

APPROVATO REV DATA DESCRIZIONE REDATTO VERIFICATO 20-06-2011 **EMISSIONE FINALE** F0 LM GV SR

NOME DEL FILE: PF0064_F0_ITA.doc

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

INDICE

1		Relazior	ne di sintesi	5
2		Profilo d	i suolo e caratteristiche geotecniche	. 14
3		Modello	costitutivo del terreno e parametri del terreno	. 17
4		Blocchi	di ancoraggio – Sicurezza rispetto allo scorrimento	. 20
	4.	.1	Condizioni statiche – equazioni dominanti	. 20
		4.1.1	Fattore di sicurezza globale	. 20
		4.1.2	Fattori di sicurezza parziali	. 20
	4.	2	Condizioni sismiche – equazioni dominanti	. 21
		4.2.1	Approccio pseudo-statico	. 21
		4.2.1.	1 Fattore di sicurezza globale	. 22
		4.2.1.	2 Fattori di sicurezza parziale	. 22
		4.2.2	Approccio basato sullo spostamento	. 23
		4.2.2.	1 Coefficiente sismico critico	. 24
		4.2.2.	2 Equazione di moto relativo in condizioni sismiche	. 24
5		Blocco d	li Ancoraggio Sicilia – sicurezza rispetto allo scorrimento	. 27
	5.	.1	Peso proprio del blocco di ancoraggio	. 27
	5.	2	Meccanismi di scorrimento	. 27
	5.	.3	Valutazione della superficie di scorrimento	. 28
	5.	.4	Resistenza allo scorrimento ai lati del blocco di ancoraggio	. 32
	5.	.5	Resistenza passiva nella parte frontale del blocco	. 33
		5.5.1	Approccio pseudo-statico	. 33
		5.5.2	Approccio basato sullo spostamento	. 34
	5.	.6	Valutazione della sicurezza rispetto allo scorrimento – approccio pseudo-statico	. 36
	5.	.7	Valutazione della performance di scorrimento-approccio basato sullo spostamento	38
		5.7.1	Azione sismica	. 38
		5.7.2	Coefficiente sismico critico	. 44
		5.7.3	Spostamenti indotti da terremoto	. 44
6		Blocco	li Ancoraggio della Sicilia – Sicurezza rispetto alla rotazione	. 48
7		Blocco	li ancoraggio Sicilia – Capacità portante	. 50
8		Conclusioni		

Stretto di Messina	ĸ	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		cumento	Rev	Data
		_ITA.doc	F0	20-06-2011

9	Figure	56
Ap	opendici	91
	Appendice A – Resistenza di Scorrimento lungo i lati del blocco	92
	Appendice B – Resistenza di terra passiva nella parte frontale del blocco	101
	Appendice C – Sicurezza rispetto allo scorrimento, approccio pseudo-statico	104
	Appendice D – Storie temporali	108
	Appendice E – Forze dei cavi aggiornate ottenute dal modello globale IBDAS versione 3.3b.	139
	Appendice F – Forze dei cavi aggiornate ottenute dal modello globale IBDAS versione 3.3f	142
Bi	bliografia	145

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di		Codice documento	Rev	Data
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011

1 Relazione di sintesi

Nella presente relazione, la sicurezza geotecnica del blocco di ancoraggio della Sicilia viene valutata rispetto allo stato limite, utilizzando un approccio pseudo statico, inclusa la sicurezza rispetto allo scivolamento e alla rotazione, e il cedimento della capacità portante, mentre gli spostamenti del blocco, indotti da terremoto, sono valutati mediante approccio fondato sullo spostamento. I meccanismi di scivolamento più probabili da utilizzarsi per il calcolo degli spostamenti indotti da terremoto, sono stati stimati mediante analisi FE di deformazione piana. Le computazioni sono state effettuate utilizzando le forze cavi fornite dal progetto di gara, che per la combinazione di carico SLU risultano leggermente superiori ai valori ottenuti dal modello globale IBDAS (5.8% per la versione 3.3b, 8% per la versione 3.3f); ciò risulta in una stima conservatrice del comportamento del Blocco di Ancoraggio della Sicilia.

La relazione che l'accompagna "Blocco di ancoraggio Sicilia – valutazione del comportamento del blocco mediante analisi FE 3D e analisi della capacità portante" descrive i risultati delle analisi FE 3D del Blocco di Ancoraggio della Sicilia.

Il Capitolo 2 descrive il profilo del suolo sulla costa della Sicilia (Figura 2.1).

Iniziando dal livello del suolo e muovendosi verso il basso, si incontrano le seguenti unità: *Depositi Costieri* (Coastal Deposits); *Ghiaie di Messina* (Messina Gravel)/*Sedimenti dei terrazzi* (Terrace Deposits); *Depositi Continentali* (Continental Deposits)/*Calcarenite di Vinco* (Vinco Calcarenite); *Conglomerato di Pezzo* (Pezzo Conglomerate); *Cristallino* (Crystalline bedrock). La Figura 2.2 mostra una vista in pianta del Blocco di Ancoraggio della Sicilia. Le due sezioni longitudinali e la sezione trasversale indicata in Figura 2.2 sono mostrate nella Figura 2.3-2.5. Le sezioni nelle figure mostrano che le unità Ghiaie di Messina/Sedimenti dei terrazzi si estendono dal livello del suolo per uno spessore di circa 200 m. Si tratta dunque delle uniche unità geologiche di rilevanza. La Tabella 2.1 riassume i parametri meccanici principali ottenuti dalla caratterizzazione geotecnica.

Il Capitolo 3 dettaglia il modello costitutivo adottato nelle analisi FE, discusso nella relazione.

Si tratta di un modello elasto-plastico di tipo indipendente dal tempo con incrudimento isotropo (Hardening Soil) disponibile mediante codice Plaxis. Nel modello, il comportamento elastico è definito mediante elasticità isotropica, per mezzo di un modulo di Young, *E'*, dipendente dalle sollecitazioni. Per il carico plastico da stati di sollecitazioni isotropiche, il modello prevede una relazione non lineare sollecitazione-deformazione con modulo tangente iniziale uguale a *E'*. I valori

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

di *E*' erano correlati al modulo di taglio alla piccola deformazione G_0 ottenuta dalla prova cross-hole effettuata sul sito. In particolare, i valori dei parametri riportati alla Tabella 3-1 sono stati ottenuti dal migliore adattamento dei risultati del test cross-hole in Figura 3.2. I valori dei parametri di incrudimento isotropo (Hardening soil) adottati nelle analisi FE, discusse nella relazione, sono presentati alla Tabella 3.2.

Il Capitolo 4 esamina le equazioni dominanti ai fini della sicurezza dei blocchi di ancoraggio rispetto allo scivolamento. In condizioni statiche (sezione 4.1) e seguendo l'approccio del fattore di sicurezza globale (sezione 4.1.1), la sicurezza rispetto allo scivolamento può essere espressa mediante il fattore di sicurezza globale fornito nell'equazione (1). Per il significato dei simboli di cui all'equazione (1), si faccia riferimento alla Figura 4.1 della relazione. Seguendo l'approccio dei fattori di sicurezza parziale (sezione 4.1.2), i valori di progetto delle azioni E_d, e della resistenza R_d, sono calcolati dai valori caratteristici corrispondenti applicando fattori di sicurezza parziale alle azioni, resistenze e ai parametri di forza. La condizione $R_d \ge E_d$ deve poi essere soddisfatta (D.M. 14.01.2008). Le azioni caratteristiche e la resistenza caratteristica, sono definite nell'equazione (2). Seguendo l'Approccio 1, la Combinazione 2 per studiare gli stati limite geotecnici (GEO) (sezione 2.6.1 - D.M. 14.01.2008), le azioni progettuali e le resistenze possono essere calcolate dall'equazione (3) in cui: γ_{0} = 1.25 e γ_{P} = 1.1, le forze dei cavi, T, includono i fattori di carico parziale come forniti dalle analisi strutturali del progetto di gara per ogni stato limite e dunque non sono fattorizzate, il peso del blocco di ancoraggio (carico permanente) è moltiplicato per lo stesso fattore di carico, γ_{G1} = 1, a prescindere dal suo effetto (D.M. 14.01.2008) e i componenti di S_a e R_p normali per la superficie di scorrimento sono trascurati. La sicurezza rispetto allo scivolamento in condizioni di carico statico non è valutata nella relazione poiché le condizioni di carico pseudostatico sono le più critiche.

L'analisi dei blocchi di ancoraggio in condizioni sismiche (sezione 4.2) è effettuata utilizzando l'approccio pseudo-statico e l'approccio di blocco scorrevole basato sullo spostamento. Nell'approccio pesudo-statico (sezione 4.2.1) la stabilità del blocco è misurata mediante un fattore globale di sicurezza F, che è il rapporto della forza di resistenza totale alla forza trainante totale (sezione 4.2.1.1) oppure utilizzando fattori di sicurezza parziali (sezione 4.2.1.2). Il fattore globale di sicurezza rispetto allo scivolamento è fornito nell'equazione (4). Per il significato dei simboli nell'equazione (4) si faccia riferimento alla Figura 4.2 della relazione. Nell'approccio dei fattori di sicurezza parziale (sezione 4.2.1.2) la stabilità del blocco è misurata mediante un confronto dell'azione progettuale con la resistenza progettuale. I valori di progetto delle azioni E_d, e della

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

resistenza R_d, sono calcolati dai valori caratteristici corrispondenti applicando fattori di sicurezza parziale alle azioni, resistenze e ai parametri di forza. La condizione $R_d \ge E_d$ deve poi essere soddisfatta. In condizioni sismiche, i fattori di carico delle azioni progettuali sono definiti uguali all'unità $\gamma_G = \gamma_Q = 1$ (§ 7.11.1 - D.M. 14.01.2008) e sono dunque omessi nelle pertinenti equazioni. Le azioni caratteristiche e la resistenza caratteristica sono definite nell'equazione (5). Seguendo l'Approccio 1, la Combinazione 2 per studiare gli stati limite geotecnici (GEO), le azioni progettuali e le resistenze possono essere calcolate dall'equazione (6) in cui: γ_{0} = 1.25 e γ_{P} = 1.1, le forze dei cavi, T, includono i fattori di carico parziale come forniti dalle analisi strutturali del progetto di gara per ogni stato limite e i componenti di S_a e R_p normali per la superficie di scorrimento sono trascurati. Nell'approccio basato sullo spostamento (sezione 4.2.2) la sicurezza del blocco di ancoraggio è valutata confrontando lo spostamento permanente sviluppato durante il terremoto con un valore di soglia. L'accelerazione critica è dapprima determinata utilizzando l'approccio pseudo-statico e poi lo spostamento cumulativo della massa potenzialmente in scorrimento viene calcolato utilizzando l'analisi del blocco in scorrimento. La massa in scorrimento è trattata come un corpo rigido con spostamenti permanenti che hanno luogo ogni volta che l'accelerazione al suolo eccede l'accelerazione critica. Lo spostamento permanente è calcolato integrando due volte la storia temporale di accelerazione relativa, sugli intervalli di tempo in cui la velocità della massa di scorrimento relativa al terreno è positiva. L'accelerazione critica è valutata utilizzando i valori caratteristici dei parametri di forza c'_k e \u03c6'_k; in condizioni sismiche i fattori di carico sono pari ad uno. L'azione sismica pseudo-statica agisce con un angolo (α - θ) rispetto alla superficie in scorrimento (Figura 4.3). Supponendo condizioni di equilibrio limite (F=1) e trascurando i contributi di spinte di terra attive e passive, si ottiene l'espressione di K fornita nell' equazione (8). Il valore minimo di *K*, che è il coefficiente sismico critico K_c, è ottenuto per $\theta = \alpha + \phi_s' \Rightarrow \alpha - \theta = -\phi'_s$ (Figura 4.3) ed ha l'espressione fornita nell'equazione (9). Durante lo scivolamento (K>Kc), si può presumere che la spinta di terra netta ΔR aumenta con l'aumento degli spostamenti del blocco u, come indicato nell'equazione (10) in cui k_d è un irrigiditore a molla non lineare, a seconda dello spostamento relativo (Figura 4.4). L'effetto di ΔR è esplicitamente incluso nell'equazione di movimento relativa utilizzata per calcolare lo spostamento del blocco di ancoraggio indotto da terremoto. Separando i componenti verticali e orizzontali delle storie temporali di accelerazione, e per $\theta = \alpha + \phi_s' \Rightarrow \alpha - \theta = -\phi'_s$, l'equazione di moto relativo può essere scritta come nell'equazione (21).

Il Capitolo 5 esamina la sicurezza rispetto allo scivolamento per il Blocco di Ancoraggio della

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Sicilia.

Il peso proprio del blocco di ancoraggio (sezione 5.1) è stato calcolato sulla base dei disegni del progetto di gara (Figura 5.2). I dati pertinenti sono elencati alla Tabella 5.1.

Nelle analisi (Figura 5.3) sono stati considerati tre possibili meccanismi di scivolamento (sezione 5.2), caratterizzati da angoli α = 38°°, 26° e 8° in orizzontale; in ogni meccanismo, il contributo del suolo fra la superficie in scivolamento e l'ancoraggio è considerato come peso aggiunto, come riportato nella Tabella 5.2.

Al fine di stimare il meccanismo di scivolamento più probabile (sezione 5.3), analisi FE di deformazione piana sono state condotte utilizzando Plaxis 8 (Figura 5.4). Il contatto del blocco di ancoraggio al suolo è stato modellato mediante elementi di interfaccia con resistenza a taglio e rigidità ridotta. Si è supposto che il blocco di ancoraggio si comportasse come un materiale elastico non poroso. Le analisi sono state condotte in termini di sollecitazioni effettive, supponendo condizioni drenate. La presenza di muri di diaframma di fronte e dietro al blocco di ancoraggio non è stata presa in considerazione nelle analisi. La Tabella 5.3 riassume l'equivalente unità di peso, γ_{eq} , di entrambe le camere dei cavi e delle camere piene utilizzate nelle analisi FE di deformazione piana. Nelle analisi sono state considerate condizioni di carico SLU, diffondendo il carico del cavo T sulla larghezza B = 100 m del blocco di ancoraggio, in modo da tenere in considerazione le condizioni di deformazione piana. La Tabella 5.4 illustra nel dettaglio la sequenza delle fasi di calcolo. Per stimare la superficie scorrevole più probabile, lo spostamento del blocco e la sua direzione sono state valutate come la media tra gli spostamenti del centro di gravità e dei quattro nodi del blocco al punto di contatto con il suolo (Figura 5.8-5.9). La Tabella 5.5 mostra i risultati ottenuti. In condizioni di carico SLU, la direzione media è da 14.2° in orizzontale. Il meccanismo di scivolamento più probabile è dunque fra il secondo ed il terzo meccanismo.

La resistenza di scivolamento T_L sviluppata ai lati del blocco di ancoraggio (sezione 5.4) è stata calcolata secondo l'ipotesi conservatrice che l'equilibrio di limite attivo è raggiunto dietro i muri di diaframma durante le fasi di scavo, riducendo $\tan \varphi'$ e $\tan \varphi'_s$ del fattore $\gamma_{\varphi} = 1.25$ come indicato da D.M. 14.01.2008. La Tabella 5.7 elenca le caratteristiche e i valori di progetto della resistenza laterale T_L . Le prime sono utilizzate per valutare il coefficiente sismico critico $K_{c(red)}$ dato dall'equazione (9) mentre gli ultimi, sono utilizzati nell'approccio pseudo statico. I dettagli di calcolo sono illustrati nell'Appendice A.

La resistenza passiva R_P sviluppata di fronte al blocco allo scivolamento è trattata nella Sezione 5.5. nell'approccio pseudo-statico (sezione 5.5.1) R_P è stata calcolata utilizzando la soluzione ottenuta da Chen e Liu (1990) riducendo tan φ' del fattore γ_{φ} = 1.25 (D.M. 14.01.2008). La Tabella

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essin a VO	l
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

5.9 riporta i valori dei coefficienti di pressione passiva della terra progettuali e caratteristici, K_{Pk} e K_{Pd} , rispettivamente. I valori di K_h e K_v utilizzati nel calcolo, sono anche elencati nella Tabella 5.9. Essi sono stati ottenuti supponendo i valori di ag specificati nel documento GCG.F.04.01. Gli effetti del sito sono stati tenuti in considerazione supponendo un fattore di amplificazione topografica S_T = 1.2 ed un fattore di amplificazione del sotto-suolo S_S = 1.0; un coefficiente β_m = 0.31 è stato utilizzato per il calcolo di K_h (D.M. 14.01.2008). La Tabella 5.10 riassume i valori progettuali calcolati di resistenza passiva R_{Pd} sviluppati di fronte al blocco; a titolo di confronto, anche i valori caratteristici di R_P sono forniti nella Tabella. L'Appendice B illustra i dettagli di calcolo. Nell'approccio basato sullo spostamento (Sezione 5.1.2) si suppone che $R_{\rm P}$ incrementi progressivamente con lo spostamento relativo u indotto dal carico dovuto a terremoto. Per ottenere la relazione analitica fra $R_{\rm P}$ e u, analisi FE di deformazione piana sono state condotte con riferimento ai meccanismi 2 (α = 26°) e 3 (α = 8°), in cui un muro idealmente perfettamente liscio, situato in posizione frontale al blocco di ancoraggio e che si estende per la profondità del meccanismo di scivolamento modellato nell'analisi, è stato progressivamente spostato verso il suolo. Il presupposto di un interfaccia liscia suolo-parete e le condizioni di deformazione piana, sono entrambe conservative. Per ogni valore dello spostamento applicato, u (= 1 mm to 1 m), la resistenza della terra ΔR è stata calcolata come integrale della differenza delle sollecitazioni orizzontali che agiscono sul muro per il dato spostamento e in condizioni geostatiche sulla lunghezza del muro. La relazione fra ΔR e u ed il valore ultimo di ΔR , è stata ottenuta mediante interpolazione iperbolica dei dati risultanti. I risultati ottenuti sono riassunti alla Tabella 5.12 e nella Figura 5.11.

Nell'approccio pseudo- statico (sezione 5.6) la sicurezza rispetto allo scivolamento è stata valutata utilizzando l'equazione (6) secondo quando indicato in D.M. 14.01.2008. Le resistenze progettuali sono state calcolate utilizzando i contributi di resistenza allo scivolamento alla base ed ai lati del blocco di ancoraggio, e la resistenza passiva di fronte al blocco; la spinta attiva della terra dietro al blocco è stata considerata solo lungo la porzione verticale del muro retrostante. Le azioni progettuali e resistenza sono state calcolate utilizzando i coefficienti sismici pseudo-statici riportati nella Tabella 5.9. La Tabella 5.13 fornisce i valori di *T* forniti dalle analisi strutturali del progetto di gara per ogni stato limite. Il valore caratteristico di φ'_s mobilitato sulla superficie di scorrimento, si è supposto fosse l'angolo di resistenza a taglio a volume costante; il suo valore è stato stimato utilizzando la relazione proposta da Bolton (1986): $\varphi'_{sk} = \varphi'_{cv} = \varphi'_p - 3 D_R(10 - Inp') + 3^\circ$, che per $\varphi'_p = 40^\circ$, $D_R = 50\%$ e p' = 200 kPa fornisce $\varphi'_{sk} = \varphi'_{cv} = 36^\circ$. La Tabella 5.15 riporta i coefficienti sismici pseudo-statici, i coefficienti di pressione attiva della terra e la spinta attiva della terra

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

utilizzati per i calcoli. La Tabella 5.16 a-b riporta il confronto fra le resistenze progettuali e le azioni progettuali per tre meccanismi di scivolamento considerati nelle analisi: in tutti i casi $\Sigma R_d / \Sigma E_d > 1$ e la sicurezza rispetto allo scivolamento è soddisfatta. L'Appendice C fornisce i dettagli di calcolo.

La prima fase dell'approccio basato su scivolamento (sezione 5.7) è la selezione delle storie temporali di accelerazione (sezione 5.7.1). Esse consistevano in 22 accelerogrammi reali derivati dal database PEER strong-motion (=forte movimento) con magnitudo compreso fra 6.5 e 7.28, distanze ipocentrali fra 12 e 82 km, e accelerazioni di picco comprese fra 0.29 e 1.16 g e 8 accelerogrammi artificiali di forte movimento, del tutto compatibili con lo spettro di risposta del progetto preliminare. La Tabella 5.17 e la Tabella 5.18 riportano i parametri principali dei loro componenti verticali e orizzontali, rispettivamente. Ogni componente orizzontale è stato scalato secondo l'accelerazione di picco di progetto $a_{max} = 0.58g$ e il componente verticale corrispondente è stato scalato dello stesso fattore (Tabelle 5.19 e 5.20). i componente verticale. Le analisi sono state anche ripetute utilizzando il componente orizzontale scalato con il componente verticale scalato degli a.058g (Tabella 5.21). Le Figure 5.18-5.22 mostrano lo spettro di risposta elastica degli accelerogrammi selezionali, comparati allo spettro di risposta progettuale.

I valori di coefficienti sismici critici (sezione 5.7.2) sono stati valutati per ciascun stato limite, considerando il contributo della base e delle parti laterali del blocco ed una resistenza della terra passiva di fronte al blocco, che incrementa gradualmente con lo spostamento del blocco. I valori di K_c , calcolati utilizzando l'equazione (9), sono elencati nella Tabella 5.22. I valori più inferiori di K_c sono stati ottenuti per condizioni SLU e dunque gli spostamenti sono stati calcolati solo per questa condizione.

Gli spostamenti indotti da terremoto (sezione 5.7.3) sono stati calcolati mediante integrazione numerica dell'equazione (21) per i meccanismi 2 e 3 soltanto, poiché le analisi pseudo-statiche hanno mostrato che il meccanismo 1 è il meno critico e le analisi FE hanno mostrato che la superficie con maggiori probabilità di scivolamento è situata fra i meccanismi 2 e 3.

Ogni componente orizzontale scalata, è stata combinata con il corrispondente componente verticale, dapprima scalato dello stesso fattore e poi scalato a 0.58g e le analisi sono state ripetute considerando entrambe le direzioni di applicazioni dei componenti orizzontali. I massimi spostamenti calcolati sono riassunti nella Tabella 5.23. Gli spostamenti più elevati sono stati ottenuti per il meccanismo 3 (α = 8), quando i componenti verticali sono scalati a 0.58g. I risultati ottenuti per ogni accelerogramma sono riassunti alle Tabelle 5.24- 5.25. L'Appendice D riporta le

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

storie temporali di accelerazione, velocità e spostamento, ottenute per ogni input sismico per il meccanismo di scivolamento 3.

Il **Capitolo 6** esamina la sicurezza rispetto allo scorrimento per il Blocco di Ancoraggio della Sicilia. La sicurezza rispetto alla rotazione è stata valutata imponendo momentum equilibrium intorno al punto O appartenente al piano di movimento (Figura 6.1). I fattori di carico delle azioni progettuali sono definiti pari all'unità (condizioni sismiche § 7.11.1 - D.M. 14.01.2008). La sicurezza rispetto alla rotazione è trattata come uno stato limite di equilibrio del corpo rigido (EQU) utilizzando il fattore di sicurezza parziale del gruppo M2 ed è assicurata quando i momenti resistenti sono uguali o maggiori dei momenti *driving (driving moments)*, come per l'equazione (28) in cui: e_i è la distanza della linea di azione di ciascuna forza dal punto O, i valori fattorizzati della forza del cavo T sono introdotti come previsto dalle analisi strutturali del progetto di gara; la resistenza passiva della terra R_{Pd} fa riferimento al meccanismo 3 e il contributo della resistenza di scivolamento T_{Ld} sviluppata lungo i lati del blocco di ancoraggio è trascurata. La Tabella 6.2 e 6.3 riportano le azioni di resistenza e le azioni driving. La proporzione delle azioni di resistenza e delle azioni driving, è pari a 2.42. I requisiti di D.M. 14.01.2008 sono quindi soddisfatti.

Il **Capitolo 7** esamina la sicurezza rispetto alla capacità portante a rottura per il Blocco di Ancoraggio della Sicilia.

La sicurezza rispetto alla capacità portante a rottura è stata valutata utilizzando l'Approccio 1, Combinazione 2, (D.M. 14.01.2008). I carichi considerati per la valutazione della capacità portante sono la forza del cavo *T*, il peso del blocco di ancoraggio *W* e i componenti orizzontali e verticali della forza inerziale pseudo-statica, $K_hW \in K_vW$. La resistenza allo scivolamento sviluppata sulle pareti laterali del blocco di ancoraggio e la resistenza passiva della terra sono state trascurate. Entrambi i presupposti sono conservatori.

La capacità portante è stata valutata in termini di sollecitazione effettiva utilizzando fattori di correzione adeguati per tenere in considerazione l'inclinazione del carico applicato, la forma delle fondazioni e l'inclinazione della base di fondazione, utilizzando la teoria di Terzaghi come indicato nell'equazione (30). Per tenere in considerazione l'eccentricità del carico, la capacità portante è stata calcolata per una fondazione rettangolare equivalente con larghezza *B*' e lunghezza *L*' ridotta. I valori progettuali delle resistenze e delle forze sono stati ottenuti dai valori caratteristici corrispondenti e sono quelli che normalmente agiscono sul piano delle fondazioni.

La sicurezza rispetto alla capacità portante a rottura è assicurata se $R_d \ge E_d$. i fattori di sicurezza

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

parziali delle azioni di progetto sono definiti pari a 1: $\gamma_G = \gamma_Q = 1$ (condizioni sismiche: § 7.11.1 – D.M. 14.01.2008). Tuttavia, le forze dei cavi utilizzate per calcolare i componenti progettuali dei carichi che agiscono normalmente e tangenzialmente al piano di fondazione nelle equazioni (31) e (32), includono i fattori di carico parziale, come indicato dalle analisi strutturali del progetto di gara. I calcoli sono stati effettuati con riferimento alla condizione di carico SLU. Le Tabelle 7.2 e 7.3 forniscono i valori dei carichi progettuali che agiscono normalmente e tangenzialmente al piano di progettuale e il carico di progetto normale, è pari a 3.2. I requisiti di D.M. 14.01.2008 sono dunque soddisfatti.

Il Capitolo 8 riassume i contenuti della relazione.

La prestazione sismica del Blocco di ancoraggio della Sicilia è stata valutata utilizzando l'approccio pseudo-statico, in cui si presume che il blocco sia in uno stato di equilibrio limite sotto l'azione delle forze di inerzia e statiche, e l'approccio basato sullo spostamento, in cui gli spostamenti del blocco di ancoraggio, indotti da terremoto, sono valutati per una serie di movimenti sismici di input. Sono stati esaminati tre diversi meccanismi di scivolamento, caratterizzati da angoli di inclinazione α = 38°, 26° e 8°. Le analisi FE di deformazione piana del blocco di ancoraggio, hanno permesso di valutare che l'inclinazione prevalente dei vettori di spostamento è nel range 8°-26° in modo tale che il secondo ed il terzo meccanismo sono stati riconosciuti come quelli con maggiore possibilità di occorrenza. Per quanto concerne le condizioni pseudo-statiche, sia le azioni progettuali che le resistenza progettuali sono state calcolate utilizzando coefficienti sismici pseudo-statici forniti dalle Norme Tecniche per le Costruzioni Italiane (D.M. 14.01.2008). I risultati ottenuti mostrano che la sicurezza rispetto allo scivolamento è adeguatamente soddisfatta per ciascuna delle condizioni di carico fornita dalle analisi strutturali del progetto di gara. Gli spostamenti indotti da terremoto sono stati calcolati utilizzando 30 accelerogrammi di input. Il componente orizzontale delle storie temporali di accelerazione selezionate, è stato scalato a 0.58g, mentre il componente verticale è stato scalato dello stesso fattore utilizzato per il corrispondente componente orizzontale, oppure anch'esso a 0.58g. Gli spostamenti indotti da terremoto si riducono con l'incremento dell'inclinazione del meccanismo di scivolamento. Il massimo spostamento è pari a 1mm per il meccanismo 2 (α =26°) e pari a 33 mm per il meccanismo 3 (α =8°).. Infine, la capacità portante e la sicurezza rispetto alla rotazione sono state stimate seguendo le prescrizioni di D.M. 14.01.2008; i risultati mostrano che entrambi i requisiti sono soddisfatti per le condizioni di carico considerate.

Appendice E e Appendice F. Forze dei cavi aggiornate ottenute dal modello globale IBDAS,

Stretto di Messina	E u r o l i n K	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

versione 3.3b e 3.3f.

Le forze trasmesse dei cavi principali al Blocco di Ancoraggio della Sicialia, sono state rivalutate utilizzando il modello globale IBDAS, versione 3.3b e 3.3f. Le peggiori combinazioni di carico sono state scelte per ogni stato limite (SLIS, SLS2 e SLU) sia per condizioni statiche che sismiche, utilizzando 6 diversi criteri (Tabella E.1 – Tabella E.2 per versione 3.3b, e Tabella F.1 – Tabella F.2 per versione 3.3f). Per entrambe le versioni del modello IBDAS, si osserva una piccola differenza fra il Progetto di Gara e le forze cavi aggiornate (IBDAS), dato che il rapporto è nel *range* che va da 1.06 a 0.90 per la versione 3.3b (Tabella E.3) e nel range da 1.08 a 0.93 per versione 3.3f (Tabella F.3); il valore più elevato fa riferimento alla combinazione di carico SLU, mentre quello inferiore è ottenuto dalla combinazione di carico per SLIS. Per lo Stato Limite Ultimo (SLU) le forze dei cavi fornite dal Progetto di Gara sono del 5.8% superiori ai valori corrispondenti IBDAS-3.3b e dell' 8% superiori ai valori corrispondenti di IBDAS-3.3f; ciò risulta in una stima conservatrice del comportamento del Blocco di Ancoraggio della Sicilia.

2 Profilo di suolo e caratteristiche geotecniche

La Figura 2.1 mostra il profilo di suolo della costa Siciliana dello stretto. Iniziando dal livello del suolo e procedendo verso il basso, si incontra quanto segue:

- Depositi Costieri (Coastal Deposits). Sabbia e ghiaia con molto poco, se non nullo, contenuto fine, occasionalmente, sono presenti strati limacciosi e torbosi nella parte inferiore della formazione. Lo spessore di questa formazione è di difficile valutazione poiché essa giace sulla formazione molto similare delle Ghiaie di Messina.
- Ghiaie di Messina (Messina Gravel)/Sedimenti dei terrazzi (Terrace Deposits). Ghiaia e sabbia con strati occasionalmente limacciosi. Lo spessore di questa formazione può raggiungere più di 170 m.
- Depositi Continentali (Continental Deposits)/Calcarenite di Vinco (Vinco Calcarenite).
 Deposito argilloso e sabbioso, che consiste in strati di limo o limo e sabbia, con significativo contenuto di ghiaia/Bio-calcarenite e calcarenite fossilifera con sottili strati limacciosi.
- Conglomerato di Pezzo (Pezzo Conglomerate). Roccia morbida, che consiste in clasti di diverse dimensioni in una matrice di sabbia e limo e arenaria. Lo spessore di questa formazione è superiore a 200 m.
- Cristallino (Crystalline bedrock). Granito tettonizzato.

Una vista in pianta della Blocco di Ancoraggio della Sicilia, è mostrato alla Figura 2.2 insieme alla location delle indagini su sito disponibili. Il reale livello del suolo è fra 22 m sul livello del mare e 59 m sul livello del mare e il livello di falda coincide con il livello del mare a 0 m s.l.m.

Le tre sezioni longitudinali e la sezione trasversale indicate in Figura 2.2 sono mostrate in Figura 2.3 – 2.6. Le sezioni nelle figure mostrano che l'unità Ghiaie di Messina/Sedimenti dei Terrazzi si estende dal livello del suolo per uno spessore di circa 200 m. Si tratta dunque delle uniche unità geologiche di rilevanza.

La permeabilità dei sedimenti è stata valutata mediante prove di pompaggio effettuate da un pozzo situato nell'area della Torre della Sicilia, che si estende 40 m sotto il livello del suolo e attraverso prove di permeabilità di Lefranc, effettuate in un pozzo trivellato a profondità fra i 10 m ed i 38 m sotto il livello del suolo.

I risultati delle prove di pompaggio mostrano un valore di permeabilità orizzontale k_h di 5×10⁻³ m/s.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data	
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011	

Le prove di permeabilità di Lefranc hanno un carattere maggiormente locale rispetto alle prove di pompaggio del pozzo e sono influenzate dal disturbo rappresentato dalla formazione del pozzo trivellato; la loro interpretazione inoltre, dipende dal rapporto k_h/k_v supposto. I loro risultati devono quindi essere considerati affidabili entro un ordine di grandezza. I valori di k_v ottenuti per $k_h/k_v = 10$ vanno da 2×10^{-3} a 5×10^{-2} (m/s); per $k_v/k_h = 1$, k_v va da 2.6×10^{-4} a 5.8×10^{-3} (m/s); ciò concorda con i valori ottenuti mediante prova di pompaggio in pozzo.

Nell'area del Blocco di Ancoraggio della Sicilia, i fenomeni di erosione per le Ghiaie di Messina sono meno importanti rispetto a quanto osservato nella Torre della Sicilia, quindi la deviazione di K₀ dal suo valore normalmente consolidato è principalmente dovuta agli effetti di invecchiamento::

$$\frac{K_0}{K_0(\text{NC})} = \left(\frac{t}{t_p}\right)^{C_{\text{cre}}/C_c}$$

Dove t è il tempo trascorso dalla deposizione delle Ghiaie di Messina, fra 4×10^5 e 6×10^5 anni, t_p è il termine del tempo di consolidazione primario, circa 10^{-2} anni, C_{ae} è il coefficiente di compressione secondario e C_c l'indice di compressione. Per i terreni granulari, i valori tipici del rapporto C_{ae}/C_c sono circa 0.02 (Mesri, 1989) e dunque il massimo incremento stimato di K₀ in ragione degli effetti di invecchiamento è dell'ordine del 42%.

Ne segue:

 $K_0 = 1.42 \times K_0(NC) = 1.42 \times (1-\sin\varphi'_p) = 0.47$

dove ϕ'_p = 42° come descritto.

La densità relativa delle Ghiaie di Messina è stata stimata dai risultati SPT e LPT, utilizzando la procedura proposta da Cubrinovski e Ishihara (1999): valori di D_R = da 40 % a 60 % sono stati ottenuti, come illustrato nella Figura 2.7. L'angolo di resistenza a taglio al picco φ' = 41° – 44° è stata poi valutata mediante la relazione proposta da Schmertmann (1975) (Figura 2.7).

L'angolo di attrito a volume costante è stato valutato secondo Bolton (1986):

$$\phi'_{cv} = \phi'_{p} - 3 D_{R}(10 - lnp') + 3^{\circ}$$

Che, per ϕ'_P = 40°, D_R = 50% e p' = 200 kPa, fornisce ϕ'_{cv} = 36°.

I profilo di rigidità delle Ghiaie di Messina è stato ottenuto da due prove cross-hole, effettuate nelle vicinanze del Blocco di Ancoraggio della Sicilia, fino ad una profondità di 100 m sotto il livello del

suolo. I risultati di tali prove cross-hole in termini di velocità delle onde di taglio V_s , rispetto alla profondità sono illustrati in Figura 2.8. Gli stessi risultati sono mostrati nella figura come profili del modulo di taglio a piccole deformazioni G_0 :

$$G_0 = \rho V_S^2$$

 G_0 incrementa da circa 50-100 MPa a livello del suolo, a circa 400 MPa ad una profondità di 80 m sotto il livello del suolo; al di sotto di questa profondità i dati sono maggiormente dispersi, con un valore superiore medio diu 450 MPa.

La Tabella 2.1 riassume i parametri meccanici principali ottenuti dalla caratterizzazione geotecnica di cui sopra.

	profondità (m sotto liv. suolo)	K ₀	φ' _p (°)	φ' _{cv} (°)	K _h (m/s)	G ₀ (MPa)
Ghiaie Messina	0÷20	0.43	44	35	5×10⁻³	50-150
Ghiaie Messina	20-80	0.47	42	37	5×10⁻³	150-400
Ghiaie Messina	>80	0.47	42	37	5×10 ^{-³}	450

Tabella 2.1. Riassunto dei parametri meccanici principali derivati dalla caratterizzazione geotecnica

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data		
		PF0064_F0_ITA.doc	F0	20-06-2011		

3 Modello costitutivo del terreno e parametri del terreno

Nelle analisi FE discusse nelle sezioni seguenti, il comportamento meccanico del suolo è stato descritto utilizzando il modello costitutivo di incrudimento isotropo (Hardening Soil) disponibile mediante Plaxis. Il modello è in grado di riprodurre la non-linearità del suolo, dovuta all'occorrenza di deformazioni plastiche a partire dall'inizio del processo di carico. La relazione sollecitazione-deformazione non-lineare calcolata, ha un modulo tangente iniziale pari a E'₀; al carico, il modello assume un comportamento elastico con modulo di Young E'₀, riproducendo così una significativa modificazione della rigidità. Nel modello, la rigidità del suolo dipende dall'effettivo stato di sollecitazione.

Il modello Hardening Soil è un modello elasto-plastico di tipo indipendente dal tempo con incrudimento isotropo. Il comportamento elastico è definito dalla elastitictà isotropa mediante un modulo di Young dipendente dalla sollecitazione:

$$\mathsf{E'} = \mathsf{E}^{\mathsf{ref}} \left(\frac{\mathsf{c'} \cdot \cot \varphi' + \sigma_3'}{\mathsf{c'} \cdot \cot \varphi' + \mathsf{p}^{\mathsf{ref}}} \right)^{\mathsf{m}}$$

dove σ'_3 è la minima sollecitazione principale effettiva, c' è la coesione, φ' è l'angolo della resistenza a taglio, p^{ref} = 100 kPa è la pressione di riferimento; E^{ref} e m sono parametri di modello. Il modello ha due superfici di snervamento $f_s e f_v$ con rigidità isotropica indipendente che dipende dalla deformazione plastica $\gamma^p = (2 \cdot \varepsilon^p_1 - \varepsilon^p_v)$ e dalle deformazioni plastiche volumetriche ε^p_v , rispettivamente; le due superfici hanno le seguenti equazioni:

$$f_{s} = \frac{1}{E'_{50}} \frac{q}{(1 - 0.9 \cdot q/q_{f})} - \frac{2q}{E'} - \gamma^{p} = 0$$
$$f_{v} = \frac{\tilde{q}^{2}}{\alpha^{2}} + p'^{2} - p'^{2}_{c} = 0$$

Il parametro E'_{50} è dato da un'espressione simile a E', ma a differenza di questa, esso non è utilizzato nell'ambito dell'elasticità. La rigidità della superficie f_s è isotropica e dipende dalla deformazione plastica $\gamma^p = (2 \cdot \varepsilon_{\gamma}^p - \varepsilon_{\gamma}^p)$.

Nelle equazioni di cui sopra, p' è la sollecitazione effettiva media; \tilde{q} è una sollecitazione devia torica che rappresenta la dipendenza di resistenza sulla sollecitazione effettiva principale intermedia σ'_2 ; α controlla la forma della superficie f_v nel piano \tilde{q} -p' e può essere correlata al

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data		
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011		

coefficiente della pressione di terra a riposo K_0 per stati normalmente consolidati. Il parametro di rigidità p'_c è la dimensione dell'attuale superficie f_v ed è correlato alla deformazione plastica volumetrica ε_v^p mediante la legge di rigidità, scritta in forma incrementativa come:

$$d\epsilon^{p}_{v} = \frac{\beta}{p^{ref}} \left(\frac{p'_{c}}{p^{ref}}\right)^{m} \cdot dp'_{c}$$

dove β è un parametro che controlla la variazione di p'_c con la deformazione volumetrica plastica. Nella formulazione di modello di Plaxis, il parametro E'_{oed}, relativo a β , deve essere specificato. Questo è il modulo costretto per un carico plastico mono-dimensionale, e dipende dalla massima sollecitazione effettiva principale σ'_1 nella relazione:

 $\mathsf{E}_{oed}' = \mathsf{E}_{oed}'^{ref} \cdot \left(\frac{c' \cdot \cot \phi' + \sigma_1'}{c' \cdot \cot \phi' + p^{ref}}\right)^m$

dove σ'_1 è la massima sollecitazione effettiva principale.

Il valore iniziale del parametro di rigidità p'_{c} è correlato alla sollecitazione di snervamento verticale mono-dimensionale e può dunque essere specificato assegnando un valore per il rapporto OCR di sovra-consolidamento. Vale la pena di ricordare che OCR deve essere considerato come un rapporto di tensione di snervamento (yield stress ratio YSR) definita nell'ambito della plasticità di rigidità della deformazione, in modo tale che i valori di OCR >1 possono essere specificati anche per depositi di terreno geologicamente normalmente consolidati che mostrano una tensione di snervamento maggiore della tensione *in-situ*.

La regola del flusso è associata per stati che giacciono sulla superficie f_v , mentre una regola di flusso non associata è utilizzata per stati sulla superficie f_s . Quest'ultima è derivata dalla teoria della dilatanza di Rowe (1962); l'angolo di dilatanza mobilitato ψ_m dipende dall'attuale stato di sollecitazione attraverso l'angolo di frizione mobilitata φ'_m e l'angolo di frizione a constante volume φ'_{cv} :

$$\sin \psi_{m} = \frac{\sin \phi'_{m} - \sin \phi'_{cv}}{1 - \sin \phi'_{m} \sin \phi'_{cv}}$$

Di contro, ϕ'_{cv} può essere ottenuto dall'angolo di resistenza a taglio ϕ' e l'angolo di dilatanza ψ a rottura:

$$\sin \phi'_{\rm CV} = \frac{\sin \phi' - \sin \psi}{1 - \sin \phi' \sin \psi}$$

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data		
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011		

La Figura 3.1 mostra la forma delle superfici di snervamento $f_v \in f_s$ ed indica schematicamente la loro evoluzione.

Per il carico plastico da stati di sollecitazione isotropica, il modello prevede una relazione sollecitazione –deformazione non lineare con modulo iniziale tangente pari a E'. I valori di E' dunque sono stati correlati al modulo di taglio a piccolo –deformazione G_0 ottenuta dai test cross-hole effettuati sul sito. In particolare, i valori di E'^{ref} e *m* sono stati ottenuti dai più adeguati risultati del test cross-hole utilizzando l'equazione data sopra per E' e supponendo v' = 0.2.

La Figura 3.2 mostra il profilo di G_0 rispetto alla profondità sotto il livello del suolo. La linea continua nella figura, rappresenta la previsione di G_0 ottenuta con i valori di c', ϕ' , E'^{ref} ed m riportati in Tabella 3.1. Più specificatamente, i valori di σ'_3 sono stati ottenuti utilizzando i valori di K_0 forniti in Tabella 3.1. Per le Ghiaie di Messina, nelle analisi FE è stato introdotto un valore di coesione non zero al fine di simulare i valori di rigidità non zero a basse profondità; questo basso valore di coesione non influisce significativamente sul comportamento dello strato in termini di resistenza.

rabolia o. r. mig	rabella et l'imglier adoguariente del rieditati del teot erece nele						
Suolo	γ	C′	φ'	K ₀	E ^{ref}	m	
	(kN/m ³)	(kPa)	(°)		(kPa)		
Ghiaie di Messina (z<80 m)	20	20	42	0.47	4.08·10 ⁵	0.6	
Ghiaie di Messina (z>80 m)	20	20	42	0.47	1.08·10 ⁶	0.1	

Tabella 3.1. Miglior adeguamento dei risultati del test cross hole

I parametri del suolo supposti nelle analisi FE discusse di seguito, sono riportati nella Tabella 3.2. Il decadimento della rigidità con deformazione di taglio è stato descritto utilizzando i rapporti di $E'^{ref} / E'_{50}^{ref} = 20$ e di $E'_{50}^{ref} / E'_{oed}^{ref} = 1.0$ ed un valore per l'angolo di dilatanza a rottura $\psi = 0$.

Tabella 3.2. Parametri Hardening soil per analisi FE del blocco di ancoraggio

	0.00					- 55 -			
Suolo	γ	C′	φ′	K_0	YSR	E'^{ref}	т	E'_{50}^{ref}	E'_{oed}^{ref}
	(kN/m ³)	(kPa)	(°)			(kPa)		(kPa)	(kPa)
Ghiaie di Messina (z<80 m)	20.0	20.0	42	0.47	2.0	4.08·10 ⁵	0.6	2.04·10 ⁴	2.04·10 ⁴
Ghiaie di Messina (z>80 m)	20.0	20.0	42	0.47	2.0	1.08·10 ⁶	0.1	5.40·10 ⁴	$5.40 \cdot 10^4$

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data		
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011		

4 Blocchi di ancoraggio – Sicurezza rispetto allo scorrimento

4.1 Condizioni statiche – equazioni dominanti

4.1.1 Fattore di sicurezza globale

Il fattore di sicurezza globale rispetto allo scorrimento può essere scritto come:

$$\mathsf{F} = \frac{[\mathsf{W}'\cos\alpha + \mathsf{Tsen}(\alpha - i)]\tan\phi'_{s} + \mathsf{T}_{\mathsf{L}} + \mathsf{R}_{\mathsf{p}}\cos(\alpha - \delta)}{\mathsf{T}\cos(\alpha - i) - \mathsf{W}'\operatorname{sen}\alpha + \mathsf{S}_{\mathsf{a}}\cos\alpha}$$

(1)

dove (Figura. 4.1):

- W' = peso sommerso del blocco di ancoraggio
- T = forza trasmessa dai cavi
- α = inclinazione della superficie di scorrimento
- *i* = inclinazione delle forze trasmesse dai cavi
- ϕ'_s = angolo di resistenza a taglio sulla superficie di scorrimento
- T_L = resistenza di scorrimento sviluppata ai lati del blocco
- R_P = resistenza di terra passiva sviluppata sulla parte frontale del blocco
- S_a = spinta di terra attiva sviluppata dietro il blocco (calcolata supponendo δ = 0)
- δ = angolo di frizione all'interfaccia terreno-cemento

Il fattore di sicurezza rispetto allo scorrimento diventa $F = \infty$ se $Tcos(\alpha-i) = W'sen\alpha - S_acos\alpha$. I valori di F < 0 sono privi di importanza; in questi casi solo parte del peso del blocco agisce sulle superfici di scorrimento e si può supporre $F = \infty$.

4.1.2 Fattori di sicurezza parziali

In D.M. 14.01.2008 – "Nuove norme tecniche per le costruzioni", i fattori di sicurezza parziali sono applicati alle azioni ed a parametri di resistenza. Dopo che i valori di progetto delle azioni E_d e di resistenza R_d sono calcolati, la condizione $R_d \ge E_d$ deve essere soddisfatta. Per il caso in oggetto, le azioni caratteristiche e la resistenza caratteristica sono definite come:

$$E_{k} = T_{k} \cos(\alpha - i) - W_{k}' \sin\alpha + S_{ak} \cos\alpha$$

$$R_{k} = [W_{k}' \cos\alpha + T_{k} \sin(\alpha - i)] \tan \phi_{s}' + T_{L_{k}} + R_{P_{k}} \cos(\alpha - \delta)$$
(2)

Nella sezione 2.6.1 di D.M. 14.01.2008 vengono definiti due approcci alternativi: l'approccio 1 e l'approccio 2. Nell'Approccio 1, sono utilizzate due combinazioni di fattori di sicurezza parziali, in

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data		
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011		

cui le azioni di progetto sono moltiplicate per fattori del gruppo A, i parametri di resistenza sono divisi per i fattori del gruppo M e la resistenza globale del sistema è divisa per i fattori del gruppo R. La Combinazione 1 (C1), denominata STR, è utilizzata per le verifiche di stato limite dei componenti strutturali, mentre la Combinazione 2 (C2), denominata GEO, è utilizzata per studiare gli stati limite che coinvolgono meccanismi di collasso del terreno che interagisce con la struttura. Più specificatamente, le azioni sono maggiormente semplificate nella combinazione 1, mentre le resistenze del terreno sono principalmente ridotte nella combinazione 2.

Nell'Approccio 2, è definita una singola combinazione di fattori di sicurezza parziali.

Seguendo l'Approccio 1, Combinazione 2 per studiare gli stati limite geotecnici (GEO), si ha:

$$E_{d} = T_{d} \cos(\alpha - i) - \gamma_{G1} \cdot W_{k}' \sin\alpha + \gamma_{G1} \cdot S_{ad} \cos\alpha$$

$$R_{d} = \frac{1}{\gamma_{R}} \left\{ \left[\gamma_{G1} \cdot W_{k}' \cos\alpha + T_{d} \sin(\alpha - i) \right] \frac{\tan \phi_{s_{k}}'}{\gamma_{\phi}} + \gamma_{G1} \cdot T_{L_{d}} + \gamma_{G1} \cdot R_{P_{d}} \cos(\alpha - \delta) \right\}$$
(3)

dove γ_{φ} = 1.25 e γ_{R} = 1.1

Nell'equazione (3):

- La resistenza a taglio sui lati del blocco, la resistenza passiva di terra nella parte frontale del blocco e la spinta di terra attiva, sono calcolate utilizzando valori ridotti dell'angolo di resistenza di taglio che agisce sulla superficie di scorrimento φ'_{sd} = atan [(tan φ'_{sk})/ γ_{ϕ}];
- Le forze dei cavi includono i fattori di carico parziali, come indicato dalle analisi strutturali del progetto di gara per ciascuno stato limite e dunque non sono fattorizzate;
- Conformemente a D.M. 14.01.2010, il peso del blocco di ancoraggio (carico permanente), presente sia nell'azione E_d e la resistenza R_d, è moltiplicato per lo stesso fattore di caricoγ_{G1}
 = 1, a prescindere dal suo effetto;
- Le componenti di S_a e R_p normali per la superficie di scorrimento sono trascurate;

La sicurezza rispetto allo scorrimento in condizioni di carico statico non saranno valutate poiché le condizioni di carico pseudo-statico sono le più critiche.

4.2 Condizioni sismiche – equazioni dominanti

L'analisi dei blocchi di ancoraggio in condizioni sismiche è effettuata utilizzando l'approccio pseudo-statico basato sulla forza e l'approccio di blocco in scorrimento basato sullo spostamento.

4.2.1 Approccio pseudo-statico

Nell'approccio pseudo-statico, si suppone che il blocco di ancoraggio si comporti come un blocco rigido e che sia in uno stato di equilibrio sotto l'azione di forze di inerzia e statiche. La stabilità del

blocco è misurata mediante un fattore globale di sicurezza F che è il rapporto della totale forza di resistenza alla forza di traino (driving force), oppure mediante un confronto dell'azione di progetto con la resistenza di progetto, entrambe includenti l'effetto di fattori di sicurezza parziali.

4.2.1.1 Fattore di sicurezza globale

Il fattore di sicurezza globale rispetto allo scorrimento può essere scritto come:

$$F = \frac{[W'\cos\alpha + Tsen(\alpha - i) + W(K_{h}sen\alpha \pm K_{v}\cos\alpha)]\tan\phi'_{s} + T_{L} + R_{pE}\cos(\alpha - \delta)}{T\cos(\alpha - i) - W'sen\alpha + S_{aE}\cos\alpha + W(K_{h}\cos\alpha \pm K_{v}sen\alpha)}$$
(4)

dove (Figura 4.2):

- W' = peso sommerso del blocco di ancoraggio
- W = peso del blocco di ancoraggio
- T = forza trasmessa dai cavi
- α = inclinazione della superficie di scorrimento
- *i* = inclinazione delle forze trasmesse dai cavi
- ϕ'_s = angolo di resistenza a taglio sulla superficie di scorrimento
- T_L = resistenza di scorrimento sviluppata ai lati del blocco
- R_{PE} = resistenza di terra passiva sviluppata sulla parte frontale del blocco
- S_{aE} = spinta di terra attiva sviluppata dietro il blocco
- δ = angolo di frizione all'interfaccia terreno-cemento
- K_h = coefficiente sismico orizzontale
- K_v = coefficient sismico verticale

4.2.1.2 Fattori di sicurezza parziale

In D.M. 14.01.2008 – "Nuove norme tecniche per le costruzioni", i fattori di sicurezza parziali sono applicati alle azioni ed a parametri di resistenza. Tuttavia, in situazioni sismiche, i fattori di carico delle azioni di progetto sono definiti pari all'unità $\gamma_G = \gamma_Q = 1$ (§ 7.11.1 - D.M. 14.01.2008); di conseguenza, tali fattori sono di seguito omessi.

Dopo che i valori di progetto delle azioni E_d e di resistenza R_d sono calcolati, la condizione $R_d \ge E_d$ deve essere soddisfatta.

Per il caso in oggetto, le azioni caratteristiche e la resistenza caratteristica sono definite come:

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data		
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011		

$$E_{k} = T_{k} \cos(\alpha - i) - W_{k}' \sin\alpha + S_{aE(k)} \cos\alpha + W_{k} (K_{h} \cos\alpha \pm K_{v} \sin\alpha)$$

$$R_{k} = [W_{k}' \cos\alpha + T_{k} \sin(\alpha - i) + W_{k} (K_{h} \sin\alpha \pm K_{v} \cos\alpha)] \tan \varphi_{s}' + T_{L_{k}} + R_{pE(k)} \cos(\alpha - \delta)$$
(5)

Seguendo, come sopra, l'Approccio 1, Combinazione 2, si ha:

$$E_{d} = T_{d} \cos(\alpha - i) - W_{k}' \sin\alpha + S_{aE(d)} \cos\alpha + W_{k} (K_{h} \cos\alpha \pm K_{v} \sin\alpha)$$

$$R_{d} = \frac{1}{\gamma_{R}} \left\{ \left[W_{k}' \cos\alpha + T_{d} \sin(\alpha - i) + W_{k} (K_{h} \sin\alpha \pm K_{v} \cos\alpha) \right] \frac{\tan \phi_{s}'}{\gamma_{\phi}} + T_{Ld} + R_{pE(d)} \cos(\alpha - \delta) \right\}$$
(6)

 $\operatorname{con} \gamma_{\varphi} = 1.25 \text{ e } \gamma_{\mathsf{R}} = 1.1$

Nell'equazione (6):

- La resistenza a taglio sui lati del blocco, la resistenza passiva di terra nella parte frontale del blocco e la spinta di terra attiva dietro al blocco, sono calcolate utilizzando valori ridotti dell'angolo di resistenza di taglio che agisce sulla superficie di scorrimento φ'_{sd} = atan [(tanφ'_{sk})/γ_o];
- Le forze dei cavi includono i fattori di carico parziali, come indicato dalle analisi strutturali del progetto di gara per ciascuno stato limite;
- Le componenti di S_{aE} e R_{pE} normali per la superficie di scorrimento sono trascurate;

4.2.2 Approccio basato sullo spostamento

Nell'approccio basato sullo spostamento, la sicurezza del blocco di ancoraggio è valutata confrontando lo spostamento permanente sviluppato durante il terremoto con un valore soglia. Lo spostamento indotto da terremoto della potenziale massa in scorrimento, è determinato seguendo una procedura in due fasi: dapprima, l'accelerazione critica è determinata dall'approccio pseudo-statico; poi lo spostamento cumulativo della potenziale massa in scorrimento è valutato utilizzando l'analisi del blocco in scorrimento.

Nell'analisi, la potenziale massa in scorrimento è trattata come un corpo rigido e gli spostamenti permanenti avvengono ogni volta che l'accelerazione al suolo eccede l'accelerazione critica. Per un dato terremoto, lo spostamento permanente è calcolato integrando due volte la storia temporale di accelerazione con l'accelerazione critica utilizzata come dato di riferimento; più specificatamente, l'integrazione numerica è estesa agli intervalli di tempo in cui la velocità della massa in scorrimento rispetto al terreno è positiva.

Secondo la sezione C.7.11 della Circolare No.617 del 02.02.09 (Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14.01.08), l'accelerazione critica deve essere valutata utilizzando i valori caratteristici dei parametri di resistenza c'_k e φ'_k . Ricordando che

in condizioni sismiche il fattore di carico è uguale all'unità, nella parte seguente, il suffisso K e i coefficienti γ_G e γ_Q sono omessi a titolo di semplicità.

4.2.2.1 Coefficiente sismico critico

Si presume che l'azione sismica pseudo-statica, agisca con un angolo (α - θ) rispetto alla superficie di scorrimento (Figura 4.3). Supponendo condizioni di equilibrio di limite (F=1) e trascurando in questa fase i contributi delle spinte di terra attive e passive, si ottiene la seguente espressione K:

$$F = \frac{[W'\cos\alpha + Tsen(\alpha - i) + KWsen(\alpha - \theta)]\tan\phi'_{s} + T_{L}}{T\cos(\alpha - i) - W'sen\alpha + KW\cos(\alpha - \theta)} = 1$$
(7)

$$K = \frac{[W'\cos\alpha + T\sin(\alpha - i)]\tan\phi'_{s} - T\cos(\alpha - i) + W'\sin\alpha + T_{L}}{W[\cos(\alpha - \theta) - \sin(\alpha - \theta)\tan\phi'_{s}]}$$
(8)

Il valore minimo di K, ovvero il coefficiente sismico critico K_c, è ottenuto per $\theta = \alpha + \phi_s' \Rightarrow \alpha - \theta = -\phi'_s$ (Fig. 4.3):

$$K_{c(red)} = \frac{[W'\cos\alpha + Tsen(\alpha - i)]\tan\phi'_{s} - T\cos(\alpha - i) + W'sen\alpha + T_{L}}{W[\cos(-\phi'_{s}) - sen(-\phi'_{s})\tan\phi'_{s}]}$$
(9)

Durante lo scorrimento (K > K_c), si può presumere che una spinta di terra netta Δ R, ottenuta come differenza fra le sollecitazioni normali che agiscono di fronte e dietro al blocco di ancoraggio, incrementi gradualmente all'aumentare degli spostamenti del blocco. Dunque, l'effetto di Δ R è esplicitamente incluso nell'equazione di movimento relativo utilizzata per calcolare lo spostamento del blocco di ancoraggio indotto da terremoto.

ΔR è una funzione dello spostamento relativo accumulato durante il carico da terremoto:

$$\Delta \mathbf{R}(\mathbf{u}) = \mathbf{k}_{\mathrm{d}}(\mathbf{u}) \cdot \mathbf{u}(\mathbf{t}) \tag{10}$$

dove k_d è una molla di rigidità non lineare che dipende dallo spostamento relativo u (Figura 4.4).

4.2.2.2 Equazione di moto relativo in condizioni sismiche

L'equazione di moto relativo del blocco di ancoraggio può essere scritta, nella sua forma più semplice, come:

$$m\ddot{u}(t) = \left[\mathsf{E}_{d}(\mathsf{K}) - \mathsf{E}_{d}(\mathsf{K}_{c(red)})\right] - \left[\mathsf{R}_{d}(\mathsf{K}) - \mathsf{R}_{d}(\mathsf{K}_{c(red)})\right]$$
(11)

dove

 $[E_d(K) - E_d(K_{c(red)})]$ = azione di traino netta (driving action) rispetto a condizioni di limite di equilibrio

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data		
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011		

 $[R_d(K) - R_d(K_{c(red)})]$ = forza di resistenza netta rispetto a condizioni di limite di equilibrio

Poiché:

$$\begin{split} & \mathsf{E}_{\mathsf{d}}(\mathsf{K}) = \left[\mathsf{T}\cos(\alpha - i) - \mathsf{W}' \mathsf{sen}\alpha + \mathsf{K}(t) \mathsf{W}\cos(\alpha - \theta)\right] \\ & \mathsf{E}_{\mathsf{d}}\left(\mathsf{K}_{\mathsf{c}(\mathsf{red})}\right) = \left[\mathsf{T}\cos(\alpha - i) - \mathsf{W}' \mathsf{sen}\alpha + \mathsf{K}_{\mathsf{c}(\mathsf{red})} \mathsf{W}\cos(\alpha - \theta)\right] \end{split} \tag{12}$$

е

$$\begin{aligned} & [\mathsf{R}_{\mathsf{d}}(\mathsf{K})] = [\mathsf{W}'\cos\alpha + \mathsf{Tsen}(\alpha - i) + \mathsf{K}(t)\mathsf{Wsen}(\alpha - \theta)]\tan\phi'_{\mathsf{s}} + \mathsf{T}_{\mathsf{L}} \\ & [\mathsf{R}_{\mathsf{d}}(\mathsf{K}_{\mathsf{c}(\mathsf{red})})] = [\mathsf{W}'\cos\alpha + \mathsf{Tsen}(\alpha - i) + \mathsf{K}_{\mathsf{c}(\mathsf{red})}\mathsf{Wsen}(\alpha - \theta)]\tan\phi'_{\mathsf{s}} + \mathsf{T}_{\mathsf{L}} + \Delta\mathsf{R}(\mathsf{u}) \end{aligned}$$
(13)

Si può derivare:

$$\begin{bmatrix} \mathsf{E}_{\mathsf{d}}(\mathsf{K}) - \mathsf{E}_{\mathsf{d}}(\mathsf{K}_{\mathsf{c}(\mathsf{red}})) \end{bmatrix} = \begin{bmatrix} \mathsf{K}(\mathsf{t}) - \mathsf{K}_{\mathsf{c}(\mathsf{red})} \end{bmatrix} \cdot \mathsf{W} \cos(\alpha - \theta) \begin{bmatrix} \mathsf{R}_{\mathsf{d}}(\mathsf{K}) - \mathsf{R}_{\mathsf{d}}(\mathsf{K}_{\mathsf{c}(\mathsf{red}})) \end{bmatrix} = \begin{bmatrix} \mathsf{K}(\mathsf{t}) - \mathsf{K}_{\mathsf{c}(\mathsf{red})} \end{bmatrix} \cdot \mathsf{W} \operatorname{sen}(\alpha - \theta) \tan \varphi_{\mathsf{s}}' + \Delta \mathsf{R}(\mathsf{u})$$

$$(14)$$

е

$$\frac{W}{g}\ddot{u}(t) = \left[K(t) - K_{c(red)}\right] \cdot W \frac{\cos(\alpha - \theta + \phi'_{s})}{\cos \phi'_{s}} - k_{d}(u) \cdot u(t)$$
(15)

Che, per $\theta = \alpha + \phi_s' \Rightarrow \alpha - \theta = -\phi'_s$, fornisce:

$$\ddot{u}(t) + g \frac{k_{d}(u)}{W} \cdot u(t) = g[K(t) - K_{c(red)}] \frac{1}{\cos \phi'_{s}}$$
(16)

Infine, separando i componenti orizzontali e verticali delle storie temporali di accelerazione, si può scrivere:

$$\begin{aligned} & \mathsf{E}_{\mathsf{d}}(\mathsf{K}) = \left[\mathsf{T}\cos(\alpha - i) - \mathsf{W}'\operatorname{sen}\alpha + \mathsf{W}(\mathsf{K}_{\mathsf{h}}\cos\alpha + \mathsf{K}_{\mathsf{v}}\operatorname{sen}\alpha)\right] \\ & \mathsf{E}_{\mathsf{d}}\big(\mathsf{K}_{\mathsf{c}(\mathsf{red})}\big) = \left[\mathsf{T}\cos(\alpha - i) - \mathsf{W}'\operatorname{sen}\alpha + \mathsf{K}_{\mathsf{c}(\mathsf{red})}\mathsf{W}\cos(a - \theta)\right] \end{aligned} \tag{17}$$

$$\begin{bmatrix} \mathsf{R}_{d}(\mathsf{K}) \end{bmatrix} = \begin{bmatrix} \mathsf{W}' \cos \alpha + \mathsf{T} \operatorname{sen}(\alpha - i) + \mathsf{W}(\mathsf{K}_{h} \operatorname{sen} \alpha - \mathsf{K}_{v} \cos \alpha) \end{bmatrix} \tan \phi'_{s} + \mathsf{T}_{L} \\ \begin{bmatrix} \mathsf{R}_{d}(\mathsf{K}_{c(red)}) \end{bmatrix} = \begin{bmatrix} \mathsf{W}' \cos \alpha + \mathsf{T} \operatorname{sen}(\alpha - i) + \mathsf{K}_{c(red)} \mathsf{W} \operatorname{sen}(\alpha - \theta) \end{bmatrix} \tan \phi'_{s} + \mathsf{T}_{L} + \Delta \mathsf{R}(\mathsf{u})$$

$$(18)$$

L'azione di traino (driving force) netta e la forza di resistenza sono:

$$\begin{aligned} & \left[\mathsf{E}_{\mathsf{d}}(\mathsf{K}) - \mathsf{E}_{\mathsf{d}}(\mathsf{K}_{\mathsf{c}(\mathsf{red})}) \right] = \mathsf{W} \left[\mathsf{K}_{\mathsf{h}} \cos \alpha + \mathsf{K}_{\mathsf{v}} \operatorname{sen} \alpha - \mathsf{K}_{\mathsf{c}(\mathsf{red})} \cos(\alpha - \theta) \right] \\ & \left[\mathsf{R}_{\mathsf{d}}(\mathsf{K}) - \mathsf{R}_{\mathsf{d}}(\mathsf{K}_{\mathsf{c}(\mathsf{red})}) \right] = \mathsf{W} \left[\mathsf{K}_{\mathsf{h}} \operatorname{sen} \alpha - \mathsf{K}_{\mathsf{v}} \cos \alpha - \mathsf{K}_{\mathsf{c}(\mathsf{red})} \operatorname{sen} (\alpha - \theta) \right] \\ & \text{tan } \varphi_{\mathsf{s}}' + \Delta \mathsf{R}(\mathsf{u}) \end{aligned}$$

$$\tag{19}$$

In modo tale che l'equazione di moto relativo è:

$$\frac{W}{g}\ddot{u}(t) = W\{K_{h}(\cos\alpha - sen\alpha \tan\phi'_{s}) + K_{v}(sen\alpha + \cos\alpha \tan\phi'_{s}) - K_{c}[\cos(\alpha - \theta) - sen(\alpha - \theta)\tan\phi'_{s}]\} + k_{d} \cdot u(t)$$
(20)

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data		
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011		

che, per $\theta = \alpha + \phi_{s'} \Rightarrow \alpha - \theta = -\phi'_{s}$, fornisce:

$$\ddot{u}(t) + g \frac{k_{d}(u)}{W} u(t) = g \left\{ \left[K_{h}(t) + K_{v}(t) \tan(\alpha + \phi'_{s}) \right] \cos(\alpha + \phi'_{s}) - K_{c(red)} \right\} \frac{1}{\cos \phi'_{s}}$$
(21)

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data	
		PF0064_F0_ITA.doc	F0	20-06-2011	

5 Blocco di Ancoraggio Sicilia – sicurezza rispetto allo scorrimento

Peso proprio del blocco di ancoraggio 5.1

La Figura 5.1 mostra una vista in pianta ed una sezione del blocco di ancoraggio della Sicilia. Il peso del blocco di ancoraggio è stato calcolato utilizzando uno schema Cad basato sui disegni del progetto di gara (Figura 5.2). Il progetto originale include la presenza di due camere riempite con materiale granulare. Poiché il livello di falda è situato leggermente sotto il blocco il ancoraggio $(H_w = 0 \text{ m s.l.m.})$, la forza risultante dalla pressione dell'acqua dei pori è pari a zero. I dati pertinenti sono mostrati nella Tabella 5.1.

l abella 5.1. Peso del Blocco di ancoraggio Sicilia							
	volume	γ	peso				
	(m ³)	(kN/m ³)	(MN)				
cemento	282588	24	6782				
camere piene (x2)	36004	20	720				
forza risultante dalla pressione dell'acqua dei pori	0	10	0				
Totale			7502				

5.2 Meccanismi di scorrimento

Nelle analisi sono stati considerati tre possibili meccanismi di scorrimento (Figura 5.3), caratterizzati da angoli di inclinazione α = 38°, 26° e 8°, come riportato in Tabella 5.2; tutti i meccanismi si sviluppano all'interno del terreno. Nel primo meccanismo, si presume che il muro di diaframma di fronte al blocco, ceda e che la superficie di scorrimento lo trapassi; nel secondo, il piano di scorrimento si presume si sviluppo sotto la punta del diaframma; nel terzo meccanismo, si presume che lo scorrimento si verifichi nell'inclinazione inferiore della base del blocco. Il contributo del terreno fra la superficie di scorrimento e il blocco di ancoraggio, è considerato come un peso aggiunto, e si presume che si muova insieme al blocco di ancoraggio.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data		
		PF0064_F0_ITA.doc	F0	20-06-2011		

Tabella 5.2. Meccanismi di scommento dei biocco di ancoraggio Sicilia							
inclinazione peso di bloco di peso terreno peso totale							
	(°)	ancoraggio	(MN)	(MN)			
		(MN)	, , , , , , , , , , , , , , , , , , ,				
meccanismo 1	38	7502.0	346.8	7848.8			
meccanismo 2	26	7502.0	658.0	8160.0			
meccanismo 3	8	7502.0	1036.7	8538.7			

Caballa E 2: Magganiami di agarrimanta dal blagga di angeraggia Cigilia

Ci si può aspettare che le analisi FE condotte in condizioni di deformazione piana indichino che, in condizioni di carico SLU, l'inclinazione dominante dei vettori di spostamento sia di 14°, fra 8° e 26° in modo che il secondo ed il terzo meccanismo siano quelli con più probabilità di occorrenza.

5.3 Valutazione della superficie di scorrimento

Per stimare il meccanismo di scorrimento più probabile, analisi FE di deformazione piana sono state condotte utilizzando il Plaxis 8. La Figura 5.4 mostra la mesh adottata, fatta di 1617 elementi triangolari a 15 nodi con interpolazione del quarto ordine per gli spostamenti e interpolazione di terzo ordine per la pressione dell'acqua dei pori. La mesh è larga 800 m, e la sua altezza da va 167.1 m a 264.15 m. Al limite inferiore, gli spostamenti sono vincolati sia in direzione verticale che orizzontale mentre ai limiti laterali, solo gli spostamenti orizzontali sono limitati.

La geometria del blocco di ancoraggio si basa sui disegni forniti nel progetto di gara.

Il contatto terreno-blocco è modellato mediante elementi di interfaccia con resistenza a taglio e rigidità ridotta.

Come illustrato alla sezione 2, il comportamento del terreno è stato descritto utilizzando il modello costitutivo Hardening Soil disponibile nel modello Plaxis. Si tratta di un modello elasto-plastico di tipo indipendetente dal tempo con rigidità isotropica e criterio di rottura Mohr-Coulomb.

Il test cross-hole, effettuato sul sito è stato utilizzato per valutare il modulo di taglio a piccole deformazioni G₀. Il decadimento della rigidità con resistenza a taglio è stato descritto utilizzando rapporti di E'_{50}^{ref} / E'_{50}^{ref} / E'_{0}^{ref} = 20 e di E'_{50}^{ref} / E'_{0}^{ref} = 1.0 ed un valore per l'angolo di dilatanza a rottura ψ = 0. I parametri del terreno adottati nelle analisi sono quelli elencati nella Tabella 3.2 (cfr. sezione 2).

Un modello elasto-plastico è stato utilizzato per descrivere il comportamento meccanico degli elementi interfaccia. I parametri di resistenza e rigidità sono stati ridotti applicando le seguenti regole:

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data		
		PF0064_F0_ITA.doc	F0	20-06-2011		

$$\tan \varphi'_{int} = R_{int} \tan \varphi'_{soil}$$

$$c'_{int} = R_{int}c'_{soil}$$

$$\psi'_{int} = 0^{\circ}$$

$$G_{int} = R_{int}^{2}G_{soil}$$
(22)

dove R_{int} è un fattore di riduzione; nelle analisi è stato adottato un valore di R_{int} = 0.67.

Si suppone che il blocco di ancoraggio si comporti come un materiale elastico non-poroso con rapporto Poisson v = 0.15 e modulo di Young E = $3 \cdot 10^7$ MPa.

Le analisi sono state condotte in termini di sollecitazioni effettive, supponendo condizioni di drenaggio. Al fine di effettuare le analisi di deformazione piana, occorre stimare sia l'equivalente unità di peso della camera dei cavi che le camere piene. Ciò è stato ottenuto rendendo il peso proprio del blocco di ancoraggio uguale a quello dello schema 2D equivalente. Per ogni parte (camera cavi o camera piena) l'unità di peso equivalente γ_{eq} è data dall'equazione:

$$\gamma_{eq} V_{eq} = \gamma_{conc} \left(V_{eq} - V \right) + \gamma V$$
(23)

dove

- V_{eq} è il volume delle camera dei cavi o delle camere piene nella configurazione 2D equivalente (es: distribuita lungo l'intera larghezza del blocco di ancoraggio, pari a 100m);
- γ_{conc} = 25 kN/m³ è l'unità di peso del cemento armato;
- $-\gamma$ è l'unità di peso del materiale;
- *V* è il volume reale delle camera cavi o delle camere piene.

Dall'equazione di cui sopra ne consegue che:

$$\gamma_{eq} = \gamma_{conc} + \left(\gamma - \gamma_{conc}\right) \frac{V}{V_{eq}}$$
(24)

La Tabella 5.3 riassume i valori di γ_{eq} utilizzati nelle analisi FE di deformazione piana

	V	V_{eq}	γ	γ_{conc}	γ_{eq}			
	(m ³)	(m ³)	(kN/m ³)	(kN/m ³)	(kN/m ³)			
Camere cavi (x2)	12225	31120	0	25	14.57			
Camere piene (x2)	35388	44401	20	25	20.81			

Tabella 5.3. Unità di peso equivalenti supposti nelle analisi FE 2D

L'obiettivo delle analisi FE 2D è quello di stimare il comportamento del blocco di ancoraggio in una condizione di stato limite ultimo. A tal fine, le condizioni di carico SLU sono state prese in considerazione nelle analisi, diffondendo il carico del cavo T sulla larghezza media B=100m del

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data		
		PF0064_F0_ITA.doc	F0	20-06-2011		

blocco di ancoraggio, per tenere conto delle condizioni di deformazione piana.

La seguente sequenza di fasi è stata applicata durante le analisi: calcolo dello stato di sollecitazione iniziale; attivazione del blocco di ancoraggio; applicazione del carico dl cavo T (Tabella 5.4).

fase	descrizione
0	stato di sollecitazione iniziale, supponendo condizioni di sollecitazione K_0
1	applicazione carico di gravità (per tenere conto della superficie non orizzontale del terreno)
2	reset spostamento ed attivazione del blocco di ancoraggio
3	reset spostamento ed attivazione del carico di cavo T

Il carico dl cavo T è applicato con una inclinazione $i = 15^{\circ}$ rispetto all'orizzontale; il valore che corrisponde allo stato limite SLU, T = 3964 MN, è stato derivato dalle analisi strutturali del progetto di gara. La presenza di muri di diaframma di fronte e dietro al blocco di ancoraggio non è stata tenuta in considerazione nelle analisi.

La Figura 5.5 mostra i contorni delle resistenze a taglio mobilitate, espresse in termini del rapporto t/t_{max} dove $t = (\sigma_1' - \sigma_3')/2$ e σ_1' e σ_3' sono le principali sollecitazioni effettive massime e minime; quando i valori di t/t_{max} si avvicinano all'unità, si raggiunge la totale resistenza a taglio del terreno.

Nella fase 3, quando le condizioni SLU sono applicate, parte della resistenza a taglio è mobilitata sia alla base che di fronte al blocco di ancoraggio, ed un pezzetto di terreno plastico può essere riconosciuto nel momento in cui il blocco di ancoraggio è tirato dalla forza del cavo. La Figura 5.6 mostra la mesh deformata ottenuta in questa fase.

Per stimare la superficie di scorrimento più probabile, lo spostamento del blocco e la sua direzione è stata valutata come la media fra gli spostamenti del centro di gravità e di quattro nodi del blocco al contatto con il terreno (Figure 5.7). I risultati ottenuti sono mostrati in Tabella 5.5 e nella Figura 5.8.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data	
		PF0064_F0_ITA.doc	F0	20-06-2011	

Tabella 5.5: spostamenti del blocco di ancoraggio al termine della fase 3

	Х	Y	Ux	u _y	u	direzione
Punti	m	m	m	m	m	0
А	-96.530	0.850	0.150	0.088	0.174	30.299
В	-36.180	10.000	0.158	0.036	0.162	12.979
С	-29.100	25.500	0.171	0.032	0.174	10.615
D	2.470	38.960	0.183	0.001	0.183	0.380
G (centro di gr.)	-53.596	29.533	0.175	0.053	0.182	16.772
media					0.175	14.209

In condizioni di carico SLU, lo spostamento medio è di 175 mm e l'inclinazione media è di 14.2° rispetto all'orizzontale. Il meccanismo di scorrimento più probabile si trova dunque fra il secondo ed il terzo meccanismo.

L'inclinazione del vettore di spostamento del blocco, calcolato nelle analisi 2D (14.2°), coincide quasi con quello ottenuto nelle analisi tridimensionali (14°), come mostrato nella relazione "Blocco di ancoraggio della Sicilia: valutazione del comportamento del bloco mediante analisi FE 3D e di capacità portante". Lo spostamento massimo del blocco calcolato nelle analisi 2D (u= 17.5 cm) è tuttavia maggiore di quello calcolato mediante analisi 3D (u= 3.5 cm) in ragione dell'influenza di diverse condizioni geometriche.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data		
		PF0064_F0_ITA.doc	F0	20-06-2011		

5.4 Resistenza allo scorrimento ai lati del blocco di ancoraggio

La resistenza di scorrimento T_L sviluppata ai lati del blocco di ancoraggio è stata calcolata secondo l'ipotesi conservatrice che l'equilibrio limite attivo è raggiunto dietro i muri di diaframma durante le fasi di scavo. La sollecitazione di taglio al punto di contatto dei muri laterali con il terreno, può essere scritta come:

 $\tau_{s} = \sigma'_{n} \cdot \tan \varphi'_{s} = K_{a} \sigma'_{v} \cdot \tan \varphi'_{s}$

dove il coefficiente di pressione di terra attiva K_a è calcolato in modo conservatore utilizzando il caratteristico angolo di resistenza a taglio del terreno $\phi'_{k} = 40^{\circ}$, mentre un angolo di frizione $\phi'_{s} \approx atan[(2/3)tan\phi']$ è supposto all'interfaccia blocco-suolo; i valori caratteristici corrispondenti sono stati $\phi'_{k} = 40^{\circ}$ e $\phi'_{sk} = 30^{\circ}$.

La resistenza di scorrimento è stata calcolata riducendo tan ϕ'_{k} e tan ϕ'_{sk} del fattore γ_{ϕ} = 1.25 indicato in D.M. 14.01.2008 – "Nuove norme tecniche per le costruzioni" (Tabella 5.9).

	φ _k ΄ (°)	φď (°)	c _k ′ (kPa)	c _d ′ (kPa)
Coefficiente di pressione di terra attiva K _a	40	-	-	-
Angolo di frizione ai lati del blocco φ′ _s ≈ atan[(2/3)tanφ′]	30	24.8	0	0

Tabella 5.6. Resistenza di scorrimento ai lati del blocco di ancoraggio T_L

La Tabella 5.7 elenca le caratteristiche ed i valori di progetto della resistenza laterale T_L presunta nel calcolo per tenere in considerazione il contributo dei lati del blocco alla resistenza di scorrimento. Le prime sono utilizzate per valutare il coefficiente sismico critico $K_{c(red)}$ dato dall'equazione (9), mentre gli utili sono usati nell'approccio pseudo-statico. La profondità dei lati del blocco tenuta in considerazione nel calcolo della resistenza di scorrimento, varia, a seconda del meccanismo di scorrimento. Le Tabelle presenti nell'Appendice A forniscono i dettagli di calcolo.

meccanismo	φ′ _{sk}	T _{Lk}	ϕ'_{sd}	T_{Ld}
	(°)	(MN)	(°)	(MN)
(1)	30	303.1	24.8	242.5
(2)	30	333.9	24.8	267.1
(3)	30	403.6	24.8	322.9

Tabella 5.7. Resistenza di scorrimento sui lati del blocco

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

5.5 Resistenza passiva nella parte frontale del blocco

5.5.1 Approccio pseudo-statico

La resistenza passiva sviluppata nella parte frontale del blocco allo scorrimento è stata calcolata utilizzando la soluzione ottenuta da Chen e Liu (1990) mediante il teorema cinematico di analisi di limite. Per un valore di φ'_{K} =40° si è supposto $\delta_{K} = \varphi'_{K}/2 = 20^{\circ}$ e $\delta_{d} = \varphi'_{d}/2 = 17^{\circ}$. Ancora una volta, secondo D.M. 14.01.2008, la resistenza passiva è stata calcolata riducendo tan φ' del fattore γ_{φ} = 1.25 (Tabella 5.8).

Tabella 5.8. Resistenza passiva nella parte frontale del blocco RP

	φĸ΄	$\phi_{d}{'}$	c _k ′	<i>c</i> ď
	(°)	(°)	(kPa)	(kPa)
Coefficiente di pressione di terra passiva K _p	40	33.9	-	-
Angolo di frizione alle interfacce suolo-blocco $\delta_{k}=\phi'_{k}/2$	20	17	-	-

La Tabella 5.9 riporta i valori dei coefficienti di pressione di terra passivi K_{Pk} e K_{Pd}, valutati utilizzando i valori caratteristici ($\phi'_{k} = 40^{\circ}$) e di progetto ($\phi'_{d} = 33.9^{\circ}$) dell'angolo di resistenza a taglio, rispettivamente.

l valori di K_h e K_v utilizzati nel calcolo sono anche elencati alla Tabella 5.9. Essi sono stati ottenuti supponendo i valori di a_g specificati nel documento GCG.F.04.01 "Fondamenti progettuali e prestazioni attese per l'Opera di attraversamento". Gli effetti sul sito sono stati tenuti in considerazione supponendo un fattore di amplificazione topografica S_T = 1.2 ed un fattore di amplificazione del sottosuolo S_S = 1.0. Conformemente a D.M. 14.01.2008, il coefficiente β_m = 0.31 è stato utilizzato per il calcolo di K_h.

		•			•
Stato limite	ato limite a _g		K.,	K _{Pk}	K _{Pd}
	(g)	• •1		$(\phi'_{k} = 40^{\circ})$	$(\phi'_{d} = 33.9^{\circ})$
SLS2	0.26	0.097	0.049	9.005	5.481
ULS	0.58	0.216	0.108	7.655	4.577
SILS	0.64	0.238	0.119	7.395	4.401

Tabella 5.9. Coefficienti sismici pseudo-statici e coefficienti di pressione di terra passiva

La resistenza passiva è stata calcolata dal battente dei muri di diaframma (49.5 m sul livello del mare, z = 6.5 m sotto il livello del suolo.) fino a diverse profondità, secondo il meccanismo di scorrimento considerato nelle analisi; una lunghezza di L = 80 m è stata considerata nel calcolo.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data	
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011	

La Tabella 5.10 riassume i valori di progettuali calcolati della resistenza passiva R_{Pd} sviluppata frontalmente al blocco; a titolo di confronto, i valori caratteristici di R_p sono anch'essi presentati nelle tabelle. L'Appendice B mostra i dettagli di calcolo.

	SLS2		UL	S	SILS		
Meccanismo di	R _{Pk}	R_{Pd}	R _{Pk}	R_{Pd}	R _{Pk}	R_{Pd}	
scorrimento	(MN)	(MN)	(MN)	(MN)	(MN)	(MN)	
(1) z = 18.8 m	2241.8	1364.5	1905.7	1139.5	1841.0	1095.6	
(2) z = 29.2 m	5838.0	3553.4	4962.8	2967.3	4794.3	2853.2	
(3) z = 47.6 m	16018.2	9749.6	13616.8	8141.6	13154.3	7828.5	

Tabella 5.10. Resistenza passiva di terra frontale al blocco

5.5.2 Approccio basato sullo spostamento

Nell'approccio basato sullo spostamento, la resistenza passiva di terra R_P frontale al blocco, si presume incrementi progressivamente con lo spostamento relativo *u* indotto da carico di terremoto. Per i calcoli, è necessaria una relazione analitica fra R_P e *u*. A tal fine, le analisi FE di deformazione piana sono state condotte con riferimento al meccanismo 2 ($\alpha = 26^\circ$) ed al meccanismo 3 ($\alpha = 8^\circ$) che sono stati visti come limite superiore e inferiore per l'inclinazione della superficie di scorrimento. Le Figure 5.9 e 5.10 mostrano le mesh FE utilizzate per i calcoli. Lo stesso profilo di suolo è stato supposto nelle analisi, come discusso in § 2 e 3. Nelle analisi, un muro ideale, caratterizzato da un contatto perfettamente liscio con il suolo è collocato in posizione corrispondente alla parte frontale del blocco di ancoraggio; la lunghezza del muro si estende fino alla profondità del meccanismo di scorrimento modellato nelle analisi (z = 29.2 m e z = 47.6 m). Uno spostamento uniforme è applicato alla parete che progressivamente incrementa da 1 mm a circa 1 m. Per ogni valore dello spostamento applicato, la resistenza di terra ΔR per unità di

lunghezza è data da:

$$\Delta \mathbf{R} = \int_{\mathbf{L}} (\sigma_{\mathbf{h}} - \sigma_{\mathbf{h}_0}) \mathbf{d}$$
(25)

dove $\sigma_h e \sigma_{h0}$ sono le sollecitazioni orizzontali agenti sul muro per un dato spostamento u e in condizioni geostatiche, rispettivamente, ed L è l'altezza del muro ideale. La relazione fra la resistenza di terra frontale al muro ΔR e lo spostamento del muro u è stata ottenuta dal più adeguato dato $u - \Delta R$ nell'equazione:

$$\Delta R(u) = \frac{u}{b + m \cdot u}$$
(26)

dove b ed m sono costanti. In tale condizione, il valore finale di ΔR è dato da

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

$$\Delta R_{\max} = \lim_{u \to \infty} \frac{u}{b + m \cdot u} = \frac{1}{m}$$
(27)

Vale la pena di osservare che il presupposto di un' interfaccia suolo-parete liscia, genera una stima conservatrice di resistenza passiva. Inoltre, l'ipotesi di condizioni di deformazione piana è anch'essa conservatrice per il fatto che spostamenti maggiori sono indotti da una data pressione in condizioni 2D; di conseguenza, si ottiene una molla non lineare maggiormente deformabile.

Nelle analisi, il comportamento meccanico del suolo è stato descritto utilizzando il modello costitutivo Hardening Soil il quale è in grado di descrivere il comportamento non lineare del suolo sin dal principio del processo di carico; gli stessi parametri elencati in Tabella 3.2 sono stati utilizzati a tal fine.

La sequenza delle fasi delle analisi è riassunta in Tabella 5.11.

fase	descrizione
0	Stato di sollecitazione iniziale supponendo condizioni di sollecitazione K ₀
1	Applicazione del carico di gravità
2	reset spostamento ed applicazione di spostamento costante lungo il muro
3	Applicazione del primo incremento di spostamento
÷	
n	Applicazione dell'ultimo incremento di spostamento

Tabella 5.11. Sequenza della fasi di calcolo

I risultati ottenuti sono riportati nella Tabella 5.12 e sono mostrati nella Figura 5.11 in termini di relazioni $u - \Delta R$. Il valore della resistenza di terra per unità di lunghezza è stato moltiplicato per la larghezza del blocco di ancoraggio (pari a 80m) per ottenere un valore ΔR espresso in termini di forza (MN). Le Figure 5.12, 5.13 e 5.14 mostrano i punti plastici, i contorni dello spostamento orizzontale e i contorni della resistenza a taglio mobilitata (t/t_{lim}) ottenuti per il meccanismo 2. Le Figure 5.15, 5.16 e 5.17 mostrano i punti plastici, i contorni di spostamento orizzontale e i contorni della resistenza a taglio mobilitata (t/t_{lim}) ottenuti per il meccanismo 3.

Tabella	5.12.	Analisi	F.E.	di	resistenza	di	terra	passiva
---------	-------	---------	------	----	------------	----	-------	---------

	Meccanismo 2	Meccanismo 3
<i>m</i> (1/MN)	3.149 × 10 ⁻⁴	1.582 × 10 ⁻⁴
<i>b</i> (m/MN)	4.145 × 10⁻⁵	3.039 × 10 ⁻⁵
$\Delta R_{max}(MN)$	3176	6321

5.6 Valutazione della sicurezza rispetto allo scorrimento – approccio pseudostatico

Nella valutazione della sicurezza rispetto allo scorrimento mediante approccio pseudo-statico, è stata utilizzata l'equazione 6, seguendo le prescrizioni contenute in D.M. 14.01.2008.

Le resistenze progettuali sono calcolate considerando i contributi della resistenza di scorrimento alla base ed ai lati del blocco e la resistenza passiva nella parte frontale del blocco. La spinta di terra attiva dietro il blocco è stata tenuta in considerazione fino ad una profondità di 20 m (porzione verticale del muro retrostante) e per una larghezza di 120 m (larghezza della parte posteriore). Sia le azioni progettuali che le resistenze progettuali sono state calcolate utilizzando coefficienti sismici pseudo-statici riportati alla Tabella 5.9.

La forza dei cavi *T* è inclinata rispetto all' orizzontale di un angolo $i = 15^{\circ}$. La Tabella 5.13 riporta i valori di *T* forniti dalle analisi strutturali del progetto di gara per ciascuno stato limite. I seguenti calcoli sono stati effettuati per ciascuno stato limite sebbene la sicurezza rispetto allo scorrimento debba essere verificata solo in condizioni di carico SLU. Per questa condizione, le forze dei cavi fornite dal progetto di gara sono maggiori rispetto ai valori corrispondenti forniti dal modello globale IBDAS (5.8% per la versione 3.3b e 8% per la versione 3.3f); ciò risulta in una stima conservatrice della sicurezza del blocco di ancoraggio della Sicilia rispetto allo scorrimento.

Stato limite	SLS	ULS	SLIS
T (MN)	3250	3964	3146

Tabella 5.13. Forza cavi	Г
--------------------------	---

Il valore caratteristico di φ 's mobilitato sulkla superficie di scorrimento, si è presunto fosse l'angolo di resistenza di taglio a volume costante; il suo valore è stato stimato utilizzando la relazione proposta da Bolton (1986):

 $\phi'_{sk} = \phi'_{cv} = \phi'_{p} - 3 D_{R}(10 - Inp') + 3^{\circ}$

Che per ϕ'_p = 40°, D_R = 50% e p' = 200 kPa fornisce ϕ'_{sk} = ϕ'_{cv} = 36° (Tabella 5.14).

	φĸ΄	ϕ_{d}	C _k ′	c_{d}'	
	(°)	(°)	(kPa)	(kPa)	
⁽¹⁾ Resistenza a taglio mobilitata $\phi'_{sk} = \phi'_{cv}$	36	30.2	0	0	

Tabella 5.14. Superficie di scorrimento

 $^{(1)}$ $\phi'_{sk}~=\!\!\phi'_{cv},$ for ϕ'_{p} = 40°, D_{R} = 50% and p' = 200 kPa
Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO					
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data			
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011			

La Tabella 5.15 riporta i coefficienti sismici pesudo-statici, i coefficienti di pressione di terra attiva e la spinta di terra attiva, utilizzati per i calcoli.

Tabella 5.15. Coefficienti sismici pseudo-statici, coefficienti di pressione di terra attiva e spinta di terra attiva

Stato limite	a _g	K _h	K _v	Κ _{ak}	K_{ad}	$S_{aE(k)}$	$S_{aE(d)}$
	(g)			(φ' _k =40°)	(φ' _k =33.9°)	(MN, φ' _k =40°)	(MN, φ' _k =33.9°)
SLS2	0.26	0.097	0.048	0.269	0.343	129.2	164.7
ULS	0.58	0.216	0.108	0.357	0.445	171.4	213.7
SLIS	0.64	0.238	0.119	0.378	0.470	181.3	225.4

La Tabella 5.16 a-b riporta il confronto fra le resistenza progettuali e le azioni progettuali per i tre meccanismi di scorrimento supposti nelle analisi. Le Tabelle presenti nell'Appendice C forniscono i dettagli di calcolo.

Tabella 5.16 a. Sicurezza ris	petto allo scorrimento,	pressione di terra attiva trascurata

	SLS2			ULS			SILS		
	ΣR_d	ΣE_d	$\Sigma R_d / \Sigma E_d$	ΣR_d	ΣE_d	$\Sigma R_d / \Sigma E_d$	ΣR_d	ΣE_d	$\Sigma R_d / \Sigma E_d$
Meccanismo 1	5406.0	-1008.7	(-)	5471.9	672.4	8.1	5286.4	111.4	47.4
					2282.				
Meccanismo 2	7631.3	495.5	15.4	7171.4	4	3.1	6985.5	1683.0	4.2
				11471.	4698.		11206.		
Meccanismo 3	13152.5	2912.7	4.5	3	7	2.4	9	4088.8	2.7

(-) Il componente del peso sommerso del blocco di ancoraggio parallelo alla superficie di sorrimento W' sen α è maggiore della somma delle altre forze di traino (driving forces).

Tabella 5.16 b	. Sicurezza rispetto	allo scorrimento,	pressione of	di terra a	attiva inclusa
----------------	----------------------	-------------------	--------------	------------	----------------

-	SLS2			ULS			SILS		
	ΣR_d	ΣE_d	$\Sigma R_d / \Sigma E_d$	ΣR_d	ΣE_d	$\Sigma R_d / \Sigma E_d$	ΣR_d	ΣE_d	$\Sigma R_d / \Sigma E_d$
Meccanismo 1	5406.0	-878.9	(-)	5471.9	840.8	6.5	5286.4	289.0	18.3
Meccanismo 2	7631.3	643.5	11.9	7171.4	2474.4	2.9	6985.5	1885.6	3.7
Meccanismo 3	13152.5	3075.8	4.3	11471.3	4910.3	2.3	11206.9	4312.0	2.6

(-) Il componente del peso sommerso del blocco di ancoraggio parallelo alla superficie di sorrimento W' sen α è maggiore della somma delle altre forze di traino (driving forces).

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO					
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data			
		PF0064_F0_ITA.doc	F0	20-06-2011			

Il confronto delle Tabelle 5.15 a-b, mostra che la spinta di terra attiva, riduce il rapporto $\Sigma R_d / \Sigma E_d$. Ciò malgrado, la riduzione è trascurabile nella condizione di carico SLU per il meccanismo 2 ed il meccanismo 3, che sono caratterizzati dagli inferiori valori del rapporto $\Sigma R_d / \Sigma E_d$ e rappresentano, come osservato, il limite superiore ed inferiore per la superficie di scorrimento più probabile. In tutti i casi esaminati, il rapporto $\Sigma R_d / \Sigma E_d$ è maggiore di 1 e la sicurezza rispetto allo scorrimento è soddisfatta.

5.7 Valutazione della performance di scorrimento-approccio basato sullo spostamento

5.7.1 Azione sismica

Nell'approccio basato sullo spostamento, occorre selezionare una serie di accelerogrammi di input. A tal fine, 22 storie temporali di accelerazione sono state selezionate dal database PEER strongmotion, specificando un range di magnitudo M= 6.5-7.28, e distanze ipocentriche comprese nel range da 12 a 82 km. L'accelerazione di picco degli accelerogrammi di input va da 0.29g, ovvero la metà del picco di accelerazione di progetto (0.58g) a 1.16 g, ovvero il doppio dell'accelerazione di picco di progetto. Oltre alle reali storie temporali di accelerazione, 8 accelerogrammi di strongmotion artificiali, del tutto compatibili con lo spettro di risposta del progetto preliminare, sono state inoltre utilizzare come moto di input per le analisi del blocco in scorrimento.

La Tabella 5.17 riporta i parametri principali dei componenti orizzontali degli accelerogrammi selezionati: l'accelerazione di picco a_{max} , la velocità di picco v_{max} , l'intensità Arias I_a , il periodo dominante dello spettro di Fourier T_P , e la durata fra la prima e l'ultima eccedenza di 0.05g ($D_{0.05g}$). Nella Tabella 5.18 gli stessi parametri sono elencati per la componente verticale degli accelerogrammi.

Ogni componente orizzontale è stata scalata all'accelerazione di picco progettuale $a_{max} = 0.58g$ e il componente verticale corrispondente è stato scalato dello stesso fattore. La Tabella 5.19 e 5.20 mostrano i parametri degli accelerogrammi scalati.

I componenti orizzontali di ogni evento sismico sono stati considerati in modo indipendente e combinati con il componente verticale. Le analisi sono state anche ripetute utilizzando il componente orizzontale scalato combinato con il componente verticale scalato anch'esso a .058 g (Tabella 5.21).

Le Figure 5.18 -5.22 mostrano lo spettro di risposta elastica degli accelerogrammi selezionati, rispetto allo spettro di risposta progettuale.

Tabella 5.17. Parametri degli accelerogrammi selezionati, componenti orizzontali

Storia temporale	<i>а</i> _{МАХ} (g)	v _{MAX} (m/s)	I _a (m/s)	<i>T</i> _P (s)	D _{0.05g} (s)
Friuli 76 TOLXC	0.357	0.210	0.799	0.494	7.48
Friuli 76 TOLYC	0.316	0.326	1.169	0.661	6.09
Imperial Valley 1979 DLT352	0.351	0.330	3.289	1.672	70.53
Kobe 1995 TAZ000	0.693	0.683	3.070	1.638	14.92
Kobe 1995 TAZ090	0.694	0.853	3.935	0.488	12.15
Landers 1992 CLWTR	0.417	0.423	2.172	0.706	18.50
Landers 1992 LCN260	0.727	1.465	6.977	0.106	33.26
Landers 1992 LCN345	0.789	0.324	6.585	0.088	33.33
Loma Prieta 1989 CYC285	0.484	0.397	1.503	0.650	16.92
Loma Prieta 1989 G03000	0.555	0.357	2.087	0.569	9.99
Loma Prieta 1989 G03090	0.367	0.447	1.348	1.862	16.59
Loma Prieta 1989 G04000	0.417	0.388	1.241	0.394	14.73
Manjil 90 ABBL	0.515	0.425	4.656	0.340	49.16
Manjil 90 ABBT	0.496	0.521	7.589	0.218	45.24
Northridge 94 CEN245	0.322	0.229	0.994	0.853	14.16
Northridge 94 LAC180	0.316	0.140	1.051	0.339	16.21
Umbria Marche 97 NCRXC	0.524	0.320	3.304	0.159	12.38
Umbria Marche 97 NCRYC	0.463	0.291	2.822	0.378	10.84
Imperial Valley 79 BC230	0.775	0.460	5.987	0.621	19.09
Irpinia 80 STUYC	0.323	0.546	1.506	2.341	43.48
Montenegro 79 ULCXC	0.294	0.386	1.851	1.092	30.90
Montenegro 79 PETXC	0.454	0.389	4.527	0.458	18.67
Art. 1 comp. 1	0.642	0.757	7.457	0.803	36.58
Art. 1 comp. 2	0.633	0.805	7.667	0.819	27.98
Art. 2 comp. 1	0.656	0.667	6.239	0.910	26.93
Art. 2 comp. 2	0.640	0.742	5.835	0.694	24.92
Art. 3 comp. 1	0.675	0.709	9.664	0.759	37.31
Art. 3 comp. 2	0.611	0.722	8.733	0.890	33.92
Art. 4 comp. 1	0.608	0.782	9.588	0.881	59.59
Art. 4 comp. 2	0.534	1.178	6.276	0.433	51.41

Tabella 5.18. Parametri degli accelerogrammi selezionati, componenti verticali

Storia temporale	<i>а</i> _{мах} (g)	v _{MAX} (m/s)	I _a (m/s)	$T_{P}\left(s\right)$	D _{0.05g} (s)
Friuli 76 TOLZC	0.267	0.103	0.336	0.174	6.09
Imperial Valley 1979 DLTDW	0.145	0.148	0.538	4.312	20.45
Kobe 1995 TAZUP	0.433	0.348	1.051	0.466	4.12
Landers 1992 CLWUP	0.174	0.099	0.617	0.146	21.35
Landers 1992 LCNUP	0.818	0.460	8.226	0.075	33.54
Loma Prieta 1989 CYCUP	0.082	0.095	0.122	1.107	8.92
Loma Prieta 1989 G03UP	0.338	0.155	0.807	1.280	12.93
Loma Prieta 1989 G04UP	0.159	0.146	0.315	1.781	12.97
Manjil 90 ABBV	0.538	0.440	4.676	0.134	47.58
Northridge 94 CENUP	0.109	0.106	0.254	1.517	12.66
Northridge 94 LACUP	0.135	0.076	0.215	0.410	11.67
Umbria Marche 97 NCRZC	0.419	0.284	0.711	0.158	5.27
Imperial Valley 79 BCUP	0.425	0.122	1.123	0.146	17.91
Irpinia 80 STUZC	0.235	0.204	0.561	1.707	12.40
Montenegro 79 ULCZC	0.458	0.163	2.512	0.079	16.23
Montenegro 79 PETZC	0.213	0.132	0.577	0.410	15.79
Art. 1 comp. V	0.515	0.463	6.922	0.494	33.86
Art. 2 comp. V	0.656	0.566	4.249	0.706	22.46
Art. 3 comp. V	0.630	0.656	6.408	0.445	27.06
Art. 4 comp. V	0.699	0.576	7.344	0.394	56.42

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO					
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data			
		PF0064_F0_ITA.doc	F0	20-06-2011			

Storia temporale	<i>а</i> _{МАХ} (g)	v _{MAX} (m/s)	I _a (m/s)	<i>T</i> _P (s)	D _{0.05g} (s)
Friuli 76 TOLXC	0.580	0.341	2.112	0.494	8.88
Friuli 76 TOLYC	0.580	0.599	3.948	0.661	12.66
Imperial Valley 1979 DLT352	0.580	0.545	8.974	1.672	77.41
Kobe 1995 TAZ000	0.580	0.571	2.148	1.638	9.53
Kobe 1995 TAZ090	0.580	0.713	2.752	0.488	12.01
Landers 1992 CLWTR	0.580	0.589	4.204	0.706	20.40
Landers 1992 LCN260	0.580	1.169	4.442	0.106	33.26
Landers 1992 LCN345	0.580	0.238	3.557	0.088	33.30
Loma Prieta 1989 CYC285	0.580	0.476	2.159	0.650	17.44
Loma Prieta 1989 G03000	0.580	0.373	2.279	0.569	11.80
Loma Prieta 1989 G03090	0.580	0.705	3.360	1.862	22.84
Loma Prieta 1989 G04000	0.580	0.540	2.408	0.394	21.55
Manjil 90 ABBL	0.580	0.479	5.916	0.340	49.30
Manjil 90 ABBT	0.580	0.609	10.363	0.218	45.24
Northridge 94 CEN245	0.580	0.412	3.232	0.853	21.26
Northridge 94 LAC180	0.580	0.257	3.535	0.339	24.64
Umbria Marche 97 NCRXC	0.580	0.354	4.052	0.159	12.38
Umbria Marche 97 NCRYC	0.580	0.365	4.435	0.378	11.95
Imperial Valley 79 BC230	0.580	0.344	3.355	0.621	16.11
Irpinia 80 STUYC	0.580	0.982	4.797	2.341	46.29
Montenegro 79 ULCXC	0.580	0.761	7.225	1.092	35.88
Montenegro 79 PETXC	0.580	0.497	7.392	0.458	31.58
Art. 1 comp. 1	0.580	0.683	6.080	0.803	36.56
Art. 1 comp. 2	0.580	0.738	6.444	0.819	27.96
Art. 2 comp. 1	0.580	0.590	4.879	0.910	24.75
Art. 2 comp. 2	0.580	0.672	4.791	0.694	24.91
Art. 3 comp. 1	0.580	0.609	7.138	0.759	32.85
Art. 3 comp. 2	0.580	0.685	7.876	0.890	30.57
Art. 4 comp. 1	0.580	0.746	8.724	0.881	59.59
Art. 4 comp. 2	0.580	1.279	7.395	0.433	51.42

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Tabella 5.20. Parametri dei componenti verticali scalati dello stesso fattore dei componenti orizzontali corrispondenti

Storia temporale	scale factor	<i>a</i> _{MAX} (g)	v _{MAX} (m/s)	I _a (m/s)	$T_{P}\left(s\right)$	D _{0.05g} (s)
Friuli 76 TOLZC	1.6246	0.434	0.167	0.886	0.174	7.05
Friuli 76 TOLZC	1.8354	0.490	0.188	1.130	0.174	8.62
Imperial Valley 1979 DLTDW	1.6524	0.240	0.244	1.469	4.120	57.14
Kobe 1995 TAZUP	0.8369	0.362	0.292	0.736	0.466	3.12
Kobe 1995 TAZUP	0.8357	0.362	0.291	0.734	0.466	3.12
Landers 1992 CLWUP	1.3909	0.242	0.138	1.193	0.146	23.19
Landers 1992 LCNUP	0.7978	0.653	0.367	5.236	0.075	33.52
Landers 1992 LCNUP	0.7351	0.601	0.338	4.445	0.075	25.08
Loma Prieta 1989 CYCUP	1.1983	0.098	0.114	0.175	1.107	8.99
Loma Prieta 1989 G03UP	1.0450	0.353	0.162	0.881	1.280	12.94
Loma Prieta 1989 G03UP	1.5804	0.534	0.244	2.016	1.280	20.44
Loma Prieta 1989 G04UP	1.3909	0.221	0.203	0.610	1.781	14.12
Manjil 90 ABBV	1.1262	0.606	0.495	5.931	0.134	47.60
Manjil 90 ABBV	1.1694	0.629	0.514	6.395	0.134	47.60
Northridge 94 CENUP	1.8012	0.196	0.191	0.824	1.517	21.90
Northridge 94 LACUP	1.8354	0.248	0.139	0.724	0.410	17.60
Umbria Marche 97 NCRZC	1.1069	0.464	0.314	0.871	0.158	6.18
Umbria Marche 97 NCRZC	1.2527	0.525	0.356	1.157	0.158	7.49
Imperial Valley 79 BCUP	0.7484	0.318	0.091	0.629	0.146	11.59
Irpinia 80 STUZC	1.7957	0.422	0.367	1.809	1.707	44.99
Montenegro 79 ULCZC	1.9728	0.904	0.321	9.776	0.079	30.24
Montenegro 79 PETZC	1.2775	0.272	0.169	0.941	0.410	17.61
Art. 1 comp. V	0.9034	0.465	0.418	5.649	0.494	30.44
Art. 1 comp. V	0.9163	0.472	0.424	5.812	0.494	30.44
Art. 2 comp. V	0.8841	0.580	0.500	3.321	0.706	21.79
Art. 2 comp. V	0.9063	0.595	0.513	3.490	0.706	21.79
Art.3 comp. V	0.8593	0.541	0.564	4.732	0.445	27.03
Art. 3 comp. V	0.9493	0.598	0.623	5.775	0.445	27.05
Art. 4 comp. V	0.9539	0.667	0.549	6.682	0.394	56.40
Art. 4 comp. V	1.0861	0.759	0.625	8.663	0.394	56.42

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data	
		PF0064_F0_ITA.doc	F0	20-06-2011	

Tabella 5.21. Parametri degli accelerogrammi selezionati	i scalati a 0.58g. Componenti verticali
--	---

Storia temporale	<i>а</i> _{мах} (g)	v _{MAX} (m/s)	I _a (m/s)	<i>T</i> _P (s)	D _{0.05g} (s)
Friuli 76 TOLZC	0.580	0.223	1.579	0.174	4.12
Imperial Valley 1979 DLTDW	0.580	0.592	8.612	4.120	30.57
Kobe 1995 TAZUP	0.580	0.467	1.882	0.466	2.79
Landers 1992 CLWUP	0.580	0.332	6.885	0.146	16.52
Landers 1992 LCNUP	0.580	0.323	4.131	0.075	25.08
Loma Prieta 1989 CYCUP	0.580	0.678	6.160	1.107	31.40
Loma Prieta 1989 G03UP	0.580	0.265	2.373	1.280	20.44
Loma Prieta 1989 G04UP	0.580	0.534	4.211	1.781	23.16
Manjil 90 ABBV	0.580	0.474	5.438	0.134	47.60
Northridge 94 CENUP	0.580	0.566	7.216	1.517	27.44
Northridge 94 LACUP	0.580	0.326	3.992	0.410	30.29
Umbria Marche 97 NCRZC	0.580	0.393	1.362	0.158	7.49
Imperial Valley 79 BCUP	0.580	0.166	2.093	0.146	17.93
Irpinia 80 STUZC	0.580	0.503	3.409	1.707	46.03
Montenegro 79 ULCZC	0.580	0.206	4.034	0.079	28.45
Montenegro 79 PETZC	0.580	0.361	4.292	0.410	32.63
Art. 1 comp. V	0.580	0.521	8.776	0.494	34.18
Art. 2 comp. V	0.580	0.500	3.320	0.706	21.79
Art. 3 comp. V	0.580	0.604	5.433	0.445	27.05
Art. 4 comp. V	0.580	0.478	5.062	0.394	52.24

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data	
		PF0064_F0_ITA.doc	F0	20-06-2011	

5.7.2 Coefficiente sismico critico

I valori dei coefficienti sismici critici sono stati valutati per ogni stato limite, considerando il contributo della base e dei lati del blocco, mentre la resistenza di terra passiva sulla parte frontale del blocco si presume incrementi gradualmente con lo sviluppo dello spostamento del blocco rispetto al terreno. I valori di K_c , calcolati utilizzando l'equazione (9), con φ'_{sk} = 36°, sono elencati alla Tabella 5.22.

	SLS2	ULS	SILS
Meccanismo 1	0.78	0.73	0.79
Meccanismo 2	0.64	0.58	0.65
Meccanismo 3	0.40	0.33	0.41

Tabella 5.22. Coefficienti sismici critici K_c,

I valori inferiori di K_c sono ottenuti per la condizione SLU. Per questo motivo, lo spostamento indotto da terremoto calcolato per il blocco di ancoraggio della Sicilia è di seguito riportato solo con riferimento alla condizione SLU.

5.7.3 Spostamenti indotti da terremoto

Le analisi pseudo-statiche mostrano che il meccanismo 1 è il meno critico fra i tre meccanismi supposti sia in termini di sicurezza rispetto allo scorrimento che in termini di coefficiente sismico critico $K_{c.}$ Inoltre, le analisi FE hanno mostrato che l'inclinazione della superficie con più probabilità di scorrimento si trova fra i meccanismi 2 e 3. Per questi motivi, gli spostamenti indotti da terremoto sono stati valutati per questi meccanismi.

I calcoli sono stati effettuati combinando ciascun componente scalato con il componente verticale corrispondente dapprima scalato dello stesso fattore e poi scalato anche a 0.58g. Le analisi sono state ripetute anche considerando gli accelerogrammi inversi , es. $a_{inverse}(t) = -a(t)$.

Gli spostamenti indotti da terremoto sono stati calcolati per mezzo dell'integrazione numerica dell'equazione (21) con φ'_{sk} = 36°. Gli spostamenti massimi calcolati sono riassunti nella Tabella 5.23.

Per il meccanismo 2, lo spostamento massimo calcolato del blocco di ancoraggio è u_{max} = 1 mm, mentre per il meccanismo 3 è u_{max} = 33 mm.

I più elevati spostamenti indotti dagli eventi sismici selezionati sono ottenuti per il meccanismo 3, caratterizzato dalla inferiore inclinazione del piano di scorrimento (α = 0).

I risultati ottenuti per ogni accelerogramma sono riassunti nella Tabella 5.24, mentre l'Appendice D

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data	
		PF0064_F0_ITA.doc	F0	20-06-2011	

riporta le storie temporali di accelerazione, velocità e spostamento ottenute per ogni input sismico, considerando il meccanismo 3, che è stato identificato come il maggiormente critico.

	<i>a_{v,max}</i> ≠ 0.58g	$a_{v,max} = 0.58g$
Meccanismo 2	1	1
Meccanismo 3	24	33

Tabella 5.23. Spostamenti indotti da terremoto (mm);

Infine, sono state condotte due analisi comparative in cui l'inclinazione della superficie di scorrimento è α = 14°, come ottenuto dalle analisi FE 2D e 3D. In queste analisi, sono state effettuate le seguenti supposizioni conservative: i valori di T_L corrispondenti al meccanismo 1 sono stati considerati; la spinta di terra netta ΔR è stata calcolata fino alla profondità del muro di diaframma (meccanismo 2); il peso del blocco di ancoraggio è stato il solo considerato nei calcoli. I risultati riportati in Tabella 5.25 mostrano che, in queste ipotesi conservatrici, lo spostamento permanente del blocco di ancoraggio, indotto dal carico da terremoto è nel range 25 – 58 mm.

Stretto di Messina	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		1
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza	Codice documento	Rev	Data
	PF0064_F0_ITA.doc	F0	20-06-2011

Storio tomporolo	Месса	nismo 2	Meccanismo 3		
Stona temporale	a _{v,max} ≠ 0.58g	$a_{v,max} = 0.58g$	a _{v,max} ≠ 0.58g	$a_{v,max} = 0.58g$	
Friuli 76 TOLXC	0	0	1	3	
Friuli 76 TOLYC	0	0	12	13	
Imperial Valley 1979 DLT352	0	0	2	5	
Kobe 1995 TAZ000	0	0	1	5	
Kobe 1995 TAZ090	0	1	20	33	
Landers 1992 CLWTR	0	0	8	8	
Landers 1992 LCN260	0	0	8	7	
Landers 1992 LCN345	0	0	2	2	
Loma Prieta 1989 CYC285	0	0	1	5	
Loma Prieta 1989 G03000	0	0	1	1	
Loma Prieta 1989 G03090	0	0	9	10	
Loma Prieta 1989 G04000	0	0	8	10	
Manjil 90 ABBL	0	0	6	5	
Manjil 90 ABBT	0	0	14	12	
Northridge 94 CEN245	0	0	6	8	
Northridge 94 LAC180	0	0	4	11	
Umbria Marche 97 NCRXC	0	0	7	9	
Umbria Marche 97 NCRYC	0	0	5	6	
Imperial Valley 79 BC230	0	0	3	3	
Irpinia 80 STUYC	0	0	1	2	
Montenegro 79 ULCXC	1	0	15	7	
Montenegro 79 PETXC	0	0	10	29	
Art. 1 comp. 1	0	0	6	12	
Art. 1 comp. 2	0	0	14	21	
Art. 2 comp. 1	0	0	13	13	
Art. 2 comp. 2	0	0	24	23	
Art. 3 comp. 1	0	0	13	16	
Art. 3 comp. 2	0	0	11	10	
Art. 4 comp. 1	0	0	18	16	
Art. 4 comp. 2	0	0	13	9	

Tabella 5.24. Spostamenti indotti da terremoto (mm)

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Tabella 5.25. Analisi comparativa: Spostamenti indotti da terremoto (mm); componente orizzontale scalato e componente verticale corrispondente scalato a 0.58g

Staria temperale	α=14°, K _c =0.366		α=8°, K _c =0.265		
Stona temporale	a _{vmax} <>0.58g	a _{vmax} =0.58g	a _{vmax} <>0.58g	a _{vmax} =0.58g	
Friuli 76 TOLXC	1	3	4	8	
Friuli 76 TOLYC	4	7	21	24	
Imperial Valley 1979 DLT352	0	3	3	12	
Kobe 1995 TAZ000	0	5	3	22	
Kobe 1995 TAZ090	9	25	35	57	
Landers 1992 CLWTR	0	4	16	22	
Landers 1992 LCN260	5	4	16	13	
Landers 1992 LCN345	1	1	6	6	
Loma Prieta 1989 CYC285	0	2	3	12	
Loma Prieta 1989 G03000	0	0	2	4	
Loma Prieta 1989 G03090	3	4	16	18	
Loma Prieta 1989 G04000	0	2	15	20	
Manjil 90 ABBL	4	3	16	15	
Manjil 90 ABBT	8	5	32	29	
Northridge 94 CEN245	0	3	11	17	
Northridge 94 LAC180	0	6	7	27	
Umbria Marche 97 NCRXC	2	5	15	21	
Umbria Marche 97 NCRYC	2	3	12	13	
Imperial Valley 79 BC230	0	1	7	7	
Irpinia 80 STUYC	0	0	4	6	
Montenegro 79 ULCXC	11	2	32	17	
Montenegro 79 PETXC	1	18	26	58	
Art. 1 comp. 1	3	11	19	32	
Art. 1 comp. 2	8	15	31	42	
Art. 2 comp. 1	12	12	23	23	
Art. 2 comp. 2	21	20	39	38	
Art. 3 comp. 1	6	8	35	39	
Art. 3 comp. 2	3	2	32	30	
Art. 4 comp. 1	9	5	37	31	
Art. 4 comp. 2	12	3	34	22	
max	21	25	39	58	

6 Blocco di Ancoraggio della Sicilia – Sicurezza rispetto alla rotazione

La sicurezza rispetto alla rotazione assicura che la forza risultante trasmessa alle fondazioni, agisca entro il piano di fondazione; essa è stata valutata imponendo un momentum equilibrium intorno al punto O appartenente al piano di moto (Figura 6.1).

Conformemente a D.M. 14.01.2008, la sicurezza rispetto alla rotazione è trattata come uno stato limite di equilibrio di corpo rigido (EQU) utilizzando il fattore di sicurezza parziale del gruppo M2 per valutare le pressioni di terra. Inoltre, in condizioni sismiche, i fattori di carico delle azioni progettuali sono definite pari all'unità (§ 7.11.1 - D.M. 14.01.2008); conformemente a ciò, suddetti fattori sono di seguito omessi.

Una stima conservatrice della sicurezza rispetto alla rotazione è stata ottenuta con i seguenti presupposti:

- La resistenza di terra passiva R_{Pd} considerata nei calcoli faceva riferimento al meccanismo 3, corrispondente al momento resistente inferiore;
- Il contributo della resistenza di scorrimento T_{Ld} sviluppato lungo i lati del blocco di ancoraggio è stato trascurato.

La sicurezza rispetto alla rotazione è assicurata quando i momenti di resistenza sono pari o maggiori ai momenti di traino (driving moment):

$$\frac{\sum M_{R_d}}{\sum M_{D_d}} = \frac{W' \cdot e_W + R_{P_d} \cos \delta \cdot e_{R_P}}{K_h W \cdot e_{K_h} + K_v W \cdot e_{K_v} + T \cos i \cdot e_{T_h} + T \sin i \cdot e_{T_v}} \ge 1$$
(28)

dove ei è la distanza della linea di azione di ciascuna forza dal punto O. I valori fattorizzati di ciascuna forza dei cavi T sono stati introdotti nell'equazione (28), come indicato dalle analisi strutturali del progetto di gara per condizione di carico SLU.

La Tabella 6.1 riporta i parametri di resistenza a taglio utilizzati nei calcoli.

l'abella 6.1. Sicurezza rispetto alla rotazione				
	φĸ΄	ϕ_{d}	C _k ′	c_{d}'
	(°)	(°)	(kPa)	(kPa)
$ \begin{array}{ccc} \mbox{Resistenza di terra passiva } R_p & 40 & 33.9 & 0 & 0 \\ \end{array} $				

Toballa 6.1. Sigurazza rignatta alla rataziona

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

La Tabella 6.2 e la Tabella 6.3 riportano le azioni di resistenza e di traino (driving) rispettivamente.

Tabella 0.2. Resistenza di progetto				
	resistenza	distanza	M _{Rd}	
	(MN)	(m)	(MN·m)	
W'	7502	57.6	432115	
R_{Pd} cos δ	7788	13.7	206702	
ΣM_{Rd}			538818	

Tabella 6.2. Resistenza di progetto

Tabella 6.3. Forze di traino				
	azione	distanza	M _{Dd}	
	(MN)	(m)	(MN·m)	
<i>K</i> _h <i>W</i>	1619	12.9	20880	
$K_{v}W$	809	57.6	46617	
T _h	3829	38.1	145882	
T _v	1026	9.0	9234	
ΣM_{Dd}			222613	

Ne segue che

$$\frac{\sum M_{R_d}}{\sum M_{D_d}} = 2.42$$

I requisiti di D.M. 14.01.2008 sono dunque soddisfatti.

7 Blocco di ancoraggio Sicilia – Capacità portante

La sicurezza rispetto alla rottura di fondo, è stata valutata utilizzando l'Approccio 1, Combinazione 2 delle Norme per le Costruzioni Italiane (D.M. 14.01.2008, "Nuove norme tecniche per le costruzioni). I carichi da considerare per la valutazione della capacità portante sono la forza dei cavi *T*, il peso del blocco di ancoraggio *W* e le componenti verticali ed orizzontali della forza di inerzia pseudo-statica $K_hW e K_vW$.

Le supposizioni conservative adottate nei calcoli sono state le seguenti:

- La resistenza di scorrimento sviluppata sulle pareti laterali del blocco di ancoraggio non è stata tenuta in considerazione;
- La resistenza di terra passiva è stata trascurata supponendo che essa non fosse del tutto mobilitata al raggiungimento della capacità portante.

La capacità portante è valutata in termini di sollecitazione effettiva utilizzando fattori di correzione adeguati per tenere in considerazione l'inclinazione del carico applicato, la forma delle fondazioni, e l'inclinazione della base di fondazione. A tal fine, la geometria del blocco di ancoraggio considerata nelle analisi è mostrata in Figura 6.1. Al fine di tenere conto dell'eccentricità del carico, la capacità portante è calcolata per una fondazione rettangolare equivalente con ridotta larghezza B' e lunghezza L'.

La sicurezza rispetto alla rottura di fondo è assicurata de la resistenza progettuale R_d è pari o superiore ai carichi di progetto E_d :

$$\frac{R_d}{E_d} \ge 1$$

I valori progettuali delle resistenze e delle forze sono ottenuti dai valori caratteristici corrispondenti e da quelli che agiscono normalmente sul piano di fondazione.

La resistenza progettuale è:

$$R_{N_{d}} = \frac{1}{\gamma_{R}} R_{N_{k}} = \frac{1}{\gamma_{R}} \left(Q'_{ult_{d}} + U_{bd} \right)$$
(29)

dove γ_R = 1.8. Nell'equazione (29):

- $Q'_{ult_d} = A \cdot q'_{ult_d}$ è la capacità portante ultima fornita dall'equazione di Terzaghi;
- A è l'area della base di fondazione del blocco di ancoraggio;
- q'_{ultd} è la pressione portante ultima calcolata utilizzando valori ridotti dell'angolo di resistenza a taglio che agisce sulla superficie di rottura φ'_d = atan [(tan φ'_k)/ γ_{φ}], con γ_{φ} = 1.25;

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

- U_{bd} = U_{bk} è la risultante della pressione dell'acqua dei pori che agisce a livello delle fondazioni.

Secondo la teoria di Terzaghi, la pressione portante effettiva ultima q'ut è data dall'equazione

$$\mathbf{q}_{\mathsf{u}|\mathsf{t}}^{\prime} = \mathbf{N}_{\mathsf{q}} \cdot \mathbf{q}^{\prime} \cdot \boldsymbol{\zeta}_{\mathsf{q}} \cdot \boldsymbol{\xi}_{\mathsf{q}} \cdot \boldsymbol{\alpha}_{\mathsf{q}} + \mathbf{N}_{\mathsf{c}} \cdot \mathbf{c}^{\prime}_{\mathsf{d}} \cdot \boldsymbol{\zeta}_{\mathsf{c}} \cdot \boldsymbol{\xi}_{\mathsf{c}} \cdot \boldsymbol{\alpha}_{\mathsf{c}} + \mathbf{N}_{\gamma} \cdot \boldsymbol{\gamma}_{\mathsf{av}} \cdot \frac{\mathsf{B}^{\prime}}{2} \cdot \boldsymbol{\zeta}_{\gamma} \cdot \boldsymbol{\xi}_{\gamma} \cdot \boldsymbol{\alpha}_{\gamma}$$
(30)

dove

- $q' = \gamma z_w + \gamma' (D z_w)$ è la sollecitazione effettiva verticale che agisce a livello delle fondazioni:
- *z*_w è la profondità della falda freatica;
- D è la profondità della base di fondazione sotto il livello del suolo;
- $-\gamma_{av}$ è l'unità di peso media del suolo sotto il livello delle fondazioni.

I parametri del suolo utilizzati nei calcoli sono quelli elencati alla Tabella 3.2.

Nella valutazione dell'effetto delle azioni sismiche, la Normativa per le Costruzioni Italiana (§ 7.11.1 - D.M. 14.01.2008), specifica che i fattori di sicurezza parziali delle azioni progettuali sono definiti pari all'unità: $\gamma_G = \gamma_Q = 1$. Di conseguenza, i fattori di carico γ_F ($\gamma_G e \gamma_Q$) sono di seguito omessi.

I componenti progettuali dei carichi che agiscono normalmente sul piano di fondazione sono:

$$E_{N_{d}} = \gamma_{F}E_{N_{k}} = W_{k}'\cos\varepsilon + Tsen(\varepsilon - i) + K_{h}Wsen\varepsilon \pm K_{v}W\cos\varepsilon$$
(31)

I componenti progettuali dei carichi che agiscono tangenzialmente sul piano di fondazione sono:

$$E_{S_{d}} = \gamma_{F}E_{S_{k}} = W_{k}'sen\varepsilon - T\cos(\varepsilon - i) - K_{h}W\cos\varepsilon \mp K_{v}Wsen\varepsilon$$
(32)

Notare tuttavia, che nelle equazioni 31 e 32 le forze dei cavi includono i fattori di carico parziali, come previsto dalle analisi strutturali del progetto di gara.

I calcoli sono stati effettuati con riferimento alla condizione di carico SLU.

La Tabella 7.1 riporta i parametri di resistenza a taglio utilizzati nei calcoli.

Tabella 7.1.	Parametri	di resistenza	di capacità	portante
--------------	-----------	---------------	-------------	----------

	φ _k ΄	φ _d ΄	c _k ′	c _d ′
	(°)	(°)	(kPa)	(kPa)
resistenza a taglio	40	33.9	0	0

La Tabella 7.2 elenca i valori dei carichi di progetto che agiscono normalmente sul piano di fondazione, mentre la Tabella 7.3 riassume quelli che agiscono tangenzialmente sul piano di

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

fondazione:

	1 0
	E _{Nd}
	(MN)
$W'_k cos\epsilon$	7239.6
Tsen(ε-i)	13.8
$k_hWsen\epsilon$	424.4
$-K_vWcos\epsilon$	-781.0
ΣE_{Nd}	6896.8

Tabella 7.2. Carichi di progetto normali

Table 7.3	. Carichi di	progetto	tangenti
-----------	--------------	----------	----------

	E_{Sd}
	(MN)
W' _k senɛ	1966.9
-Tcos(ε-i)	-3964.0
-k _h Wcosε	-1562.0
$-K_vWsen\epsilon$	-212.2
ΣE_{Sd}	-3771.2

Per valutare la resistenza progettuale, la larghezza ridotta B' è dapprima calcolata mediante l'equazione:

B' = B - 2e

dove *B* = 102.6 m è la larghezza originale e *e* = 10.95 m è l'eccentricità di E_{Nd} dal centro di gravità del piano di fondazione. La larghezza ridotta è poi *B*' = 80.7 m.

La lunghezza media della superficie di fondazione è L = 100 m e non è necessaria alcuna correzione poiché i carichi sono centrati in direzione longitudinale.

Secondo l'Approccio 1, Combinazione 2 di D.M. 14.01.2008, i parametri di resistenza progettuale adottati per la valutazione della capacità portante erano: $\phi'_d = \tan^{-1}[(\tan \phi_k')/1.25] = 33.9^\circ$ e $c'_d = 0$ kPa.

Per le ipotesi sopra menzionate, è stato ottenuto quanto segue:

- Coefficienti di capacità portante:

$$N_{qd} = 28.99$$

 $N_{\gamma d} = 40.26$

- fattori di correzione per inclinazione del carico:

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

 $\zeta_q = (1 - E_{Sd}/E_{Nd})^m = 0.292$ m = (2 + B'/L)/(1 + B'/L) = 1.55

 $\zeta_{\gamma} = (1 - E_{Sd}/E_{Nd})^{m+1} = 0.133$

- fattori di correzione per forma delle fondazioni:

 $\xi_q = 1 + (B'/L) \times \tan \phi'_d = 1.54$ $\xi_\gamma = 1 - 0.4 \times (B'/L) = 0.68$

- fattori di correzione per inclinazione del piano di fondazione ($\varepsilon = 15.2^{\circ}$):

$$\alpha_q = \alpha_\gamma = (1 - \epsilon \tan \phi'_d)^2 = 0.676$$

Al sito del blocco di ancoraggio della Sicilia, lo spessore minimo del suolo adiacente al blocco di ancoraggio è D = 20 m ed il livello dell'acqua è leggermente sotto al punto più profondo del piano di fondazione. Per i calcoli si è supposto $z_w = 20$ m = D; nel calcolo di q' dunque, non deve essere considerata alcuna pressione dell'acqua.

Il peso unitario del suolo sotto il piano di fondazione è stato conservativamente supposto pari al peso unitario sommerso $\gamma' = \gamma - \gamma_w = 10 \text{ kN/m}^3$.

L'effettiva pressione di portata ultima è:

$$q'_{\rm ultd}$$
 = 4517 kPa

Poiché $z_w = D$, ne segue che la pressione dell'acqua dei pori *U* risultante al piano di fondazione è pari a zero.

Quindi, la resistenza di portata progettuale è

$$\mathsf{R}_{\mathsf{N}_{\mathsf{d}}} = \frac{1}{\gamma_{\mathsf{R}}} \big(\mathsf{q}_{\mathsf{ult}_{\mathsf{d}}} \cdot \mathsf{B'L} + \mathsf{U}_{\mathsf{bd}} \big) = 20248 \; \mathsf{MN}$$

ed il rapporto $\frac{R_{Nd}}{E_{Nd}} = \frac{22091}{6897} = 2.94 \ge 1$, che soddisfa i requisiti di D.M. 14.01.2008.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

8 Conclusioni

La performance sismica del blocco di ancoraggio della Sicilia, è stata valutata utilizzando due approcci: l'approccio pseudo-statico, in cui si presume che il blocco di ancoraggio sia in uno stato di equilibrio limite sotto l'azione di forze statiche e di inerzia, e l'approccio basato sullo spostamento, in cui gli spostamenti del blocco di ancoraggio, indotti da terremoto sono valutati per una serie di moti sismici di input.

I calcoli sono stati effettuati utilizzando le forze dei cavi fornite nel progetto di gara che per la combinazione di carico SLU risultano leggermente superiori ai valori ottenuti dal modello globale IBDAS (5.8% per la versione 3.3b – Tabella E.3 - e 8% per la versione 3.3f – Tabella F.3); ciò risulta in una stima conservatrice del comportamento del blocco di ancoraggio della Sicilia. Nell'approccio pseudo-statico, secondo le Norme di Costruzione Italiane (D.M. 14.01.2008), la sicurezza del blocco rispetto ad eventuali meccanismi di rottura, è assicurata confrontando le azioni progettuali con le resistenze progettuali, le prime incrementate e le seconde ridotte di fattori parziali di sicurezza. Nell'approccio basato sullo spostamento, l'accelerazione critica è dapprima determinata mediante l'approccio pseudo-statico e lo spostamento cumulativo della massa in potenziale scorrimento è poi valutato utilizzando l'analisi del blocco in scorrimento, in cui l'equazione del moto relativo è integrata due volte con l'accelerazione critica utilizzata come dato di riferimento.

Per la valutazione della sicurezza rispetto allo scorrimento, le resistenze progettuali sono state calcolate considerando i contributi della resistenza di scorrimento alla base e ai lati del blocco, nonché quella della resistenza passiva sulla parte frontale del blocco.

Nelle analisi sono stati supposti tre possibili meccanismi di scorrimento, caratterizzati da angoli di inclinazione α = 38°, 26° e 8°. Le analisi FE di deformazione piana del piano di ancoraggio hanno inoltre permesso di valutare che in condizioni di carico SLU, l'inclinazione dominante dei vettori di spostamento è compresa nel range 8°-26°, cosicché il secondo ed il terzo meccanismo sono stati individuati come i più probabili.

Per quanto concerne le condizioni pseudo-statiche, sia le azioni progettuali che le resistenze progettuali sono state calcolate utilizzando i coefficienti sismici pseudo-statici forniti dalle Norme di Costruzione Italiane (D.M. 14.01.2008). I risultati ottenuti hanno mostrato che la sicurezza rispetto allo scorrimento è adeguatamente soddisfatta per ciascuna delle condizioni di carico fornite dalle analisi strutturali del progetto di gara.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		1
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Nell'approccio basato sullo spostamento, la resistenza di terra ΔR mobilitata nella parte frontale del blocco, si presume incrementi progressivamente con l'aumentare dello spostamento relativo *u* indotto dal carico da terremoto. In queste condizioni, il suo contributo è stato trascurato nell'espressione del coefficiente sismico critico ed è stato incluso nell'equazione di moto relativo. La relazione fra ΔR e lo spostamento relativo è stata valutata mediante il dato più idoneo di $u - \Delta R$ come ottenuto dalle analisi FE 2D in cui spostamenti orizzontali uniformi sono applicati ad un muro ideale e liscio.

Gli spostamenti indotti da terremoto sono stati calcolati utilizzando 30 accelerogrammi di input. La componente orizzontale delle storie temporali di accelerazione selezionate, è stata scalata a 0.58g, mentre la componente verticale è stata scalata dello stesso fattore utilizzato per la componente orizzontale corrispondente, oppure a 0.58g. I calcoli sono stati ripetuti supponendo entrambe le direzioni di applicazione degli accelerogrammi orizzontali.

I risultati mostrano che gli spostamenti indotti da terremoto si riducono alla riduzione dell'inclinazione del meccanismo di scorrimento; il massimo spostamento è pari a 1 mm per il meccanismo 2 (α = 26°) e pari a 33 mm per il meccanismo 3 (α = 8°). Due analisi comparative condotte secondo ipotesi conservatrici hanno fornito valori massimi degli spostamenti indotti da terremoto, compresi nel range 25-58 mm.

Infine, la capacità portante e la sicurezza rispetto alla rotazione sono state stimate seguendo le prescrizioni di D.M. 14.01.2008; i risultati mostrano che entrambi i requisiti sono soddisfatti per le condizioni di carico considerate.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	l
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

9 Figure

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Figura 2.1. Profilo di suolo sulla costa della Sicilia dello Stretto di Messina

Figura 2.2. Vista in pianta della location del blocco di ancoraggio della Sicilia

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

SECTION N.1

Figura 2.3. Blocco di ancoraggio Sicilia, sezione trasversale (sezione No. 1)

(nella figura: boreholes : fori / in situ tests: test in sito / anchor block: blocco di ancoraggio / elevation: elevazione / cumulative distances: distanze cumulative)

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		l
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

SECTION N.2

Figura 2.4. Blocco di ancoraggio Sicilia, sezione longitudinale (Sezione No. 2) - (nella figura: boreholes : fori / in situ tests: test in sito / anchor block: blocco di ancoraggio / elevation: elevazione / cumulative distances: distanze cumulative)

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	l
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

SECTION N. 3

Figura 2.5. Blocco di ancoraggio Sicilia, Sezione longitudinale (Sezione No. 3) - (nella figura: boreholes : fori / in situ tests: test in sito / anchor block: blocco di ancoraggio / elevation: elevazione / cumulative distances: distanze cumulative)

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	l
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		3
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Figura 2.6. Blocco di ancoraggio Sicilia, sezione longitudinale (Sezione No. 4) - (nella figura: Conglomerare Pezzo: Conglomerato di Pezzo /Weathered Conglomerate: Conglomerato eroso/ Costal Deposits: depositi Costieri)

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	l
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Figura 2.7. Blocco di ancoraggio Sicilia: densità relativa ed angolo di resistenza a taglio sulla base dei risultati dei test SPT e LPT.

Figura 2.8. Blocco di ancoraggio Sicilia, profili V_s e G₀ secondo test cross-hole

90

Figura 3.1. Superfici di snervamento del modello Hardening Soil e loro evoluzione

(Nella figura: yield surface (deviatoric hardening) superficie di snervamento (incrudimento deviatorico) /strength envelope: inviluppo di rottura / yield surface (volumetric hardening): superficie di snervamento (incrudimento volumetrico)

90

Figura 3.2. Blocco di ancoraggio Sicilia, profilo G_0 da test cross-hole test e previsione modello HS (nella figura: vertical: verticale /model: modello/ average: media)

Figura 4.1. Blocco rigido, condizioni statiche

Figura 4.2. Blocco rigido, condizioni pseudo-statiche
Stretto	Ponte sullo Stretto di Me	essina	I
di Messina	PROGETTO DEFINITI	VO	
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza	Codice documento	Rev	Data
	PF0064_F0_ITA.doc	F0	20-06-2011

Figura 4.3. Blocco rigido, coefficiente sismico critico

Figura 4.4. Blocco rigido, resistenza di terra passiva dipendente da spostamento

Figura 5.1. Vista in pianta e sezione trasversale del blocco di ancoraggio della Sicilia (nella figura: plain view: vista in pianta/ section: sezione / made ground: terreno artificiale/ final ground level: livello finale del suolo)

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Figura 5.2. Modello CAD 3D del blocco di ancoraggio della Sicilia

Figura 5.3. Meccanismi di scorrimento

(nella figura: made ground: terreno artificiale/ final ground level: livello finale del suolo/mechanism: meccanismo)

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Figura 5.4. Mesh utilizzata per le simulazioni FE di deformazione piana

Figura 5.5. Sollecitazione di taglio relativa (t/t_{max}) contorni

-30.00 -20.00

0.00 10.00

20.00 30.00

50.00

-10.00

-70.00

Figura 5.6. Mesh deformata

-140.00

Figura 5.7. Punti di spostamento di riferimento per i risultati delle simulazioni FE 2D

Figura 5.8. Simulazioni F.E. 2D, meccanismo di scorrimento (displacement scale: scala di spostamento/ initial configuration: configurazione iniziale / final configuration: configurazione finale)

Figura 5.9. Mesh utilizzata nelle analisi FE di deformazione piana per simulare la resistenza di terra nella parte frontale del blocco di ancoraggio (meccanismo 2)

Figura 5.10. Mesh utilizzata nelle analisi FE di deformazione piana per simulare la resistenza di terra nella parte frontale del blocco di ancoraggio (meccanismo 3)

Figura 5.11. Equazione $\Delta R = f(u)$; a) meccanismo 3; b) meccanismo 2

Figura 5.12. Simulazione 2D F.Edi resistenza di terra, mecccanismo 2, punti plastici

Figura 5.13. Simulazione 2D F.Edi resistenza di terra, meccasnismo 2, contorni di spostamento orizzontale

Figura 5.14. Simulazioni 2D F.E. della resistenza di terra, meccanismo 2, contorni di taglio relativo (t/t_{max})

Figura 5.15. Simulazioni 2D F.E. della resistenza di terra, meccanismo 3, punti plastici

Figura 5.17. Simulazione 2D F.E. della resistenza di terra, meccanismo 3, contorni di taglio relativo (t/t_{max})

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Figura 5.19. Spettro di risposta elastica degli accelerogrammi utilizzati nelle analisi Nella figura:

spettro di risposta elastica, componenti orizzontali,	spettro di risposta elastica, componenti verticali,	spettro di risposta elastica, componenti verticali,
smorzamento 5%, scalato a 0.58g	smorzamento 5%, scalati dello stesso fattore dei	smorzamento 5%, scalato a 0.58g
	corrispondenti componenti orizzontali	

Design response spectrum: spettro di risposta progettuale Frequency: frequenza

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Figura 5.20. Spettro di risposta elastica degli accelerogrammi utilizzati nelle analisi

Nella figura:

spettro di risposta elastica, componenti orizzontali,	spettro di risposta elastica, componenti verticali,	spettro di risposta elastica, componenti verticali,
smorzamento 5%, scalato a 0.58g	smorzamento 5%, scalati dello stesso fattore dei	smorzamento 5%, scalato a 0.58g
	corrispondenti componenti orizzontali	

Design response spectrum: spettro di risposta progettuale Frequency: frequenza

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Elastic response spectra, horizontal components damping 5%, scaled to 0.58g

1

frequency (Hz)

0.01

0.1

100

 Design response spectrum, hor. comp.
 Design response spectrum, vert. comp.
 Design response spectrum, vert. comp.

 Imperial Valley 79 BC230
 Imperial Valley 79 BCUP S=0.7484
 Imperial Valley 79 BCUP

 Irpinia 80 STUYC
 Irpinia 80 STUZC S=1.7957
 Irpinia 80 STUZC

 Montenegro 79 PETXC
 Montenegro 79 PETZC S=1.2775
 Montenegro 79 ULCZC

 Montenegro 79 ULCXC
 Montenegro 79 ULCZC S=1.9728
 Montenegro 79 PETZC

10

4

frequency (Hz)

Figura 5.21. Spettro di risposta elastica degli accelerogrammi utilizzati nelle analisi

Nella figura:

spettro di risposta elastica, componenti orizzontali,	spettro di risposta elastica, componenti verticali,	spettro di risposta elastica, componenti verticali,
smorzamento 5%, scalato a 0.58g	smorzamento 5%, scalati dello stesso fattore dei	smorzamento 5%, scalato a 0.58g
_	corrispondenti componenti orizzontali	

Design response spectrum: spettro di risposta progettuale

Frequency: frequenza

10

100

Figura 5.22.	Spettro di rispo	sta elastica	a degli a	accelerogrammi	utilizzati nell	e analisi
Nella figura:						

spettro di risposta elastica, componenti orizzontali,	spettro di risposta elastica, componenti verticali,	spettro di risposta elastica, componenti verticali,
smorzamento 5%, scalato a 0.58g	smorzamento 5%, scalati dello stesso fattore dei	smorzamento 5%, scalato a 0.58g
	corrispondenti componenti orizzontali	

Design response spectrum: spettro di risposta progettuale Frequency: frequenza

Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza Codice documento Rev Data BE0064 E0 ITA doc E0 20.06.20 20.06.20	Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	etto di Messina DEFINITIVO		
	Spostamenti indotti dal sisma sicurezza	e verifiche geotecniche di	Codice documento PE0064_E0_ITA.doc	Rev F0	Data 20-06-2011	

Figura 6.1. Presupposti per la valutazione della sicurezza rispetto alla rotazione ed alla rottura a fondo

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO						
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data				
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011				

Appendici

Appendice A – Resistenza di Scorrimento lungo i lati del blocco

Meccanismo 1

Valori caratteristici di T_L

Muro di	Battente							
diaframma	(Head)	Тое	Lunghezza	τ_{Head}	$ au_{TOE}$	T_{Lk}	Larghezza	T _{Lk} /parete
	m	m	m	kPa	kPa	kN/m	m	kN
1	0.0	16.3	16.3	0.0	40.9	333.5	2.5	833.8
2	6.3	23.9	17.6	15.8	60.0	667.2	2.5	1668.0
3	4.9	23.6	18.7	12.3	59.3	669.0	2.5	1672.5
4	10.5	30.2	19.7	26.4	75.8	1006.5	2.5	2516.2
5	9.1	29.8	20.7	22.8	74.8	1010.8	2.5	2527.0
6	14.7	36.5	21.8	36.9	91.6	1401.1	2.5	3502.8
7	13.3	36.1	22.8	33.4	90.6	1413.9	2.5	3534.7
8	18.9	42.8	23.9	47.5	107.5	1851.1	2.5	4627.8
9	17.5	42.4	24.9	43.9	106.4	1872.3	2.5	4680.7
10	16.3	42.2	25.9	40.9	105.9	1902.0	2.5	4754.9
11	15.2	42.2	27.0	38.2	105.9	1945.5	2.5	4863.7
12	14.1	42.1	28.0	35.4	105.7	1975.3	2.5	4938.3
13	13.0	42.0	29.0	32.6	105.4	2002.2	2.5	5005.5
14	12.7	42.0	29.3	31.9	105.4	2011.9	2.5	5029.7
15	12.4	41.9	29.5	31.1	105.2	2010.8	2.5	5027.0
16	12.1	41.8	29.7	30.4	104.9	2009.5	2.5	5023.8
17	11.7	41.7	30.0	29.4	104.7	2011.0	2.5	5027.5
18	11.4	41.7	30.3	28.6	104.7	2019.7	2.5	5049.2
19	11.1	41.6	30.5	27.9	104.4	2017.7	2.5	5044.3
20	10.7	41.5	30.8	26.9	104.2	2018.2	2.5	5045.5
21	10.4	41.5	31.1	26.1	104.2	2026.2	2.5	5065.4
22	10.1	41.4	31.3	25.4	103.9	2023.5	2.5	5058.7
23	9.7	41.3	31.6	24.4	103.7	2023.0	2.5	5057.6
24	9.4	41.2	31.8	23.6	103.4	2019.9	2.5	5049.7
25	9.1	41.2	32.1	22.8	103.4	2026.8	2.5	5067.1
26	8.8	40.7	31.9	22.1	102.2	1982.2	2.5	4955.4
27	8.9	39.2	30.3	22.3	98.4	1829.5	2.5	4573.8
28	8.9	38.6	29.7	22.3	96.9	1770.9	2.5	4427.3
29	9.0	37.3	28.3	22.6	93.6	1644.8	2.5	4112.0
30	9.0	36.1	27.1	22.6	90.6	1534.2	2.5	3835.6
31	9.1	34.8	25.7	22.8	87.4	1416.3	2.5	3540.7
32	9.1	33.5	24.4	22.8	84.1	1304.8	2.5	3262.0
33	9.1	32.3	23.2	22.8	81.1	1205.7	2.5	3014.2
34	9.2	31.0	21.8	23.1	77.8	1100.1	2.5	2750.2
35	9.2	29.8	20.6	23.1	74.8	1008.5	2.5	2521.3
36	9.0	28.2	19.2	22.6	70.8	896.6	2.5	2241.5

Stretto di Messina					Ponte sullo Stretto di Messina PROGETTO DEFINITIVO						
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezzaCodice documento PF0064_F0_ITA.docRev F0Data 20-06-2							Data 20-06-2011				
Muro di diaframma	Battente (Head) m	Toe m	Lunghezza m	τ _{Head} kPa	τ _{τοε} kPa	T _{Lk} kN/m	Larghezza m	T _{Lk} /pa kN	rete		
37	8.4	26.3	17.9	21.1	66.0	779.7	2.5	1949.3	3		
38	7.7	24.4	16.7	19.3	61.3	672.9	2.5	1682.3	3		
39	7.1	22.4	15.3	17.8	56.2	566.6	2.5	1416.4	1		
40	6.5	20.1	13.6	16.3	50.5	454.1	3.5	1589.4	1		
totale								15154	3		
φ' _k (°)	40.0	K _{ak}	0.217								

 $T_{Lk} = 2 x \text{ totale} = 303.1 \text{ MN}$

Meccanismo1

Valori progettuali di T_{L}

 ϕ'_{sk} (°) 30.0 γ (kN/m³) 20

Battente							
(Head)	Тое	Lunghezza	$ au_{Head}$	$ au_{TOE}$	T_{Ld}	Larghezza	T _{Ld} / parete
m	m	m	kPa	kPa	kN/m	m	kN
0	16.3	16.3	0.0	32.7	266.8	2.5	667.0
6.3	23.9	17.6	12.7	48.0	533.8	2.5	1334.4
4.9	23.6	18.7	9.8	47.4	535.2	2.5	1338.0
10.5	30.2	19.7	21.1	60.7	805.2	2.5	2013.0
9.1	29.8	20.7	18.3	59.9	808.6	2.5	2021.6
14.7	36.5	21.8	29.5	73.3	1120.9	2.5	2802.2
13.3	36.1	22.8	26.7	72.5	1131.1	2.5	2827.7
18.9	42.8	23.9	38.0	86.0	1480.9	2.5	3702.2
17.5	42.4	24.9	35.1	85.2	1497.8	2.5	3744.6
16.3	42.2	25.9	32.7	84.8	1521.6	2.5	3803.9
15.2	42.2	27.0	30.5	84.8	1556.4	2.5	3890.9
14.1	42.1	28.0	28.3	84.6	1580.3	2.5	3950.7
13	42.0	29.0	26.1	84.4	1601.8	2.5	4004.4
12.7	42.0	29.3	25.5	84.4	1609.5	2.5	4023.8
12.4	41.9	29.5	24.9	84.2	1608.6	2.5	4021.6
12.1	41.8	29.7	24.3	84.0	1607.6	2.5	4019.0
11.7	41.7	30.0	23.5	83.8	1608.8	2.5	4022.0
11.4	41.7	30.3	22.9	83.8	1615.8	2.5	4039.4
11.1	41.6	30.5	22.3	83.6	1614.2	2.5	4035.4
10.7	41.5	30.8	21.5	83.4	1614.6	2.5	4036.4
10.4	41.5	31.1	20.9	83.4	1620.9	2.5	4052.3
10.1	41.4	31.3	20.3	83.2	1618.8	2.5	4047.0
9.7	41.3	31.6	19.5	83.0	1618.4	2.5	4046.1
	Battente (Head) m 0 6.3 4.9 10.5 9.1 14.7 13.3 18.9 17.5 16.3 15.2 14.1 13 12.7 12.4 12.7 12.4 12.1 11.7 11.4 11.7 10.4 10.1 9.7	Battente (Head)Toe m016.36.323.94.923.610.530.29.129.814.736.513.336.118.942.817.542.416.342.215.242.214.142.012.742.012.441.912.141.811.741.711.441.710.741.510.441.49.741.3	Battente (Head)ToeLunghezza mmmm016.316.36.323.917.64.923.618.710.530.219.79.129.820.714.736.521.813.336.122.818.942.823.917.542.424.916.342.225.915.242.227.014.142.128.01342.029.012.742.029.312.441.929.512.141.829.711.741.730.311.141.630.510.741.531.110.141.431.39.741.331.6	Battente (Head)Thead mmmmmkPa016.316.30.06.323.917.612.74.923.618.79.810.530.219.721.19.129.820.718.314.736.521.829.513.336.122.826.718.942.823.938.017.542.424.935.116.342.225.932.715.242.227.030.514.142.128.028.31342.029.026.112.742.029.325.512.441.929.524.911.741.730.322.911.141.630.522.310.741.531.120.910.141.431.320.39.741.331.619.5	Battente (Head)ToeLunghezza τ_{Head} τ_{TOE} mmmkPakPa016.316.30.032.76.323.917.612.748.04.923.618.79.847.410.530.219.721.160.79.129.820.718.359.914.736.521.829.573.313.336.122.826.772.518.942.823.938.086.017.542.424.935.185.216.342.225.932.784.815.242.227.030.584.814.142.128.028.384.61342.029.026.184.412.742.029.325.584.412.441.929.524.983.811.441.730.322.983.811.441.730.821.583.410.741.531.120.983.410.441.531.120.983.410.141.431.320.383.29.741.331.619.583.0	Battente (Head)ToeLunghezza τ_{Head} τ_{TOE} T_{Ld} kPammmkPakPakPakN/m016.316.30.032.7266.86.323.917.612.748.0533.84.923.618.79.847.4535.210.530.219.721.160.7805.29.129.820.718.359.9808.614.736.521.829.573.31120.913.336.122.826.772.51131.118.942.823.938.086.01480.917.542.424.935.185.21497.816.342.225.932.784.81521.615.242.227.030.584.8156.414.142.128.028.384.61580.31342.029.325.584.41601.812.742.029.325.583.81608.612.141.829.724.384.01607.611.741.730.322.983.81615.811.141.630.522.383.61614.210.741.531.120.983.41620.910.141.431.320.383.21618.89.741.331.619.583.01618.4	Battente(Head)ToeLunghezzaT _{Head} T _{TOE} T _{Ld} LarghezzammkPakPakN/mm016.316.30.032.7266.82.56.323.917.612.748.0533.82.54.923.618.79.847.4535.22.510.530.219.721.160.7805.22.59.129.820.718.359.9808.62.514.736.521.829.573.31120.92.513.336.122.826.772.51131.12.518.942.823.938.086.01480.92.517.542.424.935.185.21497.82.515.242.227.030.584.81556.42.515.442.029.026.184.41601.82.513.442.029.026.184.41601.82.512.742.029.325.584.41609.52.512.441.929.524.984.21608.62.512.742.029.325.583.81608.82.512.441.829.724.384.01607.62.512.441.930.522.383.61614.22.511.741.730.821.583.41615.82.5 <t< td=""></t<>

Stretto di Messina	r o l i n K	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO					
Spostamenti indotti dal sisma e verifiche	e geotecniche di	Codice documento	Rev	Data			
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011			

Muro di diaframma	Battente (Head)	Тое	Lunghezza	$ au_{Head}$	$ au_{TOE}$	T_{Ld}	Larghezza	T _{Ld} / parete
	` m ´	m	m	kPa	kPa	kN/m	m	kN
24	9.4	41.2	31.8	18.9	82.7	1615.9	2.5	4039.8
25	9.1	41.2	32.1	18.3	82.7	1621.5	2.5	4053.7
26	8.8	40.7	31.9	17.7	81.7	1585.7	2.5	3964.4
27	8.9	39.2	30.3	17.9	78.7	1463.6	2.5	3659.0
28	8.9	38.6	29.7	17.9	77.5	1416.7	2.5	3541.8
29	9	37.3	28.3	18.1	74.9	1315.8	2.5	3289.6
30	9	36.1	27.1	18.1	72.5	1227.4	2.5	3068.5
31	9.1	34.8	25.7	18.3	69.9	1133.0	2.5	2832.5
32	9.1	33.5	24.4	18.3	67.3	1043.8	2.5	2609.6
33	9.1	32.3	23.2	18.3	64.9	964.6	2.5	2411.4
34	9.2	31.0	21.8	18.5	62.3	880.1	2.5	2200.2
35	9.2	29.8	20.6	18.5	59.9	806.8	2.5	2017.0
36	9.0	28.2	19.2	18.1	56.6	717.3	2.5	1793.2
37	8.4	26.3	17.9	16.9	52.8	623.8	2.5	1559.4
38	7.7	24.4	16.7	15.5	49.0	538.3	2.5	1345.9
39	7.1	22.4	15.3	14.3	45.0	453.3	2.5	1133.2
40	6.5	20.1	13.6	13.1	40.4	363.3	3.5	1271.5
totale								121234.3
φ' _k (°)	40.0	K_{ak}	0.217					
φ' _{sd} (°)	24.8	γ (kN/m ³)	20		T _{Ld} =	2 x totale=	242.5	MN

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO					
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data			
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011			

Valori caratteristici di T_{L}

Muro di diaframma	Battente (Head)	Toe	Lunghezza	τ _{Head}	τ _{τοε}	T _{Lk}	Larghezza	T _{Lk} / parete
1	0.0	16.3	16.3	<u>кга</u> О	100	333.5	2.5	<u> </u>
2	0.0 6 3	23.0	17.6	15 8168	40.9 60.0	667.2	2.5	1668 0
2	4.0	20.0	10.7	12 2010	50.2	660.0	2.5	1672.5
3	4.9 10 5	20.0	10.7	26 3613	59.5 75.8	1006 5	2.5	2516.2
4	10.5	20.2	19.7	20.0010	73.0	1000.5	2.5	2510.2
5	9.1	29.8 26.5	20.7	22.8404	74.8 01.6	1010.8	2.5	2527.0
0	14.7	30.3 26.1	21.0	22 2000	91.0	1401.1	2.5	2524 7
7	10.0	30.1 40.0	22.0	33.3909	90.0 107 F	1413.9	2.5	3034.7
0	10.9	42.0	23.9	47.4003	107.5	1001.1	2.5	4027.0
9	17.5	42.4	24.9	43.9300	100.4	10/2.3	2.5	4080.7
10	10.3	42.2	25.9	40.9227	105.9	1902.0	2.5	4704.9
10		42.2	27.0	38.1011	105.9	1945.5	2.5	4803.7
12	14.1	42.1	28.0	35.3994	105.7	1975.3	2.5	4938.3
13	13.0	42.0	29.0	32.6378	105.4	2002.2	2.5	5005.5
14	12.7	42.0	29.3	31.8846	105.4	2011.9	2.5	5029.7
15	12.4	41.9	29.5	31.1314	105.2	2010.8	2.5	5027.0
16	12.1	41.8	29.7	30.3782	104.9	2009.5	2.5	5023.8
17	11.7	41.7	30.0	29.374	104.7	2011.0	2.5	5027.5
18	11.4	41.7	30.3	28.6208	104.7	2019.7	2.5	5049.2
19	11.1	41.6	30.5	27.8676	104.4	2017.7	2.5	5044.3
20	10.7	41.5	30.8	26.8634	104.2	2018.2	2.5	5045.5
21	10.4	41.5	31.1	26.1102	104.2	2026.2	2.5	5065.4
22	10.1	41.4	31.3	25.357	103.9	2023.5	2.5	5058.7
23	9.7	41.3	31.6	24.3528	103.7	2023.0	2.5	5057.6
24	9.4	41.2	31.8	23.5996	103.4	2019.9	2.5	5049.7
25	9.1	41.2	32.1	22.8464	103.4	2026.8	2.5	5067.1
26	8.8	40.7	31.9	22.0933	102.2	1982.2	2.5	4955.4
27	8.9	40.6	31.7	22.3443	101.9	1969.8	2.5	4924.4
28	8.9	40.0	31.1	22.3443	100.4	1909.0	2.5	4772.6
29	9.0	39.5	30.5	22.5954	99.2	1856.9	2.5	4642.3
30	9.0	38.9	29.9	22.5954	97.7	1797.9	2.5	4494.6
31	9.1	38.4	29.3	22.8464	96.4	1747.1	2.5	4367.7
32	9.1	37.8	28.7	22.8464	94.9	1689.7	2.5	4224.2
33	9.1	37.2	28.1	22.8464	93.4	1633.2	2.5	4083.0
34	9.2	36.7	27.5	23.0975	92.1	1584.5	2.5	3961.3
35	9.2	36.1	26.9	23.0975	90.6	1529.7	2.5	3824.2
36	9.0	35.3	26.3	22.5954	88.6	1462.5	2.5	3656.3
37	8.4	34.0	25.6	21.089	85.4	1362.6	2.5	3406.4

Stretto di Messina					Ponte sullo Stretto di Messina PROGETTO DEFINITIVO					
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezzaCodice documento PF0064_F0_ITA.docRev Data Do 20-06-201								Data 20-06-2011		
Muro di diaframma	Battente (Head) m	Toe m	Lunghezza m	τ _{Head} kPa	τ _{τοε} kPa	T _{Lk} kN/m	Larghezza m	T _{Lk} / pa	irete	
38	7.7	32.8	25.1	19.3316	6 82.3	1276.1	2.5	3190.2	2	
39	7.1	31.6	24.5	17.8252	2 79.3	1190.2	2.5	2975.5	5	
40	6.5	30.1	23.6	16.3189	9 75.6	1084.3	3.5	3795.0)	
totale								16694	4	

φ' _k (°)	40.0 K _{ak}	0.217		
φ' _{sk} (°)	30.0 γ(kN/m ³)	20	$T_{Lk} = 2 x \text{ totale} =$	333.9 MN

Valori progettuali di T_L

Muro di	Battente							
diaframma	(Head)	Тое	Lunghezza	τ_{Head}	$ au_{TOE}$	T_{Ld}	Larghezza	T _{Ld} / parete
	m	m	m	kPa	kPa	kN/m	m	kN
1	0.0	16.3	16.3	0	32.7	266.8	2.5	667.0
2	6.3	23.9	17.6	12.653	48.0	533.8	2.5	1334.4
3	4.9	23.6	18.7	9.8415	47.4	535.2	2.5	1338.0
4	10.5	30.2	19.7	21.089	60.7	805.2	2.5	2013.0
5	9.1	29.8	20.7	18.277	59.9	808.6	2.5	2021.6
6	14.7	36.5	21.8	29.525	73.3	1120.9	2.5	2802.2
7	13.3	36.1	22.8	27	72.5	1131.1	2.5	2827.7
8	18.9	42.8	23.9	37.96	86.0	1480.9	2.5	3702.2
9	17.5	42.4	24.9	35.148	85.2	1497.8	2.5	3744.6
10	16.3	42.2	25.9	32.738	84.8	1521.6	2.5	3803.9
11	15.2	42.2	27.0	30.529	84.8	1556.4	2.5	3890.9
12	14.1	42.1	28.0	28.32	84.6	1580.3	2.5	3950.7
13	13.0	42.0	29.0	26.11	84.4	1601.8	2.5	4004.4
14	12.7	42.0	29.3	25.508	84.4	1609.5	2.5	4023.8
15	12.4	41.9	29.5	24.905	84.2	1608.6	2.5	4021.6
16	12.1	41.8	29.7	24.303	84.0	1607.6	2.5	4019.0
17	11.7	41.7	30.0	23.499	83.8	1608.8	2.5	4022.0
18	11.4	41.7	30.3	22.897	83.8	1615.8	2.5	4039.4
19	11.1	41.6	30.5	22.294	83.6	1614.2	2.5	4035.4
20	10.7	41.5	30.8	21.491	83.4	1614.6	2.5	4036.4
21	10.4	41.5	31.1	20.888	83.4	1620.9	2.5	4052.3
22	10.1	41.4	31.3	20.286	83.2	1618.8	2.5	4047.0
23	9.7	41.3	31.6	19.482	83.0	1618.4	2.5	4046.1
24	9.4	41.2	31.8	18.88	82.7	1615.9	2.5	4039.8

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011

Muro di diaframma	Battente (Head)	Тое	Lunghezza	$ au_{Head}$	τ_{TOE}	T _{Ld}	Larghezza	T _{Ld} / parete
	m	m	m	кРа	кРа	kN/m	m	KN
25	9.1	41.2	32.1	18.277	82.7	1621.5	2.5	4053.7
26	8.8	40.7	31.9	17.675	81.7	1585.7	2.5	3964.4
27	8.9	40.6	31.7	17.875	81.5	1575.8	2.5	3939.5
28	8.9	40.0	31.1	17.875	80.3	1527.2	2.5	3818.1
29	9.0	39.5	30.5	18.076	79.3	1485.5	2.5	3713.8
30	9.0	38.9	29.9	18.076	78.1	1438.3	2.5	3595.7
31	9.1	38.4	29.3	18.277	77.1	1397.6	2.5	3494.1
32	9.1	37.8	28.7	18.277	75.9	1351.7	2.5	3379.3
33	9.1	37.2	28.1	18.277	74.7	1306.5	2.5	3266.4
34	9.2	36.7	27.5	18.478	73.7	1267.6	2.5	3169.0
35	9.2	36.1	26.9	18.478	72.5	1223.7	2.5	3059.3
36	9.0	35.3	26.3	18.076	70.9	1170.0	2.5	2925.1
37	8.4	34.0	25.6	16.871	68.3	1090.0	2.5	2725.1
38	7.7	32.8	25.1	15.465	65.9	1020.9	2.5	2552.1
39	7.1	31.6	24.5	14.26	63.5	952.2	2.5	2380.4
40	6.5	30.1	23.6	13.055	60.5	867.4	3.5	3036.0
totale								133555.5

φ' _k (°)	40.0	K _{ak}	0.217
φ' _{sd} (°)	24.8	γ (kN/m³)	20

 $T_{Ld} = 2 x \text{ totale} = 267.1 \text{ MN}$

Stretto	Ponte sullo Stretto di Me	essin a	1
di Messina	PROGETTO DEFINITI	VO	
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza	Codice documento	Rev	Data
	PF0064_F0_ITA.doc	F0	20-06-2011

Valori caratteristici di T_L

Muro di	Battente							
diaframma	(Head)	Toe	Lunghezza	$ au_{\text{Head}}$	$ au_{TOE}$	TL	Larghezza	T _L / parete
	m	m	m	kPa	kPa	kN/m	m	kN
1	0.0	16.3	16.3	0	40.9	333.5	2.5	833.8
2	6.3	23.9	17.6	15.8168	60.0	667.2	2.5	1668.0
3	4.9	23.6	18.7	12.3019	59.3	669.0	2.5	1672.5
4	10.5	30.2	19.7	26.3613	75.8	1006.5	2.5	2516.2
5	9.1	29.8	20.7	22.8464	74.8	1010.8	2.5	2527.0
6	14.7	36.5	21.8	36.9058	91.6	1401.1	2.5	3502.8
7	13.3	36.1	22.8	33.3909	90.6	1413.9	2.5	3534.7
8	18.9	42.8	23.9	47.4503	107.5	1851.1	2.5	4627.8
9	17.5	42.4	24.9	43.9355	106.4	1872.3	2.5	4680.7
10	16.3	42.2	25.9	40.9227	105.9	1902.0	2.5	4754.9
11	15.2	42.2	27.0	38.1611	105.9	1945.5	2.5	4863.7
12	14.1	42.1	28.0	35.3994	105.7	1975.3	2.5	4938.3
13	13.0	42.0	29.0	32.6378	105.4	2002.2	2.5	5005.5
14	12.7	42.0	29.3	31.8846	105.4	2011.9	2.5	5029.7
15	12.4	41.9	29.5	31.1314	105.2	2010.8	2.5	5027.0
16	12.1	41.8	29.7	30.3782	104.9	2009.5	2.5	5023.8
17	11.7	41.7	30.0	29.374	104.7	2011.0	2.5	5027.5
18	11.4	41.7	30.3	28.6208	104.7	2019.7	2.5	5049.2
19	11.1	41.6	30.5	27.8676	104.4	2017.7	2.5	5044.3
20	10.7	41.5	30.8	26.8634	104.2	2018.2	2.5	5045.5
21	10.4	41.5	31.1	26.1102	104.2	2026.2	2.5	5065.4
22	10.1	41.4	31.3	25.357	103.9	2023.5	2.5	5058.7
23	9.7	41.3	31.6	24.3528	103.7	2023.0	2.5	5057.6
24	9.4	41.2	31.8	23.5996	103.4	2019.9	2.5	5049.7
25	9.1	41.2	32.1	22.8464	103.4	2026.8	2.5	5067.1
26	8.8	40.7	31.9	22.0933	102.2	1982.2	2.5	4955.4
27	8.9	41.9	33.0	22.3443	105.2	2104.4	2.5	5261.0
28	8.9	42.5	33.6	22.3443	106.7	2168.0	2.5	5419.9
29	9.0	43.2	34.2	22.5954	108.5	2241.0	2.5	5602.5
30	9.0	43.9	34.9	22.5954	110.2	2317.5	2.5	5793.9
31	9.1	44.5	35.4	22.8464	111.7	2381.9	2.5	5954.6
32	9.1	45.2	36.1	22.8464	113.5	2460.7	2.5	6151.7
33	9.1	45.9	36.8	22.8464	115.2	2540.7	2.5	6351.8
34	9.2	46.5	37.3	23.0975	116.7	2608.0	2.5	6520.1
35	9.2	47.2	38.0	23.0975	118.5	2690.4	2.5	6725.9
36	9.0	47.6	38.6	22.5954	119.5	2742.5	2.5	6856.3
37	8.4	47.6	39.2	21.089	119.5	2755.6	2.5	6889.1
38	7.7	47.6	39.9	19.3316	119.5	2769.8	2.5	6924.4
39	7.1	47.6	40.5	17.8252	119.5	2780.9	2.5	6952.3

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma sicurezza	e verifiche geotecniche di	Codice documento PF0064_F0_ITA.doc	Rev F0	Data 20-06-2011
Muro di Battente				

diaframma	(Head)	Тое	Lunghezza	τ _{Head}	τ _{TOE}	T _L	Larghezza	T _L / parete
	m	m	m	кра	кра	KIN/M	m	KIN
40	6.5	47.6	41.1	16.3189	119.5	2791.2	3.5	9769.1
totale								201799
φ' _k (°)	40.0	K _{ak}	0.217					
φ' _{sk} (°)	30.0	γ (kN/m ³)	20		T _{Lk} =	2 x totale=	403.6	MN

Valori progettuali di TL

Muro di	Battente							
diaframma	(Head)	Тое	Lunghezza	τ_{Head}	$ au_{TOE}$	T∟	Larghezza	T _L / parete
	m	m	m	kPa	kPa	kN/m	m	kN
1	0	16.3	16.3	0	32.7	266.8	2.5	667.0
2	6.3	23.9	17.6	12.653	48.0	533.8	2.5	1334.4
3	4.9	23.6	18.7	9.8415	47.4	535.2	2.5	1338.0
4	10.5	30.2	19.7	21.089	60.7	805.2	2.5	2013.0
5	9.1	29.8	20.7	18.277	59.9	808.6	2.5	2021.6
6	14.7	36.5	21.8	29.525	73.3	1120.9	2.5	2802.2
7	13.3	36.1	22.8	27	72.5	1131.1	2.5	2827.7
8	18.9	42.8	23.9	37.96	86.0	1480.9	2.5	3702.2
9	17.5	42.4	24.9	35.148	85.2	1497.8	2.5	3744.6
10	16.3	42.2	25.9	32.738	84.8	1521.6	2.5	3803.9
11	15.2	42.2	27.0	30.529	84.8	1556.4	2.5	3890.9
12	14.1	42.1	28.0	28.32	84.6	1580.3	2.5	3950.7
13	13	42.0	29.0	26.11	84.4	1601.8	2.5	4004.4
14	12.7	42.0	29.3	25.508	84.4	1609.5	2.5	4023.8
15	12.4	41.9	29.5	24.905	84.2	1608.6	2.5	4021.6
16	12.1	41.8	29.7	24.303	84.0	1607.6	2.5	4019.0
17	11.7	41.7	30.0	23.499	83.8	1608.8	2.5	4022.0
18	11.4	41.7	30.3	22.897	83.8	1615.8	2.5	4039.4
19	11.1	41.6	30.5	22.294	83.6	1614.2	2.5	4035.4
20	10.7	41.5	30.8	21.491	83.4	1614.6	2.5	4036.4
21	10.4	41.5	31.1	20.888	83.4	1620.9	2.5	4052.3
22	10.1	41.4	31.3	20.286	83.2	1618.8	2.5	4047.0
23	9.7	41.3	31.6	19.482	83.0	1618.4	2.5	4046.1
24	9.4	41.2	31.8	18.88	82.7	1615.9	2.5	4039.8
25	9.1	41.2	32.1	18.277	82.7	1621.5	2.5	4053.7
26	8.8	40.7	31.9	17.675	81.7	1585.7	2.5	3964.4
27	8.9	41.9	33.0	17.875	84.2	1683.5	2.5	4208.8

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011

Muro di	Battente							
diaframma	(Head)	Toe	Lunghezza	τ_{Head}	$ au_{TOE}$	TL	Larghezza	T _L / parete
	m	m	m	kPa	kPa	kN/m	m	kN
28	8.9	42.5	33.6	17.875	85.4	1734.4	2.5	4335.9
29	9	43.2	34.2	18.076	86.8	1792.8	2.5	4482.0
30	9	43.9	34.9	18.076	88.2	1854.0	2.5	4635.1
31	9.1	44.5	35.4	18.277	89.4	1905.5	2.5	4763.7
32	9.1	45.2	36.1	18.277	90.8	1968.5	2.5	4921.3
33	9.1	45.9	36.8	18.277	92.2	2032.6	2.5	5081.4
34	9.2	46.5	37.3	18.478	93.4	2086.4	2.5	5216.0
35	9.2	47.2	38.0	18.478	94.8	2152.3	2.5	5380.7
36	9	47.6	38.6	18.076	95.6	2194.0	2.5	5485.1
37	8.4	47.6	39.2	16.871	95.6	2204.5	2.5	5511.3
38	7.7	47.6	39.9	15.465	95.6	2215.8	2.5	5539.6
39	7.1	47.6	40.5	14.26	95.6	2224.7	2.5	5561.9
40	6.5	47.6	41.1	13.055	95.6	2232.9	3.5	7815.3
totale								161439.6
φ' _k (°)	40.0	K _{ak}	0.217					
ϕ'_{sd} (°)	24.8	γ (kN/m ³)	20		T _{Ld} =	2 x totale=	322.9	MN

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Spostamenti indotti dal sisma	e verifiche geotecniche di	Codice documento	Rev	Data
sicurezza		PF0064_F0_ITA.doc	F0	20-06-2011

Appendice B – Resistenza di terra passiva nella parte frontale del blocco

Meccanismo 1 (z = 18.8 m)

	SLS2	ULS	SLIS
K _h	0.097	0.216	0.238
Κ _v	0.048	0.108	0.119
K _{Pk}	9.005	7.655	7.395
Profondità Battente (head) diaframma (m)	6.5	6.5	6.5
Profondità Piede (toe) diaframma (m)	18.8	18.8	18.8
$\sigma_{hp(k)}$ testa (kPa)	1170.65	995.15	961.35
$\sigma'_{hp(k)}$ piede (kPa)	3385.9	2878.3	2780.5
R' _{Pk} (kN/m)	28022.7	23821.6	23012.5
Pressione pori risultante (kN/m)	0	0	0
R _{Pk} (MN)	2241.8	1905.7	1841.0

	SLS2	ULS	SLIS
K _h	0.097	0.216	0.238
K _v	0.048	0.108	0.119
K _{Pd}	5.481	4.577	4.401
Profondità Battente (head) diaframma (m)	6.5	6.5	6.5
Profondità Piede (toe) diaframma (m)	18.8	18.8	18.8
$\sigma_{\sf hp(d)}$ testa (kPa)	712.5	595.0	572.1
$\sigma_{\sf hp(d)}$ piede (kPa)	2060.9	1721.0	1654.8
R' _{Pd} per metro lin. (kN/m)	17056.3	14243.2	13695.5
Pressione pori risultante (kN/m)	0	0	0
R _{Pd} totale (MN)	1364.5	1139.5	1095.6

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Meccanismo 2 (z = 29.2 m)

	SLS2	ULS	SLIS
K _h	0.097	0.216	0.238
K _v	0.048	0.108	0.119
K _{Pk}	9.005	7.655	7.395
Profondità Battente (head) diaframma (m)	6.5	6.5	6.5
Profondità Piede (toe) diaframma (m)	29.2	29.2	29.2
$\sigma_{hp(k)}$ testa (kPa)	1170.65	995.15	961.35
$\sigma'_{hp(k)}$ piede (kPa)	5258.9	4470.5	4318.7
R' _{Pk} (kN/m)	72975.6	62035.4	59928.3
Pressione pori risultante (kN/m)	0	0	0
R _{Pk} (MN)	5838.0	4962.8	4794.3

	SLS2	ULS	SLIS
K _h	0.097	0.216	0.238
K _v	0.048	0.108	0.119
K _{Pd}	5.481	4.577	4.401
Profondità Battente (head) diaframma (m)	6.5	6.5	6.5
Profondità Piede (toe) diaframma (m)	29.2	29.2	29.2
$\sigma_{\sf hp(d)}$ testa (kPa)	712.5	595.0	572.1
$\sigma_{\rm hp(d)}$ piede (kPa)	3200.9	2673.0	2570.2
R' _{Pd} per metro lin. (kN/m)	44417.5	37091.6	35665.3
Pressione pori risultante (kN/m)	0	0	0
R _{Pd} totale (MN)	3553.4	2967.3	2853.2

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Meccanismo 3 (z = 47.6 m)

	SLS2	ULS	SLIS
K _h	0.097	0.216	0.238
K _v	0.048	0.108	0.119
K _{Pk}	9.005	7.655	7.395
Profondità Battente (head) diaframma (m)	6.5	6.5	6.5
Profondità Piede (toe) diaframma (m)	47.6	47.6	47.6
$\sigma_{hp(k)}$ testa (kPa)	1170.65	995.15	961.35
$\sigma_{\rm hp(k)}$ piede (kPa)	8572.8	7287.6	7040.0
R' _{Pk} (kN/m)	200227.1	170209.7	164428.6
Pressione pori risultante (kN/m)	0	0	0
R _{Pk} (MN)	16018.2	13616.8	13154.3

	SLS2	ULS	SLIS
K _h	0.097	0.216	0.238
K _v	0.048	0.108	0.119
K _{Pd}	5.481	4.577	4.401
Profondità Battente (head) diaframma (m)	6.5	6.5	6.5
Profondità Piede (toe) diaframma (m)	47.6	47.6	47.6
$\sigma_{\sf hp(d)}$ testa (kPa)	712.5	595.0	572.1
$\sigma_{\rm hp(d)}$ piede (kPa)	5217.9	4357.3	4189.8
R' _{Pd} per metro lin. (kN/m)	121870.6	101770.1	97856.7
Pressione pori risultante (kN/m)	0	0	0
R _{Pd} totale (MN)	9749.6	8141.6	7828.5

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	l
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Appendice C – Sicurezza rispetto allo scorrimento, approccio pseudo-statico

Parametri di input generali

Peso del blocco di ancoraggio W_b	7502	MN
Larghezza blocco di ancoraggio	80	m
Forza risultante da presione pori U	0	MN
Peso sommerso blocco di anc. W_b'	7502	MN
Angolo forza cavi i	15	0
Peso Unitario suolo	20	kN/m ³
Angolo caratt. di resistenza a taglio del suolo φ'_k	40	0
Angolo progettuale della resist. a taglio del suolo φ'_d Angolo caratteristico della resistenza a taglio sulla superf. di	33.9	0
scorrimento φ'_{sk}		0
Angolo progettuale della resist. a taglio sulla sup. di scorrimento $arphi'_{sd}$		0
Angolo di frizione caratteristico all'interfaccia suolo-cemento δ_k Angolo di frizione progettuale all'interfaccia suolo-		0
cemento δ_d	16.9	0

FORZA CAVI (MN)

		SLS2	ULS	SLIS	
		3250	3964	3146	
COEFFICIENTE SISMICO					
		SLS2	ULS	SLIS	
	K _h	0.097	0.216	0.238	
	K_{v}	0.048	0.108	0.119	
	a _h /g	0.26	0.58	0.64	
$S_T x S_s x \beta_m$		0.372			

COEFFICIENTE PRESSIONE DI TERRA PASSIVA

	SLS2	ULS	SLIS
K _{Pk}	9.005	7.655	7.395
K _{Pd}	5.481	4.577	4.401

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essin a VO	1
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Parametri di input		
Inclinazione superf. di scorrimento	38	0
Volume suolo sopra superficie di scorrimento	17340.0	m³
Volume suolo sommerso sopra sup. di scorrimento	0.0	m³
Peso suolo sopra la sup. di scorrimento	347	MN
Peso suolo sommerso sopra sup. di scorrimento	347	MN
Peso totale W	7849	MN
Totale sommerso W'	7849	MN
θ critico(α + ϕ_s)	74	o
Resistenza di scorrimento progettuale lungo lato del blocco T_{Ld}	242.5	MN

Resistenza di terra passiva

		SLS2	ULS	SILS
	R _{Pk} (MN)	2241.8	1905.7	1841.0
	R_{Pd} (MN)	1364.5	1139.5	1095.6
R _d (MN)	SLS2	ULS	SLIS	
W' $\cos\alpha \tan \varphi'_k$	4493.6	4493.6	4493.6	
W (K _h sen α - K _v cos α) tan ϕ'_k	122.3	272.7	300.9	
T sen(α-i) tanφ' _κ	922.6	1125.3	893.1	
E _d (MN)	SLS2	ULS	SLIS	
W' sen α	4832.2	4832.2	4832.2	
W (K _h cos α + K _v sen α)	831.9	1855.8	2047.7	
T cos(α-i)	2991.6	3648.9	2895.9	
$\Sigma R_d / \Sigma E_d (MN)$	-5.4	8.1	47.4	

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data	
		PF0064_F0_ITA.doc	F0	20-06-2011	

Parametri di input

Volume suolo sopra superficie di scorrimento 32900.0 m^3 Volume suolo sommerso sopra sup. di scorrimento 0.0 m^3 Peso suolo sopra la sup. di scorrimento 658 MNPeso suolo sommerso sopra sup. di scorrimento 658 MNPeso totale W 8160 MNTotale sommerso W' 8160 MN θ critico $(\alpha + \phi'_s)$ 62 $^{\circ}$ T _{Ld} 267.1 MN	Inclinazione superf. di scorrimento	26	0
Volume suolo sommerso sopra sup. di scorrimento 0.0 m^3 Peso suolo sopra la sup. di scorrimento 658 MNPeso suolo sommerso sopra sup. di scorrimento 658 MNPeso totale W 8160 MNTotale sommerso W' 8160 MN θ critico (α + ϕ_s) 62 $^{\circ}$ Resistenza di scorrimento progettuale lungo lato del blocco 267.1 MN	Volume suolo sopra superficie di scorrimento	32900.0	m ³
Peso suolo sopra la sup. di scorrimento658MNPeso suolo sommerso sopra sup. di scorrimento658MNPeso totale W8160MNTotale sommerso W'8160MN θ critico (α + ϕ _s)62°Resistenza di scorrimento progettuale lungo lato del blocco267.1MN	Volume suolo sommerso sopra sup. di scorrimento	0.0	m ³
Peso suolo sommerso sopra sup. di scorrimento658MNPeso totale W8160MNTotale sommerso W'8160MN θ critico (α + ϕ_s)62°Resistenza di scorrimento progettuale lungo lato del blocco267.1MN	Peso suolo sopra la sup. di scorrimento	658	MN
Peso totale W8160MNTotale sommerso W'8160MN θ critico (α + ϕ _s)62°Resistenza di scorrimento progettuale lungo lato del blocco267.1MN	Peso suolo sommerso sopra sup. di scorrimento	658	MN
Totale sommerso W'8160MN θ critico (α + ϕ 's)62°Resistenza di scorrimento progettuale lungo lato del blocco267.1MN	Peso totale W	8160	MN
$\begin{array}{c} \theta {\rm critico} (\alpha \!$	Totale sommerso W'	8160	MN
Resistenza di scorrimento progettuale lungo lato del blocco T _{Ld} 267.1 MN	θ critico (α + ϕ 's)	62	o
	Resistenza di scorrimento progettuale lungo lato del blocco T_{Ld}	267.1	MN

Resistenza di terra passiva

		SLS2	ULS	SILS
	R _{Pk} (MN)	5838.0	4962.8	4794.3
	R _{Pd} (MN)	3553.4	2967.3	2853.2
R _d (MN)	SLS2	ULS	SLIS	
W' $\cos \alpha \tan \varphi'_k$	5328.6	5328.6	5328.6	
W (K _h sen α - K _v cos α) tan ϕ'_k	-6.3	-14.1	-15.6	
T sen(α -i) tan ϕ'_k	450.6	549.5	436.1	
E _d (MN)	SLS2	ULS	SLIS	
W' sen α	3577.1	3577.1	3577.1	
W (Kh cos α + Kv sen α)	882.3	1968.3	2171.9	
T cos(α-i)	3190.3	3891.2	3088.2	
$\Sigma R_d / \Sigma E_d$ (MN)	15.4	3.1	4.2	

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Parametri di input

Inclinazione superf. di scorrimento	8	0
Volume suolo sopra superficie di scorrimento	51835	m ³
Volume suolo sommerso sopra sup. di scorrimento	0	m ³
Peso suolo sopra la sup. di scorrimento	1036.7	MN
Peso suolo sommerso sopra sup. di scorrimento	1036.7	MN
Peso totale W	8539	MN
Totale sommerso W'	8539	MN
θ critico (α + ϕ 's)	44	0
Resistenza di scorrimento progettuale lungo lato del blocco ${\sf T}_{{\sf Ld}}$	322.9	MN

Resistenza di terra passiva

		SLS2	ULS	SILS
	R _{Pk} (MN)	16018.2	13616.8	13154.3
	R _{Pd} (MN)	9749.6	8141.6	7828.5
R _d (MN)	SLS2	ULS	SLIS	
W' $\cos\alpha \tan\varphi'_{\kappa}$	6143.4	6143.4	6143.4	
W (K _h sen α - K _v cos α) tan ϕ'_k	-213.6	-476.5	-525.7	
T sen(α-i) tanφ' _k	-287.8	-351.0	-278.6	
E _d (MN)	SLS2	ULS	SLIS	
W' sena	1188.4	1188.4	1188.4	
W (Kh $\cos \alpha$ + Kv $\sin \alpha$)	875.3	1952.6	2154.6	
T cos(α-i)	3225.8	3934.5	3122.6	
$\Sigma R_d / \Sigma E_d (MN)$	4.5	2.4	2.7	

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Spostamenti indotti dal sisma e verifiche geotecniche di sicurezza		Codice documento	Rev	Data
		PF0064_F0_ITA.doc	F0	20-06-2011

Appendice D – Storie temporali

(nelle figure che seguono: no drainage tunnel: no tunnel di drenaggio mechanism: meccanismo direct: diretto inverse: inverso same scaling factor for ... and... : stesso fattore di scalatura per ... e... Artificial 1 component 2: Artificiale 1 componente 2

Eurolink S.C.p.A.

time (s)

same scaling factor for $a_{\rm h}$ and $a_{\rm v}$

a_{v,max}=0.58g

time (s)

same scaling factor for $a_{\rm h}$ and $a_{\rm v}$

a_{v,max}=0.58g

Pagina 115 di 145

time (s)

time (s)

sicurezza

PF0064_F0_ITA.doc F0 20-06-2011

sicurezza

Codice documentoRevDataPF0064_F0_ITA.docF020-06-2011

Codice documentoRevDataPF0064_F0_ITA.docF020-06-2011

a_{v,max}=0.58g

same scaling factor for $\mathbf{a}_{\rm h}$ and $\mathbf{a}_{\rm v}$

sicurezza

same scaling factor for $\mathbf{a}_{\rm h}$ and $\mathbf{a}_{\rm v}$

a_{v,max}=0.58g

time (s) time (s)

Codice documento				
PF0064_F0_ITA.doc				

Rev

FO

Appendice E – Forze dei cavi aggiornate ottenute dal modello globale IBDAS versione 3.3b

Le forze trasmesse dai cavi principali al Blocco di Ancoraggio della Sicilia, sono state valutate nuovamente utilizzando il modello globale IBDAS versione 3.3b. Per ogni stato limite (SILS, SLS2 e SLU) sono state selezionate le combinazioni di carico peggiori sia per condizioni statiche che condizioni sismiche, utilizzando 6 criteri differenti. La Tabella E.1 riassume i valori ottenuti per le condizioni di carico statico mentre la Tabella E.2 si riferisce alle condizioni di carico sismico.

Fra i valori delle forze dei cavi ottenute nel progetto di gara e quelle recentemente fornite dal modello globale IBDAS versione 3.3b, sono state osservate esigue differenze. Considerando i valori massimi delle forze dei cavi, fornite dai diversi criteri per ogni caso di carico, il rapporto delle forze dei cavi del progetto di gara rispetto a quelle fornite dal modello globale IBDAS, sono nel range da 1.06 a 0.90 (Tabella E.3); il rapporto più elevato fa riferimento alla combinazione di carico SLU mentre quello inferiore è ottenuto per la combinazione di carico SILS.

Per lo stato limite ultimo (SLU) le forze dei cavi fornite dal progetto di gara sono del 5.8% maggiori rispetto ai valori IBDAS corrispondenti; ciò risulta in una stima conservatrice del comportamento del Blocco di Ancoraggio della Sicilia.

Tabella E.1 – Condizioni di carico statico – modello globale IBDAS aggiornato versione 3.3b

Critorio	Caso di	Flong	F _{vert}	F
Chieno	carico	(MN)	(MN)	(MN)
min u _{vert}		2184	605	2266
max u _{vert}		3575	1081	3735
min u _{hor}	SLU	2184	605	2266
max u _{hor}		3575	1081	3735
min R _{transv}		2184	605	2266
max R _{transv}		3575	1081	3735
min u _{vert}		2479	710	2578
max u _{vert}	SILS	3245	945	3380
min u _{hor}		2479	710	2578
max u _{hor}		3245	945	3380
min R _{transv}		2479	710	2578
max R _{transv}		3245	945	3380
min u _{vert}		2188	607	2271
max u _{vert}		3215	958	3355
min u _{hor}		2188	607	2271
max u _{hor}	3132	3215	958	3355
min R _{transv}		2188	607	2271
max R _{transv}		3215	958	3355

Tabella E.2 – Condizioni di carico sismico – modello globale IBDAS aggiornato versione 3.3b

Critorio	Caso di	F_{long}	F _{vert}	F
Chileno	carico	(MN)	(MN)	(MN)
min u _{vert}		2071	553	2143
max u _{vert}		3488	1064	3647
min u _{hor}	SLU	2199	629	2287
max u _{hor}		3360	988	3502
min R _{transv}		2173	623	2260
max R _{transv}		3386	994	3529
min u _{vert}		2357	653	2446
max u _{vert}	SILS	3341	992	3485
min u _{hor}		2498	737	2605
max u _{hor}		3199	909	3326
min R _{transv}		2469	730	2575
max R _{transv}		3228	916	3355
min u _{vert}		2143	585	2221
max u _{vert}	SLS2	3244	974	3387
min u _{hor}		2201	620	2287
max u _{hor}		3185	939	3321
min R _{transv}		2189	617	2275
max R _{transv}		3197	942	3333

Tabella E.3: Forze dei cavi nel Blocco di Ancoraggio Sicilia: Progetto di gara e valori IBDAS

	Progetto di gara	IBDAS statico	IBDAS sismico	
Caso di carico	F (MN)	F (MN)	F (MN)	F_{TD}/F_{IBDAS}
SLU	3964	3735	3647	1.06
SILS	3146	3380	3485	0.90
SLS2	3250	3355	3387	0.96

Rev

F0

Appendice F – Forze dei cavi aggiornate ottenute dal modello globale IBDAS versione 3.3f

Le forze trasmesse dai cavi principali al Blocco di Ancoraggio della Sicilia, sono state valutate nuovamente utilizzando la versione 3.3f del modello globale IBDAS. Le peggiori combinazioni di carico sono state selezionate per ciascuno stato limite (SILS, SLS2 e ULS) sia per condizioni statiche che sismiche, utilizzando 6 diversi criteri. La Tabella F1 riassume i valori ottenuti per le condizioni di carico statico, mentre la Tabella F2 fa riferimento alle condizioni di carico sismico.

Fra i valori delle forze dei cavi calcolate nel Progetto di Gara e quelle recentemente fornite dalla versione 3.3f del modello IBDAS sono state osservate esigue differenze. Considerando i valori massimi delle forze dei cavi forniti dai diversi criteri per ciascun caso di carico, il rapporto delle forze dei cavi del Progetto di Gara rispetto a quelle fornite dal modello IBDAS è nel range da 1.08 a 0.93 (Tabella F3); il rapporto maggiore fa riferimento alla combinazione di carico SLU, mentre quello inferiore è ottenuto per la combinazione di carico SILS.

Per lo Stato Limite Ultimo (SLU) le forze dei cavi fornite dal Progetto di Gara sono dell' 8% maggiori di quelle dei valori corrispondenti del modello IBDAS; ciò risulta in una stima conservatrice del comportamento del Blocco di Ancoraggio della Sicialia.

Tabella F.1 – Condizioni di carico statico – modello globale IBDAS aggiornato- versione 3.3

	Caso di	Flong	F _{vert}	F
Criterio	Carico	(MN)	(MN)	(MN)
min u _{vert}		2176	596	2256
max u _{vert}		3525	1057	3680
min u _{hor}	SLU	2176	597	2256
max u _{hor}		3525	1057	3680
min R _{transv}		2176	597	2256
max R _{transv}		3525	1057	3680
min u _{vert}	SILS	2439	690	2535
max u _{vert}		3205	924	3336
min u _{hor}		2439	690	2535
max u _{hor}		3205	924	3336
min R _{transv}		2439	691	2535
max R _{transv}		3205	924	3336
min u _{vert}		2181	598	2261
max u _{vert}		3175	937	3311
min u _{hor}	SLS2	2181	598	2261
max u _{hor}		3175	937	3311
min R _{transv}		2181	598	2261
max R _{transv}		3175	937	3311

Tabella F.2 - Condizioni di carico sismico - modello globale IBDAS aggiornato - versione 3.3f

Critorio	Caso di	Flong	F _{vert}	F
Chieno	Carico	(MN)	(MN)	(MN)
min u _{vert}		2105	554	2177
max u _{vert}		3397	1030	3550
min u _{hor}	SLU	2138	587	2217
max u _{hor}		3364	997	3509
min R _{transv}		2250	638	2339
max R _{transv}		3252	946	3387
min u _{vert}		2363	645	2449
max u _{vert}		3255	960	3394
min u _{hor}		2399	681	2494
max u _{hor}	SILS	3218	924	3348
min R _{transv}		2523	737	2629
max R _{transv}		3094	868	3214
min u _{vert}		2154	581	2231
max u _{vert}		3185	949	3323
min u _{hor}	SLS2	2169	596	2250
max u _{hor}		3170	934	3304
min R _{transv}		2220	619	2305
max R _{transv}		3117	910	3249

Tabella F.3: Forze cei Cavi nel Blocco di Ancoraggio della Sicialia: Valori del Progetto di Gara

(versione modello 3.3f)

	Progetto di gara	IBDAS Statico	IBDAS Sismico	
Caso di carico	F (MN)	F (MN)	F (MN)	F_{TD}/F_{IBDAS}
SLU	3964	3680	3550	1.08
SILS	3146	3336	3394	0.93
SLS2	3250	3311	3323	0.98

Bibliografia

Berezantzev W.G. (1964). *Calculation of foundation basis*. Construction Literature, Leningrad, U.S.S.R.

Bolton M.D. (1986). The strength and dilatancy of sands, Géotechnique, 1, 65-78

- Cubrinovski M. and Ishihara K. (1999). *Empirical correlation between SPT N-value and relative density for sandy soils*. Soils and Foundations, 39 n. 5, 61 71.
- Jamiolkowski M., Leroueil S., and Lo Presti D. C. F. (1991). "Theme lecture: Design parameters from theory to practice." Proc., Geo-Coast'91, 1–41.

Newmark N.M. (1965). *Effect of earthquakes on dam and embankment*. Geotèchnique, 15 (2), 139-160.

- Rowe P.W. (1962). *The stress dilatancy relation for static equilibrium of an assembly of particles in contact*. Proceedings Royal Society, London, Ser. A 269, 500 527.
- Schmertmann J.H. (1975). Measurement of in situ shear strength. State of the art report. ASCE Speciality Conference on in Situ Measurements of Soil Properties, 2, 57 – 138
- Tanaka Y., Kudo Y., Yoshida Y. & Ikemi M. (1987). A study on the mechanical properties of sandy gravel dynamic properties of reconstituted samples. Central Research Institute of Electric Power Industry, Report U87019.