COMMITTENTE:

PROGETTAZIONE:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01

U.O. INFRASTRUTTURE SUD

PROGETTO DEFINITIVO

LINEA PESCARA – BARI

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI - LESINA

Opere D'Arti Minori - Sottovia e Galleria Artificiali

SL02 sottovia viabilità NV07 km 10+075

SCALA:

Rel	azione	di	cal	cold	scato	lare

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

L I 0 2 0 2 D 7 8 C L S L 0 2 0 0 0 1 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
A	EMISSIONE ESECUTIVA	E.Abbasciano	Aprile 2019	G. Giustino	Aprile 2019	B.M. Bianchii	Aprile 2019	D. Tiberti Aprile 2019
				/		*		P.A. o State of Studies of Studie
								Figh S. Saring S. Denio J. Den
								ITAN Gruppo Dire UO Ling 1991 Ingestr

File:LI0202D78CLSL0200001A.doc n. Elab.:

LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

COMMESSA

LOTTO

CODIFICA

DOCUMENTO

REV.

FOGLIO

RELAZIONI DI CALCOLO SCATOLARE

LI02 02 D 78

CL

SL0200 001

2 di 77

INDICE

1	PRE	MESSA	. 5
2	NOI	RMATIVA DI RIFERIMENTO	. 7
3	MA	TERIALI	. 8
	3.1	CALCESTRUZZO C32/40	. 8
	3.2	ACCIAIO B450C	.9
	3.3	Verifica S.L.E.	.9
	3.3.	l Verifiche alle tensioni	. 9
	3.3.2	2 Verifiche a fessurazione	10
4	INQ	UADRAMENTO GEOTECNICO	12
	4.1	TERRENO DI RICOPRIMENTO/RINTERRO	12
	4.2	TERRENO DI FONDAZIONE	12
	4.3	FALDA	12
	4.4	INTERAZIONE TERRENO-STRUTTURA	12
5	CAF	RATTERIZZAZIONE SISMICA	14
	5.1	VITA NOMINALE E CLASSE D'USO	14
	5.2	PARAMETRI DI PERICOLOSITÀ SISMICA	14
6	SOF	TWARE DI CALCOLO	19
	6.1	ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO ADOTTATI	19
	6.2	UNITÀ DI MISURA	19
	6.3	GRADO DI AFFIDABILITÀ DEL CODICE	19

RELAZIONI DI CALCOLO SCATOLARE

LINEA PESCARA-BARI

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

COMMESSA LOTTO CODIFICA

DOCUMENTO

REV.

FOGLIO

LI02	02 D 78	CL	SL0200 001	Α	3 di 77

	6.4	VALUTAZIONE DELLA CORRETTEZZA DEL MODELLO	. 19
	6.5	CARATTERISTICHE DELL'ELABORAZIONE	. 20
	6.6	GIUDIZIO FINALE SULLA ACCETTABILITÀ DEI CALCOLI	. 20
	6.7	PROGRAMMI DI SERVIZIO	. 20
7	SOT	TOPASSO SCATOLARE 12.00X7.50M	. 21
	7.1	GEOMETRIA	. 21
	7.2	MODELLO DI CALCOLO	. 22
	7.2.1	Valutazione della rigidezza delle molle	. 23
	7.3	Analisi dei carichi	. 23
	7.3.1	Peso proprio della struttura e carichi permanenti portati	. 24
	7.3.2	Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente	. 25
	7.3.3	Spinta in presenza di falda	. 25
	7.3.4	4 Treni di carico	. 26
	7.3.5	5 Spinta del terreno indotta dai treni di carico	. 30
	7.3.6	6 Avviamento e frenatura	. 32
	7.3.7	7 Carichi variabili sulla platea di fondazione	. 33
	7.3.8	Ritiro differenziale della soletta di copertura	. 33
	7.4	AZIONE SISMICA INERZIALE	. 36
	7.5	SPINTA SISMICA TERRENO	. 38
8	CON	ИBINAZIONI DI CARICO	. 40
9	DIA	GRAMMI DELLE SOLLECITAZIONI	. 45

LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

DEI	AZIONI	DIC		$\sim \sim \sim 1$	TOI	
K FI		1 11 (Δ1 (.()I	1131.4		$\Delta R F$

LI02 02 D 78 CL SL0200 001 A 4 di 77	4 di 77

10 V	ERIFICA DELLE SEZIONI IN C.A.	. 48
10.1	VERIFICA SOLETTA SUPERIORE	. 48
10.2	VERIFICA SOLETTA INFERIORE	. 53
10.3	Verifica piedritti	. 58
11 V	ERIFICA DI DEFORMABILITA'	. 64
12 Та	ARUI ATO DI CALCOLO	65

1 PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del del corpo stradale ferroviario, delle opere d'arte e delle opere interferite relative al Raddoppio Termoli - Lesina, Lotto 02: Termoli - Campomarino.

Il sottovia, di nuova realizzazione, si rende necessario per garantire la continuità poderale nell'ambito della viabilità fra le aree a nord e a sud del nuovo tracciato ferroviario.

L'opera consiste in uno scatolare in c.a. gettato in opera.

La sezione trasversale retta ha una larghezza interna di $L_{int} = 12.00$ m ed un'altezza netta di $H_{int} = 7.50$ m; lo spessore della platea di fondazione è di $S_f = 1.50$ m, lo spessore dei piedritti è di $S_p = 1.40$ m e lo spessore della soletta di copertura è di $S_s = 1.40$ m. La lunghezza del sottopasso è di 13.50 m al netto dei muri di imbocco.

Agli imbocchi sono previsti dei muri di contenimento a fondazione diretta di altezza variabile con spessore paramento in testa pari a B=40 cm variabile con l'altezza in funzione di una pendenza 1/10 e spessore fondazione s=130 e 90cm

Nell'immagine seguente si riportano una sezione trasversale ed una longitudinale dell'opera.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO I	DELLA TE	RATTA FERRO	VIARIA TERMOLI 75	-LESINA	
RELAZIONI DI CALCOLO SCATOLARE	COMMESSA	LOTTO 02 D 78	CODIFICA	DOCUMENTO SL0200 001	REV.	FOGLIO 6 di 77

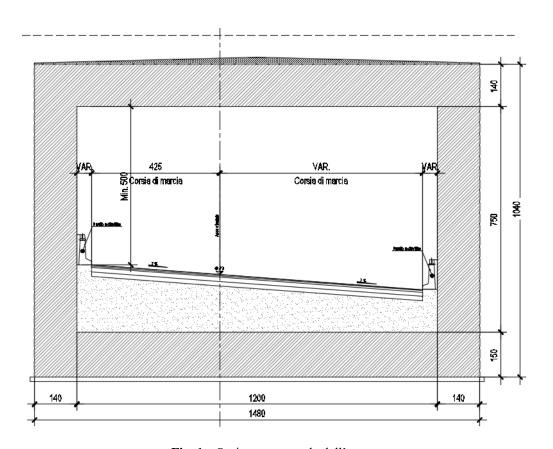


Fig. 1 – Sezione trasversale dell'opera

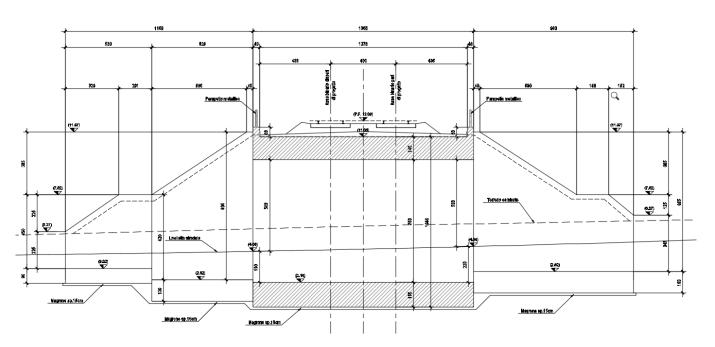


Fig. 2 –Sezione longitudinale

2 NORMATIVA DI RIFERIMENTO

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- L. n. 64 del 2/2/1974"Provvedimento per le costruzioni con particolari prescrizioni per le zone sismiche".
- L. n. 1086 del 5/11/1971"Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- Norme Tecniche per le Costruzioni D.M. 14-01-08 (NTC-2008);
- Circolare n. 617 del 2 febbraio 2009 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008;
- Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.
- Eurocodici EN 1991-2: 2003/AC:2010.
- RFI DTC SI MA IFS 001 B del 22-12-17 Manuale di Progettazione delle Opere Civili.
- RFI DTC SI SP IFS 001 C Capitolato generale tecnico di Appalto delle opere civili.
- CNR-DT207/2008 Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.
- UNI 11104: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

3 **MATERIALI**

Il calcestruzzo adottato corrisponde alla Classe C32/40, mentre l'acciaio in barre ad aderenza migliorata corrisponde alla classe B450C. Di seguito vengono elencate le specifiche.

3.1 Calcestruzzo C32/40							
Rif. 4.1.2.1	11.2.10 NTC						
Valore caratte	eristico della resi	stenza a compre	ssione cubica a 28 gg:				
R _{ck} =	40	MPa					
Valore caratte	eristico della resi	stenza a compre	ssione cilindrica a 28 gg:				
f _{ck} =	33.2	MPa	$(0.83*R_{ck})$				
Resistenza a	compressione ci	ilindrica media:					
f _{cm} =	41.2	MPa	(fck+8)				
Resistenza a	trazione assiale:						
f _{ctm} =	3.10	MPa	Valore medio				
		,					
f _{ctk,0,05} =	f _{ctk,0,05} = 2.17 MPa Valore caratteristico frattile 5%						
Resistenza a trazione per flessione:							
f _{cfm} =	3.7	MPa	Valore medio				
		ļ					
f _{cfk,0,05} =	2.6	MPa	Valore caratteristico frattile 5%				
Coefficiente p	arziale per le ve	rifiche agli SLU:					
γ c=	1.5						
Per situazioni d	li carico ecceziona	li, tale valore va co	nsiderato pari ad 1,0				
_							
Resistenza di	calcolo a compr	essione allo SLU	J:				
f _{cd} =	18.8	MPa	(0,85*fck/γs)				
Resistenza di calcolo a trazione diretta allo SLU:							
f _{ctd} =	1.45	MPa	$(f_{ctk\ 0,05}/\gamma s)$				
Resistenza di	calcolo a trazior	ne per flessione	SLU:				
$f_{ctd f} =$	1.74	MPa	1,2*fctd				
		•					
Per spessori mi	Per spessori minori di 50mm e calcestruzzi ordinari, tale valore va ridotto del 20%						

Modulo di elasticità secante:

Modulo di Poisson:

ν= **0.20**

Coefficiente di dilatazione lineare

α= **0.00001** °C⁻¹

Tensione di aderenza di calcolo acciaio-calcestruzzo

 $\eta = 1.00$

f_{bd}= **3.25** MPa (2,25* $f_{ctk*}\eta/\gamma_S$)

Nel caso di armature molto addensate, o ancoraggi in zona tesa tale valore va diviso per 1,5

3.2 Acciaio B450C

Tensione caratteristica di snervamento: $f_{yk} = 450 \text{ MPa};$

Tensione di progetto: $f_{vk} = 450 \text{ MPa};$

Tensione di progetto: $f_{yk} = f_{yd} / \gamma_m$

in cui $\gamma_m = 1.15$ $f_{yd} = 450 / 1.15 = 391.3 \text{ MPa};$

Modulo Elastico $E_s = 210'000 \text{ MPa.}$

3.3 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.3.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "RFI DTC SI MA IFS 001 B del 22-12-17", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 $f_{\rm ek}\!;$
- per combinazioni di carico quasi permanente: 0,40 f_{ek};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

Per il caso in esame risulta in particolare :

CALCESTRUZZO

$$\sigma_{cmax\ QP}$$
 = (0,40 f_{cK}) = 13.28 MPa (Combinazione di Carico Quasi Permanente)
$$\sigma_{cmax\ R}$$
 = (0,55 f_{cK}) = 18.26 MPa (Combinazione di Carico Caratteristica - Rara)

ACCIAIO

$$\sigma_{s max}$$
 = (0,75 f_y κ) = 338 MPa Combinazione di Carico Caratteristica(Rara)

3.3.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Canani di			Armatura				
Gruppi di esigenza	Condizioni ambientali	Combinazione di azione	Sensibile		Poco sensibi	le	
esigenza		Stato limite		wd	Stato limite	wd	
	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	\leq w ₃	
a	Orumane	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂	
h	Aggragiya	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂	
b Aggressive		quasi permanente	decompressione	-	ap. fessure	\leq w ₁	
	Malta Agamagiya	frequente	formazione fessure	-	ap. fessure	\leq w ₁	
С	Molto Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame (XC4) così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

- Combinazione Caratteristica (Rara)
$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto "C4.1.2.2.4.6 Verifica allo stato limite di fessurazione" della Circolare n.617/09.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO SL02 sottovia viabilità NV07 km 10+075						
RELAZIONI DI CALCOLO SCATOLARE	COMMESSA	LOTTO 02 D 78	CODIFICA	DOCUMENTO SL0200 001	REV.	FOGLIO 12 di 77	

4 INQUADRAMENTO GEOTECNICO

4.1 Terreno di ricoprimento/rinterro

Per il terreno di ricoprimento dell'opera sono state assunte le seguenti caratteristiche geotecniche :

 $\gamma = 20 \text{ kN/m}^3$ peso di volume naturale

 $\phi' = 35^{\circ}$ angolo di resistenza al taglio

c' = 0 kPa coesione drenata

4.2 Terreno di fondazione

Le caratteristiche geotecniche del volume di terreno che interagisce con l'opera sono state desunte dalla relazione geotecnica e sono riportate sinteticamente di seguito (dedotte dalla linea alla progr. 13+900.00 circa):

Unità ba3 – Argille limose (Alluvioni attuali e recenti)

 $\gamma = 18 \div 19 \text{ kN/m}^3$ peso di volume naturale

 $c' = 5 \div 20 \text{ kPa}$ coesione drenata

 $\varphi' = 20 \div 25^{\circ}$ angolo di resistenza al taglio

cu = 40÷175 kPa resistenza al taglio in condizioni non drenate

Nspt = 2÷30 numero di colpi da prova SPT

 $Vs = 70 \div 250 \text{ m/s}$ velocità delle onde di taglio

 $Go = 10 \div 120 \text{ MPa}$ modulo di deformazione a taglio iniziale $Eo = 25 \div 320 \text{ MPa}$ modulo di deformazione elastico iniziale

 $k = 10^{-8} \div 10^{-6} \text{ m/s}$ permeabilità

4.3 Falda

Dal profilo geotecnico il piano di fondazione dell'opera non risulta essere interferente con la quota di falda posto a circa 1.50m dal p.c..

4.4 Interazione terreno-struttura

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

•
$$s = B \cdot c_t \cdot (q - \sigma_{v0}) \cdot (1 - v^2) / E$$

dove:

- s = cedimento elastico totale;
- B = lato minore della fondazione;
- ct = coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (L = lato maggiore della fondazione):

$$ct = 0.853 + 0.534 \ln(L / B) \qquad \text{rettangolare con } L / B \le 10$$

$$ct = 2 + 0.0089 (L / B) \qquad \text{rettangolare con } L / B > 10$$

- q = pressione media agente sul terreno;
- σ_{v0} = tensione litostatica verticale alla quota di posa della fondazione;
- v = coefficiente di Poisson del terreno;
- E = modulo elastico medio del terreno sottostante.

Il valore della costante di sottofondo k_w è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

•
$$\mathbf{k}_{w} = \mathbf{E} / [(1 - v^{2}) \cdot \mathbf{B} \cdot \mathbf{ct}]$$

Di seguito si riportano in forma tabellare i risultati delle valutazioni effettuate per il caso in esame, avendo considerato per E un valore medio di quello indicato per l'Unità Geotecnica in esame ed una dimensione longitudinale della fondazione ritenuta potenzialmente collaborante nella diffusione dei carichi:

$$E = \begin{bmatrix} 150000 & kN/m^2 \\ n = & 0.3 \end{bmatrix}$$

$$B = \begin{bmatrix} 14.8 & m \\ L = \begin{bmatrix} 13.50 & m \\ 0.91 & c_t = & 0.80 \end{bmatrix}$$

$$K_{vv} = \begin{bmatrix} 13854 & kN/m^3 \end{bmatrix}$$

Cautelativamente si limita, ai fini del calcolo, il valore della costante di sottofondo a circa 13000 kN/m³.

5 CARATTERIZZAZIONE SISMICA

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

5.1 Vita nominale e classe d'uso

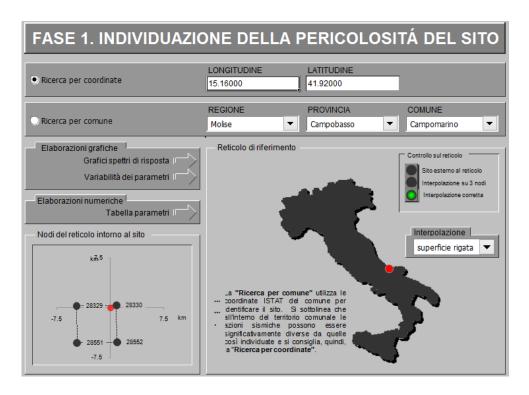
Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (VN), intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (CU)

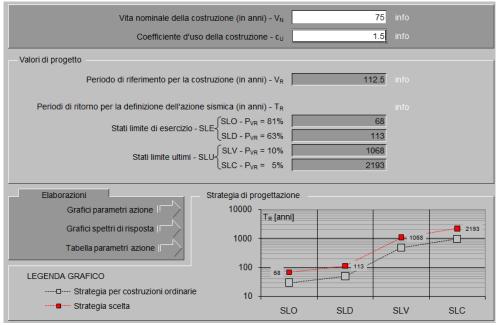
Per l'opera in oggetto si considera una vita nominale: VN = 75 anni (categoria 2: "Altre opere nuove a velocità V<250 Km/h"). Riguardo invece la Classe d'Uso, all' opera in oggetto corrisponde una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II): $C_u = 1.5$.

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso C_R 0, ovvero:

$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni


5.2 Parametri di pericolosità sismica


La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 14-01-2008, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / VR) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

- Categoria sottosuolo C

In accordo a quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene per il sito in esame:

I valori delle caratteristiche sismiche (a_g, F₀, T*_C) per gli stati limite di normativa sono dunque:

LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 16 di 77

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.071	2.498	0.313
SLD	113	0.089	2.534	0.324
SLV	1068	0.224	2.482	0.352
SLC	2193	0.293	2.461	0.358

$a_g \rightarrow$	accelerazione orizzontale massima del terreno, espressa come frazione dell'accelerazione
	di gravità;

 $F_0 \rightarrow$ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

 $T_{C}^{*} \rightarrow$ periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

 $S \to coefficiente$ che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) .

Le accelerazioni massime per i vari stati limite di normativa nelle condizioni di sito reali sono:

Parametri indipendenti

STATO LIMITE	SLV
a _n	0.224 g
F _o	2.482
T _C *	0.352 s
Ss	1.366
C _C	1.482
S _T	1.000
q	1.000

Parametri dipendenti

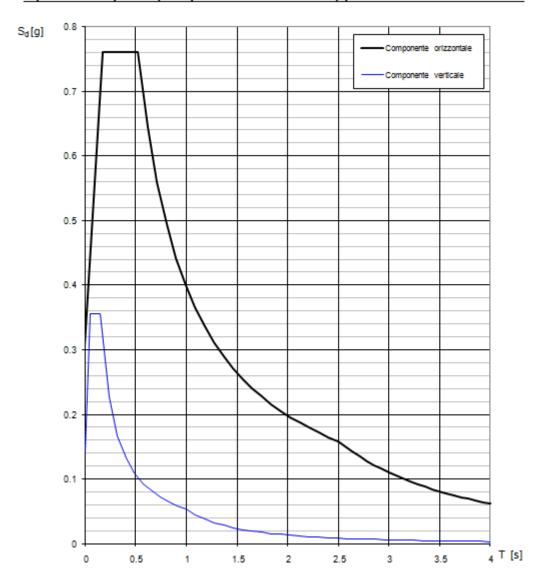
S	1.366
η	1.000
T _B	0.174 s
T _C	0.522 s
Tn	2.498 s

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_B = T_C/3$	(NTC-07 Eq. 3.2.8)
$T_{C} = C_{C} \cdot T_{C}^{*}$	(NTC-07 Eq. 3.2.7)
$T_D = 4.0 \cdot a_g / g + 1.6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & S_e(T) \!=\! a_g \cdot S \cdot \eta \cdot F_o \cdot \! \left[\frac{T}{T_B} \!+\! \frac{1}{\eta \cdot F_o} \! \left(1 \!-\! \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_e(T) \!=\! a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & S_e(T) \!=\! a_g \cdot S \cdot \eta \cdot F_o \cdot \! \left(\frac{T_C}{T} \right) \\ T_D \leq T & S_e(T) \!=\! a_g \cdot S \cdot \eta \cdot F_o \cdot \! \left(\frac{T_C T_D}{T^2} \right) \end{split}$$


Lo spettro di progetto $S_{\alpha}(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_{\alpha}(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	ı [s]	Se [g]
	0.000	0.307
T _B ◀	0.174	0.761
Tc◀	0.522	0.761
	0.616	0.645
	0.710	0.559
	0.804	0.494
	0.898	0.442
	0.992	0.400
	1.086	0.365
	1.180	0.336
	1.274	0.311
	1.369	0.290
	1.463	0.271
	1.557	0.255
	1.651	0.240
	1.745	0.227
	1.839	0.216
	1.933	0.205
	2.027	0.196
	2.121	0.187
	2.216	0.179
	2.310	0.172
	2.404	0.165
T _D ◀	2.498	0.159
	2.569	0.150
	2.641	0.142
	2.712	0.135
	2.784	0.128
	2.855	0.122
	2.927	0.116
	2.999	0.110
	3.070	0.105
	3.142	0.100
	3.213	0.096
	3.285	0.092
	3.356	0.088
	3.428	0.084
	3.499	0.081
	3.571	0.078
	3.642	0.075
	3.714	0.072
	3.785	0.069
	3.857	0.067
	3.928	0.064
	4.000	0.062

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO SL02 sottovia viabilità NV07 km 10+075						
RELAZIONI DI CALCOLO SCATOLARE	COMMESSA	LOTTO 02 D 78	CODIFICA CL	DOCUMENTO SL0200 001	REV.	FOGLIO 18 di 77	

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLV

Il calcolo viene eseguito con il metodo pseudostatico. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

6 SOFTWARE DI CALCOLO

6.1 Origine e caratteristiche dei codici di calcolo adottati

Per le analisi delle strutture è stato utilizzato il Sap 2000 v.14.1 prodotto, distribuito ed assistito da Computers and Structures, Inc.1995 University Ave. Berkeley. Questa procedura è sviluppata in ambiente Windows, permette l'analisi elastica lineare e non di strutture tridimensionali con nodi a sei gradi di libertà utilizzando un solutore ad elementi finiti. Gli elementi considerati sono frame (trave), con eventuali svincoli interni o rotazione attorno al proprio asse. I carichi sono applicati sia ai nodi, come forze o coppie concentrate, sia sulle travi, come forze distribuite, trapezie, concentrate, come coppie e come distorsioni termiche. A supporto del programma è fornito un ampio manuale d'uso contenente fra l'altro una vasta serie di test di validazione sia su esempi classici di Scienza delle Costruzioni, sia su strutture particolarmente impegnative e reperibili nella bibliografia specializzata.

Tale programma fornisce in output, oltre a tutte le caratteristiche geometriche e di carico delle strutture, i risultati relativi alle sollecitazioni indotte nelle sezioni degli elementi presenti.

6.2 Unità di misura

Le unità di misura adottate sono le seguenti:

- lunghezze: m
- forze: kN
- masse: kN massa
- temperature: gradi centigradi
- angoli: gradi sessadecimali o radianti
- si assume l'uguaglianza 1 kN = 100 kg

6.3 Grado di affidabilità del codice

L'affidabilità del codice di calcolo e' garantita dall'esistenza di un ampia documentazione di supporto. E' possibile inoltre ottenere rappresentazioni grafiche di deformate e sollecitazioni della struttura.

6.4 Valutazione della correttezza del modello

Il modello di calcolo adottato e' da ritenersi appropriato in quanto non sono state riscontrate labilità, le reazioni vincolari equilibrano i carichi applicati, la simmetria di carichi e struttura dà origine a sollecitazioni simmetriche.

6.5 Caratteristiche dell'elaborazione

Tutte le analisi strutturali sono state eseguite su di una workstation dedicata avente le seguenti caratteristiche tecniche:

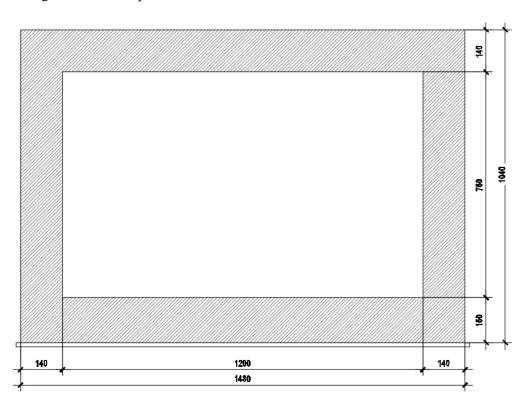
- Tipo Intel i7
- Memoria centrale 8 Gb;
- Lunghezza in bit della parola 64 bit;
- Memoria di massa 1 Hard disk da 500 Gb.

6.6 Giudizio finale sulla accettabilità dei calcoli

Si ritiene che i risultati ottenuti dalla elaborazione siano accettabili e che le ipotesi poste alla base della formulazione del modello matematico siano valide come dimostrato dal comportamento dei materiali.

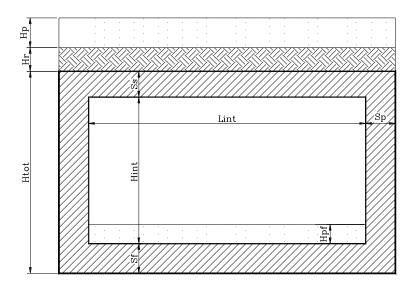
All'interno del pacchetto Sap 2000 sono inoltre presente una serie di test per il benchmark del solutore, che consentono di comprovare l'affidabilita' del codice di calcolo e paragonare risultati ottenuti con le soluzioni esatte.

6.7 Programmi di servizio


Per le verifiche delle sezioni si adotta il programma: "RC-SEC" – Autore GEOSTRU Software.ANALISI DEI CARICHI E FASI

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO SL02 sottovia viabilità NV07 km 10+075						
RELAZIONI DI CALCOLO SCATOLARE	COMMESSA	LOTTO 02 D 78	CODIFICA CL	DOCUMENTO SL0200 001	REV.	FOGLIO 21 di 77	

7 SOTTOPASSO SCATOLARE 12.00X7.50M

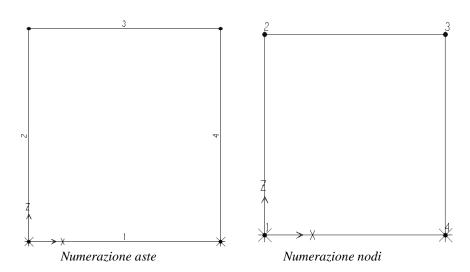

La dimensione interna è di 12.00m e l'altezza interna pari a 7.50m, con soletta superiore di spessore 1.40m, piedritti di spessore 1.40m e soletta inferiore di spessore 1.50m.

Nel seguito verrà esaminata una striscia di scatolare avente lunghezza di 1.00 m. In figura si riporta schematicamente la geometria dell'opera.

7.1 Geometria

DATI GEOMETRICI						
Grandezza	Simbolo	Valore	U.M.			
larghezza totale scatolare	L_{tot}	14.80	m			
larghezza utile scatolare	L_{int}	12.00	m			
larghezza interasse	La	13.40	m			
spessore soletta superiore	\mathbf{S}_{s}	1.40	m			
spessore piedritti	S_p	1.40	m			
spessore fondazione	S_{f}	1.50	m			
altezza totale scatolare	H_{tot}	10.40	m			
altezza libera scatolare	H_{int}	7.50	m			
			m			
spessore ballast + ricoprimento	H_{Psup}	0.80	m			
	H_{Rsup}	0.00	m			
spessore pacchetto interno	H_{Pinf}	0.00	m			
spessore ricoprimento interno	H_{Rinf}	2.00	m			

7.2 Modello di calcolo

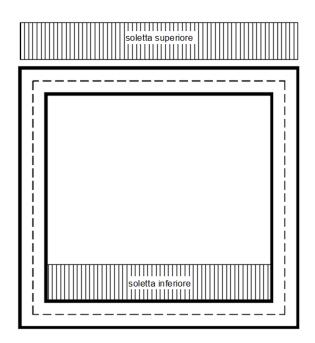

Il modello di calcolo attraverso il quale è schematizzata la struttura è quello del telaio chiuso su letto di molle alla Winkler.

Il modello considerato per l'analisi è quello di uno scatolare di profondità unitaria (1.00m) soggetto alle azioni da traffico di norma e quelle permanenti. In corrispondenza dei vertici dello scatolare sono state inserite delle zone rigide pari a metà spessore degli elementi.

Il terreno di fondazione è stato modellato utilizzando la schematizzazione alla Winkler con un opportuno coefficiente di sottofondo.

Di seguito si riporta lo schema di calcolo.

7.2.1 Valutazione della rigidezza delle molle


Si considera lo scatolare appoggiato su di un letto di molle (schematizzazione alla Winkler) assegnando alle aste di fondazione del modello un valore di "linear spring" pari a K=13000~kN/mc.

7.3 Analisi dei carichi

7.3.1 Peso proprio della struttura e carichi permanenti portati

Soletta superiore	- Peso proprio		35.00 kN/m
		- Totale	35.00 kN/m
	- Peso ballast + ricoprimento 80 cm		14.40 kN/m
	- Peso 0 cm		0.00 kN/m
		- Totale	14.40 kN/m
Soletta inferiore	- Peso proprio	_	37.50 kN/m
		- Totale	37.50 kN/m
	- Peso pacchetto interno 0 cm		0.00 kN/m
	- Peso terreno ricoprimento interno	_	40.00 kN/m
		- Totale	40.00 kN/m
<u>Piedritti</u>	- Peso proprio		35.00 kN/m
		- Totale	35.00 kN/m

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 10.08 kN.

7.3.2 Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente

Per il rinterro si prevede un terreno avente angolo di attrito $\varphi = 35^{\circ}$ ed un peso di volume $\gamma = 20 \text{ kN/m}^3$, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dello scatolare, utilizzando la formula Ko=1-sin φ ', per cui si ottiene un valore di Ko=0.43. Le spinte in asse soletta superiore ed asse soletta inferiore valgono:

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta superiore con valore pari a 6.87 kN ed inferiore con valore pari a 69.24 kN.

7.3.3 Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_a = \gamma_{sat}$$
 - γ_w

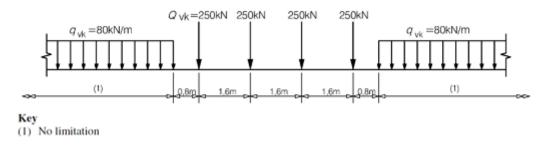
dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_w è il peso di volume dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

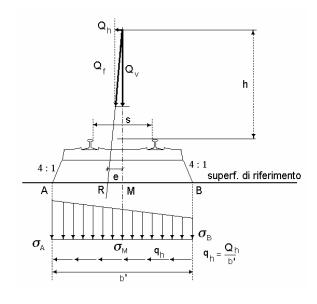
$$u = \gamma_w \cdot z$$

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO SL02 sottovia viabilità NV07 km 10+075						
RELAZIONI DI CALCOLO SCATOLARE	COMMESSA	LOTTO 02 D 78	CODIFICA	DOCUMENTO SL0200 001	REV.	FOGLIO	

7.3.4 Treni di carico

7.3.4.1 Treno di carico LM71




Fig. 3 –Load model 71 (al punto 6.3.2. della norma EN 1991-2:2003)

 α = coefficiente di adattamento = 1.10

Per il calcolo del coefficiente dinamico Φ si fa riferimento al "Manuale di Progettazione delle Opere Civili" Considerando un ridotto standard manutentivo si ha:

$$L_{\Phi} = 1.3 * [(1/3) * (2*H_{tot} + L_{tot})] = 15.43 m$$

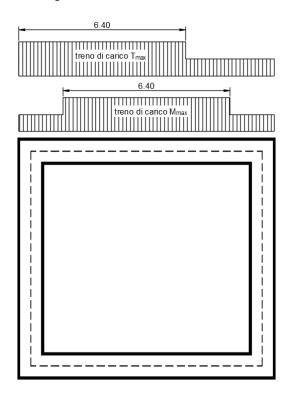
 $\Phi_3 = [2.16 / (L_{\Phi}^{0.5} - 0.2)] + 0.73 = 1.31$

Il sovraccarico ferroviario si distribuisce attraverso il ricoprimento con la pendenza di 1/4 e con la pendenza a 45° all'interno del cls per cui la lunghezza di diffusione del carico in senso trasversale all'asse binario risulta pari a:

$$L_{trasv}$$
= 1.5 + [$H_{psup}/4 + S_s/2$] * 2 = 3.30 n

In senso longitudinale si è assunto che il carico si distribuisce sull'intero ingombro dei suoi assi, pari a $L_{long} = 6,40$ m.

Pertanto il carico ripartito dovuto al singolo treno LM 71 risulta:

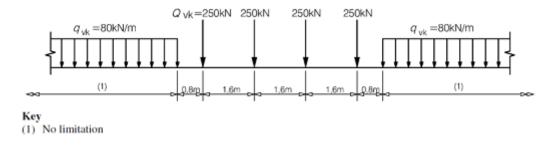

Carico ripartito prodotto dalle forze concentrate

=
$$4*250*1.1*\Phi_3/(L_{trasv}*L_{long})$$
 = 66.13 kN/m^2

Carico ripartito prodotto dal carico distribuito (80 kN/m)

$$= 80 * 1.1 * \Phi_3 / L_{trasv} = 34.92 \text{ kN/m}^2$$

Le distribuzioni del sovraccarico ferroviario considerate al di sopra della copertura, sono quelle in grado di massimizzare le sollecitazioni flettenti e taglianti.


Per tenere in conto le carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 46.29 kN per i carichi concentrati e valore pari a 24.44 kN per il carico distribuito

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO I	DELLA TE	RATTA FERRO	VIARIA TERMOLI 75	-LESINA	
RELAZIONI DI CALCOLO SCATOLARE	COMMESSA	LOTTO 02 D 78	CODIFICA CL	DOCUMENTO SL0200 001	REV.	FOGLIO 28 di 77

Di seguito, si effettua la valutazione del carico equivalente previsto dalle Specifiche Tecniche di Interoperabilità con cui si dà evidenza che le opere appartenenti alla tratta in esame sono idonee a sostenere tale carico.

7.3.4.2 <u>Verifica requisiti S.T.I. per opere minori sottobinario: Carico equivalente</u>

Il modello di carico LM71 citato dalle S.T.I. è definito nella norma EN 1991-2:2003/AC:2010.

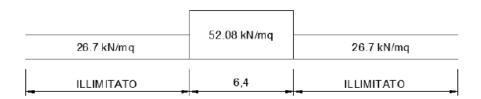
Il carico equivalente si ricava dalla ripartizione trasversale e longitudinale dei carichi per effetto delle traverse e del ballast previsti dalla stessa norma EN 1991-2:2003/AC:2010.

Considerando i 4 carichi assiali da 250 kN e la relativa distribuzione longitudinale, il carico verticale equivalente a metro lineare agente alla quota della piattaforma ferroviaria (convenzionalmente a 70 cm dal piano del ferro) risulta pari a:

$$p = \frac{4 \times 250}{4 \times 1.60} = 156.25 \text{ kPa}$$

$$156.25 \text{ kN/m}$$

$$80 \text{ kN/m}$$

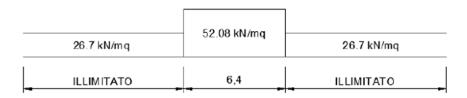

$$156.25 \text{ kN/m}$$

$$156.25 \text{ kN/m}$$

$$156.25 \text{ kN/m}$$

Considerando la distribuzione trasversale dei carichi su una larghezza di 3.0 m secondo quanto previsto da EN 1991 – 2:2003/AC:2010, si ricava il carico equivalente unitario agente alla quota della piattaforma ferroviaria:

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO	DELLA TE	RATTA FERRO	OVIARIA TERMOLI 75	I-LESINA	
RELAZIONI DI CALCOLO SCATOLARE	COMMESSA	LOTTO 02 D 78	CODIFICA CL	DOCUMENTO SL0200 001	REV.	FOGLIO 29 di 77



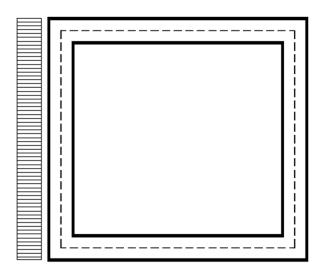
A tali carichi si deve applicare il coefficiente α relativo alle categorie S.T.I. come indicato nella tabella 11 di seguito riportata:

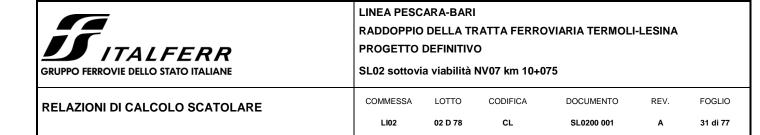
	Tabella 11 Fattore alfa (α) per la progettazione di strutture nuove		
Tipo di traffico	Valore minimo del fattore alfa (α)		
P1, P2, P3, P4	1,0		
P5	0,91		
P6	0,83		
P1520	Punto in sospeso		
P1600	1,1		
F1, F2, F3	1,0		
F4	0,91		
F1520	Punto in sospeso		
F1600	1,1		

Nel caso in esame, il coefficiente α è pari ad 1.0 perché le categorie di traffico sono P2-P4 per il traffico passeggeri ed F1 per il traffico merci per cui, alle opere si applicano i seguenti carichi equivalenti:

Ai fini delle verifiche del carico equivalente si considera, in tutte le relazioni di calcolo specifiche, a favore di sicurezza, il carico equivalente ai 4 assi da 250 kN pari a 66.13 kN/m² a vantaggio di sicurezza rispetto ai 52.08 kN/m² calcolati con riferimento alle STI.

7.3.5 Spinta del terreno indotta dai treni di carico

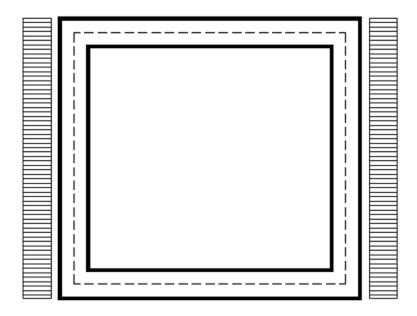

Per il rinterro si prevede un terreno avente angolo di attrito $\phi = 35^{\circ}$ ed un peso di volume $\gamma = 20$ kN/m³, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dello scatolare, utilizzando la formula Ko=1-sin ϕ ', per cui si ottiene un valore di $K_0 = 0.43$. La pressione del terreno sui piedritti ed indotta dai treni di carico viaggianti su due linee adiacenti verrà calcolata secondo la formula $P = q * K_0$


Si è considerata la sola spinta prodotta dal carico ripartito equivalente alle forze concentrate (vedi considerazioni di cui al paragrafo precedente)

$$q * K_0 = 28.20 \text{ kN/m}^2$$

La spinta del terreno viene analizzata in due diverse condizioni

a) Spinta sul piedritto sinistro



Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta superiore con valore pari a 19.74 kN ed inferiore con valore pari a 21.15 kN.

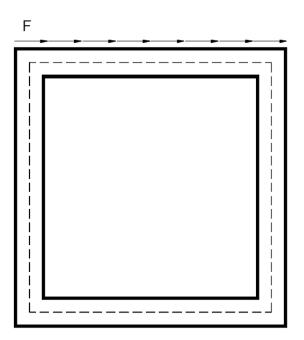
STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO SL02 sottovia viabilità NV07 km 10+075					
RELAZIONI DI CALCOLO SCATOLARE	COMMESSA	LOTTO 02 D 78	CODIFICA CL	DOCUMENTO SL0200 001	REV.	FOGLIO 32 di 77

b) Spinta su entrambi i piedritti

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritti e soletta superiore con valore pari a 19.74 kN ed inferiore con valore pari a 21.15 kN.

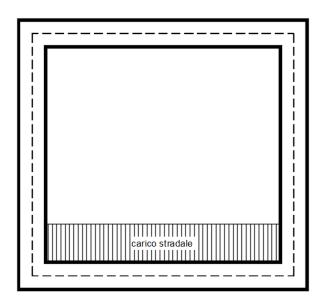
7.3.6 Avviamento e frenatura

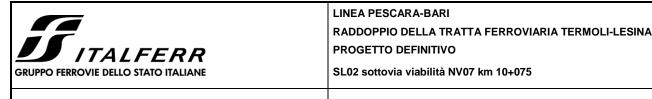
avviamento: $Q_{lak} = 33 \text{ [kN/m]} * L[m] < 1000 \text{ kN}$ per modelli di carico LM 71 e SW/0 e SW/2


frenatura: $Q_{lbk} = 20 \text{ [kN/m]} * L[m] < 6000 \text{ kN}$ per modelli di carico LM 71 e SW/0

 $Q_{lbk} = 35 \text{ [kN/m]} * L[m]$ per modelli di carico SW/2

La forza di frenatura, per metro lineare, applicata alla soletta di copertura si ritiene uniformemente agente sulla larghezza ottenuta per diffusione dei carichi verticali con inclinazione 1/4 nello spessore del ballast e 45° nello spessore della soletta e vale:


 $F = Q_{lak} / L_{trasv} = 10.0 \text{ kN/m}$


7.3.7 Carichi variabili sulla platea di fondazione

Il carico variabile sulla soletta inferiore si pone pari a $q = 20kN/m^2$.

7.3.8 Ritiro differenziale della soletta di copertura

Si considera uan variazione termica uniforme equivalente sulla soletta superiore come da calcolo seguente. Il calcolo viene condotto secondo le indicazioni dell'EUROCODICE 2-UNI EN1992-1-1 Novembre 2005 e DM 14-01-2008

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** 02 D 78 CL Α LI02 SL0200 001 34 di 77

Cls a t=0

RELAZIONI DI CALCOLO SCATOLARE

R_{ck}	=	40	N/mm ²	Resistenza a compressione cubica caratteristica
\mathbf{f}_{ck}	=	33.2	N/mm ²	Resistenza a compressione cilindrica caratteristica
\mathbf{f}_{cm}	=	41.2	N/mm^2	Resistenza a compressione cilindrica media
O.	=	1.0E-05		
E_{cm}	=	33643	N/mm ²	Modulo elastico secante medio

Tempo e ambiente

ts	=	2	gg	età del calcestruzzo in giorni, all'inizio del ritiro per essiccamento
t ₀	=	2	gg	stà del calcestruzzo in giorni al momento del carico
t	=	25550	gg	età del calcestruzzo in giorni
$h_0 \text{=} 2A_c/\mathbf{u}$	=	2800	mm	dimensione fittizia dell'elemento di cls
Ac	=	1400000	mm ²	sezione dell'elemento
u	=	1000	mm	perimetro a contatto con l'atmosfera
RH	=	75	%	umidità relativa percentuale

Coefficiente di viscosità φ (t,t0) e modulo elastico ECt a tempo "t"

$$\phi(t,t_0) = \varphi_0 \beta_c(t,t_0) = 1.982$$

$$\phi_0 = \phi RH \beta_c(f_{cm}) \beta_c(t_0) =$$
 127.48 coeff nominale di viscosità

$$\varphi_{RH} = 1 + \left[\frac{1 - RH/100}{0.1 \sqrt[5]{h_0}} \alpha_1 \right] \alpha_2 = 1.153 \text{ coeff che tiene conto dell'umidità}$$

$$\alpha_1 = \begin{cases} (35/f_{cm})^{0.7} & \textit{per } f_{cm} > 35MPa \\ 1 & \textit{per } f_{cm} \leq 35MPa \end{cases} = 0.892 \; \textit{coeff per la resistenza del cls}$$

$$\alpha_2 = \begin{cases} (35/f_{cm})^{0.2} & per \ f_{cm} > 35MPa \\ 1 & per \ f_{cm} \leq 35MPa \end{cases} = 0.968 \ coeff \ per \ la \ resistenza \ del \ cls$$

$$\beta_{\mathcal{C}}(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} = 2.617 \frac{\text{coeff che tiens conto della resistenza}}{\text{del cls}}$$

$$\beta_c(t_0) = \frac{1}{(0.1 + t_0^{0.20})} = 0.649 \frac{\text{coeff. per l'evoluzione della viscosità}}{\text{nel tempo}}$$

LINEA PESCARA-BARI

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

REV.

Α

FOGLIO

35 di 77

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

LI02	02 D 78	CL	SL0200 001
MMESSA	LOTTO	CODIFICA	DOCUMENTO

	(9	۰۱°	~ 0.5
$t_o = t_0$	$\left(\frac{1}{2+t_0^{1.2}}+1\right)$	١)	≥ 0.5 =

6.19 coeff. per la variabilità della viscosità nel tempo

α =

coeff per il tipo di cemento (-1 per classe S, 0 per classe N, 1 per classe R)

$$\beta_c(t,t_0) = \left[\frac{(t-t_0)}{(\beta_u + t - t_0)}\right]^{0.3} =$$

0.984 coeff per la variabilità della viscosità nel tempo

$$\beta_H = 1.5[1 + (0.012 \; RH)^{18}] \; h_0 + 250\alpha_3 \leq 1500\alpha_3 =$$

1382.5 coeff che tiene conto dell'umidità relativa

$$\alpha_3 = \begin{cases} (35/f_{cm})^{0.5} & per \ f_{cm} > 35MPa \\ 1 & per \ f_{cm} \leq 35MPa \end{cases} =$$

0.922 coeff per la resistenza del calcestruzzo

Il modulo elastico a tempo "t" è pari a:

$$E_{cm}(t,t_0) = \frac{E_{cm}}{1 + \varphi(t,t_0)} =$$

Deformazioni di ritiro

$$\varepsilon_s(t, t_0) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t) =$$

0.000295 deformazione di ritiro ε (t,t₀)

$$\varepsilon_{cd}(t) = \beta_{ds}(t, t_s) K_b \varepsilon_{cd,0} =$$

0.000237 deformazione al ritiro per essiccamento

$$\beta_{ds}(t, t_s) = \left[\frac{(t - t_s)}{(t - t_s) + 0.04 \sqrt{h_0^3}} \right] =$$

0.811705

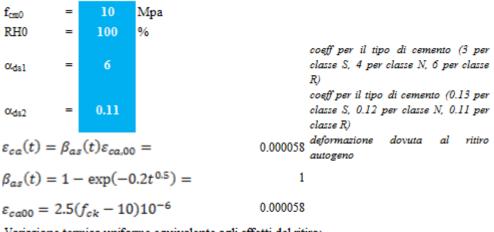
$$K_h =$$

0.7 parametro che dipende da h₀ secondo il prospetto seguente

Valori di k

ho	*
100	1,0
200	0,85
300	0,75
≥500	0,70

Valori di Kh intermedi a quelli del prospetto vengono calcolati tramite interpolazione lineare


$$\varepsilon_{cd,0} = 0.85 \left[(200 + 100 \; \alpha_{ds1}) \exp{(-\alpha_{ds2} \frac{f_{cm}}{f_{cm0}})} \right] 10^{-6} \beta_{RH} = 0.000416$$

deformazione di base

$$\beta_{RH} = 1.55 \left[1 - \left(\frac{RH}{RH0} \right)^3 \right] =$$

0.896094

Variazione termica uniforme equivalente agli effetti del ritiro:

$$\Delta T_{\text{ritiro}} = -\frac{\varepsilon_s(t, t_0)E_{\text{cm}}}{(1 + \phi(t, t_0))E_{\text{cm}}\alpha} = -9.88 \text{ °C}$$

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura

7.4 Azione sismica inerziale

Per il calcolo dell'azione sismica si utilizza il metodo dell' analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico *k*. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h * W$

Forza sismica verticale $F_v = k_v * W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni: $k_h = a_{max}/g$

$$k_v\!\!=\pm\,0.5\!*\!k_h$$

Con riferimento alla nuova classificazione sismica del territorio nazionale ai fini del calcolo dell'azione sismica secondo il DM 14/01/2008 viene assegnata all'opera una vita nominale $V_N \ge 75$ anni ed una III classe d'uso $C_u = 1.5$; segue un periodo di riferimento $V_R = V_N * C_u = 113$ anni

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a a_g = 0.224 g.

In assenza di analisi specifiche della risposta sismica locale l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = S_s * S_t * a_g$$

dove assumendo un terreno di tipo C ed in base al fattore di amplificazione del sito F_o si ottiene:

S_s=1.366 Coefficiente di amplificazione stratigrafica

 $S_T=1$ Coefficiente di amplificazione topografica

ne deriva che:

$$a_{max}$$
= 1.366 * 1 * 0.224 g = 0.306 g

$$k_h = a_{max}/g = 0.306$$

$$k_v = \pm 0.5 * k_h = 0.153$$

Sisma orizzontale

$$F_{\text{sis}} = \ a_{\text{max}} * \gamma * (H_{\text{tot}} + H_{\text{psup}} + H_{\text{Rsup}}) \qquad 66.19 \quad k\text{N/m} \qquad \text{(carico applicato sulla parete)}$$

$$F_{\text{inp}} = \ \alpha * S_p * \gamma * 1\text{m} \qquad = \quad 10.71 \quad k\text{N/m} \qquad \text{(inerzia piedritti)}$$

$$\text{Totale} = \quad 76.90 \quad k\text{N/m} \qquad \text{(piederitto sx)}$$

$$\text{Totale} = \quad 10.71 \quad k\text{N/m} \qquad \text{(piederitto dx)}$$

$$F_{\text{inr}} = \ \alpha * (H_p + H_r) * \gamma_r * 1\text{m} \qquad = \quad 4.41 \quad k\text{N/m} \qquad \text{(inerzia ballast + massetto)}$$

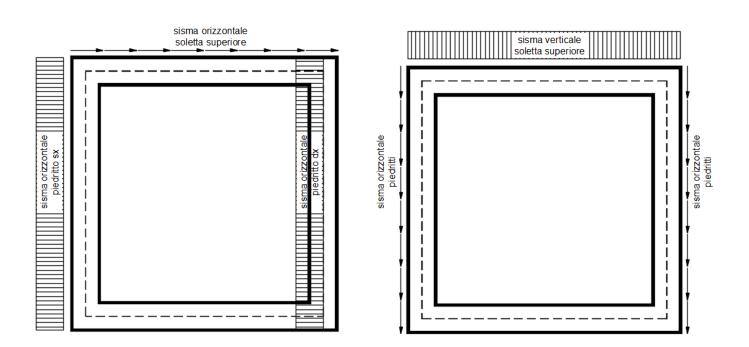
$$F_{\text{ins}} = \ \alpha * S_s * \gamma_{\text{cls}} * 1\text{m} \qquad = \quad 10.71 \quad k\text{N/m} \qquad \text{(inerzia soletta superiore)}$$

$$\text{Totale} = \quad 15.12 \quad k\text{N/m} \qquad \text{(soletta superiore)}$$

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta superiore con valore pari a 53.83 kN ed inferiore con valore pari a 57.67 kN. Si applicano delle forze concentrate nei nodi tra piedritto destro e soletta superiore con valore pari a 7.50 kN ed inferiore con valore pari a 8.03 kN.

Sisma verticale

$$\begin{split} F_{inp} = & \ 0.5 * \alpha * S_p * \gamma * 1m & = \ 5.35 & kN/m & \text{(inerzia piedritti)} \\ F_{inr} = & \ 0.5 * \alpha * (H_p + H_r) * \gamma_r * 1m & = \ 2.20 & kN/m & \text{(inerzia ballast + massetto)} \\ F_{ins} = & \ 0.5 * \alpha * S_s * \gamma_{cls} * 1m & = \ 5.35 & kN/m & \text{(inerzia soletta superiore)} \\ & & \text{Totale} = \ \hline \textbf{7.56} & kN/m & \text{(soletta superiore)} \end{split}$$



Per tenere in conto le carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 5.29 kN.

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: $G_1 + G_2 + \psi_{2j} Q_{kj}$

Dove nel caso specifico si assumerà per i carichi dovuti al transito dei convogli ferroviari $^{\prime}$ Jf2j = 0.2. Pertanto avremo che:

Massa treno $Q_k = 67 \text{ kN/m}$

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta superiore con valore pari a 19.74 kN ed inferiore con valore pari a 21.15 kN.

7.5 Spinta sismica terreno

Le spinte delle terre potranno essere determinate secondo la teoria di Wood. secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinato con la seguente espressione:

$$\Delta S_E = (a_{max}/g) * \gamma * H_{tot}^2 = 688.38 \text{ kN/m}$$

 $Tale\ risultante\ applicata\ ad\ un'altezza\ pari\ ad\ H_{tot}/2.sar\`{a}\ considerata\ agente\ su\ uno\ solo\ dei\ piedritti\ dell'opera.$

Nel modello di calcolo viene applicato il valore della forza sismica per unità di superficie agente su un piedritto pari a 66.19 kN/m^2

8 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \text{ x } E_Y \pm 0.3 \text{ x } E_Z$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

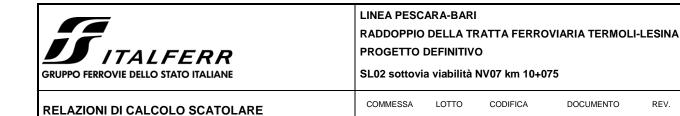
In particolare nel calcolo della struttura scatolare si è fatto riferimento alla combinazione A1 STR (Approccio 1 – Combinazione 1) per le verifiche strutturali ed A1 GEO (Approccio 1 – Combinazione 2) per le verifiche geotecniche.

Tabella 5.2.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 14/01/2008)

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γo	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γP	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) Aliquota di carico da traffico da considerare.
- (6) 1,30 per instabilità in strutture con precompressione esterna
- (7) 1,20 per effetti locali

Tabella 5.2.VI - Coefficienti di combinazione ψ delle azioni (da DM 14/01/2008)


Azioni		Ψο	ψ_1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80 ⁽²⁾	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

Nella combinazione sismica le azioni indotte dal traffico ferroviario sono combinate con un coefficiente $\psi_2 = 0.2$ (punto 3.2.4 del DM 14/01/2008) coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

Tabella 2 – Riepilogo condizioni di carico

Tipo Carico	Abbreviazione
Peso proprio	DEAD
Carichi permanenti	PERM
Falda	FALDA
Spinta terreno sinistra	STS
Spinta terrenno destra	STD
Carico Ferroviario Centrato	TRM
Carico Ferroviario Laterale	TRV
Sovraccarico accidentale sinistra	SAS
Sovraccarico accidentale destra	SAD
Traffico Stradale	TRAF
Ritiro	RIT
Variazione termica	ΔΤ

Avviamento e frenatura	AVV
Azione sismica orizzontale	E _H
Azione sismica verticale	E _V

LI02

02 D 78

CL

REV.

Α

SL0200 001

FOGLIO

43 di 77

Si riportano di seguito le combinazioni di carico ritenute più significative con i coefficienti di combinazione $\gamma \cdot \psi$. Essendo la struttura simmetrica, si adottano tipologie di combinazione asimmetriche in modo da massimizzare le sollecitazioni. Il dimensionamento delle armature e le verifiche strutturali verrano poi eseguite tenendo conto della simmetria e verificando le condizioni peggiori per ogni lato della struttura.

Si considerano, attraverso le combinazioni con carichi favorevoli/sfavorevoli, le spinte sbilanciate sui piedritti.

Tabella 3 - Combinazioni di carico

СОМВ	DEAD	STS	STD	RIT	ΔΤ	PERM	FALDA	TRM	TRV	SAS	SAD	TRAF	AW	E _H	E _V
n° 1 SLU-STR	1.35	1.35	1.35	1.35	1.20	1.50	-	-	-	-	-	-		-	-
n° 2 SLU-STR	1.35	1.50	1.00	1.35	1.20	1.50	-								
n° 3 SLU-STR	1.35	1.00	1.50	1.35	1.20	1.50									
n° 04 SLU-STR	1.35	1.35	1.35	1.35	1.20	1.50	1.35	-	-	-	-	-		-	-
n° 05 SLU-STR	1.35	1.50	1.00	1.35	1.20	1.50	1.35								
n° 06 SLU-STR	1.35	1.00	1.50	1.35	1.20	1.50	1.35								
n° 07 SLU-STR	1.35	1.35	1.35	1.35	0.72	1.50	1.35	1.45	-	1.45	1.45	-	1.45	-	-
n° 08 SLU-STR	1.35	1.50	1.00	1.35	0.72	1.50	1.35	1.45	-	1.45	1.45		1.45		
n° 09 SLU-STR	1.35	1.00	1.50	1.35	0.72	1.50	1.35	1.45	-	1.45	1.45		1.45		
n° 10 SLU-STR	1.35	1.35	1.35	1.35	0.72	1.50	1.35	-	1.45	1.45	1.45	1.01	1.45	-	-
n° 11 SLU-STR	1.35	1.50	1.00	1.35	0.72	1.50	1.35	-	1.45	1.45	1.45	1.01	1.45		
n° 12 SLU-STR	1.35	1.00	1.50	1.35	0.72	1.50	1.35	-	1.45	1.45	1.45	1.01	1.45		
n° 13 SLU-STR	1.35	1.75	1.35	1.35	0.72	1.50	1.35	1.45	-	1.45	-	1.01	1.45	-	-
n° 14 SLU-STR	1.35	1.50	1.00	1.35	0.72	1.50	1.35	1.45	-	1.45	-	1.01	1.45	-	-
n° 15 SLU-STR	1.35	1.00	1.50	1.35	0.72	1.50	1.35	1.45	-	1.45	-	1.01	1.45	-	-
n° 16 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20	-	0.20	-	-	0.20	1.00	0.30
n° 17 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20	-	0.20	-	-	0.20	1.00	-0.30
n° 18 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	-	0.20	-	0.20	-	-	0.20	1.00	0.30
n° 19 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	-	0.20	-	0.20	-	-	0.20	1.00	-0.30

LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

COMMESSA LOTTO CODIFICA LI02 02 D 78 CL

DOCUMENTO REV. FOGLIO Α

SL0200 001

44 di 77

СОМВ	DEAD	STS	STD	RIT	ΔΤ	PERM	FALDA	TRM	TRV	SAS	SAD	TRAF	AVV	E _H	E _V
GEO	1.00	1.30	1.00	1.00	0.60	1.30	1.00	1.25	-	1.25	-	-	1.25	-	-
GEO - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20		0.20			0.20	1.00	0.30
SLE - Q.P.	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20	-	0.20	-	-	0.20	-	-
SLE - Frequente	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.80	-	0.80	-	-	0.80	-	-
SLE - Rara	1.00	1.00	1.00	1.00	0.60	1.00	1.00	1.00	-	1.00	1.00	-	1.00	-	-
SLE - Rara	1.00	0.8	1.00	1.00	0.60	1.00	1.00	1.00	-	1.00	1.00	-	1.00	-	-

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO SL02 sottovia viabilità NV07 km 10+075						
RELAZIONI DI CALCOLO SCATOLARE	COMMESSA	LOTTO 02 D 78	CODIFICA CL	DOCUMENTO SL0200 001	REV.	FOGLIO 45 di 77	

9 DIAGRAMMI DELLE SOLLECITAZIONI

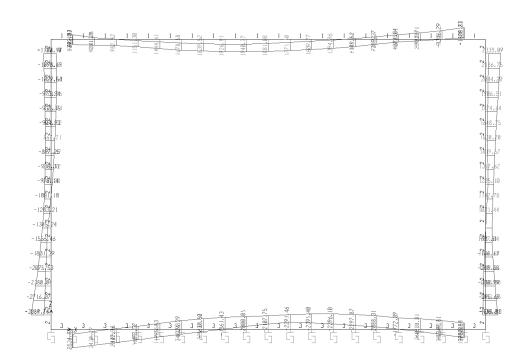


Fig. 4 – Inviluppo momenti flettenti SLU-SLV

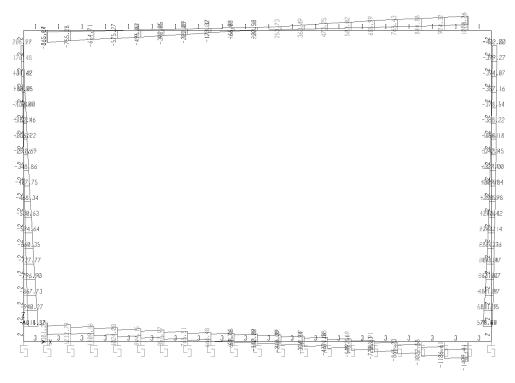


Fig. 5 – Inviluppo sforzi taglianti SLU-SLV

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO SL02 sottovia viabilità NV07 km 10+075					
RELAZIONI DI CALCOLO SCATOLARE	COMMESSA	LOTTO 02 D 78	CODIFICA	DOCUMENTO SL0200 001	REV.	FOGLIO

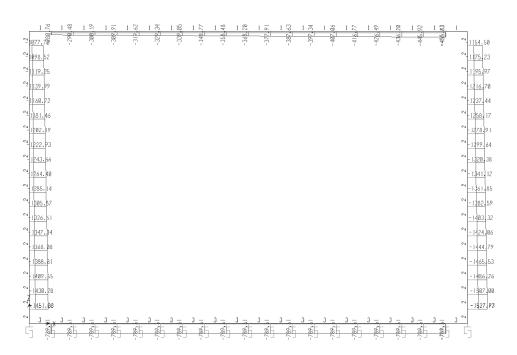


Fig. 6 – Inviluppo azioni assiali SLU-SLV

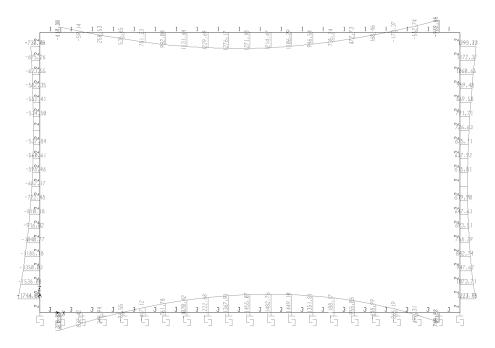


Fig. 7 – Inviluppo momenti flettenti SLE rara

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO SL02 sottovia viabilità NV07 km 10+075							
RELAZIONI DI CALCOLO SCATOLARE	COMMESSA	LOTTO 02 D 78	CODIFICA CL	DOCUMENTO SL0200 001	REV.	FOGLIO 47 di 77		

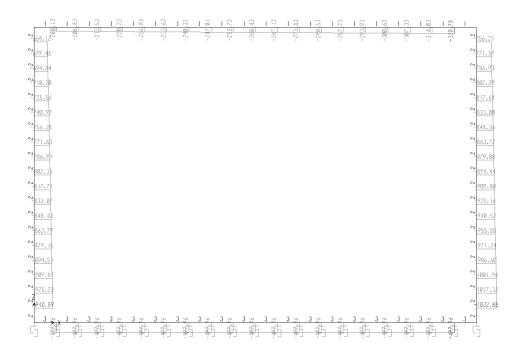


Fig. 8 – Inviluppo azioni assiali SLE rara

10 VERIFICA DELLE SEZIONI IN C.A.

Nelle tabelle seguenti sono indicati i valori delle sollecitazioni massime e i valori delle sollecitazioni per la verifica a fessurazione risultanti dalle combinazioni di cui al capitolo precedente.

Per le verifiche in corrispondenza dei nodi si considerano le sollecitazioni a filo elemento rigido.

			SL	U STR-SISMA		
Elemento strutturale	Sezione	ID Asta	C.C. M _{max}	N (kN)	M _{max} (kNm)	T _{max} (kN)
soletta	nodo	1	SLU16-SIS	-22.41	2834.66	1409.41
inferiore	campata	1	SLU14-STR	-186.97	-2396.10	-
soletta	nodo	3	SLU13-STR	-387.23	-1805.81	1004.36
superiore	campata	3	SLU14-STR	-238.27	1940.77	-
	nodo soletta inf	2	SLU14-STR	-1240.04	-3089.14	1015.37
niadritti	nodo soletta sup	2	SLU17-SIS	-212.69	793.61	727.77
piedritti	nodo soletta inf	4	SLU17-SIS	-877.75	-438.61	579.01
	nodo soletta sup	· ·	SLU14-STR	-1154.26	2335.07	402.80

			SLE RAR	1	s	LE FREQU	ENTE	SLE QUASI PERMANENTE			
Elemento strutturale	Sezione	ID Asta	N (kN)	M _{max} (kNm)	ID Asta	N (kN)	M _{max} (kNm)	ID Asta	N (kN)	M _{max} (kNm)	
soletta	nodo	1	-497.96	1375.52	1	-307.51	1538.34	1	-398.74	946.01	
inferiore	campata		-497.96	-1482.76	•	-307.51	-1458.50	1	-398.74	-984.95	
soletta	nodo	- 3	-320.78	-972.96	3	-219.28	-986.66	3	-132.04	-447.06	
superiore	campata		-253.73	1276.17		-165.64	1197.45		-119.97	758.74	
	nodo soletta inf	2	-940.77	-1746.58	2	-847.07	-1845.89	2	-683.17	-1207.08	
	nodo soletta sup		-756.28	-529.39	2	-631.86	-389.75	2	-498.68	-313.64	
piedritti	nodo soletta inf	4	-1017.32	1073.71	,	-967.71	813.66	4	-701.68	846.40	
	nodo soletta sup		-756.03	1295.17	4	-706.42	1314.67		-717.21	969.46	

10.1 Verifica soletta superiore

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 49 di 77

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di calcolo fcd:	188.00	daN/cm ²

Resis. compr. ridotta fcd': 94.00 daN/cm² 0.0020 Def.unit. max resistenza ec2: Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 336430 daN/cm² Resis. media a trazione fctm: 31.00 daN/cm² Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 199.20

Sc limite S.L.E. comb. Rare: 199.20 daN/cm²
Sc limite S.L.E. comb. Frequenti: 199.20 daN/cm²
Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm
Sc limite S.L.E. comb. Q.Permanenti: 149.40 daN/cm²
Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.300 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:4500.0daN/cm²Resist. caratt. rottura ftk:4500.0daN/cm²Resist. snerv. di calcolo fyd:3913.0daN/cm²Resist. ultima di calcolo ftd:3913.0daN/cm²

Deform. ultima di calcolo Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

0.50

Sf limite S.L.E. Comb. Rare: 3600.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	140.0
3	50.0	140.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-40.9	9.1	26
2	-40.9	130.9	26
3	40.9	130.9	26
4	40.9	9.1	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	3	26

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
con verso positivo se tale da comprimere il lembo sup. della sez.

Vy Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate

 N°Comb.
 N
 Mx
 Vy

 1
 0
 180581
 100436

 2
 0
 194077
 0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0
 97296
 0

 2
 0
 127617
 0

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0
 98666 (123533)
 0 (0)

 2
 0
 119745 (123533)
 0 (0)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0
 44706 (123533)
 0 (0)

 2
 0
 75874 (123533)
 0 (0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 51 di 77

N Sn Sforzo normale allo snervamento [daN] nel baricentro sezione cls. (positivo se di compressione) Mx Sn Momento flettente di snervamento [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N Ult, Mx Ult, My Ult) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N Sn	Mx Sn	N Ult	Mx Ult	Mis.Sic.	As Tesa
1	S	1	248942	0	260620	1.443	53.1(23.4)
2	S	1	248942	0	260620	1.343	53.1(23.4)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max
Deform. unit. massima del conglomerato a compressione
ec 3/7
Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace

Xc max
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min
Deform. unit. minima nell'acciaio (negativa se di trazione)

Xs min
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Cor	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.01510	-50.0	140.0	0.00068	-40.9	130.9	-0.03708	-40.9	9.1
2	0.00350	-0.01510	-50.0	140.0	0.00068	-40.9	130.9	-0.03708	-40.9	9.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi) C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 N°Comb
 a
 b
 c
 x/d
 C.Rid.

 1
 0.00000000
 0.000310037
 -0.039905139
 0.086
 0.700

 2
 0.00000000
 0.000310037
 -0.039905139
 0.086
 0.700

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Passo staffe: 6.6 cm [Passo massimo di normativa = 33.0 cm]

 Ver
 S = comb. verificata a taglio / N = comb. non verificata

 Vsdu
 Taglio di progetto [daN] = Vy ortogonale all'asse neutro

 Vcd
 Taglio resistente ultimo [daN] lato conglomerato compresso

Vwd Taglio resistente [daN] assorbito dalle staffe

Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.

Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato

Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Vsdu	Vcd	Vwd	Dmed	bw	Teta	Acw	Ast	A.Eff
1	S	100436	381867	175545	130.9	100.0	21.80°	1.000	8.7	15.2(0.0)
2	S	0	553707	70218	130.9	100.0	45.00°	1.000	0.0	15.2(0.0)

LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 52 di 77

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Xc max, Yc max
Sf min
Xs min, Ys min
Ac eff.
As eff.
D barre

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure
Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
	-							2702 2702			

Sc max =51.0 daN/cm² Apert.fessure = 0.192 mm

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	39.4	-50.0	140.0	-1558	13.6	9.1	2702	53.1	9.1	1.00
2	S	47.8	-50.0	140.0	-1890	-13.6	9.1	2702	53.1	9.1	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

S1 Massima tensione [daN/cm²] di trazione del calcestruzzo, valutata in sezione non fessurata
 S2 Minima di trazione [daN/cm²] del cls. (in sezione non fessurata) nella fibra più interna dell'area Ac eff

k2 = 0.4 per barre ad aderenza migliorata

k3 = (S1 + S2)/(2*S1) con riferimento all'area tesa Ac eff

Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff
Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Psi = 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96]

e sm Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi

srm Distanza media tra le fessure [mm]

wk Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi

MX fess. Componente momento di prima fessurazione intorno all'asse X [daNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [daNm]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-24.8	-14.9	0.200	26	78	-0.568	0.00031 (0.00031)	280	0.148 (0.40)	123533	0
2	S	-30.0	-18.1	0.200	26	78	-0.064	0.00038 (0.00038)	280	0.180 (0.40)	123533	0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	17.9	-50.0	140.0	-706	4.5	9.1	2702	53.1	9.1	0.50
2	S	30.3	-50.0	140 0	-1198	31.8	9 1	2702	53.1	9 1	0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-11.2	-6.7	0.200	26	78	-2.818 0.00014	(0.00014)	280	0.067 (0.30)	123533	0

2

S

LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

-19.0

COMMESSA LOTTO CODIFICA DOCUMENTO

LI02 02 D 78

78 -0.325 0.00024 (0.00024)

CL

280 0.114 (0.30)

SL0200 001

123533

FOGLIO **53 di 77**

REV.

Α

0

Nome sezione: SUP1 Comb. n. 1 (S.L.U.)
Conf nets minime barre lone: 78 cm. Conff. nets staffe 70 cm

-11.5

0.200

26

Si adottano spille Ø12/40x20

10.2 Verifica soletta inferiore

DATI GENERALI SEZIONE IN C.A.

NOME SEZIONE: fond1

(Percorso File: Z:\COMMESSE\0128 Termoli Lesina\LAVORO\Provvisori\04_Verifiche\Strutture\SL02\fond1.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40

Resis. compr. di calcolo fcd: 188.00 daN/cm² Resis. compr. ridotta fcd': 94.00 daN/cm²

Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 336430 daN/cm²

Resis. media a trazione fctm: 31.00 daN/cm²

Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Rare: 199.20 daN/cm²
Sc limite S.L.E. comb. Frequenti: 199.20 daN/cm²
Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm
Sc limite S.L.E. comb. Q.Permanenti: 149.40 daN/cm²
Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.300 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. caratt. rottura ftk: 4500.0 daN/cm²

LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LI02	02 D 78	CL	SL0200 001	Α	54 di 77

Resist. snerv. di calcolo fyd: 3913.0 daN/cm² Resist. ultima di calcolo ftd: 3913.0 daN/cm² Deform. ultima di calcolo Epu: 0.068 Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 3600.0 daN/cm² Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del De Classe Congle	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	150.0
3	50.0	150.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.0	9.0	24
2	-41.0	141.0	24
3	41.0	141.0	24
4	41.0	9.0	24
5	-41.0	13.4	24
6	41.0	13.4	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	24
2	2	3	3	24
3	5	6	3	24

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
con verso positivo se tale da comprimere il lembo sup. della sez.
Vy Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate

N°Comb.	N	Mx	Vy
1	0	283466	140941
2	0	239610	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA **PROGETTO DEFINITIVO**

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** CL Α LI02 02 D 78 SL0200 001 55 di 77

N	Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
IN	SIDIZU HUHHAIE IH UAN ADDIICALU HEI DAHCEHLIU (+ SE UI CUHDIESSIDHE)

Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0	137552	0
2	0	148276	0

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Ν

Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0	153834 (144525)	0 (0)
2	0	145850 (144525)	0 (0)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1 2	0	94601 (144525) 98495 (144525)	0 (0) 0 (0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sn Sforzo normale allo snervamento [daN] nel baricentro sezione cls. (positivo se di compressione) Mx Sn Momento flettente di snervamento [daNm] intorno all'asse X di riferimento delle coordinate

Misura sicurezza = rapporto vettoriale tra (N Ult,Mx Ult,My Ult) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000 Mis.Sic.

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N Sn	Mx Sn	N Ult	Mx Ult	Mis.Sic.	As Tesa
1	S	-3	331469	0	353451	1.247	67.9(25.3)
2	S	-3	331469	0	353451	1.475	67.9(25.3)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 56 di 77

es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.01278	-50.0	150.0	0.00122	-41.0	141.0	-0.03221	-41.0	9.0
2	0.00350	-0.01278	-50.0	150.0	0.00122	-41.0	141 0	-0 03221	-41 0	9.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi) C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000253240	-0.034485983	0.098	0.700
2	0.000000000	0.000253240	-0.034485983	0.098	0.700

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Passo staffe: 6.6 cm [Passo massimo di normativa = 33.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata
Vsdu Taglio di progetto [daN] = Vy ortogonale all'asse neutro
Vcd Taglio resistente ultimo [daN] lato conglomerato compresso
Vivid

Vvd Taglio resistente utilino (dany lato congiorne ato compresso Vvd Taglio resistente [daN] assorbito dalle staffe
Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.

Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Teta Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato

Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.
L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Vsdu	Vcd	Vwd	Dmed	bw	Teta	Acw	Ast	A.Eff
1	S	140941	411331	189089	141.0	100.0	21.80°	1.000	11.4	15.2(0.0)
2	S	0	596430	75636	141.0	100.0	45.00°	1.000	0.0	15.2(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Xc max, Yc max
Sf min
Xs min, Ys min
Ac eff.
As eff.
D barre

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure
Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	46.1	-50.0 150.0	-1631	13.7	9.0	2600	67.9	8.1	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LI02	02 D 78	CL	SL0200 001	Α	57 di 77

My fess

0

				Scm	ax =49.7	daN/cm²		Apert fe	ssure = 0.	148 mm	-
2	S	49.7	-50.0	150.0	-1758	13.7	9.0	2600	67.9	8.1	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max \	rc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	51.6	-50.0	150.0	-1824	4.6	9.0	2600	67.9	6.3	1.00
2	S	48.9	-50.0	150.0	-1729	4.6	9.0	2600	67.9	6.3	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Ver. S1 S2 k2 k3 Ø Cf Psi e sm srm wk MX f		Esito della vi Massima te Minima di tr = 0.4 per b = (S1 + S2) Diametro [I Copriferro [I = 1-Beta12' Deformazio Distanza mi Valore cara	verifica nsione [daN/ razione [daN/ arre ad adere /(2*S1) con nm] medio de mm] netto ca *(Ssr/Ss)² = 1 ne unitaria m edia tra le fes	cm²] di trazio cm²] del cls. i enza migliora riferimento al elle barre tese cloolato con ri -Beta12*(fctr edia tra le fe: esure [mm] n] dell'apertur	ne del cal (in sezionata l'area tesa e compres ferimento m/S2)² = 1 ssure [4.3 ra fessure	cestruzz e non fer a Ac eff ee nell'arr alla barr -Beta12 .1.7.1.3 = 1.7 * 6	o, valuta ssurata) e ea effica a più tes *(Mfess/I DM96]. II	a d)² [B.6.6 DM96] valore limite = 0.4*Ss/E n . Valore limite tra parei	ata l'area Ad s è tra p	c eff	fctm	
MY f	ess.	Component	e momento d	li prima fessu	ırazione ir	ntorno al	l'asse Y [daNm]				
Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	ı
1	S	-33.0	-21.3	0.206	24	78	0.117	0.00036 (0.00036)	244	0.151 (0.40)	144525	
2	S	-31.3	-20.2	0.206	24	78	0.018	0.00035 (0.00035)	244	0.144 (0.40)	144525	

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	31.7	-50.0	150.0	-1122	31.9	9.0	2600	67.9	9.1	0.50
2	S	33.0	-50.0	150.0	-1168	13.7	9.0	2600	67.9	8.1	0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-20.3	-13.1	0.206	24	78	-0.167	0.00022 (0.00022)	250	0.095 (0.30)	144525	0
2	S	-21.1	-13.6	0.206	24	78	-0.077	0.00023 (0.00023)	248	0.098 (0.30)	144525	0

LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

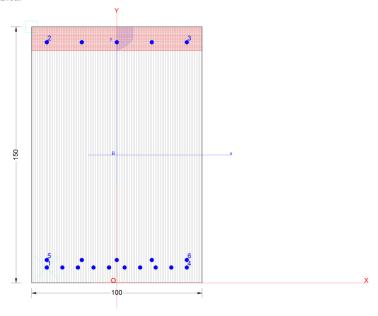
RELAZIONI DI CALCOLO SCATOLARE

COMMESSA LOTTO CODIFICA DOCUMENTO

LI02 02 D 78

CL

SL0200 001


REV.

Α

58 di 77

FOGLIO

Nome sezione: fond1 Comb. n. 1 (S.L.U.)

Si adottano spille Ø12/40x20

10.3 Verifica piedritti

DATI GENERALI SEZIONE IN C.A.

NOME SEZIONE: PIED1

(Percorso File: Z:\COMMESSE\0128 Termoli Lesina\LAVORO\Provvisori\04_Verifiche\Strutture\SL02\PIED1.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di calcolo fcd:	188.00	daN/cm ²
	Resis. compr. ridotta fcd':	94.00	daN/cm ²
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	336430	daN/cm ²
	Resis. media a trazione fctm:	31.00	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	199.20	daN/cm ²
	Sc limite S.L.E. comb. Frequenti:	199.20	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Frequer	nti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	149.40	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Q.Perm	anenti: 0.300	mm

LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 02 D 78 CL Α LI02 SL0200 001 59 di 77

ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm²
	Resist. caratt. rottura ftk:	4500.0	daN/cm ²
	Resist. snerv. di calcolo fyd:	3913.0	daN/cm ²
	Resist. ultima di calcolo ftd:	3913.0	daN/cm ²
	Deform. ultima di calcolo Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	3600.0	daN/cm ²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	140.0
3	50.0	140.0
4	50.0	0.0

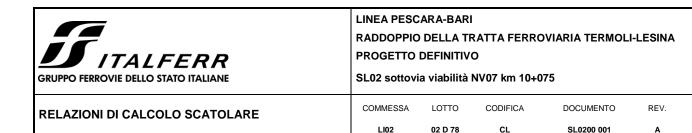
DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.0	9.0	26
2	-41.0	131.0	26
3	41.0	131.0	26
4	41.0	9.0	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre


N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	3	26

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
	con verso positivo se tale da comprimere il lembo sup. della sez.

Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate Vy

N°Comb.	N	Mx	Vy
1	124004	308914	101537
2	21269	79361	72777
3	87775	43861	57901
4	115426	233507	40280

FOGLIO

60 di 77

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	My
1	94077	174658	0
2	75628	52939	0
3	101732	107371	0
4	75603	129517	0

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	84707	184589 (139362)	0 (0)
2	63186	38975 (205832)	0 (0)
3	96771	81366 (174846)	0 (0)
4	70642	131467 (142467)	0 (0)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	68317	120708 (143635)	0 (0)
2	49868	31364 (203229)	0 (0)
3	70168	84640 (155336)	0 (0)
4	71721	96946 (151160)	0 (0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sn Sforzo normale allo snervamento [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Sn Momento flettente di snervamento [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N Ult,Mx Ult,My Ult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

As Tesa	Mis.Sic.	Mx Ult	N Ult	Mx Sn	N Sn	b Ver	N°Comb
	1.082	334598	124016	316101	123977	S	1
	3.436	273761	21288	261028	21272	S	2
	6.893	313461	87776	297080	87779	S	3
	1.407	329631	115442	311656	115450	S	4

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 61 di 77

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione
Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00937	-50.0	140.0	0.00157	-41.0	131.0	-0.02459	-41.0	9.0
2	0.00350	-0.01401	-50.0	140.0	0.00087	-41.0	131.0	-0.03472	-41.0	9.0
3	0.00350	-0.01079	-50.0	140.0	0.00136	-41.0	131.0	-0.02771	-41.0	9.0
4	0.00350	-0.00969	-50.0	140.0	0.00152	-41.0	131.0	-0.02529	-41.0	9.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid.	Coeff, di riduz, momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000214420	-0.026518818		
2	0.000000000	0.000291760	-0.037346341		
3	0.000000000	0.000238244	-0.029854101		
4	0.000000000	0.000219784	-0.027269809		

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Passo staffe:	11.3 cm	[Passo massimo di normativa = 25.0 cm]
---------------	---------	--

Ver	S = comb. verificata a taglio / N = comb. non verificata
Vsdu	Taglio di progetto [daN] = Vy ortogonale all'asse neutro
Vcd	Taglio resistente ultimo [daN] lato conglomerato compresso
Vwd	Taglio resistente [daN] assorbito dalle staffe
Dmed	Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.
	Vengono prese nella media le strisce con almeno un estremo compresso.
	I pesi della media sono costituiti dalle stesse lunghezze delle strisce.
bw	Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
	E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.
Teta	Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato
Acw	Coefficiente maggiorativo della resistenza a taglio per compressione
Ast	Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff	Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
	Tra parentesi è indicata la quota dell'area relativa alle sole legature.
	L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proietta-
	ta sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Vsdu	Vcd	Vwd	Dmed	bw	Teta	Acw	Ast	A.Eff
1	S	101537	400164	102609	131.0	100.0	21.80°	1.047	8.8	8.9(0.0)
2	S	72777	385247	102609	131.0	100.0	21.80°	1.008	6.3	8.9(0.0)
3	S	57901	394903	102609	131.0	100.0	21.80°	1.033	5.0	8.9(0.0)
4	S	40280	398918	102609	131.0	100.0	21.80°	1.044	3.5	8.9(0.0)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 L102
 02 D 78
 CL
 SL0200 001
 A
 62 di 77

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Xc max, Yc max
Sf min
Xs min, Ys min
Ac eff.
As eff.
D barre

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure
Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	74.6	-50.0	140.0	-1993	-31.9	9.0	2684	53.1	9.1	1.00
2	S	23.3	-50.0	140.0	-294	13.7	9.0	2684	53.1	9.1	1.00
3	S	46.9	-50.0	140.0	-908	-22.8	9.0	2684	53.1	9.1	1.00
4	S	55.5	-50.0	140.0	-1433	-13.7	9.0	2684	53.1	9.1	1.00

Sc max =74.6 daN/cm² Apert.fessure = 0.185 mm

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	78.3	-50.0	140.0	-2220	31.9	9.0	2684	53.1	9.1	1.00
2	S	17.2	-50.0	140.0	-179	-31.9	9.0	2684	53.1	9.1	1.00
3	S	35.8	-50.0	140.0	-562	-41.0	9.0	2684	53.1	9.1	1.00
4	S	56.2	-50.0	140.0	-1501	-22.8	9.0	2684	53.1	9.1	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

S1 Massima tensione [daN/cm²] di trazione del calcestruzzo, valutata in sezione non fessurata

S2 Minima di trazione [daN/cm²] del cls. (in sezione non fessurata) nella fibra più interna dell'area Ac eff

k2 = 0.4 per barre ad aderenza migliorata

k3 = (S1 + S2)/(2*S1) con riferimento all'area tesa Ac eff

Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff
Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Psi = $1-\text{Beta}12^*(\text{Ssr/Ss})^2 = 1-\text{Beta}12^*(\text{fctm/S2})^2 = 1-\text{Beta}12^*(\text{Mfess/M})^2$ [B.6.6 DM96]

e sm Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi

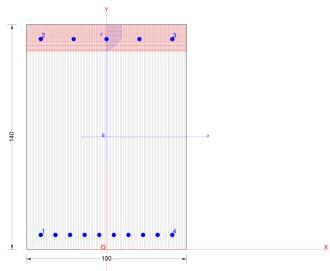
srm Distanza media tra le fessure [mm]

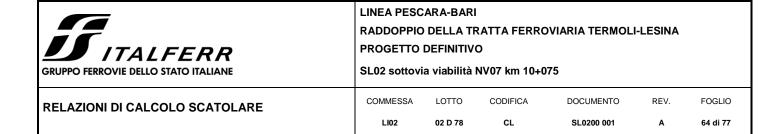
wk Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi

MX fess. Componente momento di prima fessurazione intorno all'asse X [daNm]
MY fess. Componente momento di prima fessurazione intorno all'asse Y [daNm]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-41.1	-22.8	0.194	26	77	0.430	0.00048 (0.00044)	274	0.223 (0.40)	139362	0
2	S	-5.9	-1.9	0.166	26	77	-26.890	0.00004 (0.00004)	260	0.016 (0.40)	205832	0
3	S	-14.4	-6.3	0.180	26	77	-3.618	0.00011 (0.00011)	267	0.051 (0.40)	174846	0
4	S	-28.6	-15.6	0.193	26	77	-0.174	0.00030 (0.00030)	274	0.140 (0.40)	142467	0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE


N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	51.7	-50.0	140.0	-1352	-41.0	9.0	2684	53.1	9.1	0.50
2	S	13.9	-50.0	140.0	-149	-13.7	9.0	2684	53.1	9.1	0.50
3	S	36.8	-50.0	140.0	-785	4.6	9.0	2684	53.1	9.1	0.50
4	S	42.0	-50.0	140.0	-961	-41.0	9.0	2684	53.1	9.1	0.50


COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-26.1	-14.1	0.193	26	77	0.292	0.00027 (0.00027)	274	0.126 (0.30)	143635	0
2	S	-4.8	-1.6	0.168	26	77	-19.993	0.00003 (0.00003)	260	0.013 (0.30)	203229	0
3	S	-16.9	-8.5	0.188	26	77	-0.684	0.00016 (0.00016)	271	0.072 (0.30)	155336	0
4	S	-19.9	-10.3	0.190	26	77	-0.216	0.00019 (0.00019)	272	0.089 (0.30)	151160	0

Nome sezione: PIED1 Comb. n. 1 (S.L.U.)
Coprif. netto minimo barre long.: 7.7 cm Coprif. netto staffe: 6.9 cm

Si adottano spille $\emptyset 10/40x20$

11 VERIFICA DI DEFORMABILITA'

Il confort dei passeggeri è controllato limitando i valori della freccia massima verticale, in funzione della luce e del numero di campate consecutive.

Nel seguito l'inflessione si calcolerà in asse binario, considerando il treno di carico LM 71 con il relativo incremento dinamico.

In base a quanto indicato in tabella 1.8.3.2.2-2 i valori limite del rapporto luce/freccia (L/δ) nel nostro caso è 1000, ulteriormente moltiplicato per un coefficiente 0,7 in quanto trattasi di impalcato a singola campata.

$$f_{LIM} = L/(1000*0.7) = 1340/(1000*0.7) = 1.91 \text{ cm}$$

La freccia massima ammessa risulta essere quindi 1.91 cm.

La freccia massima risulta pari a (3.98 - 2.87) = 1.11 cm < 1.91 cm.

LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 65 di 77

12 TABULATO DI CALCOLO

RELAZIONI DI CALCOLO SCATOLARE

Table: Element Forces - Frames

1 0.66492 SLE-QP Combination -398.743 664.386 946.00 1 0.67000 SLE-QP Combination -398.743 664.573 942.63 1 0.67000 SLE-QP Combination -398.743 547.827 942.63 1 1.34000 SLE-QP Combination -398.743 598.066 559.14 1 1.34000 SLE-QP Combination -398.743 481.798 559.14 1 2.01000 SLE-QP Combination -398.743 533.237 219.10 1 2.01000 SLE-QP Combination -398.743 417.663 219.10 1 2.08000 SLE-QP Combination -398.743 469.102 -77.96 1 2.68000 SLE-QP Combination -398.743 354.294 -77.96 1 3.35000 SLE-QP Combination -398.743 405.733 -332.57 1 3.35000 SLE-QP Combination -398.743 405.733 -332.57 1 4.02000 SLE-QP Combination -398.743 291.640 -332.57 1 4.02000 SLE-QP Combination -398.743 229.541 -545.20 1 4.69000 SLE-QP Combination -398.743 229.541 -545.20 1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 5.36000 SLE-QP Combination -398.743 219.189 -845.88 1 5.36000 SLE-QP Combination -398.743 219.189 -845.88	19
1 0.67000 SLE-QP Combination -398.743 664.573 942.63 1 0.67000 SLE-QP Combination -398.743 547.827 942.63 1 1.34000 SLE-QP Combination -398.743 598.066 559.14 1 1.34000 SLE-QP Combination -398.743 481.798 559.14 1 2.01000 SLE-QP Combination -398.743 533.237 219.10 1 2.01000 SLE-QP Combination -398.743 417.663 219.10 1 2.68000 SLE-QP Combination -398.743 469.102 -77.96 1 2.68000 SLE-QP Combination -398.743 405.733 -332.57 1 3.35000 SLE-QP Combination -398.743 405.733 -332.57 1 4.02000 SLE-QP Combination -398.743 291.640 -332.57 1 4.02000 SLE-QP Combination -398.743 291.640 -332.57 1 4.02000 SLE-QP Combination -398.743 291.640 -322.57 1 4.02000 SLE-QP Combination	19
1 0.67000 SLE-QP Combination -398.743 547.827 942.63 1 1.34000 SLE-QP Combination -398.743 598.066 559.14 1 1.34000 SLE-QP Combination -398.743 481.798 559.14 1 2.01000 SLE-QP Combination -398.743 533.237 219.10 1 2.01000 SLE-QP Combination -398.743 417.663 219.10 1 2.68000 SLE-QP Combination -398.743 469.102 -77.96 1 2.68000 SLE-QP Combination -398.743 354.294 -77.96 1 3.35000 SLE-QP Combination -398.743 405.733 -332.57 1 3.35000 SLE-QP Combination -398.743 291.640 -332.57 1 4.02000 SLE-QP Combination -398.743 343.079 -545.20 1 4.02000 SLE-QP Combination -398.743 229.541 -545.20 1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 4.69000 SLE-QP Combination	
1 1.34000 SLE-QP Combination -398.743 598.066 559.14 1 1.34000 SLE-QP Combination -398.743 481.798 559.14 1 2.01000 SLE-QP Combination -398.743 533.237 219.10 1 2.01000 SLE-QP Combination -398.743 417.663 219.10 1 2.68000 SLE-QP Combination -398.743 469.102 -77.96 1 2.68000 SLE-QP Combination -398.743 354.294 -77.96 1 3.35000 SLE-QP Combination -398.743 405.733 -332.57 1 3.35000 SLE-QP Combination -398.743 291.640 -332.57 1 4.02000 SLE-QP Combination -398.743 343.079 -545.20 1 4.02000 SLE-QP Combination -398.743 229.541 -545.20 1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 4.69000 SLE-QP Combination -398.743 219.189 -845.85 1 5.36000 SLE-QP Combination	19
1 1.34000 SLE-QP Combination -398.743 481.798 559.14 1 2.01000 SLE-QP Combination -398.743 533.237 219.10 1 2.01000 SLE-QP Combination -398.743 417.663 219.10 1 2.68000 SLE-QP Combination -398.743 469.102 -77.96 1 2.68000 SLE-QP Combination -398.743 354.294 -77.96 1 3.35000 SLE-QP Combination -398.743 405.733 -332.57 1 3.35000 SLE-QP Combination -398.743 291.640 -332.57 1 4.02000 SLE-QP Combination -398.743 343.079 -545.20 1 4.02000 SLE-QP Combination -398.743 229.541 -545.20 1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 4.69000 SLE-QP Combination -398.743 167.750 -716.22 1 5.36000 SLE-QP Combination -398.743 219.189 -845.85	16
1 2.01000 SLE-QP Combination -398.743 417.663 219.10 1 2.68000 SLE-QP Combination -398.743 469.102 -77.96 1 2.68000 SLE-QP Combination -398.743 354.294 -77.96 1 3.35000 SLE-QP Combination -398.743 405.733 -332.57 1 3.35000 SLE-QP Combination -398.743 291.640 -332.57 1 4.02000 SLE-QP Combination -398.743 343.079 -545.20 1 4.02000 SLE-QP Combination -398.743 229.541 -545.20 1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 4.69000 SLE-QP Combination -398.743 167.750 -716.22 1 5.36000 SLE-QP Combination -398.743 219.189 -845.85	16
1 2.68000 SLE-QP Combination -398.743 469.102 -77.96 1 2.68000 SLE-QP Combination -398.743 354.294 -77.96 1 3.35000 SLE-QP Combination -398.743 405.733 -332.57 1 3.35000 SLE-QP Combination -398.743 291.640 -332.57 1 4.02000 SLE-QP Combination -398.743 343.079 -545.20 1 4.02000 SLE-QP Combination -398.743 229.541 -545.20 1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 4.69000 SLE-QP Combination -398.743 167.750 -716.22 1 5.36000 SLE-QP Combination -398.743 219.189 -845.85	46
1 2.68000 SLE-QP Combination -398.743 354.294 -77.96 1 3.35000 SLE-QP Combination -398.743 405.733 -332.57 1 3.35000 SLE-QP Combination -398.743 291.640 -332.57 1 4.02000 SLE-QP Combination -398.743 343.079 -545.20 1 4.02000 SLE-QP Combination -398.743 229.541 -545.20 1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 4.69000 SLE-QP Combination -398.743 167.750 -716.22 1 5.36000 SLE-QP Combination -398.743 219.189 -845.85	
1 3.35000 SLE-QP Combination -398.743 405.733 -332.57 1 3.35000 SLE-QP Combination -398.743 291.640 -332.57 1 4.02000 SLE-QP Combination -398.743 343.079 -545.20 1 4.02000 SLE-QP Combination -398.743 229.541 -545.20 1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 4.69000 SLE-QP Combination -398.743 167.750 -716.22 1 5.36000 SLE-QP Combination -398.743 219.189 -845.85	
1 3.35000 SLE-QP Combination -398.743 291.640 -332.57 1 4.02000 SLE-QP Combination -398.743 343.079 -545.20 1 4.02000 SLE-QP Combination -398.743 229.541 -545.20 1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 4.69000 SLE-QP Combination -398.743 167.750 -716.22 1 5.36000 SLE-QP Combination -398.743 219.189 -845.85	
1 4.02000 SLE-QP Combination -398.743 343.079 -545.20 1 4.02000 SLE-QP Combination -398.743 229.541 -545.20 1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 4.69000 SLE-QP Combination -398.743 167.750 -716.22 1 5.36000 SLE-QP Combination -398.743 219.189 -845.85	
1 4.02000 SLE-QP Combination -398.743 229.541 -545.20 1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 4.69000 SLE-QP Combination -398.743 167.750 -716.22 1 5.36000 SLE-QP Combination -398.743 219.189 -845.85	
1 4.69000 SLE-QP Combination -398.743 280.981 -716.22 1 4.69000 SLE-QP Combination -398.743 167.750 -716.22 1 5.36000 SLE-QP Combination -398.743 219.189 -845.85	
1 4.69000 SLE-QP Combination -398.743 167.750 -716.22 1 5.36000 SLE-QP Combination -398.743 219.189 -845.85	
1 5.36000 SLE-QP Combination -398.743 219.189 -845.85	
T J. JUUUU BHE-AL CAMPTHUCTOH JAA. 127 TAG. 227 027.00	
1 6.03000 SLE-QP Combination -398.743 157.384 -934.06	
1 6.03000 SLE-QP Combination -398.743 43.752 -934.06	66
1 6.70000 SLE-QP Combination -398.743 95.191 -980.63	26
1 6.70000 SLE-QP Combination -398.743 -19.241 -980.63	26
1 7.37000 SLE-QP Combination -398.743 32.198 -984.95	30
1 7.37000 SLE-QP Combination -398.743 -83.468 -984.95	
1 8.04000 SLE-QP Combination -398.743 -32.029 -946.26	
1 8.04000 SLE-QP Combination -398.743 -149.362 -946.26	
1 8.71000 SLE-QP Combination -398.743 -97.923 -863.42	
1 8.71000 SLE-QP Combination -398.743 -217.341 -863.42 1 9.38000 SLE-QP Combination -398.743 -165.902 -735.03	
1 9.38000 SLE-QF Combination -398.743 -103.902 -735.00	
1 10.05000 SLE-QP Combination -398.743 -236.352 -559.44	
1 10.05000 SLE-QP Combination -398.743 -361.043 -559.44	
1 10.72000 SLE-QP Combination -398.743 -309.604 -334.78	
1 10.72000 SLE-QP Combination -398.743 -437.354 -334.78	02
1 11.39000 SLE-QP Combination -398.743 -385.914 -58.98	53
1 11.39000 SLE-QP Combination -398.743 -516.888 -58.98	
1 12.06000 SLE-QP Combination -398.743 -465.449 270.09	
1 12.06000 SLE-QP Combination -398.743 -599.696 270.09	
1 12.73000 SLE-QP Combination -398.743 -549.457 654.68	
1 12.73000 SLE-QP Combination -398.743 -686.888 654.68	
1 12.73508 SLE-QP Combination -398.743 -686.701 658.16 1 0.66492 SLE-FREQ Combination -307.514 833.236 1538.34	
1 0.67000 SLE-FREQ Combination -307.514 833.423 1534.10	
1 0.67000 SLE-FREQ Combination -307.514 723.207 1534.10	
1 1.34000 SLE-FREQ Combination -307.514 773.446 1033.11	
1 1.34000 SLE-FREQ Combination -307.514 660.525 1033.13	
1 2.01000 SLE-FREQ Combination -307.514 711.965 573.32	88
1 2.01000 SLE-FREQ Combination -307.514 596.755 573.32	88
1 2.68000 SLE-FREQ Combination -307.514 648.194 156.27	08
1 2.68000 SLE-FREQ Combination -307.514 530.919 156.2	
1 3.35000 SLE-FREQ Combination -307.514 582.358 -216.6	
1 3.35000 SLE-FREQ Combination -307.514 463.062 -216.6	
1 4.02000 SLE-FREQ Combination -307.514 514.501 -544.16 1 4.02000 SLE-FREQ Combination -307.514 393.073 -544.16	
1 4.02000 SLE-FREQ Combination -307.514 393.073 -544.16 1 4.69000 SLE-FREQ Combination -307.514 444.513 -824.75	
1 4.69000 SLE-FREQ Combination -307.514 320.702 -824.75	
1 5.36000 SLE-FREQ Combination -307.514 372.141 -1056.85	
1 5.36000 SLE-FREQ Combination -307.514 245.579 -1056.85	
1 6.03000 SLE-FREQ Combination -307.514 297.018 -1238.62	
1 6.03000 SLE-FREQ Combination -307.514 167.235 -1238.62	44

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 66 di 77

1	6.70000	SLE-FREO	Combination	-307.514	218.674	-1367.9041
1	6.70000		Combination	-307.514	85.125	-1367.9041
1	7.37000	~	Combination	-307.514	136.564	-1442.1702
1	7.37000	SLE-FREQ	Combination	-307.514	-1.352	-1442.1702
1	8.04000	SLE-FREO	Combination	-307.514	50.087	-1458.4963
1	8.04000		Combination	-307.514	-92.832	-1458.4963
1	8.71000		Combination	-307.514	-41.393	-1413.5311
1	8.71000	SLE-FREQ	Combination	-307.514	-189.956	-1413.5311
1	9.38000	SLE-FREO	Combination	-307.514	-138.517	-1303.4929
1	9.38000	SLE-FREO	Combination	-307.514	-293.350	-1303.4929
1						-1124.1804
	10.05000		Combination	-307.514	-241.911	
1	10.05000	SLE-FREQ	Combination	-307.514	-403.596	-1124.1804
1	10.72000	SLE-FREQ	Combination	-307.514	-352.157	-871.0034
1	10.72000	SLE-FREO	Combination	-307.514	-521.201	-871.0034
1	11.39000		Combination	-307.514	-469.761	-539.0311
		~				
1	11.39000	SLE-FREQ	Combination	-307.514	-646.568	-539.0311
1	12.06000	SLE-FREQ	Combination	-307.514	-595.129	-123.0624
1	12.06000	SLE-FREO	Combination	-307.514	-779.965	-123.0624
1	12.73000		Combination	-307.514	-729.726	382.3001
1	12.73000		Combination	-307.514	-922.684	382.3001
1	12.73508	SLE-FREQ	Combination	-307.514	-922.497	386.9868
1	0.66492	SLE-RARA	Combination	-497.963	913.550	1375.5196
1	0.67000	SLE-RARA	Combination	-497.963	913.737	1370.8783
1					779.125	
	0.67000		Combination	-497.963		1370.8783
1	1.34000	SLE-RARA	Combination	-497.963	829.364	832.4185
1	1.34000	SLE-RARA	Combination	-497.963	694.396	832.4185
1	2.01000	STE-RARA	Combination	-497.963	745.835	349.9413
1	2.01000		Combination	-497.963	610.835	349.9413
1	2.68000		Combination	-497.963	662.274	-76.5504
1	2.68000	SLE-RARA	Combination	-497.963	527.365	-76.5504
1	3.35000	SLE-RARA	Combination	-497.963	578.804	-447.1172
1	3.35000		Combination	-497.963	443.928	-447.1172
1	4.02000		Combination	-497.963	495.367	-761.7812
1	4.02000		Combination	-497.963	360.310	-761.7812
1	4.69000	SLE-RARA	Combination	-497.963	411.749	-1020.4209
1	4.69000	SLE-RARA	Combination	-497.963	276.164	-1020.4209
1	5.36000		Combination	-497.963	327.603	-1222.6827
1	5.36000		Combination	-497.963	191.034	-1222.6827
1	6.03000	SLE-RARA	Combination	-497.963	242.473	-1367.9076
1	6.03000	SLE-RARA	Combination	-497.963	104.380	-1367.9076
1	6.70000	STE-RARA	Combination	-497.963	155.819	-1455.0740
1	6.70000		Combination	-497.963	15.597	-1455.0740
1	7.37000		Combination	-497.963	67.036	-1482.7563
1	7.37000	SLE-RARA	Combination	-497.963	-75.953	-1482.7563
1	8.04000	SLE-RARA	Combination	-497.963	-24.514	-1449.0996
1	8.04000		Combination	-497.963	-170.925	-1449.0996
1	8.71000		Combination	-497.963		
					-119.486	-1351.8120
1	8.71000		Combination	-497.963	-269.958	-1351.8120
1	9.38000	SLE-RARA	Combination	-497.963	-218.519	-1188.1723
1	9.38000	SLE-RARA	Combination	-497.963	-373.652	-1188.1723
1	10.05000		Combination	-497.963	-322.213	-955.0577
1	10.05000		Combination	-497.963	-482.540	-955.0577
1	10.72000	SLE-RARA	Combination	-497.963	-431.101	-648.9882
1	10.72000	SLE-RARA	Combination	-497.963	-597.058	-648.9882
1	11.39000	SLE-RARA	Combination	-497.963	-545.619	-266.1916
1	11.39000		Combination	-497.963	-717.515	
						-266.1916
1	12.06000		Combination	-497.963	-666.076	197.3113
1	12.06000	SLE-RARA	Combination	-497.963	-844.061	197.3113
1	12.73000		Combination	-497.963	-793.821	745.6178
1	12.73000		Combination	-497.963	-977.851	745.6178
1	12.73508		Combination	-497.963	-977.665	750.5848
1	0.66492	envSLU	Combination	-16.800	1381.002	2834.6620
1	0.67000	envSLU	Combination	-16.800	1381.254	2831.7541
1	0.67000		Combination	-16.800	1148.196	2831.7541
1	1.34000		Combination	-16.800	1232.787	2430.2895
1	1.34000		Combination	-16.800	1022.160	2430.2895
1	2.01000	envSLU	Combination	-16.800	1109.157	2019.5140

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 67 di 77

1	2.01000	envSLU	Combination	-16.800	937.083	2019.5140
1	2.68000		Combination	-16.800	1024.080	1602.7790
1	2.68000		Combination	-16.800	857.153	1602.7790
1	3.35000		Combination	-16.800	944.149	1175.5792
1	3.35000		Combination	-16.800	770.977	1175.5792
1	4.02000		Combination	-16.800	857.974	746.9015
1	4.02000		Combination	-16.800	678.513	746.9015
1	4.69000		Combination	-16.800	765.510	325.3999
1	4.69000		Combination	-16.800	594.078	325.3999
1	5.36000		Combination	-16.800	666.485	-80.4813
1	5.36000		Combination	-16.800	552.641	-80.4813
1	6.03000		Combination	-16.800	604.081	-462.3850
1	6.03000		Combination	-16.800	498.759	-462.3850
1	6.70000		Combination	-16.800	550.198	-811.9250
1	6.70000		Combination	-16.800	434.951	-811.9250
1	7.37000		Combination	-16.800	486.391	-1120.5746
1	7.37000		Combination	-16.800	360.834	-1120.5746
1	8.04000		Combination	-16.800	412.274	-1000.5963
1			Combination		273.136	
1	8.04000		Combination	-16.800		-1000.5963 -828.7335
1	8.71000		Combination	-16.800	324.575 171.248	
	8.71000			-16.800		-828.7335
1	9.38000		Combination	-16.800	222.687	-606.7810
1	9.38000		Combination	-16.800	54.473	-606.7810
1	10.05000		Combination	-16.800	105.912	-334.7551
1	10.05000		Combination	-16.800	-77.947	-334.7551
1	10.72000		Combination	-16.800	-26.508	-12.4860
1	10.72000		Combination	-16.800	-226.796	-12.4860
1	11.39000		Combination	-16.800	-175.357	360.3057
1	11.39000		Combination	-16.800	-392.850	360.3057
1	12.06000		Combination	-16.800	-341.411	783.9179
1	12.06000		Combination	-16.800	-576.834	783.9179
1	12.73000		Combination	-16.800	-526.595	1293.5336
1	12.73000		Combination	-16.800	-780.574	1293.5336
1	12.73508		Combination	-16.800	-780.387	1300.0574
1	0.66492		Combination	-789.507	513.678	727.0386
1	0.67000		Combination	-789.507	513.865	722.7441
1	0.67000		Combination	-789.507	523.087	722.7441
1	1.34000		Combination	-789.507	573.327	255.1851
1	1.34000		Combination	-789.507	556.319	255.1851
1	2.01000		Combination	-789.507	617.998	-142.1588
1	2.01000		Combination	-789.507	456.041	-142.1588
1	2.68000		Combination	-789.507	529.504	-472.3165
1	2.68000		Combination	-789.507	360.153	-472.3165 -925.4323
1	3.35000		Combination	-789.507	433.616	-925.4323 -925.4323
1	3.35000		Combination	-789.507	268.427 341.890	
1	4.02000		Combination Combination	-789.507		-1326.2947
	4.02000			-789.507 -789.507	180.525	-1326.2947
1	4.69000		Combination		253.988	-1637.4955
1	4.69000		Combination	-789.507	96.022	-1637.4955 -1861.4302
1	5.36000		Combination Combination	-789.507	169.484	
1	5.36000 6.03000		Combination	-789.507 -789.507	14.434 87.897	-1861.4302 -2000.0053
1 1	6.03000		Combination	-789.507	-64.759	-2000.0053
	6.70000		Combination	-789.507 -789.507	8.704	-2107.7538
1			Combination	-789.507 -789.507		-2107.7538
1	6.70000 7.37000		Combination		-142.090 -68.627	
1	7.37000		Combination	-789.507 -789.507		-2291.4585 -2291.4585
1				-789.507	-218.087	
1 1	8.04000		Combination Combination	-789.507 -789.507	-144.624	-2391.3995 -2391.3995
	8.04000 8.71000		Combination	-789.507 -789.507	-334.943	-2391.3995
1 1	8.71000		Combination	-789.507 -789.507	-247.946 -461.095	-2396.1037
1	9.38000		Combination	-789.507 -789.507	-374.098	-2297.8742
1	9.38000		Combination	-789.507 -789.507	-589.508	-2297.8742
1	10.05000		Combination	-789.507 -789.507	-502.511	-2088.3057
1	10.05000		Combination	-789.507 -789.507	-720.826	-2088.3057
1	10.72000		Combination	-789.507 -789.507	-641.005	-1772.0899
1	10.72000		Combination	-789.507 -789.507	-865.234	-1772.0899
_	10.72000	CILASTO	COMBINACION	103.301	003.234	1112.0033

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 68 di 77

1	11.39000	envSLU	Combination	-789.507	-791.771	-1611.8058
1	11.39000		Combination	-789.507	-1022.576	-1611.8058
1	12.06000		Combination	-789.507	-949.113	-1349.8051
1	12.06000	envSLU	Combination	-789.507	-1186.614	-1349.8051
1	12.73000	envSLU	Combination	-789.507	-1114.951	-980.5405
1	12.73000		Combination	-789.507	-1409.413	-980.5405
1	12.73508	envSLU	Combination	-789.507	-1409.160	-976.5757
2	0.44242	SLE-QP	Combination	-683.168	-369.649	-1207.0759
2	0.44750	STE-OP	Combination	-682.994	-369.187	-1205.1992
2						
	0.44750		Combination	-682.994	-369.187	-1205.1992
2	0.89500	SLE-QP	Combination	-667.634	-329.351	-1048.9650
2	0.89500	SLE-QP	Combination	-667.634	-329.351	-1048.9650
2	1.34250	SLE-OP	Combination	-652.274	-291.223	-910.1751
2	1.34250		Combination	-652.274	-291.223	-910.1751
2	1.79000	~	Combination	-636.915	-254.802	-788.0656
2	1.79000	SLE-QP	Combination	-636.915	-254.802	-788.0656
2	2.23750	SLE-OP	Combination	-621.555	-220.089	-681.8724
2	2.23750		Combination	-621.555	-220.089	-681.8724
2	2.68500		Combination	-606.195	-187.082	-590.8316
2	2.68500	SLE-QP	Combination	-606.195	-187.082	-590.8316
2	3.13250	SLE-OP	Combination	-590.836	-155.783	-514.1793
2	3.13250		Combination	-590.836	-155.783	-514.1793
2	3.58000		Combination	-575.476	-126.191	-451.1513
2	3.58000	SLE-QP	Combination	-575.476	-126.191	-451.1513
2	4.02750	SLE-OP	Combination	-560.116	-98.306	-400.9838
2	4.02750		Combination	-560.116	-98.306	-400.9838
				-544.757		
2	4.47500		Combination		-72.128	-362.9128
2	4.47500	SLE-QP	Combination	-544.757	-72.128	-362.9128
2	4.92250	SLE-QP	Combination	-529.397	-47.658	-336.1743
2	4.92250	SLE-OP	Combination	-529.397	-47.658	-336.1743
2	5.37000		Combination	-514.037	-24.895	-320.0044
2	5.37000		Combination	-514.037	-24.895	-320.0044
2	5.81750	SLE-QP	Combination	-498.678	-3.839	-313.6389
2	5.81750	SLE-QP	Combination	-498.678	-3.839	-313.6389
2	6.26500	SLE-OP	Combination	-483.318	15.510	-316.3141
2	6.26500		Combination	-483.318	15.510	-316.3141
2	6.71250	SLE-QP	Combination	-467.958	33.152	-327.2658
2	6.71250	SLE-QP	Combination	-467.958	33.152	-327.2658
2	7.16000	SLE-OP	Combination	-452.599	49.086	-345.7301
2	7.16000		Combination	-452.599	49.086	-345.7301
2	7.60750		Combination	-437.239	63.313	-370.9431
2	7.60750	SLE-QP	Combination	-437.239	63.313	-370.9431
2	8.05500	SLE-OP	Combination	-421.879	75.833	-402.1407
2	8.05500		Combination	-421.879	75.833	-402.1407
2	8.50250		Combination	-406.520	86.646	-438.5591
2	8.50250	SLE-QP	Combination	-406.520	86.646	-438.5591
2	8.50758	SLE-QP	Combination	-406.345	86.759	-438.9995
2	0.44242	SLE-FREO	Combination	-847.070	-514.612	-1845.8909
2	0.44750	~	Combination	-846.896	-514.064	
2	0.44750	SLE-FREQ	Combination	-846.896	-514.064	-1843.2781
2	0.89500	SLE-FREQ	Combination	-831.536	-466.657	-1623.9056
2	0.89500	SLE-FREO	Combination	-831.536	-466.657	-1623.9056
2	1.34250		Combination	-816.177	-420.957	-1425.3657
2	1.34250		Combination	-816.177	-420.957	-1425.3657
2	1.79000	SLE-FREQ	Combination	-800.817	-376.964	-1246.8945
2	1.79000	SLE-FREO	Combination	-800.817	-376.964	-1246.8945
2	2.23750		Combination	-785.457	-334.679	-1087.7280
2	2.23750		Combination	-785.457	-334.679	-1087.7280
2	2.68500	SLE-FREQ	Combination	-770.098	-294.101	-947.1023
2	2.68500	SLE-FREO	Combination	-770.098	-294.101	-947.1023
2	3.13250		Combination	-754.738	-255.230	-824.2532
2	3.13250		Combination	-754.738	-255.230	-824.2532
2	3.58000	SLE-FREQ	Combination	-739.378	-218.066	-718.4170
2	3.58000	SLE-FREQ	Combination	-739.378	-218.066	-718.4170
2	4.02750		Combination	-724.019	-182.609	-628.8295
2	4.02750		Combination	-724.019	-182.609	-628.8295
2	4.47500	SLE-FREQ	Combination	-708.659	-148.860	-554.7269

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 69 di 77

2	4.47500	SLE-FREO	Combination	-708.659	-148.860	-554.7269
2	4.92250		Combination	-693.299	-116.818	-495.3451
2	4.92250		Combination		-116.818	-495.3451
				-693.299		
2	5.37000		Combination	-677.940	-86.483	-449.9202
2	5.37000	SLE-FREQ	Combination	-677.940	-86.483	-449.9202
2	5.81750	SLE-FREQ	Combination	-662.580	-57.855	-417.6881
2	5.81750	SLE-FREO	Combination	-662.580	-57.855	-417.6881
2	6.26500		Combination	-647.220	-30.935	-397.8849
2	6.26500		Combination	-647.220	-30.935	-397.8849
2	6.71250		Combination	-631.861	-5.722	-389.7467
2	6.71250		Combination	-631.861	-5.722	-389.7467
2	7.16000	SLE-FREQ	Combination	-616.501	17.784	-392.5094
2	7.16000	SLE-FREQ	Combination	-616.501	17.784	-392.5094
2	7.60750	SLE-FREO	Combination	-601.141	39.583	-405.4091
2	7.60750		Combination	-601.141	39.583	-405.4091
	8.05500				59.675	-427.6818
2			Combination	-585.782		
2	8.05500		Combination	-585.782	59.675	-427.6818
2	8.50250	SLE-FREQ	Combination	-570.422	78.059	-458.5635
2	8.50250	SLE-FREQ	Combination	-570.422	78.059	-458.5635
2	8.50758	SLE-FREQ	Combination	-570.248	78.258	-458.9605
2	0.44242	ST.E-RARA	Combination	-940.765	-490.512	-1746.5819
2	0.44750		Combination	-940.591	-489.935	-1744.0916
2	0.44750		Combination	-940.591	-489.935	-1744.0916
2	0.89500		Combination	-925.231	-440.004	-1536.0813
2	0.89500	SLE-RARA	Combination	-925.231	-440.004	-1536.0813
2	1.34250	SLE-RARA	Combination	-909.872	-391.781	-1350.0331
2	1.34250	SLE-RARA	Combination	-909.872	-391.781	-1350.0331
2	1.79000	SLE-RARA	Combination	-894.512	-345.264	-1185.1831
2	1.79000	SLE-RARA	Combination	-894.512	-345.264	-1185.1831
2	2.23750		Combination	-879.152	-300.455	-1040.7672
2	2.23750		Combination	-879.152	-300.455	-1040.7672
2	2.68500		Combination	-863.793	-257.353	-916.0215
2	2.68500		Combination	-863.793	-257.353	-916.0215
2	3.13250		Combination	-848.433	-215.958	-810.1819
2	3.13250		Combination	-848.433	-215.958	-810.1819
2	3.58000	SLE-RARA	Combination	-833.073	-176.270	-722.4846
2	3.58000	SLE-RARA	Combination	-833.073	-176.270	-722.4846
2	4.02750	SLE-RARA	Combination	-817.714	-138.290	-652.1655
2	4.02750	SLE-RARA	Combination	-817.714	-138.290	-652.1655
2	4.47500		Combination	-802.354	-102.016	-598.4607
2	4.47500		Combination	-802.354	-102.016	-598.4607
2			Combination	-786.994		
	4.92250				-67.450	-560.6062
2	4.92250		Combination	-786.994	-67.450	-560.6062
2	5.37000		Combination	-771.635	-34.592	-537.8379
2	5.37000	SLE-RARA	Combination	-771.635	-34.592	-537.8379
2	5.81750	SLE-RARA	Combination	-756.275	-3.440	-529.3920
2	5.81750	SLE-RARA	Combination	-756.275	-3.440	-529.3920
2	6.26500	SLE-RARA	Combination	-740.915	26.004	-534.5045
2	6.26500	ST.E-RARA	Combination	-740.915	26.004	-534.5045
2	6.71250		Combination	-725.556	53.742	-552.4113
2	6.71250		Combination	-725.556	53.742	-552.4113
2	7.16000		Combination	-710.196	79.771	-582.3485
2	7.16000		Combination	-710.196	79.771	-582.3485
2	7.60750		Combination	-694.836	104.094	-623.5521
2	7.60750		Combination	-694.836	104.094	-623.5521
2	8.05500	SLE-RARA	Combination	-679.477	126.710	-675.2582
2	8.05500		Combination	-679.477	126.710	-675.2582
2	8.50250		Combination	-664.117	147.618	-736.7027
2	8.50250		Combination	-664.117	147.618	-736.7027
2	8.50758		Combination	-663.943	147.846	-737.4532
	0.44242				-301.107	-1136.3987
2			Combination	-461.758		
2	0.44750		Combination	-461.592	-300.673	-1134.8702
2	0.44750		Combination	-461.592	-300.673	-1134.8702
2	0.89500		Combination	-446.950	-263.362	-1008.7310
2	0.89500		Combination	-446.950	-263.362	-1008.7310
2	1.34250	envSLU	Combination	-432.309	-227.758	-898.9067
2	1.34250	envSLU	Combination	-432.309	-227.758	-898.9067

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 70 di 77

2	1.79000	envSLU	Combination	-417.667	-193.861	-804.6333
2	1.79000		Combination	-417.667	-193.861	-804.6333
2	2.23750	envSLU	Combination	-403.026	-161.671	-725.1468
2	2.23750	envSLU	Combination	-403.026	-161.671	-725.1468
2	2.68500	envSLU	Combination	-388.385	-131.188	-654.1176
2	2.68500		Combination	-388.385	-131.188	-654.1176
2	3.13250	envSLU	Combination	-373.743	-102.413	-519.3959
2	3.13250	envSLU	Combination	-373.743	-102.413	-519.3959
2	3.58000	envSLII	Combination	-359.102	-75.345	-270.1907
2						
	3.58000		Combination	-359.102	-75.345	-270.1907
2	4.02750	envSLU	Combination	-344.460	-49.984	-49.2457
2	4.02750	envSLU	Combination	-344.460	-49.984	-49.2457
2	4.47500	envSLII	Combination	-329.819	-26.330	144.2030
2	4.47500		Combination	-329.819	-26.330	144.2030
2	4.92250		Combination	-315.177	-4.384	310.9196
2	4.92250	envSLU	Combination	-315.177	-4.384	310.9196
2	5.37000	envSLU	Combination	-300.536	15.856	451.6680
2	5.37000		Combination	-300.536	15.856	451.6680
2	5.81750		Combination	-285.895	34.388	567.2121
2	5.81750	envSLU	Combination	-285.895	34.388	567.2121
2	6.26500	envSLU	Combination	-271.253	51.213	658.3159
2	6.26500		Combination	-271.253	51.213	658.3159
2	6.71250		Combination	-256.612	77.397	725.7435
2	6.71250	envSLU	Combination	-256.612	77.397	725.7435
2	7.16000	envSLU	Combination	-241.970	110.589	770.2587
2	7.16000	envst.II	Combination	-241.970	110.589	770.2587
				-227.329		
2	7.60750		Combination		144.686	792.6256
2	7.60750	envSLU	Combination	-227.329	144.686	792.6256
2	8.05500	envSLU	Combination	-212.687	176.479	793.6081
2	8.05500	envSLU	Combination	-212.687	176.479	793.6081
2	8.50250		Combination	-198.046	205.967	773.9702
2	8.50250		Combination	-198.046	205.967	773.9702
2	8.50758	envSLU	Combination	-197.880	206.289	773.6319
2	0.44242	envSLU	Combination	-1451.255	-1015.371	-3089.1396
2	0.44750	envSLU	Combination	-1451.020	-1014.519	-3084.7623
2	0.44750		Combination	-1451.020	-1014.519	-3084.7623
2	0.89500	envSLU	Combination	-1430.284	-940.271	-2716.0730
2	0.89500	envSLU	Combination	-1430.284	-940.271	-2716.0730
2	1.34250	envSLU	Combination	-1409.549	-867.730	-2380.0444
2	1.34250		Combination	-1409.549	-867.730	-2380.0444
2	1.79000		Combination	-1388.813	-796.896	-2075.5307
2	1.79000	envSLU	Combination	-1388.813	-796.896	-2075.5307
2	2.23750	envSLU	Combination	-1368.078	-727.770	-1801.3858
2	2.23750	envSLII	Combination	-1368.078	-727.770	-1801.3858
			Combination			
2	2.68500			-1347.342	-660.351	-1556.4638
2	2.68500	envSLU	Combination	-1347.342	-660.351	-1556.4638
2	3.13250	envSLU	Combination	-1326.607	-594.639	-1345.2382
2	3.13250	envSLI	Combination	-1326.607	-594.639	-1345.2382
2	3.58000		Combination	-1305.871	-530.634	-1203.2074
2	3.58000		Combination	-1305.871	-530.634	-1203.2074
2	4.02750	envSLU	Combination	-1285.136	-468.336	-1081.0960
2	4.02750	envSLU	Combination	-1285.136	-468.336	-1081.0960
2	4.47500	envSLU	Combination	-1264.400	-407.746	-978.1402
2	4.47500		Combination	-1264.400	-407.746	-978.1402
2	4.92250		Combination	-1243.665	-348.863	-918.3292
2	4.92250	envSLU	Combination	-1243.665	-348.863	-918.3292
2	5.37000	envST.II	Combination	-1222.929	-291.687	-897.2524
2			Combination	-1222.929	-291.687	
	5.37000					-897.2524
2	5.81750		Combination	-1202.193	-236.218	-893.0392
2	5.81750	envSLU	Combination	-1202.193	-236.218	-893.0392
2	6.26500	envSLI	Combination	-1181.458	-182.456	-904.9256
2	6.26500		Combination	-1181.458	-182.456	-904.9256
2	6.71250		Combination	-1160.722	-130.402	-932.1476
2	6.71250	envSLU	Combination	-1160.722	-130.402	-932.1476
2	7.16000	envSLU	Combination	-1139.987	-80.055	-973.9413
2	7.16000		Combination	-1139.987	-80.055	-973.9413
2	7.60750		Combination	-1119.251	-31.415	-1029.5426
_	1.00/30	GIIA9T0	COMBINALION	1112.431	21.413	1029.0420

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 71 di 77

2	7.60750	envSLII	Combination	-1119.251	-31.415	-1029.5426
2	8.05500		Combination	-1098.516	15.518	-1098.1876
2	8.05500		Combination	-1098.516	15.518	-1098.1876
2	8.50250	envSLU	Combination	-1077.780	60.743	-1179.1124
2	8.50250	envSLU	Combination	-1077.780	60.743	-1179.1124
2	8.50758		Combination	-1077.545	61.247	-1180.0986
3	0.66492		Combination	-107.899	-339.151	-241.6111
3	0.67000	SLE-QP	Combination	-107.909	-338.868	-239.8889
3	0.67000	SLE-OP	Combination	-107.909	-338.868	-239.8889
3	1.34000		Combination	-109.249	-301.544	-25.3507
3			Combination	-109.249		
	1.34000	~			-301.544	-25.3507
3	2.01000	SLE-QP	Combination	-110.589	-264.220	164.1804
3	2.01000	SLE-QP	Combination	-110.589	-264.220	164.1804
3	2.68000	SLE-OP	Combination	-111.929	-226.897	328.7046
3	2.68000	~	Combination	-111.929	-226.897	328.7046
3	3.35000		Combination	-113.269	-189.573	468.2218
3	3.35000	SLE-QP	Combination	-113.269	-189.573	468.2218
3	4.02000	SLE-QP	Combination	-114.609	-149.003	581.8881
3	4.02000		Combination	-114.609	-149.003	581.8881
2						
3	4.69000		Combination	-115.949	-107.497	667.8155
3	4.69000	SLE-QP	Combination	-115.949	-107.497	667.8155
3	5.36000	SLE-QP	Combination	-117.289	-65.991	725.9339
3	5.36000	SLE-OP	Combination	-117.289	-65.991	725.9339
3	6.03000	~	Combination	-118.629	-24.485	756.2433
2						
3	6.03000	~	Combination	-118.629	-24.485	756.2433
3	6.70000	SLE-QP	Combination	-119.969	17.021	758.7437
3	6.70000	SLE-QP	Combination	-119.969	17.021	758.7437
3	7.37000	SLE-OP	Combination	-121.309	58.527	733.4351
3	7.37000	~	Combination	-121.309	58.527	733.4351
2						
3	8.04000		Combination	-122.649	100.033	680.3174
3	8.04000	SLE-QP	Combination	-122.649	100.033	680.3174
3	8.71000	SLE-OP	Combination	-123.989	141.539	599.3906
3	8.71000		Combination	-123.989	141.539	599.3906
3			Combination	-125.329	183.045	490.6549
	9.38000					
3	9.38000	SLE-QP	Combination	-125.329	183.045	490.6549
3	10.05000	SLE-QP	Combination	-126.669	223.615	354.1803
3	10.05000	SLE-OP	Combination	-126.669	223.615	354.1803
3	10.72000		Combination	-128.009	260.939	191.8549
2						
3	10.72000		Combination	-128.009	260.939	191.8549
3	11.39000	SLE-QP	Combination	-129.349	298.263	4.5224
3	11.39000	SLE-QP	Combination	-129.349	298.263	4.5224
3	12.06000	SLE-OP	Combination	-130.689	335.587	-207.8171
3	12.06000		Combination	-130.689	335.587	-207.8171
2		~				
3	12.73000		Combination	-132.029	372.910	-445.1635
3	12.73000	~	Combination	-132.029	372.910	-445.1635
3	12.73508	SLE-QP	Combination	-132.039	373.193	-447.0586
3	0.66492	SLE-FREO	Combination	-122.718	-474.458	-164.8674
3	0.67000		Combination	-122.759	-474.069	-162.4581
				122.755		
3	0.67000		Combination	-122.759	-474.069	-162.4581
3	1.34000	SLE-FREQ	Combination	-128.119	-422.707	137.9617
3	1.34000	SLE-FREQ	Combination	-128.119	-422.707	137.9617
3	2.01000	SLE-FREO	Combination	-133.479	-371.345	403.9691
3	2.01000		Combination	-133.479	-371.345	403.9691
3	2.68000		Combination	-138.839	-319.983	635.5642
3	2.68000	SLE-FREQ	Combination	-138.839	-319.983	635.5642
3	3.35000	SLE-FREO	Combination	-144.199	-268.622	832.7469
3	3.35000		Combination	-144.199	-268.622	832.7469
3						
	4.02000		Combination	-149.559	-204.277	992.1416
3	4.02000		Combination	-149.559	-204.277	992.1416
3	4.69000	SLE-FREQ	Combination	-154.919	-136.186	1106.1967
3	4.69000	SLE-FREO	Combination	-154.919	-136.186	1106.1967
3	5.36000		Combination	-160.279	-68.096	1174.6314
3	5.36000		Combination	-160.279	-68.096	1174.6314
3	6.03000	SLE-FREQ	Combination	-165.639	-5.826E-03	1197.4455
3	6.03000		Combination	-165.639	-5.826E-03	1197.4455
3	6.70000		Combination	-170.999	68.084	1174.6392
3	6.70000		Combination	-170.999	68.084	1174.6392
J	0.70000	OTE-LKEA	COMDINACION	110.999	00.004	1114.0394

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 72 di 77

3	7.37000	SI.E-FREO	Combination	-176.359	136.175	1106.2123
3	7.37000		Combination	-176.359	136.175	1106.2123
3	8.04000		Combination	-181.719	204.265	992.1650
3	8.04000	~	Combination	-181.719	204.265	992.1650
3	8.71000		Combination	-187.079	272.355	832.4972
3	8.71000		Combination	-187.079	272.355	832.4972
3	9.38000		Combination	-192.439	340.446	627.2090
3	9.38000		Combination	-192.439	340.446	627.2090
3	10.05000		Combination	-197.799	404.791	376.5811
3	10.05000		Combination	-197.799	404.791	376.5811
3	10.72000	~	Combination	-203.159	456.152	88.1652
3	10.72000		Combination	-203.159	456.152	88.1652
3	11.39000	~	Combination	-208.519	507.514	-234.6630
3	11.39000		Combination	-208.519	507.514	-234.6630
3	12.06000		Combination	-213.879	558.876	-591.9036
3	12.06000		Combination	-213.879	558.876	-591.9036
3	12.73000		Combination	-219.239	610.237	-983.5566
3	12.73000		Combination	-219.239	610.237	-983.5566
3	12.73508	SLE-FREO	Combination	-219.279	610.627	-986.6576
3	0.66492		Combination	-200.078	-558.621	-417.1931
3	0.67000	SLE-RARA	Combination	-200.129	-558.196	-414.3563
3	0.67000	SLE-RARA	Combination	-200.129	-558.196	-414.3563
3	1.34000	SLE-RARA	Combination	-206.829	-502.155	-59.1385
3	1.34000	SLE-RARA	Combination	-206.829	-502.155	-59.1385
3	2.01000	SLE-RARA	Combination	-213.529	-446.114	258.5320
3	2.01000	SLE-RARA	Combination	-213.529	-446.114	258.5320
3	2.68000	SLE-RARA	Combination	-220.229	-390.073	538.6549
3	2.68000	SLE-RARA	Combination	-220.229	-390.073	538.6549
3	3.35000	SLE-RARA	Combination	-226.929	-334.032	781.2304
3	3.35000	SLE-RARA	Combination	-226.929	-334.032	781.2304
3	4.02000	SLE-RARA	Combination	-233.629	-261.762	982.0389
3	4.02000	SLE-RARA	Combination	-233.629	-261.762	982.0389
3	4.69000		Combination	-240.329	-184.811	1131.6408
3	4.69000		Combination	-240.329	-184.811	1131.6408
3	5.36000		Combination	-247.029	-107.859	1229.6851
3	5.36000		Combination	-247.029	-107.859	1229.6851
3	6.03000		Combination	-253.729	-30.907	1276.1717
3	6.03000		Combination	-253.729	-30.907	1276.1717
3	6.70000		Combination	-260.429	46.044	1271.1007
3	6.70000		Combination	-260.429	46.044	1271.1007
3	7.37000		Combination	-267.129	122.996	1214.4721
3	7.37000		Combination	-267.129	122.996	1214.4721
3	8.04000		Combination	-273.829	199.948	1106.2858
3	8.04000		Combination	-273.829	199.948	1106.2858
3	8.71000		Combination	-280.529	276.900	946.5419
3	8.71000 9.38000		Combination Combination	-280.529 -287.229	276.900 353.851	946.5419 735.2404
3	9.38000		Combination	-287.229	353.851	735.2404
3				-293.929	426.121	472.7323
3	10.05000 10.05000		Combination Combination	-293.929	426.121	472.7323
3	10.72000		Combination	-300.629	482.162	168.4572
3	10.72000		Combination	-300.629	482.162	168.4572
3	11.39000		Combination	-307.329	538.203	-173.3654
3	11.39000		Combination	-307.329	538.203	-173.3654
3	12.06000		Combination	-314.029	594.244	-552.7354
3	12.06000		Combination	-314.029	594.244	-552.7354
3	12.73000		Combination	-320.729	650.285	-969.6529
3	12.73000		Combination	-320.729	650.285	-969.6529
3	12.73508		Combination	-320.729	650.710	-972.9575
3	0.66492		Combination	-122.137	-134.491	835.7148
3	0.67000		Combination	-122.137	-134.219	836.3973
3	0.67000		Combination	-122.137	-134.219	836.3973
3	1.34000		Combination	-122.137	-98.415	914.3298
3	1.34000		Combination	-122.137	-98.415	914.3298
3	2.01000		Combination	-122.137	-62.611	982.6225
3	2.01000		Combination	-122.137	-62.611	982.6225
3	2.68000		Combination	-122.137	-26.806	1151.2972
				. = -		

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 73 di 77

3	2.68000	envSLII	Combination	-122.137	-26.806	1151.2972
3	3.35000		Combination	-122.137	8.998	1444.6106
3	3.35000		Combination	-122.137	8.998	1444.6106
3	4.02000		Combination	-122.137	48.048	1678.5792
3	4.02000	envSLU	Combination	-122.137	48.048	1678.5792
3	4.69000	envSLU	Combination	-122.137	88.035	1839.5160
3	4.69000	envSLU	Combination	-122.137	88.035	1839.5160
3	5.36000	envSLU	Combination	-122.137	128.021	1926.9117
3	5.36000		Combination	-122.137	128.021	1926.9117
3	6.03000		Combination	-122.137	168.007	1940.7665
3	6.03000		Combination	-122.137	168.007	1940.7665
3	6.70000		Combination	-122.137	207.994	1881.0802
3	6.70000	envSLU	Combination	-122.137	207.994	1881.0802
3	7.37000	envSLU	Combination	-122.137	253.728	1771.0997
3	7.37000	envSLU	Combination	-122.137	253.728	1771.0997
3	8.04000		Combination	-122.137	363.491	1609.7656
3						
	8.04000		Combination	-122.137	363.491	1609.7656
3	8.71000		Combination	-122.137	473.253	1394.9576
3	8.71000	envSLU	Combination	-122.137	473.253	1394.9576
3	9.38000	envSLU	Combination	-122.137	583.016	1106.6085
3	9.38000	envSLU	Combination	-122.137	583.016	1106.6085
3	10.05000	envSLU	Combination	-122.137	685.991	745.2276
3	10.05000		Combination	-122.137	685.991	745.2276
3			Combination		765.433	
3	10.72000			-122.137		408.5453
3	10.72000		Combination	-122.137	765.433	408.5453
3	11.39000		Combination	-122.137	844.875	224.0937
3	11.39000	envSLU	Combination	-122.137	844.875	224.0937
3	12.06000	envSLU	Combination	-122.137	924.317	9.1455
3	12.06000	envSLU	Combination	-122.137	924.317	9.1455
3	12.73000		Combination	-122.137	1003.759	-236.2994
3	12.73000		Combination	-122.137	1003.759	-236.2994
3	12.73508		Combination	-122.137	1004.362	-238.2769
3	0.66492		Combination	-280.690	-865.874	-703.9678
3	0.67000	envSLU	Combination	-280.763	-865.041	-699.8332
3	0.67000	envSLU	Combination	-280.763	-865.041	-699.8332
3	1.34000	envSLU	Combination	-290.478	-755.279	-211.2820
3	1.34000		Combination	-290.478	-755.279	-211.2820
3	2.01000		Combination	-300.193	-654.707	31.2197
3	2.01000		Combination	-300.193	-654.707	31.2197
3	2.68000		Combination	-309.908	-575.265	243.2247
3	2.68000	envSLU	Combination	-309.908	-575.265	243.2247
3	3.35000	envSLU	Combination	-319.623	-495.823	424.7330
3	3.35000	envSLU	Combination	-319.623	-495.823	424.7330
3	4.02000	envSLU	Combination	-329.338	-392.849	575.7447
3	4.02000		Combination	-329.338	-392.849	575.7447
3	4.69000		Combination	-339.053	-283.086	696.2597
2						
3	4.69000		Combination	-339.053	-283.086	696.2597
3	5.36000		Combination	-348.768	-173.323	786.2781
3	5.36000	envSLU	Combination	-348.768	-173.323	786.2781
3	6.03000	envSLU	Combination	-358.483	-66.080	768.1912
3	6.03000	envSLU	Combination	-358.483	-66.080	768.1912
3	6.70000		Combination	-368.198	-20.562	642.2308
3	6.70000		Combination	-368.198	-20.562	642.2308
3	7.37000		Combination	-377.913	24.955	489.4794
3	7.37000		Combination	-377.913	24.955	489.4794
3	8.04000		Combination	-387.628	70.473	309.9371
3	8.04000	envSLU	Combination	-387.628	70.473	309.9371
3	8.71000	envSLU	Combination	-397.343	115.990	103.6038
3	8.71000		Combination	-397.343	115.990	103.6038
3	9.38000		Combination	-407.058	161.507	-129.5203
3	9.38000		Combination	-407.058	161.507	-129.5203
3	10.05000		Combination	-416.773	207.025	-389.3652
3	10.05000		Combination	-416.773	207.025	-389.3652
3	10.72000	envSLU	Combination	-426.488	252.542	-674.0428
3	10.72000	envSLU	Combination	-426.488	252.542	-674.0428
3	11.39000		Combination	-436.203	298.060	-982.7094
3	11.39000		Combination	-436.203	298.060	-982.7094
_	11.00000	0.110000	- 31.00 - 1.100 - 0.11	100.200	230.000	302.7034

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 74 di 77

3	12.06000	envSLU	Combination	-445.918	343.577	-1316.2874
3	12.06000		Combination	-445.918	343.577	-1316.2874
3	12.73000	envSLU	Combination	-455.633	389.094	-1800.7317
3	12.73000	envSLU	Combination	-455.633	389.094	-1800.7317
3	12.73508	envSLU	Combination	-455.707	389.439	-1805.8114
4	0.44242		Combination	-717.210	290.918	969.4592
4	0.44750	SLE-QP	Combination	-717.036	290.485	967.9824
4	0.44750	SLE-QP	Combination	-717.036	290.485	967.9824
4	0.89500	SI.E-OP	Combination	-701.676	253.173	846.4027
4						
	0.89500		Combination	-701.676	253.173	846.4027
4	1.34250	SLE-QP	Combination	-686.317	217.569	741.1378
4	1.34250	SLE-QP	Combination	-686.317	217.569	741.1378
4	1.79000	SLE-OP	Combination	-670.957	183.672	651.4238
4	1.79000		Combination	-670.957	183.672	651.4238
4	2.23750	~	Combination	-655.597	151.482	576.4968
4	2.23750	SLE-QP	Combination	-655.597	151.482	576.4968
4	2.68500	SLE-OP	Combination	-640.238	121.000	515.5927
4	2.68500		Combination	-640.238	121.000	515.5927
4	3.13250		Combination	-624.878	92.224	467.9476
4	3.13250	SLE-QP	Combination	-624.878	92.224	467.9476
4	3.58000	SLE-OP	Combination	-609.518	65.156	432.7974
4	3.58000		Combination	-609.518	65.156	432.7974
4	4.02750	~	Combination	-594.159	39.795	409.3783
4	4.02750	SLE-QP	Combination	-594.159	39.795	409.3783
4	4.47500	SLE-OP	Combination	-578.799	16.141	396.9262
4	4.47500		Combination	-578.799	16.141	396.9262
4	4.92250		Combination	-563.439	-5.805	394.6771
4	4.92250	SLE-QP	Combination	-563.439	-5.805	394.6771
4	5.37000	SLE-QP	Combination	-548.080	-26.045	401.8672
4	5.37000	SLE-OP	Combination	-548.080	-26.045	401.8672
4	5.81750		Combination	-532.720	-44.577	417.7323
4	5.81750		Combination	-532.720	-44.577	417.7323
4	6.26500	SLE-QP	Combination	-517.360	-61.401	441.5086
4	6.26500	SLE-OP	Combination	-517.360	-61.401	441.5086
4	6.71250		Combination	-502.001	-76.519	472.4320
4	6.71250		Combination	-502.001	-76.519	472.4320
4	7.16000	SLE-QP	Combination	-486.641	-89.930	509.7386
4	7.16000	SLE-QP	Combination	-486.641	-89.930	509.7386
4	7.60750	SLE-OP	Combination	-471.281	-101.633	552.6643
4	7.60750		Combination	-471.281	-101.633	552.6643
4	8.05500		Combination	-455.922	-111.629	600.4453
4	8.05500	SLE-QP	Combination	-455.922	-111.629	600.4453
4	8.50250	SLE-OP	Combination	-440.562	-119.918	652.3175
4	8.50250		Combination	-440.562	-119.918	652.3175
4	8.50758		Combination	-440.388	-120.002	652.9269
4	0.44242	SLE-FREQ	Combination	-983.239	199.689	895.4241
4	0.44750	SLE-FREQ	Combination	-983.065	199.255	894.4108
4	0.44750	SLE-FREO	Combination	-983.065	199.255	894.4108
4	0.89500		Combination	-967.705	161.944	813.6561
4	0.89500		Combination	-967.705	161.944	813.6561
4	1.34250	SLE-FREQ	Combination	-952.346	126.340	749.2163
4	1.34250	SLE-FREO	Combination	-952.346	126.340	749.2163
4	1.79000		Combination	-936.986	92.443	700.3274
4	1.79000		Combination	-936.986	92.443	700.3274
4	2.23750	SLE-FREQ	Combination	-921.626	60.253	666.2255
4	2.23750	SLE-FREQ	Combination	-921.626	60.253	666.2255
4	2.68500		Combination	-906.267	29.770	646.1465
4	2.68500		Combination	-906.267	29.770	646.1465
4	3.13250		Combination	-890.907	0.995	639.3264
4	3.13250	SLE-FREQ	Combination	-890.907	0.995	639.3264
4	3.58000	SLE-FREO	Combination	-875.547	-26.073	645.0013
4	3.58000		Combination	-875.547	-26.073	645.0013
4	4.02750		Combination	-860.188	-51.434	662.4073
4	4.02750	SLE-FREQ	Combination	-860.188	-51.434	662.4073
4	4.47500	SLE-FREO	Combination	-844.828	-75.088	690.7803
4	4.47500		Combination	-844.828	-75.088	690.7803
4	4.92250		Combination	-829.468	-97.034	729.3563
7	7.24430	OTE-t VEA	COMDINACION	049.400	91.034	123.3303

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 75 di 77

4	4.92250	SLE-FREQ	Combination	-829.468	-97.034	729.3563
4	5.37000	SLE-FREO	Combination	-814.109	-117.274	777.3714
4	5.37000		Combination	-814.109	-117.274	777.3714
4	5.81750	SLE-FREQ	Combination	-798.749	-135.806	834.0616
4	5.81750	SLE-FREQ	Combination	-798.749	-135.806	834.0616
4	6.26500	SLE-FREO	Combination	-783.389	-152.631	898.6630
4	6.26500	~			-152.631	898.6630
			Combination	-783.389		
4	6.71250	SLE-FREQ	Combination	-768.030	-167.748	970.4115
4	6.71250	SLE-FREQ	Combination	-768.030	-167.748	970.4115
4	7.16000	SLE-FREO	Combination	-752.670	-181.159	1048.5431
4	7.16000		Combination	-752.670	-181.159	1048.5431
4	7.60750	SLE-FREQ	Combination	-737.310	-192.862	1132.2940
4	7.60750	SLE-FREO	Combination	-737.310	-192.862	1132.2940
4	8.05500		Combination	-721.951	-202.858	1220.9000
4	8.05500		Combination	-721.951	-202.858	1220.9000
4	8.50250	SLE-FREQ	Combination	-706.591	-211.147	1313.5973
4	8.50250	SLE-FREO	Combination	-706.591	-211.147	1313.5973
4	8.50758		Combination	-706.416	-211.231	1314.6701
4	0.44242		Combination	-1032.854	356.512	1223.5624
4	0.44750	SLE-RARA	Combination	-1032.680	355.935	1221.7528
4	0.44750	SLE-RARA	Combination	-1032.680	355.935	1221.7528
4	0.89500		Combination	-1017.320	306.004	1073.7075
4	0.89500		Combination	-1017.320	306.004	1073.7075
4	1.34250	SLE-RARA	Combination	-1001.961	257.781	947.6243
4	1.34250	SLE-RARA	Combination	-1001.961	257.781	947.6243
4	1.79000		Combination	-986.601	211.264	842.7393
4	1.79000		Combination	-986.601	211.264	842.7393
4	2.23750	SLE-RARA	Combination	-971.241	166.455	758.2884
4	2.23750	SLE-RARA	Combination	-971.241	166.455	758.2884
4	2.68500	SLE-RARA	Combination	-955.882	123.353	693.5077
4	2.68500		Combination	-955.882	123.353	693.5077
4	3.13250	SLE-RARA	Combination	-940.522	81.958	647.6331
4	3.13250	SLE-RARA	Combination	-940.522	81.958	647.6331
4	3.58000	SLE-RARA	Combination	-925.162	42.270	619.9008
4	3.58000		Combination	-925.162	42.270	619.9008
4	4.02750	SLE-RARA	Combination	-909.803	4.290	609.5467
4	4.02750	SLE-RARA	Combination	-909.803	4.290	609.5467
4	4.47500		Combination	-894.443	-31.984	615.8069
4	4.47500		Combination	-894.443	-31.984	615.8069
4	4.92250	SLE-RARA	Combination	-879.083	-66.550	637.9174
4	4.92250	SLE-RARA	Combination	-879.083	-66.550	637.9174
4	5.37000	SLE-RARA	Combination	-863.724	-99.408	675.1141
4	5.37000		Combination	-863.724		
					-99.408	675.1141
4	5.81750	SLE-RARA	Combination	-848.364	-130.560	726.6332
4	5.81750	SLE-RARA	Combination	-848.364	-130.560	726.6332
4	6.26500	STE-RARA	Combination	-833.004	-160.004	791.7107
4	6.26500		Combination	-833.004	-160.004	791.7107
4	6.71250		Combination	-817.645	-187.742	869.5825
4	6.71250	SLE-RARA	Combination	-817.645	-187.742	869.5825
4	7.16000	STE-RARA	Combination	-802.285	-213.771	959.4847
4	7.16000		Combination	-802.285	-213.771	959.4847
4	7.60750		Combination	-786.925	-238.094	1060.6533
4	7.60750	SLE-RARA	Combination	-786.925	-238.094	1060.6533
4	8.05500	STE-RARA	Combination	-771.566	-260.710	1172.3244
4	8.05500		Combination	-771.566	-260.710	1172.3244
4	8.50250		Combination	-756.206	-281.618	1293.7339
4	8.50250	SLE-RARA	Combination	-756.206	-281.618	1293.7339
4	8.50758		Combination	-756.032	-281.846	1295.1651
4	0.44242		Combination	-843.943	579.011	1891.8266
4	0.44750		Combination	-843.707	578.153	1888.9623
4	0.44750	envSLU	Combination	-843.707	578.153	1888.9623
4	0.89500	envSLU	Combination	-822.972	503.887	1653.5490
4	0.89500		Combination	-822.972	503.887	1653.5490
4	1.34250		Combination	-802.236	432.183	1450.7964
4	1.34250	envSLU	Combination	-802.236	432.183	1450.7964
4	1.79000	envSLU	Combination	-781.501	363.039	1279.5587
4	1.79000		Combination	-781.501	363.039	1279.5587
-		21110110		.01.001	200.000	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 76 di 77

4	2.23750	envSLU	Combination	-760.765	304.097	1138.6898
4	2.23750		Combination	-760.765	304.097	1138.6898
4	2.68500	envSLU	Combination	-740.029	258.373	1027.0439
4	2.68500	envSLU	Combination	-740.029	258.373	1027.0439
4	3.13250	envSLU	Combination	-719.294	215.210	1011.8199
4	3.13250		Combination	-719.294	215.210	1011.8199
4	3.58000	envSLU	Combination	-698.558	174.607	1071.4363
4	3.58000	envSLU	Combination	-698.558	174.607	1071.4363
4	4.02750	envSLII	Combination	-677.823	136.566	1142.7837
4						
	4.02750		Combination	-677.823	136.566	1142.7837
4	4.47500	envSLU	Combination	-657.087	101.085	1225.0981
4	4.47500	envSLU	Combination	-657.087	101.085	1225.0981
4	4.92250	envSLII	Combination	-636.352	68.166	1317.6156
4	4.92250		Combination	-636.352	68.166	1317.6156
4	5.37000	envSLU	Combination	-615.616	37.807	1419.5721
4	5.37000	envSLU	Combination	-615.616	37.807	1419.5721
4	5.81750	envSLU	Combination	-594.881	10.008	1530.2038
4						
	5.81750		Combination	-594.881	10.008	1530.2038
4	6.26500	envSLU	Combination	-574.145	-15.229	1648.7465
4	6.26500	envSLU	Combination	-574.145	-15.229	1648.7465
4	6.71250	envSLU	Combination	-553.410	-37.905	1774.4365
4	6.71250		Combination	-553.410	-37.905	1774.4365
4	7.16000	envSLU	Combination	-532.674	-58.021	1906.5096
4	7.16000	envSLU	Combination	-532.674	-58.021	1906.5096
4	7.60750	envSLU	Combination	-511.938	-75.576	2044.2018
4	7.60750		Combination	-511.938	-75.576	2044.2018
4	8.05500	envSLU	Combination	-491.203	-90.570	2186.7493
4	8.05500	envSLU	Combination	-491.203	-90.570	2186.7493
4	8.50250	envSLU	Combination	-470.467	-103.003	2333.3881
4	8.50250		Combination	-470.467	-103.003	2333.3881
4	8.50758		Combination	-470.232	-103.130	2335.0732
4	0.44242	envSLU	Combination	-1527.970	-78.257	-438.6131
4	0.44750	envSLU	Combination	-1527.735	-78.636	-438.2146
4	0.44750	envSLU	Combination	-1527.735	-78.636	-438.2146
4	0.89500		Combination	-1506.999	-111.155	-395.6852
4	0.89500		Combination	-1506.999	-111.155	-395.6852
4	1.34250	envSLU	Combination	-1486.264	-141.966	-338.9857
4	1.34250	envSLU	Combination	-1486.264	-141.966	-338.9857
4	1.79000		Combination	-1465.528	-171.071	-268.8800
4	1.79000		Combination	-1465.528	-171.071	-268.8800
4	2.23750	envSLU	Combination	-1444.793	-198.468	-186.1321
4	2.23750	envSLU	Combination	-1444.793	-198.468	-186.1321
4	2.68500	envSLU	Combination	-1424.057	-224.158	-91.5061
4	2.68500		Combination	-1424.057	-224.158	-91.5061
4	3.13250	envSLU	Combination	-1403.322	-248.140	14.2342
4	3.13250	envSLU	Combination	-1403.322	-248.140	14.2342
4	3.58000	envSLU	Combination	-1382.586	-270.416	130.3248
4	3.58000		Combination	-1382.586	-270.416	130.3248
4	4.02750		Combination	-1361.851	-290.984	256.0016
4	4.02750	envSLU	Combination	-1361.851	-290.984	256.0016
4	4.47500	envSLU	Combination	-1341.115	-309.845	390.3631
4	4.47500		Combination	-1341.115	-309.845	390.3631
4	4.92250		Combination	-1320.379	-326.999	352.5887
4	4.92250	envSLU	Combination	-1320.379	-326.999	352.5887
4	5.37000	envSLU	Combination	-1299.644	-342.445	328.9729
4	5.37000	envST.II	Combination	-1299.644	-342.445	328.9729
4	5.81750		Combination	-1278.908	-356.185	
						318.3698
4	5.81750		Combination	-1278.908	-356.185	318.3698
4	6.26500	envSLU	Combination	-1258.173	-368.217	319.6334
4	6.26500		Combination	-1258.173	-368.217	319.6334
4	6.71250		Combination	-1237.437	-378.542	331.6176
4	6.71250		Combination	-1237.437	-378.542	331.6176
4	7.16000	envSLU	Combination	-1216.702	-387.159	353.1767
4	7.16000	envSLU	Combination	-1216.702	-387.159	353.1767
4	7.60750		Combination	-1195.966	-394.070	383.1645
4	7.60750		Combination	-1195.966	-394.070	383.1645
4	8.05500	envSLU	Combination	-1175.231	-399.273	420.4351

LINEA PESCARA-BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA PROGETTO DEFINITIVO

SL02 sottovia viabilità NV07 km 10+075

RELAZIONI DI CALCOLO SCATOLARE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI02
 02 D 78
 CL
 SL0200 001
 A
 77 di 77

4	8.05500	envSLU Combination	-1175.231	-399.273	420.4351
4	8.50250	envSLU Combination	-1154.495	-402.769	463.8426
4	8.50250	envSLU Combination	-1154.495	-402.769	463.8426
4	8.50758	envSLU Combination	-1154.260	-402.799	464.3662