

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino LOTTO 1 - Svincolo di Geodetica-Gagno

PROGETTO ESECUTIVO

FI2 COD.

ATI SINTAGMA - GDG - ICARIA **PROGETTAZIONE:**

IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Nando Granieri

Ordine degli Ingegneri della Prov. di Perugia n° A351

IL PROGETTISTA:

Dott. Ing. Luca Nani

Ordine degli Ingegneri della Prov. di Perugia nº A2445

IL GEOLOGO:

Dott. Geol. Giorgio Cerquiglini

Ordine dei Geologi della Regione Umbria n°108

II R.U.P.

Dott. Ing.

Antonio Scalamandrè

IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Filippo Pambianco

Ordine degli Ingegneri della Prov. di Perugia n° A1373

PROTOCOLLO

DATA

MARZO 2019

IL GRUPPO DI PROGETTAZIONE:

MANDATARIA:

Sintagma

Dott.Ing. N.Granieri Dott.Arch. N.Kamenicky V.Truffini Dott.Ing. Dott.Arch. A.Bracchini Dott.Ing. Dott.Geol. F.Durastanti G.Cerquiglini .Scopetta Dott.Ing. L.Sbrenna E.Sellari Dott.Ing. Dott.Ing. Dott.Ing.

E.Bartolocci L.Dinelli L.Nani Dott.Ing. F.Pambianco F.Berti Nulli Dott. Agr.

S.Sacconi G.Cordua V.De Gori Dott. Ing. Dott. Ing. Dott. Ing. Dott. Ing. C.Consorti F.Dominici Dott. Ing.

MANDANTI:

D.Carlaccini Dott. Ing. Dott. Ing. Geom. Dott. Ing. Dott. Ing. Geom.

V.Rotisciani F.Macchioni C.Vischini V.Piunno G.Pulli C.Sugaroni

società di ingegneria

INGEGNERI DELLA PROVINCIA Seziofe A DOTTORS INGEGNERE MANDO GRANIERI SETTORE CIVILE E AMBIENTALE SETTORE INDUSTRIALE SETTORE DELL'INFORMAZIONE

OPERE D'ARTE MAGGIORI VIADOTTO CORNIA 1 (ferrovia) Relazione tecnica e di calcolo impalcato

CODICE PROGET	TO LIV. PROG. N. PROG.	NOME FILE	//01-STR-RE02			REVISIONE	SCALA:
DPFI	1 2 E 1 8 0 1	CODICE ELAB.	T 0 0 V I 0 1 S	TRRE	0 2	A	-
A	Emissione				E.Ricci	E.Bartolocci	N.Granieri
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

INDICE

1	F	PREMESSA	4
2	1	NORMATIVA DI RIFERIMENTO	8
3	1	METODI DI CALCOLO E CRITERI DI VERIFICA	9
	3.1	VERIFICHE DI RESISTENZA AGLI STATI LIMITE ULTIMI	9
		3.1.1 Stato limite di resistenza	9
	3.2	VERIFICHE AGLI STATI LIMITE DI ESERCIZIO	9
		3.2.1 Fessurazione	9
		3.2.2 Tensioni di esercizio	.12
4	1	MATERIALI	.13
5	A	Analisi dei Carichi	.15
	5.1	PESO PROPRIO DELL'IMPALCATO	15
	5.2	SOVRACCARICO PERMANENTE	15
	5.3	CEDIMENTI DIFFERENZIALI	16
	5.4	VARIAZIONI TERMICHE	16
	5.5	CARICHI MOBILI	17
	5.6	URTO DEL VEICOLO IN SVIO	19
	5.7	PRECOMPRESSIONE	20
	5.8	EFFETTO DELLA VISCOSITÀ E DEL RITIRO	21
	5.9	ALTRE AZIONI	21
6	(COMBINAZIONI DELLE AZIONI	22
7	(CALCOLO DEGLI EFFETTI GLOBALI	25

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

	7.1	DESCRIZIONE DELLE FASI COSTRUTTIVE DI CALCOLO	28
	7.2	SOLLECITAZIONI E TENSIONI IN FASE COSTRUTTIVA (T=0 E T=∞) – VERIFICHE SLE-QP	29
	7.3	SOLLECITAZIONI E TENSIONI IN ESERCIZIO – VERIFICHE SLE-K	41
	7.4	VERIFICHE SLU PER FLESSIONE	41
	7.5	VERIFICHE SLU PER TAGLIO-TORSIONE	55
3	3 (CALCOLO DEGLI EFFETTI LOCALI	58
	8.1	ANALISI	58
	8.2	SEZIONE S1	62
	8.3	SEZIONE S2	64
	8.4	SEZIONE S3	67
	8.5	SEZIONE S4	70
	8.6	CEZIONE CE	72

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

INDICE DELLE FIGURE

Figura 1 – Profilo longitudinale	4
Figura 2 – Sezione trasversale impalcato	
Figura 3 – Fasi costruttive e adozione carro di varo	6
Figura 4 – Schema appoggi	7
Figura 5 – Descrizione del modello di carico 1 – da NTC2018	18
Figura 6 – Disposizione trasversale dei carichi mobili	19
Figura 7 – Schema di carico per azioni di urto del veicolo in svio	19
Figura 8 - Layout cavi	20
Figura 9 - Tabella cavi	21
Figura 10 – Diagramma momenti flettenti su schemi statici 37+5x46+37m e 37+2x46+37m	25
Figura 11 – Modello agli elementi finiti per fasi costruttive	26
Figura 12 – Modello agli elementi finiti per azioni di esercizio	27
Figura 13 – Sezioni caratteristiche per verifica effetti locali	58
Figura 14 – Modello di calcolo effetti locali	58
Figura 15 – Diagrammi delle sollecitazioni N, V, M da peso proprio	59
Figura 16 – Diagrammi delle sollecitazioni N, V, M da permanenti portati	59
Figura 17 – Diagrammi delle sollecitazioni N, V, M da variazione termica differenziale	60
Figura 18 – Diagrammi delle sollecitazioni N, V, M da carichi mobili	60
Figura 19 – Diagrammi delle sollecitazioni N, V, M da urto di veicolo in svio	61

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

S.S. 398 "Via Val di Cornia"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

PREMESSA

Nel presente fascicolo si espongono i calcoli di dimensionamento degli impalcati del Viadotto Cornia 1, rientrante nell'ambito del Lotto 1 della S.S. 398 "Via Val di Cornia", Bretella di collegamento tra l'Autostrada Tirrenica A12 ed il porto di Piombino.

Per quanto riguarda il calcolo delle sottostrutture e il calcolo geotecnico dei pali si rimanda alle specifiche relazioni allegate al presente progetto.

Il viadotto presenta due carreggiate distinte e separate, ciascuna delle quali costituita da due impalcati continui di luce rispettivamente 37+5x46+37m e 37+2x46+37m, per un totale di 471.8m, intesa come distanza tra gli assi appoggi delle due spalle.

Le spalle sono di tipo a mensola, le pile con sezione piena e le fondazioni di tipo indiretto su pali di grande diametro Ø1200.

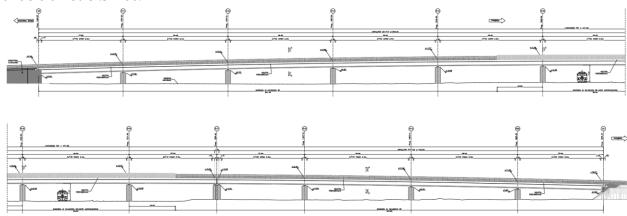


Figura 1 – Profilo longitudinale

L'impalcato è realizzato con conci prefabbricati di larghezza pari a 11.25m, altezza 2.40m e lunghezza pari a 2.30m, 1.90m per i conci di estremità e 1.80m per i conci intermedi in corrispondenza degli appoggi. Completano l'impalcato 2 conci di sutura per ciascuna campata da realizzare in opera dello spessore di 0.25 m.

4 di 73

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

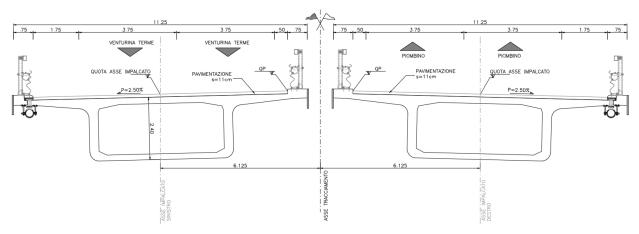


Figura 2 – Sezione trasversale impalcato

La metodologia di esecuzione consiste nel sistema span by span e prevede l'adozione di un carro di varo. La precompressione dei conci è di tipo esterna: la geometria di cavi, deviatori e ancoraggi è stata studiata al fine di consentire in modo agevole la sostituzione degli stessi durante la vita utile dell'opera. I cavi sono costituiti da trefoli da 0.6" in numero pari a 22 o 27 trefoli.

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

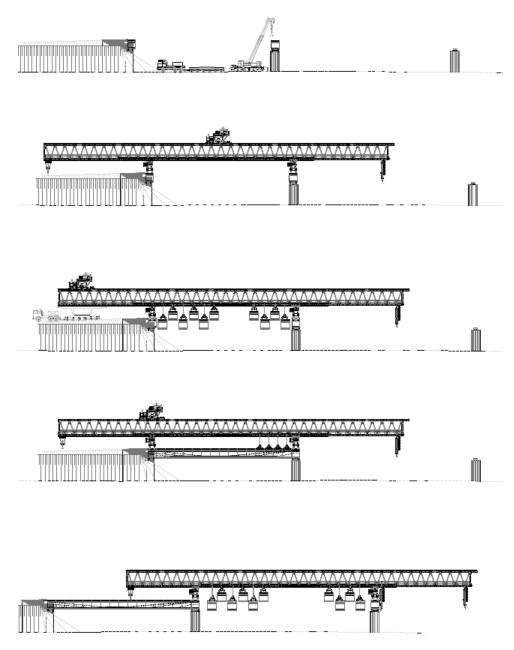


Figura 3 – Fasi costruttive e adozione carro di varo

Il sistema di vincolo tra impalcato e sottostrutture prevede l'adozione di isolatori sismici elastomerici ad alto smorzamento (smorzamento equivalente pari a ξ =10%) per garantire il totale isolamento tra i due sottosistemi; si rimanda al capitolo sulla protezione sismica per ulteriori indicazioni.

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

S.S. 398 "Via Val di Cornia"

PROGETTO ESECUTIVO

Direzione Progettazione e VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO Realizzazione Lavori

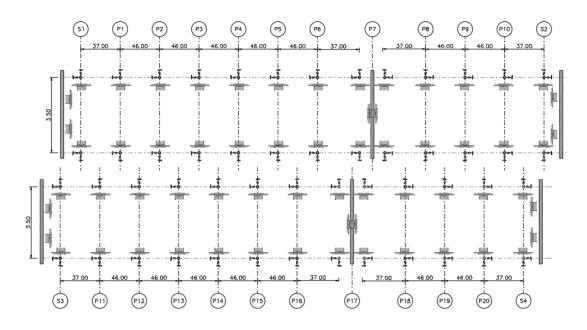


Figura 4 – Schema appoggi

La vita nominale di progetto V_N, intesa come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali, è assunta pari a 50 anni.

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, si assume per l'opera in progetto una classe d'uso IV.

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

2 NORMATIVA DI RIFERIMENTO

Il progetto del manufatto è stato redatto nel rispetto delle vigenti Normative; si citano in particolare le sequenti:

- [N1] D.M. del 17 gennaio 2018: Norme tecniche per le costruzioni;
 [N2] Circolare n. 617 del 2 febbraio 2009: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni;
 [N3] EC 1-1-5: Azioni sulle strutture; Azioni in generale Azioni termiche
 [N4] EC 2-1-1: Progettazione delle strutture di calcestruzzo; Regole generali e regole per gli edifici;
 [N5] EC 2-2: Progettazione delle strutture di calcestruzzo; Ponti di calcestruzzo Progettazione e dettagli costruttivi;
 [N6] EC 8-1: Progettazione delle strutture per la resistenza sismica; Regole generali, azioni
- [N7] EC 8-2: Progettazione delle strutture per la resistenza sismica; Ponti.

sismiche e regole per gli edifici;

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

3 METODI DI CALCOLO E CRITERI DI VERIFICA

I calcoli strutturali sono redatti in osservanza delle normative vigenti, con particolare riferimento al DECRETO MINISTERIALE del 17 gennaio 2018 "NORME TECNICHE PER LE COSTRUZIONI", nel seguito brevemente NTC2018.

Il calcolo delle sollecitazioni è condotto in campo elastico lineare, utilizzando la teoria della Scienza delle Costruzioni

Le verifiche sono eseguite con il metodo semiprobabilistico agli Stati Limite. Si effettuano le seguenti verifiche:

- Stato Limite Ultimo (SLU) verifiche di resistenza;
- Stato Limite di Esercizio (SLE) verifiche dello stato tensionale dei diversi elementi strutturali in combinazioni caratteristica e quasi permanente delle azioni;
- Stato Limite di Esercizio (SLE) verifiche di fessurazione in combinazioni frequente e quasi permanente delle azioni;

Laddove non diversamente specificato, le unità di misura adottate per azioni e sollecitazioni sono i kN per le forze e i kN m per i momenti; l'unità di misura per le tensioni è il MPa (N/mm²); inoltre si assumono positivi gli sforzi/tensioni normali di trazione e i momenti che tendono le fibre inferiori.

3.1 VERIFICHE DI RESISTENZA AGLI STATI LIMITE ULTIMI

3.1.1 Stato limite di resistenza

La sicurezza strutturale nei confronti degli stati limite ultimi è verificata confrontando la capacità di progetto in termini di resistenza R_d, funzione delle caratteristiche meccaniche dei materiali che la compongono, con il corrispondente valore di progetto della domanda E_d, funzione dei valori di progetto delle azioni.

Le verifiche di resistenza a pressoflessione sono svolte secondo quanto indicato al paragrafo 4.1.2.3.4.2 di [N1].

Le verifiche di resistenza a taglio seguono il paragrafo 4.1.2.3.5 di [N1].

3.2 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

3.2.1 Fessurazione

Definizione degli stati limite di fessurazione

In ordine di severità crescente si distinguono i seguenti stati limite:

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

- stato limite di decompressione nel quale, per la combinazione di azioni prescelta, la tensione normale è ovunque di compressione ed al più uguale a 0;
- stato limite di formazione delle fessure, nel quale, per la combinazione di azioni prescelta, la tensione normale di trazione nella fibra più sollecitata è:

$$\sigma_t = \frac{f_{ctm}}{1.2}$$

- stato limite di apertura delle fessure nel quale, per la combinazione di azioni prescelta, il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:
 - $w_1 = 0.2 \text{ mm}$
 - $w_2 = 0.3 \text{ mm}$
 - $w_3 = 0.4 \text{ mm}$

Lo stato limite di fessurazione deve essere fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione.

Condizioni ambientali

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature metalliche, possono essere suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato nella tabella seguente:

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Nel caso in esame si considera l'opera in condizioni ambientali aggressive.

Scelta degli stati limite di fessurazione

Nella tabella sottostante sono indicate le prestazioni richieste per le diverse combinazioni delle azioni a seconda delle condizioni ambientali e della tipologia di armatura.

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

			Armatura				
Gruppi di esigenze	Condizioni ambientali	Combinazione di azioni	Sensibile	Sensibile		sibile	
a gr			Stato limite w _d		Stato limite	Wd	
2	Ordinarie	frequente	ap. fessure	≤W2	ap. fessure	≤W ₃	
а	Ordinarie	quasi permanente	ap. fessure	≤W ₁	ap. fessure	re ≤w ₂	
b	Aggressive	frequente	ap. fessure	≤W ₁	ap. fessure	≤W2	
	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤W ₁	
С	Molto aggressive	frequente	formazione fessure	-	ap. fessure	≤W ₁	
Ç	worto aggressive	quasi permanente	decompressione	-	ap. fessure	≤W ₁	

Stato limite di apertura delle fessure

Il valore caratteristico di calcolo di apertura delle fessure (w_d) non deve superare i valori nominali w_1 , w_2 , w_3 , secondo quanto riportato nella Tabella sopra riportata.

Il valore caratteristico di calcolo è dato da:

$$W_d = 1,70 \cdot W_m$$

dove w_m rappresenta l'ampiezza media delle fessure.

L'ampiezza media delle fessure w_m è calcolata come prodotto della deformazione media delle barre d'armatura \mathcal{E}_{sm} per la distanza media tra le fessure Δ_{sm} :

$$W_m = \varepsilon_{sm} \cdot \Delta_{sm}$$

Per il calcolo di \mathcal{E}_{sm} e Δ_{sm} vanno utilizzati criteri consolidati riportati nella letteratura tecnica. \mathcal{E}_{sm} può essere calcolato tenendo conto dell'effetto del "tension stiffening" nel rispetto della limitazione:

$$\varepsilon_{sm} \geq 0.6 \cdot \frac{\sigma_s}{E_s}$$

con σ_s tensione nell'acciaio dell'armatura tesa (per sezione fessurata) nelle condizioni di carico considerate ed E_s è il modulo elastico dell'acciaio.

Pertanto, per le armature delle sottostrutture delle opere oggetto di verifica, si assumono i seguenti limiti di apertura delle fessure:

SLE-QP $w_d \le w_1 = 0.2 \text{ mm}$

SLE-F $w_d \le w_2 = 0.3 \text{ mm}.$

MANDATARIA

MANDANTE

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

Cautelativamente si garantisce lo stato limite di decompressione in corrispondenza della combinazione frequente delle azioni

3.2.2 Tensioni di esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

La massima tensione di compressione del calcestruzzo $\sigma_{c,max}$, deve rispettare la limitazione seguente:

 $\sigma_{c,max}$ < 0,60 f_{ck} per combinazione caratteristica

 $\sigma_{c,max}$ < 0,45 f_{ck} per combinazione quasi permanente.

La tensione massima, $\sigma_{s,max}$, per effetto delle azioni dovute alla combinazione caratteristica delle azioni deve rispettare la limitazione seguente:

$$\sigma_{s,max}$$
 < 0,8 fyk

Per gli acciai da precompressione le tensioni iniziali devono rispettare le seguenti limitazioni:

 $\sigma_{spi} < 0.85 f_{p(0.1)k}$ $\sigma_{spi} < 0.75 f_{ptk}$

Ammettendo una sovratensione non superiore a 0,05 f_{p(0.1)k}.

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

4 MATERIALI

È previsto l'impiego dei materiali di seguito descritti. Per maggiori informazioni si rinvia all'elaborato specifico.

ACCIAIO PER CEMENTO ARMATO

71001711	ACCIATO LEI CEIVIEI VI O ATTIVITO							
Tipo		B450C						
Caratte	ristiche dell'acciaio							
$f_{yk} =$	tensione caratteristica di snervamento	450	[MPa]					
Resister	nze di calcolo							
$f_{yd} =$	resistenza di progetto	391	[MPa]					
$\gamma_{\rm s}$ =	coefficiente parziale sicurezza dell'acciaio	1.15						
$E_s =$	modulo elastico	210000	[MPa]					

ACCIAIO PER CEMENTO ARMATO PRECOMPRESSO - TREFOLI

Trefoli	stabilizzati da 0.6"	1670/1860	
Classe	2 - Trefolo stabilizzato		
Caratte	ristiche dell'acciaio		
f _{ptk} =	tensione caratteristica di rottura	1860	[MPa]
f _{p(1)k} =	tensione caratteristica all'1% di deformazione totale	1670	[MPa]
Resister	nze di calcolo		
f _{pyd} =	resistenza di progetto	1452	[MPa]
$\gamma_{\rm s}=$	coefficiente parziale sicurezza dell'acciaio	1.15	
E _s =	modulo elastico	195000	[MPa]

Sistemi di precompressione a cavi post tesi secondo Linee Guida di benestare Tecnico Europeo ETAG 013

ACCIAIO PER CEMENTO ARMATO PRECOMPRESSO - BARRE TIPO DYWIDAG

Caratte	eristiche dell'acciaio		
f _{ptk} =	tensione caratteristica di rottura	1030	[MPa]
f _{p(1)k} =	tensione caratteristica all'1% di deformazione totale	835	[MPa]
Resiste	nze di calcolo		
f _{pyd} =	resistenza di progetto	726	[MPa]
$\gamma_{\rm s}=$	coefficiente parziale sicurezza dell'acciaio	1.15	
$E_s =$	modulo elastico	200000	[MPa]

CALCESTRUZZO PER CONCI PREFABBRICATI

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Classe	di resistenza	C40/	′50
Caratte	eristiche del calcestruzzo		
$R_{ck} =$	resistenza caratteristica cubica	50	[MPa]
$f_{ck} =$	resistenza caratteristica cilindrica	42	[MPa]
$f_{cm} =$	resistenza cilindrica media	49.5	[MPa]
$f_{ctm} =$	resistenza media a trazione semplice	3.6	[MPa]
f' _{cfm}	resistenza media a trazione per flessione	4.3	[MPa]
$f_{ctk} =$	resistenza caratteristica a trazione	2.5	[MPa]
$f_{bk} =$	resistenza tangenziale caratteristica di aderenza	5.7	[MPa]
$f^*_{bk} =$	resistenza tangenziale caratteristica di aderenza in zona tesa	3.8	[MPa]
E _{cm} =	modulo elastico istantaneo	35547	[MPa]
α=	coefficiente di dilatazione termica	1.0E-05	[°C ⁻¹]
Resiste	nze di calcolo		
$f_{cd} =$	resistenza di calcolo a compressione	23.5	[MPa]
$\alpha_{\text{CC}}=$	coefficiente riduttivo per le resistenze di lunga durata	0.85	
$\gamma_{C} =$	coefficiente parziale sicurezza del calcestruzzo	1.50	
$f_{ctd} =$	resistenza di calcolo a trazione	1.7	[MPa]
$\gamma_{C}=$	coefficiente parziale sicurezza del calcestruzzo	1.50	
$f_{bd} =$	resistenza tangenziale di aderenza di calcolo	3.8	[MPa]
f* _{bd}	resistenza tangenziale di aderenza di calcolo in zona tesa	2.5	[MPa]
γ _C =	coefficiente parziale sicurezza del calcestruzzo	1.50	

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

5 ANALISI DEI CARICHI

Si riporta nel seguito una descrizione dei carichi considerati per il dimensionamento delle strutture in oggetto.

5.1 PESO PROPRIO DELL'IMPALCATO

Concio di campata

 $q_{trave} = \gamma_{cls} \cdot Acc = 25 \cdot 5.71 = 142.8 \text{ kN/m}$

 γ_{cls} = peso del calcestruzzo per unità di volume

A = area della sezione corrente dell'impalcato

Concio in appoggio

 $q_{trave} = \gamma_{cls} \cdot Aca = 25 \cdot 13.88 = 347.0 \text{ kN/m}$

 γ_{cls} = peso del calcestruzzo per unità di volume

Aca = area della sezione di appoggio dell'impalcato

Deviatori

 $P_{dev} = \gamma_{cls} \cdot V_{dev} = 25 \cdot 2.202 \cdot 0.80 = 44.0 \text{ kN/m}$

 γ_{cls} = peso del calcestruzzo per unità di volume

V_{dev} = volume del singolo deviatore (cautelativamente inclusivo del volume dei fori)

Nella mezzeria delle campate intermedie si hanno dei deviatori di lunghezza pari a 0.40m, cui corrisponde un peso pari alla metà di quello su valutato = $P_{dev}/2$.

5.2 SOVRACCARICO PERMANENTE

Il sovraccarico permanente è costituito dal peso del getto dei cordoli, dalla pavimentazione, dalle barriere di sicurezza e dai servizi.

	n	L/A	S	γ	γ	
	[]	$[m/m^2]$	[m]	$[kN/m^3]$	[kN/m]	[kN/m]
Pavimentazione		9.75	0.11	24		25.08
Cordoli	2	0.75	0.19	25		7.13

MANDATARIA

MANDANTE

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

Pesi Propri Non Strutturali					G₂	42.12
Velette	2	0.75	0.06	25		2.25
Servizi	2				1	2
Rete antiproiezione	2				1	2
Barriere	2				1.5	3

5.3 Cedimenti differenziali

Nella valutazione delle sollecitazioni, si applicano in corrispondenza dei vincoli i cedimenti differenziali che nascono per effetto dei carichi permanenti portati, dei carichi mobili e delle variazioni termiche differenziali.

Si assume che i cedimenti siano di tipo istantaneo e che eventuali cedimenti che nascono per effetto dei pesi propri strutturali possano essere recuperati tramite regolazioni durante il varo dell'impalcato.

TABLE: Jo	oint Reactions										
Joint	OutputCase	CaseType	StepType	F3_min	F3_max	Npali	Nmax	Nmin	alpha	wmax	wmin
P1	G2+Q1+0.6Q7	Combination	Min F3	1622	4255	9	473	180	0.0213	10.1	3.8
P2	G2+Q1+0.6Q7	Combination	Min F3	1650	4286	9	476	183	0.0215	10.2	3.9
Р3	G2+Q1+0.6Q7	Combination	Min F3	1622	4255	9	473	180	0.0213	10.1	3.8
P4	G2+Q1+0.6Q7	Combination	Min F3	376	1919	9	213	42	0.0212	4.5	0.9
S1	G2+Q1+0.6Q7	Combination	Min F3	376	1919	12	160	31	0.0199	3.2	0.6
forze in k	N, spostamenti	i in mm									

I cedimenti vengono applicati secondo una configurazione che ne massimizzi gli effetti. Si assume una estrapolazione lineare per valutarne l'entità in combinazione ultima delle azioni.

5.4 VARIAZIONI TERMICHE

Si assume una differenza di temperatura pari a 10x0.7=7°C nel caso di estradosso più caldo dell'intradosso e 5°C nel caso di intradosso più caldo dell'estradosso, come da indicazioni dell'Eurocodice 1-1-5 [N3].

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

Tipo di impalcato	Parte superiore più calda della parte inferiore	Parte inferiore più calda della parte superiore
	Δ T _{M,heat} (°C)	Δ T _{M,cool} (°C)
Tipo 1: Impalcato di acciaio	18	13
Tipo 2: Impalcato a struttura composta	15	18
Tipo 3: Impalcato di calcestruzzo: - trave scatolare di calcestruzzo	10	5
- trave di calcestruzzo - piastra di calcestruzzo	15 15	8 8

		Ponti stradali,	pedonali e ferroviari			
Spessore della superficie	Tip	00 1	Tip	00 2	Т	іро 3
	Parte superiore più calda della parte inferiore	Parte inferiore più calda della parte superiore	Parte superiore più calda della parte inferiore	Parte inferiore più calda della parte superiore	Parte superiore più calda della parte inferiore	Parte inferiore più calda della parte superiore
[mm]	<i>k</i> _{sur}	<i>k</i> _{sur}	<i>k</i> _{sur}	<i>k</i> _{sur}	<i>K</i> _{sur}	<i>k</i> _{sur}
Non rivestito	0,7	0,9	0,9	1,0	0,8	1,1
Impermeabilizzato ¹⁾	1,6	0,6	1,1	0,9	1,5	1,0
50	1,0	1,0	1,0	1,0	1,0	1,0
100	0,7	1,2	1,0	1,0	0,7	1,0
150	0,7	1,2	1,0	1,0	0,5	1,0
Massicciata (ballast) (750 mm)	0,6	1,4	0,8	1,2	0,6	1,0

Per il dimensionamento dei giunti, oltre agli spostamenti originati dal sisma e agli spostamenti dovuti ai fenomeni lenti, si considera una variazione termica uniforme di \pm 20°C su tutte le strutture.

5.5 Carichi mobili

L'analisi dei carichi mobili viene effettuata in accordo alle indicazioni del decreto ministeriale del 14 gennaio 2018 [N1].

La sede stradale è composta da una piattaforma bitumata da 9.75m e da due cordoli non carrabili di 0.75m di larghezza ciascuno, per un totale di 11.25 m. La larghezza delle corsie convenzionali è pari a 3.00m, per un totale di tre corsie e una zona rimanente di larghezza pari a 9.75 – 3x3.00 = 0.75m, disposte in modo da indurre le più sfavorevoli condizioni di progetto.

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno
PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

Le azioni variabili da traffico, comprensive degli effetti dinamici, sono definite dallo schema di carico 1, descritto nel seguito:

- corsia n.1 costituita da un automezzo convenzionale Q_{1k} di 600 kN dotato di 2 assi di 2 ruote ciascuno, distanti 1.20 m in senso longitudinale e con interasse delle ruote in senso trasversale di 2.00 m e un carico ripartito q_{1k} di 9 kN/m²;
- corsia n.2, analoga alla precedente, ma con carichi pari rispettivamente a 400 kN (automezzo convenzionale Q_{2k}) e 2.5 kN/m² (carico ripartito q_{2k});
- corsia n.3, analoga alla precedente, ma con carichi pari rispettivamente a 200 kN (automezzo convenzionale Q_{3k}) e 2.5 kN/m² (carico ripartito q_{3k});
- zona rimanente, occupata da una colonna di carico $q_{Rk} = 2.5 \text{ kN/m}^2$ nella zona di carreggiata non impegnata dai carichi precedenti.

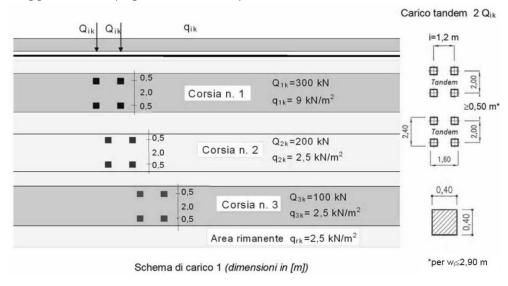


Figura 5 – Descrizione del modello di carico 1 – da NTC2018

Sono stati considerati i carichi mobili previsti dalla vigente normativa per ponti di prima categoria, disposti nella configurazione che massimizza le sollecitazioni sull'impalcato.

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

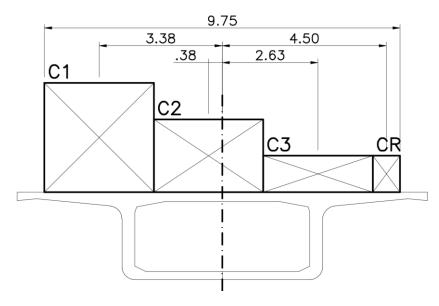


Figura 6 – Disposizione trasversale dei carichi mobili

URTO DEL VEICOLO IN SVIO 5.6

Si tiene conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione di 100 kN, in accordo al paragrafo 3.6.3.3.2 di [N1]. Essa è considerata agente trasversalmente ed orizzontalmente 1.0m sopra il livello del piano di marcia. Cautelativamente si adotta la distribuzione riportata nella seguente figura, dove le forze sono applicate su linee di lunghezza pari a 0.5m.

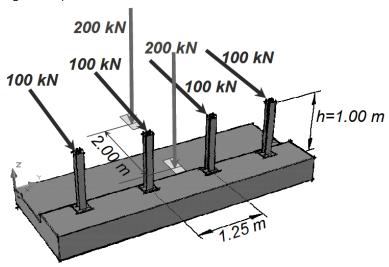


Figura 7 – Schema di carico per azioni di urto del veicolo in svio

Questa condizione di carico eccezionale non risulta significativa per il dimensionamento e la verifica dell'impalcato.

MANDANTE

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

5.7 PRECOMPRESSIONE

Come successivamente descritto nel paragrafo del "Calcolo degli Effetti Globali", le forze di precompressione sono state applicate mediante l'ausilio degli elementi tipo "tendon".

I dati di calcolo dell'azione di precompressione sono i seguenti:

Precompressione post-tesa con cavi esterni da 22 o 27 trefoli 0.6" in acciaio armonico fptk/fp01k=1860/1670 con:

- At = 140 mmg/trefolo;
- Tensione di tesatura al martinetto 1400 MPa;
- $\mu = 0.24$, coefficiente di attrito tra armatura e quaina;
- w = 5 mm, rientro dei cunei nullo;
- Rilassamento di classe 2 secondo CEB-FIB (basso rilassamento);
- E=195000 MPa;

Seguo uno schema e una tabella riepilogativa dei diversi cavi adottati per l'impalcato.

Figura 8 - Layout cavi

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

	CARATTERIS	STICHE [m]		NUMERO CAVI	
CAVO	n° Trefoli	Lunghezza	ASSE SX	ASSE DX	TOTALE
T1	22	40	8	8	16
T1	27	50	14	14	28
T2/T3	22	95	18	18	36
T3	22	40	8	8	16

95

40

40

Figura 9 - Tabella cavi

18

18

36

8

8

5.8 EFFETTO DELLA VISCOSITÀ E DEL RITIRO

T4/T5

T5

Т6

Il calcolo degli effetti di ritiro e viscosità del calcestruzzo sono stati automaticamente calcolati dal programma in base ai seguenti parametri di calcolo:

- UR = 75%, umidità relativa
- h0 = 0.348 m, dimensione fittizia dell'elemento

27

22

22

- β sc = 5, coefficiente di ritiro
- ts = 7gg, età calcestruzzo inizio ritiro

5.9 ALTRE AZIONI

Per il dimensionamento dell'impalcato trascurabili e quindi non saranno portati in conto, gli effetti delle azioni di Vento, Frenatura, Attrito ai vincoli, Centrifuga e azioni Sismiche, per le quali si rimanda alla relazione di calcolo delle sottostrutture.

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

6 COMBINAZIONI DELLE AZIONI

Nelle seguenti tabelle si riportano i fattori moltiplicativi dei valori caratteristici delle azioni nelle varie combinazioni allo stato limite di esercizio e allo stato limite ultimo. Tali fattori sono dati dal prodotto del coefficiente parziale di sicurezza γ per il coefficiente di combinazione ψ .

Azioni permanenti

- g1 = peso proprio delle strutture
- g2 = carichi permanenti portati

Azioni variabili

- q1 = carichi mobili
- q3 = azione longitudinale di frenamento o di accelerazione
- q4 = azione centrifuga
- q5 = azione del vento
- q6 = azione sismica
- q7 = resistenze parassite dei vincoli
- q8 = urto di veicoli in svio

Distorsioni

- $\varepsilon 1 = precompressione$
- ε2 = effetti reologici (ritiro, viscosità e rilassamento)
- $\epsilon 3$ = variazioni termiche
- ε4 = cedimenti vincolari

STATO LIMITE ESERCIZIO

COMBINAZIONE CARATTERISTICA

	g1	g2		q1		q3	q4	q5	q6	q7	q8	ε 1	ε 2	ε 3	ε4
			TS	UDL	Folla										
K1	1	1	1	1	0.5	0	0	0.6	0	1	0	1	1	0.6	1
K2	1	1	0.75	0.4	0.5	0	0	1	0	1	0	1	1	0.6	1
К3	1	1	0.75	0.4	0.5	0	0	0	0	0	0	1	1	1	1
K4	1	1	0.75	0.4	0.5	1	0	0.6	0	1	0	1	1	0.6	1
K5	1	1	0.75	0.4	0.5	0	1	0.6	0	1	0	1	1	0.6	1

MANDATARIA

MANDANTE

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

COMBINAZIONE FREQUENTE

	g1	g2		q1		q3	q4	q5	q6	q7	q8	ε1	ε 2	ε 3	ε4
			TS	UDL	Folla										
F1	1	1	0.75	0.4	0.5	0	0	0	0	1	0	1	1	0.5	1
F2	1	1	0	0	0	0	0	0.2	0	1	0	1	1	0.5	1
F3	1	1	0	0	0	0	0	0	0	1	0	1	1	0.6	1

COMBINAZIONE QUASI PERMANENTE

	g1	g2		q1		q3	q4	q5	q6	q7	q8	ε 1	ε 2	ε 3	ε4
			TS	UDL	Folla										
QP1	1	1	0	0	0	0	0	0	0	1	0	1	1	0.5	1

STATO LIMITE ULTIMO

COMBINAZIONE FONDAMENTALE

	g1	g2		q1		q3	q4	q5	q6	q7	q8	ε 1	ε 2	ε 3	ε4
			TS	UDL	Folla										
U1	1.35	1.35	1.35	1.35	0.68	0	0	0.9	0	1.5	0	1	1.2	0.7	1.2
U2	1.35	1.35	1.01	0.54	0.68	0	0	1.5	0	1.5	0	1	1.2	0.7	1.2
U3	1.35	1.35	1.01	0.54	0.68	0	0	0	0	0	0	1	1.2	1.2	1.2
U4	1.35	1.35	1.01	0.54	0.68	1.35	0	0.9	0	1.5	0	1	1.2	0.7	1.2
U5	1.35	1.35	1.01	0.54	0.68	0	1.35	0.9	0	1.5	0	1	1.2	0.7	1.2

COMBINAZIONE SISMICA

	g1	g2		q1		q3	q4	q5	q6	q7	q8	ε 1	ε 2	ε 3	ε4
			TS	UDL	Folla										
S1	1	1	0	0	0	0	0	0	1	1	0	1	1	0.5	1

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

COMBINAZIONE ECCEZIONALE

	g1	g2		q1		q3	q4	q5	q6	q7	q8	ε 1	ε 2	ε 3	ε4
			TS	UDL	Folla										
E1	1	1	1	1	0	0	0	0	0	0	1	1	1	0.5	1

Si osserva che, ai fini del dimensionamento delle strutture principali dell'impalcato, risultano maggiormente significative le combinazioni in cui si assumono i carichi mobili come azioni variabili dominanti.

L'urto da traffico veicolare è stato considerato in combinazione eccezionale delle azioni; alla forza orizzontale d'urto su sicurvia è stato associato il carico mobile, posizionato in adiacenza al sicurvia stesso e disposto nella posizione più gravosa.

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

7 CALCOLO DEGLI EFFETTI GLOBALI

L'analisi delle sollecitazioni globali della struttura durante la fase costruttiva nonché il calcolo degli effetti viscosi nel tempo per effetto dei carichi permanenti sono stati eseguiti mediante il programma di calcolo agli elementi finiti SAP 2000 NL della CSI.

Per semplicità di analisi, si studia l'impalcato avente luci pari a 37+2x46+37m. I risultati si ritengono validi anche per l'impalcato con maggior numero di campate (37+5x46+37m), essendo trascurabili le variazioni di sollecitazioni sulle campate intermedie aggiuntive.

Al fine di dimostrare tale assunzione, si riporta il diagramma delle sollecitazioni flettenti per un carico uniformemente distribuito di valore unitario sui due schemi statici.

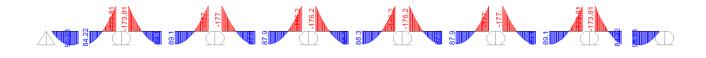


Figura 10 – Diagramma momenti flettenti su schemi statici 37+5x46+37m e 37+2x46+37m

Segue la valutazione delle differenze relativi percentuali.

Schema	M1+	M12-	M2+	M23-	M3+	M34-
37+2x46+37	95.31	173.62	88.84	177.69	88.84	
37+5x46+37	95.23	173.81	89.1	177	87.9	176.2
diff. rel. %	-0.1%	0.1%	0.3%	-0.4%	-1.1%	-0.8%

Le sollecitazioni in fase costruttiva per conci sono state calcolate mediante il modulo "Incremental Construction Sequence Modeling and Loading"; il programma di calcolo consente di simulare l'effettiva fasistica di esecuzione della struttura, di modellare la precompressione esterna comprensiva delle cadute per attrito mediante gli elementi "Tendon" e di calcolare i fenomeni di evoluzione viscosa, di ritiro del calcestruzzo e di rilassamento dell'acciaio armonico.

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

Il modello di calcolo, nel suo complesso, contiene i seguenti elementi:

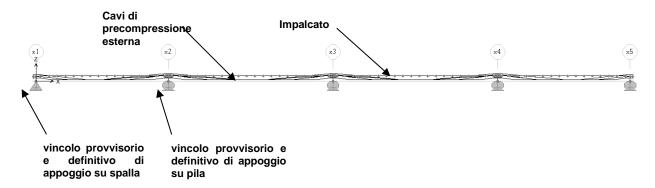


Figura 11 – Modello agli elementi finiti per fasi costruttive

Il modello comprende complessivamente:

- 96 elementi frame per la modellazione dell'impalcato, degli appoggi provvisori e definitivi;
- 13 elementi tendon;
- 105 nodi.

Le caratteristiche inerziali degli elementi frame adottati nel modello sono le seguenti:

TABLE: Frame	TABLE: Frame Section Properties 01 - General													
SectionName	Material	Shape	t3	t2	Area	TorsConst	133	122	AS2	AS3				
Text	Text	Text	m	m	m2	m4	m4	m4	m2	m2				
CA	C40/50	General	2.4	11.25	13.8758	18.3	7.5648	59.6806	10.8	11.1				
CC	C40/50	General	2.4	11.25	5.7128	8.82	4.6533	42.8766	1.68	4.02				
R	R	Rectangular	0.5	0.3	0.15	0.002817371	0.003125	0.001125	0.125	0.125				

Le sezioni tipo R rappresentano i bracci rigidi di collegamento tra l'asse baricentrico impalcato e la quota d'appoggio.

Le caratteristiche dei materiali adottate sono le seguenti:

TABLE: Material Properties 02 - Basic Mechanical Properties										
Material	UnitWeight	UnitMass	E1	G12	U12	A1				
Text	KN/m3	KN-s2/m4	KN/m2	KN/m2	Unitless	1/C				
Trefoli	77.0	7.85	195000000			0.000012				
C40/50	25	2.549290481	35000000	14583333	0.2	0.00001				
R	0	0	1E+12	3.84615E+11	0.3	0.00001				

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

Le caratteristiche dei materiali dipendenti dal tempo (ritiro, viscosità e rilassamento) sono state precedentemente definite, Par. 4.

Il modello di calcolo, per il calcolo delle sollecitazioni in esercizio, è analogo a quello descritto precedentemente per l'analisi delle fasi costruttive nella condizione statica a trave continua di fine costruzione.

Figura 12 – Modello agli elementi finiti per azioni di esercizio

Il modulo di calcolo "bridge" del programma di calcolo Sap2000 NL utilizzato provvede automaticamente a scegliere lo schema di carico e a posizionare i carichi lungo il viadotto in modo da rendere massima o minima ciascuna delle 6 caratteristiche di sollecitazione (N, Tv, Th, Mt, Mh, Mv) e fornendo per ciascun massimo o minimo i valori congruenti delle 5 restanti.

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

7.1 DESCRIZIONE DELLE FASI COSTRUTTIVE DI CALCOLO

La denominazione degli steps di calcolo e la temporizzazione della fasistica di esecuzione ipotizzata è la seguente:

TABLE: Case - Static 5 - Nonlinear Stage Definitions							
Case	Stage	Duration	Output	Comment			
Text	Unitless	Unitless	Yes/No	Text			
C1_ST_1	1	3	No	Varo conci di testa campata 1			
C1_ST_2noP	1	3	No	Sospensione conci campata 1			
C1_ST_2	1	0	No	Esecuzione precompressione campata 1			
C2_ST_1	1	3	No	Varo conci di testa campata 2			
C2_ST_2noP	1	3	No	Sospensione conci campata 2			
C2_ST_2	1	0	No	Esecuzione precompressione campata 2			
C3_ST_1	1	3	No	Varo conci di testa campata 3			
C3_ST_2noP	1	3	No	Sospensione conci campata 3			
C3_ST_2	1	0	No	Esecuzione precompressione campata 3			
C4_ST_1	1	3	No	Varo conci di testa campata 4			
C4_ST_2noP	1	3	No	Sospensione conci campata 4			
C4_ST_2	1	0	No	Esecuzione precompressione campata 4			
VI_ST_1	1	30	No	Esecuzione finiture			
VI_ST_2	1	18000	No	Effetti reologici a 50 anni			

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

72 SOLLECITAZIONI E TENSIONI IN FASE COSTRUTTIVA (T=0 E T=∞) – VERIFICHE SLE-QP

Nel presente paragrafo si riportano le sollecitazioni e tensioni relative alla fase costruttiva ovvero, in base alla fasistica precedentemente definita, le macrofasi che vanno dalla C1_ST_1 alla C4_ST_2; si riportano inoltre le sollecitazioni e le tensioni per la condizione di carico permanente ad inizio esercizio (fase VI_ST_1) e a tempo infinito (fase VI_ST_2).

Per ciascuna fase indicata si riportano i diagrammi di sollecitazione (N, M, T) e le tensioni normali $(\sigma \sup_{\sigma}, \sigma \inf)$.

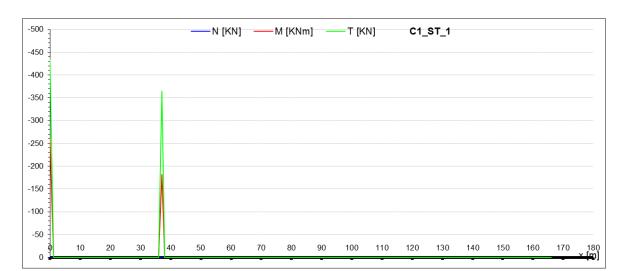
La convenzione adottata per i segni delle sollecitazioni e tensioni prevede che siano:

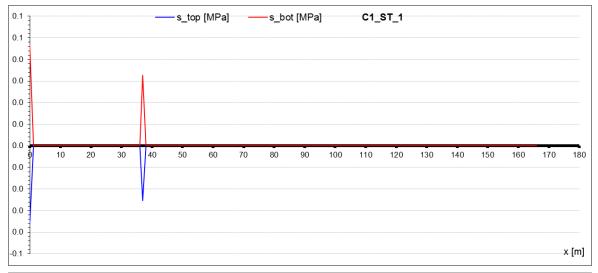
- positivi gli sforzi normali di compressione N [KN];
- positivi i momenti flettenti che tendono le fibre inferiori M [KNm];
- positive le tensioni normali di compressione σ [MPa];

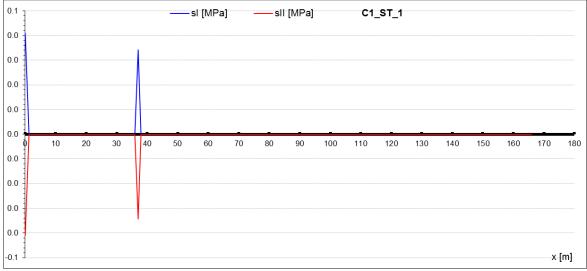
Le corrispondenze tra il nome delle caratteristiche di sollecitazione adottate dal programma EF e quelle adottate nei successivi diagrammi sono:

- T = V22 = taglio nel piano verticale
- M = M33 = momento flettente nel piano verticale
- N = P = sforzo normale

I diagrammi si riferiscono all'intero impalcato; le ascisse hanno origine in asse al primo appoggio e crescono positivamente in direzione della spalla 2.

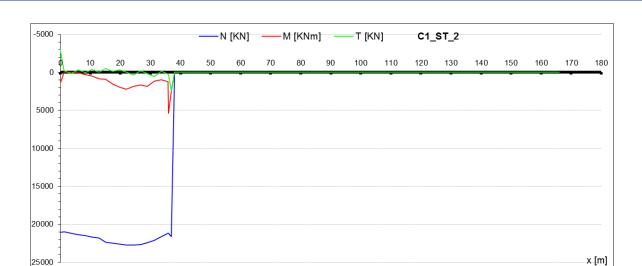


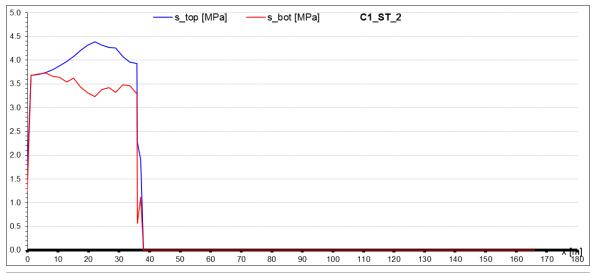


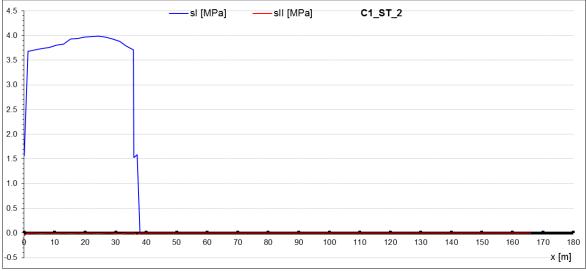


S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

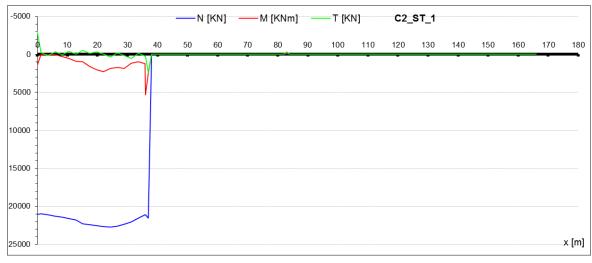


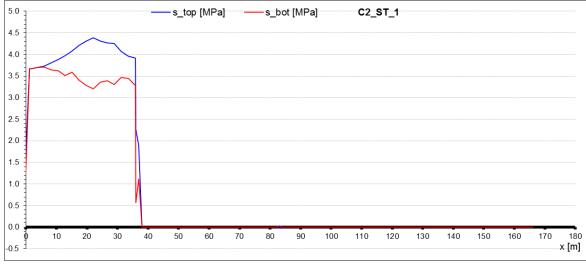


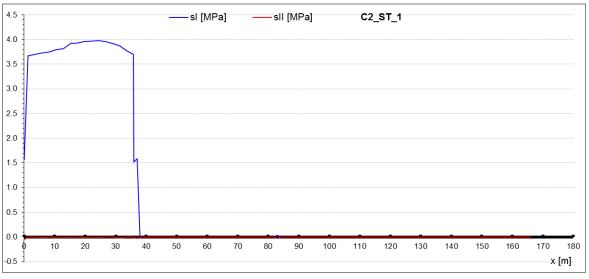


S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

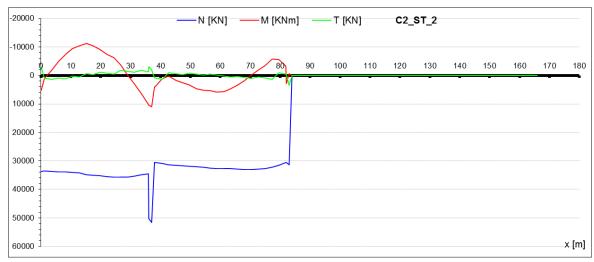


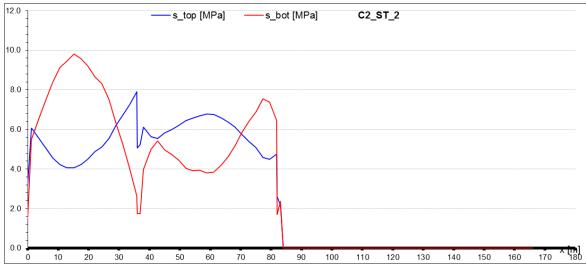


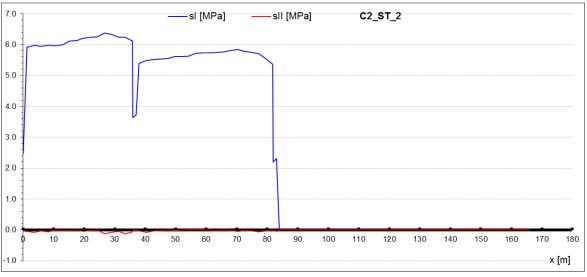

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

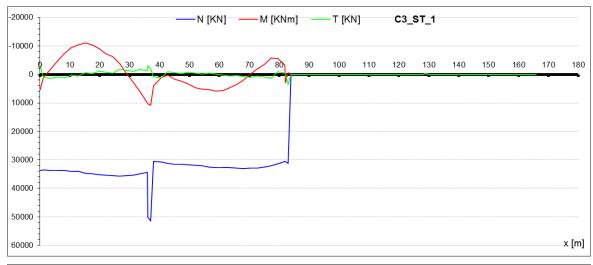


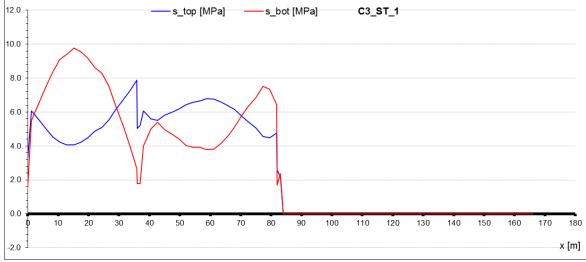



S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

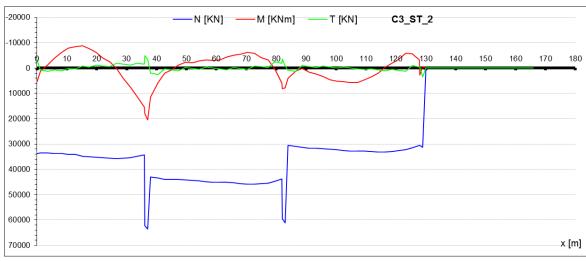


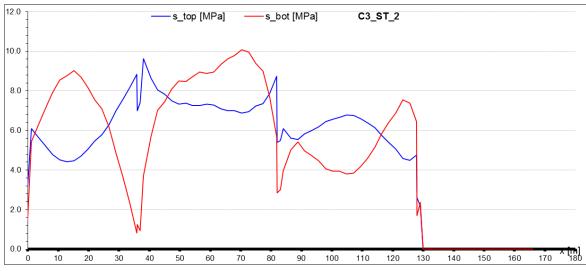


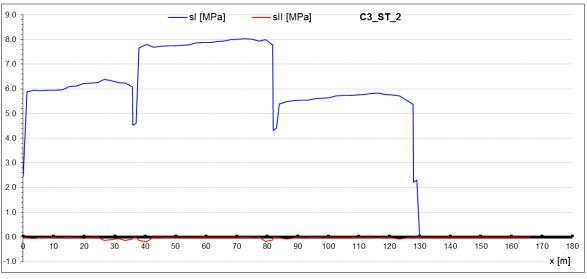

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

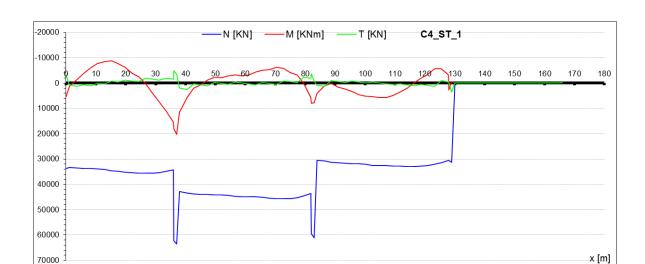


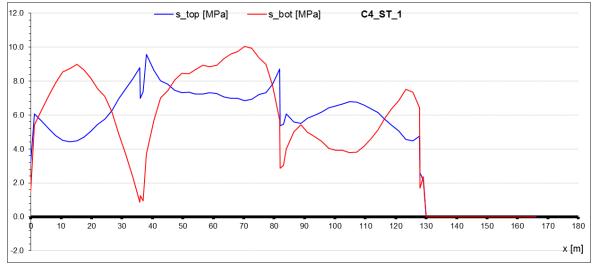


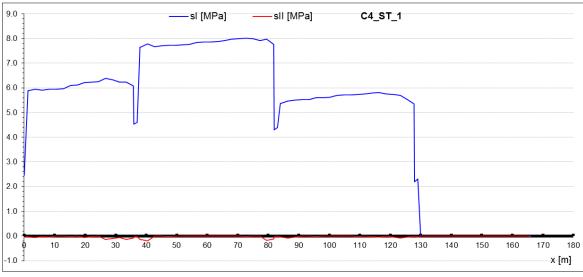

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

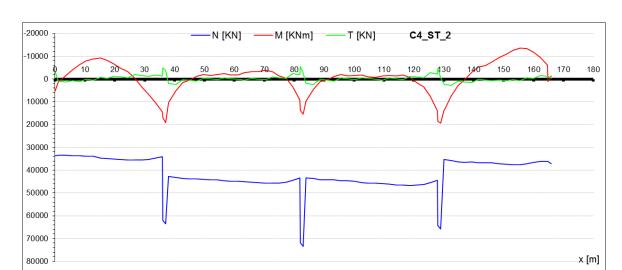

Direzione Progettazione e

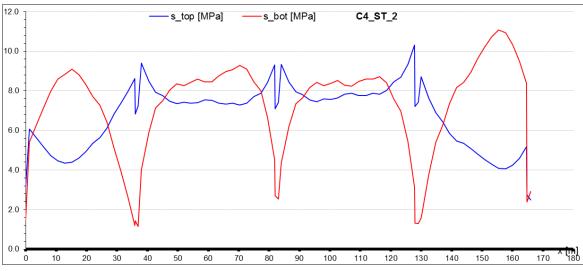

Realizzazione Lavori

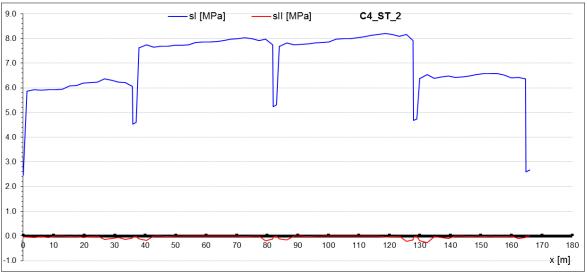

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

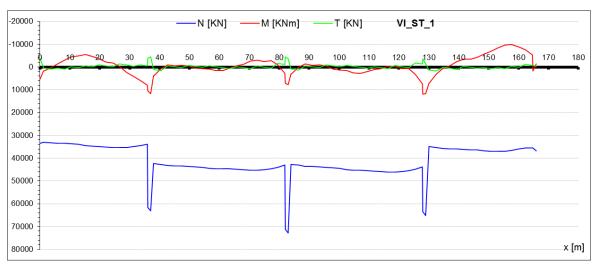


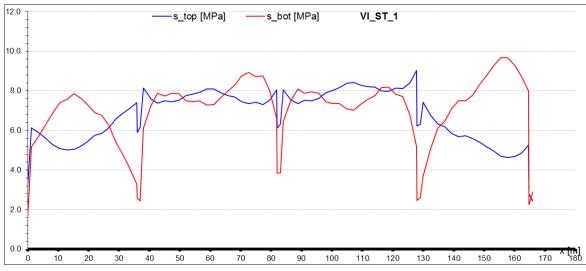


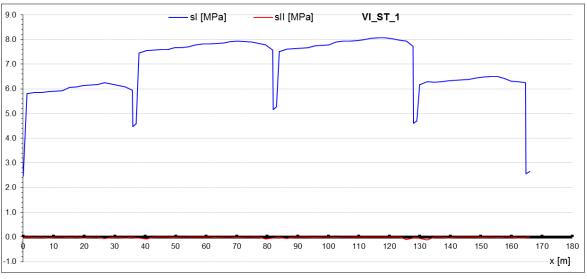

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

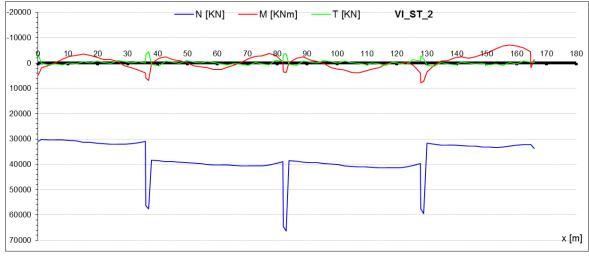


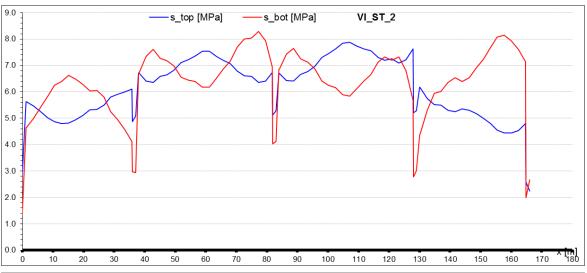


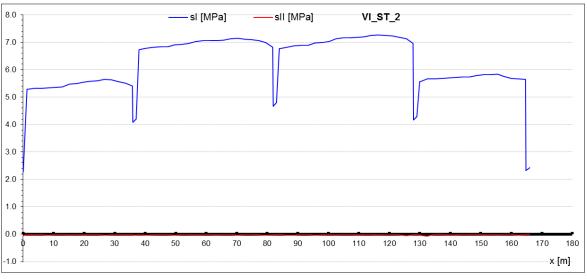

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO




S.S. 398 "Via Val di Cornia"


Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

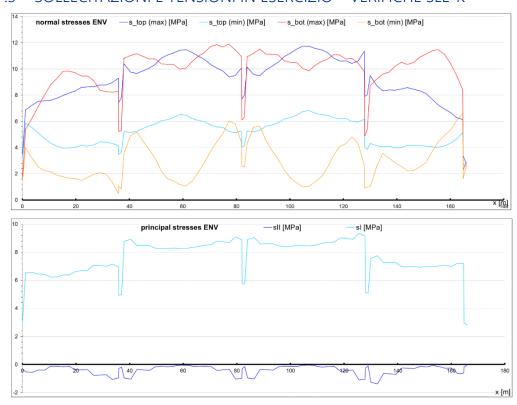
VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

Dai diagrammi riportati risulta che:

- la massima tensione di compressione vale $\sigma c = 11.5$ MPa e si manifesta in fase C4-ST_2 al lembo inferiore della mezzeria della campata di riva. Tale valore è inferiore al limite pari 0.6 fck=0.6x40=24 MPa;
- l'impalcato risulta essere sempre compresso;
- in condizione quasi permanente la massima tensione di compressione è pari a 9.9
 MPa e si manifesta in fase VI-ST_1 al lembo inferiore della mezzeria della campata di riva. Tale valore è inferiore al limite pari 0.45 fck=0.45x40=18 MPa.

Direzione Progettazione e

Realizzazione Lavori


S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

7.3 SOLLECITAZIONI E TENSIONI IN ESERCIZIO – VERIFICHE SLE-K

Dai diagrammi riportati risulta che:

- la massima tensione di compressione vale σc = 11.9 MPa e si manifesta al lembo inferiore dell'appoggio intermedio. Tale valore è inferiore al limite pari 0.6 fck=0.6x40=24 MPa;
- l'impalcato risulta avere tensioni normali all'asse dell'impalcato sempre di compressione e tensioni principali di trazione non maggiori di 1 MPa.

7.4 VERIFICHE SLU PER FLESSIONE

La sezione reagente è quella del cassone, si considera la sezione priva di armature.

La precompressione esterna è assimilata ad un agente sollecitante esterno. Si ipotizza un aumento di tensione dall'effettiva precompressione fino alla tensione allo stato limite ultimo pari a $\Delta \sigma_{p,SLU} = 100$ MPa, in accordo al Par. 5.8.10 dell'EC2-1-1 [N4].

Le sollecitazioni di calcolo comprendono le seguenti azioni:

peso proprio;

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

- precompressione esterna, calcolata come sopra;
- ritiro + viscosità + rilassamento + cedimenti vincolari;
- carichi permanenti portati;
- variazioni termiche differenziali;
- carichi mobili.

Si riportano a seguire le verifiche a rottura per la sezione di impalcato, eseguite secondo le ipotesi sopra definite e per le seguenti sezioni di verifica:

Sezione Corrente

Posizione Appoggio spalla 1

Frame F2 Station 0

			М		Т	_
Azioni di calcolo		N [kN]	[kNm]	V [kN]	[kN]	γ
Peso proprio	G1	733	2705	-2184	0	1.35
Precompressione esterna	PE	- 35585	-957	3208	0	1.07
Viscosità+ritiro+rilassamento+ced	E2	3119	13	-223	0	1.2
Permanenti portati	G2	274	609	-521	0	1.35
Variazioni termiche differenziali	E3	0	-140	-164	0	0.72
Carichi mobili	Q1	0	1974	-1652	387	1.35
		-				
Sollecitazioni di progetto SLU		33022	6028	-2831	523	

Sezione Corrente

Posizione Mezzeria prima campata

Frame F10 Station 0

			M		Т	_
Azioni di calcolo		N [kN]	[kNm]	V [kN]	[kN]	γ
Peso proprio	G1	1223	18340	334	0	1.35
		-	-			
Precompressione esterna	PE	37071	27056	-712	0	1.07

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

Viscosità+ritiro+rilassamento+ced	E2	3422	1540	121	0	1.2
Permanenti portati	G2	187	3499	159	0	1.35
Variazioni termiche differenziali	E3	0	2866	117	0	0.72
Carichi mobili	Q1	0	13960	-348	523	1.35
		-				

Sollecitazioni di progetto SLU 33709 23253 -338 706

Sezione Corrente

Posizione Appoggio pila 1

Frame F21 Station 0

			М		Т	
Azioni di calcolo		N [kN]	[kNm]	V [kN]	[kN]	γ
			-			
Peso proprio	G1	919	14921	-3393	0	1.35
		-				
Precompressione esterna	PE	46906	27367	5586	0	1.07
					_	
Viscosità+ritiro+rilassamento+ced	E2	4438	-4563	-542	0	1.2
Permanenti portati	G2	480	-6526	-933	0	1.35
Variazioni termiche differenziali	E3	0	-4313	-29	0	0.72
Carichi mobili	Q1	0	-9775	-1570	-723	1.35
		-	-			
Sollecitazioni di progetto SLU		43041	21409	-2646	-977	

Sezione Corrente

Posizione Mezzeria seconda campata

Frame F32 0 **Station**

			M		Т	
Azioni di calcolo		N [kN]	[kNm]	V [kN]	[kN]	γ
Peso proprio	G1	1595	22771	187	0	1.35
		-	-			
Precompressione esterna	PE	48584	25496	-3	0	1.07
Viscosità+ritiro+rilassamento+ced	E2	4673	881	-14	0	1.2
Permanenti portati	G2	367	3335	52	0	1.35
Variazioni termiche differenziali	E3	0	5098	41	0	0.72
Carichi mobili	Q1	0	14335	482	-515	1.35

MANDATARIA

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

-

43797

983

32005

-695

Sezione

Corrente

Sollecitazioni di progetto SLU

Posizione

Appoggio pila 2

Frame Station F44

0

			М		T	
Azioni di calcolo		N [kN]	[kNm]	V [kN]	[kN]	γ
	04	526	-	2.400		4.25
Peso proprio	G1	526	15378	-3499	0	1.35
Precompressione esterna	PE	47228	27505	5664	0	1.07
Viscosità+ritiro+rilassamento+ced	E2	4574	-3928	-527	0	1.2
Permanenti portati	G2	833	-6843	-982	0	1.35
Variazioni termiche differenziali	E3	0	-3036	-41	0	0.72
			-		-	
Carichi mobili	Q1	0	10769	-776	1825	1.35
		-	-		-	
Sollecitazioni di progetto SLU		43277	21967	-1690	2464	

Sezione Corrente

Posizione Mezzeria terza campata

Frame F54 Station 0

			М		Т	
Azioni di calcolo		N [kN]	[kNm]	V [kN]	[kN]	γ
Peso proprio	G1	952	24695	-306	0	1.35
		-	-			
Precompressione esterna	PE	49055	26881	43	0	1.07
Viscosità+ritiro+rilassamento+ced	E2	4753	919	17	0	1.2
Permanenti portati	G2	841	3795	-50	0	1.35
Variazioni termiche differenziali	E3	0	5098	29	0	0.72
Carichi mobili	Q1	0	14335	-482	515	1.35
		-				
Sollecitazioni di progetto SLU		44433	33786	-1045	695	

Sezione Corrente

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

Posizione Appoggio pila 3

Frame F67 Station 0

			М		Т	
Azioni di calcolo		N [kN]	[kNm]	V [kN]	[kN]	γ
Peso proprio	G1	0	-9618	-2968	0	1.35
Precompressione esterna	PE	37518	25377	5469	0	1.07
Viscosità+ritiro+rilassamento+ced	E2	3417	-4630	-559	0	1.2
Permanenti portati	G2	1056	-6711	-1037	0	1.35
Variazioni termiche differenziali	E3	0	-4225	-117	0	0.72
			-		-	
Carichi mobili	Q1	0	10571	-745	1473	1.35
		-	-		-	
Sollecitazioni di progetto SLU		34670	17724	-1307	1988	

Sezione Corrente

Posizione Mezzeria quarta campata

Frame F76 Station 0

			М		Т	
Azioni di calcolo		N [kN]	[kNm]	V [kN]	[kN]	γ
Peso proprio	G1	0	19628	-186	0	1.35
		-	-			
Precompressione esterna	PE	38975	30342	662	0	1.07
Viscosità+ritiro+rilassamento+ced	E2	3812	1946	-123	0	1.2
Permanenti portati	G2	1439	4802	-162	0	1.35
Variazioni termiche differenziali	E3	0	2867	164	0	0.72
Carichi mobili	Q1	0	13961	348	-523	1.35
		-				
Sollecitazioni di progetto SLU		35240	23719	680	-706	

Sezione Corrente

Posizione Appoggio spalla 2

Frame F83 Station 0.15

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

			М		Т	
Azioni di calcolo		N [kN]	[kNm]	V [kN]	[kN]	γ
Peso proprio	G1	0	2847	2251	0	1.35
		-				
Precompressione esterna	PE	38260	-8394	-3683	0	1.07
Viscosità+ritiro+rilassamento+ced	E2	3518	706	276	0	1.2
Permanenti portati	G2	1143	878	618	0	1.35
Variazioni termiche differenziali	E3	0	197	164	0	0.72
Carichi mobili	Q1	0	1982	1652	-387	1.35
		-				
Sollecitazioni di progetto SLU		35227	-300	2607	-523	

Sezione Piena

Posizione Appoggio pila 1

Frame F20 Station 0

			М		Т	
Azioni di calcolo		N [kN]	[kNm]	V [kN]	[kN]	γ
			-			
Peso proprio	G1	1191	18612	-3686	0	1.35
Precompressione esterna	PE	- 67726	40536	-50	0	1.07
Viscosità+ritiro+rilassamento+ced	E2	5787	-5724	-2	0	1.2
Permanenti portati	G2	487	-7513	-906	0	1.35
Variazioni termiche differenziali	E3	0	-4342	-29	0	0.72
			-			
Carichi mobili	Q1	0	11345	-1570	-723	1.35
		-	-			
Sollecitazioni di progetto SLU		63352	17149	-8396	-977	

Sezione Piena

Posizione Appoggio pila 2

F43 Frame Station 0

			M		Т	_
Azioni di calcolo		N [kN]	[kNm]	V [kN]	[kN]	γ
			-			_
Peso proprio	G1	1063	19090	-3873	0	1.35

MANDATARIA

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

	-				
	_	_		_	
Carichi mobili C	Q1 0	11722	-1007	1640	1.35
		-		-	
Variazioni termiche differenziali E	3 0	-3007	-41	0	0.72
Permanenti portati G	i2 970	-7875	-919	0	1.35
Viscosità+ritiro+rilassamento+ced E	2 7068	-4882	-82	0	1.2
Precompressione esterna P	E 79494	38194	1282	0	1.07

Sezione Piena

Posizione Appoggio pila 3

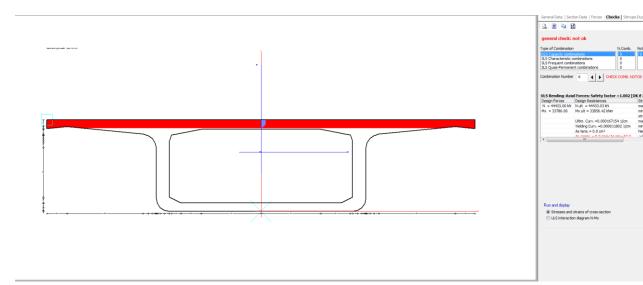
Frame F66 Station 0

			М		T	
Azioni di calcolo		N [kN]	[kNm]	V [kN]	[kN]	γ
			-			
Peso proprio	G1	423	12752	-3383	0	1.35
		-			_	
Precompressione esterna	PE	70128	35072	3276	0	1.07
Viscosità+ritiro+rilassamento+ced	E2	6098	-5555	-353	0	1.2
Permanenti portati	G2	1306	-7847	-975	0	1.35
Variazioni termiche differenziali	E3	0	-4342	-117	0	0.72
			-		-	
Carichi mobili	Q1	0	11345	-825	1744	1.35
		-	-		-	
Sollecitazioni di progetto SLU		65484	15340	-3996	2354	

Riepilogo Sollecitazioni SLU

				M		
_	Sezione	Frame	N [kN]	[kNm]	V [kN]	T [kN]
1	Corrente	F2	-33022	6028	-2831	523
2	Corrente	F10	-33709	23253	-338	706
3	Corrente	F21	-43041	-21409	-2646	-977
4	Corrente	F32	-43797	32005	983	-695
5	Corrente	F44	-43277	-21967	-1690	-2464
6	Corrente	F54	-44433	33786	-1045	695
7	Corrente	F67	-34670	-17724	-1307	-1988

MANDATARIA


Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

8	Corrente	F76	-35240	23719	680	-706
9	Corrente	F83	-35227	-300	2607	-523
1	Piena	F20	-63352	-17149	-8396	-977
2	Piena	F43	-73944	-19330	-6582	-2215
3	Piena	F66	-65484	-15340	-3996	-2354

GENERAL DATA OF GENERIC RC CROSS-SECTION Section Name: Imp_SLU.secEC

Section description:

Section type: Beam Reference code: EC2/EC8

Exposure Class: XC2 - Carbonation (long-term water contact/foundations)
Stress path: Constant axial force force to achieve bending ULS

Type of bending: Uniaxial (neutral axis always parallel to Y axis of reference system)

Reference of assigned forces: Principal axes y,y of inertia

Design yield stress fyd:

Design strength ftd:

MATERIALS DATA

CONCRETE -	Class: Design compressive strength fcd:	C35/45 23.3	MPa
	Shear reduced compressive strength v		MPa (6.9)EC2
	Coeff. Alfa_cc:	1.00	(3.15) EC2
	Strain at max strength ec2:	0.0020	(****) ===
	Ultimate strain ecu:	0.0035	
	Compression diagram stress-strain:	Parabola-Rettangle	
	Mean Elastic Modulus Ecm:	34077.1	MPa
	Mean tensile strength fctm:	3.2	MPa
STEEL -	Longitudinal Bars:	B450C	
	Characteristic yield stress fyk:	450.00	MPa
	Tensile strength ftk:	540.0	MPa

MANDATARIA

391.3 MPa

391.3 MPa

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

Design ultimate strain esu:	0.068	
Mean elastic modulus Es:	200000.0	MPa
Stirrups:	B500A	
Characteristic yield stress fyk:	500.00	MPa
Tensile strength ftk:	540.0	MPa
Design yield stress fyd:	434.8	MPa
Design strength ftd:	434.8	MPa
Mean elastic modulus Es:	200000.0	MPa

GEOMETRIC DATA OF REGIONS IN CONCRETE SECTION

REGION N. 1

Shape of Regi Concrete Clas		Polygonal C35/45
Vertex N.:	X [cm]	Y [cm]
1	-240.0	0.0
2 3	-253.4	2.7
3	-264.7	10.3
4	-272.3	21.6
5	-275.0	35.0
6	-275.0	167.3
7	-278.4	180.1
8	-285.8	191.0
9	-296.4	198.7
10	-309.0	202.4
11	-509.5	222.0
12	-562.5	217.0
13	-562.5	240.0
14	562.5	240.0
15	562.5	217.0
16	509.5	222.0
17	309.0	202.4
18	296.4	198.7
19	285.8	191.0
20	278.4	180.1
21	275.0	167.4
22	275.0	35.0
23	272.3	21.6
24	264.7	10.3
25	253.4	2.7
26	240.0	0.0
27	0.0	0.0

REGION N. 2

Shape of Region Concrete Class		Empty polygonal C35/45
Vertex N.:	X [cm]	Y [cm]
1	-210.0	22.0
2	-240.0	37.0
3	-240.0	185.0
4	-235.0	200.0
5	-157.0	215.0
6	157.0	215.0
7	235.0	200.0

MANDATARIA

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

8	240.0	185.0
9	240.0	37.0
10	210.0	22.0
11	0.0	22.0

DATA ISOLATED LONGITUDINAL BARS

Bar N.	X [cm]	Y [cm]	DiamØ[mm]
1	0.0	0.0	1

ULTIMATE LIMIT STATE - ASSIGNED DESIGN FORCES FOR EACH COMBINATION

MX d VY d		Design bending force [kNm] around X axis of reference sys Design shear component [kN] parallel to Y reference axis			
Comb.N.	N d	Mx d	Vy d		
1	33022.00	6028.00	0.00		
2	33709.00	23253.00	0.00		
3	43041.00	21409.00	0.00		
4	43797.00	32005.00	0.00		
5	43277.00	21967.00	0.00		
6	44433.00	33786.00	0.00		
7	34670.00	17724.00	0.00		
8	35240.00	23719.00	0.00		
9	35227.00	300.00	0.00		

CHECKS RESULTS

Checks OK for all assigned combinations

Min edge cover of longitudinal bars: -0.1 cm
Min distance between longitudinal bars: 100000.0 cm

ULTIMATE LIMT STATES - N-MX-MY CAPACITY CHECKS

Check Result of check

N Design axial force [kN] applied at the centroid of concrete section (+ if compressive)

Mx Design bending moment [kNm] around x axis principal of inerzia

N ult Axial force capacity [kN] (+ if compressive)

Mx ult

Bending moment capacity [kNm] around x axis principal of inertia

S.F. Safety Factor = vectorial ratio of (N ult, Mx ult, My ult) to (N, Mx, My). Check OK if ratio >=1.00

As Tension Area [cm²] of bars in tension (beam section). Min area for code is shown between brackets [eq.(9.1N) EC2]

Check N	N Mx	N ult	Mx ult	S.F.	As Tension
OK 33022.00	6028.00	33021.77	25898.13	4.296	0.0(0.0)
OK 33709.00	23253.00	33708.84	26391.75	1.135	0.0(0.0)
OK 43041.00	21409.00	43040.98	32912.78	1.537	0.0(0.0)
OK 43797.00	32005.00	43796.87	33426.05	1.044	0.0(0.0)
OK 43277.00	21967.00	43276.86	33072.98	1.506	0.0(0.0)
OK 44433.00	33786.00	44433.03	33856.42	1.002	0.0(0.0)
OK 34670.00	17724.00	34669.81	27079.01	1.528	0.0(0.0)
OK 35240.00	23719.00	35239.82	27484.71	1.159	0.0(0.0)
OK 35227.00	300.00	35227.20	27475.73	91.463	0.0(0.0)
	OK 33022.00 OK 33709.00 OK 43041.00 OK 4377.00 OK 44277.00 OK 44433.00 OK 34670.00 OK 35240.00	OK 33022.00 6028.00 OK 33709.00 23253.00 OK 43041.00 21409.00 OK 43797.00 32005.00 OK 43277.00 21967.00 OK 44433.00 33786.00 OK 34670.00 17724.00 OK 35240.00 23719.00	OK 33022.00 6028.00 33021.77 OK 33709.00 23253.00 33708.84 OK 43041.00 21409.00 43040.98 OK 43797.00 32005.00 43796.87 OK 43277.00 21967.00 43276.86 OK 44433.00 33786.00 44433.03 OK 34670.00 17724.00 34669.81 OK 35240.00 23719.00 35239.82	OK 33022.00 6028.00 33021.77 25898.13 OK 33709.00 23253.00 33708.84 26391.75 OK 43041.00 21409.00 43040.98 32912.78 OK 43797.00 32005.00 43796.87 33426.05 OK 43277.00 21967.00 43276.86 33072.98 OK 44433.00 33786.00 44433.03 33856.42 OK 34670.00 17724.00 34669.81 27079.01 OK 35240.00 23719.00 35239.82 27484.71	OK 33022.00 6028.00 33021.77 25898.13 4.296 OK 33709.00 23253.00 33708.84 26391.75 1.135 OK 43041.00 21409.00 43040.98 32912.78 1.537 OK 43797.00 32005.00 43796.87 33426.05 1.044 OK 43277.00 21967.00 43276.86 33072.98 1.506 OK 44433.00 33786.00 44433.03 33856.42 1.002 OK 34670.00 17724.00 34669.81 27079.01 1.528 OK 35240.00 23719.00 35239.82 27484.71 1.159

MANDANTE

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

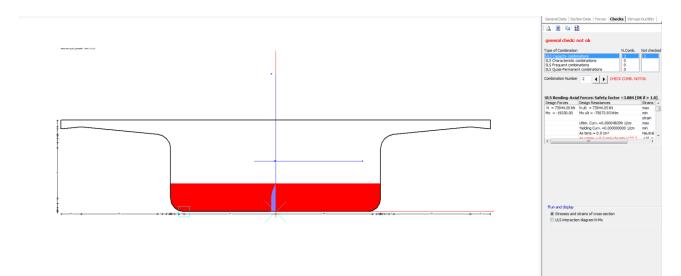
ULTIMATE LIMIT STATE - BENDING AND AXIAL FORCE - STRAIN VALUES

ec max	Ultimate compressive strain in concrete
ec*	Strain in the concrete fiber at ec2/ecu of depth (if ec*>0 then the section is all compressed)
Xc max	X-coordinate [cm] in the concrete point in wich is ec max
Yc max	Y-coordinate [cm] in the concrete point in wich is ec max
es max	Max strain in steel bars (+ if compressive)
Xs max	X-coordinate [cm] of bar in wich is es max
Ys max	Y-coordinate [cm] of bar in wich is es max
es min	Min strain in steel bars (+ if compressive)
Xs min	X-coordinate [cm] of bar in wich is es min
Ys min	Y-coordinate [cm] of bar in wich is es min
rs min	Y-coordinate [cm] of dar in wich is es min

Comb.	N. ec max	ec*	Xc max	Yc max	es max	Xs max	Ys max	es min	Xs min	Ys min
1	0.00350	-0.01967	-562.5	240.0	-0.05056	0.0	0.0	-0.05056	0.0	0.0
2	0.00350	-0.01919	-562.5	240.0	-0.04945	0.0	0.0	-0.04945	0.0	0.0
3	0.00350	-0.01426	-562.5	240.0	-0.03794	0.0	0.0	-0.03794	0.0	0.0
4	0.00350	-0.01395	-562.5	240.0	-0.03721	0.0	0.0	-0.03721	0.0	0.0
5	0.00350	-0.01416	-562.5	240.0	-0.03771	0.0	0.0	-0.03771	0.0	0.0
6	0.00350	-0.01369	-562.5	240.0	-0.03662	0.0	0.0	-0.03662	0.0	0.0
7	0.00350	-0.01856	-562.5	240.0	-0.04798	0.0	0.0	-0.04798	0.0	0.0
8	0.00350	-0.01821	-562.5	240.0	-0.04716	0.0	0.0	-0.04716	0.0	0.0
9	0.00350	-0.01822	-562.5	240.0	-0.04718	0.0	0.0	-0.04718	0.0	0.0

ULTIMATE LIMIT STATE - POSITION OF NEUTRAL AXIS FOR EACH COMBINATION

a, b, c x/d D	Coeff. a, b, c in neutral axis equation: aX+bY+c=0 reference X,Y,O Ratio of the depth of neutral axis to the effective depth of the section Ratio of redistributed moment to the elastic moment in continuous beams [eq.(5.10)EC2]								
Comb.N.	а	b	С	x/d	D				
1	0.000000000	0.000225268	-0.050564232	0.065	0.700				
2	0.000000000	0.000220641	-0.049453926	0.066	0.700				
3	0.000000000	0.000172647	-0.037935276	0.084	0.700				
4	0.000000000	0.000169634	-0.037212238	0.086	0.700				
5	0.000000000	0.000171720	-0.037712803	0.085	0.700				
6	0.000000000	0.000167154	-0.036616917	0.087	0.700				
7	0.000000000	0.000214500	-0.047980042	0.068	0.700				
8	0.000000000	0.000211076	-0.047158127	0.069	0.700				
9	0.000000000	0.000211153	-0.047176666	0.069	0.700				



S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

GENERAL DATA OF GENERIC RC CROSS-SECTION Section Name: Imp_SLU_piena.secEC

Section description:

Section type: Beam Reference code: EC2/EC8

Exposure Class: XC2 - Carbonation (long-term water contact/foundations)
Stress path: Constant axial force force to achieve bending ULS

Type of bending: Uniaxial (neutral axis always parallel to Y axis of reference system)

Reference of assigned forces: Principal axes y,y of inertia

MATERIALS DATA

CONCRETE -	Class:	C35/45	
	Design compressive strength fcd:	23.3	MPa
	Shear reduced compressive strenght v	/1*fcd: 12.0	MPa (6.9)EC2
	Coeff. Alfa_cc:	1.00	(3.15) EC2
	Strain at max strength ec2:	0.0020	
	Ultimate strain ecu:	0.0035	
	Compression diagram stress-strain:	Parabola-Rettangle	
	Mean Elastic Modulus Ecm:	34077.1	MPa
	Mean tensile strength fctm:	3.2	MPa
STEEL -	Longitudinal Bars:	B450C	
	Characteristic yield stress fyk:	450.00	MPa
	Tensile strength ftk:	540.0	MPa
	Design yield stress fyd:	391.3	MPa
	Design strength ftd:	391.3	MPa
	Design ultimate strain esu:	0.068	
	Mean elastic modulus Es:	200000.0	MPa
	Stirrups:	B500A	
	Characteristic yield stress fyk:	500.00	MPa
	Tensile strength ftk:	540.0	MPa
	Design yield stress fyd:	434.8	MPa
	Design strength ftd:	434.8	MPa
	Mean elastic modulus Es:	200000.0	MPa

MANDATARIA

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

GEOMETRICAL DATA OF CONCRETE CROSS-SECTION

Shape of Region: Concrete Class:		Polygonal C35/45
Vertex N.:	X [cm]	Y [cm]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	-240.0 -253.4 -264.7 -272.3 -275.0 -275.0 -278.4 -285.8 -296.4 -309.0 -509.5 -562.5 -562.5 -562.5 562.5 509.5 309.0 296.4 285.8 278.4 275.0 275.0 272.3 264.7 253.4	0.0 2.7 10.3 21.6 35.0 167.3 180.1 191.0 198.7 202.4 222.0 217.0 240.0 240.0 217.0 222.0 202.4 198.7 191.0 180.1 167.4 35.0 21.6 10.3 2.7
26 27	240.0 0.0	0.0 0.0

DATA ISOLATED LONGITUDINAL BARS

Bar N.	X [cm]	Y [cm]	DiamØ[mm]
1	0.0	0.0	1

ULTIMATE LIMIT STATE - ASSIGNED DESIGN FORCES FOR EACH COMBINATION

MX d VY d	lm] around X axis of reference system [kN] parallel to Y reference axis		
Comb.N.	N d	Mx d	Vy d
1	63352.00	-17149.00	0.00
2	73944.00	-19330.00	0.00
3	65484.00	-15340.00	0.00

CHECKS RESULTS

Checks OK for all assigned combinations

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

Min edge cover of longitudinal bars: -0.1 cm Min distance between longitudinal bars: 100000.0 cm

ULTIMATE LIMT STATES - N-MX-MY CAPACITY CHECKS

Check Result of check

Design axial force [kN] applied at the centroid of concrete section (+ if compressive)

Mx Design bending moment [kNm] around x axis principal of inerzia

Axial force capacity [kN] (+ if compressive) N ult

Bending moment capacity [kNm] around x axis principal of inertia Mx ult

Safety Factor = vectorial ratio of (N ult, Mx ult, My ult) to (N, Mx, My). Check OK if ratio >=1.00 S.F.

As Tension Area [cm²] of bars in tension (beam section). Min area for code is shown between brackets [eq.(9.1N) EC2]

Comb.N.	Check	N	Mx	N ult	Mx ult	S.F.	As Tension
1	OK 633	52.00	-17149.00	63351.83	-67021.69	3.908	0.0(0.0)
2	OK 739	44.00	-19330.00	73944.05	-75073.93	3.884	0.0(0.0)
3	OK 6548	84.00	-15340.00	65484.25	-68714.94	4.480	0.0(0.0)

ULTIMATE LIMIT STATE - BENDING AND AXIAL FORCE - STRAIN VALUES

ec max	Ultimate compressive strain in concrete
ec*	Strain in the concrete fiber at ec2/ecu of depth (if ec*>0 then the section is all compressed)
Xc max	X-coordinate [cm] in the concrete point in wich is ec max
Yc max	Y-coordinate [cm] in the concrete point in wich is ec max
es max	Max strain in steel bars (+ if compressive)
Xs max	X-coordinate [cm] of bar in wich is es max
Ys max	Y-coordinate [cm] of bar in wich is es max
es min	Min strain in steel bars (+ if compressive)
Xs min	X-coordinate [cm] of bar in wich is es min
Ys min	Y-coordinate [cm] of bar in wich is es min
	• •

Comb.	N. ec max	ec*	Xc max	Yc max	es max	Xs max	Ys max	es min	Xs min	Ys min
1	0.00350	-0.00228	-240.0	0.0	0.00350	0.0	0.0	0.00350	0.0	0.0
2	0.00350	-0.00147	-240.0	0.0	0.00350	0.0	0.0	0.00350	0.0	0.0
3	0.00350	-0.00210	-240.0	0.0	0.00350	0.0	0.0	0.00350	0.0	0.0

ULTIMATE LIMIT STATE - POSITION OF NEUTRAL AXIS FOR EACH COMBINATION

x/d D	Ratio of the depth of neutral axis to the effective depth of the section Ratio of redistributed moment to the elastic moment in continuous beams [eq.(5.10)EC2]								
Comb.N.	а	b	С	x/d	D				
1 2	0.000000000 0.000000000	-0.000056205 -0.000048299	0.0035000002118 0.0035000002465	62114115279	0.0001.000				
3	0.000000000	-0.000054412	0.0035000002188	58139502514	10.0001.000				

Cooff a b a in noutral axis aquation: aV bV a=0 reference V V O

1) x/d > 0.450 = max allowed value x/d for redistribution of bending in eq.(5.10)EC2 (D=1)

MANDANTE

0 h 0

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

7.5 VERIFICHE SLU PER TAGLIO-TORSIONE

Si eseguono le verifiche a taglio torsione in corrispondenza della sezione piena e della sezione corrente caratterizzate dalle massime sollecitazioni.

Riepilogo Sollecitazioni SLU

				M			V _{W(V+T)}
	Sezione	Frame	N [kN]	[kNm]	V [kN]	T [kN]	[kN]
1	Corrente	F2	-33022	6028	-2831	523	1466
2	Corrente	F21	-43041	-15518	-3259	-20	1632
3	Corrente	F44	-43277	-14689	-3420	-62	1716
4	Corrente	F67	-34670	-11742	-2853	568	1481
5	Corrente	F83	-35227	-300	2607	-523	1354
6	Piena	F20	-63352	-11871	-9009	-20	4507
7	Piena	F43	-73944	-13544	-8001	-62	4010
8_	Piena	F66	-65484	-8735	-5637	435	2885

RESISTENZA A TAGLIO – SEZIONE PIENA

Elementi senza armature trasversali resistenti a taglio

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \\ \left(v_{min}$$

larghezza sezione	b_{w}	[mm]	2250
altezza sezione	h	[mm]	2400
altezza utile sezione	d	[mm]	2040
armatura longitudinale	A_{sl}	$[mm^2]$	2413
rapporto geometrico di armatura longitudinale	ρ_{I}		0.001
	k		1.31
	V_{min}	[MPa]	0.34
tensione media di compressione nella sezione	$\sigma_{\sf cp}$	[MPa]	4.57
resistenza caratteristica cilindrica	f_{ck}	[MPa]	42
resistenza a taglio	V_{Rd}	[kN]	4701
sforzo di taglio massimo	V_{Ed}	[kN]	4507

verificato

Elementi con armature trasversali resistenti a taglio

larghezza sezione	b _w	[mm]	2250
altezza sezione	h	[mm]	2400

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

altezza utile sezione	d	[mm]	2040
numero armature trasversali	n° Ø		5
diametro armature trasversali	Ø	[mm]	20
interasse armature trasversali	S	[mm]	150
area dell'armatura trasversale a taglio	A_{sw}	$[mm^2]$	1571
resistenza di progetto	f_{yd}	[MPa]	435
resistenza a compressione del cls	f_{cd}	[MPa]	23.5
angolo di inclinazione armatura trasversale rispetto asse trave	α	[DEG]	90
	ctg θ		1.0
	θ	[DEG]	45
tensione di compressione calcestruzzo	$\sigma_{\sf cp}$	[MPa]	4.57
coefficiente maggiorativo in elementi compressi	α_{c}		1.19
resistenza a taglio trazione	V_{Rsd}	[kN]	8359
resistenza a compressione del cls ridotta	f_{cd}'	[MPa]	11.8
resistenza a taglio compressione	V_{Rcd}	[kN]	29002
resistenza a taglio	V_{Rd}	[kN]	8359
sforzo di taglio massimo	V_{Ed}	[kN]	4507

verificato

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

Elementi senza armature trasversali resisten	ti a taglio		
$V_{Rd} = \left\{ 0.18 \cdot k \cdot \left(100 \cdot \rho_{1} \cdot f_{ck}\right)^{1/3} / \gamma_{c} + 0.15 \cdot \sigma_{cp} \right\} \cdot k$	$v_w \cdot d \ge (v_{min})$	+ 0,15·	$\sigma_{cp}) \cdot b_w d$
larghezza sezione	b _w	[mm]	350
altezza sezione	h	[mm]	2400
altezza utile sezione	d	[mm]	2040
armatura longitudinale	A _{sl}	[mm ²]	2413
rapporto geometrico di armatura longitudinale	ρι		0.003
	k		1.31
	V _{min}	[MPa]	0.34
tensione media di compressione nella sezione	$\sigma_{\!\scriptscriptstyle CP}$	[MPa]	5.78
resistenza caratteristica cilindrica	f _{ck}	[MPa]	42
resistenza a taglio	V _{Rd}	[kN]	890
sforzo di taglio massimo	V _{Ed}	[kN]	1716
non verificato, inse			
non ronnoute, mee		ara opoon	
Elementi con armature trasversali resistenti	a taglio		
larghezza sezione	b _w	[mm]	350
altezza sezione	h	[mm]	2400
altezza utile sezione	d	[mm]	2040
numero armature trasversali	n° Ø		2
diametro armature trasversali	Ø	[mm]	16
interasse armature trasversali	S	[mm]	150
area dell'armatura trasversale a taglio	A _{sw}	[mm ²]	402
resistenza di progetto	f _{yd}	[MPa]	435
resistenza a compressione del cls	f _{cd}	[MPa]	23.5
angolo di inclinazione armatura trasversale rispetto asse trave	α	[DEG]	90
	ctg θ		1.0
	θ	[DEG]	45
tensione di compressione calcestruzzo	$\sigma_{\!\scriptscriptstyleCP}$	[MPa]	5.78
coefficiente maggiorativo in elementi compressi	α_{c}		1.25
resistenza a taglio trazione	V_{Rsd}	[kN]	2140
resistenza a compressione del cls ridotta	f _{cd} '	[MPa]	11.8
resistenza a taglio compressione	V _{Rcd}	[kN]	4707
resistenza a taglio	V _{Rd}	[kN]	2140
sforzo di taglio massimo	V _{Ed}	[kN]	1716
			verificato

Area anima/metro = Asw 2680 mm2/m

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno
PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

8 CALCOLO DEGLI EFFETTI LOCALI

8.1 Analisi

Nel calcolo degli effetti locali si assume una variazione termica lineare tra esterno ed interno cassone pari a +/-15°C.

Nella valutazione degli effetti del *tandem system* si considera una larghezza collaborante pari a 5.20m per il calcolo delle sollecitazioni flettenti e 2.90m per il calcolo delle sollecitazioni taglianti.

Per l'urto del veicolo in svio si applica un forza pari 100kN e un momento pari a 100x(1+.11+.25/2)=123.5kNm. Si dividono cautelativamente tali azioni per l'interasse dei montanti, assunto pari a 1.25m.

Nella seguente figura sono riportate le sezioni di verifica.

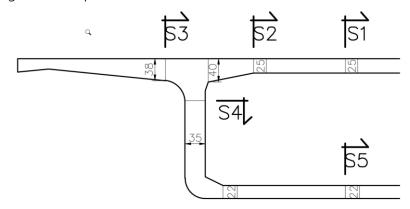


Figura 13 – Sezioni caratteristiche per verifica effetti locali

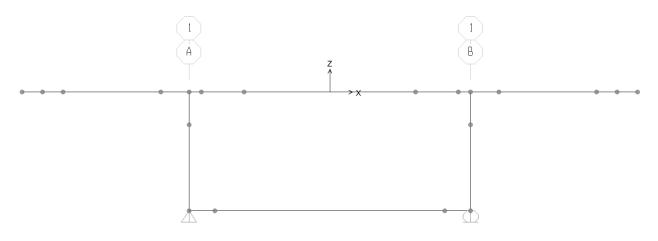


Figura 14 – Modello di calcolo effetti locali

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

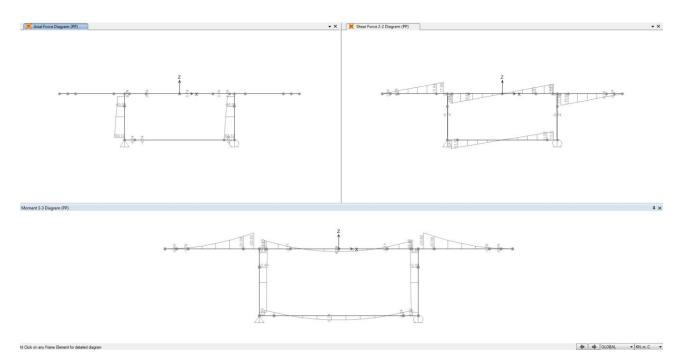


Figura 15 – Diagrammi delle sollecitazioni N, V, M da peso proprio

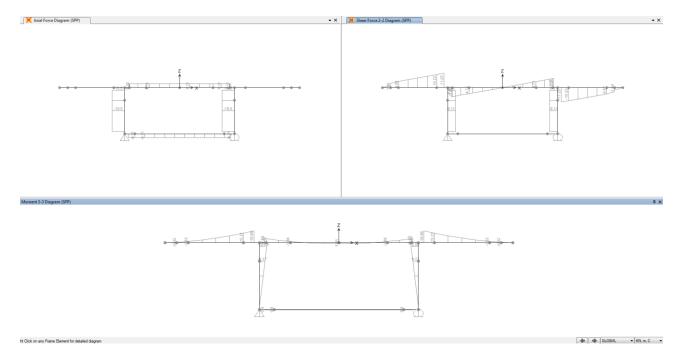


Figura 16 – Diagrammi delle sollecitazioni N, V, M da permanenti portati

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

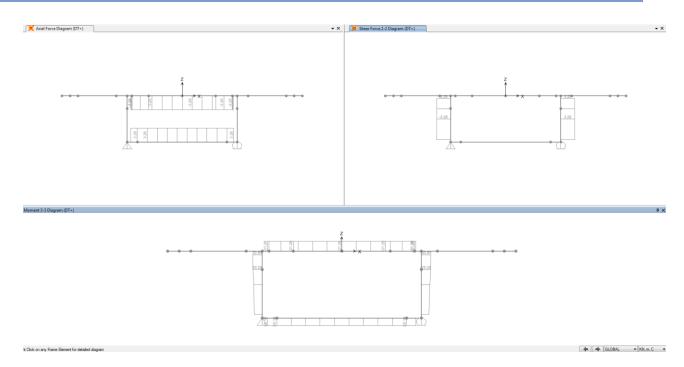


Figura 17 – Diagrammi delle sollecitazioni N, V, M da variazione termica differenziale

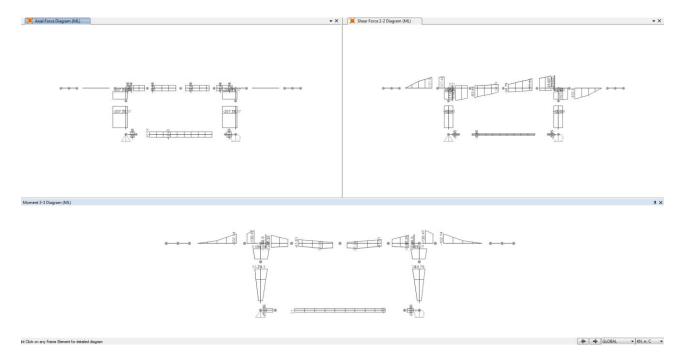


Figura 18 – Diagrammi delle sollecitazioni N, V, M da carichi mobili

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

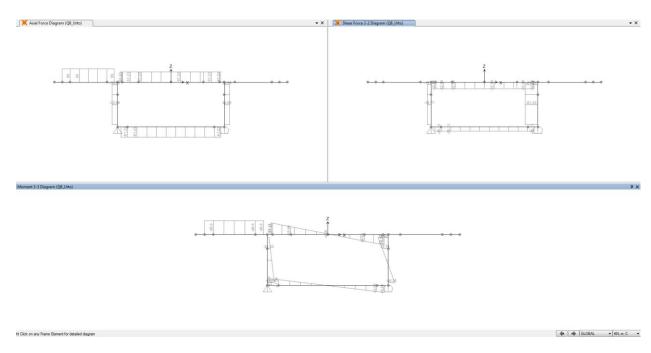
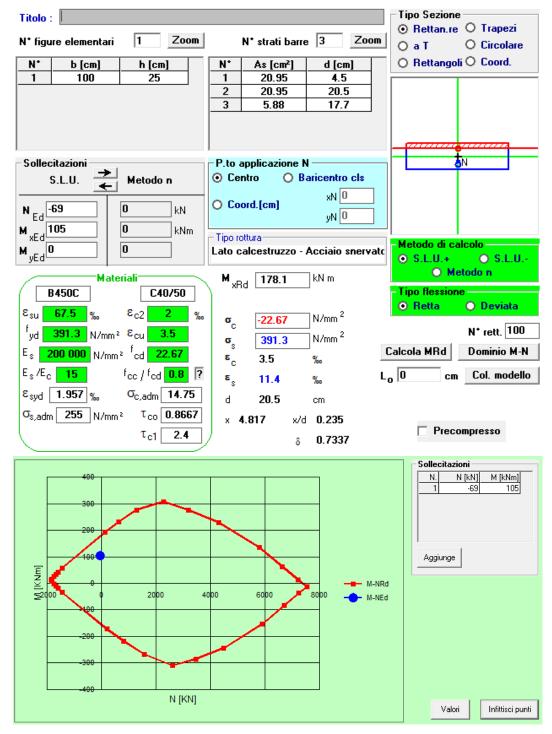


Figura 19 – Diagrammi delle sollecitazioni N, V, M da urto di veicolo in svio

Seguono le verifiche di resistenza a presso-flessione e taglio allo SLU e di fessurazione allo SLE-F.

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno


PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

8.2 Sezione S1

Armatura superiore Ø20/15

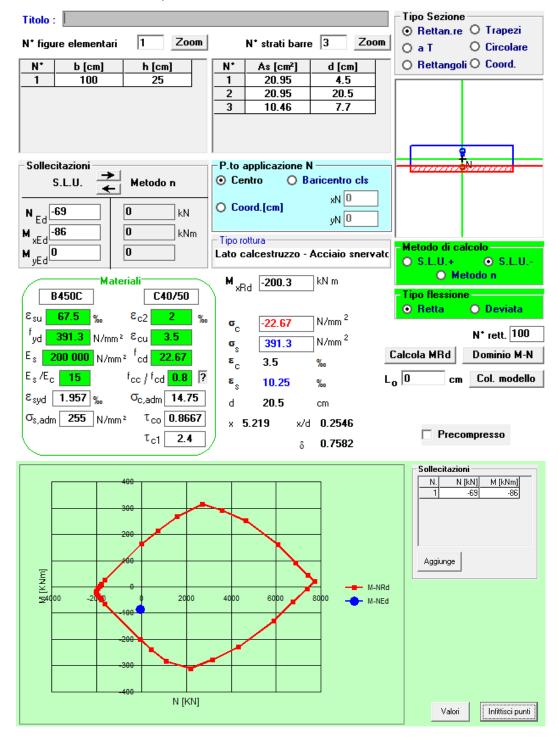
Armatura inferiore Ø20/15 + Ø16/30

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VERIFICHE A FESSURAZIONE		
Elemento strutturale: SOLETTA	combo	: SLE-F
Stato limite di apertura delle fess	ure	
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	-40.0	[kN]
M_{Ed} = momento flettente	63.0	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ / ρ_{eff} = distanza massima tra le fessure	182	[mm]
c = copriferro	35	[mm]
s = interasse barre tese	100	[mm]
φ = diametro della barra	19	[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
$k_3 =$	3.4	
k ₄ =	0.425	
$\rho_{\text{eff}} = A_{\text{s}}/A_{\text{c eff}}$	0.0506	
A_s = area della sezione di acciaio nell'area $A_{c eff}$	2765	[mm ²]
$A_{c,eff} = b h_{c,eff}$	54655	[mm ²]
b =	1000	[mm]
h _{c,eff} =	55	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00039	
$0.6 \sigma_{\rm s} / E_{\rm s} =$	0.00039	
σ_s = tensione nell'acciaio nella sezione fessurata	134.9	[MPa]
f _{ctm} = resistenza media a trazione	3.60	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	35547	[MPa]
α_e = rapporto E _s /E _{cm}	5.8	
k _t = coefficiente di sollecitazione	0.6	
Verifica dell'apertura delle fessure		
$w_d = \varepsilon_{sm} \Delta_{smax}$ = valore di calcolo dell'apertura delle fessure	0.07	[mm]
w = valore limite di apertura delle fessure	0.30	[mm]
	verificato	

S.S. 398 "Via Val di Cornia"


Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

8.3 Sezione S2

Armatura superiore Ø20/15 + Ø20/30

Armatura inferiore Ø20/15

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RESISTENZA A TAGLIO			
Elementi senza armature trasversali resisten	ti a taglio		
$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot k$	$v_w \cdot d \ge (v_{min})$	+ 0,15	$\sigma_{cp}) \cdot b_w d$
larghezza sezione	b _w	[mm]	1000
altezza sezione	h	[mm]	250
altezza utile sezione	d	[mm]	205
armatura longitudinale	A _{sl}	$[mm^2]$	3142
rapporto geometrico di armatura longitudinale	ρι		0.015
	k		1.99
	V _{min}	[MPa]	0.63
tensione media di compressione nella sezione	$\sigma_{\!\scriptscriptstyle CP}$	[MPa]	0.00
resistenza caratteristica cilindrica	f _{ck}	[MPa]	42
resistenza a taglio	V_{Rd}	[kN]	195
sforzo di taglio massimo	V_{Ed}	[kN]	224
non verificato, inse	rire armatı	ura specif	ica a taglio
Elementi con armature trasversali resistenti	a taglio		
larghezza sezione	b _w	[mm]	1000
altezza sezione	h	[mm]	250
altezza utile sezione	d	[mm]	205
numero armature trasversali	n° Ø		6.67
diametro armature trasversali	Ø	[mm]	12
interasse armature trasversali	S	[mm]	150
area dell'armatura trasversale a taglio	A _{sw}	[mm ²]	754
resistenza di progetto	f _{yd}	[MPa]	435
resistenza a compressione del cls	f _{cd}	[MPa]	23.5
angolo di inclinazione armatura trasversale rispetto asse trave	α	[DEG]	90
	ctg θ		1.0
	θ	[DEG]	45
tensione di compressione calcestruzzo	$\sigma_{\! cp}$	[MPa]	0.00
coefficiente maggiorativo in elementi compressi	α_{c}		1.00
resistenza a taglio trazione	V_{Rsd}	[kN]	403
resistenza a compressione del cls ridotta	f _{cd} '	[MPa]	11.8
resistenza a taglio compressione	V _{Rcd}	[kN]	1085
resistenza a taglio	V_{Rd}	[kN]	403
sforzo di taglio massimo	V_{Ed}	[kN]	224
			verificato

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno

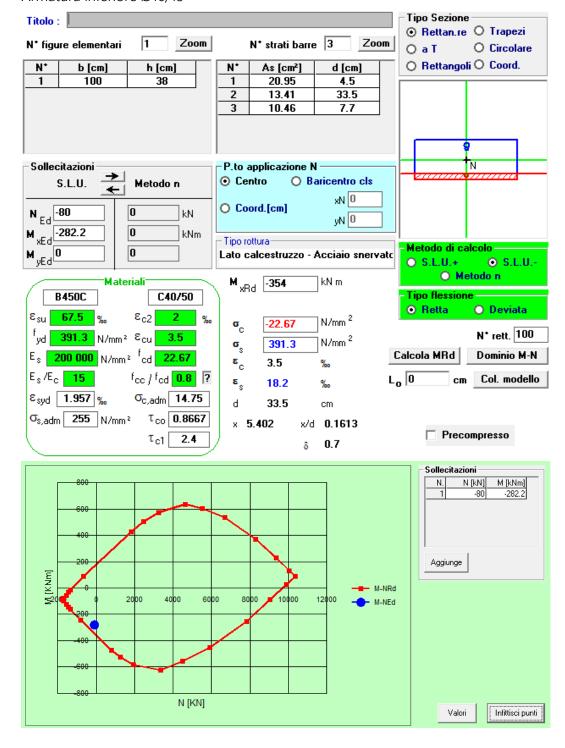
PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VERIFICHE A FESSURAZIONE		
Elemento strutturale: SOLETTA	combo	: SLE-F
Stato limite di apertura delle fess	ure	
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	-40.0	[kN]
M _{Ed} = momento flettente	53.0	[kNm]
Calcolo della distanza massima tra le fessure		
$\Delta_{\rm smax}$ = k_3 c + k_1 k_2 k_4 ϕ $/\rho_{\rm eff}$ = distanza massima tra le fessure	177	[mm]
c = copriferro		[mm]
s = interasse barre tese		[mm]
φ = diametro della barra	20	[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k_2 = coefficiente di forma del diagramma delle tensioni	0.5	
k ₃ =	3.4	
k ₄ =	0.425	
$\rho_{\text{eff}} = A_g/A_{c \text{ eff}}$	0.0590	
A_s = area della sezione di acciaio nell'area $A_{c eff}$	3142	[mm ²]
$A_{c,eff} = b h_{c,eff}$	53248	[mm ²]
b =	1000	[mm]
$h_{c,eff} =$	53	[mm]
Colonia della defermeniana unitaria madia dell'armetura		
Calcolo della deformazione unitaria media dell'armatura $\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s (>= 0.6 \sigma_s/E_s)$	0.00030	
$0.6 \sigma_s / E_s =$	0.00030	
$\sigma_{\rm s}$ = tensione nell'acciaio nella sezione fessurata		[MPa]
f _{ctm} = resistenza media a trazione		[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	
E _{cm} = modulo di elasticità normale del calcestruzzo	35547	
$\alpha_{\rm e}$ = rapporto E _g /E _{cm}	5.8	[.· \
$k_t = \text{coefficiente di sollecitazione}$	0.6	
n _t – coomolette di sollecitazione	0.0	
Verifica dell'apertura delle fessure		
$w_d = \varepsilon_{sm} \ \Delta_{smax} = valore di calcolo dell'apertura delle fessure$	0.05	[mm]
w = valore limite di apertura delle fessure		[mm]
	verificato	

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno


PROGETTO ESECUTIVO

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

8.4 Sezione S3

Armatura superiore Ø20/15 + Ø20/30

Armatura inferiore Ø16/15

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RESISTENZA A TAGLIO			
Elementi senza armature trasversali resisten	ti a taglio		
$V_{Rd} = \left\{0,18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0,15 \cdot \sigma_{cp}\right\} \cdot k$	$v_w \cdot d \ge (v_{min})$	+ 0,15	σ _{cp}) ⋅b _w d _
larghezza sezione	b _w	[mm]	1000
altezza sezione	h	[mm]	380
altezza utile sezione	d	[mm]	335
armatura longitudinale	A _{sl}	[mm ²]	3142
rapporto geometrico di armatura longitudinale	ρι		0.009
	k		1.77
	V _{min}	[MPa]	0.53
tensione media di compressione nella sezione	$\sigma_{\!cp}$	[MPa]	0.00
resistenza caratteristica cilindrica	f _{ck}	[MPa]	42
resistenza a taglio	V_{Rd}	[kN]	241
sforzo di taglio massimo	V_{Ed}	[kN]	287
non verificato, inse	rire armatı	ıra specif	ica a taglio
Elementi con armature trasversali resistenti	a taglio		
larghezza sezione	b _w	[mm]	1000
altezza sezione	h	[mm]	380
altezza utile sezione	d	[mm]	335
numero armature trasversali	n° Ø		6.67
diametro armature trasversali	Ø	[mm]	12
interasse armature trasversali	S	[mm]	150
area dell'armatura trasversale a taglio	A _{sw}	[mm ²]	754
resistenza di progetto	f _{yd}	[MPa]	435
resistenza a compressione del cls	f _{cd}	[MPa]	23.5
angolo di inclinazione armatura trasversale rispetto asse trave	α	[DEG]	90
	ctg θ		1.0
	θ	[DEG]	45
tensione di compressione calcestruzzo	$\sigma_{\!cp}$	[MPa]	0.00
coefficiente maggiorativo in elementi compressi	α_{c}		1.00
resistenza a taglio trazione	V_{Rsd}	[kN]	659
resistenza a compressione del cls ridotta	f _{cd} '	[MPa]	11.8
resistenza a taglio compressione	V_{Rcd}	[kN]	1773
resistenza a taglio	V_{Rd}	[kN]	659
sforzo di taglio massimo	V_{Ed}	[kN]	287
			verificato

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno

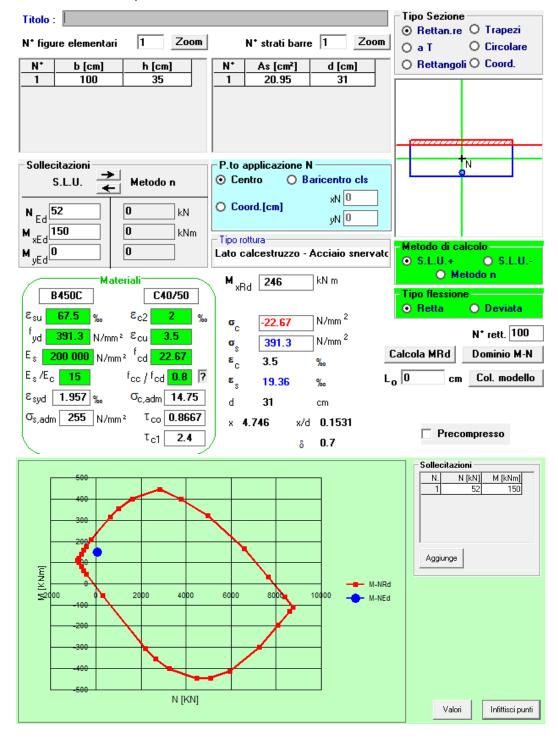
PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VERIFICHE A FESSURAZIONE		
Elemento strutturale: SOLETTA	combo	: SLE-l
Stato limite di apertura delle fess	ure	
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	0.0	[kN]
M _{Ed} = momento flettente	112.0	[kNm]
Calcolo della distanza massima tra le fessure		
$\Delta_{smax} = k_3 c + k_1 k_2 k_4 \phi / \rho_{eff} = distanza massima tra le fessure$	212	[mm]
c = copriferro		[mm]
s = interasse barre tese		[mm]
φ = diametro della barra	20	[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k_2 = coefficiente di forma del diagramma delle tensioni	0.5	
k ₃ =	3.4	
K ₄ =	0.425	
$\rho_{\rm eff} = A_{\rm s}/A_{\rm ceff}$	0.0367	
A_s = area della sezione di acciaio nell'area $A_{c eff}$	3142	[mm ²]
$A_{c,eff} = b h_{c,eff}$	85710	[mm ²]
b =	1000	[mm]
h _{c,eff} =	86	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00035	
$0.6 \sigma_s / E_s =$	0.00035	
σ_s = tensione nell'acciaio nella sezione fessurata	121.7	[MPa]
f _{ctm} = resistenza media a trazione	3.60	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	35547	[MPa]
α_e = rapporto E _s /E _{cm}	5.8	
k _t = coefficiente di sollecitazione	0.6	
Verifica dell'apertura delle fessure		
$w_d = \epsilon_{sm} \Delta_{smax} = valore di calcolo dell'apertura delle fessure$	0.08	[mm]
w = valore limite di apertura delle fessure		[mm]
	verificato	

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

S.S. 398 "Via Val di Cornia"


PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

8.5 Sezione S4

Armatura tesa Ø20/15

MANDANTE

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

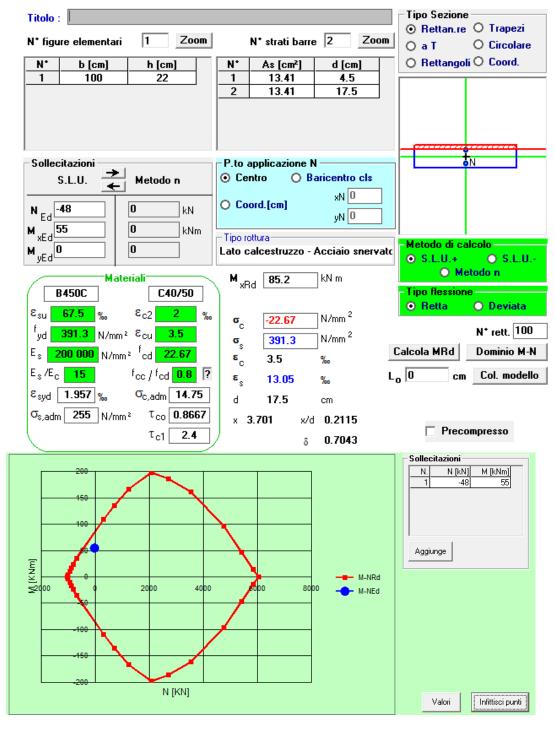
Nota: le armature derivanti dal calcolo degli effetti locali sono sommate a quelle derivanti dal calcolo degli effetti globali. In particolare l'armatura minima per soddisfare le verifiche locali è 1220mm²/m, l'armatura minima per le verifiche a taglio-torsione è 2680 mm²/m, da cui

Elemento strutturale: PARETE	combo	: SLE-
Stato limite di apertura delle fess	ure	
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	44.0	[kN]
M _{Ed} = momento flettente	92.0	[kNm]
Calcolo della distanza massima tra le fessure		
$\Delta_{\rm smax}$ = k ₃ c + k ₁ k ₂ k ₄ ϕ / $\rho_{\rm eff}$ = distanza massima tra le fessure	255	[mm]
c = copriferro	35	[mm]
s = interasse barre tese	150	[mm]
φ = diametro della barra	20	[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
k ₃ =	3.4	
k ₄ =	0.425	
$\rho_{\rm eff} = A_{\rm s}/A_{\rm c.eff}$	0.0250	
A_s = area della sezione di acciaio nell'area $A_{c eff}$	2095	[mm ²]
$A_{c,eff} = b h_{c,eff}$	83892	[mm ²]
b =	1000	[mm]
h _{c,eff} =	84	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00045	
$\cos n = \cos n \cos $	0.00045	
σ_s = tensione nell'acciaio nella sezione fessurata		[MPa]
f _{ctm} = resistenza media a trazione		[MPa]
	206000	
E _s = modulo di elasticità normale dell'acciaio		
E _{cm} = modulo di elasticità normale del calcestruzzo	35547	[IVIPa]
$\alpha_{\rm e}$ = rapporto E _s /E _{cm}	5.8	
k _t = coefficiente di sollecitazione	0.6	
Verifica dell'apertura delle fessure		
${ m W_d} = \epsilon_{ m sm} \; \Delta_{ m smax}$ = valore di calcolo dell'apertura delle fessure		[mm]
w = valore limite di apertura delle fessure	0.30 verificato	[mm]

MANDANTE

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO


Direzione Progettazione e Realizzazione Lavori

VI01 - RELAZIONE TECNICA E DI CALCOLO IMPALCATO

8.6 SEZIONE S5

Armatura superiore Ø16/15

Armatura inferiore Ø16/15

MANDATARIA

Direzione Progettazione e

Realizzazione Lavori

S.S. 398 "Via Val di Cornia"

Bretella di collegamento tra l'Autostrada Tirrenica A12 e il Porto di Piombino
Lotto 1 – Svincolo di Geodetica - Gagno

PROGETTO ESECUTIVO

VERIFICHE A FESSURAZIONE		
Elemento strutturale: CONTROSOLETTA	combo	: SLE-F
Stato limite di apertura delle fess	sure	
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	-25.0	[kN]
M _{Ed} = momento flettente	35.0	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ / ρ_{eff} = distanza massima tra le fessure	226	[mm]
c = copriferro		[mm]
s = interasse barre tese		[mm]
φ = diametro della barra		[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
k ₃ =	3.4	
k ₄ =	0.425	
$\rho_{\text{eff}} = A_{\text{s}}/A_{\text{c eff}}$	0.0255	
A_s = area della sezione di acciaio nell'area $A_{c eff}$	1341	[mm ²]
$A_{c,eff} = b h_{c,eff}$	52628	[mm ²]
b =	1000	[mm]
h _{c,eff} =	53	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{\rm sm} = [\sigma_{\rm s} - k_{\rm t} f_{\rm ctm} (1 + \alpha_{\rm e} \rho_{\rm eff})/\rho_{\rm eff}]/E_{\rm s}$ (>= 0.6 $\sigma_{\rm s}/E_{\rm s}$)	0.00053	
$0.6 \sigma_{\rm s} / E_{\rm s} =$	0.00053	
σ_s = tensione nell'acciaio nella sezione fessurata	182.9	[MPa]
f _{ctm} = resistenza media a trazione	3.60	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	35547	[MPa]
α_e = rapporto E _s /E _{cm}	5.8	
k _t = coefficiente di sollecitazione	0.6	
Verifica dell'apertura delle fessure		
$w_d = \epsilon_{sm} \Delta_{smax} = valore di calcolo dell'apertura delle fessure$	0.12	[mm]
w = valore limite di apertura delle fessure		[mm]
	verificato	

