

PIANO TECNICO DELLE OPERE

Codifica

EE15003G_ACSC0006

Rev. 00 del 30/11/2015

Pag. 1 di 117

Elettrodotto aereo 150kV in semplice terna

"S.E. Paternò – C.P. Belpasso" ed opere connesse

CARATTERISTICHE COMPONENTI

Storia delle revisioni			
Rev. 00	del 30/11/2015	Prima emissione	

Elaborato			Verificato		Approvato
G. Savica	M. Salerno		N. Speranza		R. Cirrincione
ING-REA-APRI-CS	ING-REA-APRI-CS		ING-REA-APRI-CS		ING-REA-APRI-CS

PIANO TECNICO DELLE OPERE

Codifica EE15003G_ACSC0006 Rev. 00 Pag. 2 di117

del 30/11/2015

1. CONDUTTORI

CODIFICA	OGGETTO
LIN_000000C2	Conduttore a corda di Alluminio - Acciaio diametro 31,5
LIN_00000C51	Fune di guardia di Acciaio rivestito in alluminio Ø 11,5 mm
LIN_00000C59	Fune di guardia con Fibre Ottiche Ø 11,5 mm

2. ISOLATORI

CODIFICA	OGGETTO	
LIN_000000J1	Isolatori cappa e perno di tipo normale in vetro temprato	
LIN_000000J2 Isolatori cappa e perno di tipo antisale in vetro temprato		
LIN_00000J31 Isolatori compositi e relativi dispositivi di guardia		

3. ARMAMENTI ELETTRODOTTI AEREI 150 kV

CODIFICA	OGGETTO			
LM 11	Armamento per sospensione semplice del conduttore All-Acc Ø 31,5 mm			
LM 12	Armamento per sospensione doppia del conduttore All-Acc Ø 31,5 mm			
LM 13	Armamento per sospensione doppia con doppio morsetto del conduttore AllAcc. Ø31,5			
LM 14	Armamento per sospensione del conduttore AllAcc. Ø31,5 con contrappeso			
LM 111	Armamento per amarro semplice del conduttore AllAcc. Ø31,5			
LM 112	Armamento per amarro doppio del conduttore AllAcc. Ø31,5			
LM 201	Armamento per sospensione della corda di guardia			
LM 252	Armamento per amarro della corda di guardia di acciaio o di acciao rivestito di alluminio Ø 11,5 mm			
LIN_0000M205	Armamento di sospensione della fune di guardia con fibre ottiche Ø11,5 mm			
LIN_0000M270 Armamento di amarro capolinea della fune di guardia con fibre ottiche Ø1 mm				
LIN_0000M271	Armamento di amarro della fune di guardia con fibre ottiche ø 11,5 mm			
LIN_0000M272	Armamento di amarro con isolamento della fune di guardia con fibre ottiche ø 11,5 mm			

PIANO TECNICO DELLE OPERE

Codifica

EE15003G_ACSC0006

Rev. 00
Pag. 3 di117

del 30/11/2015

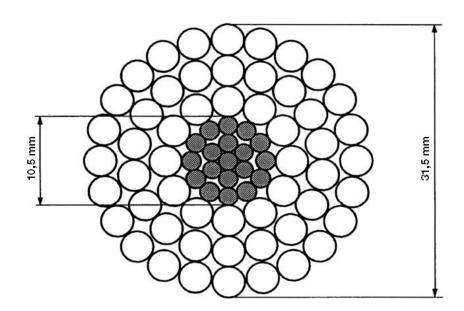
LIN_0000M273	Armamento di amarro passante per fune di guardia con fibre ottiche ø 11,5 mm
LIN_0000M274	Armamento di amarro in sospensione per fune di guardia con fibre ottiche ø 11,5 mm
LIN_0000M541	Giunto a compressione esagonale per conduttori di alluminio-acciaio

4. TIPOLOGIA SOSTEGNI ELETTRODOTTI AEREI 150 kV

CODIFICA	OGGETTO		
LIN_0000\$700	Semplice terna a triangolo: Tabella delle corrispondenze sostegni - gruppi mensole		
LIN_0000S702	Semplice terna a triangolo - Sostegni tipo N		
LIN_0000S703	Semplice terna a triangolo - Sostegni tipo M		
LIN_0000S706	Semplice terna a triangolo - Sostegni tipo C		
LIN_0000\$707	Semplice terna a triangolo - Sostegni tipo E		
P505DS001	Sostegno di stazione – Schema Generale Palo Gatto		
P005UN001	Utilizzazione del sostegno "N"		
P005UM001	Utilizzazione del sostegno "M"		
P005UC001	Utilizzazione del sostegno "C"		
P005UE001	Utilizzazione del sostegno "E"		
P505UP001	Utilizzazione del sostegno "Palo Gatto"		

5. FONDAZIONI ELETTRODOTTI AEREI 150 kV

CODIFICA	OGGETTO
150STINFON	150 kV Semplice Terna a triangolo - Fondazioni CR: Corrispondenza sostegni - monconi – fondazioni
LF1	Fondazione di classe "CR"
LF 20	Fondazioni su pali trivellati
LF 21	Fondazioni ad ancoraggio a mezzo di tiranti



CONDUTTORE A CORDA DI ALLUMINIO-ACCIAIO Ø 31,5 mm

Codifica
LIN_000000C2

Rev. 00
del 02/07/2012

Pag. 1 di 2

TIPO CONDUTTORE			2/1	2/2 (*)
			NORMALE	INGRASSATO
FORMAZIONE		Alluminio	54 x 3,50	54 x 3,50
PORMAZIONE		Acciaio	19 x 2,10	19 x 2,10
		Alluminio	519,5	519,5
SEZIONI TEORICHE	(mm ²)	Acciaio	65,80	65,80
		Totale	585,30	585,30
TIPO DI ZINCATURA DELL'ACCIAIO			Normale	Maggiorata
MASSA TEORICA	(Kg/m)		1,953	2,071(**)
RESISTENZA ELETTR. TEORICA A 20°C	(Ω/km)		0,05564	0,05564
CARICO DI ROTTURA	(daN)		16852	16516
MODULO ELASTICO FINALE (daN/mm²)		2)	6800	6800
COEFFICIENTE DI DILATAZIONE	(K ⁻¹)		19,4 x 10 ⁻⁶	19,4 x 10 ⁻⁶

^(*) Per zone ad alto inquinamento salino

Storia delle revisioni				
Rev. 00	del 02/07/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna RQUT0000C2 rev. 01 del 25/07/2002 (C.D'Ambrosa, A.Posati, R.Rendina)		

Elaborato		Verificato			Approvato	
ITI s.r.l.			A. Piccinin SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posati SRI-SVT-LAE

^(**) Compresa massa grasso pari a 103,39 gr/m.

CONDUTTORE A CORDA DI ALLUMINIO – ACCIAIO Ø 31,5 mm

Codifica LIN_00000C2

Rev. 00 Pag. **2** di 2

NOTE

1. Materiale

Mantello esterno in Alluminio ALP E 99,5 UNI 3950:1957.

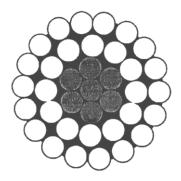
Anima in acciaio a zincatura normale tipo 170 (CEI 7-2:1997), zincato a caldo.

Anima in acciaio a zincatura maggiorata tipo 3 secondo prescrizioni LIN_000C3905 Appendice A.

2. Prescrizioni

Per la costruzione, il collaudo e la fornitura: LIN_000C3905.

Per le caratteristiche dei prodotti di protezione: CEI EN 50326:2003.


Per le modalità di ingrassaggio: CEI EN 50182:2002.

- 3. Imballo e pezzature: bobine da 2.000 m (salvo diversa prescrizione in sede di ordinazione).
- 4. Unità di misura: l'unità di misura con la quale deve essere espressa la quantità del materiale è la massa in chilogrammi (Kg).
- 5. Modalità di applicazione dei prodotti di protezione

Il conduttore tipo 2/2 dovrà essere completamente ingrassato, ad eccezione della superficie esterna dei fili elementari del mantello esterno.

Le modalità di ingrassaggio devono essere rispondenti alla Norma CEI EN 50182:2002 Caso 4 Figura B.1, annesso B.

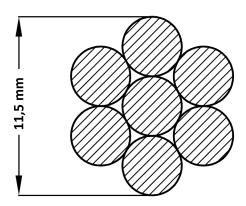
La massa teorica di grasso espressa in gr/m, con una densità di 0,87 gr/cm³, calcolata secondo la Norma CEI EN 50182:2002 dovrà essere pari a 103,39 gr/m.

Cfr. Norma CEI EN 50182:2002 Caso 4 Figura B.1, annesso B

6. Caratteristiche dei prodotti di protezione

Il grasso deve essere conforme alla Norma CEI EN 50326:2003 tipo 20A180 ovvero 20B180.

Il Fornitore del conduttore, dovrà consegnare la documentazione di conformità del grasso utilizzato.



Specifica di componente FUNE DI GUARDIA DI ACCIAIO RIVESTITO DI ALLUMINIO Ø 11,5 mm

LIN_0000C51

Rev. 00
del 02/07/2012

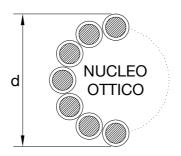
Pag. **1** di 1

SEZIONE TEORICA	(mm²)	80,65
FORMAZIONE		7 x 3,83
MASSA UNITARIA TEORICA	(kg/m)	0,537
RESISTENZA ELETTRICA TEORICA A 20 °C	(Ω/km)	1,052
CARICO DI ROTTURA	(daN)	9000
MODULO ELASTICO FINALE	(daN/mm²)	15500
COEFFICIENTE DI DILATAZIONE TERMICA	(K ⁻¹)	13 x 10 ⁻⁶

NOTE

- 1. Materiale: acciaio rivestito di alluminio (CEI 7-11:1997).
- 2. Prescrizioni per la costruzione, il collaudo e la fornitura: LIN_000C3908.
- 3. Imballo e pezzature: bobine da 2000 m (salvo diversa prescrizione in sede di ordinazione).
- 4. Unità di misura: la quantità del materiale deve essere espressa metri (m).

Storia del	Storia delle revisioni					
Rev. 00	del 02/07/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL LC51 Ed.7 del Gennaio 1995.				


Elaborato		Verificato			Approvato
ITI s.r.l.		A. Piccinin SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posati SRI-SVT-LAE

FUNE DI GUARDIA CON 48 FIBRE OTTICHE Ø 11,5 mm

Codifica LIN_00000C59

Rev. 00 Pag. **1** di 1

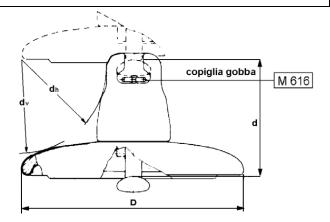
DIAMETRO NOMINALE ES	STERNO	(mm)	≤ 11,5	
MASSA UNITARIA TEORIO	CA (Eventuale grasso	(kg/m)	≤ 0,6	
RESISTENZA ELETTRICA	TEORICA A 20 ℃		(ohm/km)	≤ 0,9
CARICO DI ROTTURA			(daN)	≥ 7450
MODULO ELASTICO FINA	LE	(daN/mm²)	≥ 10000	
COEFFICIENTE DI DILATA	ZIONE TERMICA	(1/℃)	≤ 16,0E-6	
MAX CORRENTE C.TO C.	TO DURATA 0,5 s	(kA)	≥ 10	
	NUMERO		(n°)	48
FIRRE OTTIONE ON B	ATTENUAZIONE	a 1310 nm	(dB/km)	≤ 0,36
FIBRE OTTICHE SM-R (Single Mode Reduced)		a 1550 nm	(dB/km)	≤ 0,22
(Ciligio illedo reduced)	DISPERSIONE	a 1310 nm	(ps/nm · km)	≤ 3,5
	CROMATICA	a 1550 nm	(ps/nm · km)	≤ 20

NOTE

- 1. Prescrizioni per la costruzione ed il collaudo: LIN_000C3907
- 2. Imballo e pezzature: bobine da 4000 m (salvo diversa prescrizione in sede di ordinazione).
- 3. Unità di misura: la quantità del materiale deve essere espressa in m.
- 4. Sigillatura: eseguita mediante materiale termoresistente e autovulcanizzante.

Storia del	le revisioni	
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna UXLC59 rev. 00 del 08/10/2007 (S.Tricoli-A.Posati-R.Rendina)

Elaborato		Verificato			Approvato
ITI s.r.l.		A. Guarneri SRI-SVT-LAE	A. Posati SRI-SVT-LAE		A. Posati SRI-SVT-LAE



ISOLATORI CAPPA E PERNO DI TIPO NORMALE IN VETRO TEMPRATO

LIN_00000J1

Rev. 01
del 10/11/2015

Pag. 1 di 1

TIPO			1/2	1/3	1/4	1/5	1/6
Carico di Rottura (kN)		70	120	160	210	400	300
Diametro Nominale Part	te Isolante (mm)	255	255	280	280	360	320
Passo (mm)		146	146	146	170	205	195
Accoppiamento CEI 36-10 (grandezza)		16 A	16 A	20	20	28	24
Linea di Fuga Nominale Minima (mm)		295	295	315	370	525	425
dh Nominale Minimo (m	m)	85	85	85	95	115	100
dv Nominale Minimo (mm)		102	102	102	114	150	140
Condizioni di Prova in	Numero di Isolatori Costituenti la Catena	9	13	21	18	15	16
Nebbia Salina	Tensione (kV)	98	142	243	243	243	243
Salinità di Tenuta (*) (kg/ m³)		14	14	14	14	14	14

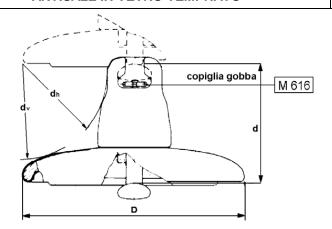
(*) La salinità di tenuta, verificata su una catena, viene convenzionalmente assunta come caratteristica propria del tipo di elemento isolante.

NOTE

- Materiali: parte isolante in vetro sodocalcico temprato; cappa in ghisa malleabile (UNI EN 1562:2007) zincata a caldo oppure ghisa sferoidale di caratteristiche meccaniche equivalenti (UNI EN 1563:2009) e per basse temperature (LT); perno in acciaio al carbonio (UNI EN 10083-1:2006) zincato a caldo; copiglia in acciaio inossidabile austenitico UNI EN 10088-1:2005; cemento di tipo alluminoso.
- 2. Tolleranze:
 - a) sul valore nominale del passo: secondo la pubblicazione IEC 305 (1974) par. 3.
 - b) sugli altri valori nominali: secondo la Norma CEI 36-20 (1998) par. 17.
- 3. Su ciascun esemplare deve essere marcata la sigla U seguita dal carico di rottura dell'isolatore, il marchio di fabbrica del costruttore e l'anno di fabbricazione.
- 4. Prescrizioni: per la costruzione, il collaudo e la fornitura LIN_000J3900.
- 5. Tensione di tenuta alla perforazione elettrica ad impulso in aria: 2,8 p.u. (per unità della tensione di scarica 50% a impulso atmosferico standard di polarità negativa).
- 6. L'unità di misura con la quale deve essere espressa la quantità di materiale è il numero di esemplari (n).

Storia dell	Storia delle revisioni					
Rev. 00	del 30/03/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna UX LJ1 rev. 00 del 03/04/2009 (M. Meloni – A. Posati – R. Rendina)				
Rev. 01	del 10/11/2015	Aggiornate le note relative a materiali e tensione di tenuta alla perforazione elettrica ad impulso in aria. Eliminata la nota relativa alla tenuta alla perforazione elettrica f.i. in olio				

Elaborato		Verificato			Approvato
S. Memeo ING-TSS-STL-LAE		P. Berardi ING-TSS-STL-LAE	M. Marzinotto ING-TSS-CSI		A. Posati ING-TSS-STL



ISOLATORI CAPPA E PERNO DI TIPO ANTISALE IN VETRO TEMPRATO

LIN_00000J2

Rev. 01
del 10/11/2015

Pag. 1 di 1

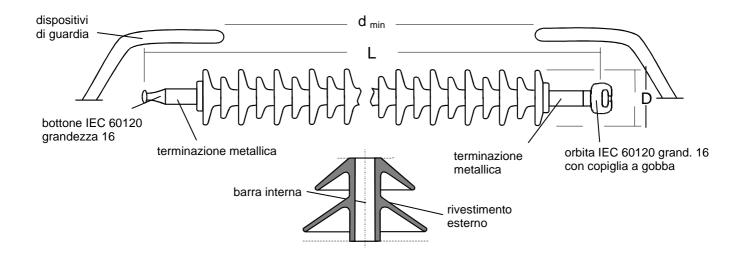
	2/1	2/2	2/3	2/4	
Carico di Rottura (kN)		70	120	160	210
Diametro Nominale Parte	s Isolante (mm)	280	280	320	320
Passo (mm)		146	146	170	170
Accoppiamento CEI 36-1	Accoppiamento CEI 36-10 (grandezza)			20	20
Linea di Fuga Nominale I	Linea di Fuga Nominale Minima (mm)			525	520
dh Nominale Minimo (mm	n)	75	75	90	90
dv Nominale Minimo (mm	n)	85	85	100	100
Condizioni di Prova in	Numero di Isolatori Costituenti la Catena	9	13	18	18
Nebbia Salina	Tensione (kV)	98	142	243	243
Salinità di Tenuta (*) (kg/	56	56	56	56	

(*) La salinità di tenuta, verificata su una catena, viene convenzionalmente assunta come caratteristica propria del tipo di elemento isolante.

NOTE

- Materiali: parte isolante in vetro sodocalcico temprato; cappa in ghisa malleabile (UNI EN 1562:2007) zincata a caldo oppure ghisa sferoidale di caratteristiche meccaniche equivalenti (UNI EN 1563:2009) e per basse temperature (LT); perno in acciaio al carbonio (UNI EN 10083-1:2006) zincato a caldo; copiglia in acciaio inossidabile austenitico UNI EN 10088-1:2005; cemento di tipo alluminoso.
- 2. Tolleranze:
 - a) sul valore nominale del passo: secondo la pubblicazione IEC 305 (1974) par. 3.
 - b) sugli altri valori nominali: secondo la Norma CEI 36-20 (1998) par. 17.
- 3. Su ciascun esemplare deve essere marcata la sigla U seguita dal carico di rottura dell'isolatore, il marchio di fabbrica del costruttore e l'anno di fabbricazione.
- 4. Prescrizioni: per la costruzione, il collaudo e la fornitura LIN_000J3900.
- 5. Tensione di tenuta alla perforazione elettrica ad impulso in aria: 2,8 p.u. (per unità della tensione di scarica 50% a impulso atmosferico standard di polarità negativa).
- 6. L'unità di misura con la quale deve essere espressa la quantità di materiale è il numero di esemplari (n).

Storia dell	Storia delle revisioni					
Rev. 00	del 30/03/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL LJ2 Ed. 6 del Luglio 1989				
Rev. 01	del 10/11/2015	Aggiornate le note relative a materiali e tensione di tenuta alla perforazione elettrica ad impulso in aria. Eliminata la nota relativa alla tenuta alla perforazione elettrica f.i. in olio				


ISC – Uso INTERNO

Elaborato	Verificato	Verificato		
S. Memeo	P. Berardi	M. Marzinotto		A. Posati
ING-TSS-STL-LAE	ING-TSS-STL-LAE	ING-TSS-CSI		ING-TSS-STL

LINEE 132-150 kV ISOLATORI COMPOSITI E RELATIVI DISPOSITIVI DI GUARDIA

Codifica LIN_(00000J31
Rev. 01	Pag. 1 di 3

N.B.: Il disegno è indicativo, sono impegnative le dimensioni quotate.

TIPO		31/1	31/2	31/3
Carico meccanico specificato (SML) (*)	70	70	70	
Carico di prova di selezione meccanica (RTL) (*)	35	35	35	
Lunghezza nominale L	(mm)	1314	1314	1898
Diametro nominale massimo D	(mm)	250		
Linea di fuga nominale minima	(mm)	2550	3380	4600
Accoppiamento secondo Norma IEC-60120	(grand.)	16		
Distanza minima in aria tra le parti metalliche d _{min} (**)	(mm)	1106	1106	1690
Salinità di tenuta alla tensione U _p = 98 kV	(kg/m³)	20	80	320 ⁽⁾

- (*) Il carico meccanico specificato ed il carico di prova di selezione meccanica sono definiti nella Norma CEI EN 61109 ed. 2009-07.
- (**) Tale distanza deve essere valutata considerando anche la presenza dei dispositivi di guardia e di eventuali dispositivi di regolazione del gradiente.
- (°) Data l'impossibilità pratica di verificare valo ri di salinità superiori a 224 kg/m³, la prova va effettuata a quest'ultimo valore di salinità, elevando la tensione Up a 105 kV.

Storia de	Storia delle revisioni					
Rev. 01	del 24/04/2013	Modifiche redazionali varie ed aggiornamento normativo. Eliminato utilizzo gomma etilenpropilenica per rivestimento esterno. Aggiunte note 9 e 10.				
Rev. 00	del 25/05/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna TINLTUJ31 rev. 00 del 15/01/2000				

Elaborato		Verificato			Approvato
M. Forteleoni ING-SVT-LAE		M. Forteleoni ING-SVT-LAE			A. Posati ING-SVT-LAE

Terna Rete Italia

Specifica di componente

LINEE 132-150 kV ISOLATORI COMPOSITI E RELATIVI DISPOSITIVI DI GUARDIA

Codifica	LIN_0	0000	J31
Rev. 01		Pag.	2 di 3

NOTE

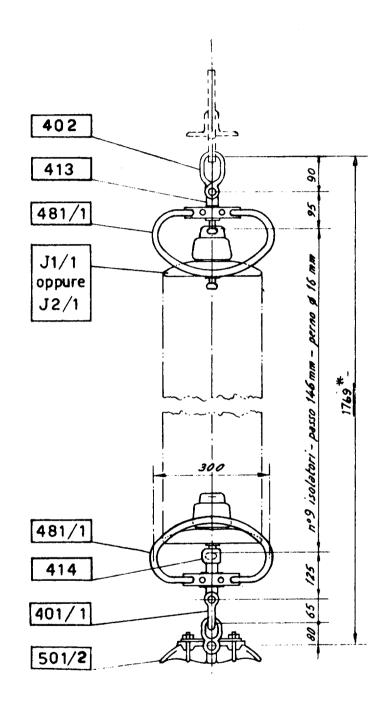
- Materiali: fibre di vetro impregnate di resina epossidica per la barra interna; mescola a base di gomma siliconica per il rivestimento esterno; acciaio al carbonio UNI EN 10083/1:2006 per le terminazioni metalliche; acciaio inossidabile austenitico UNI EN 10088-1:2005 per la copiglia; acciaio zincato a caldo o lega di alluminio per i dispositivi di guardia.
- 2. Sulle terminazioni metalliche dovranno essere marcati:
 - a) il carico meccanico specificato dell'isolatore in kN;
 - b) la sigla assegnata al tipo di isolatore;
 - c) il nome o il marchio di fabbrica del Costruttore e l'anno di fabbricazione;
 - d) una identificazione che consenta la rintracciabilità di tutte le parti componenti.
- 3. Tolleranze sulle dimensioni nominali: secondo la Norma CEI EN 60383-1 (1998), par. 17.
- 4. Prescrizioni per il collaudo degli isolatori compositi: LIN_00000J39.
- 5. Prescrizioni per il collaudo dei dispositivi di guardia: LIN_00000J39 e LIN_000M3900.
- 6. L'unità di misura con la quale deve essere espressa la quantità del materiale è il numero di esemplari (n).
- 7. L'isolatore deve poter sostituire la catena cappa e perno prevista per gli armamenti dei documenti di unificazione LIN_00000M1, LIN_00000M2, LIN_00000M3......ecc. senza modificare gli elementi di morsetteria prescritti per ciascuna di esse, ad eccezione dei dispositivi di guardia. Per questi ultimi il Costruttore può adottare le soluzioni che ritiene più opportune in relazione al progetto dell'isolatore, tenendo conto tuttavia delle distanze minime tra le parti metalliche. In caso di dispositivi di guardia diversi da quelli previsti nelle suddette, il Costruttore dovrà fornire gli stessi assieme all'isolatore.
- 8. Il Costruttore dovrà, per ogni equipaggiamento unificato, completare la Tabella I sottostante relativa alla composizione dell'insieme isolatori compositi + dispositivi di guardia.
- 9. Imballaggio: gli isolatori devono essere adeguatamente protetti, in conformità a quanto prescritto al paragrafo 9 della specifica LIN_00000J39.
- 10. Il carico di rottura a trazione di breve durata deve essere pari a 1,25 volte il carico meccanico specificato (SML).

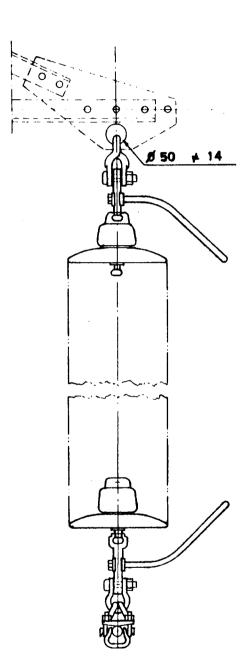
LINEE 132-150 kV ISOLATORI COMPOSITI E RELATIVI DISPOSITIVI DI GUARDIA

Codifica	LIN_0	0000	J31	
Rev. 01		Pag.	3 di 3	

TABELLA I COMPOSIZIONE DEGLI EQUIPAGGIAMENTI UNIFICATI CON IMPIEGO DEGLI ISOLATORI COMPOSITI

SIGLA	EQUIPAGGIAMENTO UNIFICATO TERNA	N°E TIPI DI ISOLATORE COMPOSITO (da compilare a cura del Costruttore)	N°E TIPI DI DISPOSITIVI DI GUARDIA (da compilare a cura del Costruttore)
J31/1xM1	M1		
J31/2xM1	M1		
J31/3xM1	M1		
J31/1xM2	M2		
J31/2xM2	M2		
J31/3xM2	M2		
J31/1xM3	M3		
J31/2xM3	M3		
J31/3xM3	M3		
J31/1xM4	M4		
J31/2xM4	M4		
J31/3xM4	M4		
J31/1xM11	M11		
J31/2xM11	M11		
J31/3xM11	M11		
J31/1xM12	M12		
J31/2xM12	M12		
J31/3xM12	M12		
J31/1xM13	M13		
J31/2xM13	M13		
J31/3xM13	M13		
J31/1xM14	M14		
J31/2xM14	M14		
J31/3xM14	M14		
J31/1xM101	M101		
J31/2xM101	M101		
J31/3xM101	M101		
J31/1xM102	M102		
J31/2xM102	M102		
J31/3xM102	M102		
J31/1xM111	M111		
J31/2xM111	M111		
J31/3xM111	M111		
J31/1xM112	M112		
J31/2xM112	M112		
J31/3xM112	M112		


ENEL

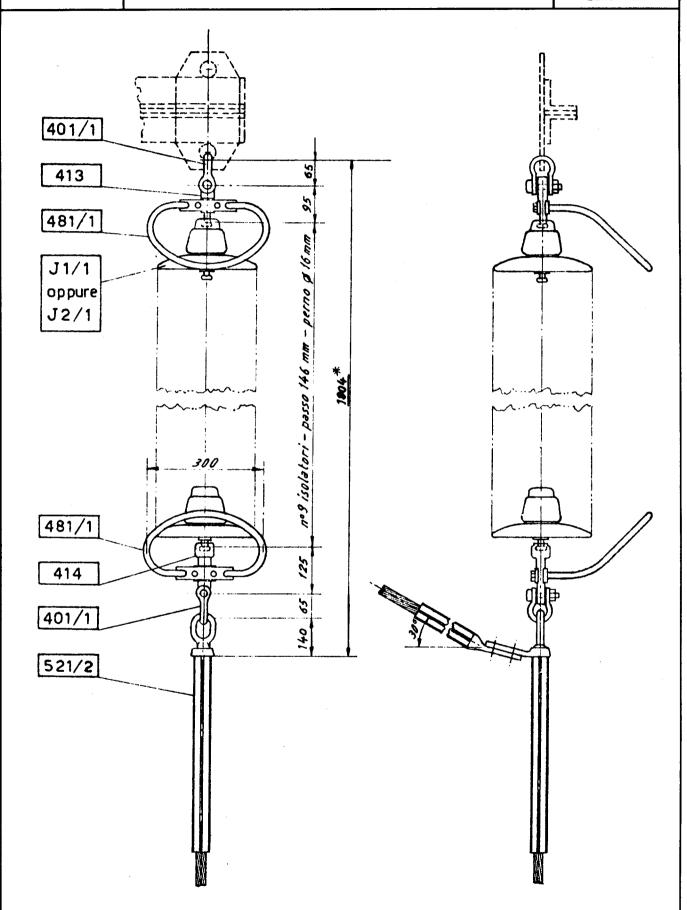

LINEA A 132 - 150 kV ARMAMENTO PER SOSPENSIONE SEMPLICE DEL CONDUTTORE ALL.- ACC. Φ 31,5

25 XX E

LM 11

Ottobre 1994 Ed. 4 - 1/1

^{*} La quota aumenta di 584 mm nel caso di impiego di n° 13 isolatori J 2/1 (vedi J 121)


ENEL

LINEA A 132 - 150 kV ARMAMENTO PER AMARRO SEMPLICE DEL CONDUTTORE ALL.- ACC. Φ 31,5

25 XX AK

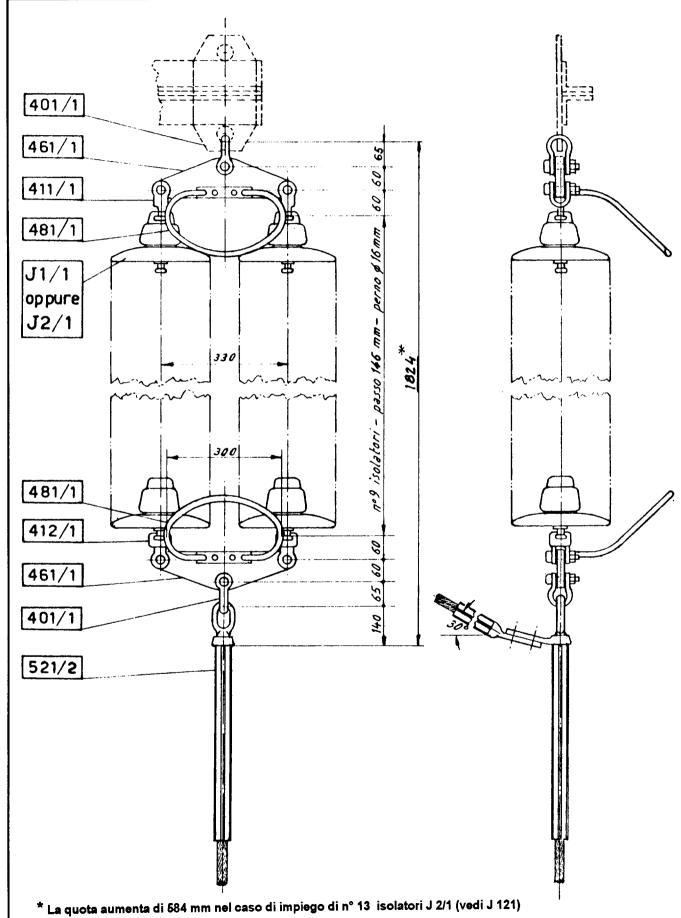
LM 111

Ottobre 1994 Ed. 3 - 1/1

* La quota aumenta di 584 mm nel caso di impiego di n° 13 isolatori J 2/1 (vedi J 121)

Riferimento. C2

DDI - VICE DIREZIONE TECNICA


ENEL

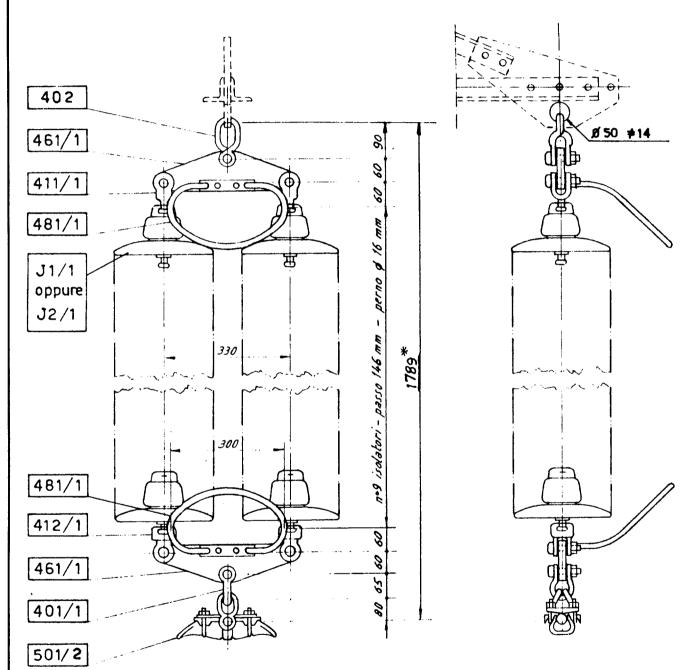
LINEA A 132 - 150 kV ARMAMENTO PER AMARRO DOPPIO DEL CONDUTTORE ALL.- ACC. Φ 31,5

25 XX AL

LM 112

Ottobre 1994 Ed. 3 - 1/1

DDI - VICE DIREZIONE TECNICA


ENEL

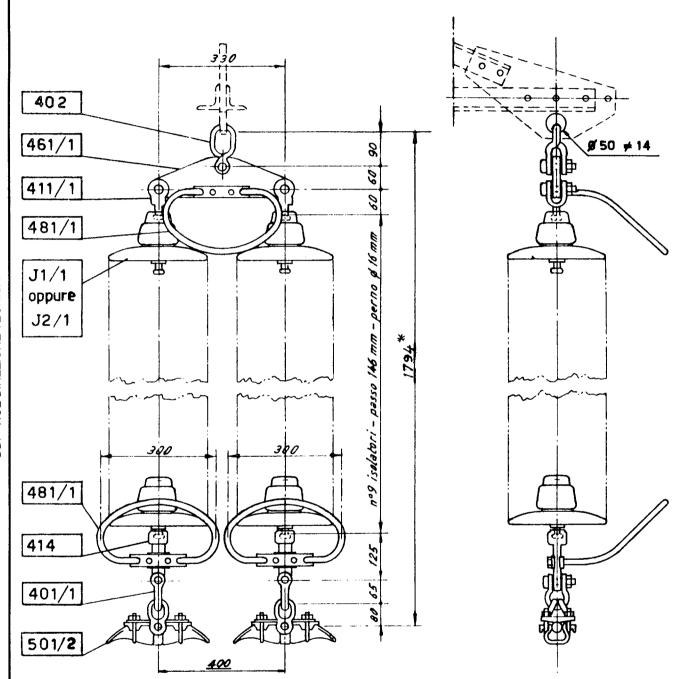
LINEA A 132 - 150 kV ARMAMENTO PER SOSPENSIONE DOPPIA DEL CONDUTTORE ALL.- ACC. 31,5

25 XX F

LM 12

Ottobre 1994 Ed. 4 - 1/1

^{*} La quota aumenta di 584 mm nel caso di impiego di n° 13 isolatori J 2/1 (vedi J 121)


ENEL

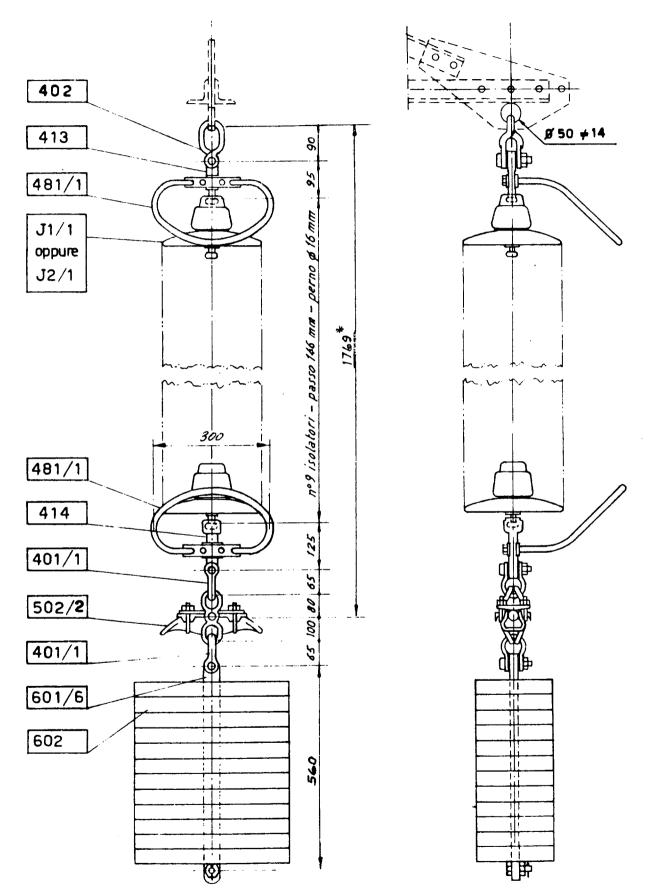
LINEA A 132 - 150 kV ARMAMENTO PER SOSPENSIONE DOPPIA CON DOPPIO MORSETTO DEL CONDUTTORE ALL.- ACC. Φ 31,5

25 XX G

LM 13

Ottobre 1994 Ed. 4 - 1/1

^{*} La quota aumenta di 584 mm nel caso di impiego di n° 13 isolatori J 2/1 (vedi J 121)


ENEL

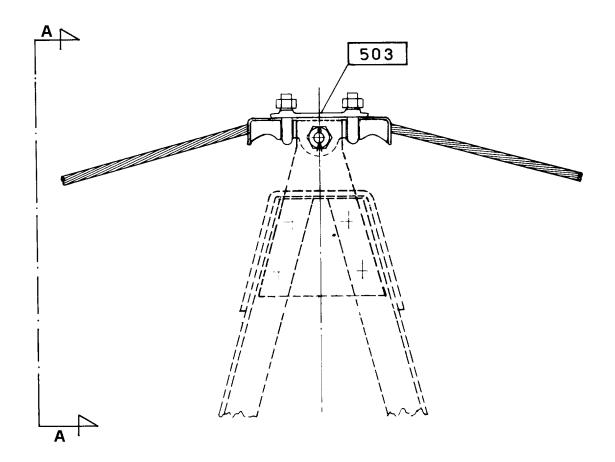
LINEA A 132 - 150 kV ARMAMENTO PER SOSPENSIONE DEL CONDUTTORE ALL.- ACC. Φ 31,5 CON CONTRAPPESO

25 XX H

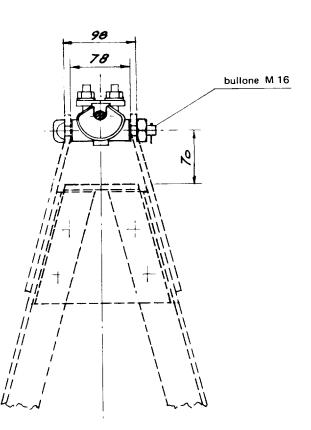
LM 14

Ottobre 1994 Ed. 4 - 1/1

* La quota aumenta di 584 mm nel caso di impiego di n° 13 isolatori J 2/1 (vedi J 121)



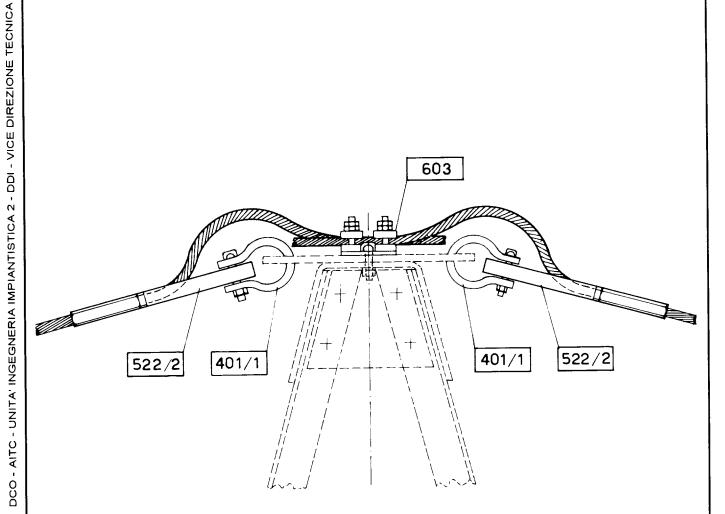
LINEE A 132 - 150 - 220 kV ARMAMENTO PER SOSPENSIONE DELLA CORDA DI GUARDIA


25 XX BB

LM 201

Luglio 1994 Ed. 4 - 1/1

VISTA A-A

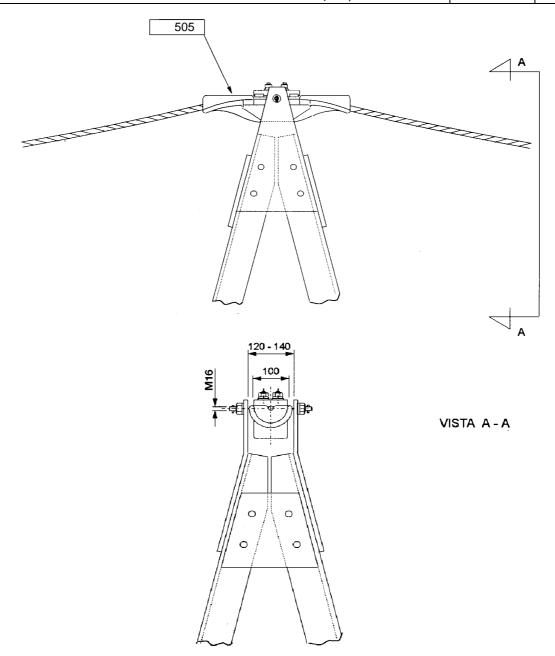

Riferimenti: C21, C23, C51

LINEE A 132 - 150 - 220 kV - ARMAMENTO PER AMARRO DELLA CORDA DI GUARDIA DI ACCIAIO O DI ACCIAIO RIVESTITO DI ALLUMINIO (ALUMOWELD) Ø 11,5 **25 XX BE**

LM 252

Luglio 1994 Ed. 4 - 1/1

Riferimenti: C23, C51



LINEE 132-150 E 220 kV CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI SOSPENSIONE DELLA FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

Codifica
LIN_0000M205

Rev. 00
del 01/06/2012

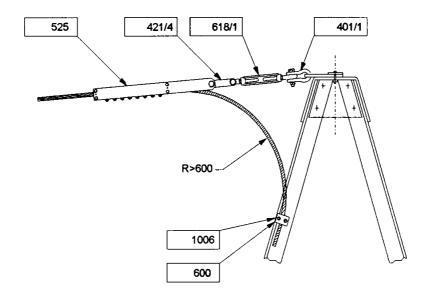
Red. 1 di 1

NOTE

1. Per la nomenclatura dei componenti elementari in figura si rimanda al documento LIN_00000000.

DOCUMENTI DI RIFERIMENTO

LIN_00000C25, LIN_00000C59


Storia del	le revisioni	
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM205 ed. 1 del Luglio 1996

Elaborato		Verificato			Approvato	
	ITI s.r.l.		A. Guarneri SRI-SVT-LAE	A. Posati SRI-SVT-LAE		A. Posati SRI-SVT-LAE

LINEE 132-150 E 220 kV CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO CAPOLINEA DELLA FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

Rev. 00 del 01/06/2012 Pag. **1** di 1

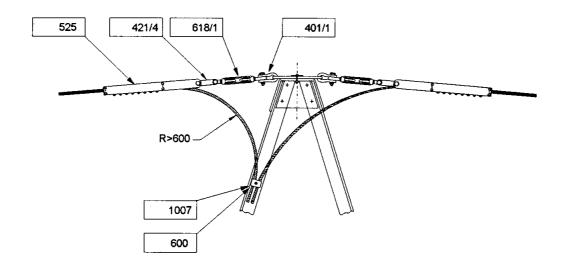
NOTE

- 1. Per la nomenclatura dei componenti elementari in figura si rimanda al documento LIN_00000000.
- 2. Le quantità dei morsetti unifilari 1006 e delle staffe di fissaggio 600 per la discesa della fune di guardia alla scatola di giunzione sono riportate negli schemi di montaggio dei sostegni unificati.

DOCUMENTI DI RIFERIMENTO

LIN_00000C25, LIN_00000C59

Storia delle revisioni					
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM270 ed. 1 del Luglio 1996			


Elaborato		Verificato			Approvato
ITI s.r.l.		A. Guarneri SRI-SVT-LAE	A. Posati SRI-SVT-LAE		A. Posati SRI-SVT-LAE

LINEE 132-150 E 220 kV CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO DELLA FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

Rev. 00 Pag. 1 di 1

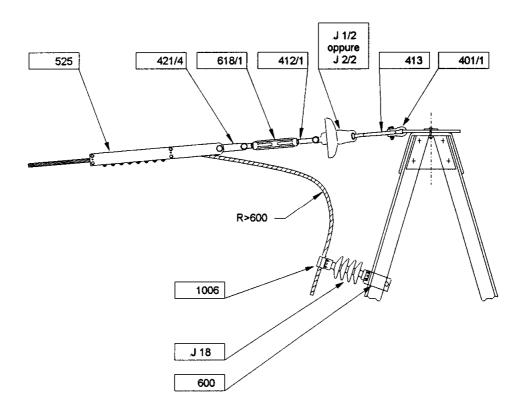
Codifica

NOTE

- 1. Per la nomenclatura dei componenti elementari in figura si rimanda al documento LIN_00000000.
- 2. Le quantità dei morsetti bifilari 1007 e delle staffe di fissaggio 600 per la discesa della fune di guardia alla scatola di giunzione sono riportate negli schemi di montaggio dei sostegni unificati.

DOCUMENTI DI RIFERIMENTO

LIN_00000C25, LIN_00000C59


Storia del	Storia delle revisioni							
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM271 ed. 1 del Luglio 1996						

Elaborato		Verificato			Approvato
ITI s.r.l.		A. Guarneri SRI-SVT-LAE	A. Posati SRI-SVT-LAE		A. Posati SRI-SVT-LAE

LINEE 132-150 E 220 kV CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO CON ISOLAMENTO DELLA FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

Codifica
LIN_0000M272
.....Rev. 00
del 01/06/2012
Pag. 1 di 1

NOTE

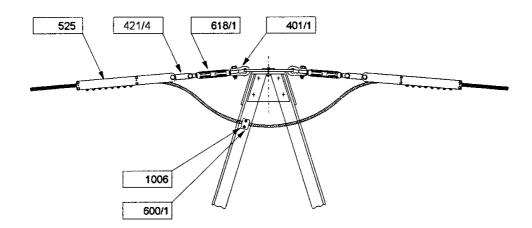
- 1. Per la nomenclatura dei componenti elementari in figura si rimanda al documento LIN_00000000.
- 2. Le quantità dei morsetti unifilari 1006, degli isolatori J18 e delle staffe di fissaggio 600 per la discesa della fune di guardia alla scatola di giunzione devono essere specificate in funzione del tipo ed altezza del sostegno sul quale viene realizzata la discesa isolata.

DOCUMENTI DI RIFERIMENTO

LIN_00000C25, LIN_00000C59

Storia del	le revisioni	
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM272 ed. 1 del Luglio 1996

Elaborato		Verificato			Approvato
ITI s.r.l.	A. Gua SRI-S		A. Posati SRI-SVT-LAE		A. Posati SRI-SVT-LAE



LINEE 132-150 E 220 kV CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO PASSANTE PER FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

LIN_0000M273

Rev. 00
del 01/06/2012

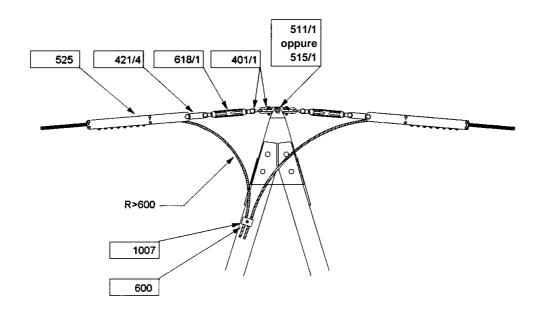
| Codifica | LIN_0000M273 | Pag. 1 di 1

NOTE

1. Per la nomenclatura dei componenti elementari in figura si rimanda al documento LIN_00000000.

DOCUMENTI DI RIFERIMENTO

LIN_00000C25, LIN_00000C59


Storia del	le revisioni	
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM273 ed. 1 del Luglio 1996

Elaborato		Verificato			Approvato
ITI s.r.l.		A. Guarneri SRI-SVT-LAE	A. Posati SRI-SVT-LAE		A. Posati SRI-SVT-LAE

LINEE 132-150 E 220 kV CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO IN SOSPENSIONE PER FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

Rev. 00 del 01/06/2012 Pag. **1** di 1

NOTE

- 1. Per la nomenclatura dei componenti elementari in figura si rimanda al documento LIN_00000000.
- 2. Particolari precauzioni devono essere prese durante i lavori in quanto nei sostegni di sospensione non è prevista la verifica dei cimini per il tiro pieno unilaterale con coefficiente di sicurezza 2.
- 3. Le quantità dei morsetti bifilari 1007 e delle staffe di fissaggio 600 per la discesa della fune di guardia alla scatola di giunzione sono riportate negli schemi di montaggio dei sostegni unificati.
- Il supporto per amarro bilaterale 515/1 viene montato sui cimini con passo 78 mm.
 Il supporto per amarro bilaterale 511/1 viene montato sui cimini con passo 100 mm.

DOCUMENTI DI RIFERIMENTO

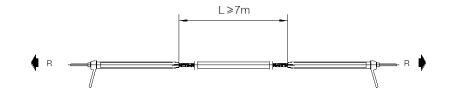
LIN_00000C25, LIN_00000C59

Storia del	Storia delle revisioni					
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM274 ed. 1 del Luglio 1996				

Elaborato		Verificato			Approvato
ITI s.r.l.		A. Guarneri SRI-SVT-LAE	A. Posati SRI-SVT-LAE		A. Posati SRI-SVT-LAE



GIUNTO A COMPRESSIONE ESAGONALE PER CONDUTTORI DI ALLUMINIO-ACCIAIO


LIN_000M541

Rev. 01
del 15/01/2015

Rev. 1 di 1

SCHEMA DI PROVA MECCANICA

TIPO	DIAMETRO CONDUTTORE A	COMPRI	SAGONO DI ESSIONE im)	CARICO DI ROTTURA R
	(mm)	Alluminio	Acciaio	(kN)
541/1	22,8	34	16	97,52
541/2	31,5	44	22	168,50
541/3	34,6	51	22	200,50
541/4	40,5	60	26	274,30
541/5	16,45	30	12	61,58

NOTE

- Materiale: lega di alluminio EN AW-6060 secondo norma UNI EN 573-3; acciaio al carbonio UNI EN 10083/1, zincato a caldo.
- 2. Prescrizione per la costruzione, il collaudo e la fornitura: LIN 000M3900.
- 3. Unità di misura: la quantità del materiale deve essere espressa in numero di esemplari (n).
- 4. Su ciascun esemplare dovranno essere marcati i seguenti dati:
 - a) il carico di rottura R seguito dalle lettere kN;
 - b) la sigla di identificazione dell'elemento scelta dal Costruttore;
 - c) la sigla o il marchio di fabbrica del Costruttore;
 - d) la chiave dell'esagono di compressione seguita dalle lettere mm.
- 5. Quando previsto, prima della pressatura gli spazi compresi tra conduttore e manicotto di alluminio devono essere riempiti con grasso di vasellina.
- 6. Il numero di cicli previsto per la prova L ai cicli termici è pari a 500.

Storia delle	Storia delle revisioni					
Rev. 00	del 14/05/2013	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL LM541 ed. 6 del Luglio 1994.				
Rev. 01	del 15/01/2015	Aggiunto tipo 541/5.				

ISC - Uso INTERNO	
-------------------	--

Elaborato		Verificato	Approvato	
A. Piccinin	G. Pelliccione	P. Berardi		A. Posati
ING-TSS-STL-LAE	ING-TSS-STL-LAE	ING-TSS-STL-LAE		ING-TSS-STL

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

CONDUTTORE Ø 31,5 mm – TIRO PIENO TABELLA DELLE CORRISPONDENZE SOSTEGNI – GRUPPI MENSOLE

LIN_0000\$700

Rev. 00
del 28/06/2012

Pag. 1 di 4

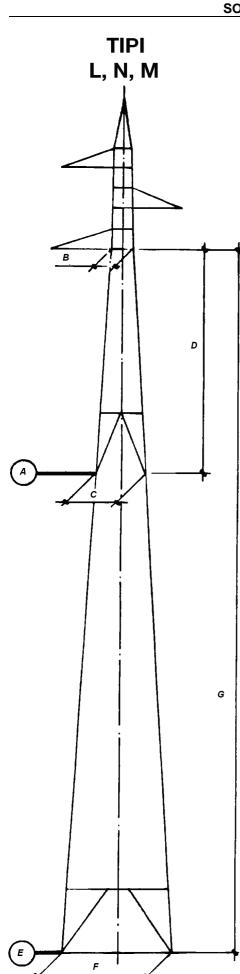
	SOSTEGNI	MENSOLE		
TIPO	RIFERIMENTO	GRUPPO	RIFERIMENTO	
L	701/1 ÷ 9	А	701/20 ÷ 21	
N	702/1 ÷ 12	А	702/20 ÷ 29	
М	703/1 ÷ 9	А	703/20 ÷ 29	
Р	704/1 ÷ 14	В	704/20 ÷ 29	
V	705/1 ÷ 12	В	705/20 ÷ 29	
С	706/1 ÷ 9	D	706/20 ÷ 31	
E	707/1 ÷ 9	D	707/20 ÷ 31	
E*	708/1 ÷ 9	D	708/20 ÷ 21	

NOTE

1. I riferimenti a sostegni e mensole in tabella sono riportati come indicato nel documento LIN_00000000.

Storia de	elle revisioni	
Rev. 00	del 28/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna UXLS700 rev. 00 del 31/12/2007 (L.Alario, A.Posati, R.Rendina)

Elaborato		Verificato	Approvato		
ITI s.r.l.		P. Berardi SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posati SRI-SVT-LAE

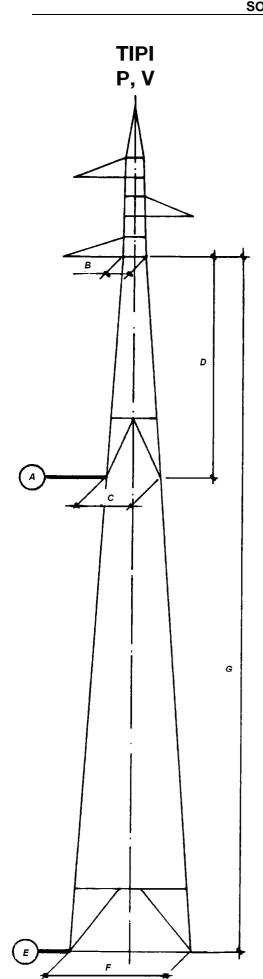


LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

TABELLA DELLE CORRISPONDENZE SOSTEGNI – GRUPPI MENSOLE

Codifica LIN_0000\$700

Rev. 00 Pag. **2** di 4



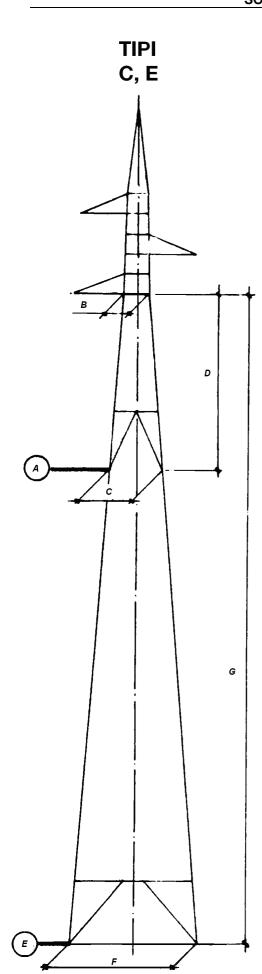
		Altezza	inferiore	Alt	ezza superio	ore	
Sostegno tipo	A (m)	B (m)	C (m)	D (m)	E (m)	F (m)	G (m)
L	9	1.10	2.52	11.30	33	5.53	35.30
N	9	1.10	2.52	11.30	42	6.65	44.30
М	9	1.10	2.52	11.30	33	5.53	35.30

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO TABELLA DELLE CORRISPONDENZE **SOSTEGNI – GRUPPI MENSOLE**

Codifica LIN_0000\$700 Rev. 00 Pag. **3** di 4

ERNA GROUP

		Altezza	inferiore	Alt	ezza superio	ore	
Sostegno tipo	A (m)	B (m)	C (m)	D (m)	E (m)	F (m)	G (m)
Р	9	1.30	2.81	11.30	48	8.04	50.30
V	9	1.30	2.81	11.30	42	7.19	44.30



LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

TABELLA DELLE CORRISPONDENZE SOSTEGNI – GRUPPI MENSOLE

Codifica LIN_0000\$700

Rev. 00 Pag. 4 di 4

		Altezza	inferiore	Alt	ezza superio	ore	
Sostegno tipo	A (m)	B (m)	C (m)	D (m)	E (m)	F (m)	G (m)
С	9	1.40	2.78	9.20	33	6.49	33.20
E	9	1.40	2.78	9.20	33	6.49	33.20

N.B. – I tronchi e le basi del sostegno E* hanno schema identico a quello dei sostegni C, E.

Tavola per montaggio meccanico LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO **SOSTEGNI TIPO "N"**

Codifica LIN_0000S702 Rev. 00 Pag. **1** di 7

del 28/06/2012

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOST (*	EGNI **)		Montante		TRONCHI						Piedi	Fondazione	(44)			
TIDO	RIF.	Parte comune	ausiliario	ı	П	III	IV	V	VI	VII	VIII	Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	KIF.						ELEMENTI ST	RUTTURALI (*)						R	IF.	
N9	702/1	TN 19 (1296)	-	-	-	-	-	-	-	-	-	TN 7 (237)	TN 16 (691)	F 102 /295	F 43/2	2224
N12	702/2	TN 19 (1296)	TN 20 (283)	-	-	-	-	-	-	-	-	TN 8 (661)	TN 16 (691)	F 102 /295	F 43/2	2931
N15	702/3	TN 19 (1296)	-	TN 21 (892)	-	-	-	-	-	-	-	TN 9 (332)	TN 35 (693)	F 102 /295	F 44/3	3213
N18	702/4	TN 19 (1296)	TN 20 (283)	TN 21 (892)	-	-	-	-	-	-	-	TN 10 (757)	TN 35 (693)	F 102 /295	F 44/3	3921
N21	702/5	TN 19 (1296)	-	TN 21 (892)	TN 40 (948)	-	-	-	-	-	-	TN 11 (646)	TN 35 (693)	F 103 /275	F 44/1	4475
N24	702/6	TN 19 (1296)	TN 20 (283)	TN 21 (892)	TN 40 (948)	-	-	-	-	-	-	TN 12 (936)	TN 35 (693)	F 103 /285	F 44/2	5048
N27	702/7	TN 19 (1296)	-	TN 21 (892)	TN 40 (948)	TN 23 (998)	-	-	-	-	-	TN 13 (660)	TN 36 (785)	F 103 /285	F 44/2	5579
N30	702/8	TN 19 (1296)	TN 20 (283)	TN 21 (892)	TN 40 (948)	TN 23 (998)	-	-	-	-	-	TN 14 (1146)	TN 36 (785)	F 103 /285	F 44/2	6348
N33	702/9	TN 19 (1296)	-	TN 21 (892)	TN 40 (948)	TN 23 (998)	TN 24 (1096)	-	-	-	-	TN 15 (979)	TN 36 (785)	F 103 /285	F 44/2	6994
N36	702/10	TN 19 (1296)	TN 20 (283)	TN 21 (892)	TN 40 (948)	TN 23 (998)	TN 24 (1096)	-	-	-	-	TN 37 (1351)	TN 36 (785)	F 103 /285	F 44/2	7649
N39	702/11	TN 19 (1296)	-	TN 21 (892)	TN 40 (948)	TN 23 (998)	TN 24 (1096)	TN 25 (1174)	-	-	-	TN 38 (1167)	TN 36 (785)	F 103 /285	F 44/2	8356
N42	702/12	TN 19 (1296)	TN 20 (283)	TN 21 (892)	TN 40 (948)	TN 23 (998)	TN 24 (1096)	TN 25 (1174)	-	-	-	TN 39 (1574)	TN 36 (785)	F 103 /295	F 44/3	9046

^{(*) -} Il peso totale dell'allungato (esclusi i monconi) e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

^{(***) –} Ogni sostegno viene indicato con TIPO (con la lettera corrispondente al tipo di sostegno, seguita dall'altezza utile) e con RIF. (con riferimento al nome del documento, seguito da un progressivo, come da LIN_000000000) che contraddistingue la sua composizione.

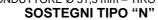
Storia de	elle revisioni						
Rev. 00	del 28/06/2012	documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna UXLS702 rev. 00 del 1/12/2007 (L.Alario, A.Posati, R.Rendina)					
		ISC –Us	so INTERNO				
Elaborato		Verificato			Approvat	i o	
ITI s.r.l.		P. Berardi SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posa SRI-SVT		

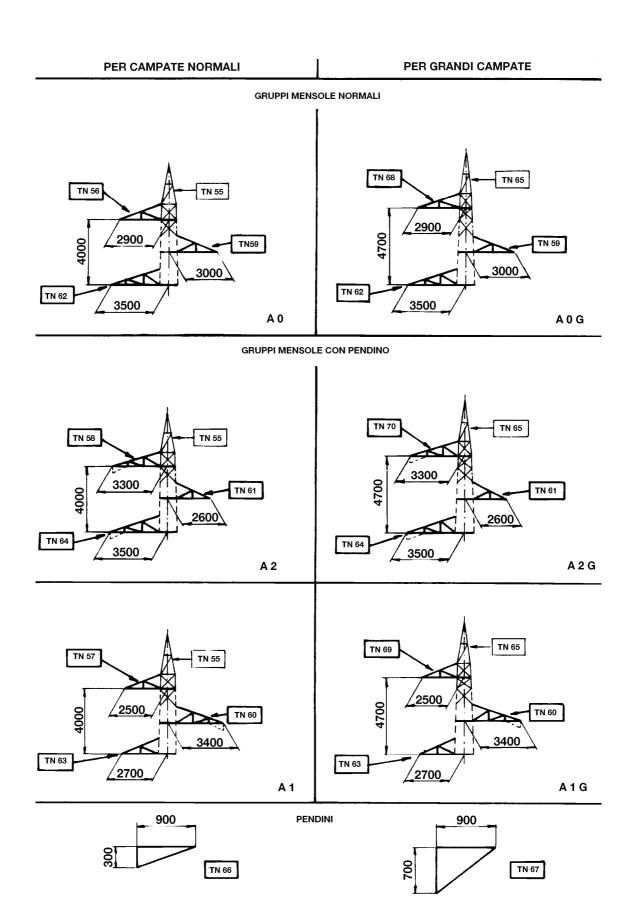
^{(**) –} Fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "N"

Codifica LIN_0	0000\$702
Rev. 00	Pag. 2 di 7

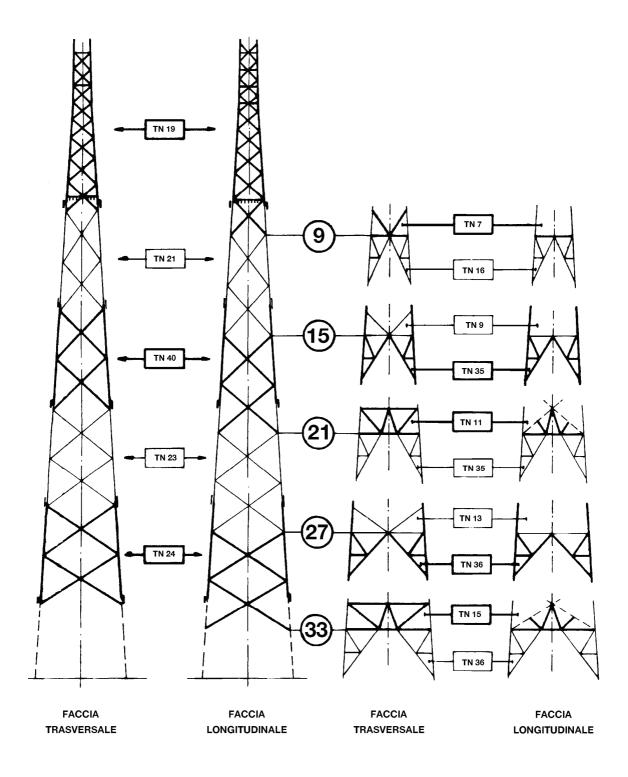
ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO "A"


GRUPPI I	MENSOLE		ELEMENTI STRUTTURALI (*)							
TIPO	RIF.	Cimino	Mensola alta	Mensola	Mensola	Pen	PESO (kg) (*)			
TIFO	KII .	Ciriliio	IVIEI1SOIA AILA	nsola alta media		tipo	n. pezzi	()		
A0	702/20	TN 55 (348)	TN 56 (115)	TN 59 (111)	TN 62 (134)	-	-	708		
A1	702/21	TN 55 (348)	TN 57 (95)	TN 60 (150)	TN 63 (98)	TN 66 (30)	1	721		
A2	702/22	TN 55 (348)	TN 58 (145)	TN 61 (98)	TN 64 (145)	TN 66 (30)	2	796		
A1*	702/23	TN 55 (348)	TN 57 (95)	TN 60 (150)	TN 63 (98)	TN 67 (30)	1	721		
A2*	702/24	TN 55 (348)	TN 58 (145)	TN 61 (98)	TN 64 (145)	TN 67 (30)	2	796		
A0G	702/25	TN 65 (436)	TN 68 (119)	TN 59 (111)	TN 62 (134)	-	-	800		
A1G	702/26	TN 65 (436)	TN 69 (97)	TN 60 (150)	TN 63 (98)	TN 66 (30)	1	811		
A2G	702/27	TN 65 (436)	TN 70 (147)	TN 61 (98)	TN 64 (145)	TN 66 (30)	2	886		
A1*G	702/28	TN 65 (436)	TN 69 (97)	TN 60 (150)	TN 63 (98)	TN 67 (30)	1	811		
A2*G	702/29	TN 65 (436)	TN 70 (147)	TN 61 (98)	TN 64 (145)	TN 67 (30)	2	886		


^{(*) –} Il peso totale dell'allungato e dei singoli elementi strutturali, indicato tra parentesi, è comprensivo della zincatura. I pesi sono espressi in Kg.

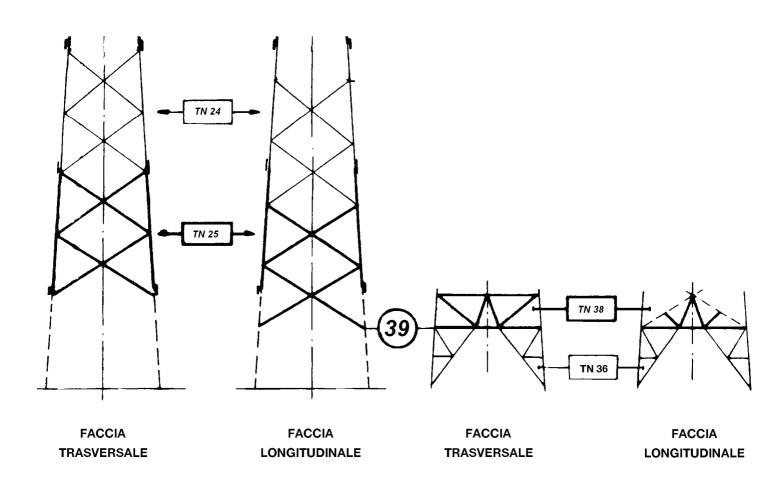
LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

Codifica LIN_0000S702 Pag. 3 di 7 Rev. 00


G R O U P

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "N"

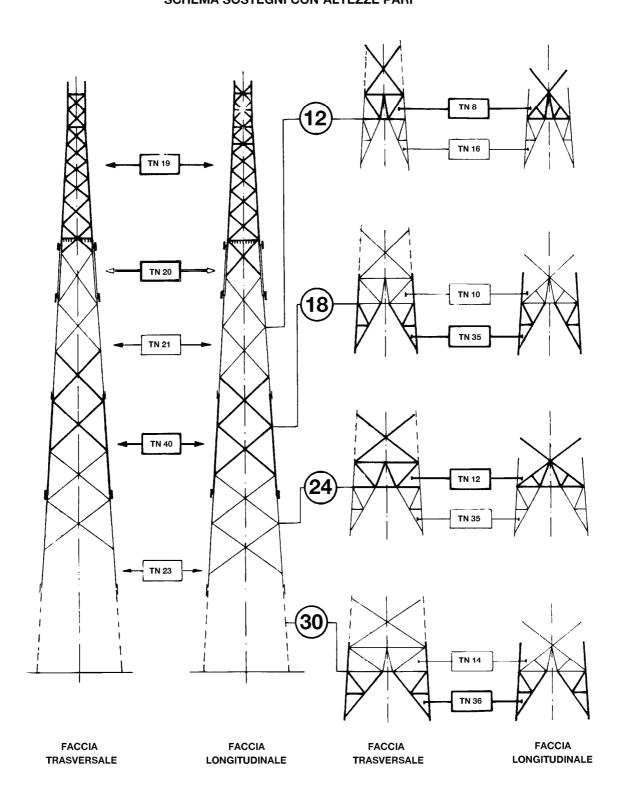
LIN_0000\$702


Rev. 00 Pag. **4** di 7

SCHEMA SOSTEGNI CON ALTEZZE DISPARI

Codifica LIN_(0000\$702
Rev. 00	Pag. 5 di 7

SCHEMA SOSTEGNI CON ALTEZZE DISPARI

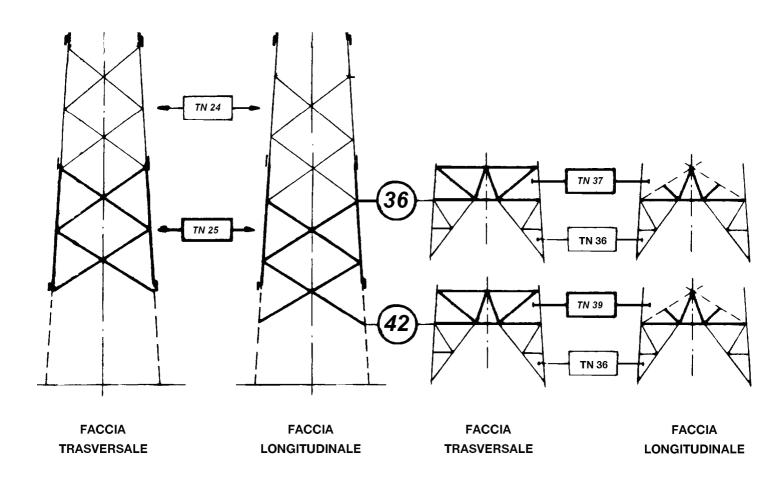


LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "N"

LIN_0000\$702

Rev. 00 Pag. **6** di 7

SCHEMA SOSTEGNI CON ALTEZZE PARI



LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "N"

LIN_0000\$702

Rev. 00 Pag. **7** di 7

SCHEMA SOSTEGNI CON ALTEZZE PARI

Tavola per montaggio meccanico LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "M"

Rev. 00 del 28/06/2012 Pag. 1 di 5

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOST (**	FEGNI **)		Montante										Piedi	Fondazione	(44)	
TIDO	215	Parte comune	ausiliario	I	II	III	IV	V	VI	VII	VIII	- Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	RIF.						ELEMENTI STI	RUTTURALI (*)						R		
M9	703/1	TM 37 (1301)	-	-	-	-	-	-	-	-	-	TM 7 (234)	TM 16 (765)	F 102 /295 F 103 /275	F 44/3 F 44/1	2300
M12	703/2	TM 37 (1301)	TM 38 (336)	-	-	-	-	-	-	-	-	TM 8 (662)	TM 16 (765)	F 103 /275	F 44/1	3064
M15	703/3	TM 37 (1301)	-	TM 39 (1006)	-	-	-	-	-	-	-	TM 9 (330)	TM 35 (754)	F 103 /285	F 44/2	3391
M18	703/4	TM 37 (1301)	TM 38 (336)	TM 39 (1006)	-	-	-	-	-	-	-	TM 10 (754)	TM 35 (754)	F 103 /285	F 44/2	4151
M21	703/5	TM 37 (1301)	-	TM 39 (1006)	TM 40 (1009)	-	-	-	-	-	-	TM 11 (647)	TM 35 (754)	F 103 /285	F 44/2	4717
M24	703/6	TM 37 (1301)	TM 38 (336)	TM 39 (1006)	TM 40 (1009)	-	-	-	-	-	-	TM 12 (929)	TM 35 (754)	F 103 /295	F 44/3	5335
M27	703/7	TM 37 (1301)	-	TM 39 (1006)	TM 40 (1009)	TM 41 (1117)	-	-	-	-	-	TM 13 (597)	TM 54 (813)	F 103 /295	F 44/3	5843
M30	703/8	TM 37 (1301)	TM 38 (336)	TM 39 (1006)	TM 40 (1009)	TM 41 (1117)	-	-	-	-	-	TM 14 (1095)	TM 54 (813)	F 103 /295	F 44/3	6677
M33	703/9	TM 37 (1301)	-	TM 39 (1006)	TM 40 (1009)	TM 41 (1117)	TM 42 (1171)	-	-	-	-	TM 15 (937)	TM 54 (813)	F 103 /295	F 44/3	7354

^{(*) –} Il peso totale dell'allungato (esclusi i monconi) e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

Storia d	elle revisioni										
Rev. 00	del 28/06/201	cumento, redatto in prima emissione, aggiorna e sostituisce il documento Terna UXLS703 rev. 00 del 2/2007 (L.Alario, A.Posati, R.Rendina)									
		ISC -U	so INTERNO								
Elaborato		Verificato			Approvato						
ITI s.r.l		P. Berardi SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posati SRI-SVT-LAE						

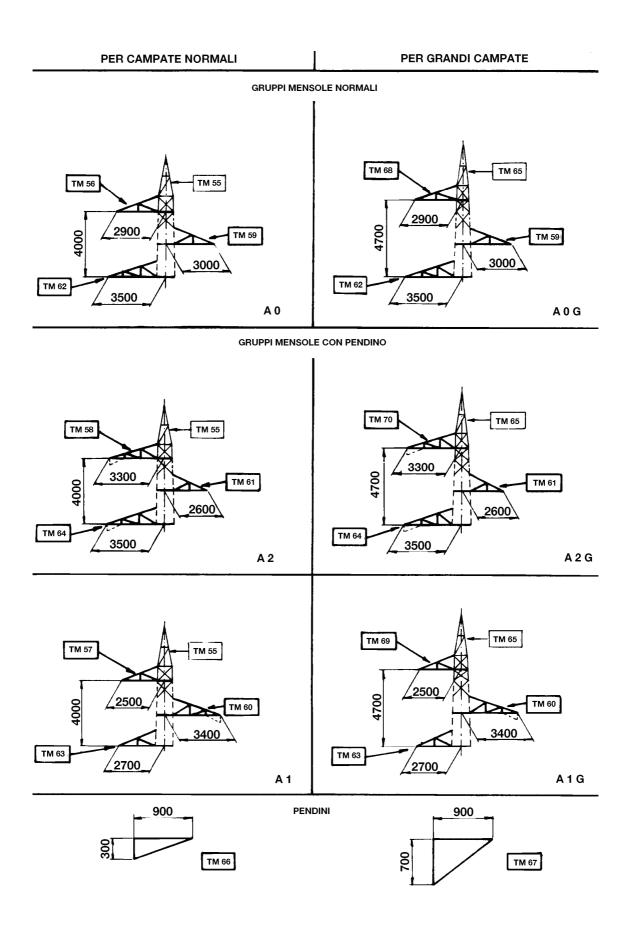
^{(**) –} Fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

^{(***) –} Ogni sostegno viene indicato con TIPO (con la lettera corrispondente al tipo di sostegno, seguita dall'altezza utile) e con RIF. (con riferimento al nome del documento, seguito da un progressivo, come da LIN_00000000) che contraddistingue la sua composizione.

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "M"

Codifica LIN_0	0008703
Rev. 00	Pag. 2 di 5

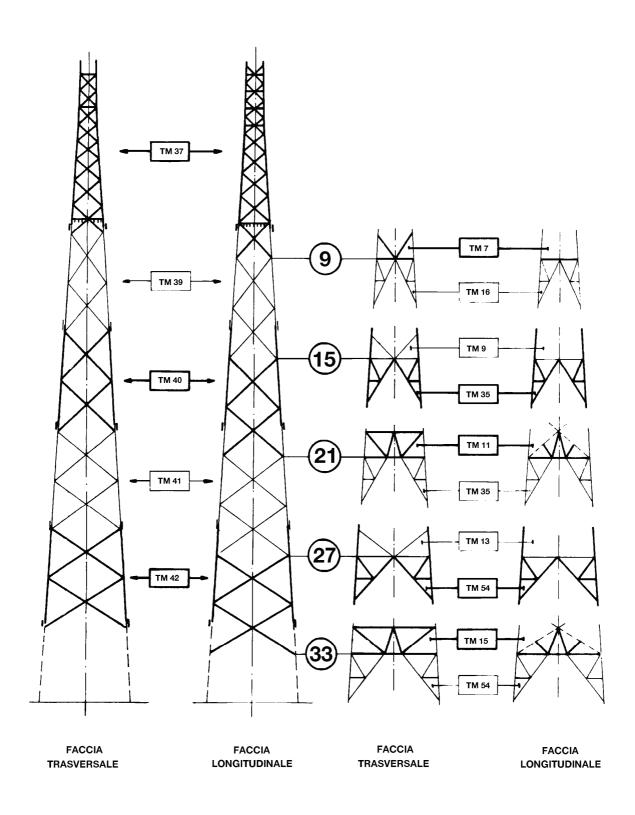
ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO "A"


GRUPPI I	MENSOLE			ELEMENTI STI	RUTTURALI (*)			
TIPO	RIF.	Cimino	Mensola alta	Mensola	Mensola	Pen	dino	PESO (kg) (*)
TIFO	KII .	Cimino	ivierisora arta	media	bassa	tipo	n. pezzi	()
A0	703/20	TM 55 (367)	TM 56 (111)	TM 59 (111)	TM 62 (131)	-	-	720
A1	703/21	TM 55 (367)	TM 57 (94)	TM 60 (146)	TM 63 (98)	TM 66 (30)	1	735
A2	703/22	TM 55 (367)	TM 58 (146)	TM 61 (98)	TM 64 (140)	TM 66 (30)	2	811
A1*	703/23	TM 55 (367)	TM 57 (94)	TM 60 (146)	TM 63 (98)	TM 67 (35)	1	740
A2*	703/24	TM 55 (367)	TM 58 (146)	TM 61 (98)	TM 64 (140)	TM 67 (35)	2	821
A0G	703/25	TM 65 (430)	TM 68 (113)	TM 59 (111)	TM 62 (131)	-	-	785
A1G	703/26	TM 65 (430)	TM 69 (98)	TM 60 (146)	TM 63 (98)	TM 66 (30)	1	802
A2G	703/27	TM 65 (430)	TM 70 (147)	TM 61 (98)	TM 64 (140)	TM 66 (30)	2	875
A1*G	703/28	TM 65 (430)	TM 69 (98)	TM 60 (146)	TM 63 (98)	TM 67 (35)	1	807
A2*G	703/29	TM 65 (430)	TM 70 (147)	TM 61 (98)	TM 64 (140)	TM 67 (35)	2	885

^{(*) –} Il peso totale dell'allungato e dei singoli elementi strutturali, indicato tra parentesi, è comprensivo della zincatura. I pesi sono espressi in Kg.

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

Codifica LIN_0000S703 Pag. **3** di 5 Rev. 00

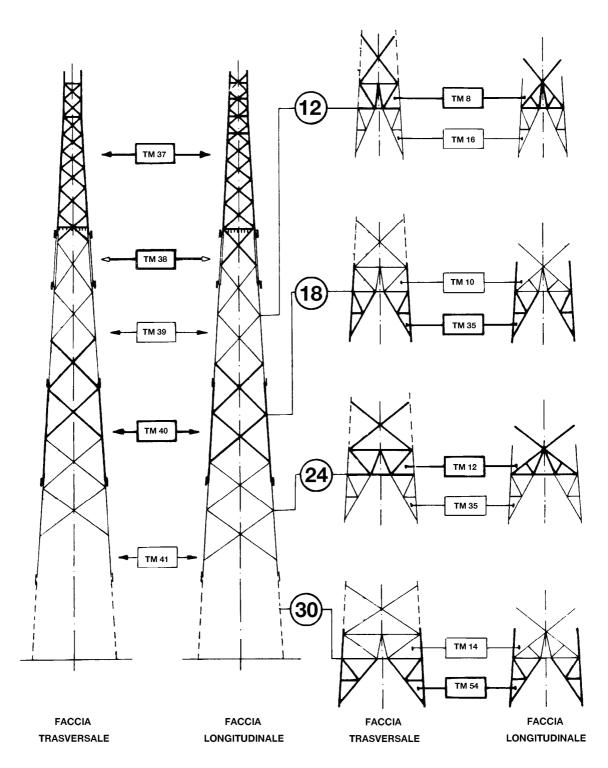


LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "M"

LIN_0000\$703

Rev. 00 Pag. **4** di 5

SCHEMA SOSTEGNI CON ALTEZZE DISPARI



LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "M"

LIN_0000\$703

Rev. 00 Pag. **5** di 5

SCHEMA SOSTEGNI CON ALTEZZE PARI

Tavola per montaggio meccanico LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO **SOSTEGNI TIPO "C"**

Codifica LIN_0000S706

Rev. 00 Pag. **1** di 6 del 28/06/2012

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOST (**	EGNI **)		Montante				TRO	NCHI					Piedi	Fondazione	(++)	
TIPO	RIF.	Parte comune	ausiliario	ı	II	III	IV	V	VI	VII	VIII	- Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	KIF.						ELEMENTI STE	RUTTURALI (*)						R		
C9	706/1	TC 143 (1992)	-	-	-	1	-	-	-	-	-	TC 149 (381)	TC 158 (1514)	F 104 /315	F 49/1	3887
C12	706/2	TC 143 (1992)	TC 144 (750)	-	-	-	-	-	-	-	-	TC 150 (1092)	TC 158 (1514)	F 104 /315	F 49/1	5348
C15	706/3	TC 143 (1992)	-	TC 145 (1979)	-	-	-	-	-	-	-	TC 151 (518)	TC 159 (1605)	F 105 /325	F 49/2	6094
C18	706/4	TC 143 (1992)	TC 144 (750)	TC 145 (1979)	-	-	-	-	-	-	-	TC 152 (1138)	TC 159 (1605)	F 105 /325	F 49/2	7464
C21	706/5	TC 143 (1992)	-	TC 145 (1979)	TC 146 (2070)	-	-	-	-	-	-	TC 153 (980)	TC 159 (1605)	F 105 /325	F 49/2	8626
C24	706/6	TC 143 (1992)	TC 144 (750)	TC 145 (1979)	TC 146 (2070)	-	-	-	-	-	-	TC 154 (1733)	TC 159 (1605)	F 105 /335	F 49/3	10129
C27	706/7	TC 143 (1992)	-	TC 145 (1979)	TC 146 (2070)	TC 147 (2181)	-	-	-	-	-	TC 155 (769)	TC 160 (1666)	F 105 /335	F 49/3	10657
C30	706/8	TC 143 (1992)	TC 144 (750)	TC 145 (1979)	TC 146 (2070)	TC 147 (2181)	-	-	-	-	-	TC 156 (1550)	TC 160 (1666)	F 105 /335	F 49/3	12188
C33	706/9	TC 143 (1992)	-	TC 145 (1979)	TC 146 (2070)	TC 147 (2181)	TC 148 (2283)	-	-	-	-	TC 157 (1430)	TC 160 (1666)	F 105 /335	F 49/3	13601

^{(*) –} Il peso totale dell'allungato (esclusi i monconi) e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

Storia de	elle revisioni							
Rev. 00	del 28/06/201		edatto in prima emissio ario, A.Posati, R.Rendina	ne, aggiorna e sostituis)	ce il documento	Terna UXL	S706 rev.	00 del
			ISC -U	so INTERNO				
Elaborato			Verificato			Аррі	rovato	
ITI s.r.l.			P. Berardi SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE			osati -SVT-LAE	
Questo de	ocumento contiene	informazioni di proprietà d	li Terna Rete Italia Gruppo T	erna S.p.A. e deve essere uti	lizzato esclusivamen	te dal destinat	ario in relazi	one alle

^{(**) –} Fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

^{(***) –} Ogni sostegno viene indicato con TIPO (con la lettera corrispondente al tipo di sostegno, seguita dall'altezza utile) e con RIF. (con riferimento al nome del documento, seguito da un progressivo, come da LIN_000000000) che contraddistingue la sua composizione.

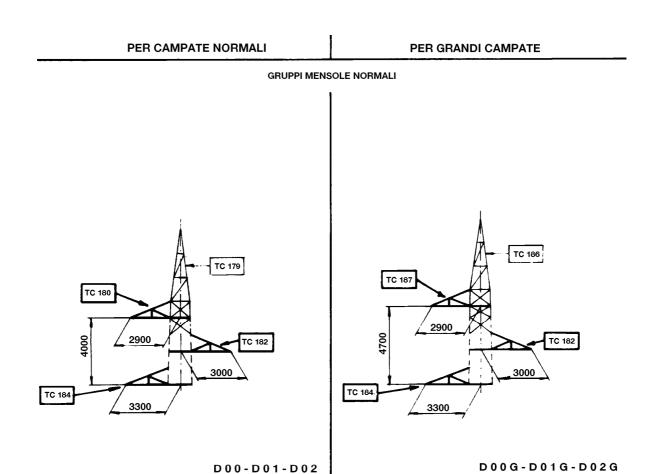
LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "C"

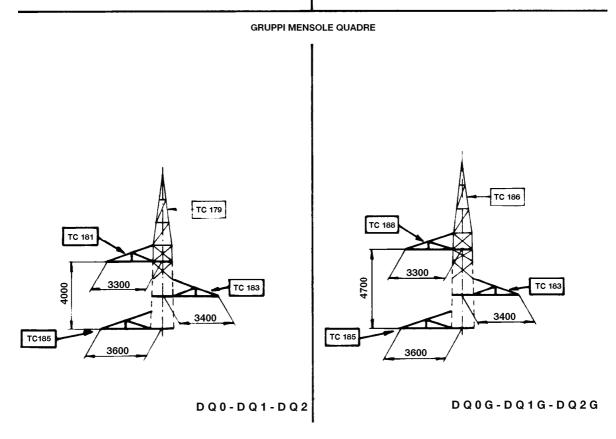
Codifica LIN_0	0000S706
Rev. 00	Pag. 2 di 6

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO "D"

GRUPPI	MENSOLE				ELEMENTI ST	RUTTURALI (*)				
TIPO	RIF.	Cimino	Mensola	Mensola	Mensola		Mensole di giro		n. Pezzi	PESO (kg) (*)
TIPO	RIF.	Cimino	alta	media	bassa	alta	media	bassa	n. Pezzi	
D00	706/20	TC 179 (624)	TC 180 (142)	TC 182 (144)	TC 184 (166)	-	-	-		1076
D01	706/21	TC 179 (624)	TC 180 (142)	TC 182 (144)	TC 184 (166)	-	TC 204 (**)	-		1076
D02	706/22	TC 179 (624)	TC 180 (142)	TC 182 (144)	TC 184 (166)	TC 203 (**)	-	TC 205(**)		1076
D00G	706/23	TC 186 (737)	TC 187 (145)	TC 182 (144)	TC 184 (166)	-	-	-		1192
D01G	706/24	TC 186 (737)	TC 187 (145)	TC 182 (144)	TC 184 (166)	-	TC 204(**)	-		1192
D02G	706/25	TC 186 (737)	TC 187 (145)	TC 182 (144)	TC 184 (166)	TC 206(**)	-	TC 205(**)		1192
DQ0	706/26	TC 179 (624)	TC 181 (303)	TC 183 (315)	TC 185 (331)	-	-	-		1573
DQ1	706/27	TC 179 (624)	TC 181 (303)	TC 183 (315)	TC 185 (331)	-	TC 208(**)	-		1573
DQ2	706/28	TC 179 (624)	TC 181 (303)	TC 183 (315)	TC 185 (331)	TC 207	-	TC 209(**)		1573
DQ0G	706/29	TC 186 (737)	TC 188 (301)	TC 183 (315)	TC 185 (331)	-	-	-		1684
DQ1G	706/30	TC 186 (737)	TC 188 (301)	TC 183 (315)	TC 185 (331)	-	TC 208(**)	-		1684
DQ2G	706/31	TC 186 (737)	TC 188 (301)	TC 183 (315)	TC 185 (331)	TC 210(**)	-	TC 209(**)		1684

^{(*) –} Il peso totale dell'allungato e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

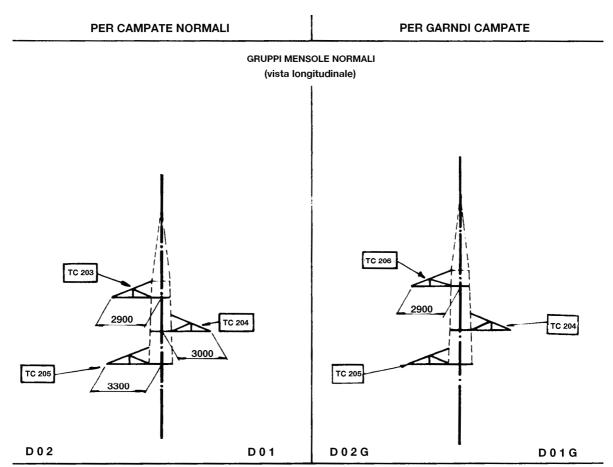

^{(**) –} Le mensole di giro TC 203 - TC 204 - TC 205 - TC 206 - TC 207 - TC 208 - TC209 - TC 210 non sono disponibili.

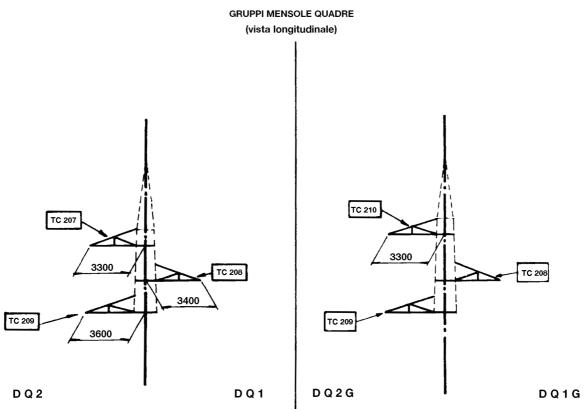


LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "C" Codifica

LIN_0000\$706

Rev. 00 Pag. 3 di 6

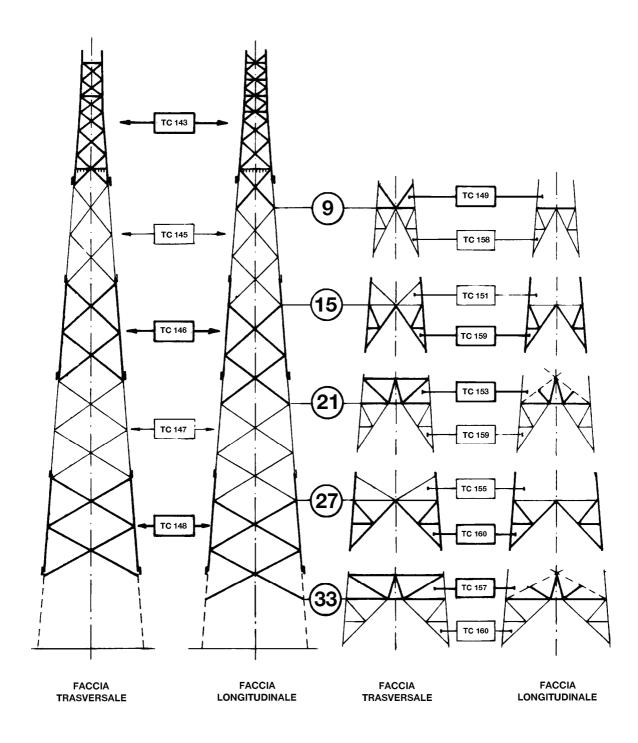




LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "C"

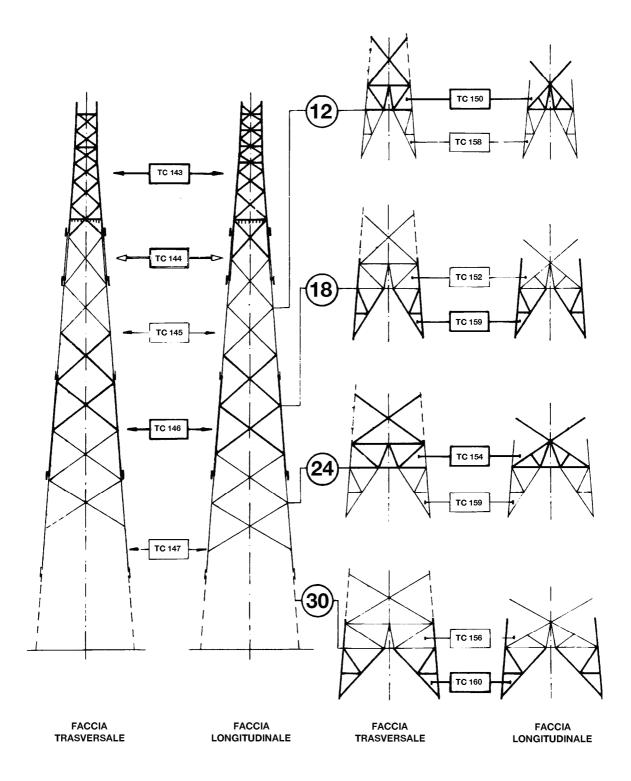
LIN_0000\$706

Rev. 00 Pag. **4** di 6



LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "C"

LIN_0000\$706


Rev. 00 Pag. **5** di 6

SCHEMA SOSTEGNI CON ALTEZZE DISPARI

G R O U P

SCHEMA SOSTEGNI CON ALTEZZE PARI

Tavola per montaggio meccanico LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO **SOSTEGNI TIPO "E"**

Codifica LIN_0000S707 Rev. 00 Pag. **1** di 6

del 28/06/2012

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOS ⁻	TEGNI ***)	Porto comuna Montante					TRO	NCHI				Descr	Piedi	Fondazione	M(**)	
TIPO	DIE	- Parte comune	ausiliario	ı	II	III	IV	V	VI	VII	VIII	- Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	RIF.						ELEMENTI ST	RUTTURALI (*)						R	IIF.	
E9	707/1	TE 161 (2656)	-	-	-	-	-	-	-	-	-	TE 167 (400)	TE 176 (1820)	F 109 /335	F 50/2	4876
E12	707/2	TE 161 (2656)	TE 162 (919)	-	-	-	-	-	-	-	-	TE 168 (1119)	TE 176 (1820)	F 109 /335	F 50/2	6514
E15	707/3	TE 161 (2656)	-	TE 163 (2367)	-	-	-	-	-	-	-	TE 169 (531)	TE 177 (1943)	F 109 /335	F 50/2	7497
E18	707/4	TE 161 (2656)	TE 162 (919)	TE 163 (2367)	-	-	-	-	-	-	-	TE 170 (1254)	TE 177 (1943)	F 109 /335	F 50/2	9139
E21	707/5	TE 161 (2656)	-	TE 163 (2367)	TE 164 (2473)	-	-	-	-	-	-	TE 171 (1032)	TE 177 (1943)	F 105 /345	F 50/3	10471
E24	707/6	TE 161 (2656)	TE 162 (919)	TE 163 (2367)	TE 164 (2473)	-	-	-	-	-	-	TE 172 (1140)	TE 177 (1943)	F 105 /345	F 50/3	11498
E27	707/7	TE 161 (2656)	-	TE 163 (2367)	TE 164 (2473)	TE 165 (2554)	-	-	-	-	-	TE 173 (825)	TE 178 (2121)	F 105 /345	F 50/3	12996
E30	707/8	TE 161 (2656)	TE 162 (919)	TE 163 (2367)	TE 164 (2473)	TE 165 (2554)	-	-	-	-	-	TE 174 (1668)	TE 178 (2121)	F 107 /305	F 50/1	14758
E33	707/9	TE 161 (2656)	-	TE 163 (2367)	TE 164 (2473)	TE 165 (2554)	TE 166 (2837)	-	-	-	-	TE 175 (1505)	TE 178 (2121)	F 107 /305	F 50/1	16513

^{(*) –} Il peso totale dell'allungato (esclusi i monconi) e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

Storia d	lelle revisioni							
Rev. 00	del 28/06/2012		edatto in prima emissio ario, A.Posati, R.Rendina	one, aggiorna e sostituis a)	sce il documento	Terna UXL	S707 rev.	00 del
			ISC –L	Jso INTERNO				
Elaborato			Verificato			Appr	ovato	
ITI s.r.l.			P. Berardi SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE			osati SVT-LAE	
Questo d	ocumento contiene i	nformazioni di proprietà d	di Terna Rete Italia Gruppo	Terna S.p.A. e deve essere ut	ilizzato esclusivamen	te dal destinat	ario in relazi	one alle

^{(**) –} Fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

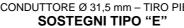
^{(***) -} Ogni sostegno viene indicato con TIPO (con la lettera corrispondente al tipo di sostegno, seguita dall'altezza utile) e con RIF. (con riferimento al nome del documento, seguito da un progressivo, come da LIN_000000000) che contraddistingue la sua composizione.

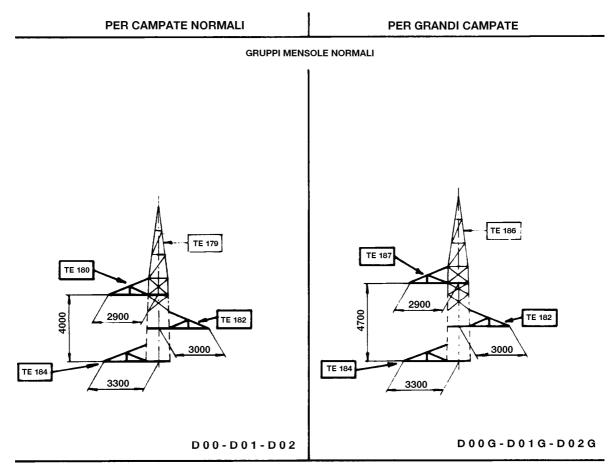
LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "E"

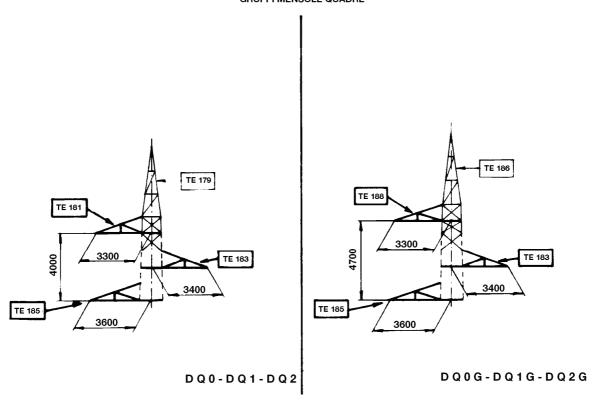
Codifica LIN_	0000\$707
Rev. 00	Pag. 2 di 6

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO "D"

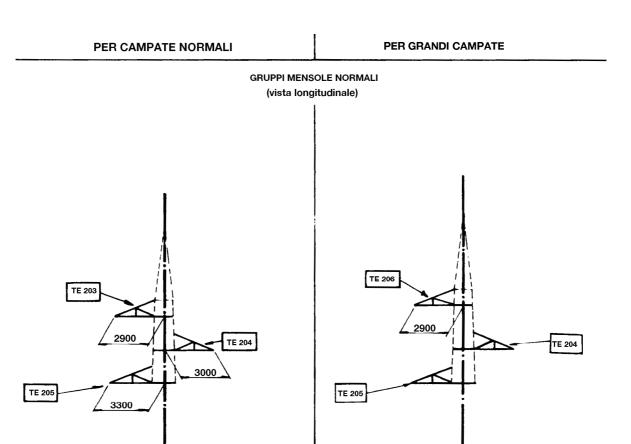
GRUPPI N	MENSOLE				ELEMENTI ST	RUTTURALI (*)				
717.0	215	0	Mensola	Mensola	Mensola		Mensole di giro			PESO (kg) (*)
TIPO	RIF.	Cimino	alta	media	bassa	alta	media	bassa	n. Pezzi	()
D00	707/20	TE 179 (704)	TE 180 (143)	TE 182 (155)	TE 184 (167)	-	-	-		1169
D01	707/21	TE 179 (704)	TE 180 (143)	TE 182 (155)	TE 184 (167)	-	TE 204 (**)	=		1169
D02	707/22	TE 179 (704)	TE 180 (143)	TE 182 (155)	TE 184 (167)	TE 203 (**)	-	TE 205(**)		1169
D00G	707/23	TE 186 (884)	TE 187 (154)	TE 182 (155)	TE 184 (167)	-	-	-		1360
D01G	707/24	TE 186 (884)	TE 187 (154)	TE 182 (155)	TE 184 (167)	-	TE 204(**)	-		1360
D02G	707/25	TE 186 (884)	TE 187 (154)	TE 182 (155)	TE 184 (167)	TE 206(**)	-	TE 205(**)		1360
DQ0	707/26	TE 179 (704)	TE 181 (317)	TE 183 (320)	TE 185 (337)	-	-	-		1678
DQ1	707/27	TE 179 (704)	TE 181 (317)	TE 183 (320)	TE 185 (337)	-	TE 208(**)	-		1678
DQ2	707/28	TE 179 (704)	TE 181 (317)	TE 183 (320)	TE 185 (337)	TE 207	-	TE 209(**)		1678
DQ0G	707/29	TE 186 (884)	TE 188 (328)	TE 183 (320)	TE 185 (337)	-	-	-		1869
DQ1G	707/30	TE 186 (884)	TE 188 (328)	TE 183 (320)	TE 185 (337)	-	TE 208(**)	-		1869
DQ2G	707/31	TE 186 (884)	TE 188 (328)	TE 183 (320)	TE 185 (337)	TE 210(**)	-	TE 209(**)		1869


^{(*) –} Il peso totale dell'allungato e dei singoli elementi strutturali, indicato tra parentesi, è comprensivo della zincatura. I pesi sono espressi in Kg.


^{(**) -} Le mensole di giro TE 203 - TE 204 - TE 205 - TE 206 - TE 207 - TE 208 - TE 209 - TE 210 non sono disponibili.


LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

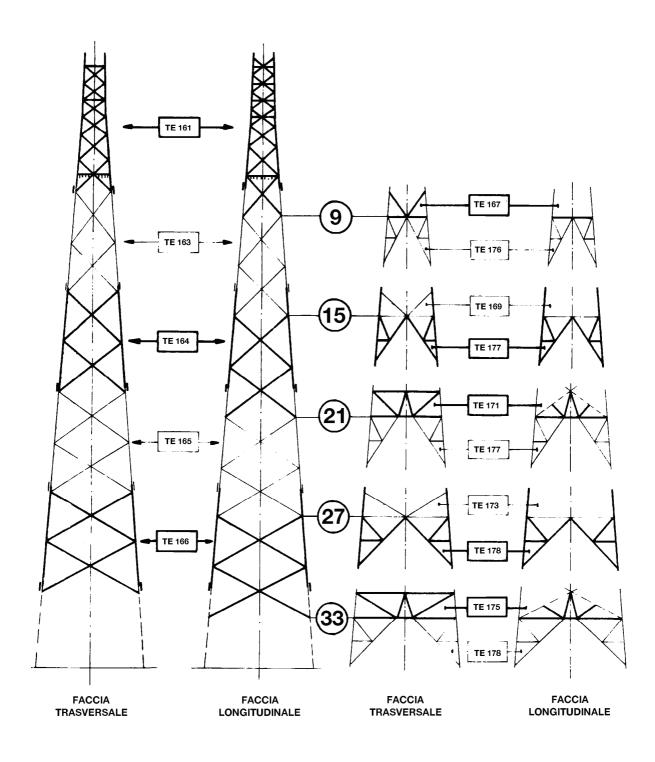
Codifica LIN_0000S707 Pag. **3** di 6 Rev. 00





LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "E" LIN_0000\$707

Rev. 00 Pag. **4** di 6

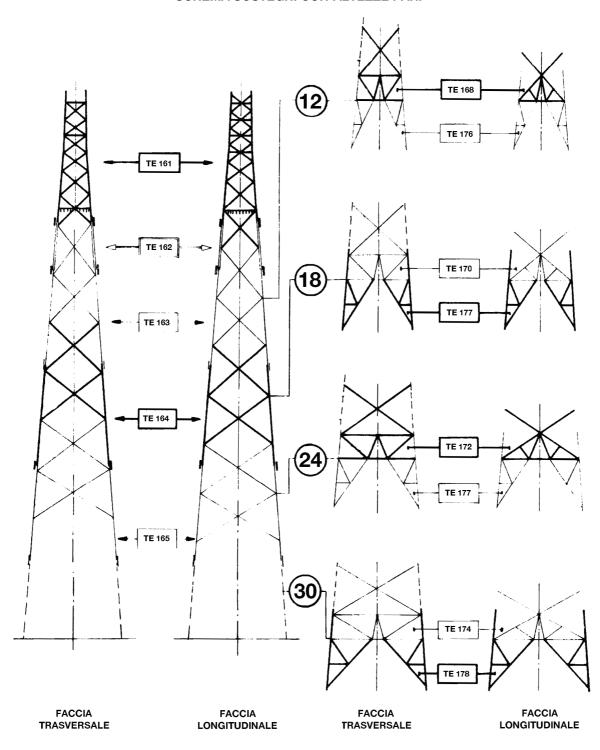


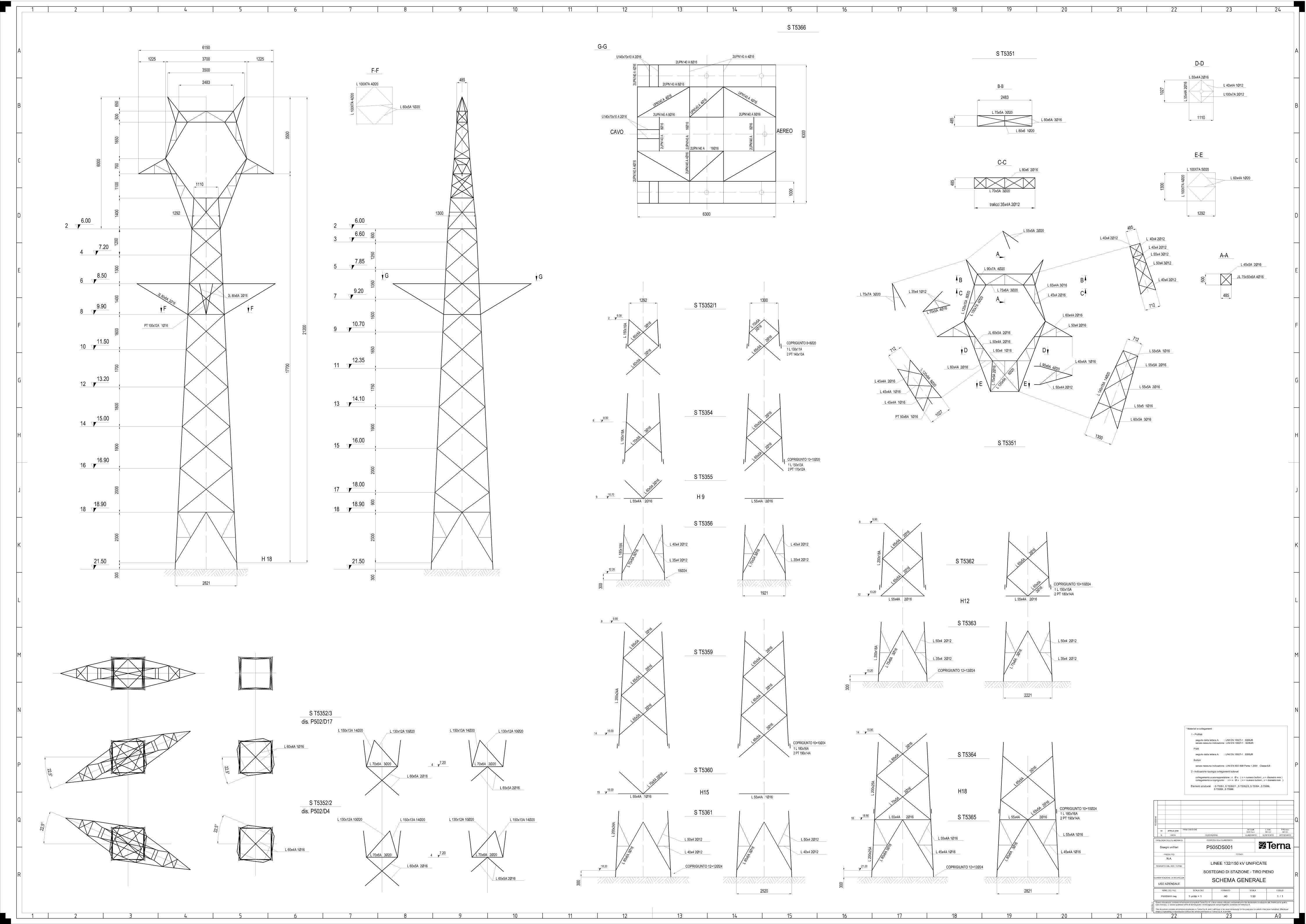
LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "E"

LIN_0000\$707

Rev. 00 Pag. **5** di 6

SCHEMA SOSTEGNI CON ALTEZZE DISPARI




LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

Codifica LIN_0000S707 Rev. 00 Pag. **6** di 6

SOSTEGNI TIPO "E"

SCHEMA SOSTEGNI CON ALTEZZE PARI

Codifica	
P00	5UN001
Rev. 00 del 13/09/2007	Pagina 1 di 8

LINEA ELETTRICA AEREA A 132-150 kV SEMPLICE TERNA A TRIANGOLO – TIRO PIENO CONDUTTORI \varnothing 31,5 mm – EDS 21% - ZONA "A"

UTILIZZAZIONE DEL SOSTEGNO "N"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia delle revisioni				
Rev. 00	del 13/09/2007	Prima emissione		

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P005UN001

Rev. 00
Pagina 2 di 8

del 30/05/2007

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014914 – Rev.0 – Settembre 2007**

Codifica P005UN001 Rev. 00 Pagina 3 di 8 del 30/05/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4 CADATTED	ICTICLIE DDING!	2411	CONDUTTORE		CORDA DI GUARDIA			
2.1 CARATTER	ISTICHE PRINCIF	ALI	RQUT0000C2	LC 23	LC 51	LC 50		
	MA	TERIALE	All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio		
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9		
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)		
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70		
	TOTALE	(mm²)	583,30	78,94	80,65	176,60		
MASS	MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820		
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000			
COEFFICIENTE DI DILATAZIONE (1/°C)		19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶			
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600		

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE		CORDA DI GUARDIA	
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UN001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 4 di 8

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	ORDA DI GUARDIA (*	*)
		RQUT0000C2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr \hat{I}

P005UN001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 5 di 8

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases} Azione \ trasversale & T = v \ Cm + 2 \ sen \ \delta/2 \ T_0 + t^* \end{cases}$ (2)

Azione verticale $P = p Cm + K T_0 + p^*$ (3)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)				
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLA ⁻ MORSE	TORI E TTERIA
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	5450	100	150	2120 (2745)	2077 (2711)	2985 (3580)	0	0

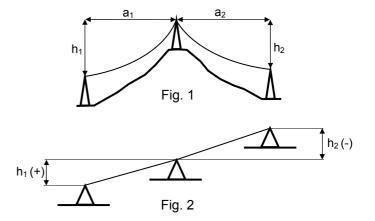
(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

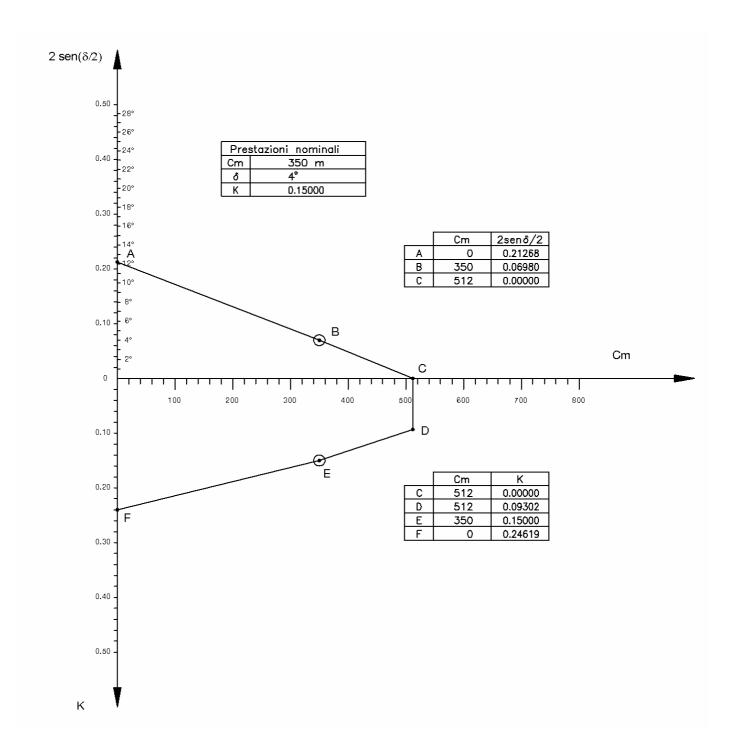

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

 $\begin{array}{lll} \mathsf{Cm} &= \mathsf{campata} \; \mathsf{media} \\ \delta &= \mathsf{angolo} \; \mathsf{di} \; \mathsf{deviazione} \\ \mathsf{K} &= \mathsf{costante} \; \mathsf{altimetrica} \; (*) \end{array}$

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UN001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 6 di 8

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UN001

Rev. 00 del 30/05/2007

Pagina 7 di 8

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, δ_i) è necessario che i punti (Cm_i, δ_i) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

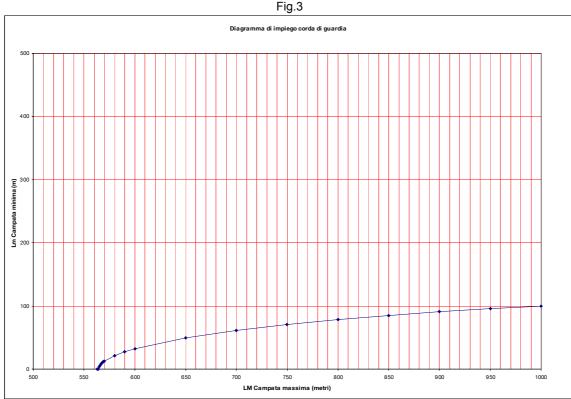
3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)


-Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3 , che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_m) tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Codifica P005UN001

Rev. 00 del 30/05/2007

Pagina 8 di 8

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

Azioni longitudinali:

sono state assunte pari al tiro T₀

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		C	ONDUTTOR	E	CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NORMALE	1260	1639	0	(790)	(882)	(1200)
MSA	NORMALE	1260	0	0	(790)	(0)	(1200)
	ECCEZIONALE (**)	680	895	5450	(395)	(441)	(3580)
		680	0	5450	(395)	(0)	(3580)

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P005	5UM001
Rev. 00 del 13/09/2007	Pagina 1 di 8

LINEA ELETTRICA AEREA A 132-150 kV SEMPLICE TERNA A TRIANGOLO – TIRO PIENO CONDUTTORI \varnothing 31,5 mm – EDS 21% - ZONA "A"

UTILIZZAZIONE DEL SOSTEGNO "M"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia delle revisioni				
Rev. 00	del 13/09/2007	Prima emissione		

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P005UM001

Rev. 00
Pagina 2 di 8

del 30/05/2007

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014912 – Rev.0 – Settembre 2007**

Codifica P005UM001 Rev. 00 Pagina 3 di 8 del 30/05/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

2.1 CARATTERISTICHE PRINCIPALI			CONDUTTORE		CORDA DI GUARDIA				
			RQUT0000C2	LC 23	LC 51	LC 50			
MATERIALE			All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio			
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9			
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)			
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70			
	TOTALE	(mm²)	583,30	78,94	80,65	176,60			
MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820				
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000				
COEFFICIENTE DI DILATAZIONE (1/°C)		19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶				
CARICO DI ROTTURA (daN)		16852	12231	9000	10600				

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA			
	RQUT0000C2	LC 23 LC 51 LC 50			
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643	

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UM001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 4 di 8

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha (\Theta_d - \Theta_b) + \frac{1}{SE} (T_d - T_b) = \frac{p'_d^2 L^2}{24 T_d^2} - \frac{p'_b^2 L^2}{24 T_b^2}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	CORDA DI GUARDIA (**)			
		RQUT0000C2	LC 23	LC 51	LC 50	
CONDIZIONE EDS	V (daN/m)	0	0	0	0	
	P (daN/m)	1,9159	0,6090	0,5270	0,8044	
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044	
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)	
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)	
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr \hat{I}

Codifica	
P00	5UM001
Rev. 00	Pagina 5 di 8
del 30/05/2007	Pagilla 5 ul 6

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

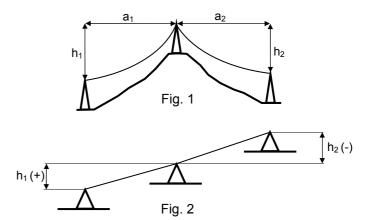
	CONDUTTORE			CORDA DI GUARDIA (**)					
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50 ISOLATORI E MORSETTERIA		-	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)	
MSA	5450	100	150	2120 (2745)	2077 (2711)	2985 (3580)	0	0	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

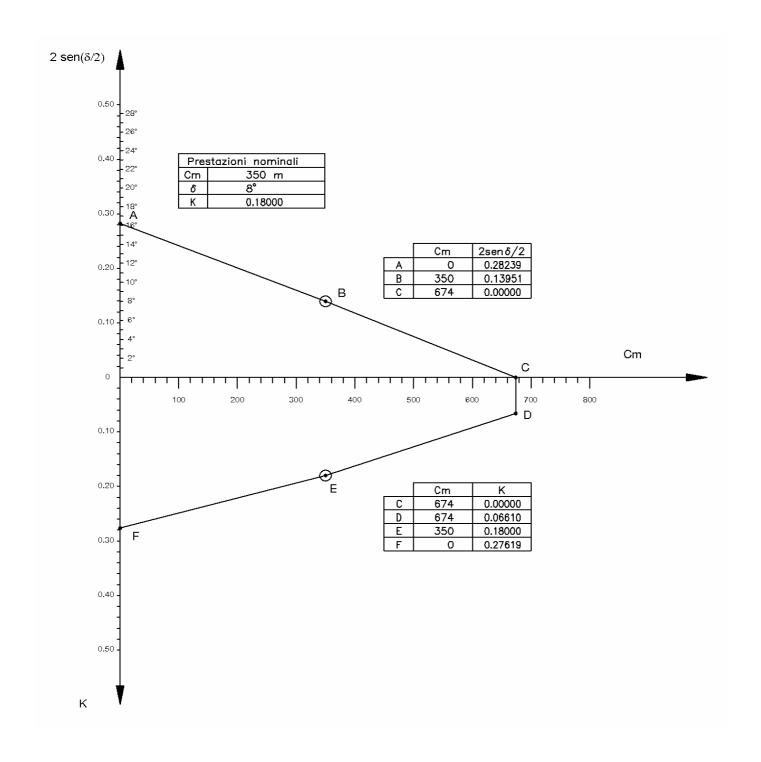

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UM001

Rev. 00
del 30/05/2007

Rev. 00
del 30/05/2007

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UM001

Rev. 00 del 30/05/2007

Pagina 7 di 8

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, δ_i) è necessario che i punti (Cm_i, δ_i) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

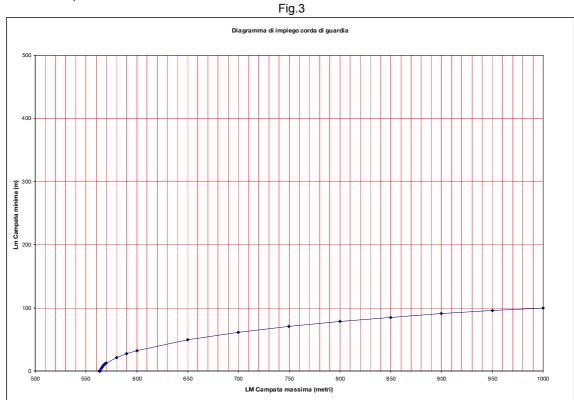
3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)


- Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3 , che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_m) tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Codifica P005UM001

Rev. 00 del 30/05/2007

Pagina 8 di 8

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

	IPOTESI	CONDUTTORE			CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI		R	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
MSA	NORMALE	1640	1802	0	(1040)	(989)	(1200)
	NORWIALE	1640	0	0	(1040)	(0)	(1200)
	ECCEZIONALE (**)	870	976	5450	(520)	(495)	(3580)
		870	0	5450	(520)	(0)	(3580)

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P00	5UC001
 Rev. 00 del 13/09/2007	Pagina 1 di 12

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 21% - 2	ZONA "A"	

UTILIZZAZIONE DEL SOSTEGNO "C"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato		Verificato		Approvato
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P005UC001

Rev. 00

del 13/09/2007

Pagina 2 di 12

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014920 – Rev.0 – Settembre 2007**

P005UC001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 3 di 12

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4 CADATTED	2.1 CARATTERISTICHE PRINCIPALI				CORDA DI GUAR	DIA
2.1 CARATTER	15 HCHE PRINCIP	ALI	RQUT0000C2	LC 23	LC 51	LC 50
	MA	TERIALE	All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio
DIAM	DIAMETRO CIRCOSCRITTO (mm)			11,5	11,5	17,9
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASS	MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820
MODU	ILO DI ELASTICITA'	(N/mm ²)	68000	175000	155000	88000
COEFFICIENTE	E DI DILATAZIONE	(1/°C)	19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

EDS: (Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE			
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

(*) Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UC001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 4 di 12

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha (\Theta_d - \Theta_b) + \frac{1}{SE} (T_d - T_b) = \frac{p'_d^2 L^2}{24 T_d^2} - \frac{p'_b^2 L^2}{24 T_b^2}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	ORDA DI GUARDIA (*	*)
		RQUT0000C2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum Li^3}{\sum Li}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr i

P005UC001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 5 di 12

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)				
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLA ⁻ MORSE	TORI E TTERIA
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	5450	120	170	2120 (2745)	2077 (2711)	2985 (3580)	0	0

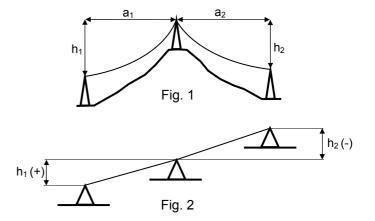
(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

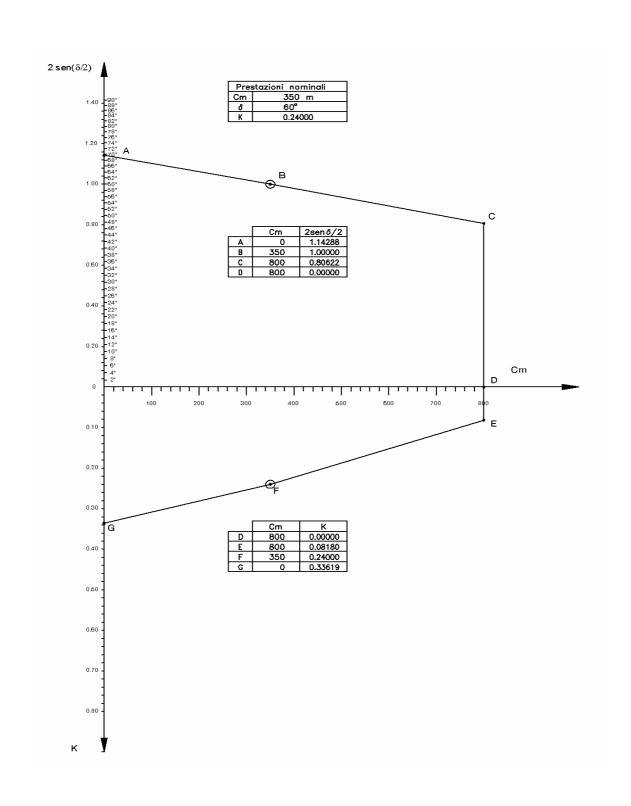

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

 $\begin{array}{lll} \mathsf{Cm} &= \mathsf{campata} \; \mathsf{media} \\ \delta &= \mathsf{angolo} \; \mathsf{di} \; \mathsf{deviazione} \\ \mathsf{K} &= \mathsf{costante} \; \mathsf{altimetrica} \; (*) \end{array}$

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UC001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UC001

Rev. 00 del 13/09/2007

Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i , δ_i) è necessario che i punti (Cm_i , δ_i) e (Cm_i , K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

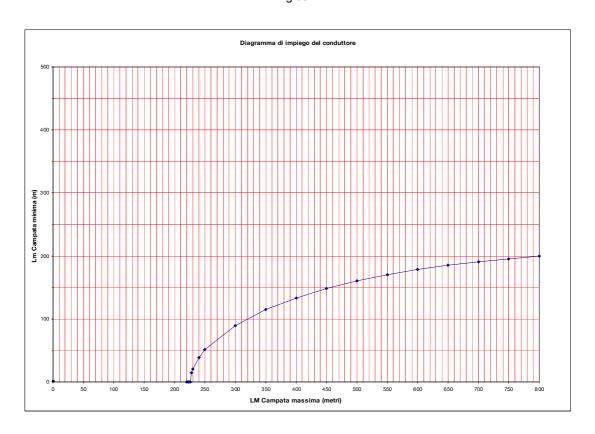
Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

-Azioni longitudinali:

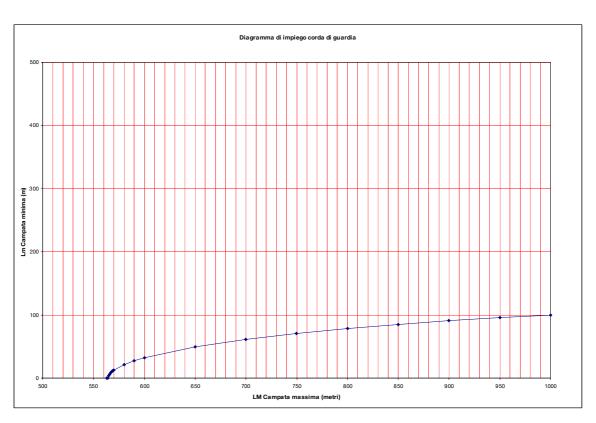

Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, sia minore o eguale dei valori di squilibrio considerato per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a



Codifica P005UC001

Rev. 00 del 13/09/2007

Pagina 8 di 12

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

P005UC001

Rev. 00
Pagina 9 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		C	ONDUTTOR	Е	CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NORMALE	6349	2149	220	(4120)	(1204)	(1200)
BAC A		6349	0	220	(4120)	(0)	(1200)
IMSA		3235	1160	5450	(2060)	(602)	(3580)
ECCEZIONALE	ECCEZIONALE (**)	3235	0	5450	(2060)	(0)	(3580)

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno C viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)

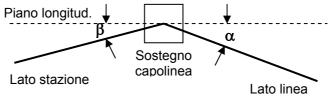
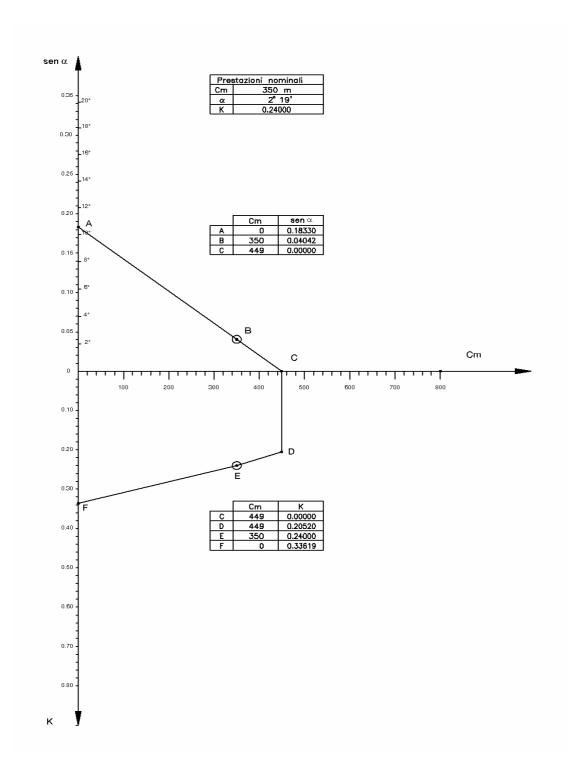


Fig. 4



P005UC001

Rev. 00

del 13/09/2007

Pagina 10 di 12

P005UC001

Rev. 00
Pagina 11 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

		C	ONDUTTOR	Е	CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE MSA	1119	2149	5450	(1740)	(1204)	(3580)	
MCA		1119	0	5450	(1740)	(0)	(3580)	
INISA		0	0	0	(0)	(0)	(0)	
	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)	

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To.

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle seguenti relazioni:

Conduttori
$$\begin{cases} & \text{Azione trasversale} & \text{T = v Cm + T}_0 \text{ sen } \alpha \text{ + t* (2')} \\ & \text{Azione longitudinale} & \text{L = T}_0 \cos \alpha \text{ + t*} \end{cases}$$

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

Conduttori
$$\begin{cases} &\text{Azione trasversale} &\text{T = v Cm} + T_0 sen α + T'_0 sen β + t^* \\ &\text{Azione longitudinale} &\text{L = T}_0 cos α - T_0 cos β \end{cases}$$

E quindi la somma T + L non supera il valore del calcolo finche rimanga:

sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

P005UC001

Rev. 00

Pagina 12 di 12

del 13/09/2007

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P00	5UE001
 Rev. 00 del 13/09/2007	Pagina 1 di 12

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 21% - 2	ZONA "A"	

UTILIZZAZIONE DEL SOSTEGNO "E"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato	Verificato		Approvato
L. Alario	L. Alario		R. Rendina
ING-ILC-COL	ING-ILC-COL		ING-ILC

P005UE001

Rev. 00

del 13/09/2007

Pagina 2 di 12

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014921 – Rev.0 – Settembre 2007**

Codifica P005UE001 Rev. 00 Pagina 3 di 12 del 13/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4 CADATTED	ICTICLIE DDING!	2411	CONDUTTORE		CORDA DI GUAR	DIA
2.1 CARATTER	ISTICHE PRINCIF	ALI	RQUT0000C2	LC 23	LC 51	LC 50
	MA	TERIALE	All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio
DIAM	ETRO CIRCOSCRITTO	O (mm)	31,5	11,5	11,5	17,9
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASSA UNITARIA (Kg/m)			1,953	0,621	0,537	0,820
MODULO DI ELASTICITA' (N/mm²)			68000	175000	155000	88000
COEFFICIENTE DI DILATAZIONE (1/°C)			19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶
CARICO DI ROTTURA (daN)			16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA		
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UE001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 4 di 12

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	CORDA DI GUARDIA (**)		*)
		RQUT0000C2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr \hat{I}

P005UE001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 5 di 12

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

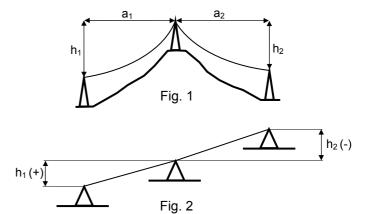
	CONDUTTORE			CORDA DI GUARDIA (**)				
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLATORI E MORSETTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	5450	120	170	2120 (2745)	2077 (2711)	2985 (3580)	0	0

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

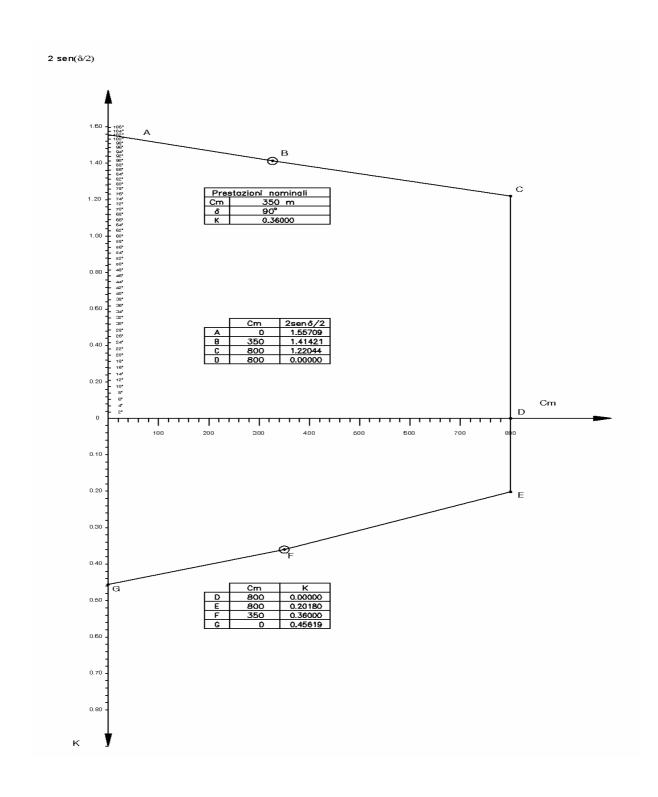

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UE001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UE001

Rev. 00 del 13/09/2007

Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i , δ_i) è necessario che i punti (Cm_i , δ_i) e (Cm_i , K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

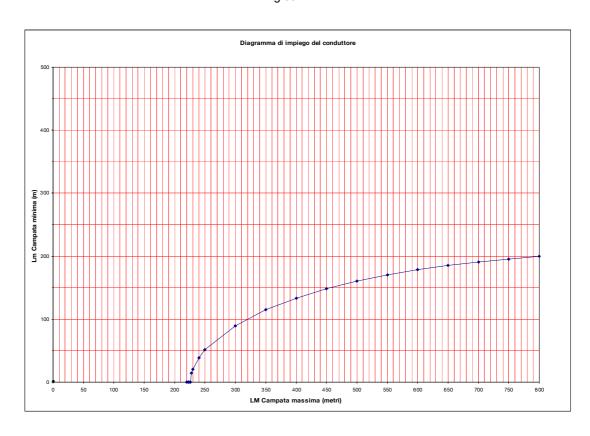
Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

- Azioni longitudinali:


Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, sia minore o eguale dei valori di squilibrio considerato per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a



Codifica P005UE001

Rev. 00 del 13/09/2007

Pagina 8 di 12

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

P005UE001

Rev. 00

Pagina 9 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella sequente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	R	RQUT0000C2			LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE -	8607	2803	220	(5603)	(1634)	(1200)	
MSA		8607	0	220	(5603)	(0)	(1200)	
IVISA		4364	1487	5450	(2802)	(817)	(3580)	
ECCEZIONALE (**)	4364	0	5450	(2802)	(0)	(3580)		

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

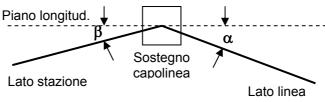
Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

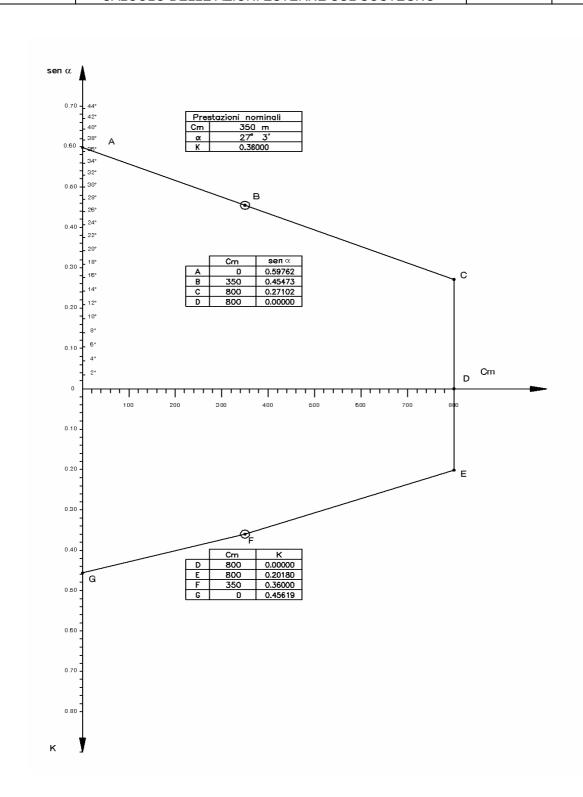
(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P . L. indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno E viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)




Fig. 4

P005UE001

Rev. 00
Pagina 10 di 12

del 13/09/2007

P005UE001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 11 di 12

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE -	3377	2803	5450	(3223)	(1634)	(3580)	
MSA		3377	0	5450	(3223)	(0)	(3580)	
WSA		0	0	0	(0)	(0)	(0)	
ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)		

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To.

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle seguenti relazioni:

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

Conduttori
$$\begin{cases} &\text{Azione trasversale} &\text{T = v Cm} + T_0 sen α + T'_0 sen β + t^* \\ &\text{Azione longitudinale} &\text{L = T}_0 cos α - T_0 cos β \end{cases}$$

E quindi la somma T + L non supera il valore del calcolo finche rimanga:

sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

P005UE001

Rev. 00

Pagina 12 di 12

del 13/09/2007

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Linee elettriche 132 – 150 kV Conduttore singolo Ø 31,5 – Tiro pieno UTILIZZAZIONE DEL "PALO GATTO" CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Codifica	
P50	05UP001
Rev. 00	Pagina 1 di 14
del 30/03/2009	l agilla i di 14

LINEE ELETTRICHE AEREE A 132-150 kV - TIRO PIENO CONDUTTORI ALLUMINIO - ACCIAIO Ø 31,5 mm - EDS 21% - ZONA "A"

UTILIZZAZIONE DEL "PALO GATTO"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia delle revisioni			
	Rev. 00	del 30/03/2009	Prima emissione

Elaborato		Verificato			Approvato
P. Berardi	L. Alario	A. Posati			R. Rendina
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL			ING-ILC

P505UP001

Rev. 00

Rev. 00

del 30/03/2009

Pagina 2 di 14

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A8014758** – **Rev.00 – 21/05/2008**

Codifica P505UP001 Rev. 00 Pagina 3 di 14

del 30/03/2009

1. CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (C2/1)
Corda di guardia	Corda di guardia con fibre ottiche (C50) (*)
Isolatori	A bastone in porcellana ovvero catene rigide di isolatori in vetro disposti in amarro doppio
Tipo fondazione	In calcestruzzo a blocco unico
Tipo di sfera di segnalazione	Diametro 60 cm; peso 5,5 kg; passo di installazione ≤ 30 m
Messa a terra	Secondo le norme citate
Larghezza linea	6 m tra i conduttori esterni

2. CONDUTTORI E CORDE DI GUARDIA

2.1 CARATTERISTICHE PRINCIPALI

			CONDUTTORE	CORDA DI GUARDIA
			C2/1	C50
MATER	IALE		All. Acc.	Al + Lega di Al + Acciaio
DIAMETRO CIRCOSCRITTO		(mm)	31,5	17,9
0571011	ALLUMINIO	(mm ²)	519,5	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm ²)	65,80	57,70
TEORIGITE	TOTALE	(mm ²)	585,30	176,60
MASSA UNITARIA		(Kg/m)	1,953	0,820
MODULO DI ELASTICITA'		(N/mm ²)	68000	88000
COEFFICIENTE DI DILATAZIONE		(1/°C)	19,4 x 10 ⁻⁶	17 x 10 ⁻⁶
CARICO DI ROTTURA		(daN)	16852	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

CONDIZIONE BASE

EDS: (Every Day Stress) 15°C, conduttore scarico In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA
	C2/1	C50
TIRO ORIZZONTALE T _O (daN)	3540	1643

CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 Km/h

Codifica

P505UP001

Rev. 00 del 30/03/2009

Pagina 4 di 14

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_d - \Theta_b\right) + \frac{1}{SE} (T_d - T_b) = \frac{{p'_d}^2 L^2}{24 T_d^2} - \frac{{p'_b}^2 L^2}{24 T_b^2}$$

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

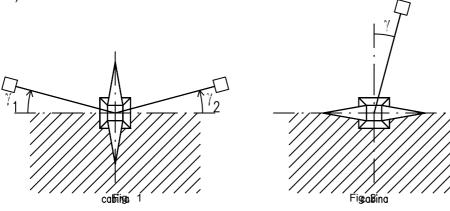
		CONDUTTORE	CORDA DI GUARDIA
		C2/1	C50
CONDIZIONE EDS	V	0	0
	Р	1,9159	0,8044
	P'	1,9159	0,8044
CONDIZIONE MSA	٧	2,2249	1,2643 (1,5417)
	Р	1,9159	0,8044 (0,9842)
	P'	2,9361	1,4958 (1,8291)

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

 $P' = \sqrt{v^2 + p^2}$ = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum Li^3}{\sum Li}}$$
 ove le Li sono le campate reali comprese fra due successivi amarri


Codifica **P505UP001**

Rev. 00 del 30/03/2009

Pagina 5 di 14

3. UTILIZZAZIONE MECCANICA DEL SOSTEGNO

Il sostegno-portale può essere impiegato sia per amarro una sola linea (Fig. 2) sia per amarro di due linee (Fig. 1).

3.1 CASO DI IMPIEGO PER AMARRO DI UNA LINEA

3.1.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi **MSA.**

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori e corde di guardia
$$\begin{cases} Azione trasversale & T = v Cm + sen \gamma T_o + t^* \\ Azione verticale & P = p Cm + K T_o + p^* \end{cases}$$
 (3)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati al punto 2.2

T_o = tiro orizzontale nel conduttore

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria

I valori di t* e p* sono riportati nella seguente tabella:

	CONDUTTORE		CORDA DI GUARDIA		
	C2/1		C50		
	t* p*		t*	p*	
MSA (daN)	120	170	0	0	

I valori di T₀ sono riportati nella seguente tabella:

	CONDUTTORE	CORDA DI GUARDIA
	C2/1	C50
TIRO ORIZZONTALE T _O in MSA (daN)	5450	2985 (3580)

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

- per i conduttori: in un intervallo di campate equivalenti pari a 200 ÷ 800 m

- per le corde di guardia: in un intervallo di campate reali pari a 100 ÷ 1000 m

Codifica

P505UP001

Rev. 00 del 30/03/2009

Pagina 6 di 14

Caratteristiche geometriche del picchetto:

Cm = campata media (*) δ = angolo di deviazione K = costante altimetrica (**)

(*) L'espressione di Cm (vedi Fig.3) è la seguente:

$$Cm = \frac{I+a}{2}$$
 potendo senz' altro trascurare il termine I si può considerare $Cm = \frac{a}{2}$

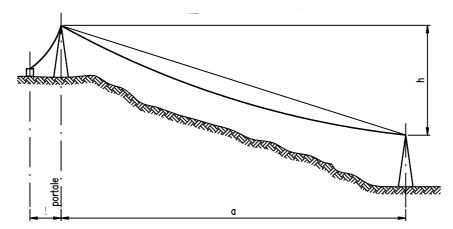


Fig. 3

(**) L'espressione di K (vedi Fig.4) è la seguente:

$$k = \frac{h}{a} \text{ (vedi Fig. 4)}$$

$$Fig. 4$$

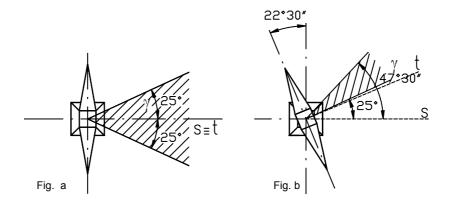
$$sostegno portale$$

$$primo sostegno di linea$$

ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di Fig.4.

Codifica

P505UP001


Rev. 00 del 30/03/2009

Pagina 7 di 14

3.1.2 PRESCRIZIONI DI IMPIEGO

Il sostegno può essere impiegato sia con testa montata in posizione "normale" sul fusto, sia con testa montata in posizione ruotata rispetto al fusto di 22°30' in senso antiorario ovvero in senso orario. Precisamente:

- a) per angoli di deviazione γ compresi fra -25° e $+25^{\circ}$, il sostegno viene impiegato con la testa montata in posizione "normale" sul fusto (vedi Fig. a sulla quale è riportato in tratteggio il settore di impiego).
- b) per angoli di deviazione γ compresi fra +25° e +47°30' (ovvero fra -25° e -47° 30'), il sostegno viene impiegato con la testa montata in posizione ruotata rispetto al fusto di 22°30' in senso antiorario (ovvero in senso orario) (vedi Fig. b).

NOTA: In ogni caso non si supera mai un angolo di deviazione di 25° rispetto all'asse "t" normale al piano della finestra del sostegno.

P505UP001

Rev. 00
Pagina 8 di 14

del 30/03/2009

3.1.3 DIAGRAMMI DI UTILIZZAZIONE DEL SOSTEGNO - PORTALE

Diagramma di utilizzazione del sostegno-portale impiegato con testa montata in posizione normale sul fusto.

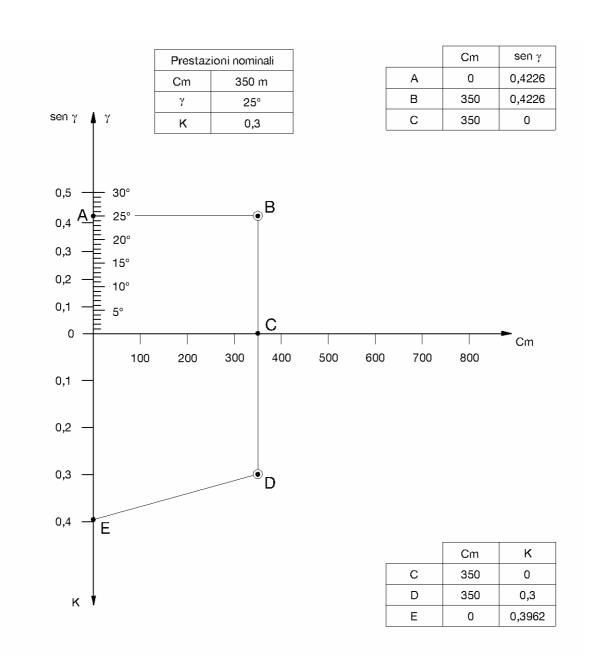


Fig. 5

P505UP001

Rev. 00
del 30/03/2009

Rev. 00
del 30/03/2009

Diagramma di utilizzazione del sostegno-portale impiegato con testa montata in posizione ruotata sul fusto di 22°30'.

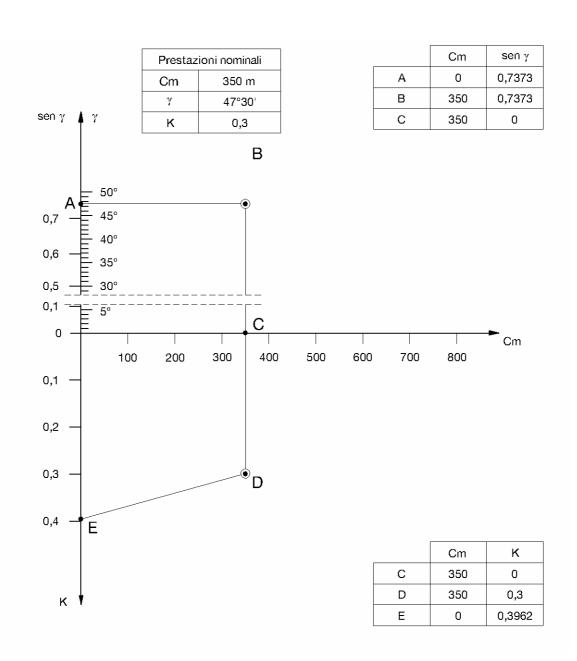


Fig. 6

Codifica **P505UP001**

Rev. 00 del 30/03/2009

Pagina 10 di 14

- Prestazioni verticali del sostegno

Mediante la relazione (3) si può verificare che in entrambi i casi, per tutti i punti compresi nel campo di utilizzazione verticale, l'azione complessiva è inferiore o uguale a quella di calcolo del sostegno riportata in tabella.

- Prestazioni trasversali del sostegno

Mediante la relazione (2) si può verificare che le azioni trasversali di tabella assicurano un angolo di impiego di 25°. Tale valore per il caso a) (testa montata in posizione "normale" sul fusto) rappresenta la prestazione massima del sostegno (vedi diagramma di utilizzazione di Fig. 5).

Per il caso b) (testa montata in posizione ruotata sul fusto) rappresenta la massima prestazione rispetto alla testa del sostegno (vedi nota punto 3.1.2); tenendo conto della rotazione di 22°30' della testa rispetto al fusto, ciò corrisponde ad una prestazione di 47°30' rispetto al fusto stesso (vedi diagramma di utilizzazione di Fig. 6).

3.1.4 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno nella condizione MSA, sia nell'ipotesi di conduttori e corde di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o di una corda di guardia.

I valori delle azioni esterne per il calcolo del sostegno in questa condizione di impiego sono riportati nella seguente tabella:

STATO DEI CONDUTTORI	IPOTESI	CONDUTTORE C2/1			CORDA DI GUARDIA C50 (**)		
	IFOTESI	T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
MSA	NORMALE	3202	2476	5450	2053	1418	3580
MSA	ECCEZIONALE (*)	0	0	0	0	0	0

- (*) Rottura di uno dei tre conduttori o di una delle due corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.
- (**) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Il progetto del sostegno è stato effettuato applicando le azioni di tabella alla testa del sostegno, sia nel caso di impiego del sostegno con testa montata in posizione normale sul fusto, che nel caso di impiego con testa montata in posizione ruotata rispetto al fusto di 22° 30'.

Codifica

P505UP001

Rev. 00 del 30/03/2009

Pagina 11 di 14

3.2 CASO DI IMPIEGO PER AMARRO DI DUE LINEE

3.2.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi **MSA**.

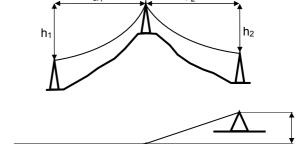
Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

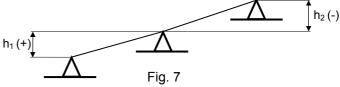
Ove:

Cm = campata mediaγ = angolo di deviazioneK = costante altimetrica

Le caratteristiche geometriche del picchetto:

L'espressione di Cm è la seguente:


$$Cm = \frac{a_1 + a_2}{2}$$
 (vedi Fig. 7)


L'espressione di γ è la seguente:

$$\gamma = \gamma_1 + \gamma_2$$
 (vedi Fig.1)

L'espressione di K è la seguente:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi Fig. 7)

ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di Fig. 7

3.2.2 PRESCRIZIONI DI IMPIEGO

In questo caso il sostegno verrà sempre impiegato con la testa montata in posizione "normale" sul fusto.

Ciascuno dei due angoli γ_1 e γ_2 (non necessariamente uguali tra loro) non dovrà superare i 25° e potrà essere orientato solamente dal lato esterno della cabina.

P505UP001

Rev. 00
del 30/03/2009

Rev. 00
Pagina 12 di 14

3.2.3 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO - PORTALE

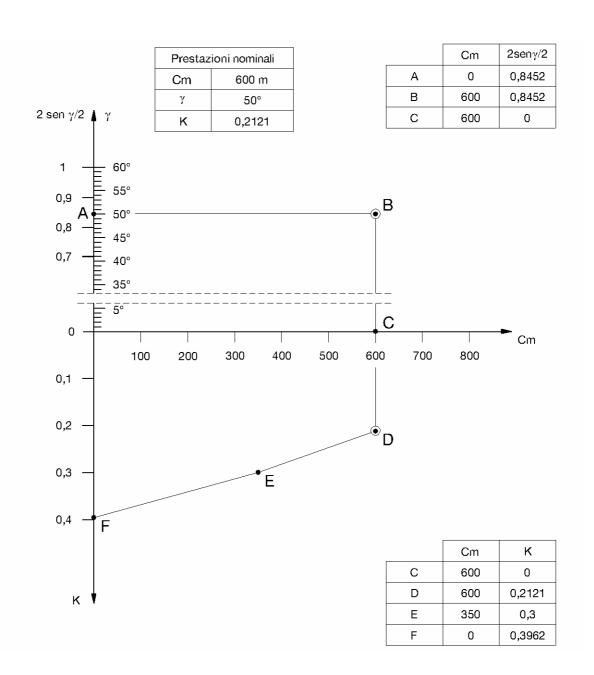


Fig. 8

Codifica P505UP001

Rev. 00 del 30/03/2009

Pagina 13 di 14

Mediante le relazioni (2') e (3') si può verificare che per tutte le terne di prestazioni geometriche (C_m, γ, K) , tali che il punto (C_m, γ) sia compreso "nel campo di utilizzazione trasversale" ed il punto (C_m, K) sia compreso nel "campo di utilizzazione verticale" le azioni trasversali e verticali (sia per conduttori che per corde di guardia) nella condizione MSA risultano inferiori od uguali a quelle considerate per il calcolo del sostegno in questo caso di impiego e riportate nella tabella al punto 3.2.4.

3.2.4 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno nella condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale) sia nell'ipotesi di rottura di un conduttore o di una corda di guardia (ipotesi eccezionale).

- Ipotesi normale

Azioni trasversali:

sono stati considerati i massimi valori che si verificano nelle più gravose condizioni di impiego del sostegno (v. diagramma di utilizzazione)

Azioni longitudinali:

sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tenere conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per i conduttori, d'altra parte, lo squilibrio considerato è largamente cautelativo, nel senso che è sicuramente superiore a quello corrispondente ad una differenza tra le campate equivalenti comunque grande.

Per la corda di guardia invece si dovra' invece verificare mediante la (1) in corrispondenza di ciascun picchetto che l'effettiva differenza di tiro (nella condizione MSA) sia minore o uguale del valore dello squilibrio considerato per il calcolo.

Per un'indagine rapida sono stati costruiti i diagrammi di Fig. 9.

Riportando in ascisse la campata maggiore L_M tra le due adiacenti al sostegno e in ordinata la minore L_m , se il punto di coordinate (L_M, L_m) sta al disopra del diagramma la verifica è positiva, poiché lo squilibrio di tiro è minore di quello di calcolo.

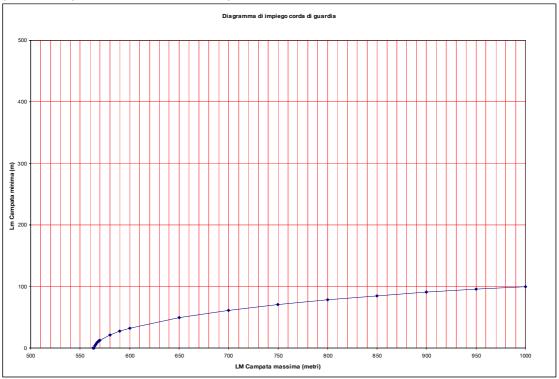


Fig. 9

Codifica P505UP001

Rev. 00 del 30/03/2009

Pagina 14 di 14

- Ipotesi eccezionale

Azioni trasversali e verticali:

i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale, per i conduttori tali valori non risultano essere la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) e il loro peso (p*).

Azioni longitudinali:

sono state assunte pari al tiro T_0 .

I valori delle azioni esterne per il calcolo del sostegno in questa condizione di impiego sono riportati nella seguente tabella:

STATO DEI CONDUTTORI	IPOTESI	CONDUTTORE C2/1			CORDA DI GUARDIA C50 (**)		
	11 01231	T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
MSA	NORMALE	6062	2476	220	3951	1418	1200
	ECCEZIONALE (*)	3091	1323	5450	1975	709	3580

- (*) Rottura di uno dei tre conduttori o di una delle due corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.
- (**) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

150 kV Semplice terna a triangolo

FONDAZIONI CR (σt_{amm}= 2.0 – 3.9 daN/cmq)
TABELLA DELLE CORRISPONDENZE
SOSTEGNI – MONCONI - FONDAZIONI

Codifica:	
1509	TINFON
Rev. 04 del 22/05/2009	Pag. 1 di 3

150 kV Semplice terna a triangolo

Conduttore singolo Ø 31,5 – Zona A EDS 21% - Zona B EDS 18%

Fondazioni CR (σt_{amm}= 2.0 - 3.9 daN/cmq)

Tabelle delle corrispondenze sostegni – monconi - fondazioni

Storia de	elle revisioni	
Rev. 00	del 31/12/2007	Prima Emissione.
Rev. 01	del 04/08/2008	Inserita tabella delle corrispondenze sostegni - monconi - fondazioni per terreni con $\sigma t_{amm} \leq 2.0$ daN/cmq.
Rev. 02	del 04/08/2008	Eseguite modifiche redazionali.
Rev. 03	del 05/12/2008	Per i sostegni E – E* sono state aggiornate le tabelle di corrispondenza sostegni – monconi – fondazioni per terreni con $\sigma t_{amm} \leq 2.0 \ daN/cmq \ e \ \sigma t_{amm} \leq 3.9 \ daN/cmq.$
Rev. 04	del 22/05/2009	Eseguite modifiche redazionali.

Elaborato		Verificato			Approvato	
L.Alario		L.Alario	A.Posati		R.Rendina	1
ING-ILC-COL		ING-ILC-COL	ING-ILC-COL		ING-ILC	

150 kV Semplice terna a triangolo

FONDAZIONI CR (σt_{amm} = 2.0 – 3.9 daN/cmq) TABELLA DELLE CORRISPONDENZE SOSTEGNI – MONCONI - FONDAZIONI

Codifica: 150STINFON

Rev. 04 Pag. **2** di 3

• Fondazioni CR – $\sigma t_{amm} \leq 2.0 \text{ daN/cmq}$

SOSTEGNO		MONCONE		FONDAZIONE	
TIPO	ALTEZZA (PIEDI)	TIPO	ALTEZZA (MM)	TIPO	ALTEZZA (CM)
L	9 (-2/+3) ÷ 33 (-2/+3)	LF 43	3700	LF 103	335
N	9 (-2/+3) ÷ 12 (-2/+3)	LF 43	3700	LF 103	335
	15 (-2/+3) ÷ 18 (-2/+3)	LF 44	3700		
	21 (-2/+3) ÷ 42 (-2/+3)		3500	LF 104	315
М	9 (-2/+1)	LF 44	3700	LF 103	335
	9 (+2/+3) ÷ 33 (-2/+3)		3500	LF 104	315
Р	9 (-2/+3) ÷ 21 (-2/+3)	LF 44	3500	LF 104	315
	24 (-2/+3)		3900		355
	27 (-2/+3) ÷ 48 (-2/+3)	LF 48	3900		355
V	9 (-2/+3) ÷ 18 (-2/+3)	LF 45	3900	LF 104	355
	21 (-2/+3) ÷ 24 (-2/+3)		4200	LF 440	385
	27 (-2/+3) ÷ 42 (-2/+3)	LF 46	4200	LF 110	385
С	9 (-2/+3) ÷ 12 (-2/+3)	LF 49	4200	LF 110	385
C	15 (-2/+3) ÷ 33 (-2/+3)		4000	LF 106	365
E	9 (-2/ -1) (*)	- LF 50	2750	LF 301	240
	9 (±0/+3) (*) ÷ 18 (-2/+3)		4400	LF 113	405
	21 (-2/+3) ÷ 27 (-2/+3)		4000	LF 106	365
	30 (-2/+3) ÷ 33 (-2/+3)		3800	LF 111	345
	9 (±0/+3)	LF 46	4400	15.440	405
E*	12 (-2/+3)	LF 54	4400	LF 113	405
	15 (-2/-1)	LF 50	4100	LF 114	375
	15 (±0/+3) ÷ 24 (-2/+3)		3800	LF 111	345
	27 (-2/+3) ÷ 33 (-2/+3)		3800		345

^(*) Per il sostegno E base H 9 con zoppicature di diversa dimensione si dovrà impiegare come fondazioni dei pali trivellati.

150 kV Semplice terna a triangolo

FONDAZIONI CR (σt_{amm}= 2.0 – 3.9 daN/cmq)
TABELLA DELLE CORRISPONDENZE
SOSTEGNI – MONCONI - FONDAZIONI

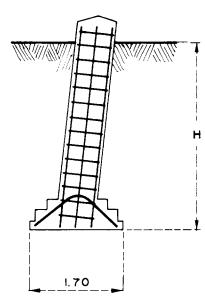
Codifica: 150STINFON

Rev. 04 Pag. **3** di 3

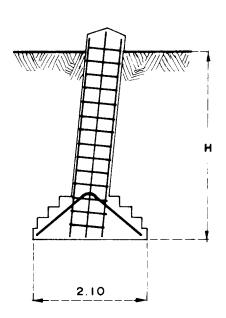
• Fondazioni CR – $\sigma t_{amm} \leq 3.9 \text{ daN/cmq}$

SOSTEGNO		MONCONE		FONDAZIONE	
TIPO	ALTEZZA (PIEDI)	TIPO	ALTEZZA (MM)	TIPO	ALTEZZA (CM)
L	9 (-2/+3) ÷ 12 (-2/+3)	LF 43	3100	LF 102	275
	15 (-2/+3) ÷ 33 (-2/+3)		3300		295
	9 (-2/+3) ÷ 12 (-2/+3)	LF 43	3300	LE 102	205
	15 (-2/+3) ÷ 18 (-2/+3)	LF 44	3300	LF 102	295
N	21 (-2/+3)		3100	LF 103	275
	24 (-2/+3) ÷ 39 (-2/+3)		3200		285
	42 (-2/+3)		3300		295
	9 (-2/+1)	LF 44	3300	LF 102	295
	9 (+2/+3) ÷ 12 (-2/+3)		3100	LF 103	275
M	15 (-2/+3) ÷ 21 (-2/+3)		3200		285
	24 (-2/+3) ÷ 33 (-2/+3)		3300		295
	9 (-2/+2)	LF 44	3100	LF 103	275
	9 (+3) ÷ 12 (-2/+3)		3200		285
	15 (-2/+3) ÷ 21 (-2/+3)		3300		295
Р	24 (-2/+3)		3400		305
	27 (-2/+3) ÷ 36 (-2/+3)	LF 48	3400		
	39 (-2/+3) ÷ 42 (-2/+3)				325
	45 (-1/+3) ÷ 48 (-1/+3)		3600		
	9 (-2/+3) ÷ 18 (-2/+3)	LF 45	3600	LF 103	325
	21 (-2/+3) ÷ 24 (-2/+3)		3400	LF 104	305
V	27 (-2/+3) ÷ 30 (-2/+3)	LF 46	3400		
	33 (-2/+3) ÷ 42 (-2/+3)		3500		315
	9 (-2/+3) ÷ 12 (-2/+3)	LF 49	3500	LF 104	315
С	15 (-2/+3) ÷ 21 (-2/+3)		3600	LF 105	325
	24 (-2/+3) ÷ 33 (-2/+3)		3700		335
	9 (-2/±0)	LF 50	4100	LF 115	375
_	9 (+1/+3) ÷ 18 (-2/+3)		3700	LF 109	335
E	21 (-2/+3) ÷ 27 (-2/+3)		3800	LF 105	345
	30 (-2/+3) ÷ 33 (-2/+3)		3400	LF 107	305
	9 (±0)	LF 46	4100	LF 115	375
	9 (+1/+3)		3600		325
F+	12 (-2/+3)	LF 54	3700	LF 109	335
E*	15 (-2/±0)	LF 50 LF 53	4000		365
	15 (+1/+3) ÷ 24 (-2/+3)		3400	LF 107	305
	27 (-2/+3) ÷ 33 (-2/+3)		3400		

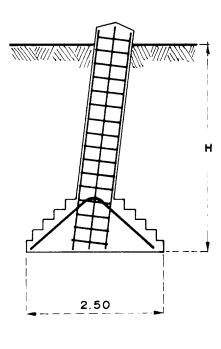
UNIFICAZIONE

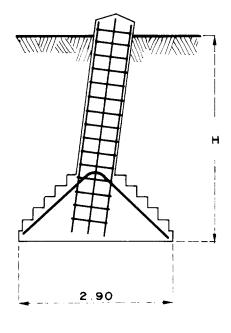

DCO - AITC - UNITÀ INGEGNERIA IMPIANTISTICA 2

FONDAZIONI DI CLASSE "CR"


LF 1

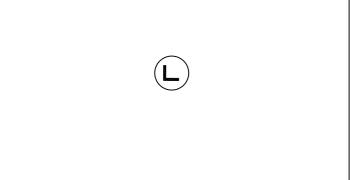
Dicembre 1993 Ed.8 - 1/2

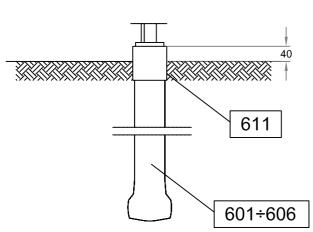


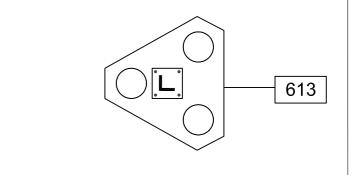

103

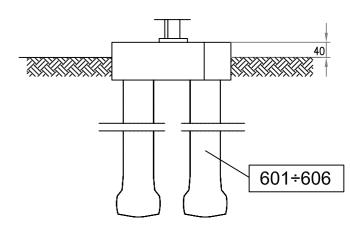
104

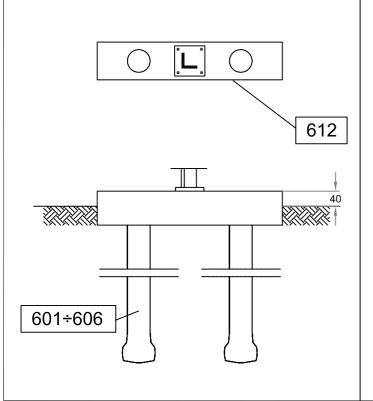
105

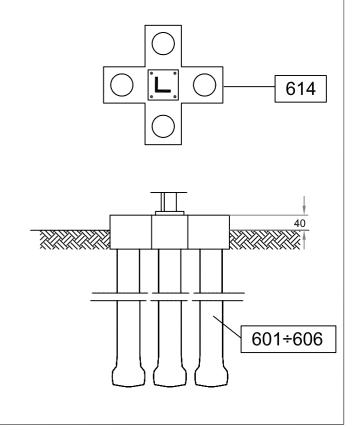

UNIFICAZIONE **LF 1 ENEL** Dicembre 1993 Ed.8 - 2/2 107 106 DCO - AITC - UNITÀ INGEGNERIA IMPIANTISTICA 2 3.70 3.30 108 4.10


UNIFICAZIONE **ENEL**

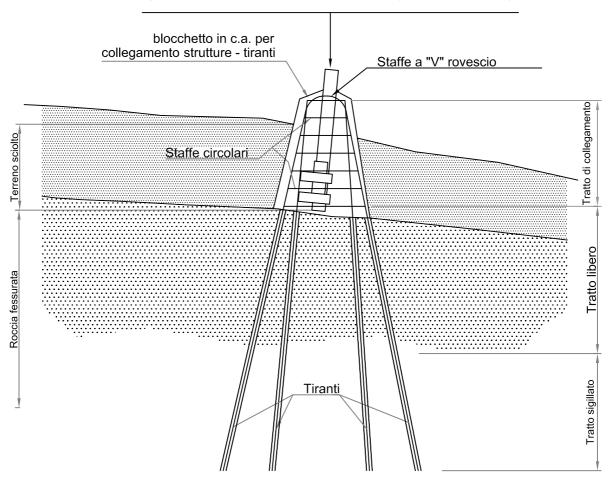

FONDAZIONI SU PALI TRIVELLATI


LF 20


Marzo 1992 Ed. 1 - 1/1



UNIFICAZIONE



FONDAZIONI "AD ANCORAGGIO" A MEZZO DI TIRANTI

LF 21

Aprile 1992 Ed. 1 - 1/1

montante in angolare d'acciaio per collegamento con la struttura sovrastante (munito di quadrette per la trasmissione degli sforzi di trazione)

