

ANAS S.p.A.

anas Direzione Progettazione e Realizzazione Lavori

LAVORI DI COLLEGAMENTO TRA LA S.S.11 A MAGENTA E LA TANGENZIALE OVEST DI MILANO

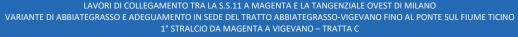
VARIANTE DI ABBIATEGRASSO E ADEGUAMENTO IN SEDE DEL TRATTO ABBIATEGRASSO-VIGEVANO FINO AL PONTE SUL FIUME TICINO

1° STRALCIO DA MAGENTA A VIGEVANO - TRATTA C

PROGETTO	UGETTU LIV. PROG. N. PROG.	HG03_P03CV17STRR	RE02_B.PDF	REVISIONE	SCALA:	
LO20	3 E 1801	CODICE P 0 3 C V 1 7	STR RE0	2 B	-	
С						
В	EMISSIONE A SEGUITO DI RA ITCF-C186001-01-ATF-RA-000	PPORTO INTERMEDIO DI VERIFICA 01	MARZO 2019	ING. STEFANIA RUGGIERI	ING. GAETANO RANIERI	ING. VALERIO BAJETTI
Α	EMISSIONE		SETTEMBRE 2018	ING. STEFANIA RUGGIERI	ING, GAETANO RANIERI	ING. VALERIO BAJETTI
REV	DESCRIZIONE		ΠΑΤΑ	REDATTO	VERIFICATO	APPROVATO

Sommario

1. PREMESSA		4
2. NORMATIVA DI RIFERIMENTO		6
3. MATERIALI		8
3.1 CALCESTRUZZO		8
3.2 ACCIAIO		15
4. CARATTERISTICHE GENERALI MODELLO DI CALCOI	LO DELL'IMPALCATO	16
4.1 UNITA' DI MISURA E CONVENZIONI DI SEGNO		16
4.2 SISTEMA DI RIFERIMENTO		16
4.3 MODALITA' DI COSTRUZIONE DELL'IMPALCATO		17
4.4 METODO ED IPOTESI DI CALCOLO		17
4.5 DATI IMPALCATO 4.5.1 TRAVE PREFABBRICATA V120 4.5.2 GEOMETRIA GETTO IN OPERA 4.5.3 PARAMETRI DEI MATERIALI		19 21 23 24
4.6 RIPARTIZIONE TRASVERSALE DEI CARICHI		24
5. ANALISI DEI CARICHI		27
5.1 VALORI CARATTERISTICI DELLE AZIONI PERMANENTI		27
5.2 CARICHI LINEARI DI 2A FASE SULL'IMPALCATO (EXTRA2)		28
5.3 CARICHI MOBILI		28
5.4 AZIONE DEL VENTO		28
5.5 AZIONE DI FRENAMENTO		30
5.6 RESISTENZA PASSIVA DEI VINCOLI		31
5.7 URTO DI UN VEICOLO IN SVIO		31
5.8 AZIONE ORIZZONTALE CENTRIFUGA		31
5.9 AZIONE SISMICA		31
5.10 COEFFICIENTI DI COMBINAZIONE		36
5.11 APPLICAZIONE DEL METODO DI MASSONNET		37
6. SOLLECITAZIONI		39
6.1 TRAVE 1 6.1.1 VALORI CARATTERISTICI SOLLECITAZIONI 6.1.2 COMBINAZIONI SLU 6.1.3 COMBINAZIONI SLE		39 39 45 48
6.2 TRAVERSO DI CAMPATA 6.2.1 VALORI CARATTERISTICI 6.2.2 COMBINAZIONI SLU 6.2.3 COMBINAZIONI SLE		52 53 55 56
6.3 SOLETTA		58



6.3.1 VALORI CARATTERISTICI 6.3.2 COMBINAZIONI SLU	58 59
6.3.3 COMBINAZIONI SLE	59
6.4 REAZIONI MASSIME AGLI APPOGGI	59 59
6.4.1 FORZE ORIZZONTALI 6.4.2 VALORI CARATTERISTICI REAZIONI VERTICALI	60
6.4.3 COMBINAZIONI SLU	61
6.4.4 COMBINAZIONI SLE	61
6.4.5 COMBINAZIONE SISMICA SLV	63
6.5 RIEPILOGO SCARICHI APPOGGI E GIUNTI	63
6.6 GIUNTO DI DILATAZIONE	64
6.7 DEFORMAZIONI	64
7. TRAVE N.1 - VERIFICA ELEMENTO PRECOMPRESSO	66
7.1 CONVENZIONI ED IPOTESI DI BASE	66
7.1.1 SISTEMA DI RIFERIMENTO	66
7.1.2 UNITÀ DI MISURA	66
7.1.3 MODELLO DI CALCOLO 7.1.4 CODICE DI CALCOLO	66 67
7.2 DATI DI CALCOLO	67
7.2.1 ARMATURE TRAVE PREFABBRICATA	67
7.2.2 MATERIALI - RESISTENZE DI CALCOLO	69
7.2.3 CADUTE DI TENSIONE	72
7.3 STATI LIMITE DI ESERCIZIO	74
7.3.1 STATO LIMITE DI FESSURAZIONE	75
7.3.2 STATO LIMITE DI DEFORMAZIONE	75
7.4 STATI LIMITE ULTIMI	76
7.4.1 STATO LIMITE ULTIMO PER SOLLECITAZIONI FLETTENTI	76
7.4.2 STATO LIMITE ULTIMO PER SOLLECITAZIONI TAGLIANTI E TORCENTI	77
7.4.3 STATO LIMITE ULTIMO PER SCORRIMENTO TRA I GETTI	78
7.5 VERIFICA SEZIONE X=0.00 - APPOGGIO	78
7.5.1 PRIMA FASE: SOLA TRAVE	78
7.5.2 SECONDA FASE: TRAVE + GETTO IN OPERA 7.5.3 VERIFICHE IN ESERCIZIO	80 81
7.6 VERIFICA SEZIONE X=1210.00 - MEZZERIA 7.6.1 PRIMA FASE: SOLA TRAVE	84 84
7.6.1 PRIMA FASE. SOLA TRAVE 7.6.2 SECONDA FASE: TRAVE + GETTO IN OPERA	87
7.6.3 VERIFICHE IN ESERCIZIO	87
8. VERIFICA TRAVERSO IN CA	92
8.1 TRAVERSO DI TESTATA – FASE DI SOLLEVAMENTO	 92
8.2 TRAVERSO DI CAMPATA	97
9. VERIFICA SOLETTA IN CA	102
9.1 SOLLECITAZIONI	102
9.2 VERIFICHE STATI LIMITE ULTIMI	102
9.3 VERIFICHE STATI LIMITE DI PUNZONAMENTO	106
10. VERIFICA PREDALLES	108

11. C	ONSIDERAZIONI SULLE ANALISI E VERIFICHE SVOLTE	110
11.1	ALLEGATO 1 VALIDAZIONE RC-SEC	111
11.2	ALLEGATO 2 VALIDAZIONE TC-PREDEM	134
12. S	OTTOSCRIZIONE DELL'ELABORATO DA PARTE DEL R.T.P	165

1.

PREMESSA

Si considera un'opera di scavalcamento da realizzarsi nell'ambito dei lavori per il collegamento tra la S.S.11 a Magenta e la Tangenziale Ovest di Milano, tratto Albairate – Ozzero. Il ponte copre una luce di calcolo uguale a 24.2m

La sede stradale della carreggiata ha una larghezza compresa tra 8.60 e 8.80 m circa; separata da un cordolo centrale di 0.75m vi è una pista ciclabile di 3.0m di larghezza. Lato ciglio stradale é presente un cordolo della larghezza di 1.25 m, lato pista di 0.50m. A questi cordoli sono ancorati, a mezzo di tirafondi, le barriere metalliche bordo ponte in acciaio e le reti metalliche di protezione.

L'impalcato é realizzato con 5 travi prefabbricate a cassone tipo V120, poste ad interasse 2.50 m. Le travi, calcolate in semplice appoggio, sono caratterizzate da un'altezza di 1.20 m e una luce di calcolo 24.20 m, vengono solidarizzate in opera con una soletta collaborante dello spessore di 0.25 m, traversi in testata e due in campata dello spessore di 0.40 m.

Il peso della soletta e dei sovraccarichi permanenti si suddivide tra le varie travi proporzionalmente alle rispettive larghezze di soletta collaborante.

I carichi accidentali sono quelli previsti dal regolamento per ponti stradali D.M. 17 gennaio 2018; essi si ripartiscono fra le travi mediante il metodo di Massonnet-Guyon, i cui parametri flessionale e torsionale sono calcolati facendo riferimento alle caratteristiche statico-geometriche della sezione di solo calcestruzzo di una trave interna, con la rispettiva soletta collaborante.

Le verifiche di stabilità si svolgono sulla trave che risulta complessivamente più sollecitata; le armature così determinate vengono estese a tutte le travi dell'impalcato.

Si tiene conto della diversa classe di calcestruzzo fra trave e soletta, tramite un coefficiente d'omogeneizzazione pari al rapporto tra i rispettivi moduli elastici convenzionali di regolamento.

Le cadute di tensione nell'armatura di precompressione si scontano in parte sulla trave isolata e in parte sulla sezione composta, nelle proporzioni indicate in seguito in sede di verifica tensionale.

Alla sezione d'appoggio, in mancanza di sufficiente lunghezza d'ancoraggio dei trefoli, la verifica a taglio viene condotta in regime di c.a. ordinario.

Si assumono positivi i momenti che tendono le fibre inferiori delle travi e della soletta e le forze di compressione; per quanto riguarda le tensioni sono positive le compressioni.

Le ascisse che individuano le varie sezioni verificate hanno origine nell'asse appoggi.

L'impalcato è sostenuto alle estremità da 2 spalle, costituite da elementi monolitici in c.a. Le spalle sono costituite da una elevazione principale dello spessore 1.20 m e da una zattera di fondazione rettangolare delle dimensioni spessore di 1.50m.

Le strutture di fondazione del ponte saranno del tipo profondo realizzate mediante pali trivellati di grosso diametro, collegati alla zattera di fondazione.

Si consultino per maggior chiarezza gli elaborati grafici di progetto: planimetria e profilo longitudinale dell'opera.

Le azioni considerate nel calcolo sono quelle tipiche delle strutture da ponte stradale soggetto alle azioni da traffico come previsto dalle "Nuove Norme tecniche per le costruzioni – D.M. 17 gennaio 2018".

Nella presente relazione si riporta il calcolo di verifica delle sottostrutture. Per la verifica dell'impalcato si rimanda alla relazione specifica.

Dal punto di vista sismico l'opera ricade nel comune di Abbiategrasso (MI).

Il sistema strutturale scelto è quello delle travi continue in sezione in c.a.p., con traversi di collegamento in testata e in campata. Le travi sono appoggiate su spalle mediante dispositivi di vincolo tradizionali.

La costruzione del cavalcavia avverrà in linea di massima seguendo le fasi costruttive descritte nel seguito. Saranno in primo luogo fabbricate le sottostrutture a sostegno dell'impalcato. Le spalle

laterali a sostegno dell'impalcato sono gettate in opera, con paraghiaia spesso 30 cm e di altezza variabile a causa dell'inclinazione trasversale del profilo stradale. Le spalle sono completate dai muri andatori e dal plinto di fondazione, sostenuto da un gruppo di pali ϕ 1000. I pali sono situati ad interasse di 3.0 m. Si disporranno quindi gli apparecchi di appoggio in acciaio-teflon, per mezzo dei quali le travi sono appoggiate alle sottostrutture. La posizione degli appoggi consente di ottenere la pendenza trasversale della soletta. Le travi prefabbricate saranno disposte in sede con l'ausilio di gru; quindi sarà gettata una soletta di cemento armato ordinario, di spessore 25 cm, realizzata mediante getto su predalles tralicciate che fungono da cassero perso.

La costruzione è ultimata disponendo le opere di finitura stradali, tra cui la pavimentazione di spessore 10 cm, l'eventuale ricarica e le barriere di protezione e i cordoli.

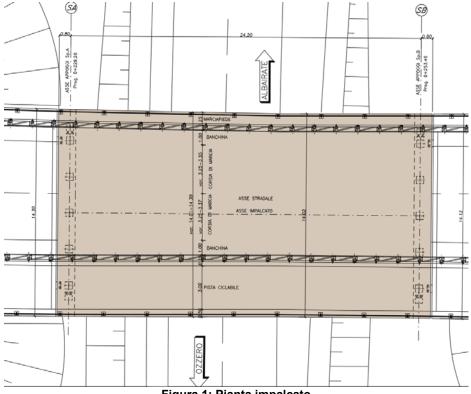


Figura 1: Pianta impalcato

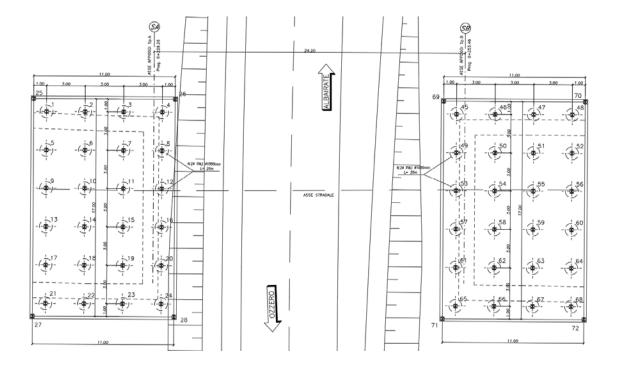


Figura 2: Pianta fondazioni

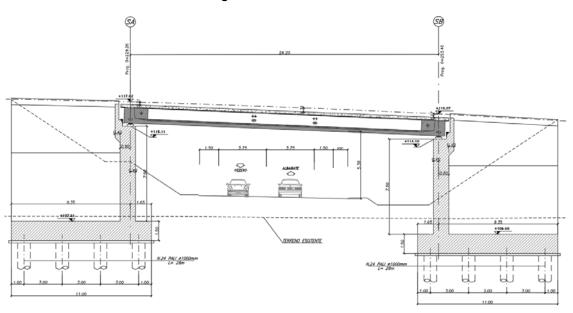


Figura 3: Profilo longitudinale

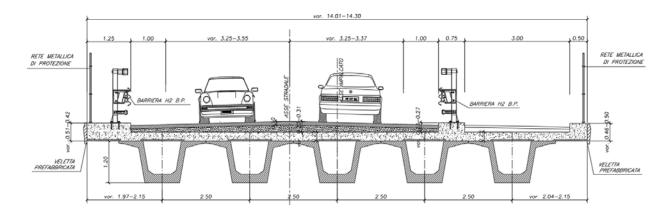


Figura 4: Sezione trasversale

NORMATIVA DI RIFERIMENTO

Le verifiche sono state eseguite secondo i metodi classici della scienza delle costruzioni e nel rispetto della seguente normativa:

- Legge 5/11/1971 n° 1086: "Norme per le discipline delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica".
- D.M. 17/01/2018: "Aggiornamento delle Norme tecniche per le costruzioni".
- UNI EN 206:2016: "Calcestruzzo Specificazione, prestazione, produzione e conformità".
- UNI ENV 197 Parte 1a: "Cemento. Composizione, specificazioni e criteri di conformità".
- Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici - Servizio Tecnico Centrale.
- UNI EN 197-1 giugno 2011: "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni".

• UNI EN 11104:2016: "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206-1".

Ulteriori riferimenti normativi

- UNI EN 1990 (Eurocodice 0) Aprile 2006: "Criteri generali di progettazione strutturale";
- UNI EN 1991-1-1 (Eurocodice 1) Agosto 2004 Azioni in generale- Parte 1-1: "Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici";
- UNI EN 1991-2 (Eurocodice 1) Marzo 2005 Azioni sulle strutture- Parte 2: "Carico da traffico sui ponti";
- UNI EN 1992-1-1 (Eurocodice 2) Novembre 2005: "Progettazione delle strutture di calcestruzzo Parte 1-1: "Regole generali e regole per gli edifici";
- UNI EN 1993-1-1 (Eurocodice 3) Ottobre 1993: "Progettazione delle strutture in acciaio –
 Parte 1-1: Regole generali e regole per gli edifici";
- UNI EN 1998-1 (Eurocodice 8) Marzo 2005: "Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali Azioni sismiche e regole per gli edifici";
- UNI EN 1998-2 (Eurocodice 8) Febbraio 2006: "Progettazione delle strutture per la resistenza sismica Parte 2: Ponti".

3. MATERIALI

Il progetto sarà realizzato utilizzando i seguenti materiali:

3.1 CALCESTRUZZO

Magroni:

Classe di resistenza:	C12/15		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	15	N/mm ²
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	12.45	N/mm^2
Classe di esposizione		X0	
Classe di consistenza slump:		S3	
Contenuto minimo di cemento:		150	daN/m^3
Rapporto A/C		≤ 0.60	

Pali di fondazione

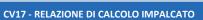
Classe di resistenza:	C25/30		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	30	N/mm ²
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	24,9	N/mm ²
Resistenza a compressione cilindrica media	$f_{cm} =$	32,9	N/mm ²
Resistenza a trazione semplice	$f_{ctm} =$	2,56	N/mm ²
Resistenza a trazione per flessione	$f_{ctm} =$	3,07	N/mm ²
Modulo elastico secante medio	$E_{cm} =$	31447	N/mm ²
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	1,79	N/mm ²
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	3,33	N/mm ²
Coefficiente di sicurezza SLU:	$\gamma_c =$	1,5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	14,1	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLU:	$f_{ctd} =$	1,19	N/mm ²
Coefficiente di sicurezza SLE:	$\gamma_c =$	1,0	
Resistenza di calcolo a compressione cilindrica SLE:	$f_{cd} =$	24,9	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{ctd} =$	1,79	N/mm ²
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{c,ad} =$	14,94	N/mm ²
Combinazione quasi permanente	$\sigma_{c,ad} =$	11,21	N/mm ²
Classe di esposizione		XC2	
Classe di consistenza slump:		S4	
Contenuto minimo di cemento:		300	daN/m³
Massima dimensione aggregato		32	mm
Copriferro		60	mm
Rapporto A/C		0,6	

Plinti di fondazione spalle e muri

Classe di resistenza:	C28/35		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	35	N/mm ²
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	29,05	N/mm ²
Resistenza a compressione cilindrica media	$f_{cm} =$	37,05	N/mm ²
Resistenza a trazione semplice	$f_{ctm} =$	2,83	N/mm ²
Resistenza a trazione per flessione	$f_{ctm} =$	3,40	N/mm ²
Modulo elastico secante medio	$E_{cm} =$	32588	N/mm ²
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	1,98	N/mm ²
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	3,69	N/mm ²
Coefficiente di sicurezza SLU:	$\gamma_c =$	1,5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	16,5	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLU:	$f_{ctd} =$	1,32	N/mm ²
Coefficiente di sicurezza SLE:	$\gamma_c =$	1,0	
Resistenza di calcolo a compressione cilindrica SLE:	$f_{cd} =$	29,1	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{ctd} =$	1,98	N/mm^2
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{c,ad} =$	17,43	N/mm ²
Combinazione quasi permanente	$\sigma_{c,ad} =$	13,07	N/mm ²
Classe di esposizione		XC2	
Classe di consistenza slump:		S4	
Contenuto minimo di cemento:		320	daN/m ³
Massima dimensione aggregato		32	mm
Copriferro		40	mm
Rapporto A/C		0,55	

Predalles:

Classe di resistenza:	C40/50		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	50	N/mm ²
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	41,5	N/mm ²
Resistenza a compressione cilindrica media	$f_{cm} =$	49,5	N/mm^2
Resistenza a trazione semplice	$f_{ctm} =$	3,60	N/mm^2
Resistenza a trazione per flessione	$f_{ctm} =$	4,32	N/mm^2
Modulo elastico secante medio	$E_{cm} =$	35547	N/mm^2
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	2,52	N/mm ²
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	4,67	N/mm^2
Coefficiente di sicurezza SLU:	$\gamma_{\rm c} =$	1,5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	23,5	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLU:	$f_{ctd} =$	1,68	N/mm^2
Coefficiente di sicurezza SLE:	$\gamma_{c} =$	1,0	
Resistenza di calcolo a compressione cilindrica SLE:	$f_{cd} =$	41,5	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{ctd} =$	2,52	N/mm ²
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{c,ad} =$	24,90	N/mm ²
Combinazione quasi permanente	$\sigma_{c,ad} =$	18,68	N/mm^2
Classe di esposizione		XC4+XD1	
Classe di consistenza slump:		S4	
Contenuto minimo di cemento:		340	daN/m ³
Massima dimensione aggregato		16	mm
Copriferro		40	mm
Rapporto A/C		0,5	



Elevazioni spalle, muri, paraghiaia

Classe di resistenza:	C32/40		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	40	N/mm ²
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	33,2	N/mm ²
Resistenza a compressione cilindrica media	$f_{cm} =$	41,2	N/mm ²
Resistenza a trazione semplice	$f_{\rm ctm} =$	3,10	N/mm ²
Resistenza a trazione per flessione	$f_{ctm} =$	3,72	N/mm ²
Modulo elastico secante medio	$E_{cm} =$	33643	N/mm ²
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	2,17	N/mm ²
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	4,03	N/mm ²
Coefficiente di sicurezza SLU:	$\gamma_c =$	1,5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	18,8	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLU:	$f_{ctd} =$	1,45	N/mm ²
Coefficiente di sicurezza SLE:	$\gamma_c =$	1,0	
Resistenza di calcolo a compressione cilindrica SLE:	$f_{cd} =$	33,2	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{ctd} =$	2,17	N/mm ²
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{c,ad} =$	19,92	N/mm ²
Combinazione quasi permanente	$\sigma_{c,ad} =$	14,94	N/mm ²
Classe di esposizione		XC4+XD1	
Classe di consistenza slump:		S4	
Contenuto minimo di cemento:		360	daN/m^3
Massima dimensione aggregato		25	mm
Copriferro		40	mm
Rapporto A/C		0,45	

Classe di resistenza:	C32/40		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	40	N/mm ²
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	33,2	N/mm^2
Resistenza a compressione cilindrica media	$f_{cm} =$	41,2	N/mm^2
Resistenza a trazione semplice	$f_{ctm} =$	3,10	N/mm^2
Resistenza a trazione per flessione	$f_{ctm} =$	3,72	N/mm^2
Modulo elastico secante medio	$E_{cm} =$	33643	N/mm^2
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	2,17	N/mm^2
Resistenza caratteristica a trazione semplice (95%)	$\mathbf{f}_{\mathrm{ctk}} =$	4,03	N/mm^2
Coefficiente di sicurezza SLU:	$\gamma_{\rm c} =$	1,5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	18,8	N/mm^2
Resistenza di calcolo a trazione semplice (5%) - SLU:	$\mathbf{f}_{\mathrm{ctd}} =$	1,45	N/mm^2
Coefficiente di sicurezza SLE:	$\gamma_{\rm c} =$	1,0	
Resistenza di calcolo a compressione cilindrica SLE:	$f_{cd} =$	33,2	N/mm^2
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{ctd} =$	2,17	N/mm^2
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{\mathrm{c,ad}}$ =	19,92	N/mm^2
Combinazione quasi permanente	$\sigma_{\mathrm{c,ad}}$ =	14,94	N/mm^2
Classe di esposizione	X	C4/XF2/XF4	1 *
Classe di consistenza slump:		S4	
Contenuto minimo di cemento:		360	daN/m³
Massima dimensione aggregato		25	mm
Copriferro estradosso		55	mm
Rapporto A/C		0,45	

Baggioli:

Classe di resistenza:	C32/40		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	40	N/mm ²
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	33,2	N/mm ²
Resistenza a compressione cilindrica media	$f_{cm} =$	41,2	N/mm ²
Resistenza a trazione semplice	$f_{ctm} =$	3,10	N/mm ²
Resistenza a trazione per flessione	$f_{ctm} =$	3,72	N/mm ²
Modulo elastico secante medio	$E_{cm} =$	33643	N/mm ²
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	2,17	N/mm ²
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	4,03	N/mm ²
Coefficiente di sicurezza SLU:	$\gamma_c =$	1,5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	18,8	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLU:	$f_{ctd} =$	1,45	N/mm ²
Coefficiente di sicurezza SLE:	$\gamma_{\rm c} =$	1,0	
Resistenza di calcolo a compressione cilindrica SLE:	$f_{cd} =$	33,2	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{ctd} =$	2,17	N/mm ²
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{c,ad} =$	19,92	N/mm ²
Combinazione quasi permanente	$\sigma_{c,ad} =$	14,94	N/mm ²
Classe di esposizione		XC3/XF1	
Classe di consistenza slump:		S4	
Contenuto minimo di cemento:		340	daN/m ³
Massima dimensione aggregato		25	mm
Copriferro		40	mm
Rapporto A/C		0,5	

Calcestruzzo per travi in c.a.p.

Classe di resistenza:	C45/55		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	55	N/mm ²
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	45,65	N/mm ²
Resistenza a compressione cilindrica media	$f_{cm} =$	53,65	N/mm ²
Resistenza a trazione semplice	$f_{ctm} =$	3,83	N/mm ²
Resistenza a trazione per flessione	$f_{\rm ctm} =$	4,60	N/mm ²
Modulo elastico secante medio	$E_{cm} =$	36416	N/mm ²
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	2,68	N/mm ²
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	4,98	N/mm ²
Coefficiente di sicurezza SLU:	$\gamma_{\rm c} =$	1,5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	25,9	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLU:	$f_{ctd} =$	1,79	N/mm ²
Coefficiente di sicurezza SLE:	$\gamma_c =$	1,0	
Resistenza di calcolo a compressione cilindrica SLE:	$f_{cd} =$	45,7	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{ctd} =$	2,68	N/mm ²
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{c,ad} =$	27,39	N/mm ²
Combinazione quasi permanente	$\sigma_{c,ad} =$	20,54	N/mm ²
Classe di esposizione		XC2/XA1	
Classe di consistenza slump:		S4	
Contenuto minimo di cemento:		350	daN/m ³
Massima dimensione aggregato		20	mm
Copriferro arm. Ord.		30	mm
Copriferro arm. Pretesa		50	mm
Rapporto A/C		0,5	

3.2 ACCIAIO

Acciaio per cemento armato:

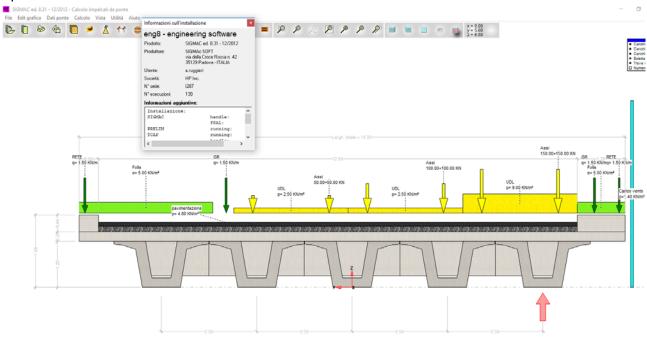
Acciaio per cemento armato			
Acciaio per cemento armato tipo B450C secondo D.M. 17.01.2018, avente le seguenti caratteristiche:			
Tensione caratteristica di snervamento	$f_{yk} \ge$	450	N/mm ²
Tensione caratteristica di rottura	$f_{tk} \ge$	540	N/mm^2
Modulo elastico	$E_s =$	2.1E+05	N/mm^2
Coefficiente di sicurezza SLU:	$\gamma_s =$	1.15	
Resistenza di calcolo SLU:	$f_{sd} =$	391.30	N/mm^2
Tensione di calcolo SLE:	$\sigma_{\mathrm{y,ad}} =$	360	N/mm ²

Deve rispettare i requisiti indicati nella seguente tabella

CARATTERISTICHE	REQUISITI	FRATTILE (%)
Tensione caratteristica di snervamento f _{yk}	$\geq f_{v \text{ nom}}$	5.0
Tensione caratteristica di rottura f _{tk}	$\geq f_{t \text{ nom}}$	5.0
$(f_t/f_y)_k$	≥1,15 <1,35	10.0
$(f_v/f_{vnom})_k$	≤ 1,25	10.0
Allungamento (Agt)k:	≥ 7,5 %	10.0
Diametro del mandrino per prove di piegamento a 90 $^{\circ}$ e successivo raddrizzamento senza cricche: $\phi < 12 \text{ mm}$	4ф	
12≤ φ ≤ 16 mm	5 φ	
per 16 < φ≤25 mm	8 ф	
per 25 < φ≤ 40 mm	10 ф	

Acciaio per armatura da precompressione:

Tensione caratteristica di rottura fptk>1860 N/mm² Tensione caratteristica all'1% fp(1)k> 1670 N/mm² Tensione di tesatura trefoli sspi = 1425 N/mm²



CARATTERISTICHE GENERALI MODELLO DI CALCOLO DELL'IMPALCATO

Il calcolo delle sollecitazioni dell'impalcato viene svolto con il programma di calcolo di seguito riportato:

Per la ricerca delle sollecitazioni nei vari elementi componenti l'impalcato si ricorre al metodo di Massonnet che permette, mediante l'ausilio di opportuni coefficienti, di risolvere la ripartizione dei carichi e conoscere le sollecitazioni.

4.1 UNITA' DI MISURA E CONVENZIONI DI SEGNO

Ove non sia diversamente specificato, le grandezze contenute nella presente relazione sono espresse nelle seguenti unità di misura:

lunghezza : m

forza : KN

I diametri delle barre di armatura lenta sono sempre espressi in millimetri, i diametri dei trefoli di precompressione sono invece espressi in pollici (=25.4 mm).

I carichi agenti sull'impalcato sono, come è naturale assumere, positivi se diretti verso il basso.

Le tensioni sono positive se di trazione, sia per quanto riguarda il calcestruzzo che l'acciaio.

4.2 SISTEMA DI RIFERIMENTO

Si considera l'impalcato come un piano in cui un sistema di assi ortogonali x,y individua ogni punto di esso.

L'asse x è assunto longitudinalmente all'asse delle travi, l'asse y ortogonalmente.

L'origine di questo sistema di riferimento è posizionata sulla intersezione tra l'asse di simmetria delle travi prefabbricate e un asse degli appoggi (è indifferente quale dei due assi appoggi viene assunto come origine x).

Le grandezze y rappresentano perciò le eccentricità dei carichi ed hanno segno negativo verso destra e positivo verso sinistra guardando le sezioni nelle figure allegate.

Le grandezze x sono sempre positive.

L'asse delle z, ortogonale al piano x,y , ha lo zero sul fondo delle travi prefabbricate ed ha valori positivi verso l'alto.

4.3 MODALITA' DI COSTRUZIONE DELL'IMPALCATO

L'impalcato viene realizzato con travi prefabbricate in c.a.p. e getto in opera di traversi e soletta collaboranti.

Le travi sono autoportanti, non necessitano quindi di alcun rompitratta o puntellamento provvisorio durante l'esecuzione dell'impalcato.

Si distinguono due fasi successive di lavoro:

PRIMA FASE

Le travi semplicemente appoggiate agli estremi resistono da sole al peso proprio ed a quello della soletta gettata in opera.

SECONDA FASE

Il sistema misto travi precompresse e soletta gettata in opera, divenuto solidale dopo la maturazione del calcestruzzo, resiste al peso delle sovrastrutture e dei carichi accidentali.

Le travi vengono costruite in uno stabilimento di prefabbricazione e successivamente trasportate a piè d'opera e varate.

Il sistema di precompressione è del tipo a fili aderenti.

I trefoli che costituiscono l'armatura di precompressione vengono tesati sino alla tensione σ spi prevista nella presente relazione.

Disposta l'armatura lenta per gli sforzi di taglio (staffe), ultimata la tesatura e fissata la casseratura, si procede al getto del calcestruzzo.

La maturazione del calcestruzzo avviene con ciclo termico a vapore opportunamente tarato in funzione del mix-design e della resistenza Rckj che è richiesta al momento del taglio dei trefoli.

Una volta raggiunta la resistenza Rckj si procede all'allentamento delle armature di precompressione ed allo stoccaggio del manufatto.

4.4 METODO ED IPOTESI DI CALCOLO

L'impalcato viene realizzato con travi in semplice appoggio collaboranti tra loro grazie all'azione della soletta.

Esso si presenta quindi come una lastra appoggiata sui lati opposti e che presenta una forte ortotropia.

Per la ricerca delle sollecitazioni nei vari elementi componenti l'impalcato si ricorre al metodo di Massonnet che permette, mediante l'ausilio di opportuni coefficienti, di risolvere la ripartizione dei carichi e conoscere le sollecitazioni.

Questo metodo fu proposto da Guyon nel 1946 per un grigliato di travi prive di rigidezza torsionale, ripreso da Massonnet nel 1950 per tener conto della torsione, infine esteso da Bares; questi ultimi Autori hanno sistemato in modo definitivo la materia in un libro ("Les calcules des grillages de pontres ed dalles orthotropes selon la Method Guyon - Massonet - Bares", Dunod, Parigi, 1966) che fornisce un gran numero di tabelle direttamente utilizzabili dal progettista e che ne ha agevolato una larga diffusione.

Nel grigliato ortotropo il procedimento di Massonnet trae origine dallo studio di un graticcio appoggiato in corrispondenza degli estremi delle travi principali longitudinali e libero sugli altri estremi; graticcio che si suppone equivalente ad una piastra ortotropa.

Se si osserva un graticcio di travi si constata che si tratta di una struttura a travi bidirezionali a direzioni per lo più ortogonali.

Il comportamento dell'impalcato dipende essenzialmente dalle rigidezze flessionali e torsionali dei due ordini di travi e dalla loro reciproca influenza.

Si può, pertanto, pensare di assimilare l'impalcato ad una piastra ortotropa nella quale la caratterizzazione di comportamento nelle due direzioni sia data dalle rigidezze flessionali e torsionali anziché dai legami costitutivi dei materiali.

Il metodo di Massonnet considera l'impalcato reale come una lastra rettangolare di larghezza teorica

$$2 \cdot B = n \cdot i$$

n = n.travi, i = interasse travi

e lunghezza pari alla luce di calcolo; tiene conto della differente deformabilità della lastra in senso longitudinale e in senso trasversale.

Si considera una condizione di carico

$$p(x;e) = P_m sen (\pi x/I)$$

variabile con legge sinusoidale ed agente parallelamente all'asse x con eccentricità e; per tale carico la deformata ha una legge w(x,y;e) che si ottiene integrando l'equazione di Huber. Esprimendo in serie di Levy, la deformata assume la forma

$$w(x,y;e) = w(1/2,y;e) sen (\pi x/I)$$

considerando una condizione di carico avente la stessa legge di variazione e lo stesso Pm ma distribuito su tutta la larghezza dell'impalcato

$$p(x;e) = (P_m/2b) \operatorname{sen} (\pi x/I)$$

si avrà una deformata cilindrica che può assumere la forma

$$w(x) = w(1/2) \text{ sen } (\pi x/I)$$

Si può, quindi, definire per una trave di ordinata y e carico di eccentricità e, il coefficiente di ripartizione trasversale (adimensionale)

$$K(y;e) = w(x,y;e)/w(x) = w(1/2,y;e)/w(1/2)$$

Si ha, pertanto, per il carico unitario di eccentricità e, il rapporto fra il carico su una trave di ordinata y e il carico medio 1/n dove n è il numero delle travi.

Il valore di K(y;e) è stato calcolato dal Massonnet e tabellato in base ai parametri dai quali dipende e precisamente

- a) dal rapporto y/b rappresentante la posizione della trave longitudinale
 presa in considerazione (e lungo la quale y ha sempre lo stesso valore);
- b) dal rapporto e/b che rappresenta la posizione del carico
- c) dal rapporto di rigidezza torsionale (compreso tra 0 e 1)
- d) dal rapporto adimensionale di rigidezza flessionale

4.5 DATI IMPALCATO

Tipo di impalcato: travi prefabbricate più soletta collaborante

Luce di calcolo	24.20
Larghezza cordolo sinistro	0.50
Larghezza carreggiata	12.55
Larghezza cordolo destro	1.25
Larghezza fuori tutto impalcato	14.30
Numero travi	5

Tipo trave	V120-B250
Interasse travi	2.50
Larghezza travi	2.49
Lunghezza retrotrave	0.50
Lunghezza ringrosso	0.80
Lunghezza svasatura	1.00
Eccenticità travi-soletta	0.00
Spessore medio soletta	0.25
Spessore minimo soletta	0.25
Luce di calcolo soletta	1.10
Larghezza marciapiede sinistro	3.50
Dist. marciapiede sinistro	-3.00
Larghezza marciapiede destro	1.25
Dist. marciapiede destro	0.00
Spessore medio cordoli	0.44
Spessore totale pavimentazione	0.25
Spessore conglomerato bituminoso	0.10
Peso specifico conglomerato bit.	18.0
Spessore sottofondo	0.15
Peso specifico sottofondo	20.0

Traversi in campata

Numero traversi 2
Altezza sezione traversi 0.90

Spessore sezione traversi 0.40

n. X1 9.702 14.50

Traversi in testata

Altezza sezione traversi 0.90 Spessore sezione traversi 0.40

n. X1 0.002 24.20

4.5.1 TRAVE PREFABBRICATA V120

Per la descrizione geometrica delle sezioni della trave viene utilizzato il sistema di riferimento x.y locale, avente asse x allineato con l'asse Y globale ma di direzione discorde, ed asse y concorde con asse Z globale.

Sezione in campata

Vertice n.	Х	у
1 1.134		-1.245
2 1.200		-1.245
3 1.200		-0.550
4 0.350		-0.400
5 0.250		-0.250
6	0.250	0.250
7	0.400	0.350
8	0.550	1.200
9	1.245	1.200
10	1.245	1.134
11	1.010	1.100
12	0.671	1.000
13	0.496	0.000
14 0.000		-0.496
15 1.000		-0.671
16 1.100		-1.010
17 1.134		-1.245
18	0.000	0.000

Altezza della sezione	1.20
Spessore complessivo anime	0.32
Area sezione di calcestruzzo	0.70
Ordinata y baricentro	0.57
Ascissa x baricentro	0.00
J baricentro	0.13
Coefficiente torsionale	0.12

Sezione in testata

Vertice n.	х	у
1		-1.245
1.134		
2		-1.245
1.200		
3		-0.416
1.200		
4		-0.271
0.350		
5		-0.250
0.250		
6	0.250	0.250
7	0.271	0.350
8	0.416	1.200
9	1.245	1.200
10	1.245	1.134
11	1.010	1.100
12	0.671	1.000
13	0.496	0.000
14		-0.496
0.000		
15 1.000		-0.671

16		-1.010
1.100		
17		-1.245
1.134		
18	0.000	0.000

Altezza della sezione	1.20
Spessore complessivo anime	0.58
Area sezione di calcestruzzo	0.94
Ordinata y baricentro	0.62
Ascissa x baricentro	0.00
J baricentro	0.15
Coefficiente torsionale	0.12

4.5.2 GEOMETRIA GETTO IN OPERA

La descrizione geometrica delle sezioni del getto in opera viene data nel sistema di riferimento X,Y,Z globale dell'impalcato

Sezione in campata

Vertice n.	Υ	Z
1	7.150	1.200
2	7.150	1.450
3	0.000	1.450
4	-7.150	1.450
5	-7.150	1.200

X iniziale	1.30
X finale	22.90
Lunghezza in direz. X	21.60
Altezza della sezione	0.25
Area sezione	3.58
Z baricentro	1.32

0.02

CV17 - RELAZIONE DI CALCOLO IMPALCATO

J baricentrico

Sezione in testata

Vertice n.	Υ	Z
1	7.150	1.200
2	7.150	1.450
3	0.000	1.450
4	-7.150	1.450
5	-7.150	1.200

Lunghezza in direz. X (2 testate)	1.60
Altezza della sezione	0.25
Area sezione	3.58
Z baricentro	1.32
J baricentrico	0.02

4.5.3 PARAMETRI DEI MATERIALI

Ritiro differenziale trave - soletta	0.00000
Coeff. omogen. E cls soletta / E cls trave	1.00
E trave/soletta (calcolo frecce)	3E7
Peso specifico trave prefabbricata	24.5250
Peso specifico calcestruzzo getto in opera	24.5250

4.6 RIPARTIZIONE TRASVERSALE DEI CARICHI

Parametri di Massonnet

Trave verificata: 4	eccentricità Y	-5.0
Luce di calcolo travi principali	L	24.20
Interasse traversi	L1	8.07
Semilarghezza teorica impalcato	В	6.25
Interasse travi	B1	2.50

Trave:

Ap =1.42 (area sezione cls trave+soletta)

(quota baricentro) Dp = 0.95

Jp = 0.33 (momento d'inerzia flessionale)

Cp = 0.00(coefficiente di torsione)

Traverso:

1.08 Ae = (area sezione traverso/soletta)

De = 0.83 (quota baricentro da base sezione)

(momento d'inerzia flessionale) Je = 0.11

Ce = 0.00(coefficiente di torsione)

Larghezza soletta collaborante con il traverso = 2.90

Coeff. omogen. E cls soletta / E cls trave = 1.00

Radice alfa = 0.000 Teta = 0.458

<u>Coefficienti</u>

Si calcolano i coefficienti d'influenza della 1ª trave che ha una eccentricità Y = 5 [m] e che risulta essere la più sollecitata:

Y=	6.25	4.69	3.13	1.56	0.00	-1.56	-3.13	-4.69	-6.25
K ₀	-1.157	-0.691	-0.216	0.288	0.843	1.467	2.165	2.914	3.668
K ₁	0.493	0.571	0.664	0.782	0.932	1.113	1.318	1.527	1.711
Kα	-1.157	-0.691	-0.216	0.288	0.843	1.467	2.165	2.914	3.668

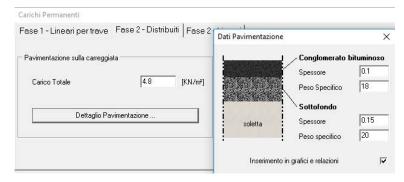
Vengono riportati di seguito i coefficienti μ_a relativi alla sezione Y = 0.00 del traverso ed alla prima armonica.

Y=	6.25	4.69	3.13	1.56	0.00	-1.56	-3.13	-4.69	-6.25
μα	-0.216	-0.110	-0.003	0.109	0.229	0.109	-0.003	-0.110	-0.216

ANALISI DEI CARICHI

5.1 VALORI CARATTERISTICI DELLE AZIONI PERMANENTI

Fase 1


Pesi gravanti sulla trave singola:

Lunghezza trave in asse	25.20 [m]
Peso trave (sezione filante)	17.27 [KN/m]
Peso trave (sezione ringrossata)	23.06 [KN/m]
Peso totale trave prefabbricata	450.23 [KN]
Peso soletta gravante sulla trave	20.85 [KN/m]
Peso traverso in testata	13.56 [KN]
Peso traverso in campata	15.40 [KN]

Fase 2

Pavimentazione e ricarica

Peso pavimentazione (4.80 [KN/m²]) gravante sulla trave: 10.33 [KN/m]

La larghezza della carreggiata viene suddivisa in 20 intervalli uguali e per ciascuno di essi si determina il valore del coefficiente K_{α} di Massonnet in corrispondenza del proprio baricentro. Si procede poi alla somma di tali effetti in modo da ottenere la porzione del carico pavimentazione agente sulla trave considerata.

Peso dei cordoli

I cordoli in calcestruzzo non hanno funzione strutturale.

Il loro peso viene applicato al modello di calcolo come carico lineare uniforme distribuito su tutta la luce e posizionato in sezione trasversale con data eccentricità.

	peso lineare [KN/m]	Ecc. Y	peso totale [KN]
cordolo sinistro	5.40	6.90	130.57
cordolo destro	13.49	-6.53	326.43

Peso totale cordoli = 457.00

5.2 CARICHI LINEARI DI 2A FASE SULL'IMPALCATO (EXTRA2)

A questi carichi viene applicato il metodo di Massonnet calcolandone il relativo coefficiente di ripartizione trasversale per la trave in esame.

n.	Descrizione	[KN/m]	Ecc. Y	X'i	Rif.X'i	X'f	Rif.X'f
1	RETE	1.50	-7.00	-0.50	Appoggio iniziale	-0.50	Appoggio finale
2	RETE	1.50	7.00	-0.50	Appoggio iniziale	-0.50	Appoggio finale
3	GR	1.50	-6.35	-0.50	Appoggio iniziale	-0.50	Appoggio finale
4	GR	1.50	3.30	-0.50	Appoggio iniziale	-0.50	Appoggio finale

5.3 CARICHI MOBILI

Il numero delle colonne di carichi mobili da considerare nel calcolo dei ponti è quello massimo compatibile con la larghezza della carreggiata, comprese le eventuali banchine di rispetto e per sosta di emergenza, nonché gli eventuali marciapiedi non protetti e di altezza inferiore a 20 cm, tenuto conto che la larghezza di ingombro convenzionale è stabilita per ciascuna colonna in 3.00 m. In ogni caso il numero delle colonne non deve essere inferiore a 2, a meno che la larghezza della sede stradale sia inferiore a 5.40 m.

La disposizione dei carichi ed il numero delle colonne sulla carreggiata saranno volta per volta quelli che determinano le condizioni più sfavorevoli di sollecitazione per la struttura, membratura o sezione considerata.

Categoria ponte: Stradale 1a categoria

Numero assi per corsia: 2

corsia	Nome	carico asse Q	р	α_{Q}	α_{p}
1	Corsia 1	300.00	9.00	1.00	1.00
2	Corsia 2	200.00	2.50	1.00	1.00
3	Corsia 3	100.00	2.50	1.00	1.00

Carico folla sui marciapiedi= 5.00 [KN/m²]

5.4 AZIONE DEL VENTO

Il calcolo della pressione del vento è stato effettuato secondo la normativa, in vista delle caratteristiche oro-geografiche del sito.

Il vento, la cui direzione si considera generalmente orizzontale, esercita sulle costruzioni azioni che variano nel tempo e nello spazio provocando, in generale, effetti dinamici. Per le costruzioni usuali tali azioni sono convenzionalmente ricondotte alle azioni statiche equivalenti definite al punto 3.3.3 – NTC2018. Per il calcolo dell'azione statica equivalente dovuta al vento, si è fatto riferimento ad un sito posto in zona 1, con altezza sul livello del mare pari a 8 m.

Pressione del vento

La pressione del vento, considerata come azione statica agente normalmente alle superfici, è data dall'espressione:

$$p = q_r \cdot c_e \cdot c_p \cdot c_d$$

dove

q_r - Pressione cinetica di riferimento

ce - Coefficiente di esposizione

c_p - Coefficiente di forma (o coefficiente aerodinamico)

c_d - Coefficiente dinamico

Pressione cinetica di riferimento

$$q_r = \frac{1}{2} \rho v_r^2$$

dove:

 v_r = Velocità di riferimento del vento = v_b*c_r ;

 v_b = Velocità base di riferimento del vento = v_{b0} * c_a ;

v_{b0}= velocità base di riferimento al livello del mare;

c_a = coefficiente di altitudine =1;

 c_r = coefficiente di ritorno = 1;

ρ – Densità dell'aria assunta convenzionalmente costante e pari a 1.25 kg/m³.

Tab. 3.3.I -Valori dei parametri $v_{b,0}$, a_{0} , k_{s}

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	k_s
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della pro- vincia di Trieste)	25	1000	0,40
2	Emilia Romagna	25	750	0,45
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,37
4	Sicilia e provincia di Reggio Calabria	28	500	0,36
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,40
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,36
7	Liguria	28	1000	0,54
8	Provincia di Trieste	30	1500	0,50
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,32

Nel caso in esame si ha $v_r = 25 \text{ m/s}$

$q_r = 0.390 \text{ kN/mq}$

Coefficiente di esposizione

$$\begin{aligned} c_{e}\left(z\right) &= k_{r}^{2} \ c_{t} \ln \left(z/z_{0}\right) \left[7 + c_{t} \ln \left(z/z_{0}\right)\right] & \text{per } z \geq z_{min} \\ c_{e}\left(z\right) &= c_{e}\left(z_{min}\right) & \text{per } z < z_{min} \end{aligned}$$

Altezza sul suolo Z= 10 m

ZONA 1

Classe di rugosità del terreno D

Categoria di esposizione del sito II

Coefficiente di topografia $c_t=1.0$

Categoria di esposizione del sito	$\mathbf{k_r}$	z ₀ [m]	z _{min} [m]
I	0,17	0,01	2
п	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
v	0,23	0,70	12

$\mathbf{k_r}$	ct	z	Z ₀	Ce
0.19	1	10	0.05	2.35

Coefficiente dinamico:

Il coefficiente dinamico tiene conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alla risposta dinamica della struttura. Esso è assunto cautelativamente pari a 1.5

Pressione risultante del vento =1.4 kN/mq

5.5 AZIONE DI FRENAMENTO

Azione longitudinale di frenamento q3:

$$180 \text{ kN} \le q_3 = 0.6(2Q_{1k}) + 0.10q_{1k} \cdot w_1 \cdot L \le 900 \text{ kN}$$

Forza totale sull'impalcato Fxq

425.34[KN]

5.6 RESISTENZA PASSIVA DEI VINCOLI

Considerando le caratteristiche tecnologiche dei dispositivi di appoggio più comunemente utilizzati, si assume che le resistenze passive siano uguali al 5% delle azioni verticali scaricate su ogni apparecchio di appoggio a seguito dell'applicazione dei soli carichi permanenti.

5.7 URTO DI UN VEICOLO IN SVIO

Si considera una forza orizzontale equivalente di collisione di 100 kN.

5.8 AZIONE ORIZZONTALE CENTRIFUGA

Essendo l'opera in un tratto rettilineo si trascura tale azione.

5.9 AZIONE SISMICA

Nei confronti delle azioni sismiche gli stati limite sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti. Nel presente progetto è stata verificata la combinazione di carico sismica con riferimento allo stato limite ultimo di salvaguardia della vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della esistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.

L'analisi viene condotta secondo il metodo pseudo statico.

Vita nominale

La vita nominale di un'opera strutturale è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata. Nel caso in oggetto si assume vita nominale VN > 50 anni.

Classi d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un'eventuale collasso, le costruzioni sono suddivise in classi d'uso. Nel caso in oggetto si fa riferimento alla Classe IV: "Costruzioni con funzioni pubbliche o strategiche importante, anche con riferimento alla gestione della protezione civile in caso di calamità. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico."

Periodo di riferimento per l'azione sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale VN per il coefficiente d'uso CU. Tale coefficiente è funzione della classe d'uso e nel caso specifico assume valore pari a 2 per la classe d'uso IV. VR = VN x CU = 50 anni x 2 = 100 anni

Azioni di progetto

Le azioni di progetto si ricavano, ai sensi delle NTC, dalle accelerazioni a_g e dalle relative forme spettrali. Le forme spettrali previste dalle NTC sono definite, su sito di riferimento rigido orizzontale, in funzione dei tre parametri:

- ag accelerazione orizzontale massima del terreno;
- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_C* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

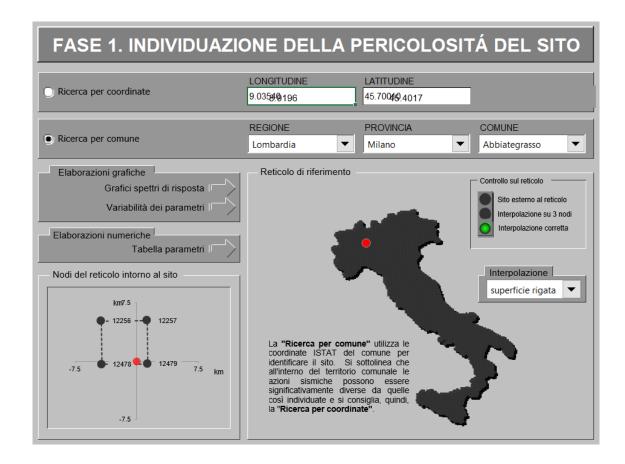
Per ciascun nodo del reticolo di riferimento e per ciascuno dei periodi di ritorno T_R considerati dalla pericolosità sismica, i tre parametri si ricavano riferendosi ai valori corrispondenti al 50esimo percentile ed attribuendo ad a_g il valore previsto da pericolosità sismica. F_0 e T_C^* i valori ottenuti imponendo che le forme spettrali in accelerazione, velocità e spostamento previste dalle NTC scartino al minimo dalle corrispondenti forme spettrali previste dalla pericolosità sismica. Le forme spettrali previste dalle NTC sono caratterizzate da prescelte probabilità di superamento e vite di riferimento. A tal fine occorre fissare:

- la vita di riferimento V_R della costruzione.
- le probabilità di superamento nella vita di riferimento P_{VR} associate agli stati limite considerati, per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

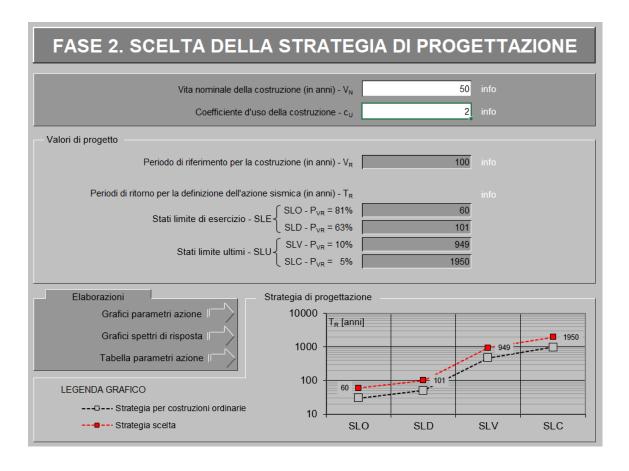
A tal fine è conveniente utilizzare. come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica T_R , espresso in anni. Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

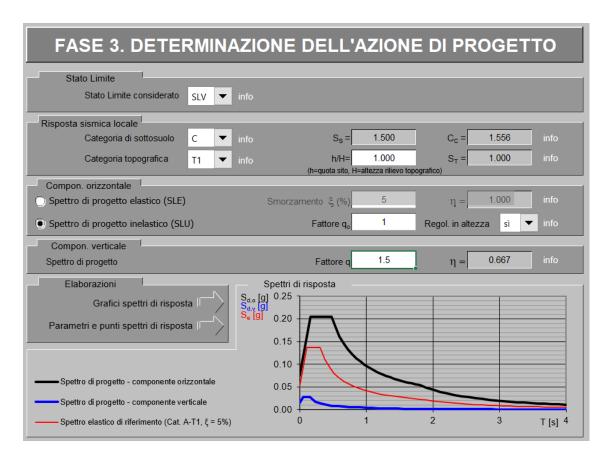
$$T_R = -\frac{V_R}{\ln(1 - P_{VR})} = -\frac{200}{\ln(1 - 0.1)} = -\frac{1898}{100}$$

I valori dei parametri a_g , F_0 e T_C^* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC, in funzione di prefissati valori del periodo di ritorno T_R . L'accelerazione al sito ag è espressa in g/10; F_0 è adimensionale. T_C^* è espresso in secondi. I punti del reticolo di riferimento sono definiti in termini di Latitudine e Longitudine ed ordinati a Latitudine e Longitudine crescenti, facendo variare prima la Longitudine e poi la Latitudine. L'opera in progetto ricade nel comune di Abbiategrasso.


Parametri per la determinazione dell'azione sismica dell'impalcato

Categoria di sottosuolo C


T1 Categoria topografica


Coeff. di combinazione sismica carichi da traffico ψ_E = 0.2

- Coefficiente di struttura q
- 1/q η
- a_g Accelerazione orizzontale massima al sito
- T_c^* Periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale
- F_0 Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale

Parametri e punti dello spettro di risposta orizzontale per lo stato limi\$LV

Parametri indipendenti

r dramour maipondona		
STATO LIMITE	SLV	
a,	0.050 g	
F _o	2.730	
T _c *	0.304 s	
Ss	1.500	
Cc	1.556	
S _T	1.000	
q	1.000	

Parametri dipendenti

S	1.500
η	1.000
T _B	0.157 s
Tc	0.472 s
T _D	1.800 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \; \eta = 1/q \quad \text{(NTC-08 Eq. 3.2.6; \$. 3.2.3.5)}$$

$$T_B = T_C / 3$$
 (NTC-07 Eq. 3.2.8)

$$T_n = C_n \cdot T_n^*$$
 (NTC-07Eq. 3.2.7)

$$T_p = 4,0 \cdot a_s / g + 1,6$$
 (NTC-07Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08Eq. 3.2.4)

$$\begin{split} 0 \! \le \! T < \! T_{\!B} & \quad S_e(T) \! = \! a_g \cdot S \! \cdot \! \eta \cdot \! F_o \cdot \! \left[\frac{T}{T_{\!B}} \! + \! \frac{1}{\eta \cdot F_o} \! \left(1 \! - \! \frac{T}{T_{\!B}} \right) \right] \\ T_{\!B} \! \le \! T < \! T_{\!C} & \quad S_e(T) \! = \! a_g \cdot S \! \cdot \! \eta \cdot \! F_o \\ T_{\!C} \! \le \! T < \! T_{\!D} & \quad S_e(T) \! = \! a_g \cdot S \! \cdot \! \eta \cdot \! F_o \cdot \left(\frac{T_C}{T} \right) \\ T_{\!D} \! \le \! T & \quad S_e(T) \! = \! a_g \cdot S \! \cdot \! \eta \cdot \! F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto S₄(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico S_a(T) sostituendo n con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	aone epetit	annopeeta
	T [s]	Se [g]
	0.000	0.075
T _₽ ◀	0.157	0.205
T₀◀	0.472	0.205
	0.536	0.180
	0.599	0.161
	0.662	0.146
	0.725	0.133
	0.788	0.123
	0.852	0.113
	0.915	0.106
	0.978	0.099
	1.041	0.093
	1.105	0.088
	1.168	0.083
	1.231	0.079
	1.294	0.075
	1.357	0.071
	1.421	0.068
	1.484	0.065
	1.547	0.062
	1.610	0.060
	1.673	0.058
_	1.737	0.056
T₁◀	1.800	0.054
	1.905	0.048
	2.009	0.043
	2.114	0.039
	2.219	0.035
	2.324	0.032
	2.428	0.030
	2.533 2.638	0.027 0.025
	2.743	0.023
	2.848	0.023
	2.952	0.021
	3.057	0.020
	3.162	0.017
	3.267	0.016
	3.371	0.015
	3.476	0.014
	3.581	0.014
	3.686	0.014
	3.790	0.012
	3.895	0.012
	4.000	0.011
	500	2.011

Stati Limite Ultimi

	$\gamma_{ ext{sup}}$.	$\gamma_{ exttt{inf.}}$
Coeff. sicurezza carichi permanenti strutturali	1.35	1.00
Coeff. sicurezza carichi permanenti non strutturali	1.35	0.00
Coeff. sicurezza carichi traffico	1.35	0.00
Coeff. sicurezza carichi vento	1.50	0.00

Stati Limite di Esercizio

Carico		ψ_{\circ}	$\psi_{\scriptscriptstyle 1}$	ψ_2
LM1/UDL	0.40	0.40	0.00	
LM1/TS		0.75	0.75	0.00
forze orizzontali	0.00	0.00	0.00	
carico pedonale		0.00	0.00	0.00
LM4 folla		0.00	0.75	0.00
LM3		0.00	0.00	0.00
asse singolo LM2		0.00	0.00	0.00
vento		0.60	0.20	0.00
termico		0.60	0.60	0.50

5.11 APPLICAZIONE DEL METODO DI MASSONNET

Peso cordoli

Descrizione	[KN/m]	Ecc. Y	K Massonnet	μ Massonnet
cordolo sinistro	14.10	5.03	-1.173	-0.237
cordolo destro	14.10	-5.03	3.348	-0.237

Lineari per trave

Vengono considerati concentrati in direzione y e uniformemente distribuiti in direzione x.

n.	Descrizione	[KN/m]	Ecc. Y	K Massonnet	μ Massonnet
1	RETE	1.50	-5.30	3.482	-0.263
2	RETE	1.50	5.30	-1.286	-0.263
3	GR	1.50	-4.40	3.045	-0.179
4	GR	1.50	4.40	-0.917	-0.179

Carichi mobili per massimo effetto sulla trave 4

Descrizione	$\mathbf{Q} \cdot \boldsymbol{\alpha}$ [KN]	$q \cdot \alpha$ [KN/m]	Ecc. Y	Larghezza	Ka
Corsia 1	300.00	27.00	-2.90	3.00	2.311
Corsia 2	200.00	7.50	0.10	3.00	0.900
Descrizione	q [KN/m]	Ecc. Y	Larghezza	Ka	
Folla marc. dx	6.25	-5.03	1.25	3.348	

Coefficiente di incremento dinamico = 1.0

Le colonne di carico vengono posizionate in direzione x in modo da generare la massima sollecitazione nella specifica sezione di verifica.

Carichi mobili per calcolo M max su traverso

Per la ricerca del massimo momento flettente (che tende le fibre inferiori) si dispongono i carichi in vari modi sia in senso longitudinale che trasversale. Viene qui riportata la configurazione più sfavorevole per la sezione Y=0 in asse travi.

Descrizione	Q·α[KN]	q·α[KN/m]	Ecc. Y	Larghezza	μ
Corsia 1	300.00	27.00	-1.00	3.00	0.151
Corsia 2	200.00	7.50	2.00	3.00	0.077

Carichi mobili per calcolo M min su traverso

Per la ricerca del minimo momento flettente (che tende le fibre superiori) si dispongono i carichi in vari modi sia in senso longitudinale che trasversale. Viene qui riportata la configurazione più sfavorevole per la sezione Y=0 in asse travi.

Descrizione	Q·α[KN]	q·α[KN/m]	Ecc. Y	Larghezza	μ
Corsia 1	300.00	27.00	5.15	3.00	-0.142
Corsia 2	200.00	7.50	-4.40	3.00	-0.091
Zona rimanente	0.00	1.38	3.38	0.55	-0.021

Descrizione	q [KN/m]	Ecc. Y	Larghezza	μ
Folla SX	17.50	5.40	3.50	-0.159
Folla DX	6.25	-6.53	1.25	-0.235

SOLLECITAZIONI

6.1 TRAVE 1

6.1.1 VALORI CARATTERISTICI SOLLECITAZIONI

Al taglio trefoli ed in opera

Sez.X	Descrizione	peso trave		peso soletta+traversi		
		M	V	M	V	
0.00	Appoggio	0.00	213.59	0.00	267.64	
1.00		202.33	191.96	257.15	246.79	
2.00		385.36	174.42	493.46	225.94	
3.00		551.10	157.15	708.93	205.10	
4.00		699.57	139.88	903.55	184.25	
5.00		830.77	122.61	1077.33	163.41	
6.00		944.71	105.34	1230.27	142.56	
7.00		1041.38	88.07	1362.36	121.71	
8.00		1120.78	70.80	1473.61	100.87	
9.00		1182.92	53.53	1564.02	80.02	
10.00		1227.79	36.26	1628.97	43.78	
11.00		1255.40	19.00	1662.29	22.93	
12.00		1266.05	1.73	1675.15	2.08	
12.10	mezzeria	1266.26	0.00	1675.41	0.00	
13.00		1258.81	-15.54	1666.41	-18.76	
14.00		1234.62	-32.81	1637.20	-39.61	
15.00		1193.16	-50.08	1579.46	-75.85	
16.00		1134.43	-67.35	1493.17	-96.70	
17.00		1058.44	-84.62	1386.03	-117.54	
18.00		965.18	-101.89	1258.06	-138.39	
19.00		854.65	-119.16	1109.24	-159.24	
20.00		726.86	-136.42	939.58	-180.08	
21.00		581.80	-153.69	749.07	-200.93	
22.00		419.48	-170.96	537.72	-221.78	
23.00		239.86	-188.55	305.53	-242.62	
24.00		41.38	-209.78	52.50	-263.47	
24.20	appoggio	0.00	-213.59	0.00	-267.64	

Seconda fase - carichi permanenti

Sez.X	Descrizione	peso cordoli			
		M	V	Т	
0.00	Appoggio	0.00	106.42	0.00	
1.00		102.00	97.63	0.00	
2.00		195.20	88.83	0.00	
3.00		279.62	80.04	0.00	
4.00		355.23	71.24	0.00	
5.00		422.06	62.45	0.00	
6.00		480.09	53.65	0.00	
7.00		529.32	44.86	0.00	
8.00		569.76	36.06	0.00	
9.00		601.41	27.27	0.00	
10.00		624.26	18.47	0.00	
11.00		638.32	9.67	0.00	
12.00		643.75	0.88	0.00	
12.10	mezzeria	643.86	0.00	0.00	
13.00		640.06	-7.92	0.00	
14.00		627.74	-16.71	0.00	
15.00		606.62	-25.51	0.00	
16.00		576.71	-34.30	0.00	
17.00		538.01	-43.10	0.00	
18.00		490.51	-51.89	0.00	
19.00		434.22	-60.69	0.00	
20.00		369.13	-69.48	0.00	
21.00		295.25	-78.28	0.00	
22.00		212.58	-87.07	0.00	
23.00		121.11	-95.87	0.00	
24.00		20.85	-104.66	0.00	
24.20	appoggio	0.00	-106.42	0.00	

Sez.X	Descrizione	permanenti portati			
		M	V	Т	
0.00	Appoggio	0.00	147.06	0.00	
1.00		140.95	134.91	0.00	
2.00		269.75	122.75	0.00	
3.00		386.39	110.60	0.00	

Sez.X	Descrizione	permanenti portati			
		M	V	Т	
4.00		490.89	98.45	0.00	
5.00		583.23	86.29	0.00	
6.00		663.42	74.14	0.00	
7.00		731.46	61.99	0.00	
8.00		787.34	49.83	0.00	
9.00		831.07	37.68	0.00	
10.00		862.65	25.52	0.00	
11.00		882.08	13.37	0.00	
12.00		889.58	1.22	0.00	
12.10	mezzeria	889.73	0.00	0.00	
13.00		884.48	-10.94	0.00	
14.00		867.46	-23.09	0.00	
15.00		838.28	-35.25	0.00	
16.00		796.94	-47.40	0.00	
17.00		743.46	-59.55	0.00	
18.00		677.82	-71.71	0.00	
19.00		600.04	-83.86	0.00	
20.00		510.10	-96.02	0.00	
21.00		408.00	-108.17	0.00	
22.00		293.76	-120.32	0.00	
23.00		167.36	-132.48	0.00	
24.00		28.81	-144.63	0.00	
24.20	appoggio	0.00	-147.06	0.00	

Seconda fase - carichi da traffico

Sez.X	Descrizione	Tandem-TS		
		M	V	Т
0.00	Appoggio	0.00	444.50	0.00
1.00		425.55	425.66	0.00
2.00		813.44	406.83	0.00
3.00		1163.66	387.99	0.00
4.00		1476.22	369.16	0.00
5.00		1751.11	350.32	0.00

Sez.X	Descrizione	Tandem-TS		
		M	V	Т
6.00		1988.35	331.49	0.00
7.00		2187.92	312.65	0.00
8.00		2349.82	293.82	0.00
9.00		2474.06	274.98	0.00
10.00		2560.64	256.15	0.00
11.00		2609.56	237.32	0.00
12.00		2621.49	-39.29	0.00
12.10	mezzeria	2620.83	-216.60	0.00
13.00		2614.74	-233.55	0.00
14.00		2573.27	-252.38	0.00
15.00		2494.13	-271.22	0.00
16.00		2377.33	-290.05	0.00
17.00		2222.86	-308.89	0.00
18.00		2030.74	-327.72	0.00
19.00		1800.94	-346.56	0.00
20.00		1533.49	-365.39	0.00
21.00		1228.37	-384.22	0.00
22.00		885.59	-403.06	0.00
23.00		505.15	-421.89	0.00
24.00		87.04	-440.73	0.00
24.20	appoggio	0.00	-444.50	0.00

Sez.X	Descrizione	Distribuito-UDL		
		М	V	Т
0.00	Appoggio	0.00	211.64	0.00
1.00		202.84	194.51	0.00
2.00		388.19	178.10	0.00
3.00		556.05	162.42	0.00
4.00		706.43	147.46	0.00
5.00		839.32	133.23	0.00
6.00		954.71	119.71	0.00
7.00		1052.63	106.92	0.00
8.00		1133.05	94.85	0.00
9.00		1195.98	83.51	0.00
10.00		1241.43	72.88	0.00
11.00		1269.39	62.98	0.00

Sez.X	Descrizione	Distribuito-UDL		
		M	V	Т
12.00		1280.18	50.75	0.00
12.10	mezzeria	1280.40	47.79	0.00
13.00		1272.85	-61.09	0.00
14.00		1248.34	-70.85	0.00
15.00		1206.35	-81.33	0.00
16.00		1146.87	-92.53	0.00
17.00		1069.90	-104.46	0.00
18.00		975.45	-117.11	0.00
19.00		863.50	-130.48	0.00
20.00		734.07	-144.57	0.00
21.00		587.15	-159.39	0.00
22.00		422.74	-174.93	0.00
23.00		240.85	-191.19	0.00
24.00		41.46	-208.17	0.00
24.20	appoggio	0.00	-211.64	0.00

Sez.X	Descrizione	Folla marciapiedi		
		M	V	Т
0.00	Appoggio	0.00	57.48	0.00
1.00		55.09	52.73	0.00
2.00		105.44	47.98	0.00
3.00		151.03	43.23	0.00
4.00		191.88	38.48	0.00
5.00		227.97	33.73	0.00
6.00		259.31	28.98	0.00
7.00		285.91	24.23	0.00
8.00		307.75	19.48	0.00
9.00		324.85	14.73	0.00
10.00		337.19	9.98	0.00
11.00		344.79	5.23	0.00
12.00		347.72	0.48	0.00
12.10	mezzeria	347.77	0.00	0.00
13.00		345.72	-4.28	0.00
14.00		339.07	-9.03	0.00
15.00		327.66	-13.78	0.00
16.00		311.51	-18.53	0.00

Sez.X	Descrizione	Folla marciapiedi		
		M	V	Т
17.00		290.60	-23.28	0.00
18.00		264.95	-28.03	0.00
19.00		234.54	-32.78	0.00
20.00		199.38	-37.53	0.00
21.00		159.48	-42.28	0.00
22.00		114.82	-47.03	0.00
23.00		65.42	-51.78	0.00
24.00		11.26	-56.53	0.00
24.20	appoggio	0.00	-57.48	0.00

Sez.X		gruppo1 (tab. 5.1.IV)		
		M	V	Т
0.00	Appoggio	0.00	684.87	0.00
1.00		655.94	646.54	0.00
2.00		1254.34	608.92	0.00
3.00		1795.23	572.03	0.00
4.00		2278.58	535.86	0.00
5.00		2704.41	500.41	0.00
6.00		3072.72	465.69	0.00
7.00		3383.50	431.69	0.00
8.00		3636.75	398.41	0.00
9.00		3832.47	365.86	0.00
10.00		3970.67	334.02	0.00
11.00		4051.34	302.91	0.00
12.00		4075.53	11.70	0.00
12.10	mezzeria	4075.11	-168.81	0.00
13.00		4060.45	-296.78	0.00
14.00		3991.14	-327.75	0.00
15.00		3864.31	-359.44	0.00
16.00		3679.95	-391.85	0.00
17.00		3438.07	-424.98	0.00
18.00		3138.65	-458.84	0.00
19.00		2781.72	-493.42	0.00
20.00		2367.25	-528.73	0.00
21.00		1895.26	-564.75	0.00
22.00		1365.75	-601.50	0.00

Sez.X		gruppo1 (tab. 5.1.IV)		
		М	V	Т
23.00		778.70	-638.97	0.00
24.00		134.13	-677.17	0.00
24.20	appoggio	0.00	-684.87	0.00

6.1.2 COMBINAZIONI SLU

Al taglio dei trefoli

$$\mathsf{E}_{\mathsf{d}} = \mathsf{E} \{ \gamma_{\mathsf{G1.sup}} \cdot \mathsf{G1}_{\mathsf{k.1}} \}$$

$$E_d = E\{ \gamma_{G1.inf} \cdot G1_{k.1} \}$$

Sez.X	Descrizione	M	V
0.00	Appoggio	0.00	288.34
1.00		273.15	259.15
2.00		520.24	235.46
3.00		743.99	212.15
4.00		944.42	188.84
5.00		1121.54	165.52
6.00		1275.36	142.21
7.00		1405.86	118.90
8.00		1513.06	95.58
9.00		1596.95	72.27
10.00		1657.52	48.96
11.00		1694.79	25.64
12.00		1709.17	2.33
12.10	mezzeria	1709.46	0.00
13.00		1699.39	-20.98
14.00		1666.73	-44.29
15.00		1610.76	-67.61
16.00		1531.48	-90.92
17.00		1428.89	-114.23
18.00		1302.99	-137.55
19.00		1153.78	-160.86
20.00		981.26	-184.17
21.00		785.43	-207.49
22.00		566.30	-230.80
23.00		323.80	-254.55

Sez.X	Descrizione	M	V
24.00		55.86	-283.20
24.20	appoggio	0.00	-288.34

Al getto soletta

 $E_{d} = E\{ \sum \gamma_{G1.sup} \cdot G1_{k.i} + \sum \gamma_{G2.sup} \cdot G2_{k.i} \}$

 $\mathsf{E}_{\mathsf{d}} = \mathsf{E} \{ \sum \gamma_{\mathsf{G1.inf}} \cdot \mathsf{G1}_{\mathsf{k.i}} + \sum \gamma_{\mathsf{G2.inf}} \cdot \mathsf{G2}_{\mathsf{k.i}} \}$

Sez.X	Descrizione	M	V
0.00	Appoggio	0.00	649.65
1.00		620.31	592.31
2.00		1186.42	540.49
3.00		1701.04	489.03
4.00		2164.22	437.58
5.00		2575.94	386.12
6.00		2936.22	334.67
7.00		3245.05	283.21
8.00		3502.44	231.75
9.00		3708.38	180.30
10.00		3856.63	108.06
11.00		3938.88	56.60
12.00		3970.62	5.15
12.10	mezzeria	3971.26	0.00
13.00		3949.05	-46.31
14.00		3876.96	-97.77
15.00		3743.03	-170.01
16.00		3547.26	-221.46
17.00		3300.04	-272.92
18.00		3001.37	-324.37
19.00		2651.26	-375.83
20.00		2249.69	-427.29
21.00		1796.68	-478.74
22.00		1292.22	-530.20
23.00		736.27	-582.09
24.00		126.73	-638.88
24.20	appoggio	0.00	-649.65

Seconda fase P/T

 $E_{d} = E\{ \sum \gamma_{G1.sup} \cdot G1_{k,i} + \sum \gamma_{G2.sup} \cdot G2_{k,i} \}$

 $E_{d} = E\{ \sum \gamma_{G1.inf} \cdot G1_{k.i} + \sum \gamma_{G2.inf} \cdot G2_{k.i} \}$

 $\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \ \Sigma \ \gamma_\mathsf{G1.sup} \cdot \mathsf{G1}_\mathsf{k.i} + \Sigma \ \gamma_\mathsf{G2.sup} \cdot \mathsf{G2}_\mathsf{k.i} + \gamma_\mathsf{Q.traffico} \cdot \mathsf{Q}_\mathsf{k.gruppo \ 1} \ \}$

 $\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \sum \gamma_\mathsf{G1.inf} \cdot \mathsf{G1}_\mathsf{k.i} + \sum \gamma_\mathsf{G2.inf} \cdot \mathsf{G2}_\mathsf{k.i} + \gamma_\mathsf{Q.traffico} \cdot \mathsf{Q}_\mathsf{k.gruppo \ 1} \}$

Sez.X	Descrizione	M	V	Т
0.00	Appoggio	0.00	1893.15	0.00
1.00		1811.49	1757.70	0.00
2.00		3464.77	1628.74	0.00
3.00		4962.54	1501.12	0.00
4.00		6304.86	1374.48	0.00
5.00		7491.71	1248.82	0.00
6.00		8523.10	1124.13	0.00
7.00		9399.03	1000.41	0.00
8.00		10119.50	877.67	0.00
9.00		10684.50	755.91	0.00
10.00		11087.81	614.34	0.00
11.00		11321.10	494.52	0.00
12.00		11401.76	23.57	0.00
12.10	mezzeria	11402.15	-227.89	0.00
13.00		11348.77	-470.68	0.00
14.00		11146.19	-590.30	0.00
15.00		10777.76	-731.68	0.00
16.00		10243.47	-853.25	0.00
17.00		9553.72	-975.80	0.00
18.00		8708.50	-1099.32	0.00
19.00		7707.83	-1223.82	0.00
20.00		6551.69	-1349.29	0.00
21.00		5240.09	-1475.74	0.00
22.00		3773.03	-1603.16	0.00
23.00		2150.47	-1732.00	0.00
24.00		370.29	-1866.72	0.00
24.20	appoggio	0.00	-1893.15	0.00

6.1.3 COMBINAZIONI SLE

Al taglio dei trefoli

 $E_d = E\{ G1_{k,1} \}$

Sez.X	Descrizione	М	V
0.00	Appoggio	0.00	213.59
1.00		202.33	191.96
2.00		385.36	174.42
3.00		551.10	157.15
4.00		699.57	139.88
5.00		830.77	122.61
6.00		944.71	105.34
7.00		1041.38	88.07
8.00		1120.78	70.80
9.00		1182.92	53.53
10.00		1227.79	36.26
11.00		1255.40	19.00
12.00		1266.05	1.73
12.10	mezzeria	1266.26	0.00
13.00		1258.81	-15.54
14.00		1234.62	-32.81
15.00		1193.16	-50.08
16.00		1134.43	-67.35
17.00		1058.44	-84.62
18.00		965.18	-101.89
19.00		854.65	-119.16
20.00		726.86	-136.42
21.00		581.80	-153.69
22.00		419.48	-170.96
23.00		239.86	-188.55
24.00		41.38	-209.78
24.20	appoggio	0.00	-213.59

Al getto soletta

$E_d = E\{ \Sigma G1_{k,i} + \Sigma G2_{k,i} \}$

Sez.X	Descrizione	М	V
0.00	Appoggio	0.00	481.22
1.00		459.49	438.75
2.00		878.83	400.36
3.00		1260.03	362.25
4.00		1603.12	324.13
5.00		1908.11	286.02
6.00		2174.98	247.90
7.00		2403.74	209.79
8.00		2594.40	171.67
9.00		2746.95	133.55
10.00		2856.76	80.04
11.00		2917.69	41.93
12.00		2941.20	3.81
12.10	mezzeria	2941.67	0.00
13.00		2925.22	-34.30
14.00		2871.82	-72.42
15.00		2772.61	-125.93
16.00		2627.60	-164.05
17.00		2444.47	-202.16
18.00		2223.24	-240.28
19.00		1963.89	-278.39
20.00		1666.44	-316.51
21.00		1330.88	-354.62
22.00		957.20	-392.74
23.00		545.39	-431.17
24.00		93.87	-473.25
24.20	appoggio	0.00	-481.22

Seconda fase - S.L.E. Rara 2ªfase

 $E_{d} = E\{ \Sigma G1_{k.2}^{a}_{fase} + \Sigma G2_{k.2}^{a}_{fase} + Q_{k.gruppo 1} \}$

Sez.X	Descrizione	M	V	Т
0.00	Appoggio	0.00	921.11	0.00
1.00		882.36	863.25	0.00
2.00		1687.67	806.11	0.00

Sez.X	Descrizione	M	V	Т
3.00		2415.93	749.70	0.00
4.00		3067.14	694.01	0.00
5.00		3641.31	639.03	0.00
6.00		4138.43	584.79	0.00
7.00		4558.50	531.26	0.00
8.00		4901.52	478.46	0.00
9.00		5167.50	426.38	0.00
10.00		5356.43	375.02	0.00
11.00		5468.31	324.39	0.00
12.00		5504.54	13.65	0.00
12.10	mezzeria	5504.37	-168.81	0.00
13.00		5481.28	-314.35	0.00
14.00		5384.62	-364.84	0.00
15.00		5210.91	-416.06	0.00
16.00		4960.16	-467.99	0.00
17.00		4632.35	-520.65	0.00
18.00		4227.51	-574.03	0.00
19.00		3745.61	-628.14	0.00
20.00		3186.67	-682.97	0.00
21.00		2550.67	-738.52	0.00
22.00		1837.64	-794.79	0.00
23.00		1047.55	-851.79	0.00
24.00		180.42	-909.50	0.00
24.20	appoggio	0.00	-921.11	0.00

Seconda fase - S.L.E. Frequente 2ªfase

 $E_{d} = E\{ \sum G1_{k.2}{}^{a}_{fase} + \sum G2_{k.2}{}^{a}_{fase} + \psi_{1} \cdot Q_{k.gruppo \ 1} \}$

Sez.X	Descrizione	M	V	Т
0.00	Appoggio	0.00	683.01	0.00
1.00		654.27	640.13	0.00

Sez.X	Descrizione	M	V	Т
2.00		1251.39	597.54	0.00
3.00		1791.38	555.25	0.00
4.00		2274.23	513.24	0.00
5.00		2699.94	471.52	0.00
6.00		3068.51	430.09	0.00
7.00		3379.94	388.95	0.00
8.00		3634.24	348.09	0.00
9.00		3831.39	307.53	0.00
10.00		3971.41	267.25	0.00
11.00		4054.29	227.27	0.00
12.00		4081.06	-6.98	0.00
12.10	mezzeria	4080.92	-143.33	0.00
13.00		4063.88	-219.31	0.00
14.00		3992.29	-259.24	0.00
15.00		3863.57	-299.45	0.00
16.00		3677.70	-339.96	0.00
17.00		3434.70	-380.76	0.00
18.00		3134.55	-421.84	0.00
19.00		2777.27	-463.21	0.00
20.00		2362.85	-504.88	0.00
21.00		1891.29	-546.83	0.00
22.00		1362.59	-589.07	0.00
23.00		776.76	-631.60	0.00
24.00		133.78	-674.42	0.00
24.20	appoggio	0.00	-683.01	0.00

Seconda fase - S.L.E. Quasi permanente 2ªfase

 $E_d = E\{ \sum_{k,2} G1_{k,2} a_{fase} + \sum_{k,2} G2_{k,2} a_{fase} + \psi_2 \cdot Q_{k,gruppo \ 1} \}$

Sez.X	Descrizione	M	V	Т
0.00	Appoggio	0.00	264.98	0.00

Sez.X	Descrizione	М	V	Т
1.00		253.97	243.08	0.00
2.00		486.04	221.18	0.00
3.00		696.22	199.28	0.00
4.00		884.50	177.38	0.00
5.00		1050.88	155.49	0.00
6.00		1195.37	133.59	0.00
7.00		1317.96	111.69	0.00
8.00		1418.65	89.79	0.00
9.00		1497.45	67.89	0.00
10.00		1554.36	45.99	0.00
11.00		1589.36	24.09	0.00
12.00		1602.87	2.19	0.00
12.10	mezzeria	1603.14	0.00	0.00
13.00		1593.69	-19.71	0.00
14.00		1563.01	-41.61	0.00
15.00		1510.43	-63.51	0.00
16.00		1435.96	-85.41	0.00
17.00		1339.59	-107.31	0.00
18.00		1221.32	-129.21	0.00
19.00		1081.16	-151.11	0.00
20.00		919.11	-173.00	0.00
21.00		735.15	-194.90	0.00
22.00		529.30	-216.80	0.00
23.00		301.56	-238.70	0.00
24.00		51.91	-260.60	0.00
24.20	appoggio	0.00	-264.98	0.00

6.2 TRAVERSO DI CAMPATA

Vengono valutati i momenti flettenti massimi e minimi agenti sul traverso in campata per effetto dei carichi permanenti e del transito dei carichi da traffico.

6.2.1 VALORI CARATTERISTICI

Carichi permanenti

Sez.	Descrizione	peso cordoli	Perm Portati
-6.25	estremità dx	-36.26	-12.46
-6.00		-67.91	-18.32
-5.00		-169.80	-30.82
-4.00		-237.26	-42.63
-3.00		-276.62	-53.43
-2.00		-293.56	-62.83
-1.00		-292.99	-70.25
0.00	asse travi	-279.02	-74.95
1.00		-254.92	-76.00
2.00		-223.21	-72.26
3.00		-185.67	-62.37
4.00		-143.48	-55.03
5.00		-97.29	-42.64
6.00		-47.35	-18.93
6.25	estremità sx	-34.29	-11.00

Carichi da traffico

Sez.	Descrizione	Tandem-TS	
		Mmax	Mmin
-6.25	estremità dx	0.00	0.00
-6.00		3.81	-1.15
-5.00		83.29	-25.44
-4.00		201.75	-71.75
-3.00		304.82	-182.48
-2.00		341.84	-309.44
-1.00		385.00	-401.91
0.00	asse travi	464.08	-456.97
1.00		385.00	-470.59
2.00		341.84	-437.47
3.00		304.82	-351.04
4.00		153.67	-203.49

Sez.	Descrizione	Tandem-TS	
		Mmax	Mmin
5.00		37.74	-18.91
6.00		4.02	-0.84
6.25	estremità sx	0.00	0.00

Sez.	Descrizione	Distribuito-UDL	
		Mmax	Mmin
-6.25	estremità dx	0.00	-0.81
-6.00		2.39	-3.15
-5.00		52.41	-32.64
-4.00		128.98	-76.10
-3.00		199.72	-132.79
-2.00		339.90	-198.55
-1.00		380.88	-250.60
0.00	asse travi	284.38	-283.37
1.00		380.88	-291.33
2.00		339.90	-269.87
3.00		199.72	-209.56
4.00		100.85	-101.87
5.00		44.05	-21.85
6.00		2.51	-1.68
6.25	estremità sx	0.00	-1.68

Sez.	Descrizione	Folia Mar	ciapiedi
		Mmax	Mmin
-6.25	estremità dx	0.00	-31.90
-6.00		0.00	-46.63
-5.00		0.00	-101.81
-4.00		0.00	-150.64
-3.00		0.00	-192.38
-2.00		0.00	-225.88
-1.00		0.00	-249.45
0.00	asse travi	0.00	-260.78
1.00		0.00	-256.85
2.00		0.00	-233.93
3.00		0.00	-187.57

Sez.	Descrizione	Folla Marc	ciapiedi
		Mmax	Mmin
4.00		0.00	-112.68
5.00		0.00	-3.80
6.00		1.67	0.00
6.25	estremità sx	0.00	0.00

Sez.	Descrizione	gruppo 1 (ta	ab.5.1.IV)
		Mmax	Mmin
-6.25	estremità dx	0.00	-8.40
-6.00		6.20	-17.91
-5.00		135.70	-93.08
-4.00		330.72	-205.70
-3.00		504.54	-388.62
-2.00		681.74	-601.81
-1.00		765.88	-763.39
0.00	asse travi	748.46	-863.91
1.00		765.88	-891.95
2.00		681.74	-836.82
3.00		504.54	-680.60
4.00		254.52	-404.38
5.00		81.79	-64.78
6.00		7.37	-6.47
6.25	estremità sx	0.00	-1.68

6.2.2 COMBINAZIONI SLU

Nelle combinazioni seguenti vengono sommati effetti globali ed effetti locali.

Persistenti/Transitorie

$$E_{d} = E\{ \sum \gamma_{G1.sup} \cdot G1_{k.i} + \sum \gamma_{G2.sup} \cdot G2_{k.i} \}$$

$$E_{d} = E\{ \sum \gamma_{G1.inf} \cdot G1_{k.i} + \sum \gamma_{G2.inf} \cdot G2_{k.i} \}$$

$$E_{d} = E\{ \sum \gamma_{G1.sup} \cdot G1_{k.i} + \sum \gamma_{G2.sup} \cdot G2_{k.i} + \gamma_{Q.traffico} \cdot Q_{k.gruppo\ 1} \}$$

$$E_{d} = E\{ \sum \gamma_{G1.inf} \cdot G1_{k.i} + \sum \gamma_{G2.inf} \cdot G2_{k.i} + \gamma_{Q.traffico} \cdot Q_{k.gruppo\ 1} \}$$

Sez.	Descrizione	Mmax	Mmin
-6.25	estremità dx	-36.26	-70.32

Sez.	Descrizione	Mmax	Mmin
-6.00		-59.53	-127.65
-5.00		13.39	-360.63
-4.00		209.21	-599.22
-3.00		404.51	-896.23
-2.00		626.78	-1205.14
-1.00		740.95	-1421.88
0.00	asse travi	731.40	-1539.15
1.00		779.02	-1545.81
2.00		697.13	-1430.71
3.00		495.46	-1172.01
4.00		200.12	-759.47
5.00		13.12	-262.42
6.00		-38.08	-98.11
6.25	estremità sx	-34.29	-63.40

6.2.3 COMBINAZIONI SLE

Combinazioni Rare

 $E_d = E\{ \Sigma G1_{k.2}^{a_{fase}} + \Sigma G2_{k.2}^{a_{fase}} + Q_{k.gruppo 1} \}$

Sez.	Descrizione	Mmax	Mmin
-6.25	estremità dx	-48.73	-52.09
-6.00		-80.02	-94.56
-5.00		-64.93	-267.13
-4.00		50.83	-443.87
-3.00		174.49	-663.87
-2.00		325.35	-892.69
-1.00		402.64	-1053.24
0.00	asse travi	394.49	-1140.11
1.00		434.95	-1145.04
2.00		386.27	-1059.79
3.00		256.51	-868.15
4.00		56.01	-562.57
5.00		-58.15	-194.39
6.00		-59.41	-72.68
6.25	estremità sx	-45.28	-46.96

Combinazioni Frequenti

$E_{d} = E\{ \Sigma G1_{k.2}{}^{a}_{fase} + \Sigma G2_{k.2}{}^{a}_{fase} + \psi_{1} \cdot Q_{k.gruppo \ 1} \}$

Sez.	Descrizione	Mmax	Mmin
-6.25	estremità dx	-48.73	-52.09
-6.00		-82.41	-93.79
-5.00		-117.20	-246.76
-4.00		-76.99	-387.28
-3.00		-21.55	-549.37
-2.00		35.95	-705.42
-1.00		77.86	-809.26
0.00	asse travi	107.84	-859.47
1.00		110.18	-852.41
2.00		96.87	-783.31
3.00		60.47	-643.14
4.00		-42.92	-431.48
5.00		-94.01	-172.47
6.00		-61.93	-69.17
6.25	estremità sx	-45.28	-45.96

Combinazioni Quasi Permanenti

 $E_d = E\{ \sum_{k,2} G_{fase} + \sum_{k,2} G_{fase} + \psi_2 \cdot Q_{k,gruppo 1} \}$

Sez.	Descrizione	Mmax	Mmin
-6.25	estremità dx	-48.73	-52.09
-6.00		-86.22	-92.60
-5.00		-200.63	-218.34
-4.00		-279.89	-307.70
-3.00		-330.06	-366.59
-2.00		-356.39	-400.06
-1.00		-363.24	-412.16
0.00	asse travi	-353.97	-405.82
1.00		-330.93	-382.82
2.00		-295.47	-343.80
3.00		-248.04	-288.36
4.00		-198.51	-225.38
5.00		-139.94	-146.82
6.00		-65.95	-66.33
6.25	estremità sx	-45.28	-45.28

6.3 SOLETTA

6.3.1 VALORI CARATTERISTICI

Il momento massimo trasversale dato dall'effetto locale dei carichi sulla soletta viene determinato servendosi di uno schema semplificato di trave semi incastrata e prendendo il momento in mezzeria.

I carichi permanenti considerati sono il peso proprio della soletta (G1) e della pavimentazione (G2).

La ricerca del massimo momento flettente generato dai carichi mobili viene condotta considerando il carico LM2 illustrato nella Normativa al punto 5.1.3.3.5.

Tale schema, considerato autonomamente e assunto a riferimento solo per verifiche locali, è costituito da un singolo asse applicato su specifiche impronte di pneumatico (di dimensioni 0.35x0.60 [m]) poste ad un interasse di 2.00 [m]: il carico totale asse è pari a 400.00 [KN]

I carichi concentrati da considerarsi ai fini delle verifiche locali si assumono uniformemente distribuiti sulla superficie della rispettiva impronta. La diffusione attraverso la pavimentazione e lo spessore della soletta si considera avvenire attraverso una diffusione a 45° fino al piano medio della struttura della soletta sottostante

Il momento minimo dato dall'effetto locale, invece, viene valutato come uno schema statico di trave perfettamente incastrata.

Luce Soletta	1.10
Carico per ruota - schema 2	200.00
Interasse ruote	2.00
Dimensioni impronta ruota LX x BY	0.35x0.60
Larghezza impronta a metà spessore soletta	1.35
Lunghezza influenza	2.00

Momento flettente trasversale [KN·m/m] (positivo tende le fibre inferiori):

	M max	M min
effetto locale permanenti strutturali	0.93	-0.62
effetto locale permanenti non strutturali	0.73	-0.48
effetto locale LM2	7.47	-7.47

M tot. effetto locale	9.12	-8.57

6.3.2 COMBINAZIONI SLU

Persistenti/Transitorie

$$E_d = E\{ \sum \gamma_{G1.sup} \cdot G1_{k,i} + \sum \gamma_{G2.sup} \cdot G2_{k,i} \}$$

$$E_{d} = E\{ \sum \gamma_{G1.inf} \cdot G1_{k.i} + \sum \gamma_{G2.inf} \cdot G2_{k.i} \}$$

$$E_{d} = E\{ \sum \gamma_{G1.sup} \cdot G1_{k.i} + \sum \gamma_{G2.sup} \cdot G2_{k.i} + \gamma_{Q.traffico} \cdot Q_{k.gruppo \ 1} \}$$

$$E_{d} = E\{ \sum \gamma_{G1.inf} \cdot G1_{k.i} + \sum \gamma_{G2.inf} \cdot G2_{k.i} + \gamma_{Q.traffico} \cdot Q_{k.gruppo\ 1} \}$$

$$M \max = 12.32$$

$$M \min = -11.57$$

6.3.3 COMBINAZIONI SLE

Combinazioni Rare

$$E_d = E\{ \sum G1_{k,2}^{a_{fase}} + \sum G2_{k,2}^{a_{fase}} + Q_{k,gruppo\ 1} \}$$

$$M \max = 9.12$$

$$M \min = -8.57$$

Combinazioni Frequenti

$$E_d = E\{ \sum G1_{k,2}^{a_{fase}} + \sum G2_{k,2}^{a_{fase}} + \psi_1 \cdot Q_{k,gruppo\ 1} \}$$

$$M \max = 1.65$$

$$M \min = -1.10$$

Combinazioni Quasi Permanenti

$$E_d = E\{ \sum G1_{k,2}^{a_{fase}} + \sum G2_{k,2}^{a_{fase}} + \psi_2 \cdot Q_{k,gruppo 1} \}$$

$$M \max = 1.65$$

$$M \min = -1.10$$

6.4 REAZIONI MASSIME AGLI APPOGGI

6.4.1 FORZE ORIZZONTALI

Azione del vento:

Altezza barriera

3.00[m]

Pressione cinetica

1.40[KN/m²]

Forza totale sull'impalcato Fyw 172.52[KN]

Azione longitudinale di frenamento q3:

Forza totale sull'impalcato Fxq 425.34[KN]

Azione centrifuga Q4:

Raggio di curvatura 0.00[m]Forza totale sull'impalcato Fyq 0.00[KN]

Resistenze parassite per attrito dei vincoli

Si ipotizza di assegnare una certa aliquota dei carichi verticali come carico orizzontale in asse alla sezione del ponte, stimabile attorno al 5% dei carichi permanenti (peso proprio e pesi portati). Tali valori vanno applicati come forze concentrate orizzontali sugli elementi di appoggio presenti sulle spalle.

6.4.2 VALORI CARATTERISTICI REAZIONI VERTICALI

Carichi di 1a fase

Trave	peso trave	peso soletta+traversi
1	225.11	283.92
2	225.11	214.39
3	225.11	214.39
4	225.11	214.39
5	225.11	283.92

Carichi permanenti di 2a fase

Trave	peso cordoli	permanenti portati+extra2
1	110.82	153.14
2	63.78	156.37
3	32.41	162.86
4	16.49	173.53
5	12.01	188.07

Carichi da traffico

Trave	Tandem-TS	Distribuito-UDL	Folla Marciapiedi
1	444.50	211.64	19.98
2	345.83	155.96	27.58
3	239.40	100.37	46.32
4	127.55	46.59	79.27
5	13.77	-6.40	124.19

6.4.3 COMBINAZIONI SLU

Combinazioni SLU P/T

$$\begin{split} & E_d \; = \; E \left\{ \; \; \Sigma \; \; \gamma_{\text{G1.inf}} \cdot \text{G1}_{\text{k.i}} \; + \; \Sigma \; \; \gamma_{\text{G2.inf}} \cdot \text{G2}_{\text{k.i}} \; \right\} \\ & E_d \; = \; E \left\{ \; \; \Sigma \; \; \gamma_{\text{G1.sup}} \cdot \text{G1}_{\text{k.i}} \; + \; \Sigma \; \; \gamma_{\text{G2.sup}} \cdot \text{G2}_{\text{k.i}} \; + \; \gamma_{\text{Q.traffico}} \cdot \text{Q}_{\text{k.gruppo}} \; _1 \; + \; \psi_0 \cdot \gamma_{\text{W}} \cdot \mathbb{W}_{\text{k}} \; \right\} \\ & E_d \; = \; E \left\{ \; \; \Sigma \; \; \gamma_{\text{G1.sup}} \cdot \text{G1}_{\text{k.i}} \; + \; \Sigma \; \; \gamma_{\text{G2.sup}} \cdot \text{G2}_{\text{k.i}} \; + \; \gamma_{\text{W}} \cdot \mathbb{W}_{\text{k}} \; + \; \psi_0 \cdot \gamma_{\text{Q.traffico}} \cdot \text{Q}_{\text{k.gruppo}} \; _1 \; \right\} \end{split}$$

Trave	Rz max	Rz min
1	1942.81	1043.55
2	1586.58	890.55
3	1346.91	856.94
4	1138.46	849.86
5	1051.08	957.31

Reazione laterale su spalla Ry = 129.39

Reazione longitudinale totale Rx = 574.21

6.4.4 COMBINAZIONI SLE

SLE Rare

$$\begin{split} & E_{d} \; = \; E \left\{ \;\; \Sigma \;\; \text{G1}_{\text{k.i}} \; + \; \Sigma \;\; \text{G2}_{\text{k.i}} \; + \;\; Q_{\text{k.gruppo 1}} \; + \;\; \psi_{\text{0.W}} \cdot W_{\text{k}} \;\; \right\} \\ & E_{d} \; = \; E \left\{ \;\; \Sigma \;\; \text{G1}_{\text{k.i}} \; + \;\; \Sigma \;\; \text{G2}_{\text{k.i}} \; + \;\; W_{\text{k}} \; + \;\; \psi_{\text{0}} \cdot Q_{\text{k.gruppo 2}} \;\; \right\} \\ & E_{d} \; = \; E \left\{ \;\; \Sigma \;\; \text{G1}_{\text{k.i}} \; + \;\; \Sigma \;\; \text{G2}_{\text{k.i}} \; + \;\; Q_{\text{k.gruppo 2}} \;\; + \;\; \psi_{\text{0.W}} \cdot W_{\text{k}} \;\; \right\} \end{split}$$

Trave	Rz max	Rz min

Trave	Rz max	Rz min
1	1439.12	773.00
2	1175.25	659.66
3	997.71	634.77
4	843.30	629.53
5	778.58	709.12

Reazione laterale su spalla Ry = 86.26

Reazione longitudinale totale Rx = 425.34

SLE Frequenti

$$\begin{split} & E_{d} \; = \; E \left\{ \; \; \Sigma \; \; \text{G1}_{\text{k.i}} \; + \; \Sigma \; \; \text{G2}_{\text{k.i}} \; + \; \psi_{1} \cdot Q_{\text{k.gruppo 1}} \; + \; \psi_{2} \cdot \mathbb{W}_{\text{k}} \; \right\} \\ & E_{d} \; = \; E \left\{ \; \; \Sigma \; \; \text{G1}_{\text{k.i}} \; + \; \Sigma \; \; \text{G2}_{\text{k.i}} \; + \; \psi_{1} \cdot \mathbb{W}_{\text{k}} \; + \; \psi_{2} \cdot Q_{\text{k.gruppo 2}} \; \right\} \\ & E_{d} \; = \; E \left\{ \; \; \Sigma \; \; \text{G1}_{\text{k.i}} \; + \; \Sigma \; \; \text{G2}_{\text{k.i}} \; + \; \psi_{1} \cdot Q_{\text{k.gruppo 2}} \; + \; \psi_{2} \cdot \mathbb{W}_{\text{k}} \; \right\} \end{split}$$

Trave	Rz max	Rz min
1	1195.02	773.00
2	986.94	659.66
3	863.74	634.77
4	759.68	629.53
5	741.72	709.12

Reazione laterale su spalla Ry = 17.25

Reazione longitudinale totale Rx = 0.00

SLE Quasi permanenti

$$\begin{split} E_d &= E \{ \; \Sigma \; G1_{k,i} + \Sigma \; G2_{k,i} + \psi_2 \cdot Q_{k,gruppo\;1} + \psi_{2,W} \cdot W_k \; \} \\ E_d &= E \{ \; \Sigma \; G1_{k,i} + \Sigma \; G2_{k,i} + \psi_2 \cdot Q_{k,gruppo\;2} + \psi_{2,W} \cdot W_k \; \} \end{split}$$

Trave	Rz max	Rz min
1	773.00	773.00
2	659.66	659.66
3	634.77	634.77
4	629.53	629.53
5	709.12	709.12

Ry = 0.00Reazione laterale su spalla

Reazione longitudinale totale Rx = 0.00

6.4.5 COMBINAZIONE SISMICA SLV

Le azioni sismiche si calcolano a partire dalla definizione di pesi propri, permanenti e carichi mobili:

0.075 Coefficiente sismico orizzontale

Sisma longitudinale = $[2*(g_1+g_2)+0.2*q_{mob}]k_{sis}$

Sisma trasversale = Sisma longitudinale/(n°spalle*n°appoggi)

Sisma verticale = $[(g_1+g_2)+0.2 *q_{mob}]*0.5*k_{sis}$

Appoggio		Т	rasversale	,		Fisso			Fisso			Fisso		1	rasversal	е
Descrizione carico		FZ	FX	FY	FZ	FX	FY	FZ	FX	FY	FZ	FX	FY	FZ	FX	FY
Descrizione canco		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Peso proprio+permanenti	g ₁ +g ₂	773	0	0	660	0	0	635	0	0	630	0	0	709	0	0
C. Mobili disposiz. A - Max	q _{1a}	676	0	0	529	0	0	386	0	0	253	0	0	132	0	0
Frenata	q 3	0	85	0	0	85	0	0	85	0	0	85	0	0	85	0
Vento a ponte carico	q 5	0	0	0	0	0	30	0	0	30	0	0	30	0	0	0
Sisma longitudinale	q ₆	0	126	0	0	107	0	0	101	0	0	98	0	0	108	0
Sisma trasversale	q6	0	0	0	0	0	90	0	0	90	0	0	90	0	0	0
Sisma verticale	q 6	34	0	0	29	0	0	27	0	0	26	0	0	28	0	0
Attrito dei vincoli	q 7	0	39	0	0	33	0	0	32	0	0	32	0	0	35	0

6.5 RIEPILOGO SCARICHI APPOGGI E GIUNTI

Per il dimensionamento degli apparecchi appoggi vale la seguente tabella:

TABELLA APPOGGI FASE STATICA (VALORI CARATTERISTICI)						
	H _{long,max}	H _{trasv,max}	N _{max}			
	(kN)	(kN)	(kN)			
Appoggio multidirezionale	-	-	1500			
Appoggio unidirezionale trasv	140	-	1500			
Appoggio unidirezionale long	-	30	1200			
FISSO	140	30	1200			
TABELLA APPOGGI FASE SISMICA (SLV)						
TABELLA APPOGGI	FASE SISMI	CA (SLV)				
TABELLA APPOGGI	H _{long,max}	CA (SLV) H _{trasv,max}	N _{max}			
TABELLA APPOGGI			N _{max} (kN)			
Appoggio multidirezionale	H _{long,max}	H _{trasv,max}				
	H _{long,max}	H _{trasv,max}	(kN)			
Appoggio multidirezionale	H _{long,max} (kN)	H _{trasv,max}	(kN) 1000			

6.6 GIUNTO DI DILATAZIONE

Tra gli spostamenti longitudinali provocati dalle azioni statiche risulta significativo quello prodotto dalla variazione termica uniforme dell'impalcato, che è massimo in corrispondenza del giunto sulla spalla mobile.

variazione termica uniforme $\Delta T = 15^{\circ}$

deformazione unitaria $\varepsilon = \pm 0.00001 \text{ x } 15 = \pm 0.00015$

Lunghezza impalcato L = 25.80 m

spostamento massimo $\Delta I = \pm 0.00015 \text{ x } (25.80) \cong \pm 0.0038 \text{ m}$

Il giunto di dilatazione si assume comunque pari a ± 10cm.

6.7 DEFORMAZIONI

Si calcolano gli abbassamenti in mezzeria delle travi per effetto del peso proprio e dei carichi; i valori sono concordi all'asse Z, cioè valori negativi indicano abbassamenti.

I carichi mobili sono disposti come riportato al paragrafo Carichi mobili per massimo effetto sulla trave 1.

Le deformazioni sono calcolate in base ad un valore del modulo elastico del calcestruzzo pari a 30000000.000 [KN/m²].

I carichi permanenti portati di seconda fase comprendono:

- pavimentazione stradale;

- lineare di 2a fase: RETE;

- lineare di 2a fase: RETE;

- lineare di 2a fase: GR;

- lineare di 2a fase: GR;

Prima fase

Trave	peso trave	peso soletta+traversi	carichi aggiuntivi
1	-0.0176	-0.0232	0.0000
2	-0.0176	-0.0176	0.0000
3	-0.0176	-0.0176	0.0000
4	-0.0176	-0.0176	0.0000
5	-0.0176	-0.0232	0.0000

Seconda fase

Carichi permanenti

Trave	peso cordoli	permanenti portati				
Trave	peso cordoli	permanenti portati				
1	-0.0040	-0.0052				
2	-0.0023	-0.0056				
3	-0.0012	-0.0059				
4	-0.0006	-0.0063				
5	-0.0004	-0.0067				

Carichi da traffico

Trave	Tandem-TS	Distribuito-UDL	Folla marciapiedi	gruppo 1 (tab.5.1.IV)
1	-0.0136	-0.0079	-0.0007	-0.0218
2	-0.0106	-0.0058	-0.0010	-0.0169
3	-0.0073	-0.0037	-0.0017	-0.0119
4	-0.0039	-0.0017	-0.0028	-0.0071
5	-0.0004	0.0000	-0.0045	-0.0024

Combinazione SLE rara - frecce totali di 2a fase

$$E_{\text{d}} \ = \ E \left\{ \ \Sigma \ \text{G1}_{\text{k.2}} \text{a}_{\text{fase}} \ + \ \Sigma \ \text{G2}_{\text{k.2}} \text{a}_{\text{fase}} \ + \ Q_{\text{k.gruppo 1}} \ \right\}$$

Trave	F max	F min
1	-0.0091	-0.0308
2	-0.0079	-0.0244
3	-0.0071	-0.0185
4	-0.0069	-0.0131
5	-0.0072	-0.0082

Freccia massima dovuta ai carichi da traffico $F_{max,gr1} = -0.0218$ [m] (= L/1108)

TRAVE N.1 - VERIFICA ELEMENTO PRECOMPRESSO

Il capitolo presente espone la verifica di una struttura lineare continua soggetta a forze esterne contenute nel piano verticale longitudinale alla struttura stessa e vincolata nel medesimo piano.

La struttura è in calcestruzzo armato precompresso, realizzata per fasi utilizzando travi prefabbricate in c.a.p. e getto successivo eseguito in opera per realizzare traversi di collegamento e soletta collaborante.

7.1 CONVENZIONI ED IPOTESI DI BASE

7.1.1 SISTEMA DI RIFERIMENTO

Il sistema di riferimento delle grandezze geometriche e delle forze è una terna sinistrogira con l'asse X parallelo all'asse longitudinale della struttura, l'asse Z contenuto nel piano verticale e l'asse Y ortogonale a tale piano e orientato verso l'osservatore che veda le X positive a destra e le Z positive in alto.

I carichi agenti sulla struttura e le reazioni dei vincoli sono positivi se sono diretti verso l'alto e verso destra. I momenti flettenti sulla trave sono positivi quando tendono la fibra inferiore della sezione.

Tensioni e deformazioni sono positive se di trazione, sia per il calcestruzzo che per l'acciaio.

7.1.2 UNITÀ DI MISURA

Ove non sia diversamente specificato, le grandezze contenute nella presente relazione sono espresse nelle seguenti unità di misura:

lunghezza [cm] forza [daN] angolo [rad]

I diametri delle barre di armatura lenta sono sempre espressi in [mm], i diametri dei trefoli di precompressione sono invece espressi in [inch] (= 25.4 [mm]).

7.1.3 MODELLO DI CALCOLO

Il codice di calcolo TCAP riceve le combinazioni di carico della struttura dal programma di calcolo delle sollecitazioni ed esegue le verifiche nelle situazioni agli Stati Limite Ultimi e agli Stati Limite di Esercizio inserendo nelle combinazioni l'effetto della precompressione.

Per valutare l'effetto della precompressione nelle varie sezioni viene assunto un modello di calcolo appropriato che riproduce le condizioni iperstatiche della struttura reale.

La struttura è considerata lineare e rettilinea, soggetta a deformazione longitudinale assiale generata dalla precompressione e deformazione trasversale per inflessione nel piano verticale.

Essa viene schematizzata come una struttura a telaio piano che discretizza i tratti a sezione (e quindi baricentro) costante con aste orizzontali e i tratti a geometria variabile con aste inclinate.

Le forze di precompressione sono rappresentate da forze longitudinali e da coppie di trasporto delle forze stesse alla quota del baricentro locale.

7.1.4 CODICE DI CALCOLO

La verifica è stata condotta con il codice di calcolo automatico TCAP ed. 8.31 sviluppato da SIGMAc SOFT.

7.2 DATI DI CALCOLO

L'impalcato viene realizzato con travi prefabbricate in c.a.p. e getto eseguito in opera di traversi e soletta collaborante. Si distinguono due fasi successive di lavoro:

PRIMA FASE: Le travi semplicemente appoggiate agli estremi resistono al peso proprio ed a quello del getto eseguito in opera.

SECONDA FASE: Il sistema misto, travi prefabbricate e soletta gettata in opera, divenuto solidale dopo la maturazione del calcestruzzo, resiste al peso delle sovrastrutture e dei carichi accidentali.

Prima fase

Nella prima fase i prefabbricati sono soggetti alle seguenti condizioni di vincolo:

In opera al momento del getto di 2a fase:

Sbalzo sinistro = 50.00

Sbalzo destro = 50.00

Seconda fase

In seconda fase la struttura è vincolata sugli appoggi definitivi:

appoggio	descrizione	X	luce campata
1	Spalla iniziale	0.00	
2	Spalla finale	2420.00	2420.00

7.2.1 ARMATURE TRAVE PREFABBRICATA

Armature di precompressione pretesate

trefoli : 6/10" area = 139.000 [mm²]

acciaio: prec.fpk=1860

tensione di tesatura = 14000.00 [daN/cm²]

 $A_p = 83.400$ $N_p = 1167600.00 [daN]$ $Z_{g,p} = 21.17 [cm]$

quota Z	n. trefoli	n. guaine	L guaine
115.00	6		
110.00			
20.00	5		
15.00	15		
10.00	17		
5.00	17		
N. trefoli=	60	L tot guaine=	0.00

Armatura lenta

Armatura longitudinale:

pos.		armatur a	Y	Z	x iniziale	x finale
T1L1	25	1Ø12	-80.00	110.00	3.00	202.00
T1L1	(simmetrica)				2218.00	2417.00
T1L2	25	1Ø12	80.00	110.00	3.00	202.00
T1L2	(simmetrica)				2218.00	2417.00
T1L3	25	7Ø12	56.00	60.00	3.00	202.00
T1L3	(simmetrica)				2218.00	2417.00
T1L4	25	7Ø12	-56.00	60.00	3.00	202.00
T1L4	(simmetrica)				2218.00	2417.00
T1L5	25	6Ø12	0.00	6.00	3.00	202.00
T1L5	(simmetrica)				2218.00	2417.00
T1L6	26	6Ø8	0.00	6.00	222.00	2198.00
T1L7	26	7Ø8	56.00	60.00	222.00	2198.00
T1L8	26	7Ø8	-56.00	60.00	222.00	2198.00
T1L9	26	1Ø8	80.00	110.00	222.00	2198.00
T1L10	26	1Ø8	-80.00	110.00	222.00	2198.00
T1L11	27	8Ø8	0.00	19.00	-13.00	2433.00
T1L12	27	5Ø8	-48.00	60.00	-13.00	2433.00
T1L13	27	5Ø8	48.00	60.00	-13.00	2433.00
T1L14	27	2Ø8	-80.00	115.00	-13.00	2433.00
T1L15	27	2Ø8	80.00	115.00	-13.00	2433.00

Armatura trasversale:

pos.		armatura	X iniziale	X finale	
T1S1		2Ø10/20.00	150.00	2270.00	anima trave
T1S2		2Ø14/20.00	-50.00	150.00	anima trave
T1S2	(simmetrica)		2270.00	2470.00	
T1S3		2Ø10/20.00	350.00	2070.00	trave+colleg. con soletta
T1S4		2Ø14/20.00	-50.00	150.00	anima trave
T1S4	(simmetrica)		2270.00	2470.00	
T1S5		2Ø14/20.00	-50.00	350.00	trave+colleg. con soletta
T1S5	(simmetrica)		2070.00	2470.00	

armatura longit. appoggio:

n. barre	Ø	lunghezza	quota Z
7	26	260	5

7.2.2 MATERIALI - RESISTENZE DI CALCOLO

In questo paragrafo non valgono le convezioni di segno precedentemente riportate: per il calcestruzzo tutte le grandezze sono indicate con segno positivo e contestualmente viene specificato se si tratta di valori di compressione o di trazione.

Calcestruzzo delle travi prefabbricate

Ai fini del calcolo le caratteristiche rilevanti del calcestruzzo sono date dalla resistenza a rottura, dal modulo elastico e dall'entità dei fenomeni differiti nel tempo.

Le travi prefabbricate in c.a.p. sono precompresse a trefoli aderenti e devono perciò rispettare delle limitazioni tensionali già in fase iniziale, al rilascio dei trefoli.

Data l'entità delle sollecitazioni iniziali si raccomanda di eseguire il trasferimento della precompressione con opportuna gradualità. Nel seguito della relazione si indicherà sinteticamente tale operazione come "taglio dei trefoli".

Calcestruzzo	C45/55
resistenza caratteristica R _{ck28,cub}	550.00
resistenza al taglio dei trefoli R _{ckj,cub}	385.00
coefficiente sicurezza verifiche a rottura	1.500
modulo elastico	364161.14
peso specifico	0.0025
ritiro totale	-0.00030
% ritiro prima del taglio trefoli	25.5%
% ritiro taglio trefoli-getto soletta	25.5%

49%
2.300
33%
67%

Resistenza caratteristica cilindrica a compressione :

a tempo infinito
$$f_{ck} = 0.83 \cdot R_{ck} = 0.83 \cdot 550.00 = 456.50$$
 daN/cm² al taglio dei trefoli $f_{ckj} = 0.83 \cdot R_{ckj} = 0.83 \cdot 385.00 = 319.55$ daN/cm²

Resistenza di calcolo a compressione :

a tempo infinito
$$f_{cd} = \alpha_{cc} \cdot f_{ck}/\gamma_{c} = 0.85 \cdot 456.50/1.5 = 258.68$$
 daN/cm² al taglio dei trefoli $f_{cdj} = \alpha_{cc} \cdot f_{ckj}/\gamma_{c} = 0.85 \cdot 319.55/1.5 = 181.08$ daN/cm²

Nel calcolo a rottura delle sezioni si utilizza il diagramma parabola-rettangolo con tensione massima a tempo infinito pari a :

$$f_{cd} = 258.68 \text{ daN/cm}^2$$

Resistenza di calcolo a trazione per flessione (formazione delle fessure) :

a tempo infinito
$$f_{ct} = f_{ctm}/1.2 = 38.32/1.2 = 31.93$$

al taglio dei trefoli $f_{ctj} = f_{ctmi}/1.2 = 30.21/1.2 = 25.17$

Nelle condizioni di esercizio la massima tensione di compressione nel calcestruzzo deve rispettare le seguenti limitazioni:

al taglio dei trefoli:

$$\sigma_{cj}$$
< 0.70· f_{ckj} = 223.69 daN/cm²

a cadute avvenute:

$$\sigma_c$$
< 0.6· f_{ck} = 273.90 daN/cm² (per comb. caratteristica rara) σ_c < 0.45· f_{ck} = 205.43 daN/cm² (per comb. quasi permanente)

Calcestruzzo gettato in opera

Calcestruzzo	C28/35
resistenza caratteristica R _{ck,cub}	350.00
coefficiente sicurezza verifiche a rottura	1.5
modulo elastico	325881.08
peso specifico	0.0025
coeff. di omogeneizzazione con cls travi	0.895

Resistenza caratteristica cilindrica a compressione :

a tempo infinito
$$f_{ck} = 0.83 \cdot R_{ck} = 0.83 \cdot 350.00 = 290.50$$
 daN/cm²

Resistenza di calcolo a compressione :

a tempo infinito
$$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c = 0.85 \cdot 290.50 / 1.5 = 164.62$$
 daN/cm²

Nel diagramma parabola-rettangolo la tensione massima è pari a :

$$f_{cd} = 164.62$$

Resistenza di calcolo a trazione per flessione (formazione delle fessure) :

a tempo infinito
$$f_{ct} = f_{ctm}/1.2 = 28.35/1.2 = 23.62$$

Nelle condizioni di esercizio la massima tensione di compressione del calcestruzzo deve rispettare le seguenti limitazioni:

$$\sigma_c$$
< 0.6· f_{ck} = 174.30 daN/cm² (per comb. caratteristica rara) σ_c < 0.45· f_{ck} = 130.73 daN/cm² (per comb. quasi permanente)

Acciaio per c.a.p.

Acciaio prec.fpk=1860:

tensione all'1% deform. residua $f_{p(1)k}$	16740.00
Modulo elastico	2060000.00
coeff. di omogeneizzazione a cls travi	6
coefficiente di sicurezza	1.15
% rilassam. prima del taglio trefoli	41.4%

% rilassam. taglio trefoli-getto soletta	25.9%
% rilassam. da getto soletta a t=inf.	32.7%

In base al punto 4.1.8.1.5 del D.M. 17/01/2018 le tensioni iniziali all'atto della tesatura dei cavi pretesi deve rispettare la più restrittiva delle seguenti limitazioni:

$$\begin{split} &\sigma_{spi} \!\!<= 0.80 \!\cdot\! f_{ptk} = 0.80 \!\cdot\! 18414.00 \!\!=\! 14731.20 & \text{daN/cm}^2 \\ &\sigma_{spi} \!\!<= 0.90 \!\cdot\! f_{p(1)k} \!\!= 0.90 \!\cdot\! 16740.00 \!\!=\! 15066.00 & \text{daN/cm}^2 \end{split}$$

E' ammessa una sovratensione iniziale pari a $0.05 f_{p(1)k}$.

La tensione massima in esercizio nella combinazione caratteristica (rara) deve rispettare la seguente limitazione (4.1.8.1.2 e 4.1.2.2.5.2 D.M.17/01/2018):

$$\sigma_{sp} \le 0.80 \cdot f_{p(1)k} = 13392.00$$
 daN/cm²

Nel calcolo a rottura si utilizza il diagramma triangolo-rettangolo con tensione massima pari a:

$$f_{ptd} = f_{p(1)k}/\gamma_s$$
 = 16740.00/1.15 = 14556.52 daN/cm²

Acciaio per armatura lenta

Questo tipo di acciaio costituisce l'armatura destinata ad assorbire gli sforzi di taglio (staffe) ed altri sforzi locali di trazione nel calcestruzzo.

tipo acciaio	B450C
tensione di snervamento f_{yk}	4500.00
coefficiente sicurezza verifiche a rottura	1.15
modulo elastico	2100000.00
coeff. di omogeneizzazione a cls travi	6

La tensione massima consentita (4.1.2.2.5.2 D.M. 17/01/2018) nella combinazione rara deve rispettare la seguente limitazione:

$$\sigma_s \le 0.80 \cdot f_{yk} = 0.80 \cdot 4500.00 = 3600.00$$
 daN/cm²

Nel calcolo a rottura si utilizza il diagramma triangolo-rettangolo con tensione massima pari a:

$$f_{yd} = f_{yk}/\gamma_s$$
 = 4500.00/1.15 = 3913.04 daN/cm²

7.2.3 CADUTE DI TENSIONE

Rilassamento dell'acciaio da precompressione

La valutazione del rilassamento dell'acciaio da precompressione avviene con la formulazione indicata dalla normativa e con i dati forniti dal produttore.

Ad una temperatura costante di 20 [°C] la caduta di tensione $\Delta \sigma_{pr}$ per rilassamento al tempo t è:

classe	tipo	caduta
2	trecce e trefoli stabilizzati	$\Delta \sigma_{pr} = \sigma_{pi} \cdot [0.66 \cdot \rho_{1000} \cdot e^{9.1\mu} \cdot (t/1000)^{0.75(1-\mu)} \cdot 10^{-5}]$

dove:

- σ_{pi} è la tensione iniziale nel cavo;
- ρ_{1000} è la perdita per rilassamento (in percentuale) a 1000 ore dopo la messa in tensione, a 20 [°C] e a partire da una tensione iniziale pari a 0.7 della resistenza f_p del campione provato:

Acciaio	classe	ρ1000
1	2	2.5

- $\mu = \sigma_{pi}/f_{pk}$;
- f_{pk} è la resistenza caratteristica a trazione dell'acciaio;
- t è il tempo misurato in ore dalla messa in tensione.

La caduta finale per rilassamento può essere valutata con le formule sopra scritte ed inserendo un tempo di 500000 ore. Si ottiene così:

Armatura	classe	μ	$\Delta\sigma_{\text{pr}}/\sigma_{\text{pi}}$	
Trave 1 - gruppo 1	2	0.760	0.051	5.10%

Ritiro del calcestruzzo

L'accorciamento dovuto al ritiro viene assunto pari a :

prefabbricati
$$\epsilon_{cs1}$$
 = -0.00030 getto in opera ϵ_{cs2} = -0.00030

e la conseguente caduta di tensione nell'acciaio da precompressione viene calcolata in base al modulo elastico dell'acciaio stesso:

Armatura	$\Delta\sigma_{\sf ps}$		
Trave 1 - gruppo 1	-0.00030:2060000.00=	-618 00	4 41%

Viscosità del calcestruzzo

Il valore della deformazione lenta del calcestruzzo (viscosità) si assume, ai fini del calcolo delle cadute di tensione nell'acciaio, secondo quanto indicato dalle norme (11.2.10.7 D.M.17/01/2018), pari a :

$$\varphi_{inf,1} = 2.3$$
 (cavi pretesi nei prefabbricati)

Sviluppo nel tempo delle cadute di tensione

Per i cavi pretesi, che agiscono sugli elementi prefabbricati, i valori totali dei fenomeni differiti esposti ai paragrafi precedenti vengono ripartiti nelle diverse fasi tenendo conto delle diverse condizioni ambientali e tensionali.

	% rilassamento	% ritiro	% viscosità
dalla posa in tensione al taglio trefoli	41.40	25.50	0.00
dal taglio trefoli al getto in opera	25.90	25.50	33.00
dal getto in opera a tempo infinito	32.70	49.00	67.00

7.3 STATI LIMITE DI ESERCIZIO

Per valutare lo stato tensionale nelle sezioni di verifica distingueremo le seguenti fasi :

PRIMA FASE

- a) al manifestarsi della precompressione
- b) prima del getto in opera
- c) subito dopo il getto in opera

SECONDA FASE

- d) impalcato scarico
- e) impalcato carico

In tutte le fasi la determinazione dello stato tensionale degli elementi da verificare avviene in base alla combinazione caratteristica (rara) :

$$S = G_1 + G_2 + P + Q$$

dove:

G₁ = permanenti strutturali

G₂ = permanenti non strutturali

P = precompressione

Q = azioni variabili

7.3.1 STATO LIMITE DI FESSURAZIONE

Per garantire la durabilità della struttura il calcolo di verifica tensionale agli Stati Limite di esercizio viene condotto con opportune limitazioni che preservano le travi principali da una eccessiva fessurazione.

A questo scopo, facendo riferimento alla normativa (tab. 4.1.IV) ed adottando le limitazioni relative alle armature *sensibili* nel caso di ambiente molto aggressivo, andrebbero verificate le seguenti condizioni:

classi di esposizione	comb. rare	comb. frequenti	comb. quasi perm.
XD2,XD3,XS2,XS3,XA3,XF4	<nessuna verifica=""></nessuna>	formazione fessure	decompressione

Per una maggiore tutela della durabilità dell'opera vengono invece rispettate nelle verifiche le seguenti limitazioni:

classi di esposizione	comb. rare	comb. frequenti	comb. quasi perm.
XD2,XD3,XS2,XS3,XA3,XF4	formazione fessure	decompressione	<nessuna verifica=""></nessuna>

 $\sigma_{traz.} <= f_{ctm}/1.2$

7.3.2 STATO LIMITE DI DEFORMAZIONE

Viene valutata l'entità delle deformazioni significative degli elementi inflessi nelle varie fasi.

La valutazione di tali deformazioni viene fatta assumendo per il modulo elastico del calcestruzzo il valore:

$$E_{travi} = 364161.14$$

$$E_{\text{soletta}} = 325881.08$$

e, per determinare gli effetti sotto l'azione dei carichi permanenti, viene assunto un coefficiente di viscosità pari a:

$$\varphi_{inf} = 2.3$$

L'effetto della viscosità viene poi ridotto moltiplicando tutte le deformazioni conseguenti per il valore 0.5

Le frecce calcolate sono positive se rappresentano uno spostamento verso l'alto, negative se verso il basso.

Prima fase

V120:

accorciamento	rotaz testata	rotaz testata	freccia in
accordianicino	i otaz. tootata	. Otaz. tootata	ii coola iii

	[cm]	sinistra [rad]	destra [rad]	mezzeria [cm]
al taglio trefoli	-0.9264	0.00820	-0.00820	4.8586
al getto soletta	-1.3486	0.00725	-0.00725	4.0408
dopo maturazione	-1.3526	0.00726	-0.00726	4.0470

Seconda fase

Spostamenti X in asse appoggi [cm] :

	dopo maturazione soletta	postesi e cambio vincoli	t=inf.
Spalla iniziale	0.0000	0.0000	0.0000
Spalla finale	0.0000	0.0000	-0.4267

Rotazioni in asse appoggi [rad]:

	dopo maturazione	postesi e	4
Spalla iniziale	soletta 0.00000	cambio vincoli 0.00000	t=inf. 0.00641
Spalla finale	0.00000	0.00000	-0.00641

Frecce in mezzeria [cm]:

campata		dopo maturazione	postesi e	t=inf.	t=inf.
	X	soletta	cambio vincoli	comb. rara max	comb. rara min
1	1210.00	4.0470	4.0470	6.3835	3.3074

7.4 STATI LIMITE ULTIMI

7.4.1 STATO LIMITE ULTIMO PER SOLLECITAZIONI FLETTENTI

Il calcolo dei momenti ultimi delle sezioni viene eseguito tenendo conto del diagramma σ - ϵ parabola-rettangolo per il calcestruzzo, con deformazione limite pari a -0.0035 in compressione, e deformazione indefinita a trazione con tensione nulla (sezione fessurata).

Per gli acciai si utilizza un diagramma tensioni-deformazioni linearmente elastico fino alla tensione di rottura e lineare orizzontale fino alla deformazione 0.01, sia in trazione che in compressione.

Si rimanda al capitolo dei materiali per i valori dei moduli elastici e delle tensioni di calcolo.

Nel calcolo del momento ultimo si tiene conto del delta di deformazione ε_{sp} dell'acciaio da precompressione rispetto agli altri materiali.

7.4.2 STATO LIMITE ULTIMO PER SOLLECITAZIONI TAGLIANTI E TORCENTI

Per valutare i tagli e momenti torcenti resistenti viene utilizzata la formulazione indicata dalle norme:

 $V_{Rd} = (0.18 \cdot k \cdot ((100 \cdot \rho_l \cdot f_{ck})^{1/3} / \gamma_c) + 0.15 \cdot \sigma_{cp}) \cdot b_w \cdot d$ (taglio ultimo in assenza di armatura trasversale)

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot 0.5 \cdot f_{cd} \cdot (\cot n\alpha + \cot n\theta) / (1 + \cot n^2\theta)$ (taglio ultimo per rottura delle bielle compresse)

 $V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} \cdot (cotan\alpha + cotan\theta) \cdot sin\alpha$ (taglio ultimo per rottura delle staffe)

 $T_{Rcd} = 2 \cdot A_k \cdot 0.5 \cdot f_{cd} \cdot \cot n\theta / (1 + \cot n^2\theta)$ (momento torcente ultimo per rottura delle bielle compresse)

 $T_{Rsd} = 2 \cdot A_k \cdot (A_{sw,parete}/s) \cdot f_{yd} \cdot cotan\theta$ (momento torcente ultimo per rottura delle staffe)

Dove:

d: altezza utile della sezione

bw: larghezza minima della sezione

Asw: area armatura trasversale nella sezione

A_{sw.parete}: area armatura trasversale minima nelle pareti

s: passo staffe

α: inclinazione risp. all'orizzontale delle armature trasversali (90 [deg])

θ: inclinazione bielle compresse in cls

 α_c : coeff. maggiorativo dovuto alla presenza dello sforzo assiale

A_{sl}: area acciaio in zona tesa

 $k = 1 + (200/d)^{1/2}$

 $\sigma_{cp} = N_{Ed}/A_{cls}$

 $\rho_I = A_{sI}/(b_w \cdot d)$

Ak: area racchiusa dalla fibra media del profilo periferico della sezione

Nel modello a traliccio a rottura si considerano inclinate a 45 [deg] le bielle compresse di calcestruzzo in sezioni non precompresse, mentre si tiene conto dell'effetto benefico della precompressione valutando una minore inclinazione delle bielle in base alla tensione principale di trazione presente nella sezione a quota baricentrica.

L'inclinazione così determinata viene comunque limitata come indicato nelle norme citate.

7.4.3 STATO LIMITE ULTIMO PER SCORRIMENTO TRA I GETTI

Viene calcolato lo sforzo di scorrimento di progetto S_{Edi} tra il calcestruzzo delle travi prefabbricate e quello gettato in opera, e viene confrontato con quello ultimo di interfaccia S_{Rdi} , utilizzando le indicazioni della normativa EN1991-1-1-6.2.5

$$S_{Edi} = \beta \cdot V_{Ed}/z$$

in cui:

- β è il rapporto tra la forza longitudinale nell'ultimo getto di calcestruzzo e la forza longitudinale totale in zona compressa o tesa, entrambe calcolate nella sezione considerata, assunto = 1.0
- V_{Ed} è la forza di taglio trasversale di 2ª fase
- z è il braccio della coppia interna della sezione composta

$$S_{Rdi} = b_i \cdot (c \cdot f_{ctd} + \mu \bullet \sigma_n) + A_{sw} / s \cdot f_{yd} \cdot \mu \qquad \leq 0.5 \cdot b_i \cdot \nu \cdot f_{cd}$$

in cui:

Larghezza superficie contatto / spess. tot. anime	b_i/b_w	1.000	[-]
Fattore di coesione tra le superfici	С	0.350	[-]
Resistenza a trazione di progetto	\mathbf{f}_{ctd}	28.35	[daN/cm²]
Coefficiente di attrito tra le superfici	μ	0.600	[-]
Compressione normale alle superfici di contatto	σ_{n}	1.40	[daN/cm²]
Area complessiva staffa di collegamento	A_{sw}	<variab< td=""><td>ile> [cm²]</td></variab<>	ile> [cm²]
Passo staffe di collegamento	s	<variabi< td=""><td>le> [cm]</td></variabi<>	le> [cm]
Resistenza calcestruzzo più debole	$f_{\sf cd}$	164.62	[daN/cm²]

7.5 VERIFICA SEZIONE X=0.00 - APPOGGIO

7.5.1 PRIMA FASE: SOLA TRAVE

Sezione di calcolo :

n.	Υ	Z
1	-124.50	113.40
2	-124.50	120.00
3	-41.60	120.00
4	-27.14	35.00
5	-25.00	25.00
6	25.00	25.00
7	27.14	35.00

8	41.60	120.00
9	124.50	120.00
10	124.50	113.40
11	101.00	110.00
12	67.13	100.00
13	49.63	0.00
14	-49.63	0.00
15	-67.13	100.00
16	-101.00	110.00
17	-124.50	113.40
A = 9	9402.050	

J_f = 14706164.3408

J₁ - 14700104.3

 $Z_g = 61.86$

<nessuna armatura di precompressione attiva>

Armature lente longitudinali:

n.	Z	area	
1	19.00	4.021	8Ø8 27
2	60.00	2.513	5Ø8 27
3	60.00	2.513	5Ø8 27
4	115.00	1.005	2Ø8 27
5	115.00	1.005	2Ø8 27
6	5.00	37.165	7Ø26 armatura longit. appoggio

Sezione ideale (n=15.000)	\mathbf{A}_{id}	$\mathbf{J}_{f,id}$	$\mathbf{Z}_{g,id}$
	10125.400	1.659808E7	58.61

Sollecitazioni	M _{esterno}
prima del getto	0.00
dopo getto 2a fase	0.00

Tensioni nei materiali dopo getto 2a fase

Tensioni sul calcestruzzo	$\sigma_{e,max}$	$\sigma_{i,\text{max}}$	
prima del getto	0.00	0.00	

dopo getto 2a fase 0.00 0.00

Tensioni sugli acciai	σ_{sp}	$\sigma_{ ext{long,inf}}$	$\sigma_{ ext{long,sup}}$
prima del getto	13204.44	0.00	0.00
dopo getto 2a fase	13204.44	0.00	0.00

Verifica a rottura per flessione dopo getto 2a fase

<sollecitazioni flettenti nulle>

Verifica a rottura per taglio dopo getto 2a fase

Calcestruzzo:	θ [rad]	bw	Staffe:	Asw
	0.785	58.00		0.46181

d	K	A _{sl}	ρι	$\sigma_{\sf cp}$	α_{c}
115.00	1.417	46.213	0.0069	0.00	1.000

V_{Rd}	\mathbf{V}_{Rsd}	V_{Rcd}
35868.37	187034.70	388219.00

 $V_{Ed,max} = 64965.09 < 187034.72$

7.5.2 SECONDA FASE: TRAVE + GETTO IN OPERA

Tensioni sul calcestruzzo dopo 28gg dal getto :

	$\sigma_{\text{e},\text{max}}$	$\sigma_{i,\text{max}}$
trave prefabbricata	0.00	0.00
getto in opera	0.00	0.00

Cadute di tensione da maturazione soletta a t=inf. :

	%	$\Delta\sigma_{sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	48.9%	301.97	2.2%
rilassamento acciaio	23.3%	232.75	1.7%
viscosità cls	100.0%	1527.60	10.9%

7.5.3 VERIFICHE IN ESERCIZIO

Verifica tensionale

Sezione di calcolo :

n.	Υ	Z	
1	-124.50	113.40	
2	-124.50	120.00	
3	-41.60	120.00	
4	-27.14	35.00	
5	-25.00	25.00	
6	25.00	25.00	
7	27.14	35.00	
8	41.60	120.00	
9	124.50	120.00	
1 0	124.50	113.40	
1 1	101.00	110.00	
1 2	67.13	100.00	
1 3	49.63	0.00	
1	-49.63	0.00	
1 5	-67.13	100.00	
1 6	-101.00	110.00	fine prefabb.
1 7	-124.50	113.40	
1 8	-215.00	145.00	getto in opera
1 9	125.00	145.00	(m=1.000)
2	125.00	120.00	
2	-215.00	120.00	
2 2	-215.00	145.00	

A = 17902.050

 $J_f = 37427874.0523$

 $Z_g = 95.40$

<nessuna armatura di precompressione attiva>

Armature lente longitudinali:

n.	Z	area	
1	19.00	4.021	8Ø8 27
2	60.00	2.513	5Ø8 27
3	60.00	2.513	5Ø8 27
4	115.00	1.005	2Ø8 27
5	115.00	1.005	2Ø8 27
6	5.00	37.165	7Ø26 armatura longit. appoggio

Sezione ideale (n=15.000)	Aid	$J_{f,id}$	$Z_{g,id}$
	18625.400	4.226663E7	92.33

Tensioni sul cls - V120 :

	$\sigma_{\text{e,max}}$	$\sigma_{\rm e,min}$	$\sigma_{i,\text{max}}$	$\sigma_{i,\text{min}}$
t=infsenza carichi	0.00	0.00	0.00	0.00
t=infSLE Rare	0.00	0.00	0.00	0.00
t=infSLE Frequenti	0.00	0.00	0.00	0.00
t=infSLE Quasi Permanenti	0.00	0.00	0.00	0.00

Tensioni sul cls - getto in opera :

	$\sigma_{\text{e},\text{max}}$	$\sigma_{e,min}$	$\sigma_{i,max}$	$\sigma_{i,min}$
t=infsenza carichi	0.00	0.00	0.00	0.00
t=infSLE Rare	0.00	0.00	0.00	0.00
t=infSLE Frequenti	0.00	0.00	0.00	0.00
t=infSLE Quasi Permanenti	0.00	0.00	0.00	0.00

Tensioni sugli acciai:

	σ_{sp}	$\sigma_{ m long,inf}$	$\sigma_{long,sup}$
t=infsenza carichi	0.00	0.00	0.00
t=infSLE Rare	0.00	0.00	0.00
t=infSLE Frequenti	0.00	0.00	0.00
t=infSLE Quasi Permanenti	0.00	0.00	0.00

Verifica a rottura per flessione t=inf.

<sollecitazioni flettenti nulle>

Verifica rottura per taglio t=inf.

Calcestruzzo:	θ [rad]	b _W	Staffe:	Asw
	0.785	58.00		0.46181

d	K	A _{sl}	ρι	$\sigma_{\sf cp}$	αc
140.00	1.378	48.223	0.0059	0.00	1.000

V_{Rd}	\mathbf{V}_{Rsd}	\mathbf{V}_{Rcd}
40335.70	227694.40	472614.50

 $V_{Ed,max} = 189315.39 < 227694.44$

Trazione per taglio (V=189315.39) = 94657.69 [daN]

Verifica rottura per torsione t=inf.

<sollecitazioni torcenti nulle>

Verifica a taglio/torsione t=inf.

L'azione combinata di taglio e torsione impegna i materiali (bielle di calcestruzzo e staffe di acciaio) in misura superiore a quella delle azioni singole dei due parametri di sollecitazione.

Viene perciò eseguita la verifica secondo il punto 4.1.2.1.4 - *Sollecitazioni composte - b)* nella combinazione più sfavorevole.

 $T_{Ed}/T_{Rd} + V_{Ed}/V_{Rd} = 0.00/19823873.08 + 189315.39/227694.44 = 0.831$

Forze di scorrimento tra i getti

Con riferimento ad una area di interfaccia tra i getti di 58.000 [cm²] (lunghezza unitaria), gli sforzi di scorrimento tra i getti alla sezione X=0.00 risultano:

max valore di progetto scorrimento interfaccia	986.91	[daN/cm]
min valore di progetto scorrimento interfaccia	0.00	[daN/cm]
scorrimento ultimo per coesione ed attrito	±58.64	[daN/cm]
staffe di collegamento	0.1539	[cm²/cm]

scorrimento ultimo per coesione, attrito, staffe	±420.06	

7.6 VERIFICA SEZIONE X=1210.00 - MEZZERIA

7.6.1 PRIMA FASE: SOLA TRAVE

Sezione di calcolo :

n.	Υ	Z	
1	-124.50	113.40	
2	-124.50	120.00	
3	-55.00	120.00	
4	-40.00	35.00	
5	-25.00	25.00	
6	25.00	25.00	
7	40.00	35.00	
8	55.00	120.00	
9	124.50	120.00	
10	124.50	113.40	
11	101.00	110.00	
12	67.13	100.00	
13	49.63	0.00	
14	-49.63	0.00	
15	-67.13	100.00	
16	-101.00	110.00	
17	-124.50	113.40	
A = 7041.350			
J _f = 12535077.9009			
$Z_g = 57.36$			

Armature di precompressione :

n.	Z	area
1	115.00	8.340
2	20.00	4.170
3	15.00	16.680
4	10.00	23.630

5 5.00 23.630

 $A_p = 83.400$

 $Z_{g,p} = 21.17$

Armature lente longitudinali:

n.	Z	area	
1	6.00	3.016	6Ø8 26
2	60.00	3.519	7Ø8 26
3	60.00	3.519	7Ø8 26
4	110.00	0.503	1Ø8 26
5	110.00	0.503	1Ø8 26
6	19.00	4.021	8Ø8 27
7	60.00	2.513	5Ø8 27
8	60.00	2.513	5Ø8 27
9	115.00	1.005	2Ø8 27
10	115.00	1.005	2Ø8 27

Sezione ideale (n=6.000) A_{id} $J_{f,id}$ $Z_{g,id}$ 7674.451 1.378522E7 54.91

Cadute di tensione prima del taglio trefoli :

	%	$\Delta\sigma_{\sf sp}$	$\Delta\sigma_{sp}/\sigma_{spi}$
ritiro cls	25.5%	157.59	1.1%
rilassamento acciaio	29.5%	295.51	2.1%

Sollecitazioni	Mesterno	N _{precomp} .	Mprecomp.
t=0 dopo taglio trefoli	12662645.32	-1129811.66	-40886212.21
prima del getto	12662645.32	-1021664.77	-36972536.51
dopo getto 2a fase	29416726.90	-1021223.53	-36956568.58

Tensioni nei materiali dopo getto 2a fase

Tensioni sul calcestruzzo	С е,max	σ i,max	
t=0 dopo taglio trefoli	-26.99	-248.64	

Tensioni sul calcestruzzo	σ e,max	O i,max
prima del getto	-30.13	-220.01
dopo getto 2a fase	-109.24	-153.28

Tensioni sugli acciai	О sp	℧ long,inf	σ long,sup
t=0 dopo taglio trefoli	12289.64	-1425.35	-217.38
prima del getto	11131.06	-1263.11	-228.27
dopo getto 2a fase	11377.13	-906.44	-666.45

Cadute di tensione dal taglio trefoli al getto soletta :

	%	$\Delta\sigma_{sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	25.5%	157.59	1.1%
rilassamento acciaio	18.5%	184.87	1.3%
viscosità cls	38.4%	954.26	6.8%

Cadute di tensione durante maturazione soletta :

	%	$\Delta\sigma_{sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	0.1%	0.85	0.0%
rilassamento acciaio	0.1%	0.66	0.0%
viscosità cls	0.2%	3.78	0.0%

Verifica a rottura per flessione dopo getto 2a fase

 $\Delta \varepsilon$ armature pretese: $\varepsilon_{\text{sp,z=21.17}}$ =0.00595

fless.	Z asse neutro	Mr	Esup	Z _{Esup}	Einf	Zeinf
(+)	24.77	7.742551E7	-0.00350	120.00	0.00073	5.00
(-)	34.06	-1.474086E7	0.00832	115.00	-0.00350	0.00

 $M_{d,max} = 39712581.32 < 77425513.12$

Verifica a rottura per taglio dopo getto 2a fase

Calcestruzzo: θ [rad] b_W Staffe: A_{SW}

Calcestruzzo:	θ [rad]	bw	Staffe:	Asw
	0.381	32.00		0.15708

d	K	A _{sl}	ρι	$\sigma_{\sf cp}$	$lpha_{ extsf{c}}$
115.00	1.417	55.241	0.0150	-145.10	1.098

\mathbf{V}_{Rd}	$oldsymbol{V}_Rsd$	V_{Rcd}
105699.50	159042.80	162157.30

 $V_{Ed,max} = 0.00 < 159042.84$

7.6.2 SECONDA FASE: TRAVE + GETTO IN OPERA

Tensioni sul calcestruzzo dopo 28gg dal getto :

	$\sigma_{\rm e,max}$	O i,max	
trave prefabbricata	-109.25	-153.16	
getto in opera	0.00	0.00	

Cadute di tensione da maturazione soletta a t=inf. :

	%	$\Delta\sigma_{\sf sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	48.9%	301.97	2.2%
rilassamento acciaio	23.3%	232.75	1.7%
viscosità cls	61.5%	1527.60	10.9%

7.6.3 VERIFICHE IN ESERCIZIO

Verifica tensionale

Sezione di calcolo :

n.	Y	Z	
1	-124.50	113.40	
2	-124.50	120.00	
3	-55.00	120.00	
4	-40.00	35.00	
5	-25.00	25.00	
6	25.00	25.00	
7	40.00	35.00	

n.	Υ	Z	
8	55.00	120.00	
9	124.50	120.00	
1 0	124.50	113.40	
1 1	101.00	110.00	
1 2	67.13	100.00	
1	49.63	0.00	
1	-49.63	0.00	
1 5	-67.13	100.00	
1 6	-101.00	110.00	fine prefabb.
1 7	-124.50	113.40	
1 8	-215.00	145.00	getto in opera
1 9	125.00	145.00	(m=0.895)
2	125.00	120.00	
2	-215.00	120.00	
2 2	-215.00	145.00	

A = 14647.843

 $J_f = 33578619.4553$

 $Z_g = 96.38$

Armature di precompressione :

n.	Z	area
1	115.00	8.340
2	20.00	4.170
3	15.00	16.680
4	10.00	23.630
5	5.00	23.630

 $A_p = 83.400$

 $Z_{g,p} = 21.17$

Armature lente longitudinali:

n.	Z	area	
1	6.00	3.016	6Ø8 26
2	60.00	3.519	7Ø8 26
3	60.00	3.519	7Ø8 26
4	110.00	0.503	1Ø8 26
5	110.00	0.503	1Ø8 26
6	19.00	4.021	8Ø8 27
7	60.00	2.513	5Ø8 27
8	60.00	2.513	5Ø8 27
9	115.00	1.005	2Ø8 27
10	115.00	1.005	2Ø8 27
11	125.00	43.197	55Ø10 6
12	140.00	43.197	55Ø10 8

Sezione ideale (n=6.000)	A _{id}	$\mathbf{J}_{f,id}$	$Z_{g,id}$
	15799.310	3.796949E7	94.81

Tensioni sul cls - V120 :

	σ _{e,max}	σ _{e,min}	σ _{i,max}	σ i,min
t=infsenza carichi	-106.16	-106.16	-111.57	-111.57
t=infSLE Rare	-106.16	-143.05	25.91	-111.57
t=infSLE Frequenti	-106.16	-133.61	-9.63	-111.57
t=infSLE Quasi Permanenti	-106.16	-117.17	-71.50	-111.57

Tensioni sul cls - getto in opera :

	$\sigma_{e,max}$	σ e,min	σ i,max	σ i,min
t=infsenza carichi	-106.16	-106.16	-111.57	-111.57
t=infSLE Rare	-106.16	-143.05	25.91	-111.57
t=infSLE Frequenti	-106.16	-133.61	-9.63	-111.57
t=infSLE Quasi Permanenti	-106.16	-117.17	-71.50	-111.57

Tensioni sugli acciai :

	σ_{sp}	♂ long,inf	σ long,sup
t=infsenza carichi	0.00	0.00	0.00
t=infSLE Rare	12221.54	1010.56	-19.94
t=infSLE Frequenti	12055.89	810.79	-19.94
t=infSLE Quasi Permanenti	11767.54	463.06	-19.94

Verifica a rottura per flessione t=inf.

presollecitazione nelle armature di precompressione :

	Z cavo risult.	$\Delta arepsilon_{\sf sp}$
Armature pretese	21.17	0.00562

fless.	Z asse neutro	Mr	€ _{sup}	Z _{εsup}	€inf	Zεinf
(+)	118.63	1.449117E8	-0.00232	145.00	0.01000	5.00
(-)	56.02	-4.932494E7	0.00525	140.00	-0.00350	0.00

 $M_{d,max} = 114021522.93 < 144911696.26$

Verifica rottura per taglio t=inf.

Calcestruzzo:	θ [rad]	bw	Staffe:	Asw
	0.381	32.00		0.15708

d	K	A _{sl}	ρι	$\sigma_{\sf cp}$	$lpha_{ extsf{c}}$
140.00	1.378	105.517	0.0200	-57.98	1.224

\mathbf{V}_{Rd}	\mathbf{V}_{Rsd}	\mathbf{V}_{Rcd}
72317.02	193617.70	220132.90

 $V_{Ed,max} = 22788.73 < 193617.72$

Trazione per taglio (V=22788.73) = 28485.92 [daN]

Verifica rottura per torsione t=inf.

<sollecitazioni torcenti nulle>

Verifica a taglio/torsione t=inf.

L'azione combinata di taglio e torsione impegna i materiali (bielle di calcestruzzo e staffe di acciaio) in misura superiore a quella delle azioni singole dei due parametri di sollecitazione.

Viene perciò eseguita la verifica secondo il punto 4.1.2.1.4 - *Sollecitazioni composte - b)* nella combinazione più sfavorevole.

$$T_{Ed}/T_{Rd} + V_{Ed}/V_{Rd} = 0.00/19457044.33 + -22788.73/193617.72 = 0.118$$

Forze di scorrimento tra i getti

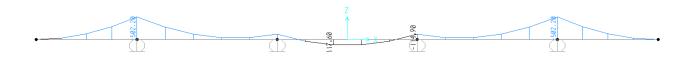
Con riferimento ad una area di interfaccia tra i getti di 32.000 [cm²] (lunghezza unitaria), gli sforzi di scorrimento tra i getti alla sezione X=1210.00 risultano:

[daN/cm]	6.59	max valore di progetto scorrimento interfaccia
[daN/cm]	-180.86	min valore di progetto scorrimento interfaccia
[daN/cm]	±36.80	scorrimento ultimo per coesione ed attrito
[cm²/cm]	0.0785	staffe di collegamento
[daN/cm]	±221.20	scorrimento ultimo per coesione, attrito, staffe

VERIFICA TRAVERSO IN CA

8.1 TRAVERSO DI TESTATA – FASE DI SOLLEVAMENTO

Il traverso di testata viene calcolato per le azioni dovute al sollevamento dell'impalcato in occasione della sostituzione degli apparecchi d'appoggio. Infatti in fase di esercizio il traverso svolge esclusivamente la funzione di solidarizzazione delle testate delle travi che risultano singolarmente appoggiate sul proprio dispositivo di appoggio. Il solo carico agente è quello permanente dell'impalcato che, stante la disposizione affiancata delle travi, viene ripartito sull'intera lunghezza del traverso, pari a 8.85 m.


Con riferimento al par. 7.4 si ha:

peso trave	soletta+trav	cordoli	perman	Pesi tot
225	284	111	153	773
225	214	64	156	660
225	214	32	163	635
225	214	16	174	630
225	284	12	188	709
				3406

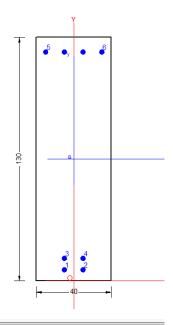
Dividendo per la lunghezza del traverso si ha:

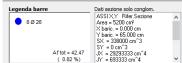
q = 3406 kN/11.00m = 310 kN/m

Lo schema statico di verifica è quello di trave continua su quattro appoggi.

Momento massimo negativo: $M_{SLE}^- = -502.20 \text{ kN*m} => \text{SLU } M_{SLU}^- = -678 \text{ kN*m}$

Momento massimo positivo: $M_{SLE}^+ = +117.60 \text{ kN*m} => \text{SLU } M_{SLU}^+ = +158.80 \text{ kN*m}$




Taglio massimo: $V_{SLE} = 558 \text{ kN} => \text{SLU } V_{SLU} = 754 \text{ kN}$

Sezione di verifica traverso di testata:

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: Traverso

Descrizione Sezione:

Metodo di calcolo resistenza:
Tipologia sezione:

Stati Limite Ultimi
Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:
Riferimento alla sismicità:
Posizione sezione nell'asta:

A Sforzo Norm. costante
Poco aggressive
Assi x,y principali d'inerzia
Zona sismica (CD'B')
Non in zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di calcolo fcd:	188.00	daN/cm ²
	Resis. compr. ridotta fcd':	94.00	daN/cm ²
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	352205	daN/cm ²
	Resis. media a trazione fctm:	31.00	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	166.00	daN/cm ²
	Sc limite S.L.E. comb. Frequenti:	166.00	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Frequer	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	132.80	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Q.Perm	anenti: 0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm ²
	Resist. caratt. rottura ftk:	4500.0	daN/cm ²
	Resist. snerv. di calcolo fyd:	3913.0	daN/cm ²
	Resist. ultima di calcolo ftd:	3913.0	daN/cm ²
	Deform. ultima di calcolo Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito B1*B2:	0.50	
	Sf limite S.L.E. Comb. Rare:	3600.0	daN/cm ²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del D Classe Congl	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-20.0	0.0
2	-20.0	130.0
3	20.0	130.0
4	20.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-5.0	6.8	26
2	5.0	6.8	26
3	-5.0	12.0	26
4	5.0	12.0	26
5	-15.0	122.0	26
6	15.0	122.0	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø

1 5 6 2 26

ARMATURE A TAGLIO

Diametro staffe: 12 mm Passo staffe: 10.0 cm

Staffe: Una sola staffa chiusa perimetrale

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Momento flettente	nale in daN applicato nel Baric. (+ se di compressione) ettente [daNm] intorno all'asse x princ. d'inerzia			
Му		Momento flettente	e [daNm] intorno a	imere il lembo sup. de ll'asse y princ. d'inerz imere il lembo destro	ia	
Vy Vx		Componente del	Taglio [daN] parall	ela all'asse princ.d'ine ela all'asse princ.d'ine	erzia y	
N°Comb.	N	Mx	Му	Vy	Vx	
1	0	67800	0	75400	0	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0 50220 0

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Ν

Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx My

0 50220 (44549) 0(0)1

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx My 0 50220 (44549) 0(0)1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: cm Interferro netto minimo barre longitudinali: cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione) Ν

Mx Momento flettente assegnato [daNm] riferito all'asse x princ. d'inerzia Momento flettente assegnato [daNm] riferito all'asse y princ. d'inerzia Μv Sforzo normale ultimo [daN] baricentrico (positivo se di compress.) N ult Mx ult Momento flettente ultimo [daNm] riferito all'asse x princ. d'inerzia Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia My ult Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia My ult

Momento flettente ultimo [daNm] intorno all'asse X di riferimento della sezione Mx ult Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa As Tesa

N°Comb Ver My ult Mis.Sic. N Mx My N ult Mx ult As Tesa S 0 67800 0 96035 1.416 21.2(16.2) 1 0

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max ec 3/7 Xc max Xs min Xs max Ys max Yc max es min Ys min es max 0.00350 -0.01683 -20.0 130.0 0.00058 -15.0122.0 -0.04156 -5.0 6.5



POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità a rottura in presenza di sola fless.(travi) C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb x/d C.Rid. 1 0.0000000000.000364859 -0.043931705 0.078 0.700

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Passo staffe:	10.0 cm [Passo massimo di normativa = 33.0 cm]
Vor	C comb varificata a taglia / N comb non varificata

S = comb. verificata a taglio / N = comb. non verificata
Taglio di progetto [daN] = proiez. di Vx e Vy sulla normale all'asse neutro Vsdu Taglio resistente ultimo [daN] lato conglomerato compresso Vcd Vwd Taglio resistente [daN] assorbito dalle staffe

Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro. Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw

E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Teta Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] A.Eff Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

Vcd A.Eff N°Comb Ver Vsdu Vwd Dmed bw Teta Acw Ast

S 75400 22.6(0.0) 144228 246146 123.6 40.0 21.80° 1.000 6.9

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Sf min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff. Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 1 S 51.4 20.0 130.0 -2199 6.5 977 21.2 5.5 1.00 5.0

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 1 S 20.0 130.0 -2199 977 21.2 5.5 0.50 51.4 5.0 6.5

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta come fessurata solo se la trazione nel calcestruzzo supera fctm in almeno una combinazione

Ver.

Massima tensione [daN/cm²] di trazione nel calcestruzzo valutata in sezione non fessurata S1 S2 Minima tensione [daN/cm²] di trazione nel calcestruzzo valutata in sezione fessurata

= 0.4 per barre ad aderenza migliorata k2

k3 = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff

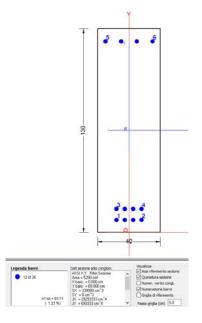
C.f Copriferro [mm] netto calcolato con riferimento alla barra più tesa = $1-Beta12*(Ssr/Ss)^2 = 1-Beta12*(fctm/S2)^2 = 1-Beta12*(Mfess/M)^2$ [B.6.6 DM96] Psi

Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi e sm

Distanza media tra le fessure [mm] srm

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

OMst



MX fe MY fe			nente mon nente mon							-					
Comb.	Ver	S1		S2	k3	Q) (Cf	Psi		e sm	srm	wk	Mx fess	My fess
1	S	-34.9		0	0.125	26	6 52.	.0 0	0.607	0.00067	(0.00044)	175	0.198 (0.20)	44549	0
COMBINA	COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE														
N°Comb	Ver	Sc max	Xc max	Yc max	Sf r	nin	Xs min	Ys m	nin	Ac eff.	As eff.	D barre	e Beta12		
1	S	51.4	20.0	130.0	-21	99	5.0	6	.5	977	21.2	5.	5 0.50		
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]															
Comb.	Ver	S1		S2	k3	Q) (Cf	Psi		e sm	srm	wk	Mx fess	My fess
1	S	-34.9		0	0.125	26	6 52.	.0 0	0.607	0.00067	(0.00044)	175	0.198 (0.20)	44549	0

8.2 TRAVERSO DI CAMPATA

Le sollecitazioni massime sono quelle di cui ai par. 6.2

Sezione di verifica traverso di campata:

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: Traverso2

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Condizioni Ambientali: Molto aggressive
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona sismica (CD'B')
Posizione sezione nell'asta: Non in zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40

Resis. compr. di calcolo fcd: 188.00 daN/cm²

Resis. compr. ridotta fcd':	94.00	daN/cm²
Def.unit. max resistenza ec2:	0.0020	
Def.unit. ultima ecu:	0.0035	
Diagramma tensione-deformaz.:	Parabola-Rettangolo	
Modulo Elastico Normale Ec:	352205	daN/cm ²
Resis. media a trazione fctm:	31.00	daN/cm ²
Coeff. Omogen. S.L.E.:	15.00	
		daN/cm ²
Sc limite S.L.E. comb. Frequenti:	166.00	daN/cm ²
·		mm
		daN/cm ²
Ap.Fessure limite S.L.E. comb. Q.Perm	anenti: 0.200	mm
Tino:	R450€	
• .		daN/cm ²
,		daN/cm ²
Resist. ultima di calcolo ftd:	3913.0	daN/cm ²
Deform. ultima di calcolo Epu:	0.068	
Modulo Elastico Ef	2000000	daN/cm ²
Diagramma tensione-deformaz.:	Bilineare finito	
Coeff. Aderenza istantaneo 61*62 :	1.00	
Coeff. Aderenza differito B1*B2:	0.50	
Sf limite S.L.E. Comb. Rare:	2600.0	daN/cm ²
	Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: Resis. media a trazione fctm: Coeff. Omogen. S.L.E.: Sc limite S.L.E. comb. Rare: Sc limite S.L.E. comb. Frequenti: Ap.Fessure limite S.L.E. comb. Q.Permanenti: Ap.Fessure limite S.L.E. comb. Q.Permanenti: Ap.Fessure limite S.L.E. comb. Q.Perm Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di calcolo fyd: Resist. ultima di calcolo ftd: Deform. ultima di calcolo Epu: Modulo Elastico Ef Diagramma tensione-deformaz.: Coeff. Aderenza istantaneo 81*82: Coeff. Aderenza differito 81*82:	Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 352205 Resis. media a trazione fctm: 31.00 Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 166.00 Sc limite S.L.E. comb. Frequenti: 166.00 Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 Sc limite S.L.E. comb. Q.Permanenti: 132.80 Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.200 Tipo: B450C Resist. caratt. snervam. fyk: 4500.0 Resist. caratt. rottura ftk: 4500.0 Resist. snerv. di calcolo fyd: 3913.0 Deform. ultima di calcolo ftd: 3913.0 Deform. ultima di calcolo Epu: 0.068 Modulo Elastico Ef 2000000 Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo β1*β2: 1.00 Coeff. Aderenza differito β1*β2: 0.50

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do	Poligonale	
Classe Conglo	C32/40	
N°vertice:	X [cm]	Y [cm]
1	-20.0	0.0
2	-20.0	130.0
3	20.0	130.0
4	20.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-8.0	8.0	26
2	8.0	8.0	26
3	-8.0	15.0	26
4	8.0	15.0	26
5	-15.0	122.0	26
6	15.0	122.0	26

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione N°Gen. N°Barra Ini. N°Barra Fin. Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	5	6	2	26
2	1	2	2	26
3	3	4	2	26

ARMATURE A TAGLIO

Diametro staffe: 12 mm Passo staffe: 10.0 cm

Staffe: Una sola staffa chiusa perimetrale

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baric. (+ se di compres					
Mx		e [daNm] intorno all'a	asse x princ. d'inerzi	a	
Му		Momento flettente	o se tale da comprim e [daNm] intorno all'a o se tale da comprim	asse y princ. d'inerzi	a
Vy			Taglio [daN] parallel		
Vx		Componente del	Taglio [daN] parallel	a all'asse princ.d'ine	rzia x
N°Comb.	N	Mx	My	Vy	Vx
1	0	154500	0	0	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale	in daN applicato nel Baricentro	(+ se di compressione)		
Mx		nte [daNm] intorno all'asse x pri	, ,	n.Fessurazione)	
		vo se tale da comprimere il lem			
Му	Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione				
N°Comb.	N	Mx	Му		
1	0	114500	0		

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Momento fle	nale in daN applicato nel Baricentr ettente [daNm] intorno all'asse x p	inc. d'inerzia (tra parentesi Mom.	Fessurazione)
Му	Momento fle	ositivo se tale da comprimere il ler ettente [daNm] intorno all'asse y pi ositivo se tale da comprimere il ler	inc. d'inerzia (tra parentesi Mom.	Fessurazione)
N°Comb.	N	Mx	Му	
1	0	85900 (50407)	0 (0)	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

IV	Siorzo normale in dan applicato nei Baricentro (+ se di compressione)					
Mx	Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione					
Му	Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione					
N°Comb.	N	Mx	My			
1	0	41200 (50407)	0 (0)			

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.0 cm Interferro netto minimo barre longitudinali: 2.7 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx	Momento flettente assegnato [daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [daNm] riferito all'asse y princ. d'inerzia
Nult	Sforzo normale ultimo [daN] baricentrico (positivo se di compress.)
Mx ult	Momento flettente ultimo [daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia
My ult	Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia
Mx ult	Momento flettente ultimo [daNm] intorno all'asse X di riferimento della sezione

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N	Mx	My	N ult	Mx ult	My ult Mis.Sic.	As Tesa
1	S	0	154500	0	0	185103	0 1.198 4	2.5(16.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Com	nb ec max	ec 3/7	xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0 00909	-20.0	130.0	0.00169	-15.0	122.0	-0.02407	-8.0	8.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.

1 0.00000000 0.000225986 -0.025878120 0.127 0.700

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Passo staffe: 10.0 cm [Passo massimo di normativa = 33.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata Taglio di progetto [daN] = proiez. di Vx e Vy sulla normale all'asse neutro Vsdu Taglio resistente ultimo [daN] lato conglomerato compresso Vcd Vwd Taglio resistente [daN] assorbito dalle staffe Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro. Dmed Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato Teta Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast Area staffe+legature efficaci nella direzione del taglio di combinaz [cm²/m] A.Eff Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb Ver Vsdu Vcd Vwd Dmed bw Teta Acw Ast A.Eff OMst

40.0 45.00°

1.000

0.0

22.6(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

123.5

98379

Ver S = comb. verificata/ N = comb. non verificata

208962

0

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Sf min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

S

N°Comb	Ver S	Sc max 96.7	Xc max -20.0	Yc max 130.0	Sf min -2666	Xs min	Ys min 8.0	Ac eff.	As eff. 42.5	D barro			
COMBINA	ZIONI	FREQUEN	NTI IN ESE	RCIZIO	- MASSIM	E TENSI	ONI NORN	MALI ED A	PERTURA	FESSUF	RE		
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barr	e Beta12		
1	S	72.6	20.0	130.0	-2000	2.7	8.0	1040	42.5	5.	3 0.50		
COMBINA	ZIONI	FREQUEN	NTI IN ESE	RCIZIO	- APERTUI	RA FESS	SURE						
La sezione viene assunta come fessurata solo se la trazione nel calcestruzzo supera fctm in almeno una combinazione Ver. Esito della verifica S1 Massima tensione [daN/cm²] di trazione nel calcestruzzo valutata in sezione non fessurata S2 Minima tensione [daN/cm²] di trazione nel calcestruzzo valutata in sezione fessurata k2 = 0.4 per barre ad aderenza migliorata k3 = 0.125 per flessione e presso-flessione; = (e1 + e2)/(2*e1) per trazione eccentrica Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa Psi = 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² e sm Deformazione unitaria media tra le fessure [ll valore limite = 0.4*Ss/Es è tra parentesi srm Distanza media tra le fessure [mm] wk Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi MX fess. Componente momento di prima fessurazione intorno all'asse X [daNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [daNm]													
Comb.	Ver	S	1	S2	k3	Ø	Cf Ps	i	e sm	srm	wk	Mx fess	My fess
1	S	-52.8	3	0	0.125	26 67	.0 0.828	0.00083	(0.00040)	176	0.198 (0.20)	50407	0
COMBINA	ZIONI	QUASI PE	RMANEN	TI IN ES	ERCIZIO -	MASSIN	ME TENSIO	ONI NORM	ALI ED AP	ERTUR <i>A</i>	A FESSURE		
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barr	e Beta12		
1	S	34.8	-20.0	130.0	-959	2.7	8.0	1040	42.5	5.	3 0.50		
COMBINA	ZIONI	QUASI PE	RMANEN	TI IN ES	ERCIZIO - A	APERTU	RA FESSU	JRE					
Comb.	Ver	S	1	S2	k3	Ø	Cf Ps	i	e sm	srm	wk	Mx fess	My fess
1	S	-25.3	3	0	0.125	26 67	.0 0.252	0.00019	(0.00019)	176	0.058 (0.20)	50407	0

VERIFICA SOLETTA IN CA

9.1 SOLLECITAZIONI

Con riferimento al par. 6.3 si hanno:

Combinazioni SLU

 $M \max = 12.32$

 $M \min = -11.57$

Combinazioni SLE

Combinazioni Rare

 $M \max = 9.12$

 $M \min = -8.57$

Combinazioni Frequenti

 $M \max = 1.65$

 $M \min = -1.10$

Combinazioni Quasi Permanenti

 $M \max = 1.65$

 $M \min = -1.10$

Per le sollecitazioni massime sullo sbalzo della soletta si considera una luce di calcolo pari a 0.90m

Essendo il carico accidentale folla, per le verifiche locali, pari a 5 kN/m², si ha che le sollecitazioni massime caratteristiche valgono:

 $M_{\text{max}} = (0.45 \text{m x } 25.00 \text{ kN/m}^3 \text{ x } 0.9^2 / 2) + (5.00 \text{ kN/m}^2 \text{ x } 0.9^2 / 2) + 1.50 \text{ kN/ml x } 0.9 \text{m} = 8.0 \text{ kNm / ml}$

 $T_{max} = (0.45 \text{m x } 25.00 \text{ kN/m}^3 \text{ x } 0.9 \text{m}) + (5.00 \text{ kN/m}^2 \text{ x } 0.9) + 1.50 \text{ kN/ml} = 16.10 \text{ kN / ml}$

Combinazioni Eccezionali

Valutata la posizione del dispositivo di ritenuta in relazione alla posizione delle travi si ritiene plausibile omettere tale verifica

9.2 VERIFICHE STATI LIMITE ULTIMI

C32/40

DATI GENERALI SEZIONE IN C.A.

NOME SEZIONE: Soletta

Descrizione Sezione:

CALCESTRUZZO -

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Condizioni Ambientali: Molto aggressive
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento Sforzi assegnati: Assi x,y principali d'inerzi Zona sismica (CD'B')
Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Classe:

Resis. compr. di calcolo fcd:	188.00	daN/cm ²
Resis. compr. ridotta fcd':	94.00	daN/cm ²
Def.unit. max resistenza ec2:	0.0020	
Def.unit. ultima ecu:	0.0035	
Diagramma tensione-deformaz.:	Parabola-Rettangolo	
Modulo Elastico Normale Ec:	352205	daN/cm ²
Resis. media a trazione fctm:	31.00	daN/cm ²

Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 166.00 daN/cm² Sc limite S.L.E. comb. Frequenti: 166.00 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 132.80 daN/cm² Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:4500.0daN/cm²Resist. caratt. rottura ftk:4500.0daN/cm²Resist. snerv. di calcolo fyd:3913.0daN/cm²Resist. ultima di calcolo ftd:3913.0daN/cm²

Deform. ultima di calcolo Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito

Coeff. Aderenza istantaneo 81*82 : 1.00
Coeff. Aderenza differito 81*82 : 0.50

Sf limite S.L.E. Comb. Rare: 3600.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	25.0
3	50.0	25.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-44.0	6.0	14
2	-44.0	19.0	14
3	44.0	19.0	14
4	44.0	6.0	14

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø	Diametro in mm delle barre della generazione
---	--

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	14
2	2	3	3	14

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Momento flettente con verso positivo Momento flettente con verso positivo Componente del	e [daNm] intorno all o se tale da compri e [daNm] intorno all o se tale da compri Taglio [daN] paralle	applicato nel Baric. (+ se di compressione) Im] intorno all'asse x princ. d'inerzia ale da comprimere il lembo sup. della sez. Im] intorno all'asse y princ. d'inerzia ale da comprimere il lembo destro della sez. b [daN] parallela all'asse princ.d'inerzia y b [daN] parallela all'asse princ.d'inerzia x			
N°Comb.	N	Mx	My	Vy	Vx		
1	0	1232	0	2420	0		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in	daN applicato nel Baricentro	(+ se di compressione)	
Mx		[daNm] intorno all'asse x pri se tale da comprimere il lem	nc. d'inerzia (tra parentesi Mom.Fe bo superiore della sezione	essurazione)
Му		[daNm] intorno all'asse y pri se tale da comprimere il lem	nc. d'inerzia (tra parentesi Mom.Fe bo destro della sezione	essurazione)
N°Comb.	N	Mx	My	
1	0	912	0	

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo norma	le in daN applicato nel Baricentro	(+ se di compressione)	
Mx	Momento flet	tente [daNm] intorno all'asse x pr	inc. d'inerzia (tra parentesi Moi	m.Fessurazione)
	con verso pos	sitivo se tale da comprimere il ler	nbo superiore della sezione	
Му	Momento fleti	tente [daNm] intorno all'asse y pr	inc. d'inerzia (tra parentesi Moi	m.Fessurazione)
	con verso pos	sitivo se tale da comprimere il ler	nbo destro della sezione	
NIO C l-	N.I.	Mo	N.A	
N°Comb.	IN	Mx	My	
4	^	000 (0.474)	0 (0)	
I	0	800 (3471)	0 (0)	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normal	Sforzo normale in daN applicato nel Baricentro (+ se di compressione)							
Mx	Momento flette	Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)							
		itivo se tale da comprimere il len							
Му		ente [daNm] intorno all'asse y pr	` '	n.Fessurazione)					
	con verso pos	itivo se tale da comprimere il len	nbo destro della sezione						
N°Comb.	N	Mx	My						
1	0	800 (3471)	0 (0)						

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.5 cm Interferro netto minimo barre longitudinali: 11.6 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

Ν Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)

Momento flettente assegnato [daNm] riferito all'asse x princ. d'inerzia Mx Momento flettente assegnato [daNm] riferito all'asse y princ. d'inerzia Nult Sforzo normale ultimo [daN] baricentrico (positivo se di compress.) Momento flettente ultimo [daNm] riferito all'asse x princ. d'inerzia Mx ult Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia My ult My ult Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia

Mx ult Momento flettente ultimo [daNm] intorno all'asse X di riferimento della sezione Mis.Sic Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb Ver Ν Mx N ult My ult Mis.Sic. My Mx ult As Tesa 1 S 0 1232 0 6508 5.282 15.4(3.4)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione ec max ec 3/7 Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Xc max Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Deform. unit. massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max

N°Comb ec max ec 3/7 Xc max Xs max Ys max Yc max es min Xs min Ys min es max 0.00350 -0.00614 -0.00190 6.0 1 -50.0 25.0-44 N 190 -0.01359-44 N

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

Rapp. di duttilità a rottura in presenza di sola fless.(travi) x/d C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb x/d C.Rid. 1 0.00000000 0.000899587 -0.018989675 0.205 0.700

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata Vsdu

Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [daN] in assenza di staffe [formula (4.1.14)NTC]

Altezza utile sezione [cm] Ч Larghezza minima sezione [cm] bw

Rapporto geometrico di armatura longitudinale [<0.02] Ro Tensione media di compressione nella sezione [daN/cm²] Scp

N°Comb Ver Vsdu d Vwct hw Ro Scp

S 2420 10844 19.0 100.0 0.0041 0.0

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

S = comb. verificata / N = comb. non verificataVer

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²] Sc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Sf min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre

Prodotto dei coeff. di aderenza delle barre Beta1*Beta2 Beta12

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 1 S 8.1 -50.0 25.0 -44.0 6.0 -64

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max Y	/c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	7.1	-50.0	25.0	-56	-44.0	6.0				

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE

Ver. S1 S2 k2 k3 Ø Cf Psi e sm srm wk MX f MY f	ess.	Esito della v Massima ter Minima tens = 0.4 per ba = 0.125 per Diametro [m Copriferro [r = 1-Beta12** Deformazion Distanza me Valore carat Componente	erifica nsione (daN/cm² arre ad aderen flessione e pro m] medio dello nm] netto calci (Ssr/Ss)² = 1-E ne unitaria mer edia tra le fessi	n²] di trazion za migliora esso-flessic e barre tese blato con ri Beta12*(fctr dia tra le fe ure [mm] dell'apertur orima fessu	ne nel calce nel calce nel calce ta one; =(e1 - e compres ferimento m/S2)² = 1 ssure . Il vara fessure irazione ir	cestruzzo v estruzzo v e e e)/(2*e e nell'are. alla barra -Beta12*(ralore limi = 1.7 * e otorno all'a	valutata in s alutata in sez 1) per trazior a efficace Ac più tesa (Mfess/M) ² te = 0.4*Ss/E sm * srm . Va asse X [daNr	eff Es è tra parentesi alore limite tra parer n]	ta	una combinazi	one	
Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-7.1	-1.9								3471	0
COMBIN	NAZIONI (QUASI PERMA	ANENTI IN E	SERCIZIO	O - MAS	SSIME T	ENSIONI N	ORMALI ED APE	ERTURA FE	ESSURE		

N°Comb	Ver	Sc max	Xc max \	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	7.1	-50.0	25.0	-56	-44.0	6.0				

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-7.1	-1.9								3471	0

9.3 VERIFICHE STATI LIMITE DI PUNZONAMENTO

Per la verifica a punzonamento, la stessa viene condotta in modo analogo a quella del taglio, considerando come larghezza della sezione il perimetro di punzonamento e come forza di taglio il carico massimo di una ruota da 200kN dello Schema di carico 2, amplificato del coefficiente 1.35 degli stati limite ultimi.

Ved=	270000	[N]
My=	0	[Nm]
Mz=	<u>0</u>	[Nm]
Dimensione impronta ruota y = By	0.35	[m]
Dimensione impronta ruota z = Bz	0.6	[m]
spessore piastre= s =	0.25	[m]
copriferro medio =c=	0.030	[m]
d=s-c=	0.220	[m]
pavimentazione p=	0.11	[m]
altezza di diffusione del carico =	0.330	[m]
ey=Mz/Ved=	0	[m]
ez=My/Ved=	0	[m]
fck=	25	[N/mm²]
[Fe B450C] fyk=	450	[N/mm²]
үс=	1.5	

Øly	10	mm
iy	0.2	m
Ølz	14	mm
iz	0.2	m
perimetro di diffusione u1=	4.540	[m]
$vEd = Ved/(u1 \cdot d) =$	0.270	[N/mm²]
$\rho ly = \emptyset ly \cdot \pi/(4 \cdot iy \cdot d) =$	0.00178	
$\rho lz = \varnothing lz \cdot \pi/(4 \cdot iz \cdot d) =$	0.00350	
$\rho l = min\{0.02; (\rho ly \cdot \rho lz)^{1/2}\}=$	0.00250	
$Crd,c = 0.18/\gamma c =$	0.12	
$k = min\{2; 1+(0,2/d)^{1/2}\}=$	1.95	
$v \min = 0.035 \cdot k^{(3/2)} \cdot fck^{1/2} =$	0.478	[N/mm²]
$v1 = Crd, c \cdot k \cdot (100 \cdot \rho l \cdot fck)^{\wedge}(1/3) =$	0.432	[N/mm²]
$vrd_{,c} = max\{v1; vmin\} =$	0.478	[N/mm²]
vEd/Vrd,c =	0.57	verificato

10.

VERIFICA PREDALLES

La verifica delle predalles consta nel verificare gli elementi costituenti i tralicci.

Analisi dei carichi

$$H_{\text{soletta}} = 0.25 \text{ m}$$

$$H_{predalle} = 0.05 \text{ m}$$

Q =
$$\gamma_{cls}$$
 (h_{cls} + h_{pred}) = 750 daN/m²

$$q_{sovraccarico} = 0.2 q_{getto} = 150 daN/m^2$$

Si assume uno schema di trave su tre appoggi con sbalzo.

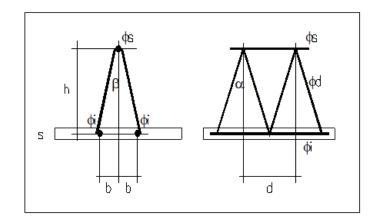
Si ricavano le seguenti sollecitazioni massime in fase di getto:

Massimo Momento negativo tralicci M _{tralicci} - _k =- 5 kNm

Massimo Momento positivo tralicci $M_{tralicci}^{+}_{k} = 1 \text{ kNm}$

Massimo sforzo di taglio tralicci (+/-) $V_{tralicci k} = 10 kN$

Caratteristiche geom	etriche del	traliccio
Altezza soletta	25	cm
Altezza traliccio	20	cm
Spessore lastra	5	cm
φi	10	mm
φs	12	mm
φd	8	mm
Passo tralicci	50	cm
b		cm
d	20	cm
A _{inf}	3.14	cm²/m
A _{sup}	2.26	cm ² /m
A _{staffe}	2.01	cm²/m
$e=A_{sup}*h_{tral}/(A_{sup}+A_{inf})$	8.37	
$I_{tral}=A_{inf}*e^2+A_{sup}*(h_{tral}-e)$	526.03	cm⁴/m
W _{tral,sup} =I _{tral} /(h _{tral} -e)	45.24	cm³/m
W _{tral,inf} =I _{tral} /e	62.83	cm³/m


Verifica a trazione de	ll'armatura	superiore
σ _s =M⁻/W _{tral,sup}	-1105.243	daN/cm ²

Verifica a compressione	dell'armatı	ıra superiore
$\rho = \phi_s/4$	3	mm
interasse	200	mm
λ=i/ρ	66.67	
ω	1.19	
N=M ⁺ /h _{tral}	500	daN
σ _s =ωN/A _{sup}	263.0	daN/cm ²

Verifica a compression	e dell'arma	tura inferiore
$\rho = \phi_s/4$	2.5	mm
interasse	200	mm
λ=i/ρ	80	
ω	1.31	
N=M ⁻ /h _{tral}	2500	daN
$\sigma_s = \omega N/A_{inf}$	1042.5	daN/cm ²

Verifica a compression	e delle ast	e diagonali
$I_0 = (h_{tral} * b * d/2)^{0.5}$	22.91	cm
$\cos\alpha = (h_{tral}*b)^{0.5}/I_0$	0.90	
$\cos\beta = (h_{tral} * d/2)^{0.5}/I_0$	0.98	
S=T/(cosα*cosβ)	1138.88	daN/cm ²
$\rho = \phi_s/4$	2.00	
λ=I ₀ /ρ	114.56	
ω	1.92	
σ _s =ωN/A _{staffe}	954.9	daN/cm ²

Caratte	ristiche del	la sollecitazione
M ⁺	100	kgm
M ⁻	-500	kgm
T	1000	kgm

< 3913 OK

< 3913 OK

< 3913 **OK**

11. CONSIDERAZIONI SULLE ANALISI E VERIFICHE SVOLTE

Si riportano le informazioni in ottemperanza a quanto disposto dal capitolo 10 della vigente normativa tecnica (DM2018).

• Tipo di analisi svolta

Il calcolo viene eseguito in ambito statico lineare. Per quanto riguarda l'analisi sismica, si adottano le procedure di verifica per struttura in zona 4, applicando un sistema di forze pseudo-statiche. calcolate in modo semplificato. L'analisi strutturale viene eseguita con il metodo degli spostamenti, mentre le verifiche delle sezioni sono state effettuate secondo metodi della tecnica delle costruzioni, come indicato dettagliatamente nel seguito della presente relazione. Le combinazioni di carico sono indicate nel seguito: esse sono in numero tale da coprire tutte le possibili casistiche.

• Origine, caratteristiche e affidabilità dei codici di calcolo

Le analisi strutturali, ove non siano effettuate per via analitica, sono eseguite con un codice di calcolo sviluppato dal progettista in un linguaggio di programmazione OpenSource (linguaggio Octave). Tale codice di calcolo è basato sul metodo degli spostamenti e consente la soluzione dei problemi di telai piani in ambito statico.

• Validazione dei codici

I risultati del codice sono stati validati dal progettista con riferimento a vari casi di studio. la cui soluzione esatta si può reperire nella letteratura specialistica. Le verifiche delle sezioni sono state eseguite con fogli di lavoro oppure con il software di libera distribuzione VcaSLU (Prof. Gelfi). anch'essi opportunamente validati con calcoli manuali.

Modalità di presentazione dei risultati

Le modalità di applicazione dei carichi sono descritte nella relazione con riferimento alle varie parti di struttura. Considerando la semplicità dello stato di carico la rappresentazione grafica appare superflua. I risultati sono presentati sottoforma di diagrammi delle componenti di azione interna oppure come tabelle dei valori di azioni interne nei punti più significativi. In questo modo si può fare una valutazione immediata dello stato di sollecitazione nelle membrature strutturali.

Giudizio motivato di accettabilità dei risultati

Per quanto riguarda la verifica dei risultati, sono stati effettuati confronti delle azioni interne con casi analoghi ma più semplici (travi semplicemente appoggiate o incastrate). Le reazioni vincolari sono state controllate in fase di progettazione. La rappresentazione delle configurazioni deformate, che sono state comunque esaminate in sede di progettazione per avere conferma della correttezza del calcolo, non forniscono informazioni utili alla verifica di sicurezza. Non si ritiene pertanto indispensabile il loro inserimento nella relazione.

11.1 ALLEGATO 1 VALIDAZIONE RC-SEC

Geostru Software - Validazione codice di calcolo RC-SEC

Validazione del codice di calcolo

Informativa sull'affidabilità dei codici di calcolo D.M. 14-01-2008 paragrafo 10.2.

Le fasi di progettazione e sviluppo dei software *GeoStru* sono sottoposti al controllo gestione di qualità aziendale ISO (*International Organization for Standardization*) 9001:2000 certificato da CVI ITALIA srl - *Certificato nr. 7007 1 04*.

Sono stati forniti degli esempi di calcolo, in allegato a questo documento, al fine di verificare la validità delle procedure di calcolo ed effettuare le procedure di controllo con altri strumenti di calcolo.

I software *GeoStru* sono dotati di sistemi di controllo dei dati di input e di output molto sofisticati i quali sono in grado di rilevare errori gravi tali da non consentire le corrette elaborazioni.

Bianco 15/09/2010

GeoStru

Geostru Software - Validazione codice di calcolo RC-SEC

RC-SEC

Versione: 2011.4 Rev. 217

Validazione del codice di calcolo

Geostru Software - Validazione codice di calcolo RC-SEC

PREMESSA

Nell'ambito delle verifiche di affidabilità previste per i codici di calcolo (punto 10.2 DM 14 Gennaio 2008) è richiesta la presente documentazione del produttore che illustri:

- campi di impiego
- 2. basi teoriche ed algoritmi impiegati
- 3. casi di prova risolti e commentati con i relativi files di input.

1 CAMPI DI IMPIEGO

Il programma può essere utilizzato per la verifica ed il semiprogetto delle armature delle sezioni in c.a. ordinario agli stati limite ultimi e di esercizio secondo le nuove norme di cui al DM 14.01.2008 nonché secondo l'ultima versione dell'Eurocodice 2 (UNI EN 1992-1-1-2005). Sono presi in considerazione sia sollecitazioni rette che deviate (presso-tenso flessione deviata con la la presenza contemporanea delle due componenti del taglio). E' altresì possibile eseguire le verifiche con il metodo delle tensioni ammissibili secondo il DM 14.02.1992. Per singoli elementi strutturali (travi o pilastri) è previsto il calcolo delle frecce in esercizio tenendo conto della fessurazione e della viscosità.

Per la verifica di pilastri rettangolari snelli è implementato il metodo della colonna modello.

2 BASI TEORICHE ED ALGORITMI IMPIEGATI

Sono illustrati in dettaglio nel manuale d'uso del programma in riferimento ai singoli problemi trattati. Vengono comunque di seguito illustrate particolari caratteristiche conseguenti alle novità introdotte dal DM 14.01.2008 d'ora in poi denominato NTC.

Come legame costitutivo del calcestruzzo il programma impiega sempre il diagramma parabola-rettangolo prevedendo valori differenti delle deformazioni unitarie caratteristiche (ε_{c2} , ε_{cu}) a seconda se la classe di resistenza è superiore o inferiore alla C50/60 (Punto 4.1.2.1.2.2 NTC). Il tratto curvilineo del diagramma è definito dall'espressione:

$$\sigma_{c} = f_{cd} \left[1 - \left(1 - \frac{\varepsilon_{c}}{\varepsilon_{c2}} \right)^{n} \right]$$
 (1)

Nelle NTC l'esponente n vale sempre 2 (parabola). Nell'Eurocodice 2 = 2 fino alla classe C50/60 mentre per classi superiori il tratto curvilineo diventa una curva esponenziale avente sempre la formulazione (1) ma con n = 1,4 + 23,4 [(90-f_{ck}/10)/100]4 (f_{ck} in daN/cm²), formulazione prevista in programma se si è selezionata l'opzione di calcolo EC2).

Il tratto orizzontale del diagramma vale:

 $\sigma_c = f_{cd} = \alpha_{cc} \; f_{ck} \, / \, \gamma_c \qquad \qquad \text{con } \; \alpha_{cc} = 0.85 \; \text{e} \; \; \gamma_c = 1.5 \; (\text{nel DM96 era} \; \gamma_c = 1.6).$

Altra importante novità è costituita dal fatto che in Italia l'acciaio per cemento armato ordinario dovrà essere costituito in pratica dal solo tipo C450 caratterizzato da:

➤ resistenza a trazione caratteristica
f_{tk} ≥ 540 N/mm²

MANDANTI:

Geostru Software - Validazione codice di calcolo RC-SEC

resistenza a snervamento caratteristica $f_{yk} \ge 450 \text{ N/mm}^2$

▶ allungamento unitario per carico massimo $ε_{uk} ≥ 0,075$.

Sia per le NTC che per l'EC2 è possibile assumere come diagramma sforzi deformazioni:

- un diagramma bilineare con incrudimento e deformazione unitaria di calcolo ultima pari a ε_{ud} = 0,9 ε_{uk}. L'incrudimento (pendenza del tratto plastico del diagramma) è definito dal rapporto k = (f_t/f_y)_k che deve essere compreso tra 1,15 e 1,35. Poiché all'aumentare di questo rapporto corrisponde un aumento delle caratteristiche di resistenza ultime della sezione riteniamo che, prudenzialmente, nei calcoli di progetto vada utilizzato il valore minimo di 1,15; come conseguenza il valore massimo della tensione ultima dell'acciaio da assumere in corrispondenza della deformazione ultima di calcolo ε_{ud} vale 1,15·f_{yd} essendo f_{yd}=f_{yk}/γ_s il valore della tensione di snervamento di calcolo (γ_s = 1,15 sia per NTC che per EC2).
- Un diagramma bilineare con tratto plastico orizzontale (f_s = f_{yd}) senza limite di deformazione

Il programma consente l'adozione di entrambi i diagrammi ma, per quello elasticoperfettamente plastico indefinito, richiede comunque la definizione dei valori della deformazione ultima e di calcolo dell'acciaio; incrementando tali deformazioni rispetto a quelle prima definite per l'acciaio incrudito non si riscontrano apprezzabili differenze nei risultati

La verifica a taglio viene eseguita col nuovo metodo proposto dalle NTC (e da EC2) che impiega la schematizzazione del traliccio con inclinazione θ dei puntoni di calcestruzzo (rispetto all'asse della trave) variabile tra i seguenti limiti:

$$1 \le ctg \theta \le 2,5$$

Il programma calcola (in semiprogetto o verifica) le resistenze a taglio lato compressione e trazione considerando l'angolo α di inclinazione trasversale delle staffe (rispetto all'asse della trave) sempre pari a 90°. In semiprogetto si parte assumendo per θ il suo minimo valore (21°,8 \leq θ \leq 45°) che soddisfa la relazione di resistenza a taglio compressione (ponendo $V_{Red} = V_{Ed}$); ottenuto così θ , dalla relazione di resistenza lato trazione si ricava l'area delle staffe. Si fa notare che le armature longitudinali della trave, dimensionate in base alle sollecitazioni flessionali, dovranno essere prolungate (regola della traslazione) di una misura pari a: $0,9 \cdot d \cdot ctg\theta/2$ (al massimo uguale a 1,125-d per $ctg\theta$ =2,5).

Si noti che, a differenza di quanto previsto nel DM96, il valore di f_{cd} impiegato nel calcolo delle resistenze al taglio è uguale al valore massimo del tratto plastico del diagramma di progetto tensioni-deformazioni del conglomerato impiegato per la verifica per tensioni normali (nel DM96 era maggiore valendo $f_{cd} = f_{ck}/1,6 > 0,85 \ f_{ck}/1,5)$.

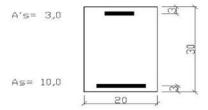
Nel caso di contemporanea presenza di torsione e taglio l'angolo θ delle bielle compresse deve assumere un unico valore per entrambe le sollecitazioni e, pertanto, il programma prevede l'assegnazione preventiva di θ per torsione nelle 'opzioni armature e di calcolo' (nel menu Opzioni).

3 CASI DI PROVA

Gli esempi che seguono sono tutti presenti nella cartella "\ESEMPI" della directory di installazione del programma. Essi verranno illustrati sia in relazione alla modalità di immissione dei dati, sia confrontando i risultati ottenuti sulla base degli algoritmi assunti nel calcolo con quelli riportati da altri autori e/o programmi.

Le stampe complete di input ed output relative a tutti gli esempi sono naturalmente riproducibili caricando detti files di esempio e mandando in esecuzione il programma.

,,8


Geostru Software - Validazione codice di calcolo RC-SEC

I primi esempi sono quasi tutti tratti dal volume "Progettazione di strutture in calcestruzzo armato" realizzato per AICAP da Pubblicemento s.r.l. in quanto è uno dei pochi testi aggiornato alle NTC ed all'ultima versione dell'Eurocodice 2.

3.1 ESEMPIO 1

Si fa riferimento alla sezione rettangolare 20x30 in figura di cui al punto 7.3.2.1 del citato volume. Si cerca il momento resistente ultimo M_{Rd} per N_{Rd} =0 (flessione semplice) avendo assunto un conglomerato con f_{ck} =300 daN/cm² (f_{cd} = 300·0,85/1,5=170 daN/cm²) ed armature con f_{yk} = 4500 daN/cm² (f_{yk} = 4500 daN/cm²).

Per prima cosa occorre accertarsi che nell'archivio materiali siano presenti i dati relativi al conglomerato ed all'acciaio indicati. In particolare per l'acciaio B450C ponendo $f_{td} = 3910\,$ si

assume orizzontale (come nel volume) il pianerottolo plastico del diagramma sforzi deformazioni. Per ottenere le esatte aree di acciaio indicate si prevedono opportuni diametri delle barre (non esistenti in commercio). Si assegna inoltre allo sforzo normale il valore 0 (flessione semplice) mentre al momento Mx un qualsiasi valore positivo. Il programma fornisce per il momento resistente il valore $M_{\rm Rd}=9071$ daNm di poco inferiore al valore 9100 indicato nel testo che peraltro utilizza il blocco rettangolare per il diagramma sforzi deformazioni del calcestruzzo.

3.2 ESEMPIO 2

Al punto 7.5.1 del citato volume viene calcolata a pressoflessione retta una sezione rettangolare 50×100 con armature simmetriche di area pari a 50cm² e copriferro di 5 cm. Calcestruzzo ed acciaio sono gli stessi dell'esempio precedente. Questa volta viene utilizzato il diagramma parabola-rettangolo. Nel testo vengono calcolati i momenti resistenti ultimi (M_{Rd}) in corrispondenza a prefissati differenti valori assegnati allo sforzo normale che di seguito vengono confrontati con quelli ottenuti dal programma (M'_{Rd}):

N	3.42
IVI _{Rd}	M_{Rd}
	M_{Rd}

Geostru Software - Validazione codice di calcolo RC-SEC

(daN)	(daNm)	(daNm)
60000	20330	20350
200000	25170	25190
500000	25850	25860
1000000	9770	9910

I risultati appaiono ben concordanti per i primi tre valori (ottenuti dal testo a partire da valori tabellari per il l'integrazione del diagramma parabolico del calcestruzzo). La maggiore differenza si ha per l'ultimo caso con $N_{\rm Ed}=1000000$ daN che in realtà non viene ottenuto, nel testo citato, dal calcolo ma da interpolazione tra i due assetti di rottura che comprendono il punto di rottura cercato. Il programma non considera inoltre verificata a taglio la sezione (anche con taglio assegnato nullo) in quanto la resistenza a taglio lato calcestruzzo va a zero col termine (presente nella relazione 4.1.19 NTC) $\alpha_c=2,5(1-\sigma_{cp}/f_{cd})=0$ essendo $\sigma_{cp}=N_{\rm Ed}/A_c=1000000/(50\times100)=200>f_{cd}.$

3.3 ESEMPIO 3

Allo stesso punto 7.5.1 del citato volume viene calcolata a pressoflessione retta la sezione rettangolare 50×100 con armature simmetriche di area pari a 70cm^2 e copriferro di 5 cm. Il calcestruzzo questa volta è di classe f_{ck} =700 daN/cm²: nel caso di calcolo secondo EC2 va assunto il diagramma con curva esponenziale risultando f_{ck} >500.

I momenti resistenti a confronto sono i seguenti (valori dello sforzo normale prefissati):

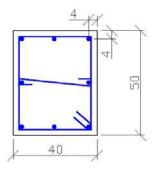
N _{Ed} (daN)	M _{Rd} (daNm)	M' _{Rd} EC2 (daNm)	M' _{Rd} NTC (daNm)
150000	31370	31360	31360
500000	42460	42400	42740
1000000	40520	40020	42640
1900000	6950	18340	20730

Nell'ultima colonna sono riportati i momenti ultimi ottenuti selezionando l'opzione di calcolo secondo le NTC (diagramma parabola rettangolo). All'aumentare dello sforzo normale si nota che i momenti resistenti ottenuti con le NTC sono meno conservativi di quelli che con l'EC2 si ottengono dal diagramma esponenziale rettangolo. L'ultimo valore del momento resistente riportato nel citato testo appare troppo approssimato rispetto a quelli ottenuti dal programma.

3.4 ESEMPIO 4

Geostru Software - Validazione codice di calcolo RC-SEC

Calcolo delle staffe verticali (di diametro pari a 12mm) per una sezione rettangolare 20x80 copriferro 50cm e taglio di progetto $V_{Ed} = 50000$ daN. Conglomerato fck=300; Acciaio C450B. (Punto 8.1.4.1.3.2 vol.citato)


Assunti momento flettente Mx ed armature longitudinali arbitrarie, si è eseguito il calcolo di progetto della sezione avendo preventivamente assegnato il valore di 12 al diametro delle staffe nella finestra delle opzioni armature e di calcolo.

Il calcolo fornisce un passo di 20,3 cm alle staffe ϕ 12 assunte in perfetto accordo col passo di cm 20 indicato dal testo.

3.5 ESEMPIO 5

Nel caso di pressoflessione deviata non si è trovato alcun esempio numerico in letteratura trattato con le nuove norme. Si considera pertanto un caso di calcolo trattato solo col presente programma.

Si è considerata la sezione in figura relativa ad un pilastro rettangolare 40×60 armata con 8\phi16 (Calcestruzzo C28/35. Acciaio C450B).

Il calcolo è stato effettuato per le seguenti 3 combinazioni allo stato limite ultimo:

N _{Ed} (daN)	Mx _{Ed} (daNm)	My _{Ed} (daNm)	Vy _{Ed} (daN)	Vx _{Ed} (daN)
50000	14000	11000	14000	11000
50000	20000	0	20000	0
50000	0	15714	0	15714

Le nuove NTC al punto 7.4.4.2.2.1 consentono che la verifica a presso-flessione deviata (prima combinazione in tabella) possa essere sostituita da due verifiche a presso-flessione retta in cui la resistenza sia ridotta al 70% di quella effettiva: ciò che equivale ad incrementare gli sforzi di progetto di 1/0,7 = 1,4286. Si sono così ricavati gli sforzi retti "equivalenti" riportati nella seconda e terza combinazione. Nella citato punto normativo si fa riferimento ai soli momenti flettenti (lo sforzo normale non va incrementato in quanto la

Geostru Software - Validazione codice di calcolo RC-SEC

misura della sicurezza va sempre effettuata a sforzo normale costante). Nulla si dice circa la verifica a taglio in presenza delle due componenti Vx,Vy. Anche per il taglio, a scopo di controllo, la verifica a taglio deviato di cui alla prima combinazione è stata separata in due verifiche separate di tipo retto incrementando gli sforzi col coefficiente 1,4286.

Il tabulato di verifica di seguito riportato mostra che nelle verifiche a pressoflessione retta (seconda e terza combinazione) le misure della sicurezza (1,149 e 1,146) risultano entrambe maggiori di quella a presso-flessione deviata (1,062). Non così per quanto riguarda le verifiche a taglio in cui si può notare che l'armatura trasversale strettamente necessaria per la prima combinazione (deviata) risulta superiore a quella della seconda e terza combinazione (rette).

Da ciò si deduce che per il taglio a due componenti non ci sono sufficienti indicazioni normative per la sua sostituzione con due tagli equivalenti in sollecitazione retta (manca cioè un diagramma di interazione semplificato e conservativo).

```
DATI GENERALI SEZIONE IN C.A.
NOME SEZIONE: ESEMPIO_5
```

Descrizione Sezione:

Metodo di calcolo resistenza:

Normativa di riferimento:

Tipologia sezione:

Percorso sollecitazione:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

Posizione sezione nell'asta:

N.T.C.

N.T.C.

Pettangolare ad armatura simm.

A Sforzo Norm. costante

Assi x,y principali d'inerzia

Zona non sismica

Posizione sezione nell'asta:

In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERA	TO -	Classe: C28/35
		Resis. compr. di calcolo fcd : 158.60 daN/cm²
		Resis. compr. ridotta fcd': 79.30 daN/cm²
		Def.unit. max resistenza ec2: 0.0020
		Def.unit. ultima ecu: 0.0035
		Diagramma tensione-deformaz.: Parabola-Rettangolo
		Modulo Elastico Normale Ec : 323080 daN/cm2
		Coeff. di Poisson : 0.20
		Resis. media a trazione fctm: 28.80 daN/cm²
ACCIAIO	-	Tipo: B450C
		Resist. caratt. snervam. fyk: 4500.0 daN/cm2
		Resist. caratt. rottura ftk: 5400.0 daN/cm2
		Resist. snerv. di calcolo fyd: 3913.0 daN/cm²
		Resist. ultima di calcolo ftd: 4500.0 daN/cm²
		Deform. ultima di calcolo Epu: 0.068
		Modulo Elastico Ef : 2000000 daN/cm2
		Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 40.0 cm
Altezza: 50.0 cm

N. totale barre : 8
Diametro barre : 16 mm
Copriferro (dal baric, barre) : 4.0 cm
Coordinate Barre nei vertici :

1 -16.0 -21.0
2 -16.0 21.0
3 16.0 21.0
4 16.0 -21.0

Generazioni di barre lungo i lati:

Geostru Software - Validazione codice di calcolo RC-SEC

N.Gen.	Numero assegnato alla singola generazione lineare di barre
N.Barra In.	Numero della barra iniziale (di vertice) cui si rigerisce la generazione
N.Barra Fin.	Numero della barra finale (vertice) cui si rigerisce la generazione
N.Barre	Numero di barre generate equidist. comprese tra la barra iniz. e la fin.

N.Gen.	N.Barra In.	N.Barra Fin.	N.Barre
1	1	4	1
2	2	3	1
3	1	2	1
4	4	3	1

ST.LIM. ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (positivo se di compress.) Coppia concentrata in daNm applicata all'asse x princ. d'inerzia della sezione con verso positivo se tale da comprimere il lembo superiore della sezione Coppia concentrata in daNm applicata all'asse y princ. d'inerzia della sezione My con verso positivo se tale da comprimere il lembo destro della sezione Componente del Taglio [daN] nella direzione dell'asse princip. y della sezione Componente del Taglio [daN] nella direzione dell'asse princip. x della sezione VV

N.Comb.	N	M×	My	Vy	V×
1	50000	14000	-11000	14000	11000
2	50000	20000	0	20000	0
3	50000	Ω	-15714	0	15714

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 3.2 cm Interferro netto minimo barre longitudinali: 14.4 cm Copriferro netto minimo staffe: 2.4 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Ver Sforzo normale assegnato [in daN] (positivo se di compressione)
Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia Mx My Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia ult Mx ult Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >=1.000

N.Comb.	Ver	N	Мж	Му	N ult	Mx ult	My ult	Mis.Sic.
1	S	50000	14000	11000	49983	14828	11729	1.062
2	S	50000	20000	0	49995	22988	0	1.149
3	S	50000	0	15714	49988	0	18004	1.146

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform, unit, massima del conglomerato a compressione ec 3/7 Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace Deform. Unit. del conglomerato nella fibra a 3/7 dell'altezza efficace ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. Unit. minima nell'acciaio (negativa se di trazione) Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.) Deform. Unit. massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.) Xc max Yc max ef min Xf min Yf min ef max Xf max

N.Comb.	ec max	ec 3/7	Xc max	Yc max	ef min	Xf min	Yf min	ef max	Xf max	Yf max
1	0.00350	-0.00031	20.0	25.0	0.00270	16.0	21.0	-0.00459	-16.0	-21.0
2	0.00350	-0.00232	-20.0	25.0	0.00241	-16.0	21.0	-0.00900	-16.0	-21.0
3	0.00350	-0.00232	20.0	25.0	0.00214	16.0	21.0	-0.00873	-16.0	-21.0

Geostru Software - Validazione codice di calcolo RC-SEC

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a	Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
b	Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
C	Coeff. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N.Comb.	a	b	С	x/d	C.Rid.
1	0.000112833	0.000087460	-0.000943178		
2	0.000000000	0.000271812	-0.003295296		
3	0.000339655	0.000000000	-0.003293104		

ARMATURE A TAGLIO DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

Diametro staffe: 8 mm Passo staffe: N.Bracci staffe: 18.0 cm [Passo massimo di normativa = 19.2] Area staffe/m : 5.6 cm2/m [Area Staffe Minima normativa = 2.9]

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

S = comb. verificata a taglio / N = comb. non verificata
Taglio agente [daN] = proiez. di Vx e Vy sulla normale all'asse neutro
Taglio resistente ultimo [daN] lato conglomerato compresso
Taglio [daN] assorbito dal conglomerato nel calcolo delle staffe
Taglio resistente [daN] assorbito dalle staffe Ver Vsdu Vru Vcd Vwd Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro. neutro.

Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro.

E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato

Coefficiente maggiorativo della resistenza a taglio per compressione

Angolo gradi strettamente processaria e taglio per compressione bw Teta Acw Afst Area staffe strettamente necessarie a taglio per metro di trave [cm²/m]

N.Comb.	Ver	Vsdu	Vcd	Vwd	Dmed	bw	Teta	Acw	Afst
1	S	17271	49148	18497	37.6	45.9	21.80°	1.158	5.2
2	S	20000	52421	22619	46.0	40.0	21.80°	1.158	4.9
3	S	15714	51281	17702	36.0	50.0	21.80°	1.158	5.0

Geostru Software - Validazione codice di calcolo

3.6 ESEMPIO 6

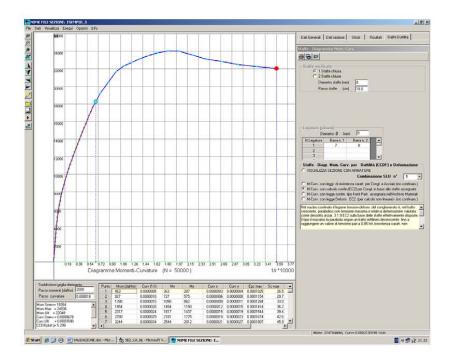
Si fa riferimento alla stessa sezione rettangolare di pilastro trattata nell'esempio precedente allo scopo di valutare con calcolo diretto la duttilità di curvatura posseduta dalla sezione per ognuna delle tre combinazioni assegnate. Nel caso di calcolo sismico il punto 7.4.4 NTC prescrive, per le sezioni ricadenti in zona critica, che il valore della duttilità di curvatura μφ risulti non minore di prefissati valori. Al punto 7.3.6.2 le NTC comunque consentono di omettere tale controllo purché si rispettino le regole di progetto e di gerarchia delle resistenze.

Il calcolo della duttilità di curvatura viene svolto dal programma tramite la costruzione di diagrammi momenti-curvature in cui il rapporto tra i momenti Mx e M_v viene mantenuto costante. Tra i vari tipi di diagrammi previsti in programma si utilizza, per il presente esempio, quello che tiene conto automaticamente del confinamento sulla base delle staffe effettivamente disposte. Viene pertanto utilizzato per il nucleo confinato della sezione un diagramma tensione-deformazione costruito secondo il punto 3.1.9 di EC2 che fornisce le espressioni da cui trarre il valore di resistenza f_{ck,c} del calcestruzzo confinato, la deformazione ultima ε_{cu2,c} e quella al limite del tratto parabolico ε_{c2,c}. Il tratto plastico del diagramma tensionideformazioni si ottiene però collegando il punto fck,c di massimo della parabola con il valore di 0,85 f_{ck} in corrispondenza di $\epsilon_{cu2,c}$. Le precedenti quantità $f_{ck,c}$, $\epsilon_{c2,c}$, $\epsilon_{eu2,c}$ sono maggiorate rispetto a quelle impiegate per il calcolo di resistenza in quanto funzioni della tensione trasversale di confinamento σ_2 il cui valore, però, non viene esplicitato nell'EC2. Occorre a questo scopo far ricorso all'autorevole "Model Code '90" che pone (per sezioni rettangolari):

> $\sigma_2 = 0.5 \, \alpha_n \, \alpha_s \, \omega_w$ in cui $\alpha_n = 1 - 8 / (3 \text{ n})$ con n = numero di barre collegate da staffe e legature $\alpha_s = 1 - s/(2 b_0)$ con s = passo staffe e b_0 = lato minore nucleo confinato $\omega_{\rm w}$ = (Volume staffe / Volume nucleo confinato) ($f_{\rm vd}/f_{\rm cd}$)

Al conglomerato esterno al nucleo confinato viene invece assegnato il diagramma tensione-deformazione utilizzato per il calcolo di resistenza.

Si riporta di seguito sia l'output a video del diagramma Momenti-Curvature, sia il tabulato di stampa dello stesso con riferimento alla prima combinazione di carico in presso-flessione deviata. Il valore della duttilità di curvatura μ_φ risulta pari a 5,299. Il calcolo di duttilità per la seconda combinazione di carico (in presso flessione retta) conduce invece ad una duttilità notevolmente superiore e pari a 10,169.



Geostru Software - Validazione codice di calcolo

DIAGRAMMA MOMENTI-CURVATURE Comb. N° 1 (N = 50000 dan) NOME SEZIONE: ESEMPIO_5

Descrizione Sezione:

Tipologia sezione: Pi Percorso sollecitazione: Pilastro rettangolare ad armatura simm. rercorso sollecitazione:

Riferimento alla sismicità:

Posizione sezione nell'asta:

A Sforzo Norm. costante
Zona non sismica
In zone critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -Classe: C28/35

Diagramma coprif. non confinato: Parabola con max=Fc_k
Resis. caratt. di calcolo fck: 280.00 daN/cm²
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035 Diagramma congl. confinato sez.: Parabol.+retta decresc. in base alle staffe
Resist. massima per confinamento : 296.41 daN/cm² Resist. Massima per Confirmence

Resist. a rottura (0.85 Fck) :

Tens. laterale di confinam.efficace:

Def. unit. per la max resistenza :

Def. unit. ultima (par.3.1.9 EC2) :

Tipo: B450C 238.00 daN/cm² 3.28 daN/cm² 0.0022 0.0058 Bilineare finito 4500.0 daN/cm² Diagramma tensione-deformaz.:

ACCIAIO

Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: 5400.0 daN/cm2 Deform. ultima di calcolo Epu: Modulo Elastico Ef: 0.0675 2000000 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: Altezza: 40.0 cm 50.0 cm

N. totale barre

Geostru Software - Validazione codice di calcolo RC-SEC

16 mm Diametro barre Copriferro (dal baric. barre) 4.0 cm Coordinate Barre nei vertici

N.Barra	Ascissa X, cm	Ordinata Y, cm
1	-16.0	-21.0
2	-16.0	21.0
3	16.0	21.0
4	16.0	-21.0

Generazioni di barre lungo i lati:

N.Gen. Numero assegnato alla singola generazione lineare di barre N.Barra In. Numero della barra iniziale (di vertice)cui si riferisce la generazione N.Barra Fin. Numero della barra finale (vertice)cui si riferisce la

Numero di barre generate equidist. comprese tra la barra iniz. e la fin. N.Barre

N.Gen.	N.Barra In.	N.Barra Fin.	N.Barre
1	1	4	1
2	2	3	1
3	1	2	1
4	4	3	1

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO

Diametro staffe: 18.0 cm [Passo massimo di normativa= 19.2] Passo staffe: N.Bracci staffe: Area staffe/m : 5.6 cm2/m

RISULTATI DEL CALCOLO

50000 daN Sforzo normale costante di calcolo N 18264 daNm 24036 daNm Momento di snervamento Momento massimo Momento a rottura 22048 daNm Duttilità di curvatura CCDF (punto 7.4.4 NTC) 5.299

PUNTI CALCOLATI DEL DIAGRAMMA MOMENTI-CURVATURE

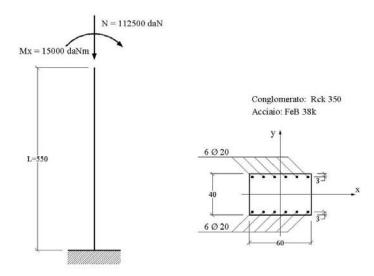
Numero d'ordine assegnato al punto calcolato del diagramma Numero d'ordine assegnato al punto calcolato del diagramma Momento vettoriale [daNm] Curvatura [1000/cm] vettoriale corrispond. al momento vettoriale Componente del momento totale relativa all'asse x princ.inerzia Componente del momento totale relativa all'asse y princ.inerzia Componente della curvatura [1000/cm] relativa all'asse x Componente della curvatura [1000/cm] relativa all'asse y Deformazione unit. massima congl. (positiva se di compressione) M Curv. Mx Mv Curv x Curv y epc max Tensione congl. [daN/cm²] in corrispond. di epc max Deformazione unit. minima acciaio (negativa se di trazione) Tensione acciaio [daN/cm²] in corrispond. di eps min epf min Sf min

Punto	М	Curv	Mx	My	Curv x	Curv y	epc max	Scmax	eps min	Scmin
1	463	0.00049	363	287	0.00031	0.00038	0.0001	26	0.0001	154
2	927	0.00098	727	575	0.00061	0.00076	0.0001	30	0.0001	129
3	1390	0.00146	1090	862	0.00092	0.00114	0.0001	33	0.0001	104
4	1854	0.00195	1454	1150	0.00122	0.00152	0.0001	36	0.0000	79
5	2317	0.00244	1817	1437	0.00153	0.00190	0.0002	39	0.0000	55
6	2780	0.00293	2181	1725	0.00183	0.00228	0.0002	43	0.0000	30
7	3244	0.00343	2544	2012	0.00215	0.00267	0.0002	46	0.0000	4
8	3707	0.00397	2908	2300	0.00249	0.00309	0.0002	49	0.0000	-24
9	4171	0.00459	3271	2587	0.00287	0.00357	0.0002	53	0.0000	-57
10	4634	0.00528	3634	2875	0.00330	0.00411	0.0002	57	0.0000	-95
11	5097	0.00606	3998	3162	0.00379	0.00472	0.0002	62	-0.0001	-139
12	5561	0.00694	4361	3450	0.00435	0.00542	0.0003	66	-0.0001	-190
13	6024	0.00794	4725	3737	0.00497	0.00619	0.0003	71	-0.0001	-249
14	6487	0.00905	5088	4025	0.00566	0.00706	0.0003	77	-0.0002	-317
15	6951	0.01028	5452	4312	0.00643	0.00802	0.0003	83	-0.0002	-394
16	7414	0.01163	5815	4600	0.00727	0.00908	0.0004	89	-0.0002	-480

GeoStru

Geostru Software - Validazione codice di calcolo RC-SEC

	7070		44.70							
17	7878	0.01311	6179	4887	0.00819	0.01023	0.0004	95	-0.0003	-575
18	8341	0.01470	6542	5175	0.00918	0.01148	0.0004	102	-0.0003	-681
19	8804	0.01642	6905	5462	0.01025	0.01283	0.0005	109	-0.0004	-795
20	9268	0.01825	7269	5749	0.01138	0.01426	0.0005	116	-0.0005	-919
21	9731	0.02019	7632	6037	0.01258	0.01578	0.0005	123	-0.0005	-1052
22	10195	0.02222	7996	6324	0.01385	0.01738	0.0006	130	-0.0006	-1194
23	10658	0.02436	8359	6612	0.01517	0.01906	0.0006	137	-0.0007	-1344
24	11121	0.02657	8723	6899	0.01653	0.02081	0.0006	144	-0.0008	-1500
25	11585	0.02886	9086	7187	0.01794	0.02261	0.0007	151	-0.0008	-1663
26	12048	0.03121	9449	7474	0.01939	0.02446	0.0007	158	-0.0009	-1831
27	12512	0.03362	9813	7762	0.02087	0.02636	0.0007	165	-0.0010	-2004
28	12975	0.03608	10176	8049	0.02238	0.02830	0.0008	171	-0.0011	-2182
29	13438	0.03859	10540	8337	0.02392	0.03028	0.0008	178	-0.0012	-2364
30	13902	0.04114	10903	8624	0.02548	0.03229	0.0009	185	-0.0013	-2549
31	14365	0.04372	11267	8912	0.02707	0.03434	0.0009	191	-0.0014	-2738
32	14828	0.04635	11630	9199	0.02868	0.03641	0.0009	197	-0.0015	-2929
33	15292	0.04900	11994	9487	0.03030	0.03851	0.0010	203	-0.0016	-3123
34	15755	0.05170	12357	9774	0.03195	0.04064	0.0010	209	-0.0017	-3320
35	16219	0.05441	12720	10062	0.03360	0.04279	0.0011	215	-0.0018	-3518
36	16682	0.05716	13084	10349	0.03529	0.04497	0.0011	221	-0.0019	-3720
37	17145	0.05994	13447	10636	0.03698	0.04717	0.0012	227	-0.0020	-3923
38	17609	0.06274	13811	10924	0.03869	0.04939	0.0012	232	-0.0021	-4128
39	19260	0.07537	15106	11948	0.04640	0.05939	0.0014	253	-0.0025	-4566
40	20501	0.08800	16079	12718	0.05412	0.06939	0.0016	269	-0.0030	-4572
41	21680	0.10061	17004	13450	0.06180	0.07939	0.0017	282	-0.0035	-4579
42	22329	0.11329	17512	13852	0.06959	0.08939	0.0019	290	-0.0040	-4586
43	22743	0.12591	17837	14109	0.07729	0.09939	0.0021	295	-0.0045	-4593
44	23128	0.13852	18140	14348	0.08498	0.10939	0.0022	296	-0.0049	-4599
45	23509	0.15233	18438	14584	0.09340	0.12033	0.0024	296	-0.0055	-4607
46	23826	0.16753	18687	14781	0.10270	0.13237	0.0026	296	-0.0061	-4615
47	24036	0.18424	18852	14911	0.11289	0.14560	0.0029	296	-0.0067	-4623
48	24025	0.20264	18843	14905	0.12413	0.16016	0.0032	296	-0.0074	-4632
49	23564	0.22399	18482	14619	0.13833	0.17618	0.0035	296	-0.0081	-4643
50	23122	0.24624	18135	14344	0.15192	0.19380	0.0039	296	-0.0089	-4654
51	22863	0.27067	17932	14184	0.16679	0.21318	0.0043	296	-0.0098	-4666
52	22482	0.29740	17633	13947	0.18292	0.23449	0.0047	296	-0.0107	-4679
53	22259	0.32677	17458	13809	0.20061	0.25794	0.0052	296	-0.0117	-4693
54	22048	0.35904	17292	13678	0.22001	0.28374	0.0057	296	-0.0129	-4709
			(m) (m) (m) (m) (m) (m)							



Geostru Software - Validazione codice di calcolo RC-SEC

3.7 ESEMPIO 7

L'esempio, tratto dal volume di R.Calzona, C.Cestelli Guidi – Il calcolo del cemento armato (Hoepli) – si riferisce al calcolo allo stato limite ultimo di instabilità di un pilastro snello a sezione rettangolare i cui dati sono riportati in figura.

Si utilizza il metodo semplificato detto della "colonna modello" con riferimento alle sollecitazioni rette contenute nel piano verticale la cui traccia nel piano della sezione coincide con l'asse y. I valori indicati per N ed Mx sono quelli del primo ordine già amplificati con gli opportuni coefficienti stabiliti per la combinazione ultima che si intende verificare.

Le sollecitazioni da calcolo vanno sempre incrementate del momento flettente causato dall'eccentricità non intenzionale e_{ni} da porre non minore di $L_0/300=3.67$ cm essendo L_0 la lunghezza di libera inflessione del pilastro in questo caso (schema a mensola) pari a 2L=1100 cm.:

$$Nd = 112500 \ daN$$

 $Md = 15000 + 112500 \times 0.0367 = 19129 \ daNm$

All'avvio del calcolo occorre inserire preliminarmente (nell'archivio materiali) i dati relativi sia al conglomerato Rck350 che all'acciaio FeB38k per renderli identici a quelli riportati nel testo citato:

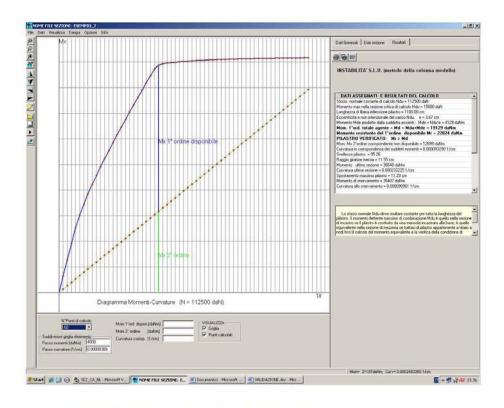
$$\begin{array}{l} f_{ck} = \ 0.83 \ R_{ck} = 290.5 \ daN/cm^2 \\ f_{cd} = 0.85 \ f_{ck}/1.6 = 154.3 \ daN/cm^2 \\ E_s = 2100000 \ daN/cm^2 \\ f_{yd} = f_{td} = f_{yk} \ /1.15 = 3304 \ daN/cm^2; \\ \epsilon_{ud_ult} = 0.01 \end{array}$$

In particolare i dati relativi agli sforzi agenti richiesti dal programma sono i seguenti:

Sforzo normale di calcolo Nd costante = 112500 daN Momento max di calcolo Md nella sezione critica = 15000 daNm Lunghezza di libera inflessione = 1100 cm

MANDANTI:

GeoStru


Geostru Software - Validazione codice di calcolo RC-SEC

Eccentricità non intenzionale =

3.67 cm

Si noti come il momento Md richiesto sia al netto di quello prodotto dall'eccentricità non intenzionale in quanto il programma provvederà automaticamente ad effettuare la somma tra i due momenti agenti.

Gli output a video ed a stampa, di seguito riportati, indicano che la sezione risulta verificata in quanto il momento resistente effettivamente disponibile (al netto di quello del secondo ordine) pari a 22824 daNm è maggiore di quello di calcolo di 19129 daNm. I risultati sono in pratica coincidenti con quelli esposti nel citato testo.


```
STATO LIMITE DI INSTABILITA' (Metodo della Colonna Modello)
DATI SEZIONE CRITICA PILASTRO
NOME SEZIONE: ESEMPIO_7
```

Descrizione Sezione:

Metodo di calcolo resistenza:

Normativa di riferimento:

Tipologia sezione:

Pilastro rettangolare ad armatura simte
Percorso sollecitazione:

Riferimento Sforzi assegnati:

Assi x,y principali d'inerzia

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: Rck350
Resis. compr. di calcolo fcd : 154.30 daN/cm²
Def.unit. max resistenza ec2 : 0.0020
Def.unit. ultima ecu : 0.0035
Diagramma tensione-deformaz. : Parabola-Rettangolo
Modulo Elastico Normale Ec : 337216 daN/cm²

Geostru Software - Validazione codice di calcolo RC-SEC

SFORZI ASSEGNATI E RISULTATI DEL CALCOLO

```
Sforzo normale costante di calcolo Ndu = 112500 daN Sforzo normale costante di calcolo Ndu = 15000 daNm Lunghezza di libera inflessione pilastro = 1100.00 cm Eccentricità e non intenzionale del carico Ndu: e = 3.67 cm Momento Mde prodotto dalla suddetta eccentricità: Mde = Ndu*e = 4129 daNm Raggio giratore d'inerzia riferito all'asse x di inflessione = 11.55 cm Snellezza pilastro = Lungh.libera infless./raggio giratore = 95.26 Momento del 1°ordine totale agente = Md = Mdu+Mde = 19129 daNm Momento resistente del 1'ordine disponibile Mr = 22824 daNm PILASTRO VERIFICATO: Mr > Md

Mom. Mx 2°ordine corrispondente al massimo momento disponibile = 12699 daNm Curvatura corrispondente ai suddetti momenti = .000093290 l/cm Momento resistente ultimo sezione critica = 36648 daNm Curvatura ultima sezione (in corrisp. del Mom.resist.Ultimo) = .000233225 l/cm Spostamento massimo pilastro = 11.29 cm Momento di snervamento ezione critica = 35407 daNm Curvatura allo snervamento = .000090961 l/cm
```

PUNTI CALCOLATI DEL DIAGRAMMA MOMENTI-CURVATURE

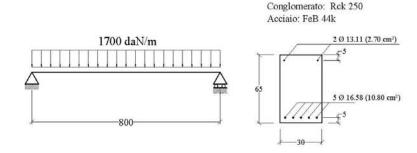
N.Punto Numero d'ordine assegnato al punto calcolato del diagramma Curvat. Curvatura [1/cm] del punto calcolato
Mx Momento totale [daNm] per la curv. data riferito all'asse x
Mx_1° Quota disponibile del 1° ordine del momento totale Mx
Mx_2° Quota non disponibile del 2° ordine del momento totale Mx

N.Punto	Curvat.	Мж	Mx_1°	Mx_2°
1	0.000003887	2554	2025	529
	0.000007774	5105	4047	1058
2	0.000011661	7651	6064	1587
4 5 6	0.000015548	10102	7985	2117
5	0.000019435	12119	9473	2646
6	0.000023322	13857	10682	3175
7	0.000027210	15429	11725	3704
8	0.000031097	16896	12663	4233
9	0.000034984	18288	13526	4762
10	0.000038871	19629	14338	5291
11	0.000042758	20929	15108	5820
12	0.000046645	22198	15848	6350
13	0.000050532	23440	16561	6879
14	0.000054419	24659	17252	7408
15	0.000058306	25861	17924	793
16	0.000062193	27047	18581	8466
17	0.000066080	28220	19225	8995
18	0.000069967	29374	19850	9524
19	0.000073855	30520	20466	10053
20	0.000077742	31651	21068	10583
21	0.000081629	32770	21658	11112
22	0.000085516	33875	22234	11641
23	0.000089403	34973	22803	12170
24	0.000093290	35523	22824	12699
25	0.000097177	35707	22478	13228
26	0.000101064	35835	22078	13757
27	0.000104951	35906	21620	14286
28	0.000108838	35970	21154	14816
29	0.000112725	36030	20685	15345
30	0.000116612	36083	20209	15874
31	0.000120500	36133	19730	16403
32	0.000124387	36174	19242	16932

GeoStru

Geostru Software - Validazione codice di calcolo RC-SEC

33	0.000128274	36212	18751	17461
34	0.000132161	36248	18258	17990
35	0.000136048	36283	17763	18520
36	0.000139935	36314	17266	19049
37	0.000143822	36343	16765	19578
38	0.000147709	36366	16259	20107
39	0.000151596	36391	15755	20636
40	0.000155483	36414	15249	21165
41	0.000159370	36434	14740	21694
42	0.000163257	36455	14232	22223
43	0.000167145	36472	13719	22753
44	0.000171032	36485	13204	23282
45	0.000174919	36499	12689	23811
46	0.000178806	36517	12177	24340
47	0.000182693	36531	11662	24869
48	0.000186580	36545	11147	25398
49	0.000190467	36557	10630	25927
50	0.000194354	36568	10111	26456
51	0.000198241	36577	9592	26986
52	0.000202128	36585	9070	27515
53	0.000206015	36596	8552	28044
54	0.000209902	36604	8031	28573
55	0.000213789	36614	7512	29102
56	0.000217677	36623	6991	29631
57	0.000221564	36628	6468	30160
58	0.000225451	36634	5945	30689
59	0.000229338	36644	5425	31219
60	0.000233225	36648	4901	31748



Geostru Software - Validazione codice di calcolo

3.8 ESEMPIO 8

La trave in c.a. su due appoggi in figura è tratta dall'Example 7.4 del volume di A.Ghali, R.Favre "Concrete Structures - stresses and deformations" (E & FN SPON) è costituita per la sua intera lunghezza dalla sezione costante, per geometria e materiali, denominata ESEMPIO 8 GHALI SEZ.sez pure presente tra i files di esempio del programma.

Al tempo to viene applicato un carico uniforme di 1700 daN/m che rappresenta il carico risultante di una combinazione *quasi permanente* di esercizio. Si chiede il valore della freccia massima della trave a lungo termine (t = infinito) posto che i dati meccanici e reologici siano i seguenti:

 $E_{s} = 2000000 \ daN/cm^{2}$

 $E_c(t0) = 300000 \text{ daN/cm}^2$ = modulo elastico al tempo t0 di applicazione del carico $f_{ctm} = 25 \text{ daN/cm}^2$ = resistenza media a trazione del conglomerato

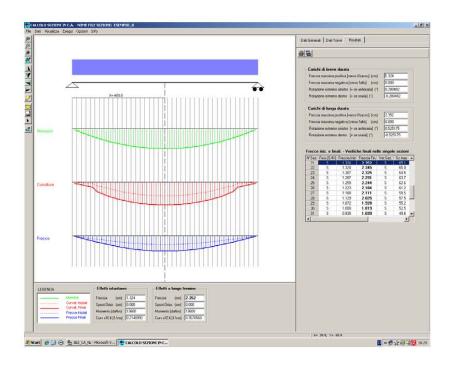
 φ (t,t0) = 2.5 = coeff. di viscosità valutato da t0 al tempo finale t

 $\varepsilon_{cs}(t,t0) = 0.00025 = deformazione per ritiro nello stesso intervallo di tempo$

 χ (t,t0) = 0.8 = coeff. di invecchiamento

Prima di poter assegnare i dati della trave è stato necessario creare il file della sezione corrente della trave denominato ESEMPIO_8_GHALI.sez. Nel corso dell'input di questa sezione vanno inseriti i dati geometrici, meccanici e reologici finora elencati (nonché un momento fittizio qualsiasi). Una volta salvato il file della sezione è stato creato un nuovo file di calcolo, qui denominato ESEMPIO_8.sez, in

Geostru Software - Validazione codice di calcolo


cui una volta assegnata la tipologia del calcolo delle frecce in campata singola vanno effettuate le seguenti scelte:

- Tipologia della combinazione di carico di esercizio: quasi permanente
- Tipo di campata: trave su due appoggi
- Nº tronchi a sezione costante: 1 (la geometria e l'armatura sono costanti per tutta la lunghezza della trave)
- Passo medio della discretizzazione: 20 cm
- Coppie agli estremi appoggiati della trave: 0 daNm
- Caratteristiche dei singoli tronchi della trave:
 - ➤ Nome Sezione: ESEMPIO 8 GHALI.sez
 - Lunghezza tronco: 800 cm
 - ightharpoonup Py = 1700 daN/m
 - ightharpoonup N = 0 daN.

Negli output a video ed a stampa sotto riportati viene indicata, fra l'altro, la freccia massima (in corrispondenza del concio centrale) pari a 2.35 cm identica a quella calcolata testo citato. Si noti come la freccia istantanea pari a 1,32 cm sia circa la metà della freccia differita (quest'ultima calcolata col metodo AAEM).

Oltre a calcolare le frecce nei singoli conci per integrazione delle curvature il programma ne verifica l'apertura delle fessure e le tensioni normali.

Con questo stesso programma possono essere studiate (con piccolo errore) campate di travi iperstatiche (appartenenti a generici impalcati di edifici) a condizione di assegnare le coppie iperstatiche di estremità. Essendo inoltre possibile assegnare uno sforzo normale costante può essere studiata la deformazione (in un solo piano di inflessione) anche dei pilastri.

Geostru Software - Validazione codice di calcolo

CALCOLO FRECCE E VERIFICA SEZIONI DI UNA TRAVE IN C.A. NOME DEL FILE: ESEMPIO 8

Descrizione Calcolo:
Tipologia della trave:
Numero tronchi a sez. costante:
Passo medio discretizz. trave:
Tipologia combinazione carico:
Condizioni Ambientali:

Trave su due appoggi di estremità
1
20 cm
Quasi Permanente

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOM. N. 1 - Classe: C20/25 Modulo Elastico Normale Ec: 300000 daN/cm2 Coeff. di Poisson: 0.20 Resis. media a trazione fctm: 25.00 daN/cm2 Coeff. Viscosità: Coeff. Ritiro: 0.25 /1000 Coeff. Invecchiamento: 0.800 Tensione normale Limite: 90.00 daN/cm2 Apert.Fess.Limite: 0.300 mm ACCIAIO N. 1 - Tipo: B450C Modulo Elastico Ef: Coeff. Aderenza ist. B1*B2: Coeff. Aderenza diff. B1*B2: 2000000 daN/cm2 1.00 Tensione normale Sf Limite: 3150.0 daN/cm2

CARATTERISTICHE DEI SINGOLI TRONCHI DELLA TRAVE

N.Tronco Numero progressivo assegnato ai tronchi da sinistra a destra
Nome Sez. Nome del file della sezione assegnata al tronco
Lunghezza Lunghezza del tronco [cm]
Carico un. Carico verticale uniformemente ripartito [daN/m] sul tronco
[positivo se diretto verso il basso]

N.Tronco Nome Sezione Lunghezza Carico un.

1 ESEMPIO_8_GHA 800.0 1700

FRECCE - CURVATURE - SPOST. ASSIALI DELLE SINGOLE SEZIONI DELLA TRAVE

N.sez Numero progressivo assegnato alle sezioni da sinistra a destra
X sez Ascissa progressiva delle sezioni con l'origine nel vincolo di sinistra
Nome Sez. Nome del file della sezione all'ascissa X sez
Ver S/N = sezione verificata o meno alle tensioni limite ed a fessurazione
Fess. S/N = sezione fessurata o con conglomerato interamente reagente
Fr.Ini Freccia istantanea [cm] all'applicazione del carico [positiva se verso il basso]
Cur.Ini Curvatura istantanea [l/cm] della sezione all'applicazione del carico
S.O.Ini Spostamento assiale istantaneo [cm] della sezione all'applicazione del carico
[positivo se opposto al verso crescente delle ascisse]
Fr.Fin Freccia [cm] a fenomeni reologici esauriti [positiva se verso il basso]
Cur.Fin Curvatura [l/cm] della sezione a fenomeni reologici esauriti
S.O.Fin Spostamento assiale [cm] della sezione a fenomeni reologici esauriti

N.Sez	X sez	Nome Sezione	Ver	Fess.	Fr.Ini	Cur.Ini	S.O.Ini	Fr.Fin	Cur.Fin	S.O.Fin
1	9.8	ESEMPIO 8 GHA	s	N	0.048	0.0000003	0.000	0.089	0.0000020	0.000
2	29.3	ESEMPIO 8 GHA	S	N	0.143	0.0000008	0.000	0.268	0.0000036	0.000
3	48.8	ESEMPIO 8 GHA	S	N	0.238	0.0000014	0.000	0.444	0.0000052	0.000
4	68.3	ESEMPIO 8 GHA	S	N	0.333	0.0000019	0.000	0.619	0.0000067	0.000
5	87.8	ESEMPIO 8 GHA	S	N	0.427	0.0000024	0.000	0.791	0.0000081	0.000
6	107.3	ESEMPIO 8 GHA	S	S	0.520	0.0000063	0.000	0.960	0.0000151	0.000
7	126.8	ESEMPIO 8 GHA	S	S	0.610	0.0000073	0.000	1.124	0.0000181	0.000
8	146.3	ESEMPIO 8 GHA	S	S	0.698	0.0000089	0.000	1.280	0.0000208	0.000
9	165.9	ESEMPIO 8 GHA	S	S	0.782	0.0000110	0.000	1.429	0.0000231	0.000
10	185.4	ESEMPIO 8 GHA	S	S	0.863	0.0000127	0.000	1.569	0.0000252	0.000
11	204.9	ESEMPIO 8 GHA	S	S	0.938	0.0000143	0.000	1.699	0.0000271	0.000
12	224.4	ESEMPIO 8 GHA	S	S	1.008	0.0000157	0.000	1.819	0.0000288	0.000

250

EE

Geostru Software - Validazione codice di calcolo RC-SEC

		ESEMPIO 8 GHA	S	S	1.072	0.0000170	0.000	1.928	0.0000302	0.000
1.4	263.4	ESEMPIO 8 GHA	S	S	1.129	0.0000180	0.000	2.025	0.0000315	0.000
15	282.9	ESEMPIO 8 GHA	S	S	1.180	0.0000189	0.000	2.111	0.0000326	0.000
16	302.4	ESEMPIO 8 GHA	S	S	1.223	0.0000197	0.000	2.184	0.0000336	0.000
17	322.0	ESEMPIO 8 GHA	S	S	1.259	0.0000203	0.000	2.244	0.0000344	0.000
18	341.5	ESEMPIO 8 GHA	S	S	1.287	0.0000208	0.000	2.291	0.0000349	0.000
19	361.0	ESEMPIO 8 GHA	S	S	1.307	0.0000211	0.000	2.325	0.0000354	0.000
20	380.5	ESEMPIO 8 GHA	S	S	1.320	0.0000213	0.000	2.345	0.0000356	0.000
21	400.0	ESEMPIO 8 GHA	S	S	1.324	0.0000214	0.000	2.352	0.0000357	0.000
22	419.5	ESEMPIO 8 GHA	S	S	1.320	0.0000213	0.000	2.345	0.0000356	0.000
23	439.0	ESEMPIO 8 GHA	S	S	1.307	0.0000211	0.000	2.325	0.0000354	0.000
24	458.5	ESEMPIO 8 GHA	S	S	1.287	0.0000208	0.000	2.291	0.0000349	0.000
25	478.0	ESEMPIO 8 GHA	S	S	1.259	0.0000203	0.000	2.244	0.0000344	0.000
26	497.6	ESEMPIO 8 GHA	S	S	1.223	0.0000197	0.000	2.184	0.0000336	0.000
27	517.1	ESEMPIO 8 GHA	S	S	1.180	0.0000189	0.000	2.111	0.0000326	0.000
28	536.6	ESEMPIO 8 GHA	S	S	1.129	0.0000180	0.000	2.025	0.0000315	0.000
29	556.1	ESEMPIO 8 GHA	S	S	1.072	0.0000170	0.000	1.928	0.0000302	0.000
30	575.6	ESEMPIO 8 GHA	S	S	1.008	0.0000157	0.000	1.819	0.0000288	0.000
31	595.1	ESEMPIO 8 GHA	S	S	0.938	0.0000143	0.000	1.699	0.0000271	0.000
32	614.6	ESEMPIO 8 GHA	S	S	0.863	0.0000127	0.000	1.569	0.0000252	0.000
33	634.1	ESEMPIO 8 GHA	S	S	0.782	0.0000110	0.000	1.429	0.0000231	0.000
34	653.7	ESEMPIO 8 GHA	S	S	0.698	0.0000089	0.000	1.280	0.0000208	0.000
35	673.2	ESEMPIO 8 GHA	S	S	0.610	0.0000073	0.000	1.124	0.0000181	0.000
36	692.7	ESEMPIO 8 GHA	S	S	0.520	0.0000063	0.000	0.960	0.0000151	0.000
37	712.2	ESEMPIO 8 GHA	S	N	0.427	0.0000024	0.000	0.791	0.0000081	0.000
38	731.7	ESEMPIO 8 GHA	S	N	0.333	0.0000019	0.000	0.619	0.0000067	0.000
39	751.2	ESEMPIO 8 GHA	S	N	0.238	0.0000014	0.000	0.444	0.0000052	0.000
40	770.7	ESEMPIO 8 GHA	S	N	0.143	0.0000008	0.000	0.268	0.0000036	0.000
41	790.2	ESEMPIO_8_GHA	S	N	0.048	0.0000003	0.000	0.089	0.0000020	0.000

VERIFICA SEZIONI PER TENSIONI NORMALI ED APERTURA DELLE FESSURE

Numero progressivo assegnato alle sezioni da sinistra a destra Ascissa progressiva delle sezioni con l'origine nel vincolo di sinistra Nome del file della sezione all'ascissa X sez $\mathrm{S/N} = \mathrm{sezione}$ verificata o meno alle tensioni limite ed a fessurazione X sez Nome Sez. Ver

Momento

Momento flettente nella sezione considerata
Sforzo normale baricenrico[daN] assegnato [+ se di compressione]
Massima tensione [daN/cm²] di compressione nel conglomerato
Massima trazione [daN/cm²] nell'acciaio
Apertura fessure finale massima [mm] nella sezione Sf.Ass.

Sc max Sf min

Ap.Fess.

N.Sez	X sez	Nome Sezione	Ver	Momento	Sf.Ass.	Sc max	Sf min	Ap.Fess.
1	9.8	ESEMPIO 8 GHA	S	655	0	3.27	339.1	0.000
2	29.3	ESEMPIO 8 GHA	S	1917	0	8.05	255.4	0.000
3	48.8	ESEMPIO 8 GHA	S	3115	0	12.59	175.9	0.000
4	68.3	ESEMPIO 8 GHA	S	4247	0	16.88	100.8	0.000
5	87.8	ESEMPIO 8 GHA	S	5315	0	20.93	29.9	0.000
6	107.3	ESEMPIO 8 GHA	S	6319	0	30.16	-1078.8	0.067
7	126.8	ESEMPIO 8 GHA	S	7257	0	34.67	-1240.6	0.092
8	146.3	ESEMPIO 8 GHA	S S S	8131	0	38.86	-1391.1	0.114
9	165.9	ESEMPIO 8 GHA	S	8940	0	42.75	-1530.6	0.133
10	185.4	ESEMPIO 8 GHA	S	9684	0	46.32	-1658.8	0.150
11	204.9	ESEMPIO 8 GHA	S	10364	0	49.59	-1776.0	0.166
12	224.4	ESEMPIO 8 GHA	S	10979	0	52.54	-1881.9	0.179
13	243.9	ESEMPIO 8 GHA	S	11529	0	55.18	-1976.7	0.191
14	263.4	ESEMPIO 8 GHA	SSS	12014	0	57.51	-2060.4	0.202
15	282.9	ESEMPIO 8 GHA	S	12435	0	59.53	-2132.9	0.211
16	302.4	ESEMPIO 8 GHA	S	12791	0	61.24	-2194.2	0.218
17	322.0	ESEMPIO 8 GHA	S	13082	0	62.64	-2244.4	0.225
18	341.5	ESEMPIO 8 GHA	S	13309	0	63.73	-2283.5	0.229
19	361.0	ESEMPIO 8 GHA	S	13471	0	64.50	-2311.4	0.233
20	380.5	ESEMPIO 8 GHA	s s	13568	0	64.97	-2328.1	0.235
21	400.0	ESEMPIO 8 GHA	S	13600	0	65.13	-2333.7	0.236
22	419.5	ESEMPIO 8 GHA	S	13568	0	64.97	-2328.1	0.235
23	439.0	ESEMPIO 8 GHA	S	13471	0	64.50	-2311.4	0.233
24	458.5	ESEMPIO 8 GHA	S	13309	0	63.73	-2283.5	0.229
25	478.0	ESEMPIO 8 GHA	S	13082	0	62.64	-2244.4	0.225
26	497.6	ESEMPIO 8 GHA	S	12791	0	61.24	-2194.2	0.218
27	517.1	ESEMPIO 8 GHA	S	12435	0	59.53	-2132.9	0.211
28	536.6	ESEMPIO 8 GHA	S	12014	0	57.51	-2060.4	0.202
29	556.1	ESEMPIO 8 GHA	S	11529	0	55.18	-1976.7	0.191

GeoStru

Geostru Software - Validazione codice di calcolo RC-SEC

30	575.6	ESEMPIO 8 GHA	S	10979	0	52.54	-1881.9	0.179
31	595.1	ESEMPIO 8 GHA	S	10364	0	49.59	-1776.0	0.166
32	614.6	ESEMPIO 8 GHA	S	9684	0	46.32	-1658.8	0.150
33	634.1	ESEMPIO 8 GHA	S	8940	0	42.75	-1530.6	0.133
34	653.7	ESEMPIO 8 GHA	S	8131	0	38.86	-1391.1	0.114
35	673.2	ESEMPIO 8 GHA	S	7257	0	34.67	-1240.6	0.092
36	692.7	ESEMPIO 8 GHA	S	6319	0	30.16	-1078.8	0.067
37	712.2	ESEMPIO 8 GHA	S	5315	0	20.93	29.9	0.000
38	731.7	ESEMPIO 8 GHA	S	4247	0	16.88	100.8	0.000
39	751.2	ESEMPIO 8 GHA	S	3115	0	12.59	175.9	0.000
40	770.7	ESEMPIO 8 GHA	S	1917	0	8.05	255.4	0.000
41	790.2	ESEMPIO 8 GHA	S	655	0	3.27	339.1	0.000

11.2 ALLEGATO 2 VALIDAZIONE TC-PREDEM

MODULO SIGMAC PROCEDURA PREDIM

TEST CASES - ed. 8.25 10/2011

INDICE

1 -TC PREDIM 1 - Ponte con travi H40/70 accostate	3
1.1 Parametri di confronto	3
1.1.1 Formule teoriche	3
1.1.1.1 Parametri 12 e 13 – indici di utilizzo delle sezioni di calcestruzzo	3
Calcestruzzo trave prefabbricata	4
Calcestruzzo del getto in opera	5
Calcolo zone di utilizzo delle fibre	5
Calcolo range di tensioni utilizzato	5
Calcolo precompressione necessaria	6
Cadute di precompressione	6
Escursione totale tensioni ai lembi:	7
Indice utilizzo trave:	
Indice utilizzo soletta:	
1.1.1.2 Parametro 10 – quantità di acciaio da precompressione	7
1.1.1.3 Parametro 11 – quantità di acciaio lento nella trave prefabbricata	7
1.1.2 Effetto globale	
1.2 Risultati della procedura	11
1.2.1 Formule teoriche	
1.2.2 Effetto globale	12
2 –TC PREDIM 2 – impalcato con 7 travi a T – L=20m.	15
2.1 Parametri di confronto	15
2.1.1 Formule teoriche	
2.1.1.1 Parametri 12 e 13 – indici di utilizzo	
Calcolo zone di utilizzo delle fibre	
Calcolo range di tensioni utilizzato.	16
Calcolo precompressione necessaria	16
Cadute di precompressione	17
Escursione totale tensioni ai lembi:	17
Indice utilizzo trave:	17
Indice utilizzo soletta:	
2.1.1.2 Parametro 10 – quantità di acciaio da precompressione	1.8
2.1.1.3 Parametro 11 – quantità di acciaio lento	
2.1.2 Effetto globale	1.8
2.2 Risultati della procedura	21
2.2.1 Formule teoriche	21
2.2.2 Effetto globale	
3 -TC PREDIM 3 - impalcato con 3 travi a V - L=30m	23
3.1 Parametri di confronto	23
3.1.1 Formule teoriche	
3.1.1.1 Parametri 12 e 13 – indici di utilizzo delle sezioni di calcestruzzo.	
Calcolo zone di utilizzo delle fibre	
3.1.1.1 Trave di bordo n. 3.	
Calcolo range di tensioni utilizzato.	
Calcolo precompressione necessaria	
Cadute di precompressione	25
Escursione totale tensioni ai lembi:	25
Indice utilizzo trave:	
Indice utilizzo soletta:	
3.1.1.2 Trave centrale n. 2	
Calcolo range di tensioni utilizzato.	
Calcolo range di tensioni dinizzato.	20

Calcolo precompressione necessaria.	26
Cadute di precompressione	27
Escursione totale tensioni ai lembi:	
Indice utilizzo trave:	27
Indice utilizzo soletta:	27
3.1.1.2 Parametro 10 – quantità di acciaio da precompressione	27
3.1.1.4 Parametro 11 – quantità di acciaio lento nella trave prefabbricata	28
3.1.2 Effetto globale	28
3.2 Risultati della procedura	30
3.2.1 Formule teoriche	30
3.2.2 Effetto globale	30

Premessa

La funzione di predimensionamento impalcati (PREDIM) è inserita nel modulo SIGMAC di ENG.

La procedura fornisce alcuni parametri significativi del dimensionamento di un impalcato partendo dalla minima quantità di dati possibile e ponendo come default degli altri dati necessari dei valori medi rispetto alla casistica degli impalcati a travi prefabbricate in c.a.p.

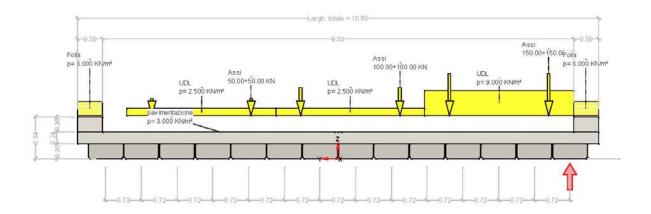
La procedura è applicabile a impalcati stradali a campata singola, con pianta in retto. I parametri caratteristici forniti dalla procedura sono:

- momento flettente in mezzeria della trave più sollecitata, situazione SLU P/T, conseguente a tutti i carichi di 1ª e 2ª fase applicati, compreso peso proprio struttura;
- taglio massimo all'appoggio, situazione SLU P/T, conseguente a tutti i carichi di 1ª e 2ª fase applicati, compreso peso proprio struttura;
- 3) momento flettente di 1ª fase nella stessa trave di 1) e 2), situazione SLE rara, conseguente al peso proprio trave, carico aggiuntivo eventuale di 1ª fase, peso getto;
- momento flettente di 2ª fase, situazione SLE rara, conseguente ai carichi aggiuntivi distribuiti di 2ª fase, alla pavimentazione, ai carichi lineari aggiuntivi, ai carichi da traffico;
- freccia massima relativa al passaggio dei carichi da traffico (gruppo 1);
- reazione minima verticale all'appoggio della stessa trave, data dalle combinazioni in situazione SLU P/T, o, se peggiore, data dalla combinazione sismica, effetto verticale negativo (verso l'alto);
- reazione massima verticale all'appoggio stessa trave, data dalle combinazioni in situazione SLU P/T, o, se peggiore, data dalla combinazione sismica, effetto verticale positivo;
- reazione massima longitudinale (frenatura) totale data dalle combinazioni in situazione SLU P/T, o, se peggiore, data dalla combinazione sismica, effetto longitudinale;
- reazione massima trasversale (forza centrifuga + vento) totale su una spalla, data dalle combinazioni in situazione SLU P/T, o, se peggiore, data dalla combinazione sismica, effetto trasversale totale;
- 10) quantità, in kilogrammi al metro, di acciaio per c.a.p. nel prefabbricato;
- 11) quantità, in kilogrammi al metro, di acciaio per armatura lenta tipo B450C nel prefabbricato;
- 12) Indice di utilizzo della trave è un parametro calcolato facendo il rapporto dell'escursione totale di tensione longitudinale nelle fibre critiche nella vita del prefabbricato e dell'escursione massima compatibile con le tensioni limite nelle varie fasi. Quando questo indice vale 1.00 il profilo del prefabbricato è al suo utilizzo ottimale; valori minori di 1.00 indicano un sottoutilizzo, valori maggiori indicano che la soluzione può essere inadeguata;
- 13) Indice di utilizzo della soletta è dato dal rapporto tra la tensione longitudinale di compressione al lembo superiore in esercizio (situazione SLE rara) e la tensione limite del calcestruzzo.

I parametri 1-9 sono risultati diretti del calcolo del modulo SIGMAC, per cui si rimanda ai test cases di tale modulo per la verifica di correttezza.

Scopo di questo insieme di test è di verificare la correttezza dei parametri 12-13 e 10-11.

STUDIO CORONA



1 -TC PREDIM 1 - Ponte con travi H40/70 accostate

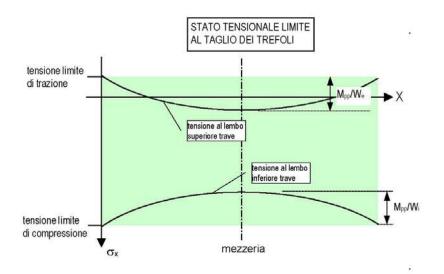
Luce tra gli appoggi in direzione X = 1000 [cm] Lunghezza travi = 1060 Larghezza carreggiata = 1050 [cm] Carichi di 1ª categoria stradale. Trave prefabbricata cls C45/55 Getto in opera cls C28/35 Acciaio per c.a.p. f_{pyk} = 1860 [N/mm²]

1.1 Parametri di confronto

- C1. Correttezza applicazione formule teoriche
- C2. Atteso effetto globale

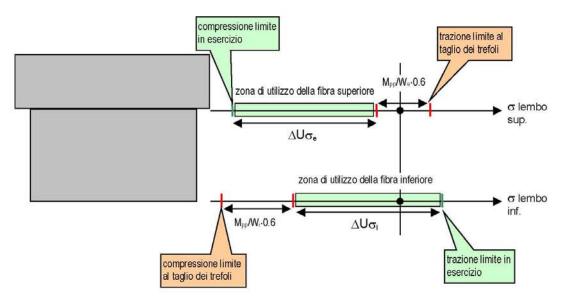
Il criterio di verifica C1 tende a garantire la correttezza dell'implementazione del percorso teorico di predimensionamento, mentre il criterio C2 dà una validazione del percorso teorico stesso e dimostra l'affidabilità della funzione del programma nell'attività di predimensionamento degli impalcati.

1.1.1 Formule teoriche


1.1.1.1 Parametri 12 e 13 - indici di utilizzo delle sezioni di calcestruzzo

L'indice di utilizzo della trave è dato dal più alto rapporto tra l'escursione di tensione longitudinale massima che si verifica nella vita della struttura in situazione Rara nelle fibre delle sezioni e l'escursione massima consentita dalla normativa in termini di tensioni limite.

Il calcolo dell'indice più restrittivo fra tutti quelli individuabili nelle travi viene eseguito nella mezzeria della trave più sollecitata. Nel caso di travi prefabbricate a sezione per lo più costante sulla lunghezza e nel caso di precompressione a fili aderenti il raggiungimento delle tensioni limite nella sezione di mezzeria non rappresenta la situazione più restrittiva, come si può vedere dalla figura seguente, in cui M_{pp} rappresenta il momento flettente in mezzeria della trave dovuto al peso proprio:


TC SIGMAC/PREDIM

Per limitare le tensioni alle testate della trave si ricorre usualmente all'inguainamento di alcuni trefoli vicino alle estremità, e quindi all'annullamento del loro effetto in quelle sezioni.

Tenendo conto della situazione appena illustrata, le zone tensionali di utilizzo delle fibre della sezione di mezzeria vengono scelte come illustrato nella figura seguente

Parametri assunti per default:

rafament assum per default.	97
R _{ckj} resistenza cls al taglio dei trefoli	0.73·R _{ck28}
tesatura iniziale acciaio da precompressione	14250 [daN/cm²]
tensione di lavoro armatura lenta (parametro 11)	2600 [daN/cm²]
- NA-40	

Calcestruzzo trave prefabbricata

Resistenza caratteristica cilindrica a compressione:

a tempo infinito	fck	= 0.83·R _{ck}	= 0.83.550 = 456.50	daN/cm ²
al taglio dei trefoli	fckq	= 0.83·R _{cki}	= 0.83 401.5 = 333.24	daN/cm ²

tensioni limite di compressione:

a tempo infinito	σ_{\circ}	< 0.6·f _{ck} (NTC2008-4.1.2.2.5.1)	≤ 273.90	[daN/cm²]	(per comb. caratteristica rara)
al taglio dei trefoli	σ_{α}	< 0.7·f _{ckj} (NTC2008-4.1.8.1.4)	≤ 233.27	[daN/cm²]	

I valori indicati nei prospetti precedenti vanno presi con segno negativo, cioè di compressione.

Il valore tra parentesi graffe rappresenta il frattile 5% della resistenza media a trazione assiale.

Il moltiplicatore 1.2 trasforma il valore precedente in resistenza a trazione per flessione.

Calcestruzzo del getto in opera

fate	= 0.83-Rate	= 0.83·350 = 290.50	daN/cm²
tck	- 0.00 INCK	- 0.00 000 - 200.00	uaiv/ciii

tensioni limite di compressione:

σ_{\circ}	< 0.6 fck (NTC2008-4.1.2.2.5.1)	≤ 174.30	[daN/cm²]	(per comb. caratteristica rara)
------------------	---------------------------------	----------	-----------	---------------------------------

Viene assunto un coefficiente di omogeneizzazione dei 2 calcestruzzi uguale a 1.0

Calcolo zone di utilizzo delle fibre

Per comodità di calcolo manuale la sezione della trave prefabbricata in prima fase viene considerata senza smussi agli spigoli inferiori, e quindi un rettangolo 70x30 cm.

I momenti positivi tendono le fibre inferiori della trave.

$$M_{pp} = 1/8 \cdot (70 \cdot 30 \cdot 0.00245) \cdot 1000^2 = 643125 \text{ [daN·cm]}$$

 $W_e = -10500 \text{ [cm}^3\text{]}$
 $W_i = 10500$

Zona tensionale di utilizzo della fibra superiore:

$$\begin{split} &\sigma_{\text{minima}} = -273.90 \\ &\sigma_{\text{massima}} = 26.10 + \text{M}_{\text{pp}} / \text{W}_{\text{e}} \cdot 0.6 = -10.65 \\ &\Delta U \sigma_{\text{e}} = 263.25 \text{ [daN/cm}^2\text{]} \end{split}$$

Zona tensionale di utilizzo della fibra inferiore:

$$\begin{split} &\sigma_{\text{minima}} = -233.27 + \text{ M}_{\text{pp}} / \text{ W}_{\text{i}} \cdot 0.6 = -196.52 \\ &\sigma_{\text{massima}} = 32.19 \\ &\Delta U \sigma_{\text{j}} = 228.71 \end{split}$$

Calcolo range di tensioni utilizzato

Momento di 1ª fase (escluso peso proprio):

 $M_1=1/8 \cdot (93.24.0.00245) \cdot 1000^2 = 683550 \text{ [daN·cm]}$

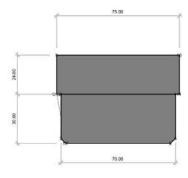
Delta tensionale ai lembi sezione trave:

$$\Delta \sigma_{e,1} = M_1 / W_e = -65.10$$

 $\Delta \sigma_{i,1} = M_1 / W_i = 65.10$

Momento di 2ª fase (permanenti + carichi da traffico):

M₂=3375166 [daN-cm]


La procedura di predimensionamento valuta lo stato tensionale su una sezione trave+soletta "media", cioè ripartendo la soletta equamente tra le travi. Nel caso in esame la larghezza soletta collaborante è pari a 10.50/14 m.

Area= 3891.00 Coordinate baricentro:
$$x=0.00$$
 y= 27.52 $J_{xx}=944148.20$ $J_{yy}=1690842.00$

 $W_{s,2} = -35655$ lembo sup. soletta lembo sup. trave $W_{e,2} = -380704$ $W_{i,2} = 34308$ lembo inf. trave

$$\Delta \sigma_{s,2} = M_2 / W_{s,2} = -94.66$$

 $\Delta \sigma_{e,2} = M_2 / W_{e,2} = -8.87$
 $\Delta \sigma_{i,2} = M_2 / W_{i,2} = 98.38$

Calcolo precompressione necessaria

Il calcolo della precompressione minima necessaria è teso a cercare la minima armatura disposta con la massima eccentricità della risultante di precompressione, che comunque dovrà restare al di sopra di una certa distanza dal lembo inferiore della sezione.

tensione massima al taglio trefoli al lembo sup. :

$$\sigma_e = 26.10 + M_{pp} / W_e \cdot 0.6 = -10.65$$

tensione massima al taglio trefoli al lembo inf. per arrivare alla decompressione in esercizio:

$$\sigma_i = 0 - 65.10 - 98.38 = -163.48$$

$$\boldsymbol{N}_{p} = \frac{\boldsymbol{\sigma}_{i} \cdot \boldsymbol{W}_{i} - \boldsymbol{\sigma}_{e} \cdot \boldsymbol{W}_{e}}{\boldsymbol{W}_{i} - \boldsymbol{W}_{e}} \cdot \boldsymbol{A}_{trave}$$

$$M_p = \frac{(\sigma_e - \sigma_i) \cdot W_e \cdot W_i}{W_i - W_e} - M_{pptrave}$$

da cui:

$$N_p = -87.06 \cdot (70.30) = -182836 \text{ [daN]}$$

 $M_p = -802357 - 643125 = -1445482 \text{ [daN·cm]}$

La eccentricità della precompressione risulta:

$$e_p = M_p/N_p = -7.91$$
 [cm] dal baricentro sezione

e la quota del cavo risultante è:

$$y_p = 15-7.91 = 7.09$$
 [cm] dal fondo sezione

che è posizionato molto in basso, vicino al lembo inferiore della sezione. La procedura prevede in questo caso una correzione, imponendo un limite inferiore compatibile con il necessario copriferro delle armature, l'interferro dei trefoli di precompressione.

Si riposiziona la risultante di precompressione a 10 cm dal lembo inferiore della sezione:

$$N'_{p} = N_{p} \left\{ 1 + \frac{(y_{p \min} - y_{p}) \cdot A_{trave}}{W_{i} - (y_{p \min} - y_{g}) \cdot A_{trave}} \right\}$$

$$N'_p = -182836 \cdot [1 + (10-7.09) \cdot 2100 / \{10500 - (10-15) \cdot 2100\}] = -182836 \cdot 1.291 = -236041 [daN]$$

 $M'_p = -236041 \cdot (15-10) = -1180206 [daN \cdot cm]$

valori che diventano perciò i nuovi N_p, M_p con y_p=10.0 nuova posizione della risultante.

Cadute di precompressione

In questo calcolo di test si assume un valore globale delle cadute di tensione pari al 20% della tensione di tesatura iniziale, includendo in questo l'accorciamento elastico, rilassamento acciaio, ritiro e viscosità del calcestruzzo. Si assume inoltre che tali cadute avvengano tutte in prima fase, sulla sola trave. In tale ipotesi si ha:

$$\Delta N_p = -N_p \cdot 0.2 = 47208 \text{ [daN]}$$

 $\Delta M_p = -M_p \cdot 0.2 = 236041 \text{ [daN·cm]}$

e le variazioni di tensione ai lembi valgono:

$$\Delta \sigma_e = \Delta N_p / A_{trave} + \Delta M_p / W_e = 0.00$$

 $\Delta \sigma_i = \Delta N_p / A_{trave} + \Delta M_p / W_i = 44.96$

Escursione totale tensioni ai lembi:

 $\Delta \sigma_{s,tot} = -94.66$

 $\Delta \sigma_{e,tot} = -65.10 - 8.87 - 0.00 = -73.97$ $\Delta \sigma_{i,tot} = 65.10 + 98.38 + 44.96 = 208.44$

Indice utilizzo trave:

U_e= 73.97 / 263.25 = 0.281 **U**_i= 208.44 / 228.71 = 0.911 <---- valore T1 di confronto vedi par. 1.2.1

Indice utilizzo soletta:

U_s= 94.66 / 174.30 = 0.543 <---- valore T2 di confronto vedi par. 1.2.1

1.1.1.2 Parametro 10 - quantità di acciaio da precompressione

In base alle considerazioni del paragrafo precedente la quantità di acciaio da precompressione può essere valutata a partire dal valore di N_p ivi calcolato, dalla tensione di tesatura dell'acciaio assunta pari a 14250 [daN/cm²], e dalle cadute di tensione, valutate complessivamente pari al 20% di tale valore. Con queste assunzioni, peraltro bene aderenti alle situazioni correnti, l'area necessaria è:

 $A_p = 236041/(14250*0.80) = 20.71 \text{ [cm}^2] < ---- valore T3a di confronto vedi par. 1.2.1 \\ y_p = 10.0 \text{ [cm]} dal fondo trave < ---- valore T3b di confronto vedi par. 1.2.1$

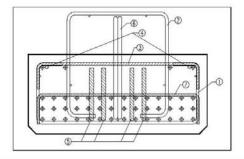
e, in termini di peso di materiale:

Per tenere conto di sfrido ed un margine di tolleranza (15% in totale) si ha:

1.1.1.3 Parametro 11 - quantità di acciaio lento nella trave prefabbricata

Il programma non ha dati sufficienti per computare correttamente l'armatura lenta ed esegue perciò una valutazione approssimativa in base al valore massimo del taglio all'appoggio.

La disposizione delle armature a taglio, di frettaggio e lente in genere è molto variabile a seconda delle scelte e considerazioni di ogni singolo progettista. In questo caso vengono utilizzati i criteri ed i calcoli di un prefabbricatore. L'armatura lenta viene dimensionata per contenere gli sforzi di scorrimento all'interno della trave e tra trave e soletta tramite staffe verticali, armatura di frettaggio nelle testate, armatura longitudinale inferiore all'appoggio che consente di realizzare il mecanismo a traliccio in zona non precompressa, armatura di sollevamento.


Il dimensionamento delle staffe risulta il minimo da normativa in quanto la disposizione delle travi in accostamento l'un l'altra riduce molto la sollecitazione tagliante e torcente.

Nel seguito viene riportato un computo reale di armatura che include staffe secondarie, armatura longitudinale di confezione, ganci di sollevamento ecc.

TC SIGMAC/PREDIM

posizione	tipo	diametro	sviluppo	testata sx	QUANTITA' testata dx	totale	passo	peso
1	rete	8	1.30	-	-	42	10/30	21.6
	rete	6	10.60	-	15	3		7.1
2	rete	12	1.34 39	2	-2	48	10/20	57.1
	rete	8	10.60	- 5	1.5	4	- 5	16.7
3	staffa	8	0.84	-	-	42	10/30	13.9
4	correnti	12	10.54	-	-	2	-	18.7
5	aggiuntiva	16	1.80	2	2	4		11.4
6	sollevamento	22	1.50	2	2	4	s=368	17.9
7	frettaggio	10	0.84	3	3	6	10	3.1
	sussidiaria	16	0.00	-	72	0		0.0
	staffa-agg.	12	1.34	0	0	0	-	0.0

La quantità totale di acciaio lento indicata nella tabella di computo è di 168 [kg] pari a 15.80 [kg/m] ----valore T5 di confronto vedi par. 1.2.1.

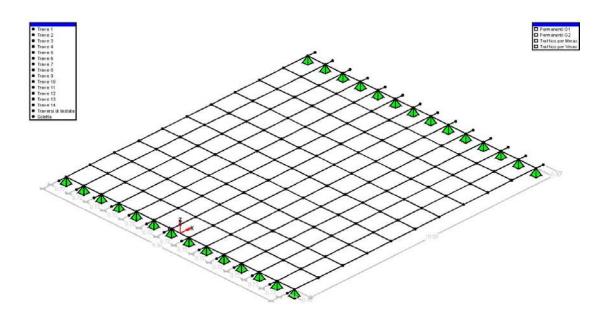
1.1.2 Effetto globale

Per effetto globale si intende in questo ambito la verifica completa dell'impalcato, condotta con altri strumenti alternativi alla procedura PREDIM in esame, che deve portare a risultati congruenti con quelli della procedura stessa.

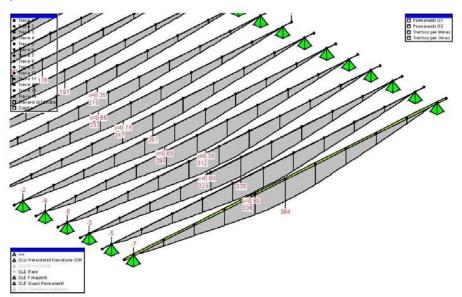
Poichè la procedura PREDIM utilizza la procedura SIGMAC70, cioè l'algoritmo di calcolo delle sollecitazioni sull'impalcato con il metodo di Massonnet del modulo SIGMAC, è necessario ricorrere ad un altro solutore per determinare le sollecitazioni. Viene scelto il modulo GRAT di ENG, ed il modulo TCAP per condurre la verifica tensionale.

Il modello di calcolo della struttura è costituito da un graticcio di aste sollecitate da carichi agenti in direzione verticale; le travi principali sono costituite da una sequenza di aste allineate disposte tra due appoggi, mentre la soletta che le lega insieme è stata discretizzata in aste che ne concentrano l'effetto di ripartizione ogni metro. Ne risulta un modello con 311 aste e 182 nodi.

La luce di calcolo è di 10 [m].


MANDANTI:

ING RENATO ECOPLAN

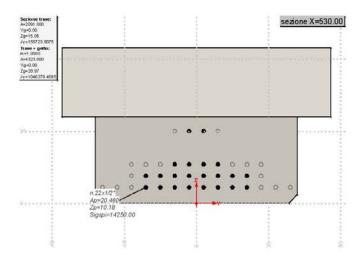


I carichi vengono applicati alle aste che rappresentano le travi principali, rispettandone la distanza dagli assi degli appoggi sulle spalle.

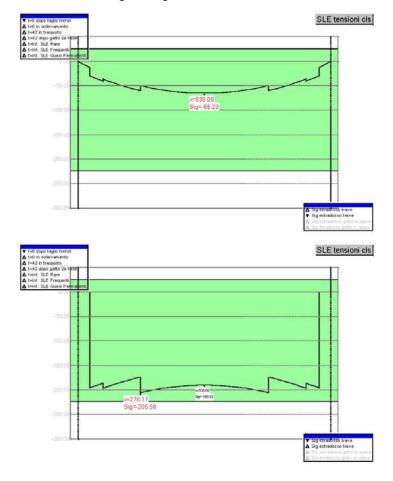
Il calcolo porta ad una ripartizione dei carichi permanenti e da traffico che evidenzia una maggiore sollecitazione sulla trave di bordo. Si noti che questo modello mette in conto la maggiore rigidezza flessionale della trave di bordo rispetto a quelle interne data dal fatto che la soletta collaborante presenta uno sbalzo. Questa configurazione fa sì che l'elemento più rigido venga più sollecitato a vantaggio delle travi più vicine.

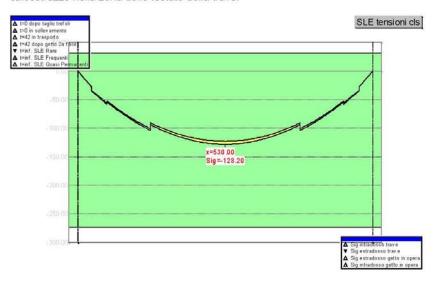
Dovendo eseguire un calcolo il cui fine è quello di valutare la complessiva ottimizzazione degli elementi ed operare la giusta scelta in fase di dimensionamento, si dovrà eseguire la verifica di resistenza della trave di bordo che è quella che impone la scelta più restrittiva.

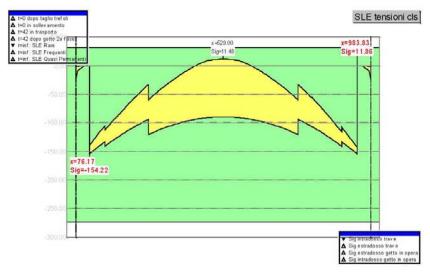
Viene disposta un'armatura di precompressione in modo da avere soddisfatta la verifica tensionale e a rottura delle sezioni.


TC SIGMAC/PREDIM

MANDANTI:






Si inseriscono 22 trefoli da 1/2" con baricentro posizionato a 10.18 cm dal bordo inferiore della trave. La verifica viene riassunta nei grafici seguenti.

La neutralizzazione di alcuni trefoli in testata ha permesso di non superare la compressione limite del calcestruzzo nella zona delle testate della trave.

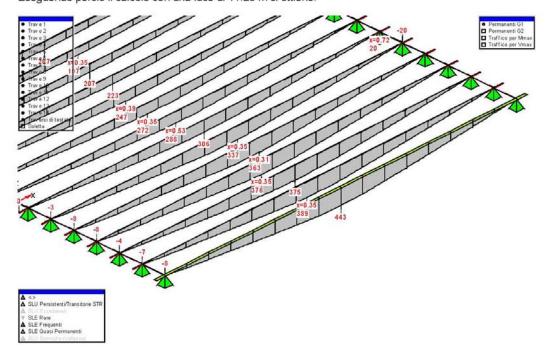
L'analisi alternativa qui esposta ha espresso un dimensionamento delle armature di precompressione che ha portato ad uno stato tensionale ottimale sia in fase di rilascio della precompressione che in fase di esercizio. Una serie di analisi condotte aumentando la luce ha portato a considerare 10.80 [m] la luce limite per questo tipo di struttura.

1.2 Risultati della procedura

1.2.1 Formule teoriche

La procedura di predimensionamento applicata all'impalcato rappresentato in 1.1.1 produce il seguente output:

M _{1/2 2} ^a fase SLU	6373342.03	trave 1
M _{L/2,2} ^a fase SLU V _{x=0,2} ^a fase SLU	26389.07	trave 1 (T _{corr} =127015.95)

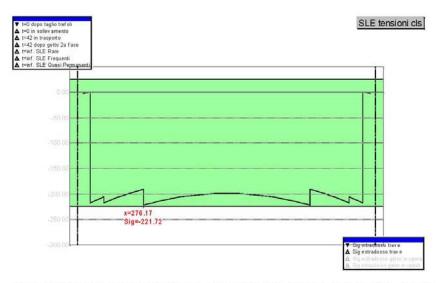

M _{L/2,1} ⁸ fase SLE rara	1325269.69	trave 1
M _{L/2,2} fase SLE rara	3439539.56	trave 3
F _{max} (gruppo 1)	0.9114	(1/1097·L)
R _{min} verticale trave	8699.34	trave 8
R _{max} verticale trave	27216.64	trave 1
R _{max} long, totale	52245.00	Andrew Antonion
R _{max} trasv. spalla	0.00	
Acciaio per c.a.p.	18.38 [kg/m] < valore T4 di confronto vedi par. 1.1.1.2	Ap=20.361 Yp=10.00 <valori T3a,T3b</valori
Acciaio B450C	13.69 [kg/m] < valore T5 di confronto vedi par. 1.1.1.3	
indice utilizzo trave	0.91< valore T1 di confronto vedi par. 1.1.1.1	
indice utilizzo soletta	0.55< valore T2 di confronto vedi par. 1.1.1.1	

1.2.2 Effetto globale

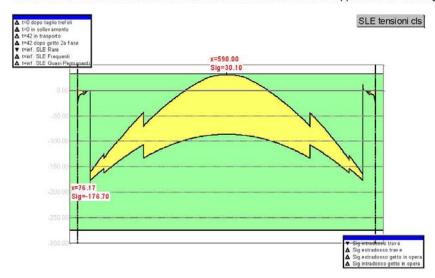
Come riportato nel paragrafo precedente la procedura indica un indice utilizzo del prefabbricato pari a 0.91, valore abbastanza prossimo a 1.0, che rappresenta la soluzione ottima per il prefabbricato.

Per valutare l'efficacia della procedura di predimensionamento è necessario individuare il punto di superamento del limite della soluzione adottata. A questo scopo viene condotto il calcolo alternativo esposto in 1.1.2 aumentando la luce di calcolo.

Eseguendo perciò il calcolo con una luce di 11.20 m si ottiene:



Conducendo l'analisi fino alla verifica delle sezioni si converge ad una disposizione di armatura da precompressione che è uguale per quantità di trefoli a quella con luce di calcolo di 10 m ma con risultante più bassa, quindi con maggiore eccentricità sulla sezione della trave. L'andamento delle tensioni longitudinali al lembo inferiore della trave al taglio dei trefoli risulta "al limite":


TC SIGMAC/PREDIM 12

MANDANTI:

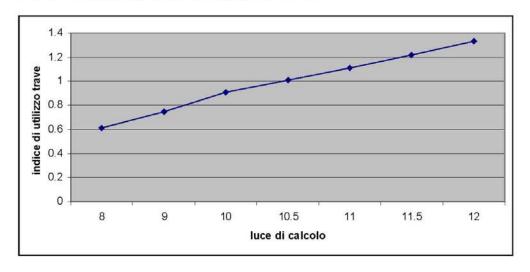
mentre l'andamento della tensione nella stessa fibra in esercizio è rappresentata dal diagramma seguente:

che pure rappresenta una situazione "al limite".

Si può concludere che la luce di calcolo di 11.20 m è una soluzione "al limite" per questa soluzione strutturale, almeno per ciò che riguarda lo stato tensionale dei prefabbricati. Peraltro c'è da notare che anche le deformazioni sotto l'azione dei carichi da traffico sono forse eccessive, risultando 1.26 cm (1/888 della luce).

La procedura in esame, nel caso di luce di calcolo pari a 11.20 m, evidenzia i seguenti dati:

M _{1/2.2} gase SLU	7637005.28	trave 1
V x=0 2 fasé SLU	28077.13	trave 1 (Tcom=124905.10)
M L/2.18 fase SLE rara	1662418.30	trave 1
M L/2.2 fase SLE rara	4084451.12	trave 3
F _{max} (gruppo 1)	1.3419	(1/835-L)
R _{min} verticale trave	9655.38	trave 8
R _{max} verticale trave	28929.07	trave 1
R _{max} long, totale	52682.40	



0.00 R_{max} trasv. spalla Acciaio per c.a.p. Acciaio B450C 22.43 [kg/m] 14.03 [kg/m] indice utilizzo trave 1.15 0.66 indice utilizzo soletta

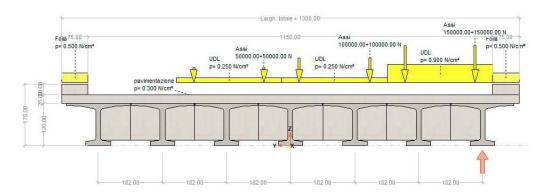
Ap=24.846 Yp=10.00

(risultati in [daN,cm])

con un indice di utilizzo della trave pari a 1.15: trave eccessivamente sfruttata. Per avere un indice pari a 1.00 la luce deve essere portata a 10.45 m.

Il confronto tra il risultato ottenuto in 1.1.2 e quello ottenuto in questo paragrafo si ottiene un rapporto delle luci pari a:

1080/1045 = 1.033


ovvero la procedura PREDIM del modulo SIGMAC calcola un limite di utilizzo della struttura più cautelativamente (3%) del metodo alternativo.

2 -TC PREDIM 2 - impalcato con 7 travi a T - L=20m

Luce tra gli appoggi in direzione X=2000 [cm] Lunghezza travi = 2090 [cm] Altezza travi prefabbricate = 120 [cm] Larghezza carreggiata = 1150 [cm] Carichi di 1 $^{\circ}$ categoria stradale. Trave prefabbricata cls C45/55 Getto in opera cls C28/35 Acciaio per c.a.p. $f_{pyk}=1860$ [N/mm 2] n. 1 traverso in mezzeria 25x105 [cm]

2.1 Parametri di confronto

C3. Correttezza applicazione formule teoriche

C4. Atteso effetto globale

Il criterio di verifica C1 tende a garantire la correttezza dell'implementazione del percorso teorico di predimensionamento, mentre il criterio C2 dà una validazione del percorso teorico stesso e dimostra l'affidabilità della funzione del programma nell'attività di predimensionamento degli impalcati.

2.1.1 Formule teoriche

2.1.1.1 Parametri 12 e 13 - indici di utilizzo

Tutti i dati dei materiali e le ipotesi fatte al paragrafo 1.1.1 del test precedente vengono mantenuti in questo test.

Calcolo zone di utilizzo delle fibre

dati trave prefabbricata – sezione in campata:

Xg	0.00	cm
Yg	71.84	cm
Area	4068.00	cm ²
Jx	8473239.51	cm⁴
We	-175939	cm ³
Wi	117946	cm ³

I momenti positivi tendono le fibre inferiori della trave.

Si trascurano i tratti ringrossati in testata:

$$M_{pp} = 1/8 \cdot (4068 \cdot 0.00245) \cdot 2000^2 = 4983300 \text{ [daN-cm]}$$

Zona tensionale di utilizzo della fibra superiore (pedice "e"):

$$\sigma_{\text{minima}} = -273.90$$

$$\sigma_{\text{massima}} = 26.10 + M_{pp} / W_e \cdot 0.6 = 9.11$$

$$\Delta U\sigma_e = 283.00 [daN/cm^2]$$

Zona tensionale di utilizzo della fibra inferiore (pedice "i"):

$$\sigma_{\text{minima}} = -233.27 + M_{pp} / W_i - 0.6 = -207.91$$

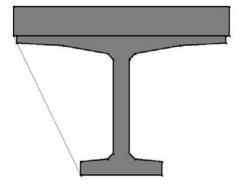
$$\sigma_{\text{massima}} = 32.19$$

$$\Delta U \sigma_i = 240.11$$

Calcolo range di tensioni utilizzato

Momento di 1ª fase (soletta e traverso in campata, escluso peso proprio):

$$M_1=1/8 \cdot (195 \cdot 25 \cdot 0.00245) \cdot 2000^2 + 927 \cdot 2000/4 = 6435375 [daN \cdot cm]$$


Delta tensionale ai lembi sezione trave:

$$\Delta \sigma_{e,1} = M_1 / W_e = -36.58$$

$$\Delta \sigma_{i,1} = M_1 / W_i = 54.56$$

Momento di 2ª fase (permanenti + carichi da traffico):

Ai fini della determinazione della sezione di verifica si assume, come fatto dalla procedura di predimensionamento, che la larghezza di soletta collaborante sia pari alla larghezza totale divisa per il numero delle travi B=1300/7=185.7 [cm].

Unità di misura: [L]=cm [F]=N

Sezione di calcestruzzo:

Area= 8710.50

X baricentro= 0.00

Y baricentro= 104.17

J xx= 1.669196E7

J yy= 1.742765E7

$$W_{s,2} = -408816 \text{ [cm}^3\text{]}$$

 $W_{e,2} = -1054451 \text{ [cm}^3\text{]}$
 $W_{i,2} = 160238 \text{ [cm}^3\text{]}$

$$W_{i,2} = 160238 \text{ [cm}^3\text{]}$$

lembo sup. soletta $\Delta \sigma_{s,2} = M_2/W_{s,2} = -58.59$ $\Delta \sigma_{e,2} = M_2 / W_{e,2} = -22.71$ lembo sup. trave lembo inf. trave $\Delta \sigma_{i,2} = M_2 / W_{i,2} = 149.47$

Calcolo precompressione necessaria

Il calcolo della precompressione minima necessaria è teso a cercare la minima armatura disposta con la massima eccentricità della risultante di precompressione, che comunque dovrà restare al di sopra di una certa distanza dal lembo inferiore della sezione.

TC SIGMAC/PREDIM

66

tensione massima (verso la trazione) al taglio trefoli al lembo sup. :

$$\sigma_e = 26.10 + M_{pp} / W_e \cdot 0.6 = 9.11$$

tensione massima al taglio trefoli al lembo inf. per arrivare alla decompressione in esercizio:

$$\sigma_i = 0.-54.56 - 149.47 = -204.03$$

$$N_{p} = \frac{\sigma_{i} \cdot W_{i} - \sigma_{e} \cdot W_{e}}{W_{i} - W_{e}} \cdot A_{trave} \qquad M_{p} = \frac{(\sigma_{e} - \sigma_{i}) \cdot W_{e} \cdot W_{i}}{W_{i} - W_{e}} - M_{pptrave}$$

da cui:

$$N_p$$
= -76.43·4068 = -310936 [daN]
 M_p = -15049878-4983300 = -20033178 [daN·cm]

La eccentricità della precompressione risulta:

$$e_p = M_p/N_p = 64.43$$
 [cm] dal baricentro sezione

e la quota del cavo risultante è:

$$y_p = 71.84-64.43 = 7.41$$
 [cm] dal fondo sezione

che è posizionato molto in basso, vicino al lembo inferiore della sezione. La procedura prevede in questo caso una correzione, imponendo un limite inferiore compatibile con il necessario copriferro delle armature, l'interferro dei trefoli di precompressione.

Si riposiziona la risultante di precompressione a 10 cm dal lembo inferiore della sezione:

$$N'_{p} = N_{p} \left\{ 1 + \frac{(y_{p \min} - y_{p}) \cdot A_{trave}}{W_{i} - (y_{p \min} - y_{g}) \cdot A_{trave}} \right\}$$

$$N'_p$$
= -319797 [daN]
 M'_p = -319797·(71.84-10) = -19776252 [daN·cm]

valori che diventano perciò i nuovi N_p, M_p con y_p=10.0 nuova posizione della risultante.

Cadute di precompressione

In questo calcolo di test si assume un valore globale delle cadute di tensione pari al 20% della tensione di tesatura iniziale, includendo in questo l'accorciamento elastico, rilassamento acciaio, ritiro e viscosità del calcestruzzo. Si assume inoltre che tali cadute avvengano tutte in prima fase, sulla sola trave. In tale ipotesi si ha:

$$\Delta N_p = -N_p \cdot 0.2 = 63959 \text{ [daN]}$$

 $\Delta M_p = -M_p \cdot 0.2 = 3955250 \text{ [daN·cm]}$

e le variazioni di tensione ai lembi valgono:

$$\Delta \sigma_e = \Delta N_p / A_{trave} + \Delta M_p / W_e = -6.76$$

 $\Delta \sigma_i = \Delta N_p / A_{trave} + \Delta M_p / W_i = 49.26$

Escursione totale tensioni ai lembi:

$$\Delta \sigma_{s,tot} = -58.59$$

 $\Delta \sigma_{e,tot} = -36.58$ -22.71 -6.76 = -66.05
 $\Delta \sigma_{i,tot} = 54.56 + 149.47 + 49.26 = 253.29$

Indice utilizzo trave:

Indice utilizzo soletta:

TC SIGMAC/PREDIM

U_s= 58.59 / 174.30 = 0.336 <---- valore T2 di confronto vedi par. 2.2.1

STUDIO CORONA

2.1.1.2 Parametro 10 - quantità di acciaio da precompressione

In base alle considerazioni del paragrafo precedente la quantità di acciaio da precompressione può essere valutata a partire dal valore di $N_{\rm p}$ ivi calcolato, dalla tensione di tesatura dell'acciaio assunta pari a 14250 [daN/cm²], e dalle cadute di tensione, valutate complessivamente pari al 20% di tale valore. Con queste assunzioni, peraltro bene aderenti alle situazioni correnti, l'area necessaria è:

$$A_p = 319797/(14250*0.80) = 28.05 \text{ [cm}^2] < ---- valore T3a di confronto vedi par. 2.2.1 yp=10.0 [cm] dal fondo trave < ---- valore T3b di confronto vedi par. 2.2.1$$

e, in termini di peso di materiale:

Per tenere conto del fatto che l'area di acciaio da precompressione calcolata dovrà essere approssimata per eccesso in fase esecutiva rispettando simmetria di disposizione dei trefoli sulla sezione, per tenere conto di sfrido ed un margine di tolleranza (15% in totale) si ha:

2.1.1.3 Parametro 11 - quantità di acciaio lento

Qui di seguito è riportata una possibile distinta armature della trave in esame:

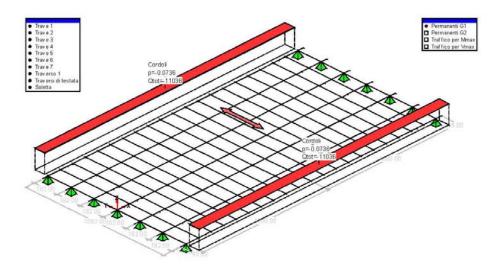
posizione	tipo	diametro	sviluppo	testata sx	QUANTITA' testata dx	totale	passo	peso
	staffa ali sup.	8	3.80			76	10/30	114.1
	long.	6	20.90	-		6	8	27.8
	staffa bulbo	8	1.42			76		42.6
	long.	6	20.90			6		27.8
	staffa princ.	12	3.00 40		(E)	123	10/20	327.7
	long.	8	20.90	- 3	19	10	-	82.6
	staffa	8	0.00	_	-	76	10/30	0.0
	correnti	12	21.40	-	-	4	-	76.0
	aggiuntiva	16	2.40	4	4	8	-	30.3
	sollevamento	22	1.50	3	3	6	s=934	26.9
	frettaggio	10	1.60	6	6	12	10	11.8
	sussidiaria	16	0.00	-	1-	0		0.0
	staffa-agg.	8	1.36	0	0	0	-	0.0

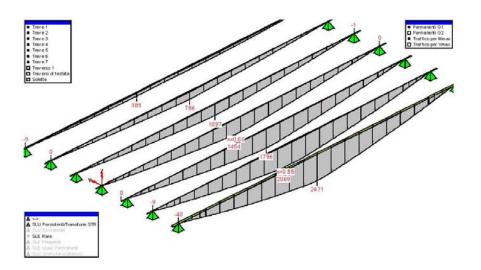
La quantità totale di acciaio lento è di 768 [kg], pari a 36.73 [kg/m] <---- valore T5 di confronto vedi par. 2.2.1.

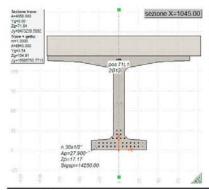
2.1.2 Effetto globale

La valutazione del grado di ottimizzazione del dimensionamento di questo impalcato che si ottiene utilizzando il profilo TH120 viene eseguita conducendo un'analisi completa tramite un modello a graticcio di travi e postprocessore per verifica elementi in c.a.p.

Vengono schematizzate le travi principali, i traversi di testata ed il traverso in campata. La soletta viene suddivisa in parti di 1 metro di lunghezza.

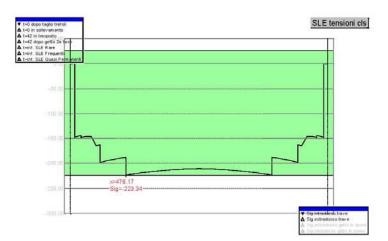

Alle aste che rappresentano le travi principali si è data una rigidezza torsionale molto bassa: non è possibile infatti assegnare rigidezza torsionale nulla poichè i carichi distribuiti che vengono assegnati automaticamente alle aste dal programma generano carichi distribuiti verticali e torsionali applicati alle aste. Questi ultimi portano a spostamenti infiniti se la rigidezza torsionale risulta nulla.

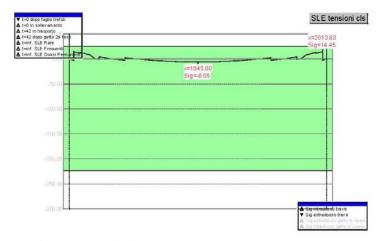

TC SIGMAC/PREDIM 18


MANDANTI:

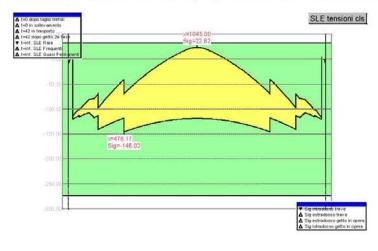
I carichi da traffico vengono disposti in due modi: per cercare il momento massimo in mezzeria della trave di bordo o per cercare il massimo taglio all'appoggio sulla stessa trave.

Sezione X=1045.00] Avvalendosi del postprocessore TCAP si procede alla verifica della trave di bordo.


Vengono disposti nella sezione 30 trefoli da 1/2" con baricentro a 17.17 cm dal lembo inferiore. Questo corrisponde ad una precompressione che porta al seguente stato tensionale al taglio dei trefoli:

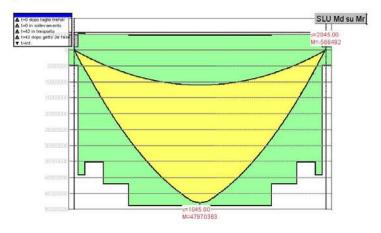

TC SIGMAC/PREDIM

19



I grafici delle tensioni sul calcestruzzo ai lembi della sezione evidenziano una precompressione al limite, pur restando all'interno dei limiti consentiti dalla normativa. Non è possile aumentare ulteriormente il grado di precompressione.

In esercizio, nella combinazione Rara più gravosa lo stato tensionale al lembo inferiore lungo la trave risulta:


TC SIGMAC/PREDIM 20

MANDANTI:

e anche per quanto riguarda la verifica a rottura delle sezioni (combinazione SLU Persistente/Transitoria) il grafico relativo mostra una verifica soddisfatta ma con valore del coefficiente di sicurezza alla rottura molto prossimo a 1:

2.2 Risultati della procedura

2.2.1 Formule teoriche

La procedura di predimensionamento applicata all'impalcato rappresentato in 2.1.1 produce il seguente output:

M _{L/2,2} fase SLU	48149103.75	trave 1
V _{x=0,2} fase SLU	97321.21	trave 1 (Tcorr.=0.00)
M L/2,1 a fase SLE rara	11464264.18	trave 1
M L/2.2 fase SLE rara	23942854.15	trave 1
F _{max} (gruppo 1)	1.3332	(1/1500·L)
R _{min} verticale trave	41272.83	trave 4
R _{max} verticale trave	100688.33	trave 1
R _{max} long. totale	55890.00	
R _{max} trasv. spalla	0.00	
Acciaio per c.a.p.	25.16 [kg/m] < valore T4 di confronto vedi par. 2.1.1.2	Ap=27.869 Yp=10.00< valori T3a e T3b di confronto vedi par. 2.1.1.2
Acciaio B450C	43.53 [kg/m] < valore T5 di confronto vedi par. 2.1.1.3	
indice utilizzo trave	1.05< valore T1 di confronto vedi par. 2.1.1.1	
indice utilizzo soletta	0.34< valore T2 di confronto vedi par. 2.1.1.1	

I valori trovati per T1 e T2 dimostrano la correttezza dell'applicazione delle formule in questo caso, risultando identici a quelli calcolati "a mano" in 2.1.1.1

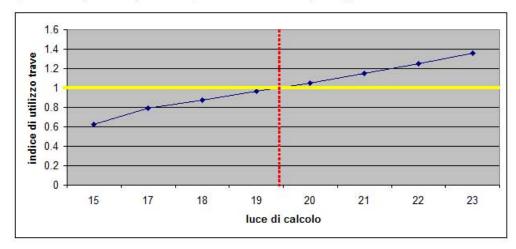
Il valore T4 si discosta del +1.3% dal valore calcolato con altra procedura in 2.1.1.2

Analogamente a T4 si riscontra il valore T3a. T3b evidenzia una risultante di precompressione più bassa nel calcolo relativo alla procedura in esame.

Il valore T5 si discosta del +18.5% dal valore calcolato con altra procedura in 2.1.1.3

2.2.2 Effetto globale

Eseguendo più analisi variando unicamente la luce di calcolo e il dimensionamento della precompressione è possibile indagare sulla luce di calcolo "limite" per questa struttura. Poichè il calcolo di verifica dipende da



molteplici parametri il limite cercato non è rappresentato da un punto ben preciso, ma può variare a seconda della sensibilità del progettista.

Nel caso in esame la luce di 19 m è stata individuata come il limite oltre al quale le tensioni entrano in un campo non accettabile.

Questa conclusione risulta in buon accordo con gli indici di utilizzo del profilo della trave, che rappresenta in questo caso il parametro più restrittivo, come mostrato dalla figura seguente:

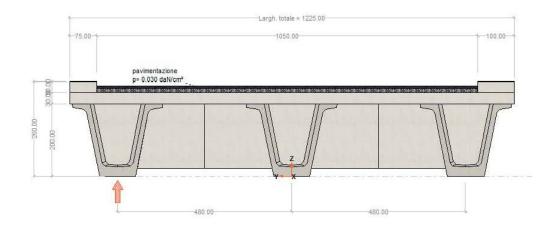
Il confronto tra il risultato ottenuto in 2.1.2 e quello ottenuto in questo paragrafo si ottiene un rapporto delle luci pari a:

2000/1940 = 1.031

ovvero la procedura PREDIM del modulo SIGMAC calcola un limite di utilizzo della struttura più cautelativamente (3%) del metodo alternativo.

MANDANTI:

TC SIGMAC/PREDIM


22

3 -TC PREDIM 3 - impalcato con 3 travi a V - L=30m

Luce tra gli appoggi in direzione X = 3000 [cm] Spessore soletta 30 [cm] Carichi di 1ª categoria stradale.

Calcestruzzo trave prefabbricata: C28/35 Calcestruzzo soletta: Acciaio per c.a.p. $f_{pyk} = 1860 [N/mm^2]$

3.1 Parametri di confronto

C5. Correttezza applicazione formule teoriche

C6. Atteso effetto globale

Il criterio di verifica C1 tende a garantire la correttezza dell'implementazione del percorso teorico di predimensionamento, mentre il criterio C2 dà una validazione del percorso teorico stesso e dimostra l'affidabilità della funzione del programma nell'attività di predimensionamento degli impalcati.

3.1.1 Formule teoriche

3.1.1.1 Parametri 12 e 13 - indici di utilizzo delle sezioni di calcestruzzo

Tutti i dati dei materiali e le ipotesi fatte al paragrafo 1.1.1 del test precedente vengono mantenuti in questo

<u>Calcolo zone di utilizzo delle fibre</u>

dati trave prefabbricata - sezione in campata: 0.00 cm Χg Υg 89.86 cm 8797.00 cm² 42251365.57 cm⁴ -383615.08 cm³ 470191.03 cm³ Area .lx We

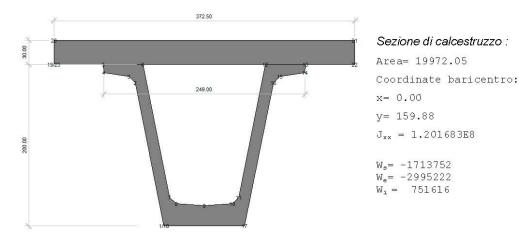
I momenti positivi tendono le fibre inferiori della trave.

Si trascurano i tratti ringrossati in testata:

$$M_{pp} = 1/8 \cdot (8797 \cdot 0.00245) \cdot 3000^2 = 24246731 \text{ [daN·cm]}$$

Zona tensionale di utilizzo della fibra superiore (pedice "e"):

$$\begin{split} &\sigma_{\text{minima}} = \text{-}273.90 \\ &\sigma_{\text{massima}} = 26.10 \text{+} M_{\text{pp}} \text{/} W_{\text{e}} \cdot 0.6 = \text{-}11.82 \\ &\Delta U \sigma_{\text{e}} = 262.08 \text{ [daN/cm}^2] \end{split}$$


Zona tensionale di utilizzo della fibra inferiore (pedice "i"):

$$\begin{split} &\sigma_{\text{minima}} = -233.27 + \text{ M}_{\text{pp}} / \text{ W}_{\text{I}} \cdot 0.6 = -202.33 \\ &\sigma_{\text{massima}} = 32.19 \\ &\Delta U \sigma_{\text{I}} = 234.52 \end{split}$$

3.1.1.1.1 Trave di bordo n. 3

Calcolo range di tensioni utilizzato

Larghezza di soletta gravante sulla trave di bordo =372.5 [cm].

Momento di 1ª fase (soletta, escluso peso trave):

 $M_1=1/8 \cdot (372.5 \cdot 30 \cdot 0.00245) \cdot 3000^2 = 30801094 \text{ [daN·cm]}$

Delta tensionale ai lembi sezione trave:

$$\Delta \sigma_{e,1} = M_1 / W_e = -80.29$$

 $\Delta \sigma_{i,1} = M_1 / W_i = 65.51$

Momento di 2^a fase (permanenti + carichi da traffico):

 M_2 =72129732 [daN·cm]

Calcolo precompressione necessaria

Il calcolo della precompressione minima necessaria è teso a cercare la minima armatura disposta con la massima eccentricità della risultante di precompressione, che comunque dovrà restare al di sopra di una certa distanza dal lembo inferiore della sezione.

tensione massima (verso la trazione) al taglio trefoli al lembo sup. :

$$\sigma_e = 26.10 + M_{pp} / W_e \cdot 0.6 = -11.82$$

tensione massima al taglio trefoli al lembo inf. per arrivare alla decompressione in esercizio:

$$\sigma_i = 0 - 65.51 - 95.97 = -161.47$$

$$N_p = \frac{\sigma_i \cdot W_i - \sigma_e \cdot W_e}{W_i - W_e} \cdot A_{trave}$$

$$\boldsymbol{M}_{p} = \frac{(\boldsymbol{\sigma}_{e} - \boldsymbol{\sigma}_{i}) \cdot \boldsymbol{W}_{e} \cdot \boldsymbol{W}_{i}}{\boldsymbol{W}_{i} - \boldsymbol{W}_{e}} - \boldsymbol{M}_{pptrave}$$

da cui:

$$N_p = -828994 \text{ [daN]}$$

 $M_p = -55861387 \text{ [daN·cm]}$

La eccentricità della precompressione risulta:

$$e_p = M_p/N_p = 67.38$$
 [cm] dal baricentro sezione

e la quota del cavo risultante è:

$$y_p = 89.86-67.38 = 22.48$$
 [cm] dal fondo sezione

Cadute di precompressione

In questo calcolo di test si assume un valore globale delle cadute di tensione pari al 20% della tensione di tesatura iniziale, includendo in questo l'accorciamento elastico, rilassamento acciaio, ritiro e viscosità del calcestruzzo. Si assume inoltre che tali cadute avvengano tutte in prima fase, sulla sola trave. In tale ipotesi si ha:

$$\Delta N_p = -N_p \cdot 0.2 = 165799 \text{ [daN]}$$

 $\Delta M_p = -M_p \cdot 0.2 = 11172277 \text{ [daN·cm]}$

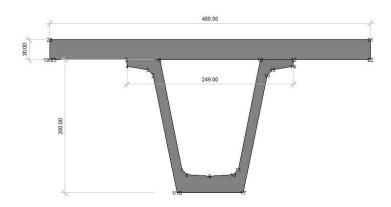
e le variazioni di tensione ai lembi valgono:

$$\Delta \sigma_e = \Delta N_p / A_{trave} + \Delta M_p / W_e = -10.28$$

 $\Delta \sigma_i = \Delta N_p / A_{trave} + \Delta M_p / W_i = 42.61$

Escursione totale tensioni ai lembi:

$$\Delta \sigma_{s,tot}$$
 = -42.09
 $\Delta \sigma_{e,tot}$ = -80.29 -24.08 -10.28 = -114.65
 $\Delta \sigma_{i,tot}$ = 65.51 +95.97 +42.61 = 204.08


Indice utilizzo trave:

Indice utilizzo soletta:

3.1.1.1.2 Trave centrale n. 2

Calcolo range di tensioni utilizzato

Larghezza di soletta gravante sulla trave centrale =480 [cm].

Sezione di calcestruzzo :

Area= 23197.05

Coordinate baricentro:

x= 0.00 y= 167.54

 $J_{xx} = 1.288458E8$

 $W_s = -2062853$

 $W_e = -3969372$ $W_i = 769045$

Momento di 1ª fase (soletta, escluso peso trave):

 $M_1=1/8 \cdot (480\cdot 30\cdot 0.00245)\cdot 3000^2 = 39690000 \text{ [daN·cm]}$

Delta tensionale ai lembi sezione trave:

 $\Delta \sigma_{e,1} = M_1 / W_e = -103.46$ $\Delta \sigma_{i,1} = M_1 / W_i = 84.41$

Momento di 2ª fase (permanenti + carichi da traffico):

M₂=76571959 [daN·cm]

 $\Delta \sigma_{s,2} = M_2 / W_{s,2} = -37.12$ lembo sup. soletta $\Delta \sigma_{e,2} = M_2 / W_{e,2} = -19.29$ lembo sup. trave lembo inf. trave $\Delta \sigma_{i,2} = M_2 / W_{i,2} = 99.57$

Calcolo precompressione necessaria

Il calcolo della precompressione minima necessaria è teso a cercare la minima armatura disposta con la massima eccentricità della risultante di precompressione, che comunque dovrà restare al di sopra di una certa distanza dal lembo inferiore della sezione.

tensione massima (verso la trazione) al taglio trefoli al lembo sup. :

$$\sigma_{e}$$
 = 26.10 + $M_{pp}/\,W_{e}\text{-}0.6$ = -11.82

tensione massima al taglio trefoli al lembo inf. per arrivare alla decompressione in esercizio:

$$\sigma_i = 0 - 84.41 - 99.57 = -183.98$$

$$N_p = \frac{\sigma_i \cdot W_i - \sigma_e \cdot W_e}{W_i - W_e} \cdot A_{\textit{trave}}$$

 $M_p = \frac{(\sigma_e - \sigma_i) \cdot W_e \cdot W_i}{W_i - W_e} - M_{pptrave}$

da cui:

N_p= -938025 [daN] M_o= -60615980 [da N·cm]

La eccentricità della precompressione risulta:

 $e_0 = M_0/N_0 = 64.62$ [cm] dal baricentro sezione

e la quota del cavo risultante è:

$$y_p = 89.86-64.62 = 25.24$$
 [cm] dal fondo sezione

Cadute di precompressione

In questo calcolo di test si assume un valore globale delle cadute di tensione pari al 20% della tensione di tesatura iniziale, includendo in questo l'accorciamento elastico, rilassamento acciaio, ritiro e viscosità del calcestruzzo. Si assume inoltre che tali cadute avvengano tutte in prima fase, sulla sola trave. In tale ipotesi si ha:

$$\Delta N_p = -N_p \cdot 0.2 = 187605 \text{ [daN]}$$

 $\Delta M_p = -M_p \cdot 0.2 = 12123196 \text{ [daN·cm]}$

e le variazioni di tensione ai lembi valgono:

$$\Delta \sigma_{e} = \Delta N_{p} / A_{trave} + \Delta M_{p} / W_{e} = -10.28$$

$$\Delta \sigma_{i} = \Delta N_{p} / A_{trave} + \Delta M_{p} / W_{i} = 47.11$$

Escursione totale tensioni ai lembi:

Indice utilizzo trave:

Indice utilizzo soletta:

3.1.1.2 Parametro 10 - quantità di acciaio da precompressione

In base alle considerazioni del paragrafo precedente la quantità di acciaio da precompressione può essere valutata a partire dal valore di N_p ivi calcolato, dalla tensione di tesatura dell'acciaio assunta pari a 14250 [daN/cm²], e dalle cadute di tensione, valutate complessivamente pari al 20% di tale valore. Si prende il valore calcolato per la trave centrale, la più sollecitata

Con queste assunzioni, peraltro bene aderenti alle situazioni correnti, l'area necessaria è:

A_p= 938025/(14250*0.80) = 82.28 [cm²] <---- valore T3a di confronto vedi par. 2.2.1 y_p=25.24 [cm] dal fondo trave <--- valore T3b di confronto vedi par. 2.2.1

e, in termini di peso di materiale:

Per tenere conto del fatto che l'area di acciaio da precompressione calcolata dovrà essere approssimata per eccesso in fase esecutiva rispettando simmetria di disposizione dei trefoli sulla sezione, per tenere conto di sfrido ed un margine di tolleranza (15% in totale) si ha:

CE

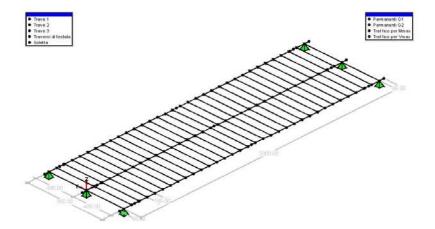
3.1.1.4 Parametro 11 - quantità di acciaio lento nella trave prefabbricata

Per valutare la quantità di armatura lenta che il progetto richiede si ricorre ad un dimensionamento reale come viene impostato da un prefabbricatore.

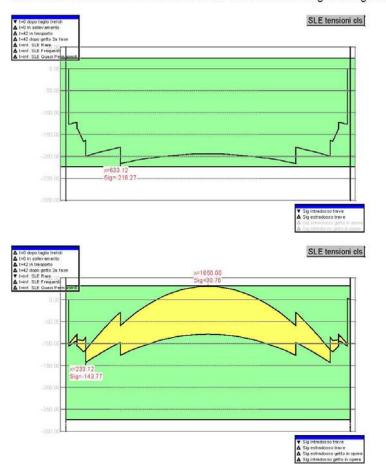
posiz	tipo	diametro	SVILU	PPO	QUANTITA		*	passo	peso
	0.000.00	- CONTROL OF SHOULD	ala sx	ala dx	testata sx te	estata dx	totale	Sections	100000000000000000000000000000000000000
1	rete	12	7.12 31	224	-	7	171	10/20	1081.2
	rete	8	31.20	0.00	17	0	17	-	209.5
2	rete	12	2.47 42	2.47 42	-	\$ C	171	10/20	750.1
	rete	8	31.20	0.00	14	0	14	-	172.5
3	staffa	10	1.20	0.00	-	7	166	20	122.9
4	aggiuntiva	16	2.00	0.00	2	2	4	1-7	12.6
5	aggiuntiva	24	2.50	0.00	2	2	4	-	35.5
6	sollevamento	16	1.50	0.00	4	4	8	s=1528	18.9
		16	1.00	1.00	4	4	8		25.2
		16	1.00	0.00	4	4	8	-	12.6
7	correnti	16	32.60	0.00	4	0	4	-	205.8
8	frettaggio	12	4.00	0.00	8	8	16	**	56.8
9	spezzoni	10	0.80	0.80	-	-	105	30	103.7
10	spezzoni	16	1.45	ā:	2	2	4	- 9	9.2
11	spezzoni	16	1.70		2	2	4		10.7
12	spezzoni	16	2.00		2	2	4	(*)	12.6
	staffa-ringr.	10	2.46	2.46	19	19	38	-	115.4
	spezringr.	16	2.50		2	2	4	-	15.8
	sussidiaria	16	0.00		2	9	0	-	0.0
	sussidiaria	16	0.00	1	-	9	0	-	0.0
	spezztrasp.	16	8.00		2	2	4	-	50.5
	staffe-agg.	10	3.20	3.20	0	0	0	-	0.0
	staffe-agg.	10	2.47	2.47	0	0	0	-	0.0
	staffa-asole	10	1.50	1.50	0	0	0	-	0.0

La quantità totale di acciaio lento è pari a 3022 [kg] corrispondenti a 96.85 [kg/m] <---- valore T5 di confronto vedi par. 3.2.1.

3.1.2 Effetto globale


Come nei casi precedenti si procede all'individuazione del dimensionamento ottimale del prefabbricato ovvero si ricerca la luce limite dell'impalcato.

Per questi tipi di strutture la condizione limitante dovrebbe essere rappresentata dallo <u>stato tensionale della trave</u>, ma potrebbe anche essere un altro parametro, come ad esempio l'eccessiva <u>deformazione</u>. Un altro parametro limite per il dimensionamento della struttura potrebbe essere rappresentato dalla verifica alla <u>flessione trasversale della soletta</u> qualora, ad esempio, l'interasse delle travi fosse eccessivo.


Un calcolo completo condotto con una modellazione del tipo illustrata in figura seguente dimostra che, mantenendo invariata la sezione trasversale dell'impalcato e variando solo la luce di calcolo, questa struttura è in grado di risultare verificata fino ad una luce di calcolo di 33 m.

Questa sembra essere proprio la condizione limite, avendosi uno stato tensionale al lembo inferiore del prefabbricato che nasce con la massima compressione possibile e presenta in esercizio il massimo valore di trazione consentito dalle norme. Le situazioni sono illustrate nei grafici seguenti:

Il calcolo non evidenzia il superamento di altri limiti, ed in particolare:

- le deformazioni sono compatibili con l'utilizzo della struttura, presentandosi una freccia in mezzeria al passaggio dei carichi da traffico pari a 1.65 [cm] (1/1818 della luce)
- la soletta di 30 cm di spessore viene sollecitata, nel modello utilizzato, con un momento flettente pari a circa 3900 [kgm/m] in mezzeria e allo spiccato della trave a cassone, per cui la verifica è soddisfatta prevedendo una adeguata armatura a flessione
- la verifica flessionale a rottura risulta soddisfatta
- non vi sono problemi di taglio all'appoggio

3.2 Risultati della procedura

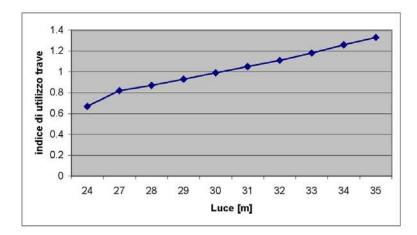
3.2.1 Formule teoriche

La procedura di predimensionamento applicata all'impalcato per una luce di 30 m produce il seguente output:

M _{L/2.2} ⁸ fase SLU	191965629.89	trave 2
V _{x=0,2} a fase SLU	259231.34	trave 2 (T _{corr} =-1177119.13)
M L/2,1 a fase SLE rara	64132619.92	trave 2
M L/2 2 fase SLE rara	77704058.38	trave 3
F _{max} (gruppo 1)	1.2336	(1/2432·L)
R _{min} verticale trave	144130.49	trave 3
R _{max} verticale trave	272359.97	trave 2
R _{max} long, totale	59535.00	
R _{max} trasv. spalla	0.00	
Acciaio per c.a.p.	74.35 [kg/m] < valore T4 di confronto vedi par. 3.1.1.2	Ap=82.362 Yp=25.36< valori T3a e T3b di confronto vedi par. 3.1.1.2
Acciaio B450C	91.78 [kg/m] < valore T5 di confronto vedi par. 3.1.1.3	
indice utilizzo trave	0.99< valore T1 di confronto vedi par. 3.1.1.1	
indice utilizzo soletta	0.24< valore T2 di confronto vedi par. 3.1.1.1	

3.2.2 Effetto globale

In 3.1.2 è stata determinata la massima luce realizzabile con questo tipo di sezione trasversale, ed è stata identificata in 33 m.


Utilizzando la procedura PREDIM del modulo SIGMAC si ottengono i seguenti valori per l'indice di utilizzo della trave, che resta sempre il parametro dimensionante per la scelta strutturale:

Si nota un comportamento conservativo della procedura, che porta a considerare la luce massima per questa struttura a 30.50 [m].

Il confronto tra il risultato ottenuto in 3.1.2 e quello ottenuto in questo paragrafo si ottiene un rapporto delle luci pari a:

3300/3050 = 1.082

ovvero la procedura PREDIM del modulo SIGMAC calcola un limite di utilizzo della struttura più cautelativamente (8%) del metodo alternativo.

TC SIGMAC/PREDIM

31

12. SOTTOSCRIZION	NE DELL'ELABORATO DA PARTE DEL R.T.P				
STUDIO CORONA S.r.I.		ECOPLAN S.r.I.			
	-				
I.T. S.r.I.		E&G S.r.l.			
	-				
CONSORZIO UNING	,	ARKE' INGEGNERIA S.r.I.			

DOTT. DANILO GALLO

SETAC S.r.I.

ING. RENATO DEL PRETE