COMMITTENTE:

PROGETTAZIONE:

CUP: J47I09000030009

U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA MILANO-GENOVA QUADRUPLICAMENTO MILANO-ROGOREDO-PAVIA FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

OPERE PRINCIPALI - SOTTOVIA E SOTTOPASSI

SL06B - Prolungamento sottovia via Niccolò Macchiavelli km 19+461,20

Relazione di calcolo vasca per impianto di sollevamento acque

										SCALA:
										-
COMN	MESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPERA/DI	SCIPLINA	PROGR.	REV	•
NM	0 Z	2 0	D	2 6	CL	S L 0	6 0 0	0 0 4	Α	
Rev.	D	escrizione		Redatto	Data	Verificato	Data	Approvato	Data	Autori & ato Data

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autori 2 ato Data
А	EMISSIONE ESECUTIVA	CONSORZIO INTEGRA	Novembre 2018	F.Coppini/A.Maran	Novembre 2018	S.Borelli	Novembre 2018	F. Saccing 18
								INFRASI Frances Inert Gella
								off. In
								ALFERR Di dine degi
								E 6

File: NM0Z20D26CLSL0600004A n. Elab.:

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque COMMESSA NM0Z LOTTO FASE-ENTE

D 26

20

DOCUMENTO

CLSL0600004

REV.

FOGLIO 2 di 39

INDICE

1	PREMESSA	4
2	DESCRIZIONE GENERALE	5
3	CARATTERISTICHE DEI MATERIALI	6
4	NORMATIVA DI RIFERIMENTO	7
5	CONDIZIONI GEOTECNICHE	8
6	CRITERI DI VERIFICA	9
	6.1 VERIFICHE DI RESISTENZA AGLI STATI LIMITE ULTIMI	9
	6.2 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO	9
7	MODELLO DI CALCOLO	12
	7.1 PROGRAMMA DI CALCOLO	12
	7.2 MODELLAZIONE STRUTTURALE	12
	7.3 SCHEMA	13
8	ANALISI DEI CARICHI	14
	8.1 Pesi propri strutturali	14
	8.2 SOVRACCARICHI PERMANENTI PORTATI	
	8.3 CARICHI ESTERNI SU TERRAPIENO	
	8.4 CARICHI ESTERNI SU MURO	
	8.5 AZIONI PROVENIENTI DAL TERRENO	
	8.6 AZIONI PROVENIENTI DAI CARICHI MOBILI	
	8.7 AZIONI SISMICHE	18
9	COMBINAZIONI DI CARICO	21
10	SOLLECITAZIONI	
	10.1 Stato Limite Ultimo	
	10.2 Stato Limite Esercizio	26
	10.3 SEZIONI DI PROGETTO	27
11	VERIFICHE SEZIONE 1	
	11.1 SLU –PRESSOFLESSIONE	28
	11.2 SLU – TAGLIO	29
	11.3 SLE – FESSURAZIONE	29

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0600004	A	3 di 39

12	VERIFICHE SEZIONE 2	30
	12.1 SLU – FLESSIONE	
	12.2 SLU – TAGLIO	
	12.3 SLE – FESSURAZIONE	31
13	VERIFICHE SEZIONE 3	32
	13.1 SLU – FLESSIONE	32
	13.2 SLU – TAGLIO	32
	13.3 SLE – FESSURAZIONE	33
14	VERIFICHE SEZIONE 4	34
	14.1 SLU – PRESSOFLESSIONE	34
	14.2 SLU – TAGLIO	35
	14.3 SLE – FESSURAZIONE	35
15	VERIFICHE SEZIONE 5	36
	15.1 SLU – FLESSIONE	36
	15.2 SLU – TAGLIO	37
	15.3 SLE – FESSURAZIONE	37
16	VERIFICHE SEZIONE 6	38
	16.1 SLU – FLESSIONE	38
	16.2 SLU – TAGLIO	38
	16 3 SI F _ FESSURAZIONE	39

GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUP PAVIA	MENTO LICAME	DELLA LINI ENTO TRAT	EA MILANO - (TA MILANO O PIEVE EMAN	ROGORI	EDO –
SL06B - Prolungamento sottovia via Niccolò Macchiavelli	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo vasca per impianto di sollevamento acque	NM0Z	20	D 26	CLSL0600004	A	4 di 39

1 PREMESSA

Nell'ambito degli interventi di potenziamento della linea Milano – Genova, si prevede il quadruplicamento della linea ferroviaria nella tratta Milano Rogoredo-Pavia fra le stazioni di Milano Rogoredo e Pieve Emanuele.

Il quadruplicamento in oggetto, a partire dall'uscita della stazione Milano Rogoredo, prosegue in affiancamento alla linea storica e su una nuova sede e si sviluppa a sud di Milano, estendendosi per circa 30 km lungo l'attuale linea ferroviaria tra i nodi di Milano Rogoredo e Pavia.

Figura 1 :Planimetria di progetto

Nella presente relazione è riportato il calcolo strutturale del concio della vasca volano dell'opera principale SL06B - Prolungamento sottovia via Niccolò Macchiavelli km 19+450.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUP PAVIA	MENTO LICAME	DELLA LINI ENTO TRAT	EA MILANO - (TA MILANO O PIEVE EMAN	ROGOR	EDO -
SL06B - Prolungamento sottovia via Niccolò Macchiavelli	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo vasca per impianto di sollevamento acque	NM0Z	20	D 26	CLSL0600004	A	5 di 39

2 DESCRIZIONE GENERALE

La presente relazione ha per oggetto la verifica del vasca ri raccolta lato Est dello scatolare SL06.

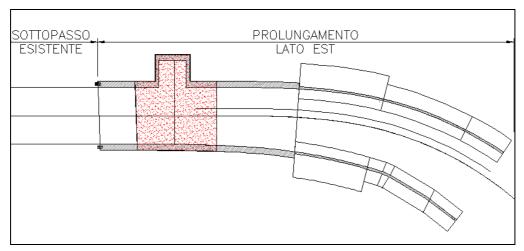


Figura 2 : Planimetria

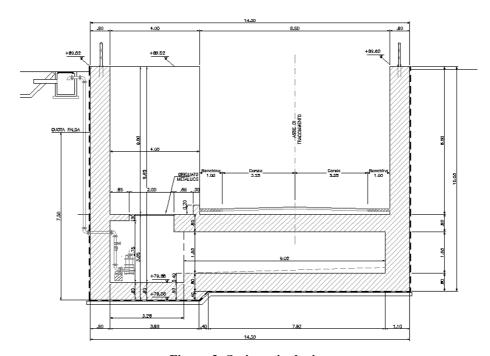


Figura 3: Sezione tipologica

PAVIA
FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0600004	A	6 di 39

3 CARATTERISTICHE DEI MATERIALI

CALCESTRUZZO						
Classe di resistenza calcestruzzo		C32/40				
Caratteristiche del calcestruzzo						
resistenza caratteristica cubica	R_{ck}	40	[MPa]			
resistenza caratteristica cilindrica	f_{ck}	33.2	[MPa]			
resistenza cilindrica media	f_{cm}	41.2	[MPa]			
resistenza media a trazione semplice	f_{ctm}	3.1	[MPa]			
resistenza caratteristica a trazione (fratt. 5%)	f_{ctK}	2.2	[MPa]			
modulo elastico istantaneo	E_{cm}	33,643	[MPa]			
Resistenze di calcolo				COE	FFICIE	NTI
resistenza di calcolo a compressione	f_{cd}	18.8	[MPa]	γc	=	1.5
resistenza di calcolo a trazione	f_{ctd}	1.4	[MPa]	α_{CC}	=	0.85
coefficiente di espansione termica lineare	α	1.00E-05	[°C ⁻¹]			

ACCIAIO PER CEMENTO ARMATO

Tipo di acciaio		B450C				
Caratteristiche del calcestruzzo						
tensione caratteristica di snervamento	$f_{yk} \\$	450	[MPa]			
tensione caratteristica di rottura	f_{tk}	540	[MPa]			
Resistenze di calcolo				CO	EFFICIE	ENTI
resistenza di progetto	f_{yd}	391.3	[MPa]	γs	=	1.15
modulo elastico	Es	200000	[MPa]			

Per il calcestruzzo armato si assume γ_{cls} 25 kN/m³

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0600004	A	7 di 39

4 NORMATIVA DI RIFERIMENTO

Il dimensionamento e la verifica degli elementi strutturali sono stati condotti nel rispetto delle seguenti normative:

- <u>Decreto Ministeriale 14 gennaio 2008</u>: Nuove norme tecniche per le costruzioni;
- <u>Circolare 2 febbraio 2009, n.617</u>: Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008;
- <u>Circolare 15 ottobre 1996, n.252 AA.GG./S.T.C.</u>: Istruzioni per l'applicazione delle "Nuove norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche" di cui al decreto ministeriale 9 gennaio 1996:
- RFI DTC SI MA IFS 001 B: "Manuale di progettazione delle opere civili" del 22/12/2017.
- RFI DTC SI PS MA IFS 001 B: Sezione 2 Ponti e Strutture.

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0600004	A	8 di 39

5 CONDIZIONI GEOTECNICHE

ZONA	SONDAGGIO DI RIFERIMENTO	PROFONDITA'	UNITA' TERRENO
		da 0 a 3m	S
12	S2	da 3m a 5m	Sg
		da 5m a 30m	S

γ _{sat}	γ _d [kN/m³]	Φ'	' [°]	Φ ′ [°]	Φ ′ [°]	E' _{op} [MPa]	Vs [ı	m/s]	categoria	G ₀ [N	/IPa]
[KN/M]	[KN/M]	max	min	laboratorio	scelto	max	min	max	min	terreno	max	min
16	10	27	27		27	12	12	162	162		37	37
16	10	30	30		30	18	18	149	149	С	43	43
16	10	30	29		29	64	16	397	226		260	84

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0600004	A	9 di 39

6 CRITERI DI VERIFICA

6.1 VERIFICHE DI RESISTENZA AGLI STATI LIMITE ULTIMI

Si è verificato che il valore di progetto degli effetti delle azioni, ovvero delle sollecitazioni flettenti M_d sia minore dei corrispondenti momenti resistenti M_r delle sezioni di progetto.

La verifica di resistenza delle sezioni nei vari elementi strutturali, viene condotta tenendo conto delle condizioni più gravose che si individuano dall'inviluppo delle sollecitazioni agenti nelle diverse combinazioni di carico.

Le combinazioni e i coefficienti moltiplicativi delle singole azioni vengono definiti in base a quanto indicato nel D.M. 14 gennaio 2008.

Per quanto riguarda le verifiche a taglio ultimo, si è fatto riferimento al paragrafo 4.1.2.1.3 "Resistenza nei confronti di sollecitazioni taglianti" del D.M. 14 gennaio 2008.

6.2 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

Definizione degli stati limite di fessurazione

In ordine di severità crescente si distinguono i seguenti stati limite:

- stato limite di decompressione nel quale, per la combinazione di azioni prescelta, la tensione normale è ovunque di compressione ed al più uguale a 0;
- stato limite di formazione delle fessure, nel quale, per la combinazione di azioni prescelta, la tensione normale di trazione nella fibra più sollecitata è:

$$\sigma_t = \frac{f_{ctm}}{1,2}$$

• stato limite di apertura delle fessure nel quale, per la combinazione di azioni prescelta, il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

$$w_1 = 0.2 \text{ mm}$$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

9

Lo stato limite di fessurazione deve essere fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione.

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO NMOZ 20 D 26 CLSL0600004 A 10 di 39

Condizioni ambientali

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature metalliche, possono essere suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato nella tabella seguente:

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Nel caso in esame si considera l'opera sottoposta a condizioni ordinarie.

Scelta degli stati limite di fessurazione

Nella tabella sottostante sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle esigenze sopra riportate.

			Armatura					
Gruppi di esigenze	Condizioni ambientali	Combinazione di azioni	Sensibile	Poco sensibile				
			Stato limite	Wd	Stato limite	Wd		
		frequente	ap. fessure	≤w ₂	ap. fessure	≤w ₃		
a	Ordinarie	quasi permanente	ap. fessure	≤w ₁	ap. fessure	≤w ₂		
		frequente	ap. fessure	≤w ₁	ap. fessure	≤w ₂		
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁		
		frequente	formazione fessure	-	ap. fessure	$\leq w_1$		
c	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$		

Come da manuale RFI DTC SI PS MA IFS 001 B (2.5.1.8.3.2.4) si assume in questo caso per la verifica a fessurazione la combinazione Rara e come limite massimo di apertura delle fessure w1=0.2 mm, (per strutture a permanente contatto con il terreno).

PROGETTO DEFINITIVO)			
POTENZIAMENTO DELI	LA LINEA	MILANO -	GENOVA	
QUADRUPLICAMENTO PAVIA	TRATTA	MILANO	ROGOREDO	-

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0600004	A	11 di 39

Stato limite di apertura delle fessure

Il valore caratteristico di calcolo di apertura delle fessure (w_d) non deve superare i valori nominali w_1 , w_2 , w_3 secondo quanto riportato nella Tabella sopra riportata.

Il valore caratteristico di calcolo è data da:

$$W_d = 1,70 \cdot W_m$$

dove w_m rappresenta l'ampiezza media delle fessure.

L'ampiezza media delle fessure w_m è calcolata come prodotto della deformazione media delle barre d'armatura \mathcal{E}_{sm} per la distanza media tra le fessure Δ_{sm} :

$$W_m = \mathcal{E}_{sm} \cdot \Delta_{sm}$$

Per il calcolo di \mathcal{E}_{sm} e Δ_{sm} vanno utilizzati criteri consolidati riportati nella letteratura tecnica. \mathcal{E}_{sm} può essere calcolato tenendo conto dell'effetto del "tension stiffening" nel rispetto della limitazione:

$$\varepsilon_{sm} \geq 0.6 \cdot \frac{\sigma_s}{E_s}$$

con σ_s tensione nell'acciaio dell'armatura tesa (per sezione fessurata) nelle condizioni di carico considerate ed E_s è il modulo elastico dell'acciaio.

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0600004	A	12 di 39

7 MODELLO DI CALCOLO

7.1 PROGRAMMA DI CALCOLO

L'analisi è stata effettuata per elementi finiti attraverso l'ausilio del programma di calcolo "SAP2000".

7.2 MODELLAZIONE STRUTTURALE

Il modello di calcolo attraverso il quale è stata analizzata la struttura e schematizzato da un rettangolo costituito da elementi monodimensionali vincolati su un letto di molle alla winkler.

Per i coefficienti del sottosuolo sono stati adottati i seguenti valori

 $\begin{array}{ll} \bullet & \text{Coefficiente verticale} & k_v = 7818 \text{ kN/m}^3 \\ \bullet & \text{Coefficiente orizzontale} & k_h = 3808 \text{ kN/m}^3 \\ \end{array}$

Sono stati utilizzati molle per unità di lunghezza attribuita agli elementi della soletta inferiore.

GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUP PAVIA	MENTO LICAME	DELLA LINI ENTO TRAT	EA MILANO - O TA MILANO O PIEVE EMAN	ROGORI	
SL06B - Prolungamento sottovia via Niccolò Macchiavelli	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo vasca per impianto di sollevamento acque	NM0Z	20	D 26	CLSL0600004	A	13 di 39

7.3 SCHEMA

Il modello è formato da 14 elementi monodimensionale a cui è assegnata la sezione specifica dell'elemento corrispondente

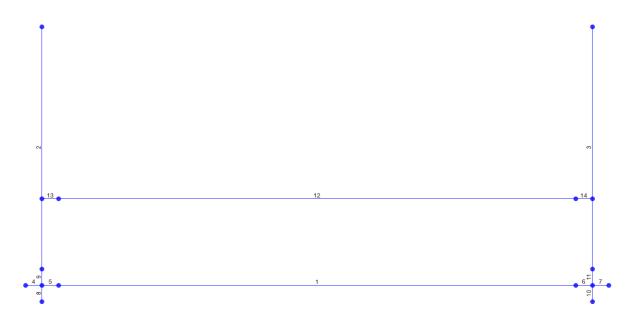


Figure 1 : Schema modello di calcolo

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

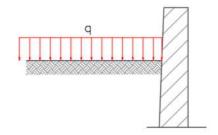
COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO
NM0Z	20	D 26	CLSL0600004

FOGLIO 14 di 39

REV.

Α

8 ANALISI DEI CARICHI


8.1 PESI PROPRI STRUTTURALI

				γ				
		D [m ²]		$[kN/m^3]$		[m]		[kN/m]
Solette	PP_{SI}	1.10	Χ	25	Χ	1	=	27.5
Piedritto	PP_{Pl}	1.10	Χ	25	Χ	1	=	27.5

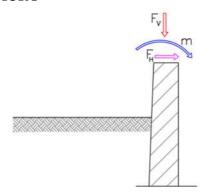
8.2 SOVRACCARICHI PERMANENTI PORTATI

Data l'incertezza del carico, a favore di ricurezza non sarà considerato

8.3 CARICHI ESTERNI SU TERRAPIENO

Pressione uniforme permanente su terrapieno Pressione uniforme variabile su terrapieno q,p 0 [kN/m/m] q,v 0 [kN/m/m]

Spinta dovuta a pressione uniforme permanente su terrapieno Spinta dovuta a pressione uniforme variabile su terrapieno $\sigma_{pu}(k_0) = k_0 \cdot q_{,P}$

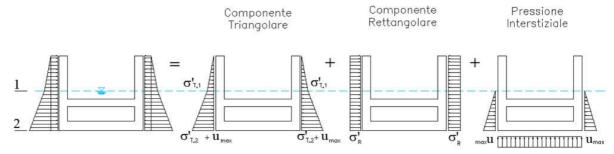

 $\sigma_{pv}(k_0) = k_0 \cdot q_{,v}$

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO NM0Z 20 D 26 CLSL0600004 A 15 di 39

8.4CARICHI ESTERNI SU MURO

Forza orizzontale permanente su testa muro Forza verticale permanente su testa muro Coppia permanente su testa muro	FH,P	0	[kN/m]
	Fv,P	0	[kN/m]
	m, _P	0	[kNm/m]
Forza orizzontale variabile su testa muro Forza verticale variabile su testa muro Coppia variabile su testa	F _{H,V}	0	[kN/m]
	F _{V,V}	0	[kN/m]
muro	m,v	0	[kNm/m]


POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0600004	A	16 di 39

8.5 AZIONI PROVENIENTI DAL TERRENO

Pressine interstiziale

 $u_{max} = 75.00 [kN/m^2]$

Tensioni litostatiche verticali : componente Triangolare

Tensione litostatica verticale efficace in "1" $\sigma'_{T,1} = \gamma_{t2} \times (H_t - H_w) = 40.00 \text{ [kN/m}^2]$

Tensione litostatica verticale efficace in "2" $\sigma'_{T,2} = \sigma'_{T,1} + \gamma'_{t2} \times H_w = 85.00 \text{ [kN/m}^2]$

Tensioni litostatiche verticali : componente Rettangolare

Tensione litostatica verticale efficace estradosso Soletta $\sigma'_R = 0.0 \text{ [kN/m}^2]$

Coefficienti di spinta Terreno 1 M1 M2 SLE

Deformazione orizzontale nulla $\mathbf{k}_{0,t1} = \mathbf{1}\text{-sen}\boldsymbol{\phi}'$ 0.52 0.60 0.52 Equilibrio limite attivo $\mathbf{k}_{a,t1} = (\mathbf{1}\text{-sen}\boldsymbol{\phi}')/(\mathbf{1}\text{+sen}\boldsymbol{\phi}')$ 0.35 0.42 0.35

Tensioni totali orizontali

 $\sigma_{sx}(k_0) = \sigma_{sx}(k_0) = k_{0,t1} \cdot \sigma'_{R} + k_{0,t2} \cdot \sigma'_{T} + u$ $\sigma_{sx}(k_a) = \sigma_{sx}(k_a) = k_{a,t1} \cdot \sigma'_{R} + k_{a,t2} \cdot \sigma'_{T} + u$

 $\sigma_1 = \sigma_{sx}(k_0) + \sigma_{dx}(k_0)$ condizioni di deformazione orizzontale nulla

 $\sigma_2 = \sigma_{sx}(k_a) + \sigma_{dx}(k_a)$ Condinione di equilibrio limite attivo $\sigma_3 = \sigma_{sx}(k_0) + \sigma_{dx}(k_a)$ Condinione asimmetrica sx

 $\sigma_4 = \sigma_{sx} (k_a) + \sigma_{dx} (k_0)$ Condinione asimmetrica dx

 $\sigma_t = inviluppo \; \{ \; \sigma_1 \; ; \; \; \sigma_2 \; ; \; \sigma_3 \; ; \; \sigma_4 \} \qquad \textit{Inviluppo tensioni litostatiche orizzontali}$

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0600004	A	17 di 39

8.6AZIONI PROVENIENTI DAI CARICHI MOBILI

Lo schema di carico utilizzata è lo schema di carico 1, disposto in modo da massimizzare le sollecitazioni.

Si assume un carico uniformemente distribuito sulla soletta superiore pari a 78.6 kN/m sulla soletta. La larghezza di diffusione assunta, considerando lo spessore della soletta è di 6.80 m.

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0600004	A	18 di 39

8.7 AZIONI SISMICHE

CARATTERISTICHE SISMICHE

PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

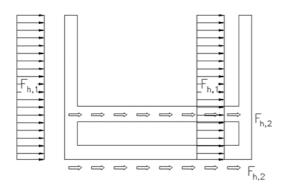
vita nominale Classe d'uso	V_N	75 III	anni
coefficiente d'uso	C_{U}	1.5	
periodo di riferimento per l'azione sismica Stato limite ultimo di salvaguardia della vita SLV	V_R	112.5	anni
probabilità di superamento nel periodo di riferimento	P_{VR}	10%	
Periodo di ritorno dell'azione sismica	T_R	1067.8	anni
PARAMETRI CHE DEFINISCONO L'AZIONE SISMICA			
accelerazione orizzontale massima al sito	ag	0.765	$[m/s^2]$
accelerazione orizzontale massima al sito	ag	0.078	[g]
coefficiente di amplificazione spettrale massima periodo di inizio del tratto a velocità costante dello spettro in accelerazione	F ₀	2.577	
orizzontale	T _C *	0.291	[s]
CATEGORIE DI SOTTOSUOLO E CONDIZIONI STRATIGRAFICHE			
Categoria di sottosuolo		С	
coefficiente di amplificazione stratigrafica	Ss	1.50	
coefficiente di sottosuolo	Cc	1.58	
Categoria topografica		T1	
coefficiente di amplificazione topografica	S _T	1	
S _S x S _T	S	1.50	
coefficiente di smorzamento viscoso √(10/(5+x)	x h	5% 1	

PAVIA

PARAMETRI DI ANALISI

accelerazione orizzontale massima al sito	a _{max}	1.148	$[m/s^2]$
fattore di struttura	q	1	
coefficiente di riduzione dell'accelerazione massima	β_{m}	1	
coefficiente sismico orizzontale	k_h	0.117	
coefficiente sismico verticale	k _v	0.059	

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA


FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0600004	A	19 di 39

Terreno ad elevata permeabilità dinamica		3
Peso specifico "sismico" del terreno	γ*	6
coefficiente sismico orizzontale	\mathbf{k}_{h}	0.12
coefficiente sismico verticale	k_{v}	0.06
	θ +	16.8
	θ –	18.9
	ф'м2	23.9
	δ	0.0
	δ_{M2}	0.0
angolo di inclinazione, rispetto all'orizzontale, della parete del muro rivolta a monte	Ψ	90
angolo di inclinazione, rispetto all'orizzontale, della superficie del terrapieno	β	0
coefficiente di spinta sismica M2	Ke	0.78

FORZE SISMICHE

Forze di inerzia orizzontali	F _h =	$k_h \: x \: W$
Forze di inerzia verticali	F _v =	$k_v \times W$

Sisma

Н

Forza di inerzia orizzontale piedritti $F_{h1}=(PP_{Pl})\cdot k_h=$	2.63 [kN/m]
For za wi iller zia orizzonitale piewritti r_{h1} – $(PPPI)^*K_h$ –	
Forza di inerzia orizzontale inferiore $F_{h2}= (PP_{SI})\cdot k_h = $ $Sisma$ V	2.34 [kN/m]
Forza di inerzia verticale piedritti $F_{v1} = (PP_{PI}) \cdot k_v = (PP_{SI}) \cdot k_v$	1.32 [kN/m]
Forza di inerzia verticale Soletta inferiore $F_{v2} = $	1.17 [kN/m]

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NMOZ 20 D 26 CLSL0600004 A 20 di 39

Incremento sismico secondo il metodo di Mononobe-Okabe

(secondo Eurocodice 8-5)

$$E_d = \frac{1}{2} \cdot \gamma^* \cdot H^2 \cdot (1 \pm k_v) \cdot K + E_{ws} + E_{wd}$$

E_{ws} = spinta statica acqua ; K = coefficiente di Mononobe-Okabe

E_{wd} = spinta dinamica acqua (Westergaard)

Alta permeabilità (k > 5 x 10-4m/s)

Bassa permeabilità (k < 5 x 10⁻⁴m/s)

E_{wd}=7/12 k_h γ_w H²

 $\gamma^* = \gamma - \gamma_{...}$

 $tg \, \theta = \frac{\gamma_s}{\gamma_s - \gamma_w} \frac{k_h}{1 \mp k_v}$

γ_s = peso specifico dei grani

E_{wd}= 0

 $\gamma^* = \gamma - \gamma_w$

$$tg \theta = \frac{\gamma}{\gamma - \gamma_w} \frac{k_h}{1 \mp k_v}$$

γ = peso di volume terreno naturale

Spinta statica dell'acqua E_{ws} 281.25 [kN/m] Spinta idrodinamica dell'acqua E_{wd} 38 [kN/m] Spinta totale del terreno nel caso sismico $S_{H,sism}$ 247 [kN/m]

 $E_d = E_{ws} + E_{wd+}$

Spinta totale del terreno nel caso sismico S_{H,sism} 567 [kN/m]

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA LOTTO

NM0Z 20

FASE-ENTE D 26

DOCUMENTO CLSL0600004 REV. FOGLIO
A 21 di 39

9 COMBINAZIONI DI CARICO

COEFFICENTI PARZIALI DI SICUREZZA

Carichi	Effetto	Coeff.	EQU/UPL	A1 (STR)	A2 (GEO)	SLE	Sism
Carichi Permanenti	favorevole	24	0.9	1	1	1	1
	sfavorevole	γ_{G1}	1.1	1.35	1	1	1
Carichi Permanenti non strutturali	favorevole	24	0	0	0	1	1
	sfavorevole	$\gamma_{\sf G2}$	1.5	1.35	1.3	1	1
V	favorevole	γα	0	0	0	0	0
Variabili da traffico	sfavorevole		1.35	1.35	1.15	1	0
Montalett	favorevole		0	0	0	0	0
Variabili	sfavorevole	γα	1.5	1.5	1.3	1	1
Ritiro e viscosità, variazioni	favorevole		0	0	0	0	0
termiche	sfavorevole	γα	1.2	1.2	1	1	1

Parametro		Coeff.	M1	M2	SLE	SLE
angolo d'attrito	tan φ' _k	$\gamma_{j'}$	1	1.25	1	1
coesione	C'k	γ c'	1	1.25	1	1
resistenza non drenata	C _{uk}	γ_{cu}	1	1.4	1	1
peso unità di volume	γ	$\gamma_{ m g}$	1	1	1	1

Coefficienti parziali per azione ψ					
CARICHI	ψ o	ψ 1	ψ 2		
Carichi variabili su testa muro	0.60	0.60	0.00		
Carichi variabili su terrapieno	0.60	0.60	0.00		
Carichi variabili su testa muro in fase sismica	0.00	0.00	0.50		
Carichi variabili su terrapieno in fase sismica	0.00	0.00	0.50		
Carichi variabili da traffico	0.75	0.75	0.00		

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO NMOZ 20 D 26 CLSL0600004 A 22 di 39

Combinazione massima spinta terreno

<u>Spinta terreno M1 = Spinta terreno SLE</u>

Spinta Terreno	$\sigma_{\text{R,sx}}$	$\sigma_{\text{R,dx}}$	σ _{T,sx}	$\sigma_{\text{T,dx}}$	$\sigma_{w,sx}$	$\sigma_{\text{w,dx}}$
Spinta Terreno C1	0.52	0.52	0.52	0.52	1	1
Spinta Terreno C2	0.35	0.35	0.35	0.35	1	1
Spinta Terreno C3	0.52	0.35	0.52	0.35	1	1
Spinta Terreno C4	0.35	0.52	0.35	0.52	1	1

Spinta terreno M2

Spinta Terreno	$\sigma_{\text{R,sx}}$	$\sigma_{\text{R,dx}}$	$\sigma_{T,sx}$	$\sigma_{\text{T,dx}}$	$\sigma_{\text{w,sx}}$	$\sigma_{\text{w,dx}}$
Spinta Terreno C1	0.60	0.60	0.60	0.60	1	1
Spinta Terreno C2	0.42	0.42	0.42	0.42	1	1
Spinta Terreno C3	0.60	0.42	0.60	0.42	1	1
Spinta Terreno C4	0.42	0.60	0.42	0.60	1	1

I numeri in tabella rappresentano il prodotto tra i coefficienti di spinta e i coefficienti parziali sulle azioni

Carichi combinati

*G*₁= Peso propiro muro

Forza orizzontale permanente su testa muro Forza verticale permanente su testa muro Coppia permanente su testa muro

*G*₂= Spinta terreno

Spinta Acqua statica

Spinta dovuta a pressione uniforme permanente su terrapieno

G2,sism = Spinta dovuta a pressione uniforme permanente su terrapieno

*Q*₁= Azioni variabili da traffico

Q2= Forza orizzontale variabile su testa muro

Forza verticale variabile su testa muro

Coppia variabile su testa muro

E_x**=** Forza di inerzia orizzontale piedritti

Incremento sismico secondo il metodo di Mononobe-Okabe

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NMOZ 20 D 26 CLSL0600004 A 23 di 39

E_z= Forza di inerzia verticale piedritti

Combinazione di verifica

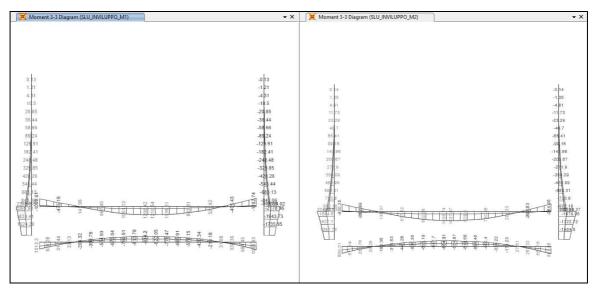
SLU A1-M1	G ₁	G ₂	Qı	Qı
SLU 1	1.35	1.35	0	0
SLU 2	1.35	1.35	1.35	0.90
SLU 3	1.35	1.35	0.81	1.50

SLU A2-M2	G ₁	G ₂	G ₂ Q ₁	
SLU 4	1.00	1.30	0	0
SLU 5	1.00	1.30	1.35	0.90
SLU 6	1.00	1.30	0.81	1.30

SISMICA/M2	G ₁	G _{2,sism}	Q ₁	Q2	Ex	Ez
SLU 7	1.00	1.00	0.00	0.00	1.00	1.00
SLU 8	1.00	1.00	0.00	0.00	1.00	-1.00
SLU 9	1.00	1.00	0.00	1.00	1.00	1.00
SLU 10	1.00	1.00	0.00	1.00	1.00	-1.00
SLU 11	1.00	1.00	0.00	0.50	1.00	1.00
SLU 12	1.00	1.00	0.00	0.50	1.00	-1.00

SLR QP	G ₁	G₂	Q ₁	Q ₂
SLE 1	1.00	1.00	0.00	0.00
SLE 2	1.00	1.00	0.00	0.00

SLR FREQ	G ₁	G₂	ď	ď
SLE 3	1.00	1.00	0.75	0.00
SLE 4	1.00	1.00	0.00	0.60


SLR RARA	G ₁	G₂	Q ₁	Q ₂
SLE 5	1.00	1.00	1.00	0.00
SLE 6	1.00	1.00	0.00	1.00

GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUP PAVIA	MENTO LICAME	DELLA LINI	EA MILANO - O TA MILANO O PIEVE EMAN	ROGORI	
SL06B - Prolungamento sottovia via Niccolò Macchiavelli	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo vasca per impianto di sollevamento acque	NM0Z	20	D 26	CLSL0600004	A	24 di 39

10 SOLLECITAZIONI

Di seguito si riportano l'inviluppo delle caratteristiche di sollecitazione ottenute sulla struttura.

10.1 STATO LIMITE ULTIMO

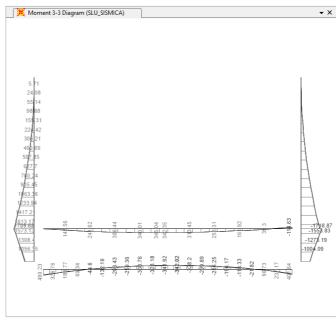
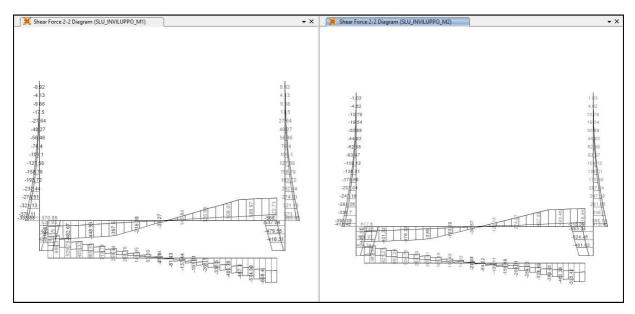



Figura 4: Inviluppi Diagrammi Momenti

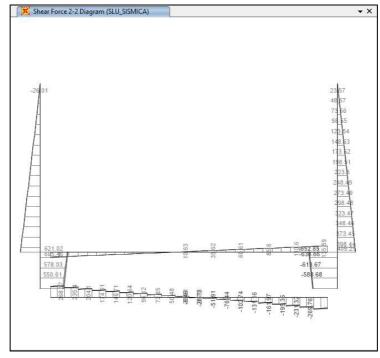


Figura 5: Inviluppi Diagrammi Taglio

GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUP PAVIA	MENTO LICAME	DELLA LIN	EA MILANO - (TA MILANO O PIEVE EMAN	ROGORI	
SL06B - Prolungamento sottovia via Niccolò Macchiavelli	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo vasca per impianto di sollevamento acque	NM0Z	20	D 26	CLSL0600004	A	26 di 39

10.2 STATO LIMITE ESERCIZIO

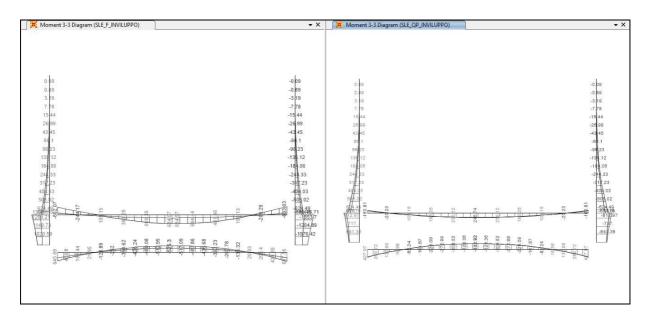
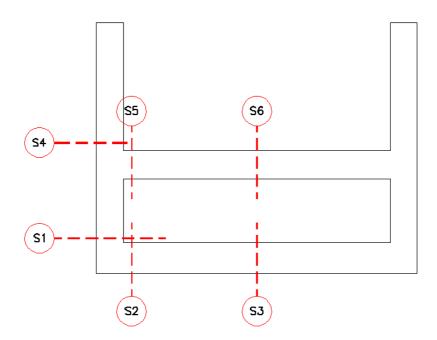
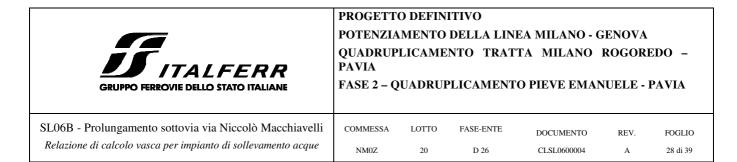


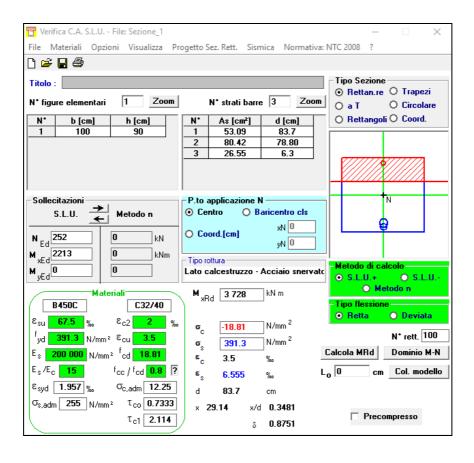
Figura 6: Inviluppi Diagramma Momenti




FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

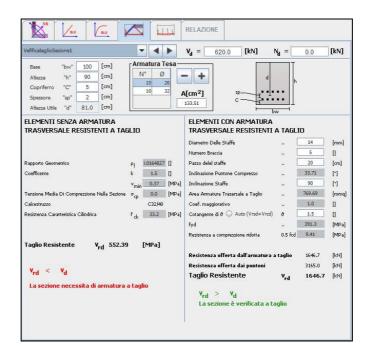
SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NM0Z 20 D 26 CLSL0600004 A 27 di 39

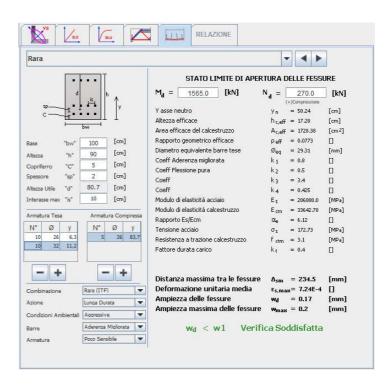

10.3 SEZIONI DI PROGETTO

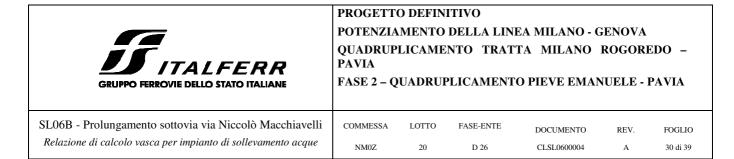
11 VERIFICHE SEZIONE 1

11.1 SLU -PRESSOFLESSIONE

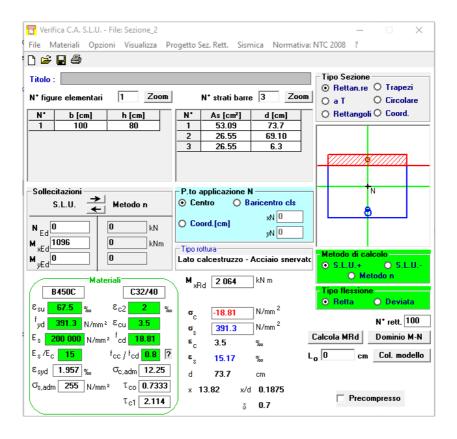

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA


SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO


NMOZ 20 D 26 CLSL0600004 A 29 di 39

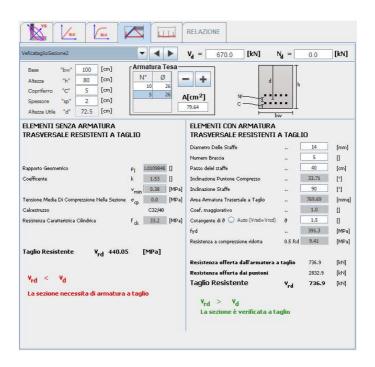
11.2 SLU - TAGLIO


11.3 SLE – FESSURAZIONE

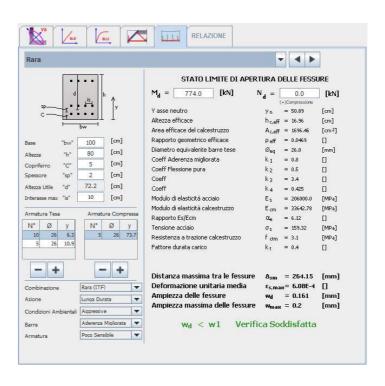
12 VERIFICHE SEZIONE 2

12.1 SLU – FLESSIONE

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO -PAVIA

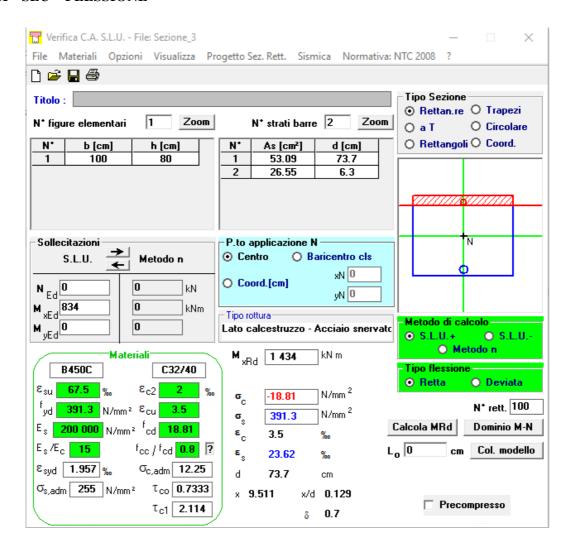

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque


COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NMOZ 20 D 26 CLSL0600004 A 31 di 39

12.2 SLU – TAGLIO

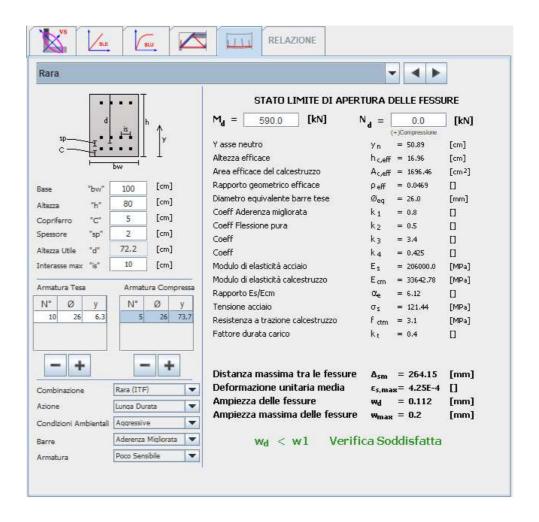

12.3 SLE – FESSURAZIONE

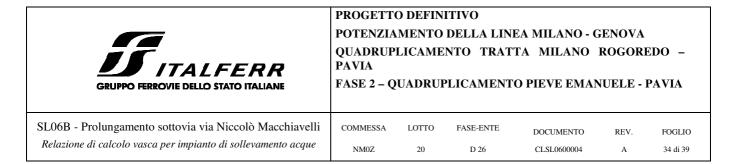
13 VERIFICHE SEZIONE 3

13.1 SLU – FLESSIONE

13.2 SLU - TAGLIO

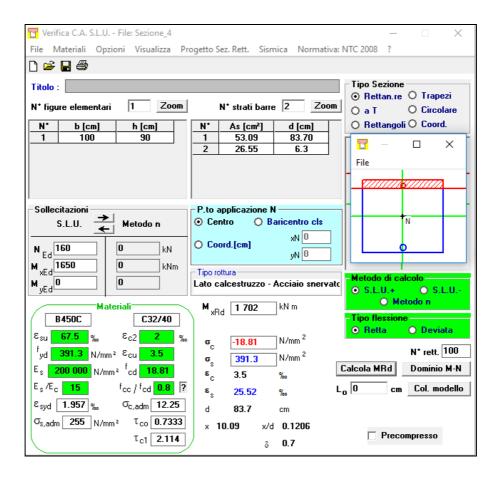
Non viene effettuata verifica essendo la sezione non sollecitata a taglio

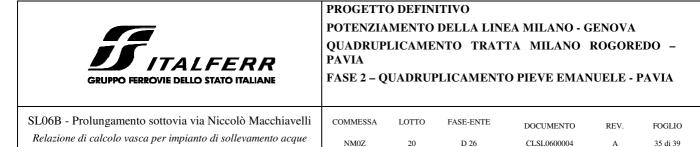

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

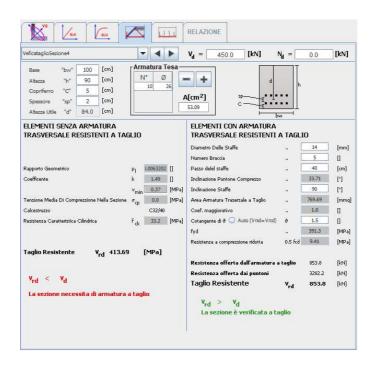

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

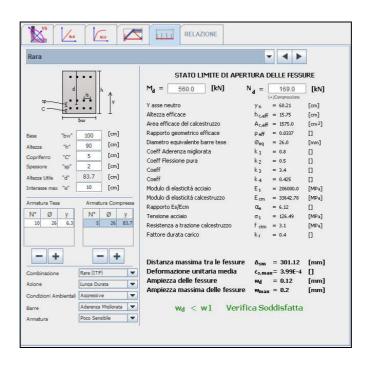
NMOZ 20 D 26 CLSL0600004 A 33 di 39

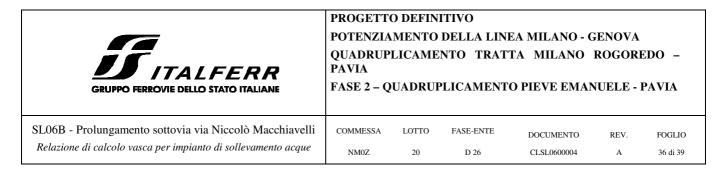

13.3 SLE – FESSURAZIONE



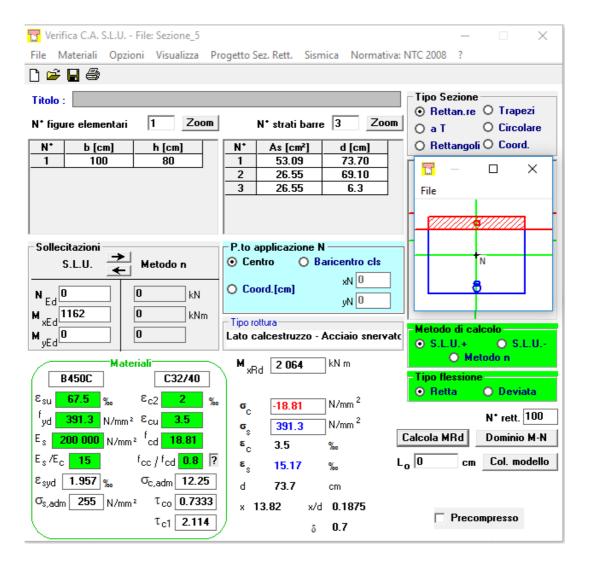

14 VERIFICHE SEZIONE 4

14.1 SLU – PRESSOFLESSIONE



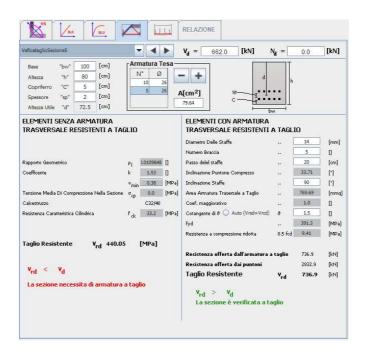


14.2 SLU – TAGLIO

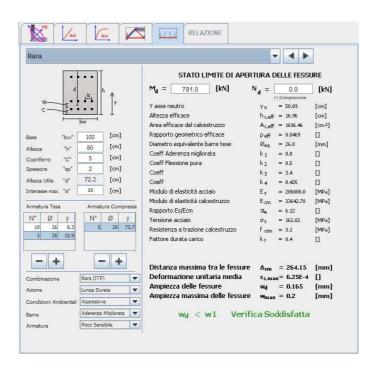

14.3 SLE – FESSURAZIONE

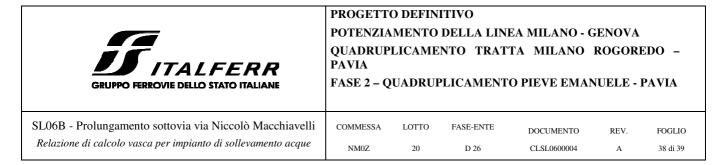
15 VERIFICHE SEZIONE 5

15.1 SLU – FLESSIONE

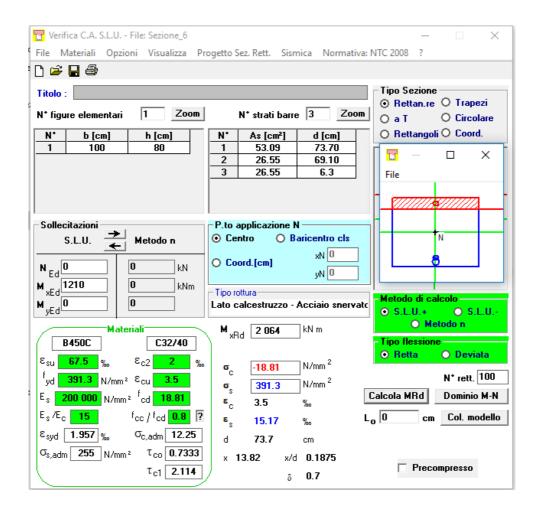

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA


SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO


NM0Z 20 D 26 CLSL0600004 A 37 di 39

15.2 SLU - TAGLIO


15.3 SLE – FESSURAZIONE

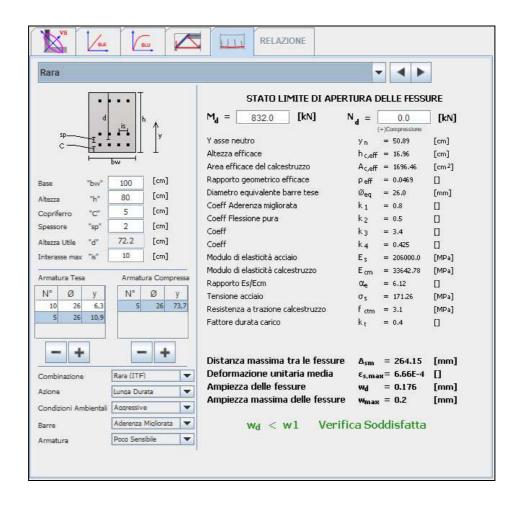
16 VERIFICHE SEZIONE 6

16.1 SLU – FLESSIONE

16.2 SLU – TAGLIO

Non viene effettuata verifica essendo la sezione non sollecitata a taglio

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA


FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE - PAVIA

SL06B - Prolungamento sottovia via Niccolò Macchiavelli Relazione di calcolo vasca per impianto di sollevamento acque

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NMOZ 20 D 26 CLSL0600004 A 39 di 39

16.3 SLE – FESSURAZIONE

