

Concessionaria per la progettazione, realizzazione e gestione del collegamento stabile tra la Sicilia e il Continente Organismo di Diritto Pubblico (Legge n°1158 del 17 dicembre 1971, modificata dal D.Lgs. n°114 del 24 aprile 2003)

PONTE SULLO STRETTO DI MESSINA

PROGETTO DEFINITIVO

EUROLINK S.C.p.A.

IMPREGILO S.p.A. (MANDATARIA) SOCIETÀ ITALIANA PER CONDOTTE D'ACQUA S.p.A. (MANDANTE) COOPERATIVA MURATORI E CEMENTISTI - C.M.C. DI RAVENNA SOC. COOP. A.R.L. (MANDANTE) SACYR S.A.U. (MANDANTE) ISHIKAWAJIMA - HARIMA HEAVY INDUSTRIES CO. LTD (MANDANTE)

A.C.I. S.C.P.A. - CONSORZIO STABILE (MANDANTE)

IL PROGETTISTA Dott. Ing. F. Colla Ordine Ingegneri Milano

n°20355 Dott. Ing. E. Pagani Ordine Ingegneri Milano n°15408

IL CONTRAENTE GENERALE

Project Manager (Ing. P.P. Marcheselli) STRETTO DI MESSINA Direttore Generale e **RUP** Validazione (Ing. G. Fiammenghi)

STRETTO DI MESSINA

Amministratore Delegato (Dott. P. Ciucci)

Unità Funzionale CS0670 F0 **COLLEGAMENTI CALABRIA**

Tipo di sistema INFRASTRUTTURE STRADALI OPERE CIVILI Raggruppamento di opere/attività ELEMENTI DI CARATTERE GENERALE

Opera - tratto d'opera - parte d'opera **GENERALE**

> Titolo del documento MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 -

> > RELAZIONE DI CALCOLO

									Π.				$\overline{}$	1											$\overline{}$		$\overline{}$	$\overline{}$	
CODICE	C	G	0	1	0	0	P	10	: L	ן ט ן	C	S	C		0	0	G	0	0	0	0	0	0	0	3	0	H	0	
CODICE																													

REV	DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO	
F0	20/06/2011	EMISSIONE FINALE	PRO ITER S.r.l.	G.SCIUTO	F.COLLA	

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

INDICE

IN	DICE		3
1	DES	CRIZIONE DELLA STRUTTURA	5
2	DOC	UMENTI DI RIFERIMENTO	6
:	2.1	Riferimenti normativi	6
:	2.2	Riferimenti bibliografici	6
3	PRO	GRAMMI PER L'ANALISI AUTOMATICA	7
4	CAR	ATTERISTICHE DEI MATERIALI	8
	4.1	Calcestruzzo per getti in opera C28/35	8
	4.2	Acciaio per cemento armato tipo B450C	8
5	CAR	ATTERIZZAZIONE GEOTECNICA	g
;	5.1	Descrizione delle litologie prevalenti	. 11
;	5.2	Caratterizzazione geotecnica	
;	5.2.1	Indagini utilizzate	. 11
,	5.2.2	Caratterizzazione Depositi terrazzati marini	. 12
,	5.3	Stratigrafia di progetto	. 13
6	CAR	ATTERIZZAZIONE DELLA SISMICITÀ	. 15
7	CAR	ATTERISTICHE DI CALCOLO	. 18
	7.1	Metodologia di calcolo	. 18
	7.2	Verifiche egli stati limite ultimi	. 18
	7.3	Verifiche agli stati limite di esercizio	. 20
	7.4	Verifiche a fessurazione	. 21
	7.5	Analisi dei carichi	. 23
	7.5.1	Peso proprio	. 23
	7.5.2	Peso dei terreni	. 23
	7.5.3	Spinta delle terre	. 23
	7.5	5.3.1 Coefficienti di spinta in fase statica	. 24
	7.5	5.3.2 Coefficienti di spinta in fase sismica	. 24
	7.5.4	Spinta idrostatica dell'acqua di falda	. 25
•	7.5.5	Sovraccarichi	. 25
•	7.5.6	Urto	. 25
8	FAS	I COSTRUTTIVE	. 26

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

9 1	MODELLO DI CALCOLO	27
9.1	Caratteristiche generali dell'opera	27
10	VERIFICHE	29
10.	.1 Verifiche geotecniche	29
10.	.1.1 Verifica a ribaltamento	29
10.	.1.2 Verifica a scorrimento sul piano di posa	29
10.	.1.3 Verifica di capacità portante della fondazione	30
10.	.2 Verifiche strutturali	31
10.	.2.1 Verifiche agli S.L.U	31
10.	.2.2 Verifica a flessione	32
	10.2.2.1 Sezione S1- Elevazione	32
	10.2.2.2 Sezione S1 – Fondazione	33
10.	.2.3 Verifica a taglio	35
	10.2.3.1 Sezione S1 – Fondazione	37
	10.2.3.2 Sezione S1 – Elevazione	38
10.	.3 Verifiche agli S.L.E.	40
	10.3.1 Sezione S1 – Elevazione	40
	10.3.2 Sezione S1 – Fondazione	40
10.	.4 Verifiche a fessurazione	42
	10.4.1 Sezione S1 – Fondazione	42
	10.4.2 Sezione S1 – Elevazione	43
11	ANALISI DI STABILITÀ GLOBALE	44
12	TABULATI DI CALCOLO	46
12.	.1 Sezione S1 – Analisi in fase statica - Input SLIDE rel. 05	46
12.	.2 Sezione S1 – Analisi in fase statica - Output SLIDE rel. 05	48
12.	.3 Sezione S1 – Analisi in fase sismica - Input SLIDE rel. 05	52
12	4 Sezione S1 – Analisi in fase sismica - Output SLIDE rel. 05	54

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

1 DESCRIZIONE DELLA STRUTTURA

Nell'ambito del progetto del ponte sullo stretto di Messina, lato Calabria, è prevista la realizzazione di un tratto di muro a sostegno della rotonda Santa Trada, ubicato tra le progressive 36km e 87km circa.

L'opera in oggetto è costituita da un muro di sostegno in c.a. gettato in opera di altezza variabile tra 9,70m e 12,80m lungo 54,66m.

A tergo dell'opera di sostegno, è previsto materiale drenante e un tubo di drenaggio per lo smaltimento delle eventuali acque di infiltrazione.

Nell'area in esame i terreni di fondazione sono costituiti principalmente dalla formazione dei depositi marini terrazzati e dal materiale di riporto costituente i rilevati delle rampe.

Nella presente relazione sono riportati il dimensionamento e le verifiche delle opere in oggetto.

Eurolink S.C.p.A. Pagina 5 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

2 DOCUMENTI DI RIFERIMENTO

2.1 Riferimenti normativi

- [1] Ministero dei LL.PP. D.M. 14.01.2008: "Norme tecniche per le Costruzioni".
- [2] **Ministero dei LL.PP. Circ. 617 del 02.02.2009:** Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al decreto ministeriale 14 Gennaio 2008;
- [3] **C.N.R. 10011**: "Costruzioni in acciaio. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione";
- [4] CIRCOLARE MIN. DEI LAV. PUBB. 15 OTTOBRE 1996 N. 252: "Istruzioni per l'applicazione delle «norme tecniche per il calcolo l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche» di cui al decreto ministeriale 9 gennaio 1996".
- [5] C.N.R. 10012: "Istruzioni per la valutazione delle azioni sulle costruzioni";
- [6] **C.N.R. 10024**: "Analisi di strutture mediante elaboratore. Impostazione e redazione delle relazioni di calcolo";
- [7] UNI EN 1537 2002: "Esecuzione di lavori geotecnici speciali. Tiranti di ancoraggio.

Tutte le Norme UNI richiamate nei D.M., Istruzioni, Circolari di cui si fa menzione.

2.2 Riferimenti bibliografici

- [8] **A. Migliacci, F. Mola (1985)**: "Progetto agli stati limite delle strutture in c.a." Masson Italia Editori
- [9] **Bowles J.E. (1988):** "Foundations Analysis and Design, 4th ed." McGraw-Hill, New York
- [10] Nova R. (2002): "Fondamenti di meccanica delle terre" McGraw-Hill, Milano
- [11] Raccomandazioni A.I.C.A.P. (1993) Ancoraggi nei terreni e nelle rocce
- [12] Terzaghi K. (1943): "Theoretical Soil Mechanics" J.Wiley & Sons, New York
- [13] C. Cestelli Guidi (1987): "Geotecnica e tecnica delle fondazioni" Ulrico Hoepli Editore

Pagina 6 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 **Data** 20/06/2011

3 PROGRAMMI PER L'ANALISI AUTOMATICA

STS Stati Limite rel. 1.1

Distribuito dall'Ing. Dante Sangalli

Programma di calcolo per le verifiche alle Tensioni Ammissibili ed agli Stati Limite di sezioni in c.a. e c.a.p.

Spettri di risposta ver. 1.0.3

Distribuito dal Consiglio Superiore LL.PP.

Foglio di calcolo per la definizione dei parametri sismici secondo la trattazione del D.M. 14/01/2008 "Norme tecniche per le Costruzioni".

SLIDE rel 5.0

Rocscience Inc.

Programma per l'analisi di stabilità di pendii

Il programma Slide rel. 5.0 (Rocscience Inc.) consente di eseguire analisi di stabilità all'equilibrio limite suddividendo i piani di scorrimento in un numero variabile di conci e calcolando il fattore di sicurezza globale alla stabilità. E' possibile incrementare il numero di superfici di scorrimento analizzate ed i limiti geometrici di studio. Si possono selezionare diversi metodi di analisi limite tra cui Bishop, Morgenstern-Price, Janbu, Spencer, Fellenius, selezionando superfici circolari, spezzate o miste. È inoltre possibile inserire la presenza della falda, di carichi concentrati o distribuiti, di carichi sismici o di incrementi della pressione dell'acqua interstiziale.

Eurolink S.C.p.A. Pagina 7 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO
 Codice documento
 Rev
 Data

 CS0670_F0
 F0
 20/06/2011

= 17.43 N/mm²

13.94 N/mm²

4 CARATTERISTICHE DEI MATERIALI

4.1 Calcestruzzo per getti in opera C28/35

Classe di resistenza	C28/35 -	
Rapporto massimo acqua / cemento	0.45 -	
Slump	S4 -	
Contenuto minimo di cemento	360 kg/m ³	
Diametro massimo inerte	32 mm	
Classe di esposizione	XF4 -	
		2
Resistenza caratteristica a compressione cubica	$R_{ck} =$	35.00 N/mm ²
Resistenza caratteristica a compressione cilindrica	$f_{ck} = 0.83 \times R_{ck}$	= 29.05 N/mm ²
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8$	= 37.05 N/mm ²
Modulo elastico	$E_c = 22000 \times (f_{cm}/10)^{0.3}$	$= 32588.11 \text{ N/mm}^2$
Resistenza a trazione semplice	$f_{ctm} = 0.30 \times f_{ck}^{2/3}$	$= 2.83 \text{ N/mm}^2$
Resistenza a trazione caratteristica (frattile 5%)	$f_{ctk} = 0.70 \times f_{ctm}$	$= 1.98 \text{ N/mm}^2$
Stato Limite Ultimo		
Coefficiente parziale di sicurezza	γ _C =	1.50
Coefficiente riduttivo per resistenze di lunga durata	α_{cc} =	0.85
Resistenza a compressione di calcolo	$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_{C}$	$= 16.46 \text{ N/mm}^2$
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk}/\gamma_C$	$= 1.32 \text{ N/mm}^2$
Stato Limite di Esercizio		

4.2 Acciaio per cemento armato tipo B450C

Tensione max di compressione - Comb. quasi permanente σ_c

Tensione max di compressione - Comb. rara

Tipo di acciaio	B450C	;		-		
Copriferro min. netto per muri di sostegno	50			mm		
Copriferro min. netto per diaframmi	80			mm		
Sovrapposizioni continue	50			Ø		
Tensione caratteristica di rottura (frattile 5%)	f _{tk}	=			540.00	N/mm ²
Tensione caratteristica di snervamento (frattile 5%)	f _{yk}	=			450.00	N/mm ²
Stato Limite Ultimo	1					
Coefficiente parziale di sicurezza	γs	=			1.15	
Resistenza a trazione di calcolo	f_{yd}	=	f_{yk}/γ_S	=	391.30	N/mm ²
Stato Limite di Esercizio			•			
Tensione massima di trazione	σ_{s}	<	$0.80 \times f_{vk}$	=	360.00	N/mm ²

Pagina 8 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento CS0670_F0

Rev F0

20/06/2011

Data

5 CARATTERIZZAZIONE GEOTECNICA

La rotonda di Santa Trada è posizionata fuori dal limite di intervento del progetto del ponte sullo Stretto di Messina, non si ha quindi a disposizione una descrizione dettagliata della geologia presente in sito.

Per definire la stratigrafia di progetto si è fatto riferimento alla geologia definita per la progettazione dell'adeguamento dell'autostrada Salerno – Reggio Calabria (D.G. 87) che comprendeva la zona di Santa Trada. I materiali presenti in sito in corrispondenza della rotonda S. Trada, nel DG 87, sono stati definiti come Depositi Continentali.

Le geologie definite dai due progetti, D.G. 87 e progetto del Ponte sullo Stretto, sono state messe a confronto, evidenziando che il materiale definito come Depositi Continentali nel D.G. 87, corrisponde sia in termini di disposizione spaziale (si vedano le figure sottostanti), sia in termini di descrizione ai Depositi Terrazzati Marini del progetto del Ponte. Per la progettazione dell'opera di sostegno studiata nella presente relazione si è fatto quindi riferimento alle caratteristiche tipiche dei Depositi Terrazzati Marini già definite per le paratie dell'asse A che sono le opere più vicine al muro in oggetto. Tali caratteristiche vengono riportate di seguito.

Eurolink S.C.p.A. Pagina 9 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento CS0670_F0

Rev F0

20/06/2011

Data

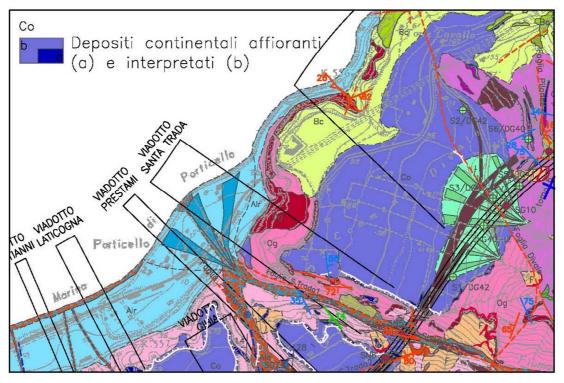


Figura 1 Planimetria geologica del progetto del D.G. 87

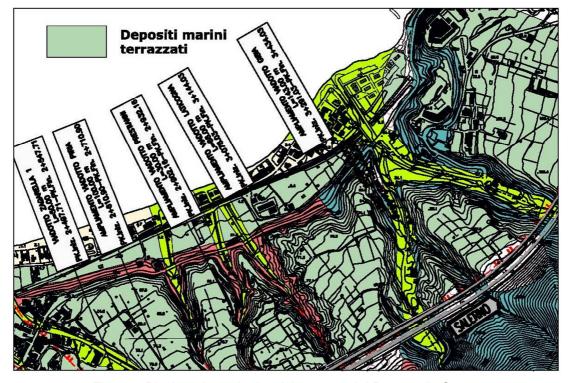


Figura 2 Planimetria geologica del progetto del Ponte sullo Stretto

Pagina 10 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 **Data** 20/06/2011

5.1 Descrizione delle litologie prevalenti

<u>Depositi terrazzati marini:</u> sono rappresentati da depositi marini sabbiosi e sabbioso ghiaiosi fortemente pedogenizzati in prossimità della superficie. I depositi dei terrazzi marini rappresentano terre da sciolte a debolmente coesive con cementazione da debole ad assente.

L'età attribuibile ai terrazzi cartografati nell'area di intervento copre l'intervallo Pleistocene mediosuperiore.

La falda non risulta interferente con le opere, come si evince dagli elaborati di progetto:

Codice	Titolo del documento				
CG0800PRBDCSBC8G000000001	Relazione geotecnica generale versante Calabria				
CG0800PRGDCSBC6G000000003	Relazione idrogeologica				
CG0800PN5DCSBC6G000000003	Carta idrogeologica versante Calabria				
CG0800PF6DCSBC6ST00000001					
CG0800PF6DCSBC6ST00000025	Profilo geologico-geotecnico Tracciato stradale - Ramo A				
000000000000000000000000000000000000000	Profilo geologico-geotecnico Tracciato stradale - Ramo A				
CG0800PF6DCSBC6ST00000019	Accelerazione				

5.2 Caratterizzazione geotecnica

Per i criteri e per gli aspetti generali di caratterizzazione si rimanda a quanto riportato nella relazione Elab. CG0800PRBDCSBC8G00000001A. Per la definizione delle categorie di suolo si rimanda al medesimo elaborato ed alla relazione sismica di riferimento.

5.2.1 Indagini utilizzate

Data l'esiguità dei sondaggi e delle prove localmente presenti (C427, C433), si è scelto di tenere conto anche di altri sondaggi e prove disponibili.

Le prove localmente utilizzate nella caratterizzazione sono:

Depositi terrazzati marini:

Si considerano i sondaggi della tratta relativa alla Rampa A_acc.

- prove SPT (C428, C429, C430, C432, C434)
- 1 prova sismica (C430)

Eurolink S.C.p.A. Pagina 11 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento

Rev F0 **Data** 20/06/2011

- 3 prove Le Franc (CN451, C425, C430)
- Prove di laboratorio per la determinazione dei parametri fisici ed elle caratteristiche di resistenza (TD, sondaggio C410, CN451)

5.2.2 Caratterizzazione Depositi terrazzati marini

Per le <u>caratteristiche fisiche</u> l'andamento del fuso evidenzia che le caratteristiche granulometriche dei materiali in esame sono tipiche di materiali sia di materiali a grana grossa (ghiaie 30%), sia di materiali intermedi (sabbie 50%). Il contenuto di fino è mediamente del 17%.

Con riferimento al fuso medio si ha:

- Il valore di D₅₀ è pari a 0.5mm
- Il valore di D₆₀ è pari a 1.0 mm
- Il valore di D₁₀ è pari a 0.008 mm

Il peso di volume dei grani γ_s è risultato pari a circa 26.5 kN/m³.

Da letteratura si hanno a disposizione i valori di γ_{dmax} e γ_{dmin} pari rispettivamente a 18.8 e 15.7 kN/m³

Per lo stato iniziale si ha:

- **Dr**: i valori di N_{spt} sono stati corretti con il fattore correttivo C_{sg}=0.85 corrispondente al d50=0.5mm.
- **e_o:** a partire dal d50 stimato si ottiene di e_{max}-e_{min} pari a 0.35. Stimando per e_{max} un valore pari a 0.7 a partire dai valori di Dr è stato possibile determinare i valori di **e_o** in sito.
- γd : in base ai valori di e_o da γ_s si può stimare γ , riportato nel grafico.
- K₀: si considera la relazione di Jaky.

Dr(%) Prevalente sabbiosa	Dr(%) Sabbie e ghiaie	γd(KN/m3)	K_0	
50-80	-	17-20	0.35-0.4	

Per quanto riguarda le <u>caratteristiche di resistenza</u> sulla base delle prove SPT si è ottenuto un valore medio di angolo di attrito di circa 40°.

Pagina 12 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento CS0670_F0

Rev F0 Data 20/06/2011

z(m)	φ' _{p (pff=0-272KPa)} (°)	φ' _{p (pff=-272-350KPa)} (°)	φ' _{cν} (°)		
0-10	38-41	35-38	33-35		

Ai parametri di resistenza operativi al taglio in termini di sforzi efficaci si sono assegnati i seguenti valori operativi:

c' = 0 kPa = coesione apparente

φ' = 38°÷40° = angolo di resistenza al taglio

Per i valori di stato critico, in assenza di prove specifiche, in base ai dati di letteratura si possono definire i seguenti valori operativi

 $c_r' = 0$ kPa = coesione apparente

φ_r' = 33°-35°=angolo di resistenza al taglio

Dalle prove di laboratorio su campioni rimaneggiati si ottiene per l'angolo di attrito un valore di 30°-35°.

Per le caratteristiche di deformabilità in base alle SPT e alle sismiche si può assumere:

z(m)	G0(MPa)	E0(MPa)	E'(MPa)		
0-10	100-250	240-600	32-80 / 80-200		

con i valori di E pari rispettivamente a circa 1/10 ÷ 1/5 ed 1/3 di quelli iniziali.

La prova pressiometrica (SN8) ha fornito un valore (primo carico) di E' di 120MPa a circa 18m di profondità.

5.3 Stratigrafia di progetto

In corrispondenza dell'opera la stratigrafia è ipotizzata omogenea, in particolare si assume che sia costituita dalla formazione di depositi marini terrazzati. Si riportano i parametri geotecnici caratteristici assunti nei calcoli per tale formazione:

Materiale	Ϋ́n	c' _k	ф' _к
Wateriale	[kN/m³]	[kPa]	[]

Eurolink S.C.p.A. Pagina 13 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO
 Codice documento
 Rev
 Data

 CS0670_F0
 F0
 20/06/2011

Depositi marini terrazzati	18	0	38
----------------------------	----	---	----

Tabella 1: Stratigrafia di progetto e parametri caratteristici dei materiali.

dove:

 γ_n = peso di volume naturale

c' = coesione drenata

φ' = angolo di attrito efficace

Le caratteristiche del materiale a monte del muro sono riportate nella tabella sottostante.

Materiale	Y _n	c' _k	φ' _κ
	[kN/m³]	[kPa]	[၅
Materiale da rilevato	20	0	38

Tabella 2: Parametri caratteristici del materiale a monte del muro.

dove i simboli assumono il significato specificato sopra.

Si ipotizza che la falda non sia interferente con il muro in oggetto. Tale ipotesi si ritiene valida in quanto per le altre opere dell'asse A, ubicate in prossimità del muro qui studiato, la falda risultava non interferente.

Pagina 14 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento CS0670_F0

Rev F0 Data 20/06/2011

6 CARATTERIZZAZIONE DELLA SISMICITÀ

L'azione sismica di progetto, desunta dal D.M. del 14/01/2008, deriva dalla pericolosità sismica di base del sito; in particolare, viene definita a partire dall'accelerazione orizzontale massima attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (a_g). Lo stato limite di servizio indagato è lo Stato Limite di Danno (SLD), lo stato limite ultimo indagato è lo Stato Limite di salvaguardia della Vita (SLV). Trattandosi di un'opera di sostegno di altezza superiore a 5m si sono considerate le seguenti condizioni vita nominale e classe d'uso:

Vita nominale della costruzione 100 anni Classe d'uso della costruzione IV Coefficiente d'uso della costruzione c_u 2

Inserendo questi parametri e le coordinate geografiche dell'opera (riportate di seguito) nel programma Spettri di risposta ver. 1.0.3 distribuito dal Consiglio Superiore LL.PP si ottengono i valori di a_q da utilizzare nella progettazione:

Lat. | 38°14′ 38.94″ N
Long. | 15°40′ 54.66″ E

$$a_{g-SLV}$$
 | 0.433
 a_{g-SLD} | 0.170

A partire dalle accelerazioni su suolo rigido si ricavano le accelerazioni attese al sito (a_{max}) , ottenute moltiplicando le a_g per i coefficienti correttivi che tengono conto delle possibili amplificazioni del moto del suolo dovute a effetti stratigrafici e/o topografici. La categoria di suolo prevista è C (assunta a favore di sicurezza), corrispondente a "Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina mediamente consistenti", mentre la categoria topografica è T1 in quanto il rilievo considerato ha altezza inferiore a 30m; si ottengono quindi questi valori di a_{max} :

$$S_{S-SLV}$$
 1.051 S_{S-SLD} 1.459

Eurolink S.C.p.A. Pagina 15 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

$$S_T$$
 1
 $a_{max-SLV}$ $a_{g-SLV} \cdot S_S \cdot S_T = 0.455$
 $a_{max-SLD}$ $a_{g-SLD} \cdot S_S \cdot S_T = 0.248$

I coefficienti sismici di progetto per le verifiche geotecniche e strutturali dei muri si deducono, in accordo con il D.M. del 14/01/2008, sulla base delle relazioni:

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \qquad k_v = \pm 0.5 \cdot k_h$$

dove β_m è il coefficiente che porta in conto la riduzione dell'accelerazione massima attesa al sito a causa della deformabilità dell'opera. La normativa specifica di ricavare il valore di tale coefficiente dalla Tabella 7.11.II, dove vengono assegnati range di valori in funzione di a_g ; poiché però l'accelerazione sismica attesa per quest'opera supera il valore massimo considerato nella suddetta tabella (pari a 0.4g) si è proceduti ad una estrapolazione dei valori della tabella, ottenendo il grafico sottostante:

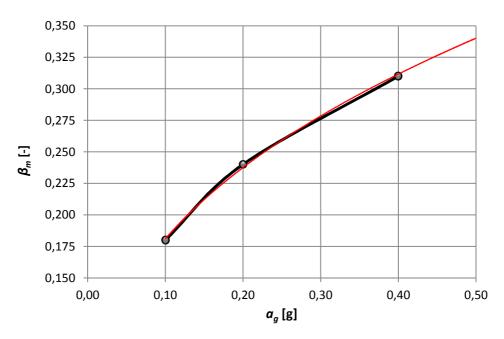
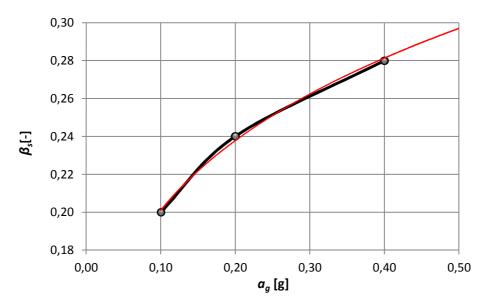


Figura 3: estrapolazione eseguita per ottenere il valore di β_m .

Cautelativamente si è assunto $\beta_m = 0.35$.

Pagina 16 di 57 Eurolink S.C.p.A.



MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

Per le verifiche di stabilità globale dell'insieme terreno-opera si presenta lo stesso problema, in quanto anche in questo caso il valore del coefficiente β_s necessario per il calcolo dei coefficienti sismici di progetto (vedi espressioni seguenti) non può essere ottenuto direttamente dalla Tabella 7.11.I del D.M. del 14/01/2008 in quanto l'accelerazione sismica attesa per quest'opera supera il valore massimo considerato nella suddetta tabella (pari a 0.4g). Attraverso l'estrapolazione si è ottenuto il grafico sottostante:

Figura 4: estrapolazione eseguita per ottenere il valore di β_s .

Cautelativamente nel calcolo dei coefficienti sismici si è assunto β_s = 0.30:

$$k_h = \beta_s \cdot \frac{a_{max}}{g}$$
 $k_v = \pm 0.5 \cdot k_s$

Eurolink S.C.p.A. Pagina 17 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento CS0670_F0

Rev F0 Data 20/06/2011

7 CARATTERISTICHE DI CALCOLO

7.1 Metodologia di calcolo

Le verifiche dei muri sono condotte secondo il metodo degli Stati Limite, come prescritto dalle "Nuove norme tecniche sulle costruzioni" del 14 gennaio 2008.

Si eseguono verifiche agli stati limite ultimi, con lo scopo di verificare la sicurezza delle opere, e agli stati limite di esercizio, necessarie per verificare che i cedimenti attesi siano compatibili con la funzionalità dei vari elementi e che i tassi di lavoro all'interno delle strutture garantiscano i livelli prestazionali richiesti per tutto il periodo di vita utile delle opere.

7.2 Verifiche egli stati limite ultimi

Sono effettuate le verifiche con riferimento ai seguenti stati limite:

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU):
 - stabilità globale del complesso muro-terreno;
 - scorrimento sul piano di posa;
 - collasso per carico limite dell'insieme fondazione-terreno;
 - ribaltamento;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza nelle strutture in c.a.

Per ogni stato limite considerato si accerta che sia soddisfatta la condizione:

 $E_d \le R_d$

dove E_d e R_d rappresentano rispettivamente le sollecitazioni e le resistenze di progetto.

L'applicazione del metodo di verifica semiprobabilistico agli stati limite, nella forma proposta dal D.M. 14/01/2008, prevede l'applicazione di set di fattori di sicurezza parziali sulle azioni (A1 e A2, riportati nella Tabella 3), sui parametri geotecnici (M1 e M2, riportati nella Tabella 4) e sulle resistenze (R1, R2 e R3, riportati nella Tabella 5).

Pagina 18 di 57 Eurolink S.C.p.A.

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento CS0670_F0

Rev Data FO

20/06/2011

CARICHI	EFFETTO	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	,	0,9	1,0	1,0
	Sfavorevole	Y G1	1,1	1,3	1,0
(1)	Favorevole		0,0	0,0	0,0
Permanenti non strutturali (1)	Sfavorevole	Y G2	1,5	1,5	1,3
Variabili	Favorevole		0,0	0,0	0,0
	Sfavorevole	Yqi	1,5	1,5	1,3

Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Tabella 3: Coefficienti parziali per le azioni o per l'effetto delle azioni.

PARAMETRO	GRANDEZZA ALLA QUALE APPLICARE IL COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE YM	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	tan φ _k	Υ _Φ	1,0	1,25
Coesione efficace	C k	Ϋ́c	1,0	1,25
Resistenza non drenata	C _{uk}	Ycu	1,0	1,4
Peso dell'unità di volume	γ□	Yg	1,0	1,0

Tabella 4: Coefficienti parziali dei parametri geotecnici del terreno.

VERIFICA	COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE
	(R1)	(R2)	(R3)
Capacità portante della fondazione	γ _R = 1,0	γ _R = 1,0	γ _R = 1,4
Scorrimento	γ _R = 1,0	γ _R = 1,0	$\gamma_R = 1,1$
Resistenza del terreno a valle	γ _R = 1,0	γ _R = 1,0	γ _R = 1,4

Tabella 5: Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno.

Nel Progetto in oggetto le verifiche sono effettuate secondo l'Approccio 1, applicando le seguenti combinazioni di carico (dove il segno '+' in ossequio alla normativa ha il significato di 'combinato con'):

Combinazione 1: A1 + M1 + R1

Combinazione 2: A2 + M2 + R2

La verifica di stabilità globale dell'insieme terreno-opera è effettuata secondo l'approccio 1, combinazione 2:

Eurolink S.C.p.A. Pagina 19 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

A2+M2+R2

Il coefficiente parziale sulle resistenza, associato al caso 'R2', è pari a 1.1, mentre i coefficienti A2 e M2 sono quelli già citati sopra. In fase sismica, l'analisi viene condotta ponendo pari ad uno tutti i coefficienti A e cercando un fattore di sicurezza pari a 1.1.

Di seguito si riportano i coefficienti di combinazione utilizzati nelle analisi.

			Peso proprio	Peso terreno	Peso permanenti	Peso accidentali	Spinta terre	Spinta permanenti	Spinta accidentali	Azioni in testa muro	Azioni sismiche
		EQU	0,90	0,90	0,90	0,00	1,10	1,10	1,50	0,00	0,00
		GEO-F1	1,00	1,00	1,00	0,00	1,00	1,00	1,30	0,00	0,00
Combinazioni por		GEO-F2	1,00	1,00	1,00	1,30 ^a	1,00	1,00	1,30	0,00	0,00
Combinazioni per verifiche	SLU	GEO-ECC	1,00	1,00	1,00	0,00	1,00	1,00	1,00	1,00	0,00
geotecniche e strutturali	SLU	GEO-SISM ↓	1,00	1,00	1,00	1,00 ^a	0,00	0,00	0,00	0,00	1,00
Strutturan		GEO-SISM ↑	1,00	1,00	1,00	1,00 ^a	0,00	0,00	0,00	0,00	1,00
		STR_F1	1,00	1,00	1,00	0,00	1,30	1,30	1,50	0,00	0,00
		STR_F2	1,00	1,00	1,00	1,50	1,30	1,30	1,50	0,00	0,00
		SLE-QP	1,00	1,00	1,00	0,00	1,00	1,00	0,00	0,00	0,00
		SLE-FR	1,00	1,00	1,00	0,00	1,00	1,00	0,70	0,00	0,00
Combinazioni per verifiche strutturali	SLE	SLE-CAR	1,00	1,00	1,00	0,00	1,00	1,00	1,00	0,00	0,00
		SLE-SISM ↓	1,00	1,00	1,00	1,00 ^a	0,00	0,00	0,00	0,00	1,00
		SLE-SISM ↑	1,00	1,00	1,00	1,00 ^a	0,00	0,00	0,00	0,00	1,00

Tabella 6: coefficienti di combinazione utilizzati nelle analisi (^a il carico accidentale è stato considerato pari a 20kPa in fase statica e pari a 10kPa in fase sismica).

7.3 Verifiche agli stati limite di esercizio

Le analisi allo stato limite di esercizio sono eseguite con riferimento ai valori caratteristici delle azioni e dei parametri di resistenza dei materiali e si risolvono nel controllare che i valori di tensione nei materiali siano inferiori ai limiti di normativa (punto 4.1.2.2.5 del D.M. 14/01/2008).

Calcestruzzo compresso:

- Comb. rara $\sigma_c < 0.60 \times f_{ck} \text{ per cls } R_{ck} \ 30 \rightarrow \sigma_c < 14.94 \ \text{N/mm}^2$

− Comb. quasi permanente σ_c < 0.45 × f_{ck} per cls R_{ck} 30 → σ_c < 11.21 N/mm²

Acciaio teso:

Pagina 20 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

Comb. rara

 $\sigma_s < 0.80 \times f_{vk}$ per acciaio B450 $\rightarrow \sigma_s < 360.0 \text{ N/mm}^2$

7.4 Verifiche a fessurazione

Viene eseguita la verifica allo stato limite di apertura delle fessure con riferimento al D.M. 14/01/2008.

Prima di procedere alle verifiche a fessurazione è necessario definire delle apposite combinazioni di carico ed effettuare una valutazione relativa al grado di protezione delle armature metalliche contro la corrosione (in termini di condizioni ambientali e sensibilità delle armature stesse alla corrosione). Si distinguono i seguenti casi (riportati nella tabella 4.1.II del D.M. 14/01/2008):

- Combinazioni di azioni:
 - Frequente (indicata con FR);
 - Quasi Permanente (indicata con QP).
- Condizioni ambientali:
 - Ordinarie;
 - Aggressive;
 - Molto Aggressive.
- Sensibilità delle armature alla corrosione:
 - Sensibili (acciai da precompresso);
 - Poco sensibili (acciai ordinari).

Come criteri di scelta dello stato limite di fessurazione si fa riferimento alla tabella di seguito riportata.

Gruppi di	Condizioni Combinazione		Armatura			
esigenze	ambientali	di azioni	Sensibile		Poco sensibile	
esigenze ambientali		ui azioni	Stato limite	W _d	Stato limite	W_d
а	Ordinarie	frequente	apertura fessure	≤ w ₂	apertura fessure	≤ w ₃
a	Ordinane	quasi perman.	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
b	Aggressive	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
В	Aggressive	quasi perman.	decompressione	-	apertura fessure	≤ w ₁
С	Molto	frequente	formazione fessure	-	apertura fessure	≤ w ₁
	aggressive	quasi perman.	decompressione	-	apertura fessure	≤ w ₁

Tabella 7: Criteri di scelta dello stato limite di fessurazione.

Si considerano i seguenti valori limite di apertura delle fessure:

Eurolink S.C.p.A. Pagina 21 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO

Codice documento	Rev	Data
CS0670_F0	F0	20/06/2011

 $- w_1 = 0.2 \text{ mm};$

 $- w_2 = 0.3 \text{ mm};$

 $- w_3 = 0.4 \text{ mm}.$

In base alla tabella 4.1.III del D.M. 14.01.2008, le classi di esposizione individuate per le opere in esame riconducono a condizioni ambientali del tipo "Ordinarie". Pertanto, secondo la tabella 4.1.IV:

			Armatura poco sensibile		
Gruppi di esigenze	Condizioni ambientali	Combinazione	Stato Limite	\mathbf{w}_{d}	
	a Molto aggressive (XF4)	Frequente	Apertura fessure	\leq w ₁ = 0.2 mm	
a		Quasi permanente	Apertura fessure	\leq w ₁ = 0.2 mm	

Tabella 8: Apertura delle fessure considerata nel calcolo.

Il calcolo è condotto attraverso i seguenti passaggi:

- Valutazione della distanza media tra le fessure (Δ_{sm});
- Valutazione della deformazione media delle barre d'armatura (ε_{sm});
- Valutazione dell'ampiezza delle fessure (valore medio e valore di calcolo).

Pagina 22 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

7.5 Analisi dei carichi

Nel seguito si riportano i valori caratteristici dei carichi utilizzati per le verifiche del muro in oggetto. A seconda delle diverse combinazioni di carico prescritte dalla normativa, tali carichi sono poi stati amplificati per i corrispondenti coefficienti parziali.

7.5.1 Peso proprio

Il peso proprio del muro in c.a. è valutato in ragione di 25.00 kN/m³.

7.5.2 Peso dei terreni

Il peso delle diverse unità geotecniche è riportato nel Capitolo 5.

7.5.3 Spinta delle terre

Le spinte del terreno sono valutate in base alle caratteristiche geotecniche dei rilevati riportate nel Capitolo 5. Il valore di spinta sulla struttura è calcolato secondo la seguente espressione:

$$S_{\text{ter}} = \left(\frac{1}{2} \cdot K_a \cdot \gamma \cdot H - 2 \cdot c' \cdot \sqrt{K_a}\right) \cdot H$$

dove:

- γ peso terreno a monte del muro per unità di volume
- angolo di attrito interno del terreno a monte del muro
- c' coesione efficace del terreno a monte del muro
 - coefficiente di spinta attiva secondo Rankine (in fase statica) o secondo
- K_a Mononobe-Okabe (in fase sismica)
- H altezza di spinta

Nel calcolo delle spinte si è considerato un angolo d'attrito terreno-muro pari a 2/3·φ sia per i muri prefabbricati sia per quelli gettati in opera.

Eurolink S.C.p.A. Pagina 23 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento CS0670_F0

Rev F0 Data 20/06/2011

7.5.3.1 Coefficienti di spinta in fase statica

Il coefficiente di spinta attiva K_a del terreno a monte del muro è stato calcolati secondo la relazione di Rankine sotto riportata, nella quale il valore dell'angolo di attrito terreno-muro δ è stato assunto pari a $(2/3) \cdot \phi$:

$$K_{\alpha} = \frac{\sin(\alpha + \phi)}{\sin^{2}\alpha \cdot \sin(\alpha - \delta) \cdot \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta)}{\sin(\alpha - \delta) \cdot \sin(\alpha + \beta)}}\right]^{2}}$$

dove:

- α angolo di inclinazione rispetto alla verticale del paramento di monte del muro
- β angolo di inclinazione rispetto all'orizzontale del terreno a monte del muro
- φ angolo di attrito efficace del terreno a monte del muro
- δ angolo di attrito terreno-muro

La tabella seguente riassume i coefficienti di spinta utilizzati nei calcoli effettuati; il pedice 'h' indica che i coefficienti di spinta attiva e passiva sono stati calcolati in direzione orizzontale.

Strato	S.L.	Parametri del terreno	Approccio	ф [°]	k _{ah} i ^(*) = 0°
Motorialo do	S.L.E.	Caratteristici	-	38	0.217
Materiale da rilevato	S.L.U.	Caratteristici	A1+M1+R1	38	0.217
Tilevato	S.L.U.	Progetto	A2+M2+R2	32	0.275

Tabella 9: Coefficienti di spinta caso statico. ($^{(*)}$ i = pendenza di terreno a monte del muro).

7.5.3.2 Coefficienti di spinta in fase sismica

I coefficienti di spinta in fase sismica sono stati valutati mediante la relazione di Mononobe – Okabe:

$$K_{a,sism} = \frac{\sin^2(\alpha + \phi - \vartheta)}{\cos\vartheta \cdot \sin^2\phi \cdot \sin(\alpha - \vartheta - \delta) \cdot \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \vartheta)}{\sin(\alpha - \vartheta - \delta) \cdot \sin(\alpha + \beta)}}\right]^2}$$

Pagina 24 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO

Codice documento	Rev	Data
CS0670_F0	F0	20/06/2011

Dove, oltre ai termini il cui significato è già stato esposto in precedenza, si assume

$$\vartheta = arc \tan \left(\frac{k_h}{1 \pm k_v} \right)$$

La sequente tabella riassume i coefficienti di spinta in fase sismica per i terreni in esame:

Strato	S.L.	Parametri Approccio		ф	k ; i ^(*) =	ah = 0°
	del terreno			[]	$k_v > 0$	k _v < 0
Materiale da	S.L.E.	Caratteristici	-	38	0.238	0.239
rilevato	S.L.U.	Progetto	A2+M2+R2	32	0.373	0.393

Tabella 10: Coefficienti di spinta caso sismico. ($^{(i)}$ i = pendenza di terreno a monte del muro).

7.5.4 Spinta idrostatica dell'acqua di falda

Poiché in presenza di falda si disporranno opportuni drenaggi a tergo dei muri, nelle analisi non si è considerata la spinta dell'acqua sul paramento del muro.

7.5.5 Sovraccarichi

A monte del muro si trova una carreggiata autostradale; il sovraccarico stradale è stato rappresentato come un carico uniformemente distribuito. In base a quanto richiesto dalle specifiche, il valore caratteristico di tale carico è stato assunto pari a 20kN/m² nelle analisi in condizione statica e a 10kN/m² nelle analisi in condizione sismica.

7.5.6 Urto

Poiché a monte del muro è presente la carreggiata autostradale, nel calcolo di è tenuto conto anche della forza trasmessa al muro da un veicolo in svio che urtasse la barriera di sicurezza. Tale forza è stata assunta pari a 100kN e la si è considerata distribuita uniformemente su un tratto di muro di lunghezza 3m.

Eurolink S.C.p.A. Pagina 25 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

8 FASI COSTRUTTIVE

Nel seguito vengono brevemente descritte le fasi esecutive per la realizzazione dell'opera in oggetto:

- 1. sbancamento per raggiungere la quota di imposta della fondazione;
- 2. getto in c.a. della fondazione con adeguati ferri di ripresa per la successiva solidarizzazione con l'elevazione;
- 3. getto in c.a. dell'elevazione;
- 4. riempimento orizzontale a tergo del muro.

Pagina 26 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento CS0670_F0

Rev F0 **Data** 20/06/2011

9 MODELLO DI CALCOLO

9.1 Caratteristiche generali dell'opera

Il muro in analisi ha sviluppo di circa 54,7m e ha altezza dell'elevazione variabile tra 9,70m e 12,8m circa. Dato che l'altezza di 12,8m ricorre per quasi tutto lo sviluppo del muro, per il dimensionamento si fa riferimento alla seguente geometria:

- altezza di spinta H_{spinta}=12,80m.
- lunghezza ciabatta di fondazione del muro d = 3m
- spessore della fondazione $S_F=1,50m$

Il paramento di valle del muro è verticale, mentre quello di monte presenta un primo tratto verticale che si estende fino a 2.0m al di sotto del piano stradale, per poi assumere un'inclinazione rispetto alla verticale di circa 1/10; in testa al muro è presente un cordolo a sbalzo avente la funzione di sostenere la barriera di sicurezza. A causa dell'inclinazione del paramento di monte lo spessore del muro varia da un minimo (in corrispondenza del tratto verticale) di 50cm ad un massimo (alla base dell'elevazione) di 1.60m.

La seguente Figura riporta una sezione rappresentativa del muro; per ulteriori dettagli si rimanda agli elaborati grafici di progetto.

Eurolink S.C.p.A. Pagina 27 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0

Data 20/06/2011

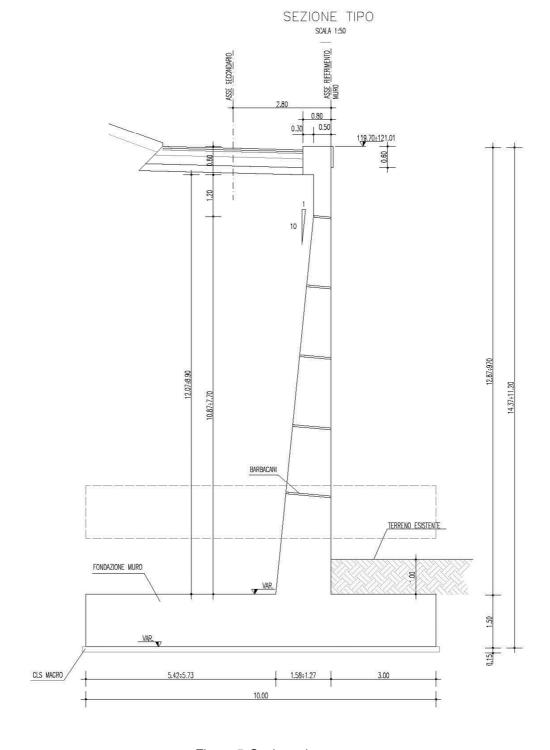


Figura 5: Sezione tipo muro

Pagina 28 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

10 VERIFICHE

10.1 Verifiche geotecniche

10.1.1 Verifica a ribaltamento

Combinazione	M _{RIB} [kN·m]	M _{STAB} [kN·m]	F _{S RIB}
	S1	S1	S1
EQU	938	12384	13,20
GEO-ECC	3808	13760	3,61
GEO-SISMA ↓	5826	13082	2,25
GEO-SISMA ↑	6024	15274	2,54

Tabella 11: Verifica a ribaltamento

10.1.2 Verifica a scorrimento sul piano di posa

Combinazione	T _{SOLL}	T _{RES}	F _{S scorr}
	S1	S1	S1
GEO-F1	622	1746	2,81
GEO-F2	622	1866	3,00
GEO-ECC	633	1746	2,76
GEO-SISMA ↓	1078	1653	1,53
GEO-SISMA ↑	1119	1931	1,73
STR-F1	605	1746	2,89
STR-F2	605	1885	3,12

Tabella 12: Verifica a scorrimento sul piano di posa.

Eurolink S.C.p.A. Pagina 29 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento CS0670_F0

Rev F0 Data 20/06/2011

10.1.3 Verifica di capacità portante della fondazione

Per il calcolo della capacità portante della fondazione è stata utilizzata la relazione proposta da Vesić:

$$q_{ult} = c' \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot g_c \cdot b_c + q \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot g_q \cdot b_q + 0.5 \cdot B \cdot \gamma \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot g_\gamma \cdot b_\gamma$$

dove:

- c' è la coesione efficace del terreno di fondazione;
- φ' è l'angolo d'attrito interno del terreno di fondazione;
- γ è il peso per unità di volume del terreno di fondazione;
- q è il sovraccarico laterale dovuto al ricoprimento della fondazione;
- B è il lato minore della fondazione;
- i coefficienti s_i, d_i, i_i, g_i, d_i, funzione dei parametri di resistenza del terreno, tengono conto rispettivamente della forma della fondazione, dell'approfondimento della fondazione, dell'inclinazione del carico, dell'inclinazione del terreno e dell'inclinazione del piano i posa.

Per l'espressione dei coefficienti si rimanda a [9].

La capacità portante ottenuta è stata confrontata con lo sforzo σ_{soll} trasmesso al terreno dalla fondazione del muro; nel caso in cui il terreno risultante soggetto a (irrealistici) sforzi di trazione si è considerata una fondazione di dimensioni opportunamente ridotte, così da ottenere uno sforzo di compressione ovungue.

Combinazione	σ _{soll} [kN/m]	q _{ult} [kN/m]	F _{S scorr}
	S1	S1	S1
GEO-F1	265,80	1306,73	4,92
GEO-F2	272,36	1438,46	5,28
GEO-ECC	247,88	1252,21	4,56
GEO-SISMA ↓	308,45	425,93	1,38
GEO-SISMA ↑	330,22	591,21	1,79
STR-F1	269,99	3250,94	12,04
STR-F2	277,25	3635,85	13,11

Tabella 13: Verifica di capacità portante della fondazione.

Pagina 30 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 **Data** 20/06/2011

10.2 Verifiche strutturali

Si riportano di seguito le sollecitazioni nell'elevazione e nella fondazione del muro per le tre sezioni di calcolo per ognuna delle combinazioni considerate.

Combinazione	M _{d, ELEV} [kN·m/m]	V _{d, ELEV} [kN/m] S1	M _{d, FOND} [kN·m/m]	V _{d, FOND} [kN/m] S1
GEO-F1	2802	606	2023	712
GEO-F2	2802	606	2009	719
GEO-ECC	3111	615	2230	752
GEO-SISMA ↓	3276	710	3870	1048
GEO-SISMA ↑	3276	741	3278	1077
STR-F1	2746	598	1981	703
STR-F2	2746	598	1964	711
SLE-QP	1663	390	1067	524
SLE-FR	1936	432	1286	567
SLE-CAR	2053	451	1379	585
SLE- SISMA ↓	2083	476	2217	700
SLE- SISMA ↑	2104	481	2687	900

Tabella 14: Sollecitazioni nel muro allo SLE e allo SLU.

Il momento flettente provocato dal peso del cordolo a sbalzo in testa al muro, a favore di sicurezza, è stato trascurato nelle verifiche.

10.2.1 Verifiche agli S.L.U.

Le verifiche vengono effettuate agli stati limite ultimi confrontando le sollecitazioni massime ottenute dal calcolo nella condizione più sfavorevole con i domini di progetto delle sezioni. Nella seguente tabella si riportano le sollecitazioni massime di progetto in elevazione e in fondazione per metro di muro; a favore di sicurezza la fondazione è stata dimensionata tutta sulla base delle sollecitazioni nella porzione più sollecitata, vale a dire la mensola posteriore.

Eurolink S.C.p.A. Pagina 31 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

10.2.2 Verifica a flessione

A favore di sicurezza, la verifica dell'elevazione nel confronto delle sollecitazioni flettenti è stata effettuata trascurando l'azione assiale.

10.2.2.1 Sezione S1- Elevazione

Si considera un'armatura doppia simmetrica costituita da barre Φ24 disposte su quattro strati (2 in zona tesa e 2 in zona compressa) comprendenti 10 barre ognuno, copriferro di calcolo 6,2cm (corrispondente ad un copriferro netto di 5cm). Di seguito si riporta la verifica eseguita con il programma STS.

METODO SEMIPROBABILISTICO - VERIFICA A ROTTURA

Sezione descritta con il metodo dei trapezi elementari

```
1 Trapezi elementari - 3 Parametri geometrici -
Unita` di misura:(cm) - Elenco dei parametri ad iniziare dall'estradosso
     100.0
b1
     160,0 b3
                  100,0
Descrizione dell'armatura normale
10 Ø24 mm posizionati a 12,1 cm da intradosso de intradosso
10 ø24 mm posizionati a 153,8 cm da intradosso
Area armatura normale =18095,6 (mm²)
                                                 80,0 cm da intrad.
Caratteristiche Fisico-Elastiche dei materiali
                                             = 210000,0(N/mm<sup>2</sup>)
Modulo Elastico acciaio normale
Modulo Elastico calcestruzzo
                                            = 33674,9(N/mm<sup>2</sup>)
Resistenza cubica del calcestruzzo: R_{ck} = 35,00(N/mm^2)
Resistenza cubica iniziale (alla tesatura):R_{ckj} =
                                                        35,00(N/mm<sup>2</sup>)
                                                    = 450,00(N/mm^2)
Soglia di snervamento acciaio normale: F_{vk}
Ipotesi di calcolo
Legge costitutiva del calcestruzzo :
                                             Parabola Rettangolo
Accorciamento ultimo a flessione = 0,3500 %
Accorciamento ultimo a compress. = 0,2000 %
Legge costitutiva dell'acciaio normale : Bilineare
Allungamento ultimo acciaio normale = 0,675 %
Coefficiente di sicurezza calcestruzzo : \gamma_c = 1,500
Coefficiente di sicurezza acciaio : \gamma_s = 1,150
Termine di lunga durata : F_1 = 0.850
Rapporto R_{cyl}/R_{cubo}: F_2 = 0.830
Resistenza di progetto calcestruzzo : F_1 \cdot F_2 \cdot R_{\text{cubo}} / \gamma_c = 0,47R_{\text{cubo}}
```

Pagina 32 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 CS0670_F0
 F0
 20/06/2011

```
Resistenza di progetto dell'acciaio : F_{sd} = F_{yk}/\gamma_s = 0.87F_{yk}
Resistenze di progetto
                         = 16,46(N/mm<sup>2</sup>)
Calcestruzzo
Acciaio normale
                       = 391,30(N/mm^2)
Convenzioni di segno
Sono positive le trazioni
Sono positivi i momenti che tendono l'intradosso sezione
Condizione di carico 1
Momento di Progetto M_d =
                             3276,0(KN.m)
Sforzo di Progetto N_d =
                              0,0(KN)
Distanza asse neutro da lembo compresso =
                                           24,5 (cm)
Momento di Rottura M_r = 5035,7(KN.m)
Sforzo di Rottura N_r =
                              -1,8(KN)
Rottura nel Dominio 2
Rapporto M_r/M_d = 1,537
```

10.2.2.2 Sezione S1 – Fondazione

Si considera un'armatura doppia simmetrica costituita da barre Φ 24 disposte su quattro strati (2 in zona tesa e 2 in zona compressa) comprendenti 10 barre ognuno, copriferro di calcolo 6,2cm (corrispondente ad un copriferro netto di 5cm). Di seguito si riporta la verifica eseguita con il programma STS.

METODO SEMIPROBABILISTICO - VERIFICA A ROTTURA

```
Sezione descritta con il metodo dei trapezi elementari
1 Trapezi elementari - 3 Parametri geometrici - Unita` di misura:(cm) - Elenco dei parametri ad iniziare dall'estradosso
b1 100,0
h2 150,0 b3 100,0
Descrizione dell'armatura normale
10 ø24 mm posizionati a
                            6,2 cm da intradosso
10 ø24 mm posizionati a 12,1 cm da intradosso
10 Ø24 mm posizionati a 137,9 cm da intradosso
10 ø24 mm posizionati a 143,8 cm da intradosso
Area armatura normale =18095,6 (mm²) a 75,0 cm da intrad.
Caratteristiche Fisico-Elastiche dei materiali
Modulo Elastico acciaio normale
                                           = 210000, 0 (N/mm^2)
Modulo Elastico calcestruzzo
                                              33674,9(N/mm<sup>2</sup>)
```

Eurolink S.C.p.A. Pagina 33 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO

Codice documento
CS0670_F0

Rev Data
F0 20/06/2011

```
Resistenza cubica del calcestruzzo: R_{ck} = 35,00 \, (N/mm^2) Resistenza cubica iniziale (alla tesatura):R_{ckj} = 35,00 \, (N/mm^2) Soglia di snervamento acciaio normale: F_{yk} = 450,00 \, (N/mm^2) Ipotesi di calcolo Legge costitutiva del calcestruzzo: Parabola Rettangolo Accorciamento ultimo a flessione = 0,3500 %
```

Accordiamento ultimo a compress. = 0,2000 % Legge costitutiva dell'acciaio normale : Bilineare Allungamento ultimo acciaio normale = 0,675 % Coefficiente di sicurezza calcestruzzo : γ_c = 1,500 Coefficiente di sicurezza acciaio : γ_s = 1,150 Termine di lunga durata : F_1 = 0,850 Rapporto R_{cyl}/R_{cubo} : F_2 = 0,830 Resistenza di progetto calcestruzzo : F_1 : F_2 : R_{cubo}/γ_c = 0,47 R_{cubo}

Resistenza di progetto calcestruzzo : $F_1 \cdot F_2 \cdot R_{cubo}/\gamma_c = 0,47R_{cubo}$ Resistenza di progetto dell'acciaio : $F_{sd} = F_{yk}/\gamma_s = 0,87F_{yk}$

Resistenze di progetto

Calcestruzzo = $16,46(N/mm^2)$ Acciaio normale = $391,30(N/mm^2)$

Convenzioni di segno

Sono positive le trazioni Sono positivi i momenti che tendono l'intradosso sezione

Condizione di carico 1

Momento di Progetto $M_d = 3870,0(KN.m)$ Sforzo di Progetto $N_d = 0,0(KN)$

Distanza asse neutro da lembo compresso = 23,6 (cm) Momento di Rottura $M_{\rm r}$ = 4689,9(KN.m) Sforzo di Rottura $N_{\rm r}$ = -4,9(KN) Rottura nel Dominio 2 Rapporto $M_{\rm r}/M_{\rm d}$ = 1,212

Pagina 34 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

10.2.3 Verifica a taglio

Si esegue dapprima la verifica degli *elementi senza armature resistenti a taglio* secondo quanto previsto nel D.M. 14/01/2008 al punto 4.1.2.1.3.1.

Indicato con V_{Ed} il valore di calcolo dello sforzo di taglio agente allo SLU (corrispondente alla massima sollecitazione a taglio di progetto), si verifica controllando che risulti:

$$V_{Ed} < V_{Rd} = max \left\{ \left(0.18 \cdot k \cdot \frac{\sqrt[3]{100 \cdot \rho_l \cdot f_{ck}}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d ; \left(v_{min} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \right\}$$

$$k = 1 + \sqrt{\frac{200}{d}} \le 2 \qquad v_{min} = 0.035 \cdot \sqrt{k^3} \cdot \sqrt{f_{ck}} \qquad \rho_l = \frac{A_{sl}}{b_w \cdot d} \le 0.02 \qquad \sigma_{cp} = \frac{N_{Ed}}{A_c} \le 0.2 \cdot f_{cd}$$

dove:

d altezza utile della sezione espressa in mm

b_w larghezza minima della sezione espressa in mm

Qualora la verifica non andasse a buon fine è necessario ricorrere ad *elementi provvisti di* armature resistenti a taglio secondo quanto previsto al punto 4.1.2.1.3.2 del già citato D.M.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio-trazione" si calcola con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \vartheta) \cdot \sin \alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio-compressione" si calcola con:

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot \frac{\cot \alpha + \cot \vartheta}{1 + \cot^2 \vartheta}$$

La resistenza a taglio dell'elemento strutturale è la minore delle due sopra definite:

$$V_{Rd} = min(V_{Rsd}; V_{Rcd})0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$$

Nelle precedenti espressioni, i nuovi parametri, introdotti rispetto al caso di elementi sprovvisti di armatura a taglio, assumono il seguente significato:

Eurolink S.C.p.A. Pagina 35 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO
 Codice documento
 Rev
 Data

 CS0670_F0
 F0
 20/06/2011

ϑ	inclinazione dei puntoni di calcestruzzo rispetto all'asse dell'elemento con la limitazione $1.0 \le ctg \vartheta \le 2.5$
α	inclinazione dell'armatura trasversale rispetto all'asse dell'elemento
A_{sw}	area dell'armatura trasversale
S	interasse tra due armature trasversali consecutive
$f'_{cd} = 0.5 \cdot f_{cd}$	resistenza a compressione ridotta del calcestruzzo d'anima
α_{c}	coefficiente maggiorativi pari a:
	per membrature non compresse
	$1 + \sigma_{cp}/f_{cd}$ per $0 \le \sigma_{cp} < 0.25 \cdot f_{cd}$
	1.25 per 0.25 $f_{cd} \le \sigma_{cp} \le 0.5 \cdot f_{cd}$
	$2.5 \cdot (1 - \sigma_{cp}/f_{cd})$ per $0.5 \cdot f_{cd} < \sigma_{cp} < f_{cd}$

In presenza di significativo sforzo assiale, come ad esempio nel caso della precompressione, è necessario considerare un'ulteriore limitazione relativa all'inclinazione dei puntoni di calcestruzzo:

$$\cot\vartheta_1\leq\cot\vartheta$$

in cui:

τ

 ϑ_1 angolo di inclinazione della prima fessurazione ricavato come $\cot \vartheta_1 = \tau/\sigma_1$

tensione tangenziale sulla corda baricentrica della sezione interamente reagente

 σ_i tensione principale di trazione sulla corda baricentrica della sezione interamente reagente.

Pagina 36 di 57 Eurolink S.C.p.A.

9040 mm²

0,0062 --

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 **Data** 20/06/2011

10.2.3.1 Sezione S1 – Fondazione

Caratteristiche dei materiali:

Resistenza caratteristica a compressione cubica cls	R _{ck}	=	35	N/mm ²
Resistenza caratteristica a compressione cilindrica cls	f _{ck}	=	28	N/mm ²
Resistenza di calcolo a compressone del cls	f _{cd}	=	15,87	N/mm ²
Resistenza di calcolo a trazione dell'acciaio	f _{yd}	=	391,30	N/mm ²
Sollecitazioni di verifica (S.L.U.):				
Valore di calcolo dello sforzo di taglio agente	V_{Ed}	=	1048,00	kN
Valore di calcolo della forza assiale associata a V _{Ed}	N (V _{Ed})	=	0,00	kN
Valore di calcolo del momento flettente associato a V_{Ed}	M (V _{Ed})	=	3870,00	kNm
Caratteristiche geometriche della sezione:				
Altezza utile della sezione	d	=	1450	mm
Larghezza minima della sezione	\mathbf{b}_{w}	=	1000	mm
Armatura della sezione in zona tesa:				
Diametro ferri longitudinali	Ø	=	24	mm
Numero tondini longitudinali utilizzati	n	=	20	

VERIFICA SENZA ARMATURA TRASVERSALE RESISTENTE A TAGLIO (§ 4.1.2.1.3.1)

Fattore dipendente dall'altezza utile della sezione (≤ 2)	k	=	1,37	
Tensione dipendente dal fattore k e dalla resistenza del cls	V _{min}	=	0,30	N/mm ²
Tensione media di compressione nella sezione (≤ 0.2×f _{cd})	$\sigma_{\sf cp}$	=	0,00	N/mm ²
Resistenza ultima a taglio minima	$V_{Rd,min}$	=	431,28	kN
Resistenza ultima a taglio (V _{Rd} ≥ V _{Rd,min})	V_{Rd}	=	619,01	kN

VERIFICA NON SODDISFATTA:

occorre procedere al dimensionamento dell'armatura trasversale resistente a taglio.

VERIFICA CON ARMATURA TRASVERSALE RESISTENTE A TAGLIO (§ 4.1.2.1.3.2)

Armatura aggiuntiva resistente a taglio:

Area totale di armatura longitudinale in zona tesa

Rapporto geometrico dell'armatura longitudinale (≤ 0.02)

Angolo di inclinazione armatura trasv. su asse dell'elemento	α	=	90	0
Diametro ferri a taglio	$\emptyset_{\sf sw}$	=	12	mm
Numero dei bracci in sezione trasversale	n_{sw}	=	4	
Passo in direzione asse elemento	s	=	200	mm
Area totale di armatura a taglio	\mathbf{A}_{sw}	=	452	mm^2

Eurolink S.C.p.A. Pagina 37 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO
 Codice documento
 Rev
 Data

 CS0670_F0
 F0
 20/06/2011

Fattori di resistenza a compressione:

Angolo di inclinazione dei puntoni di cls	θ	=	45	0
Resistenza a compressione ridotta del cls d'anima	f 'cd	=	7,93	N/mm ²
Tensione media di compressione nella sezione	$\sigma_{\sf cp}$	=	0,00	N/mm ²
Coefficiente maggiorativo per membrature compresse	α_{c}	=	1,00	
	•			
Resistenza di calcolo a "taglio trazione" dell'armatura	V_{Rsd}	=	1154,07	kN
Resistenza di calcolo a "taglio compressione" del cls	V_{Rcd}	=	5176,50	kN
Resistenza ultima a taglio	V_{Rd}	=	1154,07	kN

VERIFICA SODDISFATTA.

Affinché la verifica al taglio sia soddisfatta occorre quindi inserire delle staffe φ12, passo 20cm, disposte in modo da presentare 4 bracci/m.

10.2.3.2 Sezione S1 – Elevazione

Caratteristiche dei materiali:

Caratteristiche dei materian.				
Resistenza caratteristica a compressione cubica cls	R_{ck}	=	35	N/mm ²
Resistenza caratteristica a compressione cilindrica cls	f_{ck}	=	28	N/mm ²
Resistenza di calcolo a compressone del cls	f_{cd}	=	15,87	N/mm ²
Resistenza di calcolo a trazione dell'acciaio	f_{yd}	=	391,30	N/mm ²
Sollecitazioni di verifica (S.L.U.):				
Valore di calcolo dello sforzo di taglio agente	V_{Ed}	=	741,00	kN
Valore di calcolo della forza assiale associata a V _{Ed}	$N(V_{Ed})$	=	0,00	kN
Valore di calcolo del momento flettente associato a V _{Ed}	$M (V_{Ed})$	=	3276,00	kNm
Caratteristiche geometriche della sezione:				
Altezza utile della sezione	d	=	1550	mm
Larghezza minima della sezione	b_{w}	=	1000	mm
Armatura della sezione in zona tesa:				
Diametro ferri longitudinali	Ø	=	24	mm
Numero tondini longitudinali utilizzati	n	=	20	
Area totale di armatura longitudinale in zona tesa	A_{sl}	=	9040	mm^2
Rapporto geometrico dell'armatura longitudinale (≤ 0.02)	ρ_{l}	=	0,0058	

VERIFICA SENZA ARMATURA TRASVERSALE RESISTENTE A TAGLIO (§ 4.1.2.1.3.1)

Pagina 38 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO
 Codice documento
 Rev
 Data

 CS0670_F0
 F0
 20/06/2011

Fattore dipendente dall'altezza utile della sezione (≤ 2)	k	=	1,36	
Tensione dipendente dal fattore k e dalla resistenza del cls	V _{min}	=	0,29	N/mm ²
Tensione media di compressione nella sezione (≤ 0.2×f _{cd})	$\sigma_{\sf cp}$	=	0,00	N/mm ²
Resistenza ultima a taglio minima	$V_{Rd,min}$	=	454,89	kN
Resistenza ultima a taglio (V _{Rd} ≥ V _{Rd,min})	V_{Rd}	=	641,40	kN

VERIFICA NON SODDISFATTA:

occorre procedere al dimensionamento dell'armatura trasversale resistente a taglio.

VERIFICA CON ARMATURA TRASVERSALE RESISTENTE A TAGLIO (§ 4.1.2.1.3.2)

Armatura aggiuntiva resistente a taglio:

Angolo di inclinazione armatura trasv. su asse dell'elemento	α	=	90	0
Diametro ferri a taglio	\emptyset_{sw}	=	12	mm
Numero dei bracci in sezione trasversale	n _{sw}	=	4	
Passo in direzione asse elemento	S	=	250	mm
Area totale di armatura a taglio	A_{sw}	=	452	mm^2
Fattori di resistenza a compressione:				
Angolo di inclinazione dei puntoni di cls	θ	=	45	0
Resistenza a compressione ridotta del cls d'anima	f' _{cd}	=	7,93	N/mm ²
Tensione media di compressione nella sezione	$\sigma_{\sf cp}$	=	0,00	N/mm ²
Coefficiente maggiorativo per membrature compresse	α_{c}	=	1,00	
Designation of the clip transition of delilerations	l v		000.00	LAL
Resistenza di calcolo a "taglio trazione" dell'armatura	V_{Rsd}	=	986,93	
Resistenza di calcolo a "taglio compressione" del cls	V_{Rcd}	=	5533,50	kN
Resistenza ultima a taglio	V_{Rd}	=	986,93	kN
VEDICIOA CODDICEATTA				

VERIFICA SODDISFATTA.

Affinché la verifica al taglio sia soddisfatta occorre quindi inserire delle staffe ϕ 12, passo 25cm, disposte in modo da presentare 4 bracci/m.

Eurolink S.C.p.A. Pagina 39 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento

Rev F0 Data 20/06/2011

10.3 Verifiche agli S.L.E.

Di seguito si riportano le verifiche eseguite con il programma STS.

10.3.1 Sezione S1 – Elevazione

STATI LIMITE DI ESERCIZIO - VERIFICA DELLA SEZIONE

```
Sezione descritta con il metodo dei trapezi elementari
1 Trapezi elementari - 3 Parametri geometrici -
Unita` di misura:(cm) - Elenco dei parametri ad iniziare dall'estradosso
     100.0
b1
h2
     160,0 b3
                 100,0
Descrizione dell'armatura normale
10 Ø24 mm posizionati a 6,2 cm da intradosso
10 Ø24 mm posizionati a 12,1 cm da intradosso
10 Ø24 mm posizionati a 147,9 cm da intradosso
10 Ø24 mm posizionati a 153,8 cm da intradosso
Area armatura normale =18095,6 (mm²) a 80,0 cm da intrad.
Convenzioni di segno
Sono positive le trazioni
Sono positivi i momenti che tendono l'intradosso sezione
Coefficiente d'omogeneizzazione dell'armatura =15
Condizione di carico 1
Momento =
                     2104,0(KN.m)
Sforzo normale =
                        0,0(KN)
Compressione massima nel calcestruzzo = -4,63(N/mm^2)
Trazione massima nell'acciaio
                                          = 173,11(N/mm^2)
Distanza asse neutro da lembo compresso = 44,1 (cm)
```

Le tensioni nell'acciaio e nel calcestruzzo risultano inferiori alle tensioni limite da normativa.

= 138,5 (cm)

10.3.2 Sezione S1 – Fondazione

Braccio di leva interno

STATI LIMITE DI ESERCIZIO - VERIFICA DELLA SEZIONE

Sezione descritta con il metodo dei trapezi elementari

Pagina 40 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO
 Codice documento
 Rev
 Data

 CS0670_F0
 F0
 20/06/2011

```
1 Trapezi elementari - 3 Parametri geometrici - Unita` di misura:(cm) - Elenco dei parametri ad iniziare dall'estradosso
b1
   100,0
h2 150,0
            b3 100,0
Descrizione dell'armatura normale
10 ø24 mm posizionati a
                            6,2 cm da intradosso
10 Ø24 mm posizionati a 6,2 cm da intradosso
10 Ø24 mm posizionati a 12,1 cm da intradosso
10 ø24 mm posizionati a 137,9 cm da intradosso
10 ø24 mm posizionati a 143,8 cm da intradosso
Area armatura normale =18095,6 (mm²)
                                               75,0 cm da intrad.
                                          а
Convenzioni di segno
Sono positive le trazioni
Sono positivi i momenti che tendono l'intradosso sezione
Coefficiente d'omogeneizzazione dell'armatura =15
Condizione di carico 1
                    2687,0(KN.m)
Momento
Sforzo normale =
                      0,0(KN)
Compressione massima nel calcestruzzo = -6.58(N/mm^2)
Trazione massima nell'acciaio = 237,85(N/mm^2)
Distanza asse neutro da lembo compresso = 42,2 (cm)
Braccio di leva interno
                                = 128,7 (cm)
```

Le tensioni nell'acciaio e nel calcestruzzo risultano inferiori alle tensioni limite da normativa.

Eurolink S.C.p.A. Pagina 41 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

10.4 Verifiche a fessurazione

Di seguito si riportano le verifiche eseguite con il programma STS.

10.4.1 Sezione S1 – Fondazione

CALCOLO AMPIEZZA TEORICA DELLE FESSURE

```
Sezione descritta con il metodo dei trapezi elementari
1 Trapezi elementari - 3 Parametri geometrici -
Unita` di misura:(cm) - Elenco dei parametri ad iniziare dall'estradosso
     100,0
b1
   150,0 b3 100,0
Descrizione dell'armatura normale
10 ø24 mm posizionati a
                             6,2 cm da intradosso
10 Ø24 mm posizionati a 12,1 cm da intradosso
10 ø24 mm posizionati a 137,9 cm da intradosso
10 ø24 mm posizionati a 143,8 cm da intradosso
Area armatura normale =18095,6 (mm²)
                                                75,0 cm da intrad.
Armatura in barre ad aderenza migliorata
E' teso l'intradosso della sezione
Copriferro minimo di norma = 2,5 cm
                               = 5,0 cm = 20,0 cm
Copriferro effettivo sezione
Interferro
                                 = 24,0 \text{ (mm)}
Diametro massimo barre
Rapporto sforzo normale/momento = 0,0 cm<sup>-1</sup>
Trazione calcestruzzo di fessurazione (f_{ctm}) = 28,8 kg/cm<sup>2</sup>
Momento di prima fessurazione (\sigma = 0.7 · 1.2 f<sub>ctm</sub>) = 1,288E+03 (KN.m)
Momento di fessurazione (\sigma = f_{ctm})
                                                = 1,533E+03 (KN.m)
Stadio non fessurato
Coefficiente di omogeneizzazione = 15
Distanza asse neutro da lembo teso = 75,0 cm
Altezza del tirante ideale = 28,9 cm
Densità d'armatura del tirante ideale = 3,131 %
Stadio fessurato
                                    = 15
Coefficiente di omogeneizzazione
Distanza media fra due fessure attigue S_m = 20,2 cm
Momento di fessurazione; Trazione acciaio = 135,7 (N/mm²)
Coeff. K_3 ( =[0.25 (\sigma_1 + \sigma_2) / (2 \sigma_1)])
                                         = 0,202
Trazione nell'acciaio per il calcolo della fessura = 113,84 (N/mm²)
Ampiezza della fessura (w = 1.7 ^{\cdot} S_{\text{m}} ^{\cdot} \sigma_{\text{sm}} / E_{\text{s}})
                                                  = 0,0496 - 0,0496 \text{ mm}
```

L'ampiezza delle fessure risulta inferiore rispetto al limite da normativa.

Pagina 42 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0

20/06/2011

Data

10.4.2 Sezione S1 – Elevazione

CALCOLO AMPIEZZA TEORICA DELLE FESSURE

```
Sezione descritta con il metodo dei trapezi elementari
1 Trapezi elementari - 3 Parametri geometrici - Unita` di misura:(cm) - Elenco dei parametri ad iniziare dall'estradosso
b1
    100,0
h2 160,0
             b3 100,0
Descrizione dell'armatura normale
10 ø24 mm posizionati a
                             6,2 cm da intradosso
10 Ø24 mm posizionati a 12,1 cm da intradosso
10 \varnothing24 mm posizionati a 147,9 cm da intradosso
10 ø24 mm posizionati a
                           153,8 cm da intradosso
Area armatura normale =18095,6 (mm²)
                                                  80,0 cm da intrad.
Armatura in barre ad aderenza migliorata
E' teso l'intradosso della sezione
Copriferro minimo di norma
                                       2,5 cm
                                      5,0 cm
Copriferro effettivo sezione
                                  =
Interferro
                                  = 20,0 \text{ cm}
                            = 24,0 (mm)
Diametro massimo barre
Rapporto sforzo normale/momento = 0,0 cm<sup>-1</sup>
Trazione calcestruzzo di fessurazione (f_{ctm}) = 28,8 kg/cm<sup>2</sup>
Momento di prima fessurazione (\sigma = 0.7 · 1.2 f<sub>ctm</sub>) = 1,445E+03 (KN.m)
Momento di fessurazione (\sigma = f_{ctm})
                                                  = 1,72E+03 (KN.m)
Stadio non fessurato
Coefficiente di omogeneizzazione = 15
Distanza asse neutro da lembo teso = 80,0 cm
Altezza del tirante ideale = 28,9 cm
Densità d'armatura del tirante ideale = 3,131 %
Stadio fessurato
Coefficiente di omogeneizzazione
                                     = 15
Distanza media fra due fessure attigue S_m = 20.3 cm
Momento di fessurazione; Trazione acciaio = 141,6 (N/mm²)
Coeff. K_3 ( =[0.25'(\sigma_1 + \sigma_2) / (2' \sigma_1)] ) = 0,205
Trazione nell'acciaio per il calcolo della fessura = 159,29 (N/mm²)
Ampiezza della fessura (w = 1.7 ^{\circ} S<sub>m</sub> ^{\circ} ^{\circ} S<sub>sm</sub> / E<sub>s</sub>)
                                                       = 0.0697 - 0.1055 \text{ mm}
```

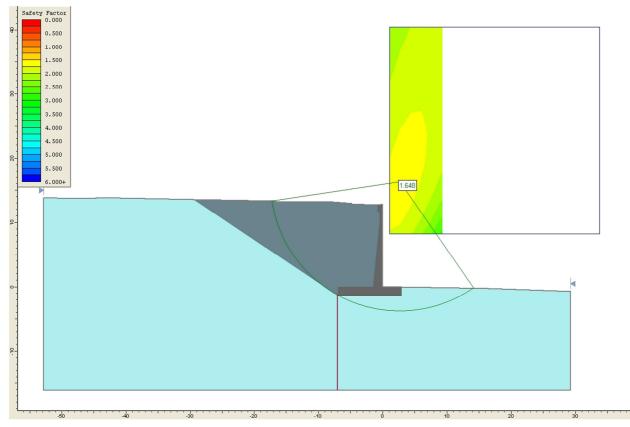
L'ampiezza delle fessure risulta inferiore rispetto al limite da normativa.

Eurolink S.C.p.A. Pagina 43 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

11 ANALISI DI STABILITÀ GLOBALE


Al fine di valutare le condizioni di stabilità globale del versante in cui si inserisce l'opera in progetto sono state condotte analisi di stabilità all'equilibrio limite con il metodo di Bishop, basato sull'equilibrio dei momenti e delle forze verticali, con risultante delle forze tra i conci contigui assunta orizzontale.

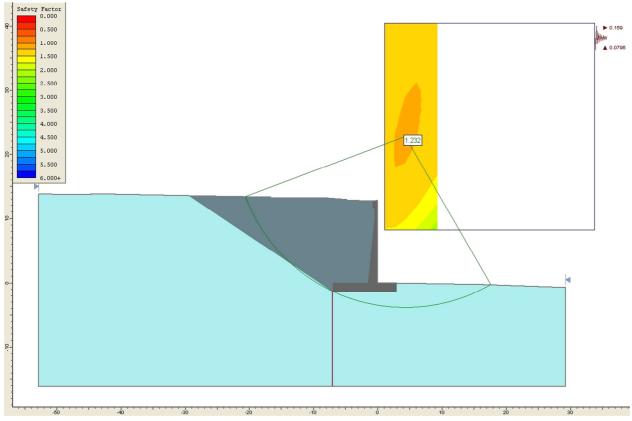
Le analisi di stabilità sono state condotte sia in condizioni statiche sia in condizioni sismiche solamente per la sezione di maggiore altezza (Sezione S1); in accordo i punti 6.8.2 del D.M. 14/01/2008 e C7.11.4 della Circolare 617 del 02/02/2009 si assume un coefficiente parziale sulle resistenze pari a:

$$\gamma_r \ge 1.1$$

sia in fase statica sia in fase sismica.

Il sisma è stato rappresentato da un'accelerazione orizzontale e una verticale nelle due direzioni possibili; nel seguito, però, sono riportati solo i risultati del caso più gravoso.

Analisi di stabilità caso statico: FS=1.648


Pagina 44 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO
 Codice documento
 Rev
 Data

 CS0670_F0
 F0
 20/06/2011

Analisi di stabilità caso sismico: FS=1.232

Eurolink S.C.p.A. Pagina 45 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

12 TABULATI DI CALCOLO

12.1 Sezione S1 – Analisi in fase statica - Input SLIDE rel. 05

Slide Analysis Information

Document Name

File Name: Muro sostegno rotonda S.Trada-statica.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program

Failure Direction: Left to Right Units of Measurement: SI Units Pore Fluid Unit Weight: 9.81 kN/m3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Ordinary/Fellenius Spencer

NI...a. la a.u. a.£ ali

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular
Search Method: Grid Search
Radius increment: 10
Composite Surfaces: Disabled
Reverse Curvature: Create Tension Crack
Minimum Elevation: Not Defined
Minimum Depth: Not Defined

Loading

1 Distributed Load present:
Distributed Load Constant Distribution, Orientation: Normal to

Material Properties

Material: rilevato Strength Type: Mohr-Coulomb Unit Weight: 20 kN/m3 Cohesion: 0 kPa

boundary, Magnitude: 26 kN/m2

Friction Angle: 32 degrees Water Surface: None

Material: c.a.

Strength Type: Mohr-Coulomb Unit Weight: 25 kN/m3 Cohesion: 50 kPa Friction Angle: 40 degrees Water Surface: None

Material: depterrmarini Strength Type: Mohr-Coulomb Unit Weight: 18 kN/m3 Cohesion: 0 kPa

Friction Angle: 32 degrees Water Surface: None

List of All Coordinates

Material Boundary -0.800 12.750

-0.800 11.600 -0.500 11.600 -0.500 10.400

-1.540 -0.000 -7.000 -0.000 -7.000 -1.385

-7.000 -1.500 0.000 -1.500

3.000 -1.500 3.000 0.000

Material Boundary

-29.538 13.587 -7.000 -1.385 -6.941 -1.424

External Boundary

-0.300 12.800 -0.302 12.800 -0.800 12.750 -2.833 12.801

-4.833 12.851 -4.833 12.951 -7.686 13.178

-10.775 13.204 -16.692 13.258 -16.692 13.358 -29.538 13.587 -44.669 13.857

 -44.669
 13.757

 -50.705
 13.812

 -52.787
 13.830

 -52.787
 -16.170

29.268-16.170

Pagina 46 di 57 Eurolink S.C.p.A.

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento

CS0670_F0

Rev F0

Data 20/06/2011

29.268-0.697 16.388-0.280

3.000 0.000

0.900 0.000 0.000 0.000

0.000 1.500

0.000 12.800

Focus/Block Search Line

-7.036 -16.041

-7.036 -1.352

Search Grid

1.026 8.256 33.7168.256

33.71640.504 1.026 40.504

Distributed Load

-0.843 12.751 -2.833 12.801

-4.774 12.849

Eurolink S.C.p.A. Pagina 47 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0

20/06/2011

Data

12.2 Sezione S1 – Analisi in fase statica - Output SLIDE rel. 05

	for Minimu				.295	30.830	34.118	1.82615
_	Center_y		Factor_of_Safety		.295	32.442	35.643	1.85519
1.026	8.256	12.542	1.76953		.295	34.054	37.175	1.88635
1.026	9.868	13.816	1.72672		.295	35.667	38.714	1.91698
1.026	11.481	15.155	1.70921		.295	37.279	40.259	1.94649
1.026	13.093	16.543	1.70349		.295	38.892	41.808	1.97877
1.026	14.706	17.968	1.70634		.295	40.504	43.363	2.01173
1.026	16.318	19.422	1.71502		.930	8.256	16.137	2.16972
1.026	17.930	20.900	1.73454		.930	9.868	17.146	2.01961
1.026	19.543	22.396	1.75930		.930	11.481	18.242	1.91338
1.026	21.155	23.908	1.78728		.930	13.093	19.410	1.83670
1.026	22.768	25.431	1.81924		.930	14.706	20.638	1.78236
1.026	24.380	26.965	1.85071		.930	16.318	21.916	1.74576
1.026	25.992	28.508	1.88537		.930	17.930	23.236	1.72583
1.026	27.605	30.058	1.91989		.930	19.543	24.590	1.71083
1.026	29.217	31.614	1.95684		.930	21.155	25.974	1.70978
1.026	30.830	33.176	1.99635		.930	22.768	27.383	1.71419
1.026	32.442	34.742	2.03404		.930	24.380	28.814	1.72696
1.026	34.054	36.313	2.07219		.930	25.992	30.262	1.74151
1.026	35.667	37.887	2.11128		.930	27.605	31.727	1.75905
1.026	37.279	39.464	2.14855		.930	29.217	33.205	1.77857
1.026	38.892	41.043	2.18608		.930	30.830	34.695	1.80042
1.026	40.504	42.625	2.22311		.930	32.442	36.196	1.82439
2.660	8.256	13.650	1.79984		.930	34.054	37.706	1.84878
2.660	9.868	14.830	1.73379		.930	35.667	39.224	1.87209
2.660	11.481	16.084	1.68899		.930	37.279	40.749	1.90201
2.660	13.093	17.398	1.67047		.930	38.892	42.281	1.92692
2.660	14.706	18.758	1.65881		.930	40.504	43.818	1.95538
2.660	16.318	20.156	1.65750		.564	8.256	17.478	2.43681
2.660	17.930	21.583	1.66886		.564	9.868	18.413	2.25375
2.660	19.543	23.035	1.68654		.564	11.481	19.438	2.12656
2.660	21.155	24.507	1.70864		.564	13.093	20.538	2.01700
2.660	22.768	25.996	1.73291		.564	14.706	21.702	1.92772
2.660	24.380	27.498	1.76119		.564	16.318	22.921	1.87000
2.660	25.992	29.013	1.78770		.564	17.930	24.186	1.82491
2.660	27.605	30.537	1.82047		.564	19.543	25.490	1.79871
2.660	29.217	32.070	1.85304		.564	21.155	26.828	1.78224
2.660	30.830	33.611	1.88931		.564	22.768	28.194	1.77649
2.660	32.442	35.158	1.92423		.564	24.380	29.585	1.77512
2.660	34.054	36.710	1.95872		.564	25.992	30.998	1.77799
2.660	35.667	38.268	1.99266		.564	27.605	32.429	1.78612
2.660	37.279	39.830	2.02834		.564	29.217	33.877	1.79661
2.660	38.892	41.395	2.06425		.564	30.830	35.339	1.81104
2.660	40.504	42.965	2.09980		.564	32.442	36.813	1.82688
4.295	8.256	14.856	1.93830		.564	34.054	38.298	1.84209
4.295	9.868	15.946	1.83645				39.794	1.86241
4.295	11.481	17.119	1.76731		.564	37.279	41.298	1.88345
4.295	13.093	18.359	1.71939		.564	38.892	42.810	1.90663
4.295	14.706	19.653	1.68830		.564	40.504	44.329	1.93016
4.295	16.318	20.991	1.67130		.198	8.256	18.864	2.76604
4.295	17.930	22.365	1.66975		.198	9.868	19.734	2.56392
4.295	19.543	23.769	1.67505		.198	11.481	20.694	2.37409
4.295	21.155	25.198	1.68372		.198	13.093	21.730	2.25184
4.295	22.768	26.649	1.70027		.198	14.706	22.834	2.12382
4.295	24.380	28.116	1.72022		.198	16.318	23.995	2.04071
4.295	25.992	29.599	1.74409		.198	17.930	25.206	1.97315
4.295	27.605	31.095	1.76895		.198	19.543	26.460	1.92883
4.295	29.217	32.602	1.79734	9	.198	21.155	27.751	1.89689

Pagina 48 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO
 Codice documento
 Rev
 Data

 CS0670_F0
 F0
 20/06/2011

9.198	22.768	29.074	1.87430	14.102	21.155	30.877 -1000.00000
9.198	24.380	30.425	1.85908	14.102	22.768	32.071 -1000.00000
9.198	25.992	31.800	1.85175	14.102	24.380	33.301 -1000.00000
9.198	27.605	33.197	1.84734	14.102	25.992	34.562 -1000.00000
9.198	29.217	34.613	1.84924	14.102	27.605	35.851 -1000.00000
9.198	30.830	36.045	1.85382	14.102	29.217	37.166 -1000.00000
9.198	32.442	37.491	1.86263	14.102	30.830	38.503 -1000.00000
9.198	34.054	38.951	1.87025	14.102	32.442	39.860 -1000.00000
9.198	35.667	40.422	1.88340	14.102	34.054	41.236 -1000.00000
9.198	37.279	41.904	1.89929	14.102	35.667	42.629 -1000.00000
9.198	38.892	43.395	1.91591	14.102	37.279	44.036 -1000.00000
9.198	40.504	44.956	1.93389	14.102	38.892	45.457 -1000.00000
10.833	8.256	20.288	-1000.00000	14.102	40.504	46.891 -1000.00000
10.833	9.868	21.099	-1000.00000	15.736	8.256	24.716 -1000.00000
10.833	11.481	21.999	-1000.00000	15.736	9.868	25.386 -1000.00000
10.833	13.093	22.977	-1000.00000	15.736	11.481	26.139 -1000.00000
10.833	14.706	24.024	-1000.00000	15.736	13.093	26.967 -1000.00000
10.833	16.318	25.130	-1000.00000	15.736	14.706	27.864 -1000.00000
10.833	17.930	26.289	-1000.00000	15.736	16.318	28.824 -1000.00000
10.833	19.543	27.493	-1000.00000	15.736	17.930	29.839 -1000.00000
10.833	21.155	28.738	-1000.00000	15.736	19.543	30.906 -1000.00000
10.833	22.768	30.017	-1000.00000	15.736	21.155	32.018 -1000.00000
10.833	24.380	31.328	-1000.00000	15.736	22.768	33.171 -1000.00000
10.833	25.992		-1000.00000	15.736	24.380	34.361 -1000.00000
10.833	27.605		-1000.00000	15.736	25.992	35.585 -1000.00000
10.833	29.217	35.409	-1000.00000	15.736	27.605	36.838 -1000.00000
10.833	30.830		-1000.00000	15.736	29.217	38.119 -1000.00000
10.833	32.442		-1000.00000	15.736	30.830	39.424 -1000.00000
10.833	34.054		-1000.00000	15.736	32.442	40.751 -1000.00000
10.833	35.667		-1000.00000	15.736	34.054	42.097 -1000.00000
10.833	37.279		-1000.00000	15.736	35.667	43.462 -1000.00000
10.833	38.892		-1000.00000	15.736	37.279	44.844 -1000.00000
10.833	40.504		-1000.00000	15.736	38.892	46.240 -1000.00000
12.467	8.256		-1000.00000	15.736	40.504	47.650 -1000.00000
12.467	9.868		-1000.00000	17.371	8.256	26.230 -1000.00000
12.467	11.481		-1000.00000	17.371	9.868	26.862 -1000.00000
12.467	13.093		-1000.00000	17.371	11.481	27.575 -1000.00000
12.467	14.706		-1000.00000	17.371	13.093	28.361 -1000.00000
12.467	16.318		-1000.00000	17.371	14.706	29.215 -1000.00000
12.467	17.930		-1000.00000	17.371	16.318	30.132 -1000.00000
12.467	19.543		-1000.00000	17.371	17.930	31.105 -1000.00000
12.467	21.155		-1000.00000	17.371	19.543	32.129 -1000.00000
12.467	22.768		-1000.00000	17.371	21.155	33.200 -1000.00000
12.467	24.380		-1000.00000	17.371	22.768	34.314 -1000.00000
12.467	25.992		-1000.00000	17.371	24.380	35.466 -1000.00000
					25.992	
12.467	27.605		-1000.00000 -1000.00000			36.652 -1000.00000
12.467	29.217		-1000.00000	17.371	27.605	37.871 -1000.00000 39.117 -1000.00000
12.467	30.830			17.371	29.217	
12.467	32.442		-1000.00000	17.371	30.830	40.390 -1000.00000
12.467	34.054		-1000.00000	17.371	32.442	41.686 -1000.00000
12.467	35.667		-1000.00000	17.371	34.054	43.004 -1000.00000
12.467	37.279		-1000.00000	17.371	35.667	44.341 -1000.00000
12.467	38.892		-1000.00000	17.371	37.279	45.695 -1000.00000
12.467	40.504		-1000.00000	17.371	38.892	47.066 -1000.00000
14.102	8.256		-1000.00000	17.371	40.504	48.452 -1000.00000
14.102	9.868		-1000.00000	19.006	8.256	27.757 -1000.00000
14.102	11.481		-1000.00000	19.006	9.868	28.356 -1000.00000
14.102	13.093		-1000.00000	19.006	11.481	29.031 -1000.00000
14.102	14.706		-1000.00000	19.006	13.093	29.779 -1000.00000
14.102	16.318		-1000.00000	19.006	14.706	30.594 -1000.00000
14.102	17.930		-1000.00000	19.006	16.318	31.470 -1000.00000
14.102	19.543	29.722	-1000.00000	19.006	17.930	32.403 -1000.00000

Eurolink S.C.p.A. Pagina 49 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev Data
F0 20/06/2011

19.006	19.543	33.388	-1000.00000	23.909	17.930	36.461	-1000.00000
19.006	21.155	34.420	-1000.00000	23.909	19.543	37.339	-1000.00000
19.006	22.768	35.495	-1000.00000	23.909	21.155	38.264	-1000.00000
19.006	24.380	36.610	-1000.00000	23.909	22.768	39.234	-1000.00000
19.006	25.992	37.761	-1000.00000	23.909	24.380	40.246	-1000.00000
19.006	27.605	38.944	-1000.00000	23.909	25.992	41.295	-1000.00000
19.006	29.217	40.157	-1000.00000	23.909	27.605	42.380	-1000.00000
19.006	30.830	41.398	-1000.00000	23.909	29.217	43.498	-1000.00000
19.006	32.442	42.664	-1000.00000	23.909	30.830	44.646	-1000.00000
19.006	34.054	43.952	-1000.00000	23.909	32.442	45.822	-1000.00000
19.006	35.667	45.261	-1000.00000	23.909	34.054	47.023	-1000.00000
19.006	37.279	46.589	-1000.00000	23.909	35.667	48.249	-1000.00000
19.006	38.892	47.934	-1000.00000	23.909	37.279	49.497	-1000.00000
19.006	40.504	49.296	-1000.00000	23.909	38.892	50.765	-1000.00000
20.640	8.256	29.296	-1000.00000	23.909	40.504	52.053	-1000.00000
20.640	9.868	29.864	-1000.00000	25.544	8.256	33.966	-1000.00000
20.640	11.481	30.506	-1000.00000	25.544	9.868	34.457	-1000.00000
20.640	13.093	31.219	-1000.00000	25.544	11.481	35.015	-1000.00000
20.640	14.706	31.997	-1000.00000	25.544	13.093	35.638	-1000.00000
20.640	16.318	32.836	-1000.00000	25.544	14.706	36.321	-1000.00000
20.640	17.930	33.731	-1000.00000	25.544	16.318	37.062	-1000.00000
20.640	19.543		-1000.00000	25.544	17.930	37.858	-1000.00000
20.640	21.155		-1000.00000	25.544	19.543	38.704	-1000.00000
20.640	22.768	36.711	-1000.00000	25.544	21.155		-1000.00000
20.640	24.380		-1000.00000	25.544	22.768		-1000.00000
20.640	25.992		-1000.00000	25.544	24.380		-1000.00000
20.640	27.605		-1000.00000	25.544	25.992		-1000.00000
20.640	29.217	41.236	-1000.00000	25.544	27.605		-1000.00000
20.640	30.830		-1000.00000	25.544	29.217		-1000.00000
20.640	32.442		-1000.00000	25.544	30.830		-1000.00000
20.640	34.054		-1000.00000	25.544	32.442		-1000.00000
20.640	35.667		-1000.00000	25.544	34.054		-1000.00000
20.640	37.279		-1000.00000	25.544	35.667		-1000.00000
20.640	38.892		-1000.00000	25.544	37.279		-1000.00000
20.640	40.504		-1000.00000	25.544	38.892		-1000.00000
22.275	8.256		-1000.00000	25.544	40.504		-1000.00000
22.275	9.868		-1000.00000	27.178	8.256		-1000.00000
22.275	11.481		-1000.00000	27.178	9.868		-1000.00000
22.275	13.093		-1000.00000	27.178	11.481		-1000.00000
22.275	14.706		-1000.00000	27.178	13.093		-1000.00000
22.275	16.318		-1000.00000	27.178	14.706		-1000.00000
22.275	17.930		-1000.00000	27.178	16.318		-1000.00000
22.275	19.543		-1000.00000	27.178	17.930		-1000.00000
22.275	21.155		-1000.00000	27.178	19.543		-1000.00000
22.275	22.768	37.958	-1000.00000	27.178	21.155		-1000.00000
22.275	24.380		-1000.00000	27.178	22.768		-1000.00000
22.275	25.992		-1000.00000	27.178	24.380		-1000.00000
22.275	27.605		-1000.00000	27.178	25.992		-1000.00000
22.275	29.217		-1000.00000	27.178	27.605		-1000.00000
22.275	30.830		-1000.00000	27.178	29.217		-1000.00000
22.275	32.442		-1000.00000	27.178	30.830		-1000.00000
22.275	34.054		-1000.00000	27.178	32.442		-1000.00000
22.275	35.667		-1000.00000	27.178	34.054		-1000.00000
22.275	37.279		-1000.00000	27.178	35.667		-1000.00000
22.275	38.892		-1000.00000	27.178	37.279		-1000.00000
22.275	40.504		-1000.00000	27.178	38.892		-1000.00000
23.909	8.256		-1000.00000	27.178	40.504		-1000.00000
23.909	9.868		-1000.00000	28.813	8.256		-1000.00000
23.909	11.481		-1000.00000	28.813	9.868		-1000.00000
23.909	13.093		-1000.00000	28.813	11.481		-1000.00000
23.909	14.706		-1000.00000	28.813	13.093		-1000.00000
23.909	16.318		-1000.00000	28.813	14.706		-1000.00000
23.303	10.510	55.054	1000.00000	20.013	14.700	33.200	1000.0000

Pagina 50 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

28.813	16.318	39.966	-1000.00000
28.813	17.930	40.705	-1000.00000
28.813	19.543	41.493	-1000.00000
28.813	21.155	42.328	-1000.00000
28.813	22.768	43.207	-1000.00000
28.813	24.380	44.127	-1000.00000
28.813	25.992	45.087	-1000.00000
28.813	27.605	46.082	-1000.00000
28.813	29.217	47.112	-1000.00000
28.813	30.830	48.174	-1000.00000
28.813	32.442	49.266	-1000.00000
28.813	34.054	50.386	-1000.00000
28.813	35.667	51.531	-1000.00000
28.813	37.279	52.702	-1000.00000
28.813	38.892	53.895	-1000.00000
28.813	40.504	55.109	-1000.00000
30.447	8.256	38.694	-1000.00000
30.447	9.868	39.126	-1000.00000
30.447	11.481	39.619	-1000.00000
30.447	13.093	40.170	-1000.00000
30.447	14.706	40.777	-1000.00000
30.447	16.318	41.439	-1000.00000
30.447	17.930	42.152	-1000.00000
30.447	19.543	42.913	-1000.00000
30.447	21.155	43.721	-1000.00000
30.447	22.768	44.572	-1000.00000
30.447	24.380	45.465	-1000.00000
30.447	25.992	46.397	-1000.00000
30.447	27.605	47.365	-1000.00000
30.447	29.217	48.368	-1000.00000
30.447	30.830	49.402	-1000.00000
30.447	32.442	50.468	-1000.00000
30.447	34.054	51.561	-1000.00000
30.447	35.667	52.682	-1000.00000
30.447	37.279	53.827	-1000.00000
30.447	38.892	54.995	-1000.00000
30.447	40.504	56.186	-1000.00000
32.081	8.256	40.280	-1000.00000
32.081	9.868	40.695	-1000.00000
32.081	11.481	41.168	-1000.00000
32.081	13.093	41.699	-1000.00000

32.081	14.706	42.285	-1000.00000
32.081	16.318	42.923	-1000.00000
32.081	17.930	43.611	-1000.00000
32.081	19.543	44.348	-1000.00000
32.081	21.155	45.130	-1000.00000
32.081	22.768	45.955	-1000.00000
32.081	24.380	46.822	-1000.00000
32.081	25.992	47.727	-1000.00000
32.081	27.605	48.669	-1000.00000
32.081	29.217	49.645	-1000.00000
32.081	30.830	50.654	-1000.00000
32.081	32.442	51.693	-1000.00000
32.081	34.054	52.761	-1000.00000
32.081	35.667	53.857	-1000.00000
32.081	37.279	54.977	-1000.00000
32.081	38.892	56.122	-1000.00000
32.081	40.504	57.289	-1000.00000
33.716	8.256	41.869	-1000.00000
33.716	9.868	42.268	-1000.00000
33.716	11.481	42.724	-1000.00000
33.716	13.093	43.236	-1000.00000
33.716	14.706	43.801	-1000.00000
33.716	16.318	44.418	-1000.00000
33.716	17.930	45.083	-1000.00000
33.716	19.543	45.796	-1000.00000
33.716	21.155	46.554	-1000.00000
33.716	22.768	47.355	-1000.00000
33.716	24.380	48.196	-1000.00000
33.716	25.992	49.076	-1000.00000
33.716	27.605	49.992	-1000.00000
33.716	29.217	50.943	-1000.00000
33.716	30.830	51.926	-1000.00000
33.716	32.442	52.941	-1000.00000
33.716	34.054	53.984	-1000.00000
33.716	35.667	55.055	-1000.00000
33.716	37.279	56.152	-1000.00000
33.716	38.892	57.273	-1000.00000
33.716	40.504	58.418	-1000.00000

Eurolink S.C.p.A. Pagina 51 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 Data 20/06/2011

12.3 Sezione S1 – Analisi in fase sismica - Input SLIDE rel. 05

Slide Analysis Information

Document Name

File Name: Muro sostegno rotonda S.Trada-sismica.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program

Failure Direction: Left to Right Units of Measurement: SI Units Pore Fluid Unit Weight: 9.81 kN/m3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Ordinary/Fellenius

Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular
Search Method: Grid Search
Radius increment: 10
Composite Surfaces: Disabled
Reverse Curvature: Create Tension Crack
Minimum Elevation: Not Defined
Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.159 Seismic Load Coefficient (Vertical): -0.0796

1 Distributed Load present:

Distributed Load Constant Distribution, Orientation: Normal to

boundary, Magnitude: 10 kN/m2

Material Properties

Material: rilevato Strength Type: Mohr-Coulomb Unit Weight: 20 kN/m3 Cohesion: 0 kPa Friction Angle: 32 degrees Water Surface: None

Material: c.a.

Strength Type: Mohr-Coulomb Unit Weight: 25 kN/m3 Cohesion: 50 kPa Friction Angle: 40 degrees Water Surface: None

Material: depterrmarini
Strength Type: Mohr-Coulomb
Unit Weight: 18 kN/m3
Cohesion: 0 kPa

Friction Angle: 32 degrees Water Surface: None

List of All Coordinates

Material Boundary

-0.800 12.750 -0.800 11.600 -0.500 11.600 -0.500 10.400 -1.540 -0.000 -7.000 -0.000 -7.000 -1.385

-7.000 -1.500 0.000 -1.500 3.000 -1.500 3.000 0.000

Material Boundary

-29.538 13.587 -7.000 -1.385 -6.941 -1.424

External Boundary

-0.300 12.800 -0.302 12.800 -0.800 12.750 -2.833 12.801 -4.833 12.851 -4.833 12.951

-7.686 13.178 -10.775 13.204 -16.692 13.258 -16.692 13.358 -29.538 13.587 -44.669 13.757 -50.705 13.812

13.830

-52.787 -16.170 29.268-16.170 29.268-0.697 16.388-0.280 3.000 0.000

0.900 0.000

-52.787

Pagina 52 di 57 Eurolink S.C.p.A.

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento CS0670_F0

Rev F0

Data 20/06/2011

0.000 0.000 0.000 1.500

1.026 8.256 33.7168.256 0.000 12.800 33.71640.504 1.026 40.504

Focus/Block Search Line

-7.036 -16.041 -7.036 -1.352

Search Grid

Distributed Load

-0.956 12.754 -2.833 12.801 -4.776 12.849

Eurolink S.C.p.A. Pagina 53 di 57

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0

20/06/2011

Data

12.4 Sezione S1 – Analisi in fase sismica - Output SLIDE rel. 05

				4.2	95 27.60	31.095	1.24772
Raw Data	for Minimu	ım Circle Re	esults	4.2	95 29.21	17 32.602	1.25600
Center_x	Center_y	Radius	Factor_of_Safety	4.2	95 30.83	34.118	1.26469
1.026	8.256	12.542	1.51425	4.2	95 32.44	35.643	1.27388
1.026	9.868	13.816	1.43176	4.2	95 34.05	37.175	1.28437
1.026	11.481	15.155	1.37965	4.2	95 35.66	38.714	1.29486
1.026	13.093	16.543	1.34343	4.2	95 37.27	79 40.259	1.30477
1.026	14.706	17.968	1.31909	4.2	95 38.89	92 41.808	1.31628
1.026	16.318	19.422	1.30278	4.2	95 40.50	43.363	1.32821
1.026	17.930	20.900	1.29617	5.9			1.75657
1.026	19.543	22.396	1.29529	5.9	9.86	8 17.146	1.61286
1.026	21.155	23.908	1.29785	5.9	30 11.48	18.242	1.50777
1.026	22.768	25.431	1.30394	5.9			1.42882
1.026	24.380	26.965	1.31067	5.9			1.36992
1.026	25.992	28.508	1.31990	5.9			1.32649
1.026	27.605	30.058	1.32968	5.9	30 17.93	30 23.236	1.29616
1.026	29.217	31.614	1.34112	5.9		13 24.590	1.27122
1.026	30.830	33.176	1.35461	5.9	30 21.15	55 25.974	1.25694
1.026	32.442	34.742	1.36707	5.9	30 22.76	58 27.383	1.24757
1.026	34.054	36.313	1.37993	5.9	30 24.38	30 28.814	1.24459
1.026	35.667	37.887	1.39332	5.9	30 25.99	30.262	1.24332
1.026	37.279	39.464	1.40589	5.9	30 27.60	31.727	1.24470
1.026	38.892	41.689	1.41770	5.9	30 29.21	17 33.205	1.24762
1.026	40.504	43.247	1.42667	5.9	30.83	34.695	1.25259
2.660	8.256	13.650	1.52117	5.9	30 32.44	36.196	1.25899
2.660	9.868	14.830	1.42884	5.9	34.05	37.706	1.26603
2.660	11.481	16.084	1.36123	5.9	35.66		1.27263
2.660	13.093	17.398	1.31948	5.9	30 37.27	79 40.749	1.28314
2.660	14.706	18.758	1.28741	5.9	38.89	92 42.281	1.29098
2.660	16.318	20.156	1.26609	5.9	30 40.50	43.818	1.30089
2.660	17.930	21.583	1.25570	7.5	64 8.25	6 17.478	1.91961
2.660	19.543	23.035	1.25159	7.5	64 9.86	8 18.413	1.75908
2.660	21.155	24.507	1.25151	7.5	64 11.48	31 19.438	1.64198
2.660	22.768	25.996	1.25405	7.5	64 13.09	20.538	1.54333
2.660	24.380	27.498	1.25986	7.5			1.46327
2.660	25.992	29.013	1.26531	7.5			1.40625
2.660	27.605	30.537	1.27507	7.5			1.36016
2.660	29.217	32.070	1.28522	7.5			1.32808
2.660	30.830	33.611	1.29789	7.5			1.30397
2.660	32.442	35.158	1.30975	7.5			1.28828
2.660	34.054	36.710	1.32161	7.5			1.27614
2.660	35.667	38.268	1.33325	7.5			1.26772
2.660	37.279	39.830	1.34588	7.5			1.26313
2.660	38.892	41.395	1.35871	7.5			1.26077
2.660	40.504	42.965	1.37139	7.5	64 30.83	35.339	1.26117
4.295	8.256	14.856	1.60834	7.5			1.26294
4.295	9.868	15.946	1.49448	7.5			1.26468
4.295	11.481	17.119	1.41267	7.5			1.26964
4.295	13.093	18.359	1.35182	7.5			1.27533
4.295	14.706	19.653	1.30766	7.5			1.28075
4.295	16.318	20.991	1.27661	7.5			1.28818
4.295	17.930	22.365	1.25838	9.1			2.11228
4.295	19.543	23.769	1.24645	9.1			1.94269
4.295	21.155	25.198	1.23835	9.1			1.79039
4.295	22.768	26.649	1.23641	9.1			1.68526
4.295	24.380	28.116	1.23774	9.1			1.58323
4.295	25.992	29.599	1.24208	9.1	98 16.31	18 23.995	1.51118

Pagina 54 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO
 Codice documento
 Rev
 Data

 CS0670_F0
 F0
 20/06/2011

9.198	17.930	25.206	1.45187	14.102	16.318	27.551 -1000.00000
9.198	19.543	26.460	1.40869	14.102	17.930	28.611 -1000.00000
9.198	21.155	27.751	1.37527	14.102	19.543	29.722 -1000.00000
9.198	22.768	29.074	1.34882	14.102	21.155	30.877 -1000.00000
9.198	24.380	30.425	1.32825	14.102	22.768	32.071 -1000.00000
9.198	25.992	31.800	1.31333	14.102	24.380	33.301 -1000.00000
9.198	27.605	33.197	1.30120	14.102	25.992	34.562 -1000.00000
9.198	29.217	34.613	1.29344	14.102	27.605	35.851 -1000.00000
9.198	30.830	36.045	1.28799	14.102	29.217	37.166 -1000.00000
9.198	32.442	37.491	1.28544	14.102	30.830	38.503 -1000.00000
9.198	34.054	38.951	1.28273	14.102	32.442	39.860 -1000.00000
9.198	35.667	40.422	1.28361	14.102	34.054	41.236 -1000.00000
						42.629 -1000.00000
9.198	37.279	41.904	1.28626	14.102	35.667	
9.198	38.892	43.503	1.28867	14.102	37.279	44.036 -1000.00000
9.198	40.504	44.987	1.29263	14.102	38.892	45.457 -1000.00000
10.833	8.256	20.288	-1000.00000	14.102	40.504	46.891 -1000.00000
10.833	9.868	21.099	-1000.00000	15.736	8.256	24.716 -1000.00000
10.833	11.481	21.999	-1000.00000	15.736	9.868	25.386 -1000.00000
10.833	13.093	22.977	-1000.00000	15.736	11.481	26.139 -1000.00000
10.833	14.706		-1000.00000	15.736	13.093	26.967 -1000.00000
10.833	16.318		-1000.00000	15.736	14.706	27.864 -1000.00000
10.833	17.930		-1000.00000	15.736	16.318	28.824 -1000.00000
10.833	19.543		-1000.00000	15.736	17.930	29.839 -1000.00000
10.833	21.155	28.738	-1000.00000	15.736	19.543	30.906 -1000.00000
10.833	22.768	30.017	-1000.00000	15.736	21.155	32.018 -1000.00000
10.833	24.380	31.328	-1000.00000	15.736	22.768	33.171 -1000.00000
10.833	25.992		-1000.00000	15.736	24.380	34.361 -1000.00000
10.833	27.605		-1000.00000	15.736	25.992	35.585 -1000.00000
10.833			-1000.00000			36.838 -1000.00000
	29.217			15.736	27.605	
10.833	30.830		-1000.00000	15.736	29.217	38.119 -1000.00000
10.833	32.442		-1000.00000	15.736	30.830	39.424 -1000.00000
10.833	34.054	39.660	-1000.00000	15.736	32.442	40.751 -1000.00000
10.833	35.667	41.106	-1000.00000	15.736	34.054	42.097 -1000.00000
10.833	37.279	42.564	-1000.00000	15.736	35.667	43.462 -1000.00000
10.833	38.892	44.032	-1000.00000	15.736	37.279	44.844 -1000.00000
10.833	40.504		-1000.00000	15.736	38.892	46.240 -1000.00000
12.467	8.256		-1000.00000	15.736	40.504	47.650 -1000.00000
12.467	9.868		-1000.00000	17.371	8.256	26.230 -1000.00000
12.467	11.481		-1000.00000	17.371	9.868	26.862 -1000.00000
12.467	13.093		-1000.00000	17.371	11.481	27.575 -1000.00000
12.467	14.706	25.263	-1000.00000	17.371	13.093	28.361 -1000.00000
12.467	16.318	26.317	-1000.00000	17.371	14.706	29.215 -1000.00000
12.467	17.930	27.426	-1000.00000	17.371	16.318	30.132 -1000.00000
12.467	19.543	28.583	-1000.00000	17.371	17.930	31.105 -1000.00000
12.467	21.155		-1000.00000	17.371	19.543	32.129 -1000.00000
12.467	22.768		-1000.00000		21.155	33.200 -1000.00000
						34.314 -1000.00000
12.467	24.380		-1000.00000	17.371	22.768	
12.467	25.992		-1000.00000	17.371	24.380	35.466 -1000.00000
12.467	27.605		-1000.00000	17.371	25.992	36.652 -1000.00000
12.467	29.217	36.261	-1000.00000	17.371	27.605	37.871 -1000.00000
12.467	30.830	37.630	-1000.00000	17.371	29.217	39.117 -1000.00000
12.467	32.442	39.018	-1000.00000	17.371	30.830	40.390 -1000.00000
12.467	34.054	40.423	-1000.00000	17.371	32.442	41.686 -1000.00000
12.467	35.667		-1000.00000	17.371	34.054	43.004 -1000.00000
12.467	37.279		-1000.00000	17.371	35.667	44.341 -1000.00000
12.467	38.892		-1000.00000	17.371	37.279	45.695 -1000.00000
12.467	40.504		-1000.00000	17.371	38.892	47.066 -1000.00000
14.102	8.256		-1000.00000	17.371	40.504	48.452 -1000.00000
14.102	9.868	23.931	-1000.00000	19.006	8.256	27.757 -1000.00000
14.102	11.481	24.728	-1000.00000	19.006	9.868	28.356 -1000.00000
14.102	13.093	25.602	-1000.00000	19.006	11.481	29.031 -1000.00000
14.102	14.706		-1000.00000	19.006	13.093	29.779 -1000.00000

Eurolink S.C.p.A. Pagina 55 di 57

Data

20/06/2011

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento Rev CS0670_F0 F0

19.006	14.706	30.594	-1000.00000	23.909	13.093	34.150 -1000.00000
19.006	16.318	31.470	-1000.00000	23.909	14.706	34.863 -1000.00000
19.006	17.930	32.403	-1000.00000	23.909	16.318	35.634 -1000.00000
19.006	19.543	33.388	-1000.00000	23.909	17.930	36.461 -1000.00000
19.006	21.155	34.420	-1000.00000	23.909	19.543	37.339 -1000.00000
19.006	22.768	35.495	-1000.00000	23.909	21.155	38.264 -1000.00000
19.006	24.380	36.610	-1000.00000	23.909	22.768	39.234 -1000.00000
19.006	25.992	37.761	-1000.00000	23.909	24.380	40.246 -1000.00000
19.006	27.605	38.944	-1000.00000	23.909	25.992	41.295 -1000.00000
19.006	29.217	40.157	-1000.00000	23.909	27.605	42.380 -1000.00000
19.006	30.830	41.398	-1000.00000	23.909	29.217	43.498 -1000.00000
19.006	32.442	42.664	-1000.00000	23.909	30.830	44.646 -1000.00000
19.006	34.054	43.952	-1000.00000	23.909	32.442	45.822 -1000.00000
19.006	35.667		-1000.00000	23.909	34.054	47.023 -1000.00000
19.006	37.279		-1000.00000	23.909	35.667	48.249 -1000.00000
19.006	38.892		-1000.00000	23.909	37.279	49.497 -1000.00000
19.006	40.504		-1000.00000	23.909	38.892	50.765 -1000.00000
20.640	8.256		-1000.00000	23.909	40.504	52.053 -1000.00000
20.640	9.868		-1000.00000	25.544	8.256	33.966 -1000.00000
20.640	11.481		-1000.00000	25.544	9.868	34.457 -1000.00000
20.640	13.093		-1000.00000	25.544	11.481	35.015 -1000.00000
20.640	14.706		-1000.00000	25.544	13.093	35.638 -1000.00000
20.640	16.318		-1000.00000	25.544	14.706	36.321 -1000.00000
20.640	17.930		-1000.00000	25.544	16.318	37.062 -1000.00000
20.640	19.543		-1000.00000	25.544	17.930	37.858 -1000.00000
20.640	21.155		-1000.00000	25.544	19.543	38.704 -1000.00000
20.640	22.768		-1000.00000	25.544	21.155	39.598 -1000.00000
20.640	24.380		-1000.00000	25.544	22.768	40.536 -1000.00000
20.640	25.992		-1000.00000	25.544	24.380	41.516 -1000.00000
20.640	27.605		-1000.00000	25.544	25.992	42.534 -1000.00000
20.640	29.217		-1000.00000	25.544	27.605	43.588 -1000.00000
20.640	30.830		-1000.00000	25.544	29.217	44.675 -1000.00000
20.640	32.442		-1000.00000	25.544	30.830	45.794 -1000.00000
20.640	34.054		-1000.00000	25.544	32.442	46.941 -1000.00000
20.640	35.667		-1000.00000	25.544	34.054	48.115 -1000.00000
20.640	37.279		-1000.00000	25.544	35.667	49.313 -1000.00000
20.640	38.892		-1000.00000 -1000.00000	25.544	37.279	50.535 -1000.00000 51.778 -1000.00000
20.640 22.275	40.504 8.256		-1000.00000	25.544 25.544	38.892 40.504	53.041 -1000.00000
22.275	9.868		-1000.00000	27.178	8.256	35.537 -1000.00000
22.275	11.481		-1000.00000	27.178	9.868	36.006 -1000.00000
22.275	13.093		-1000.00000	27.178	11.481	36.541 -1000.00000
22.275	14.706		-1000.00000	27.178	13.093	37.138 -1000.00000
22.275	16.318		-1000.00000	27.178	14.706	37.794 -1000.00000
22.275	17.930		-1000.00000	27.178	16.318	38.507 -1000.00000
22.275	19.543		-1000.00000	27.178	17.930	39.273 -1000.00000
22.275	21.155		-1000.00000	27.178	19.543	40.089 -1000.00000
22.275	22.768		-1000.00000	27.178	21.155	40.953 -1000.00000
22.275	24.380		-1000.00000	27.178	22.768	41.861 -1000.00000
22.275	25.992		-1000.00000	27.178	24.380	42.810 -1000.00000
22.275	27.605		-1000.00000	27.178	25.992	43.798 -1000.00000
22.275	29.217		-1000.00000	27.178	27.605	44.823 -1000.00000
22.275	30.830		-1000.00000	27.178	29.217	45.881 -1000.00000
22.275	32.442		-1000.00000	27.178	30.830	46.971 -1000.00000
22.275	34.054		-1000.00000	27.178	32.442	48.090 -1000.00000
22.275	35.667		-1000.00000	27.178	34.054	49.236 -1000.00000
22.275	37.279		-1000.00000	27.178	35.667	50.408 -1000.00000
22.275	38.892		-1000.00000	27.178	37.279	51.604 -1000.00000
22.275	40.504		-1000.00000	27.178	38.892	52.822 -1000.00000
23.909	8.256		-1000.00000	27.178	40.504	54.060 -1000.00000
23.909	9.868		-1000.00000	28.813	8.256	37.113 -1000.00000
23.909	11.481	33.500	-1000.00000	28.813	9.868	37.563 -1000.00000

Pagina 56 di 57 Eurolink S.C.p.A.

MURO SOSTEGNO ROTONDA S. TRADA DA PK 0+036 A PK 0+087 - RELAZIONE DI CALCOLO Codice documento
CS0670_F0

Rev F0 **Data** 20/06/2011

28.813	11.481	38.076	-1000.00000
28.813	13.093	38.649	-1000.00000
28.813	14.706	39.280	-1000.00000
28.813	16.318	39.966	-1000.00000
28.813	17.930	40.705	-1000.00000
28.813	19.543	41.493	-1000.00000
28.813	21.155	42.328	-1000.00000
28.813	22.768	43.207	-1000.00000
28.813	24.380	44.127	-1000.00000
28.813	25.992	45.087	-1000.00000
28.813	27.605	46.082	-1000.00000
28.813	29.217	47.112	-1000.00000
28.813	30.830	48.174	-1000.00000
28.813	32.442	49.266	-1000.00000
28.813	34.054	50.386	-1000.00000
28.813	35.667	51.531	-1000.00000
28.813	37.279	52.702	-1000.00000
28.813	38.892	53.895	-1000.00000
28.813	40.504	55.109	-1000.00000
30.447	8.256	38.694	-1000.00000
30.447	9.868	39.126	-1000.00000
30.447	11.481	39.619	-1000.00000
30.447	13.093	40.170	-1000.00000
30.447	14.706	40.777	-1000.00000
30.447	16.318	41.439	-1000.00000
30.447	17.930	42.152	-1000.00000
30.447	19.543	42.913	-1000.00000
30.447	21.155	43.721	-1000.00000
30.447	22.768	44.572	-1000.00000
30.447	24.380	45.465	-1000.00000
30.447	25.992	46.397	-1000.00000
30.447	27.605	47.365	-1000.00000
30.447	29.217	48.368	-1000.00000
30.447	30.830	49.402	-1000.00000
30.447	32.442	50.468	-1000.00000
30.447	34.054	51.561	-1000.00000
30.447	35.667	52.682	-1000.00000
30.447	37.279	53.827	-1000.00000
30.447	38.892	54.995	-1000.00000
30.447	40.504	56.186	-1000.00000
32.081	8.256	40.280	-1000.00000
32.081	9.868	40.695	-1000.00000
32.081	11.481	41.168	-1000.00000
32.081	13.093	41.699	-1000.00000
32.081	14.706	42.285	
			-1000.00000
32.081	16.318	42.923	-1000.00000
32.081	17.930	43.611	-1000.00000
32.081	19.543	44.348	-1000.00000
32.081	21.155	45.130	-1000.00000
32.081	22.768	45.955	-1000.00000
32.081	24.380	46.822	-1000.00000
32.081	25.992	47.727	-1000.00000
32.081	27.605	48.669	-1000.00000
32.081	29.217	49.645	-1000.00000
32.081	30.830	50.654	-1000.00000
32.081	32.442	51.693	-1000.00000
32.081	34.054	52.761	-1000.00000
32.081	35.667	53.857	-1000.00000
32.081	37.279	54.977	-1000.00000
32.081	38.892	56.122	-1000.00000
32.081	40.504	57.289	-1000.00000
33.716	8.256	41.869	-1000.00000

33.716	9.868	42.268	-1000.00000
33.716	11.481	42.724	-1000.00000
33.716	13.093	43.236	-1000.00000
33.716	14.706	43.801	-1000.00000
33.716	16.318	44.418	-1000.00000
33.716	17.930	45.083	-1000.00000
33.716	19.543	45.796	-1000.00000
33.716	21.155	46.554	-1000.00000
33.716	22.768	47.355	-1000.00000
33.716	24.380	48.196	-1000.00000
33.716	25.992	49.076	-1000.00000
33.716	27.605	49.992	-1000.00000
33.716	29.217	50.943	-1000.00000
33.716	30.830	51.926	-1000.00000
33.716	32.442	52.941	-1000.00000
33.716	34.054	53.984	-1000.00000
33.716	35.667	55.055	-1000.00000
33.716	37.279	56.152	-1000.00000
33.716	38.892	57.273	-1000.00000
33.716	40.504	58.418	-1000.00000

Eurolink S.C.p.A. Pagina 57 di 57