REGIONE CAMPANIA

Provincia di Avellino COMUNI DI Andretta (AV) - Bisaccia (AV)

PROGETTO

POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA

PROGETTO DEFINITIVO

COMMITTENTE:

ERG Wind 4

PROGETTISTA:

GOLDER Via Sante Bargellini, 4 00157 - Roma (RM)

OGGETTO DELL'ELABORATO:

VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ

CODICE PROGETTISTA DATA SCALA FOGLIO FORMATO CODICE DOCUM						DOCUME	OTV		
	07/2019	/	1 di 44	A4	IMP.	DISC.	TIPO DOC.	PROG.	REV.
		-			BIS	ENG	REL	0023	00

NOME FILE: BIS.ENG.REL.0023.00_Valutazione risorsa eolica e analisi producibilità.doc

ERG Wind 4 2 S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmente senza la sua autorizzazione scritta.

	COL	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	2 di 44

Storia delle revisioni del documento

REV.	DATA	DESCRIZIONE REVISIONE	REDATTO	VERIFICATO	APPROVATO
00	07/2019	PRIMA EMISSIONE	ERG	ERG	VBR

CODICE DOCUMENTO					OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	3 di 44

INDICE

1	INTR	ODUZIONE	5
2	RAP	PRESENTAZIONE DEL SITO	6
	2.1	Descrizione del sito	6
	2.2	Layout	10
	2.3	Aerogeneratori adottati	11
	2.4	Allacciamento alla rete elettrica	14
3	CAR	ATTERIZZAZIONE ANEMOLOGICA	15
	3.1	Strumenti utilizzati	15
	3.2	Raccolta dei dati e validazione	18
	3.3	Analisi anemologica e statistica dei dati	19
4	CUR	VA DI POTENZA	27
5	APP	LICAZIONE DEL MODELLO CFD	30
	5.1	Il modello digitale del terreno	30
		La rugosità	
	5.3	La risorsa eolica	36
6	ANA	LISI DELLE PERDITE E DELLE INCERTEZZE	41

CODICE DOCUMENTO					OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	4 di 44

LISTA DELLE FIGURE

Figura 1: Inquadramento del sito	7
Figura 2: Inquadramento del sito con suddivisione in quattro aree (Bisaccia Nord in ross	o, Bisaccia
Sud in azzurro, Andretta in giallo)	_
Figura 3: Inquadramento del sito, Bisaccia Nord, vista da Ovest	
Figura 4: Inquadramento del sito, Bisaccia Sud, vista da Ovest	
Figura 5: Inquadramento del sito, Andretta, vista da Ovest	
Figura 6: Stazioni di misura in sito, Andretta	
Figura 7: Stazioni di misura in sito: Bisaccia Nord	
Figura 8: Stazione di misura in sito Bisaccia Sud	
Figura 9: Validazione anemometro	
Figura 10: Profilo giornaliero di velocità – BI07	
Figura 11: Profilo mensile di velocità – BI07	20
Figura 12: Profilo verticale di velocità (wind shear) – BI07	21
Figura 13: Tabella di frequenze BI04-50m	23
Figura 14: Tabella di frequenze BI07-50m	24
Figura 15: Tabella di frequenze BI08-50m	25
Figura 16: Tabella di frequenze AD01-50m	26
Figura 17: Aerogeneratore Siemens-Gamesa SG145 4.5	27
Figura 18: Aerogeneratore Vestas V150 4.2 MW	28
Figura 19: Aerogeneratore Nordex N149 4.5 MW	29
Figura 20: Discretizzazione orizzontale del dominio di calcolo (Bisaccia Nord)	30
Figura 21: Discretizzazione verticale del dominio di calcolo (Bisaccia Nord)	31
Figura 22: Mappa 3D del sito di Bisaccia Nord	32
Figura 23: Mappa 3D area del sito di Bisaccia Sud	33
Figura 24: Mappa 3D area del sito di Andretta	34
Figura 25: Mappa di rugosità di Bisaccia Nord	
Figura 26: Mappa di ventosità a 107 m s.l.s., Bisaccia Nord	
Figura 27: Mappa di ventosità a 107 m s.l.s., Bisaccia Sud	
Figura 28: Mappa di ventosità a 107 m s.l.s., Andretta	38

	COE	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	5 di 44

1 INTRODUZIONE

La Stima della Producibilità Energetica rappresenta la previsione della produzione annuale di un progetto di impianto eolico, che potrebbe essere costruito una volta ottenute tutte le autorizzazioni del caso e verificata la remuneratività del progetto stesso.

Si tratta di uno studio volto a studiare la producibilità di un impianto esistente che viene ripotenziato grazie all'installazione di macchine innovative con potenza unitaria maggiori rispetto alle macchine attualmente installate.

La Stima della Producibilità Energetica è il frutto dell'integrazione fra la metodologia che ERG ha sviluppato riguardo al processo di analisi dei dati provenienti dalle torri anemometriche di riferimento e/o di micrositing, e una procedura di stima basata sulla modellazione del flusso di vento tramite fluidodinamica computazionale (CFD). In merito alla simulazione del flusso di vento, ci si è avvalso del software di modellazione del vento denominato WindSim (il software), mediante in quale vengono implementate le seguenti fasi:

- Calcolo del flusso di vento
- Estrapolazione della V media a quota mozzo
- Calcolo dell'energia annua producibile
- Stima delle perdite per scia

Mentre per le fasi seguenti ci si è avvalsi della procedura di calcolo messa a punto internamente:

- Trattamento e validazione dei dati anemometrici
- Storicizzazione del dato
- Valutazione delle restanti perdite
- Analisi dell'incertezza a cui è sottoposta la stima

CODICE DOCUMENTO					OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	6 di 44

2 RAPPRESENTAZIONE DEL SITO

2.1 Descrizione del sito

L'impianto esistente è situato in provincia di Avellino e si sviluppa sul territorio dei due comuni di Andretta e Bisaccia. In area di Andretta sono installate 5 macchine Vestas V47 da 600 kW, mentre nel comune di Bisaccia sono presenti 41 macchine, di cui 29 Vestas V47 da 660 kW e 12 V47 da 600 kW, per un totale di 46 macchine.

Il nuovo layout ripotenziato si sviluppa nell'area del parco già esistente e prevede un numero totale di 14 aerogeneratori multi-megawatt.

L'unità produttiva si può suddividere geograficamente in tre zone. Un'area Nord situata nel territorio comunale di Bisaccia, a Ovest del paese di Bisaccia, un'area Sud, situata nel territorio comunale di Bisaccia, situata circa 3.5 km a Sud dell'omonima cittadina, ed un'area Sud-Ovest, situata all'interno del territorio comunale di Andretta.

La parte d'impianto Nord (Figura 3) situata nel comune di Bisaccia, si estende su due lievi crinali paralleli, e copre un'area di circa 2 km Est-Ovest per 3.5 km Nord-Sud, a circa 1.7 km di distanza dal comune di Bisaccia. L'area d'impianto Sud (Figura 4) di Bisaccia si estende su un unico crinale di circa 1.6 km di lunghezza situato a 3 km dal paese di Bisaccia. L'area d'impianto situata nel comune di Andretta (Figura 5) si estende su un crinale per circa un km di lunghezza, a circa 3 km di distanza in direzione Nord dalla cittadina di Andretta.

Alcune parti dell'area d'impianto sono caratterizzate dalla presenza di zone boschive costituite prevalentemente da alberi a basso fusto di 5 metri circa di altezza.

CODICE DOCUMENTO					OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	7 di 44

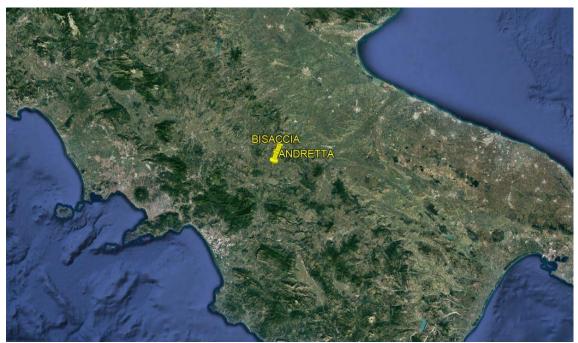


Figura 1: Inquadramento del sito

CODICE DOCUMENTO					OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	8 di 44

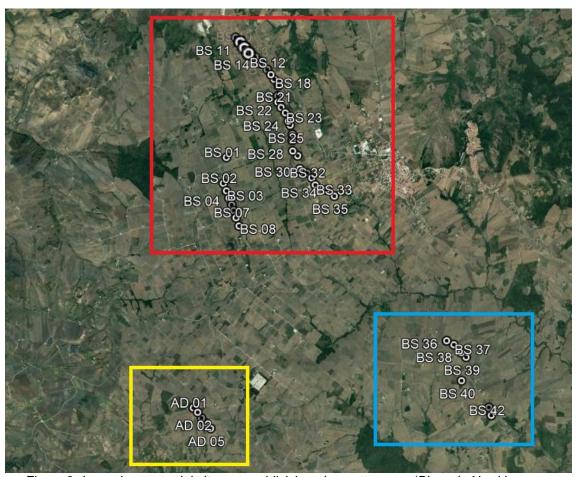


Figura 2: Inquadramento del sito con suddivisione in quattro aree (Bisaccia Nord in rosso, Bisaccia Sud in azzurro, Andretta in giallo)

Figura 3: Inquadramento del sito, Bisaccia Nord, vista da Ovest

CODICE DOCUMENTO					OGGETTO DELL' ELABORATO	PAGINA
IMP	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	9 di 44

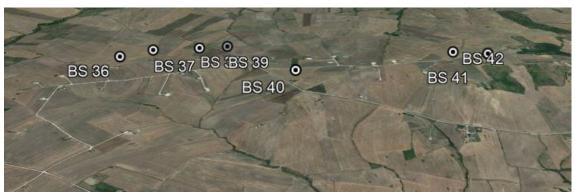


Figura 4: Inquadramento del sito, Bisaccia Sud, vista da Ovest

Figura 5: Inquadramento del sito, Andretta, vista da Ovest

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	10 di 44

2.2 Layout

Il nuovo layout di impianto è composto da N. 14 aerogeneratori, di cui 13 saranno dislocati nel territorio comunale di Bisaccia ed uno ad Andretta.

Gli aerogeneratori (esistenti e anche quelli futuri) situati nei comuni di Andretta e Bisaccia sono disposti in 3 aree separate come mostrato in Figura 2.

Le coordinate e le quote relative sono:

	Coordinate UT	TM WGS84 F33	Quota
	Est	Nord	(m)
WTG	Е	N	
R_AD01	526777	4535164	860.3
R_BS01	526714	4540077	862.1
R_BS02	526968	4539562	889.0
R_BS03	527194	4539136	927.9
R_BS04	527016	4542299	802.3
R_BS05	527373	4542009	823.0
R_BS06	527682	4541611	827.1
R_BS07	527997	4541103	846.5
R_BS08	528149	4540659	863.0
R_BS09	528285	4539958	859.2
R_BS10	528688	4539415	883.0
R_BS11	531055	4536825	834.0
R_BS12	531399	4536500	833.8
R_BS13	532006	4536200	810.3

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	11 di 44

2.3 Aerogeneratori adottati

Per la stima di producibilità energetica di Andretta-Bisaccia vengono prese in esame tre diverse tipologie di aerogeneratori, di cui si riportano di seguito le relative caratteristiche e curve di potenza garantite dal costruttore a densità media di sito (1.125 kg/m^3)

Di seguito la curva di potenza del primo modello analizzato, Siemens SG145, fornita dal costruttore alla densità media di sito

Modello	SG145
Produttore	Siemens
Potenza (MW)	4.5
Diametro (m)	145
Altezza del mozzo (m)	107.5

Velocità del vento	SG145 [ρ=1.120 m3/kg]
(m/s)	(kW)
3	48
4	217
5	503
6	918
7	1494
8	2244
9	3103
10	3877
11	4348
12	4480
13	4495
14	4499
15	4500
16	4500
17	4500
18	4499
19	4495
20	4475
21	4423
22	4326
23	4185
24	4020
25	3856
26	3709
27	3593

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	12 di 44

Il secondo aerogeneratore preso in esame è Nordex 149 la cui curva di potenza fornita dal costruttore alla densità media di sito (ρ =1.125 kg/m3) per l'aerogeneratore è la seguente:

Modello	N149
Produttore	Nordex
Potenza (MW)	4.5
Diametro (m)	149
Altezza del mozzo (m)	105

N149 [ρ=1.125 m3/kg]
(kW)
24
108
223
364
533
731
964
1236
1551
1912
2322
2781
3275
3706
4035
4271
4419
4487
4500
4500
4500
4500
4500
4500
4500
4500
4500
4500
4500
4500
4500
4500
4500
4500
4500

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	13 di 44

Il terzo generato considerato è la Vestas V150 la cui curva di potenza è riportata di seguito alla densità media di sito.

Modello	V150
Produttore	Vestas
Potenza (MW)	4.2
Diametro (m)	150
Altezza del mozzo (m)	105

Velocità del vento	V150 [ρ=1.125 m3/kg]
(m/s)	(kW)
3	70
3.5	154
4	258
4.5	386
5	544
5.5	739
6	972
6.5	1247
7	1568
7.5	1931
8	2343
8.5	2790
9	3232
9.5	3613
10	3909
10.5	4083
11	4171
11.5	4193
12	4199
12.5	4200
13	4200
13.5	4200
14	4200
14.5	4200
15	4200
15.5	4200
16	4200
16.5	4200
17	4200
17.5	4200
18	4200
18.5	4200
19	4200
19.5	4200
20	4200
20.5	4186
20.5	3870
21.5	3373
21.5	2745
22.5	2154
23	1805 1526
23.5	
24	1283
24.5	1116

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	14 di 44

2.4 Allacciamento alla rete elettrica

L'impianto di Andretta Bisaccia è attualmente connesso alla stazione elettrica di proprietà ERG, situata nel comune di Bisaccia in provincia di Avellino, in adiacenza alla stazione di smistamento 150 kV di Terna.

L'ipotesi di progetto prevede un collegamento diverso, in antenna alla stazione AAT 380/150 kV, sempre nel comune di Bisaccia, tramite una nuova stazione di trasformazione 30/150kV.

	COE	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	15 di 44

3 CARATTERIZZAZIONE ANEMOLOGICA

Data la vastità del sito, per esigenze tecniche relative alla costruzione del modello fluidodinamico il sito è stato diviso in tre parti, una relativa agli aerogeneratori situati ad Andretta e due relativi a Bisaccia.

3.1 Strumenti utilizzati

Per il campionamento dei dati vento sono stati utilizzati gli anemometri di parco.

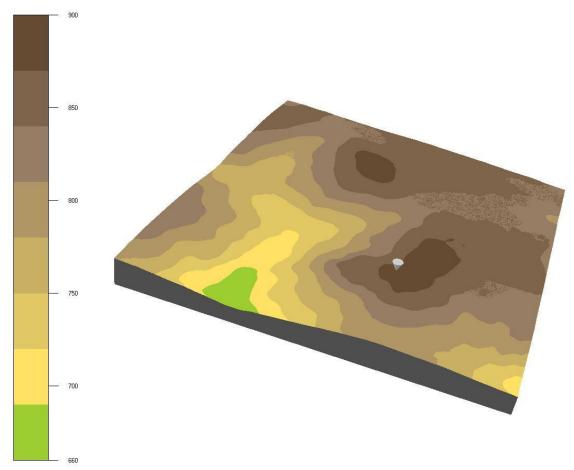


Figura 6: Stazioni di misura in sito, Andretta

	COL	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	16 di 44

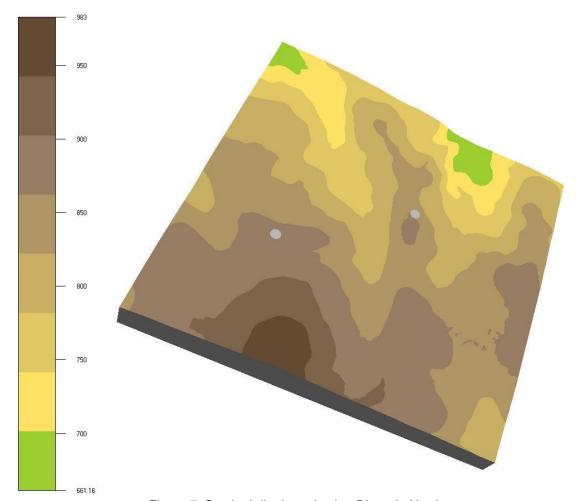


Figura 7: Stazioni di misura in sito: Bisaccia Nord

	COL	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	17 di 44

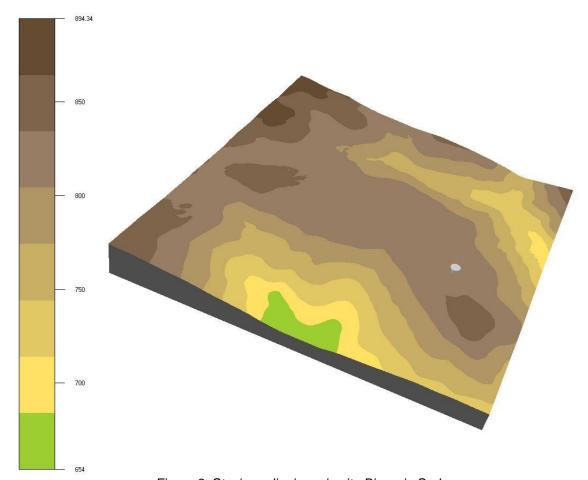


Figura 8: Stazione di misura in sito Bisaccia Sud

Stazione	Coord	Coord Coord		Quota Altezza		al
anemometrica	est	nord	(m)	(m)		
AD01	527357	4533628	888	30	17/07/2009	25/08/2015
BI04	526707	4539820	881	30	04/01/2008	25/08/2015
BI07	531597	4535978	844	30	04/01/2008	06/11/2013
BI08	528120	4540948	870	10	04/01/2008	25/08/2015

	COL	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	18 di 44

3.2 Raccolta dei dati e validazione

Il processo di validazione prevede un controllo manuale per via grafica dei dati grezzi di velocità, direzione e rispettive deviazioni standard tramite software dedicato. Si riporta, uno tra tutti, un esempio di validazione fatta per una torre.

Figura 9: Validazione anemometro

I dati validati vengono raccolti in database protetti, necessari per l'inserimento dei parametri anemometrici nel codice di calcolo CFD e per eventuali altre considerazioni avanzate.

	COL	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	19 di 44

3.3 Analisi anemologica e statistica dei dati

A seguito della validazione dei dati si possono stilare le statistiche sulle velocità medie di sito. Di seguito si riportano a titolo d'esempio i profili statistici relativi ad una delle cinque turbine.

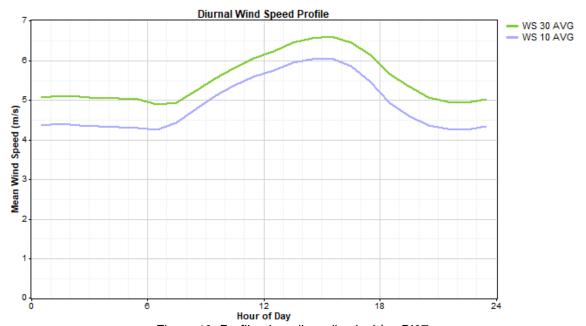


Figura 10: Profilo giornaliero di velocità – BI07

	COL	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	20 di 44

	COL	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	21 di 44

Inoltre, partendo dalle velocità misurate, si procede all'estrapolazione del profilo verticale di velocità.

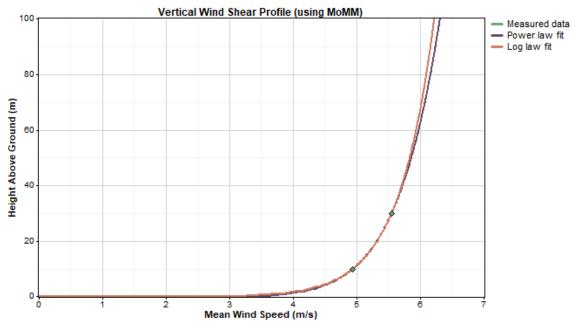


Figura 12: Profilo verticale di velocità (wind shear) - BI07

da cui si può agevolmente ottenere il gradiente al suolo della velocità (α: "wind shear exponent") utilizzando le velocità medie misurate ai diversi sensori.

$$\alpha = \frac{ln \frac{v_{30m}}{v_{10m}}}{ln \frac{30}{10}}$$

Il parametro alfa (α) consente poi di estrapolare la velocità del vento in corrispondenza dell'altezza mozzo degli aerogeneratori esistenti (HH50):

$$v_{50m} = v_{30m} \left(\frac{50}{30}\right)^{\alpha}$$

	COL	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	22 di 44

Le formule sono indicate a titolo esemplificativo e devono essere adattate alle specificità della misura disponibile.

Per la torre anemometrica BI08, non essendo disponibili sensori di velocità a 30m (doppia misura sulla verticale della torre anemometrica), la prima ipotesi di velocità a 50m è stata ottenuta stimando il valore del parametro α (coefficiente di wind shear) in base all'orografia del sito in corrispondenza del punto di installazione della torre di misura.

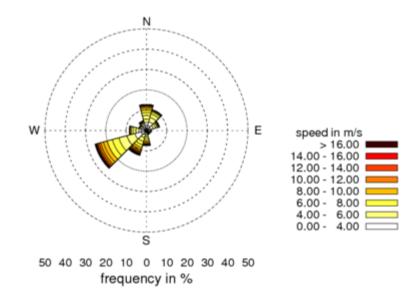
Al fine di ridurre le incertezze di calcolo legate al processo di estrapolazione verticale della misura da quota anemometro ad altezza mozzo, è stato preso in considerazione anche il dato di energia da SCADA di impianto esistente.

A partire dal dato SCADA di energia estrapolato ai morsetti del generatore di turbina ad un'altezza di riferimento pari all'altezza mozzo delle V47, ovvero a 50m s.l.s., si è proceduto a determinare, sulla base dei dati storici di operation e quindi di tutti i tipi di downtime occorsi nel periodo oggetto di misura, la producibilità storica d'impianto, su base annuale.

In particolare, la serie storica di dati SCADA su base energia è stata rielaborata con la serie di dati di downtime (periodo: 2013-2018) per calcolare anno per anno la producibilità mensile e quindi definire il dato di producibilità annua storica.

Ci si è avvalsi di tale input in ambiente di modellazione CFD, approcciando in modo critico la precedente estrapolazione verticale della velocità, da quota misura fino all'altezza mozzo desiderata, disponendo questa volta di un riferimento noto in corrispondenza dell'altezza mozzo degli aerogeneratori esistenti (HH50).

A valle dell'applicazione di tale procedura di calcolo, è possibile determinare le tabelle di frequenza per bin di direzione e di velocità in corrispondenza dell'altezza mozzo degli aerogeneratori esistenti (50m) e del punto di installazione di ogni torre anemometrica.


Si ottengono le seguenti statistiche di ventosità (climatologie):

	COE	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	23 di 44

Climatology - BI04-50

site name	BI04-50-2	BI04-50-2					
filename	TabfreqBI04_50	TabfreqBI04_50					
measurement period	04-01-2008 25-08	04-01-2008 25-08-2015					
position Weibull param., average speed	x = 526707.0 k = 1.79	y = 4539820.0 A = 6.15	z (agl) = 50.0 average = 5.53				

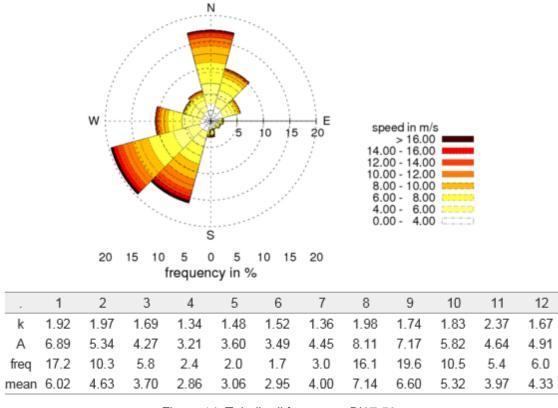
	1	2	3	4	5	6	7	8	9	10	11	12
k	1.97	2.17	1.93	2.01	3.00	2.31	2.09	1.83	1.93	2.22	1.80	1.54
Α	6.52	5.16	4.68	4.40	5.05	5.85	7.70	7.60	6.84	5.09	3.75	4.67
freq	12.8	10.6	6.6	2.5	2.1	2.1	7.5	12.6	26.1	8.4	3.8	5.0
mean	5.75	4.53	4.18	3.85	4.33	5.08	6.94	7.05	6.25	4.43	3.30	4.22

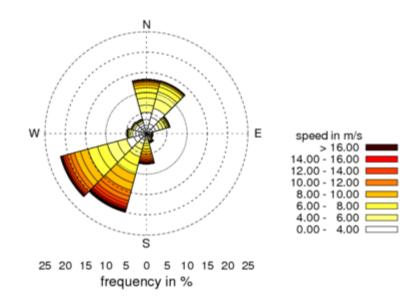
Figura 13: Tabella di frequenze Bl04-50m

	CODICE DOCUMENTO IP. DISC. TIPO DOC. PROG. RE				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	24 di 44

Climatology - BI07-50

site name	BI07-50		
filename	TabfreqBI07_50		
measurement period	04-01-2008 06-11	-2013	# records = 48615
position Weibull param., average speed	x = 531597.0 k = 1.63	y = 4535978.0 A = 6.11	z (agl) = 50.0 average = 5.50




Figura 14: Tabella di frequenze BI07-50m

	CODICE DOCUMENTO MP. DISC. TIPO DOC. PROG. RE				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	25 di 44

Climatology - BI08-50

site name	BI08-50-D		
filename	TabfreqBI08_50		
measurement period	04-01-2008 25-08	3-2015	# records = 65644
position Weibull param., average speed	x = 528120.0 k = 1.64	y = 4540948.0 A = 6.52	z (agl) = 50.0 average = 5.74

	1	2	3	4	5	6	7	8	9	10	11	12
k	1.90	2.04	1.79	1.20	1.35	1.31	2.28	2.23	2.08	1.54	1.73	1.61
Α	5.85	4.92	4.55	3.31	4.32	5.31	9.41	9.18	7.62	3.43	3.21	3.43
freq	13.3	13.4	6.0	1.5	1.7	2.4	7.5	20.0	21.9	4.8	3.9	3.6
mean	5.07	4.21	3.90	2.94	3.74	4.90	8.13	8.10	6.66	2.97	2.74	2.91

Figura 15: Tabella di frequenze BI08-50m

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	26 di 44

Climatology - AD01-50

site name	AD01-50		
filename	TabfreqAD01_50		
measurement period	17-07-2009 25-08	3-2015	# records = 41085
position Weibull param., average speed	x = 527357.0 k = 1.88	y = 4533628.0 A = 6.64	z (agl) = 50.0 average = 5.85

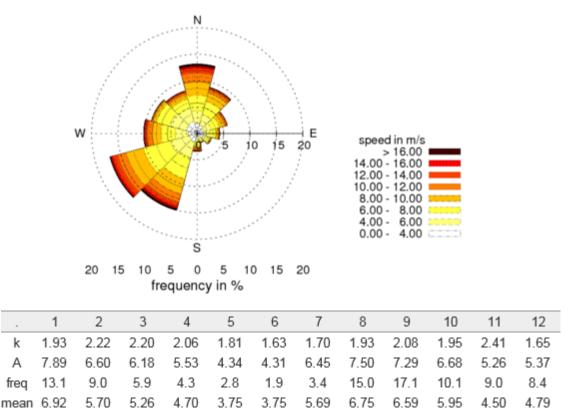


Figura 16: Tabella di frequenze AD01-50m

Per il calcolo delle velocità ad altezza mozzo degli aerogeneratori (107.5 m e 105 m) si è fatto affidamento all'esponente di wind shear stimato dal software.

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	27 di 44

4 CURVA DI POTENZA

La curva di potenza garantita fornita dal costruttore è valida per una densità dell'aria standard pari a ρ = 1,225 kg/m³; risulta dunque necessario apportare una correzione in base alla densità prevista nelle zone dell'impianto, stimabili in funzione della quota media (c.a. 851). Si ipotizza quindi un valore di densità dell'aria media pari a ρ = 1,120 kg/m³.

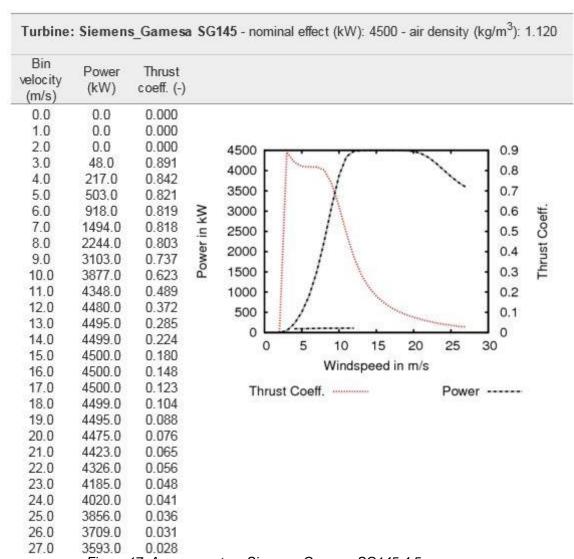


Figura 17: Aerogeneratore Siemens-Gamesa SG145 4.5

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	28 di 44

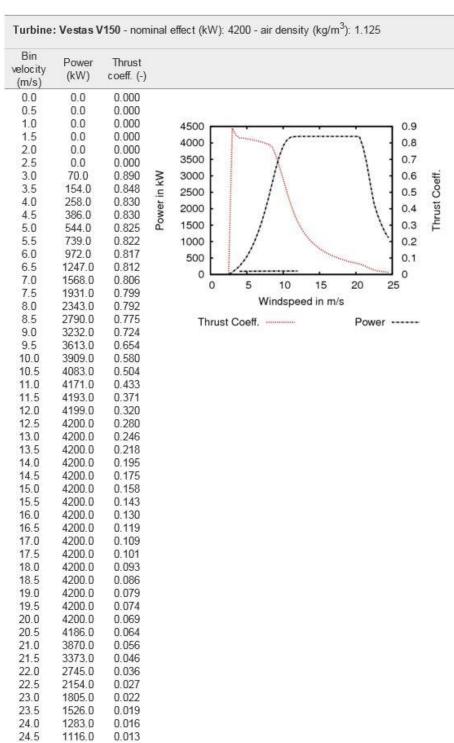


Figura 18: Aerogeneratore Vestas V150 4.2 MW

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	29 di 44

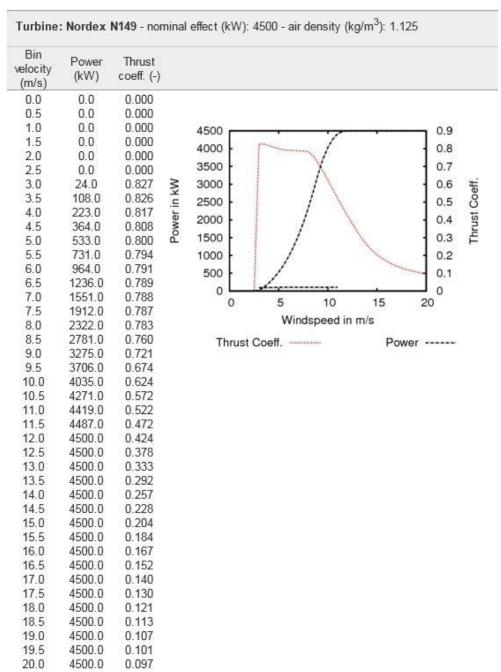


Figura 19: Aerogeneratore Nordex N149 4.5 MW

	COE	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	30 di 44

5 APPLICAZIONE DEL MODELLO CFD

5.1 Il modello digitale del terreno

Lo studio delle caratteristiche eoliche del sito è stato affrontato con un modello CFD che, a fronte di un dominio di calcolo impostato utilizzando i dati di orografia relativi ad un DTM (Digital Terrain Model) con passo di 40 m, fornisce informazioni sul comportamento del vento nei vari settori di provenienza, nonché i profili verticali della velocità orizzontale nei punti più significativi, quali anemometri e/o aerogeneratori. Di seguito è riportato il dominio di calcolo.

Il DTM riportato di seguito è riferito al sito di Bisaccia Nord:

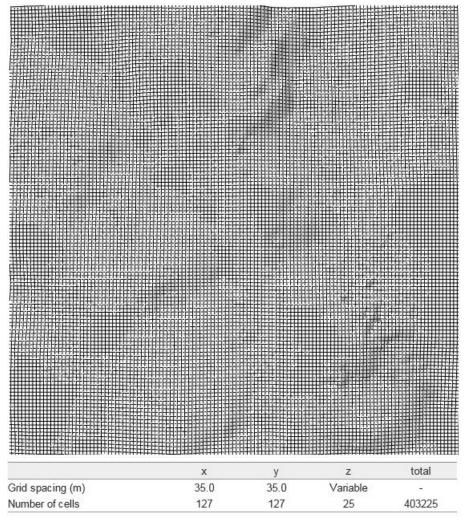
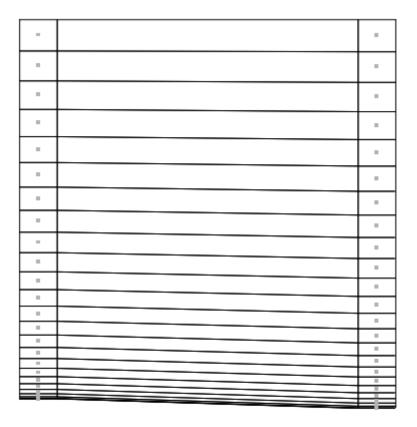



Figura 20: Discretizzazione orizzontale del dominio di calcolo (Bisaccia Nord)

	COL	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	31 di 44

Di seguito invece la discretizzazione verticale del dominio di calcolo e relativa distanza dal terreno dei primi dieci nodi (a titolo di esempio di inserisce il modello di Bisaccia Nord):

	1	2	3	4	5	6	7	8	9	10
z-dist. max (m)	2.5	10.4	44.2	124.1	250.2	422.5	640.9	905.4	1216.1	1573.0
z-dist. min (m)	2.5	10.5	45.1	127.1	256.3	432.9	656.7	927.9	1246.3	1612.1

Figura 21: Discretizzazione verticale del dominio di calcolo (Bisaccia Nord)

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	32 di 44

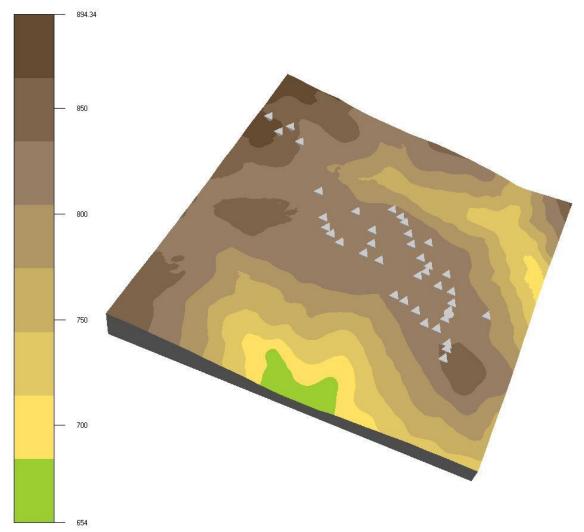


Figura 22: Mappa 3D del sito di Bisaccia Nord

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	33 di 44

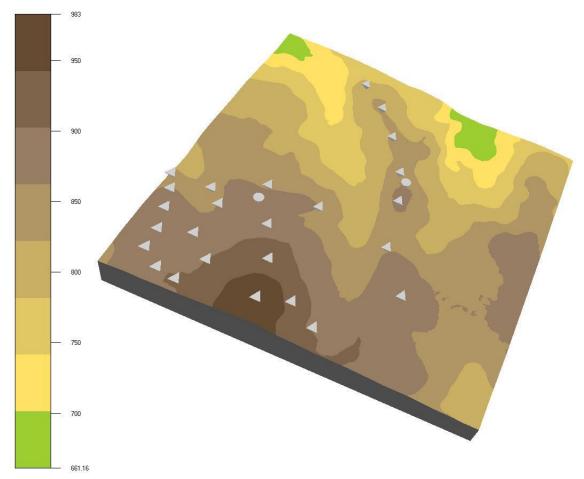


Figura 23: Mappa 3D area del sito di Bisaccia Sud

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	34 di 44

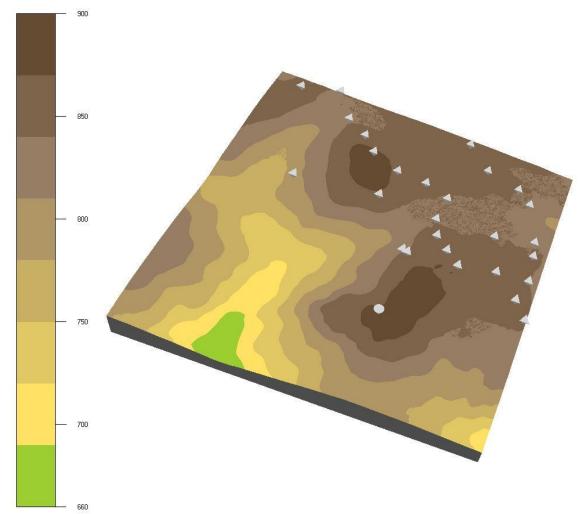


Figura 24: Mappa 3D area del sito di Andretta

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	35 di 44

5.2 La rugosità

La lunghezza di rugosità (z₀) è il parametro che caratterizza la superficie su cui spira il vento, maggiore è il suo valore maggiori saranno le asperità del terreno ed i disturbi creati dal suolo al flusso ventoso.

Fisicamente z₀ può essere immaginata come la dimensione del vortice turbolento che viene creato dall'interazione del vento con il suolo, per cui si tratta di una grandezza in grado di intervenire nella modifica della distribuzione verticale della velocità del vento.

Il valore di z_0 è stato standardizzato in base alle tipologie di terreno (categorie di riferimento) che si possono presentare nella realtà ed è riportato in diverse tipologie di classificazioni.

In questo caso, in particolare, si dispone di mappe di rugosità estrapolate da CLC (Corine Land Cover), che si sovrappongono ai DTM indicati in precedenza, in modo da coprire tutto il dominio.

A titolo di esempio è rappresentata la mappa di rugosità del sito di Bisaccia Nord:

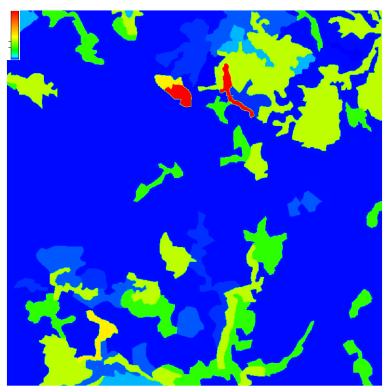


Figura 25: Mappa di rugosità di Bisaccia Nord

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	36 di 44

5.3 La risorsa eolica

Il calcolo CFD è stato effettuato sui 12 settori di direzione impostando una velocità di 10 m/s come vento geostrofico al di sopra dello strato limite; le rilevazioni anemometriche sono state poi utilizzate per scalare il campo di moto del vento e conseguentemente calcolare la mappa della ventosità media e la produzione attesa dalle singole turbine eoliche.

Di seguito si riportano le mappe di ventosità relative alle tre aree d'impianto, estrapolate in corrispondenza dell'altezza mozzo di turbina:

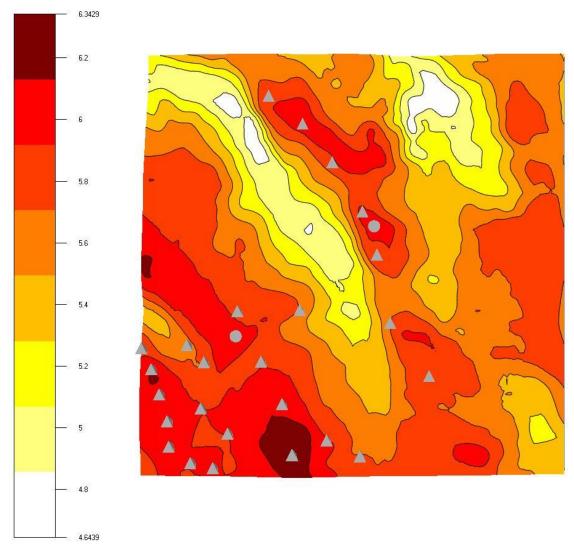


Figura 26: Mappa di ventosità a 107 m s.l.s., Bisaccia Nord

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	37 di 44

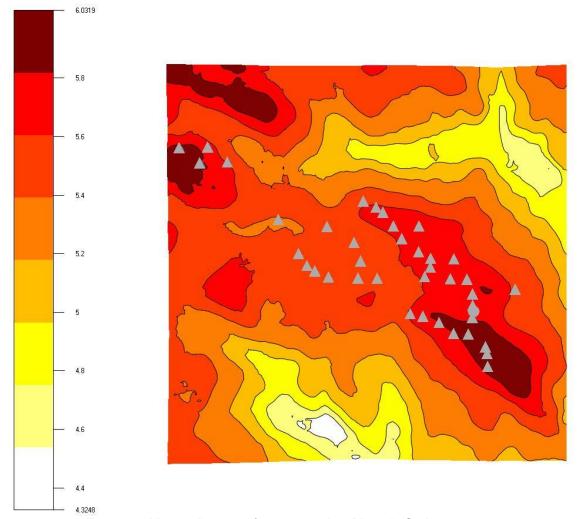


Figura 27: Mappa di ventosità a 107 m s.l.s., Bisaccia Sud

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	38 di 44

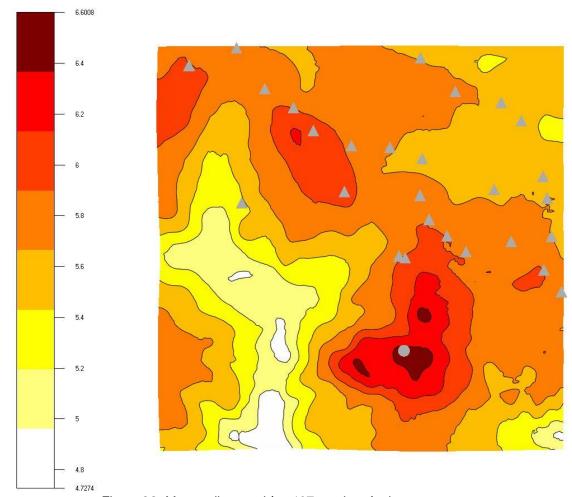


Figura 28: Mappa di ventosità a 107 m s.l.s., Andretta

	COL	DICE DOCUM	ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	39 di 44

A questo punto sono noti tutti gli elementi per avere una prima stima della producibilità energetica prevista per l'aerogeneratore che rappresenta la media dell'impianto e quindi dell'intero parco risultante dalla somma dei prodotti tra il numero di ore/anno e la potenza certificata per ogni bin di velocità del vento.

	SG145	V150	N149
Numero WTG	14	14	14
Potenza Unitaria (MW)	4.5	4.2	4.5
Produzione media lorda attesa (MWh/anno)	158417	158815	160618

Le perdite per effetto scia sono calcolate dal software CFD. In questo caso si è preferito utilizzare il modello di Jensen, che è uno dei modelli standard di calcolo delle scie implementati.

		SG145			
	Lo	rdo	Netto	scia	Perdite
	v (m/s)	MWh/y	v (m/s)	MWh/y	scia
R_BS01	5.88	11042	5.64	10016	9.3%
R_BS02	5.9	11128	5.68	10152	8.8%
R_BS03	6.09	11791	5.83	10663	9.6%
R_BS04	5.91	11218	5.89	11152	0.6%
R_BS05	6.06	11747	6	11551	1.7%
R_BS06	5.96	11393	5.91	11201	1.7%
R_BS07	6.06	11742	5.97	11356	3.3%
R_BS08	6.02	11577	5.92	11167	3.5%
R_BS09	5.82	10839	5.64	10082	7.0%
R_BS10	5.9	11139	5.87	11039	0.9%
R_BS11	5.7	10920	5.58	10381	4.9%
R_BS12	5.74	11045	5.67	10797	2.2%
R_BS13	5.57	10438	5.52	10321	1.1%
R_AD01	6.18	12398	6.06	11860	4.3%
Media	5.91	11316	5.80	10838	4.2%

	CODICE DOCUMENTO				OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	40 di 44

		V150			
	Lordo		Netto	Netto scia	
	v (m/s)	MWh/y	v (m/s)	MWh/y	scia
R_BS01	5.86	11072	5.63	10086	8.9%
R_BS02	5.89	11167	5.67	10224	8.4%
R_BS03	6.08	11830	5.82	10721	9.4%
R_BS04	5.9	11274	5.88	11207	0.6%
R_BS05	6.05	11792	5.99	11594	1.7%
R_BS06	5.95	11436	5.9	11235	1.8%
R_BS07	6.05	11791	5.96	11407	3.3%
R_BS08	6.01	11624	5.9	11179	3.8%
R_BS09	5.8	10895	5.63	10147	6.9%
R_BS10	5.88	11172	5.85	11050	1.1%
R_BS11	5.69	10896	5.57	10386	4.7%
R_BS12	5.73	11007	5.66	10770	2.2%
R_BS13	5.55	10437	5.51	10315	1.2%
R_AD01	6.17	12422	6.05	11894	4.3%
Media	5.90	11344	5.79	10872	4.1%

		N149			
	Lo	rdo	Netto scia		Perdite
	v (m/s)	MWh/y	v (m/s)	MWh/y	scia
R_BS01	5.86	11168	5.63	10139	9.2%
R_BS02	5.89	11276	5.67	10311	8.6%
R_BS03	6.08	11965	5.82	10807	9.7%
R_BS04	5.9	11393	5.88	11326	0.6%
R_BS05	6.05	11919	6	11718	1.7%
R_BS06	5.95	11568	5.9	11372	1.7%
R_BS07	6.05	11921	5.96	11532	3.3%
R_BS08	6.01	11751	5.9	11296	3.9%
R_BS09	5.8	11001	5.63	10231	7.0%
R_BS10	5.88	11294	5.85	11174	1.1%
R_BS11	5.69	11047	5.57	10521	4.8%
R_BS12	5.73	11158	5.66	10914	2.2%
R_BS13	5.55	10570	5.51	10449	1.1%
R_AD01	6.17	12588	6.05	12031	4.4%
Media	5.90	11473	5.79	10987	4.2%

CODICE DOCUMENTO			CODICE DOCUMENTO OGGETTO DELL' ELABORATO			PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	41 di 44

6 ANALISI DELLE PERDITE E DELLE INCERTEZZE

L'output del modello, in termini di energia annua producibile, deve essere decurtato di tutte le perdite esterne, al fine di poter determinare la producibilità annua netta, meglio nota come P50.

Le perdite esterne, oltre alle perdite per effetto scia di cui si è già parlato in precedenza, vengono suddivise in:

Perdite per mancata disponibilità di sistema (WTG + BOS) dell'impianto	3.00%
Perdite elettriche (cavidotto MT – consegna in AT)	3.17%
Perdite varie (basate sull'esperienza, in funzione dell'indice di turbolenza del vento)	2.50%
Perdite ambientali	0.20%
Perdite acustiche	1.00%
Totale perdite escluso scie	9.52%

La produzione netta attesa per singolo aereogeneratore, ovvero quella che viene ritenuta più probabile, risulta quindi pari a:

	SG145	V150	N149
Numero WTG	14	14	14
Produzione netta WTG -P50 (MWh/anno)	9806	9837	9941

CODICE DOCUMENTO			CODICE DOCUMENTO OGGETTO DELL' ELABORATO				
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA		
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	42 di 44	

Da cui risulta il valore della producibilità netta P50 specifica per ogni MW installato:

$$\operatorname{Pr} od_{netta_specifica} = \frac{\operatorname{Pr} od_{netta_WIG}}{\operatorname{Pot}_{nom_WIG}}$$

SG145	Velocità del vento a quota mozzo (m/s)	Producibilità netta specifica P50 (ore equivalenti)
R_BS01	5.64	2014
R_BS02	5.68	2041
R_BS03	5.83	2144
R_BS04	5.89	2242
R_BS05	6.00	2322
R_BS06	5.91	2252
R_BS07	5.97	2283
R_BS08	5.92	2245
R_BS09	5.64	2027
R_BS10	5.87	2220
R_BS11	5.58	2087
R_BS12	5.67	2171
R_BS13	5.52	2075
R_AD01	6.06	2385
Media	5.80	2179

V150	Velocità del vento a quota mozzo (m/s)	Producibilità netta specifica P50 (ore equivalenti)
R_BS01	5.63	2173
R_BS02	5.67	2203
R_BS03	5.82	2310
R_BS04	5.88	2414
R_BS05	5.99	2498
R_BS06	5.9	2420
R_BS07	5.96	2457
R_BS08	5.9	2408
R_BS09	5.63	2186
R_BS10	5.85	2381
R_BS11	5.57	2237
R_BS12	5.66	2320
R_BS13	5.51	2222
R_AD01	6.05	2562
Media	5.79	2342

CODICE DOCUMENTO			ENTO		OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	43 di 44

N149	Velocità del vento a quota mozzo (m/s)	Producibilità netta specifica P50 (ore equivalenti)
R_BS01	5.63	2039
R_BS02	5.67	2073
R_BS03	5.82	2173
R_BS04	5.88	2277
R_BS05	6.00	2356
R_BS06	5.9	2287
R_BS07	5.96	2319
R_BS08	5.9	2271
R_BS09	5.63	2057
R_BS10	5.85	2247
R_BS11	5.57	2115
R_BS12	5.66	2194
R_BS13	5.51	2101
R_AD01	6.05	2419
Media	5.79	2209

Moltiplicando la produzione netta del WTG per il numero di WTG dell'impianto si ottiene la stima P50 della produzione netta dell'impianto:

$$\Pr{od_{\textit{netta_tot}}} = \Pr{od_{\textit{netta_WTG}}} \times N_{\textit{WTG}}$$

	SG145	V150	N149
Numero WTG	14	14	14
Produzione netta P50 dell'intero impianto (MWh/anno)	137290	137723	139177

Una volta ottenuto il valore P50, rappresentativo di tutto l'impianto, vengono individuati i relativi valori di producibilità P62.5 P75 e P90, a valle di una specifica analisi di incertezza (o analisi di confidenza).

Questo tipo di analisi, individua tre differenti macro-aree, per ognuna delle quali viene determinata la relativa incertezza di calcolo. Si riportano le tabelle per ogni sotto-area:

	SG145	V150	N149
incertezza sulla storicizzazione del sito	5.7%	5.7%	5.7%
incertezza sul processo di micrositing	11.6%	11.3%	11.3%
Incertezza sulla misura della curva di potenza	5.0%	5.0%	5.0%
Incertezza complessiva	13.8%	13.6%	13.6%

CODICE DOCUMENTO					OGGETTO DELL' ELABORATO	PAGINA
IMP.	DISC.	TIPO DOC.	PROG.	REV.	POTENZIAMENTO PARCO EOLICO ANDRETTA-BISACCIA	
BIS	ENG	REL	0023	0	VALUTAZIONE RISORSA EOLICA E ANALISI PRODUCIBILITÀ	44 di 44

Considerando proprio l'incertezza complessiva ottenuta, si possono infine determinare, a partire dal P50, i percentili P62.5, P75 e P90.

	SG145		
P50 (GWh/anno - ore equivalenti)	137.3	2179	
P62.5 (GWh/anno - ore equivalenti)	131.2	2083	
P75 (GWh/anno - ore equivalenti)	124.5	1976	
P90 (GWh/anno - ore equivalenti)	112.9	1793	

	V150		
P50 (GWh/anno - ore equivalenti)	137.7	2342	
P62.5 (GWh/anno - ore equivalenti)	131.7	2240	
P75 (GWh/anno - ore equivalenti)	125.1	2127	
P90 (GWh/anno - ore equivalenti)	113.7	1933	

	N149		
P50 (GWh/anno - ore equivalenti)	139.2	2209	
P62.5 (GWh/anno - ore equivalenti)	133.1	2113	
P75 (GWh/anno - ore equivalenti)	126.4	2006	
P90 (GWh/anno - ore equivalenti)	114.9	1823	