

REGIONE AUTONOMA DELLA SARDEGNA

PROVINCIA DI OLBIA - TEMPIO

LAVORI DI COSTRUZIONE DELL'AMPLIAMENTO DEL PORTO CON ANNESSI SERVIZI E EDIFICI COMMERCIALI IN LOCALITÀ «MARANA» - GOLFO DI MARINELLA

CHIARIMENTI E INTEGRAZIONI: APRILE 2013

RELAZIONE GEOLOGICA

STUDIO TECNICO DI GEOLOGIA Dott. Geol. Giacomo Deiana Via Fratelli Cervi 42 - 09020 - Ussana CA Tel. +39 329 3651161 P.I 03053920926 C.F. DNEGCM80E27B354R

Committente:

Yacthing Club Marana s.r.l. Località Punta Marana CP 44 07020 - Golfo Aranci (OT) C.F.: 03022080158 P.I.: 01284310909

Pre	mess	a		. 2							
1.	Ma	teria	li e metodi	. 3							
1	1	Rilievo geologico-tecnico3									
1	2	Rilie	evo topografico	.3							
1	3	Rac	colta ed elaborazione dati per la caratterizzazione degli ammassi rocciosi	.4							
1	4	Ese	cuzione dei pozzetti stratigrafici	10							
1	5	Ese	cuzione delle prove di permeabilità	11							
2.	Det	ermi	inazione della permeabilità dell'ammasso roccioso	13							
3.	Ass	etto	geologico di dettaglio	15							
3	.1	Cara	atterizzazione dell'ammasso roccioso	23							
3	.2	Asse	etto idrogeologico	40							
3	.3	Idro	ografia	40							
3	.4	Idro	ogeologia	44							
	3.4	1	Prove di permeabilità a carico variabile in pozzetto	44							
	3.4	2	Stima della permeabilità dell'ammasso roccioso	49							
	3.4	3	Principali Unità Idrogeologiche (U.I.)	49							
	3.4	4	Falda freatica	52							
	3.4	3.4.5 Criticità connesse con la potenziale intrusione del cuneo salino									
4.	Cor	nclus	ioni	58							
5.	Арр	pend	ice – Log stratigrafici dei pozzetti e documentazione fotografica	59							
6.	Alle	gati		67							

INDICE

Premessa

Le seguenti integrazioni volontarie hanno l'obbiettivo, oltre che riferire rispetto ad alcuni dubbi riportati nel resoconto della conferenza istruttoria del 25/10/2012, approfondire lo stato delle conoscenze sulla stratigrafia geologico-tecnica e sull'idrogeologia dell'area interessata dal progetto "Lavori di costruzione dell'ampliamento del porto con annessi servizi e edifici commerciali in località Marana".

1. Materiali e metodi

1.1 Rilievo geologico-tecnico

Con lo scopo di definire la distribuzione degli affioramenti rocciosi e dei depositi superficiali, è stato condotto un rilevamento geologico-tecnico dell'area direttamente interessata dalla realizzazione delle opere in progetto e di un suo ambito areale significativo.

Il rilievo geologico è stato condotto in maniera da consentire la restituzione con elevato dettaglio sia della carta geologica che delle principali unità litotecniche (scala 1:500) oltre che le sezioni geologiche delle aree interessate dalle operazioni di scavo.

Durante il rilevamento geologico tecnico dell'area vasta sono stati verificati e talvolta modificati (sulla base di osservazioni dirette in situ) i limiti della *"Carta Geologica* di base *della Sardegna* in *scala* 1:25.000" (elaborata dalla Regione Sardegna) con particolare riferimento alla distribuzione dei depositi ad alluvionali olocenici a nord e a sud-est dell'area di scavo. In tali settori, infatti, la *Carta Geologica* di base *della Sardegna* in *scala* 1:25.000 riporta alluvioni oloceniche anche se sono ben evidenti, (anche da ortofoto RAS 2008), gli affioramenti a substrato granitico.

1.2 Rilievo topografico

È stato eseguito un rilievo plano-altimetrico mediante GPS geodetico (mod. Leica 1200 – precisione strumentale ±2 cm) in maniera da restituire la geomorfologia di dettaglio dell'area interessata dalle operazioni di scavo. In totale sono state effettuate 1.341 acquisizioni su una superficie di 27.037 metri quadrati. Durante le acquisizioni plano altimetriche sono stati battuti i limiti geologici in maniera da consentire la restituzione della carta delle unità litotecniche e delle sezioni geologiche significative con elevata precisione.

In Figura 1 si riporta il modello ombreggiato con sovrapposizione dei punti battuti durante le operazioni di rilievo plano-altimetrico. Il passo di campionamento è stato costante e secondo linee parallele solo per il settore a nord degli scavi dove le variazioni di pendenza sono minime; per gli altri settori si è operato campionando le rotture di pendenza in maniera da consentire la restituzione del modello tridimensionale e delle curve di livello con più accuratezza possibile.

Le acquisizioni grezze sono state effettuate in coordinate geocentriche WGS84 mentre la restituzione del rilievo è stata eseguita riferendo le misure al sistema di riferimento Gauss-Boaga/Roma40, in maniera da poter georiferire il rilievo sulla cartografia CTR.

3

Figura 1 – Modello ombreggiato elaborato sulla base delle acquisizioni plano-altimetriche. Le croci in giallo evidenziano i punti battuti durante il rilievo plano-altimetrico di dettaglio.

1.3 Raccolta ed elaborazione dati per la caratterizzazione degli ammassi rocciosi

In questo paragrafo vengono illustrati i metodi operativi per il rilevamento delle discontinuità, basati essenzialmente sulla metodologia proposta dall'ISRM (1978), e le tecniche di analisi, elaborazione e rappresentazione dei dati raccolti basate su quanto proposto dall'ISRM(1978) e da Priest (1993). Il rilevamento geologico-tecnico di un ammasso roccioso può essere condotto a diversi livelli di dettaglio in relazione al tipo di indagine condotta, al grado di approfondimento (studio preliminare, progetto di massima, progetto esecutivo), all'estensione e alle caratteristiche dell'area da esaminare. Esistono due criteri fondamentali sui quali si può basare il censimento delle discontinuità (ISRM, 1978):

- Criterio soggettivo: secondo il quale vengono rilevate solo le discontinuità che sembrano svolgere un ruolo importante nei riguardi delle caratteristiche meccaniche dell'ammasso;
- 2- Criterio oggettivo: secondo il quale vengono campionate tutte le discontinuità che intersecano una certa linea di riferimento (linea di scansione) o che ricadono all'interno di una certa finestra (Fig.1).

L'approccio oggettivo presume un'elaborazione statistica dei dati, per cui richiede che il numero delle discontinuità campionate sia sufficientemente elevato da far risultare significativa tale elaborazione. Ne consegue che un approccio strettamente oggettivo richiede tempi notevolmente elevati. L'approccio soggettivo è più rapido ed economico; tuttavia presume una preliminare conoscenza dell'area in esame e l'individuazione a priori dei domini di discontinuità.

Un ammasso roccioso può essere descritto attraverso le caratteristiche della roccia sana (non alterata ed in posto) e delle discontinuità che la dissecano. Di seguito vengono elencati e definiti i principali parametri necessari alla classificazione di un ammasso roccioso. La maggior parte di questi parametri dovrà essere definita lungo una linea di misura indicando opportunamente la distanza progressiva della discontinuità dal punto zero sullo stendimento di misura.

Le linee di misura sono state appositamente posizionate in maniera tale da intercettare un numero di discontinuità rappresentativo di ciascun fronte esaminato (Figura 2).

Figura 2 – Carta dell'area interessata dalle opere in progetto con localizzazione delle stazioni di rilevamento geomeccanico dell'ammasso roccioso.

Di seguito si riportano i parametri principali acquisiti per ciascuna stazione di rilevamento geomeccanico:

- discontinuità: termine che indica qualsiasi interruzione nella continuità dell'ammasso roccioso avente resistenza a trazione bassa o nulla. Durante il rilevamento è stata indicata la tipologia (frattura, faglia, filone, ecc) di ogni discontinuità rilevata.
- distanza progressiva: misura della distanza della intercetta della discontinuità con la linea dello stendimento di misura dal punto scelto come origine (progressiva 0+00 m+cm).
- orientazione dei giunti: la giacitura nello spazio delle discontinuità (orientazione) è definita dall'inclinazione della linea di maggior pendenza, misurata rispetto

all'orizzontale, e dalla direzione dell'immersione misurata in senso orario rispetto al Nord.

Nella a fianco è rappresentata la convenzione per la misura dell'orientazione; in essa sono in evidenza: *a* retta di massima pendenza del piano di discontinuità; *b* proiezione della retta a sul piano orizzontale; α angolo formato dalle rette *a* e

b (inclinazione); β angolo azimutale della retta a misurato in senso orario (direzione di immersione).

 famiglia o sistema di discontinuità: la famiglia o sistema di discontinuità è un insieme di discontinuità che hanno orientazione simile e possono essere rappresentate da un'unica orientazione. L'orientazione delle singole famiglie andrà assegnata tramite opportuna proiezione equatoriale equiareale (emisfero inferiore del reticolo di Schmidt) dei poli delle discontinuità rilevate e successiva ricostruzione delle linee di iso-densità dei poli e delle aree ad uguale densità di poli. Il valore centrale dell'area aconcentrazione di poli più alta può essere assunto come rappresentativo dell'orientazione media dell'insieme di discontinuità.

apertura discontinuità: distanza tra le pareti di una discontinuità sul fronte, misurata perpendicolarmente alle stesse, in millimetri, in prossimità dello stendimento di misura. Per ogni sistema di discontinuità è stato indicato il valore modale. Le aperture visibili sui fronti sono caratterizzate, naturalmente, da una apertura che è verosimilmente maggiore di quella che caratterizza l'interno della massa rocciosa.

Figura 3 – Stazione di rilevamento geomeccanico "St_01", acquisizione della giacitura delle discontinuità.

Figura 4 – Operatore impegnato nella misura dell'apertura delle discontinuità.

- riempimento discontinuità: il riempimento è il materiale interposto tra le pareti della discontinuità. Nei casi in cui è presente materiale di riempimento occorre descriverne la natura e la resistenza a compressione uniassiale mediante prove di indice manuale, prove con Pocket Penetrometer, prove con sclerometro o prove di laboratorio su campioni indisturbati. Sulla base di queste prove il materiale di riempimento potrà essere distinto in compatto o molle. Come riferimento si possono considerare molli i riempimenti con JCS < 25 MPa e compatti quelli con JCS ≥ 25 MPa. Nel caso specifico l'ammasso roccioso analizzato non presenta materiali di riempimento salvo in alcuni casi in cui sono stati rilevate ricristallizzazioni di quarzo.
- alterazione giunto: indicazione qualitativa del grado di alterazione delle pareti del giunto a causa dei processi di ossidazione, disgregazione e degradazione. Si utilizzano termini secondo una scala che va da non alterato a decomposto. Una indicazione sul grado di alterazione si può ottenere dal rapporto JCS/UCS.
- rugosità e JRC (Joint Roughness Coefficient): la rugosità rappresenta l'andamento morfologico (ondulazioni, dentellature, gradini ecc.) delle superfici affacciate di una discontinuità. La definizione della rugosità a piccola scala deve prevedere la determinazione del Coefficiente di rugosità del giunto (JRC) il quale rappresenta un parametro fondamentale per poter determinare l'angolo di attrito di picco. Il JRC potrà è stato ottenuto tramite il confronto tra il profilo della discontinuità (ottenuto con profilometri ad aghi) ed i dieci profili tipo proposti da Barton (coefficienti variabili da 0 a 20).
- estensione: misura in metri della lunghezza della traccia visibile della discontinuità;
- continuità intraformazionale: la tipologia di terminazioni del giunto è indicativa della continuità della discontinuità all'interno del fronte roccioso. Per ogni discontinuità si devono classificare le due terminazioni secondo la seguente terminologia:
 - tipo "O" terminazione del giunto non visibile;
 - tipo "A" terminazione della discontinuità su un'altra discontinuità;
 - tipo "I" terminazione della discontinuità nella roccia;

L'estensione e le terminazioni di un giunto sono rappresentative dell'estensione areale della discontinuità (persistenza della discontinuità). I dati relativi alle terminazioni dei giunti devono essere sintetizzati mediante la definizione dell'indice di terminazione della massa rocciosa (Tr). L'indice Tr è dato dal rapporto percentuale tra il numero di terminazioni delle discontinuità in roccia ed il numero totale di discontinuità [Tr = 100^{*} Σ (terminazioni in roccia/2^{*}discontinuità rilevate)]. Tale indice consente di avere una prima indicazione dell'influenza di eventuali ponti di roccia sulla stabilità dell'ammasso roccioso.

- orientazione del fronte e della linea di misura: le orientazioni del fronte e della linea di misura di rilievo geomeccanico (stendimento) sono state rilevate secondo la stessa metodologia utilizzata per la misura delle discontinuità.
- resistenza a compressione uniassiale della roccia sana (UCS) e delle pareti dei giunti (JCS) e coesione dei ponti di roccia: la resistenza a compressione della roccia intatta (UCS) dovrà è stata stimata mediante prove in sito condotte sul materiale costituente l'ammasso roccioso non alterato; in particolare il parametro di resistenza è stato determinato attraverso l'utilizzo dello sclerometro (martello di Schmidt tipo L), sia sulla roccia sana che nelle pareti dei giunti. Operativamente in corrispondenza di ogni zona di prova sono state effettuate 10 battute con il martello ottenendo 10 valori di rimbalzo ("R" per la valutazione di JCS ed "R" per la valutazione di UCS). I cinque valori più alti del rimbalzo sono stati mediati e successivamente corretti in funzione dell'inclinazione dello sclerometro al momento della misura.
- *condizione idraulica del giunto*: la condizione idraulica del giunto è rappresentata dalla quantità di acqua presente in corrispondenza delle varie discontinuità.
- spaziatura, numero volumetrico delle discontinuità (Jv) e Rock Quality Designation (RQD): la spaziatura è il valore modale della distanza che separa discontinuità della stessa famiglia. Essa è riferita ad un piano ortogonale alle discontinuità. Può essere misurata per ogni sistema di discontinuità secondo una linea normale alla famiglia di giunti; qualora non fosse possibile si dovrà effettuare una correzione che tenga conto dell'orientazione della linea di misura e della giacitura della famiglia di discontinuità. Il numero volumetrico delle discontinuità (Jv) è la somma del numero di discontinuità al metro lineare per ogni famiglia di giunti. Il numero di discontinuità al metro lineare per ogni famiglia di giunti dovrebbe essere valutato lungo una linea perpendicolare all'orientazione di ogni discontinuità. Il Rock Quality Designation è un indice rappresentativo della qualità dell'ammasso roccioso intesa come integrità della roccia in esame. Esso è originariamente definito come il rapporto percentuale tra la somma degli spezzoni di carota di sondaggio più lunghi di 10 cm e la lunghezza del tratto di perforazione considerato (le lunghezze da prendere in considerazione sono funzione della variazione dei domini strutturali attraversati durante i sondaggi geognostici).

In definitiva l'RQD può essere ottenuto mediante l'esecuzione di sondaggi geognostici ovvero (come nel caso del presente studio) tramite la correlazione con il Jv secondo la seguente relazione RQD = 115 - 3,3 Jv.

1.4 Esecuzione dei pozzetti stratigrafici

Per definire la stratigrafia di dettaglio, con particolare riferimento alla distribuzione dei depositi superficiali alluvionali, ai depositi antropici di riporto, alla coltre di alterazione dei litotipi granitici e verificare la presenza di falda freatica superficiale, sono stati effettuati 5 pozzetti stratigrafici mediante escavatore meccanico con benna a cucchiaia rovescia. In Figura 5 si riporta la carta topografica delle aree di scavo con la localizzazione dei siti in cui sono stati eseguiti i pozzetti stratigrafici.

Figura 5 – Carta topografica con equidistanza delle curve di livello pari a 0,5 metri con localizzazione dei punti in cui sono stati eseguiti gli scavi dei pozzetti stratigrafici.

Nella tabella di seguito si riportano i siti di scavo e le relative coordinate riferite al sistema Gauss-Boaga/Roma40:

Pozzetto	Х	у	Quota
P1	1546887.71	4539002.91	2.98
P2	1546867.512	4539081.174	2.15
Р3	1546927.20	4539100.54	2.48
P4	1546988.17	4539113.84	3.28
P5	1546939.80	4538995.86	3.56

1.5 Esecuzione delle prove di permeabilità

Con lo scopo di determinare il coefficiente di permeabilità K dei depositi antropici e quaternari affioranti in corrispondenza della darsena, sono state effettuate 5 prove di permeabilità in pozzetto a carico variabile.

Le prove in pozzetto sono adatte soprattutto per terreni granulari e vengono eseguite in pozzetti a

base circolare o a base quadrata.

Le prove si ritengono eseguite in modo corretto quando si presentano le seguenti condizioni (AGI-Roma 1977) :

- a- Il terreno deve essere saturato preventivamente in modo da stabili re un regime di flusso permanente;
- b- La profondità del pozzetto deve essere pari a circa 1/7 dell'altezza del fondo dal livello di falda;
- c- Il diametro (o lato di base) del pozzetto deve essere almeno 10-15 volte il diametro massimo dei granuli del terreno;
- d- Il terreno sia omogeneo, isotropo e con coefficiente di permeabilità $k > 10^{-6}$ m/s.

Le prove sono state effettuate in prossimità dei pozzetti stratigrafici; la prova idraulica di assorbimento è stata eseguita su un pozzetto cubico di lato 0,3mx0,3mx0,3m scavato all'interno di un pozzetto di dimensioni maggiori, a quota -0,50 m rispetto al p.c. (rimuovendo quindi lo strato di suolo superficiale), per poter le misurazioni al solo livello di interesse. Per il calcolo del coefficiente di permeabilità K è stata utilizzata la formula:

$$k = \frac{h_2 - h_1}{t_2 - t_1} \frac{1 + \left(2\frac{h_m}{b}\right)}{\left(27\frac{h_m}{b} + 3\right)}$$

dove:

 h_m = altezza media dell'acqua nel pozzetto (hm > d/4);

 $t_2 - t_1 =$ intervallo di tempo;

 $h_2 - h_1$ = variazione di livello dell'acqua nell'intervallo $t_2 - t_1$;

b = lato della base del pozzetto.

Figura 6 – Foto mostrante il pozzetto utilizzato per effettuare la prova di permeabilità a carico variabile. Il pozzetto di misura è stato scavato all'interno di un pozzo di dimensioni maggiori scavato sino alla quota di -0,50 m rispetto al p.c. per consentire le misurazioni del coefficiente K all'interno del granito arenizzato.

Prima dell'esecuzione di ciascuna prova di permeabilità, si è preventivamente proceduto alla saturazione del terreno immettendo acqua sino a misurare abbassamenti costanti nel tempo. Ogni prova di permeabilità è stata condotta per una durata di 2 ore (7200 secondi) effettuando le misurazioni del livello dell'acqua all'interno del pozzetto ad intervalli di tempo costanti e pari a 15 minuti (900 secondi).

2. Determinazione della permeabilità dell'ammasso roccioso

Non essendo stati effettuati sondaggi geognostici a carotaggio continuo e prove di permeabilità in foro (prove Lugeon), la permeabilità equivalente dell'ammasso roccioso a granodioriti monzogranitiche della facies intrusiva di Porto Rotondo è stata stimata facendo riferimento all'approccio di Wei, Egger & Descoeudres (1995).

Approccio di Snow (1968)

Tutte le volte che non è possibile eseguire misure dirette di permeabilità dell'ammasso roccioso, si possono svolgere delle stime, ad esempio con la relazione:

$$K = (g * ap^{3}) / (12 v * sp)$$
 [cm/s]

dove:

g = accelerazione di gravità = 981 cm/s²

ap = apertura delle discontinuità [cm]

v = coefficiente di viscosità cinematica (per acqua a 20°C = 0,0101 cm²/s)

sp = spaziatura delle discontinuità [cm]

Approccio di Wei, Egger & Descoeudres (1995)

Se la lunghezza delle discontinuità è maggiore di 10 ÷ 15 volte la spaziatura, la permeabilità può essere calcolata come se la lunghezza delle discontinuità fosse infinita:

$$K_0 = \frac{1}{6} \cdot \frac{e^3}{S_{a0}}$$

dove *e* (*ei*) rappresenta l'apertura idraulica delle discontinuità ed S_{a0} è la spaziatura media delle

discontinuità delle diverse famiglie.

Per ottenere l'apertura idraulica (superficiale), Barton et alii, (1985) forniscono la seguente relazione:

$$e_i = \frac{e_i^2}{JRC^{2,5}}$$

dove:

et = apertura meccanica (μm), cioè la misura dell'apertura rilevabile in sito;

JRC = coefficiente di rugosità delle discontinuità (Joint Roughness Coefficient).

Si evidenzia che tale metodo restituisce la il valore di K_0 espresso in m² pertanto per la conversione in cm/s è stata utilizzata la seguente relazione:

Stima della variazione della permeabilità con la profondità

Una volta calcolato il valore dell'apertura idraulica e della permeabilità in superficie, si possono stimare i valori che queste assumono a differenti profondità.

Numerose osservazioni in sito hanno mostrato, infatti, come le caratteristiche geometriche delle discontinuità cambino con la profondità: in particolare, lo sforzo normale aumenta con essa; la frequenza, l'apertura delle fratture e, di conseguenza, anche la permeabilità tende a diminuire.

La quantificazione di tali diminuzioni è però controversa:

 da un lato (Brace, 1980) viene messo in evidenza come, considerando i risultati di un gran numero di misure in sito, si possa rilevare solo un accenno ad una diminuzione della conducibilità idraulica con la profondità, accenno che non giustifica la proposta di relazioni empiriche di validità generale;

 d'altra parte, almeno nell'ambito di profondità modeste (che spesso corrispondono a quelle di interesse pratico), diversi Autori rilevano una sistematica variazione dei due parametri che più di altri sembrano condizionare la conducibilità idraulica degli ammassi rocciosi fratturati, l'apertura e la spaziatura delle discontinuità.

3. Assetto geologico di dettaglio

Il rilievo geologico-tecnico di dettaglio, unitamente ai dati acquisiti attraverso l'esecuzione dei pozzetti stratigrafici e delle prove di permeabilità, ha consentito l'elaborazione del modello geologico/geotecnico e idrogeologico dell'area direttamente interessata dalla realizzazione delle opere previste in progetto; sulla base della correlazione dei dati topografici con i dati geologici è stata inoltre restituita la Carta delle Unità Litotecniche (Figura 12).

In particolare sono state distinte le seguenti Unità Litotecniche principali:

1- <u>Unità Litotecnica A</u>: Granodioriti monzogranitiche. Facies Porto Rotondo - Substrato massivo, compatto, inalterato e poco fratturato. Si tratta dell'unità litotecnica meno estesa nell'are di interesse ed è caratterizzata da ottime caratteristiche geomeccaniche. Questa unità affiora nel fronte di scavo sud occidentale della darsena.

Figura 7 – Foto mostrante l'Unità Litotecnica A caratterizzata da granodioriti massive e poco alterate della Facies Porto Rotondo affioranti nel fronte di scavo orientale.

2- <u>Unità Litotecnica B</u>: Granodioriti monzogranitiche. Facies Porto Rotondo - Substrato roccioso poco alterato caratterizzato da 3 famiglie di discontinuità principali. Questa unità affiora estesamente in tutta l'area interessata dallo scavo (Figura 12). Petrograficamente è correlabile con l'Unità Litotecnica A, ma è caratterizzata dalla diffusa presenza di discontinuità strutturali che conferiscono all'ammasso assetto bloccoso irregolare. Lo spessore per questa unità non è stato determinato ma, sulla base dei rilievi di caratterizzazione dell'ammasso roccioso, è stato riscontrato un progressivo miglioramento delle caratteristiche geomeccaniche con l'aumento della profondità rispetto al piano di campagna.

Figura 8 – Foto acquisita nel fronte di scavo meridionale. 1- Unità Litotecnica B; 2- Unità Litotecnica C; 3- Unità litotecnica D.

3- <u>Unità Litotecnica C</u>: Granodioriti monzogranitiche. Facies Porto Rotondo - Substrato roccioso molto alterato e fratturato. Talora sabbie molto compatte a debole frazione limosa arrossata. Rappresenta la coltre di altrerazione dell'Unità Litotecnica B. Lo spessore dell'unità, determinato durante l'esecuzione dei pozzetti stratigrafici e sui fronti di scavo, è variabile e compreso tra pochi decimetri e circa 2 metri. Questa unità è stata quasi completamente asportata durante le operazioni di scavo della

darsena. Attualmente è rilevabile nel settore immediatamente a nord dell'area di scavo.

4- <u>Unità litotecnica D</u>: Deposito alluvionale: ghiaie e ciottoli poligenici in matrice sabbiosa-limosa talora debolmente cementati. Questa Unità affiora esclusivamente nel settore meridionale e occidentale dell'area di scavo. Si tratta di depositi alluvionali e di versante di età olocenica che stratigraficamente sovrastano l'Unità Litotecnica C e localmente l'Unità B. Lo spessore dei depositi alluvionali misurato in corrispondenza dei fronti di scavo è variabile tra 0,5 metri e 2.5/3.0 metri.

Figura 9 – Foto acquisita nel fronte di scavo meridionale, mostrante il deposito alluvionale dell'U.L. D (1), che sovrasta i litotipi granitici arenizzati dell'U.L. C (2) Lo spessore del deposito alluvionale è di circa 0,5 metri. la linea tratteggiata gialla evidenzia il contatto stratigrafico tra le due U.L.

5- <u>Unità litotecnica E</u>: Deposito antropico: ciottoli ghiaie e talora blocchi in matrice sabbiosa-limosa. Si tratta di materiali utilizzati per la realizzazione dei rilevati stradali nel settore più occidentale rispetto all'area di scavo.

Figura 10 – Foto acquisita nel fronte di scavo meridionale mostrante i rapporti stratigragici tra U.L. E (1), U.L. D (2) e U.L. C (3).

LEGENDA

+ +	1	Granodioriti monzogranitiche. Facies Porto Rotondo. Substrato massivo, compatto, inalterato e poco fratturato.						
+ +	2	Granodioriti monzogranitiche. Facies Porto Rotondo. Substrato roccioso poco alterato caratterizzato da 3 famiglie di discontinuità principali.						
+ +	3	Granodioriti monzogranitiche. Facies Porto Rotondo Substrato roccioso molto alterato e fratturato. talora sabbie molto compatte a debole frazione limosa arrossata						
	4	Deposito alluvionale: ghiaie e ciottoli poligenici in matrice sabbiosa-limosa talora debolmente cementati.						
	5	Deposito antropico: ciottoli e blocchi in matrice sabbiosa-limosa.						
•	Pozzetti stratigrafici							
	- Sezioni geologiche							

Figura 11 – Legenda Carta delle Unità Litotecniche principali riportata in Figura 12.

Figura 12 – Carta delle Unità Litotecniche principali rilevate nell'area direttamente interessata dalla realizzazione delle opere previste in progetto. Le linee tratteggiate nere indicano le sezioni geologiche significative riportate in allegato 3. In Figura 11 si riporta la legenda.

Figura 13 – Modello 3D elaborato sulla base dei dati topografici rilevati con GPS geodetico, mostrante l'assetto litotecnico di dettaglio nelle aree interessate dalle operazioni di scavo. Il livello dell'acqua all'interno della darsena, in questo modello è stato fissato pari al livello medio mare.

L'elaborazione del *dataset* acquisito durante il rilievo geologico-tecnico e topografico ha consentito la restituzione di sette sezioni geologiche significative (Allegato 1) dell'area di interesse: 4 orientate N344 e 3 orientate N76 (Figura 12).

L'area di interesse è caratterizzata dalla presenza di due tipologie di basamento geologico: uno massivo rappresentato dalla "U.L. A" ed uno, petrograficamente correlabile, ma fratturato connesso con l"U.L. B".

I depositi superficiali che sovrastano il basamento sono invece ascrivibili alla coltre di alterazione su litotipi granitici (U.L. C), ai depositi alluvionali 8 "U.L. D" e ai depositi antropici "U.L. E".

Nelle sezioni geologiche riportate in Figura 14 e Figura 15 è possibile osservare i rapporti stratigrafici tra le diverse Unità Litotecniche rilevate nell'area di interesse.

Figura 15 – Sezioni geologiche significative delle aree di scavo elaborate sulla base dei dati acquisiti tdurante in rilievi in situ . per la localizzazione si consulti la Figura 12.

3.1 Caratterizzazione dell'ammasso roccioso

Per la caratterizzazione geomeccanica dell'ammasso roccioso a granodioriti monzogranitiche inequigranulari della Facies Porto Rotondo, sono state utilizzate le metodologie di rilievo definite dalla International Society of Rock Mecanics (ISRM) e la classificazione di Beniawski (Rock Mass Rating).

Lo studio di caratterizzazione geomeccanica dell'ammasso roccioso è stato condotto su 5 stendimenti localizzati sui fronti di scavo della darsena.

Le linee di misura sono state appositamente posizionate in maniera tale da intercettare un numero di discontinuità rappresentativo di ciascun fronte esaminato.

A partire dagli anni '70 il Beniawski sviluppò una metodologia per la caratterizzazione geomeccanica, poi progressivamente affinata fino ad oggi per renderla meglio utilizzabile e compatibile alle procedure e standard internazionali.

La classificazione di Beniawski si basa sul rilievo, in campagna o in laboratorio, di sei parametri:

- 1. resistenza a compressione uniassiale della roccia;
- 2. indice di qualità RQD (Rock Quality Designation);
- 3. spaziatura dei giunti;
- 4. stato dei giunti;
- 5. presenza di acque di infiltrazione;
- 6. orientazione dei giunti.

I primi cinque parametri, vengono rappresentati in cinque campi separati cui sono assegnati dei valori crescenti al crescere di un miglioramento delle condizioni dell'ammasso roccioso.

Il valore del parametro utilizzato costituisce una media dei valori riscontrati, ottenuta interpolando i valori estremi ottenuti.

Il valore finale costituisce la base che consente la determinazione della classe di appartenenza dell'ammasso, i valori di coesione e di angolo di attrito del sistema roccioso.

L'elaborazione statistica delle misurazioni effettuate nelle stazioni di rilevamento geomeccanico dell'ammasso roccioso ha consentito la restituzione delle proiezioni stereografiche su reticolo di Schimidt e la definizione dei principali parametri di resistenza geomeccanica della roccia.

STAZIONE R.S.: ST_01					Data: 07/03/2013			Giacomo Deiana, dott. Samuele Todde			Foto: 5					
LOCALITA': Marana – Comune di Golfo						Aranci (OT)					N° Campioni: 3					
Affioramento: Naturale Scavo Sup. Sca					avo Sotte	err. T	rincea Metodo di scavo:					Meccanizzato				
LIT	TOGIA:		UNITA' monzogi scuri. (C	INTRUS ranitiche Carbonifer	IVA I inequis	DI PO granula -Permi	PRTO ari, a ano).	ROTO grana	ND me	O – dia, c	Fac on	cies Por abbonda	rto Rot inti incl	ond lusi	lo: gran microgi	iodioriti ranulari
Fat	tori		Cerniere	e / Fianchi Pie	ega	Giunti	d'esfolaz	ione	Cor	ntatti geo	ologi	ci	Suolo s	pess	. Cm: 40	
Geo	ologici:		Faglie (o	dirette / inver	se)	Discord	lanze		La	ninazio	ni		Carsisn	no		
			Miloniti			Vene							Altro:	Affio	ramento m	assivo
			Fratture	Beanti		Filoni			Ter	ra Resid	luale					
INS	STABILI	TA'	Scivolamen	ti: Plana	i	a Cu	neo	Rota	azior	nali	Rib	altamenti	: di b	locci	hi per	flessione
A	MMASS ISTM 78	0	MASSIV	O BLOO	ccoso	TAB	ULARE	CO	olo	NNARE	3	IRRE	GOLARE		FRATI	URATO
ST	RUTTUI	RA	R1 Massic	cia	R2 St	tratificata	a	I	R3 S	cistosa		WR1 S	emicoerer	nte	WR2 A	lternanze
AL	TERAZIO ISRM 78	NE	F(W1) inalterata	L	SW Deb. A	(W2) Alterata		MW Mod. <50%	/ (W Alte	73) rata		HW (W Mod. Alter	4) ata		CW (V compl. A	W5) Alter.
		ŀ	Chimica	(Plagioclas	i, Mich	ne, etc.):	:	Fisica	i (m	icrofrat	ture	, giunti, e	cc):			
RE	SISTEN ISRM 78	ZA	R0 Estrem. De Sbriciola a mano Mpa	eb. 0,25-1 Sbricio martello	1 Deb. la con S	R Deb Sbriciola cor -25 M	2 ole 1 martello 5 Mpa	Media Frattura co martello	R3 um.Re on un o 25-50	esist. colpo di 0 Mpa	Re Fratt colpi	R4 sistente. . con pochi di mart. 50- 00 Mpa	R5 Molto Re Fratt. con mol- martello 100-	esist. ti colpi 250Mj	Estre i di Scheggi pa >2	R6 em Resist. a dal martello 250 Mpa
VRU	U Ib =	15*10	*20	FORM		Cubo		Tetraed	dro	N. FA	MI	GLIE: 3			1	
Cia	Jv =	/mc	ramonto	315°N 55°	R	ltozza	(\mathbf{m})	Prism	a	Longhoggo (m): 2.00						
Gia	c linea	di sca	nsione [.] O	1770ntale	A)eviazio	(III): me (°):	no		Lung	hez	za (m): 2, za (m): 5	10			
Cer	nsoring	((Curtailmen	(m) 0.0^{2} t (m) $1,00$	n.	R	R.Q.D. =	= 92,94								
inter	sezione	Imm	. Incl.	Sotto/sin	Sopra	/dx F	rattura	Finest	tra	JRC		Curvat.	Tipo	I	Apertura	Riempim
Ν	m	0	0	m	m	Ι	1.0*									
1	0.23						.A.O*	T.I.C	**	1-20		mm	***		mm	****
	0.20	N30	68	0.37	0.50	6	A.0*	T.I.C C	**	1-20 6		mm -	*** 2	+	mm 4	**** W2
2	0.51	N30 N35	68 75	0.37 0.36	0.50	6 6	A A A	T.I.C C C	**	1-20 6 6		- -	*** 2 2		mm 4 1	**** W2 W2
2	0.51	N30 N35 N58	68 75 64	0.37 0.36 1.00	0.50	6 6 0	A A I	T.I.C C C T	**	1-20 6 6 4			*** 2 2 2		mm 4 1 9	**** W2 W2 I
2 3 4	0.51 0.56 0.69	N30 N35 N58 N95	68 75 64 86	0.37 0.36 1.00 0.21	0.50 0.20 1.00	6 6 0 0	A A I A	T.I.C C C T	**	1-20 6 6 4 9		mm - - -	*** 2 2 2 2		mm 4 1 9 3	**** W2 W2 I W2
2 3 4 5	0.51 0.56 0.69 0.85	N30 N35 N58 N95 N233	68 75 64 86 8 85	0.37 0.36 1.00 0.21 0.07	0.50 0.20 1.00 1.00	6 6 0 0 1	A A I A O	T.I.C C C T I C	**	1-20 6 6 4 9 10		mm - - - -	*** 2 2 2 2 2 2 2		mm 4 1 9 3 1	***** W2 W2 I W2 W2 W2
2 3 4 5 6	0.51 0.56 0.69 0.85 1.00	N30 N35 N58 N95 N233 N218	68 75 64 86 8 85 85 85 85	0.37 0.36 1.00 0.21 0.07 0.43	0.50 0.20 1.00 1.00 0.1	6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A A I A O I	T.I.C C C T I C C	**	1-20 6 4 9 10		mm - - - - -	*** 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10	***** W2 W2 I W2 W2 W2 U
2 3 4 5 6 7	0.51 0.56 0.69 0.85 1.00	N30 N35 N58 N95 N233 N218 N138	68 75 64 86 85 8 56 8 49	0.37 0.36 1.00 0.21 0.07 0.43 0.26	0.50 0.20 1.00 0.1 0.33 1.00	6 6 6 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A A I A O I A	T.I.C C C T I C C C	**	1-20 6 4 9 10 10		mm - - - - - - -	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10 2	**** W2 W2 I W2 W2 I C
2 3 4 5 6 7 8	0.51 0.56 0.69 0.85 1.00 1.12	N30 N35 N58 N95 N233 N218 N138 N200	68 75 64 86 3 56 3 56 3 49 63	0.37 0.36 1.00 0.21 0.07 0.43 0.26 0.95	0.50 0.20 1.00 0.11 0.33 1.00	6 6 6 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	A A I A O I A I	T.I.C C C T I C C C I I	**	1-20 6 4 9 10 10 6 8		mm - - - - - - - -	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10 2 2	**** W2 W2 I W2 W2 I C
2 3 4 5 6 7 8	0.51 0.56 0.69 0.85 1.00 1.12 1.99 2.31	N30 N35 N58 N233 N218 N138 N200	68 75 64 86 83 85 8 9 63 9 63	0.37 0.36 1.00 0.21 0.07 0.43 0.26 0.95 0.83	0.56 0.20 1.00 0.11 0.33 1.00 0.04	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	A A A I A O I A I A	T.I.C C T I C C C C I C C	**	1-20 6 4 9 10 10 6 8 8		mm - - - - - - - - - -	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10 2 2 8	**** W2 W2 I W2 U2 I C C
2 3 4 5 6 7 8 9	0.51 0.56 0.69 0.85 1.00 1.12 1.99 2.31	N30 N35 N58 N233 N218 N138 N200 N222	68 75 64 86 83 84 85 8 8 9 63 8 9 63 8 9 63 9 64	0.37 0.36 1.00 0.21 0.07 0.43 0.26 0.95 0.83 0.16	0.56 0.20 1.00 0.1 0.33 1.00 0.00 0.62	6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A A A I A O I A I A	T.I.C C T I C C I C I C <	**	1-20 6 4 9 10 10 6 8 8 10		mm - - - - - - - - - -	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10 2 2 8 8 2	**** W2 W2 I W2 U V2 I C C C C
2 3 4 5 6 7 8 9 10	0.51 0.56 0.69 0.85 1.00 1.12 1.99 2.31 2.36	N30 N35 N58 N95 N233 N218 N138 N200 N222 N350	68 75 64 86 8 8 8 8 8 9 0 63 2 66 0 84	0.37 0.36 1.00 0.21 0.07 0.43 0.26 0.95 0.83 0.16 1.00	0.50 0.20 1.00 0.11 0.33 1.00 0.04 0.05 0.00	6 6 0 0 1 8 0 4 2 2 2 2	A A A I A O I A I A A A	T.I.C C T I C C I C C C C C C C C C C C C C C C C C C C	**	$ \begin{array}{c} 1-20\\ 6\\ -6\\ -9\\ 10\\ 10\\ -6\\ -8\\ 10\\ -5\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6$		mm - - - - - - - - - -	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10 2 2 8 3 3	***** W2 W2 I W2 I C C C C W2
2 3 4 5 6 7 8 9 10 11	0.51 0.56 0.69 0.85 1.00 1.12 1.99 2.31 2.36 2.67	N30 N35 N58 N233 N218 N138 N200 N222 N350 N82	68 75 64 86 8 8 8 8 9 63 49 63 64 8 8 66 9 63 64 76	0.37 0.36 1.00 0.21 0.07 0.43 0.26 0.95 0.83 0.16 1.00	0.50 0.20 1.00 0.11 0.33 1.00 0.04 0.62 0.00 0.55	6 6 0 0 1 1 8 0 4 2 2 3	A A A I A O I A I A A I A I I A	T.I.C C T I C <td>**</td> <td>1-20 6 4 9 10 10 6 8 10 5 4</td> <td></td> <td>mm - - - - - - - - - - - - -</td> <td>**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td></td> <td>mm 4 1 9 3 1 10 2 2 8 3 4 4</td> <td>***** W2 W2 I W2 U U U C C C C W2 W2</td>	**	1-20 6 4 9 10 10 6 8 10 5 4		mm - - - - - - - - - - - - -	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10 2 2 8 3 4 4	***** W2 W2 I W2 U U U C C C C W2 W2
2 3 4 5 6 7 8 9 10 11 11 12	0.51 0.56 0.69 0.85 1.00 1.12 1.99 2.31 2.36 2.67 3.02	N30 N35 N58 N233 N218 N138 N200 N222 N350 N82 N84	68 75 64 86 3 56 3 49 0 63 2 66 0 76 75	0.37 0.36 1.00 0.21 0.07 0.43 0.26 0.95 0.83 0.16 1.00 0.31	0.50 0.20 1.00 0.11 0.33 1.00 0.00 0.02 0.02 0.02 0.55 0.49	6	A A A I A O I A I A I A I A	T.I.C C T I C C I C C I C C I C I C I I C I <td>**</td> <td>$\begin{array}{c} 1-20\\ 6\\ -6\\ -4\\ -9\\ 10\\ 10\\ -6\\ -8\\ 10\\ -5\\ -4\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6$</td> <td></td> <td>mm - - - - - - - - - - - - - - - - -</td> <td>**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td></td> <td>mm 4 1 9 3 1 10 2 2 8 3 4 5</td> <td>**** W2 W2 I W2 I C C W2 W2 W2 W2 C</td>	**	$ \begin{array}{c} 1-20\\ 6\\ -6\\ -4\\ -9\\ 10\\ 10\\ -6\\ -8\\ 10\\ -5\\ -4\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6$		mm - - - - - - - - - - - - - - - - -	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10 2 2 8 3 4 5	**** W2 W2 I W2 I C C W2 W2 W2 W2 C
2 3 4 5 6 7 8 9 10 11 12 13	0.51 0.56 0.69 0.85 1.00 1.12 1.99 2.31 2.36 2.67 3.02 3.39	N30 N35 N58 N233 N218 N138 N200 N222 N350 N82 N84 N70	68 75 64 86 3 56 3 49 0 63 2 66 0 76 75 90	0.37 0.36 1.00 0.21 0.07 0.43 0.26 0.95 0.83 0.16 1.00 0.31 1.00	0.56 0.22 1.00 0.11 0.33 1.00 0.62 0.00 0.52 0.49 0.73	6	A A A I A O I A A I A A I A I A I I A I I	T.I.C C T I C C I C C I C I C I C I C I C I	**	1-20 6 4 9 10 10 6 8 8 10 5 4 6 3		mm - - - - - - - - - - - - - - - - - -	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10 2 2 8 3 3 4 5 2	**** W2 W2 I W2 I C C W2 W2 W2 C C
2 3 4 5 6 7 8 9 10 11 12 13 14	0.51 0.56 0.69 0.85 1.00 1.12 1.99 2.31 2.36 2.67 3.02 3.39 3.43	N30 N35 N58 N233 N218 N200 N222 N350 N82 N84 N70 N131	68 75 64 86 3 56 3 49 0 63 2 66 0 76 75 90 90	0.37 0.36 1.00 0.21 0.07 0.43 0.26 0.95 0.83 0.16 1.00 0.31 1.00 0.34	0.56 0.20 1.00 0.11 0.33 1.00 0.04 0.62 0.55 0.49 0.77 0.55	6	A A A I A O I A A I A I A A I A A	T.I.C C T I C C I C I C I C I C I C I C I C I C I C I C C I C C	**	$ \begin{array}{c} 1-20\\ 6\\ -6\\ -9\\ 10\\ 10\\ -6\\ -8\\ 10\\ -5\\ -4\\ -6\\ -3\\ -4\\ -6\\ -4\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6\\ -6$		mm - - - - - - - - - - - - - - - - - -	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10 2 8 3 4 5 2 4	**** W2 W2 I W2 I C C C W2 W2 C C C W2
2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.51 0.56 0.69 0.85 1.00 1.12 1.99 2.31 2.36 2.67 3.02 3.39 3.43 3.68	N30 N35 N58 N95 N233 N218 N138 N200 N222 N350 N82 N84 N70 N131 N137	68 75 64 86 3 65 63 63 2 66 0 84 76 75 90 7 90	0.37 0.36 1.00 0.21 0.07 0.43 0.26 0.95 0.83 0.16 1.00 0.31 1.00 0.34 0.08	0.56 0.20 1.00 0.11 0.33 1.00 0.04 0.05 0.55 0.46 0.77 0.55 1.00	6	A A A I A O I A A I A A I A A A A	T.I.C C T I C C I C I C I C I C I C I C I C I C I C I I I I I	**	$ \begin{array}{c} 1-20\\ 6\\ -6\\ -9\\ 10\\ 10\\ -6\\ -8\\ -6\\ -5\\ -4\\ -6\\ -3\\ -4\\ -7\\ -7\\ -7\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2$		mm - - - - - - - - - - - - - - - - - -	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10 2 8 3 4 5 2 4 5 5 5	**** W2 W2 I U W2 I C C W2 W2 C C W2 C C C W2 C C C
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.51 0.56 0.69 0.85 1.00 1.12 1.99 2.31 2.36 2.67 3.02 3.39 3.43 3.68 4.31	N300 N355 N588 N955 N233 N218 N138 N200 N2222 N350 N350 N350 N350 N350 N131 N137 N288	68 75 64 86 3 63 63 2 66 0 84 76 75 90 75 90 51	0.37 0.36 1.00 0.21 0.07 0.43 0.26 0.95 0.83 0.16 1.00 0.31 1.00 0.34 0.08 0.38	0.56 0.22 1.00 0.11 0.33 1.00 0.04 0.65 0.75 0.55 0.44 0.77 0.55 1.00 0.66	6 6 0 0 1 8 0 4 2 3 9 3 0 4 2 3 9 3 0 4	A A A I A O I A A I A A I A A O	T.I.C C T I C C I C I C I C I C I C I C I C I C I C I C I C I C	**	$ \begin{array}{r} 1-20 \\ 6 \\ 4 \\ 9 \\ 10 \\ 10 \\ 10 \\ 6 \\ 8 \\ 10 \\ 5 \\ 4 \\ 6 \\ 3 \\ 4 \\ 7 \\ 10$		mm - - - - - - - - - - - - - - - - - -	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10 2 8 3 4 5 2 4 5 6	**** W2 W2 I U W2 I C C W2 W2 C C C W2 C C C C C C C C C C
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 16 17	0.51 0.56 0.69 0.85 1.00 1.12 1.99 2.31 2.36 2.67 3.02 3.39 3.43 3.68 4.31 4.44	N30 N35 N58 N95 N233 N218 N200 N222 N350 N82 N82 N84 N70 N131 N137 N28 N57	68 75 64 86 3 63 2 66 0 63 2 66 0 76 75 90 75 90 51 54	0.37 0.36 1.00 0.21 0.07 0.43 0.26 0.95 0.83 0.16 1.00 0.31 1.00 0.34 0.08 0.38 0.05	0.56 0.22 1.00 0.11 0.33 1.00 0.02 0.67 0.53 0.49 0.77 0.53 1.00 0.66 0.3	6 6 0 0 1 1 8 0 4 2 2 3 9 3 8 0 4 1	A A A I A O I A A I A A I A A A A A A A	T.I.C C T I C C I C I C I C I C I C I C I C I C I C I C C C C C C	**	1-20 6 4 9 10 10 6 8 10 5 4 6 3 4 7 10 8		mm	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 0 2 8 3 4 5 2 4 5 6 11	**** W2 W2 I W2 C C C W2 W2 C C C C W2 C C C W2 C C C W2 C C C W2 C C C W2
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.51 0.56 0.69 0.85 1.00 1.12 1.99 2.31 2.36 2.67 3.02 3.39 3.43 3.68 4.31 4.44 4.89	N30 N35 N58 N95 N233 N218 N138 N200 N222 N350 N822 N350 N82 N131 N137 N28 N57 N270	68 75 64 86 8 8 8 8 8 8 8 8 8 9 63 2 66 0 84 76 75 90 4 90 51 54 0	0.37 0.36 1.00 0.21 0.07 0.43 0.26 0.95 0.83 0.16 1.00 0.31 0.00 0.34 0.08 0.38 0.05 1.00	0.56 0.20 1.00 0.11 0.33 1.00 0.62 0.00 0.55 0.49 0.75 0.55 1.00 0.66 0.3 0.66	6	A A A I A O I A A I A A A A O A O	T.I.C C T I C C I C C I C C I C I C I C I C I C I C I C I I C I I	***	$ \begin{array}{c} 1-20\\ 6\\ -6\\ -9\\ 10\\ 10\\ -6\\ -8\\ 10\\ -5\\ -4\\ -6\\ -3\\ -4\\ -6\\ -3\\ -4\\ -6\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5$		mm - - - - - - - - - - - - - - - - - -	**** 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		mm 4 1 9 3 1 10 2 2 8 3 4 5 2 4 5 6 11 50 5	**** W2 W2 I U V2 I C C V2 W2 C V2 V2 C V2 V2 C V2 V2 C V2

Stazione di rilevamento geomeccanico "ST_01"

** T: Frattura che transetta la finestra; I – Interseca la finestra C – Contenuta entro la finestra
*** 1 – Faglia; 2 – Giunto; 3 – Clivaggio; 4 – Scistosità; 5 – Taglio; 6 – Vena 7 - Trazione; 8 – Filiazione; 9 - Stratificazione; 10 – Stilonite.
**** I – Incoerente; C – Coesivo inattivo; S – coesivo rigonfiante; Cm – Cementato; Ca – Calcite; Q – Quarzo; T – Talco; G – Gesso
W1- molto consolidato asciutto; W2 – Umido senza acqua libera; W3 – bagnato con gocce d'acqua; W4 – dilavato da continuo flusso d'acqua; W5 – localmente dilavati; W6 – completamente dilavati.

Figura 16 – Stazione di rilevamento geomeccanico dell'ammasso roccioso "St_01". In evidenza la linea di scansione.

Figura 17 – Reticolo equatoriale equiareale mostrante le famiglie di giunti, il fronte naturale ed il cono di attrito per la stazione di rilevamento geomeccanico "St_01".

Nella tabella di seguito si riportano i parametri utilizzati per la caratterizzazione geomeccanica dell'ammasso roccioso per la stazione "St_01".

Tabella 1 – Valori utilizzati per la caratterizzazione dell'ammasso roccioso a granodioriti della Facies Porto Rotondo – Stazione di rilevamento geomeccanico "St_01".

Parametri	Valori attribuiti
A1 - Resistenza della roccia intatta	4.16
A2 - Indice di qualità (RQD) 92.94 %	18.49
A3 - Spaziatura dei giunti	9.50
A4 - Stato dei giunti	15
A5 - Presenza di acque di infiltrazione	10
RMR base	71.87

Di seguito si riportano i risultati della classificazione dell'ammasso roccioso secondo la metodologia Rock Mass Rating (Beniawski)

Tabella 2 - Risultati de	el calcolo degli	indici RMR pe	r le granodioriti	della Facies	Porto Rotondo	o – Stazione di
rilevamento geomecca	nico "St_01".					

Rock Mass Rating (Beniawski)					
RMR base	57.16				
RMR corretto	42.16				
Coesione c (KPa)	285.80				
Angolo di attrito φ (°)	33.58				
Mod. di deformaz. E (GPa)	14.32				
Classe	Terza				
Resistenza a compressione (Mpa)	58.50				
Descrizione	Mediocre				

L'elaborazione statistica dei dati acquisiti nella stazione di rilevamento geomeccanico dell'ammasso roccioso "St_01" ha evidenziato:

- secondo la classificazione RMR di Beniawski l'ammasso roccioso appartiene alla 3^a classe e di mediocre qualità;
- l'ammasso roccioso è caratterizzato da tre principali famiglie di giunti (Figura 17): la 1 con orientamento compreso tra N320 e N5 e inclinazione sub-verticale, la 2 con orientamento tra N40 e N50, verticale, ed infine la 3 tra N110 e N130 e angolo di inclinazione tra 70° e 75°.
- l'apertura delle principali discontinuità rilevate in situ sulla base delle osservazioni superficiali è quasi sempre compreso tra 2 e 4 mm;
- il riempimento delle discontinuità è in genere compatto e correlabile con minerali di alterazione del substrato granitico.

Stazione di rilevamento	geomeccanico	"ST_	02″
-------------------------	--------------	------	-----

STAZIONE R.S.: ST_02					Da	Data: 21/03/2013			Operatore: dott. Giacomo Deiana, dott. Samuele Todde			Foto: 6					
LOCALITA': Marana – Comune di Golf					fo A	ranci (OT))					N° Ca	mpio	oni: 3			
Affioramento: Naturale Scavo Sup. S					Scavo	Sotterr. T	rincea		Met	odo	di scavo:	Meccan	izzat	0			
LIT	OGIA:		UNITA'	IN	TRUS	VA	DI	PORTO	ROTC	DND	0 –	Fa	cies Po	rto Ro	tond	o: grar	ıodioriti
			monzog	rani	tiche i	nequ	iigra	nulari, a	grana	тe	edia, d	con	abbonda	inti inc	lusi	microg	ranulari
			scuri. (C	Carb	onifera	o sup	0Pe	rmiano).									
Fat	tori		Cernier	e / Fia	anchi Pie	ga	Gi	unti d'esfolaz	ione	Co	ntatti ge	eolog	ici	Suolo	Suolo spess. Cm: 40 Carsismo		
Geo	blogici:		Faglie (dirette	e / invers	se)	Di Ve	scordanze		La	minazi	oni		Altro	no Affio	ramonto n	assino
			Fratture	Bear	nti		Fil	oni		Tei	ra Resi	duale		Alu 0.	Ajjio	amento m	ussivo
INS	STABILI	TA' S	Scivolamen	nti:	Planar	i		a Cuneo	Rot	tazio	nali	Ri	baltamenti	di di	bloccl	ni per	flessione
Α	MMASS	0	MASSIV	0	BLOC	COS	0	TABULARE	С	OLO	NNAR	E	IRRE	GOLARE		FRATT	URATO
ST	ISTM 78	DA	P1 Manuis	voia		DJ	Church	ficato	-	D2 (WD1 c		nto	WD2	Itomonyo
51	KUIIU	KA	KI Massic	cia		K2	Strati	ncata	M	KJ S	Scistosa			emicoere	nte	WKZ A	Iternanze
AL	TERAZIO	NE	F(W1))		SV	V (W	2)	Mod	N (N I. Alte	V3) erata		HW (W Mod. Alter	4) rata		CW (V	V5)
	ISRM 78	_	inalterata	1 (D1		Dec	1. Alter	ata	<509	% decc	omp.		>50% deco	mp.		compi. A	uter.
			Chimica	(Pla	gioclasi	i, M10	che, e	etc.):	FISIC	a (m	ncrofra	itture	e, giunti, e	ecc):			
RE	SISTEN	ZA	R0 Estrem, De	eb.	R1 Molto	L Deb.		R2 Debole	Medi	R3	esist.	Re	esistente.	R5 Molto R	s esist.	Estre	R6 m Resist.
	ISRM 78	s	briciola a mano Mna	0,25-1	Sbriciol martello 1	a con = 5 Mna	Sbrici	ola con martello 5 -25 Mpa	Frattura	con un	colpo di 0 Mna	Frat colpi	t. con pochi di mart. 50-	Fratt. con mo	lti colpi	olpi di Scheggia dal marte	
	Ib =	15*10*	·20			- 5 Mpa	Cubo	-2.5 Mpa	Tetrae	dro	o mpa		100 Mpa	marteno rot	-25014	<i>/// /////////////////////////////////</i>	.50 Мра
VR	Jv =	/mc			FORM	IA	Rom	boedro	Prisn	na	N. F	AM	IGLIE: 3				
Gia	c. Piano	Affio	ramento:	355	°N-55°		Alte	ltezza (m): Larghezza (m): 2,00									
Gia	c. linea	di scai T	nsione: O	<i>rizzo</i> (m)	ntale 0.04	. n	Dev	iazione (°):	no		Lun	ghez	za (m): 5	,05			
Cer	nsoring	C	Curtailmer	(in) it (m) 1,00	n		R.Q.D. =	66,34	1							
Inter	sezione	Gia	acitura		Semit	raccia	a	Terminazio		e	JRO	2	Curvat.	Tipo	A	Apertura	Riempim.
N	m	Imm.	Incl.	So	tto/sin	Sop	ra/dx	Frattura	Fines	stra	1.2	n	mm	***			****
1	0.25	263	44	1	1 00	1	00	1.A.O*	т.1.С	_**	1-2	0	-	2		8	W2
2	0.34	262	44		1.00	1	00	0	Т		11		-	2		6	W2
3	1.30	262	60		0.60	1	.00	A	I		12			2		12	W2
4	1.56	274	69	1	1.00	0	42	A	I		8		_	2		8	W2
5	1.78	285	71) 75	0	06	A	C		7			2		3	W2
6	2.50	49	66		1.00	0	32	Δ	I		, 			2		5	NO
7	2.30	76	52		1.00	0	48	0	C		8			2		4	W2
8	2.82	75	52	() 22	0	48	0	C		8		-	2		4	W2
9	2.89	71	52	() 22	0	48	0	C		8		-	2		4	W2
10	2.95	261	77	() 55	0	06	A	C		4		-	2		42	NO
11	3.05	214	94	() 60	0	02	A	C		. 6		-	2		2	W2
12	3 33	69	90		1.00	0	91	A	I		6			2		2	NO
12	3.63	238	70		0.45	1	00	0	I		6			2		<1	NO
14	3.05	241	70		0.45	1	.00	0	T		7			2		12	W2
14	3.93	45	33) 23	0	95	Δ	C C		8			2		4	NO
15	4.15	47	36		0.20	0	.95	Δ	C C		4			2	_	4	W2
17	4.19	61	43) 38	0	10	A	C C		8			2		<1	NO
18	4.58	245	67) 43	0	32	0	C C		1			2	-+	<1	NO
10	4 70	53	38) 40	0	52	Δ	т		4			2	-+	<1	NO
20	4.82	51	30) 36	0	.52	л л	T		2		-	2		<1	NO
20	4.02	51	25) 41	0	.55	A .	1 1		3		-	2	-+	<1	NO
21 5.05 52 35 0.41 0.48		.48	A	I		4		-	2		<1	NÜ					

* I – in roccia intatta; A – contro un'altra frattura; O – Fuori dall'affioramento.
** T: Frattura che transetta la finestra; I – Interseca la finestra C – Contenuta entro la finestra
*** 1 – Faglia; 2 – Giunto; 3 – Clivaggio; 4 – Scistosità; 5 – Taglio; 6 – Vena 7 - Trazione; 8 – Filiazione; 9 - Stratificazione; 10 – Stilonite.
**** I – Incoerente; C – Coesivo inattivo; S – coesivo rigonfiante; Cm – Cementato; Ca – Calcite; Q – Quarzo; T – Talco; G – Gesso
W1- molto consolidato asciutto; W2 – Umido senza acqua libera; W3 – bagnato con gocce d'acqua; W4 – dilavato da continuo flusso d'acqua; W5 – localmente dilavati; W6 – completamente dilavati.

Figura 18 – Stazione di rilevamento geomeccanico dell'ammasso roccioso "St_02". In evidenza la linea di scansione.

Figura 19 – Reticolo equatoriale equiareale mostrante le famiglie di giunti, il fronte naturale ed il cono di attrito per la stazione di rilevamento geomeccanico "St_02".

Nella tabella di seguito si riportano i parametri utilizzati per la caratterizzazione geomeccanica dell'ammasso roccioso per la stazione "St_02".

Tabella 3 – Valori utilizzati per la caratterizzazione dell'ammasso roccioso a granodioriti della Facies Porto Rotondo – Stazione di rilevamento geomeccanico "St_01".

Parametri	Valori attribuiti
A1 - Resistenza della roccia intatta	5.74
A2 - Indice di qualità (RQD) 66.34 %	13.09
A3 - Spaziatura dei giunti	8
A4 - Stato dei giunti	21
A5 - Presenza di acque di infiltrazione	15
RMR base	62.83

Di seguito si riportano i risultati della classificazione dell'ammasso roccioso secondo la metodologia Rock Mass Rating (Beniawski)

Tabella 4 - Risultati del calcolo degli indici RMR per le granodioriti della Facies Porto Rotondo – Stazione di rilevamento geomeccanico "St_01".

Rock Mass Rating (Beniawski)	
RMR base	62.83
RMR corretto	55.83
Coesione c (KPa)	314.15
Angolo di attrito φ (°)	36.42
Mod. di deformaz. E (GPa)	25.66
Classe	Terza
Resistenza a compressione (Mpa)	53.85
Descrizione	Mediocre

L'elaborazione statistica dei dati acquisiti nella stazione di rilevamento geomeccanico dell'ammasso roccioso "St_02" ha evidenziato:

- secondo la classificazione RMR di Beniawski l'ammasso roccioso appartiene alla 3^a classe e di mediocre qualità;
- l'ammasso roccioso è caratterizzato da tre principali famiglie di giunti (Figura 19): la 1 con orientamento compreso tra N305 e N340 e inclinazione verticale, la 2 con orientamento tra N315 e N345, inclinazione compresa tra 50° e 60°, ed infine la 3 tra N140 e N190 e angolo di inclinazione tra 70° e 80°.
- l'apertura delle principali discontinuità rilevate in situ sulla base delle osservazioni superficiali varia mediamente da <1mm sino a valori di 5/6 mm;
- il riempimento delle discontinuità è in genere compatto e correlabile con minerali di alterazione del substrato granitico.

Stazione di rilevamento	geomeccanico "ST_03"
-------------------------	----------------------

STAZIONE R.S.: ST_03								Da	nta: 21/03/20	013	Operatore: dott. Giacomo Deiana, dott. Samuele Todde				Fo	Foto: 6			
LO	CALIT	'A': N	Мa	ırana – O	Con	une di	Gol	lfo A	ranci (OT))					N	N° Campioni: 3			
Aff	ioramen	nto:	Ν	Naturale	Sca	avo Sup.		Scavo	Sotterr. Trincea Metodo di scavo: Meccanizzato+esplosivo								ivo		
LITOGIA: UNITA' INTRUSIVA							DI	PORTO	ROTO	DND	0 –	Fa	cies Po	rto	Rote	onde	o: grar	iodioriti	
monzogranitiche ineau								iigra	nulari. a	grana	me	dia. d	con	abbonde	anti	inclu	usi	microg	ranulari
			s	curi. (C	Carb	onifer	o sul	oPe	ermiano).										
Fat	tori			Cerniere	/ Fia	anchi Pie	ga	Gi	unti d'esfolaz	ione	Co	ntatti ge	eolog	ici	Su	iolo sp	pess.	Cm: 40	
Geo	ologici:		l	Faglie (d	lirett	e / invers	se)	Dis	scordanze		La	minazio	oni		Ca	arsism	0		
			Miloniti						ne						Al	ltro: A	Affior	amento m	assivo
				Fratture	Bear	nti		Fil	oni		Ter	ra Resi	duale						
INS	STABILI	TA'	Sc	ivolamen	ti:	Planar	i	1	a Cuneo	Ro	tazioi	nali	Ril	baltament	i:	di bl	occh	<i>i</i> per	flessione
A	ISTM 78	0		MASSIV	0	BLOC	COS	0	TABULARE	C	OLO	NNAR	Е	IRRE	GOL	ARE		FRATT	URATO
ST	RUTTU	RA	ŀ	R1 Massic	cia		R2	Strati	ficata		R3 S	Scistosa		WR1 S	Semic	oerent	te	WR2 A	Iternanze
				F(W1)			SV	V (W2	2)	M	N (W	/3)		HW (W	/4)			CW (V	W5)
AL	TERAZIO ISRM 78	NE		inalterata			Det	o. Altera	ata	Moc <50	 Alte deco 	rata mp.		Mod. Alte >50%deco	rata mp.			compl. A	lter.
			(Chimica	(Pla	gioclas	i, Mi	che, e	etc.):	Fisic	a (m	icrofra	atture	e, giunti,	ecc):				
				RO		R	1		R2		R 3			R4		R5			R6
RE	SISTEN	ZA		Estrem. De	b.	Molto	Deb.	a	Debole	Med	am.R	esist.	Re Frat	sistente.	Mo	olto Res	sist.	Estre	m Resist.
	15KM /8		Sbriciola a mano 0,25-1 Mpa			Sbriciola con martello 1- 5 Mpa		Sbricio	 -25 Mpa 	Frattura martel	ura con un colpo rtello 25-50 Mpa		colpi di mart. 50-			Fratt. con molti colpi di Scheggia martello 100-250Mpa >25			a dal martello 250 Mpa
VDI	Ib =	50*10)0*)*80 FORMA				Cubo	Cubo Tetr			NF	<u>л м</u>		1				
VK	Jv =	/ma	2			FURN	14	Rom	Romboedro Prisma N. FAMIGLIE: 3						00				
Gia	ic. Planc		ora	amento:	244	°N-43°		Altezza (m): Larghezza					za (m): 2	,00					
Gla	ic. mea	ul sca	Tri	imming ((<u>m</u>)	0.04	l n	Devi	azione ():	110		Lun	gnez	za (III): 1	5,00	,			
Cer	nsoring		Cu	ırtailmen	t (m) 1,00	n	•	R.Q.D. =	96,67									
Inter	sezione	G	Giacitura			Semit	racci	a	Termir	nazion	e	JRO	7	Curvat	г	Fino	А	pertura	Riempim
), j		Imn	1.	Incl.	So	tto/sin	Sop	ora/dx	Frattura	Fines	stra	1.0	-		_	F	_	F	r
N 1	m	170		ů 00		m	1	m	1.A.O*	1.1.0	**	1-20	0	mm	_	***	_	mm	****
1	0.25	1/5)	90	(0.64	1	.00	0	1		12		-	_	2	_	<1	NO
2	0.37	323	3	85	(0.40	0	.19	A	C		14		-	_	2		<1	NO
3	0.48	319)	82	(0.46	0	.23	A	C		8		-		2		<1	NO
4	0.59	305	5	69	(0.60	0	.07	0	C		10		-		2		<1	NO
5	0.90	302	2	72		1.00	0	.08	0	I		14		-		2		<1	NO
6	2.32	297	7	61		1.00	0	.05	0	I		13	_ [2		<1	NO
7	3.80	302	2	66		1.00	0	.07	0	Ι		12		-		2		<1	NO
8	4.90	292	2	58		1.00	0	.06	0	I		13		-		2		<1	NO
9	9.98	345	5	88		1.00	0	.20	0	I		6		-		2		<1	NO
10	15.0	342	2	86		1.00	0	.32	0	I		8		-		2		<1	NO
11																			
12															1		+		<u> </u>
13					-				1						+		+		
14												<u> </u>			+		+		
14									+						+		+		
15															+		+		
16										<u> </u>					-		+		
17										L							+		
18																			
19																			
20													T						
21									1	1									
*т	in rocci	a intat	ta.	$\mathbf{A} = control$	- - 1111'	altra frat	tura:	0 – Fi	uori dall'affio	rament	0	·							

** T: Frattura che transetta la finestra; I – Interseca la finestra C – Contruta entro la finestra
*** I – Faglia; 2 – Giunto; 3 – Civaggio; 4 – Scitsosità; 5 – Taglio; 6 – Vena 7 - Trazione; 8 – Filiazione; 9 - Stratificazione; 10 – Stilonite.
**** I – Incoerente; C – Coesivo inattivo; S – coesivo rigonfiante; Cm – Cementato; Ca – Calcite; Q – Quarzo; T – Talco; G – Gesso
W1- molto consolidato asciutto; W2 – Umido senza acqua libera; W3 – bagnato con gocce d'acqua; W4 – dilavato da continuo flusso d'acqua; W5 – localmente dilavati; W6 – completamente dilavati.

Figura 20 – Stazione di rilevamento geomeccanico dell'ammasso roccioso "St_03". In evidenza la linea di scansione.

Figura 21 – Reticolo equatoriale equiareale mostrante le famiglie di giunti, il fronte naturale ed il cono di attrito per la stazione di rilevamento geomeccanico "St_03".

Nella tabella di seguito si riportano i parametri utilizzati per la caratterizzazione geomeccanica dell'ammasso roccioso per la stazione "St_03".

Tabella 5 – Valori utilizzati per la caratterizzazione dell'ammasso roccioso a granodioriti della Facies Porto Rotondo – Stazione di rilevamento geomeccanico "St_03".

Parametri	Valori attribuiti				
A1 - Resistenza della roccia intatta	7.32				
A2 - Indice di qualità (RQD) 96.66 %	19.29				
A3 - Spaziatura dei giunti	15.57				
A4 - Stato dei giunti	23				
A5 - Presenza di acque di infiltrazione	15				
RMR base	80.18				

Di seguito si riportano i risultati della classificazione dell'ammasso roccioso secondo la metodologia Rock Mass Rating (Beniawski)

Tabella 6 - Risultati del calcolo degli indici RMR per i graniti dell'Unità Intrusiva di Villacidro – Stazione di rilevamento geomeccanico "St_03".

Rock Mass Rating (Beniawski)									
RMR base	80.18								
RMR corretto	78.18								
Coesione c (KPa)	400.88								
Angolo di attrito φ (°)	45.06								
Mod. di deformaz. E (GPa)	60.35								
Classe	Seconda								
Resistenza a compressione (Mpa)	73.23								
Descrizione	Buono								

L'elaborazione statistica dei dati acquisiti nella stazione di rilevamento geomeccanico dell'ammasso roccioso "St 03" ha evidenziato:

- secondo la classificazione RMR di Beniawski l'ammasso roccioso appartiene alla 2^a classe e di buona qualità;
- l'ammasso roccioso è caratterizzato da tre principali famiglie di giunti (Figura 21): la 1 con orientamento compreso tra N200 e N215 e inclinazione compresa tra 60° e 80°, la 2 con orientamento tra N230 e N235, sub-verticale, ed infine la 3 tra N70 e N85 e inclinazione sub-verticale.
- l'apertura delle principali discontinuità rilevate in situ sulla base delle osservazioni superficiali è sempre <1mm;
- il riempimento delle discontinuità è sempre assente.

Stazione di rilevamento	geomeccanico	"ST_	04"
-------------------------	--------------	------	-----

ST	AZION	E R.\$	S.:	ST_04	l			Data: 21/03/2013			Operatore: dott. Giacomo Deiana, dott. Samuele Todde				Foto:	Foto: 4			
LO	CALIT	'A': N	Ma	rana – C	Com	nune d	i Golf	fo Aranci (OT)						N° C	ampi	oni: 3			
Aff	ioramen	to:	N	laturale	Sca	avo Sup	. s	cavo	o Sotterr. Trincea Metodo di scavo: Meccanizzato+esplosivo								ivo		
LIT	OGIA:		l	JNITA'	IN	TRUS	IVA	DI	PORTO ROTONDO – Facies Porto Rotondo: granodio								iodioriti		
			n	nonzogr	ani	tiche i	inequ	igra	nulari, a grana media, con abbondanti inclusi microgran								ranulari		
			s	curi. (C	Carb	onifer	o sup	-Pe	rmiano).										
Fat	tori		T	Cerniere	/ Fia	anchi Pie	ega	Giu	inti d'esfolaz	ione	Co	ntatti ge	eolog	ici	Suolo	spess	s. Cm: 40		
Geo	ologici:			Faglie (d	lirette	e / inver	se)	Dis	cordanze		La	minazio	oni		Carsis	mo			
				Miloniti					ne						Altro	: Affic	oramento m	assivo	
				Fratture	Bear	nti		File	oni		Ter	ra Resi	duale						
INS	STABILI	TA'	Sci	ivolamen	ti:	Plana	ri	2	a Cuneo	Ro	tazioi	nali	Ril	oaltament	i: di	blocc	chi per	flessione	
A	MMASS ISTM 78	0]	MASSIV	0	BLOO	CCOSC) '	TABULARE	C	OLO	NNAR	E	IRRE	GOLARE	3	FRATT	URATO	
ST	RUTTUI	RA	R	A Massico	cia		R2 :	Stratif	licata		R3 S	Scistosa		WR1 S	Semicoere	ente	WR2 A	Alternanze	
										M	N (W	/3)		HW (W	74)				
AL	TERAZIO	NE		F(W1)			SW	(W2 Alters	2) Ita	Mod	i. Alte	rata		Mod. Alte	rata		CW (V	N5) Alter	
	ISRM 78		inalterata			Deb.		1	4 -) -	<50	% deco	omp.		>50% deco	mp.		compi. P		
			C	nimica	(Pla	gioclas	1, M1C	ne, e	tc.):	Fisic	a (m	ucrotra	itture	e, giunti,	ecc):				
DE	SISTEN	71		RO		R	1		R2		R3		Re	K4 sistente.	R	5		R6	
NL.	ISRM 78	LA	Sbri	Estrem. De ciola a mano	b. 0,25-1	Molto Sbricio	Deb. la con	Sbricio	Debole ola con martello 5	Frattura	con un	esist. colpo di	Frat	t. con pochi di mart 50-	Molto I Fratt. con m	desist.	Estrem Resist. bi di Scheggia dal martello		
		15410	Mpa			martello 1- 5 Mpa			-25 Mpa	martel	lo 25-5	0 Mpa	1	100 Mpa martello 100-250			Ipa >2	50 Mpa	
VR	$U = \frac{Ib}{Iv} =$	15*10 /m)*20	0		FORMA		Cubo Romboedro		Prise	edro	N. FAMI		IGLIE: 4	Ļ				
Gia	c. Piano	Affi	ora	mento:	255	°N-70°		Altez	za (m):	11131	iu	Larg	ghez	za (m): 2	.00				
Gia	c. linea	di sca	ans	ione: Or	rizzo	ntale		Devi	azione (°):	no		Lun	ghez	za (m): 3	3,05				
~		,	Tri	mming ((m)	0.04	4 n.						-						
Cer	isoring		Cu	rtailman	t (m	1.00	n		R.Q.D. =	83,28									
		G	Giacitura			Semit	raccia		Termir	nazion	a								
Inter	sezione	Imn	m Incl Se			otto/sin So		a/dx	Frattura	Fine	stra	JRO	2	Curvat.	Tipo)	Apertura	Riempim.	
Ν	m	0		0		m		n	I.A.O*	T.I.C	_**	1-20	0	mm	***		mm	****	
1	0.50	37		37	(0.20		45	0	C		10		-	2		4	NO	
2	0.73	8		75	(0.10	0.3	24	0	С		11		-	2		1	W2	
3	0.85	224	L	61	() 35	0	19	0	C		6		-	2		<1	NO	
4	0.06	352	,	86		1.83	0.	., .,	0	C		13			2		4	NO	
-	0.90	220	,	70		2.05	0	15	0	C		1.1			2		4	NO NO	
3	1.19	230)	70	(J.38	0.	15	0	C		14		-	2		8	W2	
6	1.30	234	ŀ	74	().38	0.	18	0	C		14		-	2		8	W2	
7	1.59	310)	86	().35	0.2	25	0	C		8		-	2		<1	NO	
8	1.77	315	5	90	(0.12	0.	05	0	C		8		-	2		<1	NO	
9	2.33	95		20	1	1.00	0.:	56	0	I		16		-	2		15	NO	
10	3.05	150)	90	(0.32	0.4	40	Ι	C		12		-	2		3	NO	
11													T			Τ			
12																			
13																			
14																			
15							-		1										
16																			
17																			
1/							<u> </u>												
18							 			ļ								 	
19							L			L									
20																			
21																			
* T	– in rocci	a intat	ta: /	$\mathbf{A} = control$	o un'	altra fra	ttura: C) – Fi	ori dall'affio	rament	0.				-				

1 – in roccia infatta; A – contro un'altra trattura; O – Fuori dall'affioramento.
 *** T: Frattura che transetta la finestra; I – Interseca la finestra C – Contenuta entro la finestra
 ***1 – Faglia; 2 – Giunto; 3 – Clivaggio; 4 – Scistosità; 5 – Taglio; 6 – Vena 7 - Trazione; 8 – Filiazione; 9 - Stratificazione; 10 – Stilonite.
 **** I – Incoerente; C – Coesivo inattivo; S – coesivo rigonfiante; Cm – Cementato; Ca – Calcite; Q – Quarzo; T – Talco; G – Gesso
 W1- molto consolidato asciutto; W2 – Umido senza acqua libera; W3 – bagnato con gocce d'acqua; W4 – dilavato da continuo flusso d'acqua; W5 – localmente dilavati; W6 – completamente dilavati.

Figura 22 – Stazione di rilevamento geomeccanico dell'ammasso roccioso "St_04". In evidenza la linea di scansione.

Figura 23 – Reticolo equatoriale equiareale mostrante le famiglie di giunti, il fronte naturale ed il cono di attrito per la stazione di rilevamento geomeccanico "St_04".

Nella tabella di seguito si riportano i parametri utilizzati per la caratterizzazione geomeccanica dell'ammasso roccioso per la stazione "St_04".

Tabella 7 – Valori utilizzati per la caratterizzazione dell'ammasso roccioso a granodioriti della Facies Porto Rotondo – Stazione di rilevamento geomeccanico "St_04".

Parametri	Valori attribuiti
A1 - Resistenza della roccia intatta	6.24
A2 - Indice di qualità (RQD) 83.28 %	16.43
A3 - Spaziatura dei giunti	8
A4 - Stato dei giunti	21
A5 - Presenza di acque di infiltrazione	15
RMR base	66.67

Di seguito si riportano i risultati della classificazione dell'ammasso roccioso secondo la metodologia Rock Mass Rating (Beniawski)

Tabella 8 - Risultati del calcolo degli indici RMR per le granodioriti della Facies Porto Rotondo – Stazione di rilevamento geomeccanico "St_04".

Rock Mass Rating (Beniawski)									
RMR base	66.67								
RMR corretto	64.67								
Coesione c (KPa)	333.36								
Angolo di attrito φ (°)	38.34								
Mod. di deformaz. E (GPa)	33.35								
Classe	Seconda								
Resistenza a compressione (Mpa)	60.05								
Descrizione	Buono								

L'elaborazione statistica dei dati acquisiti nella stazione di rilevamento geomeccanico dell'ammasso roccioso "St_04" ha evidenziato:

- secondo la classificazione RMR di Beniawski l'ammasso roccioso appartiene alla 2^a classe e di buona qualità;
- l'ammasso roccioso è caratterizzato da quattro principali famiglie di giunti (Figura 23): la 1 con orientamento compreso tra N130 e N145 e inclinazione compresa tra 65° e 75°; la 2 con orientamento tra N40 e N60, verticale; la 3 tra N80 e N100 e inclinazione compresa tra 75° e 85°, infine la 4 con direzione N130 ed inclinazione 50°.
- l'apertura delle principali discontinuità rilevate in situ sulla base delle osservazioni superficiali è sempre <1mm;
- il riempimento delle discontinuità è variabile tra <1 mm e 8 mm.

Stazione di rilevamento	geomeccanico	"ST_	_05″
-------------------------	--------------	------	------

										Operatore: dott.								
ST	AZION	E R.\$	S.:	ST_05	5			Da	ata: 25/03/2	2013	Gi do	acomo tt. Sam	Dei nuele	ana, Todde	Foto: 2			
LO	CALIT	A': N	Лaı	rana – (Com	nune di	i Go	lfo A	ranci (OT	")					N° Campioni: 3			
Aff	ioramen	to:	Ν	aturale	Sca	avo Sup		Scavo	Sotterr.	Trincea	I	Mete	odo	di scavo:	Mecca	nizza	to	
LIT	OGIA:		U	INITA'	IN	TRUS	IVA	DI	PORTO	ROT	OND	0 –	Fa	cies Po	rto R	otona	do: grai	nodioriti
monzogranitiche in								uigra	nulari, a	gran	a me	edia, d	con	abbonda	ınti in	clusi	microg	ranulari
scuri. (Carbonifero sup									ermiano).	0							0	
Fat	tori			Cerniere	/ Fia	anchi Pie	ega	Gi	unti d'esfola	zione	Co	ntatti ge	eolog	ici	Suol	o spes	s. Cm: 40	
Geo	ologici:			Faglie (d	lirette	e / inver	se)	Di	scordanze		La	minazio	oni		Carsi	ismo		
			_	Miloniti				Ve	ene						Altro	o: Affic	oramento n	ıassivo
				Fratture	Bear	nti		Fil	loni		Ter	rra Resi	duale	; 				<i>a</i> :
INS	STABILI	TA'	Sci	volamen	ti:	Planar	1		a Cuneo	R	otazio	nalı	Ri	baltamenti	: d	i blocc	chi per	flessione
A	ISTM 78	0	I	MASSIV	0	BLOG	COS	50	TABULAR	E	COLC	NNAR	E	IRRE	GOLAR	Έ	FRAT	TURATO
ST	RUTTUI	RA	R	1 Massic	cia		R 2	Strati	ificata		R3 8	Scistosa		WR1 S	emicoei	rente	WR2 A	Alternanze
AL	TERAZIO	NE		F(W1)			S	W (W	2)	M M	W (V od. Alte	V3) erata		HW (W Mod. Alte	4) rata		CW (V	W5)
AL	ISRM 78	1112		inalterata			De	b. Alter	rata	<5	<50% decomp. >50% dec		>50% deco	mp.		compl. A	compl. Alter.	
			С	himica	(Pla	gioclas	i, Mi	iche, e	etc.):	Fisi	<mark>ca (</mark> m	nicrofra	atture	e, giunti, e	ecc):		-	
DE	SISTEN	7.4		R0		R	1		R2		R3		R	K4	F	85	_	R6
KE	ISRM 78	LA	ł Sbric	Estrem. De ciola a mano	b. 0,25-1	Molto Sbricio	Deb. la con	Sbrici	Debole iola con martello :	5 Frattur	liam.R a con un	esist. colpo di	Frat	t. con pochi di mart 50	Molto Fratt. con n	Resist. nolti colp	pi di Schegg	em Resist. ia dal martello
				Мра		martello l	- 5 Mp	a	-25 Mpa	mart	ello 25-5	i0 Mpa	corp	100 Mpa	martello 1	00-250N	fpa >2	250 Mpa
VR	U = Ib =	15*10)*2()		FORM	4A	Cubo) boodro	Tetra	edro	N. F	N. FAMIGLIE: 8					
Jv = /mc Giac. Piano Affioramento: 343°N-5						°N-5.5°		Alte	zza (m):	176	ти	Larg	hez	za (m): 2	.00			
Giac. linea di scansione: Orizzontale						Dev	iazione (°)	: no		Lun	ghez	za (m): 8	,05					
Trimming (m) 0.04 n.							ı.											
Cer	isoring		Cui	rtailmen	t (m) 1.00	r		R.Q.D.	= 87,1	4							
		G	Giacitura Semitracci					ia	Termi	nazio	ne.							1
Inter	sezione	Imn	1.	Incl. Sotto/sin Sor		pra/dx	ra/dx Frattura		estra	JRO	C	Curvat.	Tip	00	Apertura	Riempim.		
Ν	m	0		0		m		m	I.A.O*	T.I.	C**	1-20	0	mm	***	*	mm	****
1	0.32	31		68	(0.32	().52	А	(5	6		-	2		4	W2
2	0.54	37		75	(0.35 0.2).28	3 A		2	6		-	2		<1	W2
3	0.61	55		64	1	1.00	1	00.1	Ι		ſ	4		-	2		3	Ι
4	0.69	98		86	(0.20	1	00.1	А		[9		-	2		<1	W2
5	0.90	230)	85	(0.09 0.).18	0	(5	10		-	2		9	С
6	1.00	220)	54	(0.45	().41	Ι	(2	10		-	2		2	Ι
7	1.15	135		43	(0.21	1	1.00	А		[6		-	2		2	С
8	1.62	200)	61	1	1.00	().07	Ι		I	8		-	2		7	C
9	2.18	219		68	(0.81	().58	Α	(2	10		-	2		6	С
10	2.40	345		81	(0.12	().09	А	(5	5		-	2		4	W2
11	2.63	78		79	1	1.00	().65	Ι		ĺ	4		-	2	İ	2	W2
12	3.15	79		76	().38	().52	А	(2	6		-	2	İ	3	C
13	3.42	70		90	1	1.00	().80	Ι		I	3		-	2		8	C
14	3.45	135		90	(0.41	().59	А	(2	4		-	2		10	W2
15	3.68	139		90	(0.10	1	1.00	А		[7		-	2		2	С
16	4.22	26		53	(0.29	().58	0	(2	10		-	2		4	С
17	4.41	61		57	(0.07	().38	А	(5	8		-	2		8	W2
18	4.75	278		74	1	1.00	().61	0	I		6		-	2		11	W2
19	4.90	275		83	().39	().56	А	(2	8		-	2		2	I
17 4.90 273 85 0.39 0.30 * L in receis intatta: A contro un'altra frattura: O								0 F	uori dall'affi	oramar	to	L				L		1

* I – in roccia initatia; A – contro un altra frattura; O – Fuori dall'afformento.
 *** T: Frattura che transetta la finestra; I – Interseca la finestra C – Contenuta entro la finestra
 **** I – Faglia; 2 – Giunto; 3 – Civaggio; 4 – Scistosità; 5 – Taglio; 6 – Vena 7 - Trazione; 8 – Filiazione; 9 - Stratificazione; 10 – Stilonite.
 **** I – Incoerente; C – Coesivo inattivo; S – coesivo rigonfiante; Cm – Cementato; Ca – Calcite; Q – Quarzo; T – Talco; G – Gesso
 W1- molto consolidato asciutto; W2 – Umido senza acqua libera; W3 – bagnato con gocce d'acqua; W4 – dilavato da continuo flusso d'acqua; W5 – localmente dilavati; W6 – completamente dilavati.

Inton	nariona	Giac	itura	Semitraccia		Termir	nazione	IDC	Current	Time	Amontuno	Diamanina
Inter	sezione	Imm.	Incl.	Sotto/sin	Sopra/dx	Frattura	Finestra	JKC	Curvat.	11po	Apertura	Kiempim.
Ν	m	0	0	m	m	I.A.O*	T.I.C**	1-20	mm	***	mm	****
20	5.01	234	82	0.31	0.52	Ι	С	10	-	2	1	NO
21	5.28	216	43	1.00	1.00	Ι	Т	4	-	2	1	NO
22	5.51	141	61	0.28	1.00	0	Ι	5	-	2	2	W2
23	5.83	210	65	0.12	0.19	А	С	6	-	2	4	W2
24	6.04	223	89	0.51	0.42	А	С	2	-	2	3	W2
25	6.52	348	71	1.00	1.00	Ι	Т	5	-	2	7	С
26	6.71	79	72	1.00	0.09	А	Ι	1	-	2	5	Ι
27	6.98	82	86	0.81	0.56	А	С	10	-	2	9	NO
28	7.15	72	85	0.25	0.06	0	С	5	-	2	12	С
29	7.48	135	90	1.00	0.62	Ι	Ι	3	-	2	10	Cm
30	7.62	133	53	0.34	0.52	Ι	С	9	-	2	1	NO
31	8.05	265	79	1.00	0.73	0	Ι	6	-	2	8	Cm
32												
33												
34												
35												
36												
37												
38												
у т		·		2 14 6		· 1 112 CC						

* I – in roccia intatta; A – contro un'altra frattura; O – Fuori dall'affioramento.
** T: Frattura che transetta la finestra; I – Interseca la finestra C – Contenuta entro la finestra
*** 1 – Faglia; 2 – Giunto; 3 – Clivaggio; 4 – Scistosità; 5 – Taglio; 6 – Vena 7 - Trazione; 8 – Filiazione; 9 - Stratificazione; 10 – Stilonite.
**** I – Incoerente; C – Coesivo inattivo; S – coesivo rigonfiante; Cm – Cementato; Ca – Calcite; Q – Quarzo; T – Talco; G – Gesso
W1- molto consolidato asciutto; W2 – Umido senza acqua libera; W3 – bagnato con gocce d'acqua; W4 – dilavato da continuo flusso d'acqua; W5 – localmente dilavati; W6 – completamente dilavati.

Figura 24 - Stazione di rilevamento geomeccanico dell'ammasso roccioso "St_05". In evidenza la linea di scansione.

Nella tabella di seguito si riportano i parametri utilizzati per la caratterizzazione geomeccanica dell'ammasso roccioso per la stazione "St_05".

Tabella 9 – Valori utilizzati per la caratterizzazione dell'ammasso roccioso a granodioriti della Facies Porto Rotondo – Stazione di rilevamento geomeccanico "St_05".

Parametri	Valori attribuiti
A1 - Resistenza della roccia intatta	4.38
A2 - Indice di qualità (RQD) 87.14 %	17.25
A3 - Spaziatura dei giunti	9.50
A4 - Stato dei giunti	13
A5 - Presenza di acque di infiltrazione	15
RMR base	59.13

Di seguito si riportano i risultati della classificazione dell'ammasso roccioso secondo la metodologia Rock Mass Rating (Beniawski)

Tabella 10 - Risultati del calcolo degli indici RMR per le granodioriti della Facies Porto Rotondo – Stazione di rilevamento geomeccanico "St_05".

Rock Mass Rating (Beniawski)									
RMR base	59.13								
RMR corretto	57.13								
Coesione c (KPa)	295.65								
Angolo di attrito φ (°)	34.57								
Mod. di deformaz. E (GPa)	18.26								
Classe	Terza								
Resistenza a compressione (Mpa)	37.58								
Descrizione	Mediocre								

L'elaborazione statistica dei dati acquisiti nella stazione di rilevamento geomeccanico dell'ammasso roccioso "St_05" ha evidenziato:

- secondo la classificazione RMR di Beniawski l'ammasso roccioso appartiene alla 3^a classe e di mediocre qualità;
- l'ammasso roccioso è caratterizzato da almeno 8 famiglie di giunti (Figura 25);
- l'apertura delle principali discontinuità tra 3 e 10 mm;
- il riempimento delle discontinuità è in genere compatto e correlabile con minerali di alterazione del substrato granitico.

3.2 Assetto idrogeologico

3.3 Idrografia

Attualmente, come si può facilmente osservare dalla Figura 26, ad ovest del porto esistente confluiscono a circa 180 m dalla spiaggia i Rii Tungo e Marinella, nonché il Rio Nodu Mannu ed i Rii Perruma, Nostra Signora e Marana. Gli ultimi tre convergono, a monte, in un laghetto a sud est del porto che, tramite uno scatolare in calcestruzzo e un tratto di canale naturale in terra, scarica le sue acque sul Rio Nodu.

Nella configurazione di progetto (Figura 2), il Rio Nodu si trova, a valle della confluenza con i Rii citati precedentemente, interessato dall'ampliamento portuale nel suo tratto terminale prima della confluenza con i Rii Tungu e Marinella. In fase progettuale si è pensato quindi di deviare il corso del torrente per aggirare la darsena in progetto attraverso una struttura scatolare chiusa".

Figura 26 – CTR Regione Sardegna mostrante l'idrografia attuale del settore di interesse. Immagine stralciata dallo studio idraulico predisposto da TEC MED INGEGNERIA S.r.l.. Il riquadro rosso evidenzia l'area interessata dall'ampliamento della struttura portuale.

Figura 27 – CTR Regione Sardegna mostrante l'idrografia attuale (in blu) e di progetto (in rosso) del settore di interesse. Immagine stralciata dallo studio idraulico predisposto da TEC MED INGEGNERIA S.r.l..

Per approfondimenti riguardo gli aspetti connessi con idrografia superficiale si rimanda allo "Studio Idraulico" (Elaborato 2.2) predisposto da TEC MED INGEGNERIA S.r.l..

Si ritiene che la presenza di acqua all'interno dell'area di scavo sia da mettere in relazione prevalentemente alle acque di ruscellamento superficiale connesse con i bacini idrografici del Rio Nodu e del Rio Marana, agli apporti meteorici (intesi come sole acque zenitali) e in minor misura agli apporti di falda.

È ben noto che in Sardegna esiste un deficit tra precipitazioni ed evapotraspirazione che non consente la costituzione di riserve idriche la cui origine sia <u>esclusivamente da acque zenitali</u>.

In merito alla presenza d'acqua all'interno della darsena durante il periodo estivo, si ritiene debba essere messa in relazione sia ai contributi connessi con i due corsi d'acqua sopracitati, sia alle acque zenitali (cioè delle sole acque di pioggia che ricadono all'interno della sezione di scavo).

Durante i rilievi in situ infatti, è stata rilevata la presenza di almeno 3 punti di immissione di acqua di ruscellamento superficiale all'interno della darsena più orientale. Il punto di immissione più significativo è stato rilevato nell'estremo est del fronte meridionale (Figura 28); l'immissione dell'acqua in questo punto è rilevabile costantemente per tutto l'anno ad esclusione del periodo estivo, quindi non solo in occasione degli eventi pluviometrici.

Figura 28 – Foto acquisita il 21/03/2013 nel settore est del fronte di scavo meridionale. Punti di immissione di acque di ruscellamento superficiale all'interno della darsena.

Il contributo da parte delle acque di ruscellamento superficiale assume valori significativi se messi in relazione all'estensione areale dei bacini idrografici del Rio Nodu e del Rio Marana in quanto raccolgono sia le acque zenitali del che cadono all'interno del bacino, che (localmente ed in particolari contesti geomorfologici) le acque di falda. Sulla base di queste considerazioni è ammissibile che la darsena contenga una quantità d'acqua sicuramente potrebbe allontanata effetto maggiore rispetto quella che essere per а dell'evapotraspirazione reale.

Figura 29 – Rii e relativi bacini idrografici in prossimità dell'area di interesse.

Durante i sopralluoghi in situ del 21/03/2013, la quota dell'acqua all'interno della darsena, è stata rilevata a +0.90 m e +1.30 m s.l.m rispettivamente per l'area di scavo occidentale e per quella orientale. Questa differenza di quota (+0.40 m nello scavo orientale rispetto a quello occidentale – si vedano le sezione geologiche) si ritiene correlabile proprio con gli apporti connessi con le acque di ruscellamento che interessano in maggior misura lo scavo più occidentale.

3.4 Idrogeologia

Lo studio dell'assetto idrogeologico dell'area di interesse è stato condotto sulla base dei dati acquisiti durante il rilievo geologico-tecnico di dettaglio e dei dati acquisiti durante l'esecuzione di prove di permeabilità effettuate in pozzetti superficiali.

3.4.1 Prove di permeabilità a carico variabile in pozzetto

In totale sono state effettuate 6 prove di permeabilità (Figura 30) a carico variabile su pozzetti superficiali; nel paragrafo 1.5 si riportano le modalità di esecuzione delle prove di permeabilità condotte nell'ambito del presente studio.

Le 6 prove hanno interessato:

- l'Unità Litotecnica C a granodioriti della Facies di Porto Rotondo (n° 4 prove);
- i depositi alluvionali quaternari (n° 1 prova);
- i depositi antropici a ghiaie e ciottoli in matrice sabbiosa-limosa utilizzati come materiale di riporto per la realizzazione di rilevati stradali (n° 1 prova).

Nella tabella seguente si riporta l'elenco delle prove di permeabilità è le relative coordinate espresse in coordinate Gauss-Boaga/Roma40.

Prova	х	У	Quota	Un. Litoecnica
K1	1546929.350	4539100.013	2.00	С
К2	1546990.039	4539113.957	2.55	С
К3	1546888.378	4539000.134	2.57	С
K4	1546866.005	4539079.446	1.36	E
K5	1546940.771	4538994.501	2.82	E
К6	1547035.169	4538977.737	6.05	D

Tabella 11 – Prove di permeabilità effettuate e relative coordinate.

Nota: la prova K3 è stata fatta alla profondità di -50 cm rispetto al piano di campagna, asportando completamente il deposito antropico U.L. E riportato nella cartografia geologica di dettaglio.

Tabella 12 – Prova di permeabilità "K1" – dati rilevati durante l'esecuzione e valore di permeabilità determinato.

Numero Lettura	Tempi (secondi)	D h (m)	K (m/s)
1	900	0,005	1,74 x 10 ⁻³
2	1800	0,011	1,91 x 10 ⁻³
3	2700	0,016	1,85 x 10 ⁻³
4	3600	0,02	1,74 x 10 ⁻³
5	4500	0,025	1,74 x 10 ⁻³
6	5400	0,03	1,74 x 10 ⁻³
7	6300	0,034	1,69 x 10 ⁻³
8	7200	0,039	1,70 x 10 ⁻³

Tabella 13 – Prova di permeabilità a carico variabile "K1". Grafico tempo/abbassamenti.

Tabella 14 – Prova di permeabilità "K2" – dati rilevati durante l'esecuzione e valore di permeabilità determinato.

Numero Lettura	Tempi (secondi)	D h (m)	K (cm/s)
1	900	0,006	2,10 x 10 ⁻³
2	1800	0,012	2,11 x 10 ⁻³
3	2700	0,017	1,99 x 10 ⁻³
4	3600	0,023	2,02 x 10 ⁻³
5	4500	0,03	2,11 x 10 ⁻³
6	5400	0,035	2,05 x 10 ⁻³
7	6300	0,041	2,06 x 10 ⁻³
8	7200	0,046	2,03 x 10 ⁻³

Tabella 15 – Prova di permeabilità a carico variabile "K2". Grafico tempo/abbassamenti.

Tabella	16 -	Prova	di	permeabilità	"K3"	_	dati	rilevati	durante	l'esecuzione	е	valore	di	permeabilità
determi	nato.													

Numero Lettura	Tempi (secondi)	D h (m)	K (cm/s)
1	900	0,003	1,04 x 10 ⁻³
2	1800	0,006	1,04 x 10 ⁻³
3	2700	0,008	9,33 x 10 ⁻⁴
4	3600	0,01	8,75 x 10 ⁻⁴
5	4500	0,012	8,40 x 10 ⁻⁴
6	5400	0,014	8,17 x 10 ⁻⁴
7	6300	0,016	8,00 x 10 ⁻⁴
8	7200	0,018	7,88 x 10 ⁻⁴

Tabella 17 – Prova di permeabilità a carico variabile "K3". Grafico tempo/abbassamenti.

Tabella 18 – Prova di permeabilità "K4" – dati rilevati durante l'esecuzione e valore di permeabilità determinato.

Numero Lettura	Tempi (secondi)	D h (m)	K (cm/s)
1	900	0,005	1,77 x 10 ⁻³
2	1800	0,009	1,59 x 10 ⁻³
3	2700	0,013	1,53 x 10 ⁻³
4	3600	0,016	1,41 x 10 ⁻³
5	4500	0,02	1,42 x 10 ⁻³
6	5400	0,024	1,42 x 10 ⁻³
7	6300	0,027	1,37 x 10 ⁻³
8	7200	0,031	1,38 x 10 ⁻³

Tabella 19 – Prova di permeabilità a carico variabile "K4". Grafico tempo/abbassamenti.

Tabella 20 – Prova di permeabilità "K5" – dati rilevati durante l'esecuzione e valore di permeabilità determinato.

Numero Lettura	Tempi (secondi)	D h (m)	K (cm/s)
1	900	0,022	7,61 x 10 ⁻³
2	1800	0,045	7,79 x 10 ⁻³
3	2700	0,068	7,85 x 10 ⁻³
4	3600	0,091	7,89 x 10 ⁻³
5	4500	0,114	7,91 x 10 ⁻³
6	5400	0,136	7,87 x 10 ⁻³
7	6300	0,157	7,79 x 10 ⁻³
8	7200	0,18	7,83 x 10 ⁻³

Tabella 21 – Prova di permeabilità a carico variabile "K5". Grafico tempo/abbassamenti.

Tabella 22 – Prova di permeabilità "K6" – dati rilevati durante l'esecuzione e valore di permeabilità determinato.

Numero Lettura	Tempi (secondi)	D h (m)	K (cm/s)
1	900	0,008	2,76 x 10 ⁻³
2	1800	0,019	3,28 x 10 ⁻³
3	2700	0,03	3,45 x 10 ⁻³
4	3600	0,04	3,45 x 10 ⁻³
5	4500	0,053	3,66 x 10 ⁻³
6	5400	0,064	3,69 x 10 ⁻³
7	6300	0,075	3,70 x 10 ⁻³
8	7200	0,085	3,67 x 10 ⁻³

Tabella 23 – Prova di permeabilità a carico variabile "K6". Grafico tempo/abbassamenti.

Tabella 24 – Grafico comparativo delle prove di permeabilità effettuate. Le prove 1,2,3 e 4 hanno fornito valori di permeabilità correlabili in quanto sono tutte state effettuate sulla stessa Unità Litotecnica (U.L. C). La prova 5 è stata eseguita sulle alluvioni oloceniche (U.L. D) e presenta un valore di permeabilità di poco superiore ai valori misurati per l'U.L. C. La prova 6, eseguita sul deposito antropico (U.L. E), presenta i valori di permeabilità più elevati.

3.4.2 Stima della permeabilità dell'ammasso roccioso

Non essendo stati effettuati sondaggi a carotaggio continuo e prove di permeabilità in foro, i valori di permeabilità dell'ammasso roccioso sono stati stimati mediante la metodologia proposta da Wei, Egger & Descoeudres (1995); tale metodologia, che peraltro tende a sovrastimare il valore di permeabilità, è descritta nel paragrafo 2.

Attraverso l'applicazione del metodo di Wei & Hudson (1988) è stata stimata la permeabilità dell'ammasso roccioso alla quota di – 3,00 metri rispetto al livello medio del mare, in considerazione del fatto che lo scavo della darsena ha raggiunto la quota di progetto di -2,70 metri; questo aspetto consente di acquisire ulteriori dati per studiare i potenziali impatti connessi con la realizzazione delle opere con particolare riferimento all'intrusione del cuneo salino.

Di seguito si riportano i valori di permeabilità per le Unità Litotecniche A, B.

Tabella 25 – Tabella	mostrante i dati	del coe	efficiente	di	permeabilità	stimati	attraverso	l'applicazione	del
metodo di Wei, Egger	r & Descoeudres (1	995)							

Unità	Valore di K al	Valore di K a -3,00 m rispetto
Litotecnica	p.c. (cm/s)	al p.c. (cm/s)
А	1.45 x 10 ⁻¹⁴	1.25 x 10 ⁻¹⁴
В	6.8 x 10 ⁻⁰⁷	5.88 x 10 ⁻⁰⁷

3.4.3 Principali Unità Idrogeologiche (U.I.)

Sulla base dello studio idrogeologico dell'area direttamente interessata dalla realizzazione dello scavo e di un suo adeguato intorno sono state definite le principali Unità Idrogeologiche.

- <u>Unità Idrogeologica A</u>: rappresenta il substrato impermeabile dell'area studiata; tale unità è caratterizzata dagli affioramenti rocciosi massivi a litologie granodioritiche della Facies Porto Rotondo. Si tratta di Una Unità Idrogeologica caratterizzata da permeabilità secondaria, quindi per fessurazione estremamente bassa in ragione della bassissima densità di discontinuità strutturali e delle condizioni di apertura delle stesse. L'U.I. A affiora esclusivamente nel settore più meridionale del fronte di scavo orientale.
- <u>Unità Idrogeologica B</u>: questa unità Idrogeologica è correlabile con l'Unità Litotecnica B.
 Si tratta di una Unità Idrogeologica da scarsamente permeabile a mediamente permeabile. Questa unità è caratterizzata da permeabilità secondaria in cui la circolazione dell'acqua si verifica quasi esclusivamente attraverso le principali

Figura 30 – Carta delle Unità Idrogeologiche di dettaglio dell'area interessata dalle operazioni di scavo. Per la legenda si consulti la Figura 31.

LEGENDA

Figura 31 – Legenda della Carta delle Unità Idrogeologiche riportata in Figura 30.

discontinuità strutturali. Si evidenzia che i valori di permeabilità ricavati attraverso la metodologia di Wei, Egger & Descoeudres sono riferiti ai dati rilevati superficialmente. Numerose osservazioni in sito hanno mostrato, come le caratteristiche geometriche delle discontinuità cambino con la profondità: in particolare, lo sforzo normale aumenta con essa; la frequenza, l'apertura delle fratture e, di conseguenza, anche la permeabilità tende a diminuire. L'U.I. B domina tutto il settore direttamente interessato dallo scavo della darsena.

- <u>Unità Idrogeologica C</u>: questa unità, caratterizzata da permeabilità da media ad alta è correlabile con la coltre di alterazione del substrato roccioso a granodioriti della Facies Porto Rotondo (Unità Litotecnica B). Essendo una unità a substrato roccioso molto alterato (granito arenizzato) e localmente sabbie grosse molto compatte in matrice limosa-arrossata, è caratterizzata prevalentemente da permeabilità per porosità. Questa unità presenta spessore variabile e compreso tra pochi decimetri e circa 2 metri. Il suo limite inferiore, definito dal contatto con la sottostante U.I. B, è sempre rilevabile a quote superiori ad +1/1,5 metri rispetto al livello medio mare, ad eccezione del settore nord-occidentale della'area di scavo dove è rilevabile a quote di circa +0,5 m.
- <u>Unità Idrogeologica D</u>: è caratterizzata dai depositi alluvionali olocenici a ghiaie e ciottoli poligenici in matrice sabbiosa-limosa talora debolmente cementati. Questa Unità affiora esclusivamente nel settore meridionale e occidentale dell'area di scavo. Si tratta di depositi alluvionali e di versante di età olocenica che stratigraficamente sovrastano l'Unità Litotecnica C e localmente l'Unità B. Lo spessore dei depositi alluvionali misurato in corrispondenza dei fronti di scavo è variabile tra 0,5 metri e 2.5/3.0 metri. Questa

Unità è sede di acquifero superficiale esclusivamente nel settore più occidentale dell'area studiata (dato acquisito durante la realizzazione dei pozzetti stratigrafici). Si tratta di un acquifero con portate modeste, strettamente connesse con il regime delle precipitazioni che raggiunge valori di portata minimi sino a estinguersi durante la stagione estiva. Questa unità affiora estesamente nel fonte di scavo meridionale dove è ben evidente il limite inferiore al contatto con il substrato granitico e dove è rilevabile la completa assenza di falda acquifera anche durante le stagioni caratterizzate da maggiori apporti meteorici.

<u>Unità Idrogeologica E</u>: caratterizzata dai depositi antropici utilizzati per la realizzazione de rilevati stradali. rappresenta l'U.I. meno estesa sia in relazione alla distribuzione che agli spessori. Il limite inferiore di questa Unità è sempre rilevabile a quote di almeno +2/+3 metri rispetto al l.m.m. e non è sede di falda freatica (dato rilevato durante l'esecuzione dei pozzetti stratrigrafici).

3.4.4 Falda freatica

Sulla base delle osservazioni effettuate durante l'esecuzione dei pozzetti stratigrafici superficiali, l'area è caratterizzata dalla presenza di una falda freatica libera che interessa i depositi alluvionali olocenici e l'Unità Litotecnica C esclusivamente nel settore occidentale dell'area di interesse. Il limite inferiore è definito dalla presenza del substrato a granodioriti della Facies Porto Rotondo, caratterizzato da bassi valori di permeabilità. La falda freatica rilevata presenta quota di +1.56 metri, +1.03 metri e +0.55 metri sul livello medio mare rispettivamente nei pozzetti P5, P2 e P1 (dato rilevato il 21/04/2013). La direzione del deflusso ha andamento circa sud-nord.

Si tratta di un acquifero che raggiunge la potenza massima di 0.80 metri rispetto al sottostante basamento in corrispondenza del pozzetto stratigrafico P5; il valore minimo (0.2 m) di spessore è stato registrato in corrispondenza del pozzetto P1 dove evidentemente si ha una risalita del sottostante basamento.

Nel fronte di scavo meridionale, seppur caratterizzato da circa 2 metri di deposito alluvionale sul basamento granitico, non è stata rilevata alcuna evidenza di falda; questo aspetto è correlabile con l'esistenza di uno spartiacque geologico, quindi sotterraneo, costituito dal substrato roccioso a granodioriti affiorante nel settore a sud-est dell'area di scavo e che limita l'alimentazione naturale dell'acquifero.

3.4.5 Criticità connesse con la potenziale intrusione del cuneo salino

In genere gli acquiferi costieri e buona parte delle pianure alluvionali pericostiere possono essere considerati dei sistemi globali acquifero/mare; l'acqua sotterranea fluisce verso riva, ma la sua progressione è ostacolata dall'invasione dell'acqua di mare, quest'ultima caratterizzata da un flusso inverso di acqua di mare salata.

In uno stato normale di equilibrio idrogeologico, l'ingressione del cuneo salino verso l'entroterra è fortemente limitato, perché ovviamente ostacolato dall'acquifero costiero di acqua dolce.

Nella zona di contatto, le due acque tendono a mescolarsi, definendo un'area di transizione, ma fisicamente, per la diversa densità specifica dei due mezzi liquidi, la separazione è consequenziale: l'acqua dolce rimane in alto, mentre quella salata tende a scivolare verso il basso

Numerosi studi (Istituto Nazionale di Economia Agraria, 2010), eseguiti sui fenomeni di intrusione salina in diverse regioni del Mediterraneo, dimostrano come la causa principale sia connessa con il sovra sfruttamento delle falde in aree pericostiere, definito come l'eduzione di quantitativi d'acqua superiore agli apporti di acqua dolce.

In genere l'intrusione salina si verifica per risalita dell'interfaccia acqua dolce/salata (upconing).

Figura 32 - Schema semplificato dei meccanismi e fattori dell'intrusione salina costiera con risalita del cuneo salino (da Ghiglieri, 2006): livelli di pompaggio elevato di acque dolci da pozzi in prossimità della costa "richiamano" acque saline e/o salmastre in superficie attraverso il fenomeno dell'upconing (spostamento dell'interfaccia dolce/salata verso la superficie in forma conica)

L'intrusione marina in aree pericostiere è un fenomeno che avviene spontaneamente.

Tuttavia è incrementato dall'attività antropica ed, in particolare da:

- Variazioni nella ricarica dell'acquifero;
- Fluttuazioni del livello del mare;
- Sovra sfruttamento degli acquiferi costieri;
- Modifiche del reticolo idrografico apportate da opere idrauliche, bonifiche, ecc.

Esistono diversi algoritmi di calcolo che consento, una volta creato il modello idrogeologico di dettaglio, la restituzione dei potenziali scenari di rischio salinizzazione degli acquiferi costieri a seguito di sovra sfruttamento delle falde freatiche.

Il problema del cuneo salino può essere affrontato mediante le equazioni complete della dispersione-diffusione, in base alla variazione di concentrazione salina e quindi di densità dell'acqua nell'acquifero.

Tuttavia, nei casi di interesse pratico, l'approssimazione del fronte netto di interfaccia, specialmente in combinazione le approssimazioni di flusso essenzialmente orizzontale, consente di semplificare notevolmente la modellazione.

Esiste sempre una relazione tra la portata di acqua dolce verso il mare e l'entità dell'intrusione salina. Ciò rende il problema dell'intrusione salina essenzialmente un problema di <u>GESTIONE DELLA RISORSA</u> (A. Najia, A.H.-D. Chengb & D. Ouazarc, 1999), dal momento che la portata di un acquifero non è altro che la differenza tra il tasso di ricarica naturale dell'acquifero stesso ed il tasso di emungimento.

Normalmente il problema viene risolto con il cosiddetto "*approccio idraulico*", ovvero mediante uno schema bi-dimensionale che consente di eliminare le condizioni al contorno sull'interfaccia.

L'approssimazione di Ghyben-Herzberg

Il modello idealizzato dell'interfaccia in un acquifero costiero proposto da Ghyben-Herzberg è quello di una condizione di equilibrio statico con distribuzione idrostatica della pressione per l'acqua dolce e salata stazionaria. È anche possibile assumere condizioni di equilibrio dinamico, ovvero di moto permanente ma con velocità orizzontali nella regione di acqua dolce.

Ciò significa che le linee o superfici equipotenziali sono verticali, esattamente come per l'ipotesi di Dupuit. In tali condizioni si ha:

$$h_{s} = \frac{\gamma_{f}}{\gamma_{s} - \gamma_{f}} h_{f} = \delta \cdot h_{f}$$

Dove:

*h*_s: è lo spessore di acqua dolce al di sotto del livello medio del mare;

*h*_f: è lo spessore della zona satura di acqua dolce al di sopra del livello del mare;

 γ_s : è la densità dell'acqua di mare;

 γ_f : è è la densità dell'acqua dolce dell'acquifero.

Figura 33 – Schema interfaccia acqua dolce/acqua di mare per un acquifero costiero non confinato. (da A. Najia, A.H.-D. Chengb & D. Ouazarc, 1999).

Nel caso specifico, prendendo in considerazione la quota minima della falda freatica rilevata nel pozzetto P2 (+0.55 m s.l.m), per γ_s = 1.025 gr/cm³ e γ_f = 1.000 gr/cm³ si ha:

$$h_s$$
=40 x h_f = 40 x 0.55 m = 22 m

ovvero a qualsiasi distanza dal mare la profondità di un'interfaccia stazionaria sarà pari a 40 volte l'altezza della quota della superficie freatica s.l.m.

ovviamente, avvicinandosi alla costa non è più valida l'ipotesi di flusso essenzialmente orizzontale, e le componenti verticali non possono più essere trascurate. Infatti nella Figura 33 non esiste alcuna possibilità di uscita dell'acqua dolce verso il mare.

Actual depth

Figura 34 – Reali condizioni di flusso per un acquifero non confinato in prossimità della costa. ((da A. Najia, A.H.-D. Chengb & D. Ouazarc, 1999).

In Figura 34 il punto A indica l'effettiva profondità dell'interfaccia ad una certa distanza dalla costa. Il punto B indica l'intersezione dell'interfaccia con la superficie equipotenziale nell'acqua dolce. Pertanto il punto B si trova a profondità di δh_f come previsto dall'approssimazione di Ghyben-Herzberg; la profondità effettiva dell'interfaccia è maggiore di quella ottenuta con tale approssimazione.

Sulla base di quanto sopra esposto, gli impatti connessi con la potenziale intrusione del cuneo salino a seguito della messa in comunicazione della darsena con il mare, risultano essere trascurabili in quanto:

- da un'attenta analisi durante i sopralluoghi e dalla consultazione dei dati bibliografici, nell'area di interesse ed in un ambito areale significativo non sono presenti punti di emungimento della falda superficiale. Si ritiene che per tali ragioni non verrà perturbato l'equilibrio naturale nell'interfaccia acqua dolce/acqua salata connessi con fenomeni di upconing;
- l'area di scavo e di messa in opera delle banchine interessa esclusivamente l'Unità Litotecnica B (Figura 14 e Figura 15), caratterizzata da valori di permeabilità bassa (K=6.84 x 10⁻⁷ cm/s) (tale valore si riduce ulteriormente in maniera proporzionale con la profondità per effetto della minor apertura delle discontinuità);
- la falda freatica, presente esclusivamente nel settore orientale dell'area di scavo, è rilevabile nei terreni alluvionali olocenici (U.L. E) e in alcuni settori sulla coltre di

alterazione del substrato granitico (U.L. C); per entrambe le unità il limite inferiore (livello di base dell'acquifero) è sempre rilevabile a quote superiori a +0.8 metri rispetto al livello medio mare (sezione geologica 1). Con tale configurazione si ritengono poco probabili fenomeni di miscibilità tra acqua di falda e acqua di mare;

 l'opera di fondazione del sistema di banchinamento verrà realizzato in calcestruzzo armato direttamente sul substrato dell'Unità Litotecnica B, limitando quindi le aree di esposizione diretta della roccia e minimizzando l'intrusione dell'acqua attraverso le discontinuità strutturali più superficiali.

Figura 35 – Schema della tipologia di fondazione della banchina. L'opera di fondazione in c.l.s interessa le litologie dell'Unità litotecnica B.

4. Conclusioni

Il presente studio, a integrazione dello studio già effettuato nel settore pericostiero ha consentito:

- Sono stati verificati, integrati e modificati i limiti geologici della Carta Geologica di base della Sardegna scala 1:25000, con particolare riferimento alla distribuzione dei depositi alluvionali olocenici;
- La definizione dell'assetto geologico-tecnico di dettaglio delle aree interessate dalla realizzazione delle opere in progetto;
- La caraterizzazione geomeccanica dell'ammasso roccioso attraverso la realizzazione di 5 stazioni di rilevamento;
- La definizione dell'assetto idrogeologico di dettaglio con particolare riferimento alla presenza degli acquiferi nell'area di interesse;
- Sono state restituite le sezioni geologiche significative delle aree di scavo in maniera da rappresentare le unità litotecniche affioranti nell'area;
- Sono stati approfonditi gli aspetti connessi con la potenziale intrusione del cuneo salino a seguito della messa in comunicazione della darsena con il mare.

15/04/2013

Il tecnico

POZZETTO	ATTR	REZZAT	URA	MET	ETODO LAVORO E UBICAZIONE				
P1	Terna New I	i gomma Holland	ata B115	Escav benna	azione a a cuc	e meccar chiaia ro	anica con Ampliamento darsena Porto Marana rovescia Comune di Golfo Aranci		а
FALDA ACQUIFERA CAMPIONI	QUOTA CAMPIONI	RECU- PERO (%)	ALTERAZ. (*)	SPT (N COLPI)	ALTRE PROVE	PROF. (M)		DESCRIZIONE	LOG. LITOLOGICO
DATA SONDA	GGIO:	21/03/2	013			0.100 0.200 0.201 0.201 0.301 0.401 0.501 0.501 0.600 0.701 0.800 0.701 0.801 0.701 0.801 0.701 0.801 0.701 0.801 0.701 0.801 0.702 0.801 1.701 1.702 1.703 1.801 1.901 2.101 2.101 2.2001 2.301 2.302 2.303 2.304 2.305 2.305	Terreno di ri in matrice s a litologie gr per blocco d Granodioriti sabbie molti componente Granodioriti a grana med microgranul	porto antropico: ghiaia e ciottoli abbiosa; subordinati blocchi anitiche (dimensioni massime 30x30x35 cm) monzogranitiche arenizzate: o compatte a debole e limosa arrossata.	
AUTORE: Dot	2/03/20 t. Geol.	Giacor	no Dei	ana			(*) C = c S = d	ompletam. alterato; H= molto alterato; M=moder lebolmente alterata; U= inalterata	atam. Alterata;

5. Appendice – Log stratigrafici dei pozzetti e documentazione fotografica

POZZETTO	ATTR	REZZAT	URA	MET	METODO LAVO			LAVORO E UBICAZIONE	RO E UBICAZIONE		
P2	Terna New	a gomm Holland	ata B115	Esca benna	vazione a a cuc	e meccar cchiaia rc	nica con ovescia	Ampliamento darsena Porto Maran Comune di Golfo Aranci	а		
FALDA ACQUIFERA CAMPIONI	QUOTA CAMPIONI	RECU- PERO (%)	H ALTERAZ. (*)	(N COLPI)	ALTRE PROVE	PROF. (M)		DESCRIZIONE	LOG. LITOLOGICO		
1.70 DATA SONDA DATA LOG: 22	GGIO: 2/03/20	21/03/2	2013			0.00 0.20 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.70 0.80 0.70 1.40 1.20 1.40 1.50 1.40 1.50 2.40 2.10 2.40 2.50 2.50 2.50 2.50 2.50 2.50	Terreno di ri litologie gra Granodioriti sabbie molt componente Granodioriti a grana me microgranul	iporto antropico: ciottoli e blocchi a nitiche in matrice sabbiosa-limosa. monzogranitiche arenizzate: o compatte a debole e limosa arrossata. monzogranitiche inequigranulari, dia con abbondanti inclusi ari scuri.			
AUTORE: Dot	t. Geol.	Giacor	no Dei	ana			() C = C S = C	debolmente alterata; U= inalterata	aidin. Aileidid;		

POZZETTO	ATTR	REZZAT	URA	METODO				LAVORO E UBICAZIONE	
P3	Terna New I	gomm Holland	ata B115	Escav benna	vazione a a cuc	e mecca chiaia ro	nica con ovescia	Ampliamento darsena Porto Marar Comune di Golfo Aranci	a
FALDA ACQUIFERA CAMPIONI	QUOTA CAMPIONI	RECU- PERO (%)	ALTERAZ. (*)	(N COLPI)	ALTRE PROVE	PROF. (M)	DESCRIZIONE		LOG. LITOLOGICO
Presenza d'acqua non rilevata	GGIO:	21/03/2	0013			0.00 0.20 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.70 1.40 1.20 1.40 1.50 1.40 1.50 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40	Suolo: sabb organica.	i monzogranitiche arenizzate: o compatte a debole e limosa arrossata.	
AUTORE: Dott. Geol. Giacomo Deiana (*) C = completam. alterato; H= molto a S = debolmente alterata; U= inaltera									ratam. Alterata;

POZZETTO		ATTR	EZZAT	URA	METODO				LAVORO E UBICAZIONE	
P4		Terna New H	gomm Holland	ata B115	Escar benna	vazione a a cuc	e meccai chiaia ro	nica con ovescia	Ampliamento darsena Porto Maran Comune di Golfo Aranci	a
FALDA ACQUIFERA	CAMPIONI	QUOTA CAMPIONI	RECU- PERO (%)	ALTERAZ. (*)	C SPT (N COLPI)	ALTRE PROVE	PROF. (M)		DESCRIZIONE	LOG. LITOLOGICO
Presenza d'acqua non rilevata	CAMP	CAMP					0.00	monzogranitiche arenizzate: o compatte a debole e limosa arrossata.		
DATA SOI	NDA	GGIO: :	21/03/2	013			1.80 1.90 2.00 2.10 2.20 2.30 2.30 2.40 2.50 2.50 2.50 2.50 2.50 2.50	Granodioriti a grana mer microgranul	monzogranitiche inequigranulari, dia con abbondanti inclusi ari scuri.	
DATA LOO AUTORE:	G: 22 Dott	/03/201 . Geol.	13 Giacor	no De	eiana	(*) C = completam. alterato; H= molto alterato; M=moderatam. Alterata; S = debolmente alterata; U= inalterata				

POZZETTO	ATTR	ATTREZZATURA				ODO			LAVORO E UBICAZIONE	
P5	Terna gommata New Holland B115				Escavazione meccanica con benna a cucchiaia rovescia				Ampliamento darsena Porto Marana Comune di Golfo Aranci	а
FALDA ACQUIFERA CAMPIONI	QUOTA CAMPIONI	RECU- PERO (%)	H ALTERAZ.	(*)	SPT (N COLPI)	ALTRE PROVE	PROF. (M)		DESCRIZIONE	LOG. LITOLOGICO
							0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10	Terreno di ri in matrice s a litologie gr per blocco 6 Abbondanti demolizione	porto antropico: ghiaia e ciottoli abbiosa; subordinati blocchi anitiche (dimensioni massime 30x30x35 cm). resti di laterizi e da attività di edilizia.	
							1.30 1.40 1.50 1.60 1.70 1.80	Suolo: sabb organica.	ie in matrice limosa con frazione	
2.00 C1							1.90 2.00 2.10 2.20 2.30 2.30 2.40 2.50 2.60 2.70	Granodioriti sabbie molto componente Granodioriti a grana med	monzogranitiche arenizzate: o compatte a debole e limosa arrossata. monzogranitiche inequigranulari, dia con abbondanti inclusi	++++++++++++++++++++++++++++++++++++++
Image: Data SonDAGGIO: 21/03/2013 Image: Data SonDAGGIO: 21/03/2013 DATA LOG: 22/03/2013 NOTE: AUTORE: Dott. Geol. Giacomo Deiana (*) C = completam. alterato; H= molto alterato; M=moderatam. Alterata; S = debolmente alterata; U= inalterata										atam. Alterata;

Figura 36 – Foto mostrante il pozzetto stratigrafico P1. Il pozzetto è stato scavato sino ad intercettare il substrato a granodioriti della Facies Porto Rotondo.

Figura 37 – Foto mostrante il deposito a ciottolo e ghiaie in matrice sabbiosa-limosa estratto dal pozzetto P1.

Figura 38 – Foto mostrante il pozzetto stratigrafico P2. Il pozzetto è stato scavato sino ad intercettare il substrato a granodioriti della Facies Porto Rotondo.

Figura 39 – Foto mostrante il pozzetto stratigrafico P3. Il pozzetto è stato scavato sino ad intercettare il substrato a granodioriti della Facies Porto Rotondo.

Figura 40 – Foto mostrante il pozzetto stratigrafico P4. Il pozzetto è stato scavato sino ad intercettare il substrato a granodioriti della Facies Porto Rotondo.

Figura 41 – Foto mostrante il pozzetto stratigrafico P4. Il pozzetto è stato scavato sino ad intercettare il substrato a granodioriti della Facies Porto Rotondo.

6. Allegati

Allegato 1: Carta geologica scala 1:5000

Allegato 2: Carta delle Unità Litotecniche

Allegato 3: Carta delle Unità Idrogeologiche