

ANAS S.p.A.

anas Direzione Progettazione e Realizzazione Lavori

LAVORI DI COLLEGAMENTO TRA LA S.S.11 A MAGENTA E LA TANGENZIALE OVEST DI MILANO

VARIANTE DI ABBIATEGRASSO E ADEGUAMENTO IN SEDE DEL TRATTO ABBIATEGRASSO-VIGEVANO FINO AL PONTE SUL FIUME TICINO

1° STRALCIO DA MAGENTA A VIGEVANO - TRATTA C

PROGETTO ESECUTIVO

IA02

I - PROGETTO STRUTTURALE - MURI DI SOSTEGNO IA - OPERA DI SOSTEGNO OS01

RELAZIONE GEOTECNICA E DI CALCOLO DEI PALI

		1				
CODICE PROGETTO PROGETTO LIV. PROG. N. PROG.		NOME FILE IA02-P00OS01STRRE02_B.d	wg	REVISIONE	SCALA:	
LO20	3 E 1801	CODICE POOOS 1	STRRE0	2 B		
С						
В	EMISSIONE A SEGUITO DI RA ITCF-C186001-14-ATF-RA-000	PPORTO INTERMEDIO DI VERIFICA 01	FEBBRAIO 2019	ING. GIUSEPPE CRISÀ	ING. GAETANO RANIERI	ING. VALERIO BAJETTI
Α	EMISSIONE		SETTEMBRE 2018	ING. GIUSEPPE CRISÀ	ING. GAETANO RANIERI	ING. VALERIO BAJETTI
REV	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

SOMMARIO

1	PR	EMESSA	2
2	NO	RMATIVA DI RIFERIMENTO	3
3	MA	TERIALI	4
	3.1	Calcestruzzo	4
	3.2	Acciaio	5
4	PA	RAMETRI GEOTECNICI	6
	4.1	Scavi e riempimenti	8
5	ΑZ	IONE SISMICA	9
6	SO	LLECITAZIONI IN TESTA AI PALI	13
	6.1	Sollecitazioni SLU	13
	6.2	Sollecitazioni SLErare	13
	6.3	Sollecitazioni SLEFreq	13
	6.4	Sollecitazioni SLEqp	
7	CR	ITERI DI VERIFICA	14
	7.1	Calcolo della capacità portante limite	16
	7.2	Calcolo del carico limite orizzontale	
	7.3	Cedimenti	25
	7.4	Sollecitazioni sul palo	26
	7.5	Verifica armatura palo	34
	7.5	·	
	7.5	.2 Verifica riduzione di armatura tratto 1	38
	7.5	.3 Verifica riduzione di armatura tratto 2	43
8	CO	NSIDERAZIONI SULLE ANALISI E LE VERIFICHE SVOLTE	48
	8.1	Allegato 1 validazione RC-SEC	
	8.2	Allegato 2 validazione PRO_MST	

PREMESSA

La presente relazione ha per oggetto il calcolo e la verifica geotecnica dei pali di fondazione del muro OS01.

Le azioni considerate nel calcolo sono quelle tipiche per tali opere così come previsto dalle "Nuove Norme tecniche per le costruzioni – D.M. 17 gennaio 2018".

Dal punto di vista sismico l'opera ricade nel comune di Abbiategrasso (MI).

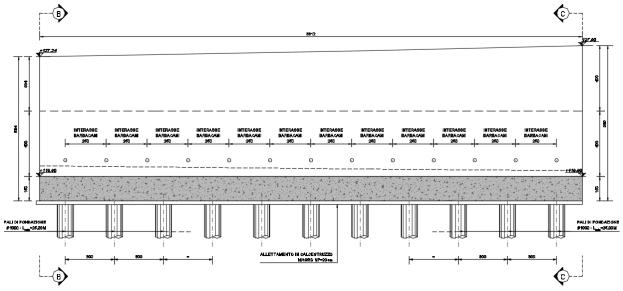


Figura 1: Prospetto

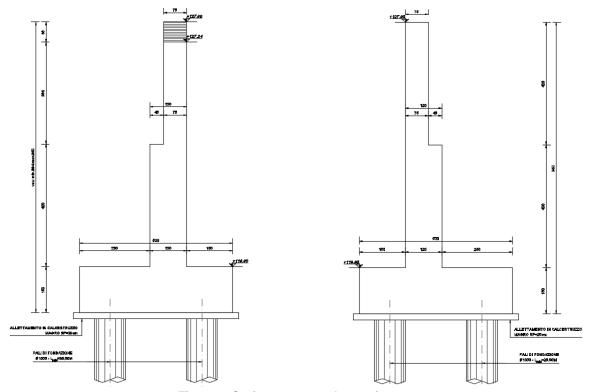


Figura 2: Sezione trasversale concio 1 e 2

2 NORMATIVA DI RIFERIMENTO

Le verifiche sono state eseguite secondo i metodi classici della scienza delle costruzioni e nel rispetto della seguente normativa:

- Legge 5/11/1971 n° 1086: "Norme per le discipline delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica".
- D.M. 17/01/2018: "Aggiornamento delle Norme tecniche per le costruzioni".
- UNI EN 206:2016: "Calcestruzzo Specificazione, prestazione, produzione e conformità".
- UNI ENV 197 Parte 1a: "Cemento. Composizione, specificazioni e criteri di conformità".
- Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici - Servizio Tecnico Centrale.
- UNI EN 197-1 giugno 2011: "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni".
- UNI EN 11104:2016: "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206-1".

Ulteriori riferimenti normativi

- UNI EN 1990 (Eurocodice 0) Aprile 2006: "Criteri generali di progettazione strutturale";
- UNI EN 1991-1-1 (Eurocodice 1) Agosto 2004 Azioni in generale- Parte 1-1: "Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici";
- UNI EN 1991-2 (Eurocodice 1) Marzo 2005 Azioni sulle strutture- Parte 2: "Carico da traffico sui ponti";
- UNI EN 1992-1-1 (Eurocodice 2) Novembre 2005: "Progettazione delle strutture di calcestruzzo Parte 1-1: "Regole generali e regole per gli edifici";
- UNI EN 1993-1-1 (Eurocodice 3) Ottobre 1993: "Progettazione delle strutture in acciaio Parte 1-1: Regole generali e regole per gli edifici";
- UNI EN 1998-1 (Eurocodice 8) Marzo 2005: "Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali Azioni sismiche e regole per gli edifici";
- UNI EN 1998-2 (Eurocodice 8) Febbraio 2006: "Progettazione delle strutture per la resistenza sismica Parte 2: Ponti".

MATERIALI

Il progetto sarà realizzato utilizzando i seguenti materiali:

3.1 CALCESTRUZZO

Pali di fondazione			
Classe di resistenza:	C25/30		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	30	N/mm ²
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	24.9	N/mm ²
Resistenza a compressione cilindrica media	$f_{\rm cm} =$	32.9	N/mm ²
Resistenza a trazione semplice	$f_{ctm} =$	2.56	N/mm ²
Resistenza a trazione per flessione	$f_{ctm} =$	3.07	N/mm ²
Modulo elastico secante medio	$E_{cm} =$	31447	N/mm ²
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	1.79	N/mm ²
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	3.33	N/mm ²
Coefficiente di sicurezza SLU:	$\gamma_{ m c} =$	1.5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	14.1	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLU:	$f_{\rm ctd} =$	1.19	N/mm ²
Coefficiente di sicurezza SLE:	$\gamma_{ m c} =$	1.0	
Resistenza di calcolo a compressione cilindrica SLE:	$f_{cd} =$	24.9	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{\rm ctd} =$	1.79	N/mm ²
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{\mathrm{c,ad}} =$	14.94	N/mm ²
Combinazione quasi permanente	$\sigma_{\mathrm{c,ad}} =$	11.21	N/mm ²
Classe di esposizione		XC2	
Classe di consistenza slump:		S4	
Contenuto minimo di cemento:		300	daN/m³
Massima dimensione aggregato		32	mm
Copriferro		60	mm
Rapporto A/C		0.6	

3.2 **ACCIAIO**

Acciaio per cemento armato:

Acciaio per cemento armato						
Acciaio per cemento armato tipo B450C secondo D.M. 17.01.2018, avente le seguenti caratteristiche:						
Tensione caratteristica di snervamento	$f_{yk} \ge$	450	N/mm ²			
Tensione caratteristica di rottura	$f_{tk} \ge$	540	N/mm ²			
Modulo elastico	$E_s =$	2.1E+05	N/mm ²			
Coefficiente di sicurezza SLU:	$\gamma_s =$	1.15				
Resistenza di calcolo SLU:	$f_{sd} =$	391.30	N/mm ²			
Tensione di calcolo SLE:	$\sigma_{ m y,ad} =$	360	N/mm ²			

Deve rispettare i requisiti indicati nella seguente tabella

CARATTERISTICHE	REQUISITI	FRATTILE (%)
Tensione caratteristica di snervamento f _{yk}	$\geq f_{v \text{ nom}}$	5.0
Tensione caratteristica di rottura f _{tk}	$\geq f_{t \text{ nom}}$	5.0
$(f_t/f_y)_k$	≥1,15 <1,35	10.0
$(f_v/f_{vnom})_k$	≤ 1,25	10.0
Allungamento (Agt)k:	≥ 7,5 %	10.0
Diametro del mandrino per prove di piegamento a 90 ° e successivo raddrizzamento senza cricche: $\phi < 12 \text{ mm}$	4ф	
φ < 12 mm 12≤ φ ≤ 16 mm	5 φ	
per 16 < φ≤25 mm	8 ф	
per 25 < ∮ ≤ 40 mm	10 ф	

Acciaio per armatura da precompressione:

Tensione caratteristica di rottura fptk>1860 N/mm² Tensione caratteristica all'1% $fp(1)k > 1670 \text{ N/mm}^2$ Tensione di tesatura trefoli sspi = 1425 N/mm²

4 PARAMETRI GEOTECNICI

Sotto il profilo geotecnico non si osservano grandi differenze di comportamento fra gli strati sabbioso-ghiaiosi e quelli ghiaioso-sabbiosi, per cui si ritiene di poter raggruppare i terreni indagati in due sole unità geotecniche principali più una aggiuntiva occasionale:

UNITA' Ug1 – terreni a grana grossa (ghiaia e sabbia, sabbie ghiaiose, ecc.) (G3)

UNITA' Ug2 – terreni a grana medio-fine (limo sabbioso / sabbia limosa) (S1+S2)

UNITA' Ug3 – terreni a grana fine (limi argillosi) (L5)

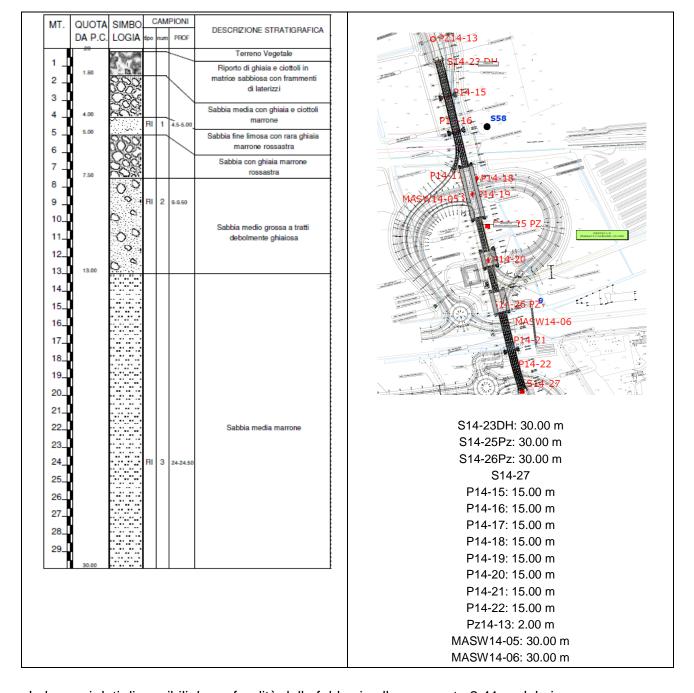
Per quanto riguarda i parametri geotecnici generali, essi sono riportati nella tabella seguente:

	DR	γt	Φ'	c'	LL	Cu	E
	(%)	(kN/m ³)		(kPa)	(%)	(kPa)	(MPa)
Unità Ug1	40-70	18.5-19.5	28°-38°	0		0	20-40
Unità Ug2		18-20	26°-35°	0	26-36	0	20-40
Unità Ug3		18-19	20°-30°	0	26-34	15-30	21-32

Rispetto alle due unità geotecniche principali (Ug1 e Ug2) è stata inserita anche l'Unità Ug3 (=L5), presente solo in alcune zone della tratta C, per un'estensione planimetrica ridotta e con spessori generalmente ridotti, intorno ad 1-2 m.

Per l'opera in esame, la stratigrafia di progetto è stata desunta dal sondaggio S14-25PZ. Alla stratigrafia compresa tra il piano campagna e la profondità pari a 13 m è stata associata l'unità litostrafica Ug1(G3) corrispondente a terreni a grana grossa, mentre da 13 m in poi è stata assunta l'unità litostrafica Ug2(S1), corrispondente a terreni a grana medio-fine.

Nello stralcio planimetrico di seguito allegato si riportano, inoltre, tutte le indagini geognostiche effettuate nell'intorno dell'opera da cui è possibile ricavare indicazioni utili alla progettazione delle fondazioni.



In base ai dati disponibili, la profondità della falda si colloca a quota 2.41 m dal piano campagna. Ai fini delle verifiche sismiche risulta:

Categoria sottosuolo: C

Categoria topografica: T1

Nella tabella seguente si riportano gli intervalli di valori dei parametri geotecnici relativi alla zona in cui ricade l'opera.

		PARAMETRI GEOTECNICI GENERALI							
UNITA'	D _R (%)	γt (kN/mc)	Φ'	Ф'ор	LL (%)	cu (kPa)	E (MPa)	Eop	
Ug1 (G3)	40 ÷ 70	18.50 ÷ 19.50	28° ÷ 36°	33°			24 ÷ 30	28	
Ug2 (S1)		18.00 ÷ 20.00	32° ÷ 36°	33°	26 ÷ 36		30 ÷ 34	32	

I valori di progetto di Φ ' e E sono indicati con Φ 'op e Eop

Dato che la quota di imposta dei pali (q.i.p.) si trova a circa -2.0m da p.c. la stratigrafia di progetto deve essere impostata come segue:

STRATO 1 (G3) - sino a 11 m sotto la q.i.p.

Ghiaia con sabbia

Angolo di attrito interno: 33° Peso specifico: 19.0 kN/m³.

STRATO 2 (S1) - sino a 30 m sotto la q.i.p.

Sabbia

Angolo di attrito interno: 33° Peso specifico: 19.0 kN/m³.

Nelle verifiche si considererà la falda a -1m da p.c.

Ai fini delle verifiche dei pali si potrà tenere conto che il numero delle verticali indagate fino alla profondità di lunghezza dei pali stessi è pari a 2 e che

N_{sptmedio} =15colpi/30cm

4.1 SCAVI E RIEMPIMENTI

Lo scavo avviene a cielo aperto con pendenza 1:1.

Il terreno di ritombamento dell'opera dovrà avere un angolo d'attrito minimo di 35° e un $\chi=20kN/mc$.

AZIONE SISMICA

Nei confronti delle azioni sismiche gli stati limite sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti. Nel presente progetto è stata verificata la combinazione di carico sismica con riferimento allo stato limite ultimo di salvaguardia della vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della esistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.

L'analisi viene condotta secondo il metodo pseudo statico.

Vita nominale

La vita nominale di un'opera strutturale è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata. Nel caso in oggetto si assume vita nominale VN > 50 anni.

Classi d'uso

In presenza di azioni sismiche, con riferimento alle consequenze di una interruzione di operatività o di un'eventuale collasso, le costruzioni sono suddivise in classi d'uso. Nel caso in oggetto si fa riferimento alla Classe IV: "Costruzioni con funzioni pubbliche o strategiche importante, anche con riferimento alla gestione della protezione civile in caso di calamità. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico."

Periodo di riferimento per l'azione sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione moltiplicandone la vita nominale VN per il coefficiente d'uso CU. Tale coefficiente è funzione della classe d'uso e nel caso specifico assume valore pari a 2 per la classe d'uso IV. VR = VN x CU = 50 anni x 2 = 100 anni

Azioni di progetto

Le azioni di progetto si ricavano, ai sensi delle NTC, dalle accelerazioni ag e dalle relative forme spettrali. Le forme spettrali previste dalle NTC sono definite, su sito di riferimento rigido orizzontale, in funzione dei tre parametri:

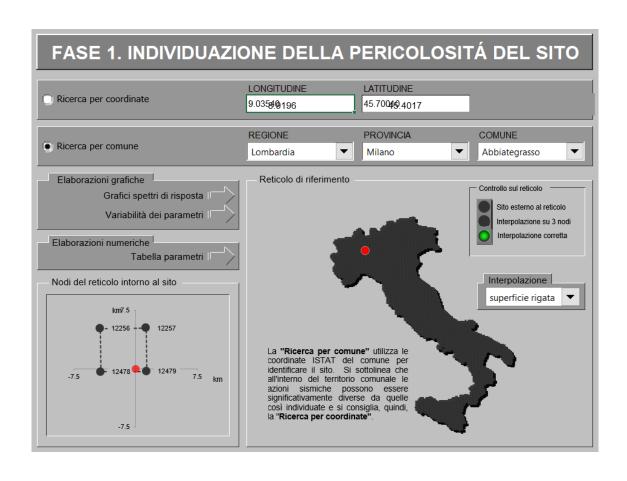
- ag accelerazione orizzontale massima del terreno;
- F0 valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- TC* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per ciascun nodo del reticolo di riferimento e per ciascuno dei periodi di ritorno TR considerati percentile ed attribuendo ad ag il valore previsto da pericolosità sismica. F0 e TC* i valori ottenuti imponendo che le forme spettrali in accelerazione, velocità e spostamento previste dalle NTC scartino al minimo dalle corrispondenti forme spettrali previste dalla pericolosità sismica. Le forme spettrali previste dalle NTC sono caratterizzate da prescelte probabilità di superamento e vite di riferimento. A tal fine occorre fissare:

- la vita di riferimento VR della costruzione.
- le probabilità di superamento nella vita di riferimento PVR associate agli stati limite considerati per individuare infine a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

A tal fine è conveniente utilizzare come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica TR, espresso in anni. Fissata la vita di riferimento VR, i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

$$T_R = -\frac{V_R}{ln(1 - P_{VR})} = -\frac{200}{ln(1 - 0.1)} = -\frac{1898}{ln(1 - 0.1)}$$

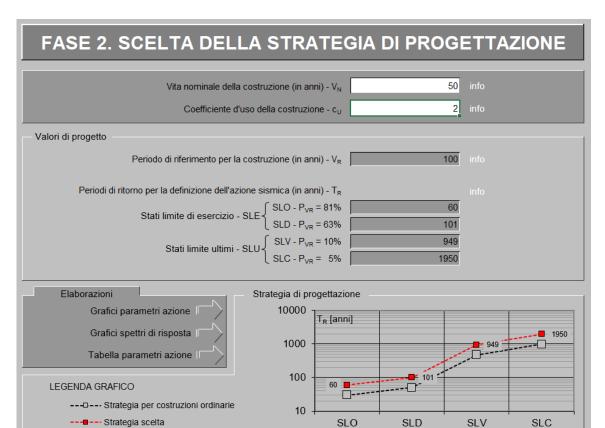

I valori dei parametri ag, F_0 e TC^* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC, in funzione di prefissati valori del periodo di ritorno TR. L'accelerazione al sito ag è espressa in g/10; F0 è adimensionale, T_{C}^* è espresso in secondi. I punti del reticolo di riferimento sono definiti in termini di Latitudine e Longitudine ed ordinati a Latitudine e Longitudine crescenti, facendo variare prima la Longitudine e poi la Latitudine. L'opera in progetto ricade nel comune di Abbiategrasso.

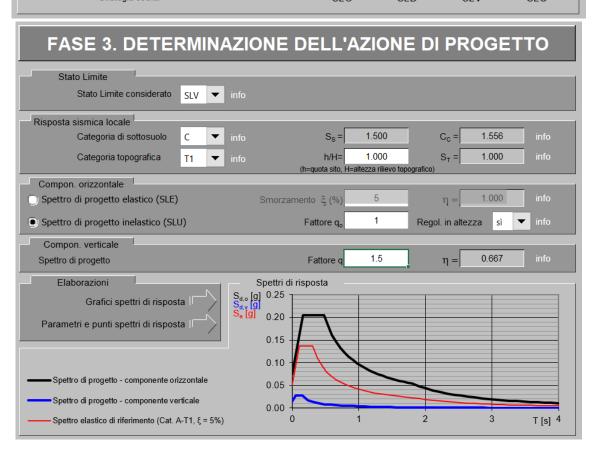
Parametri per la determinazione dell'azione sismica dell'impalcato

Categoria di sottosuolo C Categoria topografica T1

Coeff. di combinazione sismica carichi da traffico $\psi E = 0.2$

- q Coefficiente di struttura
- η 1/q
- ag Accelerazione orizzontale massima al sito
- Tc* Periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale
- F0 Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale





Parametri e punti dello spettro di risposta orizzontale per lo stato limi\$LV

Parametri indipendenti

STATO LIMITE	SLV			
a _a	0.050 g			
F _o	2.730			
T _c *	0.304 s			
Ss	1.500			
Cc	1.556			
S _T	1.000			
q	1.000			

Parametri dipendenti

S	1.500
η	1.000
T _B	0.157 s
T _C	0.472 s
T _D	1.800 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \geq 0,55; \; \eta = 1/q \quad \text{(NTC-08 Eq. 3.2.6; \$. 3.2.3.5)}$$

$$T_{\rm B} = T_{\rm C}/3$$
 (NTC-07 Eq. 3.2.8)

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4,0 \cdot a_k / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \! \le \! T < \! T_{\!B} & \quad S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \! \left[\frac{T}{T_{\!B}} \! + \! \frac{1}{\eta \cdot F_o} \! \left(1 \! - \! \frac{T}{T_{\!B}} \right) \right] \\ T_{\!B} \! \le \! T < \! T_{\!C} & \quad S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \\ T_{\!C} \! \le \! T < \! T_{\!D} & \quad S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_{\!C}}{T} \right) \\ T_{\!D} \! \le \! T & \quad S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_{\!C}T_{\!D}}{T^2} \right) \end{split}$$

Lo spettro di progetto S₄(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico S₄(T) sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0.000	0.075
T _₽ ◀	0.157	0.205
To≠	0.472	0.205
	0.536	0.180
	0.599	0.161
L	0.662	0.146
L	0.725	0.133
L	0.788	0.123
L	0.852	0.113
L	0.915	0.106
L	0.978	0.099
L	1.041	0.093
L	1.105	0.088
L	1.168	0.083
ļ	1.231	0.079
ļ	1.294	0.075
	1.357	0.071
	1.421	0.068
	1.484	0.065
	1.547	0.062
	1.610	0.060
-	1.673	0.058
h	1.737	0.056
T₽	1.800	0.054
	1.905	0.048
	2.009	0.043
	2.114	0.039
	2.219	0.035
-	2.324	0.032
-	2.428	0.030
-	2.533	0.027
-	2.638	0.025
-	2.743	0.023
-	2.848	0.021
-	2.952	0.020
-	3.057	0.019
-	3.162	0.017
-	3.267	0.016
	3.371	0.015
	3.476	0.014
	3.581	0.014
-	3.686	0.013
	3.790	0.012
-	3.895	0.011
L	4.000	0.011

SOLLECITAZIONI IN TESTA AI PALI

6.1 SOLLECITAZIONI SLU

Sforz	zi alla tes	ta dei pali		
Nf	$X_f[m]$	$D_{m}[m]$	Ni [kN]	Ti [kN]
1	4.000	1.500	182.81	850.42
2	1.000	1.500	-3285.81	850.42

Legenda Vi numero della fila di pali

Ar ascissa della fila diballi Om distanza della fila dia punto centrale della fondazione Ni Sforzo di facilio agente su ogni palo dell'i-esima fila I Sforzo di facilio agente su ogni palo dell'i-esima fila

6.2 SOLLECITAZIONI SLERARE

Sforzi	alla	testa	dei	pali

N _f	X _f [m]	D _m [m]	N _i [kN]	$T_i[kN]$
1	4.000	1.500	-413.04	599.51
2	1.000	1.500	-2440.32	599.51

6.3 SOLLECITAZIONI SLEFREQ

Sforzi alla testa dei pali

N_{f}	X_f [m]	$D_m[m]$	N_i [kN]	Ti [kN]
1	4.000	1.500	-484.54	582.48
2	1.000	1.500	-2368.82	582.48

6.4 SOLLECITAZIONI SLEQP

Sforzi alla testa dei pali

N_f	X_f [m]	$D_m[m]$	N_i [kN]	T _i [kN]
1	4.000	1.500	-793.91	509.70
2	1.000	1.500	-2150.36	509.70

CRITERI DI VERIFICA

Per quanto attiene alla verifica dei pali di fondazione, secondo le indicazioni contenute nelle "Norme Tecniche per le Costruzioni" 2018, le verifiche di sicurezza relative allo Stato Limite Ultimo e in condizioni sismiche, con riferimento alla combinazione di Salvaguardia della Vita (SLV) impongono che:

Ed ≤ Rd

essendo Ed il valore di progetto dell'azione o degli effetti delle azioni ed Rd il valore di progetto della resistenza del terreno.

Rimandando al N.T.C. per i dettagli, le verifiche saranno svolte con la seguente combinazione:

Approccio 2

"A1+M1+R3";

Nel seguente prospetto sono indicati i coefficienti parziali da applicare ai principali parametri fisicomeccanici del terreno:

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {oldsymbol{arphi}'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γc	1,0	1,25
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

I coefficienti parziali da applicare alle Resistenze per carichi assiali, risultano i seguenti:

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	Ϋ́R	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	Υs	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	Υst	1,25	1,25	1,25

[🖱] da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Il coefficiente parziali da applicare alle Resistenze per carichi trasversali invece, risulta il sequente:

Tab. 6.4.VI - Coefficiente parziale γ_T per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali

Coefficiente parziale (R3)
$\gamma_T = 1.3$

La <u>resistenza di progetto del palo soggetto a carichi assiali</u> si ottiene mediante le seguenti relazioni:

$$R_{\scriptscriptstyle d} = rac{R_{\scriptscriptstyle c,k}}{\gamma_{\scriptscriptstyle R}}$$
 : resistenza a compressione

$$R_d = \frac{R_{t,k}}{\gamma_R}$$
: resistenza a trazione

con:

- $R_{c,k} = \min \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{\min}}{\xi_4} \right\}$: resistenza caratt. palo soggetto a carichi assiali di compressione;
- $\bullet \qquad R_{_{t,k}} = \min \left\{ \frac{\left(R_{_{t,cal}}\right)_{_{media}}}{\xi_{_{3}}}; \frac{\left(R_{_{t,cal}}\right)_{_{\min}}}{\xi_{_{4}}} \right\} \text{: resistenza caratt. del palo soggetto a carichi assiali di trazione;}$
- $R_{c,cal}$ ($R_{t,cal}$): resistenza di calcolo del palo soggetto a carichi assiali di compressione (di trazione);
- ξ₃ e ξ₄: coefficienti che dipendono dal numero di verticali di indagini considerate per la singola opera, sulla base dell'affidabilità della caratterizzazione geotecnica nel volume significativo, i cui valori sono indicati nella Tabella 6.4.IV seguente tratta dal D.M. 17/01/2018.

Tabella 6.4.IV – Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate.

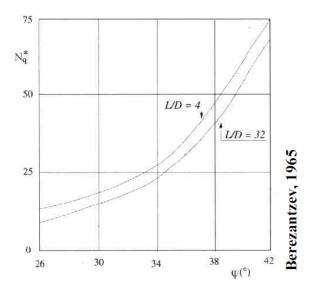
Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ_3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21

 γ_R: coefficiente parziale per le verifiche agli stati limite ultimi di pali soggetti a carichi assiali i cui valori sono riportati nella Tabella 6.4.II seguente tratta dal D.M. 17/01/2018.

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	ΥR	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	Υs	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	Υst	1,25	1,25	1,25

⁽º) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.



7.1 **C**ALCOLO DELLA CAPACITÀ PORTANTE LIMITE

La resistenza di calcolo R_{c,cal} del singolo palo si basa sull' equazione:

Nel calcolo della resistenza della capacità portante limite per pali di grande diametro si considera il seguente grafico per il calcolo di Nq* di Berezantev, 1965.

CARICO LIMITE Pali di grande diametro

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

OPERA: OS01

DATI DI INPUT:

Diametro del Palo (D): 1.00 (m) Area del Palo (Ap): 0.785 (m²)

Carico massimo sul palo Nd = 3286 (kN) Lpalo= 25.00 (m)

(Comb. A1+M1+R3)

Fattori di correlazione in funzione delle verticali indagate:

ξ

1.65

Coefficienti parziali γ, da applicare alle resistenze caratteristiche a carico verticale dei pali

R3 Pali trivellati

γ_b 1.35

γ_s 1.15

Coefficiente parziale 7 per le verifiche agli SLU di pali soggetti a carichi trasversali

R3

 γ_t 1.3

n° strato	tipo	ΔHi	H_f	γn	7'	N SPT	ø	K	C u	α	Cα
	terreno	[m]	[m]	[kN/m³]	[kN/m³]	[-]	[°]	[-]	[kPa]	[-]	[kPa]
1	Ghiaia fald	25.00	25.00	9.00	9.00	15.00	33.00	0.47	0.00	0.00	0.00

LEGENDA

∆H_i spessore dello strato

 \mathbf{H}_f profondità dello strato dal p.c.

 γ_n peso specifico del terreno naturale

7' peso specifico efficace

N SPT Numero colpi al piede (solo granula

angolo di attrito (solo granulari)

 \mathbf{K} rapporto tra σ_h/σ_v

c_u coesione non drenata (solo coesivi)

c_α adesione (solo coesivi)

(per il corretto funzionamento del foglio di calcolo si è indicato $\gamma_n = \gamma'$)

PORTATA	PORTATA ALLA BASE - protocollo di Berenzantzev										
n° strato	tipo	∆Hi	H_f	γn	γ'	N _{SPT}	ý	K	Cu	α	C a
	terreno	[m]	[m]	[kN/m³]	[kN/m³]	[-]	[°]	[-]	[kPa]	[-]	[kPa]
1		25.00	25.00	9.00	9.00	15.00	33.00	0.47	0.00	0.00	0.00

A_b	Area della base del palo	0.79	$[m^2]$
$\sigma_{_{VL}}$	Pressione geostatica di base	225	[kPa]
$N_q = \upsilon B_k$	Coeff. di pressione geostatica	23	
C	Coesione alla base	0.00	[kPa]
N _c	Coeff. di coesione	0	
Q _{b,lim}	Portata limite di base	4570.04	[kN]
Q _{b,amm}	Portata amm. di base	2049.34	[kN]

PORTATA	A LATERALE - protocollo di Viggi	ani							
		σ _{∨.i}	σ _{V.(i+1)}	$\sigma_{\text{v.med}}$	$\sigma_{\text{h.med}}$		Ca		s
σ _{h.1}	tensione laterale strato 1°	0	225	112.5	52.875	[kPa]	0.00		34.3
σ _{h.2}	tensione laterale strato 2°	0	0	0	0	[kPa]	0.00		0.0
σ _{h.3}	tensione laterale strato 3°	0	0	0	0	[kPa]	0.00		0.0
σ _{h.4}	tensione laterale strato 4°	0	0	0	0	[kPa]	0.00		0.0
σ _{h.5}	tensione laterale strato 5°	0	0	0	0	[kPa]	0.00		0.0
σ _{h.6}	tensione laterale strato 6°	0	0	0	0	[kPa]	0.00		0.0
σ _{h.7}	tensione laterale strato 7°	0	0	0	0	[kPa]	0.00		0.0
σ _{h.8}	tensione laterale strato 8°	0	0	0	0	[kPa]	0.00		0.0
σ _{h.9}	tensione laterale strato 9°	0	0	0	0	[kPa]	0.00		0.0
Q _{I,lim}	Portata limite laterale		2696	.86 [k	(N] <u>P</u> €	eso prop	rio palo	490.87	[kl
Q _{l,amm}	Portata amm. laterale	Э	1419	7.40 [k	(N]				

Si considera il contributo del peso del palo considerando però che il volume dello stesso va a sostituire un egual volume di terreno:

$\gamma_{terreno}$		19 kN/	mc			
γ_{cls}		25 kN/	mc			
Peso pa	lo =			491	kN	
Peso ter	reno =			373	kN	
ΔW =				118	kN	
Nslu	3286	Q _{punta}	2049			
W*1.35	159	\mathbf{Q}_{lat}	1419			
_	3445		3469	VERIFICA S	SODDISFATTA	

I pali sono ad interasse di 3 diametri e pertanto si assume un fattore di efficienza E=1. Da qui la portata totale ammissibile di gruppo vale $(Q_{punta}+Q_{lat})^*n^\circ$ pali

n°pali 18	kN	
PORTATA TOTALE AMM. DI GRUPPO =	62437	
CARICO MASSIMO SULLA PALIFICATA =	27927	VERIFICA SODDISFATTA

(dove 27927 kN deriva dalla risultante agente in fondazione di cui al cap.8.1 della relazione di calcolo di elevazione, considerata su una lunghezza di fondazione di 27.0m: Ntot=(3103/3)*27=27927)

7.2 CALCOLO DEL CARICO LIMITE ORIZZONTALE

Metodo di Broms

Si assume che il comportamento dell'interfaccia palo/terreno sia di tipo rigido-perfettamente plastico, e cioè che la resistenza del terreno si mobiliti interamente per qualsiasi valore non nullo dello spostamento e rimanga costante al crescere dello spostamento stesso. Si assume inoltre che la forma della sezione del palo sia ininfluente e che il valore della pressione p sia determinato solo dalla dimensione d della sezione del palo misurata normalmente alla direzione dello spostamento. Per un terreno incoerente, si assume che la resistenza del terreno vari linearmente con la profondità z secondo la legge:

$$p = 3 k_p \gamma z d$$

dove:

- γ = peso di volume del terreno
- d = diametro del palo
- z = profondità
- $k_p = (1 + \operatorname{sen} \varphi) / (1 \operatorname{sen} \varphi)$

I possibili meccanismi di rottura di pali vincolati in testa sono illustrati nelle figure seguenti relativamente al caso di palo "corto" e "lungo" insieme alle distribuzioni delle reazioni del terreno.

I pali "corti" sono quelli indicati in cui il carico limite dipende esclusivamente dalla resistenza del terreno, mentre il carico limite dei pali "lunghi" dipende principalmente dal momento di plasticizzazione del palo stesso.

Nel caso di palo "corto" l'equilibrio orizzontale fornisce:

• $H_u = 1.5 \gamma L^2 d k_p$

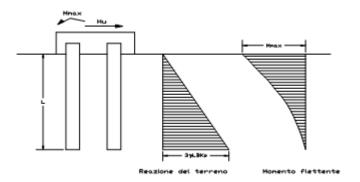
mentre il momento massimo è:

• $M_{max} = 2/3 H_u L$

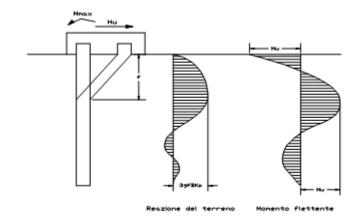
Occorre comunque verificare la condizione $M_{max} < M_y$ (M_y : momento ultimo del palo).

Per il palo "lungo" il massimo momento lungo il fusto del palo, che si verifica alla profondità f, uguaglia il momento di plasticizzazione; si forma pertanto una seconda cerniera plastica. L'equilibrio alla rotazione del tratto di palo compreso fra le due cerniere fornisce:

• H_u (e+2/3f) = 2 M_y


dove:

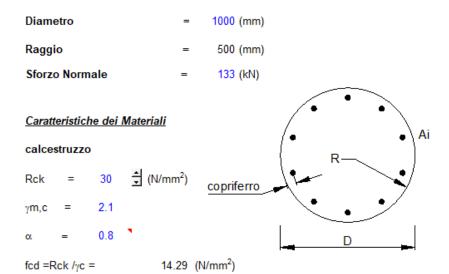
• $f = 0.82 [H_u/(\gamma d k_p)]^{0.5}$.


Schemi di rottura metodo di Broms:

Pali corti:

Pali lunghi

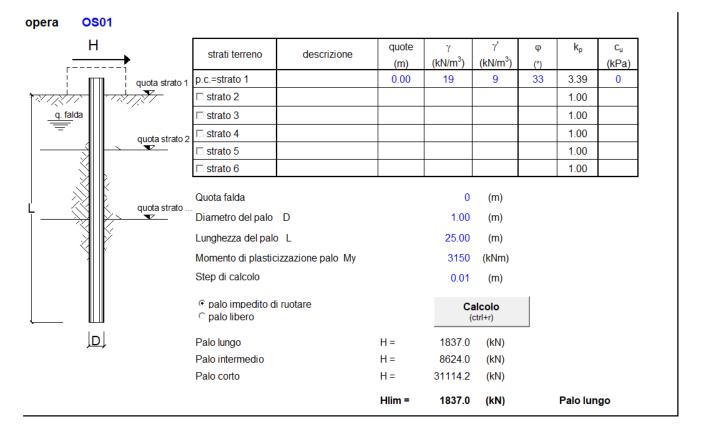
Calcolo del momento di plasticizzazione considerando l'armatura nel primo tratto:



Calcolo del momento di plasticizzazione di una sezione circolare

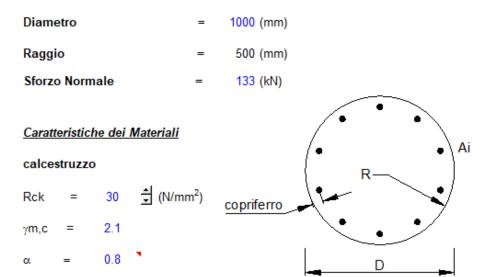
Acciaio

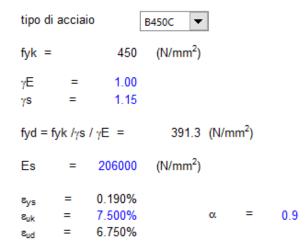
Armature


numero			diametro (mm) area (mm²)		copriferro (mm)	
24	<u></u>	ф	26	-	12742.30	60
24	<u>.</u>	ф	26	-	12742.30	90
0	* *	ф	8	* *	0.00	30

$$R_t = H_{lim}/(\zeta^* \gamma) = 1837 \text{ kN } / (1.65^* 1.3) = 856 > T_{max} = 850 \text{ kN}$$
 OK

Calcolo del momento di plasticizzazione considerando la riduzione di armatura nel secondo tratto:




Calcolo del momento di plasticizzazione di una sezione circolare

14.29 (N/mm²)

Acciaio

fcd =Rck /yc =

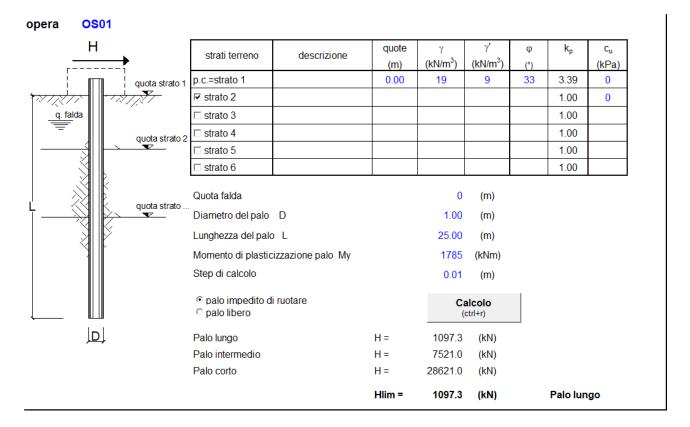
Armature

numero diametro (mm)		liametro (mm) area (mm²)		copriferro (mm)		
24	<u>+</u>	ф	26	-	12742.30	60
0	<u></u>	ф	0	<u> </u>	0.00	90
0	* *	ф	0	<u></u>	0.00	30

calcolo

Momento di Plasticizzazione

My 1785.4 (kN m)



Fattori di correlazione in funzione delle verticali indagate:

ξ

1.65

Coefficiente parziale y per le verifiche agli SLU di pali soggetti a carichi trasversali

R3

1.3 γ_t

 $R_t = H_{lim}/(\zeta^*\gamma) = 1097 \text{ kN }/(1.65^*1.3) = 511 > T \text{ al di sotto di } 2.00 \text{m di profondità (cfr. par.7.4)}$

In sintesi, considerando la lunghezza di sovrapposizione delle armature, si considererà una doppia gabbia di lughezza 5.0m costituita da 24\psi26 + 24\psi26. La gabbia esterna avrà lunghezza 12m. Nei tratti successivi si disporranno gabbie di lunghezza massima 12.0m di 8\psi20.

7.3 CEDIMENTI

Il cedimento del palo è ricavato tramite la formula di Poulos e Davis:

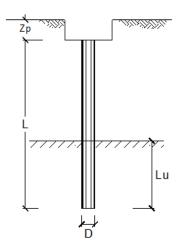
 $\delta = (\beta \cdot P_{max})/(E \cdot L_u)$

in cui

 β =0.5+Log(L_u/D);

P_{max}= carico massimo a cui è sottoposto il palo;

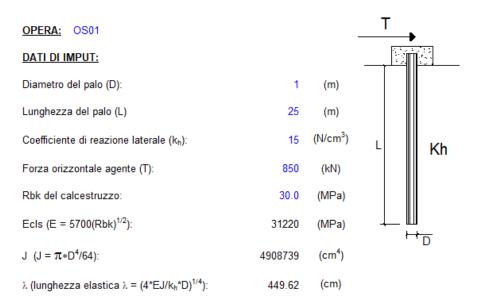
E= modulo di deformazione del materiale in cui è ammorsato il palo;


8.42 (mm)

L_u= lunghezza utile

 $\delta = \beta * P / E * Lutile$

CALCOLO DEL CEDIMENTO DELLA PALIFICATA



7.4 SOLLECITAZIONI SUL PALO

Di seguito si ricavano i momenti agenti in testa al palo per la verifica strutturale:

Comb. SLU

PALI IMPEDITI DI RUOTARE IN TESTA SOGGETTI A FORZE ORIZZONTALI

Z	y(z)	p(z)	α.(z)	M(z)	T(z)
Prof.	Spost.	Press. Lat.	Rotaz.	Mom. Flett.	Taglio
(m)	(cm)	(N/cm²)	(rad)	(kNm)	(kN)
0.00	1.260	18.90	0.00000	1910.876	-850.000
0.50	1.246	18.69	-0.00056	1509.460	-755.844
1.00	1.207	18.10	-0.00099	1154.688	-663.737
1.50	1.149	17.23	-0.00132	845.108	-575.308
2.00	1.077	16.15	-0.00155	578.561	-491.782
2.50	0.995	14.93	-0.00170	352.363	-414.028
3.00	0.908	13.62	-0.00178	163.474	-342.618
3.50	0.818	12.27	-0.00181	8.634	-277.865
4.00	0.728	10.92	-0.00179	-115.519	-219.876
4.50	0.640	9.60	-0.00173	-212.358	-168.584
5.00	0.555	8.33	-0.00165	-285.187	-123.790
5.50	0.475	7.13	-0.00155	-337.181	-85.189
6.00	0.400	6.00	-0.00144	-371.345	-52.401
6.50	0.332	4.97	-0.00131	-390.478	-24.991
7.00	0.269	4.04	-0.00118	-397.154	-2.494
7.50	0.213	3.20	-0.00105	-393.710	15.572
8.00	0.164	2.46	-0.00093	-382.240	29.691
8.50	0.121	1.81	-0.00080	-364.598	40.337
9.00	0.084	1.25	-0.00069	-342.405	47.968
9.50	0.052	0.78	-0.00058	-317.061	53.015
10.00	0.025	0.38	-0.00048	-289.754	55.883
10.50	0.004	0.05	-0.00039	-261.480	56.942
11.00	-0.014	-0.21	-0.00031	-233.057	56.529
11.50	-0.028	-0.41	-0.00024	-205.145	54.948
12.00	-0.038	-0.57	-0.00018	-178.259	52.466
12.50	-0.045	-0.68	-0.00012	-152.789	49.318
13.00	-0.050	-0.76	-0.00008	-129.017	45.707
13.50	-0.053	-0.80	-0.00004	-107.131	41.804

Z	y(z)	p(z)	α.(z)	M(z)	T(z)
Prof.	Spost.	Press. Lat.	Rotaz.	Mom. Flett.	Taglio
(m)	(cm)	(N/cm²)	(rad)	(kNm)	(kN)
14.00	-0.054	-0.82	-0.00001	-87.238	37.754
14.50	-0.054	-0.81	0.00002	-69.381	33.676
15.00	-0.053	-0.79	0.00004	-53.550	29.667
15.50	-0.050	-0.75	0.00005	-39.691	25.800
16.00	-0.047	-0.71	0.00006	-27.717	22.133
16.50	-0.044	-0.66	0.00007	-17.517	18.708
17.00	-0.040	-0.60	0.00008	-8.964	15.552
17.50	-0.036	-0.55	0.00008	-1.918	12.681
18.00	-0.032	-0.49	0.00008	3.765	10.102
18.50	-0.029	-0.43	0.00008	8.232	7.813
19.00	-0.025	-0.37	0.00007	11.626	5.808
19.50	-0.021	-0.32	0.00007	14.086	4.075
20.00	-0.018	-0.27	0.00006	15.743	2.597
20.50	-0.015	-0.23	0.00006	16.722	1.356
21.00	-0.012	-0.18	0.00005	17.135	0.332
21.50	-0.010	-0.15	0.00005	17.087	-0.494
22.00	-0.008	-0.11	0.00004	16.670	-1.145
22.50	-0.006	-0.08	0.00004	15.968	-1.641
23.00	-0.004	-0.06	0.00003	15.052	-2.002
23.50	-0.003	-0.04	0.00003	13.985	-2.246
24.00	-0.001	-0.02	0.00002	12.822	-2.392
24.50	0.000	-0.01	0.00002	11.607	-2.456
25.00	0.000	0.01	0.00001	10.378	-2.453

Comb. SLE rare

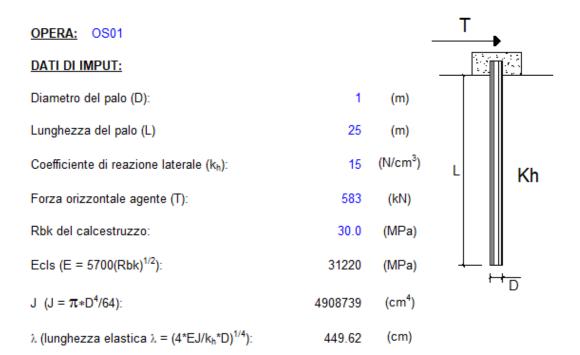
PALI IMPEDITI DI RUOTARE IN TESTA SOGGETTI A FORZE ORIZZONTALI

OPERA: OS01			
DATI DI IMPUT:			
Diametro del palo (D):	1	(m)	
Lunghezza del palo (L)	25	(m)	
Coefficiente di reazione laterale (k _h):	15	(N/cm³)	∟
Forza orizzontale agente (T):	600	(kN)	
Rbk del calcestruzzo:	30.0	(MPa)	
Ecls (E = 5700(Rbk) ^{1/2}):	31220	(MPa)	↓ □
J $(J = \pi * D^4/64)$:	4908739	(cm ⁴)	' 'D
$λ$ (lunghezza elastica $λ = (4*EJ/k_h*D)^{1/4}$):	449.62	(cm)	

Z	y(z)	p(z)	α.(z)	M(z)	T(z)
Prof.	Spost.	Press. Lat.	Rotaz.	Mom. Flett.	Taglio
(m)	(cm)	(N/cm ²)	(rad)	(kNm)	(kN)
0.00	0.890	13.34	0.00000	1348.854	-600.000
0.50	0.879	13.19	-0.00039	1065.501	-533.537
1.00	0.852	12.78	-0.00070	815.074	-468.520
1.50	0.811	12.16	-0.00093	596.547	-406.100
2.00	0.760	11.40	-0.00109	408.396	-347.140
2.50	0.703	10.54	-0.00120	248.727	-292.255
3.00	0.641	9.62	-0.00126	115.393	-241.848
3.50	0.578	8.66	-0.00128	6.095	-196.140
4.00	0.514	7.71	-0.00126	-81.543	-155.206
4.50	0.452	6.78	-0.00122	-149.900	-119.001
5.00	0.392	5.88	-0.00117	-201.308	-87.381
5.50	0.335	5.03	-0.00109	-238.010	-60.134
6.00	0.283	4.24	-0.00101	-262.126	-36.989
6.50	0.234	3.51	-0.00093	-275.632	-17.641
7.00	0.190	2.85	-0.00083	-280.344	-1.760
7.50	0.151	2.26	-0.00074	-277.913	10.992
8.00	0.116	1.74	-0.00065	-269.816	20.958
8.50	0.085	1.28	-0.00057	-257.363	28.473
9.00	0.059	0.89	-0.00049	-241.698	33.859
9.50	0.037	0.55	-0.00041	-223.808	37.422
10.00	0.018	0.27	-0.00034	-204.532	39.446
10.50	0.003	0.04	-0.00028	-184.574	40.194
11.00	-0.010	-0.15	-0.00022	-164.511	39.903
11.50	-0.020	-0.29	-0.00017	-144.808	38.787
12.00	-0.027	-0.40	-0.00012	-125.830	37.035
12.50	-0.032	-0.48	-0.00009	-107.851	34.813
13.00	-0.036	-0.53	-0.00005	-91.071	32.264
13.50	-0.038	-0.56	-0.00003	-75.622	29.509

Z	y(z)	p(z)	α.(z)	M(z)	T(z)
Prof.	Spost.	Press. Lat.	Rotaz.	Mom. Flett.	Taglio
(m)	(cm)	(N/cm²)	(rad)	(kNm)	(kN)
14.00	-0.038	-0.58	0.00000	-61.580	26.650
14.50	-0.038	-0.57	0.00001	-48.975	23.772
15.00	-0.037	-0.56	0.00003	-37.800	20.941
15.50	-0.036	-0.53	0.00004	-28.017	18.212
16.00	-0.033	-0.50	0.00005	-19.565	15.623
16.50	-0.031	-0.47	0.00005	-12.365	13.206
17.00	-0.028	-0.43	0.00005	-6.327	10.978
17.50	-0.026	-0.38	0.00006	-1.354	8.951
18.00	-0.023	-0.34	0.00005	2.658	7.131
18.50	-0.020	-0.30	0.00005	5.811	5.515
19.00	-0.018	-0.26	0.00005	8.207	4.100
19.50	-0.015	-0.23	0.00005	9.943	2.876
20.00	-0.013	-0.19	0.00004	11.113	1.833
20.50	-0.011	-0.16	0.00004	11.804	0.957
21.00	-0.009	-0.13	0.00004	12.095	0.235
21.50	-0.007	-0.10	0.00003	12.061	-0.349
22.00	-0.005	-0.08	0.00003	11.767	-0.808
22.50	-0.004	-0.06	0.00003	11.271	-1.158
23.00	-0.003	-0.04	0.00002	10.625	-1.413
23.50	-0.002	-0.03	0.00002	9.872	-1.585
24.00	-0.001	-0.01	0.00002	9.051	-1.688
24.50	0.000	0.00	0.00001	8.193	-1.733
25.00	0.000	0.00	0.00001	7.325	-1.731

Comb. SLE freq.

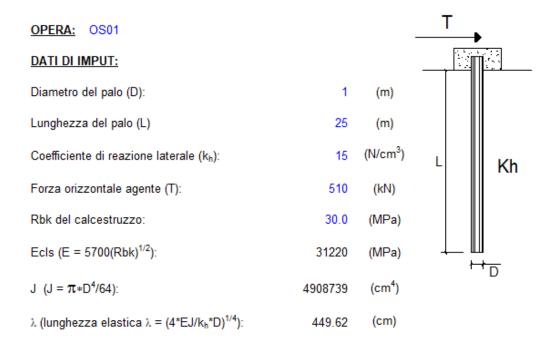


PALI IMPEDITI DI RUOTARE IN TESTA SOGGETTI A FORZE ORIZZONTALI

Z	y(z)	p(z)	α.(z)	M(z)	T(z)
Prof.	Spost.	Press. Lat.	Rotaz.	Mom. Flett.	Taglio
(m)	(cm)	(N/cm²)	(rad)	(kNm)	(kN)
0.00	0.864	12.97	0.00000	1310.636	-583.000
0.50	0.855	12.82	-0.00038	1035.312	-518.420
1.00	0.828	12.41	-0.00068	791.980	-455.245
1.50	0.788	11.82	-0.00090	579.645	-394.594
2.00	0.739	11.08	-0.00106	396.825	-337.304
2.50	0.683	10.24	-0.00116	241.680	-283.975
3.00	0.623	9.34	-0.00122	112.124	-234.995
3.50	0.561	8.42	-0.00124	5.922	-190.583
4.00	0.499	7.49	-0.00123	-79.232	-150.809
4.50	0.439	6.58	-0.00119	-145.653	-115.629
5.00	0.381	5.71	-0.00113	-195.604	-84.905
5.50	0.326	4.89	-0.00106	-231.266	-58.430
6.00	0.275	4.12	-0.00098	-254.699	-35.941
6.50	0.227	3.41	-0.00090	-267.822	-17.141
7.00	0.185	2.77	-0.00081	-272.401	-1.710
7.50	0.146	2.20	-0.00072	-270.039	10.681
8.00	0.113	1.69	-0.00063	-262.172	20.364
8.50	0.083	1.24	-0.00055	-250.071	27.666
9.00	0.057	0.86	-0.00047	-234.850	32.900
9.50	0.036	0.53	-0.00040	-217.466	36.362
10.00	0.017	0.26	-0.00033	-198.737	38.329
10.50	0.002	0.04	-0.00027	-179.344	39.055
11.00	-0.010	-0.14	-0.00021	-159.850	38.772
11.50	-0.019	-0.28	-0.00016	-140.705	37.688
12.00	-0.026	-0.39	-0.00012	-122.264	35.986
12.50	-0.031	-0.47	-0.00008	-104.795	33.827
13.00	-0.035	-0.52	-0.00005	-88.491	31.350
13.50	-0.037	-0.55	-0.00003	-73.479	28.673

Z	y(z)	p(z)	α(z)	M(z)	T(z)
Prof.	Spost.	Press. Lat.	Rotaz.	Mom. Flett.	Taglio
(m)	(cm)	(N/cm²)	(rad)	(kNm)	(kN)
14.00	-0.037	-0.56	0.00000	-59.835	25.895
14.50	-0.037	-0.56	0.00001	-47.587	23.098
15.00	-0.036	-0.54	0.00003	-36.729	20.348
15.50	-0.035	-0.52	0.00004	-27.223	17.696
16.00	-0.032	-0.49	0.00004	-19.010	15.181
16.50	-0.030	-0.45	0.00005	-12.015	12.831
17.00	-0.028	-0.41	0.00005	-6.148	10.667
17.50	-0.025	-0.37	0.00005	-1.315	8.697
18.00	-0.022	-0.33	0.00005	2.583	6.929
18.50	-0.020	-0.29	0.00005	5.646	5.359
19.00	-0.017	-0.26	0.00005	7.974	3.984
19.50	-0.015	-0.22	0.00005	9.661	2.795
20.00	-0.012	-0.19	0.00004	10.798	1.781
20.50	-0.010	-0.15	0.00004	11.469	0.930
21.00	-0.008	-0.13	0.00004	11.753	0.228
21.50	-0.007	-0.10	0.00003	11.720	-0.339
22.00	-0.005	-0.08	0.00003	11.434	-0.785
22.50	-0.004	-0.06	0.00002	10.952	-1.125
23.00	-0.003	-0.04	0.00002	10.324	-1.373
23.50	-0.002	-0.03	0.00002	9.592	-1.540
24.00	-0.001	-0.01	0.00001	8.795	-1.641
24.50	0.000	0.00	0.00001	7.961	-1.684
25.00	0.000	0.00	0.00001	7.118	-1.682

Comb. SLE q.p.



PALI IMPEDITI DI RUOTARE IN TESTA SOGGETTI A FORZE ORIZZONTALI

Z	y(z)	p(z)	α.(z)	M(z)	T(z)
Prof.	Spost.	Press. Lat.	Rotaz.	Mom. Flett.	Taglio
(m)	(cm)	(N/cm²)	(rad)	(kNm)	(kN)
0.00	0.756	11.34	0.00000	1146.525	-510.000
0.50	0.748	11.21	-0.00033	905.676	-453.506
1.00	0.724	10.86	-0.00059	692.813	-398.242
1.50	0.689	10.34	-0.00079	507.065	-345.185
2.00	0.646	9.69	-0.00093	347.137	-295.069
2.50	0.597	8.96	-0.00102	211.418	-248.417
3.00	0.545	8.17	-0.00107	98.084	-205.571
3.50	0.491	7.36	-0.00108	5.181	-166.719
4.00	0.437	6.55	-0.00107	-69.311	-131.925
4.50	0.384	5.76	-0.00104	-127.415	-101.150
5.00	0.333	5.00	-0.00099	-171.112	-74.274
5.50	0.285	4.28	-0.00093	-202.308	-51.113
6.00	0.240	3.60	-0.00086	-222.807	-31.440
6.50	0.199	2.98	-0.00079	-234.287	-14.994
7.00	0.162	2.42	-0.00071	-238.293	-1.496
7.50	0.128	1.92	-0.00063	-236.226	9.343
8.00	0.098	1.48	-0.00056	-229.344	17.815
8.50	0.073	1.09	-0.00048	-218.759	24.202
9.00	0.050	0.75	-0.00041	-205.443	28.781
9.50	0.031	0.47	-0.00035	-190.236	31.809
10.00	0.015	0.23	-0.00029	-173.852	33.530
10.50	0.002	0.03	-0.00023	-156.888	34.165
11.00	-0.008	-0.13	-0.00019	-139.834	33.918
11.50	-0.017	-0.25	-0.00014	-123.087	32.969
12.00	-0.023	-0.34	-0.00011	-106.955	31.480
12.50	-0.027	-0.41	-0.00007	-91.673	29.591
13.00	-0.030	-0.45	-0.00005	-77.410	27.424
13.50	-0.032	-0.48	-0.00002	-64.278	25.082

Z	y(z)	p(z)	α.(z)	M(z)	T(z)
Prof.	Spost.	Press. Lat.	Rotaz.	Mom. Flett.	Taglio
(m)	(cm)	(N/cm²)	(rad)	(kNm)	(kN)
14.00	-0.033	-0.49	0.00000	-52.343	22.652
14.50	-0.032	-0.49	0.00001	-41.629	20.206
15.00	-0.032	-0.47	0.00002	-32.130	17.800
15.50	-0.030	-0.45	0.00003	-23.814	15.480
16.00	-0.028	-0.43	0.00004	-16.630	13.280
16.50	-0.026	-0.40	0.00004	-10.510	11.225
17.00	-0.024	-0.36	0.00005	-5.378	9.331
17.50	-0.022	-0.33	0.00005	-1.151	7.608
18.00	-0.019	-0.29	0.00005	2.259	6.061
18.50	-0.017	-0.26	0.00005	4.939	4.688
19.00	-0.015	-0.22	0.00004	6.976	3.485
19.50	-0.013	-0.19	0.00004	8.451	2.445
20.00	-0.011	-0.16	0.00004	9.446	1.558
20.50	-0.009	-0.14	0.00003	10.033	0.813
21.00	-0.007	-0.11	0.00003	10.281	0.199
21.50	-0.006	-0.09	0.00003	10.252	-0.297
22.00	-0.005	-0.07	0.00002	10.002	-0.687
22.50	-0.003	-0.05	0.00002	9.581	-0.985
23.00	-0.002	-0.04	0.00002	9.031	-1.201
23.50	-0.002	-0.02	0.00002	8.391	-1.348
24.00	-0.001	-0.01	0.00001	7.693	-1.435
24.50	0.000	0.00	0.00001	6.964	-1.473
25.00	0.000	0.00	0.00001	6.227	-1.472

7.5 VERIFICA ARMATURA PALO

7.5.1 VERIFICA IN TESTA AI PALI

Si dispone una doppia gabbia di $24\phi26$ esterna e $24\phi26$ interna di lunghezza totale 5.0m e spirale $\phi12/15$:

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: palo1000 OS01

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30

Resis. compr. di calcolo fcd: 141.60 daN/cm² Resis. compr. ridotta fcd': 70.80 daN/cm²

Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 314750 daN/cm² Resis. media a trazione fctm: 25.60 daN/cm²

Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Rare: 150.00 daN/cm² Sc limite S.L.E. comb. Frequenti: 150.00 daN/cm²

Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm

Sc limite S.L.E. comb. Q.Permanenti: 112.50 daN/cm²

Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.300 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:4500.0daN/cm²Resist. caratt. rottura ftk:4500.0daN/cm²Resist. snerv. di calcolo fyd:3913.0daN/cm²Resist. ultima di calcolo ftd:3913.0daN/cm²

Deform. ultima di calcolo Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 3600.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 50.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

24

Ø

26

26

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione circolare di barre
Xcentro	Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro	Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate
Raggio	Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre	Numero di barre generate equidist. disposte lungo la circonferenza
Ø	Diametro [mm] della singola barra generata

35.0

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	
1	0.0	0.0	39.0	24	

0.0

ARMATURE A TAGLIO

2

Diametro staffe: 12 mm Passo staffe: 15.0 cm

0.0

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale in daN applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [daNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [daN] parallela all'asse princ.d'inerzia y				
Му						
Vy						
Vx		Componente del	Taglio [daN] parall	ela all'asse princ.d'ine	erzia x	
N°Comb.	N	Mx	Му	Vy	Vx	
1	0	191100	0	85000	0	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baricentro (+ se di compressione)				
Mx	Momento fletter	te [daNm] intorno all'asse x pr	nc. d'inerzia (tra parentesi Mom	.Fessurazione)	
	con verso positi	vo se tale da comprimere il len	bo superiore della sezione		
My Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parente				.Fessurazione)	
	con verso positi	vo se tale da comprimere il len	bo destro della sezione		
Noo	N				
N°Comb.	N	Mx	Му		
			_		
1	Λ	135000	Λ		

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baricentro (+ se di compressione)				
Mx	Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)				
	con verso	positivo se tale da comprimere il le	nbo superiore della sezione		
Му	Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fess				
	con verso	positivo se tale da comprimere il le	mbo destro della sezione		
N°Comb.	N	Mx	Му		
1	0	131100 (38569)	0 (0)		

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0 114600 (38569) 0 (0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 9.7 cm
Copriferro netto minimo staffe: 8.5 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)

Mx Momento flettente assegnato [daNm] riferito all'asse x princ. d'inerzia
My Momento flettente assegnato [daNm] riferito all'asse y princ. d'inerzia
N ult Sforzo normale ultimo [daN] baricentrico (positivo se di compress.)
Mx ult Momento flettente ultimo [daNm] riferito all'asse x princ. d'inerzia
My ult Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia
My ult Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia

Mx ult Momento flettente ultimo [daNm] intorno all'asse X di riferimento della sezione Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

 N°Comb
 Ver
 N
 Mx
 My
 N ult
 Mx ult
 My ult Mis.Sic.
 As Tesa

 1
 S
 0
 191100
 0
 0
 287202
 0
 1.503 138.0(11.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace ec 3/7 Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform. unit. massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max ec 3/7 Ys max Xc max Yc max es min Xs min Ys min es max Xs max 1 0.00350 -0.00069 0.0 50.0 0.00243 0.0 39.0 -0.00520 0.0 -39.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi)

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

1 0.000000000 0.000097703 -0.001385171 0.403 0.943

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Passo staffe: 15.0 cm

Ver S = comb. verificata a taglio / N = comb. non verificata

Vsdu Taglio di progetto [daN] = proiez. di Vx e Vy sulla normale all'asse neutro

Vcd Taglio resistente ultimo [daN] lato conglomerato compresso

Vwd Taglio resistente [daN] assorbito dalle staffe

Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.

Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro

E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Teta Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato

Acw Coefficiente maggiorativo della resistenza a taglio per compressione

Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

A.Eff N°Comb Ver Vsdu Vcd Vwd Dmed Teta Ast S 85000 157940 1 102055 79.0 91.0 21.80° 1.000 12.2 14.7(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]
Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]
Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure
D barre Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 125.3 120.0 -2478 63.7 1.00 0.0 0.0 -39.01493 4.0

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 63.7 0.50 1 121.6 0.0 120.0 -2407 0.0 -39.0 1493 4.0

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

S1 Massima tensione [daN/cm²] di trazione nel calcestruzzo valutata in sezione non fessurata
S2 Minima tensione [daN/cm²] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

k3 = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica

Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff
Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Psi = 1-Beta12*(Ssr/Ss)2 = 1-Beta12*(fctm/S2)2 = 1-Beta12*(Mfess/M)2

e sm Deformazione unitaria media tra le fessure II valore limite = 0.4*Ss/Es è tra parentesi

srm Distanza media tra le fessure [mm]

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

Componente momento di prima fessurazione intorno all'asse X [daNm] MX fess. MY fess. Componente momento di prima fessurazione intorno all'asse Y [daNm]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-87.0	0	0.125	26	52.0	0.957 0.001	15 (0.00048)	142	0.279 (0.40)	38569	0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	106.3	0.0	120.0	-2104	0.0	-39.0	1493	63.7	4.0	0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-76.1	0	0.125	26	52.0	0.943 0.000	99 (0.00042)	142	0.240 (0.30)	38569	0

7.5.2 **VERIFICA RIDUZIONE DI ARMATURA TRATTO 1**

Si dispone una gabbia singola di 24φ26 di lunghezza totale 12.0m e spirale φ8/15.

Le sollecitazioni massime di verifica oltre la quota di riduzione armatura (-4.0m da intradosso fondazione) sono le seguenti: (dal par. 7.4)

 $N_{min} = 182 \text{ kN}$ $M_{SLU} = 400 \text{ kNm } T_{SLU} = 220 \text{ kN}$

 $N_{SLErare} = 413 \text{ kN}$ $M_{SLErare} = 280 \text{ kNm}$

 $N_{SLEfreq} = 484 \text{ kN}$ $M_{SLEfreq} = 272 \text{ kNm}$

 $N_{SLEqp} = 793 \text{ kN}$ $M_{SLEqp} = 240 \text{ kNm}$

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: palo1000 OS01-1

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm, costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C25/30

> 141.60 daN/cm² Resis. compr. di calcolo fcd: Resis. compr. ridotta fcd': 70.80 daN/cm²

Def.unit. max resistenza ec2: 0.0020 0.0035 Def.unit. ultima ecu: Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 314750 daN/cm² Resis. media a trazione fctm: 25.60 daN/cm²

Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Rare: 150.00 daN/cm² 150.00 Sc limite S.L.E. comb. Frequenti: daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 112.50 daN/cm² Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.300 mm

ACCIAIO -B450C Tipo:

> 4500.0 Resist. caratt. snervam. fyk: daN/cm² Resist. caratt. rottura ftk: 4500.0 daN/cm² Resist. snerv. di calcolo fyd: 3913.0 daN/cm² Resist. ultima di calcolo ftd: 3913.0 daN/cm²

Deform. ultima di calcolo Epu: 0.068

2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito 1.00 Coeff. Aderenza istantaneo ß1*ß2: Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 3600.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 50.0 cm X centro circ.: 0.0 cmY centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Diametro [mm] della singola barra generata

N°Gen. Xcentro Ycentro Raggio N°Barre Ø 0.0 24 1 0.0 39.0 26

ARMATURE A TAGLIO

Diametro staffe: 8 mm Passo staffe: 15.0 cm

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)									
Mx	Momento flettente [daNm] intorno all'asse x princ. d'inerzia									
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [daNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez								
Vy		Componente del Taglio [daN] parallela all'asse princ.d'inerzia y								
Vx		Componente del Taglio [daN] parallela all'asse princ.d'inerzia x								
N°Comb.	N	Mx	Му	Vy	Vx					
1	18200	40000	0	22000	0					

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Storzo normale in	daN applicato nel Baricentro	(+ se di compressione)	
Mx	Momento flettente	[daNm] intorno all'asse x pri	nc. d'inerzia (tra parentesi Mom. l	essurazione)
	con verso positivo	se tale da comprimere il lem	bo superiore della sezione	
Му	Momento flettente	[daNm] intorno all'asse y pri	nc. d'inerzia (tra parentesi Mom.l	essurazione)
	con verso positivo	se tale da comprimere il lem	bo destro della sezione	
NIOI-	N1	14.		
N°Comb.	N	Mx	Му	

28000

0

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

41300

N	Sforzo normale in daN applicato nel Baricentro (+ se di compressione)								
Mx	Momento fle	Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)							
	con verso p	con verso positivo se tale da comprimere il lembo superiore della sezione							
Му	Momento fle	ettente [daNm] intorno all'asse y p	rinc. d'inerzia (tra parentesi M	om.Fessurazione)					
	con verso positivo se tale da comprimere il lembo destro della sezione								
N°Comb.	N	Mx	Му						
1	48400	27200 (42408)	0 (0)						

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo norr	nale in daN applicato nel Baricentr	o (+ se di compressione)	
Mx	Momento fl	ettente [daNm] intorno all'asse x pi	rinc. d'inerzia (tra parentesi M	om.Fessurazione)
	con verso p	oositivo se tale da comprimere il ler	nbo superiore della sezione	
Му	Momento fl	ettente [daNm] intorno all'asse y pi	rinc. d'inerzia (tra parentesi M	om.Fessurazione)
	con verso p	positivo se tale da comprimere il ler	mbo destro della sezione	
N°Comb.	N	Mx	Му	
1	79300	24000 (57204)	0 (0)	

RISULTATI DEL CALCOLO

1

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 9.7 cm Interferro netto minimo barre longitudinali: 7.6 cm Copriferro netto minimo staffe: 8.5 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)

Mx Momento flettente assegnato [daNm] riferito all'asse x princ. d'inerzia
My Momento flettente assegnato [daNm] riferito all'asse y princ. d'inerzia
N ult Sforzo normale ultimo [daN] baricentrico (positivo se di compress.)
Mx ult Momento flettente ultimo [daNm] riferito all'asse x princ. d'inerzia
My ult Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia
My ult Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia

Mx ult Momento flettente ultimo [daNm] intorno all'asse X di riferimento della sezione Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N	Mx	My	N ult	Mx ult	My ult Mis.Sic.	As Tesa
1	S	18200	40000	0	18203	170591	0 4.265	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Com	b ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00160	0.0	50.0	0.00219	0.0	39.0	-0.00709	0.0	-39.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

1 0.00000000 0.000119043 -0.002452147 ----

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Passo staffe: 15.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Vsdu Taglio di progetto [daN] = proiez. di Vx e Vy sulla normale all'asse neutro

Vcd Taglio resistente ultimo [daN] lato conglomerato compresso Vwd Taglio resistente [daN] assorbito dalle staffe

Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.

Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro

E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Teta Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato

Acw Coefficiente maggiorativo della resistenza a taglio per compressione

Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

bw

Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Vsdu	Vcd	Vwd	Dmed	bw	Teta	Acw	Ast	A.Eff
1	S	22000	157857	48179	79.9	88.5 2	21.80°	1.016	3.1	6.8(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver	S = comb. verificata/ N = comb. non verificata
Sc max	Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]
Xc max, Yc max	Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min	Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]
Xs min, Ys min	Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.	Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.	Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure
D barre	Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure
Beta12	Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb	Ver	Sc max	Xc max Yc max	x Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	36.1	0.0 120	0 -553	0.0	-39.0	1493	37.2	10.2	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	35.0	0.0 120.0	-475	0.0	-39.0	1493	37.2	10.2	0.50

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
S1	Massima tensione [daN/cm²] di trazione nel calcestruzzo valutata in sezione non fessurata
S2	Minima tensione [daN/cm²] di trazione nel calcestruzzo valutata in sezione fessurata
k2	= 0.4 per barre ad aderenza migliorata
k3	= 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica
Ø	Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
Psi	= 1-Beta12*(Ssr/Ss) ² = 1-Beta12*(fctm/S2) ² = 1-Beta12*(Mfess/M) ²
e sm	Deformazione unitaria media tra le fessure [Il valore limite = 0.4*Ss/Es è tra parentesi
srm	Distanza media tra le fessure [mm]
wk	Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi
MX fess.	Componente momento di prima fessurazione intorno all'asse X [daNm]
MY fess.	Componente momento di prima fessurazione intorno all'asse Y [daNm]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-16.4	0	0.125	26	52.0	-0.215 0	.00009 (0.00009)	177	0.029 (0.40)	42408	0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max Yc max	Sf min >	Xs min Ys	s min	Ac eff.	As eff.	D barre	Beta12
1	S	30.5	0.0 120.0	-198	0.0	-39 0	1036	26.5	10.2	0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE

S1 Comb. Ver S2 k3 Cf Psi e sm Mx fess My fess

1 S -10.7 0 0.125 26 52.0 -1.841 0.00004 (0.00004) 175 0.012 (0.30) 57204 0

7.5.3 VERIFICA RIDUZIONE DI ARMATURA TRATTO 2

Le sollecitazioni di cui al paragrafo precedente si utilizzano per verificare le sezioni di armatura delle gabbie che si dispongono per il resto della lunghezza del palo. Si adotta una gabbia composta da 8φ20 pari ad un'area di 0.32% della sezione di calcestruzzo.

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: palo1000 OS01-2

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30

Resis. compr. di calcolo fcd: 141.60 daN/cm²
Resis. compr. ridotta fcd': 70.80 daN/cm²

Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 314750 daN/cm² Resis. media a trazione fctm: 25.60 daN/cm²

Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Rare:150.00daN/cm²Sc limite S.L.E. comb. Frequenti:150.00daN/cm²Ap.Fessure limite S.L.E. comb. Frequenti:0.400mmSc limite S.L.E. comb. Q.Permanenti:112.50daN/cm²Ap.Fessure limite S.L.E. comb. Q.Permanenti:0.300mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:4500.0daN/cm²Resist. caratt. rottura ftk:4500.0daN/cm²Resist. snerv. di calcolo fyd:3913.0daN/cm²Resist. ultima di calcolo ftd:3913.0daN/cm²

Deform. ultima di calcolo Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

0.50

Sf limite S.L.E. Comb. Rare: 3600.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 50.0 cm X centro circ.: 0.0 cm

Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate
Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	39.0	8	20

ARMATURE A TAGLIO

Diametro staffe: 8 mm Passo staffe: 15.0 cm

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale in daN applicato nel Baric. (+ se di compressione)								
Mx		Momento flettente [daNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.								
Му		Momento flettente [daNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.								
Vy		Componente del Taglio [daN] parallela all'asse princ.d'inerzia y								
Vx		Componente del	Taglio [daN] paral	ela all'asse princ.d'ine	erzia x					
N°Comb.	N	Mx	Му	Vy	Vx					
1	18200	40000	0	22000	0					

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 41300 28000 0

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 48400 27200 (34307) 0 (0)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 79300 24000 (45637) 0 (0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 10.0 cm Interferro netto minimo barre longitudinali: 27.8 cm Copriferro netto minimo staffe: 9.2 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)

Mx Momento flettente assegnato [daNm] riferito all'asse x princ. d'inerzia
My Momento flettente assegnato [daNm] riferito all'asse y princ. d'inerzia
N ult Sforzo normale ultimo [daN] baricentrico (positivo se di compress.)
Mx ult Momento flettente ultimo [daNm] riferito all'asse x princ. d'inerzia
My ult Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia
My ult Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia

Mx ult Momento flettente ultimo [daNm] intorno all'asse X di riferimento della sezione Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb Ver Ν Mx N ult Mx ult My ult Mis.Sic. As Tesa S 18200 1 40000 18176 46951 0 1.174

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Com	b ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00564	0.0	50.0	0.00115	0.0	39.0	-0.01548	0.0	-39.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

1

S

22000

RELAZIONE DI CALCOLO GEOTECNICA DEI PALI - OS01

x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi) C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb а b x/d C.Rid

0.000000000 0.000213305 -0.007165232 1

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Passo staffe: 15.0 cm

Ver S = comb. verificata a taglio / N = comb. non verificata

Vsdu Taglio di progetto [daN] = proiez. di Vx e Vy sulla normale all'asse neutro

Vcd Taglio resistente ultimo [daN] lato conglomerato compresso

Vwd Taglio resistente [daN] assorbito dalle staffe

Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro. Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Teta Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Acw Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature.

> L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb A.Eff Ver Vsdu Vcd Vwd Dmed Teta Acw Ast bw

84.4

73.2 21.80°

1.016

3.0

6.8(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

50703

Ver S = comb. verificata/ N = comb. non verificata

137977

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure D barre Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 69.0 0.0 120.0 -1980 0.0 -39.0 3.1 28.0 1.00 511

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 1 63.4 0.0 120.0 -1587 0.0 -39.0511 3.1 28.0 0.50

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver.

S1 Massima tensione [daN/cm²] di trazione nel calcestruzzo valutata in sezione non fessurata S2 Minima tensione [daN/cm²] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

k3 = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica

Ø	Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
Psi	= 1-Beta12*(Ssr/Ss) ² = 1-Beta12*(fctm/S2) ² = 1-Beta12*(Mfess/M) ²

Deformazione unitaria media tra le fessure . Il valore limite = 0.4*Ss/Es è tra parentesi e sm

Distanza media tra le fessure [mm] srm

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

MX fess. Componente momento di prima fessurazione intorno all'asse X [daNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [daNm]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-20.3	0	0.125	20	55.0	0.205 0.0003	32 (0.00032)	329	0.177 (0.40)	34307	0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	42.1	0.0 120.0	-408	0.0	-39.0	511	3.1	28.0	0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-13.5	0	0.125	20	55.0	-0.808 0.00	(80000.0) 800	329	0.046 (0.30)	45637	0

Si riportano le informazioni in ottemperanza a quanto disposto dal capitolo 10 della vigente normativa tecnica (DM2018).

• Tipo di analisi svolta

Il calcolo viene eseguito in ambito statico lineare. Per quanto riguarda l'analisi sismica, si adottano le procedure di verifica per struttura in zona 4, applicando un sistema di forze pseudo-statiche. calcolate in modo semplificato. L'analisi strutturale viene eseguita con il metodo degli spostamenti, mentre le verifiche delle sezioni sono state effettuate secondo metodi della tecnica delle costruzioni, come indicato dettagliatamente nel seguito della presente relazione. Le combinazioni di carico sono indicate nel seguito: esse sono in numero tale da coprire tutte le possibili casistiche.

Origine, caratteristiche e affidabilità dei codici di calcolo

Le analisi strutturali, ove non siano effettuate per via analitica, sono eseguite con un codice di calcolo sviluppato dal progettista in un linguaggio di programmazione OpenSource (linguaggio Octave). Tale codice di calcolo è basato sul metodo degli spostamenti e consente la soluzione dei problemi di telai piani in ambito statico.

Validazione dei codici

I risultati del codice sono stati validati dal progettista con riferimento a vari casi di studio. la cui soluzione esatta si può reperire nella letteratura specialistica. Le verifiche delle sezioni sono state eseguite con fogli di lavoro oppure con il software di libera distribuzione VcaSLU (Prof. Gelfi). anch'essi opportunamente validati con calcoli manuali.

Modalità di presentazione dei risultati

Le modalità di applicazione dei carichi sono descritte nella relazione con riferimento alle varie parti di struttura. Considerando la semplicità dello stato di carico la rappresentazione grafica appare superflua. I risultati sono presentati sottoforma di diagrammi delle componenti di azione interna oppure come tabelle dei valori di azioni interne nei punti più significativi. In questo modo si può fare una valutazione immediata dello stato di sollecitazione nelle membrature strutturali.

• Giudizio motivato di accettabilità dei risultati

Per quanto riguarda la verifica dei risultati, sono stati effettuati confronti delle azioni interne con casi analoghi ma più semplici (travi semplicemente appoggiate o incastrate). Le reazioni vincolari sono state controllate in fase di progettazione. La rappresentazione delle configurazioni deformate, che sono state comunque esaminate in sede di progettazione per avere conferma della correttezza del calcolo, non forniscono informazioni utili alla verifica di sicurezza. Non si ritiene pertanto indispensabile il loro inserimento nella relazione.

8.1 ALLEGATO 1 VALIDAZIONE RC-SEC

Geostru Software - Validazione codice di calcolo RC-SEC

Validazione del codice di calcolo

Informativa sull'affidabilità dei codici di calcolo D.M. 14-01-2008 paragrafo 10.2.

Le fasi di progettazione e sviluppo dei software *GeoStru* sono sottoposti al controllo gestione di qualità aziendale ISO (*International Organization for Standardization*) 9001:2000 certificato da CVI ITALIA srl - *Certificato nr. 7007 1 04*.

Sono stati fomiti degli esempi di calcolo, in allegato a questo documento, al fine di verificare la validità delle procedure di calcolo ed effettuare le procedure di controllo con altri strumenti di calcolo.

I software *GeoStru* sono dotati di sistemi di controllo dei dati di input e di output molto sofisticati i quali sono in grado di rilevare errori gravi tali da non consentire le corrette elaborazioni.

Bianco 15/09/2010

Geostru Software – Validazione codice di calcolo RC-SEC

RC-SEC

Versione: 2011.4 Rev. 217

Validazione del codice di calcolo

Geostru Software - Validazione codice di calcolo RC-SEC

PREMESSA

Nell'ambito delle verifiche di affidabilità previste per i codici di calcolo (punto 10.2 DM 14 Gennaio 2008) è richiesta la presente documentazione del produttore che illustri:

- campi di impiego
- 2. basi teoriche ed algoritmi impiegati
- 3. casi di prova risolti e commentati con i relativi files di input.

1 CAMPI DI IMPIEGO

Il programma può essere utilizzato per la verifica ed il semiprogetto delle armature delle sezioni in c.a. ordinario agli stati limite ultimi e di esercizio secondo le nuove norme di cui al DM 14.01.2008 nonché secondo l'ultima versione dell'Eurocodice 2 (UNI EN 1992-1-1-2005). Sono presi in considerazione sia sollecitazioni rette che deviate (presso-tenso flessione deviata con la la presenza contemporanea delle due componenti del taglio). E' altresì possibile eseguire le verifiche con il metodo delle tensioni ammissibili secondo il DM 14.02.1992. Per singoli elementi strutturali (travi o pilastri) è previsto il calcolo delle frecce in esercizio tenendo conto della fessurazione e della viscosità.

Per la verifica di pilastri rettangolari snelli è implementato il metodo della colonna modello.

2 BASI TEORICHE ED ALGORITMI IMPIEGATI

Sono illustrati in dettaglio nel manuale d'uso del programma in riferimento ai singoli problemi trattati. Vengono comunque di seguito illustrate particolari caratteristiche conseguenti alle novità introdotte dal DM 14.01.2008 d'ora in poi denominato NTC.

Come legame costitutivo del calcestruzzo il programma impiega sempre il diagramma parabola-rettangolo prevedendo valori differenti delle deformazioni unitarie caratteristiche (ϵ_{c2} , ϵ_{cu}) a seconda se la classe di resistenza è superiore o inferiore alla C50/60 (Punto 4.1.2.1.2.2 NTC). Il tratto curvilineo del diagramma è definito dall'espressione:

$$\sigma_{c} = f_{cd} \left[1 - \left(1 - \frac{\varepsilon_{c}}{\varepsilon_{c2}} \right)^{n} \right]$$
 (1)

Nelle NTC l'esponente n vale sempre 2 (parabola). Nell'Eurocodice2 n=2 fino alla classe C50/60 mentre per classi superiori il tratto curvilineo diventa una curva esponenziale avente sempre la formulazione (1) ma con n=1,4+23,4 [(90-f_{ck}/10)/100]4 (f_{ck} in daN/cm²), formulazione prevista in programma se si è selezionata l'opzione di calcolo EC2).

Il tratto orizzontale del diagramma vale:

 $\sigma_c = f_{cd} = \alpha_{cc} \; f_{ck} \; / \; \gamma_c \qquad \qquad \text{con } \; \alpha_{cc} = 0.85 \; e \; \; \gamma_c = 1.5 \; (\text{nel DM96 era} \; \gamma_c = 1.6).$

Altra importante novità è costituita dal fatto che in Italia l'acciaio per cemento armato ordinario dovrà essere costituito in pratica dal solo tipo C450 caratterizzato da:

resistenza a trazione caratteristica $f_{tk} \ge 540 \text{ N/mm}^2$

2

GeoStru

Geostru Software - Validazione codice di calcolo RC-SEC

resistenza a snervamento caratteristica f

 $f_{yk} \ge 450 \text{ N/mm}^2$

 \triangleright allungamento unitario per carico massimo $\epsilon_{uk} \ge 0.075$.

Sia per le NTC che per l'EC2 è possibile assumere come diagramma sforzi deformazioni:

- ▶ un diagramma bilineare con incrudimento e deformazione unitaria di calcolo ultima pari a $\varepsilon_{ud} = 0.9 \ \varepsilon_{uk}$. L'incrudimento (pendenza del tratto plastico del diagramma) è definito dal rapporto $k = (f_t/f_y)_k$ che deve essere compreso tra 1,15 e 1,35. Poiché all'aumentare di questo rapporto corrisponde un aumento delle caratteristiche di resistenza ultime della sezione riteniamo che, prudenzialmente, nei calcoli di progetto vada utilizzato il valore minimo di 1,15; come conseguenza il valore massimo della tensione ultima dell'acciaio da assumere in corrispondenza della deformazione ultima di calcolo ε_{ud} vale 1,15· f_{yd} essendo f_{yd} = f_{yk} / γ_s il valore della tensione di snervamento di calcolo (γ_s = 1,15 sia per NTC che per EC2).
- Un diagramma bilineare con tratto plastico orizzontale (f_s = f_{yd}) senza limite di deformazione

Il programma consente l'adozione di entrambi i diagrammi ma, per quello elasticoperfettamente plastico indefinito, richiede comunque la definizione dei valori della deformazione ultima e di calcolo dell'acciaio; incrementando tali deformazioni rispetto a quelle prima definite per l'acciaio incrudito non si riscontrano apprezzabili differenze nei risultati

La verifica a taglio viene eseguita col nuovo metodo proposto dalle NTC (e da EC2) che impiega la schematizzazione del traliccio con inclinazione θ dei puntoni di calcestruzzo (rispetto all'asse della trave) variabile tra i seguenti limiti:

$$1 \le ctg \theta \le 2,5$$

Il programma calcola (in semiprogetto o verifica) le resistenze a taglio lato compressione e trazione considerando l'angolo α di inclinazione trasversale delle staffe (rispetto all'asse della trave) sempre pari a 90°. In semiprogetto si parte assumendo per θ il suo minimo valore (21°,8 \leq θ \leq 45°) che soddisfa la relazione di resistenza a taglio compressione (ponendo $V_{\rm Red}$ = $V_{\rm Ed}$); ottenuto così θ , dalla relazione di resistenza lato trazione si ricava l'area delle staffe. Si fa notare che le armature longitudinali della trave, dimensionate in base alle sollecitazioni flessionali, dovranno essere prolungate (regola della traslazione) di una misura pari a: $0.9 \cdot d$ \cdot ctg θ /2 (al massimo uguale a 1,125·d per ctg θ =2,5).

Si noti che, a differenza di quanto previsto nel DM96, il valore di f_{cd} impiegato nel calcolo delle resistenze al taglio è uguale al valore massimo del tratto plastico del diagramma di progetto tensioni-deformazioni del conglomerato impiegato per la verifica per tensioni normali (nel DM96 era maggiore valendo $f_{cd} = f_{ck}/1,6 > 0.85 \ f_{ck}/1,5)$.

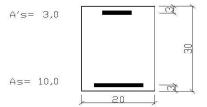
Nel caso di contemporanea presenza di torsione e taglio l'angolo θ delle bielle compresse deve assumere un unico valore per entrambe le sollecitazioni e, pertanto, il programma prevede l'assegnazione preventiva di θ per torsione nelle 'opzioni armature e di calcolo' (nel menu Opzioni).

3 CASI DI PROVA

Gli esempi che seguono sono tutti presenti nella cartella "\ESEMPI" della directory di installazione del programma. Essi verranno illustrati sia in relazione alla modalità di immissione dei dati, sia confrontando i risultati ottenuti sulla base degli algoritmi assunti nel calcolo con quelli riportati da altri autori e/o programmi.

Le stampe complete di input ed output relative a tutti gli esempi sono naturalmente riproducibili caricando detti files di esempio e mandando in esecuzione il programma.

7


Geostru Software - Validazione codice di calcolo RC-SEC

I primi esempi sono quasi tutti tratti dal volume "Progettazione di strutture in calcestruzzo armato" realizzato per AICAP da Pubblicemento s.r.l. in quanto è uno dei pochi testi aggiornato alle NTC ed all'ultima versione dell'Eurocodice 2.

3.1 ESEMPIO 1

Si fa riferimento alla sezione rettangolare 20x30 in figura di cui al punto 7.3.2.1 del citato volume. Si cerca il momento resistente ultimo M_{Rd} per N_{Rd} =0 (flessione semplice) avendo assunto un conglomerato con f_{ck} =300 daN/cm² (f_{cd} = 300·0,85/1,5=170 daN/cm²) ed armature con f_{yk} = 4500 daN/cm² (f_{yk} = 4500 daN/cm²).

Per prima cosa occorre accertarsi che nell'*archivio materiali* siano presenti i dati relativi al conglomerato ed all'acciaio indicati. In particolare per l'acciaio B450C ponendo $f_{td} = 3910\,$ si

assume orizzontale (come nel volume) il pianerottolo plastico del diagramma sforzi deformazioni. Per ottenere le esatte aree di acciaio indicate si prevedono opportuni diametri delle barre (non esistenti in commercio). Si assegna inoltre allo sforzo normale il valore 0 (flessione semplice) mentre al momento Mx un qualsiasi valore positivo. Il programma fornisce per il momento resistente il valore $M_{\rm Rd}=9071$ daNm di poco inferiore al valore 9100 indicato nel testo che peraltro utilizza il blocco rettangolare per il diagramma sforzi deformazioni del calcestruzzo.

3.2 ESEMPIO 2

Al punto 7.5.1 del citato volume viene calcolata a pressoflessione retta una sezione rettangolare 50×100 con armature simmetriche di area pari a 50cm^2 e copriferro di 5 cm. Calcestruzzo ed acciaio sono gli stessi dell'esempio precedente. Questa volta viene utilizzato il diagramma parabola-rettangolo. Nel testo vengono calcolati i momenti resistenti ultimi (M_{Rd}) in corrispondenza a prefissati differenti valori assegnati allo sforzo normale che di seguito vengono confrontati con quelli ottenuti dal programma (M'_{Rd}):

1 37 1 37 1	£2
l Nr. I Mr. I	M'na

E

Geostru Software - Validazione codice di calcolo RC-SEC

(daN)	(daNm)	(daNm)
60000	20330	20350
200000	25170	25190
500000	25850	25860
1000000	9770	9910

I risultati appaiono ben concordanti per i primi tre valori (ottenuti dal testo a partire da valori tabellari per il l'integrazione del diagramma parabolico del calcestruzzo). La maggiore differenza si ha per l'ultimo caso con $N_{\text{Ed}} = 1000000$ daN che in realtà non viene ottenuto, nel testo citato, dal calcolo ma da interpolazione tra i due assetti di rottura che comprendono il punto di rottura cercato. Il programma non considera inoltre verificata a taglio la sezione (anche con taglio assegnato nullo) in quanto la resistenza a taglio lato calcestruzzo va a zero col termine (presente nella relazione 4.1.19 NTC) $\alpha_c = 2.5(1-\sigma_{cp}/f_{cd}) = 0$ essendo $\sigma_{cp} =$ $N_{Ed}/A_c = 1000000/(50 \times 100) = 200 > f_{cd}$.

3.3 ESEMPIO 3

Allo stesso punto 7.5.1 del citato volume viene calcolata a pressoflessione retta la sezione rettangolare 50×100 con armature simmetriche di area pari a 70cm² e copriferro di 5 cm. Il calcestruzzo questa volta è di classe f_{ck}=700 daN/cm²: nel caso di calcolo secondo EC2 va assunto il diagramma con curva esponenziale risultando $f_{ck} > 500$.

I momenti resistenti a confronto sono i seguenti (valori dello sforzo normale prefissati):

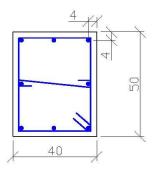
N_{Ed}	$ m M_{Rd}$	M' _{Rd} EC2	M'Rd NTC
(daN)	(daNm)	(daNm)	(daNm)
150000	31370	31360	31360
500000	42460	42400	42740
1000000	40520	40020	42640
1900000	6950	18340	20730

Nell'ultima colonna sono riportati i momenti ultimi ottenuti selezionando l'opzione di calcolo secondo le NTC (diagramma parabola rettangolo). All'aumentare dello sforzo normale si nota che i momenti resistenti ottenuti con le NTC sono meno conservativi di quelli che con l'EC2 si ottengono dal diagramma esponenziale rettangolo. L'ultimo valore del momento resistente riportato nel citato testo appare troppo approssimato rispetto a quelli ottenuti dal programma.

3.4 ESEMPIO 4

Geostru Software - Validazione codice di calcolo RC-SEC

Calcolo delle staffe verticali (di diametro pari a 12mm) per una sezione rettangolare 20x80 copriferro 50cm e taglio di progetto V_{Ed} = 50000 daN. Conglomerato fck=300; Acciaio C450B. (Punto 8.1.4.1.3.2 vol.citato)


Assunti momento flettente Mx ed armature longitudinali arbitrarie, si è eseguito il calcolo di progetto della sezione avendo preventivamente assegnato il valore di 12 al diametro delle staffe nella finestra delle opzioni armature e di calcolo.

Il calcolo fornisce un passo di 20,3 cm alle staffe ϕ 12 assunte in perfetto accordo col passo di cm 20 indicato dal testo.

3.5 ESEMPIO 5

Nel caso di pressoflessione deviata non si è trovato alcun esempio numerico in letteratura trattato con le nuove norme. Si considera pertanto un caso di calcolo trattato solo col presente programma.

Si è considerata la sezione in figura relativa ad un pilastro rettangolare $40\times60~$ armata con $8\phi16$ (Calcestruzzo C28/35. Acciaio C450B).

Il calcolo è stato effettuato per le seguenti 3 combinazioni allo stato limite ultimo:

N_{Ed}	Mx_{Ed}	My_{Ed}	Vy_{Ed}	$V_{X_{Ed}}$
(daN)	(daNm)	(daNm)	(daN)	(daN)
50000	14000	11000	14000	11000
50000	20000	0	20000	0
50000	0	15714	0	15714

Le nuove NTC al punto 7.4.4.2.2.1 consentono che la verifica a presso-flessione deviata (prima combinazione in tabella) possa essere sostituita da due verifiche a presso-flessione retta in cui la resistenza sia ridotta al 70% di quella effettiva: ciò che equivale ad incrementare gli sforzi di progetto di 1/0,7 = 1,4286. Si sono così ricavati gli sforzi retti "equivalenti" riportati nella seconda e terza combinazione. Nella citato punto normativo si fa riferimento ai soli momenti flettenti (lo sforzo normale non va incrementato in quanto la

Geostru Software - Validazione codice di calcolo RC-SEC

misura della sicurezza va sempre effettuata a sforzo normale costante). Nulla si dice circa la verifica a taglio in presenza delle due componenti Vx,Vy. Anche per il taglio, a scopo di controllo, la verifica a taglio deviato di cui alla prima combinazione è stata separata in due verifiche separate di tipo retto incrementando gli sforzi col coefficiente 1,4286.

Il tabulato di verifica di seguito riportato mostra che nelle verifiche a pressoflessione retta (seconda e terza combinazione) le misure della sicurezza (1,149 e 1,146) risultano entrambe maggiori di quella a presso-flessione deviata (1,062). Non così per quanto riguarda le verifiche a taglio in cui si può notare che l'armatura trasversale strettamente necessaria per la prima combinazione (deviata) risulta superiore a quella della seconda e terza combinazione (rette).

Da ciò si deduce che per il taglio a due componenti non ci sono sufficienti indicazioni normative per la sua sostituzione con due tagli equivalenti in sollecitazione retta (manca cioè un diagramma di interazione semplificato e conservativo).

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: ESEMPIO_5

```
Descrizione Sezione:
Metodo di calcolo resistenza:
Normativa di riferimento:
                                                          Stati Limite Ultimi
                                                                            N.T.C.
Tipologia sezione:
                              Pilastro rettangolare ad armatura simm.
Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità:
Posizione sezione nell'asta:
                                                               Zona non sismica
                                                                In zona critica
```

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO	=	Classe: C28/35 Resis. compr. di calcolo fcd: 158.60 daN/cm² Resis. compr. ridotta fcd: 79.30 daN/cm² Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035
		Diagramma tensione-deformaz.: Parabola-Rettangolo
		Modulo Elastico Normale Ec : 323080 daN/cm²
		Coeff. di Poisson : 0.20
		Resis. media a trazione fctm: 28.80 daN/cm²
ACCIAIO	-	Tipo: B450C
		Resist. caratt. snervam. fyk: 4500.0 daN/cm²
		Resist. caratt. rottura ftk: 5400.0 daN/cm²
		Resist. snerv. di calcolo fyd: 3913.0 daN/cm²
		Resist. ultima di calcolo ftd: 4500.0 daN/cm²
		Deform, ultima di calcolo Epu: 0.068
		Modulo Elastico Ef : 2000000 daN/cm²
		Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base:	40.0 cm		
Altezza:	50.0 cm		
N. totale ba	rre		8
Diametro bar	re	5	16 mm
Copriferro (dal baric. barre)	:	4.0 cm
Coordinate B	arre nei vertici	2	

N.Barı	ra i	Ascissa	Х,	cm	Ordinata	Υ,	cn
1		-16	.0		-21	.0	
2		-16	. 0		21	.0	
3		16	.0		21	.0	
4		16	. 0		-21	.0	

Generazioni di barre lungo i lati:

Geostru Software - Validazione codice di calcolo RC-SEC

Numero assegnato alla singola generazione lineare di barre N.Barra In. Numero della barra iniziale (di vertice) cui si rigerisce la generazione
N.Barra Fin. Numero della barra finale (vertice) cui si rigerisce la generazione
N.Barre Numero di barre generate equidist. comprese tra la barra iniz. e la fin.

N.G	en.	N.Barra In.	N.Barra Fin.	N.Barre
	1	1	4	1
	2	2	3	1
	3	1	2	1
	4	4	3	1

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (positivo se di compress.) Coppia concentrata in daNm applicata all'asse x princ. d'inerzia della sezione Mx converso positivo se tale da comprimere il lembo superiore della sezione Coppia concentrata in daNm applicata all'asse y princ. d'inerzia della sezione con verso positivo se tale da comprimere il lembo destro della sezione Componente del Taglio [daN] nella direzione dell'asse princip. y della sezione Componente del Taglio [daN] nella direzione dell'asse princip. x della sezione MV Vy Vx

N.Comb.	N	Mx	Му	Vy	Vx
1	50000	14000	-11000	14000	11000
2	50000	20000	0	20000	0
3	50000	0	-15714	0	15714

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 3.2 cm Interferro netto minimo barre longitudinali: 14.4 cm $\,$ Copriferro netto minimo staffe: 2.4 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Sforzo normale assegnato [in daN] (positivo se di compressione)Ver Ν Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.) Mx My N ult Mx ult Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000

N.Comb.	Ver	N	M×	Му	N ult	Mx ult	My ult	Mis.Sic.
1	S	50000	14000	11000	49983	14828	11729	1.062
2	S	50000	20000	0	49995	22988	0	1.149
3	S	50000	0	15714	49988	0	18004	1.146

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione Deform. Unit. Massima del conglomerato a compressione Deform unit. del conglomerato nella fibra a 3/7 dell'altezza efficace Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) ec 3/7 Xc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) Yc max ef min Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.) Deform. unit. massima nell'acciaio (positiva se di compress.) Xf min Yf min ef max Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.) Xf max Yf max

N.Comb.	ec max			Yc max	ef min				Xf max	
1		-0.00031								
2	0.00350	-0.00232	-20.0	25.0	0.00241	-16.0	21.0	-0.00900	-16.0	-21.0
3	0.00350	-0.00232	20.0	25.0	0.00214	16.0	21.0	-0.00873	-16.0	-21.0

Geostru Software - Validazione codice di calcolo RC-SEC

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

а b c x/d	Coeff. b no	ell'eq. dell'a ell'eq. dell'a	sse neutro aX+bY+ sse neutro aX+bY+ sse neutro aX+bY+ tura in presenza	c=0 nel rif.	X,Y,O gen. X,Y,O gen.
C.Rid.	Coeff. di	riduz. momenti	per sola flessio	ne in travi	continue
N.Comb.	а	b	с	x/d	C.Rid.
1	0.000112833	0.000087460	-0.000943178		
2	0.000000000	0.000271812	-0.003295296		
3	0.000339655	0.000000000	-0.003293104		

ARMATURE A TAGLIO DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

Diametro staffe:	8 mm	
Passo staffe:	18.0 cm	[Passo massimo di normativa = 19.2]
N.Bracci staffe:	2	
Area staffe/m :	5-6 cm ² /m	[Area Staffe Minima normativa = 2.9]

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Ver Vsdu Vru Vcd Vwd Dmed	Tag Tag Tag Tag Alt	rlio ager rlio res: rlio [da] rlio res: ezza ut:	nte [daN] istente 1 N] assor] istente	= proie ultimo [d pito dal [daN] ass	z. di Vx aN] lato conglome orbito d	e Vy s conglo rato ne alle st	merato co l calcolo affe	male all'	taffe	
	nei	utro.								
	Ven	gono pre	ese nella	a media l	e strisc	e con a	lmeno un	estremo	compress	0.
	Ιp	esi del:	la media	sono cos	tituiti	dalle s	tesse lu	nghezze d	elle str	isce.
bw	Lar	ghezza i	media res	sistente	a taglio	[cm] m	isurate p	parallel.	all'ass	e neutro.
	E *	data da:	l rapport	to tra l'	area del	le sopr	adette s	trisce re	sistenti	e Dmed.
Teta		Angolo	[gradi s	sessadec.	1 di inc	linazio	ne dei p	untoni di	conglom	erato
Acw		Coeffi	ciente ma	aggiorati	vo della	resist	enza a ta	aglio per	compres	sione
Afst		Area s	taffe st	cettament	e necess	arie a	taglio p	er metro	di trave	$[cm^2/m]$
V.Comb.	Ver	Vsdu	Vcd	Vwd	Dmed	bw	Teta	Acw	Afst	
1	S	17271	49148	18497	37.6	45.9	21.80°	1.158	5.2	
6	92		F 0 4 0 4	00 54 0	4.5.0	4.0	00 000			

Geostru Software - Validazione codice di calcolo

3.6 ESEMPIO 6

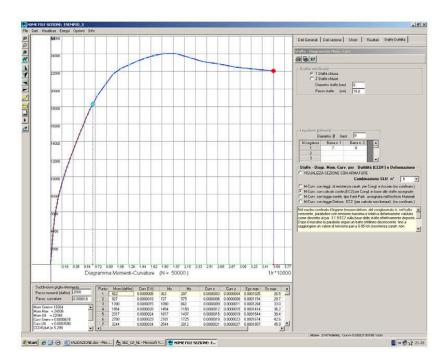
Si fa riferimento alla stessa sezione rettangolare di pilastro trattata nell'esempio precedente allo scopo di valutare con calcolo diretto la duttilità di curvatura posseduta dalla sezione per ognuna delle tre combinazioni assegnate. Nel caso di calcolo sismico il punto 7.4.4 NTC prescrive, per le sezioni ricadenti in zona critica, che il valore della duttilità di curvatura μ_φ risulti non minore di prefissati valori. Al punto 7.3.6.2 le NTC comunque consentono di omettere tale controllo purché si rispettino le regole di progetto e di gerarchia delle resistenze.

Il calcolo della duttilità di curvatura viene svolto dal programma tramite la costruzione di diagrammi momenti-curvature in cui il rapporto tra i momenti Mx e My viene mantenuto costante. Tra i vari tipi di diagrammi previsti in programma si utilizza, per il presente esempio, quello che tiene conto automaticamente del confinamento sulla base delle staffe effettivamente disposte. Viene pertanto utilizzato per il nucleo confinato della sezione un diagramma tensione-deformazione costruito secondo il punto 3.1.9 di EC2 che fornisce le espressioni da cui trarre il valore di resistenza f_{ck,c} del calcestruzzo confinato, la deformazione ultima ε_{cu2,c} e quella al limite del tratto parabolico $\epsilon_{c2,c}$. Il tratto plastico del diagramma tensionideformazioni si ottiene però collegando il punto fck,c di massimo della parabola con il valore di 0,85 f_{ck} in corrispondenza di $\varepsilon_{cu2,c}$. Le precedenti quantità $f_{ck,c}$, $\varepsilon_{c2,c}$, $\varepsilon_{cu2,c}$ sono maggiorate rispetto a quelle impiegate per il calcolo di resistenza in quanto funzioni della tensione trasversale di confinamento oz il cui valore, però, non viene esplicitato nell'EC2. Occorre a questo scopo far ricorso all'autorevole "Model Code '90" che pone (per sezioni rettangolari):

```
\sigma_2 = 0.5 \, \alpha_n \, \alpha_s \, \omega_w
                             in cui
\alpha_n = 1 - 8 / (3 \text{ n}) con n = numero di barre collegate da staffe e legature
\alpha_s = 1 - s/(2 b_0) con s = passo staffe e b_0 = lato minore nucleo confinato
\omega_{\rm w} = (Volume staffe / Volume nucleo confinato) (f_{\rm yd}/f_{\rm cd})
```

Al conglomerato esterno al nucleo confinato viene invece assegnato il diagramma tensione-deformazione utilizzato per il calcolo di resistenza.

Si riporta di seguito sia l'output a video del diagramma Momenti-Curvature, sia il tabulato di stampa dello stesso con riferimento alla prima combinazione di carico in presso-flessione deviata. Il valore della duttilità di curvatura μ_{ω} risulta pari a 5,299. Il calcolo di duttilità per la seconda combinazione di carico (in presso flessione retta) conduce invece ad una duttilità notevolmente superiore e pari a 10,169.



GeoStru software RC-SEC

Geostru Software - Validazione codice di calcolo

DIAGRAMMA MOMENTI-CURVATURE Comb. N° 1 (N = 50000 daN) NOME SEZIONE: ESEMPIO_5

Descrizione Sezione:

ACCIAIO

Pilastro rettangolare ad armatura simm. Tipologia sezione: Percorso sollecitazione: A Sforzo Norm. costante Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -Classe: C28/35

Classe: C28/35
Diagramma coprif. non confinato: Parabola con max=Fc_k
Resis. caratt. di calcolo fck: 280.00 daN/cm²
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma congl. confinato sez.: Parabol.+retta decresc.
in base alle staffe
Passist massima per confinamento 286 41 daN/cm²

Resist. massima per confinamento : 296.41
Resist. a rottura (0.85 Fck) : 238.00
Tens. laterale di confinam.efficace: 3.28
Def. unit. per la max resistenza : 0.0022
Def. unit. ultima (par.3.1.9 EC2) : 0.0058 296.41 daN/cm² 238.00 daN/cm² 3.28 daN/cm²

Tipo: B450C Diagramma tensione-deformaz.: Bilineare finito Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Deform. ultima di calcolo Epu: 4500.0 daN/cm² 5400.0 daN/cm² 0.0675 Modulo Elastico 2000000 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 40.0 cm Altezza: 50.0 cm

N. totale barre

Geostru Software - Validazione codice di calcolo RC-SEC

Diametro barre : 16 mm Copriferro (dal baric, barre) : 4.0 cm Coordinate Barre nei vertici :

N.Barra Ascissa X, cm Ordinata Y, cm

1 -16.0 -21.0
2 -16.0 21.0
3 16.0 21.0
4 16.0 -21.0

Generazioni di barre lungo i lati:

N.Gen. Numero assegnato alla singola generazione lineare di barre N.Barra In. Numero della barra iniziale (di vertice)cui si riferisce la generazione N.Barra Fin. Numero della barra finale (vertice)cui si riferisce la generazione N.Barre Numero di barre generate equidist. comprese tra la

barra iniz. e la fin.

N.Gen. N.Barra In. N.Barra Fin. N.Barre

1 1 4 1

1	1	4	1
2	2	3	1
3	1	2	1
4	4	3	1

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO

Diametro staffe: 8 mm
Passo staffe: 18.0 cm
[Passo massimo di normativa= 19.2]
N.Bracci staffe: 2
Area staffe/m : 5.6 cm 2 /m

RISULTATI DEL CALCOLO

 Sforzo
 normale costante di calcolo N
 50000 daN

 Momento di snervamento
 18264 daNm

 Momento massimo
 24036 daNm

 Momento a rottura
 22048 daNm

 Duttilità di curvatura CCDF (punto 7.4.4 NTC)
 5.299

PUNTI CALCOLATI DEL DIAGRAMMA MOMENTI-CURVATURE

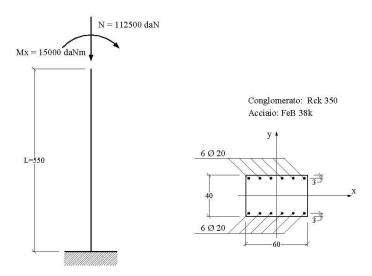
Punto	M	Curv	Mx	My	Curv x	Curv y	epc max	Scmax	eps min	Scmin
1	463	0.00049	363	287	0.00031	0.00038	0.0001	26	0.0001	154
2	927	0.00098	727	575	0.00061	0.00076	0.0001	30	0.0001	129
3	1390	0.00146	1090	8 62	0.00092	0.00114	0.0001	33	0.0001	104
4	1854	0.00195	1454	1150	0.00122	0.00152	0.0001	36	0.0000	79
5	2317	0.00244	1817	1437	0.00153	0.00190	0.0002	39	0.0000	55
6	2780	0.00293	2181	1725	0.00183	0.00228	0.0002	43	0.0000	30
7	3244	0.00343	2544	2012	0.00215	0.00267	0.0002	46	0.0000	4
8	3707	0.00397	2908	2300	0.00249	0.00309	0.0002	49	0.0000	-24
9	4171	0.00459	3271	2587	0.00287	0.00357	0.0002	53	0.0000	-57
10	4634	0.00528	3634	2875	0.00330	0.00411	0.0002	57	0.0000	-95
11	5097	0.00606	3998	3162	0.00379	0.00472	0.0002	62	-0.0001	-139
12	5561	0.00694	4361	3450	0.00435	0.00542	0.0003	66	-0.0001	-190
13	6024	0.00794	4725	3737	0.00497	0.00619	0.0003	71	-0.0001	-249
14	6487	0.00905	5088	4025	0.00566	0.00706	0.0003	77	-0.0002	-317
15	6951	0.01028	5452	4312	0.00643	0.00802	0.0003	83	-0.0002	-394
16	7414	0.01163	5815	4600	0.00727	0.00908	0.0004	89	-0.0002	-480

12

GeoStru

Geostru Software – Validazione codice di calcolo RC-SEC

17	7878	0.01311	6179	4887	0.00819	0.01023	0.0004	95	-0.0003	-575
18	8341	0.01470	6542	5175	0.00918	0.01148	0.0004	102	-0.0003	-681
19	8804	0.01642	6905	5462	0.01025	0.01283	0.0005	109	-0.0004	-795
20	9268	0.01825	7269	5749	0.01138	0.01426	0.0005	116	-0.0005	-919
21	9731	0.02019	7632	6037	0.01258	0.01578	0.0005	123	-0.0005	-1052
22	10195	0.02222	7996	6324	0.01385	0.01738	0.0006	130	-0.0006	-1194
23	10658	0.02436	8359	6612	0.01517	0.01906	0.0006	137	-0.0007	-1344
24	11121	0.02657	8723	6899	0.01653	0.02081	0.0006	144	-0.0008	-1500
25	11585	0.02886	9086	7187	0.01794	0.02261	0.0007	151	-0.0008	-1663
26	12048	0.03121	9449	7474	0.01939	0.02446	0.0007	158	-0.0009	-1831
27	12512	0.03362	9813	7762	0.02087	0.02636	0.0007	165	-0.0010	-2004
28	12975	0.03608	10176	8049	0.02238	0.02830	0.0008	171	-0.0011	-2182
29	13438	0.03859	10540	8337	0.02392	0.03028	0.0008	178	-0.0012	-2364
30	13902	0.04114	10903	8624	0.02548	0.03229	0.0009	185	-0.0013	-2549
31	14365	0.04372	11267	8912	0.02707	0.03434	0.0009	191	-0.0014	-2738
32	14828	0.04635	11630	9199	0.02868	0.03641	0.0009	197	-0.0015	-2929
33	15292	0.04900	11994	9487	0.03030	0.03851	0.0010	203	-0.0016	-3123
34	15755	0.05170	12357	9774	0.03195	0.04064	0.0010	209	-0.0017	-3320
35	16219	0.05441	12720	10062	0.03360	0.04279	0.0011	215	-0.0018	-3518
36	16682	0.05716	13084	10349	0.03529	0.04497	0.0011	221	-0.0019	-3720
37	17145	0.05994	13447	10636	0.03698	0.04717	0.0012	227	-0.0020	-3923
38	17609	0.06274	13811	10924	0.03869	0.04939	0.0012	232	-0.0021	-4128
39	19260	0.07537	15106	11948	0.04640	0.05939	0.0014	253	-0.0025	-4566
40	20501	0.08800	16079	12718	0.05412	0.06939	0.0016	269	-0.0030	-4572
41	21680	0.10061	17004	13450	0.06180	0.07939	0.0017	282	-0.0035	-4579
42	22329	0.11329	17512	13852	0.06959	0.08939	0.0019	290	-0.0040	-4586
43	22743	0.12591	17837	14109	0.07729	0.09939	0.0021	295	-0.0045	-4593
44	23128	0.13852	18140	14348	0.08498	0.10939	0.0022	296	-0.0049	-4599
45	23509	0.15233	18438	14584	0.09340	0.12033	0.0024	296	-0.0055	-4607
46	23826	0.16753	18687	14781	0.10270	0.13237	0.0026	296	-0.0061	-4615
47	24036	0.18424	18852	14911	0.11289	0.14560	0.0029	296	-0.0067	-4623
48	24025	0.20264	18843	14905	0.12413	0.16016	0.0032	296	-0.0074	-4632
49	23564	0.22399	18482	14619	0.13833	0.17618	0.0035	296	-0.0081	-4643
50	23122	0.24624	18135	14344	0.15192	0.19380	0.0039	296	-0.0089	-4654
51	22863	0.27067	17932	14184	0.16679	0.21318	0.0043	296	-0.0098	-4666
52	22482	0.29740	17633	13947	0.18292	0.23449	0.0047	296	-0.0107	-4679
53	22259	0.32677	17458	13809	0.20061	0.25794	0.0052	296	-0.0117	-4693
54	22048	0.35904	17292	13678	0.22001	0.28374	0.0057	296	-0.0129	-4709



Geostru Software - Validazione codice di calcolo RC-SEC

3.7 ESEMPIO 7

L'esempio, tratto dal volume di R.Calzona, C.Cestelli Guidi - Il calcolo del cemento armato (Hoepli) - si riferisce al calcolo allo stato limite ultimo di instabilità di un pilastro snello a sezione rettangolare i cui dati sono riportati in figura.

Si utilizza il metodo semplificato detto della "colonna modello" con riferimento alle sollecitazioni rette contenute nel piano verticale la cui traccia nel piano della sezione coincide con l'asse y. I valori indicati per N ed Mx sono quelli del primo ordine già amplificati con gli opportuni coefficienti stabiliti per la combinazione ultima che si intende verificare.

Le sollecitazioni da calcolo vanno sempre incrementate del momento flettente causato dall'eccentricità non intenzionale e_{ni} da porre non minore di L₀/300 = 3.67 cm essendo L₀ la lunghezza di libera inflessione del pilastro in questo caso (schema a mensola) pari a 2L = 1100 cm.:

$$Nd = 112500 \ daN$$

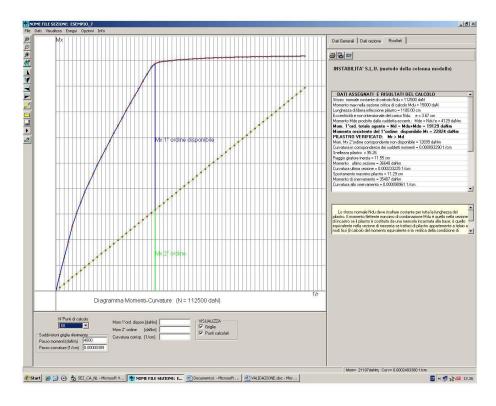
 $Md = 15000 + 112500 \times 0.0367 = 19129 \ daNm$

All'avvio del calcolo occorre inserire preliminarmente (nell'archivio materiali) i dati relativi sia al conglomerato Rck350 che all'acciaio FeB38k per renderli identici a quelli riportati nel testo citato:

$$\begin{array}{ll} f_{ck} = 0.83 \; R_{ck} = 290.5 \; daN/cm^2 \\ f_{cd} = 0.85 \; f_{ck}/1.6 = 154.3 \; daN/cm^2 \\ E_s = 2100000 \; daN/cm^2 \\ f_{yd} = f_{td} = f_{yk} \; /1.15 = 3304 \; daN/cm^2; \\ \epsilon_{red, ut} = 0.01 \end{array}$$

In particolare i dati relativi agli sforzi agenti richiesti dal programma sono i seguenti:

Sforzo normale di calcolo Nd costante =	112500 daN
Momento max di calcolo Md nella sezione critica =	15000 daNm
Lunghezza di libera inflessione =	1100 cm


Geostru Software – Validazione codice di calcolo RC-SEC

Eccentricità non intenzionale =

3.67 cm

Si noti come il momento Md richiesto sia al netto di quello prodotto dall'eccentricità non intenzionale in quanto il programma provvederà automaticamente ad effettuare la somma tra i due momenti agenti.

Gli output a video ed a stampa, di seguito riportati, indicano che la sezione risulta verificata in quanto il momento resistente effettivamente disponibile (al netto di quello del secondo ordine) pari a 22824 daNm è maggiore di quello di calcolo di 19129 daNm. I risultati sono in pratica coincidenti con quelli esposti nel citato testo.

STATO LIMITE DI INSTABILITA' (Metodo della Colonna Modello) DATI SEZIONE CRITICA PILASTRO NOME SEZIONE: ESEMPIO 7

Descrizione Sezione: Metodo di calcolo resistenza: Normativa di riferimento: Stati Limite Ultimi N.T.C. Tipologia sezione: Pilastro rettangolare ad armatura simm. Percorso sollecitazione: Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -Classe: Rck350 Resis. compr. di calcolo fcd : Def.unit. max resistenza ec2 : Def.unit. ultima ecu : 0.0020 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec : 337216 daN/cm2

Geostru Software - Validazione codice di calcolo RC-SEC

SFORZI ASSEGNATI E RISULTATI DEL CALCOLO

Sforzo normale costante di calcolo Ndu = Sforzo normale costante di calcolo Ndu = 112500 daN 15000 daNm Lunghezza di libera inflessione pilastro = 1100.00 cm 3.67 cm 4129 daNm Eccentricità e non intenzionale del carico Ndu: e = Momento Mde prodotto dalla suddetta eccentricità: Mde = Ndu*e = Raggio giratore d'inerzia riferito all'asse x di inflessione = Snellezza pilastro = Lungh.libera infless./raggio giratore= Momento del 1°ordine totale agente = Md = Mdu+Mde = 11.55 cm 95.26 19129 daNm Momento resistente del 1°ordine disponibile Mr = 22824 daNm
PILASTRO VERIFICATO: Mr > Md

Mom. Mx 2°ordine corrispondente al massimo momento disponibile = 12699 daNm .000093290 1/cm Curvatura corrispondente ai suddetti momenti = Momento resistente ultimo sezione critica = 36648 daNm Curvatura ultima sezione (in corrisp. del Mom.resist.Ultimo)=.000233225 1/cm Spostamento massimo pilastro = 11.29 cm Momento di snervamento sezione critica = 35407 daNm Curvatura allo snervamento = .000090961 1/cm

PUNTI CALCOLATI DEL DIAGRAMMA MOMENTI-CURVATURE

Curvat

N. Punto

N.Punto Numero d'ordine assegnato al punto calcolato del diagramma Curvat. Curvatura [1/cm] del punto calcolato
Mx Momento totale [daNm] per la curv. data riferito all'asse x
Mx_1° Quota disponibile del 1° ordine del momento totale Mx
Mx_2° Quota non disponibile del 2° ordine del momento totale Mx

My

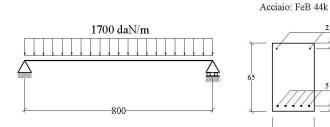
My 10

My 20

N.Punto	Curvat.	MX	Mx_1-	Mx_2-
1	0.000003887	2554	2025	529
2	0.000007774	5105	4047	1058
2 3 4	0.000011661	7651	6064	1587
4	0.000015548	10102	7985	2117
5	0.000019435	12119	9473	2646
6	0.000023322	13857	10682	3175
7	0.000027210	15429	11725	3704
8	0.000031097	16896	12663	4233
9	0.000034984	18288	13526	4762
10	0.000038871	19629	14338	5291
11	0.000042758	20929	15108	5820
12	0.000046645	22198	15848	6350
13	0.000050532	23440	16561	6879
14	0.000054419	24659	17252	7408
15	0.000058306	25861	17924	7937
16	0.000062193	27047	18581	8466
17	0.000066080	28220	19225	8995
18	0.000069967	29374	19850	9524
19	0.000073855	30520	20466	10053
20	0.000077742	31651	21068	10583
21	0.000081629	32770	21658	11112
22	0.000085516	33875	22234	11641
23	0.000089403	34973	22803	12170
24	0.000093290	35523	22824	12699
25	0.000097177	35707	22478	13228
26	0.000101064	35835	22078	13757
27	0.000104951	35906	21620	14286
28	0.000108838	35970	21154	14816
29	0.000112725	36030	20685	15345
30	0.000116612	36083	20209	15874
31	0.000120500	36133	19730	16403
32	0.000124387	36174	19242	16932

Geostru Software – Validazione codice di calcolo RC-SEC

33	0.000128274	36212	18751	17461
34	0.000132161	36248	18258	17990
35	0.000136048	36283	17763	18520
36	0.000139935	36314	17266	19049
37	0.000143822	36343	16765	19578
38	0.000147709	36366	16259	20107
39	0.000151596	36391	15755	20636
40	0.000155483	36414	15249	21165
41	0.000159370	36434	14740	21694
42	0.000163257	36455	14232	22223
43	0.000167145	36472	13719	22753
44	0.000171032	36485	13204	23282
45	0.000174919	36499	12689	23811
46	0.000178806	36517	12177	24340
47	0.000182693	36531	11662	24869
48	0.000186580	36545	11147	25398
49	0.000190467	36557	10630	25927
50	0.000194354	36568	10111	26456
51	0.000198241	36577	9592	26986
52	0.000202128	36585	9070	27515
53	0.000206015	36596	8552	28044
54	0.000209902	36604	8031	28573
55	0.000213789	36614	7512	29102
56	0.000217677	36623	6991	29631
57	0.000221564	36628	6468	30160
58	0.000225451	36634	5945	30689
59	0.000229338	36644	5425	31219
60	0.000233225	36648	4901	31748


Geostru Software - Validazione codice di calcolo

Conglomerato: Rck 250

2 Ø 13.11 (2.70 cm²)

5 Ø 16.58 (10.80 cm²)

3.8 ESEMPIO 8

La trave in c.a. su due appoggi in figura è tratta dall'Example 7.4 del volume di A.Ghali, R.Favre "Concrete Structures - stresses and deformations" (E & FN SPON) è costituita per la sua intera lunghezza dalla sezione costante, per geometria e materiali, denominata ESEMPIO_8_GHALI_SEZ.sez pure presente tra i files di esempio del programma.

Al tempo to viene applicato un carico uniforme di 1700 da N/m che rappresenta il carico risultante di una combinazione *quasi permanente* di esercizio. Si chiede il valore della freccia massima della trave a lungo termine (t = infinito) posto che i dati meccanici e reologici siano i seguenti:

 $E_s = 2000000 \ daN/cm^2$

 $E_c(t0) = 300000 \text{ daN/cm}^2 = \text{modulo elastico al tempo t0 di applicazione del carico}$ $f_{ctm} = 25 \text{ daN/cm}^2 = \text{resistenza media a trazione del conglomerato}$

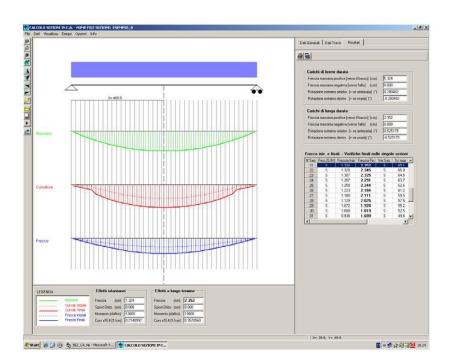
 $\varphi(t,t0) = 2.5 = \text{coeff. di viscosità valutato da t0 al tempo finale t}$

 $\varepsilon_{cs}(t,t0) = 0.00025 = deformazione per ritiro nello stesso intervallo di tempo$

 χ (t,t0) = 0.8 = coeff. di invecchiamento

Prima di poter assegnare i dati della trave è stato necessario creare il file della sezione corrente della trave denominato ESEMPIO_8_GHALI.sez. Nel corso dell'input di questa sezione vanno inseriti i dati geometrici, meccanici e reologici finora elencati (nonché un momento fittizio qualsiasi). Una volta salvato il file della sezione è stato creato un nuovo file di calcolo, qui denominato ESEMPIO 8.sez, in

Geostru Software - Validazione codice di calcolo


cui una volta assegnata la tipologia del calcolo delle frecce in campata singola vanno effettuate le seguenti scelte:

- > Tipologia della combinazione di carico di esercizio: quasi permanente
- Tipo di campata: trave su due appoggi
- Nº tronchi a sezione costante: 1 (la geometria e l'armatura sono costanti per tutta la lunghezza della trave)
- Passo medio della discretizzazione: 20 cm
- Coppie agli estremi appoggiati della trave: 0 daNm
- Caratteristiche dei singoli tronchi della trave:
 - ➤ Nome Sezione: ESEMPIO_8_GHALI.sez
 - Lunghezza tronco: 800 cm
 - ightharpoonup Py = 1700 daN/m
 - \rightarrow N = 0 daN.

Negli output a video ed a stampa sotto riportati viene indicata, fra l'altro, la freccia massima (in corrispondenza del concio centrale) pari a 2.35 cm identica a quella calcolata testo citato. Si noti come la freccia istantanea pari a 1,32 cm sia circa la metà della freccia differita (quest'ultima calcolata col metodo AAEM).

Oltre a calcolare le frecce nei singoli conci per integrazione delle curvature il programma ne verifica l'apertura delle fessure e le tensioni normali.

Con questo stesso programma possono essere studiate (con piccolo errore) campate di travi iperstatiche (appartenenti a generici impalcati di edifici) a condizione di assegnare le coppie iperstatiche di estremità. Essendo inoltre possibile assegnare uno sforzo normale costante può essere studiata la deformazione (in un solo piano di inflessione) anche dei pilastri.

20

Geostru Software - Validazione codice di calcolo

CALCOLO FRECCE E VERIFICA SEZIONI DI UNA TRAVE IN C.A. NOME DEL FILE: ESEMPIO 8

Descrizione Calcolo: Tipologia della trave: Trave su due appoggi di estremità Numero tronchi a sez. costante: 20 cm Passo medio discretizz. trave: Tipologia combinazione carico: Quasi Permanente Condizioni Ambientali: Poco aggressive

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOM. N. 1 - Classe: C20/25 Modulo Elastico Normale Ec: Coeff. di Poisson: 300000 daN/cm2 0.20 Resis. media a trazione fctm: 25.00 daN/cm² 2.50 0.25 /1000 Coeff. Viscosità: Coeff. Ritiro: Coeff. Invecchiamento: 0.800 90.00 daN/cm2 Tensione normale Limite: Apert.Fess.Limite: 0.300 mm ACCIAIO N. 1 - Tipo: B450C Modulo Elastico Ef: 2000000 daN/cm² Coeff. Aderenza ist. B1*B2: Coeff. Aderenza diff. B1*B2: 1.00 0.50 Tensione normale Sf Limite: 3150.0 daN/cm2

CARATTERISTICHE DEI SINGOLI TRONCHI DELLA TRAVE

Numero progressivo assegnato ai tronchi da sinistra a destra Nome Sez. Nome del file della sezione assegnata al tronco Lunghezza del tronco [cm] Lunghezza Carico verticale uniformemente ripartito [daN/m] sul tronco [positivo se diretto verso il basso]

N.Tronco Nome Sezione Lunghezza Carico un. ESEMPIO_8_GHA 800.0

FRECCE - CURVATURE - SPOST. ASSIALI DELLE SINGOLE SEZIONI DELLA TRAVE

N.sez Numero progressivo assegnato alle sezioni da sinistra a destra X sez Ascissa progressiva delle sezioni con l'origine nel vincolo di sinistra Nome del file della sezione all'ascissa X sez

S/N = sezione verificata o meno alle tensioni limite ed a fessurazione

S/N = sezione fessurata o con conglomerato interamente reagente

Freccia istantanea [cm] all'applicazione del carico [positiva se verso il basso]

Curvatura istantanea [1/cm] della sezione all'applicazione del carico Nome Sez. Ver Fess. Fr. Tni Cur.Ini Spostamento assiale istantaneo [cm] della sezione all'applicazione del carico [positivo se opposto al verso crescente delle ascisse]
Freccia [cm] a fenomeni reologici esauriti [positiva se verso il basso]
Curvatura [1/cm] della sezione a fenomeni reologici esauriti
Spostamento assiale [cm] della sezione a fenomeni reologici esauriti S.O.Ini Cur.Fin S.O.Fin

N.Sez	X sez	Nome Sezione	Ver	Fess.	Fr.Ini	Cur.Ini	S.O.Ini	Fr.Fin	Cur.Fin	S.O.Fin
1	9.8	ESEMPIO 8 GHA	S	N	0.048	0.0000003	0.000	0.089	0.0000020	0.000
2	29.3	ESEMPIO 8 GHA	S	N	0.143	0.0000008	0.000	0.268	0.0000036	0.000
3	48.8	ESEMPIO 8 GHA	S	N	0.238	0.0000014	0.000	0.444	0.0000052	0.000
4	68.3	ESEMPIO 8 GHA	S	N	0.333	0.0000019	0.000	0.619	0.0000067	0.000
5	87.8	ESEMPIO 8 GHA	S	N	0.427	0.0000024	0.000	0.791	0.0000081	0.000
6	107.3	ESEMPIO 8 GHA	S	S	0.520	0.0000063	0.000	0.960	0.0000151	0.000
7	126.8	ESEMPIO 8 GHA	S	S	0.610	0.0000073	0.000	1.124	0.0000181	0.000
8	146.3	ESEMPIO 8 GHA	S	S	0.698	0.0000089	0.000	1.280	0.0000208	0.000
9	165.9	ESEMPIO 8 GHA	S	S	0.782	0.0000110	0.000	1.429	0.0000231	0.000
10	185.4	ESEMPIO 8 GHA	S	S	0.863	0.0000127	0.000	1.569	0.0000252	0.000
11	204.9	ESEMPIO 8 GHA	S	S	0.938	0.0000143	0.000	1.699	0.0000271	0.000
12	224.4	ESEMPIO 8 GHA	S	S	1.008	0.0000157	0.000	1.819	0.0000288	0.000

Geostru Software - Validazione codice di calcolo RC-SEC

13	243.9	ESEMPIO 8 GHA	S	S	1.072	0.0000170	0.000	1.928	0.0000302	0.000
14	263.4	ESEMPIO 8 GHA	S	S	1.129	0.0000180	0.000	2.025	0.0000315	0.000
15	282.9	ESEMPIO 8 GHA	S	S	1.180	0.0000189	0.000	2.111	0.0000326	0.000
16	302.4	ESEMPIO 8 GHA	S	S	1.223	0.0000197	0.000	2.184	0.0000336	0.000
17	322.0	ESEMPIO 8 GHA	S	S	1.259	0.0000203	0.000	2.244	0.0000344	0.000
18	341.5	ESEMPIO 8 GHA	S	S	1.287	0.0000208	0.000	2.291	0.0000349	0.000
19	361.0	ESEMPIO 8 GHA	S	S	1.307	0.0000211	0.000	2.325	0.0000354	0.000
20	380.5	ESEMPIO 8 GHA	S	S	1.320	0.0000213	0.000	2.345	0.0000356	0.000
21	400.0	ESEMPIO 8 GHA	S	S	1.324	0.0000214	0.000	2.352	0.0000357	0.000
22	419.5	ESEMPIO 8 GHA	S	S	1.320	0.0000213	0.000	2.345	0.0000356	0.000
23	439.0	ESEMPIO 8 GHA	S	S	1.307	0.0000211	0.000	2.325	0.0000354	0.000
24	458.5	ESEMPIO 8 GHA	S	S	1.287	0.0000208	0.000	2.291	0.0000349	0.000
25	478.0	ESEMPIO 8 GHA	S	S	1.259	0.0000203	0.000	2.244	0.0000344	0.000
26	497.6	ESEMPIO 8 GHA	S	S	1.223	0.0000197	0.000	2.184	0.0000336	0.000
27	517.1	ESEMPIO 8 GHA	S	S	1.180	0.0000189	0.000	2.111	0.0000326	0.000
28	536.6	ESEMPIO 8 GHA	S	S	1.129	0.0000180	0.000	2.025	0.0000315	0.000
29	556.1	ESEMPIO 8 GHA	S	S	1.072	0.0000170	0.000	1.928	0.0000302	0.000
30	575.6	ESEMPIO 8 GHA	S	S	1.008	0.0000157	0.000	1.819	0.0000288	0.000
31	595.1	ESEMPIO 8 GHA	S	S	0.938	0.0000143	0.000	1.699	0.0000271	0.000
32	614.6	ESEMPIO 8 GHA	S	S	0.863	0.0000127	0.000	1.569	0.0000252	0.000
33	634.1	ESEMPIO 8 GHA	S	S	0.782	0.0000110	0.000	1.429	0.0000231	0.000
34	653.7	ESEMPIO 8 GHA	S	S	0.698	0.0000089	0.000	1.280	0.0000208	0.000
35	673.2	ESEMPIO 8 GHA	S	S	0.610	0.0000073	0.000	1.124	0.0000181	0.000
36	692.7	ESEMPIO 8 GHA	S	S	0.520	0.0000063	0.000	0.960	0.0000151	0.000
37	712.2	ESEMPIO 8 GHA	S	N	0.427	0.0000024	0.000	0.791	0.0000081	0.000
38	731.7	ESEMPIO 8 GHA	S	N	0.333	0.0000019	0.000	0.619	0.0000067	0.000
39	751.2	ESEMPIO 8 GHA	S	N	0.238	0.0000014	0.000	0.444	0.0000052	0.000
40	770.7	ESEMPIO 8 GHA	S	N	0.143	0.0000008	0.000	0.268	0.0000036	0.000
41	790.2	ESEMPIO 8 GHA	S	N	0.048	0.0000003	0.000	0.089	0.0000020	0.000

VERIFICA SEZIONI PER TENSIONI NORMALI ED APERTURA DELLE FESSURE

N.sez Numero progressivo assegnato alle sezioni da sinistra a destra X sez Ascissa progressiva delle sezioni con l'origine nel vincolo di sinistra Nome Sez. Nome del file della sezione all'ascissa X sez Ver S/N = sezione verificata o meno alle tensioni limite ed a fessurazione Momento Momento flettente nella sezione considerata Sf.Ass. Sforzo normale baricenrico[daN] assegnato [+ se di compressione] Sc max Massima tensione [daN/cm²] di compressione nel conglomerato Sf min Massima trazione [daN/cm²] nell'acciaio Ap.Fess. Apertura fessure finale massima [mm] nella sezione

N.Sez X sez Nome Sezione Ver Momento Sf.Ass. Sc max Sf min Ap.Fess. ESEMPIO_8_GHA 9.8 655 339.1 0.000 8.05 29.3 ESEMPIO 8 GHA ESEMPIO 8 GHA 0.000 1917 255.4 48.8 3115 12.59 175.9 ESEMPIO 8 GHA
ESEMPIO 8 GHA 4 68.3 S 4247 0 16.88 100.8 0.000 0.000 87.8 5315 S 0 20.93 29.9 107.3 6319 30.16 -1078.8 0.067 126.8 S 7257 0 34.67 -1240.60.092 146.3 8131 38.86 -1391.1 0.114 165.9 S 8940 0 42.75 -1530.6 0.133 10 185.4 S 0 -1658.8 9684 46.32 0.150 11 204.9 10364 -1776.0 ESEMPIO_8_GHA ESEMPIO_8_GHA 12 224.4 S 10979 0 52.54 -1881.90.179 13 55.18 -1976.7 243.9 11529 0 0.191 ESEMPIO 8 GHA
ESEMPIO 8 GHA
ESEMPIO 8 GHA
ESEMPIO 8 GHA
ESEMPIO 8 GHA 12014 14 15 263.4 282.9 57.51 59.53 0 -2060.4 0.202 -2132.9 12435 0.211 16 302.4 61.24 -2194.2 0.218 62.64 63.73 17 322.0 S 13082 0 -2244.40.225 13309 18 341.5 -2283.5 0.229 0 ESEMPIO 8 GHA
ESEMPIO 8 GHA 19 361.0 13471 0 64.50 -2311.4 0.233 20 380.5 S 13568 0 64.97 -2328.10.235 13600 -2333.7 21 400.0 65.13 22 419.5 13568 0 64.97 -2328.1 0.235 23 439.0 S 13471 0 64.50 -2311.4 0.233 458.5 13309 -2283.5 ESEMPIO 8 GHA
ESEMPIO 8 GHA
ESEMPIO 8 GHA
ESEMPIO 8 GHA
ESEMPIO 8 GHA 25 13082 478.0 0 62.64 -2244.40.225 26 497.6 12791 61.24 -2194.2 0.218 27 28 517.1 12435 0 59.53 -2132.9 0.211 12014 0 57.51 -2060.4 536.6 0.202

22

GeoStru

Geostru Software – Validazione codice di calcolo RC-SEC

30	575.6	ESEMPIO 8 GHA	S	10979	0	52.54	-1881.9	0.179
31	595.1	ESEMPIO 8 GHA	S	10364	0	49.59	-1776.0	0.166
32	614.6	ESEMPIO 8 GHA	S	9684	0	46.32	-1658.8	0.150
33	634.1	ESEMPIO 8 GHA	S	8940	0	42.75	-1530.6	0.133
34	653.7	ESEMPIO 8 GHA	S	8131	0	38.86	-1391.1	0.114
35	673.2	ESEMPIO 8 GHA	S	7257	0	34.67	-1240.6	0.092
36	692.7	ESEMPIO 8 GHA	S	6319	0	30.16	-1078.8	0.067
37	712.2	ESEMPIO 8 GHA	S	5315	0	20.93	29.9	0.000
38	731.7	ESEMPIO 8 GHA	S	4247	0	16.88	100.8	0.000
39	751.2	ESEMPIO 8 GHA	S	3115	0	12.59	175.9	0.000
40	770.7	ESEMPIO 8 GHA	S	1917	0	8.05	255.4	0.000
41	790.2	ESEMPIO_8_GHA	S	655	0	3.27	339.1	0.000

8.2 ALLEGATO 2 VALIDAZIONE PRO_MST

Validazione di PRO_MST

Test di validazione di PRO_MST

Ferrara, Aprile 2009

Parte 1: INQUADRAMENTO TEORICO

Parte 1: INQUADRAMENTO TEORICO

Parte 1: INQUADRAMENTO TEORICO

NTC 2018 - CODICI DI CALCOLO: AFFIDABILITA'

Premessa

Le norme tecniche contengono precise indicazioni per la redazione dei progetti esecutivi. In particolare la relazione di calcolo, atta a dimostrare numericamente la sicurezza dell'opera e il raggiungimento delle prestazioni attese, deve essere redatta secondo quanto prescritto nei paragrafi 10.2 e successivi. Qualora analisi e verifiche siano svolte con l'ausilio dell'elaboratore elettronico dovranno essere fomite, tra l'altro, indicazioni quali "origine e caratteristiche dei codici di calcolo" e "affidabilità dei codici utilizzati".

Il presente manuale, che documenta in modo esaustivo l'affidabilità del codice di calcolo PRO_MST, come richiesto dalle norme riporta nella parte prima la documentazione sull'inquadramento teorico della metodologia di calcolo e sull'impostazione generale della sua traduzione numerica e nella parte seconda una raccolta di casi prova che consentono il controllo e il riscontro sull'affidabilità e sulla robustezza del codice di calcolo PRO_MST.

Il presente manuale, in vari formati elettronici, è reperibile anche sul sito del produttore per consentire un collegamento diretto (link) (http://www.2si.it/Software/Affidabilità.htm) dalla relazione di calcolo alla documentazione richiesta dalle norme tecniche.

Introduzione

Dal 1 Dicembre 1999 2S.I ha prodotto un manuale di qualità funzione dei requisiti della norma di riferimento UNI EN ISO 9001. Tutte le attività sono regolate dalla documentazione e dalle procedure in esso contenute.

In relazione al controllo e al riscontro sull'affidabilità e sulla robustezza dei prodotti software si sottolinea quanto segue:

- la fase di progetto degli algoritmi è preceduta dalla ricerca di risultati di confronto reperibili in bibliografia o riproducibili con calcoli manuali:
- il software che implementa gli algoritmi è testato, confrontato e controllato anche da tecnici qualificati che non sono intervenuti nelle precedenti fasi.

Parte 1 – Inquadramento teorico delle metodologia di calcolo

Una estesa trattazione sulla teoria è riportata nel presente manuale.

Parte 2 – Raccolta di casi prova

Per il controllo e il riscontro sull'affidabilità e sulla robustezza del codice di calcolo PRO_MST è fornita una raccolta di casi prova come richiesto dalle norme tecniche.

Di ogni caso si riporta una precisa descrizione con tutti i dati necessari per riprodurre i controlli effettuati. Per ogni caso si riportano i relativi allegati e i riferimenti all'archivio dati. I risultati ottenuti con il codice di calcolo PRO_MST sono confrontati con i risultati ottenuti dalle diverse fonti riportate in bibliografia (calcoli manuali, soluzioni teoriche, soluzioni ottenute con altri codici di calcolo). Le differenze percentuali tra i risultati:

Differenza percentuale (DP) = 100 · [(risultato PRO_MST / risultato indipendente) -1]

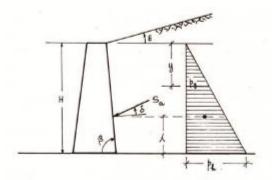
sono riportate in forma tabellare per una agevole consultazione adottando la seguente scala di valutazione:

```
se 0\% \le DP < 0.1\% \rightarrow risultati PRO_MST in perfetto accordo con risultati indipendenti;

se 0.1\% \le DP < 5\% \rightarrow risultati PRO_MST in ottimo accordo con risultati indipendenti;

se 5\% \le DP < 10\% \rightarrow risultati PRO_MST in buono accordo con risultati indipendenti.
```


PRO MST. Progetto muri di sostegno


Parte 1 - INQUADRAMENTO TEORICO

Spinta delle terre

Vengono inizialmente fornite le formule della spinta attiva indotta in uno strato omogeneo di terra spingente sul paramento interno del muro, secondo le teorie più accreditate:

- di COULOMB
- di RANKINE

Si consideri un muro generico con paramento interno inclinato, rispetto all'orizzontale, di un angolo β qualsiasi, soggetta alla spinta di un masso di terra omogeneo e isotropo, delimitato superiormente da una superficie piana inclinata dell'angolo « rispetto alla orizzontale.

Se si indica con:

φ = angolo di attrito interno della terra;

y - peso specifico della terra, costante da 0 ad H;

β = inclinazione del paramento interno, positiva in senso orario;

s = inclinazione del terreno a tergo del muro, positivo in senso antiorario

δ = inclinazione della spinta rispetto alla normale al paramento, positiva in senso antiorario;

λ = altezza del punto di applicazione della spinta, rispetto al piede del muro;

H = altezza del muro.

- pressione a profondità generica y py = yy- pressione al piede del muro $ph = \gamma H$ $sh = phKa = \gamma HKa$ - spinta unitaria al piede $Sa = \frac{1}{2}shH = \frac{1}{2}\gamma H^2 Ka$ - spinta complessiva sul muro

in cui Ka è il coefficiente di spinta attiva, variabile con il metodo di calcolo utilizzato, mediante il quale si tiene conto delle variabili precedentemente indicate.

Teoria di Coulomb

La teoria di Coulomb, estesa analiticamente da Muller-Breslau ai casi più generali, è basata sulle seguenti ipotesi:

- suolo elastico, isotropico e omogeneo;
- superficie di rottura AE piana;
- superficie superiore BE del cuneo di spinta piana;
- d)
- forze di attrito uniformemente ripartite sul piano di rottura; massa del terreno in equilibrio plastico al momento della rottura;
- in conseguenza dello spostamento del muro, all'atto della rottura nasce una forza di attrito tra terra e muro, per cui la spinta risulta inclinata di un angolo 8 rispetto alla normale al paramento.

Nella figura sopra riportata si adottano i seguenti termini:

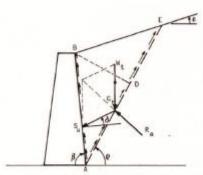
A B E = cuneo di spinta

Wt = peso del cuneo di spinta, passante per Gt

Ra = resistenza di attrito sul piano di rottura

Sa = spinta risultante, inclinata di δ sulla normale

PRO_MST. Progetto muri di sostegno



Il massimo valore di Sa si ottiene secondo la teoria di Coulomb dalla seguente espressione:

$$S \max = 1/2 \gamma H^2 \frac{\sin^2(\beta + \varphi)}{\sin^2 \beta \sin(\beta - \delta) \sqrt{\left[1 + \frac{\sin(\varphi + \delta)\sin(\varphi - \varepsilon)}{\sin(\beta - \delta)\sin(\beta + \varepsilon)}\right]^2}}$$

dove:

$$Kac = \frac{\sin^{2}(\beta + \phi)}{\sin^{2}\beta\sin(\beta - \delta)\sqrt{\left[1 + \frac{\sin(\phi + \delta)\sin(\phi - \delta)}{\sin(\beta - \delta)\sin(\beta + \epsilon)}\right]^{2}}}$$

rappresenta il coefficiente di spinta attiva di Coulomb.

L'espressione sopra riportata assume la forma usuale:

$$Sac = \frac{1}{2} \gamma H^2 Kac$$

Per il calcolo della spinta passiva in assenza di coesione si impiega la seguente espressione:

$$Spc = \frac{1}{2} \gamma h p^2 K p c$$

dove

$$Kpc = \frac{\sin^{2}(\beta - \phi)}{\sin^{2}\beta\sin(\beta + \delta)\left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi + \epsilon)}{\sin(\beta + \delta)\sin(\beta + \epsilon)}}\right]^{2}}$$

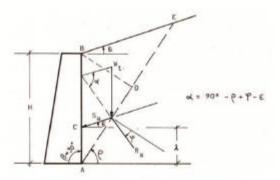
rappresenta il coefficiente di spinta passiva di Coulomb e hp rappresenta l'altezza su cui agisce la resistenza passiva del terreno.

Teoria di Rankine

Rankine pur partendo da criteri simili a quelli di Coulomb, introduce le seguenti variazioni:

- suolo in equilibrio plastico, secondo la teoria di Mohr,
- assenza di attrito tra terra e muro all'atto della rottura;
- superficie di rottura piana, con forze di attrito uniformemente ripartite;
- paramento interno verticale;
- superficie del terreno piana, inclinata di un angolo s rispetto alla orizzontale.

PRO_MST. Progetto muri di sostegno



La spinta di Rankine è inclinata dell'angolo s rispetto alla orizzontale per C e dista H/3 dal piede. Per determinare Sar occorre conoscere il coefficiente di spinta attiva di Rankine:

$$Kar = \cos\varepsilon \frac{\cos\varepsilon - \sqrt{\cos^2\varepsilon - \cos^2\varphi}}{\cos\varepsilon + \sqrt{\cos^2\varepsilon - \cos^2\varphi}}$$

che fornisce gli stessi valori di Kac di Coulomb-Muller-Breslau per β = 0 e β = 90°. Sostituendo il valore di Kar nella espressione riportata di seguito:

$$Sar = \frac{1}{2} \gamma H^2 Kar$$

si ottiene il valore massimo della spinta attiva.

Per determinare Sp occorre conoscere il coefficiente di spinta passiva di Rankine:

$$Kpr = \cos \varepsilon \frac{\cos \varepsilon + \sqrt{\cos^2 \varepsilon - \cos^2 \varphi}}{\cos \varepsilon - \sqrt{\cos^2 \varepsilon - \cos^2 \varphi}}$$

Sostituendo il valore di Kpr nella espressione riportata di seguito:

$$Spr = \frac{1}{2} \gamma h p^2 Kpr$$

si ottiene il valore massimo della spinta passiva.

La teoria di Rankine fornisce soluzioni equilibrate e compatibili, pienamente giustificate dal calcolo a rottura nel caso di spinta attiva entro i seguenti limiti:

$$\beta = 90^{\circ}$$
 $\epsilon < \varphi$

Spinta in presenza di acqua

La presenza di acqua a tergo del muro altera più o meno profondamente i valori della spinta, ed è quindi indispensabile tenerne conto nei calcoli.

Nel caso di uno strato di terreno omogeneo a monte del muro con la presenza di una falda, se si indica con:

Shi = Componente orizzontale della spinta attiva

S1 = Spinta dovuta allo strato 1 sovrastante il terreno sommerso

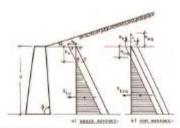
 $\delta = 0^{\circ}$

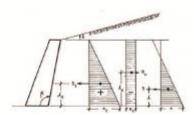
S2 = Spinta dello strato strato 2 per l'effetto del carico dovuto allo strato 1sovrastante

S3 = Spinta dello strato 2 (terreno immerso)

S4 = Spinta idrostatica

PRO MST. Progetto muri di sostegno





λi = ordinata della spinta lesima

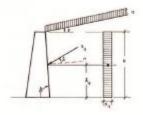
si ottiene, sommando gli effetti e introducendo la componente orizzontale Sh1 dello strato non immerso, una spinta totale pari a:

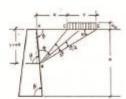
$$Sti = Sh1 + S2 + S3 + S4$$

con punto di applicazione a:

$$\lambda = \frac{Sh1\lambda 1 + S2\lambda 2 + S3\lambda 3 + S4\lambda 4}{Sti}$$

Effetti della coesione


Nei terreni dotati di coesione si manifesta, all'atto della rottura, una resistenza di segno opposto alla spinta attiva, che è costante per tutta l'altezza del muro in assenza di fessure nello strato superficiale del terreno di monte. Indicando con Ka il coefficiente di spinta attiva, risulta una spinta complessiva pari a:


$$S = 1/2\gamma H^2 Ka - 2CH \sqrt{Ka}$$

Tuttavia, per tenere conto del possibile annullamento della resistenza a taglio del terreno fino ad una profondità ho per la presenza di lesioni superficiali più o meno profonde nel terreno, occorre introdurre un termine correttivo che annulli l'effetto della coesione nello strato fessurato.

Definita con hcq la profondità della trancia instabile è possibile ottenere in presenza di sovraccarico ripartito q la spinta complessiva.

La spinta complessiva per il terreno dotato di coesione, in presenza di sovraccarico q e tenendo conto della trancia instabile, si scrive come:

$$Stcq = 1/2\gamma H^2 Ka - 2CH\sqrt{Ka} + \frac{(2C\sqrt{Ka} - qWKa)^2}{2\gamma Ka} + qWHKa$$

dove:

$$W = \frac{\sin\beta}{\sin(\beta + \epsilon)}$$

che si applica ad una distanza dal piede del muro pari a:

$$\lambda tcq = \frac{1}{3}(H - hcq)$$

PRO_MST. Progetto muri di sostegno

Parte 1: INQUADRAMENTO TEORICO

Effetti del sovraccarico

Nel calcolo della spinta attiva è possibile tenere conto del contributo fornito da un sovraccarico presente sul terreno di

Vengono considerati i seguenti sovraccarichi:

- uniformemente ripartito
- nastriforme

Nel calcolo della spirita passiva dovuta al terreno di valle non viene tenuto conto del contributo dovuto al sovraccarico.

Carico uniformemente ripartito

Con riferimento alla figura seguente, la pressione è costante per tutta l'altezza del muro. Il conseguente diagramma delle pressioni è rettangolare, con baricentro a metà altezza

Nella pratica di calcolo si è trasformato il sovraccarico q in altezza di terra equivalente:

$$heq = \frac{qW}{\gamma}$$

che viene introdotta nella formula complessiva della spinta del terreno e del sovraccarico:

$$Stq = 1/2\gamma H^2 Ka(1 + \frac{2heq}{H})$$

Carico nastriforme

Questo tipo di sovraccarico (che riveste particolare importanza nel settore stradale) viene considerato mediante la soluzione di Terzaghj. La pressione alla profondità generica y è espressa dalla:

$$py = \frac{2\,qnW}{\pi}(\theta - sin\theta in\theta\,2\,\eta)$$

Effetti del sisma

Gli effetti del sisma possono essere considerati attraverso un'a nalisi pseudo-statica eseguita nel rispetto di una delle seguenti normative:

- Decreto Ministeriale 16 Gennaio 1996, "Norme tecniche per le costruzioni in zone smiche" comma D intitolato "Opere di sostegno dei terreni.
- Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 Marzo 2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" allegato 4 intitolato "Norme tecniche per il progetto sismico di opere di fondazione e di sostegno dei terreni

Verifica secondo II D. M. 1996

Calcolo dell'incremento di spinta
Se si indica con S (S = 6, 9, 12) il grado di sismicità della zona, definito da uno dei tre valori riportati, il coefficiente di intensità sismica da introdurre nei calcoli è espresso come:

$$C = \frac{S-2}{100}$$

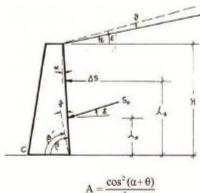
Inoltre definite le quantità:

Fo = spinta esercitata dal terreno in condizioni statiche;

 α = 90° - β inclinazione del paramento interno rispetto alla verticale, positivo in senso orario;

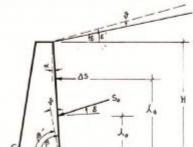
g = inclinazione del terreno, positiva se antioraria;

PRO_MST. Progetto muri di sostegno



$$A = \frac{\cos^2(\alpha + \theta)}{\cos^2\alpha \cos\theta}$$

si calcola la spinta con il metodo di Coulomb, tenendo conto di eventuali sovraccarichi e/o della eventuale coesione per i seguenti valori angolari modificati:


$$\theta + 3 = {}^{1}3$$

$$\alpha^1 = \alpha + \theta$$

$$\beta^1 = \beta - \theta$$

dove

che corrisponde ad una rotazione uguale a 0 del sistema muro-masso spingente intorno al centro C di rotazione e verso l'esterno.

Fs = A F'

$$F^{\dagger} = \frac{1}{2} \gamma H^2$$

una volta noto F', ed il conseguente incremento di spinta si ottiene come:

$$\Delta F = Fs - Fo$$

che passa ad una distanza dal piede $\lambda s = \frac{2}{3}H$.

Forza d'Inerzia

Se si indica con Gm il peso del muro per unità di lunghezza, si indica con:

$$Fi = CGm$$

la forza d'inerzia per unità di lunghezza del muro.

Se è presente un sovraccarico q uniformemente ripartito, si trasforma lo stesso in altezza di terra equivalente e si procede nel modo già visto. Se agisce un altro tipo di carico, oltre alla spinta statica viene determinata anche una spirita dinamica introducendo il valore W ottenuto esprimendo il parametro W in funzione degli angoli β' e s':

$$W^{1} = \frac{\sin\beta^{1}}{\sin(\beta^{1} + \epsilon^{1})}$$

Verifica secondo l'Ordinanza 3274

Calcolo della spinta

Se si indica con:

S il fattore di sito, che tiene conto del profilo stratigrafico del suolo di fondazione;

ag l'accelerazione orizzontale massima su suolo di categoria A, espressa come frazione dell'accelerazione di gravità:

PRO_MST. Progetto muri di sostegno

dove:

Parte 1: INQUADRAMENTO TEORICO

r il fattore di riduzione,

i coefficienti sismici orizzontale (kh) e verticale (kv) da introdurre nei calcoli sono espressi come:

$$kh = S \frac{ag}{g} \frac{1}{r}$$
 $kv = 0.5 kh$

La risultante delle spinte statiche e dinamiche del terreno si scrive come:

$$Ed = \frac{1}{2}\gamma^* (1 \pm kv)KH^2 + Ews$$

è l'altezza del muro;

Ews è la spinta idrostatica;

γ è il peso specifico del terreno (definito in seguito);

è il coefficiente di spinta del terreno (statico + dinamico);

e viene applicata a metà altezza del muro in assenza di studi più dettagliati che prendano in considerazione la rigidezza relativa, il tipo di movimento e la massa dell'opera di sostegno, o ad un terzo dell'altezza del muro nel caso in cui lo stesso sia libero di ruotare intorno al piede.

Il coefficiente di spinta del terreno viene calcolato mediante la formula di Mononobe e Okabe, che per stati di spinta attiva assume la forma:

$$\varepsilon \leq \phi - \theta: \qquad K = \frac{\sin^2(\beta + \varphi - \theta)}{\cos\theta \sin^2\beta \sin(\beta - \theta - \delta) \left[1 + \sqrt{\frac{\sin(\varphi + \delta)\sin(\varphi - \varepsilon - \theta)}{\sin(\beta - \theta - \delta)\sin(\beta + \varepsilon)}}\right]^2}$$

$$\varepsilon > \phi - \theta$$
: $K = \frac{\sin^2(\beta + \varphi - \theta)}{\cos\theta \sin^2\beta \sin(\beta - \theta - \delta)}$

mentre per stati di spinta passiva si esprime come:

$$K = \frac{\sin^2(\beta + \varphi - \theta)}{\cos\theta \sin^2\beta \sin(\beta + \theta) \left[1 - \sqrt{\frac{\sin\varphi \sin(\varphi + \varepsilon - \theta)}{\sin(\beta + \varepsilon)\sin(\beta + \theta)}}\right]^2}$$

La formula per stati di spinta passiva deve essere in generale usata nel caso di muro a parete verticale $(\beta = 90^{\circ})$. Per definire l'angolo θ e il peso specifico γ " è necessario distinguere i due casi di presenza e assenza di falda.

Livello di falda al di sotto del muro di sostegno

$$\gamma^* = \gamma$$
 peso specifico del terre no
$$\tan \theta = \frac{kh}{1 \pm ks}$$

Terreno impermeabile in condizioni dinamiche al di sotto dei livello di falda

$$\gamma^* = \gamma - \gamma_W \qquad \tan \theta = \frac{kh}{1 \pm kv}$$

γ è il peso specifico del terreno saturo; dove:

γ_a, è il peso specifico dell'acqua:

Nel caso di strutture rigide completamente vincolate, per le quali è necessario considerare il terreno in stato di riposo, e averti muri verticali con terrapieno a superficie orizzontale, l'incremento dinamico di spinta del terreno può essere calcolato come:

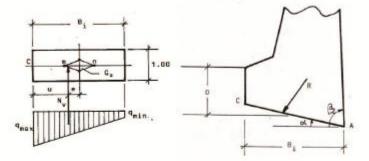
PRO MST. Progetto muri di sostegno

Parte 1: INQUADRAMENTO TEORICO

$$\Delta Pd = S \frac{ag}{g} \gamma H^2$$

con punto di applicazione a metà dell'altezza H del muro.

Forza d'Inerzia


L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali date dal prodotto delle forze di gravità per i coefficienti sismici precedentemente definiti: la componente verticale dell'azione sismica viene considerata agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli. Se si indica con Gm il peso del muro per unità di lunghezza, si indicano con:

$$Fi_0 = kh Gm$$
 $Fi_v = \pm kv Gm$

le componenti della forza d'inerzia per unità di lunghezza del muro.

Pressione limite

La capacità portante limite del terreno sul quale è appogiata la fondazione del muro può essere calcolata con la formula generalizzata di J. BRINCH-HANSEN.

Indicando con:

D = profondità media del piano di fondazione;

Ci = coesione dello strato di fondazione;

γi = peso specifico dello strato di fondazione;

 ϕi = angolo d'attrito dello strato di fondazione;

qi = carico totale (terra + eventuale sovraccarico permanente) agente sul terreno antistante il muro;

Bi = larghezza della fondazione;

 α = inclinazione del piano di fondazione, positiva se A é a profondità maggiore di C;

β2 = inclinazione del paramento interno del muro;

la portanza unitaria limite è fomita dalla seguente equazione:

$$\operatorname{qlim} = \frac{1}{2} \gamma_i B \Big(N_{_{\mathcal{T}}} S_{_{\mathcal{T}}} i_{_{\mathcal{T}}} b_{_{\mathcal{T}}} g_{_{\mathcal{T}}} \Big) + C_i \Big(N_{_{\mathcal{C}}} S_{_{\mathcal{C}}} d_{_{\mathcal{S}}} i_{_{\mathcal{C}}} b_{_{\mathcal{C}}} g_{_{\mathcal{C}}} \Big) + q_i \Big(N_{_{\mathcal{C}}} S_{_{\mathcal{C}}} d_{_{\mathcal{A}}} i_{_{\mathcal{A}}} b_{_{\mathcal{A}}} g_{_{\mathcal{A}}} \Big)$$

nella quale i termini entro parentesi sono calcolabili come segue:

a) Larghezza ridotta per l'eccentricità del carico:

$$B = Bi - 2e$$

b) Fattori di capacità portante:

$$N_q = e^{\pi \tan g \varphi} \tan g^2 \left(\frac{\pi}{4} + \frac{\varphi_i}{2} \right)$$

PRO_MST. Progetto muri di sostegno

$$N_{e} = (N_{g} - 1)\operatorname{ctg}\varphi_{e}$$

$$N_{g} = 1.5 \div 2(N_{g} + 1)\operatorname{tan} g\varphi_{e}$$

<u>Fattori di forma</u> <u>Per fondazioni rettangolari</u> con L > B si assume:

$$S_{r} = 1 - 0.4 \frac{\overline{B}}{L}$$

$$S_{q} = 1 + \frac{\overline{B}}{L} \tan g \varphi_{t}$$

$$S_{c} = 1 + \frac{N_{q}}{N_{c}} \frac{\overline{B}}{L}$$

Fattori di profondità

Per
$$\underline{D} \leq \overline{B}$$
:
$$d_q = 1 + 2 \frac{D}{B} \tan g \varphi_i (1 - \sin \varphi_i)^2$$
Per $\underline{D} > \overline{B}$:
$$d_q = 1 + 2 \tan g \varphi_i (1 - \sin \varphi_i)^2 \tan g^{-1} \left(\frac{D}{B}\right)$$

In entrambi i casi:

$$d_v = d_q - \frac{1 - d_q}{N_c \tan g \varphi}$$

e) Fattori per l'inclinazione della risultante;

Posto:

$$F_{\kappa} = (S_{ab} - S_{pk})\cos\alpha$$
 $F_{\nu} = N_{\nu}$

(Sah, Sph sono rispettivamente la componente orizzontale della spinta attiva e passiva), si assume secondo VESIC:

$$\begin{split} m &= \frac{2 + \overline{B}/L}{1 + \overline{B}/L} \\ i_y &= \left[1 - \frac{F_k}{F_v + \overline{B}LC_v ctg \varphi_i}\right]^{v+1} \qquad \text{(per Fv vedi figura precedente)} \\ i_q &= \left[1 - \frac{F_k}{F_v + \overline{B}LC_v ctg \varphi_i}\right]^{v} \qquad \text{(per Fv vedi figura precedente)} \\ i_c &= i_q - \frac{1 - i_q}{N_c \tan g \varphi_i} \end{split}$$

f) fattori per l'inclinazione della fondazione (α>0);

PRO MST. Progetto muri di sostegno

$$\begin{split} b_{q} &= \left(1 - \alpha \tan g \, \varphi_{i} \right)^{2} \quad \text{a in radianti} \\ b_{r} &= b_{q} \\ b_{z} &= b_{q} - \frac{1 - b_{q}}{N_{g} \tan g \, \varphi_{i}} \end{split}$$

g) fattori per l'inclinazione del piano di campagna (e>0):

$$g_q = (1 - \tan g\omega)^2$$

 $g_p = g_q$ (ω in radianti)
 $g_c = 1 - \frac{2\omega}{\pi + 2}$

L'espressione generalizzata si semplifica notevolmente nei casi seguenti:

Terreni privi di coesione

Si possono includere in questa categoria anche i terreni dotati di piccoli valori della coesione e con un angolo di attrito

In tal caso, ponendo con sufficiente approssimazione ai fini tecnici: Ci=0 l'espressione generale diviene:

$$q \lim = \frac{1}{2} \gamma_i \overline{B} \left(N_{\tau} S_{\tau} i_{\tau} b_{\tau} g_{\tau} \right) + q_i \left(N_{\tau} S_{\eta} d_{\eta} i_{\eta} b_{\eta} g_{\eta} \right)$$

I vari fattori assumono i valori già visti.

Terreni dotati di sola coesione

Qualora Ci assuma valori di rilievo e l'angolo d'attrito qi sia inferiore a 12-15°, si può considerare il terreno come eminentemente coesivo ed operare le variazioni che seguono:

$$q \lim = q_i + C_u N_c^o S_c^o d_c^o i_c^o b_c^o g_c^o$$

nella quale:

Cu = valore ultimo sperimentale della coesione in condizioni non drenate: Cu = ef. Si pone, di norma: Cu = 3/4 #

$$N_{c}^{\,o}=2+\pi$$
 è il fattore di capacità portante

$$q_i = \gamma_i D$$
 é il peso unitario del terreno anteriore

fattore di forma:

$$S_c^o = 1 + 0.2 \frac{\overline{B}}{L}$$

fattore di profondità:

$$d_z^o = 1 + 0.4 \frac{D}{\overline{B}}$$
 se $D \le \overline{B}$

$$d_z^o = 1 + 0.4 \tan g^{-1} \left(\frac{D}{B} \right)$$
 se $D > \overline{B}$

Fattore di inclinazione del carico:

$$m = \frac{2 + \overline{B}/L}{1 + \overline{B}/L}$$

$$i_{c}^{o}=1-\frac{mH}{\overline{B}LC_{u}N_{c}^{o}}$$

Fattore d'inclinazione del piano di posa

$$b_c^{\alpha} = 1 - \frac{2\alpha}{\pi + 2}$$
 (in radianti)

Fattore di inclinazione del piano di campagna

$$g_c^o = 1 - \frac{2\omega}{\pi + 2}$$
 (in radianti)

e inoltre, posto:

$$N_{\gamma}^{\circ} = -2\sin\omega$$

$$S_{\kappa}^{\circ} = 1 - 0.4\overline{B}/L$$

occorre aggiungere nell'espressione di qlim l'ulteriore termine:

$$T_{\omega} = \frac{1}{2} \gamma_{\tau} \overline{B} N_{\tau}^{o} S_{\tau}^{o}$$

Sollecitazione sui pali di fondazione

La determinazione delle sollecitazioni sui pali viene realizzata mediante l'impiego della nota formula di Navier:

$$N_i = \frac{PA_i}{\sum A_i} \pm M_x \frac{x_i A_i}{\sum A_i x_i^2}$$

Il calcolo effettuato è di tipo iterativo e permette di tenere conto della resistenza a trazione dei pali. Nel caso tutti i pali risultino compressi, il programma effettua un unico ciclo e quindi determina le sollecitazioni con la formula riportata sopra.

Nel caso in cui siano presenti pali tesi è possibile procedere nei seguenti modi:

- trascurare la resistenza a trazione dei pali (0 %): il programma procede con cicli successivi per il calcolo dei parametri geometrici e delle sollecitazioni, trascurando i pali che risultano in zona tesa.
- considerare una percentuale di resistenza a trazione dei pali (n %): il programma procede con cicli successivi per il calcolo dei parametri geometrici e delle sollecitazioni, tenendo conto della presenza dei pali tesi, la cui resistenza a trazione viene considerata in base alla percentuale assegnata.

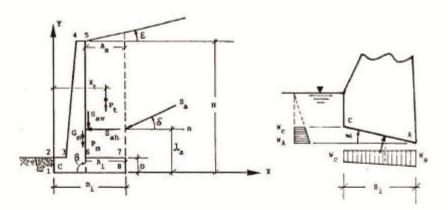
Verifiche di stabilità

Le verifiche che vengono effettuate su muri a gravità e a mensola riguardano:

- la sicurezza alla traslazione (slittamento verso valle)
- la sicurezza alla rotazione (ribaltamento)
- la sicurezza alla rottura del terreno di fondazione

Muri a mensola

PRO_MST. Progetto muri di sostegno



Equilibrio alla traslazione

La verifica consiste nell'accertare che la forza Sah non provochi lo scorrimento del piano di appoggio della fondazione sul terreno.

Lo sforzo normale complessivo assume il valore:

$$N = (Pm + Pt + Sav)\cos\alpha + Sah\sin\alpha - \frac{WmBt}{\cos\alpha}$$

mentre il coefficiente di sicurezza alla traslazione diviene nel caso generico di fondazione inclinata:

$$Kt = \frac{\left[(Pm + Pt + Sav)\cos\alpha + Sah\sin\alpha - \frac{WmBi}{\cos\alpha} \right] f' + \frac{Cbi}{\cos\alpha}}{Sah\cos\alpha} \ge 1.5$$

dove

rappresenta la sottospinta idrostatica in presenza di falda, che consente la soluzione del problema.

Equilibrio alla rotazione

Si deve accertare che il muro non ruoti attorno al punto C; quindi è necessario effettuare un confronto tra i momenti di rovesciamento e i momenti di stabilità.

Momento di rovesciamento:

$$Mr1 = Sah\lambda a$$

 $Mr2 = \frac{WmBidi}{\cos \alpha}$ (di = braccio della sottospinta idrostatica)

Momenti di stabilità:

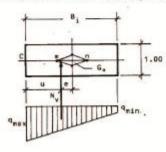
MsI = Pmxb momento dovuto al peso del muro

Ms2 = SavBi momento dovuto alla componente della Spinta

Ms3 = Ptxt momento dovuto al peso del terreno sulla ciabatta di fondazione

Da cui il coefficiente di sicurezza al ribaltamento si ottiene come:

PRO_MST. Progetto muri di sostegno



$$Kr = \frac{Pmxb + SavBi + Ptxt}{Sah\lambda a + \frac{WmBidt}{\cos \alpha}} \ge 1.5$$

Verifica della portanza del terreno

La verifica viene eseguita come dettato dal D.M. LL.PP. 11/03/88 "Nuove norme tecniche per terreni, opere di sostegno e fondazioni" al punto D.4.4. che prescrive che la verifica deve essere eseguita "tenendo conto dell'inclinazione ed eccentricità della risultante delle forze trasmesse dal muro al terreno di fondazione. Il coefficiente di sicurezza non deve risultare minore di 2.º

Il programma scompone la risultante delle forze secondo le direzioni normale e tangenziale al piano di fondazione ed esegue il rapporto con la risultante della pressione limite applicata alla larghezza della base effettivamente reagente, che può risultare inferiore alla larghezza geometrica perché ridotta per effetto dell'eccentricità del carico.

Il coefficiente di sicurezza Kq risulta:

$$Kq = \frac{B \ q_{\text{lim}}}{Nv}$$
 (verificato se maggiore di 2)

dove:

B = larghezza della base effettivamente reagente.

q_{lim} = pressione limite che può essere fornita introducendo direttamente il valore desunto dalla relazione geognostica od in alternativa calcolata dal programma secondo la formula di J.BRINCH-HANSEN (1) (vedi paragrafo sequente).

N_v = componente normale al piano di fondazione delle forze trasmesse dal muro.

Per completezza il programma calcola l'andamento delle pressioni fornendo i valori minimo e massimo ed eseguendo un'ulteriore controllo, segnalando il valore negativo di verifica se maggiore di q_{im}-

La verifica consiste nell'accertarsi che la pressione di contatto muro-terreno non superi la pressione ammissibile. Indicando con:

∑Mr = somma dei momenti di rovesciamento

∑Ms = somma dei momenti stabilizzanti

Nv = somma delle forze perpendicolari alla superficie della fondazione

definiamo:

$$u = \frac{\Sigma Ms - \Sigma Mr}{Nv} \qquad \text{ed} \qquad e = \frac{Bi}{2} - u$$

da cui se

$$e \le \frac{Bi}{6}$$

il centro di pressione risulta interno al terzo medio per cui le pressioni sul terreno si calcolano con la nota formula:

MANDATARIA

STUDIO CORONA

PRO MST. Progetto muri di sostegno

$$q = \frac{Nv\cos\alpha}{Bi} \left(1 \pm \frac{6e\cos\alpha}{Bi} \right)$$

e vanno confrontate con la pressione ammissibile del terreno di fondazione.

Nel caso il centro di pressione risulti esterno al terzo medio (generando modeste tensioni di trazione), la pressione sul terreno si calcola impiegando la consueta formula:

$$q = \frac{2Nv}{3uRi}$$

Verifica di stabilità globale

Il calcolo è realizzato con il metodo di Janbu

Il metodo di Janbu assume arbitrariamente la posizione dei punti di applicazione delle risultanti degli sforzi normali in corrispondenza delle linee di separazione fra le strisce e lungo le intersezioni di queste ultime con la curva di rottura. In tal modo non è soddisfatto l'equilibrio dei momenti dell'ultima striscia, avendo imposto una condizione sovrabbondante rispetto a quelle strettamente necessarie per la soluzione

L'errore tuttavia si mantiene piccolo, ed influenza solo la posizione della line of thrust incidendo poco sul valore del

Tale metodo può essere adoperato per superfici circolari ed irregolari consentendo una buona velocità di calcolo.

Teoria del metodo di Janbu (completo)
La principale ipotesi del metodo di Janbu è quella di considerare noti i punti di applicazione delle forze di interstriscia orizzontali. Questo metodo consente l'analisi di stabilità per qualsiasi forma della superficie di rottura. Il coefficiente di sicurezza nel metodo di Janbu completo si esprime secondo la seguente formula:

$$F = \frac{\sum_{i=1}^{n} \left(\frac{c_{i}b_{i} + (W_{i} - \Delta X_{i} - u_{i}l_{i})\tan\phi}{1 + \frac{\tan\alpha_{i}\tan\phi}{F}} \right) b_{i} \left(1 + \tan^{2}\alpha_{i}\right)}{(E_{a} - E_{b}) + \sum_{i=1}^{n} \left[(W_{i} - \Delta X_{i})b_{i}\tan\alpha_{i} \right]}$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{estma} rispetto all'orizzontale, W_i è il peso della striscia i_{estma} , c_i e φ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u, è la pressione neutra lungo la base della striscia, E, ed E, rappresentano le eventuali forze orizzontali agli estremi della superficie di scorrimento analizzata, ΔX_i è la variazione delle forze di taglio di interstriscia. La soluzione del problema avviene per successive approssimazioni assumendo un valore iniziale per F da inserire nel secondo membro dell'espressione in modo da determinare un secondo valore dall'espressione. L'iterazione va avanti finchè i valori del coefficiente calcolati in due passi di iterazione successivi risultano coincidenti.

PRO_MST. Progetto muri di sostegno

Pagina 88 di 88