COMMITTENTE:

PROGETTAZIONE:

CUP: J47I09000030009

n. Elab.:

U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO

File: NM0Z20D26CLSL0900004A

POTENZIAMENTO DELLA LINEA MILANO-GENOVA QUADRUPLICAMENTO MILANO-ROGOREDO-PAVIA FASE 2 – QUADRUPLICAMENTO PIEVE EMANUELE – PAVIA

OPERE PRINCIPALI - SOTTOVIA E SOTTOPASSI

SL09 - Nuovo sottovia viale della Repubblica km 26+527,62

Relazione di calcolo opere di imbocco

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

N M 0 Z 2 0 D 2 6 C L S L 0 9 0 0 0 4 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autoriaato Data
А	EMISSIONE ESECUTIVA	CONSORZIO INTEGRA	Novembre 2018	F.Coppini/A.Maran	Novembre 2018	S.Borelli	Novembre 2018	F. Sagodi Novembra 2018
								Frances Frances Med della
								eft. Inge
								ALFERR D dine deg

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO NM0Z 20 D 26 CLSL0900004 A 2 di 28

INDICE

1	PR	EMESSA	3
2	DE	SCRIZIONE GENERALE	4
3	CA	RATTERISTICHE DEI MATERIALI	5
4	NO	RMATIVA DI RIFERIMENTO	6
5	CO	NDIZIONI GEOTECNICHE	7
6	CR	ITERI DI VERIFICA	8
	6.1	VERIFICHE DI RESISTENZA AGLI STATI LIMITE ULTIMI	8
	6.2	VERIFICHE AGLI STATI LIMITE DI ESERCIZIO	8
7	GE	OMETRIA DELLA STRUTTURA	11
8	MC	ODELLO DI CALCOLO	12
	8.1	PROGRAMMA DI CALCOLO	12
	8.2	MODELLAZIONE STRUTTURALE	12
	8.3	SCHEMA	13
9	AN	ALISI DEI CARICHI	14
	9.1	PESI PROPRI STRUTTURALI	14
	9.2	SOVRACCARICHI PERMANENTI PORTATI	14
	9.3	CARICHI ESTERNI SU TERRAPIENO	14
	9.4	CARICHI ESTERNI SU MURO	15
	9.5	AZIONI PROVENIENTI DAL TERRENO	16
	9.6	AZIONI PROVENIENTI DAI CARICHI MOBILI	17
	9.7	AZIONI SISMICHE	17
10	CO	MBINAZIONI DI CARICO	21
11		RIFICHE	
		SLU – FLESSIONE E PRESSOFLESSIONE	
	11.2	2 SLU - TAGLIO	26
	11.3	SLE - FESSURAZIONE	27
	11.3	3.1 (Stato limite di apertura delle fessure) - Combinazione Rara	28

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUP PAVIA	MENTO LICAME	DELLA LINI ENTO TRAT	EA MILANO - (FA MILANO NTO– PIEVE	ROGORI	
SL09 Nuovo sottovia viale della Repubblica km 26+520	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo opere di imbocco	NM0Z	20	D 26	CLSL0900004	A	3 di 28

1 PREMESSA

Nell'ambito degli interventi di potenziamento della linea Milano – Genova, si prevede il quadruplicamento della linea ferroviaria nella tratta Milano Rogoredo-Pavia; in prima fase il quadruplicamento interesserà il tratto di linea compreso fra le stazioni di Milano Rogoredo e Pieve Emanuele, per essere esteso in fase successiva fino a Pavia.

Il quadruplicamento in oggetto, a partire dall'uscita della stazione Milano Rogoredo, prosegue in affiancamento alla linea storica e su una nuova sede e si sviluppa a sud di Milano, estendendosi per circa 30 km lungo l'attuale linea ferroviaria tra i nodi di Milano Rogoredo e Pavia.

Figura 1 : Planimetria di progetto

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0900004	A	4 di 28

2 DESCRIZIONE GENERALE

La presente relazione ha per oggetto la verifica del muro di imbocco dello scatolare SL09. L'opera è necessaria per consentire lo spostamento dei binari della linea storica.

Il muri di imbocco sunno suddivisi in 4 conci:

- Concio O1-O2 con sezione tipologica ad U con larghezza variabile Lato Ovest
- Concio E2-E3-E4-E5 con sezione tipologica ad U con larghezza variabile Lato Est

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NMOZ 20 D 26 CLSL0900004 A 5 di 28

3 CARATTERISTICHE DEI MATERIALI

CALCESTRUZZO

Classe di resistenza calcestruzzo		C32/40			
Caratteristiche del calcestruzzo					
resistenza caratteristica cubica	$R_{ck} \\$	40	[MPa]		
resistenza caratteristica cilindrica	f_{ck}	33.2	[MPa]		
resistenza cilindrica media	f_{cm}	41.2	[MPa]		
resistenza media a trazione semplice	f_{ctm}	3.1	[MPa]		
resistenza caratteristica a trazione (fratt. 5%)	f_{ctK}	2.2	[MPa]		
modulo elastico istantaneo	E_{cm}	33,643	[MPa]		
Resistenze di calcolo				CO	I
resistenza di calcolo a compressione	f_{cd}	18.8	[MPa]	γ c	
resistenza di calcolo a trazione	f_{ctd}	1.4	[MPa]	lphacc	
coefficiente di espansione termica lineare	α	1.00E-05	[°C ⁻¹]		

PAVIA

ACCIAIO PER CEMENTO ARMATO

Tipo di acciaio		B450C				
Caratteristiche del calcestruzzo						
tensione caratteristica di snervamento	$f_{yk} \\$	450	[MPa]			
tensione caratteristica di rottura	$f_{tk} \\$	540	[MPa]			
Resistenze di calcolo				CO	EFFIC	CIENTI
resistenza di progetto	$f_{\text{yd}} \\$	391.3	[MPa]	γs	=	1.15
modulo elastico	E_S	200000	[MPa]			

Per il calcestruzzo armato si assume γ_{cls} 25 kN/m³

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0900004	A	6 di 28

4 NORMATIVA DI RIFERIMENTO

Il dimensionamento e la verifica degli elementi strutturali sono stati condotti nel rispetto delle seguenti normative:

- <u>Decreto Ministeriale 14 gennaio 2008</u>: Nuove norme tecniche per le costruzioni;
- <u>Circolare 2 febbraio 2009, n.617</u>: Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008;
- <u>Circolare 15 ottobre 1996, n.252 AA.GG./S.T.C.</u>: Istruzioni per l'applicazione delle "Nuove norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche" di cui al decreto ministeriale 9 gennaio 1996:
- RFI DTC SI MA IFS 001 B: "Manuale di progettazione delle opere civili" del 22/12/2017.
- RFI DTC SI PS MA IFS 001 B: Sezione 2 Ponti e Strutture.

Riferimenti STI:

- Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea;
- Regolamento (UE) N. 1300/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per l'accessibilità del sistema ferroviario dell'Unione per le persone con disabilità e le persone a mobilità ridotta;
- Regolamento (UE) N. 1301/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "energia" del sistema ferroviario dell'Unione europea;
- Regolamento (UE) N. 1303/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità concernente la "sicurezza nelle gallerie ferroviarie" del sistema ferroviario dell'Unione europea;
- Regolamento (UE) 2016/919 della Commissione del 27 maggio 2016 relativo alla specifica tecnica di interoperabilità per i sottosistemi "controllo-comando e segnalamento" del sistema ferroviario nell'Unione europea.

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NMOZ 20 D 26 CLSL0900004 A 7 di 28

5 CONDIZIONI GEOTECNICHE

ZONA	SONDAGGIO DI RIFERIMENTO	PROFONDITA'	UNITA' TERRENO	γ _{sat} [kN/m ³]	γ _d [kN/m³]
17	PNMP21P06	da 0 a 10m	Sg	21	18
17	PINIVIPZIPOO	da 10m a 30m	S	21	18

Φ'	' [°]	Φ ′ [°]	Φ ′ [°]	E' _{op} [I	E' _{op} [MPa] Vs [m/s]		E' _{op} [MPa]		categoria	G ₀ [N	/ІРа]
max	min	laboratorio	scelto	max	min	max	min	terreno	max	min	
29	23		23	11	3	137	98	_	41	21	
30	30		30	51	28	368	279	C	296	171	

PROGETTO DEFINITIVO)			
POTENZIAMENTO DELI	LA LINEA	MILANO -	GENOVA	
QUADRUPLICAMENTO PAVIA	TRATTA	MILANO	ROGOREDO	-

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0900004	A	8 di 28

6 CRITERI DI VERIFICA

6.1 VERIFICHE DI RESISTENZA AGLI STATI LIMITE ULTIMI

Si è verificato che il valore di progetto degli effetti delle azioni, ovvero delle sollecitazioni flettenti M_d sia minore dei corrispondenti momenti resistenti M_r delle sezioni di progetto.

La verifica di resistenza delle sezioni nei vari elementi strutturali, viene condotta tenendo conto delle condizioni più gravose che si individuano dall'inviluppo delle sollecitazioni agenti nelle diverse combinazioni di carico.

Le combinazioni e i coefficienti moltiplicativi delle singole azioni vengono definiti in base a quanto indicato nel D.M. 14 gennaio 2008.

Per quanto riguarda le verifiche a taglio ultimo, si è fatto riferimento al paragrafo 4.1.2.1.3 "Resistenza nei confronti di sollecitazioni taglianti" del D.M. 14 gennaio 2008.

6.2 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

Definizione degli stati limite di fessurazione

In ordine di severità crescente si distinguono i seguenti stati limite:

- stato limite di decompressione nel quale, per la combinazione di azioni prescelta, la tensione normale è ovunque di compressione ed al più uguale a 0;
- stato limite di formazione delle fessure, nel quale, per la combinazione di azioni prescelta, la tensione normale di trazione nella fibra più sollecitata è:

$$\sigma_t = \frac{f_{ctm}}{1,2}$$

 stato limite di apertura delle fessure nel quale, per la combinazione di azioni prescelta, il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

$$w_1 = 0.2 \text{ mm}$$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Lo stato limite di fessurazione deve essere fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione.

Condizioni ambientali

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUP PAVIA	MENTO LICAME	DELLA LINI NTO TRAT	EA MILANO - (FA MILANO NTO– PIEVE	ROGORI	
SL09 Nuovo sottovia viale della Repubblica km 26+520	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo opere di imbocco	NM0Z	20	D 26	CLSL0900004	A	9 di 28

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature metalliche, possono essere suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato nella tabella seguente:

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Nel caso in esame si considera l'opera sottoposta a condizioni aggressive.

Scelta degli stati limite di fessurazione

Nella tabella sottostante sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle esigenze sopra riportate.

			Armatura				
Gruppi di esigenze	Condizioni ambientali	Combinazione di azioni	Sensibile	Poco sensibile			
			Stato limite	$\mathbf{w_d}$	Stato limite	$\mathbf{w_d}$	
		frequente	ap. fessure	≤w ₂	ap. fessure	≤w ₃	
a Ordinarie		quasi permanente	ap. fessure	≤w ₁	ap. fessure	≤w ₂	
		frequente	ap. fessure	$\leq w_1$	ap. fessure	≤w ₂	
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁	
		frequente	formazione fessure	-	ap. fessure	≤w ₁	
с	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁	

Come da manuale RFI DTC SI PS MA IFS 001 B (2.5.1.8.3.2.4) si assume in questo caso per la verifica a fessurazione la combinazione Rara e come limite massimo di apertura delle fessure w1=0.2 mm, (per strutture a permanente contatto con il terreno).

PROGETTO	DEFIN	ITIVO							
POTENZIAMENTO DELLA LINEA MILANO - GENOVA									
QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA									
FASE 2 – PAVIA	QUADI	RUPLICAME	NTO- PIEVE	EMANU	ELE -				
COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO				

CLSL0900004

10 di 28

Α

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

Stato limite di apertura delle fessure

Il valore caratteristico di calcolo di apertura delle fessure (w_d) non deve superare i valori nominali w_1 , w_2 , w_3 secondo quanto riportato nella Tabella sopra riportata.

NM0Z

20

D 26

Il valore caratteristico di calcolo è data da:

$$W_d = 1,70 \cdot W_m$$

dove w_m rappresenta l'ampiezza media delle fessure.

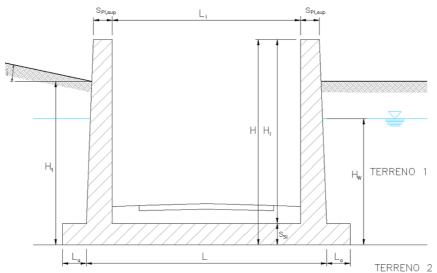
L'ampiezza media delle fessure w_m è calcolata come prodotto della deformazione media delle barre d'armatura \mathcal{E}_{sm} per la distanza media tra le fessure Δ_{sm} :

$$W_m = \mathcal{E}_{sm} \cdot \Delta_{sm}$$

Per il calcolo di \mathcal{E}_{sm} e Δ_{sm} vanno utilizzati criteri consolidati riportati nella letteratura tecnica. \mathcal{E}_{sm} può essere calcolato tenendo conto dell'effetto del "tension stiffening" nel rispetto della limitazione:

$$\varepsilon_{sm} \geq 0.6 \cdot \frac{\sigma_s}{E_s}$$

con σ_s tensione nell'acciaio dell'armatura tesa (per sezione fessurata) nelle condizioni di carico considerate ed E_s è il modulo elastico dell'acciaio.


POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0900004	A	11 di 28

7 GEOMETRIA DELLA STRUTTURA

Parete verticale	SpI	0.8	m
Spessore Soletta Inferiore	S _{SI}	0.8	m
Larghezza totale Altezza totale	L H	13.51 6.75	
Larghezza interna	Li	11.91	m
Altezza Interna	Hi	5.95	m
Larghezza ali	Le	0	m
Altezza Terreno Inclinazione	Ht	6.75	m
terreno	H _P	0	m

Falda	Interagente Muro						
Peso specifico	γ _w	10	kN/m ³				
Quota falda	$H_{\mathbf{w}}$	1.09	m				

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NMOZ 20 D 26 CLSL0900004 A 12 di 28

8 MODELLO DI CALCOLO

8.1 PROGRAMMA DI CALCOLO

L'analisi è stata effettuata per elementi finiti attraverso l'ausilio del programma di calcolo "SAP2000".

8.2 MODELLAZIONE STRUTTURALE

Il modello di calcolo attraverso il quale è stata analizzata la struttura e schematizzato da un rettangolo costituito da elementi monodimensionali vincolati su un letto di molle alla winkler.

Per i coefficienti del sottosuolo sono stati adottati i seguenti valori

 $\begin{array}{ll} \bullet & \text{Coefficiente verticale} & k_v = 7837 \; k\text{N/m}^3 \\ \bullet & \text{Coefficiente orizzontale} & k_h = 3918 \; k\text{N/m}^3 \\ \end{array}$

Sono stati utilizzati molle per unità di lunghezza attribuita agli elementi della soletta inferiore.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO - PAVIA FASE 2 - QUADRUPLICAMENTO- PIEVE EMANUELE - PAVIA						
SL09 Nuovo sottovia viale della Repubblica km 26+520	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo opere di imbocco	NM0Z	20	D 26	CLSL0900004	A	13 di 28	

8.3SCHEMA

Il modello è formato da 12 elementi monodimensionale a cui è assegnata la sezione specifica dell'elemento corrispondente

• Gli elementi 1,4,6,7 sono vincolati con delle molle con rigidezza k_{ν} e k_h ;

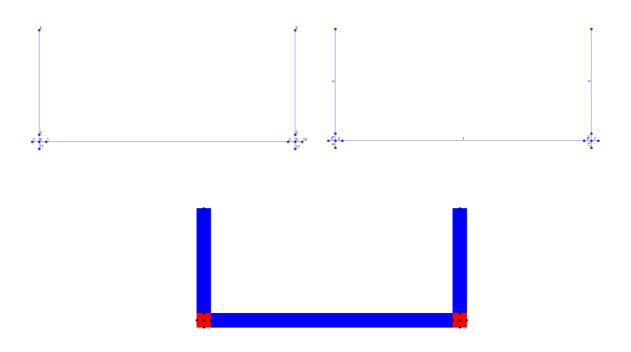


Figure 1 : Schema modello di calcolo

ITALFERR.
GRUPPO FERROVIE DELLO STATO ITALIANE

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0900004	A	14 di 28

9 ANALISI DEI CARICHI

9.1 PESI PROPRI STRUTTURALI

				γ					
		H [m ²]		[kN/m³]		[m]		[kN/m]	
Soletta Inferiore	PP_{SI}	0.80	Х	25	Х	1	=,	20.0	
Piedritto	PP_{PI}	0.90	Χ	25	Χ	1	=	20.0	

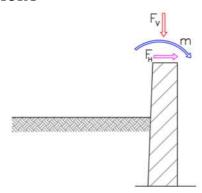
9.2 SOVRACCARICHI PERMANENTI PORTATI

Data l'incertezza del carico, a favore di ricurezza non sarà considerato

9.3CARICHI ESTERNI SU TERRAPIENO

Pressione uniforme permanente su terrapieno $q_{,P}$ 0 [kN/m/m] Pressione uniforme variabile su terrapieno $q_{,v}$ 0 [kN/m/m]

Spinta dovuta a pressione uniforme permanente su terrapieno $\sigma_{pu}(k_0) = k_0 \cdot q_{,P}$ Spinta dovuta a pressione uniforme variabile su terrapieno $\sigma_{pv}(k_0) = k_0 \cdot q_{,P}$



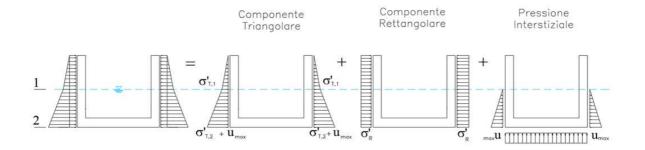
FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO NM0Z 20 D 26 CLSL0900004 A 15 di 28

9.4CARICHI ESTERNI SU MURO

Forza orizzontale permanente su testa muro	FH,P	0	[kN/m]
Forza verticale permanente su testa muro	Fv,p	0	[kN/m]
Coppia permanente su testa muro	m, _P	0	[kNm/m]
Forza orizzontale variabile su testa muro	$F_{H,V}$	0	[kN/m]
Forza verticale variabile su testa muro	$F_{V,V}$	0	[kN/m]
Coppia variabile su testa muro	m,v	0	[kNm/m]


POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0900004	A	16 di 28

9.5AZIONI PROVENIENTI DAL TERRENO

Pressine interstiziale

 $u_{max} = 26.6 [kN/m^2]$

Tensioni litostatiche verticali : componente Triangolare

Tensione litostatica verticale efficace in "1" $\sigma'_{T,1} = \gamma_{t2} \times (H_t - H_w) = 101.90 \text{ [kN/m}^2]$

Tensione litostatica verticale efficace in "2" $\sigma'_{T,2} = \sigma'_{T,1} + \gamma'_{t2} \times H_w = 110.60 \text{ [kN/m}^2]$

Tensioni litostatiche verticali : componente Rettangolare

Tensione litostatica verticale efficace estradosso Soletta

σ'_{R}	=	0.0	[kN/m ²]

M2

SLE

M1

Coefficienti di spinta Terreno 1

Deformazione orizzontale nulla $k_0 = 1$ -sen ϕ' 0.56 0.64 0.56 Equilibrio limite attivo $k_a = (1-\text{sen}\phi')/(1+\text{sen}\phi')$ 0.39 0.47 0.39

Tensioni totali orizontali

 $\sigma(k_0) = k_0 \cdot \sigma'_R + k_0 \cdot \sigma'_T + u \qquad 1$ $\sigma(k_a) = k_a \cdot \sigma'_R + k_a \cdot \sigma'_T + u \qquad 0$

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE -PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0900004	A	17 di 28

9.6AZIONI PROVENIENTI DAI CARICHI MOBILI

Data l' incertezza del carico, a favore di ricurezza non sarà considerato

9.7AZIONI SISMICHE

CARATTERISTICHE SISMICHE

PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

vita nominale Classe d'uso	V_N	75 III	anni
coefficiente d'uso	C_{U}	1.5	
periodo di riferimento per l'azione sismica Stato limite ultimo di salvaguardia della vita SLV	V_R	112.5	anni
probabilità di superamento nel periodo di riferimento	P_{VR}	10%	
Periodo di ritorno dell'azione sismica	T_R	1067.8	anni
PARAMETRI CHE DEFINISCONO L'AZIONE SISMICA			
accelerazione orizzontale massima al sito	ag	0.903	$[m/s^2]$
accelerazione orizzontale massima al sito	ag	0.092	[g]
coefficiente di amplificazione spettrale massima	F_0	2.510	
periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale	T _C *	0.287	[s]
CATEGORIE DI SOTTOSUOLO E CONDIZIONI STRATIGRAFICHE			
Categoria di sottosuolo		С	
coefficiente di amplificazione stratigrafica	S _S	1.50	
coefficiente di sottosuolo	C_{C}	1.59	
Categoria topografica		T1	
coefficiente di amplificazione topografica	S _T	1	
$S_S \times S_T$	S	1.50	
coefficiente di smorzamento viscoso $V(10/(5+x))$	x h	5% 1	
1120/(2.10)	11	т	
PARAMETRI DI ANALISI			

PARAMETRI DI ANALISI

accelerazione orizzontale massima al sito	a _{max}	1.354	$[m/s^2]$
fattore di struttura	q	1	

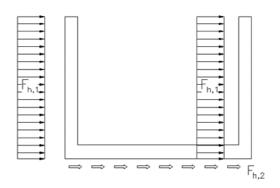
POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0900004	A	18 di 28

coefficiente di riduzione dell'accelerazione massima	β_{m}	1
coefficiente sismico orizzontale	k_h	0.138
coefficiente sismico verticale	k_v	0.069
Terreno ad elevata permeabilità dinamica		3
Peso specifico "sismico" del terreno	γ*	8
coefficiente sismico orizzontale	\mathbf{k}_{h}	0.14
coefficiente sismico verticale	k_{v}	0.07
	θ +	16.6
	θ –	19.0
	φ'м2	21.3
	δ	0.0
	δ_{M2}	0.0
angolo di inclinazione, rispetto all'orizzontale, della parete del muro rivolta a monte	Ψ	90
angolo di inclinazione, rispetto all'orizzontale, della superficie del terrapieno	β	0
coefficiente di spinta sismica M2	Ke	0.88


POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0900004	A	19 di 28

FORZE SISMICHE

Forze di inerzia orizzontali

 $F_h = k_h \times W$

Forze di inerzia verticali

 $F_v = k_v \times W$

Sisma H

Forza di inerzia orizzontale piedritti	F _{h1} =	$(PP_{PI})\cdot k_h =$	2.76	[kN/m]
Forza di inerzia orizzontale inferiore Sisma V	F _{h2} =	$(PP_{SI})\cdot k_h =$	2.76	[kN/m]
Forza di inerzia verticale piedritti	F _{v1} =	$(PP_{PI})\cdot k_v =$	1.38	[kN/m]

Forza di inerzia verticale Soletta inferiore

 $_{2}=$ (PP_{SI})· $k_{v}=$

1.38 [kN/m]

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NMOZ 20 D 26 CLSL0900004 A 20 di 28

Incremento sismico secondo il metodo di Mononobe-Okabe

(secondo Eurocodice 8-5)

$$E_d = \frac{1}{2} \cdot \gamma^* \cdot H^2 \cdot (1 \pm k_v) \cdot K + E_{ws} + E_{wd}$$

 E_{ws} = spinta statica acqua ; K = coefficiente di Mononobe-Okabe E_{wd} = spinta dinamica acqua (Westergaard)

Alta permeabilità (k > 5 x 10-4m/s)

E_{wd}=7/12 k_h γ_w H²

 $\gamma^* = \gamma - \gamma_w$

 $tg \, \theta = \frac{\gamma_s}{\gamma_s - \gamma_w} \frac{k_h}{1 \mp k_v}$

γ_s = peso specifico dei grani

Bassa permeabilità (k < 5 x 10-4m/s)

E_{wd}= 0

 $\gamma^* = \gamma - \gamma$

 $tg\theta = \frac{\gamma}{\gamma - \gamma} \frac{k_h}{1 \mp k}$

γ = peso di volume terreno naturale

Spinta statica dell'acqua E_{ws} 5.90 [kN/m] Spinta idrodinamica dell'acqua E_{wd} 1 [kN/m]

Spinta totale del terreno nel caso sismico S_{H,sism} 172 [kN/m]

Spinta totale del terreno nel caso sismico $E_{d} = E_{ws} + E_{wd} + S_{H,sism}$ 179 [kN/m]

20

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO -**PAVIA**

FASE 2 - QUADRUPLICAMENTO- PIEVE EMANUELE -**PAVIA**

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA NM0Z

FASE-ENTE LOTTO D 26

DOCUMENTO CLSL0900004

FOGLIO REV. 21 di 28 A

10 COMBINAZIONI DI CARICO

COEFFICENTI PARZIALI DI **SICUREZZA**

Carichi	Effetto	Coeff.	EQU/UPL	A1 (STR)	A2 (GEO)	SLE	Sism
Carichi Permanenti	favorevole	24	0.9	1	1	1	1
	sfavorevole	γ_{G1}	1.1	1.35	1	1	1
Carichi Permanenti non strutturali	favorevole	24	0	0	0	1	1
	sfavorevole	$\gamma_{\sf G2}$	1.5	1.35	1.3	1	1
Variabili da traffico	favorevole	γα	0	0	0	0	0
variabili da traffico	sfavorevole		1.35	1.35	1.15	1	1
37 ' 1 '1'	favorevole	γα	0	0	0	0	0
Variabili	sfavorevole		1.5	1.5	1.3	1	1
Ritiro e viscosità, variazioni termiche	favorevole		0	0	0	0	0
	sfavorevole	γα	1.2	1.2	1	1	1

Parametro		Coeff.	M1	M2	SLE	SLE
angolo d'attrito	tan φ' _k	$\gamma_{\rm j'}$	1	1.25	1	1
coesione	C'k	γc'	1	1.25	1	1
resistenza non drenata	Cuk	γ_{cu}	1	1.4	1	1
peso unità di volume	γ	$\gamma_{ m g}$	1	1	1	1

Coefficienti parziali per azione ψ						
CARICHI	ψ_{0}	ψ_{1}	ψ_{2}			
Carichi variabili su testa muro	0.60	0.60	0.00			
Carichi variabili su terrapieno	0.60	0.60	0.00			
Carichi variabili su testa muro in fase sismica	0.00	0.00	0.50			
Carichi variabili su terrapieno in fase sismica	0.00	0.00	0.50			

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NMOZ 20 D 26 CLSL0900004 A 22 di 28

Combinazione massima spinta terreno

<u>Spinta terreno M1 = Spinta terreno SLE</u>

Spinta Terreno	$\sigma_{\text{R,sx}}$	$\sigma_{\text{R,dx}}$	σ _{T,sx}	$\sigma_{\text{T,dx}}$	σ _{w,sx}	$\sigma_{\text{w,dx}}$
Spinta Terreno C1	0.35	0.35	0.35	0.35	1	1

Spinta terreno M2

Spinta Terreno	$\sigma_{\text{R,sx}}$	$\sigma_{\text{R,dx}}$	$\sigma_{T,sx}$	$\sigma_{\text{T,dx}}$	$\sigma_{w,sx}$	$\sigma_{\text{w,dx}}$
Spinta Terreno C1	0.42	0.42	0.42	0.42	1	1

I numeri in tabella rappresentano il prodotto tra i coefficienti di spinta e i coefficienti parziali sulle azioni

Carichi combinati

 G_1 = Peso propiro muro

Forza orizzontale permanente su testa muro Forza verticale permanente su testa muro Coppia permanente su testa muro

 G_2 = Spinta terreno

Spinta Acqua statica

Spinta dovuta a pressione uniforme permanente su terrapieno

 $G_{2,sism}$ = Spinta dovuta a pressione uniforme permanente su terrapieno

 Q_1 = Spinta dovuta a pressione uniforme variabile su terrapieno

 Q_2 = Forza orizzontale variabile su testa muro

Forza verticale variabile su testa muro

Coppia variabile su testa muro

 E_x = Forza di inerzia orizzontale piedritti

Incremento sismico secondo il metodo di Mononobe-Okabe

 E_z = Forza di inerzia verticale piedritti

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NM0Z 20 D 26 CLSL0900004 A 23 di 28

Combinazione di verifica

SLU A1-M1	G_1	G_2	Q ₁	\mathbb{Q}_2	
SLU 1	1.35	1.35	0	0	
SLU 2	1.35	1.35	1.50	0.90	
SLU 3	1.35	1.35	0.90	1.50	

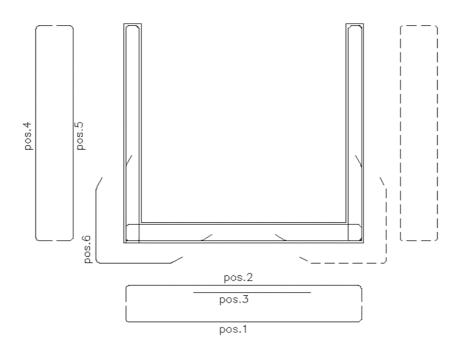
SLU A2-M2	G_1	G_2	Qı	Q2
SLU 4	1.00	1.30	0	0
SLU 5	1.00	1.30	1.30	0.90
SLU 6	1.00	1.30	0.78	1.30

SISMICA/M2	G ₁	G _{2,sism}	Q ₁	\mathbf{Q}_2	$\mathbf{E}_{\mathbf{x}}$	$\mathbf{E}_{\mathbf{z}}$
SLU 7	1.00	1.00	0.00	0.00	1.00	1.00
SLU 8	1.00	1.00	0.00	0.00	1.00	-1.00
SLU 9	1.00	1.00	0.50	1.00	1.00	1.00
SLU 10	1.00	1.00	0.50	1.00	1.00	-1.00
SLU 11	1.00	1.00	1.00	0.50	1.00	1.00
SLU 12	1.00	1.00	1.00	0.50	1.00	-1.00

SLR QP	G ₁	G ₂	Q1	Q 2
SLE 1	1.00	1.00	0.00	0.00
SLE 2	1.00	1.00	0.00	0.00

SLR FREQ	G ₁	G ₂	Q1	\mathbf{Q}_2	
SLE 3	1.00	1.00	0.60	0.00	
SLE 4	1.00	1.00	0.00	0.60	

SLR RARA	G_1	G_2	\mathbf{Q}_1	\mathbf{Q}_2
SLE 5	1.00	1.00	1.00	0.00
SLE 6	1.00	1.00	1.00	0.00

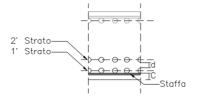


FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0900004	A	24 di 28

11 VERIFICHE



Piedritti Soletta Inferiore

Copriferro C[mm]	Correnti φ[mm]	Distanziatori d[mm]		
50	14	20		
50	14	20		

Armatura

	pos	Strato 1			Strato 2		in 2°strato
		n°/ml	φ[mm]		n°/ml	φ[mm]	
	1	5	20	+	0	0	NO
Piedritti	2	5	20	+	0	0	NO
	3	5	16	+	0	0	NO
	4	5	20	+	0	0	NO
Soletta inferiore	5	5	20	+	0	0	NO
	6	5	20	+	0	0	NO

FASE 2 - QUADRUPLICAMENTO- PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NMOZ 20 D 26 CLSL0900004 A 25 di 28

11.1 SLU – FLESSIONE E PRESSOFLESSIONE

 $\mathsf{b}_{\boldsymbol{w}}$ Larghezza sezione h_{sez} Altezza sezione Area armatura tesa A'_{s,tesa} d Altezza utile sezione Area armatura compressa A's,comp N_{ed} Sforzo normale Momento flettente \mathbf{M}_{ed} M_{rd} Momento Resistente

	$b_{\boldsymbol{w}}$	h_{sez}	A' _{s,tesa}	d	A' _{s,comp}	N_{ed}	\mathbf{M}_{ed}	\mathbf{M}_{rd}	M_{ed}/M_{rd}	
	[mm]	[mm]	[mm ²]	[mm]	[mm ²]	[kN]	[kN/m]	[kN/m]	[-]	
S1 (Mmax)	1000	800	3141.6	726.0	1570.8	127.2	517.3	892.7	0.58	Verifica Soddisfatta
S1 (Nmin)	1000	800	3141.6	726.0	1570.8	160.6	296.1	903.7	0.33	Verifica Soddisfatta
S2 (Mmax)	1000	800	3141.6	726.0	1570.8	0.0	536.8	850.7	0.63	Verifica Soddisfatta
S3 (Mmax)	1000	800	2576.1	726.8	1570.8	0.0	428.8	705.7	0.61	Verifica Soddisfatta

Il massimo tasso di sfruttamento a flessione è 0.61

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NMOZ 20 D 26 CLSL0900004 A 26 di 28

11.2 SLU - TAGLIO

 ρ_{l} Rapporto geometrico di armatura longitudinale

 $k & 1 + (200/d)^{1/2} \le 2$ $v_{min} & 0.035 k^{3/2} f_{ck}$

 σ_{cp} Tensione media di compressione nella sezione

 f_{ck} Resistenza caratteristica cilindrica f_{cd} Resistenza di calcolo a compressione

f'cd Resistenza a compressione del cls ridotta

 $\begin{array}{ll} f_{yd} & \text{Resistenza di progetto acciaio} \\ n^{\circ}\varphi & \text{Numero armature trasversali} \\ \textit{\O}_{d} & \text{Diametro armature trasversali} \end{array}$

s Interasse armature trasversali
A_{sw} Area dell'armatura trasversale

lpha Angolo di inclinazione armatura trasversale rispetto asse trave

 $lpha_{\text{C}}$ Coefficiente maggiorativo in elementi compressi

v1 Coefficiente di riduzione resistenza a compressione cls

V_{Rsd} Resistenza a taglio trazione

V_{Rcd} Resistenza a taglio compressione

V_{ed} Sforzo di taglioV_{rd} Resistenza a taglio

Senza elementi trasversali resistenti a taglio

	ρ_{I}	k	v_{min}	$\sigma_{\sf cp}$	f_{ck}	f_{cd}	$V_{\sf ed}$	\mathbf{V}_{rd}	V_{ed}/V_{rd}	
			[MPa]	[MPa]	[MPa]	[MPa]	[kN]	[kN]	[-]	
S1 (Tmax)	0.0	1.5	0.4	0.2	33.2	18.8	174.3	344.8	0.51	Verifica Soddisfatta
S2 (Tmax)	0.0	1.5	0.4	0.0	33.2	18.8	144.7	322.9	0.45	Verifica Soddisfatta
S3 (Tmax)	0.0	1.5	0.4	0.0	33.2	18.8	144.7	302.4	0.48	Verifica Soddisfatta

Il massimo tasso di sfruttamento a taglio è 0.51

POTENZIAMENTO DELLA LINEA MILANO - GENOVA QUADRUPLICAMENTO TRATTA MILANO ROGOREDO – PAVIA

FASE 2 – QUADRUPLICAMENTO– PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NM0Z 20 D 26 CLSL0900004 A 27 di 28

11.3 SLE - FESSURAZIONE

c Ricoprimento armatura s Interasse barre tese

k₁ Coefficiente di aderenza del cls alla barra

k₂ Coefficiente di forma del diagramma delle tensioni

 k_3 3.4 k_4 0.425

 A_s Area della sezione di acciaio nell'area $A_{c\,eff}$

h_{c,eff} Altezza efficace di calcestruzzo teso attorno all'armatura

A_{c,eff} Area efficace di calcestruzzo teso attorno all'armatura

 ρ_{eff} A_s/A_{c,eff}

 $\Delta_{\text{s.max}}$ distanza media tra le fessure

 $\sigma_{\!\scriptscriptstyle S}$ Tensione nell'armatura tesa considerando la sezione fessurata

 α_e rapporto E_s/E_{cm}

k_t Fattore dipendente dalla durata del carico

 ϵ_{eq} Deformazione unitaria media delle barre d'armatura

N Sforzo normaleM Momento flettente

 \mathbf{w}_{d} Valore di calcolo dell'apertura delle fessure

w_{max} Valore limite di apertura delle fessure

Criteri

Condizioni Ambientali Aggressive
Armatura Poco Sensibile

FASE 2 - QUADRUPLICAMENTO- PIEVE EMANUELE - PAVIA

SL09 Nuovo sottovia viale della Repubblica km 26+520 Relazione di calcolo opere di imbocco

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
NM0Z	20	D 26	CLSL0900004	A	28 di 28

11.3.1 (Stato limite di apertura delle fessure) - Combinazione Rara

	С	S	ϕ_{eq}	k ₁	k ₂	k ₃	k ₄	As	h _{c,eff}	$A_{c,eff}$	ρ_{eff}	$\Delta_{\text{s,max}}$
	[mm]	[mm]	[mm]	[]	[]	[]	[]	[mm ²]	[mm]	[mm ²]	[]	[mm]
S1 (Mmax)	50	100	20	0.8	0.5	3.4	0.425	3141.6	185.0	185000	0.02	370
S1 (Nmin)	50	100	20	0.8	0.5	3.4	0.425	3141.6	185.0	185000	0.02	370
S2 (Mmax)	50	100	20	0.8	0.5	3.4	0.425	3141.6	185.0	185000	0.02	370
S3 (Mmax)	50	100	18.222	0.8	0.5	3.4	0.425	2576.1	183.0	183049	0.01	390

PAVIA

	$0.6 s_s / E_s$	$\sigma_{\!\scriptscriptstyle S}$	α_{e}	k_{t}	$\epsilon_{\sf eq}$
	[]	[MPa]	[]	[]	[]
S1 (Mmax)	0.0003	89.1	5.94	0.4	0.0003
S1 (Nmin)	0.0003	89.1	5.94	0.4	0.0003
S2 (Mmax)	0.0003	104.9	5.94	0.4	0.0003
S3 (Mmax)	0.0004	126.9	5.94	0.4	0.0004

Combinazione: Quasi permanente

	N_{ed}	M_{ed}	\mathbf{w}_{d}	\textbf{w}_{max}	w _d /W _{ma:}	x
	[kN]	[MPa]	[mm]	[mm]	[kN]	
S1 (Mmax)	119.0	219.3	0.10	0.2	0.50	Verifica Soddisfatta
S1 (Nmin)	119.0	219.3	0.10	0.2	0.50	Verifica Soddisfatta
S2 (Mmax)	0.0	216.4	0.12	0.2	0.58	Verifica Soddisfatta
S3 (Mmax)	0.0	216.4	0.15	0.2	0.74	Verifica Soddisfatta

Il massimo tasso di sfruttamento a fessurazione è 0.74