

# INDICE

| 1.            | PREMESSA                                                                     | 5       |
|---------------|------------------------------------------------------------------------------|---------|
| 2.            | DESCRIZIONE DELL'INTERVENTO                                                  | 6       |
| 3.            | NORMATIVE, DOCUMENTAZIONE DI RIFERIMENTO E SOFTWA                            | ARE     |
| UTILIZZA      | ۲I                                                                           |         |
| 3.1.          | Normative di riferimento                                                     |         |
| 3.2.          | Documenti di riferimento                                                     |         |
| 3.3.          | Software utilizzati                                                          | 9       |
| 4.            | MATERIALI                                                                    | 10      |
| 4.1.          | Acciaio per tubi                                                             | 10      |
| 4.2.          | Acciaio per getti in cemento armato                                          | 10      |
| 4.3.          | Calcestruzzo per getti in opera                                              | 10      |
| 5.            | IL REGIME DEI VENTI                                                          | 12      |
| 5.1.          | Inquadramento geografico del paraggio ed individuazione dei settori di trave | ersia12 |
| 5.2.          | Fetches geografici ed efficaci                                               | 12      |
| 4.1.          | Fonti di dati meteomarini a disposizione                                     | 15      |
| 4.2.          | Regime anemologico locale                                                    | 15      |
| 6.            | CALCOLO DELLE AZIONI DI PROGETTO                                             | 17      |
| 6.1.          | Azione del vento                                                             | 17      |
| 7.            | PONTILI GALLEGGIANTI ED ARREDI DI BANCHINA                                   | 20      |
| 7.1.          | Arredi di banchina                                                           | 20      |
| 7.1.1.        | Bitte e tirafondi                                                            | 20      |
| 7.1.2.        | Catene, corpi morti                                                          | 26      |
| 7.1.3.        | Boe                                                                          |         |
| 7.1.4.        | Parabordi                                                                    |         |
| 7.2.          | Pontili galleggianti                                                         |         |
| 7.2.1.        | Pennello a T – Banchina San Teofanio                                         |         |
| 7.2.2.        | Pennelli di ormeggio – Calata Principe Tommaso                               | 34      |
| 8.<br>PONTILI | MODELLAZIONE STRUTTURALE E GEOTECNICO DEI PALI<br>35                         | DEI     |

| 8.1. | Caratterizzazione geomeccanica delle litologie attraversate               | 35 |
|------|---------------------------------------------------------------------------|----|
| 8.2. | Definizione del modello di riferimento per le analisi                     | 36 |
| 8.3. | Proprietà e modelli costitutivi dell'ammasso e degli elementi strutturali |    |
| 8.4. | Costruzione per fasi (Staged Construction)                                |    |
| 8.5. | Azioni agenti sui punti di ancoraggio                                     | 42 |
| 8.6. | Analisi dei risultati                                                     | 45 |
| 9.   | VERIFICA PALI DEI PONTILI                                                 | 53 |
| 9.1. | Verifica agli SLE (Spostamenti)                                           | 53 |
| 9.2. | Verifica agli SLU (Resistenza)                                            | 53 |

# **INDICE DELLE FIGURE**

| Figura 1.  | Planimetria di intervento                                                                                |
|------------|----------------------------------------------------------------------------------------------------------|
| Figura 2.  | Fetch geografici Civitavecchia13                                                                         |
| Figura 3.  | Fetch "efficaci"14                                                                                       |
| Figura 4.  | Fetch geografici ed efficaci al largo di Civitavecchia15                                                 |
| Figura 5.  | Distribuzione direzionale degli stati di vento osservati alla stazione meteorologica<br>di Civitavecchia |
| Figura 6.  | Regressione Area laterale                                                                                |
| Figura 7.  | Planimetria ormeggi                                                                                      |
| Figura 8.  | Schematizzazione delle forze in gioco nella stabilità di un corpo morto                                  |
| Figura 9.  | Trelleborg AB_2007                                                                                       |
| Figura 10. | Imput geometrico (Modello geometrico) e discretizzazione degli elementi finiti (mesh)                    |
| Figura 11. | Distribuzione dei nodi e dei punti di Gauss                                                              |
| Figura 12. | Definizione della falda e delle pressioni interstiziali                                                  |
| Figura 13. | Parametri dell'elemento palo                                                                             |
| Figura 14. | Fase 1_Geostatica40                                                                                      |
| Figura 15. | Stato tensionale Fase 140                                                                                |
| Figura 16. | Fase 2_ External Load_Pile SLE                                                                           |
| Figura 17. | Stato tensionale Fase 241                                                                                |
| Figura 18. | Fase 3_ External Load_Pile SLU42                                                                         |
| Figura 19. | Stato tensionale Fase 342                                                                                |

| Figura 20. | Schematizzazione carico su palo                                                                                                                                                                                                                         | 43 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figura 21. | Definizione di alcuni nodi caratteristici                                                                                                                                                                                                               | 45 |
| Figura 22. | Fasi di realizzazione                                                                                                                                                                                                                                   | 45 |
| Figura 23. | Mesh deformata                                                                                                                                                                                                                                          | 46 |
| Figura 24. | Vertical displacement $U_y$ -6,16*10 <sup>-3</sup> m                                                                                                                                                                                                    | 46 |
| Figura 25. | Orizontal displacement U <sub>x</sub> 17,08*10 <sup>-3</sup> m                                                                                                                                                                                          | 47 |
| Figura 26. | Total displacement U <sub>tot</sub> 17,71*10 <sup>-3</sup> m                                                                                                                                                                                            | 47 |
| Figura 27. | Total phase displacement dUtot 17,71*10 <sup>-3</sup> m                                                                                                                                                                                                 | 48 |
| Figura 28. | Total Displacement nella condizione più sfavorevole 120,96*10 <sup>-3</sup> m_Vertical<br>Displacement nella condizione più sfavorevole -4,72*10 <sup>-3</sup> m_Horizontal<br>Displacement nella condizione più sfavorevole -120,96*10 <sup>-3</sup> m | 48 |
| Figura 29. | Sforzo normale nella condizione più sfavorevole -24,10 kN/m_Taglio nella condizione più sfavorevole 66,67 kN/m_Momento flettente nella condizione più sfavorevole 369,12 kNm/m                                                                          | 49 |
| Figura 30. | Mesh deformata                                                                                                                                                                                                                                          | 49 |
| Figura 31. | Vertical displacement $U_y$ -7,13*10 <sup>-3</sup> m                                                                                                                                                                                                    | 50 |
| Figura 32. | Orizontal displacement U <sub>x</sub> 25,91*10 <sup>-3</sup> m                                                                                                                                                                                          | 50 |
| Figura 33. | Total displacement U <sub>tot</sub> 26,33*10 <sup>-3</sup> m                                                                                                                                                                                            | 51 |
| Figura 34. | Total phase displacement dU <sub>tot</sub> 26,33*10 <sup>-3</sup> m                                                                                                                                                                                     | 51 |
| Figura 35. | Total Displacement nella condizione più sfavorevole 182,27*10 <sup>-3</sup> m_Vertical<br>Displacement nella condizione più sfavorevole -4,71*10 <sup>-3</sup> m_Horizontal<br>Displacement nella condizione più sfavorevole 182,21*10 <sup>-3</sup> m  | 52 |
| Figura 36. | Sforzo normale nella condizione più sfavorevole -24,10 kN/m_Taglio nella condizione più sfavorevole 99,56 kN/m_Momento flettente nella condizione più sfavorevole 553,76 kNm/m                                                                          | 52 |
| Figura 37. | Calcolo del carico di rottura                                                                                                                                                                                                                           | 54 |
| INDICE DE  | LLE TABELLE                                                                                                                                                                                                                                             |    |
| Tabella 1. | Descrizione delle condizioni ambientali - Tab. 4.1.III-NTC 08                                                                                                                                                                                           | 10 |
| Tabella 2. | Criteri di scelta stato limite di fessurazione - Tab. 4.1.IV-NTC 08.                                                                                                                                                                                    | 11 |
| Tabella 3. | Stazione A.M. di Civitavecchia                                                                                                                                                                                                                          | 16 |
| Tabella 4. | Coefficienti di "drag" tipici                                                                                                                                                                                                                           | 17 |
| Tabella 5. | Area laterale dell'opera viva delle imbarcazioni                                                                                                                                                                                                        | 18 |

| Tabella 6. | Valori delle azioni dovute al vento |
|------------|-------------------------------------|
| Tabella 7. | Dimensioni catene alla genovese     |
| Tabella 8. | Fattori di impatto anomalo "PIANC"  |

# 1. PREMESSA

Il presente elaborato, redatto in conformità al D.M. 14 aprile 1998 e ai sensi dell'art. 26, comma "c" del D.P.R. 207/2010 così come aggiornato dal D.lgs. 50/2016, costituisce la relazione di calcolo riguardante il dimensionamento dei sistemi di ormeggio previsti nell'ambito del progetto definitivo dal titolo "Realizzazione di un approdo turistico all'interno del Porto di Civitavecchia" promosso dalla Società Roma Marina Yachting S.r.l. nell'ambito della procedura di cui al D.P.R. n. 509/97, finalizzata al rilascio della concessione demaniale marittima.

# 2. DESCRIZIONE DELL'INTERVENTO

L'area di intervento si inserisce a sud est dell'attuale Porto di Civitavecchia, in zona ben protetta dall'antemurale C. Colombo esistente.

In base a tali considerazioni si è ritenuto opportuno non procedere alla redazione dello studio idraulico marittimo ma di riportare comunque, ad integrazione di quanto già esposto negli elaborati progettuali, considerazioni di carattere generale utili ad inserire la progettazione nel contesto idraulico marittimo generale del Porto di Civitavecchia. Gli interventi non apportano modifiche né all'agitazione interna portuale, né alla qualità delle acque, né al regime della dinamica litoranea locale.

Le opere previste si inseriscono in un tessuto portuale esistente senza modificare in maniera sostanziale l'attuale utilizzo delle aree, limitando l'azione ad una ristrutturazione e riqualificazione generale della superficie d'intervento al fine di renderla adatta ad accogliere un approdo turistico. Il progetto prevede anche l'installazione di tre pontili galleggianti sulle banchine delle darsene esistenti opportunamente riqualificate, di cui uno avente configurazione a T sulla banchina San Teofanio ed ulteriori 2 lineari installati in seconda fase sulla Calata Principe Tommaso.

I pontili di ormeggio sono realizzati mediante elementi modulari prefabbricati galleggianti ad alto dislocamento, vincolati al fondale, per il pontile principale a "T", mediante pali in acciaio zincato adeguatamente verificati in funzione delle diverse dimensioni delle unità da diporto costituenti la flotta. In particolare, i moduli galleggianti sono internamente dotati di cursori scorrevoli "collari ammortizzati" che ne assecondano il movimento verticale (sussulto) in funzione delle condizioni meteo marine (maree) e che al contempo irrigidiscono il sistema di ormeggio, garantendone la sicurezza.

Le dimensioni dei pontili risultano:

- pontile a T sulla banchina San Teofanio (banchina 2): larghezza 4,90 m da circa 92,15 m (perpendicolare alla banchina) e 147,45 m (parallelo alla banchina);
- pontili sulla Calata Principe Tommaso (banchina 3): larghezza 2,54 e due pontili da circa 41,80 m e 58,20 m.

Di seguito si riporta la configurazione finale delle banchine e la loro estensione:

# FASE 1

- banchina n° 7 Guglielmotti: 229 m;
- banchina n° 6 Michelangelo: 179 m;
- banchina n° 5 dello sporgente Sardegna: 105 m;
- testata dello sporgente Sardegna: 25 m;
- banchina n° 2 San Teofanio: tratto di 92,25 m;
- pontile di testata della banchina San Teofanio:147,45 m.

# FASE 2

- banchina n° 4 dello sporgente Sardegna: 60 m;
- banchina n° 3 della calata Principe Tommaso: 205 m;
- pontile 1 della calata Principe Tommaso: 41,80 m;
- pontile 2 della calata Principe Tommaso: 58,20 m

Per quel che riguarda i dispositivi di ormeggio delle imbarcazioni, si è scelto di utilizzare il classico sistema con corpi morti con trappe o pendino (ad eccezione delle poche unità ormeggiate a murata sulle banchine 7, 5 e 4). Tale sistema di ormeggio è costituito da una catena posta sul fondale, davanti alla prua delle imbarcazioni e fissata a corpi morti, alla quale vengono assicurati i cavi (non galleggianti) per l'ormeggio di punta delle singole imbarcazioni. Per quanto concerne le dimensioni dei corpi morti, nel presente progetto è previsto il riutilizzo delle 43 unità già poste in opera nei fondali antistanti la banchina Michelangelo, ed inoltre sono state introdotte ulteriori tre tipologie distinte per classi di peso:

- corpi morti tipo AP: 4,00x4,00x0,80;
- corpi morti tipo 1: 3,60x3,60x0,90;
- corpi morti tipo 2: 3,10x3,10x0,90;
- corpi morti tipo 3: 2,20x2,20x0,50.

Per le unità con lunghezza pari a 40, 50 e 60 metri è stato previsto l'ormeggio mediante boe galleggianti ancorate su appositi corpi morti (di tipo 1 o esistenti reimpiegati).

Le bitte utilizzate hanno dimensioni che variano da 50 t a 5 t in funzione del tipo di accosto e della lunghezza dell'imbarcazione.



Figura 1. Planimetria di intervento

### 3. NORMATIVE, DOCUMENTAZIONE DI RIFERIMENTO E SOFTWARE UTILIZZATI

### 3.1. Normative di riferimento

Il progetto dell'opera in oggetto è stato condotto nel rispetto della Normativa in vigore e di alcune Raccomandazioni. I principali riferimenti normativi sono i seguenti:

- Australian Standard Guidelines for design of marinas AS 3962\_2001;
- Australian Standard Structural design actions AS 1170.2\_2002;
- "Linee guida per la progettazione di sistemi di parabordo\_2002", rilasciato dall'Associazione Internazionale di Navigazione;
- UNI EN 1563:2004 "Fonderia Getti di ghisa a grafite sferoidale";
- UNI EN 10025-1:2005 "Prodotti laminati a caldo di acciai per impieghi strutturali Parte 1: Condizioni tecniche generali di fornitura";
- Trelleborg AB, 2007;
- D.M. LL.PP. 14 Gennaio 2008 "Norme tecniche per le costruzioni";
- Circolare 2 Febbraio 2009, n. 617 "Istruzioni per l'applicazione delle Norme tecniche per le costruzioni di cui al D.M. 14 gennaio 2008";
- Guidelines for superyacht marinas\_René Bouchet, Senior expert in maritime works\_Jean Baptiste Borea D'Olmo, Technical Advisor of the Monegasc Government and General manager of the Monaco harbours\_2010.
- UNI EN 10088-1:2014 "Acciai inossidabili Parte 1: Lista degli acciai inossidabili";
- UNI 11104:2016 "Calcestruzzo Specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206";
- "Norme Tecniche per le Costruzioni NTC 2018 D.M. 17 Gennaio 2018";
- Circolare Ministeriale 21 Gennaio 2019, n.7 C.S.LL.PP. "Istruzioni per l'applicazione dell'aggiornamento delle Norme Tecniche per le Costruzioni D.M. 17 Gennaio 2018";

# 3.2. Documenti di riferimento

Di seguito si riporta la documentazione consultata per la redazione della presente relazione di calcolo:

- Code of practice for Design of Fendering and Mooring Systems. BS 6349: Part4;
- Recommendations of the Committee for Waterfront Structures, Harbours and Waterways EAU2004;
- Guidelines for the Design of Fender Systems. PIANC 2002;
- On Fender design and Berthing Velocities 24th PIANC Congress J.U. Brolsma et al.;
- The Berting Ship F. Vasco Costa;
- High Performance Fenders section 1 Trelleborg Marine Systems;
- Fender Design section 12 Trelleborg Marine Systems;
- Marine Fendering Systems Fentek Marine Systems;
- Lineamenti di costruzioni marittime G. Matteotti.

### 3.3. Software utilizzati

Ai fini dell'esecuzione dei calcoli geotecnici e strutturali, nonché nella redazione della presente relazione, si è fatto uso dei seguenti software unitamente a fogli di calcolo sviluppati su Excel:

- PLAXIS V8.2 "Finite element code for soil and rock analyses (An Delft, Netherlands)";
- Verifica Cemento Armato Stato Limite Ultimo V7.7-VCASLU (Piero Gelfi);
- Flex 62++ "Calcolo travi, profili e componenti meccanici".

# 4. MATERIALI

### 4.1. Acciaio per tubi

Si prevede l'impiego di pali in acciaio tipo S355 GP.

Le caratteristiche meccaniche dell'acciaio nell'analisi/verifiche sono le seguenti:

| modulo elastico                               | $E_{s} = 210000$                       | N/mm <sup>2</sup> |
|-----------------------------------------------|----------------------------------------|-------------------|
| tensione caratteristica di snervamento        | $f_{yk}\!=355$                         | N/mm <sup>2</sup> |
| coefficiente parziale per verifiche sezionali | $\gamma_M\!=1.05$                      |                   |
| tensione di snervamento di progetto           | $f_{yd}\!=f_{yk}\!/\!\gamma_M\!=\!338$ | N/mm <sup>2</sup> |

### 4.2. Acciaio per getti in cemento armato

Per le armature metalliche si adottano tondini in acciaio del tipo B450 C controllati in stabilimento, che presentano le seguenti caratteristiche:

| Tensione di snervamento caratteristica      | $f_{yk,nom}\!\geq\!450$             | N/mm <sup>2</sup> |
|---------------------------------------------|-------------------------------------|-------------------|
| Tensione caratteristica a rottura           | $f_{tk,nom}\!\geq 540$              | N/mm <sup>2</sup> |
| Tensione massima in condizioni di esercizio | $\sigma_s\!<\!0.80^*f_{yk}\!=\!360$ | N/mm <sup>2</sup> |
| Fattore di sicurezza acciaio                | $\gamma_c=1.15$                     |                   |
| Resistenza a trazione di calcolo            | $f_{yd}=f_{yk}/\gamma_s=391.30$     | N/mm <sup>2</sup> |

### 4.3. Calcestruzzo per getti in opera

Per la realizzazione delle strutture in c.a. in opera si prevede, in ottemperanza alla normativa UNI 11104, l'utilizzo di calcestruzzo di classe di esposizione XS3 a cui corrisponde un calcestruzzo di classe di resistenza  $R_{ck} \ge 45 \text{ N/mm}^2$ , dotato delle seguenti caratteristiche:

| Resistenza a compressione cilindrica          | $f_{ck} \!=\! 0.83 \!*\! R_{ck} \!=\! 37.35$       | N/mm <sup>2</sup> |
|-----------------------------------------------|----------------------------------------------------|-------------------|
| Resistenza a compressione in campo elastico   | $f_{cE}\!=\!0.6^{*}f_{ck}\!=\!22.41$               | N/mm <sup>2</sup> |
| Resistenza a trazione media                   | $f_{ctm} \!= 0.27 \! * \! R_{ck}{}^{2/3} \!= 3.41$ | N/mm <sup>2</sup> |
| Resistenza a trazione                         | $f_{ctk} \!=\! 0.7^* f_{ctm} \!=\! 2.39$           | N/mm <sup>2</sup> |
| Resistenza a trazione di calcolo              | $f_{ctd} = f_{ctk}/\gamma_c = 1.49$                | N/mm <sup>2</sup> |
| Tensione massima di compressione in esercizio |                                                    |                   |
| Per combinazione rara:                        | $\sigma_s\!<\!0.60^*f_{ck}\!=\!22.41$              | N/mm <sup>2</sup> |
| Per combinazione quasi permanente:            | $\sigma_s\!<\!0.45^*f_{ck}\!=\!16.80$              | N/mm <sup>2</sup> |

In relazione alla classe di esposizione considerata, le condizioni ambientali vengono definite in base a quanto indicato nella tabella seguente:

| Condizioni ambientali | Classe di esposizione             |
|-----------------------|-----------------------------------|
| Ordinarie             | X0, XC1, XC2, XC3, XF1            |
| Aggressive            | XC4, XD1, XS1, XA1, XA2, XF2, XF3 |
| Molto aggressive      | XD2, XD3, XS2, XS3, XA3, XF4      |

| Tabella 1. | Descrizione delle condizioni ambientali - Tab. 4.1.III-NTC 08 |
|------------|---------------------------------------------------------------|
|            |                                                               |

Nel caso in questione le condizioni ambientali vengono definite "molto aggressive".

Inoltre, trattandosi di armature di acciaio ordinario la sensibilità delle armature alla corrosione viene valutata come "poco sensibile". Nella tabella seguente sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle esigenze sopra riportate.

Nel caso specifico che si sta esaminando rientriamo nel "gruppo di esigenze c" e la verifica da effettuare e quella di apertura delle fessure con limite di apertura delle fessure  $w_1=0.2$  mm.

|                    | Condizioni ambientali |             | Armatura       |            |                |                 |
|--------------------|-----------------------|-------------|----------------|------------|----------------|-----------------|
| Gruppi di esigenze |                       | di azioni   | Sensibile      |            | Poco sensibile |                 |
|                    |                       |             | Stato limite   | Wd         | Stato limite   | w <sub>d</sub>  |
| 2                  | Ordinarie             | Frequente   | ap. fessure    | $\leq w_2$ | ap. fessure    | ≤w <sub>3</sub> |
| a                  |                       | Quasi perm. | ap. fessure    | $\leq w_1$ | ap. fessure    | $\leq w_2$      |
| h                  | Aggressive            | Frequente   | ap. fessure    | $\leq w_1$ | ap. fessure    | $\leq w_2$      |
| U                  |                       | Quasi perm. | decompres.     | -          | ap. fessure    | $\leq w_1$      |
|                    | Molto aggressive      | Frequente   | formaz fessure | -          | ap. fessure    | $\leq w_1$      |
| C                  |                       | Quasi perm. | decompres.     | -          | ap. fessure    | $\leq w_1$      |

**Tabella 2.**Criteri di scelta stato limite di fessurazione - Tab. 4.1.IV-NTC 08.

# 5. IL REGIME DEI VENTI

### 5.1. Inquadramento geografico del paraggio ed individuazione dei settori di traversia

Ponendosi al largo del porto di Civitavecchia su fondali di circa –100 m, ad una distanza di circa 12 Km dal porto, il paraggio è esposto al mare aperto per un ampio settore di traversia così delimitato: a Nord dal promontorio dell'Argentario e dall'Isola del Giglio (300 °N); a Sud da Capo Linaro (140°N). La traversia geografica (fig.2) è limitata a sud dalla costa siciliana (distante circa 490 Km) e dalla costa Nord Africana (distante circa 600 Km); a ovest dalla costa della Sardegna (distante circa 220 Km) e della Corsica (distante circa 180 Km).

### 5.2. Fetches geografici ed efficaci

Per un'analisi del settore di traversia, più propriamente mirata alla valutazione delle possibili condizioni di esposizione agli stati di mare è ormai prassi consolidata fare riferimento, in luogo dei settori di traversia geografica, al "fetch efficace<sup>1</sup>". A tal proposito, considerati i limiti geografici relativi alle diverse direzioni contenute entro il settore di traversia del paraggio in esame, si è determinato il settore "efficace" secondo il criterio di Seymour.

I fetch geografici sono limitati ad una estensione geografica massima di 500 km per tenere conto del fatto che nel Mar Mediterraneo le perturbazioni cicloniche hanno estensioni massime dell'ordine dei 500 km. Il fetch efficace massimo che ne deriva è pari a circa 300 km ed è riferibile al settore sud-sud-ovest (180°-210°N mezzogiorno-libeccio). Per il calcolo dei fetch efficaci si fa riferimento ad una relazione, derivata dalla teoria di ricostruzione indiretta del moto ondoso nota come metodo S.M.B. (Sverdrup, Munk e Bretsheneider, 1947) e successivi aggiornamenti (Saville 1954, Seymour 1977, S.P.M. 1984, Smith 1991), di seguito riportata nella sua forma più generale:

$$F_{e,w} = \frac{\sum_{\phi_i=\phi_w-\theta}^{\phi_w+\theta} F_i * \cos^{n+1}(\phi_i - \phi_w)}{\sum_{\phi_i=\phi_w-\theta}^{\phi_w+\theta} \cos^n(\phi_i - \phi_w)}$$

Dove:

- $\phi_w$  è la direzione media (riferita al Nord geografico) di possibile provenienza del vento;
- $\phi_i \leq \phi_w \pm \theta$  direzione i-esima (riferita al nord geografico) relativa ad un settore di 2 $\theta$ ;
- $F_{eW}$  è la lunghezza del fetch efficace relativa alla direzione  $\phi_w$ ;
- $F_i$  è la lunghezza del fetch geografico relativa alla direzione i-esima  $\phi_i$ ;
- n è il termine esponenziale definito in funzione della legge di distribuzione direzionale degli spettri di moto ondoso.

Il programma di calcolo utilizzato fornisce anche la legge di deviazione direzionale tra la direzione media del vento e la direzione del moto ondoso generato.

Riferendosi ai settori di traversia geografica superiori a 100 Km le massime deviazioni della direzione di moto ondoso generata dal vento si hanno dai settori di ponente e maestrale ( $\Delta \theta = 20^\circ - 30^\circ$ ). Per una attenta analisi

<sup>&</sup>lt;sup>1</sup> Si definisce come "fetch efficace" la porzione di mare che costituisce, sotto l'azione diretta dei venti, l'area di generazione dell'evento di moto ondoso.

del regime dei venti sono stati analizzati i dati delle stazioni anemometriche di Civitavecchia (Marina Militare – M.M.: periodo dal 1946 al 1962 – quota +19 m s.l.m. e Aeronautica Militare - A.M. 214: periodo da gennaio 1951 a dicembre 1977 – quota +3 m s.l.m.).

La distribuzione delle frequenze annuali, per settori di provenienza (8 con ampiezza di 45° o 16 da 22.5°) e 5 classi di intensità del vento (più le calme), è stata sintetizzata nella tabella seguente, e rappresentate graficamente nella conseguente rosa. Si nota una certa variabilità dei regimi di vento nelle diverse stazioni (in termini sia di direzione che di intensità) a causa delle diverse esposizioni anemometriche.

Appare chiaro che i venti locali regnanti (più frequenti) sono diretti lungo l'asse sud-est (scirocco) - nord-ovest (maestrale), mentre i venti dominanti (più forti) sono diretti lungo l'asse sud-ovest (libeccio) – nord-est (grecale). Si nota inoltre che i venti più intensi (con la velocità del vento maggiore di 25 nodi) hanno una frequenza di circa 2% (circa 6 giorni l'anno).



Figura 2. Fetch geografici Civitavecchia



Figura 3. Fetch "efficaci"

| Direzione<br>(°Nord) | Fetch<br>Geografico<br>(km) | Fetch<br>efficace<br>(km) | Deviazione<br>vento-mare<br>(°) | Direzione<br>(°Nord) | Fetch<br>Geografico<br>(km) | Fetch<br>efficace<br>(km) | Deviazione<br>vento-mare<br>(°) |
|----------------------|-----------------------------|---------------------------|---------------------------------|----------------------|-----------------------------|---------------------------|---------------------------------|
| 0                    | 6,75                        | 14,71                     | -43                             | 180                  | 500                         | 296,23                    | 5                               |
| 10                   | 3,87                        | 9,46                      | -46                             | 190                  | 500                         | 302,72                    | 0                               |
| 20                   | 2,85                        | 6,23                      | -49                             | 200                  | 500                         | 298,81                    | -4                              |
| 30                   | 2,5                         | 4,41                      | -51                             | 210                  | 356,85                      | 286                       | -8                              |
| 40                   | 2,33                        | 3,31                      | 62                              | 220                  | 275,97                      | 266,69                    | -11                             |
| 50                   | 2,28                        | 2,72                      | 59                              | 230                  | 227,26                      | 243,59                    | -15                             |
| 60                   | 2,36                        | 2,67                      | 55                              | 240                  | 222,49                      | 219,53                    | -17                             |
| 70                   | 2,54                        | 4,68                      | 51                              | 250                  | 224,59                      | 195,88                    | -20                             |
| 80                   | 2,71                        | 10,96                     | 48                              | 260                  | 198,93                      | 173,04                    | -21                             |
| 90                   | 2,93                        | 23,11                     | 44                              | 270                  | 183,22                      | 151,41                    | -23                             |
| 100                  | 3,62                        | 42,17                     | 40                              | 280                  | 186,89                      | 131,12                    | -24                             |
| 110                  | 4,29                        | 68,42                     | 35                              | 290                  | 203,24                      | 111,99                    | -26                             |
| 120                  | 5,99                        | 101,32                    | 31                              | 300                  | 144,99                      | 93,74                     | -27                             |
| 130                  | 8,84                        | 139,35                    | 27                              | 310                  | 53,43                       | 76,1                      | -29                             |
| 140                  | 18,95                       | 179,62                    | 22                              | 320                  | 39,99                       | 59,52                     | -31                             |
| 150                  | 502                         | 218,55                    | 18                              | 330                  | 27,95                       | 44,72                     | -33                             |
| 160                  | 480,74                      | 252,61                    | 13                              | 340                  | 18,71                       | 32,3                      | -37                             |
| 170                  | 445,74                      | 279,17                    | 9                               | 350                  | 9,8                         | 22,29                     | -40                             |



Figura 4. Fetch geografici ed efficaci al largo di Civitavecchia

### 4.1. Fonti di dati meteomarini a disposizione

Sono innumerevoli gli studi e le fonti disponibili sui dati meteomarini per il Porto di Civitavecchia. I dati riportati nella presente relazione sono estratti dall'elaborato "Studio meteomarino" allegato alla progettazione "Opere strategiche per il Porto di Civitavecchia: prolungamento Antemurale C. Colombo, Darsene Servizi e Traghetti" nonché agli studi a corredo della variante al Piano Regolatore Portuale di Civitavecchia.

#### 4.2. Regime anemologico locale

La conoscenza del "clima anemologico" locale, cioè della distribuzione di frequenza della velocità e direzione del vento, è di grande importanza in quanto influenza in maniera determinante la scelta della ubicazione e configurazione planimetrica del porto, con particolare riguardo all'orientamento delle dighe frangiflutti, dell'imboccatura e l'ubicazione delle banchine di ormeggio.

È noto infatti che le imbarcazioni rispondono molto meglio alle azioni di venti longitudinali (paralleli all'asse longitudinale della barca) piuttosto che trasversali, in particolar modo durante le delicate manovre negli spazi ristretti del bacino portuale ed in fase di stazionamento.

Per una attenta analisi del regime dei venti sono stati analizzati i dati delle stazioni anemometriche di Civitavecchia (Marina Militare – M.M.: periodo dal 1946 al 1962 – quota +19 m s.l.m. e Aeronautica Militare - A.M. 214: periodo da gennaio 1951 a dicembre 1977 – quota + 3m s.l.m.), Fiumicino (A.M.242: periodo da dicembre 1958 a dicembre 1980 – quota +2 m s.l.m.) e Monte Argentario (A.M.168: periodo da gennaio 1961 a dicembre 1977 – quota +631 m s.l.m.).

La distribuzione delle frequenze annuali, per settori di provenienza (8 con ampiezza di 45° o 16 da 22.5°) e 5 classi di intensità del vento (più le calme), è stata rappresentata graficamente nella rosa. Si nota una certa variabilità dei regimi di vento nelle diverse stazioni (in termini sia di direzione che di intensità) a causa delle

diverse esposizioni anemometriche. Appare chiaro che i venti locali regnanti (più frequenti) sono diretti lungo l'asse sud-est (scirocco) - nord-ovest (maestrale), mentre i venti dominanti (più forti) sono diretti lungo l'asse sud-ovest (libeccio) – nord-est (grecale). Si nota inoltre che i venti più intensi (con la velocità del vento maggiore di 25 nodi) hanno una frequenza di circa 2% (circa 6 giorni l'anno).

| Direzione e velocità del vento                                            |                           |        |        |        |         |         |        |
|---------------------------------------------------------------------------|---------------------------|--------|--------|--------|---------|---------|--------|
| Distribuzione delle frequenze annuali (*) (media sul periodo 1951 - 1977) |                           |        |        |        |         |         |        |
|                                                                           | Classi di velocità (nodi) |        |        |        |         |         | Totali |
| DIR ( N)                                                                  | 0 - 1                     | 2 - 4  | 5 - 7  | 8 - 12 | 13 - 23 | 24 - 99 | Totan  |
| 0,0 - 22,5                                                                |                           | 2,93   | 3,96   | 5,02   | 8,71    | 1,63    | 22,25  |
| 22,5 - 45,0                                                               |                           | 4,99   | 6,91   | 7,5    | 10,14   | 1,49    | 31,03  |
| 45,0 - 67,5                                                               |                           | 5,52   | 9,15   | 10,26  | 9,29    | 0,36    | 34,58  |
| 67,5 - 90,0                                                               |                           | 11,98  | 17,16  | 15,77  | 7,01    | 0,1     | 52,02  |
| 90,0 - 112,5                                                              |                           | 18,35  | 23,82  | 24,19  | 9,96    | 0,33    | 76,65  |
| 112,5 - 135,0                                                             |                           | 20,31  | 25,54  | 28,44  | 14,59   | 1,12    | 90     |
| 135,0 - 157,5                                                             |                           | 15,49  | 20,7   | 22,1   | 15,43   | 0,96    | 74,68  |
| 157,5 - 180,0                                                             |                           | 11,67  | 15,46  | 16,27  | 10,34   | 0,62    | 54,36  |
| 180,0, - 202,5                                                            |                           | 7,99   | 11,08  | 11,65  | 8,77    | 1,23    | 40,72  |
| 202,5 - 225,0                                                             |                           | 6,91   | 8,88   | 8,6    | 8,17    | 1,71    | 34,27  |
| 225,0 - 247,5                                                             |                           | 4,31   | 5,82   | 6,5    | 8,83    | 2,96    | 28,42  |
| 247,5 - 270,0                                                             |                           | 4,97   | 6,84   | 7,25   | 7,46    | 2,9     | 29,42  |
| 270,0 - 292,5                                                             |                           | 6,68   | 10,35  | 11,84  | 7,88    | 1,83    | 38,58  |
| 292,5 - 315,0                                                             |                           | 7,64   | 14,84  | 19     | 10,5    | 1,36    | 53,34  |
| 315,0 - 337,5                                                             |                           | 10,2   | 18,93  | 25,87  | 15,79   | 1,86    | 72,65  |
| 337,5 - 360                                                               |                           | 5,09   | 8,37   | 11,89  | 10,38   | 2,04    | 37,77  |
| VARIABILI                                                                 |                           | 0,24   | 0,52   | 0,24   | 0,2     | 0       | 1,2    |
| 0 - 5 m/s                                                                 | 228,06                    |        |        |        |         |         | 228,06 |
| Totali                                                                    | 228,06                    | 145,27 | 208,33 | 232,39 | 163,45  | 22,5    | 1000   |

**Tabella 3.**Stazione A.M. di Civitavecchia



Figura 5. Distribuzione direzionale degli stati di vento osservati alla stazione meteorologica di Civitavecchia

### 6. CALCOLO DELLE AZIONI DI PROGETTO

### 6.1. Azione del vento

Per tener conto delle azioni delle correnti sull'opera viva dell'imbarcazione, viene utilizzata una formula tratta dalle Australian Standard – Guidelines for design of marinas – AS 3962\_2001 che di seguito si rappresenta:

$$q_z = 0,0006 * V^2$$

Dove:

 $q_z$  = pressione del vento in kPa;

V = velocità del vento in m/s.

In base alle analisi statistiche e facendo riferimento alle Normative Tecniche per le costruzioni 2018, è stato ritenuto congruo indicare come velocità di progetto un'intensità ricavata, considerando un periodo di ritorno T = 50 anni, pari a 27 m/s.

Nel caso specifico per ancoraggi di tipo permanente si è fatto riferimento ad un'azione del vento totale non ridotta di fattori riduttivi.

La forza del vento sulle imbarcazioni può essere dedotta dalla seguente equazione che tiene conto dell'area laterale delle imbarcazioni e del coefficiente di "drag":

$$F_D = C_D * A * q_z$$

Dove:

 $F_D$  = forza nella direzione del vento in kN;

C<sub>D</sub> = coefficiente di "drag";

A = area laterale dell'opera viva in  $m^2$ .

Per la determinazione del coefficiente di "drag" si è fatto riferimento alla Tabella 4.3 delle Australian Standard che di seguito si riporta.

| Vessel C | <b>Pr Structures</b> | <b>Coefficient Of Drag</b> |
|----------|----------------------|----------------------------|
|          | Bow to wind          | 0,7 to 0,9                 |
| Vessel   | Stern to wind        | 0,9 to 1,1                 |
|          | Beam to wind         | 0,9 to 1,1                 |
| Tub      | ular Piles           | 1,20                       |
| Rectangu | ular Members         | 2,00                       |

**Tabella 4.**Coefficienti di "drag" tipici

Nel caso in esame si è fatto riferimento alle imbarcazioni, nello specifico in favore di sicurezza si è considerato un parametro  $C_D$  pari a 1,1 che deriva dalla condizione "Beam to wind".

Per la determinazione dell'area laterale dell'opera viva delle imbarcazioni soggetta all'azione del vento si è fatto riferimento alla Tabella 4.4 delle Australian Standard che di seguito si riporta.

| Vessel | Motor Vessels |                                | Yac  | chts                   |
|--------|---------------|--------------------------------|------|------------------------|
| Lenght | Exposed       | Exposed area [m <sup>3</sup> ] |      | area [m <sup>3</sup> ] |
| [m]    | Head          | Beam                           | Head | Beam                   |
| 8      | 5             | 16                             | 4    | 11                     |
| 10     | 7             | 22                             | 5    | 15                     |
| 12     | 11            | 29                             | 6    | 20                     |
| 15     | 18            | 45                             | 9    | 28                     |
| 18     | 22            | 64                             | 11   | 40                     |
| 20     | 24            | 76                             | 12   | 44                     |
| 25     | 30            | 95                             | 15   | 60                     |
| 30     | 45            | 120                            | 35   | 92                     |
| 35     | 54            | 167                            | 36   | 122                    |
| 40     | 78            | 213                            | 40   | 182                    |
| 45     | 85            | 264                            | 50   | 210                    |
| 50     | 90            | 285                            | 60   | 249                    |

**Tabella 5.**Area laterale dell'opera viva delle imbarcazioni

Nel caso in esame si è fatto riferimento alle imbarcazioni a motore "Motor Vessels", prendendo il valore dell'area dalla condizione "beam". Per le imbarcazioni di lunghezza superiore a 50 m, si è proceduto ad elaborare una regressione dei dati certi che generano una linea di tendenza pari a:



y = 6,5939 \* Vessel Lenght - 52,909

Figura 6. Regressione Area laterale

Considerando le varie tipologie di imbarcazioni presenti nella planimetria degli ormeggi, si determinano i valori delle forzanti complessive, considerando un angolo di inclinazione zenitale in favore di sicurezza pari a 45°.

| Roat [m]        | Wind Pressure        | Design Wind Speed | Coefficient Of Drag | Projected Area Of Elements | Force In Direction Of Wind |                    |             |
|-----------------|----------------------|-------------------|---------------------|----------------------------|----------------------------|--------------------|-------------|
| Doat [III]      | q <sub>z</sub> [Kpa] | V [m/s]           | CD                  | A [m]                      | F <sub>D</sub> [kN]        | F <sub>D</sub> [t] | Angolazione |
| 8,000           | 0,437                | 27,000            | 1,100               | 16,000                     | 7,698                      | 0,770              | 1,257       |
| 10,000          | 0,437                | 27,000            | 1,100               | 22,000                     | 10,585                     | 1,059              | 1,729       |
| 12,000          | 0,437                | 27,000            | 1,100               | 29,000                     | 13,953                     | 1,395              | 2,279       |
| 15,000          | 0,437                | 27,000            | 1,100               | 45,000                     | 21,651                     | 2,165              | 3,536       |
| 20,000          | 0,437                | 27,000            | 1,100               | 76,000                     | 36,567                     | 3,657              | 5,971       |
| 25,000          | 0,437                | 27,000            | 1,100               | 95,000                     | 45,708                     | 4,571              | 7,891       |
| 30,000          | 0,437                | 27,000            | 1,100               | 120,000                    | 57,737                     | 5,774              | 10,659      |
| 35,000          | 0,437                | 27,000            | 1,100               | 167,000                    | 80,350                     | 8,035              | 14,834      |
| 40,000          | 0,437                | 27,000            | 1,100               | 213,000                    | 102,483                    | 10,248             | 18,920      |
| 50 <i>,</i> 000 | 0,437                | 27,000            | 1,100               | 285,000                    | 137,125                    | 13,712             | 27,425      |
| 60,000          | 0,437                | 27,000            | 1,100               | 342,725                    | 164,899                    | 16,490             | 32,980      |

Tabella 6.

Valori delle azioni dovute al vento

# 7. PONTILI GALLEGGIANTI ED ARREDI DI BANCHINA

### 7.1. Arredi di banchina

### 7.1.1.Bitte e tirafondi

Per il dimensionamento delle bitte facendo riferimento alla Tab. 6 della presente relazione di seguito si riporta un quadro di riepilogo nel quale si evincono le tipologie di bitte e relativo sistema di ancoraggio in funzione della tipologia di imbarcazione. In favore di sicurezza si è considerato un angolo azimutale fisso a 45° mentre quello zenitale varia da 45° per le imbarcazioni più lunghe fino a 30° per quelle più corte.

| TAGLIO IMBARCAZIONI (m)        | 60        | 50-35     | 30        | 25-20     | <=15      |
|--------------------------------|-----------|-----------|-----------|-----------|-----------|
| TIPO BITTA (t)                 | 50        | 30        | 15        | 10        | 5         |
| PROFONDITA' TIRAFONDI (m)      | 0,5       | 0,5       | 0,5       | 0,45      | 0,25      |
| NUMERO TIRAFONDI               | 5         | 5         | 5         | 5         | 4         |
| DIAMETRO TIRAFONDI (mm)        | M36       | M30       | M24       | M20       | M16       |
| DIMENSIONI BLOCCO CLS (m)      | 1,00x1,50 | 1,00x1,50 | 1,00x1,00 | 1,00x1,00 | 1,00x1,00 |
| DIAMETRO ANCORAGGI (mm)        | 18        | 18        | 14        | 14        | 14        |
| NUMERO ANCORAGGI               | 20        | 20        | 16        | 16        | 16        |
| DIAMETRO FORO (mm)             | 40        | 40        | 30        | 30        | 30        |
| PROFONDITA' ANCORAGGI (mm)     | 400       | 400       | 300       | 300       | 300       |
| DIAM. CATENA ORMEGGIO (mm)     | 38        | 38        | 18        | 18        | 14        |
| LUNG. CATENA ORMEGGIO (m)      |           |           | 18,00     | 18,00     | 11,00     |
| DIAM. CIMA ORMEGGIO (mm)       | 50        | 40        | 32        | 32        | 20        |
| LUNG. CIMA ORMEGGIO (m)        |           |           | 11,00     | 11,00     | 8,00      |
| DIAM. CIMA RIMANDO BANCH. (mm) | 12        | 12        | 10        | 10        | 8         |
| LUG. RIMANDO ALLA BANCH. (m)   |           |           | 38,00     | 30,00     | 20,00     |

Si riporta di seguito il calcolo seguito per il dimensionamento e le verifiche degli inghisaggi tra blocchi di calcestruzzo e le bitte.



Figura 7. Planimetria ormeggi

# <u>Bitte da 50 t</u>

### VERIFICHE INGHISAGGI BLOCCHI CLS BITTE

| Diametro tondino                        | 18     | mm              |
|-----------------------------------------|--------|-----------------|
| Area tondino                            | 254,47 | mm <sup>2</sup> |
| Numero di tondini                       | 1      | nr              |
| Area totale tondino                     | 254,47 | mm <sup>2</sup> |
| Resistenza caratteristica a snervamento | 450    | Мра             |
| Coefficiente di sicurezza               | 1,15   |                 |
| Resistenza di calcolo allo snervamento  | 391,3  | MPa             |
| Azione di sfilamento di calcolo         | 99,57  | kN              |

| Verifica allo sfilamento acciaio -malta cementizi | a tipo EMA | CO S5! |
|---------------------------------------------------|------------|--------|
| Diametro tondino                                  | 18         | mm     |
| Perimetro singolo tondino                         | 56,55      | mm     |
| Numero tondini                                    | 1          |        |
| Perimetro totale tondini                          | 56,55      | mm     |
| Lunghezza fori degli inghisaggi                   | 400        | mm     |
| Superficie laterale armature                      | 22619,47   | mm²    |
| Resistenza allo sfilamento tondino                | 30         | MPa    |
| Coefficiente di sicurezza                         | 2          |        |
| Resistenza allo sfilamento tondino (di calcolo)   | 15         | MPa    |
| Azione di sfilamento massima                      | 339,29     | kN     |
| Cs                                                | 3,41       |        |
| VERIFICA                                          | ОК         |        |
|                                                   |            |        |

#### Verifica allo sfilamento cls-malta cementizia tipo EMACO S55

| Diametro foro                             | 40       | mm  |
|-------------------------------------------|----------|-----|
| Perimetro singolo foro                    | 125,66   | mm  |
| Numero di inghisaggi                      | 1        | nr  |
| Perimetro totale inghisaggi               | 125,66   | mm  |
| Lunghezza fori degli inghisaggi           | 400      | mm  |
| Superficie laterale dei fori              | 50265,48 | mm² |
|                                           |          |     |
| Adesione malta con cls                    | 6        | MPa |
| Coefficiente di sicurezza                 | 2        |     |
| Adesione della malta con cls (di calcolo) | 3        | MPa |
| Azione di sfilamento massima              | 150,80   | kN  |
| Cs                                        | 1,51     |     |
| VERIFICA                                  | ОК       |     |

#### Verifica del collegamento cassone-sovrastruttura

| Tensione ideale ( $\sigma_{\sf id}$ )                                                | 255,24     | MPa               |
|--------------------------------------------------------------------------------------|------------|-------------------|
| Tensione tangenziale ( ${	au}_{\sf zx}$ )                                            | 147,37     | MPa               |
| Coefficiente parziale per carico accidentale<br>Azione di tiro alla bitta di calcolo | 1,5<br>750 | kN                |
| Azione di tiro alla bitta                                                            | 500        | kN                |
| Area totale                                                                          | 5089,38    | 3 mm <sup>2</sup> |
| Numero totale tondini                                                                | 20         |                   |
| Area tondino                                                                         | 254,47     | $mm^2$            |
| Diametro tondino                                                                     | 18         | mm                |

Cs VERIFICA 1,53 OK

# <u>Bitte da 30 t</u>

### VERIFICHE INGHISAGGI BLOCCHI CLS BITTE

| Diametro tondino                        | 18     | mm              |
|-----------------------------------------|--------|-----------------|
| Area tondino                            | 254,47 | mm²             |
| Numero di tondini                       | 1      | nr              |
| Area totale tondino                     | 254,47 | mm <sup>2</sup> |
| Resistenza caratteristica a snervamento | 450    | Мра             |
| Coefficiente di sicurezza               | 1,15   |                 |
| Resistenza di calcolo allo snervamento  | 391,3  | MPa             |
| Azione di sfilamento di calcolo         | 99,57  | kN              |

| Diametro tondino18mmPerimetro singolo tondino56,55mmNumero tondini11Perimetro totale tondini56,55mmLunghezza fori degli inghisaggi400mmSuperficie laterale armature22619,47mm²Resistenza allo sfilamento tondino30MPaCoefficiente di sicurezza215Resistenza allo sfilamento tondino (di calcolo)15MPaAzione di sfilamento massima339,29kNVERIFICAOK0K | Verifica allo sfilamento acciaio -malta cementizi | a tipo EMA | CO \$55 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------|---------|
| Perimetro singolo tondino56,55mmNumero tondini1Perimetro totale tondini56,55mmLunghezza fori degli inghisaggi400mmSuperficie laterale armature22619,47mm²Resistenza allo sfilamento tondino30MPaCoefficiente di sicurezza215Resistenza allo sfilamento tondino (di calcolo)15MPaAzione di sfilamento massima339,29kNCs3,41OK                          | Diametro tondino                                  | 18         | mm      |
| Numero tondini1Perimetro totale tondini56,55mmLunghezza fori degli inghisaggi400mmSuperficie laterale armature22619,47mm²Resistenza allo sfilamento tondino<br>Coefficiente di sicurezza30MPaResistenza allo sfilamento tondino (di calcolo)<br>Azione di sfilamento massima15MPaCs3,41VERIFICAOK                                                     | Perimetro singolo tondino                         | 56,55      | mm      |
| Perimetro totale tondini56,55mmLunghezza fori degli inghisaggi400mmSuperficie laterale armature22619,47mm²Resistenza allo sfilamento tondino<br>Coefficiente di sicurezza30MPaResistenza allo sfilamento tondino (di calcolo)<br>Azione di sfilamento massima15MPaCs3,41VERIFICAOK                                                                    | Numero tondini                                    | 1          |         |
| Lunghezza fori degli inghisaggi400mmSuperficie laterale armature22619,47mm²Resistenza allo sfilamento tondino30MPaCoefficiente di sicurezza2Resistenza allo sfilamento tondino (di calcolo)15MPaAzione di sfilamento massima339,29kNCs3,41OK                                                                                                          | Perimetro totale tondini                          | 56,55      | mm      |
| Superficie laterale armature22619,47mm²Resistenza allo sfilamento tondino30MPaCoefficiente di sicurezza2Resistenza allo sfilamento tondino (di calcolo)15MPaAzione di sfilamento massima339,29kNCs3,41VERIFICAOK                                                                                                                                      | Lunghezza fori degli inghisaggi                   | 400        | mm      |
| Resistenza allo sfilamento tondino30MPaCoefficiente di sicurezza2Resistenza allo sfilamento tondino (di calcolo)15MPaAzione di sfilamento massima339,29kNCs3,41VERIFICAOK                                                                                                                                                                             | Superficie laterale armature                      | 22619,47   | mm²     |
| Coefficiente di sicurezza2Resistenza allo sfilamento tondino (di calcolo)15MPaAzione di sfilamento massima339,29kNCs3,41VERIFICAOK                                                                                                                                                                                                                    | Resistenza allo sfilamento tondino                | 30         | MPa     |
| Resistenza allo sfilamento tondino (di calcolo)       15       MPa         Azione di sfilamento massima       339,29       kN         Cs       3,41       VERIFICA                                                                                                                                                                                    | Coefficiente di sicurezza                         | 2          |         |
| Azione di sfilamento massima 339,29 kN<br>Cs 3,41<br>VERIFICA OK                                                                                                                                                                                                                                                                                      | Resistenza allo sfilamento tondino (di calcolo)   | 15         | MPa     |
| Cs 3,41<br>VERIFICA OK                                                                                                                                                                                                                                                                                                                                | Azione di sfilamento massima                      | 339,29     | kN      |
| VERIFICA OK                                                                                                                                                                                                                                                                                                                                           | Cs                                                | 3,41       |         |
|                                                                                                                                                                                                                                                                                                                                                       | VERIFICA                                          | ОК         |         |

#### Verifica allo sfilamento cls-malta cementizia tipo EMACO S55

| Diametro foro                                                             | 40                 | mm               |
|---------------------------------------------------------------------------|--------------------|------------------|
| Perimetro singolo foro                                                    | 125,66             | mm               |
| Numero di inghisaggi                                                      | 1                  | nr               |
| Perimetro totale inghisaggi                                               | 125,66             | mm               |
| Lunghezza fori degli inghisaggi                                           | 400                | mm               |
| Superficie laterale dei fori                                              | 50265,48           | mm²              |
| Adesione malta con cls                                                    | 6                  | MPa              |
| Coefficiente di sicurezza                                                 | 2                  |                  |
| Adesione della malta con cls (di calcolo)<br>Azione di sfilamento massima | 3<br><b>150,80</b> | MPa<br><b>kN</b> |
| Cs                                                                        | 1,51               |                  |
| VERIFICA                                                                  | ОК                 |                  |

#### Verifica del collegamento cassone-sovrastruttura

| Diametro tondino                             | 18      | mm          |
|----------------------------------------------|---------|-------------|
| Area tondino                                 | 254,47  | $\rm{mm}^2$ |
| Numero totale tondini                        | 20      |             |
| Area totale                                  | 5089,38 | $\rm{mm}^2$ |
| Azione di tiro alla bitta                    | 300     | kN          |
| Coefficiente parziale per carico accidentale | 1,5     |             |
| Azione di tiro alla bitta di calcolo         | 450     | kN          |
| Tensione tangenziale ( $	au_{zx}$ )          | 88,42   | MPa         |
| Tensione ideale ( $\sigma_{id}$ )            | 153,15  | MPa         |

Cs VERIFICA 2,56 OK

# <u>Bitte da 15 t</u>

### VERIFICHE INGHISAGGI BLOCCHI CLS BITTE

| Diametro tondino                        | 14     | mm              |
|-----------------------------------------|--------|-----------------|
| Area tondino                            | 153,94 | mm <sup>2</sup> |
| Numero di tondini                       | 1      | nr              |
| Area totale tondino                     | 153,94 | mm <sup>2</sup> |
| Resistenza caratteristica a snervamento | 450    | Мра             |
| Coefficiente di sicurezza               | 1,15   |                 |
| Resistenza di calcolo allo snervamento  | 391,3  | MPa             |
| Azione di sfilamento di calcolo         | 60,24  | kN              |

| Verifica allo sfilamento acciaio -malta cementizi | a tipo EMA | CO \$55 |
|---------------------------------------------------|------------|---------|
| Diametro tondino                                  | 14         | mm      |
| Perimetro singolo tondino                         | 43,98      | mm      |
| Numero tondini                                    | 1          |         |
| Perimetro totale tondini                          | 43,98      | mm      |
| Lunghezza fori degli inghisaggi                   | 300        | mm      |
| Superficie laterale armature                      | 13194,69   | mm²     |
| Resistenza allo sfilamento tondino                | 30         | MPa     |
| Coefficiente di sicurezza                         | 2          |         |
| Resistenza allo sfilamento tondino (di calcolo)   | 15         | MPa     |
| Azione di sfilamento massima                      | 197,92     | kN      |
| Cs                                                | 3,29       |         |
| VERIFICA                                          | ОК         |         |
|                                                   |            |         |

#### Verifica allo sfilamento cls-malta cementizia tipo EMACO S55

| Diametro foro                             | 30       | mm  |
|-------------------------------------------|----------|-----|
| Perimetro singolo foro                    | 94,25    | mm  |
| Numero di inghisaggi                      | 1        | nr  |
| Perimetro totale inghisaggi               | 94,25    | mm  |
| Lunghezza fori degli inghisaggi           | 300      | mm  |
| Superficie laterale dei fori              | 28274,33 | mm² |
| Adesione malta con cls                    | 6        | MPa |
| Coefficiente di sicurezza                 | 2        |     |
| Adesione della malta con cls (di calcolo) | 3        | MPa |
| Azione di sfilamento massima              | 84,82    | kN  |
| Cs                                        | 1,41     |     |
| VERIFICA                                  | ОК       |     |

#### Verifica del collegamento cassone-sovrastruttura

| Diametro tondino                             | 14       | mm              |
|----------------------------------------------|----------|-----------------|
| Area tondino                                 | 153,94   | $\rm mm^2$      |
| Numero totale tondini                        | 16       |                 |
| Area totale                                  | 2463,009 | mm <sup>2</sup> |
| Azione di tiro alla bitta                    | 150      | kN              |
| Coefficiente parziale per carico accidentale | 1,5      |                 |
| Azione di tiro alla bitta di calcolo         | 225      | kN              |
| Tensione tangenziale ( $	au_{zx}$ )          | 91,35    | MPa             |
| Tensione ideale ( $\sigma_{ m id}$ )         | 158,23   | MPa             |

Cs VERIFICA 2,47 OK

# <u>Bitte da 10 t</u>

### VERIFICHE INGHISAGGI BLOCCHI CLS BITTE

| Diametro tondino                        | 14     | mm              |
|-----------------------------------------|--------|-----------------|
| Area tondino                            | 153,94 | mm <sup>2</sup> |
| Numero di tondini                       | 1      | nr              |
| Area totale tondino                     | 153,94 | mm <sup>2</sup> |
| Resistenza caratteristica a snervamento | 450    | Мра             |
| Coefficiente di sicurezza               | 1,15   |                 |
| Resistenza di calcolo allo snervamento  | 391,3  | MPa             |
| Azione di sfilamento di calcolo         | 60,24  | kN              |

| Verifica allo sfilamento acciaio -malta cementizi | a tipo EMA | CO \$55 |
|---------------------------------------------------|------------|---------|
| Diametro tondino                                  | 14         | mm      |
| Perimetro singolo tondino                         | 43,98      | mm      |
| Numero tondini                                    | 1          |         |
| Perimetro totale tondini                          | 43,98      | mm      |
| Lunghezza fori degli inghisaggi                   | 300        | mm      |
| Superficie laterale armature                      | 13194,69   | mm²     |
| Resistenza allo sfilamento tondino                | 30         | MPa     |
| Coefficiente di sicurezza                         | 2          |         |
| Resistenza allo sfilamento tondino (di calcolo)   | 15         | MPa     |
| Azione di sfilamento massima                      | 197,92     | kN      |
| Cs                                                | 3,29       |         |
| VERIFICA                                          | ОК         |         |
|                                                   |            |         |

#### Verifica allo sfilamento cls-malta cementizia tipo EMACO S55

| Diametro foro                             | 30       | mm  |
|-------------------------------------------|----------|-----|
| Perimetro singolo foro                    | 94,25    | mm  |
| Numero di inghisaggi                      | 1        | nr  |
| Perimetro totale inghisaggi               | 94,25    | mm  |
| Lunghezza fori degli inghisaggi           | 300      | mm  |
| Superficie laterale dei fori              | 28274,33 | mm² |
| Adesione malta con cls                    | 6        | MPa |
| Coefficiente di sicurezza                 | 2        |     |
| Adesione della malta con cls (di calcolo) | 3        | MPa |
| Azione di sfilamento massima              | 84,82    | kN  |
| Cs                                        | 1,41     |     |
| VERIFICA                                  | ОК       |     |

#### Verifica del collegamento cassone-sovrastruttura

| Diametro tondino                             | 14       | mm              |
|----------------------------------------------|----------|-----------------|
| Area tondino                                 | 153,94   | $\rm{mm}^2$     |
| Numero totale tondini                        | 16       |                 |
| Area totale                                  | 2463,009 | mm <sup>2</sup> |
| Azione di tiro alla bitta                    | 100      | kN              |
| Coefficiente parziale per carico accidentale | 1,5      |                 |
| Azione di tiro alla bitta di calcolo         | 150      | kN              |
| Tensione tangenziale ( $	au_{zx}$ )          | 60,90    | MPa             |
| Tensione ideale ( $\sigma_{ m id}$ )         | 105,48   | MPa             |

Cs VERIFICA 3,71 OK

# <u>Bitte da 5 t</u>

### VERIFICHE INGHISAGGI BLOCCHI CLS BITTE

| Diametro tondino                        | 14     | mm              |
|-----------------------------------------|--------|-----------------|
| Area tondino                            | 153,94 | mm <sup>2</sup> |
| Numero di tondini                       | 1      | nr              |
| Area totale tondino                     | 153,94 | mm <sup>2</sup> |
| Resistenza caratteristica a snervamento | 450    | Мра             |
| Coefficiente di sicurezza               | 1,15   |                 |
| Resistenza di calcolo allo snervamento  | 391,3  | MPa             |
| Azione di sfilamento di calcolo         | 60,24  | kN              |

| Verifica allo sfilamento acciaio -malta cementizi | a tipo EMA | CO S5! |
|---------------------------------------------------|------------|--------|
| Diametro tondino                                  | 14         | mm     |
| Perimetro singolo tondino                         | 43,98      | mm     |
| Numero tondini                                    | 1          |        |
| Perimetro totale tondini                          | 43,98      | mm     |
| Lunghezza fori degli inghisaggi                   | 300        | mm     |
| Superficie laterale armature                      | 13194,69   | mm²    |
| Resistenza allo sfilamento tondino                | 30         | MPa    |
| Coefficiente di sicurezza                         | 2          |        |
| Resistenza allo sfilamento tondino (di calcolo)   | 15         | MPa    |
| Azione di sfilamento massima                      | 197,92     | kN     |
| Cs                                                | 3,29       |        |
| VERIFICA                                          | ОК         |        |
|                                                   |            |        |

#### Verifica allo sfilamento cls-malta cementizia tipo EMACO S55

| Diametro foro                             | 30       | mm  |
|-------------------------------------------|----------|-----|
| Perimetro singolo foro                    | 94,25    | mm  |
| Numero di inghisaggi                      | 1        | nr  |
| Perimetro totale inghisaggi               | 94,25    | mm  |
| Lunghezza fori degli inghisaggi           | 300      | mm  |
| Superficie laterale dei fori              | 28274,33 | mm² |
| Adesione malta con cls                    | 6        | MPa |
| Coefficiente di sicurezza                 | 2        |     |
| Adesione della malta con cls (di calcolo) | 3        | MPa |
| Azione di sfilamento massima              | 84,82    | kN  |
| Cs                                        | 1,41     |     |
| VERIFICA                                  | ОК       |     |

#### Verifica del collegamento cassone-sovrastruttura

| Diametro tondino                             | 14       | mm                |
|----------------------------------------------|----------|-------------------|
| Area tondino                                 | 153,94   | $\rm{mm}^2$       |
| Numero totale tondini                        | 16       |                   |
| Area totale                                  | 2463,009 | ) mm <sup>2</sup> |
| Azione di tiro alla bitta                    | 50       | kN                |
| Coefficiente parziale per carico accidentale | 1,5      |                   |
| Azione di tiro alla bitta di calcolo         | 75       | kN                |
| Tensione tangenziale ( $	au_{zx}$ )          | 30,45    | MPa               |
| Tensione ideale ( $\sigma_{ m id}$ )         | 52,74    | MPa               |

Cs VERIFICA 7,42 OK

### 7.1.2. Catene, corpi morti

Mediante le formulazioni illustrate nel cap. 6 della presente relazione, è possibile determinare le azioni risultanti che debbono essere contrastate dai vari sistemi di ormeggio, per ciascuna tipologia di imbarcazione e per ogni condizione di esposizione alle grandezze fisiche considerate.

A questo punto, scelto il numero dei vincoli (corpi morti) ed il loro posizionamento (geometria del sistema), è possibile determinare il peso minimo dei singoli blocchi di contrasto nonché le caratteristiche di peso, resistenza e lunghezza delle relative catene di collegamento, verificando la risoluzione vettoriale del sistema di forze in gioco e garantendo il rispetto di un adeguato coefficiente di sicurezza.



Figura 8. Schematizzazione delle forze in gioco nella stabilità di un corpo morto

Nei tabulati di output che seguono, vengono riportati i risultati delle procedure di verifica descritte, applicate a ciascuna tipologia di sistema di ormeggio previsto e per ciascuna delle condizioni di esposizione più gravose in termini di intensità e direzione delle forzanti.

Per il dimensionamento dei singoli componenti degli ormeggi si è fatto riferimento agli schemi di ancoraggio maggiormente impiegati ed in particolare:

- per le imbarcazioni si è fatto riferimento alla tradizionale metodologia di ormeggio tramite catenaria e pendino;
- per l'identificazione delle caratteristiche geometriche e di resistenza delle catene per ormeggio, si è fatto riferimento ai valori normalizzati di prodotti presenti in commercio, riportati negli schemi della tabella che segue.

Risolvendo pertanto il sistema di forze in gioco, si è proceduto al dimensionamento e verifica dei singoli componenti, i cui risultati sono riepilogati nelle successive schede di calcolo.

Come teoria di calcolo si è considerata l'ipotesi del 40% del carico sulla catena e 60% sul retrostante sistema di ormeggio con un'inclinazione a 45°.

| Pontile   | e a T [30 m] | P.B. | Fo   | Fv   | h   | Ca   | Ae   | P' (t) | V (m <sup>3</sup> ) |
|-----------|--------------|------|------|------|-----|------|------|--------|---------------------|
| 1°        | 2,31         | 1    | 2,31 | 2,31 | 1,3 | 0,45 | 0,35 | 8,98   | 6,42                |
| 2x30+9x25 | 2,31         | 11   | 9,70 | 9,70 | 1,3 | 0,45 | 0,35 | 37,72  | 26,94               |
| 10x20     | 1,83         | 10   | 7,13 | 7,13 | 1,3 | 0,45 | 0,35 | 27,73  | 19,81               |
|           |              |      |      |      |     |      |      |        | 46.75               |

Si prendono in considerazione 9 corpi morti delle dimensioni pari a 3,10 m x 3,10 m x 0,90 m per un volume totale pari a 77,84 m<sup>3</sup>. Per quanto concerne le catene al fine di garantire un coefficiente di sicurezza pari a 4 (rispetto al carico di lavoro) per imbarcazioni di lunghezza pari a 30 m si prevede di utilizzare catene di diametro pari a 18 mm del tipo "Genovese" zincata a caldo che ha un carico di lavoro pari a 3,75 t. La lunghezza della catena risulta essere di 18 m mentre per il diametro della Cima si è fatto riferimento al 32 mm per una lunghezza di 11 m. Il diametro della Cima di rimando risulta di 10 mm con lunghezza di 38 m.

| Pontile | e a T [50 m] | P.B. | Fo    | Fv    | h   | Ca   | Ae   | P' (t) | V (m <sup>3</sup> ) |
|---------|--------------|------|-------|-------|-----|------|------|--------|---------------------|
| 1°      | 5,48         | 1    | 5,48  | 5,48  | 1,3 | 0,45 | 0,35 | 21,33  | 15,24               |
| fila    | 5,48         | 10   | 21,39 | 21,39 | 1,3 | 0,45 | 0,35 | 83,19  | 59,42               |
|         |              |      |       |       |     |      |      |        | 59.42               |

Si prendono in considerazione 9 corpi morti delle dimensioni pari a 3,60 m x 3,60 m x 0,90 m per un volume totale pari a 104,97 m<sup>3</sup>. Per quanto concerne le catene al fine di garantire un coefficiente di sicurezza pari a 4 (rispetto al carico di lavoro) per imbarcazioni di lunghezza pari a 50 m si prevede di utilizzare catene di diametro pari a 38 mm del tipo "Genovese" zincata a caldo che ha un carico di lavoro pari a circa 18 t. Per il diametro della Cima e della Cima di rimando si è fatto riferimento a 40 mm e 12 mm.

| Pontile Sa | irdegna [20 m] | P.B. | Fo   | Fv   | h   | Ca   | Ae   | P' (t) | V (m <sup>3</sup> ) |
|------------|----------------|------|------|------|-----|------|------|--------|---------------------|
| 1°         | 1,46           | 1    | 1,46 | 1,46 | 1,3 | 0,45 | 0,35 | 5,69   | 4,06                |
| fila       | 1,46           | 3    | 2,63 | 2,63 | 1,3 | 0,45 | 0,35 | 10,24  | 7,31                |
|            |                |      |      |      |     |      |      |        | 7,31                |

Si prendono in considerazione 9 corpi morti delle dimensioni pari a 2,20 m x 2,20 m x 0,50 m per un volume totale pari a 9,68 m<sup>3</sup>. Per quanto concerne le catene al fine di garantire un coefficiente di sicurezza pari a 4 (rispetto al carico di lavoro) per imbarcazioni di lunghezza pari a 20 m si prevede di utilizzare catene di diametro pari a 18 mm del tipo "Genovese" zincata a caldo che ha un carico di lavoro pari a 3,75 t. La lunghezza della catena risulta essere di 18 m mentre per il diametro della Cima si è fatto riferimento al 32 mm per una lunghezza di 11 m. Il diametro della Cima di rimando risulta di 10 mm con lunghezza di 38 m.

| Pontile Mic | helangelo [60 m] | P.B. | Fo    | Fv    | h   | Ca   | Ae   | P' (t) | V (m <sup>3</sup> ) |
|-------------|------------------|------|-------|-------|-----|------|------|--------|---------------------|
| 1°          | 6,60             | 1    | 6,60  | 6,60  | 1,3 | 0,45 | 0,35 | 25,65  | 18,32               |
| fila        | 6,60             | 3    | 11,87 | 11,87 | 1,3 | 0,45 | 0,35 | 46,17  | 32,98               |
|             |                  |      |       |       |     |      |      |        | 32,98               |

Si prendono in considerazione 4 corpi morti delle dimensioni pari a 4,0 m x 4,0 m x 0,80 m per un volume totale pari a 51,2 m<sup>3</sup>. Per quanto concerne le catene al fine di garantire un coefficiente di sicurezza pari a 4 (rispetto al carico di lavoro) per imbarcazioni di lunghezza pari a 60 m si prevede di utilizzare catene di diametro pari a 38 mm del tipo "Genovese" zincata a caldo che ha un carico di lavoro pari a circa 18 t. Per il diametro della Cima e della Cima di rimando si è fatto riferimento a 50 mm e 12 mm.

### Dove:

- P.B. sono i posti barca sostenuti da ancoraggio;
- h è il coefficiente di sicurezza;
- C<sub>a</sub> è il coefficiente di attrito calcestruzzo-sabbia;
- S è lo shield factor che si è considerato pari a 1 per la prima fila, 0,5 per la seconda fila e 0,3 per la terza e successive file;
- A<sub>e</sub> è il coefficiente di efficienza.

Per il dimensionamento delle catene si è fatto riferimento alla seguente tabella:



| bobina   cod.art. | bobina da mt | pezze   cod.art.   | pezze da mt    | w[mm]  | p[mm]  | H(mm)  | mis. franc. | peso gr/mt   | carico lav. kg |
|-------------------|--------------|--------------------|----------------|--------|--------|--------|-------------|--------------|----------------|
| reel   art.code   | mts per reel | bundles   art.code | mts per bundle | w (mm) | p (mm) | H (mm) | fr. síze    | weight gr/mt | swl kg         |
| C02031EF/50       | 50           | C02031DF           | 50             | 3      | 19     | 13     | 17          | 180          | 125            |
| CD204DEF          | 50           | C02040DF           | 50             | 4      | 20,5   | 16     | 19          | 320          | 175            |
|                   |              |                    |                |        |        |        |             |              |                |

| CD204DEF   | 50   | C02040DF | 5D | 4   | 20,5 | 16   | 19           | 320   | 175   |
|------------|------|----------|----|-----|------|------|--------------|-------|-------|
| C02049EF   | 40   | C02050DF | 50 | 5   | 23   | 19,5 | 21           | 500   | 325   |
| C02059EF   | 30   | C02060DF | 50 | 6   | 29   | 23   | 23           | 710   | 475   |
| C02070EF   | 25   | C02070DF | 50 | 7   | 30,5 | 26,5 | 25           | 1010  | 650   |
| CD208DEF   | 22   | C02080DF | 50 | 8   | 35   | 30,5 | 27           | 1315  | 750   |
| C02088EF   | 15   | C02088DF | 50 | 8,8 | 37,5 | 33,5 | 28           | 1610  | 1000  |
| CD210DEF   | 10   | CD21DDDF | 50 | 10  | 40   | 38   | 30           | 2070  | 1250  |
| C02120EF   | 10   | C02120DF | 50 | 12  | 47,5 | 44,5 | 32           | 3090  | 1500  |
| -          | -    | CD214DDF | 50 | 14  | 52,5 | 53   | 34           | 4120  | 2000  |
| -          | 14   | C02160DF | 50 | 16  | 55   | 57   | 36           | 5330  | 3250  |
| -          | 1    | C02180DF | 50 | 18  | 63   | 63   | 38           | 6400  | 3750  |
| 2          | -    | C02200DF | 50 | 20  | 70   | 69   | 40           | 8000  | 5000  |
|            | 114  | C02220DF | 50 | 22  | 78   | 79   | 42           | 9600  | 6250  |
| 4          | 12   | C02240DF | 25 | 24  | 86   | 81   | 2            | 11000 | 8000  |
| 3 <u>0</u> | 1420 | C02260DF | 25 | 26  | 91   | 87   | 1 <u>4</u> 1 | 14300 | 8500  |
| 2          | -    | C02280DF | 25 | 28  | 98   | 94   | -            | 16800 | 10000 |
| -          | -    | C02300DF | 25 | 30  | 105  | 102  | -            | 19300 | 11200 |
| -          | -    | C02330DF | 25 | 33  | 115  | 113  | 12           | 22700 | 12500 |
| -          | -    | C02360DF | 25 | 36  | 126  | 122  | -            | 27000 | 16000 |
| -          | -    | C02390DF | 25 | 39  | 136  | 132  | -            | 31600 | 19000 |

Tabella 7.

Dimensioni catene alla genovese

# 7.1.3.Boe

Per quanto concerne le boe di ormeggio, si sono considerate boe del diametro di 1,45 m ed altezza totale pari a 1,37 m. Le boe sono composte da un modulo cilindrico stampato in polietilene lineare di spessore 8 mm e riempita con poliuretano espanso (densità media 58 kg/m<sup>3</sup>). Il peso della singola boa è di 375 kg con una spinta netta di 1050 kg.

# 7.1.4.Parabordi

Per il calcolo dei parabordi si fa riferimento alle imbarcazioni da 30 m ancorate sulla banchina San Teofanio, in quanto per le restanti si utilizzano i parabordi già presenti che risultano essere delle dimensioni e tipologia idonea a resistere agli accosti delle imbarcazioni in progetto.

L'energia cinetica prodotta durante l'attracco della nave deve, necessariamente, essere assorbita da un sistema di parabordi in grado di fornire adeguata resistenza e, soprattutto, di controbilanciare il sistema di forze in gioco, evitando il contatto dello scafo della nave con l'impalcato.

Il dimensionamento viene eseguito in base a ben riconosciuti metodi deterministici, che fanno riferimento alle "Linee guida per la progettazione di sistemi di parabordo: 2002", rilasciato dall'Associazione Internazionale di Navigazione. Di seguito si delineeranno i criteri di calcolo e si forniranno, in base a questi, i risultati ottenuti.

### Energia normalmente prodotta durante l'attracco (E<sub>N</sub>)

L'energia cinetica di una nave in movimento può essere calcolata come:

$$E = \frac{1}{2} * M * v^2$$

Dove:

- E = energia cinetica della stessa nave [kNm];
- M = massa della nave (pari allo spostamento dell'acqua) [t];
- v = velocità della nave in avvicinamento alla banchina [m/s].

Nel processo di attracco, l'energia di progetto che deve essere assorbita dal parabordo può essere ottenuta come:

$$E_{d} = f * E = \frac{1}{2} * M * v^{2} * C_{e} * C_{m} * C_{s} * C_{c} *$$

Dove:

- $E_N = La$  normale energia di attracco che deve essere assorbita dal parabordo [kNm];
- M = Massa della nave (dislocamento in tonnellate) al livello di confidenza stabilito<sup>2</sup>;
- v = velocità di avvicinamento perpendicolare alle linee di attracco<sup>3</sup> (m/s);
- C<sub>m</sub> = Coefficiente di massa aggiunta;
- C<sub>e</sub> = coefficiente di eccentricità;
- C<sub>c</sub> = coefficiente della configurazione di attracco;
- C<sub>s</sub> = coefficiente di deformabilità.

# Energia di attracco anomala (EA)

Gli impatti anomali sorgono quando la normale energia è in accesso. Tra le cause ci possono essere errori umani, mal funzionamenti, condizioni atmosferiche eccezionali o una combinazione di questi fattori. L'energia anomala che deve essere assorbita dai parabordi può essere calcolata come segue:

$$E_A = FS * E_N$$

Dove:

- $E_A$  = energia di attracco anomala che deve essere assorbita dai fender [kNm];
- FS = fattore di sicurezza per l'attracco anomalo.

Per quel che attiene i fattori di sicurezza da utilizzare, in conformità alle indicazioni dettate dal PIANC Tabella 4.2.5, si è fatto riferimento alla tabella di seguito riportata.

<sup>&</sup>lt;sup>2</sup> Il PIANC suggerisce 50% o 75% come limiti di confidenza (M50 o M75) appropriate nella maggior parte dei casi.

<sup>&</sup>lt;sup>3</sup> La velocità di avvicinamento (V<sub>B</sub>) è solitamente basata su una misurazione del 50% del limite di confidenza (M50).

|                           | PIANC F  | Factor of Safety                                               |
|---------------------------|----------|----------------------------------------------------------------|
| Type of berth impact      | Vessel   | Factor for abnormal impact applied to<br>berthing energy (Cab) |
| Toulson on d hulls come o | Largest  | 1,25                                                           |
| Talikel and bulk cargo    | Smallest | 1,75                                                           |
| Containan                 | Largest  | 1,50                                                           |
| Container                 | Smallest | 2,00                                                           |
| General cargo             | -        | 1,75                                                           |
| Ro-Ro and ferries         | -        | 2,0 or highter                                                 |
| Tugs, Work boast, etc.    | -        | 2,00                                                           |

**Tabella 8.**Fattori di impatto anomalo "PIANC"

Il PIANC sottolinea che "i fattori di impatto anomalo, se presenti, non devono essere inferiori ad 1,1 né superiori a 2,0, tranne in casi di circostanze eccezionali". Nel caso in esame si farà riferimento ad un coefficiente pari a 2,0.

# Velocità di attracco (V<sub>B</sub>)

La velocità di attracco dipende dalla difficoltà riscontrata nella manovra, dalla disposizione dell'ormeggio e dalle dimensioni della nave. Tutte le possibili condizioni sono solitamente suddivise in 5 categorie, come mostrato nella figura.

La guida più comune per il calcolo della velocità di attracco è la tabella Brolsma, adottata da BS1, PIANC2 e altri standard internazionali. In base ai valori delle curve del grafico, la velocità di attracco consigliata per imbarcazioni come da progetto è inferiore a 0,18 m/sec avendo considerato la curva "a" per "easy berthing, sheltered" con deathweight (DWT) minore di 1000 tonnellate.

Nello specifico, il calcolo è stato condotto con diverse velocità di attracco ( $V_B$  da 0,10 a 0,20 m/sec), in modo da ottenere un sistema di parabordo idoneo.



Figura 9. Trelleborg AB\_2007

Il coefficiente di blocco (C<sub>B</sub>) è una funzione della carena e viene espresso come segue:

$$C_B = \frac{M}{L_{BP} * B * D * \rho_{SW}}$$

Dove:

- M = dislocamento della nave [t];
- L<sub>BP</sub> = lunghezza tra le perpendicolari [m];
- **B** = trave [m];
- D = pescaggio [m];
- $\rho_{SW} = \text{densità dell'acqua marina} \approx 1.025 \text{ t/m}^3$ .

| Typical block coefficients (C <sub>B</sub> ) |           |  |  |  |
|----------------------------------------------|-----------|--|--|--|
| Container vessel                             | 0,6-0,8   |  |  |  |
| General cargo and bulk carriers              | 0,72-0,85 |  |  |  |
| Tankers                                      | 0,85      |  |  |  |
| Ferries                                      | 0,55-,065 |  |  |  |
| Ro-Ro vessels                                | 0,7-0,8   |  |  |  |

Nel caso particolare in esame considerando le seguenti caratteristiche delle imbarcazioni si ottiene un valore pari a 0,415:

- Displacement 70 t;
- LOA = 30 m;
- LBP = 25 m;
- B = 5,80 m;
- D = 1,15 m.

### Coefficiente di massa aggiunta (C<sub>m</sub>)

Il coefficiente di massa aggiuntiva consente di tenere conto della massa virtuale dell'acqua coinvolta nel movimento della nave, in aggiunta a quella vera e propria della nave stessa. Difatti, assieme alla nave si muove anche una massa d'acqua M<sub>w</sub>, ed, in genere, per il coefficiente suddetto viene fornita la formula seguente:

$$C_m = \frac{(M_S + M_w)}{M_S}$$

Dove:

- M<sub>s</sub> è la massa della nave;
- $M_w$  è la massa dell'acqua.

Tale coefficiente dipende dalle dimensioni della nave ed in particolare con la larghezza, il pescaggio ed il franco sottochiglia. Nel caso in esame si determinerà il Coefficiente di massa aggiunta secondo il metodo Vasco Costa che viene normalmente quando la profondità dell'acqua non supera di molto il pescaggio della nave.



<sup>\*</sup> valid where  $V_B \geq 0.08 m/s, \, K_c \geq 0.1 D$ 

Nel caso in esame si ottiene un valore pari a 1,397.

#### Coefficiente di eccentricità (C<sub>E</sub>)

Il coefficiente di eccentricità tiene conto dell'energia dissipata dalla rotazione della nave nel punto di impatto con i parabordi. Il giusto punto di impatto, l'angolo di ormeggio e l'angolo del vettore velocità sono importanti per un calcolo accurato del coefficiente di eccentricità. In pratica, C<sub>E</sub> spesso varia tra 0,3 e 1,0 a seconda dei diversi tipi di ormeggio. La velocità (v) non è sempre perpendicolare alla linea di ormeggio.

$$x + y = 0.5 * L_{BP}$$

$$R = \sqrt{y^2 + \left(\frac{B}{2}\right)^2}$$

$$K = (0.19 * C_B + 0.11) * L_{BP}$$

$$C_E = \frac{K^2 + R^2 * \cos^2 \phi}{K^2 + R^2}$$

Dove:

- B = Larghezza della nave [m];
- $C_B = coefficiente di blocco;$
- L<sub>BP</sub> = lunghezza tra le perpendicolari [m];
- R = centro della massa nel punto di impatto [m];
- K = raggio di girata [m].



### Coefficiente di configurazione dell'attracco (Cc)

Il coefficiente di configurazione dell'attracco dipende dalla tipologia di struttura adibita all'accosto, nel caso in cui questa risulti di tipo aperto (come ad esempio un impalcato su pali) oppure di tipo chiuso (cassoni).

Quando le navi attraccano ad angoli acuti alle strutture solide, l'acqua tra la carena e la banchina fa da cuscino e disperde una piccola quantità di energia di attracco.

### Coefficiente di deformabilità (Cs)

Questo fattore è determinato dal rapporto tra l'elasticità del fender e quella dello scafo della nave, che assorbe pertanto una frazione della energia in gioco. Per sicurezza è stato assunto  $C_s=1$ .

### Energia di accosto in condizioni di attracco normale

$$E_N = 0.5 * M * V_B^2 * C_m * C_e * C_c * C_s = 1 kNm$$

Energia di accosto in condizioni di attracco anomalo

$$E_A = FS * E_N = 2 kNm$$

### Scelta degli elementi elastomerici

Come conseguenza dei valori esposti in precedenza, è prevista l'adozione dell'elemento elastomerico TRELLEBORG DD250, o simile approvato.

Sulla base dei dati raccolti in un documento specifico, emesso dal produttore suddetto, seguono i valori teorici riportati:

# Energia assorbita = 8,9 kNm $\pm 10\%$ di tolleranza Forza di reazione = 191 kN $\pm 10\%$ di tolleranza

### 7.2. Pontili galleggianti

# 7.2.1.Pennello a T – Banchina San Teofanio

Dalla banchina San Teofanio diparte un molo galleggiante a T dedicato a mega yachts caratterizzato da strutture galleggianti in elementi monoliti all-concrete, adeguatamente modulati al fine di rientrare nelle lunghezze previste in questa fase di progettazione. Per rientrare nei limiti imposti dalla geometria dell'approdo in funzione delle imbarcazioni e dei cerchi di evoluzione si prevede di utilizzare moduli di lunghezza variabile pari a 12,50 m, 11,00 m, 9,50 m e larghezza fissa pari a 4,90 m. Tali moduli sono ancorati a pali in acciaio trivellati nel fondale e liberi di scorrere verticalmente con il variare della marea grazie ad opportuni collari ammortizzati.

L'accesso al pontile avviene tramite passerella galleggiante a tutta larghezza di dimensioni pari a 9,20x4,50 m, realizzata dalla giunzione rigida di due robusti telai (larghezza 2,25 m) in acciaio saldato e zincato a caldo con piano di calpestio fisso. Il pagliolato è avvitato su speciali longheroni in alluminio - bullonati su telai portanti. In prossimità della giunzione con i pontili la passerella è supportata da unità galleggianti in speciale calcestruzzo armato con nucleo in polistirolo espanso a cellula chiusa che garantisce l'inaffondabilità.

La passerella è incernierata alla terraferma, a mezzo di robuste piastre in acciaio zincato da inghisare in banchina e all'altro estremo, sarà incernierata al primo elemento di molo galleggiante. Questa tipologia di vincoli assicura un preciso assetto planimetrico dell'opera con un sensibile miglioramento stabilità dei moli galleggianti. La larghezza della passerella pari a quella dei moli e le modeste pendenze ottenute in condizioni normali di impiego abbattono le barriere architettoniche e assicurano la massima funzionalità della struttura a favore della sicurezza e del comfort degli utenti. La lunghezza della passerella consente una pendenza del 8% circa sul medio mare.

Gli elementi costituenti il molo galleggiante sono ad altissimo dislocamento e galleggiamento continuo costituiti da manufatti prefabbricati monolitici in speciale calcestruzzo armato di larghezza 4,5 m, incrementato con fibre in polipropilene, con nucleo in polistirolo espanso non rigenerato a cellula chiusa, della densità minima garantita di 15 kg/mc, che garantisce l'inaffondabilità.

Il piano di calpestio è in calcestruzzo a vista con finitura antisdrucciolo. Il fondo di ogni manufatto viene trattato con speciale protettivo ad elevato spessore. L'elevatissimo dislocamento e la rilevante larghezza al galleggiamento pari a 4,5m assicurano un'eccezionale stabilità in acqua.

Ogni elemento è dotato sui due lati di tubazioni in PVC di diversi diametri, annegate nel getto, per l'inserimento delle reti tecnologiche. Ciascun elemento è dotato di n. 2 pozzetti per agevolare l'installazione delle reti tecnologiche.

I collegamenti tra i singoli moduli sono realizzati con una coppia di speciali giunti. Ogni giunto è formato da due tiranti in acciaio zincato e un tondone in gomma; le generose dimensioni di questi ultimi assicurano un'efficace distribuzione degli sforzi ed una concreta azione di smorzamento.

Il serraggio dei giunti di collegamento è realizzato con l'accesso a pozzetti in acciaio zincato a caldo, disposti ai vertici del manufatto e coperti con pannelli in alluminio. La resistenza ultima di ogni giunto è pari a 120t.

### 7.2.2.Pennelli di ormeggio - Calata Principe Tommaso

Per quanto concerne i due pontili ortogonali alla banchina Calata Principe Tommaso le lunghezze dei moduli, realizzati con le stesse caratteristiche di quelli utilizzati per il pennello a T, risultano essere pari a 12,64 m e 10,22 m. A differenza dei pontili realizzati in prossimità della banchina San Teofanio, questi sono ancorati a terra tramite l'utilizzo di appositi corpi morti posati sul fondale.

Le passerelle di accesso alle banchine hanno dimensioni pari a 6,00 x 1,20 m, con struttura a profilati saldati in lega di alluminio per impieghi marini. La struttura è dimensionata per resistere ad un sovraccarico uniformemente distribuito di 200 kg/m2.

Gli elementi del pontile di larghezza 2,50 m ad altissimo dislocamento e galleggiamento continuo, sono costituiti da manufatti prefabbricati monolitici in speciale cemento armato con nucleo in polistirolo espanso a cellula chiusa che garantisce l'inaffondabilità.

Il piano di calpestio è costituito dalla superficie superiore degli elementi ed è in calcestruzzo a vista con finitura antisdrucciolo spazzolato e cornice perimetrale liscia. Sotto al piano di calpestio sono annegati i tubi in materiale plastico destinati all'alloggiamento dei cavi elettrici e delle tubazioni impiantistiche. I collegamenti tra i singoli moduli sono realizzati con speciali giunti semirigidi costituiti da tiranti in acciaio inossidabile con interposti tamponi in gomma per assorbire sforzi di compressione e trazione tra gli elementi.

L'attacco delle catene di ancoraggio è realizzato a mezzo di tubi passanti la struttura che consentono il recupero ed il bloccaggio delle catene dal piano di calpestio tramite 4 vani posti ai vertici di ciascun elemento. Gli stessi vani sono impiegati per il posizionamento ed il serraggio dei giunti di collegamento.

### 8. MODELLAZIONE STRUTTURALE E GEOTECNICO DEI PALI DEI PONTILI

#### 8.1. Caratterizzazione geomeccanica delle litologie attraversate

Dai risultati della caratterizzazione geotecnica, riportati nel dettaglio nella relazione geotecnica, sono state desunte, per ciascuna unità litostratigrafica individuata, le caratteristiche fisico-meccaniche dei litotipi interessati dalla costruzione delle opere in oggetto.

Dalle analisi geologiche condotte, si è ricostruito l'andamento stratigrafico del substrato e le caratteristiche geotecniche del sottosuolo. Dalle indagini geologiche effettuate si osserva come il sondaggio di riferimento sia caratterizzato dalla seguente stratigrafia:

### da 0 a 0,20 m-Sabbia limosa

Si tratta di sabbie limose a tratti limo sabbiosi argillosi, talora rimaneggiate, di colore variabile dal grigio all'avana caratterizzata dalla presenza di concrezioni calcaree inclusi calcarenitici, resti conchigliari e resti vegetali costituititi da sottili filamenti algali. Costituisce il locale sedimento naturale preesistente e si rinviene, ove presente, al di sotto dei riporti sovrastanti per spessori compresi tra un minimo di 0,15 m a un massimo di 3,0 m. L'assenza di tale livello in alcuni sondaggi potrebbe attribuirsi ad operazioni di bonifica del fondale eseguite prima della messa in posto dei materiali di riporto.

I depositi in esame risultano contraddistinti da un variabile grado di addensamento testimoniato da valori  $N_{spt}$ mediamente compresi tra 7 colpi/piede e 15 colpi/piede con sporadici valori elevati, prossimi o superiori al rifiuto strumentale, caratteristici per definizione di depositi prevalentemente granulari da "poco addensati" a "mediamente addensati" (fig.1) il cui grado di densità relativa  $D_r$ % risulta oscillare intorno al 35%.

I sottili livelli a prevalente componente limo argillosa sabbiosa riscontrati localmente sono risultati in genere caratterizzati da un discreto grado di consistenza testimoniato da valori di pocket penetrometer di 1,8 kg/cmq. In considerazione di quanto espresso, evidenziando la disomogeneità dello strato in esame, in funzione dei risultati delle prove in sito e di laboratorio effettuate, è possibile proporre per il livello in oggetto la seguente parametrizzazione geomeccanica media:

$$Y = 16,21 \frac{kN}{m^3}$$
  $c' = 4 kPa$   $\phi' = 29^{\circ}$ 

### da 0 a 22 m-Argille sovraconsolidate

Unità riconducibile al già menzionato Flysh, caratterizzata da argille sovraconsolidate e argille marnose di colore grigio, vinaccia e avana, ricca in livelli calcarei interstratificati o in assetto caotico.

Costituisce l'unità stratigraficamente più rappresentativa ed è stata incontrata in tutti i sondaggi fino alla profondità massima di  $\approx 27$ m dall'attuale p.c. e/o l.m.m.

L'elevata frequenza di interstrati calcarei e calcareo marnosi, l'assetto caotico dell'ammasso, lo stato di sovraconsolidazione delle argille, prossime allo stato litoide o di argillite, la forte componente calcarea presente ha permesso sporadicamente di valutare lo stato di consistenza dei depositi in esame mediante l'utilizzo del Pocket Penetrometer; laddove tale prova è stata eseguita ha evidenziato valori comunque superiori a 5 kg/cmq e spesso superiori a 6 kg/cmq; lo stato di consistenza decisamente elevato di tali depositi è stato confermato dai numerosi valori SPT; le prove SPT eseguite nell'ambito dello strato hanno infatti

evidenziato valori prossimi o superiori al valore limite di rifiuto strumentale della prova stessa ( $N_{spt} \ge 50$  colpi/piede), caratteristici di depositi coesivi "duri".

In via cautelativa, si è considerata la seguente parametrizzazione geomeccanica media:

$$Y \ge 19.8 \ \frac{kN}{m^3}$$
  $c' = 30 - 50 \ kPa$   $\phi' \ge 22^\circ$   $q_0 \ge 500 \ kPa$ 

 $c_u \ge 250 \ kPa$   $E_{ed}(0, 1 - 0, 2 \ MPa) = 25 \ MPa$ 

| Mohr-Coulomb - Argilla sovraconsolidata                                                                                                                                                                  | Mohr-Coulomb - Argilla sovraconsolidata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mohr-Coulomb - Argilla sovraconsolidata                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| General Parameters Interfaces                                                                                                                                                                            | General Parameters Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | General Parameters Interfaces                                 |
| Material Set     Convol properties       Identification:     Anglia souraconsolidata     7 unsat       Material model:     (Material model):     Material model:       Material type:     UnDramed     V | $ \begin{bmatrix} SetTrees \\ E_{set} & 1.000E+0.4 \\ v(m) : & [0,330 \\ w \end{bmatrix} & e(m)^2 \\ e(p) : & [25,000 \\ w(p) : & [25,000 \\ w) \\ w(p) : & [20,000 \\ w \end{bmatrix} & e(p) \\ e(p) : & [20,000 \\ w \end{bmatrix} & e(p) \\ e(p) : & [20,000 \\ w \end{bmatrix} & e(p) \\ e(p) : & [20,000 \\ w \end{bmatrix} & e(p) \\ e(p) : & [20,000 \\ w \end{bmatrix} & e(p) \\ e(p) : & [20,000 \\ w \end{bmatrix} & e(p) \\ e(p) : & [20,000 \\ w \end{bmatrix} & e(p) \\ e(p) : & [20,000 \\ w \end{bmatrix} & e(p) \\ e(p) : & [20,000 \\ w \end{bmatrix} & e(p) \\ e(p) : & [20,000 \\ w \end{bmatrix} & e(p) \\ e(p) : & [20,000 \\ w \end{bmatrix} & e(p) \\ e(p) : & [20,000 \\ w \end{bmatrix} & e(p) \\ e(p) : & [20,000 \\ w ] \\ e(p) : & [20,000 \\ w ]$ | Stength<br>C Rigid<br>C Minual<br>R <sub>inter</sub> : [1.000 |
| Comments         Permeability           k <sub>y</sub> :         [L000E 04 m/day           k <sub>y</sub> :         [L000E 04 m/day                                                                      | G <sub>al</sub> :         3759,398         64/m²           U:         V:         44,030           E <sub>out</sub> :         1.462±+04         64/m²           U:         97,420         ©                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Senter : 0.000                                                |

#### 8.2. Definizione del modello di riferimento per le analisi

Il comportamento del generico schema è stato valutato mettendo a punto un modello bidimensionale la cui geometria e discretizzazione agli elementi finiti viene illustrata a titolo di esempio nella figura seguente. La configurazione può ritenersi cautelativa in quanto trascura il contributo dei pontili adiacenti nonché l'effetto di schermo reciproco tra le imbarcazioni.

Come si osserva nell'immagine seguente, la maglia di discretizzazione è stata infittita in un intorno di idonee dimensioni al fine di ottenere risultati più realistici possibili.

Al fine di poter generare la discretizzazione del terreno in mesh opportune, essendo il palo in parte fuori terra, è stato indispensabile simulare la presenza del terreno fino alla testa del palo. Una volta generata la discretizzazione del modello, i calcoli a partire dalla generazione delle tensioni con la  $K_0$ –Procedure, sono stati effettuati non considerando la parte di terreno per un'altezza pari alla profondità del fondale.



Figura 10. Imput geometrico (Modello geometrico) e discretizzazione degli elementi finiti (mesh)

Il modello geometrico considerato nelle analisi numeriche simula il problema attraverso un modello di deformazione piana "*plane strain*", ha una estensione di 80 m in larghezza (-40; +40 in direzione x) e di 49 m in altezza (-40; +9 in direzione y); il palo è collocato all'interno dell'ammasso ad una distanza dal contorno

inferiore di 24 m. La larghezza e l'altezza del dominio risultano sufficienti per escludere eventuali fenomeni di bordo. Il palo ha una dimensione complessiva di 24 m e nella modellazione dell'interfaccia tra palo e terreno, al fine di evitare punti di spigolo rigidi che producono risultati al contorno scadenti, è stato necessario prolungare tali elementi per almeno 1 metro oltre la base del palo. Tali elementi migliorano la flessibilità delle mesh agli elementi finiti ed evitano risultati privi di significato fisico riguardanti le tensioni in quel punto.

### 8.3. Proprietà e modelli costitutivi dell'ammasso e degli elementi strutturali

Il terreno è stato modellato mediante elementi triangolari a 15 nodi con integrazione numerica a 12 punti di Gauss "stress point". Nella figura che segue sono rappresentati gli elementi utilizzati con l'indicazione dei punti di Gauss e dei nodi per ciascun elemento. La discretizzazione del palo immerso nel terreno è stata considerata utilizzando elementi "plate" adattando le caratteristiche meccaniche all'elemento bidimensionale, spalmate su metro lineare. Per fare ciò si ricorre alla riduzione ottenuta confrontando le superfici di contatto tra il cilindro 3D (palo) e l'elemento parete (plate) utilizzato nel modello; essi differiscono di un valore pari a  $\pi$ , simile ai 3-diametri utilizzati per ottimizzare il comportamento dei pali in gruppo.

Si procede, quindi, con l'approssimazione introdotta dallo studio di Prakoso e Kulhawy (2001). Al contatto argilla–struttura del palo è stata modellata un'interfaccia con valore di R<sub>interr</sub> unitario (condizione equivalente a quella di no-slip delle soluzioni di Wang\_1993). Il fattore R<sub>interr</sub> mette in relazione la resistenza all'interfaccia (attrito ed adesione con l'elemento palo) con quella del terreno (angolo di resistenza a taglio e coesione); considerando il valore unitario si è impostato un contatto di tipo rigido palo-terreno.

Il problema principale per la modellazione 2D è quello di simulare il comportamento degli elementi del modello che fondamentalmente hanno uno sviluppo prettamente tridimensionale.

Per i terreni è stato adottato il modello costitutivo elastico lineare perfettamente plastico con criterio di rottura di Mohr-Coulomb. Questo modello viene utilizzato come una prima approssimazione del comportamento del terreno e richiede la definizione di cinque parametri: il modulo di Young, il modulo di Poisson, la coesione, l'angolo di attrito e la dilatanza. L'analisi è stata condotta in condizioni non drenate. Il codice di calcolo prevede la definizione di un incremento lineare del modulo di Young con la profondità, al fine di simulare la dipendenza della rigidezza con il livello tensionale.

Il palo è stato modellato considerando un comportamento lineare elastico. Come noto, il modello lineare elastico richiede la definizione di due soli parametri: il modulo di Poisson e il modulo di Young.

|                  | Terreno  | Opere<br>strutturali |
|------------------|----------|----------------------|
|                  |          | Beam a 5             |
| Tipo di elemento | 15 nodi  | nodi                 |
| Integrazione     | 12 punti | 8 punti di           |
| numerica         | Gauss    | Gauss                |



Figura 11. Distribuzione dei nodi e dei punti di Gauss

### <u>Palo</u>

Nel presente capitolo si riporta il calcolo del palo nell'ottica di esaminare il comportamento del terreno che nello specifico è rappresentato da un'argilla sovraconsolidata. Di seguito si evidenzia il modello di calcolo così come configurato all'interno del programma di calcolo (*PLAXIS V8.2*). Come condizione al contorno si è considerato lo "*Standard Fixities*", una tipologia di vincolo che consente lo spostamento laterale delle parti più estremali mentre blocca quello verticale nel tratto più in profondità. Per quanto concerne la distribuzione delle mesh applicate al terreno, di seguito si riporta un'immagine dalla quale si evince un andamento grossolano generale e un raffittimento in prossimità dell'estensione del palo in profondità. Per far questo sono state definite delle aree chiuse "*cluster*" indispensabili per poter assegnare una definizione delle mesh più fine.





Di seguito si riportano le proprietà meccaniche utilizzate per modellare gli elementi plate utilizzati per discretizzare il palo all'interno del programma di calcolo. Nello specifico, considerando un palo in acciaio  $\phi$ 711/16 mm ed altezza totale di 24 m, si ottengono i seguenti parametri:

$$\begin{split} EA_{psp} &= EA_p * \frac{1}{3 * D} = 210.000.000 \ [kPa] * 0.034935 \ [m^2] * \frac{1}{3 * 0.8} = 3.44E^+06 \ [kPa] \\ EI_{psp} &= EI_p * \frac{1}{3 * D} = 210.000.000 \ [kPa] * 0.0021104 * \frac{1}{3 * 0.8} = 2.08E^+05 \ [kPa] \\ w_p &= 77 \left[\frac{kN}{m^3}\right] * 0.034935 = 2.70 \ \left[\frac{kN}{m}\right] \end{split}$$

|                       |                                                                                                                   | ×                                                                                                                                                                                                                                                                                           |
|-----------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Properties            |                                                                                                                   |                                                                                                                                                                                                                                                                                             |
| EA:                   | 3,439E+06                                                                                                         | kN/m                                                                                                                                                                                                                                                                                        |
| EI:                   | 2,078E+05                                                                                                         | kNm <sup>2</sup> /m                                                                                                                                                                                                                                                                         |
| d :                   | 0,851                                                                                                             | m                                                                                                                                                                                                                                                                                           |
| w :                   | 2,690                                                                                                             | kN/m/m                                                                                                                                                                                                                                                                                      |
| ν:                    | 0,300                                                                                                             |                                                                                                                                                                                                                                                                                             |
| M <sub>p</sub> :      | 1,000E+15                                                                                                         | kNm/m                                                                                                                                                                                                                                                                                       |
| N <sub>p</sub> :      | 1,000E+15                                                                                                         | kN/m                                                                                                                                                                                                                                                                                        |
| Rayleighα:            | 0,000                                                                                                             |                                                                                                                                                                                                                                                                                             |
| Rayleigh β :          | 0,000                                                                                                             |                                                                                                                                                                                                                                                                                             |
| <u>O</u> k <u>C</u> a | ancel                                                                                                             | Help                                                                                                                                                                                                                                                                                        |
|                       | Properties<br>EA :<br>EI :<br>d :<br>w :<br>$W_p$ :<br>$N_p$ :<br>Rayleigh $\alpha$ :<br>Rayleigh $\beta$ :<br>Qk | Properties           EA:         3,439E+06           EI:         2,078E+05           d:         0,851           w:         2,690           v:         0,300           Mp:         1,000E+15           Np:         1,000E+15           Rayleigh β:         0,000           Qk         Cancel |

Figura 13. Parametri dell'elemento palo

Il palo è stato modellato con elementi piastra plates in quanto rappresenta la migliore approssimazione per modellare un oggetto strutturale bidimensionale con una significativa rigidezza flessionale e normale. Nella figura precedente sono stati introdotti i parametri geometrici utilizzati per meglio simulare il comportamento del palo. Nella figura precedente viene schematizzato il modello con falda, in modo da determinare le pressioni interstiziali dovute alla presenza del tirante idrico.

# 8.4. Costruzione per fasi (Staged Construction)

Per l'analisi del palo vengono individuate tre fasi che di seguito si evidenziano:

la fase 1-Geostatica (Calcolo dello stato tensionale iniziali) risulta indispensabile per generare lo stato tensionale in sito. In questa prima fase di calcolo viene generato lo stato tensionale iniziale all'interno della roccia tramite l'attivazione della forza di gravita. Per far questo, essendo il terreno orizzontale, è necessario procedere con l'analisi dello stato tensionale attraverso la "K<sub>0</sub>-Procedure"; andando ad inserire ΣM<sub>weight</sub> pari a 1 si attiva nel calcolo l'intero peso del terreno.

Le condizioni iniziali in termini di tensioni verticali sono di tipo litostatico  $\sigma'_{v,0} = \Sigma M weight *$   $(\sum_i Y_i * h_i - p_w)$ , mentre le tensioni orizzontali sono ad esse proporzionali tramite il coefficiente di spinta in quiete K<sub>0</sub> ( $\sigma'_{h,0} = K_0 * \sigma'_{v,0}$ ). Dove Y<sub>i</sub> è il peso dell'unità di volume dello strato i-esimo, h<sub>i</sub> è la profondità dello strato i-esimo e p<sub>w</sub> è la pressione neutra iniziale nel punto di integrazione. Le pressioni interstiziali sono nulle in tutto il dominio, mentre le condizioni al contorno riguardo gli spostamenti nodali del sistema prevedono:

- spostamenti nulli nelle due direzioni, orizzontale e verticale, in corrispondenza della base dello strato roccioso;
- spostamenti nulli in direzione orizzontale lungo i bordi laterali dello strato.

Il valore di  $K_0$  per tutti i singoli clusters è basato sulla formula Jacky (1-sin $\phi$ ) che approssima al meglio il comportamento per terreni normal consolidati. In questa fase non è ancora presenta la struttura della galleria e non sono ancora stati eseguiti gli scavi.



Figura 14. Fase 1\_Geostatica



Figura 15. Stato tensionale Fase 1

• la fase 2-External Load\_Pile SLE (Installazione palo ed applicazione carico) è relativa alla realizzazione del palo e relativa applicazione del carico orizzontale incrementato dei coefficienti allo Stato Limite di Esercizio (Load B).



Figura 16. Fase 2\_ External Load\_Pile SLE



**Figura 17.** Stato tensionale Fase 2

• la fase 3-External Load\_Pile SLU (Installazione palo ed applicazione carico) è relativa alla realizzazione del palo e relativa applicazione del carico orizzontale incrementato dei coefficienti allo Stato Limite Ultimo (Load A).



Figura 18. Fase 3\_ External Load\_Pile SLU





# 8.5. Azioni agenti sui punti di ancoraggio

Per la determinazione della forza complessiva che agisce sul palo, si è fatto riferimento all'azione del vento calcolata come definito nel cap. 6 della presente relazione senza tener conto della velocità delle correnti interne al bacino portuale che risultano essere del tutto trascurabili. In ragione di ciò, considerando la configurazione

del pontile tipico maggiormente sollecitato, si riporta di seguito il calcolo relativo al carico totale agente sul palo.

Nel caso in esame considerando i dati delle imbarcazioni desunti dalle "Australian Standard – Guidelines for design of marinas – AS 3962\_2001", ed una configurazione che prevede ormeggiate una imbarcazione da 50 m sul lato esterno e due imbarcazioni da 20 m sul lato interno, si sono desunti i dati riportati di seguito.

Per la determinazione delle azioni sollecitanti si è fatto riferimento al cap. 6.4.3 delle Norme Tecniche per le Costruzioni 2018 "Fondazioni su pali"; nello specifico trattandosi di pali principalmente soggetti a carichi trasversali per le verifiche a SLU si sono seguiti i dettami del cap. 6.4.3.1 e nella stima dell'azione risultante si è utilizzato un coefficiente parziale (R3)  $\Upsilon_T$  pari a 1.3 (Tab. 6.4.VI). Per quanto concerne le verifiche allo SLE si è fatto riferimento al cap. 6.4.3.2 che consiglia di prendere in considerazione i seguenti stati limite di esercizio:

- eccessivi cedimenti e sollevamenti;
- eccessivi spostamenti trasversali.

Specificamente si devono calcolare i valori degli spostamenti e delle distorsioni nelle combinazioni caratteristiche previste per gli stati limite di esercizio al 2.5.3, per verificare la compatibilità con i requisiti prestazionali della struttura del pontile. Si osserva come la combinazione che massimizza il contributo del carico variabile (vento) risulta essere la combinazione caratteristica rara nel quale si considera un coefficiente delle azioni unitario.

Di seguito si riporta la schematizzazione utilizzata per la definizione del carico totale sul palo.



Figura 20. Schematizzazione carico su palo

| Velocità del vento                                              | m/s   | 27      |         |
|-----------------------------------------------------------------|-------|---------|---------|
|                                                                 |       | Lato X- | Lato X+ |
| Lunghezza imbarcazione                                          | т     | 50      | 20      |
| Area laterale                                                   | $m^2$ | 285     | 76      |
| Azione su imbarcazione                                          | kN    | 137     | 37      |
| Fattore di schermo                                              |       | 1,0     | 1,0     |
| Percentuale di carico che si scarica a poppa                    |       | 70%     | 70%     |
| Carico su ormeggi di poppa                                      | kN    | 96,0    | 25,6    |
| Larghezza posto barca                                           | т     | 11      | 6       |
| Carico su pontile al metro lineare                              | kN/m  | 8,7     | 4,3     |
|                                                                 |       |         |         |
| Lunghezza pontile                                               | т     | 12      | 12      |
| Carico su pontile                                               | kN    | 105     | 51      |
| Angolo tiro ormeggi di poppa                                    | gradi | 45      | 45      |
|                                                                 |       |         |         |
| Carico su pontile in direzione Y                                | kN    | -104,7  | -51,2   |
| Carico su pontile in direzione X                                | kN    | -104,7  | 51,2    |
| Coordinata X del punto di applicazione del carico Y sul pontile | т     | 0,50    | 5,00    |
| Interasse pali in direzione Y                                   | т     | 9,60    |         |
|                                                                 |       |         |         |
| Carico totale in Y su due pali                                  | kN    | -155,9  |         |
| Carico totale in X su due pali                                  | kN    | -53,5   |         |
| Momento da carichi in Y                                         | kN m  | -308,3  |         |
|                                                                 |       |         |         |
| Carico in X su ciascun palo dovuto al momento                   | kN    | 32,1    | -32,1   |
|                                                                 |       | Dalo V  | Palo V  |
| Carico in V su singolo palo                                     | kN    | -78.0   | 78.0    |
| Carico in X su singolo palo                                     | kN    | 54      | -58.9   |
| Carico totale su palo (SLE)                                     | kN    | 78,1    | 97,7    |

Considerando un carico totale su palo pari a 97,7 kN si riportano di seguito le azioni a SLE e SLU considerate nel calcolo.

$$H_{Tot_{SLU}} = \frac{97,7 \ kN * \Upsilon_T}{3 * D} = \frac{97,7 \ kN * 1,3}{3 * 0,711 \ m} = 59,54 \ \frac{kN}{m} \ (Load \ A)$$

$$H_{Tot_{SLE}} = \frac{97,7 \ kN * Y}{3 * D} = \frac{97,7 \ kN * 1}{3 * 0,711 \ m} = 45,80 \ \frac{kN}{m} \ (Load \ B)$$

### 8.6. Analisi dei risultati

Il tipo di calcolo utilizzato "*Stage Construction*" è di tipo plastico ovvero fa riferimento ad un'analisi di deformazione elasto plastica in cui non è necessario prendere in considerazione la dissipazione delle sovrappressioni neutre nel tempo. In questo paragrafo si riportano in maniera sintetica i principali risultati delle analisi svolte, mirate a valutare il comportamento deformativo e tensionale del palo . Nella figura seguente sono definiti alcuni nodi significativi del palo, in corrispondenza dei quali risulta particolarmente significativo commentare i valori calcolati degli spostamenti.



Figura 21. Definizione di alcuni nodi caratteristici





Di seguito si riportano i principali risultati delle analisi svolte.

# **External Load-Pile SLE**







**Figura 24.** Vertical displacement  $U_y$  -6,16\*10<sup>-3</sup> m









REALIZZAZIONE DI UN APPRODO TURISTICO ALL'INTERNO DEL PORTO DI CIVITAVECCHIA Progetto Definitivo – Relazione tecnica opere marittime



**Figura 27.** Total phase displacement  $dU_{tot} 17,71*10^{-3}$  m

Di seguito si riportano le caratteristiche della sollecitazione relative alla Palo



**Figura 28.** Total Displacement nella condizione più sfavorevole 120,96\*10<sup>-3</sup> m\_Vertical Displacement nella condizione più sfavorevole -4,72\*10<sup>-3</sup> m\_Horizontal Displacement nella condizione più sfavorevole - 120,96\*10<sup>-3</sup> m



**Figura 29.** Sforzo normale nella condizione più sfavorevole -24,10 kN/m\_Taglio nella condizione più sfavorevole 66,67 kN/m\_Momento flettente nella condizione più sfavorevole 369,12 kNm/m



# **External Load-Pile SLU**

Figura 30. Mesh deformata



**Figura 31.** Vertical displacement  $U_y -7,13*10^{-3}$  m





REALIZZAZIONE DI UN APPRODO TURISTICO ALL'INTERNO DEL PORTO DI CIVITAVECCHIA Progetto Definitivo – Relazione tecnica opere marittime



**Figura 33.** Total displacement  $U_{tot} 26,33*10^{-3} \text{ m}$ 



**Figura 34.** Total phase displacement  $dU_{tot} 26,33*10^{-3}$  m

Di seguito si riportano le caratteristiche della sollecitazione relative alla Palo



**Figura 35.** Total Displacement nella condizione più sfavorevole 182,27\*10<sup>-3</sup> m\_Vertical Displacement nella condizione più sfavorevole -4,71\*10<sup>-3</sup> m\_Horizontal Displacement nella condizione più sfavorevole 182,21\*10<sup>-3</sup> m



**Figura 36.** Sforzo normale nella condizione più sfavorevole -24,10 kN/m\_Taglio nella condizione più sfavorevole 99,56 kN/m\_Momento flettente nella condizione più sfavorevole 553,76 kNm/m

### 9. VERIFICA PALI DEI PONTILI

#### 9.1. Verifica agli SLE (Spostamenti)

Per quanto concerne il controllo degli spostamenti, le NTC 2018 prescrivono di seguire il cap. 6.4.3.2 che rimanda espressamente alla condizione [6.2.7] che di seguito si rappresenta:

$$E_d \leq C_d$$

Dove:

- E<sub>d</sub> è il valore di progetto dell'effetto delle azioni nella combinazione di carico per gli SLEcombinazione caratteristica rara nel quale si considera un coefficiente delle azioni unitario;
- C<sub>d</sub> è il prescritto valore limite dell'effetto delle azioni (fornito dallo strutturista). Quest'ultimo deve essere stabilito in funzione del comportamento della struttura in elevazione e di tutte le costruzioni che interagiscono con le opere geotecniche in progetto, tenendo conto della durata dei carichi applicati.

Dal paragrafo 8.6 della presente relazione si evince come lo **spostamento massimo del terreno risulta essere pari a 1,7 cm** mentre in testa al palo si ottiene uno **spostamento massimo pari a 12,1 cm**. Tale valore risulta essere congruente con la tipologia di sovrastruttura considerata.

#### 9.2. Verifica agli SLU (Resistenza)

Le norme tecniche utilizzate per le verifiche sono quelle approvate con decreto 17/01/2018 dal Ministero delle Infrastrutture e denominate "Norme Tecniche per le Costruzioni" (NTC 18).

Le verifiche di sicurezza nei confronti degli stati limite ultimi (SLU) sono state eseguite adottando l'Approccio 2 - Combinazione (A1+M1+R3), previsto dalle NTC 18 cap. 6.4.3.1. Le sollecitazioni sono state determinate dai risultati delle analisi numeriche condotte con il codice di Calcolo PLAXIS V8.2 e valutate a partire dai valori caratteristici dei parametri di resistenza del terreno. Le sollecitazioni così ottenute sono da intendersi come valori caratteristici,  $E_k$  sono state quindi moltiplicate per i coefficienti parziali per le azioni - prescritti nelle NTC 18 - al fine di determinarne i corrispondenti valori di progetto  $E_d$ .

Per ogni stato limite ultimo, negli elementi più sollecitati, si è quindi accertato che:

$$\frac{E_d}{R_d} < 1$$

dove il rapporto  $E_d/R_d$  rappresenta il coefficiente di sfruttamento della sezione e  $E_d$  e  $R_d$  sono rispettivamente le azioni e le resistenze di progetto.

Facendo riferimento alle caratteristiche della sollecitazione introdotte nel capitolo precedente, di seguito si riporta il calcolo del Momento resistente del palo che è stato determinato considerando le seguenti caratteristiche.

- Palo del diametro  $\phi$ 711/16 mm;
- Acciaio S355 GP;
- Lunghezza del palo 24 m.

Per la verifica si è fatto riferimento al programma *Flex62++* insieme ad un foglio di calcolo che attraverso la teoria di Broms ripercorre il carico limite orizzontale massimo applicabile.

Considerando un diametro dei pali pari a 0,711 m, e schematizzando il problema come una mensola, si è determinato un valore del carico di rottura pari a 343 kN mentre di snervamento pari a 211,85 kN.

Confrontando tale valore resistente con il carico massimo applicato allo SLU pari a 127 kN, si evince che la verifica risulta soddisfatta.



Figura 37. Calcolo del carico di rottura

Per determinare l'azione orizzontale limite ammissibile per il palo considerato, nonché per determinare il comportamento del palo (palo lungo o corto) si è fatto riferimento alla teoria di Broms. Di seguito si riporta un foglio di calcolo nel quale per considerare il palo libero in testa si sono conferite al primo strato caratteristiche scadenti.



Dai calcoli effettuati si capisce come il palo si comporti come palo lungo e si ottiene una forza orizzontale limite pari a 1738,9 kN.

Si capisce come in funzione della geometria del sistema il problema principale, che ha conferito le caratteristiche al palo è risultato essere il controllo degli spostamenti in testa in quanto per quanto concerne gli aspetti inerenti la resistenza, le verifiche risultano ampiamente soddisfatte.

### Resistenza a flessione, forza assiale e taglio

| Coefficiente n       n       0,003 [-]         Resistenza a flessione ridotta, per flessione attorno all'asse y - y       M <sub>Ny,Rd</sub> 2613,30 [kNm]         Resistenza a flessione ridotta, per flessione attorno all'asse z - z       M <sub>Nz,Rd</sub> 2613,30 [kNm]         Verifica di presso/tence flessione biasciale (metodo EN1002 - 1 - 1:2010)       0.053 [-] | Calcolo plastico per sezioni in classe 1 o 2                              |                          |             |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|-------------|-------|
| Resistenza a flessione ridotta, per flessione attorno all'asse y - y       M <sub>Ny,Rd</sub> 2613,30 [kNm]         Resistenza a flessione ridotta, per flessione attorno all'asse z - z       M <sub>Nz,Rd</sub> 2613,30 [kNm]         Verifica di presso/tonce flessione biasciale (metodo EN1002 - 1 - 1:2010)       0.053 [L]                                                | Coefficiente n                                                            | n                        | 0,003       | [-]   |
| Resistenza a flessione ridotta, per flessione attorno all'asse z - z M <sub>Nz,Rd</sub> 2613,30 [kNm]                                                                                                                                                                                                                                                                            | Resistenza a flessione ridotta, per flessione attorno all'asse y - y      | $M_{Ny,Rd}$              | 2613,30     | [kNm] |
| Varifica di prosso tansa flassiana biassiala (matada EN1002, 1, 1:2010)                                                                                                                                                                                                                                                                                                          | Resistenza a flessione ridotta, per flessione attorno all'asse z - z      | M <sub>Nz,Rd</sub>       | <br>2613,30 | [kNm] |
|                                                                                                                                                                                                                                                                                                                                                                                  | Verifica di presso/tenso flessione biassiale (metodo EN1993 - 1 - 1:2010) | ρ <sub>N-My-Mz-pl</sub>  | 0,053       | [-]   |
| Verifica di presso/tenso flessione biassiale ( <i>metodo cautelativo</i> )<br>$\rho_{N-My-Mz-pl}$ $\bigcirc$ 0,232 [-]                                                                                                                                                                                                                                                           | Verifica di presso/tenso flessione biassiale (metodo cautelativo)         | ρ <sub>N-My</sub> -Mz-pl | 0,232       | [-]   |