

Direzione Progettazione e Realizzazione Lavori

CORRIDOIO PLURIMODALE ADRIATICO

ITINERARIO MAGLIE - SANTA MARIA DI LEUCA

S.S. N° 275 "DI S. MARIA DI LEUCA"

LAVORI DI AMMODERNAMENTO E ADEGUAMENTO ALLA SEZ. B DEL D.M. 5.11.2001

S.S. 16 dal km 981+700 al km 985+386 - S.S. 275 dal Km 0+000 al km 37+000

1° Lotto: Dal Km 0+000 di prog. al Km 23+300 di prog.

PROGETTO DEFINITIVO

COD. **BA283**

– Geotecnica – Impianti

PROG	FTTA7IONF.		COORDINAMENTO) TEBRITORIALE	ADRIATICA
1 11()(1	MALICALUL	/=////=/->/ =			

I PROGETTISTI	ATTIVITA' DI SUPPORTO
Ing. Alberto SANCHIRICO — Progettista e Coordinatore	
Ing. Simona MASCIULLO — Progettista	RTP:
COLLABORATORI	Lombardi Ingagnaria S. r. l
Geom. Andrea DELL'ANNA	Lombardi Ingegneria S.r.L.
Geom. Massimo MARTANO	TechProject S.r.L.
Geom. Giuseppe CALO'	
IL GEOLOGO	
Dott. Pasquale SCORCIA	
IL COORDINATORE IN FASE DI PROGETTAZIONE	
Ing. Alberto SANCHIRICO	
IL RESPONSABILE DEL PROCEDIMENTO	
Ing. Gianfranco PAGLIALUNGA	
RESPONSABILE PROJECT MANAGEMENT PUGLIA	
Ing. Nicola MARZI	

08 - OPERE D'ARTE MAGGIORI - VIADOTTI E PONTI

Sottopasso (Comune di Maglie) ST1 - al km 3+528.22 Relazione di calcolo geotecnica

CODICE PROGETTO		NOME FILE			REVISIONE	SCALA:
PROGETTO	LIV. PROG. N. PROG.	T00_ST01_GET_RE02	_C.pdf		REVISIONE	SCALA:
L050	3A D 1701	CODICE TOOSTO1	GETRE	2	C	Varie
С	REVISIONE DEL PROGE	TTO DEFINITIVO	Gennaio 2019			
В	REVISIONE DEL PROGE	TTO DEFINITIVO	Ottobre 2018			
А	REVISIONE DEL PROGE	TTO DEFINITIVO	Giugno 2018			
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

INDICE

1.	PREMESSA	5
	1.1 Descrizione dell'opera	5
	1.2 Considerazioni sul progetto strutturale	7
2.	NORMATIVA E RIFERIMENTI	8
3.	CARATTERISTICHE DEI MATERIALI	9
	3.1 Calcestruzzo	9
	3.2 Acciaio per cemento armato	9
	3.3 Acciaio da carpenteria	10
	3.4 Durabilità, prescrizioni sui materiali, scelta degli stati limite di fessurazione e dei copriferri	11
4.	CRITERI DI CALCOLO E DEFINIZIONE DELLE AZIONI	12
	4.1 Criteri di calcolo	12
	4.2 Definizione delle azioni	12
5.	COMBINAZIONI DI CARICO	13
6.	ANALISI DEI CARICHI	14
	6.1 Azioni permanenti	14
	6.1.1 Peso proprio degli elementi strutturali (g1)	14
	6.1.2 Carichi permanenti portati (g2)	14
	6.2 Azioni variabili da traffico	15
	6.2.1 Carichi mobili (q1)	15
	6.3 Azione longitudinale di frenamento o di accelerazione (q3)	16
	6.4 Azioni variabili di vento e neve (q5)	16
	6.5 Azioni sismiche (q ₆)	17
7.	IMPALCATI - CARATTERISTICHE GEOMETRICHE	20
	7.1 Generalità	20
8.	IMPALCATI - ANALISI STRUTTURALE	21
	8.1 Generalità	21

S.S. 275 - Strada Statale Maglie - Santa Maria di Le	uca
Relazione di calcolo impalcato e sottostrutture – ST	01

	8.2 Descrizione del modello di calcolo	21
	8.3 Descrizione dei carichi applicati	22
	8.3.1 Carichi mobili (q1)	22
	8.4 Diagrammi delle caratteristiche della sollecitazione	23
9.	IMPALCATI – VERIFICHE DELLE TRAVI	25
	9.1 Verifiche di resistenza profilati metallici	25
	9.2 Verifiche di resistenza unione saldata profilati metallici	26
	9.3 Verifiche di deformabilità	26
	9.4 Verifiche a fatica	27
10.	IMPALCATO – VERIFICHE SOLETTA	28
	10.1 Verifiche di resistenza	28
	10.2 Verifiche di durabilità	31
11.	SPALLE – VERIFICHE FONDAZIONE E ELEVAZIONE	32
	11.1 Generalità	32
	11.2 Rampa laterale sinistra – Spalla "SpA-sx"	34
	11.2.1 Analisi dei carichi	34
	11.2.2 Condizioni di carico	38
	11.2.3 Combinazioni di carico	39
	11.3 Rampa laterale sinistra – Spalla "SpB-sx"	41
	11.3.1 Analisi dei carichi	41
	11.3.2 Condizioni di carico	45
	11.3.3 Combinazioni di carico	46
	11.4 Rampa laterale destra – Spalla "SpA-dx"	48
	11.4.1 Analisi dei carichi	48
	11.4.2 Condizioni di carico	52
	11.4.3 Combinazioni di carico	53
	11.5 Rampa laterale destra – Spalla "SpB-dx"	55
	11.5.1 Analisi dei carichi	55
	11.5.2 Condizioni di carico	59
	11.5.3 Combinazioni di carico	60

11.6 Rampe laterali – Verifiche	62
11.6.1 Verifiche di stabilità – Ribaltamento	62
11.6.2 Verifiche strutturali – Plinto di fondazione – Mensola lato valle SLU	63
11.6.3 Verifiche strutturali – Plinto di fondazione – Mensola lato valle SLE	64
11.6.4 Verifiche strutturali – Plinto di fondazione – Mensola lato monte	65
11.6.5 Verifiche strutturali – Plinto di fondazione – Mensola lato monte SLE	66
11.6.6 Verifiche strutturali – Muro di testata – Sezione di base	67
11.6.7 Verifiche strutturali – Muro di testata – Sezione di base SLE	68
11.6.8 Verifiche strutturali – Muro paraghiaia – Sezione di base SLU	69
11.6.9 Verifiche strutturali – Muro paraghiaia – Sezione di base SLE	71
11.6.10 Verifiche strutturali – Muri di risvolto SLU	72
11.6.11 Verifiche strutturali – Muri di risvolto SLE	75
11.6.12 Verifiche strutturali – Soletta di transizione SLU	76
11.7 Opera centrale – Spalla "SpA"	78
11.7.1 Analisi dei carichi	79
11.7.2 Condizioni di carico	82
11.7.3 Combinazioni di carico	83
11.8 Opera centrale – Spalla "SpB"	85
11.8.1 Analisi dei carichi	86
11.8.2 Condizioni di carico	89
11.8.3 Combinazioni di carico	90
11.9 Opera centrale – Verifiche	92
11.9.1 Verifiche di stabilità – Ribaltamento	92
11.9.2 Verifiche strutturali – Plinto di fondazione – Mensola lato valle	93
11.9.3 Verifiche strutturali – Plinto di fondazione – Mensola lato valle SLE	94
11.9.4 Verifiche strutturali – Plinto di fondazione – Mensola lato monte	95
11.9.5 Verifiche strutturali – Plinto di fondazione – Mensola lato monte SLE	96
11.9.6 Verifiche strutturali – Muro di testata – Sezione di base	97
11.9.7 Verifiche strutturali – Muro di testata – Sezione di base SLE	98
11.9.8 Verifiche strutturali – Muro paraghiaia	99
11.9.9 Verifiche strutturali – Muri di risvolto SLU	100
11.9.10 Verifiche strutturali – Muri di risvolto SLE	103
11.9.11 Verifiche strutturali – Soletta di transizione	104

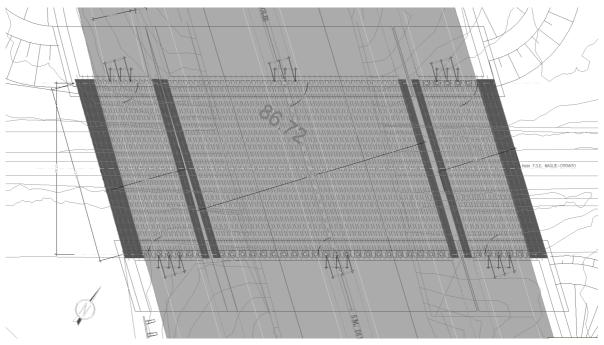
	aziono di dalocio impaldato o dottocti ditalo Ciro i	
	11.10 Verifiche per urto da traffico ferroviario	105
12.	APPARECCHI DI APPOGGIO E GIUNTI	106
13.	ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DEI CODICI DI CALCOLO	109
	13.1 Origine, caratteristiche e affidabilità dei software di calcolo	109
	13.2 Giudizio motivato di accettabilità dei risultati	109
	13.2.1 Ripartizione trasversale carico accidentale	109

1. PREMESSA

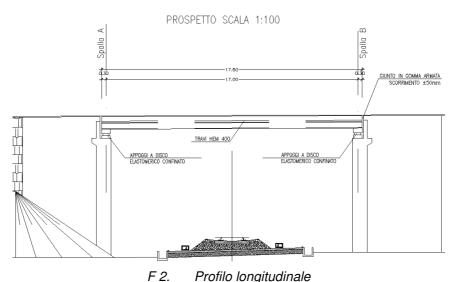
La presente relazione riguarda il dimensionamento strutturale dell'opera *Sottopasso (Comune di Maglie) ST 01 - al km 3+528.22* prevista nell'ambito dei lavori della *S.S. N° 275 "DI S. MARIA DI LEUCA" AMMODERNAMENTO E ADEGUAMENTO AL D.M. 5.11.2001 S.S. 16 dal km 981+700 al km 985+386 - S.S. 275 dal Km 0+000 al km 37+000 1° Lotto: Dal Km 0+000 di prog. al Km 23+300 di prog.*

1.1 Descrizione dell'opera

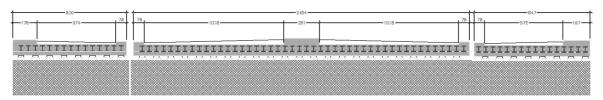
La presente relazione riguarda il dimensionamento strutturale dell'impalcato a travi metalliche incorporate che realizzano un "solettone" avente uno spessore strutturale pari a 532 mm (costituito da profili *HEM400* di altezza pari a 432mm e soletta di c.a. collaborante di altezza pari a 100 mm). La sovrastruttura nel suo insieme è composta da due impalcati laterali esterni (rampe) e da un impalcato centrale. L'impalcato delle rampe ha larghezza variabile mentre la piattaforma centrale ha larghezza costante: per tutti gli impalcati sono previsti dei cordoli di bordo in destra e sinistra sui quali sono montati gli elementi di ritenuta.


Lo schema statico della sovrastruttura è quello di trave in semplice appoggio avente la seguente geometria:

- $L \cong 17.8 \text{ m} \Rightarrow \text{luce campata};$
- B_{rampa} ≈ 8.3m ⇒ larghezza rampe (n. 15/16 travi HEM400);
- $B_{imp-centrale}$ ≈ 23.5m ⇒ larghezza impalcato centrale (n. 45 travi HEM400).


Le travi d'impalcato sono posizionate con un interasse di 0.50 m. La sovrastruttura di impalcato è vincolata alle sottostrutture spalle mediante un sistema di dispositivi d'appoggio in acciaio PTFE.

L'opera ricade in zona sismica, pertanto, saranno considerate le azioni previste dalla normativa vigente *NTC 2018* così come riportato nei capitoli successivi.


Nelle figure seguente si illustrano le caratteristiche principali dell'opera in esame.

F 1. Planimetria

F 2. Profilo longitudinale

F 3. Sezione trasversale impalcato

1.2 Considerazioni sul progetto strutturale

Per il calcolo delle strutture si è fatto riferimento ai carichi mobili relativi ai ponti di 1^a categoria desunti dalle *NTC 2018*.

Trattandosi, nel funzionamento globale dell'impalcato, di un sistema misto con travi in acciaio annegate in un solettone di calcestruzzo armato, le azioni agenti vengono suddivise in due fasi, corrispondenti al grado di maturazione del getto di calcestruzzo del solettone e quindi alle differenti sezioni resistenti delle sezioni nelle due fasi.

- Fase 1: tale fase considera il peso proprio delle travi in acciaio e del getto della soletta che, in questa fase, non è reagente ovvero non collabora; la sezione resistente corrisponde alla sola trave in acciaio:
- Fase 2: tale fase considera il peso dei successivi carichi permanenti applicati alla struttura (pavimentazione, marciapiedi/cordoli, barriere di sicurezza, etc.) ed il transito dei carichi mobili di esercizio. La sezione resistente è sempre composta dalla sola trave in acciaio ma ora la soletta in c.a. è considerata nel sistema come un elemento (di altezza pari a 100mm) che collabora insieme alle travi alla ripartizione delle azioni esterne; le verifiche saranno eseguite facendo sempre riferimento alla sola sezione di carpenteria metallica.

Si evidenzia che tutte le verifiche riportate nel presente Progetto Definitivo sono tese ad individuare le opportune dimensioni delle carpenterie dei vari elementi strutturali ed i relativi quantitativi di armatura necessari al soddisfacimento delle principali verifiche di resistenza condotte per le combinazioni di carico *SLU* più gravose garantendo e adottando adeguati margini sui coefficienti di sicurezza stabiliti in base alla propria esperienza e con lo scopo di avere soddisfatte indirettamente anche le verifiche dello stato tensionale per le combinazioni agli *SLE*.

2. NORMATIVA E RIFERIMENTI

I calcoli e le disposizioni esecutive sono conformi alle norme attualmente in vigore elencate nel seguito.

- [I] D. M. Min. II. TT. del 17 gennaio 2018 Norme tecniche per le costruzioni;
- [II] UNI EN 1990 (Eurocodice 0) Aprile 2006: "Criteri generali di progettazione strutturale";
- [III] Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici Servizio Tecnico Centrale;
- [IV] UNI EN 197-1 giugno 2001 "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni;
- [V] UNI EN 11104 marzo 2004 "Calcestruzzo: specificazione, prestazione, produzione e conformità", complementari per l'applicazione delle EN 206-1;
- [VI] UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità".
- [VII] CNR 10024/86 Analisi mediante elaboratore: impostazione e redazione delle relazioni di calcolo.

3. CARATTERISTICHE DEI MATERIALI

3.1 Calcestruzzo

Per la realizzazione del **magro di fondazione** si prevede l'utilizzo di calcestruzzo di classe C12/15 ($Rck \ge 15 \text{ N/mm}^2$).

Per la realizzazione delle **fondazioni delle spalle e della soletta di transizione** si prevede l'utilizzo di calcestruzzo di classe *C28/35* (*Rck* ≥*35 N/mm*²).

Per la realizzazione delle **elevazioni delle spalle, dei baggioli e ritegni sismici** si prevede l'utilizzo di calcestruzzo di classe *C32/40* (*Rck* ≥**40** *N/mm*²).

Per la realizzazione delle **predalle, della soletta di impalcato e dei cordoli** si prevede l'utilizzo di calcestruzzo di classe *C35/45* (*Rck* ≥45 *N/mm*²).

3.2 Acciaio per cemento armato

Per le armature metalliche si adottano tondini in acciaio saldabile del tipo B450C controllato in stabilimento caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura da utilizzare nei calcoli:

 $f_{v nom} = 450 MPa;$

 $f_{t nom} = 540 \text{ MPa}.$

L'acciaio B450C deve rispettare le caratteristiche riportate nella seguente tabella.

Proprietà	Requisito	Frattile (%)
Tensione caratteristica di snervamento fyk	≥ 450 MPa	5.0
Tensione caratteristica di rottura ftk	≥ 540 MPa	5.0
$(f_{t}/f_{y})_{k}$	≥ 1.15 ≤ 1.35	10.0
$(f_t/f_{ynom})_k$	≤ 1.25	10.0
Allungamento totale al carico massimo (A _{ot})	≥ 7.5%	10.0
Diametro del mandrino per prove di piegamento a 90° e successivo raddrizzamento senza cricche:		
φ < 12	4φ	
12 ≤ φ ≤ 16	5φ	
16 < φ ≤ 25	8φ	
25 < φ ≤ 40	10φ	

T.1 Caratteristiche dell'acciaio

3.3 Acciaio da carpenteria

Acciaio tipo S355. La tensione di snervamento f_y e di rottura f_u per gli acciai S355 in funzione degli spessori è la seguente [I].

t [mm]	≤ 40	> 40 ≤ 80
f_y	355	335
f _u	490	470

T.2 Tensioni massime [MPa] di snervamento e rottura dell'acciaio

Il modulo di elasticità è pari a:

$$- E_a = 210\ 000\ N/mm^2$$

Il coefficiente di espansione termica è pari a:

$$-\alpha = 1.2 \times 10-5 \, ^{\circ}\text{C}$$

Il coefficiente di Poisson:

$$- \nu = 0.3$$

Densità:

$$- \rho = 7850 \text{ kg/m}^3$$

3.4 Durabilità, prescrizioni sui materiali, scelta degli stati limite di fessurazione e dei copriferri

Il calcestruzzo deve essere in grado di resistere in maniera soddisfacente alle condizioni ambientali e di lavoro cui è sottoposto durante la vita dell'opera. Nella presente sezione si valutano pertanto le caratteristiche dei calcestruzzi (resistenza caratteristica, copriferri, ecc..) da impiegare per la realizzazione delle diverse parti dell'opera in oggetto tali da conseguire il requisito di durabilità richiesto.

In relazione alle classi di esposizione ambientale definite nella *UNI EN 206-1* e nella *UNI 11104*, sono state attribuite ai diversi elementi strutturali le seguenti classi di esposizione alle quali sono state associate le condizioni ambientali:

Fondazioni spalle	XC2	c.a. ordinarie;
Elevazioni spalle	XC4+XD1	c.a. aggressive;
Soletta impalcato, cordoli e predalles	XC4 / XD3	c.a. aggressive;
Travi di impalcato	XC4+XD1	c.a. aggressive;

L'armatura deve essere protetta da un adeguato ricoprimento di calcestruzzo (copriferro) dimensionato in funzione dell'aggressività dell'ambiente e della sensibilità delle armature alla corrosione, tenendo anche conto della tolleranza di posa delle armature.

La distanza tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Considerate le classi di esposizione ambientale, la tipologia delle opere e le classi del calcestruzzo impiegato, i valori del copri ferro minimo sono assunti pari a:

Elemento	Copriferro nominale di progetto c _{nom} (mm)
Fondazioni spalle/pile	45
Elevazioni spalle/pile	35
Soletta impalcato, cordoli e predalles	35
Travi di impalcato	35

T.3 Copriferri minimi

4. CRITERI DI CALCOLO E DEFINIZIONE DELLE AZIONI

4.1 Criteri di calcolo

In ottemperanza al *D.M. del 17.01.2018*, i calcoli sono condotti con il metodo semiprobabilistico agli stati limite. Per l'analisi strutturale, volta alla valutazione degli effetti delle azioni per gli *SLU*, si adotta il metodo dell'analisi elastica lineare. Per la determinazione degli effetti delle azioni, le analisi vengono effettuate assumendo:

- sezioni interamente reagenti con rigidezze valutate omogeneizzando rispetto all'acciaio ad eccezione delle zone interessate dalla fessurazione dove la rigidezza è valutata riferendosi al solo acciaio di armatura lenta disposta in soletta;
 - relazioni tensioni deformazioni lineari:
 - valori medi del modulo di elasticità.

Le unità di misura adottate sono i "m" per le lunghezze, "kN e m" per le forze e le sollecitazioni, i "N e mm" per le tensioni (ovvero MPa)

4.2 Definizione delle azioni

L'opera in esame è un ponte stradale; le azioni da considerare nella progettazione sono pertanto:

- le azioni permanenti;
- le distorsioni, ivi comprese quelle dovute a presollecitazioni di progetto e quelle di origine termica:
- le azioni variabili da traffico;
- le azioni variabili da vento e neve;
- le azioni eccezionali;
- le azioni sismiche.

Per le sottostrutture dell'opera in esame non sono state considerate le azioni da vento e neve poiché non dimensionanti; le azioni eccezionali non sono presenti.

5. COMBINAZIONI DI CARICO

Nel presente capitolo vengono definite le combinazioni di carico utilizzate nei calcoli.

Ai fini delle verifiche agli stati limite, in accordo con la [I], si definiscono le seguenti combinazioni di azioni:

- Combinazione FONDAMENTALE (FO), generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} G_1 + \gamma_{G2} G_2 + \gamma_{G3} G_3 + \gamma_{P} \cdot P + \gamma_{Q1} Q_{k1} + \Psi_{02} \cdot \gamma_{Q2} \cdot Q_{k2} + \Psi_{03} \cdot \gamma_{Q3} \cdot Q_{k3} + \dots$$

- Combinazione RARA (RA), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + G_3 + P + Q_{k1} + \Psi_{02} \cdot Q_{k2} + \Psi_{03} \cdot Q_{k3} + \dots$$

- Combinazione SISMICA (SIS), impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica:

$$E + G_1 + G_3 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + \dots$$

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1+G_2+\sum_i\psi_{2i}\cdot Q_{ki}$$

I valori del coefficiente ψ_{2i} sono quelli riportati nelle tabelle della norma; la stessa propone nel caso di ponti, e più in generale per opere stradali, di assumere per i carichi dovuti al transito dei mezzi $\psi_{2i} = 0$.

Di seguito si riporta la matrice di combinazioni implementata.

- MATRICE CONDIZIONI/COMBINAZIONI												
cond\comb	1	2	3	4	5	6	7	8	9	10	11	12
REALIZZAZIONE	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1
PERM SP	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1
ACC SP	0	0	1.35	1.35	1.35	1.35	0	0	0	0	0	0
PERM IMP	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1
ACC IMP - Nmax	0	0	1.35	1.0125	1.0125	1.35	0	0	0	0	0	0
FOLLA	0	0	0	0	0	0	0	0	0	0	0	0
ST	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1
SA	0	0	1.35	1.0125	1.0125	1.35	0	0	0	0	0	0
VARTEMPD	0	0	0.72	1.2	0.72	1.2	0.5	0.5	0.5	0.5	0.5	0.5
VARTEMPU	0	0	0.72	1.2	0.72	1.2	0	0	0	0	0	0
FR	0	0	0	0	0	0	0	0	0	0	0	0
VENTO	0	0	0.9	0.9	1.5	1.5	0	0	0	0	0	0
SIS SP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30
SIS SP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30
SIS SP V	0	0	0	0	0	0	0.30	0.30	1.00	-0.30	-0.30	-1.00
SIS IMP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30
SIS IMP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30
SIS IMP V	0	0	0	0	0	0	0.30	0.30	1.00	0.30	0.30	1.00
DS	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30
	1	2	3	4	5	6	7	8	9	10	11	12

T.4 Matrice Combinazioni di cario SLU STATICHE (STR) e SLU SISMICHE (SLV)

6. ANALISI DEI CARICHI

Nel seguente capitolo, sulla base di quanto riportato al capitolo precedente, si descrivono i carichi elementari assunti per le verifiche di resistenza in esercizio ed in presenza dell'evento sismico per la struttura in oggetto.

6.1 Azioni permanenti

Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato: 25 kN/m³
 carpenteria metallica: 78.5 kN/m³
 rilevato 18 kN/m³
 sovrastruttura stradale 22 kN/m³

6.1.1 Peso proprio degli elementi strutturali (g1)

Impalcato metallico.

Il peso della travi HEM400 è assunto pari a 2.6 kN/m per ogni trave.

Soletta

Per lo spessore della soletta, comprensivo delle predalles, si è considerato uno spessore medio di 0.53 m per una larghezza unitaria di impalcato pari all'interasse tipologico di 0.5m previsto per le travi metalliche:

 $G_{sol} = 0.53 \times 25 \times 0.5 \cong 6.63 \Rightarrow 7.0 \text{ kN/m} / \text{trave}.$

6.1.2 Carichi permanenti portati (g2)

I carichi permanenti portati (per metro lineare di struttura) sono i seguenti

- sovr. stradale ($h_{media} \cong 0.3m$) $0.3 \times 22 = 6.6 \text{ kPa}$; - marciapiedi-cordoli ($h_{media} \cong 0.35m$) $0.35 \times 25 = 8.75 \text{ kPa}$;

- velette prefabbricate $2\times(1.5\times0.12)\times25 = 9.0 \text{ kN/m};$

- organi di ritenuta (NJ) 6.0 kN/m;

- organi di ritenuta (barriera metallica) 1.5 kN/m;

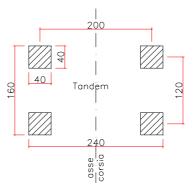
- parapetti/reti di protezione $1 \times 0.5 = 0.5 \text{ kN/m}.$

6.2 Azioni variabili da traffico

6.2.1 Carichi mobili (q1)

Ai fini della determinazione delle azioni variabili da traffico, l'opera in oggetto è considerata come un ponte stradale di 1° **Categoria**. In relazione alla geometria della strada soprastante l'opera in esame si riportano le caratteristiche delle corsie convenzionali.

w = var. larghezza di carreggiata;


 $n_l = 3$ numero di corsie convenzionali;

 $w_1 = 3.0 \text{ m}$ larghezza di una corsia convenzionale;

 $w-(3.0\cdot n_1)$ parte rimanente.

Le azioni variabili del traffico, comprensive degli effetti dinamici, sono definite mediante lo schema di carico 1 e lo schema di carico 2. Lo schema di carico 1 (schema dimensionante per le travi) prevede:

- il carico $Q_{1,k}$ costituito da un mezzo convenzionale a due assi (carico tandem) posti ad un interasse di 1.20m lungo il senso di marcia e caratterizzati da una larghezza di 2.40m (comprese le dimensioni delle impronte);
- il carico ripartito q_{1,k}

F 4. Schema di carico 1 – Carico tandem

Trattandosi di ponte di 1° Categoria si considerano le intensità dei carichi riportate nella tabelle seguente.

Posizione	Carico asse Q _{ik} (kN)	Carico ripartito q _{ik} (kN/m²)
Corsia n. 1	300	9.00
Corsia n. 2	200	2.50
Corsia n. 3	100	2.50
Parte rimanente	0.00	2.50

T.1 Intensità dei carichi Qik e gik per le diverse corsie

Nelle verifiche si considerano tutte le disposizioni dei carichi variabili da traffico in maniera tale da massimizzare le sollecitazioni flettenti e taglianti (massima densità di carico, massima eccentricità del carico risultante e massimo "carico centrato") nel rispetto del numero massimo di corsie individuabili secondo norma.

6.3 Azione longitudinale di frenamento o di accelerazione (q3)

Si riporta di seguito la valutazione dell'azione risultante di frenamento o di accelerazione q_3 per l'impalcato in esame.

$$q_3 = (0.6 \times 2 \times Q_{1k}) + (0.1 \times q_{1k} \times w_l \times L) \cong 408 \text{ kN}$$

con L \cong 17.8 m. L'azione in esame, con risultante nettamente inferiore alla risultante dell'azione sismica orizzontale dell'impalcato, non è dimensionante per l'opera in esame.

6.4 Azioni variabili di vento e neve (q5)

L'azione del vento è assimilata ad un carico orizzontale diretto perpendicolarmente all'asse del tracciato. Tale azione si considera agente sul piano verticale delle superfici direttamente investite. La superficie dei carichi transitanti sul ponte è assimilata ad una parete rettangolare continua dell'altezza di 3.0 m a partire dal piano stradale. L'altezza della superficie esposta è pertanto pari a circa 3.65 m (3+0.53+0.12). La pressione del vento considerata in prima approssimazione è pari a p=2.5 kPa. L'azione del carico neve si ritiene trascurabile.

6.5 Azioni sismiche (q₆)

La caratterizzazione dell'azione sismica dell'opera in esame viene effettuata ai sensi del D.M. 17 gennaio 2018 e relative istruzioni. In particolare si fa riferimento ai seguenti parametri legati all'opera in sé:

La vita nominale (V_N) dell'opera è stata assunta pari a:

La classe d'uso assunta è la IV, il coefficiente d'uso risulta pertanto pari a:

$$Cu = 2.0$$

Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso vale:

$$V_R = V_N \cdot C_u = 100$$
 anni

I valori di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente è:

$$P_{VR}(SLV)=10\%$$

I parametri legati al sito e alle caratteristiche del terreno risultano i seguenti:

o Comune: Maglie (Long. 18.3133; Lat. 40.1241)

Categoria di sottosuolo: B

Condizione topografica: T1

Il periodo di ritorno dell'azione sismica T_R espresso in anni, vale:

$$T_{R}(SLD) = -\frac{Vr}{\ln(1 - Pvr)} = 101 \text{ anni}$$

$$T_{R}(SLV) = -\frac{Vr}{\ln(1 - Pvr)} = 949 \text{ anni}$$

Dato il valore del periodo di ritorno suddetto tramite la mappatura messa a disposizione in rete dall'*Istituto Nazionale di Geofisica e Vulcanologia* (*INGV*), è possibile definire i valori di a_q , F_0 , T_c^* .

- ag accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;
- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*_c periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- S coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St).

u valori delle caratteristiche sismiche (a. E. L.) der sono ribortati nella seduente tabella	ristiche sismiche (a_0, F_0, T_c^*) per sono riportati n	iella seguente tabella
--	--	------------------------

STATO LIMITE	T _R	a_g	F_0	T _C *
[-]	[anni]	[g]	[-]	[s]
SLD	101	0.029	2.390	0.278
SLV	949	0.08	2.573	0.481

F 5. Valori delle caratteristiche sismiche (a_g, F_0, T_c^*) per il sito

L'accelerazione massima attesa al sito viene ricavata mediante la seguente relazione:

-
$$SLV \Rightarrow a_{max} = S \times a_g = 1.2 \times 0.080 \times g \cong 0.096 \times g;$$

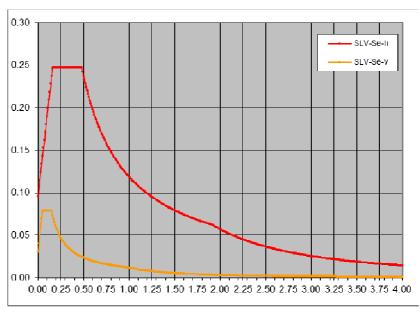
dove:

$$S = S_S \times S_T = 1.2 \times 1.0 = 1.2;$$

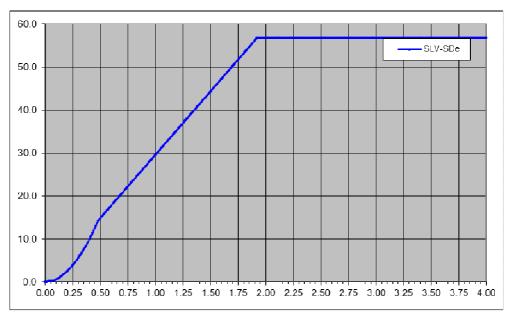
$$S_S = 1.2$$
 coefficiente di amplificazione stratigrafica (sottosuolo tipo **B**);

$$S_T$$
 = 1.0 coefficiente di amplificazione topografica.

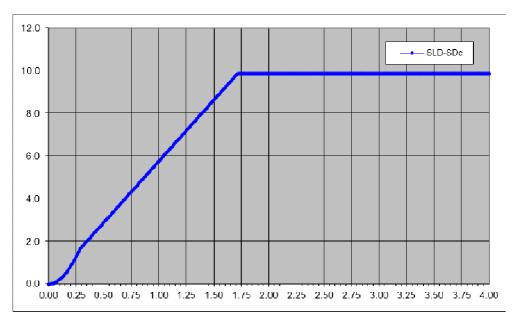
- **SLD**
$$\Rightarrow$$
 $a_{max} = S \times a_q = 1.2 \times 0.029 \times g \cong 0.035 \times g;$


dove:

$$S = S_S \times S_T = 1.2 \times 1.0 = 1.2;$$

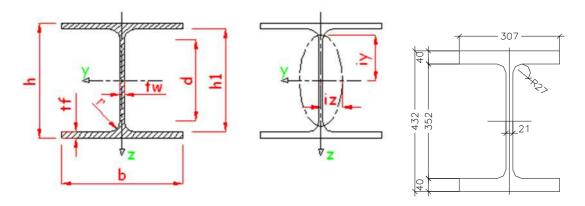

$$S_S = 1.2$$
 coefficiente di amplificazione stratigrafica (sottosuolo tipo **B**);

$$S_T = 1.0$$
 coefficiente di amplificazione topografica.


Di seguito si illustrano gli spettri elastici utilizzati nei calcoli. In particolare si osserva che il sisma verticale viene considerato solamente per le verifiche delle spalle mentre viene trascurato per le verifiche dell'impalcato.

F 6. Spettro elastico in accelerazione orizzontale e verticale SLV

F 7. Spettro elastico in spostamento orizzontale SLV


F 8. Spettro elastico in spostamento orizzontale SLD

7. IMPALCATI - CARATTERISTICHE GEOMETRICHE

7.1 Generalità

L'opera in esame è caratterizzata da un solettone di impalcato con travi metalliche incorporate del tipo *HEM400*; l'interasse dei profilati è pari a 500mm mentre l'altezza totale della struttura di impalcato risulta pari a 530mm. In particolare si hanno *15* profilati per le "*rampe*" e *48* profilati per la parte centrale.

Di seguito le dimensioni principali della trave in carpenteria metallica con le principali caratteristiche geometrico-inerziali.

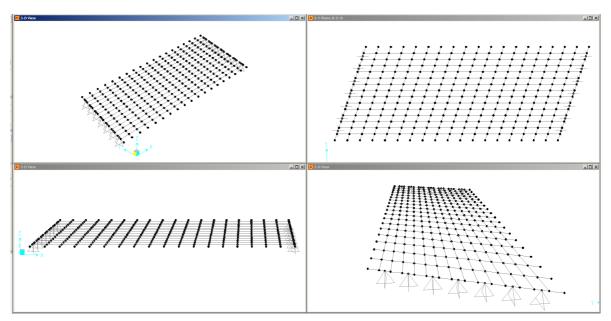
T.2 Sezione trasversale HEM400

	Din	nensi	Peso	Area			
	h	b	t _w	t _f	r	G	Α
Designazione	mm	mm	mm	mm	mm	kg/m	cm ²
HE 400 M	432	307	21	40	27	255.7	325.8

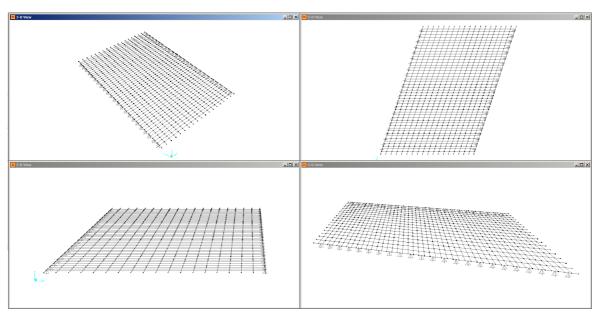
Caratteristiche Statiche										
Asse Forte "Y-Y" Asse Debole "Z-Z"										
I _v	W_{v}	$W_{pl, y}$	i _v	A_{vz}	l _z	W_z	$W_{pl, z}^{\Box}$	i _z		
cm ⁴	cm ³	cm ³	ст	cm ²	cm ⁴	cm ³	cm ³	ст		
104119	4820	5571	17.88	110.18	19335	1260	1934	7.70		

8. IMPALCATI - ANALISI STRUTTURALE

8.1 Generalità


Per le travi di impalcato il calcolo delle sollecitazioni indotte dai carichi permanenti di prima fase, di seconda fase e dai carichi variabili di esercizio è stato effettuato secondo due schemi statici limite ritenuti opportuni in ragione della natura e della dislocazione delle azioni esterne:

- trave semplicemente appoggiata ⇒ tale schema è stato ritenuto valido per i carichi permanenti quali il peso proprio degli elementi strutturali;
- graticcio di travi semplicemente appoggiate ⇒ tale schema è stato ritenuto valido per i carichi permanenti portati e per i carichi mobili di esercizio.


8.2 Descrizione del modello di calcolo

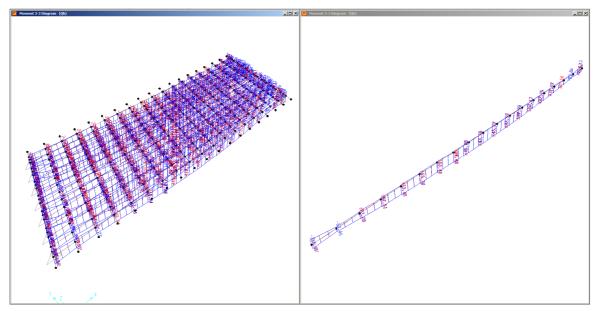
Le sovrastrutture si impalcato sono state modellate con l'ausilio del programma agli elementi finiti *SAP 2000*. Per effettuare le analisi previste per i carichi mobili di esercizio si sono realizzati due distinti modelli di calcolo aventi le caratteristiche meccaniche della fase finale. Gli impalcati in oggetto sono stati modellati con graticci di travi irrigidite e collegate dalla porzione superiore di soletta (sp=10cm). Le strutture sono discretizzate con un adeguato numero di elementi frame a due nodi con sei gradi di libertà per nodo, tre traslazionali e tre rotazionali. Il sistema di riferimento è formato da una terna destrorsa *x-y-z*.

Una rappresentazione grafica qualitativa dei modelli strutturali adottati è riportata nelle figure seguenti.

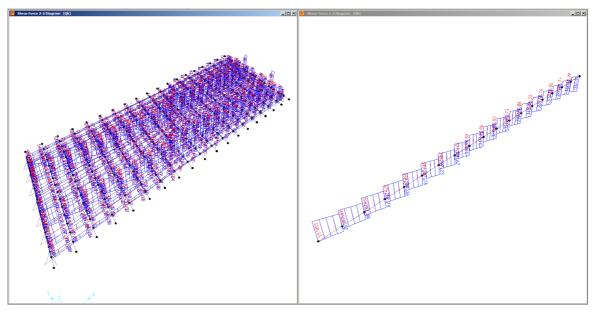
F 9. Modello agli elementi finiti – Rampa laterale tipo

F 10. Modello agli elementi finiti – Opera centrale

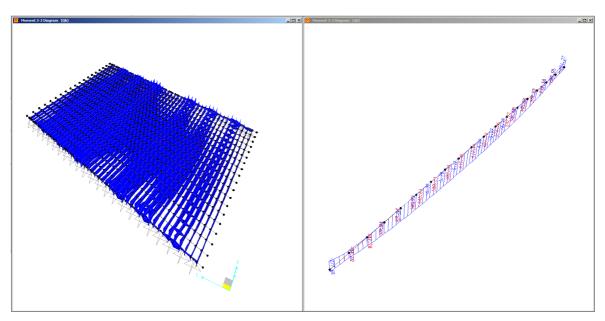
8.3 Descrizione dei carichi applicati

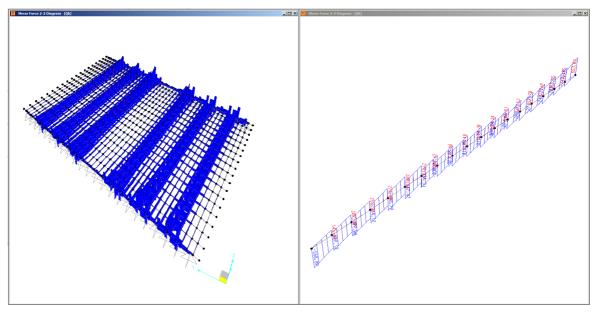

I carichi applicati, come precedentemente specificato, sono solo quelli relativi ai permanenti portati ed ai carichi mobili. Di seguito una descrizione della procedura utilizzata per la schematizzazione dei carichi mobili.

8.3.1 Carichi mobili (q1)


La procedura utilizzata per la valutazione delle sollecitazioni indotte dal carico viaggiante sul graticcio di travi prevede l'implementazione di diversi "vehicles" viaggianti su tutte le differenti "lane" di carico coincidenti ovviamente con le corsie di carico previste dalla normativa vigente.

8.4 Diagrammi delle caratteristiche della sollecitazione


Nei seguenti grafici si mostrano gli andamenti delle sollecitazioni flettenti e taglianti nell'impalcato.


F 11. Rampa laterale – Momento flettente da carico mobile (trave maggiormente sollecitata a DX)

F 12. Rampa laterale – Sforzo di taglio da carico mobile (trave maggiormente sollecitata a DX)

F 13. Impalcato centrale – Momento flettente da carico mobile (trave maggiormente sollecitata a DX)

F 14. Impalcato centrale – Sforzo di taglio da carico mobile (trave maggiormente sollecitata a DX)

9. IMPALCATI – VERIFICHE DELLE TRAVI

9.1 Verifiche di resistenza profilati metallici

Essendo le travi realizzate mediante profili che ricadono nelle sezioni di classe 1 secondo quanto previsto dalle indicazioni delle *NTC18*, tutte le verifiche di resistenza delle travi sono condotte in campo plastico. Nelle verifiche sono state assunte, convenzionalmente, come positive le tensioni di trazione. L'unità di misura utilizzata per le tensioni sono i *N/mm² (MPa)*. Come già specificato in precedenza, la soletta di c.a. è stata considerata solo come elemento ripartitore delle sollecitazioni tra le travi d'acciaio. Le sollecitazioni massime sulle travi agli *Stati Limite Ultimi*, riassunte di seguito, si ritengono valide per tutti e due gli impalcati. Di seguito le sollecitazioni massime relative alle singole fasi e le verifiche a rottura a flessione ed a taglio. Le verifiche riportate di seguite fanno quindi riferimento alla sola sezione d'acciaio.

Fase 1 - Sollecitazioni di calcolo

Nella prima fase si considera il peso delle travi metalliche e il peso del getto della soletta. Si considera lo schema statico di trave appoggiata su una luce di 17.80 m.

 $V_{SLU1} = 1.35 \times [(2.6+7) \times 17.8/2] \cong 115 \text{ kN/trave} \Rightarrow \text{taglio Fase 1};$

 $M_{SLU1} = 1.35 \times [(2.6+7) \times 17.8^2/8] \cong 513 \text{ kN} \times \text{m/trave} \Rightarrow \text{momento flettente Fase 1}.$

Fase 2 – Sollecitazioni di calcolo

Nella seconda fase si considera l'effetto dei carichi permanenti e dei carichi da traffico sullo schema statico finale.

V_{Gperm} ≅ 45 kN/trave ⇒ taglio da carichi permanenti.

V_{Q1k} ≈ 555 kN/trave ⇒ taglio da carichi accidentali;

 $M_{Gperm} \cong 240 \text{ kN} \times \text{m/trave} \Rightarrow \text{momento flettente da carichi permanenti};$

 $M_{Q1k} \cong 655 \text{ kN} \times \text{m/trave} \Rightarrow \text{momento flettente da carichi accidentali;}$

 $V_{SLU2} = 1.35 \times [(45+555)] = 810 \text{ kN/trave} \Rightarrow \text{taglio totale Fase 2}.$

 $M_{SLU2} = 1.35 \times [(240+655)] \cong 1208 \text{ kN} \times \text{m/trave} \Rightarrow \text{momento flettente totale Fase 2}.$

Fase 1 + Fase2 - Sollecitazioni di calcolo

Le sollecitazioni risultanti, derivanti dalla somma delle sollecitazioni di *Fase 1* e di *Fase 2*, sono pari a:

 $V_{Ed} = 925 \text{ kN/trave} \Rightarrow \text{taglio risultante};$

 $M_{Ed} \cong 1721 \text{ kN} \times \text{m/trave} \Rightarrow \text{momento flettente risultante}.$

Fase 1 + Fase2 - Verifiche di resistenza

Il taglio resistente offerto dall'area a taglio del solo profilato metallico risulta pari a:

 $V_{Rd} = A_{vz} \times (f_{yd}/\sqrt{3}) \cong 2151 \text{ kN} < V_{Ed} - \text{Sforzo tagliante resistente del profilato metallico}$

con

 $A_{vz} \cong 110.2 \times 10^2 \text{ mm}^2$ – area a taglio del singolo profilato metallico.

Inoltre si ha:

$$V_{Rd}$$
 /2 \cong 1076 kN $>$ V_{Ed} ;

Si può quindi trascurare l'interazione tra momento flettente e taglio.

Il momento resistente offerto dal profilato, in base a quanto esposto nella precedente verifica a taglio, risulta pari a:

-
$$M_{c,Rd} = M_{pl,y,Rd} = W_{pl} \times f_{yd} \cong 1885 \text{ kN} \times m > M_{E,d};$$

con

 $W_{pl} \cong 5571 \text{ cm}^3 - \text{modulo plastico di resistenza del profilato metallico}$;

$$f_{yd} = f_{yk} / \gamma_{M0} \cong 338.1 \text{ MPa} - \text{tensione di calcolo};$$

I risultati ottenuti mostrano che le verifiche di resistenza sono soddisfatte.

9.2 Verifiche di resistenza unione saldata profilati metallici

Essendo le travi realizzate mediante profili commerciali del tipo *HEM* (lunghezze standard inferiori a 12m) se ne prevede il collegamento in opera mediante saldature a piena penetrazione. Le verifiche di resistenza dell'unione saldata si possono pertanto ritenere soddisfatte in base alle verifiche di resistenza precedentemente esposte.

9.3 Verifiche di deformabilità

Nel presente paragrafo si riporta la verifica di deformabilità dell'impalcato. Tale verifica viene effettuata valutando la freccia indotta dal carico accidentale dovuto al traffico e confrontandola con il valore limite posto uguale a 1/700 della luce dell'impalcato. Si assume la sezione interamente reagente in entrambe le direzioni, longitudinale trasversale.

$$\delta_{max,imp} = 0.023m$$

$$\delta_{lim} = 17.8 m / 700 = 0.025 m$$

Poiché risulta $\delta_{max,imp} < \delta_{lim}$, la verifica di deformabilità è soddisfatta.

Impalcato a travi incorporate e sottostrutture in c.a.

9.4 Verifiche a fatica

In accordo alla normativa in vigore si riportano di seguito le verifiche a fatica del profilato e del particolare di unione saldata delle travi principali utilizzando i criteri di verifica per <u>vita illimitata</u>. Affinché la verifica risulti soddisfatta le variazioni di tensione $\Delta \sigma_A$ indotte ad opera dei carichi ciclici (carichi mobili) devono risultare inferiori ai rispettivi valori ammissibili " $\Delta \sigma_C$ " del particolare in esame:

$$\gamma_{Mf} \times \Delta \sigma_{max} \leq \Delta \sigma_{D}$$

con

 $\Delta \sigma_{D-p} = 0.737 \times \Delta \sigma_{c} \cong 92.13 \text{ MPa} - \text{limite di fatica per verifica profilo};$

 $\Delta \sigma_{\text{c-p}}$ = 125 MPa – classe del dettaglio per verifica profilo;

 $\Delta\sigma_{D-s} = 0.737 \times \Delta\sigma_{c} \cong 82.54 \text{ MPa} - \text{limite di fatica per verifica unione saldata};$

 $\Delta \sigma_{\text{C-s}}$ = 112 MPa – classe del dettaglio per verifica unione saldata;

 $\gamma_{Mf} = 1.35 - (struttura sensibile - conseguenze significative della rottura per fatica).$

Il valore ammissibile utilizzato viene ulteriormente ridotto in ragione dello spessore massimo degli elementi collegati ($t_{max} = 40 \text{mm}$):

$$\Delta \sigma_{c,t} = (25/t)^{0.2} \times \Delta \sigma_{c}$$
.

Per la valutazione delle escursioni massime di tensione si utilizza il modello di carico a fatica n.2 (veicoli frequenti).

La massima variazione di tensione normale per la verifica del profilato risulta pari a:

$$- \gamma_{Mf} \times \Delta \sigma_{max} = \Delta M_{Q,d} / W_{el} \cong 77 \text{ MPa} < 92.13 \times (25/40)^{0.2} \cong 83.9 \text{ MPa};$$

con

 $|\Delta M_{Qd}| \approx 370 \text{ kN} \times \text{m/trave} \Rightarrow \text{escursione massima del momento flettente (rampa laterale)};$

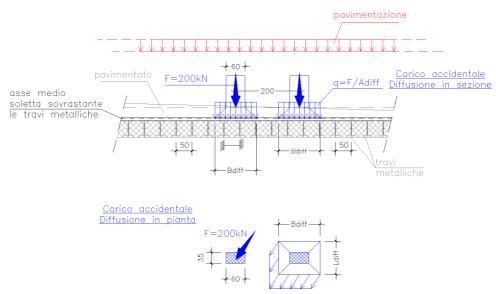
 $W_{el} \cong 4820 \text{ cm}^3 - \text{modulo elastico profilato metallico}.$

La massima variazione di tensione normale per la verifica della saldatura, ricavata per la sezione posta a 6m dall'appoggio (3 conci 6m+6m+6m), risulta pari a:

$$- \gamma_{Mf} \times \Delta \sigma_{max} = \gamma_{Mf} \times \Delta M_{Q,d} / W_{el} \cong 60 \text{ MPa} < 82.54 \times (25/40)^{0.2} \cong 75.1 \text{ MPa}.$$

con

 $|\Delta M_{Od}| \approx 285 \text{ kN} \times \text{m/trave} \Rightarrow \text{escursione massima del momento flettente (rampa laterale)};$


 $W_{el} \cong 4820 \text{ cm}^3 - \text{modulo elastico profilato metallico.}$

Le verifiche risultano soddisfatte.

10. IMPALCATO – VERIFICHE SOLETTA

10.1 Verifiche di resistenza

Si riportano di seguito le verifiche di resistenza della porzione di soletta sovrastante le ali superiori delle travi metalliche. Essendo le travi interassate di 50cm si considera, in favore di sicurezza per il solo dimensionamento della porzione di soletta in esame di spessore 10cm, uno schema statico di trave incastrata alle estremità avente una luce di calcolo pari all'interasse delle travi depurato di metà larghezza piattabanda superiore (L_{calcolo}=50-30/2=35cm) e soggetta ai carichi di seconda fase ovvero ai carichi permanenti portati di pavimentazione (spessore medio pari a 0.3m) ed allo schema di carico 2 per quanto riguarda i carichi mobili (schema di carico dimensionante per gli effetti locali in soletta); nella figura sottostante si riporta lo schema adottato ed i carichi considerati.

F 15. Soletta - Schema per il calcolo delle sollecitazioni in direzione trasversale

Sollecitazioni - Combinazione SLU

 $p_{SLU} = 1.35 \times (0.3 \times 22) \cong 9kPa;$

 $q_{SLU} = 1.35 \times 200 / \left[(0.1/2 + 0.3 + 0.35 + 0.3 + 0.1/2) \times (0.1/2 + 0.3 + 0.6 + 0.3 + 0.1/2) \right] \cong 200 \text{ kPa};$

 $V_{Sd} = (p_{SLU} + q_{SLU}) \times L/2 \cong 36.6 \text{ kN/m di profondità};$

 $M_{Sd} \cong (p_{SLU} + q_{SLU}) \times L^2 / 10 \cong 2.6 \text{ kN} \times \text{m/m di profondità}.$

Verifiche di resistenza

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

 $B \times H = 100 \text{cm} \times 10 \text{cm}$;


 $A_s = r.e.s. \phi 8/10 \times 10 - armatura superiore \Rightarrow copriferro superiore pari a c = 40mm;$

 $A'_s = r.e.s. \phi 6/20 \times 20 - armatura inferiore \Rightarrow copriferro superiore pari a c' = 20mm.$

Il momento resistente ultimo è determinato con il programma di calcolo PresFle+.

 $M_{R,d} \cong 11.4 \text{ kN} \times \text{m/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$

(controllo momento resistente si trascura l'effetto positivo dello sforzo assiale \Rightarrow M \cong 0.9 \times 6 \times 5 \times 3913/10000 \cong 10.6 kN \times m/m)

F 16. Dominio di interazione N-M

Di seguito si riporta invece la verifica a taglio.

 $V_{R,d} = [0.18 \times k \times (100 \times \rho_l \times f_{ck})^{1/3} / \gamma_c + 0.15 \times \sigma_{cp}] \times b_w \times d \cong 45 \text{ kN/m} > V_{S,d} - \text{verifica soddisfatta};$

con

d ≅ 60 mm

 $b_w = 1000 \text{ mm};$

 $\sigma_{cp} = 0$

$$k = 1 + (200/d)^{1/2} \cong 1.29$$

 $\rho_I = A_{sI}/(b_w \times d) \cong (10 \times 50)/(1000 \times 60) \cong 0.008;$

$$f_{ck} = 37.35 \text{ MPa}$$

$$\gamma_{\rm c} = 1.5$$
.

<u>Verifiche di resistenza – urto veicoli in svio</u>

Si riporta di seguito la verifica della sezione della soletta soggetta alle azioni derivanti dall'urto del veicolo in svio.

In corrispondenza della base delle barriere sono considerate le seguenti azioni:

- V_{S.pl} = 42.4 kN (sforzo di trazione per la sezione di verifica)
- M_{S,pl} = 42.4 kN×m (massimo momento flettente che tende le fibre superiori)

ottenute in accordo a quanto riportato in "Quaderni Tecnici ANAS – Volume 2 – N.5 Interventi di Rifacimento dei Cordoli con Calcestruzzo Fibrorinforzato", dove il momento plastico adottato del montante della barriera è il massimo tra quelli disponibili attualmente sul mercato (tipo H4), il taglio è ottenuto dividendo il momento plastico per la distanza del punto di applicazione dell'azione dovuta all'urto dalla base della barriera, cioè 1m. La verifica viene effettuata richiedendo, cautelativamente, che le barre di armatura della soletta ($s_p=10 \text{cm}$) assorbano lo sforzo di trazione derivante dall'urto ($N_{\text{Ed}} \cong 45 \text{ kN/m}$).

Si considera la sezione resistente di spessore complessivo pari a 0.10m. L'armatura considerata è la seguente:

 $A_s = r.e.s. \phi 8/10 \times 10 - armatura superiore \Rightarrow copriferro superiore pari a c = 40mm;$

 $A'_s = r.e.s. \phi 6/20 \times 20 - armatura inferiore \Rightarrow copriferro superiore pari a c' = 20mm. =$

 $A_{s,tot} = (10 \times 0.502 + 5 \times 0.2826) \cong 6.4 \text{ cm}^2$

Lo sforzo di trazione resistente è dunque pari a:

 $N_{Rd} = A_{s,tot} \times f_{yd} \cong 250 \text{ kN/m}$

da cui si ottiene:

N_{Rd}> N_{Ed} - Verifica soddisfatta

10.2 Verifiche di durabilità

Si riportano di seguito le *verifiche di durabilità* ovvero:

- verifiche dello stato tensionale;
- verifiche a fessurazione.

Sollecitazioni - Combinazione SLE

$$p_{SLE} = (0.3 \times 22) \cong 6.6 kPa;$$

$$q_{SLU} = 200/\left[(0.1/2 + 0.3 + 0.35 + 0.3 + 0.1/2) \times (0.1/2 + 0.3 + 0.6 + 0.3 + 0.1/2)\right] \cong 150 \text{ kPa};$$

 $V_{Sd} = (p_{SLU} + q_{SLU}) \times L/2 \cong 27.4 \text{ kN/m di profondità;}$

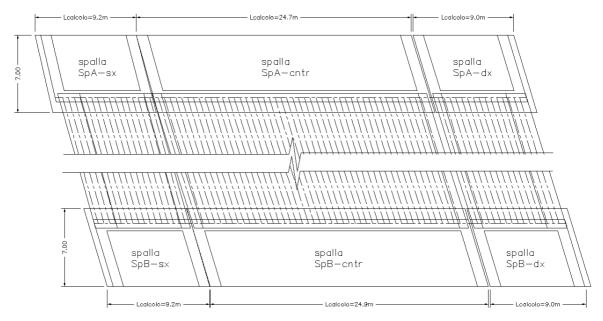
 $M_{Sd} \cong (p_{SLU} + q_{SLU}) \times L^2 / 10 \cong 2 \text{ kN} \times \text{m/m di profondità}.$

Le tensioni massime/minime nei materiali, determinate considerando un coefficiente di omogenizzazione n=15, risultano pari a:

- σ_{c-max} ≅ -3.2 MPa<0.6f_{ck} massima tensione di compressione nel cls Verifica soddisfatta;
- $\sigma_{s\text{-max}} \cong 80 \text{ MPa} < 0.8 f_{yk}$ massima tensione di trazione nell'acciaio Verifica soddisfatta.

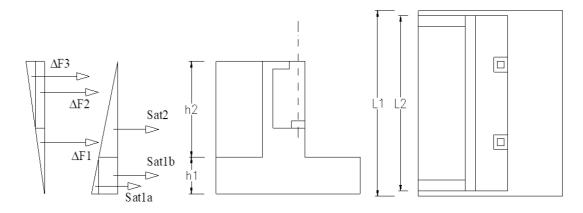
Effettuando il calcolo della massima tensione di trazione nel calcestruzzo, determinata nell'ipotesi di sezione intermante reagente con le precedenti sollecitazioni, si ottiene:

- $\sigma_{c\text{-max}} \cong 1.2 \text{ MPa}$ - massima tensione di trazione nel cls.

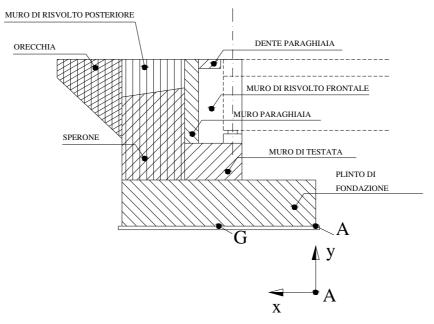

La verifica è quindi soddisfatta nei confronti della formazione delle fessure in quanto:

- $\sigma_{c\text{-max}}$ < $f_{ctm}/1.2 \cong 2.8$ MPa.

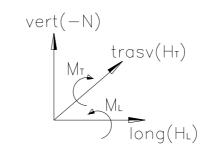
11. SPALLE – VERIFICHE FONDAZIONE E ELEVAZIONE


11.1 Generalità

Di seguito sono riportate le verifiche delle fondazioni e delle elevazioni delle due tipologie di spalle previste ed adottate per tale opera ovvero le spalle delle rampe laterali e le spalle dell'opera centrale. Di seguito uno schema con il quale si individuano le spalle in esame.

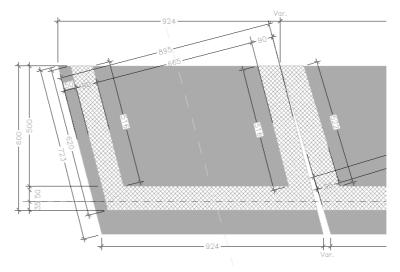


F 1. Spalle – Individuazione e nomenclatura

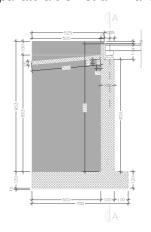

Nelle figure sottostanti sono riportati gli schemi tipo considerati utilizzato per l'analisi dei carichi relativamente alla sezione longitudinale e alla pianta; nello schema longitudinale è indicato il *punto A* rispetto al quale sono calcolati i momenti flettenti dei pesi propri e dei carichi applicati sulla spalla ed il *punto G* che individua il baricentro della fondazione.

F 2. Schema azioni orizzontali spalla - Rinterro

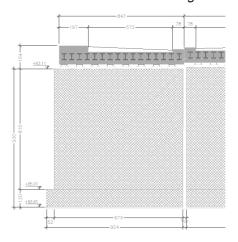
F 3. Schema longitudinale spalla – Elementi strutturali



F 4. Convenzione per le sollecitazioni


11.2 Rampa laterale sinistra – Spalla "SpA-sx"

11.2.1 Analisi dei carichi


La geometria della sottostruttura spalla della rampa laterale tipo analizzata di seguito è riportata nelle immagini successive.

F 5. Rampa laterale sinistra – Pianta spalla SpA

F 6. Rampa laterale sinistra – Sezione longitudinale spalla SpA

F 7. Rampa laterale sinistra – Prospetto spalla SpA

Sono di seguito illustrati i calcoli dei carichi dovuti ai pesi propri, permanenti portati, carichi accidentali, spinta del terreno, azioni indotte dal sisma ed azioni trasmesse dall'impalcato; nelle tabelle sottostanti sono riportati i singoli valori e le risultanti valutate rispetto al punto A ed al punto G (baricentro fondazione) indicati nelle figure precedenti (vedere § 11.1). Per quanto riguarda il calcolo dei carichi provenienti dall'impalcato fare riferimento alle relazioni corrispondenti.

AZIONI STATICHE									
AZIONI VERTICALI									
a	q 20 kN/m²								
γcis		kN/m ³		(carico accid	,	e del calcestruzzo	armato)		
		kN/m³				e del calcestruzzo	,		
Yels,magro	_	kN/m ³							
'Aerreno rinterro 18 kN/m ³ (peso dell'unità di volume del terreno di rinterro)									
- Carichi permanenti spalla (PERM S	<u>SP)</u>								
	d _v	d_x	d_z	N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
	[m]	[m]	[m]	[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
muro di testata	8.20	1.00	8.72	1787.6	1.50	2681.4	5.10	0.75	1340.70
baggioli	0.00	0.60	0.40	0.0	0.00	0.0	9.15	0.00	0.00
muro paraghiaia	1.30	0.25	8.72	70.9	1.88	133.2	9.85	0.66	46.76
ringrosso paraghiaia	0.00	0.00	0.00	0.0	0.00	0.0	0.00	0.00	0.00
muro risvolto 1 (dx)	9.90	5.00	0.93	1150.9	4.50	5178.9	5.95	3.12	3590.73
muro risvolto 2 (sx)	9.90	5.00	0.93	1150.9	4.50	5178.9	5.95	-3.83	-4407.85
Σ				4160.2		13172.5			570.3
rinterro	9.50	5.00	6.76	5779.8	4.50	26009.1	5.95	0.01	57.80
plinto di fondazione	1.00	7.00	9.17	1603.9	3.50	5613.6	0.50	0.00	0.00
Σ	9.50			7383.7		31622.7			57.8
	10.50				,				
Σ_{PERMSP}				<u>11543.9</u>	3.88	<u>44795.1</u>		0.05	<u>628.1</u>
- Carichi accidentali spalla (ACC S									
	d_y	d_x	d_z	N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
_	[m]	[m]	[m]	[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
_	0.00	5.25	8.72	<u>915.6</u>	4.50	<u>4120.2</u>	10.50	0.01	9.16
				N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
				[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
 Carichi impalcato F1 (REALIZ) 				1352	1.35	1825.5	9.15	0.75	1014.19
				0.0	0.00	0.0	0.00		0.00
				1352.3		<u>1825.5</u>			<u>1014.2</u>
- Carichi permanenti impalcato F2	(PERM IMP)			647	1.35	873.4	9.15	0.75	485.24
				0.0	0.00	0.0	0.00		0.00
				647.0		<u>873.4</u>			<u>485.2</u>
- Carichi accidentali impalcato F2	(ACC IMP-Nmax)			1277	1.35	1724.2	9.15	0.75	957.88
				0.0	0.00	0.0	0.00		0.00
				<u>1277.2</u>		<u>1724.2</u>			<u>957.9</u>

AZIONI ORIZZONTALI

- valutazione della spinta del te	erreno							
γ =		18 kN/m	13		(peso dell'u	unità di volume del terreno)		
φ =		35.0	0.61		(angolo d'a	ttrito del terreno di riempimento)	
i =		0	0.00		(inclinazior	ne del terreno a monte, pos in s	alita)	
β =		0	0.00		(inclinazion	ne del muro, pos se verso monte	e)	
$\alpha = 90 - \beta =$		90	1.57		(90–β)			
δ =		0	0.00		` 0	ttrito interno tra calcestruzzo e	terreno)	
k _a =		0.271 -			•	e di spinta a riposo)		
L ₁ =		9.17 m			. •	a del cuneo di spinta inferiore)		
L ₂ =		8.72 m			, •	a del cuneo di spinta superiore)		
h ₁ =		1.00 m			(altezza de	• /		
h ₂ =	_	9.50 m			(altezza de	el muro di testata + trave paragh	iaia)	
$S_{a,t,1a} =$	2	22.4 kN			(spinta del	terreno cuneo inferiore)		
$S_{a,t,1b} =$		424.7 kN			(spinta del	terreno cuneo inferiore)		
$S_{a,t,2} =$	1	919.4 kN			(spinta del	terreno cuneo superiore)		
d _{y 1a} =		0.3 m			(distanza d	del punto di applicazione dal pia	no di fond)	
$d_{y 1b} =$		0.50 m			(distanza d	del punto di applicazione dal pia	no di fond)	
d _{y 2} =		4.2 m			(distanza d	del punto di applicazione dal pia	no di fond)	
S _{a,q1} =		49.7 kN			(spinta sul	plinto dovuta al sovraccarico)		
$S_{a,q2} =$		449.0 kN			(spinta sul	la spalla dovuta al sovraccarico)		
d _{v q1} =		0.5 m			(distanza d	del punto di applicazione dal pia	no di fond)	
d _{v q2} =		5.8 m			(distanza d	del punto di applicazione dal pia	no di fond)	
7 1-								
				H_L	N	$M_T(A) = MT(G)$	y(A) = y(G)	$M_L(G)$
			_	[kN]	[kN]	[kNxm]	[m]	[kNxm]
- Spinta del terreno (ST)			_	2366.4		8217.2	-	
- Spinta del sovraccarico (SA)			-	<u>498.6</u>		<u>2606.5</u>	-	
				H _I <>	N	$M_T(A) = M_T(G)$	y(A) = y(G)	$M_L(G)$
				[kN]	[kN]	[kNxm]	[m]	[kNxm]
- Azione di frenamento (FR)			_	409		3738.7	9.15	
			_	0.0		0.0	0.00	
				408.6		<u>3738.7</u>		
				H _L <>	N	$M_T(A) = M_T(G)$	y(A) = y(G)	$M_L(G)$
			_	[kN]	[kN]	[kNxm]	[m]	[kNxm]
-Resistenze passive dei vincoli	i (RP)		_	160		1463.4	9.15	
			_	0.0		0.0	0.00	
				<u>159.9</u>		<u>1463.4</u>		
				H _T <>			y(A) = y(G)	$M_L(G) <>$
			_	[kN]			[m]	[kNxm]
- Azione dovuta al vento (VEN)	<u>TO)</u>		_	90			11.15	1003.5
			_	0.0			0.00	0.0
				90.0				1003.5

AZIONI SISMICHE

Azioni orizzontali

- valutazione dell'incremento	di spinta del terreno dovuto al sisn	па				
$a_g/g =$	0.080 -	(PGA)				
$S = S_{S X} S_{T}$	1.20 -					
S _{ve spalla} =	0.04	(spettro di rispos	sta elastico della compo	nente verticale)		
L ₁ =	9.2 m	(lunghezza del d	uneo di spinta inferiore)			
L ₂ =	8.72 m	(lunghezza del d	uneo di spinta superiore	e)		
h ₁ =	1 m	(altezza del plint	to)			
h ₂ =	9.5 m	(altezza del mur	o di testata + trave para	ghiaia)		
$\Delta P_{d,1} =$	247.6 kN	(Spinta sismica	Mononobe-Okabe / W	ood)		
$\Delta P_{d,2} =$	1063.2 kN	(Spinta sismica	Mononobe-Okabe / W	ood)	3661	1295
	1311					
		H _L <>	$y(A) = y(G) M_T(A)$	A) = MT(G)		$M_L(G)$
- Incremento di spinta del teri	reno dovuto al sisma (DS)	[kN]	[m]	[kNxm]		[kNxm]
		1310.80	5.3	6881.7		

- Sisma spal	la long e t	rasy (SIS	SPI eT)
Olollia opai	ia iorig. c i	iasv. (Oio	OI L C I /

muro di testata	
baggioli	
muro paraghiaia	
ringrosso paraghiaia	
muro risvolto 1 (dx)	
muro risvolto 2 (sx)	
orecchia	
soletta inferiore	
soletta inferiore	
mensola posteriore	
rinterro	
plinto di fondazione	
-	
Σ	

N	$H_T = H_L$	y(A) = y(G)	$I_T(A) = M_L(A)$	(۱
[kN]	[kN]	[m]	[kNxm]	
1787.6	171.6	5.10	875.21	ı

[kN]	[kN]	[kN] [m]	
1787.6	171.6	5.10	875.21
0.0	0.0	9.15	0.00
70.9	6.8	9.85	67.00
0.0	0.0	0.00	0.00
1150.9	110.5	5.95	657.38
1150.9	110.5	5.95	657.38
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
5779.8	554.9	5.95	3301.4
1603.9	154.0	0.50	77.0
0.0	0.0	0.00	0.0
11543.9	1108.2		5635.4

Azioni verticali

- Sisma spalla verticale (SIS SP V)

muro di testata
baggioli
muro paraghiaia
ringrosso paraghiaia
muro risvolto 1 (dx)
muro risvolto 2 (sx)
orecchia
soletta inferiore
soletta inferiore
mensola posteriore
rinterro
plinto di fondazione
-
Σ

W	N +/-	x(A)	$M_T(A) <>$	z(A)	$M_L(A) <>$
[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
1787.6	71.5	1.50	107.26	0.75	53.63
0.0	0.0	0.00	0.00	0.00	0.00
70.9	2.8	1.88	5.33	0.66	1.87
0.0	0.0	0.00	0.00	0.00	0.00
1150.9	46.0	4.50	207.16	3.12	143.63
1150.9	46.0	4.50	207.16	-3.83	-176.31
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
5779.8	231.2	4.50	1040.4	0.01	2.31
1603.9	64.2	3.50	224.5	0.00	0.00
0.0	0.0	0.00	0.0	0.00	0.00
11543.9	461.8		1791.8		25.1

- Sisma impalcato longitudinale (SIS IMP L)

Sisma long.

N +/-H_L <--> x(A) $M_T(G) <-->$ y(A) = y(G) $M_L(G)$ [kN] [kN] [m] [kNxm] [m] [kNxm] 990 9058.5 0.0 0.0 0.00 990.0 9058.5

- Sisma impalcato trasversale (SIS IMP T)

Sisma trasv.

- Sisma impalcato verticale (SIS IMP V)

[4]	80	1.35	108.0	0.00	0.00
[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
H _L <>	N +/-	x(A)	M(A) <>	z(A)	$M_L(A)$

11.2.2 Condizioni di carico

Nelle tabelle seguenti sono riportati valori dei carichi valutati precedentemente. I valori dei momenti flettenti sono riferiti al baricentro G della fondazione.

condizioni di carico	H _L ->(+)	H _T	N	M _T (A)	$M_L(A)$	$e_L(A)=M_T(A)/N$	$e_X(G)=d_X(A)-e_L(A)$	$M_{T,G}$	$e_T(A)=M_L(A)/N$	e _Z (G)	$M_{L,G}$
	[kN]	[kN]	[kN]	[kNxm]	[kNxm]	[m]	[m]	[kNxm]	[m]	[m]	[kNxm]
0 REALIZZAZIONE			1352	1826	1014	1.35	2.15	2907	0.75	0.75	1014
1 PERM SP			11544	44795	628	3.88	-0.38	-4392	0.05	0.05	628
2 ACC SP			916	4120	9	4.50	-1.00	-916	0.01	0.01	9
3 PERM IMP			647	873	485	1.35	2.15	1391	0.75	0.75	485
4 ACC IMP - Nmax			1277	1724	958	1.35	2.15	2746	0.75	0.75	958
5 FOLLA			0	0	0				0.00	0.00	0
6 ST	2366							8217			0
7 SA	499							2606			0
8 VARTEMPD			0	0	0			0			0
9 RES. PASSIVE VINCOLI	160	0	0	1463	0			1463			0
10 FR	409	0	0	3739	0			3739			0
11 VENTO		90									1004
12 SIS SP L	1108							5635			0
13 SIS SP T		1108									5635
14 SIS SP V			462	1792	25	3.88	-0.38	-176	0.05	0.05	25
15 SIS IMP L	990							9059			0
16 SIS IMP T		495									5796
17 SIS IMP V	·		80	108	0	1.35	2.15	172	0.00	0.00	0
18 DS	1311							6882			0

T.1 Carichi dovuti alle condizioni elementari

	H_L	H _T	N	M _T (G)	M _L (G)	
	[kN]	[kN]	[kN]	[kNxm]	[kNxm]	1
0 REALIZZAZIONE	0	0	1352	2907	1014	
1 PERM SP	0	0	11544	-4392	628	
2 ACC SP	0	0	916	-916	9	
3 PERM IMP	0	0	647	1391	485	
4 ACC IMP - Nmax	0	0	1277	2746	958	
5 FOLLA	0	0	0	0	0	
6 ST	2366	0	0	8217	0	
7 SA	499	0	0	2606	0	1
8 VARTEMPD	0	0	0	0	0	(+/-
9 RES. PASSIVE VINCOLI	160	0	0	1463	0	(+/-
10 FR	409	0	0	3739	0	(+/-
11 VENTO	0	90	0	0	1004	(+/-
12 SIS SP L	1108	0	0	5635	0	(+/-
13 SIS SP T	0	1108	0	0	5635	(+/-
14 SIS SP V	0	0	462	-176	25	(+/-
15 SIS IMP L	990	0	0	9059	0	(+/-
16 SIS IMP T	0	495	0	0	5796	(+/-
17 SIS IMP V	0	0	80	172	0	(+/-
18 DS	1311	0	0	6882	0	(+)

T.2 Riepilogo dei carichi dovuti alle condizioni elementari

11.2.3 Combinazioni di carico

Si riportano i coefficienti moltiplicati dei carichi elementari per le combinazioni allo stato limite ultimo, le combinazioni sismiche e le combinazioni allo stato limite di esercizio per le verifiche strutturali e geotecniche.

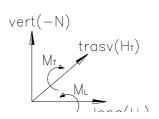
cond\comb	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	EQU
REALIZZAZIONE	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1	0	0	0	0	0	0.87
PERM SP	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						0.87
ACC SP	0	0	1.35	1.35	1.35	1.35	0	0	0	0	0	0						0.00
PERM IMP	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						0.87
ACC IMP - Nmax	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0
FOLLA	0	0	0	0	0	0	0	0	0	0	0	0						0
ST	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						1
SA	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0
VARTEMPD	0	0	0.72	1.2	0.72	1.2	0.5	0.5	0.5	0.5	0.5	0.5						0.5
RES. PASSIVE VINC	0	0	0.9	1.5	0.9	1.5	0	0	0	0	0	0						0
FR	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0
VENTO	0	0	0.9	0.9	1.5	1.5	0	0	0	0	0	0						0
SIS SP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1
SIS SP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30						0.3
SIS SP V	0	0	0	0	0	0	0.30	0.30	1.00	-0.30	-0.30	-1.00						-0.3
SIS IMP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1
SIS IMP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30						0.3
SIS IMP V	0	0	0	0	0	0	0.30	0.30	1.00	0.30	0.30	1.00						-0.3
DS	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1

T.1 Combinazioni di carico SLU

cond\comb	1	2	3	4	5	6
REALIZZAZIONE	0	1	1	1	1	1
PERM SP	1	1	1	1	1	1
ACC SP	0	0	1	1	1	1
PERM IMP	0	1	1	1	1	1
ACC IMP - Nmax	0	0	1	0.75	0.75	1
FOLLA	0	0	0	0	0	0
ST	1	1	1	1	1	1
SA	0	0	1	0.75	0.75	1
VARTEMPD	0	0	0.6	1	0.6	1
RES. PASSIVE VINC	0	0	0.6	1	0.6	1
FR	0	0	1	0.75	0.75	1
VENTO	0	0	0.6	0.6	1	1

T.2 Combinazioni di carico SLE

Si riportano di seguito le sollecitazioni per ogni combinazione di carico.

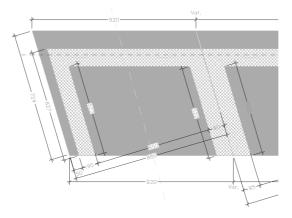

Carichi all'intradosso della fondazione - COMBINAZIONI SLU

vert(-N)	
4	trasv(H₁)
MT	A
	M _L
	/ Iona(Hi)

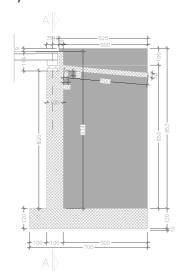
	H_L	H_{T}	N	M _T (G)	$M_L(G)$
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLU 1	3195	0	15584	5165	848
STA SLU 2	3195	0	18283	10967	2872
STA SLU 3	4563	81	21243	23321	5081
STA SLU 4	4353	81	20812	21131	4758
STA SLU 5	4257	135	20812	20253	5360
STA SLU 6	4659	135	21243	24199	5683
SIS SLU 7	5775	481	13706	29698	5565
SIS SLU 8	3389	1603	13706	14596	13567
SIS SLU 9	3389	481	14085	14593	5582
SIS SLU 10	5775	481	13429	29804	5550
SIS SLU 11	3389	1603	13429	14701	13552
SIS SLU 12	3389	481	13161	14944	5532

T.1 Combinazioni di carico SLU

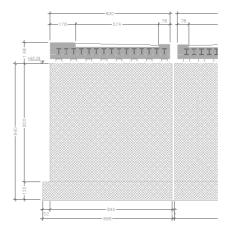
Carichi all'intradosso della fondazione - COMBINAZIONI SLE


	H_{L}	H_{T}	N	M _T (G)	$M_L(G)$
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLE 1	2366	0	11544	3826	628
STA SLE 2	2366	0	13543	8124	2128
STA SLE 3	3370	54	15736	17177	3697
STA SLE 4	3207	54	15417	15490	3457
STA SLE 5	3143	90	15417	14905	3859
STA SLE 6	3434	90	15736	17763	4098

T.2 Combinazioni di carico **SLE**


11.3 Rampa laterale sinistra – Spalla "SpB-sx"

11.3.1 Analisi dei carichi


La geometria della sottostruttura spalla della rampa laterale tipo analizzata di seguito è riportata nelle immagini successive.

F 8. Rampa laterale sinistra – Pianta spalla SpB

F 9. Rampa laterale sinistra – Sezione longitudinale spalla SpB

F 10. Rampa laterale sinistra – Prospetto spalla SpB

Sono di seguito illustrati i calcoli dei carichi dovuti ai pesi propri, permanenti portati, carichi accidentali, spinta del terreno, azioni indotte dal sisma ed azioni trasmesse dall'impalcato; nelle tabelle sottostanti sono riportati i singoli valori e le risultanti valutate rispetto al punto A ed al punto G (baricentro fondazione) indicati nelle figure precedenti (vedere § 11.1). Per quanto riguarda il calcolo dei carichi provenienti dall'impalcato fare riferimento alle relazioni corrispondenti.

AZIONI VERTICALI	
q 20 kN/m² (carico accidentale)	
γ _{kis} 25 kN/m³ (peso dell'unità di volume del calcestruzzo armato)	
γείs.mgro 24 kN/m³ (peso dell'unità di volume del calcestruzzo magro)	
Yterreno rinterro 18 kN/m³ (peso dell'unità di volume del terreno di rinterro)	
- Carichi permanenti spalla (PERM SP)	
$d_y \qquad \qquad d_x \qquad \qquad d_z \qquad \qquad N \qquad \qquad x(A) \qquad \qquad M_T(A) \qquad \qquad y(A) = y(G) \qquad \qquad z(A)$	$M_L(A)$
[m] [m] [m] [kN] [m] [kNxm] [m] [m]	[kNxm]
	-603.60
muro paraghiaia 1.30 0.25 8.66 70.4 1.88 132.3 9.85 -0.24	-16.89
	5086.87 -3786.38
muro risvolto 2 (sx) 9.90 5.00 0.93 1150.9 4.50 5178.9 5.95 -3.29 - Σ 4147.4 13153.1	680.0
2 414.4 13133.1	000.0
rinterro 9.50 5.00 6.77 5788.4 4.50 26047.6 5.95 0.56	3241.48
plinto di fondazione 1.00 7.00 9.18 1605.6 3.50 5619.7 0.50 0.00	0.00
Σ 9.50 7394.0 31667.3	3241.5
10.50	2004 5
Σ _{PERM SP} <u>11541.4</u> 3.88 <u>44820.4</u> 0.34	3921.5
- Carichi accidentali spalla (ACC SP)	
d_y d_x d_z N $x(A)$ $M_T(A)$ $y(A) = y(G)$ $z(A)$	$M_L(A)$
[m]	[kNxm]
0.00 5.25 8.66 <u>909.3</u> 4.50 <u>4091.9</u> 10.50 0.56	509.21
N $x(A)$ $M_T(A)$ $y(A) = y(G)$ $z(A)$	$M_L(A)$
[kN] [m] [kNxm] [m] [m]	[kNxm]
- Carichi impalcato F1 (REALIZ) 1352 1.35 1825.5 9.15 -0.34	-459.77
0.0 0.00 0.0 0.00	0.00
<u>1352.3</u> <u>1825.5</u>	<u>-459.8</u>
- Carichi permanenti impalcato F2 (PERM IMP) 647 1.35 873.4 9.15 -0.34	-219.98
0.0 0.00 0.0 0.00	0.00
<u>647.0</u> <u>873.4</u>	<u>-220.0</u>
- Carichi accidentali impalcato F2 (ACC IMP-Nmax) 1277 1.35 1724.2 9.15 -0.34	-434.24
0.0 0.00 0.0 0.00	0.00
<u>1277.2</u> <u>1724.2</u>	<u>-434.2</u>

AZIONI ORIZZONTALI

- valutazione della spinta del terreno γ =	18 kN/n	n ³	(peso dell'unit	à di volume del terreno)		
φ =	35.0	0.61		to del terreno di riempim	ento)	
i =	0	0.00	. •	del terreno a monte, pos	•	
β =	0	0.00	•	del muro, pos se verso n	,	
$\alpha = 90 - \beta =$	90 💆	1.57	(90–β)	, , ,	,	
δ=	0	0.00		to interno tra calcestruz:	zo e terreno)	
k _a =	0.271 -		(coefficiente d	li spinta a riposo)		
L ₁ =	9.18 m		(lunghezza de	el cuneo di spinta inferior	re)	
L ₂ =	8.66 m		(lunghezza de	el cuneo di spinta superi	ore)	
h ₁ =	1.00 m		(altezza del p	linto)		
h ₂ =	9.50 m		(altezza del m	nuro di testata + trave pa	araghiaia)	
S _{a.t.1a} =	22.4 kN		(spinta del ter	reno cuneo inferiore)		
S _{a,t,1b} =	425.2 kN		(spinta del ter	reno cuneo inferiore)		
S _{a.t.2} =	1906.2 kN		(spinta del ter	reno cuneo superiore)		
$d_{v1a} =$	0.3 m			punto di applicazione da	l piano di fond)	
$d_{v1b} =$	0.50 m		,	punto di applicazione da	. ,	
$d_{v2} =$	4.2 m		,	punto di applicazione da	. ,	
$S_{a,q1} =$	49.7 kN		`	nto dovuta al sovraccario	. ,	
$S_{a,q1} = S_{a,q2} =$	445.9 kN			palla dovuta al sovracca		
$d_{a,q2} = d_{qq1} = d_{qq1}$	0.5 m			punto di applicazione da	*	
* *	5.8 m		`	punto di applicazione da punto di applicazione da	. ,	
$d_{yq2} =$	5.6 111		(distanza dei	punto di applicazione da	ii piano di iona)	
		HL	N	$M_T(A) = MT(C$	y(A) = y(G)	$M_L(G)$
		[kN]	[kN]	[kNxm]	[m]	[kNxm]
- Spinta del terreno (ST)		2353.7		<u>8162.4</u>	-	
- Spinta del sovraccarico (SA)		495.6		<u>2588.7</u>	-	
		H _L <>	N	$M_T(A) = M_T(C$	y(A) = y(G)	$M_L(G)$
		[kN]	[kN]	[kNxm]	[m]	[kNxm]
- Azione di frenamento (FR)		0		0.0	9.15	
		0.0		0.0	0.00	
		<u>0.0</u>		<u>0.0</u>		
		H _I <>	N	$M_T(A) = M_T(C)$	y(A) = y(G)	M _I (G)
		[kN]	[kN]	[kNxm]	[m]	[kNxm]
-Resistenze passive dei vincoli (RP)		0		0.0	9.15	
		0.0		0.0	0.00	
		0.0		<u>0.0</u>		
		H _T <>			y(A) = y(G)	M _I (G) <>
		[kN]			[m]	[kNxm]
- Azione dovuta al vento (VENTO)		90			11.15	1003.5
		0.0			0.00	0.0
		90.0				1003.5

AZIONI SISMICHE

Azioni orizzontali

- valutazione dell'incremento di	spinta del terreno dovuto al sism	na				
$a_g/g =$	0.080 -	(PGA)				
$S = S_{S X} S_{T}$	1.20 -					
S _{ve spalla} =	0.04	(spettro di rispos	ta elastico della c	omponente vertic	cale)	
L ₁ =	9.2 m	(lunghezza del c	uneo di spinta infe	eriore)		
L ₂ =	8.66 m	(lunghezza del c	uneo di spinta sup	periore)		
h ₁ =	1 m	(altezza del plint	0)			
h ₂ =	9.5 m	(altezza del muro	o di testata + trave	e paraghiaia)		
$\Delta P_{d,1} =$	247.9 kN	(Spinta sismica	Mononobe-Okab	e / Wood)		
$\Delta P_{d,2} =$	1055.9 kN	(Spinta sismica	Mononobe-Okab	e / Wood)	3639	1285
	1304					
		H _L <>	y(A) = y(G)	$I_T(A) = MT(G)$		$M_L(G)$
- Incremento di spinta del terrer	no dovuto al sisma (DS)	[kN]	[m]	[kNxm]		[kNxm]
		<u>1303.75</u>	5.3	<u>6844.7</u>	•	

 Sisma spalla li 	ona, e trasv.	(SIS SP	LeT

muro	di testata	
baggi	oli	
muro	paraghiaia	
ringro	sso paraghiaia	
muro	risvolto 1 (dx)	
muro	risvolto 2 (sx)	
orecc		
solett	a inferiore	
solett	a inferiore	
mens	ola posteriore	
rinterr	0	
plinto	di fondazione	
-		

[kN]	[kN]	[m]	[kNxm]
1775.3	170.4	5.10	869.19
0.0	0.0	9.15	0.00
70.4	6.8	9.85	66.53
0.0	0.0	0.00	0.00
1150.9	110.5	5.95	657.38
1150.9	110.5	5.95	657.38
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
5788.4	555.7	5.95	3306.3
1605.6	154.1	0.50	77.1
0.0	0.0	0.00	0.0

1108.0

11541.4

 $H_T = H_L \quad y(A) = y(G) 1_T(A) = M_L(A)$

Azioni verticali

- Sisma spalla verticale (SIS SP V)

muro di testata
baggioli
muro paraghiaia
ringrosso paraghiaia
muro risvolto 1 (dx)
muro risvolto 2 (sx)
orecchia
soletta inferiore
soletta inferiore
mensola posteriore
rinterro
plinto di fondazione
-
Σ

W	N +/-	x(A)	$M_T(A) <>$	z(A)	$M_L(A) \leftarrow >$
[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
1775.3	71.0	1.50	106.52	-0.34	-24.14
0.0	0.0	1.45	0.00	0.00	0.00
70.4	2.8	1.88	5.29	-0.24	-0.68
0.0	0.0	0.00	0.00	0.00	0.00
1150.9	46.0	4.50	207.16	4.42	203.47
1150.9	46.0	4.50	207.16	-3.29	-151.46
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
5788.4	231.5	4.50	1041.9	0.56	129.66
1605.6	64.2	3.50	224.8	0.00	0.00
0.0	0.0	0.00	0.0	0.00	0.00
11541.4	<u>461.7</u>		1792.8	•	<u>156.9</u>

[kN]

5633.9

- Sisma impalcato longitudinale (SIS IMP L)

Sisma long.

Sisma trasv.

- Sisma impalcato trasversale (SIS IMP T)

- Sisma impalcato verticale (SIS IMP V)

H _L <>	N +/-	x(A)	$M_T(G) <>$	y(A) = y(G)	$M_L(G)$
[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
0			0.0	9.15	
0.0			0.0	0.00	
0.0			0.0		
$H_T <>$				y(A) = y(G)	$M_L(G) <>$
[kN]				[m]	[kNxm]
495				10.11	5796.5
0.0				0.00	0.0
495.0					5796.5
H _L <>	N +/-	x(A)	M(A) <>	z(A)	$M_L(A)$

[kNxm]

108.0

[m]

0.00

[kNxm]

11.3.2 Condizioni di carico

Nelle tabelle seguenti sono riportati valori dei carichi valutati precedentemente. I valori dei momenti flettenti sono riferiti al baricentro G della fondazione.

condizioni di carico	H _L ->(+)	H _T	N	M _T (A)	$M_L(A)$	$(A)=M_T(A)$	$e_X(G)=d_X(A)-e_L(A)$	$M_{T,G}$	$e_T(A)=M_L(A)/N$	e _Z (G)	$M_{L,G}$
	[kN]	[kN]	[kN]	[kNxm]	[kNxm]	[m]	[m]	[kNxm]	[m]	[m]	[kNxm]
0 REALIZZAZIONE			1352	1826	-460	1.35	2.15	2907	-0.34	-0.34	-460
1 PERM SP			11541	44820	3921	3.88	-0.38	-4426	0.34	0.34	3921
2 ACC SP			909	4092	509	4.50	-1.00	-909	0.56	0.56	509
3 PERM IMP			647	873	-220	1.35	2.15	1391	-0.34	-0.34	-220
4 ACC IMP - Nmax			1277	1724	-434	1.35	2.15	2746	-0.34	-0.34	-434
5 FOLLA			0	0	0				0.00	0.00	0
6 ST	2354							8162			0
7 SA	496							2589			0
8 VARTEMPD			0	0	0			0			0
9 RES. PASSIVE VINCOLI	0							0			0
10 FR	0							0			0
11 VENTO		90									1004
12 SIS SP L	1108							5634			0
13 SIS SP T		1108									5634
14 SIS SP V			462	1793	157	3.88	-0.38	-177	0.34	0.34	157
15 SIS IMP L	0							0			0
16 SIS IMP T		495									5796
17 SIS IMP V			80	108	0	1.35	2.15	172	0.00	0.00	0
18 DS	1304							6845			0

T.1 Carichi dovuti alle condizioni elementari

		H_{L}	H _T	N	M _T (G)	M _L (G)	
		[kN]	[kN]	[kN]	[kNxm]	[kNxm]	1
0	REALIZZAZIONE	0	0	1352	2907	-460	
1	PERM SP	0	0	11541	-4426	3921	
2	ACC SP	0	0	909	-909	509	
3	PERM IMP	0	0	647	1391	-220	
4	ACC IMP - Nmax	0	0	1277	2746	-434	
5	FOLLA	0	0	0	0	0	
6	ST	2354	0	0	8162	0	
7	SA	496	0	0	2589	0	
8	VARTEMPD	0	0	0	0	0	(+/-)
9	RES. PASSIVE VINCOLI	0	0	0	0	0	(+/-)
10	FR	0	0	0	0	0	(+/-)
11	VENTO	0	90	0	0	1004	(+/-)
12	SIS SP L	1108	0	0	5634	0	(+/-)
13	SIS SP T	0	1108	0	0	5634	(+/-)
14	SIS SP V	0	0	462	-177	157	(+/-)
15	SIS IMP L	0	0	0	0	0	(+/-)
16	SIS IMP T	0	495	0	0	5796	(+/-)
17	SIS IMP V	0	0	80	172	0	(+/-)
18	DS	1304	0	0	6845	0	(+)

T.2 Riepilogo dei carichi dovuti alle condizioni elementari

11.3.3 Combinazioni di carico

Si riportano i coefficienti moltiplicati dei carichi elementari per le combinazioni allo stato limite ultimo, le combinazioni sismiche e le combinazioni allo stato limite di esercizio per le verifiche strutturali e geotecniche.

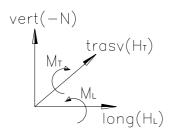
cond\comb	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	EQU
REALIZZAZIONE	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1	0	0	0	0	0	0.87
PERM SP	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						0.87
ACC SP	0	0	1.35	1.35	1.35	1.35	0	0	0	0	0	0						0.00
PERM IMP	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						0.87
ACC IMP - Nmax	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0.00
FOLLA	0	0	0	0	0	0	0	0	0	0	0	0						0.00
ST	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						1.00
SA	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0.00
VARTEMPD	0	0	0.72	1.2	0.72	1.2	0.5	0.5	0.5	0.5	0.5	0.5						0.50
RES. PASSIVE VINC	0	0	0.9	1.5	0.9	1.5	0	0	0	0	0	0						0.00
FR	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0.00
VENTO	0	0	0.9	0.9	1.5	1.5	0	0	0	0	0	0						0.00
SIS SP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1
SIS SP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30						0.3
SIS SP V	0	0	0	0	0	0	0.30	0.30	1.00	-0.30	-0.30	-1.00						-0.3
SIS IMP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1
SIS IMP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30						0.3
SIS IMP V	0	0	0	0	0	0	0.30	0.30	1.00	0.30	0.30	1.00						-0.3
DS	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1

T.1 Combinazioni di carico SLU

cond\comb	1	2	3	4	5	6
REALIZZAZIONE	0	1	1	1	1	1
PERM SP	1	1	1	1	1	1
ACC SP	0	0	1	1	1	1
PERM IMP	0	1	1	1	1	1
ACC IMP - Nmax	0	0	1	0.75	0.75	1
FOLLA	0	0	0	0	0	0
ST	1	1	1	1	1	1
SA	0	0	1	0.75	0.75	1
VARTEMPD	0	0	0.6	1	0.6	1
RES. PASSIVE VINC	0	0	0.6	1	0.6	1
FR	0	0	1	0.75	0.75	1
VENTO	0	0	0.6	0.6	1	1

T.2 Combinazioni di carico SLE

Si riportano di seguito le sollecitazioni per ogni combinazione di carico.

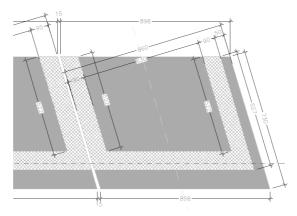

Carichi all'intradosso della fondazione - COMBINAZIONI SLU

vert(-N)	
4	trasv(H _T)
MT	A
	M _L
	/ long(Hi)

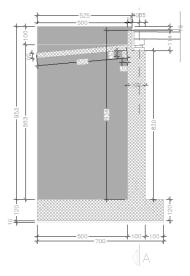
	H_L	H_T	N	$M_T(G)$	$M_L(G)$
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLU 1	3178	0	15581	5045	5294
STA SLU 2	3178	0	18280	10848	4376
STA SLU 3	3847	81	21232	16822	5381
STA SLU 4	3679	81	20801	15021	5527
STA SLU 5	3679	135	20801	15021	6129
STA SLU 6	3847	135	21232	16822	5983
SIS SLU 7	4765	481	13703	20512	6718
SIS SLU 8	3077	1603	13703	11777	14719
SIS SLU 9	3077	481	14082	11774	6828
SIS SLU 10	4765	481	13426	20618	6624
SIS SLU 11	3077	1603	13426	11884	14625
SIS SLU 12	3077	481	13159	12128	6514

T.1 Combinazioni di carico SLU

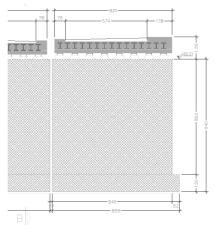
Carichi all'intradosso della fondazione - COMBINAZIONI SLE


	H_L	H_T	N	$M_T(G)$	$M_L(G)$
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLE 1	2354	0	11541	3737	3921
STA SLE 2	2354	0	13541	8035	3242
STA SLE 3	2849	54	15727	12461	3919
STA SLE 4	2725	54	15408	11127	4027
STA SLE 5	2725	90	15408	11127	4429
STA SLE 6	2849	90	15727	12461	4320

T.2 Combinazioni di carico SLE


11.4 Rampa laterale destra – Spalla "SpA-dx"

11.4.1 Analisi dei carichi


La geometria della sottostruttura spalla della rampa laterale tipo analizzata di seguito è riportata nelle immagini successive.

F 11. Rampa laterale destra – Pianta spalla SpA

F 12. Rampa laterale destra – Sezione longitudinale spalla SpA

F 13. Rampa laterale destra – Prospetto spalla SpA

Sono di seguito illustrati i calcoli dei carichi dovuti ai pesi propri, permanenti portati, carichi accidentali, spinta del terreno, azioni indotte dal sisma ed azioni trasmesse dall'impalcato; nelle tabelle sottostanti sono riportati i singoli valori e le risultanti valutate rispetto al punto A ed al punto G (baricentro fondazione) indicati nelle figure precedenti (vedere § 11.1). Per quanto riguarda il calcolo dei carichi provenienti dall'impalcato fare riferimento alle relazioni corrispondenti.

AZIONI STATICHE		-							
AZIONI VERTICALI									
q	20	kN/m²		(carico accio	dentale)				
γcls	25	kN/m ³		(peso dell'un	ità di volum	e del calcest	ruzzo armato)		
γcls,magro		kN/m ³		(peso dell'un	ità di volum	e del calcest	ruzzo magro)		
Yterreno rinterro	18	kN/m ³		(peso dell'un	ità di volum	e del terreno	di rinterro)		
- Carichi permanenti spalla (PERM	1 <i>SP</i>)								
	d _v	d_x	d_z	N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
	[m]	[m]	[m]	[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
muro di testata	8.20	1.00	8.46	1734.3	1.50	2601.5	5.10	0.34	589.66
muro paraghiaia	1.30	0.25	8.46	68.7	1.88	129.2	9.85	0.22	15.12
muro risvolto 1 (dx)	9.90	5.00	0.93	1150.9	4.50	5178.9	5.95	3.20	3682.80
muro risvolto 2 (sx) Σ	9.90	5.00	0.93	1150.9 4104.8	4.50	5178.9 13088.6	5.95	-4.33	-4983.29 -695.7
rinterro	9.50	5.00	6.60	5643.0	4.50	25393.5	5.95	-0.57	-3216.51
-	100	7.00		4574.5	2.52	5500.0	0.50	2.00	0.00
plinto di fondazione	1.00	7.00	8.98	1571.5	3.50	5500.3	0.50	0.00	0.00
Σ	9.50 10.50			7214.5		30893.8			-3216.5
Σ_{PERMSP}				11319.3	3.89	43982.3		-0.35	-3912.2
- Carichi accidentali spalla (ACC	: SP)								
	d _v	d_x	d_z	N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
	[m]	[m]	[m]	[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
=	0.00	5.25	8.46	888.3	4.50	3997.4	10.50	-0.57	-506.33
				N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
				[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
- Carichi impalcato F1 (REALIZ)				1305	1.35	1761.8	9.15	0.34	443.70
				0.0	0.00	0.0	0.00		0.00
				<u>1305.0</u>		<u>1761.8</u>			<u>443.7</u>
- Carichi permanenti impalcato I	F2 (PERM IMP)			647	1.35	873.4	9.15	0.34	219.98
				0.0	0.00	0.0	0.00		0.00
				<u>647.0</u>		<u>873.4</u>			220.0
- Carichi accidentali impalcato F	2 (ACC IMP-Nmax)			1277	1.35	1724.2	9.15	0.34	434.24
				0.0	0.00	0.0	0.00		0.00
				1277.2		1724.2			434.2

AZIONI ORIZZONTALI

- valutazione della spinta del terreno							
γ =	18 kN/n	1 ³		(peso dell'unit	à di volume del terreno)		
φ =	35.0	0.61		(angolo d'attri	to del terreno di riempim	ento)	
i =	0	0.00		(inclinazione	del terreno a monte, pos	in salita)	
β =	0_	0.00		(inclinazione	del muro, pos se verso n	nonte)	
$\alpha = 90 - \beta =$	90 -	1.57		(90–β)			
δ=	0 0.271 -	0.00		` 0	to interno tra calcestruzz	o e terreno)	
k _a =	8.98 m				li spinta a riposo)	٥)	
L ₁ =				. •	el cuneo di spinta inferior	*	
L ₂ =	8.46 m			. •	el cuneo di spinta superio	ore)	
h ₁ =	1.00 m			(altezza del p	•		
h ₂ =	9.50 m			•	nuro di testata + trave pa	raghiaia)	
$S_{a,t,1a} =$	21.9 kN				reno cuneo inferiore)		
$S_{a,t,1b} =$	416.1 kN			(spinta del ter	reno cuneo inferiore)		
$S_{a,t,2} =$	1862.1 kN				reno cuneo superiore)		
$d_{y 1a} =$	0.3 m			(distanza del	punto di applicazione da	l piano di fond)	
$d_{y 1b} =$	0.50 m			(distanza del	punto di applicazione da	l piano di fond)	
$d_{y2} =$	4.2 m			(distanza del	punto di applicazione da	l piano di fond)	
$S_{a,q1} =$	48.7 kN			(spinta sul pli	nto dovuta al sovraccario	o)	
$S_{a,q2} =$	435.6 kN			(spinta sulla s	palla dovuta al sovracca	rico)	
$d_{yq1} =$	0.5 m			(distanza del	punto di applicazione da	l piano di fond)	
$d_{y \neq 2} =$	5.8 m			(distanza del	punto di applicazione da	I piano di fond)	
			H_{L}	N	$M_T(A) = MT(C$	y(A) = y(G)	M _I (G)
			[kN]	[kN]	[kNxm]	y(A) = y(G) [m]	[kNxm]
- Spinta del terreno (ST)		-	2300.2	[ici vj	7974.3	- []	[KI KIII]
- Spinta del sovraccarico (SA)			484.3		2529.0	-	
		ŀ	H _L <>	N	$M_T(A) = M_T(C$	y(A) = y(G)	$M_L(G)$
			[kN]	[kN]	[kNxm]	[m]	[kNxm]
- Azione di frenamento (FR)			409		3738.7	9.15	
		_	0.0 408.6		0.0 3738.7	0.00	
		;	400.0		<u>5750.7</u>		
		ŀ	H ₁ <>	N	$M_T(A) = M_T(C)$	y(A) = y(G)	$M_L(G)$
			[kN]	[kN]	[kNxm]	[m]	[kNxm]
-Resistenze passive dei vincoli (RP)			156		1428.9	9.15	
			0.0		0.0	0.00	
		,	<u>156.2</u>		<u>1428.9</u>		
		ŀ	H _T <>			y(A) = y(G)	$M_L(G) <>$
			[kN]			[m]	[kNxm]
- Azione dovuta al vento (VENTO)			90 0.0			11.15 0.00	1003.5 0.0
		_	90.0			0.00	1003.5
			55.0				1000.0

AZIONI SISMICHE

Azioni orizzontali

AZIOIII OIIZZOIIIAII					
 valutazione dell'incremento d 	di spinta del terreno dovuto al sisn	па			
a _g /g =	0.080 -	(PGA)			
$S = S_{S X} S_{T}$	1.20 -				
S _{ve spalla} =	0.04	(spettro di rispos	sta elastico della componente v	erticale)	
L ₁ =	9.0 m	(lunghezza del c	uneo di spinta inferiore)		
L ₂ =	8.46 m	(lunghezza del c	uneo di spinta superiore)		
h ₁ =	1 m	(altezza del plini	to)		
h ₂ =	9.5 m	(altezza del mur	o di testata + trave paraghiaia)		
$\Delta P_{d,1} =$	242.6 kN	(Spinta sismica	Mononobe-Okabe / Wood)		
$\Delta P_{d,2} =$	1031.5 kN	(Spinta sismica	Mononobe-Okabe / Wood)	3556	1255
	1274				
		H _L <>	$y(A) = y(G)I_T(A) = MT(G)$	i)	$M_L(G)$
- Incremento di spinta del terre	eno dovuto al sisma (DS)	[kN]	[m] [kNxm]		[kNxm]
		<u>1274.10</u>	5.3 <u>6689.0</u>		

- Sisma	snalla lo	nna e	trasv	(SIS	SP	1 0	T)

muro di testata
baggioli
muro paraghiaia
ringrosso paraghiaia
muro risvolto 1 (dx)
muro risvolto 2 (sx)
orecchia
soletta inferiore
soletta inferiore
mensola posteriore
rinterro
plinto di fondazione
-
Σ

N	$H_T = H_L$	y(A) = y(G)	$I_T(A) = M_L(A)$
[kN]	[kN]	[m]	[kNxm]
1734.3	166.5	5.10	849.11
0.0	0.0	9.15	0.00
68.7	6.6	9.85	65.00
0.0	0.0	0.00	0.00
1150.9	110.5	5.95	657.38
1150.9	110.5	5.95	657.38
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
5643.0	541.7	5.95	3223.3
1571.5	150.9	0.50	75.4
0.0	0.0	0.00	0.0
11319.3	1086.7		5527.6

Azioni verticali

- Sisma spalla verticale (SIS SP V)

muro di testata
baggioli
muro paraghiaia
ringrosso paraghiaia
muro risvolto 1 (dx)
muro risvolto 2 (sx)
orecchia
soletta inferiore
soletta inferiore
mensola posteriore
rinterro
plinto di fondazione
-
Σ

W	N +/-	x(A)	$M_T(A) <>$	z(A)	$M_L(A) <>$
[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
1734.3	69.4	1.50	104.06	0.34	23.59
0.0	0.0	1.45	0.00	0.00	0.00
68.7	2.7	1.88	5.17	0.22	0.60
0.0	0.0	0.00	0.00	0.00	0.00
1150.9	46.0	4.50	207.16	3.20	147.31
1150.9	46.0	4.50	207.16	-4.33	-199.33
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
5643.0	225.7	4.50	1015.7	-0.57	-128.66
1571.5	62.9	3.50	220.0	0.00	0.00
0.0	0.0	0.00	0.0	0.00	0.00
11319.3	<u>452.8</u>		1759.3		<u>-156.5</u>

- Sisma impalcato longitudinale (SIS IMP L)

Sisma long.

Sisma trasv.

- Sisma impalcato trasversale (SIS IMP T)

- Sisma impalcato verticale (SIS IMP V)

N +/-	x(A)	$M_T(G) <>$	y(A) = y(G)	$M_L(G)$
[kN]	[m]	[kNxm]	[m]	[kNxm]
		8875.5	9.15	
		0.0	0.00	
		<u>8875.5</u>		
			y(A) = y(G)	$M_L(G) <>$
			[m]	[kNxm]
			10.11	5679.4
			0.00	0.0
				5679.4
			[kN] [m] [kNxm] 8875.5 0.0	[kN] [m] [kNxm] [m] 8875.5 9.15 0.0 0.00 8875.5 y(A) = y(G) [m] 10.11

	<u>78</u>	1.35	<u>105.4</u>	0.00	0.00
[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
H _L <>	N +/-	x(A)	M(A) <>	z(A)	$M_L(A)$

11.4.2 Condizioni di carico

Nelle tabelle seguenti sono riportati valori dei carichi valutati precedentemente. I valori dei momenti flettenti sono riferiti al baricentro G della fondazione.

Condizioni di carico

condizioni di carico	H _L ->(+)	H _T	N	M _T (A)	$M_L(A)$	$(A)=M_T(A)$	$e_X(G)=d_X(A)-e_L(A)$	$M_{T,G}$	$e_T(A)=M_L(A)/N$	$e_Z(G)$	$M_{L,G}$
	[kN]	[kN]	[kN]	[kNxm]	[kNxm]	[m]	[m]	[kNxm]	[m]	[m]	[kNxm]
0 REALIZZAZIONE			1305	1762	444	1.35	2.15	2806	0.34	0.34	444
1 PERM SP			11319	43982	-3912	3.89	-0.39	-4365	-0.35	-0.35	-3912
2 ACC SP			888	3997	-506	4.50	-1.00	-888	-0.57	-0.57	-506
3 PERM IMP			647	873	220	1.35	2.15	1391	0.34	0.34	220
4 ACC IMP - Nmax			1277	1724	434	1.35	2.15	2746	0.34	0.34	434
5 FOLLA			0	0	0				0.00	0.00	0
6 ST	2300							7974			0
7 SA	484							2529			0
8 VARTEMPD			0	0	0			0			0
9 RES. PASSIVE VINCOLI	156							1429			0
10 FR	409							3739			0
11 VENTO		90									1004
12 SIS SP L	1087							5528			0
13 SIS SP T		1087									5528
14 SIS SP V			453	1759	-156	3.89	-0.39	-175	-0.35	-0.35	-156
15 SIS IMP L	970							8876			0
16 SIS IMP T		485					·				5679
17 SIS IMP V			78	105	0	1.35	2.15	168	0.00	0.00	0
18 DS	1274							6689			0

T.1 Carichi dovuti alle condizioni elementari

	H_{L}	H _T	N	M _T (G)	$M_L(G)$	
	[kN]	[kN]	[kN]	[kNxm]	[kNxm]	
0 REALIZZAZIONE	0	0	1305	2806	444	
1 PERM SP	0	0	11319	-4365	-3912	
2 ACC SP	0	0	888	-888	-506	
3 PERM IMP	0	0	647	1391	220	
4 ACC IMP - Nmax	0	0	1277	2746	434	
5 FOLLA	0	0	0	0	0	
6 ST	2300	0	0	7974	0	
7 SA	484	0	0	2529	0	
8 VARTEMPD	0	0	0	0	0	(+/-)
9 RES. PASSIVE VINCOLI	156	0	0	1429	0	(+/-)
10 FR	409	0	0	3739	0	(+/-)
11 VENTO	0	90	0	0	1004	(+/-)
12 SIS SP L	1087	0	0	5528	0	(+/-)
13 SIS SP T	0	1087	0	0	5528	(+/-)
14 SIS SP V	0	0	453	-175	-156	(+/-)
15 SIS IMP L	970	0	0	8876	0	(+/-)
16 SIS IMP T	0	485	0	0	5679	(+/-)
17 SIS IMP V	0	0	78	168	0	(+/-)
18 DS	1274	0	0	6689	0	(+)

T.2 Riepilogo dei carichi dovuti alle condizioni elementari

11.4.3 Combinazioni di carico

Si riportano i coefficienti moltiplicati dei carichi elementari per le combinazioni allo stato limite ultimo, le combinazioni sismiche e le combinazioni allo stato limite di esercizio per le verifiche strutturali e geotecniche.

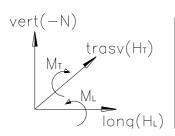
cond\comb	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	EQU
REALIZZAZIONE	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1	0	0	0	0	0	0.87
PERM SP	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						0.87
ACC SP	0	0	1.35	1.35	1.35	1.35	0	0	0	0	0	0						0.00
PERM IMP	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						0.87
ACC IMP - Nmax	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0.00
FOLLA	0	0	0	0	0	0	0	0	0	0	0	0						0.00
ST	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						1.00
SA	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0.00
VARTEMPD	0	0	0.72	1.2	0.72	1.2	0.5	0.5	0.5	0.5	0.5	0.5						0.50
RES. PASSIVE VINC	0	0	0.9	1.5	0.9	1.5	0	0	0	0	0	0						0.00
FR	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0.00
VENTO	0	0	0.9	0.9	1.5	1.5	0	0	0	0	0	0						0
SIS SP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1
SIS SP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30						0.3
SIS SP V	0	0	0	0	0	0	0.30	0.30	1.00	-0.30	-0.30	-1.00						-0.3
SIS IMP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1
SIS IMP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30						0.3
SIS IMP V	0	0	0	0	0	0	0.30	0.30	1.00	0.30	0.30	1.00						-0.3
DS	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1

T.1 Combinazioni di carico SLU

cond\comb	1	2	3	4	5	6
REALIZZAZIONE	0	1	1	1	1	1
PERM SP	1	1	1	1	1	1
ACC SP	0	0	1	1	1	1
PERM IMP	0	1	1	1	1	1
ACC IMP - Nmax	0	0	1	0.75	0.75	1
FOLLA	0	0	0	0	0	0
ST	1	1	1	1	1	1
SA	0	0	1	0.75	0.75	1
VARTEMPD	0	0	0.6	1	0.6	1
RES. PASSIVE VINC	0	0	0.6	1	0.6	1
FR	0	0	1	0.75	0.75	1
VENTO	0	0	0.6	0.6	1	1

T.2 Combinazioni di carico SLE

Si riportano di seguito le sollecitazioni per ogni combinazione di carico.

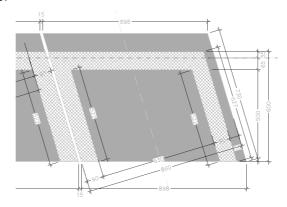

Carichi all'intradosso della fondazione - COMBINAZIONI SLU

vert(-N)	
A	tṛasv(Hī)
MT	I
	M _L
	/ Iona(H _L)

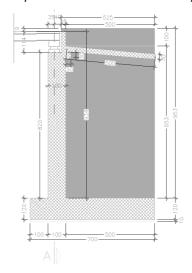
	H_L	H_{T}	N	$M_T(G)$	$M_L(G)$
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLU 1	3105	0	15281	4873	-5281
STA SLU 2	3105	0	17916	10538	-4386
STA SLU 3	4451	81	20840	22794	-3580
STA SLU 4	4243	81	20409	20609	-3726
STA SLU 5	4150	135	20409	19751	-3124
STA SLU 6	4545	135	20840	23651	-2978
SIS SLU 7	5631	471	13431	28896	67
SIS SLU 8	3299	1572	13431	14132	7911
SIS SLU 9	3299	471	13802	14127	-43
SIS SLU 10	5631	471	13159	29001	160
SIS SLU 11	3299	1572	13159	14237	8005
SIS SLU 12	3299	471	12897	14476	270

T.1 Combinazioni di carico SLU

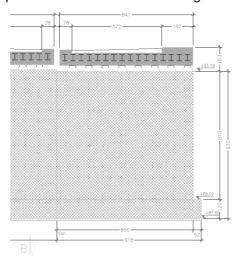
Carichi all'intradosso della fondazione - COMBINAZIONI SLE


	H_{L}	H_T	N	$M_T(G)$	$M_L(G)$
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLE 1	2300	0	11319	3610	-3912
STA SLE 2	2300	0	13271	7806	-3249
STA SLE 3	3287	54	15437	16789	-2719
STA SLE 4	3126	54	15117	15107	-2827
STA SLE 5	3064	90	15117	14535	-2426
STA SLE 6	3349	90	15437	17360	-2317

T.2 Combinazioni di carico SLE


11.5 Rampa laterale destra – Spalla "SpB-dx"

11.5.1 Analisi dei carichi


La geometria della sottostruttura spalla della rampa laterale tipo analizzata di seguito è riportata nelle immagini successive.

F 14. Rampa laterale destra – Pianta spalla SpB

F 15. Rampa laterale destra – Sezione longitudinale spalla SpB

F 16. Rampa laterale destra – Prospetto spalla SpB

Sono di seguito illustrati i calcoli dei carichi dovuti ai pesi propri, permanenti portati, carichi accidentali, spinta del terreno, azioni indotte dal sisma ed azioni trasmesse dall'impalcato; nelle tabelle sottostanti sono riportati i singoli valori e le risultanti valutate rispetto al punto A ed al punto G (baricentro fondazione) indicati nelle figure precedenti (vedere § 11.1). Per quanto riguarda il calcolo dei carichi provenienti dall'impalcato fare riferimento alle relazioni corrispondenti.

AZIONI STATICHE		-							
AZIONI VERTICALI									
q	20) kN/m²		(carico accide	ntale)				
γcls		5 kN/m ³		(peso dell'unita	,	del calcestruz	zo armato)		
Yels,magro	24	4 kN/m³		(peso dell'unita			,		
Yterreno rinterro		kN/m ³		(peso dell'unita			0 ,		
Tremeno miterio	-			()			,	1	
- Carichi permanenti spalla (PERM S	<u>P)</u>							•	
	d _y	d_{x}	d_z	N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
	[m]	[m]	[m]	[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
muro di testata	8.20	1.00	8.46	1734.3	1.50	2601.5	5.10	-0.86	-1491.50
muro paraghiaia	1.30	0.25	8.46	68.7	1.88	129.2	9.85	-0.76	-52.24
muro risvolto 1 (dx) muro risvolto 2 (sx)	9.90 9.90	5.00 5.00	0.93	1150.9 1150.9	4.50 4.50	5178.9 5178.9	5.95 5.95	3.81 -3.72	4384.83 -4281.26
Σ	9.90	5.00	0.93	4104.8	4.50	13088.6	5.95	-3.12	-1440.2
rinterro	9.50	5.00	6.60	5643.0	4.50	25393.5	5.95	0.04	225.72
-	3.30	3.00	0.00	3043.0	4.50	20000.0	5.55	0.04	ZZJ.1Z
plinto di fondazione	1.00	7.00	8.98	1571.5	3.50	5500.3	0.50	0.00	0.00
Σ	9.50 10.50			7214.5		30893.8			225.7
Σ_{PERMSP}				11319.3	3.89	43982.3		-0.11	<u>-1214.4</u>
- Carichi accidentali spalla (ACC S	P)								
	d _v	d_x	d_{z}	N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	M _I (A)
	[m]	[m]	[m]	[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
	0.00	5.25	8.46	888.3	4.50	3997.4	10.50	0.04	35.53
				N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	M _I (A)
				[kN]	[m]	[kNxm]	(A) - y(C) [m]	[m]	[kNxm]
- Carichi impalcato F1 (REALIZ)				1305	1.35	1761.8	9.15	-0.86	-1122.30
				0.0	0.00	0.0	0.00		0.00
				1305.0		<u>1761.8</u>			-1122.3
- Carichi permanenti impalcato F2	(PERM IMP)			647	1.35	873.4	9.15	-0.86	-556.41
•				0.0	0.00	0.0	0.00		0.00
				647.0		873.4			-556.4
- Carichi accidentali impalcato F2	(ACC IMP-Nmax)			1277	1.35	1724.2	9.15	-0.86	-1098.36
				0.0	0.00	0.0	0.00		0.00
				1277.2		1724.2			<u>-1098.4</u>

AZIONI ORIZZONTALI

 valutazione della spinta del terreno γ = 	18 kN/m	13		(peso dell'unità	di volume del terreno)		
φ =	35.0	0.61		4	del terreno di riempimento	o)	
i =	0	0.00		(inclinazione de	el terreno a monte, pos in s	salita)	
β =	0	0.00		(inclinazione de	el muro, pos se verso mon	te)	
$\alpha = 90-\beta =$	90 💆	1.57		(90–β)	•	•	
δ=	0	0.00		(angolo d'attrito	interno tra calcestruzzo e	terreno)	
k _a =	0.271 -			(coefficiente di			
L ₁ =	8.98 m			(lunghezza del	cuneo di spinta inferiore)		
L ₂ =	8.46 m			(lunghezza del	cuneo di spinta superiore)		
$h_1 =$	1.00 m			(altezza del plir	nto)		
h ₂ =	9.50 m			(altezza del mu	ro di testata + trave parag	hiaia)	
S _{a,t,1a} =	21.9 kN			(spinta del terre	eno cuneo inferiore)		
S _{a,t,1b} =	416.1 kN			(spinta del terre	eno cuneo inferiore)		
S _{a,t,2} =	1862.1 kN			(spinta del terre	eno cuneo superiore)		
d _{v1a} =	0.3 m			(distanza del pu	unto di applicazione dal pia	ano di fond)	
d _{v1b} =	0.50 m			(distanza del pi	unto di applicazione dal pi	ano di fond)	
d _{y2} =	4.2 m			(distanza del pi	unto di applicazione dal pi	ano di fond)	
S _{a,q1} =	48.7 kN				o dovuta al sovraccarico)	,	
$S_{a,q2} =$	435.6 kN				alla dovuta al sovraccarico)	
$d_{yq1} =$	0.5 m				unto di applicazione dal pi		
$d_{yq2} =$	5.8 m				unto di applicazione dal pi	,	
3y42 —	0.0			(diotaliza doi pi	anto ai appiroaziono dai pi	and an iona,	
			H_{L}	N	$M_T(A) = MT(G$	y(A) = y(G)	$M_L(G)$
			[kN]	[kN]	[kNxm]	[m]	[kNxm]
- Spinta del terreno (ST)		_	2300.2		<u>7974.3</u>	-	
- Spinta del sovraccarico (SA)		-	<u>484.3</u>		<u>2529.0</u>	-	
			H _L <>	N	$M_T(A) = M_T(G$	y(A) = y(G)	M _L (G)
- Azione di frenamento (FR)		-	[kN] 0	[kN]	[kNxm] 0.0	[m] 9.15	[kNxm]
- Azione di Irenamento (FA)		-	0.0		0.0	0.00	
		-	0.0		0.0		
			H _L <>	N	$M_T(A) = M_T(G$	y(A) = y(G)	$M_L(G)$
		_	[kN]	[kN]	[kNxm]	[m]	[kNxm]
-Resistenze passive dei vincoli (RP)		_	0		0.0	9.15	
		_	0.0		0.0	0.00	
			<u>0.0</u>		<u>0.0</u>		
			H _T <>			y(A) = y(G)	M _L (G) <>
		_	[kN]			[m]	[kNxm]
- Azione dovuta al vento (VENTO)		-	90			11.15 0.00	1003.5

AZIONI SISMICHE

	Azioni	orizzontali
--	--------	-------------

Δ¹ d,2 =	1274	(opinia oloniloa iii			3556	1255
$\Delta P_{d,1} = \Delta P_{d,2} =$	242.6 kN 1031.5 kN	` '	(Spinta sismica Mononobe-Okabe / Wood) (Spinta sismica Mononobe-Okabe / Wood)			
h ₂ =	9.5 m	(altezza del muro di testata + trave paraghiaia)				
h ₁ =	1 m	(altezza del plinto)				
L ₂ =	8.46 m	(lunghezza del cur	eo di spinta superio	re)		
L ₁ =	9.0 m	(lunghezza del cur	eo di spinta inferiore	e)		
S _{ve spalla} =	0.04	(spettro di risposta	elastico della comp	onente verticale)	1	
$S = S_{S X} S_{T}$	1.20 -					
$a_g/g =$	0.080 -	(PGA)				

_	Sisma	snalla	lona	e tr	asv. (SI	S SP	10	T)
_	Olsilla	Spana	iorig.	CII	23 V. (UII	01		''

muro di testata
baggioli
muro paraghiaia
ringrosso paraghiaia
muro risvolto 1 (dx)
muro risvolto 2 (sx)
orecchia
soletta inferiore
soletta inferiore
mensola posteriore
rinterro
plinto di fondazione
-
7

N	$H_T = H_L$	y(A) = y(G)	$M_T(A) = M_L(A)$
[kN]	[kN]	[m]	[kNxm]
1734.3	166.5	5.10	849.11
0.0	0.0	9.15	0.00
68.7	6.6	9.85	65.00
0.0	0.0	0.00	0.00
1150.9	110.5	5.95	657.38
1150.9	110.5	5.95	657.38
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
5643.0	541.7	5.95	3223.3
1571.5	150.9	0.50	75.4
0.0	0.0	0.00	0.0
11319.3	1086.7		<u>5527.6</u>

0.0

Azioni verticali

- Sisma spalla verticale (SIS SP V)

muro di testata
baggioli
muro paraghiaia
ringrosso paraghiaia
muro risvolto 1 (dx)
muro risvolto 2 (sx)
orecchia
soletta inferiore
soletta inferiore
mensola posteriore
rinterro
plinto di fondazione
-
Σ

W	N +/-	x(A)	$M_T(A) <>$	z(A)	$M_L(A) <>$
[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
1734.3	69.4	1.50	104.06	-0.86	-59.66
0.0	0.0	1.45	0.00	0.00	0.00
68.7	2.7	1.88	5.17	-0.76	-2.09
0.0	0.0	0.00	0.00	0.00	0.00
1150.9	46.0	4.50	207.16	3.81	175.39
1150.9	46.0	4.50	207.16	-3.72	-171.25
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
5643.0	225.7	4.50	1015.7	0.04	9.03
1571.5	62.9	3.50	220.0	0.00	0.00
0.0	0.0	0.00	0.0	0.00	0.00
11319.3	<u>452.8</u>	·	1759.3	·	<u>-48.6</u>

- Sisma impalcato longitudinale (SIS IMP L)

Sisma long.

H_L <--> N +/x(A) M_T(G) <--> y(A) = y(G) $M_L(G)$ [kN] [kN] [kNxm] [kNxm] [m] [m] 9.15 0 0.0 0.00 0.0 0.0

0.0

- Sisma impalcato trasversale (SIS IMP T)

Sisma trasv.

- Sisma impalcato verticale (SIS IMP V)

H	l∟ <>	N +/-	x(A)	M(A) <>	z(A)	$M_L(A)$
	[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
		78	1.35	105.4	0.00	0.00

11.5.2 Condizioni di carico

Nelle tabelle seguenti sono riportati valori dei carichi valutati precedentemente. I valori dei momenti flettenti sono riferiti al baricentro G della fondazione.

Condizioni di carico

condizioni di carico	H _L ->(+)	H _T	N	$M_T(A)$	$M_L(A)$	$L(A)=M_T(A)/I$	$e_X(G)=d_X(A)-e_L(A)$	$M_{T,G}$	$e_T(A)=M_L(A)/N$	$e_Z(G)$	$M_{L,G}$
	[kN]	[kN]	[kN]	[kNxm]	[kNxm]	[m]	[m]	[kNxm]	[m]	[m]	[kNxm]
0 REALIZZAZIONE			1305	1762	-1122	1.35	2.15	2806	-0.86	-0.86	-1122.3
1 PERM SP			11319	43982	-1214	3.89	-0.39	-4365	-0.11	-0.11	-1214.4
2 ACC SP			888	3997	36	4.50	-1.00	-888	0.04	0.04	35.53
3 PERM IMP			647	873	-556	1.35	2.15	1391	-0.86	-0.86	-556.4
4 ACC IMP - Nmax			1277	1724	-1098	1.35	2.15	2746	-0.86	-0.86	-1098.4
5 FOLLA			0	0	0				0.00	0.00	0.0
6 ST	2300							7974.3			0.0
7 SA	484							2529.0			0.0
8 VARTEMPD			0	0	0			0			0.0
9 RES. PASSIVE VINCOLI	0							0.0			0.0
0 FR	0							0.0			0.0
1 VENTO		90									1003.5
2 SIS SP L	1087							5527.6			0.0
3 SIS SP T		1087									5527.6
4 SIS SP V			453	1759	-49	3.89	-0.39	-174.6	-0.11	-0.11	-48.6
5 SIS IMP L	0							0.0			0.0
6 SIS IMP T		485									5679.4
7 SIS IMP V			78	105	0	1.35	2.15	167.9	0.00	0.00	0.0
8 DS	1274	ĺ	1					6689.0			0.0

T.1 Carichi dovuti alle condizioni elementari

		H_L	H _T	N	M _T (G)	M _L (G)	
		[kN]	[kN]	[kN]	[kNxm]	[kNxm]	1
0	REALIZZAZIONE	0	0	1305	2806	-1122	1
1	PERM SP	0	0	11319	-4365	-1214	
2	ACC SP	0	0	888	-888	36	
3	PERM IMP	0	0	647	1391	-556	
4	ACC IMP - Nmax	0	0	1277	2746	-1098	
5	FOLLA	0	0	0	0	0	
6	ST	2300	0	0	7974	0	
7	SA	484	0	0	2529	0	
8	VARTEMPD	0	0	0	0	0	(+/-)
9	RES. PASSIVE VINCOLI	0	0	0	0	0	(+/-)
10	FR	0	0	0	0	0	(+/-)
11	VENTO	0	90	0	0	1004	(+/-)
12	SIS SP L	1087	0	0	5528	0	(+/-)
13	SIS SP T	0	1087	0	0	5528	(+/-)
14	SIS SP V	0	0	453	-175	-49	(+/-)
15	SIS IMP L	0	0	0	0	0	(+/-)
16	SIS IMP T	0	485	0	0	5679	(+/-)
17	SIS IMP V	0	0	78	168	0	(+/-)
18	DS	1274	0	0	6689	0	(+)

T.2 Riepilogo dei carichi dovuti alle condizioni elementari

11.5.3 Combinazioni di carico

Si riportano i coefficienti moltiplicati dei carichi elementari per le combinazioni allo stato limite ultimo, le combinazioni sismiche e le combinazioni allo stato limite di esercizio per le verifiche strutturali e geotecniche.

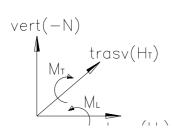
cond\comb	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	EQU
REALIZZAZIONE	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1	0	0	0	0	0	0.869565
PERM SP	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						0.869565
ACC SP	0	0	1.35	1.35	1.35	1.35	0	0	0	0	0	0						0
PERM IMP	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						0.869565
ACC IMP - Nmax	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0
FOLLA	0	0	0	0	0	0	0	0	0	0	0	0						0
ST	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						1
SA	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0
VARTEMPD	0	0	0.72	1.2	0.72	1.2	0.5	0.5	0.5	0.5	0.5	0.5						0.5
RES. PASSIVE VINC	0	0	0.9	1.5	0.9	1.5	0	0	0	0	0	0						0
FR	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0
VENTO	0	0	0.9	0.9	1.5	1.5	0	0	0	0	0	0						0
SIS SP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1
SIS SP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30						0.3
SIS SP V	0	0	0	0	0	0	0.30	0.30	1.00	-0.30	-0.30	-1.00						-0.3
SIS IMP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1
SIS IMP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30						0.3
SIS IMP V	0	0	0	0	0	0	0.30	0.30	1.00	0.30	0.30	1.00						-0.3
DS	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1

T.1 Combinazioni di carico SLU

cond\comb	1	2	3	4	5	6
REALIZZAZIONE	0	1	1	1	1	1
PERM SP	1	1	1	1	1	1
ACC SP	0	0	1	1	1	1
PERM IMP	0	1	1	1	1	1
ACC IMP - Nmax	0	0	1	0.75	0.75	1
FOLLA	0	0	0	0	0	0
ST	1	1	1	1	1	1
SA	0	0	1	0.75	0.75	1
VARTEMPD	0	0	0.6	1	0.6	1
RES. PASSIVE VINC	0	0	0.6	1	0.6	1
FR	0	0	1	0.75	0.75	1
VENTO	0	0	0.6	0.6	1	1

T.2 Combinazioni di carico SLE

Si riportano di seguito le sollecitazioni per ogni combinazione di carico.


Carichi all'intradosso della fondazione - COMBINAZIONI SLU

vert(-N)	
1	trasv(H _T)
	~ Μ.
_) Dona(Hi)

	H_L	H_{T}	N	M _T (G)	$M_L(G)$
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLU 1	3105	0	15281	4873	-1639
STA SLU 2	3105	0	17916	10538	-3906
STA SLU 3	<i>3759</i>	81	20840	16460	-4437
STA SLU 4	3596	81	20409	14680	-4067
STA SLU 5	3596	135	20409	14680	-3465
STA SLU 6	<i>3759</i>	135	20840	16460	-3835
SIS SLU 7	4661	471	13431	20021	454
SIS SLU 8	3008	1572	13431	11469	8299
SIS SLU 9	3008	471	13802	11465	420
SIS SLU 10	4661	471	13159	20126	484
SIS SLU 11	3008	1572	13159	11574	8328
SIS SLU 12	3008	471	12897	11814	518

T.1 Combinazioni di carico SLU

Carichi all'intradosso della fondazione - COMBINAZIONI SLE

	H_L	H _T	N	$M_T(G)$	$M_L(G)$
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLE 1	2300	0	11319	3610	-1214
STA SLE 2	2300	0	13271	7806	-2893
STA SLE 3	2784	54	15437	12193	-3354
STA SLE 4	2663	54	15117	10874	-3079
STA SLE 5	2663	90	15117	10874	-2678
STA SLE 6	2784	90	15437	12193	-2952

T.2 Combinazioni di carico SLE

11.6 Rampe laterali - Verifiche

Le verifiche riportate di seguito sono:

- Verifica a ribaltamento allo *SLU* per la combinazione più gravosa;
- Verifiche strutturali di durabilità allo *SLE* per le combinazioni di carico più gravose.
- Verifiche strutturali di resistenza allo *SLU* per le combinazioni di carico più gravose.

In base alle precedenti sollecitazioni si riportano di seguito le verifiche riferite alle condizioni di volta in volta più gravose tra le quattro spalle analizzate; si segnala che le verifiche sono state ovviamente eseguite per tutte le spalle e che le differenze ottenute tra i vari risultati sono modesti.

11.6.1 Verifiche di stabilità – Ribaltamento

Di seguito la verifica a ribaltamento della spalla in esame effettuata per la combinazione più gravosa che risulta essere la combinazione sismica. La verifica è effettuata considerando l'ipotesi di equilibrio limite del corpo spalla assunto come rigido con centro di rotazione posizionato all'estremità inferiore del plinto lato valle.

Considerando la combinazione *EQU* si ottiene:

cond\comb	EQU
REALIZZAZIONE	0.87
PERM SP	0.87
ACC SP	0.00
PERM IMP	0.87
ACC IMP - Nmax	0.00
FOLLA	0.00
ST	1.00
SA	0.00
VARTEMPD	0.50
VARTEMPU	0.00
FR	0.00
VENTO	0.00
SIS SP L	1.00
SIS SP T	0.30
SIS SP V	-0.30
SIS IMP L	1.00
SIS IMP T	0.30
SIS IMP V	-0.30
DS	1.00

VERIFICA RIBALTAMENTO							
M _{ribalt}	M _{ribalt} M _{stab} c.s.						
30364	41299	1.36					

(SpA-sx)

Le verifiche sono pertanto soddisfatte.

11.6.2 Verifiche strutturali – Plinto di fondazione – Mensola lato valle SLU

Di seguito si riportata la verifica strutturale della porzione di plinto lato valle ipotizzando il vincolo di incastro perfetto di tale mensola con il filo esterno del muro di testata (lato impalcato); la luce di calcolo assunta per la determinazione delle sollecitazioni di verifica è pertanto pari a $L_{valle} \cong 1.0m$. Il carico esterno è ipotizzato uniformemente distribuito ed è assunto cautelativamente pari alla massima reazione del terreno (vedere relazione geotecnica) dedotta dalla combinazione di carico più gravosa. Le sollecitazioni di verifica sono pertanto pari a:

 $V_{S,d} = r_{terreno} \times L_{valle} \cong 870 \text{ kN/m};$

$$M_{S,d} = r_{terreno} \times L_{valle}^2 / 2 \cong 435 \text{ kN} \times \text{m/m}.$$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

 $B \times H = 1.0 \times 1.0 \text{m} - \text{h} \approx 0.90 \text{m}$:

A'_s= 1\phi20/20 - armatura zona compressa.

Si riporta di seguito la verifica a flessione semplice dell'armatura precedentemente esposta. La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

 $M_{R,d} = 557 \text{ kN} \times \text{m/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$

Di seguito si riporta invece la verifica a taglio ovvero il dimensionamento dell'armatura a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{Bw,d} = 0.9 \times d \times f_{vd} \times A_{sw} / s \times (ctg\alpha + ctg\theta) \times sen\alpha \cong 1245 \text{ kN} > V_{S,d} - Verifica soddisfatta;}$

con

- d \cong 90cm f_{vd} \cong 391.3 MPa;

 $-A_{sw} \cong 3.14/0.4 \cong 7.85 \text{cm}^2/\text{m}$ s = 20cm;

 $-\alpha = 90^{\circ}$ $\theta = 45^{\circ}$ (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

 $-V_{Rc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta)/(1 + ctg^2\theta) \cong 2430 \text{ kN} > V_{S,d} - \text{Verifica soddisfatta};$

con

 $-d \cong 90cm$ $b_w = 100cm$;

- $f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 37/1.5) \cong 8.7 \text{ MPa}$ $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

 $-\alpha = 90^{\circ}$ $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

11.6.3 Verifiche strutturali – Plinto di fondazione – Mensola lato valle SLE

Si riportano di seguito le *verifiche di durabilità* ovvero:

- verifiche dello stato tensionale;
- verifiche a fessurazione.
- Sollecitazioni Combinazione SLE:

$$M_{S,d} = r_{terreno,SLE} \times L_{valle}^2/2 \cong 260 \text{ kN} \times \text{m/m}.$$

Le tensioni massime/minime nei materiali, determinate considerando un coefficiente di omogenizzazione n=15, risultano pari a:

- σ_{c-max} ≅ -2.9 MPa<0.6f_{ck} massima tensione di compressione nel cls Verifica soddisfatta;
- $\sigma_{s\text{-max}} \cong 190 \text{ MPa} < 0.8 f_{yk} \text{ massima tensione nell'acciaio} \text{Verifica soddisfatta}.$

Effettuando il calcolo della massima tensione di trazione nel calcestruzzo, determinata nell'ipotesi di sezione intermante reagente con le precedenti sollecitazioni, si ottiene:

- $\sigma_{\text{c-max}} \cong 1.4 \text{ MPa}$ – massima tensione di trazione nel cls.

La verifica è quindi soddisfatta nei confronti della formazione delle fessure in quanto:

$$-\sigma_{c-max} < f_{ctm}/1.2 = 2.3$$

11.6.4 Verifiche strutturali – Plinto di fondazione – Mensola lato monte

Di seguito si riportata la verifica strutturale della porzione di plinto lato monte ipotizzando un vincolo di incastro di tale porzione di plinto con il filo interno del muro di testata ovvero il filo muro lato rinterro; la luce di calcolo assunta per la determinazione delle sollecitazioni di verifica è pertanto pari a $L_{monte} = 5.0m$. I carichi esterni, ipotizzati uniformemente distribuiti, sono pari a:

- peso rinterro lato monte e peso plinto (agente verso il basso);
- reazione media del terreno lato monte (agente verso l'alto).

Le sollecitazioni di verifica sono pertanto pari a:

$$V_{\text{S,d}} = (p_{\text{rinterro}} + p_{\text{plinto}} - r_{\text{terreno}}) \times L_{\text{monte}} \cong 830 \text{ kN/m}.$$

$$M_{S,d} = (p_{rinterro} + p_{plinto} - r_{terreno}) \times L_{monte}^{2}/2 \cong 2080 \text{ kN} \times \text{m/m}.$$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

$$B \times H = 1.0 \times 1.0 \text{m} - \text{h} \cong 0.9 \text{m};$$

$$A_s$$
= $1\phi26/10 + 1\phi20/20$ - armatura zona tesa

A'_s= 1\phi20/20 - armatura zona compressa.

Si riporta di seguito la verifica a flessione semplice dell'armatura precedentemente esposta. La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

 $M_{R,d} = 2315 \text{ kN} \times \text{m/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$

Di seguito si riporta invece la verifica a taglio ovvero il dimensionamento dell'armatura a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{\text{Rw,d}}$ = 0.9×d×f_{yd}×A_{sw}/s×(ctg α +ctg θ)×sen α \cong 1245 kN > $V_{\text{S,d}}$ - Verifica soddisfatta;

con

- d
$$\cong$$
 90cm f_{vd} \cong 391.3 MPa;

$$-A_{sw} \cong 3.14/0.4 \cong 7.85 \text{cm}^2/\text{m}$$
 $s = 20 \text{cm}$;

-
$$\alpha$$
 = 90° θ = 45° (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

$$-V_{Bc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta)/(1 + ctg^2\theta) \cong 2430 \text{ kN} > V_{S,d} - \text{Verifica soddisfatta};$$

con

$$-d \cong 90cm$$
 $b_w = 100cm$;

-
$$f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 37/1.5) \cong 8.7 \text{ MPa}$$
 $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

-
$$\alpha$$
 = 90° θ = 21.8° (ctg θ =2.5 - valore cautelativo).

11.6.5 Verifiche strutturali – Plinto di fondazione – Mensola lato monte SLE

Si riportano di seguito le *verifiche di durabilità* ovvero:

- verifiche dello stato tensionale;
- verifiche a fessurazione.
- Sollecitazioni Combinazione SLE:

$$M_{S,d} = (p_{rinterro} + p_{plinto} - r_{terreno}) \times L_{monte}^2/2 \cong 960 \text{ kN} \times \text{m/m}.$$

Le tensioni massime/minime nei materiali, determinate considerando un coefficiente di omogenizzazione n=15, risultano pari a:

- σ_{c-max} ≅ -6.4 MPa<0.6f_{ck} massima tensione di compressione nel cls Verifica soddisfatta;
- $\sigma_{s\text{-max}} \cong 172 \text{ MPa} < 0.8 f_{yk} \text{ massima tensione nell'acciaio} \text{Verifica soddisfatta}.$

Effettuando il calcolo della massima tensione di trazione nel calcestruzzo, determinata nell'ipotesi di sezione intermante reagente con le precedenti sollecitazioni, si ottiene:

- $\sigma_{c\text{-max}} \cong 4.3 \text{ MPa}$ - massima tensione di trazione nel cls.

Poiché risulta $\sigma_{c\text{-max}} > f_{ctm}/1.2=2.3$ viene riportata di seguito la verifica a fessurazione secondo quanto indicato nella circolare (febbraio 2009) al C4.1.2.2.4.6

La verifica di fessurazione si esegue controllando che:

$$w_d < w_2 = 0.3$$
 (condizioni ordinarie)

si ottiene:

h=	100	ст	k ₁ =	0.8	-	$A_{c,eff}$	1103	cm ²
d=	93.5	ст	k ₂ =	0.5	-	$ ho_{ m eff}$	0.06238	ı
E _{cm} =	32588	МРа	<i>k</i> ₃ =	3.4	-	$\sigma_{\!s}$	172	МРа
E _s =	210000	МРа	k ₄ =	0.425	-		0.00064	ı
α _e =	6.44	-				$\Delta_{\sf smax}$	207	mm
	0.6	-				W _d	0.13	mm

La verifica risulta soddisfatta

11.6.6 Verifiche strutturali – Muro di testata – Sezione di base

Di seguito si riportano le verifiche strutturali della sezione di base del muro di testata ovvero della sezione di attacco dello stesso con il plinto di fondazione. Le verifica di resistenza, taglio e pressoflessione semplice, sono eseguite per la condizione di carico più gravosa ovvero nei confronti delle sollecitazioni dedotte dalla combinazione sismica.

 $N_{S,d} \cong -725 \text{ kN/m (compressione)};$

 $V_{S,d} \cong 500 \text{ kN/m}$;

 $M_{S,d} \cong 2230 \text{ kN} \times \text{m/m}.$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

 $B \times H = 1.0 \times 1.0 \text{m} - \text{h} \cong 0.9 \text{m};$

 $A_s = 1\phi 26/10 + 1\phi 26/20 - armatura zona tesa;$

 $A'_s = 1\phi 20/20$ - armatura zona compressa.

Si riporta di seguito la verifica a flessione semplice dell'armatura precedentemente esposta. La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

 $M_{R,d} = 2860 \text{ kN} \times \text{m/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$

Di seguito si riporta invece la verifica a taglio ovvero il dimensionamento dell'armatura a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{Rw,d} = 0.9 \times d \times f_{yd} \times A_{sw} / s \times (ctg\alpha + ctg\theta) \times sen\alpha \cong 622 \text{ kN} > V_{S,d} - Verifica soddisfatta;$

con

- d \cong 90cm $f_{vd} \cong$ 391.3 MPa;

 $-A_{sw} \cong 3.14/0.4 \cong 7.85 \text{cm}^2/\text{m}$ s = 40 cm;

- α = 90° θ = 45° (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

 $-V_{Rc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta)/(1 + ctg^2\theta) \cong 2430 \text{ kN} > V_{S,d} - \text{Verifica soddisfatta};$

con

 $-d \cong 90cm$ $b_w = 100cm$;

- $f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 37/1.5) \cong 8.7 \text{ MPa}$ $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

 $-\alpha = 90^{\circ}$ $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

11.6.7 Verifiche strutturali – Muro di testata – Sezione di base SLE

Si riportano di seguito le *verifiche di durabilità* ovvero:

- verifiche dello stato tensionale;
- verifiche a fessurazione.
- Sollecitazioni Combinazione SLE:

 $N_{S,d} \cong -970 \text{ kN/m} - \text{sollecitazione assiale (compressione)};$

 $M_{S,d} \cong 1040 \text{ kN} \times \text{di di m/m} - \text{sollecitazione flettente}.$

Le tensioni massime/minime nei materiali, determinate considerando un coefficiente di omogenizzazione n=15, risultano pari a:

- $\sigma_{c\text{-max}} \cong$ -7.2 MPa<0.6f_{ck} massima tensione di compressione nel cls Verifica soddisfatta;
- $\sigma_{s\text{-max}} \cong 110 \text{ MPa} < 0.8 f_{vk}$ massima tensione nell'acciaio Verifica soddisfatta.

Effettuando il calcolo della massima tensione di trazione nel calcestruzzo, determinata nell'ipotesi di sezione intermante reagente con le precedenti sollecitazioni, si ottiene:

- $\sigma_{c\text{-max}} \cong 3.6 \text{ MPa}$ - massima tensione di trazione nel cls.

Poiché risulta $\sigma_{c\text{-max}} > f_{ctm}/1.2=2.3$ viene riportata di seguito la verifica a fessurazione secondo quanto indicato nella circolare (febbraio 2009) al C4.1.2.2.4.6

La verifica di fessurazione si esegue controllando che:

$$w_d < w_1 = 0.2$$
 (condizioni aggressive)

si ottiene:

La verifica risulta soddisfatta

11.6.8 Verifiche strutturali – Muro paraghiaia – Sezione di base SLU

Di seguito il calcolo delle sollecitazioni e le verifiche del muro paraghiaia effettuate considerando una striscia di muro di profondità unitari. Le sollecitazioni sono desunte considerando cautelativamente un modello locale di mensola verticale con vincolo di incastro nella sezione di base ovvero in corrispondenza del muro di testata; l'altezza media di calcolo è assunta pari a 1.2 m.

La condizione di carico dimensionante risulta essere la condizione di carico statica comprensiva delle seguenti azioni:

- Carichi permanenti (peso proprio)

$$N_{pp} = -(0.25 \times 1.2 \times 25) = -7.5 \text{ kN/m};$$

- Spinta delle terre (cautelativamente si assume un coefficiente di spinta a riposo)

$$S_t = 1/2 \times 18 \times 0.426 \times 1.2^2 \cong 5.5 \text{ kN/m};$$

$$M_t = St \times 1.2/3 \cong 2.2 \text{ kN} \times \text{m/m};$$

- Sovraccarico a tergo spalla ⇒ assente;
- Azione orizzontale di frenatura agente in testa al paraghiaia diffusa considerando una ripartizione a 45° (non si considerano ulteriori forze di frenatura);

$$F_{fren} = 0.6 \times 300/B_{diff} = 180/(1.6 + 2.0 + 1.6) \approx 34.6 \text{ kN/m};$$

$$M_{fren} = F_{fren} \times 1.2 \cong 42 \text{ kN} \times \text{m/m};$$

- Azione verticale concomitante all'azione di frenatura;

$$N_O = -300/(1.6+2.0+1.6) \cong -57.7 \text{ kN/m}.$$

Le sollecitazioni di verifica allo *SLU* sono pertanto pari a:

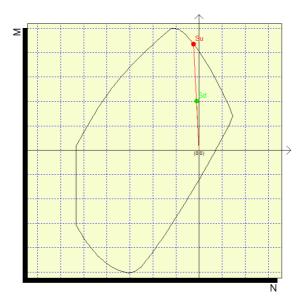
$$N_{Sd} = -(7.5 \times 1.35) - (57.5 \times 1.35) \cong -88 \text{ kN/m} - \text{sollecitazione assiale (compressione)};$$

$$H_{Sd} = (5.5 \times 1.35) + (34.6 \times 1.35) \approx 55 \text{ kN/m} - \text{sollecitazione di taglio};$$

$$M_{Sd} = (2.2 \times 1.35) + (42 \times 1.35) \approx 60 \text{ kN} \times \text{m/m} - \text{sollecitazione flettente}.$$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

$$B \times H = 1.0 \times 0.25 \text{m} - \text{h} \cong 0.2 \text{ m};$$


 $A_s = 1016/10 + 1012/20 - \text{armatura zona tesa};$

A'_s= 1\phi12/20 – armatura zona compressa.

Si riporta di seguito la verifica a presso-flessione della sezione di base eseguita confrontando il minimo valore del momento resistente ultimo, determinato con il programma di calcolo *PresFle+*, con il momento sollecitante ultimo.

 $M_{R,d}$ = 186 kN×m/m > $M_{S,d}$ – Verifica a flessione soddisfatta.

(controllo momento resistente si trascura l'effetto positivo dello sforzo assiale ⇒ M≘0.9×20×25.8×3913/10000 ≅ 180 kN×m/m)

F 17. Dominio di interazione N-M

Di seguito si riporta invece la verifica a taglio ovvero il dimensionamento dell'armatura a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{\text{Rw,d}}$ = 0.9×d×f_{vd}×A_{sw}/s×(ctg α +ctg θ)×sen α \cong 69 kN > $V_{\text{S,d}}$ - Verifica soddisfatta;

con

$$-d \cong 20cm$$
 $f_{vd} \cong 391.3 \text{ MPa};$

$$-A_{sw} \approx 0.785/0.4 \approx 1.963 \text{cm}^2/\text{m}$$
 $s = 20 \text{cm}$;

-
$$\alpha$$
 = 90° θ = 45° (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

$$-V_{Rc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta) / (1 + ctg^2\theta) \approx 583 \text{ kN} > V_{S,d} - \text{Verifica soddisfatta};$$

con

$$-d \cong 20cm$$
 $b_w = 100cm;$

-
$$f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 40/1.5) \cong 9.4 \text{ MPa}$$
 $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

$$-\alpha = 90^{\circ}$$
 $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

11.6.9 Verifiche strutturali – Muro paraghiaia – Sezione di base SLE

Si riportano di seguito le verifiche di durabilità ovvero:

- verifiche dello stato tensionale;
- verifiche a fessurazione.
- Sollecitazioni Combinazione SLE:

 $N_{Sd} \cong -65 \text{ kN/m} - \text{sollecitazione assiale (compressione)};$

 $M_{Sd} \cong 45 \text{ kN} \times \text{m/m} - \text{sollecitazione flettente}.$

Le tensioni massime/minime nei materiali, determinate considerando un coefficiente di omogenizzazione n=15, risultano pari a:

- σ_{c-max} ≅ -5.2 MPa<0.6f_{ck} massima tensione di compressione nel cls Verifica soddisfatta;
- $\sigma_{s\text{-max}} \cong 85 \text{ MPa} < 0.8 f_{yk} \text{ massima tensione nell'acciaio} \text{Verifica soddisfatta}.$

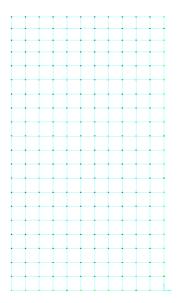
Effettuando il calcolo della massima tensione di trazione nel calcestruzzo, determinata nell'ipotesi di sezione intermante reagente con le precedenti sollecitazioni, si ottiene:

- $\sigma_{\text{c-max}} \cong 4.2 \text{ MPa}$ — massima tensione di trazione nel cls.

Poiché risulta $\sigma_{\text{c-max}} > f_{\text{ctm}}/1.2=2.58$ viene riportata di seguito la verifica a fessurazione secondo quanto indicato nella circolare (febbraio 2009) al C4.1.2.2.4.6.

La verifica di fessurazione si esegue controllando che:

 $w_d < w_1 = 0.2$ (condizioni aggressive)


si ottiene:

$$h=$$
 25 cm $k_1=$ 0.8 - $A_{c,eff}$ 500 cm²
 $d=$ 21 cm $k_2=$ 0.5 - $A_{c,eff}$ 0.011 - $A_{c,eff}$ 0

La verifica risulta soddisfatta

11.6.10 Verifiche strutturali – Muri di risvolto SLU

Di seguito il calcolo delle sollecitazioni e le verifiche dei muri di risvolto effettuate considerando un modello locale di piastra incastrata nella sezione di base (estradosso plinto), incastrata in corrispondenza del muro di testata e incernierata in corrispondenza del muro paraghiaia; l'altezza di calcolo considerata è pari a 9.40m misurata a partire da estradosso plinto fino a testa muro. Per il calcolo delle sollecitazioni s'implementa un apposito modello locale agli elementi finiti, con l'ausilio del programma di calcolo *SAP2000*, utilizzando elementi bidimensionali a tre-quattro nodi con funzioni di forma lineari; nel calcolo delle sollecitazioni si tiene conto dell'effetto deformativo del taglio. Di seguito alcune immagini del modello di calcolo.

F 18. Modello di calcolo (sezione sp=90cm)

La condizione di carico dimensionante risulta essere la condizione di carico statica comprensiva delle seguenti azioni:

- Peso proprio parete ⇒ spessore parete (90)cm;

$$p_{p-90} = s \times \gamma_{cls} = (0.9 \times 25) = 22.5 \text{ kPa};$$

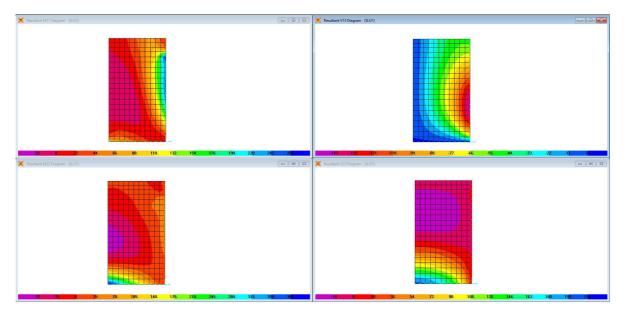
- Spinta statica delle terre ⇒ cautelativamente si assume un coefficiente di spinta a riposo. La spinta triangolare avrà intensità massima ad estradosso plinto, H_{muro}=9.40m, di valore pari a:

$$s_t = \gamma_{rint} \times k_0 \times H = 18 \times 0.426 \times 9.4 \cong 72 \text{ kPa};$$

- Spinta statica dovuta al sovraccarico $q=10~kPa \Rightarrow$ cautelativamente si assume un coefficiente di spinta a riposo. La spinta uniforme avrà intensità massima ad estradosso plinto, $H_{muro}=9.40m$, di valore pari a:

$$s_t = \gamma_q \times k_0 \times H = 10 \times 0.426 \times 9.4 \cong 40 \text{ kPa};$$

In condizioni sismiche si sono inoltre considerate le seguenti azioni:


- $Inerzia\ parete \Rightarrow$ si considera l'inerzia della parete come un carico di superficie uniformemente distribuito. L'intensità di tale carico è pari a:

$$f_{\text{inrz-par}} = (a_g/g) \times s_{\text{parete}} \times \gamma_{\text{cls}} = 0.08 \times 0.9 \times 25 \cong 1.8 \text{ kPa;}$$

- *Inerzia rinterro* ⇒ si considera, in assoluto favore di sicurezza, la spinta generata dall'inerzia del rinterro compreso tra i muri di risvolto come un carico di superficie uniformemente distribuito. L'intensità di tale carico è pari a:

$$f_{inrz\text{-rint}} = (a_g/g) \times L_{rint} \times \gamma_{rint} = 0.08 \times 6.9 \times 18 \cong 10 \text{ kPa}.$$

Di seguito le mappature cromatiche delle sollecitazioni flettenti e taglianti nei due piani di armatura ($M_{11} \Rightarrow$ momento flettente che tende/comprime le fibre orizzontali / $V_{13} \Rightarrow$ taglio nel piano orizzontale / $M_{22} \Rightarrow$ momento flettente che tende/comprime le fibre verticali / $V_{23} \Rightarrow$ taglio nel piano verticale) immagini del modello di calcolo.

F 19. Sollecitazioni flettenti e taglianti (M11-V13 figure superiori / M22-V23 figure inferiori)

Le sollecitazioni di verifica allo *SLU* (si trascura cautelativamente il modesto valore dello sforzo assiale verticale di compressione) sono riassunte di seguito.

Parete spessore 90cm

 $V_{Hd} \cong 140 \text{ kN/m} - \text{Taglio orizzontale}$ $M_{\text{S-Hd}} \cong 250 \text{ kN} \times \text{m/m} - \text{Momento orizzontale}.$

 $V_{Vd} \cong 190 \text{ kN/m} - \text{Taglio verticale}$ $M_{\text{S-Vd}} \cong 350 \text{ kN} \times \text{m/m} - \text{Momento verticale}.$

I dati relativi all'armatura di progetto (copriferro medio \cong 7cm – valore cautelativo valido sia per l'armatura verticale/orizzontale) sono riassunti di seguito.

 $A_{sh}=1\phi 24/20$ – armatura orizzontale tesa $A'_{sh}=1\phi 16/20$ – armatura orizzontale compressa;

 $A_{sv} = 1\phi 24/20$ – armatura verticale tesa $A'_{sv} = 1\phi 16/20$ – armatura verticale compressa;

Si riportano di seguito le verifiche a flessione semplice delle sezioni maggiormente sollecitate eseguite confrontando i minimi valori dei momenti resistenti ultimi, determinati con il programma di calcolo *PresFle+*, con i momenti sollecitanti ultimi.

 $M_{R-H,d} \cong M_{R-V,d} \cong 700 \text{ kN} \times \text{m/m} > M_{S-V,d} - \text{Verifica a flessione verticale soddisfatta};$

(controllo momento resistente si trascura l'effetto positivo dello sforzo assiale ⇒ M≘0.9×83×22.6×3913/10000 ≅ 665 kN×m/m)

Di seguito si riporta invece la verifica a taglio ovvero il dimensionamento dell'armatura a taglio $(\phi 16/40 \times 40)$. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{Rw,d} = 0.9 \times d \times f_{vd} \times A_{sw} / s \times (ctg\alpha + ctg\theta) \times sen\alpha \cong 245 \text{ kN} > V_{S,d} - Verifica soddisfatta;$

con

- d \cong 83 cm f_{vd} \cong 391.3 MPa;

 $-A_{sw} \cong 2.01/0.4 \cong 5.025 \text{cm}^2/\text{m}$ s = 40 cm;

- α = 90° θ = 45° (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

 $-V_{Bc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta)/(1 + ctg^2\theta) \cong 2421 \text{ kN} > V_{S,d} - \text{Verifica soddisfatta};$

con

 $-d\cong 83~cm \\ b_w=100cm;$

- $f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 40/1.5) \cong 9.4 \text{ MPa}$ $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

 $-\alpha = 90^{\circ}$ $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

11.6.11 Verifiche strutturali – Muri di risvolto SLE

Si riportano di seguito le *verifiche di durabilità* ovvero:

- verifiche dello stato tensionale;
- verifiche a fessurazione.

Parete spessore 90cm

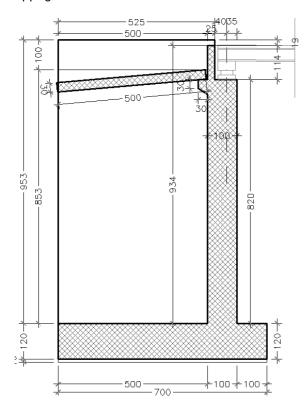
- Sollecitazioni - Combinazione SLE:

 $M_{S-Vd} \cong 200 \text{ kN} \times \text{m/m} - \text{Momento verticale}.$

Le tensioni massime/minime nei materiali, determinate considerando un coefficiente di omogenizzazione n=15, risultano pari a:

- $\sigma_{c\text{-max}} \cong$ -2.4 MPa<0.6f_{ck} massima tensione di compressione nel cls Verifica soddisfatta;
- $\sigma_{s\text{-max}} \cong 115$ MPa<0.8 f_{yk} massima tensione nell'acciaio Verifica soddisfatta.

Effettuando il calcolo della massima tensione di trazione nel calcestruzzo, determinata nell'ipotesi di sezione intermante reagente con le precedenti sollecitazioni, si ottiene:


- $\sigma_{\text{c-max}} \cong 1.3$ MPa – massima tensione di trazione nel cls.

La verifica è quindi soddisfatta nei confronti della formazione delle fessure in quanto:

 $-\sigma_{c-max} < f_{ctm}/1.2 = 2.58$

11.6.12 Verifiche strutturali – Soletta di transizione SLU

Di seguito si riportano le verifiche strutturali della soletta di transizione. Le verifica di resistenza, taglio e presso-flessione semplice, sono eseguite per la condizione di carico più gravosa ovvero nei confronti delle sollecitazioni dedotte dalla combinazione statica ipotizzando uno schema di trave appogiata.

Peso proprio e carichi permanenti: p.p. = 25×0.3 =7.5 kPa

 $P_{terreno} = 18 \times 1.2 = 21.6 \text{ kPa}$

Carichi accidentali: Q = 20 kPa

 $V_{S,d} = [(7.5+21.6+20)\times 5/2]\times 1.35 \cong 165 \text{ kN/m} - \text{sollecitazione di taglio};$

 $M_{S,d} \cong [(7.5+21.6+20)\times 5^2/8]\times 1.35\cong 210 \text{ kNm/m} - \text{sollecitazione flettente}.$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

 $B \times H = 1.0 \times 0.3 m - h \approx 0.295 m;$

A_s= 1\psi 22/10 - armatura zona tesa;

A'_s= 1\phi12/20 - armatura zona compressa. (si utilizza lo stesso quantitativo in direzione trasversale)

Si riporta di seguito la verifica a flessione semplice dell'armatura precedentemente esposta. La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

 $M_{R,d} = 330 \text{ kN} \times \text{m/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$

Di seguito si riporta invece la verifica a taglio ovvero il dimensionamento dell'armatura a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{\text{Rw,d}}$ = 0.9×d×f_{yd}×A_{sw}/s×(ctg α +ctg θ)×sen α \cong 295 kN > $V_{\text{S,d}}$ - Verifica soddisfatta;

con

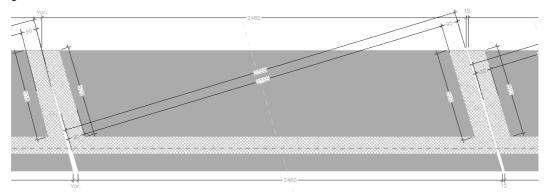
 $- A_{sw} \cong 1.13/0.2 \cong 7.85 cm^2/m$ s = 20 cm;

 $-\alpha = 90^{\circ}$ $\theta = 45^{\circ}$ (ctg θ =1 - valore cautelativo).

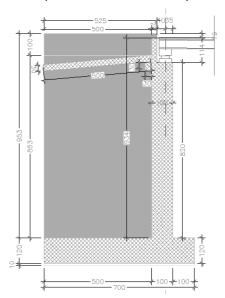
La resistenza delle bielle compresse di calcestruzzo è pari a:

 $-V_{Bc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta) / (1 + ctg^2\theta) \approx 830 \text{ kN} > V_{S,d} - \text{Verifica soddisfatta};$

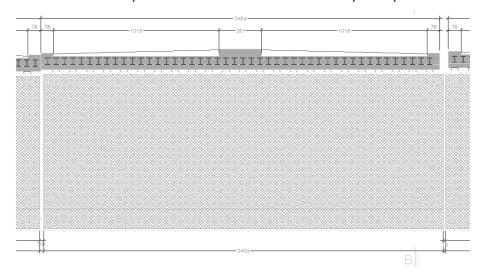
con


 $-d \cong 295 mm$ $b_w = 100 cm;$

- f'_{cd} = 0.5×(0.85×0.83×35/1.5) \cong 8.23 MPa $\alpha_c \cong$ 1.0 (ipotesi cautelativa);


 $-\alpha = 90^{\circ}$ $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

11.7 Opera centrale - Spalla "SpA"


La geometria della sottostruttura spalla dell'opera centrale analizzata di seguito è riportata nelle immagini successive.

F 20. Opera centrale - Pianta spalla SpA

F 21. Opera centrale – Sezione trasversale spalla SpA

F 22. Opera centrale – Prospetto spalla SpA

11.7.1 Analisi dei carichi

Sono di seguito illustrati i calcoli dei carichi dovuti ai pesi propri, permanenti portati, carichi accidentali, spinta del terreno, azioni indotte dal sisma ed azioni trasmesse dall'impalcato; nelle tabelle sottostanti sono riportati i singoli valori e le risultanti valutate rispetto al punto A ed al punto G (baricentro fondazione) indicati nelle figure precedenti (vedere § 11.1). Per quanto riguarda il calcolo dei carichi provenienti dall'impalcato fare riferimento alle relazioni corrispondenti.

AZIONI STATICHE									
AZIONI VERTICALI									
q	2	20 kN/m²		(carico accide	ntale)				
γcls	2	25 kN/m ³		(peso dell'unita	à di volume	del calcestruzz	zo armato)		
γcls,magro	2	24 kN/m ³		(peso dell'unita	à di volume	del calcestruzz	zo magro)		
Yterreno rinterro	1	18 kN/m ³		(peso dell'unita	à di volume	del terreno di ri	interro)		
- Carichi permanenti spalla (PERM S	<u>SP)</u>								
	d _y	d _x	d_z	N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
	[m]	[m]	[m]	[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
muro di testata	8.20	1.00	24.73	5069.7	1.50	7604.5	5.10	0.58	2940.40
muro paraghiaia	1.30	0.25	24.73	200.9	1.88	377.8	9.85	0.51	102.47
muro risvolto 1 (dx) muro risvolto 2 (sx)	9.90 9.90	5.00 5.00	1.00	1237.5 1237.5	4.50 4.50	5568.8 5568.8	5.95 5.95	11.55 -12.11	14293.13 -14986.13
Σ	3.90	3.00	1.00	7745.6	4.30	19119.7	3.93	-12.11	2349.9
rinterro	9.50	5.00	22.68	19387.1	4.50	87242.1	5.95	-0.29	-5622.27
plinto di fondazione	1.00	7.00	24.69	4320.8	3.50	15122.6	0.50	0.00	0.00
Σ	9.50 10.50			23707.9		102364.7			-5622.3
Σ_{PERMSP}				<u>31453.5</u>	3.86	<u>121484.4</u>		-0.10	<u>-3272.4</u>
- Carichi accidentali spalla (ACC S	<u>SP)</u>								
	d _y	d_x	d_z	N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
	[m]	[m]	[m]	[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
	0.00	5.25	24.73	<u>2596.7</u>	4.50	<u>11684.9</u>	10.50	-0.29	-753.03
				N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
				[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
 Carichi impalcato F1 (REALIZ) 				3926	1.35	5299.5	9.15	0.58	2276.83
				0.0	0.00	0.0	0.00		0.00
				<u>3925.6</u>		<u>5299.5</u>			2276.8
- Carichi permanenti impalcato F2	(PERM IMP)			1627	1.35	2196.6	9.15	0.58	943.74
				0.0	0.00	0.0	0.00		0.00
				<u>1627.1</u>		<u>2196.6</u>			<u>943.7</u>
- Carichi accidentali impalcato F2	(ACC IMP-Nmax	<u>r)</u>		1741	1.35	2349.7	9.15	0.58	1009.49
				0.0	0.00	0.0	0.00		0.00
				<u>1740.5</u>		<u>2349.7</u>			1009.5

AZIONI ORIZZONTALI

- valutazione della spinta del terreno							
γ =	18 kN/m ³	3		(peso dell'unita	à di volume del terreno)		
φ =	35.0	0.61		(angolo d'attrit	o del terreno di riempimento)	
i =	0	0.00		(inclinazione d	lel terreno a monte, pos in s	alita)	
β =	0	0.00		(inclinazione d	lel muro, pos se verso mont	e)	
$\alpha = 90 - \beta =$	90 🕶	1.57		(90–β)	.,		
δ =	0	0.00		(angolo d'attrit	o interno tra calcestruzzo e	terreno)	
k _a =	0.271 -			(coefficiente d	i spinta a riposo)		
$L_1 =$	24.69 m			(lunghezza de	I cuneo di spinta inferiore)		
L ₂ =	24.73 m			(lunghezza de	I cuneo di spinta superiore)		
h ₁ =	1.00 m			(altezza del pl	into)		
h ₂ =	9.50 m			(altezza del m	uro di testata + trave paragi	niaia)	
S _{a.t.1a} =	60.2 kN			(spinta del terr	reno cuneo inferiore)		
S _{a,t,1b} =	1144.1 kN			(spinta del terr	reno cuneo inferiore)		
S _{a.t.2} =	5443.4 kN				reno cuneo superiore)		
$d_{y1a} =$	0.3 m			(distanza del p	ounto di applicazione dal pia	no di fond)	
d _{v1b} =	0.50 m			(distanza del p	ounto di applicazione dal pia	no di fond)	
d _{v2} =	4.2 m				ounto di applicazione dal pia	*	
S _{a.g1} =	133.8 kN				nto dovuta al sovraccarico)	,	
S _{a,q2} =	1273.3 kN				palla dovuta al sovraccarico)	
d _{y q1} =	0.5 m				ounto di applicazione dal pia		
d _{v q2} =	5.8 m				ounto di applicazione dal pia	•	
Gy q2 —	0.0 111			(diotaliza doi)	santo di appiloazione dai pie	ano ar ioria)	
			H_{L}	N	$M_T(A) = MT(G$	y(A) = y(G)	$M_L(G)$
		_	[kN]	[kN]	[kNxm]	[m]	[kNxm]
 Spinta del terreno (ST) 		_	<u>6647.7</u>		<u>23272.8</u>	-	
- Spinta del sovraccarico (SA)		_	<u>1407.1</u>		<u>7388.4</u>	-	
				NI	M (A) M (C	(A)(C)	M (O)
			H _L <>	N	$M_T(A) = M_T(G)$	y(A) = y(G)	M _L (G)
- Azione di frenamento (FR)		_	[kN] 409	[kN]	[kNxm] 3738.7	[m] 9.15	[kNxm]
Azione di Irenamento (111)		-	0.0		0.0	0.00	
		-	408.6		<u>3738.7</u>		
			H _L <>	N	$M_T(A) = M_T(G$	y(A) = y(G)	$M_L(G)$
		_	[kN]	[kN]	[kNxm]	[m]	[kNxm]
-Resistenze passive dei vincoli (RP)			444		4064.6	9.15	
		_	0.0		0.0	0.00	
			<u>444.2</u>		<u>4064.6</u>		
			H _T <>			y(A) = y(G)	$M_L(G) <>$
		_	[kN]			[m]	[kNxm]
- Azione dovuta al vento (VENTO)		_	90			11.15	1003.5
		-	90.0			0.00	1003.5
			30.0				1003.3

AZIONI SISMICHE

Azioni	orizz	onta	li

Azioni orizzontali						
- valutazione dell'incremento d	li spinta del terreno dovuto al sism	а				
$a_g/g =$	0.080 -	(PGA)				
$S = S_S \times S_T$	1.20 -					
S _{ve spalla} =	0.04	(spettro di risposta	elastico della comp	onente verticale)		
L ₁ =	24.7 m	(lunghezza del cur	neo di spinta inferiore)		
L ₂ =	24.73 m	(lunghezza del cur	neo di spinta superior	re)		
h ₁ =	1 m	(altezza del plinto)				
h ₂ =	9.5 m	(altezza del muro d	di testata + trave para	aghiaia)		
$\Delta P_{d,1} =$	667.1 kN	(Spinta sismica Mo	ononobe-Okabe / V	Vood)		
$\Delta P_{d,2} =$	3015.2 kN	(Spinta sismica Mo	ononobe-Okabe / V	Vood)	10331	3684
	3682					
		H _L <>	y(A) = y(G) A	$M_T(A) = MT(G)$		$M_L(G)$
- Incremento di spinta del terre	eno dovuto al sisma (DS)	[kN]	[m]	[kNxm]		[kNxm]
		<u>3682.26</u>	5.3	<u>19331.9</u>		

- Sisma spalla long.	e trasv	(SIS SP I	ρ T)
- Olottia opalia lutty.	e liasv.	(010 01 L	C 1/

muro di testata
baggioli
muro paraghiaia
ringrosso paraghiaia
muro risvolto 1 (dx)
muro risvolto 2 (sx)
orecchia
soletta inferiore
soletta inferiore
mensola posteriore
rinterro
plinto di fondazione
-
Σ

N	$H_T = H_L$	y(A) = y(G)	$M_T(A) = M_L(A)$
[kN]	[kN]	[m]	[kNxm]
5069.7	486.7	5.10	2482.10
0.0	0.0	9.15	0.00
200.9	19.3	9.85	190.00
0.0	0.0	0.00	0.00
1237.5	118.8	5.95	706.86
1237.5	118.8	5.95	706.86
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
19387.1	1861.2	5.95	11073.9
4320.8	414.8	0.50	207.4
0.0	0.0	0.00	0.0

3019.5

31453.5

Azioni verticali

- Sisma spalla verticale (SIS SP V)

muro di testata
baggioli
muro paraghiaia
ringrosso paraghiaia
muro risvolto 1 (dx)
muro risvolto 2 (sx)
orecchia
soletta inferiore
soletta inferiore
mensola posteriore
rinterro
plinto di fondazione
-
Σ

W	N +/-	x(A)	$M_T(A) <>$	z(A)	$M_L(A) <>$
[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
5069.7	202.8	1.50	304.18	0.58	117.62
0.0	0.0	1.45	0.00	0.00	0.00
200.9	8.0	1.88	15.11	0.51	4.10
0.0	0.0	0.00	0.00	0.00	0.00
1237.5	49.5	4.50	222.75	11.55	571.73
1237.5	49.5	4.50	222.75	-12.11	-599.45
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
19387.1	775.5	4.50	3489.7	-0.29	-224.89
4320.8	172.8	3.50	604.9	0.00	0.00
0.0	0.0	0.00	0.0	0.00	0.00
31453.5	1258.1		4859.4		-130.9

15367.1

- Sisma impalcato longitudinale (SIS IMP L)

Sisma

long.

H_L <--> N +/-M_T(G) <--> $M_L(G)$ x(A) y(A) = y(G)[kNxm] [kN] [kNxm] [kN] [m] [m] 2745 25116.8 9.15 0.0 0.0 0.00 25116.8 2745.0

- Sisma impalcato trasversale (SIS IMP T)

H _T <>				y(A) = y(G)	M _L (G) <>
[kN]				[m]	[kNxm]
1373				10.11	16072.0
0.0				0.00	0.0
1372.5					16072.0
H _L <>	N +/-	x(A)	M(A) <>	z(A)	$M_L(A)$
[kNI]	[kNI]	[m]	[kNvm]	[m]	[kNvm]

299.8

222

1.35

0.00

0.00

- Sisma impalcato verticale (SIS IMP V)

11.7.2 Condizioni di carico

Nelle tabelle seguenti sono riportati valori dei carichi valutati precedentemente. I valori dei momenti flettenti sono riferiti al baricentro G della fondazione.

Condizioni di carico

condizioni di carico	H _L ->(+)	H _T	N	M _T (A)	$M_L(A)$	$L(A)=M_T(A)/R$	$e_X(G)=d_X(A)-e_L(A)$	$M_{T,G}$	$e_T(A)=M_L(A)/N$	e _Z (G)	$M_{L,G}$
	[kN]	[kN]	[kN]	[kNxm]	[kNxm]	[m]	[m]	[kNxm]	[m]	[m]	[kNxm]
0 REALIZZAZIONE			3926	5300	2277	1.35	2.15	8440	0.58	0.58	2277
1 PERM SP			31453	121484	-3272	3.86	-0.36	-11397	-0.10	-0.10	-3272
2 ACC SP			2597	11685	-753	4.50	-1.00	-2597	-0.29	-0.29	-753
3 PERM IMP			1627	2197	944	1.35	2.15	3498	0.58	0.58	944
4 ACC IMP - Nmax			1741	2350	1009	1.35	2.15	3742	0.58	0.58	1009
5 FOLLA			0	0	0				0.00	0.00	0
6 ST	6648							23273			0
7 SA	1407							7388			0
8 VARTEMPD			0	0	0			0			0
9 RES. PASSIVE VINCOLI	444	0	0	4065	0			4065			0
10 FR	409	0	0	3739	0	0		3739			0
11 VENTO		90									1004
12 SIS SP L	3020							15367			0
13 SIS SP T		3020									15367
14 SIS SP V			1258	4859	-131	3.86	-0.36	-456	-0.10	-0.10	-131
15 SIS IMP L	2745							25117			0
16 SIS IMP T		1373									16072
17 SIS IMP V			222	300	0	1.35	2.15	478	0.00	0.00	0
18 DS	3682							19332			0

T.1 Carichi dovuti alle condizioni elementari

		H _L	H _T	N	$M_T(G)$	$M_L(G)$	
		[kN]	[kN]	[kN]	[kNxm]	[kNxm]	
0	REALIZZAZIONE	0	0	3926	8440	2277	
1	PERM SP	0	0	31453	-11397	-3272	
2	ACC SP	0	0	2597	-2597	-753	
3	PERM IMP	0	0	1627	3498	944	
4	ACC IMP - Nmax	0	0	1741	3742	1009	
_	FOLLA	0	0	0	0	0	
6	ST	6648	0	0	23273	0	
7	SA	1407	0	0	7388	0	
8	VARTEMPD	0	0	0	0	0	(+/-)
9	RES. PASSIVE VINCOLI	444	0	0	4065	0	(+/-)
10	FR	409	0	0	3739	0	(+/-)
11	VENTO	0	90	0	0	1004	(+/-)
12	SIS SP L	3020	0	0	15367	0	(+/-)
13	SIS SP T	0	3020	0	0	15367	(+/-)
14	SIS SP V	0	0	1258	-456	-131	(+/-)
15	SIS IMP L	2745	0	0	25117	0	(+/-)
16	SIS IMP T	0	1373	0	0	16072	(+/-)
17	SIS IMP V	0	0	222	478	0	(+/-)
18	DS	3682	0	0	19332	0	(+)

T.2 Riepilogo dei carichi dovuti alle condizioni elementari

11.7.3 Combinazioni di carico

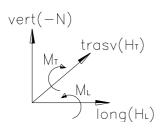
Si riportano i coefficienti moltiplicati dei carichi elementari per le combinazioni allo stato limite ultimo, le combinazioni sismiche e le combinazioni allo stato limite di esercizio per le verifiche strutturali e geotecniche.

cond\comb	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	EQU
REALIZZAZIONE	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1	0	0	0	0	0	0.869565
PERM SP	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						0.869565
ACC SP	0	0	1.35	1.35	1.35	1.35	0	0	0	0	0	0						0
PERM IMP	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						0.869565
ACC IMP - Nmax	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0
FOLLA	0	0	0	0	0	0	0	0	0	0	0	0						0
ST	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						1
SA	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0
VARTEMPD	0	0	0.72	1.2	0.72	1.2	0.5	0.5	0.5	0.5	0.5	0.5						0.5
RES. PASSIVE VINC	0	0	0.9	1.5	0.9	1.5	0	0	0	0	0	0						0
FR	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0
VENTO	0	0	0.9	0.9	1.5	1.5	0	0	0	0	0	0						0
SIS SP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1
SIS SP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30						0.3
SIS SP V	0	0	0	0	0	0	0.30	0.30	1.00	-0.30	-0.30	-1.00						-0.3
SIS IMP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1
SIS IMP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30						0.3
SIS IMP V	0	0	0	0	0	0	0.30	0.30	1.00	0.30	0.30	1.00						-0.3
DS	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1

T.1 Combinazioni di carico SLU

cond\comb	1	2	3	4	5	6
REALIZZAZIONE	0	1	1	1	1	1
PERM SP	1	1	1	1	1	1
ACC SP	0	0	1	1	1	1
PERM IMP	0	1	1	1	1	1
ACC IMP - Nmax	0	0	1	0.75	0.75	1
FOLLA	0	0	0	0	0	0
ST	1	1	1	1	1	1
SA	0	0	1	0.75	0.75	1
VARTEMPD	0	0	0.6	1	0.6	1
RES. PASSIVE VINC	0	0	0.6	1	0.6	1
FR	0	0	1	0.75	0.75	1
VENTO	0	0	0.6	0.6	1	1

T.2 Combinazioni di carico SLE

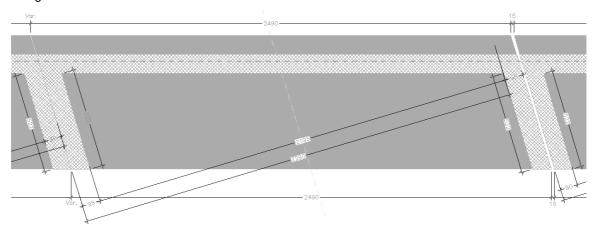

Si riportano di seguito le sollecitazioni per ogni combinazione di carico.

Carichi all'intradosso della fondazione - COMBINAZIONI SLU

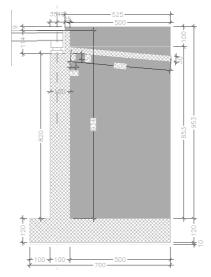
		_			1 (/	_
	Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
	STA SLU 1	8974	0	42462	16032	-4418
	STA SLU 2	8974	0	49958	32149	-70
	STA SLU 3	11825	81	55813	52375	1179
	STA SLU 4	11479	81	55226	49795	839
vert(-N)	STA SLU 5	11213	135	55226	47356	1441
trasv(H _t)	STA SLU 6	12092	135	55813	54813	1782
(rasv(Ht)	SIS SLU 7	16094	1318	37450	83636	9341
M _T	SIS SLU 8	9482	4392	37450	41765	31348
	SIS SLU 9	9482	1318	38486	41780	9249
ML _	SIS SLU 10	16094	1318	36695	83910	9419
Jong(H _L)	SIS SLU 11	9482	4392	36695	42039	31427
, 1011g(11L)	SIS SLU 12	9482	1318	35970	42692	9511

T.1 Combinazioni di carico SLU

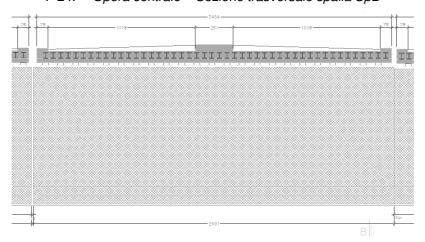
Carichi all'intradosso della fondazione - COMBINAZIONI SLE



	11[ı ıŢ	IN	IVI _T (G)	IVIL(G)
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLE 1	6648	0	31453	11875	-3272
STA SLE 2	6648	0	37006	23814	-52
STA SLE 3	8730	54	41343	38525	807
STA SLE 4	8454	54	40908	36434	554
STA SLE 5	8276	90	40908	34808	956
STA SLE 6	8908	90	41343	40151	1208


T 2 Combinazioni di carico SLE

11.8 Opera centrale - Spalla "SpB"


La geometria della sottostruttura spalla dell'opera centrale analizzata di seguito è riportata nelle immagini successive.

F 23. Opera centrale – Pianta spalla SpB

F 24. Opera centrale – Sezione trasversale spalla SpB

F 25. Opera centrale – Prospetto spalla SpB

11.8.1 Analisi dei carichi

Sono di seguito illustrati i calcoli dei carichi dovuti ai pesi propri, permanenti portati, carichi accidentali, spinta del terreno, azioni indotte dal sisma ed azioni trasmesse dall'impalcato; nelle tabelle sottostanti sono riportati i singoli valori e le risultanti valutate rispetto al punto A ed al punto G (baricentro fondazione) indicati nelle figure precedenti (vedere § 11.1). Per quanto riguarda il calcolo dei carichi provenienti dall'impalcato fare riferimento alle relazioni corrispondenti.

AZIONI STATICHE									
AZIONI VERTICALI									
q	2	20 kN/m ²		(carico accide	ntale)				
Yels	2	25 kN/m ³		(peso dell'unita	à di volume	del calcestruzz	o armato)		
Yels,magro	2	24 kN/m ³				del calcestruzz			
Yterreno rinterro	1	18 kN/m ³		(peso dell'unita	à di volume	del terreno di ri	nterro)		
- Carichi permanenti spalla (PERM	SP)								
	d _y	d_x	d _z	N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
	[m]	[m]	[m]	[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
muro di testata	8.20	1.00	24.91	5106.6	1.50	7659.8	5.10	-0.60	-3063.93
muro paraghiaia	1.30	0.25	24.91	202.4	1.88	380.5	9.85	-0.49	-99.17
muro risvolto 1 (dx)	9.90	5.00	1.00	1237.5	4.50	5568.8	5.95	12.26	15171.75
muro risvolto 2 (sx) Σ	9.90	5.00	1.00	1237.5 7783.9	4.50	5568.8 19177.8	5.95	-11.66	-14429.25 - 2420.6
rinterro	9.50	5.00	22.93	19605.2	4.50	88223.2	5.95	0.30	5881.55
plinto di fondazione	1.00	7.00	24.91	4359.3	3.50	15257.4	0.50	0.00	0.00
Σ	9.50 10.50			23964.4		103480.6			5881.5
$oldsymbol{\Sigma}_{PERM}$ SP				<u>31748.3</u>	3.86	122658.4		0.11	3460.9
- Carichi accidentali spalla (ACC	SP)								
	d _y	d_x	d_z	N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
	[m]	[m]	[m]	[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
_	0.00	5.25	24.91	<u>2615.6</u>	4.50	11770.0	10.50	0.30	784.67
				N	x(A)	$M_T(A)$	y(A) = y(G)	z(A)	$M_L(A)$
				[kN]	[m]	[kNxm]	[m]	[m]	[kNxm]
 Carichi impalcato F1 (REALIZ) 				3926	1.35	5299.5	0.00	-0.60	-2355.35
				0.0	0.00	0.0	0.00		0.00
				<u>3925.6</u>		<u>5299.5</u>			<u>-2355.3</u>
- Carichi permanenti impalcato F	<u> 12 (PERM IMP)</u>			1627	1.35	2196.6	0.00	-0.60	-976.28
				0.0	0.00	0.0	0.00		0.00
				<u>1627.1</u>		<u>2196.6</u>			<u>-976.3</u>
- Carichi accidentali impalcato F.	2 (ACC IMP-Nmax	r)		1741	1.35	2349.7	0.00	-0.60	-1044.30
		_		0.0	0.00	0.0	0.00		0.00
				1740.5		2349.7			-1044.3

AZIONI ORIZZONTALI

- valutazione della spinta del terreno							
γ =	18 kN/m ³	3		(peso dell'unità	à di volume del terreno)		
φ =	35.0	0.61		(angolo d'attrit	o del terreno di riempimento	0)	
i =	0	0.00		(inclinazione d	lel terreno a monte, pos in s	salita)	
β =	0_	0.00		(inclinazione d	lel muro, pos se verso mon	te)	
$\alpha = 90 - \beta =$	90 🐔	1.57		(90–β)			
δ =	0	0.00		, 0	o interno tra calcestruzzo e	e terreno)	
k _a =	0.271 -				i spinta a riposo)		
L ₁ =	24.91 m			, ,	I cuneo di spinta inferiore)		
L ₂ =	24.91 m			. 0	I cuneo di spinta superiore)		
h ₁ =	1.00 m			(altezza del pl	,		
h ₂ =	9.50 m			(altezza del m	uro di testata + trave parag	hiaia)	
$S_{a,t,1a} =$	60.8 kN			(spinta del terr	reno cuneo inferiore)		
S _{a,t,1b} =	1154.3 kN			(spinta del ten	reno cuneo inferiore)		
$S_{a,t,2} =$	5483.0 kN			(spinta del terr	reno cuneo superiore)		
d _{y 1a} =	0.3 m			(distanza del p	ounto di applicazione dal pi	ano di fond)	
$d_{y1b} =$	0.50 m			(distanza del p	ounto di applicazione dal pia	ano di fond)	
d _{y2} =	4.2 m			(distanza del p	ounto di applicazione dal pia	ano di fond)	
S _{a,q1} =	135.0 kN			(spinta sul plir	nto dovuta al sovraccarico)		
$S_{a,q2} =$	1282.6 kN				palla dovuta al sovraccarico))	
$d_{yq1} =$	0.5 m				ounto di applicazione dal pia	•	
d _{yq2} =	5.8 m				ounto di applicazione dal pia	,	
-y q2				(5			
			H_L	N	$M_T(A) = MT(G$	y(A) = y(G)	$M_L(G)$
			[kN]	[kN]	[kNxm]	[m]	[kNxm]
- Spinta del terreno (ST)			6698.0		<u>23443.2</u>	-	
- Spinta del sovraccarico (SA)		_	1417.6		<u>7442.3</u>	-	
						(4) (6)	11 (0)
			H _L <>	N	$M_T(A) = M_T(G)$	y(A) = y(G)	M _L (G)
- Azione di frenamento (FR)		_	[kN] 0	[kN]	[kNxm] 0.0	[m] 0.00	[kNxm]
- Azione di Irenamento (I Tt)		_	0.0		0.0	0.00	
		_	0.0		0.0	0.00	
			H _L <>	N	$M_T(A) = M_T(G$	y(A) = y(G)	M _L (G)
			[kN]	[kN]	[kNxm]	[m]	[kNxm]
-Resistenze passive dei vincoli (RP)		_	0		0.0	0.00	
		_	0.0		0.0	0.00	
			<u>0.0</u>		<u>0.0</u>		
			H _T <>			y(A) = y(G)	$M_L(G) <>$
4		_	[kN]			[m]	[kNxm]
- Azione dovuta al vento (VENTO)		_	90			2.00 0.00	180.0
		_	90.0			0.00	180.0
			30.0				100.0

 $\mathsf{M}_\mathsf{L}(\mathsf{G})$

[kNxm]

AZIONI SISMICHE

- valutazione dell'incremento d	di spinta del terreno dovuto al sism	а				
$a_g/g =$	0.080 -	(PGA)				
$S = S_{S \times S_T}$	1.20 -					
S _{ve spalla} =	0.04	(spettro di risposta	a elastico della com	oonente verticale))	
L ₁ =	24.9 m	(lunghezza del cui	neo di spinta inferior	e)		
L ₂ =	24.91 m	(lunghezza del cui	neo di spinta superio	ore)		
h ₁ =	1 m	(altezza del plinto))			
h ₂ =	9.5 m	(altezza del muro	di testata + trave pa	raghiaia)		
$\Delta P_{d,1} =$	673.0 kN	(Spinta sismica M	ononobe-Okabe /	Wood)		
$\Delta P_{d,2} =$	3037.1 kN	(Spinta sismica M	ononobe-Okabe /	Wood)	10408	3710
	3710					
		H _L <>	y(A) = y(G)	$I_T(A) = MT(G)$		$M_L(G)$
- Incremento di spinta del terre	eno dovuto al sisma (DS)	[kN]	[m]	[kNxm]		[kNxm]
		<u>3710.15</u>	5.3	<u>19478.3</u>		•

- Sisma s	palla long.	e trasv.	(SIS	SP L	e T)

muro di testata	
baggioli	
muro paraghiaia	
ringrosso paraghiaia	
muro risvolto 1 (dx)	
muro risvolto 2 (sx)	
orecchia	
soletta inferiore	
soletta inferiore	
mensola posteriore	
rinterro	
plinto di fondazione	
-	
Σ	

N	$H_T = H_L$	y(A) = y(G)	$M_T(A) = M_L(A)$
[kN]	[kN]	[m]	[kNxm]
5106.6	490.2	5.10	2500.17
0.0	0.0	0.00	0.00
202.4	19.4	9.85	191.38
0.0	0.0	0.00	0.00
1237.5	118.8	5.95	706.86
1237.5	118.8	5.95	706.86
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
0.0	0.0	0.00	0.00
19605.2	1882.1	5.95	11198.5
4359.3	418.5	0.50	209.2
0.0	0.0	0.00	0.0
31748.3	3047.8		15513.0

Azioni verticali

- Sisma spalla verticale (SIS SP V)

muro di testata
baggioli
muro paraghiaia
ringrosso paraghiaia
muro risvolto 1 (dx)
muro risvolto 2 (sx)
orecchia
soletta inferiore
soletta inferiore
mensola posteriore
rinterro
plinto di fondazione
-
Σ

W	N +/-	x(A)	$M_T(A) <>$	z(A)	$M_L(A) <>$
[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
5106.6	204.3	1.50	306.39	-0.60	-122.56
0.0	0.0	1.45	0.00	0.00	0.00
202.4	8.1	1.88	15.22	-0.49	-3.97
0.0	0.0	0.00	0.00	0.00	0.00
1237.5	49.5	4.50	222.75	12.26	606.87
1237.5	49.5	4.50	222.75	-11.66	-577.17
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00	0.00
19605.2	784.2	4.50	3528.9	0.30	235.26
4359.3	174.4	3.50	610.3	0.00	0.00
0.0	0.0	0.00	0.0	0.00	0.00
31748.3	1269.9		4906.3	•	<u>138.4</u>

- Sisma impalcato longitudinale (SIS IMP L)

Sisma long.

 $H_L < -->$ N +/x(A) $M_T(G) < -->$ y(A) = y(G)[kNxm] [kN] [kN] [m] [m] 0.0 0.00 0.00 0.0 0.0 0.0 0.0

- Sisma impalcato trasversale (SIS IMP T)

Sisma trasv.

H_T <--> y(A) = y(G) $M_L(G) < -->$ [kN] [m] [kNxm] 1373 0.96 3513.6 0.0 0.00 0.0 3513.6 1372.5

- Sisma impalcato verticale (SIS IMP V)

	222	1.35	299.8	0.00	0.00
[kN]	[kN]	[m]	[kNxm]	[m]	[kNxm]
H _L <>	N +/-	x(A)	M(A) <>	z(A)	$M_L(A)$

11.8.2 Condizioni di carico

Nelle tabelle seguenti sono riportati valori dei carichi valutati precedentemente. I valori dei momenti flettenti sono riferiti al baricentro G della fondazione.

Condizioni di carico

condizioni di carico	H _L ->(+)	H _T	N	$M_T(A)$	M _L (A)	$L(A)=M_T(A)/R$	$e_X(G)=d_X(A)-e_L(A)$	$M_{T,G}$	$e_T(A)=M_L(A)/N$	e _Z (G)	$M_{L,G}$
	[kN]	[kN]	[kN]	[kNxm]	[kNxm]	[m]	[m]	[kNxm]	[m]	[m]	[kNxm]
0 REALIZZAZIONE			3926	5300	-2355	1.35	2.15	8440	-0.60	-0.60	-2355
1 PERM SP			31748	122658	3461	3.86	-0.36	-11539	0.11	0.11	3461
2 ACC SP			2616	11770	785	4.50	-1.00	-2616	0.30	0.30	785
3 PERM IMP			1627	2197	-976	1.35	2.15	3498	-0.60	-0.60	-976
4 ACC IMP - Nmax			1741	2350	-1044	1.35	2.15	3742	-0.60	-0.60	-1044
5 FOLLA			0	0	0				0.00	0.00	0
6 ST	6698							23443			0
7 SA	1418							7442			0
8 VARTEMPD			0	0	0			0			0
9 RES. PASSIVE VINCOLI	0							0			0
10 FR	0							0			0
11 VENTO		90									180
12 SIS SP L	3048							15513			0
13 SIS SP T		3048									15513
14 SIS SP V			1270	4906	138	3.86	-0.36	-462	0.11	0.11	138
15 SIS IMP L	0							0			0
16 SIS IMP T		1373									3514
17 SIS IMP V			222	300	0	1.35	2.15	478	0.00	0.00	0
18 DS	3710							19478			0

T.1 Carichi dovuti alle condizioni elementari

	H_{L}	H _T	N	M _T (G)	M _L (G)	
	[kN]	[kN]	[kN]	[kNxm]	[kNxm]	
0 REALIZZAZIONE	0	0	3926	8440	-2355	
1 PERM SP	0	0	31748	-11539	3461	
2 ACC SP	0	0	2616	-2616	785	
3 PERM IMP	0	0	1627	3498	-976	
4 ACC IMP - Nmax	0	0	1741	3742	-1044	
5 FOLLA	0	0	0	0	0	
6 ST	6698	0	0	23443	0	
7 SA	1418	0	0	7442	0	
8 VARTEMPD	0	0	0	0	0	(+/-)
9 RES. PASSIVE V	/INCOLI 0	0	0	0	0	(+/-)
10 FR	0	0	0	0	0	(+/-)
11 VENTO	0	90	0	0	180	(+/-)
12 SIS SP L	3048	0	0	15513	0	(+/-)
13 SIS SP T	0	3048	0	0	15513	(+/-)
14 SIS SP V	0	0	1270	-462	138	(+/-)
15 SIS IMP L	0	0	0	0	0	(+/-)
16 SIS IMP T	0	1373	0	0	3514	(+/-)
17 SIS IMP V	0	0	222	478	0	(+/-)
18 DS	3710	0	0	19478	0	(+)

T.2 Riepilogo dei carichi dovuti alle condizioni elementari

11.8.3 Combinazioni di carico

Si riportano i coefficienti moltiplicati dei carichi elementari per le combinazioni allo stato limite ultimo, le combinazioni sismiche e le combinazioni allo stato limite di esercizio per le verifiche strutturali e geotecniche.

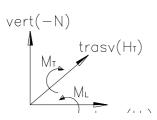
cond\comb	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	EQU
REALIZZAZIONE	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1	0	0	0	0	0	0.869565
PERM SP	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						0.869565
ACC SP	0	0	1.35	1.35	1.35	1.35	0	0	0	0	0	0						0
PERM IMP	0	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						0.869565
ACC IMP - Nmax	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0
FOLLA	0	0	0	0	0	0	0	0	0	0	0	0						0
ST	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1	1	1						1
SA	0	0	1.35	1.013	1.013	1.35	0	0	0	0	0	0						0
VARTEMPD	0	0	0.72	1.2	0.72	1.2	0.5	0.5	0.5	0.5	0.5	0.5						0.5
RES. PASSIVE VINC	0	0	0.72	1.2	0.72	1.2	0	0	0	0	0	0						0
FR	0	0	0	0	0	0	0	0	0	0	0	0						0
VENTO	0	0	0.9	0.9	1.5	1.5	0	0	0	0	0	0						0
SIS SP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1
SIS SP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30						0.3
SIS SP V	0	0	0	0	0	0	0.30	0.30	1.00	-0.30	-0.30	-1.00						-0.3
SIS IMP L	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1
SIS IMP T	0	0	0	0	0	0	0.30	1.00	0.30	0.30	1.00	0.30						0.3
SIS IMP V	0	0	0	0	0	0	0.30	0.30	1.00	0.30	0.30	1.00						-0.3
DS	0	0	0	0	0	0	1.00	0.30	0.30	1.00	0.30	0.30						1

T.1 Combinazioni di carico SLU

cond\comb	1	2	3	4	5	6
REALIZZAZIONE	0	1	1	1	1	1
PERM SP	1	1	1	1	1	1
ACC SP	0	0	1	1	1	1
PERM IMP	0	1	1	1	1	1
ACC IMP - Nmax	0	0	1	0.75	0.75	1
FOLLA	0	0	0	0	0	0
ST	1	1	1	1	1	1
SA	0	0	1	0.75	0.75	1
VARTEMPD	0	0	0.6	1	0.6	1
RES. PASSIVE VINC	0	0	0.6	1	0.6	1
FR	0	0	0	0	0	0
VENTO	0	0	0.6	0.6	1	1

T.2 Combinazioni di carico SLE

Si riportano di seguito le sollecitazioni per ogni combinazione di carico.


Carichi all'intradosso della fondazione - COMBINAZIONI SLU

vert(-N)	
4	trasv(H _T)
MT	
	ML
	Tong(HL)

	H_L	H _T	N	$M_T(G)$	$M_L(G)$
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLU 1	9042	0	42860	16070	4672
STA SLU 2	9042	0	50356	32187	1 <i>7</i> 5
STA SLU 3	10956	81	56237	43755	-14
STA SLU 4	10478	81	55650	39980	339
STA SLU 5	10478	135	55650	39980	447
STA SLU 6	10956	135	56237	43755	94
SIS SLU 7	13456	1326	37749	58838	5879
SIS SLU 8	8725	4420	37749	34344	19197
SIS SLU 9	8725	1326	38793	34356	5976
SIS SLU 10	13456	1326	36987	59115	5796
SIS SLU 11	8725	4420	36987	34621	19114
SIS SLU 12	8725	1326	36253	35279	5699

T.1 Combinazioni di carico SLU

Carichi all'intradosso della fondazione - COMBINAZIONI SLE

	п	пт	N	M _T (G)	M _L (G)
Comb.	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
STA SLE 1	6698	0	31748	11904	3461
STA SLE 2	6698	0	37301	23842	129
STA SLE 3	8116	54	41657	32411	-22
STA SLE 4	7761	54	41222	29615	239
STA SLE 5	7761	90	41222	29615	311
STA SLE 6	8116	90	41657	32411	50

T.2 Combinazioni di carico SLE

11.9 Opera centrale - Verifiche

Le verifiche riportate di seguito sono:

- Verifica a ribaltamento allo SLU per la combinazione più gravosa;
- Verifiche strutturali di durabilità allo *SLE* per le combinazioni di carico più gravose.
- Verifiche strutturali di resistenza allo SLU per le combinazioni di carico più gravose.

In base alle precedenti sollecitazioni si riportano di seguito le verifiche riferite alle condizioni di volta in volta più gravose tra le quattro spalle analizzate; si segnala che le verifiche sono state ovviamente eseguite per tutte le spalle e che le differenze ottenute tra i vari risultati sono modesti.

11.9.1 Verifiche di stabilità – Ribaltamento

Di seguito la verifica a ribaltamento della spalla in esame effettuata per la combinazione più gravosa che risulta essere la combinazione sismica. La verifica è effettuata considerando l'ipotesi di equilibrio limite del corpo spalla assunto come rigido con centro di rotazione posizionato all'estremità inferiore del plinto lato valle.

Considerando la combinazione *EQU* si ottiene:

cond\comb	EQU
REALIZZAZIONE	0.87
PERM SP	0.87
ACC SP	0.00
PERM IMP	0.87
ACC IMP - Nmax	0.00
FOLLA	0.00
ST	1.00
SA	0.00
VARTEMPD	0.50
VARTEMPU	0.00
FR	0.00
VENTO	0.00
SIS SP L	1.00
SIS SP T	0.30
SIS SP V	-0.30
SIS IMP L	1.00
SIS IMP T	0.30
SIS IMP V	-0.30
DS	1.00

VERIFICA RIBALTAMENTO						
M _{ribalt}	M_{stab}	c.s.				
84637	112157	1.33				

(SpA)

La verifica è pertanto soddisfatta.

11.9.2 Verifiche strutturali – Plinto di fondazione – Mensola lato valle

Di seguito si riportata la verifica strutturale della porzione di plinto lato valle ipotizzando il vincolo di incastro perfetto di tale mensola con il filo esterno del muro di testata (lato impalcato); la luce di calcolo assunta per la determinazione delle sollecitazioni di verifica è pertanto pari a $L_{valle} \cong 1.0m$. Il carico esterno è ipotizzato uniformemente distribuito ed è assunto cautelativamente pari alla massima reazione del terreno (vedere relazione geotecnica) dedotta dalle combinazione di carico più gravosa. Le sollecitazioni di verifica sono pertanto pari a:

$$V_{S.d} = r_{terreno} \times L_{valle} \cong 845 \text{ kN/m};$$

$$M_{S,d} = r_{terreno} \times L_{valle}^2 / 2 \cong 420 \text{ kN} \times \text{m/m}.$$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

$$B \times H = 1.0 \times 1.0 \text{m} - \text{h} \approx 0.90 \text{m}$$
:

 $A'_{s} = 1\phi 20/20$ - armatura zona compressa.

Si riporta di seguito la verifica a flessione semplice dell'armatura precedentemente esposta. La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

$$M_{R,d} = 557 \text{ kN} \times \text{m/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$$

Di seguito si riporta invece la verifica a taglio ovvero il dimensionamento dell'armatura a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

-
$$V_{Bw,d} = 0.9 \times d \times f_{vd} \times A_{sw} / s \times (ctg\alpha + ctg\theta) \times sen\alpha \cong 1245 \text{ kN} > V_{S,d} - Verifica soddisfatta;}$$

con

- d
$$\cong$$
 90cm f_{vd} \cong 391.3 MPa;

$$-A_{sw} \cong 3.14/0.4 \cong 7.85 \text{cm}^2/\text{m}$$
 $s = 20 \text{cm}$;

$$-\alpha = 90^{\circ}$$
 $\theta = 45^{\circ}$ (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

$$-V_{Rc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta)/(1 + ctg^2\theta) \cong 2430 \text{ kN} > V_{S,d} - \text{Verifica soddisfatta};$$

con

$$-d \cong 90cm$$
 $b_w = 100cm$;

-
$$f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 37/1.5) \cong 8.7 \text{ MPa}$$
 $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

$$-\alpha = 90^{\circ}$$
 $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

11.9.3 Verifiche strutturali – Plinto di fondazione – Mensola lato valle SLE

Si riportano di seguito le *verifiche di durabilità* ovvero:

- verifiche dello stato tensionale;
- verifiche a fessurazione.
- Sollecitazioni Combinazione SLE:

$$M_{S,d} = r_{terreno} \times \left. L_{valle} \right|^2 \! / 2 \cong 220 \ kN \times m/m. \label{eq:msd}$$

Le tensioni massime/minime nei materiali, determinate considerando un coefficiente di omogenizzazione n=15, risultano pari a:

- σ_{c-max} ≅ -2.4 MPa<0.6f_{ck} massima tensione di compressione nel cls Verifica soddisfatta;
- $\sigma_{s\text{-max}} \cong 155$ MPa<0.8 f_{vk} massima tensione nell'acciaio Verifica soddisfatta.

Effettuando il calcolo della massima tensione di trazione nel calcestruzzo, determinata nell'ipotesi di sezione intermante reagente con le precedenti sollecitazioni, si ottiene:

- $\sigma_{\text{c-max}} \cong 1.1 \text{ MPa}$ – massima tensione di trazione nel cls.

La verifica è quindi soddisfatta nei confronti della formazione delle fessure in quanto:

$$-\sigma_{c-max} < f_{ctm}/1.2=2.3$$

11.9.4 Verifiche strutturali – Plinto di fondazione – Mensola lato monte

Di seguito si riportata la verifica strutturale della porzione di plinto lato monte ipotizzando un vincolo di incastro di tale porzione di plinto con il filo interno del muro di testata ovvero il filo muro lato rinterro; la luce di calcolo assunta per la determinazione delle sollecitazioni di verifica è pertanto pari a $L_{monte} = 5.0m$. I carichi esterni, ipotizzati uniformemente distribuiti, sono pari a:

- peso rinterro lato monte e peso plinto (agente verso il basso);
- reazione media del terreno lato monte (agente verso l'alto).

Le sollecitazioni di verifica sono pertanto pari a:

$$V_{\text{S,d}} = \left(p_{\text{rinterro}} + \, p_{\text{plinto}} - r_{\text{terreno}}\right) \times L_{\text{monte}} \cong 900 \text{ kN/m}.$$

$$M_{S,d} = \left(p_{rinterro} + p_{plinto} - r_{terreno}\right) \times L_{monte}^{2} / 2 \cong 2260 \text{ kN} \times \text{m/m}.$$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

$$B \times H = 1.0 \times 1.0 \text{m} - \text{h} \cong 0.9 \text{m};$$

$$A_s$$
= $1\phi26/10 + 1\phi20/20$ - armatura zona tesa

A'_s= 1\phi20/20 - armatura zona compressa.

Si riporta di seguito la verifica a flessione semplice dell'armatura precedentemente esposta. La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

 $M_{R,d} = 2315 kN \times m/m > M_{S,d} - Verifica$ a flessione soddisfatta.

Di seguito si riporta invece la verifica a taglio ovvero il dimensionamento dell'armatura a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{\text{Rw,d}}$ = 0.9×d×f_{yd}×A_{sw}/s×(ctg α +ctg θ)×sen α \cong 1245 kN > $V_{\text{S,d}}$ - Verifica soddisfatta;

con

$$-d \cong 90cm$$
 $f_{vd} \cong 391.3 \text{ MPa};$

$$-A_{sw} \cong 3.14/0.4 \cong 7.85 \text{cm}^2/\text{m}$$
 $s = 20 \text{cm}$;

$$-\alpha = 90^{\circ}$$
 $\theta = 45^{\circ}$ (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

$$-V_{Bc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta)/(1 + ctg^2\theta) \cong 2430 \text{ kN} > V_{S,d} - \text{Verifica soddisfatta};$$

con

$$-d \cong 90cm$$
 $b_w = 100cm$;

-
$$f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 37/1.5) \cong 8.7 \text{ MPa}$$
 $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

$$-\alpha = 90^{\circ}$$
 $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

11.9.5 Verifiche strutturali – Plinto di fondazione – Mensola lato monte SLE

Si riportano di seguito le *verifiche di durabilità* ovvero:

- verifiche dello stato tensionale;
- verifiche a fessurazione.
- Sollecitazioni Combinazione SLE:

$$M_{S,d} = (p_{rinterro} + p_{plinto} - r_{terreno}) \times L_{monte}^2/2 \cong 720 \text{ kN} \times \text{m/m}.$$

Le tensioni massime/minime nei materiali, determinate considerando un coefficiente di omogenizzazione n=15, risultano pari a:

- σ_{c-max} ≅ -5 MPa<0.6f_{ck} massima tensione di compressione nel cls Verifica soddisfatta;
- $\sigma_{s\text{-max}} \cong 130 \text{ MPa} < 0.8 f_{yk} \text{ massima tensione nell'acciaio} \text{Verifica soddisfatta}.$

Effettuando il calcolo della massima tensione di trazione nel calcestruzzo, determinata nell'ipotesi di sezione intermante reagente con le precedenti sollecitazioni, si ottiene:

- $\sigma_{c\text{-max}} \cong 3.2 \text{ MPa}$ - massima tensione di trazione nel cls.

Poiché risulta $\sigma_{c\text{-max}} > f_{ctm}/1.2=2.3$ viene riportata di seguito la verifica a fessurazione secondo quanto indicato nella circolare (febbraio 2009) al C4.1.2.2.4.6

La verifica di fessurazione si esegue controllando che:

$$w_d < w_2 = 0.3$$
 (condizioni ordinarie)

si ottiene:

h=	100	ст	k ₁ =	0.8	-	$A_{c,eff}$	1103	cm ²
d=	93.5	cm	k ₂ =	0.5	-	$ ho_{ m eff}$	0.06238	1
E _{cm} =	32588	MPa	<i>k</i> ₃ =	3.4	-	$\sigma_{\!\scriptscriptstyle S}$	130	МРа
E _s =	210000	МРа	k ₄ =	0.425	-	\mathcal{E}_{sm}	0.00043	ı
α _e =	6.44	-				$\Delta_{\sf smax}$	207	mm
k_t =	0.6	-				W _d	0.09	mm

La verifica risulta soddisfatta

11.9.6 Verifiche strutturali – Muro di testata – Sezione di base

Di seguito si riportano le verifiche strutturali della sezione di base del muro di testata ovvero della sezione di attacco dello stesso con il plinto di fondazione. Le verifica di resistenza, taglio e pressoflessione semplice, sono eseguite per la condizione di carico più gravosa ovvero nei confronti delle sollecitazioni dedotte dalla combinazione sismica.

 $N_{S,d} \cong -545 \text{ kN/m (compressione)};$

 $V_{S,d} \cong 485 \text{ kN/m}$;

 $M_{S,d} \cong 2120 \text{ kN} \times \text{m/m}.$

I dati relativi alla geometria della sezione resistente e all'armatura di progetto sono riassunti di seguito.

 $B \times H = 1.0 \times 1.0 \text{m} - \text{h} \cong 0.9 \text{m};$

 $A_s = 1\phi 26/10 + 1\phi 26/20$ - armatura zona tesa;

A'_s= 1φ20/20 - armatura zona compressa.

Si riporta di seguito la verifica a flessione semplice dell'armatura precedentemente esposta. La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

 $M_{B,d} = 2860 \text{ kN} \times \text{m/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$

Di seguito si riporta invece la verifica a taglio ovvero il dimensionamento dell'armatura a taglio. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{Rw,d} = 0.9 \times d \times f_{yd} \times A_{sw} / s \times (ctg\alpha + ctg\theta) \times sen\alpha \cong 622 \text{ kN} > V_{S,d} - Verifica soddisfatta;$

con

- d \cong 90cm f_{vd} \cong 391.3 MPa;

 $-A_{sw} \cong 3.14/0.4 \cong 7.85 \text{cm}^2/\text{m}$ s = 40 cm;

 $-\alpha = 90^{\circ}$ $\theta = 45^{\circ}$ (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

 $-V_{Rc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta)/(1 + ctg^2\theta) \cong 2430 \text{ kN} > V_{S,d} - \text{Verifica soddisfatta};$

con

 $-d \cong 90cm$ $b_w = 100cm$;

- $f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 37/1.5) \cong 8.7 \text{ MPa}$ $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

 $-\alpha = 90^{\circ}$ $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

11.9.7 Verifiche strutturali – Muro di testata – Sezione di base SLE

Si riportano di seguito le *verifiche di durabilità* ovvero:

- verifiche dello stato tensionale;
- verifiche a fessurazione.
- Sollecitazioni Combinazione SLE:

 $N_{S,d} \cong -710 \text{ kN/m} - \text{sollecitazione assiale (compressione)};$

 $M_{S,d} \cong 860 \text{ kN} \times \text{di di m/m} - \text{sollecitazione flettente}.$

Le tensioni massime/minime nei materiali, determinate considerando un coefficiente di omogenizzazione n=15, risultano pari a:

- $\sigma_{c\text{-max}} \cong$ -5.9 MPa<0.6f_{ck} massima tensione di compressione nel cls Verifica soddisfatta;
- $\sigma_{s\text{-max}} \cong 95 \text{ MPa} < 0.8 f_{vk}$ massima tensione nell'acciaio Verifica soddisfatta.

Effettuando il calcolo della massima tensione di trazione nel calcestruzzo, determinata nell'ipotesi di sezione intermante reagente con le precedenti sollecitazioni, si ottiene:

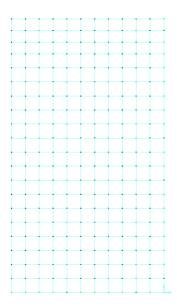
- $\sigma_{c\text{-max}} \cong 3.1 \text{ MPa}$ - massima tensione di trazione nel cls.

Poiché risulta $\sigma_{c\text{-max}} > f_{ctm}/1.2=2.3$ viene riportata di seguito la verifica a fessurazione secondo quanto indicato nella circolare (febbraio 2009) al C4.1.2.2.4.6

La verifica di fessurazione si esegue controllando che:

$$w_d < w_2 = 0.2$$
 (condizioni aggressive)

si ottiene:


La verifica risulta soddisfatta

i i .9.0 - Veriliche Strutturali – Muro paragrila	11.9.8	e strutturali – Muro paragl	hiaia
---	--------	-----------------------------	-------

Valgono le stesse considerazioni effettuate per le spalle delle rampe. Si ha infatti uguale geometria, caratteristiche meccaniche dei materiali e quantitativi di armatura.

11.9.9 Verifiche strutturali – Muri di risvolto SLU

Di seguito il calcolo delle sollecitazioni e le verifiche dei muri di risvolto effettuate considerando un modello locale di piastra incastrata nella sezione di base (estradosso plinto), incastrata in corrispondenza del muro di testata e incernierata in corrispondenza del muro paraghiaia; l'altezza di calcolo considerata è pari a 9.40m misurata a partire da estradosso plinto fino a testa muro. Per il calcolo delle sollecitazioni s'implementa un apposito modello locale agli elementi finiti, con l'ausilio del programma di calcolo *SAP2000*, utilizzando elementi bidimensionali a tre-quattro nodi con funzioni di forma lineari; nel calcolo delle sollecitazioni si tiene conto dell'effetto deformativo del taglio. Di seguito alcune immagini del modello di calcolo.

F 26. Modello di calcolo (sezione sp=90cm)

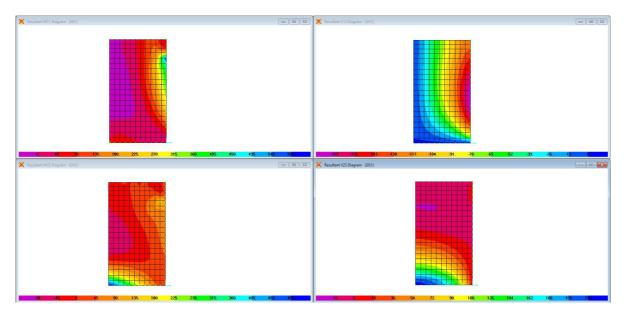
La condizione di carico dimensionante risulta essere la condizione di carico sismica comprensiva delle seguenti azioni:

- Peso proprio parete ⇒ spessore parete (90)cm;

$$p_{p-90} = s \times \gamma_{cls} = (0.9 \times 25) = 22.5 \text{ kPa};$$

- Spinta statica delle terre ⇒ cautelativamente si assume un coefficiente di spinta a riposo. La spinta triangolare avrà intensità massima ad estradosso plinto, H_{muro}=9.40m, di valore pari a:

$$s_t = \gamma_{rint} \times k_0 \times H = 18 \times 0.426 \times 9.4 \cong 72 \text{ kPa};$$


- *Inerzia parete* ⇒ si considera l'inerzia della parete come un carico di superficie uniformemente distribuito. L'intensità di tale carico è pari a:

$$f_{inrz-par} = (a_g/g) \times s_{parete} \times \gamma_{cls} = 0.08 \times 0.9 \times 25 \cong 1.8 \text{ kPa};$$

- *Inerzia rinterro* ⇒ si considera, in assoluto favore di sicurezza, la spinta generata dall'inerzia del rinterro compreso tra i muri di risvolto come un carico di superficie uniformemente distribuito. L'intensità di tale carico è pari a:

$$f_{inrz-rint} = (a_q/g) \times L_{rint} \times \gamma_{rint} = 0.08 \times 22.6 \times 18 \cong 32.5 \text{ kPa.}$$

Di seguito le mappature cromatiche delle sollecitazioni flettenti e taglianti nei due piani di armatura ($M_{11} \Rightarrow$ momento flettente che tende/comprime le fibre orizzontali / $V_{13} \Rightarrow$ taglio nel piano orizzontale / $M_{22} \Rightarrow$ momento flettente che tende/comprime le fibre verticali / $V_{23} \Rightarrow$ taglio nel piano verticale) immagini del modello di calcolo.

F 27. Sollecitazioni flettenti e taglianti (M11-V13 figure superiori / M22-V23 figure inferiori)

Le sollecitazioni di verifica allo *SLU* (si trascura cautelativamente il modesto valore dello sforzo assiale verticale di compressione) sono riassunte di seguito.

Parete spessore 90cm

 $V_{Hd} \cong 175 \text{ kN/m} - \text{Taglio orizzontale}$ $M_{\text{S-Hd}} \cong 500 \text{ kN} \times \text{m/m} - \text{Momento orizzontale}.$

 $V_{Vd} \cong 220 \text{ kN/m} - \text{Taglio verticale}$ $M_{S-Vd} \cong 450 \text{ kN} \times \text{m/m} - \text{Momento verticale}.$

I dati relativi all'armatura di progetto (copriferro medio \cong 7cm – valore cautelativo valido sia per l'armatura verticale/orizzontale) sono riassunti di seguito.

 $A_{sh}=1\phi 24/20$ – armatura orizzontale tesa $A_{sh}'=1\phi 16/20$ – armatura orizzontale compressa;

 $A_{sv} = 1\phi 24/20$ – armatura verticale tesa $A'_{sv} = 1\phi 16/20$ – armatura verticale compressa;

Si riportano di seguito le verifiche a flessione semplice delle sezioni maggiormente sollecitate eseguite confrontando i minimi valori dei momenti resistenti ultimi, determinati con il programma di calcolo *PresFle+*, con i momenti sollecitanti ultimi.

 $M_{R-H,d} \cong M_{R-V,d} \cong 700 \text{ kN} \times \text{m/m} > M_{S-V,d} - \text{Verifica a flessione orizzontale soddisfatta};$

(controllo momento resistente si trascura l'effetto positivo dello sforzo assiale ⇒ M≘0.9×83×22.6×3913/10000 ≅ 665 kN×m/m)

Di seguito si riporta invece la verifica a taglio ovvero il dimensionamento dell'armatura a taglio $(\phi 16/40 \times 40)$. La resistenza delle bielle tese composte dall'armatura adottata è pari a:

- $V_{Rw,d}$ = 0.9×d×f_{yd}×A_{sw}/s×(ctg α +ctg θ)×sen α \cong 245 kN > $V_{S,d}$ - Verifica soddisfatta;

con

- d \cong 83 cm f_{vd} \cong 391.3 MPa;

 $-A_{sw} \cong 2.01/0.4 \cong 5.025 \text{cm}^2/\text{m}$ s = 40 cm;

 $-\alpha = 90^{\circ}$ $\theta = 45^{\circ}$ (ctg θ =1 - valore cautelativo).

La resistenza delle bielle compresse di calcestruzzo è pari a:

 $-V_{Bc,d} = 0.9 \times d \times b_w \times \alpha_c \times f'_{cd} \times (ctg\alpha + ctg\theta)/(1 + ctg^2\theta) \cong 2421 \text{ kN} > V_{S,d} - \text{Verifica soddisfatta};$

con

 $-d \cong 83 \text{ cm}$ $b_w = 100 \text{cm}$;

- $f'_{cd} = 0.5 \times (0.85 \times 0.83 \times 40/1.5) \cong 9.4 \text{ MPa}$ $\alpha_c \cong 1.0 \text{ (ipotesi cautelativa)};$

 $-\alpha = 90^{\circ}$ $\theta = 21.8^{\circ}$ (ctg θ =2.5 - valore cautelativo).

11.9.10 Verifiche strutturali – Muri di risvolto SLE

Si riportano di seguito le *verifiche di durabilità* ovvero:

- verifiche dello stato tensionale;
- verifiche a fessurazione.

Parete spessore 90cm

- Sollecitazioni - Combinazione SLE:

 $M_{S-Vd} \cong 200 \text{ kN} \times \text{m/m} - \text{Momento verticale}.$

Le tensioni massime/minime nei materiali, determinate considerando un coefficiente di omogenizzazione n=15, risultano pari a:

- $\sigma_{c\text{-max}} \cong$ -2.4 MPa<0.6f_{ck} massima tensione di compressione nel cls Verifica soddisfatta;
- $\sigma_{s\text{-max}} \cong 115 \text{ MPa} < 0.8 f_{yk} \text{ massima tensione nell'acciaio} \text{Verifica soddisfatta}.$

Effettuando il calcolo della massima tensione di trazione nel calcestruzzo, determinata nell'ipotesi di sezione intermante reagente con le precedenti sollecitazioni, si ottiene:

- $\sigma_{c\text{-max}} \cong 1.3 \text{ MPa}$ - massima tensione di trazione nel cls.

La verifica è quindi soddisfatta nei confronti della formazione delle fessure in quanto:

- $\sigma_{c-max} < f_{ctm}/1.2 = 2.58$

11911	Verifiche strutturali -	- Soletta	di transizione
11.3.11	venille suullulaii –	- OUI c lia	ui iiaiisiziuiic

Valgono le stesse considerazioni effettuate per le spalle delle rampe. Si ha infatti uguale geometria, caratteristiche meccaniche dei materiali e quantitativi di armatura.

11.10 Verifiche per urto da traffico ferroviario

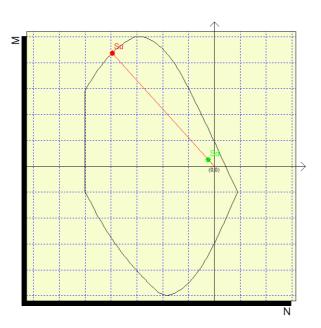
La distanza "d" degli elementi esposti (spalle) dall'asse del binario è pari a circa 8m; si assumono dunque, secondo quanto esposto al §3.6.3.4, le seguenti azioni statiche equivalenti:

- 2000 kN in direzione parallela alla direzione di marcia dei convogli ferroviari;
- 750 kN in direzione perpendicolare alla direzione di marcia dei convogli ferroviari.

Tali forze, che agiscono separatamente, vengono applicate a 1.80m dal piano del ferro.

Di seguito viene riportata la verifica strutturale della sezione di attacco della spalla col plinto di fondazione per la combinazione eccezionale (STA_ECC). Facendo riferimento al caso più gravoso, ovvero considerando la spalla laterale di lunghezza minore si ha:

 $M_i = (750*1.8) / 8.7 = 155 \text{ KNm/m}$


 $N' = 700 \text{ KN} \times \text{m/m}$.

 $B \times H = 1.0 \times 1.0 \text{m} - \text{h} \cong 0.9 \text{m};$

 $A_s = 1\phi 26/20 + 1\phi 26/20 - armatura zona tesa;$

A'_s= 1φ20/20 - armatura zona compressa.

Si riporta di seguito la verifica a flessione semplice dell'armatura precedentemente esposta. La verifica è eseguita confrontando il momento resistente ultimo con il momento sollecitante ultimo. Il momento resistente minimo, determinato con il programma di calcolo *PresFle*, risulta pari a:

F 28. Dominio di interazione N-M

 $M_{R,d} = 865 \text{ kN} \times \text{m/m} > M_{S,d} - \text{Verifica a flessione soddisfatta.}$

12. APPARECCHI DI APPOGGIO E GIUNTI

In questa sezione si riportano i dati relativi al dimensionamento degli apparecchi di appoggio in acciaio PTFE e dei giunti sulle spalle.

Di seguito si riporta lo schema planimetrico delle disposizione dei dispositivi di appoggio in cui si identificano:

- F ⇒ appoggio fisso;
- UL ⇒ appoggio unidirezionale longitudinale;
- UT ⇒ appoggio unidirezionale trasversale;
- UL ⇒ appoggio multidirezionale.

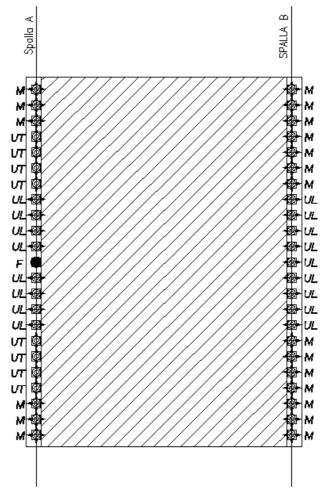


Figura 12-1. Schema disposizione appoggi – Impalcato Centrale

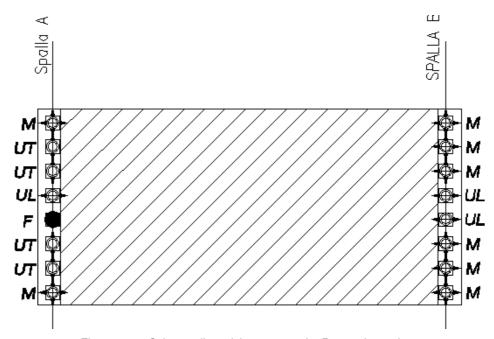


Figura 12-2. Schema disposizione appoggi – Rampa Laterale

Nelle tabelle seguenti si riportano i valori massimi delle forze sollecitanti gli appoggi per le combinazioni statiche (SLU) e sismiche (SLV).

	AZIONI SUGLI APPARECCHI D'APPOGGIO - IMPALCATO CENTRALE -						
		STATICA SLU		SISMICA SLV			
ld	Tipo	n.	N _{Sd-MAX}	H _{Sd-MAX}	N _{Sd-MAX}	H _{Sd-MAX}	
[-]	[-]	[-]	[kN]	[kN]	[kN]	[kN]	
F	Fisso	1	560	70	300	350	
UL	Uni-Long	17	1080	15	300	155	
UT	Uni-Trasv	8	1050	70	260	305	
М	Multi	20	1050	_	320	_	

AZIONI SUGLI APPARECCHI D'APPOGGIO - RAMPE LATERALI -						
			STATICA SLU		SISMICA SLV	
ld	Tipo	n.	N _{Sd-MAX}	H _{Sd-MAX}	N _{Sd-MAX}	H _{Sd-MAX}
[-]	[-]	[-]	[kN]	[kN]	[kN]	[kN]
F	Fisso	1	660	110	280	275
UL	Uni-Long	3	980	60	280	250
UT	Uni-Trasv	4	1000	110	310	200
М	Multi	8	1020	_	300	_

L'escursione massima dei giunti sulle spalle si valuta allo **SLD** considerando il contributo (50%) dell'azione termica, ottenendo dunque:

 $\delta \cong \pm$ 15 mm \Rightarrow giunto spalla B – impalcato centrale

 $\delta \cong \pm$ 15 mm \Rightarrow giunto spalla B – rampa laterale

La dimensione dei varchi si valuta allo *SLV* considerando il contributo (50%) dell'azione termica, ottenendo dunque:

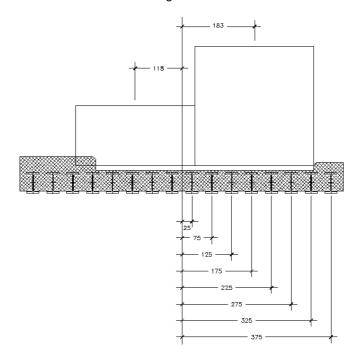
 d_{long} = 20 mm \Rightarrow varco longitudinale spalle.

13. ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DEI CODICI DI CALCOLO

In accordo col *cap. 10* della norma (*DM 2018*), si riportano le valutazioni relative ai risultati dell'analisi e ai codici di calcolo adottati.

13.1 Origine, caratteristiche e affidabilità dei software di calcolo

L'analisi dei modelli di calcolo è stata condotta attraverso il *software* agli elementi finiti *CSiBridge* ver. 15.1.1.


La versione di *CSiBridge* adottata per gli scopi di questa progettazione consente di eseguire analisi di elementi finiti in campo lineare e non lineare statico e dinamico, utilizzando una modellazione a grigliato con elementi beam (monodimensionali) aventi leggi costitutive lineari e non lineari. Permette di definire i carichi da traffico in accordo con le norme, consentendo di movimentare, lungo le corsie convenzionali, le azioni concentrate e distribuite che simulano il passaggio dei veicoli, valutando per ogni sezione dell'impalcato gli effetti massimi e quelli concomitanti (in termini di sollecitazioni).

Dopo aver esaminato le documentazioni a corredo del *software* e quelle reperibili sul sito web (<u>www.csiamerica.com</u>) si ritiene, per le particolari funzioni implementate, che il *CSiBridge* sia affidabile ed idoneo alla progettazione in oggetto per l'analisi statica e dinamica del viadotto.

13.2 Giudizio motivato di accettabilità dei risultati

13.2.1 Ripartizione trasversale carico accidentale

Ai fini della validazione dei risultati del modello di calcolo viene valutato l'effetto della ripartizione dei carichi mobili eccentrici sulle travi longitudinali applicando il *metodo di Courbon (ripartizione rigida)*; di seguito si riporta il modello considerato con le grandezze caratteristiche ed i risultati ottenuti.

L'eccentricità dei carichi distribuiti vale:

$$e(q_k) = \frac{(27 * 1.8 - 7.5 * 1.2)}{(27 + 7.5)} \cong 1.15m$$

L'eccentricità dei carichi concentrati vale:

$$e(q_k) = \frac{(600 * 1.8 + 400 * 1.2)}{1000} \cong 0.6m$$

Nel caso di travi longitudinali uguali ed egualmente vincolate si ha la seguente espressione di "r" (coefficiente di ripartizione trasversale):

$$r_i(q_k) = \frac{1}{n} + y_i * \frac{y_p}{\sum y_i^2} = \frac{1}{14} + 3.75 * \frac{1.15}{2 * (42.5)} \cong 0.12$$

$$r_i(Q_k) = \frac{1}{n} + y_i * \frac{y_p}{\sum y_i^2} = \frac{1}{14} + 3.75 * \frac{0.6}{2 * (42.5)} \approx 0.1$$

Si ottiene dunque un momento massimo in mezzeria della trave pari a:

$$Mmax(q_k) = M(q_k), unit * q_{tot} * r_i(q_k) = 45 * (27 + 7.5) * 0.12 \cong 200 \ kNm$$

 $Mmax(Q_k) = M(Q_k), unit * Q_{tot} * r_i(q_k) = 5 * (300 + 200) * 0.1 \cong 250 \ kNm$

I valori $M(q_k)_{,unit}$ ed $M(Q_k)_{,unit}$ sono stati ricavati considerando lo schema di trave semplicemente appogiata ed applicando rispettivamente un carico unitario uniformemente distribuito e due carichi concentrati posti a 1.2m nella mezzeria della campata centrale.

Il momento totale è dunque pari a 450 kNm