COMMITTENTE:

PROGETTAZIONE:

CUP J47I09000030009

U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

TIPO DOCUMENTO

FABBRICATO TECNOLOGICO GA NORD km 26+771 Relazione di Calcolo Fabbricato e Vasca per Serbatoio

SCAL	_A:	
	-	
		_

COMMESSA	LOTTO	FASE	ENIE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	KEV
N M O Z	1 0	D	2 6	CL	F A 1 2 0 0	0 0 1	Α

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	M. Andreani	Novembre 2018	F. Coppini	Novembre 2018	S. Borelli	Novembre 2018	Fisaciji Novembre 2018
								ASTRUT neesee Sa delta Prov
								bo JAFR
								LFERR = Dott

File: NM0Z10D26CLFA1200001A.doc n. Elab.: X

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NMOZ 10 D 26 CL FA1200 001 A 2 DI 145

Sommario

1	Scor	po del Documento5				
2	Nori	nativa di Riferimento	6			
3	Cara	tteristiche dei Materiali	7			
	3.1	Calcestruzzo Strutture di Fondazione	7			
	3.2	Calcestruzzo Strutture in Elevazione	7			
	3.3	Acciaio da c.a.	8			
4	Desc	crizione dell'intervento	9			
5	Mod	lellazione della Struttura	11			
6	Ana	lisi Modale	14			
7	Ana	lisi dei Carichi	16			
	7.1	Peso Proprio degli Elementi Strutturali	16			
	7.2	Carichi Permanenti Non Strutturali	16			
	7.3	Carichi Variabili	18			
	7.4	Azione della Neve	19			
	7.5	Azione del Vento	20			
	7.6	Azione Termica	22			
	7.7	Azione Sismica	24			
8	Com	ıbinazioni di Carico	28			
9	Solle	ecitazioni	32			
	9.1	Solaio di Copertura.	32			
	9.2	Telaio Filo Fisso 1	33			
	9.3	Telaio Filo Fisso B	39			
	9.4	Trave di Colmo	41			
	9.5	Platea di Fondazione	44			
	9.6	Nervature Platea di Fondazione	48			
10) Veri	fiche sul Solaio	49			
	10.1	Dimensionamento Traliccio	49			
	10.2	Verifiche SLU Solaio	50			
	10.3	Verifiche SLE Solaio	52			
1	l Veri	fiche Trave Filo Fisso B	54			
	11.1	Verifiche SLU – Flessione	55			
	11.2	Verifiche SLU – Taglio	57			
	11.3	Verifiche SLE – Tensione	58			
	11.4	Verifiche SLE – Fessurazione	61			

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

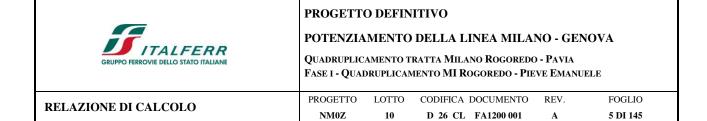
QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NMOZ 10 D 26 CL FA1200 001 A 3 DI 145

12 Vei	rifiche Tirante Filo Fisso 4	64
12.1	Verifiche SLU – Flessione	64
12.2	Verifiche SLU – Taglio	66
12.3	Verifiche SLE – Tensione	68
12.4	Verifiche SLE – Fessurazione	71
13 Vei	rifiche Corrente Superiore Filo Fisso 1	74
13.1	Verifiche SLU – Flessione	75
13.2	Verifiche SLU – Taglio	77
13.3	Verifiche SLE – Tensione	78
13.4	Verifiche SLE – Fessurazione	81
14 Ve	rifiche Pilastro B4	84
14.1	Verifiche SLU – Pressoflessione Deviata	85
14.2	Verifiche SLU – Taglio	87
14.3	Verifiche SLE – Tensione	89
14.4	Verifiche SLE – Fessurazione	92
15 Ve	rifiche Pilastro B1	95
15.1	Verifiche SLU – Pressoflessione Deviata	96
15.2	Verifiche SLU – Taglio	98
15.3	Verifiche SLE – Tensione	100
15.4	Verifiche SLE – Fessurazione	103
16 Ve	rifiche degli Elementi Strutturali in Termini di Contenimento del Danno agli Elem	nenti Non
	li	
17 Vei	rifica Sismica Tamponamenti	107
18 Vei	rifiche Platea di Fondazione	110
18.1	Verifiche SLU – Flessione	111
18.2	Verifiche SLU – Taglio	112
18.3	Verifiche SLE – Tensione	112
18.4	Verifiche SLE – Fessurazione	114
19 Ve	rifiche Nervature Platea di Fondazione	116
19.1	Verifiche SLU – Flessione	116
19.2	Verifiche SLU – Taglio	116
19.3	Verifiche SLE – Tensione	117
19.4	Verifiche SLE – Fessurazione	119
20 Va	sca per Serbatoio	120
20.1	Materiali	120
20.	1.1 Calcestruzzo Vasca per Serbatoio	120


POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
NM0Z	10	D 26 CL FA1200 001	A	4 DI 145

	20.1.2	Acciaio da c.a	120
2	0.2 Ca	ratterizzazione dei Terreni	121
	20.2.1	Caratterizzazione Geotecnica	121
	20.2.2	Caratterizzazione Sismica	121
2	0.3 So	letta Superiore	122
	20.3.1	Analisi dei Carichi	
	20.3.2	Sollecitazioni Soletta Superiore	123
	20.3.3	Verifica Soletta Superiore	124
2	0.4 Pie	edritti e Soletta Inferiore	127
	20.4.1	Analisi dei Carichi	128
	20.4.2	Combinazioni di Carico	130
	20.4.3	Sollecitazioni Piedritti e Soletta Inferiore	132
	20.4.4	Verifiche Piedritti	136
	20.4.5	Verifiche Soletta inferiore	140
21	Conclus	ioni	144
22	Allegato	o – Tabulati di Calcolo	145

1 SCOPO DEL DOCUMENTO

Il presente documento si inquadra nell'ambito delle opere civili relative al Progetto Definitivo del potenziamento infrastrutturale della linea Milano – Genova nella tratta fra la stazione di Milano Rogoredo e la stazione di Pavia, Fase I "Quadruplicamento Milano Rogoredo – Pieve Emanuele".

In particolare, la presente relazione di calcolo ha come oggetto le verifiche strutturali delle opere relative al Fabbricato Tecnologico GA Nord, che verrà realizzato alla progressiva Pk 26+770,51, e della vasca interrata per il serbatoio del Gruppo Elettrogeno a servizio dello stesso.

Nel seguito, dopo una breve descrizione dell'opera, si analizzano le azioni gravanti sulla struttura e si determinano le massime sollecitazioni per le verifiche strutturali.

Le analisi sono state svolte in accordo al Decreto Ministero Infrastrutture del 14 Gennaio 2008 "Nuove norme tecniche per le costruzioni", nel seguito indicato con NTC 2008. Le verifiche strutturali sono state svolte con il metodo semiprobabilistico agli Stati Limite.

2 NORMATIVA DI RIFERIMENTO

I calcoli e le disposizioni esecutive sono conformi alle norme attualmente in vigore e nel seguito elencate:

- D. M. Min. LL. PP. del 14 gennaio 2008 Norme Tecniche per le Costruzioni;
- CIRCOLARE 2 febbraio 2009. n.617 Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008;
- UNI EN 206:2016 "Calcestruzzo Specificazione, prestazione, produzione e conformità";
- UNI EN 11104:2016 "Calcestruzzo Specificazione. prestazione. produzione e conformità Specificazioni complementari per l'applicazione della EN 206;
- UNI EN 1992-1-1:2015 "Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per edifici";
- UNI EN 1998-1:2013 "Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici";
- RFI DTC INC CS SP IFS 001 A Specifica per la progettazione geotecnica delle opere civili ferroviarie;
- RFI DTC SI MA IFS 001 A Manuale di progettazione delle opere Civili;
- RFI DTC SI SP IFS 001 A Capitolato Generale di Appalto delle Opere Civili.

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
NM0Z	10	D 26 CL FA1200 001	A	7 DI 145

3 CARATTERISTICHE DEI MATERIALI

3.1 Calcestruzzo Strutture di Fondazione

Per la realizzazione della platea di fondazione si prevede l'utilizzo di calcestruzzo avente classe di resistenza C25/30 ($R_{ck} \ge 30 \text{ N/mm}^2$), che presenta le seguenti caratteristiche:

• Resistenza Caratteristica a Compressione (Cilindrica) $\rightarrow f_{ck} = 0.83 \times R_{ck} = 25 \text{ N/mm}^2$

• Classe di Esposizione \rightarrow XC2

• Classe di Consistenza → S4/S5

• Resistenza Media a Compressione $\rightarrow f_{cm} = f_{ck} + 8 = 33 \text{ N/mm}^2$

• Modulo Elastico $\rightarrow E_{cm}=22000\times(f_{cm}/10)^{0.3}=31.475 \text{ N/mm}^2$

• Coefficiente di Sicurezza $\rightarrow \gamma_c = 1.5$

• Resistenza di Calcolo a Compressione $\rightarrow f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 14,17 \text{ N/mm}^2$

• Resistenza a Trazione Media $\rightarrow f_{ctm} = 0.30 \times f_{ck}^{2/3} = 2.56 \text{ N/mm}^2$

• Resistenza a Trazione $\rightarrow f_{ctk} = 0.7 \times f_{ctm} = 1.80 \text{ N/mm}^2$

• Resistenza a Trazione di Calcolo $\rightarrow f_{ctd} = f_{ctk} / \gamma_c = 1,20 \text{ N/mm}^2$

• Resistenza a Compressione (Comb. Rara) $\rightarrow \sigma_c = 0.60 \times f_{ck} = 15,00 \text{ N/mm}^2$

• Resistenza a Compressione (Comb. Quasi Permanente) $\rightarrow \sigma_c = 0.45 \times f_{ck} = 11.25 \text{ N/mm}^2$

• Resistenza tangenziale caratteristica di aderenza $\rightarrow f_{bk} = 2,25 \, \eta \, f_{ctk} = 4,04 \, \text{N/mm}^2$

• Resistenza tangenziale di aderenza di calcolo $\rightarrow f_{bd} = f_{bk} / \gamma_c / 1,5 = 1,80 \text{ N/mm}^2$

• Deformazione Ultima a Rottura $\rightarrow \varepsilon_{cu} = 0{,}0035$

Per gli elementi strutturali della fondazione si assume un copriferro di 40 mm (valutato al netto della staffa).

Per quanto riguarda la scelta degli stati limite di fessurazione, si fa riferimento a quanto riportato nella Tabella 4.1.IV delle NTC 2008, assumendo di trovarsi in condizioni ambientali ordinarie con armatura poco sensibile; i limiti adottati per la verifica nei confronti di tale stato limite sono riportati di seguito:

Combinazione delle Azioni Frequente \rightarrow $w_d \le w_3 = 0,4 \text{ mm}$ Combinazione delle Azioni Quasi Permanente \rightarrow $w_d \le w_2 = 0,3 \text{ mm}$

3.2 Calcestruzzo Strutture in Elevazione

Per la realizzazione della struttura in elevazione si prevede l'utilizzo di calcestruzzo avente classe di resistenza C30/37 ($R_{ck} \ge 37 \text{ N/mm}^2$), che presenta le seguenti caratteristiche:

• Resistenza Caratteristica a Compressione (Cilindrica) $\rightarrow f_{ck} = 0.83 \times R_{ck} = 30 \text{ N/mm}^2$

• Classe di Esposizione \rightarrow XC3

• Classe di Consistenza → S4

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
NM0Z	10	D 26 CL FA1200 001	A	8 DI 145

•	Resistenza Media a Compressione	$\rightarrow f_{cm} = f_{ck} + 8 = 38 \text{ N/mm}^2$
•	Modulo Elastico	$\rightarrow E_{cm} = 22000 \times (f_{cm}/10)^{0.3} = 33.019 \text{ N/mm}^2$
•	Coefficiente di Sicurezza	$\rightarrow \gamma_c = 1.5$
•	Resistenza di Calcolo a Compressione	\rightarrow f _{cd} = $\alpha_{cc} \times$ f _{ck} / γ_c = 17,40 N/mm ²
•	Resistenza a Trazione Media	\rightarrow f _{ctm} = 0,30 × f _{ck} ^{2/3} = 2,94 N/mm ²
•	Resistenza a Trazione	$\rightarrow f_{ctk} = 0.7 \times f_{ctm} = 2.06 \text{ N/mm}^2$
•	Resistenza a Trazione di Calcolo	\rightarrow f _{ctd} = f _{ctk} / γ _c = 1,37 N/mm ²
•	Resistenza a Compressione (Comb. Rara)	$\rightarrow \sigma_c = 0.60 \times f_{ck} = 18.43 \text{ N/mm}^2$
•	Resistenza a Compressione (Comb. Quasi Permanente)	$\rightarrow \sigma_c = 0.45 \times f_{ck} = 13.82 \text{ N/mm}^2$

Resistenza tangenziale caratteristica di aderenza $\rightarrow f_{bk} = 2,25 \text{ } \eta \text{ } f_{ctk} = 4,63 \text{ N/mm}^2$ Resistenza tangenziale di aderenza di calcolo $\rightarrow f_{bd} = f_{bk} / \gamma_c / 1,5 = 2,06 \text{ N/mm}^2$

• Deformazione Ultima a Rottura $\rightarrow \varepsilon_{cu} = 0.0035$

Per gli elementi della struttura in elevazione si assume un copriferro di 30 mm (valutato al netto della staffa).

Per quanto riguarda la scelta degli stati limite di fessurazione, si fa riferimento a quanto riportato nella Tabella 4.1.IV delle NTC 2008, assumendo di trovarsi in condizioni ambientali ordinarie con armatura poco sensibile; i limiti adottati per la verifica nei confronti di tale stato limite sono riportati di seguito:

Combinazione delle Azioni Frequente \rightarrow $w_d \le w_3 = 0,4 \text{ mm}$ Combinazione delle Azioni Quasi Permanente \rightarrow $w_d \le w_2 = 0,3 \text{ mm}$

3.3 Acciaio da c.a.

Barre B450C

•	Tensione di snervamento caratteristica	\rightarrow f _{yk} \geq 450 N/mm ²
•	Tensione caratteristica a rottura	$\rightarrow f_{tk} \geq 540 \ N/mm^2$
•	Fattore di sicurezza acciaio	$\rightarrow \gamma_s = 1,15$
•	Resistenza a trazione di calcolo	\rightarrow f _{yd} = f _{yk} / γ _s = 391 N/mm ²
•	Resistenza a Trazione (Comb. Rara)	$\rightarrow \sigma_s = 0.80 \times f_{yk} = 360.00 \text{ N/mm}^2$
•	Modulo Elastico	$\rightarrow E_a = 210.000 \text{ N/mm}^2$
•	Deformazione di Snervamento di Progetto	$\rightarrow \varepsilon_{\rm yd} = 0.0019$
•	Densità	$\rightarrow \rho = 7.850 \text{ kg/m}^3$

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NMOZ 10 D 26 CL FA1200 001 A 9 DI 145

4 DESCRIZIONE DELL'INTERVENTO

Per la realizzazione del nuovo Fabbricato Tecnologico è stata individuata un'area del Comune di Pavia in prossimità die binari e posta a Est del tracciato ferroviario esistente, che è resa accessibile da una strada di nuova realizzazione che si sviluppa da Viale della Repubblica.

Per l'edificio si prevede una struttura intelaiata in cemento armato che si sviluppa su un solo piano fuori terra. Esso ha dimensione rettangolare in pianta di circa 33,90x6,30 m ed è caratterizzato da una copertura a capanna la cui altezza massima in corrispondenza del colmo è circa pari a 4,60 m.

Nel complesso la struttura è costituita da 8 telai in cemento armato di larghezza pari a 6 m e interasse di 4,80 m. Gli elementi strutturali verticali di ciascun telaio sono due pilastri di sezione 30x40 cm, mentre in sommità è presente una capriata triangolare in cemento armato, costituita da due correnti superiori di 30x16 cm inglobati nello spessore del solaio di copertura e un tirante inferiore di 30x30 cm. Le travi di bordo che collegano i vari telai hanno sezione estradossata di 30x59 cm mentre la trave di colmo ha una sezione di forma convessa pentagonale inglobata nel getto dei solai.

Questi ultimi, orditi parallelamente alla pendenza della falda di copertura, sono realizzati con lastre parzialmente prefabbricate di tipo predalle, con blocchi di alleggerimento in polistirolo e getto di completamento realizzato in opera. Vista l'esiguità dei carichi che interessano la copertura, non è prevista soletta superiore di ripartizione dei carichi per il solaio, il cui spessore totale è di 16 cm (12+4).

La fondazione è realizzata con una platea di 30 cm di spessore, caratterizzata da nervature laterali alte 95 cm rispetto all'estradosso della fondazione.

Le tamponature esterne sono realizzate con blocchi forati di spessore pari a 30 cm posti in asse ai pilastri del fabbricato, intonacati internamente e rivestiti esternamente con uno strato coibentante in EPS di 10 cm di spessore, protetto da un ulteriore strato di forati da 8 cm a loro volta intonacati sull'esterno.

La pavimentazione interna è realizzata con un pavimento flottante con plenum di 60 cm, poggiato su una soletta di ripartizione di 5 cm posta al di sopra di uno strato di XPS ad alta densità di 8 cm; questo a sua volta è posto su un vespaio aerato costituito da igloo di 27 cm e soletta in c.a. di 5 cm armata con rete elettrosaldata.

In adiacenza al fabbricato è prevista la collocazione del Gruppo Elettrogeno e del corrispondente serbatoio. Per la trattazione delle caratteristiche specifiche e del dimensionamento della vasca interrata contenente il serbatoio del GE si rimanda al § 20 *Vasca per Serbatoio* della presente relazione.

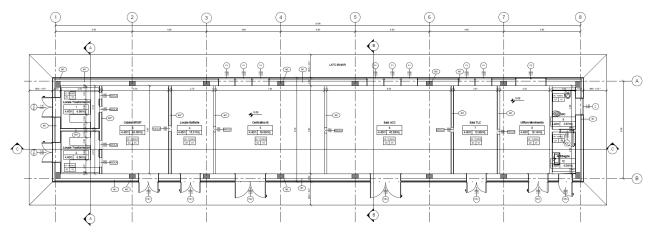


Figura 4.1 – Pianta Architettonica Piano Terra

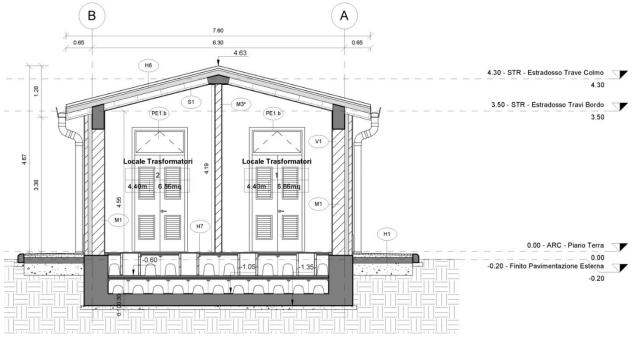


Figura 4.2 – Sezione A – A

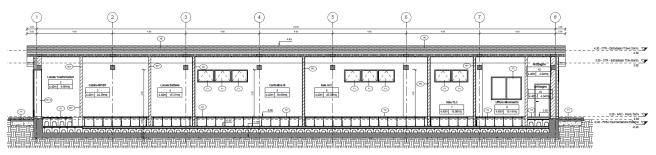


Figura 4.3 – Sezione C – C

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM0Z 10 D 26 CL FA1200 001 A 11 DI 145

5 MODELLAZIONE DELLA STRUTTURA

L'analisi della struttura è condotta con il programma agli elementi finiti SAP2000 versione 19.0, seguendo quanto specificato dalle NTC 2008 al § 7.2.6.

In particolare, vengono realizzati due distinti modelli agli elementi finiti per l'individuazione delle sollecitazioni che interessano rispettivamente la struttura in elevazione e le fondazioni del fabbricato.

Per individuare le sollecitazioni che interessano gli elementi della struttura in elevazione, viene realizzato un modello tridimensionale in cui sono inseriti gli elementi strutturali principali (travi e pilastri modellati con elementi finiti monodimensionali tipo *frame*). In questo modello la fondazione non è rappresentata e i pilastri sono vincolati alla base con un vincolo di tipo incastro. Le tamponature e i solai non vengono modellati direttamente, ma sono rappresentati unicamente in termini di massa; dal momento che per il solaio di copertura non è prevista la realizzazione di una soletta di ripartizione dei carichi, nel modello non viene inserito alcun vincolo di piano rigido (*Diaphragm Constraint*) in corrispondenza del solaio di piano primo e di copertura (vedi NTC 2008 al § 7.2.6).

Secondo quanto suggerito dalle NTC 2008 al § 7.2.6, per tener conto della fessurazione dei materiali fragili, la rigidezza flessionale e a taglio degli elementi in cemento armato può essere abbattuta fino al 50%. Nel modello realizzato su SAP2000, si abbatte dunque il modulo di rigidezza di tutti gli elementi strutturali della metà ($E_{prog} = 0.50*E_{cls}$).

Data la natura monodimensionale degli elementi *frame*, nei collegamenti non viene tenuto conto degli effettivi ingombri degli elementi strutturali, che hanno una lunghezza reale inferiore alla distanza fra i loro nodi estremali nello schema di calcolo. È possibile risolvere questo problema assegnando a questi elementi dei *End (Length) Offset* che consentono di identificare un tratto di rigidezza infinita intorno a ogni nodo, la cui lunghezza è calcolata in automatico dal software, sulla base della geometria degli elementi che si intersecano nel nodo stesso. In questo modo i valori massimi delle sollecitazioni delle travi in corrispondenza degli appoggi non vengono letti esattamente in asse al nodo ma a una distanza che corrisponde a metà dell'altezza della sezione del pilastro convergente nel nodo stesso.

Nel secondo modello viene invece rappresentata la platea di fondazione con le nervature di bordo, modellate con elementi tipo *shell* e poggiate su suolo elastico la cui costante di Winkler è assunta pari a $k_v = 6.000$ kN/m³ in direzione verticale e $k_h = 2.000$ kN/m³ in direzione orizzontale, in analogia con le indicazioni contenute nella "Relazione Geotecnica" relativa al Fabbricato.

Su tale platea, oltre ai carichi agenti al piano terra del fabbricato, vengono applicate anche le reazioni di base dei pilastri ottenute dal modello della struttura in elevazione per ognuna delle combinazioni di carico considerate, cambiate di segno. Tenendo conto delle indicazioni riportate al \S 7.2.5 delle NTC 2008, si assumono come azioni in fondazione trasmesse dagli elementi soprastanti quelle derivanti direttamente dall'analisi della struttura in elevazione cambiate di segno, trattandosi di un'analisi elastica condotta ponendo q = 1.

Una volta lanciata l'analisi, ognuno dei due modelli può essere direttamente esportato nel software VIS di CSI, all'interno del quale vengono eseguite le verifiche di resistenza agli stati limite ultimi e il controllo tensione e fessurazione per gli stati limite di esercizio.

	PROGETTO DEFINITIVO					
	POTENZIAMENTO DELLA LINEA MILANO - GENOVA					
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE					
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO					
	NM0Z 10 D 26 CL FA1200 001 A 12 DI 145					

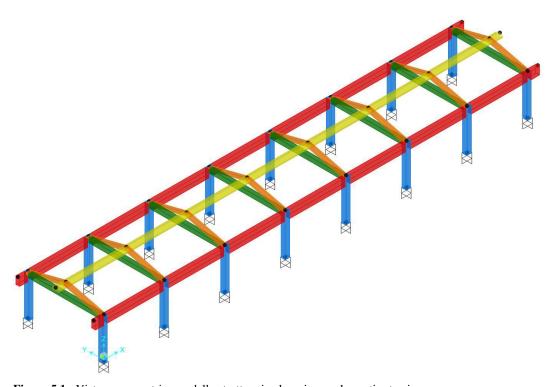


Figura 5.1 - Vista assonometrica modello struttura in elevazione - elementi estrusi

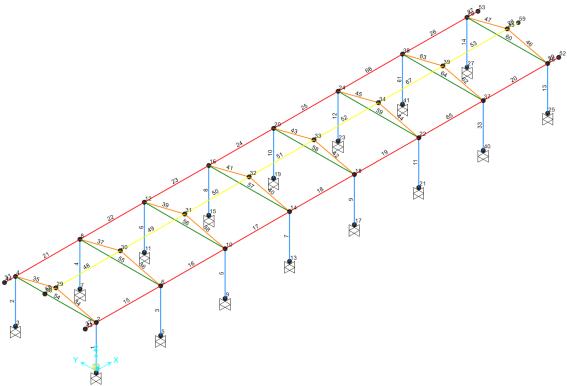


Figura 5.2 - Vista assonometrica modello struttura in elevazione - numerazione elementi frame

Figura 5.3 – Vista assonometrica modello platea di fondazione

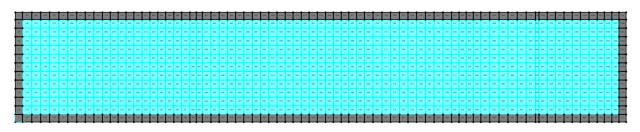


Figura 5.4 – Pianta del modello di analisi della platea di fondazione – numerazione elementi shell

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM0Z 10 D 26 CL FA1200 001 A 14 DI 145

6 ANALISI MODALE

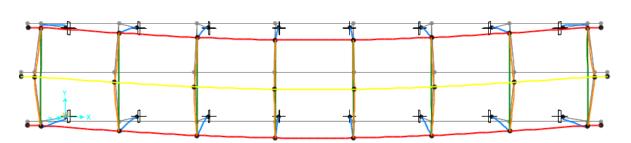
L'analisi modale consente di individuare i modi propri di vibrare della struttura, indipendentemente dalle forzanti che agiscano sulla stessa. Essa permette inoltre di conoscere, per ogni modo di vibrare della struttura, il periodo e la massa partecipante, ovvero la percentuale di massa attivata nella i-esima forma modale. Per una corretta progettazione sismica sono desiderabili periodi di vibrazione piuttosto bassi (tra 0,4 e 2 secondi); inoltre, è auspicabile che le prime tre forme modali siano quanto più possibile "pure": in particolare, idealmente, le prime due forme modali dovrebbero essere di traslazione, e la terza di rotazione. La condizione di forma traslazionale in direzione Ux o Uy si realizza quando si ha una massa partecipante nella data direzione Ux o Uy maggiore del 70% e una massa attivata nella rotazione Rz pressoché nulla. Al contrario, la condizione di forma puramente rotazionale si verifica quando le masse attivate nella traslazione Ux e Uy sono trascurabili e si ha una percentuale superiore al 70% di massa attivata nella rotazione Rz.

Secondo quanto riportato al § 7.3.3 delle NTC 2008, devono essere considerati tutti i modi con massa partecipante significativa. È opportuno a tal riguardo considerare tutti i modi con massa partecipante superiore al 5% e comunque un numero di modi la cui massa partecipante totale sia superiore all'85%.

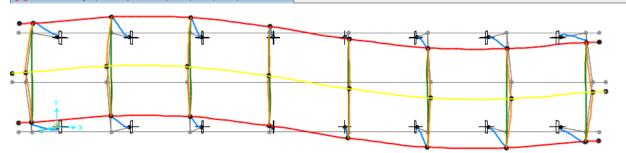
Si riportano di seguito la tabella riassuntiva di periodo e masse partecipanti relative ai primi 10 modi di vibrare e le immagini relative ai primi tre modi di vibrare della struttura.

OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ	RZ	SumRZ
Text	Text	Unitless	Sec	Unitless							
MODAL	Mode	1	0,37	0,00%	87,77%	0,00%	0,00%	87,77%	0,00%	0,00%	0,00%
MODAL	Mode	2	0,34	0,00%	0,00%	0,00%	0,00%	87,77%	0,00%	74,68%	74,68%
MODAL	Mode	3	0,31	73,50%	0,00%	0,00%	73,50%	87,77%	0,00%	0,00%	74,68%
MODAL	Mode	4	0,29	0,00%	9,59%	0,00%	73,50%	97,35%	0,00%	0,00%	74,68%
MODAL	Mode	5	0,25	0,00%	0,00%	0,00%	73,50%	97,35%	0,00%	19,90%	94,58%
MODAL	Mode	6	0,22	0,00%	2,46%	0,00%	73,50%	99,81%	0,00%	0,00%	94,58%
MODAL	Mode	7	0,19	0,00%	0,00%	0,00%	73,50%	99,81%	0,00%	4,44%	99,02%
MODAL	Mode	8	0,17	0,00%	0,00%	0,00%	73,50%	99,81%	0,00%	0,97%	99,98%
MODAL	Mode	9	0,17	0,00%	0,19%	0,00%	73,50%	100,00%	0,00%	0,00%	99,98%
MODAL	Mode	10	0,16	26,50%	0,00%	0,00%	99,99%	100,00%	0,00%	0,00%	99,98%

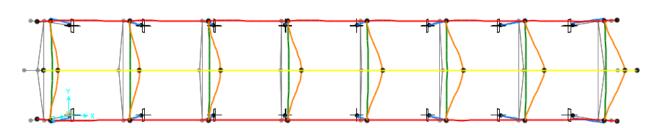
POTENZIAMENTO DELLA LINEA MILANO - GENOVA


QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO


PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM0Z 10 D 26 CL FA1200 001 A 15 DI 145



Deformed Shape (MODAL) - Mode 2; T = 0,33647; f = 2,97201

K Deformed Shape (MODAL) - Mode 3; T = 0,31009; f = 3,22483

7 ANALISI DEI CARICHI

Come prescritto dalle NTC 2008, sono state considerate agenti sulla struttura diverse condizioni di carico elementari, combinate tra loro in modo da determinare gli effetti più sfavorevoli ai fini delle verifiche dei singoli elementi strutturali.

Per il calcolo delle sollecitazioni sugli elementi strutturali è stato impiegato il programma di calcolo SAP2000.

7.1 Peso Proprio degli Elementi Strutturali

Il peso degli elementi strutturali modellati (travi, pilastri) viene calcolato automaticamente dal programma di calcolo utilizzato, assumendo $\gamma_{cls} = 25 \text{ kN/m}^3$.

Il solaio di copertura viene realizzato con lastre prefabbricate di tipo predalle, le cui caratteristiche sono riportate nella tabella seguente. Come già detto, non è prevista soletta superiore di ripartizione dei carichi.

Tipologia Solaio	Spessore Strati	Spessore Totale	Peso Solaio – G ₁	
Tipologia Solaio	[cm]	[cm]	$[kN/m^2]$	
Solaio di Piano	(12+4)	16	2,70	

7.2 Carichi Permanenti Non Strutturali

• <u>Tamponatura Esterna M2</u>

Descrizione	Spessore	Densità	Carico – G ₂	
Descrizione	[cm]	[kg/m ³]	$[kN/m^2]$	
Intonaco e tinteggiatura	2,0	1.400	0,28	
Blocco in Termolaterizio	8,0	760	0,61	
tipo Poroton	0,0	700	0,01	
Isolamento EPS	10,0	18	0,02	
Blocco in Termolaterizio	30,0	760	2,28	
tipo Poroton	50,0	700	2,26	
Intonaco civile liscio 1,5		1.400	0,21	
TOTALE	51,5		3,40	

Considerando che l'altezza dell'edificio all'intradosso della trave di bordo è $H_{int} = 3,15$ m e che l'altezza massima delle pareti poste sui lati corti dell'edificio è circa pari a $H_{max} = 4,2$ m, si può considerare un'altezza media del tamponamento esterno pari a $H_{tamp} = 3,85$ m.

Il carico agente sui cordoli laterali della fondazione può essere in definitiva assunto pari a

 $G_{2_{\text{Tamp}}} = 13,10 \text{ kN/m}$

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
NM0Z	10	D 26 CL FA1200 001	A	17 DI 145

• Solaio di Fondazione

Sulla platea di fondazione sono previste tre tipologie di pacchetti di finitura, in funzione delle diverse destinazioni d'uso dei locali, come descritto nelle tabelle seguenti:

H2 - SOLAIO A TERRA PAVIMENTO GALLEGGIANTE E IGLOO

Descrizione	Spessore	Densità	Carico – G ₂
Descrizione	[cm]	[kg/m ³]	$[kN/m^2]$
Pavimento Galleggiante	60		0,80
Soletta in c.a.	5	2.500	1,25
Foglio separatore in			
polietilene			
Isolamento XPS	8	50	0,04
Soletta c.a.	5	2.500	1,25
Intercapedine cupolex	27		0,04
Incidenza Tramezzi			1,60
TOTALE	105		4,98

H3 - SOLAIO A TERRA LOCALI SPOGLIATOIO E WC

Descrizione	Spessore [cm]	Densità [kg/m³]	Carico – G ₂ [kN/m ²]
Pavimento in Gres Porcellanato	3	2.300	0,69
Massetto di posa Pavimentazione	4	1.200	0,48
Massetto alleggerito in argilla espansa o perlite	8	1.200	0,96
Soletta c.a.	5	2.500	1,25
Intercapedine cupolex NON Aerata	40		0,06
Soletta c.a.	5	2.500	1,25
Foglio separatore in polietilene			
Isolamento XPS	8	50	0,04
Soletta c.a.	5	2.500	1,25
Intercapedine cupolex	27		0,04
Incidenza Tramezzi			1,60
TOTALE	105		7,62

H7 - SOLAIO A TERRA LOCALI TRASFORMATORI

Descrizione	Spessore	Densità	Carico – G ₂
Descrizione	[cm]	[kg/m ³]	$[kN/m^2]$
Soletta in c.a.	7	2.500	1,75
Intercapedine cupolex NON Aerata	upolex 50		0,05
Soletta c.a.	5	2.500	1,25
Foglio separatore in polietilene			
Soletta c.a.	5	2.500	1,25
Intercapedine cupolex	35		0,05
Incidenza Tramezzi			1,60
TOTALE	103		5,96

• Solaio di Copertura

I carichi associati alle finiture di copertura sono riassunti nella tabella seguente:

H6 - SOLAIO COPERTURA

Descrizione	Spessore [cm]	Densità [kg/m³]	Carico – G_2 $[kN/m^2]$
Manto di copertura in tegole di laterizio	1,5		0,52
Guaina Impermeabilizzante	0,2	219	0,00
Massetto in cls alleggerito	4	1.200	0,48
Isolamento in XPS 12		50	0,06
TOTALE	17,7		1,06

7.3 Carichi Variabili

	Categoria	Denominazione	Qk [kN/m²]
Solaio di Copertura	Categoria H1 - Coperture Accessibili per sola Manutenzione	Q_H	0,5
	Cat. E2 - Ambienti ad uso industriale da valutarsi caso per caso – LOCALE CENTRALINA IS E BATTERIE	Q_E	18
Solaio di Fondazione	Cat. E2 - Ambienti ad uso industriale da valutarsi caso per caso – LOCALI TRASFORMATORI	Q_E	30
	Cat. E2 - Ambienti ad uso industriale da valutarsi caso per caso – TUTTI GLI ALTRI AMBIENTI	Q_E	10

7.4 Azione della Neve


L'azione della neve è stata valutata in conformità alle prescrizioni contenute nelle NTC 2008. Di seguito viene riportato il dettaglio del calcolo.

Regione: Lombardia Provincia: Pavia Comune: Pavia

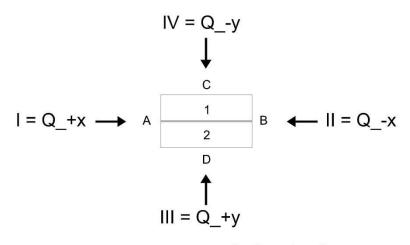
regione. Bomou	Tala Trovincia. Tavia					
CALCOLO AZION	IE DELLA NEVE - NTC §3.4					
Caratteristiche del Sito	Zona Altitudine s.l.m.	NTC 2008	§3.4.2	as =	I – Me 83	editerranea m
	Valore caratteristico del carico neve al suolo qsk = 1,50 kN/m ² , as \leq 200 m s.l.m. qsk = 1,35[1+(as/602) ²] kN/m ² , as $>$ 200 m s	s.l.m.		qsk =	1,50	kN/m²
Coefficiente di esposizione		NTC 2008	§3.4.3	$C_{\rm E}$ =	1	
Coefficiente Termico		NTC 2008	§3.4.4	$C_t =$	1	
Coefficiente di Forma	Caso II 0.5 μ ₁ (α _t) μ ₁	NTC 2008	§3.4.5.1	α μ1 (α) 0,5*μ1 (α)	14 0,8 0,4	0

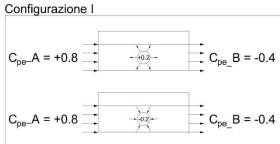
Per considerare le condizioni più gravose indotte dal carico neve sui diversi elementi strutturali, si fa riferimento ai tre casi descritti nella figura soprastante.

Carico Neve $Qk_Neve = \mu_I(\alpha) \ q_{sk} \ c_E \ c_t = 1,20 \ kN/m^2 \qquad \text{Caso I - Caso II Falda II - Caso III Falda I}$ $Qk_Neve = 0,5 \ \mu_I(\alpha) \ q_{sk} \ c_E \ c_t = 0,60 \ kN/m^2 \qquad \text{Caso II Falda I - Caso III Falda II}$

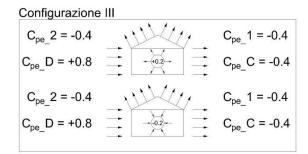
7.5 Azione del Vento

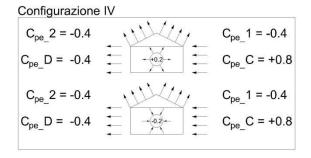
L'azione del vento è stata valutata in conformità con le prescrizioni contenute nelle NTC 2008. Di seguito viene riportato il dettaglio del calcolo.


Regione: Lombardia Provincia: Pavia Comune: Pavia


Regione. Loniot	adia 110 vinicia. 1 avia	Comune. 1	avia			
CALCOLO AZIONE DEL VENTO - NTC §3.3						
Velocità di	Zona	NTC 2008	tah 33I		1	
riferimento	Altitudine s.l.m.	1110 2000	uo. 5.5.1	as =	83	m
rijerimenio	Antitudine S.I.III.	NTC 2008	tah 33 I	a0 =	1.000	m
		NTC 2008		vb.0 =	25	m/s
		NTC 2008		ka =	0,01	1/s
	Velocità caratteristica del vento	1110 2000	uo. 3.3.1	Ku —	0,01	175
	10 m dal suolo, 10 min., cat. II, 50 anni			vb =	25	m/s
	10 111 041 54010, 10 111111, 0411 12, 00 411111			, 0		114 5
Amplificazione	Periodo di riferimento			Tr,0 =	75	anni
periodo ritorno	Coefficiente di ritorno	CNR207	§3.2.2	cr =	1,02	
F	Velocità caratteristica del vento		0	vb(Tr) =	25,59	m/s
	Pressione cinetica di riferimento (picco)			qb(Tr) =	409	N/m ²
	4			1 \ /		
Coefficiente di	Categoria di esposizione del sito					
esposizione	Terra oltre 30km e h<500m	NTC 2008	Fig. 3.3.2		III	
•	Classe di rugosità del terreno	NTC 2008	tab. 3.3.III		C	
	Coefficiente topografico			ct =	1	
		NTC 2008	tab. 3.3.II	kr =	0,20	
		NTC 2008	tab. 3.3.II	z0 =	0,10	m
		NTC 2008	tab. 3.3.II	zmin =	5	m
	Coefficiente di esposizione a zmin			$c_e(zmin) =$	1,71	
Coefficiente di	Coefficiente dinamico			cd =	1,0	
esposizione						
Coefficiente di	Coefficiente di Pressione Sopravento	Circ 617	§ C3.3.10	Cpe	±0,8	
forma	Coefficiente di Pressione Sottovento			Cpi	±0,2	
				Ср	1,00	

Pressione di calcolo p(zmin) = $q_b c_e c_p c_d = 699 \text{ N/m}^2$


Per considerare le condizioni più gravose indotte dal carico vento sui diversi elementi strutturali, si fa riferimento alle configurazioni riportate nella figura seguente, che considerano 4 scenari a seconda che il vento spiri in direzione $\pm X$ o $\pm Y$ e per ciascuno di essi valutano le differenti combinazioni possibili di Coefficiente di Forma interno e esterno su ogni facciata lambita.



In copertura il vento agisce come azione di sollevamento e per questo viene trascurato.

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO NM0Z 10 D 26 CL FA1200 001 A 22 DI 145

7.6 Azione Termica

Secondo quanto riportato dalle NTC 2008 al § 3.5.5, nel caso in cui la temperatura non costituisca azione fondamentale per la sicurezza o per l'efficienza funzionale della struttura, è consentito tener conto, per gli edifici, della sola componente uniforme di variazione termica ΔT_u , esprimibile come segue:

$$\Delta T_{\rm u} = T - T_0$$

in cui:

T = Temperatura media attuale

 T_0 = Temperatura iniziale alla data della costruzione T_0 .

Il valore di ΔT_u può essere ricavato dalla Tabella 3.5.II della stessa norma e per costruzioni in cemento armato protette può essere assunto pari a \pm 10°C. Per tener conto del fatto che questo fenomeno avviene in modo prolungato nel tempo e sarà quindi soggetto all'effetto della viscosità del calcestruzzo, per la valutazione delle sollecitazioni indotte sulla struttura si abbatte il modulo elastico a un terzo del valore medio.

Tuttavia, l'edificio in esame è caratterizzato da un regime di temperatura interna particolare: la maggior parte degli ambienti è infatti caratterizzata dalla presenza di apparati che da un lato sono responsabili di elevati carichi termici e dall'altro, trattandosi di macchinari a range esteso, sono in grado di operare a temperature molto elevate. Per questo, quasi tutti gli ambienti non sono dotati di impianto di condizionamento ma solo di un sistema di ventilazione forzata che garantisce il ricambio dell'aria interna.

Alla luce di queste considerazioni, viste le elevate dispersioni termiche di cui sono responsabili questi macchinari, si ipotizza che la temperatura degli ambienti interni oscilli intorno a un valore medio di 25°C, con punte massime estive di 45°C e minime invernali di 15°C. Sulla base di questa ipotesi, per l'edificio in esame la variazione stagionale di temperatura può essere considerata la seguente:

Periodo Estivo $45^{\circ}\text{C} - 25^{\circ}\text{C} = +20^{\circ}\text{C}$ Periodo Invernale $15^{\circ}\text{C} - 25^{\circ}\text{C} = -10^{\circ}\text{C}$

Questi sono i valori assunti come riferimento per la valutazione delle azioni termiche agenti sulla struttura, poiché risultano più restrittivi rispetto a quelli generali prescritti dalla norma. Anche in questo caso, trattandosi di un fenomeno lento, i suoi effetti potranno essere considerati abbattendo il modulo elastico del calcestruzzo a un terzo del valore medio.

L'effetto di queste variazioni termiche è stato valutato in un modello di analisi realizzato ad hoc e i risultati ottenuti dall'analisi della struttura soggetta alla sola azione termica sono riportati nella tabella seguente:

	PROGETTO DEFINITIVO					
	POTENZIAMENTO DELLA LINEA MILANO - GENOVA					
TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE					
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO					
REEFIZIONE DI CHECCEO	NM0Z 10 D 26 CL FA1200 001 A 23 DI 145					

ΔT	' =	+	20	°C

Travi	Nasce Sforzo Normale di Compressione, che ha un effetto benefico sugli elementi strutturali ed è pertanto trascurabile
IIavi	ai fini del loro dimensionamento
Pilastri	Nascono Momenti Flettenti e Sforzi di Taglio con valori massimi rispettivamente di circa 54 kNm e 30 kN. È tuttavia necessario sottolineare che, ai fini del dimensionamento degli elementi strutturali, le azioni indotte dalle variazioni termiche si combinano con le altre azioni gravanti sulla struttura solo nelle Combinazioni di Carico SLU, poiché assumono valore nullo in combinazione sismica, essendo $\psi_2(\Delta T) = 0$. Un incremento dei Momenti Flettenti e di Sforzi di Taglio agli SLU non risulta tuttavia rilevante per il dimensionamento dei pilastri, che per questo Stato Limite sono caratterizzati da rapporti D/C di circa 0,15, e per i quali la combinazione di carico dimensionante è sempre la combinazione sismica SLV, nella quale si registrano
	Momenti Flettenti e Sforzi di Taglio massimi e Sforzi Normali minimi.

$\Delta T = -10^{\circ} C$

Alla luce di quanto riportato nella tabella, si decide di trascurare il contributo delle variazioni termiche stagionali ai fini del dimensionamento degli elementi strutturali.

7.7 Azione Sismica

Nell'analisi dinamica lineare di un edificio soggetto a sisma l'azione sismica è rappresentata dallo spettro di risposta di progetto. La definizione di quest'ultimo avviene direttamente all'interno del software SAP2000, il quale fornisce gli spettri di risposta di riferimento per la verifica allo SLO, SLD e SLV, determinati conformemente a quanto prescritto dalla norma.

Per fornire gli spettri richiesti, il software richiede l'inserimento di alcuni parametri caratteristici della struttura in esame e del sito in cui si trova. In particolare, oltre alle coordinate geografiche, il programma richiede di specificare la Vita Nominale V_N dell'edificio e il suo Coefficiente d'Uso C_U , al fine di poter calcolare il periodo di riferimento dell'azione sismica $V_R = V_N * C_U$

Per la definizione della **Vita Nominale** da assegnare ad ogni singolo manufatto facente parte di un'infrastruttura ferroviaria si rimanda alla Tabella 2.5.1.1.1-1 *Vita Nominale delle infrastrutture ferroviarie* contenuta nel "MANUALE DI PROGETTAZIONE DELLE OPERE CIVILI – PARTE 2 SEZIONE II – Ponti e Strutture" (RFI DTC SI PS MA IFS 001 B del 22.12.2017) e di seguito riportata.

TIPO DI COSTRUZIONE (1)	Vita Nominale V _N [Anni] ⁽¹⁾
OPERE NUOVE SU INFRASTRUTTURE FERROVIARIE PROGETTATE CON LE NORME VIGENTI PRIMA DEL DM 14/01/2008 A VELOCITÀ CONVENZIONALE (V<250 Km/h)	50
ALTRE OPERE NUOVE A VELOCITÀ V<250 Km/h	75
ALTRE OPERE NUOVE A VELOCITÀ V \geq 250 km/h	100
OPERE DI GRANDI DIMENSIONI: PONTI E VIADOTTI CON CAMPATE DI LUCE MAGGIORE DI 150 m	≥ 100 (2)
(1) – La stessa V_N si applica anche ad apparecchi di appoggio, coprigiunti e impermeabilizzazi	one delle stesse opere.
(2) - Da definirsi per il singolo progetto a cura di FERROVIE.	

Tab. 2.5.1.1.1-1 – Vita nominale delle infrastrutture ferroviarie

Figura 7.1 –*RFI DTC SI PS MA IFS 001 B del 22.12.2017*- Tabella 2.5.1.1.1-1 *Vita Nominale delle infrastrutture ferroviarie*

L'oggetto della presente relazione rientra nell'ambito "Altre opere nuove a velocità v<250 km/h, dunque le strutture di progetto avranno vita nominale $V_N = 75$.

Il valore del Coefficiente d'Uso C_U varia in relazione alla **Classe d'Uso** dell'edificio, come riportato nella Tabella 2.4.II delle NTC 2008 (Figura 7.2). Le NTC 2008 prevedono quattro diverse Classi d'Uso; per i fabbricati tecnologici si fa riferimento alla *Classe IV* "Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità", alla quale corrisponde un Coefficiente d'Uso C_U pari a 2.

Tab. 2.4.II - Valori del coefficiente d'uso Cu

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Figura 7.2 – NTC 2008, Coefficiente d'Uso degli edifici

	PROGETTO DEFINITIVO								
I ITALFERR	POTENZIAMENTO DELLA LINEA MILANO - GENOVA								
GRUPPO FERROVIE DELLO STATO ITALIANE	~		RATTA MILANO ROGOREDO MENTO MI ROGOREDO - PIE		UELE				
DEL AZIONE DI CAL COLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO				
RELAZIONE DI CALCOLO	NM0Z	10	D 26 CL FA1200 001	A	25 DI 145				

È inoltre necessario precisare la **Categoria di Sottosuolo** e la **Categoria Topografica** cui appartiene il sito in esame; queste informazioni sono reperibili dalla relazione geotecnica, che prescrive l'assunzione di una Categoria di Sottosuolo C e una Categoria Topografica T₁.

Per la determinazione dello spettro di risposta di progetto è anche necessario precisare il **Fattore di Struttura.** Secondo quanto riportato al \S 7.3.1 delle NTC 2008, il valore del fattore di struttura q da utilizzare per ciascuna direzione della azione sismica dipende dalla tipologia strutturale, dal suo grado di iperstaticità, dai criteri di progettazione adottati e dalle non linearità di materiale. Nel caso in esame, si assume in via cautelativa un comportamento non dissipativo per la struttura del fabbricato, adottando dunque per le analisi strutturali un valore q = 1.

Infine, è necessario specificare anche lo Stato Limite di analisi, poiché lo spettro di risposta varia in relazione allo Stato Limite considerato. In particolare, per le analisi richieste, è necessario individuare lo spettro di risposta all'SLO, all'SLD e all'SLV.

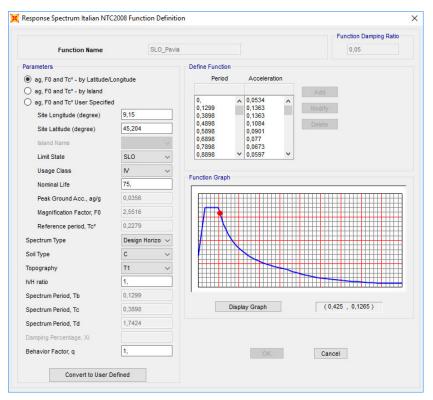


Figura 7.3 - Spettro di Risposta definito all'interno di SAP2000 per la località di Pavia allo SLO

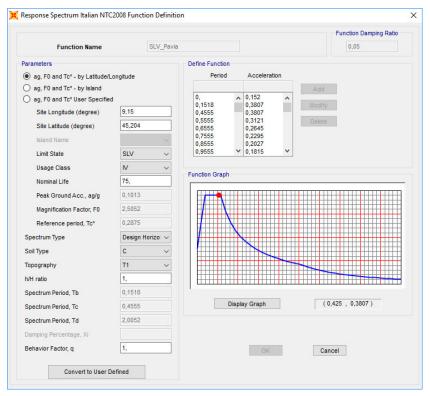


Figura 7.4 – Spettro di Risposta definito all'interno di SAP2000 per la località di Pavia allo SLV

Per quanto riguarda la valutazione dello spettro all'SLD, è necessaria un'ulteriore precisazione. Infatti, secondo quanto riportato dalle NTC 2008 al § 7.3.7.1, per le costruzioni di Classe IV, se si vogliono limitare i danneggiamenti strutturali, per tutti gli elementi strutturali deve essere verificato che il valore di progetto di ciascuna sollecitazione (E_d) calcolato in presenza delle azioni sismiche corrispondenti allo SLD e attribuendo ad η il valore di 2/3, sia inferiore al corrispondente valore della resistenza di progetto (R_d), calcolato secondo le regole specifiche indicate per ciascun tipo strutturale nel Cap. 4 con riferimento alle situazioni eccezionali. Per questo in questa sede per la valutazione dello spettro corrispondente all'SLD, si imposta un valore fittizio del fattore di struttura q = 1,5, corrispondente a $\eta = 2/3$.

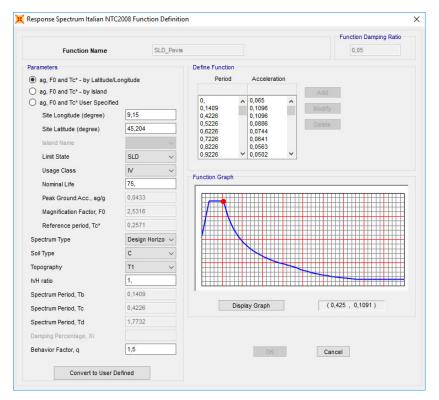


Figura 7.5 - Spettro di Risposta definito all'interno di SAP2000 per la località di Pavia allo SLD

Per eseguire un'analisi con spettro di risposta su SAP2000, una volta definite le funzioni spettro, è necessario creare un nuovo Load Case di tipo Response Spectrum, impostando come modal combination l'opzione CQC, inserendo nei carichi applicati la funzione Spettro allo SLV appena creata e impostando come tipo di carico l'accelerazione U1 con fattore di scala 9,81, poiché i valori di accelerazione riportati nello spettro sono normalizzati rispetto all'accelerazione di gravità g. Secondo quanto richiesto dalle NTC 2008, è necessario introdurre all'interno del modello le eccentricità delle azioni; infatti, al § 7.2.6 la normativa prescrive la necessità di attribuire al centro di massa una eccentricità accidentale, per tener conto della variabilità spaziale del moto sismico nonché delle incertezze nella localizzazione delle masse. Questa operazione è fatta direttamente in questa fase, assegnando all'opzione "Eccentricity Ratio" il valore 0,05. Il caso di carico così creato rappresenta il sisma agente in direzione x allo SLV. Si prosegue in modo analogo creando in tutto 6 differenti Load Cases: SLO_Ex, SLO_Ey, SLD_Ex, SLD_Ey, SLV_Ex, SLV_Ey, che verranno combinati con le altre azioni verticali, secondo quanto prescritto dalla combinazione sismica definita dalla normativa e descritta al prossimo paragrafo.

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
NM0Z	10	D 26 CL FA1200 001	A	28 DI 145

8 COMBINAZIONI DI CARICO

Per le verifiche nei confronti dei diversi stati limite si adottano le combinazioni delle azioni tratte dal § 2.5.3 NTC 2008:

• Combinazione fondamentale SLU:

$$\gamma_{G1}\cdot G_1+\gamma_{G2}\cdot G_2+\gamma_{P}\cdot P+\gamma_{Q1}\cdot Qk_1+\gamma_{Q2}\cdot \psi_{02}\cdot Qk_2+\gamma_{Q3}\cdot \psi_{03}\cdot Qk_3..$$

• Combinazione caratteristica (rara):

$$G_1 + G_2 + P + Qk_1 + \psi_{02} \cdot Qk_2 + \psi_{03} \cdot Qk_3 + \dots$$

• Combinazione frequente:

$$G_1 + G_2 + P + \psi_{11} \cdot Qk_1 + \psi_{22} \cdot Qk_2 + \psi_{23} \cdot Qk_3 + \dots$$

• Combinazione quasi permanente:

$$G_1 + G_2 + P + \psi_{21} \cdot Qk_1 + \psi_{22} \cdot Qk_2 + \psi_{23} \cdot Qk_3 + \dots$$

• Combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Qk_1 + \psi_{22} \cdot Qk_2 + \psi_{23} \cdot Qk_3 + \dots$$

I valori dei coefficienti parziali per le azioni sono riportati nella tabella sottostante, tratti dalla Tabella 2.5.I in funzione delle diverse categorie di carico.

	Q_{K_E}	$Q_{K_{-}H}$	Q_{K_Neve}	$Q_{K_{-}Vento}$
Ψ_0	1,00	0,00	0,50	0,60
Ψ_1	0,90	0,00	0,20	0,20
Ψ_2	0,80	0,00	0,00	0,00

Per le verifiche nei confronti degli stati limite ultimi strutturali (STR) si adotta *l'Approccio Progettuale 2*, in cui si impiega un'unica combinazione dei gruppi di coefficienti parziali definiti per le Azioni (A), per la resistenza dei materiali (M) e, eventualmente, per la resistenza globale (R). In tale approccio, per le azioni si impiegano i coefficienti γF riportati nella colonna A1 della Tabella 2.6.I delle NTC 2008, di seguito riportata.

Tabella 6.2.I – Coefficienti parziali relativi alle azioni per le verifiche agli SLU

Azione	Coefficiente	A1	A2	
Azione	$\gamma_{ m F}$	STR	GEO	
Carichi Permanenti	Favorevoli	.,	1,00	1,00
Cariciii i erinanenti	Sfavorevoli	γ _{G1}	1,30	1,00
Carichi Permanenti non strutturali	Favorevoli	.,	0,00	0,00
Cariciii Fermanenti non strutturan	Sfavorevoli	$\gamma_{ m G2}$	1,50	1,30
Carichi Variabili	Favorevoli	0/	0,00	0,00
Cariciii v ariaviii	Sfavorevoli	γQi	1,50	1,30

In base ai valori assunti dai coefficienti sopra definiti, si ottengono le seguenti combinazioni, per ciascuno degli Stati Limite Considerati.

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NMOZ 10 D 26 CL FA1200 001 A 29 DI 145

TABELLA COMBINAZIONI DI CARICO PER MODELLO STRUTTURA IN ELEVAZIONE

	G_{l}	G_2	Q_{K_E}	Q_{K_H}	Q_{K_Neve}	Q_{K_Vento}	SLV_X	SLV_Y	SLD_X	SLD_Y	SLO_X	SLO_Y	
SLU_1	1,30	1,50	1,50	0,00	0,75	0,90	0,00	0,00	0,00	0,00	0,00	0,00	E Principale
SLU_2	1,30	1,50	1,50	1,50	0,75	0,90	0,00	0,00	0,00	0,00	0,00	0,00	H Principale
SLU_3	1,30	1,50	1,50	0,00	1,50	0,90	0,00	0,00	0,00	0,00	0,00	0,00	Neve Principale
SLU_4	1,30	1,50	1,50	0,00	0,75	1,50	0,00	0,00	0,00	0,00	0,00	0,00	Vento Principale
SLE_rara_1	1,00	1,00	1,00	0,00	0,50	0,60	0,00	0,00	0,00	0,00	0,00	0,00	E Principale
SLE_rara_2	1,00	1,00	1,00	1,00	0,50	0,60	0,00	0,00	0,00	0,00	0,00	0,00	H Principale
SLE_rara_3	1,00	1,00	1,00	0,00	1,00	0,60	0,00	0,00	0,00	0,00	0,00	0,00	Neve Principale
SLE_rara_4	1,00	1,00	1,00	0,00	0,50	1,00	0,00	0,00	0,00	0,00	0,00	0,00	Vento Principale
SLE_freq_1	1,00	1,00	0,90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	E Principale
SLE_freq_2	1,00	1,00	0,80	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	H Principale
SLE_freq_3	1,00	1,00	0,80	0,00	0,20	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Neve Principale
SLE_freq_4	1,00	1,00	0,80	0,00	0,00	0,20	0,00	0,00	0,00	0,00	0,00	0,00	Vento Principale
SLE_qp	1,00	1,00	0,80	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
SLV_1	1,00	1,00	0,80	0,00	0,00	0,00	1,00	0,30	0,00	0,00	0,00	0,00	Sisma SLV Direz X
SLV_2	1,00	1,00	0,80	0,00	0,00	0,00	0,30	1,00	0,00	0,00	0,00	0,00	Sisma SLV Direz Y
SLD_1	1,00	1,00	0,80	0,00	0,00	0,00	0,00	0,00	1,00	0,30	0,00	0,00	Sisma SLD Direz X
SLD_2	1,00	1,00	0,80	0,00	0,00	0,00	0,00	0,00	0,30	1,00	0,00	0,00	Sisma SLD Direz Y
SLO_1	1,00	1,00	0,80	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,30	Sisma SLO Direz X
SLO_2	1,00	1,00	0,80	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,30	1,00	Sisma SLO Direz Y

	G_1	G_2	Q_{K_E}	Q_{K_H}	Q_{K_Neve}	Q_{K_Vento}	G_{2_fond}	Q_{K_fond}	SLV_X	SLV_Y	SLD_X	SLD_Y	SLO_X	SLO_Y	
SLU_1_fond_A1	1,30	1,50	1,50	0,00	0,75	0,90	1,50	1,50	0,00	0,00	0,00	0,00	0,00	0,00	E Principale
SLU_2_fond_A1	1,30	1,50	1,50	1,50	0,75	0,90	1,50	1,50	0,00	0,00	0,00	0,00	0,00	0,00	H Principale
SLU_3_fond_A1	1,30	1,50	1,50	0,00	1,50	0,90	1,50	1,50	0,00	0,00	0,00	0,00	0,00	0,00	Neve Principale
SLU_4_fond_A1	1,30	1,50	1,50	0,00	0,75	1,50	1,50	1,50	0,00	0,00	0,00	0,00	0,00	0,00	Vento Principale
SLU 1 fond A2	1.00	1,30	1,30	0,00	0,65	0,78	1,30	1,30	0,00	0,00	0,00	0,00	0,00	0.00	E Principale
SLU_2_fond_A2	1,00	1,30	1,30	1,30	0,65	0,78	1,30	1,30	0,00	0,00	0,00	0,00	0,00	,	H Principale
SLU_3_fond_A2	1,00	1,30	1,30	0,00	1,30	0,78	1,30	1,30	0,00	0,00	0,00	0,00	0,00	0,00	Neve Principale
SLU_4_fond_A2	1,00	1,30	1,30	0,00	0,65	1,30	1,30	1,30	0,00	0,00	0,00	0,00	0,00	0,00	Vento Principale
SLE_rara_1_fond	1,00	1,00	1,00	0,00	0,50	0,60	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	E Principale
SLE_rara_2_fond	1,00	1,00	1,00	1,00	0,50	0,60	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	H Principale
SLE_rara_3_fond	1,00	1,00	1,00	0,00	1,00	0,60	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	Neve Principale
SLE_rara_4_fond	1,00	1,00	1,00	0,00	0,50	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	Vento Principale
SLE freq 1 fond	1,00	1,00	0,90	0,00	0,00	0,00	1,00	0,90	0,00	0,00	0,00	0,00	0,00	0,00	E Principale
SLE_freq_2_fond	1,00	1,00	0,80	0,00	0,00	0,00	1,00	0,80	0,00	0,00	0,00	0,00	0,00	0,00	H Principale
SLE_freq_3_fond	1,00	1,00	0,80	0,00	0,20	0,00	1,00	0,80	0,00	0,00	0,00	0,00	0,00	0,00	Neve Principale
SLE_freq_4_fond	1,00	1,00	0,80	0,00	0,00	0,20	1,00	0,80	0,00	0,00	0,00	0,00	0,00	0,00	Vento Principale
CIE f1	1.00	1.00	0.00	0.00	0.00	0.00	1.00	0.80	0.00	0.00	0.00	0.00	0.00	0.00	
SLE_qp_fond	1,00	1,00	0,80	0,00	0,00	0,00	1,00	0,80	0,00	0,00	0,00	0,00	0,00	0,00	
SLV 1 fond	1,00	1,00	0,80	0,00	0,00	0,00	1,00	0,80	1,00	0,30	0,00	0,00	0,00	0.00	Sisma SLV Direz X
SLV_2_fond	1,00	1,00	0,80	0,00	0,00	0,00	1,00	0,80	0,30	1,00	0,00	0,00	0,00	0.00	Sisma SLV Direz Y
DL V_Z_IOIIU	1,00	1,00	0,00	0,00	0,00	0,00	1,00	0,00	0,50	1,00	0,00	0,00	0,00	0,00	DISING SEV DITCE I

NELIAZIONE DI CALCOLO	DEL VZIONE DI CAI COLO		GRUPPO FERROVIE DELLO STATO ITALIANE		
NM0Z	PROGETTO	FASE I - QUAL	QUADRUPLIC	POTENZIA	PROGETTO DEFINITIVO
10	LOTTO	DRUPLICAM	AMENTO TI	MENTO) DEFIN
D 26 CL FA1200 001	PROGETTO LOTTO CODIFICA DOCUMENTO REV.	FASE 1 - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA	POTENZIAMENTO DELLA LINEA MILANO - GENOV/	TIVO
200 001	JMENTO	EDO - PIE	OGOREDO	A MILAN	
Α	REV.	VE EMANUEL	- PAVIA	NO - GENC	
30 DI 145	FOGLIO	Æ		IVA	

PROGETTO DEFINITIV	O-
--------------------	----

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO


PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NMOZ 10 D 26 CL FA1200 001 A 31 DI 145

Dove i simboli riportati nella tabella precedente hanno il seguente significato:

G2 fond = G2 muri + G2 vespaio H2 + G2 vespaio H3 + G2 vespaio H7

Q fond = Q trasformatori +Q cabina MT/BT +Q batterie +Q SIAP +Q ACC +Q TLC +Q UM +Q bagno

9 SOLLECITAZIONI

Secondo quanto riportato dalle NTC 2008 al § 7.3.7.1, per le costruzioni di Classe IV, se si vogliono limitare i danneggiamenti strutturali, per tutti gli elementi strutturali deve essere verificato che il valore di progetto di ciascuna sollecitazione (E_d) calcolato in presenza delle azioni sismiche corrispondenti allo *SLD* e attribuendo ad η il valore di 2/3, sia inferiore al corrispondente valore della resistenza di progetto (R_d), calcolato secondo le regole specifiche indicate per ciascun tipo strutturale nel Cap. 4 con riferimento alle situazioni eccezionali.

Dal momento che l'azione sismica così valutata per la località di Pavia è di entità inferiore rispetto a quella considerata per le verifiche allo Stato Limite di Salvaguardia della Vita umana, gli elementi strutturali risulteranno certamente verificati e pertanto si omette di riportare i calcoli relativi a tale verifica.

9.1 Solaio di Copertura

Si riportano nella seguente tabella i valori massimi delle sollecitazioni nelle diverse combinazioni di carico considerate per il solaio di copertura.

Solaio Copertura

	$ m M_{MAX_Campata} \ [kNm]$	$M_{MAX_Appoggio} \ [kNm]$	V _{max} [kN]
SLU	4,17	1,27	6,08
SLE_rara	2,99	0,91	
SLE_frequente	2,34	0,73	
SLE_quasi permanente	2,18	0,69	

	PROGETTO DEFINITIVO				
	POTENZIAMENTO DELLA LINEA MILANO - GENOVA				
GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE				
RELAZIONE DI CALCOLO	PROGETTO NM0Z	LOTTO 10	CODIFICA DOCUMENTO D 26 CL FA1200 001	REV.	FOGLIO 33 DI 145

9.2 Telaio Filo Fisso 1

Di seguito si riportano alcune immagini che illustrano la distribuzione delle sollecitazioni negli elementi del telaio corrispondente al filo fisso 1 per le diverse combinazioni di carico considerate.

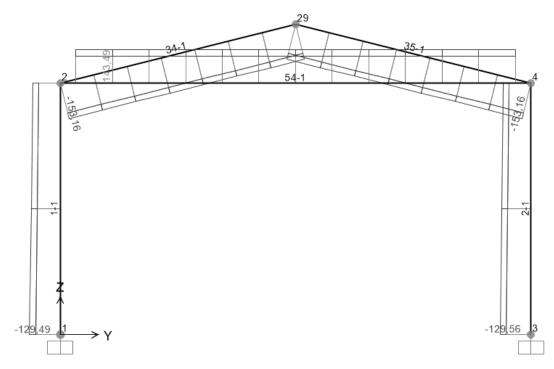


Figura 9.1 – Combinazione SLU – Valori di Sforzo Normale

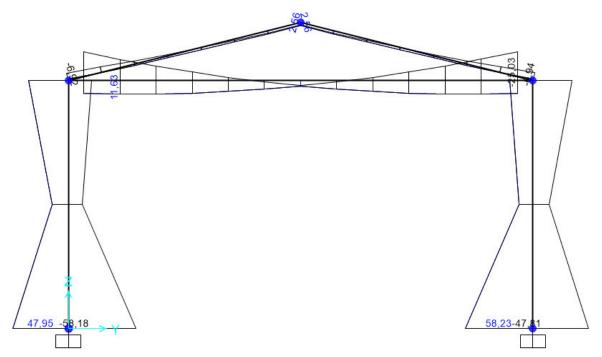
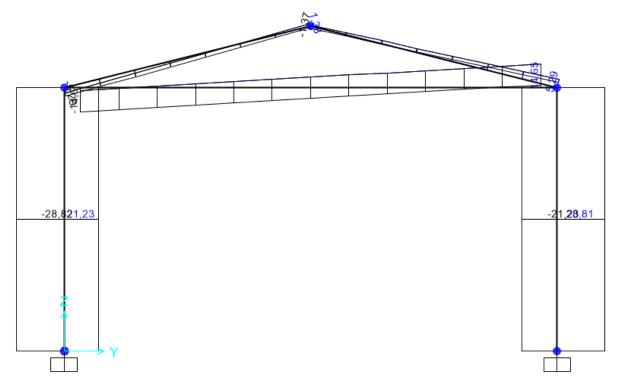
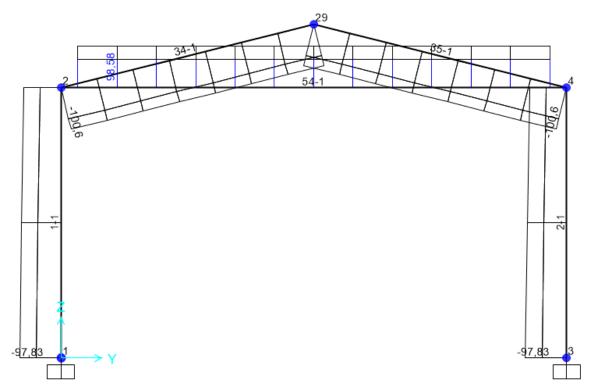




Figura 9.2 - Combinazione SLU – Valori di Momento Flettente M33

S ITALFERR	PROGETTO DEFINITIVO				
	POTENZIAMENTO DELLA LINEA MILANO - GENOVA				
GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE				
DEL AZIONE DI CAL COLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
RELAZIONE DI CALCOLO	NM0Z	10	D 26 CL FA1200 001	A	34 DI 145

 $\textbf{Figura 9.3 -} \textbf{Combinazione } SLU-Valori \ di \ Sforzo \ di \ Taglio \ V2$

Figura 9.4 - Combinazione SLV – Valori di Sforzo Normale

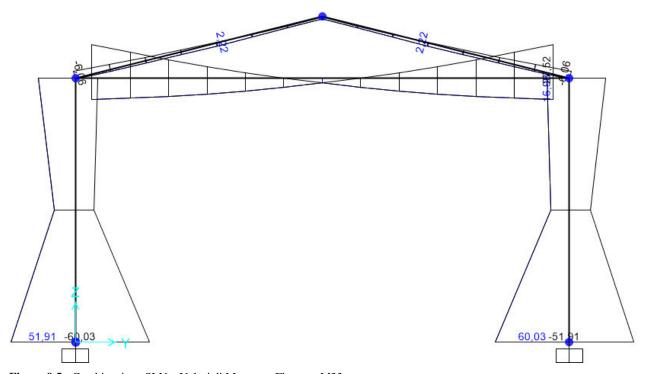


Figura 9.5 - Combinazione SLV - Valori di Momento Flettente M33

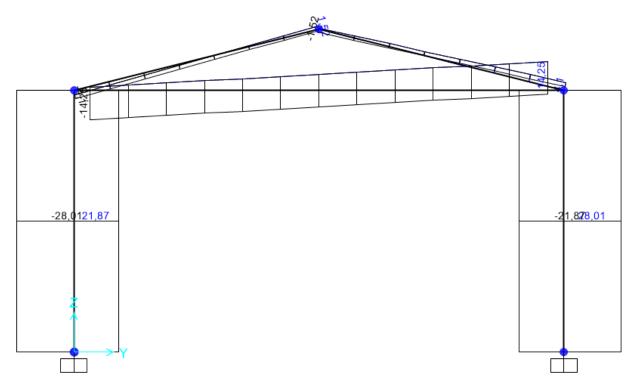


Figura 9.6 - Combinazione SLV - Valori di Sforzo di Taglio V2

F ITALFERR	PROGETTO DEFINITIVO				
	POTENZIAMENTO DELLA LINEA MILANO - GENOVA				
GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE				
RELAZIONE DI CALCOLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	NM0Z	10	D 26 CL FA1200 001	A	36 DI 145

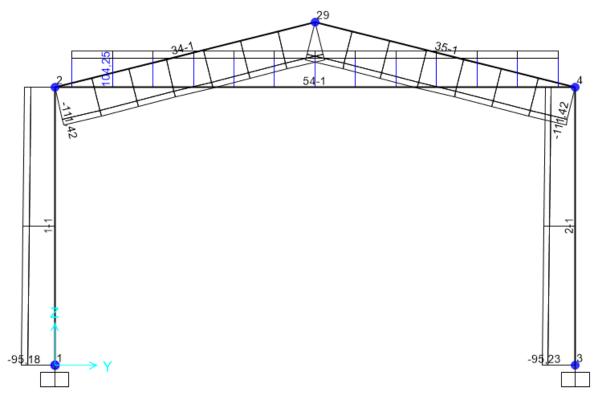


Figura 9.7 - Combinazione SLE rara – Valori di Sforzo Normale

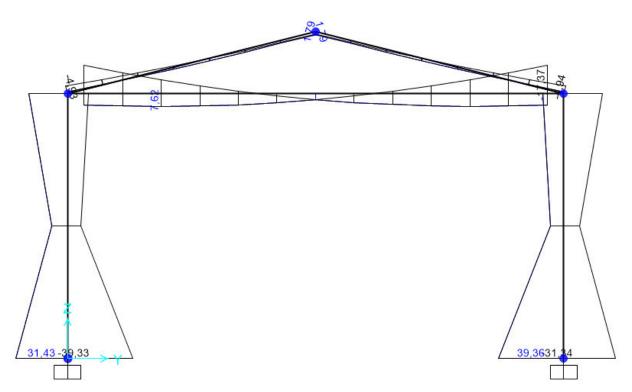


Figura 9.8 - Combinazione SLE rara – Valori di Momento Flettente M33

F ITALFERR	PROGETT	PROGETTO DEFINITIVO					
	POTENZIA	POTENZIAMENTO DELLA LINEA MILANO - GENOVA					
GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGO FASE I - QUADRUPLICAMENTO MI ROGOREDO				UELE		
RELAZIONE DI CALCOLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO		
RELAZIONE DI CALCOLO	NM0Z	10	D 26 CL FA1200 001	A	37 DI 145		

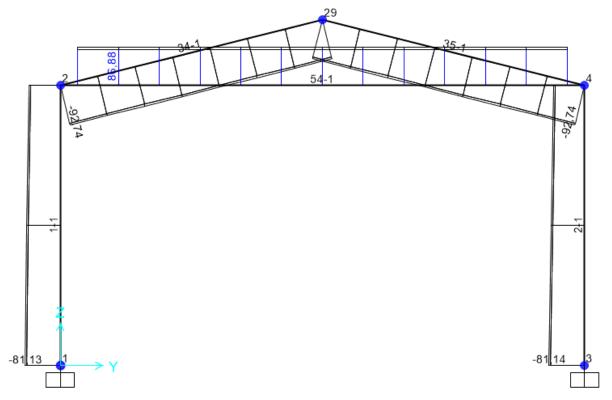


Figura 9.9 - Combinazione SLE frequente – Valori di Sforzo Normale

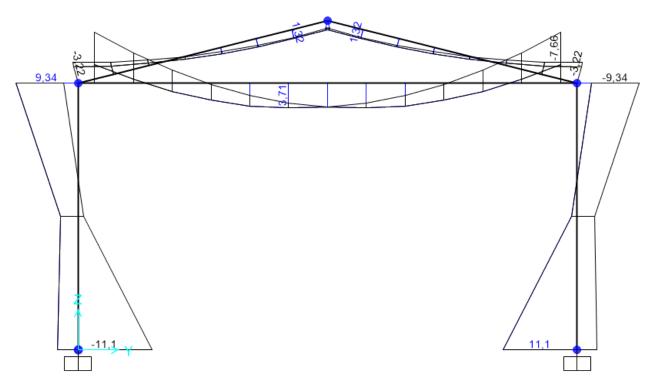


Figura 9.10 - Combinazione SLE frequente - Valori di Momento Flettente M33

F ITALFERR	PROGETT	PROGETTO DEFINITIVO					
	POTENZIA	MENTO	DELLA LINEA MILA	NO - GE	NOVA		
GRUPPO FERROVIE DELLO STATO ITALIANE	•		RATTA MILANO ROGOREDO MENTO MI ROGOREDO - PIE		UELE		
RELAZIONE DI CALCOLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO		
RELAZIONE DI CALCOLO	NM0Z	10	D 26 CL FA1200 001	A	38 DI 145		

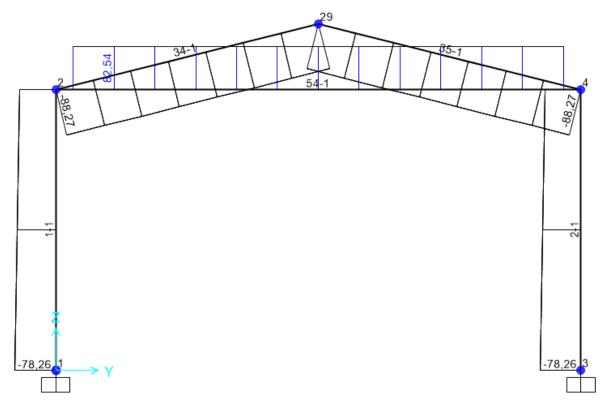


Figura 9.11 - Combinazione SLE quasi permanente – Valori di Sforzo Normale

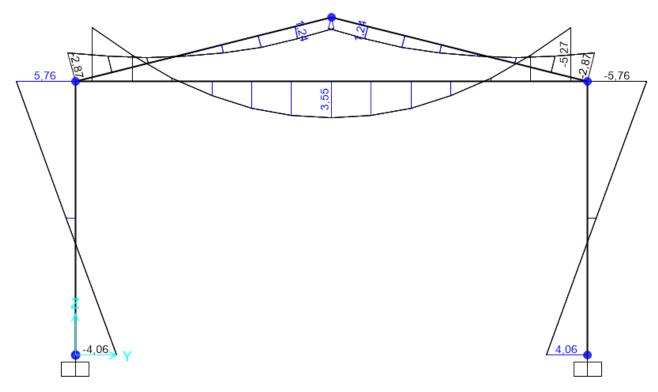


Figura 9.12 - Combinazione SLE quasi permanente – Valori di Momento Flettente M33

9.3 Telaio Filo Fisso B

Di seguito si riportano alcune immagini che illustrano la distribuzione delle sollecitazioni negli elementi del telaio corrispondente al filo fisso B per le diverse combinazioni di carico considerate.

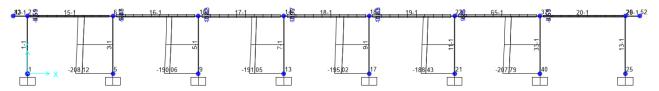


Figura 9.13 - Combinazione SLU - Valori di Sforzo Normale N

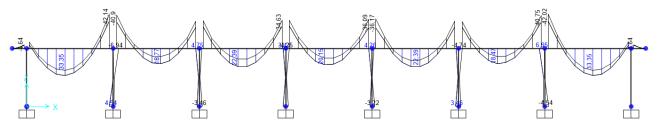


Figura 9.14 - Combinazione SLU – Valori di Momento Flettente M33

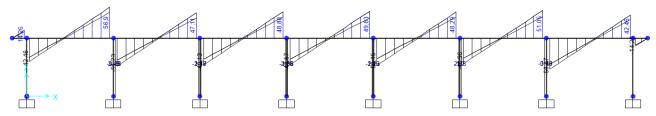


Figura 9.15 - Combinazione SLU - Valori di Sforzo di Taglio V22

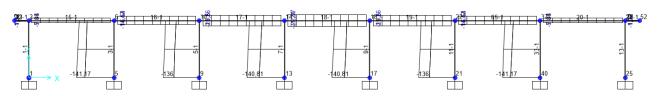


Figura 9.16 - Combinazione SLV – Valori di Sforzo Normale N

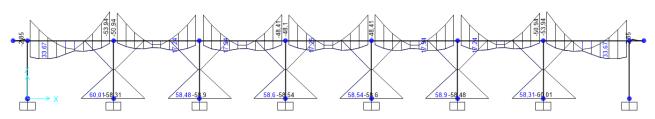



Figura 9.17 - Combinazione SLV – Valori di Momento Flettente M33

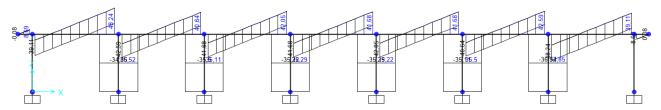


Figura 9.18 - Combinazione SLV – Valori di Sforzo di Taglio V22

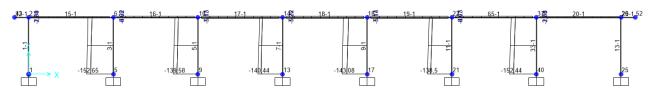


Figura 9.19 - Combinazione SLE rara – Valori di Sforzo Normale N

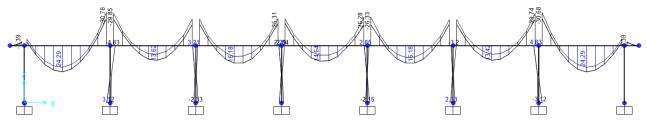


Figura 9.20 - Combinazione SLE rara - Valori di Momento Flettente M33

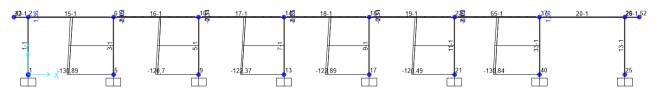


Figura 9.21 - Combinazione SLE frequente - Valori di Sforzo Normale N

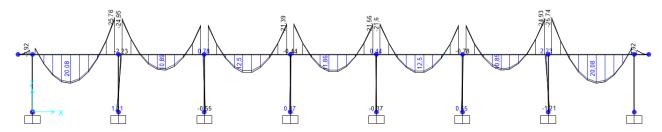


Figura 9.22 - Combinazione SLE frequente - Valori di Momento Flettente M 33

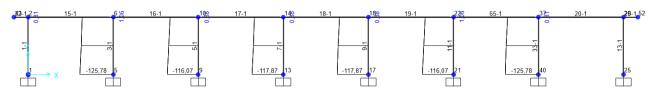


Figura 9.23 - Combinazione SLE quasi permanente - Valori di Sforzo Normale N

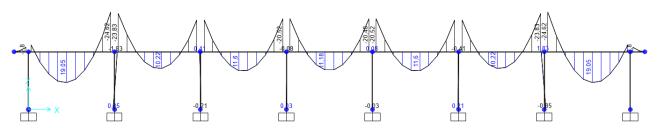


Figura 9.24 - Combinazione SLE quasi permanente - Valori di Momento Flettente M33

9.4 Trave di Colmo

Di seguito si riportano alcune immagini che illustrano la distribuzione delle sollecitazioni nella trave di colmo per le diverse combinazioni di carico considerate.

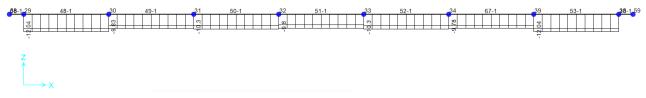


Figura 9.25 - Combinazione SLU - Valori di Sforzo Normale N

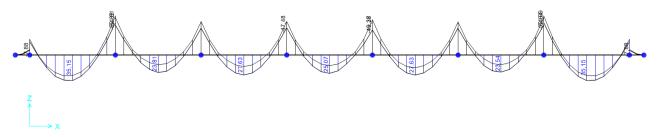


Figura 9.26 - Combinazione SLU – Valori di Momento Flettente M33

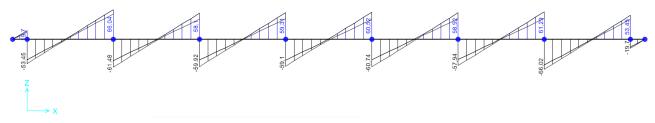
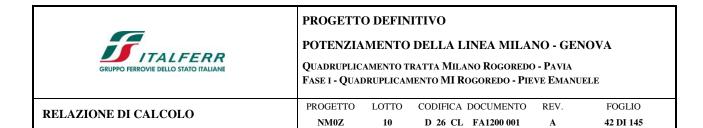



Figura 9.27 - Combinazione SLU – Valori di Sforzo di Taglio V22

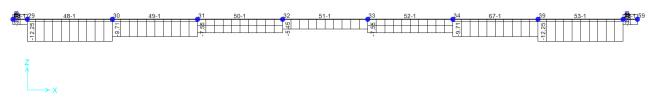


Figura 9.28 - Combinazione SLV – Valori di Sforzo Normale N

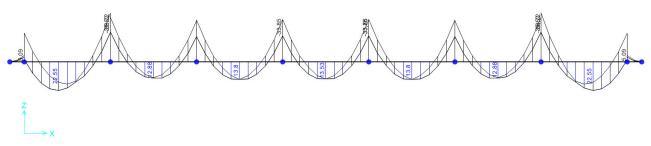


Figura 9.29 - Combinazione SLV - Valori di Momento Flettente M33

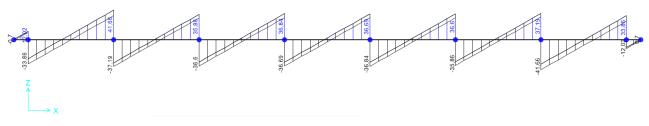


Figura 9.30 - Combinazione SLV - Valori di Sforzo di Taglio V22

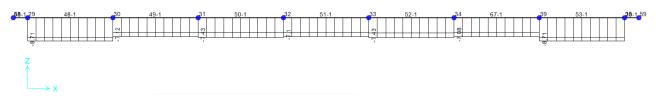


Figura 9.31 - Combinazione SLE rara – Valori di Sforzo Normale N

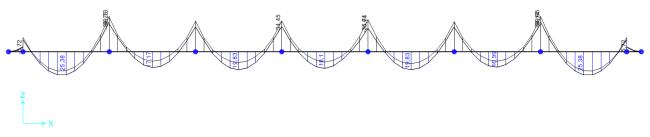


Figura 9.32 - Combinazione SLE rara – Valori di Momento Flettente M33

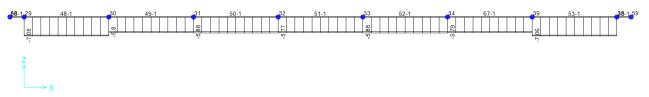


Figura 9.33 - Combinazione SLE frequente – Valori di Sforzo Normale N

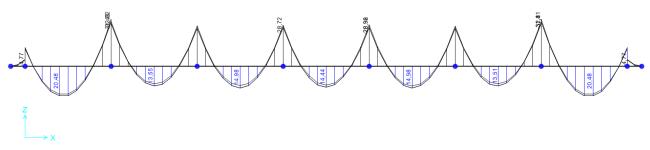


Figura 9.34 - Combinazione SLE frequente – Valori di Momento Flettente M33

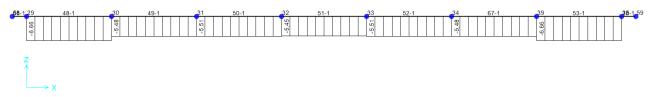


Figura 9.35 - Combinazione SLE quasi permanente – Valori di Sforzo Normale N

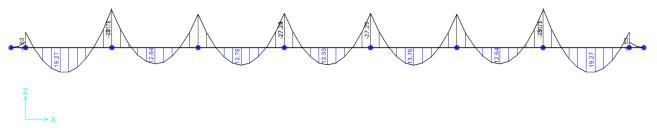
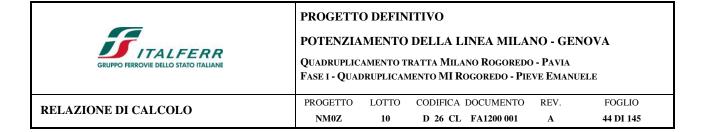



Figura 9.36 - Combinazione SLE quasi permanente – Valori di Momento Flettente M33

9.5 Platea di Fondazione

I valori di riferimento per le verifiche a flessione e a taglio della platea non sono i valori massimi, che si verificano in corrispondenza delle nervature di irrigidimento, ma devono essere valutati a 60 cm dai fili strutturali esterni, in corrispondenza dell'interfaccia fra la nervatura stessa e la platea. Tenendo conto che agli elementi *shell* della platea è stata imposta una suddivisione in elementi con lato massimo di 50 cm, per il dimensionamento della platea si considerano i valori massimi che interessano i soli elementi *shell* evidenziati in ciano nella figura sottostante.

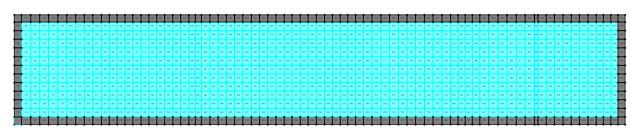
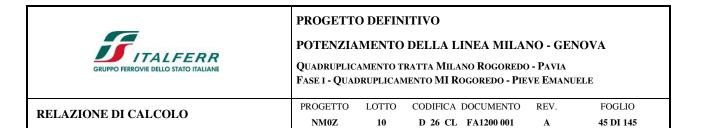



Figura 9.37 - Individuazione degli elementi shell considerati per la verifica della platea di fondazione

I valori massimi e minimi dei momenti flettenti per la platea di fondazione per le combinazioni considerate sono riepilogati nella seguente tabella:

M11 max	SLU_TOT_fond_A1	136	38,51	kNm/m	M11 min	SLU_TOT_fond_A1	233	-40,48	kNm/m
	SLV_TOT_fond	138	27,38	kNm/m		SLV_TOT_fond	224	-28,16	kNm/m
M22 max	SLU_TOT_fond_A1	229	12,87	kNm/m	M22 min	SLU_TOT_fond_A1	287	-89,58	kNm/m
	SLV_TOT_fond	218	11,42	kNm/m		SLV_TOT_fond	289	-63,15	kNm/m
M11 max	SLE_r_TOT_fond	136	27,86	kNm/m	M11 min	SLE_r_TOT_fond	233	-28,56	kNm/m
	SLE_f_TOT_fond	136	26,00	kNm/m		SLE_f_TOT_fond	233	-26,34	kNm/m
	SLE_qp_TOT_fond	136	25,63	kNm/m		SLE_qp_TOT_fond	211	-25,52	kNm/m
M22 max	SLE_r_TOT_fond	229	8,74	kNm/m	M22 min	SLE_r_TOT_fond	287	-64,33	kNm/m
	SLE_f_TOT_fond	218	5,51	kNm/m		SLE_f_TOT_fond	287	-59,09	kNm/m
	SLE_qp_TOT_fond	218	4,94	kNm/m		SLE_qp_TOT_fond	287	-58,21	kNm/m

Si riportano di seguito le immagini che illustrano la distribuzione dei momenti flettenti negli elementi tipo *shell* costituenti la platea per le combinazioni di carico agli SLU e SLV.

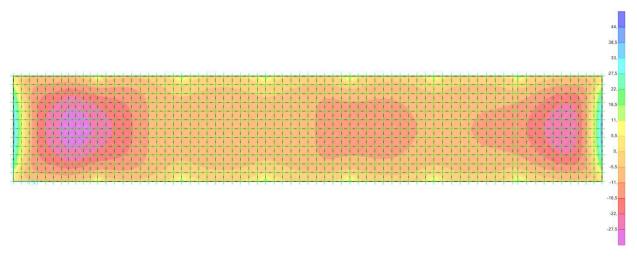


Figura 9.38 – Distribuzione dei Momenti Flettenti M11 - Combinazione SLU_TOT_fond_A1

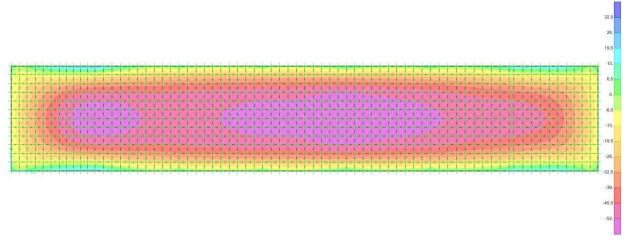


Figura 9.39 – Distribuzione dei Momenti Flettenti M22 - Combinazione SLU_TOT_fond_A1

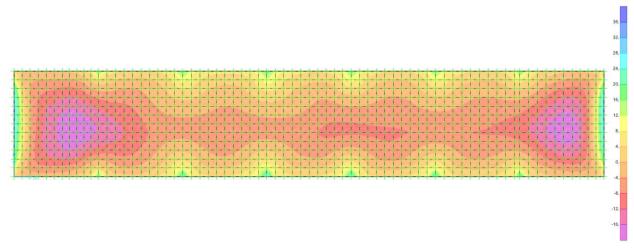


Figura 9.40 - Distribuzione dei Momenti Flettenti M11 - Combinazione SLV_TOT_fond

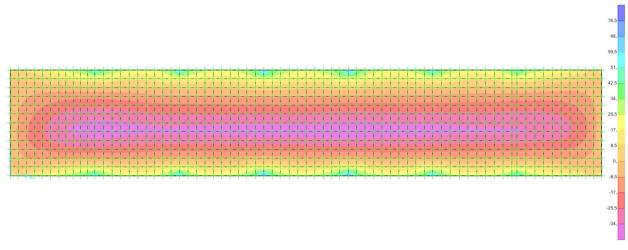


Figura 9.41 – Distribuzione dei Momenti Flettenti M22 - Combinazione SLV_TOT_fond

I valori di taglio massimo sono invece riportati nella tabella di seguito

V13 max	SLU_TOT_fond_A1	136	59,06	kN/m	V13 min	SLU_TOT_fond_A1	1064	-69,12	kN/m
	SLV_TOT_fond	138	45,73	kN/m		SLV_TOT_fond	1066	-49,46	kN/m
V23 max	SLU_TOT_fond_A1	229	80,70	kN/m	V23 min	SLU_TOT_fond_A1	239	-80,70	kN/m
	SLV_TOT_fond	250	63,59	kN/m		SLV_TOT_fond	260	-62,89	kN/m
									_
Vmax	SLU_TOT_fond_A1	229	80,70	kN/m	Vmax	SLV_TOT_fond	943	73,32	kN/m

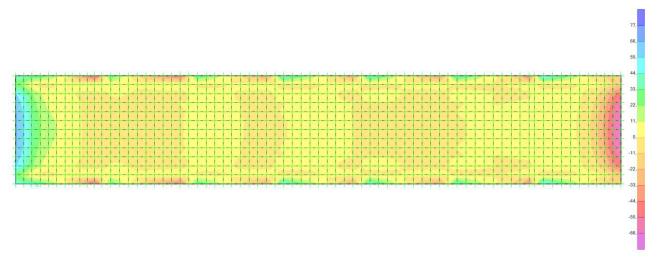


Figura 9.42 - Distribuzione dei Taglio V13 - Combinazione SLU_TOT_fond_A1

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

NM0Z	10	D 26 CL FA1200 001	A	47 DI 145
PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO

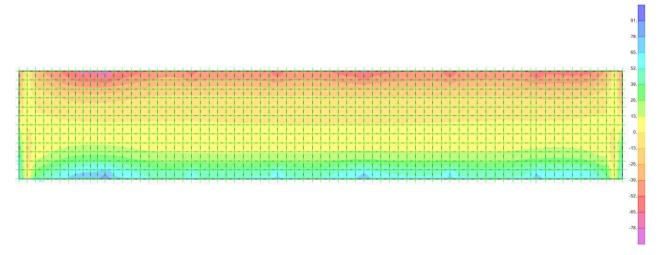


Figura 9.43 - Distribuzione dei Taglio V23 - Combinazione SLU_TOT_fond_A1

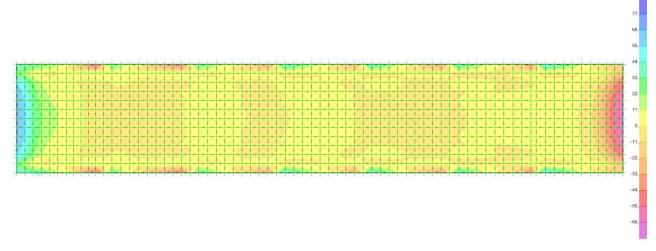


Figura 9.44 - Distribuzione dei Taglio V13 - Combinazione SLV_TOT_fond

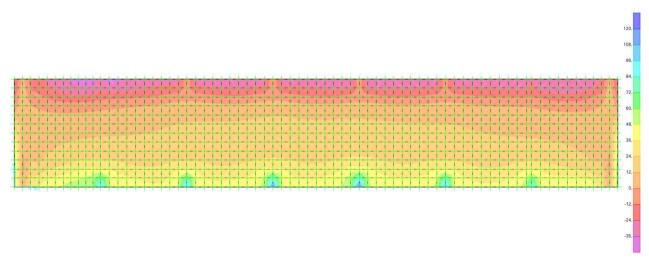
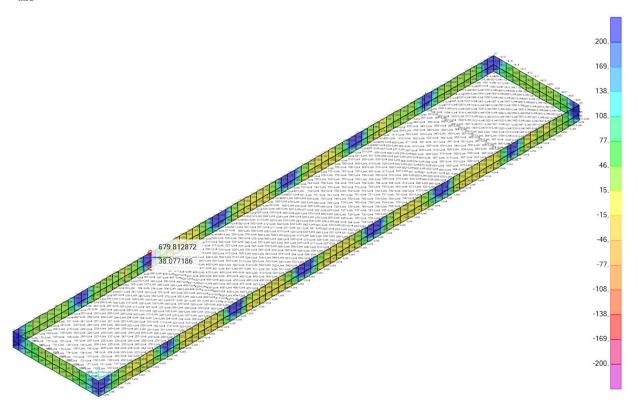


Figura 9.45 – Distribuzione dei Taglio V23 - Combinazione SLV_TOT_fond


9.6 Nervature Platea di Fondazione

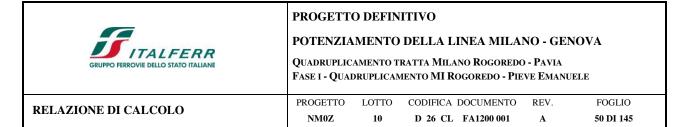
I valori massimi e minimi delle sollecitazioni per le nervature interne della platea di fondazione per le combinazioni considerate sono riportati nella tabella seguente.

M22 max	SLU_TOT_fond_A1	1331	96,19	kNm/m	M22 min	SLU_TOT_fond_A1	1405	-96,19	kNm/m
	SLV_TOT_fond	1291	358,37	kNm/m		SLV_TOT_fond	1365	-358,37	kNm/m
M22 max	SLE_r_TOT_fond	1331	66,50	kNm/m	M22 min	SLE_r_TOT_fond	1405	-66,50	kNm/m
	SLE_f_TOT_fond	1238	47,99	kNm/m		SLE_f_TOT_fond	1251	-49,39	kNm/m
	SLE_qp_TOT_fond	1238	47,29	kNm/m		SLE_qp_TOT_fond	1251	-48,69	kNm/m
M11 max	SLU_TOT_fond_A1	1421	127,03	kNm/m	M11 min	SLU_TOT_fond_A1	1408	-131,59	kNm/m
	SLV_TOT_fond	1431	93,32	kNm/m		SLV_TOT_fond	1418	-96,39	kNm/m
M11 max	SLE_r_TOT_fond	1421	91,71	kNm/m	M11 min	SLE_r_TOT_fond	1408	-94,74	kNm/m
	SLE_f_TOT_fond	1421	81,89	kNm/m		SLE_f_TOT_fond	1408	-84,19	kNm/m
	SLE_qp_TOT_fond	1421	80,21	kNm/m		SLE_qp_TOT_fond	1408	-82,52	kNm/m

I valori massimi di sforzo di taglio si verificano per la combinazione sismica e sono riportati nella figura seguente. Il valore rispetto al quale si conduce la verifica di resistenza a taglio è il valore medio:

 $V_{med} = 356 \text{ kN/m}$

	PROGETTO	PROGETTO DEFINITIVO						
	POTENZIA	POTENZIAMENTO DELLA LINEA MILANO - GENOVA						
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE						
RELAZIONE DI CALCOLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO			
	NMOZ	10	D 26 CL FA1200 001	Α	49 DI 145			


10 VERIFICHE SUL SOLAIO

10.1 Dimensionamento Traliccio

Per procede al dimensionamento del solaio di copertura, in primo luogo è necessario dimensionare il traliccio metallico affogato nelle lastre predalle, in modo da garantire che sia in grado di sostenere i carichi cui è sottoposto in fase di getto, quando ancora il calcestruzzo non risulta collaborante. Assumendo di puntellare i solai soltanto alle estremità, in questa fase lo schema statico è di trave doppiamente appoggiata con sbalzo corrispondente all'aggetto della falda, soggetta a un carico distribuito fornito dal peso proprio del solaio e da un carico accidentale rappresentativo della manodopera.

Si considera dunque la seguente condizione di carico:

Larghezza Influenza Traliccio		0,40	m	(3 tralicci ogni lastra da 120 cm)
Luce netta Solaio Predalle	L_1	3,15	m	
Luce aggetto Solaio Predalle	L_2	0,82	m	
Carichi Permanenti Strutturali	G_1	2,70	kN/m ²	
Carichi Accidentali	Q_K	1,00	kN/m ²	
Carico G ₁ sul singolo travetto		1,08	kN/m	
Carico Q sul singolo travetto		0,40	kN/m	
Combinazione SLU		2,00	kN/m	
Mmax SLU		2,16	kNm	
Caratteristiche geometriche globali tra	liccio			
Altezza Traliccio		0,10	m	
Passo Traliccio		0,15	m	
f_{yk}		450	N/mm	2
γмо		1,15		
$f_{ m yd}$		391	N/mm	2
γм1		1,05		
E		210.00	00 N/mn	n^2

	VERIFICA STABILITA' CORRENTE SUPERIORE COMPRESSO								
N_{Ed}	21,56	kN	Ncr	93.762,98	N				
ϕ_{sup}	12,00	mm	$\lambda_{segnato}$	0,74					
$A_{ ext{sup}}$	113,10	mm^2	α	0,49	Fatt di imperf tab 4.2.VI				
J	1.017,88	$\mathrm{mm^4}$	Φ	0,90					
1	150,00	mm	χ	0,70					
β	1,00		$N_{b,Rd}$	34,02	kN				
lo	150,00	mm	FS	1,58					

	VERIFICA STABILITA' DIAGONALE COMPRESSO								
N_{Ed}	2,30	kN	N_{cr}	22.865,53	N				
ϕ_{diag}	8,00	mm	$\lambda_{segnato}$	0,99					
$A_{ m diag}$	50,27	mm^2	α	0,49					
J	201,06	$\mathrm{mm^4}$	Φ	1,19					
l_{diag}	135,00	mm	χ	0,54					
β	1,00		$N_{b,Rd}$	11,70	kN				
10	135,00	mm	FS	5,09					

	VERIFICA STABILITA' CORRENTE INFERIORE COMPRESSO							
N_{Ed}	8,70	kN	N_{cr}	18.521,08	N			
ϕ_{inf}	8,00	mm	$\lambda_{segnato}$	1,11				
A_{inf}	50,27	mm^2	α	0,49	Fatt di imperf tab 4.2.VI			
J	201,06	$\mathrm{mm^4}$	Φ	1,33				
1	150,00	mm	χ	0,48				
β	1,00		$N_{b,Rd}$	10,37	kN			
10	150,00	mm	FS	1,30				

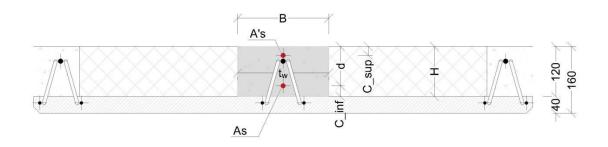
VERIFICA RESISTENZA CORRENTE INFERIORE TESO							
$N_{\rm Ed}$	4,16	kN					
N_{Rd_inf}	19,67	kN					
FS	4,73						

10.2 Verifiche SLU Solaio

Si riportano di seguito le caratteristiche geometriche della sezione trasversale tipo del solaio di copertura, che ha uno spessore complessivo di 16 cm ma per il quale si assume tuttavia un'altezza di calcolo di 12 cm, trascurando il contributo resistente della lastra predalle.

Si assume inoltre che le armature inferiori non siano appoggiate sulla lastra, ma siano collocate in posizione sopraelevata di 20 mm rispetto a questa.

GEOMETRIA				
В	140,00	mm	Csup	27,00 mm
Н	120,00	mm	d = H - Cinf	93,00 mm
			Cinf	27,00 mm


POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NMOZ 10 D 26 CL FA1200 001 A 51 DI 145

• VERIFICA SL	• VERIFICA SLU FLESSIONE - CAMPATA							
ф [mm]	n°	$\begin{array}{c} A_s \\ [mm^2] \end{array}$	f _{yd} [N/mm²]	f _{cd} [N/mm ²]	x [mm]	Z [mm]		
14,00	1,00	153,94	391,30	17,40	31	80,64		
R _T [N]	R _{Cls} [N]	M _{Rd} [KNm]	M _{Ed} [KNm]	QL^2/16 [KNm]	MOM di RIFERIM	FS		
60.236,62	60.236,62	4,86	4,17	2,23	4,17	1,17		

• VERIFICA SL	• VERIFICA SLU FLESSIONE - APPOGGIO							
φ [mm]	n°	A's [mm ²]	$\frac{f_{yd}}{[\text{N/mm}^2]}$	f _{cd} [N/mm ²]	x [mm]	Z [mm]		
14,00	1,00	153,94	391,30	17,40	31	80,64		
R _T [N]	R _{Cls} [N]	M _{Rd} [KNm]	$\begin{array}{c} M_{Ed} \\ [KNm] \end{array}$	QL^2/10 [KNm]	MOM di RIFERIM	FS		
60.236,62	60.236,62	4,86	1,27	3,56	3,56	1,36		

• VERIFICA SLU TAGLIO								
k	ρι	$\frac{f_{ck}}{[\text{N/mm}^2]}$	$\sigma_{cp} = N_{Ed}/A_c$ [N]	$ m V_{min}$	V'	V _{Rd} [KN}	V_{Ed} [KN}	
2,000	0,012	30,71	0,00	0,5486	0,7947	10,35	6,08	

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV.

NM0Z 10 D 26 CL FA1200 001 A

FOGLIO **52 DI 145**

10.3 Verifiche SLE Solaio

 VERIFICA 	SLE TENSIONE	- CAMPATA

	ento Statico pari $ax^2 + bx + c = 0$		x [mm]	1	Momento d'Ine	rzia	J [mm ⁴]
a	b	С	41	Soletta		Armature	
70,00	2.309,07	-214.743,57	41	3.286.862,13		6.172.462,74	9.459.324,86

Combinazione RARA

Combinazione Quasi Permanente

M _{max}	σ _{Cmax}	σ _{Climite}	σ _{Smax}	σslimite	M _{max}	σ _{Cmax}	σ _{Climite}
[Nmm]	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm²]	[Nmm]	[N/mm ²]	[N/mm ²]
2.985.892,39	13,04	18,43	244,80	360,00	2.184.794,64	9,54	13,82

• VERIFICA SLE TENSIONE - APPOGGIO

Mom	Momento Statico pari a zero $ax^2 + bx + c = 0$		x [mm]]	Momento d'Inerzia		
a	b	c	32	Cls	A's sup tese	A _{s inf} compresse	[mm ⁴]
70,00	4.618,14	-218.899,89	-	1.520.352,34	8.609.427,42	56.312,02	10.186.091,78

Combinazione RARA

Combinazione Quasi Permanente

M _{max}	σ _{Cmax}	σ _{Climite}	σ_{Smax} [N/mm ²]	σslimite	M _{max}	σ _{Cmax}	σ _{Climite}
[Nmm]	[N/mm ²]	[N/mm ²]		[N/mm²]	[Nmm]	[N/mm ²]	[N/mm ²]
910.368,41	2,85	18,43	81,86	360,00	690.117,99	2,16	13,82

• VERIFICA SLE FESSURAZIONE - CAMPATA

Stato Limite di Formazione delle Fessure

Momento Statico pari a zero della	х	Momento	o d'Inerzia	J
sezione interamente reagente	[mm]	Cls	A_s	[mm ⁴]
ax + b = 0	64	20.427.136,02	1.943.589,41	22.370.725,44

Combinazione Frequente

Combinazione Quasi Permanente

M_{fmax}	2,34	kNm	M_{QPmax}	2,18	kNm
σcmin	5,87	N/mm ²	σcmin	5,47	N/mm ²
$\sigma_t = f_{ctm}/1,2$	2,45	N/mm ²	$\sigma_{\rm t} = f_{\rm ctm}/1.2$	2,45	N/mm ²

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NMOZ 10 D 26 CL FA1200 001 A 53 DI 145

Stato Limite di Apertura delle Fessure

Combinazione Frequente

σs (Freq) 192,22 N/mm² Tensione nell'armatura tesa valutata nella sezione fessurata in Comb Frequente

Kt 0,40 Fattore dipendente dalla durata del carico

fctm 2,94 N/mm²

hc,eff 26,23 mm

Ac,eff 3.672,8 mm² Area efficace di calcestruzzo teso attorno all'armatura, di altezza $h_{c,ef}$ e base t_w

 ρ_{eff} 0,04

αe 6,36

ESM 0,00075 Deformazione unitaria media delle barre

K1 0,80 Per barre ad aderenza migliorata

K2 0,50 Caso di flessione

K3 3,40 Valore fisso

K4 0,43 Valore fisso

φ 14,00 mm

Δsmax 148,58 mm Distanza massima tra le fessure

W_{d (freq)} 0,11 mm Valore di calcolo dell'apertura delle fessure

w3 0,40 mm Armatura poco sensibile

Combinazione Quasi Permanente

w2

σs (qp) 179,12 N/mm² Tensione nell'armatura tesa valutata nella sezione fessurata in Comb Q Perm

ESM 0,00068 Deformazione unitaria media delle barre

 $w_{d\,(qp)}$ 0,10 mm Valore di calcolo dell'apertura delle fessure

• VERIFICA SLE FESSURAZIONE - APPOGGIO

mm

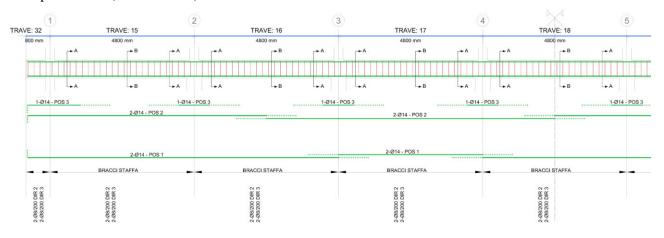
Stato Limite di Formazione delle Fessure

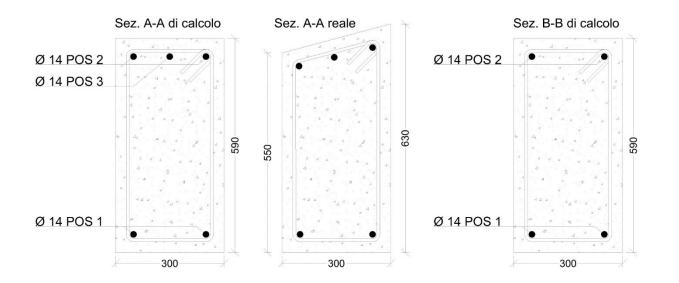
0,30

Managara Station were a seed della	X	Momento	o d'Inerzia	J
Momento Statico pari a zero della sezione interamente reagente $ax + b = 0$	[mm]	Cls	A_s	[mm ⁴]
ax + b = 0	60	20.160.000,00	3.922.215,60	24.082.215,60

Combinazione Quasi Permanente

Combinazione Frequente


Armatura poco sensibile


La sezione non si fessura

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO					
	POTENZIAMENTO DELLA LINEA MILANO - GENOVA					
	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE					
RELAZIONE DI CALCOLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
	NM0Z	10	D 26 CL FA1200 001	A	54 DI 145	

11 VERIFICHE TRAVE FILO FISSO B

Di seguito è schematizzata la distribuzione di armature longitudinali e staffe per la trave corrispondente al filo fisso B, considerando la simmetria dell'elemento, si riporta in questa sede solo la sezione longitudinale della prima metà (fili fissi 1-5).

Le verifiche di resistenza, così come il controllo tensione e fessurazione per gli stati limite di esercizio, vengono condotte con il software VIS di CSI.

PROGETT	PROGETTO DEFINITIVO					
POTENZIA	POTENZIAMENTO DELLA LINEA MILANO - GENOVA					
~	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE					
PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO 55 DI 145		
_	POTENZIA QUADRUPLIO FASE I - QUA	POTENZIAMENTO QUADRUPLICAMENTO T FASE I - QUADRUPLICAM PROGETTO LOTTO	POTENZIAMENTO DELLA LINEA MILA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIE PROGETTO LOTTO CODIFICA DOCUMENTO	POTENZIAMENTO DELLA LINEA MILANO - GEN QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANU PROGETTO LOTTO CODIFICA DOCUMENTO REV.		

11.1 Verifiche SLU – Flessione

Si riportano di seguito le verifiche effettuate per le sezioni più sollecitate di campata e appoggio.

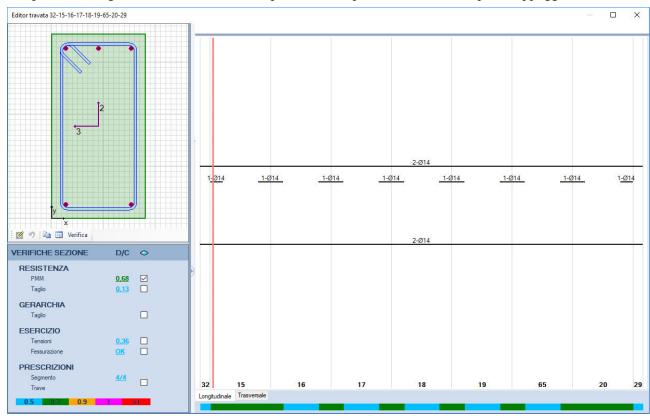


Figura 11.1 – Rapporto Domanda/Capacità per la verifica di resistenza a flessione della trave in esame

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 CODIFICA DOCUMENTO
 REV.
 FOGLIO

 NM0Z
 10
 D 26 CL
 FA1200 001
 A
 56 DI 145

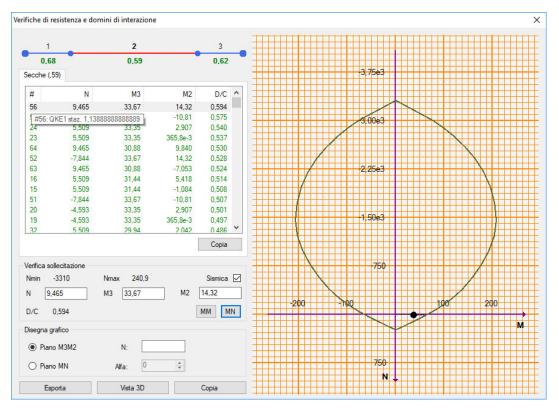


Figura 11.2 – Dominio di resistenza della sezione di campata massimamente sollecitata

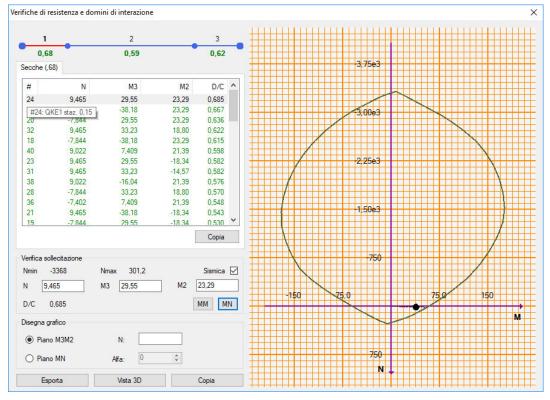


Figura 11.3 – Dominio di resistenza della sezione in appoggio massimamente sollecitata

11.2 Verifiche SLU – Taglio

Secondo quanto specificato dalla normativa, la verifica resistenza a taglio nei confronti delle sollecitazioni determinate dall'analisi globale condotta sulla struttura si conduce controllando la seguente disuguaglianza:

 $V_{Ed} \le V_{Rd}$

V_{Ed} è il valore di calcolo dello sforzo di taglio agente, mentre V_{Rd} è la resistenza a taglio, che per elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione 9 dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$1 \le \text{ctg}\vartheta \le 2,5$

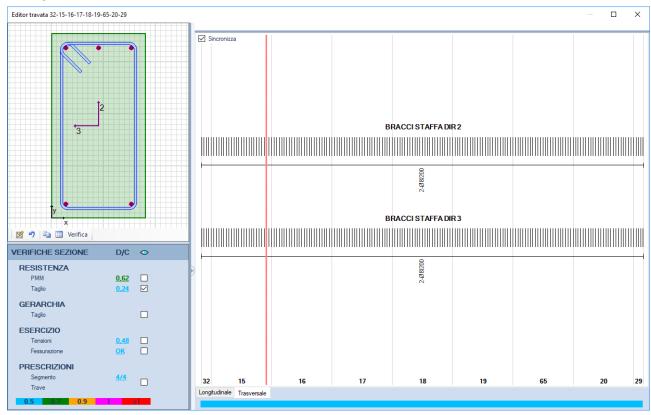
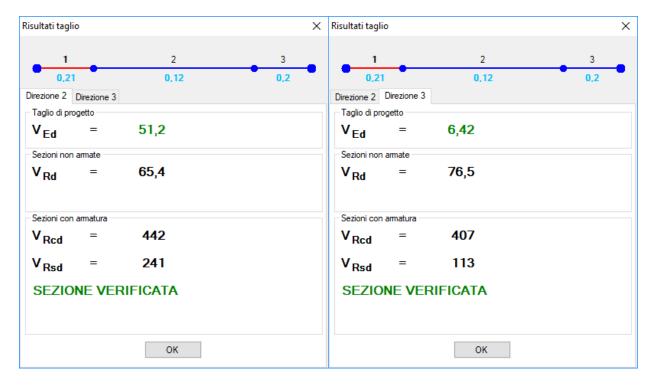



Figura 11.4 – Rapporto Domanda/Capacità per la verifica di resistenza a taglio della trave in esame

Si riporta di seguito la tabella di verifica a taglio della trave in esame.

11.3 Verifiche SLE – Tensione

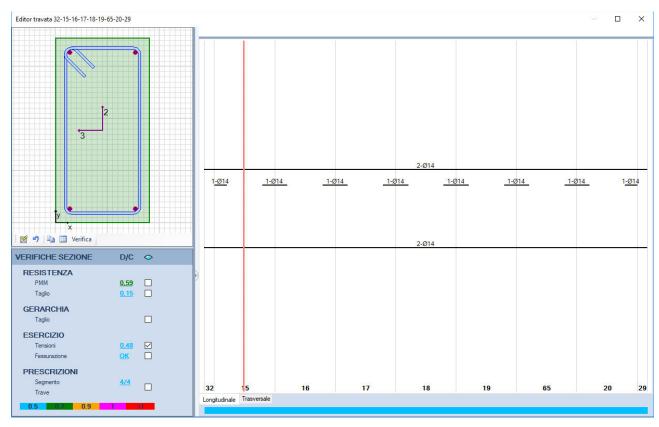


Figura 11.5 - Rapporto Domanda/Capacità per il controllo di tensione agli stati limite di esercizio della trave in esame

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 CODIFICA DOCUMENTO
 REV.
 FOGLIO

 NM0Z
 10
 D 26 CL
 FA1200 001
 A
 59 DI 145

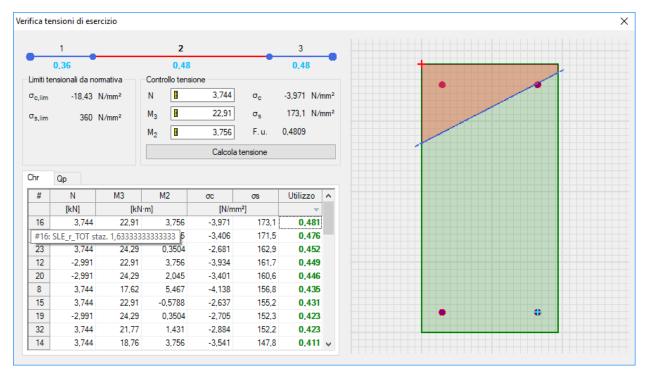


Figura 11.6 - Valori di tensione della sezione di campata massimamente sollecitata per la combinazione di carico rara

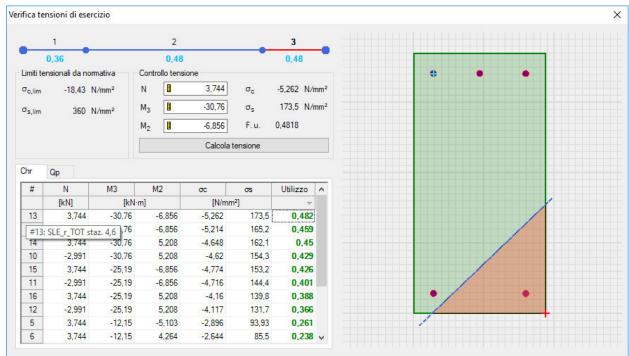


Figura 11.7- Valori di tensione della sezione in appoggio massimamente sollecitata per la combinazione di carico rara

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 CODIFICA DOCUMENTO
 REV.
 FOGLIO

 NM0Z
 10
 D 26 CL
 FA1200 001
 A
 60 DI 145

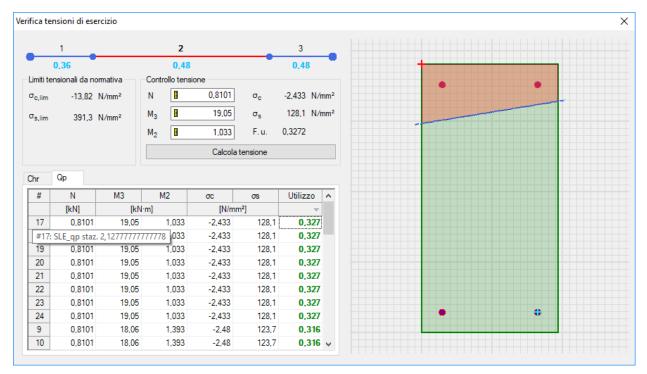


Figura 11.8- Valori di tensione della sezione di campata massimamente sollecitata per la combinazione di carico quasi permanente

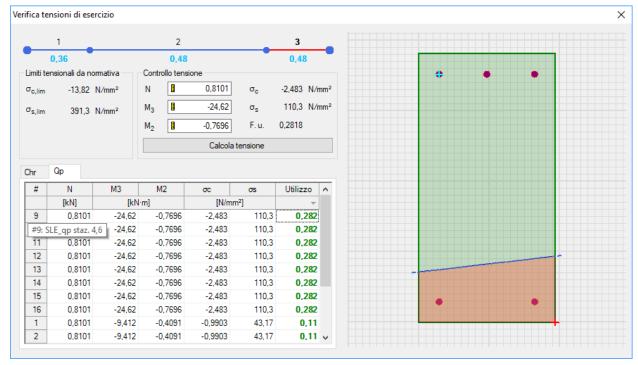


Figura 11.9 – Valori di tensione della sezione in appoggio massimamente sollecitata per la combinazione di carico quasi permanente

11.4 Verifiche SLE – Fessurazione

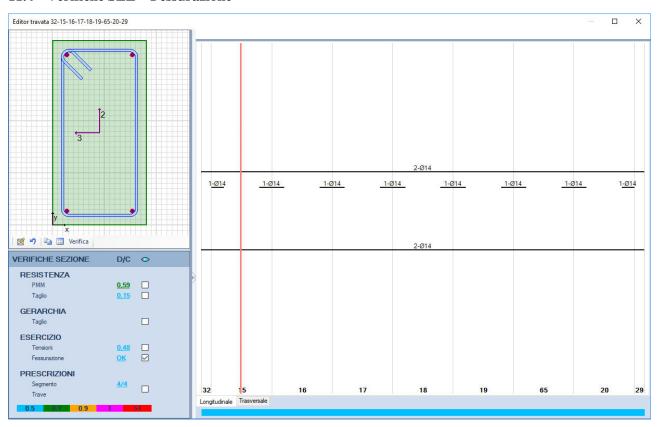
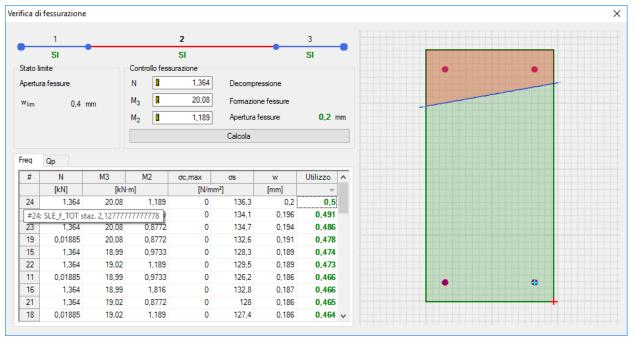
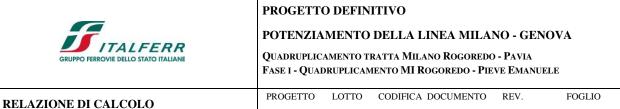
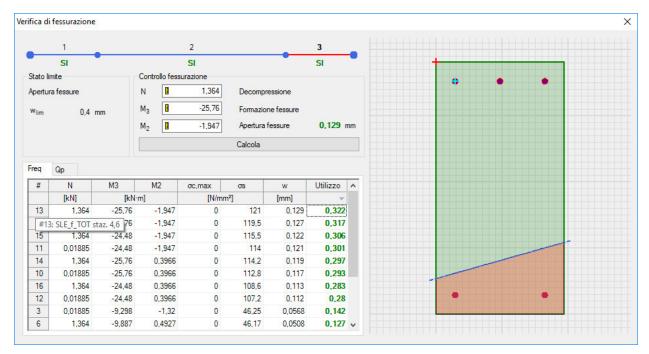
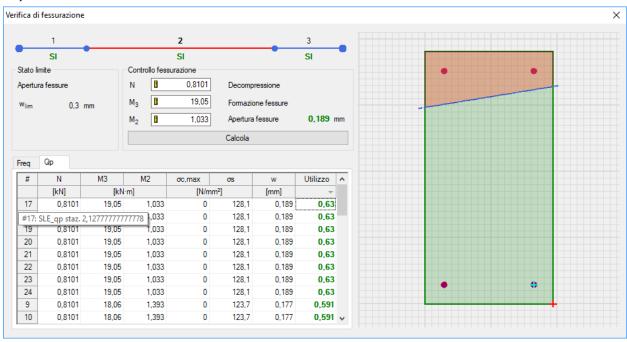


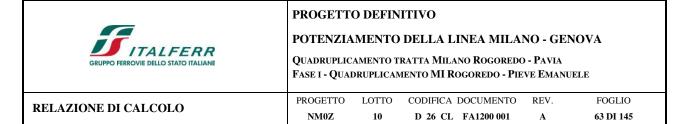
Figura 11.10 - Rapporto Domanda/Capacità per il controllo di fessurazione della trave in esame


Figura 11.11 - Valori di apertura delle fessure per la sezione in campata massimamente sollecitata per la combinazione di carico frequente


D 26 CL FA1200 001

62 DI 145


NM0Z

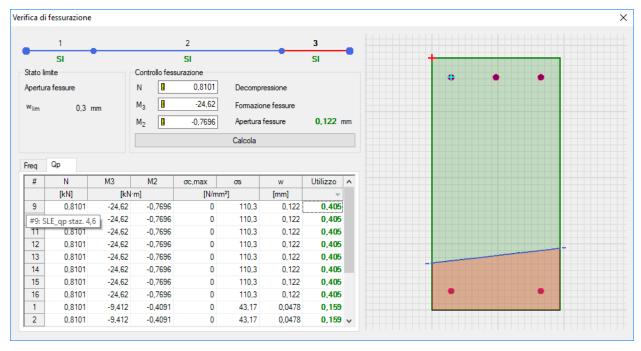


Figura 11.12 - Valori di apertura delle fessure per la sezione in appoggio massimamente sollecitata per la combinazione di carico frequente



Figura 11.13 - Valori di apertura delle fessure per la sezione in campata massimamente sollecitata per la combinazione di carico quasi permanente

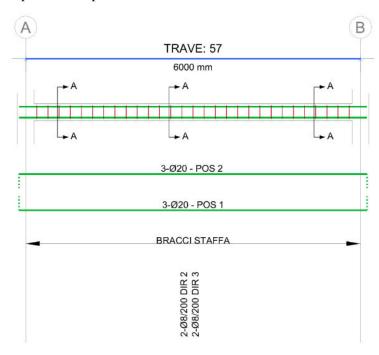
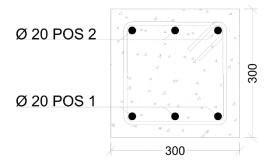


Figura 11.14 - Valori di apertura delle fessure per la sezione in appoggio massimamente sollecitata per la combinazione di carico quasi permanente



12 VERIFICHE TIRANTE FILO FISSO 4

Di seguito è schematizzata la distribuzione di armature longitudinali e staffe per il tirante inferiore della capriata corrispondente al filo fisso 4.

Sez. A-A

Le verifiche di resistenza, così come il controllo tensione e fessurazione per gli stati limite di esercizio, vengono condotte con il software VIS di CSI.

12.1 Verifiche SLU – Flessione

Si riportano di seguito le verifiche effettuate per le sezioni più sollecitate di campata e appoggio.

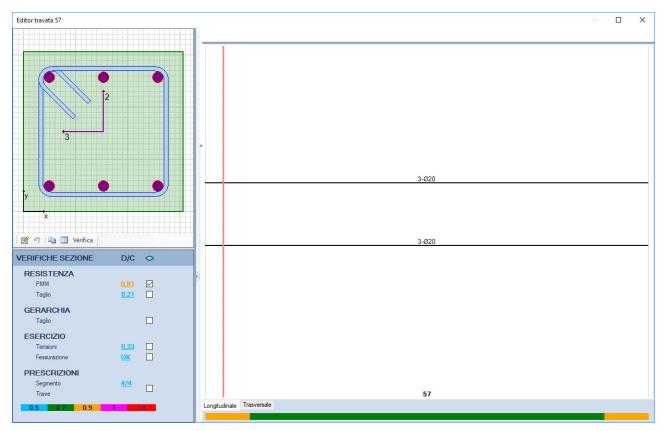


Figura 12.1 - Rapporto Domanda/Capacità per la verifica di resistenza a flessione della trave in esame

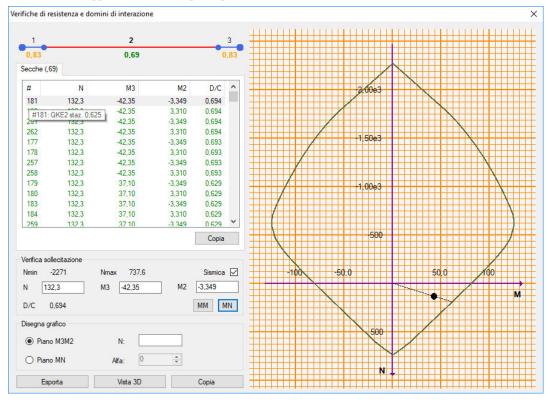


Figura 12.2 - Dominio di resistenza della sezione di campata massimamente sollecitata

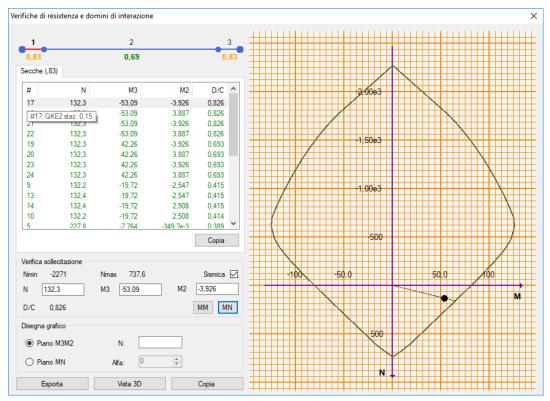


Figura 12.3 – Dominio di resistenza della sezione in appoggio massimamente sollecitata

12.2 Verifiche SLU – Taglio

Secondo quanto specificato dalla normativa, la verifica resistenza a taglio nei confronti delle sollecitazioni determinate dall'analisi globale condotta sulla struttura si conduce controllando la seguente disuguaglianza:

$$V_{Ed} \leq V_{Rd}$$

V_{Ed} è il valore di calcolo dello sforzo di taglio agente, mentre V_{Rd} è la resistenza a taglio, che per elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione 9 dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

 $1 \le \text{ctg} \vartheta \le 2.5$

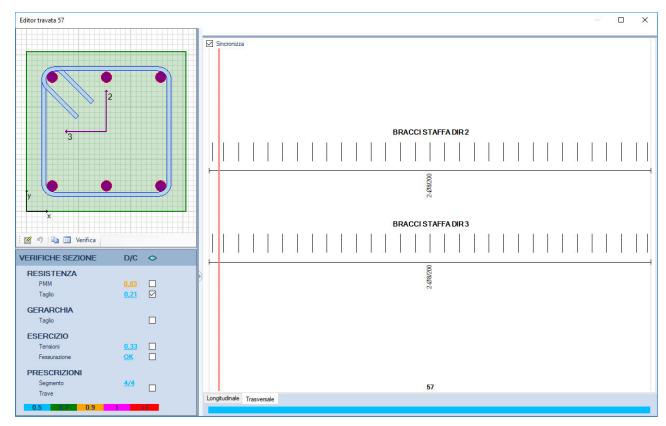
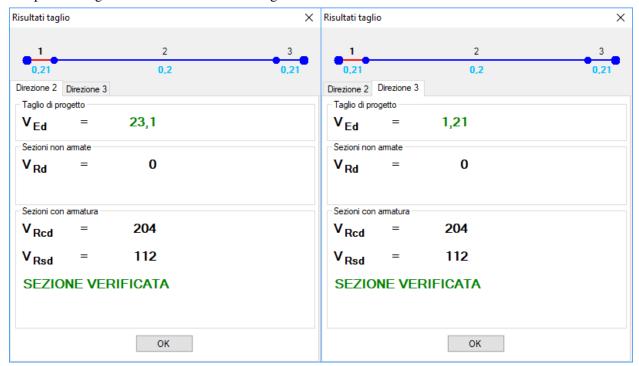



Figura 12.4 – Rapporto Domanda/Capacità per la verifica di resistenza a taglio della trave in esame

Si riporta di seguito la tabella di verifica a taglio della trave in esame.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO					
	POTENZIAMENTO DELLA LINEA MILANO - GENOVA					
	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE					
RELAZIONE DI CALCOLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
	NM0Z	10	D 26 CL FA1200 001	A	68 DI 145	

12.3 Verifiche SLE – Tensione

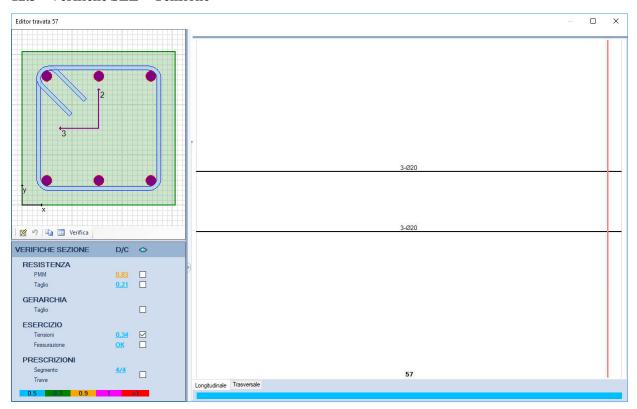


Figura 12.5 - Rapporto Domanda/Capacità per il controllo di tensione agli stati limite di esercizio della trave in esame

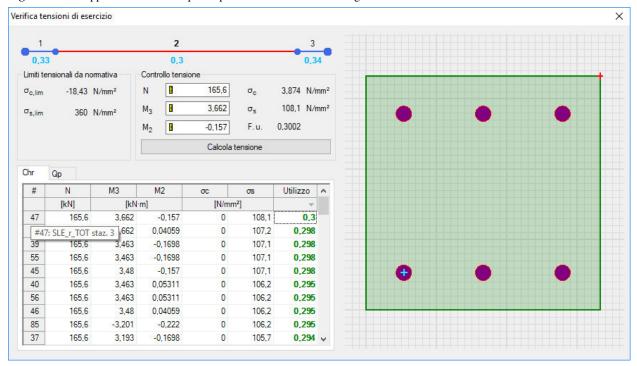


Figura 12.6 – Valori di tensione della sezione di campata massimamente sollecitata per la combinazione di carico rara

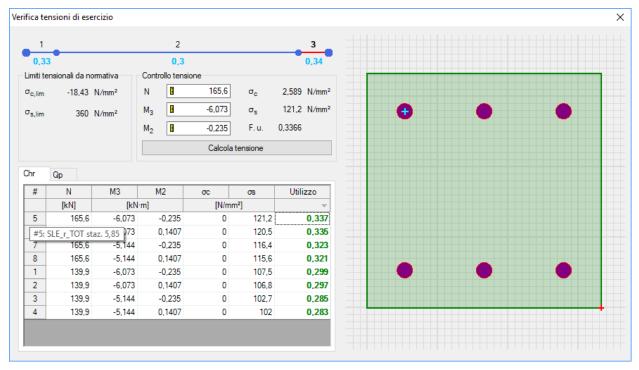


Figura 12.7- Valori di tensione della sezione in appoggio massimamente sollecitata per la combinazione di carico rara

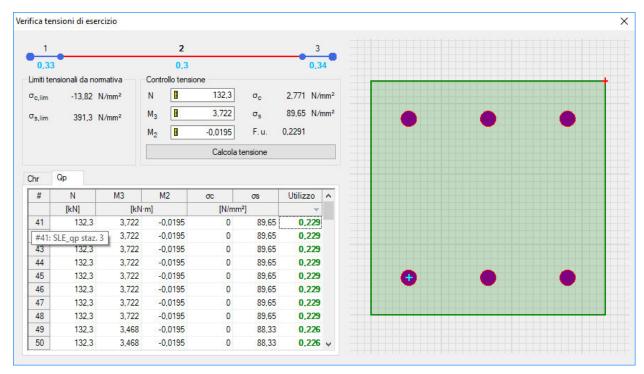
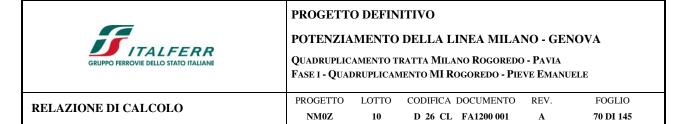



Figura 12.8- Valori di tensione della sezione di campata massimamente sollecitata per la combinazione di carico quasi permanente

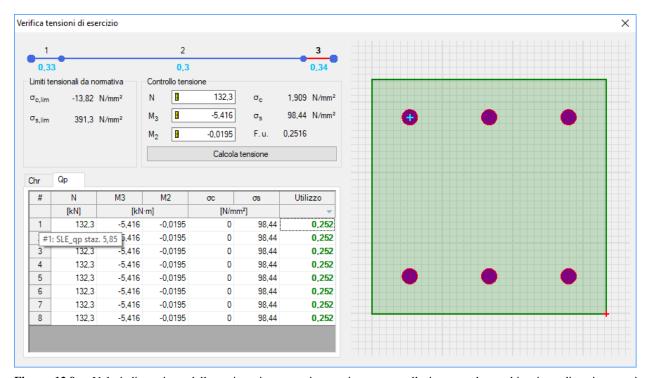


Figura 12.9 – Valori di tensione della sezione in appoggio massimamente sollecitata per la combinazione di carico quasi permanente

12.4 Verifiche SLE – Fessurazione

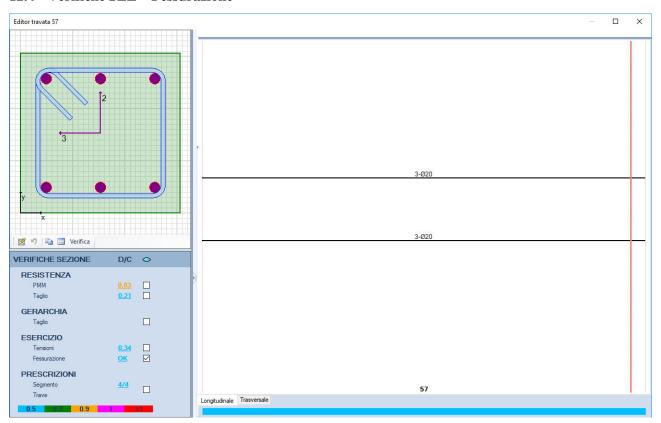


Figura 12.10 - Rapporto Domanda/Capacità per il controllo di fessurazione della trave in esame

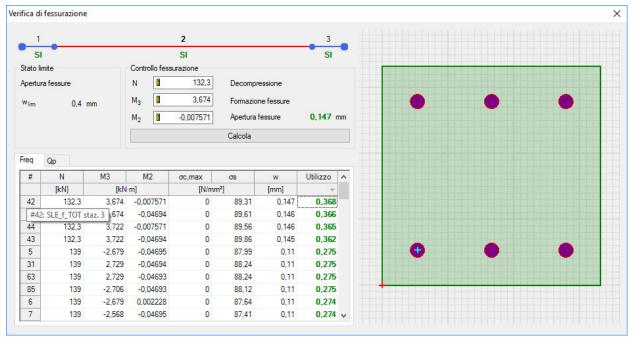
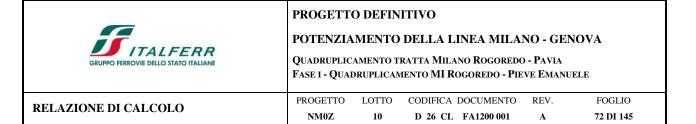



Figura 12.11 - Valori di apertura delle fessure per la sezione in campata massimamente sollecitata per la combinazione di carico frequente

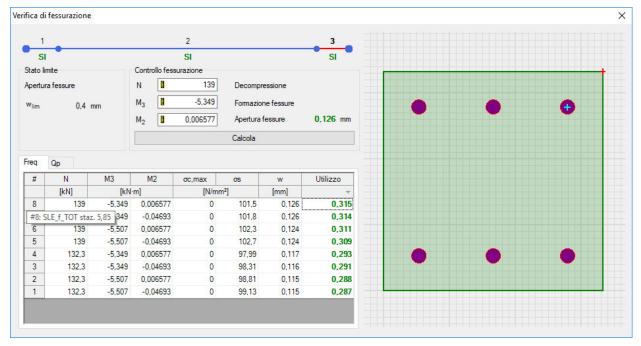
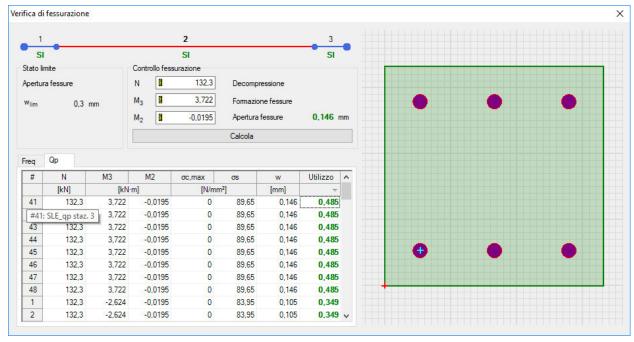



Figura 12.12 - Valori di apertura delle fessure per la sezione in appoggio massimamente sollecitata per la combinazione di carico frequente

Figura 12.13 - Valori di apertura delle fessure per la sezione in campata massimamente sollecitata per la combinazione di carico quasi permanente

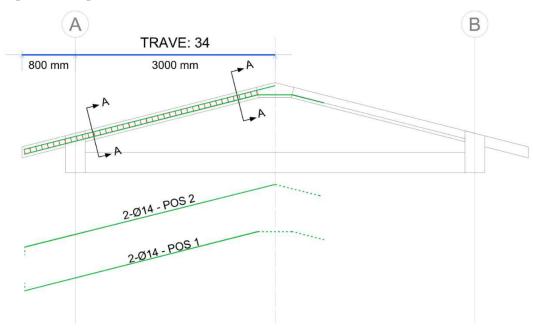
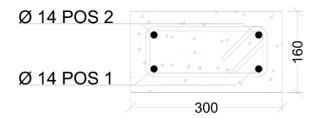


Figura 12.14 - Valori di apertura delle fessure per la sezione in appoggio massimamente sollecitata per la combinazione di carico quasi permanente


PROGETT	PROGETTO DEFINITIVO					
POTENZIA	POTENZIAMENTO DELLA LINEA MILANO - GENOVA					
QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE						
PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO 74 DI 145		
_	POTENZIA QUADRUPLIO FASE I - QUA	POTENZIAMENTO QUADRUPLICAMENTO T FASE I - QUADRUPLICAM PROGETTO LOTTO	POTENZIAMENTO DELLA LINEA MILA: QUADRUPLICAMENTO TRATTA MILANO ROGOREDO FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIE PROGETTO LOTTO CODIFICA DOCUMENTO	POTENZIAMENTO DELLA LINEA MILANO - GE QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANI PROGETTO LOTTO CODIFICA DOCUMENTO REV.		

13 VERIFICHE CORRENTE SUPERIORE FILO FISSO 1

Di seguito è schematizzata la distribuzione di armature longitudinali e staffe per il corrente superiore della capriata corrispondente al filo fisso 1.

Sez. A-A

Le verifiche di resistenza, così come il controllo tensione e fessurazione per gli stati limite di esercizio, vengono condotte con il software VIS di CSI.

I ITALFERR	PROGETTO DEFINITIVO						
	POTENZIAMENTO DELLA LINEA MILANO - GENOVA						
GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE						
RELAZIONE DI CALCOLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO		
	NM0Z	10	D 26 CL FA1200 001	A	75 DI 145		

13.1 Verifiche SLU – Flessione

Si riportano di seguito le verifiche effettuate per le sezioni più sollecitate di campata e appoggio.

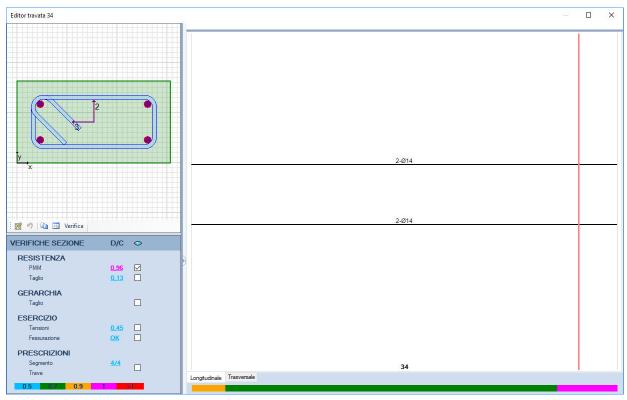


Figura 13.1 - Rapporto Domanda/Capacità per la verifica di resistenza a flessione della trave in esame

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 CODIFICA DOCUMENTO
 REV.
 FOGLIO

 NM0Z
 10
 D 26 CL
 FA1200 001
 A
 76 DI 145

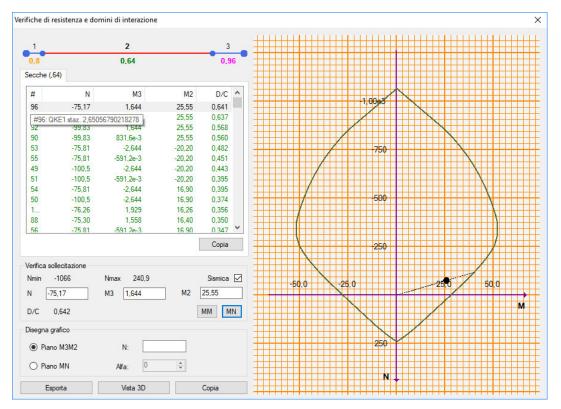


Figura 13.2 – Dominio di resistenza della sezione di campata massimamente sollecitata

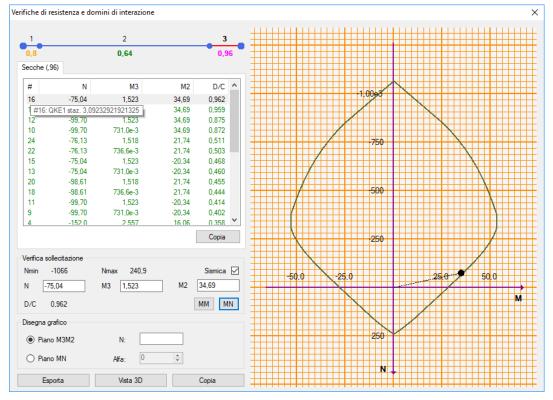
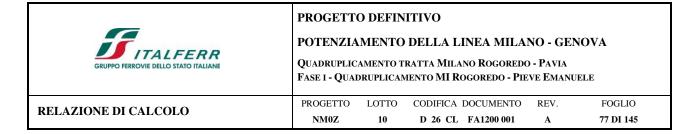



Figura 13.3 – Dominio di resistenza della sezione in appoggio massimamente sollecitata

13.2 Verifiche SLU – Taglio

Secondo quanto specificato dalla normativa, la verifica resistenza a taglio nei confronti delle sollecitazioni determinate dall'analisi globale condotta sulla struttura si conduce controllando la seguente disuguaglianza:

 $V_{Ed} \le V_{Rd}$

V_{Ed} è il valore di calcolo dello sforzo di taglio agente, mentre V_{Rd} è la resistenza a taglio, che per elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione 9 dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$1 \le ctg\vartheta \le 2,5$

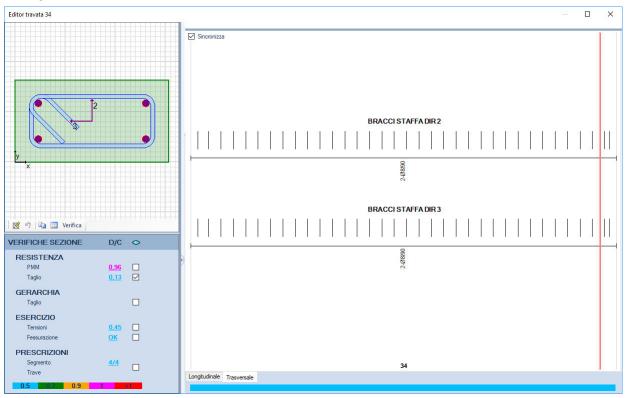
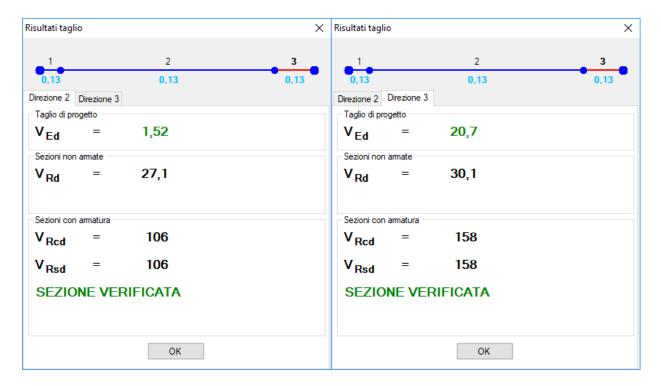



Figura 13.4 – Rapporto Domanda/Capacità per la verifica di resistenza a taglio della trave in esame

Si riporta di seguito la tabella di verifica a taglio della trave in esame.

13.3 Verifiche SLE – Tensione

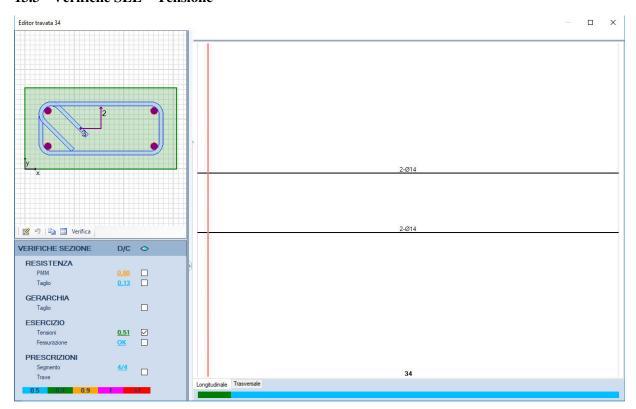


Figura 13.5 - Rapporto Domanda/Capacità per il controllo di tensione agli stati limite di esercizio della trave in esame

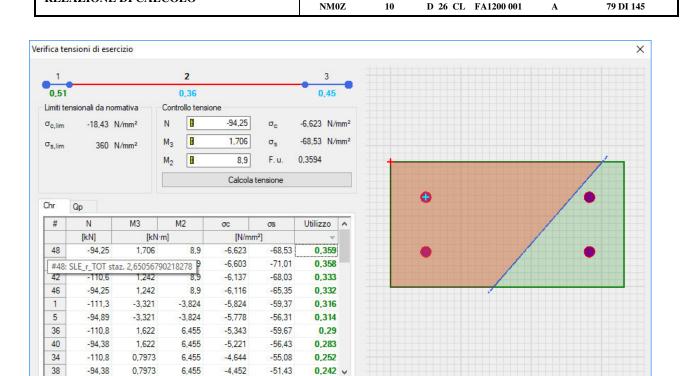


Figura 13.6 - Valori di tensione della sezione di campata massimamente sollecitata per la combinazione di carico rara

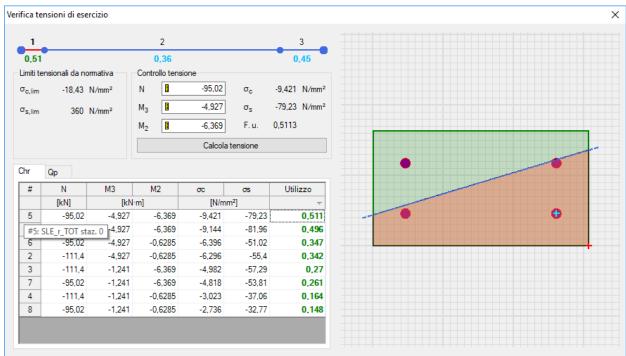


Figura 13.7- Valori di tensione della sezione in appoggio massimamente sollecitata per la combinazione di carico rara

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 CODIFICA DOCUMENTO
 REV.
 FOGLIO

 NM0Z
 10
 D 26 CL
 FA1200 001
 A
 80 DI 145

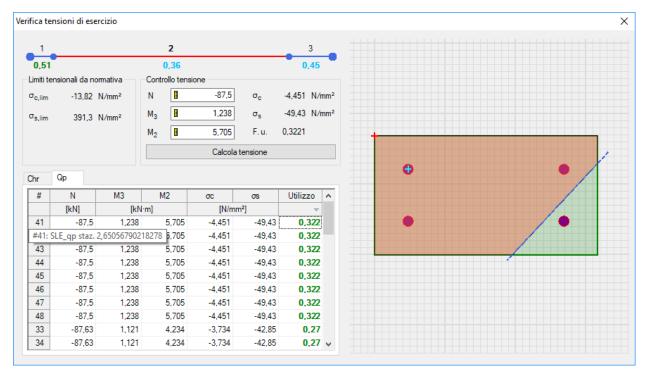


Figura 13.8- Valori di tensione della sezione di campata massimamente sollecitata per la combinazione di carico quasi permanente

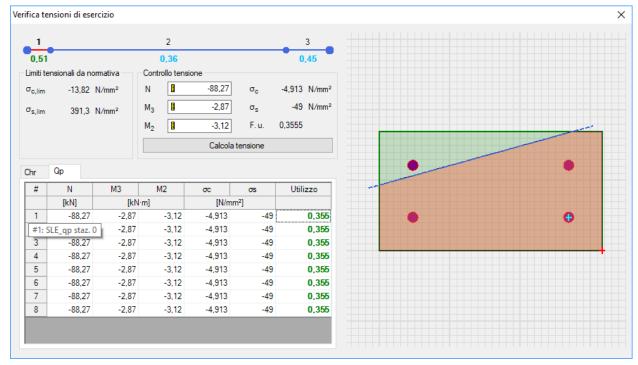


Figura 13.9 – Valori di tensione della sezione in appoggio massimamente sollecitata per la combinazione di carico quasi permanente

13.4 Verifiche SLE – Fessurazione

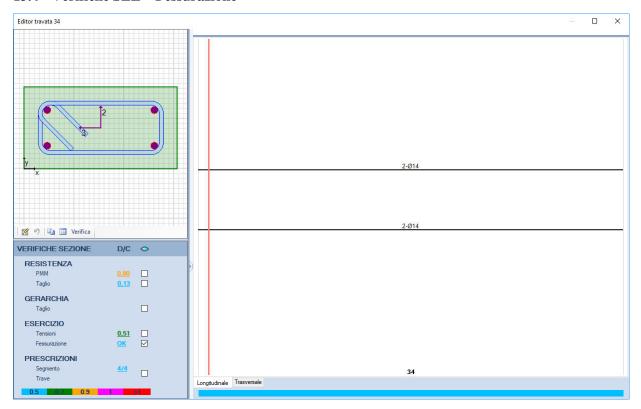


Figura 13.10 - Rapporto Domanda/Capacità per il controllo di fessurazione della trave in esame

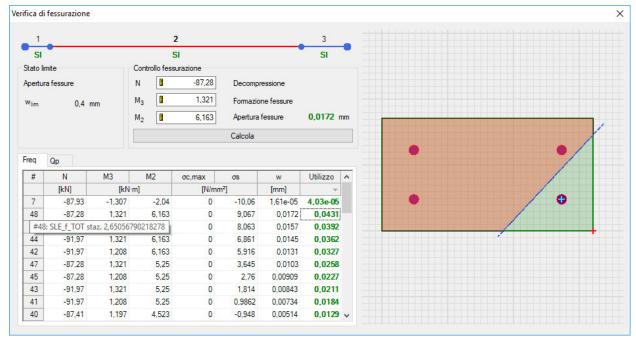
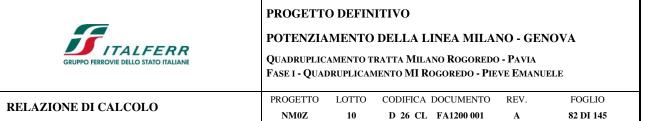



Figura 13.11 - Valori di apertura delle fessure per la sezione in campata massimamente sollecitata per la combinazione di carico frequente

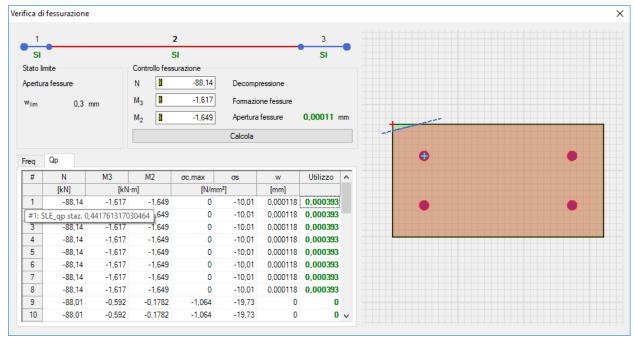
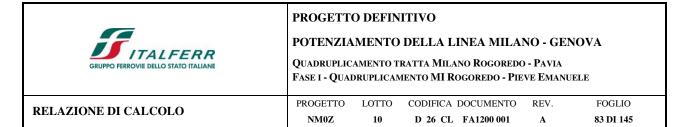
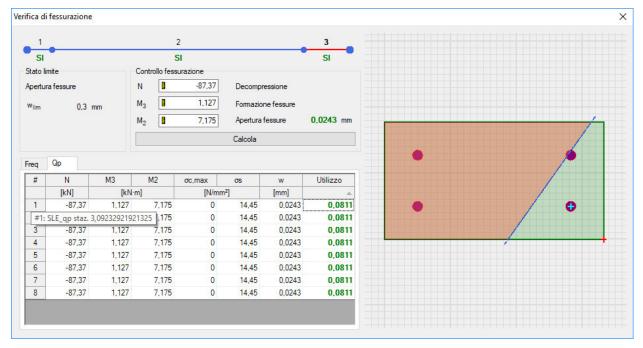
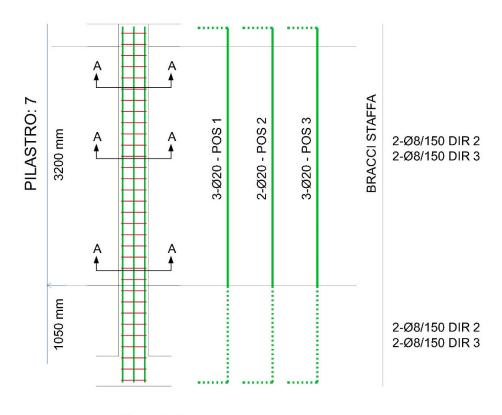
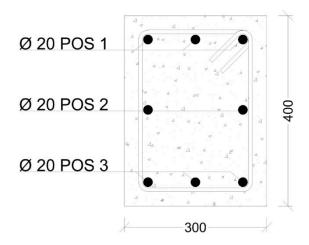





Figura 13.12 - Valori di apertura delle fessure per la sezione in appoggio massimamente sollecitata per la combinazione di carico frequente

Figura 13.13 - Valori di apertura delle fessure per la sezione in campata massimamente sollecitata per la combinazione di carico quasi permanente


Figura 13.14 - Valori di apertura delle fessure per la sezione in appoggio massimamente sollecitata per la combinazione di carico quasi permanente


14 VERIFICHE PILASTRO B4

Di seguito è schematizzata la distribuzione di armature longitudinali e staffe per il pilastro corrispondente alla posizione B4.

Le verifiche di resistenza, così come il controllo tensione e fessurazione per gli stati limite di esercizio, vengono condotte con il software VIS di CSI.

Sez. A-A

14.1 Verifiche SLU – Pressoflessione Deviata

Si riportano di seguito le verifiche effettuate per le sezioni più sollecitate di base e testa.

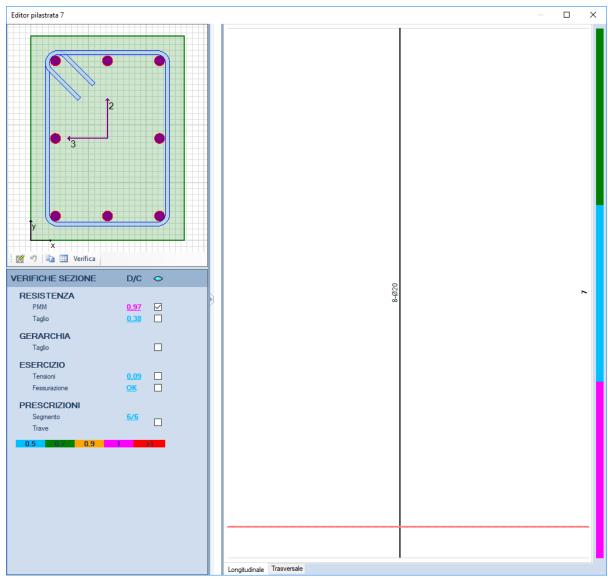


Figura 14.1 – Rapporto Domanda/Capacità per la verifica di resistenza a pressoflessione deviata del pilastro in esame

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 CODIFICA DOCUMENTO
 REV.
 FOGLIO

 NM0Z
 10
 D 26 CL
 FA1200 001
 A
 86 DI 145

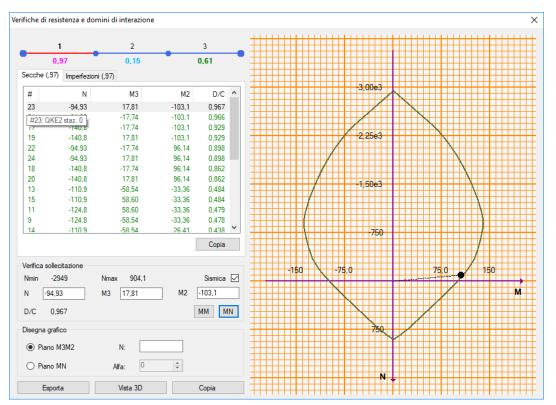


Figura 14.2 – Dominio di resistenza della sezione di base massimamente sollecitata

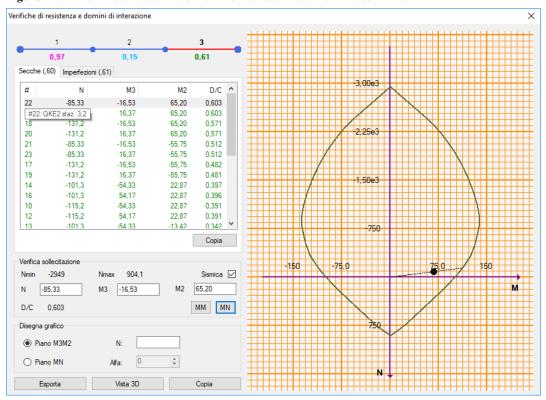


Figura 14.3 – Dominio di resistenza della sezione di testa massimamente sollecitata

14.2 Verifiche SLU – Taglio

Come per le travi, nei pilastri la verifica resistenza a taglio nei confronti delle sollecitazioni determinate dall'analisi globale condotta sulla struttura si conduce controllando la disuguaglianza:

 $V_{Ed} \leq V_{Rd}$

Dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente, mentre V_{Rd} è la resistenza a taglio, che per elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione ϑ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

 $1 \le \text{ctg}\vartheta \le 2,5$

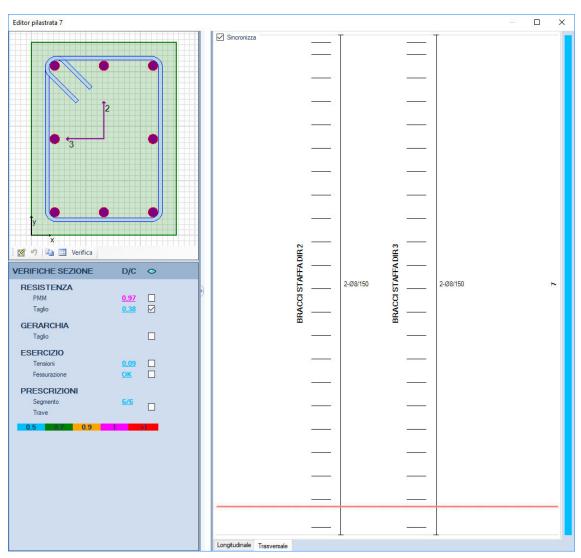
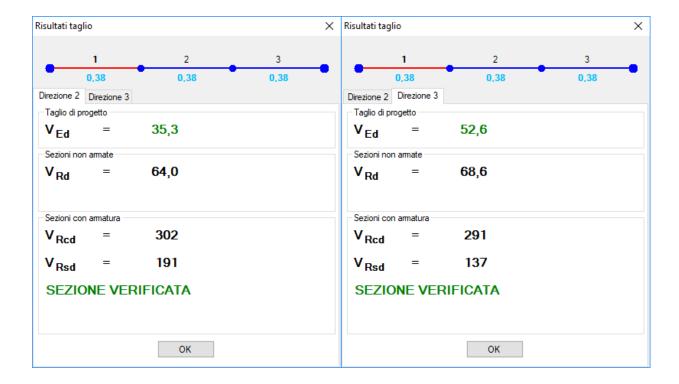



Figura 14.4 - Rapporto Domanda/Capacità per la verifica di resistenza a taglio del pilastro in esame

GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLIC	MENTO	ITIVO DELLA LINEA MILA! RATTA MILANO ROGOREDO IENTO MI ROGOREDO - PIE	- PAVIA	
RELAZIONE DI CALCOLO	PROGETTO NM0Z	LOTTO 10	CODIFICA DOCUMENTO D 26 CL FA1200 001	REV.	FOGLIO 88 DI 145

Si riporta di seguito la tabella di verifica a taglio del pilastro in esame.

14.3 Verifiche SLE – Tensione

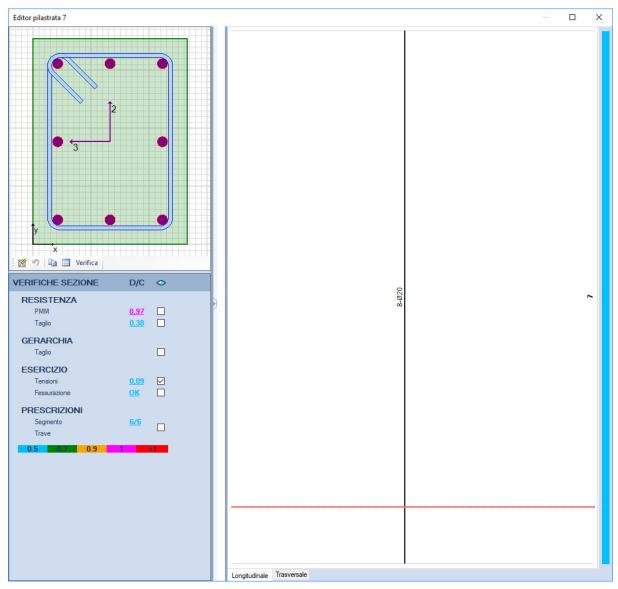


Figura 14.5 - Rapporto Domanda/Capacità per il controllo di tensione agli stati limite di esercizio del pilastro in esame

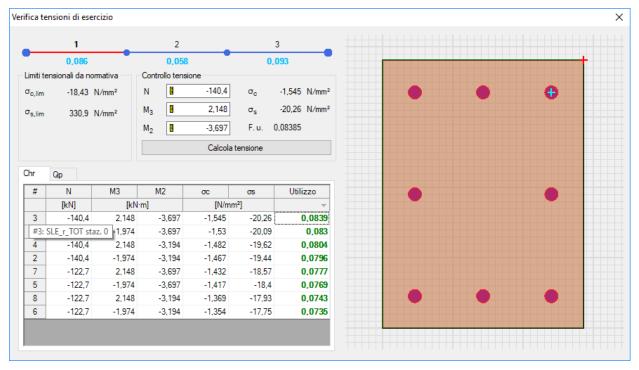


Figura 14.6 - Valori di tensione della sezione di base massimamente sollecitata per la combinazione di carico rara

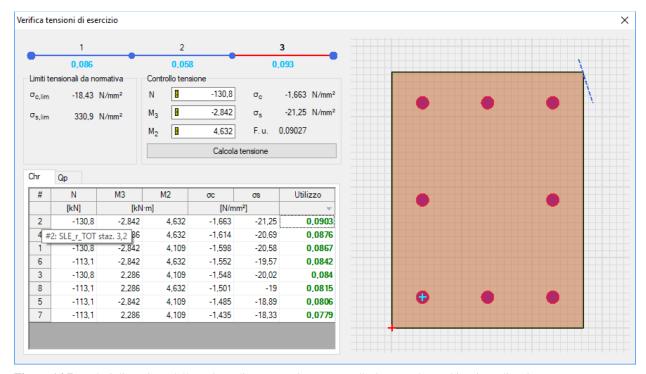


Figura 14.7- Valori di tensione della sezione di testa massimamente sollecitata per la combinazione di carico rara

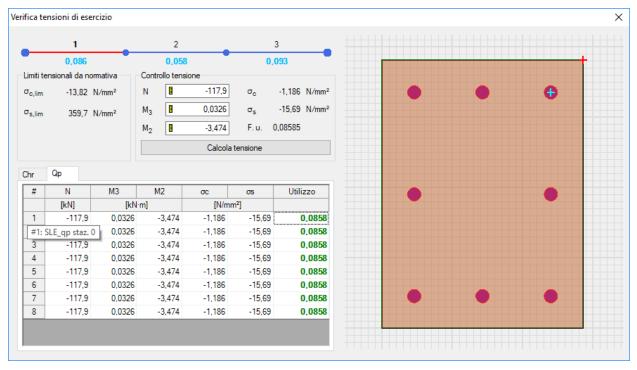


Figura 14.8 - Valori di tensione della sezione di base massimamente sollecitata per la combinazione di carico quasi permanente

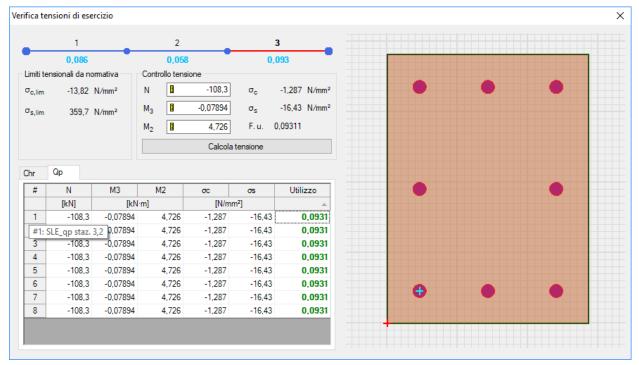


Figura 14.9- Valori di tensione della sezione di testa massimamente sollecitata per la combinazione di carico quasi permanente

S ITALFERR	PROGETTO DEFINITIVO						
	POTENZIAMENTO DELLA LINEA MILANO - GENOVA						
GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE						
RELAZIONE DI CALCOLO	PROGETTO NM0Z	LOTTO 10	CODIFICA DOCUMENTO D 26 CL FA1200 001	REV.	FOGLIO 92 DI 145		

14.4 Verifiche SLE – Fessurazione

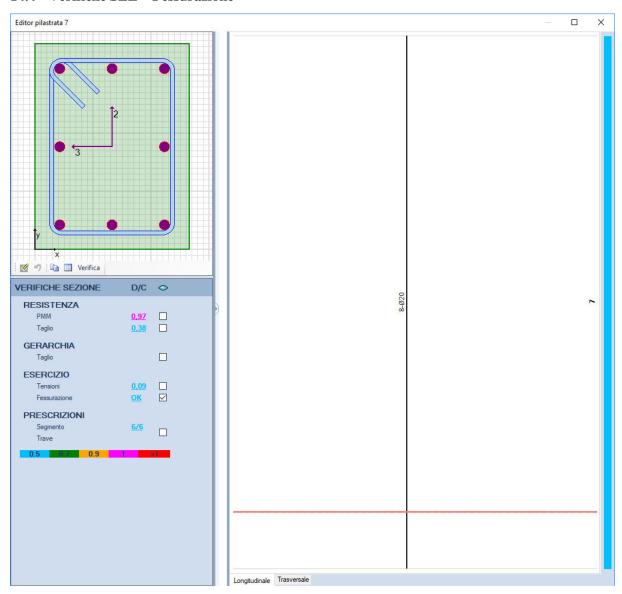
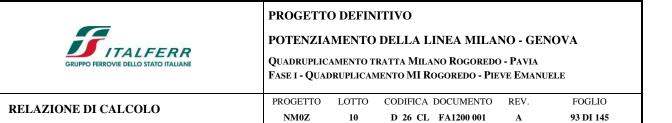



Figura 14.10 - Rapporto Domanda/Capacità per il controllo di fessurazione del pilastro in esame

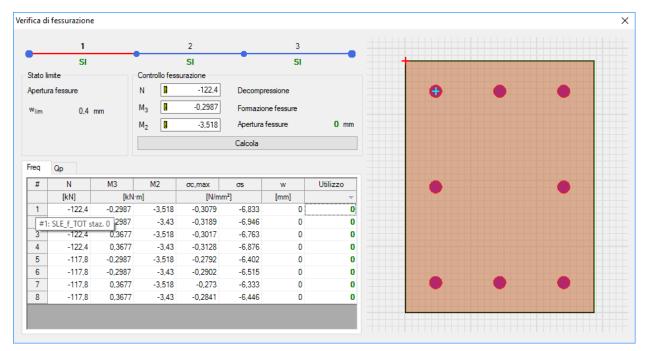


Figura 14.11 - Valori di apertura delle fessure per la sezione di base massimamente sollecitata per la combinazione di carico frequente

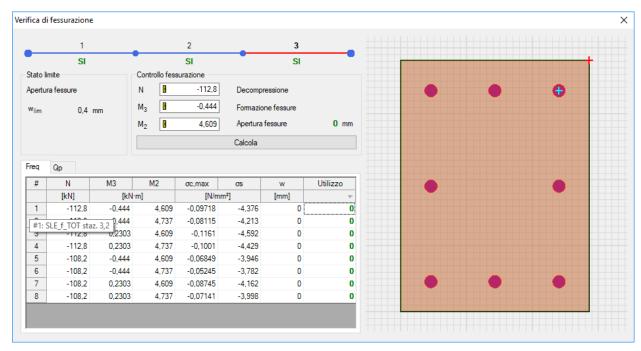


Figura 14.12 - Valori di apertura delle fessure per la sezione di testa massimamente sollecitata per la combinazione di carico frequente

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 CODIFICA DOCUMENTO
 REV.
 FOGLIO

 NM0Z
 10
 D 26 CL
 FA1200 001
 A
 94 DI 145

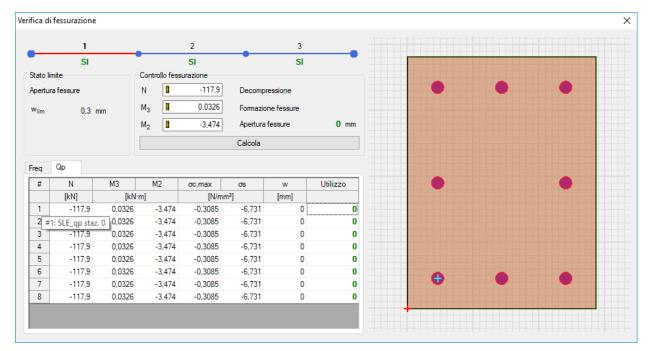
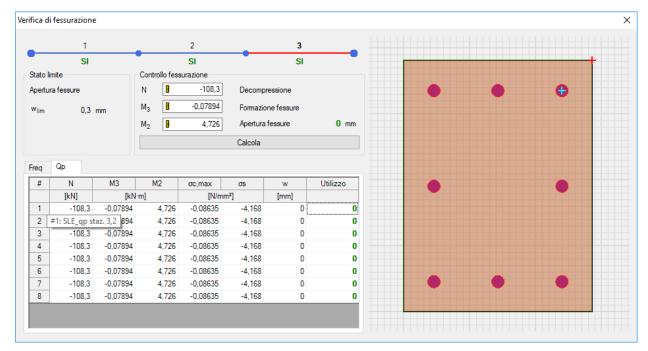
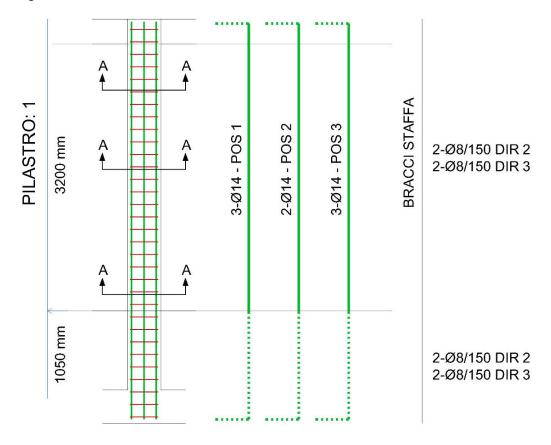


Figura 14.13 - Valori di apertura delle fessure per la sezione di base massimamente sollecitata per la combinazione di carico quasi permanente




Figura 14.14 - Valori di apertura delle fessure per la sezione di testa massimamente sollecitata per la combinazione di carico quasi permanente

15 VERIFICHE PILASTRO B1

Di seguito è schematizzata la distribuzione di armature longitudinali e staffe per il pilastro corrispondente alla posizione B1.

Le verifiche di resistenza, così come il controllo tensione e fessurazione per gli stati limite di esercizio, vengono condotte con il software VIS di CSI.

Ø 14 POS 2

Ø 14 POS 3

Sez. A-A

15.1 Verifiche SLU – Pressoflessione Deviata

Si riportano di seguito le verifiche effettuate per le sezioni più sollecitate di base e testa.

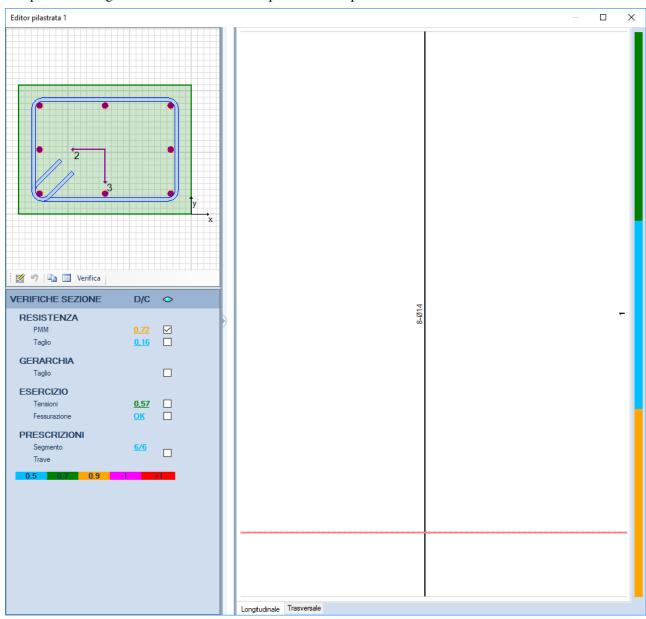


Figura 15.1 – Rapporto Domanda/Capacità per la verifica di resistenza a pressoflessione deviata del pilastro in esame

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 CODIFICA DOCUMENTO
 REV.
 FOGLIO

 NM0Z
 10
 D 26 CL
 FA1200 001
 A
 97 DI 145

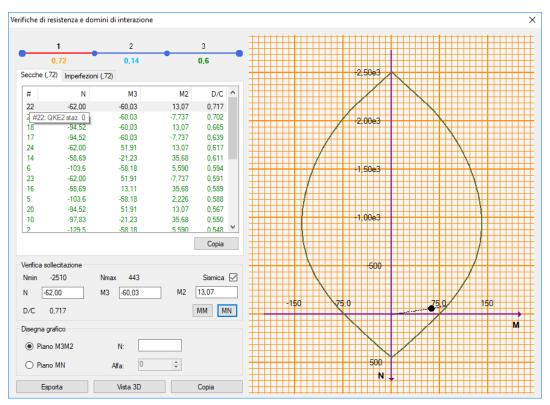


Figura 15.2 – Dominio di resistenza della sezione di base massimamente sollecitata

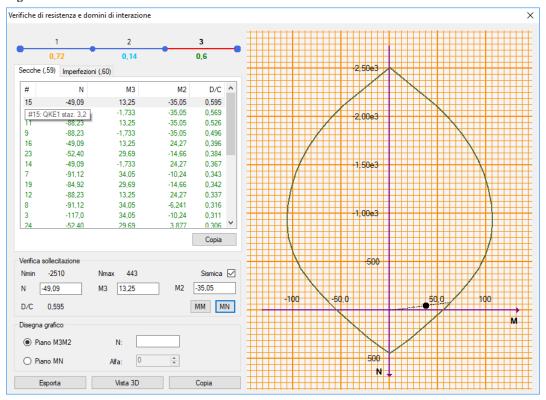


Figura 15.3 – Dominio di resistenza della sezione di testa massimamente sollecitata

15.2 Verifiche SLU – Taglio

Come per le travi, nei pilastri la verifica resistenza a taglio nei confronti delle sollecitazioni determinate dall'analisi globale condotta sulla struttura si conduce controllando la disuguaglianza:

 $V_{Ed} \leq V_{Rd}$

Dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente, mentre V_{Rd} è la resistenza a taglio, che per elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione ϑ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

 $1 \le \text{ctg}\vartheta \le 2,5$

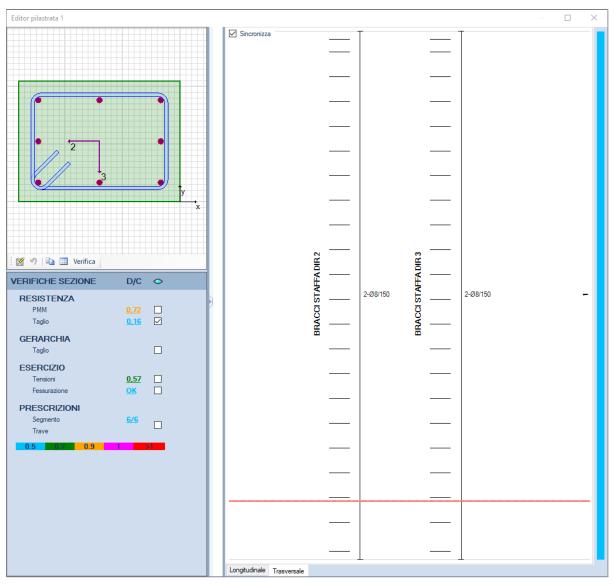
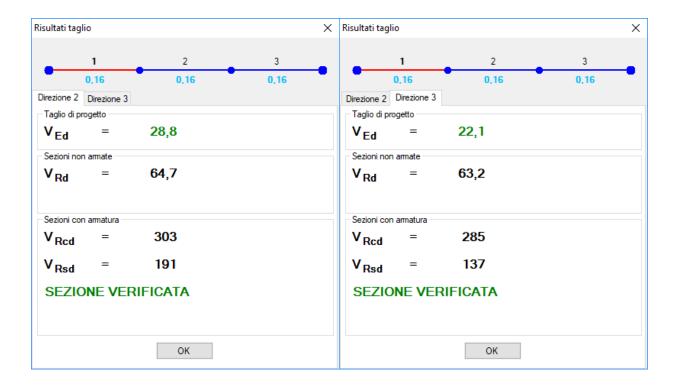



Figura 15.4 - Rapporto Domanda/Capacità per la verifica di resistenza a taglio del pilastro in esame

S ITALFERR	PROGETTO DEFINITIVO						
	POTENZIAMENTO DELLA LINEA MILANO - GENOVA						
GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE						
RELAZIONE DI CALCOLO	PROGETTO NM0Z	LOTTO 10	CODIFICA DOCUMENTO D 26 CL FA1200 001	REV.	FOGLIO 99 DI 145		

Si riporta di seguito la tabella di verifica a taglio del pilastro in esame.

	PROGETTO DEFINITIVO						
ITALFERR.	POTENZIAMENTO DELLA LINEA MILANO - GENOVA						
GRUPPO FERROVIE DELLO STATO ITALIANE	~		RATTA MILANO ROGOREDO 1ENTO MI ROGOREDO - PIE		JELE		
RELAZIONE DI CALCOLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO		
RELAZIONE DI CALCOLO	NM0Z	10	D 26 CL FA1200 001	A	100 DI 145		

15.3 Verifiche SLE – Tensione

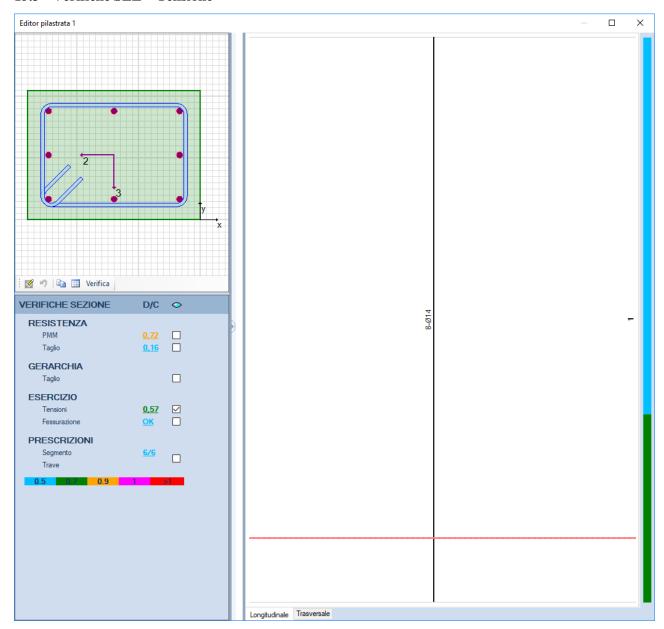


Figura 15.5 - Rapporto Domanda/Capacità per il controllo di tensione agli stati limite di esercizio del pilastro in esame

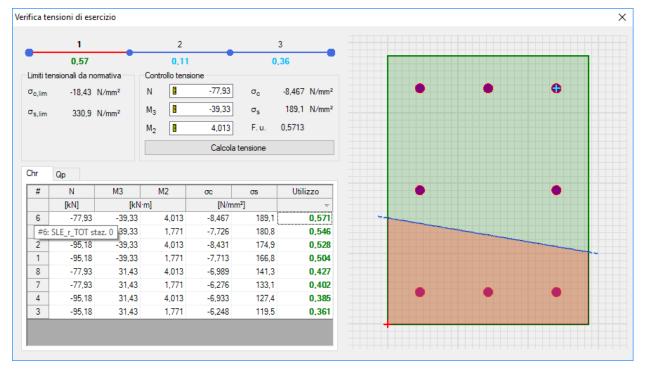


Figura 15.6 - Valori di tensione della sezione di base massimamente sollecitata per la combinazione di carico rara

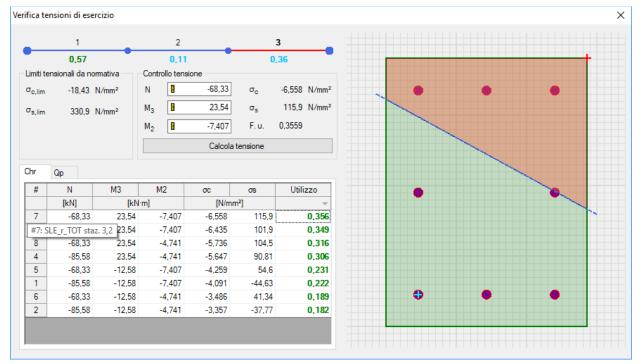


Figura 15.7- Valori di tensione della sezione di testa massimamente sollecitata per la combinazione di carico rara

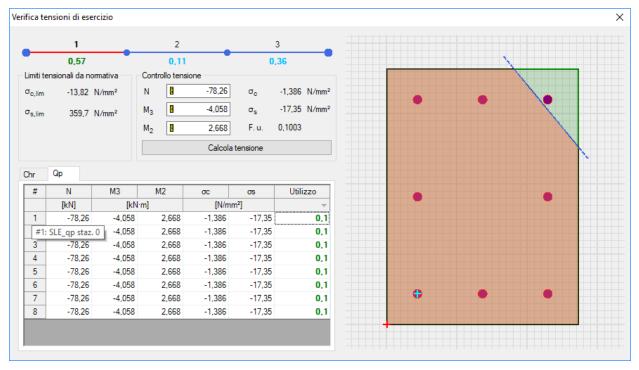


Figura 15.8 - Valori di tensione della sezione di base massimamente sollecitata per la combinazione di carico quasi permanente

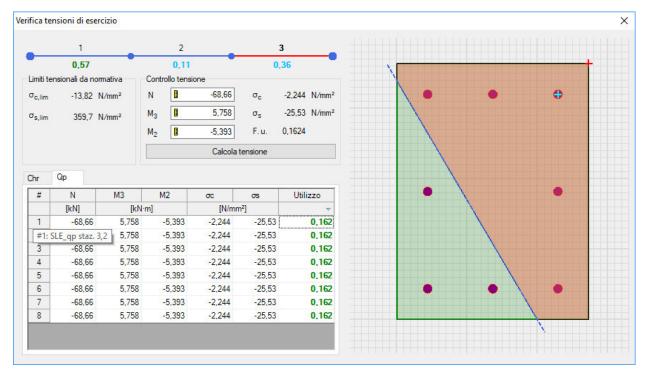


Figura 15.9- Valori di tensione della sezione di testa massimamente sollecitata per la combinazione di carico quasi permanente

	PROGETT	PROGETTO DEFINITIVO					
I ITALFERR	POTENZIAMENTO DELLA LINEA MILANO - GENOVA						
GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE						
RELAZIONE DI CALCOLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO		
RELAZIONE DI CALCOLO	NM0Z	10	D 26 CL FA1200 001	A	103 DI 145		

15.4 Verifiche SLE – Fessurazione

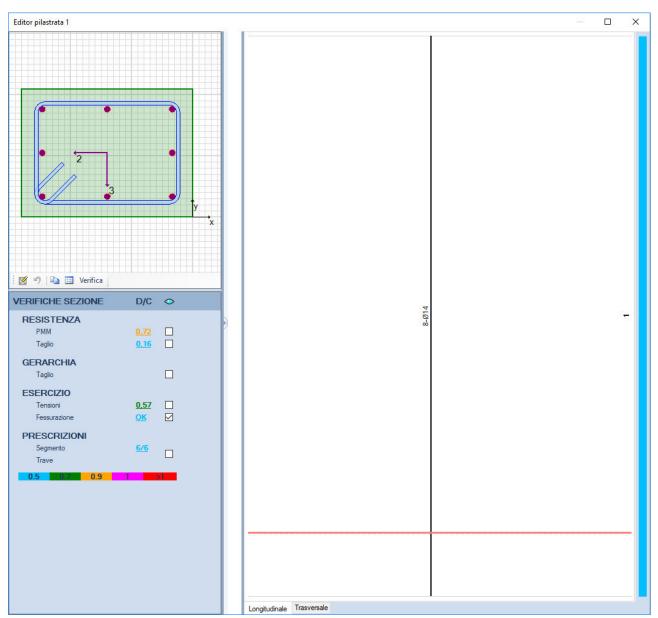
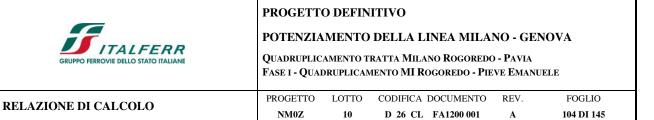



Figura 15.10 - Rapporto Domanda/Capacità per il controllo di fessurazione del pilastro in esame

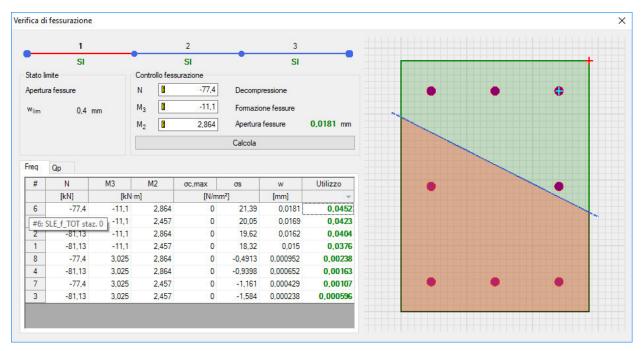
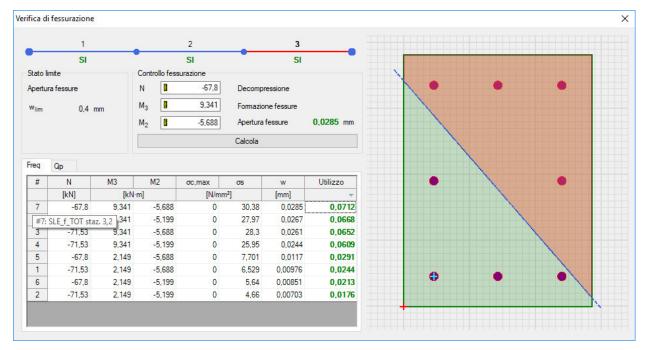
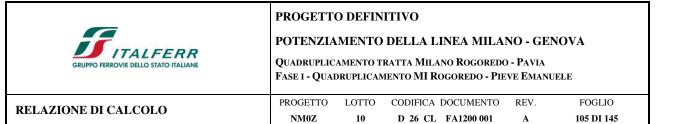
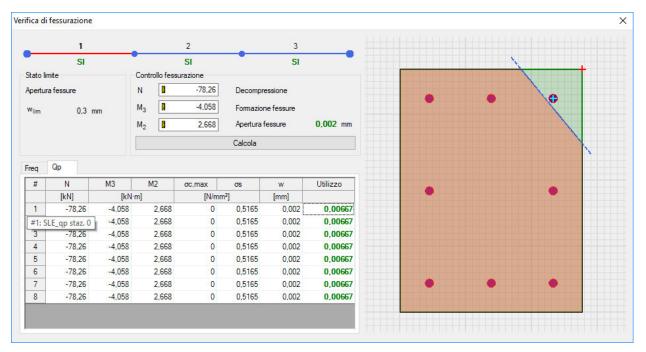





Figura 15.11 - Valori di apertura delle fessure per la sezione di base massimamente sollecitata per la combinazione di carico frequente

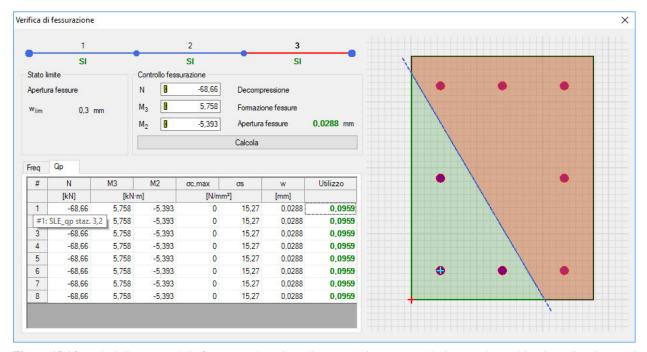


Figura 15.12 - Valori di apertura delle fessure per la sezione di testa massimamente sollecitata per la combinazione di carico frequente

Figura 15.13 - Valori di apertura delle fessure per la sezione di base massimamente sollecitata per la combinazione di carico quasi permanente

Figura 15.14 - Valori di apertura delle fessure per la sezione di testa massimamente sollecitata per la combinazione di carico quasi permanente

16 VERIFICHE DEGLI ELEMENTI STRUTTURALI IN TERMINI DI CONTENIMENTO DEL DANNO AGLI ELEMENTI NON STRUTTURALI

Secondo quanto riportato dalle NTC 2008 al § 7.3.7.2, per le costruzioni ricadenti in classe d'uso IV si deve verificare che l'azione sismica di progetto non produca danni agli elementi costruttivi senza funzione strutturale tali da rendere temporaneamente non operativa la costruzione.

Nel caso delle costruzioni civili e industriali, questa condizione si può ritenere soddisfatta quando gli spostamenti interpiano ottenuti dall'analisi in presenza dell'azione sismica di progetto relativa allo *SLO* siano inferiori ai 2/3 dei limiti in indicati per le costruzioni ricadenti in classe d'uso I e II.

In particolare, si può considerare che il caso in esame ricada nel punto a) descritto in normativa, che riguarda gli edifici con tamponamenti collegati rigidamente alla struttura e che interferiscono con la deformabilità della stessa, per i quali è previsto di contenere gli spostamenti interpiano entro il 5‰ dell'altezza di piano. Tenendo conto che l'edificio in esame è in classe d'uso IV, le prescrizioni descritte a tale punto della normativa si modificano come segue:

 $d_r \le 2/3 \ (0.005 \ h)$

dove:

h = altezza di piano;

 d_r = spostamento interpiano, ovvero la differenza tra gli spostamenti al solaio superiore ed inferiore, determinato per lo SLO

Essendo l'altezza di interpiano h1= 3,2 m, il limite massimo degli spostamenti nel caso in esame è:

 $d_{r_{-}1} \le 2/3*(0,005*3.200) = 10,7 \text{ mm}$

Considerando la doppia simmetria dell'edificio, si riportano di seguito i valori degli spostamenti di piano dei quattro pilastri significativi del modello.

Column	Joint	OutputCase	StepType	U1 [mm]	U2 [mm]	Column	Joint	OutputCase	StepType	U1 [mm]	U2 [mm]
B1	2	SLO1	Max	1,52	0,47	В3	10	SLO1	Max	1,52	1,23
B1	2	SLO1	Min	-1,53	-0,80	В3	10	SLO1	Min	-1,52	-1,76
B1	2	SLO2	Max	0,48	1,91	В3	10	SLO2	Max	0,47	4,73
B1	2	SLO2	Min	-0,49	-2,25	В3	10	SLO2	Min	-0,47	-5,26
B2	6	SLO1	Max	1,52	0,83	B4	14	SLO1	Max	1,51	1,47
B2	6	SLO1	Min	-1,53	-1,40	B4	14	SLO1	Min	-1,51	-2,00
B2	6	SLO2	Max	0,48	3,42	B4	14	SLO2	Max	0,46	5,52
B2	6	SLO2	Min	-0,48	-3,98	B4	14	SLO2	Min	-0,46	-6,06

17 VERIFICA SISMICA TAMPONAMENTI

Secondo quanto riportato al \S 7.3.6.3 delle NTC 2008, per gli elementi costruttivi senza funzione strutturale devono essere adottati magisteri atti ad evitare collassi fragili e prematuri e la possibile espulsione sotto l'azione della F_a (v. \S 7.2.3) corrispondente allo SLV.

Considerando la stratigrafia della muratura esterna riportata in Figura 17.1, si assume che la funzione portante della parete sia svolta dal blocco in termolaterizio interno, di spessore pari a 30 cm. Per garantire la resistenza dell'intero tamponamento alle azioni orizzontali, si prevede di inserire all'interno di questa muratura, ogni due corsi di forati, dei tralicci in acciaio inglobati nei letti di malta. Per solidarizzare la muratura esterna di spessore pari a 8 cm allo strato portante interno della parete, si prevede la disposizione di collegamenti puntuali diffusi.

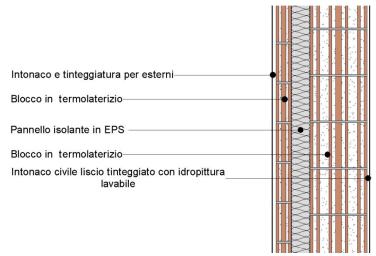


Figura 17.1 – Stratigrafia tamponatura esterna M1

La forza orizzontale F_a applicata sulla tamponatura si valuta con la seguente formula, riportata al § 7.2.3 della norma:

 $Fa = (S_a \cdot W_a) / q_a$

in cui:

F_a = forza sismica orizzontale agente al centro di massa dell'elemento non strutturale nella direzione più sfavorevole;

 $W_a = peso dell'elemento;$

S_a = accelerazione massima, adimensionalizzata rispetto a quella di gravità, che l'elemento strutturale subisce durante il sisma e corrisponde allo stato limite in esame (v. § 3.2.1 NTC 2008)

 q_a = fattore di struttura dell'elemento non strutturale

In assenza di specifiche determinazioni, per q_a si possono assumere i valori riportati in Tab. 7.2.I NTC 2008, che prescrivono per tramezzature e facciate l'adozione di un fattore di struttura pari a 2.

In mancanza di analisi più accurate, Sa può essere calcolato nel seguente modo:

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 CODIFICA DOCUMENTO
 REV.
 FOGLIO

 NM0Z
 10
 D 26 CL
 FA1200 001
 A
 108 DI 145

$$S_a = \alpha \cdot S \cdot \left[\frac{3 \cdot (1 + Z/H)}{1 + \left(1 - \frac{T_a}{T_1}\right)^2} - 0.5 \right]$$

In cui:

 α = rapporto tra l'accelerazione massima del terreno a_g su sottosuolo tipo A da considerare nello stato limite in esame (v. § 3.2.1 NTC 2008) e l'accelerazione di gravità g;

S = coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche secondo quanto riportato nel § 3.2.3.2.1 delle NTC 2008;

T_a = periodo fondamentale di vibrazione dell'elemento non strutturale;

T₁ = periodo fondamentale di vibrazione della costruzione nella direzione considerata;

Z = quota del baricentro dell'elemento non strutturale misurata a partire dal piano di fondazione (v. § 3.2.2 NTC 2008);

H = altezza della costruzione misurata a partire dal piano di fondazione.

Di seguito si riportano i calcoli effettuati per la tamponatura del primo piano dell'edificio.

Geometria Tamponamento

L	5,10	m	Distanza max fra due pilastri consecutivi
h	3,85	m	Altezza parete
D	0,00	m	Quota imposta fondazione parete rispetto al pc
Н	4,70	m	Altezza della costruzione misurata a partire dal piano della fondazione
Z _{g_parete}	1,93	m	Quota del baricentro della parete rispetto al piano di fondazione

Caratteristica Tamponamento

ρ_{m}	760,00	kg/m³	Densità media laterizio - da sito poroton per blocchi forati P700
S _m	30,00	cm	Spessore blocco laterizio
J _m	225.000,00	cm ⁴ /m	Momento d'inerzia muratura a metro lineare
	0,00225	m⁴/m	
E _m	30.000,00	kg/cm ²	Modulo di elasticità muratura - da sito poroton per blocchi forati P700
	300.000.000,00	kg/m²	
$\rho_{intonaco}$	2.000,00	kg/m³	Densità media intonaco
S _{intonaco}	3,00	cm	Spessore intonaco
ρ_{coibente}	18,00	kg/m³	Densità media coibente
S _{coibente}	10,00	cm	Spessore coibente
ρ _{laterizio_ext}	760,00	kg/m³	Densità media blocco esterno di laterizio
S _{laterizio_ext}	8,00	cm	Spessore blocco laterizio esterno
W_{aq}	350,60	kg/m²	Peso parete a metro quadro
W _a	1.349,81	kg/m	Peso parete a metro lineare
Ta	0,4220		Periodo fondamentale di vibrazione dell'elemento non strutturale valutato con la seguente formula
			(relativa a un Sistema a un Grado di Libertà SDOF la cui rigidezza K è espressa facendo
			riferimento a una trave semplicemente appoggiata con massa distribuita)

$$T_a \; = \; 2 \cdot \pi \cdot \sqrt{\frac{M}{K}} = \; \frac{2 \cdot h^2}{\pi} \cdot \sqrt{\frac{W_a}{E_m \cdot J_m}}$$

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NMOZ 10 D 26 CL FA1200 001 A 109 DI 145

Valutazione Azione Sismica

V_N	75,00 anni	
Classe d'uso	IV	
C_U	2,00	
V_R	150,00 anni	Periodo di riferimento per l'azione sismica
a _{g_SLV}	0,100 g	Località di Pavia
S _s	1,50	Categoria di sottosuolo C
S_T	1,00	Categoria Topografica T1 - Superf pianeggiante, pendii e rilievi isolati con inclinazione media i $\leq 15^\circ$
S	1,50	
α	0,1000	
T ₁	0,37	Primo periodo di vibrazione della struttura (da Modello SAP2000)
T_a/T_1	1,13	
Sa	0,54855	§ 7.2.3 NTC 2008 formula 7.2.2
\mathbf{q}_{a}	2,00	da Tab. 7.2.I NTC 2008
F_a	96,16 kg/m ²	

Dimensionamento Armatura Traliccio

i _{orizz}	0,38 m	Interasse tra elementi di armatura orizzontali
		(ipotizzando di disporre un traliccio ogni due corsi di muratura con hporoton=19 cm)
F _{a_orizz}	36,54 kg/m	Forza sismica orizzontale agente nel centro di massa dell'elemento non strutturale
		nella direzione più sfavorevole
M_{Ed}	1,19 kNm	
f_{yk}	450,00 N/mm ²	B450C
γ_{s}	1,15	
f_{yd}	391,30 N/mm ²	
a_ _{orizz}	200,00 mm	Larghezza traliccio orizzontale
φ_{orizz}	6,00 mm	
A_s	28,27 mm ²	
M _{Rd_orizz}	2,10 kNm	
FS _{orizz}	1,77	

Verifica Ancoraggio Tralicci alla Struttura

V _{Ed}	0,93	kN	
f_{yk}	450,00	N/mm²	B4500
γ_{s}	1,15		
f_{yd}	391,30	N/mm²	
φ_{taglio}	6,00	mm	
A_{v}	28,27	mm²	
V_{Rd}	6,39	kN	
Fs _{taglio}	6,86		

	PROGETTO DEFINITIVO				
I ITALFERR	POTENZIA	AMENTO	DELLA LINEA MILA	NO - GE	NOVA
GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE		UELE		
RELAZIONE DI CALCOLO	PROGETTO NM0Z	LOTTO 10	CODIFICA DOCUMENTO D 26 CL FA1200 001	REV.	FOGLIO

18 VERIFICHE PLATEA DI FONDAZIONE

La platea di fondazione ha le seguenti caratteristiche geometriche:

Profondità piano di posa rispetto al piano di calpestio interno D = 135,00 cm Larghezza complessiva B = 670,00 cm Lunghezza complessiva L = 3.430,00 cm Spessore s = 30,00 cm

Lungo tutto il perimetro sono previsti dei cordoli di rinforzo laterali di 60 cm di spessore e 95 cm di altezza rispetto all'estradosso della soletta.

Si riporta di seguito una sezione trasversale tipo:

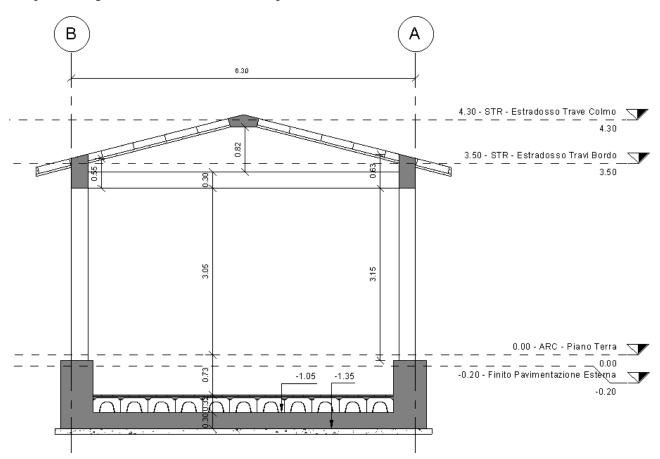


Figura 18.1 – Sezione strutturale del fabbricato

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE				
RELAZIONE DI CALCOLO	PROGETTO NM0Z	LOTTO 10	CODIFICA DOCUMENTO D 26 CL FA1200 001	REV.	FOGLIO 111 DI 145

18.1 Verifiche SLU – Flessione

Si assume di disporre un'*armatura orizzontale costituita da 1+1 \phi 20 /20 uniformemente distribuita.* Si riportano di seguito le verifiche effettuate per le sezioni più sollecitate della platea.

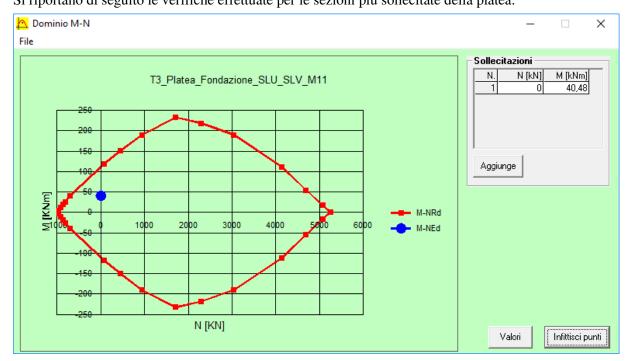


Figura 18.2 - Dominio di resistenza a flessione - Momento Flettente M11 - MRd = 130,1 kNm FS = 3,23

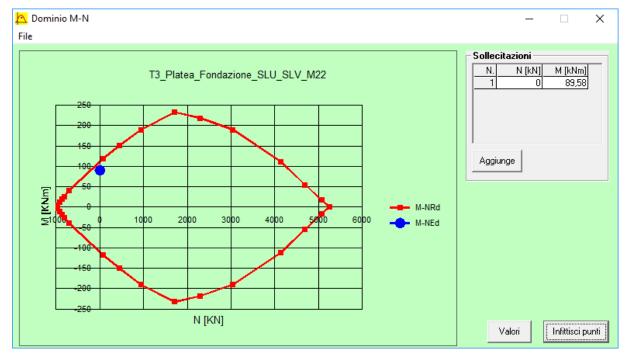


Figura 18.3 - Dominio di resistenza a flessione - Momento Flettente M22 - MRd = 130,1 kNm FS = 1,46

18.2 Verifiche SLU – Taglio

Secondo quanto specificato dalla normativa, la verifica resistenza a taglio degli elementi non dotati di armature trasversali resistenti a taglio si conduce controllando la seguente disuguaglianza:

 $V_{Ed} \! \leq \! V_{Rd}$

 V_{Ed} è il valore di calcolo dello sforzo di taglio agente, mentre V_{Rd} è la resistenza a taglio.

Si riporta di seguito la verifica sulla sezione massimamente sollecitata a taglio.

VERIFICA TAGLIO ELEME	NTI NON ARMATI A TAGL	JO - § 4.1.2.1.3.1	TRAVI
230,00	mm	d = altezza utile della sezione	
1,93		$k = 1 + (200/d)^{(1/2)} \le 2$	
1.000,00	mm	b _w = Larghezza minima della sezione (in mm)	
0,014		ρ_1 = Rapporto Geometrico di Armatura Longitudinale	
24,90	N/mm ²	f_{ck}	
0,00	N/mm ²	$\sigma_{cp} = N_{Ed}/A_c$	
0,4692		V_{\min}	
0,7513		$V' = 0.18*k*(100*\rho_1*f_{ck})^{(1/3)/\gamma c}$	
172,81	kN	V_{Rd}	
80,70	kN	$ m V_{Ed}$	
2,14		FS	

18.3 Verifiche SLE – Tensione

Si riportano di seguito le verifiche effettuate per le sezioni più sollecitate della platea, tenendo conto che i limiti imposti dalla normativa per il controllo tensione agli stati limite di esercizio sono i seguenti:

Combinazione Rara

Combinazione Quasi Permanente

• Calcestruzzo Compresso
$$\rightarrow$$
 $\sigma_c = 0.45 \times f_{ck} = 11.25 \text{ N/mm}^2$

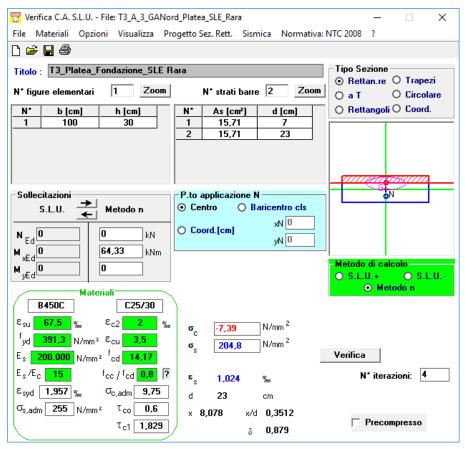


Figura 18.4 - Controllo di tensione agli SLE della sezione più sollecitata della platea - Combinazione Rara

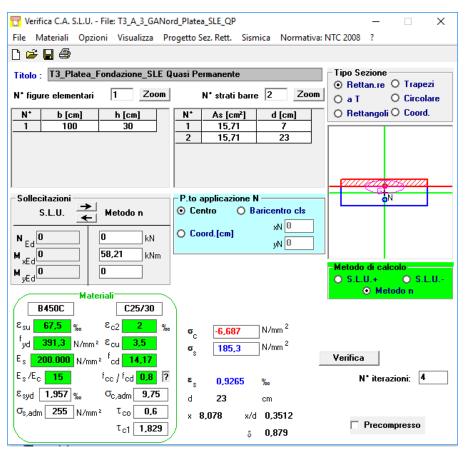


Figura 18.5 - Controllo di tensione agli SLE della sezione più sollecitata della platea - Combinazione Quasi Permanente

18.4 Verifiche SLE – Fessurazione

Si riportano di seguito le verifiche effettuate per la sezione più sollecitata della platea di fondazione.

Stato Limite di Apertura delle Fessure

Momento Statico pari a zero $ax^2 + bx + c = 0$

	-		
a	500,00		
b	47.123,89		
c	-7.068.583,47		
X	80,77	mm	Profondità asse neutro da lembo superiore
J_{CLS_Comp}	175.667.268,77	mm^4	
J_{AS_TOT}	527.422.919,41	mm^4	
$J_{TOT} \\$	703.090.188,18	mm^4	

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO NM0Z 10 D 26 CL FA1200 001 A 115 DI 145

Combinazione Frequente

Mmax (Freq) = -59,09 kNm/m

σs (Freq) 188,12 N/mm² Tensione nell'armatura tesa valutata nella sezione fessurata in Comb Frequente

Kt 0,40 Fattore dipendente dalla durata del carico

fctm 2,56 N/mm² hc,eff 73,08 mm

6,68

Ac,eff 73.075 mm² Area efficace di calcestruzzo teso attorno all'armatura, di altezza $h_{c,ef}$ e base t_w

 ρ_{eff} 0,02

αe

esm 0,00064 Deformazione unitaria media delle barre

K1 0,80 Per barre ad aderenza migliorata

K2 0,50 Caso di flessione

K3 3,40 Valore fisso

K4 0,43 Valore fisso

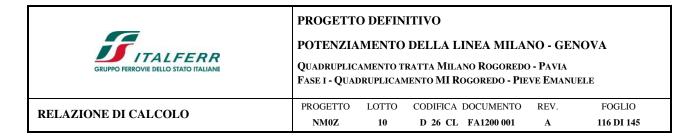
ф 20,00 mm

c 70,00 mm Ricoprimento Armatura

Δsmax 396,17 mm Distanza massima tra le fessure

 $w_{d \, (freq)} \hspace{1.5cm} 0,\!25 \hspace{0.5cm} mm \hspace{0.5cm} \textit{Valore di calcolo dell'apertura delle fessure}$

w3 0,40 mm *Armatura poco sensibile*


Combinazione Quasi Permanente

Mmax (QP) = -58,21 kNm/m

σs (qp) 185,32 N/mm² Tensione nell'armatura tesa valutata nella sezione fessurata in Comb Q Perm

 $\begin{array}{cccc} \epsilon sm & 0,00062 & \textit{Deformazione unitaria media delle barre} \\ w_{d \, (qp)} & 0,25 & mm & \textit{Valore di calcolo dell'apertura delle fessure} \end{array}$

w2 0,30 mm *Armatura poco sensibile*

19 VERIFICHE NERVATURE PLATEA DI FONDAZIONE

La nervatura interna tipo della platea di fondazione ha le seguenti caratteristiche geometriche:

Larghezza B = 60,00 cm

Altezza H = 95,00 cm

19.1 Verifiche SLU – Flessione

Si assume di disporre un'armatura longitudinale verticale costituita da $\phi 20/15$.

Si riportano di seguito le verifiche effettuate per le sezioni più sollecitate.

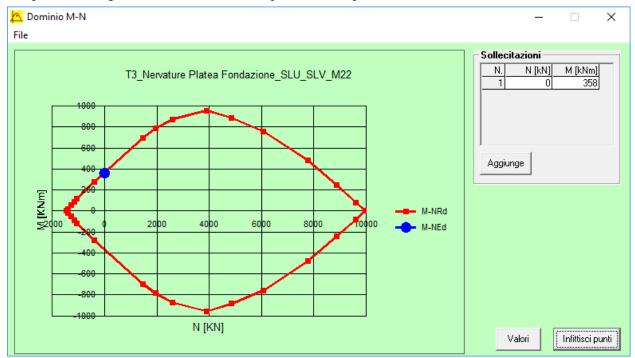


Figura 19.1 – Dominio di resistenza a flessione – Momento Flettente M3 campata – MRd = 371,80 kNm FS = 1,04

19.2 Verifiche SLU – Taglio

Per garantire la resistenza ai valori di sollecitazioni taglianti riportati al \S 9.6, si prevede di disporre 3 spilli φ 8 al metro con passo 15 cm.

Si riporta di seguito il dettaglio della verifica.

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NMOZ 10 D 26 CL FA1200 001 A 117 DI 145

VERIFICA TAGI	LIO ELEMENTI ARMA	TI A TAGLIO - § 4.1.2.1.3.2	TRAVI
8	mm	Diametro staffe	
3,0		Numero bracci Staffe	
150,80	mm ²	A _{sw} = Area dell'armatura tasversale	
150,00	mm	s = Passo Staffe	
7,06	N/mm²	\dot{f}_{cd} = Resistenza a compressione ridotta	
		del cls d'anima = 0,5 *fcd	
1.000,00	mm	b _w = Larghezza minima della sezione	
1,00		$\alpha_c = 1$ per membrature non compresse	
90,00	•	α = Angolo di inclinazione dell'armatura t	trasversale
		rispetto all'asse della trave	
13,66	•	θ = Inclinazione dei puntoni di calcestruz	zo
0,24	rad	θ = Inclinazione dei puntoni di calcestruz	20
2,50		cotgθ	
0,00		cotg0.	
1,00		sin0.	
1.186.699,66	N	V _{Rcd}	
479.729,39	N	V _{Rsd}	
479,73	kN	V _{Rd}	
356,00	kN	V _{Ed}	
1,35		FS	
0,74		C/D	

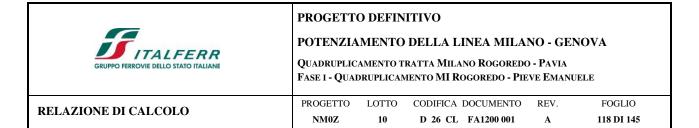
19.3 Verifiche SLE – Tensione

Si riportano di seguito le verifiche effettuate per le sezioni più sollecitate della nervatura della platea, tenendo conto che i limiti imposti dalla normativa per il controllo tensione agli stati limite di esercizio sono quelli definiti ai § 3.1 e 3.3 e di seguito riportati per semplicità.

Combinazione Rara

• Calcestruzzo Compresso

 \rightarrow $\sigma_c = 0.60 \times f_{ck} = 15.00 \text{ N/mm}^2$


• Acciaio Teso

 \rightarrow $\sigma_s = 0.80 \times f_{yk} = 360.00 \text{ N/mm}^2$

Combinazione Quasi Permanente

• Calcestruzzo Compresso

 \rightarrow $\sigma_c = 0.45 \times f_{ck} = 11.25 \text{ N/mm}^2$

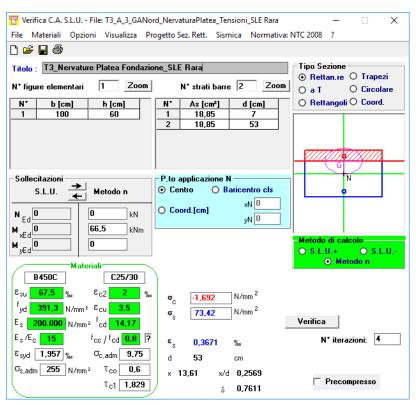


Figura 19.2 - Controllo di tensione agli SLE della sezione più sollecitata della nervatura - Combinazione Rara

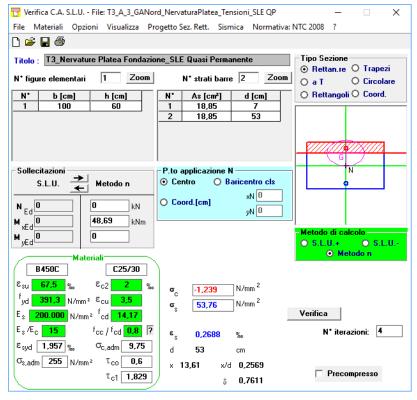



Figura 19.3 - Controllo di tensione agli SLE della sezione più sollecitata della nervatura - Combinazione QP

19.4 Verifiche SLE – Fessurazione

Si riportano di seguito le verifiche effettuate per la sezione più sollecitata delle nervature della platea di fondazione.

GEOMETRIA		CARATTERISTICHE MAT	ERIALI
600,00 mm	H sez	450,00 N/mm ²	f_{yk}
1.000,00 mm	B sez	1,15	γ_{s}
600.000,00 mm ²	A sez	391,30 N/mm ²	f_{yd}
40,00 mm	Copriferro netto	30 N/mm²	R_{ck}
58,00 mm	Copriferro Calcolo INF	24,90 N/mm ²	f_{ck}
58,00 mm	Copriferro Calcolo SUP	1,50	γ_{ds}
		0,85	α^{cc}
6 mm	Numero Barre Long INF	14,11 N/mm ²	f_{cd}
20 mm	Diametro barre long INF	2,56 N/mm ²	f_{ctm}
1.884,96 mm²	As	31.447,16 N/mm ²	E _{cm}
6 mm	Numero Barre Long SUP	210.000,00 N/mm ²	Es
20 mm	Diametro barre long SUP		
1.884,96 mm ²	A's		
3.769,91 mm ²	A _s + A' _s		

VERIFICA SLE FESSURAZIONE - TRAVE SEZIONE RETTANGOLARE - § C4.1.2.2.4.6					
Stato Limite di Formazione delle Fessure					
Momento Statico pari a zero della	х	Momento d'Inerzia			
sezione interamente reagente	[mm]	CIs	A _s	[mm ⁴]	
ax + b = 0	300	18.000.000.000,00	3.311.716.178,97	2,13E+10	

Con	nbinazione Frequei	nte	Combinazi	one Quasi Pe	rmanente
M _{fmax}	49,39	kNm	M_{QPmax}	48,69	kNm
σ_{Cmin}	0,70	N/mm ²	σ_{Cmin}	0,69	N/mm ²
$\sigma_t = f_{ctm}/1,2$	2,13	N/mm²	$\sigma_t = f_{ctm}/1,2$	2,13	N/mm²

La sezione non si fessura

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
NM0Z	10	D 26 CL FA1200 001	A	120 DI 145

20 VASCA PER SERBATOIO

Si illustra di seguito il calcolo eseguito per il dimensionamento della vasca del serbatoio del gruppo elettrogeno a servizio del fabbricato.

20.1 Materiali

20.1.1 Calcestruzzo Vasca per Serbatoio

Per la realizzazione della struttura della vasca del serbatoio si prevede l'utilizzo di calcestruzzo avente classe di resistenza C30/37 ($R_{ck} \ge 37 \text{ N/mm}^2$), che presenta le seguenti caratteristiche:

	•	
•	Resistenza Caratteristica a Compressione (Cilindrica)	$\rightarrow f_{ck} = 0.83 \times R_{ck} = 30 \text{ N/mm}^2$
•	Classe di Esposizione	\rightarrow XC2
•	Classe di Consistenza	\rightarrow S4
•	Resistenza Media a Compressione	$\rightarrow f_{cm} = f_{ck} + 8 = 38 \text{ N/mm}^2$
•	Modulo Elastico	\rightarrow E _{cm} =22000×(f _{cm} /10) ^{0.3} = 33.019 N/mm ²
•	Coefficiente di Sicurezza	$\rightarrow \gamma_c = 1,5$
•	Resistenza di Calcolo a Compressione	\rightarrow f _{cd} = α_{cc} ×f _{ck} / γ_c = 17,40 N/mm ²
•	Resistenza a Trazione Media	\rightarrow f _{ctm} = 0,30 × f _{ck} ^{2/3} = 2,94 N/mm ²
•	Resistenza a Trazione	$\rightarrow f_{ctk} = 0.7 \times f_{ctm} = 2,06 \text{ N/mm}^2$
•	Resistenza a Trazione di Calcolo	\rightarrow f _{ctd} = f _{ctk} / γ _c = 1,37 N/mm ²
•	Resistenza a Compressione (Comb. Rara)	$\rightarrow \sigma_c = 0.60 \times f_{ck} = 18.43 \text{ N/mm}^2$
•	Resistenza a Compressione (Comb. Quasi Permanente)	$\rightarrow \sigma_c = 0.45 \times f_{ck} = 13.82 \text{ N/mm}^2$
•	Resistenza tangenziale caratteristica di aderenza	$\rightarrow f_{bk} = 2,25~\eta~f_{ctk} = 4,63~N/mm^2$

Per quanto riguarda la scelta degli stati limite di fessurazione, per limitare quanto più possibile tale fenomeno, si conduce la verifica in riferimento alla Combinazione Caratteristica Rara, assumendo valore limite di apertura delle fessure pari a $w_1 = 0.2$ mm:

Combinazione delle Azioni Rara

Resistenza tangenziale di aderenza di calcolo

Deformazione Ultima a Rottura

$$\rightarrow$$
 $w_d \le w_1 = 0.2 \text{ mm}$

 $\rightarrow \varepsilon_{cu} = 0.0035$

 \rightarrow f_{bd} = f_{bk} / γ_c /1,5= 2,06 N/mm²

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
NM0Z	10	D 26 CL FA1200 001	A	121 DI 145

•	Tensione di snervamento caratteristica	$\rightarrow f_{yk} \ge 450 \text{ N/mm}^2$
•	Tensione caratteristica a rottura	$\rightarrow f_{tk} \ge 540 \text{ N/mm}^2$
•	Fattore di sicurezza acciaio	$\rightarrow \gamma_s = 1,15$
•	Resistenza a trazione di calcolo	\rightarrow f _{yd} = f _{yk} / γ_s = 391 N/mm ²
•	Resistenza a Trazione (Comb. Rara)	$\rightarrow \sigma_s = 0.80 \times f_{yk} = 360.00 \text{ N/mm}^2$
•	Modulo Elastico	$\rightarrow E_a = 210.000 \text{ N/mm}^2$
•	Deformazione di Snervamento di Progetto	$\rightarrow \varepsilon_{\rm yd} = 0.0019$
•	Densità	$\rightarrow \rho = 7.850 \text{ kg/m}^3$

20.2 Caratterizzazione dei Terreni

20.2.1 Caratterizzazione Geotecnica

Le caratteristiche del terreno di riempimento a tergo del muro assunte nelle procedure di calcolo e verifica sono riportate nella tabella successiva:

TERRENO	$\gamma (kN/m^3)$	φ (°)	c (kPa)
Riporto	20,00	35,00	0,00

dove:

γ è il peso per unità di volume del terreno

φ è l'angolo di attrito interno del terreno

c è la coesione efficace del terreno.

20.2.2 Caratterizzazione Sismica

Secondo quanto previsto dalle NTC 2008, si assume per la struttura una Classe d'Uso IV e una Vita Utile pari a 75 anni.

Sulla base delle considerazioni geologiche, è possibile assumere una Categoria di Sottosuolo C ($S_S \le 1,50$) e una Categoria Topografia T1, cui corrisponde un coefficiente topografico pari a $S_t = 1,00$.

Le azioni inerziali orizzontali dovute alle accelerazioni subite in fase sismica dalle masse degli elementi strutturali e del terreno vengono valutate moltiplicando il peso degli elementi strutturali per i coefficienti sismici orizzontale k_h , determinato, secondo quanto riportato NTC 2008, § 7.11.6.2.1, mediante la seguente relazione:

$$k_h = \beta_m \frac{a_{max}}{g}$$

In cui

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

NM0Z	10	D 26 CL FA1200 001	A	122 DI 145
ROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO

 β_m = Coefficiente di riduzione dell'accelerazione massima attesa al sito, da Tab. 7.11.II NTC 2008 a_{max} = Accelerazione massima attesa al sito, esprimibile come a_{max} = $S_S*S_T*a_g$

	a_{g}	F_0	Ss	C	β_{m}	a _{max}	\mathbf{k}_{h}
	[g]	Γ0	Ss	$S_{\scriptscriptstyle \mathrm{T}}$	[-]	[g]	[-]
SLO	0,0350	2,5510	1,50	1,00	0,18	0,0525	0,0095
SLD	0,0430	2,5360	1,50	1,00	0,18	0,0645	0,0116
SLV	0,1000	2,5070	1,50	1,00	0,18	0,1500	0,0270

20.3 Soletta Superiore

La soletta di copertura viene dimensionata considerando una striscia di larghezza unitaria e assumendo lo schema statico di trave doppiamente appoggiata con luce pari a 2,10 m.

20.3.1 Analisi dei Carichi

I carichi che gravano sulla soletta sono elencati di seguito:

• Carichi Permanenti Strutturali:

 G_1 (Peso proprio) = 0,30 x 25 = 7,50 KN/m

• Carichi di Esercizio

Si considerano tre distinte configurazioni in cui agiscono le tipologie di carico Q_1 , Q_2 , Q_3 di seguito esemplificate:

$Q_1 = 10,00 \text{ KN/m}^2$

Categoria C (Ambienti suscettibili di Affollamento) § 5.2.2.3.2 NTC 2008

$Q_2 = 60,00 \text{ kN}$

Agente su un'impronta 0,60x0,35 m posizionato al centro della soletta

Categoria G (Rimesse e Parcheggi per transito automezzi con carico superiore a 30 kN) valutato secondo quanto riportato dal Codice della Strada, che all'Articolo 62 punto 5 specifica che "qualunque sia il tipo di veicolo, la massa gravante sull'asse più caricato non deve eccedere le 12 tonnellate". Il carico sarà considerato agente secondo lo schema di carico 2 di Figura 5.1.2 delle NTC 2008, assumendo complessivamente un valore di 6 tonnellate su un'impronta di 0,60x0,35m.

$Q_3 = 60,00 \text{ kN}$

agente su un'impronta 0,60x0,35 m posizionato sull'appoggio della soletta

Categoria G, come descritto per il precedente carico Q2.

GRUPPO FERROVIE DELLO STATO ITALIANE	POTENZIA	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA MILANO - GENOVA OUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA					
GRUPPO FERROVIE DELLO STATO ITALIANE	_		катта Milano kogoredo лепто MI Rogoredo - Pie		JELE		
RELAZIONE DI CALCOLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO		
RELAZIONE DI CALCOLO	NM0Z	10	D 26 CL FA1200 001	A	123 DI 145		

20.3.2 Sollecitazioni Soletta Superiore

Sono state considerate le condizioni di carico più gravose per il calcolo del momento flettente e del taglio.

Figura 20.1 - Diagramma del Momento Flettente - Combinazione Inviluppo SLU

Figura 20.2 - Diagramma del Taglio - Combinazione Inviluppo SLU

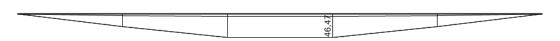


Figura 20.3 - Diagramma del Momento Flettente - Combinazione Inviluppo SLE Rara

Figura 20.4 - Diagramma del Momento Flettente - Combinazione Inviluppo SLE Frequente

 $\textbf{Figura~20.5 -} \ \textbf{Diagramma~del~Momento~Flettente-Combinazione~Inviluppo~SLE~Quasi~Permanente}$

20.3.3 Verifica Soletta Superiore

Si riportano le verifiche dei piedritti sia allo SLU che allo SLE per la sezione maggiormente sollecitata.

Spessore: 30 cm

Armatura: 1+1 Φ16/10 Copriferro netto: 40 mm

VERIFICA DI RESISTENZA A PRESSOFLESSIONE - SLU_SLV

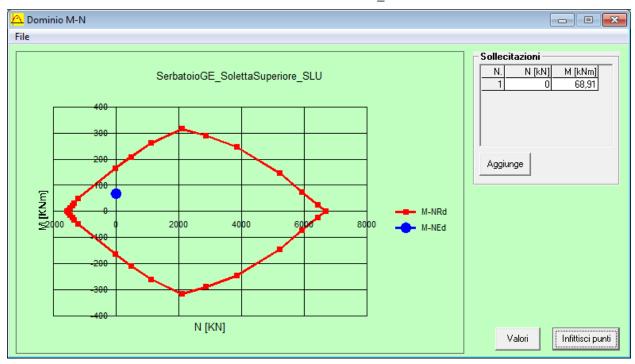


Figura 20.6 – Dominio di resistenza a flessione sezione più sollecitata della soletta superiore; M_{Rd} = 167.8 kNm – FS = 2,44

VERIFICA DI RESISTENZA A TAGLIO – SLU_SLV

Secondo quanto specificato dalla normativa, la verifica resistenza a taglio degli elementi non dotati di armature trasversali resistenti a taglio, si conduce controllando la seguente disuguaglianza:

 $V_{Ed} \leq V_{Rd}$

 V_{Ed} è il valore di calcolo dello sforzo di taglio agente, mentre V_{Rd} è la resistenza a taglio.

Si riporta di seguito la verifica sulla sezione dei piedritti massimamente sollecitata a taglio.

VERIFICA TAGLIO ELEME	NTI NON ARMATI A TAGL	JO - § 4.1.2.1.3.1	TRAVI
236,00	mm	d = altezza utile della sezione	
1,92		$k = 1 + (200/d)^{(1/2)} \le 2$	
1.000,00	mm	b_w = Larghezza minima della sezione (in mm)	
0,017		ρ_1 = Rapporto Geometrico di Armatura Longitudinale	
30,71	N/mm ²	$f_{ m ck}$	
0,00	N/mm ²	$\sigma_{cp} \; = N_{Ed}/A_c$	
0,5162		V_{\min}	
0,8620		$V' = 0.18*k*(100*\rho_1*f_{ck})^{(1/3)/\gamma c}$	
203,44	kN	V_{Rd}	
142,47	kN	$ m V_{Ed}$	
1,43		FS	

CONTROLLO TENSIONI ALLO SLE

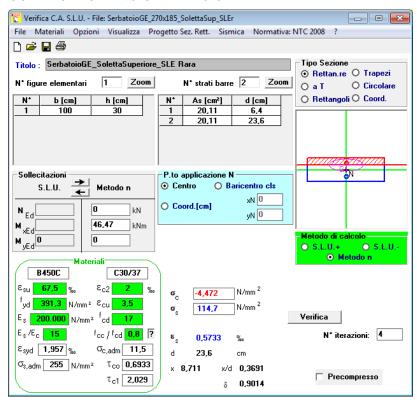


Figura 20.7 - Controllo di tensione agli SLE della soletta superiore - Combinazione Rara

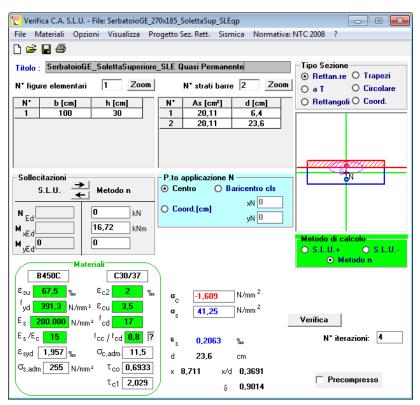


Figura 20.8 - Controllo di tensione agli SLE della soletta superiore - Combinazione Quasi Permanente

CONTROLLO FESSURAZIONE ALLO SLE

Si riportano di seguito le verifiche effettuate per la sezione più sollecitata della soletta superiore in Combinazione Rara, assumendo come limite massimo di apertura delle fessure $w_1 = 0.2$ mm.

Stato Limite di Apertura delle Fessure

Momento Statico pari a zero $ax^2 + bx + c = 0$

a	500,00		
b	60.318,58		
c	-9.047.786,84		
X	87,11	mm	Profondità asse neutro da lembo superiore
$J_{\text{CLS_Comp}}$	220.301.671,58	mm^4	
J_{AS_TOT}	684.718.332,88	mm^4	
J_{TOT}	905.020.004,47	mm^4	

C	1. :	azione	D
\cdot	$n_{I}n_{I}$	1710n <i>e</i>	Kara

σs (Rara)	114,68	N/mm ²	Tensione nell'armatura tesa valutata nella sezione fessurata in Comb Rara
Kt	0,40		Fattore dipendente dalla durata del carico
fctm	2,94	N/mm ²	
hc,eff	70,96	mm	
Ac,eff	70.965	mm^2	Area efficace di calcestruzzo teso attorno all'armatura, di altezza $h_{c,ef}e$ base t_w
ρ_{eff}	0,03		
αe	6,36		
esm	0,00033	3	Deformazione unitaria media delle barre
K1	0,80		Per barre ad aderenza migliorata
K2	0,50		Caso di flessione
K3	3,40		Valore fisso
K4	0,43		Valore fisso
ф	16,00	mm	
c	64,00	mm	Ricoprimento Armatura
Δsmax	313,60	mm	Distanza massima tra le fessure
Wd (rara)	0,10	mm	Valore di calcolo dell'apertura delle fessure
w1	0,20	mm	Armatura poco sensibile

20.4 Piedritti e Soletta Inferiore

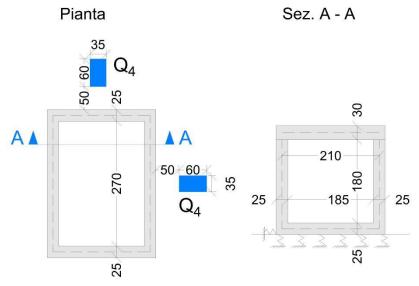


Figura 20.9 – Pianta e Sezione tipo della vasca per il serbatoio del Gruppo Elettrogeno

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA Fase i - Quadruplicamento MI Rogoredo - Pieve Emanuele

RELAZIONE DI CALCOLO

PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
NM0Z	10	D 26 CL FA1200 001	A	128 DI 145

I piedritti e la soletta inferiore sono stati studiati con un apposito modello di calcolo mediante il software SAP2000 v.19.

Il manufatto è stato modellato in 2D, a vantaggio di sicurezza, con elementi frame aventi larghezza unitaria.

Il terreno è stato schematizzato come un letto di molle, avendo assunto il coefficiente di sottofondo del terreno stesso pari a $K_v = 20.000 \text{ kN/m}^3$ in direzione verticale e pari a $K_h=10.000 \text{ kN/m}^3$ in direzione orizzontale.

20.4.1 Analisi dei Carichi

• Carichi Permanenti Strutturali:

Il peso degli elementi strutturali modellati viene calcolato automaticamente dal programma di calcolo utilizzato, assumendo un peso per unità di volume del calcestruzzo pari a γ cls = 25 kN/m³

• Cairichi trasmessi dalla Soletta Superiore:

Si riportano i carichi che la soletta superiore scarica sui piedritti:

 $G_1 = 7,87 \text{ KN}$

 $Q_1 = 10,50 \text{ KN}$

 $Q_2 = 51,43 \text{ KN}$

 $Q_{3ds} = 88,16 \text{ KN} - \text{piedritto destro}$

 $Q_{3sx} = 14,69 \text{ KN} - \text{piedritto sinistro}$

• Carichi agenti sulla Soletta di Fondazione:

Il carico agente sulla soletta di fondazione associato alla presenza del serbatoio e della sabbia contenuti nella vasca può essere stimato come segue:

$$F_p(G_2) = 28,00 \text{ kN/m}^2$$

• Spinta del Terreno

Per la determinazione della spinta del terreno sulle pareti verticali dello scatolare si considera il coefficiente di spinta a riposo k_0 , valutato mediante la seguente espressione:

$$k_0 = 1 - sen \varphi = 0.426$$

La spinta a riposo del terreno viene valutata mediante la seguente relazione:

$$S_t = \frac{1}{2} \cdot \gamma \cdot k_0 \cdot H^2 = 15,79 \text{ kN/m}$$

dove:

γ è il peso per unità di volume del terreno di riporto

k₀ è il coefficiente di spinta a riposo

H è l'altezza complessiva dello strato di terreno considerato assunta pari a 1,80+0,125 = 1,925 m.

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
NM0Z	10	D 26 CL FA1200 001	A	129 DI 145

• Spinta dovuta ai Sovraccarichi Permanenti

Assumendo un sovraccarico permanente agente $p = 10,00 \text{ kN/m}^2$, la spinta del terreno a questo associata può essere valutata con la relazione seguente:

$$S_{cp}(G_2) = p \cdot k_0 = 4,26 \text{ KN/m}$$

• Spinta dovuta ai Sovraccarichi Accidentali

In riferimento alle configurazioni di carico considerate per la soletta superiore descritte al §20.3.1, è possibile assumere i seguenti valori di spinta:

$$Q_1$$
 $S_{Q1} = Q_1 \cdot k_0 = 4,26 \text{ kN/m}$

 Q_2 $S_{Q2} = 0$ poiché il carico agisce soltanto sulla soletta

 Q_3 $S_{Q_3} = 0$ poiché il carico agisce soltanto sulla soletta

Si considera inoltre una quarta configurazione di carico in cui si assume un carico Q4 sempre di categoria G di valore pari a 60,00 kN agente su un'impronta di 0,60x0,35 m a tergo del piedritto, secondo lo schema indicato in Figura 20.9. Assumendo che le pressioni prodotte da tale carico interessino una striscia della parete del serbatoio di larghezza unitaria, la spinta del terreno ad esse associata può essere assimilata al seguente carico distribuito, agente sulla parete del serbatoio interessata:

$$Q_4$$
 $S_{Q4} = 18,50 \text{ kN/m}$

• Azione Sismica – Azione Inerziale delle Masse

Le azioni inerziali, orizzontali e verticali, dovute alle accelerazioni subite in fase sismica dalle masse degli elementi strutturali e del terreno, vengono valutate moltiplicando il peso degli elementi strutturali per il coefficiente sismico orizzontale k_h .

Le forze sismiche inerziali considerate per il dimensionamento della vasca e valutate per lo Stato Limite di Salvaguardia della Vita (SLV) sono di seguito riepilogate:

$$F_{i,pied} = k_h \cdot W_{pied} = 0.25 \cdot 1.25 \cdot 0.062 = 0.388 \text{ KN/m}$$

$$F_{i,sol} = k_h \cdot W_{sol} = 0.25 \cdot 1.25 \cdot 0.062 = 0.388 \text{ KN/m}$$

• Azione Sismica – Sovraspinta Dinamica dei Terreni

L'azione sismica è stata schematizzata con il metodo di Wood in quanto la struttura è rigida.

La sovraspinta sismica del terreno sulla vasca, valutata per lo Stato Limite di Salvaguardia della Vita (SLV), è pari a:

$$\Delta P_d(SLV) = \frac{a_g}{g} \cdot S \cdot \gamma_{medio} \cdot H = 0.144 \cdot 1.8 \cdot 20 \cdot 1.925 = 9.98 \text{ kN/m}$$

20.4.2 Combinazioni di Carico

Per le verifiche nei confronti dei diversi stati limite si adottano le combinazioni delle azioni tratte dal § 2.5.3 NTC 2008:

• Combinazione fondamentale SLU:

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Qk_1 + \gamma_{Q2} \cdot \psi_{02} \cdot Qk_2 + \gamma_{Q3} \cdot \psi_{03} \cdot Qk_3 + ...$$

• Combinazione caratteristica (rara):

$$G_1 + G_2 + P + Qk_1 + \psi_{02} \cdot Qk_2 + \psi_{03} \cdot Qk_3 + \dots$$

• Combinazione quasi permanente:

$$G_1 + G_2 + P + \psi_{21} \cdot Qk_1 + \psi_{22} \cdot Qk_2 + \psi_{23} \cdot Qk_3 + \dots$$

• Combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Qk_1 + \psi_{22} \cdot Qk_2 + \psi_{23} \cdot Qk_3 + \dots$$

I valori dei coefficienti parziali per le azioni sono riportati nella tabella sottostante, tratti dalla Tabella 2.5.I in funzione delle diverse categorie di carico.

	Q_{K_C}	Q_{K_G}
Ψ_0	0,70	0,70
Ψ1	0,70	0,50
Ψ2	0,60	0,30

Per le verifiche nei confronti degli stati limite ultimi strutturali (STR) si adotta *l'Approccio Progettuale* 2, in cui si impiega un'unica combinazione dei gruppi di coefficienti parziali definiti per le Azioni (A), per la resistenza dei materiali (M) e, eventualmente, per la resistenza globale (R). In tale approccio, per le azioni si impiegano i coefficienti γF riportati nella colonna A1 della Tabella 2.6.I delle NTC 2008, di seguito riportata.

Tabella 2.6.I – Coefficienti parziali relativi alle azioni per le verifiche agli SLU

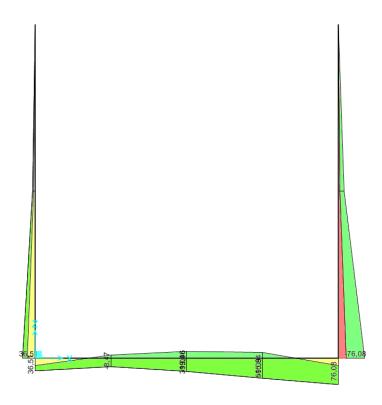
Azione	Azione			A2
Azione	γF	STR	GEO	
Carichi Permanenti	Favorevoli	24	1,00	1,00
Caricin remanenti	Sfavorevoli	$\gamma_{ m G1}$	1,30	1,00
Carichi Permanenti non strutturali	Favorevoli	٠,	0,00	0,00
Carichi Fermanenti non strutturan	Sfavorevoli	$\gamma_{ m G2}$	1,50	1,30
Carichi Variabili	Favorevoli	24	0,00	0,00
Cariciii variaviii	Sfavorevoli	γQi	1,50	1,30

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

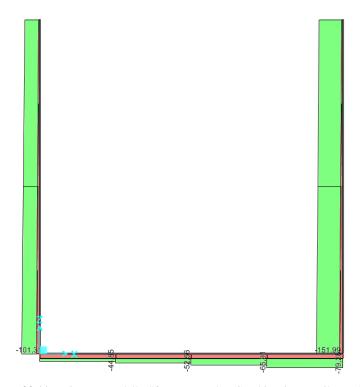
RELAZIONE DI CALCOLO

PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
NM0Z	10	D 26 CL FA1200 001	A	131 DI 145


In base ai valori assunti dai coefficienti sopra definiti, si ottengono le seguenti combinazioni, per ciascuno degli Stati Limite Considerati.

	G_1	$R_{_G1}$	$R_{_Q1}$	$R_{_Q2}$	$R_{_Q3}$	F_{p_G2}	\mathbf{S}_{t}	S_{cp}	$S_{_Q1}$	$S_{_Q4}$	$F_{i,sol_pied}(SLV)$	$\Delta Pd(SLV)$	
SLU_1	1,30	1,30	1,50	0,00	0,00	1,50	1,30	1,50	1,50	0,00	0,00	0,00	Carico di Esercizio Q1
SLU_2	1,30	1,30	0,00	1,50	0,00	1,50	1,30	1,50	0,00	0,00	0,00	0,00	Carico di Esercizio Q2
SLU_3	1,30	1,30	0,00	0,00	1,50	1,50	1,30	1,50	0,00	1,50	0,00	0,00	Carico di Esercizio Q3
SLU_4	1,30	1,30	0,00	0,00	0,00	1,50	1,30	1,50	0,00	1,50	0,00	0,00	Carico di Esercizio Q4
SLV_1	1,00	1,00	0,60	0,00	0,00	1,00	1,00	1,00	0,60	0,00	1,00	1,00	Carico di Esercizio Q1
SLV_2	1,00	1,00	0,00	0,30	0,00	1,00	1,00	1,00	0,00	0,00	1,00	1,00	Carico di Esercizio Q2
SLV_3	1,00	1,00	0,00	0,00	0,30	1,00	1,00	1,00	0,00	1,50	1,00	1,00	Carico di Esercizio Q3
SLV_4	1,00	1,00	0,00	0,00	0,00	1,00	1,00	1,00	0,00	0,30	1,00	1,00	Carico di Esercizio Q4
SLE_rara_1	1,00	1,00	1,00	0,00	0,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	Carico di Esercizio Q1
SLE_rara_2	1,00	1,00	0,00	1,00	0,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	Carico di Esercizio Q2
SLE_rara_3	1,00	1,00	0,00	0,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	Carico di Esercizio Q3
SLE_rara_4	1,00	1,00	0,00	0,00	0,00	1,00	1,00	1,00	0,00	1,00	0,00	0,00	Carico di Esercizio Q4
SLE_freq_1	1,00	1,00	0,70	0,00	0,00	1,00	1,00	1,00	0,70	0,00	0,00	0,00	Carico di Esercizio Q1
SLE_freq_2	1,00	1,00	0,00	0,50	0,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	Carico di Esercizio Q2
SLE_freq_3	1,00	1,00	0,00	0,00	0,50	1,00	1,00	1,00	0,00	0,00	0,00	0,00	Carico di Esercizio Q3
SLE_freq_4	1,00	1,00	0,00	0,00	0,00	1,00	1,00	1,00	0,00	0,50	0,00	0,00	Carico di Esercizio Q4
SLE_qp_1	1,00	1,00	0,60	0,00	0,00	1,00	1,00	1,00	0,60	0,00	0,00	0,00	Carico di Esercizio Q1
SLE_qp_2	1,00	1,00	0,00	0,30	0,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	Carico di Esercizio Q2
SLE_qp_3	1,00	1,00	0,00	0,00	0,30	1,00	1,00	1,00	0,00	0,00	0,00	0,00	Carico di Esercizio Q3
SLE_qp_4	1,00	1,00	0,00	0,00	0,00	1,00	1,00	1,00	0,00	0,30	0,00	0,00	Carico di Esercizio Q4

	PROGETTO DEFINITIVO						
ITALFERR .	POTENZIA	MENTO	DELLA LINEA MILA	NO - GE	NOVA		
GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE						
RELAZIONE DI CALCOLO	PROGETTO NM0Z	LOTTO 10	CODIFICA DOCUMENTO D 26 CL FA1200 001	REV.	FOGLIO 132 DI 145		


20.4.3 Sollecitazioni Piedritti e Soletta Inferiore

Si riporta di seguito la distribuzione delle sollecitazioni negli elementi del manufatto per le diverse combinazioni considerate:

Figura~20.10 - Diagramma~del~Momento~Flettente-Combinazione~Inviluppo~SLU-SLV

	PROGETTO DEFINITIVO						
I ITALFERR	POTENZIAMENTO DELLA LINEA MILANO - GENOVA						
GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE						
DEL AZIONE DI CAL COLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO		
RELAZIONE DI CALCOLO	NM0Z	10	D 26 CL FA1200 001	A	133 DI 145		

Figura~20.11 - Diagramma~dello~Sforzo~Normale-Combinazione~Inviluppo~SLU-SLV

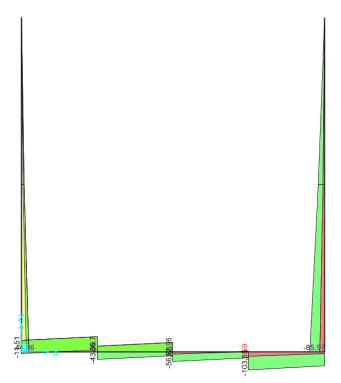


Figura 20.12 - Diagramma del Taglio V22 - Combinazione Inviluppo SLU-SLV

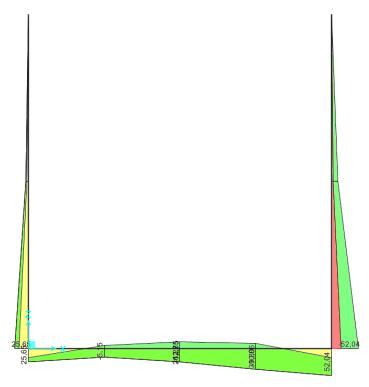


Figura 20.13 – Diagramma del Momento Flettente - Combinazione Inviluppo SLE Rara

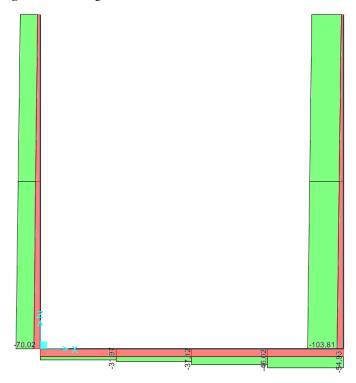
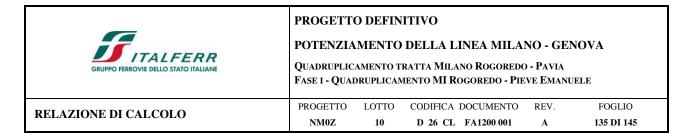



Figura 20.14 – Diagramma dello Sforzo Normale- Combinazione Inviluppo SLE Rara

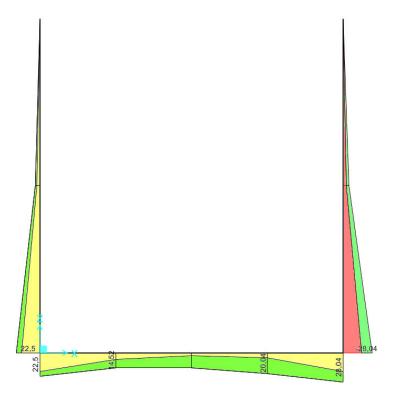


Figura 20.15 – Diagramma del Momento Flettente - Combinazione Inviluppo SLE Quasi Permanente

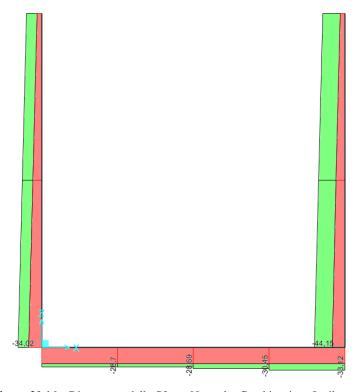


Figura 20.16 – Diagramma dello Sforzo Normale- Combinazione Inviluppo SLE Quasi Permanente

20.4.4 Verifiche Piedritti

Si riportano le verifiche dei piedritti sia allo SLU che allo SLE per la sezione maggiormente sollecitata.

Spessore: 25 cm

Armatura: $1+1 \Phi 16/10$ Copriferro netto = 40 mm

VERIFICA DI RESISTENZA A PRESSOFLESSIONE - SLU_SLV

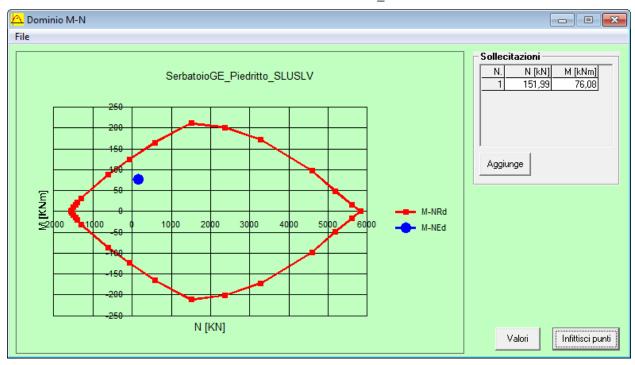


Figura 20.17 – Dominio di resistenza a flessione sezione più sollecitata dei piedritti; $M_{Rd} = 138,4 \text{ kNm} - FS = 1,82$

VERIFICA DI RESISTENZA A TAGLIO – SLU_SLV

Secondo quanto specificato dalla normativa, la verifica resistenza a taglio degli elementi non dotati di armature trasversali resistenti a taglio, si conduce controllando la seguente disuguaglianza:

 $V_{Ed} \leq V_{Rd}$

 V_{Ed} è il valore di calcolo dello sforzo di taglio agente, mentre V_{Rd} è la resistenza a taglio.

Si riporta di seguito la verifica sulla sezione dei piedritti massimamente sollecitata a taglio.

VERIFICA TAGLIO ELEME	NTI NON ARMATI A TAGL	JO - § 4.1.2.1.3.1	TRAVI
186,00	mm	d = altezza utile della sezione	
2,00		$k = 1 + (200/d)^{(1/2)} \le 2$	
1.000,00	mm	b _w = Larghezza minima della sezione (in mm)	
0,020		ρ_1 = Rapporto Geometrico di Armatura Longitudinale	
30,71	N/mm ²	$ m f_{ck}$	
0,00	N/mm ²	$\sigma_{cp} = N_{Ed}/A_c$	
0,5486		V_{\min}	
0,9469		$V' = 0.18*k*(100*\rho_1*f_{ck})^{(1/3)/\gamma c}$	
173,13	kN	V_{Rd}	
85,97	kN	$ m V_{Ed}$	
2,05		FS	

CONTROLLO TENSIONI ALLO SLE

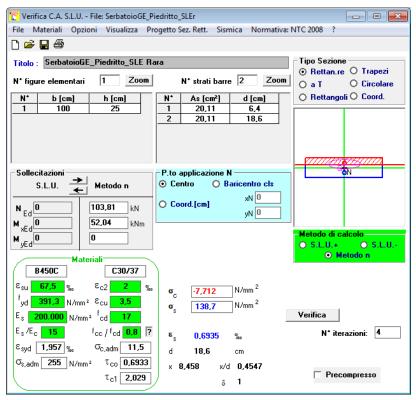


Figura 20.18 - Controllo di tensione agli SLE del piedritto - Combinazione Rara

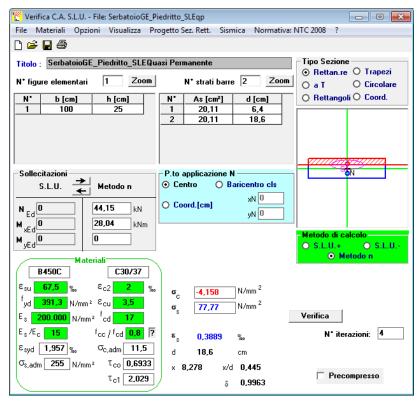


Figura 20.19 - Controllo di tensione agli SLE del piedritto - Combinazione Quasi Permanente

CONTROLLO FESSURAZIONE ALLO SLE

Si riportano di seguito le verifiche effettuate per la sezione più sollecitata dei piedritti in Combinazione Rara, assumendo come limite massimo di apertura delle fessure $w_1 = 0.2$ mm.

Stato Limite di Apertura delle Fessure Combinazione Rara

σs (Rara)	138,70 N/mm ²	² Tensione nell'armatura tesa valutata nella sezione fessurata in Comb Rara
Kt	0,40	Fattore dipendente dalla durata del carico
fctm	2,94 N/mm ²	
hc,eff	55,14 mm	
Ac,eff	55.140 mm ²	Area efficace di calcestruzzo teso attorno all'armatura, di altezza $h_{c,ef}e$ base t_{w}
ρ_{eff}	0,04	
αe	6,36	
esm	0,00047	Deformazione unitaria media delle barre
K1	0,80	Per barre ad aderenza migliorata
K2	0,50	Caso di flessione

POTENZIAMENTO DELLA LINEA MILANO - GENOVA


QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NMOZ 10 D 26 CL FA1200 001 A 139 DI 145

K3	3,40		Valore fisso
K4	0,43		Valore fisso
ф	16,00	mm	
c	64,00	mm	Ricoprimento Armatura
$\Delta smax$	292,19	mm	Distanza massima tra le fessure
W _{d (rara)}	0,14	mm	Valore di calcolo dell'apertura delle fessure
w1	0,20	mm	Armatura poco sensibile

20.4.5 Verifiche Soletta inferiore

Si riportano le verifiche sia allo SLU che allo SLE per la soletta inferiore nella sezione maggiormente sollecitata.

Spessore: 25 cm

Armatura: $1+1 \Phi 16/10$ Copriferro netto = 40 mm

VERIFICA DI RESISTENZA A PRESSOFLESSIONE – SLU_SLV

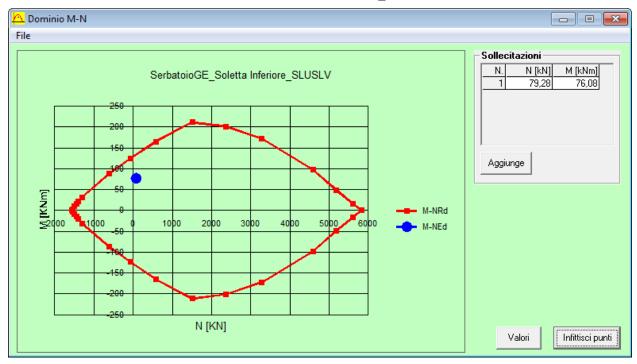


Figura 20.20 - Dominio di resistenza a flessione sezione più sollecitata della soletta inferiore; M_{Rd} = 133,7 kNm - FS = 1,76

VERIFICA DI RESISTENZA A TAGLIO – SLU SLV

Secondo quanto specificato dalla normativa, la verifica resistenza a taglio degli elementi non dotati di armature trasversali resistenti a taglio, si conduce controllando la seguente disuguaglianza:

 $V_{Ed} \! \leq \! V_{Rd}$

V_{Ed} è il valore di calcolo dello sforzo di taglio agente, mentre V_{Rd} è la resistenza a taglio.

Si riporta di seguito la verifica sulla sezione della soletta inferiore massimamente sollecitata a taglio.

VERIFICA TAGLIO ELEM	MENTI NON ARMATI A T	AGLIO - § 4.1.2.1.3.1	TRAVI
186,00	mm	d = altezza utile della sezione	
2,00		$k = 1 + (200/d)^{(1/2)} \le 2$	
1.000,00	mm	b_w = Larghezza minima della sezione (in mm)	
0,020		ρ_1 = Rapporto Geometrico di Armatura Longitudinale	
30,71	N/mm ²	f_{ck}	
0,00	N/mm ²	$\sigma_{cp} = N_{Ed}/A_c$	
0,5486		$V_{ ext{min}}$	
0,9469		$V' = 0.18*k*(100*\rho_1*f_{ck})^{\Lambda}(1/3)/\gamma c$	
176,13	kN	V_{Rd}	
103,56	kN	$ m V_{Ed}$	
1,70		FS	

CONTROLLO TENSIONI ALLO SLE

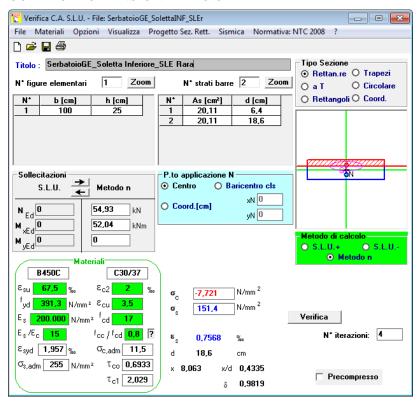


Figura 20.21 - Controllo di tensione agli SLE della soletta inferiore- Combinazione Rara

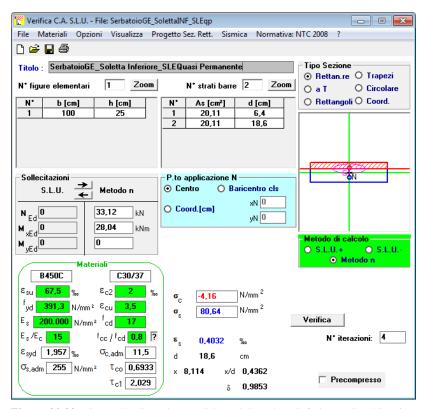


Figura 20.22 - Controllo di tensione agli SLE della soletta inferiore – Combinazione Quasi Permanente

CONTROLLO FESSURAZIONE ALLO SLE

Si riportano di seguito le verifiche effettuate per la sezione più sollecitata della soletta inferiore in Combinazione Rara, assumendo come limite massimo di apertura delle fessure $w_1 = 0.2$ mm.

Stato Limite di Apertura delle Fessure Combinazione Rara

σs (Rara)	151,40 N/mm ²	² Tensione nell'armatura tesa valutata nella sezione fessurata in Comb Rara
Kt	0,40	Fattore dipendente dalla durata del carico
fctm	2,94 N/mm ²	
hc,eff	56,46 mm	
Ac,eff	56.457 mm ²	Area efficace di calcestruzzo teso attorno all'armatura, di altezza $h_{c,ef}$ e base t_w
ρ_{eff}	0,04	
αe	6,36	
esm	0,00053	Deformazione unitaria media delle barre
K1	0,80	Per barre ad aderenza migliorata
K2	0,50	Caso di flessione

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NMOZ 10 D 26 CL FA1200 001 A 143 DI 145

K3	3,40		Valore fisso
K4	0,43		Valore fisso
ф	16,00	mm	
c	64,00	mm	Ricoprimento Armatura
$\Delta smax$	293,98	mm	Distanza massima tra le fessure
W _d (rara)	0,16	mm	Valore di calcolo dell'apertura delle fessure
w1	0,20	mm	Armatura poco sensibile

POTENZIAMENTO DELLA LINEA MILANO - GENOVA

QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE I - QUADRUPLICAMENTO MI ROGOREDO - PIEVE EMANUELE

RELAZIONE DI CALCOLO

PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
NM0Z	10	D 26 CL FA1200 001	A	144 DI 145

21 CONCLUSIONI

Si riportano di seguito le incidenze di armatura dei principali elementi strutturali:

170 kg/m^3
200 kg/m ³
150 kg/m ³
160 kg/m ³

GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLIC	MENTO AMENTO T	ITIVO DELLA LINEA MILA! RATTA MILANO ROGOREDO IENTO MI ROGOREDO - PIE	- PAVIA	
RELAZIONE DI CALCOLO	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
REDITERONE DI CILECOLO	NM0Z	10	D 26 CL FA1200 001	A	145 DI 145

22 ALLEGATO – TABULATI DI CALCOLO

Indice

Parametri di normativa	3
Parte generale	3
Azioni assiali e flettenti	3
Taglio	4
Effetti delle imperfezioni	4
Effetti del secondo ordine	5
Stati limite di esercizio	5
Sistemi di riferimento e convenzioni di segno	5
Verifiche di resistenza delle travi primarie	7
Travata 32-15-16-17-18-19-65-20-29	7
Travata 31-21-22-23-24-25-66-26-27	10
Travata 34	14
Travata 35	15
Travata 36	16
Travata 37	17
Travata 38	18
Travata 39	20
Travata 40	21
Travata 41	22
Travata 42	23
Travata 43	24
Travata 44	25
Travata 45	26
Travata 46	27
Travata 47	28
Travata 54	30
Travata 55	30
Travata 56	31
Travata 57	32
Travata 58	33
Travata 59	34
Travata 60	35
Travata 62	36
Travata 63	37
Travata 64	38
Verifiche di resistenza dei pilastri primari	39
Pilastrata 1	39
Pilastrata 10	40
Pilastrata 11	
Pilastrata 12	42
Pilastrata 13	44

	Pilastrata 14	. 45
	Pilastrata 2	46
	Pilastrata 3	47
	Pilastrata 33	48
	Pilastrata 4	50
	Pilastrata 5	51
	Pilastrata 6	52
	Pilastrata 61	53
	Pilastrata 7	54
	Pilastrata 8	56
	Pilastrata 9	57
V	erifiche di resistenza dei nodi	58

Parametri di normativa

Parte generale

Il codice di verifica utilizzato per la progettazione e la verifica degli elementi in c.a è l'NTC2008. I coefficienti parziali di sicurezza relativi a calcestruzzo ed acciaio utilizzati nei calcoli sono, rispettivamente:

 $\gamma_c = 1,50$

 $\gamma_s = 1,15$

La conversione da resistenza cubica, R_{ck}, a resistenza cilindrica, f_{ck}, è effettuato attraverso un fattore di conversione constante pari a 0,83.

Azioni assiali e flettenti

Le verifiche di resistenza per azioni assiali e flettenti vengono effettuate per mezzo di domini di resistenza tridimensionali, calcolati con riferimento ai possibili campi di rottura delle sezioni.

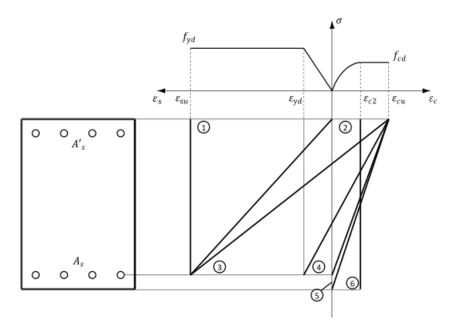


Figura 1: possibili campi di rottura della sezione

Per i materiali sono stati assunti i seguenti legami costitutivi:

• per il calcestruzzo è stato utilizzato un legame di tipo "stress-block", definito dai seguenti parametri

 $\epsilon_{c4} = 0.07\%$

 $\varepsilon_{cu} = 0.35\%$

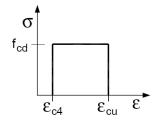


Figura 2: legame costitutivo di tipo stress-block

• per l'acciaio è stato utilizzato un legame di tipo "elastico-perfettamente plastico", definito dai seguenti parametri

Es = 200000 MPa

 $\varepsilon_{su} = 0.01$

Il fattore di riduzione della resistenza del calcestruzzo per azioni di lunga durata è stato assunto pari a α_{cc} = 0,85.

Taglio

La resistenza degli elementi dotati di armatura trasversale resistente al taglio è calcolata attraverso il modello a traliccio descritto al § 4.1.2.1.3.2 della norma.

L'inclinazione θ dei puntoni di calcestruzzo compressi è determinata in automatico dal programma in modo da massimizzare la resistenza dell'elemento ed è limitata dalla seguente espressione: $1 \le \cot \theta \le 2.5$.

Tale procedura viene applicata per tutti gli elementi ad esclusione delle zone critiche di travi e pilastri primari di strutture in CDA, per le quali viene sempre assunto θ = 45°.

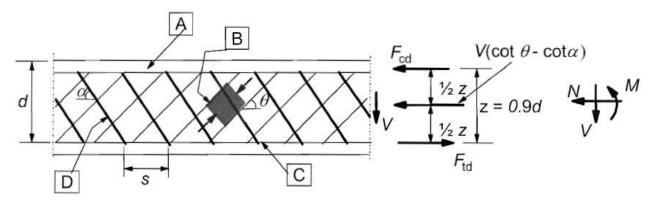


Figura 5: meccanismo resistente a taglio

Effetti delle imperfezioni

Gli effetti delle imperfezioni sono tenuti in considerazione per ogni combinazione che comporti la compressione del pilastro attraverso momenti aggiuntivi calcolati secondo l'approccio suggerito al § 5.2(5),(7) dell'EC2. I parametri di base che definiscono l'entità delle imperfezioni sono stati assunti pari a:

 $\theta_0 = 0,005$

m = 1

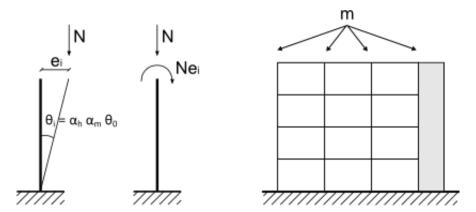


Figura 6: effetti delle imperfezioni geometriche

I momenti aggiuntivi derivanti vengono considerati in entrambe le direzioni principali separatamente.

Effetti del secondo ordine

Le analisi sono state condotte limitatamente agli effetti del 1° ordine.

Gli effetti del secondo ordine sono tenuti in considerazione attraverso l'applicazione di momenti aggiuntivi per tutti i pilastri la cui snellezza supera il valore limite stabilito dalla normativa.

Le luci libere degli elementi sono state determinate in accordo all'ipotesi di struttura a "nodi fissi" e risultano quindi sempre minori o uguali all'altezza del pilastro.

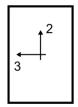
Data la tipologia di analisi svolta, le luci libere degli elementi sono state sempre assunte minori o uguali all'altezza del pilastro.

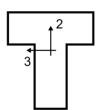
Il calcolo dei momenti aggiuntivi è eseguito in accordo al metodo della "rigidezza nominale", definito al § 5.8.7 dell'EC2, per il quale si sono adottati i seguenti parametri:

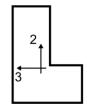
 $\phi_{ef} = 2,14$

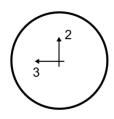
 $c_0 = 8$

 $y_{ce} = 1,2$


Stati limite di esercizio


Le verifiche agli stati limite di esercizio sono condotte con riferimento a condizioni ambientali ordinarie e una tipologia di armatura poco sensibile.


Il coefficiente di omogeneizzazione fra acciaio e calcestruzzo (n = E_s/E_c) è stato assunto pari a 15.


Sistemi di riferimento e convenzioni di segno

Tutte le verifiche sono condotte con riferimento alle sollecitazioni espresse in un sistema di riferimento locale (2-3) baricentrico delle sezioni. Gli eventuali effetti dovuti alle imperfezioni e gli effetti del secondo ordine vengono aggiunti dopo aver ruotato le sollecitazioni locali nel sistema di riferimento principale; le sollecitazioni risultanti sono poi nuovamente proiettate nel sistema locale per le verifiche.

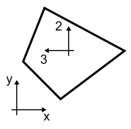


Figura 7: sistema di riferimento locale delle sezioni

Eventuali rotazioni assegnate alle aste sono espresse in senso antiorario a partire dalla configurazione di riferimento. I momenti flettenti sono positivi quando provocano compressione sulle facce positive della sezione individuate dal verso degli assi locali.

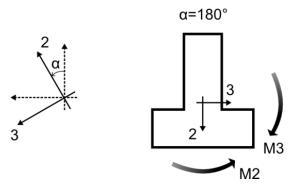


Figura 8: convenzioni di segno per rotazioni e momenti

Verifiche di resistenza delle travi primarie

Travata 32-15-16-17-18-19-65-20-29

Geometria e materiali

Geometria e materian	
Numero campate	9
Lunghezza campate [m]	0,80 - 4,80 - 4,80 - 4,80 - 4,80 - 4,80 - 4,80 - 4,80 - 0,80
Angolo di rotazione [°]	0
Tipo sezione	Rettangolare
Larghezza b [cm]	30,0
Altezza h [cm]	59,0
Copriferro superiore [cm]	4,5
Copriferro inferiore [cm]	4,5
Copriferro laterale [cm]	4,5
Rck [N/mm²]	37
Fyk [N/mm²]	450

Armature longitudinali della travata

T	C	L		Armatura Longitudinale					
Trave	Segmento	[m]	Supe	eriore	Inferiore	Centrale			
32	1	0,80	2-Ø14		2-Ø14				
	1	1,00		1-Ø14					
15	2	2,80	2-Ø14		2-Ø14				
	3	1,00		1-Ø14					
	1	1,00		1-Ø14					
16	2	2,80	2-Ø14		2-Ø14				
	3	1,00		1-Ø14					
	1	1,00		1-Ø14					
17	2	2,80	2-Ø14		2-Ø14				
	3	1,00		1-Ø14					
	1	1,00		1-Ø14					
18	2	2,80	2-Ø14		2-Ø14				
	3	1,00		1-Ø14					
	1	1,00		1-Ø14					
19	2	2,80	2-Ø14		2-Ø14				
	3	1,00		1-Ø14					
•	1	1,00		1-Ø14					
65	2	2,80	2-Ø14		2-Ø14				
	3	1,00		1-Ø14					
·	1	1,00		1-Ø14					
20	2	2,80	2-Ø14		2-Ø14				
	3	1,00		1-Ø14					
29	1	0,80	2-Ø14		2-Ø14				

Verifiche PMM della travata nei confronti della resistenza

Trave	Sagmenta	Combinazio	N	M2	M3	δМЗ	D/C	
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	Б/С	
32	1	SLU_TOT	0,000	0,000	-4,636	0,000	0,07	
	1	QKE1	9,465	23,29	29,55	0,000	0,68	
15	2	QKE1	9,465	14,32	33,67	0,000	0,59	
	3	QKE1	9,465	-17,17	-53,94	0,000	0,62	
	1	QKE1	9,860	-14,13	-50,94	0,000	0,58	
16	2	QKE1	9,860	8,019	17,24	0,000	0,33	
	3	QKE1	9,860	14,24	-47,30	0,000	0,55	
	1	QKE1	9,048	13,83	-47,78	0,000	0,55	
17	2	SLU_TOT	10,63	916,4e-3	22,39	0,000	0,39	
	3	QKE1	9,048	-14,30	-48,41	0,000	0,55	

T	Commonto	Combinazio	N	M2	M3	δМЗ	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
	1	QKE1	7,511	-11,96	-48,10	0,000	0,54
18	2	SLU_TOT	10,77	-694,3e-3	20,15	0,000	0,35
	3	QKE1	7,511	-11,96	-48,10	0,000	0,54
	1	QKE1	9,048	-14,30	-48,41	0,000	0,55
19	2	SLU_TOT	10,63	917,5e-3	22,39	0,000	0,39
	3	QKE1	9,048	13,83	-47,78	0,000	0,55
	1	QKE1	9,860	14,24	-47,30	0,000	0,55
65	2	QKE1	9,860	8,019	17,24	0,000	0,33
	3	QKE1	9,860	-14,13	-50,94	0,000	0,58
	1	QKE1	9,465	-17,17	-53,94	0,000	0,62
20	2	QKE1	9,465	14,32	33,67	0,000	0,59
	3	QKE1	9,465	23,29	29,55	0,000	0,68
29	1	SLU_TOT	0,000	0,000	-4,636	0,000	0,07

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

T	6	d	Ct-ff-	Combinazio	VSd	VRd	D/6
Trave	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
32	1	54,5	2-Ø8/200	SLU_TOT	14,26	241,2	0,06
	1	54,5		SLU_TOT	-42,46	241,2	0,18
15	2	54,5	2-Ø8/200	SLU_TOT	35,20	241,2	0,15
	3	54,5		SLU_TOT	56,90	241,2	0,24
	1	54,5		SLU_TOT	-51,23	241,2	0,21
16	2	54,5	2-Ø8/200	SLU_TOT	-29,78	241,2	0,12
	3	54,5		SLU_TOT	47,11	241,2	0,20
	1	54,5		SLU_TOT	-49,13	241,2	0,20
17	2	54,5	2-Ø8/200	QKE1	29,09	241,2	0,12
	3	54,5		SLU_TOT	48,88	241,2	0,20
	1	54,5		SLU_TOT	-48,57	241,2	0,20
18	2	54,5	2-Ø8/200	QKE1	28,73	241,2	0,12
	3	54,5		SLU_TOT	49,83	241,2	0,21
	1	54,5		SLU_TOT	-50,15	241,2	0,21
19	2	54,5	2-Ø8/200	QKE1	-29,09	241,2	0,12
	3	54,5		SLU_TOT	48,29	241,2	0,20
	1	54,5		SLU_TOT	-46,96	241,2	0,19
65	2	54,5	2-Ø8/200	QKE1	29,64	241,2	0,12
	3	54,5		SLU_TOT	51,05	241,2	0,21
	1	54,5		SLU_TOT	-56,87	241,2	0,24
20	2	54,5	2-Ø8/200	SLU_TOT	-35,17	241,2	0,15
	3	54,5		SLU_TOT	42,46	241,2	0,18
29	1	54,5	2-Ø8/200	SLU_TOT	-14,26	241,2	0,06

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trave	Sagmenta	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
ITave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	/mm²] [N/mm²]	D/C
32	1	SLE_r_TOT	0,000	0,000	-3,394	-355,3e-3	-18,43	0,02
	1	SLE_r_TOT	3,744	7,178	8,395	-3,490	-18,43	0,19
15	2	SLE_r_TOT	3,744	5,467	17,62	-4,138	-18,43	0,22
	3	SLE_r_TOT	3,744	-6,856	-30,76	-5,262	-18,43	0,29
	1	SLE_r_TOT	-4,217	-1,598	-29,85	-3,265	-18,43	0,18
16	2	SLE_r_TOT	6,679	-1,419	13,62	-2,028	-18,43	0,11
	3	SLE_r_TOT	6,679	2,596	-24,51	-3,140	-18,43	0,17
	1	SLE_r_TOT	-5,128	685,2e-3	-24,76	-2,482	-18,43	0,13
17	2	SLE_r_TOT	-5,128	622,1e-3	16,18	-1,967	-18,43	0,11
	3	SLE_r_TOT	-5,128	-560,1e-3	-25,31	-2,486	-18,43	0,13

T.,	Commonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-5,221	588,5e-3	-25,26	-2,493	-18,43	0,14
18	2	SLE_r_TOT	-5,221	-467,9e-3	14,64	-1,743	-18,43	0,09
	3	SLE_r_TOT	-5,221	-552,5e-3	-26,28	-2,570	-18,43	0,14
	1	SLE_r_TOT	-5,140	-731,9e-3	-26,33	-2,640	-18,43	0,14
19	2	SLE_r_TOT	-5,140	622,8e-3	16,18	-1,967	-18,43	0,11
	3	SLE_r_TOT	-5,140	967,1e-3	-24,32	-2,544	-18,43	0,14
	1	SLE_r_TOT	6,671	2,502	-24,13	-3,072	-18,43	0,17
65	2	SLE_r_TOT	6,671	-1,418	13,42	-2,007	-18,43	0,11
	3	SLE_r_TOT	-4,235	-1,668	-29,74	-3,281	-18,43	0,18
	1	SLE_r_TOT	3,744	-6,830	-30,68	-5,245	-18,43	0,28
20	2	SLE_r_TOT	3,744	5,464	17,62	-4,137	-18,43	0,22
	3	SLE_r_TOT	3,744	7,174	8,398	-3,490	-18,43	0,19
29	1	SLE_r_TOT	0,000	0,000	-3,394	-355,3e-3	-18,43	0,02

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Turne	Commont	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
32	1	SLE_qp	0,000	0,000	-2,799	-293,0e-3	-13,82	0,02
	1	SLE_qp	810,1e-3	2,114	6,383	-1,543	-13,82	0,11
15	2	SLE_qp	810,1e-3	1,393	18,06	-2,480	-13,82	0,18
	3	SLE_qp	810,1e-3	-769,6e-3	-24,62	-2,483	-13,82	0,18
	1	SLE_qp	1,056	-1,000	-23,83	-2,497	-13,82	0,18
16	2	SLE_qp	1,056	-403,2e-3	9,744	-1,191	-13,82	0,09
	3	SLE_qp	1,056	342,9e-3	-19,54	-1,868	-13,82	0,14
	1	SLE_qp	877,3e-3	236,2e-3	-19,71	-1,843	-13,82	0,13
17	2	SLE_qp	877,3e-3	108,3e-3	11,60	-1,258	-13,82	0,09
	3	SLE_qp	877,3e-3	-51,51e-3	-20,52	-1,845	-13,82	0,13
	1	SLE_qp	884,3e-3	-48,76e-3	-20,48	-1,841	-13,82	0,13
18	2	SLE_qp	884,3e-3	-48,76e-3	11,18	-1,188	-13,82	0,09
	3	SLE_qp	884,3e-3	-48,76e-3	-20,48	-1,841	-13,82	0,13
	1	SLE_qp	877,3e-3	-51,51e-3	-20,52	-1,845	-13,82	0,13
19	2	SLE_qp	877,3e-3	108,3e-3	11,60	-1,258	-13,82	0,09
	3	SLE_qp	877,3e-3	236,2e-3	-19,71	-1,843	-13,82	0,13
	1	SLE_qp	1,056	342,9e-3	-19,54	-1,868	-13,82	0,14
65	2	SLE_qp	1,056	-403,2e-3	9,744	-1,191	-13,82	0,09
	3	SLE_qp	1,056	-1,000	-23,83	-2,497	-13,82	0,18
	1	SLE_qp	810,1e-3	-769,6e-3	-24,62	-2,483	-13,82	0,18
20	2	SLE_qp	810,1e-3	1,393	18,06	-2,480	-13,82	0,18
	3	SLE_qp	810,1e-3	2,114	6,383	-1,543	-13,82	0,11
29	1	SLE_qp	0,000	0,000	-2,799	-293,0e-3	-13,82	0,02

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Tuovo	Coamonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
32	1	SLE_r_TOT	0,000	0,000	-3,394	21,70	360,0	0,06
	1	SLE_r_TOT	3,744	7,178	8,395	128,0	360,0	0,36
15	2	SLE_r_TOT	3,744	3,756	22,91	173,1	360,0	0,48
	3	SLE_r_TOT	3,744	-6,856	-30,76	173,5	360,0	0,48
	1	SLE_r_TOT	6,679	-1,598	-29,85	142,6	360,0	0,40
16	2	SLE_r_TOT	6,679	-1,419	13,62	105,3	360,0	0,29
	3	SLE_r_TOT	6,679	2,596	-24,51	124,6	360,0	0,35
·	1	SLE_r_TOT	7,167	685,2e-3	-24,76	117,1	360,0	0,33
17	2	SLE_r_TOT	7,167	622,1e-3	16,18	117,9	360,0	0,33
	3	SLE_r_TOT	7,167	-560,1e-3	-25,31	118,9	360,0	0,33

T.,	Commonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	7,261	588,5e-3	-25,26	119,0	360,0	0,33
18	2	SLE_r_TOT	7,261	-467,9e-3	14,64	107,5	360,0	0,30
	3	SLE_r_TOT	7,261	-552,5e-3	-26,28	123,2	360,0	0,34
	1	SLE_r_TOT	7,167	-731,9e-3	-26,33	124,1	360,0	0,34
19	2	SLE_r_TOT	7,167	622,8e-3	16,18	117,9	360,0	0,33
	3	SLE_r_TOT	7,167	967,1e-3	-24,32	116,5	360,0	0,32
	1	SLE_r_TOT	6,671	2,502	-24,13	122,5	360,0	0,34
65	2	SLE_r_TOT	6,671	-1,418	13,42	104,0	360,0	0,29
	3	SLE_r_TOT	6,671	-1,668	-29,74	142,5	360,0	0,40
	1	SLE_r_TOT	3,744	-6,830	-30,68	173,0	360,0	0,48
20	2	SLE_r_TOT	3,744	3,754	22,92	173,1	360,0	0,48
	3	SLE_r_TOT	3,744	7,174	8,398	128,0	360,0	0,36
29	1	SLE_r_TOT	0,000	0,000	-3,394	21,70	360,0	0,06

Verifiche di fessurazione

Tuesse	Comments	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
32	1	OK	OK
	1	OK	OK
15	2	OK	OK
	3	OK	ОК
	1	OK	OK
16	2	OK	OK
	3	OK	OK
	1	OK	OK
17	2	OK	OK
	3	OK	OK
	1	OK	OK
18	2	OK	OK
	3	OK	ОК
	1	OK	OK
19	2	OK	OK
	3	OK	OK
	1	OK	OK
65	2	OK	OK
	3	OK	OK
	1	OK	OK
20	2	OK	OK
	3	OK	OK
29	1	OK	OK

Travata 31-21-22-23-24-25-66-26-27

Geometria e materiali

Ocometra e materiali	
Numero campate	9
Lunghezza campate [m]	0,80 - 4,80 - 4,80 - 4,80 - 4,80 - 4,80 - 4,80 - 4,80 - 0,80
Angolo di rotazione [°]	0
Tipo sezione	Rettangolare
Larghezza b [cm]	30,0
Altezza h [cm]	59,0
Copriferro superiore [cm]	4,5
Copriferro inferiore [cm]	4,5
Copriferro laterale [cm]	4,5
Rck [N/mm²]	37
Fyk [N/mm²]	450

Armature longitudinali della travata

Tuovo	Commente	L		Arm	atura Longitudinale	
Trave	Segmento	[m]	Supe	riore	Inferiore	Centrale
31	1	0,80	2-Ø14		2-Ø14	
	1	1,00		1-Ø14		
21	2	2,80	2-Ø14		2-Ø14	
	3	1,00		1-Ø14		
	1	1,00		1-Ø14		
22	2	2,80	2-Ø14		2-Ø14	
	3	1,00		1-Ø14		
	1	1,00		1-Ø14		
23	2	2,80	2-Ø14		2-Ø14	
	3	1,00		1-Ø14		
	1	1,00		1-Ø14		
24	2	2,80	2-Ø14		2-Ø14	
	3	1,00		1-Ø14		
	1	1,00		1-Ø14		
25	2	2,80	2-Ø14		2-Ø14	
	3	1,00		1-Ø14		
	1	1,00		1-Ø14		
66	2	2,80	2-Ø14		2-Ø14	
	3	1,00		1-Ø14		
•	1	1,00		1-Ø14		
26	2	2,80	2-Ø14		2-Ø14	
	3	1,00		1-Ø14		
27	1	0,80	2-Ø14		2-Ø14	

Verifiche PMM della travata nei confronti della resistenza

T	Commonto	Combinazio	N	M2	M3	δМЗ	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
31	1	SLU_TOT	0,000	0,000	-4,636	0,000	0,07
	1	QKE1	9,464	-23,29	29,55	0,000	0,68
21	2	QKE1	9,464	-14,32	33,67	0,000	0,59
	3	QKE1	9,464	17,17	-53,94	0,000	0,62
	1	QKE1	9,859	14,13	-50,94	0,000	0,58
22	2	QKE1	9,859	-8,019	17,24	0,000	0,33
	3	QKE1	9,859	-14,24	-47,30	0,000	0,55
	1	QKE1	9,048	-13,83	-47,78	0,000	0,55
23	2	SLU_TOT	10,61	-918,5e-3	22,39	0,000	0,39
	3	QKE1	9,048	14,30	-48,41	0,000	0,55
	1	QKE1	7,511	11,96	-48,10	0,000	0,54
24	2	SLU_TOT	10,77	693,6e-3	20,15	0,000	0,35
	3	QKE1	7,511	11,96	-48,10	0,000	0,54
	1	QKE1	9,048	14,30	-48,41	0,000	0,55
25	2	SLU_TOT	10,63	-917,5e-3	22,39	0,000	0,39
	3	QKE1	9,048	-13,83	-47,78	0,000	0,55
	1	QKE1	9,859	-14,24	-47,30	0,000	0,55
66	2	QKE1	9,859	-8,019	17,24	0,000	0,33
	3	QKE1	9,859	14,13	-50,94	0,000	0,58
	1	QKE1	9,464	17,17	-53,94	0,000	0,62
26	2	QKE1	9,464	-14,32	33,67	0,000	0,59
	3	QKE1	9,464	-23,29	29,55	0,000	0,68
27	1	SLU_TOT	0,000	0,000	-4,636	0,000	0,07

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

-		,						
	Trave	Segmento	d	Staffe	Combinazio	VSd	VRd	D/C

		[cm]		ne	[kN]	[kN]	
31	1	54,5	2-Ø8/200	SLU_TOT	14,26	241,2	0,06
	1	54,5		SLU_TOT	-42,46	241,2	0,18
21	2	54,5	2-Ø8/200	SLU_TOT	35,20	241,2	0,15
	3	54,5		SLU_TOT	56,90	241,2	0,24
	1	54,5		SLU_TOT	-51,23	241,2	0,21
22	2	54,5	2-Ø8/200	SLU_TOT	-29,78	241,2	0,12
	3	54,5		SLU_TOT	47,11	241,2	0,20
	1	54,5		SLU_TOT	-49,13	241,2	0,20
23	2	54,5	2-Ø8/200	QKE1	29,09	241,2	0,12
	3	54,5		SLU_TOT	48,88	241,2	0,20
	1	54,5		SLU_TOT	-48,57	241,2	0,20
24	2	54,5	2-Ø8/200	QKE1	28,73	241,2	0,12
	3	54,5		SLU_TOT	49,83	241,2	0,21
	1	54,5		SLU_TOT	-50,15	241,2	0,21
25	2	54,5	2-Ø8/200	QKE1	-29,09	241,2	0,12
	3	54,5		SLU_TOT	48,29	241,2	0,20
	1	54,5		SLU_TOT	-46,97	241,2	0,19
66	2	54,5	2-Ø8/200	QKE1	29,64	241,2	0,12
	3	54,5		SLU_TOT	51,05	241,2	0,21
	1	54,5		SLU_TOT	-56,87	241,2	0,24
26	2	54,5	2-Ø8/200	SLU_TOT	-35,17	241,2	0,15
	3	54,5		SLU_TOT	42,46	241,2	0,18
27	1	54,5	2-Ø8/200	SLU_TOT	-14,26	241,2	0,06

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

T	6	Combinazi	N	M2	M3	σc,min	σc,lim	D/6
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
31	1	SLE_r_TOT	0,000	0,000	-3,394	-355,3e-3	-18,43	0,02
	1	SLE_r_TOT	3,743	-7,173	8,400	-3,490	-18,43	0,19
21	2	SLE_r_TOT	3,743	-5,460	17,62	-4,136	-18,43	0,22
	3	SLE_r_TOT	3,743	6,856	-30,76	-5,262	-18,43	0,29
	1	SLE_r_TOT	-4,260	1,598	-29,85	-3,265	-18,43	0,18
22	2	SLE_r_TOT	6,679	1,417	13,62	-2,027	-18,43	0,11
	3	SLE_r_TOT	6,679	-2,596	-24,51	-3,140	-18,43	0,17
	1	SLE_r_TOT	-5,141	-686,2e-3	-24,76	-2,482	-18,43	0,13
23	2	SLE_r_TOT	-5,141	-623,5e-3	16,18	-1,968	-18,43	0,11
	3	SLE_r_TOT	-5,141	560,1e-3	-25,31	-2,486	-18,43	0,13
	1	SLE_r_TOT	-5,221	-588,5e-3	-25,26	-2,493	-18,43	0,14
24	2	SLE_r_TOT	-5,221	467,4e-3	14,64	-1,742	-18,43	0,09
	3	SLE_r_TOT	-5,221	552,5e-3	-26,28	-2,570	-18,43	0,14
	1	SLE_r_TOT	-5,141	731,9e-3	-26,33	-2,640	-18,43	0,14
25	2	SLE_r_TOT	-5,141	-622,8e-3	16,18	-1,967	-18,43	0,11
	3	SLE_r_TOT	-5,141	-967,1e-3	-24,32	-2,544	-18,43	0,14
	1	SLE_r_TOT	6,671	-2,502	-24,13	-3,072	-18,43	0,17
66	2	SLE_r_TOT	6,671	1,418	13,42	-2,007	-18,43	0,11
	3	SLE_r_TOT	-4,260	1,668	-29,74	-3,281	-18,43	0,18
	1	SLE_r_TOT	3,740	6,830	-30,68	-5,245	-18,43	0,28
26	2	SLE_r_TOT	3,740	-5,464	17,62	-4,137	-18,43	0,22
	3	SLE_r_TOT	3,740	-7,173	8,397	-3,489	-18,43	0,19
27	1	SLE_r_TOT	0,000	0,000	-3,394	-355,3e-3	-18,43	0,02

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Trave	Coamonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
31	1	SLE_qp	0,000	0,000	-2,799	-293,0e-3	-13,82	0,02

T		Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	810,1e-3	-2,114	6,383	-1,543	-13,82	0,11
21	2	SLE_qp	810,1e-3	-1,393	18,06	-2,480	-13,82	0,18
	3	SLE_qp	810,1e-3	769,6e-3	-24,62	-2,483	-13,82	0,18
	1	SLE_qp	1,056	1,000	-23,83	-2,497	-13,82	0,18
22	2	SLE_qp	1,056	403,2e-3	9,744	-1,191	-13,82	0,09
	3	SLE_qp	1,056	-342,9e-3	-19,54	-1,868	-13,82	0,14
	1	SLE_qp	877,3e-3	-236,2e-3	-19,71	-1,843	-13,82	0,13
23	2	SLE_qp	877,3e-3	-108,3e-3	11,60	-1,258	-13,82	0,09
	3	SLE_qp	877,3e-3	51,51e-3	-20,52	-1,845	-13,82	0,13
	1	SLE_qp	884,3e-3	48,76e-3	-20,48	-1,841	-13,82	0,13
24	2	SLE_qp	884,3e-3	48,76e-3	11,18	-1,188	-13,82	0,09
	3	SLE_qp	884,3e-3	48,76e-3	-20,48	-1,841	-13,82	0,13
	1	SLE_qp	877,3e-3	51,51e-3	-20,52	-1,845	-13,82	0,13
25	2	SLE_qp	877,3e-3	-108,3e-3	11,60	-1,258	-13,82	0,09
	3	SLE_qp	877,3e-3	-236,2e-3	-19,71	-1,843	-13,82	0,13
	1	SLE_qp	1,056	-342,9e-3	-19,54	-1,868	-13,82	0,14
66	2	SLE_qp	1,056	403,2e-3	9,744	-1,191	-13,82	0,09
	3	SLE_qp	1,056	1,000	-23,83	-2,497	-13,82	0,18
	1	SLE_qp	810,1e-3	769,6e-3	-24,62	-2,483	-13,82	0,18
26	2	SLE_qp	810,1e-3	-1,393	18,06	-2,480	-13,82	0,18
	3	SLE_qp	810,1e-3	-2,114	6,383	-1,543	-13,82	0,11
27	1	SLE_qp	0,000	0,000	-2,799	-293,0e-3	-13,82	0,02

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

T	6	Combinazi	N	M2	M3	σs	σs,lim	D/6
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
31	1	SLE_r_TOT	0,000	0,000	-3,394	21,70	360,0	0,06
	1	SLE_r_TOT	3,743	-7,173	8,400	128,0	360,0	0,36
21	2	SLE_r_TOT	3,743	-3,752	22,92	173,1	360,0	0,48
	3	SLE_r_TOT	3,743	6,856	-30,76	173,5	360,0	0,48
	1	SLE_r_TOT	6,679	1,598	-29,85	142,6	360,0	0,40
22	2	SLE_r_TOT	6,679	1,417	13,62	105,3	360,0	0,29
	3	SLE_r_TOT	6,679	-2,596	-24,51	124,6	360,0	0,35
	1	SLE_r_TOT	7,159	-686,2e-3	-24,76	117,1	360,0	0,33
23	2	SLE_r_TOT	7,159	-623,5e-3	16,18	117,9	360,0	0,33
	3	SLE_r_TOT	7,159	560,1e-3	-25,31	118,9	360,0	0,33
	1	SLE_r_TOT	7,261	-588,5e-3	-25,26	119,0	360,0	0,33
24	2	SLE_r_TOT	7,261	467,4e-3	14,64	107,5	360,0	0,30
	3	SLE_r_TOT	7,261	552,5e-3	-26,28	123,2	360,0	0,34
	1	SLE_r_TOT	7,167	731,9e-3	-26,33	124,1	360,0	0,34
25	2	SLE_r_TOT	7,167	-622,8e-3	16,18	117,9	360,0	0,33
	3	SLE_r_TOT	7,167	-967,1e-3	-24,32	116,5	360,0	0,32
	1	SLE_r_TOT	6,671	-2,502	-24,13	122,5	360,0	0,34
66	2	SLE_r_TOT	6,671	1,418	13,42	104,0	360,0	0,29
	3	SLE_r_TOT	6,671	1,668	-29,74	142,5	360,0	0,40
	1	SLE_r_TOT	3,740	6,830	-30,68	173,0	360,0	0,48
26	2	SLE_r_TOT	3,740	-3,754	22,91	173,1	360,0	0,48
	3	SLE_r_TOT	3,740	-7,173	8,397	128,0	360,0	0,36
27	1	SLE_r_TOT	0,000	0,000	-3,394	21,70	360,0	0,06

Verifiche di fessurazione

Tuovo	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
31	1	ОК	ОК

Tuesse	Commonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	OK	OK
21	2	OK	OK
	3	OK	OK
	1	OK	OK
22	2	OK	OK
	3	OK	OK
	1	OK	OK
23	2	OK	OK
	3	OK	OK
	1	OK	OK
24	2	OK	OK
	3	OK	OK
	1	OK	OK
25	2	OK	OK
	3	OK	OK
	1	OK	OK
66	2	OK	OK
	3	OK	OK
	1	OK	OK
26	2	OK	OK
	3	OK	OK
27	1	OK	OK

Travata 34

Geometria e materiali

Numero campate	1	
Lunghezza campate [m]	3,09	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	16,0	
Copriferro superiore [cm]	4,5	
Copriferro inferiore [cm]	4,5	
Copriferro laterale [cm]	4,5	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Trave	Coamonto	L	Armatura Longitudinale					
Trave	Trave Segmento		Superiore		Inferiore		Centrale	
	1	0,24						
34	2	2,41	2-Ø14		2-Ø14			
	3	0,44						

Verifiche PMM della travata nei confronti della resistenza

Trave	Segmento	Combinazio	N	M2	M3	δМЗ	D/C
		ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
	1	QKE1	-75,94	-29,35	-4,110	0,000	0,80
34	2	QKE1	-75,17	25,55	1,644	0,000	0,64
	3	QKE1	-75,04	34,69	1,523	0,000	0,96

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Travo Soc	Comments	d	Chaffa	Combinazio	VSd	VRd	D/C
Trave	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C

Trave Segmento	Commonto	d	Cheffe	Combinazio	VSd	VRd	D/C
	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
	1	11,5		SLU_TOT	-5,286	109,8	0,05
34	2	11,5	2-Ø8/90	SLU_TOT	-4,618	109,8	0,04
	3	11,5		QKE2	1,516	106,3	0,01

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trave Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C	
	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_r_TOT	-95,02	-6,369	-4,927	-9,421	-18,43	0,51
34	2	SLE_r_TOT	-94,25	8,900	1,706	-6,623	-18,43	0,36
	3	SLE_r_TOT	-94,12	11,44	1,789	-8,213	-18,43	0,45

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Trave Segmento	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_qp	-88,27	-3,120	-2,870	-4,913	-13,82	0,36
34	2	SLE_qp	-87,50	5,705	1,238	-4,451	-13,82	0,32
	3	SLE_qp	-87,37	7,175	1,127	-5,067	-13,82	0,37

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Trave Segmento	Coamonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_r_TOT	-111,4	-6,369	-4,927	-81,96	360,0	0,23
34	2	SLE_r_TOT	-110,6	8,900	1,706	-71,01	360,0	0,20
	3	SLE_r_TOT	-110,5	11,44	1,789	-83,79	360,0	0,23

Verifiche di fessurazione

Tuova	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	ОК	ОК
34	2	ОК	ОК
	3	OK	OK

Travata 35

Geometria e materiali

Geometria e materiali	
Numero campate	1
Lunghezza campate [m]	3,09
Angolo di rotazione [°]	0
Tipo sezione	Rettangolare
Larghezza b [cm]	30,0
Altezza h [cm]	16,0
Copriferro superiore [cm]	4,5
Copriferro inferiore [cm]	4,5
Copriferro laterale [cm]	4,5
Rck [N/mm²]	37
Fyk [N/mm²]	450

Armature longitudinali della travata

Tuesse	Coamonto	L	Armatura Longitudinale					
ITave	Trave Segmento		Superiore		Inferiore		Centrale	
	1	0,24						
35	2	2,41	2-Ø14		2-Ø14			
	3	0,44						

Verifiche PMM della travata nei confronti della resistenza

Trave Segmento Combinazio N	M2	M3	δМЗ	D/C
-----------------------------	----	----	-----	-----

		ne	[kN]	[kNm]	[kNm]	[kNm]	
	1	QKE1	-75,04	34,69	1,523	0,000	0,96
35	2	QKE1	-75,17	25,55	1,644	0,000	0,64
	3	OKE1	-75.94	-29.35	-4.110	0.000	0.80

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tuova	Trava Companie d		Staffe	Combinazio	VSd	VRd	D/C
Trave	Segmento	[cm]	Stalle	ne	[kN]	[kN]	<i>b</i> /C
	1	11,5		QKE2	-1,516	106,3	0,01
35	2	11,5	2-Ø8/90	SLU_TOT	4,623	109,8	0,04
	3	11,5		SLU_TOT	5,291	109,8	0,05

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trava Commente		Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_r_TOT	-94,13	11,44	1,791	-8,211	-18,43	0,45
35	2	SLE_r_TOT	-94,26	8,895	1,705	-6,620	-18,43	0,36
	3	SLE_r_TOT	-95,03	-6,364	-4,936	-9,432	-18,43	0,51

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Trave	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σc,min [N/mm²]	σc,lim [N/mm²]	D/C
	1	SLE_qp	-87,37	7,175	1,127	-5,067	-13,82	0,37
35	2	SLE_qp	-87,50	5,705	1,238	-4,451	-13,82	0,32
	3	SLE_qp	-88,27	-3,120	-2,870	-4,913	-13,82	0,36

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Trava Coamonto		Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_r_TOT	-110,5	11,44	1,791	-83,78	360,0	0,23
35	2	SLE_r_TOT	-110,6	8,895	1,705	-70,98	360,0	0,20
	3	SLE_r_TOT	-111,4	-6,364	-4,936	-81,99	360,0	0,23

Verifiche di fessurazione

Tuovo	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	OK	ОК
35	2	OK	ОК
	3	OK	OK

Travata 36

Geometria e materiali

1
3,09
0
Rettangolare
30,0
16,0
4,5
4,5
4,5
37
450

Armature longitudinali della travata

Travo	Trave Segmento		Armatura Longitudinale					
ITave	Segmento	[m]	Superiore	Inferiore	Centrale			

Tuesse	Commente	L	Armatura Longitudinale				
Trave	Segmento	[m]	Supe	riore	Inferiore		Centrale
	1	0,24					
36	2	2,41	2-Ø14		2-Ø14		
	3	0,44]				

Verifiche PMM della travata nei confronti della resistenza

Tuovo	Coamonto	Combinazio	N	M2	M3	δМЗ	D/C
Trave Segmento	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
	1	QKE1	-142,4	31,76	-5,734	0,000	0,77
36	2	QKE1	-142,2	22,45	-3,850	0,000	0,50
	3	QKE1	-141,5	-33,43	2,719	0,000	0,73

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tuova	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C
Trave	Segmento	[cm]	Statie	ne	[kN]	[kN]	D/C
	1	11,5		SLU_TOT	-6,523	113,1	0,06
36	2	11,5	2-Ø8/90	SLU_TOT	-5,854	113,1	0,05
	3	11,5		QKE2	-1,893	110,3	0,02

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trave Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C	
	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_r_TOT	-187,8	3,764	-5,742	-8,827	-18,43	0,48
36	2	SLE_r_TOT	-187,0	-4,019	3,083	-6,740	-18,43	0,37
	3	SLE_r_TOT	-186,9	-5,316	3,634	-7 <i>,</i> 587	-18,43	0,41

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Trave Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C	
	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_qp	-148,7	506,0e-3	-4,298	-5,829	-13,82	0,42
36	2	SLE_qp	-147,9	-1,061	2,286	-4,535	-13,82	0,33
	3	SLE_qp	-147,8	-1,322	2,588	-4,830	-13,82	0,35

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Trave Segr	Sagmonta	Combinazi	N	M2	M3	σs	σs,lim	D/C
	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-187,8	3,764	-5,742	-90,22	360,0	0,25
36	2	SLE_r_TOT	-187,0	-4,019	3,083	-76,94	360,0	0,21
	3	SLE_r_TOT	-186,9	-5,316	3,634	-84,15	360,0	0,23

Verifiche di fessurazione

Twove	Coamonto	FREQ	QP		
Trave	Segmento	Apertura fessure	Apertura fessure		
	1	OK	ОК		
36	2	OK	ОК		
	3	OK	OK		

Travata 37

Geometria e materiali

Geometria e materiali	
Numero campate	1
Lunghezza campate [m]	3,09
Angolo di rotazione [°]	0
Tipo sezione	Rettangolare
Larghezza b [cm]	30,0
Altezza h [cm]	16,0
Copriferro superiore [cm]	4,5

Copriferro inferiore [cm]	4,5	
Copriferro laterale [cm]	4,5	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Trave Segmento		L		Arm	natura Longitudinale		
		[m]	Supe	riore	Inferiore		Centrale
	1	0,24					
37	2	2,41	2-Ø14		2-Ø14		
	3	0,44					

Verifiche PMM della travata nei confronti della resistenza

Trave	Coamonto	Combinazio	N	M2	M3	δМЗ	D/C
	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
	1	QKE1	-141,5	-33,43	2,719	0,000	0,73
37	2	QKE1	-142,2	22,45	-3,850	0,000	0,50
	3	QKE1	-142,4	31,76	-5,734	0,000	0,77

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Two.co	Trave Segmento		Staffe	Combinazio	VSd	VRd	D/C	
ITave	Segmento	[cm]	Starre	ne	[kN]	[kN]	<i>b</i> /C	
	1	11,5		QKE2	1,893	110,3	0,02	
37	2	11,5	2-Ø8/90	SLU_TOT	5,854	113,1	0,05	
	3	11,5		SLU_TOT	6,523	113,1	0,06	

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trave	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σc,min [N/mm²]	σc,lim [N/mm²]	D/C
	1	SLE_r_TOT	-186,9	-5,322	3,634	-7,589	-18,43	0,41
37	2	SLE_r_TOT	-187,0	-4,023	3,083	-6,742	-18,43	0,37
	3	SLE r TOT	-187,8	3,770	-5,742	-8,829	-18,43	0,48

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Trave Segme	Coamonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-147,8	-1,322	2,588	-4,830	-13,82	0,35
37	2	SLE_qp	-147,9	-1,061	2,286	-4,535	-13,82	0,33
	3	SLE_qp	-148,7	506,0e-3	-4,298	-5,829	-13,82	0,42

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Trave Segme	Cogmonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-186,9	-5,322	3,634	-84,17	360,0	0,23
37	2	SLE_r_TOT	-187,0	-4,023	3,083	-76,96	360,0	0,21
	3	SLE_r_TOT	-187,8	3,770	-5,742	-90,24	360,0	0,25

Verifiche di fessurazione

Trava	Cogmonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	ОК	ОК
37	2	ОК	ОК
	3	ОК	ОК

Travata 38

Geometria e materiali

Numero campate	1	
Lunghezza campate [m]	3,09	

Angolo di rotazione [°]	0
Tipo sezione	Rettangolare
Larghezza b [cm]	30,0
Altezza h [cm]	16,0
Copriferro superiore [cm]	4,5
Copriferro inferiore [cm]	4,5
Copriferro laterale [cm]	4,5
Rck [N/mm²]	37
Fyk [N/mm²]	450

Armature longitudinali della travata

Tuesse	Trave Segmento L [m]			Arm	atura Longitud	inale	
Trave			Superiore		Inferiore		Centrale
	1	0,24					
38	2	2,41	2-Ø14		2-Ø14		
	3	0,44					

Verifiche PMM della travata nei confronti della resistenza

Trave Segmento	Sagmonto	Combinazio	N	M2	M3	δМЗ	D/C
	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C	
	1	QKE1	-133,4	30,35	-5,869	0,000	0,75
38	2	QKE1	-133,3	21,57	-4,007	0,000	0,50
	3	QKE1	-132,5	31,31	2,400	0,000	0,68

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tuesse	Commonto	d	d Staffe		VSd	VRd	D/C
Trave	Segmento	[cm]	Starre	ne	[kN]	[kN]	D/C
	1	11,5		SLU_TOT	-6,107	113,1	0,05
38	2	11,5	2-Ø8/90	QKE2	-5,344	109,5	0,05
	3	11,5		QKE2	-2,258	109,4	0,02

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Tuesse	Trava		N	M2	M3	σc,min	σc,lim	D/C
Trave Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_r_TOT	-173,8	1,319	-5,148	-7,181	-18,43	0,39
38	2	SLE_r_TOT	-173,0	2,023	2,821	-5,663	-18,43	0,31
	3	SLE_r_TOT	-172,9	2,568	3,324	-6,191	-18,43	0,34

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

	Terry tea derive terrores an escretario transcensia alla per terrores anticonstruction quadric permanents								
Travo	Coamonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C	
Trave Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C		
	1	SLE_qp	-138,3	59,02e-3	-4,049	-5,320	-13,82	0,38	
38	2	SLE_qp	-138,1	65,70e-3	-2,455	-4,160	-13,82	0,30	
	3	SLE qp	-137,4	105,8e-3	2,340	-4,079	-13,82	0,30	

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Trave Segmento	Combinazi	N	M2	M3	σs	σs,lim	D/C	
	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	Б/С	
	1	SLE_r_TOT	-173,8	1,319	-5,148	-74,29	360,0	0,21
38	2	SLE_r_TOT	-173,0	2,023	2,821	-65,25	360,0	0,18
	3	SLE_r_TOT	-172,9	2,568	3,324	-69,40	360,0	0,19

Verifiche di fessurazione

Tuosso	Comments	FREQ	QP
Trave	Trave Segmento	Apertura fessure	Apertura fessure
	1	OK	ОК
38	2	OK	ОК
	3	OK	OK

Travata 39

Geometria e materiali

Numero campate	1	
Lunghezza campate [m]	3,09	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	16,0	
Copriferro superiore [cm]	4,5	
Copriferro inferiore [cm]	4,5	
Copriferro laterale [cm]	4,5	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Tuesse	Travo Sogmento			Arm	atura Longitud	inale	
Trave	Segmento	[m]	Supe	riore	Inferiore		Centrale
	1	0,24					
39	2	2,41	2-Ø14		2-Ø14		
	3	0,44					

Verifiche PMM della travata nei confronti della resistenza

T	Commonto	Combinazio	N	M2	M3	δМЗ	D/6	
Trave	Segmento	ne	[kN]	[kNm] [kNm]		[kNm]	D/C	
	1	QKE1	-132,5	31,31	2,400	0,000	0,68	
39	2	QKE1	-133,3	21,57	-4,007	0,000	0,50	
	3	QKE1	-133,4	30,35	-5,869	0,000	0,75	

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

T.,	Commonto	d	C+-#-	Staffe Combinazio		VRd	D/C
Trave Segr	Segmento	[cm]	Starre	ne	[kN]	[kN]	D/C
	1	11,5		QKE2	2,258	109,4	0,02
39	2	11,5	2-Ø8/90	QKE2	5,344	109,5	0,05
	3	11,5		SLU_TOT	6,107	113,1	0,05

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trave Segmento	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-172,9	2,564	3,324	-6,190	-18,43	0,34
39	2	SLE_r_TOT	-173,0	2,020	2,821	-5,662	-18,43	0,31
	3	SLE_r_TOT	-173,8	1,319	-5,148	-7,181	-18,43	0,39

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Trave Segme	Sagmenta	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	טיכ
	1	SLE_qp	-137,4	105,8e-3	2,340	-4,079	-13,82	0,30
39	2	SLE_qp	-138,1	65,70e-3	-2,455	-4,160	-13,82	0,30
	3	SLE_qp	-138,3	59,02e-3	-4,049	-5,320	-13,82	0,38

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Trave Segmento	Cogmonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_r_TOT	-172,9	2,564	3,324	-69,38	360,0	0,19
39	2	SLE_r_TOT	-173,0	2,020	2,821	-65,24	360,0	0,18
	3	SLE_r_TOT	-173,8	1,319	-5,148	-74,29	360,0	0,21

Verifiche di fessurazione

Trave Segmento FREQ QP

		Apertura fessure	Apertura fessure
	1	ОК	OK
39	2	OK	ОК
	3	OK	ОК

Travata 40

Geometria e materiali

Numero campate	1	
Lunghezza campate [m]	3,09	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	16,0	
Copriferro superiore [cm]	4,5	
Copriferro inferiore [cm]	4,5	
Copriferro laterale [cm]	4,5	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Two.co	Coamonto	L		Arm	atura Longitud	inale	
Trave	Segmento	[m]	Superiore		Inferiore		Centrale
	1	0,24					
40	2	2,41	2-Ø14		2-Ø14		
	3	0,44					

Verifiche PMM della travata nei confronti della resistenza

Trave	Coamonto	Combinazio	N	M2	M3	δМЗ	D/C
Trave Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C	
	1	QKE1	-134,9	29,32	-6,183	0,000	0,74
40	2	QKE1	-134,7	20,82	-4,269	0,000	0,49
	3	QKE1	-134,0	-30,18	2,460	0,000	0,64

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tuesse	Trave Segmento	gmento d Staffe		Combinazio	ombinazio VSd		D/C
ITave		[cm]	Statie	ne	[kN]	[kN]	D/C
	1	11,5	2-Ø8/90	QKE2	-6,215	109,4	0,06
40	2	11,5		QKE2	-5,701	109,4	0,05
	3	11,5		QKE2	-2,615	109,4	0,02

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trave	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σc,min [N/mm²]	σc,lim [N/mm²]	D/C
	1	SLE_r_TOT	-174,4	942,4e-3	-5,098	-7,008	-18,43	0,38
40	2	SLE_r_TOT	-173,6	-1,673	2,810	-5,551	-18,43	0,30
	3	SLE_r_TOT	-173,5	-2,108	3,327	-6,054	-18,43	0,33

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Tuesse	Commonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_qp	-140,1	22,53e-3	-4,088	-5,364	-13,82	0,39
40	2	SLE_qp	-139,9	10,21e-3	-2,482	-4,192	-13,82	0,30
	3	SLE_qp	-139,2	-63,69e-3	2,380	-4,124	-13,82	0,30

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Travo	Sagmento	Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C

Trave	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σs [N/mm²]	σs,lim [N/mm²]	D/C
	1	SLE_r_TOT	-174,4	942,4e-3	-5,098	-72,78	360,0	0,20
40	2	SLE_r_TOT	-173,6	-1,673	2,810	-64,16	360,0	0,18
	3	SLE_r_TOT	-173,5	-2,108	3,327	-67,99	360,0	0,19

Verifiche di fessurazione

Tuovo	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	OK	OK
40	2	OK	OK
	3	ОК	OK

Travata 41

Geometria e materiali

Geometria e materiali		
Numero campate	1	
Lunghezza campate [m]	3,09	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	16,0	
Copriferro superiore [cm]	4,5	
Copriferro inferiore [cm]	4,5	
Copriferro laterale [cm]	4,5	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Tuesse	Cogmonto	L	Armatura Longitudinale						
Trave Segmento —		[m]	Supe	riore	Inferiore		Centrale		
	1	0,24							
41	2	2,41	2-Ø14		2-Ø14				
	3	0,44							

Verifiche PMM della travata nei confronti della resistenza

Trave	Trave Segmento		N	M2	M3	δМЗ	D/C	
Trave Segii	Segmento	ne [kN]		[kNm]	[kNm]	[kNm]	D/C	
	1	QKE1	-134,0	-30,18	2,460	0,000	0,64	
41	2	QKE1	-134,7	20,82	-4,269	0,000	0,49	
	3	QKE1	-134,9	29,32	-6,183	0,000	0,74	

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tuova	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C	
Trave	Segmento	[cm]	Stalle	ne	[kN]	[kN]	D/C	
	1	11,5		QKE2	2,615	109,4	0,02	
41	2	11,5	2-Ø8/90	QKE2	5,701	109,4	0,05	
	3	11,5		QKE2	6,215	109,4	0,06	

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trave Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C	
	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_r_TOT	-173,5	-2,109	3,327	-6,054	-18,43	0,33
41	2	SLE_r_TOT	-173,6	-1,673	2,810	-5,551	-18,43	0,30
	3	SLE_r_TOT	-174,4	942,5e-3	-5,098	-7,009	-18,43	0,38

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Trave Segmento Combinazi N M2 M3 σc,min σc,lim D,

		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	
	1	SLE_qp	-139,2	-63,69e-3	2,380	-4,124	-13,82	0,30
41	2	SLE_qp	-139,9	10,21e-3	-2,482	-4,192	-13,82	0,30
	3	SLE_qp	-140,1	22,53e-3	-4,088	-5,364	-13,82	0,39

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Trave Segmento		Combinazi	N	M2	M3	σs	σs,lim	D/C
ITave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-173,5	-2,109	3,327	-68,00	360,0	0,19
41	2	SLE_r_TOT	-173,6	-1,673	2,810	-64,16	360,0	0,18
	3	SLE r TOT	-174,4	942,5e-3	-5,098	-72,78	360,0	0,20

Verifiche di fessurazione

Tuovio	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	OK	ОК
41	2	ОК	ОК
	3	OK	OK

Travata 42

Geometria e materiali

Geometria e materiali	
Numero campate	1
Lunghezza campate [m]	3,09
Angolo di rotazione [°]	0
Tipo sezione	Rettangolare
Larghezza b [cm]	30,0
Altezza h [cm]	16,0
Copriferro superiore [cm]	4,5
Copriferro inferiore [cm]	4,5
Copriferro laterale [cm]	4,5
Rck [N/mm²]	37
Fyk [N/mm²]	450

Armature longitudinali della travata

Trave	ave Segmento L Armatura Long						
ITave	Segmento	[m]	Super	riore	Inferiore		Centrale
	1	0,24					
42	2	2,41	2-Ø14		2-Ø14		
	3	0,44					

Verifiche PMM della travata nei confronti della resistenza

Trave	Segmento	Combinazio	N	M2	M3	δМЗ	D/C
Trave Segmento	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	<i>b</i> /C
	1	QKE1	-134,9	-29,32	-6,183	0,000	0,74
42	2	QKE1	-134,7	-20,82	-4,269	0,000	0,49
	3	QKE1	-134,0	30,18	2,460	0,000	0,64

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tuesse	Trovo		C+-ff-	Combinazio	VSd	VRd	D/C
Trave	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
	1	11,5		QKE2	-6,215	109,4	0,06
42	2	11,5	2-Ø8/90	QKE2	-5,701	109,4	0,05
	3	11,5		QKE2	-2,615	109,4	0,02

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Travo	Sagmente	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C

Trave	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σc,min [N/mm²]	σc,lim [N/mm²]	D/C
	1	SLE_r_TOT	-178,1	-942,0e-3	-5,166	-7,116	-18,43	0,39
42	2	SLE_r_TOT	-177,3	1,672	2,867	-5,657	-18,43	0,31
	3	SLE r TOT	-177,2	2,108	3,406	-6,174	-18,43	0,34

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Trovo C	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	rave Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-140,1	-22,53e-3	-4,088	-5,364	-13,82	0,39
42	2	SLE_qp	-139,9	-10,21e-3	-2,482	-4,192	-13,82	0,30
	3	SLE_qp	-139,2	63,69e-3	2,380	-4,124	-13,82	0,30

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Tuovo	Trava		N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-178,1	-942,0e-3	-5,166	-74,05	360,0	0,21
42	2	SLE_r_TOT	-177,3	1,672	2,867	-65,40	360,0	0,18
	3	SLE_r_TOT	-177,2	2,108	3,406	-69,34	360,0	0,19

Verifiche di fessurazione

Tuovo	Coomonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	ОК	ОК
42	2	ОК	OK
	3	ОК	OK

Travata 43

Geometria e materiali

Geometria e materiali		
Numero campate	1	
Lunghezza campate [m]	3,09	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	16,0	
Copriferro superiore [cm]	4,5	
Copriferro inferiore [cm]	4,5	
Copriferro laterale [cm]	4,5	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Tuesse	Trava Sagmento			Armatura Longitudinale				
Trave	Segmento	[m]	Supe	riore	Infe	riore	Centrale	
	1	0,24						
43	2	2,41	2-Ø14		2-Ø14			
	3	0,44						

Verifiche PMM della travata nei confronti della resistenza

Trave Segmento		Combinazio	N	M2	M3	δМЗ	D/C
Trave Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C	
	1	QKE1	-134,0	30,18	2,460	0,000	0,64
43	2	QKE1	-134,7	-20,82	-4,269	0,000	0,49
	3	QKE1	-134,9	-29,32	-6,183	0,000	0,74

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Trave Segmento d	Staffe Combinazi	VSd	VRd	D/C
------------------	------------------	-----	-----	-----

		[cm]		ne	[kN]	[kN]	
	1	11,5		QKE2	2,615	109,4	0,02
43	2	11,5	2-Ø8/90	QKE2	5,701	109,4	0,05
	3	11,5		QKE2	6,215	109,4	0,06

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Tuovo	Coamonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave Segm	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-177,2	2,109	3,406	-6,174	-18,43	0,34
43	2	SLE_r_TOT	-177,3	1,673	2,867	-5,657	-18,43	0,31
	3	SLE_r_TOT	-178,1	-942,8e-3	-5,166	-7,117	-18,43	0,39

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Trave	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-139,2	63,69e-3	2,380	-4,124	-13,82	0,30
43	2	SLE_qp	-139,9	-10,21e-3	-2,482	-4,192	-13,82	0,30
	3	SLE_qp	-140,1	-22,53e-3	-4,088	-5,364	-13,82	0,39

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Trave	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σs [N/mm²]	σs,lim [N/mm²]	D/C
	1	SLE_r_TOT	-177,2	2,109	3,406	-69,34	360,0	0,19
43	2	SLE_r_TOT	-177,3	1,673	2,867	-65,40	360,0	0,18
	3	SLE_r_TOT	-178,1	-942,8e-3	-5,166	-74,05	360,0	0,21

Verifiche di fessurazione

Tuova	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	ОК	ОК
43	2	OK	ОК
	3	OK	OK

Travata 44

Geometria e materiali

Geometria e materiali		
Numero campate	1	
Lunghezza campate [m]	3,09	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	16,0	
Copriferro superiore [cm]	4,5	
Copriferro inferiore [cm]	4,5	
Copriferro laterale [cm]	4,5	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Tuesse	Commente	L		Arm	Armatura Longitudinale			
Trave	Segmento	[m]	Supe	riore	Inferiore		Centrale	
	1	0,24						
44	2	2,41	2-Ø14		2-Ø14			
	3	0,44						

Verifiche PMM della travata nei confronti della resistenza

Trave	Sagmente	Combinazio	N	M2	M3	δМ3	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C

Trovo		Combinazio	N	M2	M3	δМ3	D/C
Trave Segmer	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
	1	QKE1	-133,4	-30,35	-5,869	0,000	0,75
44	2	QKE1	-133,3	-21,57	-4,007	0,000	0,50
	3	QKE1	-132,5	-31,31	2,400	0,000	0,68

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tuesse	Cogmonto	d	Staffe	Combinazio	VSd	VRd	D/C
Trave Segmento	Segmento	[cm]	Stalle	ne	[kN]	[kN]	D/C
	1	11,5	2-Ø8/90	SLU_TOT	-6,079	113,1	0,05
44	2	11,5		QKE2	-5,344	109,5	0,05
	3	11,5		QKE2	-2,258	109,4	0,02

 $Verifica\ delle\ tensioni\ di\ esercizio\ nel\ calcestruzzo\ per\ combinazioni\ caratteristiche$

Trava Cogmonto		Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_r_TOT	-172,2	-1,267	-5,122	-7,120	-18,43	0,39
44	2	SLE_r_TOT	-171,5	-2,022	2,798	-5,618	-18,43	0,30
	3	SLE_r_TOT	-171,3	-2,566	3,292	-6,141	-18,43	0,33

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Tuovo	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_qp	-138,3	-59,02e-3	-4,049	-5,320	-13,82	0,38
44	2	SLE_qp	-138,1	-65,70e-3	-2,455	-4,160	-13,82	0,30
	3	SLE_qp	-137,4	-105,8e-3	2,340	-4,079	-13,82	0,30

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Trava		Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-172,2	-1,267	-5,122	-73,58	360,0	0,20
44	2	SLE_r_TOT	-171,5	-2,022	2,798	-64,73	360,0	0,18
	3	SLE_r_TOT	-171,3	-2,566	3,292	-68,84	360,0	0,19

Verifiche di fessurazione

Tueste	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	ОК	ОК
44	2	ОК	ОК
	3	ОК	ОК

Travata 45

Geometria e materiali

Geometria e materiali		
Numero campate	1	
Lunghezza campate [m]	3,09	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	16,0	
Copriferro superiore [cm]	4,5	
Copriferro inferiore [cm]	4,5	
Copriferro laterale [cm]	4,5	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Trave Segmento L	Armatura Longitudinale
------------------	------------------------

		[m]	Superiore		Infe	Centrale	
	1	0,24					
45	2	2,41	2-Ø14		2-Ø14		
	3	0,44					

Verifiche PMM della travata nei confronti della resistenza

Trave Segmento		Combinazio	N	M2	M3	δМЗ	D/C
Trave S	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
	1	QKE1	-132,5	-31,31	2,400	0,000	0,68
45	2	QKE1	-133,3	-21,57	-4,007	0,000	0,50
	3	QKE1	-133,4	-30,35	-5,869	0,000	0,75

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tuova	Fravo Sagmento d		Staffe Combinazio		VSd	VRd	D/C	
Trave	Segmento	[cm]	Stalle	ne	[kN]	[kN]	D/C	
	1	11,5		QKE2	2,258	109,4	0,02	
45	2	11,5	2-Ø8/90	QKE2	5,344	109,5	0,05	
	3	11,5		SLU TOT	6,079	113,1	0,05	

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trava Sagmente		Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Trave Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-171,3	-2,565	3,292	-6,140	-18,43	0,33
45	2	SLE_r_TOT	-171,5	-2,021	2,798	-5,618	-18,43	0,30
	3	SLE_r_TOT	-172,2	-1,267	-5,122	-7,120	-18,43	0,39

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Two.vo	Trava		N	M2	M3	σc,min	σc,lim	D/C
Trave Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_qp	-137,4	-105,8e-3	2,340	-4,079	-13,82	0,30
45	2	SLE_qp	-138,1	-65,70e-3	-2,455	-4,160	-13,82	0,30
	3	SLE_qp	-138,3	-59,02e-3	-4,049	-5,320	-13,82	0,38

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Trave	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σs [N/mm²]	σs,lim [N/mm²]	D/C
	1	SLE_r_TOT	-171,3	-2,565	3,292	-68,83	360,0	0,19
45	2	SLE_r_TOT	-171,5	-2,021	2,798	-64,73	360,0	0,18
	3	SLE r TOT	-172,2	-1,267	-5,122	-73,58	360,0	0,20

Verifiche di fessurazione

Twove	Cogmonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	ОК	ОК
45	2	ОК	ОК
	3	ОК	ОК

Travata 46

Geometria e materiali

Numero campate	1	
Lunghezza campate [m]	3,09	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	16,0	
Copriferro superiore [cm]	4,5	
Copriferro inferiore [cm]	4,5	

Copriferro laterale [cm]	4,5	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Tuesse	Commente	L		Arm	atura Longitud	inale	
Trave	Segmento	[m]	Supe	riore	Infe	riore	Centrale
	1	0,24					
46	2	2,41	2-Ø14		2-Ø14		
	3	0,44					

Verifiche PMM della travata nei confronti della resistenza

Tuesse	Commonto	Combinazio	N	M2	M3	δМЗ	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
	1	QKE1	-75,94	29,35	-4,110	0,000	0,80
46	2	QKE1	-75,17	-25,55	1,644	0,000	0,64
	3	QKE1	-75,04	-34,69	1,523	0,000	0,96

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tuesse	Commonto	d	C+-#-	Combinazio	VSd	VRd	D/C
Trave	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
	1	11,5		SLU_TOT	-5,292	109,8	0,05
46	2	11,5	2-Ø8/90	SLU_TOT	-4,623	109,8	0,04
	3	11,5		QKE2	1,516	106,3	0,01

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trave	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
ITave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	<i>D</i> /C
	1	SLE_r_TOT	-95,02	6,367	-4,935	-9,433	-18,43	0,51
46	2	SLE_r_TOT	-94,25	-8,898	1,708	-6,624	-18,43	0,36
	3	SLE r TOT	-94,12	-11,44	1,794	-8,217	-18,43	0,45

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Trave	Coamonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
ITave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-88,27	3,120	-2,870	-4,913	-13,82	0,36
46	2	SLE_qp	-87,50	-5,705	1,238	-4,451	-13,82	0,32
	3	SLE_qp	-87,37	-7,175	1,127	-5,067	-13,82	0,37

$\textit{Verifica delle tensioni di esercizio nell'acciaio per} \underline{\textit{combinazioni caratteristiche}}$

Tuovo	Cogmonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-111,4	6,367	-4,935	-82,00	360,0	0,23
46	2	SLE_r_TOT	-110,6	-8,898	1,708	-71,01	360,0	0,20
	3	SLE_r_TOT	-110,5	-11,44	1,794	-83,81	360,0	0,23

Verifiche di fessurazione

Twove	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	OK	ОК
46	2	ОК	ОК
	3	OK	OK

Travata 47

Geometria e materiali

Numero campate	1
Lunghezza campate [m]	3,09
Angolo di rotazione [°]	0

Tipo sezione	Rettangolare
Larghezza b [cm]	30,0
Altezza h [cm]	16,0
Copriferro superiore [cm]	4,5
Copriferro inferiore [cm]	4,5
Copriferro laterale [cm]	4,5
Rck [N/mm²]	37
Fyk [N/mm²]	450

Armature longitudinali della travata

Tuesse	Commente	L Arr			natura Longitudinale		
Trave	Segmento	[m]	Superiore		Inferiore		Centrale
	1	0,24					
47	2	2,41	2-Ø14		2-Ø14		
	3	0,44					

Verifiche PMM della travata nei confronti della resistenza

Tuesse	Segmento	Combinazio	N	M2	M3	δМЗ	D/C
Trave		ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
	1	QKE1	-75,04	-34,69	1,523	0,000	0,96
47	2	QKE1	-75,17	-25,55	1,644	0,000	0,64
	3	QKE1	-75,94	29,35	-4,110	0,000	0,80

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Trave	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C
Trave	Segmento	[cm]	Starre	ne	[kN]	[kN]	D/C
	1	11,5		QKE2	-1,516	106,3	0,01
47	2	11,5	2-Ø8/90	SLU_TOT	4,623	109,8	0,04
	3	11,5		SLU_TOT	5,292	109,8	0,05

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trave	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σc,min [N/mm²]	σc,lim [N/mm²]	D/C
	1	SLE_r_TOT	-94,13	-11,44	1,794	-8,217	-18,43	0,45
47	2	SLE_r_TOT	-94,26	-8,897	1,708	-6,624	-18,43	0,36
	3	SLE_r_TOT	-95,03	6,366	-4,935	-9,432	-18,43	0,51

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Two.vo	Coamonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-87,37	-7,175	1,127	-5,067	-13,82	0,37
47	2	SLE_qp	-87,50	-5,705	1,238	-4,451	-13,82	0,32
	3	SLE_qp	-88,27	3,120	-2,870	-4,913	-13,82	0,36

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Tuovo	Coamonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave	Segmento one	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-110,5	-11,44	1,794	-83,81	360,0	0,23
47	2	SLE_r_TOT	-110,6	-8,897	1,708	-71,01	360,0	0,20
	3	SLE_r_TOT	-111,4	6,366	-4,935	-82,00	360,0	0,23

Verifiche di fessurazione

Tuous	Coomonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	OK	OK
47	2	OK	OK
	3	OK	OK

Travata 54

Geometria e materiali

Numero campate	1	
Lunghezza campate [m]	6,00	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	30,0	
Copriferro superiore [cm]	4,8	
Copriferro inferiore [cm]	4,8	
Copriferro laterale [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Trava	Coamonto	L	Armatura Longitudinale				
Trave	Segmento	[m]	Supe	eriore	Inferiore		Centrale
54	1	6,00	3-Ø20		3-Ø20		

Verifiche PMM della travata nei confronti della resistenza

Trave	Cogmonto	Combinazio	N	M2	M3	δМЗ	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
54	1	SLU_TOT	143,5	4,702	-25,03	0,000	0,50

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tuovo	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C	
Trave	Segmento	[cm]	Statie	ne	[kN]	[kN]	D/C	
54	1	25,2	2-Ø8/200	SLU_TOT	14,65	111,5	0,13	

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Tueste	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave		Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]
54	1	SLE r TOT	85,27	3,184	-17,37	-4,314	-18,43	0,23

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Ī	Two.co	Segmento Co	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
	Trave		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
Ī	54	1	SLE qp	82,54	473,8e-3	-5,271	-121,3e-3	-13,82	0,01

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Tuova	Coamonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
54	1	SLE_r_TOT	104,2	3,184	-17,37	157,3	360,0	0,44

Verifiche di fessurazione

Tuovo	Cogmonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
54	1	OK	ОК

Travata 55

Geometria e materiali

Geometria e materian					
Numero campate	1				
Lunghezza campate [m]	6,00				
Angolo di rotazione [°]	0				
Tipo sezione	Rettangolare				
Larghezza b [cm]	30,0				
Altezza h [cm]	30,0				

Copriferro superiore [cm]	4,8	
Copriferro inferiore [cm]	4,8	
Copriferro laterale [cm]	4,8	
•	,	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Tuesse	Sagmonto	L					
Trave	Segmento	[m]	Superiore		Inferiore		Centrale
55	1	6,00	3-Ø20		3-Ø20		

Verifiche PMM della travata nei confronti della resistenza

Tuesse	Coamonto	Combinazio	N	M2	M3	δМЗ	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
55	1	QKE2	141,1	-8,910	-36,49	0,000	0,64

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Trovo	Coamonto	d	Ctaffa	ffe		VRd	D/C
Trave	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
55	1	25,2	2-Ø8/200	QKE2	17,31	111,5	0,16

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

	Trave	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
			one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	55	1	SLE r TOT	148,1	-3,085	-10,16	-1,850	-18,43	0,10

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Trave	Sogmonto	Sagmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
55	1	SLE qp	139,6	-208,4e-3	-5,425	0,000	-13,82	0,00	

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Tuove	Segmento	Cogmonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
55	1	SLE_r_TOT	176,3	-3,085	-10,16	169,6	360,0	0,47	

Verifiche di fessurazione

Tuova	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
55	1	ОК	ОК

Travata 56

Geometria e materiali

Numero campate	1
Lunghezza campate [m]	6,00
Angolo di rotazione [°]	0
Tipo sezione	Rettangolare
Larghezza b [cm]	30,0
Altezza h [cm]	30,0
Copriferro superiore [cm]	4,8
Copriferro inferiore [cm]	4,8
Copriferro laterale [cm]	4,8
Rck [N/mm²]	37
Fyk [N/mm²]	450

Armature longitudinali della travata

T	Commonto	L	Armatura Longitudinale					
Trave	Trave Segmento [n	[m]	Superiore	Inferiore	Centrale			

Trave	Commente	L		Arm	atura Longitud	inale	
Trave	Segmento	[m]	Supe	eriore	Inferiore		Centrale
56	1	6,00	3-Ø20		3-Ø20		

Verifiche PMM della travata nei confronti della resistenza

Trave	Trave		N	M2	M3	δМ3	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
56	1	QKE2	131,3	7,702	-46,68	0,000	0,75

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Trave	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C
Trave	Segmento	[cm]	Stalle	ne	[kN]	[kN]	D/C
56	1	25,2	2-Ø8/200	QKE2	20,89	111,5	0,19

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trava	Sagmente	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
56	1	SLE_r_TOT	165,3	917,8e-3	-4,209	0,000	-18,43	0,00

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Two.vo	Trava		N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
56	1	SLE_qp	131,0	54,35e-3	-5,419	0,000	-13,82	0,00

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Travo	Trava		N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
56	1	SLE_r_TOT	165,3	917,8e-3	-6,916	130,7	360,0	0,36

Verifiche di fessurazione

Travo	Sagmenta	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
56	1	OK	ОК

Travata 57

Geometria e materiali

Geometria e materiali		
Numero campate	1	
Lunghezza campate [m]	6,00	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	30,0	
Copriferro superiore [cm]	4,8	
Copriferro inferiore [cm]	4,8	
Copriferro laterale [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Tuesse	Commente	L	Armatura Longitudinale					
Trave	Segmento	[m]	Supe	riore	Infe	riore	Centrale	
	1	0,60						
57	2	4,80	3-Ø20		3-Ø20			
	3	0,60						

Verifiche PMM della travata nei confronti della resistenza

Tueste	Coamonto	Combinazio	N	M2	M3	δМЗ	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C

T	Commonto	Combinazio	N	M2	М3	δМЗ	D/6
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
	1	QKE2	132,3	-3,926	-53,09	0,000	0,83
57	2	QKE2	132,3	-3,349	-42,35	0,000	0,69
	3	QKE2	132,3	-3,926	-53,09	0,000	0,83

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tueste	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C	
Trave	Segmento	[cm]	Stalle	ne	[kN]	[kN]	D/C	
	1	25,2		QKE2	-23,14	111,5	0,21	
57	2	25,2	2-Ø8/200	QKE2	-22,07	111,5	0,20	
	3	25,2		QKE2	23,14	111,5	0,21	

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Tuovo	Coamonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	165,6	140,7e-3	-5,036	0,000	-18,43	0,00
57	2	SLE_r_TOT	165,6	118,9e-3	-2,407	0,000	-18,43	0,00
	3	SLE_r_TOT	165,6	140,7e-3	-5,144	0,000	-18,43	0,00

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Tuovo	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	132,3	-19,50e-3	-5,416	0,000	-13,82	0,00
57	2	SLE_qp	132,3	-19,50e-3	-2,624	0,000	-13,82	0,00
	3	SLE_qp	132,3	-19,50e-3	-5,416	0,000	-13,82	0,00

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Tuovo	Coamonto	Combinazi	N	M2	M3	σs	σs,lim	D/C	
Trave	Segmento	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	165,6	-235,1e-3	-5,869	120,1	360,0	0,33	
57	2	SLE_r_TOT	165,6	-157,0e-3	3,662	108,1	360,0	0,30	
	3	SLE_r_TOT	165,6	-235,0e-3	-6,073	121,2	360,0	0,34	

Verifiche di fessurazione

Tueste	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	OK	ОК
57	2	OK	ОК
	3	OK	ОК

Travata 58

Geometria e materiali

Geometria e materiali		
Numero campate	1	
Lunghezza campate [m]	6,00	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	30,0	
Copriferro superiore [cm]	4,8	
Copriferro inferiore [cm]	4,8	
Copriferro laterale [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Trave Segmento L	Armatura Longitudinale
------------------	------------------------

		[m]	Superiore		Infe	Centrale	
58	1	6,00	3-Ø20		3-Ø20		

Verifiche PMM della travata nei confronti della resistenza

Trave	Coamonto	Combinazio	N	M2	M3	δМ3	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
58	1	QKE2	132,3	3,926	-53,09	0,000	0,83

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Trave	Cogmonto	d	Staffe	Combinazio	VSd	VRd	D/C
Trave	Segmento	[cm]	Starre	ne	[kN]	[kN]	D/C
58	1	25,2	2-Ø8/200	QKE2	-23,14	111,5	0,21

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Tuo		Coamonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave Segmento	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
58	}	1	SLE_r_TOT	168,7	234,7e-3	-5,103	0,000	-18,43	0,00

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Tueste	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
58	1	SLE_qp	132,3	19,50e-3	-5,416	0,000	-13,82	0,00

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Trava	Sagmente	Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
58	1	SLE_r_TOT	168,7	234,7e-3	-6,073	122,8	360,0	0,34

Verifiche di fessurazione

Travo	Sagmenta	FREQ	QP	
Trave	Segmento	Apertura fessure	Apertura fessure	
58	1	ОК	ОК	

Travata 59

Geometria e materiali

Geometria e materiali		
Numero campate	1	
Lunghezza campate [m]	6,00	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	30,0	
Copriferro superiore [cm]	4,8	
Copriferro inferiore [cm]	4,8	
Copriferro laterale [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Trave	Cogmonto	L		inale			
Trave	Segmento	[m]	Superiore		Inferiore		Centrale
59	1	6,00	3-Ø20		3-Ø20		

Verifiche PMM della travata nei confronti della resistenza

Trave	Sagmente	Combinazio	N	M2	M3	δМЗ	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
59	1	QKE2	131,3	-7,702	-46,68	0,000	0,75

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

-								
	Trave	Segmento	d	Staffe	Combinazio	VSd	VRd	D/C

		[cm]		ne	[kN]	[kN]	
59	1	25,2	2-Ø8/200	QKE2	20,89	111,5	0,19

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Tueste	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
59	1	SLE_r_TOT	164,0	746,8e-3	-4,208	0,000	-18,43	0,00

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Trave	Sagmente	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
59	1	SLE_qp	131,0	-54,35e-3	-5,419	0,000	-13,82	0,00

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Tuovo	Coamonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
59	1	SLE_r_TOT	164,0	-917,1e-3	-6,916	130,0	360,0	0,36

Verifiche di fessurazione

Tuova	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
59	1	OK	OK

Travata 60

Geometria e materiali

Geometria e materiali		
Numero campate	1	
Lunghezza campate [m]	6,00	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	30,0	
Copriferro superiore [cm]	4,8	
Copriferro inferiore [cm]	4,8	
Copriferro laterale [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Trave	Commonto	L					
Trave	Segmento	[m]	Superiore		Inferiore		Centrale
60	1	6,00	3-Ø20		3-Ø20		

Verifiche PMM della travata nei confronti della resistenza

Trovo	Cogmonto	Combinazio	N	M2	M3	δМЗ	D/C
Trave	Segmento	Segmento	ne [kN] [kNm]	[kNm]	[kNm]	[kNm]	D/C
60	1	SLU TOT	143,5	-4,699	-25,03	0,000	0,50

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Tuovo	Coamonto	d Staffe		Combinazio	VSd	VRd	D/C	
Trave	Segmento	[cm]	Stalle	ne	[kN]	[kN]	D/C	
60	1	25,2	2-Ø8/200	SLU TOT	14,65	111,5	0,13	

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Ī	Trave S	Segmento	Segmento Combinaz	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
				one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
I	60	1	SLE_r_TOT	85,27	-3,181	-17,37	-4,313	-18,43	0,23	

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

	Trave	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C

		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	
60	1	SLE qp	82,54	-473,8e-3	-5,271	-121,3e-3	-13,82	0,01

T	Commonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
60	1	SLE_r_TOT	104,3	-3,181	-17,37	157,3	360,0	0,44

Verifiche di fessurazione

Tuova	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
60	1	ОК	ОК

Travata 62

Geometria e materiali

Numero campate	1	
Lunghezza campate [m]	3,09	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	16,0	
Copriferro superiore [cm]	4,5	
Copriferro inferiore [cm]	4,5	
Copriferro laterale [cm]	4,5	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Travo	Segmento	L	Armatura Longitudinale						
Trave		[m]	Superiore		Inferiore		Centrale		
	1	0,24							
62	2	2,41	2-Ø14		2-Ø14				
	3	0,44]						

Verifiche PMM della travata nei confronti della resistenza

Tuova	Coamonto	Combinazio	N	M2	M3	δМЗ	D/C	
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C	
	1	QKE1	-142,4	-31,76	-5,734	0,000	0,77	
62	2	QKE1	-142,2	-22,45	-3,850	0,000	0,50	
	3	QKE1	-141,5	33,43	2,719	0,000	0,73	

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Trave	Coamonto	d	Staffe Combinazio		VSd	VRd	D/C
Trave	Segmento [cm]		Starre	ne		[kN]	D/C
	1	11,5		SLU_TOT	-6,516	113,1	0,06
62	2	11,5	2-Ø8/90	SLU_TOT	-5,847	113,1	0,05
	3	11,5		QKE2	-1,893	110,3	0,02

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trave	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σc,min [N/mm²]	σc,lim [N/mm²]	D/C
	1	SLE_r_TOT	-187,5	-3,775	-5,734	-8,821	-18,43	0,48
62	2	SLE_r_TOT	-186,8	4,021	3,078	-6,733	-18,43	0,37
	3	SLE r TOT	-186,6	5,319	3,627	-7,578	-18,43	0,41

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

T	Comments	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C

Trave	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σc,min [N/mm²]	σc,lim [N/mm²]	D/C
	1	SLE_qp	-148,7	-506,0e-3	-4,298	-5,829	-13,82	0,42
62	2	SLE_qp	-147,9	1,061	2,286	-4,535	-13,82	0,33
	3	SLE_qp	-147,8	1,322	2,588	-4,830	-13,82	0,35

Trave	Segmento	Combinazi	N	M2	M3	σs	σs,lim	D/C
ITave		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-187,5	-3,775	-5,734	-90,15	360,0	0,25
62	2	SLE_r_TOT	-186,8	4,021	3,078	-76,85	360,0	0,21
	3	SLE_r_TOT	-186,6	5,319	3,627	-84,05	360,0	0,23

Verifiche di fessurazione

Tueste	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
	1	ОК	ОК
62	2	ОК	ОК
	3	ОК	OK

Travata 63

Geometria e materiali

Geometria e materian		
Numero campate	1	
Lunghezza campate [m]	3,09	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	16,0	
Copriferro superiore [cm]	4,5	
Copriferro inferiore [cm]	4,5	
Copriferro laterale [cm]	4,5	
Rck [N/mm²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Trave Segment	Coamonto	L		Arm	inale		
Trave	Segmento	[m]	Superiore		Inferiore		Centrale
	1	0,24					
63	2	2,41	2-Ø14		2-Ø14		
	3	0,44					

Verifiche PMM della travata nei confronti della resistenza

Trave	Coamonto	Combinazio	N	M2	M3	δМЗ	D/C
Trave	Trave Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
	1	QKE1	-141,5	33,43	2,719	0,000	0,73
63	2	QKE1	-142,2	-22,45	-3,850	0,000	0,50
	3	QKE1	-142,4	-31,76	-5,734	0,000	0,77

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

	Trave S	Cogmonto	d	Staffe	Combinazio	VSd	VRd	D/C
		sve Segmento [cm]	[cm]	Statie	ne	[kN]	[kN]	D/C
		1	11,5	2-Ø8/90	QKE2	1,893	110,3	0,02
	63	2	11,5		SLU_TOT	5,847	113,1	0,05
		3	11.5]	SLU TOT	6.516	113.1	0.06

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trave Segmento Combinazi N M2 M3 σc,min σc,lim D,

		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	
	1	SLE_r_TOT	-186,6	5,319	3,627	-7,578	-18,43	0,41
63	2	SLE_r_TOT	-186,8	4,021	3,078	-6,733	-18,43	0,37
	3	SLE r TOT	-187,5	-3,775	-5,734	-8,821	-18,43	0,48

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Tuovo	Sagmente	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-147,8	1,322	2,588	-4,830	-13,82	0,35
63	2	SLE_qp	-147,9	1,061	2,286	-4,535	-13,82	0,33
	3	SLE_qp	-148,7	-506,0e-3	-4,298	-5,829	-13,82	0,42

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Tuovo	Cogmonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-186,6	5,319	3,627	-84,05	360,0	0,23
63	2	SLE_r_TOT	-186,8	4,021	3,078	-76,86	360,0	0,21
	3	SLE_r_TOT	-187,5	-3,775	-5,734	-90,15	360,0	0,25

Verifiche di fessurazione

Trave	Sagmente	FREQ	QP
ITAVE	Segmento	Apertura fessure	Apertura fessure
63	1	OK	OK
	2	ОК	ОК
	3	ОК	OK

Travata 64

Geometria e materiali

Numero campate	1	
Lunghezza campate [m]	6,00	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	30,0	
Copriferro superiore [cm]	4,8	
Copriferro inferiore [cm]	4,8	
Copriferro laterale [cm]	4,8	
Rck [N/mm ²]	37	
Fyk [N/mm²]	450	

Armature longitudinali della travata

Trave	Coamonto	L	Armatura Longitudi			inale	
Trave	Segmento	[m]	Supe	eriore	Infe	riore	Centrale
64	1	6,00	3-Ø20		3-Ø20		

Verifiche PMM della travata nei confronti della resistenza

Trava	Trava	Combinazio	N	M2	M3	δМЗ	D/C
Trave	Segmento	ne	[kN]	[kNm]	[kNm]	[kNm]	D/C
64	1	QKE2	141,1	8,910	-36,49	0,000	0,64

Verifiche a taglio in direzione 2 della travata nei confronti della resistenza

Ī	Tuesse	Commonto	d	Staffe Combinazio		VSd	VRd	D/C
	Trave	Segmento	[cm]	Starre	ne	[kN]	[kN]	D/C
I	64	1	25,2	2-Ø8/200	QKE2	17,31	111,5	0,16

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Trava	Coamonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C

	Tuovo	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
ı	Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	64	1	SLE_r_TOT	148,1	3,087	-10,16	-1,852	-18,43	0,10

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Tue		Commonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Ira	Trave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
64	ļ	1	SLE_qp	139,6	208,4e-3	-5,425	0,000	-13,82	0,00

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Trave	Sagmente	Combinazi	N	M2	M3	σs	σs,lim	D/C
ITave	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
64	1	SLE_r_TOT	176,1	3,087	-10,16	169,5	360,0	0,47

Verifiche di fessurazione

Twove	Coamonto	FREQ	QP
Trave	Segmento	Apertura fessure	Apertura fessure
64	1	ОК	ОК

Verifiche di resistenza dei pilastri primari

Pilastrata 1

Geometria e materiali

Geometria e materiali		
Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	90	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Armature della pilastrata

Pilastro	Coamonto	L	Augustina Laugitudinala	Sta	ffe	
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
1	2	1,07	8-Ø14	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro	Comments	Combinazi	0	0	N	M2	M3	D/C
Pilastro	Segmento	one	₿maj	$oldsymbol{eta}_{min}$	[kN]	[kNm]	[kNm]	D/C
	1	QKE2			-62,00	13,07	-60,37	0,72
1	2	QKE2	0,69	0,52	-57,20	-1,944	17,30	0,14
	3	QKE1		,	-49,09	-35,26	13,25	0,60

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Dilestus	Commonto	d	Staffe	Combinazio	VSd	VRd	D/6
Pilastro	Segmento	[cm]	Statie	ne	[kN]	[kN]	D/C
	1	35,2		SLU_TOT	-28,82	190,9	0,15
1	2	35,2	2-Ø8/150	SLU_TOT	-28,82	190,9	0,15
	3	35,2		SLU TOT	-28,82	190,9	0,15

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

	, a e	o arema private a	ta mer eengrent	G.CG CO	-		
Pilastro	Segmento	d	Staffe	Combinazio	VSd	VRd	D/C

		[cm]		ne	[kN]	[kN]	
	1	25,2		QKE1	2,646	136,7	0,16
1	2	25,2	2-Ø8/150	QKE1	2,646	136,7	0,16
	3	25,2		QKE1	2,646	136,7	0,16

Pilastro Segmento	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_r_TOT	-77,93	4,013	-39,33	-8,467	-18,43	0,46
1	2	SLE_r_TOT	-73,13	-1,760	9,489	-2,054	-18,43	0,11
	3	SLE_r_TOT	-68,33	-7,407	23,54	-6,558	-18,43	0,36

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C	
	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_qp	-78,26	2,668	-4,058	-1,386	-13,82	0,10
1	2	SLE_qp	-73,46	-1,362	849,9e-3	-814,7e-3	-13,82	0,06
	3	SLE_qp	-68,66	-5,393	5,758	-2,244	-13,82	0,16

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro Segmento	Segmento	Combinazi	N	M2	M3	σs	σs,lim	D/C
	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	2,0	
	1	SLE_r_TOT	-77,93	4,013	-39,33	189,1	330,9	0,57
1	2	SLE_r_TOT	-90,38	-1,760	9,489	-25,04	330,9	0,08
	3	SLE_r_TOT	-68,33	-7,407	23,54	115,9	330,9	0,35

Verifiche di fessurazione

Dileatue	Coamonto	FREQ	QP	
Pilastro	Segmento	Apertura fessure	Apertura fessure	
	1	OK	ОК	
1	2	OK	ОК	
	3	ОК	ОК	

Pilastrata 10

Geometria e materiali

Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Armature della pilastrata

Pilastro Segmento		L	Armatura Langitudinala	Staffe		
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
10	2	1,07	8- Ø 20	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro Segmen	Cogmonto	Combinazi	$oldsymbol{eta}_{maj}$	β _{min}	N	M2	M3	D/C
	Segmento	one			[kN]	[kNm]	[kNm]	D/C
10	1	QKE2	0.00	0,67	-94,93	103,6	-17,81	0,97
10	2	QKE2	0,58		-90,13	-20,70	-1,803	0,15

Dilectus	Coamanta	Combinazi	0	0	N	M2	M3	D/C
Pilastro	Pilastro Segmento	one	₿ _{maj}	₿min	[kN]	[kNm]	[kNm]	D/C
	3	QKE2			-85,33	-65,66	16,53	0,61

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Dilectus	Commonto	d	C+-#-	Combinazio	VSd	VRd	D/C	
Pilastro	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C	
	1	35,2		QKE1	-35,29	190,9	0,18	
10	2	35,2	2-Ø8/150	QKE1	-35,29	190,9	0,18	
	3	35,2		QKE1	-35,29	190,9	0,18	

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Dilectus	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C	
Pilastro	Segmento	[cm]	Stalle	ne	[kN] [kN]		D/C	
	1	25,2		QKE2	-12,45	136,7	0,38	
10	2	25,2	2-Ø8/150	QKE2	-12,45	136,7	0,38	
	3	25,2	1	QKE2	-12,45	136,7	0,38	

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro Segmento	Coamonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_r_TOT	-143,1	3,764	-2,148	-1,570	-18,43	0,09
10	2	SLE_r_TOT	-138,3	-738,4e-3	529,4e-3	-1,016	-18,43	0,06
	3	SLE_r_TOT	-133,5	-4,660	2,842	-1,684	-18,43	0,09

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Pilastro Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C	
	1	SLE_qp	-117,9	3,474	-32,60e-3	-1,186	-13,82	0,09
10	2	SLE_qp	-113,1	-626,1e-3	23,17e-3	-797,6e-3	-13,82	0,06
	3	SLE_qp	-108,3	-4,726	78,94e-3	-1,287	-13,82	0,09

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro	Segmento	Combinazi	N	M2	M3	σs	σs,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-143,1	3,764	-2,148	-20,60	330,9	0,06
10	2	SLE_r_TOT	-138,3	-738,4e-3	529,4e-3	-14,63	330,9	0,04
	3	SLE_r_TOT	-133,5	-4,660	2,842	-21,54	330,9	0,07

Verifiche di fessurazione

Pilastro	Coamonto	FREQ	QP
	Segmento	Apertura fessure	Apertura fessure
10	1	OK	ОК
	2	OK	ОК
	3	OK	OK

Pilastrata 11

Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Pilastro Segm	Companta	L	Aumotuvo Longitudinolo	Staffe		
	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
11	2	1,07	8- Ø 20	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro	Segmento	Combinazi	β_{maj}	β _{min}	N	M2	M3	D/C
		one	Piliaj	Pillin	[kN]	[kNm] [kNm] -89.81 18.39	2,0	
	1	QKE2	0,58		-96,15	-89,81	18,39	0,84
11	2	QKE2		0,67	-131,2 18,28	18,28	-2,624	0,13
	3	QKE2		ŕ	-86,55	57,12	-17,16	0,53

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Pilastro	Commonto	d	C+-ff-	Combinazio	VSd	VRd	D/C
	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
	1	35,2	2-Ø8/150	QKE1	35,50	190,9	0,19
11	2	35,2		QKE1	35,50	190,9	0,19
	3	35,2		QKE1	35,50	190,9	0,19

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Pilastro	Coamonto	d	Chaffa	Combinazio	VSd	VRd	D/C
	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
	1	25,2		QKE2	10,38	136,7	0,33
11	2	25,2	2-Ø8/150	QKE2	10,38	136,7	0,33
	3	25,2		QKE2	10,38	136,7	0,33

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro	Sagmente	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-138,5	-4,920	2,326	-1,702	-18,43	0,09
11	2	SLE_r_TOT	-133,7	1,095	-611,9e-3	-1,040	-18,43	0,06
	3	SLE_r_TOT	-128,9	4,972	-3,203	-1,726	-18,43	0,09

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	טיכנ
	1	SLE_qp	-116,1	-3,445	213,1e-3	-1,187	-13,82	0,09
11	2	SLE_qp	-111,3	622,5e-3	-96,77e-3	-792,3e-3	-13,82	0,06
	3	SLE_qp	-106,5	4,690	-406,7e-3	-1,300	-13,82	0,09

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro	Segmento	Combinazi	N	M2	M3	σs	σs,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
11	1	SLE_r_TOT	-138,5	-4,920	2,326	-21,83	330,9	0,07
	2	SLE_r_TOT	-133,7	1,095	-611,9e-3	-14,74	330,9	0,04
	3	SLE_r_TOT	-128,9	4,972	-3,203	-21,87	330,9	0,07

Verifiche di fessurazione

Pilastro	Segmento FREQ		QP
	Segmento	Apertura fessure	Apertura fessure
	1	OK	OK
11	2	OK	OK
	3	OK	OK

Pilastrata 12

Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Dilectue	Pilastro Segmento L		Aumotuvo Longitudinolo	Staffe		
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
12	2	1,07	8-Ø20	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro Se	Coamonto	Combinazi	ο.	β_{min}	N	M2	M3	D/C
	Segmento	one	$oldsymbol{eta}_{maj}$	Pmin	[kN]	[kNm]	[kNm]	Б/С
	1	QKE2	0,58	0,67	-96,15	89,81	18,39	0,84
12	2	QKE2			-131,2	-18,28	-2,624	0,13
	3	QKE2			-86,55	-57,12	-17,16	0,53

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Dile et e	Dilactus Cogmonts		Ct-ff-	Combinazio	VSd	VRd	D/6
Pilastro Se	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
	1	35,2	2-Ø8/150	QKE1	35,50	190,9	0,19
12	2	35,2		QKE1	35,50	190,9	0,19
	3	35,2		QKE1	35,50	190,9	0,19

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Dilestus	Commonto	d	C+-ff-	Combinazio	VSd	VRd	D/C
Pilastro Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C	
	1	25,2		QKE2	15,47	136,7	0,33
12	2	25,2	2-Ø8/150	QKE2	15,47	136,7	0,33
	3	25,2		QKE2	15,47	136,7	0,33

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
riiaStro	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-138,5	4,977	2,329	-1,710	-18,43	0,09
12	2	SLE_r_TOT	-133,7	-1,071	-611,8e-3	-1,037	-18,43	0,06
	3	SLE_r_TOT	-128,9	-4,972	-3,208	-1,727	-18,43	0,09

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σc,min [N/mm²]	σc,lim [N/mm²]	D/C
	1	SLE_qp	-116,1	3,445	213,1e-3	-1,187	-13,82	0,09
12	2	SLE_qp	-111,3	-622,5e-3	-96,77e-3	-792,3e-3	-13,82	0,06
	3	SLE_qp	-106,5	-4,690	-406,7e-3	-1,300	-13,82	0,09

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro	Sagmenta	Combinazi	N	M2	M3	σs	σs,lim	D/C
	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-138,5	4,977	2,329	-21,90	330,9	0,07
12	2	SLE_r_TOT	-133,7	-1,071	-611,8e-3	-14,71	330,9	0,04
	3	SLE_r_TOT	-128,9	-4,972	-3,208	-21,88	330,9	0,07

Verifiche di fessurazione

Dileatue	Coamonto	FREQ	QP
Pilastro	Segmento	Apertura fessure	Apertura fessure
	1	ОК	OK
12	2	ОК	OK
	3	OK	OK

Pilastrata 13

Geometria e materiali

Ocometra e materiali		
Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	90	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Armature della pilastrata

Dilectue	Cogmonto	L	Aumotuvo Longitudinolo	Staffe		
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
13	2	1,07	8- Ø 14	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro Segmento	Coamonto	Combinazi	0 .	0.	N	M2	M3	D/C
	one	₿maj	β _{min}	[kN]	[kNm]	[kNm]	D/C	
	1	QKE2	0,69	0,52	-62,00	-13,07	-60,37	0,72
13	2	QKE2			-57,20	1,944	17,30	0,14
	3	QKE1			-49,09	35,26	13,25	0,60

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Pilastro Segmento	d	Staffe	Combinazio	VSd	VRd	D/C	
	Segmento	[cm]	Staile	ne	[kN]	[kN]	b/c
	1	35,2		SLU_TOT	-28,78	190,9	0,15
13	2	35,2	2-Ø8/150	SLU_TOT	-28,78	190,9	0,15
	3	35,2		SLU_TOT	-28,78	190,9	0,15

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Pilastro	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C
Pilastro	Segmento	[cm]	Stalle	ne	[kN]	[kN]	Б/C
	1	25,2	2-Ø8/150	QKE1	-4,932	136,7	0,16
13	2	25,2		QKE1	-4,932	136,7	0,16
	3	25,2		QKE1	-4,932	136,7	0,16

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σc,min [N/mm²]	σc,lim [N/mm²]	D/C
		OHE	[KIN]	[KINIII]	[KINIII]	[14/11111]	[14/11111]	
	1	SLE_r_TOT	-77,93	-4,012	-39,32	-8,465	-18,43	0,46
13	2	SLE_r_TOT	-73,13	1,761	9,489	-2,054	-18,43	0,11
	3	SLE_r_TOT	-68,33	7,404	23,51	-6,552	-18,43	0,36

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C

Pilastro	Sagmente	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Pilastro	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-78,26	-2,668	-4,058	-1,386	-13,82	0,10
13	2	SLE_qp	-73,46	1,362	849,9e-3	-814,7e-3	-13,82	0,06
	3	SLE qp	-68,66	5,393	5,758	-2,244	-13,82	0,16

Dileatue	Cogmonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
Pilastro	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-77,93	-4,012	-39,32	189,0	330,9	0,57
13	2	SLE_r_TOT	-90,40	1,761	9,489	-25,04	330,9	0,08
	3	SLE_r_TOT	-68,33	7,404	23,51	115,8	330,9	0,35

Verifiche di fessurazione

Dileatue	Cogmonto	FREQ	QP
Pilastro	Segmento	Apertura fessure	Apertura fessure
	1	OK	ОК
13	2	ОК	ОК
	3	OK	ОК

Pilastrata 14

Geometria e materiali

Geometria e materiali		
Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	90	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Armature della pilastrata

Dileatus	Commonto	Segmento L Armatura Longitudinale		Staffe		
Pilastro	Segmento			Dir 2	Dir 3	
	1	1,07			2-Ø8/150	
14	2	1,07	8-Ø14	2-Ø8/150		
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro	Segmento	Combinazi	0 .	β _{min}	N	M2	M3	D/C
		one	P _{maj}		[kN]	[kNm]	[kNm]	<i>D</i> /C
	1	QKE2	0,69	0,52	-62,00	-13,07	60,37	0,72
14	2	QKE2			-57,20	1,944	-17,30	0,14
	3	QKE1			-49,09	35,26	-13,25	0,60

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Pilastro	Segmento	d	Staffe	Combinazio	VSd	VRd	D/C
Pilastro		[cm]	Starre	ne	[kN]	[kN]	Б/С
	1	35,2	2-Ø8/150	SLU_TOT	28,78	190,9	0,15
14	2	35,2		SLU_TOT	28,78	190,9	0,15
	3	35,2		SLU_TOT	28,78	190,9	0,15

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Γ	Dilectue	Coamonto	d Staffe		Combinazio	VSd	VRd	D/C
	Pilastro	Segmento	[cm]	Stalle	ne	[kN]	[kN]	D/C
Γ	14	1	25,2	2-Ø8/150	QKE1	-2,818	136,7	0,16

Pilastro	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C
Pilastro	Segmento	[cm]	Starre	ne [[kN]	[kN]	D/C
	2	25,2		QKE1	-2,818	136,7	0,16
	3	25,2		QKE1	-2,818	136,7	0,16

Pilastro Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C	
Pilastro	Pilastro Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-80,01	-4,013	39,35	-8,468	-18,43	0,46
14	2	SLE_r_TOT	-75,21	1,760	-9,392	-2,031	-18,43	0,11
	3	SLE_r_TOT	-70,41	7,406	-23,45	-6,526	-18,43	0,35

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Dilestus	Pilastro Segmento		N	M2	M3	σc,min	σc,lim	D/C
Pilastro	astro Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	טייכ
	1	SLE_qp	-78,26	-2,668	4,058	-1,386	-13,82	0,10
14	2	SLE_qp	-73,46	1,362	-849,9e-3	-814,7e-3	-13,82	0,06
	3	SLE_qp	-68,66	5,393	-5,758	-2,244	-13,82	0,16

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro	Segmento	Combinazi	N	M2	M3	σs [N/2]	σs,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	
	1	SLE_r_TOT	-80,01	-4,013	39,35	187,5	330,9	0,57
14	2	SLE_r_TOT	-90,40	1,760	-9,392	-24,87	330,9	0,08
	3	SLE_r_TOT	-70,41	7,406	-23,45	113,7	330,9	0,34

Verifiche di fessurazione

Dileatue	Coamonto	FREQ	QP
Pilastro	Segmento	Apertura fessure	Apertura fessure
	1	ОК	ОК
14	2	OK	ОК
	3	OK	OK

Pilastrata 2

Geometria e materiali

Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	90	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Armature della pilastrata

Pilastro Segmento		L	Armatura Langitudinala	Staffe		
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
2	2	1,07	8-Ø14	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro Seg	Sagmente	Combinazi	β _{min}	N	M2	M3	D/C	
	Segmento	one	þ maj	Pmin	[kN]	[kNm]	[kNm]	<i></i>
2	1	QKE2	0,69	0,52	-62,00	13,07	60,37	0,72
2	2	QKE2			-57,20	-1,944	-17,30	0,14

Dilectue	Coamanta	Combinazi	0	0	N	M2	M3	D/C
Pilastro	Pilastro Segmento	one	₿maj	₽min	[kN]	[kNm]	[kNm]	D/C
	3	QKE1			-49,09	-35,26	-13,25	0,60

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Dilectus	Commonto	d	C+-#-	Combinazio	VSd	VRd	D/C	
Pilastro	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C	
	1	35,2		SLU_TOT	28,81	190,9	0,15	
2	2	35,2	2-Ø8/150	SLU_TOT	28,81	190,9	0,15	
	3	35,2		SLU_TOT	28,81	190,9	0,15	

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Dilectus	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C	
Pilastro	Segmento	[cm]	Statie	ne	[kN]	[kN]	D/C	
	1	25,2		QKE1	4,932	136,7	0,16	
2	2	25,2	2-Ø8/150	QKE1	4,932	136,7	0,16	
	3	25,2]	QKE1	4,932	136,7	0,16	

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro	Coamonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Pilastro	Pilastro Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-80,01	4,012	39,36	-8,469	-18,43	0,46
2	2	SLE_r_TOT	-75,21	-1,761	-9,385	-2,030	-18,43	0,11
	3	SLE_r_TOT	-70,41	-7,404	-23,48	-6,531	-18,43	0,35

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Pilastro	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-78,26	2,668	4,058	-1,386	-13,82	0,10
2	2	SLE_qp	-73,46	-1,362	-849,9e-3	-814,7e-3	-13,82	0,06
	3	SLE_qp	-68,66	-5,393	-5,758	-2,244	-13,82	0,16

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro	Segmento	Combinazi	N	M2	M3	σs	σs,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-80,01	4,012	39,36	187,5	330,9	0,57
2	2	SLE_r_TOT	-90,43	-1,761	-9,385	-24,86	330,9	0,08
	3	SLE_r_TOT	-70,41	-7,404	-23,48	113,9	330,9	0,34

Verifiche di fessurazione

Pilastro	Coamonto	FREQ	QP
	Segmento	Apertura fessure	Apertura fessure
	1	OK	OK
2	2	OK	ОК
	3	ОК	OK

Pilastrata 3

1
3,20
0
Rettangolare
30,0
40,0
4,8
37
413,7

Dilactro Cogmonto		L	Armatura Langitudinala	Staffe		
Pilastro Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3		
	1	1,07				
3	2	1,07	8-Ø20	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro Segn	Segmento	Combinazi	β _{maj} β _{mii}	α.	N	M2	M3	D/C
	Segmento	one		Pmin	[kN]	[kNm]	[kNm]	D/C
	1	QKE2		0,67	-110,4	-67,41	19,45	0,61
3	2	QKE2	0,58		-136,4	14,11	-2,727	0,11
	3	QKE2			-100,8	43,11	-19,04	0,39

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Pilastro Segm	Commonto	d	C+-ff-	Combinazio	VSd	VRd	D/C
	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
	1	35,2		QKE1	36,52	190,9	0,19
3	2	35,2	2-Ø8/150	QKE1	36,52	190,9	0,19
	3 35,2		QKE1	36,52	190,9	0,19	

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Pilastro Segmen	Cogmonto	d	Staffe	Combinazio	VSd	VRd	D/C
	Segmento	[cm]	Stalle	ne	[kN]	[kN]	D/C
	1	25,2		QKE2	6,903	136,7	0,25
3	2	25,2	2-Ø8/150	QKE2	6,903	136,7	0,25
	3	25,2		QKE2	6,903	136,7	0,25

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C	
	o Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-152,7	-10,88	3,118	-2,718	-18,43	0,15
3	2	SLE_r_TOT	-147,9	2,428	-1,040	-1,335	-18,43	0,07
	3	SLE_r_TOT	-143,1	8,212	-4,827	-2,423	-18,43	0,13

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro Segmo	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-125,8	-3,577	852,6e-3	-1,322	-13,82	0,10
3	2	SLE_qp	-121,0	614,7e-3	-486,6e-3	-887,5e-3	-13,82	0,06
	3	SLE_qp	-116,2	4,807	-1,826	-1,502	-13,82	0,11

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro Segr	Cogmonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-152,7	-10,88	3,118	-32,55	330,9	0,10
3	2	SLE_r_TOT	-147,9	2,428	-1,040	-18,22	330,9	0,06
	3	SLE_r_TOT	-143,1	8,212	-4,827	-29,54	330,9	0,09

Verifiche di fessurazione

Pilastro	Coomonto	FREQ	QP
	Segmento	Apertura fessure	Apertura fessure
	1	OK	OK
3	2	OK	OK
	3	OK	ОК

Pilastrata 33

Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Dilectus	Pilastro Segmento L		Aumotuvo Longitudinolo	Staffe		
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
33	2	1,07	8-Ø20	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro Segmento	Sagmonta	Combinazi	ο.	β _{min}	N	M2	M3	D/C
	one	$oldsymbol{eta}_{maj}$	Pmin	[kN]	[kNm]	[kNm]	D/C	
	1	QKE2	0,58	0,67	-110,4	-67,41	-19,45	0,61
33	2	QKE2			-136,4	14,11	-2,727	0,11
	3	QKE2			-100,8	43,11	19,04	0,39

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Dilectus	Bilastra Cogments d		Chaffa	Combinazio	VSd	VRd	D/6
Pilastro Segmento	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
	1	35,2		QKE1	-36,52	190,9	0,19
33	2	35,2	2-Ø8/150	QKE1	-36,52	190,9	0,19
	3	35,2		QKE1	-36,52	190,9	0,19

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Dilestus	Dilectre Cogments		Staffe	Combinazio	VSd	VRd	D/C
Pilastro Segment	Segmento	[cm]	Stalle	ne	[kN]	[kN]	D/C
	1	25,2		QKE2	-12,14	136,7	0,25
33	2	25,2	2-Ø8/150	QKE2	-12,14	136,7	0,25
	3	25,2		QKE2	-12,14	136,7	0,25

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro	Sagmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Pilastro Segmento	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-152,4	-10,88	-3,120	-2,718	-18,43	0,15
33	2	SLE_r_TOT	-147,6	2,428	1,040	-1,333	-18,43	0,07
	3	SLE_r_TOT	-142,8	8,212	4,832	-2,423	-18,43	0,13

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Pilastro Segir	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-125,8	-3,577	-852,6e-3	-1,322	-13,82	0,10
33	2	SLE_qp	-121,0	614,7e-3	486,6e-3	-887,5e-3	-13,82	0,06
	3	SLE_qp	-116,2	4,807	1,826	-1,502	-13,82	0,11

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro	Sagmenta	Combinazi	N	M2	M3	σs	σs,lim	D/C
Pliastro Segm	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-152,4	-10,88	-3,120	-32,54	330,9	0,10
33	2	SLE_r_TOT	-147,6	2,428	1,040	-18,20	330,9	0,06
	3	SLE_r_TOT	-142,8	8,212	4,832	-29,53	330,9	0,09

Verifiche di fessurazione

Dilectue	Saamanta	FREQ	QP
Pilastro	Segmento	Apertura fessure	Apertura fessure
	1	OK	ОК
33	2	ОК	OK
	3	ОК	ОК

Pilastrata 4

Geometria e materiali

ocometra e materian		
Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Armature della pilastrata

Dilestus	Dilastra Sagmenta L		Association I associated in a la	Staffe		
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
4	2	1,07	8-Ø20	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro Segmento	Combinazi	0	0	N	M2	M3	D/C	
Pilastro	Pilastro Segmento one	one	$oldsymbol{eta}_{maj}$	β _{min}	[kN]	[kNm]	[kNm]	D/C
	1	QKE2	0,58	0,67	-110,4	67,41	19,45	0,61
4	2	QKE2			-136,4	-14,11	-2,727	0,11
	3	QKE2			-100,8	-43,11	-19,04	0,39

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Pilastro	Cogmonto	ogmonto d		Staffe Combinazio		VRd	D/C
Pilastro Segmento [ci	[cm]	Stalle	ne	[kN]	[kN]	D/C	
	1	35,2		QKE1	36,52	190,9	0,19
4	2	35,2	2-Ø8/150	QKE1	36,52	190,9	0,19
	3	35,2		QKE1	36,52	190,9	0,19

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Pilastro Segmento		d	Staffe	Combinazio	VSd	VRd	D/C
Pilastro	Segmento	[cm]	Stalle	ne	[kN]	[kN]	D/C
	1	25,2		QKE2	12,14	136,7	0,25
4	2	25,2	2-Ø8/150	QKE2	12,14	136,7	0,25
	3	25,2		QKE2	12,14	136,7	0,25

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Pilastro		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-152,7	10,88	3,121	-2,719	-18,43	0,15
4	2	SLE_r_TOT	-147,9	-2,399	-1,040	-1,331	-18,43	0,07
	3	SLE_r_TOT	-143,1	-8,185	-4,833	-2,420	-18,43	0,13

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Dilestro	Commente	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Pilastro	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C

Pilastro	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Pilastro		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-125,8	3,577	852,6e-3	-1,322	-13,82	0,10
4	2	SLE_qp	-121,0	-614,7e-3	-486,6e-3	-887,5e-3	-13,82	0,06
·	3	SLE qp	-116,2	-4,807	-1,826	-1,502	-13,82	0,11

Pilastro	Segmento	Combinazi	N	M2	M3	σs	σs,lim	D/C
Pilastro		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-152,7	10,88	3,121	-32,56	330,9	0,10
4	2	SLE_r_TOT	-147,9	-2,399	-1,040	-18,19	330,9	0,05
·	3	SLE_r_TOT	-143,1	-8,185	-4,833	-29,50	330,9	0,09

Verifiche di fessurazione

Pilastro	Coamonto	FREQ	QP
Pilastro	Segmento	Apertura fessure	Apertura fessure
	1	ОК	ОК
4	2	OK	ОК
	3	OK	OK

Pilastrata 5

Geometria e materiali

<u>Geometria e materiali</u>		
Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Armature della pilastrata

Dilectus	Coamonto	L	Aumotuvo Longitudinolo	Staffe		
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
5	2	1,07	8-Ø20	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro	Segmento	Combinazi	0 .	β _{min}	N	M2	M3	D/C
		one	р _{тај}		[kN]	[kNm]	[kNm]	<i>D</i> /C
	1	QKE2	0,58	0,67	-96,15	-89,81	-18,39	0,84
5	2	QKE2			-131,2	18,28	-2,624	0,13
	3	QKE2			-86,55	57,12	17,16	0,53

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Pilastro	Coamanta	d	Staffe	Combinazio	VSd	VRd	D/C
Pliastro	Segmento	[cm]	Stalle	ne	[kN]	[kN]	D/C
	1	35,2		QKE1	-35,50	190,9	0,19
5	2	35,2	2-Ø8/150	QKE1	-35,50	190,9	0,19
	3	35,2		QKE1	-35,50	190,9	0,19

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Dilestro	Commente	Sogmonto d Str		Combinazio	VSd	VRd	D/C
Pilastro	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
5	1	25,2	2-Ø8/150	QKE2	-15,47	136,7	0,33

Pilastro	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C
Pilastro	Segmento	[cm]	Starre	ne	[kN]	[kN]	D/C
	2	25,2		QKE2	-15,47	136,7	0,33
	3	25,2		QKE2	-15,47	136,7	0,33

Dileatue	Pilastro Segmento		N	M2	M3	σc,min	σc,lim	D/C
Pilastro	astro Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	<i>υ</i> / C
	1	SLE_r_TOT	-139,6	-4,955	-2,329	-1,714	-18,43	0,09
5	2	SLE_r_TOT	-134,8	1,095	611,8e-3	-1,046	-18,43	0,06
	3	SLE_r_TOT	-130,0	4,972	3,208	-1,733	-18,43	0,09

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro Segmento		Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Pilastro	Pilastro	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	טייכ
	1	SLE_qp	-116,1	-3,445	-213,1e-3	-1,187	-13,82	0,09
5	2	SLE_qp	-111,3	622,5e-3	96,77e-3	-792,3e-3	-13,82	0,06
	3	SLE_qp	-106,5	4,690	406,7e-3	-1,300	-13,82	0,09

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σs [N/mm²]	σs,lim [N/mm²]	D/C
	1	SLE_r_TOT	-139,6	-4,955	-2,329	-21,98	330,9	0,07
5	2	SLE_r_TOT	-134,8	1,095	611,8e-3	-14,84	330,9	0,04
	3	SLE_r_TOT	-130,0	4,972	3,208	-21,98	330,9	0,07

Verifiche di fessurazione

Dileatue	Cogmonto	FREQ	QP
Pilastro	Segmento	Apertura fessure	Apertura fessure
	1	ОК	ОК
5	2	ОК	ОК
	3	OK	OK

Pilastrata 6

Geometria e materiali

Geometria e materian		
Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Armature della pilastrata

Dilastro	Pilastro Segmento		Armatura Langitudinala	Staffe		
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
6	2	1,07	8-Ø20	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro Segmento	Cogmonto	Combinazi	$oldsymbol{eta}_{maj}$	β _{min}	N	M2	M3	D/C
	Segmento	one			[kN]	[kNm]	[kNm]	Б/C
6	1	QKE2	0.50	0,67	-96,15	89,81	-18,39	0,84
6	2	QKE2	0,58		-131,2	-18,28	-2,624	0,13

Dileatue	Cogmonto	Combinazi	ο.	0	N	M2	M3	D/C
Pilastro	Pilastro Segmento	one	₿ _{maj}	₿min	[kN]	[kNm]	[kNm]	D/C
	3	QKE2			-86,55	-57,12	17,16	0,53

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Dilectus	Commonto	d	C+-#-	Combinazio	VSd	VRd	D/C	
Pilastro	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C	
	1	35,2		QKE1	-35,50	190,9	0,19	
6	2	35,2	2-Ø8/150	QKE1	-35,50	190,9	0,19	
	3	35,2		QKE1	-35,50	190,9	0,19	

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Dilectus	Campanta	d	Staffe	Combinazio	VSd	VRd	D/6
Pilastro	Segmento	[cm]		ne	[kN]	[kN]	D/C
	1	25,2		QKE2	-10,38	136,7	0,33
6	2	25,2	2-Ø8/150	QKE2	-10,38	136,7	0,33
	3	25,2	1	QKE2	-10,38	136,7	0,33

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C	
Pilastro	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-139,6	4,977	-2,326	-1,716	-18,43	0,09
6	2	SLE_r_TOT	-134,8	-1,070	612,0e-3	-1,043	-18,43	0,06
	3	SLE_r_TOT	-130,0	-4,973	3,203	-1,733	-18,43	0,09

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Pilastro	Pilastro Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-116,1	3,445	-213,1e-3	-1,187	-13,82	0,09
6	2	SLE_qp	-111,3	-622,5e-3	96,77e-3	-792,3e-3	-13,82	0,06
	3	SLE_qp	-106,5	-4,690	406,7e-3	-1,300	-13,82	0,09

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro	Segmento	Combinazi	N	M2	M3	σs	σs,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-139,6	4,977	-2,326	-22,00	330,9	0,07
6	2	SLE_r_TOT	-134,8	-1,070	612,0e-3	-14,81	330,9	0,04
	3	SLE_r_TOT	-130,0	-4,973	3,203	-21,97	330,9	0,07

Verifiche di fessurazione

Pilastro	Cogmonto	FREQ	QP
	Segmento	Apertura fessure	Apertura fessure
	1	OK	ОК
6	2	OK	ОК
	3	OK	OK

Pilastrata 61

Geometria e materian		
Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Pilastro Segmento	Sagmenta	L	Armatura Langitudinala	Staffe		
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
61	2	1,07	8-Ø20	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro Se	Segmento	Combinazi	R	β _{maj} β _{min} -	N	M2	M3	D/C
	Segmento	one	Pmaj		[kN]	[kNm]	[kNm]	
	1	QKE2	0,58	0,67	-110,4	67,41	-19,45	0,61
61	2	QKE2			-136,4	-14,11	-2,727	0,11
	3	QKE2			-100,8	-43,11	19,04	0,39

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Pilastro Se	Commonto	d	C+-ff-	Combinazio	VSd	VRd	D/C
	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
	1	35,2	2-Ø8/150	QKE1	-36,52	190,9	0,19
61	2	35,2		QKE1	-36,52	190,9	0,19
	3	35,2		QKE1	-36,52	190,9	0,19

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Pilastro	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C	
	Segmento	[cm]	Stalle	ne	[kN]	[kN]	D/C	
	1	25,2		QKE2	-6,903	136,7	0,25	
61	2	25,2	2-Ø8/150	QKE2	-6,903	136,7	0,25	
	3	25,2		QKE2	-6,903	136,7	0,25	

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-152,4	10,88	-3,118	-2,718	-18,43	0,15
61	2	SLE_r_TOT	-147,6	-2,401	1,040	-1,330	-18,43	0,07
	3	SLE_r_TOT	-142,8	-8,178	4,828	-2,417	-18,43	0,13

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	טייכ
	1	SLE_qp	-125,8	3,577	-852,6e-3	-1,322	-13,82	0,10
61	2	SLE_qp	-121,0	-614,7e-3	486,6e-3	-887,5e-3	-13,82	0,06
	3	SLE_qp	-116,2	-4,807	1,826	-1,502	-13,82	0,11

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro	Segmento	Combinazi	N	M2	M3	σs	σs,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-152,4	10,88	-3,118	-32,54	330,9	0,10
61	2	SLE_r_TOT	-147,6	-2,401	1,040	-18,17	330,9	0,05
	3	SLE_r_TOT	-142,8	-8,178	4,828	-29,47	330,9	0,09

Verifiche di fessurazione

Pilastro	Sagmente	FREQ	QP
Pilasti O	Segmento	Apertura fessure	Apertura fessure
	1	OK	OK
61	2	OK	OK
	3	OK	OK

Pilastrata 7

Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Pilastro	Coamonto	L	Aumotuvo Longitudinolo	Staffe		
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
7	2	1,07	8-Ø20	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro	Segmento	Combinazi	ο.	β _{min}	N	M2	M3	D/C
		one	$oldsymbol{eta}_{maj}$		[kN]	[kNm]	[kNm]	<i>b</i> /c
	1	QKE2	0,58	0,67	-94,93	-103,6	17,81	0,97
7	2	QKE2			-90,13	20,70	-1,803	0,15
	3	QKE2			-85,33	65,66	-16,53	0,61

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Dilestus	Commente	d	Chaffa	Combinazio	VSd	VRd	D/C
Pilastro	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
	1	35,2	2-Ø8/150	QKE1	35,29	190,9	0,18
7	2	35,2		QKE1	35,29	190,9	0,18
	3	35,2		QKE1	35,29	190,9	0,18

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Dilestus	Segmento	d	Staffe	Combinazio	VSd	VRd	D/C
Pilastro		[cm]	Stalle	ne	[kN]	[kN]	D/C
	1	25,2		QKE2	12,45	136,7	0,38
7	2	25,2	2-Ø8/150	QKE2	12,45	136,7	0,38
	3	25,2		QKE2	12,45	136,7	0,38

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro	Sagmente	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-140,4	-3,697	2,148	-1,545	-18,43	0,08
7	2	SLE_r_TOT	-135,6	713,1e-3	-529,4e-3	-996,6e-3	-18,43	0,05
	3	SLE_r_TOT	-130,8	4,632	-2,842	-1,663	-18,43	0,09

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
rilastio	Jeginemo	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	<i>D</i> /C
	1	SLE_qp	-117,9	-3,474	32,60e-3	-1,186	-13,82	0,09
7	2	SLE_qp	-113,1	626,1e-3	-23,17e-3	-797,6e-3	-13,82	0,06
	3	SLE_qp	-108,3	4,726	-78,94e-3	-1,287	-13,82	0,09

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro	Segmento	Combinazi	N	M2	M3	σs	σs,lim	D/C
Pilastro		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-140,4	-3,697	2,148	-20,26	330,9	0,06
7	2	SLE_r_TOT	-135,6	713,1e-3	-529,4e-3	-14,35	330,9	0,04
	3	SLE_r_TOT	-130,8	4,632	-2,842	-21,25	330,9	0,06

Verifiche di fessurazione

Pilastro	Saamanta	FREQ	QP
FilastiO	Segmento	Apertura fessure	Apertura fessure
	1	ОК	ОК
7	2	ОК	ОК
	3	OK	OK

Pilastrata 8

Geometria e materiali

Ocometria e materian		
Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Armature della pilastrata

Dilestus	Sagmente		A was at time I are ait to discale	Staffe		
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
8	2	1,07	8- Ø 20	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro	Segmento	Combinazi	0	0	N	M2	M3	D/C
		one	$oldsymbol{eta}_{maj}$	β _{min}	[kN]	[kNm]	[kNm]	D/C
	1	QKE2	0,58	0,67	-94,93	103,6	17,81	0,97
8	2	QKE2			-90,13	-20,70	-1,803	0,15
	3	QKE2			-85,33	-65,66	-16,53	0,61

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Pilastro	Coamonto	d	Staffe	Combinazio	VSd	VRd	D/C
Pilastro	Segmento	[cm]	Stalle	ne	[kN]	[kN]	<i>b/C</i>
	1	35,2		QKE1	35,29	190,9	0,18
8	2	35,2	2-Ø8/150	QKE1	35,29	190,9	0,18
	3	35,2		QKE1	35,29	190,9	0,18

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Pilastro	Commonto	d	Ctoffe	Combinazio	VSd	VRd	D/C
Pilastro Segmento		[cm]	Staffe	ne	[kN]	[kN]	D/C
	1	25,2	2-Ø8/150	QKE2	17,57	136,7	0,38
8	2	25,2		QKE2	17,57	136,7	0,38
	3	25,2		QKE2	17,57	136,7	0,38

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni caratteristiche

Pilastro	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
Filastio		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-140,4	3,756	2,150	-1,553	-18,43	0,08
8	2	SLE_r_TOT	-135,6	-688,8e-3	-529,2e-3	-993,5e-3	-18,43	0,05
	3	SLE_r_TOT	-130,8	-4,632	-2,847	-1,664	-18,43	0,09

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro	Cogmonto	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C

Pilastro	Segmento	Combinazi one	N [kN]	M2 [kNm]	M3 [kNm]	σc,min [N/mm²]	σc,lim [N/mm²]	D/C
	1	SLE_qp	-117,9	3,474	32,60e-3	-1,186	-13,82	0,09
8	2	SLE_qp	-113,1	-626,1e-3	-23,17e-3	-797,6e-3	-13,82	0,06
	3	SLE_qp	-108,3	-4,726	-78,94e-3	-1,287	-13,82	0,09

Pilastro	Cogmonto	Combinazi	N	M2	M3	σs	σs,lim	D/C
Pliastro Segmento	Segmento	one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-140,4	3,756	2,150	-20,34	330,9	0,06
8	2	SLE_r_TOT	-135,6	-688,8e-3	-529,2e-3	-14,32	330,9	0,04
	3	SLE_r_TOT	-130,8	-4,632	-2,847	-21,26	330,9	0,06

Verifiche di fessurazione

1				
	Pilastro	Sagmenta	FREQ	QP
	Pilastro	Segmento	Apertura fessure	Apertura fessure
	8	1	OK	OK
		2	OK	ОК
		3	OK	OK

Pilastrata 9

Geometria e materiali

Geometria e materiali		
Numero piani	1	
Altezza piani [m]	3,20	
Angolo di rotazione [°]	0	
Tipo sezione	Rettangolare	
Larghezza b [cm]	30,0	
Altezza h [cm]	40,0	
Copriferro [cm]	4,8	
Rck [N/mm²]	37	
Fyk [N/mm²]	413,7	

Armature della pilastrata

Dilectus	Coamonto	L	Augustina Langitudina la	Staffe		
Pilastro	Segmento	[m]	Armatura Longitudinale	Dir 2	Dir 3	
	1	1,07				
9	2	1,07	8-Ø20	2-Ø8/150	2-Ø8/150	
	3	1,07				

Verifiche PMM della pilastrata nei confronti della resistenza

Pilastro Segmento	Coamonto	Combinazi	β_{maj} β_{min}	o	N	M2	M3	D/C
	one	р _{тај}	Pmin	[kN]	[kNm]	[kNm]	D/C	
	1	QKE2	0,58	0,67	-94,93	-103,6	-17,81	0,97
9	2	QKE2			-90,13	20,70	-1,803	0,15
	3	QKE2			-85,33	65,66	16,53	0,61

Verifiche a taglio in direzione 2 della pilastrata nei confronti della resistenza

Pilastro Segmento	Cammanta	d	Staffe	Combinazio	VSd	VRd	D/C
	[cm]	Stalle	ne	[kN]	[kN]	D/C	
	1	35,2	2-Ø8/150	QKE1	-35,29	190,9	0,18
9	2	35,2		QKE1	-35,29	190,9	0,18
	3	35,2		QKE1	-35,29	190,9	0,18

Verifiche a taglio in direzione 3 della pilastrata nei confronti della resistenza

Dilastra Sagments		d Staffe		Combinazio	VSd	VRd	D/C
Pilastro	Segmento	[cm]	Starre	ne	[kN]	[kN]	D/C
9	1	25,2	2-Ø8/150	QKE2	-17,57	136,7	0,38

Dila atua Camananta	Commonto	d	C+-ff-	Combinazio	VSd	VRd	D/C
Pilastro	Segmento	[cm]	Staffe	ne	[kN]	[kN]	D/C
	2	25,2		QKE2	-17,57	136,7	0,38
	3	25,2		QKE2	-17,57	136,7	0,38

Pilastro	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_r_TOT	-143,1	-3,764	-2,150	-1,570	-18,43	0,09
9	2	SLE_r_TOT	-138,3	738,4e-3	529,2e-3	-1,016	-18,43	0,06
	3	SLE_r_TOT	-133,5	4,660	2,847	-1,684	-18,43	0,09

Verifica delle tensioni di esercizio nel calcestruzzo per combinazioni quasi permanenti

Pilastro	Segmento	Combinazi	N	M2	M3	σc,min	σc,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	D/C
	1	SLE_qp	-117,9	-3,474	-32,60e-3	-1,186	-13,82	0,09
9	2	SLE_qp	-113,1	626,1e-3	23,17e-3	-797,6e-3	-13,82	0,06
	3	SLE_qp	-108,3	4,726	78,94e-3	-1,287	-13,82	0,09

Verifica delle tensioni di esercizio nell'acciaio per combinazioni caratteristiche

Pilastro	Segmento	Combinazi	N	M2	M3	σs	σs,lim	D/C
		one	[kN]	[kNm]	[kNm]	[N/mm²]	[N/mm²]	
9	1	SLE_r_TOT	-143,1	-3,764	-2,150	-20,60	330,9	0,06
	2	SLE_r_TOT	-138,3	738,4e-3	529,2e-3	-14,63	330,9	0,04
	3	SLE_r_TOT	-133,5	4,660	2,847	-21,54	330,9	0,07

Verifiche di fessurazione

Dilectus	Cogmonto	FREQ	QP		
Pilastro	Segmento	Apertura fessure	Apertura fessure		
	1	ОК	ОК		
9	2	ОК	ОК		
	3	ОК	ОК		

Verifiche di resistenza dei nodi