Spettabile Cliente

SEA ENERGIA S.p.A.

Aeroporto di Malpensa 21010 FERNO (VA)

Novara, lì 10 Giugno 2019

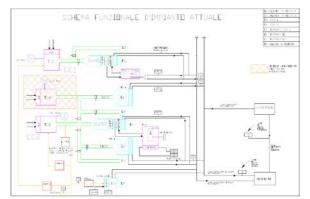
SEA ENERGIA S.p.A.

STUDIO PREVISIONALE DELLA RICADUTA AGENTI CHIMICI MEDIANTE SIMULAZIONE DI DISPERSIONE Rev. 2 del 10/06/2019

> Insediamento di FERNO (VA) Aeroporto di Malpensa

INDICE

1	FINALITA' DELLO STUDIO PREVISIONALE	3
2	UBICAZIONE TERRITORIALE DELL'IMPIANTO	6
3	NORMATIVA DI RIFERIMENTO	8
4	CONDIZIONE ATTUALE AREA POSTA IN ESAME	9
5	DESCRIZIONE MODELLO CALPUFF	10
6	DATI METEOROLOGICI DI INPUT	11
7	AREA DI STUDIO	15
8	DATI EMISSIVI IMPIEGATI PER LA MODELIZZAZIONE DELLE RICADUTE	16
9	RECETTORI POSTI IN ESAME	20
10	RISULTATI DELLE ELABORAZIONI	23
,	10.1 SITUAZIONE ATTUALE	23
	10.2 SITUAZIONE FUTURA	30
11	1 GIUDIZIO DI COMPATIBILITA' PER IL CASO IN ESAME	41
-	11.1 SITUAZIONE ATTUALE	41
	11.2 SITUAZIONE FUTURA	42
12	2 CONFRONTO CONDIZIONE ATTUALE E FUTURA	43
13	3 CONSIDERAZIONI CENTRALINE ARPA	47
14	4 CONCLUSIONI	48


FINALITA' DELLO STUDIO PREVISIONALE

SEA Energia S.p.A., nella sua sede operativa di Ferno (VA), produce energia elettrica, termica e frigorifera per SEA - Società Esercizi Aeroportuali e clienti Terzi.

SEA Energia S.p.A ha programmato degli interventi di modifica ed adeguamento tecnico, atti ad ottenere migliori prestazioni energetiche e contestualmente ottenere un miglioramento dell'impatto ambientale, consistenti in:

- 1. Dismissione della turbina TGA (attualmente inattiva)
- 2. Sostituzione della turbina TGC con una nuova turbina più performante (TGE)
- 3. Sostituzione della caldaia CB50 con una nuova caldaia più performante (Nuova caldaia ausiliaria)

Il presente elaborato si prefigge come obbiettivo il confronto della stima previsionale della ricaduta di agenti chimici mediante modellizzazione derivanti dall'installazione dei nuovi impianti, turbina TGE e nuova caldaia ausiliaria, e l'attuale configurazione impiantistica, nonché il confronto con i valori limiti riportati nell'allegato XI del Decreto Legislativo 13 agosto 2010, n. 155 e s.m.i.: < Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa" >.

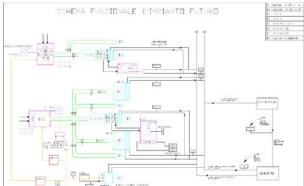


Immagine 1: Schema impianto attuale

Immagine 2: Schema impianto futuro

La modellizzazione previsionale delle ricadute è stata condotta mediante l'impiego del modello non stazionario CALPUFF, adottato dalla U.S. Environmental Protection Agency (U.S. EPA) nelle sue *Guideline on Air Quality Models* come modello preferito per la stima del trasporto di inquinanti a breve e lunga distanza; tale modello è altresì inserito nell'elenco dei modelli consigliati da APAT (Agenzia Italiana per la Protezione dell'Ambiente) per la valutazione della qualità dell'aria.

Stante le informazioni progettuali relative agli impianti considerati, il presente studio considera per le ricadute al suolo gli agenti chimici NO_X espressi come NO_2 , CO e gli inquinanti secondari $PM_{2,5}$ ed OZONO (come richiesti del Ministero dell'Ambiente e Tutele del Territorio e del Mare).

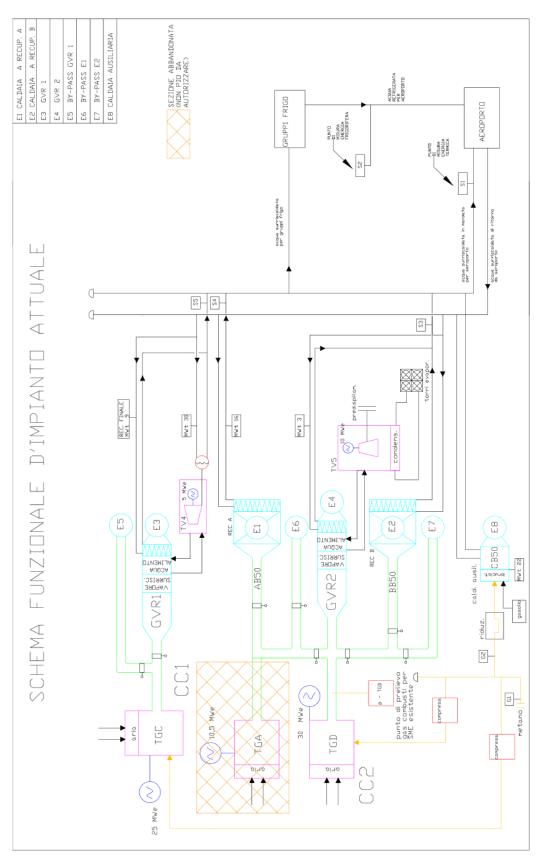


Immagine 3: Schema impianto attuale

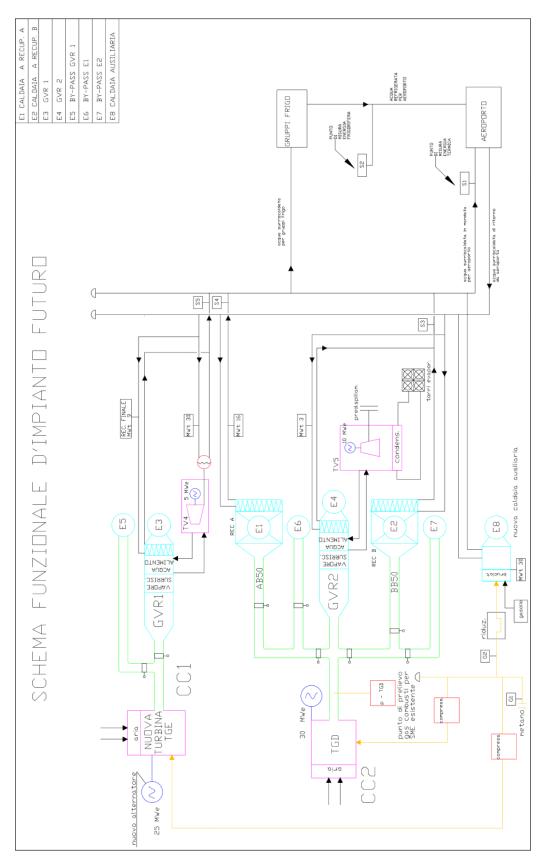


Immagine 4: Schema impianto futuro

2 UBICAZIONE TERRITORIALE DELL'IMPIANTO

Il sito interessato dal progetto è ubicato nel Comune di Ferno (VA) e parzialmente nel Comune di Lonate Pozzolo (VA), in area aeroportuale di Malpensa (coordinate 477935.00 m E - 5051652.00 m N).

Immagine 5: Vista satellitare ubicazione sito SEA ENERGIA S.p.A.

La centrale di cogenerazione è situata nell'area tecnica sud del Terminal 1 dell'aeroporto di Malpensa, ad ovest delle piste dell'aerostazione.

Immagine 6: Sedime aeroportuale

Immagine 7: Vista satellitare sito SEA ENERGIA S.p.A.

3 NORMATIVA DI RIFERIMENTO

Nella seguente tabella si riportano le limitazioni relative agli agenti chimici tratte dal vigente Decreto Legislativo 24 dicembre 2012 n.250 che ha introdotto modifiche e integrazioni al D.lgs. 13 agosto 2010, n.155, recante attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa".

Tale Decreto indica sia i descrittori della qualità dell'aria che le limitazioni da ottemperare per controllarne l'effetto potenziante; per il caso in esame tratteremo il biossido di azoto, ossidi di azoto, materiale particolato frazione $PM_{2,5}$, monossido di carbonio, ozono.

Vengono riportati i valori limite considerati per il caso in esame.

Inquinante	Tipologia limite	Periodo media	Valore limite
NO ₂	Protezione salute umana	1 ora	200 μg/m³ media oraria da non superare più di 18 volte per anno civile
NO2	Protezione salute umana	anno civile	40 μg/m³
NOx	Protezione vegetazione	anno civile	30 µg/m³ NO _x
PM _{2,5}	Protezione salute umana	anno civile	25 μg /m³
СО	Protezione salute umana	8 ore	10 mg/m³
	Soglia d'informazione	1 ora	180 µg /m³
OZONO	Soglia di allarme	1 ora	240 μg /m³
OZONO	Valore obbiettivo	8 ore	120 μg /m³ ≤25 volte l'anno come media su 3 anni
	Valore obbiettivo per la protezione della vegetazione	AOT40 calcolato sulla base dei valori di 1 ora da maggio a luglio	18.000 μg /m³ come media su 5 anni

Tabella 1 - valori limite Decreto Legislativo 13 agosto 2010 n. 155 e s.m.i.

4 CONDIZIONE ATTUALE AREA POSTA IN ESAME

La condizione attuale della qualità dell'aria del sito in esame è stata valutata considerando i dati rilevati dalle centraline di monitoraggio della rete ARPA Lombardia con attinenza all'anno 2017. (http://www.arpalombardia.it/sites/qaria/_layouts/15/qaria/RicercalDati2.aspx)

Presso le aree di pertinenza dei Comuni limitrofi all'area in esame risultano ubicate diverse centraline di monitoraggio ambientale appartenenti alla rete ARPA Lombardia; conseguentemente si è ragionevolmente optato di considerare quelle site nel Comune di Ferno (VA), Comune di Lonate Pozzolo (VA), Comune di Somma Lombardo (VA) in quanto risultano quelle poste nelle vicinanze dell'area progettuale.

Vengono di seguito riportate le medie annue delle concentrazioni rilevate dalle sopracitate centraline di monitoraggio o i dati Comunali stimati da ARPA Lombardia:

ID stazione ARPA	Nome stazione	Agente chimico	Concentrazione media Anno 2017
		NO ₂ (media 1 ora)	28,06 μg/m³
687	Via Alfredo di Dio Ferno (VA)	CO (media 1 ora)	0,35 mg/m ³
St1	[stazione di proprietà di SEA ENERGIA S.p.A.]	PM _{2,5} (media 24 ore - stima Comunale)	20,22 μg/m³
	, .	OZONO (media 1 ora)	52,46 μg/m³
	57 Via Veneto	NO ₂ (media 1 ora)	34,92 μg/m³
557		CO	Non disponibili
St2	Lonate Pozzolo (VA)	PM _{2,5} (media 24 ore - stima Comunale)	14,47 μg/m³
		OZONO (media 24 ore - stima Comunale)	84,17 μg/m³
		NO ₂ (media 1 ora)	31,67 μg/m³
559	Via Facchinetti	СО	Non disponibili
St3	Somma Lombardo (VA)	PM _{2,5} (media 24 ore - stima Comunale)	19,87 μg/m³
		OZONO (media 1 ora)	44,37 μg/m³

Tabella 2 - concentrazioni medie ARPA Lombardia

5 DESCRIZIONE MODELLO CALPUFF

La modellizzazione previsionale delle ricadute è stata condotta mediante impiego del modello non stazionario CALPUFF.

Il modello CALPUFF è un modello gaussiano non stazionario che simula la diffusione di inquinanti attraverso il rilascio di una serie continua di puff seguendone la traiettoria in base alle condizioni meteorologiche. Il modello è raccomandato dall'EPA (modelli per la qualità dell'aria.) ed è stato sviluppato dalla Earth Tech Inc. per conto del California Air Resources Board (CARB) e dell'EPA. Il modello contiene formulazioni per la modellistica della dispersione, il trasporto e la rimozione secca e umida di inquinanti in atmosfera al variare delle condizioni meteorologiche considerando l'impatto con il terreno e alcuni semplici schemi di trasformazioni chimiche.

Il sistema CALPUFF è composto da tre componenti principali che costituiscono il pre-processore dei dati meteo (CALMET), il modello di calcolo vero e proprio (CALPUFF) e il post-precessore dei risultati (CALPOST).

Sebbene sia possibile utilizzare CALPUFF anche con dati meteorologici orari relativi ad una singola stazione presente sul territorio il modello è stato progettato per essere utilizzato con campi meteorologici variabili su tutto il dominio di calcolo sia orizzontale che verticale.

Il preprocessore CALMET ricostruisce questi campi meteorologici tridimensionali utilizzando dati al suolo, dati profilometrici e dati orografici e di uso suolo al fine per considerare gli effetti del terreno sulla variazione dei campi meteorologici e di conseguenza sulla diffusione di inquinanti

A differenza dei modelli a pennacchio gaussiano (ISC3, AERMOD), i modelli tridimensionali non stazionari a "puff" consentono di considerare gli effetti di condizioni meteorologiche ed orografiche complesse sulla dispersione degli inquinanti.

Il modello CALPUFF è un modello a "puff" gaussiani, non stazionario, in grado di simulare il trasporto, la diffusione e la deposizione degli inquinanti inerti anche in presenza di orografia complessa e per calme di vento.

Il modello risulta particolarmente versatile in quanto può operare a scale spaziali molto diverse (ovvero da pochi Km a centinaia di Km).

I modelli a puff rappresentano un pennacchio continuo come un numero discreto di "nubi" (puffs) di materiale inquinante; ad ogni step temporale, viene calcolata la concentrazione dovuta a ciascun puff (i puffs si evolvono poi nel tempo e nello spazio fino al successivo step), in modo che la concentrazione totale in un determinato ricettore sia data dalla somma dei contributi di tutti i puffs nelle immediate vicinanze.

Le linee generali che hanno guidato lo sviluppo del modello sono riassunte di seguito:

- applicabilità a sorgenti di vario tipo con emissioni variabili nel tempo;
- applicabilità a domini d'indagine sia a grande che a piccola scala;
- applicabilità a condizioni meteorologiche non stazionarie ed orografiche complesse;
- possibilità di trattare fenomeni atmosferici di deposizione umida e secca.

Il sistema sviluppato per rispondere ai requisiti descritti è composto da tre componenti principali:

- 1. un processore meteorologico (CALMET) in grado di ricostruire campi con cadenza oraria, tridimensionali di vento e temperatura, bidimensionali di altre variabili come turbolenza, altezza di mescolamento, ecc;
- 2. un modello di dispersione non stazionario (CALPUFF), che simula il rilascio di inquinanti dalla sorgente come una serie di pacchetti discreti di materiale ("puff"), emessi ad intervalli di tempo prestabiliti; CALPUFF può avvalersi dei campi tridimensionali generati da CALMET, oppure utilizzare altri formati di dati meteorologici;
- 3. un programma di postprocessamento degli output di CALPUFF (CALPOST), che consente di ottenere i formati richiesti dall'utente.

6 DATI METEOROLOGICI DI INPUT

Verificata l'orografia del dominio spaziale di interesse, la quale evidenzia differenze minime tra la quota orografica massima e quella minima (inferiori a 250m), si è optato per i dati meteo ottenuti da una singola stazione al suolo. I dati meteo di input del sito in esame sono stati valutati considerando i dati rilevati dalla centralina di monitoraggio della

(http://www.arpalombardia.it/siti/arpalombardia/meteo/richiesta-dati-misurati/Pagine/RichiestaDatiMisurati.aspx)

rete ARPA Lombardia, centralina di Ferno (VA), con attinenza all'anno 2017,

Nella fattispecie i parametri utili alle elaborazioni per la presente previsione modellistica vengono riportati nella seguente tabella.

Parametro	Unità di misura	Intervallo di misura considerato	Origine dei dati
Radiazione globale	W/m²	orario	Stazione ARPA 687 - Ferno
Temperatura	°C	orario	Stazione ARPA 687 - Ferno
Umidità Relativa	%	orario	Stazione ARPA 687 - Ferno
Precipitazioni	mm/h	orario	Stazione ARPA 687 - Ferno
Velocità del vento	m/s	orario	Stazione ARPA 687 - Ferno
Direzione di provenienza del vento	(°gradi da nord)	orario	Stazione ARPA 687 - Ferno

Tabella 3 - parametri meteo-climatici

Da questi dati è stato possibile ottenere le classi di ricorrenza della velocità e direzione del vento e successivamente le classi di stabilità atmosferica.

Per quanto concerne la direzione prevalente dei venti, si evidenzia che per ottenere una visualizzazione sintetica dell'andamento della velocità e della direzione prevalente del vento è stata elaborata la "rosa dei venti"; i dati di vento sono raggruppati secondo i rispettivi settori di provenienza, di lunghezza proporzionale alle ricorrenze percentuali. Il numero di eventi orari analizzati e relativi alla direzione di provenienza del vento dal giorno 1 gennaio 2017 al giorno 31 dicembre 2017 sono 8760.

I valori medi orari (relativi a tutto l'anno 2017) sono poi stati inseriti nel modello previsionale di diffusione degli inquinanti.

Settore	CLASSI DI VELOCITA' (m/s)								
angolare	V1 (< 0,3)	V2 (0,3 - 0,5)	V3 (0,5 - 2,3)	V4 (2,3 - 3,9)	V5 (3,9 - 6,5)	V6 (6,5 - 12,0)	V7 (> 12,0)	Totale	Vmed
0,0 - 15,0	0,23	2,97	66,55	11,64	9,93	9,13	1,48	101,94	2,62
15,0 - 30,0	0,34	0,34	41,44	8,68	6,85	4,11	0,23	61,99	2,52
30,0 - 45,0	0,34	0,34	16,67	9,47	5,37	1,26	0,00	33,45	2,68
45,0 - 60,0	0,11	0,00	7,19	7,99	5,14	1,14	0,00	21,58	3,32
60,0 - 75,0	0,00	0,11	5,71	6,74	6,16	0,80	0,00	19,52	3,38
75,0 - 90,0	0,00	0,00	5,02	9,93	6,05	2,40	0,00	23,40	3,90
90,0 - 105,0	0,00	0,23	5,37	8,56	7,65	2,74	0,23	24,77	4,02
105,0 - 120,0	0,00	0,00	5,14	9,13	7,19	0,46	0,00	21,92	3,52
120,0 - 135,0	0,11	0,00	5,14	9,02	5,25	0,34	0,00	19,86	3,32
135,0 - 150,0	0,00	0,00	4,34	10,39	8,22	0,46	0,00	23,40	3,59
150,0 - 165,0	0,00	0,00	5,14	9,36	9,93	0,80	0,00	25,23	3,66
165,0 - 180,0	0,00	0,11	4,22	11,42	7,88	0,68	0,00	24,32	3,64
180,0 - 195,0	0,00	0,00	2,28	7,19	11,87	0,68	0,00	22,03	4,10
195,0 - 210,0	0,00	0,00	4,11	10,84	15,98	0,46	0,00	31,39	3,95
210,0 - 225,0	0,00	0,00	6,51	14,04	19,52	0,68	0,00	40,75	3,83
225,0 - 240,0	0,00	0,23	9,13	15,30	14,73	0,80	0,00	40,18	3,49
240,0 - 255,0	0,00	0,00	7,76	7,31	3,88	0,11	0,00	19,06	2,79
255,0 - 270,0	0,11	0,23	9,93	5,94	1,71	0,23	0,00	18,15	2,39
270,0 - 285,0	0,23	0,11	13,36	4,79	1,48	0,11	0,00	20,09	2,06
285,0 - 300,0	0,23	0,91	19,18	4,11	1,14	0,34	0,00	25,91	1,67
300,0 - 315,0	1,03	1,48	26,83	5,48	2,51	0,46	0,00	37,79	1,79
315,0 - 330,0	0,68	3,65	39,27	11,07	6,28	2,40	0,11	63,47	2,17
330,0 - 345,0	0,46	3,65	65,98	22,83	13,36	9,02	1,37	116,67	2,72
345,0 - 360,0	1,14	5,59	83,56	22,83	17,58	12,21	2,17	145,09	2,75
Variabili	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Calme	18,04	0,00	0,00	0,00	0,00	0,00	0,00	18,04	0,00
Totale	23,06	19,98	459,82	244,06	195,66	51,83	5,59	1000,00	0,00

Tabella 4 - dati velocità e direzione vento

La rappresentazione grafica di queste informazioni è rappresentata dalla seguente rosa dei venti:

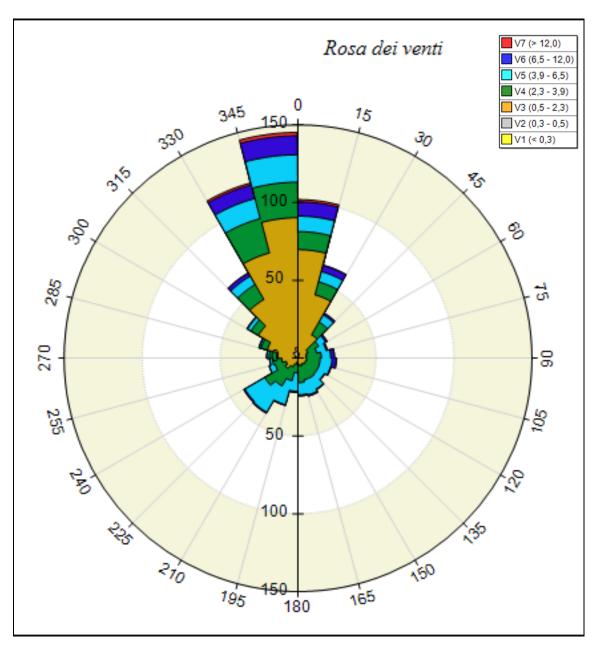


Immagine 8: Rosa dei venti Ferno 2017

Vengono di seguito inoltre riportate le tabelle e grafici inerenti le temperature e precipitazioni medie della stazione meteo considerata:

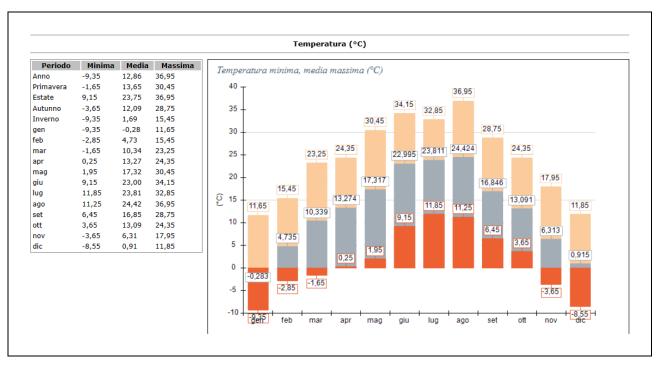


Immagine 9: Temperature medie Ferno 2017

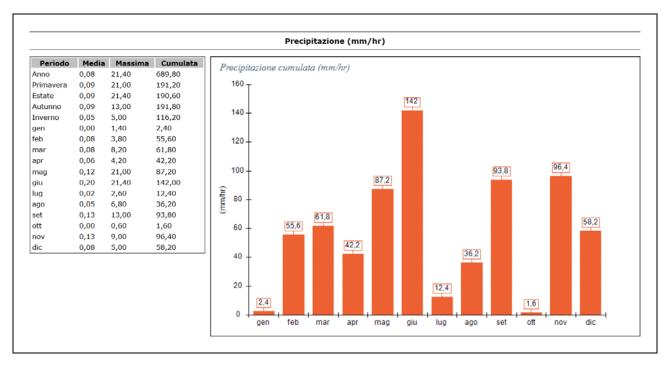


Immagine 10: Precipitazioni medie Ferno 2017

7 ARFA DI STUDIO

I dati relativi all'area di studio utilizzata, le coordinate e il passo del reticolo utilizzato ai fini delle elaborazioni sono di seguito riportati:

Coordinate di origine	X UTM 468864 m		
Coordinate di origine	Y UTM 5042566 m		
Grigliato di Calcolo	Passo 0,5 km		
Larghezza (DX)	20 km		
Altezza (DY)	20 km		

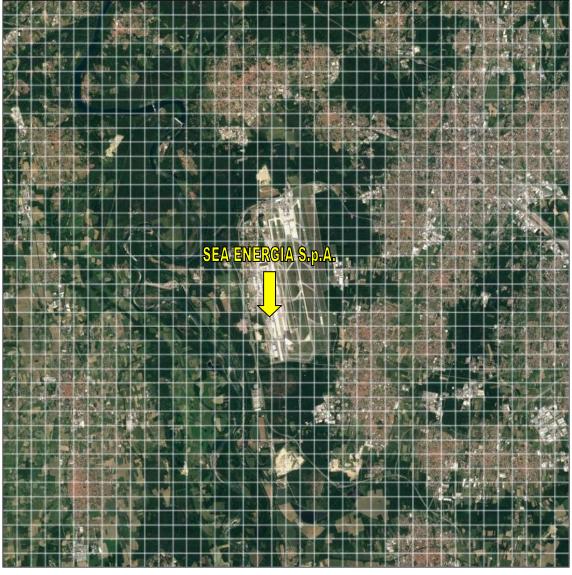


Immagine 11: visualizzazione grigliato di calcolo

Ogni incrocio delle celle del grigliato di calcolo è un valore di concentrazione restituito dal modello.

8 DATI EMISSIVI IMPIEGATI PER LA MODELIZZAZIONE DELLE RICADUTE

Vengono di seguito riportati i dati emissivi utilizzati come dati di input all'interno del software previsionale, al fine di valutare l'attuale e la futura condizione di esercizio.

La condizione attuale verrà valutata considerando i punti di emissione già autorizzati e riportati dalla vigente Autorizzazione Integrata Ambientale rilasciata con decreto regionale n.2752 del 01.07.2009; la condizione futura terrà conto inoltre delle modifiche progettuali previste:

- 1. Dismissione della turbina TGA (attualmente inattiva)
- 2. Sostituzione della turbina TGC con una nuova turbina più performante (TGE)
- 3. Sostituzione della caldaia CB50 con una nuova caldaia più performante (Nuova caldaia ausiliaria)

L'approccio adottato consiste nel valutare la condizione critica inserendo i dati massimi autorizzati di emissione per i parametri NOx e CO, con questo criterio si potranno confrontare le fasi ante e post intervento.

Per lo stesso motivo si è ritenuto di inserire per tutti i turbogas un valore di PM_{2,5} pari a 1 mg/Nm³ (dato garantito dal costruttore) pur avendo riscontri analitici che evidenziano emissioni inferiori di un decimale.

Per quanto riguarda il parametro ozono, non avendo dati garantiti dai costruttori, si utilizzerà come valore di input per tutti i turbogas 0,03 mg/Nm³ (analisi eseguita su attuale TGC).

CONDIZIONE ATTUALE

ID punto di emissione	Durata	m s.l.m.	Altezza metri s.l.s.	Diametro metri	Portata Nm³/h	Temperatura fumi °K	Inquinanti	Concentrazione INPUT per modellizzazione
							NOx	50 mg/Nm ³
E1 Turbogas D -TGD	24h/d	217	25	2.0	128.000	393	CO	50 mg/Nm ³
477989.49 m E-5051650.03 m N	365 d/y	217	23	2,0	120.000	393	PM _{2,5}	1 mg/Nm ³
177707.17111 2 0001000.0011111							OZONO	0,03 mg/Nm ³
							NOx	50 mg/Nm ³
E2	24h/d	047	ar.	2.0	120,000	202	CO	50 mg/Nm ³
Turbogas D -TGD 477991.09 m E-5051632.11 m N	365 d/y	217	25	2,0	128.000	393	PM _{2,5}	1 mg/Nm³
477771.07 III E-3031032.11 III N							OZONO	0,03 mg/Nm ³
			25	2,5	250.000		NOx	60 mg/Nm ³
E3	24h/d	217				397	CO	50 mg/Nm ³
Turbogas C - TGC 477984.54 m E-5051673.42 m N	100 d/y						PM _{2,5}	1 mg/Nm³
477904.34 III E-3031073.42 III N							OZONO	0,03 mg/Nm ³
		217	25	2,5	64.000	382	NOx	50 mg/Nm ³
E4	24h/d 365 d/y						СО	50 mg/Nm ³
Turbogas D -TGD 478001.81 m E-5051640.33 m N							PM _{2,5}	1 mg/Nm ³
470001.01 III E-3031040.33 III N							OZONO	0,03 mg/Nm ³
E5 By pass TGC 477983.66 m E -5051679.50 m N	Saltuaria	217	25	2,0	1	1	1	1
E6 By pass TGD 477988.76 m E-5051643.98 m N	Saltuaria	217	25	2,0	1	1	1	1
E7 By pass TGD 477994.37 m E-5051624.68 m N	Saltuaria	217	25	2,0	1	1	1	1
E8 Caldaia ausiliaria 22MWt 477994.86 m E-5051618.53 m N	Saltuaria	217	25	1,3	/	/	/	/

Tabella 5 - dati di input

Viene di seguito indicata la suddivisione delle sopra dichiarate 24 h/d -100 d/y di utilizzo per il punto di emissione E3 (TGC), funzionamento in parallelo con TGD.

Mese	gg/mese	Ore/mese
Gennaio	12	288
Febbraio	12	288
Marzo	12	288
Aprile	0	0
Maggio	0	0
Giugno	14	336
Luglio	15	360
Agosto	15	360
Settembre	0	0
Ottobre	0	0
Novembre	10	240
Dicembre	10	240

Tabella suddivisione ore di utilizzo della TGC

CONDIZIONE FUTURA

ID punto di emissione	Durata	m s.l.m.	Altezza metri s.l.s.	Diametro metri	Portata Nm³/h	Temperatura fumi °K	Inquinanti	Concentrazione INPUT per modellizzazione
							NOx	50 mg/Nm3
E1 Turbogas D -TGD	500 h/y	217	25	2.0	128.000	393	CO	50 mg/Nm3
477989.49 m E-5051650.03 m N	300 H/y	217	23	2,0	120.000	373	PM _{2,5}	1 mg/Nm ³
							OZONO	0,03 mg/Nm ³
							NOx	50 mg/Nm3
E2 Turbogas D -TGD	500 h/y	217	25	2.5	128.000	393	CO	50 mg/Nm3
477991.09 m E-5051632.11 m N	300 H/y	217	25	2,5	120.000	373	PM _{2,5}	1 mg/Nm ³
							OZONO	0,03 mg/Nm ³
					250.000		NOx	27 mg/Nm3
E3 Turbogas E-TGE	24h/d 365 d/y	217	25	2,5		397	CO	20 mg/Nm3
477984.54 m E-5051673.42 m N							PM _{2,5}	1 mg/Nm³
							OZONO	0,03 mg/Nm ³
				2,5	64.000	382	NOx	50 mg/Nm3
E4 Turbogas D -TGD	500 h/y	217	25				CO	50 mg/Nm3
478001.81 m E-5051640.33 m N							PM _{2,5}	1 mg/Nm³
							OZONO	0,03 mg/Nm ³
E5 By pass TGC 477983.66 m E -5051679.50 m N	Saltuaria	217	25	2,0	1	1	1	1
E6 By pass TGD 477988.76 m E-5051643.98 m N	Saltuaria	217	25	2,0	1	1	1	1
E7 By pass TGD 477994.37 m E-5051624.68 m N	Saltuaria	217	25	2,0	1	1	1	1
E8	4.500.17				40.175	40.175 463	NOx	60 mg/Nm3
Nuova caldaia ausiliaria 477994.86 m E-5051618.53 m N	1.500 h/y	217	25	1,3			СО	15 mg/Nm3

Tabella 6 - dati di input

Come si evince dalle tabelle soprariportate, la condizione futura risulterà caratterizzata da:

- □ dismissione definitiva della TGA (attualmente inattiva)
- sostituzione della turbina TGC con la nuova turbina TGE (medesimo punto di emissione E3);
- sostituzione della caldaia ausiliaria attuale con una nuova più performante (medesimo punto di emissione E8);
- □ concentrazione di NOx emessi dalla nuova TGE inferiore di 33 mg/Nm³ rispetto alla turbina TGC (da 60 mg/Nm³ a 27 mg/Nm³);

La nuova caldaia ausiliaria (E8) avrà un funzionamento di 1.500 h/y, di queste solo una parte in contemporanea con la futura TGE (280h) e le restanti ad uso alternativo alla TGE (1.220h).

Ai fini del modello previsionale si è ritenuto di valutare solo la condizione di utilizzo contemporaneo con la TGE (per le restanti ore si è mantenuta la TGE in funzione, condizione più impattante)

Viene di seguito indicata la suddivisione delle sopra dichiarate 280 h di utilizzo per il punto di emissione E8 (nuova caldaia ausiliaria), funzionamento in parallelo con TGE.

Mese	gg/mese	Ore/mese
Gennaio	5	50
Febbraio	5	50
Marzo	5	50
Aprile	0	0
Maggio	0	0
Giugno	3	30
Luglio	3	30
Agosto	3	30
Settembre	0	0
Ottobre	0	0
Novembre	2	20
Dicembre	2	20

Tabella suddivisione ore di utilizzo della Nuova caldaia ausiliaria

Al fine di simulare una manutenzione straordinaria contemporanea della futura TGE e nuova caldaia ausiliaria, si valuterà una ferma impianti in un mese autunnale (ottobre) con conseguente accensione della TCD per 500h (conseguentemente il mese di ottobre verrà valutato con TGE ferma per 500 h).

9 RECETTORI POSTI IN ESAME

Mediante il modello di dispersione CALPUFF è stato possibile stimare la diffusione degli inquinanti considerati nell'area di studio.

All'interno di essa sono stati individuati 23 recettori sensibili (R), 3 aree SIC (N) e 3 centraline ARPA (St) descritte nella tabella sotto riportata; per ciascuno di essi si è valutata la ricaduta al suolo degli inquinanti considerati nel modello di calcolo previsionale (tabelle 5 e 6).

[Descrizione del recettore	LONG	LAT	m s.l.m.	direzione e distanza da SEA ENERGIA S.p.A.	
R1	Asilo Bolognino Vai Giovanni Bolognino, 24 28040 Varallo Pombia (NO)	471289.00 m E	5057165.00 m N	288,0	309°	8.650 m
R2	Scuola dell'Infanzia Marano Ticino - Asilo Via Sempione, 80 28040 Marano Ticino NO	471285.00 m E	5053279.00 m N	258,0	284°	6.900 m
R3	Asilo Nido Comunale - Asilo nido Via dei Negri, 6 28047 Oleggio NO	471415.00 m E	5049715.00 m N	236,0	253°	6.860 m
R4	Asilo Nido Comunale - Asilo nido Via Liberio Miglio, 13 28043 Bellinzago Novarese NO	472183.00 m E	5046391.00 m N	193,0	227°	7.820 m
R5	Edificio residenziale Via A.Volta, 46 21010 Castelnovate (VA)	475226.00 m E	5053065.00 m N	209,0	297°	3.110 m
R6	Hotel Villa Malpensa Via Don Andrea Sacconago, 1 21010 Vizzola Ticino VA	476423.00 m E	5052482.00 m N	221,0	298°	1.765 m
R7	Polvere di Stelle Asilo nido e Scuola Dell'infanzia - Asilo nido Via del Barchello, 10 21019 Somma Lombardo VA	477166.00 m E	5057148.00 m N	235,0	352°	5.650 m
R8	Scuola Materna Don Giulio Parravicino - Scuola materna Via Giovanni Verga, 1 21015 Tornavento VA	477323.00 m E	5047730.00 m N	198,0	189°	3.960 m
R9	Municipio Via Ponte di Castano, 2 20020 Nosate MI	478606.00 m E	5044346.00 m N	177,0	174°	7.330 m
R10	Scuola secondaria di I grado Viale R. Vanoni, 2 21010 Arsago Seprio VA	479290.00 m E	5059307.00 m N	291,0	10°	7.775 m
R11	Scuola Elementare Via De Amicis, 1 21011 Casorate Sempione VA	479805.00 m E	5057614.00 m N	269,0	17°	6.250 m
R12	Edificio residenziale Via Giovanni Agusta, 439, 21017 Cascina Costa VA	480468.00 m E	5053065.00 m N	232,0	60°	2.870 m
R13	Asilo Infantile Carlo Castiglioni Via Cinque Martiri, 2 21010 Ferno VA	480731.00 m E	5051259.00 m N	219,0	97°	2.780 m
R14	Scuola Media Carlo Carminati Via Dante, 4 21015 Lonate Pozzolo VA	480532.00 m E	5049653.00 m N	207,0	127°	3.240 m
R15	Asilo Nido Via V. Bellini, 1 21010 Cardano Al Campo VA	481993.00 m E	5054806.00 m N	242,0	51°	5.115 m

[Descrizione del recettore	LONG	LAT	m s.l.m.	distar	one e nza da !GIA S.p.A.
R16	Asilo Infantile Piazza del Popolo, 7 21017 Samarate VA	482783.00 m E	5050511.00 m N	213,0	104°	4.940 m
R17	Scuole Materna - Ente Morale Via Giovanni Giolitti, 19 20022 Castano Primo MI	482683.00 m E	5045265.00 m N	185,0	144°	7.940 m
R18	Asilo Nido Via Federico Villoresi, 1 21013 Gallarate VA	483339.00 m E	5055901.00 m N	237,0	51°	6.850 m
R19	Asilo Macchi Ricci Via Macchi, 4 21017 Samarate VA	483277.00 m E	5052721.00 m N	223,0	78°	5.405 m
R20	Scuola Materna Parrocchiale Via Alessandro Manzoni, 2 20020 Vanzaghello MI	482811.00 m E	5047392.00 m N	197,0	131°	6.445 m
R21	ASILO NIDO L'isola che non c'è Via Mauro Venegoni, 12 21012 Cassano Magnago VA	485774.00 m E	5057265.00 m N	254,0	54°	9.615 m
R22	Asilo Infantile Bambino Gesù Via Asilo, 1 20020 Magnago MI	484670.00 m E	5047268.00 m N	201,0	123°	8.000 m
R23	Scuole Media Statale Gian Alberto Bossi Via Dante Alighieri, 5 21052 Busto Arsizio VA	488325.00 m E	5050542.00 m N	224,0	96°	10.415 m
N1	AREA SIC - Brughiera del dosso	476159.00 m E	5053763.00 m N	231,0	320°	2.820 m
N2	AREA SIC - Boschi del Ticino	474034.00 m E	5052109.00 m N	163,0	277°	3.981 m
N3	AREA SIC - Valle del Ticino	476081.00 m E	5051338.00 m N	159,0	261°	1.920 m
St1	Via Alfredo di Dio Ferno (VA)	477677,0 m E	5055182,0 m N	237,0	355°	3.450 m
St2	Via Veneto Lonate Pozzolo (VA)	479206,0 m E	5048446,0 m N	205,0	162°	3.500 m
St3	Via Facchinetti Somma Lombardo (VA)	481599,0 m E	5061320,0 m N	295,0	21°	9.965 m

Tabella 8 - recettori considerati, aree SIC e stazioni ARPA Lombardia

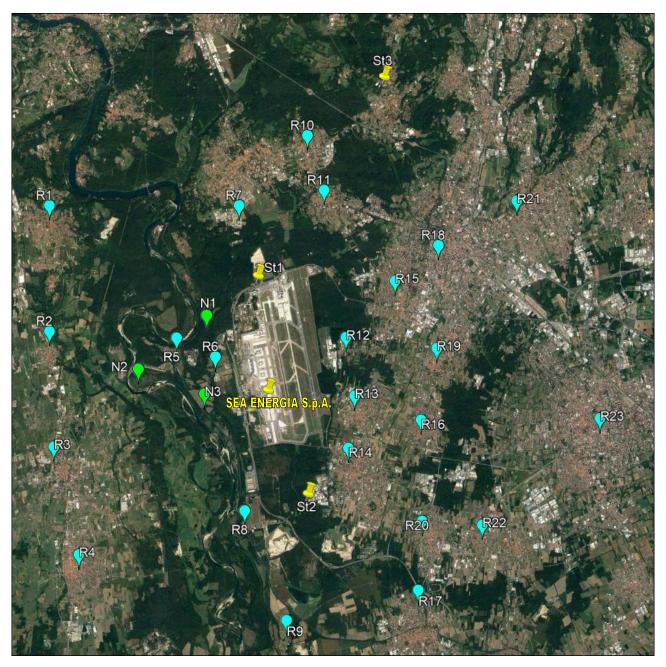


Immagine 12: visualizzazione recettori considerati, aree SIC e stazioni ARPA Lombardia

10 RISULTATI DELLE ELABORAZIONI

Stante le concentrazioni dei parametri emissivi di input considerati, in considerazione della rosa dei venti (rif. rosa dei venti Ferno 2017) nonché di tutti i parametri meteorologici precedentemente riportati, il modello di calcolo CALLPUFF ha restituito i dati previsionali di ricaduta al suolo degli analiti posti in esame.

Le risultanze emerse dalla modellizzazione CALPUFF, ovvero le ricadute degli agenti chimici nelle condizioni di attuale esercizio e futuro esercizio, vengono riportate nei seguenti paragrafi.

10.1 SITUAZIONE ATTUALE

Vengono di seguito riportate le mappe di ricaduta al suolo considerando i dati meteo della stazione ARPA di Ferno (VA) relativamente all'anno 2017 ed i dati emissivi di input riportati in tabella 5 (condizione attuale), presso i recettori, le aree SIC e le stazioni ARPA Lombardia considerati nelle tabelle 7 e 8.

Ogni mappa risulta corredata di tabella riepilogativa la quale indicherà, per ogni posizione considerata, i valori previsti di concentrazione al suolo dell'inquinante valutato.

Nella fattispecie si riportano le seguenti mappe di ricaduta:

- ✓ esiti modellizzazione NOx espressi come NO₂
- ✓ esiti modellizzazione CO
- ✓ esiti modellizzazione PM_{2,5}
- ✓ esiti modellizzazione OZONO

CONDIZIONE ATTUALE - ESITI MODELLIZZAZIONE BIOSSIDO DI AZOTO - NOx espressi come NO2

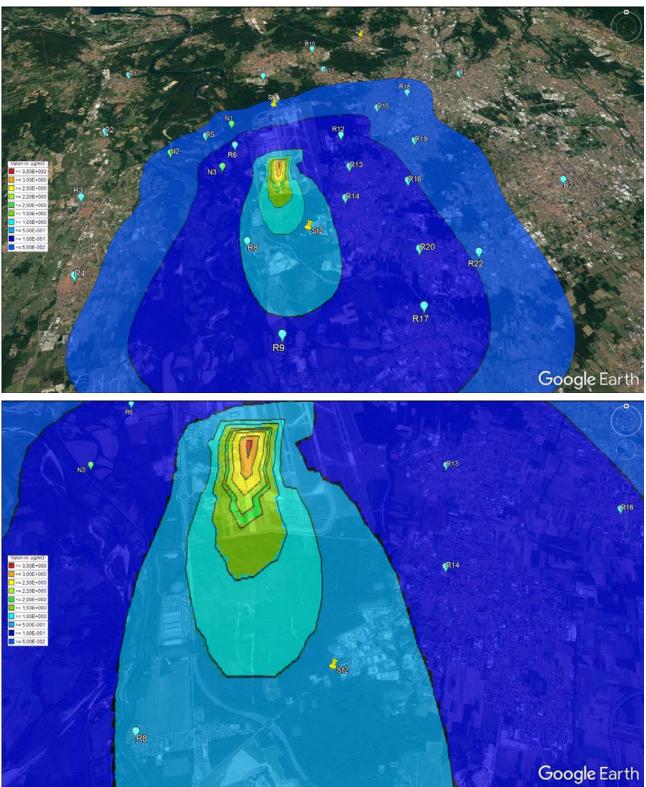


Immagine 13: - modellizzazione NOx espressi come NO₂ - valore medio 1h/anno (μg/m³)

Si evidenzia che per le aree non colorate si attendono deposizioni $< 0.05 \ \mu g/m^3$ ed il recettore sensibile più esposto risulta essere R8.

CONDIZIONE ATTUALE - BIOSSIDO DI AZOTO - NOx espressi come NO₂					
Descrizione	X (m)	Y (m)	Valore Medio 1 ora µg/m³	Valore Massimo 1 ora µg/m³	99,8° percentile
R1	471289	5057166	0,017	1,758	0,234
R2	471285	5053280	0,030	4,313	0,359
R3	471285	5049716	0,032	4,445	0,428
R4	472183	5046392	0,043	2,571	0,566
R5	475226	5053066	0,074	7,128	0,914
R6	476423	5052482	0,160	11,363	2,126
R7	477166	5057148	0,036	3,579	0,417
R8	477323	5047730	0,579	14,146	5,726
R9	478606	5044346	0,382	7,028	3,260
R10	479290	5059308	0,028	3,423	0,352
R11	479805	5057614	0,043	4,285	0,511
R12	480468	5053066	0,155	9,172	2,209
R13	480731	5051260	0,191	13,936	2,941
R14	480532	5049654	0,337	11,225	4,081
R15	481993	5054806	0,090	5,170	1,288
R16	482783	5050512	0,114	8,627	1,516
R17	482683	5045266	0,180	4,813	1,729
R18	483339	5055902	0,063	3,332	0,833
R19	483277	5052722	0,082	8,494	1,096
R20	482811	5047392	0,174	9,099	2,002
R21	485774	5057266	0,038	2,371	0,511
R22	484670	5047268	0,093	4,451	1,078
R23	488325	5050542	0,027	1,638	0,333
N1	476159	5053764	0,083	8,143	1,014
N2	474034	5052110	0,064	6,174	0,849
N3	476081	5051338	0,160	8,930	2,420
St1	477677	5055182	0,062	7,095	0,755
St2	479206	5048446	0,851	17,148	6,927
St3	481599	5061320	0,020	2,094	0,286

Tabella 9 - modellizzazione NO₂

CONDIZIONE ATTUALE - ESITI MODELLIZZAZIONE MONOSSIDO DI CARBONIO (CO)

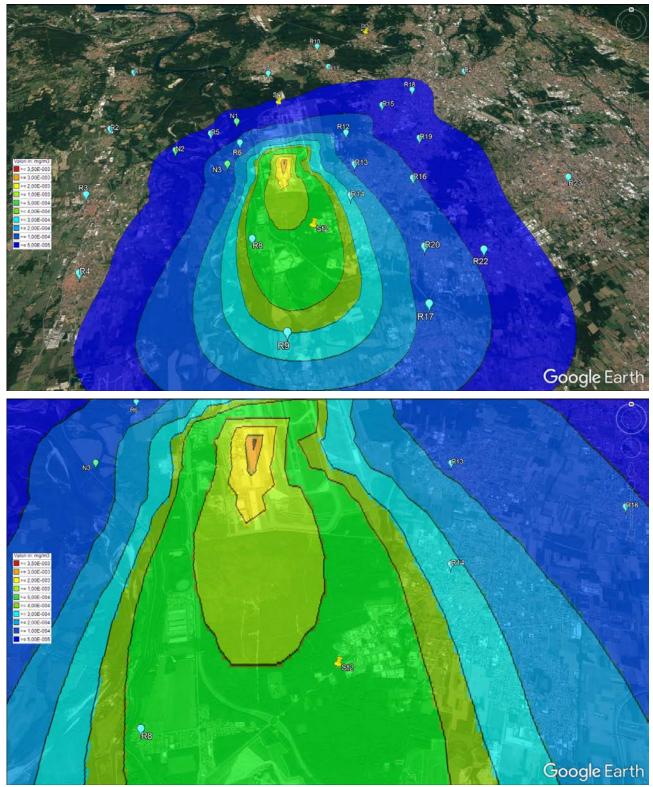


Immagine 14: - modellizzazione CO - valore medio 8h/anno (mg/m³)

Si evidenzia che per le aree non colorate si attendono deposizioni < 0,00005 mg/m³ ed il recettore sensibile più esposto risulta essere R8.

CONDIZIONE ATTUALE - MONOSSIDO DI CARBONIO - CO				
Descrizione	X (m)	Y (m)	Valore Medio 8 ore mg/m ³	Valore Massimo 8 ore mg/m ³
R1	471289	5057166	0,000017	0,000449
R2	471285	5053280	0,000029	0,000965
R3	471285	5049716	0,000031	0,001021
R4	472183	5046392	0,000041	0,001059
R5	475226	5053066	0,000072	0,001942
R6	476423	5052482	0,000156	0,003393
R7	477166	5057148	0,000034	0,000777
R8	477323	5047730	0,000561	0,006708
R9	478606	5044346	0,000369	0,002768
R10	479290	5059308	0,000027	0,000780
R11	479805	5057614	0,000041	0,001086
R12	480468	5053066	0,000149	0,003755
R13	480731	5051260	0,000185	0,003702
R14	480532	5049654	0,000327	0,003935
R15	481993	5054806	0,000087	0,001636
R16	482783	5050512	0,000110	0,002704
R17	482683	5045266	0,000174	0,001990
R18	483339	5055902	0,000061	0,001162
R19	483277	5052722	0,000079	0,004340
R20	482811	5047392	0,000169	0,002841
R21	485774	5057266	0,000037	0,000745
R22	484670	5047268	0,000090	0,001794
R23	488325	5050542	0,000026	0,000516
N1	476159	5053764	0,000081	0,002086
N2	474034	5052110	0,000062	0,001692
N3	476081	5051338	0,000155	0,004199
St1	477677	5055182	0,000060	0,001435
St2	479206	5048446	0,000823	0,007175
St3	481599	5061320	0,000020	0,000367

Tabella 10 - modellizzazione CO

CONDIZIONE ATTUALE - ESITI MODELLIZZAZIONE OZONO (O₃)

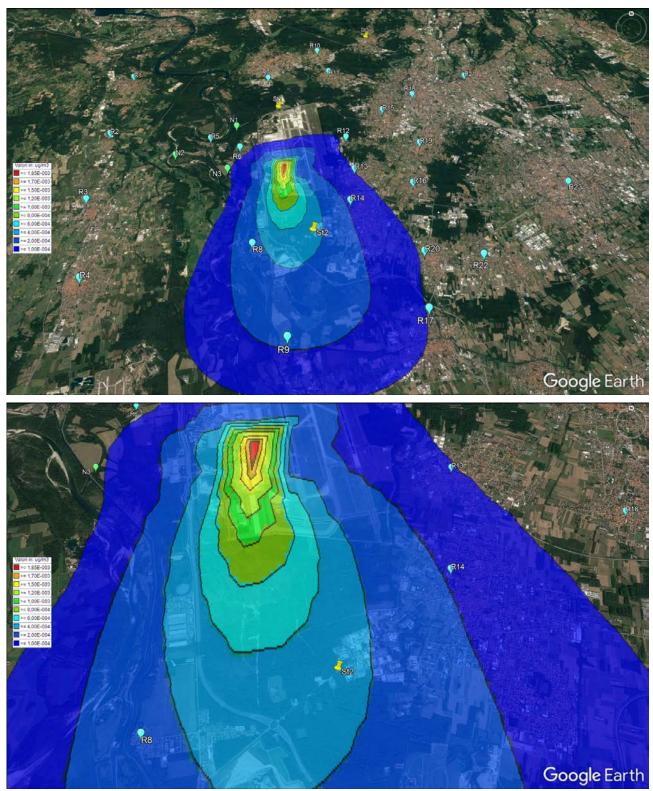


Immagine 15: - modellizzazione OZONO - valore medio 1h/anno (µg/m³)

Si evidenzia che per le aree non colorate si attendono deposizioni $< 0,0004 \mu g/m^3$ ed il recettore sensibile più esposto risulta essere R8.

CONDIZIONE ATTUALE - OZONO				
Descrizione	X (m)	Y (m)	Valore Medio 1 ora µg/m³	Valore Massimo 1 ora µg/m³
R1	471289	5057166	0,000009	0,000989
R2	471285	5053280	0,000016	0,002342
R3	471285	5049716	0,000018	0,002394
R4	472183	5046392	0,000023	0,001389
R5	475226	5053066	0,000040	0,003840
R6	476423	5052482	0,000088	0,006177
R7	477166	5057148	0,000019	0,001928
R8	477323	5047730	0,000317	0,007651
R9	478606	5044346	0,000208	0,003774
R10	479290	5059308	0,000015	0,001858
R11	479805	5057614	0,000023	0,002410
R12	480468	5053066	0,000084	0,004986
R13	480731	5051260	0,000105	0,007514
R14	480532	5049654	0,000185	0,006075
R15	481993	5054806	0,000049	0,002806
R16	482783	5050512	0,000062	0,004645
R17	482683	5045266	0,000098	0,002613
R18	483339	5055902	0,000034	0,001795
R19	483277	5052722	0,000044	0,004578
R20	482811	5047392	0,000095	0,004886
R21	485774	5057266	0,000021	0,001287
R22	484670	5047268	0,000051	0,002405
R23	488325	5050542	0,000015	0,000890
N1	476159	5053764	0,000046	0,004417
N2	474034	5052110	0,000035	0,003345
N3	476081	5051338	0,000088	0,004893
St1	477677	5055182	0,000034	0,003853
St2	479206	5048446	0,000465	0,009316
St3	481599	5061320	0,000011	0,001128

Tabella 11 - modellizzazione OZONO

CONDIZIONE ATTUALE - ESITI MODELLIZZAZIONE PM_{2,5}

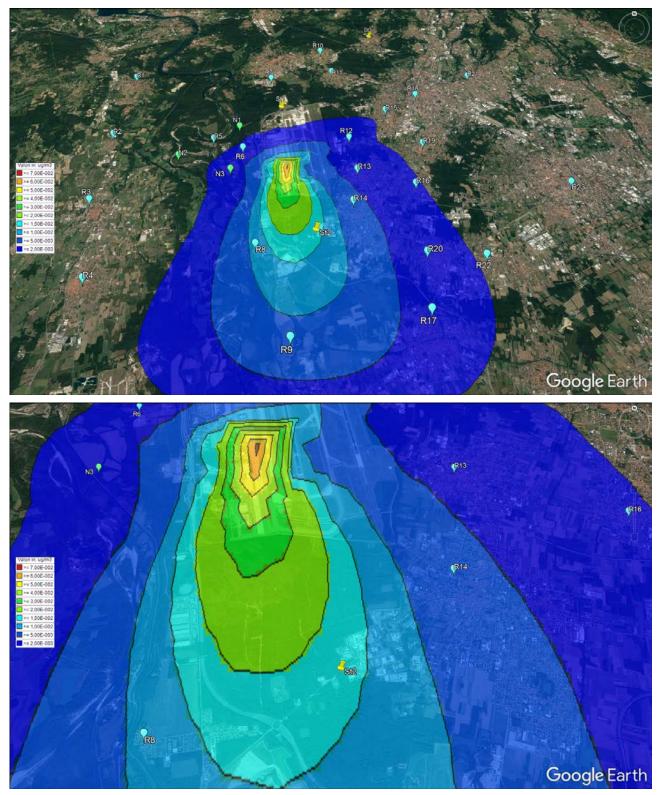


Immagine 16: - modellizzazione PM_{2,5} - valore medio 24h/anno (µg/m³)

Si evidenzia che per le aree non colorate si attendono deposizioni $< 0.002 \ \mu g/m^3$ ed il recettore sensibile più esposto risulta essere R8.

CONDIZIONE ATTUALE - PM _{2,5}				
Descrizione	X (m)	Y (m)	Valore Medio 1 ora μg/m³	
R1	471289	5057166	0,000339	
R2	471285	5053280	0,000578	
R3	471285	5049716	0,000632	
R4	472183	5046392	0,000830	
R5	475226	5053066	0,001444	
R6	476423	5052482	0,003143	
R7	477166	5057148	0,000696	
R8	477323	5047730	0,011322	
R9	478606	5044346	0,007438	
R10	479290	5059308	0,000540	
R11	479805	5057614	0,000829	
R12	480468	5053066	0,003017	
R13	480731	5051260	0,003744	
R14	480532	5049654	0,006600	
R15	481993	5054806	0,001752	
R16	482783	5050512	0,002219	
R17	482683	5045266	0,003513	
R18	483339	5055902	0,001221	
R19	483277	5052722	0,001589	
R20	482811	5047392	0,003401	
R21	485774	5057266	0,000746	
R22	484670	5047268	0,001823	
R23	488325	5050542	0,000526	
N1	476159	5053764	0,001633	
N2	474034	5052110	0,001247	
N3	476081	5051338	0,003138	
St1	477677	5055182	0,001216	
St2	479206	5048446	0,016600	
St3	481599	5061320	0,000399	

Tabella 12 - modellizzazione PM_{2,5}

10.2 **SITUAZIONE FUTURA**

Vengono di seguito riportate le mappe di ricaduta al suolo considerando i dati meteo della stazione ARPA di Ferno (VA) relativamente all'anno 2017 ed i dati emissivi di input riportati in tabella 6 (condizione futura), presso i recettori, le aree SIC e le stazioni ARPA Lombardia considerati nelle tabelle 7 e 8.

Ogni mappa risulta corredata di tabella riepilogativa la quale indicherà, per ogni posizione considerata, i valori previsti di concentrazione al suolo dell'inquinante valutato.

Nella fattispecie si riportano le seguenti mappe di ricaduta:

- ✓ esiti modellizzazione NOx espressi come NO2
- ✓ esiti modellizzazione CO
- ✓ esiti modellizzazione PM2,5
- ✓ esiti modellizzazione OZONO

CONDIZIONE FUTURA - ESITI MODELLIZZAZIONE BIOSSIDO DI AZOTO - NOx espressi come NO2

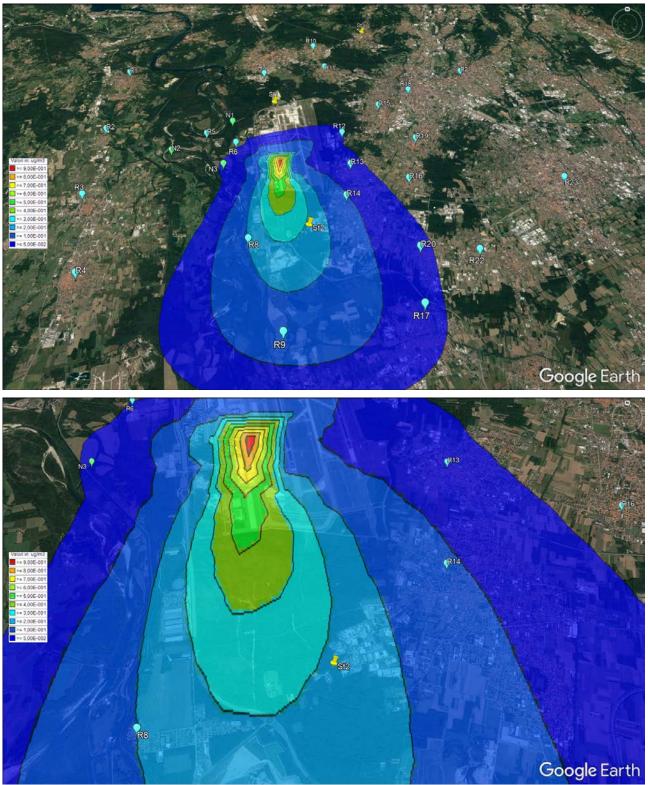


Immagine 17: - modellizzazione NOx espressi come NO₂ - valore medio 1h/anno (μg/m³)

Si evidenzia che per le aree non colorate si attendono deposizioni < $0.05~\mu g/m^3$ ed il recettore sensibile più esposto risulta essere R8.

CONDIZIONE FUTURA - BIOSSIDO DI AZOTO - NOx espressi come NO ₂					
Descrizione	X (m)	Y (m)	Valore Medio 1 ora µg/m³	Valore Massimo 1 ora µg/m³	99,8° percentile
R1	471289	5057166	0,006	0,539	0,082
R2	471285	5053280	0,010	1,497	0,126
R3	471285	5049716	0,011	1,577	0,149
R4	472183	5046392	0,015	0,926	0,200
R5	475226	5053066	0,025	2,531	0,304
R6	476423	5052482	0,051	2,887	0,714
R7	477166	5057148	0,012	1,273	0,146
R8	477323	5047730	0,199	5,000	2,012
R9	478606	5044346	0,131	2,211	1,134
R10	479290	5059308	0,010	1,181	0,122
R11	479805	5057614	0,015	1,465	0,179
R12	480468	5053066	0,050	3,106	0,695
R13	480731	5051260	0,062	4,858	0,932
R14	480532	5049654	0,110	3,923	1,301
R15	481993	5054806	0,031	1,773	0,446
R16	482783	5050512	0,039	3,085	0,524
R17	482683	5045266	0,062	1,646	0,587
R18	483339	5055902	0,021	1,182	0,301
R19	483277	5052722	0,028	2,983	0,381
R20	482811	5047392	0,059	3,114	0,671
R21	485774	5057266	0,013	0,808	0,177
R22	484670	5047268	0,032	1,598	0,374
R23	488325	5050542	0,009	0,566	0,115
N1	476159	5053764	0,028	2,529	0,362
N2	474034	5052110	0,022	2,105	0,293
N3	476081	5051338	0,051	3,091	0,822
St1	477677	5055182	0,021	2,397	0,256
St2	479206	5048446	0,281	5,747	2,251
St3	481599	5061320	0,007	0,742	0,098

Tabella 13 - modellizzazione NO₂

CONDIZIONE FUTURA - ESITI MODELLIZZAZIONE MONOSSIDO DI CARBONIO (CO)

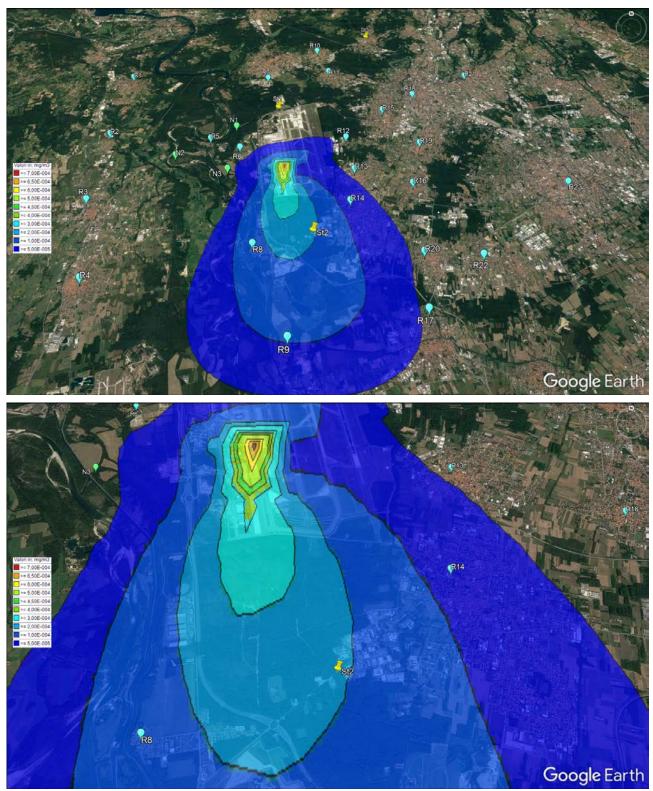


Immagine 18: - modellizzazione CO - valore medio 8h/anno (mg/m³)

Si evidenzia che per le aree non colorate si attendono deposizioni < 0,00005 mg/m³ ed il recettore sensibile più esposto risulta essere R8 .

CONDIZIONE FUTURA - MONOSSIDO DI CARBONIO - CO				
Descrizione	X (m)	Y (m)	Valore Medio 8 ore mg/m ³	Valore Massimo 8 ore mg/m ³
R1	471289	5057166	0,000004	0,000129
R2	471285	5053280	0,000008	0,000259
R3	471285	5049716	0,000009	0,000295
R4	472183	5046392	0,000011	0,000309
R5	475226	5053066	0,000018	0,000501
R6	476423	5052482	0,000038	0,000737
R7	477166	5057148	0,000009	0,000210
R8	477323	5047730	0,000148	0,001931
R9	478606	5044346	0,000098	0,000766
R10	479290	5059308	0,000007	0,000228
R11	479805	5057614	0,000011	0,000315
R12	480468	5053066	0,000037	0,001078
R13	480731	5051260	0,000046	0,001051
R14	480532	5049654	0,000081	0,000949
R15	481993	5054806	0,000023	0,000448
R16	482783	5050512	0,000029	0,000749
R17	482683	5045266	0,000046	0,000577
R18	483339	5055902	0,000016	0,000326
R19	483277	5052722	0,000021	0,001147
R20	482811	5047392	0,000043	0,000651
R21	485774	5057266	0,000010	0,000201
R22	484670	5047268	0,000024	0,000482
R23	488325	5050542	0,000007	0,000160
N1	476159	5053764	0,000021	0,000539
N2	474034	5052110	0,000017	0,000481
N3	476081	5051338	0,000038	0,001030
St1	477677	5055182	0,000016	0,000385
St2	479206	5048446	0,000209	0,002033
St3	481599	5061320	0,000005	0,000106

Tabella 14 - modellizzazione CO

CONDIZIONE FUTURA - ESITI MODELLIZZAZIONE **OZONO**

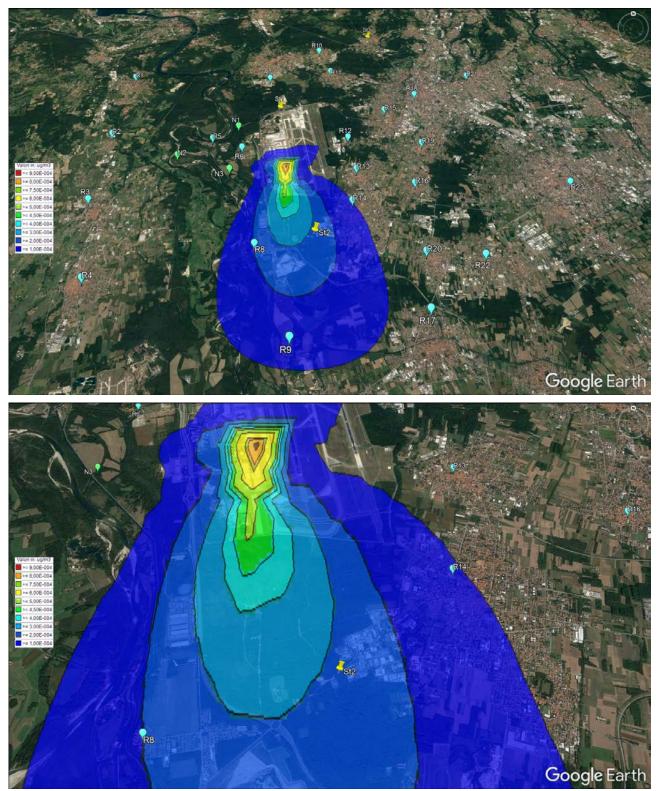


Immagine 19: - modellizzazione OZONO - valore medio 1h/anno (µg/m³)

Si evidenzia che per le aree non colorate si attendono deposizioni $< 0,0001 \ \mu g/m^3$ ed il recettore sensibile più esposto risulta essere R8.

	CONDIZIONE FUTURA - OZONO								
Descrizione	X (m)	X (m) Y (m)		Valore Massimo 1 ora µg/m³					
R1	471289	5057166	0,000006	0,000164					
R2	471285	5053280	0,000010	0,000354					
R3	471285	5049716	0,000011	0,000378					
R4	472183	5046392	0,000015	0,000393					
R5	475226	5053066	0,000024	0,000684					
R6	476423	5052482	0,000050	0,000992					
R7	477166	5057148	0,000012	0,000287					
R8	477323	5047730	0,000198	0,002515					
R9	478606	5044346	0,000131	0,001041					
R10	479290	5059308	0,000010	0,000293					
R11	479805	5057614	0,000015	0,000400					
R12	480468	5053066	0,000049	0,001369					
R13	480731	5051260	0,000061	0,001332					
R14	480532	5049654	0,000107	0,001219					
R15	481993	5054806	0,000031	0,000597					
R16	482783	5050512	0,000038	0,001026					
R17	482683	5045266	0,000061	0,000740					
R18	483339	5055902	0,000021	0,000431					
R19	483277	5052722	0,000028	0,001569					
R20	482811	5047392	0,000058	0,000826					
R21	485774	5057266	0,000013	0,000275					
R22	484670	5047268	0,000031	0,000660					
R23	488325	5050542	0,000009	0,000231					
N1	476159	5053764	0,000028	0,000684					
N2	474034	5052110	0,000022	0,000615					
N3	476081	5051338	0,000051	0,001282					
St1	477677	5055182	0,000021	0,000526					
St2	479206	5048446	0,000278	0,002574					
St3	481599	5061320	0,000007	0,000141					

Tabella 15 - modellizzazione NO₂

CONDIZIONE FUTURA - ESITI MODELLIZZAZIONE PM_{2,5}

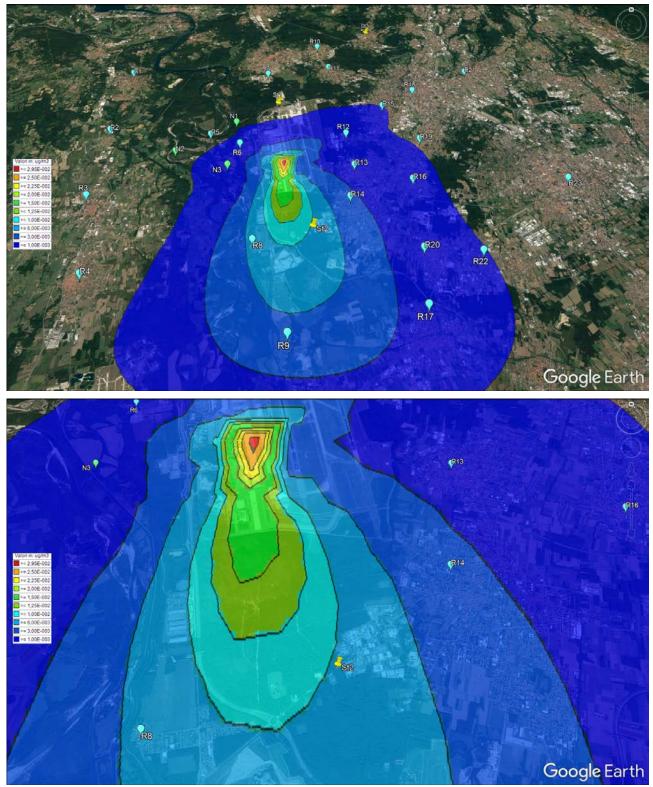


Immagine 20: - modellizzazione $PM_{2,5}$ - valore medio 24h/anno ($\mu g/m^3$)

Si evidenzia che per le aree non colorate si attendono deposizioni $< 0.001 \ \mu g/m^3$ ed il recettore sensibile più esposto risulta essere R8.

	CONDIZIONE FUTURA - PM _{2,5}							
Descrizione	X (m)	Y (m)	Valore Medio 1 ora µg/m³					
R1	471289	5057166	0,000207					
R2	471285	5053280	0,000356					
R3	471285	5049716	0,000394					
R4	472183	5046392	0,000520					
R5	475226	5053066	0,000844					
R6	476423	5052482	0,001730					
R7	477166	5057148	0,000428					
R8	477323	5047730	0,006859					
R9	478606	5044346	0,004528					
R10	479290	5059308	0,000333					
R11	479805	5057614	0,000509					
R12	480468	5053066	0,001710					
R13	480731	5051260	0,002098					
R14	480532	5049654	0,003686					
R15	481993	5054806	0,001059					
R16	482783	5050512	0,001325					
R17	482683	5045266	0,002117					
R18	483339	5055902	0,000743					
R19	483277	5052722	0,000974					
R20	482811	5047392	0,001996					
R21	485774	5057266	0,000454					
R22	484670	5047268	0,001083					
R23	488325	5050542	0,000318					
N1	476159	5053764	0,000964					
N2	474034	5052110	0,000754					
N3	476081	5051338	0,001750					
St1	477677	5055182	0,000736					
St2	479206	5048446	0,009613					
St3	481599	5061320	0,000249					

Tabella 16- modellizzazione NO₂

11 GIUDIZIO DI COMPATIBILITA' PER IL CASO IN ESAME

Per ciascun agente chimico considerato dalla presente modellizzazione, nelle seguenti tabelle si riportano i valori di concentrazione prevista di ricaduta al suolo nonché il relativo confronto con i vigenti limiti di cui al Decreto Legislativo 13 agosto 2010 n. 155 e s.m.i.; nella colonna "concentrazione indotta prevista" si riporta altresì l'evidenza del recettore ove il modello previsionale ha stimato i contributi maggiori di ricaduta (R8).

11.1 SITUAZIONE ATTUALE

Occorre precisare che i valori misurati dalle centraline ARPA contengono gli impatti degli inquinanti ad oggi emessi da SEA ENERGIA S.p.A., nelle tabelle di seguito viene data evidenza sia dal dato misurato dalle centraline ARPA ed il contributo dei singoli inquinanti.

Inquinante	Tipologia limite	Periodo media	Concentrazione indotta prevista	Concentrazione misurata centralina ARPA	Valore limite	Giudizio di compatibilità								
		1												
			Valore massimo orario											
	Protezione salute	1 ora	R8 - 14,146 μg/m ³		200 µg/m³ da non superare	CONFORME								
	umana	I UI a	Valore 99,8° orario	34,92 µg/m³	più di 18 volte	CONTORINE								
NO ₂			R8 - 5,726 μg/m³	Valore medio annuale anno 2017 Lonate P. (VA)	per anno civile									
	Protezione salute	Anno	Valore medio anno	Lonate F. (VA)	40 μg/m³									
	umana	civile	R8 - 0,579 μg/m ³			CONFORME								
	Protezione salute										Valore massimo 8 ore	0,35 <i>mg/m</i> ³		
СО	umana	8 ore	R8 - 0,007 mg/m ³	Valore medio annuale anno 2017 Ferno. (VA)	10 mg/m ³	CONFORME								
	Protezione salute	Anno	Valore medio anno	20,22 μg/m ³										
PM _{2,5}	umana	civile	R8 - 0,011 μ g/m³	Valore medio stimato anno 2017 Ferno. (VA)	25 μg/m³	CONFORME								
			Valore massimo orario											
OZONO	OZONO Soglia	Soglia 8 ore	R8 - 0,007 μg/m³	84,17 <i>mg/m</i> ³	180 µg /m³	CONFORME								
OLUNU	d'informazione	OUIC	Valore medio anno	Valore medio stimato anno 2017	100 µg /111°	COINI OINIL								
			R8 - 0,0003 μg/m³	Lonate P. (VA)										

Tabella 17 - confronto valori limite

I dati misurati dalle centraline ARPA evidenziano il rispetto dei valori limite di qualità dell'aria dettati dal Decreto Legislativo 13 agosto 2010 n. 155 e s.m.i. .

11.2 SITUAZIONE FUTURA

Di seguito si riportano i dati relativi dei contributi previsti post operam.

Inquinante	Tipologia limite	Periodo media	Concentrazione indotta prevista
			Valore massimo orario
			R8 - 5,000 µg/m³
	Protezione salute umana	1 ora	Valore 99,8° orario
NO ₂			R8 - 2,012 µg/m³
			Valore medio anno
	Protezione salute umana	Anno civile	R8 - 0,199 μg/m ³
			Valore massimo 8 ore
СО	Protezione salute umana	8 ore	R8 - 0,002 mg/m³
DM	Droto-ione calute umana	Anno chillo	Valore medio anno
PM _{2,5}	Protezione salute umana	Anno civile	R8 - 0,007 μg/m ³
			Valore massimo orario
OZONO	Caglia d'informaziona	8 ore	R8 - 0,003 μg/m ³
OZONO	Soglia d'informazione	8 ore	Valore medio anno
			R8 - 0,0002 µg/m³

Tabella 18 - contributi post operam

Le risultanze ottenute evidenziano che il contributo emissivo post operam è nettamente inferiore rispetto al contributo nell'attuale configurazione impiantistica di SEA ENERGIA S.p.A. .

Possiamo quindi indicare che se già nella configurazione attuale dell'impianto ritroviamo la conformità dei limiti emissivi di qualità dell'aria (misurato presso le centraline ARPA), nella configurazione futura, considerato il fatto che la pressione ambientale andrà notevolmente a diminuire, i dati di qualità dell'aria subiranno un netto miglioramento.

12 CONFRONTO CONDIZIONE ATTUALE E FUTURA

Come riportato in premessa, oltre alla verifica del rispetto dei valori limiti riportati nell'allegato XI del Decreto Legislativo 13 agosto 2010, n. 155 e s.m.i.: < Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa" >, il presente elaborato ha come scopo il confronto della stima previsionale della ricaduta di agenti chimici tra la condizione di esercizio attuale e quella futura, al fine di evidenziare la bontà dal punto di vista ambientale delle modifiche progettuali previste:

- 1. Dismissione della turbina TGA (attualmente inattiva)
- 2. Sostituzione della turbina TGC con una nuova turbina più performante (TGE)
- 3. Sostituzione della caldaia CB50 con una nuova caldaia più performante (Nuova caldaia ausiliaria)

	SIDO DI AZ spressi com		SITUA	AZIONE ATTU	JALE	SITU	AZIONE FUT	URA	% RID	UZIONE INQU	INANTI
Descrizi one	X (m)	Y (m)	Valore Medio 1 ora µg/m³	Valore Massimo 1 ora µg/m³	99,8° percent ile	Valore Medio 1 ora µg/m³	Valore Massimo 1 ora µg/m³	99,8° percenti le	Valore Medio 1 ora µg/m³	Valore Massimo 1 ora µg/m³	99,8° percentile
R1	471289	5057166	0,017	1,758	0,234	0,006	0,539	0,082	64,71	69,34	64,96
R2	471285	5053280	0,030	4,313	0,359	0,010	1,497	0,126	66,67	65,29	64,90
R3	471285	5049716	0,032	4,445	0,428	0,011	1,577	0,149	65,63	64,52	65,19
R4	472183	5046392	0,043	2,571	0,566	0,015	0,926	0,200	65,12	63,98	64,66
R5	475226	5053066	0,074	7,128	0,914	0,025	2,531	0,304	66,22	64,49	66,74
R6	476423	5052482	0,160	11,363	2,126	0,051	2,887	0,714	68,13	74,59	66,42
R7	477166	5057148	0,036	3,579	0,417	0,012	1,273	0,146	66,67	64,43	64,99
R8	477323	5047730	0,579	14,146	5,726	0,199	5,000	2,012	65,63	64,65	64,86
R9	478606	5044346	0,382	7,028	3,260	0,131	2,211	1,134	65,71	68,54	65,21
R10	479290	5059308	0,028	3,423	0,352	0,010	1,181	0,122	64,29	65,50	65,34
R11	479805	5057614	0,043	4,285	0,511	0,015	1,465	0,179	65,12	65,81	64,97
R12	480468	5053066	0,155	9,172	2,209	0,050	3,106	0,695	67,74	66,14	68,54
R13	480731	5051260	0,191	13,936	2,941	0,062	4,858	0,932	67,54	65,14	68,31
R14	480532	5049654	0,337	11,225	4,081	0,110	3,923	1,301	67,36	65,05	68,12
R15	481993	5054806	0,090	5,170	1,288	0,031	1,773	0,446	65,56	65,71	65,37
R16	482783	5050512	0,114	8,627	1,516	0,039	3,085	0,524	65,79	64,24	65,44
R17	482683	5045266	0,180	4,813	1,729	0,062	1,646	0,587	65,56	65,80	66,05
R18	483339	5055902	0,063	3,332	0,833	0,021	1,182	0,301	66,67	64,53	63,87
R19	483277	5052722	0,082	8,494	1,096	0,028	2,983	0,381	65,85	64,88	65,24
R20	482811	5047392	0,174	9,099	2,002	0,059	3,114	0,671	66,09	65,78	66,48
R21	485774	5057266	0,038	2,371	0,511	0,013	0,808	0,177	65,79	65,92	65,36
R22	484670	5047268	0,093	4,451	1,078	0,032	1,598	0,374	65,59	64,10	65,31
R23	488325	5050542	0,027	1,638	0,333	0,009	0,566	0,115	66,67	65,45	65,47
N1	476159	5053764	0,083	8,143	1,014	0,028	2,529	0,362	66,27	68,94	64,30
N2	474034	5052110	0,064	6,174	0,849	0,022	2,105	0,293	65,63	65,91	65,49
N3	476081	5051338	0,160	8,930	2,420	0,051	3,091	0,822	68,13	65,39	66,03
St1	477677	5055182	0,062	7,095	0,755	0,021	2,397	0,256	66,13	66,22	66,09
St2	479206	5048446	0,851	17,148	6,927	0,281	5,747	2,251	66,98	66,49	67,50
St3	481599	5061320	0,020	2,094	0,286	0,007	0,742	0,098	65,00	64,57	65,73
							Valo	ore medio	66,14	65,91	65,76

Tabella 19 - % riduzione inquinante NO_x espressi come NO₂

MON	OSSIDO DI CAR	BONIO - CO	SITUAZIONE ATTUALE	SITUAZIONE FUTURA	% RIDUZIONE INQUINANTI
Descrizione	X (m)	Y (m)	Valore Medio 8 ore µg/m³	Valore Medio 8 ore µg/m³	Valore Medio 8 ore µg/m³
R1	471289	5057166	0,000017	0,000004	76,47
R2	471285	5053280	0,000029	0,00008	72,41
R3	471285	5049716	0,000031	0,000009	70,97
R4	472183	5046392	0,000041	0,000011	73,17
R5	475226	5053066	0,000072	0,000018	75,00
R6	476423	5052482	0,000156	0,000038	75,64
R7	477166	5057148	0,000034	0,000009	73,53
R8	477323	5047730	0,000561	0,000148	73,62
R9	478606	5044346	0,000369	0,000098	73,44
R10	479290	5059308	0,000027	0,000007	74,07
R11	479805	5057614	0,000041	0,000011	73,17
R12	480468	5053066	0,000149	0,000037	75,17
R13	480731	5051260	0,000185	0,000046	75,14
R14	480532	5049654	0,000327	0,000081	75,23
R15	481993	5054806	0,000087	0,000023	73,56
R16	482783	5050512	0,000110	0,000029	73,64
R17	482683	5045266	0,000174	0,000046	73,56
R18	483339	5055902	0,000061	0,000016	73,77
R19	483277	5052722	0,000079	0,000021	73,42
R20	482811	5047392	0,000169	0,000043	74,56
R21	485774	5057266	0,000037	0,000010	72,97
R22	484670	5047268	0,000090	0,000024	73,33
R23	488325	5050542	0,000026	0,000007	73,08
N1	476159	5053764	0,000081	0,000021	74,07
N2	474034	5052110	0,000062	0,000017	72,58
N3	476081	5051338	0,000155	0,000038	75,48
St1	477677	5055182	0,000060	0,000016	73,33
St2	479206	5048446	0,000823	0,000209	74,61
St3	481599	5061320	0,000020	0,000005	75,00
				Valore medio	73,93

Tabella 20 - % riduzione inquinante CO

OZONO		SITUAZIONE ATTUALE	SITUAZIONE FUTURA	% RIDUZIONE INQUINANTI	
Descrizione	X (m)	Y (m)	Valore Medio 1 ora µg/m³	Valore Medio 1 ora μg/m³	Valore Medio 1 ora μg/m³
R1	471289	5057166	0,000009	0,000006	33,33
R2	471285	5053280	0,000016	0,000010	37,50
R3	471285	5049716	0,000018	0,000011	38,89
R4	472183	5046392	0,000023	0,000015	34,78
R5	475226	5053066	0,000040	0,000024	40,00
R6	476423	5052482	0,000088	0,000050	43,18
R7	477166	5057148	0,000019	0,000012	36,84
R8	477323	5047730	0,000317	0,000198	37,54
R9	478606	5044346	0,000208	0,000131	37,02
R10	479290	5059308	0,000015	0,000010	33,33
R11	479805	5057614	0,000023	0,000015	34,78
R12	480468	5053066	0,000084	0,000049	41,67
R13	480731	5051260	0,000105	0,000061	41,90
R14	480532	5049654	0,000185	0,000107	42,16
R15	481993	5054806	0,000049	0,000031	36,73
R16	482783	5050512	0,000062	0,000038	38,71
R17	482683	5045266	0,000098	0,000061	37,76
R18	483339	5055902	0,000034	0,000021	38,24
R19	483277	5052722	0,000044	0,000028	36,36
R20	482811	5047392	0,000095	0,000058	38,95
R21	485774	5057266	0,000021	0,000013	38,10
R22	484670	5047268	0,000051	0,000031	39,22
R23	488325	5050542	0,000015	0,000009	40,00
N1	476159	5053764	0,000046	0,000028	39,13
N2	474034	5052110	0,000035	0,000022	37,14
N3	476081	5051338	0,00088	0,000051	42,05
St1	477677	5055182	0,000034	0,000021	38,24
St2	479206	5048446	0,000465	0,000278	40,22
St3	481599	5061320	0,000011	0,000007	36,36
			I	Valore medio	38,28

Tabella 21 - % riduzione inquinante OZONO

	PM _{2,5}		SITUAZIONE ATTUALE	SITUAZIONE FUTURA	% RIDUZIONE INQUINANTI
Descrizione	X (m)	Y (m)	Valore Medio 1 ora µg/m³	Valore Medio 1 ora µg/m³	Valore Medio 1 ora µg/m³
R1	471289	5057166	0,000339	0,000207	38,94
R2	471285	5053280	0,000578	0,000356	38,41
R3	471285	5049716	0,000632	0,000394	37,66
R4	472183	5046392	0,000830	0,000520	37,35
R5	475226	5053066	0,001444	0,000844	41,55
R6	476423	5052482	0,003143	0,001730	44,96
R7	477166	5057148	0,000696	0,000428	38,51
R8	477323	5047730	0,011322	0,006859	39,42
R9	478606	5044346	0,007438	0,004528	39,12
R10	479290	5059308	0,000540	0,000333	38,33
R11	479805	5057614	0,000829	0,000509	38,60
R12	480468	5053066	0,003017	0,001710	43,32
R13	480731	5051260	0,003744	0,002098	43,96
R14	480532	5049654	0,006600	0,003686	44,15
R15	481993	5054806	0,001752	0,001059	39,55
R16	482783	5050512	0,002219	0,001325	40,29
R17	482683	5045266	0,003513	0,002117	39,74
R18	483339	5055902	0,001221	0,000743	39,15
R19	483277	5052722	0,001589	0,000974	38,70
R20	482811	5047392	0,003401	0,001996	41,31
R21	485774	5057266	0,000746	0,000454	39,14
R22	484670	5047268	0,001823	0,001083	40,59
R23	488325	5050542	0,000526	0,000318	39,54
N1	476159	5053764	0,001633	0,000964	40,97
N2	474034	5052110	0,001247	0,000754	39,53
N3	476081	5051338	0,003138	0,001750	44,23
St1	477677	5055182	0,001216	0,000736	39,47
St2	479206	5048446	0,016600	0,009613	42,09
St3	481599	5061320	0,000399	0,000249	37,59
				Valore medio	40,21

Tabella 22 - % riduzione inquinante PM_{2,5}

Come si evince dalla tabelle soprariportate il nuovo assetto impiantistico (condizione futura) apporterà una riduzione media delle concentrazioni previste di ricaduta al suolo pari a un valore stimato di circa 70% per i parametri NOx e CO, e di circa 40% per i parametri $Oxono e PM_{2,5}$.

13 CONSIDERAZIONI CENTRALINE ARPA

Nel presente capitolo si sono analizzati i dati di qualità dell'aria relativamente al parametro NO_X rilevati dalle centraline ARPA Lombardia, prossime all'insediamento SEA ENERGIA (vedi paragrafo 4).

L'approccio utilizzato è stato il seguente:

- 1. Sottrazione all'attuale valore medio annuo di NO₂ rilevato dalle stazioni ARPA Lombardia dei contributi emissivi di SEA ENERGIA nell'attuale configurazione impiantistica, al fine di ottenere dei dati di qualità dell'aria escludendo l'apporto di SEA ENERGIA;
- 2. Ai valori ottenuti dal punto 1 sono stati sommati i contributi emissivi futuri di NO₂ previsti con il revamping dell'impianto SEA ENERGIA;
- 3. Calcolo della percentuale di miglioramento dell'attuale qualità dell'aria, riferita al parametro NO₂, presso le centraline ARPA considerate.

ID stazione ARPA	Agente chimico	Concentrazione media Anno 2017	Contributo attuale	Concentrazione media escluso contributo SEA ENERGIA
St1	NO ₂ (media 1 ora)	28,06 μg/m³	0,062 μg/m³	28,00 μg/m³
St2	NO ₂ (media 1 ora)	34,92 μg/m³	0,851 μg/m³	34,07 μg/m³
St3	NO ₂ (media 1 ora)	31,67 μg/m³	0,020 μg/m³	31,65 μg/m³

Tabella 23 - Calcolo concentrazione media escluso SEA ENERGIA

ID stazione ARPA	Agente chimico	Concentrazione media escluso contributo SEA ENERGIA	Contributo futuro	Concentrazione media futura con contributo SEA ENERGIA
St1	NO ₂ (media 1 ora)	28,00 μg/m³	0,021 μg/m³	28,02 μg/m³
St2	NO ₂ (media 1 ora)	34,07 μg/m³	0,281 μg/m³	34,35 μg/m³
St3	NO ₂ (media 1 ora)	31,65 μg/m³	0,007 μg/m³	31,66 μg/m³

Tabella 24 - Calcolo Concentrazione media futura con contributo SEA ENERGIA

ID stazione ARPA	Agente chimico	Concentrazione media Anno 2017	Concentrazione media futura con contributo SEA ENERGIA	% riduzione concentrazione NOx rispetto condizione attuale
St1	NO ₂ (media 1 ora)	28,06 μg/m³	28,02 μg/m³	0,14%
St2	NO ₂ (media 1 ora)	34,92 μg/m³	34,35 μg/m³	1,63 %
St3	NO ₂ (media 1 ora)	31,67 μg/m³	31,66 μg/m³	0,03 %

Tabella 25 - % riduzione concentrazione NO_X

14 CONCLUSIONI

Come si evince dalla tabelle soprariportate (tabelle 19, 20, 21 e 22) il nuovo assetto impiantistico (condizione futura) apporterà una riduzione media delle concentrazioni previste di ricaduta al suolo pari a un valore stimato di circa 70% per i parametri CO e NO₂ e di circa 40% per il parametro PM_{2,5} (valutati considerando i valori massimi emessi) e circa 40% per il parametro OZONO (valutato considerando i valori misurati sull'attuale TGC).

E' di fondamentale importanza quanto dettagliato all'interno del capitolo 13, ovvero l'aver effettuato delle valutazioni relative ai dati di qualità dell'aria attuali rilevati dalla rete di monitoraggio ARPA Lombardia presenti sul territorio circostante la centrale di Malpensa, ha permesso di evidenziare che grazie al revamping degli impianti di SEA ENERGIA la qualità dell'aria relativamente al parametro NO₂ subirà dei miglioramenti.

Per quanto riguarda i contributi dei parametri CO, $PM_{2,5}$ ed ozono, valutate le ricadute sul recettore maggiormente esposto (REC8) che risultano essere di 3 o 4 ordini di grandezze inferiori ai valori limite, si ritiene che non saranno significative.

Inoltre è da sottolineare che l'attuale assetto normativo relativamente ai limiti dell'aria prevede un valore medio annuo di NO_2 pari a $40\mu g/m^3$, come si evince dalla tabella 25 tale limite è ad oggi ampiamente rispettato. Considerato che le attività di revamping dell'impianto andranno a contenere le ricadute di NO_2 sarà possibile garantire un ancor miglior rispetto del limite medio annuo previsto dalla normativa.

15 ALLEGATI

15.1 Analisi alle emissioni eseguite presso attuale TGC

Allegato

15.1 Analisi alle emissioni eseguite presso attuale TGC

LAB N° 0130 L

Spett.
SEA Energia S.p.A.
Aeroporto Malpensa 2000CP 203
21010 - Ferno (VA)

RAPPORTO DI PROVA N°19LA17631 Analisi emissioni in atmosfera Controllo Interno

Impianto: stabilimento di Malpensa (VA)

Identificazione della posizione del campionamento: E3 - Turbogas C

Data prelievo: 20/05/19
Data accettazione: 20/05/19
Data inizio analisi: 20/05/19
Data fine analisi: 24/05/19
Data rapporto di prova: 28/05/19

Prelievo eseguito da: Tecnico Ecol Studio, Cotroneo - Biraghi

Piano di campionamento: foglio di incarico tecnico ambientale MD008/N-AMB N. 19-007648

Scopo delle misurazioni: monitoraggio richiesto dal cliente

Caratteristiche dell'impianto e del processo e condizioni operative: impianto a regime

Eventuali particolarità rilevate nel corso delle misurazioni, notazioni circa la conduzione dell'impianto a monte del condotto, variazioni durante la conduzione delle misurazioni: nessuna

Numero linee di campionamento: 1 linea di campionamento

SEDE LEGALE

LAB N° 0130 L

Spett. SEA Energia S.p.A. Aeroporto Malpensa 2000CP 203 21010 - Ferno (VA)

RAPPORTO DI PROVA Nº19LA17631

Determinazione della portata e della velocità secondo la UNI EN ISO 16911-1:2013

Ora inizio: 12:03 Ora fine: 13:03 Diametro al punto di prelievo (m): 2,5

Area della sezione di misura (mq): 4,909 Tipo di sezione: Circolare

Composizione del gas secco (% vol): 0₂: 15,27 (1) CO₂: 3,13 (2) N₂: 81,6

Tenore di vapore acqueo nell'effluente (%): 5,6 densità media (ρ) (kg/m³): 0,881 Pressione atmosferica (kPa): 100,5 Fattore di taratura del tubo di Pitot medio (0,817

 $ui(m/s) = 129*a*(Δpi* Te,i/Pe,i* M)^{1/2}$ $q_{v,e} = u*A$

	affondamento (cm)	Temperatura Te (K)	Pressione statica Pe (kPa)	Pressione dinamica ∆p (Pa)	velocità u (m/s)	Angolo di Swirl
diametro 1	5	391	100,5	131,5	14,1	0,0
Unico	14	391	100,5	139,0	14,5	0,0
	25	391	100,5	143,5	14,7	0,0
	37	391	100,5	164,0	15,8	0,0
	50	391	100,5	144,5	14,8	0,0
	67	391	100,5	152,5	15,2	0,0
	92	391	100,5	150,0	15,1	0,0
	158	391	100,5	137,0	14,4	0,0
	183	391	100,5	145,5	14,8	0,0
	200	391	100,5	140,0	14,6	0,0
	213	391	100,5	151,5	15,1	0,0
	225	391	100,5	138,0	14,5	0,0
	236	391	100,5	136,5	14,4	0,0
	245	391	100,5	133,0	14,2	0,0
media ->		391 ± 4 (U)	100,5			

(nota) la Te in ciascun punto non differisce più del 5% dal valore medio della Te nella sezione di misurazione la dP in ciascun punto non differisce più di 25Pa rispetto al valore medio della pressione nella sezione di misurazione

Velocità media u (m/s) =

 $14,7 \pm 0,9$ (U)

Per il calcolo della velocità media è stato utilizzato il fattore moltiplicativo WAF (wall adjustment factor) pari a 0,995 previsto per le pareti lisce

Portata volumica nelle condizioni di esercizio $q_{v,e}$ (mc/h) =

259784 ± 18563 (U)

Portata volumica nelle condizioni di riferimento $q_{v,r}$ (Nmc/h) =

180003 ± 14042 (U)

Portata volumica secca nelle condizioni di riferimento q_{v,r} (Nmc/h)=

169923 ± 13408 (U)

U= incertezza estesa assoluta; p=95%; k=2

- (1) prelievo eseguito ai sensi della UNI EN 14789: 2017
- (2) prelievo eseguito ai sensi della ISO 12039: 2001
- (3) prelievo eseguito ai sensi della UNI EN 14790: 2017

Operazioni non citate nel metodo di riferimento a cui si è dovuto far ricorso: nessuna

SEDE OPERATIVA

Via dei Bichi. 293 - 55100 Lucca. Italia

Tel. +39 0583 40011 - Fax +39 0583 400300

info@ecolstudio.com - info@ecolpec.com

Pag 2 di 8

MD 5.10/A Rev. 5 del 04/07/11 ECOL STUDIO S.p.A.

> AMBIENTE SALUTE E SICUREZZA QUALITÀ DEL PRODOTTO

LAB N° 0130 L

Spett.
SEA Energia S.p.A.
Aeroporto Malpensa 2000CP 203
21010 - Ferno (VA)

RAPPORTO DI PROVA Nº19LA17631

Determinazione del vapore acqueo in condotti secondo la UNI EN 14790:2017

Vapore acqueo			
Data prelievo	20/05/20)19	
Data fine prova	20/05/2019		
Ora start stop	12:03	15:31	
Durata (min)	180		
Vapore acqueo (%)	5,6		
Efficienza	N.D.	§	
Volume campionato (L)	6196,2		
Temperatura (°C)	26		

[§] L'efficienza è stata verificata durante il prelievo come prescritto dalla norma di riferimento par. 8.5.2

La linea di campionamento è costituita da un sistema con estrazione, filtrazione e trasporto campione a caldo.

La determinazione del vapore acqueo (H2O) contenuto nei fumi si basa sul principio gravimetrico. La linea di campionamento è costituita da un sistema con estrazione, filtrazione e trasporto campione a caldo e, se necessario, configurato per il rispetto dell'isocinetismo.

Idoneità della sezione di prelievo secondo la UNI EN 15259:2008

Il flusso gassoso nel piano di misura soddisfa i seguenti requisiti:

- L'angolo del flusso di gas è minore di 15° rispetto all'asse del condotto.
- Assenza di flussi negativi.
- Pressione differenziale superiore a 5 Pa (dipendente dal sistema di misura utilizzato, il laboratorio sceglie l'utilizzo del tubo di Pitot)
- Il rapporto tra la velocità massima e minima locale è inferiore a 3:1

(*) le prove così contrassegnate al fianco del risultato non sono accreditate Accredia. - Fi parametri contraddistinti dal simbolo al lato sono fuori limite.

Il presente rapporto NON può essere riprodotto parzialmente salvo approvazione scritta del laboratorio.

I risultati riportati sul presente rapporto riquardano il solo campione sottoposto a prova.

Pag 3 di 8

QUALITÀ DEL PRODOTTO

MILANO – LUCCA – TORINO – PADOVA – ROSIGNANO – BAGNI DI LUCCA – RAVENNA – UDINE

LAB N° 0130 L

Spett. SEA Energia S.p.A. Aeroporto Malpensa 2000CP 203 21010 - Ferno (VA)

RAPPORTO DI PROVA Nº19LA17631 Analisi emissioni in atmosfera **Controllo Interno**

Determinazione della composizione del gas secondo la UNI EN 15058:2017 (CO); UNI EN 14789:2017 (O2); UNI EN 14792:2017 (NOx); ISO 12039:2001 (CO₂)

Impianto: stabilimento di Malpensa (VA)

E3 - Turbogas C Identificazione della posizione del campionamento:

Prelievo eseguito da: Cotroneo - Biraghi

Risultati analitici

O2 di riferimento (%): 15

Descrizione	u.m.	1º prelievo	2º prelievo	3° prelievo	media	dev.std.	U ⁽²⁾	limite
Data prelievo		20/05/2019	20/05/2019	20/05/2019	(1)		p=95%	
Data fine prova		20/05/2019	20/05/2019	20/05/2019			k=2	
Ora start stop		12:03 13:03	13:22 14:22	14:31 15:31				
Durata effettiva	min	60	60	60				
O ₂	%	15,27	15,23	15,25	15,25	0,02	± 0,18	
CO ₂	%	3,11	3,15	3,15	3,13	0,02	± 0,36	

Nota: "Nm^{3"} è riferito al volume di gas secco campionato normalizzato alla T = 273,15K, P=101,3kPa

Se viene utilizzata la regola del Upper Bound e la concentrazione di tutti i prelievi è < LOQ, le medie saranno precedute dal segno "<".

(2) L'incertezza non è indicata se tutti i prelievi sono < al LOQ

Operazioni non citate nel metodo di riferimento a cui si è dovuto far ricorso e motivazione: nessuna

•	
Temperatura (°C)	vedere sezione "portata e velocità"
Velocità (m/s)	vedere sezione "portata e velocità"
Pressione (kPa)	vedere sezione "portata e velocità"

SEDE OPERATIVA

Via dei Bichi, 293 - 55100 Lucca, Italia

Tel. +39 0583 40011 - Fax +39 0583 400300

info@ecolstudio.com - info@ecolpec.com

⁽¹⁾ Media dei valori positivi più i valori al di sotto del limite di quantificazione (LOQ) considerati uguali al LOQ diviso due se per il singolo valore è vero che il LOQ < (0,1x valore limite) (regola del Medium Bound), altrimenti considerati uguale al LOQ (Upper Bound).

Se viene utilizzata la regola del Medium Bound e la concentrazione di tutti i prelievi è <LOQ, la media non sarà preceduta dal segno "<" . (riferimento: RT-T194.CG.AMBLE del 09/02/2012)

LAB N° 0130 L

Spett. SEA Energia S.p.A. Aeroporto Malpensa 2000CP 203 21010 - Ferno (VA)

RAPPORTO DI PROVA Nº19LA17631

Principio del campionamento:

la determinazione dell'ossigeno (O2) presente nell'effluente gassoso emesso nell'atmosfera da condotti e ciminiere si basa sul principio del

la determinazione del monossido di carbonio (CO) si basa sul principio NDIR.

la determinazione del biossido di carbonio (CO₂) si basa sul principio NDIR.

la determinazione del biossido di zolfo (SO₂) si basa sul principio NDIR.

la determinazione degli ossidi di azoto (NOx) si basa sul principio della chemiluminescenza.

La determinazione dei gas presenti nell'effluente gassoso avviene utilizzando lo strumento Horiba PG 350

Caratteristiche dello strumento: tempo di risposta NO CO CO2 O2: 45s; tempo di risposta SO2: 180s; limite di rilevabilità NOx CO2: ± 1,0% del range; CO SO2 : ± 2,0% del range; limite di rilevabilità O2 ± 0,2% del range; lack of fit NOx CO CO2 SO2: 2,0% del range; lack of fit O2: ± 0,3% del range; zero drift NOx CO2: ± 1,0 % del range/24h; zero drift CO: ± 2,0 % del range/24h; zero drift SO2: ± 3,0 % del range/24h; span drift NOx CO2: ± 1,0 % del range/24h; span drift CO: ± 2,0 % del range/24h; span drift SO2: ± 3,0 % del range/24h; sensibilità alla tensione NOx CO CO2 SO2: ± 1% del range/10V; sensibilità alla tensione O2: ± 0,1% del range/ 10V; Interferenti NOx CO CO2 SO2: ± 2 % del fondo scala; Interferenti O2: 0,2% volume; prova di tenuta: positiva; dev.std di ripetibilità in laboratorio NOx CO CO2 SO2: $\pm 1,0\%$ del range; dev.std di ripetibilità in laboratorio O2: $\pm 0,2\%$ del range.

Campo di applicazione: 0 - 25 % O_2

La linea di campionamento è costituita da un sistema con estrazione, filtrazione e trasporto campione a caldo.

La determinazione del vapore acqueo (H2O) contenuto nei fumi si basa sul principio gravimetrico. La linea di campionamento è costituita da un sistema con estrazione, filtrazione e trasporto campione a caldo e, se necessario, configurato per il rispetto dell'isocinetismo.

Concentrazione e caratteristiche dei gas utilizzati per la calibrazione: 20,9

Risultato della calibrazione effettuata sul sito di campionamento: positivo

Caratteristiche del sistema di condizionamento utilizzato: gas refrigerato a 4°C

Descrizione delle operazioni di regolazione esequite prima e dopo il campionamento per la linea di campionamento e per l'analizzatore: da norma

Identificazione della sezione di misura e descrizione del/i punto/i di campionamento: vedere sezione "Determinazione della portata e della velocità"

> (*) le prove così contrassegnate al fianco del risultato non sono accreditate Accredia. -▶ i parametri contraddistinti dal simbolo al lato sono fuori limite. Il presente rapporto NON può essere riprodotto parzialmente salvo approvazione scritta del laboratorio.

I risultati riportati sul presente rapporto riguardano il solo campione sottoposto a prova.

Pag 5 di 8

MD 5.10/A Rev. 5 del 04/07/11 **ECOL STUDIO S.p.A.**

LAB N° 0130 L

Spett. SEA Energia S.p.A. Aeroporto Malpensa 2000CP 203 21010 - Ferno (VA)

RAPPORTO DI PROVA Nº19LA17631

Analisi emissioni in atmosfera **Controllo Interno**

Determinazione di ozono (O₃) secondo il metodo UNI EN 14625:2012

Impianto: stabilimento di Malpensa (VA)

Identificazione della posizione del campionamento: E3 - Turbogas C

Prelievo eseguito da: Cotroneo - Biraghi

Risultati analitici

O2 di riferimento (%): 15 O2 misurato (%): 15,2

Descrizione	u.m.	1° prelievo	2° prelievo	3° prelievo	media	dev. std.	limite
Data prelievo		20/05/2019	20/05/2019	20/05/2019	(1)		
Data fine prova		20/05/2019	20/05/2019	20/05/2019			
Ora start stop		12:03 13:03	13:22 14:22	14:31 15:31			
Durata effettiva	min	60	60	60			
Volume campionato	NLitri	82,1	81,5	81,3			
Flusso aspirazione	l/min	1,5	1,5	1,5			
Ozono (*)	mg/Nm ³	0,02	0,03	0,04	0,03	0,01	
Ozono O ₂ rif. (*)	mg/Nm ³	0,02	0,03	0,04	0,03	0,01	
Ozono (*)	g/h	2,6	4,6	6,3	4,5	1,9	

Nota: "NLitri" e "Nm3" sono riferiti al volume di gas secco campionato normalizzato alla T = 273K, P=101,3kPa;

(riferimento: RT-T194.CG.AMBLE del 09/02/2012)

Operazioni non citate nel metodo di riferimento a cui si è dovuto far ricorso: nessuna

Analisi di laboratorio eseguite da: M.Melani

> (*) le prove così contrassegnate al fianco del risultato non sono accreditate Accredia. - 🕨 i parametri contraddistinti dal simbolo al lato sono fuori limite. Il presente rapporto NON può essere riprodotto parzialmente salvo approvazione scritta del laboratorio.

I risultati riportati sul presente rapporto riguardano il solo campione sottoposto a prova.

Pag 6 di 8

Tel. +39 0583 40011 - Fax +39 0583 400300

info@ecolstudio.com - info@ecolpec.com

SEDE LEGALE

⁽¹⁾ Media dei valori positivi più i valori al di sotto del limite di quantificazione (LOQ) considerati uquali al LOQ diviso due se per il singolo valore è vero che il LOQ < (0,1x valore limite) (regola del Medium Bound), altrimenti considerati uguale al LOQ (Upper Bound).

Se viene utilizzata la regola del Upper Bound e la concentrazione di tutti i prelievi è < LOQ, le medie saranno precedute dal segno "<".

Se viene utilizzata la regola del Medium Bound e la concentrazione di tutti i prelievi è < LOQ, la media non sarà preceduta dal segno "<".

⁽²⁾ L'incertezza non è indicata se tutti i prelievi sono < al LOQ

LAB N° 0130 L

Spett.
SEA Energia S.p.A.
Aeroporto Malpensa 2000CP 203
21010 - Ferno (VA)

RAPPORTO DI PROVA Nº19LA17631

Analisi emissioni in atmosfera Controllo Interno

Determinazione delle PM_{2.5} secondo la UNI EN ISO 23210:2009

Impianto: stabilimento di Malpensa (VA)

Identificazione della posizione del campionamento: E3 - Turbogas C

Prelievo eseguito da: Cotroneo - Biraghi

Risultati analitici

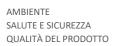
O2 di riferimento (%): 15 O2 misurato (%): 15,2

Descrizione	u.m.	1° prelievo	2° prelievo	3° prelievo	media ⁽¹⁾	dev. std.	U ⁽²⁾	limite
Data prelievo		20/05/2019	20/05/2019	20/05/2019			p=95%	
Data fine prova		24/05/2019	24/05/2019	24/05/2019			k=2	
Ora start stop		12:03 13:03	13:22 14:22	14:31 15:31				
Durata effettiva	min	60	60	60				
Volume campionato	Nlitri	2065	2052	2045				
Flusso aspirazione	l/min	38,0	38,0	38,0				
Rispetto condizioni isocinetiche		SI	SI	SI				
Grado di isocinetismo medio	%	18,4	17,6	17,21				
Massa delle polveri sul filtro PM2.5	mg	< 0,17	< 0,17	0,42				
PM _{2.5}	mg/Nm ³	< 0,08	< 0,08	0,21	0,10	0,10	± 0,09	
PM _{2.5} O2 rif.	mg/Nm ³	< 0,08	< 0,08	0,22	0,10	0,10	± 0,09	
PM _{2.5}	g/h	< 13,6	< 13,6	35,7	16,4	16,7	± 14,75	

Valore di bianco PM _{2.5}	mg/Nm ³	<	0,08
Valore di bianco PM ₁₀	mg/Nm ³	<	0,14

Nota: "NLitri" e "Nm3" sono riferiti al volume di gas secco campionato normalizzato alla T = 273K, P=101,3kPa;

Nota: dati grezzi disponibili c/o il laboratorio di Ecol Studio


(2) L'incertezza non è indicata se tutti i prelievi sono < al LOQ

Operazioni non citate nel metodo di riferimento a cui si è dovuto far ricorso e motivazione: nessuna

Pag 7 di 8

MD 5.10/A Rev. 5 del 04/07/11 ECOL STUDIO S.p.A.

Tel. +39 0583 40011 - Fax +39 0583 400300

info@ecolstudio.com - info@ecolpec.com

SEDE LEGALE

⁽¹⁾ Media dei valori positivi più i valori al di sotto del limite di quantificazione (LOQ) considerati uguali al LOQ diviso due se per il singolo valore è vero che il LOQ < (0,1x valore limite) (regola del Medium Bound), altrimenti considerati uguale al LOQ (Upper Bound).

Se viene utilizzata la regola del Upper Bound e la concentrazione di tutti i prelievi è <LOQ, le medie saranno precedute dal segno "<" .

Se viene utilizzata la regola del Medium Bound e la concentrazione di tutti i prelievi è <LOQ, la media non sarà preceduta dal segno "<" .

(riferimento: RT-T194.CG.AMBLE del 09/02/2012)

LAB N° 0130 L

Spett.

SEA Energia S.p.A. Aeroporto Malpensa 2000CP 203 21010 - Ferno (VA)

RAPPORTO DI PROVA Nº19LA17631

Il campionamento è stato eseguito in conformità ai metodi sopra indicati. Il campionamento si è svolto in condizioni isocinetiche.

Risultato delle prove di tenuta della linea di campionamento: positivo

Numero linee di campionamento: vedere sezione "Determinazione della portata e della velocità" Posizione linee di campionamento: vedere sezione "Determinazione della portata e della velocità"

Punti di campionamento: vedere sezione "Determinazione della portata e della velocità" Profilo della velocità: vedere sezione "Determinazione della portata e della velocità" Profilo della temperatura: vedere sezione "Determinazione della portata e della velocità"

Analisi di laboratorio eseguite da: M. Melani

Composizione del gas (% vol): vedere sezione "composizione del gas" Misura della velocità : Tubo di Pitot tarato a fronte di tubo di Pitot tipo S

Caratteristiche del filtro: filtro piano, fibra di quarzo, 47mm

Temperatura di pre-condizionamento dei filtri (°C): 180 (1h) Temperatura di post-condizionamento dei filtri (°C): 160 (1h)

Correzione dei pesi apparenti: effettuata

Dimensioni della sezione di misura (m): 2,5 Area della sezione di misura (mg): 4,909

Diametro ugello (mm): 8 8 8

Temperatura di filtrazione (°C): 118,0

Massa molare media (M) (kg/Kmole): 28,5

Vapore acqueo (%): 5,6

(*) le prove così contrassegnate al fianco del risultato non sono accreditate Accredia. - ▶ i parametri contraddistinti dal simbolo al lato sono fuori limite.

Il presente rapporto NON può essere riprodotto parzialmente salvo approvazione scritta del laboratorio.

I risultati riportati sul presente rapporto riguardano il solo campione sottoposto a prova.

Il Referente Dott. Claudio Ciari

MD 5.10/A Rev. 5 del 04/07/11 ECOL STUDIO S.p.A.

MILANO – LUCCA – TORINO – PADOVA – ROSIGNANO – BAGNI DI LUCCA – RAVENNA – UDINE

SEDE LEGALE

Pag 8 di 8

SEDE OPERATIVA