1:2005 (vedi § 3.1.4, 7.4.3 e APPENDICE B) i valori del ritiro da considerare per struttura in esame sono i seguenti:

Ac =	4560000	mm^2	area sole	etta					
Ac/u =	300	mm	Rapporto	tra area sog	getta a ritiro e	e perimetro es	sposto		
h ₀ =	600	mm	dimensio	ne convenzio	onale 2*Ac/u				
RH =	65%								
$t_0 =$	8	gg	tempo al	l'applicazione	del carico				
t =	73000	gg	tempo al	momento co	nsiderato				
$f_{ck} =$	32	N/mm ²	resistenz	a cilindrica cl	s				
$f_{cm} =$	40	N/mm ²							
$\alpha_1 =$	0,911			α_{ds1} =	4	classe N	s =	0,25	classe N
$\alpha_2 =$	0,974			α_{ds2} =	0,12	classe N	β_{cc} (t)=	1,278	
$\alpha_3 =$	0,935			$k_h =$	0,700		$f_{cm}(t) =$	51,110	N/mm ²
φ_{RH} =	1,368			β RH =	1,124		E _{cm} =	33,346	GPa
$\beta_{\text{(fcm)}} =$	2,656			$\beta_{ds}(t,t_0) =$	0,992		E _c =	35,013	GPa
$\beta_{\text{(t0)}} =$	0,619			$\varepsilon_{\rm cd,0}$ =	0,000390				
φ_0 =	2,249			$\varepsilon_{cd} =$	0,000271				
$\beta_{H} =$	1144,132	≤	1403,122	$\beta_{as}(t) =$	1				
$\beta_{c}(t,t_{0}) =$	0,995			$\varepsilon_{ca}(\infty) =$	0,000055				
φ (t,t ₀) =	2,239			ε_{cs} =	0,00032603		$E_{cm}(t) =$	35,890	GPa
							E _{c,} ∞ =	10,296	GPa

Dai dati riportati si evince che la dilatazione lineare specifica finale da ritiro per il conglomerato della soletta, sottoposto a maturazione in ambiente con umidità relativa di 65% e avente dimensione fittizia $h_0=2A_0/u \cong 600$ (rapporto tra l'area della sezione della soletta e il perimetro della stessa a contatto con l'atmosfera), risulta:

$$\epsilon_{cs}$$
 (t ∞ , $t_0) =$ 0,326 \cdot 10 $^{\text{-}3}$

Ricordando che il modulo elastico del conglomerato di resistenza caratteristica f_{ck} =32 N/mm² per fenomeni di lunga durata vale:

Eurolink S.C.p.A. Pagina 60 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

$$\mathsf{E}_{\rm cls,} \propto = \frac{E_{cm}}{1 + \varphi(t, t_0)} = 10296 \; \mathrm{N/mm^2}$$

L'effetto del ritiro sulla trave composta è analizzato con un metodo che ricalca quello dei vincoli ausiliari, secondo due fasi distinte:

Fase 1) Stato di sollecitazione in soletta in presenza di vincoli perfetti

La soletta di calcestruzzo, se fosse libera rispetto alla trave di acciaio, subirebbe per effetto del ritiro un accorciamento pari a ϵ_{cs} .

Tale deformazione non rispetterebbe però la congruenza per ripristinare la quale si può ipotizzare l'applicazione di uno sforzo normale di trazione N_R , alla sola soletta, che induce sulla stessa una trazione uniforme pari a:

$$\sigma_{\rm ct} = \varepsilon_{\rm cs} \cdot \mathsf{E}_{\rm cls.} \infty = 3{,}357 \, \mathsf{N/mm}^2$$

Si avrebbe tale stato di tensione in soletta se la trave fosse perfettamente incastrata alle estremità: gli incastri fornirebbero lo sforzo di trazione e la trave non manifesterebbe alcuna deformazione.

Fase 2) Stato di sollecitazione nella trave composta consequente alla rimozione dei vincoli

In realtà i vincoli d'incastro non esistono e si deve quindi applicare sul complesso "trave – soletta", nel baricentro della soletta stessa, lo sforzo N_R cambiato di segno ad entrambi gli estremi.

Pertanto in quest'ultima fase del calcolo l'intera sezione della trave composta è soggetta allo sforzo assiale di compressione:

$$N_R = -(3,357 \cdot 6000 \cdot 240) \cong -4834 \text{ kN}$$

dove si è assunta una larghezza di soletta significativa per il ritiro $b_R = 6000$ mm e uno spessore di soletta pari allo spessore totale a cui si è detratta la presenza delle coppelle (spessore 6 cm), e al momento flettente di trasporto:

$$M_R = N_R \cdot (z_{G,sol} - z_G) = -4834 \cdot (2,580 - 1,641) \cong -4539 \text{ kNm}$$

dove $z_{G,sol}$ e z_G sono le quote (sezione di spalla), misurate dall'intradosso della trave, rispettivamente del baricentro della soletta e del baricentro della sezione completa in acciaio calcestruzzo con coefficiente di omogeneizzazione n_L (fenomeni lenti).

La variabilità del baricentro della trave fa sì che spostandosi lungo l'asse dell'opera si ha un

Eurolink S.C.p.A. Pagina 61 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

progressivo aumento dell'eccentricità dello sforzo assiale dovuto al ritiro dunque, per tener conto di questo, si è creato un modello piano che metta in gioco le opportune caratteristiche geometriche e inerziali.

Inserendo N_R e M_R , precedentemente calcolati, sui nodi di spalla del modello e tenendo conto della variazione d'eccentricità (come spiegato), si sono globalmente studiati gli effetti del ritiro sulla struttura.

Le condizioni ai limiti imposte dal vincolo di appoggio previsto alle estremità della trave impongono tensioni nulle, per effetto del ritiro, in ogni punto delle sezioni di estremità. Pertanto si deve applicare alle sezioni estreme un sistema di tensioni, a risultante e momento risultante nullo, uguale e contrario a quello prodotto dal ritiro. L'effetto di questo sistema di tensioni, è apprezzabile solo nei tratti terminali lunghi quanto la maggior dimensione della sezione della trave.

Al diagramma delle tensioni risultante dalla sovrapposizione delle due fasi non corrisponde alcuna caratteristica di sollecitazione in quanto i due sforzi che si applicano nelle due fasi sono uguali e contrari (il ritiro differenziale non comporta sollecitazioni esterne). Per le condizioni ai limiti imposte dai vincoli di appoggio, il suddetto diagramma risultante di tensioni può essere presente in ogni sezione della trave tranne quelle di estremità sugli appoggi, dove le tensioni sono obbligatoriamente nulle. In tali sezioni va allora applicato il diagramma di tensioni uguali e contrarie. Poiché a tale diagramma di tensioni corrispondono caratteristiche di sollecitazione nulle, l'effetto di tale applicazione non si fa sentire oltre i tratti terminali lunghi quanto la maggior dimensione della sezione della trave.

Nei suddetti tratti ha particolare importanza lo sforzo longitudinale di scorrimento tra calcestruzzo e acciaio che, per l'equilibrio alla traslazione di ciascun tronco terminale di soletta o di nervatura, deve eguagliare il complessivo sforzo normale applicato all'una o all'altra. Tale sforzo si suppone distribuito con legge triangolare avente ordinata massima in corrispondenza dell'estremità della trave come ulteriormente specificato nel paragrafo riguardante la valutazione degli effetti prodotti sulla piolatura dal ritiro e dalla variazione termica differenziale.

7.1.5 Variazione termica uniforme (ε_3)

Nelle strutture miste è di uso comune, vista la differente inerzia termica dei materiali costituenti la sezione, considerare una variazione uniforme sulla soletta 10°C (vedi § 6.1.3 UNI EN 1991-1-5:2004) e di trattare la variazione termica in termini analoghi al ritiro. In tal modo si tiene conto anche di un'azione assiale applicata, i cui effetti, in termini di verifiche delle sezioni, possono non essere trascurabili.

Eurolink S.C.p.A. Pagina 62 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

$$\varepsilon_{\Delta T} = \alpha \cdot \Delta T = 1,2 \cdot 10^{-5} \cdot 10 = 1,2 \cdot 10^{-4}$$

 $\sigma_{\Delta T} = \varepsilon_{\Delta T} \cdot E_c = 1,2 \cdot 10^{-4} \cdot 35013 = 4,202 \text{ MPa}$

Pertanto l'intera sezione della trave composta è soggetta allo sforzo assiale (trazione o compressione):

$$N_{\Delta T} = (4,202 \cdot 6000 \cdot 300) \cong 7563 \text{ kN}$$

dove si è assunta una larghezza di soletta significativa per la variazione termica $b_R = 6000$ mm, e al momento flettente di trasporto:

$$M_{\Delta T} = N_{\Delta T} \cdot (z_{G,sol} - z_{G}) = 7563 \cdot (2,55 - 2,006) \cong 4100 \text{ kNm}$$

dove $z_{G,sol}$ e z_G sono le quote (sezione di spalla), misurate dall'intradosso della trave, rispettivamente del baricentro della soletta e del baricentro della sezione completa in acciaio calcestruzzo con coefficiente di omogeneizzazione n_0 (fenomeni veloci).

La variabilità della geometria della trave fa sì che spostandosi longitudinalmente si ha una variazione dell'eccentricità dello sforzo assiale dovuto al ritiro dunque, per tener conto di questo, si è creato un modello piano che tenga conto della differenza tra l'eccentricità sulla spalla e quella che si ha nelle varie sezioni del modello.

Inserendo $N_{\Delta T}$ e $M_{\Delta T}$, precedentemente calcolati, sui nodi di spalla del modello e tenendo conto della variazione d'eccentricità (come spiegato), si sono globalmente studiati gli effetti della variazione di temperatura sulla struttura.

Anche per la variazione termica in soletta vale quanto detto per il ritiro relativamente ai tratti terminali di trave.

7.1.6 Carichi mobili (q_1)

La disposizione del carico da traffico è svolta in accordo con la normativa vigente (vedi § 5.1.3.3 D.M. 14 -01-2208 e § 4.3 UNI EN 1991-2:2005).

La definizione delle corsie convenzionale secondo il D.M. 14 gennaio 2008 è stabilita in base al prospetto seguente:

Parte rimanente

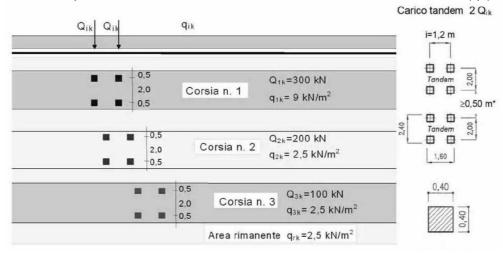
Corsia convenzionale numero 1

Parte rimanente

Corsia convenzionale numero 2

Parte rimanente

Eurolink S.C.p.A. Pagina 63 di 201


RELAZIONE DI CALCOLO

Codice documento	Rev	Data
CS0341_F0	F0	20/06/2011

Larghezza di carreggiata	Numero di corsie convenzionali	Larghezza di una corsia convenzionale [m]	Larghezza della zona rimanente [m]	
w < 5,40 m	w convenzionar		(w-3,00)	
$5.4 \le w < 6.0 \text{ m}$ $n_l = 2$		w/2	0	
6,0 m ≤ w	$n_l = Int(w/3)$	3,00	w - (3,00 X n _l)	

La disposizione e la numerazione delle corsie è in modo da indurre le più sfavorevoli condizioni di progetto. La corsia che produce l'effetto più sfavorevole è numerata come corsia numero 1; la corsia che dà il successivo effetto più sfavorevole è numerata come corsia numero 2, ecc.

Per ciascuna singola verifica e per ciascuna corsia convenzionale, si applica lo schema di carico 1 (LM1), costituito da carichi concentrati su due assi in tandem (Q_{ik}) , applicati su impronte di pneumatico di forma quadrata e lato 0,40 m, e da carichi uniformemente distribuiti (q_{ik}) :

Tale schema è da assumere a riferimento sia per le verifiche globali sia per le verifiche locali, considerando un solo carico tandem per corsia disposto in asse alla corsia stessa. Il carico tandem, se presente, va considerato per intero.

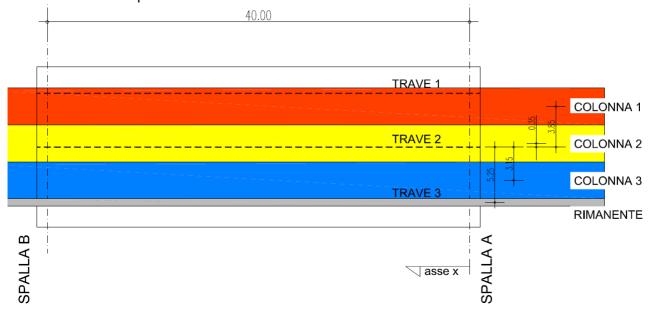
Il numero delle colonne di carichi mobili da considerare nel calcolo dei ponti di 1^a Categoria è quello massimo compatibile con la larghezza della carreggiata, comprese le eventuali banchine di rispetto e per sosta di emergenza, tenuto conto che la larghezza di ingombro convenzionale è stabilita per ciascuna colonna in 3,00 m.

Il numero di colonne di carico e la distribuzione trasversale e longitudinale sono svolti in accordo con § 5.1.3.3 D.M. 14 -01-2208 e § 4.2 UNI EN 1991-2:2005, valutando di volta in volta la condizione più gravosa per la verifica e la sezione in esame.

La disposizione dei carichi ed il numero delle colonne sulla carreggiata sono tali da determinare le

Eurolink S.C.p.A. Pagina 64 di 201

RELAZIONE DI CALCOLO


Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

condizioni più sfavorevoli di sollecitazione per la struttura, membratura o sezione considerata. Per i ponti di 1^a categoria si considerano, compatibilmente con le larghezze di carreggiata definite, le seguenti intensità dei carichi:

Posizione	Carico asse Qik [kN]	$q_{ik}[kN/m^2]$
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Sulla sezione dell'impalcato in oggetto (larghezza complessiva 15,20 m nel punto più largo – carreggiata larga 11,20 m) devono essere considerate 3 colonne di carico di larghezza 3,00 m sulla carreggiata autostradale; la parte rimanente ($q_{Rk} = 2,5 \text{ kN/m}^2$) misura nel punto di larghezza massima 2,20 m. Per un maggior dettaglio si riporta nella figura sottostante la disposizione delle colonne di carico in pianta.

F3. Disposizione delle colonne di carico – vista planimetrica

La ripartizione trasversale dei carichi eccentrici sulle varie travi, e di conseguenza il valore del coefficiente di ripartizione per ogni trave $\rho_{i,j}$ (con "i" indice progressivo della trave e "j" indice progressivo della colonna di carico), viene definita mediante il metodo di Courbon-Albenga. Tale metodologia di ripartizione è applicabile nel caso infiniti traversi rigidi; tale supposizione trova

Eurolink S.C.p.A. Pagina 65 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

giustificazione dai dati sperimentali disponibili in letteratura (per maggior dettaglio si rimanda al riferimento in letteratura [B9]) e può essere spiegata per la presenza della soletta trasversale che agisce come una serie di traversi accostati più la presenza di traversi metallici irrigidenti ad interasse massimo di 5 m.

Le colonne di carico hanno la seguente eccentricità trasversale rispetto al baricentro del gruppo di travi nel punto più sfavorevole:

$$e_1 = 4,100 \text{ m}$$

$$e_{III} = -1,900 \text{ m}$$

$$e_R = -4,500 \text{ m}$$

$$e_{II} = 1,100 \text{ m}$$

Dai dati riportati, i coefficienti di Courbon-Albenga relativi alle travi, riferiti alle suddette colonne di carico sono i seguenti:

TRAVE 1 (TRAVE DI BORDO)	TRAVE 2	TRAVE 3
$\rho_{1,i} = 0,735$	$\rho_{2,1} = 0,333$	ρ _{3,1} = -0,069
ρ _{1,II} = 0,441	$\rho_{2,II} = 0,333$	ρ _{3,II} = 0,225
ρ _{1,III} = 0,147	ρ _{2,III} = 0,333	ρ _{3,III} = 0,520
ρ _{1,r} = -0,108	$\rho_{2,r} = 0.333$	ρ _{3,r} = 0,775

I coefficienti moltiplicativi per il carico accidentale dovuto al traffico sulla trave più caricata (trave di bordo), tenuto conto dei coefficienti di ripartizione e dei pesi di ogni singola colonna di carico rispetto alla colonna 1, risultano essere:

$$\alpha_{\text{(Qik)}} = \left(0.735 \cdot 1 + 0.441 \cdot \frac{2}{3} + 0.147 \cdot \frac{1}{3}\right) = 1.078$$

$$\alpha_{\text{(qik)}} = \left(0.735 \cdot 1 + 0.441 \cdot \frac{2.5}{9} + 0.147 \cdot \frac{2.5}{9}\right) = 1.103$$

Poichè la parte rimanente, per come sono posizionate, scarica la trave di bordo ($\rho_{1,r} < 0$), si considera non agente.

7.1.7 Incremento dinamico (q₂)

I carichi mobili definiti nel D.M. 14 gennaio 2008 includono gli effetti dinamici.

Eurolink S.C.p.A. Pagina 66 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

7.1.8 Azione di frenamento (q₃)

L'azione non è dimensionante per la verifica dell'impalcato.

7.1.9 Azione centrifuga (q₄)

In accordo con la normativa vigente (vedi § 5.1.3.6 D.M. 14 -01-2008), nei ponti con asse curvo di raggio R (in metri) l'azione centrifuga corrispondente ad ogni colonna di carico si valuta convenzionalmente come indicato nella tabella sottostante, essendo $Q_V = \Sigma_i \ 2\cdot Qik$ il carico totale dovuto agli assi tandem dello schema di carico 1 agenti sul ponte. Il carico concentrato q_4 , applicato a livello della pavimentazione, agisce in direzione normale all'asse del ponte.

Raggio di curvatura [m]	Q ₄ [kN]
R < 200	$0.2 \cdot Q_v$
200 ≤R ≤ 1500	$40 \cdot Q_v / R$
1500 ≤R	0

Per l'opera oggetto di studio, il raggio di curvatura è pari a $R = \infty$, da cui si ottiene $q_4=0$ kN. Tale azione si applica come carico uniformemente distribuito sulla lunghezza dell'opera.

7.1.10 Azione del vento (q_5)

L'azione del vento è stata assimilata ad un carico orizzontale statico, diretto ortogonalmente all'asse del ponte. Tale azione è stata considerata agente sulla proiezione nel piano verticale delle superfici direttamente investite. La superficie dei carichi transitanti sul ponte esposte al vento si assimila ad una parete rettangolare continua dell'altezza di 3,5 m a partire dal piano stradale. Nel caso in esame, le azioni dovute al vento dei casi di impalcato scarico e carico coincidono dato

che è presente al margine dell'impalcato è presente una barriera antirumore dell'altezza di 3,5 m. In accordo con la normativa vigente (vedi § 3.3 D.M. 14-01-2008 e § 8 UNI EN 1991-1-4:2005) l'azione del vento sull'impalcato si valuta tramite l'espressione:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d$$

dove:

q_b è la prezzione cinetica di riferimento

c_e è il coefficiente di esposizione

c_p è il coefficiente di forma

c_d è il coefficiente dinamico

Considerando che l'opera sia collocata in una zona 4 (Calabria) di Classe di rugosità D e data

Eurolink S.C.p.A. Pagina 67 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

l'ubicazione geografica, si deve fare riferimento alla categoria di esposizione del sito I, da cui:

$$k_r = 0.17$$

$$z_0 = 0.01 \text{ m}$$

$$z_{min} = 2,00 \text{ m}$$

Il valore di riferimento v_b della velocità del vento si assume pari a:

$$v_b = v_{b,0} = 28 \text{ m/s}$$
 $(a_s \le a_0)$

dove:

$$v_{b,0} = 28 \text{ m/s}$$

$$a_0 = 500 \text{ m}$$

$$k_a = 0.020 \text{ s}^{-1}$$

$$a_s = 65 \text{ m}$$

L'azione da vento viene calcolata facendo riferimento ad un tempo di ritorno pari a T_R = 200 anni, si riporta il conseguente valore della velocità di riferimento:

$$v_b = \alpha_R \cdot v_b = 0.75 \sqrt{1 - 0.2 \cdot \ln \left[-\ln \left(1 - \frac{1}{T_R} \right) \right]} \cdot 28,00 = 30,12 \text{ m/s}$$

Da cui la pressione cinetica di riferimento vale:

$$q_b = 1 / 2 \cdot \rho \cdot v_b^2 = 0.5 \cdot 1.25 \cdot 30.12^2 = 567.0 \text{ N/mq} = 0.567 \text{ kN/mq}$$

Considerando inoltre:

$$c_{\rm p} = 1.40$$

$$c_d = 1,00$$

$$c_e(z) = k_r^2 \cdot c_t(z) \cdot \ln\left(\frac{z}{z_0}\right) \cdot \left[7 + c_t \cdot \ln\left(\frac{z}{z_0}\right)\right] = 3,207$$
 per z=20 m

Si ottiene la pressione del vento pari a:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d = 0.567 \cdot 3.207 \cdot 1.4 \cdot 1 = 2.545 \text{ kN/mq}$$

Da cui si ottiene l'azione del vento come carico distribuito per unità di lunghezza applicato al baricentro della superficie verticale esposta al vento:

Altezza dell'impalcato

$$H_{imp} = 2,40 + 0,30 + 0,18 = 2,88 \text{ m}$$

Altezza totale della superficie esposta campata

$$H_{tot} = 2.88 + 3.50 = 6.38 \text{ m}$$

Azione del vento campata tipica

$$F_{w.x} = 6.38 \cdot 2.545 = 16.24 \text{ kN/m}$$

Sull'impalcato, oltre al carico trasversale uniformemente distribuito, viene associata anche una

Eurolink S.C.p.A. Pagina 68 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

coppia che tende a torcere l'impalcato nel suo complesso. Tale momento torcente viene applicato mediante carichi verticali uniformemente distribuiti, uno per ogni trave, equivalente al momento di trasporto della risultante della azione del vento sull'impalcato fino alla quota che rappresenta l'asse della trave mista acciaio-calcestruzzo. Il momento che ne consegue risulta:

$$m_v = F_{w,x} * (H_{tot}/2 - z_G) = 16,24 * (6,38/2 - 2,038) = 18,70 \text{ kNm/m}.$$

dove:

z_G è la quota del baricentro della sezione completa in acciaio calcestruzzo con coefficiente di omogeneizzazione per fenomeni veloci, misurate dall'intradosso della trave.

I valori dei carichi distribuiti da applicare alle singole travi si ricava considerando l'impalcato, in senso trasversale, come una trave di profondità unitaria, vincolata su 3 appoggi elastici aventi rigidezza alla traslazione verticale approssimativamente costante, pari al valore. Le reazioni che nascono in corrispondenza di ogni singolo appoggio coincide con i carichi distribuiti che si stanno ricercando e sono ricavabili attraverso la relazione:

$$S_i = \frac{k_i \cdot x_i \cdot m_v}{k_i \cdot \sum_j x_j^2} \cong \frac{x_i \cdot m_v}{\sum_j x_j^2}$$

dove:

k_i = rigidezza del singolo appoggio elastico

x_i = eccentricità del singolo appoggio elastico

Viene valutato il carico distribuito da applicare alla trave, considerando le diverse configurazioni resistenti. I valori risultano:

$$q_{v,1} = \frac{5,10 \cdot 18,70}{2 \cdot 5,10^2} = 1,83 \text{ kN/m}$$
 (valore ottenuto in corrispondenza della Spalla A)

$$q_{v,2} = \frac{5,10 \cdot 18,70}{2 \cdot 5,10^2} = 1,83 \text{ kN/m}$$
 (valore ottenuto in corrispondenza della Spalla B)

A favore di sicurezza si considera un carico uniformemente distribuito pari a 1,85 kN/m applicato sull'intera trave.

7.1.11 Azione sismica (q_6)

L'azione non è dimensionante per la verifica dell'impalcato.

Eurolink S.C.p.A. Pagina 69 di 201

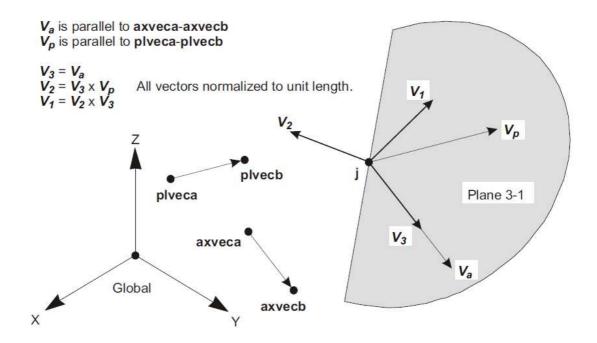
RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

7.2 MODELLO DI CALCOLO

7.2.1 PROGRAMMA DI CALCOLO UTILIZZATO


Il calcolo agli elementi finiti del modello è stato effettuato utilizzando il codice SAP 2000 (versione 14.2.2) prodotto dalla "CSI Computer and Structures Inc." – Berkeley (CA) - USA.

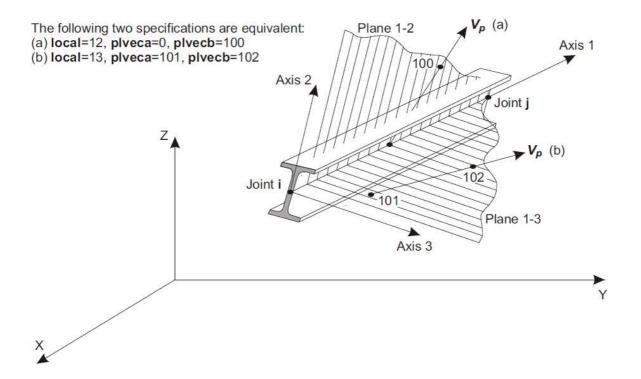
Il programma è un solutore agli E.F. (Elementi Finiti) capace di modellare strutture di forma qualunque, comunque caricate e vincolate, nell'ambito del comportamento lineare e non.

Sono disponibili i seguenti tipi di oggetto elencati in ordine di dimensione geometrica:

• "Point:

- comune oggetti: sono automaticamente creati in angoli o estremità di tutti gli altri tipi di oggetti, e possono essere aggiunti in modo esplicito
- o collegamento a terra: sono utilizzate per modellare il comportamento di un sostegno speciale ad esempio isolatori, smorzatori, gap, molle multi-lineari
- o il sistema di riferimento per determinare l'orientamento di un elemento punto è:

Eurolink S.C.p.A. Pagina 70 di 201


RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

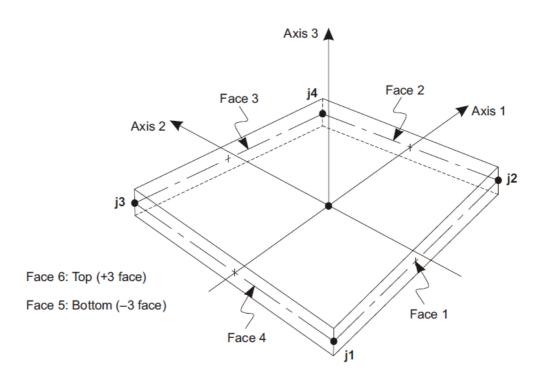
Rev F0 **Data** 20/06/2011

• "Line":

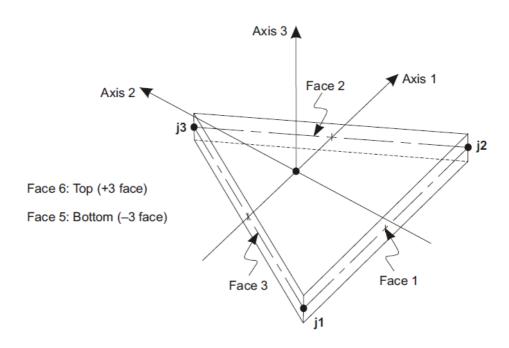
- o frame/cable/tendon: sono utilizzate per modellare le travi, colonne, braces, trusses, cavi e tiranti
- collegamento tra oggetti: sono utilizzate per modellare il comportamento di un membro speciali ad esempio isolatori, smorzatori, gap, molle multi-lineari. A differenza degli oggetti o frame/cable/tendon, questi oggettipossono avere lunghezza zero.
- o il sistema di riferimento per determinare l'orientamento di un elemento linea è:

• "Area": vengono utilizzate per modellare le pareti, pavimenti e altri membri dotati di spessore, nonché solidi bidimensionale solids (plane stress, plane strain, and axisymmetric solids). Il sistema di riferimento per determinare l'orientamento di un elemento area è:

Eurolink S.C.p.A. Pagina 71 di 201


Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO


Codice documento CS0341_F0

Rev Data F0

20/06/2011

Four-node Quadrilateral Shell Element

Three-node Triangular Shell Element

Eurolink S.C.p.A. Pagina 72 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

• "Solid": sono utilizzate per la modellazione tridimensionale solida

Il programma SAP2000 permette di svolgere analisi atte a definire la risposta in conseguenza dell'applicazione di carichi mobili, analisi del dominio di frequenza (sia steady-state che powerspectral-density), del dominio del tempo e analisi di instabilità.

Mediante il programma si possono implementare nel modello di calcolo elementi a comportamento particolare quali:

- non linear link element (gaps, hooks, isolators, dampers, and multi-linear plasticity)
- a multi-linear plastic hinge
- catenary cable element
- nonlinear shell element

Il programma SAP2000 permette inoltre di condurre analisi tipo non lineare statica, analisi tipo pushover e analisi non lineari tipo time-history mediante l'utilizzo di analisi modale o integrazione diretta. software contempla la presenza di elementi bidimensionali (piani - shell) in grado di rappresentare sia il comportamento di lastra (effetti flessionali) quanto quello di membrana (sforzi di compressione e trazione), ed elementi tipo trave (beam).

7.2.2 DESCRZIONE DEL MODELLO DI CALCOLO

Lo schema statico adottato è quello di un graticcio di travi a singola campata ad asse rettilineo con luce di calcolo pari a 40 m. Longitudinalmente sono disposte 3 travi metalliche a doppio "T" a sezione constante, a interasse costante pari a 6,14 m; trasversalmente sono disposti dei traversi metallici reticolari a interasse di 5,00 m atti a irrigidire torsionalmente l'impalcato e ad agevolare la ripartizione dei carichi trasversali sulle singolo travi metalliche.

L'analisi strutturale è condotta su una singola trave, sottoposta al peso proprio, ai sovraccarichi permanenti e all'aliquota dei carichi mobili che discende dalla ripartizione trasversale dei carichi.

Nel modello di carico la collaborazione della soletta è valutata secondo quanto già dettagliatamente descritto al § 4.4.

Il calcolo delle sollecitazioni è stato effettuato con riferimento alla trave maggiormente sollecitata soggetta ai carichi individuati al paragrafo 7.1, su un modello agli elementi finiti di tipo "beam" ottenuto discretizzando la struttura in conci di caratteristiche geometriche ed inerziali costanti. Le analisi, di tipo elastico lineare, sono eseguite per le fasi costruttive (montaggio della carpenteria metallica e getto della soletta) e per le situazioni di esercizio della struttura (a breve termine e a lungo termine).

Eurolink S.C.p.A. Pagina 73 di 201

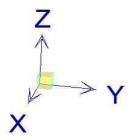
RELAZIONE DI CALCOLO

Codice documento

Rev F0 **Data** 20/06/2011

Ai fini delle verifiche di resistenza, per quanto riguarda la prima condizione di carico, la soletta è stata considerata realizzata in un unico getto. Con tale ipotesi si sovrastimano le tensioni sulle travi metalliche e quindi si perviene ad una verifica conservativa della sicurezza.

Nell'analisi strutturale si tiene conto delle fasi transitorie e di esercizio e si opera con i seguenti modelli:


Modello 1: ottenuto considerando le proprietà inerziali delle sole travi metalliche ed utilizzato per la valutazione degli effetti indotti dal peso proprio dell'acciaio e della soletta.

Modello 2: ottenuto considerando le proprietà inerziali ideali della sezione composta con soletta collaborante omogeneizzata all'acciaio mediante coefficiente n₀. Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di breve durata.

Modello 3: ottenuto considerando le proprietà inerziali ideali della sezione mista con soletta collaborante omogeneizzata all'acciaio mediante coefficiente n_L. Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di lunga durata.

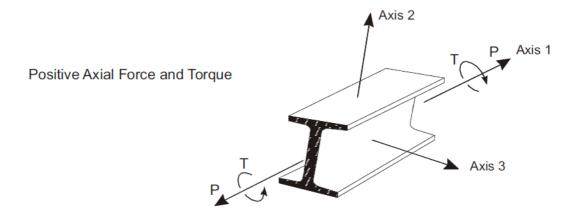
7.2.3 SISTEMA DI RIFERIMENTO E CONVENZIONE DEI SEGNI

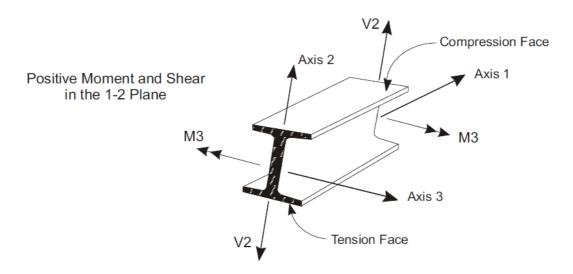
Il sistema di riferimento viene assunto con origine sulla coordinata di ascissa x=0, coincidente con l'asse appoggi della spalla A. La disposizione degli assi segue la "regola della mano destra":

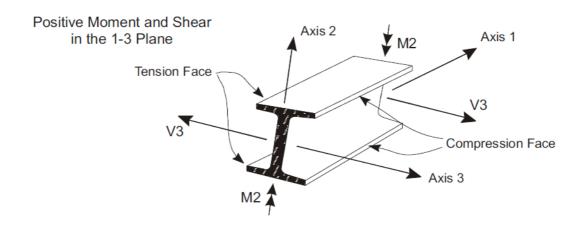
- l'asse X è diretto secondo l'asse longitudinale dell'impalcato, positivo dalla Spalla A verso la Spalla B;
- l'asse Y è diretto secondo l'asse trasversale, positivo verso destra:
- l'asse Z è diretto verso l'alto, positivo verso l'alto.

Si definiscono positive le azioni e sollecitazioni secondo la convenzione riportata nelle figure successive.

Eurolink S.C.p.A. Pagina 74 di 201


RELAZIONE DI CALCOLO


Codice documento CS0341_F0

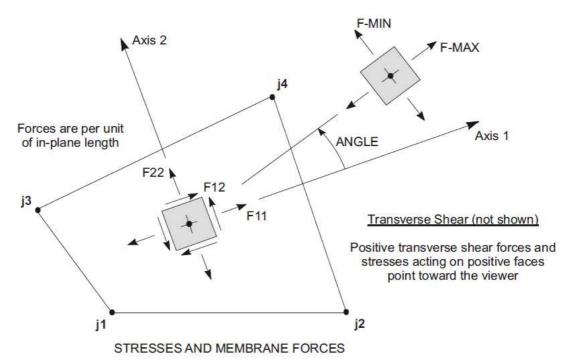

Rev F0

20/06/2011

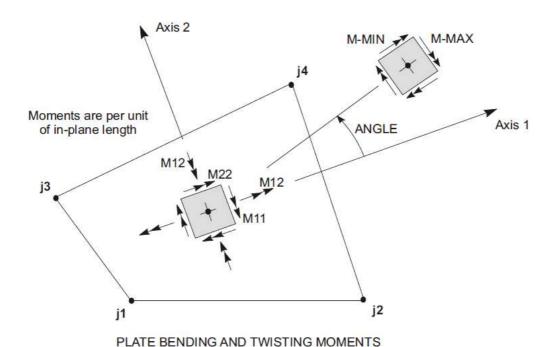
Data

F4. Azioni e Sollecitazioni positive negli elementi tipo "line"

Eurolink S.C.p.A. Pagina 75 di 201


RELAZIONE DI CALCOLO

Codice documento
CS0341_F0


Rev F0

20/06/2011

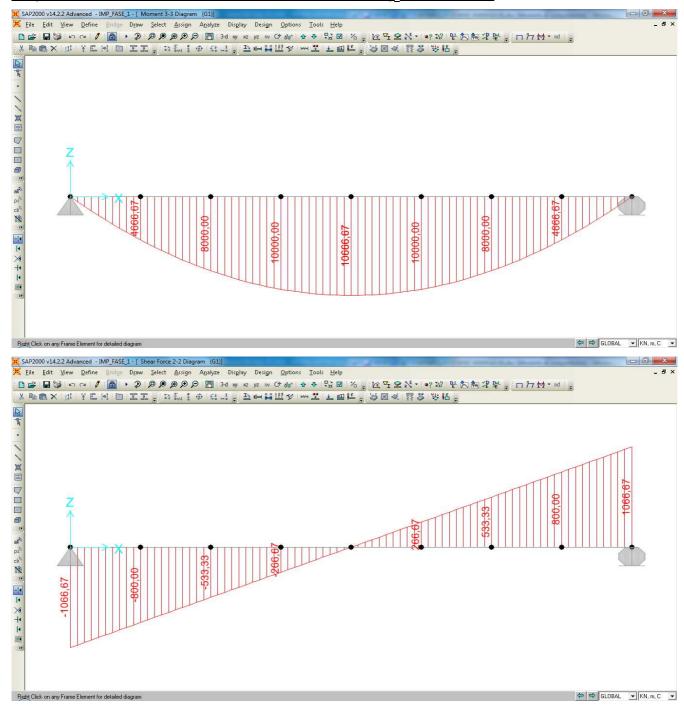
Data

Stress Sij Has Same Definition as Force Fij

F5. Azioni e Sollecitazioni positive negli elementi tipo "Area"

Eurolink S.C.p.A. Pagina 76 di 201

RELAZIONE DI CALCOLO


Codice documento
CS0341 F0

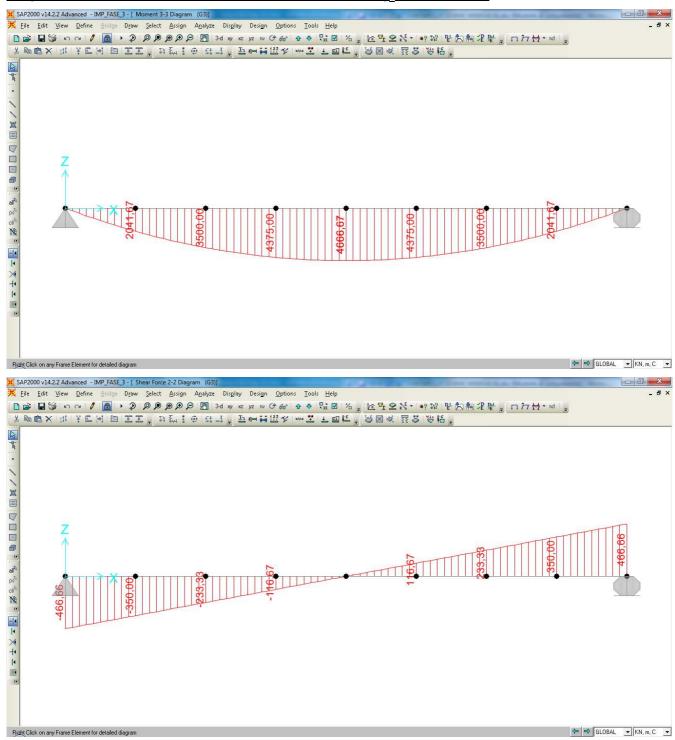
Rev F0 Data 20/06/2011

7.3 CALCOLO DELLE SOLLECITAZIONI

Si riportano nel seguito i diagrammi di sollecitazione N, M e T per ogni condizione di carico elementare precedentemente individuata (vedi § 7.1).

Diagrammi di sollecitazione M e T – condizione di carico "g₁" (vedi § 7.1.1)

Eurolink S.C.p.A. Pagina 77 di 201



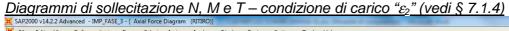
RELAZIONE DI CALCOLO

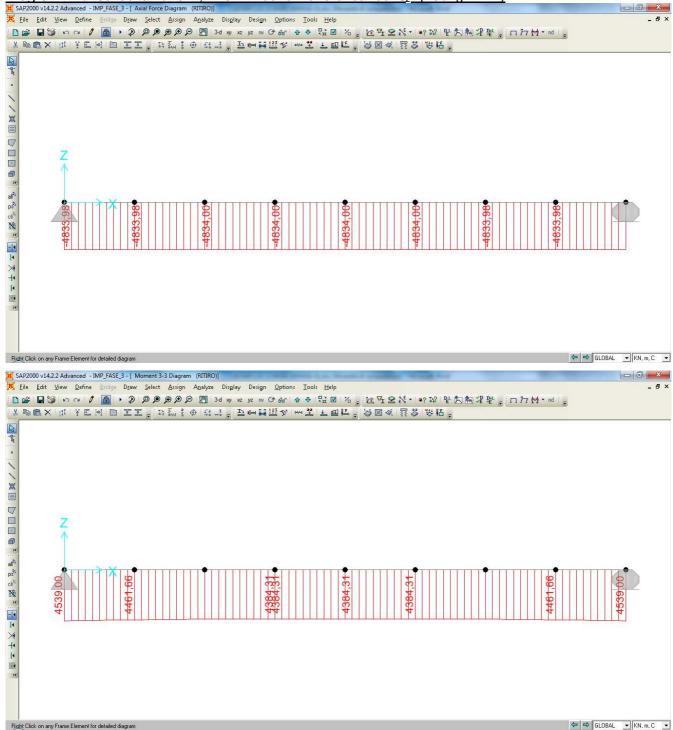
Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Diagrammi di sollecitazione M e T – condizione di carico "g₃" (vedi § 7.1.2)

Eurolink S.C.p.A. Pagina 78 di 201


Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

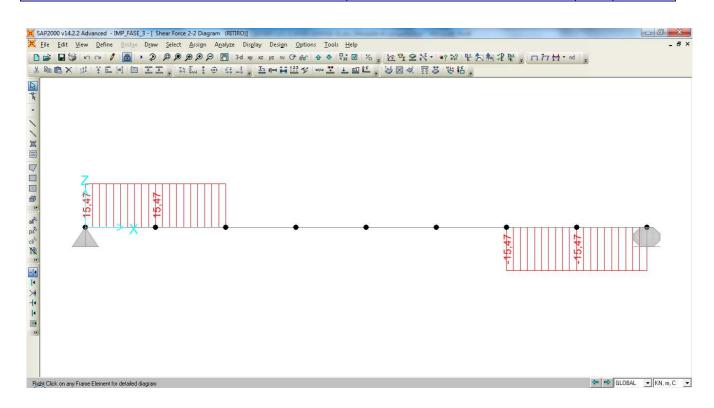

RELAZIONE DI CALCOLO

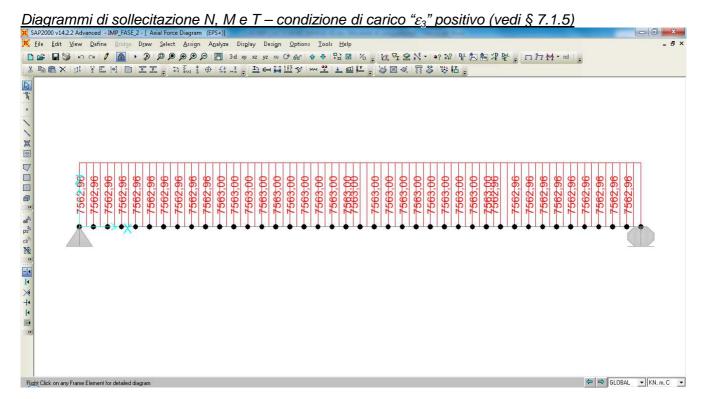
Codice documento CS0341_F0

Rev F0

Data 20/06/2011

Eurolink S.C.p.A. Pagina 79 di 201



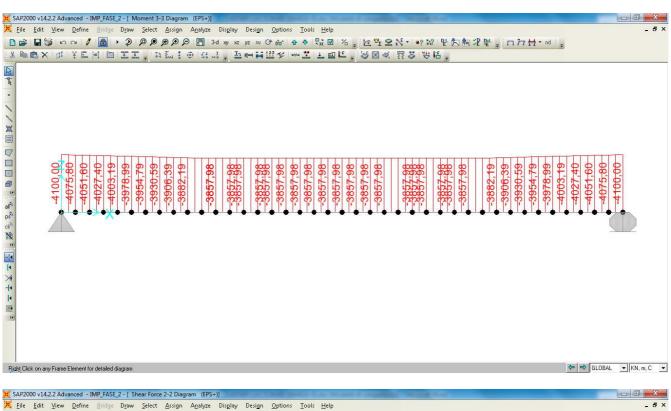

Data

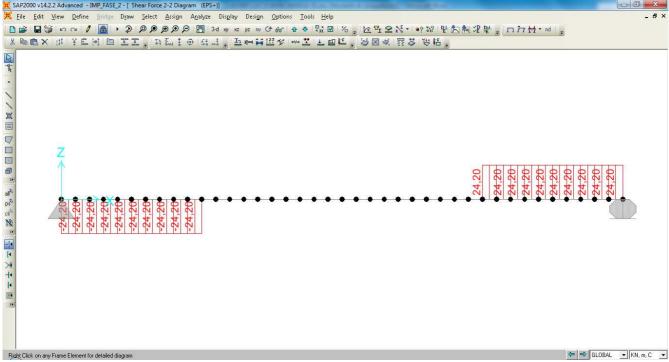
20/06/2011

RELAZIONE DI CALCOLO

Codice documento Rev

Eurolink S.C.p.A. Pagina 80 di 201





RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

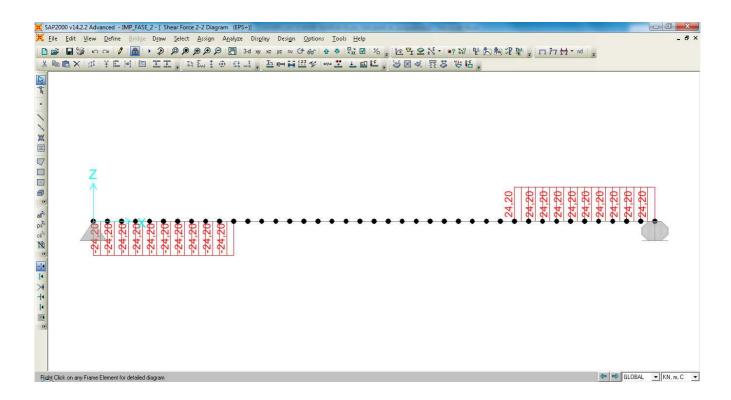
Eurolink S.C.p.A. Pagina 81 di 201

RELAZIONE DI CALCOLO

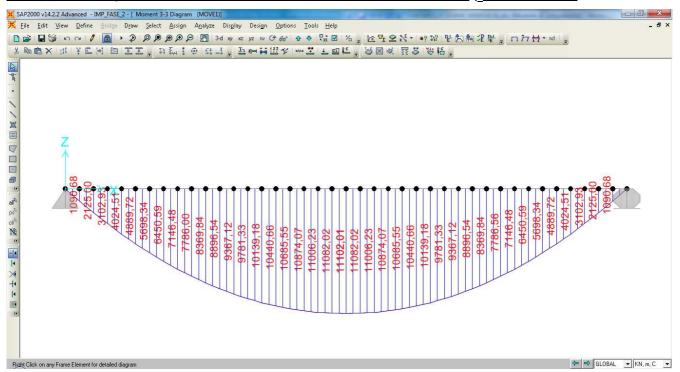
Codice documento CS0341_F0

Rev F0 Data 20/06/2011

Eurolink S.C.p.A. Pagina 82 di 201


Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

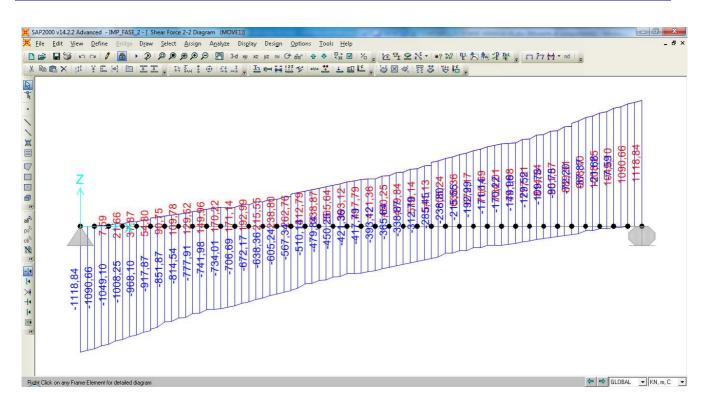

Codice documento CS0341 F0

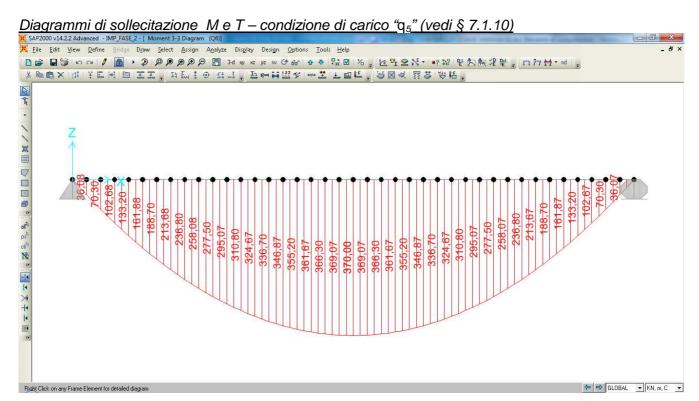
Rev Data F0

20/06/2011

Inviluppo dei diagrammi di sollecitazione M e T – condizione di carico "q₁" (vedi § 7.1.6)

Eurolink S.C.p.A. Pagina 83 di 201



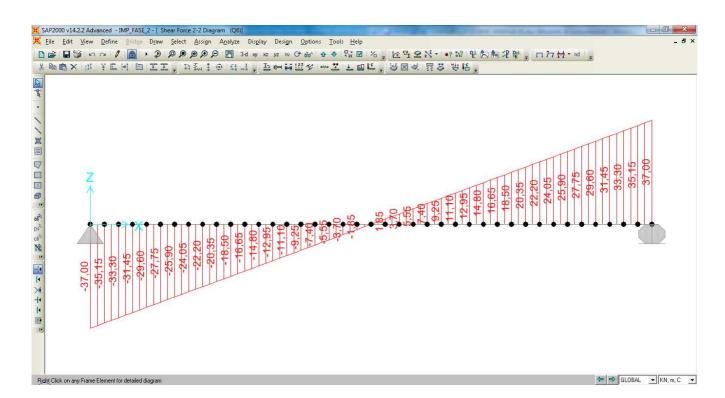


RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

Eurolink S.C.p.A. Pagina 84 di 201



RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev Data
F0 20/06/2011

Eurolink S.C.p.A. Pagina 85 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

7.3.1 Combinazioni per gli S.L.U.

Si applicano le combinazioni di carico del DM 14. 01 .2008. Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, si dovranno considerare, generalmente, le combinazioni riportate in Tab. 5.1.IV di [NT_1]. A causa della natura dell'opera, i gruppi di azioni da prendere in esame risultano esclusivamente i gruppi 1, 2a e 2b.

Tabella 5.1.IV – Valori caratteristici delle azioni dovute al traffico

		Carichi su marciapiedi e piste ciclabili				
	Carichi verticali				Carichi verticali	
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				

^(*) Ponti di 3^a categoria

Eurolink S.C.p.A. Pagina 86 di 201

^(**) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

^(***) Da considerare solo se si considerano veicoli speciali

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

La Tab. 5.1.V di [NT_1] fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi; il significato dei simboli è il seguente:

- γ G1 coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua;
- γ G2 coefficiente parziale dei pesi propri degli elementi non strutturali;
- γ_{Q} coefficiente parziale delle azioni variabili da traffico;
- γ Oi coefficiente parziale delle azioni variabili.

Il coefficiente parziale della precompressione si assume pari a $\gamma_P = 1$.

Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γQ	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

I valori dei coefficienti ϕ_{0j} , ϕ_{1j} e ϕ_{2j} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI di [NT_1] e riportati nel seguito per completezza.

Eurolink S.C.p.A. Pagina 87 di 201

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

Tabella 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente \\psi_0 di combinazione	Coefficiente ψ ₁ (valori frequenti)	Coefficiente \(\psi_2\) (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
77	SLU e SLE	0,6	0,2	0,0
Vento q ₅	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Nava a	SLU e SLE	0,0	0,0	0,0
Neve q ₅	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

Le combinazioni di azioni per le verifiche agli stati limite ultimi sono definite al punto 2.5.3 del D.M. 14 gennaio 2008:

$$\begin{split} \sum_{j>1} \gamma_{G,j} \cdot G_{k,j} + \gamma_{P} \cdot P + \gamma_{Q,1} \cdot Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{k,i} \\ E + \sum_{j>1} G_{k,j} + P + \sum_{i>1} \psi_{2,i} \cdot Q_{k,i} \end{split}$$

con

+ implica "da combinarsi con"

implica "l'effetto combinato di"

 G_{k} è il valore caratteristico delle azioni permanenti

E è l'azione del sisma per lo stato limite considerato

P è il valore caratteristico delle azioni di precompressione

 Q_k è il valore caratteristico delle azioni variabili

Eurolink S.C.p.A. Pagina 88 di 201

RELAZIONE DI CALCOLO

Codice documento

Rev F0 Data 20/06/2011

 $\gamma_{\scriptscriptstyle G}$, $\gamma_{\scriptscriptstyle P}$ e $\gamma_{\scriptscriptstyle O}$ sono i coefficienti parziali delle azioni per gli SLU

 ψ_0, ψ_2 sono i coefficienti di combinazione delle azioni variabili

Le combinazioni di carico adottate per le verifiche di resistenza agli SLU sono le seguenti:

• SLU1 =
$$1.35 \cdot G_k + 1.20 \cdot \varepsilon_2 + 1.35 \cdot Q_k + 1.5 \cdot 0.6 \cdot Q_5 + 1.2 \cdot 0.6 \cdot \varepsilon_3$$

• SLU2 =
$$1.35 \cdot G_k + 1.35 \cdot Q_k + 1.5 \cdot 0.6 \cdot Q_5 + 1.2 \cdot 0.6 \cdot \varepsilon_{3+}$$

essendo:

 G_k pesi propri e carichi permanenti $(g_1 + g_2)$

Q_k carichi mobili (q₁)

Q₅ azione compatibile del vento

 ϵ_2 ritiro del calcestruzzo

 ε_{3} (-10 °C) variazione termica differenziale

 ε_{3+} (+10 °C) variazione termica differenziale

Nelle verifiche di resistenza delle travi è omessa la combinazione sismica precedentemente definita, in quanto non dimensionante e non significativa in rapporto alle combinazioni analizzate con i carichi mobili come condizione dominante.

7.3.2 Combinazioni per lo stato limite di fatica

Le verifiche associate a tale stato limite sono state eseguite in funzione delle combinazioni di carico espresse dalla relazione seguente:

$$\sum_{j>1} G_{k,j} + P + Q_{k,1} + \sum_{i>1} \psi_{1,i} \cdot Q_{k,i}$$

dove:

+ implica "da combinarsi con"

implica "l'effetto combinato di"

 G_{k} è il valore caratteristico delle azioni permanenti

P è il valore caratteristico delle azioni di precompressione

 Q_k è il valore caratteristico delle azioni variabili

 $\psi_{\scriptscriptstyle 1}$ sono i coefficienti di combinazione delle azioni variabili

Le combinazioni di carico adottate per le verifiche allo stato limite di fatica sono le seguenti:

Eurolink S.C.p.A. Pagina 89 di 201

RELAZIONE DI CALCOLO

Codice documento

Rev F0

20/06/2011

Data

• SLF1 =
$$G_k + \varepsilon_2 + Q_k + 0.6 \cdot \varepsilon_{3}$$

• SLF2 =
$$G_k + Q_k + 0.6 \cdot \epsilon_{3+}$$

essendo:

 G_k pesi propri e carichi permanenti $(g_1 + g_2)$

Q_k carichi mobili di fatica

 ϵ_2 ritiro del calcestruzzo

 ε_{3} (-10 °C) variazione termica differenziale

 ε_{3+} (+10 °C) variazione termica differenziale

7.3.3 Combinazioni per gli S.L.S.

Essendo la struttura del tipo misto, le verifiche agli S.L.S. risultano superflue in quanto la struttura deve rimanere al di sotto del limite di snervamento per azioni di tipo S.L.U.; pertanto rimangono verificati anche gli S.L.S. relativi alle limitazioni di tensione. Per le travi principali dell'impalcato è deve essere considerato lo stato limite di servizio di "respiro delle anime" (vedi § 7.4 di UNI EN 1993-2:2007). Le verifiche associate a tale stato limite sono eseguite in funzione delle combinazioni di carico **frequente** espresse dalla relazione seguente:

$$\sum_{j>1} G_{k,j} + P + \psi_{1,1} \cdot Q_{k,1} + \sum_{j>1} \psi_{2,i} \cdot Q_{k,i}$$

dove

+ implica "da combinarsi con"

implica "l'effetto combinato di"

 G_{ι} è il valore caratteristico delle azioni permanenti

P è il valore caratteristico delle azioni di precompressione

 Q_{k} è il valore caratteristico delle azioni variabili

 ψ_1, ψ_2 sono i coefficienti di combinazione delle azioni variabili

Per la struttura in esame, essendo b / $t = 2315/28 = 83 \le 30+4\cdot L=190$ (con "b" altezza del pannello d'anima, "t" spessore del pannello d'anima, "L" lunghezza di impalcato) <u>la verifica a respiro delle anime risulta soddisfatta</u>.

Eurolink S.C.p.A. Pagina 90 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

7.4 VERIFICA DELLE SEZIONI

7.4.1 Verifiche di resistenza agli SLU

Le verifiche sono eseguite in accordo con il § 6.2.1.5 di UNI EN 1994-2:2006, assumendo un'analisi elastica per il calcolo delle tensioni agenti nella struttura. Le resistenze di progetto dei materiali costituenti la sezione del ponte sono (vedi § 3):

 Acciaio da carpenteria S355: per elementi di spessore t ≤ 40 mm per elementi di spessore t > 40 mm

$$f_{yd} = f_{yk} / \gamma_a = 355 / 1,05$$
 = 338 MPa
 $f_{vd} = (f_{vk} - 20) / \gamma_a$ = 319 MPa

resistenza a compressione di progetto

$$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c = 0.85 \cdot f_{ck} / 1.5 = 18.13 \text{ MPa}$$

 Acciaio per armature B 450 C: resistenza di progetto

Calcestruzzo C 32 / 40:

$$f_{sd} = f_{sk} / \gamma_s = 450 / 1,15$$
 = 391 MPa

La resistenza di calcolo della sezione in acciaio nei confronti delle tensioni normali è funzione della classificazione della sezione trasversale (vedi § 4.4). Nel caso in esame tale resistenza è valutata in campo elastico, essendo la sezione di classe 3.

La verifica è soddisfatta se risulta:

$$\eta_{1} = \frac{N_{Ed}}{f_{vk} \cdot A / \gamma_{M0}} + \frac{M_{Ed}}{f_{vk} \cdot W_{el} / \gamma_{M0}} \le 1,0$$

con

- $N_{\it Ed}$ e $M_{\it Ed}$ sollecitazioni assiali e flessionali di progetto;
- A e W_{el} proprietà elastiche della sezione trasversale;
- $\gamma_{M\,0}$ coefficiente parziale di sicurezza, pari ad 1,05.

La resistenza di progetto a taglio è definita come:

$$V_{c,Rd} = \frac{f_{yk} \cdot A_{v}}{\sqrt{3} \cdot \gamma_{M0}}$$

dove:

- A, è l'area resistente a taglio;

Eurolink S.C.p.A. Pagina 91 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

- γ_{M0} è il fattore parziale di sicurezza assunto pari a 1,05;

La verifica è posta in forma adimensionale come rapporto tra le azioni sollecitanti e la capacità resistente:

$$\eta_3 = \frac{V_{Ed}}{V_{b,Rd}} \le 1,0$$

dove $V_{\rm Ed}\,$ è la sollecitazione tagliante di progetto.

Per valori di $\overline{\eta_3}$ (vedere sotto) inferiori a 0,5 non è necessario controllare l'interazione tra le sollecitazioni normali e tangenziali; per valori superiori si adotta la seguente espressione del dominio di resistenza:

$$\overline{\eta_1} + \left(1 - \frac{M_{f,Rd}}{M_{Pl,Rd}}\right) \cdot \left(2 \cdot \overline{\eta_3} - 1\right)^2 \le 1,0$$

in cui

- $M_{f,Rd}$ è il momento resistente di progetto delle sole flange efficaci;
- $M_{Pl,Rd}$ è la resistenza plastica della sezione trasversale composta dall'area effettiva delle flange e dall'intera anima senza tener conto della classe di quest'ultima;

$$-\overline{\eta_1} = \frac{M_{Ed}}{M_{Pl,Rd}}$$

$$- \overline{\eta_3} = \frac{V_{Ed}}{V_{hw,Rd}}$$

Si riportano nel seguito le verifiche in corrispondenza delle sezioni critiche per l'opera in progetto. In particolare, avendo la trave caratteristiche geometrico\inerziali costanti lungo tutto lo sviluppo dell'impalcato, si sono considerate come sezioni critiche:

- 1. Sezione in asse Spalla -x = 0 m (massime azioni taglianti)
- 2. Sezione in Mezzeria -x = 20 m (massime azioni flettenti)

Eurolink S.C.p.A. Pagina 92 di 201

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0

Data 20/06/2011

CARATTERISTICHE GEOMETR	RICHE DELLA SEZ	ZIONE	
ELEMENTI	dimensione in direzio [mm]	one y dimensione in direzione x [mm]	A _{xy} [mm²]

ELEMENTI	[mm]	[mm]	[mm ²]
piattabanda superiore =	40	800	32000
piattabanda inferiore =	45	1000	45000
anima =	2315	28	64820
soletta collaborante =	300	5000	1500000
armatura lenta superiore =	-	-	0,00
armatura lenta inferiore =	-	-	0,00

CARATTERISTICHE INERZIALI DELLA SEZIONE

	sezione in acciaio	sezione con soletta n=6,3	sezione con soletta n=17,53
$A_{tot} [m^2] =$	0,1418200	0,3799152	0,2273919
y [m] =	1,0937706	2,0063986	1,6417774
J [m ⁴] =	0,1343102	0,3245741	0,2481277
$W_{a,ii}[m^3] =$	0,1227956	0,1617695	0,1511336
$W_{a,i}[m^3] =$	0,1280644	0,1654809	0,1553928
$W_{a,s} [m^3] =$	-0,1060710	-0,9179095	-0,3454747
$W_{a,ss}$ [m^3] =	-0,1028228	-0,8246264	-0,3272492
$W_{c,i}$ [m ³] =	-	-5,1951461	-5,7363898
$W_{\Phi,i}$ [m ³] =	-	-0,7001146	-0,2995906
$W_{\Phi,s}$ [m ³] =	-	-0,5122686	-0,2485695
$W_{c,s} [m^3] =$	-	-2,9481151	-4,1101563
$S_{a,i} [m^3] =$	0,0482072	0,0892754	0,0728675
$S_{a,s} [m^3] =$	0,0411593	0,1413841	0,1013414
$S_{cls} [m^3] =$	-	0,1294289	0,0777183

SOLLECITAZIONI AGENTI NELLA SEZIONE

	M [kNm]	N [kN]	T [kN]
FASE I n=0	0	0	1440,45
FASE II n=6,3	0	0	1510,65
FASE III n=17,53	0	0	630,45
FASE II (delta T) n=6,3	2952	-5445,36	17,568
FASE III (ritiro) n=17,53	5446,8	-5800,8	18,6

TENSIONI AGENTI NELLA SEZIONE

	FASE I	FASE II	FASE III	ΔT_{ermico}	RITIRO	TOTALE	$ \sigma_{id} $
$\sigma_{a,ii}$ [N/mm ²] =	0,000	0,000	0,000	3,915	10,529	14,445	
$\sigma_{a,i}$ [N/mm ²] =	0,000	0,000	0,000	3,506	9,542	13,047	70,984
$\sigma_{\rm a,s}$ [N/mm ²] =	0,000	0,000	0,000	-17,549	-41,276	-58,825	-103,274
$\sigma_{a,ss}$ [N/mm ²] =	0,000	0,000	0,000	-17,913	-42,154	-60,067	
$\sigma_{c,i}$ [N/mm ²] =	-	0,000	0,000	0,787	1,462	2,249	
$\sigma_{\Phi,i}$ [N/mm ²] =	-	0,000	0,000	-18,550	-43,691	-62,240	
$\sigma_{\Phi,s}$ [N/mm ²] =	-	0,000	0,000	-20,096	-47,423	-67,518	
$\sigma_{\rm c,s}$ [N/mm ²] =	-	0,000	0,000	0,354	1,087	1,441	
$ au_{a,i}[N/mm^2]$ =	18,465	14,840	6,612	0,173	0,195	40,284	
$ au_{a,s}[N^{\prime}mm^2]$ =	15,765	23,501	9,196	0,273	0,271	49,007	
S . [kN/m] _		602 305	107.460	7.006	5.826	812 605	

S_{scorr.sol.} [kN/m] = VERIFICA DELLA SEZIONE

 $\eta_1 = 0,178 \le 1$ $\eta_3 =$

0,084 ≤ 1 (si può trascurare l'influenza del taglio sulla flessione)

Eurolink S.C.p.A. Pagina 93 di 201

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0

Data 20/06/2011

ALTEZZA TRAVE =	2400	mm	SEZIONE N°: 2	ASCISSA x = 20 m	
CARATTERISTICHE GEOMETRICHE DELLA SEZIONE					

CARATTERISTICHE GEOMETRICHE DELLA SEZIONE						
ELEMENTI	dimensione in direzione y [mm]	dimensione in direzione x [mm]	A _{xy} [mm²]			
piattabanda superiore =	40	800	32000			
piattabanda inferiore =	45	1000	45000			
anima =	2315	28	64820			
soletta collaborante =	300	5500	1650000			
armatura lenta superiore =	-	-	0,00			
armatura lenta inferiore =	-	-	0,00			

CARATTERISTICHE INERZIALI DELLA SEZIONE

	sezione in acciaio	sezione con soletta n=6,3	sezione con soletta n=17,53
$A_{tot} [m^2] =$	0,1418200	0,4037248	0,2359491
y [m]=	1,0937706	2,0384573	1,6747160
J [m ⁴] =	0,1343102	0,3313735	0,2549944
$W_{a,ii}[m^3] =$	0,1227956	0,1625609	0,1522613
$W_{a,i}[m^3] =$	0,1280644	0,1662305	0,1564656
$W_{a,s} [m^3] =$	-0,1060710	-1,0305739	-0,3721004
$W_{a,ss}$ [m^3] =	-0,1028228	-0,9165543	-0,3515788
$W_{c,i}$ [m ³] =	-	-5,7742919	-6,1628663
$W_{\Phi,i}$ [m ³] =	-	-0,7678811	-0,3206332
$W_{\Phi,s}$ [m ³] =	-	-0,5508728	-0,2641652
$W_{c,s} [m^3] =$	-	-3,1557344	-4,3596001
$S_{a,i} [m^3] =$	0,0482072	0,0907181	0,0743497
$S_{a,s} [m^3] =$	0,0411593	0,1449048	0,1049588
$S_{cls} [m^3] =$	-	0,1339755	0,0823897

SOLLECITAZIONI AGENTI NELLA SEZIONE

	M [kNm]	N [kN]	T [kN]
FASE I n=0	14400,45	0	0
FASE II n=6,3	15322,05	0	567
FASE III n=17,53	6300,45	0	0
FASE II (delta T) n=6,3	2777,76	-5445,36	0
FASE III (ritiro) n=17,53	5260,8	-5800,8	0

TENSIONI AGENTI NELLA SEZIONE

1							
	FASE I	FASE II	FASE III	ΔT_{ermico}	RITIRO	TOTALE	$ \sigma_{id} $
$\sigma_{a,ii}$ [N/mm ²] =	117,272	94,254	41,379	3,600	9,966	266,471	
$\sigma_{a,i} [N/mm^2] =$	112,447	92,173	40,267	3,222	9,038	257,148	257,327
$\sigma_{a,s} [N/mm^2] =$	-135,762	-14,867	-16,932	-16,183	-38,723	-222,468	-222,996
$\sigma_{a,ss}$ [N/mm ²] =	-140,051	-16,717	-17,920	-16,518	-39,548	-230,755	
$\sigma_{c,i}$ [N/mm ²] =	-	-2,653	-1,022	0,678	1,259	-1,738	
$\sigma_{\Phi,i}$ [N/mm ²] =	-	-19,954	-19,650	-17,105	-40,992	-97,701	
$\sigma_{\Phi,s}$ [N/mm ²] =	-	-27,814	-23,850	-18,530	-44,500	-114,695	
$\sigma_{\rm c,s}$ [N/mm ²] =	-	-4,855	-1,445	0,279	0,906	-5,115	
$ au_{\mathrm{a,i}}$ [N/mm 2] =	0,000	5,544	0,000	0,000	0,000	5,544	
$ au_{a,s}[N/mm^2]$ =	0,000	8,855	0,000	0,000	0,000	8,855	
$S_{scorr.sol.}$ [kN/m] =	-	229,240	0,000	0,000	0,000	229,240	

VERIFICA DELLA SEZIONE

 $\eta_1 = 0,788 \le 1$

 $\eta_3 = 0.015 \le 1$ (si può trascurare l'influenza del taglio sulla flessione)

Eurolink S.C.p.A. Pagina 94 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

7.4.2 Verifiche dell'instabilità dell'anima soggetta a taglio (SHEAR BUCKLING)

Le verifiche sono eseguite in accordo con il § 4.2.4.1.2 del D.M. 14.01.2008 e § 5 di UNI EN 1993-1-5:2006. Le resistenze di progetto dei materiali costituenti la sezione del ponte sono (vedi § 3):

• Acciaio da carpenteria S355:

per elementi di spessore $t \le 40 \text{ mm}$ per elementi di spessore t > 40 mm

$$f_{yd}$$
 = f_{yk} / γ_{M0} = 355 / 1,05 = 338 MPa

 f_{yd} = (f_{yk} – 20) / γ_{M0} = 319 MPa

per elementi di spessore t ≤ 40 mm per elementi di spessore t > 40 mm

$$f_{yd} = f_{yk} / \gamma_{M1} = 355 / 1,10 = 323 \text{ MPa}$$

$$f_{vd} = (f_{vk} - 20) / \gamma_{M1}$$
 = 303 MPa

La resistenza di progetto a taglio è definita come somma di due contributi (anima $V_{bw,Rd}$, e piattabande $V_{bf,Rd}$):

$$V_{b,Rd} = V_{bw,Rd} + V_{bf,Rd} \le \frac{\eta \cdot f_{yk} \cdot h_w \cdot t}{\sqrt{3} \cdot \gamma_{M1}}$$

dove:

- h_w e t sono rispettivamente l'altezza e lo spessore dell'anima;
- $\gamma_{\scriptscriptstyle M1}$ è il fattore parziale di sicurezza assunto pari a 1,10;
- η è un coefficiente assunto pari a 1,20.

La verifica è posta in forma adimensionale come rapporto tra le azioni sollecitanti e la capacità resistente:

$$\eta_3 = \frac{V_{Ed}}{V_{b,Rd}} \le 1.0$$

dove $V_{\rm\scriptscriptstyle Ed}$ è la sollecitazione tagliante di progetto.

Per una trattazione dettagliata di tutti i termini presenti nella relazione di verifica e nelle successive pagine si rimanda alla normativa UNI EN 1993-1-5:2006, paragrafi 5.1, 5.2, 5.3, 5.4, 5.5 e APPENDICE A.

Si riportano nel seguito le verifiche in corrispondenza delle sezioni critiche per l'opera in progetto. In particolare, avendo la trave caratteristiche geometrico\inerziali costanti lungo tutto lo sviluppo dell'impalcato, si sono considerate come sezioni critiche:

1. Sezione in asse Spalla -x = 0 m (massime azioni taglianti)

Eurolink S.C.p.A. Pagina 95 di 201

ALTERIA TO AVE

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

ALTEZZA TRAVE = 2400		mm	SEZIONE N°:	1 ASCISSA $x = 0 \text{ m}$		
$h_w/t =$		82,6786	rapporto tra sp	oessore e altezz	za dell'anima	
$h_w/t \le 72\varepsilon / \eta$	\rightarrow	occorrono irrig	gidimenti ai sup	porti	(valido per anima non irrigidita)	
$h_w/t \le 31 \varepsilon \sqrt{k_\tau} / \eta$	\rightarrow	occorrono irrig	gidimenti ai sup	porti	(valido per anima irrigidita)	
a [mm] =		2.500,00	passo degli irr	igidimenti in dir	ezione longitudinale al ponte	
h _w [mm] =		2.315,00	altezza dell'an	ima della trave		
t [mm] =		28,00	spessore dell'	anima della trav	/e	
$b_f [mm] =$		800,00	larghezza flan	gia sup.		
t_f [mm] =		40,00	altezza flangia	sup.		
C =		659,12				
$\eta =$		1,20				
$\alpha =$		1,08	rapporto fra il	passo degli irrig	gidimenti trasversali e l'altezza dell'anima	a
I_{sl} [mm ⁴] =		0,00	somma dei me	omenti di inerzia	a degli irrigidimenti longitudinali	
$k_{ ausl}$ =		0,000				
$\mathbf{k}_{ au}$ =		8,770	coefficiente di	shear buckling		
$\sigma_{E} [N/mm^2] =$		27,795				
$ au_{\mathrm{cr}} [\mathrm{N/mm^2}] =$		243,76				
$\lambda_{\mathbf{w}}$ =		0,917	parametro di s	nellezza		
end support =		NO END POST	-	•		
$\chi_{\rm W}$ =		0,905	coefficiente de	el contributo del	l'anima allo shear buckling	
$M_{f,Rd}$ [kNm] =		24.346,55	momento resi	stente della sez	ione	
n _{rid} =		0,5680	coefficiente ric	luttivo da consi	derare in presenza di azione assiale	
$V_{bw,Rd}$ [kN] =		10.929,89	contributo dell	'anima allo she	ar buckling	
$V_{bf,Rd}$ [kN] =		395,56	contributo dell	e flange allo sh	ear buckling	
VERIFICA $\eta_3 =$		0,32	≤ 1			

7.4.3 Verifica a fatica

I ponti a sezione composta sono soggetti ad azioni dinamiche variabili nel tempo, e possono manifestare, in tempi più o meno lunghi, problemi legati alla fatica, con conseguente limitazione della funzionalità in esercizio e, nelle situazioni più critiche, il collasso della struttura.

L'esecuzione delle verifiche di resistenza a fatica dei componenti degli impalcati metallici o a sezione composta prevede l'individuazione dei dettagli maggiormente sensibili e la loro classificazione in base alle curve S-N, nonché alla scelta del relativo coefficiente parziale di sicurezza γ_{Mf} . Il coefficiente γ_{Mf} dipende sia dalla accessibilità per l'ispezione, sia dall'entità delle

Eurolink S.C.p.A. Pagina 96 di 201

RELAZIONE DI CALCOLO

Codice documento	Rev	Data
CS0341_F0	F0	20/06/2011

conseguenze delle crisi per fatica dell'elemento o della struttura.

	Conseguenza della rottura per fatica		
	Moderate	Significative	
Danneggiamento accettabile (strutture poco sensibili alla rottura per fatica)	$\gamma_{\mathrm{Mf}}=1,00$	$\gamma_{\rm Mf} = 1,15$	
Vita utile (strutture sensibili alla rottura per fatica)	$\gamma_{\rm Mf} = 1.15$	$\gamma_{\rm Mf}$ =1,35	

Si possono utilizzare due diversi approcci progettuali:

- criterio del danneggiamento accettabile per strutture poco sensibili alla rottura per fatica.
- criterio della vita utile a fatica per strutture sensibili alla rottura per fatica.

La verifica a fatica può essere condotta controllando che i valori massimi dei delta di tensione sulla struttura siano inferiori ai limiti di fatica per i diversi dettagli costruttivi (verifica per "Vita Illimitata") oppure controllando che, per un definito numero di cicli di tensione, la struttura possa subire delta di tensione in grado di creare danneggiamento ma con effetto complessivo non significativo nella vita di progetto dell'opera (verifica a "Danneggiamento").

I modelli di carico da utilizzarsi per la verifica a fatica degli impalcati stradali sono (vedi § 5.1.4.3 di [NT_1]):

- il modello di carico LM1 costituito dallo schema di carico 1, ma con valori dei carichi concentrati ridotti del 30 % e carichi distribuiti ridotti del 70 % (utilizzabile per verifiche a vita illimitata)
- il modello di carico LM2 costituito da un set di veicoli con ingombro geometrico e peso definiti (utilizzabile per verifiche a vita illimitata)
- il modello di carico LM3, che si compone di un veicolo convenzionale dal peso complessivo di 480 kN (utilizzabile per verifiche a danneggiamento)
- il modello di carico LM4 costituito da un set di veicoli con ingombro geometrico e peso definiti (utilizzabile per verifiche a danneggiamento)

Le verifiche a fatica per vita illimitata potranno essere condotte, per dettagli caratterizzati da limite di fatica ad ampiezza costante, controllando che il massimo delta di tensione $\Delta \sigma_{max}=(\sigma_{max}-\sigma_{min})$ indotto nel dettaglio stesso dallo spettro di carico significativo risulti minore del limite di fatica del dettaglio stesso. Ai fini del calcolo del $\Delta \sigma_{max}$ si possono impiegare, in alternativa, i modelli di carico di fatica 1 e 2, disposti sul ponte nelle due configurazioni che determinano la tensione massima e minima, rispettivamente, nel dettaglio considerato. La verifica per vita illimitata deve soddisfare:

Eurolink S.C.p.A. Pagina 97 di 201

RELAZIONE DI CALCOLO

Codice documento

Rev F0 **Data** 20/06/2011

$$\gamma_F \cdot \Delta \sigma_{\max} \leq \frac{\Delta \sigma}{\gamma_{Mf}}$$

Le verifiche a danneggiamento consistono nel verificare che nel dettaglio considerato lo spettro di carico produca un danneggiamento D≤1. Il danneggiamento D è valutato mediante la legge di Palmgren-Miner, considerando la curva S-N caratteristica del dettaglio e la vita nominale dell'opera. La verifica a danneggiamento deve soddisfare:

$$D = \sum_{i=1}^{p} D_i = \sum_{i=1}^{p} \frac{n_i}{N_i} \le 1$$

Tali verifiche sono condotte considerando lo spettro di tensione indotto nel dettaglio dal modello di fatica semplificato n. 3, o, in alternativa, dallo spettro di carico equivalente costituente il modello di fatica n. 4.

Per l'opera in esame si eseguiranno le verifiche a fatica con il <u>metodo a vita illimitata</u> utilizzando il <u>carico LM1</u> in conformità al D.M. 14/01/2008 (carichi di progetto e coefficienti di sicurezza), ed alle indicazioni riportate della Circ. Min. Infrastrutture e Trasporti 2 Febbraio 2009, n. 617, relative alle metodologie ed i particolari costruttivi (par. C.4.2.4.1.4.). La verifica è poi condotta con il **criterio della vita utile** (Safe Life) assumendo $\gamma_{Mf} = 1,35$ e $\gamma_F = 1$

La resistenza a fatica di un dettaglio è individuata nel piano bilogaritmico $log(\Delta\sigma)-log(N)$ o $log(\tau)-log(N)$, essendo N il numero di cicli a rottura, mediante una curva caratteristica, detta curva S-N. Detta curva, è individuata mediante la classe di resistenza a fatica $\Box\Box$ c o $\Box\Box$ c, che rappresenta la resistenza a fatica del dettaglio, espressa in MPa per N = $2\cdot106$ cicli.

Assumendo un dettaglio costruttivo 12 della tabella C4.2.XIII di [NT_2], si adotta una classe di dettaglio pari a $\Delta \sigma_{\rm C}$ = 80 N/mm².

Con le impostazioni definite in precedenza, si ottiene una $\Delta \sigma_{\text{max}} \approx 35 \text{ N/mm}^2$.

Risulta quindi:

7.4.4 Verifica della connessione dei pioli

Le verifiche sono eseguite in accordo con il \S 4.3.4.3.1 del D.M. 14-01-2008 e con il \S 6.6.3, \S 6.6.4 e \S 6.6.5 di UNI EN 1994-2:2006.

CARATTERISTICHE E LIMITAZIONI DIMENSIONALI

La collaborazione tra la trave metallica e la soletta è assicurata mediante pioli elettrosaldati all'ala della trave di acciaio. I pioli previsti soddisfano le limitazioni dimensionali di seguito riportate.

Eurolink S.C.p.A. Pagina 98 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

Pioli Φ = 19 mm – area A_p = 284 mmq – altezza h_p= 200 mm

Le caratteristiche geometriche della piolatura sono:

interasse trasversale it

= 20 cm (3 pioli nelle zone di campata)

= 20 cm (5 pioli tra la sezione x=0 m e x=8 m)

interasse longitudinale iL

= 20 cm

Limitazioni inerenti il diametro dei connettori:

16 mm $\leq \Phi \leq$ 25 mm

 $\Phi \leq 2.5 \cdot t_s$

Limitazioni inerenti le distanze tra i connettori:

interasse trasversale $i_t \ge 2.5 \cdot \Phi$

interasse longitudinale $3\Phi \le i_L \le min (4 \cdot h_c; 800 mm)$

distanza dal bordo della flangia > 25 mm

Limitazioni inerenti l'altezza dei connettori:

altezza complessiva $h_p \ge 3.\Phi$

Limitazioni inerenti la testa dei connettori:

altezza $\geq 0,4\cdot\Phi$ diamtero $\geq 1,5\cdot\Phi$

L'altezza h_{sc} efficace dei pioli (altezza oltre la saldatura) è da assumersi pari a:

 $h_{sc} = h_p - t_s = 200 - 40 = 160 \text{ mm}$ con ts spessore della piattabanda superiore

CRITERI DI CALCOLO E AZIONI RESISTENTI

I connettori sono dimensionati in base agli sforzi taglianti dovuti ai carichi permanenti ed ai sovraccarichi accidentali.

Per determinare il numero di connettori necessari nelle varie sezioni dell'impalcato si fa riferimento al valore della τ all'estradosso della trave d'acciaio. Lo scorrimento in corrispondenza di una sezione generica, per un tratto di lunghezza $\Delta x = 1$ m, varrà pertanto $S = \tau \cdot b \cdot \Delta x$, dove b è la

Eurolink S.C.p.A. Pagina 99 di 201

RELAZIONE DI CALCOLO

Codice documento

Rev F0 Data 20/06/2011

larghezza convenzionale della piattabanda superiore, al netto dell'ingombro delle coppelle e degli eventuali fori delle giunzioni, sulla quale si valuta lo sforzo di scorrimento.

Per azioni da ritiro e variazioni termiche differenziali (uniformi in soletta) si produce alle estremità delle travi uno sforzo di scorrimento di segno contrario a quello prodotto dai carichi esterni. Esso risulta pari globalmente alla risultante delle tensioni normali della sola sezione di acciaio (o per equilibrio, della sola sezione di soletta) e lo si suppone distribuito con legge triangolare avente ordinata massima in corrispondenza della estremità della trave e nulla a distanza b_{eff} da tale estremità (con b_{eff} valutato come indicato al § 6.6.2.4 di UNI EN 1994-2:2006).

La resistenza di calcolo a taglio per il connettore Φ = 19 mm, di altezza efficace 160 mm, con un calcestruzzo di classe f_{ck} = 32 N/mm², per un acciaio di tipo S355J0 (f_{yk} = 355 N/mm²) risulta pari al minore dei due valori P_d così ricavati:

Crisi lato calcestruzzo:

$$\mathsf{P}_{\mathsf{Rd,c}} = \frac{0.29 \cdot \alpha \cdot \phi^2 \cdot \sqrt{f_{ck} \cdot E_{cm}}}{\gamma_v} = \left[0.29 \cdot 1 \cdot 19^2 \cdot \sqrt{(32 \cdot 33346)}\right] / 1.25 = 86.51 \text{ kN}$$

Crisi lato acciaio:

$$P_{Rd,a} = \frac{0.8 \cdot f_u \cdot \pi \cdot \phi^2 / 4}{\gamma_v} = (0.8 \cdot 470 \cdot 3.14 \cdot 19^2 / 4) / 1.25 = 85.24 \text{ kN}$$

Nella valutazione della resistenza delle piolature utilizzate per solidarizzare le strutture da ponte (travi principali con soletta collaborante), l'azione resistente deve essere moltiplicata per il coefficiente k_s =0,75.

SOLLECITAZIONI AGENTI E VERIFICHE

Le verifiche sono eseguite nelle sezioni più significative dell'impalcato:

- 1. Sezione in asse Spalla x = 0 m (massime azioni taglianti)
- 2. Sezione fine primo concio -x = 10 m

VERIFICA S.L.U. SEZIONE 1 - x = 0 m

Scorrimento dovuto ad azioni permanenti e accidentali (vedi sollecitazioni § 7.4.1):

$$S = 800 \cdot 0.2 \approx 160 \text{ kN}$$

$$T_1 = 160 / 5 = 32 \text{ kN} < k_s \cdot P_{Rd} = 63,93 \text{ kN}$$

Scorrimento dovuto esclusivamente ad azioni termiche e ritiro (vedi tensioni § 7.4.1):

lunghezza efficace

 $b_{eff} = 4,50 \text{ m}$

Eurolink S.C.p.A. Pagina 100 di 201

RELAZIONE DI CALCOLO

Codice documento

Rev F0

Data 20/06/2011

altezza acciaio h = 2400 mm area trave acciaio $A_{met} = 0,141 \text{ m}^2$ quota baricentro acciaio $y_{GA} = 1093 \text{ mm}$ tensione prodotta da (ritiro+ ΔT) all'intradosso acciaio $\sigma_i = 14,44 \text{ N/mm}^2$ tensione prodotta da (ritiro+ ΔT) all'estradosso acciaio $\sigma_e = -60,07 \text{ N/mm}^2$

tensione a quota baricentro acciaio

$$\sigma_{GA} = \sigma_e - [(h - y_a) * (\sigma_e - \sigma_i) / h] = -19,49 \text{ N/mm}^2$$

La risultante delle tensioni nella sezione di acciaio

$$F = \sigma_{GA} \cdot A_{met} \cdot 10^3 = 2748 \text{ kN}$$

Considerando la distribuzione triangolare dello scorrimento unitario τ sulla lunghezza b_{eff} , l'ordinata τ_{max} in corrispondenza dell'estremità della trave risulta:

$$\tau_{\text{max}}$$
 = 2 · F / b_{eff} = 2 · 2748 / 4,50 = 1220 kN/m

Da cui:

 $S = 1220 \cdot 0.2 \approx 244 \text{ kN}$

$$T_1 = 244 / 5 = 48,80 \text{ kN} < k_s \cdot P_{Rd} = 63,93 \text{ kN}$$

La piolatura sull'appoggio è sviluppata per tutto il concio d'appoggio, dunque, essendo soddisfatta la verifica a scorrimento per ritiro sull'appoggio, lo sarà anche nelle sezioni successive (distribuzione triangolare dello scorrimento).

VERIFICA S.L.U. SEZIONE 2 - x = 10 m

Scorrimento dovuto ad azioni permanenti e accidentali (vedi sollecitazioni § 7.3):

 $S = 312 \cdot 0.2 \approx 63 \text{ kN}$

 $T_1 = 63 / 3 = 21,00 \text{ kN} < k_s \cdot P_{Rd} = 63,93 \text{ kN}$

VERIFICA A FATICA SEZIONE 1 - x = 0 m

Per l'opera in esame si eseguiranno le verifiche a fatica con il <u>metodo a vita illimitata</u> utilizzando il <u>carico LM1</u> in conformità al D.M. 14/01/2008 (carichi di progetto e coefficienti di sicurezza), ed alle indicazioni riportate della Circ. Min. Infrastrutture e Trasporti 2 Febbraio 2009, n. 617, relative alle metodologie ed i particolari costruttivi (par. *C.4.2.4.1.5*).

La verifica è poi condotta con il **criterio della vita utile** (Safe Life) assumendo $\gamma_{Mf} = 1,35$ e $\gamma_F = 1$ La curva S-N per i connettori a piolo sollecitati a taglio è riportata nella figura C4.2.24 di [NT_2],

Eurolink S.C.p.A. Pagina 101 di 201

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0

Data 20/06/2011

dove si definisce il valore della classe pari a $\Delta \tau_{\rm C}$ = 90 N/mm².

Lo scorrimento prodotto dai carichi mobili, applicati in conformità a quanto già definite al § 7.3.2, vale S = 225 kN/m, da cui l'incremento di tensione tangenziale:

$$\Delta \tau_{max} = 225 \cdot 10^3 / (25 \cdot A_{piolo}) = 32,0 \text{ N/mm}^2$$

VERIFICA A FATICA SEZIONE 2 - x = 10 m

Per l'opera in esame si eseguiranno le verifiche a fatica con il metodo a vita illimitata utilizzando il carico LM1 in conformità al D.M. 14/01/2008 (carichi di progetto e coefficienti di sicurezza), ed alle indicazioni riportate della Circ. Min. Infrastrutture e Trasporti 2 Febbraio 2009, n. 617, relative alle metodologie ed i particolari costruttivi (par. C.4.2.4.1.5).

La verifica è poi condotta con il **criterio della vita utile** (Safe Life) assumendo $\gamma_{Mf} = 1,35$ e $\gamma_{F} = 1$ La curva S-N per i connettori a piolo sollecitati a taglio è riportata nella figura C4.2.24 di [NT_2], dove si definisce il valore della classe pari a $\Delta \tau_{\rm C}$ = 90 N/mm².

Lo scorrimento prodotto dai carichi mobili, applicati in conformità a quanto già definite al § 7.3.2, vale S = 96 kN/m, da cui l'incremento di tensione tangenziale:

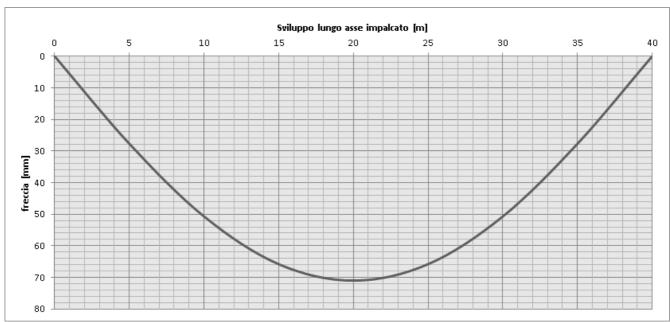
$$\Delta \tau_{max} = 96 \cdot 10^3 / (15 \cdot A_{piolo}) = 22,0 \text{ N/mm}^2$$

$$\gamma_F \cdot \Delta \tau_{\text{max}} = 22 \le \frac{\Delta \tau}{\gamma_{Mf}} = \frac{90}{1,35} = 66,67$$

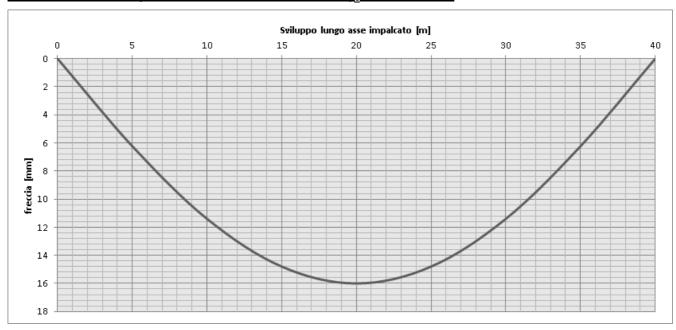
Pagina 102 di 201

Eurolink S.C.p.A.

RELAZIONE DI CALCOLO


Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

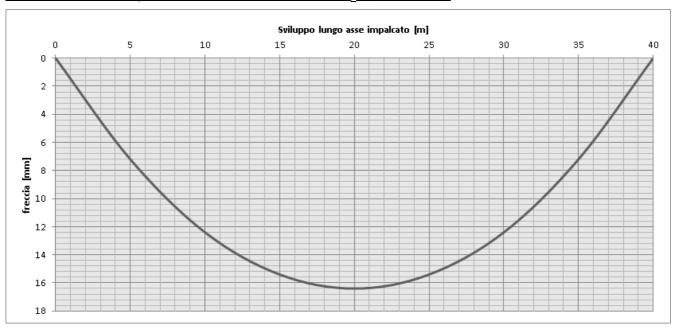

7.4.5 Verifica agli S.L.S. per deformabilità

Si riportano nel seguito le massime deformazioni d'impalcato (per l'opera in oggetto si considerano le deformazioni valutate in mezzeria) conseguenti a ogni singola condizione elementare definite come al § 7.1.

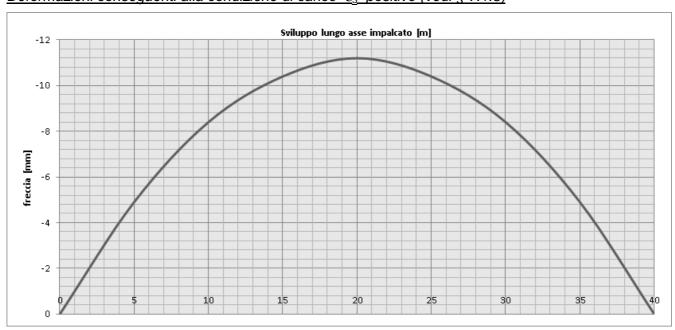
<u>Deformazioni conseguenti alla condizione di carico "g₁" (vedi § 7.1.1)</u>

Deformazioni conseguenti alla condizione di carico "g₃" (vedi § 7.1.2)

Eurolink S.C.p.A. Pagina 103 di 201



RELAZIONE DI CALCOLO

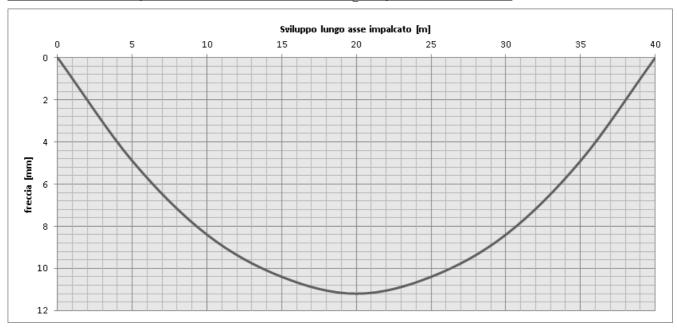

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

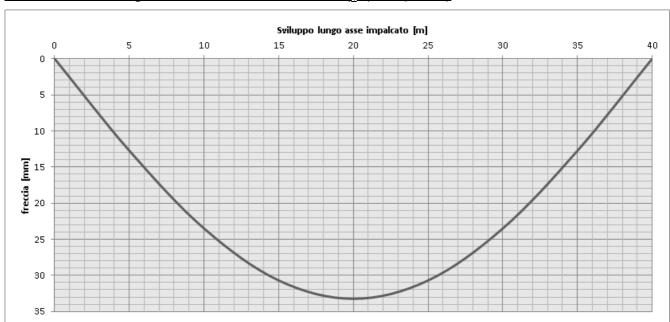
Deformazioni conseguenti alla condizione di carico "\varepsilon\varepsilon" (vedi § 7.1.4)

Deformazioni conseguenti alla condizione di carico "\varepsilong" positivo (vedi \s\rm 7.1.5)

Eurolink S.C.p.A. Pagina 104 di 201



RELAZIONE DI CALCOLO

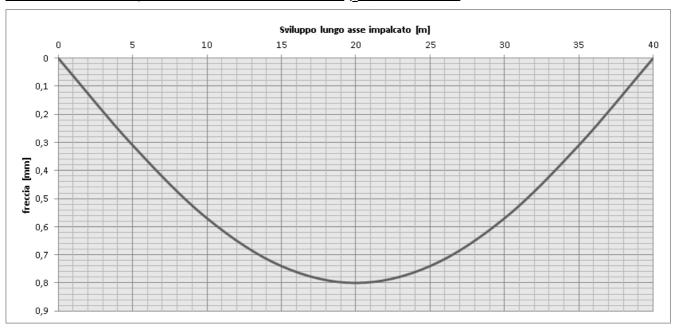

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Deformazioni conseguenti alla condizione di carico "\varepsilon3" negativo (vedi \varepsilon 7.1.5)

Deformazioni consequenti alla condizione di carico "q₁" (vedi § 7.1.6)

Eurolink S.C.p.A. Pagina 105 di 201



RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0 **Data** 20/06/2011

<u>Deformazioni conseguenti alla condizione di carico "q₅" (vedi § 7.1.10)</u>

Eurolink S.C.p.A. Pagina 106 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

7.4.5.1 Schema di contromonta

Per limitare le deformazioni verticali e non avere quindi eccessive "frecce" di tipo permanente si prescrive in fase di costruzione l'adozione di uno schema di contromonta che annulli le deformazioni dovute alle azioni permanenti.

Si riporta nel seguito (in via grafica) il valore di contromonta da predisporre nei punti di giunzione dei conci d'impalcato individuati a 8, 16, 24, 32 m dall'asse appoggi:

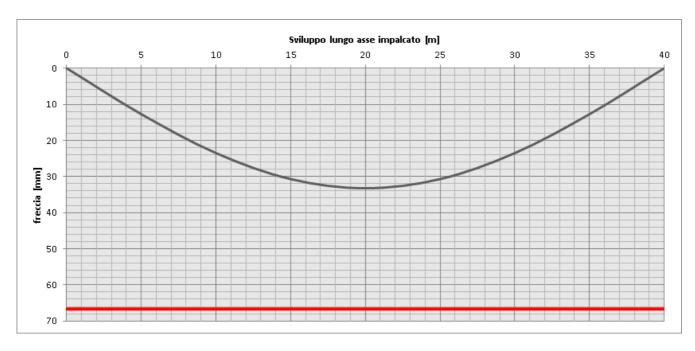
7.4.5.2 Verifica di deformabilità agli S.L.S.

INFLESSIONE NEL PIANO VERTICALE DELL'IMPALCATO

A favore di sicurezza, si considera una limitazione della freccia verticale in accordo con le indicazioni previste per i ponti ferroviari. In accordo con le normative vigenti (vedi §5.2.3.3.2.1 del DM 14.1.2008) il massimo valore di inflessione per effetto dei carichi mobili non deve eccedere il valore L/600.

Dai valori riportati nei paragrafi precedenti di deformabilità si evince la massima deformazione in presenza dei carichi mobili. Si riporta nel seguito le verifica eseguita in forma grafica, riportando in grigio l'andamento della deformazione della trave maggiormente caricata (ripartendo il carico come al § 7.1.6) e in rosso il limite previsto da normativa (per l'opera in oggetto pari a 67 mm):

Eurolink S.C.p.A. Pagina 107 di 201



RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0 Data 20/06/2011

La verifica risulta quindi soddisfatta.

INFLESSIONE NEL PIANO ORIZZONTALE DELL'IMPALCATO

Tale verifica si rimanda a una fase successiva della progettazione.

Eurolink S.C.p.A. Pagina 108 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

8 ANALISI TRASVERSALE D'IMPALCATO

8.1 ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche agli SLS, SLU ed in presenza dell'evento sismico.

Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato: 25 kN/m³
 acciaio: 78,5 kN/m³

8.1.1 Carichi permanenti strutturali (g₁)

Carpenteria metallica = (il calcolo viene eseguito in automatico dal programma di

calcolo utilizzato attribuendo il peso specifico ad ogni elemento

resistente)

Soletta in c.a. = $25,00 \times 0,30 = 7,5 \text{ kN/mg}$

8.1.2 Carichi permanenti portati (g₃)

Pavimentazione 3,00 =3,00 kN/mg Cordoli $25,00 \times 0,18 =$ 4,50 kN/mg Barriere di sicurezza 2,00 =2,00 kN/m = Barriere laterali 4,00 =4,00 kN/m = Elementi di bordo 2,00 =2,00 kN/m **Impianti** 1,00 =1,00 kN/m =

8.1.3 Distorsioni e\o presollecitazioni (ϵ_1)

Non sono presenti azioni di questo tipo.

8.1.4 Ritiro differenziale del calcestruzzo (ε_2)

L'azione non è dimensionante per la verifica trasversale d'impalcato.

Eurolink S.C.p.A. Pagina 109 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

8.1.5 Variazione termica uniforme (ε_3)

L'azione non è dimensionante per la verifica trasversale d'impalcato.

8.1.6 Carichi mobili (q₁)

La disposizione del carico da traffico è svolta in accordo con la normativa vigente (vedi § 5.1.3.3 D.M. 14 -01-2208 e § 4.3 UNI EN 1991-2:2005) come già dettagliatamente descritto al §7.1.6.

Il numero di colonne di carico e la distribuzione trasversale e longitudinale sono svolti in accordo con § 5.1.3.3 D.M. 14 -01-2208 e § 4.2 UNI EN 1991-2:2005, valutando di volta in volta la condizione più gravosa per la verifica e la sezione in esame.

Sulla sezione dell'impalcato in oggetto (larghezza complessiva 15,20 m nel punto più largo – carreggiata larga 11,20 m) devono essere considerate 3 colonne di carico di larghezza 3,00 m sulla carreggiata autostradale; la parte rimanente ($q_{Rk} = 2,5 \text{ kN/m}^2$) misura nel punto di larghezza massima 2,20 m.

Verrà caricata con 1 colonna di carico la parte tra due travi longitudinali per massimizzare le azioni che tendono le fibre inferiori della soletta, mentre verrà caricata la porzione a ridosso della trave centrale per massimizzare le azioni che tendono le fibre superiori della soletta.

8.1.7 Incremento dinamico (q₂)

I carichi mobili definiti nel D.M. 14 gennaio 2008 includono gli effetti dinamici.

8.1.8 Azione di frenamento (q₃)

L'azione non è dimensionante per la verifica trasversale d'impalcato.

8.1.9 Azione centrifuga (q₄)

Per l'opera oggetto di studio, il raggio di curvatura è pari a R = ∞, da cui si ottiene q₄=0 kN.

8.1.10 Azione del vento (q₅)

Come già calcolato in maniera dettagliata al §7.1.10 (a cui si rimanda per maggior dettaglio), l'azione del vento è stata assimilata ad un carico orizzontale statico, diretto ortogonalmente all'asse del ponte.

Eurolink S.C.p.A. Pagina 110 di 201

RELAZIONE DI CALCOLO

Codice documento

Rev F0 Data 20/06/2011

In accordo con la normativa vigente (vedi § 3.3 D.M. 14-01-2008 e § 8 UNI EN 1991-1-4:2005) l'azione del vento sull'impalcato si valuta tramite l'espressione:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d = 0.567 \cdot 3.207 \cdot 1.4 \cdot 1 = 2.545 \text{ kN/mq}$$

Da cui si ottiene l'azione del vento come carico distribuito per unità di lunghezza applicato al baricentro della superficie verticale esposta al vento:

Altezza dell'impalcato $H_{imp} = 2,40 + 0,30 + 0,18 = 2,88 \text{ m}$

Altezza totale della superficie esposta campata $H_{tot} = 2,88 + 3,50 = 6,38 \text{ m}$

Azione del vento campata tipica $F_{w,x} = 6.38 \cdot 2.545 = 16.24 \text{ kN/m}$

8.1.11 Azione sismica (q₆)

L'azione non è dimensionante per la verifica dell'impalcato.

8.1.12 Urto di veicolo in svio (q₈)

In accordo con la normativa vigente (vedi § 5.1.3.10 e § 3.6.3.3.2 del D.M. 14 -01-2208) le forze causate da collisioni accidentali su barriere di sicurezza sono simulate mediante una forza pari a 100 kN applicate all'altezza h sopra il piano viabile pari al min[1m ; H - 0,1 m] con H sommità dell'elemento di barriera resistente. Questa forza deve essere applicata su una linea di lunghezza 0.5 m.

Per l'opera in oggetto, presentando barriere di tipo H4 bordo ponte, l'altezza minore è assunta pari a 1 m dal piano viabile, pertanto vengono applicati alla base del sicurvia una forza orizzontale pari a 200 kN/m e un momento di asse vettore longitudinale pari a 200 kNm/m (entrambe applicate su una linea di lunghezza 50 cm).

L'azione q8 deve essere considerata in concomitanza del 2° schema di carico da traffico verticale isolato, costituito da due impronte di carico pari a 35x60 cmq a interasse 2 m su ciascuna delle quali insiste una forza verticale pari a 200 kN (vedi §5.1.3.3.3 del D.M. 14.01.2008).

8.2 MODELLO DI CALCOLO

8.2.1 PROGRAMMA DI CALCOLO UTILIZZATO

Vedi paragrafo 7.2.1.

Eurolink S.C.p.A. Pagina 111 di 201

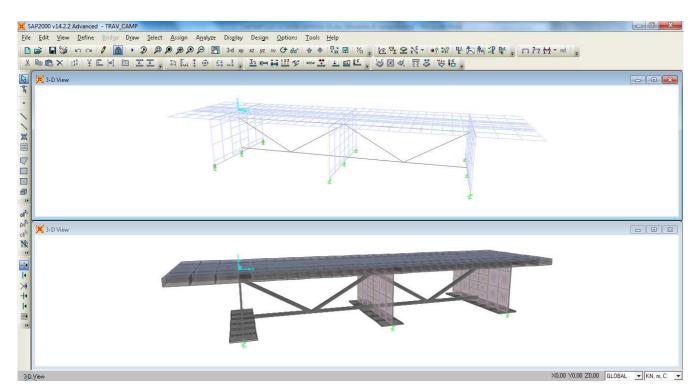
RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

8.2.2 DESCRZIONE DEL MODELLO DI CALCOLO

Lo schema statico adottato è quello una reticolare di travi (vedi elaborati grafici) realizzato mediante un solutore agli Elementi Finiti (vedi figura sottostante F6).


Le travi longitudinali sono modellate mediante 3 elementi:

- le due piattabande sono modellate mediante elementi di tipo "line" delle adeguate dimensioni
- le anime sono modellate mediante elementi di tipo "area" (shell thick) delle adeguate dimensioni

Gli elementi costituenti il traverso tipico reticolare sono modellati mediante elementi di tipo "line".

La soletta in c.a. gettata in opera modellata mediante elementi di tipo "area" (shell thick) adottando il modulo di deformazione secante del calcestruzzo.

Poiché, trasversalmente i traversi metallici reticolari sono disposti a interasse di 5,00 m, il modello analizzerà una lunghezza pari alla lunghezza di influenza di ciascun traverso.

F6. Modello trasversale dell'impalcato agli EF

Il sistema di vincolamento del concio analizzato, sarà sviluppato ipotizzando due condizioni limite:

disposizione di appoggi verticalmente rigidi atti a simulare le zone prossime agli appoggi

Eurolink S.C.p.A. Pagina 112 di 201

RELAZIONE DI CALCOLO

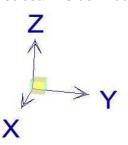
Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

terminali della struttura

 disposizione di appoggi verticalmente cedevoli atti a simulare le zone in campata della struttura; il valore della deformabilità degli appoggi è valutato mediante le note formule di scienza delle costruzioni (vedi riferimento bibliografico [B6]) ipotizzando una trave doppiamente appoggiata, caricata da una carico uniforme (si trascura la variabilità del valore di deformabilità all'interno del concio di lunghezza 5 m)

Il calcolo delle sollecitazioni è stato effettuato con riferimento alle parti di struttura maggiormente sollecitate soggette ai carichi individuati al paragrafo 8.1.


Le analisi, di tipo elastico lineare, sono eseguite per le situazioni di esercizio della struttura (a breve termine), situazioni più critiche per gli elementi costituenti i traversi.

Ai fini delle verifiche di resistenza, per quanto riguarda la prima condizione di carico, la soletta è stata considerata realizzata in un unico getto. Con tale ipotesi si sovrastimano le tensioni sulle travi metalliche e quindi si perviene ad una verifica conservativa della sicurezza.

I traversi di spalla sono invece analizzati nella condizione più critica, ovvero la situazione di sostituzione degli appoggi (sollevamento dell'impalcato), nella quale si considerano assenti i carichi da traffico (vedi §9).

8.2.3 SISTEMA DI RIFERIMENTO E CONVENZIONE DEI SEGNI

Il sistema di riferimento viene assunto con origine sul ciglio interno dell'impalcato, coincidente con il valore di ascissa x=0 del modello. La disposizione degli assi segue la "regola della mano destra":

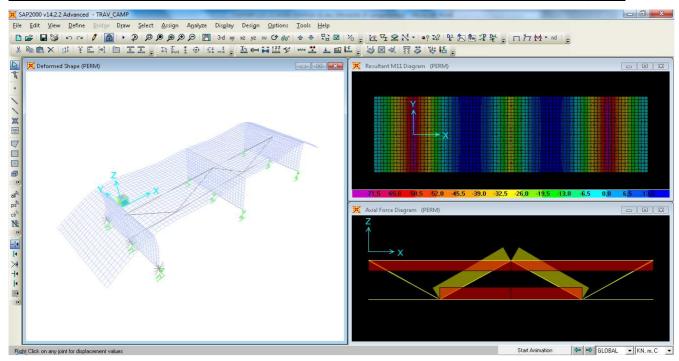
- l'asse X è diretto secondo l'asse trasversale dell'impalcato, positivo dall'interno verso l'esterno;
- l'asse Y è diretto secondo l'asse longitudinale;
- l'asse Z è diretto verso l'alto, positivo verso l'alto.

Si definiscono positive le azioni e sollecitazioni secondo quanto già indicato al §7.2.3.

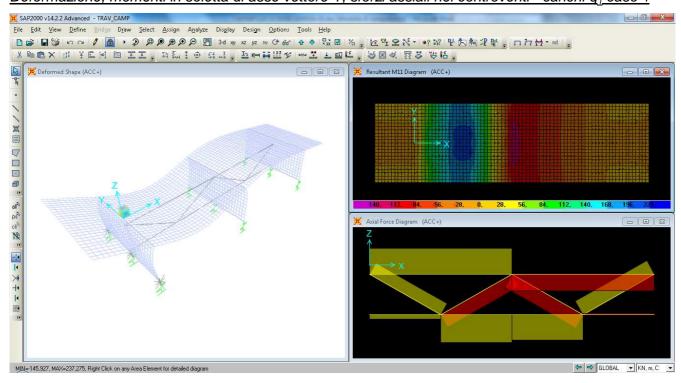
8.3 CALCOLO DELLE SOLLECITAZIONI

Si riportano nel seguito le deformazioni e le tensioni indotte per ogni condizione di carico elementare precedentemente individuata (vedi § 8.1).

Eurolink S.C.p.A. Pagina 113 di 201


RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

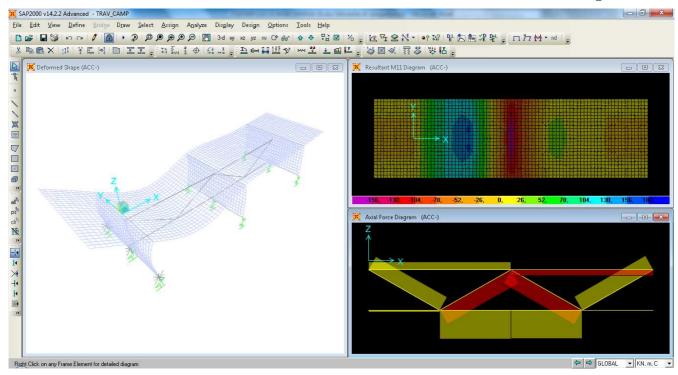

Rev F0 Data 20/06/2011

8.3.1 Modello con vincoli rigidi

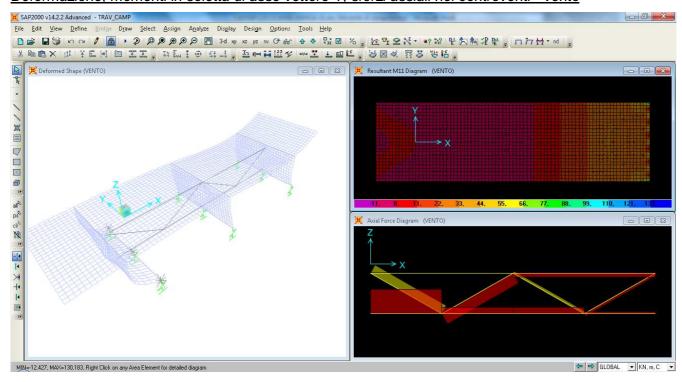
Deformazione, momenti in soletta di asse vettore Y, sforzi assiali nei controventi - carichi perm.

Deformazione, momenti in soletta di asse vettore Y, sforzi assiali nei controventi - carichi q₁ caso 1

Eurolink S.C.p.A. Pagina 114 di 201



RELAZIONE DI CALCOLO

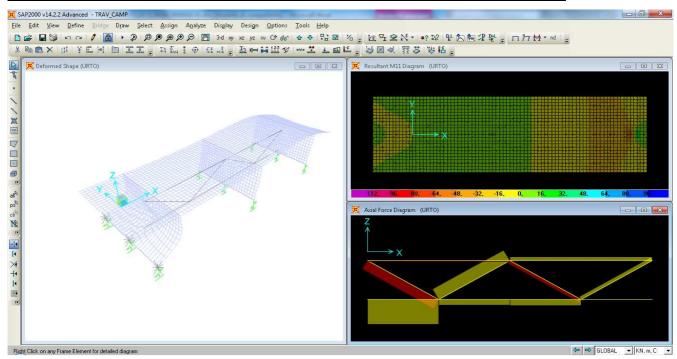

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

Deformazione, momenti in soletta di asse vettore Y, sforzi assiali nei controventi - carichi q1 caso 2

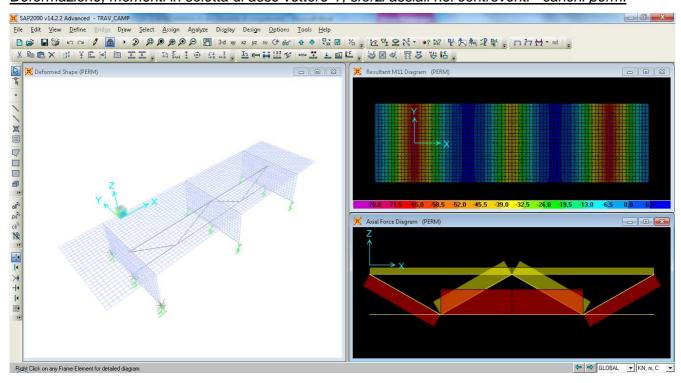
Deformazione, momenti in soletta di asse vettore Y, sforzi assiali nei controventi - vento

Eurolink S.C.p.A. Pagina 115 di 201



RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

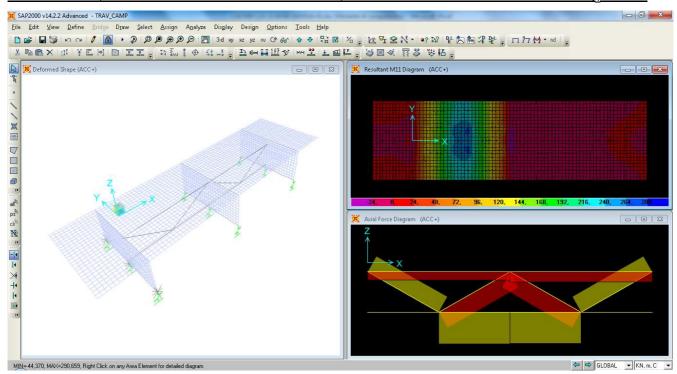

Rev F0 **Data** 20/06/2011

Deformazione, momenti in soletta di asse vettore Y, sforzi assiali nei controventi - urto

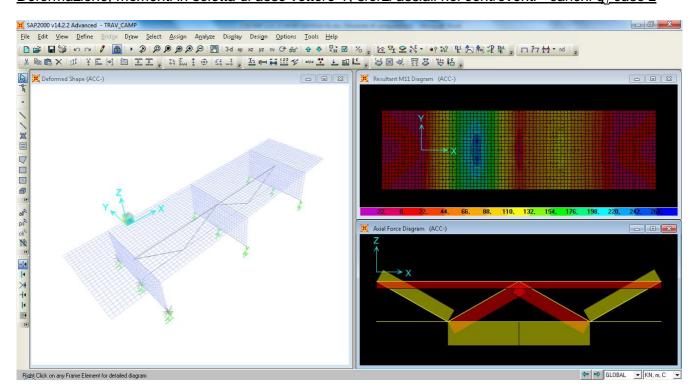
8.3.2 Modello con vincoli cedevoli

Deformazione, momenti in soletta di asse vettore Y, sforzi assiali nei controventi - carichi perm.

Eurolink S.C.p.A. Pagina 116 di 201



RELAZIONE DI CALCOLO

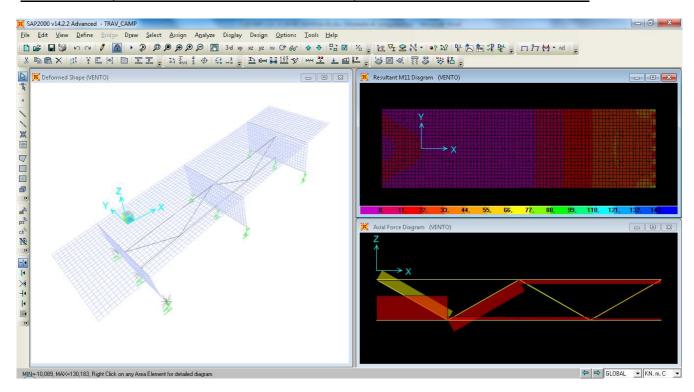

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

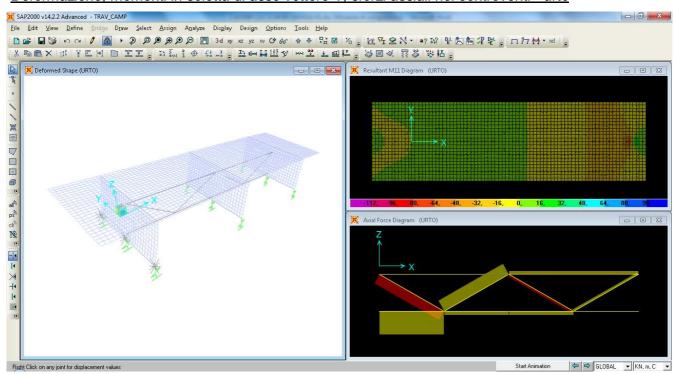
Deformazione, momenti in soletta di asse vettore Y, sforzi assiali nei controventi - carichi q₁ caso 1

Deformazione, momenti in soletta di asse vettore Y, sforzi assiali nei controventi - carichi q1 caso 2

Eurolink S.C.p.A. Pagina 117 di 201



RELAZIONE DI CALCOLO


Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

<u>Deformazione, momenti in soletta di asse vettore Y, sforzi assiali nei controventi</u> - vento

Deformazione, momenti in soletta di asse vettore Y, sforzi assiali nei controventi - urto

Eurolink S.C.p.A. Pagina 118 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

8.3.3 Disamina dei modelli di calcolo implementati

Dall'analisi dei due modelli di calcolo si è dedotto che:

- la condizione di vincolo rigido massimizza le sollecitazioni indotte in soletta che tendono le fibre superiori; il dato osservato è corretto in quanto le travi longitudinali non cedono e quindi tutte le solecitazioni "rimangono" in soletta;
- la condizione di vincolo cedevole massimizza gli sforzi normali nelle aste dei traversi e le sollecitazioni indotte in soletta che tendono le fibre inferiori; il dato osservato è corretto in quanto le travi longitudinali si deformano e gli elementi trasversali devono supplire alla mancanza di rigidezza verticale delle travi, inducendo quindi maggiori sollecitazioni negli elementi resistenti;
- In entrambi i modelli gli effetti flettenti e taglianti nelle aste costituenti il traverso sono trascurabili in quanto di 2 ordini inferiori rispetto alle azioni presenti in soletta (sollecitazioni M e T dell'ordine di 10 kNm e 10 kN rispettivamente);
- L'effetto del vento risulta trascurabile in soletta in termini di azioni flettenti, mentre si traduce in un incremento delle azioni assiali nei controventi;
- E' stata valutata la corretta ripartizione dei carichi mobili sulle travi longitudianli (per validare l'assunzione fatta nel calcolo longitudinale d'impalcato §7.1.6) confrontando le reazioni vincolari del modello agli EF con vincoli cedevoli con i valori desunti dalla ripartizione del carico secondo Courbon-Albenga; la discrepenza tra i risultati è dell'ordine dello 0,001 (ordine del 1‰) confermando quindi l'ottima validità della rispartizione trasversale effttuata per questo tipo di strutture.

Nel seguito si riportano le verifiche degli elementi strutturali, valutando le sezioni più sollecitate.

8.3.4 Combinazioni per gli S.L.U.

Si rimanda al § 7.3.1.

8.3.5 Combinazioni per gli S.L.S.

Si rimanda a una fase successiva della progettazione, in quanto non dimensionanti per le strutture in esame.

Eurolink S.C.p.A. Pagina 119 di 201

RELAZIONE DI CALCOLO

Codice documento CS0341_F0 Rev Data
F0 20/06/2011

8.4 VERIFICA DELLE SEZIONI

8.4.1 Sezione dei controventi tipo L accoppiati 65x130x12

Dalle analisi svolte nei modelli di calcolo, le massime azioni assiali agli SLU per la sezione sono:

N⁺ = +934 kN (considerando la condizione 2 di carico mobile)

 $N^{-} = -339$ kN (considerando la condizione di urto)

Le caratteristiche inerziali della sezione sono:

Con riferimento alle norme vigenti (vedi § 4.2.3.1 del D.M. 14-01-2008 e § 5.5 di EN 1993-1-1:2005) la sezione viene classificata come di **classe 3**:

$$\frac{h}{t} = \frac{130}{12} = 10,83 \le 15 \cdot \sqrt{\frac{235}{f_{yk}}} = 12,5$$

$$\frac{b+h}{2t} = \frac{130+65}{24} = 8,125 \le 11,5 \cdot \sqrt{\frac{235}{f_{yk}}} = 9,315$$

Con riferimento alle norme vigenti si eseguono le verifiche di resistenza e stabilità delle membrature della sezione in esame (vedi § 4.2.4.1.2 e 4.2.4.1.3 del D.M. 14-01-2008).

Eurolink S.C.p.A. Pagina 120 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

VERIFICA DI RESISTENZA

$$\frac{N_{Ed}}{N_{t,Rd}} = \frac{934}{A \cdot \frac{f_{yk}}{\gamma_{M0}}} = \frac{934}{4392 \cdot 338 \cdot 10^{-3}} = 0,629 \le 1 \qquad \text{(la verifica risulta soddisfatta)}$$

VERIFICA DI STABILITA' – piano forte

L'elemento risulta quindi prevalentemente soggetto a sforzo normale; per cui la verifica da eseguire è che $N_{Ed} \le N_{b,Rd}$, con N_{Ed} sforzo normale di progetto e $N_{b,Rd}$ la resistenza a instabilità dell'elemento.

$$\frac{N_{\rm Ed}}{N_{b,\rm Rd}} = \frac{339}{\chi \cdot A \cdot \frac{f_{\rm yk}}{\gamma_{\rm ML}}} = \frac{339}{0.768 \cdot 4392 \cdot 323 \cdot 10^{-3}} = 0.311 \qquad \leq 1 \qquad \text{(la verifica risulta soddisfatta)}$$

dove

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} = 0.768$$

$$\Phi = 0.5 \cdot \left| 1 + \alpha \cdot \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda^2} \right| = 0.852$$

$$\lambda = \sqrt{\frac{A \cdot f_y}{N_{cr}}} = 0,725$$

VERIFICA DI STABILITA' – piano debole

L'elemento risulta quindi prevalentemente soggetto a sforzo normale; per cui la verifica da eseguire è che $N_{Ed} \le N_{b,Rd}$, con N_{Ed} sforzo normale di progetto e $N_{b,Rd}$ la resistenza a instabilità dell'elemento.

$$\frac{N_{\rm Ed}}{N_{b,\rm Rd}} = \frac{339}{\chi \cdot A \cdot \frac{f_{\rm yk}}{\gamma_{\rm ML}}} = \frac{339}{0.648 \cdot 4392 \cdot 323 \cdot 10^{-3}} = 0.368 \qquad \leq 1 \qquad \text{(la verifica risulta soddisfatta)}$$

dove

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} = 0.648$$

Eurolink S.C.p.A. Pagina 121 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

$$\Phi = 0.5 \cdot \left[1 + \alpha \cdot \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda^2} \right] = 1.044$$

$$\lambda = \sqrt{\frac{A \cdot f_y}{N_{cr}}} = 0.919$$

8.4.2 Sezione della soletta in c.a. sp=30 cm

Dalle analisi svolte nei modelli di calcolo, le massime azioni flettenti agli SLU per la sezione sono:

M⁺ = +300 kNm (considerando la condizione 1 di carico mobile)

M = -200 kN (considerando la condizione 2 di carico mobile)

Si prevede un'armatura a flessione pari a:

φ 18 passo 10 cm a 4 cm da estradosso

φ 22 passo 10 cm a 7 cm da intradosso

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata
N Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx Momento flettente assegnato [in daNm] riferito all'asse x baricentrico
N ult Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult Momento flettente ultimo [in daNm] riferito all'asse x baricentrico

Miss.Sic. Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult) e (N, Mx)

Verifica positiva se tale rapporto risulta >=1.000
Yneutro Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi)

C. Rid. Coeff. di riduz momenti per sola flessione in travi continue

Coeff. di riduz. momenti per sola flessione in travi continue Area efficace barre inf. (per presenza di torsione)= 38,0 cm² Area efficace barre sup. (per presenza di torsione)= 25,4 cm²

N.Comb.	Ver	N	Mx	N ult	Mx ult	Mis.Sic.	Yneutro	x/d	C.Rid.
1		0	30000	-26	34779	1,159	23 6	0.26	0 76
_	~	-		-24		,	5,7		- ,

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)

N.Comb.	ec max	ec 3/7	Yc max	ef min	Yf min	ef max	Yf max
1	0,00345	-0,00347	30,0	0,00129	26,0	-0,01000	5,0
2	0,00283	-0,00351	0,0	0,00036	5,0	-0,01000	26,0

Eurolink S.C.p.A. Pagina 122 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

9 VERIFICA DEL TRAVERSO DI SPALLA

In questo paragrafo si conduce la verifica del traverso di spalla.

Tale elemento viene considerato a parte nell'analisi dell'impalcato perché riveste una funzione particolare durante le lavorazioni di manutenzione dell'opera.

Risulta, infatti dimensionante la situazione durante la fase di manutenzione in cui, mediante martinetti, viene sollevato l'impalcato per la sostituzione degli appoggi.

Il traverso di spalla viene realizzato mediante una reticolare di travi che trasferiscono le azioni puntuali dei martinetti agli elementi più resistenti quali le travi principali e la soletta in c.a.

La reticolare è composta da i seguenti elementi metallici:

- corrente inferiore composto da 2 UPN 300 accoppiati
- montanti composto da 4 L accoppiate 140x17
- corrente superiore realizzato mediante un HEB500, solidarizzato alla soletta in c.a. mediante piolatura di tipo nelson

Nella successiva analisi si trascura il contributo offerto dalla soletta, considerando resistenti esclusivamente gli elementi metallici.

9.1 ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche agli SLU. Per i materiali si assumono i seguenti pesi specifici:

- acciaio: 78.5 kN/m³

Le azioni agenti sono esclusivamente i pesi propri del traverso e gli scarichi delle azioni permanenti d'impalcato, assumendo quindi di effettuare la sostituzione durante una finestra di lavoro in assenza di traffico.

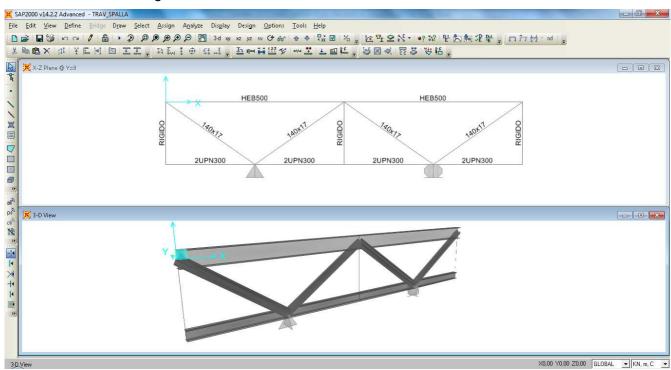
I valori degli scarichi d'impalcato dovute alle azioni permanenti si desumono dal paragrafo 7.3 e si assumono, per ogni appoggio, pari a 1534 kN.

9.2 MODELLO DI CALCOLO

9.2.1 PROGRAMMA DI CALCOLO UTILIZZATO

Vedi paragrafo 7.2.1.

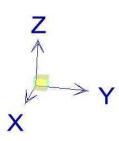
Eurolink S.C.p.A. Pagina 123 di 201


RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

9.2.2 DESCRZIONE DEL MODELLO DI CALCOLO


Lo schema statico adottato è quello una reticolare di travi (vedi elaborati grafici) realizzata mediante un solutore agli Elementi Finiti:

F7. Modello agli EF del traverso di spalla

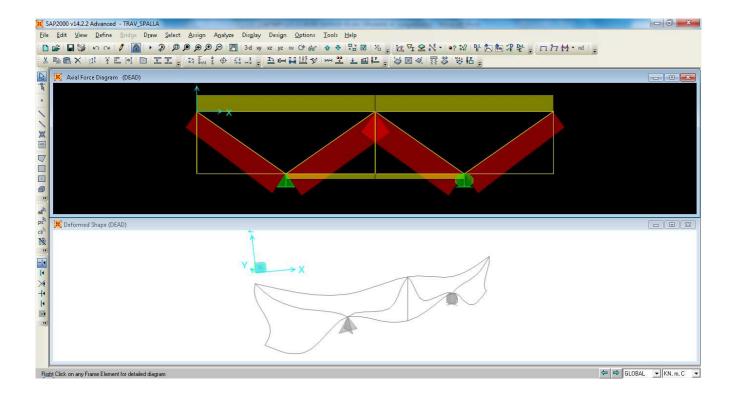
Gli elementi costituenti il traverso di spalla reticolare sono modellati mediante elementi di tipo "line". I vincoli esterni sono costituiti da appoggi disposti nei punti in cui l'impalcato viene sollevato; nel caso in esame si tratta di una reticolare su 2 appoggi. Il calcolo delle sollecitazioni è stato effettuato con riferimento alle parti di struttura maggiormente sollecitate soggette ai carichi individuati al paragrafo precedente.

9.2.3 SISTEMA DI RIFERIMENTO E CONVENZIONE DEI SEGNI

Il sistema di riferimento viene assunto con origine sul ciglio interno dell'impalcato, coincidente con il valore di ascissa x=0 del modello. La disposizione degli assi segue la "regola della mano destra":

- l'asse X è diretto secondo l'asse trasversale dell'impalcato, positivo dall'interno verso l'esterno;
- l'asse Z è diretto verso l'alto, positivo verso l'alto.

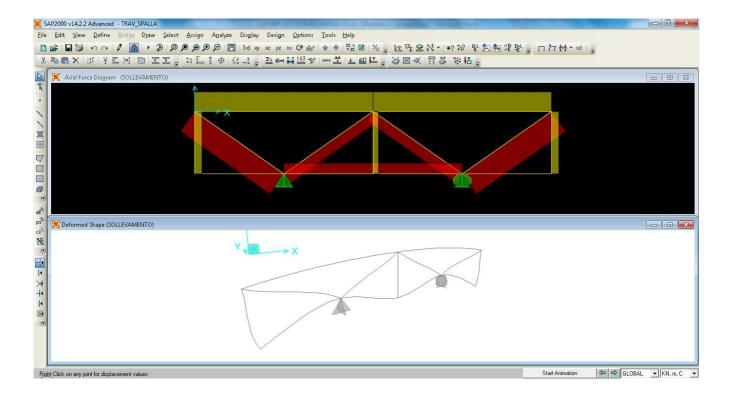
Eurolink S.C.p.A. Pagina 124 di 201



Si definiscono positive le azioni e sollecitazioni secondo quanto già indicato al §7.2.3.

9.3 CALCOLO DELLE SOLLECITAZIONI

Si riportano nel seguito le deformazioni e le tensioni indotte per la condizione per le 2 condizioni di carico elementare precedentemente individuate.


<u>Deformazione e sforzi assiali nei controventi – peso proprio</u>

Eurolink S.C.p.A. Pagina 125 di 201

Deformazione e sforzi assiali nei controventi – sollevamento

9.3.1 Combinazioni per gli S.L.U.

Si rimanda al § 7.3.1.

9.3.2 Combinazioni per gli S.L.S.

Si rimanda a una fase successiva della progettazione, in quanto non dimensionanti per le strutture in esame.

9.4 VERIFICA DELLE SEZIONI

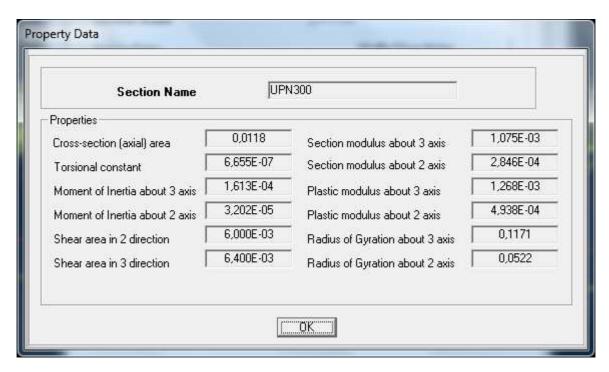
9.4.1 Sezione dei controventi tipo UPN 300

Dalle analisi svolte nei modelli di calcolo, le massime azioni assiali agli SLU per la sezione sono:

 $N^{-} = -1412 \text{ kN}$

Le caratteristiche inerziali della sezione sono:

Eurolink S.C.p.A. Pagina 126 di 201



RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

Con riferimento alle norme vigenti (vedi § 4.2.3.1 del D.M. 14-01-2008 e § 5.5 di EN 1993-1-1:2005) la sezione viene classificata come di **classe 1**:

$$\frac{c}{t} = \frac{76}{16} = 4,75 \le 9 \cdot \sqrt{\frac{235}{f_{yk}}} = 7,29$$

Con riferimento alle norme vigenti si eseguono le verifiche di resistenza e stabilità delle membrature della sezione in esame (vedi § 4.2.4.1.2 e 4.2.4.1.3 del D.M. 14-01-2008).

VERIFICA DI STABILITA'-piano forte

L'elemento risulta quindi prevalentemente soggetto a sforzo normale; per cui la verifica da eseguire è che $N_{Ed} \le N_{b,Rd}$, con N_{Ed} sforzo normale di progetto e $N_{b,Rd}$ la resistenza a instabilità dell'elemento.

$$\frac{N_{\rm Ed}}{N_{\rm b,Rd}} = \frac{1412}{\chi \cdot A \cdot \frac{f_{\rm yk}}{\gamma_{\rm M1}}} = \frac{1412}{0.976 \cdot 11800 \cdot 323 \cdot 10^{-3}} = 0.379 \qquad \leq 1 \qquad \text{(la verifica risulta soddisfatta)}$$

dove

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} = 0.976$$

Eurolink S.C.p.A. Pagina 127 di 201

RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0 Data 20/06/2011

$$\Phi = 0.5 \cdot \left[1 + \alpha \cdot \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda^2} \right] = 0.541$$

$$\lambda = \sqrt{\frac{A \cdot f_y}{N_{cr}}} = 0.246$$

VERIFICA DI STABILITA' -piano debole

L'elemento risulta quindi prevalentemente soggetto a sforzo normale; per cui la verifica da eseguire è che $N_{Ed} \le N_{b,Rd}$, con N_{Ed} sforzo normale di progetto e $N_{b,Rd}$ la resistenza a instabilità dell'elemento.

$$\frac{N_{Ed}}{N_{b,Rd}} = \frac{1412}{\chi \cdot A \cdot \frac{f_{yk}}{\gamma_{M1}}} = \frac{1412}{0.813 \cdot 11800 \cdot 323 \cdot 10^{-3}} = 0.456 \qquad \leq 1 \qquad \text{(la verifica risulta soddisfatta)}$$

dove

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} = 0.813$$

$$\Phi = 0.5 \cdot \left[1 + \alpha \cdot \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda^2} \right] = 0.739$$

$$\lambda = \sqrt{\frac{A \cdot f_y}{N_{cr}}} = 0,552$$

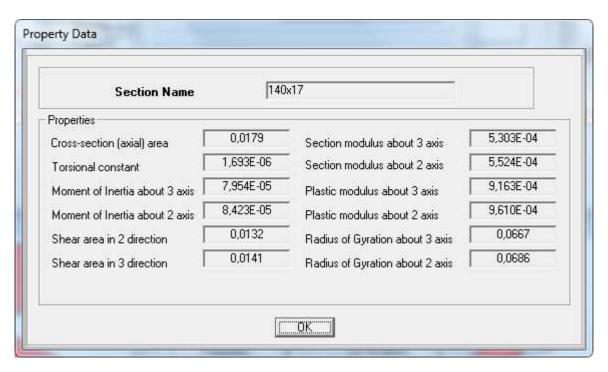
9.4.2 Sezione dei controventi tipo 140x17

Dalle analisi svolte nei modelli di calcolo, le massime azioni assiali agli SLU per la sezione sono:

$$N^{-} = -3500 \text{ kN}$$

Le caratteristiche inerziali della sezione sono:

Eurolink S.C.p.A. Pagina 128 di 201



RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

Con riferimento alle norme vigenti (vedi § 4.2.3.1 del D.M. 14-01-2008 e § 5.5 di EN 1993-1-1:2005) la sezione viene classificata come di **classe 3**:

$$\frac{h}{t} = \frac{140}{17} = 8,23 \le 15 \cdot \sqrt{\frac{235}{f_{yk}}} = 12,5$$

$$\frac{b+h}{2t} = \frac{140+140}{34} = 8,23 \le 11,5 \cdot \sqrt{\frac{235}{f_{yk}}} = 9,315$$

Con riferimento alle norme vigenti si eseguono le verifiche di resistenza e stabilità delle membrature della sezione in esame (vedi § 4.2.4.1.2 e 4.2.4.1.3 del D.M. 14-01-2008).

VERIFICA DI STABILITA' – piano forte

L'elemento risulta quindi prevalentemente soggetto a sforzo normale; per cui la verifica da eseguire è che $N_{Ed} \le N_{b,Rd}$, con N_{Ed} sforzo normale di progetto e $N_{b,Rd}$ la resistenza a instabilità dell'elemento.

$$\frac{N_{\rm Ed}}{N_{\rm b,Rd}} = \frac{3500}{\chi \cdot A \cdot \frac{f_{\rm yk}}{\gamma_{\rm M1}}} = \frac{3500}{0.910 \cdot 17900 \cdot 323 \cdot 10^{-3}} = 0.665 \qquad \leq 1 \qquad \text{(la verifica risulta soddisfatta)}$$

dove

Eurolink S.C.p.A. Pagina 129 di 201

RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0 **Data** 20/06/2011

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} = 0.910$$

$$\Phi = 0.5 \cdot \left[1 + \alpha \cdot \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda^2} \right] = 0.637$$

$$\lambda = \sqrt{\frac{A \cdot f_y}{N_{cr}}} = 0,439$$

VERIFICA DI STABILITA' - piano debole

L'elemento risulta quindi prevalentemente soggetto a sforzo normale; per cui la verifica da eseguire è che $N_{Ed} \le N_{b,Rd}$, con N_{Ed} sforzo normale di progetto e $N_{b,Rd}$ la resistenza a instabilità dell'elemento.

$$\frac{N_{\rm Ed}}{N_{\rm b,Rd}} = \frac{3500}{\chi \cdot A \cdot \frac{f_{\rm yk}}{\gamma_{\rm ML}}} = \frac{3500}{0.905 \cdot 17900 \cdot 323 \cdot 10^{-3}} = 0,669 \qquad \leq 1 \qquad \text{(la verifica risulta soddisfatta)}$$

dove

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} = 0.905$$

$$\Phi = 0.5 \cdot \left[1 + \alpha \cdot \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda^2} \right] = 0.644$$

$$\lambda = \sqrt{\frac{A \cdot f_y}{N_{cr}}} = 0.451$$

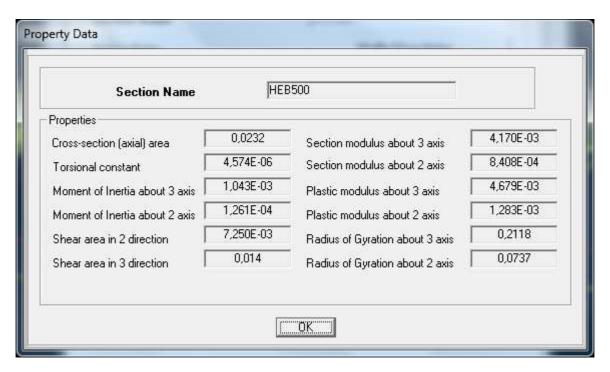
9.4.3 Sezione dei controventi tipo HEB500

Dalle analisi svolte nei modelli di calcolo, le massime azioni assiali agli SLU per la sezione sono:

 $N^+ = +2852 \text{ kN}$

Le caratteristiche inerziali della sezione sono:

Eurolink S.C.p.A. Pagina 130 di 201



RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

Con riferimento alle norme vigenti (vedi § 4.2.3.1 del D.M. 14-01-2008 e § 5.5 di EN 1993-1-1:2005) la sezione viene classificata come di **classe 2**:

$$\frac{c}{t} = \frac{390}{14,5} = 26,89 \le 38 \cdot \sqrt{\frac{235}{f_{yk}}} = 30,78$$

Con riferimento alle norme vigenti si eseguono le verifiche di resistenza e stabilità delle membrature della sezione in esame (vedi § 4.2.4.1.2 e 4.2.4.1.3 del D.M. 14-01-2008).

VERIFICA DI RESISTENZA

$$\frac{N_{\rm Ed}}{N_{\rm t,Rd}} = \frac{2852}{A \cdot \frac{f_{\rm yk}}{\gamma_{\rm M\,0}}} = \frac{2852}{23860 \cdot 338 \cdot 10^{-3}} = 0.353 \le 1 \qquad \text{(la verifica risulta soddisfatta)}$$

Eurolink S.C.p.A. Pagina 131 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

10 VERIFICA DELLE PREDALLES

In questo paragrafo si conduce una verifica della prima fase della soletta in c.a., quando le lastre tralicciate devono sostenere il getto di completamento della soletta.

Le predalles tralicciate hanno spessore 6 cm, tessute trasversalmente tra due travi successive, sulle quali viene eseguito il getto in opera dei rimanenti 24 cm.

Nella prima fase le prédalles hanno un comportamento schematizzabile a trave continua, soggetta al peso proprio, al getto integrativo ed al sovraccarico "di lavorazione" (assunto pari a 1 kN/mq).

Le lastre non si sviluppano monoliticamente per tutta la larghezza dell'impalcato ma sono interrotte in corrispondenza delle piattabande delle travi principali; in tali zone risultano passanti solo le armature dei tralicci. In particolare sull'appoggio centrale la lastra tralicciata si interrompe completamente. Si prescrive quindi il getto della soletta dapprima nella fascia compresa fra le travi principali e dopo sugli sbalzi per scongiurare pericoli di ribaltamento delle lastre.

Il calcolo delle sollecitazioni sugli sbalzi laterali e sulle campate centrali verrà condotto assumendo come luci di calcolo le lunghezze massime delle coppelle delle prédalles e detraendo da esse la misura della parte appoggiata (5cm).

10.1 ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche agli SLS, SLU ed in presenza dell'evento sismico.

Per i materiali si assumono i seguenti pesi specifici:

- calcestruzzo armato: 25 kN/m³

Permanenti + Accidentali:

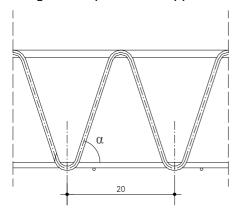
peso proprio =	$0.06 \times 25 = 1.5 \text{ kN/m}^2$	si assume	1,50 kN/m ²
getto integrativo =	$0.24 \times 25 = 6.0 \text{ kN/m}^2$	si assume	6,00 kN/m ²
sovraccarico =		si assume	1,00 kN/m ²
Elemento di bordo =		si assume	1,00 kN/m

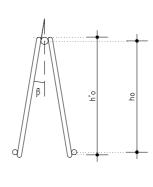
10.2 VERIFICA DELLE SEZIONI

Le verifiche vengono eseguite facendo riferimento allo Stato Limite Ultimo della sezione.

Si verifica che le tensioni sugli elementi metallici che costituiscono il traliccio siano inferiori alla tensione di calcolo (f_{yd} = 391 N/mm² per acciaio B450C) e che la stabilità degli elementi compressi

Eurolink S.C.p.A. Pagina 132 di 201


RELAZIONE DI CALCOLO


Codice documento CS0341_F0

Rev F0 **Data** 20/06/2011

risulti soddisfatta.

Di seguito si riporta una rappresentazione schematica del traliccio.

Altezza totale del traliccio: h'o

Braccio della coppia resistente: $h_0 = h_{0'} - (\phi_{cs} + \phi_{ci}) / 2$

10.2.1 Verifica dello sbalzo

La lunghezza della coppella della predalles risulta, nel punto più sfavorevole, pari a 2,45 m, perciò si assume la seguente luce di calcolo:

$$I_c = 2,45 - 0,05 = 2,40 \text{ m}$$

Si considera a favore di sicurezza lo schema di mensola incastrata.

Di seguito si riportano i carichi definiti in precedenza, i dati geometrici dei tralicci e il calcolo delle sollecitazioni e delle tensioni presenti nei singoli elementi dei tralicci.

Caric	Carichi				
peso proprio predalle	1,50	kN/mq			
getto integrativo	6,00	kN/mq			
sovraccarico	1,00	kN/mq			
elemento di bordo	1,00	kN/m			
Geometria	tralicci				
larghezza lastra	2,5	m			
interasse tralicci	0,50	m			

Eurolink S.C.p.A. Pagina 133 di 201

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

	ø corrente superiore traliccio	22	mm
corr. Sup.	area correnti sup. / lastra	1901	
	ø corrente inferiore traliccio	20	mmq
			mm
	area corrente inf.	314	mmq
Φ	area correnti inf. / lastra	3142	mmq
eriore	momento di inerzia correnti inf.	7854	mmq x mmq
corr. Inferiore	raggio di inerzia correnti inf.	5,00	mm
corr	lunghezza libera di inflessione	20	cm
	lambda correnti inf.	40,00	
	lambda correnti inf.	40	
	coeff. Omega	1,21	
	ø corrente inf. integrativo	20	mm
	area corrente inf. Integrativo	314	mmq
	numero correnti inf. Integrativi	0	num
iore	area correnti inf. / lastra	0	mmq
orr. Inferior integrativo	momento di inerzia correnti inf.	7854	mmq x mmq
corr. Inferiore integrativo	raggio di inerzia correnti inf.	5,00	mmc
Ü	lunghezza libera di inflessione	20	cm
	lambda correnti inf.	40	
	coeff. Omega	1,21	
	altezza totale traliccio	19,00	cm
	altezza utile traliccio	16,90	cm
	ø staffa traliccio	8	mm
	area staffa	50	mmq
	area staffe / lastra	503	mmq
staffe	momento di inerzia staffa	201	mmq x mmq
Šŧ	raggio di inerzia correnti inf.	2,00	mmc
	lunghezza libera di inflessione	17,62	cm
			GIII
	lambda staffe	88	

Eurolink S.C.p.A. Pagina 134 di 201

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

coeff. Omega	2,19	
alfa	1,33	rad
beta	0,1526	rad
lunghezza sbalzo	2,4	m
lunghezza del tratto gettato	2,4	m
Sollecitazioni	unitarie	
М	26,88	kNm/m
Т	21,40	kN/m
Sollecitazioni si	ulla lastra	
М	67,20	kNm/lastra
Т	53,50	kN/lastra
S staffe	55,78	kN/lastra
Tensioni sugli	elementi	
Trazione sui correnti sup.	282,43	N/mmq
Compressione nei correnti inf.	206,75	N/mmq
Compressione nelle staffe	328,06	N/mmq

10.2.2 Verifica in campata

La lunghezza della coppella della predalle risulta 4,50, perciò si assume la seguente luce di calcolo:

 $I_c = 4,50 - 2.0,05 = 4,40 \text{ m}.$

Si considera lo schema di trave doppiamente appoggiata.

Nel calcolo, a favore di sicurezza, non viene considerata la presenza dello sbalzo laterale, ovvero non si considera il contributo favorevole dovuto al momento negativo indotto dallo sbalzo stesso. Di seguito si riportano i carichi definiti in precedenza, i dati geometrici dei tralicci e il calcolo delle sollecitazioni e delle tensioni presenti nei singoli elementi dei tralicci.

.≃	peso proprio predalle	1,50	kN/mq	
Car	getto integrativo	6,00	kN/mq	

Eurolink S.C.p.A. Pagina 135 di 201

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

	sovraccarico	1,00	kN/mq
	numero di tralicci nella lastra	6	m
	ø corrente superiore traliccio	22	mm
	area corrente sup.	380	mmq
Corrente Superiore	area correnti sup. / lastra	2281	mmq
edne	momento di inerzia corrente sup.	11499	mmq x mmq
inte (raggio di inerzia corrente sup.	5,50	mm
Corre	lunghezza libera di inflessione	20	cm
J	lambda correnti sup.	36	
	coeff. Omega	1,16	
φ	ø corrente inferiore traliccio	20	mm
Corrente Inferiore	area corrente inf.	314	mmq
te In	numero di ferri inf. aggiuntivi	0	
orren	ø ferri inf. aggiuntivi	0	mm
ŏ	area ferri aggiuntivi	0	mmq
	altezza totale traliccio	19,00	cm
	altezza utile traliccio	16,90	cm
	ø staffa traliccio	10	mm
	area staffa	79	mmq
	area staffe / lastra	942	mmq
staffe	momento di inerzia staffa	491	mmq x mmq
ste	raggio di inerzia correnti inf.	2,50	mmc
	lunghezza libera di inflessione	17,75	cm
	lambda staffe	71	
	coeff. Omega	1,75	
	alfa	1,30	rad
	beta	0,1469	rad
	larghezza piattabanda	0	m

Eurolink S.C.p.A. Pagina 136 di 201

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

ı		1	
lunghezza sbalzo	0	m	
lunghezza campata	4,4	m	
Momento indotto dagli sbalzi	0,00	kNm/m	
Sollecitazioni un	itarie		
M=	20,57	kNm/m	
T=	19	KN/m	
Sollecitazioni sulla	a lastra		
larghezza lastra	2,50	m	
M=	51,43	kNm/lastra	
T=	46,75	kN/lastra	
S staffe	49,10	kN/lastra	
Tensioni sugli ele	ementi		
Trazione sui correnti inf.	108,97	N/mmq	ок
Compressione nei correnti sup.	208,93	N/mmq	ок
Compressione nelle staffe	123,07	N/mmq	ок
	lunghezza campata Momento indotto dagli sbalzi Sollecitazioni un M= T= Sollecitazioni sulla larghezza lastra M= T= S staffe Tensioni sugli ele Trazione sui correnti inf. Compressione nei correnti sup.	lunghezza campata 4,4 Momento indotto dagli sbalzi 0,00 Sollecitazioni unitarie M= 20,57 T= 19 Sollecitazioni sulla lastra larghezza lastra 2,50 M= 51,43 T= 46,75 S staffe 49,10 Tensioni sugli elementi Trazione sui correnti inf. 108,97 Compressione nei correnti sup. 208,93	lunghezza campata 4,4 m Momento indotto dagli sbalzi 0,00 kNm/m Sollecitazioni unitarie M= 20,57 kNm/m T= 19 KN/m Sollecitazioni sulla lastra larghezza lastra 2,50 m M= 51,43 kNm/lastra T= 46,75 kN/lastra S staffe 49,10 kN/lastra Tensioni sugli elementi Trazione sui correnti inf. 108,97 N/mmq Compressione nei correnti sup. 208,93 N/mmq

Eurolink S.C.p.A. Pagina 137 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

11 ANALISI SISTEMA DI VINCOLAMENTO

Nel seguente paragrafo viene analizzato il sistema di vincolamento dell'opera in oggetto.

Vengono forniti i valori di sollecitazione da scaricare sugli appoggi sia per la spalla "fissa" che per la spalla "mobile", mentre vengono riportati gli spostamenti dovuti alla sola azione termica che devono consentire appoggi e giunti.

Un'analisi di dettaglio per gli spostamenti che devono essere consentiti in fase sismica, per la spalla mobile (spostamenti massimi attesi tra le parti strutturali dell'ordine dei ±15 cm), viene rimandata a una fase successiva della progettazione; tale assunzione non pregiudica il funzionamento della struttura.

11.1 ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche agli SLS, SLU ed in presenza dell'evento sismico. Il sistema di vincolamento previsto è di tipo tradizionale, scaricando le azioni orizzontali longitudinali sulla Spalla B, mentre le azioni trasversali sono ripartite su entrambe le spalle.

Poiché il sistema di vincolamento dovrà sempre rimanere in campo elastico, anche in situazioni di SLU, vengono riportate le caratteristiche prestazionali del sistema esclusivamente per le condizioni di SLU e di Sisma.

11.1.1 Carichi permanenti strutturali (g₁)

Dalle analisi svolte nei paragrafi precedenti si sono ottenuti i valori di massimo taglio all'appoggio per ciascuna trave (vedi §7.1.1e §7.3).

I carichi permanenti strutturali inducono su ogni appoggio un'azione verticale di ≈ -1067 kN.

11.1.2 Carichi permanenti portati (g₃)

Dalle analisi svolte nei paragrafi precedenti si sono ottenuti i valori di massimo taglio all'appoggio per ciascuna trave (vedi §7.1.2 e §7.3).

I carichi permanenti portati inducono su ogni appoggio un'azione verticale di ≈ -467 kN.

Eurolink S.C.p.A. Pagina 138 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

11.1.3 Distorsioni e\o presollecitazioni (ϵ_1)

Essendo la struttura in semplice appoggio e priva di ogni tipo di presollecitazione, tale contributo non è presente su tale opera.

11.1.4 Ritiro differenziale del calcestruzzo (ε_2)

Dalle analisi svolte nei paragrafi precedenti si sono ottenuti i valori di massimo taglio all'appoggio per ciascuna trave (vedi §7.1.4 e §7.3).

Il ritiro differenziale tra soletta e trave induce su ogni appoggio un'azione verticale di ≈ ±16 kN.

11.1.5 Variazione termica uniforme (ε₃)

Dalle analisi svolte nei paragrafi precedenti si sono ottenuti i valori di massimo taglio all'appoggio per ciascuna trave (vedi §7.1.5 e §7.3).

La variazione termica della soletta induce su ogni appoggio un'azione verticale di ≈ ±24 kN.

Oltre all'azione termica differenziale tra soletta e trave, deve essere considerata una variazione termica uniforme da applicare all'intero impalcato, per definire i massimi spostamenti che possono subire gli appoggi sia in senso trasversale che longitudinale.

In accordo con il § 3.5 del D.M. 14-01-2008 e § 6 di UNI EN 1991-1-5:2004, si assume un coefficiente termico pari ad $\alpha = 1,2\cdot 10^{-5}$ e una variazione termica uniforme $\Delta T = \pm 30$ °C. Da cui si ottengono, per l'opera in oggetto, i seguenti valori di progetto:

$$\begin{split} \epsilon_{\Delta T,long} &= \alpha \cdot \Delta T \cdot L_O = 1,2 \cdot 10^{-5} \cdot \pm 30 \cdot 40000 = \pm \ 14,4 \ \text{mm} \ \text{massima deformazione longitudinale} \\ \epsilon_{\Delta T,trasv} &= \alpha \cdot \Delta T \cdot L_O = 1,2 \cdot 10^{-5} \cdot \pm 30 \cdot 18000 = \pm \ 6,5 \ \text{mm} \ \text{massima deformazione trasversale} \\ \text{con} \end{split}$$

Lo dimensione longitudinale dell'opera

L_B dimensione trasversale dell'opera

11.1.6 Carichi mobili (q₁)

Dalle analisi svolte nei paragrafi precedenti si sono ottenuti i valori di massimo taglio all'appoggio per ciascuna trave (vedi §7.1.6 e §7.3).

I carichi mobili inducono sull'appoggio più sollecitato un'azione verticale di ≈ -1119 kN.

Eurolink S.C.p.A. Pagina 139 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

11.1.7 Incremento dinamico (q₂)

I carichi mobili definiti nel D.M. 14 gennaio 2008 includono gli effetti dinamici.

11.1.8 Azione di frenamento (q₃)

In accordo con il § 5.1.3.5 del D.M. 14-01-2008 e § 4.4.1 di UNI EN 1991-2:2005, Il valore caratteristico Q_{lk} , limitato a 900 kN come valore massimo applicabile all'intera lunghezza della struttura, può essere calcolato come una frazione del valore massimo del carico verticale agente, corrispondente allo schema LM1 applicato a una corsia.

Da cui:

$$Q_{lk} = 0.6 \cdot 2 \cdot Q_{1k} + 0.1 \cdot q_{ik} \cdot w_1 \cdot L$$

con

 $180 \text{ kN} \le Q_{1k} \le 900 \text{ kN}$

L luce di calcolo;

w₁ larghezza della colonna di carico.

Per la struttura in esame l'azione di frenamento, applicata a livello del piano viabile, vale:

$$Q_{lk} = 0.6 \cdot 2 \cdot 300 + 0.1 \cdot 9 \cdot 3.00 \cdot 40.00 = 468 \text{ kN}$$

In direzione longitudinale vengono disposti sulla Spalla A i seguenti appoggi:

- 1 appoggio fisso
- 2 appoggi unidirezionali trasversali

Da cui per ogni appoggio resistente si deve considerare un'azione pari a $Q_{lk,i} = 468 / 3 = 156 \text{ kN}$.

11.1.9 Azione centrifuga (q₄)

Per l'opera oggetto di studio, il raggio di curvatura è pari a R = ∞, da cui si ottiene q₄=0 kN.

11.1.10 Azione del vento (q₅)

Dalle analisi svolte nei paragrafi precedenti si sono ottenuti i valori di massimo taglio all'appoggio per ciascuna trave (vedi §7.1.10 e §7.3).

L'effetto torcente del vento sull'impalcato induce sull'appoggio più sollecitato un'azione verticale di ≈ - 37 kN.

Oltre all'azione verticale, bisogna considera sugli appoggi fissi trasversali, l'azione orizzontale dovuta al carico applicato come definito al §7.1.10.

Eurolink S.C.p.A. Pagina 140 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

Essendo la trave in uno schema di semplice appoggio, l'azione trasversale da considerare per ogni spalla (e di conseguenza per ogni appoggio resistente trasversalmente) è pari a:

$$H_{w,x} = 16,24 \cdot 40 / 2 = \pm 325 \text{ kN}$$

11.1.11 Azione sismica (q₆)

Per il tipo di vincolamento pensato, l'azione sismica deve essere "scaricata" alle sottostrutture mediante un sistema tradizionale (mediante la "resistenza" del sistema di vincolamento).

Per definire le sollecitazioni da trasmettere durante un evento sismico si fa ricorso al metodo "pseudostatico", ovvero valutando le azioni secondo la relazione:

$$F_{sis} = S \cdot a_{\alpha} \cdot M$$

dove

S è il coefficiente che tiene conto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) ;

à il valore di accelerazione al suolo caratteristica del sito dell'opera definita come al §4.3;

è la massa di impalcato costituita da tutti i contributi derivanti dalle azioni permanenti (peso propri e permanenti portati) e trascurando le masse dovute a carichi mobili.

L'opera oggetto di questa relazione, possiede una massa M pari a:

$$M = (g_1 + g_2) \cdot L / g = (160 + 70) \cdot 40 / 9,81 = 938 t$$

Con

L luce di calcolo;

g accelerazione di gravità in m/sec².

L'azione sismica sia in direzione longitudinale che in direzione trasversale è pari a $F_{sis} = S \cdot a_g \cdot M = 1,044 \cdot 0,438 \cdot 9,81 \cdot 938 = 4205 \, kN$

In direzione longitudinale vengono disposti sulla Spalla B i seguenti appoggi:

- 1 appoggio fisso
- 2 appoggi unidirezionali trasversali

Da cui per ogni appoggio resistente si deve considerare un'azione pari a $F_{sis,X} = 4205 / 3 = 1401$ kN.

In direzione trasversale vengono disposti i seguenti appoggi:

- 1 appoggio fisso su spalla B
- 1 appoggio unidirezionale trasversale su spalla A

Da cui per ogni appoggio resistente si deve considerare un'azione pari a $F_{sis,Y} = 4205 / 2 = 2102$

Eurolink S.C.p.A. Pagina 141 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

kN.

11.2 CALCOLO DELLE SOLLECITAZIONI

Come già ampliamente descritto al §7.3, le combinazioni di azioni per le verifiche agli stati limite sono definite in accordo al punto 2.5.3 del D.M. 14 gennaio 2008. In particolare si definisco le combinazioni agli SLU come:

$$\sum_{j>1} \gamma_{G,j} \cdot G_{k,j} + \gamma_P \cdot P + \gamma_{Q,1} \cdot Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{k,i}$$

$$E + \sum_{i>1} G_{k,j} + P + \sum_{i>1} \psi_{2,i} \cdot Q_{k,i}$$

con

+ implica "da combinarsi con"

implica "l'effetto combinato di"

 $G_{\mathbf{k}}$ è il valore caratteristico delle azioni permanenti

E è l'azione del sisma per lo stato limite considerato

P è il valore caratteristico delle azioni di precompressione

 Q_k è il valore caratteristico delle azioni variabili

 $\gamma_{\scriptscriptstyle G}$, $\gamma_{\scriptscriptstyle P}$ e $\gamma_{\scriptscriptstyle Q}$ sono i coefficienti parziali delle azioni per gli SLU

 ψ_0, ψ_2 sono i coefficienti di combinazione delle azioni variabili

Le combinazioni di carico adottate per definire le massime azioni sugli appoggi sono le seguenti:

- SLU1 = $1.35 \cdot G_k + 1.20 \cdot \varepsilon_2 + 1.35 \cdot Q_k + 1.5 \cdot 0.6 \cdot Q_5 + 1.2 \cdot 0.6 \cdot \varepsilon_3$
- SLU2 = $1,50 \cdot Q_3$
- SLU3 = $1,50 \cdot Q_5$
- SISX = $1.00 \cdot E_X$
- SISY = 1,00 ⋅ E_Y

essendo:

 G_k pesi propri e carichi permanenti $(g_1 + g_2)$

Q_k carichi mobili (q₁)

Q₃ azione di frenamento

Q₅ azione compatibile del vento

Eurolink S.C.p.A. Pagina 142 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

ε₂ ritiro del calcestruzzo

 ε_{3} . (-10 °C) variazione termica differenziale

 ε_{3+} (+10 °C) variazione termica differenziale

In particolare ciascuna combinazione agli SLU considerata dimensiona una componente di sollecitazione:

- SLU1 massimizza le azioni verticali in condizione ultima
- SLU2 massimizza le azioni orizzontali longitudinali in condizione ultima
- SLU3 massimizza le azioni orizzontali trasversali in condizione ultima
- SISX massimizza le azioni orizzontali longitudinali in condizione sismica
- SISY massimizza le azioni orizzontali trasversali in condizione sismica

11.3 CARATTERISTICHE DEL SISTEMA DI VINCOLAMENTO E DEI GIUNTI

Dalle analisi condotte ai paragrafi precedenti e combinando le azioni elementari secondo quanto indicato al paragrafo 11.2, si ottengono le seguenti azioni e deformazioni massime (espresse in kN o mm) per ogni tipo di appoggio impiegato. In particolare, per le azioni orizzontali, si considerano dimensionanti le azioni in combinazione sismica in quanto superiori di circa 3 volte le azioni agli stati limite ultimi.

APPOGGIO FISSO

$$\begin{aligned} &\text{Fx} &= 1,00 \cdot \text{E}_{\text{X}} = \pm \, 1401 \, \, \text{kN} \\ &\text{Fy} &= 1,00 \cdot \text{E}_{\text{Y}} = \pm \, 2102 \, \, \text{kN} \\ &\text{Fz} &= 1,35 \cdot \text{G}_{\text{k}} + 1,20 \cdot \epsilon_2 + 1,35 \cdot \text{Q}_{\text{k}} + 1,5 \cdot 0,6 \cdot \text{Q}_5 + 1,2 \cdot 0,6 \cdot \epsilon_{3\text{-}} = 1,35 \cdot (-1067 \cdot 467) + 1,20 \cdot (-16) + 1,35 \cdot (-1119) + 1,5 \cdot 0,6 \cdot (-37) + 1,2 \cdot 0,6 \cdot (-24) \\ &\approx - \, 3652 \, \, \text{kN} \end{aligned}$$

Spostamenti $s_X e s_Y = 0 mm$

APPOGGI UNIDIREZIONALI TRASVERSALI

$$\begin{aligned} &\mathsf{Fx} &= 1,00 \cdot \mathsf{E_X} = \pm \, 1401 \, \, \mathsf{kN} \\ &\mathsf{Fy} &= 0 \, \, \mathsf{kN} \\ &\mathsf{Fz} &= 1,35 \cdot \mathsf{G_k} + 1,20 \cdot \epsilon_2 + 1,35 \cdot \mathsf{Q_k} + 1,5 \cdot 0,6 \cdot \mathsf{Q_5} + 1,2 \cdot 0,6 \cdot \epsilon_{3\text{-}} = 1,35 \cdot (-1067 \cdot 467) + 1,20 \cdot (-16) + 1,35 \cdot (-1119) + 1,5 \cdot 0,6 \cdot (-37) + 1,2 \cdot 0,6 \cdot (-24) \\ &\approx - \, 3652 \, \, \mathsf{kN} \end{aligned}$$

Spostamenti $s_X = 0$ mm

Spostamenti s_Y ≈ ± 10 mm

Eurolink S.C.p.A. Pagina 143 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

APPOGGIO UNIDIREZIONALE LONGITUDINALE

$$Fx = 0 kN$$

Fy =
$$1,00 \cdot E_Y = \pm 2102 \text{ kN}$$

Fz = 1,35 · G_k + 1,20 ·
$$\epsilon_2$$
 + 1,35 · Q_k + 1,5 · 0,6 · Q₅ + 1,2 · 0,6 · ϵ_{3-} = 1,35 · (-1067-467) + 1,20 · (-16) + 1,35 · (-1119) + 1,5 · 0,6 · (-37) + 1,2 · 0,6 · (-24) \approx - 3652 kN

Spostamenti s_X ≈ ± 25 mm

Spostamenti $s_Y = 0 \text{ mm}$

APPOGGI MULTIDIREZIONALI

$$Fx e Fy = 0 kN$$

Fz =
$$1.35 \cdot G_k + 1.20 \cdot \varepsilon_2 + 1.35 \cdot Q_k + 1.5 \cdot 0.6 \cdot Q_5 + 1.2 \cdot 0.6 \cdot \varepsilon_{3-} = 1.35 \cdot (-1067-467) + 1.20 \cdot (-16) + 1.35 \cdot (-1119) + 1.5 \cdot 0.6 \cdot (-37) + 1.2 \cdot 0.6 \cdot (-24)$$

 $\approx -3652 \text{ kN}$

Spostamenti s_x ≈ ± 25 mm

Spostamenti s_Y ≈ ± 10 mm

Per quanto riguarda i giunti di dilatazione trasversali (da prevedere in corrispondenza delle spalle), si prescrivono giunti in gomma armata con capacità di dilatazione longitudinale superiore a \pm 25 mm.

Eurolink S.C.p.A. Pagina 144 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

12 ANALISI SOTTOSTRUTTURE

12.1 ANALISI DELLE SPALLE

12.1.1 ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche dagli SLS, SLU ed in presenza dell'evento sismico.

12.1.1.1 Carichi derivanti dall'analisi dell'impalcato

Dalle analisi eseguiti ai paragrafi precedenti (vedi §7e 11) si sono ottenute le azioni applicate agli appoggi della spalla. Per completezza si riporta di seguito un riepilogo di tutte le azioni trasmesse dall'impalcato non fattorizzate.

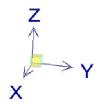
		Fx	Fy	Fz	Mx	Му	Mz
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁			-3.201,00			
permanenti non strutturali	g ₂						
permanenti portati	g ₃			-1.401,00			
distorsioni e presollecitazioni	ε ₁						
ritiro	ε2			-48,00			
variazioni termiche	€3			-72,00			
viscosità	ε4						
carichi mobili	q _{1*} q ₂			-3.357,00			
frenamento	q ₃	468,00					
azione centrifuga	q ₄						
vento	q ₅		325,00		374,00		
sisma (direzione X)	q ₆	4.205,00					
sisma (direzione Y)	q ₆		2.102,50				
sisma (direzione Z)	q ₆			-1.799,38			
resistenze parassite	q ₇						
veicoli in svio	q ₈						
altre azioni variabili	q ₉						

12.1.1.2 Carichi permanenti strutturali e permanenti portati (g₁ - g₃)

Per definire in maniera corretta la geometria della spalla, considerando tutti gli elementi che concorrono a completare il "corpo spalla", si discretizza la stessa in elementi rettangolari. Ciascuna

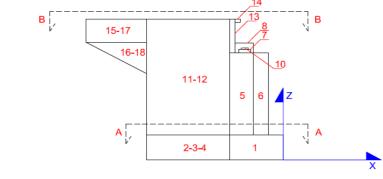
Eurolink S.C.p.A. Pagina 145 di 201

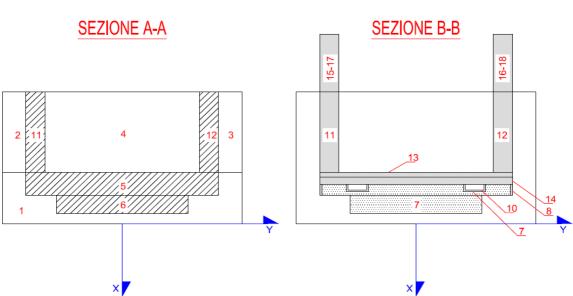
RELAZIONE DI CALCOLO


Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

elemento rettangolare è dotato di 3 dimensioni geometriche (x, y, z) che definiscono la forma dell'elemento e di 3 quote (x_G, y_G, z_G) che identificano la posizione del baricentro dell'elemento rispetto al sistema di riferimento locale adottato.


Con questa discretizzazione è possibile definire, mediante le note formule di geometria delle masse, la posizione del baricentro della spalla e di conseguenza le forze applicate ad esso.


Il sistema di riferimento adottato per la scomposizione della spalla è:

- asse X diretto lungo l'asse di tracciamento;
- asse Y ortogonale all'asse di tracciamento;
- asse Z diretto verso l'alto;
- L'origine del sistema di riferimento è preso sul filo più esterno della spalla in direzione X, in asse di tracciamento in direzione Y, a quota intradosso fondazione in direzione Z.

La spalla rimane scomposta nei seguenti elementi fondamentali:

Eurolink S.C.p.A. Pagina 146 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Dove con ogni numero si sono indicate le parti costituenti la spalla (se un elemento non è presente nella spalla oggetto di questa relazione, presenta dimensioni nulle):

ELEMENTO	Descrizione
1	PORZIONE TRASVERSALE DELLA FONDAZIONE
2	PORZIONE LONGITUDINALE DELLA FONDAZIONE (y>0)
3	PORZIONE LONGITUDINALE DELLA FONDAZIONE (y<0)
4	COMPLETAMENTO DELLA FONDAZIONE
5	MURO FRONTALE
6	RINGROSSO MURO FRONTALE (per appoggi)
7	BAGGIOLI
8	RITEGNI SISMICI TRASVERSALI
9	RITEGNI SISMICI LONGITUDINALI
10	APPARECCHI DI APPOGGIO
11	MURO DI RISVOLTO (Y > 0)
12	MURO DI RISVOLTO (Y < 0)
13	MURO PARAGHIAIA
14	MARTELLO
15	ORECCHIA parte rettangolare (Y>0)
16	ORECCHIA parte triangolare (Y>0)
17	ORECCHIA parte rettangolare (Y<0)
18	ORECCHIA parte triangolare (Y<0)
19	MARCIAPIEDE (y > 0)
20	MARCIAPIEDE (y < 0)
21	GUARD-RAIL + BARRIERA SICUREZZA + VELETTA (y > 0)
22	GUARD-RAIL + BARRIERA SICUREZZA + VELETTA (y < 0)
23	TERRENO A TERGO
24	TERRENO A TERGO (PORZIONE LONGITUDINALE FONDAZIONE)
25	RIVESTIMENTO (FRONTALE)
26	RIVESTIMENTO (y > 0)
27	RIVESTIMENTO (y < 0)

Eurolink S.C.p.A. Pagina 147 di 201

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

ELEMENTO	L _x [m]	L _Y [m]	L _Z [m]	Volume	ρ [kN/m³]	Peso [kN]	x _G [m]	y _G [m]	z _G [m]	Sx [kN*m]	Sy [kN*m]	Sz [kN*m]
1	5,30	15,20	2,50	201,40	25	-5.035,00	-2,65	0,00	1,25	13.342,75	0,00	-6.293,75
2	7,20	1,50	2,50	27,00	25	-675,00	-8,90	6,85	1,25	6.007,50	-4.623,75	-843,75
3	7,20	1,50	2,50	27,00	25	-675,00	-8,90	-6,85	1,25	6.007,50	4.623,75	-843,75
4	7,20	12,20	2,50	219,60	25	-5.490,00	-8,90	0,00	1,25	48.861,00	0,00	-6.862,50
5	2,30	15,20	3,50	122,36	25	-3.059,00	-4,15	0,00	4,25	12.694,85	0,00	-13.000,75
6				0,00		0,00				0,00	0,00	0,00
7	1,20	1,20	0,50	2,16	25	-54,00	-3,80	0,00	6,25	205,20	0,00	-337,50
8	1,80	0,40	1,25	1,79	25	-44,82	-3,90	0,00	6,62	174,80	0,00	-296,82
9				0,00		0,00				0,00	0,00	0,00
10						-30,00	-3,80	0,00	6,60	114,00	0,00	-198,00
11	7,20	1,50	7,38	79,70	25	-1.992,60	-8,90	6,30	6,19	17.734,14	-12.553,38	-12.334,19
12	7,20	1,50	7,12	76,90	25	-1.922,40	-8,90	-6,30	6,06	17.109,36	12.111,12	-11.649,74
13	0,50	15,20	3,50	26,60	25	-665,00	-5,05	0,00	7,75	3.358,25	0,00	-5.153,75
14				0,00		0,00				0,00	0,00	0,00
15				0,00		0,00				0,00	0,00	0,00
16				0,00		0,00				0,00	0,00	0,00
17				0,00		0,00				0,00	0,00	0,00
18				0,00		0,00				0,00	0,00	0,00
19				0,00		0,00				0,00	0,00	0,00
20				0,00		0,00				0,00	0,00	0,00
21						0,00				0,00	0,00	0,00
22						0,00				0,00	0,00	0,00
23	7,20	12,20	7,00	614,88	19	-11.682,72	-8,90	0,00	6,00	103.976,21	0,00	-70.096,32
24				0,00		0,00				0,00	0,00	0,00
25				0,00		0,00				0,00	0,00	0,00
26				0,00		0,00				0,00	0,00	0,00
27				0,00		0,00				0,00	0,00	0,00

TOTALE = 229.585,56 -442,26 -127.910,83

Da cui si ottiene la posizione del baricentro della spalla, rispetto al sistema di riferimento adottato, secondo le seguenti relazioni:

$$\begin{split} Fz &= \Sigma \ Fz_{i} \\ Sx &= \Sigma \ Fz_{i}{}^{*}x_{g,i} \\ Sy &= \Sigma \ Fz_{i}{}^{*}y_{g,i} \\ Sz &= \Sigma \ Fz_{i}{}^{*}z_{g,i} \\ Z_{G} &= S_{z}/F_{z} = \ \textbf{0,01} \ \ m \\ Z_{G} &= S_{z}/F_{z} = \ \textbf{4,08} \ \ m \end{split}$$

12.1.1.3 Carichi dovuti alla spinte a tergo della spalla (g₃)

Il rinterro a ridosso della spalla verrà realizzato tramite materiale arido di buone caratteristiche meccaniche. Per tale materiale si assumono i seguenti parametri:

- peso specifico $\gamma_t = 19 \text{ kN/m}^3$
- angolo di attrito φ=35°

Eurolink S.C.p.A. Pagina 148 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

da cui risulta un coefficiente di spinta attiva λ_a = 0,271 ed un coefficiente di spinta a riposo λ_o = 0,426.

Per le verifiche in condizione GEO, EQU e SIS, si riducono i parametri geotecnici secondo i coefficienti γ_m , ottenendo quindi:

- peso specifico γ_t = 19 kN/m³
- angolo di attrito φ=29,26°

da cui risulta un coefficiente di spinta attiva λ_a = 0,343 ed un coefficiente di spinta a riposo λ_o = 0,511.

Essendo la struttura progettata su fondazione diretta, capace quindi di subire spostamenti di tipo roto-traslazionale, viene considerata la spinta della terra in condizione di <u>spinta attiva</u>.

Si applicano, di conseguenza, i valori delle spinte secondo la profondità con $p_h = \lambda_a \ \gamma_t \ z \ e \ con il consueto diagramma triangolari delle pressioni orizzontali. Oltre alla spinta dovuta al rinterro, viene considerata inoltra la spinta del terreno dovuto alla presenza di un possibile sovraccarico (assunto in via cautelativa pari a q=20 kN/mq, trascurando la diffusione delle tensioni) a tergo della spalla, a quota del piano viabile. Si applicano, di conseguenza, i valori delle spinte secondo la profondità con <math>p_h = q \cdot z \ e \ con il consueto diagramma uniforme delle pressioni orizzontali.$

Per le verifiche locali del paraghiaia in accordo con quanto riportato nella circolare n617 al 5.1.3.3.7.1, il sovraccarico da considerare sul terrapieno adiacente la parete, è quello generato dallo schema di carico 1, dove il carico tandem è sostituito da un carico uniformemente distribuito su un superficie di dimensioni 3x2.2 mq. Il carico tandem trasformato in carico uniformemente distribuito assume il valore 600/(3*2.2)=90.91kN/m², mentre il carico uniformemente distribuito $q_{ik}=9$ kN/m² viene sommato al carico tandem distribuito. Si ottiene quindi il valore complessivo di ≈ 100 kN/mq da applicare a tergo del paraghiaia assumendo, a favore di sicurezza, un diagramma uniforme delle pressioni orizzontali.

Per le verifiche locali del paraghiaia viene considerata anche l'azione di tipo frenante, equivalente a un carico orizzontale in testa paraghiaia di 180 kN e un'azione verticale di 300 kN.

Caratteristiche del sistema muro-terreno:	-	-	-	-
peso per unità di volume terreno		$\gamma_{\text{terreno}} =$	19	kN/m³
angolo di attrito interno del terreno		φ' =	35	o
inclinazione del paramento		ψ =	90	o
angolo di attrito terreno-paramento		δ =	0	0

Eurolink S.C.p.A. Pagina 149 di 201

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento	
CS0341_F0	

Rev F0

Data 20/06/2011

angolo di inclinazione del terrapieno
coefficiente di spinta attiva secondo Coulomb
altezza del paramento + fondazione
larghezza del paramento

$$\beta = 0$$
Ka = 0,271

$$h_{paramento} = 9,50$$

m

$$b_{paramento} = 15,20$$

Calcolo delle spinte sul paramento e loro quota di applicazione:

$$Fx_{sp,terr} = 1/2 * \gamma_{terreno} * h^2_{paramento} * b_{paramento} * K_a = 3.531,57$$
 kN applicata a $z_F = h_{paramento} / 3 = 3,17$ m

$$Fx_{sp,sovracc} = q_{sovraccarico} * h_{paramento} * b_{paramento} * K_a = 782,62$$
 kN applicata a $z_F = h_{paramento} / 2 = 4,75$ m

Per le verifiche in condizione GEO, EQU e SIS, le spinte sono le seguenti:

Caratteristiche del sistema muro-terreno:

peso per unità di volume terreno	$\gamma_{\text{terreno}} =$	19	kN/m³
angolo di attrito interno del terreno	φ' =	29,26	0
inclinazione del paramento	ψ =	90	0
angolo di attrito terreno-paramento	δ =	0	0
angolo di inclinazione del terrapieno	β =	0	0
coefficiente di spinta attiva secondo Coulomb	Ka =	0,343	
altezza del paramento + fondazione	h paramento =	9,50	m
larghezza del paramento	b _{paramento} =	15,20	m

Calcolo delle spinte sul paramento e loro quota di applicazione:

$$Fx_{sp,terr} = 1/2 * \gamma_{terreno} * h^2_{paramento} * b_{paramento} * K_a = 4.475,06 kN$$

applicata a $z_F = h_{paramento} / 3 = 3,17 m$

$$Fx_{sp.sovracc} = q_{sovraccarico} * h_{paramento} * b_{paramento} * K_a = 991,70$$
 kN applicata a $z_F = h_{paramento} / 2 = 4,75$ m

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento CS0341 F0

Rev F0

Data 20/06/2011

12.1.1.4 Azione sismica (q₆)

L'applicazione delle azioni sismiche dovute a inerzia degli elementi strutturali, inerzia del terreno presente sulla platea di fondazione e alla sovra spinta del terreno a tergo, viene affrontata mediante il metodo pseudostatico ([NT_1] § 7.11.6).

In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

L'analisi sismica è stata fatta considerando il valore di ancoraggio dello spettro.

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per i coefficienti sismici definiti al §4.3.

Per quanto riquarda l'azione sismica dovuta all'incremento di spinta del terreno, essendo le spalle opere a comportamento deformabile (potendo permettere movimenti relativi di roto-traslazione fra struttura e terreno), l'azione viene valutata in accordo con UNI EN 1998-5:2005 secondo la relazione di Mononobe-Okabe:

$$\beta \leq \phi - \theta \colon \qquad K = \frac{ \operatorname{sen}^2 \left(\psi + \phi - \theta \right) }{ \operatorname{cos} \theta \, \operatorname{sen}^2 \psi \, \operatorname{sen} \left(\psi - \theta - \delta \right) \left[1 + \sqrt{ \frac{\operatorname{sen} \left(\phi + \delta \right) \operatorname{sen} \left(\phi - \beta - \theta \right) }{ \operatorname{sen} \left(\psi - \theta - \delta \right) \operatorname{sen} \left(\psi + \beta \right) } \right]^2 }$$

$$\beta > \phi - \theta \colon \qquad K = \frac{ \operatorname{sen}^2 \left(\psi + \phi - \theta \right) }{ \operatorname{cos} \theta \, \operatorname{sen}^2 \psi \, \operatorname{sen} \left(\psi - \theta - \delta \right) }$$

$$\beta > \phi - \theta$$
: $K = \frac{\sin^2(\psi + \phi - \theta)}{\cos \theta \sin^2 \psi \sin(\psi - \theta - \delta)}$

In cui:

è il valore di progetto dell'angolo di resistenza a taglio del terreno, cioè: $\phi'_d = tan^{-1} \Big(\frac{tan\phi'}{\gamma_{\phi'}} \Big);$ ϕ'_d

 ψ e β sono gli angoli di inclinazione rispetto all'orizzontale, rispettivamente della parete del muro rivolta a monte e della superficie del terrapieno, come mostrato in figura E.1;

è il valore di progetto dell'angolo di attrito tra terreno e muro, cioè: $\delta_d = \tan^{-1}\left(\frac{\tan\delta}{\gamma_d}\right)$; $\delta_{\sf d}$

è l'angolo definito sotto nei punti da E.5 a E.7. θ

Il punto di applicazione della spinta è posto h_{tot}/2, con "h_{tot}" altezza del muro di sostegno.

Nelle verifiche allo Stato Limite Ultimo, i valori dei coefficienti sismici orizzontali k_h e verticale k_v possono essere valutati mediante le espressioni:

$$k_h=\beta_m \cdot \frac{a \max}{g}$$
 $k_v=\pm 0.5^* k_h$

dove

accelerazione orizzontale massima attesa al sito pari a 0,457g; a_{max}

accelerazione di gravità; g

Eurolink S.C.p.A. Pagina 151 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

 β parametro riduttivo dell'azione sismica in accordo con il §7.11.6.2.1 di [NT_1] (cautelativamente si assumerà β = 0,35).

Per quanto premesso e in accordo con il §7.11.6.2.1 del D.M. 14.01.2008, si ottengono le seguenti forze sismiche applicate al sistema "spalla":

Forze inerziali orizzontali e verticali

$$F_{x,y} = W \cdot k_h = 31.325,54 \cdot 0,160$$
 = 5.010,52 kN
 $F_z = W \cdot k_h = 31.325,54 \cdot 0,080$ = 2.505,26 kN

con

W peso complessivo del sistema "corpo spalla" espresso in kN

Sovra spinta del terreno a tergo della spalla

$$\tan\Theta = \text{kh / (1 + kv)} = 0,148$$

 $\Theta = 0,147$ rad
 $K = 0,443$
 $\Delta K = (1+kv)*K - Ka = 0,135$ (incremento di spinta sismica)

Fx_{sis,terr} = 1/2 *
$$\gamma_{\text{terreno}}$$
 * $h^2_{\text{paramento}}$ * $b_{\text{paramento}}$ * ΔK = 1.762,41 kN applicata a z_F = h paramento / 2 = 4,75 m

12.1.2 MODELLO DI CALCOLO

12.1.2.1 PROGRAMMA DI CALCOLO UTILIZZATO

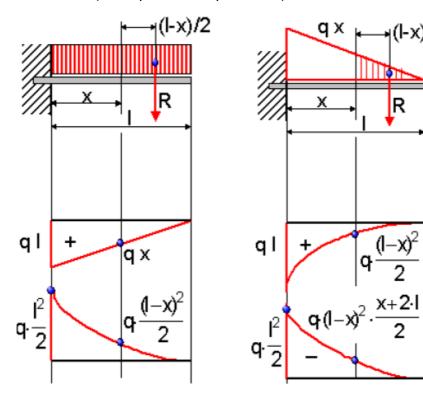
Vedi paragrafo 7.2.1.

12.1.2.2 DESCRZIONE DEL MODELLO DI CALCOLO

Si sono analizzati due diversi modelli di calcolo.

1° Modello = è un modello semplificato che schematizza gli elementi verticali, costituenti la spalla

Eurolink S.C.p.A. Pagina 152 di 201



RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

come mensole di profondità unitaria, incastrate alla platea di fondazione e soggette ai carichi precedentemente analizzati (ridotti per unità di profondità):

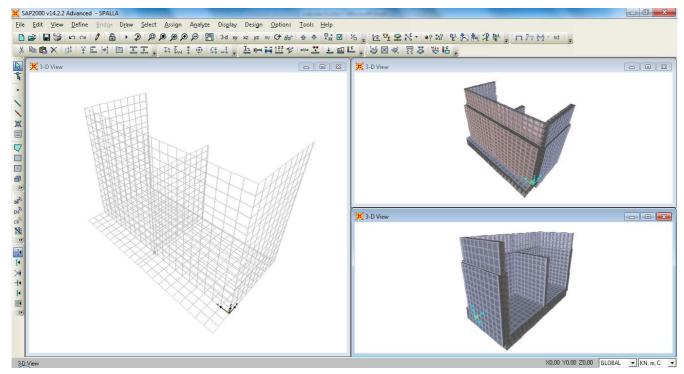
2° Modello = è un modello agli elementi finiti (EF) dove le singole componenti strutturali sono state modellate mediante elementi di tipo "Area" (shell tick element) con modellazione del comportamento bidimensionale alla Mindlin, includendo quindi anche le deformazioni taglianti degli elementi (vedi figura F8).

Di seguito si riportano le caratteristiche dei materiali e delle sezioni implementati nel modello.

TABLE: Material Properties 02 - Basic Mechanical Properties								
Material	UnitWeight	UnitMass	E1	G12	U12	A1		
Text	KN/m3	KN-s2/m4	KN/m2	KN/m2	Unitless	1/C		
C28/35	25	2,5	33923000	14134583,33	0,2	0,0000099		
C32/40	25	2,5	35013000	14588750	0,2	0,0000099		

TABLE: Area Section Properties							
Section	Material	MatAngle	AreaType	Туре	DrillDOF	Thickness	BendThick
Text	Text	Degrees	Text	Text	Yes/No	m	m
sp100	C32/40	0	Shell	Shell-Thick	Yes	1	1

Eurolink S.C.p.A. Pagina 153 di 201



RELAZIONE DI CALCOLO

Codice documento	Rev	Data
CS0341_F0	F0	20/06/2011

sp150	C32/40	0	Shell	Shell-Thick	Yes	1,5	1,5
sp230	C32/40	0	Shell	Shell-Thick	Yes	2,3	2,3
sp250	C28/35	0	Shell	Shell-Thick	Yes	2,5	2,5
sp50	C32/40	0	Shell	Shell-Thick	Yes	0,5	0,5
sp80	C32/40	0	Shell	Shell-Thick	Yes	0,8	0,8

F8. Modello agli EF della spalla

L'interazione col terreno al di sotto della platea di fondazione è stata modellata mediante elementi ci connessione (link element) con comportamento elastico non lineare (dove la non linearità è dettata dal fatto che l'elemento link reagisce solo a compressione).

La rigidezza degli elementi "link" "molle" è stata definita in funzione della deformabilità del terreno, della geometria della fondazione e della deformabilità della fondazione. In particolare si definisce la rigidezza dell'elemento "link", ricorrendo al metodo di Vesić (vedi riferimento bibliografico [B32]), il quale definisce in primo luogo il modulo di reazione del terreno come:

$$k_s = \frac{k_s'}{B} = \frac{0.65}{B} \cdot 12 \sqrt{\frac{E_s \cdot B^4}{E_F \cdot I_F}} \cdot \frac{E_s}{1 - \mu^2} \quad kN / m^3$$

indicando con:

 E_s , E_F = moduli elastici di deformazione rispettivamente del terreno e della fondazione [kN/m²]

Eurolink S.C.p.A. Pagina 154 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

B = dimensione trasversale della fondazione [m]

 I_F = momento d'inerzia della fondazione (riferito alla sezione retta) [m⁴]

 μ = coefficiente di Poisson

Secondo la caratterizzazione geologico\geotecnica desunta dalla campagna indagini eseguita, la zona in cui ricade l'opera presenta un modulo di deformazione medio pari a Es = 54450,5 kN/m² (vedi § 4.2). Il terreno al di sotto della fondazione rimane così definito:

```
\mu =
          0,2
E_S =
          54450,5
                        kN/mg
E_F =
          33923000
                        kN/mq
B=
          15,20
                        m^4
I_F =
          19,79
ks =
          2.740,53
                        kN/mc
```

Il valore implementato nel modello di calcolo è quindi pari a 2,740 N/m³.

Tale modello ha permesso di validare le sollecitazioni ottenute dal modello semplificato e soprattutto definire le sollecitazioni \ tensioni che si formano all'interno della platea di fondazione e le pressioni indotte sul terreno.

12.1.3 CALCOLO DELLE SOLLECITAZIONI "MODELLO SEMPLIFICATO"

Si applicano le combinazioni di carico del DM 14. 01 .2008. Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, si dovranno considerare, generalmente, le combinazioni riportate in Tab. 5.1.IV di [NT_1]. Per un maggior dettaglio sulle combinazioni di carico considerate si rimanda al §7.3.

Si riportano nel seguito i valori di sollecitazione N, M e T per ogni condizione e combinazione di carico precedentemente individuata (vedi §12.1.1).

12.1.3.1 Sollecitazioni base paraghiaia

CARATTERISTICHE GEOMETRICHE PARAGHIAIA e AZIONI ALLA BASE

H =	3,50	m	altezza paraghiaia
$b_0 =$	0,50	m	spessore paraghiaia

$$\mathbf{S_t} = \frac{1}{2} \cdot \gamma_{\text{terreno}} \cdot \mathbf{k_a} \cdot \mathbf{H}^2 = \mathbf{31,54}$$
 kN/m azione orizzontale dovuta alla spinta attiva del terreno $\mathbf{S_a} = \mathbf{q}_{\text{sovraccarico}} \cdot \mathbf{k_a} \cdot \mathbf{H} = \mathbf{94,85}$ kN/m azione orizzontale dovuta alla spinta attiva del sovraccarico

Eurolink S.C.p.A. Pagina 155 di 201

RELAZIONE DI CALCOLO

Codice documento

Rev F0 Data 20/06/2011

CS0341_F0

S_{fren}	=
S_{i}	= $25 \cdot b_0 \cdot H \cdot kh =$

180,00 kN/m azione orizzontale dovuta al frenamento6,71 kN/m azione orizzontale dovuta all'inerzia simica

 $\mathbf{S_{ts}} = \gamma_{\text{terreno}} \cdot \Delta \mathbf{K} \cdot \mathbf{H}^2 =$

25,88 kN/m azione orizzontale dovuta alla sovra spinta sismica del terreno

 $\mathbf{M_t} = S_t \cdot H/3 =$ $\mathbf{M_q} = Sq \cdot H/2 =$

36,79 kNm/m azione flettente dovuta alla spinta attiva del terreno165,98 kNm/m azione flettente dovuta alla spinta attiva del sovraccarico

 $\mathbf{M_{fren}}$ = Sfren · H/2 = $\mathbf{M_i}$ = S_i · H/2 =

315,00 kNm/m azione flettente dovuta al frenamento11,74 kNm/m azione flettente dovuta all'inerzia simica

 $\mathbf{M_{ts}} = S_{ts} \cdot H/2 =$

45,29 kNm/m azione flettente dovuta alla sovra spinta sismica del terreno

 $\mathbf{N_g}$ = $25 \cdot b_0 \cdot H$ = $\mathbf{N_{fren}}$ =

-43,75 kN/m azione verticale dovuta al peso proprio-300,00 kN/m azione verticale dovuta al frenamento

 $\mathbf{N}_{\mathbf{g},\mathbf{sis}} = 25 \cdot \mathbf{b}_0 \cdot \mathbf{H} \cdot \mathbf{kv} =$

-3,35 kN/m azione verticale dovuta all'inerzia sismica

AZIONI NELLA SEZIONE DI BASE: SLU - STR

My = 746,24 kNm/m Fz = -509,06 kN/m Fx = 440,62 kN/m

AZIONI NELLA SEZIONE DI BASE: SLU - sisma

My = 93,82 kNm/m Fz = -47,10 kN/m Fx = 64,12 kN/m

AZIONI NELLA SEZIONE DI BASE: SLS - FR

My = 161,28 kNm/m Fz = -43,75 kN/m

AZIONI NELLA SEZIONE DI BASE: SLS - QP

My = 36,79 kNm/m Fz = -43,75 kN/m

Eurolink S.C.p.A. Pagina 156 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

12.1.3.2 Sollecitazioni base muri andatori

CARATTERISTICHE GEOMETRICHE MURI ANDATORI e AZIONI ALLA BASE

H =	7,00	m	altezza murc	altezza muro laterale				
$b_0 =$	1,50	m	spessore mu	ıro laterale				
S_t	= $\frac{1}{2} \cdot \gamma_{\text{terreno}} \cdot \mathbf{k}$	$x_a \cdot H^2 =$	126,15	kN/m	azione orizzontale dovuta alla spinta attiva del terreno			
\mathbf{S}_{q}	= $q_{sovraccarico} \cdot k_a$	_э · Н =	37,94	kN/m	azione orizzontale dovuta alla spinta ativa del sovraccarico			
S_{i}	$= 25 \cdot b_0 \cdot H \cdot k$	kh =	40,24	kN/m	azione orizzontale dovuta all'inerzia simica			
\mathbf{S}_{ts}	= $\gamma_{\text{terreno}} \cdot \Delta \mathbf{K} \cdot$	$H^2 =$	103,53	kN/m	azione orizzontale dovuta alla sovra spinta sismica del terreno			
\mathbf{M}_{t}	$= S_t \cdot H/3 =$		294,34	kNm/m	azione flettente dovuta alla spinta attiva del terreno			
\mathbf{M}_{q}	= Sq ⋅ H/2 =		132,79	kNm/m	azione flettente dovuta alla spinta attiva del sovraccarico			
$\mathbf{M}_{\mathbf{i}}$	$= S_i \cdot H/2 =$		140,84	kNm/m	azione flettente dovuta all'inerzia simica			
\mathbf{M}_{ts}	$= S_{ts} \cdot H/2 =$		362,34	kNm/m	azione flettente dovuta alla sovra spinta sismica del terreno			
N_{g}	$= 25 \cdot b_0 \cdot H =$		-262,50	kN/m	azione verticale dovuta al peso proprio			
$N_{g,sis}$	$= 25 \cdot b_0 \cdot H \cdot k$	<v =<="" th=""><th>-20,12</th><th>kN/m</th><th>azione verticale dovuta all'inerzia sismica</th></v>	-20,12	kN/m	azione verticale dovuta all'inerzia sismica			

AZIONI NELLA SEZIONE DI BASE: SLU - STR

My = 576,62 kNm/m Fz = -354,38 kN/m Fx = 221,51 kN/m

AZIONI NELLA SEZIONE DI BASE: SLU - SISMA

My = 797,53 kNm/m Fz = -282,62 kN/m Fx = 269,91 kN/m

AZIONI NELLA SEZIONE DI BASE: SLS - FR

My = 393,93 kNm/m Fz = -262,50 kN/m

AZIONI NELLA SEZIONE DI BASE: SLS - QP

My = 294,34 kNm/m Fz = -262,50 kN/m

Eurolink S.C.p.A. Pagina 157 di 201

RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0 Data 20/06/2011

12.1.3.3 Sollecitazioni base muro frontale

CARATTERISTICHE GEOMETRICHE MURO FRONTALE e AZIONI ALLA BASE

H =	7,00	m	altezza muro	frontale + pa	araghiaia					
$b_0 =$	2,30	m	spessore del	spessore del muro frontale						
ex _{appoggi} =	0,35	m	posizione in d	posizione in direzione X degli appoggi (positiva se a destra del baricentro muro frontale)						
ez _{appoggi} =	3,80	m	posizione in d	lirezione Z de	egli appoggi					
-	= $\frac{1}{2} \cdot \gamma_{\text{terreno}} \cdot \mathbf{k}$			126,15	kN/m	azione orizzontale dovuta alla spinta attiva del terreno				
S_q	$= q_{sovraccarico} \cdot k_a$	· H =		37,94	kN/m	azione orizzontale dovuta alla spinta ativa del sovraccarico				
S_{i}	= $25 \cdot (b_0 \cdot H_{mu})$	ro + b _p ·	H_p) · kh =	61,70	kN/m	azione orizzontale dovuta all'inerzia simica				
S_{ts}	= $\gamma_{\text{terreno}} \cdot \Delta \mathbf{K} \cdot$	$H^2 =$		103,53	kN/m	azione orizzontale dovuta alla sovra spinta sismica del terreno				
$S_{arepsilon 3}$	= $Fx_{\varepsilon 3}$ / $L_{paramen}$	to =		0,00	kN/m	azione orizzontale dovuta alle azioni termiche d'impalcato				
S_{q3}	= Fx _{q3} / L _{parament}	to =		30,92	kN/m	azione orizzontale dovuta al frenamento sull'impalcato				
S_{q5}	= Fx _{q5} / L _{parament}	to =		0,00	kN/m	azione orizzontale dovuta al vento agente sull'impalcato				
S_{q6}	= Fx _{q6} / L _{parament}	to =		265,46	kN/m	azione orizzontale dovuta all'inerzia dell'impalcato				
\mathbf{M}_{t}	$= S_t \cdot H/3 =$			294,34	kNm/m	azione flettente dovuta alla spinta attiva del terreno				
\mathbf{M}_{q}	= Sq ⋅ H/2 =			132,79	kNm/m	azione flettente dovuta alla spinta attiva del sovraccarico				
\mathbf{M}_{i}	$= S_i \cdot H/2 =$			215,96	kNm/m	azione flettente dovuta all'inerzia simica				
M_{ts}	$= S_{ts} \cdot H/2 =$			362,34	kNm/m	azione flettente dovuta alla sovra spinta sismica del terreno				
$M_{\epsilon 3}$	= S _{ε3} * ez _{appoggi}	=		0,00	kNm/m	azione flettente dovuta alle azioni termiche d'impalcato				
M_{q3}	= S _{q3} * ez _{appoggi}	=		117,50	kNm/m	azione flettente dovuta al frenamento sull'impalcato				
M_{q5}	= S _{q5} * ez _{appoggi}	=		0,00	kNm/m	azione flettente dovuta al vento agente sull'impalcato				
M_{q6}	= S _{q6} * ez _{appoggi}	=		1.008,75	kNm/m	azione flettente dovuta all'inerzia dell'impalcato				
$\mathbf{M}_{pp\text{-impal.}}$	= N _{pp-imp.} * ex _{app}	ooggi =		105,97	kNm/m	azione flettente dovuta al peso proprio d'impalcato				
$\mathbf{M}_{\text{mob-impal.}}$	= N _{mob-imp.} * ex _a	ppoggi =		77,30	kNm/m	azione flettente dovuta ai carichi mobili sull'impalcato				
M _{vento-impal.}	= N _{vento-imp.} * ex	appoggi =		0,00	kNm/m	azione flettente dovuta al vento verticale sulll'impalcato				
$\mathbf{M}_{sis-impal.}$	= N _{sis-imp.} * ex _{app}	ooggi =		23,21	kNm/m	azione flettente dovuta all'inerzia d'impalcato in direzione verticale				
N_{g}	= $25 \cdot (b_0 \cdot H_{mu})$	ro + b _p ·	H _p) =	-245,00	kN/m	azione verticale dovuta al peso proprio				
$N_{g,sis}$	$= 25 \cdot b_0 \cdot H \cdot k$	KV =		-18,78	kN/m	azione verticale dovuta all'inerzia sismica				
$N_{\text{pp-impal.}}$	$= Fz_{g1+g3} / L_{paran}$	mento =		-302,76	kN/m	azione verticale dovuta al peso proprio d'impalcato				
$N_{\text{mob-impal.}}$	= Fz _{q1*q2} / L _{param}	nento =		-220,86	kN/m	azione verticale dovuta ai carichi mobili sull'impalcato				
N _{vento-impal.}	= Fz _{q5} / L _{parament}	to =		0,00	kN/m	azione verticale dovuta al vento verticale sulll'impalcato				
$N_{\text{sis-impal.}}$	= Fz _{q6} / L _{parament}	to =		-66,31	kN/m	azione verticale dovuta all'inerzia d'impalcato in direzione verticale				

Eurolink S.C.p.A. Pagina 158 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

AZIONI NELLA SEZIONE DI BASE: SLU - STR

My = 943,88 kNm/m Fz = -1.037,63 kN/m Fx = 253,05 kN/m

AZIONI NELLA SEZIONE DI BASE: SLU - SISMA

 My =
 2.010,57
 kNm/m

 Fz =
 -632,85
 kN/m

 Fx =
 556,84
 kN/m

AZIONI NELLA SEZIONE DI BASE: SLS - FR

My = 557,87 kNm/m Fz = -713,40 kN/m

AZIONI NELLA SEZIONE DI BASE: SLS - QP

My = 400,31 kNm/m Fz = -547,76 kN/m

12.1.4 VERIFICA DELLE SEZIONI "MODELLO SEMPLIFICATO"

Di seguito si riportano le verifiche delle sezioni più significative e per le Combinazioni di carico risultate più critiche. I calcoli di verifica sono effettuati con il metodo degli Stati Limite, applicando il combinato D. M.14.01.2008 con l'UNI EN 1992 (Eurocodice 2).

Le verifiche a fessurazione sono state condotte considerando:

<u>Verifica di formazione delle fessure</u>: la verifica si esegue per la sezione interamente reagente e per le sollecitazioni di esercizio si determina la massima trazione nel calcestruzzo σ_{ct} , confrontandola con la resistenza caratteristica a trazione per flessione f_{cfk} : se risulta $\sigma_{ct} < f_{cfk}$ la verifica è soddisfatta, altrimenti si procede alla verifica di apertura delle fessure.

<u>Verifica di apertura delle fessure</u>: l'apertura convenzionale delle fessure è calcolata con le modalità indicate dal D. M. Min. II. TT. del 14 gennaio 2008, e valutata con le sollecitazioni relative alle Combinazioni FR o QP della normativa vigente sui ponti stradali. La massima apertura ammissibile risulta rispettivamente (le strutture in ambiente aggressivo ed armature poco sensibili):

Eurolink S.C.p.A. Pagina 159 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

b.1) combinazione di carico Frequente:

 $w_k \le w_2 = 0,30 \text{mm}$

b.2) combinazione di carico quasi permanente:

 $w_k \le w_1 = 0,20$ mm

La massima apertura ammissibile risulta rispettivamente (le strutture in ambiente ordinario ed armature poco sensibili):

b.1) combinazione di carico Frequente:

 $w_k \le w_3 = 0,40$ mm

b.2) combinazione di carico quasi permanente:

 $w_k \le w_2 = 0.30 \text{mm}$

<u>Verifica delle tensioni di esercizio</u>: le verifiche si eseguono si eseguono per la condizione di carico Quasi Permanente e Rara, verificando rispettivamente che le tensioni di lavoro siano inferiori ai seguenti limiti:

- per la condizione QP si verifica che le massime tensioni presenti nel calcestruzzo siano inferiori a σ_c< 0.45 f_{ck};
- per la condizione rara si verifica che le massime tensioni presenti nel calcestruzzo siano inferiori a σ_c < 0.60 f_{ck} , mentre quelle dell'acciaio σ_s < 0.80 f_{yk}

Nelle verifiche successive si trascura la verifica delle tensione in esercizio per combinazione rara, perché non dimensionante.

12.1.4.1 Verifica base paraghiaia

Le sollecitazioni per la sezione considerata (vedi § 12.1.3) sono:

COMB	My (kNm)	Fz (kN)	Fx (kN)
STR	747,00	-509,00	440,60
SIS	94,00	-47,10	64,00
FR	161,28	-43,75	-
QP	37,00	-43,75	-

Si prevede un'armatura a flessione pari a:

φ 18 passo 20 cm a 8 cm da esterno sezione (compressa)

φ 24 passo 10 cm a 8 cm da esterno sezione (tesa)

Si prevede un'armatura a taglio pari a:

Eurolink S.C.p.A. Pagina 160 di 201

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0

20/06/2011

Data

si prevedono n° 12,5 braccia/mq ϕ 12 (ciascun braccio a interasse orizzontale 20 cm e a interasse verticale 40 cm).

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x baricentrico
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x baricentrico
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult) e (N,Mx)
	Verifica positiva se tale rapporto risulta >=1.000
Yneutro	Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.
x/d	Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue
	Area efficace barre inf. (per presenza di torsione)= 45,2 cm²
	Area efficace barre sup. (per presenza di torsione)= 12,7 cm²

N.Comb.	Ver	N	Mx	N ult	Mx ult	Mis.Sic.	Yneutro	x/d	C.Rid.
1	S	50900	74700	50871	76437	1,023	36,4		
2	S	4710	9400	4715	70527	7.441	38.6		

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max ec 3/7 Yc max ef min Yf min ef max Yf max	Defor Ordin Defor Ordin Defor	m. unit. mas m. unit. del lata in cm de m. unit. min lata in cm de m. unit. mas lata in cm de	conglomera lla fibra c ima nell'ac lla barra c sima nell'a	ato nella fib corrisp. a ec cciaio (negat corrisp. a ef acciaio (posi	ra a 3/7 d max (sist iva se di min (sist tiva se di	ell'altezza ema rif. X,Y trazione) ema rif. X,Y compressione	,0 sez.) ,0 sez.) e)
N.Comb.	ec max	ec 3/7	Yc max	ef min	Yf min	ef max	Yf max
1 2	•	-0,00201 -0,00308	50,0 50,0	0,00144 0,00104	42,0 42,0	-0,00730 -0,00940	8,0 8,0

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Sf min	Minima tensione di trazione (-) nell'acciaio [daN/cm²]
Yf min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Dw Eff.	Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
Ac eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
Af eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
D barre	Distanza media in cm tra le barre tese efficaci (verifica fess.)

N.Comb. Ver Sc max Yc max Sc min Yc min Sf min Yf min Dw Eff. Ac eff. Af eff. Dbarre

1 S 34,1 50,0 -29,1 50,0 -284 42,0 0,0 0 0,0 0,0

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE

Ver	S = combinazione verificata / N = combin. non verificata
ScImax	Massima tensione nel conglomerato nello STATO I non fessurato [daN/cm²]
ScImin	Minima tensione nel conglomerato nello STATO I non fessurato [daN/cm²]

Eurolink S.C.p.A. Pagina 161 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

Sc Eff K3 Beta12 Eps Srm Ap.fess.	Tensione al limite dello spessore efficace nello STATO I =0,125 per flessione; = 0,25 (ScImin + ScEff)/(2 ScImin) Prodotto dei Coeff. di aderenza Betal*Beta2 Deformazione unitaria media tra le fessure Distanza media in mm tra le fessure Apertura delle fessure in mm = 1,7*Eps*Srm		essione
	Ver ScImax ScImin Sc Eff K3 Beta12	Eps	Srm

1	S	0,0	0,0	0,0	0,0	0,000000	0	0,000

COMBINAZIONI	QUASI	PERMANENTI	IN	ESERCIZIO	-	VERIFICA	MASSIME	TENSIONI	NORMALI	

N.Comb.	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Yf min Dv	w Eff. A	c eff. Af	eff.	Dbarre
1	S	8.5	50,0	-6,2	50.0	-57	42.0	0.0	0	0,0	0,0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE

N.Comb.	Ver	ScImax	ScImin	Sc Eff	К3	Beta12	Eps	Srm	Ap.Fess.
1		0.0	0.0	0.0		0,0	0,000000	0	0,000

Elementi che non richiedono armatura a taglio

$f_{ck} =$	32	Мра	
d =	450	mm	altezza utile
$A_{sl} =$	5306,6	mm^2	armatura longitudinale tesa
$b_w =$	1000	mm	larghezza minima della sezione in zona tesa
$A_c =$	450000	mm^2	area sezione calcestruzzo
$N_{ed} =$	0	kN	forza assiale nella sezione (positive le compressioni)
$C_{rd,c} =$	0,12		
$k_1 =$	0,15		
k =	1,6667	≤	2
$\rho_1 =$	0,011792444	≤	0,02
$\sigma_{cp} =$	0,0000	<	3,6267
$v_{min} =$	0,4260		
$V_{Rd,c} =$	301,87	kN	formula estesa
V _{Pd c} =	191.70	kN	valore minimo di resistenza

Elementi che richiedono armatura a taglio

precompresso?	no		
σ_{cp} =	-	Мра	tensione media di compressione nel cls (positiva)
α =	90	0	1,57 radianti
θ =	21,8	0	0,38 radianti
$b_w =$	1000	mm	larghezza minima della sezione
d =	450	mm	altezza utile
z =	405	mm	braccio della coppia interna
$A_{sw} =$	282,6	mm^2	area sezione trasversale armatura a taglio
s =	200	mm	passo staffe
$f_{ywd} =$	391,30	Мра	tensione di progetto delle armature a taglio
$\alpha_{cw} =$	1,0000		

Eurolink S.C.p.A. Pagina 162 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

verifica di duttilità per rottura lato acciaio

Rev F0

Data 20/06/2011

$V_1 = f_{cd} =$	0,5232 18,13	Мра	
$V_{Rd,s} = V_{Rd,max} =$	559,86 1324,89	kN kN	resistenza lato acciaio resistenza lato calcestruzzo

4,74368

12.1.4.2 Verifica base muri andatori

0,553

Le sollecitazioni per la sezione considerata (vedi § 12.1.3) sono:

COMB	My (kNm)	Fz (kN)	Fx (kN)
STR	578,00	-354,38	222,00
SIS	798,00	-282,00	270,00
FR	394,00	-263,00	-
QP	295,00	-263,00	-

Si prevede un'armatura a flessione pari a:

φ 20 passo 20 cm a 8 cm da esterno sezione (compressa)

 ϕ 20 passo 10 cm a 8 cm da esterno sezione (tesa) ϕ 20 passo 10 cm a 16 cm da esterno sezione (tesa) ϕ 20 passo 10 cm a 24 cm da esterno sezione (tesa)

Si prevede un'armatura a taglio pari a:

non occorrono armature a taglio

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificataVer N Sforzo normale assegnato [in daN] (positivo se di compressione) Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia Mx Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia My N ult Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.) Mx ult Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia My ult Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My) Verifica positiva se tale rapporto risulta >=1.000

N.Comb.	Ver	N	Mx	My	N ult	Mx ult	My ult	Mis.Sic.
1	S	35438	57800	0	35432	508482	0	8,538
2	S	28200	79800	0	28196	504395	0	6,217

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione

Eurolink S.C.p.A. Pagina 163 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0

20/06/2011

Data

ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xf min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xf max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
N.Comb.	ec max ec 3/7 Xc max Yc max ef min Xf min Yf min ef max Xf max Yf max
1	0,00247 -0,00317 -50,0 150,0 0,00177 -42,0 142,0 -0,01000 -42,0 8,0
2	0,00244 -0,00319 -50,0 150,0 0,00174 -42,0 142,0 -0,01000 -42,0 8,0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

```
a Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. b Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. c Coeff. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi) C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue
```

N.Comb.	a	b	С	x/d	C.Rid.
1	0,000000000	0,000087852	-0,010702816		

1 0,000000000 0,000087852 -0,010702816 2 0,00000000 0,000087605 -0,010700843

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

```
S = combinazione verificata / N = combin. non verificata
Ver
            Massima tensione positiva di compressione nel conglomerato [daN/cm²]
Sc max
Xc max
           Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Yc max
            Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
           Minima tensione negativa di trazione nell'acciaio [daN/cm²]
Sf min
Xf min
           Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Yf min
            Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
           Area di conglomerato [cm²] in zona tesa considerata aderente alle barre
Ac eff.
D fess.
            Distanza calcolata tra le fessure espressa in mm
            Coeff.(§ B.6.6.2 Istruz.DM96) dipendente dalla forma del diagramma tensioni
к3
Ap.fess.
           Apertura fessure in mm. Calcolo secondo §4.1.2.2.4.6 NTC.
```

N.Comb.	Ver	Sc max	Xc max	Yc max	Sf min	Xf min	Yf min Ac	eff. I	fess.	K3 Ap.Fess.
1	S	11,0	-50,0	150,0	-89	-14,0	8,0	0	0	0,000

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N.Comb.	Ver	Sc max	Xc max	Yc max	Sf mi	n Xf	min '	Yf min	Ac eff	. D fess	. K3	Ap.Fess.
1	s	8,7	-50,0	150,0	-6	1 -:	23,3	8,0	()	0	0,000

Elementi che non richiedono armatura a taglio

$I_{ck} =$	32	wpa	
d =	1350	mm	altezza utile
$A_{sl} =$	15919,8	mm^2	armatura longitudinale tesa
$b_w =$	1000	mm	larghezza minima della sezione in zona tesa
$A_c =$	1350000	mm^2	area sezione calcestruzzo
$N_{ed} =$	0	kN	forza assiale nella sezione (positive le compressioni)

Eurolink S.C.p.A. Pagina 164 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0

Data 20/06/2011

 $C_{rd,c} = 0.12$ $k_1 = 0.15$

 $\begin{array}{lllll} k = & 1,3849 & \leq & 2 \\ \rho_1 = & 0,011792444 & \leq & 0,02 \\ \sigma_{cp} = & 0,0000 & < & 3,6267 \end{array}$

 $v_{min} = 0,3227$

 $V_{Rd,c} = 752,52$ kN formula estesa

V_{Rd,c} = 435,62 kN valore minimo di resistenza

12.1.4.3 Verifica base muro frontale

Le sollecitazioni per la sezione considerata (vedi § 12.1.3) sono:

COMB	My (kNm)	Fz (kN)	Fx (kN)
STR	944,00	-1038,00	253,00
SIS	2011,00	-633,00	557,00
FR	FR 558,00		-
QP	·		-

Si prevede un'armatura a flessione pari a:

φ 18 passo 10 cm a 8 cm da esterno sezione (compressa)

 ϕ 18 passo 10 cm a 8 cm da esterno sezione (tesa)

φ 18 passo 10 cm
 a 16 cm da esterno sezione (tesa)
 φ 18 passo 10 cm
 a 24 cm da esterno sezione (tesa)

Si prevede un'armatura a taglio pari a:

non occorrono armature a taglio

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificataVer Sforzo normale assegnato [in daN] (positivo se di compressione) Mx Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia Μv N ult Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.) Mx ult Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia My ult Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My) Mis.Sic. Verifica positiva se tale rapporto risulta >=1.000

My_____ Mx ult My ult Mis.Sic. N.Comb. Ver MxN ult S 103800 94400 0 103792 755463 7,698 0 1 63300 201100 63320 716029 0 3,528

Eurolink S.C.p.A. Pagina 165 di 201

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

Codice documento
CS0341_F0

Rev F0

20/06/2011

Data

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xf min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xf max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
N.Comb.	ec max ec 3/7 Xc max Yc max ef min Xf min Yf min ef max Xf max Yf max
1	0,00171 -0,00349 -50,0 230,0 0,00128 -42,0 222,0 -0,01000 -42,0 8,0
2	0,00159 -0,00356 -50,0 230,0 0,00117 -42,0 222,0 -0,01000 -42,0 8,0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a b c x/d C.Rid.	Coeff. a nell'eq. Coeff. b nell'eq. Coeff. c nell'eq. Rapp. di duttilità	dell'asse neutro dell'asse neutro a rottura in pre	aX+bY+c=0 nel r aX+bY+c=0 nel r esenza di sola f	if. X,Y,O gen if. X,Y,O gen less.(travi)	•
N.Comb.	a	b	C	x/d	C.Rid.
1	0 00000000 0 0	000000707 0 0	10401016		

1	0,00000000	0,000052727	-0,010421816
2	0,00000000	0,000052213	-0,010417703

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione positiva di compressione nel conglomerato [daN/cm²]
Xc max	Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sf min	Minima tensione negativa di trazione nell'acciaio [daN/cm²]
Xf min	Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Yf min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.	Area di conglomerato [cm²] in zona tesa considerata aderente alle barre
D fess.	Distanza calcolata tra le fessure espressa in mm
K3	Coeff.(§ B.6.6.2 Istruz.DM96) dipendente dalla forma del diagramma tensioni
Ap.fess.	Apertura fessure in mm. Calcolo secondo §4.1.2.2.4.6 NTC.

N.Comb. Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.

1 S 8,8 -50,0 230,0 -34 -42,0 8,0 0 0 0,000

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N.Comb. Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.

1 S 6,4 -50,0 230,0 -22 -42,0 8,0 0 0 0,000

Elementi che non richiedono armatura a taglio

 $\begin{array}{llll} f_{ck} = & 32 & Mpa \\ d = & 2070 & mm & altezza utile \\ A_{sl} = & 15919,8 & mm^2 & armatura longitudinale tesa \end{array}$

Eurolink S.C.p.A. Pagina 166 di 201

RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev F0 Data 20/06/2011

$b_w = A_c =$	1000 2070000	mm mm²	larghezza minima della sezione in zona tesa area sezione calcestruzzo
$N_{ed} =$	0	kN	forza assiale nella sezione (positive le compressioni)
$C_{rd,c} =$	0,12		
$k_1 =$	0,15		
k =	1,3108	≤	2
$\rho_1 =$	0,007690725	≤	0,02
$\sigma_{cp} =$	0,0000	<	3,6267
$v_{min} =$	0,2971		
$V_{Rd,c} =$	947,12	kN	formula estesa
$V_{Rd,c} =$	615,09	kN	valore minimo di resistenza

Eurolink S.C.p.A. Pagina 167 di 201

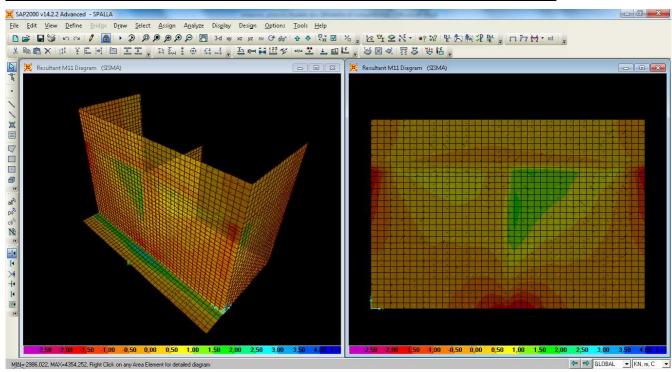
RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

12.1.5 CALCOLO DELLE SOLLECITAZIONI "MODELLO AGLI EF"

Dalle analisi condotte sul modello semplificato si evince che la situazione più gravosa si ottiene per la combinazione sismica.


Nel modello agli EF viene quindi implementata esclusivamente tale combinazione, onde validare i risultati ottenuti nel modello semplificato.

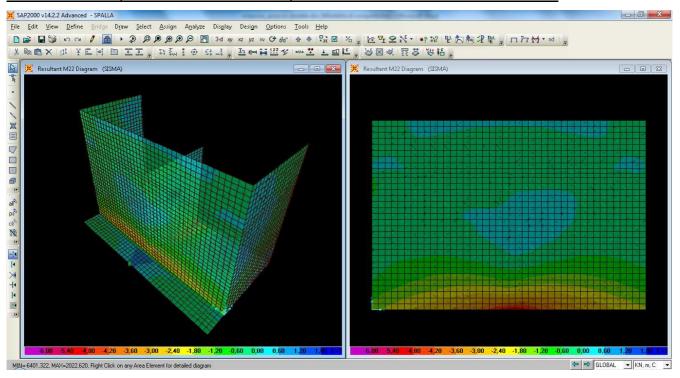
Le azioni elementari da applicare al modello agli EF sono quelle ottenute al § 12.1.1 applicate per unità di superficie agli elementi "shell" del modello.

Si applicano le combinazioni di carico del DM 14. 01 .2008. Per un maggior dettaglio sulle combinazioni di carico considerate si rimanda al §7.3.

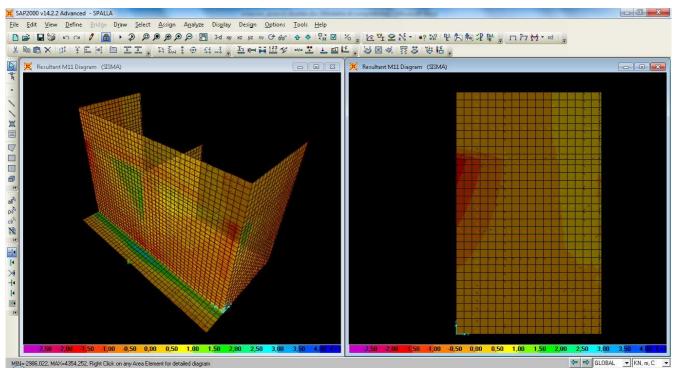
Si riportano nel seguito i grafici di tensione ottenuti alla base dei diversi elementi strutturali.

Sollecitazioni nel paramento frontale della spalla dovute ai momenti di asse vettore Z

Eurolink S.C.p.A. Pagina 168 di 201



RELAZIONE DI CALCOLO

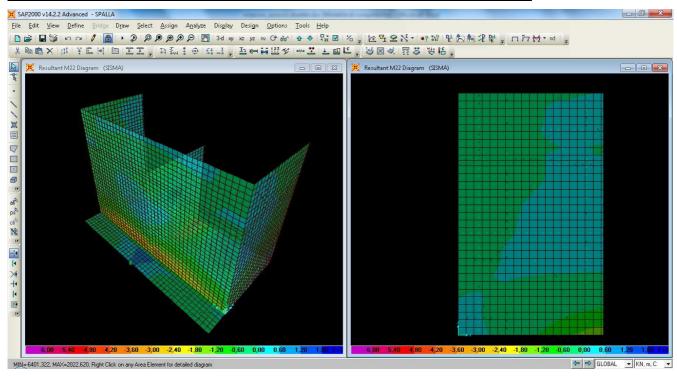

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

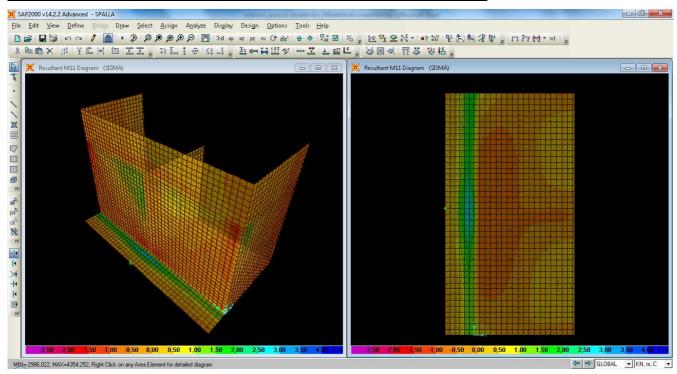
Sollecitazioni nel paramento frontale della spalla dovute ai momenti di asse vettore Y

Sollecitazioni nel muro andatore della spalla dovute ai momenti di asse vettore Z

Eurolink S.C.p.A. Pagina 169 di 201



RELAZIONE DI CALCOLO

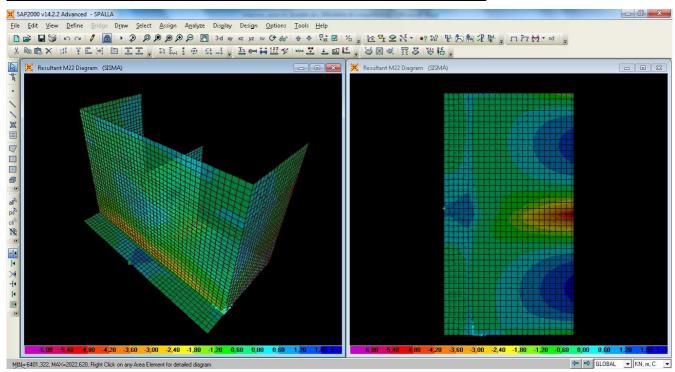

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Sollecitazioni nel muro andatore della spalla dovute ai momenti di asse vettore X

Sollecitazioni nella platea della spalla dovute ai momenti di asse vettore X

Eurolink S.C.p.A. Pagina 170 di 201



RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

Sollecitazioni nella platea della spalla dovute ai momenti di asse vettore Y

12.1.6 DISAMINA DELLE SOLLECITAZIONI OTTENUTE NEI MODELLI DI CALCOLO

Dall'analisi dei risultati ottenuti nel modello agli EF si sono ottenute le seguenti azioni massime alla base degli elementi strutturali principali nella combinazione sismica:

- sollecitazioni base paraghiaia
 Momento asse vettore Y = 120 kNm/m
 Forza di taglio lungo asse X = 60 kN/m
- sollecitazione base muri andatori
 Momento asse vettore X = 587 kNm/m
 Forza di taglio lungo asse Y = 218 kN/m
- sollecitazione base muro frontale
 Momento asse vettore Y = 1396 kNm/m
 Forza di taglio lungo asse X = 447 kN/m

Eurolink S.C.p.A. Pagina 171 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

Come si evince le sollecitazioni sono in buon accordo con i dati ottenuti dal modello semplificato, in particolari si vede che le sollecitazioni ottenute dal modello agli EF sono inferiori (come ci si aspettava) di circa:

- il 30% rispetto alle azioni flettenti ottenute col modello semplificato
- il 20% rispetto alle azioni taglianti ottenute col modello semplificato

La riduzione delle sollecitazioni rispetto al modello semplificato è spiegabile dal fatto che nel modello agli EF i paramenti frontali si comportano come delle lastre incastrate ai bordi, inoltro l'introduzione del taglione centrale permette di ridurre oltremodo le sollecitazioni indotte dai carichi orizzontali.

Si ottengono invece valori di entità paragonabile alla base del paraghiaia (o anche leggermente superiori); questo è dovuto al fatto che i valori di sollecitazioni desunti dal modello agli EF sono stati ottenuti in prossimità della zona degli appoggi, le quali risentono dell'influenza degli scarichi orizzontali dell'impalcato. In tutti i casi i valori sono inferiori alle azioni massime utilizzate per la verifica dell'elemento (vedi §12.1.3).

In conclusione si può asserire che le modellazioni eseguite sono in buon accordo fra di loro e che i dimensionamenti eseguiti sono corretti.

Eurolink S.C.p.A. Pagina 172 di 201

RELAZIONE DI CALCOLO

Codice documento

Rev F0 **Data** 20/06/2011

13 ANALISI DELLE FONDAZIONI

13.1 ANALISI DEL SISTEMA FONDAZIONALE DELLE SPALLE

In accordo con il D.M. 14.01.2008 § 6.4 e con la C.M. 02.02.2009 vengono condotte le analisi di tipo geotecnico del complesso terreno\spalla.

Gli stati limite ultimi per sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno interagente con un muro di sostegno riguardano lo scorrimento sul piano di posa, il raggiungimento del carico limite nei terreni di fondazione e la stabilità globale del complesso opera di sostegno-terreno..

Tutte le azioni agenti sul muro di sostegno possono essere ricondotte a una forza risultante applicata al piano di posa.

Nello <u>stato limite ultimo di collasso per scorrimento</u>, l'azione di progetto è data dalla componente della risultante delle forze in direzione parallela al piano di scorrimento della fondazione, mentre la resistenza di progetto è il valore della forza parallela allo stesso piano cui corrisponde lo scorrimento della fondazione. Per fondazioni massicce (pozzi, blocchi di ancoraggio, ecc.) a diretto contatto con le pareti di scavo, eventualmente sostenute da paratie o palancolate, nella verifica allo scorrimento si può tenere conto della resistenza al taglio mobilitata lungo le pareti parallele all'azione di progetto, oltre che della spinta attiva e della resistenza passiva parallele alla stessa azione. Per l'opera in oggetto, a favore di sicurezza, si trascura sia il contributo del terreno a valle della spalla, sia del terreno lungo le pareti laterali

<u>Lo stato limite di ribaltamento</u> non prevede la mobilitazione della resistenza del terreno di fondazione, e deve essere trattato come uno stato limite di equilibrio come corpo rigido (EQU), utilizzando i coefficienti parziali sulle azioni della Tabella 2.6.I delle NTC e adoperando coefficienti parziali del gruppo M2 per il calcolo delle spinte (Tabella 6.2.II NTC).

Nello <u>stato limite di collasso per raggiungimento del carico limite della fondazione</u>, l'azione di progetto è la componente della risultante delle forze in direzione nomale al piano di posa. La resistenza di progetto è il valore della forza normale al piano di posa a cui corrisponde il raggiungimento del carico limite nei terreni in fondazione.

Nell'impiego dell'espressione trinomia per la valutazione del carico limite, i valori di progetto dei parametri di resistenza (c_d ', ϕ_d ') sono impiegati sia per la determinazione dei fattori di capacità portante, N_c , N_q , N_{\aleph} , sia per la determinazione dei coefficienti correttivi, ove tali coefficienti

Eurolink S.C.p.A. Pagina 173 di 201

RELAZIONE DI CALCOLO

Codice documento

Rev F0 **Data** 20/06/2011

intervengano.

Per ogni stato limite ultimo deve essere rispettata la condizione Ed ≤ Rd, dove Ed è il valore di progetto dell'azione o dell'effetto dell'azione

$$E_d = E \left[\gamma_F \cdot F_k; \frac{X_k}{\gamma_M}; a_d \right]$$

e dove Rd è il valore di progetto della resistenza del sistema geotecnico

$$R_{d} = \frac{1}{\gamma_{R}} R \left[\gamma_{F} \cdot F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$

La verifica della suddetta condizione deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti e alternativi.

Nel primo approccio progettuale (Approccio 1) sono previste due diverse combinazioni di gruppi di coefficienti: la prima combinazione è generalmente più severa nei confronti del dimensionamento strutturale delle opere a contatto con il terreno, mentre la seconda combinazione è generalmente più severa nei riguardi del dimensionamento geotecnico.

Nel secondo approccio progettuale (Approccio 2) è prevista un'unica combinazione di gruppi di coefficienti, da adottare sia nelle verifiche strutturali sia nelle verifiche geotecniche.

Approccio 1

Nelle verifiche agli stati limite ultimi per il dimensionamento geotecnico della fondazione del muro (GEO), si considera lo sviluppo di meccanismi di collasso determinati dal raggiungimento della resistenza del terreno. L'analisi può essere condotta con la Combinazione 2 (A2+M2+R2), nella quale i parametri di resistenza del terreno sono ridotti tramite i coefficienti parziali del gruppo M2, i coefficienti globali γR sulla resistenza del sistema (R2) sono unitari e le sole azioni variabili sono amplificate con i coefficienti del gruppo A2. I parametri di resistenza di progetto sono perciò inferiori a quelli caratteristici e di conseguenza i valori di progetto delle spinte sul muro di sostegno sono maggiori e le resistenze in fondazione sono minori dei rispettivi valori caratteristici.

Nelle verifiche STR si considerano gli stati limite ultimi per raggiungimento della resistenza negli elementi strutturali o comunque negli elementi che costituiscono il muro di sostegno, inclusi eventuali ancoraggi. L'analisi può essere svolta utilizzando la Combinazione 1 (A1+M1+R1), nella quale i coefficienti sui parametri di resistenza del terreno (M1) e sulla resistenza globale del

Eurolink S.C.p.A. Pagina 174 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

sistema (R1) sono unitari, mentre le azioni permanenti e variabili sono amplificate mediante i coefficienti parziali del gruppo A1 che possono essere applicati alle spinte, ai pesi e ai sovraccarichi.

Approccio 2

Nelle verifiche per il dimensionamento geotecnico della fondazione del muro (GEO), si considera lo sviluppo di meccanismi di collasso determinati dal raggiungimento della resistenza del terreno. L'analisi può essere condotta con la Combinazione (A1+M1+R3), nella quale le azioni permanenti e variabili sono amplificate mediante i coefficienti parziali del gruppo A1, che possono essere applicati alle spinte, ai pesi e ai sovraccarichi; i coefficienti parziali sui parametri di resistenza del terreno (M1) sono unitari e la resistenza globale del sistema è ridotta tramite i coefficienti γ_R del gruppo R3. Tali coefficienti si applicano solo alla resistenza globale del terreno, che è costituita, a seconda dello stato limite considerato, dalla forza parallela al piano di posa della fondazione che ne produce lo scorrimento, o dalla forza normale alla fondazione che produce il collasso per carico limite. Essi vengono quindi utilizzati solo nell'analisi degli stati limite GEO.

Nelle verifiche STR si considerano gli stati limite ultimi per raggiungimento della resistenza negli elementi strutturali o comunque negli elementi che costituiscono il muro di sostegno. Per tale analisi non si utilizza il coefficiente & e si procede come nella Combinazione 1 dell'Approccio 1.

Per l'opera in oggetto si esegue la verifica secondo **l'Approccio 1** come precedentemente descritto.

I coefficienti parziali γ F relativi alle azioni sono quelli già indicati al §7.3.1 e che vengono riportati di seguito per completezza (vedi tabella 5.1.V).

Il valore di progetto della resistenza Rapuò essere determinato:

- a) in modo analitico, con riferimento al valore caratteristico dei parametri geotecnici del terreno, diviso per il valore del coefficiente parziale γM specificato nella successiva Tab.
 6.2.II e tenendo conto, ove necessario, dei coefficienti parziali γR relativi a ciascun tipo di opera;
- b) in modo analitico, con riferimento a correlazioni con i risultati di prove in sito, tenendo conto dei coefficienti parziali γR relativi a ciascun tipo di opera;
- c) sulla base di misure dirette su prototipi, tenendo conto dei coefficienti parziali γ R relativi a ciascun tipo di opera

Eurolink S.C.p.A. Pagina 175 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0

Data 20/06/2011

Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{ m G2}$	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γм		
Tangente dell'angolo di resistenza al taglio	tan φ′ _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γc′	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Per l'opera in oggetto si procederà alla definizione delle resistenze di progetto come definito al punto a), sulla base dei parametri geotecnici desunti dalle indagini in sito e in laboratorio e riportati in sintesi al § 4.2.

Eurolink S.C.p.A. Pagina 176 di 201

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

Infine si riportano nel seguito i valori dei coefficienti parziali γ_R per le opere di sostegno quali muri o spalle da ponte in funzione del tipo di verifica e del tipo di approccio considerato.

Tabella 6.4.I - Coefficienti parziali ⅓ per le verifiche agli stati limite ultimi di fondazioni superficiali.

VERIFICA	COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
	PARZIALE	PARZIALE	PARZIALE
	(R1)	(R2)	(R3)
Capacità portante	$\gamma_{\rm R} = 1.0$	$\gamma_{\rm R}=1.8$	$\gamma_{\rm R}=2.3$
Scorrimento	$\gamma_{\mathbb{R}} = 1.0$	$\gamma_{R} = 1.1$	$\gamma_{R} = 1.1$

13.1.1 ANALISI DEI CARICHI

L'analisi dei carichi è stata svolta ai paragrafi precedenti di analisi delle sottostrutture; pertanto si rimanda al § 12.1.1 per l'analisi di dettaglio.

13.1.2 MODELLO DI CALCOLO

13.1.2.1 PROGRAMMA DI CALCOLO UTILIZZATO

Vedi paragrafo 7.2.1.

13.1.2.2 DESCRZIONE DEL MODELLO DI CALCOLO

Vedi paragrafo 12.1.2.2

13.1.3 CALCOLO DELLE SOLLECITAZIONI A INTRADOSSO FONDAZIONE

Nel paragrafo 12.1.1 è stata condotta l'analisi dei carichi per il sistema "corpo spalla".

Si riporta nel seguito il valore di ogni condizione elementare considerata a quota intradosso fondazione; più in particolare si adotta come origine delle azioni applicate il baricentro della pianta della platea di fondazione.

Eurolink S.C.p.A. Pagina 177 di 201

		Fx	Fy	Fz	Х	у	Z	Mx	Му	Mz
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g 1	0,00	0,00	-34.526,54	-1,08	0,01	4,08	-532,64	-25.958,48	0,00
permanenti non strutturali	g_2	0,00	0,00	0,00	-1,08	0,01	4,08	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.401,00	-1,08	0,01	4,08	-39,56	3.432,45	0,00
spinta del terreno	g ₃	3.531,57	0,00	0,00			3,17	0,00	11.183,30	0,00
spinta dovuta al sovraccarico	g ₃	782,62	0,00	0,00			4,75	0,00	3.717,44	0,00
spinta del terreno in fase sismica	g ₃	1.518,56	0,00	0,00			4,75	0,00	7.213,14	0,00
distorsioni e presollecitazioni	٤1	0,00	0,00	0,00				0,00	0,00	0,00
ritiro	ε2	0,00	0,00	-48,00				-0,68	169,39	0,00
variazioni termiche	٤3	0,00	0,00	-72,00				-1,02	254,09	0,00
viscosità	٤4	0,00	0,00	0,00				0,00	0,00	0,00
carichi mobili	$q_{1*}q_2$	0,00	0,00	-3.357,00	-1,08	0,01	4,08	-94,79	8.224,65	0,00
frenamento	q_3	468,00	0,00	0,00	-1,08	0,01	4,08	0,00	3.088,80	-13,21
azione centrifuga	q ₄	0,00	0,00	0,00	-1,08	0,01	4,08	0,00	0,00	0,00
vento	$q_{\scriptscriptstyle{5}}$	0,00	325,00	0,00	-1,08	0,01	4,08	-1.771,00	0,00	796,25
sisma (direzione X)	q_6	9.215,52	0,00	0,00	-1,08	0,01	4,08	0,00	48.212,34	-189,47
sisma (direzione Y)	q_6	0,00	2.133,91	0,00	-1,08	0,01	4,08	-14.004,74	0,00	5.117,24
sisma (direzione Z)	q_6	0,00	0,00	-1.291,39	-1,08	0,01	4,08	-43,64	4.956,62	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	-1,08	0,01	4,08	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00				0,00	0,00	0,00
altre azioni variabili	q ₉	0,00	0,00	0,00		_	_	0,00	0,00	0,00

Le azioni sismiche sono già state moltiplicate per i fattori di rotazione, assumendo come dimensionante la combinazione 1,00 Ex + 0,3 Ey + 0,3 Ez.

Eurolink S.C.p.A. Pagina 178 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

13.1.4 Combinazioni per gli S.L.U.

Si applicano le combinazioni di carico del DM 14. 01 .2008.

La Tab. 5.1.V di [NT_1] fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi; il significato dei simboli è il seguente:

- γ G1 coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua;
- γ _{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;
- γ O coefficiente parziale delle azioni variabili da traffico;
- γ Oi coefficiente parziale delle azioni variabili.

Il coefficiente parziale della precompressione si assume pari a $\gamma_P = 1$.

Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	$\gamma_{\rm G1}$	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γ _Q	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	$\gamma_{ m Qi}$	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Eurolink S.C.p.A. Pagina 179 di 201

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

I valori dei coefficienti ϕ_{0j} , ϕ_{1j} e ϕ_{2j} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI di [NT_1] e riportati nel seguito per completezza.

 $\textbf{Tabella 5.1.VI} - Coefficienti \ \psi \ per \ le \ \ azioni \ variabili \ per \ ponti \ stradali \ e \ pedonali$

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente \(\psi_0\) di combinazione	Coefficiente ψ ₁ (valori frequenti)	Coefficiente \(\psi_2\) (valori quasi permanenti)	
Azioni da traffico (Tabella 5.1.IV)	Schema 1 (Carichi tandem)	0,75	0,75	0,0	
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0	
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0	
	Schema 2	0,0	0,75	0,0	
	2	0,0	0,0	0,0	
	3	0,0	0,0	0,0	
	4 (folla)		0,75	0,0	
	5	0,0	0,0	0,0	
Vento q ₅	Vento a ponte scarico				
	SLU e SLE	0,6	0,2	0,0	
	Esecuzione	0,8		0,0	
	Vento a ponte carico	0,6			
Neve q5	SLU e SLE	0,0	0,0	0,0	
	esecuzione	0,8	0,6	0,5	
Temperatura	T_k	0,6	0,6	0,5	

Di seguito si riportano i valori delle sollecitazioni a intradosso fondazione per ogni combinazione di carico considerata, sia considerando la situazione in cui le <u>azioni verticali sono massimizzate</u> sia la condizione per cui le <u>azioni verticali sono minimizzate</u>.

13.1.4.1 Condizione azione verticali massime (Fz-max)

RARA		Fx	Fy	Fz	Mx	Му	Mz
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-34.526,54	-532,64	-25.958,48	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.401,00	-39,56	3.432,45	0,00
spinta del terreno	g ₃	3.531,57	0,00	0,00	0,00	11.183,30	0,00
spinta dovuta al sovraccarico	g₃	586,96	0,00	0,00	0,00	2.788,08	0,00

Eurolink S.C.p.A. Pagina 180 di 201

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev Data F0

20/06/2011

spinta del terreno in fase sismica	g ₃	0,00	0,00	0.00	0.00	0,00	0,00
Spirita dei terrerio iri rase sistriica	93	0,00	0,00	0,00	0,00	0,00	0,00
distorsioni e presollecitazioni	٤1	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε_2	0,00	0,00	-48,00	-0,68	169,39	0,00
variazioni termiche	ε3	0,00	0,00	-72,00	-1,02	254,09	0,00
viscosità	ε4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	-3.357,00	-94,79	8.224,65	0,00
frenamento	q_3	351,00	0,00	0,00	0,00	2.316,60	-9,91
azione centrifuga	q ₄	0,00	0,00	0,00	0,00	0,00	0,00
vento	q_5	0,00	195,00	0,00	-1.062,60	0,00	477,75
sisma	q_6	0,00	0,00	0,00	0,00	0,00	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q_9	0,00	0,00	0,00	0,00	0,00	0,00

ED.		Fx	Fy	Fz	Mx	Му	Mz
FR		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-34.526,54	-532,64	-25.958,48	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.401,00	-39,56	3.432,45	0,00
spinta del terreno	g ₃	3.531,57	0,00	0,00	0,00	11.183,30	0,00
spinta dovuta al sovraccarico	g ₃	586,96	0,00	0,00	0,00	2.788,08	0,00
spinta del terreno in fase sismica	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
distorsioni e presollecitazioni	ε1	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε2	0,00	0,00	-48,00	-0,68	169,39	0,00
variazioni termiche	€3	0,00	0,00	-36,00	-0,51	127,04	0,00
viscosità	€4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	-2.517,75	-71,09	6.168,49	0,00
frenamento	q ₃	0,00	0,00	0,00	0,00	0,00	0,00
azione centrifuga	q ₄	0,00	0,00	0,00	0,00	0,00	0,00
vento	q_5	0,00	0,00	0,00	0,00	0,00	0,00
sisma	q ₆	0,00	0,00	0,00	0,00	0,00	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q ₉	0,00	0,00	0,00	0,00	0,00	0,00

QP		Fx	Fy	Fz	Mx	Му	Mz
QP		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-34.526,54	-532,64	-25.958,48	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00

Eurolink S.C.p.A. Pagina 181 di 201

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento CS0341_F0

Rev Data F0

20/06/2011

permanenti portati	۱ ۵.	0,00	0,00	-1.401,00	-39,56	3.432,45	0,00
permanenti portati	g ₃	,	0,00	-1.401,00	-39,30		0,00
spinta del terreno	g 3	3.531,57	0,00	0,00	0,00	11.183,30	0,00
spinta dovuta al sovraccarico	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
spinta del terreno in fase sismica	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
distorsioni e presollecitazioni	ε1	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε2	0,00	0,00	-48,00	-0,68	169,39	0,00
variazioni termiche	ε3	0,00	0,00	-36,00	-0,51	127,04	0,00
viscosità	ε4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	0,00	0,00	0,00	0,00
frenamento	q_3	0,00	0,00	0,00	0,00	0,00	0,00
azione centrifuga	q ₄	0,00	0,00	0,00	0,00	0,00	0,00
vento	q_5	0,00	0,00	0,00	0,00	0,00	0,00
sisma	q_6	0,00	0,00	0,00	0,00	0,00	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q_9	0,00	0,00	0,00	0,00	0,00	0,00

STR		Fx	Fy	Fz	Mx	Му	Mz
SIR		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-46.610,83	-719,07	-35.043,95	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.891,35	-53,40	4.633,81	0,00
spinta del terreno	g ₃	4.767,62	0,00	0,00	0,00	15.097,46	0,00
spinta dovuta al sovraccarico	g ₃	1.056,54	0,00	0,00	0,00	5.018,55	0,00
spinta del terreno in fase sismica	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
distorsioni e presollecitazioni	٤1	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε2	0,00	0,00	-57,60	-0,81	203,27	0,00
variazioni termiche	٤3	0,00	0,00	-51,84	-0,73	182,94	0,00
viscosità	ε4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	-4.531,95	-127,97	11.103,28	0,00
frenamento	q ₃	473,85	0,00	0,00	0,00	3.127,41	-13,38
azione centrifuga	q ₄	0,00	0,00	0,00	0,00	0,00	0,00
vento	q ₅	0,00	292,50	0,00	-1.593,90	0,00	716,63
sisma	q ₆	0,00	0,00	0,00	0,00	0,00	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q ₉	0,00	0,00	0,00	0,00	0,00	0,00

Eurolink S.C.p.A. Pagina 182 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 **Data** 20/06/2011

EQU		Fx	Fy	Fz	Mx	Му	Mz
EQU		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-37.979,19	-585,91	-28.554,33	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.541,10	-43,52	3.775,70	0,00
spinta del terreno	g ₃	4.922,57	0,00	0,00	0,00	15.588,13	0,00
spinta dovuta al sovraccarico	g ₃	1.338,80	0,00	0,00	0,00	6.359,30	0,00
spinta del terreno in fase sismica	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
distorsioni e presollecitazioni	٤1	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε2	0,00	0,00	-57,60	-0,81	203,27	0,00
variazioni termiche	ε3	0,00	0,00	-51,84	-0,73	182,94	0,00
viscosità	٤4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	-4.531,95	-127,97	11.103,28	0,00
frenamento	q ₃	473,85	0,00	0,00	0,00	3.127,41	-13,38
azione centrifuga	q_4	0,00	0,00	0,00	0,00	0,00	0,00
vento	q_5	0,00	292,50	0,00	-1.593,90	0,00	716,63
sisma	q_6	0,00	0,00	0,00	0,00	0,00	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q ₉	0,00	0,00	0,00	0,00	0,00	0,00

GEO		Fx	Fy	Fz	Mx	Му	Mz
GEO		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-34.526,54	-532,64	-25.958,48	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.401,00	-39,56	3.432,45	0,00
spinta del terreno	g ₃	4.475,06	0,00	0,00	0,00	14.171,03	0,00
spinta dovuta al sovraccarico	g ₃	1.140,46	0,00	0,00	0,00	5.417,18	0,00
spinta del terreno in fase sismica	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
distorsioni e presollecitazioni	ε1	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε_2	0,00	0,00	-48,00	-0,68	169,39	0,00
variazioni termiche	ε3	0,00	0,00	-43,20	-0,61	152,45	0,00
viscosità	٤4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	-3.860,55	-109,01	9.458,35	0,00
frenamento	q_3	403,65	0,00	0,00	0,00	2.664,09	-11,40
azione centrifuga	q_4	0,00	0,00	0,00	0,00	0,00	0,00
vento	q ₅	0,00	253,50	0,00	-1.381,38	0,00	621,08
sisma	q ₆	0,00	0,00	0,00	0,00	0,00	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00

Eurolink S.C.p.A. Pagina 183 di 201

RELAZIONE DI CALCOLO

Codice documento	Rev	Data
CS0341_F0	F0	20/06/2011

veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q ₉	0,00	0,00	0,00	0,00	0,00	0,00

SISMICA		Fx	Fy	Fz	Mx	Му	Mz
SISIVICA		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-34.526,54	-532,64	-25.958,48	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.401,00	-39,56	3.432,45	0,00
spinta del terreno	g ₃	4.475,06	0,00	0,00	0,00	14.171,03	0,00
spinta dovuta al sovraccarico	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
spinta del terreno in fase sismica	g ₃	1.762,41	0,00	0,00	0,00	8.371,45	0,00
distorsioni e presollecitazioni	٤1	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε2	0,00	0,00	-48,00	-0,68	169,39	0,00
variazioni termiche	€3	0,00	0,00	-36,00	-0,51	127,04	0,00
viscosità	ε4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	-671,40	-18,96	1.644,93	0,00
frenamento	q ₃	0,00	0,00	0,00	0,00	0,00	0,00
azione centrifuga	q ₄	0,00	0,00	0,00	0,00	0,00	0,00
vento	q ₅	0,00	0,00	0,00	0,00	0,00	0,00
sisma (direzione X)	q_6	9.215,52	0,00	0,00	0,00	48.212,34	-189,47
sisma (direzione Y)	q_6	0,00	2.133,91	0,00	-14.004,74	0,00	5.117,24
sisma (direzione Z)	q_6	0,00	0,00	-1.291,39	-43,64	4.956,62	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q ₉	0,00	0,00	0,00	0,00	0,00	0,00

RIEPILOGO DELLE AZIONI NELLE DIVERSE COMBINAZIONI

RIEPILOGO	Fx	Fy	Fz	Mx	My	Mz
RIEFILOGO	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
COMBINAZIONE RARA	4.469,53	195,00	-39.404,54	-1.731,29	2.410,09	467,84
COMBINAZIONE FR	4.118,53	0,00	-38.529,29	-644,48	-2.089,72	0,00
COMBINAZIONE QP	3.531,57	0,00	-36.011,54	-573,39	-11.046,29	0,00
COMBINAZIONE STR	6.298,00	292,50	-53.143,57	-2.495,89	4.322,77	703,25
COMBINAZIONE EQU	6.735,22	292,50	-44.161,68	-2.352,84	11.785,70	703,25
COMBINAZIONE GEO	6.019,17	253,50	-39.879,29	-2.063,88	9.506,47	609,68
COMBINAZIONE SISMICA	15.452,99	2.133,91	-37.974,33	-14.640,72	55.126,78	4.927,76

Eurolink S.C.p.A. Pagina 184 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

13.1.4.2 Condizione azione verticali minime (Fz-min)

RARA		Fx	Fy	Fz	Mx	Му	Mz
KAKA		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-34.526,54	-532,64	-25.958,48	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.401,00	-39,56	3.432,45	0,00
spinta del terreno	g ₃	3.531,57	0,00	0,00	0,00	11.183,30	0,00
spinta dovuta al sovraccarico	g ₃	586,96	0,00	0,00	0,00	2.788,08	0,00
spinta del terreno in fase sismica	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
distorsioni e presollecitazioni	ε ₁	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε2	0,00	0,00	0,00	0,00	0,00	0,00
variazioni termiche	€3	0,00	0,00	0,00	0,00	0,00	0,00
viscosità	ε4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	0,00	0,00	0,00	0,00
frenamento	q ₃	351,00	0,00	0,00	0,00	2.316,60	-9,91
azione centrifuga	q ₄	0,00	0,00	0,00	0,00	0,00	0,00
vento	q_5	0,00	0,00	0,00	0,00	0,00	0,00
sisma	q ₆	0,00	0,00	0,00	0,00	0,00	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q ₉	0,00	0,00	0,00	0,00	0,00	0,00

FR		Fx	Fy	Fz	Mx	Му	Mz
r K		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-34.526,54	-532,64	-25.958,48	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.401,00	-39,56	3.432,45	0,00
spinta del terreno	g ₃	3.531,57	0,00	0,00	0,00	11.183,30	0,00
spinta dovuta al sovraccarico	g ₃	586,96	0,00	0,00	0,00	2.788,08	0,00
spinta del terreno in fase sismica	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
distorsioni e presollecitazioni	ε1	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε_2	0,00	0,00	0,00	0,00	0,00	0,00
variazioni termiche	€3	0,00	0,00	0,00	0,00	0,00	0,00
viscosità	ε4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	0,00	0,00	0,00	0,00
frenamento	q ₃	0,00	0,00	0,00	0,00	0,00	0,00
azione centrifuga	q ₄	0,00	0,00	0,00	0,00	0,00	0,00
vento	q ₅	0,00	0,00	0,00	0,00	0,00	0,00

Eurolink S.C.p.A. Pagina 185 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev Data
F0 20/06/2011

sisma	q_6	0,00	0,00	0,00	0,00	0,00	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q_9	0,00	0,00	0,00	0,00	0,00	0,00

QP		Fx	Fy	Fz	Mx	Му	Mz
QP		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-34.526,54	-532,64	-25.958,48	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.401,00	-39,56	3.432,45	0,00
spinta del terreno	g ₃	3.531,57	0,00	0,00	0,00	11.183,30	0,00
spinta dovuta al sovraccarico	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
spinta del terreno in fase sismica	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
distorsioni e presollecitazioni	٤1	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε_2	0,00	0,00	0,00	0,00	0,00	0,00
variazioni termiche	ε3	0,00	0,00	0,00	0,00	0,00	0,00
viscosità	ε4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	0,00	0,00	0,00	0,00
frenamento	q ₃	0,00	0,00	0,00	0,00	0,00	0,00
azione centrifuga	q ₄	0,00	0,00	0,00	0,00	0,00	0,00
vento	q ₅	0,00	0,00	0,00	0,00	0,00	0,00
sisma	q ₆	0,00	0,00	0,00	0,00	0,00	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q ₉	0,00	0,00	0,00	0,00	0,00	0,00

STR		Fx	Fy	Fz	Mx	Му	Mz
SIR		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-34.526,54	-532,64	-25.958,48	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.401,00	-39,56	3.432,45	0,00
spinta del terreno	g ₃	4.767,62	0,00	0,00	0,00	15.097,46	0,00
spinta dovuta al sovraccarico	g ₃	1.056,54	0,00	0,00	0,00	5.018,55	0,00
spinta del terreno in fase sismica	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
distorsioni e presollecitazioni	٤1	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε2	0,00	0,00	0,00	0,00	0,00	0,00
variazioni termiche	€3	0,00	0,00	0,00	0,00	0,00	0,00
viscosità	ε4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	0,00	0,00	0,00	0,00

Eurolink S.C.p.A. Pagina 186 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev Data
F0 20/06/2011

frenamento	q_3	473,85	0,00	0,00	0,00	3.127,41	-13,38
azione centrifuga	q ₄	0,00	0,00	0,00	0,00	0,00	0,00
vento	q ₅	0,00	0,00	0,00	0,00	0,00	0,00
sisma	q_6	0,00	0,00	0,00	0,00	0,00	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q_9	0,00	0,00	0,00	0,00	0,00	0,00

FOU		Fx	Fy	Fz	Mx	Му	Mz
EQU		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-31.073,89	-479,38	-23.362,63	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.260,90	-35,60	3.089,21	0,00
spinta del terreno	g ₃	4.922,57	0,00	0,00	0,00	15.588,13	0,00
spinta dovuta al sovraccarico	g ₃	1.338,80	0,00	0,00	0,00	6.359,30	0,00
spinta del terreno in fase sismica	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
distorsioni e presollecitazioni	ε ₁	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε2	0,00	0,00	0,00	0,00	0,00	0,00
variazioni termiche	٤3	0,00	0,00	0,00	0,00	0,00	0,00
viscosità	٤4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	0,00	0,00	0,00	0,00
frenamento	q_3	473,85	0,00	0,00	0,00	3.127,41	-13,38
azione centrifuga	q ₄	0,00	0,00	0,00	0,00	0,00	0,00
vento	q_5	0,00	0,00	0,00	0,00	0,00	0,00
sisma	q ₆	0,00	0,00	0,00	0,00	0,00	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q ₉	0,00	0,00	0,00	0,00	0,00	0,00

GEO		Fx	Fy	Fz	Mx	Му	Mz
GLO		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-34.526,54	-532,64	-25.958,48	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.401,00	-39,56	3.432,45	0,00
spinta del terreno	g ₃	4.475,06	0,00	0,00	0,00	14.171,03	0,00
spinta dovuta al sovraccarico	g ₃	1.140,46	0,00	0,00	0,00	5.417,18	0,00
spinta del terreno in fase sismica	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
distorsioni e presollecitazioni	ε1	0,00	0,00	0,00	0,00	0,00	0,00

Eurolink S.C.p.A. Pagina 187 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev Data
F0 20/06/2011

ritiro	ε2	0,00	0,00	0,00	0,00	0,00	0,00
variazioni termiche	٤3	0,00	0,00	0,00	0,00	0,00	0,00
viscosità	ε4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	0,00	0,00	0,00	0,00
frenamento	q_3	403,65	0,00	0,00	0,00	2.664,09	-11,40
azione centrifuga	q ₄	0,00	0,00	0,00	0,00	0,00	0,00
vento	q ₅	0,00	0,00	0,00	0,00	0,00	0,00
sisma	q_6	0,00	0,00	0,00	0,00	0,00	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q_9	0,00	0,00	0,00	0,00	0,00	0,00

CICMICA		Fx	Fy	Fz	Mx	Му	Mz
SISMICA		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	0,00	-34.526,54	-532,64	-25.958,48	0,00
permanenti non strutturali	g ₂	0,00	0,00	0,00	0,00	0,00	0,00
permanenti portati	g ₃	0,00	0,00	-1.401,00	-39,56	3.432,45	0,00
spinta del terreno	g ₃	4.475,06	0,00	0,00	0,00	14.171,03	0,00
spinta dovuta al sovraccarico	g ₃	0,00	0,00	0,00	0,00	0,00	0,00
spinta del terreno in fase sismica	g ₃	1.762,41	0,00	0,00	0,00	8.371,45	0,00
distorsioni e presollecitazioni	ε1	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε2	0,00	0,00	-48,00	-0,68	169,39	0,00
variazioni termiche	ε3	0,00	0,00	-36,00	-0,51	127,04	0,00
viscosità	ε4	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	-671,40	-18,96	1.644,93	0,00
frenamento	q ₃	0,00	0,00	0,00	0,00	0,00	0,00
azione centrifuga	q ₄	0,00	0,00	0,00	0,00	0,00	0,00
vento	q ₅	0,00	0,00	0,00	0,00	0,00	0,00
sisma (direzione X)	q ₆	9.215,52	0,00	0,00	0,00	48.212,34	-189,47
sisma (direzione Y)	q ₆	0,00	2.133,91	0,00	-14.004,74	0,00	5.117,24
sisma (direzione Z)	q ₆	0,00	0,00	1.291,39	43,64	-4.956,62	0,00
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q ₉	0,00	0,00	0,00	0,00	0,00	0,00

Eurolink S.C.p.A. Pagina 188 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

RIEPILOGO DELLE AZIONI NELLE DIVERSE COMBINAZIONI

RIEPILOGO	Fx	Fy	Fz	Mx	Му	Mz
RIEFILOGO	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
COMBINAZIONE RARA	4.469,53	0,00	-35.927,54	-572,20	-6.238,05	-9,91
COMBINAZIONE FR	4.118,53	0,00	-35.927,54	-572,20	-8.554,65	0,00
COMBINAZIONE QP	3.531,57	0,00	-35.927,54	-572,20	-11.342,73	0,00
COMBINAZIONE STR	6.298,00	0,00	-35.927,54	-572,20	717,38	-13,38
COMBINAZIONE EQU	6.735,22	0,00	-32.334,79	-514,98	4.801,42	-13,38
COMBINAZIONE GEO	6.019,17	0,00	-35.927,54	-572,20	-273,73	-11,40
COMBINAZIONE SISMICA	15.452,99	2.133,91	-35.391,55	-14.553,45	45.213,54	4.927,76

13.1.5 VERIFICHE GEOTECNICHE

In accordo con quanto indicato al paragrafo 13.1 si conducono ora le verifiche geotecniche fondamentali:

- Verifica a scorrimento
- Verifica a ribaltamento
- Verifica di capacità portante

13.1.5.1 Verifica a scorrimento

La verifica a scorrimento è soddisfatta se:

$$E_d = V \le \frac{R_d}{\gamma_R} = \frac{F_z \cdot \tan \varphi}{\gamma_R}$$

dove:

V è l'azione massima di scorrimento pari a $\sqrt{F_x^2 + F_y^2}$;

Fz è l'azione verticale gravante a intradosso fondazione nella combinazione considerata;

 $tan\phi$ è la tangente dell'angolo di attrito terreno\fondazione, che per l'opera in oggetto è assunto pari a ϕ '=38°.

Eurolink S.C.p.A. Pagina 189 di 201

Data

20/06/2011

RELAZIONE DI CALCOLO

Codice documento Rev
CS0341_F0 F0

Massime azioni verticali Fz-max

STATO LIMITE	СОМВО	V [kN]	Fz [kN]	φ •	<i>Rd</i> [kN]	Rd / V -	γ̈́R -
	RARA	4.473,79	39.404,54	38	30.786,20	6,88	1,00
SLS	FR	4.118,53	38.529,29	38	30.102,38	7,31	1,00
	QP	3.531,57	36.011,54	38	28.135,30	7,97	1,00
	STR	6.304,79	53.143,57	38	41.520,31	6,59	1,00
SLU	EQU	6.741,57	44.161,68	32	27.595,28	4,09	1,10
	GEO	6.024,51	39.879,29	32	24.919,35	4,14	1,10
SISMICA	SISMICA	15.599,63	37.974,33	32	23.729,00	1,52	1,10

Minime azioni verticali Fz-min

STATO LIMITE	COMBO	V [kN]	Fz [kN]	ϕ	<i>Rd</i> [kN]	Rd / V -	γ⁄R -
	RARA	4.469,53	35.927,54	38	28.069,67	6,28	1,00
SLS	FR	4.118,53	35.927,54	38	28.069,67	6,82	1,00
	QP	3.531,57	35.927,54	38	28.069,67	7,95	1,00
	STR	6.298,00	35.927,54	38	28.069,67	4,46	1,00
SLU	EQU	6.735,22	32.334,79	32	20.205,02	3,00	1,10
	GEO	6.019,17	35.927,54	32	22.450,02	3,73	1,10
SISMICA	SISMICA	15.599,63	35.391,55	32	22.115,09	1,42	1,10

La verifica risulta soddisfatta.

13.1.5.2 Verifica a ribaltamento

La verifica a ribaltamento è soddisfatta se:

$$E_d = M_{INST} \le \frac{R_d}{\gamma_R} = \frac{M_{STAB}}{\gamma_R}$$

dove:

 M_{INST} è l'azione massima di ribaltamento (Momento instabilizzante) rispetto al piede della fondazione;

M_{STAB} è l'azione massima resistente (Momento stabilizzante) rispetto al piede della fondazione.

Eurolink S.C.p.A. Pagina 190 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Si riportano di seguito le sole combinazioni SLU, essendo le combinazioni più sfavorevoli per l'opera in esame. Inoltre verrà preso in esame il caso per cui le azioni verticali sono minime (Fzmin), essendo la situazione più critica.

AZIONI DERIVANTI DALL'IMPALCATO		Fx	Fz	х	z	Minstab	Mstab
		[kN]	[kN]	[m]	[m]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	-3.201,00	-3,80	6,60	0,00	12.163,80
permanenti non strutturali	g ₂	0,00	0,00	-3,80	6,60	0,00	0,00
permanenti portati	g ₃	0,00	-1.401,00	-3,80	6,60	0,00	5.323,80
distorsioni e presollecitazioni	٤1	0,00	0,00	-3,80	6,60	0,00	0,00
ritiro	ε2	0,00	-48,00	-3,80	6,60	0,00	182,40
variazioni termiche	€3	0,00	-72,00	-3,80	6,60	0,00	273,60
viscosità	٤4	0,00	0,00	-3,80	6,60	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	-3.357,00	-3,80	6,60	0,00	12.756,60
frenamento	q ₃	468,00	0,00	-3,80	6,60	3.088,80	0,00
azione centrifuga	q_4	0,00	0,00	-3,80	6,60	0,00	0,00
vento	q_5	0,00	0,00	-3,80	6,60	0,00	0,00
sisma (direzione X)	q_6	4.205,00	0,00	-3,80	6,60	27.753,00	0,00
sisma (direzione Z)	q_6	0,00	539,81	-3,80	6,60	0,00	-2.051,30
resistenze parassite	q ₇	0,00	0,00	-3,80	6,60	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	-3,80	6,60	0,00	0,00
altre azioni variabili	q_9	0,00	0,00	-3,80	6,60	0,00	0,00

AZIONI DERIVANTI DAL CORPO	Fx	Fz	х	z	Minstab	Mstab	
		[kN]	[kN]	[m]	[m]	[kNm]	[kNm]
permanenti strutturali	g 1		-31.325,54	-7,33	4,08	0,00	229.585,56
spinta del terreno	g ₃	3.531,57			3,17	14.171,03	0,00
spinta dovuta al sovraccarico	g ₃	782,62			4,75	4.710,59	0,00
spinta del terreno in fase sismica	g ₃	1.762,41			4,75	8.371,45	0,00
sisma (direzione X)	q_6	5.010,52			4,08	20.459,34	0,00
sisma (direzione Z)	q_6		751,58	-7,33		0,00	-5.508,33

Per le combinazioni EQU, GEO e SIS è stato adottato l'approccio A2+M2, mentre per le combinazioni STR si è adottato l'approccio A1+M1.

		S	TR	EQU		GEO		SIS	
Azioni elementari		Minstab	Mstab	Minstab	Mstab	Minstab	Mstab	Minstab	Mstab
		[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
permanenti strutturali	g ₁	0,00	241.749,36	0,00	217.574,42	0,00	241.749,36	0,00	241.749,36

Eurolink S.C.p.A. Pagina 191 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0

Data 20/06/2011

permanenti non strutturali	α.	0,00	0,00	0.00	0,00	0,00	0,00	0.00	0,00
'	g ₂		-	-,	-			-,	
permanenti portati	g 3	0,00	5.323,80	0,00	4.791,42	0,00	5.323,80	0,00	5.323,80
spinta del terreno	g 3	15.097,46	0,00	15.588,13	0,00	14.171,03	0,00	14.171,03	0,00
spinta dovuta al sovraccarico	g ₃	5.018,55	0,00	6.359,30	0,00	5.417,18	0,00	0,00	0,00
spinta del terreno in fase sismica	g₃	0,00	0,00	0,00	0,00	0,00	0,00	8.371,45	0,00
distorsioni e presollecitazioni	ε1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ritiro	ε2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	182,40
variazioni termiche	€3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	136,80
viscosità	ε4	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili	q _{1*} q ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	2.551,32
frenamento	q ₃	3.127,41	0,00	3.127,41	0,00	2.664,09	0,00	0,00	0,00
azione centrifuga	q_4	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
vento	q ₅	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
sisma (direzione X)	q_6	0,00	0,00	0,00	0,00	0,00	0,00	48.212,34	0,00
sisma (direzione Z)	q_6	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-7.559,63
resistenze parassite	q ₇	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
veicoli in svio	q ₈	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
altre azioni variabili	q ₉	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

STATO LIMITE	COMBO	M _{INST} [kNm]	M _{STAB} [kNm]	M _{STAB} / M _{INST}	γ⁄ _R -
	STR	23.243,42	247.073,16	10,63	1,00
SLU	EQU	25.074,84	222.365,84	8,87	1,00
	GEO	22.252,30	247.073,16	11,10	1,00
SISMICA	SISMICA	70.754,82	242.384,05	3,43	1,00

La verifica risulta soddisfatta.

13.1.5.3 Verifica di capacità portante

La verifica di capacità portante è soddisfatta se:

$$E_d = q_{\text{max}} \le \frac{R_d}{\gamma_R} = \frac{q_{adm}}{\gamma_R}$$

dove:

q_{max} è la pressione sul terreno per effetto dei carichi agenti;

q_{adm} è la portanza ammissibile che il terreno può garantire, valutata come di seguito indicato.

Eurolink S.C.p.A. Pagina 192 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 **Data** 20/06/2011

La portanza del terreno viene valutata in accordo con la teoria di Brinch-Hansen (vedi riferimento bibliografico [B32]), mettendo in conto anche l'eccentricità dei carichi e la possibilità di parzializzazione della fondazione.

Essa deriva dallo studio teorico del meccanismo della rottura generale condotto inizialmente da Terzaghi, ma i singoli parametri sono stati ricavati dall'osservazione di casi reali e, quindi, essa può essere generalizzata anche a meccanismi diversi.

La formulazione analitica della teoria di Brinch-Hansen è la seguente:

$$\begin{aligned} q_{ult} &= cN_c s_c d_c i_c g_c b_c + qN_q s_q d_q i_q g_q b_q + 0.5 \gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma \\ &\text{se } \phi \text{=} 0, \ q_{ult} = 5.14 s_u \left(1 + s'_c + d'_c - i'_c - b'_c - g'_c\right) + q \end{aligned}$$

dove

$$\begin{split} N_c &= \left(N_q - 1\right) \cot \phi \qquad N_q = e^{\pi \tan \phi} \tan^2 \left(45 + \phi/2\right) \qquad N_\gamma = 1, 5 \cdot \left(N_q - 1\right) \tan \phi \\ s'_c &= 0, 2 \frac{B}{L} \qquad \qquad s_c = 1 + \frac{N_q}{N_c} \frac{B}{L} \qquad \qquad s_q = 1 + \frac{B}{L} \tan \phi \qquad \qquad s_\gamma = 1 - 0, 4 \frac{B}{L} \\ d'_c &= 0, 4k \qquad \qquad d_c = 1 + 0, 4k \qquad \qquad d_q = 1 + 2 \tan \phi \left(1 - \sin \phi\right)^2 k \qquad d_\gamma = 1 \\ k &= \frac{D}{B} \quad \text{se} \quad \frac{D}{B} \leq 1 \\ k &= \tan^{-1} \frac{D}{B} \quad \text{se} \quad \frac{D}{B} > 1 \\ i'_c &= 0, 5 - 0, 5 \sqrt{1 - \frac{H}{A_f c}} \qquad \qquad i_c = i_q - \frac{1 - i_q}{N_q - 1} \qquad \qquad i_q = \left(1 - \frac{0, 5H}{V + A_f c \cot \phi}\right)^5 \\ i_\gamma &= \left(1 - \frac{0, 7H}{V + A_f c \cot \phi}\right)^5 \quad \text{se} \quad \eta = 1 \\ i_\gamma &= \left(1 - \frac{(0, 7 - \eta/450)H}{V + A_f c \cot \phi}\right)^5 \quad \text{se} \quad \eta \geq 1 \\ g'_c &= \frac{B}{147} \qquad \qquad g_c = 1 - \frac{B}{147} \qquad \qquad g_q = g_\gamma = \left(1 - 0, 5 \tan \beta\right)^5 \\ b'_c &= \frac{\eta}{147} \qquad \qquad b_c = 1 - \frac{\eta}{147} \qquad \qquad b_q = \exp(-2\eta \tan \phi) \qquad \qquad b_\gamma = \exp(-2, 7\eta \tan \phi) \end{split}$$

Af è l'area efficace di base

c è l'aderenza di base

D è la profondità della fondazione rispetto a piano campagna

B è la dimensione minore della fondazione

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0

20/06/2011

Data

- L è la dimensione maggiore della fondazione
- H è il carico orizzontale trasmesso dalla fondazione
- V è il carico verticale trasmesso dalla fondazione
- η è l'inclinazione del piano della fondazione sull'orizzontale
- β è l'inclinazione del pendio

La quota d'imposta fondazione è stata assunta cautelativamente a -3 m da p.c., riferendosi alla condizione di progetto; rispetto alla situazione attuale la fondazione si trova mediamente a -3 da p.c.

Per le analisi A1+M1, vengono adottati i seguenti parametri caratterizzanti la formulazione di B.-H.:

- Peso specifico del terreno = 20 kN/mc
- angolo di attrito = 38°
- coesione efficace = 0 MPa
- Profondità del piano di posa (profondità media) = -3,0 m da p.c.

Per le analisi A2+M2, vengono adottati i seguenti parametri caratterizzanti la formulazione di B.-H.:

- Peso specifico del terreno = 20 kN/mc
- angolo di attrito = 32°
- coesione efficace = 0 MPa
- Profondità del piano di posa (profondità media) = -3,0 m da p.c.

Si riportano nel seguito le sole verifiche di capacità portante significative; in particolare si riportano le verifiche nella combinazione GEO, STR e SIS.

Per ogni combinazione di verifica sono indicati i parametri geometrici della fondazione, i parametri geotecnici, le azioni agenti e i parametri resistenti.

COMBINAZIONE GEO

B =	12,5	m	dimensione della fondazione lungo l'asse x		
L=	15,2	m	dimensione della fondazione lungo l'asse y		
D =	3	m	profondità della fondazione		
φ' =	32	0	angolo di attrito del terreno,	0,559	rad

Eurolink S.C.p.A. Pagina 194 di 201

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

c' =	0	kPa	coesione efficacie del terreno
$\gamma =$	20	kN/mc	peso specifico del terreno
β =	0	0	inclinazione del pendio, positiva verso il bass o
η =	0	0	inclinazione del piano fondazione, positiva ver so l'alto
Fz =	39.879,29	kN	azione verticale agente
Fx =	6.019,17	kN	azione orizzontale agente lungo B
Mxx =	2.063,88	kNm	momento di asse vettore x
Myy =	9.506,47	kNm	momento di asse vettore y
ex =	0,238	m	eccentricità del carico lungo x
ey =	0,052	m	eccentricità del carico lungo y
B' =	12,023	m	dimensione ridotta della fondazione lungo l'asse x
L' =	15,096	m	dimensione ridotta della fondazione lungo l'asse y
Af =	181,509	mq	area della fondazione efficacie
qmax =	219,710	kPa	massima pressione agente
qult =	2516,79	kPa	capacità portante agente
$\gamma =$	11,455		fattore di sicurezza relativo alla capacità portante

Come si evince la verifica risulta soddisfatta.

Riporto per completezza i singoli coefficienti della formulazione di Brinch-Hansen, considerati nella combinazione in esame:

COEFFICIENTI DI CAPACITA' PORTANTE

Nq =	23,177
Nc =	35,490
$N\gamma =$	20,786
FATTORI DI FORMA	
S'C =	0,1593
SC =	1,5201
sq =	1,4977
sγ =	0,6814
FATTORI DI PROFONDITA'	
d'c =	0,0998
dc =	1,0998
dq =	1,0689
$d\gamma =$	1,0000
k =	0,2495

FATTORI DI INCLINAZIONE DEL CARICO

Eurolink S.C.p.A. Pagina 195 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

ic =	0,6608
iq =	0,6755
iγ =	0,5722
FATTORI DI INCLINAZIONE DEL TERRENO	
g'c =	0,0000
gc =	1,0000
$gq = g\gamma =$	1,0000
FATTORI DI INCLINAZIONE DEL PIANO FONDAZIONE	
b'c =	0,0000
bc =	1,0000
bq =	1,0000
bγ =	1,0000

COMBINAZIONE STR

B = L = D =	12,5 15,2 3	m m m	dimensione della fondazione lungo l'asse x dimensione della fondazione lungo l'asse y profondità della fondazione		
φ' =	38	0	angolo di attrito del terreno,	0,663	rad
c' =	0	kPa	coesione efficacie del terreno		
$\gamma =$	20	kN/mc	peso specifico del terreno		
β =	0	0	inclinazione del pendio, positiva verso il bass o		
η =	0	0	inclinazione del piano fondazione, positiva ver so	l'alto	
Fz =	53.143,57	kN	azione verticale agente		
Fx =	6.298,00	kN	azione orizzontale agente lungo B		
Mxx =	2.495,89	kNm	momento di asse vettore x		
Myy =	4.322,77	kNm	momento di asse vettore y		
ex =	0,081	m	eccentricità del carico lungo x		
ey =	0,047	m	eccentricità del carico lungo y		
B' =	12,337	m	dimensione ridotta della fondazione lungo l'asse	X	
L' =	15,106	m	dimensione ridotta della fondazione lungo l'asse	у	
Af =	186,368	mq	area della fondazione efficacie		
qmax =	285,153	kPa	massima pressione agente		
qult =	6808,87	kPa	capacità portante agente		
$\gamma =$	23,878		fattore di sicurezza relativo alla capacità portante	9	

Come si evince la verifica risulta soddisfatta.

Eurolink S.C.p.A. Pagina 196 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Riporto per completezza i singoli coefficienti della formulazione di Brinch-Hansen, considerati nella combinazione in esame:

COEFFICIENTI DI CAPACITA' PORTANTE

Nq =	48,933
Nc =	61,352
$N\gamma =$	56,174
FATTORI DI FORMA	
S'C =	0,1633
SC =	1,6514
sq =	1,6381
sγ =	0,6733
FATTORI DI PROFONDITA'	
d'c =	0,0973
dc =	1,0973
dq =	1,0561
$d\gamma =$	1,0000
k =	0,2432
FATTORI DI INCLINAZIONE DEL CARICO	
ic =	0,7313
iq =	0,7368
iγ =	0,6486
FATTORI DI INCLINAZIONE DEL TERRENO	
g'c =	0,0000
gc =	1,0000
$gq = g\gamma =$	1,0000
FATTORI DI INCLINAZIONE DEL PIANO FONDAZIONE	
b'c =	0,0000
bc =	1,0000
bq =	1,0000
bγ =	1,0000

COMBINAZIONE SIS

B =	12,5	m	dimensione della fondazione lungo l'asse x
L=	15,2	m	dimensione della fondazione lungo l'asse y
D =	3	m	profondità della fondazione

Eurolink S.C.p.A. Pagina 197 di 201

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0341_F0
 F0
 20/06/2011

φ' =	32	0	angolo di attrito del terreno,	0,559	rad			
c' =	0	kPa	coesione efficacie del terreno					
$\gamma =$	20	kN/mc	peso specifico del terreno					
β =	0	0	nclinazione del pendio, positiva verso il bass o					
η =	0	0	inclinazione del piano fondazione, positiva ver so	l'alto				
Fz =	37.974,33	kN	azione verticale agente					
Fx =	15.452,99	kN	azione orizzontale agente lungo B					
Mxx =	14.640,72	kNm	momento di asse vettore x					
Myy =	55.126,78	kNm	momento di asse vettore y					
ex =	1,452	m	eccentricità del carico lungo x					
ey =	0,386	m	eccentricità del carico lungo y					
B' =	9,597	m	dimensione ridotta della fondazione lungo l'asse	X				
L' =	14,429	m	dimensione ridotta della fondazione lungo l'asse y					
Af =	138,469 mq area della fondazione efficacie							
qmax =	274,244	kPa	massima pressione agente					
qult =	1042,42 kPa capacità portante agente							
γ =	fattore di sicurezza relativo alla capacità portante							

Come si evince la verifica risulta soddisfatta.

Riporto per completezza i singoli coefficienti della formulazione di Brinch-Hansen, considerati nella combinazione in esame:

COEFFICIENTI DI CAPACITA' PORTANTE

23,177
35,490
20,786
0,1330
1,4343
1,4156
0,7340
0,1250
1,1250
1,0863
1,0000

Eurolink S.C.p.A. Pagina 198 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

Rev F0 Data 20/06/2011

k =	0,3126					
FATTORI DI INCLINAZIONE DEL CARICO						
ic =	0,2900					
iq =	0,3206					
iγ =	0,1871					
FATTORI DI INCLINAZIONE DEL TERRENO						
g'c =	0,0000					
gc =	1,0000					
$gq = g\gamma =$	1,0000					
FATTORI DI INCLINAZIONE DEL PIANO FONDAZIONE						
b'c =	0,0000					
bc =	1,0000					
bq =	1,0000					
bγ =	1,0000					

13.1.5.4 Calcolo dei cedimenti indotti

Il calcolo dei cedimenti viene condotto con il metodo di Burland-Burbidge (vedi riferimento bibliografico [B38]).

Il metodo per la stima del cedimento di fondazioni su sabbie normalmente consolidate (NC) e sovra consolidate (OC) dai risultati di prove SPT si basa su un'analisi statistica di un grande numero casi osservati.

Sia w il cedimento esprimibile con la relazione:

$$\frac{w}{Z_1} = q' \cdot I_C$$

dove

 $Z_1 = B^{0,7}$ zona di influenza del carico che si estende fino ad una profondità dove il cedimento è pari a 25% del cedimento superficiale;

 $I_C = 1.7 / N^{1.4}$ indice di compressibilità (anche definibile come variazione d'indice di vuoti su variazione di tensioni efficaci);

q ' carico uniforme trasmesso da una fondazione quadrata

Esplicitando i termini, si ottiene il cedimento w (in mm) di una sabbia normalconsolidata:

$$w = q' \cdot B^{0,7} \cdot I_C$$

Se la fondazione si trova ad una profondità da p.c. ove è presente una tensione litostatica σ'_{v0} , l'equazione diventa, nella sua forma generalizzata:

Eurolink S.C.p.A. Pagina 199 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341 F0

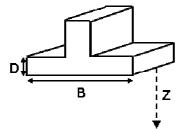
Rev F0 **Data** 20/06/2011

$$w = \sigma'_{v0} \cdot B^{0,7} \cdot \frac{I_C}{3} + (q' - \sigma'_{v0}) \cdot B^{0,7} \cdot I_C$$

Dove il primo termine si riferisce al tratto di ricompressione caratteristico di un comportamento elastico del terreno (finché non raggiunge lo stato tensionale pari a quello litostatico in sito), mentre il secondo termine si riferisce alla curva di carico (per carichi applicati superiori a quelli litostatici a parità di profondità). Se il terreno è sovraconsolidato, l'equazione sopra si mantiene valida, con l'unico accorgimento che al posto di σ'_{v0} si troverà σ'_p , tensione di preconsolidazione (si ricordi il diagramma semilogaritmico delle prove edometriche).

Si riporta nel seguito il calcolo condotto per la determinazione del cedimento indotto per l'opera in esame, assumendo come carico agente, la pressione massima in fondazione conseguente all'applicazione dei carichi nella combinazione allo Stato Limite di Servizio "RARA"; le valutazioni dei cedimenti nelle combinazioni FR e QP risultano superflue in quanto le azioni sono inferiori rispetto alla combinazione RARA. Cautelativamente si assume la condizione che massimizza le azioni verticali. L'azione verticale agente è pari a circa 39.405 kN, pertanto la pressione media agente in fondazione è pari a 0,21 Mpa.

Dalla relazione geotecnica CG0800PRBDCSBC8G000000001B si sono valutati i valori di Nspt e riferendosi al sondaggio C434 si sono osservati valori di Nspt che oscillano tra 27 e 99 nei primi 12 m; si assume nel calcolo dei cedimenti il valor medio di lettura pari a 50 Nspt:


$$Nspt_{(DICALCOLO)} = \frac{40 + 27 + 35 + 99 + 51}{5} \approx 50$$

La quota di imposta fondazione è stata assunta cautelativamente a -3 m da p.c., riferendosi alla condizione di progetto; rispetto alla situazione attuale la fondazione si trova mediamente a -3 da p.c.

Da cui si ottiene:

$$S = Fs \cdot Fh \cdot Ft \cdot \left[\sigma'_{vo} \cdot B^{0.7} \cdot \frac{Ic}{3} + (q' - \sigma'_{vo}) \cdot B^{0.7} \cdot Ic \right]$$

Caratteristiche fondali:

Litologia e carichi e prove:

$$Z = 6,72 \quad [m]$$

$$\gamma = 2,00 \quad [t/m^3]$$

$$q' = 21,00 \quad [t/m^2]$$

$$Nspt = 50,00 \quad media$$

$$Carichi Statici Carichi Dinamici$$

Periodo di previsione:

Eurolink S.C.p.A. Pagina 200 di 201

RELAZIONE DI CALCOLO

Codice documento
CS0341_F0

Rev F0 Data 20/06/2011

Tempo = 100 [anni]

 $\sigma'_{vo} = 6,00$ [t/m²]

Ic = 0.0071

anni	0	5	10	30	50	70	85	100
Ft	1,2046	1,3444	1,4046	1,5000	1,5444	1,5736	1,5905	1,6046

CEDIMENTI:

S [mm]	7,491	10,071	10,522	11,237	11,570	11,789	11,915	12,021

LEGENDA:

B = Larghezza fondale

L = Lunghezza fondale

D = Profondità del piano di posa

Z = Spessore strato compressibile

 γ = Peso di volume dello strato

q' = Pressione efficace lorda

Nspt = N. medio di colpi (prove SPT)

 σ'_{vo} = Tensione verticale efficace

Ic = Indice di compressibilità

Fs, Fh, Ft = Fattori correttivi

Zi = Profondità significativa

Dall'analisi si evince quindi che l'entità massima dei cedimenti con le assunzioni fatte è dell'ordine dei 1,2 cm, valore accettabile per le assunzioni fatte.

E' da precisare che tale valore di cedimento è un valore assoluto, che non tiene conto dello sviluppo nel tempo dei cedimenti; per questo tipo di terreni infatti, la parte maggiore dei cedimenti viene scontata in fase di costruzione della spalla, a favore di sicurezza per le analisi svolte in questa fase progettuale.

Eurolink S.C.p.A. Pagina 201 di 201