

Direzione Progettazione e Realizzazione Lavori

CORRIDOIO PLURIMODALE ADRIATICO

ITINERARIO MAGLIE - SANTA MARIA DI LEUCA

S.S. N° 275 "DI S. MARIA DI LEUCA"

LAVORI DI AMMODERNAMENTO E ADEGUAMENTO ALLA SEZ. B DEL D.M. 5.11.2001

S.S. 16 dal km 981+700 al km 985+386 - S.S. 275 dal Km 0+000 al km 37+000

1° Lotto: Dal Km 0+000 di prog. al Km 23+300 di prog.

PROGETTO DEFINITIVO

COD. **BA283**

PROGETTAZIONE: ANAS - COORDINAMENTO TERRITORIALE ADRIATICA

Ing. Alberto SANCHIRICO — Progettista e Coordinatore
Ing. Simona MASCIULLO — Progettista

COLLABORATORI

Geom. Andrea DELL'ANNA Geom. Massimo MARTANO Geom. Giuseppe CALO'

IL GEOLOGO

I PROGETTISTI

Dott. Pasquale SCORCIA

IL COORDINATORE IN FASE DI PROGETTAZIONE

Ing. Alberto SANCHIRICO

Ing. Gianfranco PAGLIALUNGA

RESPONSABILE PROJECT MANAGEMENT PUGLIA

IL RESPONSABILE DEL PROCEDIMENTO

Ing. Nicola MARZI

ATTIVITA' DI SUPPORTO

08 - OPERE D'ARTE MAGGIORI - VIADOTTI E PONTI

Cavalcavia (Comune di Melpignano) CV 1 - al km 0+582,05 Relazione di calcolo strutturale

PROGETTO		OGETTO LIV. PROG. N. PROG.	NOME FILE TOO_CVO1_STR_RE01_	_C		REVISIONE	SCALA:	
			CODICE TOOCV01S	С	_			
	С	OTTEMPERANZA PARERE	AdB Puglia – PARERE CSLLPP	Aprile 2019	Ing D. Neri			
	В	REVISIONE DEL PROGE	TTO DEFINITIVO	Gennaio 2019	Ing. C. Beltrami			
	A REVISIONE DEL PROGETTO DEFINITIVO Giu		Giugno 2018	Ing. C. Beltrami				
	REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO	

INDICE

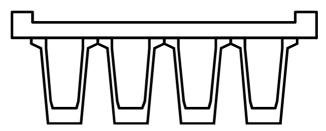
1.	PREMESSA	4
2.	NORMATIVE E RIFERIMENTI	5
	2.1 Normative e standard	5
	2.2 Software di calcolo	6
3.	MATERIALI	7
	3.1 Calcestruzzo	7
	3.1.1 Magrone sottofondazione	7
	3.1.2 Plinti di fondazione	7
	3.1.3 Elevazione pile e spalle	7
	3.1.4 Soletta, cordoli e predalles	7
	3.1.5 Trave di impalcato	8
	3.2 Acciaio	8
	3.2.1 Acciaio per armatura lenta	8
	3.2.2 Acciaio per armatura di precompressione	8
	3.3 Legami costitutivi	9
	3.3.1 Diagramma tensione-deformazione calcestruzzo	9
	3.3.2 Diagramma tensione-deformazione acciaio ordinario per c.a.	9
4.	CARATTERISTICHE DEI MATERIALI	10
5.	MODELLO NUMERICO	11
6.	ANALISI DEI CARICHI	14
	6.1 Carichi permanenti strutturali (G1) e non strutturali (G2)	14
	6.2 Azioni verticali da traffico (Q1)	14
	6.3 Azione del vento	16
	6.4 Azione longitudinale di frenamento	17
	6.5 Azione centrifuga	17
	6.6 Urto dei veicoli in svio	17
	6.7 Ritiro	18
	6.8 Variazioni termiche	18

6.9 Azi	ione sismica	18
6.9.1	Vita nominale	18
6.9.2	Classe d'uso	19
6.9.3	Periodo di riferimento per l'azione sismica	19
6.9.4	Parametri di progetto	19
6.9.5	Categoria di sottosuolo	22
6.9.6	Condizioni topografiche	22
6.9.7	Spettro di risposta elastico in accelerazione	23
6.9.8	Spettro di risposta elastico in accelerazione, componenti orizzontali	23
6.9.9	Spettro di risposta elastico in accelerazione, componenti verticali	25
6.9.10	Spettri di progetto in accelerazione	26
COMBI	NAZIONI DI CARICO	27
7.1 lm	palcato	29
7.2 Pile	е	30
7.3 Sp	alle	31
RISULT	TATI	32
8.1 AN	IALISI MODALE	32
8.2 DIA	AGRAMMI SOLLECITAZIONI	35
VERIFIC	CHE IMPALCATO	36
9.1 Ca	ratteristiche trave in c.a.p.	36
9.2 Pre	ecompressione e armatura lenta	37
9.3 Pe	rdite differite nel tempo	38
9.4 Ca	ratteristiche sezioni di verifica	39
9.5 Dia	agramma tensioni sulla trave n.1	40
9.6 Dia	agramma tensioni/aree armature trave n.1	41
9.7 Ve	rifica sezione n.1 – ascissa $x = 0,000m$	42
9.8 Ve	rifica sezione n.5 – ascissa $x = 1,2716m$	44
9.9 Ve	rifica sezione n.10 – ascissa x = 2,8611m	46
9.10 Ve	rifica sezione n.34 – ascissa x = 10,4907m	48
9.11 Ve	rifica sezione n.51 – ascissa x = 15,8957m	50
	6.9.1 6.9.2 6.9.3 6.9.4 6.9.5 6.9.6 6.9.7 6.9.8 6.9.9 6.9.10 COMBII 7.1 Imp 7.2 Pilo 7.3 Sp RISULT 8.1 AN 8.2 DIA VERIFIC 9.1 Ca 9.2 Pre 9.4 Ca 9.5 Dia 9.7 Ve 9.8 Ve 9.9 Ve 9.10 Ve	6.9.2 Classe d'uso 6.9.3 Periodo di riferimento per l'azione sismica 6.9.4 Parametri di progetto 6.9.5 Categoria di sottosuolo 6.9.6 Condizioni topografiche 6.9.7 Spettro di risposta elastico in accelerazione 6.9.8 Spettro di risposta elastico in accelerazione, componenti orizzontali 6.9.9 Spettro di risposta elastico in accelerazione, componenti verticali 6.9.10 Spettri di progetto in accelerazione COMBINAZIONI DI CARICO 7.1 Impalcato 7.2 Pile 7.3 Spalle RISULTATI 8.1 ANALISI MODALE 8.2 DIAGRAMMI SOLLECITAZIONI VERIFICHE IMPALCATO 9.1 Caratteristiche trave in c.a.p. 9.2 Precompressione e armatura lenta 9.3 Perdite differite nel tempo 9.4 Caratteristiche sezioni di verifica 9.5 Diagramma tensioni sulla trave n.1

S.S. 275 - Strada Statale Maglie - Sa	nta Maria di Leuca
Relazione di calcolo strutturale CV01	

-	_
	-
٠,	_

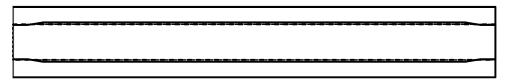
	9.12 Verifica a rottura della sezione di mezzeria	52
	9.13 Verifiche a taglio – SLU	53
	9.14 Verifiche a torsione – SLU	54
	9.15 Verifiche connettori trave-soletta	55
	9.16 Verifica all'urto dei veicoli in svio	56
	9.17 Verifica dello sbalzo della soletta (Sezione S ₁)	57
	9.18 Verifiche del cordolo (Sezione S ₂)	57
	9.19 Verifiche a deformazione	59
	9.20 Azioni sugli apparecchi di appoggio	60
10.	VERIFICHE PILA 1	61
	10.1 Verifica Elevazione	61
	10.1.1 Verifica SLU-SLV	61
	10.1.2 Verifica SLE – Controllo tensioni	63
	10.1.3 Verifica SLE – Fessurazione	64
	10.2 Verifica fondazione	65
	10.2.1 Verifiche strutture SLU-SLV	66
	10.2.2 Verifica a ribaltamento	67
11.	VERIFICHE PILA 2	69
	11.1 Verifica Elevazione	69
	11.1.1 Verifica SLU-SLV	69
	11.1.2 Verifica SLE – Controllo tensioni	71
	11.1.3 Verifica SLE – Fessurazione	72
	11.2 Verifica fondazione	73
	11.2.1 Verifiche strutture SLU-SLV	74
	11.2.2 Verifica a ribaltamento	75
12.	VERIFICA DELLE SPALLE	77
	12.1 Modello di calcolo	77
	12.2 Verifiche strutture SLU-SLV	79
	12.3 Verifica a ribaltamento	81


1. PREMESSA

Nella presente relazione si riportano i calcoli relativi al ponte stradale CV01 - PRG.0+582.50 Cavalcavia comune di Melpignano ubicato alla progressiva 0+582.50, nell'ambito dei CORRIDOIO PLURIMODALE ADRIATICO MAGLIE - S.M. DI LEUCA.

L'opera di cui trattasi ha una lunghezza complessiva di 64m suddivisi in 3 campate la cui luce misurata tra gli appoggi per le travi è pari a 16m - 32m - 16m.

L'impalcato è costituito da 4 travi a cassone in cemento armato precompresso, di altezza 1,4m, disposte ad interasse di 2,4m e da una soletta in c.a. di larghezza complessiva 11m.


La soletta di spessore 25cm presenta una larghezza pavimentata carrabile di 9,5m e due cordoli esterni di larghezza 0,75m e altezza 17cm.

La trave è del tipo a cassone precompressa a fili aderenti e presenta due tipi di sezione: una sezione corrente di tipo A e una sezione ringrossata tipo B in corripondenza degli appoggi per una lunghezza di 1m. La zona di raccordo tra le due sezioni misura una lunghezza di 1m.

La precompressione della trave avviene per mezzo di 56 Trefoli stabilizzati del diametro di 6/10S", suddivisi in 4 gruppi disposti a diverse altezze della sezione.

le verifiche di normativa riguardanti l'impalcato sono state eseguite sulla trave maggiormente caricata nel rispetto delle N.T.C.2018.

2. NORMATIVE E RIFERIMENTI

2.1 Normative e standard

Il dimensionamento delle opere in progetto è condotto in riferimento alle attuali normative e di seguito elencate.

[1]	D.M. 17/01/2018, n.8	Norme Tecniche per le costruzioni			
[2]	Circ. Min. 21 gennaio 2019, n. 7	Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme Tecniche per le costruzioni"» di cui al decreto			
		ministeriale 17 gennaio 2018			
[3]	Legge 05/11/1971, n.1086	Norma per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica" e relative istruzioni (Circ. LL.PP. 14/02/1974, n. 11951)			
[4]	Legge 02/02/1974, n.64	Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche			
[5]	UNI EN 1990	Basis of structural design			
[6]	UNI EN 1991-1-1	Actions on structures - General actions - Densities, self-weight and imposed loads			
[7]	UNI EN 1991-1-4	Actions on structures - General actions - Wind actions			
[8]	UNI EN 1991-1-5	Actions on structures - General actions - Thermal actions			
[9]	UNI EN 1992-1-1	Design of concrete structures -General - Common rules for building and civil engineering structures			
[10]	UNI EN 1992-1-2	Design of concrete structures – Part 1-2: General rules – Structural fire design			
[11]	UNI EN 1992-2	Design of concrete structures -Bridges			
[12]	UNI EN 1993-1-1	Design of steel structures- General rules and rules for buildings			
[13]	UNI EN 1993-1-8	Design of steel structures- Design of Joints			
[14]	UNI EN 1994-1-1	Design of composite steel and concrete structures – General rules and rules for buildings			
[15]	UNI EN 1994-2	Design of composite steel and concrete structures – General rules and rules for bridges			
[16]	UNI EN 1997-1	Geotechnical design - General rules			
[17]	UNI EN 1998-1	Design provisions for earthquake resistance of structures - General rules, seismic actions and rules for buildings			
[18]	UNI EN 1998-2	Design of structures for earthquake resistance - Bridges			
[19]	UNI EN 1998-5	Design of structures for earthquake resistance – Foundations, retaining structures and geotechnical aspects			

[20] Presidenza del Consiglio Linee guida sul calcestruzzo strutturale Superiore dei Lavori Pubblici - Servizio Tecnico Centrale [21] UNI-EN 206-1 Calcestruzzo: specificazione, prestazione, produzione e conformità [22] UNI-EN 11104 Calcestruzzo: specificazione, prestazione, produzione e conformità - Istruzioni complementari per l'applicazione delle EN 206-1

2.2 Software di calcolo

[1] SAP2000. Ver. 14.0.0 sviluppato dalla società Computers and Structures, Inc. (1995 University Avenue Berkeley, California 94704 USA)

Il programma, codice di calcolo ad elementi finiti in campo statico e dinamico lineare/non lineare, consente l'analisi strutturale per fasi, la modellazione della precompressione tramite tracciato cavi 3D, il calcolo degli effetti dei carichi mobili tramite linee/superfici d'influenza.

[2] SAP2000, Ver. 20.0.0 sviluppato dalla società Computers and Structures, Inc. (1995 University Avenue USA)

Il programma, codice di calcolo ad elementi finiti in campo statico e dinamico lineare/non lineare, consente l'analisi strutturale per fasi, la modellazione della precompressione tramite tracciato cavi 3D, il calcolo degli effetti dei carichi Berkeley, California 94704 mobili tramite linee/superfici d'influenza.

3. MATERIALI

3.1 Calcestruzzo

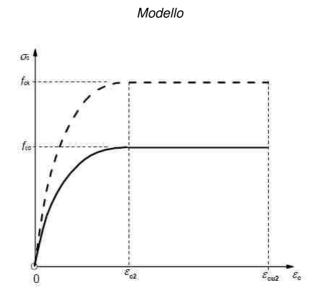
3.1.1 Magrone sottofondazione Classe del calcestruzzo		C12/15	
Resistenza caratteristica cubica a compressione	R_{ck}	15	N/mm²
Classe di esposizione		XC0	-
3.1.2 Plinti di fondazione		000/05	
Classe del calcestruzzo	_	C28/35	N1/ 2
Resistenza caratteristica cubica a compressione	R _{ck}		N/mm ²
Classe di esposizione		XC2	-
Gruppi di esigenze		Α	-
Rapporto massimo acqua/cemento		0.55	- 1 - /
Contenuto minimo di cemento			kg/mc
Classe di consistenza (Slump)		S4	-
Dimensione massima dell'aggregato		32	mm
Copriferro nominale	_	45	mm
Modulo elastico	E _{cm} =	32308	N/mm ²
3.1.3 Elevazione pile e spalle			
Classe del calcestruzzo		C32/40	
Resistenza caratteristica cubica a compressione	R_{ck}	40	N/mm ²
Classe di esposizione		XC4+XD	1 -
Gruppi di esigenze		В	-
Rapporto massimo acqua/cemento		0.50	-
Contenuto minimo di cemento		340	kg/mc
Classe di consistenza (Slump)		S4	-
Dimensione massima dell'aggregato		25	mm
Copriferro nominale		35	mm
Modulo elastico	E _{cm} =	33346	N/mm²
3.1.4 Soletta, cordoli e predalles			
Classe del calcestruzzo		C35/45	
Resistenza caratteristica cubica a compressione	R_{ck}	45	N/mm²
Classe di esposizione		XC3+XD	
Gruppi di esigenze		В	-
Rapporto massimo acqua/cemento		0.45	-
Contenuto minimo di cemento		360	kg/mc
Classe di consistenza (Slump)		S4	-
Dimensione massima dell'aggregato		25	mm
Copriferro nominale		35	mm
Modulo elastico	E _{cm} =	34077	N/mm²
		- · · ·	

3.1.5 Trave di in	•		0.45/55	
Classe del calce	struzzo		C45/55	
Resistenza cara	teristica cubica a compressione	R_{ck}	55	N/mm^2
Classe di esposi	zione		XC4+XD1	-
Gruppi di esigen	ze		В	
Rapporto massir	no acqua/cemento		0.45	-
Contenuto minin	o di cemento		360	kg/mc
Classe di consis	enza (Slump)		S4	-
Dimensione mas	sima dell'aggregato		25	mm
Copriferro nomir	ale		35	mm
Modulo elastico		$E_{\text{cm}} =$	36283	N/mm²

3.2 Acciaio

Per l'acciaio da carpenteria si assume il seguente peso per unità di volume: γAcciaio=78.50 kN/m³

3.2.1 Acciaio per armatura lenta

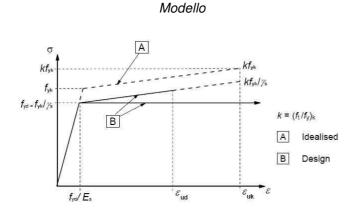

Classe di acciaio			B450	
	Tensione caratteristica di rottura	$\mathbf{f}_{\mathbf{tk}}$	540	N/mm²
	Tensione caratteristica di snervamento	$\mathbf{f}_{\mathbf{y}\mathbf{k}}$	450	N/mm²
	Resistenza di progetto	\mathbf{f}_{yd}	391.3	N/mm²
	Sovra-resistenza	f_{tk} / f_{yk}	≥1.15	-
	Modulo di elasticità	E.	210000	N/mm ²

3.2.2 Acciaio per armatura di precompressione

$\mathbf{f}_{\mathbf{y}\mathbf{k}}$	1670	N/mm ²
$\mathbf{f}_{\mathbf{tk}}$	1860	N/mm^2
Es	206000	N/mm^2
\mathbf{f}_{yd}	1452.2	N/mm^2
σ_{spi}	<1488	N/mm^2
_	-1226	N/mm²
Osp	<1000	IN/111111-
	f _{tk} E _s f _{yd}	f _{tk} 1860 E _s 206000 f _{yd} 1452.2 σ _{spi} <1488

3.3 Legami costitutivi

3.3.1 Diagramma tensione-deformazione calcestruzzo


Parabola rettangolo

$$\begin{split} \sigma_{c} &= f_{cd} \left[1 - \left(1 - \frac{\varepsilon_{c}}{\varepsilon_{c2}} \right)^{n} \right] \quad \text{for} \quad 0 \leq \varepsilon_{c} \leq \varepsilon_{c2} \\ \sigma_{c} &= f_{cd} \quad \text{for} \quad \varepsilon_{c2} \leq \varepsilon_{c} \leq \varepsilon_{cu2} \end{split}$$

dove:

- n = 2
- ϵ_{c2} = 0.0020 (deformazione allo sforzo massimo)
- ε_{cu2} = 0.0035 (deformazione ultima)

3.3.2 Diagramma tensione-deformazione acciaio ordinario per c.a.

Elastico perfettamente plastico

$$k = 0 \\ f_{yd} \, / \, E_s = 0.186\% \\ \epsilon_{ud} = 0.9 \ e_{uk} = 6.75\% \label{eq:k}$$

Per i calcoli agli stati limite d'esercizio (SLE) a "tempo infinito", si considera un coefficiente di omogeneizzazione per l'acciaio n=15.

4. CARATTERISTICHE DEI MATERIALI

TIPO CALCESTRUZZO TRAVE - C45/55	C45/55	s < 50mm	1		
Resistenza cubica caratteristica	_	R _{ck} =	55,000 Mpa		
Resistenza cilindrica caratteristica $f_{ck} = 0.83 R_{ck}$	(11.2.1)	f _{ck} =	45,000 Mpa		
Resistenza cilindrica caratteristica all'atto della tesatura f_{ckj} = 0.83 R_{ckj}	(11.2.1)	f_{ckj} =	45,000 Mpa		
Resistenza cilindrica media $f_{cm} = f_{ck} + 8$	(11.2.2)	f _{cm} =	53,000 Mpa		
Resistenza cilindrica media all'atto della tesatura $f_{cmj} = f_{ckj} + 8$	(11.2.2)	f _{cmj} =	53,000 Mpa		
Resistenza media a trazione semplice $f_{ctm} = 0.30 f_{ck}^{2/3}$	(11.2.3a/b)	f _{ctm} =	3,795 Mpa		
Resistenza media a trazione semplice all'atto della tesatura $f_{ctmj} = 0.30 f_{ckj}^{2/3}$	(11.2.3a/b)	f _{ctmj} =	3,795 Mpa		
Resistenza caratteristica a trazione semplice $f_{ctk} = 0.70 f_{ctm}$	(11.2.3a/b)	f _{ctk} =	2,657 Mpa		
Resistenza media a trazione per flessione $f_{cfm} = 1.20 f_{ctm}$	(11.2.4)	f _{cfm} =	4,555 Mpa		
Resistenza caratteristica a trazione per flessione f_{cfk} = 0.70 f_{cfm}	(11.2.4)	f _{cfk} =	3,188 Mpa		
Resistenza caratteristica tangenziale di aderenza f_{bk} = 2.25 η_1 η_2 f_{ctk}	(4.1.7)	f _{bk} =	5,978 Mpa		
Modulo elastico $E_{cm} = 22000 (f_{cm}/10)^{0.3}$	(11.2.5)	E _{cm} =	36283,2 Mpa		
Resistenza di calcolo a trazione semplice $f_{ctd} = f_{ctk}/1.5$	(4.1.5)	f _{ctd} =	1,771 Mpa	٦	
Resistenza di calcolo a compressione $f_{cd} = \alpha_{cc} f_{ck}/1.5$	(4.1.3)	f _{cd} =	25,500 Mpa	┢	SLU
Resistenza di calcolo tangenziale di aderenza f _{bd} = f _{bk} /1.5	(4.1.6)	f _{bd} =	3,985 Mpa	لِ	
Tensione massima di compressione nel cls per comb. Rara σ_c <0.60 f_{ck}	(4.1.15)	σ_c <	27,000 Mpa	7	
Tensione massima di compressione nel cls per comb. quasi perm. σ_c < 0.45 f_{ck}	(4.1.16)	σ_c <	20,250 Mpa		
Tensione massima di compressione nel c.a.p. all'atto della tesatura σ_c < 0.70 f_{ckj}	(4.1.47)	σ_c <	31,500 Mpa	┝	SLE
Tensione massima di trazione nel c.a.p. in esercizio $\sigma_t < f_{ctm}/1.2$		σ_{t} <	3,163 Mpa		
Tensione massima di trazione nel c.a.p. all'atto della tesatura $\sigma_{tj}\!<\!f_{ctm}\!/\!1.2$		$\sigma_{t} <$	3,163 Mpa	J	
TIPO CALCESTRUZZO SOLETTA - C35/45	C35/45	s < 50mr	n		
Resistenza cubica caratteristica	C35/43	R _{ck} =	 45,000 Mpa		
Resistenza cilindrica caratteristica $f_{ck} = 0.83 R_{ck}$	(11.2.1)	f _{ck} =	35,000 Mpa		
Resistenza cilindrica media $f_{cm} = f_{ck} + 8$	(11.2.2)	f _{cm} =	43,000 Mpa		
Resistenza media a trazione semplice $f_{ctm} = 0.30 f_{ck}^{2/3}$	(11.2.3a/b)	f _{ctm} =	3,210 Mpa		
Resistenza caratteristica a trazione semplice $f_{ctk} = 0.70 f_{ctm}$	(11.2.3a/b)	f _{ctk} =	2,247 Mpa		
Resistenza media a trazione per flessione $f_{cfm} = 1.20 f_{ctm}$	(11.2.4)	f _{cfm} =	3,852 Mpa		
Resistenza caratteristica a trazione per flessione f_{cfk} = 0.70 f_{cfm}	(11.2.4)	f _{cfk} =	2,696 Mpa		
Resistenza caratteristica tangenziale di aderenza f_{bk} = 2.25 η_1 η_2 f_{ctk}	(4.1.7)	f _{bk} =	5,056 Mpa		
Modulo elastico $E_{cm} = 22000 (f_{cm}/10)^{0.3}$	(11.2.5)	E _{cm} =	34077,1 Mpa		
Resistenza di calcolo a trazione semplice $f_{ctd} = f_{ctk}/1.5$	(4.1.5)	f _{ctd} =	1,498 Mpa	٦	
Resistenza di calcolo a compressione $f_{cd} = \alpha_{cc} f_{ck}/1.5$	(4.1.3)	f _{cd} =	19,833 Mpa	┝	SLU
Resistenza di calcolo tangenziale di aderenza f _{bd} = f _{bk} /1.5	(4.1.6)	f _{bd} =	3,370 Mpa	لِ	
Tensione massima di compressione nel cls per comb. Rara σ_c <0.60 f_{ck}	(4.1.15)	σ_{c} <	21,000 Mpa	l	CLE
Tensione massima di compressione nel cls per comb. quasi perm. $\sigma_c \!\!<\! 0.45 f_{ck}$	(4.1.16)	σ_c <	15,750 Mpa	ſ	SLE
TIPO ACCIAIO ARMATURA LENTA - B450C	٦				
Tensione di snervamento caratteristica	B450C	f	450,0 Mpa		
Tensione di rottura caratteristica		$f_{y,k}=$ $f_{t,k}=$	540,0 Mpa		
Modulo elastico E _s		E _s =	206000 Mpa		
Tensione di snervamento di calcolo $f_{vd} = f_{v,k}/1.15$	(4.1.5)	f _{yd} =	391,30 Mpa		
Tensione massima nell'acciaio per comb. rara σ_s < 0.80 f_{vk}	(4.1.17)	σ_{s}	360,00 Mpa		
- Telistone mossima nen accidio per coma nara os rolco iya		-3 -	500,00 mpa		
TIPO ACCIAIO ARMATURA DI PRECOMPRESSIONE	Trefoli				
Tensione caratteristica all'1% di deformazione totale		f _{y,k} =	1670,0 Mpa		
Tensione di rottura caratteristica		f _{t,k} =	1860,0 Mpa		
Modulo elastico E _s		E _s =	206000 Mpa		
Tensione di snervamento di calcolo $f_{yd} = f_{y,k}/1.15$	(4.1.5)	f _{yd} =	1452,2 Mpa		
Tensione iniziale all'atto della tesatura σ_{spi} < 0.90 $f_{p(0.1)k}$ σ_{spi} < 0.80 f_{ptk}	(4.1.49)	σ_{spi} <	1488,0 Mpa		
Tensione massima nell'acciaio per comb. rara σ_{sp} < 0.80 $f_{p(0.1)k}$	(4.1.17)	σ_{sp} <	1336,0 Mpa		

5. MODELLO NUMERICO

Per l'intera struttura è stato definito un modello numerico rappresentativo con il programma di calcolo agli elementi finiti "Sap2000" della Computer and Structures Inc.

I vari elementi costituenti il modello sono i seguenti:

- Travi e soletta Grigliato di aste costituite da elementi frame aventi l'inerzia delle sezioni costituita dalle travi (fase 1) e dalla soletta omogeneizzata (fase 2 e 3). Su ciascuna asta sono stati assegnati i carichi precedentemente descritti e le linee di transito su cui muovono le azioni dovute al traffico dei veicoli.
- Traversi Aste continue costituite da elementi frame aventi le caratteristiche inerziali dei profilati angolari costituenti i vari elementi dei diaframmi.
- Soletta Considerata solo per gli effetti trasversali, è modellata mediante aste di larghezza 1.0 m. Per l'analisi modale e l'analisi dinamica con spettro di risposta, al fine di simulare il comportamento rigido di diaframma della soletta, questa è stata modellata con elementi shell.
- Appoggi Sono schematizzati con elementi tipo "link"
- Pile sono state modellate con aste verticali che rappresentano le pile propriamente dette. In particolare l'asta che le rappresenta risulta libera per la parte in elevazione e vincolata a terra con un vincolo di incastro.
- Spalle costituiscono un semplice vincolo d'appoggio per l'intero modello.

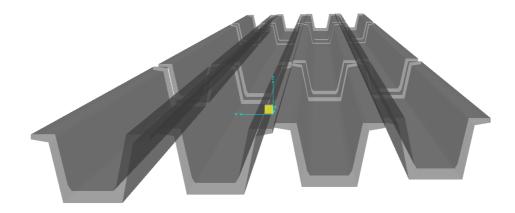


Figura 5-1: Modello di calcolo: dettaglio travi

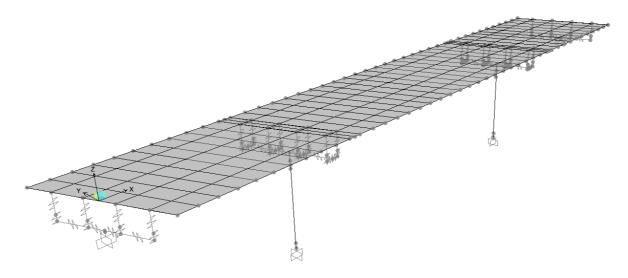


Figura 5-2: Modello di calcolo: con elementi shell soletta in vista

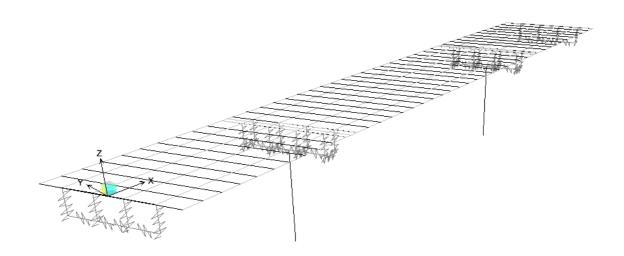


Figura 5-3: Modello di calcolo: con elementi shell soletta non in vista

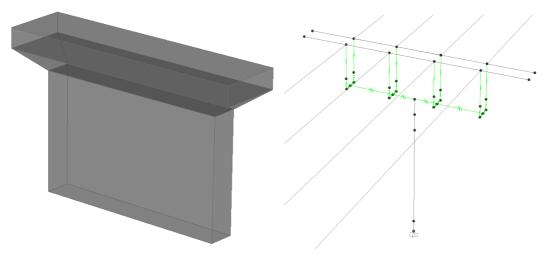
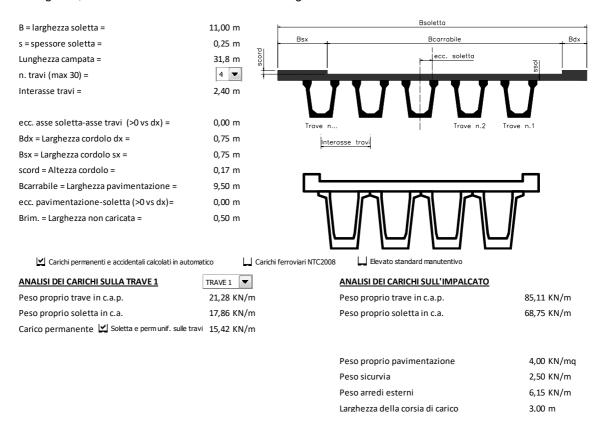


Figura 5-4: Modello di calcolo: dettaglio pila

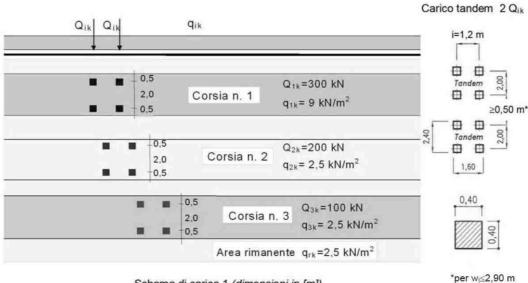

Per tener conto delle fasi costruttive, sono state definite all'interno del modello 4 fasi con tre tipi di sezioni reagenti e relativi carichi:

- 0. Fase Sono presenti le sole sottostrutture (pile e spalle); Carichi agenti: attrito vincoli. e peso proprio pila
- 1. Fase Sezione reagente: Sezione reagente: sole travi: Carichi agenti: pesi propri e getto dei traversi e della soletta fluida.
- 2. Fase Sezione reagente: trave con soletta collaborante omogeneizzata e diaframmi; Carichi agenti: carichi permanenti e mobili.
- 3. Fase sismica Sezione reagente: travi e traversi (frame) con soletta (shell); Carichi agenti: analisi modale e analisi dinamica con spettro di risposta, ritiro, termica, frenatura, centrifuga, vento.

6. ANALISI DEI CARICHI

6.1 Carichi permanenti strutturali (G1) e non strutturali (G2)

Il carico dovuto al peso proprio dei vari elementi strutturali che compongono il viadotto viene assegnato, nel modello numerico così come segue:


6.2 Azioni verticali da traffico (Q1)

L'analisi dei carichi mobili viene effettuata in accordo alle indicazioni delle NTC18.

Le azioni variabili da traffico, comprensive degli effetti dinamici, sono definite dallo schema di carico 1, descritto nel seguito:

- corsia n.1 costituita da un automezzo convenzionale Q1k di 600 kN dotato di 2 assi di 2 ruote ciascuno, distanti 1.20 m in senso longitudinale e con interasse delle ruote in senso trasversale di 2.00 m e un carico ripartito q1k di 9 kN/m2;
- corsia n.2, analoga alla precedente, ma con carichi pari rispettivamente a 400 kN (automezzo convenzionale Q2k) e 2.5 kN/m2 (carico ripartito q2k);
- corsia n.3, analoga alla precedente, ma con carichi pari rispettivamente a 200 kN (automezzo convenzionale Q3k) e 2.5 kN/m2 (carico ripartito q3k);

- zona rimanente, occupata da una colonna di carico qRk = 2.5 kN/m2 nella zona di carreggiata non impegnata dai carichi precedenti.

Schema di carico 1 (dimensioni in [m])

Sono stati considerati i carichi mobili previsti dalla vigente normativa per ponti di prima categoria, disposti nella configurazione che massimizza le sollecitazioni sulla trave di progetto.

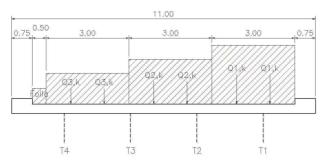


Figura 6-1 – Disposizione eccentrica dei carichi mobili

La ripartizione dei carichi mobili sul cassoncino di bordo è stata effettuata secondo il modello di calcolo FEM.

Il modello di calcolo utilizzato è implementato nel programma di analisi strutturale agli elementi finiti Sap2000; tale codice di calcolo permette di costruire le linee di influenza relative alle distinte sollecitazioni per ciascun punto della struttura.

6.3 Azione del vento

Provincia di Trieste

9 Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto

AZIONI DEL VENTO (§3.3 NTC18) Puglia Regione Zona 3 Altitudine sul livelo del mare 85.0 a_s = [m] Tab. 3.3.1 -Valori dei parametri v_{b,0}, a₀, k $v_{b,0}$ [m/s] a_0 [m] \mathbf{k}_{s} Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige 1 25 1 1000 0.40 Veneto, Friuli Venezia Giulia (con l'eccezione della provincia di Trieste) 0,45 Emilia Romagna Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia 27 0.37 500 Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria) Sicilia e provincia di Reggio Calabria 500 0,36 Sardegna (zona a oriente della retta congiungente Capo 750 0,40 Teulada con l'Isola di Maddalena) Sardegna (zona a occidente della retta congiungente Capo 28 500 0.36 Teulada con l'Isola di Maddalena) Liguria 28 1000 0,54

0,50

0.32

1500

500

30

31

Figura 3.3.1 - Mappa delle zone in cui è suddiviso il territorio italiano

10

2.14

1.4

 $z_{bar} =$

 $c_e(z) =$

 $c_p =$

[m]

$v_{b,0} =$	27.0	[m/s]
a ₀ =	500	[m]
k _a =	0.37	[1/s]
c _a =	1.0	
$v_b =$	27.0	[m/s]
$T_R =$	50	[anni]
c _r =	1.00	
$v_r =$	27.0	[m/s]
ρ _{aria} =	1.25	[kg/m ³]
q _p =	0.46	[kN/m ²]
	В	
	10/30 kr	m
	Ш	
$c_t =$	1.0	
k _{r=}	0.20	
$z_0 =$	0.10	[m]
	$a_0 = k_a = c_a = k_b = c_b = c_r = c_r = c_t $	$a_0 = 500$ $k_a = 0.37$ $c_a = 1.0$ $v_b = 27.0$ $T_R = 50$ $c_r = 1.00$ $v_r = 27.0$ $\rho_{aria} = 1.25$ $q_p = 0.46$ $R_r = 1.00$ $r_r = 1.25$

Coefficiente dinamico		c _d =	1.0	
3.3.4 Pressione del vento	$p(z) = q_r c_e c_p c_d$	p(z) =	1.37	(kN/m ²)

per z > z_{min} $c_e(z) = k_r^2 c_t \ln(z/z_0) (7+c_t \ln(z/z_0))$

 $\text{per } z \leq z_{\text{min}} \quad c_e(z) = c_e(z_{\text{min}})$

Coefficiente di forma (o coeficiente aereodinamico)

Coefficiente di esposizione

6.4 Azione longitudinale di frenamento

AZIONI LONGITUDINALI (§5.1.3.5 NTC18)

5.1.3.5 Azioni variabili da traffico. Azione longitudinale di Frenamento o di accelerazione: \mathbf{q}_3

La forza di frenamento o di accelerazione q_3 è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è uguale a

$$180 \text{ kN} \le q_3 = 0.6 (2Q_{1k}) + 0.10q_{1k} \cdot w_1 \cdot L \le 900 \text{ kN}$$
 [5.1.4]

essendo w_i la larghezza della corsia e L la lunghezza della zona caricata. La forza, applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla lunghezza caricata e include gli effetti di interazione.

Azione longitudinale di frenamento o di accelerazione	q ₃ =	533	[kN]
Larghezza della corsia	w ₁ =	3.0	[m]
Carico concentrato da traffico corsia n.1	Q _{1k} =	300	[kN]
Carico distribuito da traffico corsia n.1	q _{1k} =	9.00	$[kN/m^2]$
Lunghezza della zona caricata	L = "	64.0	[m]

6.5 Azione centrifuga

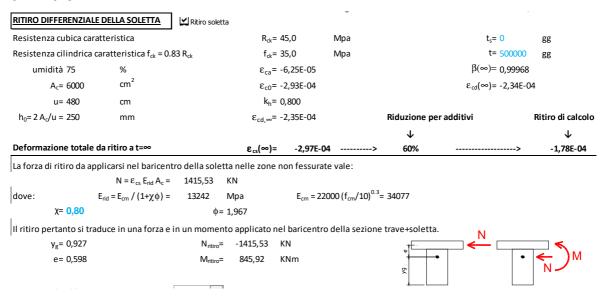
AZIONI LONGITUDINALI (§5.1.3.5 NTC18)

5.1.3.6 Azioni variabili da traffico. Azione centrifuga: q_4

Nei ponti con asse curvo di raggio R (in metri) l'azione centrifuga corrispondente ad ogni colonna di carico si valuta convenzionalmente come indicato in Tab. 5.1.III, essendo $Q_v = \sum_i 2Q_{ik}$ il carico totale dovuto agli assi tandem dello schema di carico 1 agenti sul ponte.

Il carico concentrato q₄, applicato a livello della pavimentazione, agisce in direzione normale all'asse del ponte.

Tab. 5.1.III - Valori caratteristici delle forze centrifughe


Raggio di curvatura [m]	q ₄ [kN]
R < 200	0,2 Q _v
$200 \le R \le 1500$	40 Q _v /R
1500 ≤ R	0

Azione centrifuga	q ₄ =	34	[kN]
Carico totale dovuto agli assi tandem dello schema 1	Q _v =	600	[kN]
numero delle corsie caricate	n =	3	
Lunghezza della zona caricata	L =	64.0	[m]
Raggio di curvatura asse ponte	R =	700	[m]
Carico concentrato da traffico corsia n.1	Q _{1k} =	300	[kN]
Carico concentrato da traffico corsia n.2	$Q_{2k} =$	200	[kN]
Carico concentrato da traffico corsia n.3	Q _{3k} =	100	[kN]

6.6 Urto dei veicoli in svio

Si tiene conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione di 100 kN. Essa è considerata agente trasversalmente ed orizzontalmente 1.0 m sopra il livello del piano di marcia.

6.7 Ritiro

Il ritiro differenziale della soletta rispetto alla trave è mitigato da una quota parte che la trave continua ad esaurire successivamente al getto della soletta. Volendo tener in conto questa evenienza si riduce il ritiro (60%) alla stregua di quanto si farebbe con l'adozione di un additivo. Tuttavia si conferma in questa sede la necessità di prevedere sempre additivi antiritiro in soletta per migliorarne notevolmente la durabilità.

6.8 Variazioni termiche

Per quanto riguarda gli effetti della temperatura sulla struttura sono state valutate le seguenti condizioni di carico:

Variazione termica differenziale sull'altezza della trave: si considera alternativamente (a seconda dell'effetto più gravoso) un gradiente termico di ±10°C.

Variazione termica uniforme sull'altezza della trave: si considera una variazione termica di ±30°C.

6.9 Azione sismica

In sede di revisione del presente Progetto Definitivo si è valutata la categoria di sottosuolo secondo le nuove indicazioni (V_{s,eq}) del D. M. Min. II. TT. del 17 gennaio 2018. In questa opera la categoria di sottosuolo determinata con i criteri (V_{s,30}) della precedente norma rimangono invariati.

6.9.1 Vita nominale

La vita nominale di un'opera strutturale è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata.

Come vita nominale si assume $V_N = 50$ anni.

6.9.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un'eventuale collasso, le costruzioni sono suddivise in classi d'uso. Nel caso in oggetto si fa riferimento alla Classe IV: "costruzioni con funzioni pubbliche o strategiche importante, anche con riferimento alla gestione della protezione civile in caso di calamità..... Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico."

Il coefficiente d'uso si assume pertanto pari a $C_U = 2.0$.

6.9.3 Periodo di riferimento per l'azione sismica

Le azioni sismiche vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U . Tale coefficiente è funzione della classe d'uso.

 $V_R = V_N x C_U = 50 \text{ anni } x 2 = 100 \text{ anni}$

Le probabilità di superamento PVR nel periodo di riferimento V_R , cui riferirsi per individuare l'azione sismica agente, sono pari al 10% nel caso dello stato limite SLV e pari al 5% nel caso dello stato limite SLC.

6.9.4 Parametri di progetto

Le azioni di progetto si ricavano, ai sensi delle NTC18, dalle accelerazioni ag e dalle relative forme spettrali. Le forme spettrali previste dalle NTC sono definite su sito di riferimento rigido orizzontale in funzione dei tre parametri:

- ag accelerazione orizzontale massima del terreno;
- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_C* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per ciascun nodo del reticolo di riferimento e per ciascuno dei periodi di ritorno T_R considerati dalla pericolosità sismica, i tre parametri si ricavano riferendosi ai valori corrispondenti al 50esimo percentile ed attribuendo ad:

- ag il valore previsto dalla pericolosità sismica;
- F₀ e T_C* i valori ottenuti imponendo che le forme spettrali in accelerazione, velocità e spostamento previste dalle NTC18 scartino al minimo dalle corrispondenti forme spettrali previste dalla pericolosità sismica.

Le forme spettrali previste dalle NTC18 sono caratterizzate da prescelte probabilità di superamento e vite di riferimento. A tal fine occorre fissare:

- la vita di riferimento V_R della costruzione;
- le probabilità di superamento nella vita di riferimento PVR associate agli stati limite considerati, per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

A tal fine è conveniente utilizzare, come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica T_R , espresso in anni. Fissata la vita di riferimento V_R , i due parametri T_R e PVR sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

$$T_R = -\frac{V_R}{\ln(1 - P_{VR})}$$

I valori dei parametri a_g , F_0 e T_{C}^* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC08.

I punti del reticolo di riferimento sono definiti in termini di Latitudine e Longitudine ed ordinati a Latitudine e Longitudine crescenti, facendo variare prima la Longitudine e poi la Latitudine. L'accelerazione al sito ag è espressa in g/10; F₀ è adimensionale, Tc* è espresso in secondi.

Nel seguito si riporta una tabella riassuntiva dei parametri che caratterizzano l'opera in oggetto:

Figura 6-2: Individuazione della pericolosità del sito

Si riportano di seguito i parametri che definiscono la pericolosità del sito di progetto:

Coordinate: Longitudine = 18.28608055 Latitudine = 40.14052777

Categoria di sottosuolo A

Smorzamento viscoso ξ =5%

Periodo di riferimento VR=100 anni

SLATO	T _R	a _g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	60	0.021	2.402	0.210
SLD	101	0.028	2.369	0.279
SLV	949	0.077	2.565	0.472
SLC	1950	0.100	2.626	0.518

Figura 6-3: Valori dei parametri a_g , F_0 , T_C^{\star} per i periodi di ritorno T_R associati

6.9.5 Categoria di sottosuolo

Per la definizione dell'azione sismica si può far riferimento all'approccio semplificato che si basa sull'individuazione delle categorie di sottosuolo di riferimento (tab 3.2.II NTC18):

Tab. 3.2.II - Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Caratteristiche della superficie topografica		
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.		
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.		
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.		
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.		
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.		

La classificazione si effettua sulla base dei valori della velocità equivalente Vs,30 di propagazione delle onde di taglio entro i primi 30 m di profondità e sulla base della resistenza penetrometrica dinamica equivalente NSPT,30.

Per le fondazioni superficiali tale profondità è riferita al piano d'imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali.

<u>In base alle indagini geologico - tecniche effettuate i terreni di fondazione interessati dall'opera oggetto di questa relazione possono essere classificati nella categoria "A".</u>

6.9.6 Condizioni topografiche

Per le condizioni topografiche si fa riferimento alla seguente classificazione (tab 3.2.III NTC18):

Tab. 3.2.III - Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15°≤i≤30°
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

La morfologia del territorio in cui ricade l'opera, è tale per cui ricade nella categoria topografica T1.

6.9.7 Spettro di risposta elastico in accelerazione

Lo spettro di risposta elastico in accelerazione è espresso da una forma spettrale (spettro normalizzato) riferita ad uno smorzamento convenzionale del 5%, moltiplicata per il valore della accelerazione orizzontale massima ag su sito di riferimento rigido orizzontale. Sia la forma spettrale che il valore di ag variano al variare della probabilità di superamento nel periodo di riferimento PVR.

6.9.8 Spettro di risposta elastico in accelerazione, componenti orizzontali

Lo spettro di risposta elastico della componente orizzontale è definito dalle espressioni seguenti:

$$\begin{split} 0 \leq T \leq T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \Bigg[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \cdot \left(1 - \frac{T}{T_B} \right) \Bigg] \\ T_B \leq T \leq T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \\ T_C \leq T \leq T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \frac{T_C}{T} \\ T_D \leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

nelle quali T ed S_e sono, rispettivamente, periodo di vibrazione ed accelerazione spettrale orizzontale. Inoltre:

- S: è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente: S = S_S x S_T; S_S è il coefficiente di amplificazione stratigrafica ed S_T il coefficiente di amplificazione topografica riportati nelle tabelle seguenti;
- η: è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali diversi dal 5%, mediante la relazione:
 - $\eta = \sqrt{10/(5+\xi)} \ge 0.55$ dove ξ (espresso in percentuale) è valutato sulla base di materiali, tipologia strutturale e terreno di fondazione;
- F_o: è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2.2;

Categoria sottosuolo	S _s	Cc
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10 \cdot (T_C^*)^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1.05 \cdot (T_C^*)^{-0.33}$
	a_	a 1 Hours 162 16440

 $1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$

Tab. 3.2.IV – Espressioni di S_s e di C_C

D

E

Tab. 3.2.V - Valori massimi del coefficiente di amplificazione topografica S_T

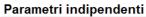
Categoria topografica	Ubicazione dell'opera o dell'intervento	ST
T1	8	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

- T_C : è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato da: $T_C = C_C \cdot T_C^*$; dove C_C è un coefficiente funzione della categoria di sottosuolo;
- $T_{\rm B}\!\!:$ è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante; $T_{\rm B}=T_{\rm C}\,/\,3$;
- T_D: è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, $T_{\rm D}=4.0\cdot\frac{a_{\rm g}}{g}+1.6$ espresso in secondi mediante la relazione:

6.9.9 Spettro di risposta elastico in accelerazione, componenti verticali

$$\begin{split} 0 &\leq T < T_B & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

nelle quali T e S_{ve} sono rispettivamente il periodo di vibrazione e l'accelerazione spettrale verticale, mentre F_v è il fattore che quantifica l'amplificazione spettrale massima, in termini di accelerazione orizzontale massima del terreno a_g su sito di riferimento rigido orizzontale, mediante la relazione:


$$F_{v} = 1,35 \cdot F_{o} \cdot \left(\frac{a_{g}}{g}\right)^{0.5}$$

I valori di a_g , F_o , S, η sono quelli già definiti per le componenti orizzontali; i valori di S_S , T_B , T_C e T_D , sono invece quelli riportati nella tabella seguente.

Tab. 3.2.VI - Valori dei parametri dello spettro di risposta elastico della componente verticale

Categoria di sottosuolo	S _S	T _B	T _c	T_{D}
A, B, C, D, E	1,0	0,05 s	0,15 s	1,0 s

6.9.10 Spettri di progetto in accelerazione

STATO LIMITE	SLV
a _a	0.077 g
F _o	2.565
T _C *	0.472 s
S _S	1.000
C _C	1.000
S _T	1.000
q	1.000

Parametri dipendenti

S	1.000
η	1.000
T _B	0.157 s
T_C	0.472 s
T _D	1.907 s

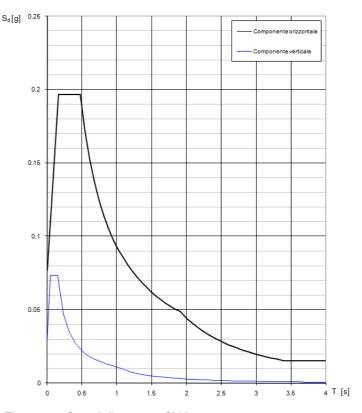


Figura 6-4: Spettri di progetto SLV

Parametri dipendenti

S	1.000
η	1.000
T _B	0.173 s
T _C	0.518 s
T _D	2.002 s

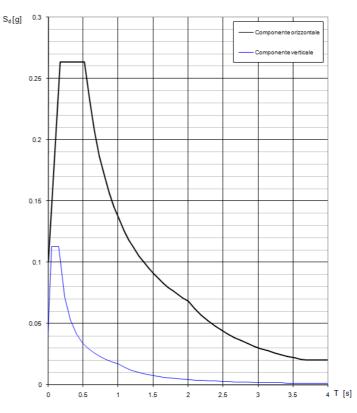


Figura 6-5: Spettri di progetto SLC

7. COMBINAZIONI DI CARICO

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, in osservanza ai §5.1.3.14 e §5.2.3 delle NTC18, si dovranno considerare, generalmente, le combinazioni riportate in Tab. 5.1.IV, combinate considerando gli stati limite di esercizio, gli stati limite ultimi e le condizioni sismiche.

Tab. 5.1.IV - Valori caratteristici delle azioni dovute al traffico

	-	Carich	i sulla superfic	Carichi su marciapiedi e piste ciclabili non sormontabili		
		Carichi vertical	i	Carichi	orizzontali	Carichi verticali
Gruppo di azioni	Modello principale (schemi di carico 1, 2, 3, 4 e 6)	Veicoli spe- ciali	Folla (Sche- ma di carico 5)	Frenatura	Forza centrifuga	Carico uniformemente distribuito
1	Valore carat- teristico					Schema di carico 5 con valore di combinazione 2,5KN/m²
2a	Valore fre- quente			Valore carat- teristico		
2ъ	Valore fre- quente				Valore caratteri- stico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0KN/m²
4 (**)			Schema di carico 5 con valore carat- teristico 5,0KN/m ²			Schema di carico 5 con valore caratteristico 5,0KN/m²
5 (***)	Da definirsi per il singo- lo progetto	Valore carat- teristico o nominale				

La Tab. 5.1.V fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi, il significato dei simboli è il seguente:

- γ_{G1} coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua, quando pertinente;
- γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;
- γ_Q coefficiente parziale delle azioni variabili da traffico;
- γ_{Qi} coefficiente parziale delle azioni variabili.

I valori dei coefficienti Ψ_{0i} , Ψ_{1i} e Ψ_{2i} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI.

 ${\bf Tab.\,5.1.V-Coefficienti\ parziali\ di\ sicurezza\ per\ le\ combinazioni\ di\ carico\ agli\ SLU}$

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti g_1 e g_3	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ŶQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	Υœ	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε 1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2· Υε3· Υε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tab. 5.1.VI - Coefficienti & per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi- nazione	Coefficiente \$\Psi_1\$ (valori frequenti)	Coefficiente W (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
traffico (Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)	\$500	0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
N ▼ Unition 1	SLU e SLE	0,0	0,0	0,0
Neve	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Agli stati limite di esercizio si sono considerate le verifiche per le combinazioni rara e frequente.

⁽a) Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(5) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

Le condizioni di carico di cui ai paragrafi precedenti sono state combinate secondo quanto indicato dalle norme tecniche sulle costruzioni NTC18.

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU): $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots \tag{2.5.1}$
- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili: $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$ [2.5.2]
- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili: $G_1+G_2+P+\psi_{11}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\psi_{23}\cdot Q_{k3}+\dots \eqno(2.5.3)$
- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine: $G_1+G_2+P+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\psi_{23}\cdot Q_{k3}+\dots \eqno([2.5.4]$
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.5]
- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_i \psi_{2j} Q_{kj}$$
. [2.5.7]

Nelle combinazioni si intende che vengano omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Altre combinazioni sono da considerare in funzione di specifici aspetti (p. es. fatica, ecc.).

Nelle formule sopra riportate il simbolo "+" vuol dire "combinato con".

I valori dei coefficienti ψ_{0j} ψ_{1j} e ψ_{2j} sono dati nella Tab. 2.5.I oppure nella Tab. 5.1.VI per i ponti stradali e nella Tab. 5.2.VII per i ponti ferroviari. I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Qi} sono dati nel § 2.6.1.

7.1 Impalcato

	Verifiche SLU	Verifiche SLE
G1 - IMPALCATO	1.35	1.00
G1 - SOLETTA	1.35	1.00
G2 - PERMANENTI	1.50	1.00
Q1 - MOBILIKK	1.50	1.00
P - PRECOMPRESSIONE	0.90	1.00

7.2 Pile

		E	E	ENV_SLE_I	F		EN'	V_SLU	_STR				
	SLE_CARATTERISTICHE (RARE)					SLE_FREQ Q. PERM.					SLU_ST	R	
COND. CARICO ELEM.	SLE_R_P	SLE_R_VC	SLE_R_1	SLE_R_2a	SLE_R_2b	SLE_F_P	SLE_F_VC	SLE_F_1	SLU_P	SLU_VC	SLU_1	SLU_2a	SLU_2b
G1-IMPALCATO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G1-SOLETTA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G1-PILA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G2-PERMANENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50
E1-DISTORSIONI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20
E2-RITIRO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20
E4-CEDIMENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20
Q1-MOBILI-KK			1.00								1.35		
Q1-MOBILI-FQ		1.00		1.00	1.00			1.00		1.35		1.35	1.35
Q3-FRENATURA				1.00								1.35	
Q4-CENTRIFUGA					1.00								1.35
Q5-VENTO-C		1.00	0.60	0.60	0.60		0.20			1.50	0.90	0.90	0.90
Q7-ATTRITO-P	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50
Q6-SISMA_L													
Q6-SISMA_T													
Q6-SISMA_V													
G1-PESO_FONDAZIONE	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G1-PESO_RINTERRO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
Q6-INERZIA_MASSE_L													
Q6-INERZIA_MASSE_T													
Q6-INERZIA_MASSE_V													

			ENV_SI	LU_SIS				EN	IV_SLU_0	GEO				
			SLV SIS	MICA					SLU_GE	0			EQU	
COND. CARICO ELEM.	SLU_SL1	SLU_SL2	SLU_ST1	SLU_ST2	SLU_V1	SLU_V2	SLU_G_P	SLU_G_VC	SLU_G_1	SLU_G_2a	SLU_G_2b	EQU_1	EQU_2	EQU_3
G1-IMPALCATO	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G1-SOLETTA	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G1-PILA	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G2-PERMANENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50			0.9
E1-DISTORSIONI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
E2-RITIRO	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20			
E4-CEDIMENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20			
Q1-MOBILI-KK									1.35			1.35		
Q1-MOBILI-FQ								1.35		1.35	1.35			
Q3-FRENATURA										1.35		1.35		
Q4-CENTRIFUGA											1.15			
Q5-VENTO-C								1.50	0.90	0.90	0.90	1.5	1.5	
Q7-ATTRITO-P							1.50	1.50	1.50	1.50	1.50	1.5	1.5	
Q6-SISMA_L	1.00	1.00	0.30	0.30	0.30	0.30								
Q6-SISMA_T	0.30	0.30	1.00	1.00	0.30	0.30								
Q6-SISMA_V	0.30	-0.30	0.30	-0.30	1.00	-1.00								
G1-PESO_FONDAZIONE	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G1-PESO_RINTERRO	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
Q6-INERZIA_MASSE_L	1.00	1.00	0.30	0.30	0.30	0.30								
Q6-INERZIA_MASSE_T	0.30	0.30	1.00	1.00	0.30	0.30								
Q6-INERZIA_MASSE_V	0.30	-0.30	0.30	-0.30	1.00	-1.00								

7.3 Spalle

			ENV_SLE	_R		ı	ENV_SLE_	F		EN	V_SLU	_STR	
	,	SLE_CARA	ATTERISTI	ICHE (RAR	E)	SLE_FREQ Q. PERM.			SLU_STR				
COND. CARICO ELEM.	SLE_R_P	SLE_R_VC	SLE_R_1	SLE_R_2a	SLE_R_2b	SLE_F_P	SLE_F_VC	SLE_F_1	SLU_P	SLU_VC	SLU_1	SLU_2a	SLU_2b
G1-IMPALCATO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G1-SOLETTA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G2-PERMANENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50
E1-DISTORSIONI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20
E2-RITIRO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20
E4-CEDIMENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20
Q1-MOBILI-KK			1.00								1.35		
Q1-MOBILI-FQ		1.00		1.00	1.00			1.00		1.35		1.35	1.35
Q3-FRENATURA				1.00								1.35	
Q4-CENTRIFUGA					1.00								1.35
Q5-VENTO-C		1.00	0.60	0.60	0.60		0.20			1.50	0.90	0.90	0.90
Q7-ATTRITO-P	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50
Q6-SISMA_L													
Q6-SISMA_T													
Q6-SISMA_V													
G1-PESO_SPALLA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G1-PESO_RINTERRO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G3-SPINTA_TERRA_STA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
Q1-SPINTA_MOBILI		1.00	1.00	1.00	1.00			1.00		1.35	1.35	1.35	1.35
Q3-FRENATURA_PARA				1.00								1.35	
G3-SPINTA_TERRA_SIS													
Q6-SOVRASPINTA_L													
Q6-INERZIA_MASSE_L													
Q6-INERZIA_MASSE_TP													
Q6-INERZIA_MASSE_TN													
Q6-INERZIA_MASSE_V													

			ENV_SI	LU_SIS				EN	IV_SLU_0	GEO				
			SLV SIS	MICA					SLU_GE	0			EQU	
COND. CARICO ELEM.	SLU_SL1	SLU_SL2	SLU_ST1	SLU_ST2	SLU_V1	SLU_V2	SLU_G_P	SLU_G_VC	SLU_G_1	SLU_G_2a	SLU_G_2b	EQU_1	EQU_2	EQU_3
G1-IMPALCATO	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G1-SOLETTA	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G2-PERMANENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50			0.9
E1-DISTORSIONI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
E2-RITIRO	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20			
E4-CEDIMENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20			
Q1-MOBILI-KK									1.35			1.35		
Q1-MOBILI-FQ								1.35		1.35	1.35			
Q3-FRENATURA										1.35		1.35		
Q4-CENTRIFUGA											1.15			
Q5-VENTO-C								1.50	0.90	0.90	0.90	1.5	1.5	
Q7-ATTRITO-P							1.50	1.50	1.50	1.50	1.50	1.5	1.5	
Q6-SISMA_L	1.00	1.00	0.30	0.30	0.30	0.30								
Q6-SISMA_T	0.30	-0.30	1.00	-1.00	0.30	-0.30								
Q6-SISMA_V	0.30	0.30	0.30	0.30	1.00	1.00								
G1-PESO_SPALLA	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G1-PESO_RINTERRO	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G3-SPINTA_TERRA_STA							1.35	1.35	1.35	1.35	1.35	1.1	1.1	
Q1-SPINTA_MOBILI								1.35	1.35	1.35	1.35	1.35	1.35	
Q3-FRENATURA_PARA										1.35		1.35	1.35	
G3-SPINTA_TERRA_SIS	1.00	1.00	1.00	1.00	1.00	1.00								
Q6-SOVRASPINTA_L	1.00	1.00	0.30	0.30	0.30	0.30								
Q6-INERZIA_MASSE_L	1.00	1.00	0.30	0.30	0.30	0.30								
Q6-INERZIA_MASSE_TP	0.30		1.00		0.30									
Q6-INERZIA_MASSE_TN		0.30		1.00		0.30								
Q6-INERZIA_MASSE_V	0.30	-0.30	0.30	-0.30	1.00	-1.00								

8. RISULTATI

8.1 ANALISI MODALE

Si riportano di seguito i principali risultati dell'analisi modale.

I modi considerati sono 500; le masse associate all'analisi modale sono costituite dal peso proprio dell'impalcato, dai carichi permanenti portati e dal peso proprio delle sottostrutture, in accordo con quanto prescritto dalla normativa.

La percentuale di massa eccitata nelle tre direzioni ortogonali è illustrata nella seguente tabella.

TABLE: Modal Load Participation Ratios											
OutputCase ItemType Item Static Dynamic											
Text	Text	Text	Percent	Percent							
MODALE	Acceleration	UX	99.9993	97.8337							
MODALE	Acceleration	UY	99.9994	98.0312							
MODALE	Acceleration	UZ	99.9994	96.1456							

Si riportano, nella seguente tabella, per i primi 20 modi di vibrare, i valori dei periodi e delle frequenze.

TABLE: Mod	TABLE: Modal Periods And Frequencies											
OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue						
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2						
MODALE	Mode	1	0.331876	3.01	18.93	358.43						
MODALE	Mode	2	0.232606	4.30	27.01	729.66						
MODALE	Mode	3	0.212906	4.70	29.51	870.93						
MODALE	Mode	4	0.159634	6.26	39.36	1549.21						
MODALE	Mode	5	0.149055	6.71	42.15	1776.93						
MODALE	Mode	6	0.107446	9.31	58.48	3419.65						
MODALE	Mode	7	0.104403	9.58	60.18	3621.87						
MODALE	Mode	8	0.101951	9.81	61.63	3798.17						
MODALE	Mode	9	0.096482	10.36	65.12	4240.97						
MODALE	Mode	10	0.095336	10.49	65.91	4343.53						
MODALE	Mode	11	0.093426	10.70	67.25	4523.00						
MODALE	Mode	12	0.088454	11.31	71.03	5045.75						
MODALE	Mode	13	0.07991	12.51	78.63	6182.40						
MODALE	Mode	14	0.077408	12.92	81.17	6588.47						
MODALE	Mode	15	0.076565	13.06	82.06	6734.42						
MODALE	Mode	16	0.05744	17.41	109.39	11965.32						
MODALE	Mode	17	0.055922	17.88	112.36	12623.87						
MODALE	Mode	18	0.055658	17.97	112.89	12744.02						
MODALE	Mode	19	0.055115	18.14	114.00	12996.32						
MODALE	Mode	20	0.050774	19.70	123.75	15313.59						

Si riportano nella seguente tabella, per i primi 20 modi di vibrare, le percentuali di massa eccitata nelle tre direzioni ortogonali.

Si riportano di seguito le deformate modali della struttura nei primi modi di vibrare.

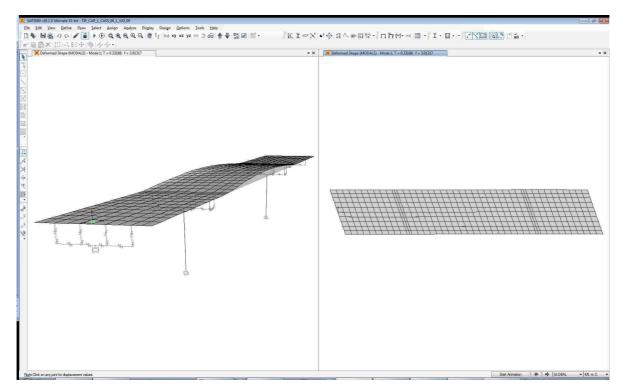
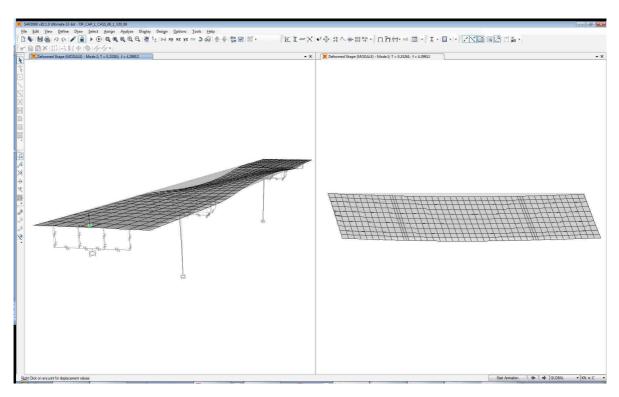
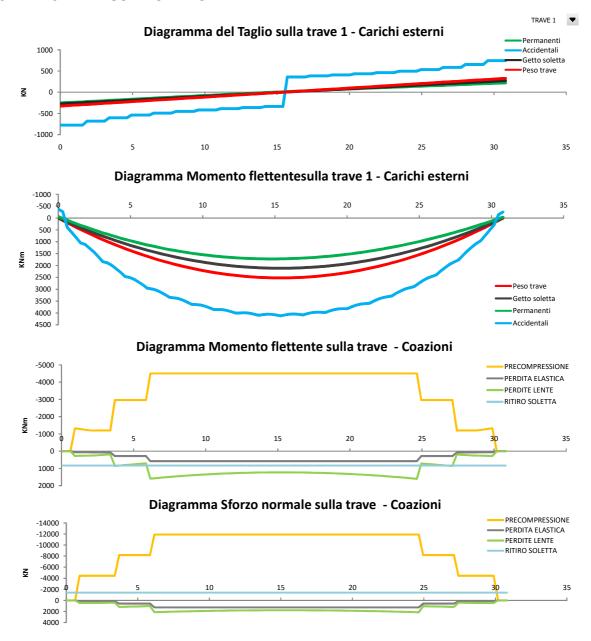
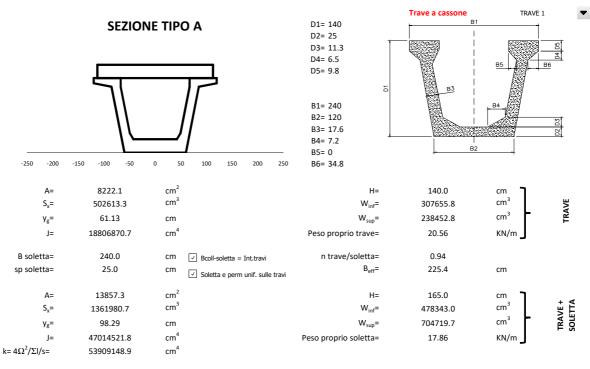


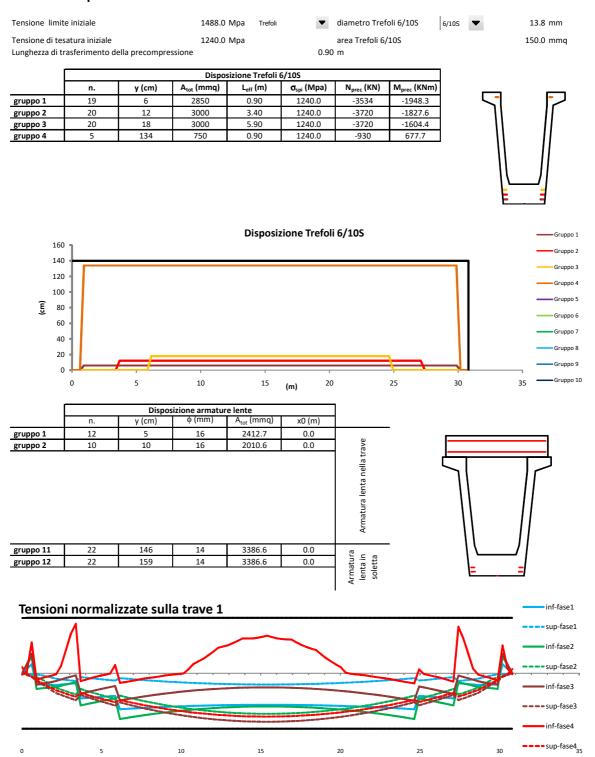
Figura 8-1: Deformata modale modo n°1

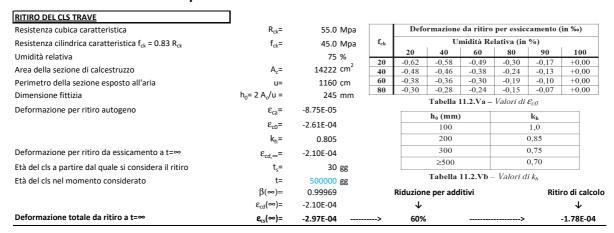




Figura 8-2: Deformata modale modo n°2

8.2 DIAGRAMMI SOLLECITAZIONI

9. VERIFICHE IMPALCATO


9.1 Caratteristiche trave in c.a.p.

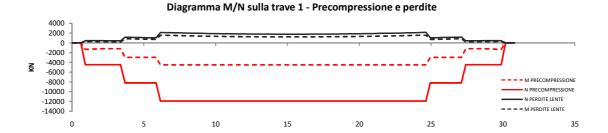

Sezione costante

D1= 140 **SEZIONE TIPO B** D2= 35 D3= 5.1 D4= 6.5 D5= 9.8 B1= 240 B2= 120 B3= 27.6 B4= 3.3 B5= 0 B6= 34.8 -250 -200 -100 -50 50 150 200 250 11284.4 140.0 cm H= A= TRAVE S_x= 716967.3 cm W_{inf}= 364573.2 cm³ y_g= 63.54 W_{sup}= 302934.3 cm J= 23163546.2 cm⁴ Peso proprio trave= 28.21 KN/m ✓ Bcoll-soletta = Int.travi B soletta= 240.0 n trave/soletta= 0.94 Soletta e perm unif. sulle travi sp soletta= B_{eff}= 225.4 25.0 cm $k=4\Omega^2/\Sigma I/s=$ 62120238.7 cm⁴ 16919.6 cm² H= 165.0 **IRAVE + SOLETTA** 1576334.7 cm³ W_{inf}= cm³ 571053.5 S_v= 93.17 740637.4 cm³ cm y_g= 53202848.9 J= Peso proprio soletta= 17.86 KN/m cm⁴

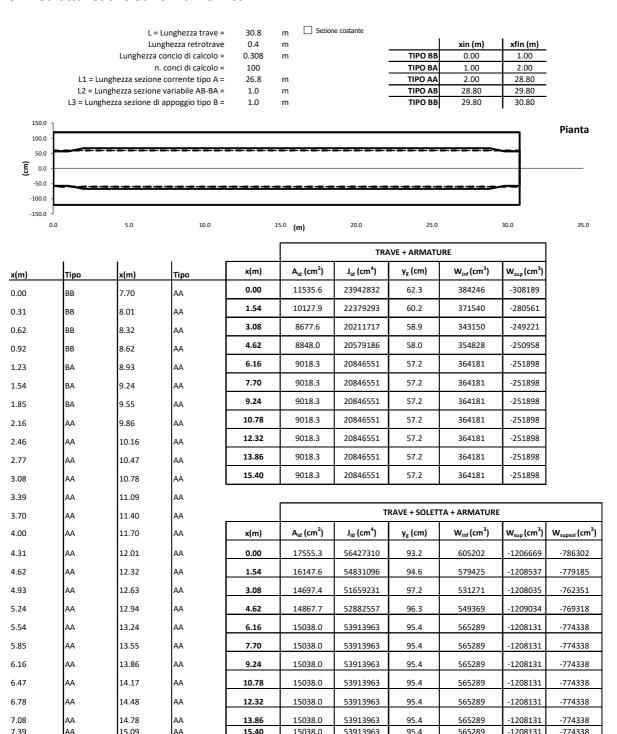
9.2 Precompressione e armatura lenta

9.3 Perdite differite nel tempo

VISCOSITA'		
Coeff. di viscosità a t=∞	φ (∞,t _s)=	1.973

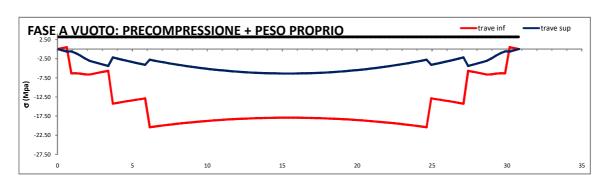

✓ Viscosità

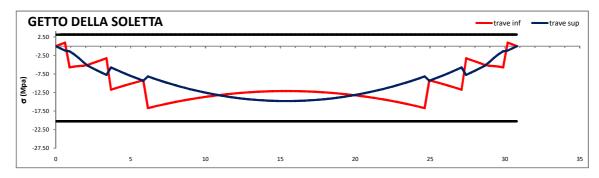
1 aben	Tabella 11.2.V1 – Valori di ψ(∞, t ₀). Adilosiera con ullidita relativa di Circa il 75%							
	t _o	h ₀ ≤ 75 mm	$h_0 = 150$	$h_0 = 300$	$h_0 \ge 600$			
	3 giorni	3,5	3,2	3,0	2,8			
	7 giorni	2,9	2,7	2,5	2,3			
	15 giorni	2.6	2.4	2.2	2.1			

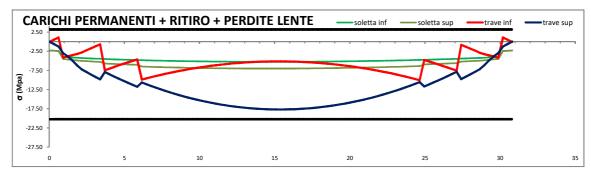

CADUTE DI TENSIONE PER RILASSAMENTO		
Tensione iniziale nel cavo	$\sigma_{\text{spi=}}$	1240.0 Mpa
Resistenza caratteristica dell'acciaio da precompressione	f _{pk} =	1670.0 Mpa
Perdita percentuale per rilass. a 1000 ore, a 20°C e con $\sigma_{spi}\text{=}0.7f_p$	ρ ₁₀₀₀ =	2.50 Mpa
	$\mu = \sigma_{spi}/f_{pk}=$	0.743
Tempo dalla messa in tensione	t=	500000 ore

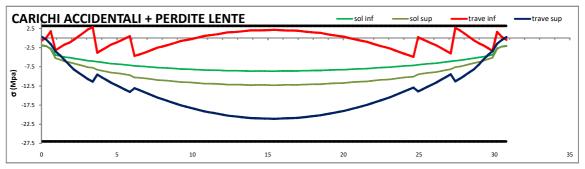
$$\begin{split} &\Delta\sigma_{pr}/\sigma_{pi}=&5,39\;\rho_{1000}\;e^{6,7\mu}\;(t/1000)^{0,75(1-\mu)}\;10^{-5} & \text{Trecce, fili, trefoli ordinari a normale rilassamento} \\ &\Delta\sigma_{pr}/\sigma_{pi}=&0,66\;\rho_{1000}\;e^{9,1\mu}\;(t/1000)^{0,75(1-\mu)}\;10^{-5} & \text{Trecce, fili, trefoli stabilizzati a basso rilassamento} \\ &\Delta\sigma_{pr}/\sigma_{pi}=&1,98\;\rho_{1000}\;e^{8,0\mu}\;(t/1000)^{0,75(1-\mu)}\;10^{-5} & \text{Barre laminate} \end{split}$$

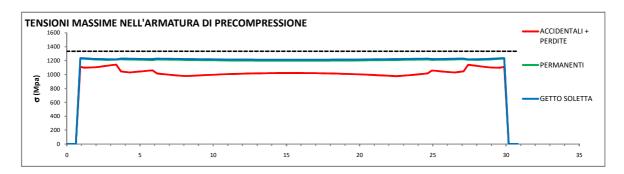
Nel nostro caso trattandosi di: Trefoli stabilizzati Caduta di tensione per rilassamento al tempo t = 500000 ore $\Delta \sigma_{pr}/\sigma_{pi}$ = 0.047 $\Delta \sigma_{pr}$ = 58.42 Mpa

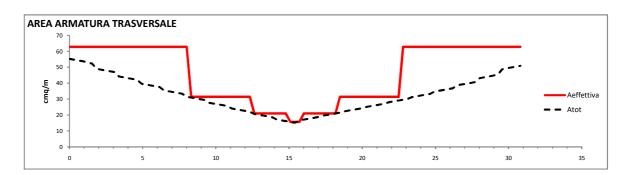


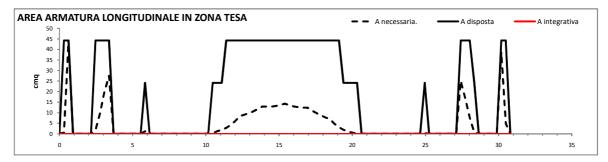

9.4 Caratteristiche sezioni di verifica

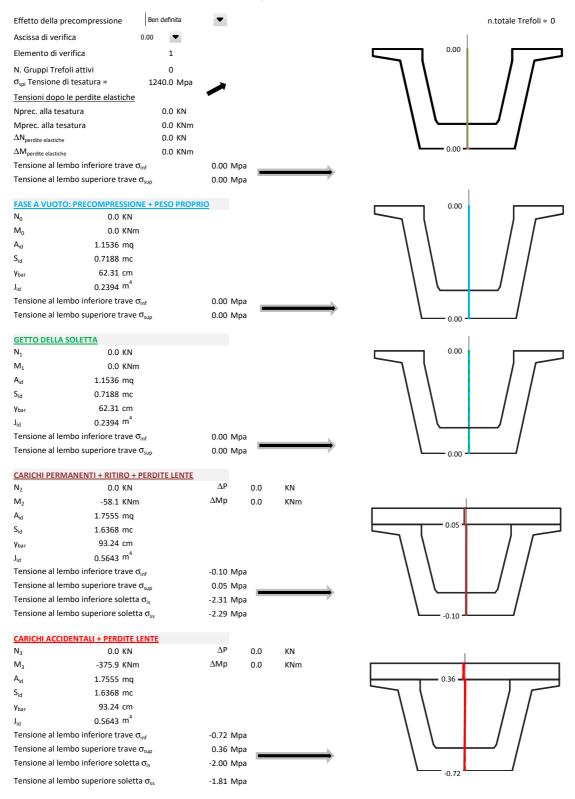



9.5 Diagramma tensioni sulla trave n.1





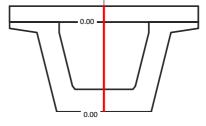



9.6 Diagramma tensioni/aree armature trave n.1

9.7 Verifica sezione n.1 – ascissa x = 0,000m

PERDITE ELASTICHE

 $\Delta\sigma_{\text{p0}}$ Δ N (KN)= 0.0 Δ M (KNm)= 0.0


 $\sigma_{\text{inf}}\text{= }0.00$ σ_{sup} = 0.00

PERDITE DIFFERITE NEL TEMPO

 $\Delta\sigma_{\!_{p\infty}}$ Δ N (KN)= 0.0 Δ M (KNm)= 0.0 σ_{inf} = 0.00 σ_{sup} = 0.00

 σ_{is} = 0.00

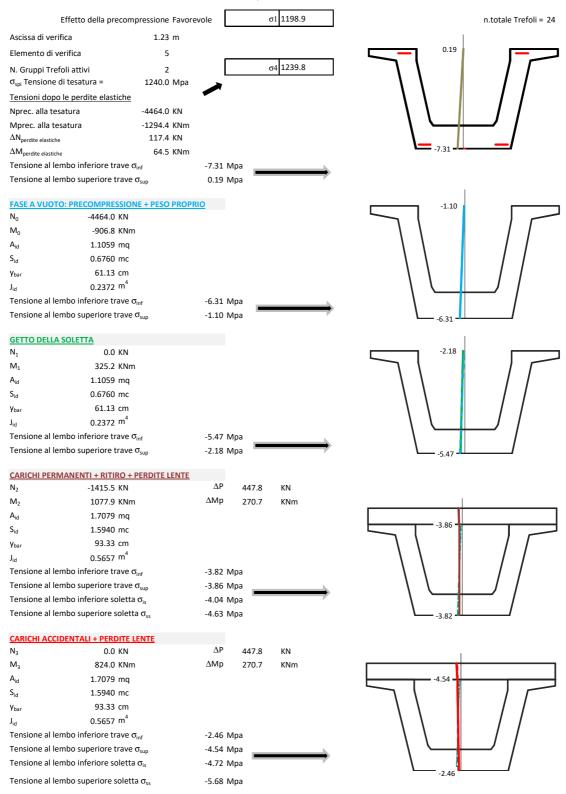
 σ_{ss} = 0.00

TENSIONI ARMATURA LENTA	Max	Min
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	0.0	0.0
GETTO DELLA SOLETTA	0.0	0.0
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	0.4	-0.5
CARICHI ACCIDENTALI + PERDITE LENTE	2.9	-3.9
TENSIONI ARMATURA DI PRECOMPRESSIONE	Max	Min
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	0.0	0.0
GETTO DELLA SOLETTA	0.0	0.0
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	0.0	0.0
CARICHI ACCIDENTALI + PERDITE LENTE	0.0	0.0

VERIFICA A TAGLIO - SLU

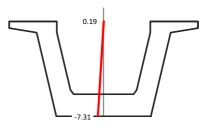
V _{Ed} =	2356.0 KN	ELEMENTO SENZA A	ELEMENTO SENZA ARMATURA A TAGLIO		
f _{ck} =	45.00 Mpa	v _{min} =	0.375 Mpa		
$f_{cd} =$	25.50 Mpa	σ_{cp} =	0.000 Mpa		
f'cd=	12.75 Mpa	k =	1.367		
f _{ctd} =	1.77 Mpa	A _{sI} =	112.0 cm ²		
f _{yd} =	391.30 Mpa	$\rho = A_{sl}/b_w d =$	0.013		
d =	148.5 cm	$\gamma_c =$	1.5		
b _w =	56.3 cm	V _{Rd} =	537.9 KN		

ELEMENTO CON ARMATURA A TAGLIO				
α _{cc} =	1.000			
V _{Rcd} =	4799.7 KN			
$A_{sw}/s = A_{nec.} =$	47.83 cm ² /m			
α_{cc} = V_{Rcd} = $A_{sw}/s = A_{nec.}$ = Staffe disposte 4 br. f10/5	59.10 cm ² /m			
V _{Rsd} =	3090.7 KN			
$V_{Rsd} = V_{Rd} = min (V_{Rcd}, V_{Rsd}) =$	3090.7 KN			
V _{Rd} > V _{Ed} = La verifica è sod	disfatta			

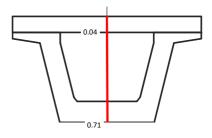

VERIFICA A TORSIONE - SLU

Mt _{Ed} =	498.8 KNm				
Armatura trasversali		Calcestruzzo)	Armatura lon	gitudinali
f _{yd} =	391.30 Mpa	f' _{cd} =	12.75 Mpa	u _m =	5284.8 mm
θ	45 °	t =	276 mm	A _{minima}	19.73 cm ²
Ω	1707281 mm ²	Ω	1707281 mm ²		
$A_{sw}/s = A_{nec.} =$	$3.73 \text{ cm}^2/\text{m}$				
T _{Rsd} =	498.8 KNm	T _{Rcd} =	6007.9 KNm		

VERIFICA A TORSIONE E TAGLIO - LATO CALCESTRUZZO


 $V_{Ed}/V_{Rcd}+Mt_{Ed}/T_{Rcd}=$ 0.574 La verifica è soddisfatta

9.8 Verifica sezione n.5 – ascissa x = 1,2716m


	PI	ER	DI	TE	EL/	١ST	ICH	Ε
--	----	----	----	----	-----	-----	-----	---

	σ_{p0}		$\Delta\sigma_{p0}$	Δ N (KN)= 117.4
gruppo 1	1240.0	>	-41.1	Δ M (KNm)= 64.5
				σ_{inf} = -7.31
				σ_{sup} = 0.19
gruppo 4	1240 0	>	-0.2	

PERDITE DIFFERITE NEL TEMPO

	$\sigma_{\!\scriptscriptstyle p0}$		$\Delta\sigma_{\!\scriptscriptstyle{p^\infty}}$	ΔN (KN)= 447.8
gruppo 1	1198.9	>	-124.1	Δ M (KNm)= 270.7
				σ_{inf} = 0.71
				σ_{sup} = 0.04
gruppo 4	1239.8	>	-125.4	σ_{is} = 0.04
				$\sigma_{cc} = -0.08$

TENSIONI ARMATURA LENTA	Max
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	-33.7
GETTO DELLA SOLETTA	-29.7
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	-10.4
CARICHI ACCIDENTALI + PERDITE LENTE	-14.4
TENSIONI ARMATURA DI PRECOMPRESSIONE	Max

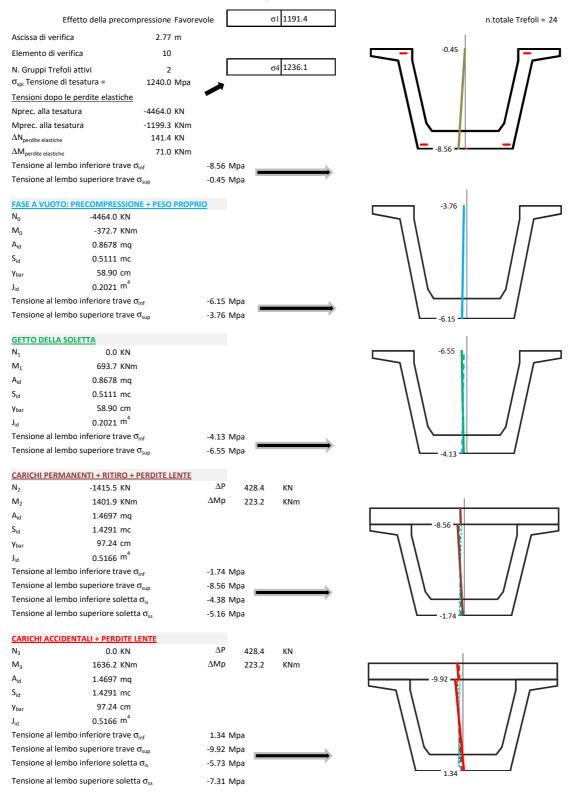
TENSIONI ARMATURA DI PRECOMPRESSIONE	Max
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	1239.8
GETTO DELLA SOLETTA	1234.1
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	1225.0
CARICHI ACCIDENTALI + PERDITE LENTE	1221.6

Min			
-34.8			
-30.4			
-21.7			
-17.5			
Min			
1198.9			
1203.2			
1087.6			
1094.9			

VERIFICA A TAGLIO - SLU

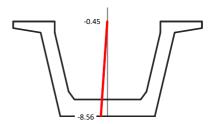
V _{Ed} =	2262.4 KN	ELEMENTO SENZA	ELEMENTO SENZA ARMATURA A TAGLIO		
f _{ck} =	45.00 Mpa	v _{min} =	0.375 Mpa		
$f_{cd} =$	25.50 Mpa	σ_{cp} =	4.036 Mpa		
f' _{cd} =	12.75 Mpa	k =	1.367		
f _{ctd} =	1.77 Mpa	A _{si} =	112.0 cm ²		
f _{yd} =	391.30 Mpa	$\rho = A_{sl}/b_w d =$	0.015		
d =	148.5 cm	$\gamma_c =$	1.5		
b _w =	51.6 cm	V _{Rd} =	971.3 KN		

ELEMENTO CON ARMATURA A TAGLIO			
α_{cc} = V_{Rcd} = A_{sw}/s = $A_{nec.}$ = Staffe disposte 4 br. f10/5	1.158		
V _{Rcd} =	5092.2 KN		
$A_{sw}/s = A_{nec.} =$	45.82 cm ² /m		
Staffe disposte 4 br. f10/5	$59.19 \text{ cm}^2/\text{m}$		
$V_{Rsd} = V_{Rd} = min (V_{Rcd}, V_{Rsd}) = V_{Rd} > V_{Ed} = La verifica è sodo$	3095.6 KN		
$V_{Rd} = min (V_{Rcd}, V_{Rsd}) =$	3095.6 KN		
V _{Rd} > V _{Ed} = La verifica è sodo	<u>disfatta</u>		

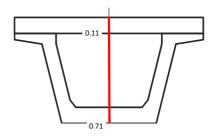

VERIFICA A TORSIONE - SLU

Mt _{Ed} =	498.8 KNm					
Armatura trasve	ersali	Calcestruzzo)	Armatura lon	gitudinali	
f _{yd} =	391.30 Mpa	f' _{cd} =	12.75 Mpa	u _m =	5351.1 mm	
θ	45 °	t =	252.8 mm	A _{minima}	19.48 cm ²	
Ω	1750972 mm ²	Ω	1750972 mm²			
$A_{sw}/s = A_{nec.} =$	$3.64 \text{ cm}^2/\text{m}$					
T _{Rsd} =	498.8 KNm	T _{Rcd} =	5643.7 KNm			

VERIFICA A TORSIONE E TAGLIO - LATO CALCESTRUZZO


V_{Fd}/V_{Rcd}+Mt_{Fd}/T_{Rcd} = 0.533 <u>La verifica è soddisfatta</u>

9.9 Verifica sezione n.10 – ascissa x = 2,8611m


PERDITE	ELASTICHE

	σ_{p0}		$\Delta\sigma_{_{\!P^0}}$	Δ N (KN)= 141.4
gruppo 1	1240.0	>	-48.6	Δ M (KNm)= 71.0
				σ_{inf} = -8.56
				σ_{sup} = -0.45
gruppo 4	1240.0	>	-3.9	

PERDITE DIFFERITE NEL TEMPO

	σ_{p0}		$\Delta\sigma_{p\infty}$	Δ N (KN)= 428.4
gruppo 1	1191.4	>	-104.4	Δ M (KNm)= 223.2
				σ_{inf} = 0.71
				σ_{sup} = 0.11
gruppo 4	1236.1	>	-174.6	σ_{is} = 0.11
				$\sigma_{cc} = 0.00$

TENSIONI	ARMATURA	LENTA

FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	-33.9
GETTO DELLA SOLETTA	-23.9
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	-13.0
CARICHI ACCIDENTALI + PERDITE LENTE	5.3
TENSIONI ARMATURA DI PRECOMPRESSIONE	Max
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	1236.1
GETTO DELLA SOLETTA	1221.4

Min	
-34.4	
-24.4	
-14.8	
-26.0	
Min	

Max	
1236.1	
1221.4	
1210.3	
1226.7	

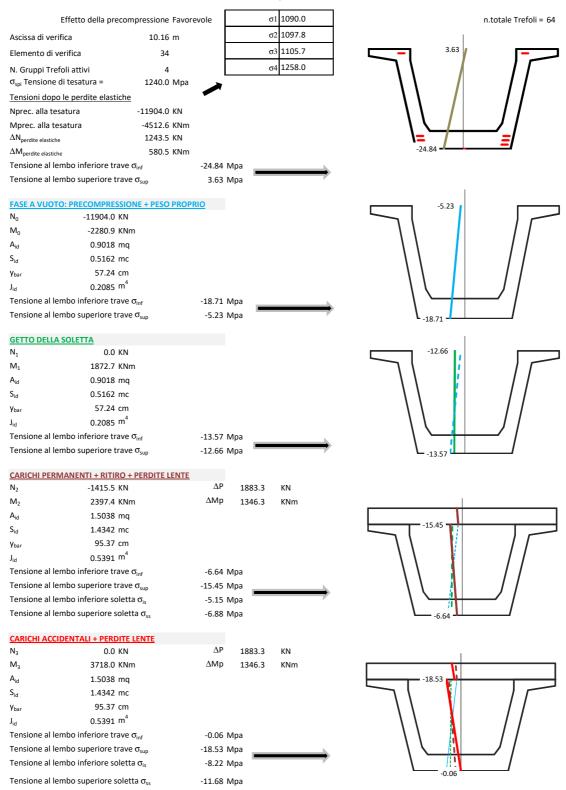
Max

1191.4	
1201.7	
1036.5	
1029.8	

VERIFICA A TAGLIO - SLU

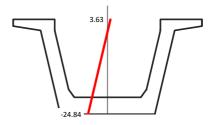
CARICHI PERMANENTI + RITIRO + PERDITE LENTE CARICHI ACCIDENTALI + PERDITE LENTE

V _{Ed} =	1993.8 KN	ELEMENTO SENZA	ARMATURA A TAGLIO
f _{ck} =	45.00 Mpa	v _{min} =	0.375 Mpa
f _{cd} =	25.50 Mpa	σ_{cp} =	5.144 Mpa
f'cd =	12.75 Mpa	k =	1.367
f _{ctd} =	1.77 Mpa	A _{si} =	112.0 cm ²
f _{yd} =	391.30 Mpa	$\rho = A_{sl}/b_w d =$	0.020
d =	148.5 cm	$\gamma_c =$	1.5
b _w =	35.9 cm	V _{Rd} =	803.8 KN

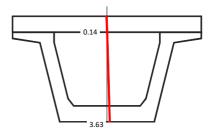

ELEMENTO CON ARMATURA A TAGLIO				
α_{cc} = V_{Rcd} = $A_{sw}/s = A_{nec.}$ = Staffe disposte 4 br. f10/5	1.202			
V _{Rcd} =	3678.2 KN			
$A_{sw}/s = A_{nec.} =$	$40.40 \text{ cm}^2/\text{m}$			
Staffe disposte 4 br. f10/5	59.29 cm ² /m			
$V_{Rsd} = V_{Rd} = min (V_{Rcd}, V_{Rsd}) =$	3100.7 KN			
$V_{Rd} = min (V_{Rcd}, V_{Rsd}) =$	3100.7 KN			
V _{Rd} > V _{Fd} = La verifica è sod	disfatta			

VERIFICA A TORSIONE - SLU

Mt _{Ed} =	526.4 KNm				
Armatura trasve	rsali	Calcestruzz)	Armatura lon	gitudinali
f _{yd} =	391.30 Mpa	f' _{cd} =	12.75 Mpa	u _m =	5570.6 mm
θ	45 °	t =	176 mm	A _{minima}	19.73 cm ²
Ω	1899129 mm²	Ω	1899129 mm ²		
$A_{sw}/s = A_{nec.} =$	3.54 cm ² /m				
T _{Rsd} =	526.4 KNm	T _{Rcd} =	4261.6 KNm		


La verifica è soddisfatta

9.10 Verifica sezione n.34 – ascissa x = 10,4907m


PERDITE ELASTICHE

	$\sigma_{\!\scriptscriptstyle p0}$		$\Delta\sigma_{p0}$	ΔN (KN)= 1243.5
gruppo 1	1240.0	>	-150.0	Δ M (KNm)= 580.5
gruppo 2	1240.0	>	-142.2	σ_{inf} = -24.84
gruppo 3	1240.0	>	-134.3	σ_{sup} = 3.63
gruppo 4	1240.0	>	18.0	

PERDITE DIFFERITE NEL TEMPO

	$\sigma_{_{\!p0}}$		$\Delta\sigma_{p\infty}$	$\Delta N (KN) = 1883.3$
gruppo 1	1090.0	>	-189.8	Δ M (KNm)= 1346.3
gruppo 2	1097.8	>	-192.0	σ_{inf} = 3.63
gruppo 3	1105.7	>	-195.1	σ_{sup} = 0.14
gruppo 4	1258.0	>	-241.8	σ_{is} = 0.14
				σ_{ss} = -0.49

962.9

948.5

TENSIONI ARMATURA LENTA	Max	Min
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	-100.8	-103.5
GETTO DELLA SOLETTA	-76.7	-76.9
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	-18.1	-41.3
CARICHI ACCIDENTALI + PERDITE LENTE	-4.1	-48.2
TENSIONI ARMATURA DI PRECOMPRESSIONE	Max	Min
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	1258.0	1090.0
GETTO DELLA SOLETTA	1218.9	1116.1
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	1203.8	962.9

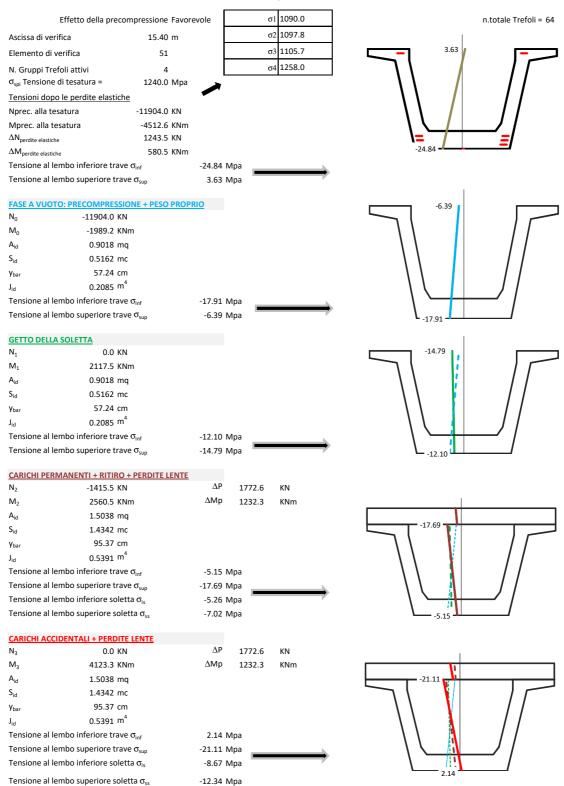
VERIFICA A TAGLIO - SLU

CARICHI ACCIDENTALI + PERDITE LENTE

$\frac{\mathbf{V}_{Ed}}{f_{ck}} =$	1014.1 KN	ELEMENTO SENZ	A ARMATURA A TAGLIO
f _{ck} =	45.00 Mpa	v _{min} =	0.375 Mpa
f _{cd} =	25.50 Mpa	σ_{cp} =	13.200 Mpa
f'cd =	12.75 Mpa	k =	1.367
f _{ctd} =	1.77 Mpa	A _{sl} =	112.0 cm ²
f _{yd} =	391.30 Mpa	$\rho = A_{si}/b_w d =$	0.020
d =	148.5 cm	γ_c =	1.5
b _w =	35.9 cm	V _{Rd} =	1448.4 KN

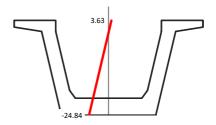
La sezione non necessita di armatura resistente a taglio

VERIFICA A TORSIONE - SLU

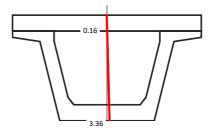

Mt _{Ed} =	471.2 KNm				
Armatura tras	sversali	Calcestruzzo	0	Armatura lon	gitudinali
f _{yd} =	391.30 Mpa	f'cd=	12.75 Mpa	u _m =	5570.6 mm
θ	45 °	t =	176 mm	A _{minima}	17.66 cm ²
Ω	1899129 mm²	Ω	1899129 mm ²		
$A_{sw}/s = A_{nec.} =$	$3.17 \text{ cm}^2/\text{m}$				
T _{Rsd} =	471.2 KNm	T _{Rcd} =	4261.6 KNm		

1188.6

VERIFICA A TORSIONE E TAGLIO - LATO CALCESTRUZZO


V_{Ed}/V_{Rcd}+Mt_{Ed}/T_{Rcd} = 0.385 La verifica è soddisfatta

9.11 Verifica sezione n.51 – ascissa x = 15,8957m


PERDITE ELASTICHE

	σ_{p0}		$\Delta\sigma_{p0}$	Δ N (KN)= 1243.5
gruppo 1	1240.0	>	-150.0	Δ M (KNm)= 580.5
gruppo 2	1240.0	>	-142.2	σ_{inf} = -24.84
gruppo 3	1240.0	>	-134.3	σ_{sup} = 3.63
gruppo 4	1240 0	>	18.0	

PERDITE DIFFERITE NEL TEMPO

	σ_{p0}		$\Delta\sigma_{p\infty}$	ΔN (KN)= 1772.6
gruppo 1	1090.0	>	-173.6	ΔM (KNm)= 1232.3
gruppo 2	1097.8	>	-177.5	σ_{inf} = 3.36
gruppo 3	1105.7	>	-182.2	σ_{sup} = 0.16
gruppo 4	1258.0	>	-265.0	σ_{is} = 0.16
				σ_{ss} = -0.41

TENSIONI ARMATURA LENTA	Max	Min
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	-97.0	-99.4
GETTO DELLA SOLETTA	-69.2	-69.8
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	-19.0	-34.3
CARICHI ACCIDENTALI + PERDITE LENTE	7.4	-51.7
TENSIONI ARMATURA DI PRECOMPRESSIONE	Max	Min
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	1258.0	1090.0
GETTO DELLA SOLETTA	1213.7	1119.5
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	1198.0	934.7
CARICHI ACCIDENTALI + PERDITE LENTE	1181.2	917.9

VERIFICA A TAGLIO - SLU

V _{Ed} =	488.6 KN	ELEMENTO SENZA	ELEMENTO SENZA ARMATURA A TAGLIO		
f _{ck} =	45.00 Mpa	v _{min} =	0.375 Mpa		
f _{cd} =	25.50 Mpa	σ_{cp} =	13.200 Mpa		
f'cd =	12.75 Mpa	k =	1.367		
f _{ctd} =	1.77 Mpa	A _{si} =	112.0 cm ²		
f _{yd} =	391.30 Mpa	$\rho = A_{sl}/b_w d =$	0.020		
d =	148.5 cm	$\gamma_c =$	1.5		
b _w =	35.9 cm	V _{Rd} =	1448.4 KN		

La sezione non necessita di armatura resistente a taglio

<u>VERIFICA A TORSIONE - SLU</u>

Mt _{Ed} =	430.3 KNm						
Armatura trasversali		Calcestruzzo	0	Armatura lon	Armatura longitudinali		
f _{yd} =	391.30 Mpa	f' _{cd} =	12.75 Mpa	u _m =	5570.6 mm		
θ	45 °	t =	176 mm	A _{minima}	16.13 cm ²		
Ω	1899129 mm²	Ω	1899129 mm²				
$A_{sw}/s = A_{nec.} =$	2.90 cm ² /m						
T _{Rsd} =	430.3 KNm	T _{Rcd} =	4261.6 KNm				

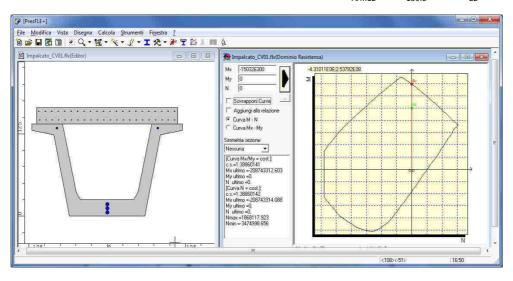
VERIFICA A TORSIONE E TAGLIO - LATO CALCESTRUZZO

V_{Ed}/V_{Rcd}+Mt_{Ed}/T_{Rcd} = 0.233 La verifica è soddisfatta

9.12 Verifica a rottura della sezione di mezzeria

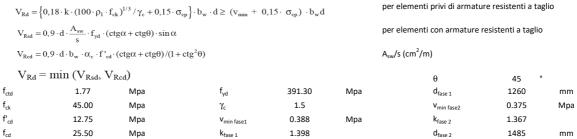
Le azioni flettenti per la verifica a rottura della sezione di mezzeria valgono:

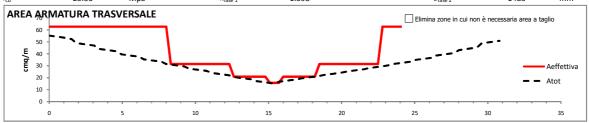
PESO PROPRIO	2523 KNm	x	1.35	=	3406.6
GETTO DELLA SOLETTA	2118 KNm	x	1.35	=	2858.6
CARICHI PERMANENTI	1722 KNm	x	1.5	=	2582.5
CARICHI ACCIDENTALI	4123 KNm	x	1.5	=	6184.9


Momento flettente di calcolo M_{Ed} 15032.63 KNm

Il valore della precompressione in mezzeria a meno delle perdite istantanee e differite e del coefficiente di combinzione allo SLU vale, in termini deformazioni:

		CAVI DI PREC	OMPRESSONE	
	y(cm)	3	ϵ_{SLU}	
gruppo 1	6.0	60.24	0.00477182	0.00429463
gruppo 2	12.0	61.80	0.00476247	0.00428622
gruppo 3	18.0	61.80	0.00474925	0.00427432
gruppo 4	134.0	30.90	0.00453735	0.00408361


		Armatura lenta								
	y(cm)	n.	φ _{eq} (mm)							
Arm1	5.0	12	16							
Arm2	10.0	10	16							


Arm11 146.0 22 14 Arm12 159.0 22 14

Il momento resistente vale: 20874.33 KNm c.s.= 1.3886 La verifica è soddisfatta

9.13 Verifiche a taglio - SLU

		Fase 1 - Sola	trave in c.a.p.			Fase 2 - Tr	ave + soletta		TOTALE	
x(m)	V _{r,d} (KN)	V _{Ed} (KN)	V _{Rc,d} (KN)	A _{swcalc} /s	V _{r,d} (KN)	V _{Ed} (KN)	V _{Rc,d} (KN)	A _{swcalc} /s	A _{swcalc} /s	Staffe
0.00	361.9	813.7	4072.5	18.34	537.9	1542.4	4799.7	29.49	47.83	4 br. f10/5
0.31	361.9	797.4	4072.5	17.97	537.9	1535.2	4799.7	29.36	47.33	4 br. f10/5
0.62	361.9	781.1	4072.5	17.60	537.9	1528.1	4799.7	29.22	46.82	4 br. f10/5
0.92	766.7	764.8	4679.8	17.24	1015.0	1521.0	5515.5	29.08	46.32	4 br. f10/5
1.23	734.9	748.6	4320.6	16.87	971.3	1513.9	5092.2	28.95	45.82	4 br. f10/5
1.54	690.5	732.3	3841.9	16.50	910.1	1506.8	4528.0	28.81	45.31	4 br. f10/5
1.85	642.6	716.0	3360.1	16.14	844.6	1348.0	3960.2	25.77	41.91	4 br. f10/5
2.16	617.4	699.7	3120.9	15.77	803.8	1340.8	3678.2	25.64	41.41	4 br. f10/5
2.46	617.4	683.5	3120.9	15.40	803.8	1333.7	3678.2	25.50	40.90	4 br. f10/5
2.77	617.4	667.2	3120.9	15.04	803.8	1326.6	3678.2	25.37	40.40	4 br. f10/5
3.08	617.4	650.9	3120.9	14.67	803.8	1319.5	3678.2	25.23	39.90	4 br. f10/5
3.39	617.4	634.7	3120.9	14.30	803.8	1190.3	3678.2	22.76	37.06	4 br. f10/5
3.70	896.1	618.4	3246.2	13.94	1132.3	1183.2	3825.9	22.62	36.56	4 br. f10/5
4.00	896.1	602.1	3246.2	13.57	1132.3	1176.1	3825.9	22.49	36.06	4 br. f10/5
4.31	896.1	585.8	3246.2	13.20	1132.3	1168.9	3825.9	22.35	35.55	4 br. f10/5
4.62	896.1	569.6	3246.2	12.84	1132.3	1161.8	3825.9	22.22	35.05	4 br. f10/5
4.93	896.1	553.3	3246.2	12.47	1132.3	1057.6	3825.9	20.22	32.69	4 br. f10/5
5.24	896.1	537.0	3246.2	12.10	1132.3	1050.4	3825.9	20.09	32.19	4 br. f10/5
5.54	896.1	520.7	3246.2	11.74	1132.3	1043.3	3825.9	19.95	31.68	4 br. f10/5
5.85	896.1	504.5	3246.2	11.37	1132.3	1036.2	3825.9	19.81	31.18	4 br. f10/5
6.16	1164.3	488.2	3131.7	11.00	1448.4	1029.1	3690.9	19.68	30.68	4 br. f10/5
6.47	1164.3	471.9	3131.7	10.64	1448.4	943.6	3690.9	18.04	28.68	4 br. f10/5
6.78	1164.3	455.7	3131.7	10.27	1448.4	936.5	3690.9	17.91	28.17	4 br. f10/5
7.08	1164.3	439.4	3131.7	9.90	1448.4	929.3	3690.9	17.77	27.67	4 br. f10/5
7.39	1164.3	423.1	3131.7	9.53	1448.4	922.2	3690.9	17.63	27.17	4 br. f10/5
7.70	1164.3	406.8	3131.7	9.17	1448.4	915.1	3690.9	17.50	26.67	4 br. f10/5
8.01	1164.3	390.6	3131.7	8.80	1448.4	843.0	3690.9	16.12	24.92	4 br. f10/5
8.32	1164.3	374.3	3131.7	8.43	1448.4	835.8	3690.9	15.98	24.42	4 br. f10/10
8.62	1164.3	358.0	3131.7	8.07	1448.4	828.7	3690.9	15.85	23.91	4 br. f10/10
8.93	1164.3	341.7	3131.7	7.70	1448.4	821.6	3690.9	15.71	23.41	4 br. f10/10
9.24	1164.3	325.5	3131.7	7.33	1448.4	814.5	3690.9	15.57	22.91	4 br. f10/10
9.55	1164.3	309.2	3131.7	6.97	1448.4	751.7	3690.9	14.37	21.34	4 br. f10/10
9.86	1164.3	292.9	3131.7	6.60	1448.4	744.6	3690.9	14.24	20.84	4 br. f10/10
10.16	1164.3	276.6	3131.7	6.23	1448.4	737.5	3690.9	14.10	20.34	4 br. f10/10
10.47	1164.3	260.4	3131.7	5.87	1448.4	730.4	3690.9	13.97	19.83	4 br. f10/10
10.78	1164.3	244.1	3131.7	5.50	1448.4	723.2	3690.9	13.83	19.33	4 br. f10/10
11.09	1164.3	227.8	3131.7	5.13	1448.4	667.8	3690.9	12.77	17.90	4 br. f10/10
11.40	1164.3	211.6	3131.7	4.77	1448.4	660.7	3690.9	12.63	17.40	4 br. f10/10
11.70	1164.3	195.3	3131.7	4.40	1448.4	653.5	3690.9	12.50	16.90	4 br. f10/10
12.01	1164.3	179.0	3131.7	4.03	1448.4	646.4	3690.9	12.36	16.39	4 br. f10/10
12.32	1164.3	162.7	3131.7	3.67	1448.4	639.3	3690.9	12.22	15.89	4 br. f10/10
12.63	1164.3	146.5	3131.7	3.30	1448.4	589.6	3690.9	11.27	14.58	4 br. f10/15
12.94	1164.3	130.2	3131.7	2.93	1448.4	582.5	3690.9	11.14	14.07	4 br. f10/15
13.24	1164.3	113.9	3131.7	2.57	1448.4	575.4	3690.9	11.00	13.57	4 br. f10/15
13.55	1164.3	97.6	3131.7	2.20	1448.4	568.3	3690.9	10.87	13.07	4 br. f10/15
13.86	1164.3	81.4	3131.7	1.83	1448.4	561.1	3690.9	10.73	12.56	4 br. f10/15
14.17	1164.3	65.1	3131.7	1.47	1448.4	517.1	3690.9	9.89	11.35	4 br. f10/15
14.48	1164.3	48.8	3131.7	1.10	1448.4	510.0	3690.9	9.75	10.85	4 br. f10/15
14.78	1164.3	32.5	3131.7	0.73	1448.4	502.8	3690.9	9.61	10.35	4 br. f10/15
15.09	1164.3	16.3	3131.7	0.37	1448.4	495.7	3690.9	9.48	9.85	4 br. f10/20
15.40	1164.3	0.0	3131.7	0.00	1448.4	488.6	3690.9	9.34	9.34	4 br. f10/20

9.14 Verifiche a torsione – SLU

 $\theta \hspace{1cm} 45 \hspace{1cm} \circ \hspace{1cm} A_{sw}/s \hspace{1cm} (cm^2/m) \hspace{1cm} \overline{T_{g_{\underline{s}\underline{d}}}} = 2 \cdot A \cdot \frac{\sum A_i}{u_m} \cdot f_{y\underline{d}} \cdot ctg\theta \hspace{1cm} T_{g_{\underline{s}\underline{d}}} = 2 \cdot A \cdot A \cdot f_{s\underline{d}}^* \cdot ctg\theta / (1 + ctg^2\theta)$ $f_{cd} = \hspace{1cm} 12.75 \hspace{1cm} \text{Mpa}$

						TORSIONE			
x(m)	Mt _{Ed} (KNm)	$A=\Omega$ (mmq)	t (mm)	T _{Rcd} (KNm)	A _{sw} /s	I V _{Ed} /V _{Rcd} +Mt _{Ed} /T _{Rcd}	Staffe	u _m (mm)	Arm. Long. (cm ²)
0.00	498.8	1707281	276.0	6007.9	3.73	0.574	4 br. f10/5	5284.8	19.7
0.31	498.8	1707281	276.0	6007.9	3.73	0.569	4 br. f10/5	5284.8	19.7
0.62	498.8	1707281	276.0	6007.9	3.73	0.564	4 br. f10/5	5284.8	19.7
0.92	498.8	1707281	276.0	6007.9	3.73	0.497	4 br. f10/5	5284.8	19.7
1.23	498.8	1750972	252.8	5643.7	3.64	0.533	4 br. f10/5	5351.1	19.5
1.54	498.8	1809738	222.0	5122.5	3.52	0.592	4 br. f10/5	5439.1	19.2
1.85	526.4	1869376	191.2	4557.2	3.60	0.637	4 br. f10/5	5527.1	19.9
2.16	526.4	1899129	176.0	4261.6	3.54	0.678	4 br. f10/5	5570.6	19.7
2.46	526.4	1899129	176.0	4261.6	3.54	0.672	4 br. f10/5	5570.6	19.7
2.77	526.4	1899129	176.0	4261.6	3.54	0.666	4 br. f10/5	5570.6	19.7
3.08	526.4	1899129	176.0	4261.6	3.54	0.659	4 br. f10/5	5570.6	19.7
3.39	527.8	1899129	176.0	4261.6	3.55	0.620	4 br. f10/5	5570.6	19.8
3.70	527.8	1899129	176.0	4261.6	3.55	0.595	4 br. f10/5	5570.6	19.8
4.00	527.8	1899129	176.0	4261.6	3.55	0.589	4 br. f10/5	5570.6	19.8
4.31	527.8	1899129	176.0	4261.6	3.55	0.583	4 br. f10/5	5570.6	19.8
4.62	527.8	1899129	176.0	4261.6	3.55	0.576	4 br. f10/5	5570.6	19.8
4.93	515.0	1899129	176.0	4261.6	3.47	0.542	4 br. f10/5	5570.6	19.3
5.24	515.0	1899129	176.0	4261.6	3.47	0.536	4 br. f10/5	5570.6	19.3
5.54	515.0	1899129	176.0	4261.6	3.47	0.530	4 br. f10/5	5570.6	19.3
5.85	515.0	1899129	176.0	4261.6	3.47	0.524	4 br. f10/5	5570.6	19.3
6.16	515.0	1899129	176.0	4261.6	3.47	0.532	4 br. f10/5	5570.6	19.3
6.47	500.1	1899129	176.0	4261.6	3.36	0.501	4 br. f10/5	5570.6	18.7
6.78	500.1	1899129	176.0	4261.6	3.36	0.495	4 br. f10/5	5570.6	18.7
7.08	500.1	1899129	176.0	4261.6	3.36	0.488	4 br. f10/5	5570.6	18.7
7.39	500.1	1899129	176.0	4261.6	3.36	0.482	4 br. f10/5	5570.6	18.7
7.70	500.1	1899129	176.0	4261.6	3.36	0.475	4 br. f10/5	5570.6	18.7
8.01	486.0	1899129	176.0	4261.6	3.27	0.448	4 br. f10/5	5570.6	18.2
8.32	486.0	1899129	176.0	4261.6	3.27	0.442	4 br. f10/10	5570.6	18.2
8.62	486.0	1899129	176.0	4261.6	3.27	0.436	4 br. f10/10	5570.6	18.2
8.93	486.0	1899129	176.0	4261.6	3.27	0.429	4 br. f10/10	5570.6	18.2
9.24	486.0	1899129	176.0	4261.6	3.27	0.423	4 br. f10/10	5570.6	18.2
9.55	471.2	1899129	176.0	4261.6	3.17	0.398	4 br. f10/10	5570.6	17.7
9.86	471.2	1899129	176.0	4261.6	3.17	0.392	4 br. f10/10	5570.6	17.7
10.16	471.2	1899129	176.0	4261.6	3.17	0.385	4 br. f10/10	5570.6	17.7
10.47	471.2	1899129	176.0	4261.6	3.17	0.379	4 br. f10/10	5570.6	17.7
10.78	471.2	1899129	176.0	4261.6	3.17	0.373	4 br. f10/10	5570.6	17.7
11.09	457.9	1899129	176.0	4261.6	3.08	0.350	4 br. f10/10	5570.6	17.2
11.40	457.9	1899129	176.0	4261.6	3.08	0.344	4 br. f10/10	5570.6	17.2
11.70	457.9	1899129	176.0	4261.6	3.08	0.337	4 br. f10/10	5570.6	17.2
12.01	457.9	1899129	176.0	4261.6	3.08	0.331	4 br. f10/10	5570.6	17.2
12.32	457.9	1899129	176.0	4261.6	3.08	0.325	4 br. f10/10	5570.6	17.2
12.63	446.8	1899129	176.0	4261.6	3.01	0.304	4 br. f10/15	5570.6	16.7
12.94	446.8	1899129	176.0	4261.6	3.01	0.298	4 br. f10/15	5570.6	16.7
13.24	446.8	1899129	176.0	4261.6	3.01	0.292	4 br. f10/15	5570.6	16.7
13.55	446.8	1899129	176.0	4261.6	3.01	0.285	4 br. f10/15	5570.6	16.7
13.86	446.8	1899129	176.0	4261.6	3.01	0.279	4 br. f10/15	5570.6	16.7
14.17	430.3	1899129	176.0	4261.6	2.90	0.259	4 br. f10/15	5570.6	16.1
14.48	430.3	1899129	176.0	4261.6	2.90	0.252	4 br. f10/15	5570.6	16.1
14.78	430.3	1899129	176.0	4261.6	2.90	0.246	4 br. f10/15	5570.6	16.1
15.09	430.3	1899129	176.0	4261.6	2.90	0.240	4 br. f10/20	5570.6	16.1
15.40	430.3	1899129	176.0	4261.6	2.90	0.233	4 br. f10/20	5570.6	16.1

9.15 Verifiche connettori trave-soletta

Per il calcolo dei connettori si valuta con la formula di Jourawsky lo scorrimento presente all'interfaccia trave-soletta indotto dal taglio dovuto ai carichi permanenti e ai carichi accidentali e alla torsione dovuta ai carichi accidentali:

Scorrimento = TS/J S = Momento statico della soletta rispetto al baricentro

J = Momento d'inerzia della sezione

y_g = posizione baricentro da intradosso

x(m)	T _{perm} (KN)	T _{acc} (KN)	T _{torsione} (KN)	T (KN)	S (cm³)	J (cm⁴)	TS/J (KN/m)	A _{swcalc} /s cm ² /m	Connettori suggeriti
0.00	-250.6	-777.6	482.1	-546.2	280577	56427310	271.6	12.0	4 br. f10/20
0.31	-245.9	-777.6	482.1	-541.4	280577	56427310	269.2	11.9	4 br. f10/20
0.62	-241.1	-777.6	482.1	-536.7	280577	56427310	266.8	11.8	4 br. f10/20
0.92	-236.4	-777.6	482.1	-531.9	284760	57720887	262.4	11.6	4 br. f10/20
1.23	-231.6	-777.6	470.0	-539.2	280007	56572496	266.9	11.8	4 br. f10/20
1.54	-226.9	-777.6	454.8	-549.7	272219	54831096	272.9	12.1	4 br. f10/20
1.85	-219.3	-679.4	464.7	-434.0	262364	52793713	215.7	9.5	4 br. f10/30
2.16	-214.5	-679.4	457.4	-436.5	256578	51659231	216.8	9.6	4 br. f10/30
2.46	-209.8	-679.4	457.4	-431.8	256578	51659231	214.4	9.5	4 br. f10/30
2.77	-205.0	-679.4	457.4	-427.0	256578	51659231	212.1	9.4	4 br. f10/30
3.08	-200.3	-679.4	457.4	-422.3	256578	51659231	209.7	9.3	4 br. f10/30
3.39	-192.0	-601.6	458.6	-334.9	256578	51659231	166.4	7.4	4 br. f10/30
3.70	-187.2	-601.6	458.6	-330.2	262437	52882557	163.9	7.3	4 br. f10/30
4.00	-182.5	-601.6	458.6	-325.4	262437	52882557	161.5	7.1	4 br. f10/30
4.31	-177.7	-601.6	458.6	-320.7	262437	52882557	159.1	7.0	4 br. f10/30
4.62	-173.0	-601.6	458.6	-315.9	262437	52882557	156.8	6.9	4 br. f10/30
4.93	-164.4	-540.6	447.5	-257.6	262437	52882557	127.8	5.7	4 br. f10/30
5.24	-159.7	-540.6	447.5	-252.8	262437	52882557	125.5	5.6	4 br. f10/30
5.54	-154.9	-540.6	447.5	-248.1	262437	52882557	123.1	5.4	4 br. f10/30
5.85	-150.2	-540.6	447.5	-243.3	262437	52882557	120.7	5.3	4 br. f10/30
6.16	-145.4	-540.6	447.5	-238.6	267756	53913963	118.5	5.2	4 br. f10/30
6.47	-137.1	-492.0	434.5	-194.6	267756	53913963	96.6	4.3	4 br. f10/30
6.78	-132.4	-492.0	434.5	-189.9	267756	53913963	94.3	4.2	4 br. f10/30
7.08	-127.6	-492.0	434.5	-185.1	267756	53913963	91.9	4.1	4 br. f10/30
7.39	-122.9	-492.0	434.5	-180.4	267756	53913963	89.6	4.0	4 br. f10/30
7.70	-118.1	-492.0	434.5	-175.6	267756	53913963	87.2	3.9	4 br. f10/30
8.01	-110.2	-451.8	422.2	-139.7	267756	53913963	69.4	3.1	4 br. f10/30
8.32	-105.4	-451.8	422.2	-135.0	267756	53913963	67.0	3.0	4 br. f10/30
8.62	-100.7	-451.8	422.2	-130.2	267756	53913963	64.7	2.9	4 br. f10/30
8.93	-95.9	-451.8	422.2	-125.5	267756	53913963	62.3	2.8	4 br. f10/30
9.24	-91.2	-451.8	422.2	-120.7	267756	53913963	60.0	2.7	4 br. f10/30
9.55	-83.8	-417.4	409.4	-91.8	267756	53913963	45.6	2.0	4 br. f10/30
9.86	-79.0	-417.4	409.4	-87.0	267756	53913963	43.2	1.9	4 br. f10/30
10.16	-74.3	-417.4	409.4	-82.3	267756	53913963	40.9	1.8	4 br. f10/30
10.47	-69.5	-417.4	409.4	-77.5	267756	53913963	38.5	1.7	4 br. f10/30
10.78	-64.8	-417.4	409.4	-72.8	267756	53913963	36.1	1.6	4 br. f10/30
11.09	-58.1	-387.1	397.8	-47.4	267756	53913963	23.5	1.0	4 br. f10/30
11.40	-53.3	-387.1	397.8	-42.6	267756	53913963	21.2	0.9	4 br. f10/30
11.70	-48.6	-387.1	397.8	-37.9	267756	53913963	18.8	0.8	4 br. f10/30
12.01	-43.8	-387.1	397.8	-33.1	267756	53913963	16.4	0.7	4 br. f10/30
12.32	-39.1	-387.1	397.8	-28.4	267756	53913963	14.1	0.6	4 br. f10/30
12.63	-33.1	-360.0	388.2	-4.9	267756	53913963	2.4	0.1	4 br. f10/30
12.94	-28.4	-360.0	388.2	-0.1	267756	53913963	0.1	0.0	4 br. f10/30
13.24	-23.6	-360.0	388.2	4.6	267756	53913963	2.3	0.1	4 br. f10/30
13.55	-18.9	-360.0	388.2	9.4	267756	53913963	4.7	0.2	4 br. f10/30
13.86	-14.1	-360.0	388.2	14.1	267756	53913963	7.0	0.3	4 br. f10/30
14.17	-8.9	-335.8	373.9	29.1	267756	53913963	14.5	0.6	4 br. f10/30
14.48	-4.2	-335.8	373.9	33.9	267756	53913963	16.8	0.7	4 br. f10/30
14.78	0.6	-335.8	373.9	38.6	267756	53913963	19.2	0.8	4 br. f10/30
15.09	5.3	-335.8	373.9	43.4	267756	53913963	21.5	1.0	4 br. f10/30
15.40	10.1	-335.8	373.9	48.1	267756	53913963	23.9	1.1	4 br. f10/30
13.70	10.1	333.0	373.3	70.1	207730	33313303	23.3	1.1	4 DI. 110/30

9.16 Verifica all'urto dei veicoli in svio

Criteri generali e oggetto delle verifiche

L'azione eccezionale dovuta all'urto di veicoli in svio sulle barriere di sicurezza stradali verrà tenuta in considerazione operando le verifiche di resistenza degli eventuali sbalzi della soletta in c.a. (sezione S1 della seguente immagine) e della sezione di attacco del cordolo alla soletta (Sezione S2).

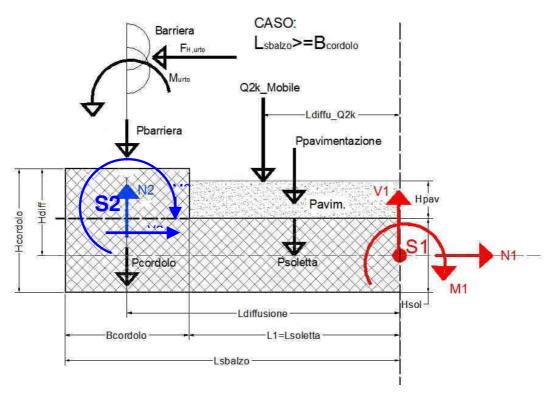
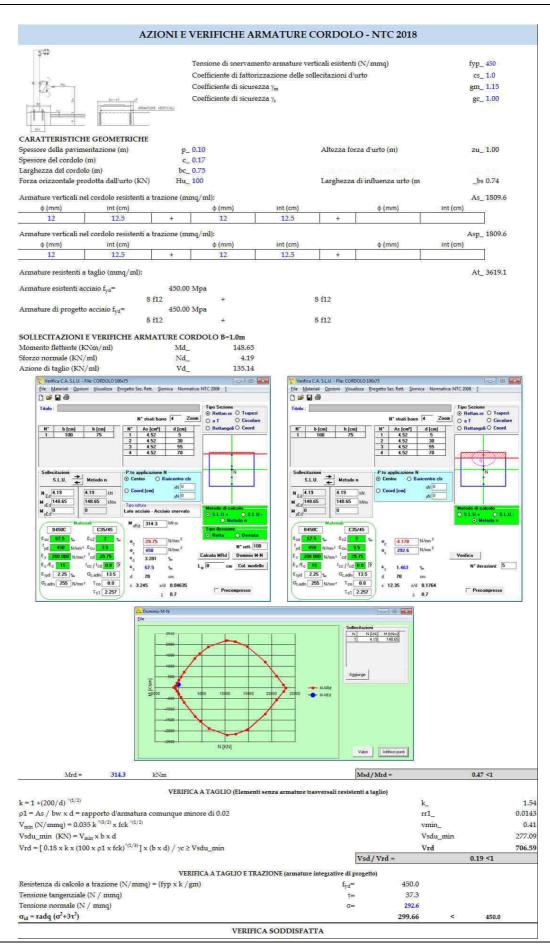


Figura 9-1 – Sezioni di verifica all'azione eccezionale dovuta all'urto del veicolo in svio

Siintendono escluse le verifiche riguardanti i cinematismi locali di rottura inerenti il collegamento della barriera di sicurezza al cordolo di coronamento sotto le azioni indotte dall'urto veicolare; più genericamente, si intende esclusa la verifica del funzionamento cinematico dell'intera barriera.

9.17 Verifica dello sbalzo della soletta (Sezione S₁)


Nel cavacavia in oggetto della presente relazione di calcolo la soletta non presenta sbalzo rispetto la trave dell'impalcato. Le verifiche della soletta non risultano necessarie.

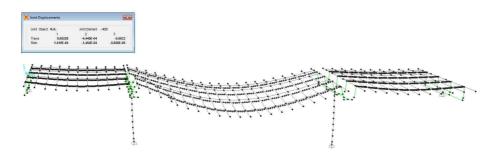
9.18 Verifiche del cordolo (Sezione S₂)

In questa fase si valuta l'adeguatezza delle armature di collegamento cordolo-soletta nei confronti dell'azione di strappo prodotta dell'urto del veicolo in svio.

Nelle seguenti verifiche si prenderanno in conto le armature di progetto dimensionate sulla base della geometria e della caratteristiche meccaniche dei tirafondi della barriera. In particolare si considera un'armatura costituita da 4 bracci verticali Ø12/12.5cm; 2 bracci orizzontali Ø12/12.5cm; 10 barre longitudinali Ø12mm.

Qui di seguito si riportano le verifiche effettuate sui cordoli relativi ad un solo lato della carreggiata in quanto risultano avere una geometria simile o uguale.

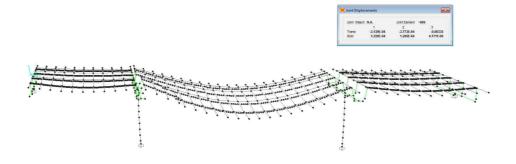
9.19 Verifiche a deformazione


Si riporta di seguito il grafico relativo ai valori di deformazione verticale massima e minima dell'impalcato considerando agenti i soli carichi variabili da traffico e la variazione termica differenziale.

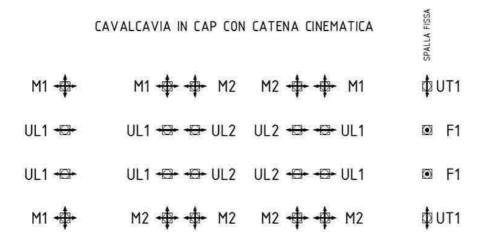
La deformazione verticale massima ammissibile per ciascuna campata è pari ad 1/500 della grandezza L_0 che si intende pari alla luce della campata, per le travate appoggiate e per le campate esterne di travate continue, mentre si assume pari a 0.7 della luce per le campate interne di travate continue.

Le verifiche di deformazione si intendono pertanto soddisfatte, risultando verificata la seguente diseguaglianza:

 $\delta_{vert,max} < L_0 / 500$


Campata 1 δ vert,max = 3.3 < 16000/500 = 32mm

Campata 2 $\delta \text{vert,max} = 21.4 < 32000/500 = 64 \text{mm}$



Campata 3 δ vert,max = 3.4 < 16000/500 = 32mm

9.20 Azioni sugli apparecchi di appoggio

Lo schema di disposizione degli apparecchi di appoggio del viadotto segue lo schema mostrato nella seguente figura, in cui la spalla fissa è la spalla SB.

Ove:

F sono gli apparecchi di appoggio di tipo Fisso;

UL1; UL2 sono gli apparecchi di appoggio di tipo Unidirezionale Longitudinale;

UT1; UT2 sono gli apparecchi di appoggio di tipo Unidirezionale Trasversale;

M1; M2 sono gli apparecchi di appoggio di tipo Mobile.

Si riportano di seguito le massime azioni agenti sugli apparecchi di appoggio, nelle combinazioni statiche (S.L.U.) e sismiche (S.L.V.).

	AZIONI SUGLI APPARECCHI D'APPOGGIO											
				STATICA	ļ		SISMICA	<u>l</u>				
ld	Tipo	Q.tà	N _{sd}	$H_{sd,LONG}$	H _{sd,TRASV}	N _{sd}	$H_{sd,LONG}$	H _{sd,TRASV}				
[-]	[-]	[-]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]				
F	Fisso	2	1700	350	200	1000	800	500				
UL1	Unidir long	6	1850	0	200	1200	0	450				
UL2	Unidir long	4	2650	0	150	1600	0	500				
UT1	Unidir trasv	2	1450	400	0	600	1000	0				
M1	Multidir	6	1600	0	0	750	0	0				
M2	Multidir	4	2650	0	0	1250	0	0				

10. VERIFICHE PILA 1

10.1 Verifica Elevazione

Si riportano di seguito le verifiche relative alla pila 1; le verifiche sono state condotte sul fusto della pila, nella sezione di attacco alla fondazione.

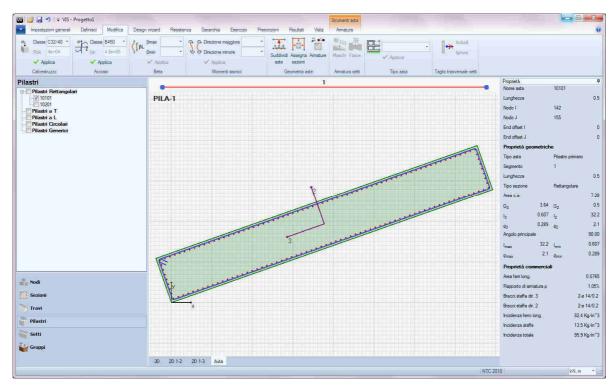


Figura 10-1 – Pila 1: sezione di verifica 7.285 x 1.00 – φ26/10

10.1.1 Verifica SLU-SLV

Figura 10-2 – Pila 1: Dettaglio verifiche a taglio (V2 e V3) (unità di misura: kN; m; °C)

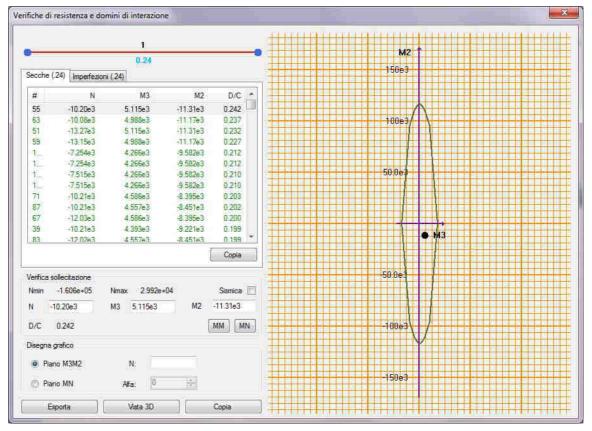


Figura 10-3 - Pila 1: Dettaglio verifica PMM - piano MM (unità di misura: kN; m; °C)

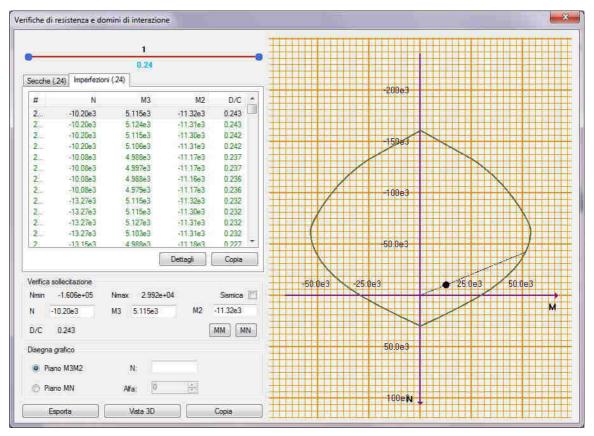


Figura 10-4 – Pila 1: Dettaglio verifica PMM – piano MN (unità di misura: kN; m; °C)

10.1.2 Verifica SLE - Controllo tensioni

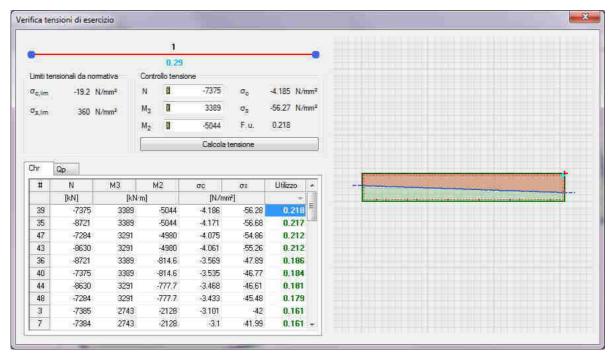


Figura 10-5 - Pila 1: Dettaglio verifica controllo tensioni (unità di misura: kN; m; °C)

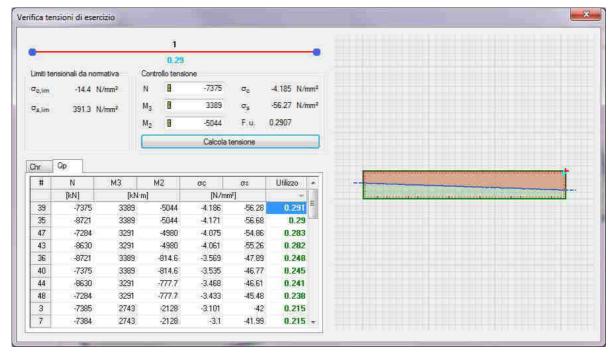


Figura 10-6 – Pila 1: Dettaglio verifica controllo tensioni (unità di misura: kN; m; °C)

10.1.3 Verifica SLE - Fessurazione

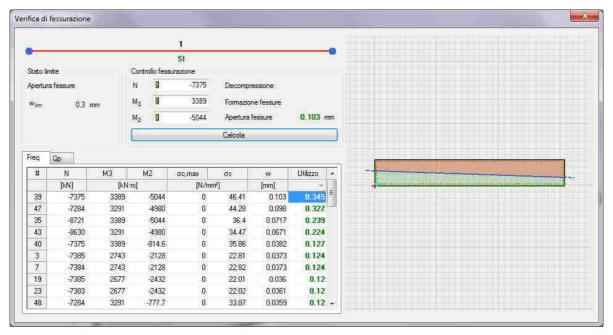


Figura 10-7 – Pila 1: Dettaglio verifica fessurazione (unità di misura: kN; m; °C)

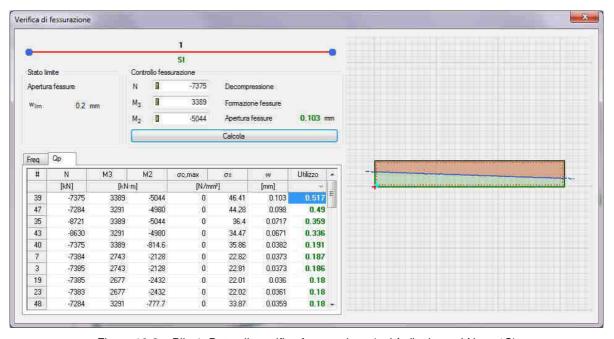


Figura 10-8 – Pila 1: Dettaglio verifica fessurazione (unità di misura: kN; m; °C)

10.2 Verifica fondazione

Si riportano di seguito alcune immagini del modello di calcolo.

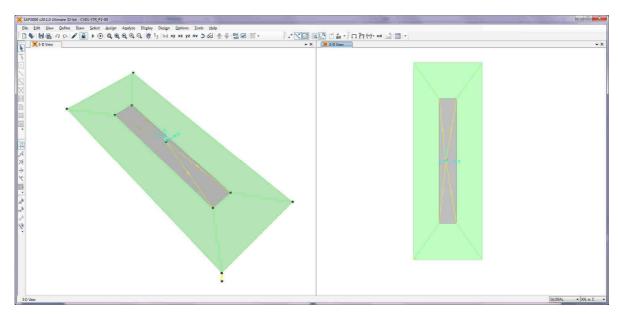


Figura 10-9 – Modello di calcolo

Il modello numerico è realizzato con elementi finiti bidimensionali tipo "shell-thick" ed elementi finiti tipo "link-linear" per il collegamento del nodo di riferimento al resto della struttura. Il nodo di riferimento è utilizzato per assegnare i carichi trasmessi dall'impalcato calcolati attraverso il modello numerico descritto nei paragrafi precedenti.

L'interazione terreno-struttura è stata tenuta in conto applicando alla zattera di fondazione delle molle "alla Winkler" assegnate nelle tre direzioni ortogonali.

		AZIO	ONI ALLO SPIC	CATO / PILE P1	: ASTA N.101	01				
ELEMENTO DI VERIFICA NUMERO POSIZIONE (NODO I=1 - NODOJ=2) CARICHI MOBILI			10101 1 Min Max		PILA P1 SP1					
Descrizione	CODTYPE	NRIGA	V2=TI [KN]	M2 TIM2 M3=MI [KNm]	V3=Tt [KN]	M2=Mtr [KNm]	T=Mt [KNm]	P=N [KN]	F	сс
G1-IMPALCATO	0	28	0	371	0	-131	0	-1966	1,000	1.000
G1-SOLETTA	0	44	0	311	ō	-110	0	-1650	1.000	1.000
G1-PILA	0	36	ō	0	ō	0	ō	-2070	1.000	1.000
G2-PERMANENTI	0	52	-1	255	-4	-738	24	-1700	1.000	1.000
E1-DISTORSIONI	0	4	0	0	0	0	0	0	1.000	1.000
E2-RITIRO	0	12	-18	-132	-50	-515	-41	2	1.000	1.000
E4-CEDIMENTI	0	20	0	0	0	0	0	0	1.000	1.000
Q1-MOBILI-KK	1	194	-1	509	-4	-3778	66	-2257	1.000	1.000
Q1-MOBILI-FQ	1	98	-1	318	-3	-2053	40	-1336	1.000	1.000
Q3-FRENATURA	0	252	-2	-2	-5	-64	-9	-1	1.000	1.000
Q4-CENTRIFUGA	0	260	-3	-24	-9	-106	-4	0	1.000	1.000
Q5-VENTO-C	0	268	-45	-328	-129	-1522	-47	4	1.000	1.000
Q7-ATTRITO-P	0	300	201	1805	-71	-635	23	0	1.000	1.000
Q6-SISMA L	0	276	150	855	231	2562	103	153	1.000	1.000
Q6-SISMA T	0	284	459	3041	633	7154	299	38	1.000	1.000
Q6-SISMA_V	0	292	23	100	44	553	37	152	1.000	1.000
DATI PER CALCOLO FONDAZIONI PILE										
Accelerazione al suolo (ag)				0.077				Accelerazione dir X –	>>	0.752
Coefficiente di suolo (S=S _S x S _T)				1.000				Accelerazione dir Y	>>	0.752
kh = S x bm ag/g = coefficiente sismico orizzontale				0.077				Accelerazione dir Z	>>	0.376
k _v = 0.5 k _b = coefficiente sismico verticale				0.038				G1-PESO FONDAZION	IE .	1.000
β _m = coefficiente di riduzione dell'accelerazione massim	a attesa al sito			1.00				G1-PESO_RINTERRO		20.000
Y _{RINT} = Peso rinterro				20.00				Q6-INERZIA MASSE L		0.752
HR = Altezza rinterro				1.00				Q6-INERZIA MASSE T		0.752
Diametro pali								Q6-INERZIA_MASSE_I		0.752
Lunghezza elastica dei pali				0.00				QU-IINENZIA_IVIASSE_V		0.376
Scalzamento				0.00					-	
Classe del calcestruzzo pali				0.00					-	
Modulo di elasticità del calcestruzzo dei pali				2.058E+07						
modero di ciasticità dei carcesti uzzo dei pati				2.03027071						

Figura 10-10 – Tabella assegnazione azioni al modello di calcolo

10.2.1 Verifiche strutture SLU-SLV

Si riportano di seguito le color map che diagrammano le richieste di armatura calcolate dal programma in funzione dell'inviluppo delle sollecitazioni per lo stato limite in oggetto, a cui viene applicato il metodo di Wood - Armer nelle due direzioni ortogonali.

Le richieste di armatura, espresse in mm²/mm, sono rappresentate con diversi colori filtrati sul valore massimo funzione dell'armatura di progetto.

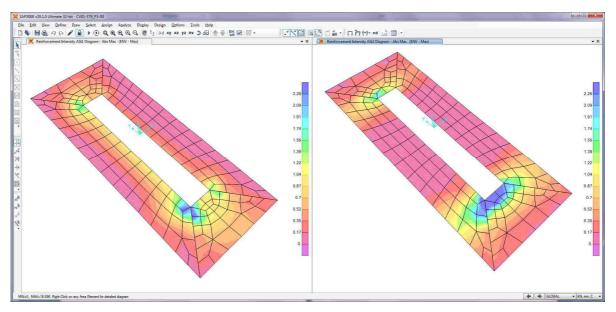


Figura 10-11 - Richiesta di armatura: Ast1_SX e Ast2_DX

Le richieste di armatura massime sono compatibili con le incidenze indicate negli elaborati e riassunte nella tabella sottostante.

		Ast1			Ast2	
	passo	Φ	Area	passo	Ф	Area
	cm	mm	mm²/mm	cm	mm	mm²/mm
PLATEA	20	24	2.26	20	24	2.26

10.2.2 Verifica a ribaltamento

Di seguito si riporta la verifica al ribaltamento della pila, valutato nella direzione longitudinale e trasversale dell'impalcato, considerando il cinematismo di ribaltamento agente rispetto al nodo illustrato nella seguente immagine.

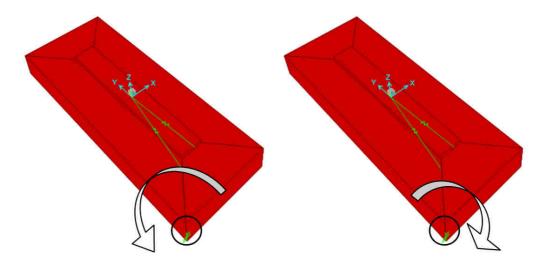


Figura 10-12 – Zattera di fondazione: cinematismo di ribaltamento

Le verifiche, in accordo al paragrafo 6.5.3.1 delle NTC18, sono condotte considerando l'Approccio di tipo 2, con la combinazione (A1+M1+R3), dove si pone R3 = 1.15 per le condizioni SLU e R3 = 1 per le condizioni SLV.

Le combinazioni di verifica del ribaltamento allo SLU sono:

VER RIB C in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte carico;

VER RIB S in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte scarico;

TABLE: Combination Definitions											
ComboName	ComboType	AutoDesign	CaseType	CaseName	ScaleFactor						
Text	Text	Yes/No	Text	Text	Unitless						
VER_RIB_C	Linear Add	No	Response Combo	EQU_1	1.15						
VER_RIB_C			Response Combo	EQU_3	1						
VER_RIB_S	Linear Add	No	Response Combo	EQU_2	1.15						
VER_RIB_S			Response Combo	EQU_3	1						

Le combinazioni di verifica del ribaltamento allo SLV sono descritte nel paragrafo relativo alle combinazioni di carico.

Per la convenzione dei segni utilizzata, le verifiche si intendono soddisfatte quando il segno della reazione vincolare del momento intorno all'asse di ribaltamento risulta:

- positivo nella direzione longitudinale (M1 > 0);
- negativo nella direzione trasversale (M2 < 0);

Si riportano i risultati ottenuti.

TABLE: Jo	TABLE: Joint Reactions											
Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3				
Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m				
1	SLU_VC	Combination	394	365	14420	73233	-23104	-1281				
1	SLU_SL1	Combination	479	535	9780	49238	-16196	-1415				
1	SLU_SL2	Combination	465	509	9639	48793	-15992	-1410				
1	SLU_ST1	Combination	580	932	9699	45152	-14314	-1063				
1	SLU_ST2	Combination	566	906	9558	44707	-14110	-1058				
1	SLU_V1	Combination	275	404	9836	51127	-17014	-547				
1	SLU_V2	Combination	228	316	9367	49644	-16333	-530				
1	VER_RIB_C	Combination	431	359	11116	50783	-16150	-1487				
1	VER_RIB_S	Combination	426	345	8596	44396	-12139	-1614				

i risultati ottenuti, evidenziati in giallo, soddisfano tutti tale condizione.

Sono state lette le varie combinazioni rispetto all'asse di ribaltamento.

In particolare le combinazioni di tipo ribaltante sono state incrementate x 1.15 (paragrafo 6.5.3.1.1 delle NTC18, in osservanza alla Tab. 6.5.I) mentre quelle stabilizzanti sono state assunte unitarie. Il risultato della verifica mostra ulteriori riserve di sicurezza rispetto alle minime imposte.

11. VERIFICHE PILA 2

11.1 Verifica Elevazione

11.1.1 Verifica SLU-SLV

Si riportano di seguito le verifiche relative alla pila 2; le verifiche sono state condotte sul fusto della pila, nella sezione di attacco alla fondazione.

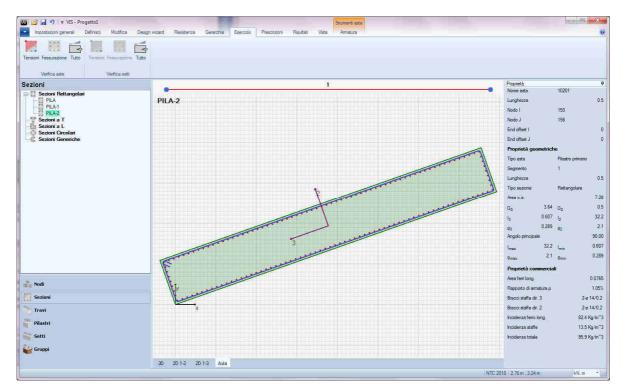


Figura 11-1 – Pila 2: sezione di verifica 7.285 x $1.00 - \phi 26/10$

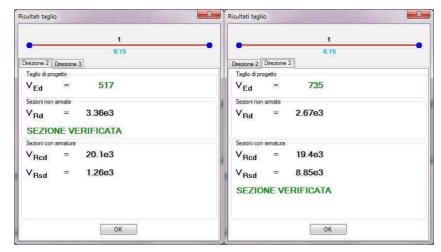


Figura 11-2 – Pila 2: Dettaglio verifiche a taglio (V2 e V3) (unità di misura: kN; m; °C)

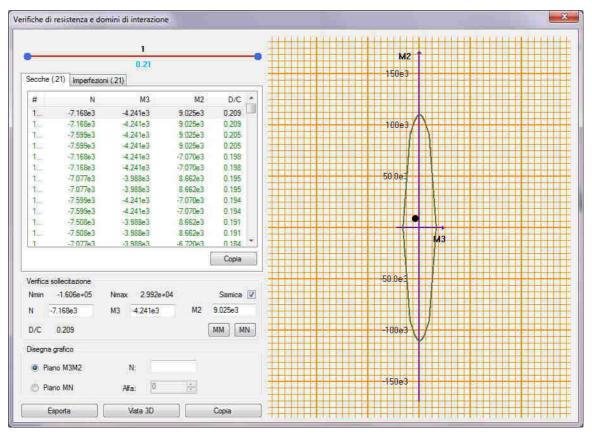


Figura 11-3 - Pila 2: Dettaglio verifica PMM - piano MM (unità di misura: kN; m; °C)

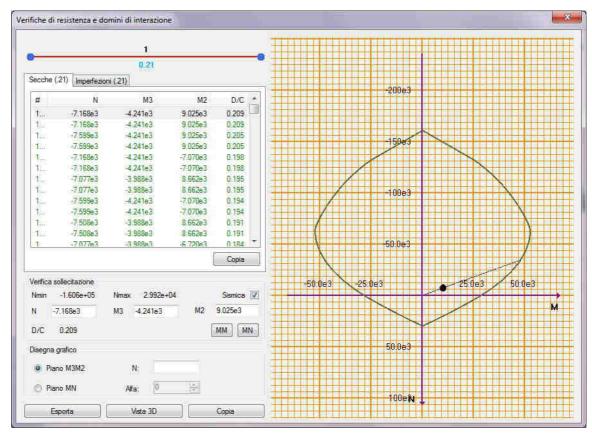


Figura 11-4 – Pila 2: Dettaglio verifica PMM – piano MN (unità di misura: kN; m; °C)

11.1.2 Verifica SLE - Controllo tensioni

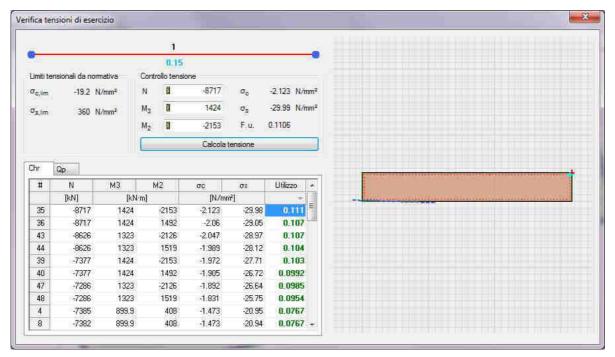


Figura 11-5 - Pila 2: Dettaglio verifica controllo tensioni (unità di misura: kN; m; °C)

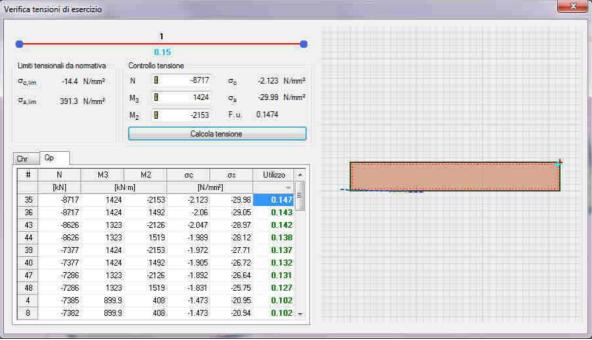


Figura 11-6 – Pila 2: Dettaglio verifica controllo tensioni (unità di misura: kN; m; °C)

11.1.3 Verifica SLE - Fessurazione

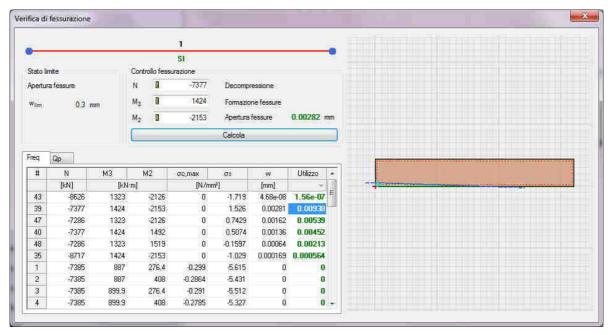


Figura 11-7 – Pila 2: Dettaglio verifica fessurazione (unità di misura: kN; m; °C)

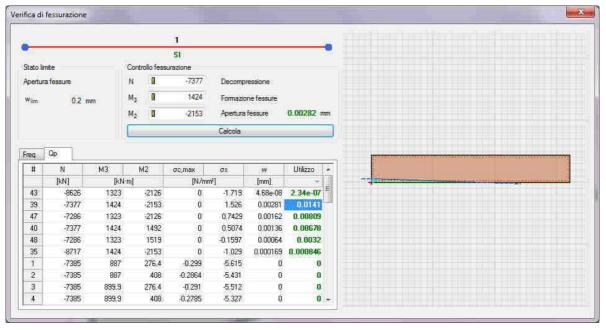


Figura 11-8 – Pila 2: Dettaglio verifica fessurazione (unità di misura: kN; m; °C)

11.2 Verifica fondazione

Si riportano di seguito alcune immagini del modello di calcolo.

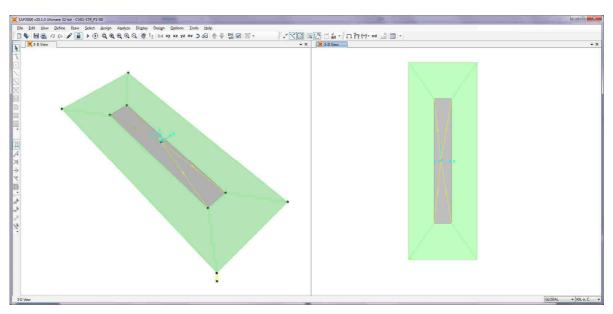


Figura 11-9 – Modello di calcolo

Il modello numerico è realizzato con elementi finiti bidimensionali tipo "shell-thick" ed elementi finiti tipo "link-linear" per il collegamento del nodo di riferimento al resto della struttura. Il nodo di riferimento è utilizzato per assegnare i carichi trasmessi dall'impalcato calcolati attraverso il modello numerico descritto nei paragrafi precedenti.

L'interazione terreno-struttura è stata tenuta in conto applicando alla zattera di fondazione delle molle "alla Winkler" assegnate nelle tre direzioni ortogonali.

		AZIO	ONI ALLO SPIC	CATO / PILE P2	2: ASTA N.10	201				
ELEMENTO DI VERIFICA NUMERO POSIZIONE (NODO I=1 - NODOJ=2) CARICHI MOBILI			10201 1 Min Max	TIPO SPALLA MOBILE	PILA P2 SP2 \$\hfill \text{P2} \hfill \text{\$\frac{1}{2}\$} \hfill \text{\$\frac{1}{2}\$} \hfill \text{\$\frac{1}{2}\$} \hfill \text{\$\frac{1}{2}\$} \hfill \text{\$\frac{1}{2}\$} \hfill \hfill \text{\$\frac{1}{2}\$} \hfill					
			V2=TI	M3=MI	V3=Tt	M2=Mtr	T=Mt	P=N	F	CC
Descrizione G1-IMPAICATO	CODTYPE	NRIGA 30	[KN] 0	[KNm] -371	[KN] 0	[KNm] 131	[KNm] 0	[KN] -1966	1.000	1.000
G1-SOLETTA	0	46	0	-3/1 -311	0	110	0	-1966	1.000	1.000
G1-PILA	0	38	0	-511	0	0	0	-2070	1.000	1.000
G2-PERMANENTI	0	54	3	-236	10	803	-72	-1700	1.000	1.000
E1-DISTORSIONI	0	6	0	0	0	0	0	-1700	1.000	1.000
E2-RITIRO	0	14	2	13	6	-132	-12	4	1.000	1.000
E4-CEDIMENTI	0	22	0	0	0	0	0	0	1.000	1.000
Q1-MOBILI-KK	1	218	17	-720	49	-1843	-44	-2251	1.000	1.000
Q1-MOBILI-FQ	1	122	11	-491	31	-1003	-39	-1331	1.000	1.000
Q3-FRENATURA	0	254	3	1	8	102	-2	52	1.000	1.000
Q4-CENTRIFUGA	0	262	-3	-24	-9	-104	-3	0	1.000	1.000
Q5-VENTO-C	0	270	-45	-325	-128	-1499	-39	-3	1.000	1.000
Q7-ATTRITO-P	0	302	201	1805	-71	-635	-23	0	1.000	1.000
Q6-SISMA_L	0	278	159	887	254	2827	87	464	1.000	1.000
Q6-SISMA_T	0	286	457	3025	630	6974	205	30	1.000	1.000
Q6-SISMA_V	0	294	24	105	43	531	22	146	1.000	1.000
DATI PER CALCOLO FONDAZIONI PILE										
Accelerazione al suolo (ag)				0.077				Accelerazione dir X	>>	0.752
Coefficiente di suolo (S=S _x X S _T)				1.000				Accelerazione dir Y -	>>	0.752
k _h = S x b _m a _e /g = coefficiente sismico orizzontale		0.077				Accelerazione dir 7		0.376		
k _v = 0.5 k _h = coefficiente sismico verticale				0.038				G1-PESO FONDAZIO		1.000
	cima atteca al cito			1.00				G1-PESO RINTERRO		20.000
Y _{RINT} = Peso rinterro	β _m = coefficiente di riduzione dell'accelerazione massima attesa al sito			20.00				Q6-INERZIA MASSE	. –	0.752
				1.00						0.752
HR = Altezza rinterro Diametro pali				0.00				Q6-INERZIA_MASSE_ Q6-INERZIA_MASSE		0.752
Lunghezza elastica dei pali				0.00				QO-IINENZIA_IVIASSE_	·*	0.376
Scalzamento				0.00					-	
Classe del calcestruzzo pali				0.00						
Modulo di elasticità del calcestruzzo dei pali				2.058E+07						

Figura 11-10 – Tabella assegnazione azioni al modello di calcolo

11.2.1 Verifiche strutture SLU-SLV

Si riportano di seguito le color map che diagrammano le richieste di armatura calcolate dal programma in funzione dell'inviluppo delle sollecitazioni per lo stato limite in oggetto, a cui viene applicato il metodo di Wood - Armer nelle due direzioni ortogonali.

Le richieste di armatura, espresse in mm²/mm, sono rappresentate con diversi colori filtrati sul valore massimo funzione dell'armatura di progetto.

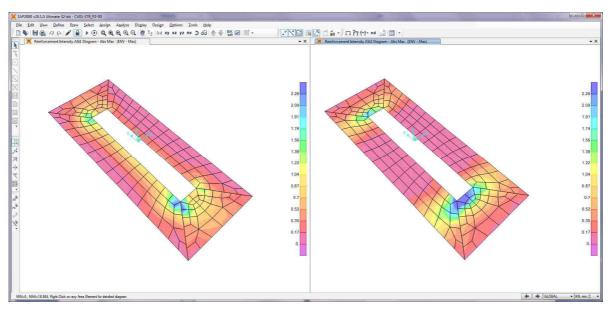


Figura 11-11 - Richiesta di armatura: Ast1_SX e Ast2_DX

Le richieste di armatura massime sono compatibili con le incidenze indicate negli elaborati e riassunte nella tabella sottostante.

		Ast1			Ast2	
	passo	Ф	Area	passo	Ф	Area
	cm	mm	mm²/mm	cm	mm	mm²/mm
PLATEA	20	24	2.26	20	24	2.26

11.2.2 Verifica a ribaltamento

Di seguito si riporta la verifica al ribaltamento della pila, valutato nella direzione longitudinale e trasversale dell'impalcato, considerando il cinematismo di ribaltamento agente rispetto al nodo illustrato nella seguente immagine.

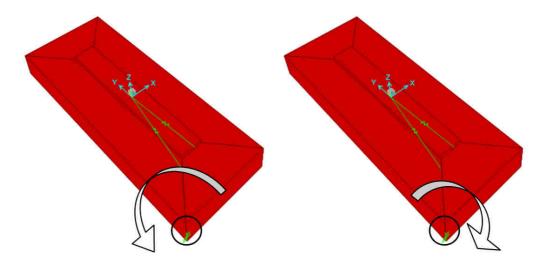


Figura 11-12 – Zattera di fondazione: cinematismo di ribaltamento

Le verifiche, in accordo al paragrafo 6.5.3.1 delle NTC18, sono condotte considerando l'Approccio di tipo 2, con la combinazione (A1+M1+R3), dove si pone R3 = 1.15 per le condizioni SLU e R3 = 1 per le condizioni SLV.

Le combinazioni di verifica del ribaltamento allo SLU sono:

VER_RIB_C in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte carico;

VER_RIB_S in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte scarico;

TABLE: Combin	ation Definition	ns			
ComboName	ComboType	AutoDesign	CaseType	CaseName	ScaleFactor
Text	Text	Yes/No	Text	Text	Unitless
VER_RIB_C	Linear Add	No	Response Combo	EQU_1	1.15
VER_RIB_C			Response Combo	EQU_3	1
VER_RIB_S	Linear Add	No	Response Combo	EQU_2	1.15
VER_RIB_S			Response Combo	EQU_3	1

Le combinazioni di verifica del ribaltamento allo SLV sono descritte nel paragrafo relativo alle combinazioni di carico.

Per la convenzione dei segni utilizzata, le verifiche si intendono soddisfatte quando il segno della reazione vincolare del momento intorno all'asse di ribaltamento risulta:

- positivo nella direzione longitudinale (M1 > 0);
- negativo nella direzione trasversale (M2 < 0);

Si riportano i risultati ottenuti.

TABLE: Jo	int Reactions	i e						
Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
1	SLU_VC	Combination	376	316	14447	74502	-23462	-1248
1	SLU_SL1	Combination	474	518	10089	51151	-16930	-1449
1	SLU_SL2	Combination	459	492	9952	50710	-16736	-1430
1	SLU_ST1	Combination	567	898	9785	46115	-14645	-1143
1	SLU_ST2	Combination	553	872	9648	45675	-14451	-1124
1	SLU_V1	Combination	264	371	9924	51988	-17331	-583
1	SLU_V2	Combination	216	285	9466	50518	-16684	-519
1	VER_RIB_C	Combination	435	371	11189	52752	-16651	-1424
1	VER_RIB_S	Combination	427	349	8594	44362	-12157	-1583

i risultati ottenuti, evidenziati in giallo, soddisfano tutti tale condizione.

Sono state lette le varie combinazioni rispetto all'asse di ribaltamento.

In particolare le combinazioni di tipo ribaltante sono state incrementate x 1.15 (paragrafo 6.5.3.1.1 delle NTC18, in osservanza alla Tab. 6.5.I) mentre quelle stabilizzanti sono state assunte unitarie. Il risultato della verifica mostra ulteriori riserve di sicurezza rispetto alle minime imposte.

12. VERIFICA DELLE SPALLE

12.1 Modello di calcolo

Per le strutture della spalla è stato definito un modello numerico rappresentativo con il programma di calcolo agli elementi finiti "Sap2000" della Computer and Structures Inc.

Si riportano di seguito alcune immagini del modello di calcolo.

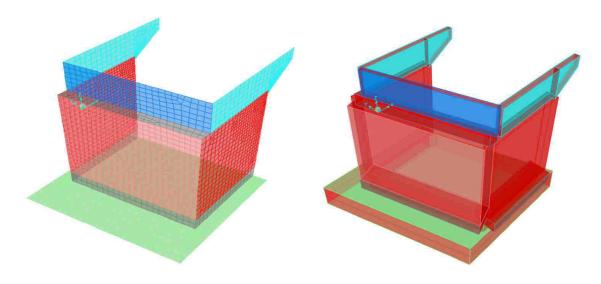


Figura 12-1 - Modello di calcolo

Il modello numerico è realizzato con elementi finiti bidimensionali tipo "shell-thick" ed elementi finiti tipo "link-linear" per il collegamento del nodo di riferimento al resto della struttura. Il nodo di riferimento è utilizzato per assegnare i carichi trasmessi dall'impalcato calcolati attraverso il modello numerico descritto nei paragrafi precedenti.

Le azioni agenti direttamente sulla spalla sono assegnate come carichi uniformi applicati agli elementi "shell" e come carichi nodali attraverso leggi di variazione lineare "joint pattern", tali carichi sono assegnati unitari e vengono poi resi congruenti con i valori di progetto attraverso dei moltiplicatori che agiscono nei casi di analisi "load case".

L'interazione terreno-struttura è stata tenuta in conto applicando alla zattera di fondazione delle molle "alla Winkler" assegnate nelle tre direzioni ortogonali.

L'azione sismica del terreno è stata calcolata con la formulazione di Mononobe-Okabe.

Si riportano di seguito le azioni assegnate al modello numerico, a tali azioni viene assegnato il segno che ne massimizza gli effetti.

POST_DIDEN (NODD) = 1 - NODD) = 2	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Pass	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Descrizione	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Descriptione	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G1-IMPAICATION	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CaPermaneNTI	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
E-DISTORISION 0 9 0 0 0 0 1.10 EA-CERMENT 0 25 0 0 0 0 0 0 0 0 0 1.00 EA-CERMENT 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
E-R-EEIMRNT	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
E4-CEDIMENT 0	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CALIFORNIURA	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 19	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Q3-FRENATURA 0 249 -533 -270 5 13 4 53 -1.0	1.000 1.000 1.000 1.000 1.000 1.000
CA-FINTO-P 0 265 0 71 92 -246 170 10 1.	1.000 1.000 1.000 1.000
CATATRITO-P 0 297 4-98 0 0 0 0 6 0 1.00 6 0 1.00 6 0 1.00 6 0 0 6 0 0 0 6 0 0	1.000 1.000 1.000
G6-SISMA_T	1.000 1.000
G6-SISMA_V 0 289 -146 -79 -31 -95 -20 -101 -1.0 DATIFER CALCOLO SPALLE Accelerazione al suolo Coefficiente di suolo (S-S _x X-S _y) Loe -5 X b. a g/g = coefficiente sismico orizzontale k _y = 0.5 K. a. coefficiente sismico orizzontale k _y = 0.5 K. b. a g/g = coefficiente sismico orizzontale k _y = 0.5 K. a. coefficiente di diuziono dell'accelerazione massima attesa al sito 1	1.000
Accelerazione al suolo Coefficiente di suolo (5-5x x5)	
Accelerazione al suolo Coefficiente di suolo (S=5x S-5r) 1.000 0 arctg Kh /(1±Kv) Coefficiente di suolo (S=5x S-5r) 1.000 0 arctg Kh /(1±Kv) Coefficiente di suolo (S=5x S-5r) 1.000 0 arctg Kh /(1±Kv) Coefficiente di simico orizzontale 0.0277 5 angolo attr.terra-muro 0.0277 0 angolo attr.to	1.000
Coefficiente di suolo (S=5x S-5) Lo00 Coefficiente di suolo (S=5x S-5) Lo07 Lo0	
Coefficiente di suolo (5-5x x5) k = 5 x k a s/g = coefficiente sismico orizzontale k = 0.5 k p = coefficiente sismico verticale 0.0271 β = coefficiente di riduzione dell'accelerazione massima attesa al sito 1 β angolo terreno 0.039 Metodo spinta sismica (M=Mononobe;W=Wood) MC (coefficiente di sipina taliva Metodo spinta sismica (M=Mononobe;W=Wood) MC (coefficiente di sipina taliva 0.0271 γ s p escreno (0.77 spinta signica (1.5 spinta) (1.5 spinta si utali cali spinta al viu) (2.0 variabile a tergo della spalla) kN/mq 2.0 (Variabile a tergo della spalla) kN/mq 2.0 km k k k k k k k k k k k k k k k k k k	
Rs = Sx ha = g/g = coefficiente sismico orizontale 0.077	1.000
ks = S ks = agle = coefficiente sismico orizontale ky = 0.5 ks = coefficiente sismico orizontale ky = 0.5 ks = coefficiente sismico verticale y = coefficiente di riduzione dell'accelerazione massima attesa al sito 1	0.074
k _x = 0.5 k _x = coefficiente sismico verticale 0.039 ψ angolo parete 99 β _m = coefficiente di riduzione dell'accelerazione massima attesa al sito 1 β angolo artirto 33 Spinta si tutta l'altezza (1±; 0=no) 1 ψ angolo attrito 33 Metodo spinta sismica (M=Mononobe,W=Wood) M Ku K Mononobe-Okabe K K0 (coefficiente di spinta in quiete) 0.426 Ku/LIFY, N Kononobe-Okabe totale Exception attiva Ka (coefficiente di spinta attiva) 0.271 Y ₂ Peso terreno di spinta Peso terreno di spinta Q (variabile a tergo della spalla) KNmq 2.0 Y ₈₀ Peso terreno di spinta Peso terreno di spinta Spilne statiche ortogonali muri o dir L(1=rot; 0=long.) 1 α Angolo inclinazione spalla 2.2 Rapporto fra lunghezza e spessore muro 5.75 FR Frenzantura paragh. 2.3 Rapporto fra lunghezza e spessore paraghilai 2.55 FR Frenzantura paragh. 2.3 Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica 1.00 Diamensione trasversale del rinterro ai fini del calcolo della inerzia sismica 1.00 Scalzamento Scal	0.000
Spinta su tutta l'altezza (1-si; 0-no) Metodo spinta si simica (M=Mononobe;W=Wood) Metodo spinta si simica (M=Mononobe;W=Wood) Motodo spinta si simica (M=Monobe;W=Wood) Motodo spinta si simica (M=Monopode;W=Wood) Motodo spinta si simica (M=Monopode;W=Mo	
Spinta su tutta l'altezza (1-si; 0-no)	
Metodo spirita sismica (M=Mononobe-W=Wood) Ka (coefficiente di spirita inquiete) Ka (coefficiente di spirita inquiete) Ca (coefficiente di spirita attiva) Ca (coefficiente di spirita inquiete) Ca (coefficiente di spirita attivo) Ca (coe	0.611
Ka (coefficiente di spinta attiva) (A qu'aitablia a tergo della spalia) K/mq (Spalla passante con speroni (12-si; 0-no) Spinte statiche ortogonali muri o dir L[1-orto; 0-long.) Spinte statiche ortogonali muri o dir L[1-orto; 0-long.) Spinte statiche ortogonali muri o dir L[1-orto; 0-long.) Rapporto fra lunghezza e spessore muro Rapporto fra lunghezza e spessore muro Rapporto fra lunghezza e spessore paraghlial Dimensione tonglitudinale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia s	0.312
Q (variabile a tergo della spalla) KN/mq Q (bariabile a tergo della spalla) KN/mq Spilla passante con speroni (15%) G-no) Spinte statiche ortogonali muri o dir L (1-orto; 0-Long.) Spinte statiche ortogonali muri o dir L (1-orto; 0-Long.) Rapporto fra lunghezza e spessore muro Dimensione tongitudinale del rintero a i fini del calcolo dell'inerzia sismica Dimensione tongitudinale del rintero a i fini del calcolo della inerzia sismica Dimensione torsversale del rintero a i fini del calcolo della inerzia sismica Rapporto di mensione traversale del rintero a i fini del calcolo della inerzia sismica Rapporto di mensione traversale del rintero a i fini del calcolo della inerzia sismica Rapporto di mensione traversale del rintero a i fini del calcolo della inerzia sismica Rapporto di mensione traversale del rintero a i fini del calcolo della inerzia sismica Rapporto di mensione traversale del rintero a i fini del calcolo della inerzia sismica Rapporto di mensione traversale del rintero a i fini del calcolo della inerzia sismica Rapporto di mensione traversale del rintero a i fini del calcolo della inerzia sismica Rapporto di mensione traversale di rintero a i fini del calcolo della inerzia sismica Rapporto di mensione traversale del rintero a i fini del calcolo della inerzia sismica Rapporto di mensione traversale del rintero a i fini del calcolo della inerzia sismica Rapporto di mensione traversale del rintero a i fini del calcolo della inerzia sismica Rapporto di mensione traversale del rintero a i fini del calcolo dell'inerzia sismica Rapporto di mensione traversale del rintero a fini del calcolo dell'inerzia sismica Rapporto di mensione traversale del rintero a i fini del calcolo dell'inerzia sismica Rapporto di mensione traversale del rintero a fini del calcolo dell'inerzia sismica Rapporto di mensione traversale del rintero a fini del calcolo dell'inerzia sismica Rapporto di mensione traversale del rintero a fini del calcolo dell'inerzia sismica Rapporto di mensione traversale del rintero a fini del calcolo dell'	0.324
Spalla passante con speroni (1-si; 0-no) Spinte statiche ortogonali muri od ir L (1-orto; 0-long.) Rapporto fra lungheza e spessore muro Spalla passante con speroni (1-si; 0-no) Rapporto fra lungheza e spessore muro Spinte statiche ortogonali muri od ir L (1-orto; 0-long.) Rapporto fra lungheza e spessore muro Spinte statiche ortogonali muri od ir L (1-orto; 0-long.) Rapporto fra lungheza e spessore muro Spinte statiche ortogonali muri od ir L (1-orto; 0-long.) Rapporto fra lungheza e spessore paraginial Dimensione longitudinale del rinterro ai fini del calcolo dell'inerzia sismica Spinte statiche ortage spintero dell'inerzia sismica Spintero spintero dell'inerzia sismica Spintero dell'inerzia sismica Spintero dell'inerzia sismica Spintero dell'inerzia sismica Spintero dill'inerzia sismica Spintero dell'inerzia sismica Spintero dill'inerzia spintero dell'inerzia sismica Spintero dell'inerzia sismica Spintero dell'inerzia sp	18
Spinte statiche ortogonali muri o dir L (1-orto; D-Long.) Rapporto fra lunghezza e spessore muro Rapporto fra lunghezza e spessore paraghiaia Dimensione tongitudinale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione traversale del rinterro ai fini del calcolo della inerzia sismica Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione pia la lunghezza espessore muro Rapporto di mensione traversale / dimensione longitudinale della fondazione pia la lunghezza espessore muro Rapporto di mensione traversale / dimensione longitudinale della fondazione pia la lunghezza espessore muro Rapporto di mensione traversale / dimensione longitudinale della fondazione pia la lunghezza espessore muro Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale della fondazione Rapporto di mensione traversale / dimensione longitudinale	
Rapporto fra lunghezza e spessore muro Rapporto fra lunghezza e spessore paraghia ia Dimensione longitudinale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasver	0.077
Rapporto fra lunghezza e spessore paraghia la Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo del	
Dimensione longitudinale del rinterro ai fini del calcolo dell'inerzia sismica Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Esporto dimensione trasversale / dimensione (1-rettangolare) Esporto dime	240.0 10.05
Dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Rapporto dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica Rapporto dimensione trasversale del rinterro ai fini del calcolo della inerzia sismica 1.25 Cecemetria della fondazione (1-rettangolare; 0-sghemba) Accelerazione dir X> Accelerazione dir X> Accelerazione dir X> Accelerazione dir Z> Accelerazione dir Z	1.00
Rapporto dimensione tras versale / dimensione longitudinale della fondazione 1.25	5.00
CLS / Modulo elastico CLS pali	0.00
Accelerazione dir Y> Accelerazione dir Z> Accelerazione dir Z> G1-PESO_SPALLA G1- G3- PESO_RINTERRO SPINTA_TERRA_5 FRENATURA_PAR SPINTA_TERRA_5 TA G1-PESO_SPALLA G1- G3- G3- G3- G4- G4- G4- G4- G4- G5- G4- G5- G6- G6- G7- G7- G7- G7- G7- G7- G7- G7- G7- G7	3.23E+07
Accelerazione dir Y> Accelerazione dir Z> Accelerazione dir Z> G1-PESO_SPALLA G1- G3- PESO_RINTERRO SPINTA_TERRA_5 FRENATURA_PAR SPINTA_TERRA_5 TA G1-PESO_SPALLA G1- G3- G3- G3- G4- G4- G4- G4- G4- G5- G4- G5- G6- G6- G7- G7- G7- G7- G7- G7- G7- G7- G7- G7	
Accelerazione dir Z > G1-PESO_SPALLA G1- G3- Q1-SPINTA_MOBILI Q3- G3- Q6- Q6- Q6- Q6- Q6- Q6- Q6- Q6- Q6- Q6	
CASI DI CARICO UNITARI PESO_RINTERRO SPINTA_TERRA_S FRENATURA_PAR SPINTA_TERRA_SI SOVRASPINTA_L INERZIA_MASSE_L INERZIA_MASSE IN	0.378
DI-FESU STALLA	V
TI O MURO 7.676 4.546 0.891	
U1 O MURO 8.528 0.000 9.288	
TI P MURO 0.000 10.175 1.995	
U1 P MURO 0.000 0.000 20.790	
T1_O_PARA 7.676 4.546 0.891	
U1_O_PARA 8.528 0.000 9.288	
T1_P_PARA 0.000 47.058 9.229	
U1_P_PARA 0.000 0.000 96.155	
T1_O_FOND 7.676 4.878 0.957	4
U1_O_FOND 8.528 0.000	-
TI_P_FOND 0.000 0.000 0.000	
U1 P FOND 0.000 0.000	1
11_SPERONI 0.000 0.000 0.000 0.000	
UL SPERONI 0.000 0.000 0.000	
T1_BANDIERE 7.676 U1_BANDIERE P 8.528 13.860	
13.8401ER.P 8.5.28 13.360 11.BANDIER.N 8.528 13.360	
D1_DAINDIERE_IV 13.860	
	200
Z1 RINTERO 180,900 L1 FRENATURA 240,000	6.965

Figura 12-2 – Tabella assegnazione azioni al modello di calcolo

12.2 Verifiche strutture SLU-SLV

Si riportano di seguito le color map che diagrammano le richieste di armatura calcolate dal programma in funzione dell'inviluppo delle sollecitazioni per lo stato limite in oggetto, a cui viene applicato il metodo di Wood - Armer nelle due direzioni ortogonali.

Le richieste di armatura, espresse in mm²/mm, sono rappresentate con diversi colori filtrati sul valore massimo funzione dell'armatura di progetto.

I versi di disposizione delle armature denominate nel seguito come: A_{st1} e A_{st2} sono mostrati nella figura sottostante.

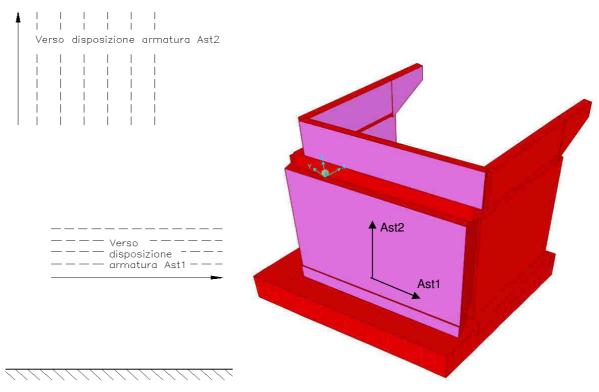


Figura 12-3 – Richiesta di armatura elevazione: convenzioni

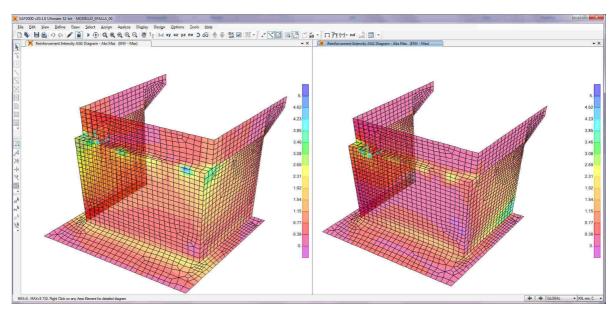


Figura 12-4 – Richiesta di armatura: Ast1 (sinistra) e Ast2 (destra)

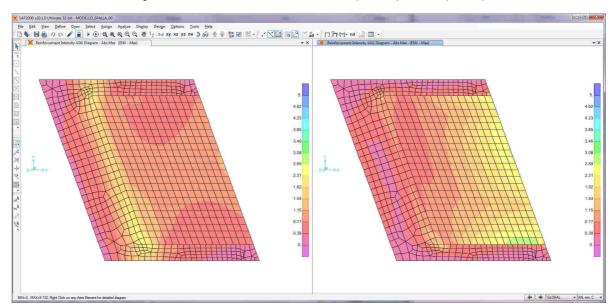


Figura 12-5 – Richiesta di armatura: Ast1 (sinistra) e Ast2 (destra) – dettaglio fondazione

Le richieste di armatura massime sono compatibili con le incidenze indicate negli elaborati e riassunte nella tabella sottostante.

		Ast1			Ast2	
	passo	Φ	Area	passo	Φ	Area
	cm	mm	mm²/mm	cm	mm	mm²/mm
MURO PARAGHIAIA	10	16	2.01	20	16	1.01
MURO FRONTALE	10	24	4.52	10	20	3.14
MURI ANDATORI	10	24	4.52	10	24	4.52
PLATEA	20	24	2.26	20	24	2.26

12.3 Verifica a ribaltamento

Di seguito si riporta la verifica al ribaltamento della spalla, valutato nella direzione longitudinale dell'impalcato, considerando il cinematismo di ribaltamento agente rispetto al nodo illustrato nella seguente immagine.

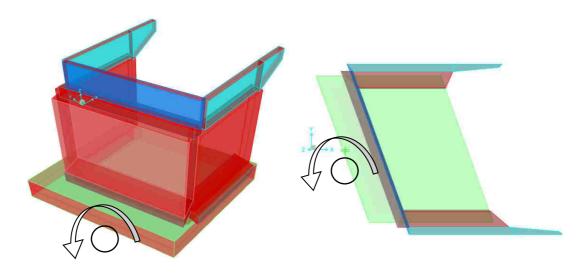


Figura 12-6 – Zattera di fondazione: cinematismo di ribaltamento

Le verifiche, in accordo al paragrafo 6.5.3.1 delle NTC18, sono condotte considerando l'Approccio di tipo 2, con la combinazione (A1+M1+R3), dove si pone R3 = 1.15 per le condizioni SLU e R3 = 1 per le condizioni SLV.

Le combinazioni di verifica del ribaltamento allo SLU sono:

VER_RIB_C in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte carico;

VER_RIB_S in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte scarico.

TABLE: Combina	ation Definition	ns			
ComboName	ComboType	AutoDesign	CaseType	CaseName	ScaleFactor
Text	Text	Yes/No	Text	Text	Unitless
VER_RIB_C	Linear Add	No	Response Combo	EQU_1	1.15
VER_RIB_C			Response Combo	EQU_3	1
VER_RIB_S	Linear Add	No	Response Combo	EQU_2	1.15
VER_RIB_S			Response Combo	EQU_3	1

Le combinazioni di verifica del ribaltamento allo SLV sono descritte nel paragrafo relativo alle combinazioni di carico.

Per la convenzione dei segni utilizzata, le verifiche si intendono soddisfatte quando il segno della reazione vincolare del momento intorno all'asse di ribaltamento risulta negativo.

TABLE: Jo	int Reactions							
Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
1	SLU_SL1	Combination	9481	-9700	25562	7097	-84827	-26463
1	SLU_SL2	Combination	9412	-8747	25894	3133	-87697	-21224
1	SLU_ST1	Combination	5706	-10882	25018	12575	-108243	-42752
1	SLU_ST2	Combination	5476	-7707	26124	-636	-117807	-25288
1	SLU_V1	Combination	5728	-10020	26107	7905	-113820	-38847
1	SLU_V2	Combination	5659	-9067	26438	3942	-116689	-33608
1	SLU_SL1_V-	Combination	9394	-9486	24962	7136	-82504	-25630
1	SLU_SL2_V-	Combination	9325	-8534	25293	3173	-85373	-20390
1	SLU_ST1_V-	Combination	5619	-10669	24418	12615	-105920	-41919
1	SLU_ST2_V-	Combination	5389	-7493	25524	-596	-115484	-24454
1	SLU_V1_V-	Combination	5436	-9308	24104	8037	-106076	-36068
1	SLU_V2_V-	Combination	5367	-8355	24436	4074	-108945	-30829
1	VER_RIB_C	Combination	10587	-6234	25458	-12156	-84742	4728
1	VER_RIB_S	Combination	9759	-5607	23745	-8450	-89633	2213
1	VER_RIB_V	Combination	8900	-5195	22231	-6770	-93783	-346

I risultati ottenuti, evidenziati in giallo, soddisfano tutti tale condizione.

Sono state lette le varie combinazioni rispetto all'asse di ribaltamento.

In particolare le combinazioni di tipo ribaltante sono state incrementate x 1.15 (paragrafo 6.5.3.1.1 delle NTC18, in osservanza alla Tab. 6.5.I) mentre quelle stabilizzanti sono state assunte unitarie. Il risultato della verifica mostra ulteriori riserve di sicurezza rispetto alle minime imposte.