

Il presente documento è RISERVATO ed è di proprietà Stogit

Esso non sarà mostrato a terzi nè sarà utilizzato per scopi diversi da quelli per i quali è stato trasmesso.

INDICE

- 1. DATI GENERALI
 - 1.1 INTRODUZIONE
 - 1.2 APPROFONDIMENTI
- 2. ANALISI GEOFISICA
- 3. EVOLUZIONE TETTONO-SEDIMENTARIA
 - 3.1 SOMMARIO
- 4. ANALISI DEL GIACIMENTO
 - 4.1 DATI ANALIZZATI
 - 4.2 GIACIMENTO
 - 4.2.1 Copertura
 - 4.2.2 Trappola e chiusura
 - 4.2.3 Modello Deposizionale
 - 4.2.4 Contatti tra fluidi e caratteristiche dell'acquifero
 - 4.3 PETROFISICA
 - 4.3.1 Dati disponibili
 - 4.3.2 Attendibilità dei dati
 - 4.3.3 Determinazione dei parametri petrofisici
 - 4.4 MAPPING E CALCOLO DEL G.O.I.P.
 - 4.4.1 Valutazione del G.O.I.P. statico
- 5. BIBLIOGRAFIA

1. <u>DATI GENERALI</u>

1.1 INTRODUZIONE

Il campo di Bordolano è ubicato in Pianura Padana, circa 18 Km a NW di Cremona, nella omonime concessione di stoccaggio (fig. 1.1).

La scoperta del giacimento risale al 1951 (pozzo Bordolano 1). L'area sottesa dalla struttura di Bordolano è di circa 41 Km², mentre l'area originariamente mineralizzata era di circa 6 Km².

I livelli mineralizzati appartengono alla Formazione Strati di Caviaga ed hanno età compresa tra il Messiniano post-evaporitico ed il Pliocene inferiore. Inizialmente i livelli mineralizzati sono stati denominati con le lettere A – E (partendo dal basso). Nel presente studio si è mantenuta la precedente denominazione per i livelli principali (livelli A e Pool B), ma la revisione delle correlazioni ed il maggior dettaglio hanno determinato sia l'introduzione di sottolivelli (indicati con lettera + numero) sia la denominazione di un nuovo livello (Pool F). Nell'insieme i livelli che costituiscono il reservoir di Bordolano sono 13 (fig. 1.2).

I livelli presenti nella F.ne Caviaga erano originariamente mineralizzati a gas dolce. Dal 1995 al 1998, terminata la fase di produzione primaria, il pool principale del campo (Pool B, costituito dai livelli B1, B2, B3, B4, B5) è stato sottoposto a verifiche per valutarne l'idoneità allo stoccaggio di gas.

I livelli mineralizzati del campo presentano due tipologie di trappole: trappola stratigrafica nei livelli A1 ed A2 e trappola mista (stratigrafico-strutturale) nei livelli da B1 a B5 e nei livelli minori sottostanti (C, D, E1, E2, F). Il livello F1 è ad acqua.

La trappola strutturale è costituita da un'anticlinale sud-vergente, con il fianco meridionale scomposto da più faglie a vergenza sia appenninica che alpina. Tale struttura è il prodotto della sovrapposizione della fase tettonica appenninica nord-vergente, di età medio-pliocenica, alle preesistenti strutture alpine sud-vergenti, con conseguente riattivazione delle stesse strutture alpine come elementi secondari di back-thrust.

La trappola stratigrafica, invece, è data dalla chiusura a pinch-out di alcuni dei livelli mineralizzati sui fianchi della struttura. Tali pinch-out sono essenzialmente il prodotto della chiusura in onlap dei depositi gravitativi sabbioso-ghiaiosi costituenti la porzione porosa della F.ne Caviaga, sulle irregolarità morfologiche presenti nell'area.

La litologia del reservoir, ed in particolare del Pool B, è data da ghiaie sabbioso-siltose, talvolta cementate, generate da debris-flow sottomarini che, nella parte inferiore della F.ne Caviaga, passano a sabbie da medie a fini, talvolta siltose e cementate, deposte da flussi torbiditici più diluiti. Tali corpi sono separati da depositi pelitici (marne argilloso-siltose), anch'essi di origine torbiditica. Peliti di origine prevalentemente torbiditica costituiscono anche i primi 40 - 50 m della copertura del reservoir.

Recentemente è stata verificata l'esistenza di intercalazioni siltoso-sabbiose all'interno dei primi 40-50 m delle peliti di copertura mineralizzate a gas e con pressioni prossime a 200 kg/cm². Questo fatto conferma le capacità di tenuta della copertura stessa a fronte degli stress indotti da tre decenni di produzione.

I pozzi perforati sino ad oggi sono 23 (Bo1, 2, 2dir, 3, 4dir, 4dirA, 5 - 20, 21 dir).

La delimitazione e lo sviluppo primario del campo sono avvenuti nel triennio 1952 - 54, con la perforazione di 17 pozzi (Bo2, 2dir, 3, 4dir, 5 - 17).

Il giorno 22.3.1952, durante il tubaggio del pozzo Bo2, si verificava un'eruzione, con conseguente incendio del gas; l'incendio veniva spento il 14.4.52 e il pozzo veniva messo in sicurezza il 21.4.52 (con immediata chiusura mineraria).

Dal 1956 al 1964 sono stati eseguiti altri tre pozzi (Bo18 nel 1956, Bo19 nel 1959 e Bo20 nel 1964), con l'obiettivo principale di verificare la presenza di livelli sabbiosi (in pinch-out) entro le argille della copertura pliocenica. I tre pozzi hanno dato esito negativo, ma hanno permesso di tarare la sismica eseguita negli anni "80 sui fianchi meridionale, settentrionale e nord-occidentale della struttura. Nel bienno '96-'97 sono stati perforati altri due pozzi (21 dir e 4dirA) finalizzati all'acquisizione di dati (geologici e dinamici) per lo stoccaggio nel Pool B.

La produzione primaria del campo dai livelli del Pool B si è protratta dal 1952 al 1994; in seguito si è proceduto all'esecuzione di un test di iniezione di lunga durata, con lo scopo di verificare l'idoneità del Pool B allo stoccaggio di gas.

I principali studi di giacimento, focalizzati sul Pool B, sono quelli eseguiti nel 1958 (ref. 1) e nel 1994 (ref. 5). Mentre il primo studio è finalizzato alla produzione primaria, nel secondo viene eseguita una ricostruzione della struttura del giacimento e della geometria dei corpi sedimentari basate sulla sismica 2D disponibile, evidenziando le forti incertezze relativamente sia alla petrofisica del Pool B, sia ai rapporti geometrici tra i vari livelli presenti nella F.ne Caviaga.

Nuovi contributi alla conoscenza del campo, nei suoi vari aspetti geo-minerari, sono venuti dallo studio sedimentologico, dalla revisione stratigrafica dei pozzi, dall'interpretazione di due linee sismiche 2D riprocessate e dall'esecuzione di un fall-off test nel pozzo Bordolano 21 dir (dicembre 1998). Studio sedimentologico e revisione stratigrafica sono da inquadrare nella più ampia revisione sedimentologico-stratigrafica dell'ex Area ENI. Un valido contributo alla caratterizzazione petrofisica, inoltre, è rappresentata dallo studio con microscopio elettronico della matrice del Pool B (ref. 10).

Il principale obiettivo di questo studio è quello di fornire un modello geologico e minerario del Pool B del campo di Bordolano, congruente con i dati disponibili ed utilizzabile come input per la modellizzazione dinamica 3D con simulatore ECLIPSE.

1.2 APPROFONDIMENTI

Allo stato attuale delle conoscenze, i punti di approfondimento relativi alla modellizzazione geo-mineraria, cui si dovrà dare risposta in futuro, tramite azioni opportune, sono dovute a:

- mancanza di conoscenze circa la variabilità areale delle principali caratteristiche petrofisiche (anisotropia della K_{orizz}, distribuzione dell'Swi, delle porosità e del net/gross, ecc.)
- attuale impossibilità nel definire posizione e movimenti del contatto gas acqua
- incertezza sulle connessioni idrauliche tra livelli del Pool B, a scala di campo, nelle aree non controllate dai pozzi e, in particolare, in acquifero
- a fronte della validità generale del modello strutturale del campo, restano dubbi sulla geometria di alcune strutture minori, quali le faglie B ed A di fig. 1.3, nell'area compresa tra i pozzi 15, 3, 11, 6, essendo strutture sub-sismiche e per spiegare gli effetti delle quali possono essere proposti anche altri modelli interpretativi

- possibile continuazione verso W SW della faglia nord-vergente G (in fig. 1.3), con conseguente possibile formazione di una trappola strutturale secondaria (prospect esplorativo)
- attuale impossibilità di ricostruire mappe di top e bottom attendibili per i livelli minori della F.ne Caviaga, sulla base dei soli dati di pozzo

Per risolvere le principali incertezze menzionate, <u>si propone di</u>:

- realizzare un rilievo sismico 3D sulla struttura del campo di Bordolano, finalizzandone l'interpretazione al:
 - ⇒ riconoscimento della geometria di dettaglio delle unconformities che separano il cosiddetto "substrato" pre-messiniano dalla successione messiniano pliocenica e che interessano la stessa successione messiniano-pliocenica
 - \Rightarrow definizione dell'andamento dei livelli minerari, almeno per i due gruppi:
 - 1. livelli del Pool B
 - 2. livelli minori
 - \Rightarrow ricostruzione di dettaglio dell'assetto strutturale del campo
 - \Rightarrow possibile verifica del contatto gas/acqua attuale
 - \Rightarrow localizzazione dell'ubicazione di un possibile pozzo spia nel Pool B
- eseguire alcuni carotaggi nel Pool B, durante la perforazione dei nuovi pozzi di stoccaggio, al fine di :
 - \Rightarrow migliorare la conoscenza delle caratteristiche petrofisiche del Pool B
- eseguire set di log completi, nei pozzi di sviluppo dello stoccaggio, necessari per la valutazione petrofisica del reservoir che della copertura.

Ad oggi (febbraio 2008) risulta completata l'attività di campagna del rilievo sismico 3D e in fase di completamento il relativo processing ; di seguito inizierà la fase di interpretazione che presumibilmente terminerà in settembre 2008. Tale interpretazione costituirà elemento di base per una futura revisione globale del modello statico e dinamico.

2. ANALISI GEOFISICA

Nell'ambito dello studio di giacimento per il progetto di stoccaggio del gas nel Campo di Bordolano si è reso necessario il reprocessing di due linee sismiche 2D (CR-349-80 e CR-344-80) e l'elaborazione del sismogramma sintetico del pozzo Bordolano-4DirA.

Le linee sismiche riprocessate nel marzo 1998 sono riportate nella mappa indice di fig. 2.1. Sono state realizzate sia la versione stack che la versione migrata a fase zero di entrambe le linee. La qualità del dato e' migliorata soprattutto sotto il segnale sismico relativo al pool principale di stoccaggio - F.ne Strati di Caviaga.

Per l'elaborazione del sismogramma sintetico, utile per una taratura dei livelli di reservoir, si e' reso necessario calibrare il Sonic Log registrato sul pozzo 4 ad un tempo ricavato dalla sismica. In particolare il Sonic Log e' stato calibrato agganciando la profondità misurata di 1724.5 m da tavola rotary, corrispondente al Top Pool B, al tempo sismico doppio di 1518 ms ricavato dalla linea sismica CR-344-80 (reprocessing 1998). Da un punto di vista acustico l'entrata nel pool B corrisponde ad un forte aumento sia di velocita' che di densità, che si traduce quindi in un netto aumento dell'impedenza acustica. Sui sismogrammi sintetici ottenuti da ondine di Ricker a fase zero e polarità sismica, con vari periodi dominanti 35ms e 25 m, l'entrata nel Pool B è caratterizzato da una gola di forte ampiezza. Analoghe caratteristiche del segnale sismico si ritrovano pure sul dato sismico di superficie, come mostrato in fig. 2.3.

La realizzazione del sismogramma sintetico e la conversione dei log principali in dominio tempi ha permesso di individuare sul pozzo Bordolano 4 Dir A i seguenti livelli (vedi fig. 2.2):

Top Pool B Bottom Pool B Top Pool C Unconformity Messiniana

e di riportarli sul dato sismico (fig. 2.3 e 2.4). la linea sismica cr-344-80 orientata nord-sud mostra chiaramente la rastremazione del pool c verso nord e la sua completa chiusura sull'unconformity messiniana prima di raggiungere il pozzo bordolano 2. la medesima linea sismica evidenzia una discontinuità sul segnale relativo al top pool b in corrispondenza dell'incrocio con la linea cr-349-80 (fig. 2.4). l'interpretazione della linea cr-349-80 (fig. 2.5), integrata con i dati dei pozzi incontrati, evidenzia una apertura della serie compresa tra il pool b e l'unconformity messianiana verso est. la continuità o meno dei livelli minori a gas in discordanza angolare con il pool principale di stoccaggio non è tuttavia ricavabile dal dato sismico riprocessato.

In previsione della realizzazione di un rilievo sismico 3d del campo è stato realizzato uno studio di fattibilità per la definizione dei parametri ottimali di acquisizione . Lo studio è stato realizzato con un approccio interdisciplinare per soddisfare le esigenze geofisiche, operative ed ambientali che caratterizzano l'area.

L'acquisizione della sismica 3d consentirà:

• di ottenere una migliore definizione dell'assetto geologico e strutturale sia del reservoir che della copertura del campo di bordolano.

• consentire l'ottimizzazione della attività di stoccaggio in previsione di un esercizio a P>Pi.

Il programma di acquisizione sismica 3D è caratterizzato da una Full Migration Area di circa 50km2 con una Single Fold area di circa 90km2 (fig. 2.6).

L'area oggetto dello studio risulta caratterizzata dalle seguenti caratteristiche (fig.2.7): • Aspetti generali: l'area non presenta significativi elementi strutturali. Il contenuto in frequenza e' generalmente buono.

• Fault Imaging: nell'area sono presenti faglie con differenti trend. I precedenti dati sismici 2D pur consentendo un buon "imaging" dei piani di faglia non permettono una corretta ricostruzione geometrica degli stessi.

• Risposta Sismica: La risposta sismica nell'area è in generale buona consentendo un'interpretazione sufficientemente continua dei segnali sismici di interesse.

Gli aspetti geofisici ed operativi sono stati analizzati attraverso le diverse fasi di un processo logico e sequenziale finalizzato alla definizione dei Parametri di Progetto. Nelle diverse fasi dello studio l'area di interesse e' stata analizzata sotto diversi aspetti facendo ricorso a Ray Tracing Modelling, calcolo dei parametri sismici con formule teoriche (software Fipla), analisi della massima frequenza e analisi dei dati sismici raw acquisiti nei precedenti rilievi di Soresina e Settala.

Lo studio è stato condotto analizzando dati sismici 2D ed in particolare le linee CR-344-80 e CR-342-80 (direzione dip – fig.2.8, 2.9 e 2.10). Queste linee possono considerasi come

rappresentative delle caratteristiche geofisiche dell'area del Campo di Bordolano.

I risultati delle analisi hanno consentito di ricavare i parametri di acquisizione che sono stati utilizzati per la simulazione del lay-out ottimale di progetto con software MESA. In particolare l'analisi ha evidenziato che una geometria di tipo cross-shooting, con un bin size di 20x40m sia la soluzione ideale per il raggiungimento degli obbiettivi geofisici dell'area di Bordolano.

Nelle figure 2.11 e 2.12 vengono riassunti i principali dati operativi di acquisizione.

3. EVOLUZIONE TETTONO - SEDIMENTARIA REGIONALE

3.1 SOMMARIO

In sintesi il giacimento di Bordolano risulta situato sul margine meridionale dell'arco sudalpino lombardo ad ovest della monoclinale mantovana ed è costituito da sedimenti torbiditici grossolani di età Messiniano Post Evaporitico e Pliocene inferiore, appartenenti alla formazione di Caviaga. La copertura è assicurata dalle peliti torbiditiche di disattivazione dei sistemi che hanno generato il reservoir. Le chiusure sono per pendenza strutturale e per faglia, la trappola è costituita da una anticlinale interessata sul fianco meridionale da faglie inverse. L'età della genesi della struttura è Pliocene Medio zona NPP5.

Dal punto di vista tettonico, la zona del campo di Bordolano a partire dal Pliocene Medio con la sequenza Porto Garibaldi A è raggiunta dalla deformazione tettonica appenninica (fig.3.1). I piani profondi appenninici determinano una antiforme con asse circa est ovest . A livello più superficiale la fase tettonica si esplica o con la parziale riattivazione in compressione dei piani sudalpini (che diventano backthrust appenninici) o con faglie inverse che talvolta tagliano le strutture precedenti (fig. 3.2). Il rigetto delle faglie è sempre di entità piuttosto limitata. Nel campo si rileva la presenza di una anticlinale con asse circa est-ovest tagliata sul fianco meridionale da faglie di modesto rigetto che isolano le porzioni meridionale (Bordolano 15, 18 e 8) ed occidentale del campo (Bordolano 6, 7 e 16).

Mediante l'analisi di facies effettuata sulle carote di fondo prelevate nei sondaggi Bordolano 21 Dir. e Bordolano 4 Dir. A, e sulla base delle facies riconosciute e della loro organizzazione verticale, si è prodotto un quadro stratigrafico-deposizionale dell'area del giacimento. Questo, previa integrazione con il dato biostratigrafico e l'analisi di log di pozzo e linee sismiche, ha portato a nuove correlazioni e quindi alla ridefinizione della geometria esterna ed interna del campo su basi di stratigrafia sequenziale.

La serie stratigrafica interessata è formata da sedimenti prevalentemente sabbiosi delle formazioni Ravenna e Porto Garibaldi W del Pleistocene-top del Pliocene superiore, cui seguono argille della Santerno E (Pliocene) al cui interno si identificano localmente intercalazioni sabbiose (Membri Piadena e Pandino); successivamente si incontrano sedimenti più o meno grossolani riferiti alle F.ni Caviaga e Sergnano B del Messiniano superiore, ed infine marne del Gruppo Gallare del Messiniano inferiore-Burdigaliano.

La sequenza di facies della successione registra un'evoluzione degli ambienti deposizionali a partire da un contesto di piattaforma silicoclastica esterna che viene annegata con il passaggio a depositi profondi di tipo gravitativo: lobi torbiditici arenaceo conglomeratici. La disattivazione di questi vede l'instaurarsi di una deposizione torbiditica pelitica di tipo bacinale.

I sedimenti del Messiniano Sup.-Pliocene del campo di Bordolano appartengono all'allogruppo MP1.

I depositi di piattaforma esterna silicoclastica, osservati in carota e datati al Messiniano Post Evaporitico, sono attribuibili alla sequenza FS2 (gruppo di sequenze Fusignano).

I sedimenti torbiditici arenaceo conglomeratici che costituiscono il reservoir (Formazione Caviaga) sono attribuiti alle sequenze del gruppo Caviaga: sequenze CA1 e CA2.

Le torbiditi pelitiche plioceniche sovrastanti costituiscono la sequenza CA3 e i gruppi di sequenza PGA, PGB e PGC.

I depositi torbiditici sabbiosi plio-pleistocenici formano la sequenza PGC.

7

GIACIMENTO DI BORDOLANO

La successione, nei pozzi del campo di Bordolano, è chiusa dai depositi progradanti marino marginali-deltizi e dai sedimenti continentali di piana alluvionale quaternari.

I sedimenti che costituiscono il reservoir sono stati suddivisi in 13 livelli minerari, organizzati in tre gruppi. Per identificarli è stato loro assegnata una lettera ed un numero progressivo, dal basso:

livelli F1 e F, E1 ed E, D, C.	Sequenza Caviaga1 parte inferiore
livelli B5, B4, B3, B2 e B1	Sequenza Caviaga1 parte superiore
livelli A1 e A2	Sequenza Caviaga2

I depositi appartenenti alla CA1 inferiore sono piccoli lobi torbiditici prevalentemente arenacei intercalati con peliti la cui distribuzione areale appare confinata al riempimento di incisioni. Le chiusure dei lobi sono per onlap contro il substrato, verso la zona di provenienza dei flussi (nord est), mentre sottocorrente si ha assottigliamento dei corpi arenacei e variazione di facies in peliti.

La superficie basale della CA1 superiore rappresenta una superficie di forestepping che porta facies più prossimali e grossolane ad impilarsi al di sopra delle arenarie del ciclo inferiore. I depositi della CA1 superiore sono costituiti da lobi torbiditici arenaceo conglomeratici che si sviluppano su distanze dell'ordine di qualche chilometro. è evidente l'organizzazione in backstepping dei livelli da B5 a B2 con spostamento progressivo dell'onlap verso ovest.

I depositi della sequenza CA2 sono rappresentati da un intervallo essenzialmente pelitico. Solo le porzioni settentrionale ed occidentale del campo sono raggiunte dai lobi torbiditici sabbiosi. La litologia dei lobi torbiditici e la loro distribuzione limitata alle zone più esterne (nord-ovest) rende conto dell'evoluzione retrogradante del gruppo di sequenza Caviaga.

Qui di seguito riassumiamo brevemente quei cambiamenti di carattere formazionale che interessano l'area in esame, facendo riferimento alla Fig. 3.3 in cui è rappresentato lo schema stratigrafico per l'area ad Ovest di Cavone.

Formazione Ravenna

E' rappresentata tipicamente da depositi deltizi progradanti (facies di prodelta e fronte deltizio) ed aggradanti (fronte-piana deltizia), costituiti da sedimenti silicoclastici di granulometria variabile dalle ghiaie alle argille.

Dal punto di vista cronostratigrafico la Formazione è riferibile al Pleistocene mediosuperiore e all'Olocene, ed è caratterizzata da associazioni prevalentemente bentoniche.

Pur essendo ovviamente stata attraversata in tutti i pozzi considerati, è stata riconosciuta solo nel Bordolano 1, coperto da log dal piano campagna; è riferibile alla sequenza PGC5.

Formazione Porto Garibaldi Occidentale

La Formazione Porto Garibaldi Occidentale è rappresentata da sistemi deposizionali torbiditici bacinali.

Nelle condizioni di avanfossa sono prevalentemente rappresentate torbiditi bacinali ad alta efficienza, geometria tabulare e disposizione longitudinale rispetto all'asse del bacino.

Nei bacini di piggy-back, a seconda delle caratteristiche di forma e dimensione, possono essere presenti torbiditi a dispersione longitudinale, con caratteristiche di modesta efficienza e continuità laterale, insieme a corpi torbiditici canalizzati di provenienza laterale, oppure soltanto questi ultimi. In situazioni depocentrali si osserva una scomposizione dell'unità in numerose sequenze di ordine minore, raggruppate in tre sequenze principali, denominate rispettivamente PGA, PGB e PGC, delimitate da superfici in corrispondenza delle quali si registrano le variazioni più significative nell'assetto deposizionale dell'avanfossa.

La sequenza inferiore (PGA) è inquadrata cronostratigraficamente tra il Pliocene medio basale ed il Pliocene medio sommitale, la PGB è relativa all'intervallo stratigrafico compreso tra il Pliocene medio sommitale ed il Pleistocene basale, mentre la sequenza superiore (PGC) è interamente riferibile al Pleistocene. La litologia della F.ne Porto Garibaldi Occidentale è caratterizzata da un'alternanza di depositi sabbiosi, a prevalente composizione silicoclastica, e pelitici.

Nell'area in esame, le sequenze più basse si incontrano nel pozzo Cremona Nord, mentre nel campo di Bordolano la sequenza più bassa è la PGB4-3 del Pliocene superiore, incontrata nel Bordolano 18. Il contenuto faunistico è in generale scarso, essendo diluito a causa dell'elevato tasso di sedimentazione e consente datazioni accurate solo in presenza di carote e SWC. Nel Bordolano 18 per esempio è stato possibile identificare nella Porto Garibaldi W il limite tra Pleistocene e Pliocene superiore, che è compreso tra le carote 1 e 2.

Formazione Santerno E, Membro Piadena e Membro Pandino

La Formazione Santerno E rappresenta i depositi pelitici riferiti ad un contesto di rampa di avampaese (Arnera *et al.,* 1995). Al lavoro citato si rimanda per ogni considerazione relativa alle caratteristiche generali di questa unità litostratigrafica. Il Membro Piadena ed il Membro Pandino rispecchiano invece situazioni peculiari riscontrate nell'ambito di questa formazione nei pozzi dell'area padana occidentale. La loro distinzione è indicativa della presenza significativa di livelli sabbioso-ghiaiosi potenziali sedi di mineralizzazioni a idrocarburi.

Con i termini litostratigrafici in esame sono indicati depositi relativi a settori della rampa di avampaese interessati dallo sviluppo significativo di sistemi deposizionali di alimentazione dell'avanfossa.

Il Membro Pandino è comunemente formato da depositi di natura ghiaioso-conglomeratica e sabbiosa ed è spesso mineralizzato (Campo di Settala); nel campo di Bordolano il membro è di natura prevalentemente pelitico-siltosa con subordinati livelli porosi.

Il Membro Piadena è costituito da livelli sabbioso-ghiaiosi con abbondante matrice argillosa e siltosa, disposti in pacchi disorganizzati di spessore fino a pluridecametrico e di scarsa continuità laterale.

I depositi descritti sono riferiti rispettivamente all'intervallo Pliocene medio p.p.-Pleistocene p.p. (Membro Pandino) e Pliocene inferiore-parte bassa del Pliocene medio (Membro Piadena). Il contenuto faunistico della Santerno E è in generale buono sia per il nannoplancton che per i foraminiferi, e consente quindi l'ottenimento di un buon dettaglio stratigrafico. Le numerose carote prelevate nella Formazione (vedi Tab. 3.1) hanno permesso di riconoscere tutte le biozone del Pliocene. Dal punto di vista delle sequenze, il Membro Piadena è definito nell'ambito delle sequenze CA e PC, mentre il Membro Pandino è compreso fra le sequenze PGA1 e PGC4.

Formazione Bovolone

La Formazione Bovolone rappresenta depositi marini relativi alle porzioni prossimali del margine esterno dell'avanfossa, con predominanza di sistemi deposizionali di piattaforma silicoclastica a geometria progradante.

La formazione è costituita da prevalenti litotipi di natura argilloso-siltosa, cui si intercalano frequenti bancate sabbiose soprattutto nelle parti basali e superiori. Subordinati livelli ghiaiosi si osservano quasi esclusivamente alla base della formazione, dove sono inoltre presenti orizzonti ricchi in glauconite.

La Formazione Bovolone si inquadra in un intervallo di età compreso tra il Pliocene medio ed il Pleistocene medio *p.p.*, ed è presente nel pozzo Malpaga 1.

Formazione Strati di Caviaga

Questa unità definisce depositi torbiditici di avanfossa presenti nella parte occidentale dell'area di studio. Ad essa sono riferite anche le torbiditi di sistemi prossimali (tipo II) descritte nell'area interessata da strutture compressive a vergenza alpina (Del Campana *et al.*, 1995).

Nell'area nord-occidentale le litofacies prevalenti sono di natura analoga a quelle descritte nel campo di Sergnano. Si tratta in particolare di conglomerati poligenici con abbondante matrice argillosa e siltoso-arenacea, costituiti in prevalenza da elementi carbonatici ben arrotondati derivanti dalla serie mesozoica sudalpina; sono frequenti le intercalazioni di arenarie fini e siltiti con laminazioni oblique. In direzione meridionale (Cignone-Cremona Nord) si osserva il passaggio ad alternanze arenaceo-pelitiche con saltuari livelli conglomeratici e ciottoli sparsi.

La F.ne Strati di Caviaga comprende termini stratigrafici del Messiniano superiore e del Pliocene Inferiore *p.p.* Nell'area di studio sono documentati quasi esclusivamente depositi di età messiniana (sequenza CA1), inquadrati nella parte superiore della Biozona ad Ostracodi e Molluschi ipoalini e della Biozona a Palinomorfi a *Galeacysta etrusca*. L'intervallo pliocenico (sequenze CA2-CA3) è presente solo nel pozzo Verolanuova 1, ed è riferito alle Biozone a Foraminiferi planctonici NPP1, NPP2 e NPP3.

Formazione Ghiaie di Sergnano

Questa unità definisce depositi marino marginali, costieri e paralici può essere suddivisa in tre membri, di cui solo il Membro B è presente nell'area in esame.

Il Membro B è costituito da depositi arenacei ben documentati anche nei pozzi Bordolano 9 e 19 (spessore dell'ordine del centinaio di metri). Nel campo di Bordolano è inoltre presente un livello pelitico sommitale ricco in ostracodi e molluschi dulcicoli. E' presente in numerosi pozzi del campo, ed è generalmente composta da marne siltose con intercalazioni di sabbie fini; in alcuni pozzi (es. Bordolano 9) la Formazione è composta da sabbie e marne molto sabbiose. Lo spessore varia da una decina di metri ad oltre 150 m. Dal punto di vista faunistico, la Sergnano B è praticamente priva di contenuto fossile autoctono per quanto riguarda nannoplancton e foraminiferi: per entrambi i gruppi sono infatti presenti associazioni caratterizzate da abbondante rimaneggiamento miocenico. Le uniche forme autoctone sono costituite da ostracodi e da Lamellibranchi, entrambi indicativi di acque salmastre, e da palinimorfi che confermano l'attribuzione ambientale (per una più precisa descrizione delle biozone ad ostracodi e palinomorfi, vedi Biffi e Viaggi in Arnera et al., 1998). La F.ne Ghiaie di Sergnano è comprensiva di termini stratigrafici estesi dal Tortoniano superiore al Pliocene inferiore *p.p..* Dal punto di vista sequenziale, il Membro B delle Ghiaie di Sergnano è riferibile alla sequenza FS.

Gruppo Gallare

Rappresenta il basamento economico del campo; è formato da marne, talora leggermente siltose, di età compresa tra il Burdigaliano ed il Messiniano inferiore. Dal punto di vista faunistico presenta associazioni faunistiche e floristiche sempre piuttosto ricche ed in buono stato di conservazione. Il passaggio alla sovrastante Sergnano-B è sempre ben identificabile ed è marcato da un brusco cambiamento nelle associazioni fossili.

4. ANALISI DEL GIACIMENTO

4.1 DATI ANALIZZATI

L'elaborazione delle mappe strutturali delle superfici dei livelli costituenti il reservoir è stata eseguita basandosi sulle seguenti informazioni:

- interpretazione della sismica 2D finalizzata allo studio di giacimento del 1994
- interpretazione di due linee sismiche riprocessate (1997), relativamente alla geometria della F.ne Caviaga
- modello sedimentologico STIG (1998)
- Log di pozzo
- Carote (raw data e analisi specialistiche)
- Dati dinamici

Sismica 2D

Le linee sismiche utilizzate per la definizione del top strutturale del Pool B sono state acquisite negli anni 'Ottanta ed agli inizi degli anni 'Novanta.

Di queste linee, quelle utilizzate per le mappe-tempi, sono state solo quelle dip. Inoltre, la conversione tempi / profondità si è basata sulle sole misure di velocità registrate nel pozzo Bordolano 8 che, per altro, si trova in posizione marginale nel campo ed in una zona caratterizzata da un'intensa tettonizzazione.

Nel 1998 è stata effettuata l'interpretazione di due linee sismiche (CR-349-80 e CR-344-80) allo scopo di verificare possibili connessioni tra livelli nell'ambito della stessa F.ne Caviaga, o tra livelli di detta formazione (in particolare il Pool B) e livelli porosi delle sottostanti unità mioceniche. L'interpretazione ha confermato, sostanzialmente la mappa strutturale utilizzata nel 1994, mentre ha permesso di definire meglio i rapporti geometrici tra le sabbie della F.ne Caviaga e il cosiddetto "substrato".

Dati di pozzo

I dati di pozzo sono costituiti, essenzialmente, dalle informazioni log. Tenendo presente l'età dei pozzi del campo, tutti perforati negli anni '50, vedi Tab 4.1 (ad eccezione dei pozzi 21 dir e 4 dirA), i log disponibili sono rappresentati dalle curve di PS e dai log elettrici PN-GN e PN Amplificata. Solo nei pozzi Bordolano 4 dirA e 21 dir sono stati acquisiti logs moderni, con lo scopo di eseguire una valutazione petrofisica consistente del reservoir e della sua copertura.

I logs, comunque, hanno permesso di ricostruire le geometrie dei singoli corpi deposizionali della F.ne Caviaga e dei rapporti geometrici tra gli stessi e consentito di definire i contatti tra fluidi.

Le carote disponibili per il campo di Bordolano sono esigue sia in termini di numero che di lunghezza totale carotata, soprattutto se si considerano i pozzi perforati negli anni "50, vedi Tab. 4.2a,b. Un relativo miglioramento dela situazione si è avuto con la perforazione dei pozzi Bordolano 21 e 4 dirA, per mezzo dei quali si sono ottenute nuove carote e nuove informazioni petrofisiche, relativamente al Pool B ed alla sua

copertura. L'importanza di tali acquisizioni è discussa nel capitolo relativo alla petrofisica. Qui è importante far notare che queste informazioni, e gli approfondimenti tematici che da tali informazioni sono scaturiti, hanno permesso di rendere più completo il quadro dell'evoluzione deposizionale e tettonica del campo, risolvendo anche alcune incertezze petrofisiche e strutturali.

Dati dinamici

Come già evidenziato nello studio precedente del 1994, i dati dinamici mostrano una notevole unitarietà, in termini di andamento delle pressioni di fondo pozzi, dei vari livelli in cui può essere suddiviso il Pool B. Essi, però, non forniscono un responso univoco circa i rapporti di comunicazione idraulica tra il Pool B ed i sottostanti livelli della F.ne Caviaga (possibili connessioni idrauliche tra i livelli C, D ed il Pool B sulla base dele pressioni ai pozzi 12 e 9), nè in merito alla distribuzione di porosità e permeabilità nell'ambito del Pool B.

Al fine di verificare le implicazioni, in termini di geometria e dei corpi deposizionali e di rapporti geometrici tra i corpi stessi, sono stati elaborati più modelli deposizionali della F.ne caviaga, tra i quali è stato scelto quello che minimizza le incongruenze con i singoli dati analitici e con il quadro evolutivo dell'area.

4.2 GIACIMENTO

4.2.1 Copertura

La copertura del reservoir è costituita dalle Argille del Santerno (Pliocene medio - superiore), con uno spessore di oltre 450 m. In realtà, come detto nel cap. 3, le prime decine di metri di argille soprastanti il Pool B, sono delle torbiditi pelitiche che segnano la disattivazione dei sistemi generanti il reservoir e, dunque, ascrivibili alla F.ne di Caviaga, con età riferibile al Pliocene inferiore. In effetti, una caratteristica della copertura di questo reservoir, è di presentare una progressiva riduzione della granulometria media dei sedimenti procedendo dal basso verso l'alto all'interno della copertura, nei primi 40-50 m di copertura stessa. Nella metà inferiore di questo intervallo sono inoltre presenti livelletti centimetrici di sabbie fini siltose, mineralizzate a gas, con pressioni superiori a 200 Kg/cm², cioè ancora in sovrapressione rispetto al reservoir ¹ (depletatosi durante la produzione primaria).

4.2.2 Trappola e chiusura

Le trappole costituenti il reservoir di Bordolano (Pool B e livelli minori), sono di tipo misto, statigrafico-strutturali. Con riferimento alla colonnina stratigrafica della fig. 1.2, il livello B1 ed i livelli minori C, D, E, E1, F, F1 e G sono caratterizzati da una trappola mista, per pinch-out dei livelli porosi, cui si associa la classica trappola strutturale anticlinalica, complicata dalla faglia alpina A - A' (fig. 1.3). Il pool B, invece, in virtù della

¹ La sovrapressione della copertura è stata verificata dai pozzi Bordolano 21 dir e 4 dirA. In quest'ultimo pozzo, è stata eseguita anche una prova di produzione che ha evidenziato l'esistenza, nella copertura, di una permeabilità estremamente bassa, in accordo con i dati di Khor e Kver misurati su plug provenienti dalle carote del pozzo Bordolano 21 dir.

sua maggior estensione, è interessato da una trappola di tipo strutturale, per faglia (A - A').

La chiusura dei livelli, dunque, avviene per:

- a) pendenza strutturale a N e ad E
- b) per faglia ad W e S
- c) per onlap ad W, limitatamente ai livelli minori.

4.2.3 Modello Deposizionale

La difficoltà di definire chiaramente l'esistenza o meno di connessioni verticali tra i livelli minori ed il Pool B, sulla base dei dati sismici e dinamici, ha portato a sviluppare più modelli deposizionali e, conseguentemente, più schemi di correlazione tra i pozzi del campo. In particolare, l'ambiguità dei dati di pressione dei livelli C e D (@1994) nei pozzi Bordolano 5 e 9, ha imposto lo sviluppo di due distinti modelli correlativi:

- modello A I corpi mineralizzati sommitali della F.ne di Caviaga presenti nei pozzi 5, 9 e 12 sono correlabili con i livelli del Pool B presenti nella culminazione del campo. I liv. C e D (@1994) dei tre pozzi rappresentano livelli sottostanti il Pool B, chiudentisi in onlap sui fianchi dell'area centrale. In tal caso, le pressioni registrate in detti livelli sono indicative di corpi idraulicamente separati dal Pool B, o ad esso connessi con due modalità differenti: per contatto diretto tra i corpi sedimentari, in altre zone del campo (in acquifero e/o nella zona mineralizzata); per connessione diretta a livello di pozzo.
- modello B I corpi mineralizzati sommitali della F.ne di Caviaga presenti nei pozzi 5, 9 e 12 non sono correlabili con il Pool B, ma con i sedimenti torbiditici pelitici soprastanti il Pool B nella zona centrale del campo. In tal caso, i livelli C e D (@1994) dei pozzi 5 e 9 possono essere correlati con il Pool B della zona centrale, per cui le pressioni in essi registrate sono dovute alla comunanza dei livelli drenati dai pozzi 5, 9 e da quelli dell'area centrale del campo.

Entrambi i modelli (esemplificati nella fig. 4.1 a,b,c) hanno importanti conseguenze sia dal punto di vista geologico - minerario, che dal punto di vista del comportamento dinamico del reservoir. Il *modello A* presuppone l'esistenza di una serie di livelli (B₁ - B₅), raggruppati nel Pool B (seq. CA1 sup.) che, nell'insieme, sono caratterizzati da una continuità laterale estesa all'intero campo (dal pozzo Bordolano 7 al pozzo Bordolano 10). I livelli sottostanti (C - F1) si configurano, allora, come corpi secondari (seq. CA1 inf.) originariamente depostisi in un depocentro erosionale localizzato a E della culminazione centrale (già esistente nel Messiniano post-evaporitico) e che si chiudono in onlap contro i fianchi di tale culminazione. La relativa costanza degli spessori delle argille interposte tra le sequenze CA1 inf. e CA1 sup. visibili nei pozzi, fa propendere per l'assenza di estesi fenomeni erosivi che possono aver inciso questi layer argillosi, per cui le due sequenze dovrebbero essere idraulicamente separate.

Una conseguenza mineraria del modello A è rappresentata dal fatto che per ottenere un G.O.I.P. statico comparabile con quello dinamico, non è necessario ipotizzare porosità medie di livello superiori al 21%, mentre è necessario ammettere NTG molto alti (superiori al 90%), per altro in accordo con le litofacies presenti nell' area mineralizzata del pool B. Una seconda conseguenza mineraria, è data dal fatto che l'intero Pool B è stato completamente drenato durante la storia produttiva primaria del campo, mentre

l'attività di smaltimento acqua nei pozzi 9 e 12 (nei sottostanti livelli della seq. CA1 inf.), non può arrecare alcun danno alle future attività di stoccaggio nel Pool B.

Il *modello B* prevede, dal punto di vista sedimentologico, l'interposizione di un'ulteriore sequenza deposizionale tra la seq. CA1 sup. e la seq. CA2 (si veda cap. 3 per la descrizione di quest'ultima), con una complicazione del modello sedimentologico a livello non solo di campo (spazi ristretti entro cui far chiudere i corpi ghiaioso-sabbiosi di tale sequenza nell'area N del campo ed alti gradienti topografici localizzati lungo tale chiusura), ma anche a livello regionale, dovendosi ricercare e distinguere un'ulteriore superficie di forestepping, oltre a quella posta alla base della seq. CA1 sup.

Le conseguenze minerarie più marcate del *modello B*, sono date dalla necessità di aumentare la porosità e/o il NTG medio di campo per ottenere un G.O.I.P. statico comparabile con quello dinamico, al fine di compensare la perdita di volumi di gas che si determinerebbe sul fianco N della struttura (Fig. 4.1c); l'esistenza di volumi di gas non drenati, contenuti all'interno di questa nuova sequenza ed ubicati sul fianco N della struttura.

La più importante conseguenza dinamica di tale modello, è che lo smaltimento di acque reflue nei livelli C e D (@1994) dei pozzi 9 e 12, interferisce con le operazioni di stoccaggio presenti e future nel Pool B.

A fronte delle complicazioni sedimentologiche e petrofisiche che l'accettazione del *modello B* comporta e dell'aleatorietà degli indizi a suo favore, nel presente studio è stato scelto il *modello A* in quanto, allo stato attuale delle conoscenze, è quello più congruente con i dati di campo disponibili.

I tagli minerari per livello nei pozzi del campo di Bordolano sono riportati in tab. 4.3a÷i.

4.2.4 Contatti tra fluidi e caratteristiche dell'acquifero

<u>Pool B</u>.

A seguito dei litotipi costituenti i singoli corpi sedimentari presenti nel Pool B, i contatti tra fluidi devono essere determinati combinando i dati da DST con i dati log. L'unico GWC chiaramente riconoscibile è quello presente nel pozzo Bo 13, livello B3. Tale contatto si situa a quota 1839.0 m ssl. Per tuttti gli altri livelli del Pool, sono stati osservati solo GDT a profondità inferiori rispetto al GWC del pozzo Bo 13, e WUT a profondità superiori. Tenendo conto del fatto che i setti argillosi posti tra i singoli livelli del Pool B sembrano essere discontinui e che l'andamento delle pressioni in fase di produzione primaria è omogeneo tra tutti i pozzi, si ritiene che i livelli B2 - B5 siano caratterizzati da un unico contatto gas-acqua originale, posto a 1839.0 m ssl.

Un discorso diverso riguarda il livello B1, in quanto l'interlayer argilloso tra questo livello ed il sottostante livello B2 risulta essere continuo (almeno sulla base dei dati di pozzo). Per tale livello si dispone di un GDT a 1806.2 m ssl nel pozzo Bo 13 e di un WUT a 1839.4 m ssl nel pozzo Bo 10. In assenza di ulteriori informazioni, nel presente modello si è assunto anche per questo livello un

GWC originale = 1839.0 m ssl.

<u>Livelli minori</u>

I contatti tra fluidi nei livelli minori possono solo essere ipotizzati, in quanto i pozzi forniscono informazioni solo in termini di GDT e WUT. Nei livelli C e D si hanno solo due

GDT (a 1808.4 m ssl nel Bo 5, livello C e 1830.4 m ssl nel Bo 9, livello D). Nel Pool E, si ha un GDT a 1903.9 m ssl nel pozzo Bo 13 e un WUT a 1908.8 m ssl nel Bo 10. la relativa vicinanza delle quote dei contatti nei livelli del pool, potrebbe suggerire l'esistenza di un contatto unico per l'intero Pool E. Nel Pool F, il GDT è a 1869.5 m ssl (Bo5) ed il WUT a 1921.4 m ssl (Bo13). Il livello F1 presenta WUT a 1874 m ssl (Bo 5), ma è stato raggiunto solo da questo pozzo.

Nel presente studio, comunque, non vengono fornite valutazioni sugli idrocarburi in posto dei livelli minori.

<u>Acquifero</u>

Per quanto concerne l'acquifero, le caratteristiche di sovrapressione del sistema, congiuntamente alla sua storia evolutiva (deposizionale e tettonica), fanno propendere per un acquifero laterale di dimensioni medie rispetto al volume di reservoir mineralizzato, con un'estensione dell'ordine della decina di km. La salinità media delle acque prodotte durante la storia produttiva è di 20 g/l.

4.3 PETROFISICA

4.3.1 Dati disponibili

Le principali informazioni relative alle carote raccolte nel campo di Bordolano, dagli anni '50 ad oggi sono sintetizzate nelle tab.4.2. Da tali tabelle si osserva che, eccezion fatta per i pozzi BO 21 dir e 4 dirA, gli intervalli carotati sono modestissimi ed i dati petrofisici sono ridotti a 4-5 valori di porosità e permeabilità su carote di parete. Nel pozzo BO 21 dir, sono state prelevate 13 carote, di cui 4 in copertura e 9 nel reservoir. Come si osserva nelle tab. 4.4 a÷d , in cui sono riportati i risultati delle analisi petrofisiche di routine sulle carote di questo pozzo, le informazioni relative ai livelli porosi sono limitate a una ventina di campioni e fortemente discontinue, sia a causa del modesto recupero percentuale delle carote, sia a seguito della difficoltà di campionamento di litologie incoerenti.

Nel pozzo Bo 4 dirA, invece, sono state raccolte 7 carote, 6 delle quali in copertura ed 1 nel reservoir. Anche per questo pozzo (tab. 4.5 a÷e, tab. 4.6a,b), i dati petrofisici per il reservoir sono pochissimi.

Nel biennio 1997-98, sono stati elaborati anche 2 CPI (Computed Processed Interpretation, ref. 7, 8) sui pozzi Bo 21 dir e Bo 4 dirA. L'attendibilità di questi CPI è discussa nei paragrafi successivi. In aggiunta a questi elaborati, si dispone di poche valutazioni puntuali di prosità calcolate manualmente sui log degli anni 'Cinquanta (ref. 1).

Nel 1998, per rispondere ai quesiti sollevati dai CPI summenzionati, sono state eseguite alcune osservazioni al microscopio elettronico e alcune stime di porosità minima su 10 campioni di matrice provenienti dal Pool B.

Relativamente alla permeabilità del Pool B, si dispone di qualche valore di KH ottenuto da DST o brevi prove di produzione nel campo e dei risultati del fall-off test.

Attualmente, pur essendo disponibili valori di Threshold pressure misurati su campioni della copertura (prelevati dalle carote del pozzo Bo 21 dir), non si dispone di analisi speciali su campioni di reservoir, di misure di comprimibilità bulk, nè di fattori di riduzione di porosità e permeabilità per il carico litostatico.

4.3.2 Attendibilità dei dati

L'attendibilità dei dati petrofisici per il campo di Bordolano è piuttosto bassa, a causa di più fattori, quali il ridotto numero di informazioni disponibili, le condizioni nelle quali queste informazioni sono state ottenute e l'intrinseca complessità litologica del reservoir.

Il ridotto numero di informazioni determina una conoscenza puntiforme della petrofisica di campo, sia che si considerino i dati da carota che quelli da CPI.

I dati da carota sono puntiformi per almeno due ragioni:

- Durante la fase di sviluppo del campo sono state raccolte poche carote di fondo, con recuperi modestissimi; a questa situazione si è cercato di ovviare durante la perforazione dei pozzi 21 dir e 4 dir A, eseguendo carotaggi consistenti.
- La tipologia litologica della F.ne di Caviaga, caratterizzata da alternanze di ghiaie a matrice sabbioso-siltosa e sabbie siltose, talvolta cementate, ha determinato talvolta,

anche nei carotaggi più recenti, percentuali di recupero basse e ha reso estremamente difficoltoso il reperimento di spezzoni di carota da cui prelevare plug analizzabili.

Le valutazioni di porosità al microscopio elettronico sembrano riconfermare la validità delle stime di porosità da carota.

Un altro fattore che contribuisce a ridurre l'attendibilità dei dati da carota è l'assoluta assenza di analisi speciali su campioni del reservoir, volte a determinare i fattori di riduzione di porosità e permeabilità per il carico litostatico. L'assenza di tali analisi, unitamente alla scarsa rappresentatività dei dati da carota, non consente di valutare nemmeno l'effetto della compressione tettonica dovuta alla strutturazione dell'edificio appenninico su questi parametri petrofisici.

Un'idea della rappresentatività dei valori di permeabilità ottenuti dalle carote si può avere confrontando il valori di K orizz. da carota del pozzo Bordolano 21 dir con il valore di K ottenuto dal fall-off test condotto nel mese di dicembre 1998 sul medesimo pozzo. Da questo confronto risulta evidente che:

- allo stato attuale delle conoscenze, i dati da carota forniscono, al più, l'ordine di grandezza della permeabilità dei livelli meno permeabili
- non è fuori luogo supporre che durante il carotaggio non vengano campionati i livelli sabbiosi più sciolti ed a più alta permeabilità.

I CPI, forniscono comunque un'informazione di tipo puntiforme, in quanto sono stati condotti su due soli pozzi (BO 21 dir e 4 dir A), posti in culmine di struttura; tale informazione non può essere correlata con informazioni equivalenti di altri pozzi del campo, in quanto sono disponibili, al più, singole determinazioni manuali di porosità e saturazione in gas eseguite su logs degli anni '50.

4.3.3 Determinazione dei parametri petrofisici

Le caratteristiche petrofisiche principali del reservoir sono state stimate in termini di valori medi per livello e, soprattutto per quanto concerne la porosità, si è tenuto conto della necessità di ottenere un GOIP statico simile al GOIP dinamico.

<u>Porosità</u>

La valutazione della porosità media del Pool B si basa su una trentina di campioni, due terzi dei quali provengono dal pozzo Bordolano 21 dir. I valori di porosità del Pool B sono compresi tra 8% e 28%, con una frequenza massima dei valori compresa tra 15% e 18%.

Il valor medio di porosità per il pozzo Bordolano 21 dir è di circa 15%. L'adozione di questo valore implica che le stime di GOIP statico del Pool B sono eguali o minori alla quantità di gas prodotto dal Pool stesso. Questa considerazione, unitamente alla maggior confidenza circa l'assetto strutturale e la distribuzione dei singoli livelli costituenti il Pool B, mette in discussione la rappresentatività stessa dei valori di porosità e permeabilità da carota.

Sulla base delle considerazioni esposte nel paragrafo precedente, si è ritenuto opportuno aumentare la porosità media del reservoir al 20% - 21% (tab. 4.7), in modo da avvicinare il GOIP statico al GOIP dinamico ed in modo da "compensare" il possibile mancato campionamento dei litotipi più permeabili e più porosi.

<u>Permeabilità</u>

La permeabilità media del reservoir è stata stimata sulla base dei pochi dati statici e dinamici (prove di breve durata e DST) disponibili. In generale, il reservoir sembra essere caratterizzato da una $K_{orizz. media} \ge 100$ md. Il fall-off test eseguito nel dicembre '98 nel pozzo 21 dir, ha indicato l'esistenza di una $K_{orizz (test)}, \ge 1$ Darcy. Integrando questa informazione con i dati da carota, si ha l'immagine di un reservoir litologicamente e petrofisicamente eterogeneo. In altri termini si può ritenere che il profilo di permeabilità verticale all'interno di ogni singolo livello del Pool B sia molto variabile, con la presenza di minimi relativi di permeabilità correlati a livelli di ghiaie a matrice sabbioso-siltosa o a livelli cementati e massimi di permeabilità connessi ad intercalazioni di sabbie siltose incoerenti.

Sulla base dei tentativi di match delle pressioni registrate durante la fase di produzione primaria e dei break through dell'acqua ai pozzi, operati con simulatore Eclipse, si può ritenere ragionevole l'ipotesi che le aree a K_{orizz} massima siano quelle interessate dalla presenza delle cosiddette "torbiditi prevalentemente sabbiose" (corrispondenti a facies più marginali e/o distali). A tale facies possono essere assegnate K_{orizz} da alcune centinaia di md, sino ad oltre 1 darcy. Alle rimanenti porzioni del reservoir possono essere assegnate permeabilità di circa 100 md.

<u>Swi</u>

La saturazione iniziale media in acqua è stata posta pari al 20%. L'adozione di valori più alti di Swi avrebbe implicato la necessità di aumentare ulteriormente la porosità ed il Net/Gross medio del Pool B. D'altro canto, va ricordato che le stime di Swi presenti negli studi passati (Ref. 1, 5) sono solo valutazioni puntiformi o derivanti dal confronto con altri campi. Valori di Swi prossimi a quelli adottati nel presente studio sono presenti anche nei CPI dei pozzi BO 21 dir e 4 dir A (da misure CMR).

<u>Net/Gross</u>

Il valore medio di Net/Gross è stato stimato attorno al 95%. Questa stima si basa sulle considerazioni seguenti:

- il Potenziale Spontaneo non ha una risoluzione sufficiente per distinguere intervalli pay e non-pay quando i livelli non-pay sono sottili ed in presenza di litologie complesse come quelle del campo di Bordolano
- i log disponibili per i pozzi di Bordolano, non consentono l'esecuzione della Cluster Analysis
- dai dati di carota disponibili, anche litotipi siltoso-argillosi presentano porosità comparabili con quelle delle sabbie e ghiaie e permeabilità >0.1 md (che si può considerare il limite inferiore di permeabilità per il gas).

A fronte delle molteplici incertezze tutt'oggi esistenti, sono stati definiti dei valori medi di riferimento dei parametri petrofisici da utilizzare in sede di modellizzazione dinamica. Tali valori sono riportati nella tab. 4.7.

4.4. MAPPING E CALCOLO DEL G.O.I.P.

Per il Campo di Bordolano sono state elaborate le mappe di top, bottom e spessore dei livelli B1, B2, B3, B4 e B5 costituenti il Pool B e le mappe di spessore delle argille interposte tra i livelli. Le caratteristiche tecniche dei grid costituenti le mappe sono riportate di seguito.

Xmin = 1570000Xmax = 1583050Ymin = 5013000Ymax = 5020050Dx = 75Dy = 75

La costruzione delle mappe di top e bottom, è stata ottenuta per somma di spessori di livelli ed interlayer, a partire dalla mappa del top dello studio di giacimento del 1994 (Ref. 5), che rappresenta l'interpretazione geofisica più recente disponibile. Tale mappa del top è stata riassestata ai pozzi, per tener conto delle rideterminazioni delle quote di p.c. dei pozzi.

La costruzione del top dei livelli non ha comportato particolari problemi nell'area coperta dai pozzi. Per le aree marginali si è assunto che:

- i singoli livelli del Pool B tendono ad assottigliarsi verso il culmine strutturale, in quanto la loro deposizione è strettamente controllata dalla morfologia preesistente
- lo spessore dei livelli tende a diminuire procedendo da nord verso sud. Ciò è in accordo con i risultati dello studio sedimentologico (deposizione in massa di limitati volumi di sedimento) e con le condizioni di sovrapressione del reservoir, implicanti corpi sedimentari di limitata estensione (dell'ordine della decina di km).
- Nell'area nord-occidentale del campo (zona dei pozzi Bo 7, 16, 20) non si hanno adeguati punti di controllo dell'ubicazione degli onlap dei livelli del Pool B, con notevoli implicazioni in termini di distribuzione areale dell'acquifero (si veda il modello dinamico).
- intercalazioni pelitiche con spessori inferiori a 50 cm non sono state considerate sealing, in quanto non chiaramente identificabili con i log disponibili ed in quanto, probabilmente, costituite da sedimenti siltosi con permeabilità non trascurabile.
- Dato il limitato spessore della serie mineralizzata e l'alto angolo delle superfici di faglia che delimitano a sud e ad ovest il reservoir (faglia A A), ai fini della costruzione degli elaborati cartografici, le faglie sono state considerate verticali.

Le mappe dei top strutturali dei livelli B1, B2, B3, B4 e B5 sono riportate nelle fig. 4.2 a÷e, quelle di bottom nelle fig. 4.3 a÷e, e quelle delle isopache nelle fig. 4.4a÷e.

4.4.1 Valutazione del G.O.I.P. statico

II G.O.I.P. statico è stato calcolato usando i parametri petrofisici riportati in tab. 5.3 e tenendo conto delle seguenti assunzioni:

- data l'entità della storia produttiva del campo, è stato assunto come G.O.I.P. di riferimento quello dinamico
- il Pool B è caratterizzato da un unico acquifero laterale, con G.W.C. originario a 1839.0 m ssl
- L'area entro cui è stato calcolato il G.O.I.P. coincide con il "Blocco Principale" dello studio 1994 (Ref. 5). In altri termini, non disponendo di dati supplementari che

permettano di escludere l'ipotesi avanzata in detto studio, si è accettata l'esistenza di una faglia inversa subsismica tra i pozzi Bo 11 e Bo 16, con caratteristiche sealing.

II G.O.I.P. statico per livello e totale di campo è riportato nella tab. 4.7.

5. BIBLIOGRAFIA

- 1. C. Loddo, E. Bastianini "Il giacimento di Bordolano" AGIP, 1958
- Nota. Int. "Campo di Bordolano Pool B. Previsione, a mezzo di simulatore analogico, della risalita d'acqua durante lo stoccaggio sotterraneo del gas" Serv. Giacimenti, 1964
- **3. Nota. Int.** Analisi del comportamento futuro del Pool B di Bordolano al variare del programma di coltivazione e stoccaggio" Serv. Giacimenti, 1965
- Nota. Int."Campo di Bordolano- Pool B. Studio dell'avanzamento del contatto gasacqua (ai fini del controllo delle riserve) al 31.3.1968, per lo stoccaggio" Serv. Giacimenti, 1968
- 5. G. Balestra, G. Griffi, C. Morsetti, C. Visentin "Campo di Bordolano. Studio di giacimento e possibilità di stoccaggio" GIAI, 1994
- 6. F. Zainetti "Campo di Bordolano. metodologie di geologia operativa e stratigrafia fisica" Tesi di laurea, Univ. degli Studi di Pavia, Anno Accad. 1996-97
- **7. V. Chelini** "Bordolano 21 dir. Petrophysical Log Analysis Open Hole" GESO-LOGE, 1997
- 8. V. Chelini "Bordolano 4 dir A. Petrophysical Log Analysis Open Hole" GESO-LOGE, 1998
- 9. D. Marzorati, S. campobasso, M.Redaelli, G. Boni. "Campo di Bordolano. Test d'iniettività per Progetto di Stoccaggio. Nota Tecnica" GIAC, 1998
- **10. F. Golfetto, A, Ortenzi** "Italia Pozzo Bordolano 21 dir: caratterizzazione petrografica di campioni selezionati" DSC, 1998
- 11. Arnera V., Castradori D., Catellani D., Venturini S. e Visentin C., 1995 Nuovo approccio stratigrafico per la definizione delle successioni cenozoiche italiane. I. Plio-Pleistocene del bacino Adriatico centro-settentrionale. Lessico delle unità stratigrafiche. - Rapp. int. Agip (STIG).
- 12. Arnera V., Catellani D. e Venturini S., 1995(b). Formazione Clara. Una nuova unità litostratigrafica per il Messiniano inferiore nel sottosuolo del Bacino Adriatico centro-settentrionale. Rapp. int. Agip (STIG).
- Arnera V., Biffi U., Cairo E., Castradori D., Catellani D., Orlando M., Venturini S., Viaggi M., (1998) - Studio stratigrafico-sedimentologico dell'area padana. Stratigrafia. Rapp. int. Agip (STIG).
- 14. Catrullo D., Orlando M. e Visentin C., 1993. Revisione stratigrafica del Messiniano nei pozzi tra Parma e Modena (Pianura Padana). Rapp. int. Agip (PETR-STIG).
- Del Campana I., Pavan D. e Rossi M., 1995. Revisione stratigraficosedimentologica del Campo di Sergnano e stratigrafia sequenziale della Fm. Ghiaie di Sergnano nell'ambito del progetto di stoccaggio. - Rapp. int. Agip (PETR-STIG).
- **16. Dondi L. e Rizzini A., 1977.** Lessico delle formazioni del bacino padano-adriatico e del versante padano dell'Appennino settentrionale. Rapp. int. Agip (SGEL).

- **17. Ghielmi M., Rogledi S. e Rossi M., 1998.** Studio stratigrafico-sedimentologico dell'area padana: sedimentologia, stratigrafia fisica e play concept della successione messiniano-pleistocenica. Rapp. int. Agip (PETR).
- **18. Rossi G. e Galante s., 2006.** Studio di fattibilità sismica 2D di Bordolano. Rapp. Int ENI S.p.A. Divisione E&P unità AESI.

FIGURE

CAMPO DI BORDOLANO - COLONNA LITOSTRATIGRAFICA

FIG 1.2

CAMPO DI BORDOLANO POOL B LINEAMENTI TETTONICI

CAMPO DI BORDOLANO POOL B MAPPA INDICE LINEE SISMICHE RIPROCESSATE

FIG 2.1

Eni

CAMPO DI BORDOLANO POOL B POZZO BORDOLANO 4DIR A CONVERSIONE IN DOMINIO TEMPI

FIG 2.5

175

Eni

3D BORDOLANO – Studio di Fattibilità

Full Migration Area

	DATUM LOCALE	M. Mario (1940)
	PROIEZIONE	GAUSS - BOAGA
	SFEROIDE	HAYFORD - 1909/ INTERNATIONAL
	SEMI-MAJOR AXIS	6378388.0m
	1/F	297.0
	MERIDIANO CENTRALE	9.0 E Gr.
	FALSO EST	1500000m
	ORIGINE LATITUDE	0.000
	FALSO NORD	0.000m
D	FATTORE DI SCALA	0.9996

Full Migration Area		
A	1,570,900.00	5,011,640.00
В	1,572,475.00	5,018,410.00
С	1,580,880.00	5,017,345.00
D	1,579,750.00	5,012,465.00

A

Proiezione in superficie del Volume di Bordolano: 50,00 Km²

3D BORDOLANO – Studio di Fattibilità

Concessione Bordolano – Foto da Satellite

3D BORDOLANO – Studio di Fattibilità

Linea CR-344-80 - Dip Direction

Linea CR-349-80 – STRIKE Direction

Linea CR-342-80 - Dip Direction

3D SERGANO – Studio di Fattibilità

Statistiche

iceiten information		- Source Information		Statistiche –	Bin 20mx40m
Receiver Lives	39	Source Lines:	51	Numero di linee sorgenti	51
Total Receivers	24569	Total Source Pointo:	7272	Numero ur intee sorgenu	JT
Live Receivers	24969	Live Souce Points:	7272	Numero di linee ricevitori	39
Unused Receivers:	1	Fired Sources	7272	Totale sorgenti	7272
Receiver Specing:	20.00 n	Source Spacing	80.00 m		
Line Specing	320.00 m	Line Specing:	300.00 m	Totale ricevitori	24569
Total Length:	495.98 km	Order Length:	Not Calculated	Densità delle sorgenti	41.67 sorg./kmg
Receiver Density:	120.67 /m, km	Total Length	577.68 km	(totale area SP/S.F.)	
5 raphical Density:	Not Calculated	Source Point Denoity:	25.12 /aq. km		
		Emphical Density:	Not Calculated	Densità delle stazioni	78.13 staz./kmq
evay		L		(totale area RCV/S.F.)	
(-E)dent	15240.00 m	Template Size Information	I	Offset massimo	3228m
Y-Extent	13360.10 m	Min Channels:	225		
Areal Extents:		Mas Charmels	900	Area di Full Fold	Circa 50 kmg
Bin Grid	204.48 sq. km				
Graphical	Not Cabulated	Din Size			
		Bin Widh:	20.000		
Calculate E	iteriti Staphically	BinHeight	40.000		

Bin Size 20m x 40m - Template

Nº linee ricevitori	6
Intervallo tra gruppi	40m
Separazione tra linee	320m
Lunghezza attiva linea	6000m
Nº di canali attivi per linea	150
Nº tot di canali attivi	900
Nº di Source Lines	1
Intervallo tra Shot Points	80m
Configurazione di Scoppio	Split Spread
Lunghezza Source line	880m
Nº Shot Points per linea	12
	N° linee ricevitori Intervallo tra gruppi Separazione tra linee Lunghezza attiva linea N° di canali attivi per linea N° tot di canali attivi N° di Source Lines Intervallo tra Shot Points Configurazione di Scoppio Lunghezza Source line N° Shot Points per linea

CAMPO DI BORDOLANO POOL B QUADRO STRUTTURALE SEMPLIFICATO DELL'ALLOGRUPPO MP2

FIG 3.1

171

CAMPO DI BORDOLANO POOL B SCHEMA EVOLUTIVO DELL'AVAMPAESE LOMBARDO NELL'AREA DI BORDOLANO

FIG 3.2

CAMPO DI BORDOLANO POOL B SCHEMA LITOSTRATIGRAFICO (AREA OVEST BAGNOLO-CAVONE) (da Amera et al. 1998)

N A R 10		0.01 0.125	Z 0 Z 2 Z Z Z Z Z Z A NANNOF OSSIL	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	b ZONE A FORAMINFER	PLANCTONICI	ALLOGRUPPI	GRUPPIDI SEQUENZE	POS SEQUENZE	Q3 Q4 L QUADRO PREGRESSC	RAVENNA	UNI	TA' IGRAFI	CHE	
QUATER	PLEISTOC	0.89	NZO ZOZD NO ZO	1.24 1.49 1.80 1.73	6PP1	1.19	N	B PG-C		P7a b Q1 Q2		DI OCCIDENTALE	- ONE	NDINO	
	VEDIO ISUPERIO	2.12	190 MNN 18 MNN 17:1	2.50	NPPS b L c NPPG	2.12 2.44	Σ	PG-A PG-	T PEAR PEAK PEAK PEBRIZZ	P5 P6	CASTELL'ARQUATO	PORTO CARBA	TERNO E	mb. PA	
ш	PLIOCENE	3.58	MNN 160 MNN 15- 14	3.65	D MAN	3.22 3.56 3.94		PC	R PC3 PCA	Ic P2 2 P40 P4b	E AD ANPHISTECINA SAN	PORTO CORSINI W	SAN		CANTEDNIC L
N E C	INFERIORE		MNN 13 MNN 12	4.13	EddN ZddN k	4.52		CA	CA2 CA3	P10 P10 P10 P	CALCRE	STRATI DI CAVIAGA	mb. PIADE	EKACLEY	
N E	ANO	5.33	NONDISTINCTIVE	5.33	NCHOISTINCTIVE NPF	5.33	MP1	FS	BA3 2815	BB BB CA	COT FII COSSS3	FUW	FDS V833310S		
	MESSINI		60 27 2 2 2 2		TCON			BA	1 BA2	AI	LETTO	BAGNOLO	GALLARE CALLARE		NUMBER II ADDR.
	TORTONIANO	7.24	C a a	7.34	CHCA CHCA	7.24	r N	M3-R	BA	5	VEG	FMA			

LEGENDA CP Gruppo CAMPORE COT SABBLE DI CORTEMAGGIORE FUW FUSIGNANO OCCIDENTALE FDS DOSSO ANGELI GE Mb. GESSARENITICO FTT TETTO AG Mb. ARENITICO-GESSARENITICO VEG MARNE DI VERGHERETO FMA MARNOSO-ARENACEA

FIG 3.3

CAMPO DI BORDOLANO POOL B MODELLO DEPOSIZIONALE - IPOTESI "A"

CAMPO DI BORDOLANO POOL B MODELLO DEPOSIZIONALE - IPOTESI "B"

CAMPO DI BORDOLANO POOL B MODELLO DEPOSIZIONALE - VARIAZIONI DI GBV E GOIP

FIG 4.1 C

MA.

FIG 4.2 A

FIG 4.2 B

En

FIG 4.2 C

FIG 4.2 D

FIG 4.2 E

-

En

FIG 4.3 A

FIG 4.3 B

FIG 4.3 C

FIG 4.3 D

5

En

FIG 4.3 E

FIG 4.4

En

FIG 4.4 D

100

FIG 4.4 E

TABELLE

Pozzo	T.R.	P.C.		C	arote Parete				Carote Fondo		
	(m slm)	(m slm)	Nr.	prof. (mTR)	Note	Nr.	top (mTR)	bottom (m TR)	Litologia	Incl. Str. (°)	Rec. (%)
ordolano 1	-		1	1700,00	Argilla	1	1502,30	1506,70	Argilla	n.d.	20,0
			2	1704,80	Ghiaia	2	2000,50	2001,00	Marna	n.d.	70,0
			3	1711,20	Sabbia	1					
			4	1713,40	Argilla	1					
			5	1716,60	Argilla						
			6	1718,20	Argilla						
			7	1719,50	Argilla						
			8	1723,40	Mama						
			9	1736,20	Marna						
			10	1762,50	Marna sabbiosa						
			11	1772,00	Marna						
	10 E		12	1774,50	Marna	I					
			13	1795,00	Marna						
			14	1800,00	Marna						
			15	1840,00	Marna						
			16	1845,90	Marna			-			
			17	1881,80	Silt e arenaria						
			18	1887,00	Marna						
			19	1900,50	Sabbia e silt						
			20	1904,50	Marna sabbiosa						
			21	1916,70	Marna leggermente siltosa						
	1		22	1931,50	Marna						
			23	1937,70	Marna						
	1		24	1943,00	Marna						
			25	1970.30	Marna leggermente siltosa						

** 5

junit,

ordolano 2	1	1510,00	Argilla	1	1688,50	1689,70	Marna siltosa	n.d.	40,0
	2	1541,00	Argilla leggermente siltosa	2	1797,10	1798,40	Marna siltosa	n.d.	50,0
	3	1600,00	Argilla sabbiosa	3	1905,00	1908,20	Marna silt. con veli di sabbia fin.ma	n.d.	40,0
	4	1632,00	Argilla sabbioso-arenacea	4	2000,00	2001,60	Marna siltosa	n.d.	100,0
	5	1662,00	Argilla sabbioso-arenacea						
	6	1715,00	Sabbia						
	7	1720,00	Argilla						
	8	1725,00	Argilla con veli di silt		1 1				
	9	1731,10	Argilla		1 1				
	10	1735,10	Argilla leggermente sabbiosa						
	11	1737,10	Argilla leggermente sabbiosa						
	12	1739,30	Sabbia argillosa		1 1				1.1.1
	13	1767,00	Marna talora con silt		1 1				
	14	1830,00	Marna talora con silt		1 1				
	15	1880,20	Sabbia finissima		1 1				
	16	1888,10	Marna sabbiosa		1 1				
	17	1897,00	Marna leggermente sabbiosa		1 1				
	18	1903,30	Marna molto sabbiosa						
	19	1938,00	Sabbia finissima	1					
	20	1944,10	Sabbia finissima						
- VI	21	1969,50	Marna molto sabbiosa						
s	22	1970,50	Marna talora sabbiosa						
	23	1977,50	Marna leggermente sabbiosa						
	24	1986,70	Marna con sabbia finissima						
	25	1988,50	Marna molto sabbiosa		1				

Bordolano 3	1	1649,50	Argilla leggermente siltosa	1	1730,30	1732,30	Argilla con interc. di aren. calc. e silts.	12 - 14	90,0
	2	1649,50	Argilla leggermente siltosa	2	1799,60	1803,60	Marna compatta con silt diffuso	n.d.	90,0
	3	1652,50	Sabbia fine	3	1917,10	1921,10	Marna compatta con silt diffuso	n.d.	90,0
	4	1688,10	Argilla leggermente siltosa	4	2020,00	2022,50	Marna molto sabb fratturata	70 - 90	70,0
	5	1702,50	Argilla leggermente siltosa	5	2090,00	2093,00	Marna leggerm. sabbioso-aren.	n.d.	10,0
	6	1709,00	Ciottoli	6	2133,00	2135,00	Marna aren. talora sabbiosa	n.d.	10,0
	7	1711,50	Argilla	7	2135,00	2138,00	Marna aren. talora siltosa	40 - 45	60,0
	8	1720,00	Ciottoli Fango	8	1490,50	1494,50	Marna aren. con veli di sabbia	25 - 30	30,0
	9	1728,80	Marna leggermente siltosa						
	10	1739,00	Marna leggermente siltosa				the second se		
	11	1746,80	Marna leggermente siltosa			1.1			
	12	1767,50	Marna leggermente siltosa						
	13	1780,00	Marna leggermente siltosa						
	14	1791,50	Marna leggermente siltosa		0 = = =				
	15	1937,00	Marna leggermente siltosa						
	16	2009,20	Marna sabbiosa						
	17	2065,70	Marna sabbiosa						
	18	2170,20	Marna sabbiosa						
	19	2170,50	Marna molto sabbiosa						
	20	2221,50	Marna molto sabbiosa						
	21	2222,50	Marna molto sabbiosa						
	22	2265,20	Marna molto siltosa						
	23	2265,20	Marna molto siltosa		1.1.1.1				
	24	2306,50	Marna leggermente siltosa			1.201			
	25	2306,50	Marna leggermente siltosa						
	26	2361,80	Marna con p.ti sparsi di CC organ.						
	27	2361,80	Marna con p.ti sparsi di CC organ.						
	28	2416,20	Marna leggermente siltosa						
	29	2471,50	Marna leggermente siltosa	a. 1	1				

TAB 3.1 C

rdolano 5			1	1535,00	Argilla	1	1780,00	1780,80	Argilla con qualche velo sabbioso	45	25,0
			2	1560,00	Argilla	2	1997,80	1999,10	Marna compatta	n.d.	30,0
			3	1585,00	Argilla				Contract Constant Section 1		
			4	1710,50	Argilla						
			5	1826,00	Fango con ghiaietto						
	0		6	1838,30	Ghiaietto		1.2				
			7	1850,00	Argilla		D				
			8	1851,00	Argilla						
			9	1851,90	Sabbia fine						
			10	1853,80	Sabbia finissima						
			11	1865,00	Silt argilloso		1 1				
			12	1865,50	Silt argilloso						
			13	1866,20	Marna						
			14	1875,00	Silt argilloso						
			15	1875,10	Fango con marna	- C - C - C - C - C - C - C - C - C - C					
			16	1875,30	Marna e silt						
		I I	17	1879,00	n.d. (vuota)						
			18	1881,00	n.d. (ammaccata)	1					
			19	1882,50	n.d. (ammaccata)						
			20	1888,10	n.d. (vuota)		1.1				
		I I	21	1891,30	n.d. (ammaccata)	1					
			22	1896,00	n.d. (vuota)						
			23	1910,50	Sabbia						
		I I	24	1914,90	Sabbia						
			25	1919,10	Sabbia finissima						
			26	1922,00	Sabbia finissima						
			27	1935,90	Sabbia marnosa						
			28	1938,20	Sabbia marnosa						
	1.1		29	1969,50	Mama				ž.		
			30	1980,30	Marna siltosa						
			31	1991.70	Marna siltosa	1					
			32	1994.50	Marna siltosa						
			33	1995.50	Marna siltosa						

TAB 3.1

Bordolano 6	1	1225,70	Argilla	1	1722,60	1725,10	Marna	15	100,0
Sol dolano o	2	1231,50	Argilla	2	1899,00	1901,20	Marna compatta con veli di silt	n.d.	100,0
	3	1231,50	Argilla						
	4	1232,20	Argilla						
	5	1233,00	Argilla						
	6	1233,30	Argilla					1.	
	7	1235,20	Argilla						
	8	1236,60	Argilla						
	9	1236,60	Argilla	1					
	10	1276,50	Argilla con silt	1					
	11	1279,40	Argilla con silt						
	12	1619,10	Argilla con silt			1			· · · ·
	13	1625,30	Sabbia argillosa	1					
	14	1679,00	Argilla siltosa						
	15	1690,20	Argilla siltosa			1			
	16	1693,10	Argilla sabbiosa	1					
	17	1697,30	Argilla e sabbia fine			1 1			
	18	1699,20	Argilla siltosa	1		1 1			
	19	1705,30	Argilla siltosa	1		1 1			
	20	1707,60	Argilla siltosa			1 1			
	21	1712,80	Sabbia e silt			1 1			
	22	1714,00	Argilla sabbiosa						
	23	1727,30	Marna leggermente siltosa			1 1			
	24	1735,00	Marna leggermente siltosa			1 1			
	. 25	1742,30	Marna leggermente siltosa			1 1			
	26	1760,50	Marna leggermente siltosa			1 1			
	27	1782,50	Marna leggermente siltosa		1				

Bordolano 7	1	1553,00	Marna siltosa	1	1859,50	1860,50	Marna compatta	12	75,0
or a stanto r	2	1553,00	Marna siltosa	2	2000,00	2002,00	Marna arenacea	n.d.	90,0
	3	1595,00	Marna siltosa			Not see a			
	4	1652,00	Marna siltosa				10 I A		
	5	1702.00	Marna siltosa						
	6	1751.00	Marna siltosa						
	7	1764.00	Marna siltosa						
	8	1773.20	Marna siltosa	1					1.0
	9	1777.90	Marna siltosa						
	10	1778,90	Marna siltosa						
	11	1783,10	Tracce di marna siltosa	1					
	12	1788.80	Marna siltosa	1					
	13	1793,10	Marna siltosa						1.1.1
	14	1793,10	Tracce di marna						
	15	1797.00	Fango	1					
	16	1824.50	Tracce di marna		1 1				
	 17	1827,30	Sabbia argillosa			1 1			
	18	1864.80	Marna siltosa						
	19	1870,10	Marna siltosa			1 1			1.1
	20	1898.80	Marna siltosa		1				
	21	1950,00	Marna siltosa						
tordolano 8	 -			1	2001,40	2003,40	Argilla siltoso-arenacea	n.d.	25,0
or utranto o		1.1		2	2100,00	2102,00	Marna	5 - 10	30,0
				3	2198,00	2200,00	Alternanza di sabbie e marne	50	90,0
Sordolano 9	1	1688,00	Argilla	1	1999,85	2000,90	Marna molto sabb. e aren.	25 - 26	50,0
ou douino /	2	1688,20	Argilla	2	2103,00	2105,00	Marna e marna aren.	22 - 26	100,0
	3	1743,00	Argilla						
	4	1805,00	Argilla sabbiosa						
	5	1877,20	Sabbie e ciottoli				× •		
	6	1893.60	Sabbie e ciottoli						
	7	1897.50	Sabbie e ciottoli						

TAB 3.1 F

Eni

CAMPO DI BORDOLANO POOL B DATABASE CAROTE DI FONDO E DI PARETE DISPONIBILI (IN TUTTA LA SUCCESSIONE STRATIGRAFICA)

Dordolono 10	1	1785.50	Calcare marnoso	1	2000.00	2001,25	Conglomerato	n.d.	30,0
Sordolano IV	2	1845.00	Tracce di marna	1.00		1000000			7.2
	3	1857.50	Marna e argilla	1.000					
	4	1862.00	Marna						
	5	1871.00	Marna leggerm calcarea						
	5	1871.00	Marna leggerm calcarea						
	7	1871.00	Mama leggerm calcarea						
	,	1876.00	Marna e chiaietto						
	ů	1877.60	sabbia fine						
	10	10/0,00	Tracco di marma						1.1.1
	10	1940,00	Marna leggerm siltosa		1000	1			
	 11	1900,00	Maria leggerin. sitosa	1	2100.00	2103.00	Marna talora poco siltosa	25 - 35	75.0
Bordolano 11				1	2000.00	2002.00	Marna	nd	100.0
Bordolano 12		1.1		î	1869 30	1874.00	Conglom di marna e ciottoli	n d	25.0
Bordolano 13				2	1869 30	1874,00	Conglom di marna e ciottoli	n d	50.0
				3	1021.00	1923.00	Marna arenacea	30	80.0
				4	1981.00	1983.00	Altern di marne e arenarie	30 - 35	70.0
				5	2050.00	2052.00	Marna argillosa	nd	25.0
				6	2100.00	2104.00	Mama	n.d.	75.0
	 _	+		1	1867.40	1871.00	Mama molto compatta	n.d.	70.0
Bordolano 14				2	2000.00	2004.00	Marna molto compatta	n.d.	50.0
Dandalana 15				1	1935.00	1937.00	Marna talora arenacea	30 - 40	80,0
Bordolano 15				2	2005,00	2007,00	marna siltosa e arenaria	35	70,0
Bordolano 16	-			1	1912,50	1915,50	Marna compatta	25	50,0
Bordolano 17	-			1	1250,00	1253,50	Marna argillosa	n.d.	80,0

Bordolano 18					1	1436,60	1439,60	Sabbia, argilla e arenaria	n.d.	80,0
					2	1525,50	1528,50	Sabbia e argilla marnosa	n.d.	40,0
	1				3	1653,00	1656,00	Marna leggermente siltosa	n.d.	75,0
				2.62	4	1756,00	1759,00	Marna siltosa	n.d.	100,0
					5	1867,40	1870,20	Marna siltosa	n.d.	100,0
					6	2087,40	2089,20	Marna siltosa	35	100,0
Bordolano 19					1	1605,00	1607,50	Argilla marnosa	n.d.	100,0
					2	1810,00	1812,00	Argilla marnosa	n.d.	100,0
					3	1996,00	1998,00	N.R.		0,0
					4	1998,00	2000,00	N.R.		0,0
					5	2013,00	2015,00	Argilla marnosa	n.d.	100,0
					6	2206,00	2208,00	Marne, arenarie, sabbie	n.d.	100,0
					7	2343,00	2344,50	Marna arenacea	n.d.	19,0
Bordolano 20					1	1286,00	1291,00	Argilla molto silt., con veli sabb.	0 - 2	25,0
					 2	1790,00	1792,00	Argilla marn,-silt. compatta	n.d.	100,0
Bordolano 21 D					1	1745,00	1754,00	Argilla e marna siltosa		99,0
	1				2	1754,00	1759,00	Marna silt. con interc. liv. siltosi		100,0
					3	1759,00	1768,00	Marna silt. con interc. di siltite		100,0
					4	1768,00	1777,00	Marna, arenaria, ghiaia, cgl.		93,0
					5	1777,00	1781,00	Congl. + argilla (al fondo)		70,0
				1	6	1781,00	1786,00	Marna e siltite		100,0
				1	7	1786,00	1794,00	Marna silt. + Cgl. poligenico		96,0
					8	1794,00	1800,50	Congl. poligenico		56,0
					9	1800,50	1808,00	Congl. poligenico + arenaria		84,0
		10 m h			10	1808,00	1811,00	Congl. poligenico		16,0
	1		100	1.0.0.0	11	1811,00	1818,00	Congl. poligenico		19,0
		1.1.1.1.1.1	1.1	1.1.1.1.1.1	12	1818,00	1820,00	Arenaria + marna siltosa		80,0
					13	1825,00	1834,00	Marna + Calcare (clasto?)		94.0

CAMPO DI BORDOLANO POOL B ANAGRAFICA DI POZZO

	Part of the second seco
Eni	

Pozzo	T.R.	P.C.	T.D.	T.D.	Coord. Kilometriche		Coord. Geografiche (Gr.)		Inizio Perf.	Fine Perf.	P.C.	T.R.	Note
	(1) (m.clm)	(1) (m.clm)	(nerf.)	(100)	X I	Y	Long.	Lat.			(1998)	(1998)	
	72.50	70.00	2001.0	1999 0	1576311.00	5015833.00	9°58'23".2	45°17'27".6	22-ago-51	09-nov-51	63.11	66.61	Ril. OPEG "95, P.C. 63,11 m slm
2	71,30	68.65	2001.6	1996.0	1576941.50	5015703.80	9°58'52".1	45°17'23".2	17-gen-52	17-mar-52	62.67	65,72	Ril, OPEG "73, P.C. 62.67 m slm
2 bie dir	71,70	68.28	1829.0	1825.0	1576896.20	5015414.10	9°58'49".9	45°17'13".8	25-mar-52	29-apr-52	63,15	66.67	Ril. OPEG "95, P.C. 63.15 m slm
2 DIS UI	73 15	69.38	2494 5	n.r.	1575695.40	5016059.10	9°57'55".1	45°17'35".2	12-gen-52	11-giu-52	64,02	67,79	Ril. OPEG "73, P.C. 64.02 m slm
A dir	71.90	68.38	1855.0	nr.	1577168.39	5015495.68	9°59'02".4	45°17'16".4	29-mar-52	20-mag-52	59,93	63,45	Ril. "97 (ubicaz. pozzo), P.C. 59.93 m slm
A dir A	65.13	59.93	1840.0	1840.0	1577168.39	5015495.68	9°59'02".4	45°17'16".4	26-lug-97	18-ago-97	59,93	65,13	Ril. "97 (ubicaz. pozzo), P.C. 59.93 m slm
5	62 70	58.97	1999.1	1997.0	1578251.20	5015503.80	9°59'52".1	45°17'16".2	24-lug-52	07-set-52	52,87	56,60	
6	73.95	70.23	1901.2	1896.0	1574692.70	5016112.00	9°57'09".1	45°17'37".3	20-ott-52	23-nov-52	64,13	67,85	
7	71.50	68.00	2002.0	1998.3	1573530,70	5016749,70	9°56'16".1	45°17'58".4	29-gen-53	08-mar-53	61,90	65,40	
8	71.00	67.47	2200.2	2196.5	1576406,20	5014928,80	9°58'27".1	45°16'58".3	15-apr-53	30-mag-53	61,37	64,90	
9	53.75	50.05	2105,0	2102,5	1577908,00	5016405,10	9°59'36".9	45°17'45".5	21-mag-53	24-lug-53	44,60	48,30	Ril. OPEG "95, P.C. 44.60 m slm
10	56,15	52,65	2001,3	1997,5	1579138,50	5015977,90	10°00'33".1	45°17'31".2	22-lug-53	05-set-53	46,55	50,05	
11	74.00	70,50	2103,0	2099,5	1575252,80	5016640,30	9°57'35".1	45°17'54".2	03-lug-53	09-ago-53	64,40	67,90	
12	62,40	58,90	2002,0	1995,8	1577702,40	5015836,60	9°59'27".1	45°17'27".2	16-set-53	05-nov-53	52,80	56,30	
13	70,70	67,20	2104,0	n.r.	1577777,30	5015065,90	9°59'30".1	45°17'02".2	29-set-53	13-nov-53	61,10	64,60	
14	53,88	50,58	2004,0	2004,5	1576843,50	5016600,80	9°58'48".1	45°17'52".3	25-mar-54	21-apr-54	45,11	48,41	Ril. OPEG "73, P.C. 45.11 m slm
15	72,15	68,86	2007,0	2007,0	1575964,60	5015414,20	9°58'07".1	45°17'14".2	20-dic-53	02-feb-54	62,76	66,05	
16	69,30	66,00	1915,5	1917,0	1574313,00	5016907,00	9°56'52".1	45°18'03".2	19-lug-54	02-ago-54	59,90	63,20	
17	59,30	56,00	1926,0	1925,3	1576077,70	5016881,60	9°58'13".1	45°18'01".7	29-mag-54	27-giu-54	49,90	53,20	
18	69,00	65,00	2089,2	2088,3	1575059,20	5014415,70	9°57'25".0	45°16'42".2	27-lug-56	26-ago-56	58,90	62,90	
19	63,40	60,00	2368,0	2369,8	1578344,20	5017313,70	9°59'57".4	45°18'14".8	02-giu-59	15-lug-59	53,90	57,30	
20	69,95	67,00	2095,0	n.r.	1571065,80	5017829,50	9°54'23".5	45°18'34".3	20-ago-64	09-set-64	60,90	63,85	
21 dir	68,30	63,30	1850,0	1850,0	1576312,50	5015835,10	9°58'23".3	45°17'27".7	12-mar-96	08-apr-96	63,11	68,11	Ril. "97 (ubicaz. pozzo), P.C. 63.11 m slm

(1) Dati da profilo di pozzo 1:1000

CAMPO DI BORDOLANO POOL B ANAGRAFICA CAROTE E DATI PETROFISICI (pre-1996) Fm. STRATI DI CAVIAGA

Pozzo	Tipo carota fondo/parete	Profondità	Livello	Litologia	Ф (%)	Korizz (md)	Kvert (md)
1	C.P.	1900,5	Substr.	Sabbia siltosa	37,8	53,0	
2	C.F.	1797.1-1798.4	Substr.	Marne siltose (K e por. misurate dei liv. sabbiosi)	20,0	0,9	0,1
	C.F.	1905.0-1908.2	Substr.	Marne siltose (K e por. misurate dei liv. sabbiosi)	15.0-19.0	2.0-3.0	0,9
	C.F.	2000.0-2001.6	Substr.	Marne siltose (K e por. misurate dei liv. sabbiosi)	19.0-23.0	1.3-2.4	0.4-0.9
	C.P.	1715,0	B2	Sabbia e silt	28,0	27,2	
	C.P.	1880,2	Substr.		28,2		
	C.P.	1903,3	Substr.		22,5		
3	C.F.	1730.3-1732.3	Piattaf.	K e por. in sottili interc. di aren. calc. e siltstone	24,8	45,0	32,0
	C.F.	2020.0-2022.5	Sustr.		19,2	4,0	
	C.F.	2090.0-2093.0	Sustr.	Siltstone	26,6	1,0	
	C.F.	2490.5-2494.5	Sustr.	K e por. negli interv. più aren. e sabbiosi	25,7	4,0	
_	14 C.P.	2009.0-2479.5	Sustr.	Marne grio-verdi (K e por. nei liv.più sabbiosi)	30,2	13,0	
5	C.P.	1838,2	B4	Sabbia e silt molto calcarei	28,4	196,0	
	C.P.	1865,0	С		33,2	17,0	
	C.P.	1914,9	F		31,3	17,0	
6	C.F.	1722.6-1725.1	Piattaf.			assente	
	C.P.	1712,8	B4		30,0		
7	C.P.	1827,3	Copert.	Sabbia molto argillosa e siltosa	16,7	100000000	
	C.P.	1870,1	B3	Marna molto siltosa	18,2	scarsa	
9	C.P.	1893,6	E1	Sabbia	25,7	and a	
	C.P.	1897,5	E1	Sabbia	31,5	750,0	
10	C.P.	1887,6	Copert.		23,1	447,0	
18	C.F.	1436.6-1439.6	Copert.	Sabbia fine quarzoso micacea a granuli subang.	32,2	780,0	564,0
19	C.F.	2206.0-2208.0	Substr.	Sabbie, arenarie e marne	3,4	0,0	
26248					8,0	1,0	
					31,6	617,0	
					31,1	196,0	() - ()
					29,7	261,0	
					29,1	156,0	
20	Plug di 2 C.F.	1286,5	Copert.		32,0	1	
		1290,0	Constant Constant Co		6,4		
		1790,5			15,3		
	+	1793,5	123		14,8		
		1796.5			15,1		

- - 1

TAB 4.2 A

CAMPO DI BORDOLANO POOL B ANAGRAFICA CAROTE E DATI PETROFISICI (pre-1996) Fm. STRATI DI CAVIAGA

Pozzo	Profondità	Livello	Litologia		Ф (%)	K (md)
1	1700,0	B 2	Marna debolm. siltosa con qualche granulo di pirite			
1.0	1704,8	B2	Ghiaia ben arrotondata con frammenti di calcare	10.14		
	1711,2	B 3	Sabbia molto ricca di calcite (65.8%) in prevalenza finissima e siltosa			
	1713,4	B3	Marna grigio-verde con qualche frustolo laminare carbonioso	1000		
10-11	1716,6	B 4	c.s. ma senza tracce carboniose			
	1718,2	B 4	marna grigio-verde molto calcarea			
1	1719,5	B 4	c.s.			
2	1715,0	B2	Silt e sabbia finissima molto calcarei (CaCO3 = 80.8%)		28,0	27,2
	1739,3	Piattaf.	c.s., ma più argillosa (mineralizzata a H2O salata)	1	_	
3	1709,0	B1	Ciottoli			
100	1711,5	1.2.2.3	Argilla	1 2 3		
	1720,0	B 3	Ciottoli			
5	1826,0	B 2	Schegge di ciottoli			
1.1	1838,2	B4	Sabbia e ghiaia fine leggermente cementate	10.00		
	1850 e 1851 ?	B5	Marne CaCO3 = 64%	Sec. 1		
1.0	4 c.p. 1851.9 - 1865.5	B5 - C	Sabbia e silt molto calcarei	a 1865.0	33,2	17,0
\mathbb{K}	4 c.p. 1866.2 - 1875.3	D	Marna con straterelli di silt (CaCO3 = 64%)	1. 1. 2.		
	? c.p. 1910.5 - 1938.2	F - Piattaf.	Sabbia per lo più finissima talora con intercalazioni di marna	a 1914.9	31,3	17,0
1			La carota a 1938.2 è mineralizzata ad H2O	a 1938.2	28,4	196,0
6	1712,8	B 4	Sabbia leggermente argillosa e silt		30,0	
7	1864,8	B 2	Marna molto siltosa			
2	1870,1	B 3	Marna molto siltosa/silt molto argilloso	a 1893.6	18,2	molto scarsa
9	1887.2	D	I 3 camp. sono costituiti da sabbia con granuli di quarzo, calcite,	a 1897.5	31,5	750,0
-	1893.6	E1	muscovite etc., talora con straterelli di marna			
	1897.5	E1			23,1	447,0
10	1077.6	Ara Conort				

TAB 4.2 B

Eni

1000
Eni

Livello SUBSTRATO)									
	BO 1D	BO 2	BO 2BD	BO 3	BO 4D	BO 4DA	BO 5	BO 6	BO 7	BO 8
QRT	66,61	65,72	66,67	67,79	63,45	65,13	56,60	67,85	65,40	64,90
Тор	1776,04	1729,86	1771,21	1737,32	1837,12	1804,90	1941,95	1784,23	1886,45	2149,94
Bottom	1999,79	1994,92	1824,99	2489,80	1854,86	1841,45	1999,94	1905,00	1999,79	2199,97
Top SL	1709,35	1664,14	1669,28	1669,53	1729,84	1683,51	1885,35	1716,38	1821,05	2085,04
Bottom SL	1933,08	1929,20	1722,17	2422,01	1746,72	1772,73	1943,34	1837,15	1934,39	2135,07
Gross Thickness	223,72	265,05	52,90	752,48	16,87	36,51	57,99	120,77	113,35	50,03
	BO 9	BO 11	BO 12	BO 13	BO 14	BO 15	BO 16	BO 19		
QRT	48,30	67,90	56,30	64,60	48,41	66,05	63,20	57,30		_
Тор	2058,08	1919,33	1873,38	2011,83	1894,69	1949,23	1880,56	2311,40		
Bottom	2109,96	2104,94	1999,79	2099,79	2009,85	2009,85	1919,78	2369,94		
Top SL	2009,78	1851,43	1817,08	1947,23	1846,28	1883,18	1817,36	2254,10		
Bottom SL	2061,66	2037,04	1943,49	2035,19	1961,44	1943,80	1856,58	2312,64		
Gross Thickness	51,88	185,61	126,42	87,95	115,16	60,62	39,22	58,54		

Livello F1	1.1	1.11								
710000000	BO 5									
ORT	56.60									
Тор	1930.71									
Bottom	1941.95									
Top SL	1874.11									
Bottom SL	1885.35									
Gross Thickness	11.24									
GDT	0.000000									
GWC										
WUT	1874,11									
Livello PIATTAFO	RMA									
	BO 1D	BO 2BD	BO 3	BO 4D	BO 6	BO 7	BO 8	BO 9	BO 11	BO 13
QRT	66,61	66,67	67,79	63,45	67,85	65,40	64,90	48,30	67,90	64,60
Тор	1720,07	1761,54	1725,38	1830,84	1728,59	1876,74	2055,30	1900,06	1893,67	1996,49
Bottom	1776,04	1771,21	1737,32	1837,12	1784,23	1886,45	2149,94	1914,84	1919,33	2011,83
TOD SL	1673,67	1659,77	1657,59	1723,87	1660,74	1811,34	1990,40	1851,76	1825,77	1931,89
Bottom SL	1709,35	1669,28	1669,53	1729,84	1716,38	1821,05	2085,04	1866,54	1851,43	1947,23
Gross Thickness	55,96	9,50	11,94	5,97	55,64	9,70	94,64	14,79	25,66	15,35
	BO 15	BO 19	BO 21D							
QRT	66,05	57,30	68,11							
Top	1914,08	2204,82	1828,93							
Bottom	1949,23	2311,40	1852,57							
TOD SL	1848,03	2147,52	1640,98							
Bottom SL	1883,18	2254,10	1658,17							
Gross Thickness	35,16	106,58	17,18							

Livello A2	1000			2000
	BO 9	BO 19		
QRT	48,30	57,30		
Тор	1791,38	2139,41		
Bottom	1795,45	2150,97		
Top SL	1743,08	2082,11		
Bottom SL	1747,15	2093,67		
Gross Thickness	4,06	11,56		
GDT	1747,15			
GWC				
WUT		2082,11		
SW				
Livello A1				
	BO 6	BO 7	BO 11	BO 16
QRT	67,85	65,40	67,90	63,20
Тор	1617,15	1777,77	1739,45	1785,15
Bottom	1628,71	1801,01	1750,75	1805,09
Top SL	1549,30	1712,37	1671,55	1721,95
Bottom SL	1560,86	1735,61	1682,85	1741,89
Gross Thickness	11,56	23,24	11,30	19,94
GDT	1560,86			8
GWC				
WUT		1712,37	1671,55	1721,95
SW				

Livello B1										All Carolina and
	BO 1D	BO 3	BO 4D	BO 4DA	BO 5	BO 8	BO 9	BO 10	BO 12	BO 13
QRT	66,61	67,79	63,45	65,13	56,60	64,90	48,30	50,05	56,30	64,60
Тор	1691,52	1708,11	1779,48	1724,95	1804,68	2007,68	1811,58	1889,41	1753,38	1862,62
Bottom	1694,19	1710,40	1790,66	1726,85	1811,67	2012,89	1818,69	1899,57	1758,97	1870,62
Top SL	1624,85	1640,32	1675,06	1656,36	1748,08	1942,78	1763,28	1839,36	1697,08	1798,02
Bottom SL	1627,51	1642,61	1685,68	1658,26	1755,07	1947,99	1770,39	1849,52	1702,67	1806,02
Gross Thickness	2,67	2,29	10,62	1,90	6,99	5,21	7,11	10,16	5,59	8,00
GDT	1627,51	1642,61	1685,68	1658,26	1755,07		1770,39		1702,67	1806,02
GWC										
WUT						1942,78		1839,36		
	BO 14	BO 15	BO 18	BO 19	BO 21D					
OBT	48 41	66.05	62.90	57.30	68,11					
Ton	1801.52	1866.71	2022.68	2172.43	1776,53					
Bottom	1802.67	1870.64	2026,74	2183,23	1780,96					
Top SI	1753.11	1800,66	1959,78	2115,13	1603,14					
Bottom SI	1754.26	1804.59	1963.84	2125,93	1606,31					
Gross Thickness	1.14	3.94	4,06	10,79	3,17					
GDT	1754.26		0.000		1606,31					
GWC										
WUT		1800,66	1959,78	2115,13						-

Tab 4.3d

Eni

Livello B2									10000000	
	BO 1D	BO 2	BO 2BD	BO 3	BO 4D	BO 4DA	BO 5	BO 6	BO 7	BO 8
OBT	66,61	65,72	66,67	67,79	63,45	65,13	56,60	67,85	65,40	64,90
Top	1699.01	1711,45	1741,60	1714,97	1796,21	1730,28	1817,38	1699,24	1863,66	2019,62
Bottom	1707.27	1721,10	1751,00	1719,29	1804,34	1739,17	1826,40	1704,19	1865,44	2030,67
Top SI	1632.34	1645,73	1640,30	1647,18	1690,95	1661,68	1760,78	1631,39	1798,26	1954,72
Bottom SL	1640,59	1655,38	1649,47	1651,50	1698,68	1670,56	1769,80	1636,34	1800,04	1965,77
Gross Thickness	8.25	9,65	9,17	4,32	7,72	8,88	9,02	4,95	1,78	11,05
GDT	1640.59	1655,38	1649,47	1651,50	1698,68	1670,56	1769,80			-
GWC										
WUT								1631,39	1798,26	1954,72
							2020-025			
1 N N N N N N N N N N N N N N N N N N N	BO 9	BO 10	BO 11	BO 12	BO 13	BO 14	BO 15	BO 16	BO 17	BO 19
QRT	48,30	50,05	67,90	56,30	64,60	48,41	66,05	63,20	53,20	57,30
Тор	1824,40	1904,65	1822,80	1763,03	1880,40	1808,00	1878,52	1871,67	1905,88	2188,82
Bottom	1838,25	1915,19	1829,15	1775,22	1891,45	1818,92	1889,30	1873,07	1915,03	2194,66
Top SL	1776,10	1854,60	1754,90	1706,73	1815,80	1759,59	1812,47	1808,47	1852,68	2131,52
Bottom SL	1789,95	1865,14	1761,25	1718,92	1826,85	1770,51	1823,25	1809,87	1861,83	2137,36
Gross Thickness	13,84	10,54	6,35	12,19	11,05	10,92	10,78	1,40	9,14	5,84
GDT	1789,95		1761,25	1718,92	1826,85	1770,51				
GWC										
WUT		1854,60					1812,47	1808,47	1852,68	2131,52
	BO 21									
OBT	68.11									
Ton	1787.69									
Bottom	1797.97									
Ton SI	1611.14									
Bottom SI	1618.50									
Gross Thickness	7.37									
GDT	1618.50									
GWC										
WUT										
nor		_								

Eni

Tab 4.3e

			-	DO 40		POF	ROE	BO 7	BO 8
BO 1D	BO 2	BO 2DB	BO 3	BO 4D	BU 4DA	56.60	67.95	65.40	64.90
66,61	65,72	66,67	67,79	1005 10	1720.91	1926 40	1704 05	1866.07	2031 55
1707,90	1721,10	1751,00	1/19,92	1805,10	1740.05	1020,40	1709.04	1000,07	2031,00
1714,29	1727,70	1756,34	1725,38	1816,27	1/49,65	1830,18	1/08,64	18/0,//	2037,92
1641,23	1655,38	1649,47	1652,13	1699,40	16/1,20	1769,80	1637,10	1800,67	1900,05
1645,29	1661,98	1654,67	1657,59	1710,03	16/5,51	1//9,58	1640,79	1805,37	19/3,02
6,39	6,60	5,20	5,46	10,62	9,83	9,78	3,68	4,70	6,36
1645,29	1661,98	1654,67	1657,59	1710,03	1675,51	1779,58			
								1000.07	1000.05
							1637,10	1800,67	1966,65
BO 9	BO 10	BO 11	BO 12	BO 13	BO 14	BO 15	BO 16	BO 17	BO 18
48.30	50,05	67,90	56,30	64,60	48,41	66,05	63,20	53,20	62,90
1839.14	1916.08	1830,04	1776,37	1892,01	1819,56	1890,07	1874,72	1916,68	2044,14
1847.90	1919.00	1837,53	1787,29	1903,51	1828,07	1896,17	1880,56	1924,81	2050,74
1790.84	1866.03	1762,14	1720,07	1827,41	1771,15	1824,02	1811,52	1863,48	1981,24
1799.60	1868.95	1769.63	1730,99	1838,91	1779,66	1830,12	1817,36	1871,61	1987,84
8.76	2.92	7,49	10,92	11,50	8,51	6,10	5,84	8,13	6,60
1799.60		1769.63	1730,99	1838,91	1779,66				
	1866,03					1824,02	1811,52	1863,48	1981,24
BO 19	BO 21D								
57.30	68.11								
2197.33	1797.97								
2204 82	1804.98								
2140 03	1618.50								
2147 52	1623.58								
7 49	5.08								
1,40	1623.58								
2140.03									
	BO 1D 66,61 1707,90 1714,29 1641,23 1645,29 6,39 1645,29 BO 9 48,30 1839,14 1847,90 1790,84 1799,60 8,76 1799,60 8,76 1799,60 8,76 1799,60 2197,33 2204,82 2140,03	BO 1D BO 2 66,61 65,72 1707,90 1721,10 1714,29 1727,70 1641,23 1655,38 1645,29 1661,98 6,39 6,60 1645,29 1661,98 80 9 BO 10 48,30 50,05 1839,14 1916,08 1847,90 1919,00 1799,60 1866,03 1799,60 1866,03 BO 19 BO 21D 57,30 68,11 2197,33 1797,97 2204,82 1804,98 2140,03 1618,50 2147,52 1623,58 7,49 5,08 1623,58 2140,03	BO 1D BO 2 BO 2DB 66,61 65,72 66,67 1707,90 1721,10 1751,00 1714,29 1727,70 1756,34 1641,23 1655,38 1649,47 1645,29 1661,98 1654,67 6,39 6,60 5,20 1645,29 1661,98 1654,67 6,39 6,60 5,20 1645,29 1661,98 1654,67 48,30 50,05 67,90 1839,14 1916,08 1830,04 1847,90 1919,00 1837,53 1790,84 1866,03 1762,14 1799,60 1868,95 1769,63 8,76 2,92 7,49 1799,60 1866,03 1769,63 8,76 2,92 7,49 1799,60 68,11 2197,33 1866,03 1769,63 1769,63 2140,03 1618,50 2147,52 2140,03 1618,50 2147,52 2147,52 <td>BO 1DBO 2BO 2DBBO 3$66,61$$65,72$$66,67$$67,79$$1707,90$$1721,10$$1751,00$$1719,92$$1714,29$$1727,70$$1756,34$$1725,38$$1641,23$$1655,38$$1649,47$$1652,13$$1645,29$$1661,98$$1654,67$$1657,59$$6,39$$6,60$$5,20$$5,46$$1645,29$$1661,98$$1654,67$$1657,59$$1645,29$$1661,98$$1654,67$$1657,59$$1645,29$$1661,98$$1654,67$$1657,59$$1839,14$$1916,08$$1830,04$$1776,37$$1847,90$$1919,00$$1837,53$$1787,29$$1790,84$$1866,03$$1762,14$$1720,07$$1799,60$$1868,95$$1769,63$$1730,99$$8,76$$2,92$$7,49$$10,92$$1799,60$$68,11$$2197,33$$1797,97$$2204,82$$1804,98$$2140,03$$1618,50$$2147,52$$1623,58$$7,49$$5,08$$7,49$$5,08$$1623,58$$7,49$$5,08$$1623,58$</td> <td>BO 1DBO 2BO 2DBBO 3BO 4D$66,61$$65,72$$66,67$$67,79$$63,45$$1707,90$$1721,10$$1751,00$$1719,92$$1805,10$$1714,29$$1727,70$$1756,34$$1725,38$$1816,27$$1641,23$$1655,38$$1649,47$$1652,13$$1699,40$$1645,29$$1661,98$$1654,67$$1657,59$$1710,03$$6,39$$6,60$$5,20$$5,46$$10,62$$1645,29$$1661,98$$1654,67$$1657,59$$1710,03$$1645,29$$1661,98$$1654,67$$1657,59$$1710,03$$1645,29$$1661,98$$1654,67$$1657,59$$1710,03$$1645,29$$1661,98$$1654,67$$1657,59$$1710,03$$1645,29$$1661,98$$1830,04$$1776,37$$1892,01$$1839,14$$1916,08$$1830,04$$1776,37$$1892,01$$1847,90$$1919,00$$1837,53$$1737,29$$1903,51$$1790,84$$1866,03$$1762,14$$1720,07$$1827,41$$1799,60$$1868,95$$1769,63$$1730,99$$1838,91$$8,76$$2,92$$7,49$$10,92$$11,50$$1799,60$$1618,50$$1730,99$$1838,91$$2140,03$$1618,50$$2147,52$$1623,58$$7,49$$5,08$$1623,58$$7,49$$5,08$$1623,58$$2140,03$$1618,50$$2140,03$$1623,58$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	BO 1DBO 2BO 2DBBO 3 $66,61$ $65,72$ $66,67$ $67,79$ $1707,90$ $1721,10$ $1751,00$ $1719,92$ $1714,29$ $1727,70$ $1756,34$ $1725,38$ $1641,23$ $1655,38$ $1649,47$ $1652,13$ $1645,29$ $1661,98$ $1654,67$ $1657,59$ $6,39$ $6,60$ $5,20$ $5,46$ $1645,29$ $1661,98$ $1654,67$ $1657,59$ $1645,29$ $1661,98$ $1654,67$ $1657,59$ $1645,29$ $1661,98$ $1654,67$ $1657,59$ $1839,14$ $1916,08$ $1830,04$ $1776,37$ $1847,90$ $1919,00$ $1837,53$ $1787,29$ $1790,84$ $1866,03$ $1762,14$ $1720,07$ $1799,60$ $1868,95$ $1769,63$ $1730,99$ $8,76$ $2,92$ $7,49$ $10,92$ $1799,60$ $68,11$ $2197,33$ $1797,97$ $2204,82$ $1804,98$ $2140,03$ $1618,50$ $2147,52$ $1623,58$ $7,49$ $5,08$ $7,49$ $5,08$ $1623,58$ $7,49$ $5,08$ $1623,58$	BO 1DBO 2BO 2DBBO 3BO 4D $66,61$ $65,72$ $66,67$ $67,79$ $63,45$ $1707,90$ $1721,10$ $1751,00$ $1719,92$ $1805,10$ $1714,29$ $1727,70$ $1756,34$ $1725,38$ $1816,27$ $1641,23$ $1655,38$ $1649,47$ $1652,13$ $1699,40$ $1645,29$ $1661,98$ $1654,67$ $1657,59$ $1710,03$ $6,39$ $6,60$ $5,20$ $5,46$ $10,62$ $1645,29$ $1661,98$ $1654,67$ $1657,59$ $1710,03$ $1645,29$ $1661,98$ $1654,67$ $1657,59$ $1710,03$ $1645,29$ $1661,98$ $1654,67$ $1657,59$ $1710,03$ $1645,29$ $1661,98$ $1654,67$ $1657,59$ $1710,03$ $1645,29$ $1661,98$ $1830,04$ $1776,37$ $1892,01$ $1839,14$ $1916,08$ $1830,04$ $1776,37$ $1892,01$ $1847,90$ $1919,00$ $1837,53$ $1737,29$ $1903,51$ $1790,84$ $1866,03$ $1762,14$ $1720,07$ $1827,41$ $1799,60$ $1868,95$ $1769,63$ $1730,99$ $1838,91$ $8,76$ $2,92$ $7,49$ $10,92$ $11,50$ $1799,60$ $1618,50$ $1730,99$ $1838,91$ $2140,03$ $1618,50$ $2147,52$ $1623,58$ $7,49$ $5,08$ $1623,58$ $7,49$ $5,08$ $1623,58$ $2140,03$ $1618,50$ $2140,03$ $1623,58$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Livello B4							-		-	-
	BO 1D	BO 2	BO 2DB	BO 4D	BO 4DA	BO 5	BO 6	BO /	BO 8	BOa
QRT	66,61	65,72	66,67	63,45	65,13	56,60	67,85	65,40	64,90	48,30
Тор	1715,63	1728,08	1757,22	1816,82	1750,16	1837,45	1711,68	1875,47	2041,85	1848,53
Bottom	1720,07	1729,86	1761,54	1823,05	1752,95	1846,85	1714,73	1876,74	2043,50	1850,44
Top SL	1648,95	1662,36	1655,54	1710,55	1681,54	1780,85	1643,83	1810,07	1976,95	1800,23
Bottom SL	1653,40	1664,14	1659,77	1716,46	1684,33	1790,25	1646,88	1811,34	1978,60	1802,14
Gross Thickness	4,44	1,78	4,23	5,91	2,79	9,40	3,05	1,27	1,65	1,90
GDT	n.d.	1664,14	1659,77	1716,46	1684,33	1790,25				1802,14
GWC	n.d.									
WUT	n.d.						1643,83	1810,07	1976,95	
	BO 10	BO 12	BO 13	BO 15	BO 18	BO 21D				
OBT	50.05	56.30	64,60	66,05	62,90	68,11				
Top	1921.29	1787.29	1904,45	1897,06	2051,76	1806,55				
Bottom	1922.31	1793,38	1911,06	1902,01	2055,31	1821,76				
Ton SI	1871.24	1730,99	1839,85	1831,01	1988,86	1624,73				
Bottom SI	1872.26	1737.08	1846,46	1835,96	1992,41	1635,78				
Gross Thickness	1.02	6.10	6,60	4,95	3,56	11,05				
GDT	.,•=	1737.08		n.d.	A	1635,78				
GWC				n.d.						
WUT	1871,24		1839,85	n.d.	1988,86				5. S. I.	

Tab 4.3g

THE STATE	
Eni	

Livello B5						
	BO 4D	BO 5	BO 10	BO 12	BO 13	BO 21D
QRT	63,45	56,60	50,05	56,30	64,60	68,11
Тор	1824,19	1849,89	1927,64	1797,45	1912,07	1822,81
Bottom	1830,84	1856,37	1931,07	1799,73	1922,12	1828,93
Top SL	1717,55	1793,29	1877,59	1741,15	1847,47	1636,54
Bottom SL	1723,87	1799,77	1881,02	1743,43	1857,52	1640,98
Gross Thickness	6,33	6,48	3,43	2,29	10,05	4,45
GDT	1723,87	1799,77		n.d.		1640,98
GWC				n.d.		
WUT			1877,59	n.d.	1847,47	
Livello C						
Charles and the	BO 4DA	BO 5				
QRT	65,13	56,60				
Тор	1773,49	1858,91				
Bottom	1780,98	1865,01				
Top SL	1704,84	1802,31				
Bottom SL	1712,33	1808,41				
Gross Thickness	7,49	6,10				
GDT	1712,33	1808,41				
GWC	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100					
WUT						

Livello D				
	BO 5	BO 9	BO 11	
QRT	56,60	48,30	67,90	_
Тор	1869,20	1870,70	1864,08	
Bottom	1873,65	1878,68	1871,76	
Top SL	1812,60	1822,40	1796,18	
Bottom SL	1817,05	1830,38	1803,86	
Gross Thickness	4,45	7,98	7,68	
GDT	1817,05	1830,38	shaly	
GWC			shaly	
WUT			shaly	
Livello E				
	BO 5	BO 10	BO 12	BO 13
QRT	56,60	50,05	56,30	64,60
Тор	1878,45	1958,83	1833,48	1956,74
Bottom	1883,91	1961,75	1839,07	1961,06
Top SL	1821,85	1908,78	1777,18	1892,14
Bottom SL	1827,31	1911,70	1782,77	1896,46
Gross Thickness	5,46	2,92	5,59	4,32
GDT	1827,31		1782,77	1896,46
GWC				
WUT		1908,78		

Livello E1					The second	
	BO 5	BO 9	BO 10	BO 11	BO 12	BO 13
QRT	56,60	48,30	50,05	67,90	56,30	64,60
Тор	1887,22	1893,07	1965,31	1888,22	1840,60	1961,82
Bottom	1897,12	1900,06	1979,15	1893,67	1858,50	1968,55
Top SL	1830,62	1844,77	1915,26	1820,32	1784,30	1897,22
Bottom SL	1840,52	1851,76	1929,10	1825,77	1802,20	1903,95
Gross Thickness	9,91	6,99	13,84	5,45	17,91	6,72
GDT		1851,76			1802,20	1903,95
GWC	n.d.			Shaly		
WUT	n.d.		1915,26	Shaly		
Livello F						
10 L I I I I I I I I I I I I I I I I I I	BO 5	BO 10	BO 12	BO 13		
QRT	56,60	50,05	56,30	64,60		
Тор	1909,19	1981,31	1865,36	1985,94		
Bottom	1926,08	1999,92	1873,38	1996,49		
Top SL	1852,59	1931,26	1809,06	1921,34		
Bottom SL	1869,48	1949,87	1817,08	1931,89		
Gross Thickness	16,89	18,62	8,01	10,54		
GDT	1869,48		1809,06			
GWC						
WUT		1931,26		1921,34		

TAB 4.4A

TAB 4.4 B

Eni

TAB 4.4 C

En

FAB 4.4 D

CORE	CAMP	DEPTH	Ф	DENS. REALE	COD PERMH	PERMH	SATW
N	N	(m)	(%)	(g/cc)		(md)	(94)
1	1	1745 10	(70)	(9/00)	NC	(ind)	(70)
1	4	1745 40	15 99	2 721	AS		02.0
1	7	1745.70	10,00	2,721	NC		92,6
1	10	1746.00	15 41	2 7 2 6	AS		06 1
1	13	1746 30	15 98	2,720	AS		90,1
1	16	1746 60	16.61	2 768	AS	0.110	72.0
1	19	1746 90	15 38	2,756	AS	0,110	10,0
1	22	1747 20	15 68	2,731	AS		00,9
1	25	1747 50	14 22	2,603	AS		00,1
1	28	1747.80	14,22	2,000	NC		97,1
1	31	1748 10	15 75	2 7 2 2	AS		20.4
1	34	1748 40	15.96	2,722	AS		29,4
1	37	1748 70	15,80	2,727	AS		90,7
1	40	1749.00	16,09	2,010	AG		91,5
-	43	1749,00	17.07	2,700	AS		100,0
1	45	1749,50	17,07	2,095	AS		94,0
	40	1749,00	10.00	0 700	AS		
	49	1749,90	12.05	2,720	AS	0.150	90,9
	52	1750,20	13,65	2,721	AS	0,150	25,6
	50	1750,50	14,08	2,752	AS	0.000	82,0
	50	1750,80	13,63	2,710	AS	0,060	100,0
	61	1751,10	13,58	2,714	AS	0,120	100,0
	. 64	1751,40	13,50	2,715	AS	0,100	97,2
	0/	1751,70	14,84	2,/1/	AS	0,080	95,9
	70	1752,00	14,14	2,728	AS	0,100	92,5
1	73	1752,30	13,55	2,722	AS	0,100	93,1
1	76	1752,60	14,00	2,710	AS	0,080	94,0
1	79	1752,90	13,84	2,708	AS	0,080	93,2
1	82	1753,20			AS	12000000	. Sec. 191
-	85	1753,50	15,92	2,712	AS	0,070	92,7
1	88	1753,80	14,87	2,693	AS	0,070	93,7
2	91	1754,10	15,79	2,741	AS	0,130	81,0
2	94	1754,40	15,87	2,730	AS	0,250	86,3
2	97	1/54,/0	15,74	2,718	AS		97,9
2	100	1755,00	16,50	2,758	AS		74,9
2	103	1755,30	16,74	2,767	AS	0,250	82,8
2	106	1755,60	15,64	2,723	AS		84,2
2	109	1755,90	15,33	2,747	AS		82,6
2	112	1756,20	16,45	2,743	AS	0,110	85,2
2	115	1756,50	14,27	2,719	AS	0,160	89,5
2	118	1756,80	14,58	2,750	AS	0,090	85,2
2	121	1757,10	14,23	2,714	AS	0,120	97,6
2	124	1757,40	14,07	2,724	AS	0,070	91,1
2	127	1/5/,/0	15,94	2,758	AS	0,170	84,4
2	130	1758,00	15,80	2,775	AS	0,150	89,3
2	133	1758,30	13,75	2,696	AS		100,0
2	136	1758,60	14,44	2,733	AS	0,200	91,3
2	139	1758,90	14,65	2,743	AS	0,110	91,0
3	142	1759,20	14,05	2,739	AS	0,200	97,3
3	145	1759,50	15,88	2,739	AS	41.49	100,0
3	148	1759,80	15,07	2,744	AS	0,470	96,6
3	151	1760,10	13,55	2,741	AS	0,130	96,7
3	154	1760,40	14,45	2,752	AS	0,300	95,3
3	157	1760,70	15,36	2,747	AS	0,120	94,7
3	160	1761,00	13,95	2,752	AS		98,5

TAB 4.5 A

CORE	CAMP	DEPTH	Φ	DENS. REALE	COD PERMH	PERMH	SATW
N	N	(m)	(%)	(a/cc)		(md)	(%)
	163	1761 30	14.25	2 752	AS	0.260	100.0
3	166	1761.60	14,15	2.747	AS	0.270	100,0
3	169	1761.90	15.14	2 779	AS	0.090	93.1
3	172	1762.20	14.49	2,753	AS	0,000	97.7
3	175	1762,50	16.12	2,798	AS		90.9
3	178	1762.80	14.40	2,745	AS		98.0
3	181	1763.10	15.10	2,762	AS	0,180	92,9
3	184	1763.40	18.05	2,786	AS		99.5
3	187	1763.70	16.03	2,779	AS	0,520	85,6
3	190	1764.00	17.03	2,785	AS	0,610	86,7
3	193	1764.30	17.05	2,735	AS	0,110	82,4
3	196	1764.60	22.62	2,814	AS		78,9
3	199	1764.90	17.74	2,738	AS	0.090	70.2
3	202	1765.20	17.57	2,740	AS	0,110	
3	205	1765.50	17.66	2,745	AS	0.810	100,0
3	208	1765.80	17.15	2,735	AS	0.160	88.6
3	211	1766.10	17.03	2,735	AS	100000	94.2
3	214	1766.40	16.96	2,743	AS		96.6
3	217	1766 70	15,99	2,745	AS		97.4
3	220	1767.00	14.21	2,751	AS	0.470	84.8
3	223	1767.30			NC		
3	226	1767 60	15.91	2,746	AS	0.240	87.6
3	229	1767 90	14 72	2 745	AS	0.100	81.8
4	232	1768 20	17.20	2,759	AS		91.0
4	235	1768 50	11,20	2,100	NC		
4	238	1768.80	14 94	2,748	AS		76.6
4	241	1769 10	11.02	2 744	AS		87.2
4	241	1769.40	15 54	2 752	AS		88.5
4	244	1769 70	14 77	2 749	AS		77.4
4	250	1770.00	14.72	2 743	AS	0.510	80.4
4	250	1770.30	13 39	2 755	AS	0,010	84.2
4	255	1770.60	13.49	2 772	AS	0 280	82.8
4	250	1770.00	12 43	2 777	AS	0,200	83.8
4	262	1771 20	12,40	2,757	AS		79.5
4	263	1771.30	13.35	2,781	AS		
4	264	1771.40	15.57	2.775	AS	0.510	
4	265	1771.50	14.54	2,756	AS	0.290	80.7
4	266	1771.60	13.77	2,760	AS	0,260	
4	267	1771 70	13.04	2,747	AS	0.460	
4	268	1771.80	14.34	2.749	AS		86.1
4	269	1771.90	1.101	-,, 10	AS		3017
4	270	1772 00	13.43	2,766	AS		
4	271	1772 10	12.27	2,718	AS	0.210	85.6
4	272	1772 20	13.94	2,792	AS	-,	20,0
4	273	1772 30	9.86	2,699	AS	0,370	
4	274	1772.40	12.92	2,743	AS	0,200	81.6
4	275	1772.50	12.32	2,739	AS	0,450	
4	276	1772.60	11.82	2,742	AS	0,310	
4	277	1772.70	12.25	2,737	AS		75.4
4	278	1772.80	12.14	2.729	AS	0,230	
4	279	1772.90	12.09	2.735	AS	1.1.1.1.1	
4	280	1773.00	12.14	2.738	AS	0,280	83.5
1.2	CODICI			-1100		0,200	50,0
1 m.	NC	Non cam	pionabile				
	FR	Campion	e fratturato		a 1992	10.0	
1000	NDI	Permeab	ilità non dete	rminata per in	formità cam	pione	
Seller 1	AS	Argilla sil	tosa	1			

TAB 4.5 B

CORE	CAMP	DEPTH DRILL	Ф	DENS. REALE CALC.	COD PERMH	PERMH	SATW
N	N	(m)	(%)	(g/cc)		(md)	(%)
	281	1773 10	9.53	2.748	AS		
4	282	1773.20	12.18	2,729	AS	0.300	1
4	283	1773.30	12,10	-11-20	NC	0,000	100
4	284	1773.40	11.95	2,726	AS	0,540	
4	285	1773.50	11.12	2,728	AS	0.320	(I
4	286	1773.60	12.05	2,756	AS	0,160	83,2
4	287	1773.70	11.72	2,749	AS	0,200	
4	288	1773.80	12.10	2,730	AS		
4	289	1773.90	13.58	2,778	AS	0,350	83,5
4	290	1774.00	12.59	2,740	AS	0,360	
4	291	1774.10	14.50	2,738	AS		1.0
4	292	1774.20			AS		1201
4	293	1774.30	14.51	2,710	AS		79,0
4	294	1774.40	22.00	2,706		359,000	112100
4	295	1774.50	9.99	2,720	AS		95.7
4	296	1774.60	9.37	2,742	AS	0,180	
4	298	1774.80	12.85	2,732	AS	0.380	92,3
4	299	1774 90	14.64	2,736	AS		
4	300	1775.00	13.26	2,723	AS		
4	301	1775 10	14.23	2,725	AS		100.0
4	302	1775 20	12.76	2,725	AS		
4	302	1775 30	13.89	2,730	AS		1.0
-	204	1775 40	20,89	2 726		51,700	88.0
4	205	1775 50	20,00	2 724		241.000	0010
4	305	1775,60	21.91	2 725		331,000	10.00
4	300	1775 70	13.60	2 721	AS	001,000	100.0
4	307	1775,00	12.69	2,721	AS		100,0
4	308	1775,00	11 17	2,730	AS		2.4
4	309	1775,90	12.65	2,720	AS		100.0
4	310	1776,00	13,05	2,111	NC		100,0
4	313	1778,30			NC		
5	322	1777.50			NC		- C.S.
5	325	1777,50			NC		
5	328	1779.10			NC		
5	331	1778,10			NC		
5	334	1778,40			NC		
5	337	1778,70			NC		1.1
5	340	1779,00			NC		
5	343	1779,30			NC		
5	346	1779,60	15 50	0 700	AS	0.280	57.8
6	362	1781,20	15,56	2,723	AS	0,200	62.8
6	365	1781,50	10,21	2,721	AS		02,0
6	368	1781,80			AS NC		
6	3/1	1702,10			NC		
6	3/4	1782,40			AC		
6	3/7	1782,70			AS		
6	380	1783,00			NC		
6	383	1783,30			NC		
6	386	1783,60			NC		
6	389	1783,90			AC		
6	392	1784,20	1107	0.714	AS	0 100	100.0
6	395	1784,50	14,37	2,/14	AS	0,120	100,0
	CODIC	1					
1.5	NC	Non cam	pionabile				
	FR	Campion	e fratturato				
	NDI	Permeat	ilità non dete	rminata per in	formità cam	pione	
	AS	Argilla si	Itosa				

TAB 4.5 C

CORE	CAMP	DEPTH DRILL	Ф	DENS. REALE CALC.	COD PERMH	PERMH	SATW
N	N	(m)	(%)	(g/cc)		(md)	(%)
6	398	1784,80			AS		
6	401	1785,10	14,31	2,713	AS		100,0
6	404	1785,40	16,92	2,726	AS		41,2
6	407	1785,70	16,27	2,737	AS		78,5
6	410	1786,00			NC		
7	413	1786,30			AS		
7	416	1786,60	14,41	2,749	AS		80,5
7	419	1786,90			AS		
7	422	1787,20	17,28	2,751	AS		51,8
7	425	1787,50	17,97	2,707		75,400	23,9
7	428	1787,80			NC		
7	431	1788,10			NC		
7	434	1788,40			NC		
7	437	1788,70			NC		
7	440	1789,00			NC		
7	443	1789,30			NC		
7	446	1789,60			NC		
7	449	1789,90			NC		
7	452	1790,20			AS		
7	455	1790,50			AS		
7	458	1790,80			NC		
7	461	1791,10			NC		
7	464	1791,40			NC		
7	467	1791,70			NC		
7	470	1792,00			NC		
7	473	1792,30			NC		
7	476	1792,60			NC		
7	479	1792,90			NC		
7	482	1793,20			NC		
7	485	1793,50			NC		
8	491	1794,10			NC		
8	494	1794,40			NC		
8	497	1794,70			NC		
8	500	1795,00			NC		
8	503	1795,30			NC		
8	506	1795,60			NC		
8	509	1795,90			NC		
8	512	1796,20			NC		
8	515	1796,50			NC		
8	518	1796,80			NC		
8	521	1797,10			NC		
8	524	1797,40			NC		
8	527	1797,70	10.54	0 701	AC	0 200	100.0
9	556	1800,60	10,54	2,701	AS	0,200	55.4
9	559	1800,90	8,55	2,742	AS	20,310	41.0
9	562	1801,20	14,71	2,699	NO	20,300	41,9
9	565	1801,50			NC		
9	568	1801,80			NC		
9	571	1802,10			NC		
9	574	1802,40	0.00	0.700	NC	0.040	E40
9	577	1802,70	0,36	2,760		68,000	54,0
9	580 CODICI	1803,00	15,68	2,724		68,900	35,8
	NC	Non cam	pionabile				
	FR	Campion	e fratturato				
	NDI	Permeat	ilità non dete	rminata per ir	nformità cam	pione	
	AS	Argilla si	tosa				

CORE	САМР	DEPTH DRILL	Φ	DENS. REALE CALC.	COD PERMH	PERMH	SATW
N	N	(m)	(%)	(g/cc)		(md)	(%)
9	583	1803.30	19.33	2,739		60.200	46.6
9	586	1803.60	18.59	2,767		11.300	47.8
9	589	1803.90	16,29	2,762		2.360	59.9
9	592	1804.20	18.20	2,708		23,900	59.6
9	595	1804.50	20.28	2,739		242.000	62.4
9	598	1804.80	16.06	2.714		81.000	61.6
9	601	1805.10	18.24	2,721		117.000	60.9
9	604	1805.40	16.99	2,711		4.940	76.2
9	607	1805.70	13,91	2,710		6.700	82.9
9	610	1806.00	8.13	2,726		1.570	25.8
a	613	1806.30	0,10		NC	.,	
9	616	1806.60			NC		
10	631	1808 10			NC		
10	634	1808.40			NC		
11	661	1811 10			NC		
11	664	1811.40			NC		
	667	1011,40			NC		
	667	1812.00			NC		
	670	1012,00			NC		
11	6/3	1812,30			NC		
12	733	1818,30					
12	736	1818,60					
12	739	1818,90					
12	742	1819,20					
12	745	1819,50					
13	802	1825,20	13,54	2,731	AS	0.450	82,2
13	805	1825,50	12,13	2,771	AS	0,150	97,3
13	808	1825,80	14,73	2,721	AS		100,0
13	811	1826,10	14,72	2,721	AS		100,0
13	814	1826,40			AS		
13	817	1826,70			AS	Constant of	
13	820	1827,00			FR	3,680	
13	823	1827,30	15,96	2,715	AS		100,0
13	826	1827,60			AS		
13	829	1827,90			NC		
13	832	1828,20			AS	0,090	
13	835	1828,50			AS	0,130	
13	838	1828,80					
13	841	1829,10	16,56	2,703	AS		100,0
13	844	1829,40	17,96	2,749	AS		100,0
13	847	1829,70	16,95	2,721	AS		100,0
13	850	1830,00	15,90	2,693	AS	0,490	100,0
13	853	1830,30	15,93	2,700	AS		100,0
13	856	1830,60	16,77	2,709	AS		100,0
13	859	1830,90			AS	0,110	
13	862	1831,20			AS		
13	865	1831,50			AS	0,140	
13	868	1831,80	13,81	2,723	AS	0,120	100,0
13	871	1832,10			AS		
13	874	1832,40	15,10	2,717	AS	0,320	100,0
13	877	1832,70			AS		
13	880	1833,00	14,76	2,712	AS	0,110	100,0
13	883	1833,30	15,23	2,712	AS	0,400	100,0
	CODIC						
	NC	Non cam	pionabile				
	FR	Campion	e tratturato		· · · · · · · · · · · · · · · · · · ·		
	NDI	Permeab	linta non dete	rminata per in	iormita cam	pione	
	AS	Argilla sil	losa				

TAB 4.5 E

CORE	CAMP	DEPTH	Ф	DENS. REALE	COD PERMH	PERMH	COD	PERMV	SATW
N	N	(m)	(%)	(a/cc)		(md)		(md)	(%)
1	1	1683.1	15.28	2,693	AS	0,07			100,00
i	4	1683,4	16,02	2,707	AS	0,15			100,00
1	7	1683.7	15,75	2,715	AS	0,18			100,00
1	10	1684.0	15,06	2,714	AS	0,27			100,00
1	13	1684.3			AS				- 10 M
1	16	1684.6	17.16	2,719	AS				100,00
1	19	1684.9	16,60	2,726	AS				100,00
	22	1685.2			AS				
1	25	1685.5			AS				100
1	28	1685.8			AS				
1	31	1686.1			AS				1.11
	34	1686.4			AS				
	37	1686.7			AS				
	40	1687.0			AS				1.5
1	43	1687.3	17,28	2,697	AS				100,00
	46	1687.6	17,18	2,721	AS				100,00
	49	1687.9		110 CO.	AS				
1	52	1688.2			AS				1.00
	55	1688.5			AS				
	58	1688.8			AS				
	61	1689.1			AS				
	64	1689.4	15.90	2,709	AS	0,07			100,00
2	82	1691.2	15.85	2,686	AS	0,27			100,00
2	88	1691.8			AS				
2	91	1692 1			AS				1.0
3	94	1692.4			AS				1.1.1.1
3	97	1692.7	16.84	2,709	AS				100,00
3	100	1693.0	18.22	2,709	AS	0,11			98,30
3	103	1693.3	17.45	2,703	AS	0,09			100,00
3	106	1693.6	13.94	2,723	AS	0,07			100,00
3	109	1693.9	15.77	2.698	AS	0,10			100,00
3	112	1694.2	16.93	2,693	AS	0,13			100,00
3	115	1694.5	15.97	2.685	AS	0,46			100,00
3	118	1694.8	16.55	2,707	AS	0,09			100,00
3	121	1695.1	14,54	2,737	AS				100,00
3	124	1695.4	15,12	2,705	AS	0,29			100,00
3	127	1695.7	14,11	2,709	AS				100,00
3	130	1696.0	14,52	2,719	AS	0,10			100,00
3	133	1696,3	14,40	2,720	AS				100,00
3	136	1696.6	14,00	2,725	AS	0,13			100,00
3	139	1696.9	a successory		AS	0,08			1 - T - T - T
3	142	1697,2			AS	0,14			10.00
3	145	1697,5			AS				
3	148	1697,8	15,48	2,724	AS	0,10			100,00
3	151	1698,1	16,41	2,725	AS	0,09			100,00
3	154	1698,4			AS				5 - 08
3	157	1698,7			AS				
4	181	1701.1			AS	0,11			
4	184	1701,4	16,37	2,699	AS	0,25			91,90
4	187	1701,7	16,50	2,713	AS	0,09			67,09
4	190	1702,0	16,85	2,706	AS	2,56			88,51
4	193	1702,3	18,06	2,688	AS				99,11
4	196	1702,6		- diata	AS	0,22			
			c	NC No.	rocuperabile				
				AS Areill	a siltosa				
S				NP Cam		nuto			
				IN Call	p. non porve				

CORE	CAMP	DEPTH	Ф	DENS.	COD	PERMH	COD	PERMV	SATW
1946		DRILL		REALE	PERMH		PERMV		A COMPANY AND A COMPANY
3.87.57				CALC.					
N	N	(m)	(%)	(g/cc)		(md)		(md)	(%)
4	199	1702,9	17,19	2,707	AS	0,14			82,02
4	202	1703,2	18,10	2,695	AS	0,28			86,49
4	205	1703,5	17,30	2,693	AS				100,00
4	208	1703,8	17,46	2,711	AS				94,17
4	211	1704,1	16,72	2,714	AS				96,24
4	214	1704,4	14,68	2,712	AS				100.00
4	217	1704,7	15,29	2,720	AS				86,23
4	220	1705,0	16,29	2,713	AS	0,38			84.37
4	223	1705,3	16,19	2,732	AS	0,17			83.27
4	226	1705,6	17,88	2,726	AS				66.55
4	229	1705,9	17,82	2,729	AS	0,45			78.04
4	232	1706,2	18,10	2,737	AS	0.13			82.04
4	235	1706,5	18,88	2,715	AS				83.80
4	238	1706.8	19.14	2,730	AS				81.32
4	241	1707.1	18.33	2,710	AS	0.19			81.79
4	244	1707.4	16.23	2,729	AS	-1			95 74
4	247	1707.7		21120	AS				00,74
4	250	1708.0	19.09	2 753	AS	0 14			70.27
4	253	1708.3	10,00	2,700	AS	0,14			15,21
4	256	1708.6	17 20	2 743	AS	0.46			03.03
4	259	1708.9	17.07	2 752	AS	0.53			100.00
-	262	1700,0	17,07	2,102	45	0,00			100,00
4	202	1709,2			AS	0,15			
7	200	1709,5			AS	0,17			
5	200	1710 1	16 99	0.714	AS	0.44			100.00
5	271	1710,1	16,32	2,714	AS	0,44			100,00
5	274	1710,4	10,40	2,721	AS	0,08			98,13
5	211	1710,7	10,81	2,724	AS	0,17			94,80
5	200	1711,0	10,01	2,122	AS	0,25			100,00
0	283	1711,3	16,34	2,121	AS	0,12			92,08
5	286	1711,6	10.00	0 700	AS	0,15			
5	289	1711,9	16,92	2,729	AS	0,24			91,81
5	292	1712,2	17,89	2,730	AS	0,19			79,51
5	295	1/12,5	19,16	2,729	AS	0,15			57,71
5	298	1712,8			AS				
5	301	1713,1	15,56	2,749	AS				94,29
5	304	1/13,4	16,02	2,756	AS				71,71
5	307	1713,7	15,72	2,741	AS				100,00
5	310	1714,0	15,75	2,729	AS				100,00
5	313	1714,3			AS				
5	316	1714,6	14,23	2,735	AS				97,72
5	319	1714,9	15,04	2,733	AS	0,16			97,67
5	322	1715,2	14,77	2,725	AS	0,19			100,00
5	325	1715,5	14,88	2,715	AS				100,00
5	328	1715,8			AS				1.1
5	331	1716,1			AS				
5	334	1716,4	13,26	2,733	AS				100,00
5	337	1716,7	12,90	2,746	AS				100,00
5	340	1717,0	13,29	2,734	AS				100,00
5	343	1717,3	12,31	2,759	AS				100,00
5	346	1717,6	13,50	2,732	AS	0,42			100,00
5	349	1717,9	14,33	2,737	AS				100,00
5	352	1718,2			AS	0,18			
5	355	1718,5	13,27	2,724	AS				100,00
			Cod	ici:					
			N	Non rec	uperabile				Sec. 6.2
			A	S Argilla s	siitosa				
			N	Camp.	non pervenut	0		and a second	

TAB 4.6 B

POOL B DATI ANALISI PETROFISICA POZZO BORDOLANO 4DIR A

CORE	CAMP	DEPTH	Φ	DENS.	COD	PERMH	COD	PERMV	SATW
		DRILL		REALE	PERMH		PERMV		
				CALC.					
N	N	(m)	(%)	(g/cc)		(md)		(md)	(%)
5	358	1718,8			AS	0,45			
6	361	1719,1	15,18	2,718	AS				89,53
6	364	1719.4			AS	0,07			
6	367	1719,7	14,31	2,710	AS	0,23			89,72
6	370	1720,0	15,86	2,725	AS				89,64
6	373	1720,3	14,87	2,758	AS	0,56			85,42
6	376	1720,6			AS				1993
6	379	1720,9			AS	5,83			1.1
6	382	1721,2	18,22	2,758	AS	1,56			82,22
6	385	1721,5	15,39	2,717	AS	0,12			90,50
6	388	1721,8	18,41	2,718	AS	0,80			83,20
6	391	1722,1	19,44	2,727	AS	0,17			78,86
6	394	1722,4	15,96	2,756	AS				73,28
6	397	1722,7	15,07	2,730	AS	0,44			84,83
6	400	1723,0	13,97	2,729	AS	0,12			87,79
6	403	1723,3	14,67	2,711	AS	0,20			91,79
6	406	1723,6	14,33	2,727	AS	1,98			90,24
6	409	1723,9	15,91	2,730	AS	0,43			85,56
6	412	1724,2	15,16	2,717	AS	0,41			96,80
6	415	1724,5			AS	0,07			
6	418	1724,8	13,66	2,730	AS	0,08	1.1		87,19
6	421	1725,1			AS	0,07			1. 1.
6	424	1725,4			AS	0,26			100
6	427	1725,7	14,51	2,694	AS	0,10			94,91
6	430	1726,0	15,70	2,719	AS	0,25			90,41
6	433	1726,3	17,23	2,718	AS	0,13			100,00
6	436	1726,6			NP				24-2
6	439	1726,9	15,79	2,713	AS	0,26			100,00
6	442	1727,2	12,94	2,710	AS	1,12			100,00
6	445	1727,5	24,07	2,697	AS	1040,00			54,04
6	448	1727,8			NC		NC		2.25
7	541	1737,1			NC		NC		1.11
7	544	1737,4			NC		NC		110
7	547	1737,7			NC		NC		
7	550	1738,0			NC		NC		1.1
7	553	1738,3			NC		NC		1.1
7	557	1738,7	3,90	2,654	AS			157,90	200
7	560	1739,0	1,89	2,653	AS			381,91	1000
7	565	1739,5	4,10	2,654	AS			303,25	1200.00
7	569	1739,9	1,16	2,683	AS			0,18	
			Co	dici:					- 1 - 1
1000				NC Non re	cuperabile				Sec. 25.1
1.1				AS Argilla	siltosa				25.54
			No.	NP Camp.	non pervent	JIO			14.5

CAMPO DI BORDOLANO POOL B PARAMETRI PETROFISICI DI CAMPO E G.O.I.P. STATICO POOL B

LIVELLO	GBV (M m3)	NTG	Ф	Sw	Bg (Sm3/m3)	G.O.I.P. (M Sm3)
B1	22,63	0,95	0,15	0,20	0,00440	586,32
B2	52,94	0,95	0,20	0,20	0,00440	1828,84
B3	43,20	0,95	0,20	0,20	0,00440	1492,36
B4	16,11	0,95	0,20	0,20	0,00440	556,53
B5	5,96	0,95	0,21	0,20	0,00440	216,19
TOTALE	140,84					4680,24