



# **EUROLINK S.C.P.A**

Sub-test 1 Section Model Tests for the Messina Strait Bridge

FORCE 110-25465 Rev. 1/2010-06-25



| Project No.          | and Title of Report:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                            |                                            |            |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|--------------------------------------------|------------|
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |                                            |            |
|                      | FORCE 110-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | C 11                       |                                            |            |
|                      | Sub-test 1 Section Mo<br>Messina Strai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | for the                    |                                            |            |
| Client:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client's I |                            |                                            |            |
|                      | OLINK S.C.P.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1          | Man Larsen, C<br>010-06-25 | OWI A/S                                    |            |
| Author(s):<br>Søre   | n V. Larsen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date. 2    | 010-00-23<br>///           | 1 / 00                                     | n          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Approve    | d by:                      | low all                                    |            |
| 1                    | Client's comments included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SVL        | SLE                        | cres                                       | 2010-06-25 |
| Α                    | Issued for Client's Comments (PDF version)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SVL        | AaD/SGe                    | CRS                                        | 2010-06-10 |
| Revision             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ву         | Checked                    | Approved                                   | Date       |
| Sect<br>Stat<br>Stab | ension Bridge.  Joension Bridge.  Joension Model Tests.  Joension Load Coefficients.  Joension Helicients of the service of th |            |                            | Classification  ☐ Open ☐ Interna ☐ Confide | ı          |

## **LIST OF CONTENTS:**

| 1. | Intro          | duction                                                  | 1  |
|----|----------------|----------------------------------------------------------|----|
| 2. | Sumn           | nary and Conclusions                                     | 2  |
| 3. | Mode           | l Design                                                 | 6  |
|    | 3.1            | Prototype Structure                                      | 6  |
|    | 3.2            | Scaling Parameters                                       | 7  |
|    | 3.3            | Section Model Design                                     | 7  |
|    | 3.3.1<br>3.3.2 | ConfigurationsVerification of Pressure Loss Coefficients |    |
| 4. | Wind           | Tunnel and Flow Conditions                               | 12 |
| 5. | Wind           | -Tunnel Test Programme                                   | 14 |
| 6. | Statio         | : Tests                                                  | 15 |
|    | 6.1            | Static Force Coefficients Definition                     | 15 |
|    | 6.2            | Results                                                  | 17 |
| 7. | Dyna           | mic Tests                                                | 24 |
|    | 7.1            | Model Configuration                                      | 24 |
|    | 7.2            | Stability Tests                                          | 25 |
|    | 7.3            | Damping Tests                                            | 29 |
|    | 7.4            | Vortex Shedding Tests                                    | 30 |
| 8. | Refer          | rences                                                   | 32 |

### **APPENDICES:**

Appendix A: Drawings.

Appendix B: The Boundary-Layer Wind Tunnel II.

Appendix C: Damping Documentation.

Appendix D: Stability Tests – Response Plots.

Appendix E: Vortex Shedding Tests – Response Plots.

### 1. Introduction

FORCE Technology was commissioned by EUROLINK S.C.P.A to conduct an investigation of the wind effects on the bridge deck of the Messina Strait Bridge. COWI A/S acted as the Client's representative. The present section model tests are referred to as Sub-test 1.

The Messina Strait Crossing is a suspension bridge with a main span of 3300 m. The deck is 3666 m long, including the two suspension side spans, and approximately 60 m wide. The structure is composed of three box sections - two lateral ones for the roadway deck and a central one for the railway tracks. The deck's roadway section has three 3.75 m wide lanes in each direction. The railway section has two tracks and two lateral pedestrian sidewalks.

The height of the two towers is 383 m to allow for a navigation clearance with a minimum height of 65 m. The bridge's suspension system consists of two pairs of steel cables each with a diameter of 1.24 m and the total length between the anchor blocks is 5300 m.

The present report describes the section model tests performed to assess the static load coefficients and the aerodynamic stability for the bridge deck for 7 geometrical configurations of the road deck. The 7 configurations were investigated in a group of tests referred to as *Optimisation of Configuration* or *Optimisation Tests*. Based on these initial tests, an optimum configuration was selected and this configuration was tested in a group of tests referred to as *Verification of Optimum Configuration* or *Verification Tests*.

The section model tests were performed on a 1:80-scale section model of the bridge deck in FORCE Technology's 2.6 m wide boundary-layer wind tunnel. The tests were conducted at FORCE Technology in May 2010.

The work was performed according to the Agreement between FORCE Technology and Eurolink s.c.p.a. (with reference to FORCE Technology's quotation 110-25465 dated 2010-04-21).

## 2. Summary and Conclusions

This report presents the results of the wind-tunnel tests conducted to establish aerodynamic data for various configurations of the bridge girder for the Messina Strait Bridge. A 2.55 m long section model built at a geometric scale of 1:80 for previous investigations was rebuilt for the present tests. The model was tested in smooth flow (a few verification tests were conducted in turbulent flow) in FORCE Technology's 2.6 m wide Boundary-Layer Wind Tunnel.

The tests were grouped into two:

- 1) Optimisation of configuration (optimisation tests)
- 2) Verification of optimum configuration (verification tests)

All tests in this series were conducted with the road girders having 2% outward slope.

For the optimisation tests, the model represented the main aerodynamic features of the deck crosssection with the following configurations:

- C1 Deck without safety screens, with solid railway screens and without rail walkway soffit plates
- C2 Deck without safety screens, with solid railway screens, with rail walkway porous soffit plates
- C3 Deck without safety screens, with solid railway screens, with rail walkway solid soffit plates
- C4 Deck with inner safety screens, with solid railway screens, with rail walkway soffit plates (porous)
- C5 Deck with inner and outer safety screens, with solid railway screens, with rail walkway soffit plates (porous)
- C6 As C4 but without solid railway screens
- C7 As C2 but without solid railway screens

Wind screens, roadway crash barriers and railway side platforms were present in all configurations.

For these 7 configurations, the static wind load coefficients and their variations with angle of wind incidence were established from  $-10^{\circ}$  to  $+10^{\circ}$  in steps of  $1^{\circ}$ . Further, the aerodynamic stability of deck was determined at  $0^{\circ}$ . All these tests conducted for the optimisation of the section, were conducted in smooth flow.

Based on the tests described above, configuration C5 was chosen as the optimum configuration by the Client's representatives. The aerodynamic characteristics of the optimum configuration was verified through stability and damping tests  $(-4^{\circ}, 0^{\circ} \text{ and } +4^{\circ})$ , static coefficients from  $-10^{\circ}$  to  $+10^{\circ}$  in steps of 1° at three wind speeds and vortex shedding tests at 0°. All verification tests were conducted in both smooth and turbulent flow.

The main findings are summarised in the following. The various configurations are shown in Section 3.1.

#### **Static Tests**

The static force coefficients at  $0^{\circ}$  and their variations with angle of wind incidence (first derivatives) are shown in Table 2.1 and Table 2.2. Figure 6.3 through Figure 6.6 show plots of all the determined coefficients for the various configurations and test conditions, with the drag and lift coefficients,  $C_d$  and  $C_l$ , being fixed in a wind coordinate system, and  $C_x$  and  $C_z$  being body fixed coefficients, see Section 6.

The static coefficients from the optimisation tests are listed in the following table.

|                        |              | C1     | C2     | С3     | C4     | C5     | C6     | С7     |
|------------------------|--------------|--------|--------|--------|--------|--------|--------|--------|
| $C_d$                  | (0°)         | 0.105  | 0.104  | 0.104  | 0.106  | 0.105  | 0.105  | 0.101  |
| $C_l$                  | (0°)         | -0.059 | -0.053 | -0.039 | -0.113 | -0.082 | -0.133 | -0.084 |
| $C_m$                  | (0°)         | 0.010  | 0.011  | 0.013  | -0.008 | 0.005  | -0.009 | 0.013  |
| $\frac{dC_d}{d\alpha}$ | (-1° to +1°) | -0.03  | 0.01   | 0.01   | 0.00   | -0.05  | 0.02   | 0.00   |
| $\frac{dC_l}{d\alpha}$ | (-1° to +1°) | -0.06  | 0.02   | 0.11   | 0.30   | 0.36   | 0.55   | 0.69   |
| $\frac{dC_m}{d\alpha}$ | (-1° to +1°) | 0.20   | 0.19   | 0.19   | 0.32   | 0.17   | 0.31   | 0.23   |

Table 2.1. Static aerodynamic force coefficients and their slopes (based on a deck width of B= 60.74 m) configurations 1 to 7.

In the verification tests, the static coefficients were established at three wind speeds (12 m/s, 15 m/s and 18m/s, model scale). The static coefficients from the verification tests are listed in the following table.

|                          |              | Smooth<br>U=12m/s | Smooth<br>U=15m/s | Smooth<br>U=18m/s | Turbulent<br>U=12m/s | Turbulent<br>U=15m/s | Turbulent<br>U=18m/s |
|--------------------------|--------------|-------------------|-------------------|-------------------|----------------------|----------------------|----------------------|
| $C_d$                    | (0°)         | 0.105             | 0.105             | 0.106             | 0.118                | 0.119                | 0.119                |
| $C_l$                    | (0°)         | -0.082            | -0.083            | -0.084            | -0.090               | -0.091               | -0.091               |
| $C_m$                    | (0°)         | 0.005             | 0.005             | 0.005             | 0.005                | 0.004                | 0.004                |
| $\frac{dC_d}{d\alpha}$   | (-1° to +1°) | -0.05             | -0.01             | 0.00              | -0.04                | -0.04                | -0.06                |
| $\frac{dC_l}{d\alpha}$   | (-1° to +1°) | 0.36              | 0.37              | 0.43              | 1.07                 | 1.09                 | 1.13                 |
| $\frac{dC_{m}}{d\alpha}$ | (-1° to +1°) | 0.17              | 0.19              | 0.20              | 0.17                 | 0.19                 | 0.20                 |

Table 2.2. Static aerodynamic force coefficients and their slopes (based on a deck width of B=60.74~m) for the optimum configuration – C5.

#### **Stability Tests**

For the optimisation tests, the aerodynamic stability of the bridge girder was investigated for an angle of wind incidence of  $0^{\circ}$  in smooth flow. Following this, the aerodynamic stability of the optimum configuration (C5) was investigated for angles of wind incidence of  $-4^{\circ}$ ,  $0^{\circ}$  and  $+4^{\circ}$  in smooth and turbulent flow. The estimated critical wind speeds for onset of aerodynamic instability are listed in the following table.

| Configuration | Flow      | Angle  | $U_{red,cr}$             | U <sub>cr</sub> |
|---------------|-----------|--------|--------------------------|-----------------|
| Comiguration  | 11000     | Aligie | $[U_{cr}/(f_t \cdot B)]$ | [m/s]           |
| C1            | Smooth    | 0°     | >24.1                    | >122            |
| C2            | Smooth    | 0°     | 23                       | 116             |
| C3            | Smooth    | 0°     | 23                       | 116             |
| C4            | Smooth    | 0°     | 17.8                     | 90              |
| C5            | Smooth    | 0°     | >24.5                    | >124            |
| C6            | Smooth    | 0°     | 18.6                     | 94              |
| C7            | Smooth    | 0°     | 22.6                     | 114             |
|               |           | -4°    | >22.4                    | >113            |
| C5            | Smooth    | 0°     | >24.4                    | >123            |
|               |           | +4     | >24.5                    | >124            |
|               |           | -4°    | >15*                     | >76*            |
| C5            | Turbulent | 0°     | >24.5                    | >124            |
|               |           | +4°    | >24.2                    | >122            |

Table 2.3. Estimated aerodynamic stability limits as reduced wind speed  $[U_{cr}/(f_t \cdot B)]$  and full-scale wind speed [m/s].

In connection with stability tests, the aerodynamic damping was measured at two wind speeds corresponding to 54 m/s and 75 m/s, full-scale, see Section 7.3.

#### **Vortex Shedding Tests**

Finally, the vortex induced response has been investigated in smooth and turbulent flow for the optimum configuration – C5. In smooth flow a small torsional response peak was observed at a reduced wind speed ( $U/(B \cdot f_t)$ ) of approximately 1.0. The recorded response peak had an rms amplitude of 0.075°. Vertical vortex-induced oscillations were not observed in smooth flow. In turbulent, no vertical or torsional vortex induced response was detected.

<sup>\*</sup>For the configuration C5 in turbulent flow at -4°, the measured displacement and rotation are contaminated by the model hitting the wind tunnel wall from  $U_{red} = U/(f_t \cdot B) = 15$  and higher. This was caused by the large negative displacement in combination with the buffeting response.

# 3. Model Design

## 3.1 Prototype Structure

The Messina Strait Crossing comprises a suspended main span of 3300 m. The total length of the bridge is 3666 m. The bridge deck comprises three closed box girders and the overall deck width is approximately 60 m.

An elevation of the prototype structure is shown in Figure 3.1.



Figure 3.1 Elevation of the Messina Strait Crossing.

Figure 3.1 shows the cross section of the prototype bridge deck and its main dimensions.



Figure 3.2. Cross-section of prototype bridge deck.

In the tests, the effect of the outer safety screens, inner safety screens, railway soffit plate and a solid railway screens was investigated in various combinations.

## 3.2 Scaling Parameters

A combination of geometrical, mass and stiffness considerations resulted in the selection of a 1:80 geometrical scale for the section model of the Messina Strait Bridge deck, see [1].

## 3.3 Section Model Design

The 1:80 geometrical scale section model of the bridge deck was built with the properly scaled outer shape of the prototype structure.

The model used for the present tests was built of partly the same components as those used in earlier tests in December 2009 and January 2010, see [3]. The actual road box girder cross section had been marginally modified since the earlier design, but it was decided, in agreement with the Client's representative, to re-use these model parts. New cross beams were manufactured to provide the 2% outward slope. Figure 3.3 shows the comparison between the actual bridge deck cross section (blue) and that represented in the model (red). Completely new deck equipment (wind screens, crash barriers, safety screens, soffit plated and walkway screens) were manufactured to match the new design.



Figure 3.3 Comparison between the actual bridge roadway beam (blue) and the one represented in the model (red).

All the details present on the bridge deck and the wind screens have been produced by means of rapid prototyping. The design of all these elements reproduce the main full-scale characteristics and maintain the drag force acting on the cylinders and the pressure loss coefficient through porous screens, see section 3.3.1.

### 3.3.1 Configurations

For the optimisation tests, the model represented the main aerodynamic features of the deck cross-section with the configurations summarized in the table below:

| #  | Inner Safety<br>Screens (2.4m) | Outer Safety<br>Screens (1.8m) | Soffit<br>Plate | Solid<br>Railway<br>Screen |
|----|--------------------------------|--------------------------------|-----------------|----------------------------|
| C1 | off                            | off                            | off             | on                         |
| C2 | off                            | off                            | porous          | on                         |
| C3 | off                            | off                            | solid           | on                         |
| C4 | on                             | off                            | porous          | on                         |
| C5 | on                             | on                             | porous          | on                         |
| C6 | on                             | off                            | porous          | off                        |
| C7 | off                            | off                            | porous          | off                        |

Table 3.1. Summary of Configurations.

The positions of the relevant screens and plates are illustrated in the following figure.



Figure 3.4. Cross-section of prototype bridge deck.

Wind screens, crash barriers and railways platforms were present throughout the tests. In the following the design of various appendages is described.

#### **Crash Barrier**

The full-scale crash barrier has two horizontal cylinders with a rectangular cross section (160x80 mm) and vertical posts made of HEA 160 profiles with a centre-to-centre spacing of about 1.2 m.

The crash barrier was scaled to preserve the total drag force on the element, i.e. the product of the drag coefficient and the projected area. Manufacturing considerations limit the minimum dimension of each component. Thus, the model crash barrier was designed by lumping the two rectangular cylinders into one with a 1.8x1.8 mm<sup>2</sup> square cross section, placed 14 mm above the

model deck. The number of vertical posts was also reduced in the model, lumping two full-scale posts into one 4 mm wide.

#### **Safety Screens**

The full-scale safety screens have the same design of the wind screen, with a net porosity of 55%, and therefore they were scaled assuming the same target provided by the Client for the wind screens, i.e. a loss coefficient equal to 2.7. The target loss coefficient was obtained in model scale with a perforated plate with a porosity of 47% and the diameter of the holes equal to 5.2 mm. In order to match the position of the crash barrier's post, two screen's vertical posts were also lumped into one.

According to the full-scale prototypes, the model screens have different heights for the outer (22.5 mm) and inner (30 mm) plate. The model screen design also included hooks to connect them to the crash barrier's posts at the right positions above the bridge deck. This allowed for an easy and fast change of configuration during the tests.

#### **Railway Platform**

The full-scale railway platform comprises a railing, with eleven smaller horizontal circular cylinders and a larger top rail, placed on the edge of an aluminium grating with 80% porosity. In order to maintain the total drag force acting on the railing, it was modelled with a top circular cylinder with a diameter of 1.8 mm and a lower one with a diameter of 1.3 mm. The railing posts number was reduced, lumping three posts into one with a square cross section 2x2 mm.

The scaling principle for the grating was to maintain the full-scale loss coefficient as calculated according to Idelchik [4]. This was obtained by a model grid with a porosity of 77%.

Some of the tested bridge deck configurations included a solid railway screen and a railway soffit plate, either solid or porous. The solid railway screen was produced as a solid fence with the geometrically scaled dimensions and a longitudinal fastener to firmly connect it to the railing.

The soffit plate was modelled to maintain the full-scale loss coefficient of the porous option as calculated according to Idelchik [4]. This scaling procedure lead to a model perforated plate with a porosity of 28% and hole's diameter equal to 5 mm. The solid soffit plate was obtained simply covering the porous option with tape.

#### **Wind Screens**

The full-scale wind screen has a complex geometry, with three airfoils separating three strips of net. The vertical posts are supported by an edge beam connected to the bridge deck through steel brackets. The brackets are equally spaced with a centre-to-centre distance of 3.75 m. A horizontal grating with an 80% porosity lean on the brackets. Steel profiles IPE 180 connect the brackets and provide a stable support for the above grating.

The model wind screens outer geometry was scaled according to the drawings provided by the Client. The porosity of the model fence was determined through an experimental analysis (see section 3.3.2 below) to verify that the selected model screen matched the target loss coefficient of 2.7, as required by the Client's specification. According to the scaling approach used in the previous model, the grating was omitted and its porosity was included in the model increasing the dimension of the along-bridge bars.

#### 3.3.2 Verification of Pressure Loss Coefficients

The pressure loss coefficient of the perforated panels of the wind screens and safety screens was experimentally documented using a model screen 250 mm x 250 mm, 1 mm thick, with 5.5 mm diameter holes in a square pattern giving approximately 53% porosity, corresponding to the screens used in earlier tests of the Messina Bridge. The test screen was produced by the same rapid prototyping technique and material as the one planned for the model parts, thereby presumably having the same rounding of the edges of the holes, which is a very important parameter.

The test screen was placed in a 250 mm x 250 mm channel, and air was blown through this channel at varying air speed up to 15 m/s in the full channel cross section in order to check the dependency of the pressure drop coefficient with Reynolds Number. The static pressure differential across the screen was measured and normalised by the dynamic velocity pressure measured by Pitot tube to yield the pressure drop coefficient Cp. Tests were conducted with the screen as produced and with three and four rows of holes blocked such that the measurements represented 53.4%, 49.2% and 47.8% porosity, respectively.

Figure 3.5 shows the measured variation of Cp with wind speed for the three screens and Figure 3.6 shows Cp as function of screen porosity at a wind speed of 12 m/s, which is close to the design wind speed in the section model tests.

By extrapolating the results, the porosity of the model screens was chosen at 47%. It should be noted that the screen resistance coefficient is very sensitive to the degree of porosity and the shape of the holes. The model screens have been produced by the same technique as the test screen used for the experimental documentation of the resistance coefficient. However, it has not been possible to accurately verify that the model screens have exactly the same characteristics as the test screen.



Figure 3.5 Variation of Cp with wind speed.

The following figure shows the measured values of Cp for a screen porosity of 53.4%, 49.2% and 47.8%. Since the experimental results showed that the pressure coefficient varies linearly with the screen porosity, the porosity target of 47% was extrapolated from the measurements as corresponding to the required value of Cp (2.7).



Figure 3.6 Cp as function of screen porosity for U=12m/s.

## 4. Wind Tunnel and Flow Conditions

The section model tests were conducted in FORCE Technology's 2.6 m wide x 1.8 m high x 21 m long Boundary-Layer Wind Tunnel II. The model was placed 14.5 m downstream of the inlet at the mid height of the wind tunnel. The ceiling of the wind tunnel was adjusted so that it was horizontal throughout the length of the wind tunnel.

The wind-tunnel tests were performed in smooth flow and turbulent flow.

The smooth flow condition corresponds to an empty tunnel (i.e., without exposure upwind of the model). The smooth flow condition has a turbulence intensity ( $I_{u, w}$ ) of approximately 0.5%.

The turbulent exposure was obtained by three spires mounted 1.1 m from the wind tunnel inlet. The spires were 1.8 m high with a tapered width: 0.32 m at the floor to 0.18 m at the wind tunnel ceiling. This exposure resulted in turbulence intensities of approximately 7.5% for  $I_u$  and 7.4% for  $I_w$ . The exposure is shown in Figure 4.1.



Figure 4.1. Turbulence generating spires in the wind tunnel up-wind of the model.

The spectral density function (SDF) of the velocity fluctuation was derived from a long time series recorded at centre position (wind-tunnel centre line), see Figure 4.2 and Figure 4.3.



Figure 4.2 U-Component Spectra at Bridge Location (and wind tunnel centre line).



Figure 4.3 W-Component Spectra at Bridge Location (and wind tunnel centre line).

## 5. Wind-Tunnel Test Programme

The test programme consisted of static and dynamic section model tests, the objective being to determine the static wind loads and the critical wind speed for onset of aerodynamic instability. Further, the aerodynamic damping for the selected configuration was estimated based on decays tests performed at two wind speeds. Finally, the susceptibility to vortex shedding induced vibrations was investigated for the selected configuration.

The detailed test programme for the 7 deck configurations is outlined in Table 5.1.

| #  | Configuration                 | Test                     | Flow         | Angle(s)          | Comment                  |  |  |  |  |
|----|-------------------------------|--------------------------|--------------|-------------------|--------------------------|--|--|--|--|
|    |                               |                          |              |                   |                          |  |  |  |  |
|    | Optimisation of configuration |                          |              |                   |                          |  |  |  |  |
| 1  | C1                            | Reynolds test            | Smooth       | 0°                |                          |  |  |  |  |
| 1  | C1                            | Static force coefficient | Smooth       | -10° to +10°, Δ1° |                          |  |  |  |  |
| 2  | C2                            | Static force coefficient | Smooth       | -10° to +10°, Δ1° |                          |  |  |  |  |
| 3  | C3                            | Static force coefficient | Smooth       | -10° to +10°, Δ1° |                          |  |  |  |  |
| 4  | C4                            | Static force coefficient | Smooth       | -10° to +10°, Δ1° |                          |  |  |  |  |
| 5  | C5                            | Static force coefficient | Smooth       | -10° to +10°, Δ1° |                          |  |  |  |  |
| 6  | C6                            | Static force coefficient | Smooth       | -10° to +10°, Δ1° |                          |  |  |  |  |
| 7  | C7                            | Static force coefficient | Smooth       | -10° to +10°, Δ1° |                          |  |  |  |  |
| 8  | C1                            | Aerodynamic stability    | Smooth       | 0°                |                          |  |  |  |  |
| 9  | C2                            | Aerodynamic stability    | Smooth       | 0°                |                          |  |  |  |  |
| 10 | C3                            | Aerodynamic stability    | Smooth       | 0°                |                          |  |  |  |  |
| 11 | C4                            | Aerodynamic stability    | Smooth       | 0°                |                          |  |  |  |  |
| 12 | C5                            | Aerodynamic stability    | Smooth       | 0°                |                          |  |  |  |  |
| 13 | C6                            | Aerodynamic stability    | Smooth       | 0°                |                          |  |  |  |  |
| 14 | C7                            | Aerodynamic stability    | Smooth       | 0°                |                          |  |  |  |  |
|    |                               | Verification of op       | timum config | juration          |                          |  |  |  |  |
| 15 | C5                            | Static force coefficient | Smooth       | -10° to +10°, Δ1° | 3 wind speeds            |  |  |  |  |
| 16 | C5                            | Static force coefficient | Turbulent    | -10° to +10°, Δ1° | 3 wind speeds            |  |  |  |  |
| 15 | C5                            | Aerodynamic stability    | Smooth       | -4°, 0°, +4°      | Damping at 2 wind speeds |  |  |  |  |
| 16 | C5                            | Aerodynamic stability    | Turbulent    | -4°, 0°, +4°      | Damping at 2 wind speeds |  |  |  |  |
| 17 | C5                            | Vortex shedding          | Smooth       | 0°                |                          |  |  |  |  |
| 18 | C5                            | Vortex shedding          | Turbulent    | 0°                |                          |  |  |  |  |

Table 5.1. Test programme for section model tests.

### 6. Static Tests

#### 6.1 Static Force Coefficients Definition

The static aerodynamic force coefficients for the deck of the Messina Strait Bridge were determined based on wind-tunnel tests on a 1:80 geometrical scale model of a section of the deck in smooth flow. The verification tests were also conducted in turbulent flow.

A typical force coefficient is defined as follows:

$$C_{x,z,l,d} = \frac{\overline{F}_{x,z,l,d}}{\overline{q} BL}$$
 (6.1a)

$$C_m = \frac{\overline{M}}{\overline{q} B^2 L} \tag{6.1b}$$

Where:

C = Aerodynamic coefficient

 $\overline{F}$  = Time-averaged (mean) aerodynamic force

 $\overline{M}$  = Mean overturning moment (torque)

B = The bridge deck width (60.74 m in the present case)

L = The model span length

 $\overline{q}$  = The mean wind velocity pressure<sup>1</sup> at deck level;  $\overline{q} = \frac{1}{2} \rho \overline{V^2}$  where:

 $\rho$  = Air density [kg/m<sup>3</sup>]

 $\overline{V}$  = Mean wind velocity at deck level in [m/s]

The subscripts x, z, l, d and m refer to the x and z body-force components, lift, drag and overturning moment, respectively.

The procedure for the determination of the static coefficients consists of mounting the 2.55 m long section model of the bridge in a static rig equipped with two 3-component force balances. The force balances measure the vertical, lateral and torsional reactions at the extremities of the model. The reactions are combined to obtain:  $\overline{F}_l, \overline{F}_d$  and  $\overline{M}$ , respectively.

These quantities are subsequently normalized according to the equations above. This procedure is repeated for several angles of attack of the model (from  $-10^{\circ}$  to  $+10^{\circ}$  in increments of  $1^{\circ}$ , measured from the horizontal plane).

<sup>&</sup>lt;sup>1</sup> The mean velocity pressure is measured directly (by micro manometers), consequently the value of the air density and the mean wind velocity are not determined explicitly.

The rate of change (or slope) of the coefficients with angle of attack  $\alpha$  in radians is evaluated from these tests in the vicinity of zero degrees (between  $-1^{\circ}$  and  $+1^{\circ}$ ).

The drag and lift coefficients,  $C_d$  and  $C_l$ , are defined in the global coordinate system in relation to the wind. The body force coefficients,  $C_x$  and  $C_z$ , defined in the local coordinate system, are linked to the drag and lift coefficients by the following relationships:

$$C_{x}(\alpha) = C_{d}(\alpha)\cos\alpha - C_{1}(\alpha)\sin\alpha \tag{6.2a}$$

$$C_{z}(\alpha) = C_{d}(\alpha)\sin\alpha + C_{1}(\alpha)\cos\alpha \tag{6.2b}$$

A bridge deck width, B, of 60.74 m (full-scale) was used in the determination of the coefficients. The centre of measurement of the forces and moment was set at the shear centre of the section, 1.33 m (in full-scale) above the bottom of the bottom plate of the railway girder.



Figure 6.1. Sign convention for the static section model tests.

#### 6.2 Results

For the optimisation tests, static tests were conducted in smooth flow and the test wind speed was determined on the basis of the Reynolds number tests for configuration C1, see Figure 6.2.



Figure 6.2. Results of Reynolds number tests.

The optimisation tests were conducted at model-scale wind speeds of typically about 12 m/s. The verification tests were conducted at three wind speeds: 12 m/s, 15 m/s and 18 m/s.

Figure 6.3 through Figure 6.6 present the variations of the coefficients with angle of wind incidence,  $\alpha$ , for the bridge deck. Configuration numbers in these plots refer to Table 3.1.

A summary of the main static coefficients is given in Table 2.1 and Table 2.2 of Section 2. The rate of change (slope) of the coefficients around  $0^{\circ}$  was calculated based on the values at  $-1^{\circ}$  and  $+1^{\circ}$ , see also the tables in Section 2.

The measured coefficients have been corrected for the effect of blockage according to ESDU<sup>2</sup>. The blockage correction was in the order of 3-7% depending on the deck inclination.

<sup>&</sup>lt;sup>2</sup> Engineering Sciences Data Unit Item 80024:" Blockage correction for bluff bodies in confined flows", Nov. 1980.



Figure 6.3. Variations of the static force coefficients for configurations 1 to 3.



Figure 6.4. Variations of the static force coefficients for configurations 4 to 7.



Figure 6.5. Variations of the static force coefficients for the optimum configuration (C5) – smooth flow.



Figure 6.6. Variations of the static force coefficients for the optimum configuration (C5) – turbulent flow.

|           | Confi   | guratio | on C1                      | Confi | guratio | on C2                      | Confi   | guratio | on C3                      | Confi | guratio | on C4                      |
|-----------|---------|---------|----------------------------|-------|---------|----------------------------|---------|---------|----------------------------|-------|---------|----------------------------|
| α [°]     | $C_d$   | $C_l$   | $C_{\scriptscriptstyle m}$ | $C_d$ | $C_l$   | $C_{\scriptscriptstyle m}$ | $C_d$   | $C_l$   | $C_{\scriptscriptstyle m}$ | $C_d$ | $C_l$   | $C_{\scriptscriptstyle m}$ |
| -10       | 0.228   | -0.285  | -0.003                     | 0.225 | -0.308  | -0.010                     | 0.224   | -0.350  | -0.017                     | 0.233 | -0.278  | -0.038                     |
| -9        | 0.207   | -0.239  | 0.001                      | 0.207 | -0.273  | -0.007                     | 0.205   | -0.314  | -0.015                     | 0.217 | -0.256  | -0.038                     |
| -8        | 0.191   | -0.200  | 0.004                      | 0.190 | -0.239  | -0.006                     | 0.188   | -0.269  | -0.011                     | 0.199 | -0.231  | -0.037                     |
| -7        | 0.173   | -0.157  | 0.005                      | 0.173 | -0.200  | -0.004                     | 0.172   | -0.220  | -0.008                     | 0.178 | -0.203  | -0.035                     |
| -6        | 0.158   | -0.128  | 0.004                      | 0.157 | -0.160  | -0.002                     | 0.157   | -0.177  | -0.006                     | 0.162 | -0.180  | -0.033                     |
| -5        | 0.143   | -0.103  | 0.003                      | 0.142 | -0.125  | -0.001                     | 0.142   | -0.139  | -0.004                     | 0.146 | -0.159  | -0.031                     |
| -4        | 0.131   | -0.085  | 0.002                      | 0.130 | -0.099  | 0.000                      | 0.129   | -0.107  | -0.001                     | 0.132 | -0.140  | -0.027                     |
| -3        | 0.120   | -0.071  | 0.003                      | 0.118 | -0.071  | 0.003                      | 0.119   | -0.075  | 0.003                      | 0.121 | -0.127  | -0.024                     |
| -2        | 0.112   | -0.062  | 0.004                      | 0.109 | -0.057  | 0.005                      | 0.109   | -0.050  | 0.006                      | 0.113 | -0.119  | -0.019                     |
| -1        | 0.107   | -0.058  | 0.007                      | 0.105 | -0.053  | 0.008                      | 0.105   | -0.041  | 0.010                      | 0.108 | -0.116  | -0.014                     |
| 0         | 0.105   | -0.059  | 0.010                      | 0.104 | -0.053  | 0.011                      | 0.104   | -0.039  | 0.013                      | 0.106 | -0.113  | -0.008                     |
| +1        | 0.106   | -0.060  | 0.014                      | 0.105 | -0.052  | 0.014                      | 0.105   | -0.037  | 0.016                      | 0.108 | -0.106  | -0.003                     |
| +2        | 0.109   | -0.055  | 0.018                      | 0.109 | -0.048  | 0.018                      | 0.109   | -0.032  | 0.020                      | 0.113 | -0.098  | 0.001                      |
| +3        | 0.117   | -0.044  | 0.021                      | 0.115 | -0.039  | 0.021                      | 0.117   | -0.023  | 0.022                      | 0.121 | -0.086  | 0.005                      |
| +4        | 0.129   | -0.032  | 0.022                      | 0.128 | -0.028  | 0.023                      | 0.129   | -0.013  | 0.023                      | 0.131 | -0.068  | 0.010                      |
| +5        | 0.143   | -0.016  | 0.024                      | 0.141 | -0.014  | 0.025                      | 0.142   | 0.003   | 0.026                      | 0.143 | -0.052  | 0.013                      |
| +6        | 0.155   | 0.011   | 0.029                      | 0.153 | 0.012   | 0.031                      | 0.154   | 0.026   | 0.032                      | 0.157 | -0.038  | 0.016                      |
| +7        | 0.168   | 0.041   | 0.036                      | 0.164 | 0.037   | 0.037                      | 0.166   | 0.051   | 0.037                      | 0.170 | -0.012  | 0.022                      |
| +8        | 0.182   | 0.066   | 0.040                      | 0.179 | 0.065   | 0.042                      | 0.181   | 0.079   | 0.043                      | 0.183 | 0.016   | 0.030                      |
| +9        | 0.196   | 0.091   | 0.044                      | 0.191 | 0.086   | 0.046                      | 0.195   | 0.102   | 0.047                      | 0.197 | 0.042   | 0.036                      |
| +10       | 0.212   | 0.114   | 0.049                      | 0.210 | 0.113   | 0.052                      | 0.209   | 0.124   | 0.052                      | 0.213 | 0.069   | 0.043                      |
|           | Confi   | guratio | on C5                      | Confi | guratio | on C6                      | Confi   | guratio | on C7                      |       |         |                            |
| α [°]     | $C_{d}$ | $C_l$   | $C_{\scriptscriptstyle m}$ | $C_d$ | $C_l$   | $C_{\scriptscriptstyle m}$ | $C_{d}$ | $C_l$   | $C_{\scriptscriptstyle m}$ |       |         |                            |
| -10       | 0.247   | -0.338  | -0.015                     | 0.236 | -0.387  | -0.036                     | 0.228   | -0.448  | -0.029                     |       |         |                            |
| -9        | 0.227   | -0.309  | -0.014                     | 0.215 | -0.349  | -0.034                     | 0.208   | -0.401  | -0.025                     |       |         |                            |
| -8        | 0.207   | -0.277  | -0.013                     | 0.197 | -0.308  | -0.033                     | 0.190   | -0.354  | -0.022                     |       |         |                            |
| -7        | 0.187   | -0.242  | -0.012                     | 0.179 | -0.260  | -0.032                     | 0.175   | -0.310  | -0.019                     |       |         |                            |
| -6        | 0.168   | -0.205  | -0.011                     | 0.162 | -0.217  | -0.031                     | 0.157   | -0.257  | -0.015                     |       |         |                            |
| -5        | 0.149   | -0.166  | -0.009                     | 0.146 | -0.184  | -0.029                     | 0.142   | -0.210  | -0.009                     |       |         |                            |
| -4        | 0.136   | -0.138  | -0.007                     | 0.132 | -0.163  | -0.026                     | 0.130   | -0.169  | -0.004                     |       |         |                            |
| -3        | 0.123   | -0.113  | -0.005                     | 0.121 | -0.150  | -0.023                     | 0.119   | -0.136  | 0.000                      |       |         |                            |
| -2        | 0.114   | -0.098  | -0.002                     | 0.112 | -0.144  | -0.019                     | 0.109   | -0.109  | 0.005                      |       |         |                            |
| -1        | 0.108   | -0.087  | 0.002                      | 0.107 | -0.141  | -0.015                     | 0.103   | -0.094  | 0.009                      |       |         |                            |
| 0         | 0.105   | -0.082  | 0.005                      | 0.105 | -0.133  | -0.009                     | 0.101   | -0.084  | 0.013                      |       |         |                            |
| +1        | 0.106   | -0.075  | 0.008                      | 0.108 | -0.121  | -0.004                     | 0.103   | -0.070  | 0.017                      |       |         |                            |
| +2        | 0.112   | -0.065  | 0.010                      | 0.115 | -0.107  | 0.000                      | 0.107   | -0.055  | 0.020                      |       |         |                            |
| +3        | 0.121   | -0.055  | 0.012                      | 0.122 | -0.092  | 0.004                      | 0.116   | -0.041  | 0.023                      |       |         |                            |
| +4        | 0.131   | -0.047  | 0.014                      | 0.132 | -0.074  | 0.008                      | 0.127   | -0.029  | 0.023                      |       |         |                            |
| +5        | 0.143   | -0.037  | 0.016                      | 0.144 | -0.058  | 0.011                      | 0.141   | -0.007  | 0.026                      |       |         |                            |
| +6        | 0.157   | -0.027  | 0.016                      | 0.157 | -0.045  | 0.013                      | 0.152   | 0.026   | 0.035                      |       |         |                            |
| +7        | 0.172   | -0.017  | 0.017                      | 0.168 | -0.013  | 0.022                      | 0.165   | 0.055   | 0.040                      |       |         |                            |
| +8        | 0.189   | -0.007  | 0.018                      | 0.181 | 0.021   | 0.031                      | 0.179   | 0.084   | 0.046                      |       |         |                            |
| +9<br>+10 | 0.206   | 0.006   | 0.019                      | 0.197 | 0.056   | 0.040                      | 0.194   | 0.111   | 0.050                      |       |         |                            |
|           | 0.218   | 0.039   | 0.029                      | 0.210 | 0.083   | 0.047                      | 0.209   | 0.136   | 0.055                      |       |         |                            |

Table 6.1. The static force coefficients with angle of incidence for configurations C1- C7, smooth flow.

|                                                           | C5, 12 m/s,<br>smooth                                                                                                                                                                                                           |                                                                                                                                    |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                          | , 15 m.<br>smooth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                                                                                                | , 18 m.<br>smooth                                                                                                                                 | -                                                                                                                                                                                                          |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| α [°]                                                     | $C_d$                                                                                                                                                                                                                           | $C_{l}$                                                                                                                            | $C_{m}$                                                                                                                                                                                                                                  | $C_{d}$                                                                                                                                                                                                                                                  | $C_l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $C_{\scriptscriptstyle m}$                                                                                                       | $C_{d}$                                                                                                                                                                                                                                        | $C_l$                                                                                                                                             | $C_{\scriptscriptstyle m}$                                                                                                                                                                                 |
| -10                                                       | 0.247                                                                                                                                                                                                                           | -0.338                                                                                                                             | -0.015                                                                                                                                                                                                                                   | 0.242                                                                                                                                                                                                                                                    | -0.342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.016                                                                                                                           | 0.243                                                                                                                                                                                                                                          | -0.346                                                                                                                                            | -0.018                                                                                                                                                                                                     |
| -9                                                        | 0.227                                                                                                                                                                                                                           | -0.309                                                                                                                             | -0.014                                                                                                                                                                                                                                   | 0.226                                                                                                                                                                                                                                                    | -0.311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.015                                                                                                                           | 0.225                                                                                                                                                                                                                                          | -0.312                                                                                                                                            | -0.016                                                                                                                                                                                                     |
| -8                                                        | 0.207                                                                                                                                                                                                                           | -0.277                                                                                                                             | -0.013                                                                                                                                                                                                                                   | 0.207                                                                                                                                                                                                                                                    | -0.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.014                                                                                                                           | 0.207                                                                                                                                                                                                                                          | -0.281                                                                                                                                            | -0.014                                                                                                                                                                                                     |
| -7                                                        | 0.187                                                                                                                                                                                                                           | -0.242                                                                                                                             | -0.012                                                                                                                                                                                                                                   | 0.186                                                                                                                                                                                                                                                    | -0.240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.013                                                                                                                           | 0.187                                                                                                                                                                                                                                          | -0.240                                                                                                                                            | -0.014                                                                                                                                                                                                     |
| -6                                                        | 0.168                                                                                                                                                                                                                           | -0.205                                                                                                                             | -0.011                                                                                                                                                                                                                                   | 0.167                                                                                                                                                                                                                                                    | -0.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.012                                                                                                                           | 0.167                                                                                                                                                                                                                                          | -0.201                                                                                                                                            | -0.013                                                                                                                                                                                                     |
| -5                                                        | 0.149                                                                                                                                                                                                                           | -0.166                                                                                                                             | -0.009                                                                                                                                                                                                                                   | 0.149                                                                                                                                                                                                                                                    | -0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.010                                                                                                                           | 0.149                                                                                                                                                                                                                                          | -0.164                                                                                                                                            | -0.011                                                                                                                                                                                                     |
| -4                                                        | 0.136                                                                                                                                                                                                                           | -0.138                                                                                                                             | -0.007                                                                                                                                                                                                                                   | 0.134                                                                                                                                                                                                                                                    | -0.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.008                                                                                                                           | 0.134                                                                                                                                                                                                                                          | -0.134                                                                                                                                            | -0.009                                                                                                                                                                                                     |
| -3                                                        | 0.123                                                                                                                                                                                                                           | -0.113                                                                                                                             | -0.005                                                                                                                                                                                                                                   | 0.123                                                                                                                                                                                                                                                    | -0.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.006                                                                                                                           | 0.123                                                                                                                                                                                                                                          | -0.115                                                                                                                                            | -0.007                                                                                                                                                                                                     |
| -2                                                        | 0.114                                                                                                                                                                                                                           | -0.098                                                                                                                             | -0.002                                                                                                                                                                                                                                   | 0.113                                                                                                                                                                                                                                                    | -0.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.002                                                                                                                           | 0.113                                                                                                                                                                                                                                          | -0.098                                                                                                                                            | -0.003                                                                                                                                                                                                     |
| -1                                                        | 0.108                                                                                                                                                                                                                           | -0.087                                                                                                                             | 0.002                                                                                                                                                                                                                                    | 0.107                                                                                                                                                                                                                                                    | -0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                            | 0.108                                                                                                                                                                                                                                          | -0.090                                                                                                                                            | 0.001                                                                                                                                                                                                      |
| 0                                                         | 0.105                                                                                                                                                                                                                           | -0.082                                                                                                                             | 0.005                                                                                                                                                                                                                                    | 0.105                                                                                                                                                                                                                                                    | -0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005                                                                                                                            | 0.106                                                                                                                                                                                                                                          | -0.084                                                                                                                                            | 0.005                                                                                                                                                                                                      |
| +1                                                        | 0.106                                                                                                                                                                                                                           | -0.075                                                                                                                             | 0.008                                                                                                                                                                                                                                    | 0.107                                                                                                                                                                                                                                                    | -0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.008                                                                                                                            | 0.108                                                                                                                                                                                                                                          | -0.075                                                                                                                                            | 0.008                                                                                                                                                                                                      |
| +2                                                        | 0.112                                                                                                                                                                                                                           | -0.065                                                                                                                             | 0.010                                                                                                                                                                                                                                    | 0.112                                                                                                                                                                                                                                                    | -0.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.010                                                                                                                            | 0.113                                                                                                                                                                                                                                          | -0.063                                                                                                                                            | 0.011                                                                                                                                                                                                      |
| +3                                                        | 0.121                                                                                                                                                                                                                           | -0.055                                                                                                                             | 0.012                                                                                                                                                                                                                                    | 0.121                                                                                                                                                                                                                                                    | -0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.013                                                                                                                            | 0.122                                                                                                                                                                                                                                          | -0.050                                                                                                                                            | 0.014                                                                                                                                                                                                      |
| +4                                                        | 0.131                                                                                                                                                                                                                           | -0.047                                                                                                                             | 0.014                                                                                                                                                                                                                                    | 0.132                                                                                                                                                                                                                                                    | -0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.016                                                                                                                            | 0.133                                                                                                                                                                                                                                          | -0.036                                                                                                                                            | 0.018                                                                                                                                                                                                      |
| +5                                                        | 0.143                                                                                                                                                                                                                           | -0.037                                                                                                                             | 0.016                                                                                                                                                                                                                                    | 0.144                                                                                                                                                                                                                                                    | -0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.018                                                                                                                            | 0.144                                                                                                                                                                                                                                          | -0.023                                                                                                                                            | 0.020                                                                                                                                                                                                      |
| +6                                                        | 0.157                                                                                                                                                                                                                           | -0.027                                                                                                                             | 0.016                                                                                                                                                                                                                                    | 0.158                                                                                                                                                                                                                                                    | -0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.020                                                                                                                            | 0.159                                                                                                                                                                                                                                          | -0.006                                                                                                                                            | 0.023                                                                                                                                                                                                      |
| +7                                                        | 0.172                                                                                                                                                                                                                           | -0.017                                                                                                                             | 0.017                                                                                                                                                                                                                                    | 0.173                                                                                                                                                                                                                                                    | -0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.021                                                                                                                            | 0.174                                                                                                                                                                                                                                          | 0.007                                                                                                                                             | 0.025                                                                                                                                                                                                      |
| +8                                                        | 0.189                                                                                                                                                                                                                           | -0.007                                                                                                                             | 0.018                                                                                                                                                                                                                                    | 0.189                                                                                                                                                                                                                                                    | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.021                                                                                                                            | 0.190                                                                                                                                                                                                                                          | 0.019                                                                                                                                             | 0.025                                                                                                                                                                                                      |
| +9                                                        | 0.206                                                                                                                                                                                                                           | 0.006                                                                                                                              | 0.019                                                                                                                                                                                                                                    | 0.207                                                                                                                                                                                                                                                    | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.022                                                                                                                            | 0.208                                                                                                                                                                                                                                          | 0.029                                                                                                                                             | 0.025                                                                                                                                                                                                      |
| +10                                                       | 0.218                                                                                                                                                                                                                           | 0.039                                                                                                                              | 0.029                                                                                                                                                                                                                                    | 0.223                                                                                                                                                                                                                                                    | 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.022                                                                                                                            | 0.225                                                                                                                                                                                                                                          | 0.040                                                                                                                                             | 0.026                                                                                                                                                                                                      |
|                                                           | C5, 12 m/s,                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                            |
|                                                           | C5                                                                                                                                                                                                                              |                                                                                                                                    |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                          | , 15 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  |                                                                                                                                                                                                                                                | , 18 m                                                                                                                                            |                                                                                                                                                                                                            |
|                                                           | tı                                                                                                                                                                                                                              |                                                                                                                                    | /s,<br>nt                                                                                                                                                                                                                                | C5<br>tı                                                                                                                                                                                                                                                 | , 15 m.<br>urbuler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /s,<br>nt                                                                                                                        | C5<br>tı                                                                                                                                                                                                                                       |                                                                                                                                                   | /s,<br>nt                                                                                                                                                                                                  |
| α[°]                                                      |                                                                                                                                                                                                                                 | , 12 m                                                                                                                             | /s,                                                                                                                                                                                                                                      | C5                                                                                                                                                                                                                                                       | , 15 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /s,                                                                                                                              | C5                                                                                                                                                                                                                                             | , 18 m                                                                                                                                            | /s,                                                                                                                                                                                                        |
| α [°]<br>-10                                              | tı                                                                                                                                                                                                                              | , 12 m.<br>urbuler                                                                                                                 | /s,<br>nt                                                                                                                                                                                                                                | C5<br>tı                                                                                                                                                                                                                                                 | , 15 m.<br>urbuler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /s,<br>nt                                                                                                                        | C5<br>tı                                                                                                                                                                                                                                       | , 18 m.<br>urbuler                                                                                                                                | /s,<br>nt                                                                                                                                                                                                  |
|                                                           | $C_d$                                                                                                                                                                                                                           | , 12 m. urbuler $C_l$                                                                                                              | $C_m$                                                                                                                                                                                                                                    | $C_{d}$                                                                                                                                                                                                                                                  | , 15 m $_l$ urbuler $C_l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $C_m$                                                                                                                            | $C_{d}$                                                                                                                                                                                                                                        | , 18 m. urbuler $C_l$                                                                                                                             | $C_m$                                                                                                                                                                                                      |
| -10                                                       | $C_d$                                                                                                                                                                                                                           | , 12 m. urbuler $C_l$ -0.404                                                                                                       | /s, $C_m$ -0.023                                                                                                                                                                                                                         | $C_d$                                                                                                                                                                                                                                                    | , <b>15 m</b><br>urbuler<br>$C_l$<br>-0.406<br>-0.364<br>-0.327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_m$                                                                                                                            | $C_d$                                                                                                                                                                                                                                          | , 18 m. urbuler $C_l$ -0.414                                                                                                                      | $C_m$                                                                                                                                                                                                      |
| -10<br>-9                                                 | $C_d$ 0.266 0.241                                                                                                                                                                                                               | , <b>12 m.</b> urbuler C <sub>l</sub> -0.404 -0.364                                                                                | /s, $C_m$ -0.023 -0.021                                                                                                                                                                                                                  | $C_d$ 0.268 0.241                                                                                                                                                                                                                                        | , 15 m. urbuler $C_l$ -0.406 -0.364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $C_m$ -0.025 -0.022 -0.020 -0.018                                                                                                | $C_d$ 0.273 0.245                                                                                                                                                                                                                              | , <b>18 m.</b><br>urbuler<br><i>C<sub>l</sub></i><br>-0.414<br>-0.369                                                                             | /s, $C_m$ -0.026 -0.023                                                                                                                                                                                    |
| -10<br>-9<br>-8                                           | $C_d$ 0.266 0.241 0.220                                                                                                                                                                                                         | ., <b>12 m</b> .<br>urbuler<br>$C_l$<br>-0.404<br>-0.364<br>-0.325                                                                 | /s,<br>nt                                                                                                                                                                                                                                | $\begin{array}{c} \textbf{C5} \\ \textbf{tt} \\ C_d \\ 0.268 \\ 0.241 \\ 0.221 \end{array}$                                                                                                                                                              | , <b>15 m</b><br>urbuler<br>$C_l$<br>-0.406<br>-0.364<br>-0.327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_m$ -0.025 -0.022 -0.020                                                                                                       | $\begin{array}{c} \textbf{C5} \\ \textbf{tt} \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \end{array}$                                                                                                                                                    | ., <b>18 m.</b><br>urbuler<br>C <sub>l</sub><br>-0.414<br>-0.369<br>-0.330                                                                        | /s,<br>nt<br>$C_m$<br>-0.026<br>-0.023<br>-0.021                                                                                                                                                           |
| -10<br>-9<br>-8<br>-7                                     | $\begin{array}{c} \textbf{tt} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \end{array}$                                                                                                                                           | ., <b>12 m</b> .<br>urbuler<br>$C_l$<br>-0.404<br>-0.364<br>-0.325<br>-0.283                                                       | $C_m$ -0.023 -0.021 -0.019                                                                                                                                                                                                               | $\begin{array}{c} \textbf{C5} \\ \textbf{tt} \\ C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \end{array}$                                                                                                                                                     | , <b>15 m</b> , <b>16 m</b> , <b>17 m</b> , <b>17 m</b> , <b>18 </b> | $C_m$ -0.025 -0.022 -0.020 -0.018                                                                                                | $\begin{array}{c} \textbf{C5} \\ \textbf{tt} \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \end{array}$                                                                                                                                           | ., <b>18 m.</b> urbuler  C <sub>l</sub> -0.414 -0.369 -0.330 -0.287                                                                               | C <sub>m</sub> -0.026 -0.023 -0.021 -0.019                                                                                                                                                                 |
| -10<br>-9<br>-8<br>-7<br>-6                               | $\begin{array}{c} \textbf{tt} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \end{array}$                                                                                                                                  | ., <b>12 m</b> . urbuler  C <sub>l</sub> -0.404 -0.364 -0.325 -0.283 -0.242                                                        | /s,<br>nt                                                                                                                                                                                                                                | $\begin{array}{c} \textbf{C5} \\ \textbf{tt} \\ C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \end{array}$                                                                                                                                            | , <b>15 m</b> , <b>16 m</b> , <b>17 m</b> , <b>17 m</b> , <b>18 </b> | /s, nt $C_m$ -0.025 -0.022 -0.018 -0.015                                                                                         | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \end{array}$                                                                                                                                  | ., <b>18 m</b> .<br>urbuler<br>                                                                                                                   | /s,<br>nt                                                                                                                                                                                                  |
| -10<br>-9<br>-8<br>-7<br>-6<br>-5<br>-4<br>-3             | $\begin{array}{c} \textbf{tt} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \end{array}$                                                                                                       | ., <b>12 m</b> .<br><b>C</b> <sub>l</sub> -0.404  -0.364  -0.325  -0.283  -0.242  -0.207  -0.174  -0.148                           | /s, $C_m$ -0.023 -0.021 -0.019 -0.015 -0.012 -0.009                                                                                                                                                                                      | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \hline C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ \end{array}$                                                                                                       | , <b>15 m</b> , <b>arbuler</b> C <sub>l</sub> -0.406  -0.364  -0.327  -0.285  -0.241  -0.207  -0.175  -0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /s, $C_m$ -0.025 -0.022 -0.020 -0.018 -0.015 -0.013 -0.010 -0.006                                                                | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \hline \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ \end{array}$                                                                                          | ., 18 m.<br>urbuler<br>-0.414<br>-0.369<br>-0.330<br>-0.287<br>-0.243<br>-0.209<br>-0.175<br>-0.149                                               | /s,<br>t<br>C <sub>m</sub><br>-0.026<br>-0.023<br>-0.021<br>-0.019<br>-0.016<br>-0.014<br>-0.007                                                                                                           |
| -10<br>-9<br>-8<br>-7<br>-6<br>-5<br>-4<br>-3<br>-2       | $\begin{array}{c} \textbf{tu} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \\ 0.125 \end{array}$                                                                                              | ., <b>12 m</b> .<br><b>C</b> <sub>l</sub> -0.404  -0.364  -0.325  -0.283  -0.242  -0.207  -0.174  -0.148  -0.127                   | $C_m$ -0.023 -0.021 -0.019 -0.017 -0.015 -0.009 -0.006 -0.003                                                                                                                                                                            | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \hline C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ 0.127 \\ \end{array}$                                                                                              | , <b>15 m</b> , <b>arbuler</b> C <sub>l</sub> -0.406  -0.364  -0.327  -0.285  -0.241  -0.207  -0.175  -0.150  -0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C_m$ -0.025 -0.022 -0.020 -0.018 -0.015 -0.013 -0.010 -0.006 -0.003                                                             | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \hline \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ 0.128 \\ \end{array}$                                                                                 | ., 18 m.<br>urbuler<br>C <sub>l</sub><br>-0.414<br>-0.369<br>-0.287<br>-0.243<br>-0.209<br>-0.175<br>-0.149<br>-0.130                             | $C_m$ -0.026 -0.023 -0.021 -0.019 -0.016 -0.014 -0.007 -0.004                                                                                                                                              |
| -10<br>-9<br>-8<br>-7<br>-6<br>-5<br>-4<br>-3             | $\begin{array}{c} C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \\ 0.125 \\ 0.122 \end{array}$                                                                                                    | -0.404<br>-0.364<br>-0.325<br>-0.283<br>-0.242<br>-0.207<br>-0.174<br>-0.148<br>-0.127<br>-0.110                                   | /s, $C_m$ -0.023 -0.021 -0.019 -0.015 -0.012 -0.009 -0.006 -0.003 0.001                                                                                                                                                                  | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \hline C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ 0.127 \\ 0.122 \\ \end{array}$                                                                                     | , <b>15</b> m, arbuler $C_l$ -0.406 -0.364 -0.327 -0.285 -0.241 -0.207 -0.175 -0.150 -0.130 -0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /s, ht $C_m$ -0.025 -0.022 -0.018 -0.015 -0.010 -0.006 -0.003 0.000                                                              | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \hline \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ 0.128 \\ 0.123 \\ \end{array}$                                                                        | ., 18 m.<br>urbuler<br>C <sub>l</sub><br>-0.414<br>-0.369<br>-0.287<br>-0.243<br>-0.209<br>-0.175<br>-0.149<br>-0.130<br>-0.110                   | $C_m$ -0.026 -0.023 -0.021 -0.019 -0.016 -0.014 -0.007 -0.004 0.000                                                                                                                                        |
| -10<br>-9<br>-8<br>-7<br>-6<br>-5<br>-4<br>-3<br>-2<br>-1 | $\begin{array}{c} \textbf{tu} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \\ 0.125 \\ 0.122 \\ 0.118 \\ \end{array}$                                                                         | -0.404<br>-0.364<br>-0.25<br>-0.283<br>-0.242<br>-0.207<br>-0.174<br>-0.148<br>-0.127<br>-0.110<br>-0.090                          | /s, $C_m$ -0.023 -0.021 -0.019 -0.015 -0.012 -0.009 -0.006 -0.003 0.001 0.005                                                                                                                                                            | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ 0.127 \\ 0.122 \\ 0.119 \end{array}$                                                                                      | , <b>15</b> m, arbuler $C_l$ -0.406 -0.364 -0.327 -0.285 -0.241 -0.207 -0.175 -0.150 -0.130 -0.110 -0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /s, nt $C_m$ -0.025 -0.022 -0.020 -0.018 -0.015 -0.013 -0.010 -0.006 -0.003 0.000                                                | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \hline \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ 0.128 \\ 0.123 \\ 0.119 \\ \end{array}$                                                               | ., 18 m.<br>urbuler<br>C <sub>l</sub><br>-0.414<br>-0.369<br>-0.287<br>-0.243<br>-0.209<br>-0.175<br>-0.149<br>-0.130<br>-0.091                   | $C_m$ -0.026 -0.023 -0.021 -0.019 -0.016 -0.014 -0.011 -0.007 -0.004 0.000 0.004                                                                                                                           |
| -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0                          | $\begin{array}{c} \textbf{tu} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \\ 0.125 \\ 0.122 \\ 0.118 \\ 0.121 \\ \end{array}$                                                                | -0.404<br>-0.364<br>-0.325<br>-0.283<br>-0.242<br>-0.207<br>-0.174<br>-0.148<br>-0.127<br>-0.110<br>-0.090<br>-0.072               | /s, $C_m$ -0.023 -0.021 -0.019 -0.015 -0.012 -0.009 -0.006 -0.003 0.001                                                                                                                                                                  | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \hline C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ 0.127 \\ 0.122 \\ 0.119 \\ 0.121 \\ \end{array}$                                                                   | , <b>15</b> m,<br><b>arbuler</b> C <sub>l</sub> -0.406 -0.364 -0.327 -0.285 -0.241 -0.207 -0.175 -0.150 -0.130 -0.110 -0.091 -0.072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /s, ht $C_m$ -0.025 -0.022 -0.018 -0.015 -0.010 -0.006 -0.003 0.000                                                              | $\begin{array}{c} \textbf{C5} \\ \textbf{tt} \\ \hline \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ 0.128 \\ 0.123 \\ 0.119 \\ 0.121 \\ \end{array}$                                                      | -0.414<br>-0.369<br>-0.287<br>-0.243<br>-0.209<br>-0.175<br>-0.149<br>-0.130<br>-0.091<br>-0.071                                                  | $C_m$ -0.026 -0.023 -0.021 -0.019 -0.016 -0.014 -0.007 -0.004 0.000                                                                                                                                        |
| -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2                    | $\begin{array}{c} \textbf{tu} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \\ 0.125 \\ 0.122 \\ 0.118 \\ 0.121 \\ 0.125 \\ \end{array}$                                                       | -0.404<br>-0.364<br>-0.25<br>-0.283<br>-0.242<br>-0.207<br>-0.174<br>-0.148<br>-0.127<br>-0.110<br>-0.090<br>-0.072<br>-0.055      | $C_m$ -0.023 -0.021 -0.019 -0.015 -0.012 -0.009 -0.006 -0.003 0.001 0.005 0.007                                                                                                                                                          | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \hline C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ 0.127 \\ 0.122 \\ 0.119 \\ 0.121 \\ 0.125 \\ \end{array}$                                                          | , <b>15</b> m,<br><b>arbuler</b> C <sub>l</sub> -0.406  -0.364  -0.327  -0.285  -0.241  -0.207  -0.175  -0.150  -0.130  -0.110  -0.091  -0.072 -0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /s, $C_m$ -0.025 -0.022 -0.020 -0.018 -0.015 -0.013 -0.010 -0.006 -0.003 0.000 0.004 0.007 0.009                                 | $\begin{array}{c} \textbf{C5} \\ \textbf{tt} \\ \hline \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ 0.128 \\ 0.123 \\ 0.119 \\ 0.121 \\ 0.124 \\ \end{array}$                                             | -0.414<br>-0.369<br>-0.287<br>-0.243<br>-0.209<br>-0.175<br>-0.149<br>-0.130<br>-0.110<br>-0.091<br>-0.071<br>-0.053                              | $\begin{array}{c} \textbf{/s,} \\ \textbf{nt} \\ \hline C_m \\ -0.026 \\ -0.023 \\ -0.021 \\ -0.019 \\ -0.016 \\ -0.014 \\ -0.001 \\ -0.007 \\ -0.004 \\ 0.000 \\ 0.004 \\ 0.007 \\ 0.010 \\ \end{array}$  |
| -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3                 | $\begin{array}{c} \textbf{tu} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \\ 0.125 \\ 0.122 \\ 0.118 \\ 0.121 \\ 0.125 \\ 0.134 \\ \end{array}$                                              | -0.404 -0.364 -0.325 -0.283 -0.242 -0.207 -0.174 -0.148 -0.127 -0.110 -0.090 -0.072 -0.055 -0.040                                  | $\begin{array}{c} \textbf{/s,} \\ \textbf{nt} \\ \hline C_m \\ -0.023 \\ -0.021 \\ -0.019 \\ -0.015 \\ -0.012 \\ -0.009 \\ -0.006 \\ -0.003 \\ 0.001 \\ 0.005 \\ 0.007 \\ 0.009 \\ 0.011 \\ \end{array}$                                 | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ 0.127 \\ 0.122 \\ 0.119 \\ 0.121 \\ 0.125 \\ 0.133 \\ \end{array}$                                                        | , <b>15</b> m, arbuler $C_l$ -0.406 -0.364 -0.327 -0.285 -0.241 -0.207 -0.175 -0.150 -0.130 -0.110 -0.091 -0.072 -0.055 -0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_m$ -0.025 -0.022 -0.020 -0.018 -0.015 -0.013 -0.010 -0.006 -0.003 0.000 0.004 0.007 0.009 0.011                               | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ 0.128 \\ 0.123 \\ 0.119 \\ 0.121 \\ 0.124 \\ 0.134 \\ \end{array}$                                              | -0.414<br>-0.369<br>-0.287<br>-0.243<br>-0.29<br>-0.175<br>-0.149<br>-0.130<br>-0.110<br>-0.091<br>-0.071<br>-0.053<br>-0.036                     | $ \begin{array}{c} \textbf{/s,} \\ \textbf{nt} \\ \hline C_m \\ -0.026 \\ -0.023 \\ -0.021 \\ -0.016 \\ -0.014 \\ -0.011 \\ -0.007 \\ -0.004 \\ 0.000 \\ 0.004 \\ 0.007 \\ 0.010 \\ 0.012 \\ \end{array} $ |
| -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4              | $\begin{array}{c} \textbf{tu} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \\ 0.125 \\ 0.122 \\ 0.118 \\ 0.121 \\ 0.125 \\ 0.134 \\ 0.141 \\ \end{array}$                                     | -0.404 -0.364 -0.325 -0.283 -0.242 -0.207 -0.174 -0.148 -0.127 -0.110 -0.090 -0.072 -0.055 -0.040 -0.027                           | $ \begin{array}{c} \textbf{/s,} \\ \textbf{nt} \\ \hline C_m \\ -0.023 \\ -0.021 \\ -0.019 \\ -0.015 \\ -0.012 \\ -0.009 \\ -0.006 \\ -0.003 \\ \hline 0.001 \\ 0.005 \\ \hline 0.007 \\ 0.009 \\ \hline 0.011 \\ 0.012 \\ \end{array} $ | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \\ C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ 0.127 \\ 0.122 \\ 0.119 \\ 0.121 \\ 0.125 \\ 0.133 \\ 0.142 \\ \end{array}$                                            | , <b>15</b> m, arbuler $C_l$ -0.406 -0.364 -0.327 -0.285 -0.241 -0.207 -0.175 -0.150 -0.130 -0.110 -0.091 -0.072 -0.055 -0.038 -0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $C_m$ -0.025 -0.022 -0.020 -0.018 -0.015 -0.013 -0.010 -0.006 -0.003 0.000 0.004 0.007 0.009 0.011 0.013                         | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ 0.128 \\ 0.123 \\ 0.119 \\ 0.121 \\ 0.124 \\ 0.134 \\ 0.142 \\ \end{array}$                                     | -0.414<br>-0.369<br>-0.287<br>-0.243<br>-0.29<br>-0.175<br>-0.149<br>-0.130<br>-0.110<br>-0.091<br>-0.071<br>-0.053<br>-0.036<br>-0.022           | $C_m$ -0.026 -0.023 -0.021 -0.019 -0.016 -0.014 -0.011 -0.007 -0.004 0.000 0.004 0.007 0.010 0.012 0.014                                                                                                   |
| -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5           | $\begin{array}{c} \textbf{tu} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \\ 0.125 \\ 0.122 \\ 0.118 \\ 0.121 \\ 0.125 \\ 0.134 \\ 0.141 \\ 0.155 \\ \end{array}$                            | -0.404 -0.364 -0.325 -0.283 -0.242 -0.207 -0.174 -0.148 -0.127 -0.110 -0.090 -0.072 -0.055 -0.040 -0.027 -0.015                    | $C_m$ -0.023 -0.021 -0.019 -0.015 -0.012 -0.009 -0.006 -0.003 0.001 0.005 0.007 0.009 0.011 0.012 0.013                                                                                                                                  | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ 0.127 \\ 0.122 \\ 0.119 \\ 0.121 \\ 0.125 \\ 0.133 \\ 0.142 \\ 0.154 \\ \end{array}$                                      | , 15 m, arbuler C <sub>l</sub> -0.406 -0.364 -0.327 -0.285 -0.241 -0.207 -0.175 -0.150 -0.130 -0.110 -0.091 -0.072 -0.055 -0.038 -0.024 -0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_m$ -0.025 -0.022 -0.020 -0.018 -0.015 -0.013 -0.010 -0.006 -0.003 0.000 0.004 0.007 0.009 0.011 0.013 0.014                   | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ 0.128 \\ 0.123 \\ 0.119 \\ 0.121 \\ 0.124 \\ 0.134 \\ 0.142 \\ 0.154 \\ \end{array}$                            | -0.414<br>-0.369<br>-0.287<br>-0.243<br>-0.29<br>-0.175<br>-0.149<br>-0.130<br>-0.110<br>-0.091<br>-0.071<br>-0.053<br>-0.036<br>-0.022<br>-0.008 | $C_m$ -0.026 -0.023 -0.021 -0.019 -0.016 -0.014 -0.007 -0.004 0.000 0.004 0.007 0.010 0.012 0.014 0.016                                                                                                    |
| -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5           | $\begin{array}{c} \textbf{tu} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \\ 0.125 \\ 0.122 \\ 0.118 \\ 0.121 \\ 0.125 \\ 0.134 \\ 0.141 \\ 0.155 \\ 0.168 \\ \end{array}$                   | -0.404 -0.364 -0.325 -0.283 -0.242 -0.207 -0.174 -0.148 -0.127 -0.110 -0.090 -0.072 -0.055 -0.040 -0.027 -0.015 -0.003             | $C_m$ -0.023 -0.021 -0.019 -0.015 -0.012 -0.009 -0.006 -0.003 0.001 0.005 0.007 0.009 0.011 0.012 0.013 0.015                                                                                                                            | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ 0.127 \\ 0.122 \\ 0.119 \\ 0.121 \\ 0.125 \\ 0.133 \\ 0.142 \\ 0.154 \\ 0.168 \\ \end{array}$                             | , 15 m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C_m$ -0.025 -0.022 -0.020 -0.018 -0.015 -0.013 -0.010 -0.006 -0.003 0.000 0.004 0.007 0.009 0.011 0.013 0.014 0.016             | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ 0.128 \\ 0.123 \\ 0.119 \\ 0.121 \\ 0.124 \\ 0.134 \\ 0.142 \\ 0.154 \\ 0.166 \\ \end{array}$                   | -0.414 -0.369 -0.287 -0.243 -0.29 -0.175 -0.149 -0.130 -0.091 -0.071 -0.053 -0.036 -0.022 -0.008 0.004                                            | $C_m$ -0.026 -0.023 -0.021 -0.019 -0.016 -0.014 -0.007 -0.004 0.000 0.004 0.007 0.010 0.012 0.014 0.016 0.018                                                                                              |
| -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7     | $\begin{array}{c} \textbf{tu} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \\ 0.125 \\ 0.122 \\ 0.118 \\ 0.121 \\ 0.125 \\ 0.134 \\ 0.141 \\ 0.155 \\ 0.168 \\ 0.179 \\ \end{array}$          | -0.404 -0.364 -0.325 -0.283 -0.242 -0.207 -0.174 -0.148 -0.127 -0.110 -0.090 -0.072 -0.055 -0.040 -0.027 -0.015 -0.003             | $C_m$ -0.023 -0.021 -0.019 -0.015 -0.009 -0.006 -0.003 0.001 0.005 0.007 0.009 0.011 0.012 0.013 0.015 0.016                                                                                                                             | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \hline \\ C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ 0.127 \\ 0.122 \\ 0.119 \\ 0.121 \\ 0.125 \\ 0.133 \\ 0.142 \\ 0.154 \\ 0.168 \\ 0.181 \\ \end{array}$          | , 15 m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C_m$ -0.025 -0.022 -0.020 -0.018 -0.015 -0.013 -0.010 -0.006 -0.003 0.000 0.004 0.007 0.009 0.011 0.013 0.014 0.016 0.017       | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ 0.128 \\ 0.123 \\ 0.119 \\ 0.121 \\ 0.124 \\ 0.134 \\ 0.142 \\ 0.154 \\ 0.166 \\ 0.179 \\ \end{array}$          | -0.414 -0.369 -0.287 -0.243 -0.29 -0.175 -0.149 -0.130 -0.091 -0.071 -0.053 -0.036 -0.022 -0.008 0.004                                            | $C_m$ -0.026 -0.023 -0.021 -0.019 -0.016 -0.014 -0.007 -0.004 0.000 0.004 0.007 0.010 0.012 0.014 0.016 0.018 0.020                                                                                        |
| -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7     | $\begin{array}{c} \textbf{tu} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \\ 0.125 \\ 0.122 \\ 0.118 \\ 0.121 \\ 0.125 \\ 0.134 \\ 0.141 \\ 0.155 \\ 0.168 \\ 0.179 \\ 0.192 \\ \end{array}$ | -0.404 -0.364 -0.325 -0.283 -0.242 -0.207 -0.174 -0.148 -0.127 -0.110 -0.090 -0.072 -0.055 -0.040 -0.027 -0.015 -0.003 0.005 0.016 | $C_m$ -0.023 -0.021 -0.019 -0.015 -0.009 -0.006 -0.003 0.001 0.005 0.007 0.009 0.011 0.012 0.013 0.015 0.016 0.018                                                                                                                       | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \hline \\ C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ 0.127 \\ 0.122 \\ 0.119 \\ 0.121 \\ 0.125 \\ 0.133 \\ 0.142 \\ 0.154 \\ 0.168 \\ 0.181 \\ 0.194 \\ \end{array}$ | , 15 m, arbuler $C_l$ -0.406 -0.364 -0.327 -0.285 -0.241 -0.207 -0.150 -0.130 -0.110 -0.091 -0.072 -0.055 -0.038 -0.024 -0.011 0.000 0.010 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_m$ -0.025 -0.022 -0.020 -0.018 -0.015 -0.013 -0.010 -0.006 -0.003 0.000 0.004 0.007 0.009 0.011 0.013 0.014 0.016 0.017 0.021 | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ 0.128 \\ 0.123 \\ 0.119 \\ 0.121 \\ 0.124 \\ 0.134 \\ 0.142 \\ 0.154 \\ 0.166 \\ 0.179 \\ 0.195 \\ \end{array}$ | -0.414 -0.369 -0.243 -0.29 -0.175 -0.149 -0.30 -0.091 -0.071 -0.053 -0.022 -0.008 0.004 0.014 0.028                                               | $C_m$ -0.026 -0.023 -0.021 -0.019 -0.016 -0.014 -0.007 -0.004 0.000 0.004 0.007 0.010 0.012 0.014 0.016 0.018 0.020 0.023                                                                                  |
| -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7     | $\begin{array}{c} \textbf{tu} \\ C_d \\ 0.266 \\ 0.241 \\ 0.220 \\ 0.197 \\ 0.177 \\ 0.161 \\ 0.146 \\ 0.134 \\ 0.125 \\ 0.122 \\ 0.118 \\ 0.121 \\ 0.125 \\ 0.134 \\ 0.141 \\ 0.155 \\ 0.168 \\ 0.179 \\ \end{array}$          | -0.404 -0.364 -0.325 -0.283 -0.242 -0.207 -0.174 -0.148 -0.127 -0.110 -0.090 -0.072 -0.055 -0.040 -0.027 -0.015 -0.003             | $C_m$ -0.023 -0.021 -0.019 -0.015 -0.009 -0.006 -0.003 0.001 0.005 0.007 0.009 0.011 0.012 0.013 0.015 0.016                                                                                                                             | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ \hline \\ C_d \\ 0.268 \\ 0.241 \\ 0.221 \\ 0.199 \\ 0.177 \\ 0.162 \\ 0.147 \\ 0.135 \\ 0.127 \\ 0.122 \\ 0.119 \\ 0.121 \\ 0.125 \\ 0.133 \\ 0.142 \\ 0.154 \\ 0.168 \\ 0.181 \\ \end{array}$          | , 15 m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C_m$ -0.025 -0.022 -0.020 -0.018 -0.015 -0.013 -0.010 -0.006 -0.003 0.000 0.004 0.007 0.009 0.011 0.013 0.014 0.016 0.017       | $\begin{array}{c} \textbf{C5} \\ \textbf{tu} \\ C_d \\ 0.273 \\ 0.245 \\ 0.223 \\ 0.201 \\ 0.179 \\ 0.163 \\ 0.147 \\ 0.135 \\ 0.128 \\ 0.123 \\ 0.119 \\ 0.121 \\ 0.124 \\ 0.134 \\ 0.142 \\ 0.154 \\ 0.166 \\ 0.179 \\ \end{array}$          | -0.414 -0.369 -0.287 -0.243 -0.29 -0.175 -0.149 -0.130 -0.091 -0.071 -0.053 -0.036 -0.022 -0.008 0.004                                            | $C_m$ -0.026 -0.023 -0.021 -0.019 -0.016 -0.014 -0.007 -0.004 0.000 0.004 0.007 0.010 0.012 0.014 0.016 0.018 0.020                                                                                        |

Table 6.2. The static force coefficients with angle of incidence for configuration C5 – various test conditions.

## 7. Dynamic Tests

## 7.1 Model Configuration

The 2.55 m long section model was mounted in the dynamic rig, consisting of relatively soft springs, allowing the simulation of the vertical and torsional oscillations of a section of the deck. The stiffness of the dynamic rig was adjusted to reproduce the frequency ratio between the first symmetric torsional mode of the deck and the first symmetric vertical mode. The model was ballasted with additional mass to represent the dynamically scaled mass and mass moment of inertia of the deck.

Two dynamic rigs were used in the tests. These are referred to as Soft Rig and Stiff Rig, respectively.

The dynamic properties of the prototype structure, provided by the Client, are compared to the section model properties in Table 6.1. The dynamic properties of the prototype structure, provided as the values in vacuum by the Client, were converted to model-scale in-air properties. Because the determination of eigen-frequencies are performed in still air, it is necessary to calculate a set of target values for the "in-air" condition, which includes theoretical values for "added mass".

The main cross-sectional dimensions of the bridge deck are illustrated in Figure 6.1 below. Here,  $B_k$  is the aerodynamic width of the bridge deck sub-sections and y the distance from centre line to the geometric centre of the outer sub-section.



Figure 7.1. Main geometric parameters of the bridge deck.

Due to symmetry  $B_1 = B_3 = 14.4 m$  and  $B_2 = 8.8 m$ . Lateral distance between centre line and outer sub-section centre is y = 19.2 m. Under vibration, the bridge deck displaced air of a certain mass, which adds to the initial mass of the bridge and affects the moment of inertia. The initial quantities are determined as if the structure would be in vacuum. The effective values for mass and moment of inertia for vibration in air are obtained by determining the additional terms. The effective mass in air  $^a m$  results from equation 1:

$$^{a}m = ^{v}m + \frac{\pi}{4} \cdot \rho_{air} \cdot (B_{1}^{2} + B_{2}^{2} + B_{3}^{2})$$
 [kg/m] (1)

Where  ${}^{v}m$  is the initial mass per unit length in vacuum. The effective moment of inertia in air  ${}^{a}I$  is defined by equation 2.

$${}^{a}I = {}^{v}I + \frac{\pi}{4} \cdot \rho_{air} \cdot 2 \cdot B_{1}^{2} \cdot y^{2} \quad [\text{kg m}^{2}/\text{m}]$$
(2)

With  $\rho_{air} = 1.25 \text{ kg/m}^3$  the effective values in air are:

 $^{a}m = 53,200 + 483 = 53,683 \text{kg/m}$ 

 $^{a}I = 26,500,000 + 150,092 = 26,650,092 \text{ kg m}^{2}/\text{m}$ 

Hence, the masses are higher in the "in-air" condition and the eigen-frequencies are lower

The resulting velocity scaling for the vertical and torsional response in the Soft Rig was approximately 1:6.5, 1 m/s in the wind tunnel corresponding to 6.5 m/s in full-scale. For the Stiff Rig, the velocity scaling was 1:2.2.

|                                                       | Proto      | otype      |        | n Model<br>t Rig | Section Model<br>Stiff Rig |          |
|-------------------------------------------------------|------------|------------|--------|------------------|----------------------------|----------|
|                                                       | "Vacuum"   | "In-Air"   | Target | Obtained         | Target                     | Obtained |
| f <sub>vertical</sub> (Hz)                            | 0.0645     | 0.064      | 0.797  | 0.79             | 2.359                      | 2.41     |
| f <sub>torsional</sub> (Hz)                           | 0.0831     | 0.083      | 1.031  | 1.00             | 3.050                      | 3.08     |
| Ratio: f <sub>torsional</sub> / f <sub>vertical</sub> | 1.29       | 1.29       | 1.29   | 1.27             | 1.29                       | 1.28     |
| Mass per unit length (kg/m)                           | 53,200     | 53,683     | 8.388  | 8.57             | 8.388                      | 8.31     |
| Mass moment of inertia per unit length (kg·m²/m)      | 26,500,000 | 26,650,092 | 0.651  | 0.645            | 0.651                      | 0.647    |

Table 7.1. Dynamic properties of prototype structure and section model.

The model was restrained in the lateral direction, the horizontal motions of the deck having no significant influence on the stability of the deck, which is the normal assumption for section model tests.

In the dynamic rigs (both soft rig and stiff rig) the damping for vertical motion was approximately 0.3% of critical and for torsional motion it was about 0.2% of critical. Decay plots with damping estimates are included in Appendix C.

## 7.2 Stability Tests

The dynamic section model tests for the optimisation tests aimed at defining the aerodynamic stability limit of the deck in smooth flow for an angle of wind incidence of  $0^{\circ}$ . In the verification tests, the stability limit was investigated in smooth and turbulent flow for angles of wind incidence of  $-4^{\circ}$ ,  $0^{\circ}$  and  $+4^{\circ}$ .

Variations of the mean and root-mean-square (rms) responses with reduced mean wind speeds at deck level are presented in the form of mean and rms vertical displacement normalised by the deck height (4.68 m full-scale). The pitch response is simply presented as the deck rotation in degrees. This section presents summary plots of the results obtained in the dynamic section model tests.

A summary of the main findings is given in Section 2. The detailed presentation given in Appendix D includes plots of the peak factor. The definition of the peak factor is given below.

$$peak \ factor = \frac{d_{\text{max}} - d_{\text{min}}}{2 \cdot rms} \tag{7.2}$$

 $d_{max}$  and  $d_{min}$  are the maximum and minimum values (e.g., deflection) of a given time series, respectively, and rms is the root-mean-square of the time series.

Each of the data points (except from the last point, where instability starts) on the response plots results from the measurements of stable, limited amplitude motion (as opposed to a negative total damping case where the amplitude continues to grow in magnitude for the same wind speed). The peak factor can be used to see whether the motion is in a "locked-in" state of sinusoidal motion or a random type motion.

The onset of an "instability" is defined as when the character of the response changes from a random type motion to that of a regular, sinusoidal motion, involving either pure torsional, pure vertical or a coupled vertical-torsional vibration. This can often be identified through an examination of the peak factor. A random signal has peak factors in the 3-4 range, while a pure sinusoid has a peak factor of  $\sqrt{2}$  or 1.41. Alternatively, a torsional rms response of 0.5° can be chosen as the governing criteria.

However, in the present tests the identification of instability has been difficult in some cases due to the large buffeting response. It was not possible to obtain time series of the response where the harmonic response of starting instability could be observed in the peak factors. Consequently the test speed was gradually increased (and the response measured) until the self excited motion was observed or the test had to be stopped due to large response in order to safeguard the model and the rig.

Figure 7.2 and Figure 7.3 show results from the stability tests in terms of rms response.







110-25465 Messina Strait Bridge 24-Jun-2010 /svl, stab.m Stability tests Aerodynamic response RMS vertical and torsional response Smooth flow,  $\alpha$  = 0  $^{\circ}$ 

Figure 7.2. Response in stability tests smooth,  $\alpha = 0^{\circ}$ , configurations C1 – C7.



Figure 7.3. Response in stability tests, optimum configuration C5.

For the configuration C5 in turbulent flow at -4°, the measured displacement and rotation is contaminated by the model hitting the wind tunnel wall from.  $U_{red} = U/(f_{t} \cdot B) = 15$  and higher. This was caused by the large negative displacement in combination with the buffeting response.

## 7.3 Damping Tests

The damping level (i.e., the sum of the aerodynamic and structural damping) has been estimated in connection with the stability tests. At wind speeds corresponding to 54 m/s and 75 m/s (full-scale), respectively, the model was given a combined displacement in torsional and vertical direction (pitch and heave). Subsequently the model was released and the decay signals were recorded. Based on the decay signals the damping levels have been estimated. It should be noted that in some cases - especially at the higher wind speed – the damping was high and therefore for these cases the damping has been estimated based on a limited number of cycles of motion and consequently the damping estimation is a rough approximation. In many cases, the obtained decay signals exhibited damping level that was strongly amplitude dependent.

The vertical damping is presented for amplitudes up to 20 - 40 mm and the torsional damping is presented for an amplitude of approximately  $1^{\circ} - 2^{\circ}$ .

The tests results are summarized in the following table.

|       |           |       | vertical | torsional |
|-------|-----------|-------|----------|-----------|
| U     | flow      | angle | damping  | damping   |
| [m/s] |           | [°]   | [% crit] | [% crit]  |
|       |           |       |          |           |
| 54    | smooth    | -4    | 2.2      | 1.9       |
| 75    | smooth    | -4    | 1.6      | 1.3       |
|       |           |       |          |           |
| 54    | turbulent | -4    | 3.0      | 3.8       |
| 75    | turbulent | -4    | 6.7      | 3.4       |
|       |           |       |          |           |
| 54    | smooth    | 0     | 3.1      | 3.6       |
| 75    | smooth    | 0     | 3.2      | 2.6       |
|       |           |       |          |           |
| 54    | turbulent | 0     | 4.0      | 3.2       |
| 75    | turbulent | 0     | 3.9      | 2.8       |
|       |           |       |          |           |
| 54    | smooth    | +4    | 4.9      | 4.3       |
| 75    | smooth    | +4    | 4.2      | 4.3       |
|       |           |       |          |           |
| 54    | turbulent | +4    | 4.2      | 3.1       |
| 75    | turbulent | +4    | 8.1      | 6.4       |

Table 7.2 Estimated Damping Level (in % of Critical) for configuration C5.

## 7.4 Vortex Shedding Tests

Vortex-shedding induced oscillations of configuration C5 were investigated in the Stiff Rig. The tests were conducted for a wind incidence of  $0^{\circ}$ , and in smooth and turbulent flow. The results are presented in this section.

In smooth flow a small torsional response peak was observed at a reduced wind speed (U/( $B \cdot f_t$ )) of approximately 1.0. The recorded response peak had an rms amplitude of 0.075°. Vertical vortex-induced oscillations were not observed in smooth flow. In turbulent, no vertical or torsional vortex induced response was detected.

The results of the tests are presented in Figure 7.4 as rotation and normalised vertical displacement, respectively, as function of reduced wind speed. Detailed plots are located in Appendix E.



TORCE
TECHNOLOGY

110-25465 Messina Strait Bridge
24-Jun-2010 /svl, vortex.m
Vortex Shedding Tests

Aerodynamic response
RMS vertical and torsional response
Smooth & turbulent flow, α = 0°

Figure 7.4. Results of vortex-shedding tests for configuration C5.

## 8. References

- [1] "Section Model Tests for the Messina Strait Crossing, Italy" FORCE 2005011 rev. 3.1, 2005-04-18
- [2] "Stability Tests for Modified Deck for the Messina Strait Crossing, Italy" FORCE 2005263 rev. A, 2005-12-22
- [3] "Static section model tests the Messina Strait Bridge" FORCE 109-28238 rev. 1, 2010-01-13
- [4] "Handbook of Hydraulic Resistance" I.E. Idelchik

# **FORCE Technology**

## **APPENDIX A**

Drawings



















# **FORCE Technology**

## APPENDIX B

The Boundary-Layer Wind Tunnel II

### Wind Tunnel II

FORCE Technology's 2.6 m wide x 1.8 m high x 21 m long Boundary-Layer Wind Tunnel II is used for variety of studies. This wind tunnel has maximum wind speed of 24 m/s when empty. The ceiling of the wind tunnel was adjusted so that it was horizontal throughout the length of the wind tunnel. A principle sketch of this wind tunnel is given in Figure 0.1.



Figure 0.1. FORCE Technology's Boundary-Layer Wind Tunnel II.



Figure B.1. View along BLWT in Flow Direction.

The tunnel consists of an inlet section, a working section and a fan section. The air is sucked through the wind tunnel and returned through the building in which the wind tunnel is situated. In the inlet section, the air passes through a honeycomb, two finemeshed nets and a contraction. Thus, a flow with uniform velocity and very little turbulence can be obtained. The working section has the following principal dimensions:

Length = 20.8 mWidth = 2.6 m

Height = 1.8 - 2.3 m (adjustable).

The long working section is necessary to build up a natural boundary-layer wind profile.

# **FORCE Technology**

## **APPENDIX C**

**Damping Documentation** 



Figure C.1. Stability tests - soft rig - heave damping



Figure C.2. Stability tests – soft rig – pitch damping



Figure C.3. Vortex tests – stiff rig – heave damping



Figure C.4. Vortex tests - stiff rig - pitch damping

# **FORCE Technology**

## **APPENDIX D**

**Stability Tests – Response Plots** 











Stability Tests Configuration C1 Smooth flow,  $\alpha = 0^{\circ}$ 







Stability Tests Configuration C1 Smooth flow,  $\alpha = 0^{\circ}$ 











Stability Tests Configuration C2 Smooth flow,  $\alpha = 0^{\circ}$ 







Stability Tests Configuration C2 Smooth flow,  $\alpha = 0^{\circ}$ 











Stability Tests Configuration C3 Smooth flow,  $\alpha = 0^{\circ}$ 







Stability Tests Configuration C3 Smooth flow,  $\alpha = 0^{\circ}$ 





**110–25465 Messina Strait Bridge** 09–Jun–2010 /svl, stab.m Mean and RMS Response

Stability Tests Configuration C4 Smooth flow,  $\alpha = 0^{\circ}$ 







Stability Tests Configuration C4 Smooth flow,  $\alpha = 0^{\circ}$ 





**110–25465 Messina Strait Bridge** 09–Jun–2010 /svl, stab.m Mean and RMS Response

Stability Tests Configuration C5 Smooth flow,  $\alpha = 0^{\circ}$ 







Stability Tests Configuration C5 Smooth flow,  $\alpha = 0^{\circ}$ 





**110–25465 Messina Strait Bridge** 09–Jun–2010 /svl, stab.m Mean and RMS Response

Stability Tests Configuration C6 Smooth flow,  $\alpha = 0^{\circ}$ 







Stability Tests Configuration C6 Smooth flow,  $\alpha = 0^{\circ}$ 











Stability Tests Configuration C7 Smooth flow,  $\alpha = 0^{\circ}$ 







Stability Tests Configuration C7 Smooth flow,  $\alpha = 0^{\circ}$ 





**110–25465 Messina Strait Bridge** 09–Jun–2010 /svl, stab.m Mean and RMS Response

Stability Tests Configuration C5 Smooth flow,  $\alpha = -4^{\circ}$ 







Stability Tests Configuration C5 Smooth flow,  $\alpha = -4^{\circ}$ 





Stability Tests Configuration C5 Turbulent flow,  $\alpha = -4^{\circ}$ 







Stability Tests Configuration C5 Turbulent flow,  $\alpha = -4^{\circ}$ 





**110–25465 Messina Strait Bridge** 09–Jun–2010 /svl, stab.m Mean and RMS Response

Stability Tests Configuration C5 Smooth flow,  $\alpha = 0^{\circ}$ 







Stability Tests Configuration C5 Smooth flow,  $\alpha = 0^{\circ}$ 





**110–25465 Messina Strait Bridge** 09–Jun–2010 /svl, stab.m Mean and RMS Response

Stability Tests Configuration C5 Turbulent flow,  $\alpha = 0^{\circ}$ 







Stability Tests Configuration C5 Turbulent flow,  $\alpha = 0^{\circ}$ 





**110–25465 Messina Strait Bridge** 09–Jun–2010 /svl, stab.m Mean and RMS Response

Stability Tests Configuration C5 Smooth flow,  $\alpha = +4^{\circ}$ 







Stability Tests Configuration C5 Smooth flow,  $\alpha = +4^{\circ}$ 





**110–25465 Messina Strait Bridge** 09–Jun–2010 /svl, stab.m Mean and RMS Response

Stability Tests Configuration C5 Turbulent flow,  $\alpha = +4^{\circ}$ 







Stability Tests Configuration C5 Turbulent flow,  $\alpha = +4^{\circ}$ 

## **FORCE Technology**

## **APPENDIX E**

**Vortex Shedding Tests – Response Plots** 





**110–25465 Messina Strait Bridge** 09–Jun–2010 /svl, vortex.m Mean and RMS Response

Vortex Tests Configuration C5 Smooth flow,  $\alpha = 0^{\circ}$ 







Vortex Tests Configuration C5 Smooth flow,  $\alpha = 0^{\circ}$ 





**110–25465 Messina Strait Bridge** 09–Jun–2010 /svl, vortex.m Mean and RMS Response

Vortex Tests Configuration C5 Turbulent flow,  $\alpha = 0^{\circ}$ 







Vortex Tests Configuration C5 Turbulent flow,  $\alpha = 0^{\circ}$ 



Copyright © FORCE Technology

FORCE Technology FORCE Technology Division for Maritime Industry Headquarters Park Allé 345 Hjortekærsvej 99 2605 Brøndby, Denmark 2800 Kgs. Lyngby, Denmark Tel. +45 72 15 77 00 Tel. +45 43 26 70 00 Fax +45 72 15 77 01 Fax +45 43 26 70 11 force@force.dk force@force.dk www.force.dk www.force.dk