

Direzione Progettazione e Realizzazione Lavori

CORRIDOIO PLURIMODALE ADRIATICO

ITINERARIO MAGLIE - SANTA MARIA DI LEUCA

S.S. N° 275 "DI S. MARIA DI LEUCA"

LAVORI DI AMMODERNAMENTO E ADEGUAMENTO ALLA SEZ. B DEL D.M. 5.11.2001

S.S. 16 dal km 981+700 al km 985+386 - S.S. 275 dal Km 0+000 al km 37+000

1° Lotto: Dal Km 0+000 di prog. al Km 23+300 di prog.

PROGETTO DEFINITIVO

cop. **BA283**

PROGETTAZIONE: ANAS - COORDINAMENTO TERRITORIALE ADRIATICA

1	PRO	GET	TISTI

Ing. Alberto SANCHIRICO - Progettista e Coordinatore

Ing. Simona MASCIULLO - Progettista

COLLABORATORI

Geom. Andrea DELL'ANNA Geom. Massimo MARTANO Geom. Giuseppe CALO'

IL GEOLOGO

Dott. Pasquale SCORCIA

IL COORDINATORE IN FASE DI PROGETTAZIONE

Ing. Alberto SANCHIRICO

IL RESPONSABILE DEL PROCEDIMENTO

Ing. Gianfranco PAGLIALUNGA

RESPONSABILE PROJECT MANAGEMENT PUGLIA

Ing. Nicola MARZI

ATTIVITA' DI SUPPORTO

INGEGNERI GUADAGNUOLO & PARTNERS

08 - OPERE D'ARTE MAGGIORI - VIADOTTI E PONTI

Sovrappasso accesso alla Zona Artig. Di Maglie Nord (Comune di Maglie)

ST 28 - al km 0+600 Relazione di calcolo strutturale

CODICE PR	OGETTO	NOME FILE			REVISIONE	SCALA:
PROGETTO	LIV. PROG. N. PROG.	T00_ST28_STR_RE01_	_D		ILVISIONE	JCALA.
L050	3A D 1701	CODICE TOOST28S	TRREC	0 1	D	
D	OTTEMPERANZA PARERE	AdB Puglia – PARERE CSLLPP	Aprile 2019	ing. D.Neri		
С	REVISIONE DEL PROGE	TTO DEFINITIVO	Gennaio 2019			
В	REVISIONE DEL PROGE	TTO DEFINITIVO	Ottobre 2018			
А	REVISIONE DEL PROGE	TTO DEFINITIVO	Giugno 2018			
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

INDICE

1.	PREMESSA	4
	1.1 Descrizione dell'opera	4
	1.2 Considerazioni sul progetto strutturale	6
2.	NORMATIVA E RIFERIMENTI	7
3.	CARATTERISTICHE DEI MATERIALI	8
	3.1 Calcestruzzo	8
	3.2 Acciaio per cemento armato	8
	3.3 Durabilità, prescrizioni sui materiali, scelta degli stati limite di fessurazione e dei copriferri	9
4.	CRITERI DI CALCOLO E DEFINIZIONE DELLE AZIONI	10
	4.1 Criteri di calcolo	10
	4.2 Definizione delle azioni	10
5.	COMBINAZIONI DI CARICO	11
6.	ANALISI DEI CARICHI	12
	6.1 Azioni permanenti	12
	6.1.1 Peso proprio degli elementi strutturali (g1)	12
	6.1.2 Carichi permanenti portati (g2)	12
	6.2 Deformazioni impresse	13
	6.2.1 Precompressione	13
	6.2.2 Cadute di tensione	14
	6.2.3 Ritiro e viscosità (ε2)	15
	6.3 Azioni variabili da traffico	16
	6.3.1 Carichi mobili (q1)	16
	6.4 Azione longitudinale di frenamento o di accelerazione (q3)	17
	6.5 Azioni variabili di vento e neve (q5)	17
	6.6 Azioni sismiche (q6)	17
7.	IMPALCATO - CARATTERISTICHE GEOMETRICHE	20
	7.1 Generalità	20

8.	IMPAL	CATO - ANALISI STRUTTURALE	24
	8.1 G	eneralità	24
	8.2 D	escrizione del modello di calcolo	24
	8.3 D	escrizione dei carichi applicati	27
	8.3.1	Carichi mobili (q1)	27
	8.4 Di	agrammi delle caratteristiche della sollecitazione	27
9.	IMPAL	CATO - VERIFICA TRAVI PRINCIPALI	29
	9.1 PI	REMESSA	29
	9.2 VI	ERIFICHE TRAVI	30
	9.2.1	Combinazione di carico rara SLE – Verifiche dello stato tensionale	30
	9.2.2	Combinazione di carico fondamentale SLU – Verifica a rottura	33
	9.2.3	Combinazione di carico fondamentale SLU – Verifica a taglio	35
	9.2.4	Carichi accidentali – Verifica di deformabilità	36
	9.3 VI	ERIFICA SOLETTA IN DIREZIONE TRASVERSALE	37
	9.3.1	Combinazione di carico rara SLE - Verifiche dello stato tensionale e a	
	fess	surazione	37
	9.3.2	Combinazione di carico eccezionale SLU – Urto in svio	38
	9.4 VI	ERIFICA TRAVERSI	39
	9.4.1	Combinazione di carico rara SLE – Verifiche dello stato tensionale	39
	9.4.2	Verifiche a taglio	39
10.	SPALL	E – VERIFICHE FONDAZIONE E ELEVEAZIONE	40
	10.1 Aı	nalisi dei carichi	40
	10.2 C	ondizioni di carico	46
	10.3 C	ombinazioni di carico	47
	10.4 Ve	erifiche	48
	10.4.1	Verifiche di stabilità – Ribaltamento	48
	10.4.2	Verifiche strutturali – Plinto di fondazione – Mensola lato valle SLU	49
	10.4.3	Verifiche strutturali – Plinto di fondazione – Mensola lato valle SLE	50
	10.4.4	Verifiche strutturali – Plinto di fondazione – Mensola lato monte SLU	51
	10.4.5	Verifiche strutturali – Plinto di fondazione – Mensola lato monte SLE	52
	10.4.6	Verifiche strutturali – Muro di testata – Sezione di base SLU	53
	10.4.7	Verifiche strutturali – Muro di testata – Sezione di base SLE	54

	. 275 - Strada Statale Maglie - Santa Maria di Leuca azione di calcolo impalcato e sottostrutture - ST28	3
	10.4.8 Verifiche strutturali – Muro paraghiaia – Sezione di base SLU	55
	10.4.9 Verifiche strutturali – Muro paraghiaia – Sezione di base SLE	56
	10.4.10 Verifiche strutturali – Soletta di transizione – SLU	57
11.	PILA – VERIFICHE ELEVAZIONE E FONDAZIONE	58
	11.1 Geometria	58
	11.2 Analisi dei carichi agenti	59
	11.3 Condizioni di carico	61
	11.4 Combinazioni di carico	62
	11.5 Verifiche elevazione - SLU	63
	11.5.1 Verifica a flessione	63
	11.5.2 Verifica a taglio	64
	11.6 Verifiche elevazione - SLE	65
	11.7 Verifica per urto da traffico ferroviario	66
	11.8 Verifica pulvino	67
	11.9 Verifica plinto di fondazione - SLU	69
	11.10 Verifica plinto di fondazione - SLE	71
12.	APPARECCHI DI APPOGGIO, GIUNTI E VARCHI	72
13.	ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DEI CODICI DI CALCOLO	74
	13.1 Origine, caratteristiche e affidabilità dei software di calcolo	74

74

74

13.2 Giudizio motivato di accettabilità dei risultati

13.2.1 Ripartizione trasversale carico accidentale

1. PREMESSA

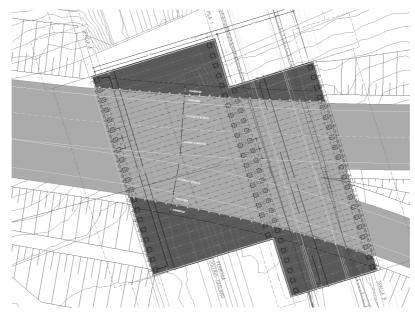
La presente relazione riguarda il dimensionamento strutturale dell'impalcato e delle sottostrutture dell'opera *Sovrapasso accesso alla Zona Artigianale di Maglie Nord (Comune di Maglie) ST 28 - al km 0+600* previsto nell'ambito dei lavori della *S.S. N° 275 "DI S. MARIA DI LEUCA" AMMODERNAMENTO E ADEGUAMENTO AL D.M. 5.11.2001 S.S. 16 dal km 981+700 al km 985+386 - S.S. 275 dal Km 0+000 al km 37+000 1° Lotto: Dal Km 0+000 di prog. al Km 23+300 di prog.*

1.1 Descrizione dell'opera

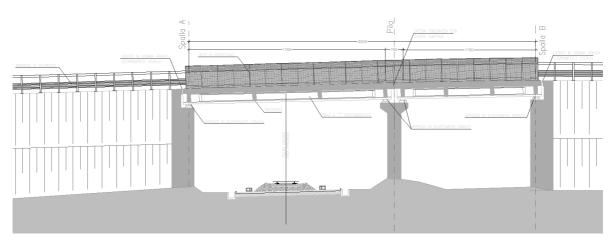
La presente relazione riguarda il dimensionamento strutturale dell'impalcato a travi prefabbricate precompresse, a trefoli pre-tesi, con sezione trasversale a "T" ad ala larga superiore di altezza pari a H=90cm e il dimensionamento strutturale delle sottostrutture.

La piattaforma ha una larghezza bitumata variabile con lateralmente cordoli di dimensione minima pari a 0.75 in destra/sinistra sui quali sono montate le barriere di ritenuta bordo ponte.

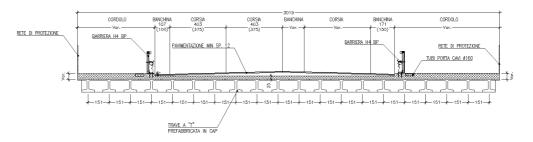
L'impalcato è composto quindi da travi prefabbricate di calcestruzzo armato precompresso, affiancate e collegate superiormente dalla soletta di impalcato in calcestruzzo armato gettata in opera sulle ali superiori delle travi senza la necessità quindi di adoperare casserature di qualsiasi tipologia; lo schema statico di trave appoggiata è riferito alla luce di calcolo pari a 17.0 m.


La sovrastruttura di impalcato è vincolata alle generiche sottostrutture spalle e/o pile mediante un sistema di dispositivi d'appoggio in *acciaio PTFE*.

L'opera ricade in zona sismica, pertanto, saranno considerate le azioni previste dalla normativa vigente *NTC 2018* così come riportato nei capitoli successivi.


Il calcolo riportato nella presente relazione si intende relativo alle dimensioni principali tali da massimizzare le sollecitazioni agenti sulla struttura di impalcato; tali dimensioni sono riassunte di seguito.

- L_{calc} = 17.0m luce di calcolo maggiore;
- B_{trasv} ≅ 30.2m dimensione trasversale impalcato;
- n°_{trv} = 20 numero di travi presenti sulla sezione trasversale.


Nelle figure sottostanti si riportano le caratteristiche principali dell'opera in esame.

F 1. Planimetria generale

F 2. Profilo longitudinale

F 3. Sezione trasversale impalcato

1.2 Considerazioni sul progetto strutturale

Per il calcolo delle strutture si è fatto riferimento ai carichi mobili relativi ai ponti di 1^a categoria desunti dalle *NTC 2018*.

Trattandosi, nel funzionamento globale dell'impalcato, di un sistema con travi prefabbricate in c.a.p. e soletta gettata in opera in c.a., le azioni agenti vengono suddivise in due fasi, corrispondenti al grado di maturazione del getto di calcestruzzo della soletta e quindi alle differenti sezioni resistenti delle sezioni nelle due fasi.

- Fase 1: tale fase considera il peso proprio dell'impalcato realizzato con travi in c.a.p. e soletta ancora non collaborante;
- Fase 2: tale fase, con soletta collaborante, considera il peso dei successivi carichi permanenti applicati alla struttura (pavimentazione, marciapiedi/cordoli, barriere di sicurezza, etc.) ed il transito dei carichi mobili di esercizio.

Le verifiche vengono riportate per la campata di lunghezza maggiore in quanto per tutte le campate si utilizzano le stesse carpenterie di trave e gli stessi quantitativi di armatura.

2. NORMATIVA E RIFERIMENTI

I calcoli e le disposizioni esecutive sono conformi alle norme attualmente in vigore elencate nel seguito.

- [I] D. M. Min. II. TT. del 17 gennaio 2018 Norme tecniche per le costruzioni;
- [II] Circolare 21 gennaio 2019 N.7 C.S.LL.PP. Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme Tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018;
- [III] UNI EN 1990 (Eurocodice 0) Aprile 2006: "Criteri generali di progettazione strutturale";
- [IV] Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici - Servizio Tecnico Centrale;
- [V] UNI EN 197-1 giugno 2001 "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni;
- [VI] UNI EN 11104 marzo 2004 "Calcestruzzo: specificazione, prestazione, produzione e conformità", complementari per l'applicazione delle EN 206-1;
- [VII] UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità".
- [VIII] CNR 10024/86 Analisi mediante elaboratore: impostazione e redazione delle relazioni di calcolo.

3. CARATTERISTICHE DEI MATERIALI

3.1 Calcestruzzo

Per il *magro di fondazione* si prevede l'utilizzo di un calcestruzzo classe *C12/15* (*R_{ck}* ≥15 *MPa*).

Per le *fondazioni delle spalle, pile e per la soletta di transizione* si prevede l'utilizzo di un calcestruzzo classe C28/35 ($R_{ck} \ge 35$ MPa).

Per le *elevazioni spalle, pile, baggioli e ritegni sismici* si prevede l'utilizzo di un calcestruzzo classe *C32/40* (*R*_{ck} ≥40 *MPa*).

Per le *predalle, la soletta di impalcato e cordoli* si prevede l'utilizzo di un calcestruzzo classe *C35/45* (*R*_{ck} ≥45 *MPa*).

Per le *travi in c.a.p.* si prevede l'utilizzo di un calcestruzzo classe *C45/55* (*R_{ck}* ≥55 *MPa*).

3.2 Acciaio per cemento armato

Per le armature metalliche si adottano tondini in acciaio saldabile del tipo *B450C* controllato in stabilimento caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura da utilizzare nei calcoli:

$$f_{y nom} = 450 \text{ MPa}$$
 $f_{t nom} = 540 \text{ MPa}.$

L'acciaio B450C deve rispettare le caratteristiche riportate nella seguente tabella.

Proprietà	Requisito	Frattile (%)
Tensione caratteristica di snervamento ⇒ f _{yk}	≥ 450 MPa	5.0
Tensione caratteristica di rottura ⇒ f _{tk}	≥ 540 MPa	5.0
$(f_t/f_y)_k$	≥ 1.15 ≤ 1.35	10.0
$(f_t/f_{ynom})_k$	≤ 1.25	10.0
Allungamento totale al carico massimo \Rightarrow (A _{gt})	≥ 7.5%	10.0
Diametro del mandrino per prove di piegamento a 90° e successivo raddrizzamento senza cricche:		
φ < 12	4φ	
12 ≤ φ ≤ 16	5φ	
16 < φ ≤ 25	8φ	
25 < φ ≤ 40	10φ	

T.1 Caratteristiche dell'acciaio

3.3 Durabilità, prescrizioni sui materiali, scelta degli stati limite di fessurazione e dei copriferri

Il calcestruzzo deve essere in grado di resistere in maniera soddisfacente alle condizioni ambientali e di lavoro cui è sottoposto durante la vita dell'opera. Nella presente sezione si valutano pertanto le caratteristiche dei calcestruzzi (resistenza caratteristica, copriferri, ecc.) da impiegare per la realizzazione delle diverse parti dell'opera in oggetto tali da conseguire il requisito di durabilità richiesto.

In relazione alle classi di esposizione ambientale definite nella *UNI EN 206-1* e nella *UNI 11104*, sono state attribuite ai diversi elementi strutturali le seguenti classi di esposizione alle quali sono state associate le condizioni ambientali:

fondazioni spalle XC2 c.a. ordinarie; elevazioni spalle XC4 c.a. aggressive; soletta impalcato XC4+XD1 c.a. aggressive.

L'armatura deve essere protetta da un adeguato ricoprimento di calcestruzzo (copriferro) dimensionato in funzione dell'aggressività dell'ambiente e della sensibilità delle armature alla corrosione, tenendo anche conto della tolleranza di posa delle armature.

La distanza tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Considerate le classi di esposizione ambientale, la tipologia delle opere e le classi del calcestruzzo impiegato, i valori del copri ferro minimo sono assunti pari a:

Elemento	Copriferro minimo di progetto c _{min} (mm)
Fondazione spalle/pile	40
Elevazione spalle/pile	40
Soletta impalcato e travi in c.a.p.	35

T.1 Copriferri minimi

4. CRITERI DI CALCOLO E DEFINIZIONE DELLE AZIONI

4.1 Criteri di calcolo

In ottemperanza al *D.M. del 17.01.2018*, i calcoli sono condotti con il metodo semiprobabilistico agli stati limite. Per l'analisi strutturale, volta alla valutazione degli effetti delle azioni per gli *SLU*, si adotta il metodo dell'analisi elastica lineare. Per la determinazione degli effetti delle azioni, le analisi vengono effettuate assumendo:

- sezioni interamente reagenti con rigidezze valutate omogeneizzando rispetto all'acciaio ad eccezione delle zone interessate dalla fessurazione dove la rigidezza è valutata riferendosi al solo acciaio di armatura lenta disposta in soletta;
 - relazioni tensioni deformazioni lineari:
 - valori medi del modulo di elasticità.

Le unità di misura adottate sono i "m" per le lunghezze, "kN e m" per le forze e le sollecitazioni, i "N e mm" per le tensioni (ovvero MPa).

4.2 Definizione delle azioni

L'opera in esame è un ponte stradale; le azioni da considerare nella progettazione sono pertanto:

- le azioni permanenti;
- le distorsioni, ivi comprese quelle dovute a presollecitazioni di progetto e quelle di origine termica;
- le azioni variabili da traffico;
- le azioni variabili da vento e neve;
- le azioni eccezionali;
- le azioni sismiche.

Per l'impalcato in esame non sono state considerate le azioni da vento e neve poiché non dimensionanti; le azioni eccezionali non sono presenti.

5. COMBINAZIONI DI CARICO

Nel presente capitolo vengono definite le combinazioni di carico utilizzate nei calcoli.

Ai fini delle verifiche agli stati limite, in accordo con la [I], si definiscono le seguenti combinazioni di azioni:

- Combinazione FONDAMENTALE (FO), generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} G_1 + \gamma_{G2} G_2 + \gamma_{G3} G_3 + \gamma_{P} \cdot P + \gamma_{Q1} Q_{k1} + \Psi_{02} \cdot \gamma_{Q2} \cdot Q_{k2} + \Psi_{03} \cdot \gamma_{Q3} \cdot Q_{k3} + \dots$$

- Combinazione RARA (RA), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + G_3 + P + Q_{k1} + \Psi_{02} \cdot Q_{k2} + \Psi_{03} \cdot Q_{k3} + \dots$$

- Combinazione SISMICA (SIS), impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica:

$$E + G_1 + G_3 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + \dots$$

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1+G_2+\sum_i \psi_{2i}\cdot Q_{ki}$$

I valori del coefficiente ψ_{2i} sono quelli riportati nelle tabelle della norma; la stessa propone nel caso di ponti, e più in generale per opere stradali, di assumere per i carichi dovuti al transito dei mezzi $\psi_{2i}=0$.

Di seguito si riporta la matrice di combinazioni implementata.

- MATRICE C												
cond\comb	1	2	3	4	5	6	7	8	9	10	11	12
REALIZZAZIONE	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1
PERM SP	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1
ACC SP	0	0	1.35	1.35	1.35	1.35	0	0	0	0	0	0
PERM IMP	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1
ACC IMP - Nmax	0	0	1.35	1.0125	1.0125	1.35	0	0	0	0	0	0
FOLLA	0	0	0	0	0	0	0	0	0	0	0	0
ST	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1
SA	0	0	1.35	1.0125	1.0125	1.35	0	0	0	0	0	0
VARTEMPD	0	0	0.72	1.2	0.72	1.2	0.5	0.5	0.5	0.5	0.5	0.5
VARTEMPU	0	0	0.72	1.2	0.72	1.2	0	0	0	0	0	0
FR	0	0	0	0	0	0	0	0	0	0	0	0
VENTO	0	0	0.9	0.9	1.5	1.5	0	0	0	0	0	0
SIS SP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30
SIS SP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30
SIS SP V	0	0	0	0	0	0	0.30	0.30	1.00	-0.30	-0.30	-1.00
SIS IMP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30
SIS IMP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30
SIS IMP V	0	0	0	0	0	0	0.30	0.30	1.00	0.30	0.30	1.00
DS	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30
	1	2	3	4	5	6	7	8	9	10	11	12

T.1 Matrice Combinazioni di cario SLU STATICHE (STR) e SLU SISMICHE (SLV)

6. ANALISI DEI CARICHI

Nel seguente capitolo, sulla base di quanto riportato al capitolo precedente, si descrivono i carichi elementari assunti per le verifiche di resistenza in esercizio ed in presenza dell'evento sismico per la struttura in oggetto.

6.1 Azioni permanenti

Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato: 25 kN/m³
 rilevato 19 kN/m³
 sovrastruttura stradale 22 kN/m³

6.1.1 Peso proprio degli elementi strutturali (g1)

Impalcato a travi prefabbricate in c.a.p.

Il peso della travi della sezione "corrente" è assunto pari a

p_{travi-sez mezzeria} = **25**×**0.366** = **9.15** kN/m per ogni singola trave.

Per la sezione ringrossata si considera in prima approssimazione un peso pari a:

 $p_{travi-sez \text{ appoggio}} = 1.1 \times 9.15 \cong 10.1 \text{ kN/m per ogni singola trave.}$

Soletta

Per lo spessore della soletta si è considerato uno spessore di 0.25 m per una larghezza di influenza della singola e generica trave di 1.52 m, per cui si ha:

 $p = 0.25 \times 1.52 \times 25 = 9.5 \text{ kN/m}$ per ogni singola trave.

6.1.2 Carichi permanenti portati (g2)

I carichi permanenti portati (per metro lineare di struttura) sono i seguenti

- sovr. stradale (s \cong 0.11m) 0.11×22 = 2.42 kPa - marciapiedi-cordoli (s_{medio} \cong 0.20m) 0.2×25 = 5.0 kPa

- velette prefabbricate $2\times(1.5\times0.12)\times25 = 9.0 \text{ kN/m}$

- elementi di ritenuta (NJ+barriera) 6+1.5 = 7.5 kN/m- parapetti/reti di protezione $2\times0.5 = 1.0 \text{ kN/m}$.

6.2 Deformazioni impresse

6.2.1 Precompressione

Si riportano di seguito le valutazioni del carico di precompressione delle travi di impalcato. Il sistema di precompressione, previsto con trefoli pre-tesi, è composto per tutta la lunghezza della travata tipologica da 20 trefoli (2 trefoli superiori + 18 trefoli inferiori) da 0.6" ovvero con area del singolo trefolo pari a 140mm².

L'acciaio da precompressione è caratterizzato, in accordo con la normativa vigente, dalle tensioni caratteristiche riportate di seguito:

- f_{ptk} ≥ 1860 MPa;
- $f_{p(1)k} \ge 1670 \text{ MPa.}$

Il modulo elastico per tale acciaio è assunto pari a:

-
$$E_s \cong 1.95 \times 10^8 \text{ kPa}$$
.

La massima tensione di trazione in esercizio è pari a:

$$\sigma_p = 0.8 \!\!\times\!\! f_{p(1)k} = 1068.8 \; MPa.$$

La massima tensione iniziale all'atto della tesatura è pari a:

$$\sigma_{spi} = min (0.85 \times f_{p(1)k}; 0.75 \times f_{ptk}) = min (1420;1395) = 1395 MPa.$$

E' ammessa una sovratensione non superiore a $0.05 \times f_{p(1)k} \cong 83.5$ MPa.

La massima tensione iniziale all'atto della tesatura è assunta pari a:

$$\sigma_{\text{spi-MAX}} \cong 1395 \text{ MPa}.$$

6.2.2 Cadute di tensione

Si riportano di seguito le valutazioni sulle cadute di tensione del sistema di precompressione dell'impalcato. Tutte le cadute di tensione sono valutate nel rispetto di quanto previsto nella normativa vigente.

Pe	erdite di precompressione			
Ca	aratteristiche dei materiali impie	egati		
	ciaio da precompressione			
	f _{ptk} =	1860	N/mm ²	(tensione caratteristica di rottura)
	$f_{p(1)k} =$	1670	N/mm ²	(tensione caratteristica all'1% di def.)
	E _p =	195000	N/mm ²	(modulo elastico)
	cestruzzo			
	fc =	46	N/mm ²	
	E _{C0p} =		N/mm ²	(modulo elastico)
	300			
- Ca	aratteristiche geometriche			
	Atrave =	0.3662	m ²	(area della sezione di calcestruzzo)
	Acavi =	28.0		(area complessiva dei cavi della prec.)
	1/Atrave,om =	2.630	m ⁻²	(1/area della sezione omogeneizzata)
	1/Wb,cavi =	5.931	m ⁻³	(1/modulo di resistenza della fibra di cls
				in corrispondenza del baricentro dei cavi)
- te	nsione iniziale			
	$\sigma_0 =$		N/mm ²	(tensione iniziale al martinetto)
	ver.	< 0.85 fp(1)k = 1		con sovratensione 0.05 fp(1)k si ha 1587 MPa
	P1 1 1 1 P	< 0.75 fptk = 139	95 MPa	con sovratensione 0.05 fp(1)k si ha 1572 MPa
- pe	erdite iniziali	-		
ner	dite di tensione per deformazio	ne istantanea del	calceetruss	70
	•		N/mm ²	(perdite di tensione istantanne = 4.1% del valore iniziale)
	$\Delta \sigma_{db} = E_p / E_{C0} \times A_{torons} / A_{poutre} \times \sigma_0$	1337.9		,
	$\sigma_{0,1} = \sigma_0 - \Delta \sigma_{db} =$	1337.9	IN/mm²	(tensione in seguito alle perdite istantanee)
ıمP	dite di tensione per attrito			
	f	0.00	_	
	β	0.E+00		
	•	0.E+00		
	α = 5° L =	0.E+00		(lunghezza cavo alle sezioni di verifica)
			N/mm ²	(perdita di tensione per attrito)
	Δσ _{attrito} =	0.0	IN/IIIII	(perdita di terisione per attitto)
	- ·	1337.9	N/mm ²	(tensione in seguito alle perdite istantanee)
	$\sigma_{0,1} = \sigma_0^- \Delta \sigma_{db}^- \Delta \sigma_{attrito}$	1337.9	13/111111	(tensione in seguito ane perulte istantanee)
- pe	erdite finali	+		
۲	The state of the s			
per	dita di tensione per il ritiro del c	alcestruzzo		
	ε _{rit} =	0.00030	-	
	$\Delta \sigma_{ret} = E_p x_{Erit} =$		N/mm ²	
	—eiot μ eit	33.0		
per	dita di tensione per il fluage			
	Ob,cavi =	8.2	N/mm ²	(tensione nel calcestruzzo al livello del baricentro dei cavi)
	$\Delta \sigma_{f } = 2.2 x_{\sigma_{b,cav}} \times E_s / E_{c0} =$		N/mm ²	
		33.2		
per	dita di tensione per il rilassame	nto dell'acciaio		
	trefolo stabilizzato	si	-	
	$\Delta \sigma_{\text{rel}} =$	81.8	N/mm ²	$(\Delta\sigma_{ril}$ tenendo conto di un t=500000 ore)
		†		
- te	nsione finale			
	$\Delta \sigma_{ret} + \Delta \sigma_{fl} + \Delta \sigma_{rel}$	236.5	N/mm ²	(perdite di tensione lente = 17.0% del valore iniziale)
	$\sigma_{\text{inf}} = \sigma_{0,1} - \Delta \sigma_{\text{ret}} + \Delta \sigma_{\text{fl}} + \Delta \sigma_{\text{rel}}$	1101.4	N/mm ²	(tensione finale dei trefoli)
		1		

6.2.3 Ritiro e viscosità (ε2)

La deformazione totale da ritiro assunta nel predimensionamento è pari a:

$$\epsilon_{cs} = \epsilon_{cd} + \epsilon_{ca} \cong 3 \times 10^{-4};$$

dove:

 $\epsilon_{\text{\tiny CS}}$ è la deformazione totale per ritiro;

 ϵ_{cd} è la deformazione per ritiro da essiccamento;

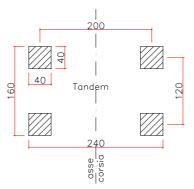
 ϵ_{ca} è la deformazione per ritiro autogeno.

6.3 Azioni variabili da traffico

6.3.1 Carichi mobili (q1)

Ai fini della determinazione delle azioni variabili da traffico, l'opera in oggetto è considerata come un ponte stradale di 1° **Categoria**. In relazione alla geometria della strada soprastante l'opera in esame si riportano le caratteristiche delle corsie convenzionali.

w = var. larghezza di carreggiata;


 $n_l = 3$ numero di corsie convenzionali;

w_I = 3.0 m larghezza di una corsia convenzionale;

 $w-(3.0\times n_i)$ parte rimanente.

Le azioni variabili del traffico, comprensive degli effetti dinamici, sono definite mediante lo schema di carico 1 e lo schema di carico 2. Lo schema di carico 1 (schema dimensionante per le travi prevede:

- il carico Q_{1,k} costituito da un mezzo convenzionale a due assi (carico tandem) posti ad un interasse di 1.20m lungo il senso di marcia e caratterizzati da una larghezza di 2.40m (comprese le dimensioni delle impronte);
- il carico ripartito q_{1,k}

F 4. Schema di carico 1 – Carico tandem

Trattandosi di ponte di 1° Categoria si considerano le intensità dei carichi riportate nella tabelle seguente.

Posizione	Carico asse Q _{ik} (kN)	Carico ripartito q _{ik} (kN/m²)
Corsia n. 1	300	9.00
Corsia n. 2	200	2.50
Corsia n. 3	100	2.50
Parte rimanente	0.00	2.50

T.2 Intensità dei carichi Qik e qik per le diverse corsie

Nelle verifiche si considerano tutte le disposizioni dei carichi variabili da traffico in maniera tale da massimizzare le sollecitazioni flettenti e taglianti (massima densità di carico, massima eccentricità del carico risultante e massimo "carico centrato") nel rispetto del numero massimo di corsie individuabili secondo norma.

6.4 Azione longitudinale di frenamento o di accelerazione (q3)

Si riporta di seguito la valutazione dell'azione risultante di frenamento o di accelerazione q_3 per l'impalcato in esame.

$$q_3 = (0.6 \times 2 \times Q_{1k}) + (0.1 \times q_{1k} \times w_l \times L) \approx 406 \text{ kN}$$

con $L \cong 17.0$ m. Ovviamente l'azione di frenamento o di accelerazione non risulta dimensionante né per l'impalcato né per le sottostrutture.

6.5 Azioni variabili di vento e neve (q5)

L'azione del vento è assimilata ad un carico orizzontale diretto perpendicolarmente all'asse del tracciato. Tale azione si considera agente sul piano verticale delle superfici direttamente investite. La superficie dei carichi transitanti sul ponte è assimilata ad una parete rettangolare continua dell'altezza di 3.0 m a partire dal piano stradale. L'altezza della superficie esposta è pertanto pari a circa 4.3 m (3+0.11+0.25+0.9). La pressione del vento considerata in prima approssimazione è pari a p=2.5 kPa. L'azione del carico neve si ritiene trascurabile.

6.6 Azioni sismiche (q6)

In sede di revisione del presente Progetto Definitivo si è valutata la categoria di sottosuolo secondo le nuove indicazioni ($V_{s,eq}$) del D. M. Min. II. TT. del 17 gennaio 2018. In questa opera la categoria di sottosuolo determinata con i criteri ($V_{s,30}$) della precedente norma rimangono invariati. In particolare, si fa riferimento ai seguenti parametri legati all'opera:

La vita nominale (V_N) dell'opera è stata assunta pari a:

La classe d'uso assunta è la IV, il coefficiente d'uso risulta pertanto pari a:

$$Cu = 2.0$$

Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso vale:

$$V_R = V_N \cdot C_u = 100$$
 anni

I parametri legati al sito e alle caratteristiche del terreno risultano i seguenti:

- o Comune: Maglie (Long. 18.2849; Lat. 40.1404)
- Categoria di sottosuolo: A
- Condizione topografica: T1

Il periodo di ritorno dell'azione sismica T_R espresso in anni, vale:

- $T_R(SLV) = 949 \text{ anni};$
- T_R(**SLD**) = **101** anni;

Dato il valore del periodo di ritorno suddetto tramite la mappatura messa a disposizione in rete dall' *Istituto Nazionale di Geofisica e Vulcanologia* (*INGV*), è possibile definire i valori di a_g, F₀, T*_c.

ag accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;

- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*c periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- S coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St).

I valori delle caratteristiche sismiche (ag, Fo, T*c) per sono riportati nella seguente tabella:

STATO LIMITE	T _R	ag	F₀	T _C *
[-]	[anni]	[g]	[-]	[s]
SLV	949	0.078	2.571	0.477
SLD	101	0.029	2.380	0.284

T.3 Valori delle caratteristiche sismiche (a_g , F_0 , T_c^*) per il sito

L'accelerazione massima attesa al sito viene ricavata mediante la seguente relazione:

- **SLV**
$$\Rightarrow$$
 $a_{max} = S \times a_q = 1.0 \times 0.078 \times g \cong 0.078 \times g$;

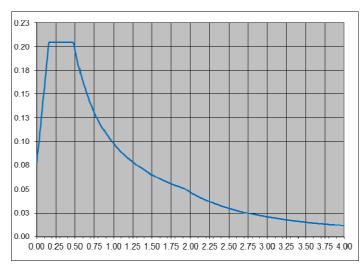
dove:

$$S = S_S \times S_T = 1.0 \times 1.0 = 1.0;$$

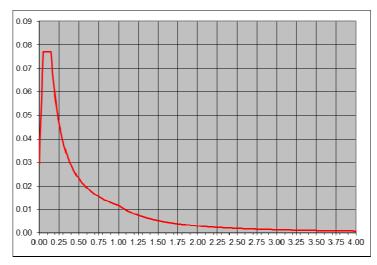
$$S_S = 1.0$$
 coefficiente di amplificazione stratigrafica (sottosuolo tipo **A**);

$$S_T = 1.0$$
 coefficiente di amplificazione topografica.

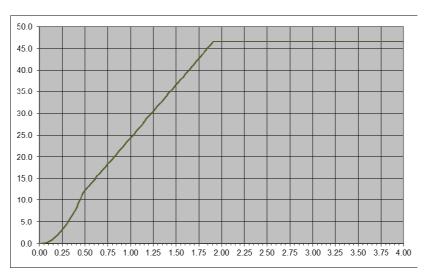
- **SLD**
$$\Rightarrow$$
 $a_{max} = S \times a_g = 1.0 \times 0.029 \times g \cong 0.029 \times g$;

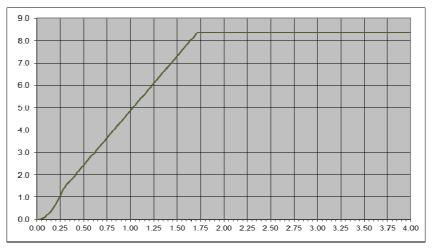

dove:

$$S = S_S \times S_T = 1.0 \times 1.0 = 1.0;$$


$$S_S = 1.0$$
 coefficiente di amplificazione stratigrafica (sottosuolo tipo **A**);

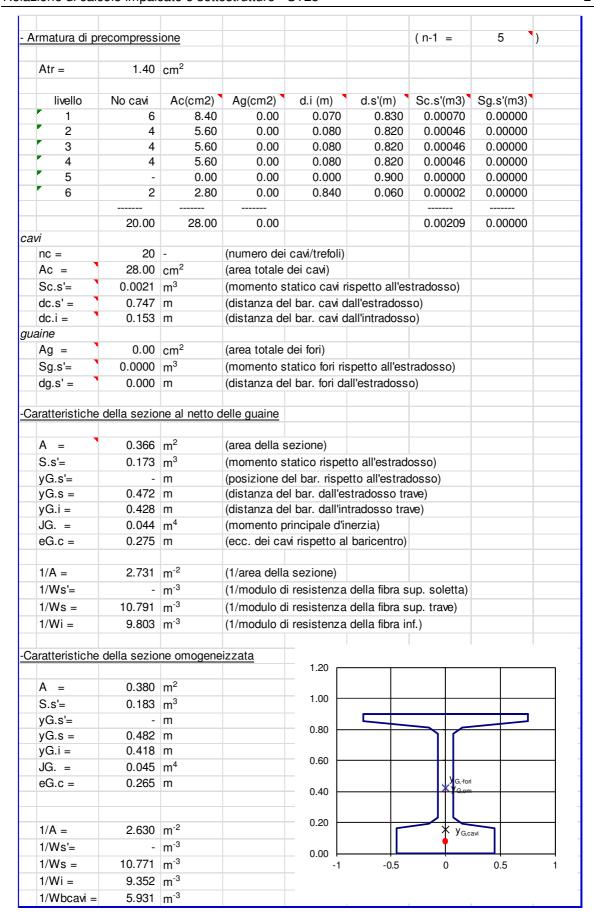
$$S_T = 1.0$$
 coefficiente di amplificazione topografica.


Di seguito si illustrano gli spettri elastici utilizzati nei calcoli. In particolare si osserva che il sisma verticale viene considerato solamente per le verifiche delle spalle mentre viene trascurato sia per le verifiche dell'impalcato che per quelle delle pile.


F 5. Spettro elastico in accelerazione componente orizzontale SLV

F 6. Spettro elastico in accelerazione componente verticale SLV

F 7. Spettro elastico in spostamento orizzontale SLV


F 8. Spettro elastico in spostamento orizzontale SLD

7. IMPALCATO - CARATTERISTICHE GEOMETRICHE

7.1 Generalità

Di seguito le caratteristiche geometriche della sezione "trave" e della sezione "trave+soletta".

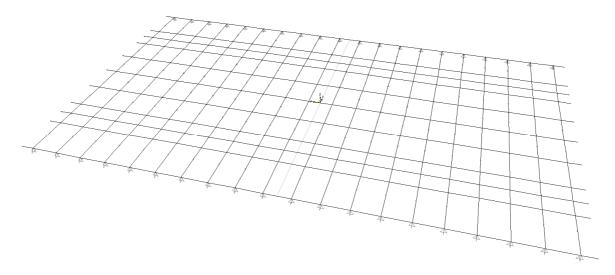
<u>ratteristiche</u>							
	bs(m)	bi(m)	hi(m)	Ai(m ²)	Si.s'(m³)	Ji.s(m ⁴)	Ji(m ⁴)
1.s	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2.s	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3.s	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.t	1.500	1.500	0.0500	0.075	0.002	0.000	0.000
2.t	1.500	0.300	0.0400	0.036	0.002	0.000	0.000
3.t	0.300	0.140	0.0400	0.009	0.001	0.000	0.000
4.t	0.140	0.140	0.5400	0.076	0.030	0.012	0.002
5.t	0.140	0.300	0.0400	0.009	0.006	0.004	0.000
6.t	0.300	0.900	0.0300	0.018	0.013	0.010	0.000
7.t	0.900	0.900	0.1600	0.144	0.118	0.097	0.000
8.t	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ			0.900	0.366	0.173	0.123	0.002
h sol. =	0.000	m	(altezza dell	la soletta)			
h tr. =	0.900	m	(altezza dell				
h tot =	0.900	m	(altezza totale)				
A =	0.366		(area della sezione)				
S.s'=	0.173		(momento statico rispetto all'estradosso)				
yG.tot=	0.472	m	(posizione del bar. rispetto all'estradosso)				
yG.s'=	0.472	m	(distanza del bar. dall'estradosso)				
yG.s =	0.4716	m	•		stradosso, tra	ave)	
yG.i =	0.4284				tradosso tra		
JG. =		m ⁴	(momento p			vc)	
oa. –	0.0407	111	(momento p	inicipale dil	ΙΟΙΖΙά)		
1/A =	2.7307	m ⁻²	(1/area della	a sezione)			
1/Ws'=	-	m ⁻³	(1/modulo d	i resistenza	della fibra s	up. soletta)	
1/Ws =	10.7906		(1/modulo d	i resistenza	della fibra s	up. trave)	
1/Wi =	9.8033				della fibra ir		
.,	0.000		(1,1110001000			,	
				1.2			
				1.0			
				0.8			
				0.6			
				0.4			
						y G,cls	
				0.2			7
				0.0			1
				-1.0	-0.5	0.0	0.5 1

	bs(m)	bi(m)	hi(m)	Ai(m ²)	Si.s'(m ³)	Ji.s(m ⁴)	Ji(m ⁴)				
	30()	~.()	()	74(111)	01.0 (111)	01.0(111)	Or(iii)				
1.s	1.510	1.510	0.250	0.349	0.0436	0.005	0.002				
2.s	0.000	0.000	0.000	0.000	0.0000	0.000	0.000				
3.s	0.000	0.000	0.000	0.000	0.0000	0.000	0.000				
1.t	1.500	1.500	0.050	0.075	0.00063	0.006	0.000				
2.t	1.500	0.300	0.030	0.075	0.02063 0.01136	0.008	0.000				
3.t	0.300	0.300	0.040	0.036	0.01136	0.004	0.000				
4.t	0.300	0.140	0.040	0.009	0.00313	0.001	0.000				
5.t	0.140	0.300	0.040	0.070	0.00829	0.008	0.002				
6.t	0.300	0.900	0.040	0.009	0.00029	0.000	0.000				
7.t	0.900	0.900	0.030	0.018	0.01760	0.165	0.000				
8.t	0.000	0.000	0.000	0.000	0.00000	0.000	0.000				
0.1	0.000	0.000									
Σ			1.150	0.7150	0.3078	0.2377	0.0041				
001	0.050	m	(altazza dell	o oolotto)							
sol. = tr. =	0.250		(altezza dell								
-	0.900		(altezza della (altezza tota								
tot =	1.150		,		aonoi==ata\						
\ =	0.7150			(area della sezione omogeneizzata)							
S.s'=	0.308		(momento st				`				
G.tot=	0.431	m	(posizione del bar. rispetto all'estradosso soletta)								
'G.s'=	0.431	m	(distanza del bar. dall'estradosso soletta) (distanza del bar. dall'estradosso trave)								
'G.s =	0.181	m									
'G.i =	0.719	m	(distanza de			/e)					
G. =	0.1092	m³⁻	(momento pi	•		oto)					
\ =	0.744	2	(area della s		omogeneizz	aia)					
/A =	1.3987		(1/area della								
/Ws'=	3.9414	m ³	(1/modulo di								
/Ws =	1.6529	m ³	(1/modulo di								
/Wi =	6.5856	m°	(1/modulo di	resistenza	della fibra in	t.)					
					1						
				1.2							
				1							
				0.8			=				
				0.0		y _{G,cls}					
				0.6		\bot					
				5.0							
				0.4		+++-					
				0.2		$A \subset$					
				0 —	11						

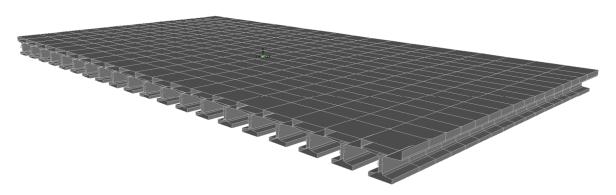
	rmatura di p	recompress	ione				(n-1 =	5)	
	Atr =	1.40	cm ²							
	livello	No cavi	Ac(cm2)	Ag(cm2)	d.i (m)	d.s'(m)	Sc.s'(m3)	Sg.s'(m3)		
	1	6	8.40	0.00	0.070	1.080	0.0009	0.0000		
	2	4	5.60	0.00	0.080	1.070	0.0006	0.0000		
	3	4	5.60	0.00	0.080	1.070	0.0006	0.0000		
	4	4	5.60	0.00	0.080	1.070	0.0006	0.0000		
	5	-	0.00	0.00	0.000	1.150	0.0000	0.0000		
	6	2	2.80	0.00	0.840	0.310	0.0001	0.0000		
	Σ	20.00	28.00	0.00			0.0028	0.0000		
a١	⁄i									
	nc =	20	-	(numero dei	cavi/trefoli)					
	Ac =	28.00	cm ²	(area totale	dei cavi)					
	Sc.s'=	0.0028	m ³	(momento s	tatico cavi ri	spetto all'es	tradosso so	letta)		
	dc.s' =	0.997		(distanza de		•		,		
	dc.i =	0.153	m	(distanza de						
jua	aine						,			
	Ag =	0.00	cm ²	(area totale	dei fori)					
	Sg.s'=	0.0000		(momento s		netto all'est	radosso sol	etta)		
	dg.s' =	0.000	m	(distanza de				ciia)		
	ug.s –	0.000	111	(distanza de	i bai. ioii ua	iii estiadoss	o soletta)			
Сг	ıratteristiche	e della sezio	ne al netto d	delle guaine						
	A =	0.715	m ²	(area della s	ezione)					
	S.s'=	0.308	m ³	(momento s	tatico rispet	to all'estrado	osso soletta)		
	yG.s'=	0.431	m	(posizione del bar. rispetto all'estradosso soletta)						
	yG.s =	0.181	m	(distanza del bar. dall'estradosso trave)						
	yG.i =	0.719	m	(distanza del bar. dall'intradosso trave)						
	JG. =	0.109	m ⁴	(momento p	rincipale d'in	nerzia)				
	eG.c =	0.566	m	(ecc. dei ca						
	1/A =	1.399	m ⁻²	(1/area della	sezione)					
	1/Ws'=	3.9414	m ⁻³	(1/modulo di		della fibra s	up. soletta)			
	1/Ws =	1.653		(1/modulo di						
	1/Wi =	6.586		(1/modulo di						
	1/ VVI =	0.300	111	(1/11louulo ul	resistenza	uena iibia ii	11.)			
Ca	ıratteristiche	e della sezio	ne omogene	eizzata						
					'					
	A =	0.729	m^2		1.2					
	S.s'=	0.322								
	yG.s'=	0.441			1			 		
	yG.s =	0.191								
					0.8					
		0.709					y _{G,-for}	I		
	yG.i =	0.709			I					
	yG.i = JG. =	0.114	m ⁴		0.6		7 0,011	n		
	yG.i =		m ⁴		0.6		7 0,011	n		
	yG.i = JG. =	0.114	m ⁴		0.6		7 C,UII	n		
	yG.i = JG. =	0.114	m ⁴				, G,on	n		
	yG.i = JG. = eG.c =	0.114 0.556 1.372	m ⁴ m							
	yG.i = JG. = eG.c = 1/A = 1/Ws'=	0.114 0.556 1.372 3.8843	m ⁻² m ⁻³		0.4		X YG,cavi			
	yG.i = JG. = eG.c =	0.114 0.556 1.372	m ⁻² m ⁻³ m ⁻³		0.4	-0.5		0.5		

8. IMPALCATO - ANALISI STRUTTURALE

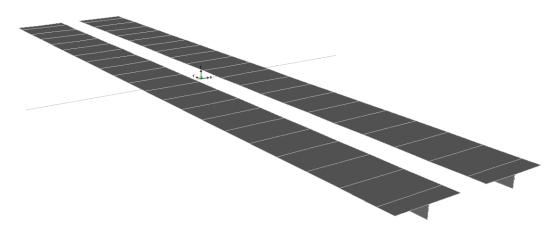
8.1 Generalità

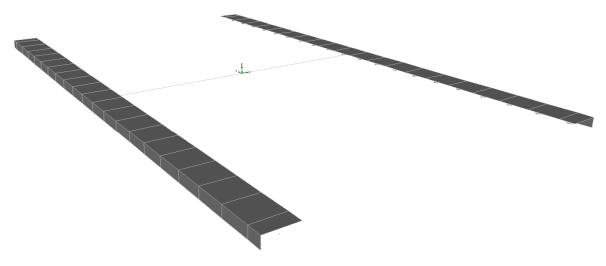

Per le travi di impalcato il calcolo delle sollecitazioni indotte dai carichi permanenti di prima fase, di seconda fase e dai carichi variabili di esercizio è stato effettuato secondo due schemi statici limite ritenuti opportuni in ragione della natura e della dislocazione delle azioni esterne:

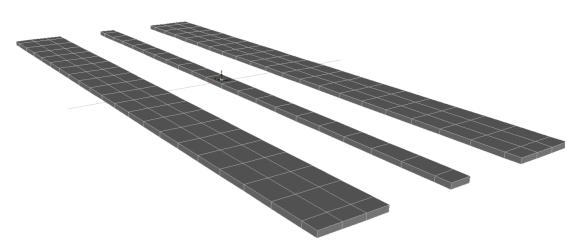
- trave semplicemente appoggiata ⇒ tale schema è stato ritenuto valido per i carichi permanenti quali il peso proprio degli elementi strutturali;
- graticcio di travi semplicemente appoggiate ⇒ tale schema è stato ritenuto valido per i carichi permanenti portati e per i carichi mobili di esercizio.


8.2 Descrizione del modello di calcolo

La struttura a graticcio è stata modellata con l'ausilio del programma agli elementi finiti *SAP 2000*. Per effettuare le analisi previste per i carichi mobili di esercizio è stato realizzato un modello aventi le caratteristiche meccaniche della fase finale. L'impalcato in oggetto è stato modellato con un graticcio di travi irrigidite da due trasversi intermedi, dai trasversi di testata e dalla soletta. La struttura è discretizzata con un adeguato numero di elementi frame a due nodi con sei gradi di libertà per nodo, tre traslazionali e tre rotazionali. Il sistema di riferimento è formato da una terna destrorsa x-y-z.


Una rappresentazione grafica qualitativa del modello strutturale adottato è riportata nelle figure seguenti.


F 9. Modello agli elementi finiti – Modello a graticcio


F 10. Modello agli elementi finiti – Particolare degli elementi "trave+soletta"

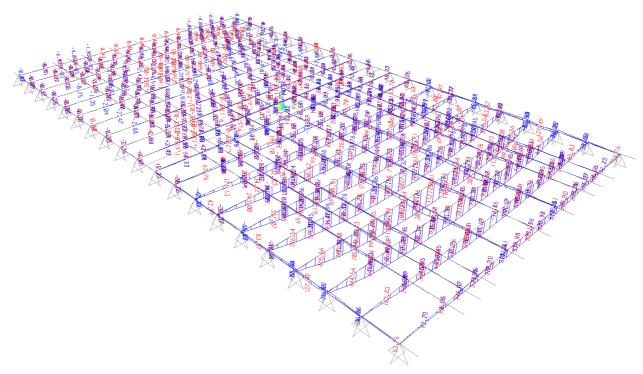
F 11. Modello agli elementi finiti – Particolare degli elementi "trasversi centrali"

F 12. Modello agli elementi finiti – Particolare degli elementi "trasversi di appoggio"

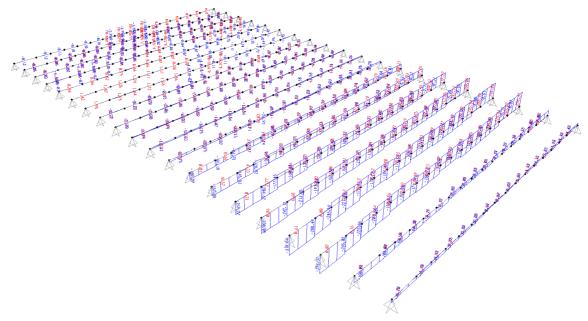
F 13. Modello agli elementi finiti – Particolare degli elementi "soletta"

NB ⇒ Si sono considerate le porzioni di soletta non collaboranti con i trasversi centrali e con i trasversi di appoggio

8.3 Descrizione dei carichi applicati


I carichi applicati, come precedentemente specificato, sono solo quelli relativi ai permanenti portati ed ai carichi mobili. Di seguito una descrizione della procedura utilizzata per la schematizzazione dei carichi mobili.

8.3.1 Carichi mobili (q1)


La procedura utilizzata per la valutazione delle sollecitazioni indotte dal carico viaggiante sul graticcio di travi prevede l'implementazione di diversi "vehicles" viaggianti su tutte le differenti "lane" di carico coincidenti ovviamente con le corsie di carico previste dalla normativa vigente.

8.4 Diagrammi delle caratteristiche della sollecitazione

Nei seguenti grafici si mostrano gli andamenti delle sollecitazioni flettenti e taglianti nell'impalcato per effetto dei carichi mobili (le sollecitazioni torsionali si possono ritenere trascurabili).

F 14. Momento flettente nell'impalcato dovuto ai carichi mobili

F 15. Taglio nell'impalcato dovuto ai carichi mobili

Dal modello di calcolo si ottengono i seguenti valori massimi del momento flettente per i differenti elementi considerati.

- Travi di impalcato \Rightarrow M+max \cong 1125 kN×m \div M-max \cong 0 kN×m;
- Trasversi di campata ⇒ M+max ≅ 310 kN×m ÷ M-max ≅ -80 kN×m;
- Trasversi di appoggio ⇒ M+max ≅ 130 kN×m ÷ M-max ≅ -100 kN×m;

Il valore massimo del taglio per i carichi accidentali è pari a:

- Travi di impalcato \Rightarrow V_{max} \cong 318 kN;
- Traversi di campata \Rightarrow V_{max} \cong 205 kN;
- Traversi di appoggio \Rightarrow V_{max} \cong 200 kN.

9. IMPALCATO - VERIFICA TRAVI PRINCIPALI

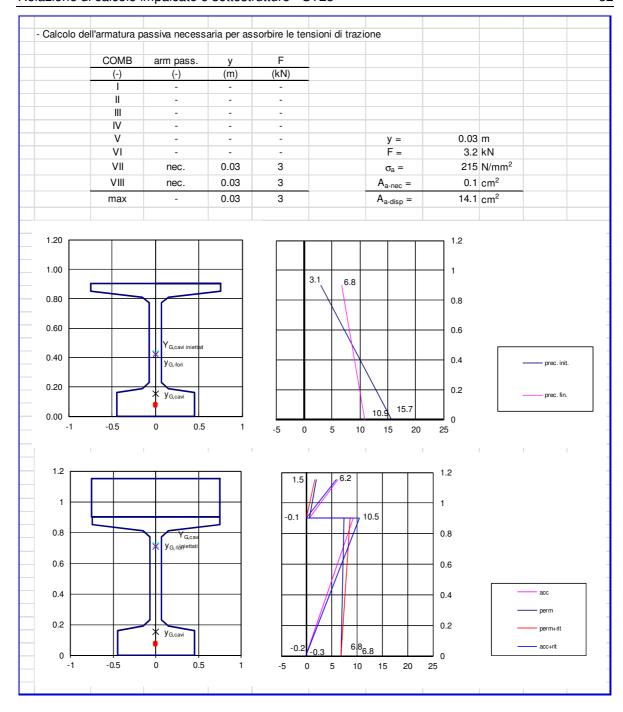
9.1 PREMESSA

Le verifiche di resistenza, condotte in campo elastico, sono condotte secondo il metodo degli stati limite; in particolare trattandosi di c.a.p. si potrebbero riportare le sole verifiche delle tensioni normali allo *S.L.E.* per la combinazione di carico rara in quanto risultano essere queste le verifiche dimensionanti per tali tipologie di strutture; tuttavia per completezza si riportano anche le verifiche a flessione per lo *S.L.U.*

L'unità di misura utilizzata per le tensioni sono i *N/mm*² (*MPa*).

Le caratteristiche inerziali delle sezioni di verifica adottate per le travi di impalcato, sono state dedotte tenendo conto della larghezza collaborante di soletta assunta, in prima approssimazione, pari all'interasse delle travi (B = 1.52 m). L'armatura della soletta non è stata inclusa nel calcolo dei moduli di resistenza (valutazione in favore di sicurezza).

Per la sezione di mezzeria delle travi in c.a.p. si riportano le tensioni massime e minime relativa alla combinazione rara ovvero alla combinazione di carico più gravosa. I valori dello stato tensionale sono stati ricavati come somma dei contributi in termini di tensioni ottenuti utilizzando i moduli di resistenza pertinenti alla fase della sollecitazione: il calcolo è di tipo non lineare.

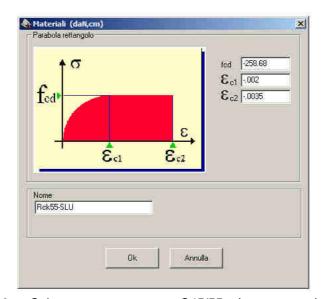

9.2 VERIFICHE TRAVI

9.2.1 Combinazione di carico rara SLE – Verifiche dello stato tensionale

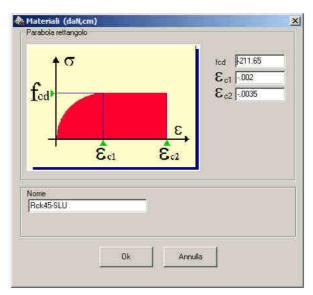
Nei tabulati successivi sono riportate le verifiche delle tensioni normali per le travi principali di impalcato; nel calcolo dello stato tensionale non si è tenuto conto, in favore di sicurezza, dell'armatura lenta prevista e disposta nella trave ed in soletta. I risultati ottenuti mostrano che i valori delle tensioni sono sempre al di sotto dei valori limite di compressione e al di sotto del valore limite di trazione assunto cautelativamente pari a f_{ctm} .

VERIFICA D	JELLA SEZ	LIONE						
Caratteristiche	aeometrich	ie						
Caratteristione	gcometnor	<u></u>						
Trave								
1/A =	2.630	m ⁻²						
1/Ws'=	-	m ⁻³						
1/Ws =	10.771	m ⁻³						
1/Wi =	9.352	m ⁻³						
Trave+soletta	1.372	-2						
1/A =								
1/Ws'=	3.884 1.685	m °						
1/Ws =								
1/Wi =	6.235	m ⁻⁵						
Precompression	ne							
nc =	20	-						
Ac =	28.00	cm ²						
dc.i =	0.153							
eG.c =	0.265	m	(ecc/c.d.o					
eG.c =	0.556	m	(ecc/c.d.g	g. trave+sole	tta)			
σ_0 =	1337.9		(tensione					
Δσ=	236.5	N/mm ²	(perdite d	i tensione)				
o₁nf =	1101.4	N/mm ²	(tensione	finale)				
Nini	0740	LAI		ı Nim	000	LANI		
Npi =	3746			<u>∆</u> Np =	-662	kNm		
Mpi =	-994	kNm		$\Delta M_{p(t)} =$				
	2224			$\Delta M_{p(t+s)} =$	368	kNm		
Npf =	3084							
Mpf =	-818	kNm						
Sollecitazioni e	sterne							
M _{pp} = 364 kNm			(Peso tra	(Peso trave)				
M _{psol} =	341	kNm	(Peso so					
M _{perm} =	397	kNm	(Sovracca	arichi permar	enti)			
M _{ril} =	0.0	kNm		appoggi prov				
M _{cedim} =	0.0	kNm	_	ti differenzial				
$M_{\Delta T} =$	0	kNm	(Variazio	ne termica ur	riforme+differ	enziale)		
M _{ac,1} =		kNm		arichi accider				
M _{ac,2} =		kNm	(Sovracca	arichi accider	ntali - CC2)			
M _{ac,3} =		kNm	`	arichi accider				
$M_{ac,4} =$		kNm	,	arichi accider				
N _{rit,tr+sol} =	706		-	erenziale - tr				
M _{rit,tr+sol} =		kNm		erenziale - tr				
$N_{rit,sol} =$	-706	kN	(Ritiro diff	erenziale - s	oletta)			

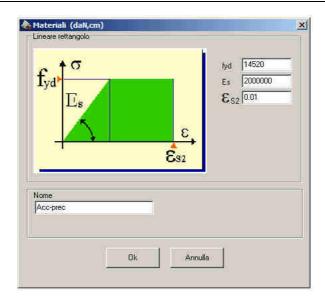
- Verifica combinazione RARA								
- Valori delle tensioni di "riferimento" pe	er lo <i>SLE</i>							
(*) $\sigma_{min} = \sigma_{traz} = f_{ctm} / 1.2$		t=0 (*)	t=inf. rara (*)	t=inf. freq (**)	t=inf. q.perm			
(**) $\sigma_{min} = \sigma_{traz} = f_{ctk} / 1.2$	σ _{min} =	-3.8	-3.2	-2.2	0.0	MPa		
	σ _{max} =	18.2	27.4	24.0	20.5	МРа		
Precompressione iniziale	Omax		=7		20.0	\		
i i i i i i i i i i i i i i i i i i i								
Solo trave								
	Np/A	M/Ws'	M/Ws	M/Wi	$\sigma_{s'}$	$\sigma_{s"}$	σ_{s}	σi
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa
Precompressione	9.9	-	-10.7	9.3	-	-	-0.9	19.
Peso trave	0	-	3.9	-3.4	_	-	3.9	-3.4
Σ	9.9	-	-6.8	5.9	-	-	3.1	15.
-							> -3.8	< 18
Precompressione finale								
Solo trave								
	Np/A	M/Ws'	M/Ws	M/Wi	$\sigma_{s'}$	$\sigma_{s''}$	$\sigma_{\rm s}$	σ_i
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa
Tensioni trave	9.9	- (<i>III.</i> 4)	-6.8	5.9	-	-	3.1	15.
Perdite di precom. 50%	-0.9	_	0.9	-0.8	_	_	0.1	-1.7
Peso soletta	-	-	3.7	-3.2	-	-	3.7	-3.1
Σ	9.0		-2.2	1.9	_	-	6.8	10.9
				- 110			> -2.2	< 18
Trave+soletta								
	Np/A	M/Ws'	M/Ws	M/Wi	$\sigma_{s'}$	$\sigma_{s"}$	σ_{s}	σ_i
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa
Tensioni trave	9.0	- (<i>ivii a</i>)	-2.2	1.9	-	-	6.8	10.9
Perdite di precom. 50%	-0.5	0.7	0.3	-1.1	0.3	-0.1	-0.1	-1.6
Sovraccarichi permanenti	-	1.5	0.7	-2.5	1.5	0.7	0.7	-2.5
Rilascio appoggi prowisori	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1 - Tensioni trave+soletta	-0.5	2.3	1.0	-3.6	1.8	0.5	7.3	6.8
2 - Ritiro differenziale (N _{p+d})	1.0	0.6	0.3	-1.0	1.6	1.2	1.2	0.0
·	-1.9	-	-	-	-1.9	-1.9	-	-
Ritiro differenziale (N _d)	_							
3 - Cedimento differenziale	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4 - Variazione termica differenziale	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5 - CC1	-	4.4	1.9	-7.0	4.4	1.9	1.9	-7.0
6 - CC2	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7 - CC3 8 - CC4	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0 - 004		0.0	0.0	0.0	0.0	0.0	0.0	0.0
COMB			+					
	σs'	σs"	(MDa)	σi	Verifica T	ensioni		
(-)	(MPa)	(MPa)	(MPa)	(MPa)		. 07.4		
1 1	1.8	0.5	7.3	6.8	> -3.2	> 27.4		
II 1+2	1.5	-0.1	8.6	6.8	> -3.2	> 27.4		
III 1+3	1.8	0.5	7.3	6.8	> -3.2	> 27.4		
IV 1+2+3	1.5	-0.1	8.6	6.8	> -3.2	> 27.4		
V 1+3+4	1.8	0.5	7.3	6.8	> -3.2	> 27.4		
VI 1+2+3+4	1.5	-0.1	8.6	6.8	> -3.2	> 27.4		
VII 1+3+4+max(5-6-7-8)	6.2	0.5	9.2	-0.2	> -3.2	> 27.4		
VIII 1+2+3+4+max(5-6-7-8)	5.9	-0.1	10.5	-0.3	> -3.2	> 27.4	1	


Da quanto esposto si evince il modesto stato tensionale di trazione per la combinazione rara; tale tensione di trazione è comunque fatta assorbire ad una apposita armatura lenta $(7\phi16)$ prevista e disposta all'interno del bulbo inferiore della trave in c.a.p. In base ai risultati ottenuti si possono ritenere automaticamente soddisfatte le verifiche a fessurazione per la combinazione di carico frequente (verifica soddisfatta nei confronti della formazione delle fessure) e per la combinazione di carico quasi permanente (sezione interamente compressa).

9.2.2 Combinazione di carico fondamentale SLU – Verifica a rottura

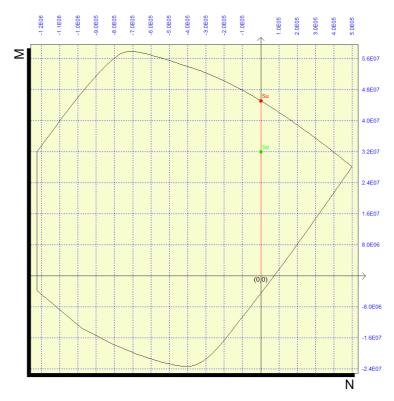

Nelle pagine successive si riporta la verifica a rottura delle travi d'impalcato per la sollecitazione di flessione; il momento sollecitante massimo allo *S.L.U.*, derivato dalle sollecitazioni caratteristiche riportate nella verifica precedente, risulta pari a:

 $(M_{S,d})_{SLU} = 1.35 \times (364 + 341 + 397) \, + \, 1.35 \times 1125 \, + \, 1.2 \times 160 \cong 3200 \, \, kN \times m.$


Il momento resistente è determinato tramite l'ausilio del programma di calcolo PresFle della $Concrete\ Srl.$ Tramite il programma si determina il momento resistente minimo assumendo le caratteristiche meccaniche specificate nel capitolo dei materiali e considerando il diagramma parabola-rettangolo per il calcestruzzo della trave e della soletta; per l'acciaio da precompresso e per l'acciaio ordinario si considera un diagramma elastico perfettamente plastico. All'acciaio da precompresso è assegnata una coazione cautelativamente valutata con riferimento alla tensione finale di precompressione ovvero scontata di tutte le perdite di carico ($\epsilon_{sd} \cong 0.00551$). Di seguito i diagrammi utilizzati.

F 16. Calcestruzzo trave c.a.p. C45/55 – Legame costitutivo

F 17. Calcestruzzo soletta C35/45 – Legame costitutivo


F 18. Acciaio da precompresso – Legame costitutivo

L'armatura lenta considerata nella verifica a rottura è assunta pari a:

-
$$(A_{s\text{-soletta}})_{sup} = (A_{s\text{-soletta}})_{inf} = 1\phi 12/20$$
 $(A_{s\text{-trave}})_{inf} = 7\phi 16.$

Il momento resistente che si ottiene, per raggiungimento della deformazione limite nell'acciaio da precompresso – rottura duttile) è pari a:

 $(M_{R,d})_{SLU} \cong 4520 \text{ kN} \times \text{m} > (M_{S,d})_{SLU} - \text{Verifica soddisfatta}.$

F 19. Diagramma di interazione N-M e dominio di rottura

9.2.3 Combinazione di carico fondamentale SLU – Verifica a taglio

Si riporta la verifica a taglio delle travi d'impalcato per la sezione in appoggio non considerando il contributo dell'armatura di precompressione.

Il taglio sollecitante massimo allo S.L.U. risulta pari a:

$$(V_{S,d})_{SLU} = 1.35 \times (160 + 85 + 318) \approx 760 \text{ kN}.$$

La resistenza a taglio viene valutata per elementi provvisti di armatura trasversale a taglio e vale:

 $V_{Rd} = min (V_{Rsd}, V_{Rcd}) \cong 1190 \text{ kN}$

 $V_{Rsd} \cong 1190 \text{ kN}; \qquad V_{Rcd} \cong 1923 \text{ kN}$

con:

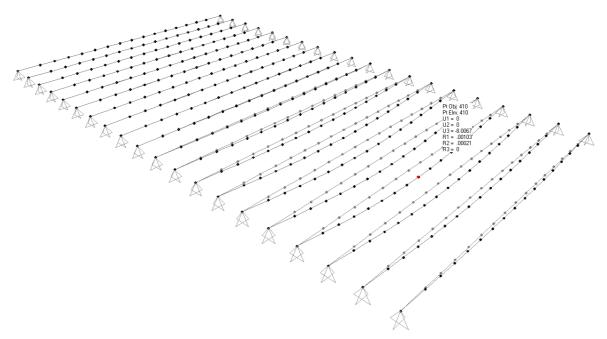
d=110 cm; $A_{sw}/s \approx 0.308 \text{ cm}^2/\text{cm}$ (ϕ 14 a due braccia a passo 10 cm)

 $cot\theta = 1;$ $b_w=300 \text{ mm}.$

La verifica risulta soddisfatta.

9.2.4 Carichi accidentali - Verifica di deformabilità

In questa sezione si riporta, per la sola condizione di carico accidentale (s*chema di carico 1),* la verifica di deformabilità delle travi principali.


Tale verifica è necessario, per questa opera, in quanto l'impalcato scavalca una linea ferroviaria.

A tal prorposito si considera un rapporto limite freccia-luce pari a 1/700.

Considerando una luce di calcolo pari a 17.00 m tale limite risulta pari a:

 $\delta_{lim} \cong 24 \text{ mm}.$

Di seguito si illustra la deformata della struttura dovuta ai soli carichi accidentali.

F 1. Configurazione deformata – $\delta_{max} \cong 8$ mm.

Lo spostamento verticale massimo risulta pari a:

 $\delta_{max} \cong 8 \text{ mm} < \delta_{lim}$.

Si ritiene la verifica soddisfatta.

9.3 VERIFICA SOLETTA IN DIREZIONE TRASVERSALE

9.3.1 Combinazione di carico rara SLE – Verifiche dello stato tensionale e a fessurazione

Si riporta la verifica della soletta in direzione trasversale per la combinazione *SLE rara* che risulta la dimensionante.

Si fa riferimento allo schema statico di trave incastrata agli estremi avente luce pari a 1.50 m.

I momenti massimi dovuti ai carichi permanenti e allo schema di carico accidentale n. 2 risultano quindi:

 $M_{perm} \simeq -30 \text{ kNm}; \qquad M_{qk2} \simeq -37 \text{ kNm}$

Il momento di verifica massimo risulta:

 $M_{SLE} \cong -67 \text{ kNm}.$

Le tensioni massime valgono (adottando armatura $\phi 16/10$ superiore e $\phi 16/20$ inferiore):

 $\sigma_{max,s} \cong 193 \text{ MPa} \Rightarrow \text{tensione di trazione sull'acciaio};$

 $\sigma_{max,c} \cong 8.4 \text{ MPa} \Rightarrow \text{tensione di compressione sul calcestruzzo.}$

La verifica risulta soddisfatta.

Considerando la combinazione SLE frequente si ottiene:

 $\sigma_{\text{max},s} \cong 167 \text{ MPa} \Rightarrow \text{tensione di trazione sull'acciaio};$

 $\sigma_{\text{max.c}} \cong 7.3 \text{ MPa} \Rightarrow \text{tensione di compressione sul calcestruzzo.}$

la verifica di fessurazione risulta soddisfatta adottando il metodo indiretto in quanto:

 $\sigma_{max,s}$ < 240 MPa.

9.3.2 Combinazione di carico eccezionale SLU – Urto in svio

Si riporta di seguito la verifica della sezione della soletta soggetta alle azioni derivanti dall'urto del veicolo in svio. In corrispondenza della base delle barriere sono considerate le seguenti azioni:

- − $N_{S,pl} \cong 45$ kN (sforzo di trazione per la sezione di verifica);
- $M_{S,pl} \cong 45$ kNm (massimo momento flettente che tende le fibre superiori).

Tali valori sono ottenuti in accordo a quanto riportato in "Quaderni Tecnici ANAS – Volume 2 – N.5 Interventi di Rifacimento dei Cordoli con Calcestruzzo Fibro–rinforzato" dove il momento plastico adottato del montante della barriera è il massimo tra quelli disponibili attualmente sul mercato, la forza orizzontale è ottenuta dividendo il momento plastico per la distanza del punto di applicazione dell'azione dovuta all'urto dalla base della barriera pari a 1.0 m.

Si considera la sezione resistente di spessore complessivo pari a 0.25 m. L'armatura considerata è costituita da barre $\phi 16/20$, superiormente, e $\phi 16/20$, inferiormente.

Il momento resistente minimo è dunque pari a:

 $M_{(R,d)} \cong 85 \text{ kNm} \Rightarrow \text{la verifica risulta soddisfatta.}$

9.4 VERIFICA TRAVERSI

9.4.1 Combinazione di carico rara SLE – Verifiche dello stato tensionale

Si riporta la verifica dei traversi per la combinazione *SLE* che risulta la dimensionante.

I momenti massimi dovuti ai carichi accidentali sono pari a:

 $M_{qk} \cong 310 \text{ kNm}$

Si adotta un'armatura composta da:

- − 3\psi24 inferiori;
- 3\phi16 superiori (armatura estradosso soletta).

Le tensioni massime valgono (sezione rettangolare 35×100 cm):

 $\sigma_{max,s} \cong 261 \text{ MPa} \Rightarrow \text{tensione di trazione sull'acciaio};$

 $\sigma_{max,c} \cong 6.3 \text{ MPa} \Rightarrow \text{tensione di compressione sul calcestruzzo.}$

Le verifiche risultano soddisfatte.

9.4.2 Verifiche a taglio

Il taglio sollecitante massimo allo S.L.U. risulta pari a:

$$(V_{S,d})_{SLU} = 1.35 \times 205 \cong 276 \text{ kN}.$$

La resistenza a taglio viene valutata per elementi provvisti di armatura trasversale a taglio e vale:

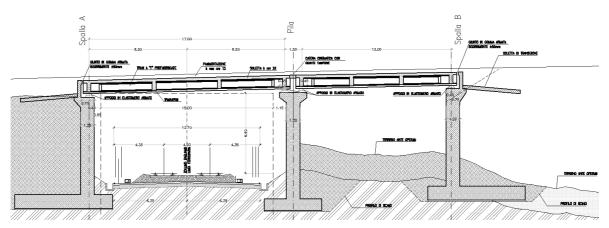
 $V_{Rd} = min (V_{Rsd}, V_{Rcd}) \cong 515 \text{ kN}$

 $V_{Rsd} \cong 515 \text{ kN};$ $V_{Rcd} \cong 1583 \text{ kN}$

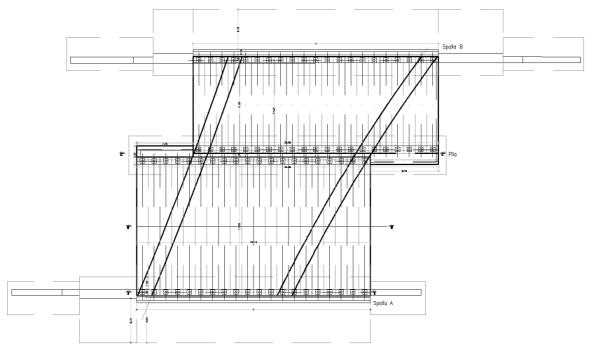
con:

d=95 cm;

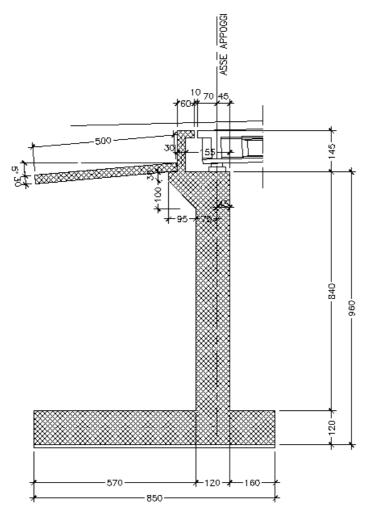
 $A_{sw}/s \cong 0.154 \text{ cm}^2/\text{cm}$ ($\phi 14$ a due braccia a passo 20 cm)


 $cot\theta = 1;$ $b_w=350 \text{ mm}.$

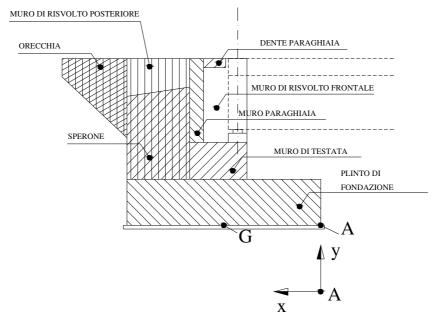
La verifica risulta soddisfatta.


10. SPALLE - VERIFICHE FONDAZIONE E ELEVEAZIONE

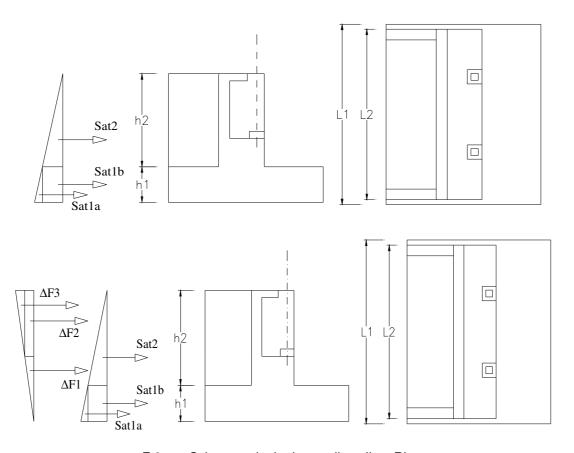
10.1 Analisi dei carichi


La geometria delle sottostrutture spalle dell'opera analizzata è riportata nelle immagini seguenti.

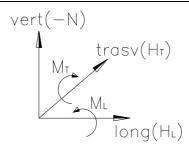
F 2. Sezione longitudinale



F 3. Pianta impalcato e spalle



F 4. Sezione longitudinale


Nella figura sottostante è riportato lo schema della sezione longitudinale utilizzato per l'analisi dei carichi; in tale schema è indicato il punto A rispetto al quale sono calcolati i momenti flettenti dei pesi propri e dei carichi applicati sulla spalla ed il punto G, baricentro della fondazione.

F 5. Schema longitudinale spalla – Elementi strutturali

F 6. Schema azioni orizzontali spalla – Rinterro

F 7. Convenzione per le sollecitazioni

Sono di seguito illustrati i calcoli dei carichi dovuti ai pesi propri, permanenti portati, carichi accidentali, spinta del terreno, azioni indotte dal sisma ed azioni trasmesse dall'impalcato; nelle tabelle sottostanti sono riportati i singoli valori e le risultanti valutate rispetto al punto A ed al punto G (baricentro fondazione) indicati in figura. Per quanto riguarda il calcolo dei carichi provenienti dall'impalcato fare riferimento alle relazioni corrispondenti.

AZIONI STATICHE		_							
Azioni verticali									
q	20	kN/m²		(carico accide	entale)				
γels	25	kN/m ³		(peso dell'unit	à di volume del	calcestruzzo armato)			
Yels,magro	24	kN/m ³		(peso dell'unit	à di volume del	calcestruzzo magro)			
Yterreno rinterro	18	kN/m ³		**		terreno di rinterro)			
- Carichi permanenti spalla (PERI	M SP)					,			
		d _x	d _z	N	ν(Δ)	$M_T(A)$	ν(Λ) ν(G)	7(A)	M ₁ (A)
	d _y [m]		u _z [m]	[kN]	x(A) [m]	[kNxm]	y(A) = y(G) [m]	z(A) [m]	[kNxm]
muro di testata	8.40	[m] 1.20	30.20	7610.4	2.20	16742.9	5.40	0.00	0.00
baggioli	0.00	0.60	0.40	0.0	1.35	0.0	9.15	0.00	0.00
muro paraghiaia	1.70	0.30	30.20	385.1	3.30	1270.7	10.45	0.00	0.00
Σ				7995.5		18013.5			0.0
rinterro	10.10	5.70	30.20	31295.1	5.65	176817.0	6.25	0.00	0.00
plinto di fondazione	1.20	8.50	30.20	7701.0	4.25	32729.3	0.60	0.00	0.00
Σ	10.10			38996.1		209546.3			0.0
	11.30								
Σ_{PERM} SP				<u>46991.5</u>	4.84	227559.8		0.00	0.0
- Carichi accidentali spalla (AC									
	d_y	d_x	d_z	N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
<u>-</u>	[m]	[m]	[m]	[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
-	0.00	0.30	30.20	<u>181.2</u>	5.65	<u>1023.8</u>	11.30	0.00	0.00
				N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
				[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
- Carichi impalcato F1 (REALIZ	<u>)</u>			3875	2.05	7943.8	9.15		0.00
				0.0	0.00	0.0	0.00		0.00
				<u>3875.0</u>		<u>7943.8</u>			0.0
- Carichi permanenti impalcato	F2 (PERM I	<u>MP)</u>		1020	2.05	2091.0	9.15		0.00
				0.0	0.00	0.0	0.00		0.00
				<u>1020.0</u>		<u>2091.0</u>			0.0
- Carichi accidentali impalcato	F2 (ACC IM	P-Nmax)		1715	2.05	3515.8	9.15		0.00
				0.0	0.00	0.0	0.00		0.00
				<u>1715.0</u>		<u>3515.8</u>			0.0

Azioni orizzontali

- valutazione della spinta del terri	eno					
γ =	18 kN/m	1 ³	(peso dell'unità di	volume del terreno)		
$\phi =$	35.0	0.61	(angolo d'attrito de	el terreno di riempimento)		
i =	0	0.00	(inclinazione del t	erreno a monte, pos in salita)		
β =	0	0.00	(inclinazione del r	nuro, pos se verso monte)		
$\alpha = 90 - \beta =$	90	1.57	(90–β)			
δ =	0	0.00	, •	terno tra calcestruzzo e terreno)		
k _a =	0.271 -		(coefficiente di sp			
L ₁ =	30.20 m		, ,	neo di spinta inferiore)		
L ₂ =	30.20 m		(lunghezza del cu	neo di spinta superiore)		
h ₁ =	1.20 m		(altezza del plinto)		
h ₂ =	10.10 m		(altezza del muro	di testata + trave paraghiaia)		
S _{a,t,1a} =	106.1 kN		(spinta del terreno	cuneo inferiore)		
S _{a,t,1b} =	1785.4 kN		(spinta del terreno	cuneo inferiore)		
S _{a,t,2} =	7513.6 kN		(spinta del terreno	cuneo superiore)		
$d_{y1a} =$	0.4 m		(distanza del pun	to di applicazione dal piano di fo	nd)	
d _{v 1b} =	0.60 m		(distanza del puni	to di applicazione dal piano di fo	nd)	
d _{y 2} =	4.6 m		(distanza del pun	to di applicazione dal piano di fo	nd)	
$S_{a,q1} =$	196.4 kN		(spinta sul plinto	dovuta al sovraccarico)		
$S_{a,q2} =$	1653.1 kN		(spinta sulla spall	a dowta al sovraccarico)		
$d_{yq1} =$	0.6 m			to di applicazione dal piano di fo	nd)	
$d_{yq2} =$	6.3 m			to di applicazione dal piano di fo	*	
~y q₂	0.0		(diotaliza doi pari	o al applicazione dal piane di le	,	
		H_{L}	N	$M_T(A) = MT(G)$	y(A) = y(G)	$M_L(G)$
		[kN]	[kN]	[kNxm]	[m]	[kNxm]
- Spinta del terreno (ST)		9405.0		<u>35425.6</u>	-	
- Spinta del sovraccarico (SA)		<u>1849.6</u>		<u>10450.0</u>	-	
		H _L <>	N	$M_T(A) = M_T(G)$	y(A) = y(G)	$M_L(G)$
4 : "((55)		[kN]	[kN]	[kNxm]	[m]	[kNxm]
- Azione di frenamento (FR)		409 0.0		3738.7 0.0	9.15 0.00	
		408.6		3738.7	0.00	
				<u></u>		
		H _T <>			y(A) = y(G)	$M_L(G) <>$
		[kN]			[m]	[kNxm]
- Azione dovuta al vento (VENTO	<u>))</u>	100			11.37	1135.9
		99.9			0.00	0.0 1135.9
		33.3				1135.5

AZIONI SISMICHE

Azioni	orizzontali

valutazione dell'incremento d	di spinta del terreno dovu	to al sisma
$a_g/g =$	0.078 -	(PGA)
$S = S_{S X} S_{T}$	1.00 -	
S _{ve spalla} =	0.04	(spettro di risposta elastico della componente verticale)
L ₁ =	30.2 m	(lunghezza del cuneo di spinta inferiore)
L ₂ =	30.2 m	(lunghezza del cuneo di spinta superiore)
h ₁ =	1.2 m	(altezza del plinto)
h ₂ =	10.1 m	(altezza del muro di testata + trave paraghiaia)
$\Delta P_{d,1} =$	376.0 kN	(Spinta sismica Mononobe-Okabe / Wood)
$\Delta P_{d,2} =$	1493.7 kN	(Spinta sismica Mononobe-Okabe / Wood)
	1870	

- Incremento di spinta del terreno dovuto al sisma (DS)

H _L <>	y(A) = y(G)	$M_T(A) = MT(G)$	$M_L(G)$
[kN]	[m]	[kNxm]	[kNxm]
1869.68	5.7	10563.7	0.00

- Sisma spalla long. e trasv. (SIS SP L e T)

muro di testata	
baggioli	
muro paraghiaia	
ringrosso paraghiaia	
muro risvolto 1	
muri risvolto	
orecchie	
soletta inferiore	
soletta inferiore	
mensola posteriore	
rinterro	
plinto di fondazione	
-	
Σ	

N	$H_T = H_L$	y(A) = y(G)	$M_T(A) = M_L(A)$
[kN]	[kN]	[m]	[kNxm]
7610.4	593.6	5.40	3205.50
0.0	0.0	9.15	0.00
385.1	30.0	10.45	313.85
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	1.20	0.00
0.0	0.0	7.80	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
31295.1	2441.0	6.25	15256.3
7701.0	600.7	0.60	360.4
0.0	0.0	0.00	0.0
46991.5	3665.3		19136.1

H_L <-->

N +/-

Azioni verticali

- Sisma spalla verticale (SIS SP V)

muro di testata
baggioli
muro paraghiaia
ringrosso paraghiaia
muro risvolto 1
muri risvolto
orecchie
soletta inferiore
soletta inferiore
mensola posteriore
rinterro
plinto di fondazione
-
Σ

- Sisma impalcato longitudinale (SIS IMP L)

W	N +/-	x(A)	$M_T(A) <>$	z(A)	$M_L(A) <>$
[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
7610.4	296.8	2.20	652.97	0.00	0.00
0.0	0.0	1.35	0.00	0.00	0.00
385.1	15.0	3.30	49.56	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	9.08	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
31295.1	1220.5	5.65	6895.9	0.00	0.00
7701.0	300.3	4.25	1276.4	0.00	0.00
0.0	0.0	0.00	0.0	0.00	0.00
46991.5	1832.7	-	8874.8	•	0.0

x(A)

[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
2153			19695.4	9.15	
0.0			0.0	0.00	
<u>2152.5</u>			<u>19695.4</u>		
H _T <>				y(A) = y(G)	$M_L(G) <>$
[kN]				[m]	[kNxm]
1076				10.11	12602.9
0.0				0.00	0.0
1076.3					12602.9
H _L <>	N +/-	x(A)	M(A) <>	z(A)	$M_L(A)$
[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
	205	2.05	419.7	0.00	0.00

 $M_T(G) <-->$

y(A) = y(G)

 $M_L(G)$

10.2 Condizioni di carico

Nelle tabelle seguenti sono riportati valori dei carichi valutati precedentemente. I valori dei momenti flettenti sono riferiti al baricentro G della fondazione.

	condizioni di carico	H _L ->(+)	H _T	N	$M_T(A)$	M _L (A)	$e_L(A)=M_T(A)/N$	$e_X(G)=d_X(A)-e_L(A)$	$M_{T,G}$	$e_T(A)=M_L(A)/N$	$e_Z(G)$	$M_{L,G}$
		[kN]	[kN]	[kN]	[kNxm]	[kNxm]	[m]	[m]	[kNxm]	[m]	[m]	[kNxm]
0	REALIZZAZIONE			3875.0	7943.8	0.0	2.05	2.20	8525	0	0	0.0
	PERM SP			46991.5	227559.8	0.0	4.84	-0.59	-27846	0	0	0.0
	ACC SP			181.2	1023.8	0.0	5.65	-1.40	-254	0	0	0.00
	PERM IMP			1020.0	2091.0	0.0	2.05	2.20	2244	0	0	0.0
	ACC IMP - Nmax			1715.0	3515.8	0.0	2.05	2.20	3773	0	0	0.0
	FOLLA			0.0	0.0	0.0				0	0	0.0
6	ST	9405.0							35425.6			0.0
7	SA	1849.6							10450.0			0.0
	VARTEMPD			0.0	0.0	0.0			0			0.0
_	VARTEMPU	0.0							0.0			0.0
	FR	408.6							3738.7			0.0
	VENTO		99.9									1135.9
	SIS SP L	3665.3							19136.1			0.0
	SIS SP T		3665.3									19136.1
	SIS SP V			1832.7	8874.8	0.0	4.84	-0.59	-1086.0	0.0	0.0	0.0
	SIS IMP L	2152.5							19695.4			0.0
	SIS IMP T		1076.3									12602.9
	SIS IMP V			204.8	419.7	0.0	2.05	2.20	450.5	0.0	0.0	0.0
18	DS	1869.7					·		10563.7			0.0

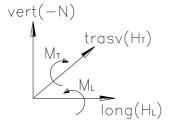
T.4 Carichi dovuti alle condizioni di carico elementari

		H_{L}	H _T	N	M _T (G)	$M_L(G)$	
		[kN]	[kN]	[kN]	[kNxm]	[kNxm]	
0	REALIZZAZIONE	0	0	3875	8525	0	
1	PERM SP	0	0	46992	-27846	0	
2	ACC SP	0	0	181	-254	0	
3	PERM IMP	0	0	1020	2244	0	
	ACC IMP - Nmax	0	0	1715	3773	0	
	FOLLA	0	0	0	0	0	
6	ST	9405	0	0	35426	0	
7	SA	1850	0	0	10450	0	
8	VARTEMPD	0	0	0	0	0	(+/-)
	VARTEMPU	0	0	0	0	0	(+/-)
10	FR	409	0	0	3739	0	(+/-)
	VENTO	0	100	0	0	1136	(+/-)
12	SIS SP L	3665	0	0	19136	0	(+/-)
13	SIS SP T	0	3665	0	0	19136	(+/-)
14	SIS SP V	0	0	1833	-1086	0	(+/-)
15	SIS IMP L	2153	0	0	19695	0	(+/-)
16	SIS IMP T	0	1076	0	0	12603	(+/-)
17	SIS IMP V	0	0	205	450	0	(+/-)
18	DS	1870	0	0	10564	0	(+)

T.5 Riepilogo dei carichi dovuti alle condizioni di carico elementari

10.3 Combinazioni di carico

Si riportano i coefficienti moltiplicati dei carichi elementari per le combinazioni allo stato limite ultimo, le combinazioni sismiche e le combinazioni allo stato limite di esercizio per le verifiche strutturali e geotecniche.


Carichi all'intradosso della fondazione - COMBINAZIONI SLU / SLV

vert(-N)
trasv(H _T)
ML
long(H _L)

	H_{L}	H_T	N	M _T (G)	M _L (G)
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLU 1	12697	0	63439	10232	0
STA SLU 2	12697	0	70047	24771	0
STA SLU 3	15194	90	72607	43629	1022
STA SLU 4	15121	90	72028	43876	1022
STA SLU 5	14569	150	72028	38829	1704
STA SLU 6	15194	150	72607	43629	1704
SIS SLU 7	17093	1422	52498	67553	9522
SIS SLU 8	11711	4742	52498	32977	31739
SIS SLU 9	11711	1422	53924	32532	9522
SIS SLU 10	17093	1422	51398	68205	9522
SIS SLU 11	11711	4742	51398	33628	31739
SIS SLU 12	11711	1422	50259	34704	9522

T.6 Combinazioni di carico SLU

Carichi all'intradosso della fondazione - COMBINAZIONI SLE

	H_L	H _T	N	$M_T(G)$	$M_L(G)$
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLE1	9405	0	46992	7580	0
STA SLE2	9405	0	51887	18349	0
STA SLE3	11255	60	53783	32318	682
STA SLE4	11201	60	53354	32501	682
STA SLE5	10792	100	53354	28762	1136
STA SLE6	11255	100	53783	32318	1136

T.1 Combinazioni di carico SLE

10.4 Verifiche

Le verifiche riportate di seguito sono:

- Verifica a ribaltamento allo SLU per la combinazione più gravosa;
- Verifiche strutturali di resistenza allo *SLU* per le combinazioni di carico più gravose;
- Verifiche strutturali di resistenza allo *SLE* per le combinazioni di carico più gravose.

10.4.1 Verifiche di stabilità – Ribaltamento

Di seguito la verifica a ribaltamento della spalla in esame effettuata per la combinazione più gravosa che risulta essere la combinazione sismica. La verifica è effettuata considerando l'ipotesi di equilibrio limite del corpo spalla assunto come rigido con centro di rotazione posizionato all'estremità inferiore del plinto lato valle. La combinazione considerata per tale verifica è la combinazione sismica EQU.

cond\comb	EQU
REALIZZAZIONE	0.87
PERM SP	0.87
ACC SP	0.00
PERM IMP	0.87
ACC IMP - Nmax	0.00
FOLLA	0.00
ST	1.00
SA	0.00
VARTEMPD	0.50
VARTEMPU	0.00
FR	0.00
VENTO	0.00
SIS SP L	1.00
SIS SP T	0.30
SIS SP V	-0.30
SIS IMP L	1.00
SIS IMP T	0.30
SIS IMP V	-0.30
DS	1.00

VERIFICA RIBALTAMENTO						
M_{ribalt}	M_{stab}	c.s.				
87610	206604	2.36				

La verifica è pertanto soddisfatta.

10.4.2 Verifiche strutturali – Plinto di fondazione – Mensola lato valle SLU

Di seguito si riportata la verifica strutturale della porzione di plinto lato valle ipotizzando il vincolo di incastro perfetto di tale mensola con il filo esterno del muro di testata (lato impalcato); la luce di calcolo assunta per la determinazione delle sollecitazioni di verifica è pertanto pari a $L_{valle} \cong 1.6m$. Il carico esterno è ipotizzato uniformemente distribuito ed è assunto cautelativamente pari alla massima reazione del terreno (vedere relazione geotecnica) dedotta dalle combinazioni di carico più gravose (*combinazione* denominata STA-SLU6). Le sollecitazioni di verifica sono pertanto pari a:

 $V_{S,d} = r_{terreno} \times L_{valle} \cong 650 \text{ kN/m};$

 $M_{S,d} = r_{terreno} \times L_{valle}^2/2 \cong 520 \text{ kN} \times \text{m/m}.$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

 $B \times H = 1.0m \times 1.2m - h \cong 1.1m$;

 $A_s = 1\phi 26/20 - armatura zona tesa$

 $A'_s = 1\phi 20/20 - armatura zona compressa.$

Si riporta di seguito la verifica a flessione semplice dell'armatura precedentemente esposta. La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

 $M_{R,d} = 1137 \text{ kN} \times \text{m/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$

Di seguito si riporta la verifica a taglio (A_{s-w} = spille $\phi 20/40 \times 40$). La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{Rw,d} = 0.9 \times d \times f_{yd} \times A_{sw} / s \times (ctg\alpha + ctg\theta) \times sen\alpha \cong 760 \text{ kN} > V_{s,d} - Verifica soddisfatta;$

con

- d \cong 110cm f_{yd} \cong 391.3 MPa;

 $\label{eq:sw} \text{- } A_{\text{sw}} \cong 3.14/0.4 \cong 7.85 \text{cm}^2/\text{m} \hspace{1cm} \text{s} = 40 \text{cm};$

 $-\alpha = 90^{\circ}$ $\theta = 45^{\circ}$ (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

 $-V_{Rc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta) / (1 + ctg^2\theta) \approx 2810 \text{ kN} > V_{s,d} - \text{Verifica soddisfatta};$

con

 $- d \cong 110cm$ $b_w = 100cm$;

- $f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 35/1.5) \cong 8.23 \text{ MPa}$ $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

 $-\alpha = 90^{\circ}$ $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

10.4.3 Verifiche strutturali – Plinto di fondazione – Mensola lato valle SLE

La sollecitazione di verifica è pari a (SLE rara):

 $M_{S,d} = r_{terreno} \times L_{valle}^2/2 \cong 385 \text{ kN} \times \text{m/m}.$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

 $B \times H = 1.0 \text{m} \times 1.2 \text{m} - \text{h} \cong 1.1 \text{m};$

 $A_s = 1\phi 26/20 - armatura zona tesa$

 $A'_s = 1\phi 20/20 - armatura zona compressa.$

Le tensioni massime valgono:

 $\sigma_{max.s} \cong 135 \text{ MPa} \Rightarrow \text{tensione di trazione sull'acciaio};$

 $\sigma_{max,c} \cong 2.5 \text{ MPa} \Rightarrow \text{tensione di compressione sul calcestruzzo.}$

La verifica risulta soddisfatta.

Anche la verifica di fessurazione risulta soddisfatta adottando il metodo indiretto in quanto (considerando la combinazione *SLE rara*):

 $\sigma_{max,s}$ < 200 MPa.

10.4.4 Verifiche strutturali – Plinto di fondazione – Mensola lato monte SLU

Di seguito si riportata la verifica strutturale della porzione di plinto lato monte ipotizzando un vincolo di incastro di tale porzione di plinto con il filo interno del muro di testata ovvero il filo muro lato rinterro; la luce di calcolo assunta per la determinazione delle sollecitazioni di verifica è pertanto pari a $L_{monte} = 5.7m$. I carichi esterni, ipotizzati uniformemente distribuiti, sono pari a:

- peso rinterro lato monte e peso plinto (agente verso il basso);
- reazione media del terreno lato monte (agente verso l'alto).

Le sollecitazioni di verifica sono pertanto pari a:

 $V_{S,d} = (p_{rinterro} + p_{plinto} - r_{terreno}) \times L_{monte} \cong 630 \text{ kN/m}.$

 $M_{S,d} = (p_{rinterro} + p_{plinto} - r_{terreno}) \times L_{monte}^2/2 \cong 1800 \text{ kN} \times \text{m/m}.$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

 $B \times H = 1.0 \times 1.2 \text{m} - \text{h} \cong 1.1 \text{m};$

 $A_s = 1 \phi 26/10 + 1 \phi 26/20$ - armatura zona tesa

A's= 1\phi20/20 - armatura zona compressa.

Si riporta di seguito la verifica a flessione semplice dell'armatura precedentemente esposta. La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

 $M_{B,d} = 3039 \text{ kN} \times \text{m/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$

Di seguito si riporta invece la verifica a taglio ovvero il dimensionamento dell'armatura a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{Rw,d} = 0.9 \times d \times f_{yd} \times A_{sw} / s \times (ctg\alpha + ctg\theta) \times sen\alpha \cong 760 \text{ kN} > V_{S,d} - Verifica soddisfatta;$

con

 $-d \cong 110cm$ $f_{yd} \cong 391.3 \text{ MPa};$

 $-A_{sw} \cong 3.14/0.4 \cong 13.275 \text{cm}^2/\text{m}$ s = 40 cm;

- α = 90° θ = 45° (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

- $V_{Rc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta)/(1 + ctg^2\theta) \cong 2810 \text{ kN} > V_{S,d} - Verifica soddisfatta;$

con

 $-d \cong 110cm$ $b_w = 100cm$;

- $f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 35/1.5) \cong 8.23 \text{ MPa}$ $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

 $-\alpha = 90^{\circ}$ $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

10.4.5 Verifiche strutturali – Plinto di fondazione – Mensola lato monte SLE

Di seguito si riportata la verifica strutturale della porzione di plinto lato monte ipotizzando un vincolo di incastro di tale porzione di plinto con il filo interno del muro di testata ovvero il filo muro lato rinterro; la luce di calcolo assunta per la determinazione delle sollecitazioni di verifica è pertanto pari a $L_{monte} = 5.7m$. I carichi esterni, ipotizzati uniformemente distribuiti, sono pari a:

- peso rinterro lato monte e peso plinto (agente verso il basso);
- reazione media del terreno lato monte (agente verso l'alto).

La sollecitazione di verifica è pertanto pari a (SLE rara):

$$M_{S,d} = \left(p_{rinterro} + \; p_{plinto} - r_{terreno}\right) \times L_{monte}^2 / 2 \cong 1940 \; kN \times m/m.$$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

$$B \times H = 1.0 \times 1.2 \text{m} - \text{h} \cong 1.1 \text{m};$$

$$A_s = 1\phi 26/10 + 1\phi 26/20$$
 - armatura zona tesa

A's= 1φ20/20 - armatura zona compressa.

Le tensioni massime valgono (combinazione rara):

 $\sigma_{max,s} \cong 249 \text{ MPa} \Rightarrow \text{tensione di trazione sull'acciaio};$

 $\sigma_{max,c} \cong 9.0 \text{ MPa} \Rightarrow \text{tensione di compressione sul calcestruzzo.}$

La verifica risulta soddisfatta.

la verifica di fessurazione si esegue controllando che:

 $w_d < w_2 = 0.3$ (condizioni ordinarie combinazione frequente)

si ottiene:

h=	120	ст	k1=	0.8	-	A _{c,eff}	1330.702	cm²
d=	113.5	ст	k2=	0.5	-	ρ eff	0.05986	1
E _{cm} =	34625	МРа	<i>k</i> ₃ =	3.4	-	σs	239	МРа
E _s =	210000	МРа	k4=	0.425	-	Esm	0.00092	ı
α _e =	6.06	-				Δ_{smax}	210	mm
k_t =	0.6	-				Wd	0.19	mm

La verifica risulta soddisfatta

10.4.6 Verifiche strutturali – Muro di testata – Sezione di base SLU

Di seguito si riportano le verifiche strutturali della sezione di base del muro di testata ovvero della sezione di attacco dello stesso con il plinto di fondazione. Le verifica di resistenza, taglio e pressoflessione semplice, sono eseguite per la condizione di carico più gravosa ovvero nei confronti delle sollecitazioni dedotte dalla combinazione sismica.

 $N_{S,d} \cong -430 \text{ kN/m (compressione)};$

 $V_{S,d} \cong 410 \text{ kN/m}$;

 $M_{S,d} \cong 1520 \text{ kN} \times \text{m/m}.$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

 $B \times H = 1.0 \times 1.2 \text{m} - \text{h} \cong 1.1 \text{m};$

 $A_s = 1 \phi 26/20 + 1 \phi 20/20$ - armatura zona tesa;

A'_s= 1φ20/20 - armatura zona compressa.

Si riporta di seguito la verifica a flessione semplice dell'armatura precedentemente esposta. La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

 $M_{B,d} = 2100 \text{ kN} \times \text{m/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$

Di seguito si riporta invece la verifica a taglio ovvero il dimensionamento dell'armatura a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{Rw,d} = 0.9 \times d \times f_{yd} \times A_{sw} / s \times (ctg\alpha + ctg\theta) \times sen\alpha \cong 760 \text{ kN} > V_{s,d} - Verifica soddisfatta;$

con

- d \cong 110cm f_{yd} \cong 391.3 MPa;

 $-A_{sw} \cong 3.14/0.4 \cong 7.85 \text{cm}^2/\text{m}$ s = 40cm;

 $-\alpha = 90^{\circ}$ $\theta = 45^{\circ}$ (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

 $-V_{Rc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta)/(1 + ctg^2\theta) \approx 3210 \text{ kN} > V_{s,d} - \text{Verifica soddisfatta};$

con

 $- d \cong 110cm$ $b_w = 100cm$;

- $f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 40/1.5) \cong 9.41 \text{ MPa}$ $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

 $-\alpha = 90^{\circ}$ $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

10.4.7 Verifiche strutturali - Muro di testata - Sezione di base SLE

Le sollecitazioni sono pari a (SLE rara)

 $N_{S,d} \cong$ -265 kN/m (compressione);

 $M_{S,d} \cong 840 \text{ kN} \times \text{m/m}.$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

 $B \times H = 1.0 \times 1.2 \text{m} - \text{h} \cong 1.1 \text{m};$

 $A_s = 1\phi 26/20 + 1\phi 20/20$ - armatura zona tesa;

A's= 1\phi20/20 - armatura zona compressa.

Le tensioni massime valgono:

 $\sigma_{max,s} \cong 163 \text{ MPa} \Rightarrow \text{tensione di trazione sull'acciaio};$

 $\sigma_{max,c} \cong 4.9 \text{ MPa} \Rightarrow \text{tensione di compressione sul calcestruzzo.}$

La verifica risulta soddisfatta.

Anche la verifica di fessurazione risulta soddisfatta adottando il metodo indiretto in quanto (considerando la combinazione *SLE rara*):

 $\sigma_{max,s}$ < 200 MPa.

10.4.8 Verifiche strutturali – Muro paraghiaia – Sezione di base SLU

Cautelativamente si valutano le sollecitazioni sul muro paraghiaia considerando lo schema statico di mensola in verticale avente la seguente lunghezza di calcolo:

 $L_{vert.} \cong 1.70 \text{ m}$

Le sollecitazioni massime si ottengono in condizione sismica SLV sono pari a:

 $V_{Sd} \cong 15 \text{ kN/m}$;

 $M_{Sd} \cong 55 \text{ kNm/m}.$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

 $B \times H = 1.0 \times 0.30 \text{ m} - h \approx 0.25 \text{ m};$

 A_s = 1 ϕ 16/20 – armatura zona tesa;

 $A'_s = 1\phi 16/20 - armatura zona compressa.$

La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

 $M_{R,d} = 113 \text{ kNm/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$

Di seguito si riporta invece la verifica a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

 $V_{Bw,d} = 0.9 \times d \times f_{vd} \times A_{sw} / s \times (ctg\alpha + ctg\theta) \times sen\alpha \approx 60 \text{ kN} > V_{s,d} - Verifica soddisfatta;$

con:

 $d \cong 250 \text{ mm}; \quad f_{yd} \cong 391.3 \text{ MPa}; \qquad A_{sw} \cong 1.13/0.4 \cong 2.825 \text{ cm}^2/\text{m}; \quad s = 40 \text{cm}; \qquad \alpha = 90^{\circ}$

 $\theta = 45^{\circ}$ (ctg θ =1 – valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

 $V_{Rc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta) / (1 + ctg^2\theta) \cong 1060 \text{ kN} > V_{S,d} - Verifica soddisfatta;$

con:

 $b_w = 1000 \text{ mm}; \ f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 40/1.5) \cong 9.41 \text{ MPa}$ $\alpha_c \cong 1.0;$

10.4.9 Verifiche strutturali – Muro paraghiaia – Sezione di base SLE

La sollecitazione flettente massima è pari a (SLE rara)

 $M_{\text{S,d}} \cong 10 \text{ kNm/m}.$

Le tensioni massime valgono:

 $\sigma_{max,s} \cong 43 \text{ MPa} \Rightarrow \text{tensione di trazione sull'acciaio};$

 $\sigma_{max,c} \cong 1.7 \text{ MPa} \Rightarrow \text{tensione di compressione sul calcestruzzo.}$

La verifica risulta soddisfatta.

Considerando la sezione interamente reagente, la tensione di trazione massima sul calcestruzzo vale:

 $\sigma_{\text{max,c}} \cong 0.6 \text{ MPa} \Rightarrow \text{tensione di trazione sul calcestruzzo.}$

Tale valore è inferiore a $f_{ctm}/1.2$.

La verifica a fessurazione si ritiene soddisfatta.

10.4.10 Verifiche strutturali – Soletta di transizione – SLU

Le sollecitazioni della soletta di transizioni si valutano adottando lo schema statico di trave appoggiata con vincoli rigidi di estremità (lato rilevato e lato spalla) e luce di calcolo pari a:

 $L_{cal} \cong 5.00 \text{ m}$

Si considera il carico permanente della sovrastruttura stradale e il carico accidentale aventi i seguenti valori:

 $G_{perm} = \gamma \times h \cong 38 \text{ kN/m}^2 (h \cong 2.00 \text{ m});$

 $Q_{acc} = 20 \text{ kN/m}^2$.

Le sollecitazioni massime allo SLU sono pari a:

 $V_{Sd} \cong 195 \text{ kN/m}$;

 $M_{Sd} \cong 245 \text{ kNm/m}.$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

 $B \times H = 1.0 \times 0.30 \text{ m} - h \approx 0.25 \text{ m};$

 $A_s = 1\phi 22/10 - armatura zona tesa;$

 A'_{s} = 1 ϕ 16/20 – armatura zona compressa.

La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

 $M_{R,d} = 285 \text{ kNm/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$

Di seguito si riporta invece la verifica a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

 $V_{Rw,d} = 0.9 \times d \times f_{vd} \times A_{sw} / s \times (ctg\alpha + ctg\theta) \times sen\alpha \approx 221 \text{ kN} > V_{S,d} - Verifica soddisfatta;}$

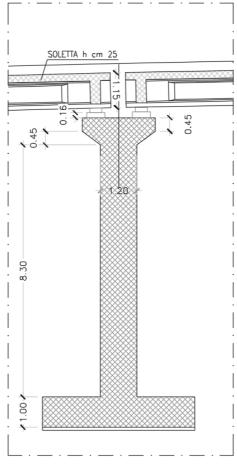
con:

 $d = 250 \text{ mm}; \quad f_{yd} = 391.3 \text{ MPa}; \qquad A_{sw} = 2.01/0.4 = 5.025 \text{ cm}^2/\text{m}; \quad s = 20 \text{cm}; \qquad \alpha = 90^{\circ}$

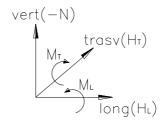
 $\theta = 45^{\circ}$ (ctg θ =1 – valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

 $V_{Rc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta) / (1 + ctg^2\theta) \approx 925 \text{ kN} > V_{s,d} - Verifica soddisfatta;$


con:

 $b_w = 1000 \text{ mm}; \ f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 35/1.5) \cong 8.23 \text{ MPa}$ $\alpha_c \cong 1.0;$


11. PILA – VERIFICHE ELEVAZIONE E FONDAZIONE

11.1 Geometria

La geometria della pila analizzata è riportata nelle immagine seguente.

F 8. Sezione trasversale pila

F 9. Convenzione utilizzata per le sollecitazioni riportate

11.2 Analisi dei carichi agenti

Peso proprio

Peso proprio impalcato Sx:

 $W_{SX} = 7900 \text{ KN}$

Peso proprio impalcato Dx:

 $W_{DX} = 6300 \text{ KN}$

Permanenti portati

Permanenti portati impalcato Sx:

 $P_{SX} = 2600 \text{ KN}$

Permanenti portati impalcato Dx:

 $P_{DX} = 1900 \text{ KN}$

Carichi da traffico

 $Q_k = 2*(300+200+100) = 1200 \text{ KN}$

 $Q_{ik} = 9 \times 3 + 2.5 \times 3 + 2.5 \times 3 + 2.5 \times 3 + 2.5 \times 3 = 57 \text{ KN/m}$

folla = $5 \times 4.06 = 20.3 \text{ KN/m}$

Reazione massima verticale su pila:

 $L_{sx} = 18 \text{ m}$

 $L_{dx} = 12.5 \text{ m}$

R = 2400 KN

eccentricità del solo truck sulla pila:

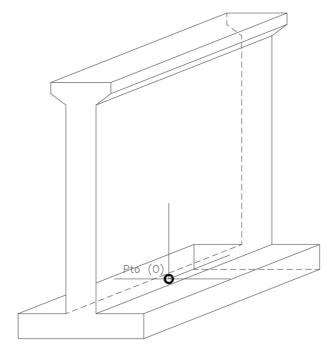
e₁ = 6.89 m calcolata graficamente

eccentricità del distribuito sulla pila:

 $e_2 = 0.0 \text{ m}$ calcolata graficamente

Momento trasversale totale sulla pila :

 $M_L = 8300 \text{ KNm}$


<u>Sisma</u>

Si riportano di seguito le valutazioni relative alle azioni sismiche agenti alla base della pila effettuate attraverso un'analisi *pseudo-statica*.

Direzione longitudinale Altezza pila	Н	m	9.1
Spessore pila	s	m	1.2
Lunghezza pila	L	m	39
modulo elastico	E	kPa	34625485
Inerzia pila	J	m ⁴	5.616
Rigidezza pila 3EJ/l ³	k*	KN/m	774140.96
massa pila (24%)	m _{p-0.24}	t	260
massa pila (39%)	$m_{p-0.39}$	t	423
massa pila (28%)	$m_{p-0.28}$	t	304
massa impalcato dx	m _{imp}	t	836
masse partecipanti	m*	t	1096
	m_Q	t	1259
	m_M	t	1140
Periodo sistema pila+impalcato dx	T_{o}	sec	0.24
accelerazione spettrale	S_{e-h}	-	0.205
Taglio alla base	Q_{max}	kN	2908
Momento alla base	M_{max}	kNm	23956
Direzione trasversale			
Altezza pila	Н	m	9.1
Spessore pila	s	m	1.2
Lunghezza pila	L	m	39
modulo elastico	E	kPa	34625485
Inerzia pila	J	m ⁴	5931.9
Rigidezza pila 3EJ/l ³	k*	KN/m	817686386
massa pila (24%)	m _{p-0.24}	t	260
massa pila (39%)	$m_{p-0.39}$	t	423
massa pila (28%)	$m_{p-0.28}$	t	304
massa impalcati	m _{imp}	t	953
masse partecipanti	m*	t	1214
	m_Q	t	1376
	m_M	t	1257
Periodo sistema pila+impalcato dx	T_{0}	sec	0.0077
accelerazione spettrale	${\cal S}_{e ext{-}h}$	-	0.085
Taglio alla base	Q_{max}	kN	1302
Momento alla base	M_{max}	kNm	12244

11.3 Condizioni di carico

Nella tabella seguente sono riportati valori delle sollecitazioni per ciascun carico riferiti a estradosso plinto punto (O) fig. seguente:

F 10. Figura 1 Schema generale

Tutte le sollecitazioni ottenute sono state calcolate considerandole dirette in senso longitudinale (L) e trasversale (T) del ponte.

Nella tabella seguente sono riportati valori delle sollecitazioni per ciascun carico riferiti a estradosso plinto.

-	H_L	H _T	N	M _T	ML
cond\comb	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
Peso proprio impalcato	0	0	7100	0	0
Peso proprio pila	0	0	11613	0	0
Perm Impalcato	0	0	2250	0	0
Accidentale Impalcato	0	0	2400	0	8300
Frenatura	150	0	0	1607	0
Attrito dei vincoli	470	0	0	5034	0
Vento	0	172	0	0	1430
SIS PILA L	2908	0	0	23956	0
SIS PILA T	0	1302	0	0	12244
SIS PILA V	0	0	1635	0	0
	1	2	3	4	5

T.1 Carichi dovuti alle condizioni di carico elementari – estradosso plinto

11.4 Combinazioni di carico

Nelle tabelle seguenti sono riportati i valori delle sollecitazioni per ciascuna combinazione riferiti a estradosso plinto.

cond\comb	1	2	3	4	5	5	6	7
Peso proprio impalcato	0	1.35	1.35	1.35	1.35	1	1	1
Peso proprio pila	1.35	1.35	1.35	1.35	1.35	1	1	1
Perm Impalcato	0	1.35	1.35	1.35	1.35	1	1	1
Accidentale Impalcato	0	0	1.35	1.0125	1.0125	0	0	0
Frenatura	0	0	0	0	1.35	0	0	0
Attrito dei vincoli	0	0	1.5	0	0.9	0	0	0
Vento	0	0	0	1.5	0.9	0	0	0
SIS PILA L	0	0	0	0	0	1.00	0.30	0.30
SIS PILA T	0	0	0	0	0	0.30	1.00	0.30
SIS PILA V	0	0	0	0	0	0.30	0.30	1.00
SIS IMP L	0	0	0	0	0	1.00	0.30	0.30
SIS IMP T	0	0	0	0	0	0.30	1.00	0.30
SIS IMP V	0	0	0	0	0	0.30	0.30	1.00
	1	2	3	4	5	6	7	8

T.1 Tabella fattori di combinazione - SLU

cond\comb	1	2	3	4	5
Peso proprio impalcato	0	1	1	1	1
Peso proprio pila	1	1	1	1	1
Perm Impalcato	0	1	1	1	1
Accidentale Impalcato	0	0	1	0.75	0.75
Frenatura	0	0	0	0	1
Attrito dei vincoli	0	0	1	0	0.6
Vento	0	0	0	1	0.6
	1	2	3	4	5

T.2 Tabella fattori di combinazione - SLE

	H_{L}	H _T	N	M _T	M _L
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLU 1	0	0	15677	0	0
STA SLU 2	0	0	28300	0	0
STA SLU 3	705	0	31540	7551	11205
STA SLU 4	0	257	30730	0	10549
STA SLU 5	626	154	30730	6699	9691
SIS SLU 6	2908	390	21453	23956	3673
SIS SLU 7	872	1302	21453	7187	12244
SIS SLU 8	872	390	22598	7187	3673

T.3 Sollecitazioni SLU – estradosso plinto

SOLLECITAZIONI ESTRADOSSO FONDAZIONE- COMBINAZIONI SLU

	H_{L}	H _T	N	M _T	M_L
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLE 1	0	0	11613	0	0
STA SLE 2	0	0	20963	0	0
STA SLE 3	470	0	23363	5034	8300
STA SLE 4	0	172	22763	0	7655
STA SLE 5	432	103	22763	4627	7083

T.1 Sollecitazioni SLE – estradosso plinto

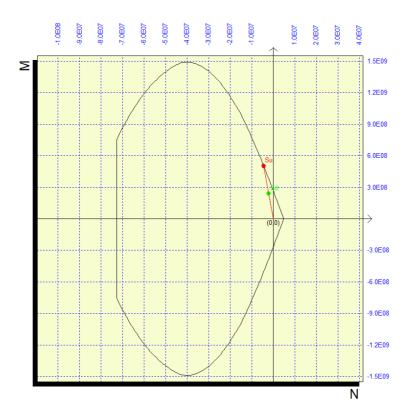
11.5 Verifiche elevazione - SLU

Di seguito viene riportata la verifica strutturale della sezione di attacco della pila col plinto di fondazione per le combinazioni più gravose.

11.5.1 Verifica a flessione

Le sollecitazioni globali di verifica sono pari a:

 $N' \cong -21450 \text{ KN/m} - \text{sforzo assiale di compressione};$


 $M_L \cong 3675 \text{ KN} \times \text{m} - \text{momento longitudinale};$

 $M_T \cong 23960 \text{ KN} \times m - momento trasversale.}$

La carpenteria della sezione resistente della pila è assunta pari a 39.0m×1.2m. L'armatura perimetrale considerata nella verifica è composta da:

 $A_s = \phi 20/20$.

Si riporta di seguito il diagramma di interazione allo SLU

Il momento resistente minimo è pari a:

 $M_{R,d} = 37870 \text{ KN} \times m \Rightarrow (F.S)_{MIN} \cong 1.6.$

11.5.2 Verifica a taglio

Si considera la combinazione più gravosa:

 $H_L = 2910 \text{ kN} - \text{taglio totale agente in direzione longitudinale.}$

Di seguito si riporta la verifica a taglio ovvero il dimensionamento dell'armatura a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{Rw,d} = 0.9 \times d \times f_{yd} \times A_{sw} / s \times (ctg\alpha + ctg\theta) \times sen\alpha \cong 6330 \text{ kN} > V_{S,d} - Verifica soddisfatta;$

con

 $-d \cong 90 \text{ cm}$ $f_{yd} \cong 391.3 \text{ MPa};$

- $A_{sw} \cong 40\phi 16 \cong 80 \text{ cm}^2$ s = 40cm;

- α = 90° θ = 45° (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

 $-\ V_{\text{Rc,d}} = 0.9 \times d \times b_{\text{w}} \times \alpha_{\text{c}} \times f'_{\text{cd}} \times (ctg\alpha + ctg\theta) / (1 + ctg^2\theta) \cong 54600 \ kN > V_{\text{S,d}} - Verifica \ soddisfatta;$

con

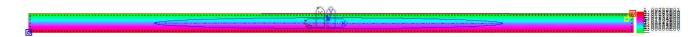
 $- d \cong 90 \text{ cm}$ $b_w = 1550 \text{ cm}$;

- $f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 37/1.5) \cong 8.7 \text{ MPa}$ $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

 $-\alpha = 90^{\circ}$ $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

11.6 Verifiche elevazione - SLE

Le sollecitazioni globali di verifica sono pari a (SLE rara):


 $N' \cong -23360 \text{ KN/m} - \text{sforzo assiale di compressione};$

 $M_L \cong 8300 \ KN \times m - momento longitudinale;$

 $M_T \cong 5040 \ KN \times m - momento trasversale.$

La sezione risulta uniformemente compressa con:

 $\sigma_{max,c} \cong 1.1 \text{ MPa} \Rightarrow \text{tensione massima di compressione sul calcestruzzo.}$

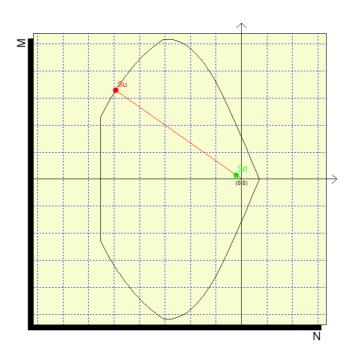
La verifica risulta soddisfatta.

La verifica a fessurazione non è significativa.

11.7 Verifica per urto da traffico ferroviario

La distanza "d" degli elementi esposti (pile) dall'asse del binario è pari a circa 8.0m; si assumono dunque, secondo quanto esposto al §3.6.3.4, le seguenti azioni statiche equivalenti:

- 2000 kN in direzione parallela alla direzione di marcia dei convogli ferroviari;
- 750 kN in direzione perpendicolare alla direzione di marcia dei convogli ferroviari.

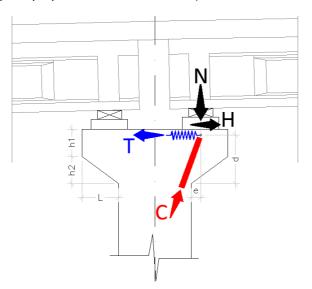

Tali forze, che agiscono separatamente, vengono applicate a 1.80m dal piano del ferro.

Di seguito viene riportata la verifica strutturale della sezione di attacco della pila col plinto di fondazione per la combinazione eccezionale (STA_ECC). Su una larghezza di fusto pari ad 1.0m si ha:

 $M_i = (750*1.8) / 16.5 = 85 \text{ KNm/m}$

 $N' = 22500 / 26.7 = 840 \text{ KN} \times \text{m/m}.$

La sezione corrente del piedritto è pari a $1.2m\times1.0m$; l'armatura ipotizzata è composta da $1\phi20/0.2m$.



F 11. Dominio di interazione N-M

 $M_{R,d} = 910 \text{ KN} \times \text{m/m} > M_{S,d} = 85 \text{ KN} \times \text{m/m}$

11.8 Verifica pulvino

Di seguito si riporta la verifica del pulvino testa pila. Lo schema statico adottato per determinare le sollecitazioni di tale elemento in direzione longitudinale (in direzione trasversale tutti gli appoggi delle travi ricadono all'interno dell'impronta del fusto pila e pertanto non si generano meccanismi di diffusione del carico verticale significativi ovvero tali da richiedere una valutazione specifica) è quello di mensola tozza soggetta alla reazione verticale ed orizzontale trasmessa dai dispositivi di appoggio (si trascura il peso proprio della mensola tozza).

F 12. Schema di calcolo pulvino testa pila – Direzione longitudinale

Le caratteristiche geometriche sono riepilogati di seguito.

$$h_1=h_2=0.45m$$
 $d\cong 0.8m$ $L=0.6m$ $e\cong 0.2m$.

L'intensità della reazione verticale massima allo SLU per le condizioni statiche (condizioni di carico dimensionanti) è determinata nell'ipotesi cautelativa che la singola colonna di carico più pesante sia assorbita da due sole travi in relazione all'interasse delle stesse ($i_{travi} \approx 1.5 m$) ed alla larghezza della colonna ($w_1 = 3.0 m$). Per quanto riguarda l'azione orizzontale longitudinale concomitante si considera la forza di frenatura ($q_3 \approx 410 \text{ kN}$) uniformemente ripartita su tutti gli appoggi della singola campata (20+20).

N_{SLU} ≅ 1000 kN – massima reazione verticale allo *SLU* in condizioni statiche;

 $H \cong 15 \text{ kN} - \text{massima reazione orizzontale longitudinale allo } SLU \text{ in condizioni statiche.}$

Lo sforzo nel tirante superiore, determinato con l'equilibrio alla rotazione ed alla traslazione riferendosi alle reazioni sul singolo appoggio (interasse appoggi i_{appoggi} ≅ 1.5m), risulta pari a:

$$T_{S,d} = [(N \times e) / d + H] \cong 270 \text{ kN}$$

ovvero per metro di profondità (considerando l'interasse degli appoggi) uno sforzo di trazione pari a:

$$t_{S,d} = (T/i_{appoggi}) \cong 180 \text{ kN/m}.$$

L'armatura per metro di profondità necessaria ad assorbire tale sforzo risulta pari a:

 $A_{s-necessaria} = t_{s,d} / f_{yd} \cong 5.0 \text{ cm}^2/\text{m}.$

L'armatura adottata è pari a:

- $A_{s-adottata}$ (1 ϕ 20/20) \cong 15.7 cm²/m > $A_{s-necessaria}$ - $Verifica\ soddisfatta$.

Lo sforzo nel puntone inclinato inferiore, determinato con l'equilibrio alla traslazione orizzontale, risulta pari a:

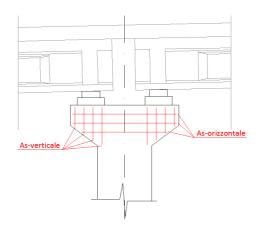
$$C_{\text{S,d}} = (N^2 + T^2)^{1/2} \; \cong 1040 \; kN;$$

ovvero per metro di profondità (considerando l'interasse degli appoggi) uno sforzo di compressione pari a:

 $c_{S,d} = (C/i_{appoggi}) \cong 700 \text{ kN/m}.$

A tale sforzo di compressione corrisponde una tensione di compressione media pari a:

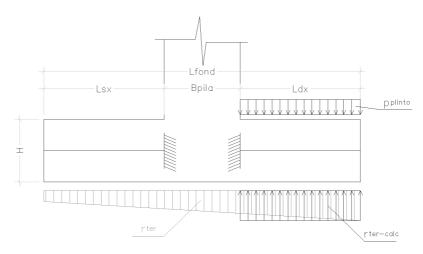
 $\sigma_{c,d} = c_{S,d} \; / \; A_{biella\text{-}cls} \cong 4.4 \; MPa \leq f_{cd} - Verifica \; soddisfatta;$


con

 $A_{\text{biella-cls}} \cong (0.2 \times d) \times B = 1600 \text{ cm}^2;$

d = 80cm;

B = 100 cm.


Tutte le verifiche risultano pertanto soddisfatte. Si evidenzia che oltre alle armature precedentemente determinate si prevede l'adozione di un sistema di armature a taglio composto da spille $\phi 12/40 \times 60$ e da ferri di volume orizzontali composti da $\phi 12/40 \times 60$.

F 13. Armatura integrativa fuori calcolo

11.9 Verifica plinto di fondazione - SLU

Di seguito si riporta la verifica del plinto di fondazione. Lo schema statico adottato per il plinto in entrambe le direzioni è quello di mensola orizzontale incastrata in corrispondenza del fusto pila soggetta ad un carico uniformemente distribuito dal basso verso l'alto di intensità pari alla reazione massima del terreno e ad un carico dall'alto verso il basso di intensità pari al peso proprio del plinto; lo schema statico dimensionante è quello della mensola in direzione longitudinale (luce maggiore).

F 14. Schema di calcolo plinto di fondazione pila – Direzione longitudinale

Le caratteristiche geometriche e l'intensità dei carichi sono riepilogati di seguito.

$$L_{fond} = 5.0m$$
 $B_{pila} = 1.2m$ $L_{sx} = L_{dx} = (5.0-1.2)/2 = 1.9m$ $H = 1.0m$;

 $r_{\text{ter-calc}} = max(r_{\text{ter}}) \cong 290 \text{ kPa} - reazione massima del terreno in condizioni sismiche;}$

 $p_{plinto} = 1 \times 25 = 25 \text{ kPa} - \text{peso proprio plinto}.$

SOLLECITAZIONI INTRADOSSO FONDAZIONE- COMBINAZIONI SLU

Comb.	HL	H _T	N	Μ _T	M_L
Collib.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLU 1	0	0	22596	0	0
STA SLU 2	0	0	35219	0	0
STA SLU 3	705	0	38459	8256	11205
STA SLU 4	0	257	37649	0	10806
STA SLU 5	626	154	37649	7325	9845
SIS SLU 6	2908	390	26698	26864	4064
SIS SLU 7	872	1302	26698	8059	13546
SIS SLU 8	872	390	28123	8059	4064

Comb.	eL	B/6	ет	L/6	О МАХ	σmin
Comb.	[m]	[m]	[m]	[m]	[kPa]	[kPa]
STA SLU 1	0.00	0.83	0.00	6.83	110	110
STA SLU 2	0.00	0.83	0.00	6.83	172	172
STA SLU 3	0.21	0.83	0.29	6.83	244	131
STA SLU 4	0.00	0.83	0.29	6.83	191	176
STA SLU 5	0.19	0.83	0.26	6.83	234	134
SIS SLU 6	1.01	0.83	0.15	6.83	290	-30
SIS SLU 7	0.30	0.83	0.51	6.83	187	73
SIS SLU 8	0.29	0.83	0.14	6.83	187	87

T.2 Sollecitazioni ad intradosso plinto, eccentricità e reazioni terreno (*)

(*) N.B. ⇒ Per le condizioni sismiche l'inerzia del plinto è valutata nell'ipotesi che lo stesso si muova con il terreno.

Le sollecitazioni di verifica, taglio e momento flettente relative alla combinazioni dimensionate (combinazione sismica), sono riassunte di seguito.

$$V_{S,d-MAX} = (r_{ter-calc} - p_{plinto}) \times L \cong 505 \text{ kN/m};$$

 $M_{S,d-MAX} = (r_{ter-calc} - p_{plinto}) \times L^2/2 \cong 480 \text{ kN} \times \text{m/m}.$

L'armatura necessaria a flessione è pertanto pari a:

- $A_{s-necessaria} = M_{s,d-Max} / (0.9 \times h \times f_{yd}) \approx 14.7 \text{ cm}^2/\text{m};$

$$con \qquad h \cong 93 \ cm \qquad \qquad f_{yd} \cong 391.3 \ MPa.$$

L'armatura adottata è pari a:

- As-adottata $(1\phi20/20+1\phi20/40)\cong 23.6~cm^2/m > A_{s-necessaria} - Verifica~soddisfatta$.

L'armatura necessaria a taglio risulta invece pari a:

- $(A_{sw-necessaria}/s) = V_{s,d-MAX}/[0.9 \times h \times f_{yd} \times (ctg\alpha + ctg\theta) \times sen\alpha] \cong 15.4 \text{ cm}^2/m;$

$$con \qquad \quad \ \ \, h\cong 93\;cm \qquad \qquad f_{yd}\cong 391.3\;MPa \qquad \qquad (ctg\alpha+ctg\theta)\times sen\alpha=1.$$

L'armatura adottata, composta da cavallotti ∮24 e spille ∮16, è pari a:

- $A_{\text{sw-adottata}}$ $(1\phi24/60\times120+1\phi20/40\times60)\cong19.4$ cm/m > $A_{\text{sw-necessaria}}$ - Verifica soddisfatta.

11.10 Verifica plinto di fondazione - SLE

Le caratteristiche geometriche e l'intensità dei carichi sono riepilogati di seguito.

 $L_{fond} = 5.0m$

 $B_{pila} = 1.0m$

 $L_{sx} = L_{dx} = (5.0-1.0)/2 = 2.0 \text{m}$

H = 1.0m;

 $r_{\text{ter-calc}} = max(r_{\text{ter}}) \cong 177 \text{ kPa} - reazione massima del terreno in condizioni sismiche;}$

 $p_{plinto} = (1.0 \times 25) = 25 \text{ kPa} - \text{peso proprio plinto}.$

SOLLECITAZIONI INTRADOSSO FONDAZIONE- COMBINAZIONI SLU

Comb.	H_L	H _T	N	Μ _T	M_L
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLE 1	0	0	16738	0	0
STA SLE 2	0	0	26088	0	0
STA SLE 3	470	0	28488	5504	8300
STA SLE 4	0	172	27888	0	7827
STA SLE 5	432	103	27888	5059	7186

Comb.	eL	B/6	e _T	L/6	О МАХ	σмін
Comb.	[m]	[m]	[m]	[m]	[kPa]	[kPa]
STA SLE 1	0.00	0.83	0.00	6.83	82	82
STA SLE 2	0.00	0.83	0.00	6.83	127	127
STA SLE 3	0.19	0.83	0.29	6.83	177	101
STA SLE 4	0.00	0.83	0.28	6.83	142	130
STA SLE 5	0.18	0.83	0.26	6.83	171	101

T.3 Sollecitazioni ad intradosso plinto, eccentricità e reazioni terreno (*) - SLE

La sollecitazione di verifica è pari a (SLE rara):

 $M_{S,d} = (r_{ter-calc} - p_{plinto}) \times L^2/2 \cong 310 \text{ kNm/m} - \text{sollecitazione flettente}.$

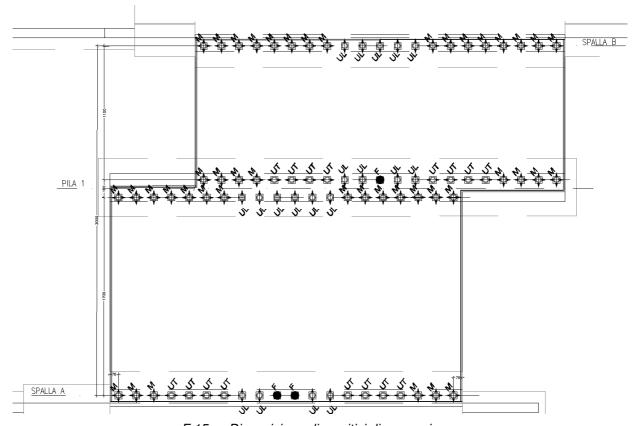
Le tensioni massime valgono:

 $\sigma_{max,s} \cong 153 \text{ MPa} \Rightarrow \text{tensione di trazione sull'acciaio};$

 $\sigma_{max,c} \cong 3.0 \text{ MPa} \Rightarrow \text{tensione di compressione sul calcestruzzo.}$

La verifica risulta soddisfatta.

Anche la verifica di fessurazione risulta soddisfatta adottando il metodo indiretto in quanto (considerando la combinazione *SLE rara*):


 $\sigma_{max,s}$ < 200 MPa.

12. APPARECCHI DI APPOGGIO, GIUNTI E VARCHI

In questa sezione si riportano i dati relativi al dimensionamento degli apparecchi di appoggio in acciaio PTFE e dei giunti sulle spalle.

Di seguito si riporta lo schema planimetrico delle disposizione dei dispositivi di appoggio in cui si identificano:

- F ⇒ appoggio fisso;
- UL ⇒ appoggio unidirezionale longitudinale;
- UT ⇒ appoggio unidirezionale trasversale;
- UL ⇒ appoggio multidirezionale.

F 15. Disposizione dispositivi di appoggio

Nella tabella seguente si riportano i valori massimi delle forze sollecitanti gli appoggi per le combinazioni statiche (*SLU*) e sismiche (*SLV*).

AZIONI SUGLI APPARECCHI D'APPOGGIO							
			STATIO	CA SLU	SISMICA SLV		
ld	Tipo	n.	N Sd-MAX	H Sd-MAX	N Sd-MAX	H Sd-MAX	
[-]	[-]	[-]	[kN]	[kN]	[kN]	[kN]	
F	Fisso	3	380	130	280	290	
UL	Uni-Long	20	560	25	280	190	
UT	Uni-Trasv	18	990	120	280	220	
М	Multi	44	990	-	280	-	

T.4 Azioni sugli apparecchi di appoggio

L'escursione massima dei giunti si valuta allo **SLD** considerando il contributo (50%) dell'azione termica, ottenendo dunque:

 $\delta \cong \pm 10 \text{ mm} \Rightarrow \text{giunto spalla B};$

 $\delta \cong \pm 10 \text{ mm} \Rightarrow \text{giunto pila.}$

La dimensione dei varchi si valuta allo SLV considerando il contributo (50%) dell'azione termica, ottenendo dunque:

 $d_{long} = 30 \text{ mm} \Rightarrow \text{varco longitudinale spalla B};$

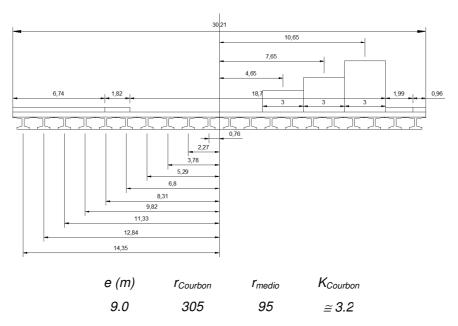
 $d_{long} = 30 \text{ mm} \Rightarrow varco longitudinale pila.}$

13. ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DEI CODICI DI CALCOLO

In accordo col *cap. 10* della norma (*DM 2018*), si riportano le valutazioni relative ai risultati dell'analisi e ai codici di calcolo adottati.

13.1 Origine, caratteristiche e affidabilità dei software di calcolo

L'analisi dei modelli di calcolo è stata condotta attraverso il *software* agli elementi finiti *CSiBridge* ver. 15.1.1.


La versione di *CSiBridge* adottata per gli scopi di questa progettazione consente di eseguire analisi di elementi finiti in campo lineare e non lineare statico e dinamico, utilizzando una modellazione a grigliato con elementi beam (monodimensionali) aventi leggi costitutive lineari e non lineari. Permette di definire i carichi da traffico in accordo con le norme, consentendo di movimentare, lungo le corsie convenzionali, le azioni concentrate e distribuite che simulano il passaggio dei veicoli, valutando per ogni sezione dell'impalcato gli effetti massimi e quelli concomitanti (in termini di sollecitazioni).

Dopo aver esaminato le documentazioni a corredo del *software* e quelle reperibili sul sito web (<u>www.csiamerica.com</u>) si ritiene, per le particolari funzioni implementate, che il *CSiBridge* sia affidabile ed idoneo alla progettazione in oggetto per l'analisi statica e dinamica del viadotto.

13.2 Giudizio motivato di accettabilità dei risultati

13.2.1 Ripartizione trasversale carico accidentale

Ai fini della validazione dei risultati del modello di calcolo viene valutato l'effetto della ripartizione dei carichi mobili eccentrici sulle travi longitudinali applicando il *metodo di Courbon (ripartizione rigida)*; di seguito si riporta il modello considerato con le grandezze caratteristiche ed i risultati ottenuti.

Travi di impalcato \Rightarrow M⁺max \cong (6300 kN×m / 20 travi)×3.2 \cong 1011 kN×m/trave.

Tale valore risulta in linea con quanto restituito dal modello di calcolo.