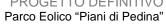


REGIONE BASILICATA COMUNI DI VENOSA, RAPOLLA E MELFI (PZ)

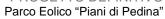
PROGETTO

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO DENOMINATO "PIANI DI PEDINA" NEL COMUNE DI VENOSA (PZ) IN LOCALITA' "PIANI DI PEDINA" E DELLE OPERE **CONNESSE NEI COMUNI DI VENOSA, RAPOLLA E MELFI (PZ)**

TITOLO


A.15 - Disciplinare descrittivo e prestazionale degli elementi tecnici

PROGETTAZIONE P		PROPONENTE		VISTI		
Tel + 39 0971 1944797 - Fax: +39 0971 55452 www.l4ingegneria.t - fulngegneria@pec.it II Direttore Tecnico (ing. Giovanni DI SANTO) Sede legale: Vicolo del Mes 38068 ROVEF PEC: direzione						
DATI PROGETTAZI	ONE					
		1		-1		
Scala	Formato Stampa	Cod.Elaborato	Rev. Nome File		Ela	borato Foglio
-	A4	EO-CRV-PD-REL-13	а			1 1 di 1
Rev. Data	Descrizione			Elaborato	Controllato	Approvato
a 18/10/2019	Prima Emissione			F4	A.Corradetti	R.Cairoli
				+	l	


Sommario

1	Intro	duzione		ţ
2	Desc	rizione generale		(
	2.1 C	omponenti meccaniche	6	
	2.2 R	otore	6	
	2.3 Pa	ale	7	
	2.4 Si	stema di passo	7	
	2.5 M	OZZO	8	
	2.6 A	sta principale	8	
	2.7 S	catola del cuscinetto	8	
	2.8 C	uscinetto principale	8	
	2.9 S	catola del cambio	9	
	2.10	Cuscinetti del generatore	9	
	2.11	Giunto ad alta velocità	10	
	2.12	Sistema di oscillazione	10	
	2.13	Gru	10	
	2.14	Torri Torri	11	
	2.15 N	Navicella basamento e copertura	11	
	2.16	Sistema Di Condizionamento Termico	12	
	2.16	.1 Generatore e convertitore di raffreddamento	12	
	2.16	.2 Scatola del cambio e raffreddamento idraulico	12	
	2.16	.3 Raffreddamento del Trasformatore	13	
	2.16	.4 Raffreddamento della navicella	13	
3	Prog	etto elettrico		14
	3.1 G	eneratore	14	

	3.2	Convertitore	15	
	3.3	Trasformatore MT	15	
	3.4	Cavo MT turbina	16	
	3.5	Quadro MT	17	
	3.6	Sistema ausiliario	18	
	3.7	Sensori di vento	18	
	3.8	VMP (Vestas Multi Processor) Controllore	18	
	3.9	Gruppo Di Continuità	19	
4	Sis	stema di Protezione della Turbina		2
	4.1	Concetto di frenata	20	
	4.2	Protezioni da corto circuito	20	
	4.3	Protezione dalla sovravelocità	20	
m		Protezione di messa a terra per le pale, la navicella, il	21	
•••		EMC System	21	
		Impianto di terra	22	
		Protezione Dalla Corrosione	22	
5		curezza		2
	5.1	Accesso	23	
		Via di fuga	23	
	5.3	Aree e spazi di lavoro	23	
	5.4	Pavimenti, piatteforme e luoghi di lavoro	23	
	5.5	Montacarichi di servizio	23	
		Parti mobili, protezioni e dispositivi di blocco	24	
	5.7	Luci	24	
	5.8	Arresto d'emergenza	24	
	5.9	Disconnessione dell'energia	24	
	5.10	Protezione dal fuoco	24	
	5.11	Segnali d'avvertimento	24	

	5.12	2 Manuali e avvertenze	24	
6	An	nbiente		25
	6.1	Prodotti chimici	25	
			23	
7	Ap	provazioni e codici di progettazione		26
	7.1	Approvazioni tipo	26	
	7.2	Approvazioni dei Codici – Progettazione strutturale	26	
8	Co	olori		28
	8.1	Colore navicella	28	
	8.2	Colore della torre	28	
	8.3	Colore delle pale	28	
9	Co	ondizioni di funzionamento e linee guida delle		
		azioni		29
	0.4		00	
		Condizioni del sito e clima	29	
		1.1 Siti complessi	30	
	9.	1.2 Altitudine	30	
	9.	1.3 L ayout d'impianto	30	
	9.2	Condizioni di funzionamento – Temperatura e vento	30	
	9.3	Condizioni di funzionamento – Connessione alla Rete	30	
	9.4	Condizioni di funzionamento – Potenza di capacità reatti 32	va	
	9.5	Prestazione – Sistema di guida attraverso le cadute di re 32	te	
	9.6	Prestazione – Contributo reattivo di corrente	32	
	9.	6.1 Contributo simmetrico reattivo di corrente	32	
	9.	6.2 Contributo asimmetrico reattivo di corrente	33	
	9.7	Prestazioni – Cadute multiple di tensione	33	
	9.8	Prestazione – Controllo dell'energia attiva e reattiva	33	
	9.9	Prestazione – Controllo di tensione	33	

Parco Eolico "Piani di Pedina" Disciplinare descrittivo e prestazionale degli elementi tecnici

9.10	Prestazione – Controllo di frequenza	33	
9.11	Auto consumo	33	
	Condizioni di funzionamento – Condizioni per la curva d a e i valori di Ct all'altezza del mozzo	di 34	
10 For	dazioni turbine		35
10.1	Plinto di fondazione	35	
10.	1.1 Calcestruzzo	36	
11 Cav	ridotti MT interni		37
11.1	Introduzione	37	
11.2	Descrizione impianto eolico	37	
11.3	Criteri progettuali	38	
11.5	Caratteristiche dei cavidotti	40	
11.6	Modalità di posa e realizzazione	41	
11 7	Interferenze	43	

Inergia Lucania Srl

38068 Rovereto (Tn)

Vicolo del Messaggero 11 –

Introduzione

Il progetto in esame prevede l'installazione di 10 aerogeneratori di potenza unitaria pari a 5.6 MW, depotenziato a 5.5 MW, per una potenza complessiva di 55.0 MW. Le macchine, modello Vestas V162, saranno caratterizzate da un diametro del rotore di 162 m (lunghezza pala pari a 79.35 m) e da un'altezza dell'hub (mozzo) di 119 m, quindi si tratterà di aerogeneratori di grande taglia.

I principali componenti dell'impianto risultano essere, quindi:

- i generatori eolici;
- le linee elettriche MT (a 30 kV) in cavo interrato, che collegano gli aerogeneratori tra loro e con la Sottostazione Elettrica (SSE);
- la Sottostazione Elettrica (SSE) per l'innalzamento della tensione da 30 kV a 150 kV con tutte le apparecchiature necessarie alla realizzazione della connessione elettrica dell'impianto alla Rete Nazionale;
- la linea elettrica AT (a 150 kV) per la connessione della SSE alla Stazione Terna 150/150 kV di Melfi.

Ogni aerogeneratore produrrà energia elettrica rinnovabile alla tensione di 720 V circa. All'interno di ciascuna torre è installato un trasformatore 0.72/30 kV che provvederà all'innalzamento della tensione a 30 kV. L'energia sarà quindi immessa in una rete in cavo interrato a 30 kV per il trasporto alla Sottostazione Elettrica, dove subirà un'ulteriore trasformazione di tensione (30/150 kV) prima dell'immissione nella rete di alta tensione.

Nel suo complesso, l'opera in oggetto si inserisce nel contesto nazionale ed internazionale come uno dei mezzi per contribuire a ridurre le emissioni atmosferiche nocive come previsto dal Protocollo di Kyoto del 1997 che anche l'Italia, come tutti i paesi della Comunità Europea, ha ratificato.

Il sito scelto, in tale contesto, viene a ricadere in aree naturalmente predisposte a tale utilizzo e quindi ottimali per un razionale sviluppo nel settore rinnovabile.

Lo sviluppo di tali fonti di approvvigionamento energetico, quindi, oltre a contribuire all'incremento dello stesso approvvigionamento ed alla diversificazione delle fonti, favorisce l'occupazione e il coinvolgimento delle realtà locali riducendo l'impatto sull'ambiente legato al tradizionale ciclo di produzione energetica.

Come noto, tutte le apparecchiature a funzionamento elettrico generano, durante il loro funzionamento, campi elettromagnetici. Le onde elettromagnetiche sono fondamentalmente suddivise in due gruppi: radiazioni non ionizzanti e radiazioni ionizzanti.

Il presente documento precisa, sulla base delle specifiche tecniche, tutti i contenuti prestazionali tecnici deglielementi previsti nel progetto. Il disciplinare contiene, inoltre, la descrizione, anche sotto il profilo estetico, delle caratteristiche, della forma e delle principali dimensioni dell'intervento, dei materiali e di componenti previsti nel progetto. In ogni caso il disciplinare fornisce indicazioni specifiche almeno sui componenti dell'impianto quali rotore, sistema di orientamento del rotore, sistema di controllo, ecc.).

Parco Eolico "Piani di Pedina"

2 Descrizione generale

Il tipo della turbina del progetto proposto è la VESTAS V162 da 5.5 MW a tre pale con un passo sopravento delle stesse ad imbardata regolata.

La Vestas V162 - 5.5 MW ha un diametro del rotore di 162 m ed una potenza di uscita nominale di 5,500 MW.

La turbina utilizza un sistema di potenza basato su di un generatore a magneti permanenti del convertitore. Con queste caratteristiche la turbina eolica è in grado di lavorare anche a velocità variabile mantenendo una potenza in prossimità di quella nominale anche in caso di vento forte. Alle basse velocità del vento, il sistema consente di lavorare massimizzando la potenza erogata alla velocità ottimale del rotore e l'opportuno angolo di inclinazione delle pale.

2.1 Componenti meccaniche

La V162 – 5.5 MW è equipaggiata con un rotore di 162 m di diametro costituito di tre pale ed un mozzo. Le pale sono controllate per mezzo di un microprocessore nel sistema del controllo del passo. Basandosi sulle prevalenti condizioni del vento, le pale sono continuamente posizionate per ottimizzare l'angolo di passo.

2.2 Rotore

Rotore	
Diametro	162 m
Velocità massima di rotazione	12,1 rpm
Area spazzata	20611 m ²
Direzione di rotazione	In senso orario (vista di fronte)
Orientamento	Sopravento
Tilt	6°
Numero delle pale	3
Freni aerodinamici	Frange intere

2.3 Pale

Pale	
Descrizione tipo	Gusci a profilo alare vincolati ad una
	trave
Lunghezza della pala	79.35 m
Materiale	Fibra di vetro rinforzata con fibre
	epossidiche e di carbonio
Connessione delle pale	Inserti in acciaio

Pale	
Profili	Profilo ad alta portanza
Corda massima	4,0 m

Cuscinetto	
Lubrificazione	Grasso, con pompa automatica di
	lubrificazione

2.4 Sistema di passo

La turbina è equipaggiata con un sistema di passo per ogni pala e blocco di distribuzione, il tutto all'interno del mozzo. Ogni sistema di passo è connesso al blocco di distribuzione per mezzo di manicotti flessibili. Il blocco di distribuzione è connesso con i tubi dell'unità idraulica rotante di trasferimento nel mozzo mediante tre manicotti (linea pressione, linea di ritorno e linea di scolo).

Ogni sistema di passo consiste di un cilindro idraulico montato al mozzo ed un pistone a barra montato alla pala tramite una coppia di bracci ad asse. Valvole che facilitano le operazioni del cilindro di passo sono installate sul blocco di passo bullonate direttamente sul cilindro.

Sistema di passo		
Tipo	idraulico	
Numero	1 per pala	
Intervallo	Da -5° a 95°	

Disciplinare descrittivo e prestazionale degli elementi tecnici

Sistema idraulico	
Pompa principale	Due pompe ad olio ridondanti con
	ingranaggi interni
Pressione	260 bar
Filtrazione	3 μm (valore assoluto)

2.5 Mozzo

Il mozzo supporta le tre pale e trasferisce le forze di reazione al cuscinetto principale e la torsione alla scatola del cambio. La struttura del mozzo supporta anche i cuscinetti della pala e il cilindro di passo.

Mozzo	
Tipo	Corpo del mozzo a palla di ghisa
Materiale	Ghisa

2.6 Asta principale

L'asta principale trasferisce le forze di reazione al cilindro principale e la torsione alla scatola del cambio.

Asta principale	
Descrizione tipo	Tubo cavo
Materiale	Ghisa

2.7 Scatola del cuscinetto

Scatola del cuscinetto principale	
Materiale	Ghisa

2.8 Cuscinetto principale

Il cuscinetto principale trasmette tutti i carichi di spinta.

Disciplinare descrittivo e prestazionale degli elementi tecnici

Cuscinetto principale	
Тіро	Doppia fila di cuscinetti a sfera
lubrificazione	Lubrificazione automatica per mezzo
	di grasso

2.9 Scatola del cambio

L'ingranaggio principale converte la rotazione di bassa velocità del rotore a quella veloce del generatore. La scatola del cambio è un differenziale a quattro stadi dove i primi tre sono di tipo epicicloidale e il quarto è di tipo elicoidale.

Il freno a disco è montato sull'asse dell'alta velocità. Il sistema di lubrificazione della scatola del cambio è un sistema alimentato a pressione.

Scatola del cambio	
Tipo	Differenziale, tre stadi epicicloidali +
	uno elicoidale
Alloggiamento materiale del	Getto
cambio	
Rapporto	1:113,2
Potenza meccanica	3300 kW

Scatola del cambio	
Sistema di lubrificazione	Pompa ad olio riempita da una tanica
	esterna a gravità
Volume totale dell'olio del cambio	Approssimativamente 1170 l
Codici dell'olio di pulizia	ISO 4406-/15/12
Guarnizioni di tenuta	labirinto

2.10 Cuscinetti del generatore

I cuscinetti sono lubrificati con grasso e questo è fornito in modo continuato da una unità automatica di lubrificazione.

2.11 Giunto ad alta velocità

Il giunto trasmette la torsione in uscita dall'asse di alta velocità della scatola del cambio all'asse del generatore.

Il giunto è composto da 4 pacchetti di giunzioni laminate ed un tubo intermedio in fibra di vetro con flange metalliche. Il giunto è dotato di due mozzi sul disco del freno e il mozzo del generatore.

2.12 Sistema di oscillazione

Il sistema di oscillazione è un sistema attivo basato sul concetto di cuscinetto piano con PEPT come materiale di frizione.

Sistema di oscillazione	
Тіро	Sistema di supporto piano
Materiale	Anello di oscillazione forgiato a caldo. Cuscinetti PETP piani
Velocità di imbardamento (50 Hz)	0,4°/sec.
Velocità di imbardamento (60 Hz)	0,5°/sec.

Marcia di oscillazione	
Tipo	Tre stadi epicicloidale ed uno ellittico
Numero delle marcie	8
Rapporto totale	944:1
Velocità di rotazione a pieno carico	1,4 rpm all'albero di uscita

2.13 Gru

La navicella contiene una gru di carico di servizio. La gru è un sistema unico a paranco.

Gru	
Capacità di sollevamento	Massimo 990 kg
Fornitura di potenza	3 x 400 v, 10 A

2.14 Torri

Torri tubolari con flange di connessione, certificate con le specifiche e correnti approvazioni, sono disponibili in differenti altezze standard.

Le torri sono progettate con la maggioranza delle connessioni saldate sostituite da supporti magnetici per ottenere delle torri rinforza e lisce. I magneti forniscono il supporto in una direzione orizzontale ed interna, così come piattaforme, scale etc. sono supportate verticalmente (per esempio nella direzione della forza di gravità) da connessioni meccaniche. Il design liscio delle torri riduce l'esigenza di maggiore spessore metallico, rendendo la torre più leggera se comparata ad altre con saldature interne dei gusci.

Le altezze del mozzo elencate includono una distanza dalla sezione di fondazione al livello del terreno di approssimativamente 2 m dipendendo dallo spessore della flangia in basso, ed una distanza dalla flangia più in alto al centro del mozzo di 2,2 m.

Torri	
Tipo	Tubolare cilindrico/conico
Altezza mozzo	119 m
Materiale	Acciaio

2.15 Navicella basamento e copertura

La copertura della navicella è realizzata in fibra di vetro. Portelli di accesso sono posti al piano per l'abbassamento o l'innalzamento di equipaggiamento alla navicella a per l'evacuazione del personale. La sezione di piano è equipaggiata con sensori di vento e lucernari, i lucernari possono essere aperti sia dall'interno della navicella che dall'esterno per accedere al piano o fuori alla navicella stessa. È possibile accedere alla navicella dalla torre attraverso il sistema di oscillazione.

Il basamento della navicella è in due parti è consiste in un getto di ghisa per la parte frontale, e di una struttura a trave per quella posteriore. La parte frontale del basamento della navicella svolge la funzione di portare il mozzo principale di trasmissione (il mozzo di alta velocità) e trasmette le forze dal rotore alla torre tramite il sistema di oscillazione. La superficie inferiore lavorata e connessa al cuscinetto di oscillazione, e le otto marcie di oscillazione sono bullonate alla base della navicella.

Le travi della gru sono attaccate alla cima della struttura. Le aste in basso della struttura a trave sono connesse al termine della parte posteriore. La parte posteriore del basamento serve come supporto ai pannelli di controllo, il sistema di raffreddamento ed il trasformatore. La copertura della navicella è montata sul basamento.

Disciplinare descrittivo e prestazionale degli elementi tecnici

Descrizione tipo	Materiale
Copertura della navicella	GRP
Parte anteriore del basamento	Getto di ghisa
Parte posteriore del basamento	Struttura reticolare

2.16 Sistema Di Condizionamento Termico

Il sistema di condizionamento termico è costituito da pochi solidi componenti.

- Il Vestas Cooler Top[®] sistemato in cima alla parte posteriore conclusiva della navicella. Il Vestas Cooler Top® è un flusso libero di raffreddamento, per tanto assicurando non esserci componenti elettrici nel sistema posizionato fuori dalla navicella.
- Il liquido del primo sistema di raffreddamento, che serve la scatola del cambio e il sistema idraulico, attivato da una singola pompa elettrica;
- Il liquido del secondo sistema di raffreddamento, che serve i sistemi del generatore e del convertitore, azionato da una singola pompa elettrica;
- Il trasformatore ad aria compressa costituito da un ventilatore elettrico;
- Il raffreddamento ad aria compressa della navicella composto di due ventilatori elettrici.

2.16.1 Generatore e convertitore di raffreddamento

Il generatore e il convertitore dei sistemi di raffreddamento operano in parallelo. Un sistema dinamico di valvole di flusso montate nel circuito di raffreddamento del generatore divide il flusso di raffreddamento. Il liquido di raffreddamento rimuove il calore dall'unità del generatore e del convertitore usando un radiatore a libero flusso d'aria posizionato in cima alla navicella. In aggiunta al generatore, l'unità del convertitore ed il radiatore, il sistema di circolazione include una pompa elettrica ed una valvola termostatica a tre vie.

2.16.2 Scatola del cambio e raffreddamento idraulico

Il generatore ed il sistema idraulico di raffreddamento sono accoppiati in parallelo. Una valvola dinamica di flusso, montata nel circuito di raffreddamento della scatola del cambio, divide il flusso di raffreddamento.

Il liquido di raffreddamento rimuove il calore dalla scatola del cambio e dall'unità idraulica di potenza attraverso scambiatori di calore e un radiatore a flusso libero di aria posizionato in cima alla navicella. In aggiunta agli scambiatori di calore ed il radiatore, il sistema di circolazione include una pompa elettrica e una valvola termostatica a tre vie.

Disciplinare descrittivo e prestazionale degli elementi tecnici

2.16.3 Raffreddamento del Trasformatore

Il trasformatore è equipaggiato con un raffreddamento ad aria forzata. Il sistema di ventilazione consiste di un ventilatore centrale, piazzato di sotto il piano di servizio e un condotto guida l'aria sotto ed in mezzo agli avvolgimenti dell'alto e basso voltaggio del trasformatore.

2.16.4 Raffreddamento della navicella

L'aria calda generata dagli equipaggiamenti meccanici ed elettrici viene rimossa dalla navicella per mezzo di due ventole posizionate in ogni lato della stessa. Il flusso d'aria entra attraverso una presa d'aria nel basso della navicella.

Le ventole ruotano a bassa od alta velocità a seconda della temperatura all'interno della navicella.

Progetto elettrico

Generatore

Il generatore è del tipo sincrono a tre fasi con rotore a magneti permanenti connesso in rete attraverso un convertitore.

Il contenitore del generatore è costruito con un cilindro e dei canali. I canali circolano il liquido di raffreddamento attorno al corpo dello statore.

Generatore	
Тіро	Sincrono con magnete permanente
Potenza nominale	Fino a 5850 kW
Frequenza (range) [fN]	0 - 138 Hz
Tensione Statore [UNS]	3 X 800 V (alla velocità nominale)
Numero di poli	36
Tipo dell'avvolgimento	Impregnante pressurizzato sotto
	vuoto
Connessione dell'avvolgimento	Stella
Efficienza nominale (solo	98%
generatore)	
Velocità nominale	1450 giri/minuto
Limite di fuori giri in accordo con	2400 giri/minuto
IEC (2 minuti)	
Livello delle vibrazioni	≤ 1,8 mm/s
Cuscinetto del generatore	Ibrido/ceramico
Sensori di temperatura, statore	3 sensori PT 100 posizionati nei punti
	caldi e 3 di riserva
Sensori di temperatura, cuscinetti	1 per cuscinetto ed uno di riserva per
	ognuno
Classe di isolamento	Н
Allegato	IP 54

Inergia Lucania Srl

Vicolo del Messaggero 11 -38068 Rovereto (Tn)

3.2 Convertitore

Il convertitore è un sistema convertitore su larga scala che controlla sia il generatore che la qualità della potenza messa in rete.

Il convertitore consiste in quattro unità convertitrici che lavorano in parallelo con un controllore comune.

Il convertitore controlla la conversione della frequenza variabile della potenza dal generatore in una frequenza fissata AC di potere con i desiderati livelli di potere attivo e reattivo (ed altri parametri di connessione alla rete) adatti per la rete. Il convertitore è posizionato nella navicella ed ha una griglia laterale di tensione di 720 V.

Convertitore	
Potere nominale apparente	6850 kVA
Tensione nominale della rete	3 x 720 V

3.3 Trasformatore MT

Il trasformatore di elevazione è posizionato in una stanza chiusa a parte nella navicella con un interruttore di corrente montato sul lato dell'alta tensione del trasformatore. Il trasformatore è a due avvolgimenti, tre fasi, tipo a secco autoestinguente.

Gli avvolgimenti sono delta connessi sul lato dell'alta tensione, se non diversamente specificato, l'avvolgimento della bassa tensione è connesso a stella. Il sistema di bassa tensione dal generatore tramite il convertitore è un sistema TN – S, il che significa che il punto a stella è connesso a terra.

Il trasformatore è equipaggiato con 6 sensori PT 100 per la misurazione delle temperature del nucleo e degli avvolgimenti nel trifase.

La fornitura di potenza supplementare è data da un trasformatore 650/400 V separato posizionato nella navicella.

Trasformatore MT	
Descrizione tipo	Getto di resina a secco
Tensione primaria [UN]	30 kV
Tensione secondaria [UNs]	3 x 720 V
Potenza nominale apparente [S _N]	4700 kVA
Senza perdita di carico [Po]	6,6 kW
(tolleranze IEC)	

PROGETTO DEFINITIVO Parco Eolico "Piani di Pedina"

Disciplinare descrittivo e prestazionale degli elementi tecnici

Trasformatore HV		
Tensione avvolgimento secondario	3 x 720 V	
Potere Nominale Apparente	4700 kVA	
Perdite di carico (@ 120° C) [PN]	24,5 kW	
(tolleranze IEC)		
Senza potenza di carico reattiva	12 kWAr	
[Q ₀]		
Piena potenza di carico reattiva	285 kWAr	
[Q _N]		
Gruppo vettore	Dyn5	
Frequenza [f N]	50 Hz	
Prese MT	±2 x 2,5 %	
Corrente di inserzione	6 – 10 x In dipendendo dal tipo	
Impedenza di corto circuito	8% @ 720 V, 4700 kVA, 120°C	
(tolleranze IEC)		
Impedenza corto circuito di	8.0 %	
tensione [Uk p-s1]		
Impedenza corto circuito di	0.7 %	
tensione (Resistivo) [Ukrp-s1		
Impedenza corto circuito di	7.7 %	
tensione omopolare [Uk0 p-s1]		
Impedenza corto circuito di	0.7 %	
tensione omopolare (Resistivo)		
[Uk0 rp-s1]		
Classe d'isolamento	F	
Classe climatica	C2	
Classe ambientale	E2	
Classe di comportamento al fuoco	F1	

3.4 Cavo MT turbina

Il cavo di media tensione corre dal trasformatore nella navicella giù per la torre al quadro collocato al fondo della stessa. Il cavo di alta tensione è un cavo con nucleo quadripartito, isolato in gomma, libero da alogeni.

Parco Eolico "Piani di Pedina"

Cavi di media tensione		
Cavo isolato composto ad	alta	Etilpropilene (EP) migliorato, basato
tensione		su materiali EPR o alto grado di
		etilpropilene in gomma HEPR
Sezione del conduttore		3 x 70/70 mm ²
Massimo voltaggio		42 kV per 22.1-35 kV tensione
		nominale

3.5 Quadro MT

Il quadro di media tensione per la connessione alla rete interna MT è collocato alla base della torre.

Tipo di isolamento	Isolato a gas SF6
Frequenza Nominale	50Hz
Tensione Nominale	30 kV
Tensione massima di isolamento	36 kV
Corrente	25 kA

Disciplinare descrittivo e prestazionale degli elementi tecnici

3.6 Sistema ausiliario

Il sistema ausiliario è alimentato da un trasformatore 650/400 V separato, localizzato nella navicella. Tutti i motori, le pompe, i ventilatori e i riscaldatori sono alimentati da questo sistema.

Tutti gli apparecchi a 230 V sono alimentati da un trasformatore 400/230 V localizzato alla base della torre.

Prese di corrente	
Monofase (Navicella e piattaforme	230 V (16 A)/110 V (16 A)
della torre)	2 x 55 V (16)
Trifase (Navicella e base della torre)	3 x 400 V (16 A)

3.7 Sensori di vento

La turbina è equipaggiata con due anemometri ultrasonici senza parti mobili. I sensori sono incorporati a caldo per minimizzare le interferenze con ghiaccio e neve.

I sensori di vento sono ridondanti, e la turbina può operare con un unico sensore.

Sensori di Vento	
Tipo	FT02LT
Principio	Risonanza acustica
Incorporato a caldo	99 W

3.8 VMP (Vestas Multi Processor) Controllore

La turbina è controllata e monitorata da un sistema di controllo VMP8000.

Il VMP8000 è un sistema di controllo multiprocessore costituito da quattro processori principali (base, navicella, mozzo e converter), interconnessi da una rete ottica Mbit ArcNet.

In aggiunta ai quattro processori principali, il VMP8000 è composto da moduli I/O interconnessi da una rete CAN a 500 kbit. I moduli I/O sono connessi ai moduli dell'interfaccia CAN da una serie di circuiti CTBus.

Il sistema di controllo VMP8000 svolge le seguenti principali funzioni:

- Monitoraggio e supervisione complessiva delle operazioni.
- Sincronizzazione del generatore alla rete durante le sequenze di connessione.
- Funzionamento della turbina durante varie situazioni di errore. Controllo di passo delle pale.
- Controllo del potere di reazione e operazione di variazione di velocità.

Disciplinare descrittivo e prestazionale degli elementi tecnici

- Controllo delle emissioni sonore.
- Monitoraggio delle condizioni ambientali. Monitoraggio della rete.
- Monitoraggio del sistema di detenzione dei fumi.

3.9 Gruppo Di Continuità

L'UPS è equipaggiata con un converter AC/DC; DC/AC e celle di batterie collocate nella stessa cabina del converter.

Durante le interruzioni della rete, l'UPS alimenta le unità a 230 V AC. Il tempo di riserva per il sistema UPS è proporzionale al consumo di energia.

Inergia Lucania Srl

Rovereto (Tn)

Vicolo del Messaggero 11 – 38068

Sistema di Protezione della Turbina

4.1 Concetto di frenata

Il freno principale sulla turbina è aerodinamico. L'arresto della turbina è fatto per mezzo della rotazione delle pale (rotazione individuale per singola pala). Ogni pala ha un accumulatore che fornisce l'energia per la rotazione. La frenata della turbina è inoltre supportata da un resistore di frenata che è connesso al magnete permanente del generatore durante il rallentamento. Questo assicura che il momento è mantenuto, per esempio, durante una situazione di perdita della rete.

In aggiunta, c'è un disco per la frenata meccanica sull'albero dell'alta velocità del cambio con un sistema idraulico dedicato. Il freno meccanico è usato solamente come un freno di sosta e quando sono attivi i pulsanti per l'arresto d'emergenza.

4.2 Protezioni da corto circuito

		Interruttore per i
	Interruttore per energia	moduli del
Interruttori	ausiliaria T4L 250 A TMD	convertitoreT7M1200L
	4P 690 V	PR332/P LSIG 000 A 3P
		690 V
Potere d'interruzione		
nominale di servizio	70 kA@690 V	50 kA@690 V
Potere di interruzione	154 kA@690 V	105 kA@690 V
estremo	134 1/16/030 1	103 WY @ 030 A

4.3 Protezione dalla sovravelocità

Le velocità del generatore e dell'albero veloce sono registrati da sensori ad induzione e calcolati da un controllo del vento per la protezione contro la sovravelocità ed errori di rotazione (eccentricità).

In aggiunta, la turbina è equipaggiata con un sistema PLC di sicurezza, un modulo computer indipendente che misura la velocità del rotore. In caso di situazione di fuori giri, il sistema PLC di sicurezza attiva la rotazione delle tre pale in posizione di sicurezza, indipendentemente dal sistema di controllo della turbina.

Disciplinare descrittivo e prestazionale degli elementi tecnici

Protezione dal fuori giri	
Tipo dei sensori	Induttivo
Livello di scatto	17.66 (rpm Rotore)/2000 (rpm Generatore)

4.4 Protezione di messa a terra per le pale, la navicella, il mozzo e la torre

Il Sistema di messa a terra aiuta a proteggere la turbina contro i danni fisici causati dai colpi di fulmine. Il sistema consiste di cinque parti principali:

- Recettori dei fulmini;
- Sistema di conduzione verso il basso;
- Protezione contro la sovra tensione e la sovra corrente;
- Schermatura contro i campi elettrici e elettromagnetici;
- Sistema di messa a terra.

Parametri Progettuali della Protezione di Messa a		Livello di	
Terra			Protezione I
Valore della	I max	[kA]	200
Corrente di			
Picco			
Impulso di	Q impulso	[C]	100
carica			
Durata della	Q lunghezza	[C]	200
carica			
Carica totale	Q totale	[C]	300
Energia	W/R	[MJ/Ω]	10
Specifica			
Pendenza media	Di/dt	[kA/μs]	20

4.5 EMC System

La turbina ed il relativo equipaggiamento adempiono alla legislazione dettata dal EU Eletromagnetic Compatibility (EMC):

DIRECTIVE 2004/108/EC OF THE EUROPEAN PARLAMIENT AND OF THE COUNCIL del 15 dicembre 2005 sulla approssimazione delle leggi degli Stati membri circa la compatibilità elettromagnetica che abroga la direttiva 89/336/EEC.

Disciplinare descrittivo e prestazionale degli elementi tecnici

4.6 Impianto di terra

L'impianto di terra della Vestas è costituito da un numero di elettrodi di messa a terra individuali interconnessi come un unico sistema. Include il sistema TN e il sistema di protezioni contro i fulmini per ogni singola turbina. Esso funziona come un sistema di distribuzione di media tensione entro la centrale eolica.

Il sistema di messa a terra della Vestas è adattato per i differenti tipi di fondazioni delle turbine. Un insieme separato di documenti descrive il sistema di messa a terra in dettaglio, in dipendenza del tipo di fondazione.

In termini di protezione della turbina dai fulmini, Vestas non ha un requisito separato per una certa minima resistenza a terra per questo sistema. L'impianto di terra per il sistema di protezione dai fulmini è basata sul progetto e la costruzione del sistema di messa a terra della Vestas.

Una parte primaria del sistema di messa a terra Vestas è il collettore principale di terra posizionata dove tutti i cavi entrano nella turbina. Tutti gli elettrodi di messa a terra sono ad esso connessi. Inoltre sono realizzate delle connessioni equipotenziali per tutti i cavi in entrata o in uscita dalla turbina.

Le specifiche richieste dal sistema di messa a terra Vestas e le descrizioni del lavoro sono minime. I requisiti locali e nazionali, così come i requisiti di progetto, possono richiedere misure aggiuntive.

4.7 Protezione Dalla Corrosione

La classificazione della corrosione concorda con la ISO 12944 – 2.

Protezione dalla	Aree esterne Aree interne	
corrosione		
Navicella	C5 - M	C3
Mozzo	C5 - M	C3
Torre	C5 - I	C3

Disciplinare descrittivo e prestazionale degli elementi tecnici

5 Sicurezza

Le specifiche di sicurezza in questa sezione forniscono le informazioni generali circa le caratteristiche di sicurezza della turbina e non sostituiscono, per il compratore ed i suoi agenti, il prendere tutte le appropriate precauzioni, incluso, ma non solo, il rispetto di tutte le norme di sicurezza, la manutenzione, gli accordi di servizio, le istruzioni, le ordinanze e le condotte appropriate in materia di formazione per la sicurezza.

5.1 Accesso

L'accesso alla turbina dall'esterno avviene tramite la parte bassa della torre. La porta è equipaggiata con una serratura. L'accesso alla piattaforma in cima avviene tramite una scala. L'accesso alla stanza del trasformatore nella navicella è controllato con una serratura. Un accesso non autorizzato ai quadri e ai pannelli elettrici nella turbina è proibito in accordo con la IEC 60204-1 2006.

5.2 Via di fuga

In aggiunta alle normali vie di accesso, vie di fuga alternative dalla navicella sono possibili attraverso la botola della gru, attraverso un portello apribile sul muso della navicella, e attraverso il pavimento della stessa. Nella navicella è localizzato l'equipaggiamento di sicurezza.

Il portello nel pavimento può essere aperto da entrambi i lati. Una via di fuga è rappresentata dalla scala dell'elevatore di servizio. Un piano di emergenza, collocato nella turbina, descrive le vie di fuga ed evacuazione.

5.3 Aree e spazi di lavoro

La torre e la navicella sono equipaggiate con prese di corrente per l'uso di strumenti elettrici per il servizio e la manutenzione della turbina.

5.4 Pavimenti, piatteforme e luoghi di lavoro

Tutti i pavimenti sono anti sdrucciolo. C'è un pavimento per ogni sezione della torre. Piattaforme di sosta sono presenti ad intervalli di 9 metri lungo la scala della torre. Supporti di appoggio sono localizzati nella turbina per gli scopi di servizio e manutenzione.

5.5 Montacarichi di servizio

La turbina V162 – 5.5 MW è fornita con un elevatore standard di servizio installato. Servizi per l'arrampicata. Una scala con sistema di arresto caduta è montata per l'intera lunghezza della torre.

Disciplinare descrittivo e prestazionale degli elementi tecnici

Ci sono punti di ancoraggio nella torre, nella navicella e nel mozzo, e sul pavimento per l'attacco di equipaggiamenti di sicurezza.

Sul portello della gru c'è un punto di ancoraggio per l'equipaggiamento di discesa d'emergenza.

Punti di ancoraggio sono colorati di giallo e sono calcolati e testati per 22.2 kN.

5.6 Parti mobili, protezioni e dispositivi di blocco

Tutte le parti mobili nella navicella sono schermate. La turbina è equipaggiata con una serratura per il rotore per il suo blocco.

Il blocco dell'ondeggiamento dei cilindri può essere fatto con strumenti meccanici nel mozzo.

5.7 Luci

La turbina è equipaggiata con luci nella torre, nella navicella, nella stanza del trasformatore ed il mozzo.

C'è una luce d'emergenza in caso di mancanza di corrente elettrica.

5.8 Arresto d'emergenza

Ci sono pulsanti per l'arresto d'emergenza nella navicella, nel mozzo e alla base della torre.

5.9 Disconnessione dell'energia

La turbina è equipaggiata con interruttori per consentire la disconnessione da tutte le fonti di energia in caso d'ispezione o manutenzione. Gli interruttori sono marcati con segnali e sono collocati nella navicella e alla base della torre.

5.10 Protezione dal fuoco

Un estintore da 5-6 kg di CO₂, un kit di primo intervento sono collocati nella navicella durante le operazioni di servizio e manutenzione.

5.11 Segnali d'avvertimento

Segnali di pericolo sono posizionati dentro e sulla turbina e devono essere dopo le operazioni di servizio.

5.12 Manuali e avvertenze

La Vestas fornisce manuali per le operazioni, la manutenzione e il servizio della turbina, con regole aggiuntive di sicurezza e informazioni su quelle.

Disciplinare descrittivo e prestazionale degli elementi tecnici

6 Ambiente

6.1 Prodotti chimici

I prodotti chimici usati nella turbina sono valutati in accordo al Sistema A/S Ambientale vesta Wind, certificato ISO 14001:2004. I seguenti prodotti chimici sono usati nella turbina:

- Antigelo per prevenire il sistemo di raffreddamento dal gelo.
- Olio per la lubrificazione del cambio.
- Olio idraulico per il sistema di beccheggiamento delle pale e l'operatività del freno.
- Grasso per la lubrificazione dei cuscinetti.

Vari agenti pulenti e prodotti chimici per la manutenzione della turbina.

7 Approvazioni e codici di progettazione

7.1 Approvazioni tipo

Il tipo della turbina è certificato in accordo ai seguenti standard:

Certificazione	Wind Class	Altezza mozzo
IEC61400-22	IEC IIA	84 m/94 m
	IEC IIIA	119 m
DIBt Anlage 2.7/10	DIBt II	94 m/119 m

7.2 Approvazioni dei Codici – Progettazione strutturale

Il progetto della turbina è stato sviluppato e testato con riguardo a, ma non limitatamente a, i seguenti principali standard:

Codici di Progettazione		
Navicella e mozzo	IEC 61400 – 1 III Edizione	
	EN 50308	
Torre	IEC 61400 – 1 III Edizione	
	Euro Codice 3	
Pale	DNV - OS - J102	
	IEC 1024 – 1	
	IEC 60721 – 2 – 4	
	IEC 61400 (Parte 1, 12 e 23) IEC	
	WT 01 IEC	
	DEFU R25 ISO	
	2813	
	DS/EN ISO 12944 - 2	
Scatola del Cambio	ISO 81400 - 4	
Generatore	IEC 60034	
trasformatore	IEC 60076 - 11	

Disciplinare descrittivo e prestazionale degli elementi tecnici

Protezione dai fulmini	IEC 62305 -1: 2006
	IEC 62305 -3: 2006
	IEC 62305 -4: 2006
	IEC/RT 61400 – 24: 2002
Macchine elettriche Rotanti	IEC 34
Sicurezza relativa ai Sistemi di	IEC 13849 - 1
controllo	
Sicurezza relativa alle Attrezzature	IEC 6024 - 1
Elettriche	

Disciplinare descrittivo e prestazionale degli elementi tecnici

8 Colori

8.1 Colore navicella

Colore delle navicelle Vestas		
Colore Standard	RAL 7035 (grigio luminoso)	
Logo Standard	Vestas	

8.2 Colore della torre

Colore Vestas per la sezione della torre			
	Esterno Interno		
Colore Standard	RAL 7035 (grigio	RAL 9001 (bianco	
luminoso) crema)			

8.3 Colore delle pale

Colore delle Pale	
Colore Standard	RAL 7035 (grigio luminoso)
Varianti	RAL 2009, RAL 3020
Lucido	< 30 % DS/EN ISO 2813

Condizioni di funzionamento e linee guida delle prestazioni

Il clima e le condizioni del sito comprendono molte variabili e dovrebbero essere considerate nella valutazione delle prestazioni della turbina. Il progetto e i parametri operativi stabiliti in questa sezione non costituiscono garanzie, o rappresentazione delle performance in riferimento ai siti specifici.

Condizioni del sito e clima

Valori riferiti all'altezza del mozzo:

Parametri estremi	
Condizioni climatiche del vento	IEC IIA
Intervallo della Temperatura	-40° a +50°C
Ambiente (temperature standard della	
turbina)	
Velocità estrema di vento (media	42,5 m/s
di 10 minuti)	
Velocità del vento limite al danno	59,5 m/s
(3 raffiche al secondo)	

Parametri medi di progetto	
Condizioni climatiche del vento	IEC IIA
Velocità del vento	8,5 m/s
Fattore - A	9,59 m/s
Fattore di forma - C	2,0
Intensità di turbolenza secondo	18%
IEC 61400 – 1, inclusa la turbolenza della	
Wind Farm (@ 15 m/s – 90% quantile)	
Vento di taglio	0,20
Angolo di flusso (verticale)	8°

Parco Eolico "Piani di Pedina" Disciplinare descrittivo e prestazionale degli elementi tecnici

9.1.1 Siti complessi

La classificazione di Sito Complesso deriva dalla IEC 61400 - 1: 2005, Capitolo 11.2. Per siti classificati come complessi, appropriate misurazioni devono essere incluse negli accertamenti specifici.

La posizione di ogni singola turbine dev'essere verificata con il Check Programme di Vestas.

Altitudine 9.1.2

La turbina è progettata per essere utilizzata fino a 2000 metri sul livello del mare.

NOTA: ad altitudini superiori ai 1500 metri, la massima temperatura ambientale per condizioni di massima produzione è ridotta a 37,5°C.

Layout d'impianto 9.1.3

La distanza di progetto tra le turbine, per il singolo progetto, dipende dal sito; in ogni caso la distanza non deve essere inferiore a 4 diametri del rotore.

9.2 Condizioni di funzionamento – Temperatura e vento

I valori sono riferiti all'altezza del mozzo e sono determinate per mezzo di sensori e del sistema di controllo della turbina.

Condizioni di funzionamento – Temperatura e vento.		
Intervallo della temperatura	- 20° a + 40°	
Ambiente (Standard)		
Avvio	3 m/s	
Arresto	25 m/s	
Riavvio (10 minuti di media)	23 m/s	

NOTA: a temperature ambiente superiori + 40°C, la manterrà la produzione, ma l'energia massima d'uscita sarà ridotta in funzione della temperatura (massimo 1.0 MW@-45°C)

9.3 Condizioni di funzionamento – Connessione alla Rete

I valori sono riferiti all'altezza del mozzo e sono determinati per mezzo di sensori e del sistema di controllo della turbina.

Inviluppo Operativo – Connessione alla Rete				
Tensione	Nominale	di	[Unp]	650 V
fase				

Disciplinare descrittivo e prestazionale degli elementi tecnici

Frequenza Nominale	[fN] 50/60 Hz		50/60 Hz
Salto di Tensione	± 2% (dalla turbina)		a turbina)
massimo in Fase	± 4% (dalla rete)		lla rete)
Stazionaria			
Gradiente Massimo di		± 4 HZ	/sec.
Frequenza			
Tensione massima di	3% (connessione) 2%	(funzionamento)
sequenza negativa			
Livello Minimo di Corto		15 M	1VA
Circuito			
Contributo Massimo di		1.05 p.u. (0	Continuo)
corto crcuito		1.45 p.u.	(Picco)
Impostazioni delle protezioni			
Tensione Nominale oltre il 110%			715 V
per 60 sec.			
Tensione Nominale oltre il 115%			748 V
per 2 sec.			
Tensione Nominale oltre il 120%			780 V
per 0,08 sec.			
Tensione Nominale oltre il 125%			812 V
per 0.005 sec.			
Tensione Nominale sotto il 90% per			585 V
60 sec.			
Tensione Nominale sotto il 85% per			552 V
11 sec.			
Frequenza oltre il 106% per 0,2 sec.		5	3/63,6 Hz
Frequenza oltre il 94% per 0,2 s	sec.	4	17/56,4 Hz

NOTA: Oltre il ciclo di vita della turbina, la caduta di linea ricorre con una media di non più di 50 volte per anno.

Disciplinare descrittivo e prestazionale degli elementi tecnici

9.4 Condizioni di funzionamento - Potenza di capacità reattiva

La potenza di capacità reattiva a pieno carico sul lato dell'alta tensione del trasformatore MT è approssimativamente: 0,90/0,90 capacitivo/induttivo.

L'energia reattiva è prodotta dal convertitore completo. I tradizionali condensatori, quindi, non sono usati nella turbina.

NOTA: l'energia reattiva in condizioni di funzionamento a vuoto potrebbe essere ridotta fino al 50% a causa dei vincoli del sistema di raffreddamento.

9.5 Prestazione – Sistema di guida attraverso le cadute di rete

La turbina è fornita di un convertitore per ottenere il controllo della stessa in casi di caduta di rete (buchi di tensione). Il sistema di controllo della turbina, continua a funzionare durante la caduta di rete.

La turbina è disegnata per rimanere connessa durante le disfunzioni della rete all'interno di determinate curve di tolleranza della tensione. Per disturbi della rete al di fuori dalla curva di protezione la turbina sarà disconnessa.

Tempo di recupero d'energia	
Tempo di recupero d'energia a 90%	Max 0,1 secondi
del livello di pre caduta	

9.6 Prestazione – Contributo reattivo di corrente

Il contributo di corrente reattiva dipende dalla caduta di tensione: simmetrica (uguale per tutte e tre le fasi) o asimmetrica

Contributo simmetrico reattivo di corrente 9.6.1

Durante le cadute simmetriche di tensione, la centrale (wind farm) inietterà corrente reattiva per supportare la tensione di rete. La tensione ci corrente iniettata è in funzione della tensione di rete rilevata.

La caduta di tensione dà una corrente reattiva di 1 pu della corrente attiva nominale del lato di alta tensione del trasformatore BT/MT. Il contributo dipende da come funziona la tensione. Il contributo è indipendente dalle attuali condizioni di vento a dal livello d'energia precedente la caduta.

La pendenza può essere parametrizzata tra 0 e 10 per adattarsi alle esigenze specifiche del sito.

9.6.2 Contributo asimmetrico reattivo di corrente

La correte immessa è regolata sulla sequenza positiva di tensione misurata e dal fattore K utilizzato. Durante le cadute asimmetriche di tensione, l'iniezione di corrente reattiva è limitata a approssimativamente 0,4 pu per limitare l'incremento potenziale di tensione sulle fasi buone.

9.7 Prestazioni – Cadute multiple di tensione

La turbina è progettata per gestire la richiusura di eventuali cadute multiple di tensione entro un breve periodo, considerando che le cadute di tensione non sono uniformemente distribuite durante l'anno.

9.8 Prestazione – Controllo dell'energia attiva e reattiva

La turbina è progettata per il controllo dell'energia attiva e reattiva mediante il VestasOnline®SCADA system.

Massima Velocità di Rampa per il Controllo Esterno		
Energia Attiva 0,1 pu/sec. (300 kV/sec.)		
Energia reattiva 20 pu/sec. (60 MVAr/sec.)		

Per supportare la stabilità della rete la turbina è in grado di rimanere connessa in regime di energia attiva sotto il 10% della potenza nominale della turbina. Per energia attiva oltre il 10% della potenza nominale la turbina potrebbe essere disconnessa dalla rete.

9.9 Prestazione – Controllo di tensione

La turbina è progettata per l'integrazione con il sistema di controllo della tensione, il VestasOnline® voltage control.

9.10 Prestazione – Controllo di frequenza

La turbina può essere configurata per prestazioni di controllo della frequenza dalla diminuzione dell'output di energia come funzione lineare della frequenza della rete.

9.11 Auto consumo

Il consumo di energia elettrica da parte della turbina è definito come l'energia usata dalla stessa quando non è provvista di energia dalla rete. Ciò è definito nel sistema di controllo come Produzione 0. I seguenti componenti hanno ampia influenza sull'auto consumo:

Disciplinare descrittivo e prestazionale degli elementi tecnici

Auto Consumo	
Motore idraulico	2 x 15 kW
Motori dì imbardata 8 x 2,2 kW	17,6 kW
Riscaldamento acqua	10 kW
Pompe dell'acqua	2,2 + 5,5 kW
Riscaldamento olio	7,9 kW
Pompa d'olio per la lubrificazione	10 kW
della scatola del cambio	
Tutti gli altri controlli	Massimo approssimativamente 3 kW
Perdita del trasformatore HV a non	Massimo 6,6 kW
pieno carico	

9.12 Condizioni di funzionamento – Condizioni per la curva di potenza e i valori di Ct all'altezza del mozzo

Condizioni per la Curva di Potenza e il Valori di Ct all'Altezza del Mozzo				
Vento di taglio	0,00 – 0,30 (10 minuti di media)			
Intensità di turbolenza	6 – 12% (10 minuti di media)			
Pale	pulite			
Pioggia	No			
Ghiaccio o Neve sule Pale	No			
Bordo principale	Nessun danno			
Terreno	IEC 61400 – 2 - 1			
Angolo di flusso Verticale	0 ± 2°			
Frequenza di rete	Frequenza nominale ± 0,5 Hz			

Disciplinare descrittivo e prestazionale degli elementi tecnici

10 Fondazioni turbine

Particolare importanza riveste la fondazione che deve sopportare le notevoli sollecitazioni statiche e dinamiche prodotte dalle turbine.

Oltre al considerevole peso che gli aerogeneratori concentrano su una superficie molto piccola, sono rilevanti le tensioni orizzontali prodotte sul terreno dovute alla spinta orizzontale del vento su una superficie pari a quella spazzata dalle pale, provenendo il vento da ogni direzione. A queste condizioni di carico si sommano quelle dovute ai probabili eventi sismici; pertanto la fondazione è costituita da un plinto in c.a. su pali tale da evitare fenomeni di punzonamento, dimensionato per resistere agli sforzi di slittamento e di ribaltamento (cfr. elaborati grafici di progetto).

10.1 Plinto di fondazione

Negli elaborati grafici è rappresentato il tipologico della fondazione calcolata per la turbina VESTAS V162 da 5.5 MW con mozzo a 119 metri di altezza.

Il calcolo e il progetto sono realizzati partendo da alcune assunzioni di base.

Assunzioni per il terreno:

- Angolo di attrito di 31,5°. Densità minima di 21.2 KN/m³.
- Coesione = 0 KPa;
- Assenza di acqua superficiale.
- Rigidezza rotazionale minima: 30 GNM/barra eguale a un modulo dinamico di elasticità di 8000 KN/ m² (v = 0.35) per la sabbia, o di 4000 KN/ m² (v = 0.340) per l'argilla.
- Massima compressione plastica: 303 KN/ m², costante sull'area di sostituzione, con un PSF di 1.35 sul vento, 0.9 sul peso della torre e del rinterro, 1.0 sul peso della fondazione
- Massima compressione elastica del terreno di 250 KN/ m² con PSF uguale a 1.0 per tutti i carichi.

Specifiche:

Tutti i lavori sono effettuati in accordo all'Euro Codice 2: "EN 1992-1-1-2004
 Progettazione di Strutture in Calcestruzzo", e l'Euro Codice 7: "EN 1997-1
 Progettazione geotecnica"

La gabbia d'ancoraggio, tra torre e fondazione, inclusi i bulloni, viene fornita da Vestas come unità montata. La gabbia d'ancoraggio è impostata sul livello del magrone di fondazione e regolata per l'aggiustamento della posizione, verticale e orizzontale, per mezzo di bulloni di aggiustamento al livello della flangia più bassa. Durante la colata, che può essere fatta simultaneamente dentro e fuori la gabbia, molta attenzione dev'essere impiegata perché la gabbia non si sposti e che la flangia in basso sia a completo contatto con il calcestruzzo. Il peso della flangia è di 10325 kg.

Disciplinare descrittivo e prestazionale degli elementi tecnici

10.1.1 Calcestruzzo

I lavori in calcestruzzo sono in accordo conl'ENV 13670-1 "Esecuzione Delle Strutture In Calcestruzzo – Parte I" Il calcestruzzo dev'essere composto, mescolato e preparato in accordo con l'EN 206-1-.

- Classe di resistenza: C30/37 per il plinto; C45/55 per il piedistallo; C35/30 per i pali
- Classe di esposizione: xC4 / xD1/ xS1 / xF3 / xA2.
- Taglia massima della ghiaia: 32 mm.
- Densità del calcestruzzo minima richiesta per la stabilità: 2221 kg/m³.
- Rivestimento: C_{nom} = 65+/-10 contro forma o livello di pulizia, e C_{nom} = 100+/-10 contro terra.
- Il controllo di qualità del calcestruzzo dev'essere in accordo alla EN 206-1.

Rinforzi.

5500 classe B o C in accordo con la EN 10080 con un Fyk minimo = 500 N/mm².

Malta.

Malta non termoretraibile con una resistenza minima a compressione di 100 N/mm². La resistenza minima a compressione di post tensione di 92 N/mm², a dopo un giorno: 10 N/mm² (Malta 2).

La Malta 2 e la sigillatura sono fornite dalla Vestas.

Condizioni del terreno che devono essere soddisfatte.

- Densità di riempimento di 16.2 KN/m³.
- Il peso del riempimento è incluso nella stabilità e non deve essere rimosso.
- Il massimo livello di acqua superficiale deve essere uguale a 0. Nessun drenaggio è richiesto

A scopo esemplificativo si veda la "Relazione preliminare sulle strutture" che riporta il calcolo preliminare della fondazione tipo dell'aerogeneratore VESTAS V162 da 5.5 MW, adottato in questo progetto.

Disciplinare descrittivo e prestazionale degli elementi tecnici

11 Cavidotti MT interni

11.1 Introduzione

L'impianto eolico in oggetto si sviluppa in un'area ubicata a circa 4.3 km dal centro abitato di Venosa (Pz).

Esso è costituito da 10 aerogeneratori di potenza nominale pari a 5.6 MW, depotenziati a 5.5MW, per una potenza massima complessiva pari a 55.0 MW.

La soluzione di connessione (STMG) prevede il collegamento alla stazione Terna localizzata nel Comune di Melfi, in provincia di Potenza.

In relazione all'ubicazione degli aerogeneratori e del punto di connessione il vettoriamento dell'energia elettrica prodotta dai singoli aerogeneratori alla RTN sarà assicurato da:

- a) la rete di cavidotti in media tensione;
- b) la sottostazione di trasformazione AT/MT;
- c) Il cavidotto aereo in alta tensione;
- d) la stazione Terna di Melfi.

Scopo del presente documento è di definire le caratteristiche e descrivere i criteri di progettazione e dimensionamento della rete di cavidotti in media tensione per il vettoriamento dell'energia elettrica prodotta dai singoli aerogeneratori alla sottostazione di trasformazione.

11.2 Descrizione impianto eolico

L'impianto eolico in oggetto è un impianto di produzione da fonte rinnovabile di tipo eolico, costituito da 10 aerogeneratori modello Vestas V162 5.6 MW, depotenziate a 5.5MW, per una potenza nominale di impianto pari a 55.0 MW, le cui caratteristiche sono riportate nella tabella seguente:

PROGETTO DEFINITIVO Parco Eolico "Piani di Pedina"

Disciplinare descrittivo e prestazionale degli elementi tecnici

		Sincrono a magneti			
	Tino gonoratoro				
	Tipo generatore	permanenti			
	Potenza nominale	5.6 MW MW			
	Corrente nominale	53 A @ cosφ = 1			
Generatore	Tensione nominale				
	statore	0,65 kV			
	Frequenza	50 Hz			
	Numero di poli	8			
	Fattore di potenza	0,95 cap ÷ 0,95 ind.			
	Potenza nominale	3,35 MVA			
	Tensione nominale				
	primario	0,65 kV			
T of a a t a	Tensione nominale				
Trasformatore	secondario	30 kV ± 2 x 2,5%			
	Impedenza di				
	cortocircuito %	8%			
	Gruppo vettoriale	Dyn			
		Differenziale con tre stadi			
	Tipo	epicicloidali ed uno elicoidale			
Riduttore	·	·			
	Rapporto	1:113,2			
	Diametro	162 m			
Rotore	Velocità cut in	3 m/s			
	Velocità cut out	24,5 m/s			
Sostegno	Altezza	119 m			

11.3 Criteri progettuali

L'energia elettrica prodotta dai singoli aerogeneratori è convogliata alla sottostazione di trasformazione attraverso una rete di cavidotti costituita da 4 linee esercite a 30 kV a neutro isolato. Ogni linea è dedicata al trasporto dell'energia elettrica prodotta dalle turbine appartenenti a uno dei sottocampi in cui è stato suddiviso il parco:

Sottocampo 1:5,5 x3 = 16,5 MW (WTG 1,2,3)Sottocampo 2:5,5 x2 = 11 MW (WTG 4,5)Sottocampo 3:5,5 x2 = 11 MW (WTG 6,7)Sottocampo 4:5,5 x3 = 16,5 MW (WTG 8,9,10)

La definizione dei sottocampi e dei tracciati delle linee elettriche sono stati studiati secondo quanto previsto dall'art. 121 del T.U. 11/12/1933 n° 1775, comparando le esigenze della pubblica utilità dell'opera con gli interessi sia pubblici che privati coinvolti.

La rete di cavidotti MT si estende per circa 30.393 m.

Nella definizione dell'opera sono stati adottati i seguenti criteri progettuali:

- contenere per quanto possibile i tracciati dei cavidotti sia per occupare la minor porzione possibile di territorio, sia per non superare certi limiti di convenienza tecnicoeconomica;
- evitare per quanto possibile di interessare case sparse ed isolate, rispettando le distanze prescritte dalla normativa vigente;
- minimizzare le interferenze con zone di pregio naturalistico, paesaggistico e archeologico;
- transitare su aree di minor pregio interessando aree prevalentemente agricole e sfruttando la viabilità esistente.

I cavidotti MT seguono strade di accesso nuove e/o esistenti per la maggior parte del loro percorso.

Il dimensionamento dei cavi è stato effettuato in base a:

 criterio termico per cui la corrente di impiego è inferiore alla corrente nominale del cavo ridotta mediante alcuni coefficienti correttivi che tengono conto delle condizioni di posa in base alla seguente formula:

$$I_{b} = \frac{P}{\sqrt{3}V_{n}cos\varphi} < k_{H} \cdot k_{\rho t} \cdot k_{T} \cdot k_{D} \cdot I_{nC}$$

in cui P è la potenza che transita nel tronco di linea, Vn è la tensione di parco pari a 30 kV, cosφ è il fattore di potenza assunto pari a 0,95, in cui kH dipende dalla profondità di posa; kρt dipende dalla resistività termica del terreno; kT dipende dalla temperatura del terreno; kD dipende dalla temperatura del terreno, Inc è la corrente nominale del cavo,

 criterio della massima caduta di tensione percentuale per cui la somma delle cadute di tensione calcolate nei tronchi di linea comprese fra una determinata turbina ed il punto di connessione deve essere inferiore ad un valore prestabilito (3 – 4%):

$$\Delta V = \sum_{i}^{N} \sqrt{3} I_{bi} L_{i} \cdot (R_{i} cos \varphi + X_{i} sen \varphi)$$

• criterio delle perdite calcolate in funzione della distribuzione di Weibull calcolata in funzione delle misure anemometriche sul sito.

Il calcolo della corrente di impiego e delle cadute di tensione con fattore di potenza pari a 0,95 mentre le perdite sono calcolate con fattore di potenza pari a 1.

Parco Eolico "Piani di Pedina" Disciplinare descrittivo e prestazionale degli elementi tecnici

11.5 Caratteristiche dei cavidotti

Il cavo è di tipo unipolare o tripolari in alluminio, del tipo ARG7H1R-18/30 kV o ARE4H1RX-18/30 kV o equivalente con conduttore in alluminio e giunti con muffe a colata di resina, Nella tabella seguente sono evidenziati i risultati dei calcoli effettuati.

Circuito	Tratto	Potenza	Corrente	Sezione cavo	Lunghezza	Caduta di tensione	Caduta di tensione	Caduta di tensione complessiva
		MW	Α	mmq	m	V	%	%
1	1-2	5.5	105.85	120	921	55.38	0.18%	0.18%
	2-3	11	211.70	240	971	58.03	0.19%	0.38%
	3-cabina	16.5	317.54	630	15164	533.77	1.78%	2.16%
2	4-5	5.5	105.85	120	655	39.39	0.13%	0.13%
	5-cabina	11.0	211.70	630	18399	431.76	1.44%	1.57%
3	6-7	5.5	105.85	120	1374	82.62	0.28%	0.28%
	7-cabina	11.0	211.70	630	16772	393.58	1.31%	1.59%
4	8-9	5.5	105.85	120	794	47.75	0.16%	0.16%
	9-10	11	211.70	240	2150	128.50	0.43%	0.59%
	10-cabina	16.5	317.54	630	21817	767.96	2.56%	3.15%

Vi saranno 3.744 m di cavo avente sezione pari a 120 mmq, 3.121m di cavo da 240mmq e 72.152 m di sezione pari a 630 mmq. Le giunzioni elettriche saranno realizzate mediante utilizzo di connettori del tipo dritto a compressione adeguati alle caratteristiche e tipologie dei cavi sopra detti.

Figura 1 - Giunzione di tipo dritto

L'isolamento è garantito mediante guaina termo-restringente. Il cavo a fibre ottiche per il monitoraggio e il telecontrollo delle turbine sarà di tipo mono modale e sarà alloggiato all'interno di un tubo corrugato in PVC posto nello stesso scavo del cavo di potenza.

Tabella 1 - Caratteristiche del cavo a fibre ottiche

Numero delle fibre	12/24
Tipo di fibra	9/125/250
Diametro cavo	9 mm
Peso del cavo	75 kg/km
	circa
Massima trazione a lungo termine	3000 N
Massima trazione a breve termine	4000 N
Minimo raggio di curvatura in installazione	20 cm
Minimo raggio di curvatura in servizio	15 cm

Insieme al cavo di potenza e a fibre ottiche vi sarà anche un dispersore di terra a corda di 35 mm² che collegherà gli impianti di terra delle singole turbine allo scopo di abbassare le tensioni di passo e di contatto e di disperdere le correnti dovute alle fulminazioni.

11.6 Modalità di posa e realizzazione

Con riferimento alla norma CEI 11-17 le modalità di posa dei cavi potranno essere secondo la configurazione M.1 o M.2

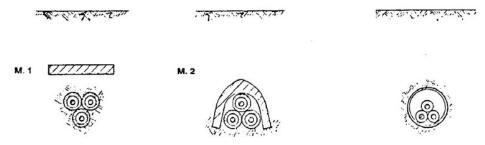


Figura 2 - Modalità di posa

L'integrità dei cavi deve essere garantita da una robusta protezione meccanica supplementare in grado di assorbire senza danni per il cavo stesso le sollecitazioni meccaniche, statiche e dinamiche derivanti dal traffico veicolare (resistenza a schiacciamento) e degli abituali attrezzi manuali di scavo (resistenza all'urto).

Per quanto concerne le profondità minime di posa nel caso di attraversamento della sede stradale vale il Nuovo Codice della Strada che fissa un metro, dall'estradosso della protezione per le strade di uso pubblico, mentre valgono le profondità minime stabilite dalla norma CEI 11-17 per tutti gli altri suoli.

La profondità di posa dei cavi sarà generalmente di 1,2 m rispetto ai piani finiti di strade o piazzali o alla quota del piano di campagna.

Eventuali variazioni si potrebbero rendere necessarie in corrispondenza d'incroci con altri servizi tecnologici interrati. Nei tratti con più terne gli interassi misureranno circa 30 cm.

Disciplinare descrittivo e prestazionale degli elementi tecnici

Le trincee avranno una larghezza pari a 60 cm sia nel caso di una che di due terne di cavi, nel caso delle sezioni con 3 terne di cavi la larghezza di scavo sarà portata ad 70 cm per arrivare ad 85cm nel caso di 4 terne.

La fascia di terreno potenzialmente impegnata durante la fase di costruzione/manutenzione sarà di circa 6 m.

I cavi di potenza, a fibre ottiche e il dispersore di terra saranno posati in uno strato di terreno di scavo o eventuale materiale sabbioso (pezzatura massima: 5 mm) di circa 50 cm su cui saranno appoggiati i tegoli o le lastre copricavo. Un nastro segnalatore sarà posto all'interno del rimanente volume dello scavo riempito con materiale arido a circa 50 cm dalla superficie.

La posa dei cavi si articolerà nelle seguenti attività:

- scavo a sezione obbligata della larghezza e della profonditàprecedentemente menzionate;
- posa del cavo di potenza e del dispersore di terra;
- rinterro parziale con strato di sabbia vagliata (eventuale);
- posa del tubo contenente il cavo in fibre ottiche;
- posa dei tegoli protettivi;
- rinterro parziale con terreno di scavo;
- posa nastro monitore;
- rinterro complessivo con ripristino della superficie originale;
- apposizione di paletti di segnalazione presenza cavo.

Nella posa degli stessi cavi dovranno essere rispettati alcuni criteri particolari per l'esecuzione delle opere in accordo con la regola d'arte come di seguito indicata.

Laddove il tracciato dei cavidotti è caratterizzato da ampi tratti rettilinei, la posa del cavo può essere effettuata con il metodo a bobina fissa; in questo caso la bobina deve essere posta sull'apposito alza bobine, con asse di rotazione perpendicolare all'asse mediano della trincea ed in modo che si svolga dal basso. Sul fondo della trincea devono essere collocati ad intervalli variabili in dipendenza del diametro e della rigidità del cavo i rulli di scorrimento. Tale distanza non deve comunque superare i 3 m. In alternativa potrà essere utilizzata la tecnica della bobina mobile: in questo caso il cavo deve essere steso percorrendo con il carro porta bobine il bordo della trincea e quindi calato manualmente nello scavo.

L'asse del cavo posato nella trincea deve scostarsi dall'asse della stessa di qualche centimetro a destra ed a sinistra, al fine di evitare dannose sollecitazioni dovute all'assestamento del terreno.

Durante le operazioni di posa, gli sforzi di tiro devono essere applicati ai conduttori e non devono superare i 60 N/mm² rispetto alla sezione totale. Il raggio di curvatura dei cavi durante le operazioni d'installazione non dovrà essere inferiore a 3 m.

Lo schermo metallico dei singoli spezzoni di cavo dovrà essere messo a terra da entrambe le estremità della linea.

È vietato usare lo schermo dei cavi come conduttore di terra per altre parti di impianto. In corrispondenza dell'estremità di cavo connesso alla stazione di utenza, onde evitare il trasferimento di tensioni di contatto pericolose a causa di un guasto sull'alta tensione, la messa a terra dello schermo avverrà solo all'estremità connessa alla stazione di utenza.

Per la posa dei cavi in fibra ottica lo sforzo di tiro che può essere applicato a lungo termine sarà al massimo di 3000 N. Il raggio di curvatura dei cavi durante le operazioni d'installazione non dovrà essere inferiore a 20 cm.

Durante le operazioni di posa è indispensabile che il cavo non subisca deformazioni temporanee. Il rispetto dei limiti di piegatura e di tiro è garanzia di inalterabilità delle caratteristiche meccaniche della fibra durante le operazioni di posa. Se inavvertitamente il cavo subisce delle deformazioni o schiacciamenti visibili la posa deve essere interrotta e dovrà essere effettuata una misurazione con OTDR per verificare eventuali rotture o attenuazioni eccessive provocate dallo stress meccanico.

La realizzazione delle giunzioni dovrà essere effettuata secondo le seguenti indicazioni:

- prima di tagliare i cavi controllare l'integrità della confezione e l'eventuale presenza di umidità;
- non interrompere mai il montaggio del giunto o del terminale;
- utilizzare esclusivamente materiali contenuti nella confezione.

A operazione conclusa devono essere applicate delle targhe identificatrici su ciascun giunto in modo da poter individuare l'esecutore, la data e le modalità d'esecuzione.

Su ciascun tronco fra l'ultima turbina e la stazione elettrica di utenza dovranno essere collocati dei giunti d'isolamento tra gli schermi dei due diversi impianti di terra (dispersore di terra della stazione elettrica e dispersore di terra dell'impianto eolico. Essi dovranno garantire la tenuta alla tensione che si può stabilire tra i due schermi dei cavi MT.

Nell'esecuzione delle terminazioni all'interno dei quadri MT di aerogeneratori e stazione, si deve realizzare il collegamento di terra degli schermi dei cavi con trecce flessibili di rame stagnato, eventualmente prolungandole e dotandole di capocorda a compressione per l'ancoraggio alla presa di terra dello scomparto.

Lo schermo dovrà essere collegato a terra da entrambe le estremità. Ogni terminazione deve essere dotata di una targa di riconoscimento in PVC atta a identificare esecutore, data e modo d'esecuzione e indicazione della fase (R, S o T). La messa a terra dovrà essere eseguita da entrambe le parti del cavo.

Le terminazioni dei cavi in fibra ottica dovranno essere portate a termine nella seguente maniera:

- posa del cavo, da terra al relativo cassetto ottico, previa eliminazione della parte eccedente, con fissaggio del cavo o a parete o ad elementi verticali con apposite fascette, ogni 0.50 m circa
- sbucciatura progressiva del cavo;
- fornitura ed applicazione, su ciascuna fibra ottica, di connettore;
- esecuzione della "lappatura" finale del terminale;
- fissaggio di ciascuna fibra ottica.

11.7 Interferenze

La risoluzione delle interferenze sarà effettuata in conformità alla norma CEI 11-17. Eventuali deroghe saranno possibili previo parere dell'ente gestore dell'opera interferente.

- a) Parallelismo e incroci tra cavi elettrici. I cavi aventi la stessa tensione possono essere posati alla stessa profondità, ad una distanza di circa 3 volte il loro diametro nel caso di posa diretta. I cavi a diversa tensione devono essere invece segregati (posti all'interno di condutture o canalette).
- b) Incroci tra cavi elettrici e cavi di telecomunicazione. Negli incroci il cavo elettrico, di regola, deve essere situato inferiormente al cavo di telecomunicazione. La distanza fra

Parco Eolico "Piani di Pedina" Disciplinare descrittivo e prestazionale degli elementi tecnici

i due cavi non deve essere inferiore a 0,30 m e inoltre il cavo posto superiormente deve essere protetto, per una lunghezza non inferiore a 1 m, mediante un dispositivo di protezione identico a quello previsto per i parallelismi. Tali dispositivi devono essere disposti simmetricamente rispetto all'altro cavo. Ove, per giustificate esigenze tecniche, non possa essere rispettato il distanziamento minimo di cui sopra, anche sul cavo sottostante deve essere applicata una protezione analoga a quella prescritta per il cavo situato superiormente. Non è necessario osservare le prescrizioni sopraindicate quando almeno uno dei due cavi è posto dentro appositi manufatti che proteggono il cavo stesso e ne rendono possibile la posa e la successiva manutenzione senza necessità di effettuare scavi.

- c) Parallelismo tra cavi elettrici e cavi di telecomunicazione. Nei parallelismi con cavi di telecomunicazione i cavi elettrici devono, di regola, essere posati alla maggiore distanza possibile fra loro e quando vengono posati lungo la stessa strada si devono posare possibilmente ai lati opposti di questa. Ove, per giustificate esigenze tecniche, non sia possibile attuare quanto sopra è ammesso posare i cavi in vicinanza purché sia mantenuta tra due cavi una distanza minima, in proiezione sul piano orizzontale, non inferiore a 0.30 m. Qualora detta distanza non possa essere rispettata è necessario applicare sui cavi uno dei seguenti dispositivi di protezione:
 - cassetta metallica zincata a caldo;
 - tubazione in acciaio zincato a caldo;
 - tubazione in PVC o fibrocemento, rivestite esternamente con uno spessore di calcestruzzo non inferiore a 10 cm.

I predetti dispositivi possono essere omessi sul cavo posato alla maggiore profondità quando la differenza di quota tra i due cavi è uguale o superiore a 0,15 m.

Le prescrizioni di cui sopra non si applicano quando almeno uno dei due cavi è posato, per tutta la parte interessata in appositi manufatti (tubazioni, cunicoli, etc.), che proteggono il cavo stesso e rendono possibile la posa e la successiva manutenzione senza la possibilità di effettuare scavi.

- d) Parallelismo ed incroci tra cavi elettrici e tubazioni o strutture metalliche interrate. La distanza in proiezione orizzontale tra cavi elettrici e tubazioni metalliche interrate parallelamente a esse non deve essere inferiore a 0.30 m. Si può tuttavia derogare alla prescrizione suddetta previo accordo tra gli esercenti quando:
 - la differenza di quota fra le superfici esterne delle strutture interessate è superiore a 0.50 m;
 - tale differenza è compresa tra 0.30 m e 0.50 m, ma si interpongono fra le due strutture elementi separatori non metallici nei tratti in cui la tubazione non è contenuta in un manufatto di protezione non metallico.

Non devono mai essere disposti nello stesso manufatto di protezione cavi di energia e tubi convoglianti fluidi infiammabili; per le tubazioni per altro tipo di posa è invece consentito, previo accordo tra gli Enti interessati, purché il cavo elettrico e la tubazione non siano posti a diretto contatto fra loro.

Le interferenze con eventuali gasdotti sono disciplinate dal D.M. 24/11/1984 e saranno risolte in accordo con l'ente proprietario. Nei casi di parallelismi, sovra e sottopasso i cavi dovranno essere posati all'interno di tubazioni e/o cunicoli.

Disciplinare descrittivo e prestazionale degli elementi tecnici

La distanza misurata fra le superfici affacciate del cavidotto e del gasdotto deve essere tale da consentire eventuali interventi di manutenzione su entrambi i servizi interrati.

L' incrocio fra cavi d'energia e tubazioni metalliche interrate non deve essere effettuato sulla proiezione verticale di giunti non saldati delle tubazioni stesse. Non si devono effettuare giunti sui cavi a distanza inferiore ad 1 m dal punto di incrocio.

Nel caso di incrocio con un gasdotto interrato i cavi dovranno essere alloggiati all'interno di un manufatto di protezione, che dovrà essere prolungato da una parte e dall'altra dell'incrocio stesso per almeno 1 metro nei sovrappassi e 3 metri nei sottopassi, misurati a partire dalle tangenti verticali alle pareti esterne del gasdotto.

Nessuna prescrizione è data nel caso in cui la distanza minima, misurata fra le superfici esterne di cavi elettrici e di tubazioni metalliche o fra quelle di eventuali loro manufatti di protezione, è superiore a 0.50 m.

Tale distanza può essere ridotta fino ad un minimo di 0.30 m, quando una delle strutture di incrocio è contenuta in manufatto di protezione non metallico, prolungato per almeno 0.30 m per parte rispetto all'ingombro in pianta dell'altra struttura oppure quando fra le strutture che si incrociano si venga interposto un elemento separatore non metallico (ad esempio lastre di calcestruzzo o di materiale isolante rigido); questo elemento deve poter coprire, oltre alla superficie di sovrapposizione in pianta delle strutture che si incrociano, quella di una striscia di circa 0.30 m di larghezza ad essa periferica.

Le distanze suddette possono ulteriormente essere ridotte, previo accordo fra gli Enti proprietari o Concessionari, se entrambe le strutture sono contenute in un manufatto di protezione non metallico.

Prescrizioni analoghe devono essere osservate nel caso in cui non risulti possibile tenere l'incrocio a distanza uguale o superiore a 1 m dal giunto di un cavo oppure nei tratti che precedono o seguono immediatamente incroci eseguiti sotto angoli inferiori a 60° e per i quali non risulti possibile osservare prescrizioni sul distanziamento.

- e) Attraversamenti di linee in cavo con strade pubbliche, ferrovie, tranvie, filovie, funicolari terrestri. In corrispondenza degli attraversamenti delle linee in cavo interrato con ferrovie, tranvie, filovie, funicolari terrestri in servizio pubblico o in servizio privato per trasporto di persone, autostrade, strade statali e provinciali e loro collegamenti nell'interno degli abitati, il cavo deve essere disposto entro robusti manufatti (tubi, cunicoli, ecc.) prolungati di almeno 0.60 m fuori della sede ferroviaria o stradale, da ciascun lato di essa, e disposti a profondità non minore di 1.50 m sotto il piano del ferro di ferrovie di grande comunicazione, non minore di 1.00 m sotto il piano del ferro di ferrovie secondarie, tranvie, funicolari terrestri, e sotto il piano di autostrade, strade statali e provinciali. Le distanze vanno determinate dal punto più alto della superficie esterna del manufatto. Le gallerie praticabili devono avere gli accessi difesi da chiusure munite di serrature a chiave. Quando il cavo è posato in gallerie praticabili sottopassanti l'opera attraversata, non si applicano le prescrizioni di cui sopra purché il cavo sia o interrato a profondità non minore di 0.50 m sotto il letto della galleria, o sia protetto contro le azioni meccaniche mediante adatti dispositivi di protezione (di cemento, mattoni, legno o simili).
- f) Attraversamenti di corsi d'acqua, canali. L'attraversamento di corsi d'acqua, canali e simili può essere effettuato mediante staffaggio su ponti e strutture preesistenti ovvero mediante perforazione teleguidata. Quest'ultima in particolare consente

Disciplinare descrittivo e prestazionale degli elementi tecnici

grande sicurezza ed evita, inoltre, interventi su argini e/o sponde. L'intervento sarà effettuato nelle fasi seguenti:

- a. Realizzazione di un foro pilota, infilando nel terreno, mediante spinta e rotazione, una successione di aste che guidate opportunamente dalla testa, che creano un percorso sotterraneo che va da un pozzetto di partenza ad uno di arrivo.
- b. Recupero delle aste con dietro un alesatore che, opportunamente avvitato al posto della testa, ruotando con le aste genera il foro del diametro voluto. Insieme all'alesatore, o in seguito, sono posate le condutture ben sigillate entro cui verrà posizionato il cavo.

La trivellazione viene eseguita ad una profondità tra 5 e 10 m sotto l'alveo del corso d'acqua, tale da non essere interessata da fenomeni di erosione, mentre i pozzetti di ispezione che coincidono con quello di partenza e di arrivo della tubazione di attraversamento vengono realizzati alla quota del terreno.

