

Concessionaria per la progettazione, realizzazione e gestione del collegamento stabile tra la Sicilia e il Continente Organismo di Diritto Pubblico (Legge n° 1158 del 17 dicembre 1971, modificata dal D.Lgs. n°114 del 24 aprile 2003)

EUROLINK S.C.p.A.

IMPREGILO S.p.A. (MANDATARIA) SOCIETÀ ITALIANA PER CONDOTTE D'ACQUA S.p.A. (MANDANTE) COOPERATIVA MURATORI E CEMENTISTI - C.M.C. DI RAVENNA SOC. COOP. A.R.L. (MANDANTE) SACYR S.A.U. (MANDANTE) ISHIKAWAJIMA - HARIMA HEAVY INDUSTRIES CO. LTD (MANDANTE) A.C.I. S.C.P.A. - CONSORZIO STABILE (MANDANTE)

STRETTODI MESSINA IL PROGETTISTA STRETTO DI MESSINA IL CONTRAENTE Ing E.M.Veje GENERALE Direttore Generale e RUP COWI **PROJECT MANAGER** Validazione Amministratore Delegato (Ing. P.P. Marcheselli) (Ing. G. Fiammenghi) (Dott. P. Cucci) urolini Dott. Ing. E. Pagani Ordine Ingegneri Milano n° 15408

Unità FunzionaleOPERA D'ATTRAVERSAMENTOPS0015_F0Tipo di sistemaSOVRASTRUTTURERaggruppamento di opere/attivitàTORRIOpera - tratto d'opera - parte d'operaGeneralTitolo del documentoDesign Report - Tower Legs incl. Joints and Splices, Annex

CODIC	EC	3 1 0 0 0 P C L D P S V T 4	0 0 0 0	0 0 0 0	0 1 FO
REV	DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO
F0 20-06-2011 EMISSIONE FINALE		MJK	CHSX	CHSX/LSJ	

NOME DEL FILE: PS0015_F0

Design Report - Tower Legs incl. Joints and Splices, Annex

INDICE

IN	DICE			3
1	Intro	oducti	on	7
	1.1	Outli	ne	7
2	Des	sign R	eferences	8
	2.1	Desi	gn Specifications	
	2.2	Desi	gn Codes	8
	2.3	Drav	<i>v</i> ings	9
	2.3.	1	Complementary Reports	10
3	Mat	erials		10
	3.1	Struc	ctural Steel	10
	3.2	High	Strength Bolts	11
	3.3	Weld	ling Consumables	12
4	Des	sign P	rinciples	12
5	Том	ver Le	gs	13
	5.1	Long	itudinal Elements	13
	5.1.	1	Longitudinal Plates and Stiffeners	13
	5	.1.1.1	Section Properties	14
	5	.1.1.2	Global Design Loads	16
	5	.1.1.3	Global Stability of the Tower Legs	19
	5	.1.1.4	Capacity of the Cross Section	23
	5	.1.1.5	Calculation of Stresses and Utilization Ratios	35
	5	.1.1.6	Overall Verification for Entire Tower for Single Load Combination	42
	5	.1.1.7	Verification for All Load Combinations	47
	5	.1.1.8	Verification for the Envelope of All Time-History Seismic Results	58
	5	.1.1.9	Shear Stresses	65
	5.1.	2	Joints and Splices	69
	5.2	Tran	sverse Elements	83
	5.2.	1	Transverse Stiffeners and Type 1 Diaphragms	83
	5.2.	2	Cross Beam to Tower Leg Connection – Type 2 and 3 Diaphragms	112
	5.2.	3	Deck Buffer Connections	167
	5.3	Tow	er Leg Segment Detailed Finite Element Analysis	198

Design Report - Tower Legs incl. Joints and	Codice documento
Splices, Annex	PS0015_F0

5.3.1	Introduction	198
5.3.2	Finite Element Model Description	198
5.3.3	Details of the Finite Element Model	201
5.3.4	Application of Loads	202
5.3.5	Material Properties	202
5.3.6	Run cases	205
5.3.6.7	1 Imperfection case	205
5.3.6.2	2 Multi-Linear Cases	207
5.3.6.3	Bilinear Cases (Effect of residual stresses)	218
5.3.6.4	Effect of Model Restraint to the Plate A Longitudinal Stiffener	220
5.3.7	Conclusions	221
5.3.8	Assessment for the Envelope of Seismic Time-History Analysis Force Effects	221
5.4 Fati	gue	237
5.5 Acc	idental Load Scenarios	240
5.5.1	Design Scenarios – Fire	240
5.5.2	Evaluation Scenarios	245
5.5.2.1	1 Impact	245
5.5.2.2	2 Explosion	258
6 Transve	rse Stiffener and Diaphragm Plate Buckling Analysis / Longitudinal to Tra	ansverse
Stiffener Con	nections	261
6.1 Intro	oduction	261
6.2 Tas	k 1: Removal of Tab Plates	261
6.2.1	Background	261
6.2.2	Model Description	264
6.2.3	Loadings	266
6.2.4	Analysis Results Summary	266
6.2.5	Verification of Resistance	268
6.3 Tas	k 2: Stability of Transverse Stiffener Flanges	268
6.3.1	Background	268
6.3.2	Methodology for Sizing Transverse Stiffener Flanges	269
6.3.3	Model and Loading Description	269
6.3.4	Analysis Result Summary	270
6.3.5	Verification of Resistance	272

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

6.4 Ta	ask 3: Stability of Triangular Diaphragm Plates	
6.4.1	Background	
6.4.2	Model Description	
6.4.3	Loadings	
6.4.4	Analysis Result Summary	
6.4.5	Verification of Resistance	

Stretto di Messina		Ponte sullo Stretto di Messina PROGETTO DEFINITIVO Codice documento Rev Data			
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data	
Splices	, Annex	PS0015_F0	F0	20-06-2011	

1 Introduction

This report presents design calculations for the tower legs. The design is based on that shown in the Tender Design. In this project phase it was found advantageous to introduce the following changes to the tender design:

- The tower height was increased from 382.6 m to 399 m to compensate for the increase in deck weight;
- Flat plate longitudinal stiffeners replace T-shaped longitudinal stiffeners in the tower legs and cross beams;
- The tower leg transverse stiffener arrangement was revised to simplify fabrication and assembly of the tower leg segments;
- The tower leg transverse diaphragm arrangement was revised to eliminate unnecessary material; and
- Specifications of tuned mass dampers were modified based on the results of wind tunnel testing.

Calculations are typically based on the global IBDAS model version 3.3f.

1.1 Outline

This report is organized into the following sections:

- Section 1 includes this introduction and outline;
- Section 2 provides a list of reference materials, including design specifications, design codes, reference drawings and complementary reports;
- Section 3 provides details of the materials used in the tower design;
- Section 4 provides a reference to the reports describing the design principles used in the tower design;
- Section 5 provides design calculations for the various tower leg components, including a section describing the detailed finite element analysis of a full tower leg segment. To allow

Stretto		Ponte sullo Stretto di Messina			
di Messina		PROGETTO DEFINITIVO			
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data	
Splices, Annex		PS0015_F0	F0	20-06-2011	

for easy cross referencing between tower design reports, the calculations are presented in the same order as the components are described in CG.10.00-P-RX-D-P-SV-T4-00-00-00-00-00-01 "Specialist Technical Design Report, Towers;"

• Section 6 provides a description of the detailed finite element analysis that was completed to support the removal of the tab plates that connected the longitudinal stiffeners to the transverse stiffeners in the general concept submission, to size the transverse stiffener flanges and to determine the adequate thickness of the triangular diaphragm plates between tower leg plates B, C, E, F and H; and

2 Design References

2.1 Design Specifications

CG.10.00-P-RG-D-P-GE-00-00-00-00-02-A - "Design Basis, Structural, Annex," COWI 2010

GCG.F.05.03 "Design Development – Requirements and Guidelines," Stretto di Messina, 2004 October 22.

GCG.G.03.02 "Structural Steel Works and Protective Coatings," Stretto di Messina, 2004 July 30.

2.2 Design Codes

"Norme tecniche per le costruzioni," 2008 (NTC08).

EN 1991 Eurocode 1: Actions on Structures – Part 2: Traffic loads on bridges

EN 1993 Eurocode 3: Design of Steel Structures - Part 1-1: General rules and rules for buildings

EN 1993 Eurocode 3: Design of Steel Structures - Part 1-5: Plated structural elements

EN 1993 Eurocode 3: Design of Steel Structures – Part 1-8: Design of joints

EN 1993 Eurocode 3: Design of Steel Structures – Part 1-9: Fatigue

EN 1993 Eurocode 3: Design of Steel Structures - Part 2: Steel Bridges

Rete Ferroviaria Italia - Istruzione No. 44F "Verifiche a fatica dei ponti ferroviari"

2.3 Drawings

The reference tower design drawings for this report are listed in Table 2-1.

Drawing Title	Drawing Number
Tower Sicilia - General Arrangement	CG.10.00-P-AX-D-P-SV-T4-TS-00-00-00-01_0
Typical - Leg - Cross Section & Vertical Joints	CG.10.00-P-WX-D-P-SV-T4-TO-00-00-00-01_0
Tower Sicilia - Leg - Sections & Plate Thicknesses	CG.10.00-P-WX-D-P-SV-T4-TS-00-00-00-01_0
Typical - Leg - Cross Diaphragms	CG.10.00-P-AX-D-P-SV-T4-TO-00-D0-00-01_0
Typical - Leg - Cross Diaphragms, Details	CG.10.00-P-BX-D-P-SV-T4-TO-00-D0-00-01_0
Typical - Leg - Horizontal Joints	CG.10.00-P-AX-D-P-SV-T4-TO-00-00-00-01_0
Typical - Leg - Horizontal Joints, Details	CG.10.00-P-BX-D-P-SV-T4-TO-00-00-00-01_0
Typical - Cross Beam no. 1	CG.10.00-P-AX-D-P-SV-T4-TO-T0-00-00-01_0
Typical - Cross Beam no. 2	CG.10.00-P-AX-D-P-SV-T4-TO-T0-00-00-02_0
Typical - Cross Beam no. 3	CG.10.00-P-AX-D-P-SV-T4-TO-T0-00-00-03_0
Typical - Cross Beams - Details	CG.10.00-P-BX-D-P-SV-T4-TO-T0-00-00-01_0
Typical - Cross Beam Connection to Tower leg	CG.10.00-P-WX-D-P-SV-T4-TO-T0-00-00-02_0
Typical - Connection from Girder	CG.10.00-P-AX-D-P-SV-T4-TO-00-00-00-03_0
Typical - Base Section 1	CG.10.00-P-AX-D-P-SV-T4-TO-00-00-00-04_0
Typical - Base Section 2	CG.10.00-P-AX-D-P-SV-T4-TO-00-00-00-05_0
Typical - Base Section, Details	CG.10.00-P-BX-D-P-SV-T4-TO-00-00-00-02_0
Typical - Top Section	CG.10.00-P-AX-D-P-SV-T4-TO-00-00-00-06_0
Typical - Tuned Mass Dampers - Support Structure	CG.10.00-P-AX-D-P-SV-T4-TO-00-00-00-07_0
Typical - Tuned Mass Dampers	CG.10.00-P-AX-D-P-SV-T4-TO-00-00-00-08_0
Typical - Leg - Steelwork Modifications 1	CG.10.00-P-BX-D-P-SV-T4-TO-00-00-00-04_0
Typical - Leg - Steelwork Modifications 2	CG.10.00-P-BX-D-P-SV-T4-TO-00-00-00-05_0
Typical - Cross Beams - Steelwork Modifications	CG.10.00-P-BX-D-P-SV-T4-TO-T0-00-00-06_0
Tower Calabria - General Arrangement	CG.10.00-P-AX-D-P-SV-T4-TC-00-00-00-01_0
Tower Calabria - Leg - Sections & Plate Thicknesses	CG.10.00-P-WX-D-P-SV-T4-TC-00-00-00-01_0

Table 2-1: Reference tower drawings.

Stretto Ponte sullo Stretto di Messina Di Messina PROGETTO DEFINITIVO		I		
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

2.3.1 Complementary Reports

The tower design reports listed in Table 2-2 provide supplementary information about the tower design principles and verifications.

Report Title	Report Number
Specialist Technical Design Report, Towers	CG.10.00-P-RX-D-P-SV-T4-00-00-00-00-01
General Design Principles	CG.10.00-P-RG-D-P-SV-T4-00-00-00-00-01
Design Report - Cross Beams	CG.10.00-P-CL-D-P-SV-T4-00-00-00-00-02
Design Report - Tower Base	CG.10.00-P-CL-D-P-SV-T4-00-00-00-00-03

Table 2-2: Reference tower design reports.

3 Materials

The mechanical properties of the tower construction materials are described in this section.

3.1 Structural Steel

Tower structural components are generally fabricated from Grade S460 ML structural steel with the exception of: the hot-rolled circular hollow sections comprising the cross beam internal bracing members, the tower base plate and the base anchorage stiffening plates, which are fabricated from Grade S355 ML structural steel. All structural steels shall be produced in accordance with EN 10025-4. The steels are assumed to have the mechanical properties listed in Table 3-1, in accordance with NTC08 Section 11.3.4.1. As an exception to the standard requirements of NTC08 and EN 10025-4 the mechanical properties of the steel shall not vary with material thickness for thicknesses up to 110 mm for S460ML steel and up to 150 mm for S355ML steel. The feasibility of the production of steel with the required properties has been confirmed.

Stretto di Messina	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		I
Design Report - Tower Legs incl. Joints and Splices, Annex	Codice documento	Rev	Data
	PS0015_F0	F0	20-06-2011

Grade	Yield Strength, $f_{_{yk}}$ (MPa)	Tensile Strength, $f_{\prime k}$ (MPa)
S 355 ML	355	470
S 460 ML	460	540

Table 3-1: Structural steel mechanical properties for thicknesses up to 110 mm for S460ML steel and up to 150 mm for S355ML steel.

All structural steel is also assumed to have the following properties, in accordance with NTC08 Section 11.3.4.1:

- Elastic modulus: E = 210,000 MPa
- Poisson's ratio: v = 0.3
- Shear modulus: G = 80,770 MPa
- Coefficient of thermal expansion: $\alpha = 12 \times 10^{-6} / {}^{\circ}C$
- Density: $\rho = 7,850 \text{ kg/m}^3$

The material partial factors (safety coefficients) used to verify structural steel elements are in accordance with NTC08 Sections 4.2.4.1.1, 4.2.4.1.4 and are listed in Table 3-2.

Verification	Partial Factor
Resistance of Class 1, 2, 3 and 4 sections	$\gamma_{M0} = 1.05$
Resistance to instability of members in road and rail bridges	$\gamma_{M1} = 1.10$
Resistance to fracture of sections under tension (weakened by holes)	$\gamma_{M2} = 1.25$
Fatigue resistance (useful fatigue life criterion with significant failure consequences)	$\gamma_{mf} = 1.35$

Table 3-2: Material partial factors for structural steel.

3.2 High Strength Bolts

High strength structural bolts of Grade 8.8 or Grade 10.9, produced in accordance with EN ISO 898, are used for all bolted connections and splices. Grade 8.8 bolts are used for connections of all non-structural components to the towers and Grade 10.9 bolts are used for the tower leg construction joint splices (except for the skin plates splices, which are welded). High strength bolts

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data
Splices, Annex		PS0015_F0	F0	20-06-2011

are assumed to have the mechanical properties listed in Table 3-3, in accordance with NTC08 Section 11.3.4.6.1 (except for the Grade 8.8 yield strength, which is incorrectly stated in NTC08).

Grade	Yield Strength, f_{yb} (MPa)	Tensile Strength, $f_{\scriptscriptstyle tb}$ (MPa)
8.8	640	800
10.9	900	1000

Table 3-3: Structural bolt mechanical properties.

The material partial factors (safety coefficients) used to verify bolted connections and splices are in accordance with NTC08 Section 4.2.8.1.1 and are listed in Table 3-4.

Verification	Partial Factor
Resistance to bolt shear	
Resistance to bolt tension	$\gamma_{M2} = 1.25$
Resistance to bearing on plates	
ULS slip resistance	$\gamma_{M3} = 1.25$
SLS slip resistance	$\gamma_{M3} = 1.15$
Bolt preload force	$\gamma_{M7} = 1.10$

Table 3-4: Material partial factors for bolted connections and splices.

3.3 Welding Consumables

Welding consumables shall comply with the requirements of EN 1993-1-8 Section 4.2.

Welding procedures shall be selected so as to not reduce the properties of the thermomechanically processed plates.

The material partial factor, $\gamma_{M2} = 1.25$, used to verify welded connections and splices is in accordance with NTC08 Section 4.2.8.1.1.

4 Design Principles

The design principles are primarily described in CG.10.00-P-RG-D-P-SV-T4-00-00-00-00-01 "General Design Principles."

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data
Splices, Annex		PS0015_F0	F0	20-06-2011

Summaries and discussions of verification results are provided in CG.10.00-P-RX-D-P-SV-T4-00-00-00-01 "Specialist Technical Design Report, Towers."

5 Tower Legs

5.1 Longitudinal Elements

5.1.1 Longitudinal Plates and Stiffeners

The design of the longitudinal steel in the tower legs is based on EN 1993-1-5 and EN 1993-1-1 as described in CG.10.00-P-RX-D-P-SV-T4-00-00-00-01 "Specialist Technical Design Report." The general design procedure for the longitudinal steel in the tower legs is described in CG.10.00-P-RG-D-P-SV-T4-00-00-00-01 "General Design Principles." The following provides a further description of the design procedure for the tower legs by means of sample calculations for a typical tower segment. A summary of maximum utilization ratios are also presented for all segments and load cases.

The following sample calculations apply to Sicilia tower leg segment 5. The following figures illustrate the location of the segment and the relevant plate dimensions.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		I
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data
Splices, Annex		PS0015_F0	F0	20-06-2011

Plate and Stiffener Dimensions for Sicilia Tower Segment Five

Plate	tA	tB	tC	tD	tE	tF	tG	tH
Plate Thickness	110	90	45	40	60	35	35	40
Stiffener Dimension	750 x 75	675 x 68	625 x 63	600 x 60	675 x 68	500 x 50	450 x 45	450 x 45

5.1.1.1 Section Properties

For the cross section and plate dimensions shown, the gross cross section properties are calculated and confirmed using AutoCAD. The calculated segment 5 section properties are as follows:

Cross Section	5
Analysis Section	10
Elevation	87

			Plates	Stiffeners	Total	
			Gross	Gross	Gross	Name
Gross Section	А	(mm²)	5.64E+06	2.21E+06	7.841E+06	Ag, Ae
Properties	y-coord.	(mm)	0	0	0	yg,ye
	z-coord.	(mm)	10000	10000	10000	zg, ze
	ly	(mm ⁴)	8.64E+14	3.18E+14	1.182E+15	
	Iz	(mm ⁴)	7.41E+13	3.03E+13	1.044E+14	
	ly	(mm ⁴)			3.983E+14	
	Iz	(mm ⁴)			1.044E+14	
	lyz	(mm⁴)	1.78E+14	7.17E+13		
	I _{ZY}	(mm ⁴)			0.000E+00	
	Principal A	kis	-			
	Angle	(rad)			0.000E+00	
	I1_Y	(mm ⁴)			3.983E+14	lgY, leY
	I _{2_Z}	(mm⁴)			1.044E+14	lgZ, leZ

The calculation of section properties shown above is performed in the design spreadsheet and uses simplifying assumptions at the curved corners. Therefore, for segment5, AutoCAD was used to verify the calculations and quantify any differences related to the section properties. The following figure shows the AutoCAD drawing of the cross section and corresponding section properties.

From the AutoCAD output, the section properties are:

 $A_{gross} = 7.83 \text{ m}^2$

 $I_{y,gross} = 398.5 \text{ m}^4$

 $I_{z,gross} = 106.2 \text{ m}^4$

Therefore, it is concluded that the approximate spreadsheet calculations are sufficiently accurate for use in the general design of the tower legs.

The following tables show the section properties for all tower segments for the Sicilia and Calabria towers.

Design Report - Tower Legs incl. Joints and Splices, Annex

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

Calabria Tower Section Properties

Sicilia Tower Section Properties

Tower	Area	ly	lz
Segment	m ²	m ⁴	m ⁴
1	10.91	516	157
2	10.02	488	141
3	9.23	461	129
4	8.58	434	118
5	7.84	398	104
6	7.45	362	103
7	7.53	324	114
8	7.88	311	131
9	7.45	302	120
10	7.09	308	107
11	6.98	310	102
12	7.19	311	108
13	7.52	327	115
14	7.88	351	119
15	7.72	366	111
16	7.50	371	102
17	7.39	369	100
18	7.22	342	101
19	7.14	300	111
20	7.43	302	116
21	7.71	313	119

Tower	Area	ly	lz
Segment	m²	m ⁴	m^4
1	9.82	466.1	147.7
2	9.05	439.5	134.0
3	8.34	406.6	122.2
4	7.83	378.7	114.2
5	7.29	348.0	103.2
6	6.87	303.4	102.7
7	7.08	291.5	112.3
8	7.68	305.2	129.1
9	7.15	294.2	116.6
10	6.93	305.2	104.4
11	6.91	320.6	97.1
12	7.05	317.7	103.6
13	7.35	317.0	112.5
14	7.54	328.6	115.6
15	7.33	342.4	106.0
16	7.17	343.9	99.6
17	6.94	331.2	94.7
18	6.80	312.4	97.4
19	6.73	283.7	105.8
20	7.09	280.6	114.0
21	7.36	298.8	111.3

5.1.1.2 Global Design Loads

For the tower leg design the governing load combinations are ULS seismic and ULS wind consisting of the following load components:

ULS 3: µPP + (0.9/1.5)PN + (1.1)QA + (1.0)VV + (0/1)VT

ULS 7: µPP + (0.9/1.5)PN + (1.1)QA + (1.0)VS + (0/1)VT

From the global IBDAS model the sectional forces matrix corresponding to a given ULS combination are provided at the both the top and bottom of each tower segment. The sectional force effects matrix provides the maximum and minimum loads for each force effect and the concurrent values for the off-diagonal effects. To ensure that the most critical loading patterns were considered, additional linear combinations were formulated to find the critical case for the stresses

at the extreme fibers of the cross section. The linear combination cases were specified to maximize the loading for the following equations.

$$L001: \left(\frac{N_s}{EA}\right) - \left[\frac{\left(M_y \cdot 10m\right)}{EI_y}\right] - \left[\frac{\left(M_z \cdot 2m\right)}{EI_z}\right]$$
$$L002: \left(\frac{N_s}{EA}\right) - \left[\frac{\left(M_y \cdot 4m\right)}{EI_y}\right] - \left[\frac{\left(M_z \cdot 6m\right)}{EI_z}\right]$$

The seismic loads are based on time-history analysis results (average of 8 inputs), which require post processing of the global IBDAS output. Therefore, for the ULS seismic load combination, the seismic time-history results are added manually to the other load components in the ULS load combination. Similarly, the forces due to uniform temperature loading are provided separately and added in manually to account for the behaviour of the bilinear buffers.

For the example tower segment 5, the critical sets of forces are for ULS combination 7 and are the maximum forces at the bottom of the segment (EL +71). The following tables show the section force effects matrix for tower segment 5 under the governing ULS seismic load combination including the time-history and temperature effects.

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento PS0015_F0

Sectional forces for IBDAS standard load combination (does not include time history or temp)

Case	Criteria	Ns[MN]	My[MNm]	Mz[MNm]	Vy[MN]	Vz[MN]	Mt[MNm]	z[m]
6903	min NS	-1869	-30	-1	1	2	18	71
6903	max NS	-1090	-2840	-8	1	-4	-18	71
6903	min MY	-1095	-3838	-8	1	-7	31	71
6903	max MY	-1843	1079	-9	0	5	-27	71
6903	min MZ	-1822	167	-55	-1	4	92	71
6903	max MZ	-1271	-2361	32	2	-5	-104	71
6903	min VY	-1743	-192	-31	-1	4	106	71
6903	max VY	-1350	-1999	8	3	-5	-119	71
6903	min L001	-1857	1057	2	1	5	-29	71
6903	max L001	-1095	-3838	-8	1	-7	31	71
6903	min L002	-1860	1032	3	1	5	-30	71
6903	max L002	-1095	-3838	-8	1	-7	31	71

Sectional forces from Time History Results - ULS 3 - Longitudinal Dominate

Case	Criteria	NS	MY	MZ	VY	VZ	MT	z[m]
L-3-L	min NS	-301.0	2323.0	264.0	13.0	26.0	5.0	71
L-3-L	max NS	259.0	-1117.0	-29.0	6.0	1.0	-20.0	71
L-3-L	min MY	87.0	-3707.0	23.0	3.0	-49.0	-10.0	71
L-3-L	max MY	-72.0	3699.0	-21.0	1.0	66.0	-8.0	71
L-3-L	min MZ	13.0	1235.0	-486.0	-12.0	12.0	2.0	71
L-3-L	max MZ	-103.0	-519.0	477.0	5.0	-13.0	7.0	71
L-3-L	min VY	-6.0	417.0	-182.0	-31.0	3.0	8.0	71
L-3-L	max VY	-3.0	172.0	135.0	29.0	24.0	-16.0	71
L-3-L	min L001	-242.0	3281.0	172.0	9.0	35.0	7.0	71
L-3-L	max LOO1	140.0	-3612.0	35.0	5.0	-39.0	-7.0	71
L-3-L	min L002	-291.0	2782.0	289.0	13.0	32.0	2.0	71
L-3-L	max L002	175.0	-3169.0	-139.0	-5.0	-23.0	-22.0	71

LIMIT STATE NUMBER (ULS=3, SILS=4), NOT COMBINATION NUMBER

Combined Sectional forces [IBDAS standard load comb + time history] * does not include unif. temp.

Case	Criteria	Ns[MN]	My[MNm]	Mz[MNm]	Vy[MN]	Vz[MN]	Mt[MNm]	z[m]
6903	min NS	-2170	2293	263	14	28	23	71
6903	max NS	-831	-3957	-37	7	-3	-38	71
6903	min MY	-1008	-7545	15	4	-56	21	71
6903	max MY	-1915	4778	-30	1	71	-35	71
6903	min MZ	-1809	1402	-541	-13	16	94	71
6903	max MZ	-1374	-2880	509	7	-18	-97	71
6903	min VY	-1749	225	-213	-32	7	114	71
6903	max VY	-1353	-1827	143	32	19	-135	71
6903	min L001	-2099	4338	174	10	40	-22	71
6903	max L001	-955	-7450	27	6	-46	24	71
6903	min L002	-2151	3814	292	14	37	-28	71
6903	max L002	-920	-7007	-147	-4	-30	9	71

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

Sectional forces from IBDAS beam model for Uniform Temperature Loading

Case	Criteria	Ns[MN]	My[MNm]	Mz[MNm]	Vy[MN]	Vz[MN]	Mt[MNm]	z[m]
4510	min NS	-3	-228	20	0	0	-1	71
4510	max NS	4	244	-36	-1	0	1	71
4510	min MY	-3	-228	20	0	0	-1	71
4510	max MY	4	244	-36	-1	0	1	71
4510	min MZ	4	244	-36	-1	0	1	71
4510	max MZ	-3	-228	20	0	0	-1	71
4510	min VY	4	244	-36	-1	0	1	71
4510	max VY	-3	-228	20	0	0	-1	71
4510	min L001	4	244	-36	-1	0	1	71
4510	max L001	-3	-228	20	0	0	-1	71
4510	min L002	4	244	-36	-1	0	1	71
4510	max L002	-3	-228	20	0	0	-1	71

5.1.1.3 Global Stability of the Tower Legs

In addition to the sectional forces from the IBDAS global model, additional stresses accounting for the global buckling of the tower must be considered. The additional stresses are determined using equivalent imperfections as described in CG.10.00-P-RG-D-P-SV-T4-00-00-00-00-01 "General Design Principles."

The deflected shape of the tower under various buckling modes is determined using an Eigenvalue buckling analysis. The equivalent imperfections imposed on the tower follow the same deflected shape.

The eigenvalue buckling analysis provides the critical elastic buckling force associated with each mode. The critical elastic buckling force is provided as a scaled value of the reference dead load in the eigenvalue buckling analysis.

The following table presents the three relevant buckling modes that were considered for the tower design and the associated dead load scaling factor for computing the critical elastic buckling force.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		I
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

For the three buckling modes considered, the following table shows the critical elastic bucking load for the critical section as well as the calculated equivalent imperfection. The critical section was determined as the section with the highest stresses due to the buckling moments.

Buckling Mode	Scalar value for critical elastic buckling load	Equivalent Imperfection, e_o (m)	Elastic Amplification for Moment	Imperfection Moment at Critical Section (MN-m)
1 st longitudinal	7.66	0.70	1.24	1480
1 st transverse	6.72	0.44	1.28	900
2 nd transverse	9.11	0.34	1.19	650

Using the above maximum buckling moments at the critical section, the moment diagrams from the eigenvalue buckling analysis were scaled as appropriate to achieve the same maximum bending moment at the critical section. The following diagrams show the bending moment diagrams from the eigenvalue bucking analysis as well as the resulting scaled moments to be used in the tower design.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		1
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

1st longitudinal buckling mode

1st Transverse Buckling Mode

2nd Transverse Buckling Mode

From the force diagrams shown above, the section forces due to global buckling of the towers can be determined for each tower segment. For the tower segment 5 being considered, these forces are:

1st Longitudinal Buckling

Moment	1109	MN-m
Axial Load	0	MN
Axiai Load	0	IVIIN

1st Transverse Buckling Mode

Moment	315	MN-m
Axial Load	14	MN

2nd Transverse Buckling Mode

Moment	114	MN-m
Axial Load	48	MN

These section forces must be taken as plus/minus and are added to the section forces from the global model, shown previously. Only one buckling mode needs to be considered at a time; therefore, stresses are calculated for each buckling mode and maximum stress for each point on the cross section are used for the overall design.

5.1.1.4 Capacity of the Cross Section

As described in CG.10.00-P-RG-D-P-SV-T4-00-00-00-01 "General Design Principles," the capacity of the tower cross section for longitudinal stresses was determined by calculating the buckling capacity of each longitudinal stiffener and unstiffened corner of the cross section. The buckling capacity of the longitudinal stiffeners is a based on reduction factors for both local buckling of the stiffener/main plates, column-like buckling of the stiffener and the associated tributary width of the main plate and plate-like buckling for the single longitudinal stiffeners on plate A (LS1 and LS17). The buckling capacity of the unstiffened corners includes only reductions for local plate buckling as the adjacent intersecting main plate will prevent any overall column-like buckling in these areas.

The following sketch shows the designations used for the cross-section in the spreadsheet calculations to follow.

The cross-section on the left details the work points and plate designations used to define the cross-section geometry. Shown on the right are designations for all longitudinal stiffeners and unstiffened corners in the cross section. Each longitudinal stiffener is assigned a unique name with the prefix "LS" and stresses for a given stiffener are conservatively calculated at the intersection of the stiffener and main plate. The unstiffened corner stress points are designated as "SP".

In the reporting of the results, the tables include calculations for stiffeners "LS 21" and "LS 25". These stiffeners do not exist on the cross section and are used as "dummy" stiffeners to facilitate modifications to the cross sections. In the spreadsheet the location and capacities of the dummy stiffeners are arbitrarily taken equal to stiffeners "LS 20" and "LS 24" and therefore have no impact on the design of the cross section.

The unstiffened corner stress points account for the capacity of each plate type at a given panel intersection point. The stress points are conservatively placed at the critical stress location of the unstiffened corners that they are representing. For example, the capacity of "SP11" shown above is taken as the minimum capacity of the unstiffened corner for plates F, H and G.

Similarly, stress point "SP2" accounts for the unstiffened corners on plates A, B and E. Although this approach is slightly conservative, in reality it has minimal impact on the overall design, as the corners governing the cross section capacity are generally proportioned to be fully effective.

As the cross-section is symmetrical, only one-half of the cross-section needs to be specified, although stresses are calculated for all points on the cross-section. Therefore, each longitudinal stiffener will have two stress values, representing each half of the cross-section.

The column-like buckling capacities are not shown for stiffeners "LS1" and "LS17", located on plate A. Due to the large thickness of plate A relative to the panel width and the fact that transverse stiffeners are not provided at regular intervals (panel length of up to 20 m), plate-like buckling dominates the behaviour and was accounted for using EN 1993-1-5 Annex A.2.2.. The capacity of plate A is represented by the capacity of stress point "SP1". The calculations of the capacities for "LS1" and "LS17" are presented in later sections.

The following sections show the calculated buckling capacities of each longitudinal stiffener and unstiffened corner on the cross-section for Sicilia tower leg segment 5.

Codice documento PS0015_F0
 Rev
 Data

 F0
 20-06-2011

Capacity of Longitudinal Stiffeners:

Design Report - Tower Legs incl. Joints and

Splices, Annex

Name			LS2	LS3	LS4	LS5	LS6	LS7	LS8	LS9	LS10	LS11
cross section type			0	0	0	0	0	0	0	0	0	0
No. in sec			2	2	2	2	2	2	2	2	2	2
Type			T1									
		1	1									
Plate #1	Reference	Unit	-	•	•	-	P	•	P	-		
Dpi		[mm]	1333	1250	1250	1250	1250	1200	1200	1600	1600	1200
tρi		[mm]	90	90	45	45	45	40	40	40	40	40
Ψ,pl	5: Table 4.1	[-]	1	1	1	1	1	1	1	1	1	1
K _{o,pl}	5: Table 4.1	[-]	4	4	4	4	4	4	4	4	4	4
fy		[MPa]	460	460	460	460	460	460	460	460	460	460
а	5: (4.4 (2))	[-]	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
λ _{n ni}	5: (4.4)	[-]	0.35	0.32	0.65	0.65	0.65	0.70	0.70	0.95	0.95	0.70
Pol	5: (4.4)	[-]	1.00	1.00	1.00	1.00	1.00	0.98	0.98	0.81	0.81	0.98
b _{pl eff}		[mm]	1333	1250	1250	1250	1250	1174	1174	1296	1296	1174
- pi,en		[]	1555	1250	1250	1250	1250	11/4	11/4	1250	1250	11/4
Plate #2												
b _{pl}		[mm]	1250	1250	1250	1250	1181	1200	1600	1600	1200	1200
t _{p1}		[mm]	90	90	45	45	45	40	40	40	40	40
Ψ.ol	5: Table 4.1	[-]	1	1	1	1	1	1	1	1	1	1
Kanl	5: Table 4.1	[-]	4	4	4	4	4	4	4	4	4	4
fv		[MPa]	460	460	460	460	460	460	460	460	460	460
5	$5 \cdot (4 + (2))$	r-1	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
λ	5. (4.4)	r-1	0.32	0.32	0.65	0.65	0.61	0.70	0.95	0.95	0.70	0.70
p,pi	5. (4.4)	L.	1.00	1.00	1.00	1.00	1.00	0.00	0.95	0.95	0.00	0.70
Ppi	J. (4.4)	[] [mm]	1250	1250	1250	1250	1101	1174	1200	1200	1174	0.98
Upl,ett	I	lfuuul	1250	1250	1250	1250	1181	11/4	1296	1296	11/4	11/4
Total Plate												
tpl		[mm]	90	90	45	45	45	40	40	40	40	40
b_total gross		[mm]	1292	1250	1250	1250	1216	1200	1400	1600	1400	1200
b_total effec		[mm]	1292	1250	1250	1250	1216	1174	1235	1296	1235	1174
ρ _{pl, composite}			1.00	1.00	1.00	1.00	1.00	0.98	0.88	0.81	0.88	0.98
C tiffe no r we h												
b		[mm]	675	675	625	625	625	600	600	600	600	600
11W		[mm]	675	675	625	625	625	60	60	60	60	600
w	c. Table 4.1	[1111]	1	1	1	1	1	1	1	1	1	1
Ψw	5. Table 4.1		0.42	0.42	0.42	0.42	0.42	0.42	1	0.42	0.42	0.42
K _{σ,W}	5: 1 able 4.1	[-]	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43
ty		[мРа]	460	460	460	460	460	460	460	460	460	460
3	5: (4.4 (2))	[-]	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
λ _{p,w}	5: (4.4)	[-]	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
ρ _w	5: (4.4)	[-]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
h _{w,eff}		[mm]	675.00	675.00	625.00	625.00	625.00	598.80	598.80	598.80	598.80	598.80
tw,eff. equiv.		[mm]	68.00	68.00	63.00	63.00	63.00	59.88	59.88	59.88	59.88	59.88
Column Buckling o	of Longitud	inal Stiffe	ener									
Lor		[mm]	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200
α	1: Table 6.1	[-]	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49
Gross section												
Ac		[mm ²]	162135	158400	95625	95625	94073	84000	92000	100000	92000	84000
S		[mm ³]	2.49E+07	2.47E+07	1.53E+07	1.53E+07	1.53E+07	1.32E+07	1.34E+07	1.35E+07	1.34E+07	1.32E+07
y₀ (from t/o plate)		[mm]	153	156	160	160	163	157	145	135	145	157
hx		ſmm ⁴ 1	1 04F+10	1 04F+10	6 35E+09	6 35E+09	6 35E+09	5 27E+09	5 27E+09	5 28E+09	5 27E+09	5 27E+09
1		fmm ⁴ 1	6.6265.00	6 5995 100	2 9015 00	2 9015 00	2 8605 100	3 1025 00	2 2215:00	3.4495+00	3.2215.00	3 1025 00
Effective section			0.050E+09	0.366E+09	5.691E+09	5.691E+09	5.600E+09	5.195E+09	5.551E+09	5.440E+09	5.551E+09	5.195E+09
A Section		rmm ² 1										
A _{c,eff}		[11111] r 3,	162135	158400	95625	95625	94073	82875	85317	87759	85317	82875
Seff		[mm]	2.4853E+07	2.4685E+07	1.5342E+07	1.5342E+07	1.5307E+07	1.3133E+07	1.3182E+07	1.3230E+07	1.3182E+07	1.3133E+07
y _{o,eff} (from t/o plate)		[mm]	153.28	155.84	160.44	160.44	162.72	158.46	154.50	150.76	154.50	158.46
l _{xx,eff}		[mm"]	1.045E+10	1.044E+10	6.352E+09	6.352E+09	6.351E+09	5.237E+09	5.238E+09	5.240E+09	5.238E+09	5.237E+09
l,eff		[mm ⁴]	6.636E+09	6.588E+09	3.891E+09	3.891E+09	3.860E+09	3.156E+09	3.202E+09	3.245E+09	3.202E+09	3.156E+09
Buckling												
eplate		mm	108	111	138	138	140	137	125	115	125	137
estiff		mm	274	272	197	197	195	183	195	205	195	183
emax	5: (4.5.3(5))	mm	274	272	197	197	195	183	195	205	195	183
i		mm	202	204	202	202	203	195	190	186	190	195
αe	5: (4.5.3(5))		0.612	0.610	0.578	0.578	0.577	0.574	0.582	0.589	0.582	0.574
orcral	5: (4.5.3)	MPa	8284	8418	8235	8235	8306	7694	7329	6979	7329	7694
bc/bs1	5: (4.5.3)		1	1	1	1	1	1	1	1	1	1
gcr,c	5: (4.5.3)	MPa	8284	8418	8235	8235	8306	7694	7329	6979	7329	7694
вас	5: (4.5.3)		1.00	1.00	1.00	1.00	1.00	0.99	0,93	0.88	0.93	0,99
νc	5: (4.5.3)		0.236	0.234	0.236	0.236	0.235	0.243	0.241	0.241	0.241	0.243
Φ	1: (6.3.1.2)	L-J	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
χ	1: (6.3.1.2)	I	0.98	0.98	0.98	0.98	0.98	0.97	0.98	0.98	0.98	0.97
Overall critical stress	5											
Min value			409	409	409	409	409	402	378	358	378	402
Total reduction			0.9774	0.9787	0.9783	0.9783	0.9789	0.9615	0.9043	0.8559	0.9043	0.9615

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento PS0015_F0
 Rev
 Data

 F0
 20-06-2011

Name			LS12	LS13	LS14	LS15	LS16	L\$17	LS18	LS19	LS20	LS21	LS22
cross section type			0	0	0	0	0	0	0	0	0	0	0
No. in sec			2	2	2	2	2	1	2	2	2	0	2
Type			T1										
Distantia													
Plate #1	Reference	Unit											
Dpi		[mm] [mm]	1333	1250	1250	1250	1250	2000	1600	1500	1325	1325	1600
τρi		[mm]	90	90	45	45	45	110	35	40	40	40	35
Ψ _{,pl}	5: Table 4.1	[-]	1	1	1	1	1	1	1	1	1	1	1
K _{σ,pl}	5: Table 4.1	[-]	4	4	4	4	4	4	4	4	4	4	4
fy		[MPa]	460	460	460	460	460	460	460	460	460	460	460
3	5: (4.4 (2))	[-]	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
$\lambda_{p,pl}$	5: (4.4)	[-]	0.35	0.32	0.65	0.65	0.65	0.43	1.09	0.90	0.79	0.79	1.09
ρ _{pl}	5: (4.4)	[-]	1.00	1.00	1.00	1.00	1.00	1.00	0.73	0.84	0.91	0.91	0.73
bpl,eff		[mm]	1333	1250	1250	1250	1250	2000	1168	1263	1212	1212	1168
Plate #2		L ,											
Dpl		[mm]	1250	1250	1250	1250	1181	2000	1200	1325	1175	1175	1200
τpi		[mm]	90	90	45	45	45	110	35	40	40	40	35
Ψ,pl	5: Table 4.1	[-]	1	1	1	1	1	1	1	1	1	1	1
K _{o,pl}	5: Table 4.1	[-]	4	4	4	4	4	4	4	4	4	4	4
fy		[MPa]	460	460	460	460	460	460	460	460	460	460	460
3	5: (4.4 (2))	[-]	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
$\lambda_{p,pl}$	5: (4.4)	[-]	0.32	0.32	0.65	0.65	0.61	0.43	0.81	0.79	0.70	0.70	0.81
ρ _{pl}	5: (4.4)	[-]	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.91	0.98	0.98	0.90
bpl,eff		[mm]	1250	1250	1250	1250	1181	2000	1077	1212	1155	1155	1077
Total Blats													
tol		[mm]	00	00	45	45	45	110	25	40	40	40	25
μi h. total gross		[mm]	90	90	45	45	45	2000	35	40	40	40	35
b_total effec		[mm]	1292	1250	1250	1250	1210	2000	1400	1415	1230	1230	1400
		[iiiii]	1292	1 00	1 00	1 00	1210	1.00	0.80	0.88	0.95	0.95	0.80
Ppi, composite			1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.88	0.95	0.95	0.80
Stiffenerweb													
hw		[mm]	675	675	625	625	625	750	450	450	450	450	450
tw		[mm]	68	68	63	63	63	75	45	45	45	45	45
Ψw	5: Table 4.1	[-]	1	1	1	1	1	1	1	1	1	1	1
K _{o.w}	5: Table 4.1	[-]	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43
fv		[MPa]	460	460	460	460	460	460	460	460	460	460	460
e.	$5 \cdot (4 + (2))$	r-1	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
λ	5. (4.4)	[-]	0.71	0.75	0.75	0.75	0.71	0.71	0.75	0.75	0.75	0.75	0.75
np,w	5. (4.4)	L1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Pw .	5. (4.4)	[]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Nw,ett		[[]]]]	675.00	675.00	625.00	625.00	625.00	748.49	449.10	449.10	449.10	449.10	449.10
Tw,eff. equiv.		luuui	68.00	68.00	63.00	63.00	63.00	74.85	44.91	44.91	44.91	44.91	44.91
Column Buckling o	flongitud	inal Stiffe	nor										
		[mm]	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Lor	1. 7. 11. 2.1	[11111] [11	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200
a Crean an ation	1: 1 able 0.1	[-]	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49
Gross section													
Ac		[mm]	162135	158400	95625	95625	94073	276250	69250	76750	70250	70250	69250
S		[mm ⁻]	2.49E+07	2.47E+07	1.53E+07	1.53E+07	1.53E+07	3.94E+07	6.12E+06	6.50E+06	6.37E+06	6.37E+06	6.12E+06
y₀ (from t/o plate)		[mm]	153	156	160	160	163	143	88	85	91	91	88
l _{xx}		[mm ⁴]	1.04E+10	1.04E+10	6.35E+09	6.35E+09	6.35E+09	1.68E+10	1.73E+09	1.79E+09	1.79E+09	1.79E+09	1.73E+09
I		[mm ⁴]	6.636E+09	6.588E+09	3.891E+09	3.891E+09	3.860E+09	1.114E+10	1.189E+09	1.244E+09	1.214E+09	1.214E+09	1.189E+09
Effective section													
Ac,eff		[mm ²]	162135	158400	95625	95625	94073	276137	59494	69707	67540	67540	59494
Seff		[mm ³]	2 4853E+07	2 4685F+07	1 5342F+07	1 5342F+07	1 5307F+07	3 9284F+07	5 9328F+06	6 3363E+06	6 2930E+06	6 2930E+06	5 9328F+06
yo,eff (from t/o plate)		[mm]	153.28	155.84	160.44	160.44	162.72	142.26	99.72	90.90	93.17	93.17	99.72
lys off		[mm ⁴]	1 0455±10	1.044E+10	6 352E±00	6 35 2E±00	6 251F±00	1 667E±10	1 7175+00	1 780E±00	1 7795±09	1 7705±00	1 7175±00
L		[mm ⁴]	1.0452110	1.0440110	0.3322103	0.3322103	0.3512105	1.0072110	1.7172105	1.7802105	1.775105	1.7751-00	1.7172105
I,ett		[11111]	6.636E+09	6.588E+09	3.891E+09	3.891E+09	3.860E+09	1.108E+10	1.125E+09	1.204E+09	1.193E+09	1.193E+09	1.125E+09
Buckling			100		120	120	140		74	CF	74	74	74
epiate		mm	27.	111	138	138	140	68	/1	05	/1	/1	/1
esui		mm	2/4	272	197	197	195	342	1/2	180	1/4	1/4	1/2
emax	5: (4.5.3(5))	mm	274	272	197	197	195	342	172	180	174	174	172
		INU	202	204	202	202	203	201	131	127	131	131	131
αε	o: (4.5.3(5))		0.612	0.610	0.578	0.578	0.577	0.643	0.608	0.617	0.609	0.609	0.608
gcr,sl	5: (4.5.3)	MPa	8284	8418	8235	8235	8306	8163	3476	3281	3496	3496	3476
bc/bs1	5: (4.5.3)		1	1	1	1	1	1	1	1	1	1	1
gcr,c	5: (4.5.3)	MPa	8284	8418	8235	8235	8306	8163	3476	3281	3496	3496	3476
βac	5: (4.5.3)		1.00	1.00	1.00	1.00	1.00	1.00	0.86	0.91	0.96	0.96	0.86
λc	5: (4.5.3)		0.236	0.234	0.236	0.236	0.235	0.237	0.337	0.357	0.356	0.356	0.337
Φ	1: (6.3.1.2)	[-]	0.54	0.54	0.54	0.54	0.54	0.54	0.60	0.61	0.61	0.61	0.60
γ	1: (6.3.1.2)	Ľ	0.98	0.98	0.98	0.98	0.98	0.98	0.91	0.90	0.90	0.90	0.91
			2.30			0.00	2.50	2.50	0.01	0.00	0.00	0.00	0.04
Overall critical stress	>		400	400	400	400	400	400	220	2/2	202	202	320
			409	409	409	409	409	408	529	0.9407	303	505	329
i otal reduction			0.9/74	0.9/8/	0.9783	0.9/83	0.9789	0.9748	0.7860	0.818/	0.8684	0.8684	0.7860

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento PS0015_F0
 Rev
 Data

 F0
 20-06-2011

Name			LS23	LS24	LS25	LS26	LS27	LS28	LS29	LS30	LS31	LS32	LS33
cross section type			0	0	0	0	0	0	0	0	0	0	0
No. in sec			2	2	0	2	2	2	2	2	2	2	2
Туре			T1										
Plate #1	Poforonco	Unit											
hal	Reference	[mm]	1500	1225	1225	1000	1000	1222	1222	1222	1222	1000	1000
to I		[mm]	40	40	40	60	60	60	35	35	1333	60	60
ф. Ш.,	5: Table 4-1	[-1]	40	40	40	1	1	1	1	1	1	1	1
Ψ,pi ν	5. Table 4.1		1	1	1	1	1	1	1	1	1	1	1
f Ka,pl	5. 1 abic 4.1	I J IMPa1	4	4	4	4	4	4	4	4	4	4	4
ly		[IVII a] []	460	460	460	460	460	460	460	460	460	460	460
3	5: (4.4 (2))	[-]	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Λ _{p,pl}	5: (4.4)	[-]	0.90	0.79	0.79	0.38	0.38	0.52	0.90	0.90	0.52	0.38	0.38
Ppl	5: (4.4)	[-]	0.84	0.91	0.91	1.00	1.00	1.00	0.84	0.84	1.00	1.00	1.00
Dpl,eff		[mm]	1263	1212	1212	1000	1000	1333	1117	1117	1333	1000	1000
Plate #2													•
bpi		[mm]	1325	1175	1175	1000	1333	1333	1333	1333	1333	1333	1000
tpi		[mm]	40	40	40	60	60	60	35	35	60	60	60
Ψ. _{pl}	5: Table 4.1	[-]	1	1	1	1	1	1	1	1	1	1	1
Kanl	5: Table 4.1	[-]	4	4	4	4	4	4	4	4	4	4	4
fv		[MPa]	460	460	460	460	460	460	460	460	460	460	460
с, Г	5; (4,4 (2))	r-1	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
λ _{n nl}	5: (4.4)	E	0.79	0.70	0.70	0.38	0.52	0.52	0.90	0.90	0.52	0.52	0.38
P.P.	5; (4,4)	E	0.91	0.98	0.98	1.00	1.00	1.00	0.84	0.84	1.00	1.00	1.00
bpl eff		[mm]	1212	1155	1155	1000	1333	1333	1117	1117	1333	1333	1000
	1	Pd	1616	1155	1155	1000	1000	1333	111/	111/	1000	1333	1000
Total Plate	-	b											
tpl		[mm]	40	40	40	60	60	60	35	35	60	60	60
p_total gross	1	[mm]	1413	1250	1250	1000	1167	1333	1333	1333	1333	1167	1000
p_total effec	1	[mm]	1237	1183	1183	1000	1167	1333	1117	1117	1333	1167	1000
Ppl, composite			0.88	0.95	0.95	1.00	1.00	1.00	0.84	0.84	1.00	1.00	1.00
Stiffenerweb													-
hw		[mm]	450	450	450	675	675	675	500	500	675	675	675
tw		[mm]	45	45	45	68	68	68	50	50	68	68	68
Ψw	5: Table 4.1	[-]	1	1	1	1	1	1	1	1	1	1	1
Kaw	5: Table 4.1	[-]	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43
fv		(MPa1	460	460	460	460	460	460	460	460	460	460	460
·,,	5. (4.4.(2))	r-1	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
λοw	5; (4.4)	E1	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.71	0.75
ρ,w Ω.,	5- (4.4)	[-]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fw hw off		[mm]	449.10	449.10	449.10	675.00	675.00	675.00	499.00	100 00	675.00	675.00	675.00
tweet end		[mm]	44.91	445.10	445.10	68.00	68.00	68.00	49.90	499.00	68.00	68.00	68.00
cw,err. equiv.		[]	44.51	44.51	44.51	00.00	00.00	00.00	45.50	45.50	00.00	00.00	00.00
Column Buckling o	f Lonaitud	ina I Stiffe	ner										
Lor		[mm]	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200
α	1: Table 6.1	r-1	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49
Gross section			0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Ac		[mm ²]	76750	70250	70250	105900	115890	125880	71655	71655	125880	115890	105900
s		[mm ³]	6 50E±06	6 37E+06	6 37E±06	2 00E±07	2 03E±07	2.06E±07	7 945+06	7 9/15-06	2.065±07	2 035+07	2 00E±07
v _o (from t/o plate)		[mm]	85	91	91	189	176	164	111	111	164	176	189
lyr	1	[mm ⁴ 1	1 79F±00	1 79F±00	1 79F±00	9 07F±00	0 U8ETU0	0 U0ETU0	2 57F±00	2 57F±00	0 U0ETU0	0 U8ETU0	9.075±00
		[mm ⁴]	1 2445-00	1.7.95709	1 21/15-00	5.07ETU5		5.05ETU5	1 6005.00	1 6005.00	5.03ETU3	5.00ETUS	5.07ETU5
Effective section		j	1.244E+09	1.2146+09	1.2146+09	3.2/3E+09	3.308E+09	3.703E+09	T.020E+03	T.020E+03	3.703E+09	3.308E+09	3.2/3E+09
Δ	1	[mm ² 1	60707	675.40	67540	105000	115900	125000	64024	64001	125000	115900	105000
C.		[mm ³]	09/0/	0/540	0/540	102900	112920	125880	7 70265 05	04031	125880	112890	102900
Oeff		[mm]	0.3363E+06	0.2930E+06	0.2930E+06	2.0045E+07	2.0345E+07	2.0645E+07	7.7821E+06	7.7821E+06	2.0645E+07	2.0345E+07	2.0045E+07
yo,eπ (iioiii vo piate)		[mm ⁴]	90.90	95.1/	95.1/	189.28	1/5.55	104.00	121.54	121.54	104.00	1/5.55	189.28
Ixx,eff		[1.780E+09	1.779E+09	1.//9E+09	9.06/E+09	9.079E+09	9.091E+09	2.553E+09	2.553E+09	9.091E+09	9.079E+09	9.06/E+09
l,eff		[mm`]	1.204E+09	1.193E+09	1.193E+09	5.273E+09	5.508E+09	5.705E+09	1.607E+09	1.607E+09	5.705E+09	5.508E+09	5.273E+09
Buckling										0-	45.1		455
eplate		mm	65	71	71	159	146	134	93	93	134	146	159
estiff		inm	180	174	174	208	222	233	174	174	233	222	208
emax	5: (4.5.3(5))	mm	180	174	174	208	222	233	174	174	233	222	208
		unu	127	131	131	223	218	213	154	154	213	218	223
αε	5: (4.5.3(5))		0.617	0.609	0.609	0.574	0.582	0.589	0.592	0.592	0.589	0.582	0.574
of cr, sl	5: (4.5.3)	MPa	3281	3496	3496	10078	9619	9174	4775	4775	9174	9619	10078
bc/bs1	5: (4.5.3)		1	1	1	1	1	1	1	1	1	2	3
gcr,c	5: (4.5.3)	MPa	3281	3496	3496	10078	9619	9174	4775	4775	9174	19238	30234
βас	5: (4.5.3)		0.91	0.96	0.96	1.00	1.00	1.00	0.89	0.89	1.00	1.00	1.00
λc	5: (4.5.3)		0.357	0.356	0.356	0.214	0.219	0.224	0.293	0.293	0.224	0.155	0.123
Φ	1: (6.3.1.2)	[-]	0.61	0.61	0.61	0.53	0.53	0.53	0.57	0.57	0.53	0.50	0.49
x	1: (6.3.1.2)	Ľ	0.90	0.90	0.90	0.99	0.99	0.99	0.94	0.94	0.99	1.00	1.00
Overall critical stress													
Min value	•		2/12	363	363	/1E	/12	/12	25.2	353	/17	A10	<i>/</i> 10
Total reduction			0 9107	0 8694	0 8694	415	415	412	0 8/120	0 8/20	412	1 0000	1 0000
rotarreduction			0.010/	0.0084	0.0004	0.5919	0.566/	0.5054	0.0429	0.0429	0.5854	1.0000	1.0000

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina E u r o l i n K PROGETTO DEFINITIVO									
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data							
Splices	, Annex	PS0015_F0	F0	20-06-2011							

Capacity of Plate A Stiffeners "LS1" and "LS17":

As discussed previously, the capacity of the stiffeners located on Plate A were calculated accounting for both column-like and plate-like buckling. The plate-like buckling capacity was determined using EN 1993-1-5 Annex A.2.2. The reduction factors are based conservatively on the 20 m maximum distance between transverse stiffeners/diaphragms on Plate A. The following table presents the effectiveness of these stiffeners for the range of plate A thicknesses.

Plate Thickness (mm)	Overall Redcution Factor	Max Critical Stress (Mpa)
55	0.86	360
60	0.91	381
65	0.95	397
70	0.98	410
75	1	418

From the table it can be seen that Plate A and its stiffeners are fully effective for plate thicknesses greater than 75mm, and so detailed calculations are not presented for these thicker plates. The capacities for Plate A are used in checking stress at "SP1".

The following are the detailed calculations used to determine the reduction factors for Plate A stiffeners shown in the above table.

Calculation of Plate A and LS1 Capacity

Assume conservatively that the entire panel is uniformly compressed and thus: $\Psi := 1.0$

EN 1993-1-5 Section 4.5: Stiffened plate elements with longitudinal stiffeners

LS1 is centred on plate A, so: $b_1 := 2 \cdot m$ and $b_2 := 2 \cdot m$

Determine the effective widths of plate A and LS1 using Section 4.4:

 $k_{\sigma} := 4$

Thickness of plate A:
$$t_A := (55 \ 60 \ 65 \ 70 \ 75)^T \cdot mm$$
 i := 1.. 5

Steel yield strength: $f_V := 460 \cdot MPa$

$$\epsilon := \sqrt{\frac{235 \cdot \text{MPa}}{f_y}} \qquad \epsilon = 0.715$$

Buckling factor:

Plate A:

Plate slenderness:

$$\lambda_{p_{i}} := \frac{\overline{t_{A_{i}}}}{28.4 \cdot \epsilon \cdot \sqrt{k_{\sigma}}} \qquad \qquad \lambda_{p}^{T} = (0.896 \ 0.821 \ 0.758 \ 0.704 \ 0.657)$$

Reduction factors:
$$\rho_{i} := \begin{bmatrix} 1 & \text{if } \lambda_{p_{i}} \leq 0.673 \\ \\ min \begin{bmatrix} \frac{\lambda_{p_{i}} - 0.055 \cdot (3 + \Psi)}{\left(\lambda_{p_{i}}\right)^{2}}, 1 \end{bmatrix} & \text{if } \lambda_{p_{i}} > 0.673 \end{bmatrix}$$

b₁

$$\rho^{I} = (0.842 \ 0.892 \ 0.936 \ 0.977 \ 1)$$

Longitudinal Stiffener LS1:

Buckling factor: $k_{\sigma} := 0.43$ LS1 dimensions: $b_{LS1} := 750 \cdot mm$ and $t_{LS1} := 75 \cdot mm$

Plate slenderness:
$$\lambda_{p}LS1 := \frac{\frac{1}{t}LS1}{28.4 \cdot \epsilon \cdot \sqrt{k_{\sigma}}}$$
 $\lambda_{p}LS1 = 0.751$

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

 $^{
m
ho}$ LS1 = 0.998

Effective area of longitudinal stiffener and plate A:

$$A_{c_{eff_{i}}} := \rho_{i} \cdot 0.5 \cdot (b_{1} + b_{2}) \cdot t_{A_{i}} + \rho_{LS1} \cdot b_{LS1} \cdot t_{LS1} \qquad A_{c_{eff}}^{T} = (0.149 \ 0.163 \ 0.178 \ 0.193 \ 0.206) \, m^{2}$$

$$\rho_{\text{loc}_{i}} := \frac{A_{\text{c}_{\text{eff}_{i}}}}{0.5 \cdot (b_{1} + b_{2}) \cdot t_{\text{A}_{i}} + b_{\text{LS1}} \cdot t_{\text{LS1}}} \qquad \qquad \rho_{\text{loc}}^{\text{T}} = (0.895 \ 0.926 \ 0.955 \ 0.983 \ 0.999)$$

EN 1993-1-5 Section 4.5.2: Plate-type behaviour

Elastic critical plate buckling stress is calculated in accordance with Annex A, or more specifically Annex A.2.2 for plates with a single longitudinal stiffener.

Compute the gross properties of the single stiffener and tributary main plate in accordance with EN 1993-1-5 Annex A.2.1.

Tributary widths: $b_{1t} := \left(\frac{3-\Psi}{5-\Psi}\right) \cdot b_1$ $b_{1t} = 1 \text{ m}$ $b_{2t} := \left(\frac{2}{5-\Psi}\right) \cdot b_2$ $b_{2t} = 1 \text{ m}$

Area of stiffener and tributary plate A:

$$A_{sl1_{i}} := t_{A_{i}} \cdot (b_{1t} + b_{2t}) + b_{LS1} \cdot t_{LS1}$$
$$A_{sl1}^{T} = (0.166 \ 0.176 \ 0.186 \ 0.196 \ 0.206) \text{ m}^{2}$$

Centroid of the stiffener and tributary plate A relative to the outside of plate A:

$$y_{\text{bar}_{i}} \coloneqq \frac{0.5 \cdot \left(t_{A_{i}}\right)^{2} \cdot \left(b_{1t} + b_{2t}\right) + b_{\text{LS1}} \cdot t_{\text{LS1}} \cdot \left(t_{A_{i}} + 0.5 \cdot b_{\text{LS1}}\right)}{A_{\text{SI1}_{i}}}$$

 $y_{\text{bar}}^{I} = (0.164 \ 0.159 \ 0.156 \ 0.153 \ 0.15) \,\mathrm{m}$

Moment of inertia of the stiffener and tributary plate A about the composite centroid:

$$\begin{split} I_{\text{SI1}_{i}} &:= \frac{\left({}^{t}\text{A}_{i}\right)^{3}}{12} \cdot \left(b_{1t} + b_{2t}\right) + \frac{b_{\text{LS1}}^{3}}{12} \cdot t_{\text{LS1}} + t_{\text{A}_{i}} \cdot \left(b_{1t} + b_{2t}\right) \cdot \left(y_{\text{bar}_{i}} - 0.5 \cdot t_{\text{A}_{i}}\right)^{2} \dots \\ &+ b_{\text{LS1}} \cdot t_{\text{LS1}} \cdot \left[y_{\text{bar}_{i}} - \left(t_{\text{A}_{i}} + 0.5 \cdot b_{\text{LS1}}\right)\right]^{2} \end{split}$$

Eurolink S.C.p.A.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO nd Codice documento Rev Data								
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data						
Splices	, Annex	PS0015_F0	F0	20-06-2011						

$$I_{sl1}^{T} = \begin{pmatrix} 8.694 \times 10^{-3} & 8.955 \times 10^{-3} & 9.202 \times 10^{-3} & 9.439 \times 10^{-3} & 9.668 \times 10^{-3} \end{pmatrix} m^4$$

Panel length (distance between transverse stiffeners): $a := 20 \cdot m$

Factor
$$a_c$$
: $a_{c_i} := 4.33 \cdot \left[\frac{I_{sl_1} \cdot b_1^2 \cdot b_2^2}{\left(t_{A_i} \right)^3 \cdot \left(b_1 + b_2 \right)} \right]^{0.25} a_c^T = (16.464 \ 15.538 \ 14.733 \ 14.025 \ 13.398) m$

Calculate the equivalent orthotropic plate buckling critical stress:

Elastic modulus: E := 210000 MPa

Poisson's ratio: v := 0.3

$$\sigma_{cr_sl_{i}} \coloneqq \left| \begin{array}{l} \frac{1.05 \cdot E}{A_{sl1_{i}}} \cdot \frac{\sqrt{l_{sl1_{i}} \cdot \left({}^{t}A_{i}\right)^{3} \cdot \left(b_{1} + b_{2}\right)}}{b_{1} \cdot b_{2}} & \text{if } a \ge a_{c_{i}} \\ \frac{\pi^{2} \cdot E \cdot l_{sl1_{i}}}{A_{sl1_{i}} \cdot a^{2}} + \frac{E \cdot \left({}^{t}A_{i}\right)^{3} \cdot \left(b_{1} + b_{2}\right) \cdot a^{2}}{4 \cdot \pi^{2} \cdot \left(1 - \nu^{2}\right) \cdot A_{sl1_{i}} \cdot b_{1}^{-2} \cdot b_{2}^{-2}} & \text{if } a < a_{c_{i}} \end{array} \right|$$

 $\sigma_{cr_sl}^{T} = (798\ 870\ 941\ 1011\ 1080\,)\,\text{MPa}$

 $\sigma_p := \sigma_{cr_sl}$

Return to Section 4.5.2 with these elastic critical plate buckling stresses.

Effective to gross area ratios:
$$\beta_{AC_i} := \frac{A_{C_eff_i}}{A_{s|1_i}}$$
 $\beta_{AC}^{T} = (0.895 \ 0.926 \ 0.955 \ 0.983 \ 0.999)$

$$\lambda_{pp_{i}} := \sqrt{\frac{\beta_{AC_{i}} f_{y}}{\sigma_{p_{i}}}} \qquad \lambda_{pp}^{T} = (0.718 \ 0.7 \ 0.683 \ 0.669 \ 0.653)$$

Effcetive plate slendernesses:

Reduction factor for plate type behaviour:

$$\begin{split} \rho_{p_{i}} &\coloneqq \left| \begin{array}{c} 1 \quad \text{if} \quad \lambda_{pp_{i}} \leq 0.673 \\ \\ min \left[\frac{\lambda_{pp_{i}} - 0.055 \cdot (3 + \Psi)}{\left(\lambda_{pp_{i}} \right)^{2}} , 1 \right] \quad \text{if} \quad \lambda_{pp_{i}} > 0.673 \end{split} \right. \end{split}$$

$$\rho_p^{I} = (0.966 \ 0.98 \ 0.992 \ 1 \ 1)$$

EN 1993-1-5 Section 4.5.3: Column-type behaviour

Critical elastic column buckling stress:

$$\sigma_{cr_sl_{i}} := \frac{\pi^{2} \cdot E \cdot I_{sl_{i}}}{A_{sl_{i}} \cdot a^{2}} \qquad \qquad \sigma_{cr_sl}^{T} = (271 \ 263.3 \ 256 \ 249.2 \ 242.9) \text{ MPa}$$

Relative column slenderness:

In this case $\,\beta_{\text{AC}}$ is the same as for plate-type behaviour.

$$\lambda_{c_{i}} := \sqrt{\frac{\beta_{AC_{i}} \cdot f_{y}}{\sigma_{cr_{sl_{i}}}}} \qquad \qquad \lambda_{c}^{T} = (1.233 \ 1.272 \ 1.31 \ 1.347 \ 1.376)$$

Effective imperfection factor:

 $\alpha := 0.49$ for an open stiffener

$$\textbf{e}_{i} := max \left[\left| \textbf{y}_{bar_{i}} - \textbf{0.5} \cdot \textbf{t}_{A_{i}} \right|, \left| \textbf{y}_{bar_{i}} - \left(\textbf{t}_{A_{i}} + \textbf{0.5} \cdot \textbf{b}_{LS1} \right) \right| \right]$$

$$e^{T} = (0.266 \ 0.276 \ 0.284 \ 0.292 \ 0.3) m$$

$$\alpha_{e_{i}} := \alpha + \frac{0.09}{\frac{r_{i}}{e_{i}}} \qquad \alpha_{e}^{T} = (0.595 \ 0.6 \ 0.605 \ 0.61 \ 0.615)$$

Column-type behaviour reduction factor:

$$\begin{split} \Phi_{i} &:= 0.5 \cdot \left[1 + \alpha e_{i} \cdot \left(\lambda c_{i} - 0.2 \right) + \left(\lambda c_{i} \right)^{2} \right] & \Phi^{T} = (1.567 \quad 1.63 \quad 1.694 \quad 1.757 \quad 1.808) \\ \chi_{c_{i}} &:= \min \left[\frac{1}{\Phi_{i} + \sqrt{\left(\Phi_{i} \right)^{2} - \left(\lambda c_{i} \right)^{2}}}, 1 \right] & \chi_{c}^{T} = (0.395 \quad 0.377 \quad 0.361 \quad 0.347 \quad 0.336) \end{split}$$

EN 1993-1-5 Section 4.5.4: Interaction between plate and column buckling

Interaction between column buckling and plate buckling:

$$\begin{split} \xi_{i} &\coloneqq \left| \begin{array}{ccc} 0 & \text{if} & \frac{\sigma p_{i}}{\sigma_{cr_sl_{i}}} - 1 < 0 & \xi^{T} = (1 \ 1 \ 1 \ 1 \ 1 \ 1) & \frac{\sigma p_{i}}{\sigma_{cr_sl_{i}}} = \\ 1 & \text{if} & \frac{\sigma p_{i}}{\sigma_{cr_sl_{i}}} - 1 > 1 & \frac{2.943}{3.305} \\ \frac{\sigma p_{i}}{\sigma_{cr_sl_{i}}} - 1 & \text{if} & 0 \leq \frac{\sigma p_{i}}{\sigma_{cr_sl_{i}}} - 1 \leq 1 & \frac{4.445}{3.305} \end{array} \right| \end{split}$$

Final reduction factor:
$$\rho_{c_i} := \left(\rho_{p_i} - \chi_{c_i} \right) \cdot \xi_i \cdot \left(2 - \xi_i \right) + \chi_{c_i} \qquad \rho_c^{T} = (0.966 \ 0.98 \ 0.992 \ 1 \ 1)$$

Effective areas considering local plate element behaviour and overall buckling (plate and column) behaviour:

$$A_{eff_i} := \rho_{c_i} \cdot A_{c_eff_i}$$
 $A_{eff}^T = (0.144 \ 0.16 \ 0.177 \ 0.193 \ 0.206) m^2$

Fraction of the yield stress that can be carried:

$$\rho_{eff_{i}} := \frac{A_{eff_{i}}}{t_{A_{i}} \cdot 0.5 \cdot (b_{1} + b_{2}) + b_{LS1} \cdot t_{LS1}} \qquad \rho_{eff}^{T} = (0.864 \ 0.907 \ 0.948 \ 0.983 \ 0.999)$$

Capacity of Unstiffened Corners:

The following are the capacities of the corner stress points on the cross section. It is important to note the stress point "SP1" represents the capacity of the Plate A stiffeners, for which details were given in the previous section ΡΙ ΑΤΕ Α

Segment	5]	SP1	SP2	SP3	SP4	SP5	SP6	SP7	SP8	SP9	SP10	SP11	SP12	SP13	SP14
Analysis Sect	9															
Elevation	71		0	2640	5980.936	5980.936	2640	þ	-2640	-5980.94	-5980.94	-2640	2412.5	2412.5	-2412.5	-2412.5
		-	9945	9955	4628.049	-4628.05	-9955	-9945	9955	4628.049	-4628.05	-9955	4380	-4380	4380	-4380
			mkleyn	nann:												
			Represe	nts Capacity o	f entire Panel	A including in	teraction of	plate and co	lumn bucklin	g						
Panel #1								-	-	-	-	_			-	
Plate			TF1	TF1	OW2	OW2	BF1	BF1	TF1	OW2	OW2	BF1	TFI2	BFI2	TFI2	BFI2
Corner Spacir	ng			2000	1200	1200	2000		2000	1200	1200	2000	1500	1500	1500	1500
plate thickne	ss		110	110	40	40	110	110	110	40	40	110	40	40	40	40
Ψ, _{pl}	5: Table 4.1	[-]		1	1	1	1		1	1	1	1	1	1	1	1
K _{σ,pl}	5: Table 4.1	[-]		4	4	4	4		4	4	4	4	4	4	4	4
fy	1: Table 3.1	[MPa]	460	460	460	460	460	460	460	460	460	460	460	460	460	460
8	5: (4.4 (2))	[-]		0.71	0.71	0.71	0.71		0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
λ _{p,pl}	5: (4.4)	[-]		0.45	0.74	0.74	0.45		0.45	0.74	0.74	0.45	0.91	0.92	0.92	0.92
ρ _{pl}	5: (4.4)	[-]	1.00	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	1.00	0.83	0.82	0.82	0.82
max stress			418	418	397	397	418	418	418	397	397	418	348	345	345	345
Panel #2								-					r			
Plate				IWT1	TFI2	BFI2	IWB2		IWT1	TFI2	BFI2	IWB2	TFI1	BFI1	TFI1	BFI1
Corner Spacin	ıg			1000	1175	1175	1000		1000	1175	1175	1000	1200	1200	1200	1200
plate thickne	ss	I. 1		60	40	40	60		60	40	40	60	35	35	35	35
Ψ, _{pl}	5: Table 4.1	[-]	1	1	1	1	1	1	1	1	1	1	1	1	1	1
K _{o,pl}	5: Table 4.1	[-]	4	4	4	4	4	4	4	4	4	4	4	4	4	4
ty	1: Table 3.1	[мРај	460	460	460	460	460	460	460	460	460	460	460	460	460	460
3	5: (4.4 (2))	[-]		0.71	0.71	0.71	0.71		0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Λ _{p,pl}	5: (4.4)	[-]		0.41	0.72	0.72	0.41		0.41	0.72	0.72	0.41	0.81	0.81	0.84	0.84
ρ _{pl}	5: (4.4)	[-]		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.90	0.90	0.88	0.88
max stress			418	418	418	418	418	418	418	418	418	418	376	376	366	366
D																
Panel #3				-				-	-	-						
Plate				TW1	TW2	BW2	BW1		TW1	TW2	BW2	BW1	1WT2	IWB1	IWT2	IWB1
Corner Spacin	1g			1333	1181	1181	1333		1333	1181	1181	1333	1333	1333	1333	1333
plate thickne	ss	lr 1	1	90	45	45	90	1	90	45	45	90	35	35	35	35
Ψ,pl	5: 1 able 4.1	[]	1	1	1	1	1	1	1		1	1	1	1	1	1

8																
plate thickness			90	45	45	90		90	45	45	90	35	35	35	35	
Ψ, _{pl}	5: Table 4.1	[-]	1	1	1	1	1	1	1	1	1	1	1	1	1	1
K _{σ,pl}	5: Table 4.1	[-]	4	4	4	4	4	4	4	4	4	4	4	4	4	4
fy	1: Table 3.1	[MPa]	460	460	460	460	460	460	460	460	460	460	460	460	460	460
З	5: (4.3)	[-]		0.71	0.71	0.71	0.71		0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
$\lambda_{p,pl}$	5: (4.3)	[-]		0.36	0.65	0.65	0.36		0.36	0.65	0.65	0.36	0.92	0.92	0.94	0.94
ρ _{pl}	5: (4.2)	[-]		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.82	0.82	0.82	0.82
max stress			418	418	418	418	418	418	418	418	418	418	345	345	341	341
			SP1	SP2	SP3	SP4	SP5	SP6	SP7	SP8	SP9	SP10	SP11	SP12	SP13	SP14
Governing design Stress		418	418	397	397	418	418	418	397	397	418	345	345	341	341	
Governing	reduction fac	ctor	1.00	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	1.00	0.82	0.82	0.82	0.82

5.1.1.5 **Calculation of Stresses and Utilization Ratios**

The section forces along with the section properties shown previously were used to calculate the maximum stresses for each stress point on the cross-section. The stress points correspond to the longitudinal stiffeners and corners, for which the capacities were shown in the previous section.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO									
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data							
Splices	, Annex	PS0015_F0	F0	20-06-2011							

The following tables show the stress calculation for each stress point and the resulting utilization ratio using the capacities. All stresses and utilization ratios are for Sicilia tower segment 5 under load combination ULS 7, for which section forces were previously shown.

							PLAT	E STRESS P	OINTS							
Stress point			SP1	SP2	SP3	SP4	SP5	SP6	SP7	SP8	SP9	SP10	SP11	SP12	SP13	SP14
	side	e of cross section														
Plate ID			TF1	TF2	TW2	BW2	BF2	BF1	TF2	TW2	BW2	BF2	TFI2	BFI2	TFI2	BFI2
Location of	Y	(mm)	0	2640	5980.936	5980.936	2640	0	-2640	-5980.936	-5980.94	-2640	2412.5	2412.5	-2412.5	-2412.5
Stress point	Z	(mm)	9945	9955	4628.049	-4628.049	-9955	-9945	9955	4628.049	-4628.049	-9955	4380	-4380	4380	-4380
		T														
		min NS	-334	-341	-318	-265	-226	-219	-327	-288	-235	-213	-308	-258	-296	-245
		max NS	-7	-6	-58	-150	-204	-205	-8	-62	-154	-206	-62	-149	-63	-150
		min MY	60	60	-42	-217	-318	-317	60	-40	-215	-317	-46	-212	-45	-211
		max MY	-363	-363	-298	-187	-124	-125	-364	-301	-190	-126	-296	-191	-297	-192
		min MZ	-266	-252	-216	-183	-182	-196	-279	-278	-245	-209	-234	-203	-259	-228
		max MZ	-103	-116	-171	-238	-260	-247	-90	-113	-179	-234	-155	-219	-132	-195
		min VY	-229	-223	-214	-208	-212	-217	-234	-238	-233	-223	-221	-216	-231	-226
SECTION EORCES	_{о1} (Мра)	max VY	-127	-130	-159	-202	-222	-218	-123	-143	-186	-215	-156	-196	-149	-189
SECTION FORCES		min LOO1	-376	-381	-328	-227	-164	-159	-372	-308	-207	-155	-319	-224	-311	-216
		max L001	64	64	-37	-210	-309	-308	65	-34	-207	-307	-41	-204	-39	-203
		min L002	-370	-377	-335	-247	-186	-179	-362	-302	-213	-172	-323	-239	-310	-226
		max L002	58	62	-28	-190	-289	-292	54	-44	-207	-296	-37	-191	-44	-198
		MIN	-376	-381	-335	-265	-318	-317	-372	-308	-245	-317	-323	-258	-311	-245
		MAX	64	64	-28	-150	-124	-125	65	-34	-154	-126	-37	-149	-39	-150
		-	min LOO1	min LOO1	min LOO2	min NS	min MY	min MY	min L001	min LOO1	min MZ	min MY	min LOO2	min NS	min LOO1	min NS
		min NS	5	5	1	-4	-7	-6	6	3	-2	-6	2	-3	3	-2
		max NS	-6	-5	0	5	8	7	-7	-4	1	6	-1	4	-3	2
		min MY	5	5	1	-4	-7	-6	6	3	-2	-6	2	-3	3	-2
		max MY	-6	-5	0	5	8	7	-7	-4	1	6	-1	4	-3	2
		min MZ	-6	-5	0	5	8	7	-7	-4	1	6	-1	4	-3	2
		max MZ	5	5	1	-4	-7	-6	6	3	-2	-6	2	-3	3	-2
TEMP. LOAD	- (Mpo)	min VY	-6	-5	0	5	8	7	-7	-4	1	6	-1	4	-3	2
CASE 4500	σ ₁ (iviµa)	max VY	5	5	1	-4	-7	-6	6	3	-2	-6	2	-3	3	-2
		min L001	-6	-5	0	5	8	7	-7	-4	1	6	-1	4	-3	2
		max L001	5	5	1	-4	-7	-6	6	3	-2	-6	2	-3	3	-2
		min L002	-6	-5	0	5	8	7	-7	-4	1	6	-1	4	-3	2
		max L002	5	5	1	-4	-7	-6	6	3	-2	-6	2	-3	3	-2
		MIN	-6	-5	0	-4	-7	-6	-7	-4	-2	-6	-1	-3	-3	-2
		MAX	5	5	1	5	8	7	6	3	1	6	2	4	3	2
ULS/SILS + Temp		MIN	-382	-385	-336	-269	-324	-323	-378	-313	-247	-322	-324	-261	-314	-248
		MAX	69	68	-26	-144	-117	-118	71	-30	-153	-120	-35	-145	-37	-148
1 at Longitudinal D	<u>(ESSES</u>															
Ist Longituumai Bu	4400	N 401	1													
Woment	1109	IVIN-m														
Axial Load	0.0	MN		-	-	-	-	-	1	1	-	-	1		1	
	σ1	Max	27.70	27.72	12.89	-12.89	-27.72	-27.70	27.72	12.89	-12.89	-27.72	12.20	-12.20	12.20	-12.20
		Min	-27.70	-27.72	-12.89	12.89	27.72	27.70	-27.72	-12.89	12.89	27.72	-12.20	12.20	-12.20	12.20
1st Transverse Buc	kling Mode		-													
Moment	315	MN-m														
Axial Load	14.1	MN														
	0 1	Max	1.80	9.78	19.87	19.87	9.78	1.80	9.78	19.87	19.87	9.78	9.09	9.09	9.09	9.09
		Min	-1.80	-9.78	-19.87	-19.87	-9.78	-1.80	-9.78	-19.87	-19.87	-9.78	-9.09	-9.09	-9.09	-9.09
2nd Transverse Bu	ckling Mod	9														
Moment	114	MN-m	1													
Avial Load	/19.2	MN														
Axidi Lodd	40.5	Max	6 1 6	0.04	12 60	12.60	0.04	6.16	0.04	12 60	12.69	0.04	0.70	0.70	0 70	0 70
	01	IVIDA	0.10	9.04	12.00	12.00	9.04	0.10	9.04	12.00	12.00	9.04	0.79	0.79	0.79	0.79
		IVIIII	-0.10	-9.04	-12.08	-12.08	-9.04	-0.10	-9.04	-12.08	-12.08	-9.04	-8.79	-8.79	-8.79	-8.79
Envelope of Imper	fection Stre	ess														
	0 1	MIN	-28	-28	-20	-20	-28	-28	-28	-20	-20	-28	-12	-12	-12	-12
		ΜΔΧ		28	20	20			28	20	20		12	12	12	12
Total Straccoci			20	20	20	20	20	20	20	20	20	20	12	12	12	12
IDIAI Sulesses.	nn i Imnorf	actions														
IDDAS FUILES + TEP	inh ± imheu	MIN	400	412	250	200	252	254	100	222	207	250	277	272	277	200
	σ1	IVIIIN	-409	-413	-356	-289	-352	-351	-406	-332	-26/	-350	-33/	-2/3	-327	-260
Į		iviax	97	96	-7	-125	-89	-91	99	-10	-133	-92	-23	-132	-25	-136
	anacitul		<u>/19</u>	<u>/19</u>	307	307	<u>∕</u> /19	<u>/12</u>	A10	307	207	<u>/</u> 10	3/15	3/15	3/11	3/11
COPPESP PEDICT		P	1.00	1 00	0.05	0.05	1 00	1.00	1.00	0.05	0.05	1.00	0.02	0 02	0 02	0 02
CORRESP. REDUCTION FACTOR		1.00	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	1.00	0.02	0.02	0.02	0.82	
UTILIZATION RATIO		0.98	0.99	0.89	0.73	0.84	0.84	0.97	0.84	0.67	0.84	0.98	0.79	0.96	0.76	

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento
PS0015_F0

							LON	GITUDINAL	STIFFENER	STRESS POI	NTS				
Stress point			LS2	LS3	LS4	LS5	LS6	LS7	LS8	LS9	LS10	LS11	LS12	LS13	LS14
	side	e of cross section	+	+	+	+	+	+	+	+	+	+	+	+	+
Plate ID			TW1	TW1	TW2	TW2	TW2	OW2	OW2	OW2	OW2	OW2	BW1	BW1	BW2
Location of	Y	(mm)	3037.289	3701.208	4365.146	5029.0655	5692.984	6000	6000	6000	6000	6000	3037.289	3701.208	4365.146
Stress point	Z	(mm)	9366.23	8307.12	7247.98	6188.8717	5129.763	2800	1600	1.82E-12	-1600	-2800	-9366.229	-8307.12	-7247.981
		min NS	-338	-334	-329	-325	-321	-308	-301	-292	-283	-276	-230	-238	-246
		max NS	-12	-22	-32	-43	-53	-76	-88	-104	-120	-132	-198	-187	-176
		min MY	48	28	8	-12	-32	-76	-99	-129	-160	-182	-306	-286	-267
		max MY	-356	-343	-330	-317	-304	-276	-262	-243	-223	-209	-131	-144	-156
		min MZ	-248	-241	-234	-226	-219	-209	-205	-200	-194	-190	-182	-182	-183
		max MZ	-122	-133	-144	-155	-166	-184	-193	-204	-216	-225	-258	-253	-249
IBDAS ULS/SILS	(14)	min VY	-222	-220	-218	-216	-214	-212	-212	-211	-210	-209	-212	-211	-210
SECTION FORCES	σ ₁ (ivipa)	max VY	-134	-139	-145	-151	-15/	-168	-1/3	-181	-188	-194	-220	-216	-212
		min L001	-3/5	-364	-354	-344	-333	-308	-295	-2/8	-260	-247	-1/1	-183	-196
		min 1002	-373	-364	-356	-7	-27	-71	-95	-125	-155	-1/0	-298	-276	-239
		max 1002	52	34	-350	-340	-19	-60	-300	-109	-137	-158	-175	-205	-217
		MIN	-375	-364	-356	-348	-339	-318	-306	-292	-283	-276	-306	-286	-267
		MAX	575	34	16	-1	-19	-60	-81	-104	-120	-132	-131	-144	-156
			min LOO1	min L001	min L002		min L002	min L002	min L002	min NS	min NS	min NS	min MY	min MY	min MY
					2002		2002	2002	2002						
		min NS	4	4	3	2	1	0	-1	-2	-3	-3	-6	-6	-5
		max NS	-4	-3	-2	-2	-1	1	2	3	4	4	7	7	6
		min MY	4	4	3	2	1	0	-1	-2	-3	-3	-6	-6	-5
		max MY	-4	-3	-2	-2	-1	1	2	3	4	4		/	6
			-4	-3	-2	-2	-1	1	2	3	4	4	· · · ·	/	0
TEMP. LOAD			4	4	3	2	1	1	-1	-2	-3	-3	-0 7	-0	-5
CASE 4500	_{σ1} (Mpa)	max VY	-4	-5	-2	2	1	0	-1	-2	-3	-3	-6	-6	-5
		min 1001	-4	-3	-7	-2	-1	1	2	3	4	4	7	7	6
		max L001	4	4	3	2	1	0	-1	-2	-3	-3	-6	-6	-5
		min L002	-4	-3	-2	-2	-1	1	2	3	4	4	7	7	6
		max L002	4	4	3	2	1	0	-1	-2	-3	-3	-6	-6	-5
		MIN	-4	-3	-2	-2	-1	0	-1	-2	-3	-3	-6	-6	-5
		MAX	4	4	3	2	1	1	2	3	4	4	7	7	6
ULS/SILS + Temp		MIN	-379	-368	-358	-349	-340	-318	-307	-293	-285	-279	-313	-292	-272
		MAX	57	38	19	1	-18	-59	-79	-101	-116	-127	-124	-137	-150
IMPERFECTION ST	RESSES														
Tot Longitudinal Bi	1100	MN-m	1												
Avial Load	0.0	IVIN-III MNI													
Axiai Luau	0.0	Max	26.08	22.14	20.10	17.24	14.20	7 90	1.16	0.00	1.16	7 90	26.08	22.14	20.10
	01	Min	-26.08	-23.14	-20.15	-17.24	-14.29	-7.80	-4.40	0.00	4.46	7.80	26.08	23.14	20.15
1st Transverse Bug	kling Mode	IVIIII	-20.00	-23.14	-20.15	-17.24	-14.25	-7.80	-4.40	0.00	4.40	7.00	20.00	23.14	20.15
Moment	315	MN-m	1												
Axial Load	14.1	MN	1												
	σ1	Max	10.98	12.99	14.99	17.00	19.00	19.93	19.93	19.93	19.93	19.93	10.98	12.99	14.99
		Min	-10.98	-12.99	-14.99	-17.00	-19.00	-19.93	-19.93	-19.93	-19.93	-19.93	-10.98	-12.99	-14.99
2nd Transverse Bu	ckling Mode	e													
Moment	114	MN-m													
Axial Load	48.3	MN													
	σ1	Max	9.47	10.20	10.92	11.64	12.37	12.70	12.70	12.70	12.70	12.70	9.47	10.20	10.92
		Min	-9.47	-10.20	-10.92	-11.64	-12.37	-12.70	-12.70	-12.70	-12.70	-12.70	-9.47	-10.20	-10.92
Envelope of Image	faction St														
Envelope of imper	26	22	20	17	10	20	20	20	20	20	26	22	20		
	51	MAX	26	23	20	17	19	20	20	20	20	20	26	23	20
Total Stresses		IV IF IA	20	23	20	1/	1.5	20	20	20	20	20	20	23	20
IBDAS Forces + Ter	np + Imperf	ections													
	(51	MIN	-405	-391	-379	-367	-359	-338	-327	-313	-305	-299	-339	-316	-292
	31	Max	83	61	39	18	1	-39	-59	-81	-96	-107	-98	-114	-129
CRITICAL STRESS (409	409	409	409	409	402	378	358	378	402	409	409	409		
CORRESP. REDUCT	ION FACTO	R	0.98	0.98	0.98	0.98	0.98	0.96	0.90	0.86	0.90	0.96	0.98	0.98	0.98
UTILIZATION RATIO	UTILIZATION RATIO				0.93	0.90	0.88	0.84	0.86	0.88	0.81	0.74	0.83	0.77	0.71

Design Report - Tower Legs incl. Joints and Splices, Annex PS0015_F0

Codice documento

Rev Data F0 20-06-2011

String part Edite								LON	GITUDINAL	STIFFENER	STRESS PC	DINTS				
ising from the constraint of the constraint	Stress point			LS15	LS16	LS18	LS19	LS20	LS21	LS22	LS23	LS24	LS25	LS26	LS27	LS28
Phate D Hor		side	e of cross section	+	+	+	+	+	+	+	+	+	+	+	+	+
Calibri P Control Section	Plate ID		1	BW2	BW2	TFI1	TFI2	TFI2	TFI2	BFI1	BFI2	BFI2	BFI2	IWT1	IWT1	IWT1
mmm mm mm< mm mm< mm< <th< td=""><td>Location of</td><td>Y</td><td>(mm)</td><td>5029.065</td><td>5692.984</td><td>800</td><td>3500</td><td>4825</td><td>4825</td><td>800</td><td>3500</td><td>4825</td><td>4825</td><td>2000</td><td>2000</td><td>2000</td></th<>	Location of	Y	(mm)	5029.065	5692.984	800	3500	4825	4825	800	3500	4825	4825	2000	2000	2000
Image: book of the sector of the se	Stress point	Z	(mm)	-6188.872	-5129.763	4000	4000	4000	4000	-4000	-4000	-4000	-4000	9000	8000	6667
IBDAS US/FM Ima MS Im			min NS	-254	-262	-302	-309	-312	-312	-256	-262	-266	-266	-334	-328	-320
Ferr Inition Mine Mine Mine Mine Mine Mine Mine Min			max NS	-166	-155	-66	-65	-65	-65	-145	-144	-144	-144	-16	-26	-39
IBDAS ULS [55] Impa MM 100 132 232 230 232 230 332 330 332 330 332 330 340 44 44 33 min 10010600000 <td< td=""><td></td><td></td><td>min MY</td><td>-247</td><td>-227</td><td>-53</td><td>-53</td><td>-53</td><td>-53</td><td>-204</td><td>-205</td><td>-205</td><td>-205</td><td>42</td><td>23</td><td>-3</td></td<>			min MY	-247	-227	-53	-53	-53	-53	-204	-205	-205	-205	42	23	-3
IBDAS ULS/SLS no.00(m) No.00(m) IBDAS ULS/SLS no.00(m) IBDAS ULS/SLS no.00(m) IBDAS ULS/SLS no.00(m) <th< td=""><td></td><td></td><td>max MY</td><td>-169</td><td>-181</td><td>-292</td><td>-291</td><td>-291</td><td>-291</td><td>-196</td><td>-195</td><td>-195</td><td>-195</td><td>-352</td><td>-340</td><td>-324</td></th<>			max MY	-169	-181	-292	-291	-291	-291	-196	-195	-195	-195	-352	-340	-324
Image MP Part MP <			min MZ	-183	-183	-241	-227	-220	-220	-212	-198	-192	-192	-252	-248	-244
IDDAD LIGATE SECTION FORCE n, Mpl ma min N 200 -224 -21 -21 <th< td=""><td></td><td></td><td>max MZ</td><td>-244</td><td>-240</td><td>-150</td><td>-163</td><td>-170</td><td>-170</td><td>-208</td><td>-221</td><td>-228</td><td>-228</td><td>-120</td><td>-127</td><td>-137</td></th<>			max MZ	-244	-240	-150	-163	-170	-170	-208	-221	-228	-228	-120	-127	-137
SECTION FORCES (n, input) matural (1) (1)/(2) <th(1) (2)<="" th=""> (1)/(2) (1</th(1)>	IBDAS ULS/SILS	(14)	min VY	-209	-209	-224	-218	-216	-216	-219	-214	-211	-211	-224	-224	-223
Image: Description Image:	SECTION FORCES	σ ₁ (ivipa)	max VY	-208	-204	-155	-159	-161	-161	-192	-196	-197	-197	-134	-139	-145
Image: black			min L001	-209	-221	-313	-317	-319	-319	-225	-230	-232	-232	-309	-358	-344
Image: book of the second se			max LOO1	-239	-219	-47	-48	-48	-48	-197	-198	-198	-198	40	27	2
Mn -254 -262 -305 -326 -266 -326 -			max 1.002	-223	-241	-46	-322	-320	-320	-187	-183	-181	-230	-300	26	-344
jbb: jb: jbb: jbb:			MIN	-215	-262	-40	-42	-40	-326	- 107	-165	-101	-101	-369	-358	-344
min min N5 min N5 min 002 min 002 min 1002 min 1002 min 100 min 100 min 1000			MAX	-254	-155	-315	- 322	-320	-320	-145	-144	-144	-144	-305	27	3
TEMP. LOAD min NS -5 -4 -2 1 1 1 -3 -3 -4 4 4 4 4 4 3 TRAN S 6 6 -2 -1 0 0 3 4 5 5 -4 4 3 min MW 6 6 -2 1 1 1 3 3 4 4 4 4 3 max MW 6 6 -2 -1 0 0 3 4 5 -4 4 3 max M2 -5 -4 2 1 1 1 3 -3 4 4 4 4 3 max M2 -5 -4 2 1 0 0 3 4 5 5 -4 4 3 max M2 -5 -4 2 1 1 1 3 3 4 4 4				min NS	min NS	min L002	min L002	min L002	min L002	min NS	min NS	min NS	min NS	min L001	 min L001	min LOO2
Image: book of the section of the sectin of the sectin of the section of the section of the section of			-													
Image No. 6 6 -2 -1 0 0 3 4 5 5 -4 -4 -3 TEMP. IOAD			min NS	-5	-4	2	1	1	1	-3	-3	-4	-4	4	4	3
TEMP. 10.00 Imm. MY -5 -4 2 1 1 1 -3 -4 -4 4 4 4 3 TEMP. 10.00 6 6 -2 1 0 0 3 4 5 5 4 4 4 3 Gr. (MP) min WZ 6 6 -2 1 1 1 3 -3 -4 4 4 4 3 min WW 6 6 -2 1 1 1 -3 -3 -4 4 4 4 3 min UO2 6 6 -2 1 1 1 -3 -3 -4 4 4 4 3 min UO2 6 6 -2 1 0 0 -3 3 -4 -4 4 4 3 MAX 760 7.49 2.5 11 0 0 -3 3 <t< td=""><td></td><td></td><td>max NS</td><td>6</td><td>6</td><td>-2</td><td>-1</td><td>0</td><td>0</td><td>3</td><td>4</td><td>5</td><td>5</td><td>-4</td><td>-4</td><td>-3</td></t<>			max NS	6	6	-2	-1	0	0	3	4	5	5	-4	-4	-3
$ \begin{tabular}{ $ Tarray $ rank $			min MY	-5	-4	2	1	1	1	-3	-3	-4	-4	4	4	3
TEMP: DAD CASE 4500 Immode min W2 6 6 7-2 1 0 0 3 4 5 7-4 4-4 3 CASE 4500 min VY 6 6 -2 1 0 0 3 4 5 5 -4 4 3 Max 6 6 -2 1 0 0 3 4 5 5 -4 4 3 min L001 6 6 -2 1 0 0 3 4 5 5 -4 4 3 min L002 6 6 -2 1 0 0 3 4 5 5 4 4 4 3 Max 6 6 2 1 1 1 3 4 4 4 4 4 4 3 Ut/sits 7 4 2 1 1 1 1 3 3 <td></td> <td></td> <td>max MY</td> <td>6</td> <td>6</td> <td>-2</td> <td>-1</td> <td>0</td> <td>0</td> <td>3</td> <td>4</td> <td>5</td> <td>5</td> <td>-4</td> <td>-4</td> <td>-3</td>			max MY	6	6	-2	-1	0	0	3	4	5	5	-4	-4	-3
TEMP. LOAD CASE 4500 mo. mo. mo. mo. mo. mo. mo. mo. mo. mo. mo.			min IVIZ	<u>ь</u>	6	-2	-1	1	1	3	4	5	5	-4	-4	-3
CASE 4500 n 0 2 1 0	TEMP. LOAD			-5	-4	-2	-1	0		-5		5	5	-4	-4	-3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CASE 4500	σ ₁ (Mpa)	max VY	-5	-4	2	1	1	1	-3	-3	-4	-4	4	4	3
max L001 -5 -4 2 1 1 1 -3 3 -4 -4 4 4 4 3 max L002 -5 -4 2 -1 0 0 -3 -3 -4 -4 4 4 4 3 MN -5 -4 -2 -1 0 0 -3 -3 -4 -4 4 4 4 3 MN -5 -4 -2 -1 0 0 -3 -3 -4 -4 -4 -4 -4 -3 MN -5 -4 -2 -1 0 0 -3 -3 -4 -4 -4 -4 -3 MNN -160 -149 -44 -41 -39 -39 -140 -139 -139 50 31 6 Ist conjutania Bucking -1109 MN-m -1114 1114 1114 1114			min L001	6	6	-2	-1	0	0	3	4	5	5	-4	-4	-3
min L002 6 6 2 -1 0 0 3 4 5 5 -4 -4 -4 -3 MIN 5 -4 2 1 1 1 -3 -3 -4 -4 -4 4 4 3 MX 6 6 2 1 1 1 3 -4 -4 -4 -4 -3 MX 6 6 2 1 1 1 3 -4 -4 -4 -3 ULS/SULS + Temp MiN -259 -266 -326 -326 -326 -140 -140 -39 50 31 6 IMPERECTION STRESSES tstongtudinal Bucking			max L001	-5	-4	2	1	1	1	-3	-3	-4	-4	4	4	3
max LOD2 5 -4 2 1 1 1 -3 -3 -4 -4 3 UL5/SIL5 + Temy MIN -259 -266 -317 -323 -326 -259 -266 -269 -269 -337 -362 -347 MAX -160 -149 -44 -41 -39 -39 -142 -140 -139 50 31 6 INPERFECTION STRESSE 11109 MN-m - - -17.24 -14.29 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 <td< td=""><td></td><td></td><td>min L002</td><td>6</td><td>6</td><td>-2</td><td>-1</td><td>0</td><td>0</td><td>3</td><td>4</td><td>5</td><td>5</td><td>-4</td><td>-4</td><td>-3</td></td<>			min L002	6	6	-2	-1	0	0	3	4	5	5	-4	-4	-3
MN -5 -4 -2 -1 0 0 -3 -3 -4 -4 -4 -4 -4 -4 -3 MAX 6 6 2 1 1 1 3 4 5 5 4 4 3 ULS/SILS + Temp MN -259 -266 -337 -326 -229 -266 -269 -269 -30 -31 6 IMPERFICION STRESSES -160 -149 -44 -41 -39 -39 -142 -140 -139 -139 50 31 6 IMPERFICION STRESSES 1 1.14 11.14 11.14 -11.14 -11.14 -11.14 -11.14 11.14 </td <td></td> <td></td> <td>max L002</td> <td>-5</td> <td>-4</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>-3</td> <td>-3</td> <td>-4</td> <td>-4</td> <td>4</td> <td>4</td> <td>3</td>			max L002	-5	-4	2	1	1	1	-3	-3	-4	-4	4	4	3
MAX 6 6 2 1 1 1 3 4 5 5 4 4 3 UL5/SIL5 + Temp MIN 259 266 317 323 326 326 259 266 269 269 373 362 347 IMPERFECTION STRESSES S MMX 100 140 -140 -139 -139 -139 -139 -139 -139 -139 -139 -362 -373 -662 IMPERFECTION STRESSES Istitangludinal Buckling Moment -1109 MN -1114			MIN	-5	-4	-2	-1	0	0	-3	-3	-4	-4	-4	-4	-3
MIN MAX -259 -266 -317 -323 -326 -326 -259 -266 -269 -373 -362 -347 IMPERFECTION STRESSES			MAX	6	6	2	1	1	1	3	4	5	5	4	4	3
Image: Definition of the second sec	UIS/SIIS+Temp		MIN	-259	-266	-317	-323	-326	-326	-259	-266	-269	-269	-373	-362	-347
IMPERFECTION STRESSES Imperfection Impe			MAX	-160	-149	-44	-41	-39	-39	-142	-140	-139	-139	50	31	6
IMPERCETION STRESSES Stationginudinal Buckling Moment 1109 MN-m Axial Load 0.0 MN 17.24 -14.29 11.14 11.14 -11.23 -16.38 -16.38 -16.38 -16.38 -16.38 -16.38 -16.38 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
Int Congrutudinal Buckling Moment 1109 MNI-m Axial Load 0.0 MN 01 Max 17.24 -14.29 11.14 11.14 -11.	IMPERFECTION ST	RESSES														
Moment 11.09 MN-m Axial Load 0.0 MN ori Max -17.24 -14.29 11.14 11.14 -11.14 -11.14 -11.14 -11.14 -11.14 -11.14 11.	1st Longitudinal B	uckling		1												
Axial Load 0.0 MN -17.24 -14.29 11.14 11.14 11.14 -11.14 -11.14 -11.14 -11.14 -11.14 -11.14 -11.14 -11.14 11.14	Moment	1109	MN-m													
σri Miax -17.24 -14.29 -11.14	Axial Load	0.0	MN	47.24	44.20									25.00	22.20	40.57
Ist Transverse Buckling Mode 11.24 14.29 -11.14 -11.14 -11.14 11.14 11.14 11.14 11.14 11.14 -25.06 -22.26 -18.57 Ist Transverse Buckling Mode 315 MN-m - <td></td> <td>σ1</td> <td>IVIAX</td> <td>-17.24</td> <td>-14.29</td> <td>11.14</td> <td>11.14</td> <td>11.14</td> <td>11.14</td> <td>-11.14</td> <td>-11.14</td> <td>-11.14</td> <td>-11.14</td> <td>25.06</td> <td>22.28</td> <td>18.57</td>		σ1	IVIAX	-17.24	-14.29	11.14	11.14	11.14	11.14	-11.14	-11.14	-11.14	-11.14	25.06	22.28	18.57
Moment 315 MN-m Axial Load 4.1.1 MN	Ant Trans		IVIIN	17.24	14.29	-11.14	-11.14	-11.14	-11.14	11.14	11.14	11.14	11.14	-25.06	-22.28	-18.5/
MODIFENT 312 MIN+III Axial Load 14.1 MN a a Max 17.00 19.00 4.22 12.38 16.38 4.22 12.38 16.38 16.38 16.38 7.85	1st Transverse Bud	AND NODE	NAN m	1												
CNOR LOGG Arric INV IT.00 19.00 4.22 12.38 16.38 4.22 12.38 16.38 <t< td=""><td>Avial Load</td><td>315</td><td>MNI</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Avial Load	315	MNI													
Origon Min 17.00 19.00 -12.00 10.30	AXIAI LOAD	14.1	Max	17.00	19.00	4 22	12 28	16.38	16.32	4 22	12 28	16.38	16.38	7 25	7 25	7.85
Line		01	Min	-17.00	-19.00	-4.22	-12.30	-16.30	-16.30	-4.22	-12.30	-16.30	-16.38	-7.85	-7.85	-7.85
Moment 114 MN-m Axial Load 48.3 MN 01 Max 11.64 12.37 7.03 9.98 11.42 11.42 7.03 9.98 11.42 11.42 8.34 8.34 8.34 61 Min -11.64 -12.37 -7.03 -9.98 -11.42 -7.03 -9.98 -11.42 -11.42 -8.34 -8.34 -8.34 Envelope of Imperfection Stress 01 MIN -17 -19 -11 -12 -16 -16 -16 -25 -22 -19 MAX 17 19 11 12 16 16 11 12 16 16 25 22 19 Total Stresses: IBDAS Forces + Temp + Imperfections 01 -276 -285 -328 -336 -343 -270 -278 -286 -286 -399 -384 -365 Max -142 -130 -33 -28 -23 -23 -131 -128 -123 -123	2nd Transverse Bu	ckling Mod	P	-17.00	-15.00	-4.22	-12.30	-10.50	-10.50	-4.22	-12.30	-10.50	-10.56	-7.05	-7.05	-7.05
Axial Load 48.3 MN Δxial Load 48.3 MN σ1 Max 11.64 12.37 7.03 9.98 11.42 11.42 7.03 9.98 11.42 11.42 8.34 8.34 8.34 Envelope of Imperfection Stress σ1 MIN -11 -12 -16 -16 -11 -12 -16 -16 -25 -22 -19 MAX 17 19 11 12 16 16 11 12 16 16 25 22 19 Total Stresses: IBDAS Forces + Temp + Imperfections -276 -285 -328 -336 -343 -343 -270 -278 -286 -286 -399 -384 -365 Max -142 -130 -33 -28 -23 -23 -131 -128 -123 -123 75 53 24 CRITICAL STRESS (capacity) 409 409 329 342 363 363 329 342 363 363 415 413 412	Moment	114	MN-m	1												
σ1 Max Min 11.64 12.37 7.03 9.98 11.42 11.42 7.03 9.98 11.42 11.42 8.34 8.34 8.34 Envelope of Imperfection Stress σ1 MIN -11.64 -12.37 -7.03 -9.98 -11.42 -7.03 -9.98 -11.42 -1.42 -8.34 8.34 8.34 Envelope of Imperfection Stress σ1 MIN -17 -19 -11 -12 -16 -16 -11 -12 -16 -16 25 -22 -19 Total Stresses: IBDAS Forces + Temp + Imperfections -276 -285 -328 -336 -343 -343 -270 -278 -286 -286 -399 -384 -365 G1 MIN -276 -285 -328 -336 -343 -343 -270 -278 -286 -286 -399 -384 -365 G1 MIN -276 -285 -328 -336 -343 -343 -270 -278 -286 -286 -399 -384 -365 24	Axial Load	48.3	MN													
Min -11.64 -12.37 -7.03 -9.98 -11.42 -7.03 -9.98 -11.42 -1.42			Max	11.64	12.37	7.03	9.98	11.42	11.42	7.03	9.98	11.42	11.42	8.34	8.34	8.34
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Min	-11.64	-12.37	-7.03	-9.98	-11.42	-11.42	-7.03	-9.98	-11.42	-11.42	-8.34	-8.34	-8.34
Envelope of Imperfection Stress σ1 MIN -17 -19 -11 -12 -16 -11 -12 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 13 16 13 12 13 13 13 12 13 123 <td></td>																
ori MIN -17 -19 -11 -12 -16 -11 -12 -16 -16 -25 -22 -19 MAX 17 19 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 11 12 16 16 12 16 16 12 12 16 16 12 16 16 12 16 16 12 16 16 12 16 16 12 16 16 12 16 16 12 16 16 12 16 16 12 16 16 12 12 12 12 19 11 12 16 16 12 16 16 12 12 16 16 12 12 12 12 12 12 16 16 12 12 12 12 12 12 12 12 12 12 12 1	Envelope of Impe	rfection Str	ess													
MAX 17 19 11 12 16 16 16 16 25 22 19 Total Stresses: IBDAS Forces + Temp + Imperfections $ \sigma_1 $ MIN -276 -285 -328 -336 -343 -23 -23		σ1	MIN	-17	-19	-11	-12	-16	-16	-11	-12	-16	-16	-25	-22	-19
Total Stresses: IBDAS Forces + Temp + Imperfections σ1 MIN -276 -285 -328 -336 -343 -270 -278 -286 -286 -399 -384 -365 Max -142 -130 -33 -28 -23 -23 -131 -128 -123 -123 75 53 24 CRITICAL STRESS (capacity) 409 409 329 342 363 363 329 342 363 363 415 413 412 CRITICAL STRESS (capacity) 409 329 342 363 363 329 342 363 363 415 413 412 CORRESP. REDUCTION FACTOR 0.98 0.79 0.82 0.87			MAX	17	19	11	12	16	16	11	12	16	16	25	22	19
IBUAS Forces + Iemp + Imperfections G1 MIN -276 -285 -328 -336 -343 -270 -278 -286 -286 -399 -384 -365 Max -142 -130 -33 -28 -23 -23 -131 -128 -123 -123 -123 75 53 24 CRITICAL STRESS (capacity) 409 409 329 342 363 363 329 342 363 363 415 413 412 CORRESP. REDUCTION FACTOR 0.98 0.79 0.82 0.87 0.79 0.82 0.87 0.87 0.99 0.99 0.99 0.99 UTULIZATION PATIO 0.67 0.70 0.88 0.79 0.82 0.87 0.70 0.82 0.70 0.70 0.82 0.70 0.70 0.82 0.70 0.70 0.82 0.70 0.70 0.82 0.70 0.70 0.82 0.70 0.70 0.82 0.70 0.70 0.82 0.70 0.70 0.82 0.70 0.70 0.70 <td>Total Stresses:</td> <td></td>	Total Stresses:															
O1 MIN -2/b -2/b -2/b -3/25 -3/25 -3/35 -3/45 -2/0 -2/b -2/b -2/b -3/84 -3/85 -3/84 -3/85 Max -142 -130 -33 -28 -23 -23 -131 -128 -123 -123 75 53 24 CRITICAL STRESS (capacity) 409 409 329 342 363 363 329 342 363 363 415 413 412 CORRESP. REDUCTION FACTOR 0.98 0.79 0.82 0.87 0.79 0.82 0.87 0.87 0.99 0.99 0.99	IBDAS Forces + Tei	mp + Imper	rections	270	205	220	220	242	242	270	270	200	200	200	204	205
Max -142 -130 -33 -28 -23 -131 -128 -123 -123 75 53 24 CRITICAL STRESS (capacity) 409 409 329 342 363 363 329 342 363 363 415 413 412 CORRESP. REDUCTION FACTOR 0.98 0.79 0.82 0.87 0.79 0.82 0.87 0.99 0.99 0.99		σ1	IVIIN	-2/6	-285	-328	-336	-343	-343	-2/0	-2/8	-286	-286	-399	-384	-365
CRITICAL STRESS (capacity) 409 409 329 342 363 363 329 342 363 363 415 413 412 CORRESP. REDUCTION FACTOR 0.98 0.79 0.82 0.87 0.79 0.82 0.87 0.87 0.99 0.99 0.99	Max			-142	-130	-33	-28	-23	-23	-131	-128	-123	-123	/5	53	24
CORRESP. REDUCTION FACTOR 0.98 0.79 0.82 0.87 0.79 0.82 0.87 0.99 0.99 0.99 UTULIZATION PATIO 0.92 0.70 0.82 0.87 0.87 0.97 0.82 0.87 0.99 0.99 0.99	CRITICAL STRESS (capacity)		409	409	329	342	363	363	329	342	363	363	415	413	412
	CORRESP. REDUCT	ION FACTO	R	0.98	0.98	0.79	0.82	0.87	0.87	0.79	0.82	0.87	0.87	0.99	0.99	0.99
		•		0.67	0.70	1.00	0.09	0.04	0.04	0.92	0.91	0.70	0.70	0.06	0.02	0.90

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento
PS0015_F0

							LON	GITUDINAL	STIFFENER	STRESS PC	DINTS				
Stress point			LS29	LS30	LS31	LS32	LS33	LS2	LS3	LS4	LS5	LS6	LS7	LS8	LS9
	side	e of cross section	+	+	+	+	+	-	-	-	-	-	-	-	-
Plate ID			IWT2	IWB1	IWB2	IWB2	IWB2	TW1	TW1	TW2	TW2	TW2	OW2	OW2	OW2
Location of	Y	(mm)	2000	2000	2000	2000	2000	-3037.289	-3701.208	-4365.146	-5029.065	-5692.984	-6000	-6000	-6000
Stress point	Z	(mm)	5334	-5334	-6667	-8000	-9000	9366.23	8307.12	7247.98	6188.87	5129.76	2800.00	1600.00	0.00
		min NC	212	251	242	226	220	222	215	207	200	202	270	271	262
		IIIIII NS	-512	-251	-245	-230	-230	-525	-515	-507	-500	-292	-278	-2/1	-202
			-52	-156	-1/2	-165	-195	-14	-25	-50	-40	-57	-60	-92	-106
			-20	-250	-255	-260	-299	49	29	322	-11	-51	-75	-97	-120
		min M7	-306	-100	-104	-140	-150	-557	-545	-352	-520	-507	-2/9	-205	-240
			-239	-202	-197	-192	-109	-2/9	-2/9	-2/9	-2/9	-270	126	-207	-202
			-140	-224	-235	-245	-230	-33	-37	-101	-100	-110	-120	-134	-140
IBDAS ULS/SILS	or (Mpa)		-222	-210	-215	-214	-214	-255	-235	-230	-257	-230	-257	-230	-255
SECTION FORCES	01 (mpd)	min L001	-320	-200	-200	-212	-173	-125	-125	-330	-137	-141	-131	-137	-104
		may 1001	-23	-222	-247	-272	-201	54	352	15	-5	-24	-68	-90	-120
		min 1002	-23	-222	-247	-203	-194	-356	-344	-332	-320	-24	-284	-273	-120
		max 1.002	-331	-225	-210	-205	-173	43	24	-352	-16	-300	-204	-275	-126
			221	200	252	20	2/3	265	24	220	227	214	200	275	262
			-551	159	-233	-200	-235	-303	-332	-335	-327	-514	-200	-273	102
		IVIAA	-21 min 1.002	min NS	min MY	min MY	min MY	min 1001	min 1.001	min 1.001	- J min 1.001	-24 min 1.001	-00 min 1.001	- 50 min 1.001	-100 min M7
		-	2002												
		min NS	2	-4	-5	-5	-6	6	5	5	4	4	2	2	1
		max NS	-2	4	5	6	7	-6	-6	-5	-5	-5	-3	-3	-2
		min MY	2	-4	-5	-5	-6	6	5	5	4	4	2	2	1
		max MY	-2	4	5	6	7	-6	-6	-5	-5	-5	-3	-3	-2
		min MZ	-2	4	5	6	/	-6	-6	-5	-5	-5	-3	-3	-2
			2	-4	-5	-5	-6	6	5	5	4	4	2	2	1
CASE 4500	σ ₁ (Mpa)		-2	4	5			-6	-6	-5	-5	-5	-3	-3	-2
CA3E 4500		max VY	2	-4	-5	-5	-0	6	6		4	4	2	2	
		max 1001	-2	4			6	-0	-0		-5	-5	-5	-5	-2
		min L002	2	-4	-5	-5	-0	6	6		4	4	2	2	1 1
		max L002	2	-4	-5	-5	-6	6	-0	5	4	4	2	2	1
		MIN	-2	-4	-5	-5	-6	-6	-6	-5	-5	-5	-3	-3	-2
		MAX	2	4	5	6	7	6	5	5	4	4	2	2	1
,,					-				-						
ULS/SILS + Temp		MIN	-333	-255	-260	-286	-305	-371	-358	-345	-332	-319	-292	-278	-263
		MAX	-18	-154	-158	-142	-129	60	40	19	-1	-21	-66	-89	-107
IMPERFECTION ST	RESSES														
1st Longitudinal B	ickling														
Moment	1109	MN-m													
Avial Load	0.0	MN													
/ Midi Loud	0.0 01	Max	14.86	-14.86	-18 57	-22.28	-25.06	26.08	23 14	20.19	17 24	14 29	7.80	4 46	0.00
	01	Min	-14.86	14.86	18 57	22.20	25.06	-26.08	-23.14	-20.19	-17.24	-14 29	-7.80	-4.46	0.00
1st Transverse Bur	kling Mode		1.00	1.00	10.07	22.20		20.00			27.67	1.423	1	1	0.00
Moment	315	MN-m													
Avial Load	14.1	MN													
	 (7)	Max	7.85	7.85	7.85	7,85	7,85	10 98	12 99	14 99	17 00	19.00	19 93	19 93	19 93
	51	Min	-7.85	-7 85	-7.85	-7.85	-7.85	-10.98	-12 99	-14.99	-17.00	-19.00	-19.93	-19.93	-19.93
2nd Transverse Bu	ckling Mod	e	,.05	7.05	1 .05	7.05	7.05	10.00	1.55	1 14.55	17.00	10.00	1, 10.00	1.55	13.33
Moment	114	MN-m													
Avial Load	48.3	MN													
AATGI LUGU	-0.5	Max	8 2/	8 3/	8 3/	8 2/	8 3/	9.47	10.20	10 02	11.64	12 27	12 70	12 70	12 70
	01	Min	-8.34	-8.34	-8.34	-8.34	-8.34	-9.47	-10.20	-10.92	-11.64	-12.37	-12.70	-12.70	-12.70
			0.34	0.34	0.54	0.54	0.34		10.20	10.72	11.04	10.37	12.70	1 12.70	12.70
Envelope of Impe	fection Stre	ess													
	σ1	MIN	-15	-15	-19	-22	-25	-26	-23	-20	-17	-19	-20	-20	-20
	MAX	15	15	19	22	25	26	23	20	17	19	20	20	20	
Total Stresses:															
IBDAS Forces + Ter	np + Imperf	ections													
	σ1	MIN	-348	-270	-278	-308	-330	-397	-381	-365	-349	-338	-311	-298	-283
		Max	-4	-139	-140	-119	-104	86	63	40	17	-2	-46	-69	-87
	anacit)		252	252	412	A10	A10	400	400	400	400	400	402	270	250
CORRESP DEDUCT	apacity)	D I	0.84	0.94	412	418	418	409	409	409	409	409	402	5/8	558
CONNESP. REDUCI	ION FACTO		0.64	0.64	0.99	1.00	1.00	0.96	0.96	0.96	0.96	0.96	0.90	0.90	0.00
UTILIZATION RATIO		0.99	0.77	0.68	0.74	0.79	0.97	0.93	0.89	0.85	0.83	0.77	0.79	0.79	

Design Report - Tower Legs incl. Joints and

Splices, Annex

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento

PS0015_F0

							LONG	GITUDINAL	STIFFENER	STRESS PC	INTS				
Stress point			LS10	LS11	LS12	LS13	LS14	LS15	LS16	LS18	LS19	LS20	LS21	LS22	LS23
	side	of cross section	-	-	-	-	-	-	-	-	-	-	-	-	-
Plate ID		-	OW2	OW2	BW1	BW1	BW2	BW2	BW2	TFI1	TFI2	TFI2	TFI2	BFI1	BFI2
Location of	Y	(mm)	-6000	-6000	-3037.289	-3701.208	-4365.146	-5029.065	-5692.984	-800	-3500	-4825	-4825	-800	-3500
Stress point	Z	(mm)	-1600.00	-2800.00	-9366.23	-8307.12	-7247.98	-6188.87	-5129.76	4000.00	4000.00	4000.00	4000.00	-4000.00	-4000.00
		min NS	-252	-245	-215	-220	-224	-228	-233	-298	-291	-288	-288	-252	-245
		max NS	-124	-136	-200	-190	-180	-169	-159	-67	-67	-68	-68	-146	-147
		min MY	-158	-181	-306	-285	-265	-245	-225	-53	-52	-52	-52	-204	-204
		max MY	-227	-212	-133	-146	-158	-171	-184	-292	-293	-294	-294	-196	-197
		min MZ	-256	-252	-213	-221	-228	-235	-242	-249	-263	-270	-270	-221	-235
		max MZ	-158	-166	-228	-217	-206	-195	-185	-142	-129	-123	-123	-200	-187
IBDAS ULS/SILS		min VY	-234	-234	-224	-226	-228	-230	-232	-227	-233	-235	-235	-222	-228
SECTION FORCES	σ ₁ (ivipa)	max VY	-172	-177	-211	-206	-200	-194	-188	-153	-149	-148	-148	-190	-186
		min L001	-240	-227	-161	-1/1	-182	-192	-202	-310	-305	-303	-303	-223	-218
		max LOO1	-150	-1/3	-296	-276	-250	-230	-210	-47	-40	-46	-46	-196	-196
		max 1.002	-154	-175	-170	-269	-155	-201	-205	-48	-505	-299	-299	-189	-193
		MIN	-256	-252	-306	-285	-265	-245	-242	-310	-305	-303	-303	-252	-245
		MAX	-124	-136	-133	-146	-158	-169	-159	-47	-46	-46	-46	-146	-147
			min MZ	min MZ	min MY	min MY	min MY	min MY	min MZ	min L002	min L001	min L001	min L001	min NS	min NS
· · · · · ·															
		min NS	0	-1	-5	-4	-4	-3	-2	2	3	3	3	-3	-2
		max NS	-1	0	5	4	3	3	2	-2	-3	-4	-4	3	2
		min MY	0	-1	-5	-4	-4	-3	-2	2	3	3	3	-3	-2
		max IVIY	-1	0	5	4	3	3	2	-2	-3	-4	-4	3	2
		max M7	-1	-1	-5	-4	-4	-3	-2	-2	-5	-4	-4	-3	-2
TEMP. LOAD	 .	min VY	-1	0	5	4	3	3	2	-2	-3	-4	-4	3	2
CASE 4500	σ ₁ (Mpa)	max VY	0	-1	-5	-4	-4	-3	-2	2	3	3	3	-3	-2
		min L001	-1	0	5	4	3	3	2	-2	-3	-4	-4	3	2
		max L001	0	-1	-5	-4	-4	-3	-2	2	3	3	3	-3	-2
		min L002	-1	0	5	4	3	3	2	-2	-3	-4	-4	3	2
		max L002	0	-1	-5	-4	-4	-3	-2	2	3	3	3	-3	-2
		MIN	-1	-1	-5	-4	-4	-3	-2	-2	-3	-4	-4	-3	-2
		MAX	0	0	5	4	3	3	2	2	3	3	3	3	2
ULS/SILS + Temp		MIN	-257	-253	-311	-290	-269	-248	-244	-313	-309	-307	-307	-254	-247
· ·		MAX	-124	-136	-128	-141	-155	-167	-157	-45	-44	-43	-43	-143	-145
IMPERFECTION ST	RESSES uckling														
Moment	1109	MN-m													
Axial Load	0.0	MN													
	σ1	Max	-4.46	-7.80	-26.08	-23.14	-20.19	-17.24	-14.29	11.14	11.14	11.14	11.14	-11.14	-11.14
		Min	4.46	7.80	26.08	23.14	20.19	17.24	14.29	-11.14	-11.14	-11.14	-11.14	11.14	11.14
1st Transverse Buc	kling Mode		1												
Moment	315	MN-m													
Axial Load	14.1	IVIN	10.02	10.02	10.00	12.00	14.00	17.00	10.00	4.22	12.20	16.20	10.00	4.22	12.20
	σ1	Iviax	19.93	19.93	10.98	12.99	14.99	17.00	19.00	4.22	12.38	16.38	16.38	4.22	12.38
and Transverse Bu	alding Mod	IVIIN	-19.93	-19.93	-10.98	-12.99	-14.99	-17.00	-19.00	-4.ZZ	-12.38	-16.38	-10.38	-4.22	-12.38
Zhu Transverse Bu	114		l												
Avial Load	114	IVIN-III MNI													
Axiai Load	40.5	Max	12 70	12 70	9.47	10.20	10.92	11.64	12 37	7.03	0.08	11 / 2	11 / 2	7.03	0.08
	01	Min	-12.70	-12.70	-9.47	-10.20	-10.92	-11.64	-12.37	-7.03	-9.98	-11.42	-11 42	-7.03	-9.98
		iviiii	12.70	12.70	5.47	10.20	10.52	11.04	12.57	7.05	5.50	11.72	11.72	7.05	5.50
Envelope of Imper	fection Stre	ess													
	σ_1	MIN	-20	-20	-26	-23	-20	-17	-19	-11	-12	-16	-16	-11	-12
		MAX	20	20	26	23	20	17	19	11	12	16	16	11	12
Total Stresses:															
IBDAS Forces + Ter	np + Imperf	ections	0	0	0	0.17				0	0.7.1	0.55	0		
	σ1	MIN	-277	-273	-337	-313	-289	-265	-263	-324	-321	-323	-323	-265	-259
		Max	-104	-116	-101	-118	-135	-149	-138	-34	-31	-27	-27	-132	-133
CRITICAL STRESS (apacity)		378	402	409	409	409	409	409	329	342	363	363	329	342
CORRESP. REDUCT	ION FACTO	2	0.90	0.96	0.98	0.98	0.98	0.98	0.98	0.79	0.82	0.87	0.87	0.79	0.82
	0.73	0.68	0.82	0.76	0.71	0.65	0.64	0.99	0.94	0.89	0.89	0.81	0.76		

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento
PS0015_F0

			LONGITUDINAL STIFFENER STRESS POINTS										
Stress point			LS24	LS25	LS26	LS27	LS28	LS29	LS30	LS31	LS32	LS33	
	side	of cross section	-	-	-	-	-	-	-	-	-	-	
Plate ID			BFI2	BFI2	IWT1	IWT1	IWT1	IWT2	IWB1	IWB2	IWB2	IWB2	
Location of	Y	(mm)	-4825	-4825	-2000	-2000	-2000	-2000	-2000	-2000	-2000	-2000	
Stress point	Z	(mm)	-4000.00	-4000.00	9000.00	8000.00	6667.00	5334.00	-5334.00	-6667.00	-8000.00	-9000.00	
			242	242	222	240	240	202	244	222	226	220	
		min NS	-242	-242	-323	-318	-310	-302	-241	-233	-226	-220	
		max NS	-14/	-14/	-1/	-2/	-40	-54	-160	-1/3	-186	-196	
			-204	-204	42	23	-2	-2/	-229	-255	-280	-299	
		max MY	-198	-198	-353	-341	-325	-309	-181	-165	-149	-13/	
		min MZ	-242	-242	-2/3	-269	-265	-260	-222	-218	-213	-209	
		max MZ	-181	-181	-100	-108	-11/	-12/	-204	-214	-223	-231	
IBDAS ULS/SILS	(14)	min VY	-231	-231	-232	-232	-231	-230	-224	-223	-223	-222	
SECTION FORCES	σ ₁ (iviµa)	max VY	-184	-184	-128	-133	-139	-145	-194	-200	-206	-211	
		min L001	-216	-216	-362	-352	-337	-322	-206	-192	-1//	-166	
		max L001	-195	-195	4/	28	3	-22	-221	-246	-2/1	-290	
		min L002	-223	-223	-355	-345	-333	-320	-218	-205	-192	-183	
		max L002	-195	-195	38	21	-3	-26	-214	-23/	-261	-2/8	
		MIN	-242	-242	-362	-352	-337	-322	-241	-255	-280	-299	
		MAX	-147	-147	47	28	3	-22	-160	-165	-149	-137	
			min MZ	min MZ	min LOO1	min LOO1	min LOO1	min LOO1	min NS	min MY	min MY	min MY	
		min NS	-2	-2	5	5	4	3	-3	-4	-5	-5	
		max NS	1	1	-6	-5	-4	-3	3	4	5	5	
		min MY	-2	-2	5	5	4	3	-3	-4	-5	-5	
		max MY	1	1	-6	-5	-4	-3	3	4	5	5	
		min MZ	1	1	-6	-5	-4	-3	3	4	5	5	
		max MZ	-2	-2	5	5	4	3	-3	-4	-5	-5	
TEMP. LOAD	(14)	min VY	1	1	-6	-5	-4	-3	3	4	5	5	
CASE 4500	σ ₁ (ivipa)	max VY	-2	-2	5	5	4	3	-3	-4	-5	-5	
		min L001	1	1	-6	-5	-4	-3	3	4	5	5	
		max L001	-2	-2	5	5	4	3	-3	-4	-5	-5	
		min L002	1	1	-6	-5	-4	-3	3	4	5	5	
		max L002	-2	-2	5	5	4	3	-3	-4	-5	-5	
		MIN	-2	-2	-6	-5	-4	-3	-3	-4	-5	-5	
		MAX	1	1	5	5	4	3	3	4	5	5	
IIIS/SIIS+Tomp		MIN	-242	-242	-269	-257	-241	-226	-244	-259	-294	-204	
olo, silo - remp		MAX	-146	-146	52	33	7	-19	-157	-161	-144	-131	
IMPERFECTION ST	RESSES												
1st Longitudinal B	uckling												
Moment	1109	MN-m											
Axial Load	0.0	MN											
	σ1	Max	-11.14	-11.14	25.06	22.28	18.57	14.86	-14.86	-18.57	-22.28	-25.06	
		Min	11.14	11.14	-25.06	-22.28	-18.57	-14.86	14.86	18.57	22.28	25.06	
1st Transverse Bud	kling Mode												
Moment	315	MN-m	1										
Axial Load	14.1	MN	1										
	σ1	Max	16.38	16.38	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85	
		Min	-16.38	-16.38	-7.85	-7.85	-7.85	-7.85	-7.85	-7.85	-7.85	-7.85	
2nd Transverse Bu	ckling Mod	9											
Moment	114	MN-m	1										
Axial Load	48.3	MN	1										
	G1	Max	11.42	11.42	8.34	8.34	8.34	8.34	8.34	8.34	8.34	8.34	
		Min	-11.42	-11.42	-8.34	-8.34	-8.34	-8.34	-8.34	-8.34	-8.34	-8.34	
											0.01		
Envelope of Impe	rfection Stre	ess											
	σ1	MIN	-16	-16	-25	-22	-19	-15	-15	-19	-22	-25	
		MAX	16	16	25	22	19	15	15	19	22	25	
Total Stresses:													
IBDAS Forces + Ter	mp + Imperf	ections											
	σ1	MIN	-260	-260	-393	-379	-360	-341	-259	-277	-307	-329	
		Max	-130	-130	77	55	26	-4	-142	-142	-122	-106	
			262	200		410		250	272		4:0		
CONTINUES CONTINUES				- 163	- A1E			157	1 157	/17	/19	418	
CRITICAL STRESS (capacity)		303	0.07	415	415	412	332	0.04	0.00	410	1.00	
CRITICAL STRESS (CORRESP. REDUCT	capacity) ION FACTO	R	0.87	0.87	0.99	0.99	0.99	0.84	0.84	0.99	1.00	1.00	

The following tables show the maximum utilization ratios of the previous tables for the unstiffened corners and the longitudinal stiffeners. Therefore, the maximum utilization ratio for Sicilia tower segment 5 under ULS 7 loading is 0.997.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	l
Design Report - Towe Splices	r Legs incl. Joints and , Annex	Codice documento PS0015_F0	Rev F0	Data 20-06-2011

SUMMARY OF CORNER STRESS POINTS	
Max UR	0.988
Governing Stress Point	SP2
reduction factor for governing point	1.000
Governing Case for Max Stress Point	min L001
Ns	-2099.36
My	4338.09
Mz	174.17

SUMMARY OF LONGITUDINAL STIFFENER STRE	<u>:55 POINTS</u>
Max UR	0.997
Governing Stress Point	LS18
side of cross section	+
Governing Case for Max Stress Point	min L002
Ns	-2151.48
Му	3814.39
Mz	291.96
reduction factor for governing stiff	0.786

5.1.1.6 Overall Verification for Entire Tower for Single Load Combination

The stresses and utilization ratios as shown in the previous section were then calculated for all tower segments. The calculation for each location over the height of the tower was done using the same methods as shown above for segment 5. The following tables show the resulting utilization ratios for all stiffener and corner stress points on the cross-section. Once again this verification of the entire tower leg is shown for the ULS 7 seismic load combination.

For reference, the same values presented in the previous tables for segment 5 can be found in the following tables under analysis section 9, tower segment 5.

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento

PS0015_F0

General	Analysis Section			1	2	3	4	5	6	7	8	9	10	11	12	13	14
	S-coordinate			18	28	28	40	40	55	55	71	71	87	87	105	105	123.65
	Cross Section/Segme	ent	Units	1	1	2	2	3	3	4	4	5	5	6	6	7	7
Section	Gross Section	А	(mm ²)	1.09E+07	1.09E+07	1.00E+07	1.00E+07	9.23E+06	9.23E+06	8.58E+06	8.58E+06	7.84E+06	7.84E+06	7.45E+06	7.45E+06	7.53E+06	7.53E+06
Properties		Y	(mm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		l1_Y	(mm ⁴)	5.16E+14	5.16E+14	4.88E+14	4.88E+14	4.61E+14	4.61E+14	4.34E+14	4.34E+14	3.98E+14	3.98E+14	3.62E+14	3.62E+14	3.24E+14	3.24E+14
		12 Z	(mm ⁴)	1.57E+14	1.57E+14	1.41E+14	1.41E+14	1.29E+14	1.29E+14	1.18E+14	1.18E+14	1.04E+14	1.04E+14	1.03E+14	1.03E+14	1.14E+14	1.14E+14
VERIFICATION -	UTILIZATION RATIOS	-															
	Plate Stress	SP1		0.98	0.91	0.98	0.92	0.98	0.91	0.98	0.90	0.98	0.93	1.00	0.96	0.99	0.96
	Points	SP2		1.00	0.93	1.00	0.93	1.00	0.93	1.00	0.90	0.99	0.94	1.00	0.96	0.99	0.98
	for Corners	SP3		0.79	0.76	0.82	0.78	0.85	0.80	0.86	0.77	0.89	0.86	0.91	0.91	0.87	0.91
		SP4		0.64	0.60	0.66	0.61	0.66	0.62	0.67	0.63	0.73	0.69	0.72	0.71	0.66	0.75
		SP5		0.92	0.87	0.92	0.86	0.92	0.83	0.89	0.77	0.84	0.77	0.84	0.76	0.82	0.84
		SP6		0.93	0.87	0.93	0.86	0.92	0.83	0.89	0.77	0.84	0.77	0.83	0.78	0.83	0.83
		SP7		0.96	0.90	0.97	0.91	0.97	0.89	0.96	0.89	0.97	0.93	0.99	0.96	0.99	0.98
		5P8		0.69	0.66	0.71	0.70	0.75	0.71	0.76	0.73	0.84	0.83	0.88	0.89	0.85	0.88
		5P9		0.07	0.82	0.08	0.81	0.07	0.80	0.00	0.38	0.87	0.09	0.72	0.80	0.74	0.82
		SP11		0.77	0.75	0.86	0.84	0.93	0.89	0.96	0.91	0.98	0.94	1.00	0.99	0.91	0.91
		SP12		0.61	0.58	0.67	0.64	0.70	0.69	0.75	0.73	0.79	0.77	0.81	0.81	0.74	0.76
		SP13		0.74	0.71	0.82	0.80	0.90	0.87	0.93	0.91	0.96	0.94	1.00	0.99	0.91	0.91
		SP14		0.63	0.60	0.69	0.65	0.73	0.67	0.73	0.72	0.76	0.78	0.82	0.86	0.77	0.82
		Max		1.00	0.93	1.00	0.93	1.001	0.93	1.00	0.91	0.99	0.94	1.00	0.99	0.99	0.98
	Governing Stre	ss Point		SP2	SP13	SP2	SP13	SP2	SP13	SP7	SP7						
	reductio	n factor	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.79	1.00	0.82	1.00	0.82	1.00	1.00
	Govern. Case for	Max Sti	ress Point	min L001													
		NS		-1976	-1974	-1974	-2038	-2038	-2065	-2067	-2108	-2099	-2094	-2092	-2038	-2036	-2002
		N/7		10245	495	497	/28/	/200	409	407	4204	4556	3612	3635	-26	-42	.29
	Longitudinal	152		0.98	0.92	0.98	0.92	0.99	0.92	0.99	0.90	0.99	0.94	0.99	0.95	0.98	0.98
	Stiffener	LS3		0.92	0.87	0.93	0.88	0.94	0.88	0.95	0.87	0.95	0.91	0.95	0.93	0.95	0.96
	Stress Points	LS4		0.87	0.82	0.88	0.83	0.89	0.84	0.92	0.84	0.93	0.88	0.93	0.92	0.93	0.95
	side +	LS5		0.84	0.79	0.85	0.81	0.88	0.82	0.89	0.81	0.90	0.86	0.90	0.90	0.91	0.94
		LS6		0.81	0.77	0.83	0.79	0.86	0.81	0.88	0.79	0.88	0.84	0.88	0.89	0.89	0.93
		LS7		0.74	0.71	0.78	0.74	0.80	0.76	0.82	0.75	0.84	0.81	0.83	0.84	0.83	0.88
1	1	LS8		0.69	0.67	0.74	0.70	0.78	0.75	0.83	0.76	0.86	0.84	0.85	0.86	0.80	0.86
1	1	1.59		0.63	0.63	0.70	0.67	0.76	0.73	0.82	0.76	0.88	0.85	0.86	0.8/	0.76	0.82
		1 \$11		0.61	0.60	0.63	0.62	0.71	0.69	0.78	0.71	0.81	0.77	0.78	0.79	0.72	0.78
		1512		0.88	0.84	0.89	0.83	0.89	0.80	0.87	0.76	0.83	0.76	0.81	0.74	0.79	0.82
		LS13		0.81	0.77	0.82	0.77	0.82	0.74	0.80	0.70	0.77	0.71	0.76	0.70	0.74	0.78
		LS14		0.73	0.70	0.74	0.70	0.74	0.68	0.74	0.65	0.71	0.66	0.70	0.66	0.69	0.73
		LS15		0.67	0.64	0.68	0.64	0.69	0.63	0.68	0.61	0.67	0.65	0.67	0.67	0.66	0.74
		LS16		0.64	0.60	0.66	0.61	0.66	0.62	0.67	0.63	0.70	0.66	0.69	0.68	0.67	0.76
		LS18		0.75	0.73	0.86	0.84	0.95	0.91	1.00	0.96	1.00	0.96	0.98	0.96	0.91	0.90
		LS19		0.80	0.77	0.88	0.85	0.92	0.88	0.96	0.89	0.98	0.95	0.97	0.96	0.89	0.91
		LS20		0.81	0.77	0.87	0.84	0.91	0.86	0.94	0.86	0.94	0.91	0.93	0.93	0.88	0.92
		1521		0.81	0.77	0.87	0.84	0.91	0.86	0.94	0.86	0.94	0.91	0.93	0.93	0.88	0.92
		1 522		0.59	0.57	0.67	0.64	0.72	0.72	0.73	0.79	0.82	0.81	0.82	0.82	0.78	0.78
		LS24		0.63	0.60	0.68	0.65	0.71	0.69	0.76	0.72	0.79	0.75	0.76	0.76	0.70	0.74
		LS25		0.63	0.60	0.68	0.65	0.71	0.69	0.76	0.72	0.79	0.75	0.76	0.76	0.70	0.74
		LS26		0.94	0.88	0.95	0.89	0.95	0.89	0.96	0.88	0.96	0.91	0.97	0.93	0.97	0.96
		LS27		0.89	0.83	0.90	0.84	0.91	0.85	0.92	0.85	0.93	0.89	0.94	0.91	0.94	0.93
		LS28		0.81	0.77	0.83	0.79	0.85	0.80	0.87	0.81	0.89	0.85	0.90	0.87	0.90	0.90
		1 \$20		0.62	0.73	0.79	0.61	0.86	0.82	0.94	0.89	0.99	0.95	0.99	0.97	0.97	0.97
		1 \$31		0.05	0.66	0.71	0.67	0.00	0.65	0.72	0.62	0.68	0.63	0.67	0.66	0.66	0.69
		LS32		0.79	0.75	0.80	0.74	0.79	0.72	0.77	0.68	0.74	0.68	0.73	0.68	0.72	0.74
		LS33		0.85	0.81	0.86	0.80	0.86	0.78	0.83	0.72	0.79	0.73	0.79	0.72	0.77	0.79
	Longitudinal	LS2		0.94	0.88	0.94	0.89	0.95	0.88	0.95	0.88	0.97	0.93	0.98	0.96	0.98	0.98
	Stiffener	LS3		0.87	0.83	0.89	0.84	0.90	0.83	0.90	0.85	0.93	0.90	0.94	0.94	0.95	0.96
	Stress Points	LS4		0.81	0.77	0.82	0.79	0.84	0.79	0.85	0.81	0.89	0.86	0.91	0.92	0.93	0.94
	side -	LS5		0.76	0.73	0.78	0.75	0.81	0.75	0.82	0.77	0.85	0.84	0.89	0.89	0.90	0.92
		LS6		0.72	0.68	0.74	0.71	0.77	0.72	0.79	0.75	0.83	0.82	0.86	0.87	0.88	0.90
		158	1	0.67	0.03	0.69	0.64	0.70	0.00	0.71	0.70	0.77	0.78	0.80	0.84	0.82	0.88
		LS9	1	0.68	0.63	0.69	0.63	0.72	0.65	0.74	0.69	0.79	0.83	0.85	0,90	0.79	0.87
		LS10		0.68	0.63	0.69	0.63	0.70	0.63	0.70	0.64	0.73	0.76	0.78	0.84	0.77	0.85
1	1	LS11		0.67	0.63	0.69	0.62	0.68	0.61	0.67	0.60	0.68	0.70	0.72	0.78	0.76	0.84
		LS12		0.91	0.85	0.91	0.84	0.90	0.81	0.87	0.75	0.82	0.76	0.81	0.79	0.83	0.86
		LS13		0.85	0.79	0.84	0.78	0.83	0.75	0.81	0.70	0.76	0.71	0.76	0.75	0.78	0.82
		LS14		0.78	0.73	0.78	0.71	0.76	0.69	0.74	0.64	0.71	0.66	0.70	0.75	0.74	0.81
		1516		0.69	0.63	0.73	0.67	0.67	0.59	0.66	0.59	0.65	0.66	0.68	0.70	0.75	0.82
		LS18		0.74	0.71	0.84	0.82	0.93	0.89	0.97	0.94	0.99	0.96	0.98	0.96	0.91	0.90
		LS19		0.73	0.70	0.80	0.78	0.84	0.81	0.88	0.86	0.94	0.93	0.95	0.95	0.89	0.90
		LS20		0.71	0.68	0.77	0.75	0.81	0.77	0.84	0.81	0.89	0.88	0.90	0.91	0.87	0.89
		LS21		0.71	0.68	0.77	0.75	0.81	0.77	0.84	0.81	0.89	0.88	0.90	0.91	0.87	0.89
		LS22		0.60	0.57	0.68	0.64	0.72	0.70	0.77	0.77	0.81	0.81	0.82	0.83	0.77	0.80
		LS23		0.65	0.61	0.71	0.65	0.71	0.65	0.73	0.69	0.76	0.79	0.80	0.84	0.77	0.83
		LS24		0.68	0.64	0.72	0.66	0.72	0.65	0.73	0.65	0.72	0.75	0.76	0.82	0.76	0.84
		1 526		0.88	0.86	0.92	0.86	0.93	0.86	0.73	0.85	0.95	0.73	0.78	0.82	0.98	0.84
		LS27		0.86	0.81	0.92	0,82	0.88	0,87	0.89	0.84	0.92	0.88	0.94	0,91	0.94	0.93
		LS28		0.79	0.75	0.80	0.76	0.82	0.77	0.84	0.80	0.87	0.84	0.90	0.88	0.90	0.90
		LS29		0.74	0.70	0.76	0.73	0.83	0.79	0.90	0.87	0.97	0.94	0.99	0.97	0.97	0.97
		LS30		0.65	0.61	0.66	0.62	0.69	0.63	0.72	0.66	0.73	0.74	0.77	0.80	0.77	0.82
		LS31		0.72	0.67	0.72	0.67	0.72	0.65	0.71	0.61	0.67	0.63	0.67	0.68	0.69	0.72
		LS32		0.80	0.76	0.81	0.75	0.80	0.73	0.78	0.67	0.73	0.68	0.73	0.70	0.74	0.76
		1355		0.87	0.82	0.87	0.81	U.8/	U./8	U.84	U./2	0.79	U./3	U./9	0.75	0.80	0.81
		MAX		0.98	0.92	0.98	0.92	0.99	0.92	1.00	0.96	0.997	0.963	0.993	0.975	0.983	0.983
	Governing S	side		+	+	+	+	+	+	1518	1518	+	+	+	1529	152	152
rec	uction factor for go	verning		0.99	0.99	0.99	0.99	0.99	0.99	0.75	0.75	0.786	0.786	0.853	0.853	0.989	0.989
Gove	rning Case for Max S	tiffener		min L001	min L002	min L002	min L002	min L001									
		Ns		-1976	-1974	-1974	-2038	-2038	-2065	-2124	-2152	-2151	-2094	-2092	-2038	-2036	-2002
		My		10243	8913	8910	7287	7286	5711	5073	3811	3814	3812	3835	3886	3898	3772
Summary	Plates	UR		431	485	487	437	437	408	585	292	292	92	/6	-36	-42	-39
ai y	Stiffeners	UR		0.98	0.92	0.98	0.92	0.99	0.92	1.00	0.96	1.00	0.96	0.99	0.97	0.98	0.98
	Overall Max	LUD .	1	1.00	0.02	1.00	0.92	1.00	0.92	1.00	0.96	1.00	0.06	1.00	0.00	0.00	0.09

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento

PS0015_F0

Conorol	Applusic Section			15	16	17	10	10	30	21	22	22	24	25	26	27	20
General	Succoordinate			172.65	10	17	142	142	20	162	192	192	24	25	26	2/	28
	Gross Section/Segme	t	Unite	123.65	124	124	143	143	163	103	163	103	203	203	12	12	243
Castlan	Cross Section/Segme	ent .	Units (mm ²)	8	8	8	8	9	9	10	10	11	11	12	7.405.00	13	13
Properties	Gross Section	A V	(mm)	7.88E+06	7.88E+06	7.88E+06	7.88E+06	7.45E+06	7.45E+06	7.091E+06	7.09E+06	0.0	0.0	7.19E+06	7.19E+06	7.52E+06	7.52E+06
rioperaes			(mm ⁴)	2 11E+14	2 11E+14	2 11E+14	2 11E+14	2.02E+14	2.025+14	2.095+14	2 09E+14	2 10E+14	2 10E+14	2 11E+14	2 11E+14	2 275+14	2 275+14
		1 <u>1</u> 7	(mm ⁴)	1.245-44	4.245.44	4.245.44	3.110+14	1.205-14	1.205-14	1.075+14	3.00E+14	1.025-14	3.100.14	3.110+14	3.112.14	3.270+14	3.270114
VEDIEICATION	UTUIZATION DATIOS	12_Z	(111111)	1.31E+14	1.31E+14	1.31E+14	1.31E+14	1.20E+14	1.20E+14	1.0/E+14	1.07E+14	1.02E+14	1.02E+14	1.08E+14	1.08E+14	1.15E+14	1.15E+14
VERIFICATION	Plate Stress	SP1		0.98	0.98	0.98	0.95	0.99	0.98	0.96	0.98	0.98	0.98	0.97	0.99	0.94	0.99
	Points	SP2		0.98	0.98	0.98	0.94	0.99	0.95	0.98	0.99	1.00	1.00	0.98	1.00	0.95	0.99
	for Corners	SP3		0.92	0.92	0.92	0.88	0.93	0.86	0.91	0.84	0.85	0.87	0.84	0.86	0.82	0.86
		SP4		0.74	0.74	0.74	0.74	0.79	0.78	0.82	0.79	0.80	0.85	0.82	0.85	0.81	0.86
		SP5		0.85	0.85	0.85	0.86	0.90	0.90	0.90	0.91	0.91	0.93	0.91	0.96	0.92	0.96
		SP6		0.88	0.88	0.88	0.89	0.93	0.94	0.90	0.90	0.91	0.93	0.91	0.97	0.93	0.98
		SP7		0.94	0.94	0.94	0.90	0.94	0.92	0.94	0.96	0.97	0.97	0.95	0.98	0.93	0.98
		SP8		0.82	0.82	0.82	0.77	0.81	0.77	0.80	0.76	0.77	0.80	0.78	0.80	0.76	0.79
		SP9		0.78	0.78	0.78	0.71	0.76	0.75	0.78	0.78	0.79	0.85	0.83	0.89	0.85	0.89
		SP10		0.85	0.85	0.85	0.87	0.90	0.88	0.89	0.90	0.90	0.93	0.91	0.98	0.93	0.99
		SP11		0.30	0.90	0.90	0.87	0.92	0.87	0.91	0.86	0.89	0.88	0.80	0.83	0.81	0.82
		SP13		0.85	0.85	0.85	0.83	0.87	0.84	0.87	0.85	0.86	0.86	0.84	0.84	0.80	0.87
		SP14		0.72	0.72	0.72	0.74	0.79	0.80	0.84	0.86	0.87	0.90	0.87	0.91	0.87	0.90
		Max		0.98	0.98	0.98	0.95	0.99	0.98	0.98	0.99	1.00	1.00	0.98	1.00	0.95	0.99
	Governing Stre	ss Point		SP2	SP2	SP2	SP1	SP1	SP1	SP2	SP2	SP2	SP2	SP2	SP2	SP2	SP2
	reductio	n factor	•	1.00	1.00	1.00	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Govern. Case for	Max St	ress Point	min L001	min L001	min L001	min L001	min L001	min L001	min L001	min L001						
		Ns		-1986	-1986	-1985	-1931	-1947	-1855	-1857	-1830	-1831	-1765	-1765	-1681	-1681	-1647
		My		3697	3692	3694	3591	3481	3576	35/1	3588	3586	3625	3626	4122	4124	4806
-	Longitudinal	IVIZ		654	0.00	0.00	362	4/2	324	322	2/0	1.00	1.00	221	1.00	166	103
1	Stiffener	153	1	0.99	0.99	0.99	0.93	0.98	0.93	0.99	0.99	0.96	0.96	0.96	0.95	0.90	0.99
1	Stress Points	LS4		0.96	0.95	0.95	0.91	0.98	0.92	0.96	0.93	0.95	0.94	0.92	0.93	0.88	0.91
1	side +	LS5		0.94	0.94	0.94	0.90	0.97	0.90	0.95	0.90	0.91	0.92	0.90	0.91	0.86	0.88
1		LS6		0.94	0.94	0.94	0.90	0.96	0.89	0.94	0.87	0.89	0.91	0.88	0.89	0.85	0.88
1		LS7		0.90	0.89	0.89	0.85	0.91	0.84	0.89	0.80	0.82	0.84	0.81	0.85	0.81	0.85
1		LS8		0.87	0.87	0.87	0.82	0.88	0.81	0.88	0.79	0.82	0.85	0.79	0.84	0.79	0.84
1		LS9		0.84	0.84	0.84	0.79	0.84	0.78	0.86	0.79	0.84	0.87	0.78	0.83	0.78	0.83
		1 510		0.80	0.80	0.80	0.75	0.81	0.78	0.84	0.79	0.83	0.86	0.80	0.84	0.79	0.85
		1 \$12		0.84	0.84	0.84	0.75	0.80	0.78	0.85	0.79	0.80	0.93	0.91	0.83	0.80	0.86
		LS13		0.79	0.79	0.79	0.81	0.84	0.83	0.85	0.86	0.87	0.90	0.88	0.93	0.88	0.91
		LS14		0.74	0.74	0.74	0.76	0.80	0.79	0.83	0.85	0.87	0.90	0.87	0.92	0.87	0.89
		LS15		0.72	0.72	0.72	0.73	0.79	0.79	0.84	0.83	0.85	0.89	0.86	0.90	0.86	0.87
		LS16		0.74	0.74	0.74	0.75	0.80	0.79	0.84	0.82	0.84	0.88	0.86	0.89	0.84	0.88
		LS18		0.86	0.86	0.86	0.83	0.90	0.87	0.96	0.94	0.96	0.94	0.92	0.90	0.82	0.83
		1520		0.92	0.88	0.88	0.88	0.95	0.87	0.95	0.88	0.89	0.91	0.87	0.87	0.81	0.85
		LS21		0.92	0.92	0.92	0.88	0.95	0.89	0.95	0.88	0.89	0.91	0.87	0.88	0.83	0.86
		LS22		0.73	0.73	0.73	0.75	0.81	0.83	0.91	0.94	0.95	0.97	0.94	0.97	0.88	0.89
		LS23		0.74	0.74	0.74	0.75	0.81	0.81	0.89	0.88	0.89	0.92	0.87	0.90	0.85	0.86
		LS24		0.76	0.76	0.76	0.76	0.82	0.81	0.87	0.85	0.87	0.90	0.86	0.89	0.84	0.86
		1 \$26		0.95	0.95	0.76	0.76	0.82	0.81	0.87	0.85	1.00	0.90	0.86	0.89	0.84	0.86
		LS27		0.94	0.94	0.94	0.91	0.97	0.93	0.97	0.98	0.99	0.98	0.95	0.96	0.94	0.98
		LS28		0.92	0.92	0.92	0.89	0.95	0.91	0.96	0.95	0.96	0.95	0.90	0.91	0.91	0.93
		LS29		0.96	0.95	0.95	0.92	0.98	0.93	0.94	0.93	0.94	0.92	0.90	0.90	0.88	0.90
		LS30		0.76	0.76	0.76	0.78	0.84	0.85	0.86	0.89	0.90	0.92	0.90	0.93	0.91	0.93
		LS31		0.72	0.72	0.72	0.74	0.79	0.80	0.85	0.89	0.90	0.93	0.88	0.91	0.92	0.94
		1 522		0.78	0.78	0.78	0.78	0.81	0.81	0.82	0.86	0.87	0.90	0.88	0.91	0.89	0.92
	Longitudinal	152		0.94	0.94	0.94	0.90	0.94	0.91	0.94	0.95	0.96	0.96	0.95	0.98	0.93	0.97
	Stiffener	LS3		0.92	0.91	0.91	0.88	0.91	0.88	0.91	0.91	0.92	0.92	0.91	0.92	0.88	0.92
	Stress Points	LS4		0.89	0.89	0.89	0.84	0.89	0.86	0.90	0.88	0.89	0.90	0.88	0.90	0.85	0.89
	side -	LS5		0.86	0.86	0.86	0.82	0.87	0.83	0.87	0.83	0.85	0.87	0.85	0.87	0.83	0.86
		LS6		0.84	0.84	0.84	0.79	0.84	0.80	0.84	0.80	0.81	0.85	0.82	0.84	0.80	0.83
1		LS7		0.78	0.78	0.78	0.72	0.76	0.73	0.76	0.72	0.74	0.77	0.74	0.76	0.72	0.74
		LS8		0.78	0.78	0.78	0.71	0.75	0.73	0.78	0.74	0.77	0.82	0.76	0.79	0.74	0.76
1		1510		0.79	0.79	0.79	0.71	0.75	0.74	0.81	0.78	0.82	0.88	0.79	0.85	0.78	0.80
1		LS11		0.79	0.79	0.79	0.71	0.76	0.74	0.80	0.78	0.81	0.87	0.81	0.85	0.81	0.85
1		LS12		0.84	0.84	0.84	0.86	0.89	0.87	0.88	0.88	0.88	0.93	0.91	0.98	0.94	0.99
1		LS13		0.80	0.80	0.80	0.81	0.85	0.82	0.83	0.85	0.86	0.90	0.89	0.95	0.91	0.96
1		LS14		0.75	0.75	0.75	0.76	0.81	0.77	0.81	0.84	0.86	0.90	0.88	0.95	0.90	0.94
1		LS15		0.75	0.75	0.75	0.72	0.77	0.77	0.81	0.82	0.84	0.90	0.87	0.94	0.89	0.93
1		1516		0.04	0.78	0.78	0.72	0.90	0.76	0.81	0.02	0.83	0.89	0.01	0.93	0.88	0.92
1		1519		0.81	0.84	0.84	0.79	0.84	0.83	0.94	0.95	0.94	0.95	0.91	0.90	0.79	0.81
1		LS20		0.82	0.82	0.82	0.78	0.84	0.80	0.85	0.82	0.83	0.85	0.81	0.82	0.78	0.80
		LS21		0.82	0.82	0.82	0.78	0.84	0.80	0.85	0.82	0.83	0.85	0.81	0.82	0.78	0.80
1		LS22		0.72	0.72	0.72	0.74	0.80	0.82	0.91	0.94	0.95	0.97	0.94	0.97	0.88	0.90
		LS23		0.73	0.73	0.73	0.72	0.78	0.79	0.86	0.87	0.88	0.92	0.88	0.92	0.87	0.90
1	I	LS24		0.77	0.77	0.77	0.72	0.78	0.79	0.84	0.84	0.85	0.91	0.87	0.92	0.87	0.90
		LS25		0.77	0.77	0.77	0.72	0.78	0.79	0.84	0.84	0.85	0.91	0.87	0.92	0.87	0.90
1		1 520		0.91	0.91	0.91	0.88	0.94	0.92	0.95	0.96	0.97	0.97	0.96	0.98	0.94	0.98
1		1528		0.90	0.90	0.90	0.86	0.93	0.91	0.94	0.95	0.90	0.96	0.93	0.94	0.93	0.97
1	l .	LS29		0.90	0.90	0.90	0.88	0.94	0.90	0.91	0.90	0.91	0.90	0.88	0.88	0.86	0.89
		LS30		0.73	0.74	0.74	0.76	0.82	0.84	0.85	0.88	0.89	0.92	0.90	0.94	0.92	0.95
		LS31		0.72	0.72	0.72	0.74	0.79	0.79	0.84	0.89	0.90	0.93	0.88	0.93	0.93	0.97
		LS32 LS33		0.80	0.76	0.76	0,81	0.82	0.80	0.81	0.85	0.87	0.91	0.87	0.92	0.90	0.95
		MANY		0.001	0.000	0.000	0.046	0.007	0.053	0.097	0.001	1.000	0.005	0.091	0.008	0.055	0.004
	Governing	tiffener		LS2	LS2	LS2	LS2	LS2	LS2	LS26	LS26						
		side		+	+	+	+	+	+	+	+	+	+	+	+	+	+
re	duction factor for go	verning		0.983	0.983	0.983	0.983	0.984	0.984	0.982	0.982	0.982	0.982	0.976	0.976	0.954	0.954
Gove	erning Case for Max S	tiffener		min L001	min L001	min L001	min L001	min L001	min L001	min L001	min L001						
		NS		-1986	-1986	-1985	-1931	-1947	-1855	-1857	-1830	-1831	-1765	-1765	-1681	-1681	-1647
		Mz		654	652	652	362	472	324	322	270	271	221	221	168	166	103
Summary	Plates	UR		0.98	0.98	0.98	0.95	0.99	0.98	0.98	0.99	1.00	1.00	0.98	1.00	0.95	0.99
L	Stiffeners	UR	ļ	0.99	0.99	0.99	0.95	1.00	0.95	0.99	0.99	1.00	1.00	0.98	1.00	0.95	0.99
1	Overall Max	UR	1	0.99	0.99	0.99	0.95	1.00	0.98	0.99	0.99	1.00	1.00	0.98	1.00	0.95	0.99

Design Report - Tower Legs incl. Joints and Splices, Annex PS0015_F0

Codice documento

Rev Data F0 20-06-2011

General	Analysis Section			29	30	31	32	33	34	35	36	37	38	39	40	41	42
	S-coordinate			243	249.0	249.0	263	263	283	283	303	303	323	323	341	341	357.4
	Cross Section/Segm	ent	Units	14	14	14	14	15	15	16	16	17	17	18	18	19	19
Section	Gross Section	4	(mm^2)	7 88F+06	7 88F+06	7 88F+06	7 88E+06	7 72E+06	7 72E+06	7 50E+06	7 50E+06	7 39E+06	7 39E+06	7 22E+06	7.22E+06	7 14E+06	7 14E+06
Properties	Gross Section	Ŷ	(mm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			(mm ⁴)	2 516+14	2 51E+14	2 516+14	2 516+14	2 665+14	2 665+14	2 716+14	2 716+14	2 60E+14	2 60E±14	2 425+14	2 4 2 E + 1 4	2 00E+14	2 00E+14
		"_T	(mm ⁴)	5.510,14	5.512+14	5.512+14	5.512+14	5.002+14	5.002+14	5.710+14	5.712+14	3.03E+14	5.050 14	5.420114	5.420114	5.002+14	3.002+14
		12_Z	(11011)	1.19E+14	1.19E+14	1.19E+14	1.19E+14	1.11E+14	1.11E+14	1.02E+14	1.02E+14	1.00E+14	1.00E+14	1.01E+14	1.01E+14	1.11E+14	1.11E+14
VERIFICATION -	Diate Stress	CD1		0.02	0.04	0.04	0.06	0.05	0.05	0.06	0.02	0.04	0.80	0.02	0.95	0.02	0.83
	Plate Stress	502		0.93	0.94	0.94	0.98	0.93	0.93	0.98	0.93	0.94	0.89	0.93	0.83	0.92	0.82
	for Corners	5P2		0.94	0.93	0.97	0.98	0.97	0.90	0.97	0.34	0.93	0.88	0.92	0.67	0.69	0.78
		SP4		0.82	0.77	0.90	0.90	0.91	0.85	0.93	0.82	0.83	0.73	0.72	0.68	0.71	0.67
		SP5		0.91	0.92	0.99	1.00	0.99	0.98	1.00	0.95	0.96	0.90	0.94	0.86	0.91	0.81
		SP6		0.92	0.93	0.95	0.97	0.96	0.97	0.98	0.96	0.97	0.92	0.96	0.90	0.97	0.88
		SP7		0.93	0.94	0.92	0.94	0.93	0.93	0.94	0.93	0.94	0.90	0.94	0.87	0.92	0.82
		SP8		0.75	0.75	0.71	0.74	0.74	0.73	0.79	0.76	0.77	0.74	0.73	0.74	0.76	0.80
		SP9		0.84	0.85	0.74	0.77	0.78	0.79	0.85	0.83	0.85	0.85	0.83	0.88	0.88	0.92
		SP10		0.94	0.95	0.92	0.94	0.93	0.95	0.96	0.96	0.97	0.95	0.99	0.94	0.99	0.92
		SP11		0.78	0.78	0.81	0.80	0.88	0.86	0.81	0.77	0.84	0.79	0.82	0.78	0.74	0.71
		5P12		0.82	0.82	0.88	0.88	0.97	0.94	0.89	0.84	0.92	0.87	0.90	0.85	0.81	0.78
		SP13 SP14		0.78	0.78	0.75	0.92	0.84	0.83	0.80	0.78	0.84	0.82	0.85	0.82	0.78	0.76
		Max		0.94	0.95	0.99	1.00	0.99	0.98	1.00	0.96	0.95	0.95	0.99	0.95	0.99	0.92
	Governing Stre	ess Point		SP2	SP10	SP5	SP5	SP5	SP5	SP5	SP10	SP10	SP10	SP10	SP14	SP10	SP9
	reductio	n factor	r	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.82	1.00	1.00
	Govern. Case for	Max St	ress Point	min L001	min NS	min NS	min NS	min NS	min NS	min NS	min NS	min NS	min NS	min NS	min NS	min NS	min NS
		Ns		-1642	-1952	-1918	-1902	-1902	-1879	-1879	-1856	-1856	-1833	-1833	-1813	-1812	-1795
		My		4806	-3388	-3865	-4158	-4158	-4389	-4389	-4293	-4294	-3954	-3954	-3399	-3400	-2599
		Mz		105	-331	672	520	520	261	261	-46	-46	-379	-379	-680	-680	-954
1	Longitudinal	LS2	1	0.93	0.94	0.96	0.97	0.96	0.96	0.97	0.93	0.94	0.87	0.90	0.81	0.88	0.79
	Stiffener	LS3	1	0.88	0.89	0.92	0.92	0.92	0.91	0.92	0.88	0.89	0.82	0.85	0.77	0.83	0.76
	side +	155	1	0.8/	0.85	0.91	0.92	0.92	0.89	0.93	0.8/	0.88	0.81	0.83	0.70	0.81	0.70
1	5.0E T	LS6	1	0.85	0.85	0.85	0.87	0.90	0.84	0.91	0.05	0.84	0.70	0.73	0.75	0.73	0.73
1		LS7	1	0.81	0.82	0.83	0.81	0.84	0.76	0.81	0.71	0.73	0.64	0.65	0.65	0.67	0.70
1		LS8	1	0.80	0.82	0.81	0.78	0.83	0.75	0.82	0.71	0.73	0.65	0.64	0.66	0.65	0.69
1		LS9	1	0.79	0.81	0.81	0.78	0.84	0.77	0.88	0.76	0.78	0.68	0.66	0.66	0.62	0.68
		LS10		0.81	0.79	0.83	0.83	0.87	0.80	0.88	0.77	0.79	0.69	0.68	0.66	0.66	0.65
		LS11		0.82	0.78	0.86	0.86	0.88	0.82	0.87	0.76	0.78	0.68	0.69	0.66	0.69	0.66
		LS12		0.90	0.91	0.99	1.00	0.99	0.98	1.00	0.95	0.96	0.89	0.92	0.84	0.91	0.81
		LS13		0.86	0.87	0.96	0.96	0.96	0.94	0.96	0.91	0.92	0.85	0.87	0.79	0.86	0.78
		1 \$15		0.83	0.83	0.95	0.95	0.98	0.93	0.97	0.90	0.91	0.84	0.80	0.79	0.83	0.77
		1516		0.85	0.81	0.94	0.94	0.96	0.90	0.94	0.84	0.85	0.75	0.77	0.70	0.75	0.73
		LS18		0.79	0.79	0.80	0.80	0.82	0.82	0.89	0.87	0.88	0.84	0.81	0.76	0.79	0.74
		LS19		0.79	0.79	0.82	0.81	0.91	0.87	0.88	0.82	0.86	0.79	0.78	0.75	0.72	0.70
		LS20		0.82	0.82	0.84	0.83	0.91	0.86	0.89	0.80	0.83	0.74	0.73	0.72	0.70	0.71
		LS21		0.82	0.82	0.84	0.83	0.91	0.86	0.89	0.80	0.83	0.74	0.73	0.72	0.70	0.71
		1522		0.85	0.85	0.87	0.87	0.90	0.89	0.97	0.95	0.96	0.92	0.89	0.85	0.88	0.83
		1 524		0.81	0.80	0.85	0.85	0.98	0.97	0.95	0.85	0.95	0.80	0.85	0.75	0.78	0.74
		LS25		0.82	0.80	0.90	0.90	0.98	0.92	0.95	0.86	0.89	0.80	0.79	0.75	0.74	0.71
		LS26		0.94	0.95	0.96	0.97	0.96	0.95	0.97	0.93	0.94	0.88	0.90	0.82	0.89	0.79
		LS27		0.91	0.92	0.93	0.94	0.92	0.91	0.93	0.89	0.90	0.84	0.86	0.79	0.86	0.77
		LS28		0.85	0.86	0.88	0.88	0.86	0.85	0.87	0.84	0.85	0.79	0.81	0.75	0.82	0.74
		LS29		0.85	0.86	0.87	0.87	0.88	0.87	0.91	0.88	0.89	0.84	0.80	0.74	0.78	0.73
		LS30		0.88	0.88	0.94	0.94	0.95	0.93	0.98	0.94	0.95	0.90	0.86	0.80	0.84	0.79
		LS31		0.86	0.87	0.92	0.93	0.91	0.90	0.92	0.88	0.89	0.84	0.86	0.80	0.87	0.80
		1 532		0.85	0.86	0.92	0.92	0.91	0.90	0.92	0.88	0.89	0.84	0.88	0.81	0.86	0.78
	Longitudinal	1.52		0.88	0.83	0.90	0.95	0.91	0.97	0.93	0.92	0.93	0.89	0.92	0.85	0.83	0.83
	Stiffener	LS3		0.87	0.88	0.85	0.87	0.86	0.87	0.88	0.87	0.88	0.85	0.88	0.82	0.88	0.82
	Stress Points	LS4		0.85	0.86	0.82	0.85	0.85	0.84	0.88	0.86	0.87	0.85	0.87	0.82	0.86	0.83
	side -	LS5		0.82	0.83	0.79	0.82	0.82	0.81	0.84	0.81	0.82	0.81	0.82	0.80	0.83	0.81
		LS6		0.79	0.80	0.76	0.78	0.79	0.78	0.81	0.78	0.79	0.76	0.78	0.78	0.80	0.82
		LS7		0.70	0.72	0.66	0.68	0.69	0.68	0.73	0.69	0.70	0.68	0.69	0.75	0.75	0.84
		LS8		0.72	0.73	0.62	0.64	0.67	0.70	0.78	0.71	0.73	0.72	0.70	0.80	0.76	0.85
		LS9		0.76	0.76	0.63	0.65	0.70	0.73	0.84	0.78	0.80	0.81	0.79	0.86	0.80	0.87
		1 \$11		0.79	0.80	0.67	0.70	0.73	0.73	0.80	0.79	0.81	0.82	0.80	0.87	0.84	0.90
		LS12		0.94	0.95	0.91	0.93	0.93	0.95	0.96	0.96	0.97	0.95	0.97	0.94	1.00	0.94
1		LS13	1	0.90	0.92	0.86	0.88	0.88	0.90	0.91	0.92	0.93	0.92	0.94	0.91	0.97	0.94
1		LS14	1	0.91	0.92	0.84	0.87	0.87	0.88	0.92	0.91	0.92	0.93	0.94	0.93	0.97	0.96
		LS15		0.89	0.90	0.81	0.84	0.85	0.86	0.89	0.88	0.89	0.89	0.91	0.93	0.95	0.96
1		LS16	1	0.88	0.89	0.78	0.81	0.82	0.83	0.87	0.85	0.86	0.86	0.88	0.92	0.93	0.96
		LS18		0.79	0.79	0.78	0.78	0.81	0.80	0.87	0.86	0.87	0.84	0.82	0.78	0.80	0.76
1		LS19	1	0.77	0.77	0.73	0.75	0.83	0.82	0.83	0.79	0.85	0.79	0.79	0.80	0.77	0.20
		1 521		0.76	0.76	0.72	0.74	0.80	0.79	0.81	0.78	0.81	0.78	0.78	0.78	0.76	0.80
		LS22		0.86	0.86	0.85	0.85	0.88	0.88	0.96	0.95	0.96	0.94	0.91	0.88	0.91	0.87
		LS23		0.86	0.86	0.79	0.81	0.89	0.90	0.91	0.90	0.94	0.94	0.92	0.94	0.89	0.90
		LS24		0.86	0.86	0.76	0.79	0.86	0.86	0.89	0.87	0.90	0.90	0.88	0.92	0.89	0.92
		LS25		0.86	0.86	0.76	0.79	0.86	0.86	0.89	0.87	0.90	0.90	0.88	0.92	0.89	0.92
		LS26		0.93	0.94	0.92	0.94	0.92	0.93	0.94	0.93	0.94	0.90	0.92	0.85	0.92	0.83
1		LS27	1	0.90	0.91	0.88	0.90	0.88	0.89	0.90	0.89	0.90	0.86	0.88	0.82	0.89	0.80
1		1 520	1	0.84	0.85	0.83	0.85	0.82	0.83	0.84	0.83	0.84	0.81	0.83	0.77	0.84	0.76
1		LS30	1	0.91	0.91	0.82	0.89	0.90	0.91	0.95	0.95	0.00	0.94	0.90	0.77	0.91	0.76
1		LS31	1	0.89	0.90	0.87	0.88	0.86	0.87	0.89	0.89	0.90	0.88	0.89	0.86	0.93	0.88
		LS32		0.88	0.89	0.86	0.88	0.87	0.88	0.89	0.89	0.90	0.88	0.91	0.88	0.92	0.86
1		LS33		0.90	0.91	0.89	0.91	0.91	0.92	0.93	0.92	0.93	0.91	0.95	0.91	0.95	0.88
		MAX		0.940	0.952	0.991	0.995	0.995	0.980	0.996	0.958	0.968	0.951	0.972	0.939	0.997	0.962
	Governing	Stiffener	r	LS26	LS26	L\$12	LS12	LS12	L\$12	LS12	LS12	LS12	L\$12	LS12	LS23	LS12	L\$15
		side	2	+	+	+	+	+	+	+	-		-	-			-
rec	rning Case for Man	verning	5	0.952 min 1.001	0.952 min 1.001	0.982 min NS	0.982 min MS	0.981 min NS	0.981 min NS	0.980 min NS	0.980 min NS	0.980 min MS	0.980 min NS	0.997 min NS	0.851 min NS	0.978 min NS	0.955 min NS
GOVE	line case for iviax :	INS		-1642	-1634	-1918	-1902	-1902	-1879	-1879	-1856	-1856	-1833	-1833	-1813	-1812	-1795
		My		4806	5008	-3865	-4158	-4158	-4389	-4389	-4293	-4294	-3954	-3954	-3399	-3400	-2599
		Mz		105	111	672	520	520	261	261	-46	-46	-379	-379	-680	-680	-954
Summary	Plates	UR	1	0.94	0.95	0.99	1.00	0.99	0.98	1.00	0.96	0.97	0.95	0.99	0.95	0.99	0.92
<u> </u>	Suffeners Overall Max	UK		0.94	0.95	0.99	1.00	0.99	0.98	1.00	0.96	0.97	0.95	0.97	0.94	1.00	0.96

Design Report - Tower Legs incl. Joints and	Codice
Splices, Annex	PS0015_

lice documento	Rev	Data
015_F0	F0	20-06-2011

General	Analysis Section			43	44	45	46	47	48
	S-coordinate			357.4	369.9	369.9	374.447	374.447	383.619
	Grand Carting (Cart		11-the	337.4	305.5	305.5	3/4.44/	3/1.11/	303.015
	Cross section/segr	nent	Units	20	20	21	21	21	22
Section	Gross Section	A	(mm*)	7.43E+06	7.43E+06	7.71E+06	7.71E+06	7.71E+06	5.53E+06
Properties		Y	(mm)	0.0	0.0	0.0	0.0	0.0	0.0
		l1_Y	(mm*)	3.02E+14	3.02E+14	3.13E+14	3.13E+14	3.13E+14	1.93E+14
		12 7	(mm ⁴)	1.16E+14	1.16E+14	1.19E+14	1.19E+14	1.19E+14	7.77E+13
VERIFICATION	- UTILIZATION RATIOS								
	Plate Stress	SP1		0.82	0.73	0.68	0.65	0.66	0.87
	Points	SP2		0.76	0.69	0.67	0.65	0.62	0.80
	for Corners	SP3		0.67	0.68	0.66	0.67	0.53	0.65
		SP4		0.65	0.64	0.62	0.64	0.57	0.71
		SP5		0.05	0.72	0.69	0.67	0.57	0.88
		SPG		0.99	0.90	0.05	0.07	0.07	0.00
		507		0.80	0.30	0.73	0.72	0.72	0.90
		500		0.30	0.93	0.72	0.70	0.90	0.90
		500		0.07	0.02	0.80	0.82	0.80	0.03
		5010		0.80	0.90	0.87	0.87	0.87	0.97
		SPID		0.89	0.84	0.81	0.80	0.80	0.99
		SP11		0.61	0.59	0.57	0.56	0.53	0.70
		SP12		0.67	0.64	0.61	0.60	0.59	0.78
		SP13		0.65	0.64	0.62	0.63	0.63	0.78
		SP14		0.76	0.75	0.72	0.72	0.71	0.88
		Max		0.89	0.90	0.87	0.87	0.87	0.99
	Governing Str	ress Point		SP10	SP9	SP9	SP9	SP9	SP10
	reducti	on factor		1.00	1.00	1.00	1.00	1.00	1.00
	Govern. Case fo	or Max St	ress Point	min NS					
		Ns		-1795	-1782	-1780	-1776	-1745	-1735
		My		-2599	-1888	-1888	-1595	-1753	-1103
		Mz		-953	-1147	-1147	-1223	-1234	-700
	Longitudinal	LS2		0.76	0.70	0.67	0.64	0.62	0.00
	Stiffener	LS3		0.73	0.68	0.65	0.63	0.60	0.00
	Stress Points	LS4		0.72	0.68	0.65	0.64	0.59	0.00
	side +	LS5		0.70	0.69	0.66	0.66	0.57	0.00
	1	LS6		0.69	0.70	0.67	0.67	0.55	0.00
	1	LS7		0,66	0,69	0.66	0.67	0.53	0.65
1	1	LSR	1	0.65	0.69	0.66	0.67	0.52	0.65
	1	1 50		0.64	0.69	0.00	0.67	0.52	0.67
	1	1510		0.62	0.67	0.64	0.07	0.54	0.69
	1	1 511		0.62	0.67	0.64	0.66	0.54	0.09
		1.612		0.03	0.00	0.04	0.00	0.55	0.70
		1512		0.78	0.72	0.69	0.00	0.00	0.00
		LSIS		0.75	0.69	0.66	0.64	0.64	0.00
		LS14		0.74	0.69	0.66	0.64	0.63	0.00
		LS15		0.71	0.67	0.64	0.63	0.61	0.00
		LS16		0.68	0.65	0.62	0.65	0.59	0.00
		LS18		0.68	0.65	0.59	0.58	0.57	0.77
		LS19		0.66	0.66	0.62	0.63	0.56	0.71
		LS20		0.67	0.68	0.65	0.65	0.55	0.68
		LS21		0.67	0.68	0.65	0.65	0.55	0.68
		LS22		0.76	0.73	0.66	0.65	0.64	0.86
		LS23		0.70	0.66	0.63	0.62	0.61	0.79
		LS24		0.68	0.64	0.61	0.63	0.59	0.75
		LS25		0.68	0.64	0.61	0.63	0.59	0.75
		LS26		0.76	0.69	0.66	0.63	0.62	0.81
		LS27		0.73	0.68	0.64	0.62	0.60	0.79
		LS28		0.70	0.66	0.62	0.60	0.58	0.77
		1529		0.70	0.66	0.61	0.59	0.57	0.75
		1 \$30		0.75	0.71	0.65	0.64	0.64	0.84
		1 \$21		0.75	0.71	0.65	0.64	0.64	0.85
		1 622		0.75	0.70	0.00	0.64	0.64	0.85
		1 622		0.73	0.09	0.67	0.65	0.65	0.80
		1.00		0.77	0.71	0.08	0.00	0.00	0.87
	Longitudinal	LSZ		0.81	0.76	0.72	0.71	0.73	0.00
	Stiffener	LS3		0.79	0.75	0.72	0.71	0.74	0.00
	Stress Points	LS4		0.80	0.77	0.74	0.74	0.76	0.00
	side -	LS5		0.78	0.80	0.77	0.78	0.77	0.00
		LS6		0.78	0.83	0.80	0.82	0.81	0.00
		LS7		0.79	0.85	0.81	0.83	0.83	0.91
1	1	LS8	1	0.80	0.86	0.82	0.84	0.84	0.92
	1	LS9	1	0.82	0.87	0.83	0.85	0.85	0.93
	1	LS10	1	0.85	0.88	0.84	0.85	0.85	0.95
	1	LS11		0.87	0.89	0.85	0.86	0.86	0.96
	1	LS12		0.90	0.87	0.83	0.81	0.81	0.00
	1	LS13		0.90	0.87	0.83	0.82	0.82	0.00
	1	LS14		0.92	0.90	0.86	0.86	0.86	0.00
	1	LS15		0.92	0.91	0.87	0.87	0.87	0.00
	1	LS16		0.92	0.92	0.88	0.89	0.88	0.00
	1	LS18		0.69	0.67	0.60	0.59	0.60	0.80
	1	LS19		0.71	0.74	0.71	0.72	0.72	0.85
	1	LS20		0.76	0.80	0.77	0.78	0.78	0.88
	1	LS21		0.76	0.80	0.77	0.78	0.78	0.88
	1	LS22		0.80	0.77	0.70	0.69	0.69	0.90
	1	LS23		0.84	0.84	0.80	0.80	0.79	0.95
1	1	LS24	1	0.87	0.88	0.84	0.84	0.84	0.97
1	1	LS25	1	0.87	0.88	0.84	0.84	0.84	0.97
	1	LS26		0.79	0.73	0.69	0.67	0.69	0.88
	1	LS27	1	0.77	0.72	0.68	0.66	0.68	0.86
	1	LS28	1	0.74	0.69	0.65	0.64	0.66	0.84
	1	LS29		0.73	0.70	0.64	0.63	0.65	0.83
	1	LS30		0.84	0.82	0.75	0.74	0.74	0.93
	1	LS31		0.83	0.80	0.76	0.75	0.74	0.94
	1	LS32		0.82	0.79	0.76	0.75	0.75	0.94
	1	LS33		0.85	0.80	0.78	0.76	0.76	0.96
			L						
		MAX		0.917	0.923	0.884	0.885	0.884	0.967
	Governing	Stiffener		LS14	L\$16	LS16	L\$16	L\$16	LS24
		side							
re	duction factor for g	overning		0.966	0.966	0.975	0.975	0.975	0.964
Gov	erning Case for Max	Stiffener		min NS					
		Ns		-1795	-1782	-1780	-1776	-1745	-1735
		My		-2599	-1888	-1888	-1595	-1753	-1103
		Mz		-953	-1147	-1147	-1223	-1234	-700
Summary	Plates	UR		0.89	0.90	0.87	0.87	0.87	0.99
	Stiffeners	UR		0.92	0.92	0.88	0.89	0.88	0.97
L	Overall Max	UR	1	0.92	0.92	0.88	0.89	0.88	0.99

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

The following figure shows a plot of the utilization ratios for all stress points over the height of the tower. From the plot it is clear that for the ULS 7 load combination being considered, all utilization ratios are below 1.0 for the Sicilia tower leg 1.

5.1.1.7 Verification for All Load Combinations

Using the same procedures as illustrated in the example calculations above, all relevant load combinations were checked for both tower legs and both the Sicilia and Calabria towers. Due to the size of the data produced by these calculations, only the governing utilization ratios are provided here.

Ponte sullo Stretto di Messina **PROGETTO DEFINITIVO**

Design Report - Tower Legs incl. Joints and	Codice documento	Rev	Data
Splices, Annex	PS0015_F0	F0	20-06-2011

Sicilia Tower (1/4)

Analysis	Section	1	2	3	4	5	6	7	8	9	10	11	12
Tower S	Segment	1	1	2	2	3	3	4	4	5	5	6	6
F	levation	18	28	28	40	40	55	55	71	71	87	87	105
Ľ	levation	10	20	20	40	-10	55	55	/1	/1	07	07	105
Load Combin. Description	Leg					Gov	erning Uti	lization Ra	atio				
ULS 7: Seismic, Longit.	Leg 1	1.00	0.93	1.00	0.93	1.00	0.93	1.00	0.96	1.00	0.96	1.00	0.99
ULS 7: Seismic, Trans.	Leg 1	0.93	0.87	0.94	0.88	0.94	0.90	0.97	0.94	0.98	0.94	0.97	0.96
SILS 2: Seismic, Longit.	Leg 1	0.92	0.86	0.92	0.85	0.91	0.81	0.87	0.77	0.82	0.78	0.83	0.80
SILS 2: Seismic, Trans.	Leg 1	0.84	0.79	0.84	0.78	0.84	0.76	0.81	0.75	0.79	0.75	0.78	0.76
ULS 2 & 6 Wind, North	Leg 1	0.70	0.65	0.72	0.68	0.74	0.71	0.78	0.76	0.79	0.78	0.81	0.80
ULS 2 & 6 Wind, West	Leg 1	0.62	0.60	0.68	0.66	0.75	0.74	0.81	0.79	0.82	0.80	0.83	0.83
ULS 2 & 6 Wind, South	Leg 1	0.84	0.81	0.92	0.86	0.93	0.85	0.93	0.89	0.96	0.91	0.93	0.95
ULS 2 & 6 Wind, East	Leg 1	0.57	0.56	0.65	0.64	0.72	0.72	0.78	0.77	0.80	0.79	0.81	0.82
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 1	0.65	0.62	0.71	0.67	0.74	0.72	0.79	0.76	0.80	0.78	0.81	0.79
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 1	0.78	0.75	0.85	0.81	0.88	0.82	0.89	0.87	0.91	0.88	0.91	0.92
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 1	0.65	0.61	0.69	0.64	0.72	0.71	0.78	0.76	0.79	0.78	0.81	0.80
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 1	0.75	0.72	0.82	0.78	0.85	0.79	0.86	0.84	0.89	0.86	0.89	0.91
SILS 1: Wind, North	Leg 1	0.64	0.58	0.65	0.58	0.63	0.57	0.62	0.61	0.64	0.63	0.65	0.65
SILS 1: Wind, West	Leg 1	0.48	0.48	0.53	0.52	0.58	0.58	0.63	0.62	0.65	0.64	0.66	0.67
SILS 1: Wind, South	Leg 1	0.78	0.73	0.83	0.77	0.84	0.76	0.83	0.76	0.83	0.78	0.80	0.82
SILS 1: Wind, East	Leg 1	0.54	0.52	0.56	0.55	0.61	0.60	0.65	0.64	0.67	0.65	0.67	0.68
SILS 1: Wind, 45 deg (+,+)	Leg 1	0.56	0.52	0.58	0.54	0.59	0.57	0.62	0.61	0.64	0.63	0.65	0.65
SILS 1: Wind, 45 deg (+,-)	Leg 1	0.68	0.64	0.73	0.68	0.74	0.68	0.74	0.71	0.76	0.73	0.75	0.77
SILS 1: Wind, 45 deg (-,+)	Leg 1	0.59	0.55	0.62	0.56	0.61	0.57	0.62	0.61	0.64	0.63	0.65	0.65
SILS 1: Wind, 45 deg (-,-)	Leg 1	0.70	0.66	0.76	0.71	0.77	0.70	0.77	0.73	0.78	0.74	0.76	0.77
ULS 5: Dead & Live	Leg 1	0.60	0.60	0.68	0.68	0.77	0.76	0.83	0.81	0.85	0.83	0.86	0.86
ULS 7: Seismic, Longit.	Leg 2	0.99	0.93	0.99	0.93	1.00	0.92	0.98	0.93	0.98	0.95	0.99	0.98
ULS 7: Seismic, Trans.	Leg 2	0.91	0.86	0.93	0.87	0.93	0.87	0.94	0.90	0.94	0.92	0.96	0.95
SILS 2: Seismic, Longit.	Leg 2	0.91	0.85	0.91	0.84	0.90	0.80	0.86	0.75	0.81	0.77	0.82	0.79
SILS 2: Seismic, Trans.	Leg 2	0.82	0.78	0.83	0.77	0.82	0.75	0.80	0.72	0.77	0.74	0.77	0.77
ULS 2 & 6 Wind, North	Leg 2	0.81	0.77	0.87	0.83	0.91	0.86	0.94	0.89	0.97	0.90	0.94	0.94
ULS 2 & 6 Wind, West	Leg 2	0.60	0.59	0.66	0.65	0.74	0.73	0.80	0.78	0.82	0.80	0.83	0.82
ULS 2 & 6 Wind, South	Leg 2	0.71	0.67	0.76	0.71	0.78	0.71	0.78	0.76	0.80	0.78	0.81	0.81
ULS 2 & 6 Wind, East	Leg 2	0.57	0.56	0.65	0.64	0.72	0.71	0.78	0.76	0.79	0.79	0.81	0.81
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 2	0.74	0.72	0.82	0.78	0.84	0.82	0.88	0.86	0.90	0.88	0.91	0.91
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 2	0.68	0.65	0.74	0.70	0.76	0.72	0.78	0.76	0.80	0.78	0.80	0.80
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 2	0.73	0.71	0.81	0.78	0.84	0.80	0.87	0.84	0.90	0.86	0.89	0.90
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 2	0.65	0.62	0.70	0.67	0.73	0.71	0.78	0.76	0.80	0.78	0.80	0.80
SILS 1: Wind, North	Leg 2	0.75	0.71	0.81	0.77	0.84	0.77	0.84	0.77	0.85	0.77	0.80	0.80
SILS 1: Wind, West	Leg 2	0.48	0.48	0.53	0.52	0.58	0.58	0.63	0.62	0.65	0.64	0.67	0.67
SILS 1: Wind, South	Leg 2	0.62	0.58	0.64	0.59	0.65	0.57	0.64	0.61	0.64	0.63	0.66	0.66
SILS 1: Wind, East	Leg 2	0.54	0.52	0.56	0.55	0.61	0.60	0.65	0.64	0.67	0.65	0.68	0.67
SILS 1: Wind, 45 deg (+,+)	Leg 2	0.65	0.62	0.70	0.67	0.73	0.69	0.75	0.71	0.77	0.72	0.75	0.76
SILS 1: Wind, 45 deg (+,-)	Leg 2	0.56	0.53	0.60	0.56	0.61	0.57	0.62	0.61	0.64	0.63	0.66	0.65
SILS 1: Wind, 45 deg (-,+)	Leg 2	0.68	0.65	0.74	0.70	0.76	0.71	0.78	0.73	0.78	0.73	0.77	0.76
SILS 1: Wind, 45 deg (-,-)	Leg 2	0.58	0.55	0.62	0.57	0.62	0.57	0.62	0.61	0.64	0.63	0.65	0.65
ULS 5: Dead & Live	Leg 2	0.60	0.60	0.68	0.67	0.77	0.76	0.83	0.81	0.85	0.83	0.86	0.85
		4.00	0.00	4.00	0.00	4.00	0.00	4.00	0.00				

Sicilia Tower (2/4)

Analysis Section		13	14	15	16	17	18	19	20	21	22	23	24
Tower	Segment	7	7	8	8	8	8	9	9	10	10	11	11
	levation	105	123.65	123.65	124	124	143	143	163	163	183	183	203
<u> </u>													
Load Combin. Description	Leg					Go	erning Ut	tilization R	atio				
ULS 7: Seismic, Longit.	Leg 1	0.99	0.98	0.99	0.99	0.99	0.95	1.00	0.98	0.99	0.99	1.00	1.00
ULS 7: Seismic, Trans.	Leg 1	0.94	0.94	0.95	0.95	0.95	0.91	0.96	0.94	0.95	0.95	0.96	0.96
SILS 2: Seismic, Longit.	Leg 1	0.82	0.81	0.81	0.81	0.81	0.84	0.87	0.88	0.89	0.89	0.90	0.91
SILS 2: Seismic, Trans.	Leg 1	0.79	0.78	0.77	0.77	0.77	0.79	0.82	0.83	0.83	0.84	0.84	0.86
ULS 2 & 6 Wind, North	Leg 1	0.76	0.77	0.83	0.83	0.83	0.75	0.80	0.75	0.80	0.80	0.81	0.81
ULS 2 & 6 Wind, West	Leg 1	0.78	0.78	0.75	0.75	0.75	0.73	0.78	0.76	0.81	0.81	0.82	0.83
ULS 2 & 6 Wind, South	Leg 1	0.89	0.95	0.997	1.00	1.00	0.92	0.99	0.89	0.96	0.89	0.90	0.93
ULS 2 & 6 Wind, East	Leg 1	0.77	0.78	0.75	0.75	0.75	0.74	0.79	0.77	0.82	0.82	0.83	0.83
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 1	0.76	0.76	0.78	0.78	0.78	0.72	0.77	0.75	0.80	0.80	0.81	0.81
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 1	0.86	0.89	0.91	0.91	0.91	0.85	0.92	0.83	0.90	0.87	0.88	0.89
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 1	0.76	0.76	0.78	0.77	0.77	0.72	0.78	0.75	0.80	0.80	0.81	0.82
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 1	0.85	0.89	0.91	0.91	0.91	0.86	0.92	0.85	0.91	0.88	0.89	0.89
SILS 1: Wind, North	Leg 1	0.62	0.63	0.75	0.74	0.74	0.64	0.70	0.61	0.65	0.65	0.66	0.66
SILS 1: Wind, West	Leg 1	0.64	0.65	0.63	0.63	0.63	0.62	0.66	0.65	0.68	0.67	0.68	0.69
SILS 1: Wind, South	Leg 1	0.77	0.85	0.90	0.90	0.90	0.82	0.88	0.77	0.84	0.75	0.76	0.79
SILS 1: Wind, East	Leg 1	0.64	0.65	0.62	0.62	0.62	0.60	0.65	0.62	0.66	0.65	0.66	0.66
SILS 1: Wind, 45 deg (+,+)	Leg 1	0.62	0.63	0.69	0.69	0.69	0.62	0.67	0.61	0.65	0.65	0.66	0.66
SILS 1: Wind, 45 deg (+,-)	Leg 1	0.72	0.78	0.81	0.81	0.81	0.75	0.81	0.73	0.78	0.74	0.75	0.76
SILS 1: Wind, 45 deg (-,+)	Leg 1	0.62	0.63	0.69	0.68	0.68	0.61	0.65	0.61	0.65	0.65	0.66	0.66
SILS 1: Wind, 45 deg (-,-)	Leg 1	0.73	0.77	0.80	0.80	0.80	0.74	0.79	0.71	0.77	0.71	0.72	0.74
ULS 5: Dead & Live	Leg 1	0.82	0.82	0.79	0.79	0.79	0.77	0.83	0.81	0.86	0.85	0.86	0.86
ULS 7: Seismic, Longit.	Leg 2	0.99	0.99	0.98	0.98	0.98	0.94	0.99	0.98	0.96	0.97	0.97	0.99
ULS 7: Seismic, Trans.	Leg 2	0.94	0.96	0.93	0.93	0.93	0.89	0.94	0.93	0.92	0.93	0.93	0.94
SILS 2: Seismic, Longit.	Leg 2	0.82	0.80	0.81	0.81	0.81	0.82	0.86	0.87	0.88	0.89	0.90	0.91
SILS 2: Seismic, Trans.	Leg 2	0.77	0.78	0.77	0.77	0.77	0.78	0.81	0.82	0.83	0.84	0.84	0.86
ULS 2 & 6 Wind, North	Leg 2	0.89	0.95	0.96	0.96	0.96	0.88	0.95	0.87	0.94	0.89	0.90	0.93
ULS 2 & 6 Wind, West	Leg 2	0.78	0.79	0.73	0.73	0.73	0.72	0.77	0.76	0.81	0.81	0.82	0.83
ULS 2 & 6 Wind, South	Leg 2	0.77	0.78	0.88	0.88	0.88	0.78	0.85	0.76	0.80	0.80	0.81	0.81
ULS 2 & 6 Wind, East	Leg 2	0.77	0.79	0.73	0.73	0.73	0.73	0.78	0.77	0.82	0.81	0.83	0.83
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 2	0.86	0.89	0.88	0.88	0.88	0.82	0.89	0.82	0.89	0.87	0.88	0.89
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 2	0.76	0.77	0.82	0.82	0.82	0.75	0.81	0.75	0.80	0.80	0.81	0.81
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 2	0.85	0.89	0.88	0.88	0.88	0.82	0.88	0.84	0.88	0.87	0.88	0.89
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 2	0.76	0.77	0.82	0.82	0.82	0.76	0.81	0.76	0.80	0.80	0.81	0.82
SILS 1: Wind, North	Leg 2	0.76	0.84	0.87	0.87	0.87	0.79	0.86	0.76	0.82	0.75	0.76	0.78
SILS 1: Wind, West	Leg 2	0.64	0.65	0.63	0.63	0.63	0.62	0.66	0.64	0.68	0.67	0.68	0.69
SILS 1: Wind, South	Leg 2	0.63	0.64	0.76	0.76	0.76	0.66	0.71	0.62	0.66	0.65	0.66	0.66
SILS 1: Wind, East	Leg 2	0.64	0.65	0.62	0.62	0.62	0.60	0.64	0.62	0.66	0.65	0.66	0.66
SILS 1: Wind, 45 deg (+,+)	Leg 2	0.72	0.77	0.79	0.79	0.79	0.73	0.79	0.72	0.77	0.74	0.75	0.75
SILS 1: Wind, 45 deg (+,-)	Leg 2	0.62	0.63	0.70	0.70	0.70	0.63	0.68	0.62	0.65	0.65	0.66	0.66
SILS 1: Wind, 45 deg (-,+)	Leg 2	0.72	0.77	0.78	0.78	0.78	0.72	0.77	0.70	0.75	0.71	0.72	0.73
SILS 1: Wind, 45 deg (-,-)	Leg 2	0.62	0.63	0.70	0.69	0.69	0.62	0.67	0.62	0.65	0.65	0.66	0.66
ULS 5: Dead & Live	Leg 2	0.82	0.83	0.78	0.78	0.78	0.77	0.83	0.81	0.85	0.85	0.86	0.86
Max of All Load Combinations (e	ither leg)	0.99	0.99	1.00	1.00	1.00	0.95	1.00	0.98	0.99	0.99	1.00	1.00

Sicilia Tower (3/4)

Load Combin. Description ULS 7: Seismic, Longit. ULS 7: Seismic, Trans. SILS 2: Seismic, Trans. SILS 2: Seismic, Trans. ULS 2 & 6 Wind, North ULS 2 & 6 Wind, North	Analysis Section Tower Segment Elevation	25 12 203	26 12 223	27 13 223	28 13	29 14	30 14	31 14	32 14	33 15	34 15	35 16	36 16
Load Combin. Description ULS 7: Seismic, Longit. ULS 7: Seismic, Trans. SILS 2: Seismic, Longit. SILS 2: Seismic, Trans. ULS 2 & 6 Wind, North	Tower Segment Elevation	12 203	12 223	13	13	14	14	14	14	15	15	16	16
Load Combin. Description ULS 7: Seismic, Longit. ULS 7: Seismic, Trans. SILS 2: Seismic, Longit. SILS 2: Seismic, Trans. ULS 2 & 6 Wind, North ULS 2 & 6 Wind, North	Elevation	203	223	223									10
Load Combin. Description ULS 7: Seismic, Longit. ULS 7: Seismic, Trans. SILS 2: Seismic, Longit. SILS 2: Seismic, Trans. ULS 2 & 6 Wind, North	Leg			225	243	243	249.048	249.048	263	263	283	283	303
ULS 7: Seismic, Longit. ULS 7: Seismic, Trans. SILS 2: Seismic, Trans. SILS 2: Seismic, Trans. ULS 2 & 6 Wind, North ULS 2 & 6 Wind, North	LCE					60	orning 11	ilization P	otio				
ULS 7: Seismic, Eurgr. ULS 7: Seismic, Trans. SILS 2: Seismic, Longit. SILS 2: Seismic, Trans. ULS 2 & 6 Wind, North	1 Ag 1	0.08	1.00	0.95	0 00	0.94			1.00	0 99	0.98	1.00	0.96
SILS 2: Seismic, Longit. SILS 2: Seismic, Trans. ULS 2 & 6 Wind, North	Leg 1	0.50	0.06	0.00	0.05	0.04	0.95	0.00	0.04	0.95	0.00	0.04	0.50
SILS 2: Seismic, Trans. ULS 2 & 6 Wind, North	Leg 1	0.55	0.50	0.52	0.95	0.50	0.50	0.92	0.04	0.50	0.92	0.94	0.91
ULS 2 & 6 Wind, North	Leg 1	0.50	0.55	0.05	0.55	0.82	0.91	0.31	0.95	0.91	0.92	0.52	0.05
	Leg 1	0.04	0.83	0.05	0.85	0.81	0.05	0.05	0.74	0.05	0.05	0.81	0.02
	leg 1	0.80	0.81	0.75	0.05	0.01	0.05	0.73	0.74	0.00	0.75	0.01	0.75
UIS2&6 Wind South	Leg 1	0.88	0.01	0.75	0.99	0.95	0.72	0.92	0.72	0.70	0.74	0.70	0.75
UIS2&6 Wind East	leg 1	0.80	0.50	0.50	0.55	0.55	0.57	0.73	0.72	0.55	0.01	0.52	0.75
UIS2 & 6 Wind 45 deg (++)	leg 1	0.78	0.80	0.75	0.81	0.77	0.78	0.70	0.69	0.75	0.73	0.79	0.75
ULS 2 & 6 Wind, 45 deg (+,-)	leg 1	0.87	0.91	0.86	0.92	0.89	0.90	0.86	0.83	0.89	0.80	0.75	0.78
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 1	0.79	0.82	0.78	0.82	0.79	0.80	0.73	0.72	0.77	0.73	0.79	0.74
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 1	0.87	0.89	0.84	0.90	0.87	0.88	0.87	0.83	0.89	0.80	0.87	0.78
SILS 1: Wind, North	Leg 1	0.64	0.68	0.64	0.71	0.69	0.70	0.65	0.61	0.65	0.60	0.67	0.58
SILS 1: Wind. West	Leg 1	0.67	0.68	0.64	0.64	0.61	0.61	0.60	0.59	0.64	0.60	0.62	0.60
SILS 1: Wind, South	Leg 1	0.75	0.85	0.80	0.89	0.86	0.88	0.80	0.75	0.80	0.69	0.76	0.63
SILS 1: Wind, East	Leg 1	0.64	0.64	0.59	0.59	0.57	0.57	0.57	0.56	0.61	0.57	0.61	0.58
SILS 1: Wind, 45 deg (+,+)	Leg 1	0.64	0.67	0.64	0.69	0.67	0.67	0.61	0.59	0.62	0.59	0.64	0.60
SILS 1: Wind, 45 deg (+,-)	Leg 1	0.74	0.80	0.76	0.82	0.79	0.80	0.75	0.71	0.75	0.66	0.71	0.64
SILS 1: Wind, 45 deg (-,+)	Leg 1	0.64	0.65	0.61	0.67	0.64	0.65	0.59	0.57	0.61	0.57	0.64	0.58
SILS 1: Wind, 45 deg (-,-)	Leg 1	0.70	0.76	0.72	0.78	0.75	0.76	0.72	0.68	0.73	0.64	0.71	0.61
ULS 5: Dead & Live	Leg 1	0.84	0.84	0.78	0.77	0.73	0.73	0.74	0.73	0.80	0.76	0.81	0.78
ULS 7: Seismic, Longit.	Leg 2	0.97	0.99	0.95	0.99	0.93	0.95	0.94	0.97	0.96	0.97	0.98	0.99
ULS 7: Seismic, Trans.	Leg 2	0.92	0.95	0.91	0.94	0.89	0.90	0.90	0.90	0.95	0.90	0.93	0.89
SILS 2: Seismic, Longit.	Leg 2	0.90	0.92	0.88	0.96	0.90	0.91	0.91	0.93	0.92	0.92	0.93	0.91
SILS 2: Seismic, Trans.	Leg 2	0.84	0.86	0.82	0.88	0.83	0.84	0.83	0.85	0.84	0.83	0.84	0.81
ULS 2 & 6 Wind, North	Leg 2	0.88	0.95	0.90	0.98	0.95	0.97	0.90	0.85	0.92	0.81	0.91	0.77
ULS 2 & 6 Wind, West	Leg 2	0.80	0.81	0.75	0.76	0.72	0.72	0.73	0.72	0.78	0.74	0.78	0.75
ULS 2 & 6 Wind, South	Leg 2	0.79	0.81	0.77	0.83	0.80	0.78	0.84	0.79	0.85	0.75	0.85	0.74
ULS 2 & 6 Wind, East	Leg 2	0.80	0.81	0.75	0.76	0.72	0.72	0.71	0.70	0.77	0.72	0.78	0.75
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 2	0.86	0.90	0.85	0.91	0.88	0.89	0.85	0.82	0.88	0.79	0.86	0.78
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 2	0.79	0.80	0.75	0.81	0.78	0.74	0.77	0.75	0.80	0.74	0.82	0.75
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 2	0.87	0.91	0.86	0.92	0.88	0.89	0.84	0.81	0.87	0.78	0.86	0.78
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 2	0.80	0.80	0.76	0.79	0.76	0.76	0.79	0.76	0.82	0.75	0.82	0.75
SILS 1: Wind, North	Leg 2	0.75	0.84	0.80	0.88	0.85	0.87	0.79	0.74	0.79	0.68	0.75	0.63
SILS 1: Wind, West	Leg 2	0.67	0.67	0.64	0.64	0.61	0.61	0.60	0.59	0.64	0.60	0.62	0.60
SILS 1: Wind, South	Leg 2	0.64	0.69	0.65	0.72	0.69	0.66	0.71	0.66	0.71	0.60	0.68	0.59
SILS 1: Wind, East	Leg 2	0.64	0.64	0.59	0.59	0.57	0.57	0.57	0.56	0.61	0.57	0.61	0.58
SILS 1: Wind, 45 deg (+,+)	Leg 2	0.73	0.79	0.75	0.81	0.78	0.79	0.74	0.70	0.74	0.66	0.70	0.64
SILS 1: Wind, 45 deg (+,-)	Leg 2	0.64	0.68	0.64	0.70	0.67	0.64	0.66	0.63	0.67	0.60	0.66	0.60
SILS 1: Wind, 45 deg (-,+)	Leg 2	0.70	0.75	0.71	0.77	0.75	0.76	0.70	0.66	0.72	0.63	0.70	0.61
SILS 1: Wind, 45 deg (-,-)	Leg 2	0.64	0.64	0.61	0.66	0.63	0.61	0.65	0.62	0.66	0.58	0.65	0.59
ULS 5: Dead & Live	Leg 2	0.84	0.84	0.78	0.77	0.73	0.73	0.73	0.72	0.79	0.76	0.81	0.78

Ponte sullo Stretto di Messina **PROGETTO DEFINITIVO**

Design Report - Tower Legs incl. Joints and	Codice documento	Rev	Data
Splices, Annex	PS0015_F0	F0	20-06-2011

Sicilia Tower (4/4)

Analysi	Section	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Tower	Segment	17	17	18	18	19	19	20	20	21	21	21	22	22	22
	levation	303	323	323	341	341	357.4	357.4	369.9	369.9	374.447	374,447	383.619	383.619	395.619
Load Combin. Description	Leg					Gov	erning Ut	ilization R	atio					•	
ULS 7: Seismic, Longit.	Leg 1	0.97	0.95	0.99	0.95	1.00	0.96	0.92	0.92	0.88	0.89	0.88	0.99	0.99	0.83
ULS 7: Seismic, Trans.	Leg 1	0.92	0.91	0.93	0.92	0.94	0.94	0.90	0.91	0.88	0.88	0.86	0.95	0.95	0.82
SILS 2: Seismic, Longit.	Leg 1	0.90	0.85	0.89	0.82	0.87	0.81	0.77	0.76	0.73	0.73	0.72	0.86	0.86	0.69
SILS 2: Seismic, Trans.	Leg 1	0.82	0.78	0.82	0.76	0.81	0.78	0.75	0.75	0.72	0.73	0.69	0.82	0.82	0.67
ULS 2 & 6 Wind, North	Leg 1	0.74	0.73	0.73	0.77	0.71	0.78	0.74	0.78	0.74	0.76	0.86	0.95	0.95	0.77
ULS 2 & 6 Wind, West	Leg 1	0.76	0.75	0.75	0.78	0.73	0.78	0.74	0.77	0.74	0.75	0.79	0.88	0.88	0.76
ULS 2 & 6 Wind, South	Leg 1	0.79	0.86	0.82	0.95	0.87	0.98	0.93	1.00	0.96	0.98	0.79	0.87	0.87	0.77
ULS 2 & 6 Wind, East	Leg 1	0.76	0.74	0.74	0.78	0.72	0.78	0.74	0.77	0.73	0.75	0.79	0.88	0.88	0.75
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 1	0.76	0.74	0.73	0.73	0.71	0.73	0.69	0.72	0.69	0.70	0.84	0.92	0.92	0.76
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 1	0.79	0.82	0.80	0.89	0.82	0.91	0.86	0.92	0.88	0.89	0.80	0.88	0.88	0.77
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 1	0.75	0.73	0.73	0.73	0.70	0.73	0.69	0.72	0.69	0.70	0.83	0.92	0.92	0.76
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 1	0.79	0.82	0.79	0.89	0.82	0.91	0.86	0.91	0.87	0.89	0.79	0.88	0.88	0.77
SILS 1: Wind, North	Leg 1	0.59	0.58	0.58	0.64	0.59	0.66	0.62	0.66	0.63	0.65	0.69	0.78	0.78	0.61
SILS 1: Wind, West	Leg 1	0.61	0.60	0.60	0.61	0.58	0.62	0.59	0.61	0.58	0.59	0.62	0.71	0.71	0.60
SILS 1: Wind, South	Leg 1	0.64	0.71	0.68	0.81	0.74	0.84	0.80	0.87	0.83	0.85	0.61	0.69	0.69	0.62
SILS 1: Wind, East	Leg 1	0.59	0.58	0.58	0.61	0.57	0.61	0.58	0.61	0.58	0.59	0.61	0.70	0.70	0.60
SILS 1: Wind, 45 deg (+,+)	Leg 1	0.61	0.59	0.58	0.59	0.56	0.61	0.57	0.60	0.57	0.58	0.66	0.76	0.76	0.61
SILS 1: Wind, 45 deg (+,-)	Leg 1	0.65	0.67	0.66	0.75	0.69	0.77	0.73	0.78	0.75	0.76	0.62	0.71	0.71	0.62
SILS 1: Wind, 45 deg (-,+)	Leg 1	0.59	0.58	0.58	0.59	0.55	0.60	0.57	0.60	0.57	0.58	0.66	0.75	0.75	0.61
SILS 1: Wind, 45 deg (-,-)	Leg 1	0.62	0.67	0.65	0.74	0.68	0.77	0.72	0.78	0.74	0.76	0.61	0.70	0.70	0.62
ULS 5: Dead & Live	Leg 1	0.79	0.78	0.77	0.80	0.75	0.80	0.75	0.79	0.75	0.76	0.83	0.93	0.93	0.80
ULS 7: Seismic, Longit.	Leg 2	1.00	0.96	1.00	0.93	0.98	0.94	0.89	0.90	0.86	0.87	0.91	1.00	1.00	0.83
ULS 7: Seismic, Trans.	Leg 2	0.90	0.88	0.89	0.90	0.91	0.94	0.90	0.92	0.89	0.90	0.88	0.97	0.97	0.82
SILS 2: Seismic, Longit.	Leg 2	0.92	0.87	0.91	0.82	0.87	0.78	0.75	0.74	0.71	0.71	0.74	0.87	0.87	0.69
SILS 2: Seismic, Trans.	Leg 2	0.82	0.76	0.80	0.74	0.78	0.78	0.74	0.76	0.73	0.74	0.71	0.83	0.83	0.67
ULS 2 & 6 Wind, North	Leg 2	0.78	0.85	0.82	0.95	0.87	0.98	0.93	1.00	0.95	0.98	0.78	0.87	0.87	0.76
ULS 2 & 6 Wind, West	Leg 2	0.76	0.75	0.75	0.78	0.73	0.79	0.74	0.78	0.74	0.75	0.80	0.88	0.88	0.76
ULS 2 & 6 Wind, South	Leg 2	0.75	0.74	0.73	0.76	0.71	0.76	0.72	0.75	0.72	0.73	0.87	0.95	0.95	0.77
ULS 2 & 6 Wind, East	Leg 2	0.76	0.75	0.74	0.78	0.72	0.78	0.74	0.77	0.74	0.75	0.79	0.88	0.88	0.75
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 2	0.79	0.82	0.80	0.90	0.83	0.92	0.86	0.92	0.88	0.90	0.79	0.88	0.88	0.77
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 2	0.76	0.75	0.74	0.76	0.71	0.76	0.72	0.75	0.71	0.72	0.84	0.92	0.92	0.77
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 2	0.79	0.82	0.79	0.89	0.82	0.91	0.86	0.92	0.88	0.90	0.79	0.88	0.88	0.77
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 2	0.76	0.74	0.73	0.76	0.71	0.76	0.72	0.75	0.71	0.72	0.84	0.92	0.92	0.76
SILS 1: Wind, North	Leg 2	0.64	0.70	0.67	0.80	0.74	0.84	0.79	0.86	0.82	0.85	0.60	0.69	0.69	0.61
SILS 1: Wind, West	Leg 2	0.61	0.60	0.60	0.62	0.58	0.62	0.59	0.61	0.59	0.59	0.62	0.71	0.71	0.60
SILS 1: Wind, South	Leg 2	0.60	0.58	0.58	0.60	0.56	0.60	0.57	0.60	0.57	0.58	0.70	0.78	0.78	0.62
SILS 1: Wind, East	Leg 2	0.59	0.58	0.58	0.61	0.57	0.62	0.58	0.61	0.58	0.59	0.61	0.70	0.70	0.60
SILS 1: Wind, 45 deg (+,+)	Leg 2	0.64	0.67	0.65	0.75	0.69	0.77	0.72	0.77	0.74	0.76	0.61	0.71	0.71	0.62
SILS 1: Wind, 45 deg (+,-)	Leg 2	0.61	0.59	0.59	0.59	0.57	0.59	0.55	0.58	0.55	0.56	0.67	0.76	0.76	0.62
SILS 1: Wind, 45 deg (-,+)	Leg 2	0.62	0.67	0.64	0.74	0.68	0.76	0.72	0.77	0.74	0.76	0.61	0.70	0.70	0.62
SILS 1: Wind, 45 deg (-,-)	Leg 2	0.59	0.58	0.58	0.59	0.56	0.59	0.55	0.58	0.55	0.56	0.67	0.75	0.75	0.62
ULS 5: Dead & Live	Leg 2	0.79	0.78	0.77	0.80	0.75	0.80	0.76	0.79	0.75	0.76	0.83	0.93	0.93	0.80
Max of All Load Combinations (a	thor log)	1.00	0.00	1.00	0.05	1.00	0.02	0.02	1.00	0.06	0.09	0.01	1.00	1.00	0.92

The following plot shows the governing utilization ratios for all load combinations for the Sicilia tower. The values shown are the same as those provided in the tables above.

Design Report - Tower Legs incl. Joints and	Codice documento
Splices, Annex	PS0015_F0

Calabria Tower (1/4)

Ana	lysis Section	1	2	3	4	5	6	7	8	9	10	11	12
То	wer Segment	1	1	2	2	3	3	4	4	5	5	6	6
	Elevation	18	28	28	40	40	55	55	71	71	87	87	105
Lood Combin Description	1.44					6.00		linetien D					
LUS 7: Solomia Longit	Leg	0.00	0.02	1.00	0.02	1.00			0.05	0.00	0.04	1.00	0.00
ULS 7: Seismic, Longit.	Leg 1	0.99	0.93	1.00	0.92	1.00	0.92	0.99	0.95	0.98	0.94	1.00	0.96
OLS 7: Selsific, Italis.	Leg 1	0.93	0.88	0.94	0.87	0.95	0.89	0.96	0.93	0.96	0.93	0.98	0.95
	Leg 1	0.95	0.88	0.95	0.87	0.95	0.86	0.92	0.83	0.90	0.85	0.93	0.89
SILS 2: SelSITIC, ITALIS.	Leg 1	0.87	0.82	0.88	0.82	0.89	0.81	0.80	0.81	0.87	0.82	0.90	0.80
ULS 2 & 6 Wind, North	Leg 1	0.73	0.68	0.76	0.70	0.76	0.75	0.81	0.80	0.82	0.81	0.84	0.84
ULS 2 & 6 Wind, West	Leg 1	0.08	0.00	0.73	0.74	0.80	0.78	0.65	0.65	0.00	0.65	0.00	1.00
ULS 2 & 6 Wind, South	Leg 1	0.92	0.87	0.97	0.91	0.99	0.91	0.98	0.94	0.98	0.94	0.98	1.00
ULS 2 & 6 Wind, Edst	Leg 1	0.05	0.64	0.72	0.71	0.77	0.76	0.82	0.81	0.85	0.82	0.83	0.00
$U_{1} \leq 2 \otimes 6$ Wind, 45 deg (+,+)	Leg 1	0.70	0.00	0.74	0.70	0.70	0.73	0.01	0.60	0.62	0.01	0.64	0.65
$U_{1} \leq 2 \otimes 6$ Wind, 45 deg (+,-)	Leg 1	0.65	0.61	0.90	0.85	0.95	0.87	0.94	0.91	0.94	0.91	0.94	0.90
OL3 2 & 0 Wind, 45 deg(-,+)	Leg 1	0.09	0.00	0.75	0.71	0.77	0.75	0.02	0.80	0.02	0.01	0.04	0.65
SILS 1: Wind North	Leg 1	0.62	0.79	0.00	0.65	0.90	0.63	0.91	0.69	0.92	0.90	0.95	0.95
SILS 1: Wind, North	Leg 1	0.07	0.02	0.08	0.01	0.07	0.03	0.08	0.07	0.08	0.07	0.72	0.70
SILS 1: Wind, West	Leg 1	0.02	0.00	0.04	0.02	0.08	0.00	0.71	0.70	0.72	0.70	0.75	0.73
SILS 1: Wind, South	Leg 1	0.55	0.54	0.50	0.54	0.51	0.64	0.69	0.62	0.07	0.62	0.00	0.00
SILS 1: Wind, East SILS 1: Wind 45 deg (+ +)	Leg 1	0.55	0.54	0.55	0.55	0.65	0.63	0.05	0.00	0.70	0.67	0.72	0.72
SILS 1: Wind, 45 deg (+ -)	Leg 1	0.05	0.35	0.00	0.00	0.05	0.05	0.00	0.07	0.05	0.07	0.72	0.83
SILS 1: Wind, 45 deg (- +)	Leg 1	0.78	0.55	0.62	0.59	0.63	0.63	0.65	0.75	0.62	0.78	0.85	0.05
SILS 1: Wind, 45 deg ()	Leg 1	0.35	0.55	0.01	0.35	0.80	0.05	0.80	0.07	0.80	0.07	0.72	0.82
UIS 5: Dead & Live	Leg 1	0.66	0.65	0.76	0.73	0.00	0.79	0.85	0.84	0.86	0.85	0.88	0.88
UIS 7: Seismic Longit	Leg 2	0.990	0.93	0.99	0.91	0.99	0.92	0.99	0.96	0.99	0.93	0.99	0.96
UI S 7: Seismic, Trans	Leg 2	0.93	0.55	0.93	0.86	0.93	0.52	0.95	0.93	0.95	0.91	0.95	0.96
SILS 2: Seismic, Longit.	Leg 2	0.94	0.89	0.95	0.87	0.95	0.86	0.92	0.83	0.90	0.83	0.92	0.89
SILS 2: Seismic, Trans.	Leg 2	0.87	0.82	0.88	0.82	0.89	0.81	0.87	0.80	0.86	0.81	0.89	0.85
ULS 2 & 6 Wind. North	Leg 2	0.87	0.84	0.93	0.89	0.97	0.90	0.98	0.92	0.97	0.94	0.98	0.98
ULS 2 & 6 Wind. West	Leg 2	0.67	0.64	0.73	0.72	0.78	0.77	0.83	0.81	0.84	0.83	0.87	0.86
ULS 2 & 6 Wind, South	Leg 2	0.75	0.72	0.80	0.74	0.81	0.74	0.80	0.79	0.81	0.81	0.85	0.85
ULS 2 & 6 Wind, East	Leg 2	0.65	0.64	0.72	0.71	0.77	0.76	0.82	0.81	0.83	0.82	0.85	0.85
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 2	0.81	0.78	0.87	0.83	0.90	0.87	0.93	0.90	0.93	0.91	0.95	0.94
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 2	0.73	0.70	0.78	0.73	0.79	0.74	0.80	0.79	0.81	0.81	0.85	0.84
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 2	0.80	0.77	0.86	0.82	0.89	0.85	0.91	0.88	0.91	0.90	0.93	0.94
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 2	0.69	0.66	0.74	0.70	0.76	0.74	0.80	0.79	0.81	0.81	0.85	0.84
SILS 1: Wind, North	Leg 2	0.81	0.77	0.86	0.81	0.88	0.82	0.89	0.82	0.87	0.82	0.86	0.86
SILS 1: Wind, West	Leg 2	0.61	0.59	0.64	0.61	0.67	0.65	0.70	0.69	0.72	0.70	0.75	0.72
SILS 1: Wind, South	Leg 2	0.68	0.63	0.70	0.65	0.70	0.63	0.68	0.67	0.68	0.67	0.72	0.71
SILS 1: Wind, East	Leg 2	0.55	0.54	0.59	0.58	0.63	0.62	0.67	0.67	0.68	0.69	0.72	0.72
SILS 1: Wind, 45 deg (+,+)	Leg 2	0.74	0.71	0.79	0.75	0.81	0.77	0.82	0.78	0.82	0.78	0.83	0.82
SILS 1: Wind, 45 deg (+,-)	Leg 2	0.65	0.61	0.68	0.63	0.69	0.63	0.68	0.66	0.70	0.67	0.72	0.71
SILS 1: Wind, 45 deg (-,+)	Leg 2	0.69	0.67	0.74	0.71	0.77	0.73	0.79	0.76	0.80	0.77	0.81	0.81
SILS 1: Wind, 45 deg (-,-)	Leg 2	0.60	0.58	0.64	0.60	0.65	0.63	0.68	0.67	0.68	0.67	0.72	0.71
ULS 5: Dead & Live	Leg 2	0.66	0.65	0.74	0.73	0.79	0.79	0.85	0.84	0.86	0.85	0.88	0.87
Max of All Load Combination	ns (either leg)	0.99	0.93	1.00	0.92	1.00	0.92	0.99	0.96	0.99	0.94	1.00	1.00

Calabria Tower (2/4)

Anal	sis Section	13	14	15	16	17	18	19	20	21	22	23	24
Tow	er Segment	7	7	8	8	8	8	9	9	10	10	11	11
	Elevation	105	123.65	123.65	124	124	143	143	163	163	183	183	203
Load Combin. Description	Leg					Go	verning Ut	ilization R	atio				
ULS 7: Seismic, Longit.	Leg 1	0.98	0.95	0.99	0.99	0.99	0.98	0.98	0.98	0.98	1.00	0.98	1.00
ULS 7: Seismic, Trans.	Leg 1	0.95	0.92	0.97	0.97	0.97	0.95	0.97	0.96	0.97	0.96	0.96	0.96
SILS 2: Seismic, Longit.	Leg 1	0.89	0.87	0.90	0.90	0.90	0.89	0.86	0.88	0.89	0.92	0.90	0.92
SILS 2: Seismic, Trans.	Leg 1	0.86	0.84	0.88	0.88	0.88	0.87	0.84	0.83	0.84	0.87	0.86	0.87
ULS 2 & 6 Wind, North	Leg 1	0.78	0.77	0.83	0.82	0.82	0.75	0.81	0.79	0.82	0.81	0.81	0.84
ULS 2 & 6 Wind, West	Leg 1	0.80	0.79	0.78	0.78	0.78	0.76	0.82	0.80	0.83	0.82	0.82	0.81
ULS 2 & 6 Wind, South	Leg 1	0.91	0.97	0.99	0.99	0.99	0.91	0.99	0.93	0.97	0.91	0.91	0.97
ULS 2 & 6 Wind, East	Leg 1	0.79	0.80	0.79	0.79	0.79	0.78	0.84	0.82	0.84	0.84	0.84	0.83
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 1	0.77	0.77	0.78	0.78	0.78	0.75	0.81	0.79	0.82	0.81	0.81	0.83
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 1	0.88	0.91	0.90	0.90	0.90	0.86	0.93	0.88	0.92	0.87	0.87	0.92
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 1	0.77	0.77	0.78	0.78	0.78	0.75	0.81	0.79	0.82	0.82	0.82	0.84
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 1	0.87	0.91	0.91	0.91	0.91	0.87	0.94	0.90	0.94	0.90	0.90	0.93
SILS 1: Wind, North	Leg 1	0.68	0.66	0.73	0.73	0.73	0.66	0.69	0.66	0.67	0.67	0.66	0.67
SILS 1: Wind, West	Leg 1	0.71	0.68	0.70	0.70	0.70	0.67	0.70	0.67	0.68	0.67	0.67	0.66
SILS 1: Wind, South	Leg 1	0.81	0.89	0.91	0.91	0.91	0.84	0.90	0.81	0.85	0.77	0.77	0.82
SILS 1: Wind, East	Leg 1	0.69	0.69	0.71	0.71	0.71	0.69	0.71	0.69	0.70	0.69	0.69	0.69
SILS 1: Wind, 45 deg (+,+)	Leg 1	0.68	0.66	0.68	0.68	0.68	0.66	0.68	0.66	0.67	0.67	0.66	0.66
SILS 1: Wind, 45 deg (+,-)	Leg 1	0.78	0.81	0.82	0.82	0.82	0.77	0.81	0.75	0.79	0.73	0.73	0.77
SILS 1: Wind, 45 deg (-,+)	Leg 1	0.68	0.66	0.68	0.68	0.68	0.66	0.68	0.67	0.67	0.67	0.67	0.67
SILS 1: Wind, 45 deg (-,-)	Leg 1	0.77	0.82	0.83	0.83	0.83	0.80	0.83	0.78	0.81	0.76	0.76	0.77
ULS 5: Dead & Live	Leg 1	0.82	0.82	0.80	0.80	0.80	0.78	0.84	0.82	0.85	0.85	0.85	0.86
ULS 7: Seismic, Longit.	Leg 2	0.97	0.94	0.97	0.97	0.97	0.96	0.95	0.97	0.97	0.99	0.97	0.98
ULS 7: Seismic, Trans.	Leg 2	0.94	0.94	0.95	0.94	0.94	0.93	0.94	0.94	0.95	0.95	0.95	0.95
SILS 2: Seismic, Longit.	Leg 2	0.89	0.85	0.89	0.89	0.89	0.87	0.84	0.89	0.89	0.92	0.90	0.91
SILS 2: Seismic, Trans.	Leg 2	0.85	0.84	0.86	0.86	0.86	0.84	0.82	0.84	0.85	0.87	0.86	0.86
ULS 2 & 6 Wind, North	Leg 2	0.91	0.98	0.96	0.96	0.96	0.90	0.97	0.92	0.95	0.91	0.91	0.97
ULS 2 & 6 Wind, West	Leg 2	0.80	0.81	0.77	0.77	0.77	0.76	0.82	0.79	0.81	0.81	0.82	0.81
ULS 2 & 6 Wind, South	Leg 2	0.79	0.80	0.87	0.87	0.87	0.77	0.84	0.79	0.82	0.82	0.82	0.83
ULS 2 & 6 Wind, East	Leg 2	0.79	0.82	0.78	0.78	0.78	0.77	0.83	0.81	0.84	0.84	0.84	0.84
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 2	0.88	0.91	0.88	0.88	0.88	0.85	0.91	0.87	0.90	0.87	0.87	0.92
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 2	0.78	0.80	0.81	0.81	0.81	0.75	0.80	0.79	0.82	0.82	0.82	0.82
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 2	0.87	0.92	0.89	0.89	0.89	0.86	0.93	0.89	0.92	0.89	0.89	0.92
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 2	0.78	0.80	0.82	0.82	0.82	0.76	0.82	0.79	0.82	0.82	0.82	0.83
SILS 1: Wind, North	Leg 2	0.81	0.88	0.87	0.87	0.87	0.81	0.86	0.80	0.83	0.77	0.77	0.82
SILS 1: Wind, West	Leg 2	0.71	0.69	0.67	0.67	0.67	0.66	0.68	0.66	0.67	0.67	0.67	0.66
SILS 1: Wind, South	Leg 2	0.69	0.68	0.78	0.77	0.77	0.68	0.74	0.67	0.68	0.67	0.67	0.67
SILS 1: Wind, East	Leg 2	0.69	0.69	0.68	0.68	0.68	0.68	0.69	0.69	0.70	0.69	0.69	0.69
SILS 1: Wind, 45 deg (+,+)	Leg 2	0.77	0.81	0.78	0.78	0.78	0.73	0.79	0.75	0.77	0.73	0.73	0.76
SILS 1: Wind, 45 deg (+,-)	Leg 2	0.69	0.67	0.72	0.71	0.71	0.66	0.69	0.67	0.67	0.67	0.66	0.66
SILS 1: Wind, 45 deg (-,+)	Leg 2	0.76	0.82	0.79	0.78	0.78	0.78	0.80	0.77	0.79	0.76	0.75	0.77
SILS 1: Wind, 45 deg (-,-)	Leg 2	0.69	0.67	0.72	0.72	0.72	0.68	0.71	0.67	0.68	0.67	0.67	0.67
ULS 5: Dead & Live	Leg 2	0.82	0.82	0.79	0.79	0.79	0.78	0.83	0.82	0.84	0.85	0.85	0.86
Max of All Load Combinations	(either leg)	0.98	0.98	0.99	0.99	0.99	0.98	0.99	0.98	0.98	1.00	0.98	1.00

Calabria Tower (3/4)

Analy	sis Section	25	26	27	28	29	30	31	32	33	34	35	36
Tow	er Segment	12	12	13	13	14	14	14	14	15	15	16	16
	Elevation	203	223	223	243	243	249.048	249.048	263	263	283	283	303
Load Combin. Description	Leg					Go	overning U	tilization F	Ratio				
ULS 7: Seismic, Longit.	Leg 1	0.98	1.00	0.97	1.00	0.97	0.98	1.00	1.00	1.00	0.98	0.99	0.97
ULS 7: Seismic, Trans.	Leg 1	0.95	0.95	0.92	0.95	0.92	0.92	0.95	0.94	0.96	0.94	0.96	0.93
SILS 2: Seismic, Longit.	Leg 1	0.91	0.93	0.91	0.93	0.90	0.90	0.90	0.91	0.90	0.90	0.90	0.88
SILS 2: Seismic, Trans.	Leg 1	0.86	0.88	0.86	0.86	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.82
ULS 2 & 6 Wind, North	Leg 1	0.80	0.84	0.79	0.85	0.82	0.84	0.76	0.74	0.80	0.76	0.82	0.77
ULS 2 & 6 Wind, West	Leg 1	0.80	0.79	0.73	0.73	0.71	0.71	0.72	0.71	0.78	0.76	0.78	0.77
ULS 2 & 6 Wind, South	Leg 1	0.90	0.99	0.91	0.99	0.97	0.99	0.92	0.87	0.95	0.83	0.91	0.81
ULS 2 & 6 Wind, East	Leg 1	0.82	0.82	0.76	0.76	0.74	0.74	0.75	0.73	0.81	0.79	0.80	0.79
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 1	0.80	0.82	0.75	0.80	0.78	0.79	0.72	0.71	0.78	0.76	0.79	0.77
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 1	0.85	0.91	0.84	0.90	0.88	0.89	0.85	0.82	0.89	0.80	0.86	0.80
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 1	0.81	0.84	0.78	0.83	0.80	0.81	0.72	0.72	0.79	0.78	0.80	0.78
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 1	0.88	0.94	0.87	0.93	0.89	0.91	0.88	0.84	0.91	0.83	0.86	0.82
SILS 1: Wind, North	Leg 1	0.65	0.71	0.66	0.73	0.71	0.72	0.65	0.61	0.66	0.61	0.66	0.61
SILS 1: Wind, West	Leg 1	0.65	0.64	0.61	0.61	0.59	0.58	0.58	0.57	0.62	0.61	0.62	0.61
SILS 1: Wind, South	Leg 1	0.77	0.87	0.81	0.89	0.86	0.89	0.81	0.75	0.82	0.70	0.75	0.66
SILS 1: Wind, East	Leg 1	0.68	0.67	0.66	0.65	0.63	0.62	0.62	0.61	0.65	0.63	0.65	0.63
SILS 1: Wind, 45 deg (+,+)	Leg 1	0.65	0.67	0.62	0.67	0.65	0.66	0.58	0.57	0.62	0.61	0.63	0.61
SILS 1: Wind, 45 deg (+,-)	Leg 1	0.71	0.78	0.72	0.78	0.76	0.77	0.72	0.68	0.74	0.64	0.70	0.63
SILS 1: Wind, 45 deg (-,+)	Leg 1	0.66	0.70	0.66	0.71	0.69	0.70	0.62	0.61	0.64	0.63	0.64	0.62
SILS 1: Wind, 45 deg (-,-)	Leg 1	0.75	0.81	0.76	0.82	0.79	0.81	0.76	0.72	0.77	0.68	0.71	0.67
ULS 5: Dead & Live	Leg 1	0.83	0.83	0.76	0.76	0.74	0.73	0.74	0.73	0.82	0.80	0.82	0.81
ULS 7: Seismic, Longit.	Leg 2	0.97	0.99	0.97	0.99	0.96	0.97	0.97	0.97	0.97	0.97	0.98	0.96
ULS 7: Seismic, Trans.	Leg 2	0.94	0.94	0.92	0.94	0.92	0.92	0.92	0.92	0.93	0.92	0.93	0.92
SILS 2: Seismic, Longit.	Leg 2	0.90	0.92	0.90	0.91	0.88	0.89	0.89	0.90	0.90	0.89	0.90	0.87
SILS 2: Seismic, Trans.	Leg 2	0.85	0.86	0.85	0.85	0.83	0.83	0.83	0.83	0.83	0.82	0.83	0.81
ULS 2 & 6 Wind, North	Leg 2	0.90	0.98	0.91	0.99	0.96	0.98	0.91	0.86	0.94	0.83	0.90	0.81
ULS 2 & 6 Wind, West	Leg 2	0.80	0.80	0.73	0.73	0.71	0.71	0.71	0.70	0.78	0.76	0.78	0.77
ULS 2 & 6 Wind, South	Leg 2	0.80	0.82	0.76	0.79	0.77	0.78	0.84	0.80	0.87	0.77	0.84	0.77
ULS 2 & 6 Wind, East	Leg 2	0.82	0.83	0.77	0.77	0.75	0.75	0.74	0.73	0.80	0.78	0.80	0.79
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 2	0.86	0.91	0.83	0.90	0.87	0.89	0.84	0.80	0.88	0.80	0.85	0.80
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 2	0.80	0.80	0.74	0.77	0.75	0.75	0.77	0.75	0.82	0.77	0.81	0.77
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 2	0.89	0.94	0.87	0.93	0.89	0.91	0.86	0.82	0.90	0.82	0.85	0.82
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 2	0.81	0.82	0.76	0.76	0.74	0.74	0.80	0.77	0.84	0.78	0.81	0.79
SILS 1: Wind, North	Leg 2	0.77	0.86	0.81	0.89	0.86	0.88	0.79	0.74	0.80	0.69	0.74	0.65
SILS 1: Wind, West	Leg 2	0.65	0.65	0.61	0.61	0.59	0.58	0.58	0.57	0.62	0.61	0.62	0.61
SILS 1: Wind, South	Leg 2	0.65	0.70	0.65	0.67	0.65	0.67	0.73	0.68	0.73	0.62	0.67	0.61
SILS 1: Wind, East	Leg 2	0.68	0.68	0.66	0.65	0.63	0.63	0.62	0.61	0.65	0.63	0.64	0.63
SILS 1: Wind, 45 deg (+,+)	Leg 2	0.72	0.78	0.72	0.78	0.75	0.77	0.71	0.67	0.73	0.64	0.69	0.63
SILS 1: Wind, 45 deg (+,-)	Leg 2	0.65	0.66	0.62	0.62	0.60	0.61	0.65	0.61	0.67	0.61	0.65	0.61
SILS 1: Wind, 45 deg (-,+)	Leg 2	0.75	0.81	0.76	0.82	0.79	0.81	0.74	0.70	0.76	0.67	0.70	0.66
SILS 1: Wind, 45 deg (-,-)	Leg 2	0.67	0.69	0.65	0.65	0.63	0.64	0.68	0.65	0.70	0.63	0.65	0.63
ULS 5: Dead & Live	Leg 2	0.83	0.83	0.76	0.76	0.74	0.74	0.74	0.73	0.81	0.80	0.82	0.81
Max of All Load Combinations	(either leg)	0.98	1.00	0.97	1.00	0.97	0.99	1.00	1.00	1.00	0.98	0.99	0.97

Calabria Tower (4/4)

Ana	lysis Section	37	38	39	40	41	42	43	44	45	46	47	48
То	wer Segment	17	17	18	18	19	19	20	20	21	21	21	22
	Elevation	303	323	323	341	341	357.4	357.4	369.9	369.9	374.447	374.447	383.619
Load Combin. Description	Leg	4.00	0.07	1 00	0.00	Gov	erning Ut	ilization R	atio	0.07	0.05	0.00	0.00
ULS 7: Seismic, Longit.	Leg 1	1.00	0.97	1.00	0.93	0.99	0.94	0.97	0.88	0.85	0.86	0.88	0.98
OLS 7: Seismic, Trans.	Leg 1	0.94	0.91	0.94	0.91	0.94	0.93	0.92	0.89	0.88	0.90	0.88	0.98
	Leg 1	0.91	0.86	0.89	0.82	0.86	0.78	0.83	0.74	0.69	0.71	0.70	0.84
SILS 2: Seismic, Trans.	Leg 1	0.85	0.80	0.83	0.76	0.80	0.76	0.78	0.74	0.72	0.74	0.69	0.81
ULS 2 & 6 Wind, North	Leg 1	0.76	0.75	0.75	0.78	0.77	0.80	0.74	0.78	0.76	0.77	0.87	0.97
ULS 2 & 6 Wind, West	Leg 1	0.77	0.77	0.76	0.79	0.78	0.80	0.73	0.77	0.74	0.76	0.80	0.90
ULS 2 & 6 Wind, South	Leg 1	0.81	0.88	0.84	0.96	0.90	1.00	0.92	0.99	0.97	1.00	0.80	0.89
	Leg 1	0.78	0.77	0.78	0.80	0.79	0.81	0.74	0.77	0.75	0.76	0.81	0.90
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 1	0.76	0.75	0.75	0.76	0.76	0.77	0.69	0.72	0.70	0.71	0.85	0.94
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 1	0.79	0.85	0.82	0.90	0.85	0.92	0.85	0.91	0.89	0.91	0.80	0.89
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 1	0.78	0.76	0.76	0.77	0.77	0.78	0.70	0.72	0.70	0.71	0.85	0.94
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 1	0.81	0.85	0.83	0.90	0.86	0.93	0.86	0.91	0.89	0.91	0.81	0.90
SILS 1: Wind, North	Leg 1	0.60	0.59	0.59	0.65	0.61	0.67	0.62	0.66	0.65	0.66	0.70	0.80
SILS 1: Wind, West	Leg 1	0.60	0.60	0.59	0.62	0.61	0.63	0.58	0.60	0.59	0.60	0.62	0.72
SILS 1: Wind, South	Leg 1	0.65	0.73	0.70	0.81	0.76	0.86	0.79	0.86	0.85	0.87	0.62	0.71
SILS 1: Wind, East	Leg 1	0.63	0.61	0.62	0.64	0.63	0.65	0.59	0.61	0.59	0.60	0.63	0.73
SILS 1: Wind, 45 deg (+,+)	Leg 1	0.60	0.59	0.59	0.60	0.60	0.62	0.57	0.60	0.58	0.59	0.67	0.76
SILS 1: Wind, 45 deg (+,-)	Leg 1	0.63	0.69	0.66	0.75	0.70	0.78	0.72	0.77	0.76	0.77	0.62	0.72
SILS 1: Wind, 45 deg (-,+)	Leg 1	0.62	0.60	0.60	0.61	0.61	0.63	0.58	0.60	0.59	0.60	0.67	0.78
SILS 1: Wind, 45 deg (-,-)	Leg 1	0.66	0.70	0.69	0.75	0.72	0.78	0.73	0.77	0.76	0.78	0.63	0.73
ULS 5: Dead & Live	Leg 1	0.81	0.79	0.79	0.82	0.81	0.83	0.75	0.78	0.76	0.77	0.84	0.94
ULS 7: Seismic, Longit.	Leg 2	1.00	0.96	0.99	0.93	0.99	0.95	0.97	0.92	0.87	0.89	0.90	0.99
ULS 7: Seismic, Trans.	Leg 2	0.93	0.90	0.93	0.92	0.94	0.95	0.92	0.92	0.89	0.91	0.89	0.98
SILS 2: Seismic, Longit.	Leg 2	0.90	0.85	0.88	0.81	0.85	0.78	0.82	0.77	0.71	0.72	0.72	0.85
SILS 2: Seismic, Trans.	Leg 2	0.83	0.79	0.82	0.75	0.79	0.78	0.78	0.75	0.73	0.75	0.71	0.83
ULS 2 & 6 Wind, North	Leg 2	0.80	0.87	0.84	0.96	0.90	1.00	0.92	0.99	0.97	1.00	0.79	0.89
ULS 2 & 6 Wind, West	Leg 2	0.77	0.77	0.76	0.79	0.77	0.80	0.74	0.77	0.75	0.76	0.80	0.90
ULS 2 & 6 Wind, South	Leg 2	0.77	0.76	0.75	0.78	0.76	0.78	0.71	0.74	0.72	0.73	0.88	0.97
ULS 2 & 6 Wind, East	Leg 2	0.78	0.77	0.78	0.80	0.79	0.81	0.74	0.77	0.75	0.76	0.81	0.90
ULS 2 & 6 Wind, 45 deg (+,+)	Leg 2	0.79	0.84	0.82	0.90	0.85	0.93	0.86	0.91	0.89	0.91	0.80	0.89
ULS 2 & 6 Wind, 45 deg (+,-)	Leg 2	0.77	0.75	0.75	0.77	0.76	0.78	0.71	0.74	0.72	0.73	0.85	0.94
ULS 2 & 6 Wind, 45 deg (-,+)	Leg 2	0.81	0.85	0.83	0.91	0.87	0.93	0.86	0.92	0.90	0.92	0.80	0.90
ULS 2 & 6 Wind, 45 deg (-,-)	Leg 2	0.78	0.76	0.76	0.77	0.77	0.78	0.71	0.74	0.72	0.73	0.86	0.94
SILS 1: Wind, North	Leg 2	0.65	0.72	0.69	0.81	0.75	0.85	0.79	0.85	0.84	0.86	0.61	0.71
SILS 1: Wind, West	Leg 2	0.60	0.60	0.59	0.62	0.60	0.63	0.58	0.61	0.59	0.60	0.62	0.72
SILS 1: Wind, South	Leg 2	0.61	0.59	0.59	0.61	0.60	0.62	0.57	0.60	0.58	0.60	0.71	0.80
SILS 1: Wind, East	Leg 2	0.63	0.61	0.62	0.64	0.63	0.65	0.59	0.61	0.59	0.60	0.63	0.73
SILS 1: Wind, 45 deg (+,+)	Leg 2	0.62	0.69	0.65	0.75	0.69	0.77	0.72	0.77	0.75	0.77	0.62	0.72
SILS 1: Wind, 45 deg (+,-)	Leg 2	0.61	0.59	0.59	0.61	0.60	0.61	0.55	0.57	0.56	0.56	0.68	0.77
SILS 1: Wind, 45 deg (-,+)	Leg 2	0.66	0.69	0.69	0.75	0.72	0.78	0.72	0.77	0.76	0.77	0.62	0.73
SILS 1: Wind, 45 deg (-,-)	Leg 2	0.62	0.61	0.60	0.61	0.61	0.61	0.57	0.57	0.56	0.57	0.68	0.78
ULS 5: Dead & Live	Leg 2	0.81	0.79	0.79	0.82	0.80	0.82	0.75	0.78	0.76	0.77	0.84	0.94

Max of All Load Combinations (either leg) 1.00 0.97 1.00 0.96 0.99 1.00 0.97 0.99 0.97 1.00 0.90 0.90

The following plot shows the governing utilization ratios for all load combinations for the Calabria tower. The values shown are the same as those provided in the tables above.

5.1.1.8 Verification for the Envelope of All Time-History Seismic Results

Although the tower legs were designed for the mean results the eight time-history inputs that were analyzed, on account of the exceptional importance of the structure, the tower legs were also verified for the envelope of all time-history analysis results, assuming all partial safety factors are equal to 1.0. Maximum primary force effects from each time-history input are plotted on the Specialist Technical Design Report. Maximum utilization ratios for each time-history in put and directional combination are presented below for each tower leg cross section.

The maximum utilization ratios for each case are plotted after the tabular data.

The maximum calculated utilization ratio is 1.07, and occurs in Calabria tower leg 1 segment 17 and is caused by Sicilia time-history input 3. A detailed finite element model of this segment was created and analysed for the critical load combination to assess the potential extent of damage caused by the apparent overstress. The results of this analysis are described in Section 5.3.8.

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento PS0015_F0

<u>Sicilia Towe</u>	<u>r Leg 1</u>																
							Т	ime Hist	ory Inpu	t							
EL (m)	Longitu	idinal Co	mbinati	on - 1.0)	(Long +	0.8 x Tra	ns + 0.75	s x Vert	Transv	erse Co	nbinatio	on - 0.8 x	Long + 1	LO x Tran	ns + 0.75	x Vert	Maximum
	S1	S2	S3	S4	C1	С2	С3	C4	S1	S2	S3	S4	C1	С2	С3	C4	
18	0.99	0.96	0.96	0.95	0.89	0.86	0.84	0.91	0.90	0.89	0.88	0.87	0.82	0.82	0.79	0.84	0.99
28	0.92	0.87	0.90	0.88	0.83	0.80	0.78	0.85	0.83	0.82	0.83	0.81	0.77	0.76	0.75	0.79	0.92
28	0.98	0.94	0.96	0.94	0.89	0.86	0.84	0.91	0.89	0.88	0.89	0.87	0.83	0.82	0.81	0.85	0.98
40	0.90	0.84	0.89	0.87	0.85	0.82	0.79	0.87	0.83	0.79	0.82	0.81	0.79	0.79	0.76	0.83	0.90
40	0.96	0.90	0.95	0.94	0.91	0.88	0.85	0.93	0.88	0.85	0.88	0.87	0.85	0.85	0.83	0.89	0.96
55	0.86	0.81	0.85	0.87	0.85	0.84	0.79	0.89	0.84	0.78	0.80	0.82	0.80	0.83	0.79	0.87	0.89
55	0.93	0.87	0.91	0.94	0.91	0.91	0.87	0.97	0.92	0.85	0.87	0.88	0.87	0.91	0.86	0.94	0.97
71	0.89	0.86	0.86	0.86	0.84	0.91	0.81	0.92	0.88	0.84	0.83	0.84	0.82	0.90	0.80	0.90	0.92
71	0.93	0.89	0.91	0.91	0.91	0.95	0.85	0.96	0.92	0.88	0.87	0.88	0.87	0.94	0.84	0.94	0.96
87	0.88	0.89	0.88	0.90	0.83	0.93	0.81	0.91	0.86	0.87	0.84	0.87	0.82	0.92	0.81	0.89	0.93
87	0.93	0.92	0.94	0.95	0.88	0.96	0.84	0.94	0.89	0.90	0.88	0.90	0.85	0.95	0.83	0.92	0.96
105	0.92	0.93	0.90	0.93	0.88	0.98	0.85	0.89	0.90	0.90	0.87	0.90	0.85	0.96	0.87	0.88	0.98
105	0.93	0.91	0.91	0.96	0.91	0.95	0.84	0.90	0.88	0.88	0.86	0.90	0.86	0.92	0.83	0.85	0.96
123.65	0.92	0.92	0.87	0.93	0.93	0.97	0.87	0.87	0.87	0.89	0.83	0.88	0.88	0.94	0.88	0.85	0.97
123.65	0.91	0.93	0.89	0.94	0.93	0.95	0.87	0.87	0.85	0.90	0.86	0.89	0.88	0.94	0.89	0.84	0.95
124	0.91	0.93	0.89	0.94	0.93	0.94	0.87	0.86	0.85	0.89	0.86	0.89	0.88	0.94	0.89	0.84	0.94
124	0.91	0.93	0.89	0.94	0.93	0.94	0.87	0.86	0.85	0.89	0.86	0.89	0.88	0.94	0.89	0.84	0.94
143	0.88	0.91	0.91	0.86	0.87	0.87	0.83	0.84	0.83	0.88	0.87	0.83	0.81	0.85	0.84	0.80	0.91
143	0.92	0.96	0.95	0.91	0.91	0.92	0.89	0.88	0.87	0.92	0.91	0.87	0.86	0.91	0.91	0.86	0.96
163	0.97	0.97	0.95	0.91	0.84	0.86	0.88	0.88	0.92	0.91	0.89	0.86	0.81	0.83	0.84	0.84	0.97
163	0.96	0.98	0.96	0.87	0.83	0.89	0.89	0.90	0.92	0.94	0.91	0.84	0.82	0.88	0.87	0.89	0.98
183	0.98	0.95	0.92	0.89	0.90	0.89	0.88	0.91	0.93	0.91	0.88	0.84	0.86	0.88	0.85	0.90	0.98
183	0.99	0.96	0.93	0.90	0.90	0.90	0.89	0.93	0.94	0.92	0.89	0.84	0.87	0.88	0.86	0.91	0.99
203	0.98	0.89	0.93	0.90	0.95	0.91	0.87	0.94	0.93	0.87	0.88	0.86	0.91	0.89	0.84	0.92	0.98
203	0.96	0.88	0.92	0.89	0.93	0.88	0.85	0.92	0.91	0.85	0.87	0.84	0.90	0.87	0.82	0.89	0.96
223	0.94	0.93	0.92	0.99	0.96	0.96	0.87	0.95	0.89	0.89	0.88	0.94	0.92	0.94	0.83	0.90	0.99
223	0.89	0.88	0.88	0.94	0.92	0.91	0.83	0.90	0.85	0.85	0.84	0.89	0.88	0.89	0.80	0.86	0.94
243	0.94	0.97	0.96	1.05	0.92	0.98	0.85	0.92	0.89	0.93	0.91	0.98	0.88	0.95	0.83	0.88	1.05
243	0.89	0.92	0.90	0.99	0.87	0.93	0.80	0.87	0.84	0.88	0.86	0.93	0.85	0.90	0.80	0.83	0.99
249.048	0.90	0.94	0.93	1.02	0.87	0.95	0.82	0.88	0.85	0.90	0.87	0.95	0.83	0.91	0.81	0.84	1.02
249.048	0.92	0.92	0.97	1.00	0.89	0.89	0.82	0.91	0.87	0.87	0.88	0.92	0.84	0.87	0.80	0.90	1.00
263	0.91	0.93	0.98	1.03	0.87	0.90	0.84	0.90	0.86	0.88	0.90	0.94	0.82	0.85	0.81	0.87	1.03
263	0.91	0.93	0.98	1.02	0.87	0.90	0.83	0.92	0.90	0.87	0.90	0.93	0.85	0.86	0.85	0.92	1.02
283	0.89	0.93	0.98	1.03	0.85	0.89	0.83	0.88	0.84	0.87	0.90	0.94	0.82	0.83	0.80	0.85	1.03
283	0.91	0.94	0.99	1.04	0.87	0.90	0.84	0.89	0.86	0.88	0.91	0.95	0.84	0.86	0.86	0.89	1.04
303	0.87	0.94	0.96	1.03	0.84	0.89	0.81	0.85	0.83	0.88	0.88	0.94	0.81	0.84	0.78	0.83	1.03
303	0.87	0.95	0.97	1.04	0.85	0.90	0.82	0.86	0.84	0.89	0.89	0.95	0.82	0.85	0.78	0.84	1.04
323	0.87	0.92	0.92	1.01	0.84	0.87	0.76	0.85	0.84	0.86	0.86	0.92	0.81	0.83	0.74	0.83	1.01
323	0.90	0.95	0.97	1.05	0.88	0.91	0.79	0.87	0.85	0.89	0.90	0.96	0.81	0.85	0.76	0.84	1.05
341	0.87	0.89	0.90	0.98	0.89	0.85	0.79	0.86	0.86	0.85	0.85	0.90	0.82	0.83	0.80	0.85	0.98
341	0.91	0.94	0.96	1.04	0.94	0.90	0.78	0.88	0.87	0.88	0.90	0.95	0.84	0.85	0.74	0.85	1.04
357.4	0.90	0.88	0.87	0.95	0.89	0.85	0.81	0.90	0.90	0.85	0.85	0.89	0.85	0.83	0.83	0.90	0.95
357.4	0.86	0.84	0.84	0.92	0.85	0.81	0.77	0.85	0.86	0.81	0.81	0.85	0.81	0.79	0.79	0.86	0.92
369.9	0.87	0.82	0.80	0.87	0.84	0.81	0.82	0.87	0.87	0.81	0.80	0.83	0.84	0.83	0.84	0.88	0.88
369.9	0.83	0.78	0.76	0.83	0.80	0.77	0.78	0.84	0.84	0.77	0.76	0.80	0.81	0.80	0.81	0.85	0.85
374.447	0.83	0.78	0.76	0.82	0.81	0.78	0.80	0.84	0.84	0.79	0.77	0.80	0.82	0.82	0.82	0.85	0.85
374.447	0.84	0.82	0.80	0.83	0.79	0.80	0.82	0.77	0.82	0.81	0.79	0.82	0.76	0.78	0.81	0.77	0.84
383.619	0.94	0.91	0.92	0.97	0.92	0.89	0.89	0.86	0.90	0.89	0.88	0.91	0.88	0.86	0.89	0.85	0.97
383.619	0.94	0.91	0.92	0.97	0.92	0.89	0.89	0.86	0.90	0.89	0.88	0.91	0.88	0.86	0.89	0.85	0.97
							,				,				,		2.37
Average	0.91	0 91	0 91	0.94	0 88	0 ይባ	0 83	0.89	0.87	0 87	0 86	0.88	0.84	0.87	0 82	0 86	0 97
Maximum	0.99	0.98	0.99	1.05	0.96	0.98	0.89	0.97	0.94	0.94	0.91	0.98	0.92	0.96	0.91	0.94	1.05
Minimum	0.55	0.78	0.76	0.82	0.79	0.77	0.76	0.77	0.82	0.77	0.76	0.20	0.76	0.76	0.74	0 77	0.84
	5.05	0.70	5.70	0.02	5.75	5.77	5.70	5.77	0.02	5.77	5.70	0.00	5.70	5.70	5.74	5.77	0.04

Splices, Annex

Ponte sullo Stretto di Messina **PROGETTO DEFINITIVO**

Design Report - Tower Legs incl. Joints and Codice documento PS0015_F0

Rev Data F0 20-06-2011

-																	
							Т	ime Hist	ory Inpu	t							
EL (m)	Longitu	dinal Co	mbinati	ion - 1.0	x Long +	0.8 x Tra	ns + 0.75	5 x Vert	Transv	erse Co	mbinatio	on - 0.8 x	Long + :	L.0 x Tran	is + 0.75	x Vert	Maximum
	S1	S2	53	S4	C1	С2	С3	C4	S1	S2	53	S4	C1	C2	С3	C4	
18	0.99	0.92	0.96	0.91	0.93	0.91	0.86	0.96	0.92	0.85	0.90	0.87	0.85	0.86	0.78	0.88	0.99
28	0.92	0.85	0.89	0.86	0.89	0.85	0.80	0.90	0.86	0.79	0.84	0.82	0.81	0.80	0.74	0.83	0.92
28	0.98	0.91	0.96	0.92	0.95	0.91	0.85	0.96	0.92	0.85	0.90	0.88	0.87	0.86	0.79	0.89	0.98
40	0.89	0.83	0.88	0.88	0.90	0.84	0.78	0.89	0.85	0.78	0.84	0.85	0.83	0.79	0.75	0.83	0.90
40	0.95	0.89	0.94	0.94	0.97	0.90	0.84	0.95	0.91	0.84	0.90	0.91	0.90	0.85	0.81	0.89	0.97
55	0.84	0.80	0.86	0.88	0.90	0.86	0.80	0.86	0.82	0.77	0.83	0.86	0.84	0.81	0.76	0.81	0.90
55	0.90	0.86	0.92	0.94	0.97	0.92	0.86	0.92	0.88	0.84	0.89	0.92	0.90	0.87	0.83	0.87	0.97
71	0.86	0.84	0.88	0.87	0.89	0.84	0.81	0.85	0.83	0.82	0.85	0.84	0.84	0.81	0.81	0.81	0.89
71	0.90	0.88	0.92	0.93	0.97	0.92	0.87	0.93	0.88	0.86	0.91	0.92	0.91	0.88	0.85	0.87	0.97
87	0.89	0.85	0.89	0.88	0.88	0.88	0.80	0.89	0.87	0.84	0.88	0.84	0.84	0.85	0.83	0.85	0.89
87	0.94	0.88	0.95	0.94	0.94	0.94	0.86	0.95	0.92	0.87	0.94	0.90	0.89	0.90	0.84	0.90	0.95
105	0.94	0.89	0.92	0.91	0.92	0.89	0.88	0.92	0.92	0.87	0.89	0.88	0.87	0.87	0.86	0.90	0.94
105	0.95	0.89	0.93	0.94	0.95	0.92	0.89	0.95	0.90	0.87	0.91	0.90	0.89	0.88	0.85	0.90	0.95
123.65	0.95	0.89	0.89	0.91	0.94	0.91	0.88	0.90	0.91	0.89	0.87	0.89	0.90	0.87	0.84	0.90	0.95
123.65	0.95	0.91	0.86	0.92	0.92	0.91	0.87	0.88	0.89	0.87	0.82	0.87	0.87	0.89	0.89	0.84	0.95
124	0.95	0.91	0.86	0.92	0.91	0.91	0.87	0.88	0.89	0.87	0.82	0.87	0.87	0.89	0.89	0.84	0.95
124	0.95	0.91	0.86	0.92	0.92	0.91	0.87	0.88	0.89	0.87	0.82	0.87	0.87	0.89	0.89	0.84	0.95
143	0.91	0.88	0.87	0.84	0.85	0.84	0.83	0.85	0.86	0.83	0.83	0.79	0.82	0.80	0.83	0.81	0.91
143	0.95	0.92	0.92	0.88	0.89	0.88	0.88	0.89	0.90	0.88	0.87	0.84	0.88	0.85	0.89	0.85	0.95
163	0.95	0.93	0.92	0.88	0.88	0.88	0.86	0.89	0.90	0.87	0.85	0.82	0.86	0.83	0.83	0.84	0.95
163	0.93	0.94	0.92	0.84	0.91	0.90	0.87	0.89	0.92	0.89	0.87	0.83	0.90	0.85	0.87	0.84	0.94
183	0.95	0.94	0.88	0.87	0.91	0.89	0.89	0.91	0.94	0.93	0.86	0.84	0.88	0.86	0.87	0.87	0.95
183	0.96	0.95	0.89	0.87	0.91	0.90	0.89	0.92	0.95	0.94	0.87	0.84	0.89	0.87	0.88	0.87	0.96
203	0.95	0.93	0.90	0.88	0.96	0.91	0.89	0.92	0.95	0.93	0.87	0.88	0.91	0.87	0.88	0.88	0.96
203	0.94	0.92	0.88	0.86	0.94	0.89	0.87	0.91	0.93	0.91	0.86	0.86	0.89	0.86	0.85	0.86	0.94
223	0.91	0.91	0.92	0.91	0.97	0.93	0.90	0.89	0.90	0.87	0.91	0.91	0.91	0.92	0.86	0.85	0.97
223	0.87	0.86	0.88	0.87	0.92	0.89	0.86	0.85	0.86	0.83	0.87	0.87	0.87	0.87	0.82	0.81	0.92
243	0.93	0.96	0.95	0.93	1.03	0.95	0.87	0.94	0.91	0.92	0.91	0.91	0.88	0.92	0.85	0.86	1.03
243	0.88	0.90	0.89	0.88	0.97	0.89	0.82	0.88	0.86	0.87	0.86	0.88	0.83	0.87	0.82	0.81	0.97
249.048	0.90	0.93	0.91	0.90	0.97	0.91	0.83	0.89	0.87	0.89	0.86	0.89	0.84	0.87	0.83	0.82	0.97
249.048	0.93	0.90	0.91	0.98	0.89	0.90	0.83	0.89	0.90	0.88	0.85	0.93	0.84	0.84	0.88	0.83	0.98
263	0.95	0.93	0.93	1.01	0.90	0.92	0.85	0.90	0.92	0.90	0.88	0.91	0.84	0.86	0.84	0.84	1.01
263	0.95	0.92	0.92	1.00	0.89	0.92	0.84	0.88	0.94	0.90	0.87	0.96	0.83	0.85	0.89	0.85	1.00
283	0.96	0.94	0.93	1.02	0.87	0.93	0.84	0.88	0.91	0.91	0.89	0.87	0.82	0.86	0.79	0.83	1.02
283	0.97	0.95	0.94	1.03	0.88	0.94	0.85	0.89	0.93	0.92	0.89	0.93	0.84	0.87	0.88	0.85	1.03
303	0.96	0.93	0.98	1.02	0.88	0.92	0.83	0.87	0.91	0.90	0.88	0.82	0.82	0.85	0.78	0.81	1.02
303	0.97	0.94	0.99	1.03	0.89	0.93	0.84	0.88	0.92	0.91	0.89	0.82	0.83	0.86	0.79	0.82	1.03
323	0.93	0.89	0.96	0.99	0.81	0.88	0.80	0.82	0.88	0.87	0.88	0.79	0.80	0.83	0.77	0.79	0.99
323	0.97	0.93	1.00	1.04	0.84	0.92	0.83	0.86	0.92	0.90	0.92	0.80	0.84	0.86	0.77	0.81	1.04
341	0.91	0.87	0.93	0.96	0.83	0.85	0.83	0.82	0.87	0.84	0.87	0.87	0.80	0.80	0.86	0.80	0.96
341	0.96	0.92	0.98	1.03	0.87	0.90	0.80	0.83	0.92	0.88	0.92	0.85	0.82	0.84	0.79	0.79	1.03
357.4	0.91	0.84	0.90	0.92	0.84	0.81	0.85	0.84	0.93	0.79	0.86	0.95	0.83	0.80	0.88	0.83	0.95
357.4	0.87	0.83	0.87	0.88	0.80	0.79	0.80	0.80	0.88	0.77	0.82	0.90	0.79	0.76	0.83	0.79	0.90
369.9	0.88	0.77	0.82	0.92	0.80	0.77	0.85	0.82	0.90	0.79	0.82	0.96	0.82	0.78	0.89	0.82	0.96
369.9	0.84	0.74	0.79	0.89	0.77	0.74	0.81	0.78	0.87	0.76	0.78	0.92	0.79	0.75	0.85	0.79	0.92
374.447	0.81	0.75	0.78	0.90	0.77	0.76	0.83	0.79	0.87	0.78	0.79	0.94	0.80	0.76	0.87	0.80	0.94
374.447	0.82	0.80	0.86	0.86	0.83	0.79	0.77	0.82	0.79	0.77	0.83	0.83	0.82	0.77	0.78	0.81	0.86
383.619	0.93	0.89	0.95	0.98	0.97	0.91	0.90	0.95	0.93	0.90	0.96	0.98	0.94	0.89	0.89	0.94	0.98
383.619	0.93	0.89	0.95	0.98	0.97	0.91	0.90	0.95	0.93	0.90	0.96	0.98	0.94	0.89	0.89	0.94	0.98
225.015	5.55	3.05	5.55	5.50	5.57	5.51	5.50	5.55	5.55	5.50	5.50	5.50	5.54	5.05	5.05	5.5 1	0.50
Average	0 92	0 80	0 91	0 92	0 90	0 80	0 85	0 80	0 90	0 ጸና	0.87	0 88	0.86	0.85	0.84	0.84	0 96
Maximum	0.92	0.96	1 00	1 0/1	1 03	0 95	0 90	0.05	0.95	0.00	0.96	0.00	0.00	0.92	0.80	0.94	1 04
Minimum	0.81	0.74	0.78	0.84	0.77	0.74	0.77	0.78	0.79	0.76	0.78	0.79	0.79	0.75	0.74	0.79	<u>1.04</u> 0.86

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento PS0015_F0

<u>Calabria T</u>	ower Leg	1															
							т	'ime Hist	tory Inpu	ıt							
EL (m)	Longitu	dinal Co	ombinati	ion - 1.0	x Long +	0.8 x Tra	ns + 0.75	5 x Vert	Transv	erse Co	mbinatio	on - 0.8 x	Long + 1	L.0 x Trar	ns + 0.75	x Vert	Maximum
	S1	S2	S3	S4	C1	C2	С3	C4	S1	S2	S3	S4	C1	C2	С3	C4	
18	0.96	0.93	1.00	0.88	0.89	0.89	0.85	0.94	0.89	0.90	0.93	0.84	0.83	0.82	0.80	0.89	1.00
28	0.92	0.87	0.93	0.82	0.84	0.83	0.81	0.89	0.85	0.83	0.86	0.78	0.78	0.78	0.78	0.85	0.93
28	0.98	0.93	0.99	0.88	0.90	0.89	0.87	0.96	0.91	0.90	0.93	0.83	0.84	0.83	0.84	0.91	0.99
40	0.92	0.85	0.89	0.83	0.84	0.82	0.81	0.91	0.86	0.82	0.84	0.78	0.78	0.79	0.77	0.86	0.92
40	1 00	0.03	0.05	0.05	0.01	0.02	0.01	0.91	0.00	0.02	0.01	0.70	0.70	0.75	0.77	0.00	1.00
	0.93	0.55	0.57	0.50	0.51	0.00	0.07	0.50	0.55	0.03	0.91	0.04	0.05	0.00	0.04	0.54	0.93
55	1 01	0.85	0.05	0.04	0.00	0.04	0.82	0.91	0.05	0.82	0.00	0.75	0.00	0.85	0.77	0.00	1 01
71	0.06	0.91	0.91	0.90	0.90	0.91	0.85	0.98	0.97	0.85	0.80	0.87	0.80	0.09	0.85	0.95	0.06
71	0.90	0.60	0.00	0.87	0.00	0.87	0.00	0.92	0.92	0.00	0.62	0.65	0.05	0.00	0.01	0.91	0.90
/1	0.99	0.88	0.90	0.90	0.90	0.90	0.88	0.95	0.95	0.88	0.85	0.85	0.87	0.92	0.83	0.93	0.99
8/	0.92	0.86	0.88	0.87	0.85	0.88	0.84	0.88	0.90	0.86	0.86	0.84	0.86	0.89	0.85	0.8/	0.92
8/	0.97	0.90	0.95	0.93	0.91	0.93	0.87	0.93	0.94	0.90	0.91	0.90	0.89	0.93	0.89	0.91	0.97
105	0.89	0.90	0.95	0.89	0.89	0.93	0.86	0.91	0.88	0.88	0.92	0.86	0.86	0.92	0.91	0.91	0.95
105	0.90	0.89	0.99	0.93	0.91	0.92	0.83	0.85	0.86	0.85	0.94	0.90	0.86	0.90	0.83	0.83	0.99
123.65	0.86	0.86	0.98	0.89	0.88	0.93	0.89	0.86	0.84	0.86	0.92	0.86	0.85	0.92	0.88	0.85	0.98
123.65	0.85	0.90	1.00	0.93	0.92	0.94	0.87	0.89	0.82	0.89	0.95	0.91	0.89	0.94	0.86	0.88	1.00
124	0.85	0.90	1.00	0.93	0.92	0.94	0.87	0.89	0.83	0.89	0.95	0.91	0.89	0.94	0.86	0.88	1.00
124	0.85	0.90	1.00	0.93	0.92	0.94	0.87	0.89	0.83	0.89	0.95	0.91	0.89	0.94	0.86	0.87	1.00
143	0.92	0.88	0.97	0.86	0.86	0.90	0.85	0.87	0.88	0.85	0.93	0.84	0.82	0.87	0.84	0.87	0.97
143	0.94	0.89	0.93	0.86	0.85	0.90	0.86	0.89	0.91	0.86	0.92	0.84	0.86	0.89	0.86	0.89	0.94
163	0.96	0.90	0.92	0.84	0.85	0.91	0.88	0.88	0.93	0.88	0.90	0.83	0.83	0.89	0.86	0.87	0.96
163	0.96	0.90	0.93	0.85	0.86	0.91	0.88	0.88	0.93	0.88	0.90	0.84	0.85	0.91	0.87	0.89	0.96
183	0.99	0.91	0.91	0.88	0.88	0.91	0.89	0.88	0.94	0.88	0.88	0.83	0.86	0.90	0.86	0.88	0.99
183	0.97	0.90	0.89	0.86	0.88	0.91	0.88	0.88	0.94	0.88	0.87	0.82	0.86	0.90	0.86	0.87	0.97
203	0.99	0.91	0.91	0.89	0.90	0.90	0.88	0.90	0.94	0.88	0.88	0.83	0.87	0.89	0.86	0.89	0.99
203	0.98	0.89	0.89	0.88	0.89	0.89	0.86	0.88	0.93	0.87	0.87	0.82	0.86	0.88	0.84	0.87	0.98
203	0.98	0.89	0.95	0.00	0.92	0.88	0.87	0.90	0.92	0.86	0.90	0.88	0.88	0.85	0.84	0.88	0.98
223	0.95	0.05	0.93	0.91	0.92	0.00	0.84	0.50	0.92	0.00	0.50	0.00	0.00	0.03	0.01	0.00	0.95
2/3	0.00	0.00	0.92	0.03	0.50	0.00	0.04	0.07	0.05	0.05	0.00	0.05	0.05	0.01	0.01	0.04	0.55
243	0.55	0.05	0.50	0.55	0.55	0.05	0.00	0.51	0.07	0.00	0.52	0.00	0.00	0.04	0.05	0.07	0.50
243	0.90	0.80	0.93	0.90	0.90	0.80	0.04	0.00	0.83	0.83	0.65	0.80	0.85	0.01	0.80	0.85	0.93
249.040	0.69	0.87	0.97	0.90	0.92	0.60	0.64	0.69	0.04	0.64	0.91	0.80	0.00	0.01	0.80	0.65	0.97
249.048	0.90	0.87	0.99	0.90	0.93	0.91	0.82	0.90	0.85	0.84	0.93	0.80	0.87	0.89	0.79	0.87	0.99
263	0.86	0.89	1.02	0.92	0.94	0.90	0.81	0.89	0.82	0.85	0.95	0.86	0.87	0.85	0.78	0.86	1.02
263	0.90	0.89	1.02	0.91	0.94	0.91	0.85	0.90	0.87	0.87	0.95	0.87	0.88	0.91	0.83	0.89	1.02
283	0.86	0.89	1.03	0.92	0.92	0.88	0.84	0.88	0.83	0.85	0.95	0.86	0.86	0.85	0.83	0.86	1.03
283	0.87	0.90	1.04	0.92	0.93	0.89	0.86	0.89	0.85	0.86	0.96	0.87	0.87	0.86	0.84	0.87	1.04
303	0.85	0.87	1.03	0.90	0.90	0.87	0.84	0.87	0.82	0.85	0.95	0.85	0.85	0.84	0.83	0.85	1.03
303	0.86	0.91	1.07	0.93	0.94	0.89	0.84	0.88	0.82	0.85	0.98	0.87	0.87	0.84	0.82	0.84	1.07
323	0.82	0.87	1.03	0.88	0.90	0.87	0.82	0.86	0.79	0.82	0.96	0.83	0.85	0.84	0.80	0.83	1.03
323	0.85	0.90	1.07	0.92	0.93	0.89	0.83	0.89	0.80	0.84	0.99	0.86	0.87	0.85	0.80	0.85	1.07
341	0.82	0.86	0.99	0.85	0.87	0.83	0.82	0.87	0.81	0.81	0.93	0.83	0.83	0.85	0.81	0.86	0.99
341	0.86	0.92	1.05	0.90	0.92	0.86	0.84	0.88	0.81	0.86	0.98	0.84	0.86	0.82	0.83	0.87	1.05
357.4	0.82	0.87	0.95	0.85	0.86	0.86	0.82	0.88	0.81	0.84	0.90	0.84	0.83	0.88	0.83	0.88	0.95
357.4	0.82	0.91	1.02	0.86	0.89	0.85	0.82	0.87	0.77	0.85	0.95	0.81	0.84	0.82	0.81	0.86	1.02
369.9	0.77	0.86	0.93	0.81	0.81	0.84	0.80	0.84	0.79	0.82	0.88	0.78	0.81	0.87	0.79	0.84	0.93
369.9	0.75	0.77	0.81	0.76	0.77	0.82	0.74	0.81	0.77	0.79	0.80	0.75	0.80	0.86	0.76	0.82	0.86
374.447	0.76	0.78	0.80	0.76	0.78	0.84	0.75	0.81	0.79	0.81	0.82	0.75	0.81	0.88	0.78	0.84	0.88
374.447	0.79	0.80	0.82	0.80	0.83	0.80	0.80	0.82	0.78	0.80	0.80	0.79	0.83	0.80	0.76	0.82	0.83
383.619	0.90	0.91	0,95	0.90	0.93	0.90	0.89	0.92	0.89	0.89	0.91	0.89	0,93	0.89	0,89	0.91	0.95
383,619	0.90	0.91	0.95	0.90	0.93	0.90	0.89	0.92	0.89	0.89	0.91	0.89	0.93	0.89	0.89	0.91	0.95
	5.55	5.51	5.55	0.00	5.55	5.50	5.05	0.52	5.05	0.00	5.51	5.05	5.55	5.05	5.05	5.51	0.00
Avorago	0.00	0 00	0.05	0.00	0.00	0 00		0.00	0.00	0.00	0.01	0.05	0 05	0 07	0 07	0 07	0.00
Maximum	1.90	0.00	1 0.95	0.00	0.89	0.00	0.00	0.89	0.00	0.00	0.91	0.01	0.03	0.8/	0.03	0.8/	1.98
Minimum	1.01	0.93	1.07	0.93	0.94	0.94	0.89	0.98	0.97	0.90	0.99	0.91	0.93	0.94	0.91	0.95	1.07
winimum	0.75	0.77	0.80	U./6	0.77	0.80	0.74	U.81	0.77	0.79	0.80	0.75	U./8	U./8	0.76	0.82	0.83

Splices, Annex

Ponte sullo Stretto di Messina **PROGETTO DEFINITIVO**

Design Report - Tower Legs incl. Joints and Codice documento PS0015_F0

Rev Data F0 20-06-2011

<u>Calabria T</u>	ower Leg	2															
							Т	'ime Hist	ory Inpu	ıt							
EL (m)	Longitu	dinal Co	mbinati	on - 1.0	x Long +	0.8 x Tra	ins + 0.7	5 x Vert	Transv	erse Co	mbinatio	on - 0.8 x	Long + 1	L.O x Trar	ns + 0.75	x Vert	Maximum
	S1	S2	S3	S4	C1	C2	С3	C4	S1	S2	S3	S4	C1	C2	С3	C4	
18	0.95	0.94	1.00	0.87	0.90	0.89	0.82	0.90	0.89	0.90	0.92	0.80	0.83	0.83	0.79	0.84	1.00
28	0.90	0.87	0.92	0.85	0.85	0.83	0.80	0.86	0.83	0.84	0.86	0.78	0.79	0.78	0.75	0.80	0.92
28	0.97	0.94	0.99	0.91	0.91	0.89	0.86	0.92	0.89	0.90	0.92	0.84	0.85	0.84	0.82	0.86	0.99
40	0.91	0.85	0.90	0.86	0.84	0.82	0.80	0.86	0.85	0.82	0.84	0.81	0.79	0.77	0.78	0.81	0.91
40	0.99	0.92	0.97	0.93	0.91	0.89	0.87	0.00	0.92	0.89	0.91	0.88	0.85	0.84	0.85	0.87	0.99
55	0.93	0.52	0.86	0.55	0.51	0.05	0.83	0.55	0.52	0.05	0.51	0.85	0.03	0.87	0.80	0.81	0.55
55	0.00	0.05	0.00	0.00	0.07	0.05	0.05	0.00	0.00	0.00	0.01	0.03	0.04	0.02	0.00	0.01	0.55
71	0.95	0.00	0.92	0.04	0.94	0.91	0.85	0.92	0.95	0.80	0.87	0.92	0.91	0.85	0.87	0.87	0.55
71	0.94	0.85	0.03	0.90	0.90	0.88	0.80	0.84	0.91	0.83	0.87	0.00	0.00	0.80	0.04	0.82	0.94
	0.96	0.87	0.92	0.95	0.95	0.91	0.00	0.69	0.95	0.00	0.69	0.90	0.90	0.00	0.87	0.03	0.96
8/	0.91	0.85	0.80	0.85	0.80	0.87	0.84	0.84	0.88	0.83	0.85	0.84	0.83	0.85	0.83	0.83	0.91
8/	0.97	0.90	0.94	0.91	0.91	0.92	0.89	0.89	0.93	0.87	0.90	0.88	0.87	0.89	0.87	0.88	0.97
105	0.91	0.90	0.92	0.90	0.90	0.87	0.87	0.88	0.90	0.88	0.90	0.89	0.87	0.87	0.88	0.88	0.92
105	0.91	0.90	0.96	0.89	0.91	0.86	0.82	0.88	0.87	0.85	0.91	0.85	0.86	0.83	0.81	0.83	0.96
123.65	0.88	0.86	0.95	0.87	0.88	0.83	0.86	0.84	0.88	0.86	0.89	0.91	0.85	0.84	0.88	0.85	0.95
123.65	0.88	0.89	0.98	0.90	0.89	0.91	0.87	0.86	0.85	0.86	0.92	0.87	0.86	0.89	0.86	0.86	0.98
124	0.88	0.89	0.98	0.90	0.89	0.90	0.87	0.86	0.85	0.86	0.92	0.87	0.86	0.89	0.86	0.86	0.98
124	0.88	0.89	0.98	0.90	0.89	0.90	0.87	0.86	0.85	0.86	0.92	0.87	0.86	0.89	0.86	0.86	0.98
143	0.90	0.87	0.96	0.83	0.87	0.86	0.85	0.86	0.86	0.83	0.91	0.82	0.84	0.83	0.84	0.84	0.96
143	0.91	0.86	0.92	0.85	0.86	0.87	0.86	0.87	0.88	0.85	0.88	0.84	0.84	0.85	0.85	0.86	0.92
163	0.94	0.88	0.93	0.88	0.92	0.85	0.87	0.84	0.90	0.86	0.88	0.86	0.91	0.83	0.85	0.84	0.94
163	0.94	0.88	0.93	0.88	0.93	0.85	0.86	0.84	0.91	0.87	0.88	0.87	0.92	0.85	0.85	0.85	0.94
183	0.98	0.87	0.92	0.91	0.93	0.86	0.87	0.86	0.93	0.87	0.88	0.88	0.90	0.84	0.86	0.84	0.98
183	0.96	0.85	0.90	0.90	0.92	0.85	0.87	0.86	0.92	0.87	0.86	0.87	0.90	0.84	0.85	0.84	0.96
203	0.98	0.86	0.89	0.92	0.91	0.88	0.87	0.88	0.93	0.85	0.87	0.88	0.90	0.86	0.85	0.84	0.98
203	0.97	0.85	0.88	0.91	0.90	0.87	0.85	0.87	0.91	0.83	0.85	0.87	0.88	0.85	0.83	0.83	0.97
223	0.97	0.86	0.92	0.91	0.93	0.89	0.87	0.89	0.91	0.86	0.88	0.87	0.89	0.86	0.85	0.85	0.97
223	0.95	0.82	0.90	0.89	0.91	0.87	0.85	0.87	0.89	0.80	0.85	0.85	0.87	0.83	0.82	0.83	0.95
243	0.92	0.87	0.97	0.91	0.94	0.90	0.87	0.87	0.87	0.84	0.90	0.87	0.90	0.86	0.84	0.81	0.97
243	0.89	0.85	0.94	0.88	0.91	0.87	0.85	0.84	0.84	0.82	0.88	0.84	0.87	0.83	0.81	0.78	0.94
249.048	0.88	0.86	0.96	0.89	0.92	0.88	0.85	0.88	0.83	0.83	0.90	0.85	0.88	0.83	0.82	0.80	0.96
249.048	0.88	0.84	0.97	0.87	0.91	0.88	0.81	0.86	0.83	0.81	0.91	0.85	0.89	0.83	0.82	0.83	0.97
263	0.84	0.86	1.01	0.89	0.92	0.88	0.81	0.86	0.80	0.81	0.94	0.84	0.86	0.83	0.79	0.82	1.01
263	0.89	0.88	1.00	0.89	0.92	0.88	0.85	0.86	0.86	0.88	0.94	0.87	0.91	0.84	0.84	0.84	1.00
283	0.85	0.88	1.03	0.90	0.92	0.86	0.83	0.87	0.83	0.83	0.95	0.84	0.85	0.82	0.81	0.82	1.03
283	0.87	0.89	1.04	0.91	0.93	0.87	0.85	0.88	0.84	0.85	0.96	0.85	0.86	0.84	0.83	0.84	1.04
303	0.84	0.88	1.03	0.88	0.90	0.86	0.83	0.87	0.81	0.83	0.95	0.83	0.84	0.83	0.81	0.82	1.03
303	0.85	0.91	1.06	0.92	0.93	0.87	0.84	0.88	0.81	0.86	0.98	0.85	0.87	0.83	0.81	0.82	1.06
373	0.84	0.88	1 01	0.86	0.88	0.84	0.81	0.84	0.81	0.83	0.90	0.81	0.87	0.81	0.79	0.80	1 01
323	0.87	0.00	1.05	0.00	0.00	0.86	0.01	0.87	0.82	0.05	0.95	0.82	0.85	0.82	0.75	0.80	1.05
3/1	0.86	0.91	0.96	0.05	0.91	0.00	0.01	0.07	0.02	0.03	0.57	0.02	0.05	0.02	0.00	0.80	0.96
2/1	0.00	0.00	1.06	0.00	0.05	0.85	0.01	0.02	0.85	0.82	0.85	0.05	0.00	0.83	0.04	0.00	1.06
257 4	0.00	0.91	0.02	0.00	0.91	0.87	0.04	0.00	0.80	0.84	0.98	0.03	0.00	0.04	0.81	0.82	0.02
257.4	0.87	0.05	0.95	0.87	0.91	0.65	0.62	0.04	0.80	0.00	0.87	0.92	0.92	0.65	0.80	0.05	0.95
357.4	0.89	0.89	0.98	0.80	0.90	0.85	0.82	0.85	0.85	0.83	0.91	0.80	0.87	0.81	0.80	0.80	0.98
369.9	0.85	0.83	0.89	0.88	0.88	0.81	0.80	0.81	0.82	0.83	0.83	0.92	0.89	0.79	0.85	0.80	0.92
369.9	0.80	0.79	0.78	0.86	0.85	0.76	0.79	0.77	0.80	0.81	0.79	0.90	0.86	0.75	0.83	0.77	0.90
3/4.44/	0.80	0.81	0.79	0.88	0.86	0.76	0.80	0.78	0.81	0.83	0.80	0.93	0.88	0.77	0.85	0.79	0.93
374.447	0.80	0.83	0.83	0.80	0.80	0.82	0.80	0.82	0.80	0.82	0.80	0.79	0.78	0.82	0.79	0.80	0.83
383.619	0.89	0.93	0.96	0.90	0.90	0.91	0.89	0.91	0.89	0.91	0.92	0.89	0.88	0.92	0.88	0.89	0.96
383.619	0.89	0.93	0.96	0.90	0.90	0.91	0.89	0.91	0.89	0.91	0.92	0.89	0.88	0.92	0.88	0.89	0.96
Average	0.90	0.87	0.94	0.89	0.90	0.87	0.85	0.86	0.87	0.85	0.89	0.86	0.87	0.84	0.83	0.83	0.97
Maximum	0.99	0.94	1.06	0.94	0.94	0.92	0.89	0.93	0.95	0.91	0.98	0.93	0.92	0.92	0.88	0.89	1.06
Minimum	0.80	0.79	0.78	0.80	0.80	0.76	0.79	0.77	0.80	0.80	0.79	0.78	0.78	0.75	0.75	0.77	0.83

400 375 350 -325 300 ... 275 <u> – –</u> 250 225 Elevation (m) 200 175 150 125 100 75 50 • 25 0 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

Utilization Ratio

■ S1L □ S1T ■ S2L □ S2T ■ S3L □ S3T ■ S4L □ S4T ■ C1L □ C1T ■ C2L □ C2T ■ C3L □ C3T ■ C4L □ C4T

Comparison of Sicilia Tower Leg 2 ULS Seismic Utilization Ratios

Eurolink S.C.p.A.

Comparison of Calabria Tower Leg 1 ULS Seismic Utilization Ratios

Comparison of Calabria Tower Leg 2 ULS Seismic Utilization Ratios

5.1.1.9 Shear Stresses

FOR LONGITUDINAL SHEAR THE MAXIMUM SHEAR STRESS ANYWHERE IN THE TOWER **BASED ON MODEL VERSION 3.3. CHANGES SINCE** Y = 43.4 WAPA 15 ARE SMALL AND SHEAR STRESSES ARE STILL NOT CRITICAL. THE CONTROLLING CAPACITY WILL PLATE D Be WHICH HAS THE LARCHEST WIDTH I THINNEST PLATE THE MINIMUM SIZE OF PLATE D ANYWHERE IN THE TOWER 15 + = 40m STIFFENERS = 575 × 58 DETERMINE SHEAR CAPACITT: SHEAR BUCKLING OF THE ENTIRE PANEL CANNOT BE AN ISSUE SINCE THE PANEL IS DESIGN TO BE NEARCH FULLY EFFECTIVE UNDER LONG 1. STRACS, JUST TO PROVE THIS FROM ANNEY A, 3 + = 40 , 575+58 Isp = 2,5 €09 158++2 6850 EIse = 5 x 2, 5 = E09 × 1/3 = 4160 × 10° $9\left(\frac{3000}{3500}\right)^{U}\left(\frac{4160\times10^{6}}{(40^{3})^{2}8000}\right)^{3} = 226$ $4 + 5.34 (800/3500)^2 + 226 = 257$ 8000 (37.4840 X.71) 257 2... = - 0.460 2 0.83 OF PAVEL BUCKLAG

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	l
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

THEREFORE, THE SHEAR CAPACITY WILL BE GOVERNED BY SOB-PANEL BUCKLING BETWEEN STIFFENERS

THE MAX STIFFENER SPACING of PLATE D = 1600mm

$$K_{+1} = 5.34 + 4 (1600/3500)^2 = 6.2$$

$$\lambda_{W} = \frac{1660}{(37.43402071)(6.2)} = 0.605 \ L \ 0.83$$

$$(37.43402071)(6.2) = 0.605 \ L \ 0.83$$

$$NO \ SHERE BUCKLING OF SUB- DANCES$$

THEREFORE SHEAR CAPACITY OF PLATE D 15 !

$$\frac{\chi_{w} f_{yu}}{13 \gamma_{m}} = \frac{(1.01760)}{13 \times 1.1} = 241 \text{ mP2} \\ \frac{1}{13 \gamma_{m}} = \frac{1}{13 \times 1.1} \qquad \text{T} \\ (0.070RED) \text{ with} \\ \text{wax} \gamma_{met} = 43 \text{ mP2} \\ \end{array}$$

SHEAR DEMAND IS MUCH LESS THAN SHEAR CAPACITY SO THE INTERACTION OF SHEAR WITH LONGITUDINAL STREES DOES NOT NEED TO BE CONSIDERED AS PER EN 1993 1-5 7.1 (1)

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

THEREFORE, THE MAXIMUM SHEAR CAPACITY FOR PLATE & U

$$\frac{7\omega f_y}{\sqrt{3} + \gamma_m} = \frac{(0.72)(460)}{\sqrt{3} + 1.1} \approx 175 \text{ mPg}$$

$$(0.72)(460) \approx 175 \text{ mPg}$$

OF 33 mPs

is SHEAR CAPACITY IS NOT AN ISSUE E SHEAR DEMAND IS LESS THAN 1/2 CAPACITY SO NO INTARACTION BETWEEN SHEAR & LONG 19-DINAL STRESS IS REGULARD

TO SHEAR BUCKLING

$$\frac{1}{7\omega^2} \frac{4\omega}{13} = 1.1$$

 $0.69 \left(\frac{4\omega}{13}\right) = 167 \quad L.33 \quad mRa$

 $10.70 \quad Truston Field$

 $10.70 \quad Truston Field$

5.1.2 Joints and Splices

SummARD OF SPLICE DESIGN CALCULATIONS,
FOR TOWER SEGMENT TRANSVERSE SPLICES,
ZALL DETAILED CALCULATIONS DONE IN SPREADSHEETS
-> SAMPLE SPREADSLEET PRINTS ATTACHED
AT THE END OF THESE NOTES ?
Followinh:
SIZER JOIMME C SPLIE (SKIN PL'S, INTERNAL PL'S
AND LONUITUOINAL STIFFENERS).
127 - DESIGN OF LONGIT, STIRE BOLTED SPLICES,
131 - DESIGN OF INTERNAL PL. BOUTED SPLILES
PENETRATION BUT NELDS, -> DEVELOPS YELD
STRENUTA OF PLATE
= ELLENTRICITY CHELL FOR PLATE SELIMENTS
OF DIFFERENT SIZES JOINING AT SPLIGE:
THE EDILOWING WAS ASSUMED:
N.A
P= AVIAL SELIMENTE SPLILE
SMALLER SELTION H-C.
-> Moment (m)
HARLIER HARLER.
= P + e
LONGIT. STIFF.
SKIN SEGMENT.
INTERNAL
PLATE.
<u>π</u> <u>ξ</u> <u>ν.τ.5.3</u>

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report - Tower Legs incl. Joints and Splices, Annex		Codice documento	Rev	Data	
		PS0015_F0	F0	20-06-2011	

- -> IT IS ALSO ASSUMED THAT THE MOMENT DIES OUT AFTER 2 "BAYS" DOWN - AS PEZ DISCUSSION WITH LMK.
 - > WHEN COMPUTING THE ALLOWABLE STRESSES IN THE STEEL, FOR THE TOP (IM LONK) SEUTION, IT IS ASSUMED THAT FY GOVERNS (i.e. THERE IS NO REDULTION FOR COLUMN BUCKLING OVER THIS SHORT LENATH)

-FOR THE LOWER PANELS, THE REDUCED ALLOWABLE STRESS LONSIDERING LOWMN BULKLING IS USED.

: A SAMPLE OF SECTIONS THAT WERE CHEVED CAN BE SEEN IN THE ATTACHED SPREADSHEET PRINTOUT ...

- DESILIN OF LONLIT, STIRE BOLTED 13 SPLICES.

2 SLIP FACTOR OF MED.45 HAS } 2 BEEN SPELIFIES

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data
Splices, Annex		PS0015_F0	F0	20-06-2011

$$= \frac{34042 \text{ km}}{363 \text{ km}/\text{gars}} = \frac{34042 \text{ km}}{363 \text{ km}/\text{gart}} = 87.1 \Rightarrow -54.0 & 88 \text{ Bours}.$$

$$= 87.1 \Rightarrow -54.0 & 80 \text{ Bours}.$$

$$= 100 \text{ Bours} & 100 \text{ Bours} & 100 \text{ Bours}.$$

$$= 100 \text{ Bours} & 100 \text{ Bours} & 100 \text{ Bours}.$$

$$= 100 \text{ Bours} & 100 \text{ Bours} & 100 \text{ Bours}.$$

$$= 100 \text{ Bours} & 100 \text{ Bours} & 100 \text{ Bours}.$$

$$= 100 \text{ Bours} & 100 \text{ Bours} & 100 \text{ Bours}.$$

$$= 100 \text{ Bours} & 100 \text{ Bours} & 100 \text{ Bours}.$$

$$= 100 \text{ Bours} & 100 \text{ Bours} & 100 \text{ Bours}.$$

$$= 100 \text{ Bours} & 100 \text{ Bours} & 100 \text{ Bours}.$$

$$= 100 \text{ Bours} & 100 \text{ Bours} & 100 \text{ Bours}.$$

$$= 100 \text{ Bours} & 100 \text{ Bours} & 100 \text{ Bours}.$$

$$= 100 \text{ Bours} & 100 \text{ Bours} & 100 \text{ Bours}.$$

$$= 100 \text{ Bours} & 100 \text{ Bours} & 100 \text{ Bours}.$$

$$= 100 \text{ Bours}.$$

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report - Towe Splices	r Legs incl. Joints and , Annex	Codice documento PS0015_F0	Rev F0	Data 20-06-2011	
Splices Splices For ANO DE DE DE TOTAL USINK SPLICE FOR C IMPACT WI SPLICE PLA	F PLATES WE COMBINED DEM HEAR: I COMPRESSIVE SIGN YIELD DAPAC SULLED SHEAR DEMANC STRESS DEMA TON MISES DEMA COVM = J OCOMP COVM = J OCOMP	PSOOTS_FO PSOOTS_FO CE SIZED MANDS IN COMPLESSION LOAD - BASED ON MITH OF SELTION BE D - COMPLED AS DEVIOUS PALE THO ON SELTION COMP SELA: + 3(OV) ³ SIZED USIM SPLILE PLATES FOR IN GENERAL ALL WELE CHOSEN SI	FO FO North	20-06-2011	
THAT CL AMO FAC IIS <u>></u> - <u>BAP</u> : PL <u>E</u> - 1000 - 1333 PL <u>F</u> - 1333 PL <u>G</u> - 1300 - 1600 PL <u>H</u> - 1175 - 1325 -1500 HEAT	EAR SPACIAL F OF NEARCEST THE FOLLOWING: SPL.PL: PL: 720 144 1040 14- 1040 14- 1040 14- 1040 14- 1360 120 880 144 1040 142 1280 110 UBTRACTION SPLICE S (SAN 35-)	BIN EOLG OF SPLIC ADSACENT STIFFER TOUSTIFE: LBOLT TO'FALE DI44 150 144 150 157 0 136 0 136 0 136 0 136 139 136 139 136 139 136 136 0 136 139 136 0 136 139 136 0 136 0 16 0 16 0 16 0 16 0 16 0 16 0 16	E PL VEC	-	

Design Report - Tower Legs incl. Joints and

Splices, Annex

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento

 Rev
 Data

 F0
 20-06-2011

Tower Leg Vertical Steel Splices NOTE: When skin plate is a different thickness on either side of the stiffener, the assumption for all calculations is that the stiffener is connected to the thicker skin plate Check on Effects of Eccentricity Between Vertical Panels 675 to 725 Stiffener 750 to 750 Stiffener 700 to 725 Stiffener 650 to 700 Stiffener 625 to 675 Stiffener 80 to 65 Skin 50 to 65 Skin 75 to 60 Skin 45 to 60 Skin 65 to 50 Skin Larger Section Total Height of Larger Tower Segment 20000 20000 (mm) 20000 20000 2000 Number of Levels of Transverse Support Distance Between Each Level (Typical Panel Height) 6 3333 3333 3333 3333 333 Skin Plate Width - Side 1 (mm) 625 65 1000 80 Skin Plate Width - Side 2 (mm) Skin Plate Thickness - Side 1 (mm) Skin Plate Thickness - Side 2 Vertical Stiffener Width (mm) (mm) Vertical Stiffener Thickness (mm) 216250 Total Cross Section Area of Panel (mm²) 134175 146675 145000 12715 Total Section Depth (mm) 830 790 800 760 74(Neutral Axis from Outside (Far Side) of Skin Plate 188.3 158.4 147.9 181.8 166. (mm) Neutral Axis from Extreme Fibre of Stiffener Flange (mm) 682 602 618 602 574 6.71E+09 9.89E+09 7.35E+09 7.77E+09 5.79E+09 I Section (mm^4) of Section 213.9 234.0 230.2 215.2 213.3 (mm) e1 (mm) 307 1 239.2 255.7 251.6 236 4 155.8 144.3 128.4 e2 107.9 133.6 (mm) (mm) 307.1 239.2 255.7 251.6 236. gamma M0 1.05 1.05 1.05 1.05 1.05 E Vertical Steel (MPa) 210000 210000 210000 210000 21000 (MPa) 460 Fv Vertical Steel 460 460 460 460 Ncr - Euler Buckling Load 1844798597 1370524232 1450247871 1252430935 1079428827 (N) lamda bar 0.23 0.21 0.22 0.23 0.2 0.49 0.49 alpha 0.49 0.49 0.49 . alpha e 0.619 0.582 0.590 0.595 0.590 0.537 0.526 0.528 0.536 0.537 phi Factor X (Chi Factor) 0.979 0.993 0.990 0.981 0.980 Nb,Rd (kN) 92784 58347 63640 62319 54589 Agnification Factor (1/(1-N/Ncr)) 1.053 1.044 1.046 1.052 1.053 Smaller Section Total Height of Larger Tower Segment Number of Levels of Transverse Support (mm) 20000 20000 20000 20000 2000 6 6 6 6 Distance Between Each Level (Typical Panel Height) 333 3333 3333 3333 333 Skin Plate Width - Side 1 (mm) 625 625 Skin Plate Width - Side 2 (mm) Skin Plate Thickness - Side 1 Skin Plate Thickness - Side 2 50 50 60 60 (mm) 65 65 (mm)Vertical Stiffener Width (mm) Vertical Stiffener Thickness (mm) Total Cross Section Area of Panel 186250 111500 120900 114250 101875 (mm^2) Total Section Depth 815 750 735 695 67 (mm) Neutral Axis from Outside (Far Side) of Skin Plate (mm) 155.6 189.8 169.5 151.0 155.4 Neutral Axis from Extreme Fibre of Stiffener Flange 565 544 520 (mm) 659 560 9.20E+09 5.88E+09 5.61E+09 4.71E+09 4.05E+09 Section (mm⁴) of Section (mm) 222.3 229.6 215.4 203.1 199.3 228.0 219.0 284.4 210.2 (mm) 207. e1 e2 123.1 164.8 139.5 128.5 130. (mm) (mm) 284.4 210.2 228.0 219.0 207. gamma M0 1.05 1.05 1.05 1.05 1.04 210000 210000 210000 210000 21000 E Vertical Steel (MPa) Fy Vertical Steel (MPa) 460 460 460 460 460 1716527440 1096140957 1046622824 879503115 Ncr - Euler Buckling Load (N) 754784060 lamda bar 0.22 0.22 0.23 0.24 0.25 alpha 0.49 0.49 0.49 0.49 0.49 0.605 0.585 0.584 alpha e 0.532 0.528 0.535 0.543 0.545 . phi Factor X (Chi Factor) 0.985 0 990 0.982 0.973 0.970 Nb.Rd (kN) 80397 48374 51986 43309 48703 Magnification Factor (1/(1-N/Ncr)) 1.049 1.046 1.052 1.059 1.061

750 to 750 Stiffener 700 to 725 Stiffener 675 to 725 Stiffener 650 to 700 Stiffener 625 to 675 Stiffener

Design Report - Tower Legs incl. Joints and
Splices, Annex

Codice documento	
PS0015_F0	

 Rev
 Data

 F0
 20-06-2011

Tower Leg Vertical Steel Splices

Check on Large Section at Splice Connection

NOTE: At this location, the moment is assumed to be the full axial capacity of the smaller section times the eccentricity between sections

The max compressive stress from this applied moment is compared with the "extra" available stress of the larger section with the smaller section's axial capacity applied to it as a load.

		80 to 65 Skin	50 to 65 Skin	75 to 60 Skin	45 to 60 Skin	65 to 50 Skin
Eccentricity of Smaller Section Minus Eccentricity of Larger Section	(mm)	7.6) 1.5	-12.3	-7.4	-10.6
Fy of Vertical Steel	(MPa)	460	460	460	460	460
Gamma M0		1.05	5 1.05	1.05	1.05	1.05
Avial Canadity of Smaller Section Industion Budding Deduction	(1.8.1)	00007	40274	E1096	49702	42200
Axial Capacity of Smaller Section Including Buckling Reduction	(KIN)	273	403/4	21900	40/03	43309
Total Allowable Stress on Vortical Steel	(MPa)	312		304	138	139
Additional Stress Capacity available for Bending in Large Section at Splice	(MPa)	430	78	430	430	430
radiational extense capacity analiable for bornaing in cargo design at opines	(11.1 4)			0.	102	0.
Total Moment from Axial Load and Eccentricity	(kN-m)	613	72	-640	-361	-460
S Extreme Stiffener Fibre of Larger Section	(mm ³)	14500064	12210967	12576931	11160775	10082564
S Extreme Skin Plate Fibre of Larger Section	(mm ³)	66846455	39017479	42757143	42383737	34845767
Max Bending Stress in Stiffener	(MPa)	42.3	5.9	-50.9	-32.3	-45.6
Max Bending Stress in Skin Plate	(MPa)	-9.2	-1.8	15.0	8.5	13.2
Charle Datis of May Applied Department (Applied La Data data Observ	(5)(0)	C 40/	00/	109/	00/	1.400
Creck Ratio of Max Applied Bending Stress to Available Bending Stress	{D/C}	95%) 0% . 8/%	10%	0% 79%	14%
Ceck Ratio of Total Applied Compressive Stress to Total Stress Capacity	(0/0)	5576	0478	0470	1370	0176
Check on Large Section at First Full Vertical Panel Away From Splice						
NOTE: Assumes Moment distribution of point moment at end of 2 equal span continuous beam.						
Max moment in this panel is same as section above, minimum moment is -1/4 max moment at o	pposite end					
Tatal Hainht of Langa Tawas Company	()	20000	20000	20000	20000	20000
Total neight of Larger Tower Segment Distance Between Each Level (Typical Papel Height)	(((((((((((((((((((((((((((((((((((((((20000	20000	20000	20000	20000
Distance Detween Lacit Level (Typical Farlet Height)	(1111)	2222	2222	2222	2222	2222
Relative Denth of Point to Check on First Panel (Fraction of Panel height)	(000)	2333	2333	2355	2333	2333
Distance from Splice to Check Location on First Panel	(mm)	4000	4000	4000	4000	4000
Axial Compressive Capacity of Smaller Section	(kN)	80397	48374	51986	48703	43309
Axial Compressive Capacity of Larger Section	(kN)	92784	58347	63640	62319	54589
Interpolated Axial Demand at Check Location	(kN)	82875	50368	54317	51426	45565
Peak Moment from Eccentricity = Moment at Panel end Nearest Splice	(kN-m)	613	72	-640	-361	-460
Moment at Panel End Furthest from Splice	(kN-m)	-153.2	-18.0	160.0	90.2	115.0
Interpolated Moment Demand at Check Location	(kN-m)	229.8	27.1	-240.0	-135.3	-172.5
Max Bending Stress in Stiffener	(MPa)	15.8	2.2	-19.1	-12.1	-17.1
Max Bending Stress in Skin Plate	(MPa)	-3.4	-0.7	5.6	3.2	5.0
Rudding Connects of Larges Section	(1.8.1)	02794	50247	62640	63240	54590
Total Allowable Stress on Section Based on Buckling Capacity	(MPa)	32704	00047	03040	430	120
Total Annuale Stress on Section from Internolated Avial Demand at Check Location	(MPa)	383	375	370	450	42.5
Available Stress for Bending due to Eccentricity	(MPa)	46	59	64	75	71
, Handbie eitebe feit Beihanig aus te Esterniterty	(1111 CI)	10		0.		
Check Ratio of Max Applied Bending Stress to Available Bending Stress	{D/C}	35%	4%	9%	4%	7%
Ceck Ratio of Total Applied Compressive Stress to Total Stress Capacity	{D/C}	93%	87%	87%	83%	85%
Check on Large Section at Second Full Vertical Panel Away From Splice						
NOTE: Assumes Moment distribution of point moment at end of 2 equal span continuous beam.						
Max moment in this panel is minimum moment from section above, minimum moment is 0 at opp	oosite end					
Balafine Death of Deinte Oleveland Death / Ever for a CD - 11 (11)						
Relative Depth of Point to Check on Second Panel (Fraction of Panel height)	(0.5	0.5	0.5	0.5	0.5
Instance from Splice to Uneck Location on Second Panel	(mm)	/333	/ 333	(333	(333	1333
Interpolated Axiar Demand at Check Location	(KIN)	04933	92031	160.0	0000	4/440
Moment at Panel End Furthest from Splice	(kN-m)	- 153.2	-10.0	160.0	90.2	115.0
Interpolated Moment Demand at Check Location	(kN-m)	-76.6	-90	80.0	45.1	57.5
Max Bending Stress in Stiffener	(MPa)	-5.3	_07	6.4	40	57
Max Bending Stress in Skin Plate	(MPa)	1.1	0.2	-1.9	-1.1	-1.7
-						
Buckling Capacity of Larger Section	(kN)	92784	58347	63640	62319	54589
Total Allowable Stress on Section Based on Buckling Capacity	(MPa)	429	435	434	430	429
Total Applied Stress on Section from Interpolated Axial Demand at Check Location	(MPa)	393	388	384	370	373
Available Stress for Bending due to Eccentricity	(MPa)	36.3	47.1	50.3	59.5	56.2
Check Ratio of Max Applied Bending Stress to Available Bending Stress	{D/C}	3%	. 0%	13%	7%	10%
Cock Patio of Total Applied Compressive Stress to Total Stress Capacity	(D/C)	02%	. 90%	90%	87%	88%

Stretto di Messina	Stretto di Messina		Ponte sullo Stretto di Messina PROGETTO DEFINITIVO						
Design Report - Tower Legs incl. Joints and Splices, Annex		Codice docu PS0015_F0	umento		Rev F0	Data 20-06-2011			
Tower Leg Vertical Steel Splices Bolted Splice Design			750 to 750 Stiffener 70	0 to 725 Stiffener 675 t	to 725 Stiffener 650 to	o 700 Stiffener 625 to 67	75 Stiffener		
Design of Siip Critical Bolted Splice on Vertical Stiffener Smaller Panel Vertical Stiffener Width Smaller Panel Vertical Stiffener Thickness Smaller Panel Skin Plate Thickness Total Width of Smaller Panel = Skin Thickness + Stiffener Larger Panel Vertical Stiffener Width Larger Panel Vertical Stiffener Thickness Total Width of Larger Panel = Skin Thickness Total Width of Larger Panel = Skin Thickness Hainimum Gap Between Edge of Splice Plate and Inside F Maximum Available Width of Splice Plate	Width Width ace of Skin Plate artical Stiffener	(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)	750 75 65 815 750 75 80 830 95 0 640	700 70 750 755 73 65 790 45 90 45 60	675 68 60 735 725 73 73 75 800 100 0 560	650 65 45 695 700 70 60 760 760 75 0	625 63 50 675 675 68 68 65 740 50 0 50		
Minimum Required Thickness of Each Splice Plate to Pro Thickness Used Thickness Check Moment of Inertia of Smaller Stiffener About Inside Face of SI Ratio of Supplied I Splice Plates About Inside Face of SI Ratio of Supplied I Splice Plates over Required I Splice Pl Check	vide Same Area as Stiffener of Skin Plate kin Plate ates	(mm) (mm) (mm ⁴) (mm ⁴)	43.95 45 0K 1.05E+10 1.19E+10 1.13 0K	38.28 40 ОК 8.00E+09 8.57E+09 1.07 ОК	40.98 42 0K 6.97E+09 8.02E+09 1.15 0K	37.72 38 0к 5.95Е+09 6.48Е+09 1.09 0К	35.16 Зб 5.13Е+09 5.44Е+09 1.06 ОК		
Bolt Spacing and Critical Distances Typical Bolt Diameter Used (d) Bolt Hole Diameter (d0) Minimum Bolt Edge Distance Edge distance Used (e2) Check on Edge Distance Minimum Bolt End Distance End distance Used (e1) Check on End Distance p1 – Minimum distance Between Transverse Lines of Bolt p1 Used	s	(mm) (mm) (mm) (mm)	30 33 39.6 40 0K 39.6 50 0 0K 72.6 75.6	30 33 39,6 40 0k 39,6 50 50 0k 72,6 75	30 33 40 0k 39.6 50 0k 72.6 75	30 33 39.6 40 OK 39.6 50 OK 72.6 75	30 33 39.6 40 0K 39.6 50 0K 72.6 75		
Check on p1 p2 = Minimum Distance Between Lines of Bolts Parallel to p2 Used Check on p2	Stiffener	(mm) (mm)	ок 79.2 80 ОК	ок 79.2 80 ОК	ок 79.2 80 ОК	ок 79.2 80 ОК	ок 79.2 80		
Fy of Vertical Steel Gamma M0 Sectional Capacity of Smaller Stiffener		(MPa) (kN)	460 1.05 24643	460 1.05 21467	460 1.05 20109	460 1.05 18510	460 1.05 17250		
Check Net Section Capacity of Splice Plate Net Width of Splice Plate Net Area of Plate Fu Plate Steel Gamma M2 Nu,Rd Max Allowable Tensile Stress on Section Spliced (to Satis Worst Case Factored Tension Stress at All Locations in T Worst Possible Net Section Tension D/C at this Location	fy Net Section) ower Vertical Steel	(mm) (mm2) (MPa) (kN) (MPa) (MPa)	376 33840 540 1.25 13157 234 193 83%	376 30080 540 1.25 11695 239 193 81%	329 27636 540 1.25 10745 234 193 82%	329 25004 540 1.25 9722 230 193 84%	329 23688 540 1.25 9210 234 193 83%		
Check Bearing Resistance of Bolt fub - Bolt Ultimate Strength fu - Piate Ultimate Strength alpha d - End bolt alpha b - Inner bolt alpha b - End Bolt alpha b - Inner Bolt k1 - Edge Bolts k1 - Inner Bolts		(MPa) (MPa)	1000 540 0.505 0.508 0.505 0.508 1.694 1.694	1000 540 0.505 0.508 0.508 1.694 1.694	1000 540 0.505 0.508 0.505 0.508 1.694 1.694	1000 540 0.505 0.508 0.508 1.694 1.694	1000 540 0.505 0.508 0.505 0.508 1.694 1.694		
Gamma M2 Governing Stiffener Thickness for Bearing Fb,Rd - End and Edge Bolt (Corner Bolt) Fb,Rd - End and Inner Bolt Fb,Rd - Edge and Inner Bolt Fb,Rd - Inner and Inner Bolt Governing Bearing Resistance per Bolt		(mm) (kN) (kN) (kN) (kN) (kN)	1.25 75 832 832 836 836 836 836	1.25 70 776 776 780 780 780 776	1.25 68 754 754 758 758 758 758	1.25 65 721 721 724 724 724 724	1.25 63 699 699 702 702 699		
Check Slip Resistance of Bolt In Slip factor (u) Gamma M3 As Bolt (Tensile Area) Fp.C Fs.Rd		(mm²) (kN) (kN)	750 to 750 Stiffener 70	0 to 725 Stiffener 675 t 1 2 0.45 1.25 562 393 283 283	to 725 Stiffener 650 to 1 2 0.45 1.25 562 393 283 283	0 700 Stiffener 625 to 67 1 2 0.45 562 393 283 283	1 2 0.45 1.25 562 393 283 283		
Natio of Stip Resistance to Bearing Resistance Check Determine the Bolt Layout for one Side of the Splice			OK - Slip Governs	OK - Slip Governs	OK - Slip Governs	OK - Slip Governs C	K - Slip Governs		
Number of Bolts Used Per Side of Splice Max Number of Bolts Used Per Side of Splice Max Number of Bolts in a Transverse Row Total Number of Full Transverse Bolt Rows Required Remaining Number of Bolts for Last Transverse Row Total Number of Transverse Bolt Rows Required Length of One Side of Splice Plate Gap Between Splice Plate Total Length of Splice Plate		(നനന) (നനന) (നനന)	88 88 0% 8.000 11 0 11 850 20 20 1720 640	76 76 0K 8.000 9 4 10 775 20 1570 640	/1 73 ОК 7.000 10 3 11 850 20 1720 560	ор 66 Ок 7.000 9 3 10 775 20 1570 560	от 61 0к 7.000 8 5 9 700 20 20 1420 560		
Check Local Buckling of the Splice Plates epsilon Thickness of Splice Plate p1 9*epsilon Check that p1/t ≤ 9*epsilon Unsupported Length of Splice Plate at Gap Luf Check that Luft ≤ 9*epsilon		(mm) (mm)	0.715 45 75 6.43 OK - No Local Buckling 120 2.67 OK - No Local Buckling	0.715 40 75 1.88 6.43 OK - No Local Bucking O 3.00 OK - No Local Bucking O	0.715 42 75 1.79 6.43 K- No Local Buckling OH 2.86 K- No Local Buckling OH	0.715 38 75 1.97 6.43 <- No Local Bucking 3.16 <- No Local Bucking OK - N	0.715 36 75 2.08 6.43 10 Local Buckling 3.33 to Local Buckling		

Design Report - Tower Legs incl. Joints and	Codice documento	Rev	Data
Splices, Annex	PS0015_F0	F0	20-06-2011

Tower Leg Vertical Steel Splices

Internal Plate and Bolt Data		
Total Width Between Vertical Stiffener Centrelines	(mm)	1500
Larger Segment Vertical Stiffener Thickness	(mm)	55
Larger Segment Plate Thickness	(mm)	50
Smaller Segment Vertical Stiffener Thickness	(mm)	55
Smaller Segment Plate Thickness	(mm)	50
Gap Between Edge of Splice Plate and Face of Vertical Stiffener	(mm)	82.5
Splice Plate Width	(mm)	1280
Splice Gap	(mm)	20
Bolt End Distance - e1	(mm)	50
Bolt Edge Distance - e2	(mm)	40
Bolt Spacing Between Transverse Rows - p1	(mm)	/5
Bolt Spacing Between Longitudinal Rows Parallel to Load - p2	(mm)	80
Ev of Variani Shaal		480
Gamma M0	(MFa)	400
Total Avial Canabity of Plate Section Being Spliped		22957
Capacity per Bolt Based on Slip (from other sheet)	(kN)	283.2
Minimum Number of Bolts Required to Carry Avial Load	()	117
Number of Bolts Used		124
Number of Bolts per Transverse Row Based on Spacings		16.00
Number of Full Transverse Rows of Bolts		7
Number of Bolts Remaining in Last Transverse Row		12.00
Total Number of Transverse Rows		8
Length of Splice Plate	(mm)	1270
Check	()	OK
Maximum Lever Arm of Any Force Component	(mm)	600
,		
Magnitude of Max Force Component	(kN)	13.8
Applied Shear Stress on Section	(MPa)	19.0
Total Shear Force on Section	(kN)	1426
Centroid of Bolt Group from Centreline of Splice	(mm)	314.0
Lever Arm Between Upper and Lower Bolt Groups	(mm)	628.1
Total Applied Moment on Connection	(kN-m)	448
Total Resisting Moment Based on Max Force	(kN-m)	451
Ratio - Applied Moment / Resisting Moment	(99%
Total Vertical Force on Each Bolt From Axial Demand	(kN)	265
Total Horizontal Force on Each Bolt From Shear Demand	(kN)	11.5
Worst Case Bolt D/C - Total Demand		98.6%
Size the Splice Plates for Axial and Shear Demands		
Thickness of Splice Plate Required to Provide Same Area as Plate	(mm)	29.30
Thickness of Splice Plate Used	(mm)	30.00
Axial Stress on Splice Plate From Assumed Axial Demand	(MPa)	427.8
Shear Stress on Splice Plate From Assumed Shear Demand	(MPa)	18.6
Combined Stress Using Von Mises	(MPa)	429.0
Allowable Stress = Yield / gamma M0	(MPa)	438.1
D/C Von Mises / Allowable		98%
Check the Net Section in Tension - Determine Allowable Tension Stress in Internal Plate Being Spliced		
Bolt Hole Diameter	(mm)	33
Net Width of Splice Plate	(mm)	752
Net Area of Plate	(mm2)	45120
Fu Plate Steel	(MPa)	540
Gamma M2		1.25
Nu,Rd	(kN)	17543
Max Allowable Tensile Stress on Section Spliced (to Satisfy Net Section)	(MPa)	234
Worst Case Factored Tension Stress at All Locations in Tower Vertical Steel	(MPa)	193
Worst Possible Net Section Tension D/C at this Location		83%
Commence of Californ Dista		
summary of spille Plate Data		
rotar Number of Bolts	1	248
Frate vvidth (a)	(mm)	1280
Plate Lengur (b)	(mm) (mm)	12/0
Fille Filleness (t) Fill Plate Thiskness (t fill) - accume 1 cide aby	(mm) (mm)	30
r in riate rinovness (tilli) - assume riside only	(num)	U

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Design Report - Towe Splices	r Legs incl. Joints and , Annex	Codice documento PS0015_F0	Rev F0	Data 20-06-2011		
	SPULLES AT	TONER TOP	UMER	¥-31		
	re ACE (M) rence Sizes $\pm 60it$ res -2 176	to SPLICE. SERVIO (mw) -> 640×1720 ->	кс,1	IR +0		
$ \textcircled{\begin{tabular}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3 560 + 1420 + 7-3 560 + 1420 + 7-3 480 + 1570 - (-3 480 + 1270 - (10,9 70,81 00,91 20,	K+3 R+5 R+3 K.V		
	-> must In 720, REN FAVOR OF I	UCREASE PLATE WIOTH NOVE I ROW OF 8 BOUTS EXTRA COLUMN OF I OR = 90 BOUTS TOTA	TO NA OB	D DUTS		
Ar	75 SPACIM, -= 2(50) + -> LEANES OM SPLIE PL +	HEILHT OF PLATE q(75) + 10 = 785 ES. 15 m B/W BOTT OF DIAPHEALM (IF 800	SPLI	WE, E		
	→ 700 T	TLHT	-			
	ELE OUT EVER	AVAILABLE MM: S -S USE - 40 (NO STILL BARELP O.L	- 50			
- 750×75 - 180 BOLTS - 625×63 - 180 BOLTS - 625×63 - 140 BOL - 600×60 - 126 BOU - 550×55 - 96 BOLS	TARS WILL SAVE WILL SAVE WILL SAVE WILL SAVE WILL SAVE UPDATES TS, 560 × 1494 PL. COMMENTS NEW NEW MARNING MARI, 2011.	∂(10) + 9(2) = 38 m LENNTH ON EACH HA → PLOUYDES 53 → MAY BE J	THE CLEAR UST	N TOTAL		

5.2 Transverse Elements

5.2.1 Transverse Stiffeners and Type 1 Diaphragms

The following calculations are presented in this section:

- Proportioning of the transverse stiffener flanges on plate D. The flanges as proportioned allow the bracing connections shown on the general concept submission drawings between the transverse stiffener flange and longitudinal stiffeners to be removed.
- Proportioning of the triangular plate diaphragms between plates B, C, E, F and H. The finite element analysis of the triangular plate diaphragms considered a circular cut-out of 1,500 mm diameter. This cut-out was later reduced in diameter to 1,000, which is sufficient for providing the access; analysis results are therefore conservative.
- Proportioning of the welds between the plate D transverse stiffener webs and the tower leg plates. The welds as sized allow for the tab plates shown on the general concept submission drawings between the transverse and longitudinal stiffeners to be omitted.

All calculations in this section are based on the results of the detailed finite element analyses described in Section 6.

As described in CG.10.00-P-RX-D-P-SV-T4-00-00-00-01 "Specialist Technical Design Report, Towers," the transverse stiffeners on plate G were initially sized using the standard provisions of EN 1993-1-5, but the resulting plate thicknesses were considered too thin to be appropriate for a structure of this size. Therefore, the stiffeners were increased in size to provide more robustness. Calculations are not provided for these stiffeners.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Design Report - Towe Splices	r Legs incl. Joints and , Annex	Codice documentoRevDatePS0015_F0F020-0		Data 20-06-2011		
INTRODUCTION		<u>.</u>				

DEVIATION FORCES & MOMENTS

The deviation forces are calculated in accordance with EN 1993-1-5 Section 9.2. A discussion of the fundamentals The deviation forces of this Section can be found in the JRC Scientific & Technical Report "Connectary and Worked Examples to EN1993-1-5 "Plated Structural Elements" by Johansson, Maquoi, Sadlacek, Müller and Beg, published Elements by Johansso by ECCS, October 2007.

The assumed structure is as shown.

۵,

At the equilibrium position:

Assuming

Destabilizing load/unit width =
$$\left(\frac{W+W_0}{a_1} + \frac{W+W_0}{a_2}\right) \frac{N_{Ed}}{b}$$
 Sin $\frac{\pi y}{b}$
Stabilizing load/unit width = $\frac{d^2H}{dy^2} = \frac{d^2}{dy^2} \left(EI\frac{d^2z}{dy^2}\right) = EIW\frac{\pi 4}{b^4} Sin \frac{\pi y}{b}$

Stabilizing: Destabilizing
EI
$$w = \frac{\pi^{4}}{b^{4}} \left(\underbrace{Sim}_{b} \right)^{2} \left(\underbrace{w + w_{0}}_{a_{1}} + \underbrace{w + w_{0}}_{a_{2}} \right) \underbrace{Ned}_{b} \left(\underbrace{sm}_{b} \right)^{2} \left(\underbrace{w + w_{0}}_{a_{1}} + \underbrace{w + w_{0}}_{a_{2}} \right) \underbrace{Ned}_{b} \left(\underbrace{sm}_{b} \right)^{2} \left(\underbrace{sm}_{b} \right)^{4} \left(\underbrace{a_{1}}_{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \left(\underbrace{w + w_{0}}_{b} \right)^{2} \left(\underbrace{a_{1}}_{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \left(\underbrace{w + w_{0}}_{a_{1}} + \underbrace{a_{2}}_{a_{2}} \right) \underbrace{Ned}_{b} \left(\underbrace{w + w_{0}}_{a_{1}} + \underbrace{a_{2}}_{a_{2}} \right) \underbrace{Ned}_{b} \left(\underbrace{w + w_{0}}_{b} \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{4} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right) w_{0} \left(\underbrace{a_{1}}_{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \left(\underbrace{a_{1}}_{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{4} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right) \left(\underbrace{w_{0}}_{a_{1}} + \underbrace{w_{0}}_{a_{2}} \right) \underbrace{Ned}_{b} \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{4} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{4} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right) \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right)^{2} \right) \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right)^{2} \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right)^{2} \right) \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} \right) \underbrace{Ned}_{b} \right)^{2} \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\frac{\pi}{b} \right) \underbrace{Ned}_{b} \right)^{2} \right)^{2} \left(\underbrace{eI(\frac{\pi}{b})^{2} - \left(\underbrace{eI(\frac{\pi}{b})^{$$

Stretto
cliMessinaPonte sullo Stretto di Messina
PROGETTO DEFINITIVODesign Report - Tower Legs incl. Joints and
Splices, AnnexCodice documento
PSO15_F0Rev
Data
20062011Design Report - Tower Legs incl. Joints and
Splices, AnnexCodice documento
PSO15_F0Rev
Data
20062011DesumericaForeces & Momenaria (cont).For
Pube Dwith
ba, = a 2 * 3000 mm
20000 mm
bSN2 long tudinal
tchiffenesis @ 68 x 675 mm = A * 5 x 68 x 675 * 229500 mm²
600000
229500 mm²Hax
Hax
tlong tudinal
desugn forceshe
tMax
t
wolong tudinal
desugn forceshe
t
a = 30000Max
t
(a, + a)Ned
bMo
$$\frac{30000}{3000}$$
No $\frac{30000}{3000}$ \therefore Wo $\frac{30000}{3000}$ \therefore Box 100 mm $(\frac{1}{4}, + \frac{1}{4})$ $\frac{1}{3000} + \frac{1}{3000}$ $\frac{1}{6}$ $\frac{1}{3000} + \frac{1}{3000}$ \therefore Wo $\frac{30000}{3000}$ \therefore Wo $\frac{30000}{3000}$ \therefore Wo $\frac{30000}{3000}$ \therefore Wo $\frac{30000}{3000}$ \therefore Wo $\frac{30000}{3000}$

$$\begin{bmatrix} 95.84 - $0.28 \end{bmatrix}$$

= Max bending moment = EIw $\left(\frac{\pi}{b}\right)^2$.
= 210 × 10³ × 19019 × 10⁹ × 4.62 × $\left(\frac{\pi}{8000}\right)^2$. 2871 × 10⁶ N-mm = 2871 kN-m
Man distributed load = EIw $\left(\frac{\pi}{b}\right)^4$
= 210 × 10³ × 19019 × 10⁹ × 4.62 × $\left(\frac{\pi}{8000}\right)^4$ = 443 kN/m

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

Modulus	Ec	210.000	210 000	210.000	210,000	210.000
Niodalas	L3	210,000	210,000	210,000	210,000	210,000
Poisson's ratio	nu	0.30	0.30	0.30	0.30	0.30
Shear modulus	G	80,769	80,769	80,769	80,769	80,769
fv		460	460	460	460	460
CommeNIO	CommeNIO	1.05	1.05	1.05	1.05	1.05
Gammawu	Gammaivio	1.05	1.05	1.05	1.05	1.05
GammaM1	GammaM	1.1	1.1	1.1	1.1	1.1
fy/GammaM1		418	418	418	418	418
axial stress	s a	0	0	0	0	0
available bending	e_bmax	419	/19	/19	419	/19
available benuing	s_billax	418	410	410	418	410
Segment		1	1	1	2	2
Tower		Sicilia	Sicilia	Calabria	Sicilia	Calabria
transverse stiffener span	b	8000	8000	8000	8000	8000
transverse stiffener spacing	- - 1	2000	2000	2000	2000	2000
	a_1	3000	3000	3000	3000	3000
transverse stiffener spacing	a_2	3000	3000	3000	3000	3000
plate CL eccy 1	e 1	0	0	0	0	0
plate CL eccy 2	e 2	0	0	0	0	0
	<u>-</u>	Ŭ	Ŭ		Ű	0
number of longitudinal stiffeners	nls	5	5	5	5	5
thickness of longitudinal stiffeners	tls	65	65	68	65	65
breadth of longitudinal stiffeners	hls	650	650	675	650	650
	010	000	000	0.0		000
skin breadth	bskf	2610	2610	2610	2610	2610
skin thickness	tskf	70	70	75	55	60
transverse stiffener web breadth	hstw	1090	1090	1090	1090	1090
transupras stiffener web thickesse	totu	10.00	40.0	1000	1000	1000
	เรเพ	16.0	16.0	16.0	16.0	16.0
transverse stiffener flange breadth	bstf	420	390	420	420	420
transverse stiffener flange thickness	tstf	25	20	25	25	25
transverse stiffener denth	Det	1105	1190	1100	1170	1175
	Doc	6011	1100	1190	11/0	11/5
Area	A_S	210640	207940	223690	171490	184540
Skin; distance of centroid from outside face of skin	yski	35	35	37.5	27.5	30
Web: distance of centroid from outside face of skin	vwi	615	615	620	600	605
Flanger distance of centroid from subside face of skin		1170 5	1170	1177 5	1457.5	1100 5
Flange, distance of centroid from outside face of skin	yıı	1172.5	1170	11/7.5	1157.5	1102.5
Neutral axis; distance of centroid from outside face of skin	yNA	139.72	126.22	136.43	154.91	148.78
Skin; distance of centroid from NA	vNAski	104.7	91.2	98.9	127.4	118.8
Web: distance of controld from NA	VNIAwi	475.3	100 0	193.6	445.1	456.2
		-475.5	400.0	-403.0	440.1	-4010.2
Flange; distance of centroid from NA	yNAti	-1032.8	-1043.8	-1041.1	-1002.6	-1013.7
I provided	1	18,944,596,725	1.6E+10	19,193,193,092	18,103,143,669	18,403,653,160
controid of skin from NA	oc ck	104 72	01.22	08.03	107.41	119 79
	CC_3K	104.72	01.22	30.35	127.41	110.70
centroid of stiffener from NA	ec_st	684.79	660.29	693.09	654.60	665.73
e centroid	ec	685	660	693	655	666
v0 = 0 mov		1045.2	1052.9	1052.6	1015 1	1026.2
yu - e_max	y	1045.5	1055.6	1055.0	1015.1	1020.2
radius of gyration	is	299.9	277.3	292.9	324.9	315.8
alpha s	apha s	0.49	0.49	0.49	0.49	0.49
alnha e	alnha e	0.696	0 704	0 703	0.671	0.680
lembde e = b/ie	aipna_c	0.000	0.104	0.100	0.011	0.000
lanbua_s = b/is		20.7	20.9	21.3	24.0	25.5
lambda1_s =		67.1	67.1	67.1	67.1	67.1
lambdab s		0.397	0.430	0.407	0.367	0.377
nhi s=0.5*(1+alpha e*(lambdah s-0.2)+lambdah s^2)		0.648	0.673	0.655	0.623	0.632
phi_3=0.5 (1+apha_e (lambdab_3=0.2)+lambdab_3 2)		0.040	0.075	0.000	0.023	0.032
$cn_s = 1/(pn_s+(pn_s/2-lambdab_s/2)/0.5) < 1$		0.863	0.839	0.855	0.887	0.879
resistance stress =chi_s*f_y/GammaM		360.8	350.9	357.6	371.0	367.5
axial compressive force applied to transporce stiffener	N	~	0	0	0	0
	19	0	0	0	0	0
NCF = PI()"2"ES"I/D"2	INCL	613,513,934	5.2E+08	621,564,638	586,263,780	595,995,672
((f_y/GammaM)-(N/A_s))		418.2	418.2	418.2	418.2	418.2
(1-(N/Ncr))		1.000	1.000	1.000	1.000	1.000
M=ch*l/v		7 570 120 172	6 3E±00	7 618 113 061	7 457 960 205	7 400 421 505
NI-SU UY	↓	1,518,128,172	0.52+09	1,010,113,001	1,401,000,295	1,400,421,095
w_uc^m=M/N		-1000.00	-1000.00	-1000.00	-1000.00	-1000.00
w_0c1=(fv/aM-N/A)(I/(N*v))(1-N/Ncr)	w 0c1	-1000 00	-1000.00	-1000 00	-1000 00	-1000 00
$m_{0} = -\frac{1}{2} + \frac{1}{2} + \frac{1}{$	w 0c2	000.00	26.67	000.00	000.00	000.00
w_0c2 = 0/300	w_0cz	20.07	20.07	20.07	20.07	20.07
w_0c=MAX(w_0c1,w_0c2)	w_0c	26.67	26.67	26.67	26.67	26.67
e max	e max	1045 3	1053.8	1053.6	1015 1	1026.2
w 0=MIN(0 1/200 0 2/200 k/200)		40.00	10.00	1000.0	1013.1	1020.2
w_0=MIN(a_1/300, a_2/300, b/300)	w_0	10.00	10.00	10.00	10.00	10.00
Horizontal force/m	NL per m	0	0	0	0	0
Longitudinal force		337 990 050	346+09	363 100 000	285 200 524	303 833 333
	1 TL	557,000,952	0.42+00		200,000,024	
Area of plate + stiffener	A_ps	0	0	0	0	0
External compression force applied to transverse stiffener	Na	0	0	0	0	0
, pp				-		-
Fa*!*/DI///b)04	F 4	04.0	70.0	05.0	00.4	04.0
	<u>1_4</u>	94.0	79.8	95.9	90.4	91.9
$Q = (NL/b)^{*}(1/a_1+1/a_2)+Na^{*}(PI()/b)^{2}$	Q	28.2	28.2	30.3	23.8	25.2
Fd	Fd	0	0	0	0	0
$w_{1} = (w_{0})^{+}(f_{4})/(f_{4})$	w 1	1 01	5.45	4 62	3 57	3 70
	" <u></u> '	4.24	0.40	4.02	0.07	5.79
Max distributed load on stiffer an Eather At/DI// 244		101				
Max distributed load on stiffener = $Es^{1*}w_{1*}(PI()/b)^4$		401	435	443	323	348
Max distributed load on stiffener = $Es^{1*}w_1^{(P ()/b)^4}$ Max bending moment in stiffener = $Es^{1*}w_1^{(P ()/b)^2}$	M	401 2,599,443,902	435 2.8E+09	2,870,691,169	2,091,875,280	2,255,846,770
Max distributed load on stiffener = Es*I*w_1*(PI()/b)*4 Max bending moment in stiffener = Es*I*w_1*(PI()/b)*2 max bending stress = M*y/I	M sbEd	401 2,599,443,902 143.4	435 2.8E+09 185.9	2,870,691,169 157.6	2,091,875,280 117.3	2,255,846,770 125.8

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento PS0015_F0

Stiffener lateral buckling							
Inertia of stiffener flange + half web	lstz		154,350,000	9.9E+07	154,350,000	154,350,000	154,350,000
Area of stiffener flange + half web	Astz		19,220.00	1.7E+04	19,220.00	19,220.00	19,220.00
radius of gyration	isz		90	77	90	90	90
alpha_sz	apha_sz		0.49	0.49	0.49	0.49	0.49
alpha_ez	alpha_ez		0.595	0.603	0.595	0.595	0.595
Unrestrained length	Lcrz		8000	8000	8000	8000	8000
lambda_sz = Lcr/isz = b/isz (because Lcr = b)			89.3	103.4	89.3	89.3	89.3
lambda1_sz =	lambda1_sz		67.1	67.1	67.1	67.1	67.1
lt	lt		3.675.713	2.5E+06	3.675.713	3.675.713	3.675.713
Distance of flange centroid from face of skin	vf		1102.5	1100.0	1102.5	1102.5	1102.5
Polar moment of area of flange+web about face of skin	lp		19,823,986,958	1.6E+10	19,823,986,958	19,823,986,958	19,823,986,958
modified for moment lp	IpM	0	18,097,281,625	1.5E+10	18,097,281,625	18,097,281,625	18,097,281,625
G*lt			296,884,538,462	2.0E+11	296,884,538,462	296,884,538,462	296,884,538,462
E*lstz*yf^2*(Pl()/Lcrz)^2			6,075,791,979,347	3.9E+12	6,075,791,979,347	6,075,791,979,347	6,075,791,979,347
(E*lstz*yf^2*(Pl()/Lcrz)^2)/lp			306	236	306	306	306
(G*lt+E*lstz*yf/2*(Pl()/Lcrz)/2)/lp			321	248	321	321	321
(G*lt+E*lstz*yf^2*(Pl()/Lcrz)^2)/lpM	s_crzlpM	#	352	277	352	352	352
s_crz = (PI()^2*Es*lstz/b^2)/Astz	s_crz		260	194	260	260	260
FE s_cr	s_crzFE		395	358	395	329	329
elastic critical buckling stress (MUST SELECT)	s_cr	#	352	358	395	329	329
lambdab_sz from Lcr/isz			1.330	1.541	1.330	1.330	1.330
lambdab_sz from s_cr	lambdab_sz		1.143	1.134	1.079	1.182	1.182
phi_sz=0.5*(1+alpha_e*(lambdab_s-0.2)+lambdab_s^2)	phi_sz		1.434	1.424	1.344	1.492	1.492
chi_sz =1/(phi_s+(phi_s^2-lambdab_s^2)^0.5)<1	chi_sz		0.435	0.437	0.466	0.417	0.417
resistance stress =chi_sz*f_y/GammaM	s_bRdz		181.8	182.9	194.9	174.2	174.2
D/C = sbEd/s_bRdz			0.789	1.016	0.808	0.673	0.722
				Not used			

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

	1-				
Modulus	ES	210,000	210,000	210,000	210,000
Poisson's ratio	nu	0.30	0.30	0.30	0.30
Shear modulus	G	80 769	80 769	80 769	80 769
f v		460	460	400	400
i_y		460	460	400	400
GammaM0	GammaM0	1.05	1.05	1.05	1.05
GammaM1	GammaM	1.1	1.1	1.1	1.1
fv/GammaM1		418	418	418	418
avial atrace		410	410	410	410
axial stress	s_a	U	0	U	L
available bending	s_bmax	418	418	418	418
Segment		3	7	8	8
Tower		Sicilia	Sicilia	Sicilia	Sicilia
	h	oncina	0000	0000	0000
	D	0008	0008	8000	8000
transverse stiffener spacing	a_1	3000	3166	3166	3166
transverse stiffener spacing	a 2	3000	3000	3166	3166
plate CL eccv 1	le 1	0	0	0	0
plate CL copy 2	0_1	0	0	0	0
plate OL eccy 2	e_z	0	0	0	U
				,	
number of longitudinal stiffeners	nls	5	5	5	5
thickness of longitudinal stiffeners	tls	63	65	68	68
breadth of longitudinal stiffenors	ble	625	650	675	675
	DIS	025	650	0/3	0/5
skin breadth	bskf	2610	2610	2610	2610
skin thickness	tskf	50	60	70	70
transverse stiffener web breadth	botw	1000	1000	1000	1000
	DOLW	1090	1090	1090	1090
transverse stiffener web thickness	tstw	16.0	16.0	16.0	16.0
transverse stiffener flange breadth	bstf	390	420	420	390
transverse stiffener flange thickness	tstf	20	25	25	20
transverse stiffener denth	Det	1160	1175	1195	1100
	081	0011	11/5	1185	1180
Area	A_s	155740	184540	210640	207940
Skin; distance of centroid from outside face of skin	yski	25	30	35	35
Web: distance of centroid from outside face of skin	vwi	595	605	615	615
Flance, distance of centroid from suitaids face of skin		1150	1100 5	4470 5	4470
Flange; distance of centroid from outside face of skin	уті	1150	1162.5	11/2.5	1170
Neutral axis; distance of centroid from outside face of skin	yNA	145.17	148.78	139.72	126.22
Skin: distance of centroid from NA	vNAski	120.2	118.8	104.7	91.2
Web: distance of controid from NA	vNAwi	110.9	456.2	475.3	100 0
		-449.0	-430.2	-47.5.5	-400.0
Flange; distance of centroid from INA	YNAT	-1004.8	-1013.7	-1032.8	-1043.8
I provided	1	15,043,143,152	18,403,653,160	18,944,596,725	1.6E+10
centroid of skin from NA	er sk	120 17	118 78	104 72	91.22
		604.04	005 70	604.70	00.00
centroid of stillener from NA	ec_st	021.34	000.73	084.79	660.25
e centroid	e_c	621	666	685	660
v0 = e max	V	1014 8	1026.2	1045.3	1053.8
yo c_max	y ie	210.0	245.0	200.0	000.0
radius of gyration	IS	310.8	315.8	299.9	211.3
alpha_s	apha_s	0.49	0.49	0.49	0.49
alpha e	alpha e	0.670	0.680	0.696	0.704
lambda s = b/is	· -	25.7	25.3	26.7	28 0
		20.1	20.0	67.4	20.0
lambda I_s =		07.1	07.1	07.1	07.1
lambdab_s		0.383	0.377	0.397	0.430
phi s=0.5*(1+alpha e*(lambdab s-0.2)+lambdab s^2)		0.635	0.632	0.648	0.673
chi s =1/(nhi s+(nhi s^2)ambdah s^2)(0.5)<1		0.876	0.879	0.863	0.830
chi_o n(phi_o (phi_o 2 lambdab_o 2) 0.0) 1		200 5	0.010	200.0	250.00
resistance stress =cni_sni_y/Gammaw		300.5	307.5	300.8	350.8
axial compressive force applied to tranvserse stiffener	N	0	0	0	C
$Ncr = PI()^{2}Es^{1}/b^{2}$	Ncr	487 166 767	595 995 672	613 513 024	5 2E+09
		440.0	440.0	440.0	440.0
	+	418.2	410.2	418.2	418.2
(1-(N/NCr))		1.000	1.000	1.000	1.000
M=sb*l/y		6,198,860,715	7,499,421,595	7,579,129,172	6.3E+09
w 0c*m=M/N	+ + +	-1000.00	-1000 00	-1000 00	-1000.00
	+	-1000.00	1000.00	- 1000.00	1000.00
				<mark>/</mark>	
w_0c1=(fy/gM-N/A)(I/(N*y))(1-N/Ncr)	w_0c1	-1000.00	-1000.00	-1000.00	-1000.00
w 0c2 = b/300	w 0c2	26.67	26.67	26.67	26.67
w 0c=MAX(w 0c1.w 0c2)	w 0c	26.67	26.67	26 67	26.67
		20.07	20.07	20.07	20.07
				<mark>/</mark>	
e_max	e_max	1014.8	1026.2	1045.3	1053.8
w 0=MIN(a 1/300, a 2/300, b/300)	w 0	10.00	10.00	10.55	10.55
··· ····· (•····; •··; •····)					
Lineir entel ferre /m	NIL man		0	~	
HUNZONIAI TORCE/M	INL_per_m	0	U	0	0
Longitudinal force	NL	261,488,095	302,833,333	345,876,190	3.5E+08
Area of plate + stiffener	A ps	0	0	0	0
External compression force applied to transverse stiffener	Na	0	0	0	0
External compression force applied to transverse stimener	INC	0	U	0	U
Es*I*(PI()/b)^4	f_4	75.1	91.9	94.6	79.8
$Q = (NL/b)^{*}(1/a + 1/a + 2) + Na^{*}(Pl(1)/b)^{*}2$	Q	21.8	24.6	27 3	27.3
	Ed	21.0	L-1.0	27.0	21.0
	ru	Ű	U	0	0
$w_1 = (w_0^{+}Q_{+}Fd)/(f_4-Q)$	w_1	4.09	3.65	4.28	5.49
Max distributed load on stiffener = Es*I*w 1*(PI()/b)^4		307	335	405	438
Max bending moment in stiffener = Es*I*w 1*(PI()/b)/2	M	1 990 321 781	2,175 124 095	2 627 544 680	2 8E+00
			_,,	_,,,,,,,,,,	
max bonding stross = $M^* v/l$	chEd	104.0	101.0	145 0	107.0
max bending stress = M*y/I	sbEd	134.3	121.3	145.0	187.3

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento
PS0015_F0

Stiffener lateral buckling						
Inertia of stiffener flange + half web	Istz		98,865,000	154,350,000	154,350,000	9.9E+07
Area of stiffener flange + half web	Astz		16,520.00	19,220.00	19,220.00	16,520.00
radius of gyration	isz		77	90	90	77
alpha_sz	apha_sz		0.49	0.49	0.49	0.49
alpha_ez	alpha_ez		0.603	0.595	0.595	0.603
Unrestrained length	Lcrz		8000	8000	8000	8000
lambda_sz = Lcr/isz = b/isz (because Lcr = b)			103.4	89.3	89.3	103.4
lambda1_sz =	lambda1_sz		67.1	67.1	67.1	67.1
lt	lt		2,528,213	3,675,713	3,675,713	2,528,213
Distance of flange centroid from face of skin	yf		1100.0	1102.5	1102.5	1100.0
Polar moment of area of flange+web about face of skin	lp		16,443,686,333	19,823,986,958	19,823,986,958	1.6E+10
modified for moment lp	lpM	0	14,716,981,000	18,097,281,625	18,097,281,625	1.5E+10
G*It			204,201,846,154	296,884,538,462	296,884,538,462	2.0E+11
E*lstz*yf^2*(PI()/Lcrz)^2			3,874,065,927,794	6,075,791,979,347	6,075,791,979,347	3.9E+12
(E*lstz*yf^2*(Pl()/Lcrz)^2)/lp			236	306	306	236
(G*lt+E*lstz*yf^2*(PI()/Lcrz)^2)/lp			248	321	321	248
(G*lt+E*lstz*yf^2*(PI()/Lcrz)^2)/IpM	s_crzlpM	#	277	352	352	277
s_crz = (PI()^2*Es*lstz/b^2)/Astz	s_crz		194	260	260	194
FE s_cr	s_crzFE		329	329	395	358
elastic critical buckling stress (MUST SELECT)	s_cr	#	329	329	395	358
lambdab_sz from Lcr/isz			1.541	1.330	1.330	1.541
lambdab_sz from s_cr	lambdab_sz		1.182	1.182	1.079	1.134
phi_sz=0.5*(1+alpha_e*(lambdab_s-0.2)+lambdab_s^2)	phi_sz		1.496	1.492	1.344	1.424
chi_sz =1/(phi_s+(phi_s^2-lambdab_s^2)^0.5)<1	chi_sz		0.415	0.417	0.466	0.437
resistance stress =chi_sz*f_y/GammaM	s_bRdz		173.4	174.2	194.9	182.9
D/C = sbEd/s_bRdz			0.774	0.696	0.744	1.024
						Not used

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

Modulus	Fs	210 000	210 000	210 000	210 000	210 000
Poisson's ratio	nu	0.30	0.30	0.30	0.30	0.30
Choor medulue	nu C	80.30	90.760	90.760	90.760	90.760
Shear modulus	G	80,769	80,769	80,769	80,769	80,769
t_y		460	460	460	460	460
GammaM0	GammaM0	1.05	1.05	1.05	1.05	1.05
GammaM1	GammaM	1.1	1.1	1.1	1.1	1.1
fv/GammaM1		418	418	418	418	418
avial atraca		410	-10		410	+10
	s_a	0	0	0	0	0
available bending	s_bmax	418	418	418	418	418
Segment		9	9	10	13	13
Tower		Sicilia	Sicilia	Sicilia	Sicilia	Sicilia
transverse stiffener span	b	8000	8000	8000	8000	8000
transverse stiffener spacing	a 1	3166	3166	2222	3333	3887
transverse stiffener spacing	u_1	2222	2222	2222	2222	0001
	a_2	3333	3333	3333	3333	2000
plate CL eccy 1	e_1	U	0	0	0	0
plate CL eccy 2	e_2	0	0	0	0	0
number of longitudinal stiffeners	nls	5	5	5	5	5
thickness of longitudinal stiffeners	tls	68	68	65	68	68
broadth of longitudinal stiffonors	ble	675	675	650	675	675
	DIS	075	0/5	050	0/5	0/3
skin breadth	bskt	2610	2610	2610	2610	2610
skin thickness	tskf	65	65	50	55	55
transverse stiffener web breadth	bstw	1090	1090	1090	1090	1090
transverse stiffener web thickness	tstw	16.0	16.0	16.0	16.0	16.0
transverse stiffener flange breadth	hstf	420	300	200	200	200
transverse stillener flange biedulli	totf	420	330	390	390	390
	ISU Det	25	20	20	20	20
transverse stiffener depth	Dst	1180	1175	1160	1165	1165
Area	A_s	197590	194890	155740	168790	168790
Skin; distance of centroid from outside face of skin	yski	32.5	32.5	25	27.5	27.5
Web: distance of centroid from outside face of skin	vwi	610	610	595	600	600
Flange: distance of centroid from outside face of skin	vfi	1167.5	1165	1150	1155	1155
Neutral evice distance of centroid from eutrale free of skill	yn whia	142.70	100 50	145.47	100 70	100 70
ineutral axis, distance of centroid from outside face of skin	yina	143.79	129.50	145.17	136.70	138.70
Skin; distance of centroid from NA	yNAski	111.3	97.0	120.2	111.3	111.3
Web; distance of centroid from NA	yNAwi	-466.2	-480.5	-449.8	-461.2	-461.2
Flange; distance of centroid from NA	yNAfi	-1023.7	-1035.5	-1004.8	-1016.2	-1016.2
I provided	1	18,682,604,617	1.6E+10	15,043,143,152	15,305,754,374	15,305,754,374
•						
centroid of skin from NA	ec sk	111 20	97.00	120 17	111.26	111.26
	00_3K	075.70	052.01	120.17	622.70	600.70
centroid of stillener from NA	ec_si	0/5./2	052.01	021.34	032.70	032.70
e centroid	e_c	676	652	621	633	633
y0 = e max	y	1036.2	1045.5	1014.8	1026.2	1026.2
radius of gyration	is	307.5	284.5	310.8	301.1	301.1
alnha s	anha s	0.49	0.49	0.49	0.49	0.49
alpha_s	alaha a	0.40	0.40	0.40	0.40	0.40
aipita_e	aipila_e	0.088	0.050	0.070	0.079	0.079
lambda_s = b/is		20.0	28.1	20.7	20.0	20.0
lambda1_s =		67.1	67.1	67.1	67.1	67.1
lambdab_s		0.388	0.419	0.383	0.396	0.396
phi s=0.5*(1+alpha e*(lambdab s-0.2)+lambdab s^2)		0.640	0.664	0.635	0.645	0.645
chi s =1/(nhi s+(nhi s^2-lambdah s^2)^0 5)<1		0.871	0.848	0.876	0.867	0.867
resistance stress =chi_s*f v/GammaM		364.1	354.7	366.5	362.4	362.4
resistance stress -cni_s i_y/Ganimaw		504.1	554.7	300.3	302.4	302.4
avial approach a famo applied to topo a stat	N	-		-	~	^
axial compressive lorce applied to tranvserse stiffener	IN	0	0	0	0	0
$Ncr = PI()^{2}Es^{1}/b^{2}$	Ncr	605,029,414	5.1E+08	487, 166, 767	495,671,337	495,671,337
((f_y/GammaM)-(N/A_s))		418.2	418.2	418.2	418.2	418.2
(1-(N/Ncr))		1.000	1.000	1.000	1.000	1.000
M=sb*l/v		7,539,687,125	6.3E+09	6,198 860 715	6,236,906,802	6,236,906,802
w 0c*m=M/N	+	1000.007,120	-1000.00	100,000,713	1000 002	1000.002
		-1000.00	-1000.00	-1000.00	-1000.00	-1000.00
w_0c1=(ty/gM-N/A)(I/(N*y))(1-N/Ncr)	w_0c1	-1000.00	-1000.00	-1000.00	-1000.00	-1000.00
w_0c2 = b/300	w_0c2	26.67	26.67	26.67	26.67	26.67
w_0c=MAX(w_0c1,w_0c2)	w_0c	26.67	26.67	26.67	26.67	26.67
e max	e max	1036 2	1045.5	1014 8	1026.2	1026.2
w 0=MIN(a 1/300 a 2/300 b/300)	w 0	10 55	10.55	11 11	11 11	Q /F
w_o wind(a_1/000, a_2/000, b/000)	··	10.00	10.35	11.11	11.11	0.40
	<u>↓</u> ↓ ↓					
Horizontal force/m	NL_per_m	0	0	0	0	0
Longitudinal force	NL	328,352,381	3.3E+08	267,785,714	293,304,762	293,304,762
Area of plate + stiffener	A_ps	0	0	0	0	0
External compression force applied to transverse stiffener	Na	0	0	0	0	0
						-
Ee*1*/P1/\/b\M	fΔ	02.2	70.0	75 1	76 /	76 /
O = (NII / b) * (1/c - 1 + 1/c - 2) + Nc * (DI / 1/b) * 2	<u></u>	90.0	70.0	70.1	/0.4	/0.4
Q = (NLD)"(1/a_1+1/a_2)+Nd"(PI()/D)'2	Q	25.3	25.3	20.1	22.0	23.9
	FO	0	0	0	0	0
$w_1 = (w_0^*Q + Fd)/(f_4-Q)$	w_1	3.92	4.99	4.05	4.49	3.84
Max distributed load on stiffener = Es*I*w_1*(PI()/b)^4		366	393	305	343	294
Max bending moment in stiffener = Es*I*w 1*(PI()/b)^2	M	2,372,739,654	2.5E+09	1,975,127,425	2,225,481,478	1,904,742,720
max bending stress = M*v/I	sbEd	131.6	168.8	133.2	149.2	127 7
, , ,				. 50.2		

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento
PS0015_F0

Stiffener lateral buckling							
Inertia of stiffener flange + half web	Istz		154,350,000	9.9E+07	98,865,000	98,865,000	98,865,000
Area of stiffener flange + half web	Astz		19,220.00	16,520.00	16,520.00	16,520.00	16,520.00
radius of gyration	isz		90	77	77	77	77
alpha_sz	apha_sz		0.49	0.49	0.49	0.49	0.49
alpha_ez	alpha_ez		0.595	0.603	0.603	0.603	0.603
Unrestrained length	Lcrz		8000	8000	8000	8000	8000
lambda_sz = Lcr/isz = b/isz (because Lcr = b)			89.3	103.4	103.4	103.4	103.4
lambda1_sz =	lambda1_s	z	67.1	67.1	67.1	67.1	67.1
lt	lt		3,675,713	2,528,213	2,528,213	2,528,213	2,528,213
Distance of flange centroid from face of skin	yf		1102.5	1100.0	1100.0	1100.0	1100.0
Polar moment of area of flange+web about face of skin	lp		19,823,986,958	1.6E+10	16,443,686,333	16,443,686,333	16,443,686,333
modified for moment lp	IpM	0	18,097,281,625	1.5E+10	14,716,981,000	14,716,981,000	14,716,981,000
G*lt			296,884,538,462	2.0E+11	204,201,846,154	204,201,846,154	204,201,846,154
E*lstz*yf^2*(Pl()/Lcrz)^2			6,075,791,979,347	3.9E+12	3,874,065,927,794	3,874,065,927,794	3,874,065,927,794
(E*lstz*yf^2*(Pl()/Lcrz)^2)/lp			306	236	236	236	236
(G*lt+E*lstz*yf^2*(Pl()/Lcrz)^2)/lp			321	248	248	248	248
(G*lt+E*lstz*yf^2*(Pl()/Lcrz)^2)/lpM	s_crzlpM	#	352	277	277	277	277
s_crz = (PI()^2*Es*lstz/b^2)/Astz	s_crz		260	194	194	194	194
FE s_cr	s_crzFE		358	329	329	329	329
elastic critical buckling stress (MUST SELECT)	s_cr	#	358	329	329	329	329
lambdab_sz from Lcr/isz			1.330	1.541	1.541	1.541	1.541
lambdab_sz from s_cr	lambdab_s	z	1.134	1.182	1.182	1.182	1.182
phi_sz=0.5*(1+alpha_e*(lambdab_s-0.2)+lambdab_s^2)	phi_sz		1.420	1.496	1.496	1.496	1.496
chi_sz =1/(phi_s+(phi_s^2-lambdab_s^2)^0.5)<1	chi_sz		0.439	0.415	0.415	0.415	0.415
resistance stress =chi_sz*f_y/GammaM	s_bRdz		183.7	173.4	173.4	173.4	173.4
D/C = sbEd/s_bRdz			0.716	0.974	0.768	0.860	0.736
				Not used			

Design Report - Tower Legs incl. Joints and Splices, Annex

 Codice documento
 Rev
 Data

 PS0015_F0
 F0
 20-06-2011

Modulus	Fs	210 000	210 000	210 000	210 000	210 000
Beiseen's ratio	20	0.30	210,000	210,000	210,000	210,000
	nu	0.30	0.30	0.30	0.30	0.30
Shear modulus	G	80,769	80,769	80,769	80,769	80,769
f_y		460	460	460	460	460
GammaM0	GammaM0	1.05	1.05	1.05	1.05	1.05
GammaM1	GammaM	11	11	11	1 1	11
Gammawi	Gammaivi	1.1	1.1	1.1	1.1	1.1
ry/Gammawi		418	418	418	418	418
axial stress	s_a	0	0	0	0	0
available bending	s bmax	418	418	418	418	418
Segment		19	19	20	20	21
Towar		Calabria	Calabria	Sieilie	Sieilie	Sieilie
Tower		Calabria	Calabria	Sicilia	Sicilia	Sicilia
transverse stiffener span	b	8000	8000	8000	8000	8000
transverse stiffener spacing	a_1	3280	3280	3125	3125	2894
transverse stiffener spacing	a 2	3000	3280	3125	2894	2894
plate CL eccy 1	e 1	0	0	0	0	0
plate OL cooy 1	0_1	0	0	0	0	0
plate OL eccy 2	e_2	0	0	0	0	0
number of longitudinal stiffeners	nls	5	5	5	5	5
thickness of longitudinal stiffeners	tls	63	63	63	63	60
breadth of longitudinal stiffeners	bls	625	625	625	625	003
	010	025	023	023	023	000
skin breadth	bskf	2610	2610	2610	2610	2610
skin thickness	tskf	55	55	60	60	60
transverse stiffener web breadth	bstw	1090	1090	1090	1090	1090
transverse stiffener web thickness	tstw	16.0	16.0	16.0	16.0	16.0
transverse stiffener flange breedth	betf	10.0	200	10.0	10.0	10.0
	USU	390	390	420	420	420
transverse stiffener flange thickness	tstf	20	20	25	25	25
transverse stiffener depth	Dst	1165	1165	1175	1175	1175
Area	As	168790	168790	184540	184540	184540
Skin: distance of centroid from outside face of skin	vski	27 5		0000	20	.0.010
	, 5101	21.0	21.0		30	
web; distance of centroid from outside face of skin	ywi	600	600	605	605	605
Flange; distance of centroid from outside face of skin	yfi	1155	1155	1162.5	1162.5	1162.5
Neutral axis; distance of centroid from outside face of skin	yNA	138.76	138.76	148.78	148.78	148.78
Skin: distance of centroid from NA	vNAski	111.3	111.3	118.8	118.8	118.8
Web: distance of controld from NA	VNIAwi	461.2	461.2	456.2	456.2	456.2
		-401.2	-401.2	-450.2	-450.2	-450.2
Flange; distance of centroid from NA	ynati	-1016.2	-1016.2	-1013.7	-1013.7	-1013.7
I provided	1	15,305,754,374	15,305,754,374	18,403,653,160	18,403,653,160	18,403,653,160
centroid of skin from NA	ec.sk	111.26	111.26	118 78	118 78	118 78
controid of stiffonor from NA	oo_ot	622.76	622.76	665 72	665 72	665.72
	ec_si	032.70	032.70	005.73	005.75	005.73
e centroid	e_c	633	633	666	666	666
y0 = e max	V	1026.2	1026.2	1026.2	1026.2	1026.2
radius of ovration	is	301.1	301.1	315.8	315.8	315.8
	onho o	0.40	0.40	0.40	0.40	0.40
alpha_s	apria_s	0.49	0.49	0.49	0.49	0.49
alpha_e	alpha_e	0.679	0.679	0.680	0.680	0.680
lambda_s = b/is		26.6	26.6	25.3	25.3	25.3
lambda1 s =		67.1	67.1	67.1	67.1	67.1
lambdab s		0 396	0.396	0 377	0 377	0 377
		0.000	0.000	0.011	0.001	0.011
pni_s=0.5^(1+aipna_e^(lambdab_s-0.2)+lambdab_s/2)		0.645	0.645	0.632	0.632	0.632
chi_s =1/(phi_s+(phi_s^2-lambdab_s^2)^0.5)<1		0.867	0.867	0.879	0.879	0.879
resistance stress =chi_s*f_y/GammaM		362.4	362.4	367.5	367.5	367.5
avial compressive force applied to trapporte stiffener	N	0	0	0	0	0
ana compressive force applied to tranvserse stillener	11	0	0	0	0	0
NCT = PI()'Z'ES'I/D'Z	INCL	495,671,337	495,671,337	595,995,672	595,995,672	595,995,672
((t_y/GammaM)-(N/A_s))		418.2	418.2	418.2	418.2	418.2
(1-(N/Ncr))		1.000	1.000	1.000	1.000	1.000
M=sb*l/v		6,236,906,802	6,236,906,802	7,499,421,595	7 499 421 595	7,499,421,595
w. 0c*m=M/N		-1000.00	_1000_00	_1000_00	_1000_00	_1000_00
		-1000.00	-1000.00	- 1000.00	-1000.00	-1000.00
w_0c1=(fy/gM-N/A)(I/(N*y))(1-N/Ncr)	w_0c1	-1000.00	-1000.00	-1000.00	-1000.00	-1000.00
w_0c2 = b/300	w_0c2	26.67	26.67	26.67	26.67	26.67
w 0c=MAX(w 0c1.w 0c2)	w Oc	26.67	26.67	26 67	26.67	26 67
		20.01	20.01	23.01	20.01	23.01
a. may	a may	4000.0	4000.0	4000.0	4000.0	4000.0
e_max	e_max	1026.2	1026.2	1026.2	1026.2	1026.2
w_0=MIN(a_1/300, a_2/300, b/300)	w_0	10.00	10.93	10.42	9.65	9.65
Horizontal force/m	NL per m	0	0	0	0	0
Longitudinal force		270.011.005	270 011 005	206 525 714	206 525 714	200 142 057
		219,011,905	219,011,905	290,000,714	230,000,714	209, 142,857
Area or plate + stiffener	A_ps	0	0	0	0	0
External compression force applied to transverse stiffener	Na	0	0	0	0	0
Es*I*(PI()/b)*4	f 4	76.4	76 /	01 0	Q1 Q	01 0
O = (NI / h)*(1/2 1+1/2 2)+Ne*(DI/)/h/22	· ⁻	10.4	10.4	01.0	01.0	01.0
Q = (NL/D) (1/a_1+1/a_2)+Nd"(PI()/D)*2	v	22.3	21.3	23.7	24.7	25.0
Fa	Fd	0	0	0	0	0
$w_1 = (w_0^{+}Q + Fd)/(f_4-Q)$	w_1	4.11	4.21	3.62	3.54	3.60
Max distributed load on stiffener = Es*I*w 1*(PI()/b)^4		314	322	333	325	331
Max bending moment in stiffener = Fs*I*w 1*(PI()/b)/2	М	2 036 341 757	2 088 872 114	2 150 012 825	2 109 371 106	2 145 551 720
max bonding atraca = $M^* u/l$		2,000,041,707	2,000,012,114	2,100,012,020	2,100,071,100	2, 170,001,720
max bending stress = M^y/I	SDEO	136.5	140.1	120.4	117.6	119.6

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento PS0015_F0

Stiffener lateral buckling							
Inertia of stiffener flange + half web	lstz		98,865,000	98,865,000	154,350,000	154,350,000	154,350,000
Area of stiffener flange + half web	Astz		16,520.00	16,520.00	19,220.00	19,220.00	19,220.00
radius of gyration	isz		77	77	90	90	90
alpha_sz	apha_sz		0.49	0.49	0.49	0.49	0.49
alpha_ez	alpha_ez		0.603	0.603	0.595	0.595	0.595
Unrestrained length	Lcrz		8000	8000	8000	8000	8000
lambda_sz = Lcr/isz = b/isz (because Lcr = b)			103.4	103.4	89.3	89.3	89.3
lambda1_sz =	lambda1_s	z	67.1	67.1	67.1	67.1	67.1
lt	lt		2,528,213	2,528,213	3,675,713	3,675,713	3,675,713
Distance of flange centroid from face of skin	vf		1100.0	1100.0	1102.5	1102.5	1102.5
Polar moment of area of flange+web about face of skin	lp		16,443,686,333	16,443,686,333	19,823,986,958	19,823,986,958	19,823,986,958
modified for moment Ip	lpM	0	14,716,981,000	14,716,981,000	18,097,281,625	18,097,281,625	18,097,281,625
G*lt			204,201,846,154	204,201,846,154	296,884,538,462	296,884,538,462	296,884,538,462
E*lstz*yf^2*(Pl()/Lcrz)^2			3,874,065,927,794	3,874,065,927,794	6,075,791,979,347	6,075,791,979,347	6,075,791,979,347
(E*lstz*yf^2*(Pl()/Lcrz)^2)/lp			236	236	306	306	306
(G*lt+E*lstz*yf^2*(Pl()/Lcrz)^2)/lp			248	248	321	321	321
(G*lt+E*lstz*yf^2*(Pl()/Lcrz)^2)/lpM	s_crzlpM	#	277	277	352	352	352
s_crz = (PI()^2*Es*Istz/b^2)/Astz	s_crz		194	194	260	260	260
FE s_cr	s_crzFE		329	329	329	329	329
elastic critical buckling stress (MUST SELECT)	s_cr	#	329	329	329	329	329
lambdab_sz from Lcr/isz			1.541	1.541	1.330	1.330	1.330
lambdab_sz from s_cr	lambdab_s	z	1.182	1.182	1.182	1.182	1.182
phi_sz=0.5*(1+alpha_e*(lambdab_s-0.2)+lambdab_s^2)	phi_sz		1.496	1.496	1.492	1.492	1.492
chi_sz =1/(phi_s+(phi_s^2-lambdab_s^2)^0.5)<1	chi_sz		0.415	0.415	0.417	0.417	0.417
resistance stress =chi_sz*f_y/GammaM	s_bRdz		173.4	173.4	174.2	174.2	174.2
D/C = sbEd/s_bRdz			0.787	0.808	0.691	0.675	0.687

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data		
Splices	, Annex	PS0015_F0	F0	20-06-2011		

INTRODUCTION

· · ·

PURPOSE in the logs calculate the resistance of the triangular diaphraguns) the kick bads from the longitudinal forces. Tot

CONCLUSION 201/2 is OK aspecially with ring stiffenon - page 1115

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data		
Splices	, Annex	PS0015_F0	F0	20-06-2011		

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data	
Splices, Annex		PS0015_F0	F0	20-06-2011	

SAP2000 v11.0.8 - File:03a_Task1_Sect1_PrelimDim01 - Stress SVM Diagram - Visible Face (Task1c) - N, mm,

SAP2000

SAP2000 v11.0.8 - File:03a_Task1_Sect1_PrelimDim01 - Stress SVM Diagram - Visible Face (Task1g) - N, mm

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report - Tower Legs incl. Joints and Splices, Annex		Codice documento	Rev	Data	
		PS0015_F0	F0	20-06-2011	

$$\frac{\text{RESISTANCE}(\text{cont})}{\Phi_{p}^{2} \frac{1}{2} \left(1 + 0.34 \left(2.25 - 0.70\right) + 2.25\right)^{2} 1.8575}{1.9575} = \frac{1}{1.9575 + \sqrt{1.8575^{2} - 2.25}} = 0.34$$

$$\therefore \# 10(2) \Rightarrow \frac{Palutte}{3M_{1}} = \frac{0.34 \times 6}{1.1} = 1.85 > 1 \Rightarrow 0K$$

With reference & Duebling stars, $\frac{D}{C} = \frac{1}{2} \frac{1}{4189} = 0.84$

POK,

AMALYSIS WITH STABLE FLANGE SIZES

SAP2000 v11.0.8 - File:01f_Task1_Sect1_PrelimDim04_2RestrEdges - 3-D View - KN, mm, C Units

SAP2000 v11.0.8 - File:01f_Task1_Sect1_PrelimDim04_2RestrEdges - X-Y Plane @ Z=0 - KN, mm, C Units

SAP2000 v11.0.8 - File:01f_Task1_Sect1_PrelimDim04_2RestrEdges - X-Z Plane @ Y=-2800 - KN, mm, C Units

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO							
Design Report - Towe Splices	r Legs incl. Joints and Annex	Codice documento PS0015_F0	Rev F0	Data 20-06-2011					
Jesign Report - Towe Splices WEB-SKIN WE SS flange = a Page 445867 These values inge 473 (F11-2.30 & OK with	The set less the	Codice documento PS0015_F0 137.5 mm => $\frac{137.5}{35} : 3.93.d$ Show Load FI $\frac{1.00+0.86}{25} \times 35^{2}$ $\frac{0.57+0.49}{2} \times 35^{2}$ $\frac{0.50+0.37}{2} \times 35^{2}$ $0.40 \times 0.93 \times 35^{2}$ SkN $(1.913 h)/mm$ $\frac{80}{137.5}^{2}$ (O how for the 420 × 25 flamed), so the 3910 d20 flamed Show as prope 473.	Rev F0 2 33 hl 19 hl 15 hl 13 hl 180 hl 5 kl 180 hl 5 kl	Data 20-06-2011					
VERTICAL STIFFELER Stiffersonic Andeney = Page 452 > Fil = 0.732	- SKIN WELDS Sommer W-um/mm F12 20:298, MI12 30.9 >	kn/mm hord/m ² 2 + 30.9 * 0.984; Show ⁰ -	298 2 20	- 149					
Poze 4537 FU = 1.353 Rose 4557 FU = 1.894	,F12 = 0.565) MI = 21.8 → F12 = 0.799,M11 = 0 →	$\frac{1.353}{2} + \frac{21.8}{50} + 1.113 j due ^{-0.5}$ $\frac{1.894}{2} = 2.0.947 j due ^{-0.5}$	<u>565</u> ,0 794 2 20,	283					

hoads/mm less than page 474 => D/2 < 0.82 20K on Smm throat adds and

5.2.2 Cross Beam to Tower Leg Connection – Type 2 and 3 Diaphragms

The following calculations are presented in this section:

- Proportioning of the tower leg plates for the increased shear and transverse direct stresses to which they are subjected at the cross beam connections.
- Proportioning of additional transverse stiffening required on the tower leg plates to prevent buckling and to distribute the transverse direct stresses carried into the tower leg by the cross beam longitudinal stiffeners.
- Proportioning the plate diaphragm in the central tower leg cell and the plate diaphragms in the triangular tower leg cells to distribute the axial forces in the cross beams flanges to the tower leg plates.
- Proportioning of the tower top diaphragm type 3 for the additional stresses applied to the diaphragm by the main cable saddle.

Stretto Ponte sullo Stretto di Messina di Messina PROGETTO DEFINITIVO EurolinK Design Report - Tower Legs incl. Joints and Codice documento Rev Data Splices, Annex PS0015_F0 F0 20-06-2011 COMMENTS & CONCLUSIONS Page 601A 1) Must have at least SOp for shear + reptied (even with almost zers have the e 616 2) Plate H SSR Se Javon thiss unless stiffenes all continued nin 1.6.22 " In Sisk & NO stips = 1.09 7 = = needs settles for routing p619-> P 520 -> 0/2 fr with stills = 0.97 { 2 (we 60 pe for inner plate H) SSA NO th. 1.00) P621-> DZ -60p undal by 3) STop 5 panels need & be b stiffs 55p inerH - (pager 617861" LTop 1 pan A Puzzai6172621 vesil horisortel compression Hatal >Use 60mm A £ me Top 2 panels need del Dy still. Jor 50/2 on G - page 617 4) bbe/b s\$.(1) Dont need L hois compension of use 55pt and - page 617 niz thickness of SSmin plate for plate G => Usa J ell. S) vertical £ Need £ act also cs stabilize stiffeners trans £ L **U** itial cales = min * 6) Ð. ichoos - 30mm (27 is alsolide in Page 621 (probably 28 is min Plato 7) usuas CALCUL ATERT stanted New 28 Sept لمغ on page 663 usu eulations Jonth. cal Sarie COWE shall elament ontrait from IBDAS an Conclusions Krage 682) that for 1) Concludes 40 & plange in crox bearing use 40 & central d eners an plate C closest & plate H (roge 682) 666,668 2) For plate H/G/A in height of connection, we SORE egus 673-677 8687-688 stillenes use 475×48 on plate 6 (pages 693 & 694) & SSOXSS on platett (u

Stretto Ponte sullo Stretto di Messina di Messina **PROGETTO DEFINITIVO** EurolinK Design Report - Tower Legs incl. Joints and Codice documento Rev Data Splices, Annex PS0015_F0 F0 20-06-2011 DESIGN CASELOADS Page 602 2 #3 Nonaut & Shea MODEC 3.2 MODE 5 Governal by SILS armed 5670 loads @ 27 August 2010 1347: 5490 M2 3625, MN-m 4186 + 219 165 V2 + 54 1 **#**-2. 145 MN loads@ 8 Sept2010 A #1 Webs @ lags 40 Flange @ lags 45 + 525 x 53 4136 Web stills S25×53 400 × 40 300×30 (not the FE output) The loads used in the Sept 28 calculations/ pages 650-694 were V=219 MN & M2 5490 MN-m from the 8 Sept 2010 figures above, because data available latest when ne-calculation had to thus deadline. The bads from Model 3.3 mast the Cross-Beam #3; V= 110 MN; H= 2250 MJ. FE output) were approx the as #2 V = 140HN; H = 3550Hhum #1 V 2 105MN; H2 3100MU-m - 1/cs derived classic calculations starting with VEM and pessimistic but 1/2s or thickness derived from PE are based on Model 3.3 loads automatically.

Stretto di Messina	Eurol	i n K		Ponte sullo PROGE	Stretto di TTO DEFIN	Messina ITIVO	1
Design Report - Towe Splices	r Legs incl. Jo Annex	ints and	Codice d	l <mark>ocumento</mark>		Rev F0	Data 20-06-2011
MWJ TRANSVERSE WON () FROM SOUTH Cross Bear	▶ Model 3.1	WIMD Lee BY ~15 J 2 Model 3.2	ADS (NC 7. Pop (57. Pop W Model 3.3	Pendr Doss Zonns Towerd IND Condd IND Condd I O Zo Por F	pai 20 Decremini cross	1913 30 602 10 02 13 1 8 9 8 FARI	A
ULS	2663	2971	2662				
SILS	3180	3659	3177				
		1.12	0.89		안 없는 것을 것		
Cross Bean	12						
ULS	3093	3539	3159			민준이 가슴을	
SILS	3490	4186	3712	물건은 영향이는			
Cross Rean	13	<u>,1.17 </u>]	<u>Q.89</u>				
	2473	2836	2521	아이에 다 모			
SILS	2735	3180	2767				
	<u>क</u> ा कर्म	1.15	0.88	백화관 한 동안원		이 같이 많다.	
Tower lea 1	Base	11 - 12 - 12 - 13 - 13 - 13 - 14 - 14 - 14 - 14 - 14					
	2381	2988 /	2912	<			
SILS	2875	3615	3505 /			tengi da danij Regista postoj	
		1.26	0.97	1 2011	retion To	Deck	
Tower led 2	Base) (-**		5 7 T T	
	2799	3427 8	2782	WUST	HAVE S	ior it chel	2
SILS	3336	4113	3333	E FRAN	~ Lota 7	to La	6
	a chang ta an the galaxy and the prime for a state of the	1.23	0.81	1 1697			
				(H 1	woder 3	•3	

Stretto Ponte sullo Stretto di Messina di Messina **PROGETTO DEFINITIVO** EurolinK Design Report - Tower Legs incl. Joints and Codice documento Rev Data Splices, Annex PS0015_F0 F0 20-06-2011 SEPT 28 CALCULATIONS (cond) CHECK WHICH LOADING IS DESULD CASE Page 662 at top diagh for sits and govers Se3-693 _ 3 760 MR 827 166 MPa de Anp charles ?. 186 MPa at Setter duit ? Se3_6902_3 Shear in middle - 68Mpa mon Shear abre = 200 ish Se3_ 6931-5 Shan nã mille - 300 MR _ 6 -6802-3 Sciller, 57 Wha in coulter in the same 6931 is clearly the danger case PLATES H/G/H from SE3_6931_6. pdf SHEARS ŝ At centre of G, mon T2 310 HPa; × 30mm thickness > flux 2310 × 30 2 9300 Nmm Al G below upper diaplingun 7 = 110 MPax 30thich = flin: 110×30 = 3300 N/um Al G 3.5m below upper diaplin 72 200 N/um 30 -> flux: 200×30 26000 N/um Along interface of onter H & skin T = 156 M/a men × 40thich = flux: 2156×40: 6240 N/um LONGITUDINAL IN PLATE D from Seq-6931-2. plf 257 236 246 - Top diaphian 224 230 222 . Э 533 531 461 - Bolton 580 716 マリチ 3m 531×55mm - 29200 N/mm 716×55mm - 39400 N/mm 193 529 520

Eurolink S.C.p.A.

Pagina 119 di 281

Sti di I	ret le:	to ssi	na	EI	roli	n K		Ponte su PRO(u llo Stre Getto I	tto di Me DEFINITI	essina VO	3	
Design Report - Tower Legs incl. Joints and Splices, Annex			ts and	Codice do PS0015_F0	ocumento			Rev F0	Data 20-06-201	1			
yield stress GammaM0 GammaM1 Cross-beam moment Shear from upper leg height of connection Moment applied width of connection Shear in connection flange thickness web thickness pl H above and below pl H in connection pl G in connection face of plD to stiff CL thickness of plD thickness of stiff CLpID to CL stiff buckling coefficient sigma_cr vertically shear lag factor gross flange breadth	E nu fy M la V tf tw tHout tG bH tG bH tg	MPa m MN-m m m m m m m m r m r r	210,000 46i 1.00 549i 3.19: 4753. 119: 4.0E+00 44 45i 55i 515i 1177: 55i 515i 1177: 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515i 1175; 515; 515; 515; 515; 515; 515; 515)) SILS) SILS) SILS)) page 671) ? ? ? ?))))))))))))))	*((1-nu^2)))*(tH/bF	1)^2						Page	666

Т

max vertical stress	max_vs		150	page 6	70							bending stresses				
ref page 664												in beam	deltaQi	Q	Aveff	V/Aveff
	space no	b)	d	ytop	yCL	Ai	Ai*yCL	yNAi	Ai*yNAi^2	Iself	MPa	Ai*yNai	=sumAi*yNAi	(Itotal/2*tf)/Q/2	
Top flange plate		1	6752	40		20	270080	5.4E+06	9,917	2.7E+13	3.6E+07	349	2.7E+09	2.7E+09)	
Top flange stiffeners		6	44.732	525		302.5	140906	4.3E+07	9,634	1.3E+13	3.2E+09	339	1.4E+09	4.0E+09	3,090,178 (Itotal*no*b)/Q	128
Web plate	1019	2	40	1019	0	509.5	81520	4.2E+07	9,427	7.2E+12	7.1E+09	332	7.7E+08	4.8E+09	2,595,869	153
Web stiffener	1019	2	525	53		1019	55650	5.7E+07	8,918	4.4E+12	1.3E+07	314	5.0E+08	5.3E+09)	
Web plate	1022	2	40	1022	1019	1530	81760	1.3E+08	8,407	5.8E+12	7.1E+09	296	6.9E+08	6.0E+09	2,082,758	190
Web stiffener	1022	2	525	53		2041	55650	1.1E+08	7,896	3.5E+12	1.3E+07	278	4.4E+08	6.4E+09)	
Web plate	1163	2	40	1163	2041	2622.5	93040	2.4E+08	7,314	5.0E+12	1.0E+10	258	6.8E+08	7.1E+09	1,754,599	226
Web stiffener	1163	2	525	53		3204	55650	1.8E+08	6,733	2.5E+12	1.3E+07	237	3.7E+08	7.5E+09)	
Web plate	1349	2	40	1349	3204	3878.5	107920	4.2E+08	6,058	4.0E+12	1.6E+10	213	6.5E+08	8.1E+09	1,532,808	258
Web stiffener	1349	2	400	40		4553	32000	1.5E+08	5,384	9.3E+11	4.3E+06	190	1.7E+08	8.3E+09)	
Web plate	1210	2	40	1210	4553	5158	96800	5.0E+08	4,779	2.2E+12	1.2E+10	168	4.6E+08	8.8E+09	1.421.863	279
Web stiffener	1210	2	400	40		5763	32000	1.8E+08	4,174	5.6E+11	4.3E+06	147	1.3E+08	8.9E+09)	
Web plate	1250	2	40	1250	5763	6388	100000	6.4E+08	3,549	1.3E+12	1.3E+10	125	3.5E+08	9.3E+09	1.346.863	294
Web stiffener	1250	2	300	30	1000000	7013	18000	1.3E+08	2.924	1.5E+11	1.4E+06	103	5.3E+07	9.3E+09)	0.00
Web plate	1366	2	40	1366	7013	7696	109280	84F+08	2 241	5.5E+11	17E+10	79	2 4F+08	9.6E+09	1 304 938	304
Web stiffener	1366	2	300	30		8379	18000	1.5E+08	1 558	4 4F+10	14E+06	55	2 8E+07	9.6E+09)	
Web plate	1480	2	40	1480	8379	9119	118400	1 1E+09	818	7 9E+10	2 2E+10	20	97E+07	9.7E+09	1 288 110	308
Web stiffener	1480	2	300	30		9859	18000	1.8E+08	78	1 1E+08	1 4E+06	-	1.4E+06	97E+09	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Web plate	1487	2	40	1487	9859	10602.5	118960	1 3E+09	-666	5 3E+10	2 2E+10	-23	-7 9E+07	9.6E+09	1 298 546	305
Web stiffener	1487	2	300	30	0000	11346	18000	2 0E+08	-1 409	3 6E+10	14E+06	-50	-2 5E+07	8 2E+09	1,200,040	,
Web plate	1384	2	40	1384	11346	12038	110720	1 3E+09	-2 101	4 9E+11	1.8E+10	-74	-2 3E+08	8 2E+09	1 517 327	261
Web stiffener	1384	2	300	30		12730	18000	2 3E+08	-2 793	1.4E+11	14E+06	-98	-5 0E+07	8 0E+09	1,011,021	201
Web plate	1275	2	40	1275	12730	13367 5	102000	1.4E+09	-3.431	1 2E+12	1.4E+10	-121	-3 5E+08	7.9E+00	1 571 421	252
Web stiffener	1275	2	400	40	12150	1/1005	32000	4.5E+08	-1 068	5 3E+11	1 3E+06	-143	-1 3E+08	7.6E+09	1,511,421	202
Web plate	12/1	2	400	1241	14005	14625.5	99280	1.5E+09	-1 689	2 2E+12	1 3E+10	-165	-1 7E+08	7.5E+09	1 672 610	237
Web stiffener	1241	2	400	40	14005	15246	32000	1 9E+08	-5 309	9 0E+11	1 3E+06	-187	-1 7E+08	7.0E+00	1,012,010	2.57
Web stillener	1374	2	400	1374	15246	15033	100020	1.8E±00	5,005	4 0E+12	1.7E±10	211	6 6E±08	6.8E±00	1 828 424	217
Web plate Web stiffenor	1374	2	525	53	13240	16620	55650	9 2E+08	6,683	2.5E+12	135+07	211	3.7E±08	6 2E+00	1,020,424	211
Web suiterier	1195	2	40	1195	16620	17212 6	94900	1.65+00	7 276	E 0E+12	1.15+10	250	6 0E±08	5 9E+00	2 154 020	194
Web plate Web stiffenor	1105	2	525	52	10020	17005	54000	0.000	7 969	3.0L+12	1.12=107	-200	-0.3L+00	5.00+03	2,104,023	104
Web suiterier	1040	2	323	1040	17905	10220 5	92020	3.5E+00	-1,000	5.4ET12	7.75+00	-211	-4.4L+00	17E+00	2 675 016	140
Web plate	1049	2	40	1049	17005	10029.0	03920	1.50-109	-0,393	5.9ET12	1.72+03	-230	-7.0E+00	4.7 2 + 05	2,075,010	140
Web suiterier	1049	2	525	1022	10054	10004	00000	1.0E+09	-0,917	4.4E+12	7.35+00	-314	-5.0E+00	4.0E+05	2 602 704	110
web plate	1033	2	40	1055	10004	19370.5	02040	1.6E+09	-9,434	7.4E+12	7.3E+09	-332	-7.0E+U0	3.5E+U5	3,602,764	110
	1055				10007	19007	0	0.0E+00	-9,950	0.0E+00	0.0E+00		0.0E+00	2.7E+05		
D # 0		6	44 700	505	19887	405015	0	0.0E+00	9,937	0.0E+00	0.0E+00		0.0E+00	2.7E+05	2 005 000	100
Bottom flange stiffener	s	6	44.132	525		19584.5	140906	2.8E+09	-9,648	1.3E+13	3.2E+09	-340	-1.4E+09	4.UE+09	3,085,892	128
Bottom flange plate		1	6752	40		19867 Atotal	270080	5.4E+09	-9,930 SumAv2	2.7E+13	3.6E+07	-350	-2.7E+09	2.7E+09	8	
						Alotal	230403Z	2 0E 1 10	SumAy2 :	LOE+14	2 25144					
							JUNIA	2.3E+10		Junisell -	1.CE 11					
							YNA	9,937		notal =	1.6E+14					

Г

Ponte sullo Stretto di Messina **PROGETTO DEFINITIVO**

Design Report - Tower Legs incl. Joints and	Codice documento	Rev	Data
Splices, Annex	PS0015_F0	F0	20-06-2011

yield stress	E nu fy	MPa																	Page 666A
GammaM1																			
Cross-beam moment																			
Shear from upper leg		MN																	
height of connection		m																	
width of connection		MIN-I	m																
Shear in connection	V	N																	
flange thickness	tf	mm																	
web thickness	tw	mm																	
pl H above and below	tHout	mm																	
pl A in connection	tG	mm																	
promocion	10																		
face of pID to stiff CL																			
thickness of pID																			
thickness of stiff																			
buckling coefficient	bri kv																		
sigma cr vertically	sHv cr																		
shear lag factor	sh_lag																		
gross flange breadth	bfg																		
max vertical stress	max vs																		
max ronada ou coo						Stresse	s in plat	eH 1	ens+co	omp	buckling	in first							
			Fluxes a	at leg face		=Flux/t		1	von Mis	ses	kh	sigma_c	r h						
ref page 664			shear	horiz	vert	shear	horiz V	vert :	at plate	H/D	(1+(d/bF	1)^2)^2	2*E//12*	(1	(+11/4) 42				
	space	110	SI IUX	TH TUX	VI IUX	tau_11	51111 3	5110	STIVIN	DIC			=tau+sH	(1-110-2)))	(11/11)-2				
Top flange plate			1 N/mm	N/mm	N/mm	flange	=Flux/tf					MPa	h+sHv	alpha_cr	alpha_ult	lambdab_pH	rho_H	rho*alpha_ult/Gam	maM1
Top flange stiffeners		(5,128	3 13571	0	128	339	0	405	0.88			467	ALE: NO				5.0	
Web plate	1019		2 6 10/	13280	7500	122	266	1	421	0.92	3 31	1512	538	2.81	1.09	0.623	1.000	1 1 092	0.916
Web stiffener	1019		2 0,10	10200	1500	122	200	150	74.1	0.02	5.51	1012	000	2.01	1.00	0.020	1.000	1.002	0.010
Web plate	1022	:	2 7,608	11842	7500	152	237	150	428	0.93	3.33	1511	539	2.80	1.07	0.619	1.000	1.074	0.931
Web stiffener	1022	-	2		7500								507						0.057
Web plate Web stiffener	1163		2 9,03	10303	/500	181	206	150	440	0.96	4.21	1499	537	2.79	1.05	0.612	1.000	J 1.045	0.957
Web plate	1349		2 10.338	8534	7500	207	171	150	453	0.99	5.93	1546	527	2.93	1.01	0.588	1.000	1.015	0.985
Web stiffener	1349	1	2																
Web plate	1210	-	2 11,144	6732	7500	223	135	150	458	1.00	4.64	1505	508	2.96	1.00	0.582	1.000	1.004	0.996
Web stiffener	1210		2 11 768	1000	7500	235	100	150	462	1.00	4 98	1513	485	3 12	1.00	0.565	1.000	0.995	1 005
Web stiffener	1250		2 11,70.	4555	1500	255	100	150	402	1.00	4.50	1313	405	5.12	1.00	0.303	1.000	0.555	1.005
Web plate	1366	1	2 12,143	3156	7500	243	63	150	461	1.00	6.11	1554	456	3.41	1.00	0.541	1.000	0.997	1.003
Web stiffener	1366	-	2																
Web plate Web stiffener	1480		2 12,30	1152	7500	246	23	150	456	0.99	1.44	1612	419	3.85	1.01	0.512	1.000	1.008	0.992
Web plate	1487		2 12,203	938	7500	244	19	150	452	0.98	7.53	1616	413	3.91	1.02	0.510	1.000	1.018	0.983
Web stiffener	1487	1	2																
Web plate	1384		2 10,443	3 2960	7500	209	59	150	407	0.89	6.30	1562	418	3.74	1.13	0.550	1.000	1.130	0.885
Web plate	1275		2 10.08/	4833	7500	202	97	150	410	0.89	5 21	1520	448	3 39	1 12	0.575	1.000	1 1 1 2 1	0.892
Web stiffener	1275		2			LUL		100		0.00	0.21	1020		0.00		0.010	1.000	1.121	0.002
Web plate	1241	1	2 9,474	6605	7500	189	132	150	409	0.89	4.90	1511	472	3.20	1.12	0.592	1.000	1.124	0.890
Web stiffener	1241	-	2 0 6 6 6	0447	7500	170	160	150	400	0.90	6 20	1667	400	2.40	4.42	0.507	1.000	1 1 1 27	0.997
Web stiffener	1374	1	2 0,000	0447	UUCI	1/3	109	UCI	400	0.09	0.20	100/	492	. 3.16	1.13	0.597	1.000	1.12/	0.007
Web plate	1185		2 7,356	5 10249	7500	147	205	150	400	0.87	4.44	1501	502	2.99	1.15	0.620	1.000	1.149	0.870
Web stiffener	1185	1	2									and the second of the second o							
Web plate	1049		2 5,924	11823	7500	118	236	150	395	0.86	3.49	1505	505	2.98	1.16	0.625	1.000	1.165	0.859
Web stiffener	1049		2 / 300	13280	7500	88	266	150	395	0.86	3 30	1508	504	2 00	1 16	0.623	1 0.00	1 164	0.859
.veb plate	1033		4,050	13203	1000	00	200	150	333	0.00	5.55	1300	504	2.33	1.10	0.023	1.000	2 1.104	0.000
		12			0.200			2	10250				7.235						
Bottom flange stiffener Bottom flange plate	s	6	5 5,138 1	13591	0	128	340	0	406	0.88			468						

Splices, Annex

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento PS0015_F0

 Rev
 Data

 F0
 20-06-2011

Splices, Annex

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento PS0015_F0

Page 669

Bridge across Strait of Messina Page: COWI Job no: Author: scc 72889-a Progetto Definitivo. Model ver. 3.3 Date: 27-sep-10 12:27 Ĩ ų, ÷ ÷ž ł л, ÷ -3 -8 ÷ ٠Ľ ł, ÷Ľ .H . ٠Ë -Ľ ٠č č ġ. .E ġ Į. Ę. Ť ÷Ē 5 튚 2 ž ę -ë ł 른 ę. ę. ų, Ē ł . 5 뷥 Ĩ. ÷, ÷ 븮 -8 ž 3 븮 뢽 ł ġ. - č ł ġ. 쇱 .H ġ ŝ, Ŋ, -đ 2 ł Ľ, .H ł ġ ų. ij. ¥. 4 4 ÷ 4 ų ž Ł ž . ÷ ų ÷Ë -**ž** ÷ ų, ų, -ê ٠e ų, 뷥 ÷ -1 .4 .2 ġ . . ļ, Ę. -.ĝ ę. <u>, P</u> şp 438 × 55mm = 66.91 Ľ -Ľ ÷ ÷Ē ÷ 5 - 5 -8 1.05 = 438MR -e Æ ġ. .8 ÷ ĉ 4 . ÷ ŝ ŝ. ÷. ł ų <u>۾</u> ŝ ٠ĝ ÷ ġ. 2 ٠ĝ -8 ţ ę .e ł ł ÷ -8 ĉ ā. -Ş 2 ֌ -8 SEPT ֐ ÷, ÷ ÷ ÷ ÷ĝ -8 ÷ ŧ 4 4 ą ŝ a 4 ł 128 ą ł ÷ ł ł -÷ ρ seran115<'c:\ibdasjobs\72889\messina-v3_shell\g6_s'320<'g6c1'4<global (phase1100 at time=100.0days) case6931 (ULS; since a case6931 (ULS; Wall D (cross beam side) (front view) Von-Mises_bot [MPa] (max) (elastic) BDAS V1.10-2 pc23562 c:\ibdasjobs\72889\messina-v3_shell\shelloutput_tower

Stretto Ponte sullo Stretto di Messina i di Messina **PROGETTO DEFINITIVO** EurolinK Design Report - Tower Legs incl. Joints and Codice documento Rev Data Splices, Annex PS0015_F0 F0 20-06-2011 Page 672 CALCULATIONS (cont) DISTRIBUTION OF SHEAR (cont) DISTRIBUTION TO PLATES ABC will be sh f.c. (1). and sho central diaphra the stiffners in shoar of plates ABC med with H,G, H 2 5 or plates H,G,H it result shear stars = [0:6 shear ye = 0.6 × 1/2 × 0+0 = 0.6 × 460 = 159 MPa 10 for SILS a Sheer stronin y 2 T 159 80.8×103 1.968×10 E 210000 -7 2(1+7) 2.6 Lebrustiai over bezelli of connectri 2 19.9×10³×1.968×10³ 2 39.2 mm - Sheen . Defermatori at top and bottom 2 391.2 2 19.6mm Dissume plates A, B, C nexist shear stress at 0.2 shear yeard - Deprestion at top and Intom = 0.2 × 19.6 = 6.5 mm a Displacement of plate A relative & plates H, G, H = 19.6 mm 13.1 mm Need stiffien of outer diaphragues to be sufficient to develop vosistine to show m (i) ... 13.1 mm.

Stretto Ponte sullo Stretto di Messina PROGETTO DEFINITIVO di Messina EurolinK Design Report - Tower Legs incl. Joints and Codice documento Rev Data Splices, Annex PS0015_F0 F0 20-06-2011 Page 673 SEPT 28 Concurations (cont) DISTRIBUTION OF SHEAR (cont) DISTRIBUTION TO PLATES ABC (cont) Shear flow in plate A 2 O.2 × shear yould x thuilmoss = 0.2 × 1/3 × 95 = 0.2 × 266 × 95 = 5046 N/mm = (5.05 M/mm By "complementary shears", & maintain equilibrium, the some shear flow will be resisted by plates B&C The vector sum of these forces NH 9.09 = 12.0 × 103 × 5.05 LEN GO-6MN 2002 2 12.0 × 5.05 MN 2 GO.GMN from one side .. Total shear is all plates A, B, C = 2,60.6 2121 MN Net shear across connection from page 67) = 239 MN hers Shear in plates A, B, C i Shear in platesty Gtt = -121 MU = 2 K18 MN -- Plate thickness & comp 118 MN at 0.6 show yild (as page 672) 0.6 sheer yould " 0.6 x 12 . 159 MPa · Plate thickness required 2 118 × 10⁶ 2 × 159 × 12000 2 planes of plats H,G,H But need thicker to resist in-plane theses (i) In von Mises (ii) for transverse Duelchie ally need SO 12 minum from COWI shall alaments Pase 668

Stretto Ponte sullo Stretto di Messina di Messina **PROGETTO DEFINITIVO** EurolinK Design Report - Tower Legs incl. Joints and Codice documento Rev Data Splices, Annex PS0015_F0 F0 20-06-2011 Page 674 SEPT 28 CALCULATIONS (cont) BUCKLING RESISTANCE WITHOUT HORIE STIFFENERS DES OF DUCKLING BY U. MODEL OF BUCKLING BUCKLING BY DISHING (1)Solween valued stiffenes has standard towar Dag calculat Buckling of checked in made is "dishing" The buckling altenate side on. int to the star Strayson strasser Vertical Stiffe stall housantel stasses increases the The coexistence of Le & Suckling Ihis 5~ "dı i sinde (2) BUCKLING BY HORIZONTAL STRUT BUCKLING The other possible form of buckling is like stut Duckling In this case, there is no interaction with the wantied stresses Horsontal shorse -

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO							
Design Report - Towe Splices	r Legs incl. Joints and , Annex	Codice documento PS0015_F0	Rev F0	Data 20-06-2011					
SEPT 28 Car BockenDG Res EFFECT OF St The plates of spacing the but the st	<u>curations (conf)</u> <u>ISTANCE INTHOUT</u> <u>EANE STREFSES</u> me so Ellich at there is no hear valueos the	Horizontas Stiffeners(cont composed with the sliff Duckling effect from sl affective yield stress (by	eners bas von	Page 675 2000 50 = 24 Duelelli Hise					

Stretto Ponte sullo Stretto di Messina di Messina **PROGETTO DEFINITIVO** EurolinK Design Report - Tower Legs incl. Joints and Codice documento Rev Data Splices, Annex PS0015_F0 F0 20-06-2011 Page 676 SEPT 28 CALENLATIONS (cout) BUCKLING RESISTANCE WITHOUT HORIZ STIFFENERS(cont) :2 HORIZONTAL STEESSES No hous sliff Plate G has no hous sliffenes Stanes disperse & appron zero at 45° from displayn Fuil stays at plate G No hous elflaners Assume monoral for evors-beam web reduced to 2 Assume stars dispenses on sector at 1:2 112 " Depth of effective sectori Capprosimilian to stross distributo in Inantia of section produced for show log = Flanges $72x_3^2 \times 6752 \times 40 \times 9.95^2 \times 10^2$ 35.6×10^2 mm⁴ Stiffenes $72x_3^2 \times 49.73 \times 525 \times 6\times 9.65^2 \times 10^2$ 17.5×10^{12} Webs $-22 \times 50 \times 23.9 \times 10^{9}/12$ 113.8×10^{12} 166.9×10^{12} mm⁴ Assume moment decreases lineally between faces of leg Normant resulted $e \frac{2}{3} \times 5490 = 3660 \times 10^{9}$ ~ mon strong Hy = 3660 x10 x 9.95 × 10 x 218 HR HORIZONTAL STRUT BUCKLING Check if 50 mm Unickness is sufficient for 218MPa applied - P Jordung 0.604 × 427 = 258 HPa = D = 218 . 0.844= OK

Eurolink S.C.p.A.

Pagina 131 di 281

Stretto Ponte sullo Stretto di Messina **PROGETTO DEFINITIVO** di Messina EurolinK Design Report - Tower Legs incl. Joints and Rev Codice documento Data Splices, Annex PS0015_F0 F0 20-06-2011 Page 679 NOTE: The diapel SEPT 28 morious (cont) of the cross the ple . This co Se the OUTER DAPHRAGMS I 0 1 the output how the COWI shall RESISTANCE SHEAR Ravisnie the sharing for the thick plate at the flange land, the slaving will be taken as 108, 808, 102 Rovinie I sections dimonstra on page 680 F~ \sim Section (1)(1) 460 Roseting 802 5-51-Applied s Sheer=0.817239 × 23.3 = 33.7 MN 261 マス・テン Avange shaar stress 2 1=0.981 2 266 2 261, HPa きてき 2×40×1617 Using 1/21.2 as EN 1993-1-5 #5.1 1#5.2 261 261 = (0.818 1.2.4266 319 e • • Y st. . . . in. 1 33 r (4)(3) Sections 20 Ly velucid resistance is Shea المعد Julas Pat bto (re access Ol. ongh L & 1. Oundria 689, sh this loss of 1.5m S 12 the slope ted əł is m "el the co 8C an Q ates Alase Del pl S stresses 'əf eat in خطه 3.15 4

Stretto Ponte sullo Stretto di Messina di Messina **PROGETTO DEFINITIVO** EurolinK Design Report - Tower Legs incl. Joints and Rev Codice documento Data Splices, Annex PS0015_F0 F0 20-06-2011 Page 682 CALCULATIONS (cont) SEPT 28 OUTER DIAPHRAGMS (cont) thirelevers stresses SUMMARY CONT shall alound output, pages 683 & 684, confirm that plates A (and also Bec) share the shear in the cross-beam to log connections. This is shown by be vise of shear stress in the zone between the top a bottom 1) diaphragues. 2) COWI shell about output page 684 also confirms that the diagelinagens above and below the eners-box planges contribute & computer these shaars & plate A. This is shown by the change in shears in the famals above and below the flanges. 3) The von Three strenes in the COWI shall slamants of the draplinagues are shown in passe 685 & 686 (in stars = 1001 MR. on page 686) which are for 20 mm plate draphroagen The maximum stass appears at the rounded comer of plate C - plate D and is about 980 MR This diaphragen will be increased in Anchiness, so the sharing will be diaphragens above and below will be loss than from the COWI model stop in 1= 10 30 10 From parse 684, sharing was approve \$ 20%; 60%; 20% von Mises is influenced by thear and direct stresses Direct transverse stresses are a function of skin and drappluragen - Assume sharing changes & 10% 80% 10% => Increase in Joedo = 302 = 1.33 ~ Plate thicknes required= COWI von Hises × 1.33 fus/sm 1.0 h SILS 20x 460 ×1.33 2 57.9 mm plate. without ext-outs plate for orter displusques stross paths 60 mm sized by planze stars -> Thickory 2 801 x20 2 38.3mm 0 (=> 40 elete).

Splices, Annex

Ponte sullo Stretto di Messina **PROGETTO DEFINITIVO**

Codice documento PS0015_F0

Rev Data 20-06-2011

F0

Splices, Annex

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento PS0015_F0

 Rev
 Data

 F0
 20-06-2011

Page 684

ž Bridge across Strait of Messina Page: COWI Job no: Author: scc 72889-a Progetto Definitivo. Model ver. 3.3 Date: 30-sep-10 10:55 ł Ř 2 Ľ, **Ģ**. Seo1 . £. 쀍 1 2. ę. 5 ş. ų. n ioi ġ. a-iuě. 2 20 ÷ 킱 5 2 ۳. ş. 3 8 5 8 킜. 4 Ş. 5 ş Ş. 5 5 ş, 5 R ÷ ş. 5 s. ų. 1 ų, 5 Ę, ÷. Ş. 22 seranl19<'c:\ibdasjobs\72889\messina-v3_shell\g6_s'320<'g6c1'4<global (phase1100 at time=100.0days) case6931¹ (UIS_SUS p Wall A (Sidespan side) (left view) ssy [MPa] (min) (at Zef=0.00 in Efib=1)(elastic) BDAS V1.10-2 pc23562 c:\ibdasjobs\72889\messina-v3_shell\shelloutput_tower

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento PS0015_F0

 Rev
 Data

 F0
 20-06-2011

Stretto di Messina	EurolinK	Ponte sullo Stretto di Mo PROGETTO DEFINITI	essina VO
Design Report - Towe Splices	r Legs incl. Joints and , Annex	Codice documento PS0015_F0	Rev Data F0 20-06-2011
			Page 690
	lself 14,583,333 1,080,000,000 1,094,583,333 2,511,084,906 3,605,668,239 184.4		M
	Aiy2 Ai*ycgNA^2 852,821,289 1,658,263,617 2,511,084,906 Igross = i =	- - -	Is9/30/20103:48
	ycgNA -110.4 214.6 110.4	214.6	n09d30.x
	ycg Ai'ycg Ai'ycg Ai'ycg Ai'ycg 0 25.00 1,750,000 0 350.00 12,600,000 14,350,000 135.38 514.62 514.62	n /,000,431 e_c max	r_as_strut_buckling_2010m
	Ai 50.0 70000 650.0 36000 650.0 106000 yNA = yo =		nection\stiffene
610.2	Bi 1400.0 60.0		Nbeam-leg_cor
l properties 15*t*epsilon =	Lis Lepsion = Item E Skin plate Outstand flange		E:\1913\cmk_1913

	Str di N	etto Iessina	Eu	rolin	ĸ	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO
De	esign Re	eport - Towe Splices	er Legs inc , Annex	cl. Joints	and	Codice documento Rev Data PS0015_F0 F0 20-06-2011
	piRd					Page 691
	bRd flux Vmm) N	8,987 9,860 11,631 13,085 14,011	7,225 7,969 9,514 10,824 11,681	5,649 6,260 7,558 8,694	5Rd (N) 42,767,520 #REF!	200 200 200
•	alfowab e Nt stress (N	150 164 218 238	131 145 173 212 212	113 125 174	REF!	24
chiz	<u></u>	0.358 0.393 0.464 0.558 0.558	0.314 0.346 0.414 0.471 0.508	0.270 0.299 0.361 0.416	#REF1	
ımbdabarz phiz		1.376 1.735 1.290 1.599 1.140 1.380 1.032 1.237 0.968 1.157	1.501 1.946 1.407 1.786 1.243 1.528 1.126 1.361 1.057 1.268	1.651 2.219 1.548 2.029 1.368 1.721 1.239 1.521	0.269 0.553 #REF1 ####	
lambda1 Is	pSQRT(E/fy)	67.1 67.1 67.1 67.1	67.1 67.1 67.1 67.1	67.1 67.1 67.1 67.1	67.1 67.1	
bdaz	ц е	92.4 210000 460 88.6 210000 460 76.5 210000 460 69.3 210000 460 65.0 210000 460	100.8 210000 460 94.5 210000 460 83.5 210000 460 75.6 210000 460 70.9 210000 460	110.9 210000 460 103.9 210000 460 91.8 210000 460 83.1 210000 460	18.1 210000 460 REFI 210000 460 18.1 210000 460	
lam	Ler	17.3 17.3 17.3 17.3	15.9 15.9 15.9 15.9	4.41 4.41 4.41 4.41	184.4 REFI #	to ∑
	<u>N</u>	1,600 1,500 1,325 1,126	1,600 1,500 1,325 1,200 1,126	1,600 1,500 1,325 1,200	3,333 3,333 # 3,333 #	010,3:56 P
	length tor Lcr	1.00 1.00 1.00 1.00 1.00	00.1 00.1 00.1 00.1 00.1 0 0 0 0	1.00 1.00 1.00	1.00 1.00 1.00	b.Rd:9/30/2
	ength eff tual fac	1,600 1,500 1,225 1,126	1,600 1,500 1,325 1,1200 1,126	1,600 1,500 1,325 1,200	3,333 3,333 3,333	N'SKY OED
	lpha ac	0.49 0.49 0.49 0.49	0.49 0.49 0.49 0.49	0.49 0.49 0.49 0.49	0.49 0.49	2010 2010 2010 2010 2010
	Ē	0000000	55 55 55 55	50 50 50 + vertica	106,000 FREF1	buckling
-	less Afr	000000000000000000000000000000000000000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50 50 50 50 1n panel	- 1º	as strut
	plate gammaM1 thickr t	22222	22222	1.1 1.1 1.1 1.1 1.1 1.1 1.1	- 	mection/stiffener
	•	ate ate te	ate ate ate	ate ate ate ate te, need 50mm plate minim	rt stiff on G rt stiff on G stiffener	1913)cmk_1913)beam-leg_c

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento
PS0015_F0

 Rev
 Data

 F0
 20-06-2011

		D		D	Pa
1	А	В	Ginner	D Gouter	E Outer H inner
2	from outer face	£.	6800	5200	2500
3	Modulus	Es	210.000	210.000	210.000
4	Poisson's ratio	nu	0.30	0.30	0.30
5	Shear modulus	G	80,769	80,769	80,769
6	f_y		460	460	460
7	GammaM0	GammaM0	1.0	1.0	1.0
8	GammaM1	GammaM	1.0	1.0	1.0
9	fy/GammaM1		460	460	460
10	axial stress along stiffener	s_a	284	326	395
11	available bending	s_bmax	1/6	134	65
12			0000	0000	0000
13	transverse stiffener span	D	3333	3333	3333
4	transverse suitener spacing	a_1	1200	1200	1200
C	plate CL eagy 1	a_2	1600	1600	1000
7	plate CL eccy 1	e_1	0	0	0
0	plate OL etty 2	e_z	U	0	U
0	number of longitudinal stiffeners	nle	0	0	0
0	thickness of longitudinal stiffeners	tle	0	0	0
1	breadth of longitudinal stiffeners	ble	0	0	0
2	breadur or longitudinal sufferiers	DIS	U	0	0
2	skip breadth=/a 1+a 21/2	hskf	1400	1/00	1400
0	skin thickness (plate H/G/H = skin)	tskf	1400	1400	1400 50
+	transverse stiffener web breadth	hstw	00	00 A75	550
6	transverse stiffener web thickness	tstw	450	4/5	55
7	transverse stiffener flange breadth	bstf	40	40	0
8	transverse stiffener flange thickness	tstf	0	0	0
9	transverse stiffener denth	Dst	500	525	00
0	Area	As	90250	92800	100250
1	Skin: distance of centroid from outside face of skin	vski	25	2000	25
$\frac{1}{2}$	Web: distance of centroid from outside face of skin	Vwi	275	287.5	325
3	Flance: distance of centroid from outside face of skin	vfi	500	525	600
1	Neutral axis: distance of centroid from outside face of skin	VNA	81.09	89.49	115.52
5	Skin: distance of centroid from NA	vNAski	56.1	64.5	90.5
6	Web: distance of centroid from NA	vNAwi	-193.9	-198.0	-209.5
7	Flange: distance of centroid from NA	vNAfi	-418.9	-435.5	-484.5
R	I provided	1	1 337 950 283	1 628 339 529	2 678 132 923
9	, provided	·	1,001,000,200	1,020,000,020	2,010,102,020
ō	centroid of skin from NA	ec sk	56.09	64 49	90.52
1	centroid of stiffener from NA	ec st	193.91	198.01	209.48
2	e centroid	e c	193.9	198.0	200.40
2	o oontoid	0_0	100.0	100.0	200.0
4	vî = e max	V	418.9	435.5	484.5
5	radius of ovration	is	121.8	132.5	163.4
6	alpha s	apha s	0 49	0.49	0.49
7	alpha e	alpha e	0.633	0.625	0.605
B	lambda s = b/is		27.4	25.2	20.4
9	lambda1 s =		67.1	67.1	67.1
0	lambdab s		0.408	0.375	0.304
1	phi s=0.5*(1+alpha e*(lambdab s-0.2)+lambdab s^2)		0.649	0.625	0.578
2	chi s =1/(phi s+(phi s^2-lambdab s^2)^0.5)<1		0.867	0.889	0.936
3	resistance stress =chi s*f v/GammaM	sRa	398.7	409.0	430.4
1					
5	Area of plate + stiffener	A ps = A s	90,250	92,800	100.250
3	External compression force applied to transverse stiffener = s a*A ps	Na	25,661,083	30,221,867	39,640,521
7	axial compressive resistance of tranvserse stiffener = Nb.Rd	N	35,981,769	37,952,061	43,147,709
3	Ncr = PI()^2*Es*I/b^2	Ncr	249.625.179	303,803,924	499,666,854
)	((f y/GammaM)-(N bRd/A s))		61.3	51.0	29.6
)	(1-(N/Ncr))		0.856	0.875	0.914
1	M=sb*l/y		195,819,143	190,813,231	163,619,633
2	w_0c*m=M/N		5.44	5.03	3.79
3		1			
1	w_0c1=(fy/gM-N/A)(I/(N*y))(1-N/Ncr)	w_0c1	4.66	4.40	3.46
5	w_0c2 = b/300	w_0c2	11.11	11.11	11.11
;	w_0c=MAX(w_0c1,w_0c2)	w_0c	11.11	11.11	7.56
1					
3	e_max	e_max	418.9	435.5	484.5
9	w 0=MIN(a 1/300, a 2/300, b/300)	w 0	4.00	4.00	4.00
0		-			
1	Longitudinal Stress (horizontal stress in plates H/G/H)	sL	175	134	64
2	Longitudinal force	NL	29.163.750	22,301,691	10.721.967
3	NL/b		8750	6691	3217
4	Es*I*(PI()/b)^4	f 4	221.8	269.9	443.9
5	sum of w1+w0+e1	sum1		230.0	
6	sum of w1+w0+e2	sum2			
ī	Fd	Fd	0	0	0
8	(NL/b)((w0+e1)/a1+(w0+e2)/a2)+Na*w0c(PI()/b)^2+Fd	Q	304.3	337.3	284.8
9			001.0	001.0	201.0
~		1			

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento	
PS0015_F0	

 Rev
 Data

 F0
 20-06-2011

A	В	C	D	1 <u>uge 000</u>
80				
81 [f_4-(NL/b)(1/a_1+1/a_2)-Na*(PI()/b)^2	f_5	186.22	233.30	404.02
82 w_1 = Q/f_5	w_1	1.63	1.45	0.71
83 ((NL/b)((w1+w0+e1)/a1+(w1+w0+e2)/a2)+Na*(w1+w0c)(PI()/b)^2+Fd)/(Es*(PI()/b)^4*w1)) Icheck	1,337,950,283	1,628,339,529	2,678,132,923
84 Icheck/Iprovided		1.000	1.000	1.000
85 Max distributed load on stiffener = Es*I*w_1*(PI()/b)^4		362	390	313
86 Max shear force in stiffener = Es*I*w_1*(PI()/b)^3	V	384,527	414,051	332,045
87 Max bending moment in stiffener = Es*I*w_1*(PI()/b)^2	M	407,955,057	439,277,297	352,275,958
88 max bending stress = M*y/I	sbEd	127.7	117.5	63.7
89 total stress=		412.06	443.15	459.14
90 D/C = stress/(fy/GammaM)		0.90	0.96	1.00
91				
92				
93 Stiffener lateral buckling	Not relevant	for flat stiffeners within b	o/t limits for Class 3	
94 Inertia of stiffener flange + half web	Istz	0		
95 Area of stiffener flange + half web	Astz	10 125 00		
96 radius of gyration	isz	0		
97 alpha sz	apha sz	0.49		
98 alpha ez	alpha_ez	#DIV/01		
99 Unrestrained length		8000		
100 lambda sz = l cr/isz = b/isz (because l cr = b)	LOIL	#DIV/01		
101 Jambda1 sz =	lambda1_cz	#DIV/0		
101 lambda1_52 -	lambua1_52	07.1		
102	1+	12 669 750		
104 Distance of florers controld from face of alvin	1L 1.#	13,000,730		
104 Distance of hange centroid from face of skin	yı In	400.0		
105 Polar moment of area of hange+web about face of skin	ip	1,300,875,000		
	-	1,104,014,423,077		
	-	0		
108 (E*Istz*yf^2*(PI()/Lcrz)^2)/Ip		0		
109 (G*It+E*Istz*yf*2*(PI()/Lcrz)*2)/Ip		808		
110 s_crz = (PI()^2*Es*Istz/b^2)/Astz	s_crz	0		
111 FE s_cr	s_crzFE			
112 elastic critical buckling stress (MUST SELECT)	s_cr	808		
113 lambdab_sz from Lcr/isz		#DIV/0!		
114 lambdab_sz from s_cr	lambdab_sz	0.755		
115 phi_sz=0.5*(1+alpha_e*(lambdab_s-0.2)+lambdab_s^2)	phi_sz	#DIV/0!		
116 chi_sz =1/(phi_s+(phi_s^2-lambdab_s^2)^0.5)<1	chi_sz	#DIV/0!		
117 resistance stress =chi_sz*f_y/GammaM	s_bRdz	#DIV/0!		
118 D/C = sbEd/s_bRdz		#DIV/0!		
119				
120 s_bRdz/s_cr		#DIV/0!		
121				
122 FE output				

Eurolink S.C.p.A.

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

OVERALL BEHAVIOUR

1) The inner diaphragm has a hole for access, but this is well framed and the loading is approximately symmetric about the contro-line of the hole.

Design Report - Tower Legs incl. Joints and

Splices, Annex

2) The outer diaphragms have holes for the elevators and asymmetric load because of the high shear being transmitted to plates ASB. These shears produces (i) overall bending (ii) local (Vierendeed) bending "across the hole

- 3) The curved corners, especially in plates C, give rise to radial forces in the skin from horizontal forces (produced by overall and local banding in the diaphragm). The radial forces have two big effects
 - (i) The radial force causes radial displacements that reduce the effective width of the skin acting as a flange resisting bending in the diaphragm
 - (ii) When the skin carries horizontal compression forces from diaphragm bending, the radial forces apply big tensile forces to the welds between the skin and the diaphragm.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data	
Splices, Annex		PS0015_F0	F0	20-06-2011	

WELDS - DIAPHRAGEN TO VERTICAL PLATES

Forces

From page 602, cross beam 2 and moment. 3550 MN.m with sheen = 140 MN Use original dongen values of 11:3625 & V = 145HN so that early calculations can be used fordirect companion. From page 671 lyshear above connection = 0.8H = 0.8×3625 × 29.5 HN Flange force of Rought 2 3625 - 182 MN 29.5 24.5 182MN 158 MN 15811 Decause some somed in wes Assume 80% from plange & 20% from med 0.80×158-126MN SHEAR FROM OVERAL BENDING BEHAVIOUR From page 673 shear armied in plates ABC = 0:5x Ital, shered aspage 682 102 above, 802 at drived 10% bolow ELEVATION ± × 0.5× 0.8×126= 25:2MN on plate B/A/B formarithin connection == 4 MAN MA + 2 × 0.5 × 24.5° 6.1 MN on plate BAB from above converting of SECTIONAL PLAN Shear in welds is worse for larger affective flange . Use SO R and 10t effective (curreture reduces effectiveness) Incertia of overall diaphragen ² 3.60 × 10¹² mm⁴ ² 7.68 × 10¹² Sicilia CO2 HC 250H Calobri HC 245/501 ~ I= 2 ×1000 × 50 × 60002 2 × 4000 ×60 × 40002 KC = 45/501 2 0.64 × 1012 2 × 60 ×(4000)3/12 11.92×1012 pening fo Sharing Ved S 31.3×10×(1000×50×6000) 788 N/mm devator SHEAR FROM LOCAL (VIERENDEEL) BENDING BEVAVIOUR ZShan 2 31.3 HN/per outer diaphragen 2. Shear / triangular diaphragen = 31.3 = 15.7 MN PART SECTIONAL PLAN At deep end Shear/um 2 Ved S = 15.7 ×10 × (1000×50×1676) 2 2685 N/mm 490×109 (Page 2213) LC TOTAL LONGITUDINAL SHEAK onerall bending ? 788 N/mm Shear from local -----2685 -3473 N/m

Stretto
CIMESSINA
Design Report - Tower Legs incl. Joints and
Splices, Annex
Means Lege Michight of black + B
Take affecture depth - 1 with place + A - fA + 1 with
take affecture depth - 1 with place + A - fA + 1 with
Heat - Average diverted for the factor
Name Lege Michight of black + B
Take affecture depth - 1 with place + A - fA + 1 with
Heat - Average diverted for the factor
Name Lege Michight of black + B
Take affecture depth - 1 with place + A - fA + 1 with
Heat - Average diverted for the factor
Name Lege Michight of the factor
Name Lege Michight - 1 with place + A - fA + 1 with
Heat - Average diverted for the factor
Name Lege Michight - 1 with the factor
Name Lege Michight - 1 with the factor
Name Lege Michight - 1 with the factor
Name Lege Michight - 2000 · (5220 When
Name Lege Michight - 2000 · (5220 When
Name Lege Michight - 2000 · 10 Michight - 17 when
Heat - Superstell Seg Page 2212
There is an eddition with lead from Page 2212
There is an eddition with lead from Page 2212
There is an eddition with lead from Page 2212
There is an eddition with lead from
She convertice of the factor
- Flowing for 5 50 × 1000 × 428 · 21.9 MN
- Flowing for 5 50 × 1000 × 428 · 21.9 MN
- Reduid lead · From · 2000 · 10950 When
Assume 200 Minosh =
$$\gamma_1 = \frac{2473}{2x20} \cdot 3731 + 1300 - 2000 min Mirodo
- 100 - 200 min Mirodo
- 100$$

Stretto
CilmessinaPonte sullo Stretto di Messina
PROGETTO DEFINITIVODesign Report - Tower Legs incl. Joints and
Splices, AnnexCodice documento
$$Rev DeteROUSERORev DeteRouseRouseWELDS - DUARKAGHSplices, AnnexDeserviceProme Sullo Stretto di MessinaPROUSERORev DeteRouseRouseWELDS - DUARKAGHSplices, AnnexDeserviceProme Sullo Stretto di MessinaPROUSERORev DeteRouseRouseWELDS - DUARKAGHSplices, AnnexDeserviceProme Sullo StrettoProme Sullo Stretto<$$

Dispussion Wes at Rate A
From page 2213
Show hum along plate A
$$=$$
 5791 N/Lm mon
 $=$ 3676 N/Lm mon
For show plate thickness for show $= \frac{Vet/mm}{\left(\frac{1}{N/T_{3}}\right)} = \frac{5791}{253} = 22.9 mm$
For direct stress
Horiman axial lood, sum of P₁ + P₂, = length × shew
 $= 4000 \times 5676 = 22.7 mm$
Assume $COS = 40L$ dividuation between P₁ $\approx P_2$
 $\sim \hat{P} = 0.6 \times 22.7 = 13.6 HN$
 $\sim Min$ tencilo onen $\equiv \frac{\hat{P}}{\left(\frac{1}{4}n\right)} = \frac{13.6 \times 10^6}{238} = 31050 mm^2$
From page 2217 and 2218, and depth = 1370 min a $p = 20mm$
 $\frac{31050}{2} + 22.7 mm$
 $25.4 mill be OK hul beaves fills morgan for approximation$

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data	
Splices, Annex		PS0015_F0	F0	20-06-2011	

$$\frac{\mathbb{Z} \text{ Grade Rate Requirements}}{\text{Refer L EN1993-1-10 Table 3.2}}$$
Refer L EN1993-1-10 Table 3.2 and EN1993-1-1 Table 3.2
$$\frac{\text{PA}_{3}30p \text{ uch } \rightarrow pA}{\text{Za}, \text{ uch depth } = 15 \text{ m} \rightarrow 10 \text{ conf} \leq 20 \rightarrow a = 14 \text{ m} \rightarrow \mathbb{Za} = 6}$$

$$\frac{\text{Zb}, \text{ shape a portri - partial a full pan}}{\text{Zb} = 5}$$

$$\frac{\text{Zc}, \text{ FO

$$\frac{\text{Zd} = 0}{26}$$

$$\frac{\text{Zd} = 0}{18 < 20 = 7215}$$$$

=> ZIS with prehand >100°C

$$\frac{PE}{30} \xrightarrow{1} \frac{1}{100} \xrightarrow{1} \frac{1}{10} \xrightarrow{1} \frac{1}{$$

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Design Report - Towe Splices	r Legs incl. Joints and , Annex	Codice documento PS0015_F0	Rev F0	Data 20-06-2011		
Z GRADE RATE pH; 60p diaphin + Za ² weld dept	REQUIREMENTS (co $40 \neq diaphin$ $v = \frac{40}{2} = 20 \text{ mm} \Rightarrow a$	$= \frac{1}{2}$				
26 2		26 2 5				
Ze ŝsp		Zc 2 12				
Zd' having Ze proheat	vestramid ≥ 100°C	28 - 8 - 8 20 with pre	≯20 > elaat ≥	ZIS		
₿G; 40pe draph	<u>m</u>	- 6				
Ze Sop Ze Sop Ze Reheat 200	°C-	2 S 2 10 0 21 -8 13 anth-preheat	- -> z ≥100	elS °C		

FROM SADDLE & CROSS-BEAM FLANGE (could Forces COMBINED

Combined Wind + Vartical (cont inner plate D (asserne 23 of 8m andle affectue) Frid Q 4.0m from - Rase 1012 wind (reduced by shear into plates H) (1-4.0) 150 = 100 MN i Wind 3 and 80% ventical = = 7/8= SZHN Page 1012 152. HN 152×10 1460/.05 347000 mm² - 181000 4×45×450" 266000 mm minun plate Mickness = 266000 3733 71. 3 min Dines full 8 minutel of 700 37330 2 width veduced Inacces bles = = x8000-2×800 = 3733 Find ₩i os a 8.0. date D $\left(1 - \frac{8.0}{12.0}\right)$ wind (reduced by show int plates H&G) Wind SO MU: for 150 ª 78 MJ 80% ~ Page 1012 128 MN · . . 128×106 292200 mm 460/1.05 of stiffance - 121500 6 ASX 450 170 700 mm 8 \$ 12 00 inner &D 170700 30 mm Minmin plate thickness 7 2 28.5 mm 6000 aidh reduced by access &

Enturduil chan?

2850 40k

Stretto
cliMessina
$$e_{urolink}$$
Ponte sullo Stretto di Messina
PROGETTO DEFINITIVODesign Report - Tower Legs incl. Joints and
Splices, AnnexCodice documento
PSOULE, FORev
PoData
20062011Strete recon Cress-bran Enuces Freese (cond)Waves from #4.5.32Direction from #4.5.32AnnexStretto di Messina
PSOULE, FOMarce from #4.5.32Direction method,
Enuce from #4.5.32Image from #4.5.32Direction method,
(B MmL = 100 × 1/25 = 408 MPaThe Shreet Shullness in and defined, see assume 20 mm and rational for MPa
 $T_1 = \frac{2016}{200} = 100.8 MPa$ The Shreet Shullness in and defined, see assume 20 mm and rational for MPa $T_1 = \frac{2016}{200} = 100.8 MPa$ $T_1 = \frac{2016}{200} = 156.3 MPa$ $z = \frac{2016}{200} = 156.3 MPa$ $z = \frac{1}{200} = 100.8 MPa$ $z = \frac{1}{200} = 100.8 TPa$ $z = \frac{1}{200} = 120.5 TPa$

wel7

リヌ

ee weld volume

£

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Design Report - Towe Splices	r Legs incl. Joints and , Annex	Codice documento PS0015_F0	Rev F0	Data 20-06-2011		
WELDS TO DIAPHRAGHS RESTRAINING PLATES A						
		Platas A 20A 20A 20A 20A 20A	R R			
From page 10	DIA direct dead & transverse sha	/mm = 2016 N/mm				
Ty 10 mm lo	at & scale for	om Ilal				
$T_{II} = 201.6 \text{ D/mm}$ $T_{II} = 0$ $= \left[-\frac{2}{1^{2}} + 3\left(T_{I}^{2} + T_{II}^{2}\right)^{0.5} \cdot \left[201.6^{2} + 3\left(201.6^{2}\right)^{0.5} \cdot \left[4 \times 201.6^{2}\right]^{0.5} \cdot 2 \times 201.6 + 403 \text{ HP}_{a} \right]$ $= \left[\frac{h_{L}}{\beta} \frac{1}{1000} + \frac{1}{10000000000000000000000000000000000$						
(3) Use 10 mm thusat welds						

.

5.2.3 Deck Buffer Connections

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data	
Splices, Annex		PS0015_F0	F0	20-06-2011	

must increase R to boo min

$$\rightarrow a = boo - \frac{430}{30} = 365 > 380 \rightarrow 0.1. V$$

 $\rightarrow a = boo - \frac{430}{30} = 365 > 380 \rightarrow 0.1. V$
 $\rightarrow check c : $\rightarrow \frac{Fat8m}{3tF_{3}} + \frac{d_{0}}{3} = \frac{10x_{10}b(1.05)}{3(100)(400)} + \frac{430}{3}$
 $= 236 \text{ mm} < 385 \text{ m} \rightarrow 0.1. V$
 $\rightarrow check get resistance of PL 130: showed 400 $ Pin - 0.1. V$
 $\rightarrow Check get resistance of PL 130: showed 400 $ Pin - 0.1. V$
 $\rightarrow F_{0,eL} = \frac{1.5 \pm d_{c}F_{3}}{8m_{0}} = \frac{1.5(130)(400)(4100)}{1.05(10^{4})}$
 $= 31.5 \text{ mN} > F_{0,eL} = 10 \text{ mN} \rightarrow 0.1. V$
 $\rightarrow F_{0,eL} = \frac{1.5 \pm d_{c}F_{3}}{8m_{0}} = \frac{1.5(130)(400)(4100)}{1.05(10^{4})}$
 $= 31.5 \text{ mN} > F_{0,eL} = 10 \text{ mN} \rightarrow 0.1. V$
 $\rightarrow F_{0,eL} = boos And Dimensions "a" And "c" an$$

Eurolink S.C.p.A.

Pagina 172 di 281

m:

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Tower Legs incl. Joints and Splices, Annex		Codice documento PS0015_F0	Rev F0	Data 20-06-2011
\rightarrow $\partial \partial 3 \ll \partial 16 \Rightarrow 5 + o u o BE O K$				
JELTION AT CUTOUT, WE HAVE 2000 WIOTH - 45 - 2(20) = 1915 FOR SHEAR 				
= 87 MPai - No PROBLEM, V 				
\rightarrow IF WE USE ONLY PORTION INSIDE OF VERT. STIFFENER, \rightarrow Lines = $H(8\partial \partial) = 3\partial 88$ m. \rightarrow DEMAND = $\frac{10 \times 10^3 \text{ kN}}{100000000000000000000000000000000000$				
\rightarrow TAUNE TOTAL LENGTA OF NEWS HERE: \rightarrow = $2(2)(1915) \rightarrow L_{new} = 71000$ \rightarrow = 10000 + 121 km/mm				
TIDO TROVIDES 1.50 km/mm,				
$2.50 \text{ levin} > 1.31 \rightarrow \underline{G000} - \text{VSE THS}.$				
(NOTE: WEB PL 30 IS NOW WENDED TO LONUIT. STIRE. ON PLATE H C EITHER END TO ENSURE SHEAR TRANSFER. (2010 OCT 15) = SEE NEXT PALE SHETLH.				

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1		
Design Report - Towe Splices	r Legs incl. Joints and , Annex	Codice documento PS0015_F0	Rev F0	Data 20-06-2011		
TEY TH	THE PL 120 (WHERE 120 STARTS TO TAREZ INTO 50PL) TEN THE FOLLOWING I 					
	HITELAL KILL. JOOUN. 					
$- CHECK CAPALITY OF PLATE TO CAREY KICK TO SLIN 2 TREAT AS COWMN HOX BOOX (VERY CONSERVATIVE) HOO CH. FORCE INGREASES ADDAL COWMN AXE TO \simeq \sqrt{3} (300 \text{ km}) = 383 \text{ kN}.- Cur, c = \frac{11^2 (300 000)(40)^2}{13 (100)^2} = 318 \text{ kmpn}.$						

$$\begin{split} & \overline{\lambda}_{c} = \left[\frac{f_{y}}{\sigma_{cr_{y}c}} = \sqrt{\frac{460}{316}} = 1.45 \\ & \overline{\Phi} = 0.5 \left[1 + \sigma \left(\overline{\lambda} - 0.3\right) + \overline{\lambda}^{2}\right] & \overline{\xi} \sigma = 0.31 \right] \frac{ENMA3\cdot1.5}{\overline{\xi} 4.5.3} \\ & = 0.5 \left[1 + 0.31 \left(1.45 - 0.3\right) + (1.45)^{2}\right] = 1.69 \\ & \chi = \frac{1}{\overline{\Phi} + \sqrt{\overline{\Phi}^{2} - \overline{\lambda}^{2}}} = \frac{1}{1.69 + \sqrt{(1.69)^{2} - (1.45)^{2}}} = 0.392 \end{split}$$

: Compressive CAPACITY REDUCED FOR BUCKIME.

$$= 0.399 (460)(200) = 1375 \text{ kN} > 283.\text{ kN}$$

 $1.05 (10^3)$

---> COULD LIKELY SLIM THIS DOWN, HOWEVER USE 40 PL TO ENSURE ADEQUATE STICGNESS TO ATTRACT THE OUT OF PLANE LOAD... (VECK) SMALL QUANTING PENATINE TO ITS IMPORTANCE).

-> CHELL WELDS BIN PL 40 EXTENSION AND PL 120: -> REQUICED CAPACITY: LNELD = 500 mm | com. $\rightarrow \frac{287 \text{ km}}{500} = 0.5 \text{ km}/\text{mm} \rightarrow \text{EASILY TAKEN}$ BY $\frac{-8}{8}$

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

Stretto di Messina	E u r o l i n K	Ponte sullo Stre PROGETTO I	tto di Mess DEFINITIVO	ina		
Design Report - Towe Splices	r Legs incl. Joints and , Annex	Codice documento PS0015_F0	Re F0	ev Data 20-06-2011		
MODIF BUFFER CRS	MODIFP PIN PLATES FURTHER ON TRANSVERSE BUFPER BASED ON NEW INFO FROM CRS					
	BOD & TO	630 Q		~ _		
$a \ge \frac{1}{2}$	$A \ge \frac{10 \times 10^{6} (1.05)}{2(120)(460)} + \frac{3}{3}(630) = 515 \text{ mm.} (05550)$ $C \ge 11 + \frac{1}{3}(630) = 305 \text{ mm.}$					
	MIN DISTANCE MELTING PIN PI	VITH OF PROJECT LOSER TO SKIN IS 1100 \$1000 - + 100 GAP }.	INC PIATE FOR)		
		UP IN CAD	- SEE			
CHECK OUT OF PLANE FORME C 390 OF BUFGER LOADS = 400 KN TOTAL = 200 KN / PLATE. @ & PIN';						
	DUE TO STIFFEMINH PL PREVIOUS DESIL THIS IS DEMANOS ON (LESS ELLENTRIN	TIME CONSTRAINT -40 ES. SIM IN CONSERVATIVE) PL40 WILL E CITY OF MITERAL	JO JO SINCE SE SMA LOAD	uer.		

$$\Rightarrow A_{XIAL} = \frac{20 \text{ mN}}{3(50)(1500)} = 133 \text{ mPa}$$

$$\Rightarrow \sigma_{TOTAL} = 192 \text{ mPa} \quad (A_{XIAL})$$

$$\Rightarrow 5475Ae From 2 \text{ mN} = \frac{2 \times 10^{6}}{50(1500)(2)} = 13 \text{ mPa}$$

$$NEGLIGIBLE.$$

: PL 50 O.K. V

Stretto di Messina	EurolinK	Ponte sullo Stretto di M PROGETTO DEFINIT	essina IVO			
Design Report - Towe Splices	Design Report - Tower Legs incl. Joints and Splices, AnnexCodice documento PS0015_F0Rev F0Data 20-06-					
FL	RTHER UP DATE	TO LONKIT, BURGER:				
	1L REQ10 PUATE EN1993-1-8 TAB	$=$ $5izz_{3}$; z = 3A;				
-> Fo	$- For 700 = 105 PL = \frac{10104(1.05)}{2(105)(460)} + \frac{2}{3}(70) = 565$					
w	C≥ 205 PL, a F	$+ \frac{1}{3}(70) = 32$ EQUISES TO 529 $\Rightarrow N$ SILINIFICANT	98 97-			
	SIGNIFICATE PL 185 AS PIN PHATE, WITH A 40THK FILL PLATE EACH SIDE TO FILL IT OUT TO 205 THK.					
PIN PL	WEVO BIW 1955:	CHEEL PL 40 AND				
-1 > PEEINETER LENGTH = 4240 mm -3 werd Demand = 1950 = 0.46km/mm.						
	As min.	BASED ON PLATE TH THE IS MORE THAN ADEQU	CKNESS			
		= 1.4 KN/mm >>	o.46			

Stretto di Messina	EurolinK	Ponte sullo Stretto di Mo PROGETTO DEFINITI	essina IVO	a		
Design Report - Towe Splices	er Legs incl. Joints and , Annex	Codice documento PS0015_F0	Rev F0	Data 20-06-2011		
CHEUR C BUFF	VERTICAL E	STRESSES IN SKIN F	2'5			
- SILILIA - CALABR	C EL. 55.50 A C EL. 63.15	$r \rightarrow right Blw 3$ $r \rightarrow right Blw 3$	s + 4			
- JILILIA - CALABR	CEL. J. CUR	> LONEE THAN LONG -> BOTH IN SECIMENT	2γ T S	? •		
	Sizes ILIA = 3 - 6 H = 7 H = 7 H = 7 H = 7 H = 7	$f \Rightarrow 100, D \Rightarrow 50$ $f \Rightarrow 100, D \Rightarrow 40$ $f \Rightarrow 100, D \Rightarrow 55$ $f \Rightarrow 100, D \Rightarrow 45$				
(WITH BUCKL	ALLOWABLE REDUCTION FOR IN(L) -5 Fro	STREES CAPALITIES COLUMN + LOLAL PLATE DM JJL SPLEADSHEE	,, - T			
		133 mpa , 30 → 412 m 139 mpa , 40 ≥ 3781	Pa, MPa,			
HILE SEEN hoo.Fres SEE BELON	$\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{4}$	-433 MP2, 30 → 424 -429 mP2, 40 → 391 r	Ma.			
AND Trove	SEE ATTAULED Allowasie Stress 52 Desilun S	PRINTOUT OF STREES DAPALITIES FROM PREADSHEET,	SES			
VON (ATT	MAL CHEUR OF MISES IS DONE ACHED),	SKIN Steesses USIN IN SPREADSLEET	ل			

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

SICILIA TOWER - SEGMENT 3 - LEG 1 STRESSES

6903 - Longitudinal

Plate D		Elev 40.00		
Location	Stress	critical stress	UR	
SP3	-363.61	438.10	0.83	
SP4	-284.69	438.10	0.65	
SP8	-324.36	438.10	0.74	
SP9	-275.65	438.10	0.63	
LS7	-379.71	434.98	0.87	
LS8	-372.73	434.98	0.86	
LS9	-366.89	435.31	0.84	
LS10	-340.57	432.10	0.79	
LS11	-325.16	421.11	0.77	
LS7	-361.98	438.10	0.83	
LS8	-334.75	400.60	0.84	
LS9	-261.23	400.60	0.65	
LS10	-297.54	438.10	0.68	
LS11	-333.86	438.10	0.76	

Design Report - Tower Legs incl. Joints and Splices, Annex

Plate A	Plate A Elev 40.00		
Location	Stress	critical stress	UR
SP1	-425.03	438.00	0.97
SP2	-430.34	438.10	0.98
SP7	-419.73	438.10	0.96
SP5	-387.40	438.10	0.88
SP6	-385.68	438.00	0.88
SP10	-384.75	438.10	0.88

Plate D	e D Elev 55.00		
Location	Stress	critical stress	UR
SP3	-336.65	438.10	0.77
SP4	-268.05	438.10	0.61
SP8	-308.55	438.10	0.70
SP9	-251.58	438.10	0.57
LS7	-357.36	434.98	0.82
LS8	-347.51	434.98	0.80
LS9	-340.40	435.31	0.78
LS10	-316.77	432.10	0.73
LS11	-303.87	421.11	0.72
LS7	-341.52	438.10	0.78
LS8	-319.90	400.60	0.80
LS9	-241.48	400.60	0.60
LS10	-273.84	438.10	0.63
LS11	-306.21	438.10	0.70

Plate A	Elev 55.00		
Location	Stress	critical stress	UR
SP1	-394.63	438.00	0.90
SP2	-398.87	438.10	0.91
SP7	-390.39	438.10	0.89
SP5	-353.58	438.10	0.81
SP6	-353.47	438.00	0.81
SP10	-353.36	438.10	0.81

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

CALABRIA TOWER - SEGMENT 4 - LEG 1 STRESSES

6901 - mw3

Plate D	Elev 55.00		
Location	Stress	critical stress	UR
SP3	-389.20	438.10	0.89
SP4	-375.25	438.10	0.86
SP8	-263.24	438.10	0.60
SP9	-261.54	438.10	0.60
LS7	-372.67	426.02	0.87
LS8	-376.86	426.02	0.88
LS9	-385.62	426.42	0.90
LS10	-385.09	425.27	0.91
LS11	-382.10	405.77	0.94
LS7	-341.25	421.78	0.81
LS8	-332.22	362.95	0.92
LS9	-318.75	362.95	0.88
LS10	-327.16	421.78	0.78
LS11	-336.99	437.78	0.77

Plate A	Elev	55.00	
Location	Stress	critical stress	UR
SP1	-411.07	438.00	0.94
SP2	-417.20	438.10	0.95
SP7	-405.56	438.10	0.93
SP5	-420.39	438.10	0.96
SP6	-425.62	438.00	0.97
SP10	-431.40	438.10	0.98

6903 - Longitudinal

Plate D	Plate D Elev 71.00			
Location	Stress	critical stress	UR	
SP3	-344.57	438.10	0.79	
SP4	-330.20	438.10	0.75	
SP8	-267.63	438.10	0.61	
SP9	-270.83	438.10	0.62	
LS7	-343.95	426.02	0.81	
LS8	-341.77	426.02	0.80	
LS9	-343.07	426.42	0.80	
LS10	-340.20	425.27	0.80	
LS11	-337.17	405.77	0.83	
LS7	-325.18	421.78	0.77	
LS8	-317.06	362.95	0.87	
LS9	-303.08	362.95	0.84	
LS10	-311.82	421.78	0.74	
LS11	-320.57	437.78	0.73	

Plate A	Elev 71.00			
Location	Stress	critical stress	UR	
SP1	-377.63	438.00	0.86	
SP2	-380.82	438.10	0.87	
SP7	-374.97	438.10	0.86	
SP5	-390.64	438.10	0.89	
SP6	-392.68	438.00	0.90	
SP10	-395.18	438.10	0.90	

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	3
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015 F0	F0	20-06-2011

PS0015_F0

F0

20-06-2011

Buffer Connection Check		Sicilia - Longit Buffer	Sicilia - Transverse Buffer	Calabria - Longit Buffer	Calabria - Transverse Buffer
		Plate A - 4 meter span USING SKIN	Plate D - 8 meter span USING SKIN	Plate A - 4 meter span USING SKIN	Plate D - 8 meter span USING SKIN
Skin t	(mm)	100	50	100	45
epsilon		0.715	0.715	0.715	0.715
15 epsilon t		1072	536	1072	482
a0		1	1	1	1
b0	(mm)	1600	2000	1600	3000
Le	(mm)	4000	8000	4000	8000
K		0.40	0.25	0.40	0.38
beta		0.49	0.71	0.49	0.53
b eff	(mm)	791	1429	791	1579
Skin w	(mm)	1631	4087	1631	4388
Webw	(mm)	1350	2000	1350	2000
Webt	(mm)	50	60	50	60
Flange w	(mm)	15/5	1500	15/5	1500
Flange t	(mm)	50	50	50	50
I otal Depth	(mm)	1500	2100	1500	2095
A Skin	(mm ²)	163103	204357	163103	197455
d Skin	(mm)	50	25	50	22.5
A Web	(mm²)	67500	120000	67500	120000
d Web	(mm)	775	1050	775	1045
A Flange	(mm²)	78750	75000	78750	75000
d Flange	(mm)	1475	2075	1475	2070
y bar from Skin	(mm)	571	718	571	726
d Skin to NA	(mm)	521	693	521	704
d Web to NA	(mm)	20/	332	20/	319
d Flange to NA	(mm)	904	1357	904	1344
	(1111)	504	1001	504	1044
I Skin	(mm ⁴)	1.36E+08	4 26E+07	1.36E+08	3 33E+07
l Web	(mm ⁴)	1.03E+10	4 00E+10	1.03E+10	4 00E+10
I Flange	(mm ⁴)	1.64E+07	1.56E+07	1.64E+07	1.56E+07
- Lango	(1.012.01	1.002.01	1.012.01	1.002.01
Ad2 Skin	(mm ⁴)	4.43E+10	9.81E+10	4.43E+10	9.78E+10
Ad2 Web	(mm ⁴)	2 81F+09	1.32E+10	2 81E+09	1 22E+10
Ad2 Elange	(mm ⁴)	6 44F+10	1.38E+11	6 44F+10	1.35E+11
, tal i tango	(0.112.10	1.002.11	0.112.10	
I Section	(mm ⁴)	1.22E+11	2.90E+11	1.22E+11	2.85E+11
S Elange	(mm ³)	1 31E+08	2 10E+08	1 31E+08	2 09E+08
S Skin	(mm ³)	2 13E+08	4 03E+08	2 13E+08	3 93E+08
	(2.102.00	1.002.000	2.102.00	0.002.00
Maximum Moment	(N-mm)	1.00E+10	3.60E+10	1.00E+10	3.60E+10
Max Stress Flange	(MPa)	76	172	76	173
Max Stress Skin	(MPa)	/0	89	10	92
Max Oress Onin	(IVII a)	Assume Segment 3	Segment 3	Segment 4	Segment 4
Elevation of Bottom of Tower Segment with Buffer	(m)	40 000	40 000	55 000	55 000
Governing MAX Vertical Steel Stress at this El	(MPa)	425	367	426	386
Elevation of Top of Tower Segment with Buffer	(m)	55 000	55 000	71 000	71 000
Governing MAX Vertical Steel Stress at this EL	(MPa)	395	340	393	343
Elevation of Buffer Connection	(m)	55.557	52.723	63.150	60.316
Interpolated Longitudinal Skin Stress at Buffer Connection	(MPa)	393.9	344.1	409.2	3/1.4
Von Misse Skin Stress	(MPa)	/19	396	135	125
Critical Stress In Skin (from MJK results)	(MPa)	438.0	435.0	438.0	425
	(
D/C Skin Plate Stress		96%	91%	99%	100%
Check Section for Possible Web Area Reduction from Plate Slenderness					
Total Web b/t		27	66.7	27	66.7
sigma 2 / sigma 1 (Close Enough - uses Flange and Skin Stress)		-0.61	-0.52	-0.61	-0.53
k sigma		15.4	13.7	15.4	13.9
epsilon		0.715	0.715	0.715	0.715
lamda p		0.339	0.887	0.339	0.881
p (Reduction factor for plate buckling)		1	0.95	1	0.96

For now, ignore effects of local slenderness as reduction for local buckling is very small

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

		Sicilia - Longit Buffer	Sicilia - Transverse Buffer	Calabria - Longit Buffer	Calabria - Transverse Buffer
		Plate A - 4 meter span USING SKIN	Plate D - 8 meter span USING SKIN	Plate A - 4 meter span USING SKIN	Plate D - 8 meter span USING SKIN
Check Cutout Section for Vertical Stiffener through Plate					
Vertical Stiffener Width	(mm)	750	700	750	700
Cutout Width	(mm)	770	720	770	720
Remaining Web Width	(mm)	580	1280	580	1280
A Cutout Web	(mm²)	29000	76800	29000	76800
d Cutout Web to NA	(mm)	589.1	692.0	589.1	678.6
I Cutout Web	(mm ⁴)	8.13E+08	1.05E+10	8.13E+08	1.05E+10
Ad2 Cutout Web	(mm*)	1.01E+10	3.68E+10	1.01E+10	3.54E+10
I Total Section with Cutout Web	(mm*)	1.20E+11	2.84E+11	1.20E+11	2.79E+11
S Flange with Cutout Web	(mm ³)	1.29E+08	2.05E+08	1.29E+08	2.04E+08
S Skin with Cutout Web	(mm³)	2.10E+08	3.95E+08	2.10E+08	3.84E+08
Max Stress Flange (with Cutout Web)	(MPa)	78	175	78	177
Max Stress Skin (with Cutout Web)	(MPa)	48	91	48	94
Von Mises Skin Stress	(MPa)	420	398	435	426
Critical Stress In Skin (from MJK results)	(MPa)	438.0	435.0	438.0	426.0
D/C Skin Plate Stress		96%	91%	99%	100%
Check Shear Demand on Welds Between Webs and Skin, Webs and Flange	(3)	04067020	144647407	04067030	120005424
Q Skin	(mm) (04907020	141017197	04907020	100995421
Q Flange	(mm)	71194211	101775645	71194211	100767470
Applied Shear	(kN)	20000	10000	20000	10000
VQ/I - Skin (Demand on all welds at interface combined)	(kN/mm)	13.9	4.9	13.9	4.9
VQ/I - Flange (Demand on all welds at interface combined)	(kN/mm)	11.7	3.5	11.7	3.5
Number of Fillet Wolds at Interface		4	4	4	4
Effective Threat Size per Wold	(19999)	4	4	4	4
El Base Metal	(MPa)	540	540	540	540
Beta w	(ivii a)	1.00	1.00	1.00	1.00
Gamma M2		1.00	1.00	1.00	1.00
Capacity per Weld	(kN/mm)	3.74	1.50	3.74	1.50
Total Weld Capacity	(kN/mm)	15.0	6.0	15.0	6.0
D/C Welds	(93%	82%	93%	81%
Check Shear Canacity of Wolds Batween Webs and Flange					
Number of Fillet Wolds at Interface		2	2	2	2
Effective Throat Size per Weld	(mm)	24	12	24	10
Eu Base Metal	(MPa)	540	540	540	540
Beta w	(2)	1.00	1.00	1.00	1.00
Gamma M2		1.25	1.25	1.25	1.25
Capacity per Weld	(kN/mm)	5.99	2.99	5.99	2.49
Total Weld Capacity	(kN/mm)	12.0	6.0	12.0	5.0
D/C Welds		98%	59%	98%	71%
Check Shear Canacity of Welds Between Vertical Plates 50 THK and Flange					
Applied Vertical Force per Vertical Plate 50 THK	(kN)	2000	1000	2000	1000
Distance to CG of Torsion Box	(mm)	1920	2200	1920	2200
Applied Torsion from This Vertical Force	(kN-m)	3840	2200	3840	2200
Required Resistance in Shear in Flange and Skin to Resist Torsion	(kN)	2695	1073	2695	1074
Height of Vertical Plate 50 THK	(mm)	3000	1500	3000	1500
Applied Force on Welds Between Plate 50 and Flange	(kN/mm)	0.90	0.72	0.90	0.72
Number of Fillet Welds at Interface		1	1	1	1
Effective Throat Size per Weld	(mm)	6	6	6	6
Fu Base Metal	(MPa)	540	540	540	540
Beta w		1.00	1.00	1.00	1.00
Gamma M2		1.25	1.25	1.25	1.25
Capacity per Weld	(kN/mm)	1.50	1.50	1.50	1.50
Total Weld Capacity	(kN/mm)	1.5	1.5	1.5	1.5
D/C Welds		60%	48%	60%	48%

5.3 Tower Leg Segment Detailed Finite Element Analysis

5.3.1 Introduction

The tower leg longitudinal plates and stiffeners are proportioned using the equivalent width method described in EN 1993-1-5 Sections 4. However, the size and complexity of the Messina Strait Bridge and the significant steel quantities in the towers warrant the verification of the resulting design with a more sophisticated detailed finite element analysis of a full tower leg segment. The objective of the detailed analysis is to confirm that design provides a sufficient safety level, without excess conservatism.

5.3.2 Finite Element Model Description

The Sicilia tower leg Segment 6 was modelled because it has thinner plates relative to the imposed axial load than other segments, and so might show greater sensitivity to buckling effects. The modelled plate thicknesses and longitudinal stiffeners are listed in Table 5-1.

Plate	Α	В	С	D	E	F	G	Н
Thickness	85	70	45	40	55	35	35	40
Longitudinal Stiffener	750 x 75	675 x 68	625 x 63	625 x 63	650 x 65	500 x 50	450 x 45	475 x 48

Table 5-1: Modelled plate thicknesses and longitudinal stiffener dimensions.

The analysis model differed from the final tower configuration as shown in Table 5-2. In all cases the analysis model comprised more slender elements than are present in the final configuration and so final configuration will be no more sensitive to buckling effects.

Parameter	Modelled	Current
Plate A thickness	85 mm	95 mm
Plate B thickness	70 mm	75 mm
Plate G longitudinal stiffener	450 x 45 mm	475 x 48 mm

Table 5-2: Difference between analysis model and final tower confirguration.

The model is 18 metres high and comprises six 3 m spans of longitudinal stiffeners. Both the plates and the vertical stiffeners are modelled with shell elements. Bar elements are used to model the horizontal stiffeners and to represent the restraint provided by triangular diaphragms. Bar elements simplify the model and are sufficient. Moments and forces are applied to the top and bottom of the

model through a "spider" of rigid elements. Plan and isometric views of the model are shown in Figure 5-1.

Figure 5-1: Plan and isometric views of model meshing.

It was originally planned to include the effects of imperfections by modelling the plates and stiffeners with the equivalent imperfections specified in EN 1993-1-5 Annex C, using the geometrical form of the elastic buckling modes of the panels as the basis. Several issues were encountered with this approach:

- The 1:400 "equivalent imperfection" specified for longitudinal stiffeners in EN 1993-1-5 Table C.2 is no greater than the manufacturing tolerance allowed in EN 1090-2 Table D.1.6. This means that if the tower leg panels were manufactured to the allowable tolerances, the analysis would have been made with no allowance for residual stresses and therefore might be unconservative;
- The "equivalent imperfections" specified for a plate between stiffeners in Table C.2 will cause a reduction in the resistance of the plate, whereas EN 1993-1-5 Section 4 gives no reduction for the plate slenderness for the width-to-thickness ratios used in the majority of panels in the tower legs;

Stretto	Ponte sullo Stretto di Messina			
di Messina	PROGETTO DEFINITIVO			
Design Report - Tower Legs incl. Joints and Splices, Annex	Codice documento	Rev	Data	
	PS0015_F0	F0	20-06-2011	

- It is very difficult to find the most onerous arrangement of "equivalent imperfections" for stiffener twist because there are so many different combinations possible; and
- There is no single buckling mode in the panels that gives magnitudes of out-of-plane panel deformations similar to those specified in EN 1993-1-5 Table C.2, so an alternative method of generating suitable initial imperfections was required.

It was concluded that the most realistic resistance assessment would be provided by:

- Using out-of-plane geometrical imperfections along the longitudinal stiffeners in the form that occurs when applying equal line loads along each stiffener and accept the resulting imperfections in the plate between the stiffeners and twist of the stiffeners as the appropriate values for those initial imperfections. The initial imperfections are proportional to deformations from applied line loads. These line loads are applied along the line of the vertical stiffeners and in the plane of the stiffener (perpendicular to the skin plate). The line loads on adjacent panels act in opposite directions so as to produce a deformed shape that is alternately into and out from the centre of the leg in alternate panels. The applied loads themselves are uniformly distributed. The maximum value of geometrical imperfection in each panel was taken as the allowable fabrication tolerance in the stiffeners of 1:400 as EN 1090-2 Table D.1.6.
- Accounting for residual stresses directly (not by equivalent imperfections) by using an appropriate stress-strain curve. The residual stresses were incorporated by modifying the stress-strain curve from bi-linear elastic/plastic to multi-linear to represent the average stress-strain response of steel with residual stresses and including the 0.2% proof strain that is expected with higher strength steels such as S460.To give an assessment of the magnitude of these effects, the three cases of maximum axial with coexistent moments, and maximum moments with coexistent axial and moment were analyzed using bi-linear elastic/plastic material properties. These showed resistances only slightly higher than with residual stresses, with 2% greater for the load combination with maximum axial compression. However, the rotations were of the order of 50% less than in the analyses using residual stresses.

5.3.3 Details of the Finite Element Model

The FE model solution is non-linear considering large strains and displacements and non-linear material properties. The model has approximately 22,500 nodes and 22,600 shell and beam members. The FE program used is ADINA version 8.4.

The model uses four node shell elements for the plates and longitudinal stiffeners. The mesh spacing length in the vertical direction is 0.5 m. The meshing of the plates is typically five spaces between longitudinal stiffeners and three spaces through the depth of the longitudinal stiffeners. The transverse stiffeners, other than the top and bottom diaphragms, are modelled as equivalent frames of beam elements of equivalent area and moment of inertia located along the shell nodes. These elements have elastic material properties. Beam elements are used to simplify the modelling and reduce the computation time. Because the initial imperfections are applied so that there are node lines at the transverse stiffeners and because these stiffeners have sufficient stiffness to retain these nodal lines, the behaviour of the model is insensitive to the representation of the transverse stiffeners and this makes beam elements appropriate. Shells with different thickness are aligned along the shell centreline rather than the outside face. This was done to avoid the modelling problems of modelling small offsets which either may create unrealistic local moments when modelled as rigid links or constraint equations or may require undesirable element geometry if modelled with small elements forming the step in the plate centre-lines. When using shell elements, whatever modelling technique is used, there is some discrepancy between the model and the reality. However, the discrepancy will have a negligible effect on the results because, relative to the section size, the influence of the eccentricity between two plates of different thicknesses is not important. One advantage of adopting the centreline alignment is that it uses the minimum number of nodes and thus keeps the structure stiffness matrix to the minimum size, which is an advantage in non-linear analysis because of the storage size and computation time required for each iteration.

In ADINA, the model axes are X for the transverse direction, Y for the longitudinal direction, and Z for the vertical direction. In IBDAS, the model axes are Y for the transverse direction, Z for the longitudinal direction, and S (equivalent to X) for the vertical direction. The inclination of the tower leg is not modelled, as it is not significant for the purposes of this analysis. The vertical distance between the top and bottom planes is 18 m. The maximum dimension along the bridge longitudinal axis is 20 m and the maximum dimension along the bridge transverse axis is about 12 m. The

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data	
Splices, Annex		PS0015_F0	F0	20-06-2011	

bolted splice 1m above the bottom diaphragm is not modelled because the goal is to compare the finite element results with those of EN 1993-1-5 Section 4.

The section resistance is compared with the resistance for the same section calculated using EN 1993-1-5 Section 4. The thickness changes in the design process using the effective width method and in the finite element model are made at the plate intersections, and so the two methods are comparable.

Units are in m, MPa, and MN, unless noted otherwise.

5.3.4 Application of Loads

The loads are applied at each segment end by a "spider" of rigid links radiating from a node at the centre of the cross-section to the nodes at the ends of the skin-plates and longitudinal stiffeners. The top node is the load application point, and the bottom node is the support point at which all six degrees of freedom are restrained.

Ideally, the forces and moments would be applied to the model at the centroid of the stiffened elements without either applying local moments or applying local constraints. However, this is not achievable. For example, to avoid moment constraint in the plane of the stiffener, the forces should be applied at the centroid of the stiffener, but the centroid is not at the centroid of the skin-plate, so application at the centroid requires an overload of the stiffener. The method of application through rigid connection to the nodes of both the skin and the stiffeners avoids overloads while creating some constraint. However, the segment model comprises six panels between transverse stiffeners and the inner four panels, especially the inmost two, are so far from the constraints that under failure governed by plasticity (as in this structure) the constraints have minimal effect.

5.3.5 Material Properties

Three material models are used to describe the steel element behaviours: elastic, bilinear, and smoothed multi-linear. The elastic material model has a modulus of elasticity of 210,000 MPa and a Poisson's ratio of 0.3 as defined in EN 1993-1-1 Section 3.2.6. No thermal coefficient or material density parameters were actively used in the modelling.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data	
Splices, Annex		PS0015_F0	F0	20-06-2011	

The bilinear material model is similar to the elastic material until yield. The yielding point is set to 460 MPa. The material modulus after yielding is set to 21 MPa, or 1/10,000th of the elastic value. This is done to avoid potential numerical integration problems.

As described in Section 5.3.2, the "equivalent imperfection" specified in EN 1993-1-5 Table C.2 at 1:400 for longitudinal stiffeners is no greater than the manufacturing tolerance allowed in EN 1090-2 Table D.1.6. This means that if the panels were manufactured to the allowable tolerances, the analysis would have been made with no allowance for residual stresses and therefore might be un-conservative. Therefore, the maximum value of geometrical imperfection in each panel was taken as the allowable fabrication tolerance in the stiffeners of 1:400 as in EN 1090-2 and the residual stresses were incorporated by modifying the stress-strain curve from bi-linear elastic/plastic to multi-linear to represent the average stress-strain response of steel with residual stresses. The multi-linear material is based on the bilinear material model, but modified to incorporate an initial residual stress curve and the 0.2% proof strain expected with a higher strength steel such as the S460 used in the tower. In the absence of better information, the initial residual stress curve was taken from:

M. B. Prime, Los Alamos National Laboratory, "Residual stresses measured in quenched HSLA-100 steel plate," Proceedings of the 2005 SEM Annual Conference.

The steel has a yield stress of 690MPa and is quenched and tempered. The plate thickness was 61 mm, so similar to many plates in the tower. This is stronger than the Messina steel grade and is manufactured by a different process, but the Eurocode part for high strength steels, EN 1993-1-12 Section 2.1 "Additional rules to EN 1993-1-1" says that Table 6.2, Selection of buckling curves, should use the same buckling curves (so the same effects of imperfections and residual stresses) for high strength steels as for S460 steel. The residual stress pattern from the above paper is given by: $S/Sy = 0.29 - 0.96y^2 - 3.371y^4 + 11.568y^6 - 12.179y^8 + 4.455y^{10}$, and is shown in Figure 5-2, where *S* is the initial residual stress, *Sy* is the yield stress, and *y* is the normalized through-thickness position or relative depth, which ranges from -1 to +1, so the total relative thickness is 2. The maximum residual stresses, from the curve described above, are about 24% and 29% of yield for compression and tension, respectively. Given the uncertainty of these values for S460 material, the residual stresses from welding and cutting activities were not added to the residual stresses above because the apparent improvement of accuracy from is likely to be an illusion. These other residual stresses might be of the order of 2% to 5% of yield compared with the

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Tower Legs incl. Joints and Splices, Annex		Codice documento	Rev	Data
		PS0015_F0	F0	20-06-2011

residual stresses in the plate that are 25% to 30% of yield. Higher residual stresses would reduce the cross section capacity.

The proof stress is assumed to begin at 85% of the yield stress. The proof strain is assumed to be an additional 0.2% for a total of about 0.00419. The stress-strain curves considered are shown in Figure 5-3. For all cases, the rupture strain, or upper limit strain was set to 10, so a rupture scenario is not considered.

Figure 5-2: Initial residual stresses vs relative through-thickness.

Figure 5-3: Stress – strain relationships for different material models.

5.3.6 Run cases

Three types of run cases were used:

- 1 The imperfection load case comprising patterns of line loads;
- 2 The multi-linear case; and
- 3 The bilinear material case;

The deformed geometry of the FE model of the imperfection case was used as the initial geometry for the bilinear and multi-linear cases.

5.3.6.1 Imperfection case

The type of imperfection modelled is from EN 1993-1-5 Annex C Figure C.1 "global longitudinal stiffener". From EN 1993-1-5 Annex C Table C.2, the imperfection magnitude is the minimum of a/400 and b/400, so the dimension used to calculate the magnitude of the imperfection is 3000 mm (the spacing of the transverse stiffeners) in all plates except plate A, for which the governing dimension is the plate width of 4000 mm. Therefore, the imperfection values introduced were ± 10 mm for the plate A stiffener, and ± 7.5 mm for all other stiffeners.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data
Splices, Annex		PS0015_F0	F0	20-06-2011

The use of buckling mode shapes as a source of model imperfections was attempted. However, as noted above, it was found that there was no single buckling mode that gave similar magnitudes of out-of-plane deformation of the panels, so an alternative method of generating suitable initial imperfections was required.

The imperfect shape was generated by applying lateral line loads along the longitudinal stiffeners. The magnitude of line loading was iterated until the amount of desired imperfection was obtained. The corner or plate intersection regions were restrained from movement in the horizontal plane to prevent additional deformations in the model. In addition, the line loading was applied on the stiffeners symmetrically in plan. The line loads were applied such that the stiffeners would deform in opposite directions in adjacent panels. The deformed node coordinates were saved and used as initial coordinates for the remaining run cases. The model deformed with the initial imperfections is shown in Figure 5-4. The region of interest is mainly the plates between the second and fourth transverse stiffener (two inner most panels).

Realistic twist imperfections in the longitudinal stiffeners were not modelled. However, for the width-to-thickness ratios of the stiffeners and plate thicknesses to which they are welded, realistic twist angles are unlikely to significantly affect the capacity.

Figure 5-4: Magnified isometric and plan views of deformed model used as initial imperfections on later runs.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

5.3.6.2 **Multi-Linear Cases**

The force and moment demands are applied to the model incrementally. ADINA is set to increment the applied load until the failure load is reach or up to 160% of the prescribed demands are applied.

The loads are from IBDAS model 3.3f and are a combination of the ULS seismic demands (Comb 5: 7 – ULS finished bridge, PP + PN + QA + VS_dyn), worst temperature loading envelope, and global imperfection loads.

The maximum seismic demands and temperature loads are added together and grouped into twelve cases: min NS, max NS, min MY, max MY, min MZ, max MZ, min VY, max VY, min L001, max L001, min L002, and max L002, where:

NS	=	axial load;
Му	=	longitudinal moment (bending of the leg in a plane parallel to the bridge centreline;
Mz	=	lateral moment (bending of the leg in a plane perpendicular to the bridge centreline);
Vy	=	transverse shear (shear perpendicular to the bridge centreline;
L001	=	Linear combination giving the maximum stresses at the intersection of plates A, B and E, assuming elastic behaviour and a fully effective cross-section; and
L002	=	Linear combination giving the maximum stresses at the intersection of plates C, D and H assuming elastic behaviour and a fully effective cross-section.

The global tower leg imperfection loads, associated with the most severe of the global longitudinal and transverse buckling modes, are added to the demands from the IBDAS output.

The axial loads and shear forces applied at the segment top are adjusted slightly so that the reactions at the bottom (moments and axial load) are matched to the values from the combined cases, as indicated above.

RESULTS

The analysis results for the 13 load cases are presented in Figure 5-5 to Figure 5-16. Force effects, expressed as the fraction of the design load (referred to as a load factor; the proportion of

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data
Splices, Annex		PS0015_F0	F0	20-06-2011

 E_d in EN 1990 Section 6.3.2) applied at each load increment, are plotted on the vertical axis. The values of the design loads for each analysis case are listed in Table 5-3 with the figure in which the analysis results are plotted. Deformation (shortening and end-rotations) results, expressed as the fraction of the elastic deformations resulting from the design load applied at each load increment, are plotted on the horizontal axis. Each figure includes lines representing secant stiffnesses of 1.0, 1.5, 2.0 and 3.0 times the initial elastic stiffness.

The section resistance evident from the FE results should be at least γ_{M1} (partial factor considering buckling) times the demand to comply with the Eurocode requirements for compression members. This is confirmed by the use of γ_{M1} in EN 1993-1-1 Sections 6.3 and 5.3.2(11), and EN 1993-1-5 Section 10, which is intended for use with the output from computer models. The plots of the analysis results have a horizontal line at 1.1 on the vertical axis (load factor) indicating the load factor that must be achieved to account for the $\gamma_{M1} = 1.1$ used in design.

Responses for each of the load cases are characterized by their degree of non-linearity. The results of the 12 analysis cases can be classified into three types of response: essentially linear, moderately non-linear and highly non-linear. The essentially linear cases are max Ns, max Mz, min Vy, max L001 and max L002, shaded light yellow in Table 5-3. These cases comprise relatively low axial compressive loads and low to moderate longitudinal moments. The moderately non-linear cases are min My, min Mz and max Vy, shaded light blue in Table 5-3. These cases comprise low axial compressive loads combined with moderate to high longitudinal moments or moderate axial compressive loads combined with low longitudinal moments. The highly non-linear cases are min Ns, max My, min L001 and min L002, shaded pink in Table 5-3. These cases comprise high axial compressive loads combined with low to moderate longitudinal moments.

For the essentially linear cases, the section stiffness, axial and rotational, is maintained throughout the range of load increments up to well above the design load. For the moderately non-linear cases, the section stiffness departs from linearity but not significantly until well after the design load is attained. For the highly non-linear cases, the section stiffness deviates from linearity well below the design load and achieves a characteristic resistance only slightly higher than the required 1.1 x the design load. While part of the non-linearity is due to geometric non-linearity, which is reversible, the rest is due to irreversible plasticity, which will absorb significant energy for seismic loads approaching the section capacity.

The results of the analyses indicate that the behaviour of the section is most dependent on the magnitude of the axial compressive load and less dependent on the magnitude of the moment. The reason for this is that high uniform axial stress levels reduce the opportunity for compressive stresses to redistribute on the section as the extreme fibres approach yield due to the concurrent flexure. In the absence of high axial stresses, yielding caused by flexure is generally more localized and the yielding regions can be more effectively supported by the lesser stressed adjacent regions.

The most dramatic result of the analysis is the reduction of the section stiffness, and in particular the rotational stiffness, as the load increases. The highest utilization ratios and the greatest stiffness losses occur for the minimum linear combinations L001 and L002, for which the analysis results are plotted in Figure 5-13 and Figure 5-15. Because the leg is a tall compression member, the member stiffness has significant influence on the structure's capacity. Therefore, the segment stiffness must be considered together with the capacity to obtain a reliable assessment of the overall effect on the tower capacity.

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento PS0015_F0
 Rev
 Data

 F0
 20-06-2011

Case	Figure	Ns (MN)	My (MNm)	Mz (MNm)	Vy (MN)	Vz (MN)	T (MNm)
min NS	Figure 5-5	-2175	1957	-420	31	-54	22
max NS	Figure 5-6	-836	-4428	-273	-2	16	-37
min MY	Figure 5-7	-1009	-7373	-458	18	38	2
max MY	Figure 5-8	-1995	4918	-226	1	-24	-3
min MZ	Figure 5-9	-1730	-1753	-1034	20	-203	-104
max MZ	Figure 5-10	-1368	-2305	954	-17	42	77
min VY	Figure 5-11	-1536	-990	798	-26	6	98
max VY	Figure 5-12	-1620	-2820	-786	23	7	-126
min L001	Figure 5-13	-2105	4809	-203	22	-19	-3
max L001	Figure 5-14	-913	-7265	-372	7	33	-1
min L002	Figure 5-15	-2119	4382	404	-6	-27	-7
max L002	Figure 5-16	-894	-6637	-649	21	58	-2

Table 5-3: Design loads for each analysis case (loads at the top of the segment).

Figure 5-5: Minimum axial (Ns).

Figure 5-6: Maximum axial (Ns).

Figure 5-7: Minimum longitudinal moment (My).

Figure 5-8: Maximum longitudinal moment (My).

Figure 5-9: Minimum transverse moment (Mz).

Figure 5-10: Maximum transverse moment (Mz).

Figure 5-11: Minimum transverse shear (Vy).

Figure 5-12: Maximum transverse shear (Vy).

Figure 5-13: Minimum linear combination L001.

Figure 5-14: Maximum linear combination L001.

Figure 5-15: Minimum linear combination L002.

Figure 5-16: Maximum linear combination L002.

Stiffness

The loss of stiffness is shown by the flattening of the load response curves in the figures above. The flexural secant stiffness has decreased significantly at the failure load in many cases. This increases the second-order effects and therefore increases the bending moments above the design values. For example, for min L002, shown in Figure 5-15, the secant stiffness has decreased at failure by a factor of 2.17, (i.e. the secant stiffness has reduced to 46% of the elastic stiffness).

Strength

For the most onerous loading with the greatest reduction in secant stiffness, as shown in Figure 5-15, the maximum cross-sectional resistance reaches 1.197/1.1 = 1.09 times the required resistance based on the design values of forces and moments. However, at this loading the secant stiffness has dropped so much that the actual moments are greater than the design values, so the effective increase in strength is less. The increased total moments were calculated by separating them into moments that are increased by reduced secant stiffness (moments from seismic action and buckling loads) and loads that are reduced by reduced secant stiffness (moments from secant stiffness (m
Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		I
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data
Splices, Annex		PS0015_F0	F0	20-06-2011

restraint of the tower top by the cables). These moments were then factored to allow for the reduced secant modulus, which gave a modest increase in the total moment.

The resistance of the section with these greater moments was calculated using the average strain at the centerline of plate A as the governing criterion. The average strain was calculated as:

{shortening + [end rotation × distance from centre of section to plate A]}/height

At the maximum load sustained by the FE model, this strain was -3.75×10^{-3} . The strain arising from the increased moments (due to reduced secant stiffness) was calculated from the ratio of the increased moments to the moments applied to the FE model at each load factor. These increased strains are shown in the Figure 5-17. The maximum average strain reaches the limiting value at a load factor of approximately1.17. Therefore the maximum design resistance = 1.17/1.1 = 1.064 times the required resistance based on the design values of forces and moments, giving a utilization ratio of 0.94.

Using EN 1993-1-5 Section 4, the legs were designed in this segment for a maximum utilization ratio in the range of 0.99. Therefore, the FE predicts a resistance of 0.99/0.94 = 1.05 times that predicted by EN 1993-1-5 Section 4, an increase in resistance of 5%.

Figure 5-17: Calculated total strain compared with limiting strain (strain at failure).

5.3.6.3 Bilinear Cases (Effect of residual stresses)

To give an assessment of the magnitude of the effects of residual stresses, the three cases of maximum axial load with coexistent moments, maximum longitudinal moment with coexistent axial load and transverse moment and maximum transverse moment with coexistent axial load and longitudinal moment were analyzed using bi-linear elastic/plastic material properties. This assessment was done using a previous iteration of the tower leg design, for which the plate thicknesses were typically less than those present in the current design.

The results of these analyses are shown Figure 5-18, Figure 5-19 and Figure 5-20, respectively. In each plot, the load deformations curves for the analyses with residual stresses are also shown. In the caption for each figure the ratio of the characteristic resistance, R_{k} , for runs with and with residual stresses, to the design load, E_{d} , are noted.

The analyses without residual stresses showed resistances only slightly higher than with residual stresses. Without residual stresses, the resistance is 2% greater for the load combination with maximum longitudinal moment and 4% greater for the load combination with maximum axial compression. The rotations at failure were of the order of 50% less than in the analyses using residual stresses.

Figure 5-18: Minimum axial, comparison of material properties (Characteristic resistances, R_k of 129% of E_d vs. 133% of E_d).

Figure 5-19: Minimum longitudinal moment, comparison of material properties (Characteristic resistances, R_k of 145% of E_d vs. 147% of E_d).

Figure 5-20: Minimum transverse moment, comparison of material properties.

5.3.6.4 Effect of Model Restraint to the Plate A Longitudinal Stiffener

The introduction of the loads into the model is made by a "spider" of rigid elements connected to the nodes in the end planes of the model. The chosen arrangement of the rigid elements avoids local overloading of the structure, but causes an artificial restraint against local rotation of the plates and stiffeners at the ends of the model. This has an insignificant effect in general because the model comprises six panels in height, so the central bays are remote from the restraint. The one element that might show sensitivity to the restraint from the spider is the plate A longitudinal stiffener. This stiffener does not rely on frequent transverse stiffeners for stability and has a buckling length of approximately 10 m. The effects of these artificial restraints was determined using the earlier version of the model. The load case producing the highest demands on plate A was run both with the rigid links connecting to the plate A longitudinal stiffener and with the rigid links removed. The results of this analysis are shown in Figure 5-21. The characteristic resistance was 117.6% of the design load with the single point connection compared with 117.8% of the design load for the connection to all the nodes, showing an insignificant reduction in resistance of the whole cross-section.

Figure 5-21: Maximum longitudinal moment with single point connection to plate A stiffener.

5.3.7 Conclusions

- The resistance of Segment 6 from the finite element model is 5% greater than the resistance calculated by EN 1993-1-5 Section 4;
- The section response is most dependent on the magnitude of the axial compressive stress;
- The level of safety in the tower as proportioned using the equivalent width method is appropriate, providing a reasonable balance of reliability and economy; and
- The portion of the non-linear behavior attributable to plasticity will absorb significant energy for seismic loads approaching the section capacity.

5.3.8 Assessment for the Envelope of Seismic Time-History Analysis Force Effects

A second detailed tower leg segment finite element model was created for Calabria segment 17 to assess the potential for damage due to the envelope of time-history seismic analysis force effects (tower legs were designed for the mean time-history force effects). Calabria segment 17 was found to have the maximum utilization ratio when assessed using the design verification methods. The modelled plate thicknesses and longitudinal stiffener dimensions are listed in Table 5-4. The segment is 20 m long and comprises six longitudinal panels of 3.333 m. The modelling procedures for applying the loads and considering the effects of initial imperfections and residual stresses are the same as those described in the preceding sections. The analysis is based on the smoothed multi-linear stress-strain relationship.

Plate	Α	В	С	D	E	F	G	Н
Thickness	95	60	40	40	50	40	40	40
Longitudinal Stiffener	750 x 75	675 x 68	575 x 58	575 x 58	600 x 60	475 x 48	425 x 43	475 x 48

Table 5-4: Modelled plate thicknesses and longitudinal stiffener dimensions.

The critical seismic loads were caused by Sicilia time-history input 3, and occurred at time 15.59 s. The critical combined ULS loads at the base of the segment result from the min L001 linear combination and are:

Axial Load: Ns = 1730 MN

Longitudinal Moment: My = 7865 MNm

Transverse Moment: Mz = 160 MNm

Longitudinal Shear: Vy = 16 MN Transverse Shear: Vz = 14 MN

The load-deformation response of the model (for axial shortening and longitudinal and transverse rotations) is shown in Figure 5-22, in which the load factor plotted on the vertical axis is the fraction of the specified loads that are applied in a particular load increment and the shortening and end rotation relative to theoretical elastic response at the specified loads is plotted on the horizontal axis. The black solid line at a load factor of 1.0 represents the load increment at which the specified loads are applied to the model. The diagonal black dashed lines represent increasing levels of flexibility from fully elastic (Secant 1X) to highly inelastic (Secant 3X).

The deviations of the load-deformation curves from the line representing the fully elastic response is due to the effects of residual stresses and geometric imperfections. At the specified loads, the axial shortening is approximately 20% larger and the rotations are approximately 30% larger than the theoretical elastic response. The analysis indicates that the ultimate capacity of the segment is approximately 14% higher than the specified loads. However, at this loading the secant stiffness has dropped so much that the actual moments are greater than the design values, so the effective increase in strength is less. The increased total moments were calculated by separating them into moments that are increased by reduced secant stiffness (moments from seismic action and buckling loads) and loads that are reduced by reduced secant stiffness (moments from restraint of the tower top by the cables). These moments were then factored to allow for the reduced secant modulus, which gave a modest increase in the total moment. The resistance of the section with these greater moments was calculated as described in the previous section for Sicilia tower leg segment 6.

At the maximum load sustained by the FE model, this strain was -4.298×10⁻³. The strain arising from the increased moments (due to reduced secant stiffness) was calculated from the ratio of the increased moments to the moments applied to the FE model at each load factor. These increased strains are shown in the Figure 5-23. The maximum average strain reaches the limiting value at a load factor of approximately 1.11. This is a lower bound estimate of the actual section capacity, relative to the specified loads. The analysis indicates that the section can carry the maximum seismic demands that the design verifications had suggested were in excess of the section capacity.

Figure 5-22: Load deformation response of Calabria tower leg segment 17 under the maximum seismic time-history load combination.

Figure 5-23: Calculated total strain compared with limiting strain (strain at failure).

Design Report - Tower Legs incl. Joints and Splices, Annex Codice

Codice documento	
PS0015_F0	

 Rev
 Data

 F0
 20-06-2011

The extent of damage that might be expected in the segment at the specified loads was evaluated considering the induced stresses and strains. Longitudinal stresses (axial) on the most compressed side of the segment under the specified loads are shown in Figure 5-24. All compressive stresses less than 350 MPa are plotted in the same colour so as to reduce the size and increase the number of stress intervals plotted close to the yield strength of the steel. The maximum reported compressive stress is 520 MPa and is shown to occur very locally at the intersection of plates A and B at the base of the segment on the right side of the figure. This stress is unreasonably high and not believed to be representative of the actual stress that would exist at this point, as the defined stress-strain curve is essentially perfectly plastic beyond the yield stress of 460 MPa and because the transverse moment causes higher compressive stresses at the opposite intersection of plates A and B. This higher than reasonable stress is likely a result of the boundary conditions at the connection of the rigid spider element through which load is applied to the model. Away from this point and at similar point on the other side of plate A the maximum compressive stresses are between 450 MPa and 475 MPa. Stresses of this magnitude occur in the lower panels on plates B and C and intermittently along the curved portion of plate B near its connection to plate A. Away from these areas, the maximum stresses are clearly below yield.

Because the steel was modelled as essentially perfectly plastic beyond the yield stress, stresses can not provide as effective an assessment of damage potential as can strains. Longitudinal strains (axial) on the most compressed face of the segment under the specified loads are shown in Figure 5-25. Strains less than 0.002 are plotted in the same colour so as to reduce the size and increase the number of strain intervals plotted close to the yield strain. The maximum reported compressive strain of 0.003827 occurs near the bottom of the section on the curved portion of plate B is and very localized. Away from this point, the maximum strains are generally between 0.003 and 0.00325. As indicated in Figure 5-3, these strains are all less than that corresponding to full yield (based on the 0.2% proof stress, which would give a full yield strain of 0.00419).

Figure 5-24: Calabria tower leg segment 17 longitudinal stresses due to the critical seismic load combination.

Figure 5-25: Calabria tower leg segment 17 longitudinal strains due to the critical seismic load combination.

Detailed views of the axial stresses and strains in the individual tower leg panels under the critical load combination are shown in Figure 5-26 to Figure 5-33 so that the effects of buckling of the longitudinal stiffeners on the outstand stresses can be more clearly seen. The panels shown are those in the most compressed tower leg quadrant (that shown in Figure 5-24 and Figure 5-25).

The stresses and strains in panel A, shown in Figure 5-26 and Figure 5-27, respectively, are relatively constant over the segment length with negligible variation through the longitudinal stiffener depth, indicating the absence of any local flexure that would be associated with a buckling-type behaviour. The stability of this panel as it approaches yield with a maximum compressive stress of 448 MPa is consistent with the design verifications for this element, which predict the full cross-section is effective up to yield.

Splices, Annex

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Design Report - Tower Legs incl. Joints and Codice documento PS0015_F0

Rev Data F0 20-06-2011

The stresses and strains in panel B/C are shown in Figure 5-28 and Figure 5-29, respectively. There is a clear distinction in the behaviour of the plate B and C longitudinal stiffeners that is consistent with the differences in the plate thicknesses, stiffener depths and proximities to a stiff corner region. The plate B stiffener closest to the left side of the figure is well supported by the flexural stiffness of the corner region and has very little stress variation over the stiffener depth, indicating the lack of buckling-type behaviour. In contrast, the plate B stiffener closer to the middle of the panel and the more slender plate C stiffeners experience much more variation of stress through the stiffener depth indicating buckling-type behaviour between the transverse stiffeners. The compressive stress at the tip of the longitudinal stiffener outstand varies between adjacent panels, consistent with the sinusoidal shape the buckling stiffener. The maximum reported compressive stress of 488 MPa occurs at the bottom of the curved portion of plate B, but is believed to be related to the boundary conditions at the bottom of the segment, rather than being a realistic stress, as was noted in describing Figure 5-24. Away from this area the maximum compressive stresses are between 440 MPa and 460 MPa and are less than yield.

The stresses and strains in panel E/F are shown in Figure 5-30 and Figure 5-31, respectively. The behaviour of this panel is similar to that of panel B/C, with the indications of buckling-type behaviour of the longitudinal stiffeners increasing away from the stiff corner region at the intersection of plates A, B and E. Even though the average compressive stress on the 475 x 48 mm plate F stiffener is much less than those on the 600 x 60 mm plate E stiffener closest to plate A, buckling of the stiffener is much more prevalent because the stiffener is more slender. This panel is located away from the most compressed cross-section fibres and the maximum compressive stress is only 445 MPa and is less than yield.

The stresses and strains in panel G/H are shown in Figure 5-32 and Figure 5-33, respectively. Under the critical seismic loading the maximum compressive stress is 439 MPa and occurs locally at the tip of the plate G the longitudinal stiffener outstand in the third panel from the bottom. Both of plates G and H are only 40 mm thick with longitudinal stiffeners of 425 x 43 mm and 475 x 48 mm and will fail by buckling at an average compressive stress less than yield. The behaviour represented in the analysis results is consistent with the design verifications and the design philosophy of accepting reduced panel effectiveness away from the extreme fibres.

The detailed analysis of the tower leg segment shown by the design verifications to be the most heavily stressed under the maximum seismic force effects confirms the robustness of the design. All strains predicted by the analysis are less than that corresponding to full yield (as defined by the

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		1
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data
Splices, Annex		PS0015_F0	F0	20-06-2011

0.2% proof stress) confirming that very limited inelasticity should be expected under the critical seismic load combination. Given that this is the most heavily stressed tower leg segment under the envelope of the time-history seismic analysis results, the behaviour of the adjacent tower leg segments for which design verifications also indicate utilization ratios slightly larger than 1.0, is expected to be similar but less severe. The analysis completed demonstrates that the tower legs meet the performance specification of Repairable Damage under ULS combinations, as specified in GCG.F.04.01 Table 6 and defined in Table 5 as "Occurrence of localised inelastic behaviour..."

MAXIMUM ▲ -378.3 NODE 19337

MINIMUM # -447.7 NODE 2001

Figure 5-26: Calabria tower leg segment 17 plate A longitudinal stresses due to the critical seismic load combination.

Design Report - Tower Legs incl. Joints and Splices, Annex

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

Figure 5-27: Calabria tower leg segment 17 plate A longitudinal strains due to the critical seismic load combination.

Figure 5-28: Calabria tower leg segment 17 plate B/C longitudinal stresses due to the critical seismic load combination.

Design Report - Tower Legs incl. Joints and

Splices, Annex

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento	
PS0015_F0	

 Rev
 Data

 F0
 20-06-2011

SMOOTHED STRAIN-ZZ RST CALC SHELL MIDSURF TIME 4.000

MAXIMUM ▲ -0.001163 NODE 3821 MINIMUM ¥ -0.003676 NODE 3967

Figure 5-29: Calabria tower leg segment 17 plate B/C longitudinal strains due to the critical seismic load combination.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		I
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data
Splices, Annex		PS0015_F0	F0	20-06-2011

TIME 4.000

_	-360.0
	-380.0
	-400.0
	-420.0
	-440.0
	-460.0
	-480.0
	-500.0
	-520.0

Figure 5-30: Calabria tower leg segment 17 plate E/F longitudinal stresses due to the critical seismic load combination.

Design Report - Tower Legs incl. Joints and Splices, Annex

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

SMOOTHED STRAIN-ZZ RST CALC SHELL MIDSURF TIME 4.000

- -0.002000 - -0.002250 - -0.002500 - -0.002750 - -0.003000 - -0.003250 - -0.003500 - -0.003750 - -0.004000

MAXIMUM ▲ -0.001291 NODE 3157 MINIMUM ¥ -0.003546 NODE 10014

Figure 5-31: Calabria tower leg segment 17 plate E/F longitudinal strains due to the critical seismic load combination.

Design Report - Tower Legs incl. Joints and Splices, Annex

TIME 4.000

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

A D I N A

SMOOTHED STRESS-ZZ RST CALC SHELL MIDSURF TIME 4.000

360.0
-400.0
420.0
-440.0
-460.0
-480.0

MAXIMUM △ -161.4 NODE 13608 MINIMUM ※ -438.8 NODE 10188

Figure 5-32: Calabria tower leg segment 17 plate G/H longitudinal stresses due to the critical seismic load combination.

Design Report - Tower Legs incl. Joints and

Splices, Annex

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento	Rev	Data
PS0015_F0	F0	20-06-2011

TIME 4.000

SMOOTHED STRAIN-ZZ RST CALC SHELL MIDSURF TIME 4.000

-0.002000
-0.002250
-0.002500
-0.002750
-0.003000
-0.003250
-0.003500
-0.003750
-0.004000

MAXIMUM △ -0.0007650 NODE 13608 MINIMUM ¥ -0.003563 NODE 10188

Figure 5-33: Calabria tower leg segment 17 plate G/H longitudinal strains due to the critical seismic load combination.

5.4 Fatigue

FATIGUE ASSESSMENT

THE TOWER WILL REMAIN FULLY IN COMPRESSION UNDER LIVE LOAD AND THE LIVE LOAD IS A VERY SMALL COMPONENT OF THE TOTAL STRESSES. THEREFORE, FRIGUE SHOULD NOT BE AN ISSUE. THE FOLLOWING IS SIMPLE HAND CALLS TO CONFIRM THIS ASSUMPTION

FROM IBDAS RESULTS , THE MAXIMUM STRESS RANGE DUE TO BAIL LOADING (LC 551) IS

T. = 50 MPA ----

THIS STRESS RANGE IS DUE TO THE STANDARD "QA" LOADING WHICH CONSISTS OF UP TO 4 TRAINS, 750m LONG, AT 88 KN/m, SPACED 750 APART

PROBABLE TRAIN LONDING

WT OF I TRAIN = 88 KN/m + 750 m = 66 mm CONSEZUATIVECT ASSUME THAT I TRAIN REPRESENTS 50% OF THE STRESS RANGE IF PLACED IN THE LENTER OF THE BRIDGE

TIDESIGN TRAN : 50 mPr 2 25 mpr

Eurolink S.C.p.A.

le best for

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

THE HEAVIEST FATIGUE TRAIN IS TYPE 5

80 FM/m + 270m = 21,6 ml

AT THE CENTRE OF THE BRIDGE, THE INFLUENCE LINE IS VERY SMOOTH AND THE STRENSES IN THE TOUGR WILL BE APPROXMATTCY PROPORTIONAL TO THE TOTAL WE OF THE TRAINS

-- J -- -- -- 25 mPax 21.6 - 8-2 mPa

FOR FATIGUE STRENGTH THE CRITICAL CASE WILL HIGHTP STRESS & FEWER CYCLES

CONSERVATIVELE ASSUME THAT ALL FATIGUE TRAINS ARE TTPE 5. (NERT CONSENATIVE ADSUMPTION) LO MOST TEAMS ARE MUCH LIGHTER ASSUME THAT 1/2 OF THE TRANS OCCUP IN GROUPS OF 4 & FITE OTHER 1/2 OCCUP IN CTROUPS OF 2

THEFATIONS = 8.2 mp × 4 = 32.8 mp TEFATIONS TRAINS = 8.2 mp × 2 = 16.4 min TOTAL # OF TRAINS 67/DET × 2 TRACKS = 134/DOT

 $\frac{134}{2} = \frac{68}{4} = \frac{17}{4} + \frac{17}{4}$

17 × 365 + 200 = 1.24 × 106 33 + 365 × 200 = 2.41 + 106

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Tower Legs incl. Joints and Splices, Annex		Codice documento	Rev	Data
		PS0015_F0	F0	20-06-2011

ASSIMING 36 MPA CATEGOPY

4 TRAIJ GROUPS T = 32.8 mPa FATIGHT LIFF 32.8³ NR = 36³ 2-10⁶ NR = 2.644 + 10⁶

2 TRAIN GROUP

T = 16.5 mPrFATIGLE LIFE $T_D = .737 T_c = 26.5$ $16.5^5 \text{ Np} = 26.5^5 5-10^6$ $\text{Np} = 5.34 \neq 10^7$

MINER'S SUMMATION

$$\frac{1.24 \times 10^{6}}{(2.644 \times 10^{6})} + \frac{2.41 \times 10^{6}}{(5.34 \times 10^{7})} \\ \frac{1.35}{1.35} + \frac{5.34 \times 10^{7}}{1.35} \\ \frac{1.35}{1.35} + 0.061 = 0.7 \times 10^{10}$$

ASSESSMENT USING ACTURE ADAINIX

~

5.5 Accidental Load Scenarios

5.5.1 Design Scenarios – Fire

INTEODULTION

PURPOSE

INPUT Temperature riput has been provided by COWI, Lyngly, as shown on pages 703-705. Design is to be for Pool finos

<u>Codes</u> The effect will be studied using the Eurocode EN1993-1-2. YM, fi is taken Q 10 as recommended in #2.3 (NOTE)

CONCLUSIONS Sig deflection (=> buckling) due to thermal expansion Evan 300°C -> > Need & protect steel to limit temperature me

Design Report - Tower Legs incl. Joints and Splices, Annex Codice documentoRevPS0015_F0F0

Rev Data F0 20-06-2011

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento PS0015_F0
 Rev
 Data

 F0
 20-06-2011

Design Report - Tower Legs incl. Joints and Splices, Annex

Codice documento PS0015_F0
 Rev
 Data

 F0
 20-06-2011

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

5.5.2 Evaluation Scenarios

5.5.2.1 Impact

INTRODUCTION

PURPOSE

TUPUT

The loading specified is on page 803

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

Aircraft

We have verified, that there will not be requirements from the risk analysis. It is thus sufficient to fulfil the requirements from the current design basis, i.e. consider a 10 tonnes airplane at 600 km/h.

With the same methodology as used in the risk analysis for the Øresund bridge the calculation of the force/load time is as given below. The load area can be taken to be a circle with a diameter of 3 m (7m2), as for the Great Belt analysis.

.

all in All States and a States Stream control of	KING WAR		
	total loading time	(0,060	6
	Force	27.8	MN
Result			
	stopping time pr m	0.0060	sec per meter aircraft
	mass/length	1000	kg/m
Calculati	ions		a 19 y 7 - Inte data and anno 19 ann an tao a
9 A 10 A 7 B - 4 A 17 - 19 7 B - 19 A 19	icailin or autoratic		
	Longth of similary	10	
Accumu	linne		
	soperi	167	m/s
	sneed	608	km/h
	mass	10000	ke
Design I	pasis	,	
Messino	<u>– aircraft collision</u>		

Chinest - Strone Forde on Teassneres Stifferent
Most sensitive panel is panel O became longerlippen and thringed the
Apply aread load & 1 transverse difference
Ford 27:81 on diamber of 3m d to
V 2758 : 13:410
Shar robbar of web & 18×100 × 440/45
in a 19800 × 253 : 5:01 MU => into share
$$(2 - 13^{-1}, 2.68)$$

 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 3.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 5.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 5.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 5.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 5.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 5.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 5.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 5.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 5.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 5.8 : 50.9 MU == met bed d to
 $\hat{H} = 18.4, 5.8 :$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Eurolink S.C.p.A.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Towe Splices	er Legs incl. Joints and , Annex	Codice documento PS0015_F0	Rev Data F0 20-06-2011	
			,	
MEMBRANE STRESS	ES (cout)	Stranie E Staries	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Kosistance & how	zoulal threak? 2x 50,			
$A = 8000 \times 40 = 3200$ + 5 × 600 × 60 = 1800 (500,0	$\frac{200}{100} = 2 \times \left(\frac{8}{5}\right) \frac{8}{5}$	$EA^{2}\left(2\left(\frac{S}{S}\right)^{3}\right)$	28 7 5	
: Energy about	$d = \int R dS = \frac{2EA}{S^3}$	8^{3} ls $2 \frac{2EA}{5^{3}} \frac{S^{4}}{4} = \frac{EA8}{25^{3}}$	ks)	
AS = 20 × 10 ⁵ mm -	$\frac{EA}{2S^3} = \frac{210 \times 10^3}{2 \times 20}$	< 500 × 10 ² 2 6.56 × 10 ³		
8 = 400 -> EA84 283	2 6.56×10 3× (400) 4 2	0.168 × 109 N-mm 2 0	0.168×10 N-m	
8 = 600	6.56 × 10 3 × 600) 4 3	0.850 × 1091 2 0	۰ × 5 × 10	
S 3800	() × (800) ⁴ =	2.69 × 10 2	2.69 ×10 ⁶	
8 = 1000	() x (1000) =	6.56 × 10 = (6.56×10 2.5×10	
8 = 1200	() × (1200) ⁹	= 13.6 × 109 2 1	3.6 ×10 3.6 ×10 3	
5= 1400	() × (1400)4	22512 × 10 ⁹ 2 2	5.2 ×10 4.9×10	
8 = 1600	() x (1000)	* 43.0 × 109 2 4	43.0 KID 6	
8 = 1800	()× (100)4	268.91 × 109 26	\$ & 9 × 10	
8 = 2000 8 = 2145 8 = 2200	$\begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2139 ×109 21 2139 ×109 (21 2139 ×109 (21 2139 ×109 21	05 × 10 39 × 10 54 × 10 0.0115	
Strami @ 2145	$S = \left(\frac{31}{5}\right)^2 = \left(\frac{2145}{2000}\right)^2 = 0$	0.01:15 = 1.15% staning < 5;	2 mon formig pressure versels	
VOIOUZ	Stani (20:22 prof = 210×103 + 2×10	3 2.2+2 = 4.2×10 = 0.0042	
L Trial lang P(c ≥ 9.8 pr for etheilt might redu ≥ 20 metres	I of 20m was ch etilienes with 280 x so the number of ne & about GN? O/A height.	18. flanges. These page 18. flanges. These planges cross becaus & veri , which at 3.83 centres	811 showed will be increased at the impact	
2x20 m	2 A Om overall height	t appears to be m	inimum	

MEMBRANE STRESSES (coul)

1 -

Assuming 20 m July damage zone If contarion is resistance & quesiestatic free, 108:1m; Readin R= 2(8) EA = 2 (-1) 3 10×103 × 500×103 = 26.3 MN → 2.27.8 = 1.05 Prose \$16

Force a rate of change of momontum Momentum = mv = 1000 × 167 = 157000 kg m/sec per mate of plan i hate of change of momentum = Homentum/m = 167000 stopping time/m = 167000 = 27.8×10 they m/see aly m/see"= N ~ Fore = 27.8 MN constant force by these assumptions

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		
Design Report - Tower Legs incl. Joints and Splices, Annex		Codice documento PS0015_F0	Rev F0	Data 20-06-2011
M R		•		

Mensenve Gradul & manhame about
$$\Rightarrow S = \frac{80}{2} = 40$$
 where
Type 80m longh & manhame about $\Rightarrow S = \frac{80}{2} = 40$ where
the Energy absorbed (as perse \$16) $\Rightarrow \frac{EAS^{4}}{2S^{3}}$ sace perse \$16
 $\Rightarrow e^{AOm}; \frac{EA}{2S^{3}} = \frac{210\times10^{3} \times 500\times10^{3}}{2\times(40)^{3} \times 10^{3}} = 0.52\times10^{-3}$
 $e^{S} = 4.0 \text{ m} = 4000 \text{ mm}}$ some $\gamma = 0.82\times10^{3} (1000)^{3} : 210\times10^{3}\text{ N} \text{ mm}} = 210\times10^{4}\text{ N} \text{ m}}$
 $\Rightarrow Required full of the interval is $0.82\times10^{3} \times 0.52\times10^{-3}$
 $e^{S} = 4.0 \text{ m}} = 4000 \text{ mm}}$ some $\gamma = 0.82\times10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required full of the interval is $20\times10^{-3} \Rightarrow 4.2\times10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required full of the interval is $20\times10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required full of the interval is $20\times10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required for a cold force cill be interval is $20\times10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required for a cold force cill be interval is $20\times10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required for a cold force cill be interval is $20\times10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required for a cold force cill be interval is $20\times10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required for a constraint some force $1 \times 10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required for a constraint some force $1 \times 10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required for a constraint some force $1 \times 10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required for a constraint some $100\times10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required for a constraint some $100\times10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required for a constraint some $100\times10^{-3} \text{ d} = 0.27 \text{ proof}$ show
 $\Rightarrow Required for a constraint some $100\times10^{-3} \text{ d} = 0.27 \text{ proof}$ so $100\times10^{-3} \text{ d} = 0.27 \text{ proof}$ some $100\times10^{-3} \text{ d} = 0.27 \text{ some } 10^{-3} \text{ d} = 0.20$$$$$$$$$$$$$$$$
Eurolink S.C.p.A.

Other Bending Moments 1) Buckling moments from coincident ventical loads

Eurolink S.C.p.A.

Design Report - Tower Legs incl. Joints and

Splices, Annex

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento PS0015_F0
 Rev
 Data

 F0
 20-06-2011

		Quadra	ant 3				Qua	drant 2																
plate (guadrant	-	q	ns	ts	bs	id	S	Xopi	Yopi	Xosi Y	A iso	ia:Xopi	Api*Yopi	Asi*Xosi	Asi*Yosi	XNApi	YNApi	XNAsi	YNAsi	Api*XNApi^2	Api*YNApi^2	ksi*XNAsi^2 As	i* YNAsi^2
.∢	1&2	Þ	75	1,500	1 75	750	337,500	56,250	9962.5	2	9550	0	3362343750	0	53718750	0	0 9962	5	0 955	0	3.34973E+13	0	5.13014E+12	0
<	3&4		75 4	4,500	1 75	750	337,500	56,250	-9962.5	2	-9550	0	-3362343750	0	-53718750	0	0 -9962	5	0 -955	0	3.34973E+13	0	5.13014E+12	0
8		1 tB	65	3,432	2 68	675	223,105	91,800	9062.5	5 3187.5	9062.5	3187.5	2021887848	711146760.5	83193750	0 2926125	500 9062	.5 3187.	5 9062.	5 3187.5	1.83234E+13	2.26678E+12	7.53943E+12	9.32702E+11
8		5	65	3,432	2 68	675	223,105	91,800	9062.5	5 -3187.5	9062.5	-3187.5	2021887848	-711146760.5	83193750	0 -292612	500 9062	.5 -3187.	5 9062.	5 -3187.5	1.83234E+13	2.26678E+12	7.53943E+12	9.32702E+11
8		ŝ	65	3,432	2 68	675	223,105	91,800	-9062.5	5 -3187.5	-9062.5	-3187.5	-2021887848	-711146760.5	-83193750	0 -2926125	500 -9062	.5 -3187.	5 -9062.	5 -3187.5	1.83234E+13	2.26678E+12	7.53943E+12	9.32702E+11
m		4	65	3,432	2 68	675	223,105	91,800	-9062.5	5 3187.5	-9062.5	3187.5	-2021887848	711146760.5	-83193750	0 2926125	500 -9062	.5 3187.	5 -9062.	5 3187.5	1.83234E+13	2.26678E+12	7.53943E+12	9.32702E+11
U		15	40	3,432	3 60	600	137,295	108,000	7187.5	5 5062.5	7187.5	5062.5	986809984.4	695057467.3	77625000	0 5467500	000 7187	5 5062.	5 7187.	5 5062.5	7.0927E+12	3.51873E+12	5.5793E+12	2.76792E+12
υ		2	40	3,432	3 60	600	137,295	108,000	7187.5	5 -5062.5	7187.5	-5062.5	986809984.4	-695057467.3	77625000	0 -5467500	000 7187	.5 -5062.	5 7187.	5 -5062.5	7.0927E+12	3.51873E+12	5.5793E+12	2.76792E+12
υ		ŝ	40	3,432	3 60	600	137,295	108,000	-7187.5	5 -5062.5	-7187.5	-5062.5	-986809984.4	-695057467.3	-77625000	0 -5467500	000 -7187	.5 -5062.	5 -7187.	5 -5062.5	7.0927E+12	3.51873E+12	5.5793E+12	2.76792E+12
o		4	40	3,432	3 60	600	137,295	108,000	-7187.5	5 5062.5	-7187.5	5062.5	-986809984.4	695057467.3	-77625000	0 5467500	000 -7187	.5 5062.	5 -7187.	5 5062.5	7.0927E+12	3.51873E+12	5.5793E+12	2.76792E+12
0	1&4	₽	40	3,500	5 60	600	340,000	180,000		D 5980	0	5660	0	2033200000		0 10188000	000	0 598		0 5660	0	1.21585E+13	0	5.76641E+12
	2&3		40	3,500	5 60	600	340,000	180,000		7 -5980	0	-5660	0	-2033200000		0 -10188000	000	0 -598		0 -5660	0	1.21585E+13	0	5.76641E+12
ш		٦ لل	50	3,425	3 55	550	171,250	90,750	8212.5	5 1975	8212.5	1675	1406390625	338218750	74528437	5 1520062	250 8212	.5 197	5 8212.	5 1675	1.155E+13	6.67982E+11	6.12065E+12	2.5461E+11
ш		5	20	3,425	3 55	550	171,250	90,750	8212.5	5 -1975	8212.5	-1675	1406390625	-338218750	74528437	5 -1520062	250 8212	.5 -197	5 8212.	5 -1675	1.155E+13	6.67982E+11	6.12065E+12	2.5461E+11
ш		ŝ	20	3,425	3 55	550	171,250	90,750	-8212.5	5 -1975	-8212.5	-1675	-1406390625	-338218750	-74528437	5 -1520062	250 -8212	.5 -197	5 -8212.	5 -1675	1.155E+13	6.67982E+11	6.12065E+12	2.5461E+11
ш		4	20	3,425	3 55	550	171,250	90,750	-8212.5	5 1975	-8212.5	1675	-1406390625	338218750	-74528437	5 1520062	250 -8212	.5 197	5 -8212.	5 1675	1.155E+13	6.67982E+11	6.12065E+12	2.5461E+11
ш		÷	35 2	2,500	1 50	500	87,500	25,000	5250	1982.5	5250	1715	459375000	173468750	13125000	0 428750	000 525	50 1982.	525	0 1715	2.41172E+12	3.43902E+11	6.89063E+11	73530625000
ш		2	35	2,500	1 50	500	87,500	25,000	525(0 -1982.5	5250	-1715	459375000	-173468750	13125000	0 -428750	000 525	50 -1982.	525	0 -1715	2.41172E+12	3.43902E+11	6.89063E+11	73530625000
LL.		e	35	2,500	1 50	500	87,500	25,000	-525(0 -1982.5	-5250	-1715	-459375000	-173468750	-13125000	0 -428750	000 -52	50 -1982.	5 -525	0 -1715	2.41172E+12	3.43902E+11	6.89063E+11	73530625000
ш		4	35	2,500	1 50	500	87,500	25,000	-5250	0 1982.5	-5250	1715	-459375000	173468750	-13125000	0 428750	000 -52!	50 1982.	5 -525	0 1715	2.41172E+12	3.43902E+11	6.89063E+11	73530625000
Ċ	1&2		30 4	4,000	2 50	500	120,000	50,000	3985	0	3720	0	478200000	0	18600000	0	0 391	22	0 372	0	1.90563E+12	0	6.9192E+11	0
U	3&4		30 4	4,000	2 50	500	120,000	50,000	-3985	0	-3720	0	-478200000	0	-18600000	0	0 -39	22	0 -372	0	1.90563E+12	0	6.9192E+11	0
Т		<i></i>	35	3,960	2 50	500	138,600	50,000	3982.5	5 3980	3715	3980	551974500	551628000	18575000	0 1990000	3982 3982	.5 398	0 371	5 3980	2.19824E+12	2.19548E+12	6.90061E+11	7.9202E+11
Ι		5	35	3,960	2 50	500	138,600	50,000	3982.5	5 -3980	3715	-3980	551974500	-551628000	18575000	0 -1990000	000 3982	5 -398	371	5 -3980	2.19824E+12	2.19548E+12	6.90061E+11	7.9202E+11
т		ŝ	35	3,960	2 50	500	138,600	50,000	-3982.5	5 -3980	-3715	-3980	-551974500	-551628000	-18575000	0 -1990000	000 -3982	5 -398	371	5 -3980	2.19824E+12	2.19548E+12	6.90061E+11	7.9202E+11
т		4	35	3,960	2 50	500	138,600	50,000	-3982.5	5 3980	-3715	3980	-551974500	551628000	-18575000	0 1990000	000 -3982	.5 398	0 -371	5 3980	2.19824E+12	2.19548E+12	6.90061E+11	7.9202E+11
							4,626,001	2,034,700					0	0		0	0				2.3711E+14	6.02886E+13	9.41181E+13	3.0816E+13
						ŝ	um A =	6,660,701														lxx =	3.31228E+14	
															XNA		0 1					-	- AA	9.11045E+13
															ANY.		0							

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Design Report - Tower Legs incl. Joints and Splices, Annex

Quadrant 2

Codice documento PS0015_F0
 Rev
 Data

 F0
 20-06-2011

	Asi*YNAsi^2	1.0018E+11	1.0018E+11	3.15194E+11	1.8772E+12	1.8772E+12	3.15194E+11	1.50096E+12	0	0	1.50096E+12	3.36774E+12	0	10519556619	8.21949E+11	8.21949E+11	10519556619	3618884073	2.32491E+11	2.32491E+11	3618884073	89048876975	89048876975	3.49925E+11	0	0	3.49925E+11	1.39699E+13		4.52403E+13	
	Asi*XNAsi^2	5.13014E+12	5.13014E+12	7.53943E+12	7.53943E+12	7.53943E+12	7.53943E+12	5.5793E+12	0	0	5.5793E+12	0	0	6.12065E+12	6.12065E+12	6.12065E+12	6.12065E+12	6.89063E+11	6.89063E+11	6.89063E+11	6.89063E+11	6.9192E+11	6.9192E+11	6.90061E+11	0	0	6.90061E+11	8.15794E+13	3.00107E+14	lyy =	
	Api*YNApi^2	6.0108E+11	6.0108E+11	7.6603E+11	4.5622E+12	4.5622E+12	7.6603E+11	1.9081E+12	0	0	1.9081E+12	7.3373E+12	0	7.0246E+10	1.8757E+12	1.8757E+12	7.0246E+10	3.6738E+10	9.6274E+11	9.6274E+11	3.6738E+10	2.1372E+11	2.1372E+11	9.6999E+11	0	0	9.6999E+11	3.127E+13	= xxx		
	Api*XNApi^2	3.34973E+13	3.34973E+13	1.83234E+13	1.83234E+13	1.83234E+13	1.83234E+13	7.0927E+12	0	0	7.0927E+12	0	0	1.155E+13	1.155E+13	1.155E+13	1.155E+13	2.41172E+12	2.41172E+12	2.41172E+12	2.41172E+12	1.90563E+12	1.90563E+12	2.19824E+12	0	0	2.19824E+12	2.18528E+14			
	YNAsi	-1334.5	-1334.5	1852.97	-4522	-4522	1852.97	3727.97	-6397	-6397	3727.97	4325.47	-7294.5	340.467	-3009.5	-3009.5	340.467	380.467	-3049.5	-3049.5	380.467	-1334.5	-1334.5	2645.47	-3334.5	-3334.5	2645.47				
	XNAsi	9550	-9550	9062.5	9062.5	-9062.5	-9062.5	7187.5	7187.5	-7187.5	-7187.5	0	0	8212.5	8212.5	-8212.5	-8212.5	5250	5250	-5250	-5250	3720	-3720	3715	3965	-3965	-3715				
	YNApi	5 -1334.5	5 -1334.5	1852.97	-4522	-4522	5 1852.97	3727.97	-6397	-6397	3727.97	4645.47	-7314.5	640.467	5 -3309.5	5 -3309.5	640.467	647.967	-3317	-3317	647.967	5 -1334.5	5 -1334.5	5 2645.47	5 -3334.5	5 -3334.5	5 2645.47				
	XNApi	0 9962.5	0 -9962.5	0 9062.5	0 9062.5	0 -9062.5	0 -9062.5	0 7187.5	0 7187.5	0 -7187.5	0 -7187.5	0	0	0 8212.5	0 8212.5	0 -8212.5	0 -8212.5	0 5250	0 5250	0 -5250	0 -5250	3985	-3985	0 3982.5	0 3982.5	0 -3982.5	0 -3982.5	0		0.	0
	Asi*Yosi			29261250	-29261250	-29261250	29261250	54675000			54675000	101880000		15200625	-152006251	-152006251	152006251	4287500	-4287500	-4287500	4287500			19900000			19900000	251030000			1,33
	∆si*Xosi	537187500	-537187500	831937500	831937500	-831937500	-831937500	776250000	0	0	-776250000	0	0	745284375	745284375	-745284375	-745284375	131250000	131250000	-131250000	-131250000	186000000	-186000000	185750000	0	0	-185750000	0		ANA	YNA
	<pre>\pi*Yopi</pre>	0	0	711146760.5	-711146760	-711146760	711146760.5	695057467.3	0	0	895057467.3	2033200000	0	338218750	-338218750	-338218750	338218750	173468750	-173468750	-173468750	173468750	0	0	551628000	0	0	551628000	4526570935			
	<pre>// // // // // // // // // // // // //</pre>	3362343750	3362343750	2021887848	2021887848	2021887848	2021887848	986809984.4	0	0	-986809984	0	0	1406390625	1406390625	1406390625	1406390625	459375000	459375000	-459375000	-459375000	478200000	-478200000	551974500	0	0	-551974500	0			
	Yosi A	0	0	3187.5	-3187.5	-3187.5 -	3187.5 -	5062.5	-5062.5	-5062.5	5062.5	5660	-5960	1675	-1675	-1675 -	1675 -	1715	-1715	-1715	1715	0	0	3980	-2000	-2000	3980				
	Xosi	9550	-9550	9062.5	9062.5	-9062.5	-9062.5	7187.5	7187.5	-7187.5	-7187.5	0	0	8212.5	8212.5	-8212.5	-8212.5	5250	5250	-5250	-5250	3720	-3720	3715	3965	-3965	-3715				
	Yopi	0	0	3187.5	-3187.5	-3187.5	3187.5	5062.5	-5062.5	-5062.5	5062.5	5980	-5980	1975	-1975	-1975	1975	1982.5	-1982.5	-1982.5	1982.5	0	0	3980	-2000	-2000	3980				
	Xopi	9962.5	-9962.5	9062.5	9062.5	-9062.5	-9062.5	7187.5	7187.5	-7187.5	-7187.5	0	0	8212.5	8212.5	-8212.5	-8212.5	5250	5250	-5250	-5250	3985	-3985	3982.5	3982.5	-3982.5	-3982.5				
aran z	si	56,250	56,250	91,800	91,800	91,800	91,800	108,000	0	0	108,000	180,000	0	90,750	90,750	90,750	90,750	25,000	25,000	25,000	25,000	50,000	50,000	50,000	0	0	50,000	1,538,700	5,272,910		
Mua.	Api A	337,500	337,500	223,105	223,105	223,105	223,105	137,295	0	0	137,295	340,000	0	171,250	171,250	171,250	171,250	87,500	87,500	87,500	87,500	120,000	120,000	138,600	0	0	138,600	3,734,210	= Funs		
	ts bs ∕	75 750	75 750	68 675	68 675	68 675	68 675	60 600	60	60	60 600	60 600	60	55 550	55 550	55 550	55 550	50 500	50 500	50 500	50 500	50 500	50 500	50 500	50	50	50 500		60		
	SL	,500 1	,500 1	432 2	432 2	432 2	432 2	,432 3	e	e	432 3	500 5	5	425 3	425 3	425 3	,425 3	500 1	500 1	500 1	500 1	000 2	,000 2	,960 2	2	2	,960 2				
drant 3	tp bp	75 4	75 4	65 33	65	65 3	65 3	40	40	40	40	40	40	50	20	20	50	35 2	35 2	35	35	30 4	30 4	35 3	35	35	35 3				
Quad	rant	₹		1	2	с	4	1tc	2	e	4	9		1 T	0	с	4	-	2	en	4			-	2	e	4				
	ate quadr	182	3&4									184	2&3									182	3&4								
	đ	∢	۲	۵	۵	۵	۵	O	O	O	O		Ω	ш	ш	ш	ш	ш	ш	ш	ш	U	G	т	т	т	т				

Quadrant 1

 \succ

Quadrant 4

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

5.5.2.2 Explosion

INTRODUCTION

PURPOSE

The purpose of this book is & assess the affect of the

INPUT

Spec on page 903

Eurolink S.C.p.A.

ENERCY IN PLASTIC ROTATIONS
Find plastic malulus Wpl
Ansa of shin = 1400 × 40 = 56000 mm²

$$\frac{A}{2}, \frac{92000}{2000} \text{ mm}^2$$

 $\frac{A}{2}, \frac{92000}{2000} \text{ mm}^2$
 $\frac{A}{2}, \frac{92000}{2000} \text{ mm}^2$
 $\frac{A}{2}, \frac{92000}{2000} \text{ solutions}$
 $\frac{1400}{1400} \text{ solutions}$
 $\frac{$

10-

6 Transverse Stiffener and Diaphragm Plate Buckling Analysis / Longitudinal to Transverse Stiffener Connections

6.1 Introduction

This document summarizes the following three detailed finite element (FE) analyses performed to support the design of the tower leg transverse stiffening elements:

- Analyses to justify the removal of tab plates connecting longitudinal stiffeners to transverse stiffeners (Task 1);
- Analyses to confirm the stability of the transverse stiffener flanges without intermediate restraint plates bracing the flanges to longitudinal stiffeners (Task 2); and
- Analyses to confirm the stability of the triangular plate diaphragms (Task 3).

The background of each task, description of the models and loadings, and summary of the results are described in the following sections.

6.2 Task 1: Removal of Tab Plates

6.2.1 Background

The general concept submission included tab plates connecting the tower leg longitudinal stiffeners to the webs of every transverse stiffener, as shown in Figure 6-1. Following the general concept submission, the removal of tab plates was investigated to reduce fabrication costs. This removal was considered feasible as it was successfully implemented on the Akashi suspension bridge, based on both experimental and analytical work.

Tab plates typically have three functions:

- To provide lateral restraint to the longitudinal stiffener, if required;
- To improve the stability of the transverse stiffeners; and
- To transfer deviation forces ("kick" forces from buckling of the adjacent compressed panels) from the longitudinal stiffener to the transverse stiffener;

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

The tab plates are not required to provide lateral restraint to the longitudinal stiffeners, as they are been proportioned to satisfy the maximum width-to-thickness ratios for Class 3 in EN 1993-1-1 Table 5.2 and the requirement of EN 1993-1-5 Section 9.2.1(8). The tab plates are also not required to improve the stability of the transverse stiffeners as the stiffeners are proportioned in such a way that no intermediate restraint is required for the full 8 m span.

Therefore, the tab plates are only required for transferring the deviation forces from the longitudinal stiffeners to the transverse stiffener. The deviation forces are those developed as the longitudinal stiffener kicks out-of-plan and is restrained by the transverse stiffener. Without tab plates, these forces must be carried by the welds between the transverse stiffener web and the skin plate and by the welds between the longitudinal stiffener and the skin plate.

The finite element analyses was used to assess the demands on these welds.

Figure 6-1: Typical tower leg cross section at a transverse stiffener, tab plate details and intermediate restraint plate details.

6.2.2 Model Description

As shown in Figure 6-2, the analysis model for this task comprises:

- A transverse stiffener (denoted as TStiff) with cut-outs 150 mm wide to allow the longitudinal stiffeners (denoted as LStiff) to pass through. The transverse stiffener spans 8.0 m between plates H, ignoring the presence of the longitudinal stiffeners on plates H, as these cannot be relied upon to provide stability as the loading on the tower leg approaches the ultimate limit state, being fully stressed from longitudinal loads;
- The skin plate (denoted as Panel D) extending 3.5 m above and below the transverse stiffener;
- The longitudinal stiffeners extending 3.5 m above and below; and
- The adjoining plate H (denoted as Panel H) extending 3.5 m above and below.

The shell element model was developed using the analysis program SAP2000. The 2-D shell elements are based on the three- or four-node formulation, include both in- and out-of-plane responses, and have isotropic material properties with a Young's modulus of 200,000 MPa and Poisson's ratio of 0.3. The out-of-plane response is based on the Mindlin-Reissner formulation, which includes the effects of shear deformations.

As shown in Figure 6-2, the element meshing was selected and refined to maintain the element aspect ratios close to unity and to minimize the element distortion from the standard rectangular form. Edge constraints were used to provide transitions from coarser mesh to finer mesh. The boundary conditions are also shown in Figure 6-2.

The model does not include the intermediate restraint plates connecting the longitudinal stiffeners to the transverse stiffener flanges, shown in Section F-F of Figure 6-1. Therefore, the same model could also be used for investigating of intermediate restraint removal, as described in Section 6.1, with minimal modification.

Three models were needed to cover all plate conditions:

1 A model with the biggest expected longitudinal stiffeners (Model 01f), as this would develop the largest restraint forces;

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essin a VO	1
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

- 2 A model with a thin skin plate (Model 01g), as this might produce higher stress concentrations because of the low flexural stiffness of the plate; and
- 3 A model with an intermediate skin plate thickness (Model 01h) to ensure that this did not present an unexpectedly demanding condition.

Table 6-1 shows the plate sizes for the three cases.

All the analysis cases were linear elastic.

Figure 6-2: Model for tab plate removal investigation.

Stretto di Messina	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO	
Design Report - Tower Legs incl. Joints and Splices, Annex	Codice documentoRevDataPS0015_F0F020-06-201	1

Case	Panel D Thickness (mm)	LStiff Thickness (mm) x Width (mm)	TStiff Thickness (mm) x Width (mm)	TStiffFl Thickness (mm) x Width (mm)	Panel H Thickness (mm)
01f	85	70x700	16x1090	25x420	35
01g	55	63x625	16x1090	20x390	35
01h	45	63x625	16x1090	20x360	35

Table 6-1: Plate sizes for models used for investigating tab plate removal.

6.2.3 Loadings

The loading for each analysis case was the second-order loading derived from EN 1993-1-5 Section 9.2.1 with the stress in the transverse stiffener limited to that required for stability of the transverse stiffener flange. As shown in Figure 6-3, the loadings are of sinusoidal type with the maximum load per unit length given in Table 6-2.

Figure 6-3: Model loading.

Case	w _{max} (kN/m)
01f	479
01g	315
01h	270

Table 6-2: Loading magnitude.

6.2.4 Analysis Results Summary

Figure 6-4, Figure 6-5, and Figure 6-6 show the direct and shear forces cases for 01f, 01g, and 01h, respectively. The sign convention is also shown in each figure.

Figure 6-4: Direct and shear forces in transverse stiffener for case 01f.

Figure 6-5: Direct and shear forces in transverse stiffener for case 01g.

Figure 6-6: Direct and shear forces in transverse stiffener for case 01h.

6.2.5 Verification of Resistance

The analyses give high stresses because they do not allow for yielding of the welds. The welds were checked by summing the forces on an appropriate length and comparing the average load/unit-length with the resistance of the fillet welds calculated in accordance with EN 1993-1-8 Section 4.5.3.2. The length used for averaging the force was 2.5 times skin plate thickness. The value of 2.5 was derived from EN 1993-1-8 Section 4.10 which uses an equivalent angle of dispersion of 1:3.5 on each side of a connection, as shown in Figure 4.8. Because this connection is not exactly the same as shown in Figure 4.8, the value of 3.5 was reduced to 2.5 to account for uncertainty.

For 5mm fillet welds both sides of the web, the utilization ratio was found to be 0.82. Therefore, the tab-plates can be removed from the transverse stiffeners where:

- the longitudinal stiffeners are straight (i.e., no angle change along the longitudinal stiffener); and
- the only loads applied are the deviation forces.

6.3 Task 2: Stability of Transverse Stiffener Flanges

6.3.1 Background

In addition to tab plates connecting the longitudinal stiffeners to the transverse stiffeners, the general concept submission also included restraint plates bracing the transverse stiffener flange to the longitudinal stiffeners, as shown Figure 6-1. These plates were required to provide the minimum weight of flange that satisfied EN 1993-1-5 Section 9.2.1, either by sub-clause (8) or (9).

The removal of the restraints plates was also investigated to reduce fabrication costs. FE analysis was used to find the optimum flange to satisfy EN 1993-1-5 Section 9.2.1(8) or (9) because it accounts for the stress gradient along the transverse stiffener web, producing greater economy than is possible with simple hand calculations.

Following the general concept submission, the transverse stiffener arrangement was changed to simplify fabrication and assembly. Plate A was thickened so that transverse stiffeners are not required for the stability of a single longitudinal stiffener. The transverse stiffeners to plates B, C, E, F and H were replaced by a triangular diaphragm filling the enclosed cell. Therefore, the only tower

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

leg plates D and G require transverse stiffeners. The width of plate G is only 4 m, and so the transverse stiffeners were proportioned to provide increased robustness than would have resulted from the stiffener proportioned considering only the applied loads. Therefore, the focus of the analyses was on the plate D stiffeners, which have a clear span between plates H of 8 m.

6.3.2 Methodology for Sizing Transverse Stiffener Flanges

Hand calculations, confirmed by initial finite element results with a range of flange cross-sections, indicated that the requirements of EN 1993-1-5 Section 9.2.1(8) or (9) are impractical for an 8 m clear span. The requirements of EN 1993-1-5 Section 9.2.1(8) and (9) were then reviewed in the light of traditional design practice, which is to check the stiffener resistance as if the flange and half the web were a strut.

The review shows that requirements of EN 1993-1-5 Section 9.2.1(8) and (9) are reasonable for "stocky" stiffeners (heavy in proportion to their length), but are unreasonable for long stiffeners. This is demonstrated by the recommended value of θ = 6, which corresponds to a relative slenderness of:

$$\overline{\lambda} = \sqrt{\frac{f_y}{\sigma_{cr}}} = \sqrt{\frac{f_y}{\theta f_y}} = \sqrt{\frac{1}{6}} = 0.41$$

As the slenderness of a strut is permitted to exceed $\overline{\lambda} = 0.41$, the stability verification was changed to the verification of compression resistance from EN 1993-1-1 section 6.3.1 using the elastic buckling stress, σ_{cr} , in the calculation of relative slenderness as per Equations 6.50 and 6.53:

$$\overline{\lambda} = \sqrt{\frac{f_{y}}{\sigma_{cr}}} = \sqrt{\frac{Af_{y}}{N_{cr}}}$$

For a given flange size, the elastic buckling factor and stress can be obtained from an FE analysis, in which the model is loaded according to EN 1993-1-5 Section 9.2.1, but limited so that the maximum stress does not exceed the resistance derived by the initial calculations.

6.3.3 Model and Loading Description

The FE model and loading for obtaining the elastic buckling factors and stresses is essentially the same as that used for Task 1, except that a row of elements of extremely low flexural stiffness was

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essin a VO	I
Design Report - Towe	r Legs incl. Joints and	Codice documento	Rev	Data
Splices	, Annex	PS0015_F0	F0	20-06-2011

provided along web at the skin plate interface, as shown in Figure 6-7, to respect the requirement of EN 1993-1-5 Section 9.2.1(9) "not considering rotational restraint from the plate."

The same analysis cases as used in Task 1 and shown in Table 6-1 were also used to confirm the required transverse stiffener flange sizes. The transverse stiffener flange sizes used for each model case are: 420×25 for case 01f, 390×20 mm for case 01g, and 360×20 for case 01h.

6.3.4 Analysis Result Summary

The elastic buckling factor and the elastic buckling stress, σ_{cr} , for each flange size are given in Table 6-3. The corresponding buckled shapes are shown in Figure 6-8, Figure 6-9 and Figure 6-10, for case 01f, 01g and 01h, respectively.

The presented elastic buckling factors are those associated with the lowest (1st) buckling modes. The buckling load is the product of the elastic buckling factor and the applied loading.

Case	Elastic Buckling Factor	σ _{cr} (MPa)
01f	2.31	2.31(171) = 395
01g	2.56	2.56(140) = 358
01h	2.59	2.59(127) = 329

Figure 6-8: 1st Mode Buckling Shape for Case 01f.

Figure 6-9: 1st Mode Buckling Shape for Case 01g.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	1
Design Report - Towe Splices	r Legs incl. Joints and , Annex	Codice documento PS0015_F0	Rev F0	Data 20-06-2011
*				

Figure 6-10: 1st Mode Buckling Shape for Case 01h.

6.3.5 Verification of Resistance

The stability verification uses the maximum stress, $\frac{\chi f_y}{\gamma_{M1}}$, from EN 1993-1-1 Section 6.3.1, but the calculation of χ is based on the increased imperfection factor, α_e , from EN 1993-1-5 Section 4.5.3(5), to allow for the greater fabrication tolerance for the stiffener flanges compared with typical column flanges. The relative slenderness is calculated using elastic buckling stress from Table 6-3 in the equation:

$$\overline{\lambda} = \sqrt{\frac{f_y}{\sigma_{cr}}} = \sqrt{\frac{Af_y}{N_{cr}}}$$
 (equations 6.50 and 6.53 of EN 1993-1-1)

This stress is used as the limiting stress in EN 1993-1-5 Section 9.2.1 to check at which locations each flange is appropriate.

6.4 Task 3: Stability of Triangular Diaphragm Plates

6.4.1 Background

Following the general concept submission, the transverse stiffener arrangement was changed to simplify fabrication. The transverse stiffeners to plates B, C, E, F and H were replaced by a triangular diaphragm filling the enclosed cell. The stability of this diaphragm was checked by EN 1993-1-5 Section 10.

The FE model is used to assess the minimum load amplifier, α_{cr} , for the design loads to reach the elastic critical load and the maximum von Mises stress on the plate from a linear analysis of the applied loads. The diaphragm model used to determine these parameters is described below.

6.4.2 Model Description

As shown in Figure 6-11, the model for this task comprises:

- A flat plate diaphragm with cut-outs (denoted TStiff) to allow the longitudinal stiffeners to pass through, and a circular hole of 1.5 m diameter;
- The adjoining plates B, C, E and F (denoted Panel B, Panel C, Panel E, and Panel F, respectively) extending 3.5 m above and below the diaphragm;
- The longitudinal stiffeners for plates B, C, E, and F (denoted LStiffB, LStiffC, LStiffE, and LStiffE, respectively) extending 3.5 m above and below; and
- The ring plate (denoted TSitffR) around the circular hole.

For simplicity, plate F was defined to be the same as plate E, with the combined plate denoted Panel E. Likewise, the longitudinal stiffeners for plate F were defined to be the same as those for plate E, denoted as LStiffE. The effect of the triangular diaphragm stability is insignificant because the thickness of plate F is so much larger than that of the diaphragm. The plate sizes are given in Table 6-4.

Similar to the models created for Tasks 1 and 2, the shell element model for this task was developed using SAP2000. The 2-D shell elements are based on the three- or four-node formulation, and include both in- and out-of-plane responses, and have isotropic material properties with Young's modulus of 200,000 MPa and Poisson's ratio of 0.3. The out-of-plane

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Design Report - Tower Legs incl. Joints and Splices, Annex		Codice documento	Rev	Data
		PS0015_F0	F0	20-06-2011

response is based on the Mindlin-Reissner formulation, which includes the effects of shear deformations. The element meshing was selected and refined to maintain the element aspect ratios close to unity and to minimize the element distortion from the standard rectangular form. Edge constraints were used to provide transition from coarser mesh to finer mesh. The boundary conditions are shown in Figure 6-11.

Figure 6-11: Model for triangular diaphragm stability check.

Panel B Thickness (mm)	100
Panel C Thickness (mm)	100
Panel E Thickness (mm)	100
Panel H Thickness (mm)	35
TStiff Thickness (mm)	20
LStiffB Thickness (mm) x Width (mm)	70x700
LStiffC Thickness x Width (mm)	70x700
LStiffE Thickness x Width (mm)	60x600
LStiffH Thickness x Width (mm)	48x475
TStiffR Thickness (mm) x Width (mm)	20x150

Table 6-4: Plate sizes

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		I
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data
Splices, Annex		PS0015_F0	F0	20-06-2011

6.4.3 Loadings

The loading for each plate bounding the triangular diaphragm was the second-order in-plane loading calculated from EN 1993-1-5 Section 9.2.1, but assuming no growth of imperfection because of the in-plane diaphragm stiffness. As shown in Figure 6-12, the loadings are of sinusoidal type with the maximum load per unit length given in Table 6-5. To account for all buckling mode possibilities, the loading directions were permutated, as indicated in Table 6-6.

Figure 6-12: Diaphragm plate loading.

Loading	Peak Value (kN/m)
WD	567
W _H	160
Wv	562

Table 6-5: Diaphragm plate loading magnitude.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Design Report - Tower Legs incl. Joints and		Codice documento	Rev	Data
Splices, Annex		PS0015_F0	F0	20-06-2011

Case	WD	WH	Wv
а	+	+	+
b	+	-	+
С	+	+	-
d	+	-	-
е	-	-	-
f	-	+	-
g	-	-	+
h	-	+	+

Table 6-6: Diaphragm plate loading directions.

6.4.4 Analysis Result Summary

The 1st buckling modes for cases a to f are shown in Figure 6-13 to Figure 6-20, respectively. In all cases, Panel E, Panel H, LStiffE, LStiffH elements are not shown for clarity.

The elastic buckling factor and maximum von Mises stresses for each case are shown in Table 6-7. The presented elastic buckling factors are those associated with the lowest (1st) buckling modes. The buckling load is the product of the elastic buckling factor and the applied loading. A negative elastic buckling factor indicates that the buckling loading occurs if the loading directions are reversed.

Case	Elastic Buckling Factor	$\sigma_{\scriptscriptstyle vonMises}$ (MPa)
а	-2.17	46
b	-1.98	58
С	-2.68	252
d	-3.34	212
е	2.17	46
f	1.98	58
g	2.68	252
h	3.34	212

Table 6-7: Plate diaphragm elastic buckling factors and critical von Mises stresses.

Figure 6-13: 1st Mode Buckling Shape for Case a.

Figure 6-14: 1st Mode Buckling Shape for Case b.

Figure 6-15: 1st Mode Buckling Shape for Case c.

Figure 6-16: 1st Mode Buckling Shape for Case d.

Figure 6-17: 1st Mode Buckling Shape for Case e.

Figure 6-18: 1st Mode Buckling Shape for Case f.

Figure 6-19: 1st Mode Buckling Shape for Case g.

Figure 6-20: 1st Mode Buckling Shape for Case h.

6.4.5 Verification of Resistance

The diaphragm stability was checked by EN 1993-1-5 Section 10 and Annex B.1. The relative slenderness of the plate is calculated using EN 1993-1-5 equation (10.2), in which:

- α_{cr} is the buckling factor from the FE model run for the elastic buckling solution; and
- α_{ult,k} is the load amplifier for design loads to reach the characteristic value of resistance, which may be taken as the ratio of the max von Mises stress to the yield stress, where the von Mises stresses are obtained from a linear FE analysis.

The resistance equation is equation (10.2) of EN 1993-1-5 in which ρ is found from equation B.1 of Annex B.1 of EN 1993-1-5.

The above calculation gives a utilization ratio of 0.97. The effects of potential out-of-plane loading are accommodated by adding the ring stiffener around the hole and the transverse 160×16 stiffener under the diaphragm.