TORRE GIULIA WIND S.r.l.

Corso Venezia – 20121 Milano

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO **NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"**

Via Napoli, 363/I - 70132 Bari - Italy www.bfpgroup.net - info@bfpgroup.net tel. (+39) 0805046361 - fax (+39) 0805619384

> AZIENDA CON SISTEMA GESTIONE UNI EN ISO 9001:2015 UNI EN ISO 14001:2015 OHSAS 18001:2007 CERTIFICATO DA CERTIQUALITY

Tecnico

ing. Danilo Pomponio

Collaborazioni geol. Domenico Del Conte

Responsabile Commessa

ing. Danilo Pomponio

ELAE	BORATO	TITOLO	COMMES	SA	TI	POLOGIA
			19045			P
	110	DELAZIONE ANALISI STADILITA/ VEDCANTI	COL	DICE EL	_ABOR/	OTA
V18 RELAZIONE ANALISI STABILITA' VERSANT		D	C1904	5D-V1	.8	
REV	ISIONE	Tutte le informazioni tecniche contenute nel presente documento sono di proprietà esclusiva della Studio Tecnico BFP S.r.l e non possono essere riprodotte, divulgate o	SOSTITUIS	SCE	SOST	TTUITO DA
		comunque utilizzate senza la sua preventiva autorizzazione scritta. All technical information	ı			-
	00	contained in this document is the exclusive property of Studio Tecnico BFP S.r.l. and may	NOME FI	LE	ı	PAGINE
		neither be used nor disclosed without its prior written consent. (art. 2575 c.c.)	DC119045D-V18.doc		39 + copertina	
REV	DATA	MODIFICA	Elaborato	Contr	ollato	Approvato
00	30/05/19	Emissione	Del Conte	Miglio	onico	Pomponio
01						
02						
03						
04						
05						
06						

Cell. +39 329.7160866 Fax +39 0884.89012 E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

ANALISI STABILITA' PENDII NATURALI

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 1 di 19

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

ANALISI STABILITA' PENDII NATURALI

E-mail: domenico.delconte@geoapulia.it

Cell. +39 329.7160866 Fax +39 0884.89012

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 2 di 19

ANALISI STABILITA' PENDII NATURALI

INDICE

1.	PREMESSA
----	----------

- 2. **UBICAZIONE DELL'INTERVENTO**
- 3. **CARATTERIZZAZIONE GEOLOGICA**
- **CARATTERIZZAZIONE GEOTECNICA** 4.

CARATTERIZZAZIONE DELLA PERICOLOSITÀ SISMICA

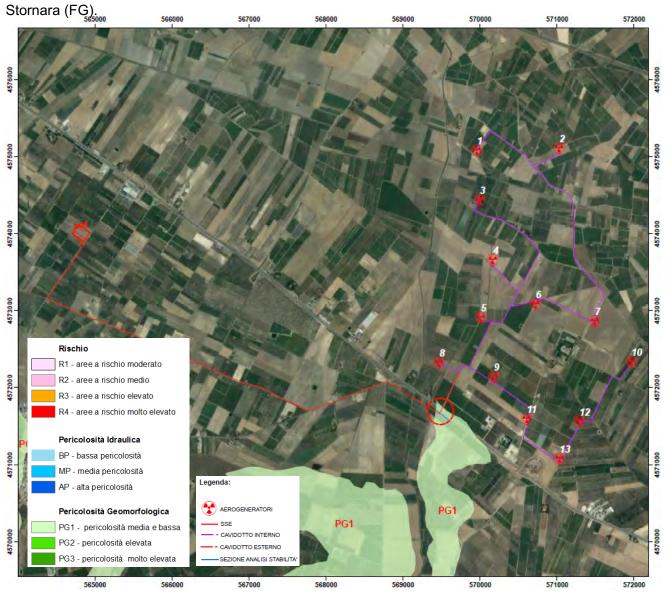
- 5. DI BASE DEL SITO OGGETTO DELL'INTERVENTO
- VERIFICA STABILITÀ DEI PENDII NATURALI 6.
- 7. CONCLUSIONI

ALLEGATI GRAFICI

Geol. Domenico DEL CONTE
Corso Giannone, 184 - Cagnano Varano (FG)
Cell. +39 329.7160866 Fax +39 0884.89012
E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019	1
----------------------	---


cod. elaborato DC19045D-V18

Pagina 3 di 19

ANALISI STABILITA' PENDII NATURALI

1. PREMESSA

Il presente rapporto riferisce le risultanze dell'analisi di stabilità di versanti che insistono lungo alcune porzioni del tracciato del cavidotto che attraversa aree perimetrate dall'Autorità di Bacino della Regione Puglia come PG1 (Pericolosità geomorfologica media e moderata), in agro del comune di

Stralcio AdB Puglia

Area sottoposta ad analisi di stabilitààdel versante

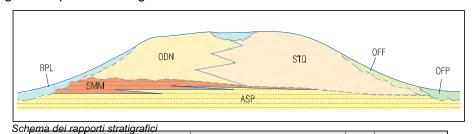
Cell. +39 329.7160866 Fax +39 0884.89012 E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019
cod. elaborato
DC19045D-V18

Pagina 4 di 19

ANALISI STABILITA' PENDII NATURALI


Nello specifico lo studio è finalizzato alla verifica di stabilità del versante che insiste nell'area evidenziata col cerchio rosso ai sensi delle NTC 2018.

2. UBICAZIONE DELL'INTERVENTO

Le aree oggetto di verifica risulta essere cartografata nella C.T.R. della Regione Puglia nell'elemento n. 422101.

3. CARATTERIZZAZIONE GEOLOGICA

Geologicamente l'area del Foglio 422 "Cerignola" è caratterizzata dalla presenza di depositi recenti che vanno dal Pleistocene inferiore all'Olocene. All'interno di questi sedimenti è stato possibile individuare, sia in affioramento che in perforazione, importanti superfici di discontinuità, che hanno costituito la base per la suddivisione del record sedimentario in unità stratigrafiche a limiti inconformi di diverso rango gerarchico (SALVADOR, 1987, 1994) ed hanno permesso l'elaborazione dello schema stratigrafico riportato in seguito.

Età			Nome	sigla	Autori precedenti
		depo	siti antropici	h	Non distinti
Olocene	Unità non distinte in base al bacino	depositi alluvionali attuali		b	Alluvioni recenti ed attuali
	di appartenenza	coltre eluvio-colluviale			Non distinte
		depo	ositi palustri	e_3	Non distinte
	SUPERSINTEMA		sintema osta Ofanto	OFP	Alluvioni terrazzate
	DEL FIUME OFANTO	sintema di	subsintema di Salve Regina	OFF ₂	Alluvioni
DI : 4	(OF)	Fontana Figura	subsintema di Masseria Pignatella	OFF ₁	terrazzate
Pleistocene superiore - Olocene		sintema dei Torrenti	subsintema delle Marane La Pidocchiosa - Castello	RPL ₃	Alluvioni

Carapelle e

subsintema di

Masseria Torricelli

terrazzate

RPL₂

DI PUGLIA

Geol. Domenico DEL CONTE
Corso Giannone, 184 - Cagnano Varano (FG)
Cell. +39 329.7160866 Fax +39 0884.89012
E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 5 di 19

ANALISI STABILITA' PENDII NATURALI

	(TP)	Cervaro	subsintema dell'Incoronata	RPL_1	
DI :	IDIE)	sintema di	sabbie di Torre Quarto	STQ	Depositi Marini
Pleistocene inferiore - medio	UNITÀ DELL'AVANFOSSA BRADANICA	Cerignola	conglomerati di Ordona	ODN	Terrazzati
inedio	BRADANICA	argille	subappennine	ASP	argille subappennine

Quadro delle unità stratigrafiche del Foglio Cerignola.

La prima importante discontinuità separa le argille subappennine (ASP) e le sabbie di Monte Marano Auct.1, largamente affioranti nella Fossa Bradanica (AZZAROLI et alii, 1968a, CANTELLI 1960, RICCHETTI 1967), dai depositi sabbioso- conglomeratici in facies marina e continentale ascrivibili al Pleistocene medio e che costituiscono la gran parte dei terreni affioranti nell'area del Foglio "Cerignola". Tali depositi, che costituiscono due unità litostratigrafiche eteropiche (ODN e STQ), sono stati raggruppati nel sintema di Cerignola (RGL).

Le argille subappennine (ASP) e le sabbie di Monte Marano Auct. (SMM) unitamente al sintema di Cerignola (RGL) sono state incluse nelle Unità dell'Avanfossa Bradanica, poiché questi terreni si sono depositati in un contesto di solleva- mento regionale e superficializzazione del bacino di avanfossa.

A tetto del sintema di Cerignola (RGL) sono state riconosciute due superfici a limiti inconformi di tipo erosivo e di importanza regionale: la prima, riconoscibile nei quadranti sud-orientali del Foglio, separa i depositi del sintema di Cerignola (RGL) dai depositi alluvionali del Fiume Ofanto raggruppati nel supersintema del Fiume Ofanto (OF). La seconda superficie inconforme, riconoscibile nella restante parte del Foglio, costituisce la base del supersintema del Tavoliere di Puglia (TP) che raggruppa i depositi alluvionali ricadenti nel bacino idrografico del Torrente Carapelle. Entrambi i supersintemi includono al loro interno sintemi e subsintemi individuati sulla base del riconoscimento di superfici inconformi di carattere locale. L'attribuzione dei depositi alluvionali del Fiume Ofanto e del Torrente Cara- pelle a supersintemi si è resa necessaria a causa dell'importanza regionale delle discontinuità e dopo un coordinamento con i fogli limitrofi.

Tutte le unità stratigrafiche sopra descritte sono ricoperte in modo discontinuo da depositi alluvionali attuali (b), da depositi eluvio-colluviali (b2), da depositi palustri (e3) e depositi antropici (h), ascrivibili all'Olocene. Tali depositi sono stati cartografati come "Unità non distinte in base al bacino di

E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 6 di 19

ANALISI STABILITA' PENDII NATURALI

appartenenza" e per essi si è mantenuto il criterio litostratigrafico che ne ha guidato il riconoscimento e la suddivisione.

Nello specifico, le litofacies che caratterizzano i terreni della zona in esame, sono costituiti dal basso verso l'alto, da:

- Coltre eluvio colluviale (b₂)

Si tratta di depositi costituiti da sedimenti fini massivi a clasti eterometrici localmente stratificati, di colore marroncino a luoghi tendenti al rossastro. Sono distribuiti in tutta l'area rilevata e si localizzano principalmente nelle zone di basso morfologico e alla base dei modesti versanti che caratterizzano l'area del Foglio "Cerignola". La superficie inferiore inconforme è in appoggio sul sintema di Cerignola mentre il tetto è rappresentato dalla superficie topografica. Lo spessore varia da pochi metri a 5-6 metri in funzione della morfologia del substrato. Questi sedimenti derivano da ruscellamento di acque non incanalate e da alterazione in posto di sedimenti sabbiosi e conglomeratici.

- Subsintema delle Marane La Pidocchiosa - Castello (RPL₃)

Si tratta di depositi ghiaioso-sabbioso-limosi, localmente a stratificazione incrociata concava e obliqua. Queste alluvioni sono legate all'attività di una serie di corsi d'acqua affluenti di destra del Torrente Carapelle (il principale è la Marana La Pidocchiosa) e della Marana Castello con il suo affluente Fosso La Pila, che, attraverso opere di canalizzazione, sbocca a mare tra la foce del Fiume Ofanto e quella del Torrente Carapelle, dopo aver attraversato la depressione oggi occupata dalle saline di Margherita di Savoia.

La tessitura prevalente del deposito dipende dal substrato inciso dal corso d'acqua. A sud, pertanto, prevalgono le facies ghiaiose, mentre a nord, prevalgono le facies sabbioso-limose. In località La Lupara, a circa 13 km a nord dell'abitato di Cerignola, in corrispondenza di zone di alluvionamento recente, si assiste alla presenza di sedimenti fini con livelli scuri ricchi in sostanza organica a testimonianza di prolungati ristagni d'acqua.

Il limite inferiore del deposito è una superficie di tipo inconforme sul sintema di Cerignola (RGL) e sui depositi alluvionali più antichi (RPL₁ e RPL₂) mentre il limite superiore coincide con la superficie topografica. Lo spessore massimo dell'unità, desunto da dati di perforazione è di circa 25-30 metri. In località Marrella, in corrispondenza di un taglio artificiale relativo alla canalizzazione della Marana Castello, è stata studiata una piccola sezione di circa 2 metri. La base è costituita da un silt limoso biancastro ricco di fauna di acqua dolce Bithynia leachi (SHEPPARD) e Planorbis planorbis,

Geol. Domenico DEL CONTE
Corso Giannone, 184 - Cagnano Varano (FG)
Cell. +39 329.7160866 Fax +39 0884.89012
E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 7 di 19

ANALISI STABILITA' PENDII NATURALI

maggiormente concentrati in livelli o nidi. Al di sopra è presente un orizzonte di alcuni decimetri costituito interamente da pomici di colore grigio chiaro. Il deposito piroclastico mostra nella parte alta i caratteri di accumulo da dilavamento areale. Indicazioni di età relative al subsintema delle Marane La Pidocchiosa - Castello sono fornite da una datazione assoluta (tipo AMS) effettuata su un esemplare di B. leachi che ha fornito un'età radio-carbonio di 4150 ± 40 anni BP e dall'episodio piroclastico riconducibile all'eruzione vesuviana di Avellino. Per le Pomici di Avellino le numerose datazioni radiometriche disponibili in letteratura coprono un intervallo di età compreso tra circa 3500 e 3600 anni dal presente (DELIBRAS et alii, 1979; VOGEL et alii, 1990; ROLANDI et alii, 1998; TERRASSI et alii, 1999; ALBORE LIVADIE

et alii, 1998; ANDRONICO et alii, 1995). Nel Tavoliere la presenza di materiali attribuibili con certezza all'eruzione di Avellino è già stata accertata nei sedimenti lagunari ai piedi dell'insediamento archeologico di Coppa Nevigata, ai bordi della ex laguna di Salpi (CALDARA et alii, 2001; 2003). Non deve, quindi, meravigliare il ritrovamento di questi depositi nella Marana del Castello, in quanto questo canale altro non è che un affluente dell'antica ampia laguna di Salpi.

- Subsintema di Masseria Torricelli (RPL2)

Questi sedimenti testimoniano l'attività fluviale di corsi d'acqua estinti di cui oggi rimangono le testimonianze morfologiche e il deposito alluvionale stesso. Si tratta prevalentemente di sedimenti sabbioso-limosi con rari livelli ghiaiosi e argilloso-limosi. I ciottoli sono di piccole e medie dimensioni ben arrotondati. Le facies fini sono state rilevate principalmente in corrispondenza di zone morfologicamente più depresse situate in località La Luparella nella parte settentrionale del Foglio ed in prossimità della stazione di Cerignola.

Il contatto basale è di tipo inconforme sul substrato costituito dal sintema di Cerignola (RGL), mentre a tetto l'unità è limitata dal subsintema delle Marane La Pidocchiosa - Castello (RPL₃). Lo spessore non supera i 10 metri.

Anche in questo caso gli affioramenti veri e propri sono scarsi ovvero limitati a pochi tagli stradali e molte indicazioni sulle caratteristiche di questi depositi sono state ricavate dall'analisi delle stratigrafie di pozzi.

- Sabbie di Torre Quarto (STQ)

Geol. Domenico DEL CONTE
Corso Giannone, 184 - Cagnano Varano (FG)
Cell. +39 329.7160866 Fax +39 0884.89012
E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 8 di 19

ANALISI STABILITA' PENDII NATURALI

Si tratta prevalentemente di sabbie di colore giallastro, in genere poco cementate, in strati di spessore variabile da pochi centimetri fino a 50 centimetri, con intercalazioni arenitiche, marnose e argilloso-siltose; raramente sono presenti orizzonti costituiti da ciottoli di piccole dimensioni in abbondante matrice sabbiosa. Gli spessori, desumibili dai dati di perforazione, sono di norma compresi fra 25 e 30 metri; il valore massimo, di 55 metri, è raggiunto nella parte settentrionale del Foglio.

Le sabbie sono laminate con intervalli a laminazione piano parallela ed intervalli con set di lamine a stratificazione incrociata con ripple asimmetrici da correnti trattive. Nelle sabbie sono diffusi i fenomeni di bioturbazione.

Nella parte alta della successione, localmente si rinvengono sabbie rossastre grossolane con laminazione incrociata concava a festoni la cui stratificazione spesso è marcata da sottili livelli di paleosuolo.

Le sabbie di Torre Quarto affiorano maggiormente nei quadranti orientali del Foglio "Cerignola".

La base di questa unità litostratigrafica è una superficie di erosione sulle sabbie di Monte Marano Auct. e le argille subappennine (ASP), mentre il tetto coincide a luoghi con la base dei depositi fluviali del Fiume Ofanto, del Torrente Carapelle e con la base delle coperture continentali oloceniche. Lo spessore complessivo del deposito ricavato da dati di perforazione è di circa 30 metri. I macrofossili, nel complesso scarsi nei litotipi prevalentemente sabbiosi, risultano localmente abbondanti e si rinvengono sia dispersi sia concentrati in nidi o livelli e sia accumulati. Lo stato di conservazione è molto variabile, soprattutto nelle sabbie, per cui molte volte la determinazione è solo generica. Oltre ai bivalvi, che si presentano spesso in posizione fisiologica o a valve spaiate, e ai gasteropodi, si ritrovano anche resti di pesci (soprattutto otoliti), briozoi, frammenti di echinoidi irregolari e di crostacei, foraminiferi ed ostracodi.

Per le considerazioni su menzionate e per le caratteristiche dei litotipi che insistono nell'area oggetto di studio, questi ultimi rientrano nelle **Sabbie di Torre Quarto (STQ).**

4. CARATTERIZZAZIONE GEOTECNICA

La caratterizzazione geotecnica dei terreni è stata determinata sia da prove di laboratorio su campioni prelevati in corrispondenza del sondaggio S1, che dalle prove S.P.T.

Cell. +39 329.7160866 Fax +39 0884.89012 E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 9 di 19

ANALISI STABILITA' PENDII NATURALI

A ciascuna delle unità litostratigrafiche sono stati attribuiti i valori delle proprietà fisico-meccaniche che meglio ne descrivono il comportamento globale. In funzione di quanto acquisito nel corso dello studio, di seguito verrà eseguita una parametrizzazione geomeccanica "media" dei litotipi presenti al fine di fornire i parametri caratteristici e i parametri di progetto per le singole unità geotecniche individuate.

Il sottosuolo può pertanto considerarsi costituito dalle seguenti unità geotecniche:

U.G.1: dal p.c. fino a 0.7 – 1.80 m

È costituito da terreno organico limoso nerastro. Si tratta di terreno caratterizzato da caratteristiche meccaniche scadenti e che dovrà essere necessariamente sbancato. Per questo "complesso" geotecnico possono essere attribuiti i seguenti parametri:

 γ = 16.5 KN/m³ (peso di volume)

φ' = 18 gradi (angolo di attrito in condizioni drenate)

c' = 2 KPa (coesione in condizioni drenate)

cu = 0 Kpa (coesione non drenata)

U.G.2: da 0.70-1.80 m fino a 6.00 m circa

È costituito da limo argilloso e argilla grigiastra. È considerato terreno dal comportamento "coesivo" per il quale l'interpretazione delle prove di laboratorio, effettuate sul campione di terreno prelevato nel sondaggio S1 a 4 m dal p.c. hanno fornito i seguenti parametri fisici e meccanici:

 $\gamma = 19.1 \text{ KN/m}^3 \text{ (peso di volume)}$

 γ sat = 19.2 KN/m³ (peso di volume saturo)

 $\varphi' = 21.10$ gradi (angolo di attrito efficace)

c' = 10.6 KPa (coesione efficace)

cu = 140 KPa (coesione non drenata)

Ed = 6211 KPa (modulo edometrico – 100<p<200)

OCR = 5.80 (grado di sovraconsolidazione)

e = 0.682 (indice dei vuoti)

Geol. Domenico DEL CONTE

Corso Giannone, 184 - Cagnano Varano (FG) Cell. +39 329.7160866 Fax +39 0884.89012

E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Pagina 10 di 19

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

ANALISI STABILITA' PENDII NATURALI

U.G.3: da 6.00 m circa fino a 10.00 m circa

È costituito da sabbia addensata, di colore marroncino, talora con livelli centimetrici debolmente cementati. È considerato terreno dal comportamento "granulare" per il quale la prova SPT effettuata durante il sondaggio S2 a 7,5 m dal p.c. (N'spt = 44 colpi), ha fornito i seguenti parametri fisici e meccanici:

 γ = 18.6 KN/m³ (peso di volume)

 γ_{sat} = 19 KN/m³ (peso di volume saturo)

φ' = 36 gradi (angolo di attrito efficace - Meyerhof)

φ * = 34 gradi (angolo di attrito sotto sisma)

c' = 0 KPa (coesione efficace)

cu = 0 KPa (coesione non drenata)

E = 43000 Kpa (modulo elastico - Janbu)

OCR = 2-3 (grado di sovraconsolidazione)

U.G.4: da 10.00 m circa fino a 12.00 m

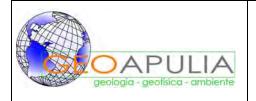
È costituito da limo argilloso, di colore giallastro, con intercalazioni di lenti e veli sabbiose. È considerato terreno dal comportamento "coesivo" per il quale, le prove di laboratorio effettuate su diversi campioni prelevati in zona hanno fornito i seguenti parametri fisici e meccanici medi:

 γ = 19 KN/m³ (peso di volume)

 γ_{sat} = 19.5 KN/m³ (peso di volume saturo)

φ' = 26 gradi (angolo di attrito efficace)

c' = 10 KPa (coesione efficace)


cu = 150 KPa (coesione non drenata)

Ed = 10000 KPa (modulo edometrico 200<p<400)

(*) Il valore dell'angolo di attrito è stato ridotto di due gradi per tener conto del fenomeno della dilatanza indotto dalle sollecitazioni sismiche (criterio di Vesic).

5. CARATTERIZZAZIONE DELLA PERICOLOSITÀ SISMICA DI BASE DEL SITO OGGETTO **DELL'INTERVENTO**

La pericolosità sismica di base costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche. La determinazione è stata eseguita secondo l'approccio semplificato previsto

Cell. +39 329.7160866 Fax +39 0884.89012 E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 11 di 19

ANALISI STABILITA' PENDII NATURALI

dal § 3.2.2 delle NTC, con i seguenti risultati:

Classificazione della categoria di sottosuolo secondo quanto previsto nella tabella 3.2.Il delle NTC: il sottosuolo, a partire dal livello del piano di posa delle fondazioni, può essere assimilato a "Categoria C":

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s".

Classificazione delle condizioni topografiche secondo quanto previsto nelle tabelle 3.2.IV e 3.2.VI delle NTC: la superficie topografica può essere classificata come appartenente alla categoria T1: "superficie pianeggiante, pendii e rilievi isolati con inclinazione media i≤ 15°.

- 1. Altri parametri di input definiti nel paragrafo 3 delle NTC: i seguenti parametri di input per la determinazione delle forme spettrali sono caratterizzati dai valori elencati:
 - a. Coordinate geografiche della località in esame:

i. Latitudine: Φ_{ED50} 41,294853 [°]

ii. Longitudine: λ_{ED50} 15.830996 [°]

- b. Vita nominale della struttura, VN: 50 anni
- c. Classe d'uso della struttura, CU: Il ("Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Sito di riferimento

Coordinate geografiche della località in esame

E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 12 di 19

ANALISI STABILITA' PENDII NATURALI

Latitudine: ordinate Geograficl		41	204052 [0]		
ordinate Geograficl			,294853 [°]		
	he nei 4 p	unti del reti	icolo		
LONGITUDINE	LATIT	UDINE	m		
31004 41,3112 15,82			2035,338		
41,3098	15,8	3866	4932,768		
41,2599	15,8	3848	5943,643		
41,2612	15,8	3183	3888,308		
VITA DELLA	A STRUTT	ΓURA			
Vita nominale dell'opera			V _N = 50anni		
		II			
asse d'uso.		(Costruzioni il cui uso			
asse a aso.		preveda normali			
		affollamenti)			
ficiente d'uso:		C _U = 1			
ferimento per le azi	oni	VR = VN x CU = 50			
che strutturali:					
ARATTERISTICHE	E SISMICI	HE DEL SI	ТО		
Topografia:			T1		
Coefficiente topografico:			S _T = 1.0		
egoria Suolo:		1	С		
	41,3112 41,3098 41,2599 41,2612 VITA DELLA minale dell'opera asse d'uso: ficiente d'uso: ferimento per le azi che strutturali: ARATTERISTICHE Topografia: fente topografico:	41,3112 15,8 41,3098 15,8 41,2599 15,8 VITA DELLA STRUTT minale dell'opera asse d'uso: ficiente d'uso: ferimento per le azioni che strutturali: ARATTERISTICHE SISMIC Topografia: fente topografico:	41,3112		

Parametri sismici

	Prob. superamento [%]	Tr [anni]	ag [g]	Fo [-]	Tc* [s]
Operatività	81	30	0,043	2,522	0,280

Cell. +39 329.7160866 Fax +39 0884.89012 E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA" Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 13 di 19

ANALISI STABILITA' PENDII NATURALI

(SLO)					
Danno (SLD)	63	50	0,055	2,557	0,307
Salvaguardia della vita (SLV)	10	475	0,160	2,519	0,414
Prevenzione dal collasso (SLC)	5	975	0,220	2,466	0,424

Coefficienti Sismici

	Ss [-]	Сс [-]	St [-]	Kh [-]	Kv [-]	Amax [m/s ²]	Beta [-]
SLO	1,500	1,600	1,000	0,013	0,006	0,633	0,200
SLD	1,500	1,550	1,000	0,017	0,008	0,812	0,200
SLV	1,460	1,400	1,000	0,056	0,028	2,289	0,240
SLC	1,370	1,390	1,000	0,084	0,042	2,958	0,280

N.B. Le coordinate geografiche sono espresse in ED50

6. VERIFICA STABILITÀ PENDII NATURALI

La valutazione del coefficiente di sicurezza dei pendii naturali, espresso dal rapporto tra la resistenza al taglio disponibile (τ f) e la tensione di taglio agente (τ) lungo la superficie di scorrimento, deve essere eseguita impiegando sia i parametri geotecnici, congruenti con i caratteri del cinematismo atteso o accertato, sia le azioni presi con il loro valore caratteristico. L'adeguatezza del margine di sicurezza ritenuto accettabile dal progettista deve comunque essere giustificata sulla base del livello di conoscenze raggiunto, dell'affidabilità dei dati disponibili e del modello di calcolo adottato in relazione alla complessità geologica e geotecnica, nonch sulla base delle conseguenze di un eventuale frana.

La valutazione della sicurezza viene quindi effettuata confrontando la **resistenza di progetto** *Rd*, valutata in base ai valori di progetto della resistenza dei materiali e alle grandezze geometriche

E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 14 di 19

ANALISI STABILITA' PENDII NATURALI

interessate, con il valore di progetto Ed delle azioni, valutato in base ai valori di progetto delle azioni (indicata nel capitolo 2.3 delle NTC2018). La condizione da verificare è la seguente:

Rd ≥ Ed

In questo caso sia ai parametri caratteristici dei parametri fisico meccanici, che a quelli delle azioni, vengono applicati dei **coefficienti parziali di sicurezza** calcolati in relazione

- · al tipo di azione
- alla vita nominale della struttura (1)
- alla sua classe d'uso (2)

La verifica Rd ≥ Ed deve essere effettuata, secondo le nuove norme, impiegando diverse combinazioni di gruppi di tali coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze globali (R1, R2 e R3).

I diversi gruppi di coefficienti di sicurezza parziali sono poi scelti nell'ambito di due approcci progettuali distinti, e/o alternativi, ovvero:

Nell'Approccio 1, le verifiche si conducono con due diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (γ_F), per la resistenza dei materiali (γ_M) e, eventualmente, per la resistenza globale del sistema (γ_R). Nella Combinazione 1 dell'Approccio 1, per le azioni si impiegano i coefficienti γ_F riportati nella colonna A1 della Tabella 2.6.I. Nella Combinazione 2 dell'Approccio 1, si impiegano invece i coefficienti γ_F riportati nella colonna A2. In tutti i casi, sia nei confronti del dimensionamento strutturale, sia per quello geotecnico, si deve utilizzare la combinazione più gravosa fra le due precedenti.

Nell'Approccio 2 si impiega un'unica combinazione dei gruppi di coefficienti parziali definiti per le Azioni (γ_F), per la resistenza dei materiali (γ_M) e, eventualmente, per la resistenza globale (γ_R). In tale approccio, per le azioni si impiegano i coefficienti γ_F riportati nella colonna A1.

Per le verifiche di stabilità è stato utilizzato l'Approccio 1- Combinazione 2 (A2+M2+R2), con R2 = 1.1.

I *coefficienti parziali per le azioni* o per l'effetto delle azioni sono mostrati nella figura seguente (tabella 2.6.I- NTC2018):

E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 15 di 19

ANALISI STABILITA' PENDII NATURALI

		Coefficiente Y _F	EQU	A1	A2
Contact assessment Co	Favorevoli	Υgı	0,9	1,0	1,0
Carichi permanenti G1	Sfavorevoli		1,1	1,3	1,0
arichi permanenti non strutturali G2 ⁽¹⁾	Favorevoli	Υ _{G2}	0,8	0,8	0,8
Carichi permanenti non strutturali Ga	Sfavorevoli		1,5	1,5	1,3
A Street reconstitution	Favorevoli	74	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	Ϋ́Qi	1,5	1,5	1,3

Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Relativamente alle resistenze dei materiali le NTC 2018 indicano che per le verifiche agli stati limite ultimi che comprendono gli Stati Limite di salvaguardia della Vita (SLV) e gli Stati Limite di prevenzione del Collasso (SLC), come precisato nella sezione 3.2.1), quanto segue:

Il valore di progetto della resistenza di un dato materiale Xd è, a sua volta, funzione del valore caratteristico della resistenza, definito come frattile 5 % della distribuzione statistica della grandezza, attraverso l'espressione: $Xd = Xk/\gamma_M$, essendo γ_M il fattore parziale associato alla resistenza del materiale"

Per le opere geotecniche "Il valore di progetto della resistenza Rd può essere determinato:

- a) in modo analitico, con riferimento al valore caratteristico dei parametri geotecnici del terreno, diviso per il valore del coefficiente parziale $\square M$ specificato nella successiva Tab. 6.2.II e tenendo conto, ove necessario, dei coefficienti parziali γ_R specificati nei paragrafi relativi a ciascun tipo di opera;
- b) in modo analitico, con riferimento a correlazioni con i risultati di prove in sito, tenendo conto dei coefficienti parziali γ_R riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera;
- c) sulla base di misure dirette su prototipi, tenendo conto dei coefficienti parziali γ_R riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera.

I coefficienti parziali γ_M per i parametri geotecnici del terreno sono mostrati nella figura seguente.

E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 16 di 19

ANALISI STABILITA' PENDII NATURALI

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ _M	(M1)	(M2)	
Tangente dell'angolo di resi- stenza al taglio	$ an arphi'_{f k}$	$\gamma_{\phi'}$	1,0	1,25	
Coesione efficace	c' _k	Ye	1,0	1,25	
Resistenza non drenata	c_{uk}	γcu	1,0	1,4	
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0	

Pertanto, nel caso analizzato che prevede la presenza di n° 3 elementi litologici costituenti i versanti come di seguito riassunti, si sono utilizzati i valori geotecnici caratteristici ridotti, come di seguito riportati:

N° Litologia	Unità litologica	Valore	γ (kN/m³)	φ' (°)	c' (kPa)	γsat (kN/m³)
(1)	Tarrana arganica limasa	Nat.	16.50	18.00	2.00	17.50
(1)	Terreno organico limoso	Rid	16.25	14.01	1.21	17.27
(2)	Limo argilloso e argilla giallastra	Nat.	19.10	21.10	10.60	19.20
(-/		Rid	18.90	16.72	8.32	19.05
(2)	aabbia addamaata	Nat.	18.60	36.00	00.00	19.00
(3)	sabbia addensata	Rid	18.40	28.41	00.00	18.75
(4)	Limo argilloso	Nat.	19.00	26.00	10.00	19.50
(4)		Rid	18.75	20.41	7.61	19.25

La verifica è stata eseguita utilizzando un software specifico Open Source SSAP 2010 ver. 4.9.8, che permette di valutare e rintracciare le probabili superfici di rottura che possono interessare un versante.

Al contrario di altri software commerciali, esso esclude lo studio mediante superfici circolari, che poco si avvicinano alle superfici reali di rottura, ricercando superfici generiche spezzate generate in corrispondenza dei punti del versante dove si concentrano i valori di resistenza minori, utilizzando comunque metodi di calcolo rigorosi.

Cell. +39 329.7160866 Fax +39 0884.89012 E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

Rev. 0 - Maggio 2019

cod. elaborato DC19045D-V18

Pagina 17 di 19

ANALISI STABILITA' PENDII NATURALI

METODI DI CALCOLO

SSAP2010 è caratterizzato dalla presenza di 6 metodi di calcolo rigorosi che operano nell'ambito della metodologia della verifica della stabilità dei pendii mediante il metodo dell'equilibrio limite. Gli algoritmi base di calcolo sono stati ricodificati interamente utilizzano la notazione unificata di che deriva dall'algoritmo proposto da **Zhu et al (2005)** per il solo metodo di **Morgestern & Price (1965)**. il metodo di ZHU et al. (2005) è stato ampliato e ulteriormente sviluppato per permettere la applicazione nei più importanti metodi Rigorosi per applicazione del metodo dell'equilibrio limite:

- Janbu rigoroso(1973);
- Spencer (1973)
- Sarma I (1973);
- Morgenstern & Price (1965);
- Correia (1988)
- Sarma II (1979)

Nel caso esaminato, il metodo di verifica applicato è stato quello di Morgenstern & Price (1965), impostato con le seguenti configurazioni: ricerca delle superfici con *Convex Random Search*, *Tension cracks testa pendio* e *Smussa superfici di scivolamento*" attivati, numero di iterazioni pari a 5.000 e coefficiente sismico verticale assunto sia con valore positivo che negativo.

La verifica è stata elaborata in condizioni sismiche, secondo quanto richiesto dalle NTC 2018.

Il programma ha permesso così di rintracciare per tutti i profili analizzati le superfici con minore valore del Fattore di Sicurezza Fs e verificare il potenziale di stabilità mediante il confronto con il valore calcolato di Fs e quello minimo prescritto dalle NTC in condizioni di verifica con l'**Approccio 1**

- Combinazione 2 (A2+M2+R2), con R2 = 1.1 – ossia Fs ≥ 1.1

Dall'analisi delle risultanze riportate nell'allegato a corredo del seguente rapporto, si evince che:

➤ la verifica di stabilità del versante risulta essere soddisfatta in quanto il valore del coefficiente di Fs risulta essere maggiore del valore di normativa pari a 1,1.

I tabulati e i report di verifica, nonché i grafici e il profilo, sono allegati in coda alla presente.

Cell. +39 329.7160866 Fax +39 0884.89012

E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA (FG) IN LOCALITA' "TORRE GIULIA"

cod. elaborato

Rev. 0 - Maggio 2019

DC19045D-V18

Pagina 18 di 19

ANALISI STABILITA' PENDII NATURALI

7. CONCLUSIONI

La verifica di stabilità di un versante si può ricondurre alla determinazione di un coefficiente di sicurezza da confrontare con quello riportato dalla normativa vigente (pari ad 1,1 EUROCODICE 8), relativo ad un'ipotetica superficie di rottura, pari al rapporto tra la resistenza al taglio disponibile e la tendenza al taglio mobilitata.

Dall'analisi delle risultanze riportate nell'allegato a corredo del seguente rapporto, si evince che:

la verifica di stabilità del versante risulta essere soddisfatta in quanto il valore del coefficiente di Fs risulta essere maggiore del valore di normativa pari a 1,1.

Cagnano Varano, Maggio 2019

Geol. Domenico DEL CONTE

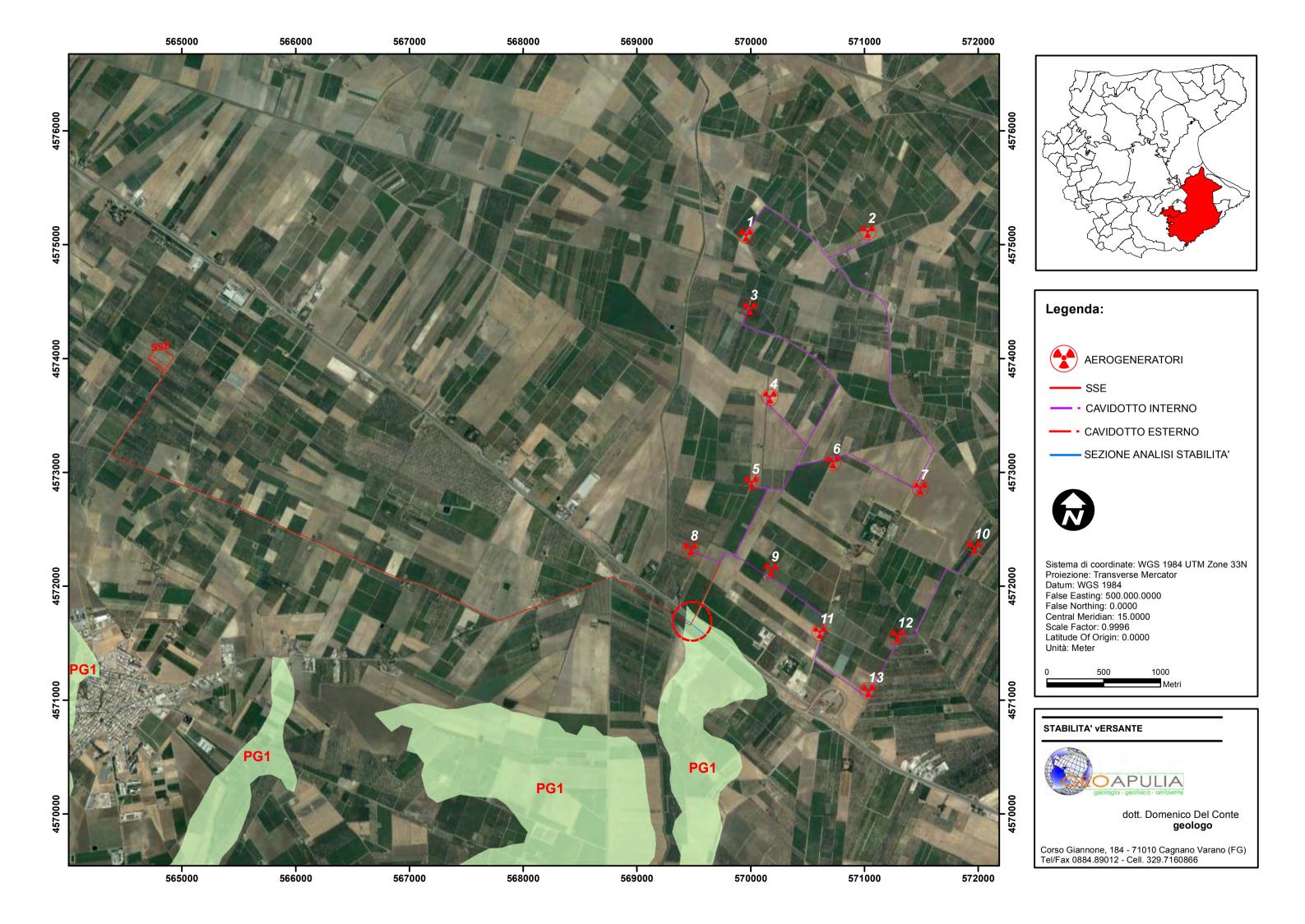
TECNICO

Cell. +39 329.7160866 Fax +39 0884.89012 E-mail: domenico.delconte@geoapulia.it

"PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI CERIGNOLA

(FG) IN LOCALITA' "TORRE GIULIA"

cod. elaborato DC19045D-V18


Rev. 0 - Maggio 2019

Pagina 19 di 19

ANALISI STABILITA' PENDII NATURALI

ALLEGATI

- Ubicazione Sezione di verifica;
- Report verifica sezione;
- Grafici diagrammi forze;
- Mappa Fs locale
- Sezione di verifica;

Report elaborazioni

SSAP 4.9.9 - Slope Stability Analysis Program (1991,2018) WWW.SSAP.EU Build No. 10759

BY

Dr. Geol. LORENZO BORSELLI *,**
*UASLP, San Luis Potosi, Mexico
e-mail: lborselli@gmail.com

CV e WEB page personale: WWW.LORENZO-BORSELLI.EU

** Già Ricercatore CNR-IRPI fino a Luglio 2011

Ultima Revisione struttura tabelle del report: 29 dicembre 2018

 $File\ report: C:\SSAP2010\pendii\SEZIONE_EOLICO_CERIGNOLA_2019\REPORT.txt$

Data: 14/5/2019

Localita': SEZIONE PARCO EOLICO "TORRE GIULIA" - CERIGNOLA (FG)

Descrizione:

Modello pendio: SEZIONE.mod

----- PARAMETRI DEL MODELLO DEL PENDIO ------

___ PARAMETRI GEOMETRICI - Coordinate X Y (in m) ___

SUP T. SUP 2 SUP 3 SUP 4

X Y X Y X Y X Y

0.00 81.11 0.00 79.62 0.00 75.12 -

7.89 81.30 7.93 79.80 8.06 75.30 -

15.79 81.55 15.83 80.05 15.96 75.55 - 23.68 81.75 23.71 80.25 23.82 75.75 -

23.68 81.75 23.71 80.25 23.82 75.75 - 31.57 81.91 31.59 80.41 31.67 75.91 -

39.47 82.01 39.48 80.51 39.49 76.01 -

47.36 81.97 47.37 80.47 47.41 75.97 - 55.26 82.14 55.28 80.64 55.34 76.14 -

63.15 82.18 63.17 80.68 63.22 76.18 -

71.04 82.33 71.08 8 0.83 71.18 76.33 - 78.94 82.55 78.97 81.05 79.04 76.55 -

86.83 82.60 86.84 81.10 86.88 76.60 -

94.72 82.69 94.73 81.19 94.75 76.69 -

102.62 82.69 102.63 81.19 102.65 76.69 -

110.51 82.76 110.53 81.26 110.60 76.76 -118.41 82.94 118.44 81.44 118.54 76.94 -

126.30 83.10 126.33 81.60 126.43 77.10 -

134.19 83.27 134.22 81.77 134.29 77.27 -149.98 83.46 150.00 81.96 150.07 77.46 -

157.87 83.59 157.90 82.09 157.98 77.59 -

157.87 83.59 157.90 82.09 157.98 77.59 - 165.77 83.76 165.81 82.26 165.92 77.76 -

165.77 83.76 165.81 82.26 165.92 77.76 - 173.66 83.98 173.70 82.48 173.82 77.98 -

181.56 84.17 181.60 82.67 181.71 78.17 -

189.45 84.37 189.48 82.87 189.59 78.37 - 197.34 84.53 197.38 83.03 197.51 78.53 -

205.24 84.83 205.27 83.33 205.35 78.83 -

221.02 84.83 222.52 83.33 227.02 78.83 - - 221.02 84.96 222.52 83.48 227.02 79.04 - -

228.92 85.07 228.92 83.57 228.92 79.07 -## ASSENZA DI FALDA ## ----- PARAMETRI GEOMECCANICI ------C, fi` γsat STR_IDX sgci GSI mi Cu γ 17.27 STRATO 1 14.01 1.21 0.00 16.25 0.670 0.00 0.00 0.00 0.00 1.079 STRATO 2 16.72 8.32 0.00 18.90 19.05 0.00 0.00 0.00 0.00 STRATO 3 28.41 0.00 0.00 18.40 18.75 1.703 0.00 0.00 0.00 0.00 STRATO 4 20.41 7.61 0.00 18.75 19.25 1.299 0.00 0.00 0.00 0.00 LEGENDA: fi` Angolo di attrito interno efficace (in gradi) C` _____ Coesione efficace (in Kpa) Cu _____ Resistenza al taglio Non drenata (in Kpa) γ ______ Peso di volume terreno fuori falda (in KN/m^3) γsat _____ Peso di volume terreno immerso (in KN/m^3) STR IDX ___ Indice di resistenza (usato in solo in 'SNIFF SEARCH) (adimensionale) ---- SOLO Per AMMASSI ROCCIOSI FRATTURATI - Parametri Criterio di Rottura di Hoek (2002) sigci _____ Resistenza Compressione Uniassiale Roccia Intatta (in MPa) GSI _____ Geological Strenght Index ammasso(adimensionale) mi _____ Indice litologico ammasso(adimensionale) D Fattore di disturbo ammasso(adimensionale) Fattore di riduzione NTC2018 gammaPHI=1.25 e gammaC=1.25 - DISATTIVATO (solo per ROCCE) Uso CRITERIO DI ROTTURA Hoek et al. (2002,2006) - non-lineare - Generalizzato secondo Lei et al. (2016) ----- INFORMAZIONI GENERAZIONE SUPERFICI RANDOM ------*** PARAMETRI PER LA GENERAZIONE DELLE SUPERFICI METODO DI RICERCA: CONVEX RANDOM - Chen (1992) FILTRAGGIO SUPERFICI :ATTIVATO 0.00 COORDINATE X1, X2, Y OSTACOLO: 0.00 0.00 LUNGHEZZA MEDIA SEGMENTI (m): 9.2 (+/-) 50% INTERVALLO ASCISSE RANDOM STARTING POINT (Xmin .. Xmax): 4.58 - 210.61 LIVELLO MINIMO CONSIDERATO (Ymin): INTERVALLO ASCISSE AMMESSO PER LA TERMINAZIONE (Xmin .. Xmax): 27.47 - 224.34 *** TOTALE SUPERFICI GENERATE: 5000 ----- INFORMAZIONI PARAMETRI DI CALCOLO ------METODO DI CALCOLO: MORGENSTERN - PRICE (Morgenstern & Price, 1965) COEFFICIENTE SISMICO UTILIZZATO Kh: 0.0570 COEFFICIENTE SISMICO UTILIZZATO Kv (assunto Positivo): 0.0279 COEFFICIENTE c=Kv/Kh UTILIZZATO: 0.4900 FORZA ORIZZONTALE ADDIZIONALE IN TESTA (kN/m): 0.00 FORZA ORIZZONTALE ADDIZIONALE ALLA BASE (kN/m): 0.00 N.B. Le forze orizzontali addizionali in testa e alla base sono poste uguali a 0 durante le tutte le verifiche globali. I valori >0 impostati dall'utente sono utilizzati solo in caso di verifica singola

------ RISULTATO FINALE ELABORAZIONI ------

Fattore di sicurezza (FS) 3.9672 - Min. - X Y Lambda= 0.0873 186.68 84.30

188.71 83.96

189.75 83.80

^{*} DATI RELATIVI ALLE 10 SUPERFICI GENERATE CON MINOR Fs *

```
190.49 83.68
                      191.15 83.58
                      191.74 83.50
                      192.33 83.42
                      192.93 83.34
                      193.55 83.27
                      194.18 83.20
                      194.77 83.14
                      195.35 83.10
                      195.92 83.07
                      196.50 83.05
                      197.07 83.04
                      197.65 83.05
                      198.25 83.07
                      198.89 83.10
                      199.50 83.14
                      200.09 83.19
                      200.68 83.23
                      201.27 83.29
                      201.85 83.35
                      202.44 83.42
                      203.04 83.50
                      203.66 83.58
                      204.26 83.67
                      204.85 83.76
                      205.44 83.86
                      206.03 83.96
                      206.69 84.08
                      207.43 84.22
                      208.47 84.42
                      209.78 84.68
                      209.78 84.83
Fattore di sicurezza (FS) 3.9696 - N.2 -- X Y Lambda= 0.0877
                      153.85 83.52
                      157.33 82.94
                      159.05 82.67
                      160.24 82.52
                      161.27 82.41
                      162.24 82.35
                      163.16 82.31
                      164.11 82.30
                      165.08 82.32
                      166.13 82.36
                      167.16 82.39
                      168.17 82.43
                      169.17 82.47
                      170.15 82.51
                      171.14 82.54
                      172.14 82.58
                      173.13 82.62
                      174.12 82.65
                      175.11 82.70
                      176.09 82.74
                      177.07 82.79
                      178.05 82.85
                      179.03 82.90
```

```
180.02 82.97
                      181.02 83.04
                      182.03 83.11
                      183.02 83.19
                      184.00 83.28
                      184.97 83.37
                      185.95 83.48
                      187.04 83.60
                      188.27 83.76
                      189.99 83.99
                      192.13 84.28
                      192.13 84.42
Fattore di sicurezza (FS) 3.9730 - N.3 -- X Y Lambda= 0.0851
                      177.79 84.08
                      180.36 83.82
                      181.68 83.69
                      182.61 83.61
                      183.44 83.54
                      184.19 83.49
                      184.92 83.45
                      185.67 83.41
                      186.42 83.38
                      187.18 83.35
                      187.95 83.32
                      188.70 83.30
                      189.46 83.28
                      190.21 83.26
                      190.96 83.23
                      191.72 83.21
                      192.48 83.20
                      193.24 83.18
                      193.99 83.16
                      194.74 83.16
                      195.48 83.15
                      196.22 83.16
                      196.97 83.16
                      197.73 83.18
                      198.51 83.20
                      199.33 83.23
                      200.08 83.27
                      200.80 83.33
                      201.50 83.41
                      202.24 83.51
                      203.02 83.65
                      203.93 83.85
                      205.24 84.16
                      207.45 84.72
                      207.45 84.83
Fattore di sicurezza (FS) 3.9823 - N.4 -- X Y Lambda= 0.0829
                      170.46 83.89
                      173.63 83.46
                      175.21 83.26
                      176.31 83.14
                      177.28 83.06
```

```
178.17 83.01
                      179.03 82.98
                      179.91 82.97
                      180.80 82.98
                      181.75 83.00
                      182.69 83.03
                      183.61 83.05
                      184.53 83.07
                      185.43 83.10
                      186.34 83.12
                      187.25 83.14
                      188.16 83.17
                      189.06 83.19
                      189.97 83.22
                      190.88 83.24
                      191.79 83.26
                      192.69 83.29
                      193.61 83.31
                      194.53 83.33
                      195.47 83.36
                      196.42 83.38
                      197.31 83.42
                      198.19 83.48
                      199.05 83.55
                      199.94 83.65
                      200.91 83.78
                      202.01 83.95
                      203.59 84.23
                      206.03 84.69
                      206.03 84.83
Fattore di sicurezza (FS) 3.9832 - N.5 -- X Y Lambda= 0.0931
                      182.50 84.19
                      184.64 83.75
                      185.71 83.54
                      186.46 83.41
                      187.11 83.30
                      187.72 83.23
                      188.30 83.16
                      188.91 83.11
                      189.53 83.07
                      190.20 83.03
                      190.83 83.01
                      191.44 83.00
                      192.03 83.00
                      192.63 83.02
                      193.22 83.04
                      193.81 83.08
                      194.42 83.12
                      195.06 83.18
                      195.69 83.24
                      196.31 83.30
                      196.93 83.36
                      197.55 83.42
                      198.17 83.47
                      198.79 83.53
                      199.41 83.59
```

```
200.65 83.72
                      201.26 83.79
                      201.85 83.87
                      202.46 83.96
                      203.13 84.07
                      203.88 84.20
                      204.95 84.41
                      206.42 84.70
                      206.42 84.83
Fattore di sicurezza (FS) 3.9977 - N.6 -- X Y Lambda= 0.0887
                      185.04 84.26
                      186.98 83.98
                      187.99 83.83
                      188.72 83.73
                      189.37 83.63
                      189.95 83.55
                      190.53 83.46
                      191.12 83.38
                      191.72 83.29
                      192.33 83.20
                      192.90 83.13
                      193.45 83.08
                      194.00 83.04
                      194.56 83.01
                      195.11 83.00
                      195.67 83.00
                      196.26 83.01
                      196.89 83.04
                      197.49 83.08
                      198.06 83.12
                      198.62 83.18
                      199.18 83.24
                      199.74 83.31
                      200.30 83.40
                      200.87 83.49
                      201.47 83.60
                      202.07 83.71
                      202.65 83.82
                      203.23 83.93
                      203.81 84.03
                      204.46 84.15
                      205.19 84.29
                      206.20 84.47
                      207.23 84.66
                      207.23 84.83
Fattore di sicurezza (FS) 4.0042 - N.7 -- X Y Lambda= 0.0815
                      181.55 84.17
                      183.80 83.94
                      184.97 83.83
                      185.81 83.74
                      186.57 83.67
                      187.23 83.60
                      187.91 83.53
```

200.04 83.65

```
188.59 83.47
                      189.27 83.40
                      189.97 83.33
                      190.63 83.27
                      191.28 83.23
                      191.92 83.19
                      192.58 83.17
                      193.22 83.16
                      193.88 83.16
                      194.54 83.17
                      195.23 83.19
                      195.92 83.22
                      196.60 83.24
                      197.27 83.26
                      197.94 83.28
                      198.62 83.31
                      199.30 83.33
                      200.00 83.36
                      200.71 83.38
                      201.37 83.42
                      202.01 83.48
                      202.63 83.55
                      203.29 83.65
                      203.99 83.78
                      204.79 83.95
                      205.96 84.23
                      207.64 84.66
                      207.64 84.83
Fattore di sicurezza (FS) 4.0109 - N.8 -- X Y Lambda= 0.0830
                      176.77 84.05
                      179.13 83.84
                      180.35 83.73
                      181.23 83.65
                      182.02 83.57
                      182.72 83.51
                      183.42 83.45
                      184.13 83.38
                      184.84 83.32
                      185.56 83.25
                      186.25 83.19
                      186.94 83.15
                      187.62 83.11
                      188.31 83.08
                      188.99 83.05
                      189.68 83.04
                      190.37 83.03
                      191.09 83.03
                      191.80 83.03
                      192.51 83.03
                      193.21 83.03
                      193.91 83.04
                      194.62 83.04
                      195.33 83.05
                      196.07 83.06
                      196.84 83.07
                      197.52 83.10
```

```
198.82 83.23
                      199.49 83.33
                      200.20 83.48
                      201.04 83.70
                      202.25 84.05
                      204.27 84.66
                      204.27 84.79
Fattore di sicurezza (FS) 4.0111 - N.9 -- X Y Lambda= 0.0869
                      158.38 83.60
                      160.42 83.01
                      161.41 82.75
                      162.09 82.59
                      162.66 82.49
                      163.21 82.42
                      163.72 82.37
                      164.25 82.35
                      164.81 82.35
                      165.43 82.37
                      166.04 82.40
                      166.63 82.42
                      167.21 82.44
                      167.77 82.45
                      168.35 82.47
                      168.93 82.49
                      169.51 82.51
                      170.10 82.54
                      170.67 82.56
                      171.22 82.60
                      171.77 82.65
                      172.33 82.71
                      172.87 82.77
                      173.43 82.85
                      173.99 82.93
                      174.58 83.04
                      175.17 83.13
                      175.75 83.23
                      176.32 83.33
                      176.89 83.43
                      177.53 83.54
                      178.24 83.66
                      179.24 83.83
                      180.01 83.96
                      180.01 84.13
Fattore di sicurezza (FS) 4.0124 - N.10 -- X Y Lambda= 0.0850
                      156.61 83.57
                      160.25 83.09
                      162.06 82.88
                      163.33 82.75
                      164.45 82.66
                      165.47 82.61
                      166.46 82.58
                      167.47 82.57
                      168.50 82.59
```

198.18 83.15

169.60 82.62 170.67 82.65 171.73 82.68 172.79 82.72 173.83 82.75 174.88 82.78 175.92 82.81 176.97 82.84 178.01 82.87 179.05 82.90 180.09 82.94 181.14 82.97 182.18 83.00 183.24 83.03 184.29 83.06 185.37 83.10 186.45 83.13 187.48 83.18 188.50 83.24 189.50 83.32 190.53 83.41 191.66 83.55 192.93 83.72 194.75 83.99 196.98 84.35 196.98 84.52

----- ANALISI DEFICIT DI RESISTENZA -----

DATI RELATIVI ALLE 10 SUPERFICI GENERATE CON MINOR Fs * # Analisi Deficit in riferimento a FS(progetto) = 1.200

Sup N	. FS	FTR (kN/m)	FTA (kN/m)	Bilancio(kN/n	n) ESITO
1	3.967	123.9	31.2	86.4	Surplus
2	3.970	209.8	52.9	146.4	Surplus
3	3.973	151.8	38.2	106.0	Surplus
4	3.982	181.6	45.6	126.9	Surplus
5	3.983	123.8	31.1	86.5	Surplus
6	3.998	115.0	28.8	80.4	Surplus
7	4.004	132.5	33.1	92.8	Surplus
8	4.011	145.8	36.4	102.2	Surplus
9	4.011	116.2	29.0	81.5	Surplus
10	4.012	213.3	53.2	149.5	Surplus

Esito analisi: SURPLUS di RESISTENZA!

Valore minimo di SURPLUS di RESISTENZA (kN/m): 80.4

Note: FTR --> Forza totale Resistente lungo la superficie di scivolamento

FTA --> Forza totale Agente lungo la superficie di scivolamento

IMPORTANTE! Il Deficit o il Surplus di resistenza viene espresso in kN per metro di LARGHEZZA rispetto al fronte della scarpata

Χ	dx	alpha	W	ru	U	phi'	(c',Cu)
(m)	(m)	(°)	(kN/m)	(-)	(kPa)	(°)	(kPa)
186.684	0.262	-9.41	0.11	0.00	0.00	14.01	1.21
186.946	0.262	-9.41	0.33	0.00	0.00	14.01	1.21
187.208	0.262	-9.41	0.55	0.00	0.00	14.01	1.21
187.470	0.262	-9.41	0.77	0.00	0.00	14.01	1.21
187.732	0.262	-9.41	0.99	0.00	0.00	14.01	1.21
187.994	0.262	-9.41	1.20	0.00	0.00	14.01	1.21
188.255	0.262	-9.41	1.42	0.00	0.00	14.01	1.21
188.517	0.193	-9.41	1.19	0.00	0.00	14.01	1.21
188.710	0.262	-9.21	1.80	0.00	0.00	14.01	1.21
188.972	0.262	-9.21	2.02	0.00	0.00	14.01	1.21
189.234	0.216	-9.21	1.82	0.00	0.00	14.01	1.21
189.450	0.030	-9.21	0.26	0.00	0.00	14.01	1.21
189.480	0.110	-9.21	0.99	0.00	0.00	14.01	1.21
189.590	0.162	-9.21	1.53	0.00	0.00	14.01	1.21
189.752	0.262	-8.84	2.64	0.00	0.00	14.01	1.21
190.014	0.262	-8.84	2.84	0.00	0.00	14.01	1.21
190.276	0.214	-8.84	2.48	0.00	0.00	14.01	1.21
190.490	0.262	-8.46	3.21	0.00	0.00	14.01	1.21
190.752	0.262	-8.46	3.40	0.00	0.00	14.01	1.21
191.014	0.137	-8.46	1.85	0.00	0.00	14.01	1.21
191.151	0.262	-7.98	3.69	0.00	0.00	14.01	1.21
191.413	0.262	-7.98	3.87	0.00	0.00	14.01	1.21
191.675	0.068	-7.98	1.03	0.00	0.00	14.01	1.21
191.742	0.262	-7.61	4.10	0.00	0.00	14.01	1.21
192.004	0.262	-7.61	4.28	0.00	0.00	14.01	1.21
192.266	0.068	-7.61	1.14	0.00	0.00	14.01	1.21
192.335	0.262	-7.24	4.50	0.00	0.00	14.01	1.21
192.597	0.262	-7.24	4.66	0.00	0.00	14.01	1.21
192.858	0.075	-7.24	1.37	0.00	0.00	14.01	1.21
192.934	0.262	-6.88	4.88	0.00	0.00	14.01	1.21
193.196	0.262	-6.88	5.04	0.00	0.00	14.01	1.21
193.458	0.089	-6.88	1.74	0.00	0.00	14.01	1.21
193.546	0.262	-6.54	5.25	0.00	0.00	14.01	1.21
193.808	0.262	-6.54	5.41	0.00	0.00	14.01	1.21
194.070	0.111	-6.54	2.33	0.00	0.00	14.01	1.21
194.181	0.262	-5.47	5.62	0.00	0.00	14.01	1.21
194.443	0.262	-5.47	5.75	0.00	0.00	14.01	1.21
194.704	0.069	-5.47	1.54	0.00	0.00	14.01	1.21
194.774	0.262	-4.29	5.91	0.00	0.00	14.01	1.21
195.036	0.262	-4.29	6.02	0.00	0.00	14.01	1.21
195.298	0.055	-4.29	1.28	0.00	0.00	14.01	1.21
195.353	0.262	-3.04	6.14	0.00	0.00	14.01	1.21
195.615	0.262	-3.04	6.22	0.00	0.00	14.01	1.21
195.877	0.041	-3.04	0.99	0.00	0.00	14.01	1.21
195.918	0.262	-1.79	6.30	0.00	0.00	14.01	1.21
196.180	0.262	-1.79	6.36	0.00	0.00	14.01	1.21
196.442	0.060	-1.79	1.46	0.00	0.00	14.01	1.21
196.502	0.262	-0.53	6.42	0.00	0.00	14.01	1.21
196.764	0.262	-0.53	6.46	0.00	0.00	14.01	1.21
197.026	0.042	-0.53	1.04	0.00	0.00	14.01	1.21
197.068	0.262	0.73	6.48	0.00	0.00	14.01	1.21
197.330	0.010	0.73	0.26	0.00	0.00	14.01	1.21
197.340	0.040	0.73	0.99	0.00	0.00	14.01	1.21
197.380	0.130	0.73	3.23	0.00	0.00	14.01	1.21

197.510	0.139	0.73	3.45	0.00	0.00	14.01	1.21
197.649	0.262	1.92	6.52	0.00	0.00	14.01	1.21
197.911	0.262	1.92	6.53	0.00	0.00	14.01	1.21
198.173	0.073	1.92	1.83	0.00	0.00	14.01	1.21
198.246	0.262	2.99	6.53	0.00	0.00	14.01	1.21
198.508	0.262	2.99	6.51	0.00	0.00	14.01	1.21
198.770	0.118	2.99	2.93	0.00	0.00	14.01	1.21
198.888	0.262	3.56	6.48	0.00	0.00	14.01	1.21
199.150	0.262	3.56	6.45	0.00	0.00	14.01	1.21
199.412	0.087	3.56	2.13	0.00	0.00	14.01	1.21
199.498	0.262	4.17	6.41	0.00	0.00	14.01	1.21
199.760	0.262	4.17	6.37	0.00	0.00	14.01	1.21
200.022	0.071	4.17	1.73	0.00	0.00	14.01	1.21
200.093	0.262	4.80	6.31	0.00	0.00	14.01	1.21
200.355	0.262	4.80	6.26	0.00	0.00	14.01	1.21
200.617	0.061	4.80	1.45	0.00	0.00	14.01	1.21
200.678	0.262	5.43	6.19	0.00	0.00	14.01	1.21
200.940	0.262	5.43	6.12	0.00	0.00	14.01	1.21
201.202	0.065	5.43	1.51	0.00	0.00	14.01	1.21
201.267	0.262	6.06	6.03	0.00	0.00	14.01	1.21
201.529	0.262	6.06	5.96	0.00	0.00	14.01	1.21
201.791	0.058	6.06	1.32	0.00	0.00	14.01	1.21
201.849	0.262	6.68	5.85	0.00	0.00	14.01	1.21
202.111	0.262	6.68	5.76	0.00	0.00	14.01	1.21
202.373	0.065	6.68	1.42	0.00	0.00	14.01	1.21
202.439	0.262	7.28	5.64	0.00	0.00	14.01	1.21
202.701	0.262	7.28	5.54	0.00	0.00	14.01	1.21
202.962	0.075	7.28	1.56	0.00	0.00	14.01	1.21
203.037	0.262	7.85	5.40	0.00	0.00	14.01	1.21
203.299	0.262	7.85	5.29	0.00	0.00	14.01	1.21
203.561	0.097	7.85	1.92	0.00	0.00	14.01	1.21
203.658	0.262	8.28	5.13	0.00	0.00	14.01	1.21
203.920	0.262	8.28	5.00	0.00	0.00	14.01	1.21
204.181	0.078	8.28	1.48	0.00	0.00	14.01	1.21
204.260	0.262	8.72	4.84	0.00	0.00	14.01	1.21
204.522	0.262	8.72	4.71	0.00	0.00	14.01	1.21
204.784	0.069	8.72	1.22	0.00	0.00	14.01	1.21
204.853	0.262	9.18	4.54	0.00	0.00	14.01	1.21
205.115	0.125	9.18	2.11	0.00	0.00	14.01	1.21
205.240	0.030	9.18	0.50	0.00	0.00	14.01	1.21
205.270	0.080	9.18	1.33	0.00	0.00	14.01	1.21
205.350	0.091	9.18	1.48	0.00	0.00	14.01	1.21
205.441	0.262	9.63	4.16	0.00	0.00	14.01	1.21
205.702	0.262	9.63	3.96	0.00	0.00	14.01	1.21
205.964	0.067	9.63	0.98	0.00	0.00	14.01	1.21
206.031	0.262	10.23	3.71	0.00	0.00	14.01	1.21
206.293	0.262	10.23	3.51	0.00	0.00	14.01	1.21
206.555	0.134	10.23	1.72	0.00	0.00	14.01	1.21
206.689	0.262	10.70	3.19	0.00	0.00	14.01	1.21
206.951	0.262	10.70	2.97	0.00	0.00	14.01	1.21
207.213	0.213	10.70	2.26	0.00	0.00	14.01	1.21
207.426	0.262	11.15	2.58	0.00	0.00	14.01	1.21
207.688	0.262	11.15	2.35	0.00	0.00	14.01	1.21
207.950	0.262	11.15	2.12	0.00	0.00	14.01	1.21
208.212	0.256	11.15	1.86	0.00	0.00	14.01	1.21
208.467	0.262	11.39	1.68	0.00	0.00	14.01	1.21
208.729	0.262	11.39	1.44	0.00	0.00	14.01	1.21
208.991	0.262	11.39	1.21	0.00	0.00	14.01	1.21

209.253	0.262	11.39	0.98	0.00	0.00	14.01	1.21
209.515	0.262	11.39	0.75	0.00	0.00	14.01	1.21

LEGENDA SIMBOLI

X(m): Ascissa sinistra concio dx(m): Larghezza concio

alpha (°): Angolo pendenza base concio

W(kN/m): Forza peso concio

ru (-): Coefficiente locale pressione interstiziale U (kPa): Pressione totale dei pori base concio phi' (°): Angolo di attrito efficace base concio

c'/Cu (kPa): Coesione efficace o Resistenza al taglio in condizioni non drenate

TABELLA DIAGRAMMA DELLE FORZE DELLA SUPERFICIE INDIVIDUATA CON MINOR FS

Χ	ht	yt	yt'	E(x) T(x)	E' rho(x)	FS_FEM FS_p-c	FEM		
(m)	(m)	(m)	()	(kN/m) (k	N/m) (kN)	() () ()		
186.684	0.000	84.300	-0.117	0.000000000E+000	0.000000000E+000	6.7898199763E-002	0.132	37.223	17.661
186.946	0.013	84.269	-0.117	3.0223049490E-002	1.4437376343E-005	1.6288536343E-001	0.132	37.223	17.661
187.208	0.025	84.238	-0.116	8.5324835653E-002	2.1449053848E-004	3.5936349577E-001	0.132	18.457	8.309
187.470	0.039	84.208	-0.116	2.1846974379E-001	1.6182708281E-003	7.0456726611E-001	0.132	10.666	4.788
187.732	0.052	84.178	-0.113	4.5440088349E-001	6.3911954317E-003	9.8907329470E-001	0.132	8.369	3.673
187.994	0.066	84.149	-0.116	7.3657962511E-001	1.4211185657E-002	1.2592564806E+000	0.132	7.971	3.319
188.255	0.078	84.117	-0.119	1.1140418113E+000	2.6475000012E-002	1.4346512125E+000	0.164	8.551	3.252
188.517	0.091	84.087	-0.111	1.4880982167E+000	3.9004309454E-002	1.4376195798E+000	0.195	9.425	3.257
188.710	0.102	84.066	-0.098	1.7667606665E+000	4.8877601342E-002	1.4281598634E+000	0.213	10.445	3.323
188.972	0.120	84.042	-0.089	2.1349752865E+000	6.2656089493E-002	1.4134037502E+000	0.234	12.403	3.482
189.234	0.140	84.020	-0.082	2.5071491223E+000	7.7621701794E-002	1.4152965771E+000	0.254	15.071	3.712
189.450	0.159	84.003	-0.077	2.8117246359E+000	9.0784097983E-002	1.3565912709E+000	0.269	17.597	3.938
189.480	0.161	84.001	-0.070	2.8521971397E+000	9.2575754027E-002	1.3553930516E+000	0.271	17.921	3.968
189.590	0.171	83.993	-0.077	3.0038352449E+000	9.9663527345E-002	1.5020563075E+000	0.279	19.062	4.091
189.752	0.185	83.980	-0.082	3.2769802556E+000	1.1331669885E-001	1.7414446984E+000	0.296	20.339	4.311
190.014	0.204	83.958	-0.083	3.7573141232E+000	1.3908088792E-001	1.9224716907E+000	0.325	20.531	4.717
190.276	0.222	83.936	-0.089	4.2840356324E+000	1.6975709706E-001	2.2539589030E+000	0.358	18.321	5.155
190.490	0.235	83.916	-0.095	4.8097498160E+000	2.0285312450E-001	2.5175852038E+000	0.391	15.435	5.566
190.752	0.249	83.891	-0.096	5.4898958595E+000	2.4790196644E-001	2.7251934841E+000	0.431	12.482	6.071
191.014	0.263	83.865	-0.090	6.2372978857E+000	3.0026629015E-001	2.5634693697E+000	0.472	10.144	6.566
191.151	0.273	83.855	-0.072	6.5675539021E+000	3.2444431811E-001	2.3834740082E+000	0.489	9.303	6.751
191.413	0.291	83.836	-0.070	7.1776389428E+000	3.7041124935E-001	2.4132896020E+000	0.518	8.069	7.061
191.675	0.309	83.818			4.2149403558E-001		0.548	7.111	7.347
191.742	0.314	83.813	-0.063	7.9993834297E+000	4.3476940519E-001	2.4646578753E+000	0.555	6.913	7.415
192.004	0.333	83.797	-0.063	8.6256142520E+000	4.8548466756E-001	2.4959488806E+000	0.582	6.269	7.632
192.266	0.351	83.781	-0.062	9.3068454604E+000	5.4277160333E-001	2.3974732635E+000	0.610	5.714	7.764
192.335	0.357	83.777	-0.059	9.4669536850E+000	5.5645758834E-001	2.4017984041E+000	0.616	5.600	7.784
192.597	0.374	83.761	-0.059	1.0153662309E+001	6.1665786091E-001	2.6705983241E+000	0.644	5.175	7.782
192.858	0.392	83.746		1.0865902972E+001	6.8201540733E-001	2.6117685013E+000	0.672	4.820	7.625
192.934	0.398	83.742	-0.055	1.1060139223E+001	7.0015697835E-001	2.6268783466E+000	0.680	4.735	7.563
193.196	0.415	83.727	-0.054	1.1790110162E+001	7.6994737186E-001	2.7950449098E+000	0.708	4.450	7.273
193.458	0.433	83.713	-0.051	1.2524277820E+001	8.4307050146E-001	2.6815080570E+000	0.737	4.219	6.884
193.546	0.439	83.709	-0.050	1.2758077244E+001	8.6673541743E-001	2.6968625169E+000	0.745	4.154	6.754
193.808	0.456	83.696	-0.048	1.3508162202E+001	9.4402720552E-001	2.8390721908E+000	0.773	3.969	6.338
194.070	0.474	83.684		1.4245278813E+001	1.0223375681E+000	2.6577746935E+000	0.800	3.824	5.925
194.181	0.482	83.680	-0.040	1.4532321396E+001	1.0532997554E+000	2.6087923735E+000	0.810	3.775	5.771
194.443	0.497	83.669	-0.037	1.5226270930E+001	1.1291274791E+000	2.5813993817E+000	0.834	3.672	5.422
194.704	0.513	83.660	-0.034	1.5884545275E+001	1.2026306012E+000	2.3838664145E+000	0.856	3.598	5.109
194.774	0.517	83.658	-0.029	1.6047299032E+001	1.2210979899E+000	2.3335459532E+000	0.862	3.584	5.036
195.036	0.530	83.650	-0.025	1.6642557829E+001	1.2892029104E+000	2.1530661376E+000	0.882	3.537	4.785
195.298	0.543	83.645	-0.022	1.7175147541E+001	1.3514931198E+000	1.8637898977E+000	0.899	3.513	4.573
195.353	0.547	83.644	-0.017	1.7276291597E+001	1.3635279647E+000	1.8238432388E+000	0.902	3.511	4.534
195.615	0.556	83.639	-0.014	1.7748892785E+001	1.4202292776E+000	1.6922046323E+000	0.918	3.505	4.362
195.877	0.567	83.636	-0.011	1.8162725339E+001	1.4708927573E+000	1.6987819688E+000	0.932	3.512	4.218
195.918	0.569	83.636	-0.006	1.8233755299E+001	1.4797420141E+000	1.6903475873E+000	0.934	3.514	4.196

196.180	0.576	83.634	-0.002	1.8631387898E+001	1.5303044547E+000	1.3190889122E+000	0.949	3.530	4.062
196.442	0.584	83.635	0.000	1.8924738468E+001	1.5682189326E+000	1.0337012947E+000	0.959	3.542	3.966
196.502	0.586	83.634	0.002	1.8985358185E+001	1.5761464671E+000	9.7444524350E-001	0.961	3.545	3.946
196.764	0.589	83.635	0.003	1.9195192546E+001	1.6041376119E+000	6.5647375371E-001	0.969	3.550	3.875
197.026	0.592	83.636	0.003	1.9329241232E+001	1.6228622702E+000	4.2600887169E-001	0.974	3.541	3.821
197.068	0.592	83.636	0.014	1.9346636240E+001	1.6254208253E+000	3.9358267530E-001	0.974	3.538	3.812
197.330	0.593	83.640	0.016	1.9419482177E+001	1.6370609489E+000	2.1826581042E-001	0.978	3.519	3.768
197.340	0.593	83.640	0.021	1.9421710172E+001	1.6374554714E+000	2.0148681311E-001	0.978	3.518	3.766
197.380	0.594	83.641	0.023	1.9427533728E+001	1.6386044686E+000	1.1335040790E-001	0.979	3.513	3.759
197.510	0.595	83.644		1.9428648517E+001		-9.6835168120E-003	0.979	3.496	3.740
197.649	0.596	83.647		1.9424597064E+001		-7.9641638020E-002	0.979	3.475	3.716
197.911	0.596	83.656		1.9378804306E+001		-2.8918712806E-001	0.980	3.432	3.669
198.173	0.596	83.665		1.9273111113E+001		-4.7578777434E-001	0.978	3.384	3.615
198.246	0.597	83.668		1.9236815445E+001		-5.3306481445E-001	0.978	3.369	3.599
198.508	0.595	83.679		1.9062428106E+001		-7.9352165384E-001	0.976	3.320	3.535
198.770	0.594	83.693		1.8821142094E+001		-9.4914668118E-001	0.971	3.275	3.467
198.888	0.594	83.698		1.8707640062E+001		-9.7170558984E-001	0.968	3.259	3.441
	0.594	83.711			1.5506150045E+000		0.963	3.236	3.391
199.150 199.412	0.588	83.725			1.5176504859E+000		0.955	3.230	3.346
199.498	0.587	83.729				-1.1800655198E+000	0.952	3.211	3.334
199.760	0.582	83.743			1.4710613509E+000		0.943	3.195	3.299
200.022	0.577	83.758			1.4315151446E+000		0.933	3.182	3.273
200.093	0.576	83.761				-1.3853931049E+000	0.930	3.179	3.268
200.355	0.569	83.776	0.059	1.6870397540E+001	1.3789992541E+000	-1.5313769272E+000	0.920	3.168	3.249
200.617	0.562	83.792			1.3333831126E+000		0.908	3.159	3.237
200.678	0.561	83.796	0.062	1.6354714046E+001	1.3228382330E+000	-1.6080190399E+000	0.905	3.157	3.236
200.940	0.552	83.812	0.064	1.5912470166E+001	1.2750285764E+000	-1.7447715097E+000	0.892	3.150	3.229
201.202	0.545	83.830	0.066	1.5440744004E+001	1.2243650359E+000	-1.8302547168E+000	0.877	3.147	3.226
201.267	0.543	83.834	0.068	1.5321073980E+001	1.2115846110E+000	-1.8480697412E+000	0.874	3.146	3.226
201.529	0.533	83.852	0.070	1.4825916317E+001	1.1590109741E+000	-1.9341445204E+000	0.858	3.145	3.227
201.791	0.524	83.870			1.1046022271E+000		0.842	3.148	3.229
201.849	0.522	83.875			1.0924511747E+000		0.838	3.148	3.229
202.111	0.511	83.894			1.0365502837E+000		0.820	3.153	3.230
202.373	0.500	83.914		1.3096327552E+001		-2.0521809642E+000	0.802	3.161	3.225
202.439	0.497	83.919		1.2963288540E+001		-2.0685414670E+000	0.797	3.163	3.223
202.701	0.485	83.940		1.2386531620E+001		-2.2370560314E+000	0.777	3.173	3.209
202.701	0.483	83.962		1.1791443298E+001		-2.1953266010E+000	0.777	3.175	3.183
202.902	0.473	83.968		1.1629085708E+001		-2.2112582847E+000	0.733	3.188	3.174
203.299	0.457	83.991	0.089			- 2.3603012291E+000	0.724	3.203	3.136
203.561	0.444	84.015				- 2.2794925438E+000	0.697	3.221	3.091
203.658	0.439	84.023		1.0175830953E+001		-2.3751514798E+000	0.688	3.226	3.076
203.920	0.429	84.051		9.4603676148E+000		-2.7289146356E+000	0.655	3.253	3.035
204.181	0.420	84.080			5.5634686320E-001	-2.4767951342E+000	0.622	3.288	3.015
204.260	0.417	84.088				-2.4048860576E+000	0.613	3.298	3.012
204.522	0.403	84.114	0.096	7.9254390488E+000	4.8547925409E-001	-2.2916580824E+000	0.584	3.337	3.017
204.784	0.386	84.138	0.090	7.3573440279E+000	4.3977879416E-001	-1.9753103939E+000	0.559	3.384	3.053
204.853	0.382	84.144	0.084	7.2240272304E+000	4.2947567786E-001	-1.9283577674E+000	0.554	3.396	3.065
205.115	0.361	84.166	0.082	6.7147160286E+000	3.9101932262E-001	-1.7806927349E+000	0.533	3.450	3.128
205.240	0.351	84.176	0.077	6.5019400352E+000	3.7578509878E-001	-1.7837536382E+000	0.525	3.477	3.166
205.270	0.348	84.178	0.081	6.4478423256E+000	3.7194390069E-001	-1.8033352851E+000	0.523	3.485	3.177
205.350	0.342	84.184	0.079	6.3035587992E+000	3.6172080029E-001	-1.7600984701E+000	0.519	3.505	3.207
205.441	0.334	84.191	0.083	6.1486083035E+000	3.5086191553E-001	-1.7529382775E+000	0.513	3.528	3.243
205.702	0.312	84.214	0.087	5.6576530189E+000	3.1685889564E-001	-1.8736990480E+000	0.496	3.613	3.372
205.964	0.291	84.237		5.1671016784E+000		-2.0110122559E+000	0.477	3.715	3.527
206.031	0.286	84.244				-2.0615918423E+000	0.470	3.745	3.572
206.293	0.267	84.271			2.3611527189E-001		0.443	3.886	3.772
206.555	0.250	84.302		3.9023424589E+000		-2.2693209214E+000	0.409	4.056	3.994
206.689	0.230	84.319			1.7642516401E-001		0.403	4.050	4.119
206.951	0.242	84.349		3.0794422374E+000		-1.8453582217E+000	0.350	4.138	4.119
206.951	0.223	84.379		2.6253527774E+000		-1.7417571496E+000	0.330	4.335 4.499	4.285
207.426	0.191	84.406		2.2532505289E+000		-1.6401041209E+000	0.282	4.635	4.427
207.688	0.171	84.438		1.8585498375E+000		-1.4624019062E+000	0.247	4.755	4.387
207.950	0.153	84.471		1.4871951899E+000		-1.3502872324E+000	0.211	4.836	4.263
208.212	0.136	84.506		1.1512239381E+000		-1.2176840913E+000	0.174	4.898	4.097
208.467	0.118	84.539	0.131	8.5616456874E-001	2.4150434/85E-002	-1.1113735264E+000	0.135	4.901	3.864

208.729	0.100	84.574	0.135	5.7656573969E-001	1.3150846499E-002	-9.5537780990E-001	0.132	4.787	3.549
208.991	0.083	84.609	0.137	3.5570551645E-001	6.0810228516E-003	-7.5158527470E-001	0.132	4.529	3.146
209.253	0.067	84.646	0.141	1.8286007645E-001	2.0248547535E-003	-5.5764797031E-001	0.132	4.144	2.694
209.515	0.051	84.683	0.141	6.3590740664E-002	3.3280455484E-004	-3.4908042638E-001	0.132	3.812	2.330

.....

LEGENDA SIMBOLI

X(m): Ascissa sinistra concio

ht(m): Altezza linea di thrust da nodo sinistro base concio

yt(m): coordinata Y linea di trust

yt'(-): gradiente pendenza locale linea di trust

E(x)(kN/m): Forza Normale interconcio

T(x)(kN/m): Forza Tangenziale interconcio

E' (kN): derivata Forza normale interconcio

Rho(x) (-): fattore mobilizzazione resistenza al taglio verticale interconcio ZhU et al. (2003)

FS_FEM(x) (-): fattore di sicurezza locale stimato (locale in X) by qFEM

FS_SRM(x) (-): fattore di sicurezza locale stimato (locale in X) by SRM Procedure

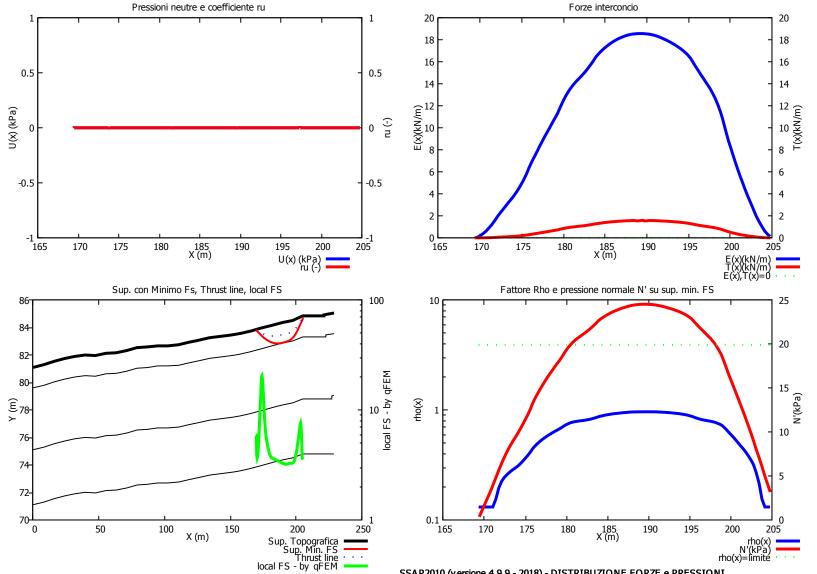
TABELLA SFORZI DI TAGLIO DISTRIBUITI LUNGO SUPERFICIE INDIVIDUATA CON MINOR FS

Х	dx	dl	alpha	TauStres	s TauF	TauStren	gth TauS
(m)	(m)	(m)	(°)	(kPa)	(kN/m)	(kPa)	(kN/m)
186.684	0.262	0.265	-9.407	-0.044	-0.012	1.312	0.348
186.946	0.262	0.265	-9.407	-0.133	-0.035	1.518	0.403
187.208	0.262	0.265	-9.407	-0.221	-0.059	1.727	0.458
187.470	0.262	0.265	-9.407	-0.309	-0.082	1.943	0.516
187.732	0.262	0.265	-9.407	-0.398	-0.106	2.158	0.573
187.994	0.262	0.265	-9.407	-0.486	-0.129	2.378	0.631
188.255	0.262	0.265	-9.407	-0.575	-0.153	2.584	0.686
188.517	0.193	0.196	-9.407	-0.651	-0.127	2.765	0.541
188.710	0.262	0.265	-9.209	-0.704	-0.187	2.943	0.781
188.972	0.262	0.265	-9.209	-0.788	-0.209	3.148	0.835
189.234	0.216	0.219	-9.209	-0.865	-0.189	3.335	0.729
189.450	0.030	0.030	-9.209	-0.904	-0.027	3.428	0.104
189.480	0.110	0.111	-9.209	-0.926	-0.103	3.485	0.388
189.590	0.162	0.164	-9.209	-0.969	-0.159	3.603	0.592
189.752	0.262	0.265	-8.845	-0.971	-0.257	3.773	1.000
190.014	0.262	0.265	-8.845	-1.045	-0.277	3.978	1.054
190.276	0.214	0.217	-8.845	-1.113	-0.241	4.181	0.907
190.490	0.262	0.265	-8.460	-1.099	-0.291	4.365	1.156
190.752	0.262	0.265	-8.460	-1.165	-0.309	4.570	1.210
191.014	0.137	0.138	-8.460	-1.216	-0.168	4.689	0.649
191.151	0.262	0.264	-7.979	-1.149	-0.304	4.824	1.276
191.413	0.262	0.264	-7.979	-1.206	-0.319	5.012	1.326
191.675	0.068	0.068	-7.979	-1.242	-0.085	5.122	0.349
191.742	0.262	0.264	-7.608	-1.178	-0.311	5.226	1.381
192.004	0.262	0.264	-7.608	-1.229	-0.325	5.412	1.430
192.266	0.068	0.069	-7.608	-1.261	-0.087	5.502	0.379
192.335	0.262	0.264	-7.241	-1.184	-0.312	5.626	1.485
192.597	0.262	0.264	-7.241	-1.228	-0.324	5.800	1.531
192.858	0.075	0.076	-7.241	-1.257	-0.095	5.896	0.447
192.934	0.262	0.264	-6.882	-1.169	-0.309	6.014	1.587
193.196	0.262	0.264	-6.882	-1.208	-0.319	6.176	1.629
193.458	0.089	0.089	-6.882	-1.234	-0.110	6.269	0.559
193.546	0.262	0.264	-6.541	-1.141	-0.301	6.387	1.684
193.808	0.262	0.264	-6.541	-1.175	-0.310	6.536	1.723

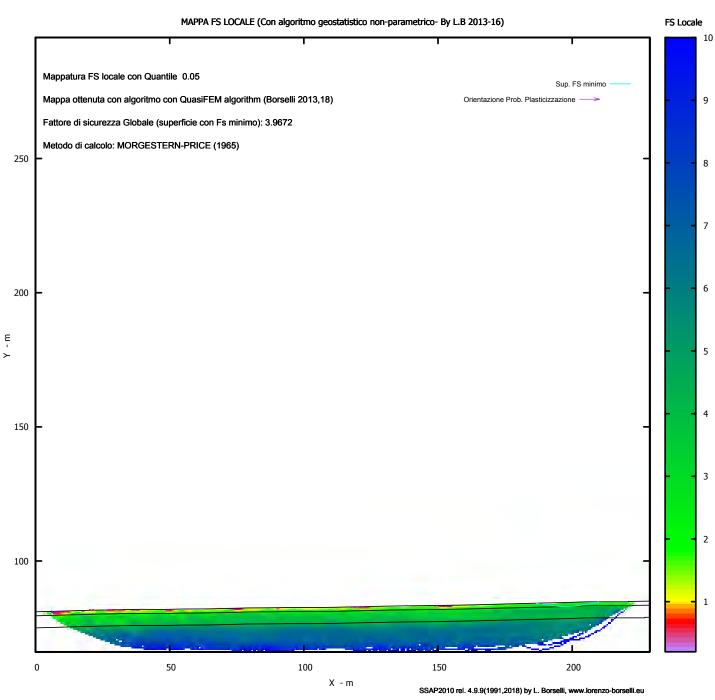
194.070	0.111	0.111	-6.541	-1.199	-0.134	6.626	0.739
194.181	0.262	0.263	-5.473	-0.825	-0.217	6.722	1.769
194.443	0.262	0.263	-5.473	-0.844	-0.222	6.842	1.800
194.704	0.069	0.070	-5.473	-0.857	-0.060	6.913	0.481
194.774	0.262	0.263	-4.292	-0.405	-0.106	6.970	1.831
195.036	0.262	0.263	-4.292	-0.412	-0.108	7.062	1.855
195.298	0.055	0.055	-4.292	-0.417	-0.023	7.114	0.395
195.353	0.262	0.262	-3.037	0.092	0.024	7.155	1.877
195.615	0.262	0.262	-3.037	0.093	0.024	7.225	1.895
195.877	0.041	0.041	-3.037	0.094	0.004	7.280	0.302
195.918	0.262	0.262	-1.788	0.620	0.162	7.292	1.911
196.180	0.262	0.262	-1.788	0.626	0.164	7.330	1.921
196.442	0.060	0.060	-1.788	0.629	0.038	7.360	0.440
196.502	0.262	0.262	-0.531	1.170	0.307	7.362	1.928
196.764	0.262	0.262	-0.531	1.177	0.308	7.384	1.934
197.026	0.042	0.042	-0.531	1.180	0.050	7.400	0.312
197.068	0.262	0.262	0.731	1.726	0.452	7.390	1.936
197.330	0.010	0.010	0.731	1.728	0.018	7.393	0.076
197.340	0.040	0.040	0.731	1.728	0.069	7.393	0.296
197.380	0.130	0.130	0.731	1.731	0.225	7.399	0.962
197.510	0.139	0.139	0.731	1.735	0.241	7.412	1.029
197.649	0.262	0.262	1.920	2.252	0.590	7.406	1.941
197.911	0.262	0.262	1.920	2.254	0.591	7.408	1.941
198.173	0.073	0.073	1.920	2.255	0.165	7.410	0.543
198.246	0.262	0.262	2.990	2.714	0.712	7.389	1.938
198.508	0.262	0.262	2.990	2.707	0.710	7.372	1.933
198.770	0.118	0.118	2.990	2.702	0.319	7.360	0.870
198.888	0.262	0.262	3.557	2.937	0.771	7.337	1.925
199.150	0.262	0.262	3.557	2.924	0.767	7.311	1.919
199.412	0.087	0.282	3.557	2.916	0.253	7.293	0.633
199.498	0.262	0.263	4.166	3.161	0.830	7.263	1.907
199.760	0.262	0.263	4.166	3.141	0.825	7.226	1.898
200.022	0.071	0.203	4.166	3.128	0.223	7.202	0.514
200.093	0.262	0.263	4.796	3.372	0.886	7.166	1.883
200.355	0.262	0.263	4.796	3.344	0.879	7.117	1.871
200.617	0.061	0.263	4.796	3.326	0.204	7.087	0.435
200.678	0.262	0.263	5.431	3.561	0.204	7.044	1.853
200.940	0.262	0.263	5.431	3.523	0.937	6.983	1.833
200.940	0.262	0.265	5.431	3.500	0.327	6.945	0.454
201.202	0.063	0.063	6.056	3.716	0.229	6.894	1.816
201.529	0.262	0.263	6.056	3.668	0.966	6.823	1.797
201.791	0.262	0.263	6.056	3.638	0.300	6.778	0.398
201.791	0.038	0.039	6.679	3.839	1.012	6.721	1.772
201.649	0.262	0.264	6.679	3.780		6.637	1.772
					0.997		
202.373	0.065	0.066	6.679	3.742	0.246	6.582	0.433
202.439	0.262	0.264	7.282	3.918	1.035	6.519	1.721
202.701	0.262	0.264	7.282	3.847	1.016	6.424	1.696
202.962	0.075	0.075	7.282	3.801	0.286	6.360	0.479
203.037	0.262	0.264	7.853	3.946	1.043	6.290	1.663
203.299	0.262	0.264	7.853	3.863	1.021	6.184	1.635
203.561	0.097	0.098	7.853	3.806	0.371	6.107	0.596
203.658	0.262	0.265	8.279	3.883	1.028	6.037	1.598
203.920	0.262	0.265	8.279	3.789	1.003	5.919	1.567
204.181	0.078	0.079	8.279	3.729	0.296	5.834	0.463
204.260	0.262	0.265	8.723	3.799	1.007	5.748	1.523
204.522	0.262	0.265	8.723	3.695	0.979	5.615	1.488
204.784	0.069	0.070	8.723	3.630	0.254	5.528	0.388
204.853	0.262	0.265	9.177	3.689	0.979	5.438	1.443

205.11	5 0.125	0.127	9.177	3.603	0.456	5.333	0.675
205.24	0.030	0.030	9.177	3.567	0.108	5.294	0.161
205.27	0.080	0.081	9.177	3.536	0.287	5.258	0.426
205.35	0.091	0.092	9.177	3.487	0.320	5.200	0.477
205.44	1 0.262	0.266	9.631	3.499	0.929	5.077	1.349
205.70	2 0.262	0.266	9.631	3.335	0.886	4.898	1.301
205.96	4 0.067	0.068	9.631	3.232	0.219	4.791	0.325
206.03	1 0.262	0.266	10.227	3.260	0.868	4.666	1.242
206.29	3 0.262	0.266	10.227	3.079	0.819	4.479	1.192
206.55	5 0.134	0.136	10.227	2.941	0.401	4.340	0.592
206.68	9 0.262	0.267	10.702	2.892	0.771	4.174	1.113
206.95	1 0.262	0.267	10.702	2.696	0.719	3.967	1.057
207.21	3 0.213	0.217	10.702	2.518	0.545	3.786	0.820
207.42	6 0.262	0.267	11.149	2.405	0.642	3.588	0.958
207.68	8 0.262	0.267	11.149	2.194	0.586	3.377	0.902
207.95	0.262	0.267	11.149	1.983	0.529	3.166	0.845
208.21	2 0.256	0.261	11.149	1.775	0.463	2.959	0.771
208.46	7 0.262	0.267	11.392	1.589	0.424	2.748	0.734
208.72	9 0.262	0.267	11.392	1.370	0.366	2.531	0.676
208.99	1 0.262	0.267	11.392	1.151	0.307	2.316	0.619
209.25	3 0.262	0.267	11.392	0.932	0.249	2.103	0.562
209.51	5 0.262	0.267	11.392	0.713	0.190	1.891	0.505

LEGENDA SIMBOLI


X(m): Ascissa sinistra concio dx(m): Larghezza concio dl(m): lunghezza base concio

alpha (°): Angolo pendenza base concio


TauStress (kPa): Sforzo di taglio su base concio TauF (kN/m): Forza di taglio su base concio

TauStrength (kPa): Resistenza al taglio su base concio TauS (kN/m): Forza resistente al taglio su base concio

SSAP2010 (versione 4.9.9 - 2018) - DISTRIBUZIONE FORZE e PRESSIONI

http://WWW.SSAP.EU

Software by Dr.Geol. L.Borselli - www.lorenzo-borselli.eu SSAP 4.9.9 (2018) - Slope Stability Analysis Program

SSAP/DXF generator rel. 1.5.3 (2018)

Data: 14/5/2019

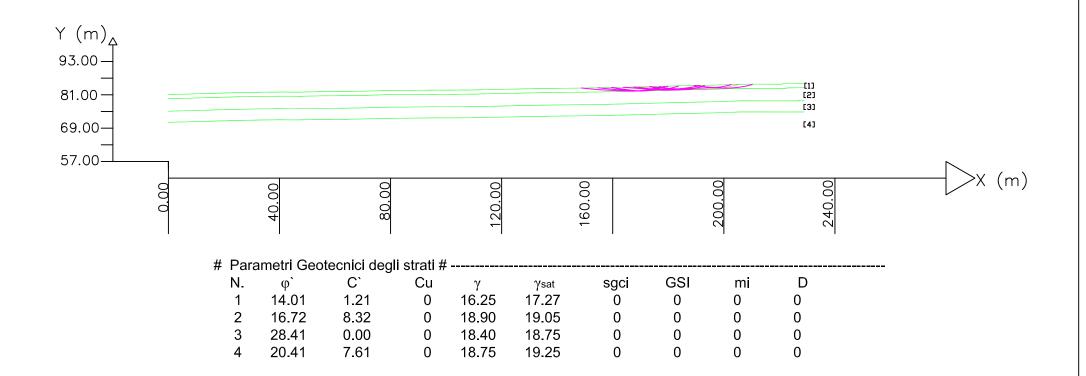
Località: "TORRE GIULIA"

Descrizione: SEZIONE PARCO EOLICO "TORRE GIULIA" - CERIGNOLA (FG)

[n] = N. strato o lente

Modello di calcolo: Morgenstern - Price (1965)

DATI 10 SUP. CON MINOR Fs


Fs minimo: 3.9183

Range Fs: 3.9183 4.1959 Differenza % Range Fs: 6.61

Coefficiente Sismico orizzontale - Kh: 0.0570

GENERAZIONE SUPERFICI RANDOM

Campione Superfici - N.: 5000 Lunghezza media segmenti (m): 9.2 Range X inizio generazione : 4.6 - 210.6 Range X termine generazione : 27.5 - 224.3 Livello Y minimo considerato : 66.2

