

APPROVATO REV DATA DESCRIZIONE REDATTO VERIFICATO F0 20/06/2011 EMISSIONE FINALE RILA IPTF CJW/LSJ

NOME DEL FILE: PS0045_F0

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Design Report - Cable Saddles

Codice documento PS0045_F0

INDICE

IN	DICE.		. 3
1	Intro	oduction	. 5
2	Des	ign References	. 6
	2.1	Design Specifications	. 6
	2.2	Design Codes	. 6
	2.3	Drawings	. 6
3	Non	nenclature	. 8
4	Mat	erials	10
4	4.1	Cast Steel	10
4	4.2	Structural Steel	10
	4.3	Structural Bolts	11
	4.4	Welding	11
5	Des	ign Principles	13
6	Том	ver Saddles, Design Verifications	13
	6.1	Design Forces	13
	6.2	Trough Plates - Geometry	15
(6.3	Trough Plates	17
(6.4	Additional Anchorages and Saddle Frame	20
(6.5	Top Plate Bearing Pressures	22
(6.6	Transition Section	23
7	Spla	ay Saddles, Design Verifications	27
	7.1	Design Forces	27
	7.2	Trough Plates - Geometry	28
	7.3	Trough Plates	31
	7.4	Central Part and Rocker Bearing	33
Ap	pendi	x 1 - Tower Saddle - Design Calculations	35
Ap	pendi	x 2 - Splay Saddle - Design Calculations	50

1 Introduction

This report describes the design of the following structural elements of the towers:

- Tower Saddles
- Splay Saddles

The design is based on the design shown in the Tender Design.

For some items it is found advantageous to introduce changes to the design and the following changes are introduced:

- The main cable strand arrangement has been altered from a matrix arrangement to a vertical staggered arrangement to improve stability of the cable prior to compaction and to improve constructability.
- The main cable wire diameter has been increased from 5.32 mm to 5.40 mm and the number of strands in main span is increased from 324 to 349. Both changes have been made to accommodate increases in deck weight. The number of additional strands in the side spans has increased from 8 and 6 in Sicilia and Calabria span respectively to 12 and 8.
- Saddle trough plate grooves have been changed from circular profile slots to square to suit the PPWS strand erection procedure and strand arrangements within the troughs have been revised to accommodate the new main cable arrangement.
- The main cable spacing has increased from 1750 to 2000 mm due to the revised strand arrangement at the saddles.
- The geometry of the splay saddle trough has been carefully optimised to minimise horizontal deviation forces and reduce the tendency for strand deformation and wire movement during strand erection. Control measures have been added to further mitigate the problem.

All the calculations are based on the Design Basis. The global IBDAS model version 3.3b was used for the applied load combinations.

Selected main results of the calculations are enclosed in Appendices.

2 Design References

2.1 Design Specifications

CG.10.00-P-RG-D-P-GE-00-00-00-00-00-02-B - "Design Basis, Structural, Annex

GCG.F.05.03 Design Development – Requirements and Guidelines

GCG.G.03.02 Structural Steel Works and Protective Coatings

GCG.G.03.03 Suspension system

2.2 Design Codes

"Norme tecniche per le costruzioni," 2008 (NTC08).

EN 1993-1-1	Design of Steel Structures – Part 1-1: General rules and rules for buildings
EN 1993-1-5	Design of Steel Structures – Part 1-5: Plated structural elements
EN 1993-1-8	Design of Steel Structures – Part 1-8: Design of joints
EN 1993-1-9	Design of Steel Structures – Part 1-9: Fatigue
EN 1993-1-10	Design of Steel Structures - Part 1-10: Selection of steel for fracture
	toughness and through thickness properties
EN 1993-1-11	Design of steel structures - Part 1-11: Design of structures with tension
	components
EN 1993-2	Design of Steel Structures – Part 2: Steel Bridges

2.3 Drawings

The saddle drawings relevant for this report are listed in Table 2-1.

Table 2-1Cable system drawings relevant for this report

Drawing Title	Drawing Number
Tower Saddle - General Arrangement	CG1000-PAXDPSV-S7SL000000-01
Tower Saddle - Sections and Details	CG1000-PWXDPSV-S7SL000000-01
Tower Saddle - Additional Anchorages	CG1000-PWXDPSV-S7SL000000-02
Tower Saddle - Trough Plates	CG1000-PWXDPSV-S7SL000000-03
Tower Saddle - Trough Plates Sections and Details	CG1000-PWXDPSV-S7SL000000-04
Splay Saddle - General Arrangement	CG1000-PAXDPSV-S7SL000000-02
Splay Saddle - Trough Plates - Sicilia	CG1000-PWXDPSV-S7SL000000-05
Splay Saddle - Trough Plates - Calabria	CG1000-PWXDPSV-S7SL000000-06
Splay Saddle - Trough Plates Sections and Details	CG1000-PWXDPSV-S7SL000000-07

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essin a VO	1
Design Report - Cable Saddles		Codice documento	Rev	Data
		PS0045_F0	F0	20/06/2011

3 Nomenclature

Additional PPWS anchorages - the weldments that anchor the additional PPWS, found only in the side spans, at the tower tops.

Continuous tower section - the plates that are continuous throughout the length of the tower legs

Cross Beams – the transverse beams connecting the tower legs.

Diaphragms - horizontally disposed plates within the tower legs

Main Cables - each of the two main cables is made up of two individual cables of prefabricated steel wire strands grouped and compacted into two single cables of circular cross section.

PPWS - Preformed parallel wire strands that collectively make up the main cable.

PPWS socket - the end termination of the PPWS strand

Primary stiffeners - the large vertical plates that transfer the load applied by the tower saddle into the continuous tower section.

Secondary Stiffeners - the vertical plates that transfer the load applied by the tower saddle into the primary stiffeners.

Spacers - thin metal plates inserted between adjacent strands in a single slot or groove.

Splay Saddle - the manufactured assembly over which the cables pass that deviates the strands

Splay Saddle Central Part - the weldment that supports the splay saddle trough plates at the top and is connected to the rocker bearing at the bottom

Splay Saddle Rocker Bearing - the two-part bearing, the upper part being fixed tot he splay saddle

central part and the lower part being fixed to the sloping concrete floor of the anchorage.

Tower Legs – the vertical elements of the bridge towers, extending from the tops of the concrete pedestals at elevation +18.00 to the undersides of the tower saddles at approximate elevation +396.50.

Tower saddle – the manufactured assembly over which the main cables pass and which applies the cable load to the top of the tower leg.

Tower saddle frame - the weldment comprising side plates and base plate that is located on top of the tower leg and which carries the additional PPWS anchorages.

Tower top plate - the uppermost plate that caps the tower legs and which directly the supports the tower saddle frame.

Tower top stiffeners - additional plates within the tower leg that are curtailed within or just below the tower leg transition zone.

Tower top transition section - the tapered and recessed section of the tower leg that extends from the top of the uppermost cross beam to the tower top plate.

Trough Plates - the curved steel castings, with machined grooves, that contain the PPWS strands as they are deviated over the saddle (these are found at both the tower saddle and the splay saddle).

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Design Report - Cable Saddles		Codice documento	Rev	Data
		PS0045_F0	F0	20/06/2011

4 Materials

The mechanical properties of the tower construction materials are described in this section.

4.1 Cast Steel

The trough plates of both tower and splay saddles, the top plate of the splay saddle central part and the upper and lower components of the rocker bearing are fabricated from cast steel as specified below:

Component	Material	Min Yield Stress (Rp0.2)	Min Tensile Strength (Rm)
Trough Plates	G24Mn6+QT2 (1.1118) to UNI EN 10340 (t<100mm)	500 MPa	650 MPa
Splay saddle central part top plate	G24Mn6+QT2 (1.1118) to UNI EN 10340 (t<300mm)	380 MPa	600 MPa
Splay saddle central part rocker bearing	G24Mn6+QT2 (1.1118) to UNI EN 10340 (t<500mm)	380 MPa	600 MPa

Table 4-1: Design parameters for trough plates

4.2 Structural Steel

Structural steelwork components are fabricated from hot rolled structural steels, produced in accordance with EN 10025-4 except where observed below. The grades of steel used are assumed to have the mechanical properties listed below. It is assumed that the mechanical properties will not vary with material thickness for thicknesses up to 100 mm.

Grade	Min Yield Strength (Reh)	Min Tensile Strength (Rm)
S 420 ML (t<100mm)	420 MPa	520 MPa
S 420 ML (t<150mm)	365 MPa	460 MPa
S 460 ML (t<100mm)	460 MPa	540 MPa

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essin a VO	I
Design Report - Cable Saddles		Codice documento	Rev	Data
		PS0045_F0	F0	20/06/2011

S 460 ML (t<200mm)	385 MPa	490 MPa
--------------------	---------	---------

 Table 4-2: Structural steel mechanical properties for stated thicknesses

All structural steel is also assumed to have the following properties, in accordance with NTC08 Section 11.3.4.1:

Mechanical Properties	Value
Elastic modulus: E (MPa)	210 000
Poisson's ratio: v	0.3
Shear modulus: G (MPa)	E / [2 (1 + v)]
Coefficient of thermal expansion: α (°C ⁻¹)	12 x 10 ⁻⁶
Density: (ρ kg/m ³)	7850

Table 4-3: Characteristics of structural steel

Structural steelwork is machined at bearing contact surfaces unless the load is transmitted through weld.

4.3 Structural Bolts

Structural bolts are grade 10.9 with class 10 nuts and washers in accordance with GCG.G.03.02 and NTC 08, section 11.

Bolt Grade	Proof strength	Tensile strength
10.9	900 MPa	1000 MPa

Table 4-4: Design parameters	s used for bolt desig	n
------------------------------	-----------------------	---

4.4 Welding

Welding procedures and welder qualification shall be in accordance with GCG.G.03.02 and NTC 08, section 11. Weld design shall be in accordance with NTC 08, section 4, as summarised in table Table 4-5.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		1
Design Report -	Cable Saddles	Codice documento PS0045_F0	Rev F0	Data 20/06/2011

Steel grade	Yield Stress	Factors $\beta/\beta_1/\beta_2$	Partial Factor
S460ML	460 MPa	1.00/0.62/0.75	γ _{M2} = 1.25

Table 4-5: Design parameters used for weld design

The material partial factors (safety coefficients) used to verify the steel elements are in accordance with NTC08 Sections 4.2.4.1.1, 4.2.4.1.4, 4.2.8.1.1, 4.2.8.2 and are listed in below.

Verification	Partial Factor
Resistance of class 1, 2, 3 and 4 sections and castings	γ _{M0} = 1.05
Resistance to instability of members in road and rail bridges	γ _{M1} = 1.10
Resistance to fracture of sections and plates under tension (weakened by holes), bolts in shear and tension, connected plies in bearing and welds	γ _{M2} = 1.25
Fatigue resistance	γ _{M3} = 1.35

Table 4-6: Partial material factors for steel elements used in the saddles

5 Design Principles

The design principles are described in the Cable System, Specialist Technical Design Report CG1000-PRXDPSV-S7SS000000-01.

6 Tower Saddles, Design Verifications

6.1 Design Forces

Components subject to force applied by a single PPWS are designed to resist the ultimate tensile strength of the strand. A single PPWS strand consists of 127 No 5.40 mm dia. wires at grade 1860 MPa giving a UTS of:

UTS of a single PPWS: 5410 kN

Components subject to forces applied by groups of strands without being the complete cable are designed to resist the maximum forces in the strands at SILS or ULS that are allowed by the design basis.

Max force at SILS (UTS/1.4)	3864	kN
Max force at ULS (UTS/1.67)	3239	kN

The resolution of the maximum allowable forces into the tower yields the following vertical forces.

Axial load in tower due to max SILS force in strand	2042	MN
Axial load in tower due to max ULS force in strand	1712	MN

Components subject to forces applied by the complete cable are designed to resist the maximum design forces applied by the cable at the relevant limit state and the maximum tendency for the saddle to be sheared off the tower. The verifications are made at SILS or ULS.

The saddle and trough plate is generally governed by the load combination that maximises axial load in the tower. Moments and shears at the level of the saddle are small by comparison and do not have a significant effect on the design.

The only notable exception to this is consideration of slip of the trough plates, which is critical under a load combination that maximises resultant shear generated by a difference in cable tension between the two spans.

These forces are selected from the IBDAS model 3.3b results files for the tower at the node immediately below the saddle and are summarised below.

	Ns [MN]	My [MNm]	Mz [MNm]	Vy [MN]	Vz [MN]	Mt [MNm]
Design ULS case for maximum axial load in	n Tower					
IBDAS load cases 6517 plus temperature envelope 4510	-1753	-161	1.7	-66.3	-49.7	-6.1
Design ULS case for maximum moment in	Tower					
IBDAS load cases 6902 plus temperature envelope 4510	-1450	448	0.9	-52.4	111.1	15.2
Design SILS case for maximum axial load i	n Tower					
IBDAS load cases 6812 plus temperature envelope 4510	-1528	-187	0.8	-58.3	-59.6	-6.99
Design SILS case for maximum moment in	Tower					
IBDAS load cases 6930 plus temperature envelope 4510	-1336	54	39.5	-35.5	10.4	1.5
Design ULS case for saddle slippage						
IBDAS load cases 7513 plus temperature envelope 4510	931	412	1.4	33.7	120.7	14.8
Design SILS case for saddle slippage						
IBDAS load cases 6932 plus temperature envelope 4510	1137	454.9	1.3	41.6	130.0	16.2

Table 6-1: IBDAS 3.3b results used for tower saddle design

IBDAS load case 6517 is a load combination at ULS of the loading in the finished bridge (PP+PN+QA+VS_dyn+VT) with surfacing of 40mm.

Temperature envelope 4510 is a worst temperature loading envelope which is added to the governing limit state envelopes.

IBDAS load cases 6812 is a load combination at SILS of the loading in the finished bridge (PP+PN+QR+VS_dyn+VT with surfacing of 40mm

IBDAS load cases 7513 is a load combination at ULS of the loading in the finished bridge (PP+PN+VS_dyn+VT with surfacing of 15mm

IBDAS load cases 6932 is a load envelope at SILS of the loading in the finished bridge (envelope w. seismic) with surfacing of 15 and 40mm.

6.2 Trough Plates - Geometry

The grooves in the trough plates are detailed to accommodate the PPWS arranged in a rectangular section. Grooves wide enough for a single strand are 66mm wide. Grooves wide enough for a two strands incorporate a spacer and are 138mm wide.

In side elevation, the radius of the saddle has a single point of origin over the principle loaded length which is defined at the reference condition of the bridge with full dead load only. Radii of curvature, therefore, depend on the distance from that origin. Sections at the mouth of the saddle to the main span and side span sides are curved differently to allow vertical rotation of the cable downwards without permitting the tangent point of the cable to reach the edge of the saddle. The gap above the strands also permits upward rotation of the cable in order for the free cable profile to be accommodated without restricting the positioning of the trough plates above.

The grooves are straight on plan except in the regions close to the mouth of the trough plates at main span and side span sides where the spacers are tapered at suitable radii to permit the strands to deviate towards the cable clamp. Some widening therefore occurs in the grooves. The transverse arc of the side of the groove extends to the end of the trough plates in order to permit additional lateral rotation of the cable during service. The gap between the strand and the spacer to the other side will permit rotation in the opposite direction.

The maximum SLS inclinations at the tower tops that the main cable adopts are taken from the IBDAS model 3.3b results. The maximum net changes in cable angle that the saddle must accommodate are shown below.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report -	Cable Saddles	Codice documento PS0045_F0	Rev F0	Data 20/06/2011	

CABLE INCLINATIONS AT SLS (Degrees)	REF CONDITION	MAX. ANGLE	NET CHANGE IN ANGLE
Sicily Side Span (angle to horizontal)	23.71	25.25	2.06
Sicily Tower (angle to vertical)	0.00	-0.52	
Main Span Side (angle to horizontal)	-20.79	-23.39	-2.08
Main Span Side (angle to horizontal)	20.79	23.30	2.01
Calabria Tower (angle to vertical)	0.00	0.50	
Calabria Side Span (angle to horizontal)	-22.63	-23.90	-1.77
		(COMB 6700)	

The saddle shall accommodate the free cable without impeding installation of the trough plates. At free cable condition the geometry at the towers is as follows:

CABLE INCLINATIONS AT SLS (Degrees)	REF CONDITION	FREE CABLE	NET CHANGE IN ANGLE
Sicily Side Span (angle to horizontal)	23.71	25.00	0.32 (lowers)
Sicily Tower (angle to vertical)	0.00	0.97	
Main Span Side (angle to horizontal)	-20.79	-19.80	0.02 (lifts)
Main Span Side (angle to horizontal)	20.79	19.80	-0.18 (lifts)
Calabria Tower (angle to vertical)	0.00	-0.81	
Calabria Side Span (angle to horizontal)	-22.63	-23.60	-0.16 (lowers)

The combined effect of the change in the cable angle and rotation of the tower saddle produces a net change in angle between the cable and the saddle. The greatest lift of the cable occurs at the main span side of the Calabria Tower. The worst case is the lowest trough plate since it is here that the strand tangent point is furthest from the edge of the trough plate. At the edge of the trough plates the resulting lift of the strands is 5mm which is accommodated by the available gap of 30mm.

The maximum SLS horizontal rotations that the cables adopt at the towers are taken from the IBDAS model 3.3b results.

	HORIZONTAL
CABLE INCLINATIONS AT SLS (Degrees)	DEVIATION
Sicily Side Span (angle to axis of bridge)	0.01
Main Span Side (angle to axis of bridge)	0.58
Main Span Side (angle to axis of bridge)	0.58
Calabria Side Span (angle to axis of bridge)	0.02

The cable may rotate in the saddle at the end region where the curvature of the spacer is provided.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report -	- Cable Saddles	Codice documento PS0045_F0	Rev F0	Data 20/06/2011	

6.3 Trough Plates

The spacers must resist the spreading force of the strand at free-cable profile. The free cable force in a strand was calculated in order to determine whether the strands in a groove could apply a significant spreading force to the spacers prior to the neighbouring grooves being occupied and providing support.

Stress in spacer	28	N/mm^2
Material yield	500	N/mm^2

By inspection, it can be seen that this is not a critical case.

At the limit states, the strands apply radial forces which accumulate towards the bottom trough plate. The lowest trough plate (A), however, is supported over its full soffit and therefore the bending of the base of the groove does not occur. The second trough plate (B) carries the forces from the trough plates above which combine with the bending of the base.

The total forces applied to the tower are the maximum allowable SILS and ULS tensions in the PPWS resolved vertically.

		SII	S	ULS	
Vertical force into tower		20)42	1712	MN
The critical locations in trough plates A ar	nd B a	are verified below.			
Underside of trough plate B		SILS		ULS	
Equivalent direct stress		44	0	369	N/mm^2
Material yield	500	N/mm^2			
Gamma M		1.0	0	1.05	
UTILISATION		0.8	8	0.77	
Underside of trough plate A		SILS	U	ILS	
Accumulate bearing stress of	10	trough plates			
Equivalent direct stress		48	8	409	N/mm^2
Material yield	500	N/mm^2			
Gamma M		1.0	0	1.05	
UTILISATION		0.9	8	0.86	

Figure 6-1 Cross section of tower trough plates showing critical locations at underside of A and through base of B

The complete cable applies the following maximum pressure to the tower.

	SILS	ULS	
Contact pressure	24	28	MN/m^2

Under the applied SILS and ULS loading, the individual bearing and bending stresses in trough plate B are as follows.

SILS	ULS	
137	156	N/mm^2
23	19	N/mm^2
12	10	N/mm^2
	SILS 137 23 12	SILS ULS 137 156 23 19 12 10

To this effect is added that caused by the main cable transmitting tension to the trough plates as its own tension increases. This is of course limited by friction, but since the more onerous effect is experienced with a higher coefficient of friction the gamma value of 1/1.65 has been used at ULS.

		SILS	ULS
Coefficient of friction	0.3		
Coeff * gamma M		0.3	0.495
Max stress in trough plate due to			
cable tension		12	23 N/mm^2

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essina VO	I
Design Report -	Cable Saddles	Codice documento PS0045_F0	Rev F0	Data 20/06/2011

At the mouth of the saddle, the trough plates accommodate the splay of the PPWS as they are gathered into the first cable clamp. The worst case is the outer column of grooves. The effect of the horizontal shear transmitted by the trough plates into the tower is added to this. Friction between the PPWS and the trough plate, reduced accordingly by gamma value, may be taken to aid in resisting this transverse force, but, the support of the spacer by friction with the trough plate above cannot be counted on in such a localised area. The spacers are also thinner at this point.

			SILS	ULS	
Flexural stress in spacer			234	219	N/mm^2
Shear stress			15	14	N/mm^2
The combined effects of these stresses follo	ow.		cu c		
			SILS	ULS	
Equivalent direct stress			373	378	N/mm^2
Material yield 5	00	N/mm^2			
Gamma M			1.00	1.05	
UTILISATION			0.75	0.79	

The saddle trough plates resist the SILS and ULS loading as detailed.

The overall stability of the trough plates on top of each other and the tower is maintained by friction. The dowels are for locating purposes only. The load case with a maximum value of resultant horizontal shear/axial load was selected from the IBDAS results (see section 6.1 above).

		SILS	ULS	
Min vertical compression Ns IBDAS		1137	931	MN
Resultant shear		137	125	MN
Trough plate friction coefficient	0.30			
Coeff / gamma M		0.30	0.18	
Frictional resistance		341	169	MN
UTILISATION		0.40	0.74	

The trough plates are stable against sliding at SILS and ULS.

In the event that the manufacturer finds advantageous the manufacture of all trough plates to a single radius with deformation occurring once installed the additional stresses caused by deforming

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essin a VO	I
Design Report -	Cable Saddles	Codice documento PS0045_F0	Rev F0	Data 20/06/2011

the trough plates must be added to the service effects above. These stresses are factored with gamma M = 1.00.

Stress in deformed trough plate	99	N/mm^2	2 (either te	ension or co sp	ompression at th bacer)	e tip of
	42	N/mm^2	2 (either tensi	(either tension or compression at the under trough plate)		
				SILS	ULS	
Equivalent direct stress tip of sp	acer			389	396	N/mm^2
Equivalent direct stress undersion	de of tro	ugh plate		377	383	N/mm^2
Material yield		500	N/mm^2			
Gamma M				1.00	1.05	
UTILISATION				0.75	0.80	

6.4 Additional Anchorages and Saddle Frame

The bearing plates which support individual PPWS and the local distribution of this force into the longitudinal stiffeners are designed to resist the UTS of the strand.

Contact pressure	361	N/mm^2		
Yield stress of steel (S460)	460	N/mm^2		
			SILS	ULS
gamma M			1.00	1.05
UTILISATION			0.78	0.82

The stiffened base plate and stiffeners are designed to resist the maximum allowable SILS or ULS tension in the strands applied eccentrically. The deflection of the plate and corresponding increase in eccentricity is taken into account.

	SILS	ULS	
Deflection in plate	24	19	mm

Stresses are checked at the stiffener tips and the combined stress from biaxial bending and shear in the base plate. At SILS, the material yield stress may be reached and plastic deformation permitted, whereas at ULS, the section remains elastic.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Design Report -	Cable Saddles	Codice documento PS0045_F0	Rev F0	Data 20/06/	2011	
Stress at bottom tip of tra Stress at tip of long. stiffs	ansverse stiffs	SILS 276 255		ULS 415 427	N/mm^2 N/mm^2	
Equivalent direct stress in Material factor MAXIMUM UTILISATION	n base plate	376 1.00 0.82		296 1.05 0.97	N/mm^2	

The front edge of the base plate is unstiffened transversely but is supported on the trough plates below at quarter points.

	SILS	ULS
Equivalent direct stress	386	293 N/mm^2
Material factor	1.00	1.05
UTILISATION	0.84	0.67

Close to the supported edge the base plate is unstiffened.

	SILS	ULS	
Bending stress	355	293 N/I	mm^2
Vertical Shear stress	38	31 N/I	mm^2
Longitudinal shear stress	124	104 N/I	mm^2
Equivalent direct stress	420	347 N/I	mm^2
Material factor	1.00	1.05	
UTILISATION	0.91	0.79	

At the support the additional force from the handstrands is added to the base plate. These forces are applied unfactored.

Total force	4400	kN
Moment	4840	kN.m

The bolts experience shear and tension. The connections are symmetrical about the saddle side plate so no additional eccentricity is applied.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Design Report -	Cable Saddles	Codice documentoRevDatePS0045_F0F020/			Data 20/06/.	2011
Choose number of bolts a	at each edge	50	SILS		ULS	
Longitudinal shear applied per bolt			971		821	kN
Tension applied per bolt			335		285	kN
Combine Ft and Fv (NTCO	8, eq 4.3.65)		0.856	().906	

The saddle frame side plate transfers the forces applied by the bolted connection. The highest stress occurs at the base plate connection.

	SILS	ULS	
Compressive stress due bending	9	8	N/mm^2
Tensile stress due bending	27	23	N/mm^2
Shear stress	72	61	N/mm^2
Interaction	128	108	N/mm^2
gamma M1	1.00	1.10	
UTILISATION	0.28	0.26	

The base plate resists the forces applied to it because it is held in down by the trough plates. Local bending and shear stresses occur in the base plate.

	SILS	ULS
Equivalent direct stress	306	258 N/mm^2
gamma M0	1.00	1.05
UTILISATION	0.67	0.59

6.5 Top Plate Bearing Pressures

The thick top plate is supported by a rectangular grillage at varying centres. The thickness of the plate is significant compare to the span, therefore much of the load applied to it is transferred by stiff bearing into the grillage plates. However, some variation in pressure will occur along the supported edges. A Lusas model was produced for part of the top plate and a unit load applied in order to assess the transmission of pressure into the grillage and particularly the distribution along the edges for varying panel dimensions. Relationships between the average pressure and the peak and corner pressures were identified and largest values chosen as a c onservative estimate of the pressure distribution along the edges.

Figure 6-2: LUSAS FE model showing reactions at a selection of the supports of tower top plate.

Adjustment factor for peak pressure	Average x 1.30
Adjustment factor for pressure at panel corner	Average x 0.30

6.6 Transition Section

The design of the grillage plates for the transition section is governed by the highest applied pressure. The resistance is achieved by strength of the materials.

Forces applied to tower	Ns[MN]	My[MNm]	Mz[MNm]	Vy[MN]	Vz[MN]	Mt[MNm]
Design case SILS	-1528.41	-186.505	0.775	-58.272	-59.57	-6.939
Design case ULS	-1753.016	-161.253	1.727	-66.294	-49.691	-6.143

Since the ULS pressure is significantly greater than the SILS pressure and the material factors are 1.05 and 1.00 respectively, the SILS is non-critical and will no longer be considered.

The following discussion refers to the ULS case only.

The bending stresses, and accompanying shears, experienced by the top plate are due to biaxial bending.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report -	Cable Saddles	Codice documento		Rev	Data
PS0045_F0			F0	20/06/2011	
Bending stress long way sp Bending stress short way s Shear stress at short edge	pan pan	250 215 31 43	N/mn N/mn N/mr	n2 n2 n2 n2	
equiv direct stresses		241 N/mm2			
gamma m0 1.05					
UTILISATION	0.73	For d	irect s	tress	
UTILISATION	0.22	For sl	hear st	ress	

Bearing pressures onto the grillage vary. The peak values are shown below. The bearing capacity of the grillage below the top plate, being of thinner plates, will be less critical and is not considered.

Peak bearing pressure on short edges	271	N/mm2
Peak bearing pressure on long edges	373	N/mm2
Limiting stress of bearing contact = 1.5 x fy/gamma M0 (EN 1993-1-8, table 3.10)	
Limiting stress of bearing contact	690	N/mm^2
UTILISATION	0.54	

The shortest secondary stiffeners develop bending and shear under the applied load. The combined stresses are checked at the edges, the centre of the span and the quarter points. The top edge of the plate is critical at the quarter point.

Shear stress at edge	230	N/mm^2
Bending in plt M	230	N/mm^2
Bending and bearing, no shear	326	N/mm^2
Adjustment to average for bearing stress at panel corners from Lusas model		
Min bearing/average	0.30	
Shear and 30% ave. bearing, no bending	407	N/mm^2
gamma M0	1.05	
UTILISATION	0.93	For direct stress
UTILISATION	0.91	For shear stress

The remaining secondary stiffeners support those discussed above. This plate is checked for shear buckling and found to yield before buckling. The same analysis as above is repeated.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Design Report -	Cable Saddles	Codice documento		Rev	Data	
		PS0045_F0		F0	20/06/2011	
Shear stress at edge		134	N/mr	n^2		
Shear stress at quarter poi	nt	67	N/mr	n^2		
Max Bending stress in plt N	N	107	N/mr	n^2		
Bending stress at quarter p	point	89	N/mr	n^2		

The primary stiffeners run longitudinally and transversely. Longitudinal stiffeners within the outer
tapering sections support a series of secondary stiffeners as well as direct bearing from the top
plate. The maximum equivalent direct stress is found at the top edge mid-way between the vertical
supporting edge and the first secondary stiffener.

Maximum equivalent direct stress	281	N/mm^2
gamma M0	1.05	
UTILISATION	0.64	For direct stress
UTILISATION	0.56	For shear stress

The primary stiffeners in the central part of the tower leg run longitudinally and transversely.

The longitudinal stiffeners, three in number carry a greater proportion of the load than do the two transverse stiffeners, although, the stiffnesses are so arranged to distribute the forces fairly evenly between all stiffeners.

Stresses in the longitudinal stiffeners

Shear, BM, bearing at top 1/4 Shear and BM bottom of plt

gamma M0

UTILISATION

UTILISATION

Shear stress at edge	145	N/mm^2
Shear stress at 1/4 point	73	N/mm^2
Max bending stress	116	N/mm^2
Bending stress at 1/4 point	87	N/mm^2
Interaction at top of plt		
Bearing, bending centre	163	N/mm^2
Shear, bearing, bending 1/4	205	N/mm^2

266 N/mm^2

N/mm^2

0.24 For direct stress

0.53 For shear stress

255

1.05

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Design Penart	Cable Saddles	Codice documento			Rev	Data
	- Janie Jaudies	PS0045_F0			F0	20/06/2011
L		1				<u> </u>
Interaction at bottom of r	blt					
Bending centre			116	N/mr	n^2	
Shear, bending 1/4			153	N/mr	n^2	
gamma M0			1.05			
UTILISATION			0.47	For d	irect s	tress
UTILISATION			0.57	For s	hear st	tress
Stresses in the transver	se stiffeners					
Shear stress at edge			147	N/mr	n^2	
Shear stress at 1/4 point			74	N/mr	n^2	
Max bending stress			104	N/mr	 n^2	
Bending stress at 1/4 poin	t		78	N/mr	n^2	
Slope of sides			19.98	degre	ees	
Add'l compr force due slop	be		32	MŇ		
Add'l compr stress due slo	ре		54	N/mr	n^2	
Interaction at top of plt						
Bearing, bending centre			148	N/mr	n^2	
Shear, bearing, bending 1/-	4		185	N/mr	n^2	
Interaction at bottom of p	blt					
Bending centre			51	N/mr	n^2	
Shear, bending 1/4			130	N/mr	n^2	
gamma M0			1			
UTILISATION			0.42	For d	irect s	tress
UTILISATION			0.58	For s	hear st	tress
The plate sizes designed	d for each type of stiffene	r are as follows.				
					В	utt welds
		t		D		to edges
Plates designed		(mm)		(mm)		(mm)
Secondary additional stiffe	eners	60		1000		60
Secondary transverse stiff	eners	60		2500		38
Central Stiffener - Side sec	tion (width varies from 4 to	o 6m) 60		10000)	40
Longitudinal central stiffer	her	60		10000)	41
Longitudinal outer stiffene	er	60		10000)	41
Transverse stiffeners	(inne	r) 60		10000)	42
Transverse stiffeners	(oute	er) 60		10000)	42

Т

Г

1

7 Splay Saddles, Design Verifications

7.1 Design Forces

Components subject to forces applied by groups of strands without being the complete cable are designed to resist the maximum forces in the strands at SILS or ULS that are allowed by the design basis.

kN

Max allowable cable tension (single cable) MN	No PPWS	SILS	ULS
Sicily side span cable	361	1395	1169
Calabria side span cable	357	1380	1157

The resolution of the maximum allowable forces into the strands at reference geometry yields the following reactions at the rocker bearing.

Max allowable resultant force into splay saddle (double cable) MNSILSULSAngle of incidence (deg)SILSULSSicily side span cable7.98387325Calabria side span cable8.05386324

Components subject to forces applied by the complete cable are designed to resist the maximum design forces applied by the cable at the relevant limit state and the maximum tendency for the saddle to be sheared off the tower. The verifications are made at SILS or ULS.

The saddle and trough plate is governed by the maximum cable tension load combination that maximises the reaction at the rocker.

The possible 'unzipping' of the twin splaying cables due to slip of the trough plates is assessed by applying a reduction factor, γ_M , to the cable to trough plate friction.

These cable forces are selected from the IBDAS model 3.3b results files for the cable at the saddle.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essin a VO	1
Design Report -	Cable Saddles	Codice documento PS0045_F0	Rev F0	Data 20/06/2011

	Ns[MN]
Max ULS cable tension (IBDAS load cases 6517 plus temperature envelope 4510)	1108
Max SILS cable tension (IBDAS load cases 6812 plus temperature envelope 4510)	978

IBDAS load case 6517 is a load combination at ULS of the loading in the finished bridge, PP+PN+QA+VS+VT with surfacing of 40mm.

Temperature envelope 4510 is a worst temperature loading envelope for uniform temperature.

IBDAS load cases 6812 is a load combination at SILS of the loading in the finished bridge PP+PN+QR+VS+VT with surfacing of 40mm

7.2 Trough Plates - Geometry

The cable run strands are parallel in the compacted cable. At the final cable band they splay apart and diverge towards the trough plates. The strands are grouped for entry into the trough plate grooves, the separation being controlled by the spacer thickness and the groove width. The greater splay of the cable within the splay saddle makes the forces on the spacers higher, and therefore they tend to be thicker than those at the tower saddles. As a result, the distance between the main cables increases from 2000mm to 2310mm at the entrance to the trough plates, and continues to increase as they diverge within the trough plates.

Figure 7-1 Partial section through splay saddle trough plate F

The spacers thicken as the horizontal splay of the strand groups increases the distance between them.

Each trough plate guides the strands through a different vertical arc in order to splay the strands vertically. The vertical curve of the trough plates is set out at a single origin in order to direct the forces through the rocker and each layer of strands leaves the respective arc tangentially after having passed through different angles of deviation. Between the entry and exit tangent points of the vertical arcs, the strands apply a radial pressure to the trough plates. Local flexure and shear of the base of the trough plate spread the forces to the spacers and thence to the trough plates below, accumulating towards the rocker. The radii of the vertical arcs are determined by the position of the rocker, the main cable axis in the side span, the theoretical main cable axis of the deviated cable and the trough plate thickness. There is no flexibility in adjustment of these tangent points since all parameters but the trough plate thickness are fixed.

The horizontal splay of each groove column is defined as the same for each trough plate. Guiding the strands through the same radius of arc ensures that the spacers are aligned to carry the radial pressures directly. Since the incoming cable angle is defined by the spacer thickness and the deviation angles defined by the anchor wall setting out points any appropriate radius of curvature may be chosen, provided that it is imposed on all strands in a particular column and that the spacers do not reduce in thickness. In order to distribute the horizontal splay forces over the greatest length of trough plate, the horizontal curvature is commenced as close as practically possible upon entering the trough plates and continues until as close as practically possible to the exit point.

Transverse splaying of the strands may cause lateral bunching of wires. The vertical curvature holds the wires in the closed-packed arrangement. If the horizontal component of force is sufficient to overcome the vertical correcting force, wires may move laterally, jumping over others and crossing. The close-packed formation is hexagonal, so, neglecting friction, when the horizontal force is greater than tan(30°) times the vertical force wire bunching may occur.

In order to distribute horizontal forces over a longer length of trough plate, the horizontal arc extends beyond the region with vertical curvature. In these areas, shown shaded on Figure 7-2 the wires have no correcting force and control measures must be taken. These will be designed by the contractor as part of the erection equipment, however, the system shown illustratively on the drawings comprises rectangular steel bars screwed to the trough plates over the strands, which

Stretto di Messina	EurolinK	Ponte sullo Stretto di Me PROGETTO DEFINITI	essin a VO	I
Design Report -	Cable Saddles	Codice documento PS0045_F0	Rev F0	Data 20/06/2011

hold the wires in place. Because the wire crossing requires increased space the wires the stiffness of the wires themselves will enable intermittent control blocks. They will be used in conjunction with similar controlling efforts immediately before and after the trough plates.

Figure 7-2 Section through splay saddle trough plates showing regions where horizontal splay occurs without vertical splay.

The horizontal radii do not have a common centre as in the case of the vertical arcs but equilibrium is maintained because the out-of-balance forces are reacted by equal and opposite forces from the

other cable. The flexure of the spacers and the balancing tension in the trough plate bases, increasing towards the centre, adding transverse tensile stresses to the trough plate bases.

7.3 Trough Plates

The following stresses occur in the trough plates and the internal corners of the spacers:

STRESS	DIRECTION
Accumulated radial stress at spacer;	Radial compression
Flexure of the spacers due the horizontal spreading force	Radial tension or compression
of strand wires, and accompanying shear	Transverse shear
Flexure of trough plate base due to radial pressure of	Transverse tension of compression
PPWS and accompanying shear	Radial shear
Horizontal force on spacer due to the horizontal splay	Radial tension or compression
and accompanying shear	Transverse shear
Accumulated horizontal tension in the trough plate base	Transverse tension
Moment from spacer distributed into base	Transverse tension

The maxima of these stresses are tabulated below. They are not necessarily coincident in the same location.

MAXIMUM STRESSES (N/mm^2)	SILS	ULS
Accumulated radial stress at spacer;	286	240
Flexure of the spacers due the horizontal spreading force of strand wires	147	123
and accompanying shear	37	31
Flexure of trough plate base due to radial pressure of PPWS	50	42
and accompanying shear	21	18
Horizontal force on spacer due to the horizontal splay	56	47
and accompanying shear	18	15
Accumulated horizontal tension in the trough plate base	136	114
Moment from spacer distributed into base	143	120
Yield stress of cast steel	500	500

The equivalent direct stress is calculated for coincident stresses at the corners of all grooves.

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO		1
Design Report -	- Cable Saddles	Codice documento PS0045_F0	Rev F0	Data 20/06/2011

Equivalent Direct Stress at critical location	477	400
Gamma M0	1.00	1.05
MAXIMUM UTILISATION	0.95	0.84

Unzipping of the cable may occur if there is insufficient friction between the strands and the trough plates. This is verified below:

	SILS	ULS	
Max allowable tension (single cable)	1395	1169	MN
Resultant splay force (single cable)	126	105	MN
Longitudinal component (unzip)	5.7	4.7	MN
Long'l unzip force (double cable)	11.3	9.5	MN
Transverse component (single cable)	126	105	MN
Reaction on base of grooves (double cable)	387	325	MN
Coeff. of friction - wires and grooves	0.20	0.20	
Gamma M friction at SILS	1.00	1.65	
Resistance to unzip force	128	65	MN
UTILISATION	0.09	0.15	

During construction of the main cable, the strands will be placed one-at-a-time and the transverse forces on the trough pates must, by definition, be out of balance. This is of concern where there is no radial force to hold the trough plates in position. Here no friction is developed with the trough plate below and it may be free to move. Dowels are provided for positioning the trough plates only. Shear keys are provided for resisting the maximum transverse forces but since it is impractical to use shears keys with an interference fit, the trough plates must be held onto them by holding down bolts. The solution shown on the drawings defines 6No M30 grade 10.9 bolts per trough plate and shear keys of 70 wide with side slopes at 1:2. It is verified below for the worst out-of-balance force due to a single four-strand groove.

Max transverse force per four strand group	2336	kN
Resistance of shear key	13605	kN
gamma M SLS	1.25	

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Design Report -	Cable Saddles	Codice documento	Rev	Data		
UTILISATION		0.17				
Holding down bolts						
Tensile capacity M30		283	kN			
Number of bolts provided	per trough plate	6				
Side face of shear key at		26.5	degree	es		
Tension generated in bolts	w/out friction	1165	kN			
UTILISATION 0.69						

Clearly, this detail can be adjusted to suit the contractor's preferred erection scheme if, for instance, more out-of-balance forces are imposed on the trough plates during cable construction.

7.4 Central Part and Rocker Bearing

The central part is manufactured from cast steel and structural steel.

370	N/mm^2
620	N/mm^2
420	N/mm^2
360	N/mm^2
	370 620 420 360

The radial force from the trough plates bears onto the top plate. The pressure is distributed through the stiffened fabrication and through the rocker bearing.

Stresses at critical cross-sections are verified.

SILS	ULS	
387	325	MN
58	49	N/mm2
169	141	N/mm2
249	209	N/mm2
214	180	N/mm2
1.00	1.05	
0.69	0.61	
	SILS 387 58 169 249 214 1.00 0.69	SILS ULS 387 325 58 49 169 141 249 209 214 180 1.00 1.05 0.69 0.61

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report -	Cable Saddles	Codice documento PS0045_F0	Rev ^{F0}	Data 20/06/2011	

The rocker bearing is designed in accordance with EN 1337-6 -2004, 6.5.1.

Rocker bearing	SILS	ULS
Applied loading	387	325 MN
Gamma M	1.00	1.10
Design resistance (N'Rd)	1048	866 MN
Gamma M2	1.00	1.25
UTILISATION	0.37	0.47

The pressure applied to the concrete is verified in accordance with EN 1992-1-1,cl. 10.9.5.2(2) assuming the concrete class to be 45.

	SILS	ULS	
Bearing pressure on concrete	27	23	N/mm2
Estimate local pressure limit factor on fcd	1.00	0.85	
Limiting pressure	45	38.25	N/mm2
UTILISATION	0.61	0.60	

Appendix 1 - Tower Saddle - Design Calculations

TOWER SADDLES -TROUGH PLATE DESIGN

Slot dimensions					
No wires in strand	127				
Wire diamater (nominal)	5.4	mm			
Tolerance +	0.08	mm			
Tolerance -	-0.05	mm			
Max Dia	5.48	mm			
Min Dia	5.35	mm			
Single strand width	12	wires			
Single strand height	11	close pack	ed rows		
Close packed angle	60	degrees			
Clearance for each strand	1	mm			
Material yield	500	N/mm^2			
Single strand slot					
Nominal slot width	65.8	mm	W	66.00 mm	
Max strand width	65.76	mm	d	53.00 mm	
Nominal strand height	52.17	mm			
Max strand height	52.94	mm			
Four strand slot					
Max spacer thickness	6	mm	W	138.00 mm	
Min spacer thickness	5.8	mm	d	106.00 mm	
Nominal slot width	137.6	mm			
Max strand width	137.52	mm			
Nominal strand height	104.33	mm			
Max strand height	105.88	mm			
Spreading force					
Spreading force bends spacer only during	cable constr	uction - it i	s balanced		
by neighbouring strands in permanent co	ndition				
Friction angle	0.65				
(assume hydrostatic distribution)					
H (Free cable)	669462	kN		(estimated)	
Angle cable main span (free cable)	19.61228	degrees		698 strands	
Angle cable side span (free cable)	24.39689	degrees		722 strands	
Vertical force into tower	705	kN / stran	d		
Length of strand contact in saddle	15200	mm on pla	in		
Length of saddle	16000	mm			
Vertical force per 4-strand slot	186	N/mm run	ofslot		
Horizontal force in spacer	121	N/mm run	of slot		
Lever arm	35	mm			
Moment in spacer	4256	N.mm/mn	n run		
Thickness of spacer	30	mm			
Stress in spacer	28	N/mm^2	(free cable)	
Material vield	500	N/mm^2	1		
By inspection, this is not a critical case					
Permanent condition					
Design trough plate grooves for max pe	missible ULS	/SILS cond	ition		
		,	SILS	ULS	
Number of PPWS in groove	4				
Number of strands in one cable	349				
Vertical force into tower			2042	1712	2 MN
Vertical force of 4 strands			23,40	19.62	2 MN
Spacer thickness	30	mm			1.0000
Width of saddle	16	m			
Vertical force of 4 strands			1463	1226	5 N/mm run
Bearing onto spacers (applied from troug	h plates aboy	/e)	49	41	1 N/mm^2
Second control (opplied in the second		-/			
Spacing between grooves	168	mm			
Thickness of base	60	mm			
Moment in base	00		20478.09	17167 26	5 N mm/mm run
Shear in base			721	613	3 N/mm run
Stress due flexure of base			23	10	N/mm^2
Shear stress			12	10) N/mm^2
			12	1	E
Underside of trough plate B			SILS	111 5	
Accumulate bearing stress of	٥	trough pla	tes above	015	
Rearing stress	,	troopin his	130	265	8 N/mm^2
Add flexure and shear in base of trough r	lt		433	300	
Stress due flexure of base		1) 22	10	N/mm^2
Shear stress) 13	10) N/mm^2
and the second s			14	11	

Stretto di Messina	E u r o l i n K			Sina Eurolin K Ponte sullo Stretto PROGETTO DE					Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			1
Design Report	- Cable Sad	Idles		Codice do PS0045_F0	cumento			Rev F0	Data 20/06/2011			
		125		10001000 000								
Equivalent direct stress Material vield	500 N/mm^2	440		369 N/mm^2								
Gamma m	500 14 1111 2	1.00		1.05								
UTILISATION		0.88		0.77	OK							
Underside of trough plate A		SILS		ULS								
Accumulate bearing stress of	10 trough plate	es above										
Bearing stress		488		409 N/mm^2								
Equivalent direct stress Material vield	500 N/mm^2	488		409 N/mm^2								
Gamma m	500 Nyhiin L	1.00		1.05								
UTILISATION		0.98		0.86	ОК							
Overall design of trough plates to IBDAS fo Consider underside of trough plate A	rces at SILS and ULS											
Length	16 m											
Width	3.945 m Ns[MN]	Mv[MNm]	Mz[MNm] Vvl	[MN] Vz[MN]	Mt[MNm]							
IBDAS forces at SILS	-1528.41	-186.505	0.775	-58.272 -59.57	7 -6.939							
IBDAS forces at ULS	-1753.016	-161.253	1.727	-66.294 -49.691	-6.143							
		CII C		111.6								
Contact pressure		24		28 MN/m^2	N/mm^2							
				1000 C 1000 C 1000 C 1000								
Consider root of spacer in trough plate A												
Spacer thickness	30 mm											
Groove spacing	168 mm											
Factor of increase in stress	5.6											
Bearing pressure		137		156 N/mm^2								
Consider contact location on underside of t	rough plate B											
Bearing pressure		137		156 N/mm^2								
Additional stressflexure and shear in base of Stress due flexure of base	groove	23		19 N/mm^2								
Shear stress		12		10 N/mm^2								
Additional stress due to change in tension i Maximum tension transmitted to trough pla	n cable te governed by frictior	n										
Number of piece per trough plate	5 3.2 m											
Direct force on trough plate pile		306		351 MN								
Coefficient of friction	0.3											
Coeff * gamma m Assume 50% acts in each direction		0.3		0.495								
Max tensile force applied to trough plates		46		87 MN								
Number of trough plates	10											
Area of all trough plates	3.844 m^2	10		22 N/mm42								
wax stress due to cable tension		12		25 N/mm^2								
Flexural stress in spacer due to horiz forces	and strand splay to ca	able clamp	_									
Horiz forces from splay to cable clamp	400		PP	WS from CL at sadd	lle	635 mm						
Second from outermost groove bears on spa	400 mm		Dis	ws from CL at cable	e clamp	11500 mm						
Strand column in trough plt C			Add	d lateral translation	n angle	0.14 degrees						
Transverse deviation angle	0.44 degrees		Spl	ay angle of outer P	PWS	0.44 degrees						
ension of strands in groove Horiz force on trough pits at this location		15.46		12.96 MN 99 kN								
the second s		110		55 MY								
Transverse force applied to saddle Transverse shear Vy IBDAS		58		66 MN								
Reduce by frictional resistance between str	and and groove											
Friction coeff on groove floor	0.00	(neglect fric	tion of spacer	with trough plate a	bove)							
Vertical force at splay arc		585	10	490 kN	12							
Horizontal force resisted by friction		0		0 kN								
Height of action	53 mm	1//		102 KN								
Thinnest point	20 mm											
Flexural stress in spacer		234		219 N/mm^2								
Shear stress		15		14 N/mm^2								

Г

Design Report - Combine stresses Bearing direct stress Pexural direct stress in spacer Coincident shear stress Lexural direct stress in base Coincident shear stress Seau direct st	Vert Vert Vert Transv Long Transv Vert	ddles	137	Cod PS00	ice docun 45_F0	nento			Rev	Data
Combine stresses Bearing direct stress Texural direct stress Coincident shear stress Congitudinal direct stress Texural direct stress Coincident shear stress Equivalent direct stress Vaterial yield	Vert Vert Transv Long Transv Vert		137	PS00	45_F0				1	
Combine stresses Bearing direct stress Flexural direct stress in spacer Coincident shear stress .ongitudinal direct stress Flexural direct stress in base Coincident shear stress Equivalent direct stress Vaterial yield	Vert Vert Transv Long Transv Vert		137						F0	20/06/2011
Combine stresses Bearing direct stress Flexural direct stress in spacer Coincident shear stress .ongitudinal direct stress Flexural direct stress in base Coincident shear stress Equivalent direct stress Vaterial yield	Vert Vert Transv Long Transv Vert		137							
Bearing direct stress Flexural direct stress in spacer Coincident shear stress Longitudinal direct stress Flexural direct stress in base Coincident shear stress Equivalent direct stress Vaterial yield	Vert Vert Transv Long Transv Vert		137							
Flexural direct stress in spacer Coincident shear stress Longitudinal direct stress Flexural direct stress in base Coincident shear stress Equivalent direct stress Vlaterial yield	Vert Transv Long Transv Vert		234		156					
Coincident shear stress Longitudinal direct stress Flexural direct stress in base Coincident shear stress Equivalent direct stress Vlaterial yield	Transv Long Transv Vert		234		219					
Longitudinal direct stress Flexural direct stress in base Coincident shear stress Equivalent direct stress Vlaterial yield	Long Transv Vert		15		14					
Flexural direct stress in base Coincident shear stress Equivalent direct stress Vaterial yield	Transv Vert		12		23					
Coincident shear stress Equivalent direct stress Vlaterial yield	Vert		23		19					
Equivalent direct stress Material yield			12		10					
vlaterial yield	500 N		373		378	N/mm^2				
C	500 N	I/mm^2	1.00		1.05					
			0.75		0.70		OK			
JILISATION			0.75		0.75		UK			
Overall frictional capacity of saddle										
Vin vertical compression Ns IBDAS			1137		931	MN				
Coincident shear Vy			42		34	MN				
Coincident shear Vz			130		121	MN				
Resultant shear			137		125	MN				
rough plate friction coefficient	0.30		0.20		0.10					
Loeff / gamma m			0.30		0.18					
			0.40		0.74	IVIIN	OK			
Yumber of trough plates Radius a CL cable (RO) Radius at u/s trough plt 1 (R1) Radius at t/s trough plt 10 (R10) Area of one slot + spacer k bar (neutral axis position) Modulus of inertia (I) Z min	10 19918 n 18918 n 20918 n 14280 n 39531059 n 281183.3 n	nm nm nm^2 nm^2 nm^4 nm^3			base Lever arm Stalk thickness height Lever arm	1	50 mm 30 mm 30 mm 40 mm 30 mm			
Width of saddle at R1	15600 n	nm						144-457/1		
Angle of saddle in side span	54/ N	logroos			deflection	MI 3/40	EI	doflactions 46	2/4951	
Angle of saddle in main span	23.71 0	egrees			M=W/L/A	VVL /48	C1	7=1/v	LL /40EI	
Subtanded angle of saddle	20.75 0	logroop			f-NA/7			deflection-46	2/4854	
Number of trough plate place	44.5 0	egrees			-1V1/2			f=12 d=fl=st	- /40CY	
Trough plate subtended angle	5 p	legrees			LI=VVL/42			li=12.deflectio	II.E.Y/L	
ength of trough plate arc (RO)	3094 n	nm	Max gan to	chord	60	mm	Rea'd de	flection	0.0 m	m
Length of trough plate arc (R1)	2939 n	nm	max Sup to		57	mm	neq u de		-3.0 m	im
Length of trough plate arc (R10)	3249 n	nm			63	mm			3.0 m	im
Young's modulus (E)	205000 N	I/mm^2								583 6 K
stress in trough plate (f) (R10)	99 N	V/mm^2	(either tensi	ion or com	pression at t	he tip of	spacer)	1 . 1 . 1 . 1		
Stress at tip of spacer adds to bearing a	42 N	v/mm^2	(either tensi	ion or com	pression at t	ne unde	side of troug	(in place)		
stress at underside of trough plate add:	s to bearing and	bending s	tresses							
quivalent direct stress tip of spacer			389		396	N/mm^2	2			
Equivalent direct stress underside of tro	ough plate		377		383	N/mm^2	2			
viaterial yield	500 N	v/mm^2	1.00		4.05					
Jamma m UTILISATION			1.00 0.75		1.05 0.80		ОК			
			SDACED							
c/t	-2 000	1000	JFALEK							
alpha	1.00									
imiting value c.alpha / t .eta	-2.92 C	lass 1, Ok	for full fy							

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Design Report - Cable Saddles

Codice documento	Rev	Data
PS0045_F0	F0	20/06/2011

TOWER TOP GRILLAGE STIFFENING IN TRANSITION ZONE EXTENDING FROM SADDLE BASE-PLATE TO PRISMATIC TOWER SECTION Bearing pressure on top of stiffening plates in a grillage, transferred to continuous section by shear and bending

Forces applied to tower Design case SILS Design case ULS	Ns[MN] -1528.41 -1753.016	My[MNm] -186.505 -161.253	Mz[MNm] 0.775 1.727	Vy[MN] -58.272 -66.294	Vz[MN] -59.57 -49.691	Mt[MNm] -6.939 -6.143
Pressure applied by saddle			SILS		ULS	
Base plate width	4.4	m				
Baseplate length	16	m (on plan)				
Maximum direct pressure			21.88		25.05	N/mm^2
By Inspection SiLS not critical Consider ULS only						
Steel yield strength	460	N/mm^2				
Steel UTS	590	N/mm^2				
Steel yield at 200 thick	360	N/mm^2			1.25	
Steel 015 at 200 thick	490	N/mm ^a Z				
Tower top plate - shown at tender as 200mm						
Plate thickness	200	mm				
Unrestrained rotation at supports, allows splicing						
Panel length	1600	mm		1334	mm	
Pariel width Total force on panel	40.08	mm MN		33.42	mm MN	
Reaction on short edge	6.26	MN		6.26	MN	
Reaction on long edge	13.78	MN		10.45	MN	
M long way	2.505	kN.m/mm				
M short way	2.153	kN.m/mm				
Bending stress long way span Reading stress short way span	250	N/mm2 N/mm2				
Shear stress at short edge	31	N/mm2				
Shear stress at long edge	43	N/mm2				
equiv direct stresses	241	N/mm2				
gamma m0	1.05					
UTILISATION	0.73	For direct st	tress			
OTESATION	0.22	For shear st	ress			
Bearing onto grillage						
Force onto short edges	6262	N/mm				
Force onto long edges	8611	N/mm				
Stiffener thickness	60	mm				
Average bearing pressure on short edges	209	N/mm2				
Ave, bearing pressure on long edges	287	N/mm2				
Adjustment to average for peak bearing stress from	n Lusas mod	el				
Peak/Ave Reak bearing processo on short adges	1.30	N/mm7				
Peak bearing pressure on long edges	373	N/mm2				
Limiting stress of bearing contact = 1.5 x fy/gamma	a m0 (EN 199	3-1-8, table	3.10)			
Limiting stress of bearing contact	690	N/mm^2				
UTILISATION	0.54					
Secondary additional stiffeners						
Plt thick	60	mm				
Length/span	1600					
Width of panel Total MN bearing onto stiff	27.55	mm MN				
End shear	13.78	MN				
Depth of stiff	1000	mm				
Shear stress at edge	230	N/mm^2				
Bending in plt M	230	N/mm^2				
Bending and bearing, no shear Adjustment to average for bearing stress at page 1.	325 Corners from	N/mm^2 Lusas mode	I			
Min bearing/average	0.30	Lusas mode				
Shear and 30% ave. bearing, no bending	407	N/mm^2				
gamma m0	1.05					
UTILISATION	0.93	For direct s	tress			
UTILISATION	0.91	For shear st	ress			
Bennue 1112 Weld Penetration regd	1.25	mm				
	Full Strengt	th Butt Weld	l			

Secondary transverse stiffeners						
Plt thick	60	mm				
Length	2000	mm				
Total MN bearing on plt = 2xload on short edge +	2xreaction fro	om add stiffs				
Total load applied to plt	40.08	MN				
Adjustment to average for bearing stress at panel	corners from	Lusas model				
Min bearing/average	0.30					
Bearing stress at centre	63	N/mm^2				
Adjustment to average for peak bearing stress fro	m Lusas mod	el				
Peak/Ave	1.30					
Peak bearing stress	271	N/mm^2				
End shear	20.04	MN				
Depth of stiff	2500	mm				
Shear stress at edge	134	N/mm^2				
Shear stress at guarter point	67	N/mm^2				
Max bending moment	10020	kN.m				
Max Bending stress in plt M	107	N/mm^2				
BM at guarter point	8350	kN.m				
Bending stress at quarter point	89	N/mm^2				
Shear BM, bearing at top 1/4	266	N/mm^2				
Shear and BM bottom of plt	255	N/mm^2				
Check that no shear buckling (EN 1993-1-5 5 2)	200					
a/hw	0.4000					
t/hw	0.0240					
k tor	27 275					
tor crit	4086	N/mm42	ok vielde firet			
gamma m0	1.05	14/11111 2	ok, yields ills			
	1.03	For direct of	France			
UTILISATION	0.24	For choor et	tress			
comma m2	1.25	FOI Siledi Si	ress			
Bamma m2	1.25	-	27 -	am log fillet i	wold anab	aida
weid Penetration legu	50		27 11	un ieg mier	welu each	Side
Central Stiffener - Side section (width varies from	n 4 to 6m)					
Plt thick	60	mm				
Average bearing from top plt	7830	N/mm				
Ave, bearing stress	131	N/mm^2				
Peak bearing on pit	10179	N/mm				
May Rearing Stress	170	N/mm^2				
Min bearing on plt	2349	N/mm				
Min Bearing Stress	39	N/mm^2				
No transv stiffs supported	4			In	ver arme	
Direct bearing from panel 1224 x 1000: No	4			Le	1222	-
Support to long edge	10.45	MAN			2666	mm
End reaction from trasny stiffs	20.45	MN			2000	
Total force applied	142.04	MAN			1000	-
End choose P2 (ckin)	142.83	NANI			4000	mm
End shear P1 (internal)	57.13	IVIIN MANI			5000	mm
End shear K1 (Internal)	85.70	MN				mm
Max M		MN.m (occu	irs at central t	ransv)		
Depth of stiff	10000	mm				
Shear stress	143	N/mm^2				
Angle of sloping side	10.30	degrees				
Internal compressiveforce due inclined support	10.39	MN				
Internal compressive stress due inclined support	17	N/mm^2				
Note: transferred into diaphragms						
Maximum stresses						
Action (N/mm2 UNO)	chainage (r	0	0.6665	1.333	2	2.666
Max/min Bearing stress		39	170	39	170	39
Average bearing stress		131	131	131	131	131
Bending moment MN.m		0	54	100	117	119
Bending stress		0	36	67	78	79
Additional compr stress		17	17	17	17	17
Shear MN		86	75	65	14	-36
Shear stress		143	126	108	24	-61

Peak total stress at top Average total stress at top Total stress at bottom gamma m0 UTILISATION UTILISATION 1.05 0.64 For direct stress 0.56 For shear stress 1.25 gamma m2 Weld Penetration reqd 29 mm leg fillet weld each side 40 mm

3.3325

-47 -78

-57 -95

ok

-57 -95

Principal Stiffeners - Central section				
Load from top plt is distributed through secondary	stiffs into th	e principal st	iffeners	
The load is distributed from the bearing plt and se	condary stiff	eners		
The longitudinal stiffeners are the central one and	two sides			
The transverse stiffeners are the two internal ones				
Longitudinal span	8	m		
Depth of long'l stiffs	10	m (central)	10 m (side)	
Transverse span min	4	m		
Transverse stiffs span max	12	m		
Height of transition section	13	m		
Transverse span at bottom	10.15	m		
Average transverse span	7.08	m		
Depth of transv stiffs	10	m		
Longitudinal central stiffener	1	off		
Thickness	60	mm		
Longitudinal outer stiffener	2	off		
Thickness	60	mm		
Transverse stiffeners	2	off		
Thickness	60	mm		
Load distribution according to relative stiffness			Stiffness	k = L^3/48EI
Although most load is applied to the longitudinal s	tiffeners, the	transverse s	tiffeners will pick up	some more load due their stiffness.
	1	k	Distribution ratio	k = W/δ
All longitudinal stiffs k1	1.5E+13	4.7E+17	0.60	(384/5)EI/L^3
All transverse stiffs k2	1.0E+13	3.2E+17	0.40	(53.9)EI/L^3
Total stiffness		7.9E+17		
Total load applied	877	MN	Total load calculated	d from top plt
*				
Total distributed to long I stiffs	523	MIN		
Central longitudinal stiff	174	MN		
Each outer longitudinal stiff	174	MN		
Total distributed to transv stiffs	353	MN		
Each transv stiff	1//	MIN		
Longitudinal stiffeners	60	mm thick	10 m deep	
Average bearing on plt	8611	N/mm run	8 m wide	
Max bearing stress	187	N/mm^2		
Bearing stress at 1/4 point	187	N/mm^2		
Shear area	600000	mm2		
Z plastic	1.50E+09	mm3		
Shear in central long'l stiff	87	MN		
SF at 1/4 point	44	MN		
Max M in long'l stiff	174	MN.m		
BM at 1/4 point	131	MN.m		
Shear stress at edge	145	N/mm^2		
Shear stress at 1/4 point	73	N/mm^2		
Max bending stress	116	N/mm^2		
Bending stress at 1/4 point	87	N/mm^2		
Interaction at top of plt				
Bearing, bending centre	163	N/mm^2		
Shear, bearing, bending 1/4	205	N/mm^2		
Interaction at bottom of plt				
Bending centre	116	N/mm^2		
Shear, bending 1/4	153	N/mm^2		
gamma m0	1.05			
UTILISATION	0.47	For direct s	tress	
UTILISATION	0.57	For shear st	tress	
gamma m2	1.25			
Weld Penetration reqd	41	mm	30 mm leg f	fillet weld each side

Design Report - Cable Saddles

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento Rev Data PS0045_F0 F0 20/06/2011

Transverse stiffeners	60	mm thick	10 m deep
Average bearing on plt	6262	N/mm run	7.08 m average width
Max bearing stress	136	N/mm^2	
Bearing stress at 1/4 point	136	N/mm^2	
Shear area	600000	mm2	
Z plastic	1.50E+09	mm3	
Shear in transverse stiff	88	MN	
SF at 1/4 point	44	MN	
Max M in long'I stiff	156	MN.m	
BM at 1/4 point	117	MN.m	
Shear stress at edge	147	N/mm^2	
Shear stress at 1/4 point	74	N/mm^2	
Max bending stress	104	N/mm^2	
Bending stress at 1/4 point	78	N/mm^2	
Slope of sides	19.98	degrees	
Add'I compr force due slope	32	MN	
Add'l compr stress due slope	54	N/mm^2	
Interaction at top of plt			
Bearing, bending centre	148	N/mm^2	
Shear, bearing, bending 1/4	185	N/mm^2	
Interaction at bottom of plt			
Bending centre	51	N/mm^2	
Shear, bending 1/4	130	N/mm^2	
gamma m0	1		
UTILISATION	0.42	For direct stress	
UTILISATION	0.58	For shear stress	
gamma m2	1.25		
Weld Penetration reqd	42	mm	30 mm leg fillet weld each side

General Note: approximate manual models so not recommended to utilise above 90% except in bearing, which is conservative in this model

ensity steel	7850	kg/m^3
Tee stiffs	b	t
stalk	550	55
table		
Wt/m	237.4625	kg/m

PRELIMINARY WEIGHT TAKE-OFF AND CHECK FOR STIFFENING OF STIFFENERS Use EN 1993-1-5 beca NTC 08 d

а

a/hw

k tor

PRELIMINARY WEIGHT TAKE-OFF AND CHE	CK FOR STIFFENIN	G OF STIFFEN	ERS						Total	8845	kN
Use Liv 1999-1-9 because init of does not	cover plated labric	ations			Number				1000	501587	ĸy
					plts						
WEIGHT IN GRILLAGE FABRICATION		t	D	B average	required	Wt 1 plt	Length T	Stiffs/plt	Wt plt + T	Total Wt	hw/t
Plates designed		(mm)	(mm)	(mm)		(kg)	(mm)		(kg)	(kg)	(1993:1:5:cl.5.1)
Secondary additional stiffeners		60	1000	1000	32	471		0	471	15072	16.67 no stiffs
Secondary transverse stiffeners		60	2500	2000	22	2355	1500	0	2355	51810	41.67 no stiffs
Central Stiffener - Side section (width varies	s from 4 to 6m)	60	10000	0	2	0	7500	3.5	6233	12467	166.67 check stiffs
Longitudinal central stiffener		60	10000	8000	1	37680	7500	6	48366	48366	166.67 check stiffs
Longitudinal outer stiffener		60	10000	8000	2	37680	7500	6	48366	96732	166.67 check stiffs
Transverse stiffeners	(inner)	60	10000	4000	2	18840	9000	2	23114	46229	166.67 check stiffs
Transverse stiffeners	(outer)	60	10000	1538.462	4	7246	10000	1.5	10808	43232	166.67 check stiffs
Diaphragms for tee stiffs		12	18000	8000	4	13565	0	0	13565	54259	no stiffs
Skin		40	12250	4000	2	15386	10000	2	20135	40271	306.25 check stiffs
		45	12250	8000	2	34619	11000	5	47679	95358	272.22 check stiffs
Continuous plts		60	12250	18000	2	103856	9750	15	138584	277169	204.17 check stiffs
		50	12250	8000	2	38465	11500	8	60312	120623	245.00 check stiffs

tor cr lw bar Chi

Vbw (kN) V applied

STIFFENING OF STIFFENERS (cont)

					(calc on full depth of plt, no account taken of			(gamma M1				
Plates designed		(stiffener sp	acing)	(A.3.(2))	diaphs)	(lambda)	Xw	=1.10)	(kN)	CHECK		
Secondary additional stiffeners		1600	1.60	6.90	4721	0.24	1.0	14486.24	13777	ok		
Secondary transverse stiffeners		2000	0.80	12.34	1351	0.44	1.0	36215.61	20040	ok		
Central Stiffener - Side section (width varies from 4	to 6m)	1333	0.13	304.53	2083	0.36	1.0	144862.4	85699	ok		
Longitudinal central stiffener		1600	0.16	212.59	1454	0.43	1.0	144862.4	87169	ok		
Transverse stiffeners	(inner)	2000	0.20	137.50	941	0.53	1.0	144862.4	88374	ok		
Transverse stiffeners	(outer)	1500	0.15	241.33	1651	0.40	1.0	144862.4	88374	ok		
Diaphragms for tee stiffs	fit around s	tiffeners										
Skin	Not our sco	pe of work - I	leave as on	drawing wit	th note that	t by others						
Continuous plts	Not our sco	pe of work - I	leave as on	drawing wit	th note that	t by others			(Ned = Vapp)	gamma M1	1.1
									sigma m			
	Single side,			Eff width			2nd mom					Is 2nd
Stiffener size and rigidity check	flat	eta =	0.715	of plt	Area	Ecc'ty	А	b	(b^2/a^2).	u	lst (min)	mom A
	thickness	Outstand							(Ned/b).			
(EN 1993-1-5,9.2)	(t)	(B)	15.eta.T				lst		(2/a)		bi	g enough?
Secondary additional stiffeners	55	550	643	1341.553	110743.2	113	8.81E+09	3500	23.54509	1.937594	301003581	ok
Secondary transverse stiffeners	55	550	643	1341.553	110743.2	113	8.81E+09	3500	0.01753	1.937594	224166	ok
Central Stiffener - Side section (width varies from 4	55	550	643	1333	110230	114	8.80E+09	3500	0.25327	1.936081	3227984	ok
Longitudinal central stiffener	55	550	643	1341.553	110743.2	113	8.81E+09	3500	0.14897	1.937594	1904451	ok
Transverse stiffeners	55	550	643	1341.553	110743.2	113	8.81E+09	3500	0.07733	1.937594	988562	ok
Transverse stiffeners	55	550	643	1341 553	110743.2	113	8 81 E+09	3500	0 18329	1 937594	2343258	ok

Stretto di Messina	rolin K	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO				
Design Report - Cable S	Saddles	Codice	documento		Rev	Data
		F0	20/06/2011			
TOWER SADDLES - ANCHORAGES FOR A Additional strands are anchored to the sa The force by-passes the saddle trough pla	DDITIONAL PPWS STRAI addle frame. ates directly to the base	NDS plate				
Single PPWS components designed for U	TS					
UTS of PPWS	5410	kN				
Bearing plates and contact area of longitu By inspection, critical section is bearing o	udinal stiffeners are des nto stiffeners	igned for U	TS			
Contact neight Stiffener thickness	300 1	mm mm				
Contact pressure	361 1	N/mm^2				
Yield stress of steel (S460)	460 1	N/mm^2				
		,	SILS	ULS		
gamma m			1.00	1.05		
UTILISATION			0.78	0.82		
Stiffened plate at connectinos designed Sicily tower Clearance required for cable rotation Eccentricity	for max allowable SILS/ 140 r 70 r	'ULS mm mm				
Increase ecc'y by y/2 for P.delta effect	y	γ =	24	19	mm	
Number of add'l PPWS at lower ecc'y	12					
Ecc'y of socket above top of plt	45 r	mm				
Increased ecc'y			139	134	mm	
Number of add'I PPWS at higher ecc'y	12 ((increased !	5-10-2010)			
Eccily of socket above top of pit	340 1	mm	121	420		
increased etc y			434 SILS	429	mm	
Total force applied to stiffened plate per	strand		3864	3239	kN	
Total force applied to stiffened plate				0200	· · · ·	
			92742	77748	kN	
Moment applied to stiffened plate			92742 26571	77748 21886	kN kN.m	
Moment applied to stiffened plate Shear stress in longitudinal stiffs			92742 26571	77748 21886	kN kN.m	
Moment applied to stiffened plate Shear stress in longitudinal stiffs Length of long. stiffs	3750 r	mm	92742 26571	77748 21886	kN kN.m	
Moment applied to stiffened plate Shear stress in longitudinal stiffs Length of long. stiffs Max. no off PPWS per cheek plt Max shear stress	3750 r 2	mm	92742 26571 41	77748 21886 35	kN kN.m N/mm^2	2
Moment applied to stiffened plate Shear stress in longitudinal stiffs Length of long. stiffs Max. no off PPWS per cheek plt Max shear stress Check weld of cheek plates Fillet weld strength (NTC08, 4.2.8.2.4) Shear applied to long. stiffs LITS \$460	3750 r 2 This code defines fill	mm let weld res	92742 26571 41 Sistance in shear as 2061 (EN 10025-4)	77748 21886 35 UTS/root3/gamma 1728	kN kN.m N/mm^2 M2 N/mm	2
Moment applied to stiffened plate Shear stress in longitudinal stiffs Length of long. stiffs Max. no off PPWS per cheek plt Max shear stress Check weld of cheek plates Fillet weld strength (NTC08, 4.2.8.2.4) Shear applied to long. stiffs UTS S460 Limiting stress to NTC08	3750 m 2 This code defines fill 540 f	mm let weld res N/mm2	92742 26571 41 Sistance in shear as 2061 (EN 10025:4) SUIS	77748 21886 35 UTS/root3/gamma 1728	kN kN.m N/mm^2 M2 N/mm	2
Moment applied to stiffened plate Shear stress in longitudinal stiffs Length of long. stiffs Max. no off PPWS per cheek plt Max shear stress Check weld of cheek plates Fillet weld strength (NTC08, 4.2.8.2.4) Shear applied to long. stiffs UTS S460 Limiting stress to NTC08 gamma m	3750 r 2 This code defines fill 540 f	mm let weld res N/mm2	92742 26571 41 sistance in shear as 2061 (EN 10025:4) SILS 1.00	77748 21886 35 UTS/root3/gamma 1728 ULS 1 25	kN kN.m N/mm^2 M2 N/mm	1
Moment applied to stiffened plate Shear stress in longitudinal stiffs Length of long. stiffs Max. no off PPWS per cheek plt Max shear stress Check weld of cheek plates Fillet weld strength (NTC08, 4.2.8.2.4) Shear applied to long. stiffs UTS S460 Limiting stress to NTC08 gamma m beta	3750 r 2 This code defines fill 540 f	mm let weld res N/mm2	92742 26571 41 sistance in shear as 2061 (EN 10025:4) SILS 1.00 1.00	77748 21886 35 UTS/root3/gamma 1728 ULS 1.25 1.00	kN kN.m N/mm^2 M2 N/mm	2
Moment applied to stiffened plate Shear stress in longitudinal stiffs Length of long. stiffs Max. no off PPWS per cheek plt Max shear stress Check weld of cheek plates Fillet weld strength (NTC08, 4.2.8.2.4) Shear applied to long. stiffs UTS S460 Limiting stress to NTC08 gamma m beta Limiting stress	3750 r 2 This code defines fill 540 r	mm let weld res N/mm2	92742 26571 41 Sistance in shear as 2061 (EN 10025:4) SILS 1.00 1.00 540	77748 21886 35 UTS/root3/gamma 1728 ULS 1.25 1.00 432	kN kN.m N/mm^2 N/mm N/mm	1
Moment applied to stiffened plate Shear stress in longitudinal stiffs Length of long. stiffs Max. no off PPWS per cheek plt Max shear stress Check weld of cheek plates Fillet weld strength (NTC08, 4.2.8.2.4) Shear applied to long. stiffs UTS S460 Limiting stress to NTC08 gamma m beta Limiting stress Throat of FW	3750 r 2 This code defines fill 540 f	mm let weld res N/mm2 mm	92742 26571 41 Sistance in shear as 2061 (EN 10025:4) SILS 1.00 1.00 540 20 mm leg	77748 21886 35 UTS/root3/gamma I 1728 ULS 1.25 1.00 432	kN kN.m N/mm^2 N/mm N/mm^2	2
Moment applied to stiffened plate Shear stress in longitudinal stiffs Length of long. stiffs Max. no off PPWS per cheek plt Max shear stress Check weld of cheek plates Fillet weld strength (NTC08, 4.2.8.2.4) Shear applied to long. stiffs UTS S460 Limiting stress to NTC08 gamma m beta Limiting stress Throat of FW no beads of weld	3750 m 2 This code defines fill 540 m 14 m 2	mm let weld res N/mm2 mm	92742 26571 41 sistance in shear as 2061 (EN 10025:4) SILS 1.00 1.00 540 20 mm leg	77748 21886 35 UTS/root3/gamma I 1728 ULS 1.25 1.00 432 g	kN kN.m N/mm^2 N/mm N/mm^2	2
Moment applied to stiffened plate Shear stress in longitudinal stiffs Length of long. stiffs Max. no off PPWS per cheek plt Max shear stress Check weld of cheek plates Fillet weld strength (NTC08, 4.2.8.2.4) Shear applied to long. stiffs UTS S460 Limiting stress to NTC08 gamma m beta Limiting stress Throat of FW no beads of weld Resistance /mm	3750 r 2 This code defines fill 540 r 14 r 2	mm let weld res N/mm2 mm	92742 26571 41 Sistance in shear as 2061 (EN 10025:4) SILS 1.00 1.00 540 20 mm leg 8730	77748 21886 35 UTS/root3/gamma 1728 ULS 1.25 1.00 432 5 6984	kN kN.m N/mm^2 N/mm N/mm^2 N/mm	2

Stretto di Messina	EurolinK	Pont	e sullo Stretto di Me ROGETTO DEFINITI	essina IVO		
Decise Decort	Cable Caddles	Codice docume	nto	Rev	Data	
Design Report -	Cable Saddles	P\$0045 E0		FO	20/06/2011	
		1000+0_10		10	20/00/2011	
Check local buckling of cheek pl Check as outstand compression Outstand of stiff sigma2/sigma1 k sigma	Its under contact bearing pressure element, EN 1993-1-5, table 4.2. Full o 470 mm 1 0.4300 0.202	utilisation if Rho not le	ess than 1			
lamda p bar	0.7057					
rho	1.0000					
Check stresses in stiffened plt Couple						
Moment due to eccentric PPWS		26571	21886 kN.m			
Length of stiffened plt	3750 mm					
Eff. width transverse beam	1875 mm v	wide				
Lever arm of couple	1875 mm					
Force on transverse "beam"		14171	11673 kN			
Spans to side plates of saddle - I	pending in transverse stiffeners and b	ase plt				
Span	4465 mm	•				
Max moment in transverse bear	n spanning to side plts	7909	6515 kN.m			
Depth of stiffeners (d)	250 mm					
Thickness of stiffeners (t)	100 mm					
Number of stiffeners	6					
Thickness of base plt	100 mm					
Area of cross section	337500 mm2	Plastic	Elastic			
Centroid (y')		90	127.7778 mm			
lxx			3.48958E+09 mm4			
Z top of base plt		28687500	27309783 mm3			
Z bottom tip of transverse stiffs		28687500	15703125 mm3			

276

415 N/mm^2

Check distribution of moment longitudinally in order to develop the couple
Longitudinal stress: Bending in longitudinal stiffeners and base plate

Stress at bottom tip of transverse stiffs

Longitudinal stress: Bending in longitudinal stiffe	ners and base plate			
Moment applied		26571	21886	kN.m
No longitudinal stiffs	13			
Area of cross section	752000 mm2	Plastic	Elastic	
Centroid		84	166	mm
lxx			2.07293E+10	mm4
Z tip of long. stiffs		104191579	51282338	mm3
Z bottom base plt		104191579	125039971	mm3
Stress at tip of long. stiffs		255	427	N/mm^2
Stress at bottom of base plt		255	175	N/mm^2
Equivalent direct stress in base plate		376	296	N/mm^2
Combine long and transverse stresses in the bas	e pit			
Max. shear stress in base plate		124	104	N/mm^2
Equivalent direct stress		214	180	N/mm^2
Max stress in stiffened plate		376	427	N/mm^2
Material factor		1.00	1.05	
UTILISATION		0.82	0.97	

Stretto di Messina	olin K	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report - Cable Sad	dles	Codice documento PS0045_F0	Rev F0	Data 20/06/2011	

Front Edge - supported on trough plates					
Load applied over full width		14171		11673	<n< td=""></n<>
Number of supports	3				
Number of spans	4				
Span	1116 mm				
Load applied		3543		2918	٢N
Moment (propped cantilever)		494		407	«N.m
No transverse stiffs here so base plate alone in be	ending				
Bending stress in base plate		105		87 1	V/mm^2
Combine with long. stress and shear in the base p	olt				
Equivalent direct stress		386		293 N	V/mm^2
Material factor		1.00		1.05	
UTILISATION		0.84		0.67	
Check deflection upwards of rear beam Beam	n under udl: y = 5/384.W.	L3/EI	E =	210000	N/mm2
increase to reduce P.delta effect while maintainin	ng shorter plate length				
Load applied		14171		11673 k	٨N
Span	4465 mm				
Inertia	3489583333 mm4	SILS		ULS	
Deflection in plate		22		18 r	nm
Bending in base plate near support					
Lever arm	235 mm				
Vertical force applied to beam		14171		11673	κΝ
End shear		7086		5836 k	ĸN
Moment		1665		1372	«N.m
Bending stress		355		293 N	V/mm^2
Vertical Shear stress		38		31 1	V/mm^2
Longitudinal shear stress		124		104 1	N/mm^2
Equivalent direct stress		420		3471	N/mm^2
		1.00		1.05	
UTEISATION		0.91		0.79	
Check bolts					
Size of bolt	60 mm dia.				
Tensile area	2360 mm2				
Dia, hole	66 mm				
UTS bolt (grade 10.9)	1000 N/mm2	C 11 C			
Bolts in single shear		SILS		ULS	
gamma M2		1.00		1.25	-NI
PV (NTCO8, eq 4.2.58)		1414		1100 k	AN AN
Total force applied to stiffened plate		92742		1155 F	<n< td=""></n<>
Moment applied to stiffened plate		32742 26571		71996 L	(Nim
Tension per handstrand	1100 FN	20371		21000 #	
No off	4				
Total force	4400 kN				
Height above bolt group	1.1 m				
Moment	4840 kN.m				

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report -	- Cable Saddles	Codice docume	ento	Rev	Data
		PS0045_F0		F0	20/06/2011
Choose number of bolts at each	edge 50				
Longitudinal shear applied per b	olt	971	821 kN		
Tension applied per bolt		335	285 kN		
Combine Ft and Fv (NTC08, eq 4.	.3.65)	0.856	0.906		
Min spacing (NTC08)	145 mm				
Min end dist	79 mm				
Use spacing	145 mm	check spacing!			
Edge dist	80 mm				
alpha min	0.150				
K min	1.69				
Bearing Ph	30 MM	bearing not critic	ical		
Saddlo framo cido platos	1220 KW	bearing not critic			
Number of PPWS attached	24				
Plt thick	80 mm				
No side plts	2	PF	PWS 1 PPWS 2		
Ave. height of PPWS above troug	gh plates 650		500 800		
Average height above base plate	2650 mm				
Length of side plate utilised Consider as web in shear (1993-	7000 mm 1-1, 5.5)				
Shear at top of saddle frame		92742	77748 kN		
Shear in single side plt		46371	38874 kN		
Moment in single plt		122883	103016 kN.m		
Check shear capacity of plate (E	N 1993-1-5, cl 5.3 and App A.3)				
side plt t	80 mm				
hw	8000 mm	(estimate length	n of plate utilised)		
a bw/s	2650 mm				
k tor	52.67				
tor crit	1001 N/mm	^7			
lamda w bar	0.5153	-			
X chi	1.00	(table 5.1)	ŋ 1.00	(N.A.2.4)	
gamma M1		1.00	1.10		
V b,Rd		169972	154520 kN		
UTILISATION		0.27	0.25		
Check compression zone (EN 19 Pure bending so sigma2/sigma1	93-1-5, cl 4.4, table 4.2) = 0				
b bar	~ 4000 mm				
k sigma	7.81				
lamda p bar	0.8814				
rho	0.8926				
Calculate new bending section w	vith reduced compression zone				
Length removed	430 mm		#1 #2		
New centroid	2000 mm	1	1785 mm 9785		
2nd mom area	2.6879E+13 mm^4		1107 mm 5107	l	
Modulus compressive fibre	1.3440E+10 mm^3				
Modulus tensile fibre	4.4799E+09 mm^3	10000	10001C LNL		
Comprossive stress due bending		122883	LUSUID KN.M		
Tensile stress due bending		9 77	0 N/11022 23 N/mmA2		
Shear stress		77	61 N/mm^2		
Interaction		128	108 N/mm^2		
gamma M1		1.00	1.10		
UTILISATION		0.28	0.26		

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO			
Design Report - Cable Saddles		Codice documento PS0045_F0	Rev F0	Data 20/06/2011	

Weld of side plate to base plate (NTC08)	Weld size:	
	35 mm leg 24.749 mm throat	t
Shear stress in fillet weld 23	234 196 N/mm2	
Direct stress in fillet weld	89 74 N/mm2	
Combined (equivalent direct) stress 42	15 348 N/mm2	
gamma M2 1.0	.00 1.25	
UTILISATION 0.5	.90 0.95	

Saddle frame base plate

Force in side plate is transferred into the base plate at an unrestrained point.

It must then be transferred back to the area beneath the trough plates where it will be restrained.

Take 1mm cantilever and check bending through lever arm. Distance of side plate from edge of trough plate

The second			
Clearance: side plts & trough plts	220 mm		
Thickness of base plt	50 mm		
Max force applied by side plt		2194	1840 N per mm
M base plate cantilever		482765.64	404713.7108 N.mm/mm
Stress in base plt due side plate		302	253 N/mm2
Shear due side plt		27	23 N/mm2
Compressive stress due trough plates		24	28 N/mm2
Equivalent direct stress		306	258 N/mm^2
gamma m0		1.00	1.05
UTILISATION		0.67	0.59

Put nominal stiffs outside side plates for fabrication alignment control

Stresses in continuous plates

Area o	f tower leg a	t continuous se	ction (section abov	e splice)
Plate	No Off	Width (mm)	Thickness (mm)	Area (mm^2)
A	2	4500	55	495000
В	4	2650	40	424000
С	4	2650	40	424000
D	2	8000	50	800000
E	4	3500	50	700000
F	4	2500	50	500000
G	2	4000	60	480000
н	4	4000	60	960000
				4783000 mm^2

Forces from Tower

N -1753.02 MN

Uniform stress in tower leg fs -366.51 N/mm2

Appendix 2 - Splay Saddle - Design Calculations

. . . .

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Design Report - Cable Saddles

Codice documento
PS0045_F0

 Rev
 Data

 F0
 20/06/2011

SICILY SPLAY SADDLE						
	SETTING	OUT OF TROU	IGH BASES (DI	IMENSIONS IN	MM)	
TROUGH PLATE	Dim A	Radius R _A	Dim B	Radius R _B	Dim C	Radius R _c
J	2003.4	200685.6	816.3	6916.1	209.3	2195.3
I	1684.0	141797.8	1010.4	6701.1	268.5	3609.6
н	1382.4	95556.5	1194.1	6486.1	324.8	5279.8
G	1097.2	60197.4	1366.5	6271.1	376.6	7096.4
F	831.0	34533.1	1537.4	6056.1	425.1	9040.5
E	574.3	16496.0	1696.9	5861.1	460.1	10589.6
D	338.1	5720.6	1833.9	5646.1	503.3	12670.5
С	257.2	3312.6	1958.4	5431.1	542.3	14709.5
B	271.3	3685.2	2070.0	5216.1	577.9	16703.4
A	100.2	507.0	2206.0	5001.1	598.8	17933.1

	SETTING	OUT OF TROL	J <mark>GH S</mark> IDES (DI	MENSIONS IN	MM)	
STRAND COLUMN	Dim D	Radius R _D	Dim E	Radius R _e	Dim F	Radius R _F
1,23	148.1	2195.9	2397.5	11508.4	81.5	666.7
2,22	144.3	2084.7	2616.5	12533.6	79.8	639.3
3,21	132.9	1768.7	2618.6	13590.2	80.5	650.5
4,20	120.5	1454.5	2645.3	15006.6	81.2	661.8
5,19	110.5	1223.5	2623.3	16379.9	81.9	673.3
6,18	101.4	1030.7	2625.9	18672.2	82.5	683.1
7,17	93.6	878.6	2628.4	21721.2	83.1	693.1
8,16	87.2	762.9	2630.3	25021.2	83.8	704.7
9,15	82.0	674.9	2632.1	29481.6	84.5	716.5
10,14	77.7	606.2	2633.9	36562.7	85.2	728.4
11,13	74.5	557.5	2635.6	48720.9	85.8	738.7
12.0	72.1	522.3	2638.9	92399.2	85.0	725.0

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Design Report - Cable Saddles

Codice documento
PS0045_F0

 Rev
 Data

 F0
 20/06/2011

CALABRIA SPLAY SADDLE												
	SETTING	OUT OF TROU	GH BASES (DI	IMENSIONS IN	MM)							
TROUGH PLATE	Dim A	Radius R _A	Dim B	Radius R _B	Dim C	Radius R _C						
J	2039.8	208051.2	881.9	6916.1	170.1	1451.0						
Ι	1718.2	147619.7	1075.5	6701.1	230.1	2653.3						
Н	1415.0	100117.5	1258.2	6486.1	285.4	4077.3						
G	1128.3	63658.0	1429.7	6271.1	337.2	5689.5						
F	860.6	37040.7	1589.5	6056.1	385.5	7435.7						
E	602.7	18165.0	1758.3	5861.1	420.5	8846.0						
D	365.2	6673.5	1894.3	5646.1	462.3	10689.6						
С	268.1	3598.7	2017.6	5431.1	500.7	12538.4						
В	253.5	3218.9	2128.1	5216.1	535.7	14353.2						
A	100.6	511.1	2224.9	5001.1	568.3	16150.9						

SETTING OUT OF TROUGH SIDES (DIMENSIONS IN MM)												
STRAND COLUMN	Dim D	Radius R _D	Dim E	Radius R _E	Dim F	Radius R _F						
1,23	130.5	1705.5	2634.5	11615.4	83.9	706.4						
2,22	119.6	1432.9	2634.8	12665.6	83.8	704.7						
3,21	110.5	1223.5	2634.8	13722.5	83.8	704.7						
4,20	102.5	1053.1	2635.0	14986.7	83.7	703.1						
5,19	95.4	912.6	2635.3	16500.4	83.7	703.1						
6,18	88.9	792.8	2636.1	18802.7	83.7	703.1						
7,17	83.9	706.4	2637.0	21853.5	83.7	703.1						
8,16	79.2	629.8	2637.6	25146.4	83.7	703.1						
9,15	73.7	545.7	2638.4	29609.2	83.7	703.1						
10,14	73.1	536.9	2639.3	36648.9	83.7	703.1						
11,13	71.4	512.3	2640.3	48735.1	83.7	703.1						
12.0	70.7	502.3	2641.1	92432.3	83.7	703.1						

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO						
Design Report -	- Cable Saddles	Codice documento	Rev	Data				
		PS0045_F0	F0	20/06/2011				

Trough Plate Design Cast steel, grade Material yield 500 N/mm^2 Garma M0 at SILS 1.00 Limiting stress 500 N/mm^2 Max allowable SILS tension (single cable) 1395 MN Resultant SILS axial force in splay saddle 387 MN (double cable)	
Material yield 500 N/mm^2 Garma M0 at SILS 1.00 Limiting stress 500 N/mm^2 Max allowable SILS tension (single cable) 1395 MN Resultant SILS axial force in splay saddle 387 MN (double cable)	
Gamma M0 at SILS 1.00 Limiting stress 500 N/mm^2 Max allowable SILS tension (single cable) 1395 MN Resultant SILS axial force in splay saddle 387 MN (double cable)	
Limiting stress 500 N/mm^2 Max allowable SILS tension (single cable) 1395 MN Resultant SILS axial force in splay saddle 387 MN (double cable)	
Max allowable SILS tension (single cable) 1395 MN Resultant SILS axial force in splay saddle 387 MN (double cable)	
Resultant SILS axial force in splay saddle 387 MN (double cable)	
Number of strands in this cable 361	
Trough plate dimensions	
Min spacer thickness 25 mm	
4-PPWS slot height 105 mm	
4-PPWS slot width 138 mm	
Total width of grooves 1510 mm	
Gap over strand with wire control 50 mm - Specified by YY as overall trough plt height	
Gap over strand without wire control 30 mm	
2-PPWS slot width 65 mm	
Max gap under PPWS at exit 10 mm	
Lever arm of action on spacer above base 73 mm	
INNER COLUMN OUTER COLUMN	
Strand Column #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 WIDT	H
Snararthickness 25 60 65 75 75 50 50 75 75 75 50 50 75 75 75 75 150	2260

		Trough	plate thickness
Trough plate	Base thickness (mm)		(mm)
#10	60		215
#9	60		215
#8	60		215
#7	60		215
#6	60		215
#5	80		215
#4	80		215
#3	80		215
#2	80		215
#1	80		215
		Total	2150

Force applied by PPWS = (2 x PPWS tension x sin [half of deviation angle])

No. PPWS in a slot

													Total
Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	PPWS
Trough plate		Table is	not aut	omatica	lly upda	ted if str	and arra	angemer	nt chang	ges			
#10	0	0	2	3	4	3	3	4	3	2	0	0	24
#9	0	3	4	4	4	3	3	4	4	4	3	0	36
#8	2	4	4	4	4	3	3	4	4	4	4	2	42
#7	2	4	4	4	4	3	3	4	4	4	4	2	42
#6	1	4	3	4	3	3	3	з	4	3	4	1	36
#5	2	3	4	3	4	2	3	4	3	4	3	2	37
#4	2	4	4	4	4	3	3	4	4	4	4	2	42
#3	2	4	4	4	4	3	3	4	4	4	4	2	42
#2	1	3	4	4	4	3	3	4	4	4	3	1	38
#1	0	0	1	3	4	3	3	4	3	1	0	0	22
													361

Width of slot at lowest point (mm)												
Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
Trough plate		Table is i	not auto	maticall	y update	ed if stra	nd arran	gement	t change	es		
#10	65	138	138	138	138	65	138	138	65	138	138	65
#9	65	65	138	138	138	138	65	138	138	138	65	65
#8	65	138	138	138	138	65	138	138	138	138	138	65
#7	65	138	138	138	138	138	65	138	138	138	138	65
#6	65	138	65	138	65	65	138	65	138	65	138	65
#5	65	65	138	65	138	65	65	138	65	138	65	65
#4	65	138	138	138	138	138	65	138	138	138	138	65
#3	65	138	138	138	138	65	138	138	138	138	138	65
#2	65	65	138	138	138	138	65	138	138	138	65	65
#1	65	138	65	65	138	65	138	138	65	65	138	65

CHECK STRESSES AT THE ROOT OF THE SPACERS

1. Vertical deviation causes a radial pressure on trough plates spacers.

Radial bearing of each trough plate (kN)

Radial bearing of each trough plate (kity													Vert
Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	angle
Trough plate													(degrees)
#10	0	0	912	1367	1823	1367	1367	1823	1367	912	0	0	6.76
#9	0	1746	2328	2328	2328	1746	1746	2328	2328	2328	1746	0	8.64
#8	1421	2842	2842	2842	2842	2131	2131	2842	2842	2842	2842	1421	10.55
#7	1681	3361	3361	3361	3361	2521	2521	3361	3361	3361	3361	1681	12.48
#6	978	3913	2935	3913	2935	2935	2935	2935	3913	2935	3913	978	14.55
#5	2230	3345	4459	3345	4459	2230	3345	4459	3345	4459	3345	2230	16.59
#4	2499	4999	4999	4999	4999	3749	3749	4999	4999	4999	4999	2499	18.61
#3	2772	5544	5544	5544	5544	4158	4158	5544	5544	5544	5544	2772	20.66
#2	1523	4570	6094	6094	6094	4570	4570	6094	6094	6094	4570	1523	22.74
#1	0	0	1691	5072	6763	5072	5072	6763	5072	1691	0	0	25.27
Accumulated pressure (kN/mm run)													Length TP
Trough plate													to TP
#10	0.000	0.000	1.117	1.675	2.234	1.675	1.675	2.234	1.675	1.117	0.000	0.000	816
#9	0.000	1.728	3.207	3.658	4.109	3.082	3.082	4.109	3.658	3.207	1.728	0.000	1010
#8	1.190	3.842	5.093	5.475	5.857	4.392	4.392	5.857	5.475	5.093	3.842	1.190	1194
#7	2.270	5.817	6.911	7.244	7.578	5.683	5.683	7.578	7.244	6.911	5.817	2.270	1367
#6	2.654	7.716	8.051	8.984	8.644	6.961	6.961	8.644	8.984	8.051	7.716	2.654	1537
#5	3.718	8.962	9.923	10.111	10.460	7.620	8.277	10.460	10.111	9.923	8.962	3.718	1697
#4	4.803	11.018	11.907	12.081	12.404	9.095	9.703	12.404	12.081	11.907	11.018	4.803	1834
#3	5.913	13.148	13.981	14.144	14.446	10.640	11.209	14.446	14.144	13.981	13.148	5.913	1958
#2	6.331	14.647	16.171	16.325	16.611	12.274	12.813	16.611	16.325	16.171	14.647	6.331	2070
#1	5.940	13.744	15.940	17.618	18.653	13.817	14.322	18.653	17.618	15.940	13.744	5.940	2206
Accumulated radial stress at spacer (N/mm2)													
COMPRESSIVE STRESS	Minimum	spacer	width =	25	mm		Bottom	trough	plate be	ars onto	tower	top plate	2
Trough plate													
#10	0	0	17	22	30	34	34	30	22	15	0	0	
#9	0	29	49	49	55	62	62	55	49	43	23	0	
#8	48	64	78	73	78	88	88	78	73	68	51	8	
#7	91	97	106	97	101	114	114	101	97	92	78	15	
#6	106	129	124	120	115	139	139	115	120	107	103	18	
#5	149	149	153	135	139	152	166	139	135	132	119	25	
#4	192	184	183	161	165	182	194	165	161	159	147	32	
#3	237	219	215	189	193	213	224	193	189	186	175	39	
#2	253	244	249	218	221	245	256	221	218	216	195	42	22070-0007
#1	238	229	245	235	249	276	286	249	235	213	183	40	ignore
Accompanying shear stress not applicable												Max =	286

2. PPWS in the slots will spread laterally due to the vertical force

Spreading factor 0.65

Horizontal force at each slot (kN/mm run)	Radial be	aring forc	e/lengt	h of trou	igh plate	*spread	ling fact	or				
Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
Trough plate												
#10	0.00	0.00	0.73	1.09	1.45	1.09	1.09	1.45	1.09	0.73	0.00	0.00
#9	0.00	1.12	1.50	1.50	1.50	1.12	1.12	1.50	1.50	1.50	1.12	0.00
#8	0.77	1.55	1.55	1.55	1.55	1.16	1.16	1.55	1.55	1.55	1.55	0.77
#7	0.80	1.60	1.60	1.60	1.60	1.20	1.20	1.60	1.60	1.60	1.60	0.80
#6	0.41	1.65	1.24	1.65	1.24	1.24	1.24	1.24	1.65	1.24	1.65	0.41
#5	0.85	1.28	1.71	1.28	1.71	0.85	1.28	1.71	1.28	1.71	1.28	0.85
#4	0.89	1.77	1.77	1.77	1.77	1.33	1.33	1.77	1.77	1.77	1.77	0.89
#3	0.92	1.84	1.84	1.84	1.84	1.38	1.38	1.84	1.84	1.84	1.84	0.92
#2	0.48	1.44	1.91	1.91	1.91	1.44	1.44	1.91	1.91	1.91	1.44	0.48
#1	0.00	0.00	0.50	1.49	1.99	1.49	1.49	1.99	1.49	0.50	0.00	0.00
Stress due horizontal spreading force (N/mm2)												
TENSILE STRESS	(Force/ba	ise thickn	ess) + (I	Force x e	eccentric	ity/mod	lulus)					
Trough plate												
#10	0	0	65	97	129	97	97	129	97	65	0	0
#9	0	100	133	133	133	100	100	133	133	133	100	0
#8	69	137	137	137	137	103	103	137	137	137	137	69
#7	71	142	142	142	142	107	107	142	142	142	142	71
#6	37	147	110	147	110	110	110	110	147	110	147	37
#5	51	76	101	76	101	51	76	101	76	101	76	51
#4	53	105	105	105	105	79	79	105	105	105	105	53
#3	55	109	109	109	109	82	82	109	109	109	109	55
#2	28	85	114	114	114	85	85	114	114	114	85	28
#1	0	0	30	89	118	89	89	118	89	30	0	0
Max =	147											
Accompanying shear stress (N/mm2)	Lateral di	rection										
Trough plate												
#10	0	0	11	15	19	22	22	19	15	10	0	0
#9	0	19	23	20	20	22	22	20	20	20	15	0
#8	31	26	24	21	21	23	23	21	21	21	21	5
#7	32	27	25	21	21	24	24	21	21	21	21	5
#6	17	28	19	22	17	25	25	17	22	17	22	3
#5	34	21	26	17	23	17	26	23	17	23	17	6
#4	35	30	27	24	24	27	27	24	24	24	24	6
#3	37	31	28	25	25	28	28	25	25	25	25	6
#2	19	24	29	26	26	29	29	26	26	26	19	3
#1	0	0	8	20	27	30	30	27	20	7	0	0
Max =	37											

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO								
Design Report -	Cable Saddles	Codice documento PS0045_F0	Rev F0	Data 20/06/2011						

3. Flexure of trough plate base due to radial pressure of PPWS

TENSILE STRESS			Momen	t = W.B/1	2	where B =	slot wi	idth + sp	bacer wi	dth		
Column	#1 ;	#2	#3	#4 #	5	#6 #7	#	18 1	#9 #	#10	#11	#12
Trough plate	Stress (N/	nm2)										
#10	0	0	21	33	44	18	29	44	22	22	0	0
#9	0	20	43	45	45	30	18	45	45	45	22	0
#8	10	44	45	47	47	19	31	47	47	47	47	24
#7	10	45	46	49	49	32	20	49	49	49	49	24
#6	5	47	23	50	25	20	33	25	50	25	50	13
#5	6	13	28	14	29	8	12	29	14	29	14	15
#4	6	28	29	30	30	20	12	30	30	30	30	15
#3	7	29	30	31	31	13	21	31	31	31	31	16
#2	3	14	31	33	33	22	13	33	33	33	16	8
#1	0	0	5	17	34	14	23	34	17	6	0	0
Max =	50											
Accompanying shear stress (N/mm2)	Radial direc	tion										
Trough plate	0											
#10	0	0	9	14	19	14	14	19	14	9	0	0
#9	0	14	19	19	19	14	14	19	19	19	14	0
#8	10	20	20	20	20	15	15	20	20	20	20	10
#7	10	20	20	20	20	15	15	20	20	20	20	10
#6	5	21	16	21	16	16	16	16	21	16	21	5
#5	8	12	16	12	16	8	12	16	12	16	12	8
#4	9	17	17	17	17	13	13	17	17	17	17	9
#3	9	18	18	18	18	13	13	18	18	18	18	9
#2	5	14	18	18	18	14	14	18	18	18	14	5
#1	0	0	5	14	19	14	14	19	14	5	0	0
Max =	21											
4. Horizontal splay applies pressure to spacers w	hich resist a	s cantile	evers									
TENSILE OR COMPRESSIVE STRESS		12525 - 52				conservativ	/e valu	e is zero)			
Lateral force in each slot due to splaying PPWS =	2.T.sin(ang	e/2) (kN)	REDUCE	FOR F		0	VERT KI	(friction	betwee	en u/s PF	WS and slot
Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
	12	11	10	9	8	7	6	5	4	3	2	1
	Horizontal a	ingle (de	egrees)									
Trough plate	1.64	3.10	4.13	5.12	6.02	6.93	8.06	9.18	10.10	11.04	11.96	11.94
#10	0	0	557	1035	1624	1402	1629	2473	2041	1487	0	0
#9	0	627	1113	1380	1624	1402	1629	2473	2721	2974	2416	0
#8	221	836	1113	1380	1624	1402	1629	2473	2721	2974	3221	1607
#7	221	836	1113	1380	1624	1402	1629	2473	2721	2974	3221	1607
#6	110	836	835	1380	1218	1402	1629	1855	2721	2230	3221	804
#5	221	627	1113	1035	1624	935	1629	2473	2041	2974	2416	1607
#4	221	836	1113	1380	1624	1402	1629	2473	2721	2974	3221	1607
#3	221	836	1113	1380	1624	1402	1629	2473	2721	2974	3221	1607
#2	110	627	1113	1380	1624	1402	1629	2473	2721	2974	2416	804
#1	0	0	278	1035	1624	1402	1629	2473	2041	743	0	0
			2003	0000000								

Horizontal force is resisted over the length of trough	n plate be	tween 1	P-H1 an	d TP-H2	2								
Stress in spacers (N/mm2) (can be +/-)												A	rc length
Trough plate													(mm) -
Trough place	0	0	10		22	42	10	22	27	20	0	0	2705
#10	0	0	10	14	22	42	49	33	27	20	0	0	2795
#9	0	13	20	19	22	43	50	34	37	41	33	0	2729
#8	28	18	21	19	23	44	51	35	38	42	45	6	2667
#7	28	19	21	20	23	45	52	35	39	43	46	6	2606
#6	14	19	16	20	18	46	53	27	40	33	47	3	2560
#5	30	15	22	15	24	31	55	37	31	44	36	6	2497
#4	30	20	23	21	25	48	56	38	42	45	49	6	2441
#3	29	19	22	20	24	47	54	37	40	44	48	6	2524
#2	14	14	21	19	23	44	51	34	38	41	34	3	2685
#1	0	0	5	14	23	44	51	35	29	10	0	0	2671
Max = 56													
Accompanying shear stress (N/mm2)	eral direct	ion											
Trough plate													
#10	0	0	3	5	8	10	12	12	10	7	0	0	
#9	0	4	6	7	8	10	12	12	13	15	12	0	
#8	3	5	6	7	8	11	12	12	14	15	16	4	
#7	3	5	7	7	8	11	12	13	14	15	16	4	
#6	2	5	5	7	6	11	13	10	14	12	17	2	
#5	4	4	7	6	9	7	13	13	11	16	13	4	
#4	4	6	7	8	9	11	13	14	15	16	18	4	
#3	3	6	7	7	9	11	13	13	14	16	17	4	
#2	2	4	6	7	8	10	12	12	14	15	12	2	
#2	0	0	2	5	8	10	12	12	10	15	0	0	
#1 May = 19	0	U	2	5	0	10	12	12	10	.,	U	0	
Iviax = 18													

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Design Report - Cable Saddles

Codice documento	
PS0045_F0	

5. Accumulated horizontal splay forces reacted by equal and opposite force from other cable

TENSILE STRESS														Arc length
Stress in trough plate base (N/mm2)				1	The stre	ss will di	istribute	d over t	he whole	e length	of an in	dividual	trough	(mm) -
	Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	horiz
Tro	ough plate m	ax					0	<ac< td=""><td>cumulate</td><td>e this w</td><td>ay</td><td></td><td>min</td><td></td></ac<>	cumulate	e this w	ay		min	
	#10	73	73	73	70	64	54	45	36	21	9	0	0	2795
	#9	112	112	108	101	93	83	75	65	50	33	15	0	2729
	#8	132	131	126	119	110	100	91	81	66	49	30	10	2667
	#7	136	134	129	122	113	102	94	83	67	50	31	10	2606
	#6	119	118	113	107	98	90	81	71	58	41	26	5	2560
	#5	94	92	89	84	79	70	66	58	45	35	20	8	2497
	#4	109	107	103	97	90	82	75	67	54	40	25	8	2441
	#3	105	104	100	94	87	79	72	64	52	39	24	8	2524
	#2	90	89	86	81	75	67	61	53	41	29	15	4	2685
	#1	53	53	53	51	46	39	32	25	13	3	0	0	2671
	Max = 1	36									(form	ula is dif	fferent)	

Accompanying shear stress not applicable

6. Moment from spacer enters base of trough plate		Max = 143 Stress distributed over length between tangent points											
Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	Lever arm
Trough plate Str	ess cause	ed by m	oment	N/mm2		tension	and com	pression	n, latera	I directio	on		(mm)
#10	0	0	23	42	66	57	66	101	83	61	0	0	102.5
#9	0	26	46	58	68	59	68	103	114	124	101	0	102.5
#8	9	36	48	59	69	60	70	106	116	127	138	69	102.5
#7	10	37	49	60	71	61	71	108	119	130	141	70	102.5
#6	5	37	37	61	54	62	72	83	121	99	143	36	102.5
#5	6	18	31	29	46	26	46	70	57	84	68	45	112.5
#4	6	24	32	40	47	40	47	71	78	86	93	46	112.5
#3	6	23	31	38	45	39	45	69	76	83	90	45	112.5
#2	3	16	29	36	43	37	43	65	71	78	63	21	112.5
#1	0	0	7	27	43	37	43	65	54	20	0	0	112.5
Max = 14	3												

COMBINE STRESSES

		Ra	dial		Late	ral		Shear				
[Load case	1	4 Op.2	2	3	5	6	2	4 Op.2	3		
1	Direction	С	C	т	т	т	т	Lat	Lat	Rad		
Frough plate			100 112									
#10	73	73	196	262	332	272	288	346	251	176	0	0
#9	112	282	371	376	384	337	331	398	392	384	270	0
#8	267	396	414	416	424	367	384	439	433	426	409	178
#7	304	428	444	443	450	406	401	465	460	453	438	187
#6	249	442	373	452	372	409	428	380	477	366	461	102
#5	291	315	370	307	366	294	364	378	311	371	290	137
#4	344	407	413	397	403	391	402	414	409	404	390	145
#3	383	437	439	419	425	410	433	436	431	427	414	151
#2	347	402	459	434	440	435	444	450	446	442	355	93
#1	268	259	309	377	445	438	460	456	380	257	183	40
Max =	477											

		Ra	dial	100-00-00-0	Late	ral		Shear				
	Load case	1	4 Op.2	2	3	5	6	2	4 Op.2	3		
	Direction	С	т	т	т	т	С	Lat	Lat	Rad		
Trough plate												
#10	73	73	140	162	175	108	99	107	55	34	0	0
#9	112	214	254	239	222	165	131	152	121	89	34	0
#8	213	302	294	275	258	188	177	186	155	122	81	36
#7	245	331	320	298	280	222	187	207	175	142	101	42
#6	217	343	279	306	243	221	209	184	188	131	119	30
#5	229	259	277	230	243	194	190	192	159	147	111	41
#4	280	331	318	290	278	238	223	224	200	177	144	49
#3	319	363	348	316	305	261	261	253	231	208	178	58
#2	316	350	373	338	327	295	282	280	259	239	194	52
#1	268	259	289	307	333	299	299	287	245	212	183	40
Max =	373											

Stretto	Ponte sullo Stretto di Messina								
di Messina	PROGETTO DEFINITIVO								
Design Report - Cable Saddles	Codice documento	Rev	Data						
	PS0045_F0	^{F0}	20/06/2011						

MAXIMUM UTILISATION

0.95

Saddle slip due to unzipping of the splaying of	cable	
In this mode, the slippage of the saddle toward	rds the side spar	n due to the splaying of the cable
The resistance is by friction between the base	and sides of th	e grooves
Min horizontal angle	1.636	degrees
Max horizontal angle	11.961	degrees
Average horizontal angle	5.162	degrees
Half of horizontal deviation angle	2.581	degrees
Max allowable SILS tension (single cable)	1395	MN
Resultant splay force (single cable)	126	MN
Longitudinal component (unzip)	5.7	MN
Long'l unzip force (double cable)	11.3	MN
Transverse component (single cable)	126	MN
Reaction on base of grooves (double cable)	387	MN
Coeff. of friction - wires and grooves	0.20	
Gamma M friction at SILS	1.00	
Resistance to unzip force	128	MN
UTILISATION	0.09	
Shear keys		
Free cable Horiz tension	654.6	MN
Number of strands in side span cable	361	
Cable angle at spaly saddle	16.02	degrees
Max transverse angle of strand	17.2	degrees
Tension in strand	1887	kN
Max transverse force per four strand group	2336	kN
Shear key	70	mm
Max allowable stress at SLS	238	N/mm^2
Shear resistance of keys at SLS	17	kN/mm
Minimum length of shear key	816.3	mm
Resistance of shear key	13605	kN
gamma m SLS	1.25	
UTILISATION	0.17	
Holding down bolts		
Tensile capacity M30	283	kN
Number of bolts provided per trough plate	6	
Side face of shear key at	26.5	degrees
Tension generated in bolts w/out friction	1165	kN
UTILISATION	0.69	

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO								
Design Report -	Cable Saddles	Codice documento PS0045_F0	Rev F0	Data 20/06/2011						

SICILY SPLAY SADDLE - ULS CHECK ON TROUGH P	LATES												
Trough Plate Design	Cast steel,	grade											
Material yield	500	N/mr	m^2										
Gamma M0 at ULS	1.05												
Limiting stress	476	N/mr	n^2										
Max allowable ULS tension (single cable)	1169	MN											
Resultant ULS axial force in splay saddle	325	MN	(double	e cable)									
Number of strands in this cable	361												
Trough plate dimensions													
Min spacer thickness	25	mm											
4-PPWS slot height	105	mm											
4-PPWS slot width	138	mm											
Total width of grooves	1510	mm											
Gap over strand with wire control	50	mm -	Specified	by YY a	is overa	all troug	h plt he	ight					
Gap over strand without wire control	30	mm											
2-PPWS slot width	65	mm											
Max gap under PPWS at exit	10	mm											
Lever arm of action on spacer above base	73	mm											
	INNER COL	UMN									OUT	ER COL	UMN
Strand Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	WIDTH
Spacer thickness	25	60	65	75	75	50	50	75	75	75	75	150	2360

		Tre	ough plate
Trough plate	Base thickness (mm)	thic	kness (mm)
#10	60		215
#9	60		215
#8	60		215
#7	60		215
#6	60		215
#5	80		215
#4	80		215
#3	80		215
#2	80		215
#1	80		215
		Total	2150

Force applied by PPWS = (2 x PPWS tension x sin [half of deviation angle])

Stretto di Messina	EurolinK	Ponte sullo Stretto di Messina PROGETTO DEFINITIVO							
Design Report - Cabl	le Saddles	Codice documento PS0045_F0	Rev F0	Data 20/06/2011					

No. PPWS in a slot

	Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	Total
Tr	ough plate		Table is	s not au	tomatio	ally up	dated if	strand	arrange	ment c	hanges			
	#10	0	0	2	3	4	3	3	4	3	2	0	0	24
	#9	0	3	4	4	4	3	3	4	4	4	3	0	36
	#8	2	4	4	4	4	3	3	4	4	4	4	2	42
	#7	2	4	4	4	4	3	3	4	4	4	4	2	42
	#6	1	4	3	4	3	3	3	3	4	3	4	1	36
	#5	2	3	4	3	4	2	3	4	3	4	3	2	37
	#4	2	4	4	4	4	3	3	4	4	4	4	2	42
	#3	2	4	4	4	4	3	3	4	4	4	4	2	42
	#2	1	3	4	4	4	3	3	4	4	4	3	1	38
	#1	0	0	1	3	4	3	3	4	3	1	0	0	22
														361
Width of slot at lowest point (mm)														
	Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	
T	ough plate		Table	c not au	tomativ	ally up	dated if	strand	arrango	mont	hangos			

Trough pl	ate	Т	able is	not aut	omatica	lly upda	ated if s	trand a	rrangen	nent cha	anges		
1	10	65	138	138	138	138	65	138	138	65	138	138	65
	#9	65	65	138	138	138	138	65	138	138	138	65	65
	#8	65	138	138	138	138	65	138	138	138	138	138	65
	#7	65	138	138	138	138	138	65	138	138	138	138	65
	#6	65	138	65	138	65	65	138	65	138	65	138	65
	#5	65	65	138	65	138	65	65	138	65	138	65	65
	#4	65	138	138	138	138	138	65	138	138	138	138	65
	#3	65	138	138	138	138	65	138	138	138	138	138	65
	#2	65	65	138	138	138	138	65	138	138	138	65	65
	#1	65	138	65	65	138	65	138	138	65	65	138	65

CHECK STRESSES AT THE ROOT OF THE SPACERS

1. Vertical deviation causes a radial pressure on trough plates spacers.

Radial bearing of each trough

Accumulated

h plate (kN)													
Column #:	1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	Vert.
Trough plate													(degre
#10	0	0	764	1146	1529	1146	1146	1529	1146	764	0	0	6.763
#9	0	1464	1952	1952	1952	1464	1464	1952	1952	1952	1464	0	8.639
#8	1191	2382	2382	2382	2382	1787	1787	2382	2382	2382	2382	1191	10.548
#7	1409	2818	2818	2818	2818	2114	2114	2818	2818	2818	2818	1409	12.485
#6	820	3281	2461	3281	2461	2461	2461	2461	3281	2461	3281	820	14.545
#5	1869	2804	3738	2804	3738	1869	2804	3738	2804	3738	2804	1869	16.588
#4	2095	4190	4190	4190	4190	3143	3143	4190	4190	4190	4190	2095	18.610
#3	2324	4647	4647	4647	4647	3485	3485	4647	4647	4647	4647	2324	20.660
#2	1277	3832	5109	5109	5109	3832	3832	5109	5109	5109	3832	1277	22.738
#1	0	0	1417	4252	5670	4252	4252	5670	4252	1417	0	0	25.273

Accumulated pressure (kN/mm run)													Length
Trough plate													TP to
#10	0.000	0.000	0.936	1.404	1.873	1.404	1.404	1.873	1.404	0.936	0.000	0.000	816
#9	0.00	1.45	2.69	3.07	3.44	2.58	2.58	3.44	3.07	2.69	1.45	0.00	1010
#8	1.00	3.22	4.27	4.59	4.91	3.68	3.68	4.91	4.59	4.27	3.22	1.00	1194
#7	1.90	4.88	5.79	6.07	6.35	4.76	4.76	6.35	6.07	5.79	4.88	1.90	1367
#6	2.22	6.47	6.75	7.53	7.25	5.84	5.84	7.25	7.53	6.75	6.47	2.22	1537
#5	3.12	7.51	8.32	8.48	8.77	6.39	6.94	8.77	8.48	8.32	7.51	3.12	1697
#4	4.03	9.24	9.98	10.13	10.40	7.62	8.13	10.40	10.13	9.98	9.24	4.03	1834
#3	4.96	11.02	11.72	11.86	12.11	8.92	9.40	12.11	11.86	11.72	11.02	4.96	1958
#2	5.31	12.28	13.56	13.69	13.93	10.29	10.74	13.93	13.69	13.56	12.28	5.31	2070
#1	4.98	11.52	13.36	14.77	15.64	11.58	12.01	15.64	14.77	13.36	11.52	4.98	2206
Accumulated radial stress at spacer (N/mm2)													

COMPRESSIVE STRESS	Minimum spacer width = 25 mm Bottom trough plate be						ears ont	er top plate				
Trough plat	e											
#1	0 0	0 0	14	19	25	28	28	25	19	12	0	0
#	9 (24	41	41	46	52	52	46	41	36	19	0
#	8 40	54	66	61	65	74	74	65	61	57	43	7
#	7 76	5 81	89	81	85	95	95	85	81	77	65	13
#	6 89	108	104	100	97	117	117	97	100	90	86	15
#	5 125	125	128	113	117	128	139	117	113	111	100	21
#	4 16:	154	154	135	139	152	163	139	135	133	123	27
#	3 198	184	180	158	161	178	188	161	158	156	147	33
#	2 212	205	209	182	186	206	215	186	182	181	164	35
#	1 19 9	192	206	197	208	232	240	208	197	178	154	33 ignore
Accompanying shear stress not applicable												Max = 240

2. PPWS in the slots will spread laterally due to the vertical force

Spreading factor 0.65

0 6 17 22 25 25 22 17 6

Horizontal force at each slot (kN/mm run)	Radial bea	aring for	e/lengt	h of tro	ugh pla	te*spre	ading fa	actor				
Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
Trough plate												
#10	0.000	0.000	0.609	0.913	1.217	0.913	0.913	1.217	0.913	0.609	0.000	0.000
#9	0.000	0.942	1.256	1.256	1.256	0.942	0.942	1.256	1.256	1.256	0.942	0.000
#8	0.648	1.297	1.297	1.297	1.297	0.973	0.973	1.297	1.297	1.297	1.297	0.648
#7	0.670	1.340	1.340	1.340	1.340	1.005	1.005	1.340	1.340	1.340	1.340	0.670
#6	0.347	1.387	1.040	1.387	1.040	1.040	1.040	1.040	1.387	1.040	1.387	0.347
#5	0.716	1.074	1.432	1.074	1.432	0.716	1.074	1.432	1.074	1.432	1.074	0.716
#4	0.743	1.485	1.485	1.485	1.485	1.114	1.114	1.485	1.485	1.485	1.485	0.743
#3	0.771	1.542	1.542	1.542	1.542	1.157	1.157	1.542	1.542	1.542	1.542	0.771
#2	0.401	1.203	1.604	1.604	1.604	1.203	1.203	1.604	1.604	1.604	1.203	0.401
#1	0.000	0.000	0.418	1.253	1.671	1.253	1.253	1.671	1.253	0.418	0.000	0.000
Stress due horizontal spreading force (N/mm2)												
TENSILE STRESS	(Force/ba	se thickn	iess) + (Force x	eccentr	icity/m	odulus)					
Trough plate												
#10	0	0	54	81	108	81	81	108	81	54	0	0
#9	0	84	112	112	112	84	84	112	112	112	84	0
#8	58	115	115	115	115	86	86	115	115	115	115	58
#7	60	119	119	119	119	89	89	119	119	119	119	60
#6	31	123	92	123	92	92	92	92	123	92	123	31
#5	43	64	85	64	85	43	64	85	64	85	64	43
#4	44	88	88	88	88	66	66	88	88	88	88	44
#3	46	92	92	92	92	69	69	92	92	92	92	46
#2	24	71	95	95	95	71	71	95	95	95	71	24
#1	0	0	25	74	99	74	74	99	74	25	0	0
Max =	123											
Accompanying shear stress (N/mm2)	Lateral dir	ection										
Trough plate												
#10	0	0	9	12	16	18	18	16	12	8	0	0
#9	0	16	19	17	17	19	19	17	17	17	13	0
#8	26	22	20	17	17	19	19	17	17	17	17	4
#7	27	22	21	18	18	20	20	18	18	18	18	4
#6	14	23	16	18	14	21	21	14	18	14	18	2
#5	29	18	22	14	19	14	21	19	14	19	14	5
#4	30	25	23	20	20	22	22	20	20	20	20	5
#3	31	26	24	21	21	23	23	21	21	21	21	5
#2	16	20	25	21	21	24	24	21	21	21	16	3

#1

Max = 31

0

0

0

3. Flexure of trough plate base due to radial pressure of PPWS

		Nome	nt = W	.B/12	whe	ere B	= slot \	width	+ spacer	width		
#2		#3	#4	#5	#6	#	7	#8	#9	#10	#11	#12
tress (N/mm	12)											
0	0	18	28	3	7	15	24	37	18	18	(0
0	17	36	38	3 31	8	25	15	38	38	38	19	0
8	37	37	39	39	9	16	26	39	39	39	39	20
9	38	39	4:	4:	1	27	16	41	41	41	4:	L 21
4	39	19	42	2 2:	1	17	28	21	42	21	42	2 11
5	11	23	12	2 24	4	7	10	24	12	24	1	2 12
5	24	24	25	5 25	5	17	10	25	25	25	25	5 13
6	24	25	20	5 20	6	11	17	26	26	26	20	5 13
3	12	26	27	2	7	18	11	27	27	27	13	3 7
0	0	4	14	2	9	12	19	29	14	5	. (0 (
dial directio	n											
0	0	8	12	2 10	6	12	12	16	12	8	. (0 0
0	12	16	16	5 10	6	12	12	16	16	16	1	2 0
8	17	17	17	1	7	12	12	17	17	17	1	7 8
9	17	17	17	1	7	13	13	17	17	17	1	7 9
4	18	13	18	3 13	3	13	13	13	18	13	1	3 4
7	10	14	10	1	4	7	10	14	10	14	1	7
7	14	14	14	14	4	11	11	14	14	14	1	1 7
7	15	15	15	5 1	5	11	11	15	15	15	1	5 7
4	12	15	15	5 1	5	12	12	15	15	15	1	2 4
0	0	4	12	1	6	12	12	16	12	4		0 0
	#2 tress (N/mr 0 8 9 4 5 5 6 3 0 0 dial direction 0 8 9 4 7 7 7 4 0	#2 tress (N/mm2) 0 0 0 17 8 37 9 38 4 39 5 11 5 24 6 24 3 12 0 0 dial direction dial direction 0 0 2 8 17 9 17 4 18 7 10 7 14 7 15 4 12 0 0	#2 #3 tress (N/mm2) 0 0 0 0 18 0 17 36 8 37 37 9 38 39 4 39 19 5 11 23 5 24 24 6 24 25 3 12 26 0 0 4 dial direction 0 0 dial direction 17 9 9 17 17 9 17 17 9 17 17 9 17 17 9 17 17 9 17 14 7 10 14 7 10 14 7 14 12 15 15 12 0 0 4	#2 #3 #4 tress (N/mm2) 0 0 18 28 0 17 36 38 39 43 9 38 39 43 439 19 42 5 11 23 12 5 24 24 25 6 24 25 26 3 12 26 27 0 0 4 4 dial direction 0 0 8 12 26 27 0 0 4 14 dial direction 0 0 8 12 16 16 8 17 17 17 17 17 17 17 17 16 16 18 17 17 17 14	#2 #3 #4 #5 tress (N/mm2) 0 0 18 28 33 0 17 36 38 33 9 38 39 41 44 4 39 19 42 22 5 11 23 12 24 5 24 24 25 21 6 24 25 26 27 3 12 26 27 27 0 0 4 14 21 6 24 25 26 21 3 12 26 27 27 0 0 4 14 21 dial direction 12 16 16 16 8 17 17 17 17 9 17 17 17 14 9 17 17 17 14 14 18 13 18 12 14 12 15	#2 #3 #4 #5 #6 tress (N/mm2) 0 0 18 28 37 0 17 36 38 38 38 8 37 37 39 39 9 38 39 41 41 4 39 19 42 21 5 11 23 12 24 5 24 24 25 25 6 24 25 26 26 3 12 26 27 27 0 0 4 14 29 dial direction dial direction 0 0 8 12 16 16 16 8 17 17 17 17 17 17 9 17 17 17 17 14 18 13 18 13 7 10 14 10 14 14 14 14 14 14 14 14 14 14	#2 #3 #4 #5 #6 # tress (N/mm2) 0 0 18 28 37 15 0 17 36 38 38 25 8 37 37 39 39 16 9 38 39 41 41 27 4 39 19 42 21 17 5 11 23 12 24 7 5 24 24 25 25 17 6 24 25 26 26 11 3 12 26 27 27 18 0 0 4 14 29 12 dial direction dial direction 0 0 8 12 16 12 9 17 17 17 17 13 4 18 13 18 13 13 7 10 14 10 14 7	#2 #3 #4 #5 #6 #7 tress (N/mm2) 0 0 18 28 37 15 24 0 17 36 38 38 25 15 8 37 37 39 39 16 26 9 38 39 41 41 27 16 4 39 19 42 21 17 28 5 11 23 12 24 7 10 5 24 24 25 25 17 10 6 24 25 26 26 11 17 3 12 26 27 27 18 11 0 0 4 14 29 12 19 dial direction	#2 #3 #4 #5 #6 #7 #8 tress (N/mm2) 0 0 18 28 37 15 24 37 0 17 36 38 38 25 15 38 8 37 37 39 39 16 26 39 9 38 39 41 41 27 16 41 4 39 19 42 21 17 28 21 5 11 23 12 24 7 10 24 5 24 24 25 25 17 10 25 6 24 25 26 26 11 17 26 3 12 26 27 27 18 11 27 0 0 8 12 16 12 12 16 6 17 17 17 17 13 13 13 10 12 16 16	#2 #3 #4 #5 #6 #7 #8 #9 tress (N/mm2) 0 0 18 28 37 15 24 37 18 0 17 36 38 38 25 15 38 38 8 37 37 39 39 16 26 39 39 9 38 39 41 41 27 16 41 41 4 39 19 42 21 17 28 21 42 5 11 23 12 24 7 10 24 12 5 24 24 25 25 17 10 25 25 6 24 25 26 26 11 17 26 26 3 12 26 27 27 18 11 27 27 0 0 8 12 16 12 12 16 16 8 17	#2 #3 #4 #5 #6 #7 #8 #9 #10 tress (N/mm2) 0 0 18 28 37 15 24 37 18 18 0 17 36 38 38 25 15 38 38 38 8 37 37 39 39 16 26 39 39 39 9 38 39 41 41 27 16 41 41 41 4 39 19 42 21 17 28 21 42 21 5 11 23 12 24 7 10 24 12 24 5 24 24 25 25 17 10 25 25 25 6 24 25 26 26 11 17 26 26 26 3 12 26 27 27 18 11 27 27 27 0 12 <td>#2 #3 #4 #5 #6 #7 #8 #9 #10 #11 tress (N/mm2) 0 0 18 28 37 15 24 37 18 18 0 0 0 17 36 38 38 25 15 38 38 38 15 8 37 37 39 39 16 26 39 39 39 39 9 38 39 41 41 27 16 41 41 41 41 4 39 19 42 21 17 28 21 42 21 42 5 11 23 12 24 7 10 24 12 24 12 5 24 24 25 25 17 10 25 25 25 25 6 24 25 26 26 11 17 26 26 26 26 3 12 16</td>	#2 #3 #4 #5 #6 #7 #8 #9 #10 #11 tress (N/mm2) 0 0 18 28 37 15 24 37 18 18 0 0 0 17 36 38 38 25 15 38 38 38 15 8 37 37 39 39 16 26 39 39 39 39 9 38 39 41 41 27 16 41 41 41 41 4 39 19 42 21 17 28 21 42 21 42 5 11 23 12 24 7 10 24 12 24 12 5 24 24 25 25 17 10 25 25 25 25 6 24 25 26 26 11 17 26 26 26 26 3 12 16

4. Horizontal splay applies pressure to spacers which resist as cantilevers

TENSILE OR COMPRESSIVE STRESS	ien resise	us curre	REDUCE	FOR F	RICTION		co	onserva	tive val	ue is zei	ro		
Lateral force in each slot due to splaying PPWS = 2.T.sin(angle/2) (kN)											nd slot)		
Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	
	12	11	10	9	8	7	6	5	4	3	2	1	
1	lorizontal	angle (c	legrees										
Trough plate	1.636	3.099	4.127	5.115	6.023	6.933	8.058	9.176	######	****	######	***	
#10	0	0	467	867	1362	1175	1366	2073	1711	1246	0	0	
#9	0	526	933	1156	1362	1175	1366	2073	2281	2493	2025	0	
#8	185	701	933	1156	1362	1175	1366	2073	2281	2493	2700	1347	
#7	185	701	933	1156	1362	1175	1366	2073	2281	2493	2700	1347	
#6	93	701	700	1156	1021	1175	1366	1555	2281	1870	2700	674	
#5	185	526	933	867	1362	784	1366	2073	1711	2493	2025	1347	
#4	185	701	933	1156	1362	1175	1366	2073	2281	2493	2700	1347	
#3	185	701	933	1156	1362	1175	1366	2073	2281	2493	2700	1347	
#2	93	526	933	1156	1362	1175	1366	2073	2281	2493	2025	674	
#1	0	0	233	867	1362	1175	1366	2073	1711	623	0	0	
Horizontal force is resisted over the length of tro	ugh plate	betwee	n TP-H	L and T	P-H2								
Stress in spacers (N/mm2) (can be +/-)	98 BS												Arc
Trough plate													(mm) -
#10	0	0	8	12	18	35	41	28	23	17	0	0	2795
#9	0	11	17	16	19	36	42	28	31	34	28	0	2729
#8	23	15	17	16	19	37	43	29	32	35	38	5	2667
#7	24	16	18	17	20	38	44	30	33	36	39	5	2606
#6	12	16	14	17	15	39	45	23	33	27	39	2	2560
#5	25	12	19	13	20	26	46	31	26	37	30	5	2497
#4	25	17	19	18	21	40	47	32	35	38	41	5	2441
#3	25	16	18	17	20	39	45	31	34	37	40	5	2524
#2	12	11	17	16	19	37	43	29	32	35	28	2	2685
#1	0	0	4	12	19	37	43	29	24	9	0	0	2671
Max = 4	7												
Accompanying shear stress (N/mm2)	ateral dire	ection											
Trough plate													
#10	0	0	3	4	6	8	10	10	8	6	0	0	
#9	0	3	5	6	7	9	10	10	11	12	10	0	
#8	3	4	5	6	7	9	10	10	11	12	13	3	
#7	3	4	6	6	7	9	10	11	. 12	13	14	3	
#6	1	5	4	6	5	9	11	8	12	10	14	2	
#5	3	4	6	5	7	6	11	11	. 9	13	11	4	
#4	3	5	6	6	7	10	11	11	. 12	14	15	4	
#3	3	5	6	6	7	9	11	11	12	13	14	4	
#2	1	3	5	6	7	9	10	10	11	. 12	10	2	
#1	0	0	1	4	7	9	10	10	9	3	0	0	
Max = 1	.5												

Ponte sullo Stretto di Messina **PROGETTO DEFINITIVO**

Design Report - Cable Saddles

Codice documento	
PS0045_F0	

Arc

5. Accumulated horizontal splay forces reacted by equal and opposite force from other cable

TENSILE STRESS

Stress in trough plate base (N/mm2)				The stre	ess will d	distribu	ted ove	r the wh	hole ler	igth of a	an indivi	dual tr	length
Column	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	(mm) -
Trough plate r	nax						<ac< td=""><td>cumula</td><td>te this</td><td>way</td><td></td><td>min</td><td></td></ac<>	cumula	te this	way		min	
#10	61	61	61	58	53	45	38	30	18	7	0	0	2795
#9	94	94	91	85	78	70	63	54	42	28	12	0	2729
#8	111	110	106	100	92	84	77	68	55	41	25	8	2667
#7	114	112	108	102	95	86	78	70	56	42	26	9	2606
#6	100	99	94	90	82	76	68	59	49	34	22	4	2560
#5	78	78	75	70	66	59	55	48	38	29	17	7	2497
#4	91	90	86	82	76	69	63	56	45	33	21	7	2441
#3	88	87	84	79	73	67	61	54	44	32	20	7	2524
#2	75	75	72	68	63	56	51	44	35	24	13	3	2685
#1	44	44	44	43	39	33	27	21	11	3	0	0	2671
Max = 1	14											(formu	la is diffe
Accompanying shear stress not applicable													

6. Moment from spacer enters base of trough plate Max = 120 Stress distributed over length between tangent points #1 Column #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 Lever Trough plate Stress caused by moment N/mm2 tension and compression, lateral direction arm #10 102.5 #9 102.5 #8 102.5 #7 102.5 #6 30 102.5 #5 112.5 #4 39 112.5 #3 38 112.5 #2 18 112.5 #1 0 112.5 Max = 120

COMBINE STRESSES

		Ra	dial		Late	ral		Shear				
ſ	Load case	1	4 Op.2	2	3	5	6	2	4 Op.2	3		
	Direction	С	С	т	т	т	т	Lat	Lat	Rad		
Trough plate												
#10	61	61	165	219	278	228	242	290	211	148	0	0
#9	94	236	311	315	322	282	278	334	329	322	227	0
#8	224	332	347	349	355	307	322	368	363	357	343	150
#7	255	359	372	371	377	340	336	390	386	380	367	157
#6	209	370	313	379	312	343	358	319	400	307	386	86
#5	244	264	310	258	306	247	305	317	261	311	243	115
#4	289	341	346	332	338	328	337	347	343	339	327	122
#3	321	366	368	351	357	344	363	366	362	358	347	127
#2	291	337	385	364	369	365	372	378	374	370	297	78
#1	224	217	259	316	373	367	386	382	319	216	154	33
Max =	400											

Radial Shear Lateral Load case 4 Op.2 4 Op.2 Direction C Rad Т Lat Lat Trough plate #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 Max = 313

MAXIMUM UTILISATION

0.84

ULS 1.05 1.25

Design of the castings and fabrications that s	support the trough plates, an	a of the rock	erbearing	
Materials			SI	LS
Cast steel, grade G24Mn6+QT2 (1.1118) to UI	NI EN 10340		gamma MO	1.00
Material yield	370 N/mm^2	1	gamma M2	1.00
UTS	620 N/mm^2	5		
Hot-rolled steel, S420ML to EN 10025-4 UP TO	D 100MM			
Material yield	420 N/mm^2	1		
Hot-rolled steel, S420ML to EN 10025-4 OVER	100MM			
Material yield	360 N/mm^2	1		
Geometry				
Angle towards side span	7.98 degrees			
Angle towards splay chamber	17.36 degrees			
Central stiff	150 mm		1 off	
Curtailed stiffs	100 mm	:	2 off	
Outstand stiffs	100 mm		6 effective	
Note: The curtailed stiffs are assymmetric				
Check whether they are needed for load bear	ing or if they can serve solely	as restraints	to the outstand	
Top plate spreading into central section				
Width of top plate at entry	5200 mm			
Width of top plate at exit	6400 mm			
Average width of top plate	5800 mm			
Minimum thickness of top plt	280 mm			
Length of top plate	3250 mm	SILS		ULS

0.15

Minimum thickness of top plt		280	mm					
Length of top plate		3250	mm	SILS		ULS		
Reaction from double cable				387		325	MN	
Pressure applied to top plate				21		17	N/mm2	
Transverse spacing of stiffeners below top plt		900	mm					
Longitudinal spacing of stiffs below top plt		1850	mm					
Transverse flexure, Mt				2080473		1744109	N.mm/mm	
Transverse bending stress				106		89	N/mm2	
Shear				33		28	N/mm2	
Total equivalent direct stress				122		103	N/mm2	
Gamma M0				1.00		1.05		
UTILISATION				0.33		0.29		
						Areas of se	ction (mm2)	
Location of section	Radius		Symmetric al width	Length	Central stiff	Curtailed stiffs	Outstand stiffs	Total Area
Top of top casting		5000	1393	4800	6685309	0	0	6685309
Underside of top casting		4700	1375	4800	720000	840000	735124	2295124
Underside of curtailed stiffs		3600	1311	5725	858750	0	696478	1555228
Top of bearing casting		300	1100	8500	1275000	0	533538	1808538

Note: Stiff bearing from the rocker contact through the base plate shall be at 60 degrees (EN 1337-6, fig 3)

The outstand stiffs at bearing only empoyed by stiff bearing of bearing top plate

Resistance to unzip force UTILISATION

SICILY SPLAY SADDLE - SILS & ULS CHECK ON CENTRAL PART

Check effectiveness of outstand stiffeners as outstand	compression element	nts (EN 1993-1-5, cl. 4.4)	
Outstand stiffs b/t	6.13	nu	0.3
sigma2/sigma1	1.00	E	210000
k-sigma	0.43 (table 4.2)		
sigma crit	2175		
lamda p bar	0.44		
rho	1.00		
Fully effective			
		SILS	ULS
Force in one saddle is for two cables		387	325 MN
Stress at critical sections			
Top of top casting		58	49 N/mm2
Underside of top casting		169	141 N/mm2
Underside of curtailed stiffs		249	209 N/mm2
Top of bearing casting		214	180 N/mm2
gamma M0		1.00	1.05
MAXIMUM UTILISATION		0.69	0.61
Rocker bearing		SILS	ULS
Applied loading		387	325 MN
Radius of upper part	3000 mm dia.		
Radius of lower part	6000 mm dia.		
Dowels	100 mm dia.		
No off dowels	2 No		
Effective length of bearing	8300 mm		
KD D1.D2/(D1 - D2)	12000 mm	(Roark, 5th ed. p. 517,	case 2c)
		SILS	ULS
Max stress in contact zone		528	483 N/mm2
N'Rk (EN 1337-6 -2004, 6.5.1)		126303	126303 N/mm
Gamma M		1.00	1.10 (note: EN 1337 recommend:
Design resistance (N'Rd)		1048	866 MN
Gamma M2		1.00	1.25
UTILISATION		0.37	0.47
Pressure onto concrete - by stiff bearing of base plate			
Thickness to concrete below contact point	450 mm		
Width of contact at rocker	103 mm	(Roark, 5t	n ed. p. 517, case 2c)
Width of contact	1662 mm	Distribution angle 60 degrees	
		SILS	ULS
Bearing pressure on concrete		27	23 N/mm2
Concrete grade	45 N/mm2		
Estimate local pressure limit factor on fcd		1.00	0.85 (EN1992-1-1,cl. 10.9.5.2(2))
Limiting pressure		45	38.25 N/mm2
UTILISATION		0.61	0.60