

Direzione Progettazione e Realizzazione Lavori

CORRIDOIO PLURIMODALE ADRIATICO

ITINERARIO MAGLIE - SANTA MARIA DI LEUCA

S.S. N° 275 "DI S. MARIA DI LEUCA"

LAVORI DI AMMODERNAMENTO E ADEGUAMENTO ALLA SEZ. B DEL D.M. 5.11.2001

S.S. 16 dal km 981+700 al km 985+386 - S.S. 275 dal Km 0+000 al km 37+000

1° Lotto: Dal Km 0+000 di prog. al Km 23+300 di prog.

PROGETTO DEFINITIVO

COD. **BA283**

PROGETTAZIONE: ANAS - COORDINAMENTO TERRITORIALE ADRIATICA

Ing. Alberto SANCHIRICO — Progettis

- Progettista e Coordinatore

Ing. Simona MASCIULLO — Progettista

COLLABORATORI

I PROGETTISTI

Geom. Andrea DELL'ANNA Geom. Massimo MARTANO Geom. Giuseppe CALO'

IL GEOLOGO

Dott. Pasquale SCORCIA

IL COORDINATORE IN FASE DI PROGETTAZIONE

Ing. Alberto SANCHIRICO

IL RESPONSABILE DEL PROCEDIMENTO

Ing. Gianfranco PAGLIALUNGA

RESPONSABILE PROJECT MANAGEMENT PUGLIA

Ing. Nicola MARZI

ATTIVITA' DI SUPPORTO

GUADAGNUOLO & PARTNERS

08 - OPERE D'ARTE MAGGIORI - VIADOTTI E PONTI

Cavalcavia (Comune di Maglie) CV 2 - al km 2+599,53 Relazione di calcolo strutturale

CODICE F		OGETTO LIV. PROG. N. PROG.	NOME FILE TOO_CVO2_STR_RE01_	_C		REVISIONE	SCALA:
	L050		CODICE TOOCVO2STRRE01		С	_	
	С	OTTEMPERANZA PARERE	AdB Puglia — PARERE CSLLPP	Aprile 2019	Ing. D. Neri		
	В	REVISIONE DEL PROGE	TTO DEFINITIVO	Gennaio 2019	Ing. C. Beltrami		
	А	REVISIONE DEL PROGE	TTO DEFINITIVO	Giugno 2018	Ing. C. Beltrami		
	REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

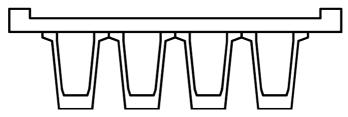
INDICE

PREMESSA	5
NORMATIVE E RIFERIMENTI	6
2.1 Normative e standard	6
2.2 Software di calcolo	7
MATERIALI	8
3.1 Calcestruzzo	8
3.1.1 Magrone sottofondazione	8
3.1.2 Plinti di fondazione	8
3.1.3 Elevazione pile e spalle	8
3.1.4 Soletta, cordoli e predalles	8
3.1.5 Trave di impalcato	9
3.2 Acciaio	9
3.2.1 Acciaio per armatura lenta	9
3.2.2 Acciaio per armatura di precompressione	9
3.3 Legami costitutivi	10
3.3.1 Diagramma tensione-deformazione calcestruzzo	10
3.3.2 Diagramma tensione-deformazione acciaio ordinario per c.a.	10
CARATTERISTICHE DEI MATERIALI	11
MODELLO NUMERICO	12
ANALISI DEI CARICHI	15
6.1 Carichi permanenti strutturali (G1) e non strutturali (G2)	15
6.2 Azioni verticali da traffico (Q1)	15
6.3 Azione del vento	17
6.4 Azione longitudinale di frenamento	18
6.5 Urto dei veicoli in svio	18
6.6 Ritiro	19
6.7 Variazioni termiche	19
6.8 Azione sismica	19
	NORMATIVE E RIFERIMENTI 2.1 Normative e standard 2.2 Software di calcolo MATERIALI 3.1 Calcestruzzo 3.1.1 Magrone sottofondazione 3.1.2 Plinti di fondazione 3.1.3 Elevazione pile e spalle 3.1.4 Soletta, cordoli e predalles 3.1.5 Trave di impalcato 3.2 Acciaio 3.2.1 Acciaio per armatura lenta 3.2.2 Acciaio per armatura di precompressione 3.3 Legami costitutivi 3.3.1 Diagramma tensione-deformazione calcestruzzo 3.3.2 Diagramma tensione-deformazione acciaio ordinario per c.a. CARATTERISTICHE DEI MATERIALI MODELLO NUMERICO ANALISI DEI CARICHI 6.1 Carichi permanenti strutturali (G1) e non strutturali (G2) 6.2 Azioni verticali da traffico (Q1) 6.3 Azione del vento 6.4 Azione longitudinale di frenamento 6.5 Urto dei veicoli in svio 6.6 Ritiro 6.7 Variazioni termiche

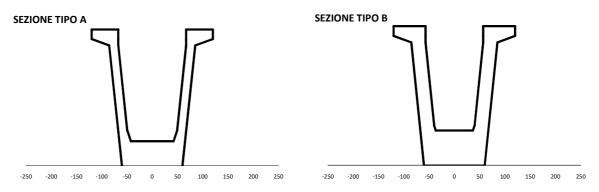
	6.8.1	Vita nominale	20
	6.8.2	Classe d'uso	20
	6.8.3	Periodo di riferimento per l'azione sismica	20
	6.8.4	Parametri di progetto	20
	6.8.5	Categoria di sottosuolo	23
	6.8.6	Condizioni topografiche	23
	6.8.7	Spettro di risposta elastico in accelerazione	24
	6.8.8	Spettro di risposta elastico in accelerazione, componenti orizzontali	24
	6.8.9	Spettro di risposta elastico in accelerazione, componenti verticali	26
	6.8.10	Spettri di progetto in accelerazione	27
7.	COMB	INAZIONI DI CARICO	28
	7.1 lm	palcato	30
	7.2 Pi	le	31
	7.3 Sp	palle	32
8.	RISUL	ТАТІ	33
	8.1 A	NALISI MODALE	33
	8.2 DI	AGRAMMI SOLLECITAZIONI	36
9.	VERIF	CHE IMPALCATO	37
	9.1 Ca	aratteristiche trave in c.a.p.	37
	9.2 Pr	ecompressione e armatura lenta	38
	9.3 Pe	erdite differite nel tempo	39
	9.4 Ca	aratteristiche sezioni di verifica	40
	9.5 Di	agramma tensioni sulla trave n.1	41
	9.6 Di	agramma tensioni/aree armature trave n.1	42
	9.7 Ve	erifica sezione n.1 – ascissa x = 0,000m	43
	9.8 Ve	erifica sezione n.5 – ascissa x = 1,256m	45
	9.9 Ve	erifica sezione n.10 – ascissa x = 2,826m	47
	9.10 Ve	erifica sezione n.34 – ascissa x = 10,362m	49
	9.11 Ve	erifica sezione n.51 – ascissa x = 15,7m	51
	9.12 Ve	erifica a rottura della sezione di mezzeria	53

	9.13 Verifiche a taglio – SLU	54
	9.14 Verifiche a torsione – SLU	55
	9.15 Verifiche connettori trave-soletta	56
	9.16 Verifica all'urto dei veicoli in svio	57
	9.17 Verifica dello sbalzo della soletta (Sezione S ₁)	58
	9.18 Verifiche del cordolo (Sezione S ₂)	60
	9.19 Verifiche a deformazione	62
	9.20 Azioni sugli apparecchi di appoggio	63
10.	VERIFICHE PILA 1	64
	10.1 Verifica Elevazione	64
	10.1.1 Verifica SLU-SLV	64
	10.1.2 Verifica SLE – Controllo tensioni	66
	10.1.3 Verifica SLE – Fessurazione	67
	10.2 Verifica fondazione	68
	10.2.1 Verifiche strutture SLU-SLV	69
	10.2.2 Verifica a ribaltamento	70
11.	VERIFICHE PILA 2	72
	11.1 Verifica Elevazione	72
	11.1.1 Verifica SLU-SLV	72
	11.1.2 Verifica SLE – Controllo tensioni	74
	11.1.3 Verifica SLE – Fessurazione	75
	11.2 Verifica fondazione	76
	11.2.1 Verifiche strutture SLU-SLV	77
	11.2.2 Verifica a ribaltamento	78
12.	VERIFICA SPALLA SA	80
	12.1 Modello di calcolo	80
	12.2 Verifiche strutture SLU-SLV	82
	12.3 Verifica a ribaltamento	84
13.	VERIFICA SPALLA SB	86
	13.1 Modello di calcolo	86

S.S. 275 - Strada Statale Maglie - Santa Maria di Leuca Relazione di calcolo strutturale CV02	4
13.2 Verifiche strutture SLU-SLV	88
13.3 Verifica a ribaltamento	90


1. PREMESSA

Nella presente relazione si riportano i calcoli relativi al ponte stradale CV02 - PRG.2+599.53 Cavalcavia comune di Maglie ubicato alla progressiva 2+599.53, nell'ambito dei CORRIDOIO PLURIMODALE ADRIATICO MAGLIE - S.M. DI LEUCA.


L'opera di cui trattasi ha una lunghezza complessiva di 78m suddivisi in 3 campate la cui luce misurata tra gli appoggi per le travi è pari a 16m - 30m - 32m.

L'impalcato è costituito da 4 travi a cassone in cemento armato precompresso, di altezza 1,4m, disposte ad interasse di 2,4m e da una soletta in c.a. di larghezza complessiva 12m.

La soletta di spessore 25cm presenta una larghezza pavimentata carrabile di 10.5m e due cordoli esterni di larghezza 0.75m e altezza 17cm.

La trave è del tipo a cassone precompressa a fili aderenti e presenta due tipi di sezione: una sezione corrente di tipo A e una sezione ringrossata tipo B in corripondenza degli appoggi per una lunghezza di 1m. La zona di raccordo tra le due sezioni misura una lunghezza di 1m.

La precompressione della trave avviene per mezzo di 64 Trefoli stabilizzati del diametro di 6/10S", suddivisi in 4 gruppi disposti a diverse altezze della sezione.

le verifiche di normativa riguardanti l'impalcato sono state eseguite sulla trave maggiormente caricata nel rispetto delle N.T.C.2018.

2. NORMATIVE E RIFERIMENTI

2.1 Normative e standard

Il dimensionamento delle opere in progetto è condotto in riferimento alle attuali normative e di seguito elencate.

[1]	D.M. 17/01/2018, n.8	Norme Tecniche per le costruzioni			
[2]	Circ. Min. 21 gennaio 2019, n. 7	Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme Tecniche per le costruzioni"» di cui al decreto			
		ministeriale 17 gennaio 2018			
[3]	Legge 05/11/1971, n.1086	Norma per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica" e relative istruzioni (Circ. LL.PP. 14/02/1974, n. 11951)			
[4]	Legge 02/02/1974, n.64	Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche			
[5]	UNI EN 1990	Basis of structural design			
[6]	UNI EN 1991-1-1	Actions on structures - General actions - Densities, self-weight and imposed loads			
[7]	UNI EN 1991-1-4	Actions on structures - General actions - Wind actions			
[8]	UNI EN 1991-1-5	Actions on structures - General actions - Thermal actions			
[9]	UNI EN 1992-1-1	Design of concrete structures -General - Common rules for building and civil engineering structures			
[10]	UNI EN 1992-1-2	Design of concrete structures – Part 1-2: General rules – Structural fire design			
[11]	UNI EN 1992-2	Design of concrete structures -Bridges			
[12]	UNI EN 1993-1-1	Design of steel structures- General rules and rules for buildings			
[13]	UNI EN 1993-1-8	Design of steel structures- Design of Joints			
[14]	UNI EN 1994-1-1	Design of composite steel and concrete structures – General rules and rules for buildings			
[15]	UNI EN 1994-2	Design of composite steel and concrete structures – General rules and rules for bridges			
[16]	UNI EN 1997-1	Geotechnical design - General rules			
[17]	UNI EN 1998-1	Design provisions for earthquake resistance of structures - General rules, seismic actions and rules for buildings			
[18]	UNI EN 1998-2	Design of structures for earthquake resistance - Bridges			
[19]	UNI EN 1998-5	Design of structures for earthquake resistance – Foundations, retaining structures and geotechnical aspects			

[20] Presidenza del Consiglio Linee guida sul calcestruzzo strutturale Superiore dei Lavori Pubblici - Servizio Tecnico Centrale [21] UNI-EN 206-1 Calcestruzzo: specificazione, prestazione, produzione e conformità [22] UNI-EN 11104 Calcestruzzo: specificazione, prestazione, produzione e conformità - Istruzioni complementari per l'applicazione delle EN 206-1

2.2 Software di calcolo

[1] SAP2000. Ver. 14.0.0 sviluppato dalla società Computers and Structures, Inc. (1995 University Avenue Berkeley, California 94704 USA)

Il programma, codice di calcolo ad elementi finiti in campo statico e dinamico lineare/non lineare, consente l'analisi strutturale per fasi, la modellazione della precompressione tramite tracciato cavi 3D, il calcolo degli effetti dei carichi mobili tramite linee/superfici d'influenza.

[2] SAP2000, Ver. 20.0.0 sviluppato dalla società Computers and Structures, Inc. (1995 University Avenue USA)

Il programma, codice di calcolo ad elementi finiti in campo statico e dinamico lineare/non lineare, consente l'analisi strutturale per fasi, la modellazione della precompressione tramite tracciato cavi 3D, il calcolo degli effetti dei carichi Berkeley, California 94704 mobili tramite linee/superfici d'influenza.

3. MATERIALI

3.1 Calcestruzzo

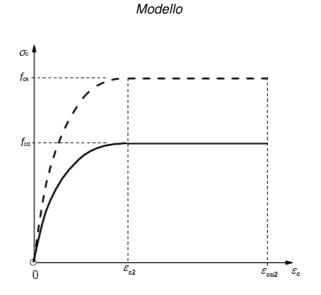
3.1.1 Magrone sottofondazione Classe del calcestruzzo		C12/15	
Resistenza caratteristica cubica a compressione	R_{ck}	15	N/mm^2
Classe di esposizione		XC0	-
3.1.2 Plinti di fondazione		000/05	
Classe del calcestruzzo	_	C28/35	.
Resistenza caratteristica cubica a compressione	R_{ck}	35	N/mm ²
Classe di esposizione		XC2	-
Gruppi di esigenze		Α	-
Rapporto massimo acqua/cemento		0.55	-
Contenuto minimo di cemento		300	kg/mc
Classe di consistenza (Slump)		S4	-
Dimensione massima dell'aggregato		32	mm
Copriferro nominale	_	45	mm
Modulo elastico	E _{cm} =	32308	N/mm ²
3.1.3 Elevazione pile e spalle			
Classe del calcestruzzo		C32/40	
Resistenza caratteristica cubica a compressione	R_{ck}	40	N/mm²
Classe di esposizione		XC4+XD	1 -
Gruppi di esigenze		В	-
Rapporto massimo acqua/cemento		0.50	-
Contenuto minimo di cemento		340	kg/mc
Classe di consistenza (Slump)		S4	-
Dimensione massima dell'aggregato		25	mm
Copriferro nominale		35	mm
Modulo elastico	E _{cm} =	33346	N/mm²
3.1.4 Soletta, cordoli e predalles			
Classe del calcestruzzo		C35/45	
Resistenza caratteristica cubica a compressione	R_{ck}	45	N/mm ²
Classe di esposizione		XC3+XD	1 -
Gruppi di esigenze		В	-
Rapporto massimo acqua/cemento		0.45	-
Contenuto minimo di cemento		360	kg/mc
Classe di consistenza (Slump)		S4	-
Dimensione massima dell'aggregato		25	mm
Copriferro nominale		35	mm
Modulo elastico	E _{cm} =	34077	N/mm²

	C45/55	
\mathbf{R}_{ck}	55	N/mm^2
	XC4+XD1	-
	В	
	0.45	-
	360	kg/mc
	S4	-
	25	mm
	35	mm
E _{cm} =	36283	N/mm^2
		R _{ck} 55 XC4+XD1 B 0.45 360 S4 25 35

3.2 Acciaio

Per l'acciaio da carpenteria si assume il seguente peso per unità di volume: γAcciaio=78.50 kN/m³

3.2.1 Acciaio per armatura lenta


Classe di acciaio		B450	
Tensione caratteristica di rottura	$\mathbf{f}_{\mathbf{tk}}$	540	N/mm^2
Tensione caratteristica di snervamento	$\mathbf{f}_{\mathbf{y}\mathbf{k}}$	450	N/mm^2
Resistenza di progetto	\mathbf{f}_{yd}	391.3	N/mm²
Sovra-resistenza	f_{tk} / f_{yk}	≥1.15	-
Modulo di elasticità	Es	210000	N/mm²

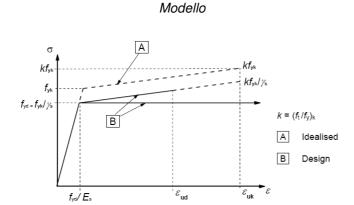
3.2.2 Acciaio per armatura di precompressione

Tensione caratteristica al'1% di deformazione totale	$\mathbf{f}_{\mathbf{yk}}$	1670	N/mm²
Tensione di rottura caratteristica	\mathbf{f}_{tk}	1860	N/mm^2
Modulo di elasticità	Es	206000	N/mm^2
Tensione di snervamento di calcolo $f_{yd} = f_{y,k} / 1.15$	\mathbf{f}_{yd}	1452.2	N/mm^2
Tensione iniziale all'atto tesatura $\sigma_{spi}{<}0.90~f_{p(0.1)k}\sigma_{spi}<0.80~f_{ptk}$	σ_{spi}	<1488	N/mm^2
Tensione massima nell'acciaio per combinazione rara	_	.1006	NI/mm2
$\sigma_{sp} < 0.80 \; f_{p(0.1)k}$	$\sigma_{\sf sp}$	<1336	N/mm ²

3.3 Legami costitutivi

3.3.1 Diagramma tensione-deformazione calcestruzzo

Parabola rettangolo


$$\sigma_{c} = f_{cd} \left[1 - \left(1 - \frac{\varepsilon_{c}}{\varepsilon_{c2}} \right)^{n} \right] \quad \text{for} \quad 0 \le \varepsilon_{c} \le \varepsilon_{c2}$$

$$\sigma_{c} = f_{cd} \quad \text{for} \quad \varepsilon_{c2} \le \varepsilon_{c} \le \varepsilon_{c42}$$

dove:

- n = 2
- ϵ_{c2} = 0.0020 (deformazione allo sforzo massimo)
- ε_{cu2} = 0.0035 (deformazione ultima)

3.3.2 Diagramma tensione-deformazione acciaio ordinario per c.a.

Elastico perfettamente plastico

k=0 $f_{yd} \, / \, E_s = 0.186\%$ $\epsilon_{ud} = 0.9 \ e_{uk} = 6.75\%$

Per i calcoli agli stati limite d'esercizio (SLE) a "tempo infinito", si considera un coefficiente di omogeneizzazione per l'acciaio n=15.

4. CARATTERISTICHE DEI MATERIALI

TIPO CALCESTRUZZO TRAVE - C45/55	C45/55	s < 50mn	1		
Resistenza cubica caratteristica	_	R _{ck} =	55,000 Mpa		
Resistenza cilindrica caratteristica $f_{ck} = 0.83 R_{ck}$	(11.2.1)	f _{ck} =	45,000 Mpa		
Resistenza cilindrica caratteristica all'atto della tesatura f_{ckj} = 0.83 R_{ckj}	(11.2.1)	f _{ckj} =	45,000 Mpa		
Resistenza cilindrica media $f_{cm} = f_{ck} + 8$	(11.2.2)	f _{cm} =	53,000 Mpa		
Resistenza cilindrica media all'atto della tesatura $f_{cmj} = f_{ckj} + 8$	(11.2.2)	f _{cmj} =	53,000 Mpa		
Resistenza media a trazione semplice $f_{ctm} = 0.30 f_{ck}^{2/3}$	(11.2.3a/b)	f _{ctm} =	3,795 Mpa		
Resistenza media a trazione semplice all'atto della tesatura $f_{ctmj} = 0.30 f_{ckj}^{2/3}$	(11.2.3a/b)	f _{ctmj} =	3,795 Mpa		
Resistenza caratteristica a trazione semplice $f_{ctk} = 0.70 f_{ctm}$	(11.2.3a/b)	f _{ctk} =	2,657 Mpa		
Resistenza media a trazione per flessione $f_{cfm} = 1.20 f_{ctm}$	(11.2.4)	f _{cfm} =	4,555 Mpa		
Resistenza caratteristica a trazione per flessione f_{cfk} = 0.70 f_{cfm}	(11.2.4)	f _{cfk} =	3,188 Mpa		
Resistenza caratteristica tangenziale di aderenza f_{bk} = 2.25 η_1 η_2 f_{ctk}	(4.1.7)	f _{bk} =	5,978 Mpa		
Modulo elastico $E_{cm} = 22000 (f_{cm}/10)^{0.3}$	(11.2.5)	E _{cm} =	36283,2 Mpa		
Resistenza di calcolo a trazione semplice $f_{ctd} = f_{ctk}/1.5$	(4.1.5)	f _{ctd} =	1,771 Mpa	٦	
Resistenza di calcolo a compressione $f_{cd} = \alpha_{cc} f_{ck}/1.5$	(4.1.3)	f _{cd} =	25,500 Mpa	┢	SLU
Resistenza di calcolo tangenziale di aderenza f _{bd} = f _{bk} /1.5	(4.1.6)	f _{bd} =	3,985 Mpa	لِ	
Tensione massima di compressione nel cls per comb. Rara σ_c <0.60 f_{ck}	(4.1.15)	σ_c <	27,000 Mpa	7	
Tensione massima di compressione nel cls per comb. quasi perm. σ_c < 0.45 f_{ck}	(4.1.16)	σ_c <	20,250 Mpa		
Tensione massima di compressione nel c.a.p. all'atto della tesatura $\sigma_c \! < \! 0.70 f_{ckj}$	(4.1.47)	σ_c <	31,500 Mpa	-	SLE
Tensione massima di trazione nel c.a.p. in esercizio $\sigma_t < f_{ctm}/1.2$		σ_{t} <	3,163 Mpa		
Tensione massima di trazione nel c.a.p. all'atto della tesatura $\sigma_{tj}{<}f_{ctmj}{/}1.2$		$\sigma_t <$	3,163 Mpa	J	
TIDO CALCESTRUZZO SOLETTA COS /AF	C3E/4E	<u></u> s < 50mr			
TIPO CALCESTRUZZO SOLETTA - C35/45 Resistenza cubica caratterística	C35/45	R _{ck} =	45,000 Mpa		
Resistenza cilindrica caratteristica $f_{ck} = 0.83 R_{ck}$	(11.2.1)	f _{ck} =	35,000 Mpa		
Resistenza cilindrica media $f_{cm} = f_{ck} + 8$	(11.2.2)	f _{cm} =	43,000 Mpa		
Resistenza media a trazione semplice $f_{ctm} = 0.30 f_{ck}^{2/3}$	(11.2.3a/b)	f _{ctm} =	3,210 Mpa		
Resistenza caratteristica a trazione semplice $f_{ctk} = 0.70 f_{ctm}$	(11.2.3a/b)	f _{ctk} =	2,247 Mpa		
Resistenza media a trazione per flessione $f_{cfm} = 1.20 f_{ctm}$	(11.2.4)	f _{cfm} =	3,852 Mpa		
Resistenza caratteristica a trazione per flessione $f_{cfk} = 0.70 f_{cfm}$	(11.2.4)	f _{cfk} =	2,696 Mpa		
Resistenza caratteristica tangenziale di aderenza f_{bk} = 2.25 η_1 η_2 f_{ctk}	(4.1.7)	f _{bk} =	5,056 Mpa		
Modulo elastico $E_{cm} = 22000 (f_{cm}/10)^{0.3}$	(11.2.5)	E _{cm} =	34077,1 Mpa		
Resistenza di calcolo a trazione semplice $f_{ctd} = f_{ctk}/1.5$	(4.1.5)	f _{ctd} =	1,498 Mpa	٦	
Resistenza di calcolo a compressione $f_{cd} = \alpha_{cc} f_{ck}/1.5$	(4.1.3)	f _{cd} =	19,833 Mpa	F	SLU
Resistenza di calcolo tangenziale di aderenza f _{bd} = f _{bk} /1.5	(4.1.6)	f _{bd} =	3,370 Mpa	Ţ	
Tensione massima di compressione nel cls per comb. Rara σ_c <0.60 f_{ck}	(4.1.15)	σ_c <	21,000 Mpa	1	61.5
Tensione massima di compressione nel cls per comb. quasi perm. $\sigma_c \!\!<\! 0.45 f_{ck}$	(4.1.16)	σ_c <	15,750 Mpa	J	SLE
	-			_	
TIPO ACCIAIO ARMATURA LENTA - B450C	B450C		450.0.14==		
Tensione di snervamento caratteristica		f _{y,k} =	450,0 Mpa		
Tensione di rottura caratteristica		f _{t,k} =	540,0 Mpa		
Modulo elastico E _s	(4.1.5)	E _s =	206000 Mpa		
Tensione di snervamento di calcolo $f_{yd} = f_{y,k}/1.15$	(4.1.5)	f _{yd} =	391,30 Mpa		
Tensione massima nell'acciaio per comb. rara σ_s < 0.80 $f_{\gamma k}$	(4.1.17)	σ_s <	360,00 Mpa		
TIPO ACCIAIO ARMATURA DI PRECOMPRESSIONE	Trefoli				
Tensione caratteristica all'1% di deformazione totale		 $f_{y,k}=$	1670,0 Mpa		
Tensione di rottura caratteristica		$f_{t,k}=$	1860,0 Mpa		
Modulo elastico E _s		E _s =	206000 Mpa		
Tensione di snervamento di calcolo $f_{yd} = f_{y,k}/1.15$	(4.1.5)	f_{yd} =	1452,2 Mpa		
Tensione iniziale all'atto della tesatura σ_{spi} < 0.90 $f_{p(0.1)k}$ σ_{spi} < 0.80 f_{ptk}	(4.1.49)	σ_{spi} <	1488,0 Mpa		
Tensione iniziale an according tesacara ospi volso ipia					

5. MODELLO NUMERICO

Per l'intera struttura è stato definito un modello numerico rappresentativo con il programma di calcolo agli elementi finiti "Sap2000" della Computer and Structures Inc.

I vari elementi costituenti il modello sono i seguenti:

- Travi e soletta Grigliato di aste costituite da elementi frame aventi l'inerzia delle sezioni costituita dalle travi (fase 1) e dalla soletta omogeneizzata (fase 2 e 3). Su ciascuna asta sono stati assegnati i carichi precedentemente descritti e le linee di transito su cui muovono le azioni dovute al traffico dei veicoli.
- Traversi Aste continue costituite da elementi frame aventi le caratteristiche inerziali dei profilati angolari costituenti i vari elementi dei diaframmi.
- Soletta Considerata solo per gli effetti trasversali, è modellata mediante aste di larghezza 1.0 m. Per l'analisi modale e l'analisi dinamica con spettro di risposta, al fine di simulare il comportamento rigido di diaframma della soletta, questa è stata modellata con elementi shell.
- Appoggi Sono schematizzati con elementi tipo "link"
- Pile sono state modellate con aste verticali che rappresentano le pile propriamente dette. In particolare l'asta che le rappresenta risulta libera per la parte in elevazione e vincolata a terra con un vincolo di incastro.
- Spalle costituiscono un semplice vincolo d'appoggio per l'intero modello.

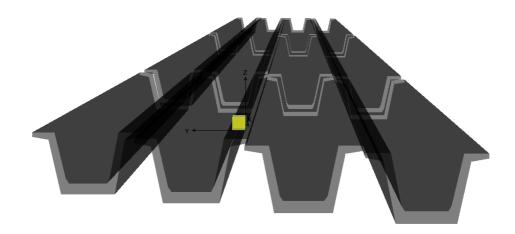


Figura 5-1: Modello di calcolo: dettaglio travi

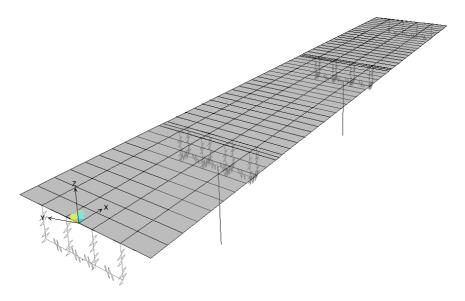


Figura 5-2: Modello di calcolo: con elementi shell soletta in vista

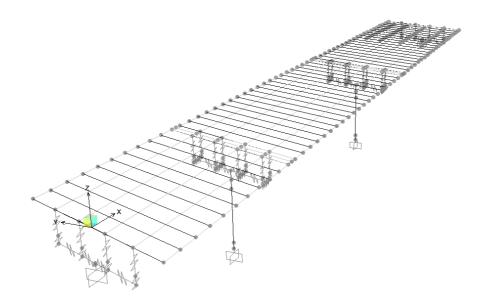


Figura 5-3: Modello di calcolo: con elementi shell soletta non in vista

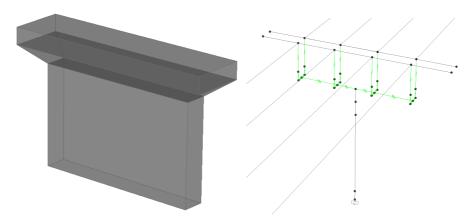
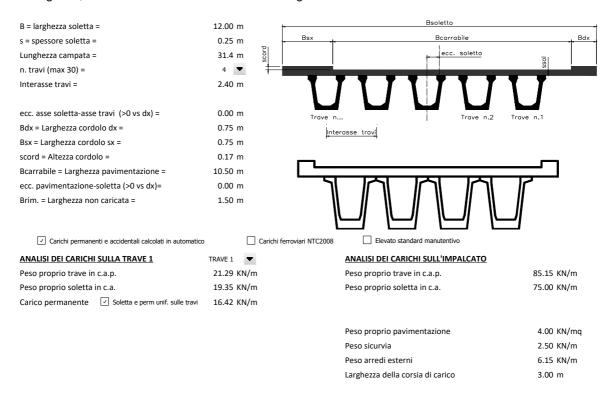


Figura 5-4: Modello di calcolo: dettaglio pila

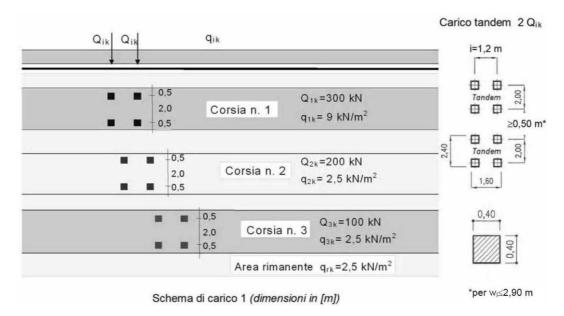

Per tener conto delle fasi costruttive, sono state definite all'interno del modello 4 fasi con tre tipi di sezioni reagenti e relativi carichi:

- 0. Fase Sono presenti le sole sottostrutture (pile e spalle); Carichi agenti: attrito vincoli. e peso proprio pila
- 1. Fase Sezione reagente: sole travi e traversi; Carichi agenti: pesi propri e getto della soletta fluida.
- 2. Fase Sezione reagente: trave con soletta collaborante omogeneizzata e diaframmi; Carichi agenti: carichi permanenti e mobili.
- 3. Fase sismica Sezione reagente: travi e traversi (frame) con soletta (shell); Carichi agenti: analisi modale e analisi dinamica con spettro di risposta, ritiro, termica, frenatura, centrifuga, vento.

6. ANALISI DEI CARICHI

6.1 Carichi permanenti strutturali (G1) e non strutturali (G2)

Il carico dovuto al peso proprio dei vari elementi strutturali che compongono il viadotto viene assegnato, nel modello numerico così come segue:



6.2 Azioni verticali da traffico (Q1)

L'analisi dei carichi mobili viene effettuata in accordo alle indicazioni delle NTC18.

Le azioni variabili da traffico, comprensive degli effetti dinamici, sono definite dallo schema di carico 1, descritto nel seguito:

- corsia n.1 costituita da un automezzo convenzionale Q1k di 600 kN dotato di 2 assi di 2 ruote ciascuno, distanti 1.20 m in senso longitudinale e con interasse delle ruote in senso trasversale di 2.00 m e un carico ripartito q1k di 9 kN/m2;
- corsia n.2, analoga alla precedente, ma con carichi pari rispettivamente a 400 kN (automezzo convenzionale Q2k) e 2.5 kN/m2 (carico ripartito q2k);
- corsia n.3, analoga alla precedente, ma con carichi pari rispettivamente a 200 kN (automezzo convenzionale Q3k) e 2.5 kN/m2 (carico ripartito q3k);
- zona rimanente, occupata da una colonna di carico qRk = 2.5 kN/m2 nella zona di carreggiata non impegnata dai carichi precedenti.

Sono stati considerati i carichi mobili previsti dalla vigente normativa per ponti di prima categoria, disposti nella configurazione che massimizza le sollecitazioni sulla trave di progetto.

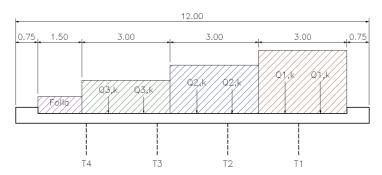


Figura 6-1 – Disposizione eccentrica dei carichi mobili

La ripartizione dei carichi mobili sul cassoncino di bordo è stata effettuata secondo il modello di calcolo FEM.

Il modello di calcolo utilizzato è implementato nel programma di analisi strutturale agli elementi finiti Sap2000; tale codice di calcolo permette di costruire le linee di influenza relative alle distinte sollecitazioni per ciascun punto della struttura.

6.3 Azione del vento

Provincia di Trieste

9 Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto

AZIONI DEL VENTO (§3.3 NTC18) Puglia Regione Zona 3 Altitudine sul livelo del mare a_s = 85.0 [m] Tab. 3.3.I -Valori dei parametri v_{b,0'} a_{0'} k v_{b,0} [m/s] a₀ [m] $k_{\rm s}$ Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige 1 25 1000 0.40 Veneto, Friuli Venezia Giulia (con l'eccezione della provincia di Trieste) 0,45 Emilia Romagna Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia 27 0,37 500 Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria) Sicilia e provincia di Reggio Calabria 500 Sardegna (zona a oriente della retta congiungente Capo 750 0,40 Teulada con l'Isola di Maddalena) Sardegna (zona a occidente della retta congiungente Capo 28 500 0,36 Teulada con l'Isola di Maddalena) Liguria 1000 0,54 30 0,50

1500

500

0.32

31

Figura 3.3.1 - Mappa delle zone in cui è suddiviso il territorio italiano

5.00

10

2.14

1.4

1.0

 $z_{min} =$

 $z_{bar} =$

 $c_e(z) =$

c_p=

c_d =

[m]

[m]

3.3.1 Velocità base di riferimento				
Velocità base di riferimento al liv	ello del mare	v _{b,0} =	27.0	[m/s]
parametri tabella 3.I		a ₀ =	500	[m]
parametri tabella 3.I		k _a =	0.37	[1/s]
Coefficiente di altitudine	$c_a=1 \text{ per } a_s \le a_0; c_a=1+k_a(a_s/a_0-1) \text{ per } a_s>a_0$	c _a =	1.0	
Velocita base di riferimento	$v_b = v_{b,0} c_a$	$v_b =$	27.0	[m/s]
3.3.2 Velocità di riferimento				
Periodo di ritorno		$T_R =$	50	[anni]
Coefficiente di ritorno	$c_r = 0.75 (1-0.2 \ln(-\ln(1-1/T_R)))^{0.5}$	c _r =	1.00	
Velocita di riferimento di progetto	$v_r = V_b C_r$	$v_r =$	27.0	[m/s]
3.3.6 Pressione cinetica di riferime	ento	ρ _{aria} =	1.25	[kg/m ³]
Pressione cinetica di riferimento	$q_r = 0.5 \rho v_r^2$	q _p =	0.46	[kN/m ²]
3.3.7 Coefficiente di esposizione				
Classe di rugosità de terreno			В	
Distanza dalla costa e altitudine			10/30 kr	m
Categoria di esposizione del sito			Ш	
Coefficiente di topografia		$c_t =$	1.0	
Fattore di terreno		k _{r=}	0.20	
Lunghezza di rugosità		z ₀ =	0.10	[m]

3.3.4 Pressione del vento $p(z) = q_r c_e c_p c_d$	p(z) =	1.37	(kN/m²)
---	--------	------	---------

per z > z_{min} $c_e(z) = k_r^2 c_t ln(z/z_0) (7+c_t ln(z/z_0))$

 $per z \le z_{min}$ $c_e(z) = c_e(z_{min})$

Coefficiente di forma (o coeficiente aereodinamico)

Altezza minima

Coefficiente di esposizione

Coefficiente dinamico

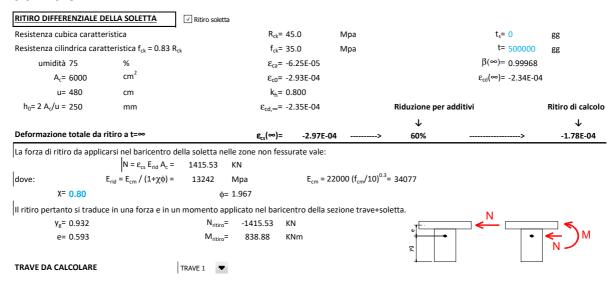
6.4 Azione longitudinale di frenamento

AZIONI LONGITUDINALI (§5.1.3.5 NTC18)

5.1.3.5 Azioni variabili da traffico. Azione longitudinale di Frenamento o di accelerazione: q_3

La forza di frenamento o di accelerazione q_3 è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è uguale a

$$180 \text{ kN} \le q_3 = 0.6 (2Q_{1k}) + 0.10q_{1k} \cdot w_1 \cdot L \le 900 \text{ kN}$$
 [5.1.4]


essendo w_l la larghezza della corsia e L la lunghezza della zona caricata. La forza, applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla lunghezza caricata e include gli effetti di interazione.

Azione longitudinale di frenamento o di accelerazione	q ₃ =	533	[kN]
Larghezza della corsia	$w_1 =$	3.0	[m]
Carico concentrato da traffico corsia n.1	$Q_{1k} =$	300	[kN]
Carico distribuito da traffico corsia n.1	q _{1k} =	9.00	$[kN/m^2]$
Lunghezza della zona caricata	L=	64.0	[m]

6.5 Urto dei veicoli in svio

Si tiene conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione di 100 kN. Essa è considerata agente trasversalmente ed orizzontalmente 1.0 m sopra il livello del piano di marcia.

6.6 Ritiro

Il ritiro differenziale della soletta rispetto alla trave è mitigato da una quota parte che la trave continua ad esaurire successivamente al getto della soletta. Volendo tener in conto questa evenienza si riduce il ritiro (60%) alla stregua di quanto si farebbe con l'adozione di un additivo. Tuttavia si conferma in questa sede la necessità di prevedere sempre additivi antiritiro in soletta per migliorarne notevolmente la durabilità.

6.7 Variazioni termiche

Per quanto riguarda gli effetti della temperatura sulla struttura sono state valutate le seguenti condizioni di carico:

Variazione termica differenziale sull'altezza della trave: si considera alternativamente (a seconda dell'effetto più gravoso) un gradiente termico di ±10°C.

Variazione termica uniforme sull'altezza della trave: si considera una variazione termica di ±30°C.

6.8 Azione sismica

In sede di revisione del presente Progetto Definitivo si è valutata la categoria di sottosuolo secondo le nuove indicazioni (V_{s,eq}) del D. M. Min. II. TT. del 17 gennaio 2018. In questa opera la categoria di sottosuolo determinata con i criteri (V_{s,30}) della precedente norma passa da categoria A a categoria B. Poiché la variazione in termini di PGA è modesta e non dimensionante, l'aggiornamento del calcolo sismico viene demandato al Progetto Esecutivo.

6.8.1 Vita nominale

La vita nominale di un'opera strutturale è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata.

Come vita nominale si assume $V_N = 50$ anni.

6.8.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un'eventuale collasso, le costruzioni sono suddivise in classi d'uso. Nel caso in oggetto si fa riferimento alla Classe IV: "costruzioni con funzioni pubbliche o strategiche importante, anche con riferimento alla gestione della protezione civile in caso di calamità..... Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico."

Il coefficiente d'uso si assume pertanto pari a $C_U = 2.0$.

6.8.3 Periodo di riferimento per l'azione sismica

Le azioni sismiche vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U . Tale coefficiente è funzione della classe d'uso.

 $V_R = V_N \times C_U = 50 \text{ anni } \times 2 = 100 \text{ anni}$

Le probabilità di superamento PVR nel periodo di riferimento V_R , cui riferirsi per individuare l'azione sismica agente, sono pari al 10% nel caso dello stato limite SLV e pari al 5% nel caso dello stato limite SLC.

6.8.4 Parametri di progetto

Le azioni di progetto si ricavano, ai sensi delle NTC18, dalle accelerazioni ag e dalle relative forme spettrali. Le forme spettrali previste dalle NTC sono definite su sito di riferimento rigido orizzontale in funzione dei tre parametri:

- ag accelerazione orizzontale massima del terreno;
- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_C* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per ciascun nodo del reticolo di riferimento e per ciascuno dei periodi di ritorno T_R considerati dalla pericolosità sismica, i tre parametri si ricavano riferendosi ai valori corrispondenti al 50esimo percentile ed attribuendo ad:

- ag il valore previsto dalla pericolosità sismica;

- F₀ e T_C* i valori ottenuti imponendo che le forme spettrali in accelerazione, velocità e spostamento previste dalle NTC18 scartino al minimo dalle corrispondenti forme spettrali previste dalla pericolosità sismica.

Le forme spettrali previste dalle NTC18 sono caratterizzate da prescelte probabilità di superamento e vite di riferimento. A tal fine occorre fissare:

- la vita di riferimento V_R della costruzione;
- le probabilità di superamento nella vita di riferimento PVR associate agli stati limite considerati, per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

A tal fine è conveniente utilizzare, come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica T_R , espresso in anni. Fissata la vita di riferimento V_R , i due parametri T_R e PVR sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

$$T_R = -\frac{V_R}{\ln(1 - P_{VR})}$$

I valori dei parametri a_g , F_0 e T_{C}^* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC08.

I punti del reticolo di riferimento sono definiti in termini di Latitudine e Longitudine ed ordinati a Latitudine e Longitudine crescenti, facendo variare prima la Longitudine e poi la Latitudine. L'accelerazione al sito a_g è espressa in g/10; F_0 è adimensionale, T_c^* è espresso in secondi.

Nel seguito si riporta una tabella riassuntiva dei parametri che caratterizzano l'opera in oggetto:

Figura 6-2: Individuazione della pericolosità del sito

Si riportano di seguito i parametri che definiscono la pericolosità del sito di progetto:

Coordinate: Longitudine = 18.30469444 Latitudine = 40.12923333

Categoria di sottosuolo B

Smorzamento viscoso ξ =5%

Periodo di riferimento VR=100 anni

SLATO	T _R	a g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	60	0.022	2.414	0.215
SLD	101	0.029	2.387	0.279
SLV	949	0.079	2.574	0.480
SLC	1950	0.104	2.620	0.519

Figura 6-3: Valori dei parametri $a_g,\,F_0,\,T_C{}^*$ per i periodi di ritorno T_R associati

6.8.5 Categoria di sottosuolo

Per la definizione dell'azione sismica si può far riferimento all'approccio semplificato che si basa sull'individuazione delle categorie di sottosuolo di riferimento (tab 3.2.II NTC18):

Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Caratteristiche della superficie topografica
	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde
A	di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri-
	stiche meccaniche più scadenti con spessore massimo pari a 3 m.
	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi-
В	stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da
	valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi-
C	stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-
C	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra
	180 m/s e 360 m/s.
	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi-
D	stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-
D	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra
	100 e 180 m/s.
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego-
E	rie C o D, con profondità del substrato non superiore a 30 m.

La classificazione si effettua sulla base dei valori della velocità equivalente Vs,30 di propagazione delle onde di taglio entro i primi 30 m di profondità e sulla base della resistenza penetrometrica dinamica equivalente NSPT,30.

Per le fondazioni superficiali tale profondità è riferita al piano d'imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali.

In base alle indagini geologico - tecniche effettuate i terreni di fondazione interessati dall'opera oggetto di questa relazione possono essere classificati nella categoria "B.

6.8.6 Condizioni topografiche

Per le condizioni topografiche si fa riferimento alla seguente classificazione (tab 3.2.III NTC18):

Tab. 3.2.III - Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

La morfologia del territorio in cui ricade l'opera, è tale per cui ricade nella categoria topografica T1.

6.8.7 Spettro di risposta elastico in accelerazione

Lo spettro di risposta elastico in accelerazione è espresso da una forma spettrale (spettro normalizzato) riferita ad uno smorzamento convenzionale del 5%, moltiplicata per il valore della accelerazione orizzontale massima ag su sito di riferimento rigido orizzontale. Sia la forma spettrale che il valore di ag variano al variare della probabilità di superamento nel periodo di riferimento PVR.

6.8.8 Spettro di risposta elastico in accelerazione, componenti orizzontali

Lo spettro di risposta elastico della componente orizzontale è definito dalle espressioni seguenti:

$$\begin{split} 0 \leq T \leq T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \Bigg[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \cdot \left(1 - \frac{T}{T_B} \right) \Bigg] \\ T_B \leq T \leq T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \\ T_C \leq T \leq T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \frac{T_C}{T} \\ T_D \leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

nelle quali T ed S_e sono, rispettivamente, periodo di vibrazione ed accelerazione spettrale orizzontale. Inoltre:

- S: è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente: S = S_S x S_T; S_S è il coefficiente di amplificazione stratigrafica ed S_T il coefficiente di amplificazione topografica riportati nelle tabelle seguenti;
- η: è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali diversi dal 5%, mediante la relazione:
 - $\eta = \sqrt{10/(5+\xi)} \ge 0.55$ dove ξ (espresso in percentuale) è valutato sulla base di materiali, tipologia strutturale e terreno di fondazione;
- F_o: è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2.2;

Tab. 3.2.IV – Espressioni di S_S e di C_C

Tab. 3.2.V – Valori massimi del coefficiente di amplificazione topografica S_T

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con	1,4
	pendenza media maggiore di 30°	

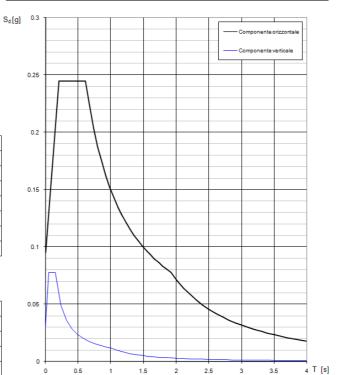
- T_C : è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato da: $T_C = C_C \cdot T_C^*$; dove C_C è un coefficiente funzione della categoria di sottosuolo;
- T_{B} : è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante; $T_{\text{B}}=T_{\text{C}}\,/\,3$;
- T_D: è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, $T_{\rm D}=4.0\cdot\frac{a_{\rm g}}{g}+1.6$ espresso in secondi mediante la relazione:

6.8.9 Spettro di risposta elastico in accelerazione, componenti verticali

$$\begin{split} 0 &\leq T < T_B \\ S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D \\ S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \\ \end{split}$$

nelle quali T e S_{ve} sono rispettivamente il periodo di vibrazione e l'accelerazione spettrale verticale, mentre F_v è il fattore che quantifica l'amplificazione spettrale massima, in termini di accelerazione orizzontale massima del terreno a_g su sito di riferimento rigido orizzontale, mediante la relazione:

$$F_{v} = 1,35 \cdot F_{o} \cdot \left(\frac{a_{g}}{g}\right)^{0.5}$$


I valori di a_g , F_o , S, η sono quelli già definiti per le componenti orizzontali; i valori di S_S , T_B , T_C e T_D , sono invece quelli riportati nella tabella seguente.

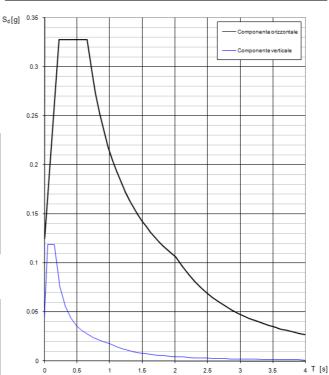
Tab. 3.2.VI - Valori dei parametri dello spettro di risposta elastico della componente verticale

Categoria di sottosuolo	S _s	T _B	T _C	T _D
A, B, C, D, E	1,0	0,05 s	0,15 s	1,0 s

6.8.10 Spettri di progetto in accelerazione

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

Parametri indipendenti


STATO LIMITE	SLV
a _a	0.079 g
F	2.574
T _C *	0.480 s
S _S	1.200
C _C	1.274
S _T	1.000
q	1.000

Parametri dipendenti

S	1.200				
η	1.000				
T _B	0.204 s				
T _C	0.611 s				
T _D	1.917 s				

Figura 6-4: Spettri di progetto SLV

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLC

ŀ	ar	an	1e	tri	ır	ıd	ıp	e	nd	er	Iti

· aramour maiponaona					
STATO LIMITE	SLC				
a _a	0.104 g				
Fo	2.620				
T _C *	0.519 s				
Ss	1.200				
C _C	1.254				
S_{\scriptscriptstyleT}	1.000				
q	1.000				

Parametri dipendenti

S	1.200
η	1.000
T _B	0.217 s
T _C	0.651 s
T _D	2.017 s

Figura 6-5: Spettri di progetto SLC

7. COMBINAZIONI DI CARICO

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, in osservanza ai §5.1.3.14 e §5.2.3 delle NTC18, si dovranno considerare, generalmente, le combinazioni riportate in Tab. 5.1.IV, combinate considerando gli stati limite di esercizio, gli stati limite ultimi e le condizioni sismiche.

Tab. 5.1.IV - Valori caratteristici delle azioni dovute al traffico

		Carich	i sulla superfic	ie carrabile		Carichi su marciapiedi e piste ciclabili non sormontabili
		Carichi vertical	i	Carichi	orizzontali	Carichi verticali
Gruppo di azioni	Modello principale (schemi di carico 1, 2, 3, 4 e 6)	Veicoli spe- ciali	Folla (Schema di carico	Frenatura	Forza centrifuga	Carico uniformemente distribuito
1	Valore carat- teristico					Schema di carico 5 con valore di combinazione 2,5KN/m²
2a	Valore fre- quente			Valore carat- teristico		
2 b	Valore fre- quente				Valore caratteri- stico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0KN/m²
4 (**)			Schema di carico 5 con valore carat- teristico 5,0KN/m ²			Schema di carico 5 con valore caratteristico 5,0KN/m²
5 (***)	Da definirsi per il singo- lo progetto	Valore carat- teristico o nominale				

La Tab. 5.1.V fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi, il significato dei simboli è il seguente:

- γ_{G1} coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua, quando pertinente;
- γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;
- γ_Q coefficiente parziale delle azioni variabili da traffico;
- γ_{Qi} coefficiente parziale delle azioni variabili.

I valori dei coefficienti Ψ_{0j} , Ψ_{1j} e Ψ_{2j} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI.

 ${\bf Tab.\,5.1.V-Coefficienti\ parziali\ di\ sicurezza\ per\ le\ combinazioni\ di\ carico\ agli\ SLU}$

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	γω	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2· Υε3· Υε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tab. 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni	Coefficiente	Coefficiente	Coefficiente Ψ ₂
	(Tab. 5.1.IV)	ψ_0 di combi-	Ψ ₁ (valori	(valori quasi
		nazione	frequenti)	permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
iveve	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Agli stati limite di esercizio si sono considerate le verifiche per le combinazioni rara e frequente.

⁽²⁾ Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

 $^{^{\}scriptscriptstyle{(3)}}1,\!30$ per instabilità in strutture con precompressione esterna

^{(±) 1,20} per effetti locali

Le condizioni di carico di cui ai paragrafi precedenti sono state combinate secondo quanto indicato dalle norme tecniche sulle costruzioni NTC18.

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU): $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{Q2} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{Q3} \cdot Q_{k3} + \dots \qquad [2.5.$
- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 [2.5.2]

 $- \ Combinazione \ frequente, generalmente \ impiegata \ per \ gli \ stati \ limite \ di \ esercizio \ (SLE) \ reversibili:$

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 [2.5.

– Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine: $G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.4]

– Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E: $E+G_1+G_2+P+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\dots \qquad [2.5.5]$

– Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A:

 $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.6] Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_i \psi_{2j} Q_{kj}$$
 [2.5.7]

Nelle combinazioni si intende che vengano omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Altre combinazioni sono da considerare in funzione di specifici aspetti (p. es. fatica, ecc.).

Nelle formule sopra riportate il simbolo "+" vuol dire "combinato con".

I valori dei coefficienti ψ_{0y} ψ_{1j} e ψ_{2j} sono dati nella Tab. 2.5.I oppure nella Tab. 5.1.VI per i ponti stradali e nella Tab. 5.2.VII per i ponti ferroviari. I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Oi} sono dati nel § 2.6.1.

7.1 Impalcato

	Verifiche SLU	Verifiche SLE
G1 - IMPALCATO	1.35	1.00
G1 - SOLETTA	1.35	1.00
G2 - PERMANENTI	1.50	1.00
Q1 - MOBILIKK	1.50	1.00
P - PRECOMPRESSIONE	0.90	1.00

7.2 Pile

		E	NV_SLE	_R		ı	ENV_SLE_I	:		EN	V_SLU	_STR	
	:	SLE_CARA	TTERISTI	CHE (RAR	E)	SLE_F	REQ Q. F	PERM.		:	SLU_ST	R	
COND. CARICO ELEM.	SLE_R_P	SLE_R_VC	SLE_R_1	SLE_R_2a	SLE_R_2b	SLE_F_P	SLE_F_VC	SLE_F_1	SLU_P	SLU_VC	SLU_1	SLU_2a	SLU_2b
G1-IMPALCATO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G1-SOLETTA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G1-PILA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G2-PERMANENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50
E1-DISTORSIONI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20
E2-RITIRO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20
E4-CEDIMENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20
Q1-MOBILI-KK			1.00								1.35		
Q1-MOBILI-FQ		1.00		1.00	1.00			1.00		1.35		1.35	1.35
Q3-FRENATURA				1.00								1.35	
Q4-CENTRIFUGA					1.00								1.35
Q5-VENTO-C		1.00	0.60	0.60	0.60		0.20			1.50	0.90	0.90	0.90
Q7-ATTRITO-P	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50
Q6-SISMA_L													
Q6-SISMA_T													
Q6-SISMA_V													
G1-PESO_FONDAZIONE	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G1-PESO_RINTERRO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
Q6-INERZIA_MASSE_L													
Q6-INERZIA_MASSE_T													
Q6-INERZIA_MASSE_V													

			ENV_SI	LU_SIS				EN	IV_SLU_0	GEO				
			SLV SIS	MICA					SLU_GE	0			EQU	
COND. CARICO ELEM.	SLU_SL1	SLU_SL2	SLU_ST1	SLU_ST2	SLU_V1	SLU_V2	SLU_G_P	SLU_G_VC	SLU_G_1	SLU_G_2a	SLU_G_2b	EQU_1	EQU_2	EQU_3
G1-IMPALCATO	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G1-SOLETTA	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G1-PILA	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G2-PERMANENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50			0.9
E1-DISTORSIONI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
E2-RITIRO	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20			
E4-CEDIMENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20			
Q1-MOBILI-KK									1.35			1.35		
Q1-MOBILI-FQ								1.35		1.35	1.35			
Q3-FRENATURA										1.35		1.35		
Q4-CENTRIFUGA											1.15			
Q5-VENTO-C								1.50	0.90	0.90	0.90	1.5	1.5	
Q7-ATTRITO-P							1.50	1.50	1.50	1.50	1.50	1.5	1.5	
Q6-SISMA_L	1.00	1.00	0.30	0.30	0.30	0.30								
Q6-SISMA_T	0.30	0.30	1.00	1.00	0.30	0.30								
Q6-SISMA_V	0.30	-0.30	0.30	-0.30	1.00	-1.00								
G1-PESO_FONDAZIONE	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G1-PESO_RINTERRO	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
Q6-INERZIA_MASSE_L	1.00	1.00	0.30	0.30	0.30	0.30								
Q6-INERZIA_MASSE_T	0.30	0.30	1.00	1.00	0.30	0.30								
Q6-INERZIA_MASSE_V	0.30	-0.30	0.30	-0.30	1.00	-1.00								

7.3 Spalle

		ļ	ENV_SLE	_R			ENV_SLE_	F	ENV_SLU_STR				
		SLE_CARA	TTERISTI	CHE (RAR	E)	SLE_F	REQ Q.	PERM.			SLU_ST	R	
COND. CARICO ELEM.	SLE_R_P	SLE_R_VC	SLE_R_1	SLE_R_2a	SLE_R_2b	SLE_F_P	SLE_F_VC	SLE_F_1	SLU_P	SLU_VC	SLU_1	SLU_2a	SLU_2b
G1-IMPALCATO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G1-SOLETTA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G2-PERMANENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50
E1-DISTORSIONI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20
E2-RITIRO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20
E4-CEDIMENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20
Q1-MOBILI-KK			1.00								1.35		
Q1-MOBILI-FQ		1.00		1.00	1.00			1.00		1.35		1.35	1.35
Q3-FRENATURA				1.00								1.35	
Q4-CENTRIFUGA					1.00								1.35
Q5-VENTO-C		1.00	0.60	0.60	0.60		0.20			1.50	0.90	0.90	0.90
Q7-ATTRITO-P	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50
Q6-SISMA_L													
Q6-SISMA_T													
Q6-SISMA_V													
G1-PESO_SPALLA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G1-PESO_RINTERRO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
G3-SPINTA_TERRA_STA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35
Q1-SPINTA_MOBILI		1.00	1.00	1.00	1.00			1.00		1.35	1.35	1.35	1.35
Q3-FRENATURA_PARA				1.00								1.35	
G3-SPINTA_TERRA_SIS													
Q6-SOVRASPINTA_L													
Q6-INERZIA_MASSE_L													
Q6-INERZIA_MASSE_TP													
Q6-INERZIA_MASSE_TN													
Q6-INERZIA_MASSE_V													

			ENV_SI	U_SIS				EN	IV_SLU_0	GEO .				
			SLV SIS	MICA					SLU_GE)			EQU	
COND. CARICO ELEM.	SLU_SL1	SLU_SL2	SLU_ST1	SLU_ST2	SLU_V1	SLU_V2	SLU_G_P	SLU_G_VC	SLU_G_1	SLU_G_2a	SLU_G_2b	EQU_1	EQU_2	EQU_3
G1-IMPALCATO	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G1-SOLETTA	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G2-PERMANENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50			0.9
E1-DISTORSIONI	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
E2-RITIRO	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20			
E4-CEDIMENTI	1.00	1.00	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.20	1.20			
Q1-MOBILI-KK									1.35			1.35		
Q1-MOBILI-FQ								1.35		1.35	1.35			
Q3-FRENATURA										1.35		1.35		
Q4-CENTRIFUGA											1.15			
Q5-VENTO-C								1.50	0.90	0.90	0.90	1.5	1.5	
Q7-ATTRITO-P							1.50	1.50	1.50	1.50	1.50	1.5	1.5	
Q6-SISMA_L	1.00	1.00	0.30	0.30	0.30	0.30								
Q6-SISMA_T	0.30	-0.30	1.00	-1.00	0.30	-0.30								
Q6-SISMA_V	0.30	0.30	0.30	0.30	1.00	1.00								
G1-PESO_SPALLA	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G1-PESO_RINTERRO	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35			0.9
G3-SPINTA_TERRA_STA							1.35	1.35	1.35	1.35	1.35	1.1	1.1	
Q1-SPINTA_MOBILI								1.35	1.35	1.35	1.35	1.35	1.35	
Q3-FRENATURA_PARA										1.35		1.35	1.35	
G3-SPINTA_TERRA_SIS	1.00	1.00	1.00	1.00	1.00	1.00								
Q6-SOVRASPINTA_L	1.00	1.00	0.30	0.30	0.30	0.30								
Q6-INERZIA_MASSE_L	1.00	1.00	0.30	0.30	0.30	0.30								
Q6-INERZIA_MASSE_TP	0.30		1.00		0.30									
Q6-INERZIA_MASSE_TN		0.30	_	1.00	_	0.30								
Q6-INERZIA_MASSE_V	0.30	-0.30	0.30	-0.30	1.00	-1.00								

8. RISULTATI

8.1 ANALISI MODALE

Si riportano di seguito i principali risultati dell'analisi modale.

I modi considerati sono 500; le masse associate all'analisi modale sono costituite dal peso proprio dell'impalcato, dai carichi permanenti portati e dal peso proprio delle sottostrutture, in accordo con quanto prescritto dalla normativa.

La percentuale di massa eccitata nelle tre direzioni ortogonali è illustrata nella seguente tabella.

TABLE: Modal Load Participation Ratios												
OutputCase ItemType Item Static Dynamic												
Text	Text	Text	Percent	Percent								
MODALE	Acceleration	UX	99.9991	98.1343								
MODALE	Acceleration	UY	99.9986	97.8999								
MODALE	Acceleration	UZ	99.9928	89.1793								

Si riportano, nella seguente tabella, per i primi 20 modi di vibrare, i valori dei periodi e delle frequenze.

TABLE: Mod	al Periods	And Freque	ncies			
OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODALE	Mode	1	0.410682	2.43	15.30	234.07
MODALE	Mode	2	0.343982	2.91	18.27	333.65
MODALE	Mode	3	0.291149	3.43	21.58	465.72
MODALE	Mode	4	0.242535	4.12	25.91	671.14
MODALE	Mode	5	0.229899	4.35	27.33	746.94
MODALE	Mode	6	0.208678	4.79	30.11	906.58
MODALE	Mode	7	0.167543	5.97	37.50	1406.39
MODALE	Mode	8	0.150007	6.67	41.89	1754.42
MODALE	Mode	9	0.133778	7.48	46.97	2205.92
MODALE	Mode	10	0.118034	8.47	53.23	2833.63
MODALE	Mode	11	0.116039	8.62	54.15	2931.93
MODALE	Mode	12	0.113144	8.84	55.53	3083.90
MODALE	Mode	13	0.10432	9.59	60.23	3627.62
MODALE	Mode	14	0.102452	9.76	61.33	3761.10
MODALE	Mode	15	0.098394	10.16	63.86	4077.81
MODALE	Mode	16	0.089758	11.14	70.00	4900.20
MODALE	Mode	17	0.081311	12.30	77.27	5971.24
MODALE	Mode	18	0.079443	12.59	79.09	6255.25
MODALE	Mode	19	0.075295	13.28	83.45	6963.51
MODALE	Mode	20	0.074826	13.36	83.97	7051.13

Si riportano nella seguente tabella, per i primi 20 modi di vibrare, le percentuali di massa eccitata nelle tre direzioni ortogonali.

TABLE: Mod	TABLE: Modal Participating Mass Ratios														
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ	SumRX	SumRY	SumRZ
Text	Text	Unitless	Sec	Unitless											
MODALE	Mode	1	0.410682	0%	0%	25%	0%	0%	25%	0%	34%	0%	0%	34%	0%
MODALE	Mode	2	0.343982	4%	0%	26%	4%	0%	51%	0%	2%	0%	0%	36%	0%
MODALE	Mode	3	0.291149	0%	0%	0%	4%	0%	51%	22%	0%	0%	22%	36%	0%
MODALE	Mode	4	0.242535	0%	10%	0%	4%	11%	51%	28%	0%	1%	50%	36%	1%
MODALE	Mode	5	0.229899	0%	65%	0%	4%	76%	51%	0%	0%	3%	50%	36%	4%
MODALE	Mode	6	0.208678	80%	1%	4%	85%	77%	54%	0%	0%	0%	50%	36%	4%
MODALE	Mode	7	0.167543	0%	1%	0%	85%	78%	54%	0%	0%	77%	50%	36%	81%
MODALE	Mode	8	0.150007	0%	0%	0%	85%	78%	54%	0%	0%	2%	50%	36%	82%
MODALE	Mode	9	0.133778	0%	0%	0%	85%	78%	54%	0%	0%	0%	50%	36%	82%
MODALE	Mode	10	0.118034	0%	6%	1%	85%	84%	56%	1%	5%	2%	52%	41%	84%
MODALE	Mode	11	0.116039	0%	3%	0%	85%	87%	56%	1%	5%	0%	52%	47%	84%
MODALE	Mode	12	0.113144	1%	0%	11%	86%	87%	67%	0%	20%	0%	52%	66%	84%
MODALE	Mode	13	0.10432	0%	0%	0%	86%	87%	67%	0%	0%	0%	52%	66%	84%
MODALE	Mode	14	0.102452	0%	0%	0%	86%	87%	67%	11%	1%	0%	63%	67%	84%
MODALE	Mode	15	0.098394	0%	0%	0%	86%	88%	67%	0%	3%	0%	63%	70%	84%
MODALE	Mode	16	0.089758	0%	0%	0%	86%	88%	68%	1%	0%	0%	63%	70%	85%
MODALE	Mode	17	0.081311	0%	0%	0%	86%	88%	68%	1%	0%	6%	64%	70%	91%
MODALE	Mode	18	0.079443	0%	0%	0%	87%	88%	68%	0%	0%	1%	65%	70%	92%
MODALE	Mode	19	0.075295	0%	0%	0%	87%	88%	68%	0%	0%	0%	65%	70%	92%
MODALE	Mode	20	0.074826	0%	0%	0%	87%	88%	68%	0%	0%	0%	65%	71%	92%

Si riportano di seguito le deformate modali della struttura nei primi modi di vibrare.

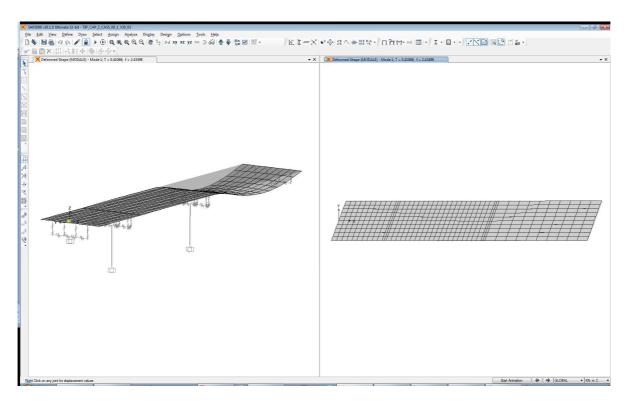
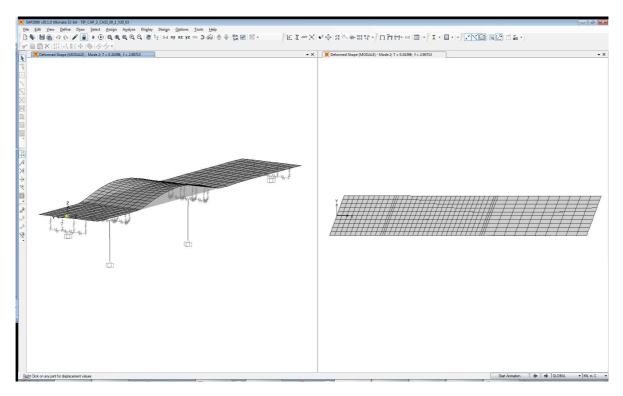
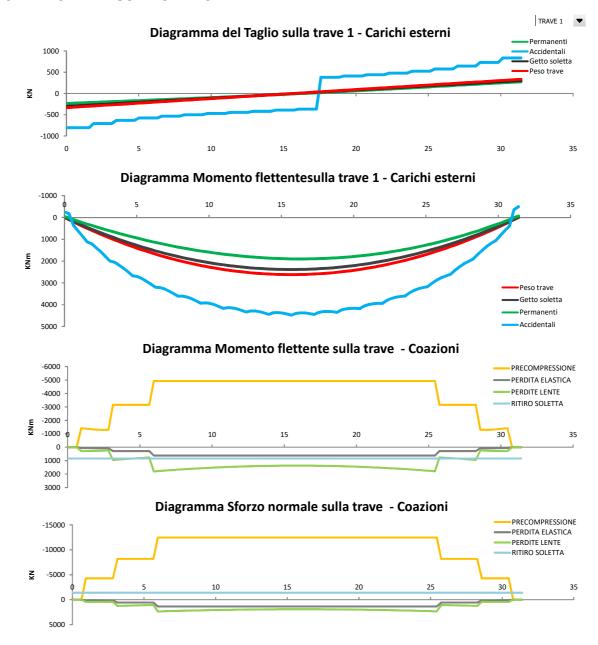
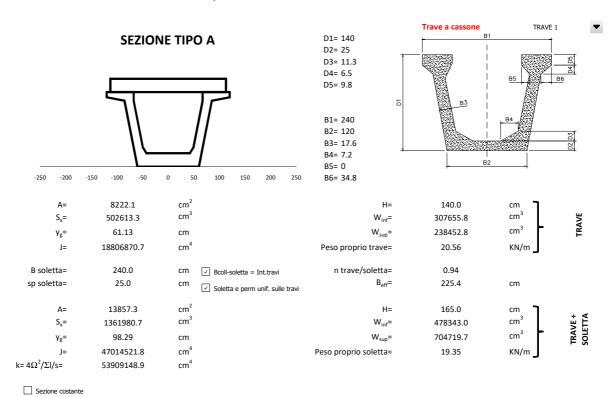
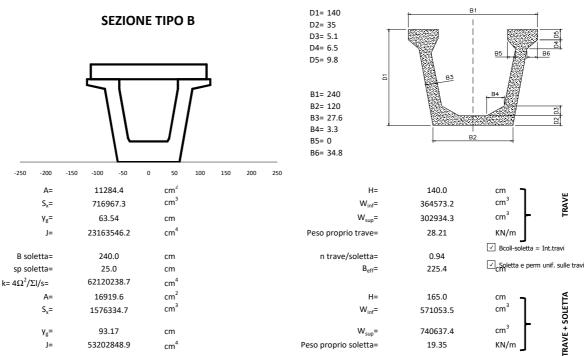
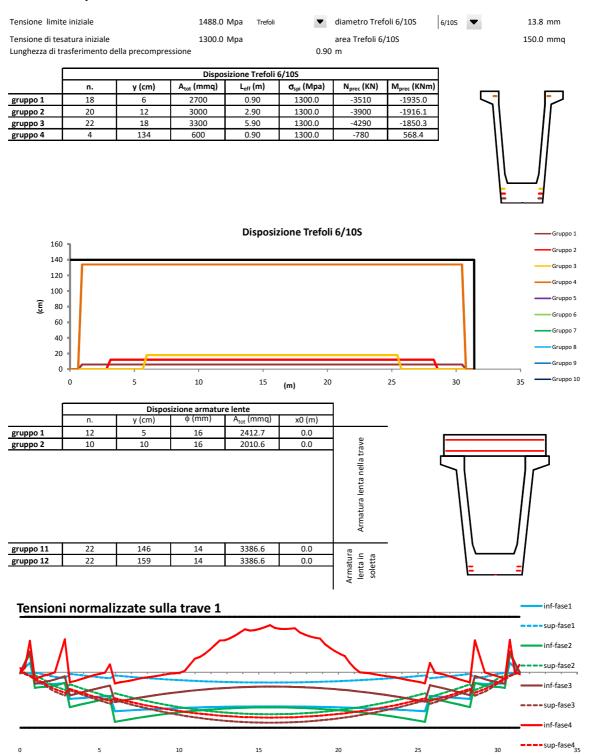


Figura 8-1: Deformata modale modo n°1

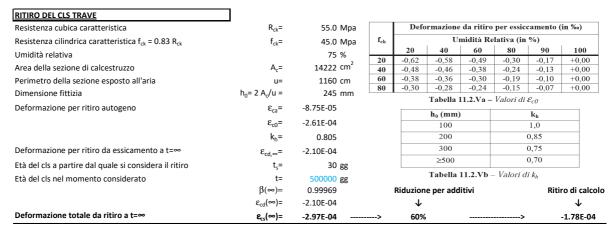




Figura 8-2: Deformata modale modo n°2


8.2 DIAGRAMMI SOLLECITAZIONI


9. VERIFICHE IMPALCATO

9.1 Caratteristiche trave in c.a.p.



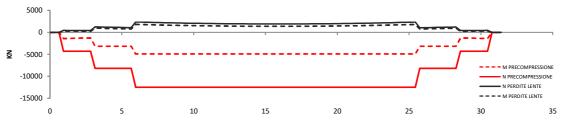
9.2 Precompressione e armatura lenta

9.3 Perdite differite nel tempo

VISCOSITA'		
Coeff. di viscosità a t=∞	φ (∞,t _s)=	1.973
✓ Viscosità		

ella 11.2.VI – Valori	lla 11.2.VI – Valori di $\phi(\infty, t_0)$. Atmosfera con umidità relativa di circa il 75%									
t _o	h ₀ ≤ 75 mm	h ₀ = 150	$h_0 = 300$	h ₀ ≥ 600						
3 giorni	3,5	3,2	3,0	2,8						
7 giorni	2,9	2,7	2,5	2,3						
15 giorni	2,6	2,4	2,2	2,1						
30 giorni	2.3	2.1	1.9	1.8						

Tabella 11.2.VII - Valori di $\phi(\infty, t_0)$. Atmosfera con umidità relativa di circa il 55%


	ar y () ty a nimosiera coi	i amiana relativa ar	chica hi oo /o	
t ₀	h ₀ ≤ 75 mm	$h_0 = 150$	$h_0 = 300$	h ₀ ≥ 600
3 giorni	4,5	4,0	3,6	3,3
7 giorni	3,7	3,3	3,0	2,8
15 giorni	3,3	3,0	2,7	2,5
30 giorni	2,9	2,6	2,3	2,2
> 60giorni	2.5	2.3	2.1	1.9

CADUTE DI TENSIONE PER RILASSAMENTO		
Tensione iniziale nel cavo	$\sigma_{\rm spi=}$	1300.0 Mpa
Resistenza caratteristica dell'acciaio da precompressione	f _{pk} =	1670.0 Mpa
Perdita percentuale per rilass. a 1000 ore, a 20°C e con $\sigma_{spi}\text{=}0.7\text{f}$	ρ ρ ₁₀₀₀ =	2.50 Mpa
	$\mu = \sigma_{spi}/f_{pk}=$	0.778
Tempo dalla messa in tensione	t=	500000 ore
A = /= -5.30 a = -6.74 (4/1000) 0.75(1-4) 10-5 T	rocco fili trofoli ordinari a no	rmala rilassaman

$$\begin{split} &\Delta \sigma_{pr}/\sigma_{pi} = 5,39 \; \rho_{1000} \; e^{6,7\mu} \; (t/1000)^{0,75(1-\mu)} \; 10^{-5} & \text{Trecce, fili, trefoli ordinari a normale rilassamento} \\ &\Delta \sigma_{pr}/\sigma_{pi} = 0,66 \; \rho_{1000} \; e^{9,1\mu} \; (t/1000)^{0,75(1-\mu)} \; 10^{-5} & \text{Trecce, fili, trefoli stabilizzati a basso rilassamento} \\ &\Delta \sigma_{pr}/\sigma_{pi} = 1,98 \; \rho_{1000} \; e^{8,0\mu} \; (t/1000)^{0,75(1-\mu)} \; 10^{-5} & \text{Barre laminate} \end{split}$$

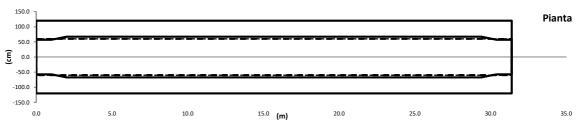
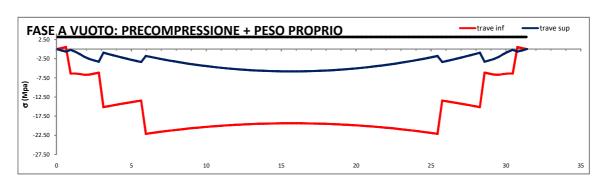
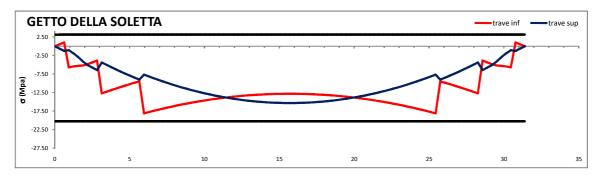
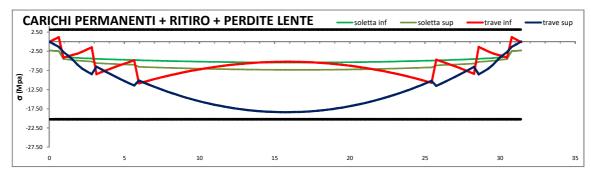

Nel nostro caso trattandosi di: Trefoli stabilizzati Caduta di tensione per rilassamento al tempo t = 500000 ore $\Delta \sigma_{pr}/\sigma_{pi}$ = 0.055 $\Delta \sigma_{pr}$ = 71.84 Mpa

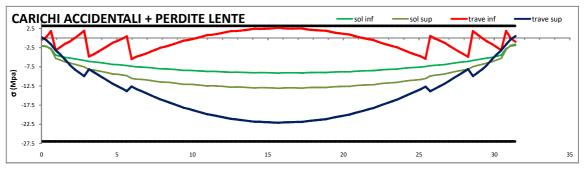
Diagramma M/N sulla trave 1 - Precompressione e perdite

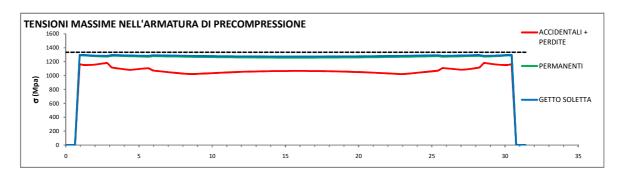
9.4 Caratteristiche sezioni di verifica

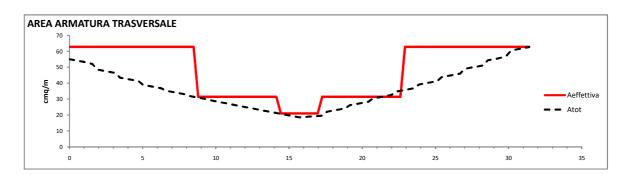


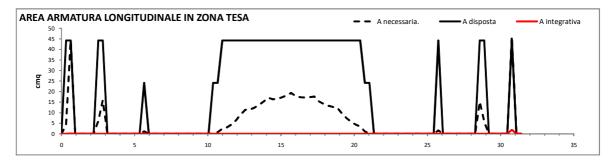

					TRAVE + ARMATURE				
x(m)	Tipo	x(m)	Tipo	x(m)	A _{id} (cm²)	J _{id} (cm⁴)	y _g (cm)	W _{inf} (cm ³)	W _{sup} (cm ³)
0.00	ВВ	7.85	AA	0.00	11535.6	23942832	62.3	384246	-308189
0.31	ВВ	8.16	AA	1.57	10018.4	22172877	60.1	368749	-277612
0.63	ВВ	8.48	AA	3.14	8830.9	20506960	58.0	353724	-250007
0.94	ВВ	8.79	AA	4.71	8830.9	20506960	58.0	353724	-250007
1.26	ВА	9.11	AA	6.28	9018.3	20800155	57.1	363995	-251040
1.57	ВА	9.42	AA	7.85	9018.3	20800155	57.1	363995	-251040
1.88	ВА	9.73	AA	9.42	9018.3	20800155	57.1	363995	-251040
2.20	AA	10.05	AA	10.99	9018.3	20800155	57.1	363995	-251040
2.51	AA	10.36	AA	12.56	9018.3	20800155	57.1	363995	-251040
2.83	AA	10.68	AA	14.13	9018.3	20800155	57.1	363995	-251040
3.14	AA	10.99	AA	15.70	9018.3	20800155	57.1	363995	-251040
3.45	AA	11.30	AA						•
3.77	AA	11.62	AA		TRAVE + SOLETTA + ARMATURE				
4.08	AA	11.93	AA	x(m)	A _{id} (cm²)	J _{id} (cm ⁴)	y _g (cm)	W _{inf} (cm ³)	W _{sup} (cm ³)

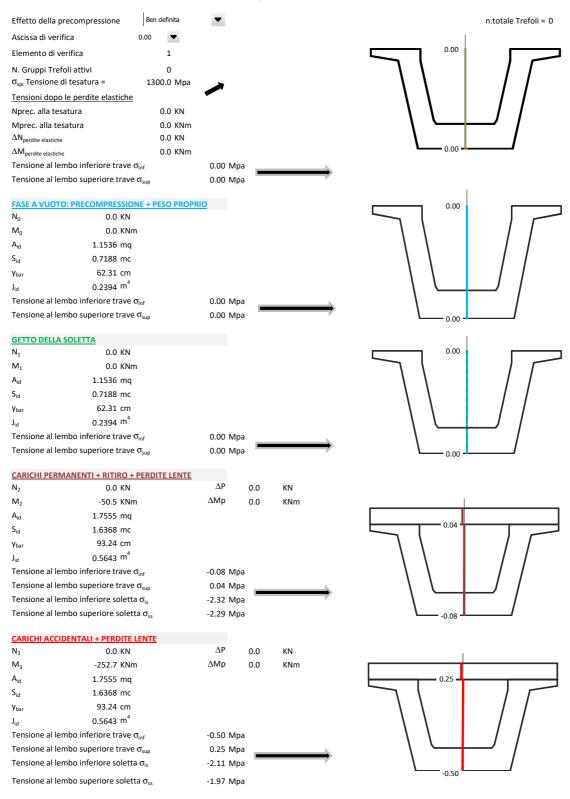

3.77	AA	11.62	AA		TRAVE + SOLETTA + ARMATURE					
4.08	AA	11.93	AA	x(m)	A _{id} (cm ²)	J _{id} (cm ⁴)	y _g (cm)	W _{inf} (cm ³)	W _{sup} (cm ³)	W _{supsol} (cm ³)
4.40	AA	12.25	AA	0.00	17555.3	56427310	93.2	605202	-1206669	-786302
4.71	AA	12.56	AA	1.57	16038.2	54566380	94.8	575594	-1207223	-777300
5.02	AA	12.87	AA	3.14	14850.7	52801030	96.3	548351	-1208002	-768469
5.34	AA	13.19	AA	4.71	14850.7	52801030	96.3	548351	-1208002	-768469
5.65	AA	13.50	AA	6.28	15038.0	53935149	95.3	565861	-1207013	-773987
5.97	AA	13.82	AA	7.85	15038.0	53935149	95.3	565861	-1207013	-773987
6.28	AA	14.13	AA	9.42	15038.0	53935149	95.3	565861	-1207013	-773987
6.59	AA	14.44	AA	10.99	15038.0	53935149	95.3	565861	-1207013	-773987
6.91	AA	14.76	AA	12.56	15038.0	53935149	95.3	565861	-1207013	-773987
7.22	AA	15.07	AA	14.13	15038.0	53935149	95.3	565861	-1207013	-773987
7.54	AA	15.39	AA	15.70	15038.0	53935149	95.3	565861	-1207013	-773987


9.5 Diagramma tensioni sulla trave n.1

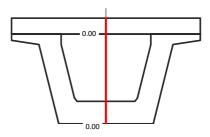







9.6 Diagramma tensioni/aree armature trave n.1

9.7 Verifica sezione n.1 – ascissa x = 0,000m


PERDITE ELASTICHE

 $\Delta \sigma_{p0}$ ΔN (KN)= 0.0 ΔM (KNm)= 0.0 σ_{inf} = 0.00

 $\sigma_{\text{inf}} = 0.00$ $\sigma_{\text{sup}} = 0.00$

PERDITE DIFFERITE NEL TEMPO

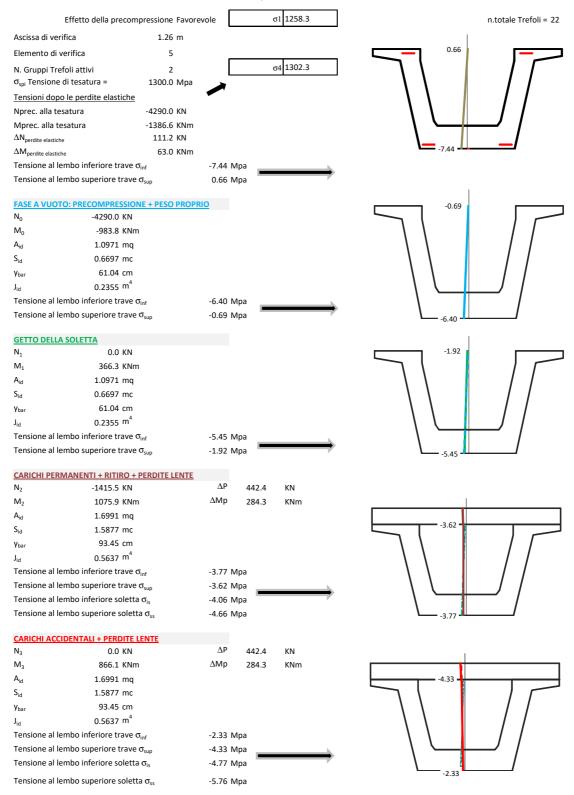
 $\Delta \sigma_{p\infty}$ $\Delta N (KN) = 0.0$ $\Delta M (KNm) = 0.0$ $\sigma_{inf} = 0.00$ $\sigma_{sup} = 0.00$ $\sigma_{s} = 0.00$ $\sigma_{s} = 0.00$

TENSIONI ARMATURA LENTA	Max	Min
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	0.0	0.0
GETTO DELLA SOLETTA	0.0	0.0
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	0.3	-0.4
CARICHI ACCIDENTALI + PERDITE LENTE	2.0	-2.7
TENSIONI ARMATURA DI PRECOMPRESSIONE	Max	Min
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	0.0	0.0
GETTO DELLA SOLETTA	0.0	0.0
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	0.0	0.0
CARICHI ACCIDENTALI + PERDITE I ENTE	0.0	0.0

VERIFICA A TAGLIO - SLU

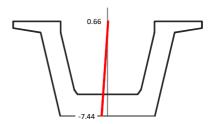
V _{Ed} =	2432.1 KN	ELEMENTO SENZA	A ARMATURA A TAGLIO
f _{ck} =	45.00 Mpa	v _{min} =	0.375 Mpa
f _{cd} =	25.50 Mpa	$\sigma_{cp} = k = 0$	0.000 Mpa
f'cd=	12.75 Mpa	k =	1.367
f _{ctd} =	1.77 Mpa	A _{sI} =	112.0 cm ²
f _{yd} =	391.30 Mpa	$\rho = A_{sl}/b_w d =$	0.013
d =	148.5 cm	$\rho = A_{sl}/b_w d = $ $\gamma_c =$	1.5
b _w =	56.3 cm	V _{Rd} =	537.9 KN
		•	

ELEMENTO CON ARMATURA A TAGLIO								
α_{cc} = V_{Rcd} = $A_{sw}/s = A_{nec.}$ = Staffe disposte 4 br. f10/5	1.000							
V _{Rcd} =	4799.7 KN							
$A_{sw}/s = A_{nec.} =$	49.44 cm ² /m							
Staffe disposte 4 br. f10/5	$60.04 \text{ cm}^2/\text{m}$							
V _{Rsd} =	3139.8 KN							
$V_{Rsd} = V_{Rd} = min (V_{Rcd}, V_{Rsd}) =$	3139.8 KN							
V _{Rd} > V _{Fd} = La verifica è sod	<u>disfatta</u>							

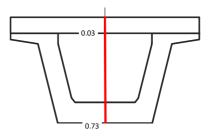

VERIFICA A TORSIONE - SLU

Mt _{Ed} =	373.5 KNm				
Armatura trasversali		Calcestruzz	Calcestruzzo		gitudinali
f _{yd} =	391.30 Mpa	f'cd =	12.75 Mpa	u _m =	5284.8 mm
θ	45 °	t =	276 mm	A _{minima}	14.77 cm ²
Ω	1707281 mm ²	Ω	1707281 mm ²		
$A_{sw}/s = A_{nec.} =$	$2.80 \text{ cm}^2/\text{m}$				
T _{Rsd} =	373.5 KNm	T _{Rcd} =	6007.9 KNm		

VERIFICA A TORSIONE E TAGLIO - LATO CALCESTRUZZO


 $V_{Ed}/V_{Rcd}+Mt_{Ed}/T_{Rcd} = 0.569$ La verifica è soddisfatta

9.8 Verifica sezione n.5 – ascissa x = 1,256m


P	E	₹I	IC	Т	Ε	Ε	L/	١S	T	C	Н	Ε
												_

	$\sigma_{_{\!p0}}$		$\Delta\sigma_{_{\!P^0}}$	Δ N (KN)= 111.2
gruppo 1	1300.0	>	-41.7	Δ M (KNm)= 63.0
				σ_{inf} = -7.44
				σ_{sup} = 0.66
gruppo 4	1300.0	>	2.3	

PERDITE DIFFERITE NEL TEMPO

	σ_{p0}		$\Delta\sigma_{\!\scriptscriptstyle{p\infty}}$	Δ N (KN)= 442.4
gruppo 1	1258.3	>	-134.2	ΔM (KNm)= 284.3
				σ_{inf} = 0.73
				σ_{sup} = 0.03
gruppo 4	1302.3	>	-133.5	σ_{is} = 0.03
				$\sigma_{ss} = -0.10$

Min -35.2 -30.2 -21.4 -18.0

TENSIONI ARMATURA LENTA	Max	
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	-34.0	
GETTO DELLA SOLETTA	-29.5	
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	-10.4	
CARICHI ACCIDENTALI + PERDITE LENTE	-13.6	

Max	Min
1302.3	1258.3
1295.9	1263.2
1286.7	1137.7
1283.2	1145.3

TENSIONI PRINCIPALI MASSIME

GETTO DELLA SOLETTA

TENSIONI ARMATURA DI PRECOMPRESSIONE
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO

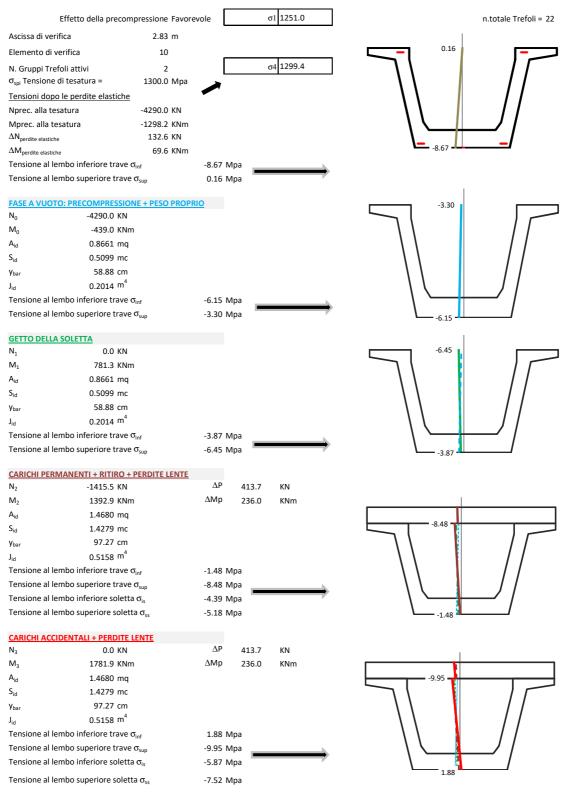
CARICHI PERMANENTI + RITIRO + PERDITE LENTE CARICHI ACCIDENTALI + PERDITE LENTE

 FA	SE 1 + FAS	E 2	FA	SE 3 + FAS	SE 4		TOTAL			
 σ _x /2	-1.96	Мра	$\sigma_x/2$	0.13	Мра					
τ	-0.91	Mpa	τ	2.02	Mpa					
$\sigma_{\scriptscriptstyle I}$	0.20	Mpa	$\sigma_{\scriptscriptstyle I}$	2.15	Mpa	σ_{I}	2.36	Мра	<	3.16
σ_{II}	-1.84	Mpa	σ_{II}	-0.93	Mpa	σ_{II}	-2.78	Mpa	>	-27.00

VERIFICA A TAGLIO - SLU

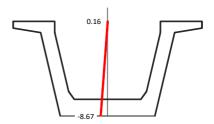
V _{Ed} =	2332.2 KN	ELEMENTO SENZA ARMATURA A TAGLIO			
f _{ck} =	45.00 Mpa	v _{min} =	0.375 Mpa		
f _{cd} =	25.50 Mpa	σ_{cp} =	3.910 Mpa		
f'cd=	12.75 Mpa	k =	1.367		
$f_{ctd} =$	1.77 Mpa	A _{sl} =	112.0 cm ²		
f _{yd} =	391.30 Mpa	$\rho = A_{sl}/b_w d =$	0.015		
d =	148.5 cm	$\gamma_c =$	1.5		
b _w =	51.1 cm	V _{Rd} =	949.3 KN		

ELEMENTO CON ARMATURA	A TAGLIO
α _{cc} =	1.153
V _{Rcd} =	5022.3 KN
α_{cc} = V_{Rcd} = A_{sw}/s = $A_{nec.}$ = Staffe disposte 4 br. f10/5	47.30 cm ² /m
Staffe disposte 4 br. f10/5	$60.11 \text{ cm}^2/\text{m}$
	3143.8 KN
$V_{Rsd} = V_{Rd} = min (V_{Rcd}, V_{Rsd}) =$	3143.8 KN
V _{Rd} > V _{Ed} = La verifica è sod	disfatta

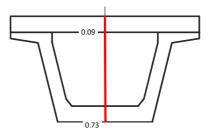

VERIFICA A TORSIONE - SLU

Mt _{Ed} =	373.5 KNm					
Armatura trasversali		Calcestruzzo	Calcestruzzo		Armatura longitudinali	
f _{yd} =	391.30 Mpa	f'cd=	12.75 Mpa	u _m =	5357.9 mm	
θ	45 °	t =	250.4 mm	A _{minima}	14.57 cm ²	
Ω	1755519 mm ²	Ω	1755519 mm ²			
$A_{sw}/s = A_{nec.} =$	2.72 cm ² /m					
T _{Rsd} =	373.5 KNm	T _{Rcd} =	5604.7 KNm			

VERIFICA A TORSIONE E TAGLIO - LATO CALCESTRUZZO


V_{Ed}/V_{Rcd}+Mt_{Ed}/T_{Rcd} = 0.531 La verifica è soddisfatta

9.9 Verifica sezione n.10 – ascissa x = 2,826m


PERDITE ELASTICHE

	σ_{p0}		$\Delta\sigma_{_{\!P}0}$	Δ N (KN)= 132.6
gruppo 1	1300.0	>	-49.0	Δ M (KNm)= 69.6
				σ_{inf} = -8.67
				σ_{sup} = 0.16
gruppo 4	1300.0	>	-0.6	

PERDITE DIFFERITE NEL TEMPO

	σ_{p0}		$\Delta\sigma_{\!\scriptscriptstyle{p\infty}}$	ΔN (KN)= 413.7
gruppo 1	1251.0	>	-112.3	ΔM (KNm)= 236.0
				σ_{inf} = 0.73
				σ_{sup} = 0.09
gruppo 4	1299.4	>	-184.4	σ_{is} = 0.09
				σ _{ss} = -0.03

Min -34.4 -23.0 -14.9 -27.1 Min 1251.0 1262.7 1088.0 1080.8

TENSIONI ARMATURA LENTA	Max
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	-33.8
GETTO DELLA SOLETTA	-22.5
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	-12.9
CARICHI ACCIDENTALI + PERDITE LENTE	8.3
TENSIONI ARMATURA DI PRECOMPRESSIONE	Max
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	1299.4
GETTO DELLA SOLETTA	1282 8

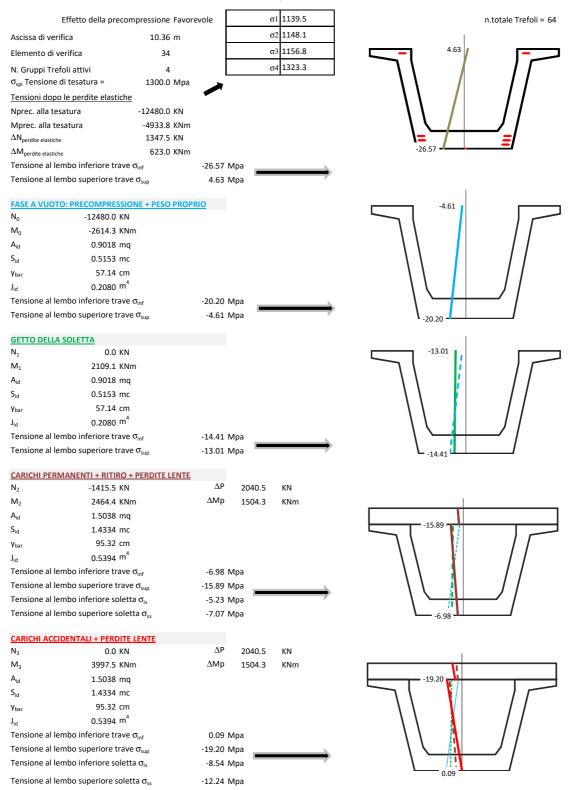
TENSIONI ANNIATORA DIT RECOINI RESSIONE	IVIUX
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	1299.4
GETTO DELLA SOLETTA	1282.8
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	1271.7
CARICHI ACCIDENTALI + PERDITE LENTE	1289.1

ELEMENTO CON ADMATUDA A TACI

	ELEMENTO CON ARMATORA A TAGLIO				
α'_{cc} = V_{Rcd} = $A_{sw}/s = A_{nec.}$ = Staffe disposte 4 br. f10/5	1.194				
V _{Rcd} =	3655.3 KN				
$A_{sw}/s = A_{nec.} =$	41.88 cm ² /m				
Staffe disposte 4 br. f10/5	$60.31 \text{ cm}^2/\text{m}$				
V _{Rsd} =	3154.1 KN				
$V_{Rsd} = V_{Rd} = min (V_{Rcd}, V_{Rsd}) =$	3154.1 KN				
V _{Rd} > V _{Ed} = La verifica è soddisfatta					

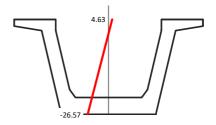
VERIFICA A TAGLIO - SLU

V _{Ed} =	2064.3 KN	ELEMENTO SENZA	ARMATURA A TAGLIO
f _{ck} =	45.00 Mpa	v _{min} =	0.375 Mpa
f _{cd} =	25.50 Mpa	σ_{cp} =	4.953 Mpa
f' _{cd} =	12.75 Mpa	k =	1.367
f _{ctd} =	1.77 Mpa	A _{sl} =	112.0 cm ²
f _{yd} =	391.30 Mpa	$\rho = A_{sl}/b_w d =$	0.020
d =	148.5 cm	$\gamma_c =$	1.5
b _w =	35.9 cm	V _{Rd} =	788.5 KN

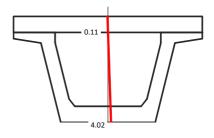

VERIFICA A TORSIONE - SLU

Mt _{Ed} =	374.7 KNm				
Armatura trasv	ersali	Calcestruzz	0	Armatura lon	gitudinali
f _{yd} =	391.30 Mpa	f' _{cd} =	12.75 Mpa	u _m =	5570.6 mm
θ	45 °	t =	176 mm	A _{minima}	14.04 cm ²
Ω	1899129 mm²	Ω	1899129 mm ²		
$A_{sw}/s = A_{nec.} =$	2.52 cm ² /m				
$A_{sw}/s = A_{nec.} = T_{Rsd} =$	374.7 KNm	T _{Rcd} =	4261.6 KNm		

VERIFICA A TORSIONE E TAGLIO - LATO CALCESTRUZZO


V_{Ed}/V_{Rcd}+Mt_{Ed}/T_{Rcd} = <u>0.653</u> <u>La verifica è soddisfatta</u>

9.10 Verifica sezione n.34 – ascissa x = 10,362m


PERDITE ELASTICHE

	$\sigma_{_{\!p0}}$		$\Delta\sigma_{_{p0}}$	ΔN (KN)= 1347.5
gruppo 1	1300.0	>	-160.5	Δ M (KNm)= 623.0
gruppo 2	1300.0	>	-151.9	σ_{inf} = -26.57
gruppo 3	1300.0	>	-143.2	σ_{sup} = 4.63
grunno 4	1300.0	>	23.3	

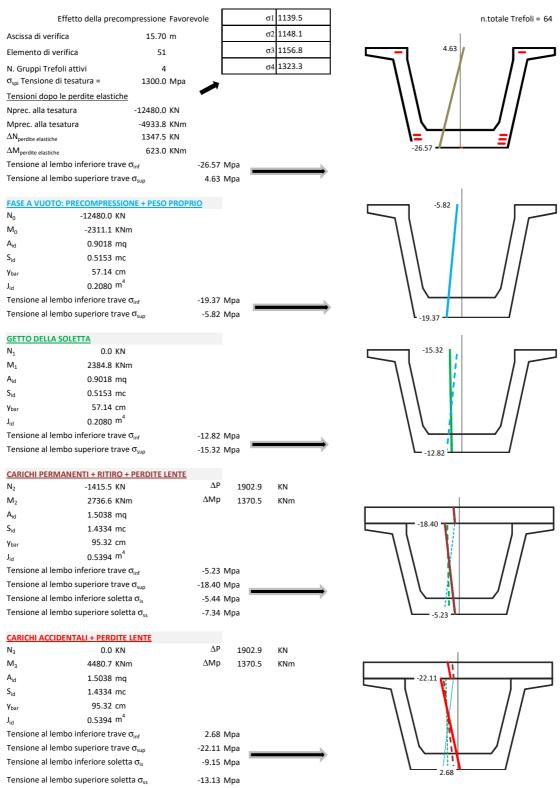
PERDITE DIFFERITE NEL TEMPO

	σ_{p0}		$\Delta\sigma_{_{\!\! m p\infty}}$	$\Delta N (KN) = 2040.5$
gruppo 1	1139.5	>	-208.4	Δ M (KNm)= 1504.3
gruppo 2	1148.1	>	-209.5	σ_{inf} = 4.02
gruppo 3	1156.8	>	-210.8	σ_{sup} = 0.11
gruppo 4	1323.3	>	-256.5	σ_{is} = 0.11
				σ_{ss} = -0.59

TENSIONI ARMATURA LENTA	Max	Min
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	-108.4	-111.5
GETTO DELLA SOLETTA	-81.2	-81.5
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	-18.5	-43.2
CARICHI ACCIDENTALI + PERDITE LENTE	-3.4	-51.0
TENSIONI ARMATURA DI PRECOMPRESSIONE	Max	Min
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	1323.3	1139.5
GETTO DELLA SOLETTA	1279.0	1169.0
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	1263.6	1000.3
CARICHI ACCIDENTALI + PERDITE LENTE	1247.4	992.4

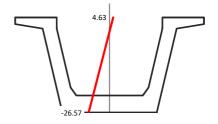
VERIFICA A TAGLIO - SLU

V _{Ed} =	1138.8 KN	ELEMENTO SENZ	A ARMATURA A TAGLIO
f _{ck} =	45.00 Mpa	v _{min} =	0.375 Mpa
f _{cd} =	25.50 Mpa	σ_{cp} =	13.839 Mpa
f'cd =	12.75 Mpa	k =	1.367
f _{ctd} =	1.77 Mpa	A _{sl} =	112.0 cm ²
f _{yd} =	391.30 Mpa	$\rho = A_{si}/b_w d =$	0.020
d =	148.5 cm	$\gamma_c =$	1.5
b _w =	35.9 cm	V _{Rd} =	1499.5 KN

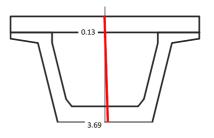

La sezione non necessita di armatura resistente a taglio

VERIFICA A TORSIONE - SLU

Mt _{Ed} =	-383.7 KNm				
Armatura trasve	rsali	Calcestruzz	10	Armatura lon	gitudinali
f _{yd} =	391.30 Mpa	f' _{cd} =	12.75 Mpa	u _m =	5570.6 mm
θ	45 °	t =	176 mm	A _{minima}	-14.38 cm ²
Ω	1899129 mm ²	Ω	1899129 mm ²		
$A_{sw}/s = A_{nec.} =$	2.58 cm ² /m				
T _{Rsd} =	383.7 KNm	T _{Rcd} =	4261.6 KNm		


La verifica è soddisfatta

9.11 Verifica sezione n.51 – ascissa x = 15,7m


PERDITE ELASTICHE

	σ_{p0}		$\Delta\sigma_{p0}$	Δ N (KN)= 1347.5
gruppo 1	1300.0	>	-160.5	Δ M (KNm)= 623.0
gruppo 2	1300.0	>	-151.9	σ_{inf} = -26.57
gruppo 3	1300.0	>	-143.2	σ_{sup} = 4.63
gruppo 4	1300.0	>	23.3	

PERDITE DIFFERITE NEL TEMPO

	σ_{p0}		$\Delta \sigma_{p\infty}$	$\Delta N (KN) = 1902.9$
gruppo 1	1139.5	>	-189.2	Δ M (KNm)= 1370.5
gruppo 2	1148.1	>	-192.3	σ_{inf} = 3.69
gruppo 3	1156.8	>	-195.7	σ_{sup} = 0.13
gruppo 4	1323.3	>	-282.4	σ_{is} = 0.13
				σ_{ss} = -0.51

TENSIONI ARMATURA LENTA	Max	Min
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	-104.5	-107.2
GETTO DELLA SOLETTA	-73.3	-73.8
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	-19.9	-35.1
CARICHI ACCIDENTALI + PERDITE LENTE	10.2	-55.7
TENSIONI ARMATURA DI PRECOMPRESSIONE	Max	Min
FASE A VUOTO: PRECOMPRESSIONE + PESO PROPRIO	1323.3	1139.5
GETTO DELLA SOLETTA	1273.2	1172.8
CARICHI PERMANENTI + RITIRO + PERDITE LENTE	1256.7	975.9
CARICHI ACCIDENTALI + PERDITE LENTE	1238.5	957.7

VERIFICA A TAGLIO - SLU

V _{Ed} =	607.5 KN	ELEMENTO SENZ	A ARMATURA A TAGLIO
f _{ck} =	45.00 Mpa	v _{min} =	0.375 Mpa
f _{cd} =	25.50 Mpa	σ _{cp} =	13.839 Mpa
f'cd =	12.75 Mpa	k =	1.367
f _{ctd} =	1.77 Mpa	A _{sl} =	112.0 cm ²
f _{yd} =	391.30 Mpa	$\rho = A_{sl}/b_w d =$	0.020
d =	148.5 cm	$\gamma_c =$	1.5
b _w =	35.9 cm	V _{Rd} =	1499.5 KN

La sezione non necessita di armatura resistente a taglio

<u>VERIFICA A TORSIONE - SLU</u>

Mt _{Ed} =	-511.4 KNm						
Armatura trasversali		Calcestruzz	0	Armatura lon	Armatura longitudinali		
f _{yd} =	391.30 Mpa	f' _{cd} =	12.75 Mpa	u _m =	5570.6 mm		
θ	45 °	t =	176 mm	A _{minima}	-19.17 cm ²		
Ω	1899129 mm²	Ω	1899129 mm²				
$A_{sw}/s = A_{nec.} =$	$3.44 \text{ cm}^2/\text{m}$						
T _{Rsd} =	511.4 KNm	T _{Rcd} =	4261.6 KNm				

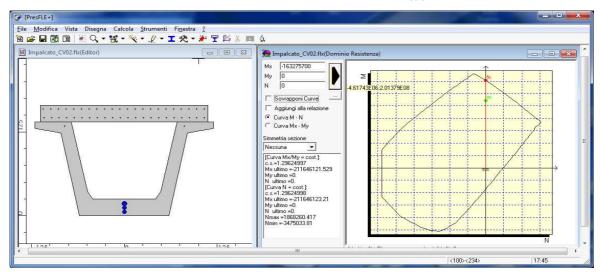
VERIFICA A TORSIONE E TAGLIO - LATO CALCESTRUZZO

 $V_{Ed}/V_{Rcd}+Mt_{Ed}/T_{Rcd} = 0.054$ La verifica è soddisfatta

9.12 Verifica a rottura della sezione di mezzeria

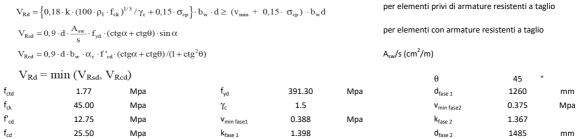
Le azioni flettenti per la verifica a rottura della sezione di mezzeria valgono:

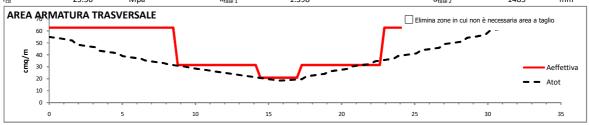
PESO PROPRIO	2623 KNm	x	1.35	=	3540.6
GETTO DELLA SOLETTA	2385 KNm	x	1.35	=	3219.5
CARICHI PERMANENTI	1898 KNm	x	1.5	=	2846.5
CARICHI ACCIDENTALI	4481 KNm	x	1.5	=	6721.0


Momento flettente di calcolo M_{Ed} 16327.57 KNm

Il valore della precompressione in mezzeria a meno delle perdite istantanee e differite e del coefficiente di combinzione allo SLU vale, in termini deformazioni:

	CAVI DI PRECOMPRESSONE								
	y(cm)	ϕ_{eq} (mm)	ε	ϵ_{SLU}					
gruppo 1	6.0	58.63	0.00497141	0.00447426					
gruppo 2	12.0	61.80	0.00496641	0.00446977					
gruppo 3	18.0	64.82	0.00496043	0.00446439					
gruppo 4	134.0	27.64	0.00473738	0.00426364					


		Armatura lenta							
	y(cm)	n.	φ _{eq} (mm)						
Arm1	5.0	12	16						
Arm2	10.0	10	16						


Arm11 146.0 22 14 Arm12 159.0 22 14

Il momento resistente vale: 21164.61 KNm c.s.= 1.2963 La verifica è soddisfatta

9.13 Verifiche a taglio - SLU

		Fase 1 - Sola	trave in c.a.p.			Fase 2 - Tr	ave + soletta		TOTALE	
x(m)	V _{r,d} (KN)	V _{Ed} (KN)	V _{Rc,d} (KN)	A _{swcalc} /s	V _{r,d} (KN)	V _{Ed} (KN)	V _{Rc,d} (KN)	A _{swcalc} /s	A _{swcalc} /s	Staffe
0.00	361.9	861.2	4072.5	19.41	537.9	1570.9	4799.7	30.04	49.44	4 br. f10/5
0.31	361.9	843.9	4072.5	19.02	537.9	1563.2	4799.7	29.89	48.91	4 br. f10/5
0.63	361.9	826.7	4072.5	18.63	537.9	1555.5	4799.7	29.74	48.37	4 br. f10/5
0.94	751.5	809.5	4657.0	18.24	997.1	1547.7	5488.6	29.59	47.84	4 br. f10/5
1.26	716.9	792.3	4261.4	17.85	949.3	1540.0	5022.3	29.45	47.30	4 br. f10/5
1.57	671.9	775.0	3774.1	17.47	887.4	1532.3	4448.0	29.30	46.76	4 br. f10/5
1.88	623.5	757.8	3283.7	17.08	820.9	1381.4	3870.0	26.41	43.49	4 br. f10/5
2.20	604.4	740.6	3101.4	16.69	788.5	1373.6	3655.3	26.27	42.96	4 br. f10/5
2.51	604.4	723.4	3101.4	16.30	788.5	1365.9	3655.3	26.12	42.42	4 br. f10/5
2.83	604.4	706.1	3101.4	15.91	788.5	1358.2	3655.3	25.97	41.88	4 br. f10/5
3.14	897.8	688.9	3246.2	15.53	1134.3	1350.4	3825.9	25.82	41.35	4 br. f10/5
3.45	897.8	671.7	3246.2	15.14	1134.3	1235.5	3825.9	23.62	38.76	4 br. f10/5
3.77	897.8	654.5	3246.2	14.75	1134.3	1227.8	3825.9	23.48	38.23	4 br. f10/5
4.08	897.8	637.3	3246.2	14.36	1134.3	1220.0	3825.9	23.33	37.69	4 br. f10/5
4.40	897.8	620.0	3246.2	13.97	1134.3	1212.3	3825.9	23.18	37.15	4 br. f10/5
4.71	897.8	602.8	3246.2	13.58	1134.3	1204.6	3825.9	23.03	36.62	4 br. f10/5
5.02	897.8	585.6	3246.2	13.20	1134.3	1118.8	3825.9	21.39	34.59	4 br. f10/5
5.34	897.8	568.4	3246.2	12.81	1134.3	1111.1	3825.9	21.25	34.05	4 br. f10/5
5.65	897.8	551.1	3246.2	12.42	1134.3	1103.4	3825.9	21.10	33.52	4 br. f10/5
5.97	1207.7	533.9	2969.1	12.03	1499.5	1095.6	3499.2	20.95	32.98	4 br. f10/5
6.28	1207.7	516.7	2969.1	11.64	1499.5	1087.9	3499.2	20.80	32.45	4 br. f10/5
6.59	1207.7	499.5	2969.1	11.26	1499.5	1022.4	3499.2	19.55	30.81	4 br. f10/5
6.91	1207.7	482.2	2969.1	10.87	1499.5	1014.7	3499.2	19.40	30.27	4 br. f10/5
7.22	1207.7	465.0	2969.1	10.48	1499.5	1007.0	3499.2	19.25	29.73	4 br. f10/5
7.54	1207.7	447.8	2969.1	10.09	1499.5	999.2	3499.2	19.11	29.20	4 br. f10/5
7.85	1207.7	430.6	2969.1	9.70	1499.5	991.5	3499.2	18.96	28.66	4 br. f10/5
8.16	1207.7	413.4	2969.1	9.32	1499.5	938.5	3499.2	17.95	27.26	4 br. f10/5
8.48	1207.7	396.1	2969.1	8.93	1499.5	930.8	3499.2	17.80	26.73	4 br. f10/5
8.79	1207.7	378.9	2969.1	8.54	1499.5	923.1	3499.2	17.65	26.19	4 br. f10/10
9.11	1207.7	361.7	2969.1	8.15	1499.5	915.3	3499.2	17.50	25.65	4 br. f10/10
9.42	1207.7	344.5	2969.1	7.76	1499.5	907.6	3499.2	17.35	25.12	4 br. f10/10
9.73	1207.7	327.2	2969.1	7.37	1499.5	861.5	3499.2	16.47	23.85	4 br. f10/10
10.05	1207.7	310.0	2969.1	6.99	1499.5	853.7	3499.2	16.32	23.31	4 br. f10/10
10.36	1207.7	292.8	2969.1	6.60	1499.5	846.0	3499.2	16.18	22.78	4 br. f10/10
10.68	1207.7	275.6	2969.1	6.21	1499.5	838.3	3499.2	16.03	22.24	4 br. f10/10
10.99	1207.7	258.3	2969.1	5.82	1499.5	830.5	3499.2	15.88	21.70	4 br. f10/10
11.30	1207.7	241.1	2969.1	5.43	1499.5	787.4	3499.2	15.06	20.49	4 br. f10/10
11.62	1207.7	223.9	2969.1	5.05	1499.5	779.7	3499.2	14.91	19.95	4 br. f10/10
11.93	1207.7	206.7	2969.1	4.66	1499.5	771.9	3499.2	14.76	19.42	4 br. f10/10
12.25	1207.7	189.5	2969.1	4.27	1499.5	764.2	3499.2	14.61	18.88	4 br. f10/10
12.56	1207.7	172.2	2969.1	3.88	1499.5	756.5	3499.2	14.46	18.35	4 br. f10/10
12.87	1207.7	155.0	2969.1	3.49	1499.5	713.6	3499.2	13.64	17.14	4 br. f10/10
13.19	1207.7	137.8	2969.1	3.11	1499.5	705.8	3499.2	13.50	16.60	4 br. f10/10
13.50	1207.7	120.6	2969.1	2.72	1499.5	698.1	3499.2	13.35	16.07	4 br. f10/10
13.82	1207.7	103.3	2969.1	2.33	1499.5	690.3	3499.2	13.20	15.53	4 br. f10/10
14.13	1207.7	86.1	2969.1	1.94	1499.5	682.6	3499.2	13.05	14.99	4 br. f10/10
14.44	1207.7	68.9	2969.1	1.55	1499.5	638.5	3499.2	12.21	13.76	4 br. f10/15
14.76	1207.7	51.7	2969.1	1.16	1499.5	630.7	3499.2	12.06	13.22	4 br. f10/15
15.07	1207.7	34.4	2969.1	0.78	1499.5	623.0	3499.2	11.91	12.69	4 br. f10/15
15.39	1207.7	17.2	2969.1	0.39	1499.5	615.3	3499.2	11.76	12.15	4 br. f10/15
15.70	1207.7	0.0	2969.1	0.00	1499.5	607.5	3499.2	11.62	11.62	4 br. f10/15

9.14 Verifiche a torsione - SLU

 $\theta \hspace{1cm} 45 \hspace{1cm} \circ \hspace{1cm} A_{sw}/s \hspace{1cm} (cm^2/m) \hspace{1cm} T_{Rdd} = 2 \cdot A \cdot \frac{\sum A_i}{u_m} \cdot f_{yd} \cdot ctg\theta \hspace{1cm} T_{Rsd} = 2 \cdot A \cdot \frac{A_s}{s} \cdot f_{yd} \cdot ctg\theta \hspace{1cm} T_{Rcd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot \frac{A_s}{s} \cdot f_{yd} \cdot ctg\theta \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{rdd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg^2\theta) \hspace{1cm} T_{$

						TORSIONE			
x(m)	Mt _{Ed} (KNm)	A=Ω (mmq)	t (mm)	T _{Rcd} (KNm)	A _{sw} /s	I V _{Ed} /V _{Rcd} +Mt _{Ed} /T _{Rcd}	Staffe	u _m (mm)	Arm. Long. (cm²)
0.00	373.5	1707281	276.0	6007.9	2.80	0.569	4 br. f10/5	5284.8	14.8
0.31	373.5	1707281	276.0	6007.9	2.80	0.564	4 br. f10/5	5284.8	14.8
0.63	373.5	1707281	276.0	6007.9	2.80	0.558	4 br. f10/5	5284.8	14.8
0.94	373.5	1707281	276.0	6007.9	2.80	0.492	4 br. f10/5	5284.8	14.8
1.26	373.5	1755519	250.4	5604.7	2.72	0.531	4 br. f10/5	5357.9	14.6
1.57	373.5	1815509	219.0	5069.4	2.63	0.592	4 br. f10/5	5447.7	14.3
1.88	374.7	1876404	187.6	4488.2	2.55	0.636	4 br. f10/5	5537.4	14.1
2.20	374.7	1899129	176.0	4261.6	2.52	0.666	4 br. f10/5	5570.6	14.0
2.51	374.7	1899129	176.0	4261.6	2.52	0.660	4 br. f10/5	5570.6	14.0
2.83	374.7	1899129	176.0	4261.6	2.52	0.653	4 br. f10/5	5570.6	14.0
3.14	374.7	1899129	176.0	4261.6	2.52	0.621	4 br. f10/5	5570.6	14.0
3.45	346.8	1899129	176.0	4261.6	2.33	0.580	4 br. f10/5	5570.6	13.0
3.77	346.8	1899129	176.0	4261.6	2.33	0.573	4 br. f10/5	5570.6	13.0
4.08	346.8	1899129	176.0	4261.6	2.33	0.567	4 br. f10/5	5570.6	13.0
4.40	346.8	1899129	176.0	4261.6	2.33	0.560	4 br. f10/5	5570.6	13.0
4.71	346.8	1899129	176.0	4261.6	2.33	0.554	4 br. f10/5	5570.6	13.0
5.02	-320.5	1899129	176.0	4261.6	2.16	0.370	4 br. f10/5	5570.6	12.0
5.34	-320.5	1899129	176.0	4261.6	2.16	0.364	4 br. f10/5	5570.6	12.0
5.65	-320.5	1899129	176.0	4261.6	2.16	0.357	4 br. f10/5	5570.6	12.0
5.97	-320.5	1899129	176.0	4261.6	2.16	0.390	4 br. f10/5	5570.6	12.0
6.28	-320.5	1899129	176.0	4261.6	2.16	0.383	4 br. f10/5	5570.6	12.0
6.59	-328.4	1899129	176.0	4261.6	2.21	0.358	4 br. f10/5	5570.6	12.3
6.91	-328.4	1899129	176.0	4261.6	2.21	0.351	4 br. f10/5	5570.6	12.3
7.22	-328.4	1899129	176.0	4261.6	2.21	0.344	4 br. f10/5	5570.6	12.3
7.54	-328.4	1899129	176.0	4261.6	2.21	0.336	4 br. f10/5	5570.6	12.3
7.85	-328.4	1899129	176.0	4261.6	2.21	0.329	4 br. f10/5	5570.6	12.3
8.16	-351.5	1899129	176.0	4261.6	2.37	0.304	4 br. f10/5	5570.6	13.2
8.48	-351.5	1899129	176.0	4261.6	2.37	0.297	4 br. f10/5	5570.6	13.2
8.79	-351.5	1899129	176.0	4261.6	2.36	0.290	4 br. f10/10	5570.6	13.2
9.11	-351.5	1899129	176.0	4261.6	2.36	0.282	4 br. f10/10 4 br. f10/10	5570.6	13.2
9.42	-351.5	1899129	176.0	4261.6	2.36	0.282	4 br. f10/10 4 br. f10/10	5570.6	13.2
9.42	-383.7	1899129	176.0	4261.6	2.58	0.250	4 br. f10/10 4 br. f10/10	5570.6	14.4
10.05	-383.7	1899129	176.0	4261.6	2.58	0.243	4 br. f10/10 4 br. f10/10	5570.6	14.4
10.36	-383.7	1899129	176.0	4261.6	2.58	0.245	4 br. f10/10 4 br. f10/10	5570.6	14.4
10.56	-383.7	1899129	176.0	4261.6	2.58	0.233	4 br. f10/10 4 br. f10/10	5570.6	14.4
10.08	-383.7	1899129	176.0	4261.6	2.58	0.228	4 br. f10/10 4 br. f10/10	5570.6	14.4
	-363.7 -421.9	1899129	176.0	4261.6	2.84	0.221	4 br. f10/10 4 br. f10/10	5570.6	15.8
11.30 11.62	-421.9 -421.9	1899129	176.0	4261.6	2.84	0.195	4 br. f10/10 4 br. f10/10	5570.6	15.8
11.02	-421.9	1899129	176.0	4261.6	2.84	0.181	4 br. f10/10 4 br. f10/10	5570.6	15.8
							4 br. f10/10 4 br. f10/10		15.8
12.25	-421.9 -421.9	1899129 1899129	176.0 176.0	4261.6 4261.6	2.84 2.84	0.174 0.166	4 br. f10/10 4 br. f10/10	5570.6	15.8
12.56	-421.9 -465.1		176.0 176.0				4 br. f10/10 4 br. f10/10	5570.6	15.8
12.87		1899129	176.0 176.0	4261.6	3.13 3.13	0.139		5570.6	
13.19	-465.1	1899129		4261.6		0.132	4 br. f10/10	5570.6	17.4
13.50	-465.1	1899129	176.0	4261.6	3.13	0.125	4 br. f10/10	5570.6	17.4 17.4
13.82	-465.1	1899129	176.0	4261.6	3.13	0.118	4 br. f10/10	5570.6	
14.13	-465.1	1899129	176.0	4261.6	3.13	0.111	4 br. f10/10	5570.6	17.4
14.44	-511.4	1899129	176.0	4261.6	3.44	0.082	4 br. f10/15	5570.6	19.2
14.76	-511.4	1899129	176.0	4261.6	3.44	0.075	4 br. f10/15	5570.6	19.2
15.07	-511.4	1899129	176.0	4261.6	3.44	0.068	4 br. f10/15	5570.6	19.2
15.39	-511.4	1899129	176.0	4261.6	3.44	0.061	4 br. f10/15	5570.6	19.2
15.70	-511.4	1899129	176.0	4261.6	3.44	0.054	4 br. f10/15	5570.6	19.2

9.15 Verifiche connettori trave-soletta

Per il calcolo dei connettori si valuta con la formula di Jourawsky lo scorrimento presente all'interfaccia trave-soletta indotto dal taglio dovuto ai carichi permanenti e ai carichi accidentali e alla torsione dovuta ai carichi accidentali:

Scorrimento = TS/J S = Momento statico della soletta rispetto al baricentro

J = Momento d'inerzia della sezione

y_g = posizione baricentro da intradosso

x(m)	T _{perm} (KN)	T _{acc} (KN)	T _{torsione} (KN)	T (KN)	S (cm³)	J (cm⁴)	TS/J (KN/m)	A _{swcalc} /s cm ² /m	Connettori suggeriti
0.00	-239.3	-808.0	361.0	-686.3	280577	56427310	341.2	15.1	4 br. f10/20
0.31	-234.1	-808.0	361.0	-681.1	280577	56427310	338.7	15.0	4 br. f10/20
0.63	-228.9	-808.0	361.0	-676.0	280577	56427310	336.1	14.9	4 br. f10/20
0.94	-223.8	-808.0	361.0	-670.8	284630	57642457	331.2	14.7	4 br. f10/20
1.26	-218.6	-808.0	351.1	-675.6	279323	56367034	334.8	14.8	4 br. f10/20
1.57	-213.5	-808.0	339.5	-682.0	271199	54566380	339.0	15.0	4 br. f10/20
1.88	-211.6	-709.3	329.5	-591.4	260874	52451603	294.1	13.0	4 br. f10/20
2.20	-206.4	-709.3	325.6	-590.2	256389	51576813	293.4	13.0	4 br. f10/20
2.51	-201.3	-709.3	325.6	-585.0	256389	51576813	290.8	12.9	4 br. f10/20
2.83	-196.1	-709.3	325.6	-579.9	256389	51576813	288.3	12.8	4 br. f10/20
3.14	-191.0	-709.3	325.6	-574.7	262256	52801030	285.5	12.6	4 br. f10/20
3.45	-190.0	-633.7	301.3	-522.3	262256	52801030	259.4	11.5	4 br. f10/20
3.77	-184.8	-633.7	301.3	-517.2	262256	52801030	256.9	11.4	4 br. f10/20
4.08	-179.7	-633.7	301.3	-512.0	262256	52801030	254.3	11.3	4 br. f10/20
4.40	-174.5	-633.7	301.3	-506.9	262256	52801030	251.8	11.1	4 br. f10/20
4.71	-169.3	-633.7	301.3	-501.7	262256	52801030	249.2	11.0	4 br. f10/20
5.02	-168.7	-577.2	-278.5	-467.4	262256	52801030	232.1	10.3	4 br. f10/30
5.34	-163.5	-577.2	-278.5	-462.2	262256	52801030	229.6	10.2	4 br. f10/30
5.65	-158.4	-577.2	-278.5	-457.1	262256	52801030	227.0	10.0	4 br. f10/30
5.97	-153.2	-577.2	-278.5	-451.9	268109	53935149	224.7	9.9	4 br. f10/30
6.28	-148.1	-577.2	-278.5	-446.8	268109	53935149	222.1	9.8	4 br. f10/30
6.59	-147.3	-534.3	-285.3	-396.3	268109	53935149	197.0	8.7	4 br. f10/30
6.91	-142.2	-534.3	-285.3	-391.2	268109	53935149	194.5	8.6	4 br. f10/30
7.22	-137.0	-534.3	-285.3	-386.0	268109	53935149	191.9	8.5	4 br. f10/30
7.54	-131.8	-534.3	-285.3	-380.9	268109	53935149	189.3	8.4	4 br. f10/30
7.85	-126.7	-534.3	-285.3	-375.7	268109	53935149	186.8	8.3	4 br. f10/30
8.16	-125.6	-500.1	-305.4	-320.3	268109	53935149	159.2	7.0	4 br. f10/30
8.48	-120.4	-500.1	-305.4	-315.1	268109	53935149	156.7	6.9	4 br. f10/30
8.79	-115.3	-500.1	-305.4	-310.0	268109	53935149	154.1	6.8	4 br. f10/30
9.11	-110.1	-500.1	-305.4	-304.8	268109	53935149	151.5	6.7	4 br. f10/30
9.42	-105.0	-500.1	-305.4	-299.7	268109	53935149	149.0	6.6	4 br. f10/30
9.73	-103.3	-471.0	-333.4	-241.0	268109	53935149	119.8	5.3	4 br. f10/30
10.05	-98.2	-471.0	-333.4	-235.8	268109	53935149	117.2	5.2	4 br. f10/30
10.36	-93.0	-471.0	-333.4	-230.6	268109	53935149	114.6	5.1	4 br. f10/30
10.68	-87.9	-471.0	-333.4	-225.5	268109	53935149	112.1	5.0	4 br. f10/30
10.99	-82.7	-471.0	-333.4	-220.3	268109	53935149	109.5	4.8	4 br. f10/30
11.30	-80.4	-444.6	-366.6	-158.3	268109	53935149	78.7	3.5	4 br. f10/30
11.62	-75.2	-444.6	-366.6	-153.2	268109	53935149	76.1	3.4	4 br. f10/30
11.93	-70.0	-444.6	-366.6	-148.0	268109	53935149	73.6	3.3	4 br. f10/30
12.25	-64.9	-444.6	-366.6	-142.9	268109	53935149	71.0	3.1	4 br. f10/30
12.56	-59.7	-444.6	-366.6	-137.7	268109	53935149	68.5	3.0	4 br. f10/30
12.87	-56.6	-419.1	-404.1	-71.6	268109	53935149	35.6	1.6	4 br. f10/30
13.19	-51.5	-419.1	-404.1	-66.4	268109	53935149	33.0	1.5	4 br. f10/30
13.50	-46.3	-419.1	-404.1	-61.3	268109	53935149	30.5	1.3	4 br. f10/30
13.82	-41.1	-419.1	-404.1	-56.1	268109	53935149	27.9	1.2	4 br. f10/30
14.13	-36.0	-419.1	-404.1	-51.0	268109	53935149	25.3	1.1	4 br. f10/30
14.44	-32.0	-393.6	-444.3	18.7	268109	53935149	9.3	0.4	4 br. f10/30
14.76	-26.9	-393.6	-444.3	23.8	268109	53935149	11.8	0.5	4 br. f10/30
15.07	-21.7	-393.6	-444.3	29.0	268109	53935149	14.4	0.6	4 br. f10/30
15.39	-16.5	-393.6	-444.3	34.2	268109	53935149	17.0	0.8	4 br. f10/30
15.70	-10.3	-393.6	-444.4	39.3	268109	53935149	19.6	0.9	4 br. f10/30
13.70	-11.4	-333.0	-444.4	33.3	200103	33333143	13.0	0.5	4 01. 110/30

9.16 Verifica all'urto dei veicoli in svio

Criteri generali e oggetto delle verifiche

L'azione eccezionale dovuta all'urto di veicoli in svio sulle barriere di sicurezza stradali verrà tenuta in considerazione operando le verifiche di resistenza degli eventuali sbalzi della soletta in c.a. (sezione S1 della seguente immagine) e della sezione di attacco del cordolo alla soletta (Sezione S2).

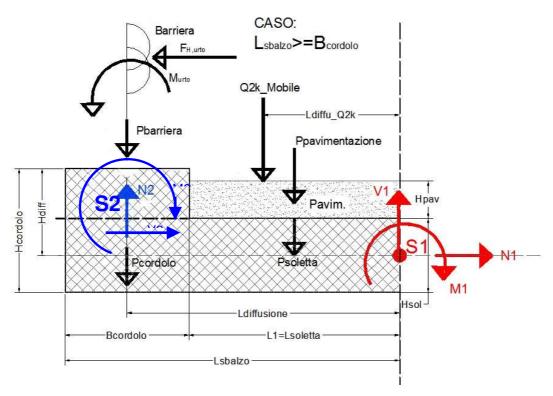
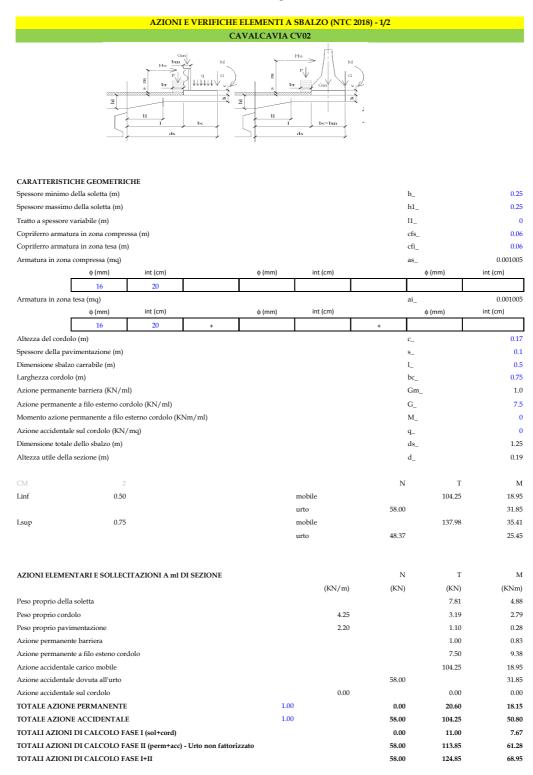
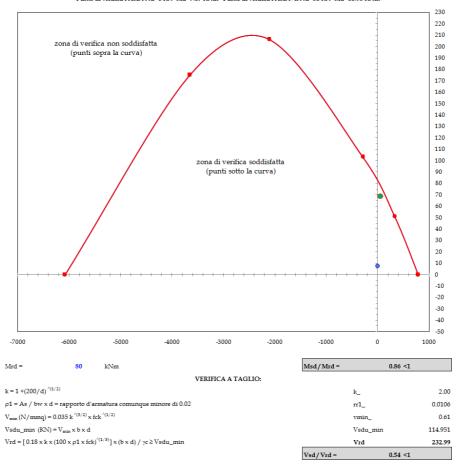



Figura 9-1 – Sezioni di verifica all'azione eccezionale dovuta all'urto del veicolo in svio

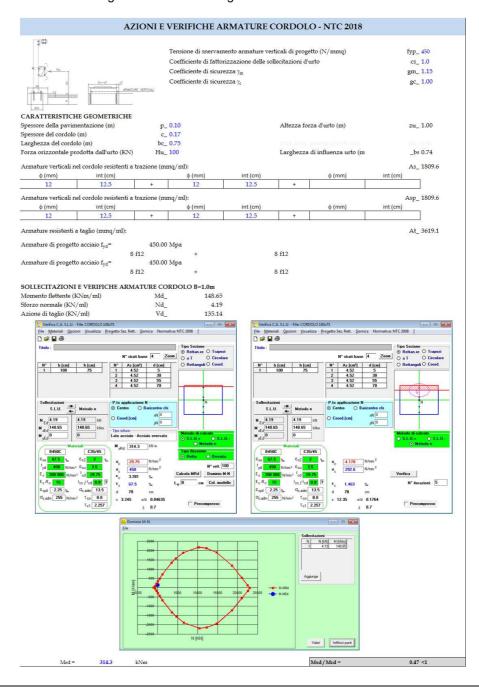
Siintendono escluse le verifiche riguardanti i cinematismi locali di rottura inerenti il collegamento della barriera di sicurezza al cordolo di coronamento sotto le azioni indotte dall'urto veicolare; più genericamente, si intende esclusa la verifica del funzionamento cinematico dell'intera barriera.

9.17 Verifica dello sbalzo della soletta (Sezione S₁)


Le verifiche della soletta sono riportate nel dettaglio delle schede seguenti in termini di capacità portante ultima della sezione sia a flessione sia a taglio.

Azioni e verifiche elementi a sbalzo

VERIFICA A PRESSOFLESSIONE: DIAGRAMMA DI INTERAZIONE M·N - SEZIONE A
Punto di verifica FASE I Nd=0 KN· Md=7.67 KNm - Punto di verifica FASE I+II Nd=58 KN· Md=68.95 KNm


Azioni e verifiche elementi a sbalzo - dominio di rottura e verifica a taglio

9.18 Verifiche del cordolo (Sezione S₂)

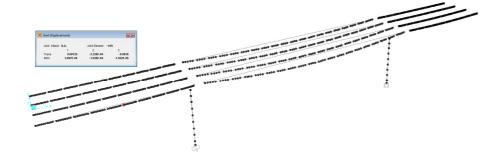
In questa fase si valuta l'adeguatezza delle armature di collegamento cordolo-soletta nei confronti dell'azione di strappo prodotta dell'urto del veicolo in svio.

Nelle seguenti verifiche si prenderanno in conto le armature di progetto dimensionate sulla base della geometria e della caratteristiche meccaniche dei tirafondi della barriera. In particolare si considera un'armatura costituita da 4 bracci verticali Ø12/12.5cm; 2 bracci orizzontali Ø12/12.5cm; 10 barre longitudinali Ø12mm.

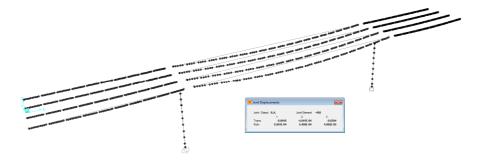
Qui di seguito si riportano le verifiche effettuate sui cordoli relativi ad un solo lato della carreggiata in quanto risultano avere una geometria simile o uguale.

VERIFICA A TAGLIO (Elementi senza armat	ure trasversali resistenti a	a taglio)							
$k = 1 + (200/d)^{(1/2)}$		k	_		1.54				
ρ 1 = As / bw x d = rapporto d'armatura comunque minore di 0.02		n	1_		0.0143				
$V_{min} (N/mmq) = 0.035 k^{(3/2)} x fck^{(1/2)}$		v	min_		0.41				
$Vsdu_min (KN) = V_{min} \times b \times d$		V	sdu_min		277.09				
$Vrd = [0.18 \times k \times (100 \times \rho 1 \times fck)^{(1/3)}] \times (b \times d) / \gamma c \ge Vsdu_min$		V	rd		706.59				
	$\mathbf{V}\mathbf{s}$	d/Vrd=		0.19 <1					
VERIFICA A TAGLIO E TRAZIONE (arm	ature integrative di proge	etto)							
Resistenza di calcolo a trazione (N/mmq) = ($fyp \times k / gm$)	f _{yd} =	450.0							
Tensione tangenziale (N / mmq)	τ=	37.3							
Tensione normale (N / mmq)	σ=	292.6							
$\sigma_{id} = radq (\sigma^2 + 3\tau^2)$		299.66	<	450.0					
VERIFICA SODDISFATTA									

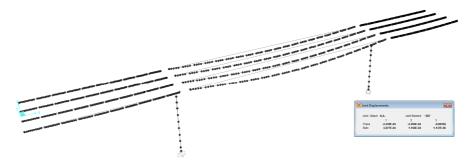
9.19 Verifiche a deformazione


Si riporta di seguito il grafico relativo ai valori di deformazione verticale massima e minima dell'impalcato considerando agenti i soli carichi variabili da traffico e la variazione termica differenziale.

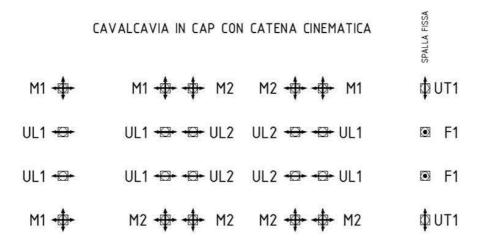
La deformazione verticale massima ammissibile per ciascuna campata è pari ad 1/500 della grandezza L_0 che si intende pari alla luce della campata, per le travate appoggiate e per le campate esterne di travate continue, mentre si assume pari a 0.7 della luce per le campate interne di travate continue.


Le verifiche di deformazione si intendono pertanto soddisfatte, risultando verificata la seguente diseguaglianza:

 $\delta_{vert,max} < L_0 / 500$


Campata 1 δ vert,max = 3.6 < 16000/500 = 32mm

Campata 2 $\delta \text{vert,max} = 20.4 < 30000/500 = 60 \text{mm}$



Campata 3 $\delta \text{vert,max} = 3.6 < 32000/500 = 64 \text{mm}$

9.20 Azioni sugli apparecchi di appoggio

Lo schema di disposizione degli apparecchi di appoggio del viadotto segue lo schema mostrato nella seguente figura, in cui la spalla fissa è la spalla SA.

Ove:

F sono gli apparecchi di appoggio di tipo Fisso;

UL1; UL2 sono gli apparecchi di appoggio di tipo Unidirezionale Longitudinale;

UT1; UT2 sono gli apparecchi di appoggio di tipo Unidirezionale Trasversale;

M1; M2 sono gli apparecchi di appoggio di tipo Mobile.

Si riportano di seguito le massime azioni agenti sugli apparecchi di appoggio, nelle combinazioni statiche (S.L.U.) e sismiche (S.L.V.).

	AZIONI SUGLI APPARECCHI D'APPOGGIO											
				STATICA	1	SISMICA						
ld	Tipo	Q.tà	N_{sd}	$H_{sd,LONG}$	H _{sd,TRASV}	N _{sd}	$H_{sd,LONG}$	H _{sd,TRASV}				
[-]	[-]	[-]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]				
F	Fisso	2	1650	350	150	700	1300	450				
UL1	Unidir long	6	2950	0	250	1400	0	1100				
UL2	Unidir long	4	2800	0	200	1450	0	1000				
UT1	Unidir trasv	2	1650	550	0	700	1500	0				
M1	Multidir	6	2950	0	0	1400	0	0				
M2	Multidir	4	2800	0	0	1450	0	0				

10. VERIFICHE PILA 1

10.1 Verifica Elevazione

Si riportano di seguito le verifiche relative alla pila 1; le verifiche sono state condotte sul fusto della pila, nella sezione di attacco alla fondazione.

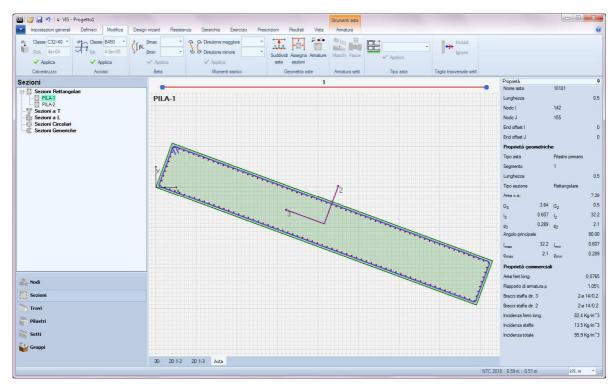


Figura 10-1 – Pila 1: sezione di verifica 7.285 x 1.00 – φ26/10

10.1.1 Verifica SLU-SLV

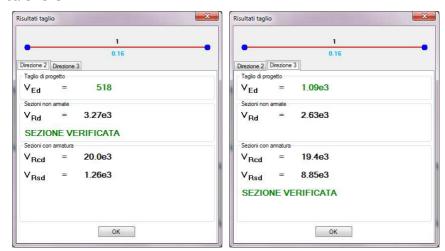


Figura 10-2 – Pila 1: Dettaglio verifiche a taglio (V2 e V3) (unità di misura: kN; m; °C)

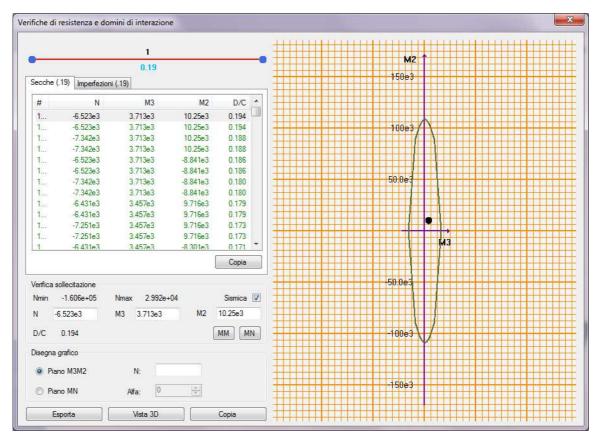


Figura 10-3 – Pila 1: Dettaglio verifica PMM – piano MM (unità di misura: kN; m; °C)

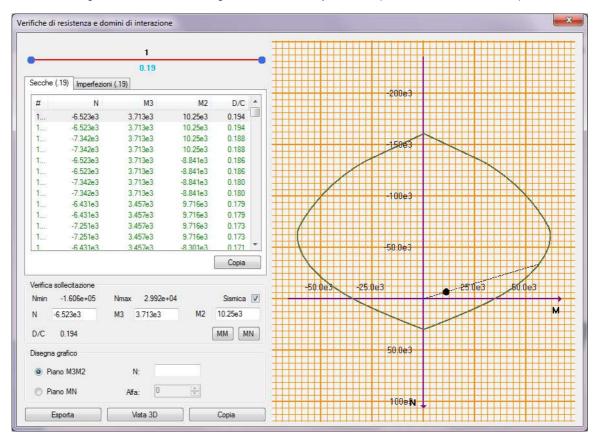


Figura 10-4 – Pila 1: Dettaglio verifica PMM – piano MN (unità di misura: kN; m; °C)

10.1.2 Verifica SLE - Controllo tensioni

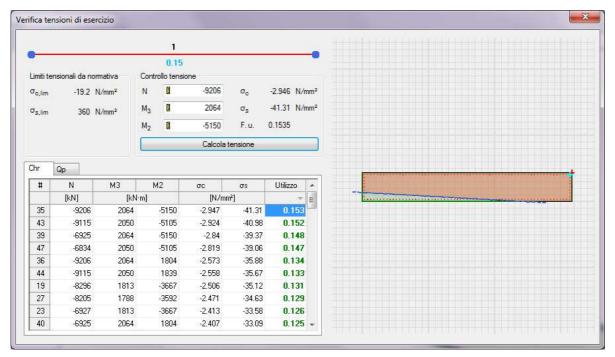


Figura 10-5 - Pila 1: Dettaglio verifica controllo tensioni (unità di misura: kN; m; °C)

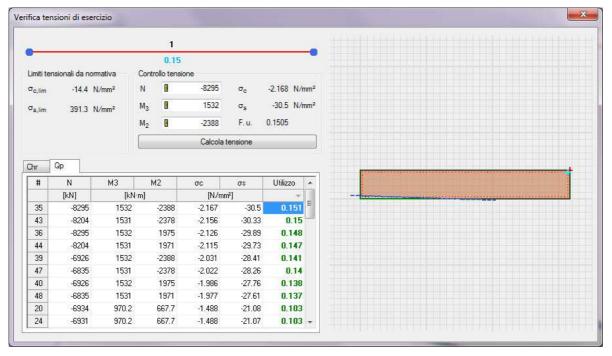


Figura 10-6 – Pila 1: Dettaglio verifica controllo tensioni (unità di misura: kN; m; °C)

10.1.3 Verifica SLE - Fessurazione

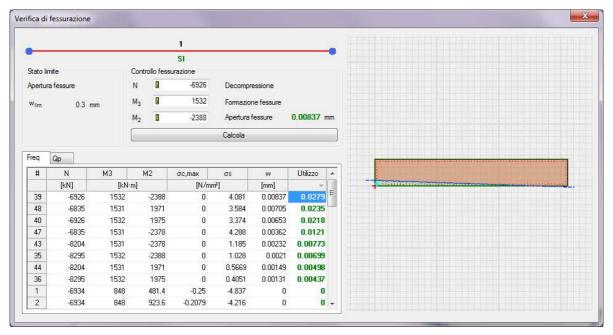


Figura 10-7 – Pila 1: Dettaglio verifica fessurazione (unità di misura: kN; m; °C)

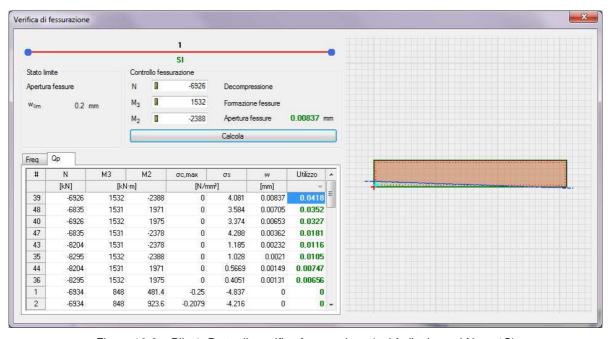


Figura 10-8 – Pila 1: Dettaglio verifica fessurazione (unità di misura: kN; m; °C)

10.2 Verifica fondazione

Si riportano di seguito alcune immagini del modello di calcolo.

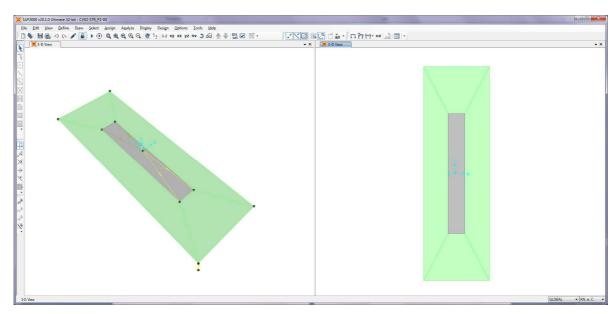


Figura 10-9 – Modello di calcolo

Il modello numerico è realizzato con elementi finiti bidimensionali tipo "shell-thick" ed elementi finiti tipo "link-linear" per il collegamento del nodo di riferimento al resto della struttura. Il nodo di riferimento è utilizzato per assegnare i carichi trasmessi dall'impalcato calcolati attraverso il modello numerico descritto nei paragrafi precedenti.

L'interazione terreno-struttura è stata tenuta in conto applicando alla zattera di fondazione delle molle "alla Winkler" assegnate nelle tre direzioni ortogonali.

		AZIO	ONI ALLO SPIC	CATO / PILE P1	: ASTA N.101	101				
ELEMENTO DI VERIFICA NUMERO POSIZIONE (NODO I=1 - NODO J=2) CARICHI MOBILI			10101 1 Min Max	TIPO SPALLA MOBILE	SPALLA P1					
Descrizione	CODTYPE	NRIGA	V2=TI [KN]	M3=MI [KNm]	V3=Tt [KN]	M2=Mtr [KNm]	T=Mt [KNm]	P=N [KN]	F	сс
G1-IMPAICATO	0	28	0	321	0	118	0	-1881	1.000	1.000
G1-SOLETTA	0	44	0	292	0	107	ō	-1711	1.000	1.000
G1-PILA	ō	36	ō	0	0	0	ō	-1614	1.000	1.000
G2-PERMANENTI	0	52	-2	235	5	698	60	-1728	1.000	1.000
E1-DISTORSIONI	0	4	0	0	0	0	0	0	1.000	1.000
E2-RITIRO	0	12	11	66	-30	-442	5	3	1.000	1.000
E4-CEDIMENTI	0	20	0	0	0	0	0	0	1.000	1.000
Q1-MOBILI-KK	1	194	-9	445	23	-3105	10	-2272	1.000	1.000
Q1-MOBILI-FQ	1	98	-5	288	13	-1741	30	-1361	1.000	1.000
Q3-FRENATURA	0	252	-4	3	10	106	2	56	1.000	1.000
Q4-CENTRIFUGA	0	260	0	0	0	0	0	0	1.000	1.000
Q5-VENTO-C	0	268	48	281	-131	-1280	52	-1	1.000	1.000
Q7-ATTRITO-P	0	300	0	0	0	0	0	0	1.000	1.000
Q6-SISMA_L	0	276	126	533	202	1902	98	864	1.000	1.000
Q6-SISMA_T	0	284	465	2610	987	8617	397	90	1.000	1.000
Q6-SISMA_V	0	292	19	97	43	451	29	197	1.000	1.000
DATI PER CALCOLO FONDAZIONI PILE										
Accelerazione al suolo (ag)				0.079				Accelerazione dir X	>>	0.777
Coefficiente di suolo (S=S _S x S _T)				1.000				Accelerazione dir Y	>>	0.777
kh = S x bm ag/g = coefficiente sismico orizzontale				0.079				Accelerazione dir Z	>>	0.388
k _v = 0.5 k _h = coefficiente sismico verticale				0.040				G1-PESO_FONDAZION	NE .	1.000
β _m = coefficiente di riduzione dell'accelerazione massim	a attesa al sito			1.00				G1-PESO_RINTERRO		20.000
Y _{RINT} = Peso rinterro				20.00				Q6-INERZIA MASSE L		0.777
HR = Altezza rinterro	1.00				Q6-INERZIA MASSE T		0.777			
Diametro pali				0.00				Q6-INERZIA_MASSE \		0.388
Lunghezza elastica dei pali				0.00				CO-HACHEIN ININGSE V	·	0.300
Scalzamento				0.00						
Classe del calcestruzzo pali				0.00						
Modulo di elasticità del calcestruzzo dei pali				2.058E+07						
				2.0302.071					L	

Figura 10-10 – Tabella assegnazione azioni al modello di calcolo

10.2.1 Verifiche strutture SLU-SLV

Si riportano di seguito le color map che diagrammano le richieste di armatura calcolate dal programma in funzione dell'inviluppo delle sollecitazioni per lo stato limite in oggetto, a cui viene applicato il metodo di Wood - Armer nelle due direzioni ortogonali.

Le richieste di armatura, espresse in mm²/mm, sono rappresentate con diversi colori filtrati sul valore massimo funzione dell'armatura di progetto.

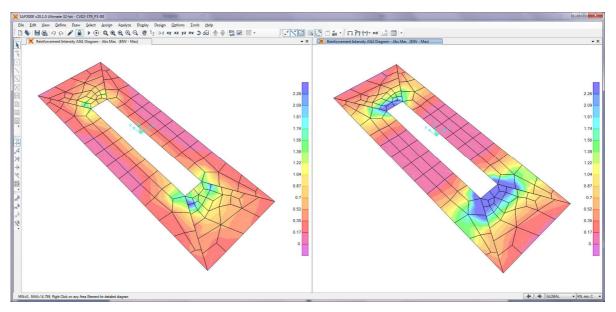


Figura 10-11 - Richiesta di armatura: Ast1_SX e Ast2_DX

Le richieste di armatura massime sono compatibili con le incidenze indicate negli elaborati e riassunte nella tabella sottostante.

		Ast1			Ast2	
	passo	Ф	Area	passo	Ф	Area
	cm	mm	mm²/mm	cm	mm	mm²/mm
PLATEA	20	24	2.26	20	24	2.26

10.2.2 Verifica a ribaltamento

Di seguito si riporta la verifica al ribaltamento della pila, valutato nella direzione longitudinale e trasversale dell'impalcato, considerando il cinematismo di ribaltamento agente rispetto al nodo illustrato nella seguente immagine.

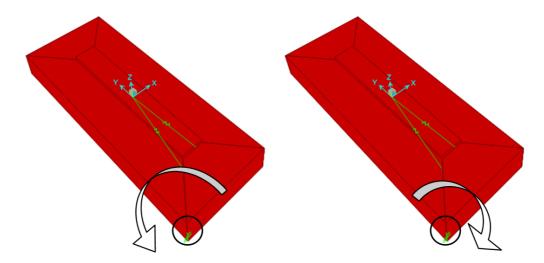


Figura 10-12 – Zattera di fondazione: cinematismo di ribaltamento

Le verifiche, in accordo al paragrafo 6.5.3.1 delle NTC18, sono condotte considerando l'Approccio di tipo 2, con la combinazione (A1+M1+R3), dove si pone R3 = 1.15 per le condizioni SLU e R3 = 1 per le condizioni SLV.

Le combinazioni di verifica del ribaltamento allo SLU sono:

VER_RIB_C in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte carico;

VER RIB S in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte scarico;

TABLE: Combination Definitions											
ComboName	ComboType	AutoDesign	CaseType	CaseName	ScaleFactor						
Text	Text	Yes/No	Text	Text	Unitless						
VER_RIB_C	Linear Add	No	Response Combo	EQU_1	1.15						
VER_RIB_C			Response Combo	EQU_3	1						
VER_RIB_S	Linear Add	No	Response Combo	EQU_2	1.15						
VER RIB S			Response Combo	EQU 3	1						

Le combinazioni di verifica del ribaltamento allo SLV sono descritte nel paragrafo relativo alle combinazioni di carico.

Per la convenzione dei segni utilizzata, le verifiche si intendono soddisfatte quando il segno della reazione vincolare del momento intorno all'asse di ribaltamento risulta:

- positivo nella direzione longitudinale (M1 > 0);
- negativo nella direzione trasversale (M2 < 0);

Si riportano i risultati ottenuti.

TABLE: Joint Reactions								
Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
1	SLU_SL1	Combination	479	606	10389	60775	-18039	-1604
1	SLU_SL2	Combination	467	580	10212	59928	-17757	-1601
1	SLU_ST1	Combination	580	1291	9846	51808	-15298	-682
1	SLU_ST2	Combination	569	1265	9669	50961	-15016	-679
1	SLU_V1	Combination	267	494	9989	59331	-17719	-500
1	SLU_V2	Combination	230	408	9399	56507	-16779	-491
1	VER_RIB_C	Combination	98	267	11176	61491	-20226	279
1	VER_RIB_S	Combination	85	231	8466	51656	-15565	58

i risultati ottenuti, evidenziati in giallo, soddisfano tutti tale condizione.

Sono state lette le varie combinazioni rispetto all'asse di ribaltamento.

In particolare le combinazioni di tipo ribaltante sono state incrementate x 1.15 (paragrafo 6.5.3.1.1 delle NTC18, in osservanza alla Tab. 6.5.I) mentre quelle stabilizzanti sono state assunte unitarie. Il risultato della verifica mostra ulteriori riserve di sicurezza rispetto alle minime imposte.

11. VERIFICHE PILA 2

11.1 Verifica Elevazione

11.1.1 Verifica SLU-SLV

Si riportano di seguito le verifiche relative alla pila 2; le verifiche sono state condotte sul fusto della pila, nella sezione di attacco alla fondazione.

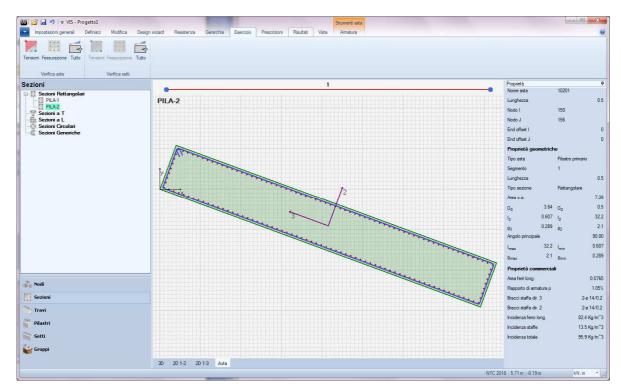


Figura 11-1 – Pila 2: sezione di verifica 7.285 x $1.00 - \phi 26/10$

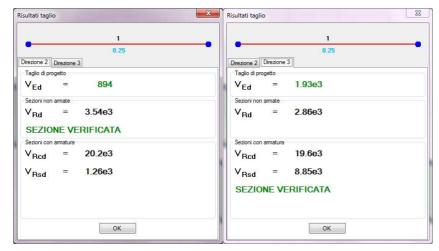


Figura 11-2 - Pila 2: Dettaglio verifiche a taglio (V2 e V3) (unità di misura: kN; m; °C)

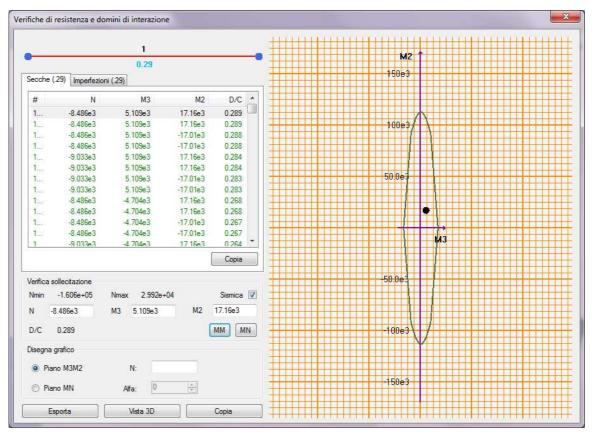


Figura 11-3 - Pila 2: Dettaglio verifica PMM - piano MM (unità di misura: kN; m; °C)

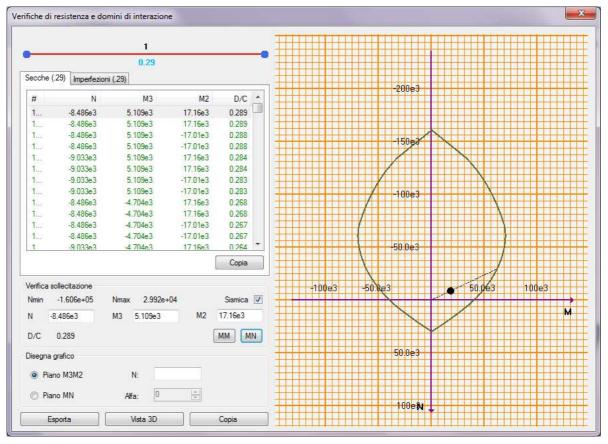


Figura 11-4 - Pila 2: Dettaglio verifica PMM - piano MN (unità di misura: kN; m; °C)

11.1.2 Verifica SLE - Controllo tensioni

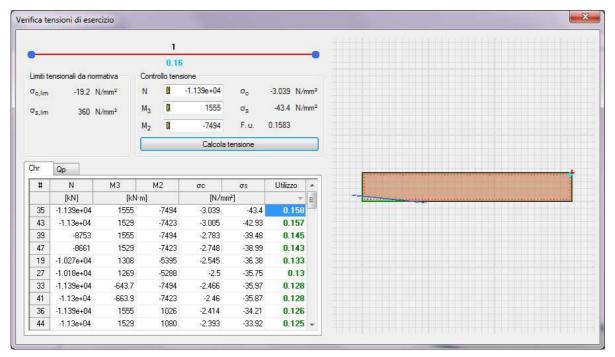


Figura 11-5 - Pila 2: Dettaglio verifica controllo tensioni (unità di misura: kN; m; °C)

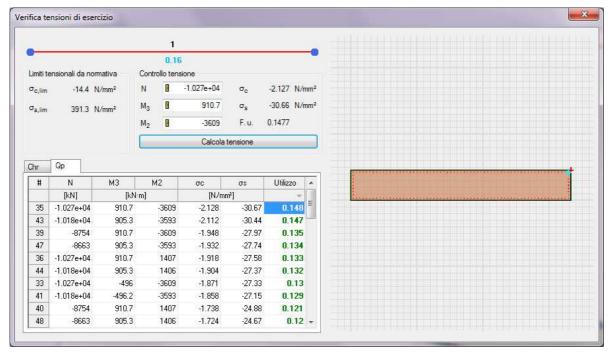


Figura 11-6 – Pila 2: Dettaglio verifica controllo tensioni (unità di misura: kN; m; °C)

11.1.3 Verifica SLE - Fessurazione

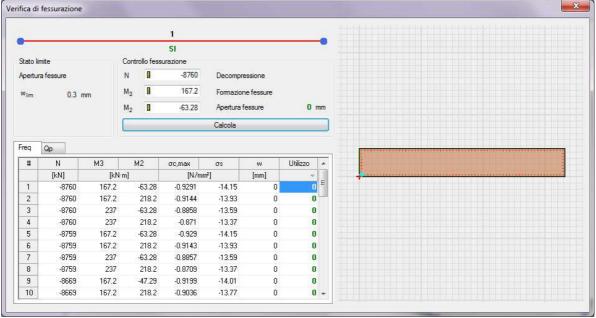


Figura 11-7 – Pila 2: Dettaglio verifica fessurazione (unità di misura: kN; m; °C)

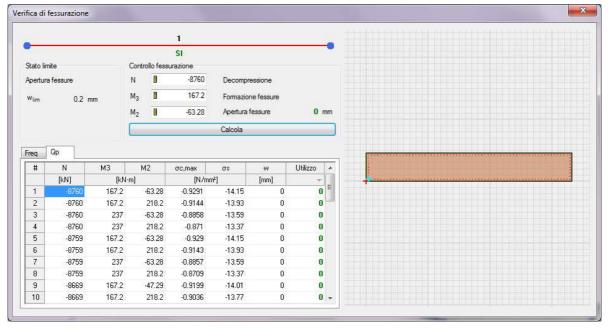


Figura 11-8 – Pila 2: Dettaglio verifica fessurazione (unità di misura: kN; m; °C)

11.2 Verifica fondazione

Si riportano di seguito alcune immagini del modello di calcolo.

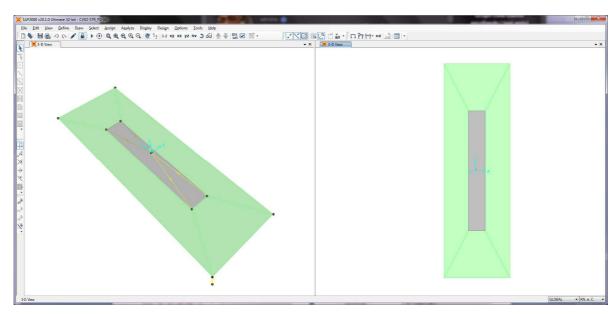


Figura 11-9 - Modello di calcolo

Il modello numerico è realizzato con elementi finiti bidimensionali tipo "shell-thick" ed elementi finiti tipo "link-linear" per il collegamento del nodo di riferimento al resto della struttura. Il nodo di riferimento è utilizzato per assegnare i carichi trasmessi dall'impalcato calcolati attraverso il modello numerico descritto nei paragrafi precedenti.

L'interazione terreno-struttura è stata tenuta in conto applicando alla zattera di fondazione delle molle "alla Winkler" assegnate nelle tre direzioni ortogonali.

		AZIO	ONI ALLO SPIC	CATO / PILE P2	: ASTA N.10	201				
ELEMENTO DI VERIFICA NUMERO POSIZIONE (NODO I=1 - NODOJ=2) CARICHI MOBILI			10201 1 Min Max	TIPO SPALLA MOBILE P M2	P1					
Descrizione	CODTYPE	NRIGA	V2=TI [KN]	M3=MI [KNm]	V3=Tt [KN]	M2=Mtr [KNm]	T=Mt [KNm]	P=N [KN]	F	cc
G1-IMPALCATO	0	30	0	62	0	23	0	-2562	1.000	1.000
G1-SOLETTA	0	46	0	57	0	21	0	-2330	1.000	1.000
G1-PILA	0	38	Ö	0	0	0	Ö	-1614	1.000	1.000
G2-PERMANENTI	0	54	ō	48	ō	174	70	-2253	1.000	1.000
E1-DISTORSIONI	0	6	ō	0	ō	0	0	0	1.000	1.000
E2-RITIRO	0	14	12	70	-32	-282	15	-1	1.000	1.000
E4-CEDIMENTI	0	22	0	0	0	0	0	0	1.000	1.000
O1-MOBILI-KK	1	218	-1	361	2	-4251	-8	-2633	1.000	1.000
O1-MOBILI-FO	1	122	-1	259	2	-2188	23	-1514	1.000	1.000
Q3-FRENATURA	0	254	2	0	-5	-54	12	-1	1.000	1.000
Q4-CENTRIFUGA	0	262	0	0	0	0	0	0	1.000	1.000
Q5-VENTO-C	0	270	67	397	-182	-1786	76	0	1.000	1.000
Q7-ATTRITO-P	0	302	0	0	0	0	0	0	1.000	1.000
Q6-SISMA_L	0	278	117	491	178	1669	125	463	1.000	1.000
Q6-SISMA_T	0	286	843	4695	1835	16360	815	72	1.000	1.000
Q6-SISMA_V	0	294	13	97	24	272	50	207	1.000	1.000
DATI PER CALCOLO FONDAZIONI PILE										
Accelerazione al suolo (ag)				0.079				Accelerazione dir X -	»	0.777
Coefficiente di suolo (S=S _S x S _T)				1.000				Accelerazione dir Y -	>>	0.777
kh = S x bm ag/g = coefficiente sismico orizzontale				0.079				Accelerazione dir Z -	>>	0.388
k _v = 0.5 k _b = coefficiente sismico verticale				0.040				G1-PESO_FONDAZIO	NE	1.000
β _m = coefficiente di riduzione dell'accelerazione massim	a attesa al sito			1.00				G1-PESO_RINTERRO		20.000
Y _{RINT} = Peso rinterro				20.00				Q6-INERZIA MASSE		0.777
HR = Altezza rinterro				1.00				Q6-INERZIA MASSE		0.777
Diametro pali				0.00				Q6-INERZIA_MASSE_		0.388
Lunghezza elastica dei pali				0.00				QU-INCINZIA_IVIAGGE_	·	0.300
Scalzamento				0.00						
Classe del calcestruzzo pali				0.00						
Modulo di elasticità del calcestruzzo dei pali				2.058E+07						
									L	

Figura 11-10 – Tabella assegnazione azioni al modello di calcolo

11.2.1 Verifiche strutture SLU-SLV

Si riportano di seguito le color map che diagrammano le richieste di armatura calcolate dal programma in funzione dell'inviluppo delle sollecitazioni per lo stato limite in oggetto, a cui viene applicato il metodo di Wood - Armer nelle due direzioni ortogonali.

Le richieste di armatura, espresse in mm²/mm, sono rappresentate con diversi colori filtrati sul valore massimo funzione dell'armatura di progetto.

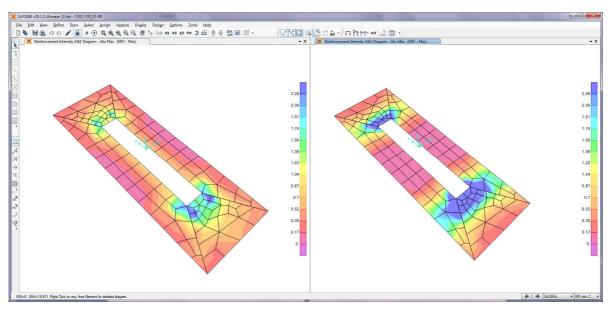


Figura 11-11 - Richiesta di armatura: Ast1_SX e Ast2_DX

Le richieste di armatura massime sono compatibili con le incidenze indicate negli elaborati e riassunte nella tabella sottostante.

		Ast1			Ast2	
	passo	Φ	Area	passo	Ф	Area
	cm	mm	mm²/mm	cm	mm	mm²/mm
PLATEA	20	24	2.26	20	24	2.26

11.2.2 Verifica a ribaltamento

Di seguito si riporta la verifica al ribaltamento della pila, valutato nella direzione longitudinale e trasversale dell'impalcato, considerando il cinematismo di ribaltamento agente rispetto al nodo illustrato nella seguente immagine.

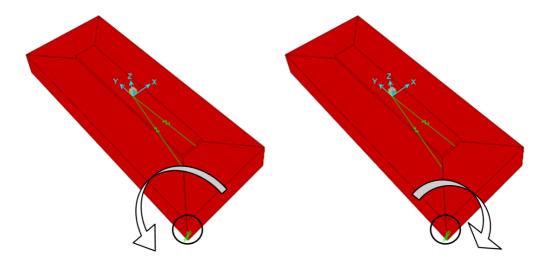


Figura 11-12 – Zattera di fondazione: cinematismo di ribaltamento

Le verifiche, in accordo al paragrafo 6.5.3.1 delle NTC18, sono condotte considerando l'Approccio di tipo 2, con la combinazione (A1+M1+R3), dove si pone R3 = 1.15 per le condizioni SLU e R3 = 1 per le condizioni SLV.

Le combinazioni di verifica del ribaltamento allo SLU sono:

VER RIB C in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte carico;

VER RIB S in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte scarico;

TABLE: Combin	TABLE: Combination Definitions										
ComboName	ComboType	AutoDesign	CaseType	CaseName	ScaleFactor						
Text	Text	Yes/No	Text	Text	Unitless						
VER_RIB_C	Linear Add	No	Response Combo	EQU_1	1.15						
VER_RIB_C			Response Combo	EQU_3	1						
VER_RIB_S	Linear Add	No	Response Combo	EQU_2	1.15						
VER_RIB_S			Response Combo	EQU_3	1						

Le combinazioni di verifica del ribaltamento allo SLV sono descritte nel paragrafo relativo alle combinazioni di carico.

Per la convenzione dei segni utilizzata, le verifiche si intendono soddisfatte quando il segno della reazione vincolare del momento intorno all'asse di ribaltamento risulta:

- positivo nella direzione longitudinale (M1 > 0);
- negativo nella direzione trasversale (M2 < 0);

Si riportano i risultati ottenuti.

TABLE: Jo	int Reactions	i						
Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
1	SLU_SL1	Combination	580	828	11811	68575	-20854	-1638
1	SLU_SL2	Combination	572	813	11629	67570	-20557	-1648
1	SLU_ST1	Combination	952	2123	11537	55039	-16834	-987
1	SLU_ST2	Combination	945	2108	11355	54034	-16537	-997
1	SLU_V1	Combination	371	720	11700	68957	-21075	-548
1	SLU_V2	Combination	345	671	11091	65608	-20084	-583
1	VER_RIB_C	Combination	119	325	13030	70982	-24284	303
1	VER_RIB_S	Combination	115	315	10110	61992	-19226	78

i risultati ottenuti, evidenziati in giallo, soddisfano tutti tale condizione.

Sono state lette le varie combinazioni rispetto all'asse di ribaltamento.

In particolare le combinazioni di tipo ribaltante sono state incrementate x 1.15 (paragrafo 6.5.3.1.1 delle NTC18, in osservanza alla Tab. 6.5.I) mentre quelle stabilizzanti sono state assunte unitarie. Il risultato della verifica mostra ulteriori riserve di sicurezza rispetto alle minime imposte.

12. VERIFICA SPALLA SA

12.1 Modello di calcolo

Per le strutture della spalla è stato definito un modello numerico rappresentativo con il programma di calcolo agli elementi finiti "Sap2000" della Computer and Structures Inc.

Si riportano di seguito alcune immagini del modello di calcolo.

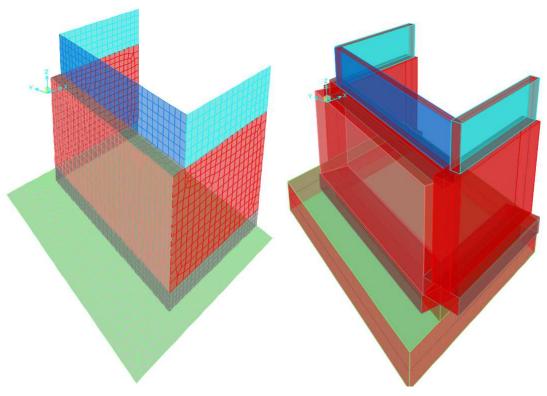


Figura 12-1 – Modello di calcolo

Il modello numerico è realizzato con elementi finiti bidimensionali tipo "shell-thick" ed elementi finiti tipo "link-linear" per il collegamento del nodo di riferimento al resto della struttura. Il nodo di riferimento è utilizzato per assegnare i carichi trasmessi dall'impalcato calcolati attraverso il modello numerico descritto nei paragrafi precedenti.

Le azioni agenti direttamente sulla spalla sono assegnate come carichi uniformi applicati agli elementi "shell" e come carichi nodali attraverso leggi di variazione lineare "joint pattern", tali carichi sono assegnati unitari e vengono poi resi congruenti con i valori di progetto attraverso dei moltiplicatori che agiscono nei casi di analisi "load case".

L'interazione terreno-struttura è stata tenuta in conto applicando alla zattera di fondazione delle molle "alla Winkler" assegnate nelle tre direzioni ortogonali.

L'azione sismica del terreno è stata calcolata con la formulazione di Mononobe-Okabe.

Si riportano di seguito le azioni assegnate al modello numerico, a tali azioni viene assegnato il segno che ne massimizza gli effetti.

		REA	AZIONI SPAL	LA SP1: ASTA	N.10001 - B	RADANICA -	VIOZ - SPALI	.E			
ELEMENTO DI VERIFICA NUMERO				10001	TIPO SPALLA	SPALLA					
POSIZIONE (NODO I=1 - NODOJ=2))			2	FISSA	SP1	ļ				
CARICHI MOBILI				Min Max	Ρ	SP1					
				V2=TI	™ M2 ▼ M3=MI	V3=Tt	M2=Mtr	T=Mt	P=N	F	
Descrizione		CODTYPE	NRIGA	V2=11 [KN]	[KNm]	[KN]	[KNm]	[KNm]	[KN]	r	
31-IMPALCATO		0	27	0	0	0	0	0	-655	1.000	1.
G1-SOLETTA		0	35	0	0	0	0	0	-596	1.000	1.0
G2-PERMANENTI		0	43	0	67	-3	180	-47	-644	1.000	1.0
1-DISTORSIONI		0	3	0	0	0	0	0	0	1.000	1.
2-RITIRO		0	11	0	98	65	298	1997	-2	1.000	1.
4-CEDIMENTI		0	19	0	0	0	0	0	0	1.000	1.
Q1-MOBILI-KK		1	163	0	-848	-1	-2305	-15	-1506	1.000	1.
11-MOBILI-FO		1	67	0	-559	1	-1517	18	-1016	1,000	1
3-FRENATURA		0	243	-571	-290	-6	-16	6	-56	1.000	1
Q4-CENTRIFUGA		0	251	0	0	0	0	0	0	1.000	1
Q5-VENTO-C		0	259	0	-59	-68	-195	-115	8	1.000	1
Q7-ATTRITO-P		0	291	0	0	0	0	0	0	-1.000	1.
Q6-SISMA_L		0	267	-4459	-2196	-78	-184	-182	-350	-1.000	1.
Q6-SISMA_T		0	275	-453	-411	-316	-918	-1714	-60	-1.000	1.
Q6-SISMA_V		0	283	-300	-155	-29	-93	-45	-148	-1.000	1.
DATI PER CALCOLO SPALLE											
						1		.,			
Accelerazione al suolo					0.079	1	_	verso Kv		1	1
Coefficiente di suolo (S=S _S x S _T)					1.000		θ	arctg Kh /(1±Kv			0
x _h = S x b _m a _g /g = coefficiente sism					0.079		δ	angolo attr.terra	-muro	0.0	0.
k_v = 0.5 k _h = coefficiente sismico v	verticale				0.040		ψ	angolo parete		90.0	1.
3 _m = coefficiente di riduzione dell	'accelerazione massir	ma attesa al sito			1	1	β	angolo terreno		0.0	0.
iointa su tutta l'altezza (1=si:0=n	10)				1	1	ф	angolo attrito		35.0	0.
Metodo spinta sismica (M=Mono					M	1	Км	K Mononobe-Ok	ahe		0.
KO (coefficiente di spinta in quiet					0.426	1	K _M (1±Kv)	K Mononobe-Ok			0.
Ka (coefficiente di spinta attiva)					0.271		Ysp	Peso terreno di s		18	
Q (variabile a tergo della spalla)	KN/ma				20		YRINT	Peso rinterro		18	
Spalla passante con speroni (1=s					0		Kw	K Wood			0.
Spinte statiche ortogonali muri o					1	1	α	Angolo inclinazi	one spalla	-20.2	
Rapporto fra lunghezza e spessor					6.29	1	FR	Frenatura parag		240.0	24
Rapporto fra lunghezza e spessor					29.09		HR	Altezza rinterro			
Dimensione longitudinale del rin	terro ai fini del calcol	o dell'inerzia sism	ica		7.54			Diametro pali		*	
Dimensione trasversale del rinter					11.00			Lunghezza elasti	ca dei nali		
Rapporto dimensione trasversale					1.31			Scalzamento	ca aci paii		(
Geometria della fondazione (1=re			21011C		0			CLS / Modulo ela	stico CLS pali	28	3.23E
Accelerazione dir X >>		1		Γ	Τ	Τ	I	0.775	T	r	
Accelerazione dir Y >>									-0.775	0.775	
Accelerazione dir Z >>											0.387
	G1-PESO_SPALLA	G1-	G3-	Q1-SPINTA_MOBILI	Q3-	G3-	Q6-	Q6-	Q6-	Q6-	Q6-
CASI DI CARICO UNITARI		PESO_RINTERRO	SPINTA_TERRA_S		FRENATURA_PAR	SPINTA_TERRA_SI	SOVRASPINTA_L	INERZIA_MASSE_I	. INERZIA_MASSE_	INERZIA_MASSE_	INERZIA_MAS
			TA		A	S			TP	TN	v
S1-PESO SPALLA	1.000										
1_O_MURO			7.676			4.578	0.922				
J1_O_MURO				8.528			0.000	10.067			
1_P_MURO			0.000	1		-10.595	-2.135				
J1 P MURO				0.000			0.000	-23.299			
1_O_PARA			7.676			4.578	0.922				
				8.528			0.000	10.067		1	
			0.000	0.520	i .	-49.002	-9.873	1 10.007	1	i	
J1_O_PARA		 	0.000	0.000	†	-45.002	0.000	-107.758			
J1_O_PARA 1_P_PARA				g U.UUU	2	4.878	0.000	-107.738		i e	
J1_O_PARA '1_P_PARA J1_P_PARA			7.676		8						
J1_O_PARA 1_P_PARA J1_P_PARA 1_O_FOND			7.676	0.520		4.070		1		1	
11_O_PARA 1_P_PARA 1 <u>P_PARA</u> 1_O_FOND 11_O_FOND				8.528			0.000				
1_O_PARA 1_P_PARA 1_P_PARA 1_O_FOND 1_O_FOND 1_P_FOND			7.676 0.000			0.000	0.000 0.000				
1_O_PARA 1_P_PARA 1_P_PARA 1_O_FOND 1_O_FOND 1_P_FOND 1_P_FOND			0.000	8.528		0.000	0.000 0.000 0.000				
1_O_PARA 1_P_PARA 1_P_PARA 1_O_FOND 1_O_FOND 1_P_FOND 1_P_FOND 1_SPERONI				0.000			0.000 0.000 0.000 0.000				
II_ O_PARA II_ P_PARA II_ P_PARA I_ O_FOND II_ O_FOND II_ P_FOND II_ P_FOND II_ P_FOND II_ SPERONI			0.000			0.000	0.000 0.000 0.000	0.000			***************************************
11_O_PARA 11_P_PARA 11_P_PARA 11_O_FOND 11_O_FOND 11_P_FOND 11_P_FOND 11_PFENDI 11_SPERONI 11_SPERONI			0.000	0.000		0.000	0.000 0.000 0.000 0.000	0.000			
11_O_PARA 11_P_PARA 11_P_PARA 11_O_FOND 11_O_FOND 11_O_FOND 11_P_FOND 11_P_FOND 11_PFENDN 11_SPERONI 11_SPERONI			0.000	0.000		0.000	0.000 0.000 0.000 0.000	0.000	15.642		
1. O PARA 11. P PARA 11. P PARA 11. P PARA 10. FOND 11. O FOND 11. P FOND 11. P FOND 11. SPERON 11. SPERON 11. SPERON 11. SPANDIERE 11. BANDIERE 11. BANDIERE			0.000	0.000		0.000	0.000 0.000 0.000 0.000	0.000	15.642	15.642	
		140.400	0.000	0.000 0.000 8.528		0.000	0.000 0.000 0.000 0.000	0.000	15.642	15.642	5.546

Figura 12-2 – Tabella assegnazione azioni al modello di calcolo

12.2 Verifiche strutture SLU-SLV

Si riportano di seguito le color map che diagrammano le richieste di armatura calcolate dal programma in funzione dell'inviluppo delle sollecitazioni per lo stato limite in oggetto, a cui viene applicato il metodo di Wood - Armer nelle due direzioni ortogonali.

Le richieste di armatura, espresse in mm²/mm, sono rappresentate con diversi colori filtrati sul valore massimo funzione dell'armatura di progetto.

I versi di disposizione delle armature denominate nel seguito come: A_{st1} e A_{st2} sono mostrati nella figura sottostante.

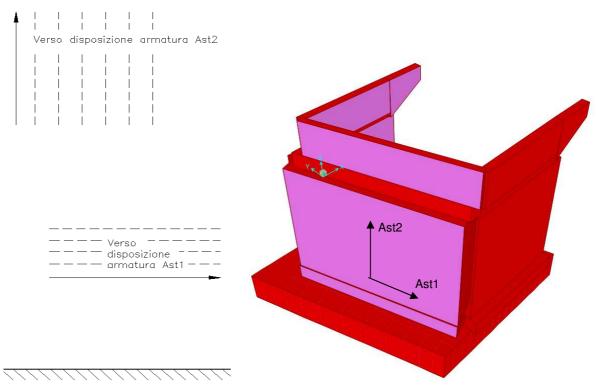


Figura 12-3 – Richiesta di armatura elevazione: convenzioni

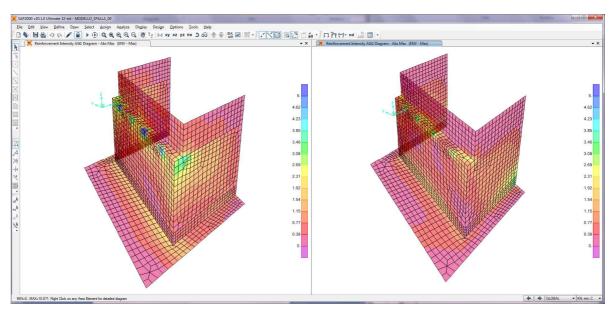


Figura 12-4 – Richiesta di armatura: Ast1 (sinistra) e Ast2 (destra)

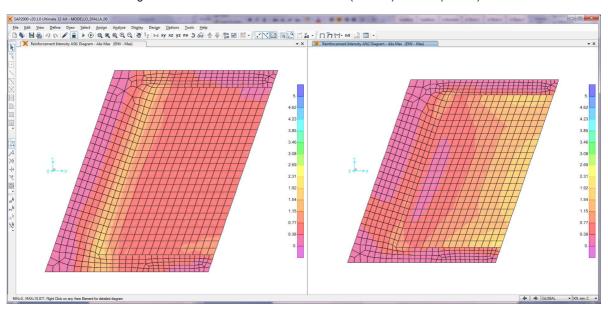


Figura 12-5 – Richiesta di armatura: Ast1 (sinistra) e Ast2 (destra) – dettaglio fondazione

Le richieste di armatura massime sono compatibili con le incidenze indicate negli elaborati e riassunte nella tabella sottostante.

		Ast1			Ast2	
	passo	Ф	Area	passo	Φ	Area
	cm	mm	mm²/mm	cm	mm	mm²/mm
MURO PARAGHIAIA	10	16	2.01	20	16	1.01
MURO FRONTALE	10	24	4.52	10	20	3.14
MURI ANDATORI	10	24	4.52	10	24	4.52
PLATEA	20	24	2.26	20	24	2.26

12.3 Verifica a ribaltamento

Di seguito si riporta la verifica al ribaltamento della spalla, valutato nella direzione longitudinale dell'impalcato, considerando il cinematismo di ribaltamento agente rispetto al nodo illustrato nella seguente immagine.

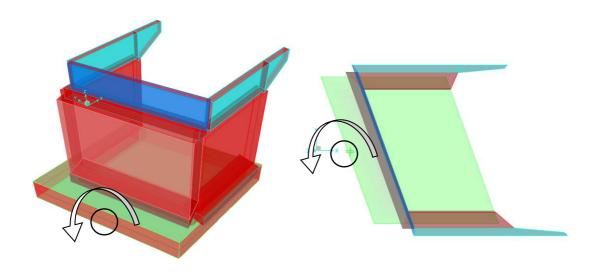


Figura 12-6 – Zattera di fondazione: cinematismo di ribaltamento

Le verifiche, in accordo al paragrafo 6.5.3.1 delle NTC18, sono condotte considerando l'Approccio di tipo 2, con la combinazione (A1+M1+R3), dove si pone R3 = 1.15 per le condizioni SLU e R3 = 1 per le condizioni SLV.

Le combinazioni di verifica del ribaltamento allo SLU sono:

VER_RIB_C in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte carico;

VER_RIB_S in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte scarico.

TABLE: Combination Definitions											
ComboName	ComboType	AutoDesign	CaseType	CaseName	ScaleFactor						
Text	Text	Yes/No	Text	Text	Unitless						
VER_RIB_C	Linear Add	No	Response Combo	EQU_1	1.15						
VER_RIB_C			Response Combo	EQU_3	1						
VER_RIB_S	Linear Add	No	Response Combo	EQU_2	1.15						
VER_RIB_S			Response Combo	EQU_3	1						

Le combinazioni di verifica del ribaltamento allo SLV sono descritte nel paragrafo relativo alle combinazioni di carico.

Per la convenzione dei segni utilizzata, le verifiche si intendono soddisfatte quando il segno della reazione vincolare del momento intorno all'asse di ribaltamento risulta negativo.

TABLE: Jo	int Reactions	1						
Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
1	SLU_SL1	Combination	10059	-8230	19918	5749	-70207	-31928
1	SLU_SL2	Combination	9787	-7330	20219	2864	-74091	-27765
1	SLU_ST1	Combination	5470	-9216	19383	9539	-95137	-48567
1	SLU_ST2	Combination	4565	-6216	20385	-78	-108082	-34691
1	SLU_V1	Combination	5363	-8362	20323	6101	-102040	-43227
1	SLU_V2	Combination	5092	-7461	20624	3216	-105923	-39064
1	SLU_SL1_V-	Combination	9879	-8063	19413	5811	-68525	-31390
1	SLU_SL2_V-	Combination	9607	-7162	19714	2925	-72408	-27227
1	SLU_ST1_V-	Combination	5290	-9049	18877	9600	-93455	-48029
1	SLU_ST2_V-	Combination	4386	-6048	19879	-16	-106400	-34153
1	SLU_V1_V-	Combination	4764	-7803	18638	6307	-96432	-41433
1	SLU_V2_V-	Combination	4492	-6903	18939	3422	-100315	-37270
1	VER_RIB_C	Combination	7585	-9092	18465	6631	-75830	-53047
1	VER_RIB_S	Combination	6699	-8575	16971	11270	-80079	-55065
1	VER_RIB_V	Combination	6699	-8214	15640	12352	-76645	-54419

I risultati ottenuti, evidenziati in giallo, soddisfano tutti tale condizione.

Sono state lette le varie combinazioni rispetto all'asse di ribaltamento.

In particolare le combinazioni di tipo ribaltante sono state incrementate x 1.15 (paragrafo 6.5.3.1.1 delle NTC18, in osservanza alla Tab. 6.5.I) mentre quelle stabilizzanti sono state assunte unitarie. Il risultato della verifica mostra ulteriori riserve di sicurezza rispetto alle minime imposte.

13. VERIFICA SPALLA SB

In sede di redazione finale del progetto definitivo la Spalla B ha subito una variazione di carpenteria al fine di uniformarla tipologicamente con la Spalla A. La variazione comporta l'incremento della sicurezza dell'opera e pertanto, in quanto, segue si riportano, per brevità, le verifiche principali eseguite sulla precedente versione.

13.1 Modello di calcolo

Per le strutture della spalla è stato definito un modello numerico rappresentativo con il programma di calcolo agli elementi finiti "Sap2000" della Computer and Structures Inc.

Si riportano di seguito alcune immagini del modello di calcolo.

Figura 13-1 – Modello di calcolo

Il modello numerico è realizzato con elementi finiti bidimensionali tipo "shell-thick" ed elementi finiti tipo "link-linear" per il collegamento del nodo di riferimento al resto della struttura. Il nodo di riferimento è utilizzato per assegnare i carichi trasmessi dall'impalcato calcolati attraverso il modello numerico descritto nei paragrafi precedenti.

Le azioni agenti direttamente sulla spalla sono assegnate come carichi uniformi applicati agli elementi "shell" e come carichi nodali attraverso leggi di variazione lineare "joint pattern", tali carichi sono assegnati unitari e vengono poi resi congruenti con i valori di progetto attraverso dei moltiplicatori che agiscono nei casi di analisi "load case".

L'interazione terreno-struttura è stata tenuta in conto applicando alla zattera di fondazione delle molle "alla Winkler" assegnate nelle tre direzioni ortogonali.

L'azione sismica del terreno è stata calcolata con la formulazione di Mononobe-Okabe.

Si riportano di seguito le azioni assegnate al modello numerico, a tali azioni viene assegnato il segno che ne massimizza gli effetti.

			REAZIONI SI	ALLA SI Z. AS	TA N.10301		UCA: CVU2				
EMENTO DI VERIFICA NUMERO				10301	TIPO SPALLA	SPALLA					
OSIZIONE (NODO I=1 - NODOJ=2)				2	MOBILE	SP2]				
ARICHI MOBILI				Min Max	P	P2					
				I Max V2=TI	M2 ▼ M3=MI	SP2 V3=Tt	M2=Mtr	T=Mt	P=N	F	
escrizione		CODTYPE	NRIGA	V2=11 [KN]	[KNm]	[KN]	[KNm]	[KNm]	[KN]	F	
1-IMPALCATO		0	33	0	0	0	0	0	-1336	1.000	1
1-SOLETTA		0	41	0	0	0	0	0	-1215	1.000	1
2-PERMANENTI		0	49	0	-318	-2	-866	1	-1169	1.000	1
1-DISTORSIONI		0	9	0	0	0	0	0	0	1.000	:
2-RITIRO		0	17	0	1	1	2	0	0	1.000	:
1-CEDIMENTI		0	25	0	0	0	0	0	0	1.000	:
1-MOBILI-KK		1	235	0	-1390	2	-3776	-1	-1895	1.000	
1-MOBILI-FQ		1	139	0	-791	1	-2148	0	-1191	1.000	
3-FRENATURA		0	249	0	0	-1	-1	0	-1	-1.000	
4-CENTRIFUGA		0	257	0	0	0	0	0	0	1.000	:
5-VENTO-C		0	265	0	-108	-137	-363	60	-7	1.000	:
7-ATTRITO-P		0	297	0	0	0	0	0	0	1.000	1
(6-SISMA_L		0	273	0	-43	-60	-142	-26	-122	-1.000	1
6-SISMA_T		0	281	0	-512	-881	-1827	-389	-72	-1.000	1
6-SISMA_V		0	289	0	-21	-31	-72	-14	-112	-1.000	:
ATI PER CALCOLO SPALLE											
celerazione al suolo					0.079	1		verso Kv		1	
pefficiente di suolo (S=S _S x S _T)					1.000	1	θ	arctg Kh /(1±Kv)			
_h = S x b _m a _g /g = coefficiente sismic					0.079		δ	angolo attr.terra	-muro	0	
, = 0.5 k _h = coefficiente sismico ver	rticale				0.040		ψ	angol o parete		90.0	1
m = coefficiente di riduzione dell'a		na attesa al sito			1.000		β	angol o terreno		0.0	(
pinta su tutta l'altezza (1=si; 0=no)				1		ф	angolo attrito		35.0	C
Metodo spinta sismica (M=Monono					M	1	K _M	K Mononobe-Oka	ibe		C
(O (coefficiente di spinta in quiete)					0.426	1	K _M (1±Kv)	K Mononobe-Oka	be totale		0
(a (coefficiente di spinta attiva)					0.271	1	Ysp	Peso terreno di s	pinta	18	18
) (variabile a tergo della spalla) Ki	N/mq				20]	Υ_{RINT}	Peso rinterro		18	18
Spalla passante con speroni (1=si;	; 0=no)				1	1	Kw	K Wood			0
Spinte statiche ortogonali muri o di	lir L (1=orto; 0=Long.)				1		α	Angolo muro		-20.2	-0
Rapporto fra lunghezza e spessore i					6.31		FR	Frenatura paragi	١.	240.0	240
Rapporto fra lunghezza e spessore ¡					38.89						
Dimensione longitudinale del rinte					5.00]					
Dimensione trasversale del rinterro	o ai fini del calcolo (della inerzia sismi	ca		14.00						
imensione trasversale del rinterro apporto dimensione trasversale /	o ai fini del calcolo d dimensione longitu	della inerzia sismi dinale della fonda	ca		14.00 2.80						
imensione trasversale del rinterro apporto dimensione trasversale / eometria della fondazione (1=retta	o ai fini del calcolo d dimensione longitu	della inerzia sismi dinale della fonda	ca		14.00						
imensione trasversale del rinterro apporto dimensione trasversale / eometria della fondazione (1=retta ccelerazione dir X >>	o ai fini del calcolo d dimensione longitu	della inerzia sismi dinale della fonda	ca		14.00 2.80			0.775			
imensione trasversale del rinterro apporto dimensione trasversale / eometria della fondazione (1=retti ccelerazione dir X >> ccelerazione dir Y >>	o ai fini del calcolo d dimensione longitu	della inerzia sismi dinale della fonda	ca		14.00 2.80			0.775	-0.775	0.775	
imensione trasversale del rinterro apporto dimensione trasversale / eometria della fondazione (1=retta ccelerazione dir X >>	o ai fini del calcolo (dimensione longitu: angolare; 0=sghemb	della inerzia sismi dinale della fonda a)	ca zione	O. SPANTA MORNIA	14.00 2.80 0						0.387
mensione trasversale del rinterro pporto di mensione trasversale / eometria della fondazione (1=retti ccelerazione dir X >> ccelerazione dir V >> ccelerazione dir Z >>	o ai fini del calcolo d dimensione longitu	della inerzia sismi dinale della fonda	ca	Q1-SPINTA_MOBILI	14.00 2.80 0		Q6- SOVRASPINTA_L	Q6-	Q6-	0.775 Q6- INERZIA_MASSE_ TN	Q6-
imensione trasversale del rinterro apporto dimensione tras versale / eometria della fondazione (1=retti ccelerazione dir X >> ccelerazione dir Z >> ASI DI CARICO UNITARI 1-PESO SPALLA	o ai fini del calcolo (dimensione longitu: angolare; 0=sghemb	della inerzia sismi dinale della fonda a) G1-	ca zione G3- SPINTA_TERRA_S TA	Q1-SPINTA_MOBILI	14.00 2.80 0	G3- SPINTA_TERRA_SI S	SOVRASPINTA_L	Q6-	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
imensione trasversale del rinterro apporto dimensione trasversale / eometria della fondazione (1=retti ccelerazione dir X >> ccelerazione dir X >> ccelerazione dir Z >> ASI DI CARICO UNITARI 1-PESO SPALLA 1. O_MURO	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	ca zione G3- SPINTA_TERRA_S		14.00 2.80 0	G3- SPINTA_TERRA_SI	SOVRASPINTA_L 0.922	Q6- INERZIA_MASSE_L	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
imensione trasversale del rinterror apporto di mensi one tras versale / acometria della fondazione (1=retti ccelerazione dir X >> ccelerazione dir X >> ASI DI CARICO UNITARI 1-PESO SPALLA _O_MURO _O_MURO _O_MURO	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S TA 7.676	Q1-SPINTA_MOBILI	14.00 2.80 0	G3- SPINTA_TERRA_SI S 4.578	0.922 0.000	Q6-	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
imensione trasversale del rinterre apporto dimensione trasversione (1=retti ccelerazione dir X >> ccelerazione dir X >> ASI DI CARICO UNITARI 1-PESO SPALLA 0_ OMURO 1_ OMURO 1_ P_ MURO 1_ P_ MURO	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	ca zione G3- SPINTA_TERRA_S TA	8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI S	0.922 0.000 -2.139	Q6- INERZIA_MASSE_L	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
imensione trasversale del rinterro apporto dimensione trasversale / eometria della fondazione (1=retti ccelerazione dir X> ccelerazione dir X> ASI DI CARICO UNITARI 1-PESO SPALLA 1, O, MURO 1, O, MURO 1, P, MURO 1, P, MURO 1, P, MURO	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S 7.676		14.00 2.80 0	G3- SPINTA_TERRA_SI S 4.578	0.922 0.000 -2.139 0.000	Q6- INERZIA_MASSE_L	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
imensione trasversale del rinterro apporto dimensione tras versale / eometria della fondazione (1=retti ccelerazione dir X >> ccelerazione dir Z >> ASI DI CARICO UNITARI 1-PESO SPALLA 1. O_MURO 1. O_MURO 1. P_MURO 1. P_MURO 1. O_PARA	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S TA 7.676	8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI S 4.578	0.922 0.000 -2.139 0.000 0.922	Q6- INERZIA_MASSE_L 6.673	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
imensione trasversale del rinterro apporto dimensi one trasversale / ecometria della fondazione (1=retti ccelerazione dir X >> ccelerazione dir X >> ccelerazione dir Z >> ASI DI CARICO UNITARI 1-PESO SPALLA [0_MURO 1_0_MURO 1_P_MURO 1_0_PARA 1_0_PARA	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S 7.676 0.000	8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI 5 4.578 -10.617	0.922 0.000 -2.139 0.000 0.922 0.000	Q6- INERZIA_MASSE_L	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
imensione trasversale del rinterro apporto dimensione trasversale / eometria della fondazione (1=retti ccelerazione dir X> ccelerazione dir Z> ASI DI CARICO UNITARI 1-PESO SPALLA 1_O_MURO 1_O_MURO 1_O_MURO 1_O_PARA 1_O_PARA 1_O_PARA 1_O_PARA	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S 7.676	8.528 0.000 8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI S 4.578	0.922 0.000 -2.139 0.000 0.922 0.000 -13.191	Q6- INERZIA_MASSE_L 6.673 -15.475	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
imensione trasversale del rinterro apporto dimensione trasversale / eometria della fondazione (1=retti ccelerazione dir X> ccelerazione dir X> ASI DI CARICO UNITARI 1-PESO SPALIA 1_O_MURO 1_P_MURO 1_P_MURO 1_O_PARA 1_O_PARA 1_O_PARA 1_O_PARA 1_D_PARA	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S TA 7.676 0.000 7.676	8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI S 4.578 -10.617 4.578	0.922 0.000 -2.139 0.000 0.922 0.000 -13.191 0.000	Q6- INERZIA_MASSE_L 6.673	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
imensione trasversale del rinterro apporto dimensione trasversale / eometria della fondazione (1=retti ccelerazione dir X> ccelerazione dir X> ccelerazione dir Z> ASI DI CARICO UNITARI 1-PESO SPALLA 1, O, MURO 1, O, MURO 1, O, MURO 1, O, PARA 1, P, PARA 1, P, PARA 1, P, PARA 1, P, PARA 1, O, FOND	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S 7.676 0.000	8.528 0.000 8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI 5 4.578 -10.617	0.922 0.000 -2.139 0.000 0.922 0.000 -13.191 0.000 0.983	Q6- INERZIA_MASSE_L 6.673 -15.475	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
imensione trasversale del rinterre paporto dimensione trasversale peometria della fondazione (1=retti ccelerazione dir X> ccelerazione dir X> ccelerazione dir Z> ASI DI CARICO UNITARI 1-PESO SPALIA 1.0_MURO 1.0_MURO 1.P_MURO 1.0_PARA 1.0_PARA 1.P_PARA 1.P_PARA 1.P_PARA 1.O_FOND	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S 7.676 0.000 7.676 0.000 7.676	8.528 0.000 8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI 5 4.578 -10.617 4.578 -65.471	0.922 0.000 -2.139 0.000 0.922 0.000 -13.191 0.000 0.983 0.000	Q6- INERZIA_MASSE_L 6.673 -15.475	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
mensione traversale del rinterri upport di mensi one traversale / pometria della fondazione (1=ett. ccelerazione dir X >> ccelerazione dir X >> ccelerazione dir Z >> sto Di CARICO UNITARI LIPESO SPALIA Q. MURO L. Q. MURO L. Q. MURO L. P. MURO Q. P. ARA Q. P. PARA L. P. PARA L. P. PARA L. P. PARA L. P. PARA L. P. PARA Q. FOND Q. FOND	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S TA 7.676 0.000 7.676	8.528 0.000 8.528 0.000 8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI S 4.578 -10.617 4.578	0.922 0.000 -2.139 0.000 0.922 0.000 -13.191 0.000 0.983	Q6- INERZIA_MASSE_L 6.673 -15.475	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
mensione traversale del rinterri upport di mensi one traversale / pometria della fondazione (1=ett. ccelerazione dir X >> ccelerazione dir X >> ccelerazione dir Z >> sto Di CARICO UNITARI LIPESO SPALIA Q. MURO L. Q. MURO L. Q. MURO L. P. MURO Q. P. ARA Q. P. PARA L. P. PARA L. P. PARA L. P. PARA L. P. PARA L. P. PARA Q. FOND Q. FOND	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S 7.676 0.000 7.676 0.000 7.676	8.528 0.000 8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI 5 4.578 -10.617 4.578 -65.471	0.922 0.000 -2.139 0.000 0.922 0.000 -13.191 0.000 0.983 0.000	Q6- INERZIA_MASSE_L 6.673 -15.475	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
mensione traversale del rinterri piporto dimensione traversale/ cometria della fondazione (1-retti ccelerazione dir X >> ccelerazione dir X >> ccelerazione dir Z >> ccelerazione dir Z >> SSI DI CARICO UNITARI L-PESO SPALIA _O_MURO _O_MURO _O_MURO _O_PIMBO _O_PARA _O_PARA _O_PARA _O_PARA _O_FOND	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S 7.676 0.000 7.676 0.000 7.676	8.528 0.000 8.528 0.000 8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI 5 4.578 -10.617 4.578 -65.471	0.922 0.000 -2.139 0.000 0.922 0.000 -13.191 0.000 0.983 0.000 0.000	Q6- INERZIA_MASSE_L 6.673 -15.475	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_M/
mensione traversale del rinterri piporto dimensione trasversale / pometria della fondazione (1 = etc. ccelerazione dir X >> ccelerazione dir Y >> ccelerazione dir Z >> SSI DI CARICO UNITARI L-PESO SPALIA Q. MURO Q. MURO Q. MURO Q. MURO Q. PARA Q. PARA Q. PARA Q. PARA Q. PARA Q. POND Q. POND	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S 7.676 0.000 7.676 0.000 0.000	8.528 0.000 8.528 0.000 8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI S 4.578 -10.617 4.578 -65.471 4.878	0.922 0.000 -2.139 0.000 0.922 0.000 -13.191 0.000 0.983 0.000 0.000 0.000	Q6- INERZIA_MASSE_L 6.673 -15.475	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_M/
imensione trasversale del rinterro apporto dimensi one trasversale / ccelerazione dir X> accelerazione dir X> accelerazione dir Z> ASI DI ECAN SPALIA L. D. MURO L. D. MURO L. D. MURO L. D. P. MURO L. D. P. PARA L. P. POND L. D. FOND L. P. FOND L. P. FOND L. P. FOND L. P. FOND L. SPERONI L. SPERON	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S TA 7.676 0.000 7.676 0.000 7.676 0.000 7.676	8.528 0.000 8.528 0.000 8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI S 4.578 -10.617 4.578 -65.471 4.878	0.922 0.000 -2.139 0.000 0.922 0.000 -13.191 0.000 0.983 0.000 0.000 0.000 0.000	Q6- INERZIA_MASSE_L 6.673 -15.475 6.673 -95.432	Q6- INERZIA_MASSE_	Q6- INERZIA_MASSE_	Q6- INERZIA_M/
imensione trasversale del rinterro spoporto dimensione trasversale / cometria della fondazione (1=retti ccelerazione dir X> ccelerazione dir X> ccelerazione dir Z> ssi Di CARICO UNITARI 1-PESO SPALIAO_MUROP_MUROP_MUROO_PARAO_FONDO_PARAO_FONDP_FONDP_FONDP_FONDP_FONDSPERONISPERONISPERONISPANDIERE	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S 7.676 0.000 7.676 0.000 0.000	8.528 0.000 8.528 0.000 8.528 0.000	14.00 2.80 0	G3- SPINTA_TERRA_SI S 4.578 -10.617 4.578 -65.471 4.878	0.922 0.000 -2.139 0.000 0.922 0.000 -13.191 0.000 0.983 0.000 0.000 0.000 0.000	Q6- INERZIA_MASSE_L 6.673 -15.475 6.673 -95.432	Q6- INERZIA_MASSE_ TP	Q6- INERZIA_MASSE_	Q6- INERZIA_MA
imensione trasversale del rinterro proporto dimensi one trasversale / permetria della fondazione (1=retti ccelerazione dir X >> ccelerazione dir X >> ccelerazione dir X >> ASI DI CARICO UNITARI 1-PESO SPALLA LO MURO 1_O MURO 1_P MURO 1_O PARA 1_P PARA 1_P PARA 1_P PARA 1_P PARA 1_P POND 1_O FOND 1_P FOND 1_SPERONI 1_SPERONI 1_BANDIERE 1_BANDIERE	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S TA 7.676 0.000 7.676 0.000 7.676 0.000 7.676	8.528 0.000 8.528 0.000 8.528 0.000 8.528 8.528	14.00 2.80 0	G3- SPINTA_TERRA_SI S 4.578 -10.617 4.578 -65.471 4.878	0.922 0.000 -2.139 0.000 0.922 0.000 -13.191 0.000 0.983 0.000 0.000 0.000 0.000	Q6- INERZIA_MASSE_L 6.673 -15.475 6.673 -95.432	Q6- INERZIA_MASSE_	QG- INERZIA_MASSE_ TN	Q6- INERZIA_MA
imensione trasversale del rinterro spoporto dimensione trasversale / cometria della fondazione (1=retti ccelerazione dir X> ccelerazione dir X> ccelerazione dir Z> ssi Di CARICO UNITARI 1-PESO SPALIAO_MUROP_MUROP_MUROO_PARAO_FONDO_PARAO_FONDP_FONDP_FONDP_FONDP_FONDSPERONISPERONISPERONISPANDIERE	o ai fini del calcolo dimensione longitu cangolare; 0=s ghemb	della inerzia sismi dinale della fonda a) G1-	G3- SPINTA_TERRA_S TA 7.676 0.000 7.676 0.000 7.676 0.000 7.676	8.528 0.000 8.528 0.000 8.528 0.000	14.00 2.80 0	G3- SPINTA_TERRA_SI S 4.578 -10.617 4.578 -65.471 4.878	0.922 0.000 -2.139 0.000 0.922 0.000 -13.191 0.000 0.983 0.000 0.000 0.000 0.000	Q6- INERZIA_MASSE_L 6.673 -15.475 6.673 -95.432	Q6- INERZIA_MASSE_ TP	Q6- INERZIA_MASSE_	Q6- INERZIA_M/

Figura 13-2 – Tabella assegnazione azioni al modello di calcolo

13.2 Verifiche strutture SLU-SLV

Si riportano di seguito le color map che diagrammano le richieste di armatura calcolate dal programma in funzione dell'inviluppo delle sollecitazioni per lo stato limite in oggetto, a cui viene applicato il metodo di Wood - Armer nelle due direzioni ortogonali.

Le richieste di armatura, espresse in mm²/mm, sono rappresentate con diversi colori filtrati sul valore massimo funzione dell'armatura di progetto.

I versi di disposizione delle armature denominate nel seguito come: A_{st1} e A_{st2} sono mostrati nella figura sottostante.

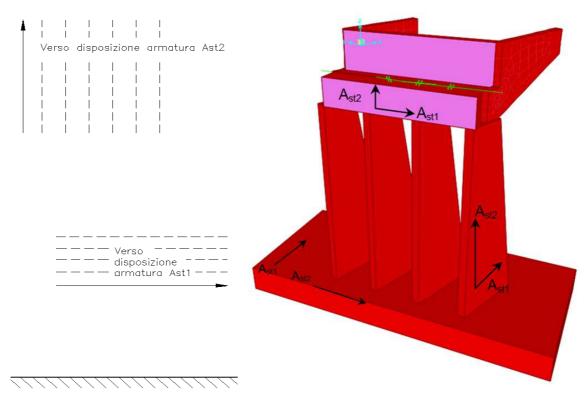


Figura 13-3 – Richiesta di armatura elevazione: convenzioni

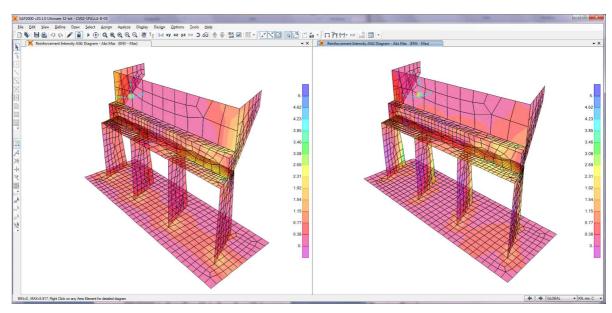


Figura 13-4 – Richiesta di armatura: Ast1 (sinistra) e Ast2 (destra)

Le richieste di armatura massime sono compatibili con le incidenze indicate negli elaborati e riassunte nella tabella sottostante.

		Ast1			Ast2	
	passo	Φ	Area	passo	Φ	Area
	cm	mm	mm²/mm	cm	mm	mm²/mm
MURO PARAGHIAIA	10	16	2.01	20	16	1.01
SPERONI	10	24	4.52	10	20	3.14
MURI ANDATORI	20	16	1.01	20	16	1.01
PLATEA	20	24	2.26	20	24	2.26

13.3 Verifica a ribaltamento

Di seguito si riporta la verifica al ribaltamento della spalla, valutato nella direzione longitudinale dell'impalcato, considerando il cinematismo di ribaltamento agente rispetto al nodo illustrato nella seguente immagine.

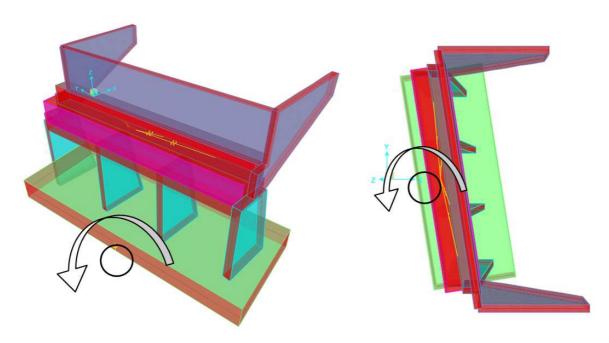


Figura 13-5 – Zattera di fondazione: cinematismo di ribaltamento

Le verifiche, in accordo al paragrafo 6.5.3.1 delle NTC18, sono condotte considerando l'Approccio di tipo 2, con la combinazione (A1+M1+R3), dove si pone R3 = 1.15 per le condizioni SLU e R3 = 1 per le condizioni SLV.

Le combinazioni di verifica del ribaltamento allo SLU sono:

VER_RIB_C in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte carico;

VER_RIB_S in cui si combinano le condizioni stabilizzanti con quelle ribaltanti a ponte scarico.

TABLE: Combina	TABLE: Combination Definitions										
ComboName	ComboType	AutoDesign	CaseType	CaseName	ScaleFactor						
Text	Text	Yes/No	Text	Text	Unitless						
VER_RIB_C	Linear Add	No	Response Combo	EQU_1	1.15						
VER_RIB_C			Response Combo	EQU_3	1						
VER_RIB_S	Linear Add	No	Response Combo	EQU_2	1.15						
VER_RIB_S			Response Combo	EQU_3	1						

Le combinazioni di verifica del ribaltamento allo SLV sono descritte nel paragrafo relativo alle combinazioni di carico.

Per la convenzione dei segni utilizzata, le verifiche si intendono soddisfatte quando il segno della reazione vincolare del momento intorno all'asse di ribaltamento risulta negativo.

TABLE: Jo	oint Reactions	1						
Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
1	SLU_SL1	Combination	2256	637	18047	-4758	-36361	1007
1	SLU_SL2	Combination	2284	563	18003	-1959	-35576	1151
1	SLU_ST1	Combination	1481	444	18012	-6670	-39826	-23
1	SLU_ST2	Combination	1572	197	17867	2661	-37208	458
1	SLU_V1	Combination	1505	378	18521	-3566	-40325	473
1	SLU_V2	Combination	1532	304	18477	-767	-39540	617
1	VER_RIB_C	Combination	3225	418	18065	-10754	-31892	-559
1	VER_RIB_S	Combination	3228	410	15909	-2988	-27780	-576
1	VER_RIB_V	Combination	3310	187	12547	-143	-20810	-1107
1	SLU_SL1_V-	Combination	2263	620	17567	-4619	-35148	965
1	SLU_SL2_V-	Combination	2290	545	17523	-1820	-34362	1109
1	SLU_ST1_V-	Combination	1487	427	17532	-6531	-38612	-65
1	SLU_ST2_V-	Combination	1578	179	17387	2800	-35994	416
1	SLU_V1_V-	Combination	1526	320	16921	-3103	-36280	334
1	SLU_V2_V-	Combination	1554	245	16878	-303	-35495	478

I risultati ottenuti, evidenziati in giallo, soddisfano tutti tale condizione.

Sono state lette le varie combinazioni rispetto all'asse di ribaltamento.

In particolare le combinazioni di tipo ribaltante sono state incrementate x 1.15 (paragrafo 6.5.3.1.1 delle NTC18, in osservanza alla Tab. 6.5.I) mentre quelle stabilizzanti sono state assunte unitarie. Il risultato della verifica mostra ulteriori riserve di sicurezza rispetto alle minime imposte.